
DEC GKS Reference Manual
Volume
Order Number: AA—HW43C—TE

April 1989

This document is an encyclopedic reference to the DEC GKS level 2c run-time
functions. This volume contains information on the DEC GKS control, output, output
attribute, transformation, input, segment, metafile, and error-handling functions.
DEC GKS software users can review release notes by typing HELP GKS RELEASE_
NOTES on the DCL command line.

Revision/Update Information: This revised document supersedes the
VAX GKS Reference Manual Volume I Order
No. AI—HW43B—TE).

Operating System and Version: VMS Version 4.7 or higher. ULTRIX Version 3.0
or higher. VAXstation requirement: VAXstation
Windowing Software Versions 3.1 or higher, or
DECwindows Version 1.0.

Software Version: DEC GKS Version 4.0

digital equipment corporation
maynard, massachusetts

First Printing March 1984
Revised November 1984, May 1986, March 1987, April 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1984, 1986, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL—IN-1 EduSystem
DEC IAS
DEC/CMS MASSBUS
DEC/MMS PDP
DECnet PDT
DECmate P/OS
DECsystem-10 Professional
DECSYSTEM-20 Q—bus
DECUS Rainbow
DECwriter RSTS
DIBOL RSX

RT
ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

d ~9~ a
TM

ZK5203

Contents

Preface xvii

Summary of Technical Changes xxi

Chapter 1 Introduction to DEC GKS

1.1 GKS Function Categories 1-2

1.2 GKS Levels 1-4

1.3 Coordinate Range Format 1-6
1.3.1 Standard Escape/GDP Data Records 1-7

1.4 Function Presentation Format 1-9
1.4.1 Function Description 1-9
1.4.2 Function Syntax 1-10
1.4.3 Argument Descriptions 1-10
1.4.4 Error Message List 1-12
1.4.5 Program Examples 1-12
1.4.6 Returning a Data Record 1-14

iii

Chapter 2 Compiling, Linking, and Running DEC GKS Programs on VMS

2.1 VMS Programming Considerations 2-1
2.1.1 Online Help 2-2
2.1.2 Capabilities of Supported Devices 2-2
2.1.3 Calling Sequences 2-2
2.1.4 Constants and Include Files 2-4

2.1.4.1 Including Definition Files 2-5
2.1.5 Compiling, Linking, and Running Your Programs 2-6
2.1.6 Logical Names and DEC GKS Programming 2-7

2.1.6.1 Specifying Bit Masks as Workstation Type
Values 2-9

Chapter 3 Compiling, Linking, and Running DEC GKS Programs on
ULTRIX

3.1 ULTRIX Programming Considerations 3-1
3.1.1 Supported Languages 3-2
3.1.2 Capabilities of Supported Devices 3-2
3.1.3 Calling Sequences 3-2
3.1.4 Constants and Include Files - 3-4

3.1.4.1 Including Definition Files 3-5
3.1.5 Compiling, Linking, and Running Your Programs 3-6

3.1.5.1 Compiling and Linking GKS$ Programs ~3-6
3.1.5.2 Compiling and Linking C Binding Programs 3-6
3.1.5.3 Compiling and Linking FORTRAN Binding

Programs 3-6
3.1.6 Environment Variables and DEC GKS Programming 3-7

3.1.6.1 Specifying Bit Masks as Workstation Type
Values 3-8

Chapter 4 Control Functions

4.1 The Kernel, Graphics Handlers, and Description Tables 4-2
4.1.1 Workstations 4-3
4.1.2 Operating States and State Lists 4-5

4.2 Controlling the Workstation Display Surface 4-10
4.2.1 Output Deferral 4-10
4.2.2 Implicit Surface Regenerations 4-11
4.2.3 Workstation Surface State List Entries 4-12

iv

4.3 Control Inquiries 4-13

4.4 Function Descriptions 4-13
ACTIVATE WORKSTATION 4-14
CLEAR WORKSTATION 4-18
CLOSE GKS 4-21
CLOSE WORKSTATION 4-23
DEACTIVATE WORKSTATION 4-25
ESCAPE 4-27
MESSAGE 4-33
OPEN GKS 4-38
OPEN WORKSTATION 4-41
REDRAW ALL SEGMENTS ON WORKSTATION 4-46
SET DEFERRAL STATE 4-51
UPDATE WORKSTATION 4-58

Chapter 5 Output Functions

5.1 Output and the DEC GKS Operating State 5-2

5.2 Output Attributes 5-3

5.3 Transformations and the DEC GKS Coordinate Systems 5-3

5.4 Output Deferral 5-4

5.5 Output Inquiries 5-5

5.6 DEC GKS Output Function Descriptions 5-5
CELL ARRAY 5-6
FILL AREA 5-18
GDP 5-22
POLYLINE 5-27
POLYMARKER 5-31
TEXT 5-35

v

Chapter 6 Output Attribute Functions

6.1 Types of Attributes 6-2

6.2 Individual and Bundled Attribute Values 6-4
6.2.1 Aspect Source Flags ~ASFs~ 6-5
6.2.2 Dynamic Changes and Implicit Regeneration 6-6

6.3 Foreground and Background Colors 6-6

6.4 Output Attribute Inquiries 6-7

6.5 Function Descriptions 6-7
FILL AREA ATTRIBUTES 6-8

SET FILL AREA COLOR INDEX 6-9
SET FILL AREA INDEX 6-13
SET FILL AREA INTERIOR STYLE 6-18
SET FILL AREA STYLE INDEX 6-22
SET PATTERN REFERENCE POINT 6-24
SET PATTERN SIZE 6-26

POLYLINE ATTRIBUTES 6-28
SET POLYLINE COLOR INDEX 6-29
SET POLYLINE INDEX 6-33
SET LINETYPE 6-38
SET LINEWIDTH SCALE FACTOR 6-42

POLYMARKER ATTRIBUTES 6-46
SET POLYMARKER COLOR INDEX 6-47
SET POLYMARKER INDEX 6-51
SET MARKER TYPE 6-56
SET MARKER SIZE SCALE FACTOR 6-60

TEXT ATTRIBUTES 6-64
SET TEXT ALIGNMENT 6-65
SET TEXT COLOR INDEX 6-73
SET TEXT EXPANSION FACTOR 6-77
SET TEXT FONT AND PRECISION 6-81
SET TEXT HEIGHT 6-87
SET TEXT INDEX 6-91
SET TEXT PATH 6-95
SET TEXT SPACING 6-101
SET TEXT UP VECTOR 6-105

ASPECT SOURCE FLAG FUNCTION 6-111
SET ASPECT SOURCE FLAGS 6-112

REPRESENTATION FUNCTIONS 6-115
SET COLOR REPRESENTATION 6-116

vi

l~

SET FILL AREA REPRESENTATION 6-121
SET PATTERN REPRESENTATION 6-127
SET POLYLINE REPRESENTATION 6-134
SET POLYMARKER REPRESENTATION 6-141
SET TEXT REPRESENTATION 6-148

Chapter 7 Transformation Functions

7.1 World Coordinates and Normalization Transformations 7-2
7.1.1 The Normalized Device Coordinate (NDC) System 7-5
7.1.2 Overlapping Viewports 7-11

7.2 Workstation Transformations 7-12

7.3 Relative Positioning and Shape 7-18

7.4 Transformation Inquiries 7-20

7.5 Function Descriptions 7-20
SELECT NORMALIZATION TRANSFORMATION 7-21
SET CLIPPING INDICATOR 7-26
SET VIEWPORT INPUT PRIORITY 7-31
SET VIEWPORT 7-39
SET WINDOW 7-43
SET WORKSTATION VIEWPORT 7-47
SET WORKSTATION WINDOW 7-54

Chapter 8 Input Functions

8.1 Physical and Logical Input Devices 8-1
8.1.1 The Workstation Identifier 8-2
8.1.2 The Input Class 8-2
8.1.3 The Device Number 8-5

8.2 Prompt and Echo Types 8-5
8.2.1 Input Data Records 8-6
CHOICE CLASS 8-8
LOCATOR CLASS 8-10
PICK CLASS 8-14
STRING CLASS 8-15
STROKE CLASS 8-16

vii

VALUATOR CLASS 8-19
8.2.1.1 Using an Input Data Record 8-20

8.3 Input Inquiries 8-20
8.3.1 Default and Current Input Values 8-20
8.3.2 Device-Independent Programming 8-21

8.4 Overlapping Viewports 8-22

8.5 Input Operating Modes 8-23
8.5.1 Request Mode 8-24
8.5.2 Sample Mode 8-27
8.5.3 Event Mode 8-33

8.5.3.1 Program Example Using Event Mode 8-35
8.5.3.2 Placing Multiple Devices into Event Mode 8-40
8.5.3.3 Event Input Queue Overflow 8-51

8.6 Function Descriptions 8-55
INITIALIZING INPUT 8-56

INITIALIZE CHOICE 8-57
INITIALIZE LOCATOR 8-66
INITIALIZE PICK 8-71
INITIALIZE STRING 8-80
INITIALIZE STROKE 8-87
INITIALIZE VALUATOR 8-95

SETTING INPUT OPERATING MODES 8-102
SET CHOICE MODE 8-103
SET LOCATOR MODE 8-106
SET PICK MODE 8-109
SET STRING MODE 8-112
SET STROKE MODE 8-115
SET VALUATOR MODE 8-118

REQUESTING INPUT 8-121
REQUEST CHOICE 8-122
REQUEST LOCATOR 8-125
REQUEST PICK 8-128
REQUEST STRING 8-131
REQUEST STROKE 8-134
REQUEST VALUATOR 8-138

SAMPLING INPUT 8-141
SAMPLE CHOICE 8-142
SAMPLE LOCATOR 8-152
SAMPLE PICK 8-155
SAMPLE STRING 8-165
SAMPLE STROKE 8-175

viii

SAMPLE VALUATOR 8-189
OBTAINING INPUT IN EVENT MODE 8-197

AWAIT EVENT 8-198
FLUSH DEVICE EVENTS 8-202
GET CHOICE 8-205
GET LOCATOR 8-212
GET PICK 8-214
GET STRING 8-216
GET STROKE 8-223
GET VALUATOR 8-230

Chapter 9 Segment Functions

9.1 Creating, Using, and Deleting Segments 9-2
9.1.1 Pick Identification 9-4

9.2 Workstations and Segment Storage 9-6

9'.3 Segments and Surface Update 9-10

9.4 Segment Attributes 9-12
9.4.1 Detectability 9-13
9.4.2 Highlighting 9-13
9.4.3 Priority 9-14
9.4.4 Transformation 9-14

9.4.4.1 Normalization and Segment Transformations, and
Clipping 9-23

9.4.4.2 Implementing Multiple Transformations 9-27
9.4.5 Visibility 9-30

9.5 Segment Inquiries 9-30

9.6 Function Descriptions 9-30
ACCUMULATE TRANSFORMATION MATRIX 9-31
ASSOCIATE SEGMENT WITH WORKSTATION 9-39
CLOSE SEGMENT 9-41
COPY SEGMENT TO WORKSTATION 9-44
CREATE SEGMENT 9-47
DELETE SEGMENT 9-49
DELETE SEGMENT FROM WORKSTATION 9-53
EVALUATE TRANSFORMATION MATRIX 9-57
INSERT SEGMENT 9-61
RENAME SEGMENT 9-68

ix

SET PICK ID 9-72
SET SEGMENT DETECTABILITY 9-79
SET SEGMENT HIGHLIGHTING 9-85
SET SEGMENT PRIORITY 9-89
SET SEGMENT VISIBILITY 9-94
SET SEGMENT TRANSFORMATION 9-98

Chapter 10 Metafile Functions

10.1 Creating GKSM Metafiles 10-2

10.2 Creating CGM Metafiles 10-3

10.3 Reading a GKSM Metafile 10-6

10.4 Using the Metafile Functions in Programs 10-7

10.5 Metafile Inquiries 10-11

10.6 Function Descriptions 10-11
GKS$GET_ITEM 10-12
INTERPRET ITEM 10-14
READ ITEM FROM GKSM 10-17
WRITE ITEM TO GKSM 10-20

Chapter 11 Error-Handling Functions

11.1 Function Descriptions 11-3
EMERGENCY CLOSE GKS 11-4
ERROR HANDLING 11-8
LOG ERROR 11-10
SET ERROR HANDLER 11-12

Index

x

Examples
4-1 GKS$CLEAR_WS and the GKS Control Functions 4-16
4-2 Using the Escape Function 4-30
4-3 Sending a Message to the User 4-35
4-4 Redrawing Segments 4-48
4-5 Suppressing Implicit Regeneration 4-55
5-1 Cell Array Output 5-10
5-2 Fill Area Output 5-20
5-3 Generalized Drawing Primitive Output 5-25
5-4 Polyline Output 5-29

5-5 Polymarker Output 5-33

5-6 Text Output 5-37

6-1 Changing the Fill Color Index 6-11

6-2 Changing the Fill Index 6-15

6-3 Changing the Fill Area Interior Style 6-20
6-4 Changing the Polyline Color Index 6-31

6-5 Changing the Polyline Index 6-35

6-6 Changing the Polyline Line Type 6-40

6-7 Changing the Polyline Line Width 6-44

6-8 Changing the Polymarker Color Index 6-49

6-9 Changing the Polymarker Index 6-53

6-10 Changing the Polymarker Type 6-58

6-11 Changing the Polymarker Size 6-62

6-12 Changing the Text Alignment 6-70

6-13 Changing the Text Color Index 6-75

6-14 Changing the Character Expansion Factor 6-79

6-15 Changing the Text Font and Precision 6-84

6-16 Changing the Text Height 6-89

6-17 Changing the Text Index 6-92

6-18 Changing the Text Path 6-98

6-19 Changing the Character Spacing 6-102

6-20 Changing the Up Character Vector 6-108

6-21 Changing the Color Representation 6-119

6-22 Changing the Fill Area Representation 6-124

6-23 Changing the Pattern Representation 6-131

6-24 Changing the Polyline Representation 6-137

xi

6-25 Changing the Polymarker Representation 6-144

6-26 Changing the Text Representation 6-152

7-1 Selecting a Normalization Transformation 7-23

7-2 Controlling Clipping at the World Viewport 7--28

7-3 Setting the Input Priority 7-34

7-4 Establishing a Workstation Viewport 7-51

7-5 Establishing a Workstation Window 7-57

8-1 Using a Locator Logical Input Device in Request Mode 8-25

8-2 Using a Locator Logical Input Device in Sample Mode 8-28

8-3 Using a Locator Logical Input Device in Event Mode 8-35

8-4 Placing Two Devices into Event Mode 8-41

8-5 Subroutine Handling Event Queue Overflow 8-53

8-6 Using a Choice Logical Input Device in Request Mode 8-61

8-7 Using a Pick Logical Input Device in Request Mode 8-75

8-8 Using a String Logical Input Device in Request Mode 8-84

8-9 Using a Stroke Logical Input Device in Request Mode 8-92

8-10 Using a Valuator Logical Input Device in Request Mode 8-98

8-11 Using a Choice Logical Input Device in Sample Mode 8-145

8-12 Using a Pick Logical Input Device in Sample Mode 8-158

8-13 Using a String Logical Input Device in Sample Mode 8-168

8-14 Using a Stroke Logical Input Device in Sample Mode 8-179

8-15 Using a Valuator Logical Input Device in Sample Mode 8-191

8-16 Using a Choice Logical Input Device in Event Mode 8-207

8-17 Using a String Logical Input Device in Event Mode 8-218

8-18 Using a Stroke Logical Input Device in Event Mode 8-226

9-1 Comparing GKS$ASSOC_SEG_WITH_WS and
GKS$COPY_SEG_TO_WS 9-8

9-2 The Effects of a Segment Transformation 9-20

9-3 Segment Transformations and Clipping 9-24

9-4 Showing the Cumulative Effect. of GKS$ACCUM_XFORM_MATRIX . 9-35

9-5 Drawing a House and Placing It in a Segment 9-42

9-6 Deleting Segments on All Open and Active Workstations 9-51

9-7 Deleting Segments on a Specific Workstation 9-55

9-8 Inserting a Segment's Primitives into Another Segment 9-63

9-9 Renaming a Segment 9-70

9-10 Setting Pick Identifiers 9-74

9-11 Controlling the Detectability of Segments 9-81

9-12 Highlighting a Segment 9-87

xii

9-13 Setting Segment Priorities 9-91
9-14 Setting the Visibility of a Segment 9-96
10-1 Creating a Metafile 10-7
10-2 Interpreting and Producing a Picture from a Metafile 10-9
11-1 Executing an Emergency Closure of DEC GKS 11-5

Figures

1-1 Possible DEC GKS Primitives 1-3
1-2 Functionality by GKS Levels 1-5
1-3 Coordinate Range Presentation 1-6
4-1 GKS Operating States and Environment Control 4-9
4-2 Using the Escape Function VT241 4-32
4-3 Sending the User a Message VT241 4-37
4-4 Redrawing Segments VT241 4-50
4-5 Suppressing Implicit Regeneration VT241 4-57
5-1 The Maximum Number of Cells in the Cell Array 5-13
5-2 Possible Mapping Directions Using the Cell Array 5-14
5-3 Cell Array Output VT241 5-15
5-4 The Second Call for Cell Array Output VT241 5-16
5-5 The Third Call for Cell Array Output VT241 5-17
5-6 Fill Area VT241 5-21
5-7 Generalized Drawing Primitive Output VT241 5-26
5-8 Polyline Output VT241 5-30
5-9 Polymarker Output VT241 5-34
5-10 Text Output VT241 5-39
6-1 Changing the Fill Color Index VT241 6-12
6-2 Changing the Fill Index VT241 6-17
6-3 Changing the Fill Area Interior Style VT241 6-21
6-4 Changing the Polyline Color Index VT241 6-32
6-5 Changing the Polyline Index VT241 6-37
6-6 Changing the Polyline Line Type VT241 6-41
6-7 Changing the Polyline Line Width VT241 6-45
6-8 Changing the Polymarker Color Index VT241 6-50
6-9 Changing the Polymarker Index VT241 6-55
6-10 Changing the Polymarker Marker Type VT241 6-59
6-11 Changing the Polymarker Size VT241 6-63
6-12 Horizontal and Vertical Text Alignment 6-66

6-13 Default Horizontal and Vertical Text Alignments 6-67

6-14 Changing the Text Alignment VT241 6-72

6-15 Changing the Text Color Index VT241 6-76

6-16 Changing the Character Expansion Factor VT241 6-80

6-17 Changing the Text Font and Precision 6-86

6-18 Changing the Text Height VT241 6-90

6-19 Changing the Text Index VT241 6-94

6-20 Text Path Directions ~ 6-96

6-21 Changing the Text Path VT241 6-100

6-22 Changing the Character Spacing VT241 6-104

6-23 Examples of Character Up Vector Entries 6-106

6-24 Changing the Up Character Vector VT241 6-110

6-25 Changing the Color Representation VT241 6-120

6-26 Changing the Fill Area Representation VT241 6-126

6-27 Changing the Pattern Representation VT241 6-133

6-28 Changing the Polyline Representation VT241 6-1.40

6-29 Changing the Polymarker Representation VT241 6-147

6-30 Changing the Text Representation VT241 6-154

7-1 The World Coordinate Plane 7-4

7-2 The Clipping Rectangle 7-6

7-3 The Normalization Viewport ~ 7-8

7-4 Composing a Picture on the NDC Plane 7-10

7-5 The Workstation Window 7-15

7-6 The Picture on a Generic Device Surface 7-16

7-7 The Entire DEC GKS Transformation Process 7-17

7-8 Relative Position and Aspect Ratio 7-19

7-9 Selecting the Normalization Transformation VT241 7-25
7-10 Enabling and Disabling Clipping VT241 7-30
7-11 Setting the Input Priority VT241 7-38
7-12 Establishing a Workstation Viewport VT241 7-53
7-13 Establishing a Workstation Window VT241 7-59
8-1 Logical Input Classes 8-4
8-2 Initializing the Locator Logical Input Device VT241 8-27
8-3 The Locator Logical Input Device in Sample Mode VT241 8-31
8-4 The Locator Logical Input Device in Sample Mode VT241 8-32
8-5 The Locator Logical Input Device in Sample Mode VT241 8-33
8-6 The Locator Logical Input Device in Event Mode VT241 8-38
8-7 The Locator Logical Input Device in Event Mode VT241 8-39

xiv

lJ

l~

l,~

8-8 The Locator Logical Input Device in Event Mode VT241 8-40
8-9 Placing Two Devices in Event Mode VT241 8-48
8-10 Placing Two Devices in Event Mode VT241 8-49
8-11 Placing Two Devices in Event Mode VT241 ~ 8-50
8-12 Placing Two Devices in Event Mode VT241 8-51
8-13 Requesting Input from a Choice Logical Input Device VT241 8-65
8-14 Requesting Input from the Pick Input Device VT241 8-79
8-15 Requesting from the String Logical Input Device VT241 8-86
8-16 Requesting from the Stroke Logical Input Device VT241 8-94
8-17 Requesting from the Valuator Logical Input Device VT241 8-101

8-18 The Choice Logical Input Device in Sample Mode VT241 8-149
8-19 The Choice Logical Input Device in Sample Mode VT241 8-150
8-20 The Choice Logical Input Device in Sample Mode VT241 8-151
8-21 The Pick Logical Input Device in Sample Mode VT241 8-162
8-22 The Pick Logical Input Device in Sample Mode VT241 8-163
8-23 The Pick Logical Input Device in Sample Mode VT241 8-164
8-24 The String Logical Input Device in Sample Mode VT241 8-171

8-25 The String Logical Input Device in Sample Mode VT241 8-172

8-26 The String Logical Input Device in Sample Mode VT241 8-173
8-27 The String Logical Input Device in Sample Mode VT241 8-174

8-28 The Stroke Logical Input Device in Sample Mode VT241 8-183

8-29 The Stroke Logical Input Device in Sample Mode VT241 8-184

8-30 The Stroke Logical Input Device in Sample Mode VT241 8-185

8-31 The Stroke Logical Input Device in Sample Mode--VT241 8-186

8-32 The Stroke Logical Input Device in Sample Mode VT241 8-187

8-33 The Stroke Logical Input Device in Sample Mode VT241 8-188

8-34 The Valuator Logical Input Device in Sample Mode VT241 8-194

8-35 The Valuator Logical Input Device in Sample Mode VT241 8-195

8-36 The Valuator Logical Input Device in Sample Mode VT241 8-196

9-1 Primitives Within a Segment 9-5

9-2 Returned Pick Identifiers 9-6

9-3 Comparing GKS$ASSOC_SEG_WITH_WS and
GKS$COPY_SEG_TO_WS VT241 9-10

9-4 Scaling, Rotation, and Translation 9-16

9-5 The Effects of a Segment Transformation VT241 9-22

9-6 Segment Transformations and Clipping VT241 9-26

9-7 The Transformation and Clipping Pipeline 9-29

9-8 The Cumulative Effect of GKS$ACCUM_XFORM_MATRIX VT241 9-38

xv

9-9 House in the Lower Left Corner of the Screen VT241 9-43

9-10 Inserting a Segment's Primitives into Another Segment VT241 9-67

9-11 Setting Pick Identifiers VT241 9-78

9-12 Setting Pick Detectability VT241 9-84

9-13 Highlighting a Segment VT241 9-88

9-14 Setting Segment Priorities VT241 9-93

11-1 Executing an Emergency Closure of DEC GKS VT241 11-7

Tables
4-1 Workstation Categories 4-3

6-1 Geometric and Nongeometric Output Attributes 6-3

~.J

xvi

Preface

Manual Objectives

This manual provides encyclopedic reference to the DEC Graphical Kernel
System (GKS) and provides examples illustrating DEC GKS function calls. DEC
GKS is a level 2c GKS implementation. For more information concerning GKS
implementation levels, refer to Chapter 1, Introduction to DEC GKS.

NOTE

Before reading this manual, you should review the DEC GKS release
notes by typing the following:

S KELP GKS RELEASE_NOTES RETURN

Intended Audience

This manual is intended for experienced application programmers who need to
reference information concerning the DEC GKS functions. Readers should be
familiar with one high-level language and the DIGITAL Command Language
(DCL). (For more information concerning DCL, refer to the VAX/VMS DCL
Dictionary.)

Refer to the DEC GKS Binding Reference Manuals for information specific
to the binding you use with DEC GKS. The available bindings for DEC GKS
Version 4.0 are FORTRAN, C, and GKS$. These manuals are designed for the
experienced user of DEC GKS who needs to know the binding syntax and brief
argument descriptions.

xvii

Although there are lengthy introductions at the beginning of each of the
chapters, this manual is not tutorial in nature. New users who need tutorial
information and moderately experienced users needing programming
suggestions should refer to the DEC GKS User Manual.

Document Structure

This manual is contained in two volumes. Volume I contains the following
information:

• Chapter 1, Introduction to DEC GKS, provides an introduction to the DEC
GKS product and to the format of this reference manual.

• Chapter 2, Compiling, Linking, and Running DEC GKS Programs on VMS,
provides information about DEC GKS and the VMS operating system.

• Chapter 3, Comp' ' g, Linking, and Running DEC GKS Programs on
ULTRIX, provides information about DEC GKS and the ULTRIX operating
system.

• Chapter 4, Control Functions, provides information concerning the
establishment of the DEC GKS and workstation environments.

• Chapter 5, Output Functions, provides information concerning the
generation of output primitives.

• Chapter 6, Output Attribute Functions, provides information concerning the
output attributes.

• Chapter 7, Transformation Functions, provides information concerning the
normalization and workstation transformations.

• Chapter 8, Input Functions, provides information concerning input.

• Chapter 9, Segment Functions, provides information concerning the storage
of output primitives in segments.

• Chapter 10, Metafile Functions, provides information concerning long-term
storage of graphical images.

• Chapter 11, Error-Handling Functions, provides information concerning
error-handling by the application program.

Volume II of this manual contains the following information:

• Chapter 12, Inquiry Functions, provides information concerning the
acquisition of DEC GKS and workstation status information.

• The appendixes, which include the following:

— Appendix A, DEC GKS Supported Workstations

— Appendix B, DEC GKS Constants

xviii

— Appendix C, DEC GKS Attribute Values

— Appendix D, DEC GKS Error Messages
— Appendix E, DEC GKS Metafile Structure
— Appendix F, Language-Specific Programming Information
— Appendix G, DEC GKS Device-Independent Fonts
— Appendix H, DEC GKS Color Chart
— Appendix I, DEC GKS GDPs and Escapes

— Appendix j, DEC GKS Specific Input Values

Associated Documents

You may find the following documents useful when using DEC GKS:

• DEC GKS Laser Manual—For programmers who need tutorial infornnation or
guides to programming technique.

• DEC GKS FORTRAN Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the FORTRAN binding.

• DEC GKS GKS$ Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the GKS$ binding.

• DEC GKS C Binding Reference Manual—For programmers who need specific
syntax and argument descriptions for the C binding.

• DEC GKS Device Specifics Reference Manual—For programmers who need
information about specific devices.

• Building a DEC GKS Workstation Handler System—For programmers who
need to build DEC GKS workstation graphics handlers.

• Building a DEC GKS Device Handler System—For programmers who need
to provide support for a device unsupported by the DEC GKS graphics
handlers.

• DEC GKS Installation Guide—For system managers who install the DEC
GKS software, including the Run-Time installation, on VMS and ULTRIX
operating systems.

xix

Conventions

Convention Meaning

RETURN

$ RUN GKSPROG

INTEGER X

X=5

option, . . . A horizontal ellipsis indicates that additional
arguments, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

RETURN

[output-source, . . .]

deferral mode

The symbol RETURN represents a single
stroke of the RETURN key on a terminal.

In interactive examples, the user's response
to a prompt is printed in red; system prompts
are printed in black.

A vertical ellipsis indicates that not all of
the text of a program or program output is
illustrated. Only relevant material is shown
in the example.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

All names of the DEC GKS description table
and state list entries, and of the workstation
description table and state list entries, are
italicized.

xx

Summary of Technical Changes

New and Changed Features

This manual is a revision of the DEC GKS Reference Manual and contains the
following new and changed features.

• All device specific appendixes in Version 3.0, K through R, are now
documented in the DEC GKS Device Specifics Reference Manual.

• The sections of Appendix B, DEC GKS Constants, in the DEC GKS Reference
Manual, describing the following:

• An error handling state description

• The FORTRAN binding constant name GGFACP

• The sections of Appendix D, DEC GKS Error Messages, in the DEC GKS
Reference Manual, describing a new message.

• The sections of Appendix F, Language-Specific Programming Information,
in the DEC GKS Reference Manual, describing corrected type definitions in
the Programming in VAX Pascal section.

• The sections of Appendix I, DEC GKS GDPs and Escapes, in the DEC GKS
Reference Manual, describing the following:

• The new fill area set GDP

• New escape functions

• Corrections to the Set Writing Mode function

• The sections of Appendix J, DEC GKS Specific Input Values, in the DEC
GKS Reference Manual, describing Locator and Stroke Input classes.

xxi

Chapter 1

Introduction to DEC GKS

The Graphical Kernel System (GKS) is a set of graphics functions that can be
used by numerous types of graphics applications to produce two-dimensional
pictures on graphics output devices. GKS is defined by the ANSI X3.124-1985
and the ISO 7942-1985 standards. DEC GKS adheres to both standards. When
this manual refers to the GKS standard, the reference applies to both standards.

The GKS standard provides a functional standard, and syntactical standards
called language bindings. The functional standard determines the effects
produced by a particular GKS function, but does not specify the function name
or the number of function parameters. Therefore, a given function in two
different GKS implementations can produce the same effects, but may have a
different function name or a different number of parameters.

DEC GKS implements the functional standard using function names beginning
with the prefix GKS$. These functions should be used when programming with
the VMS implementation of DEC GKS. If you use the GKS$ functions, you
have to edit your program if you want to transport the program across systems
or across GKS implementations.

DEC GKS also implements approved syntactical language bindings. For DEC
GKS Version 4.0, these include the GKS FORTRAN and GKS C bindings.
The language bindings in general, and specifically the FORTRAN and C
bindings, provide standard function names and a standard number of function
parameters. If you write programs to be transported across systems or across
GKS implementations, you should use the appropriate language binding.

Introduction to DEC GKS 1-1

1.1 GKS Function Categories

The DEC GKS function categories are as follows:

• Control

• Output

• Output attribute
• Transformation
• Input

• Segment

• Metafile
• Error-handling

• Inquiry

The control functions determine which DEC GKS functions you can call at a
given point in your program. They also control the buffering of output and the
regeneration of segments on the workstation surface.

The output functions produce picture components, called primitives, of the
following types:

• Polylines Lines
• Polymarkers Symbols
• Fill areas Filled polygons
• Text Character strings
• Cell Array Filled cells of a rectangle
• Generalized drawing primitives Aworkstation-dependent image such as a

circle

Figure 1-1 illustrates possible representations of output primitives.

1-2 Introduction to DEC GKS

Figure 1-1: Possible DEC GKS Primitives

Polyline

~E

~ ~ Polymarker

■ ■ ■ ■ ■ ■ ■
■ ■ ■ ■ ■ ■

Fill area

Cell array

hello Text

O GDP

ZK-5346-86

Output attributes affect the appearance of a primitive. For instance, by
changing the line type attribute, you can produce solid, dashed, dotted, or
dashed-dotted lines.

Transformations affect the composition of the graphical picture and the
presentation of that picture. There are normalization and workstation
transformations. The normalization transformations allow you to use various
coordinate ranges for different primitives within a single picture. In this way,
you can use a coordinate range that suits each particular primitive in a large
picture.

Introduction to DEC GKS 1-3

The workstation transformations control the portion of the picture that you see
on the workstation's surface, and the portion of the surface used to display the
picture. Using workstation transformations, you can pan across a picture, zoom
in to a picture, or zoom out of a picture.

The input functions allow an application to accept data from a user.

The segment functions store and manipulate groups of primitives called
segments.

The metafile functions allow you to store and to recall an audit of calls to DEC
GKS functions. Using metafiles, you can store a DEC GKS session so that
another application can interpret that session, thus reproducing the picture
created by the original application. For more information concerning metafiles,
refer to Chapter 10, Metafile Functions.

The error-handling functions allow you to invoke auser-written error handler
when a call to another DEC GKS function generates an error. For more
information concerning error-handling, refer to Chapter 11, Error-Handling
Functions.

The inquiry functions obtain either default or current information from the DEC
GKS data structures.

If you need more tutorial information concerning DEC GKS concepts, refer to
the DEC GKS User Manual.

1.2 GKS Levels

The GKS standard defines levels of a GKS implementation that address the
most common classes of graphic devices and application needs. The levels are
determined primarily by input and output capabilities. The output level values
are represented by the characters m, 0, 1, and 2. The input level values are
represented by the characters a, b, and c.

The DEC GKS software is a level 2c implementation, incorporating all of the
GKS output capabilities (level 2) and all of the input capabilities (level c).
This manual uses the term DEC GKS when describing the 2c level DEC GKS
product.

Figure 1-2 defines the 12 upwardly compatible levels of GKS. DEC GKS
implements all listed functionality.

1-4 Introduction to DEC GKS

Figure 1-2: Functionality by GKS Levels

Output
Levels

m

0

~ --

1

2

~ Input Levels

a

i
i b

i
i c

No input, minimal control,
individual attributes, one
settable normalization
transformation, subset
of output and attribute
functions.

.r

Request input, set
operating mode and
initialize functions for input
devices, no pick input.

Sample and event input
no pick.

Basic control,
bundled attributes,
multiple normalization
transformations, all output
and attribute functions,
optional metafiles.

Set viewport input priority. All of level mc, above.

Full output including
settable bundles,
multiple workstations,
basic segmentation, no
workstation independent
segment storage,
metafiles.

r

Request pick, set operating
mode and initialize
functions for pick input.

Sample and event input
for pick.

Workstation independent
segment storage

All of level 1 b, at~ove.

ZK-5027-86

Introduction to DEC GKS 1-5

Pick input is one of the DEC GKS logical input classes used to specify segments
present on the surface of a device. Request, sample, and event are GKS input
operating modes. DEC GKS supports all three input operating modes. For
more information on pick input or operating modes, refer to Chapter 8, Input
Functions.

Workstation independent segment storage (WISS) provides a way to store
segments so that one segment can be transported to different devices. For more
information, refer to Chapter 9, Segment Functions.

1.3 Coordinate Range Format

When specifying a coordinate range, whether the range is located in world
coordinate space, normalized device coordinate space, or device coordinate
space, this manual uses a single notation.

The syntax of this rectangular range specification is as follows:

([x_min, x_max] X [y_min, y_max])

Figure 1-3 illustrates the rectangular coordinate area.

Figure 1-3: Coordinate Range Presentation

x_min, y_max

x_min, y_min I
x_max, y_max

 x_max, y_min

ZK-5491-86

For more information concerning the DEC GKS coordinate systems, refer to
Chapter 7, Transformation Functions.

1-6 Introduction to DEC GKS

1.3.1 Standard Escape/GDP Data Records

When calling the functions GKS$ESCAPE or GKS$GDP (generalized drawing
primitive), you may need to pass a data record. DEC GKS has a standard
escape/GDP data record that contains up to three integer components and four
array addresses.

To use an escape or GDP data record, you need to perform the following tasks:

1. Look up the escape or GDP description in Appendix I, DEC GKS GDPs and
Escapes, in the DEC GKS Reference Manual.

2. Determine the size and contents of the required data record (if one is
required).

3. Declare the data record as determined by your particular programming
language. Each of the seven components of the data record is an integer
value. The record is read only, passed by reference.

4. Pass to GKS$ESCAPE or GKS$GDP only the data record components
required by the escape or GDP. For instance, if an escape or GDP only
requires 5 data record components, omit values from components 6 and 7.

5. Pass to GKS$ESCAPE or GKS$GDP the exact size of the valid portion of
the data record, as specified in Appendix I, DEC GKS GDPs and Escapes, in
the DEC GKS Reference Manual. For instance, if an escape or GDP requires
5 valid components to the data record, then pass the value 20 as the data
record size (each component being a longword in length).

The DEC GKS standard escape/GDP data record is as follows.

Introduction to DEC GKS 1-7

Position Data Type Description

1 Integer Number of integer values passed in the data record.

2 Integer Number of real values passed in the data record.

3 Integer Number of string addresses passed in the data record.

4 Integer Address of array of integers with exactly as many
(address) elements as the number specified in component

number 1.

5 Integer Address of array of real numbers with exactly as many
(address) elements as the number specified in component

number 2.

6 Integer Address of array of string lengths with exactly as many
(address) elements as the number specified in component

number 3.

7 Integer Address of array of string addresses with exactly as
(address) many elements as the number specified in component

number 3.

After performing a task, some escape functions pass information back to
you by use of an output data record. This output data record is identical in
format to the input data record, except that the output record's components
are modifiable. You pass the buffer sizes in the first three components and the
addresses of your buffers in the last four components. DEC GKS modifies the
first three components to contain the number of elements DEC GKS actually
used to write output data to each of the corresponding buffers.

If you are using an escape function and you need to determine the size
required by the entire output data record buffer, you can pass the value 0 to the
output record buffer size (documented as the argument recard—buffer~ength
in the GKS$ESCAPE function description, described in Chapter 4, Control
Functions, in the DEC GKS Reference Manual). When you pass the value 0 as
this argument, GKS$ESCAPE does not perform the escape, but instead returns
the size of the output data record to argument record—size. In this manner, you
can be sure that you declared an output data record buffer that is large enough
to hold the entire data record.

To place array addresses in the fourth, fifth, sixth, and seventh components
of the data record, you need to use a technique specific to your programming
language. For instance, using VAX FORTRAN, you can use the %LOC built-in
function. For more information concerning addresses and pointers, refer to
the documentation set for your programming language. For more information
concerning the use of %LOC and data records, refer to the choice input
examples in Chapter 8, Input Functions, in the DEC GKS Reference Manual.

1-8 Introduction to DEC GKS

For more information, refer to Appendix I, DEC GKS GDPs and Escapes, in the
DEC GKS Reference Manual or to the DEC GKS Device Specifics Reference Manual.

NOTE

Remember that the DEC GKS input data records have a format that
is completely different from the DEC GKS standard escape/GDP
data record format. To review the GKS standard input data records,
refer to Chapter 8, Input Functions, in the DEC GKS Reference
Manual. To review the actual data records required by the DEC GKS
graphics handlers, refer to Appendix J, DEC GKS Specific Input
Values, in the DEC GKS Reference Manual.

1.4 Function Presentation Format

This section describes the format used to provide information about each of
the DEC GKS functions that use the GKS$ prefix. If you are using a language
binding, you can find a similar discussion concerning the format of binding
function descriptions at the beginning of the appropriate language binding
book.

The following sections describe the format used to present each of the DEC
GKS function descriptions.

1.4.1 Function Description

Each function description in this manual begins with the English version of the
function name at the top of the page. This function name is located at the top
of each subsequent page of the function description.

The first paragraph of the function description list the following items:

• The GKS standard function name.

• The valid operating states during which a call to the function is permitted
(for more information, refer to Chapter 4, Control Functions).

Following the listed information is a short description of the function. Within
this description is pertinent information about the DEC GKS operating state,
the DEC GKS description table and state list, and the workstation description
table and state list.

Introduction to DEC GKS 1-9

1.4.2 Function Syntax

The syntax section of the function description lists the syntax of a call to the
DEC GKS function. The syntax of each DEC GKS function call is available for
the GKS$, FORTRAN, and C bindings. This syntax includes the argument. list
for each binding.

Following each syntax section is an argument section that lists each GKS$
argument on a separate line.

All of the DEC GKS functions always return a longword condition status value.
For a description of the longword status value, refer to Appendix D, DEC GKS
Error Messages. For information concerning DEC GKS error handling, refer to
Chapter 11, Error-Handling Functions.

1.4.3 Argument Descriptions

The argument descriptions for each of the functions appear as follows:

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation.

1-10 Introduction to DEC GKS

The arguments passed to DEC GKS functions must be of specific data types and
they must be passed by specific mechanisms. In the function descriptions, these
data types are described in the list following each of the argument names.

For each argument, the listed values include:

• The data type of the argument
• The type of access made by the function
• The argument-passing mechanism and form

Most of the passing mechanisms required by DEC GKS functions are the
default mechanisms of VAX FORTRAN. (This manual clearly documents
those functions requiring different passing mechanisms in the section labeled
Arguments within each function description.) Refer to the DEC GKS C Binding
Reference Manual for information about C binding passing mechanisms.

The other VAX high-level languages use different default passing mechanisms.
If you are using ahigh-level language other than FORTRAN, you may need
to use the argument-passing extensions for that language. The include file
for some languages (for example, Pascal, BASIC, and PL/I) define the default
passing mechanisms for each DEC GKS function call.

Some of the descriptions of data types in this manual are not worded in exactly
the same manner as in the VMS documentation. For instance, when this
manual says that an argument is of the data type areal," the corresponding VMS
data type is "Floating point." The following list presents the notation used in
this manual and the corresponding VMS notation:

GKS Type/Mechanism Corresponding VMS Type/Mechanism

Integer Longword integer (signed)

Real Floating point

String Character-coded text string

Address (record) Longword integer (signed)
This is an address of a data record.

Type: array (integer) Type: longword integer (signed)
Mechanism: by reference Mechanism: by reference, array reference

For a complete discussion of the argument-passing mechanisms, refer to
the VAX/VMS Run-Time Library Routines Reference Manual. For information
concerning language-specific passing extensions, refer to the appropriate VAX
high-level language manual.

Introduction to DEC GKS 1-11

1.4.4 Error Message List

The function descriptions list all errors that can possibly be generated by a
call to that specific DEC GKS function. For a complete description of the error
message, the possible cause, and the possible user action, refer to Appendix D,
DEC GKS Error Messages.

1.4.5 Program Examples

Each function description either lists a program example or refers you to
another example that calls the specified DEC GKS function. All functions are
written in FORTRAN for use with the VT241, for consistency in presentation.
FORTRAN-specific constructs are flagged. However, if you are unfamiliar with
FORTRAN, you may wish to review the following list of FORTRAN-specific
constructs used in the program examples in this manual:

Construct Description

IMPLICIT NONE This statement prevents the VAX FORTRAN compiler
from implicitly declaring variable names that you have
not declared.

C This character, located in the first column of the line,
signifies that the entire line contains a comment.

* This character, located in column six, is a continuation
character. This character signifies that the previous line
of code continues onto the line marked with the
asterisk (*).

DATA The DATA statement initializes program variables with
data.

CHARACTER*80 This identifier is used to declare a character string of
length 80.

INTEGER var(3) This declaration declares athree-element array of type
INTEGER.

%DESCR These constructs are argument list built-in functions
%VAL used to pass arguments by descriptor, by value, and by
%REF reference.

LEN This construct is a built-in function that returns the
length of a string.

%LOC(array) This built-in function returns the address of its argument.

In many of the FORTRAN examples in this book, the following lines of code
cause the program to pause, so that you can view the image on the workstation
surface as it is being created.

1-12 Introduction to DEC GKS

C Release deferred output . Pause . Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(1, GKS$K_POSTPONE_FLAG)
READ(5,*)

Since DEC GKS allows the VT241 to defer, or buffer, output, you have to
update the screen with a call to GKS$UPDATE_wS in order to view the
picture created by all previous function calls in the program. The FORTRAN
READ statement causes the pause in program execution.

Since the rate of deferral may differ on various workstations, you may wish
to use the function GKS$INQ _wS_DEF_AND_UPDATE to check the current
deferral mode. If the deferral mode is anything other than GKS$K_ASAP,
you may wish to update the workstation surface occasionally when you
are debugging your program. If you want to change the deferral mode so
that the workstation surface is always current, you can call the function
GKS$SET_DEFER_STATE to change the current deferral mode.

For detailed information concerning the DEC GKS deferral mode, refer to
Chapter 4, Control Functions.

Also, all program examples include the following line:

CALL GKS$OPEN WS(1, GKS$K_CONID_DEFAULT, GKS$K VT240)

To convert the program for use with a device other than a VT241, change the
constant GKS$K_VT240 to the appropriate workstation constant value (refer
to Appendix A, DEC GKS Supported Workstations), and change any device
specific information within the program (such as bundled attribute values). The
device-specific information within each program is noted as such.

After many of the program examples, there is an illustration representing the
graphical image generated on the surface of the VT241. Since there are visual
differences between the written page and the workstation surface, the image
may appear different on your device surface. Also, different devices produce
different results.

Introduction to DEC GKS 1-13

For instance, the color may be a diff Brent hue or lines may not as perfectly
smooth as presented in the figure. The figures in this manual serve the purpose
of showing relative positioning, general color (where applicable), and general
shape of the graphical image on the surface of the VT241.

1.4.6 Returning a Data Record

The DEC GKS FORTRAN binding does not return data records. This restriction
conforms with the GKS Standard. Use the GKS$ function with FORTRAN if
you want to return the data record.

1-14 Introduction to DEC GKS

Chapter 2

Compiling, Linking, and Running DEC
GKS Programs on VMS

The DEC GKS functions that begin with the prefix GKS$ are designed to be
used on one of the VMS systems. Those functions meet the functional GKS
standard. In other words, they perform the necessary tasks as designated by
the GKS standard.

However, these functions are in no way meant to meet a syntactical standard.
For instance, the DEC GKS function GKS$CELL—ARRAY might have a
different number of arguments than the cell array function in another GKS
implementation. As a result, programs written using the GKS$ interface are
not easily transportable; you have to edit the function names, and possibly the
number and order of function arguments.

2.1 VMS Programming Considerations

The specific method for using DEC GKS software depends on the features and
conventions of each VAX language. This section discusses general issues that
must be considered when using any VAX language with DEC GKS.

NOTE

Some of the VAX languages have language-specific requirements
for using VAX GKS. For a complete discussion, you should refer to
Appendix F, Language-Specific Programming Information, before
coding your programs. For a discussion of the capabilities of each
of the DEC GKS supported physical devices, refer to the DEC GKS
Device Specifics Reference Manual.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-1

2.1.1 Online Help

DEC GKS provides an online HELP library. To access this information, type
the following:

Z HELP GKS RETURN

Before using the DEC GKS software, you should review the release notes for
information pertinent to the current release. To review the release notes, type
the following:

S HELP GKS RELEASE_NOTES RETURN

2.1.2 Capabilities of Supported Devices

In many applications, you may wish to write completely device-independent
programs. In this way, you can run your programs using different devices
without having to rewrite your programs. The DEC GKS User Manual outlines
the procedure for device-independent programming using DEC GKS.

However, you may wish to review the range of capab' 'ties of the DEC GKS
supported devices, or you may wish to write device-dependent subroutines
within your application. In any instance, it is helpful to review the device-
specific appendixes in this manual before you begin coding your application.
The device-dependent appendixes contain information concerning predefined
bundle index representations, color capab' 'ties, initial input values, bit masks as
workstation type values, supported escape functions for that particular device,
and s' ' ar information.

2.1.3 Calling Sequences

Each DEC GKS function requires a specific calling sequence. The calling
sequence indicates the elements included in the language statement that calls
the function, and the order of those elements. The three elements are the
following:

• Call Type
High-level VAX languages call DEC GKS functions with CALL statements
or function references. For example, when using FORTRAN, you can use a
CALL statement to call DEC GKS functions.

2-2 Compiling, Linking, and Running DEC GKS Programs on VMS

• Function Identifier
All DEC GKS function names begin with the prefix GKS$. FORTRAN
binding names begin with an uppercase G, and C binding names begin
with a lowercase g. The remainder of the name indicates the operation
performed by the function.
If writing programs to be transported across systems or across GKS
implementations, use the appropriate language binding functions. Refer
to the DEC GKS FORTRAN Binding Reference Manual and the DEC GKS C
Binding Reference Manual for information concerning the FORTRAN and C
binding function names.

• Argument List
Arguments that are passed to DEC GKS functions must be listed in the
order shown in the syntax descriptions contained in this manual. See
Section 3.1.4.1 for more information concerning the function description
format used in this manual. The various language binding functions may
have an argument list that is different hom the corresponding GKS$
function.

The specific requirements for writing calls and passing arguments to DEC GKS
functions vary from one language to another. Whatever the language of the
calling program, DEC GKS functions expect the following:

• Integer arguments to be 32-bit longwords passed by reference.

• Real numbers to be in single-precision, floating-point format passed by
reference.

• Character strings to be passed by string descriptors.

• Arrays t0 be passed either by reference or by descriptor, depending on the
particular DEC GKS function.

Each language may have specific requirements concerning the language-specific
calling sequence. For a discussion of language-specific programming concerns,
refer to Appendix F, Language-Specific Programming Information.

NOTE

For all languages that need to declare DEC GKS functions as external
functions, you should type the appropriate language definition file to
determine the actual function parameter identifiers specified in the
DEC GKS code. See Section 1.3 for more information concerning the
language definition files.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-3

2.1.4 Constants and Include Files

DEC GKS constants are symbolic names that are syntactically equivalent to
literal integer constants. These constants are used in the following ways:

• As arguments to DEC GKS functions.

• As literal values to which you can compare a returned value from an
inquiry function (for example, you can compare the return value, from a
call to the function GKS$INQ _WS_TYPE, to the constant GKS$K_VT125).

• As literal completion status codes to which you can compare a function
return value.

Many DEC GKS functions use constants as arguments, as shown by the
following function call:

GKS$CLEAR WS(1, GKS$K_CLEAR_ALWAYS)

You can compare one of the completion status codes to a function return value,
as follows:

IF (GKS$_SUCCESS = GKS$ACTIVATE_WS(1))

Most DEC GKS constants begin with the prefix GKS$K and are defined in a
definition file. All DEC GKS completion status code constants begin with the
prefix GKS$~RROR_ or DECGKS$~RROR~TEG_ and are defined in a
separate definition file. All DEC GKS bit mask constants begin with the prefix
GKS$M_.

You can either specify a literal value as an argument to a DEC GKS function,
or you can include the language definition files and use a defined constant
name instead. The use of constants adds to program legibility and program
documentation.

To review the list of DEC GKS constants, refer to Appendix B, DEC GKS
Constants. To review the list of DEC GKS completion status code constants,
refer to Appendix D, DEC GKS Error Messages.

2-4 Compiling, Linking, and Running DEC GKS Programs on VMS

2.1.4.1 Including Definition Files

You use DEC GKS software primarily by placing calls to DEC GKS functions in
your program. However, when using DEC GKS, you need statements in your
program other than calls to GKS functions. The specific statements that are
needed depend on the VAX language you use. (For more information, refer to
Appendix F, Language-Specific Programming Information).

DEC GKS constants and their values must be made available to all programs
using DEC GKS regardless of the VAX language you use. All VAX high-level
languages that use DEC GKS have a method for inserting an external file into
the program source code stream at compile time. Incorporating an external file
is the method for making DEC GKS constants available.

Your installation kit has been supplied with several files that contain DEC
GKS constants and separate files that contain DEC GKS completion status code
constants. You incorporate these files into your program with a statement that
is appropriate to the language you are using.

For example, BASIC provides the %INCLUDE statement for inserting an
external file into a program. Therefore, any BASIC program that uses DEC GKS
should contain the following statement:

'/.INCLUDE "SYS$LIBRARY:GKSDEFS.BAS"

In the previous statement, the identifier SYS$LIBRARY is the logical name of
the directory that contains the files containing DEC GKS constants.

The language definition files located in SYS$LIBRARY are as follows:

• GKSDEFS.ADA for VAX Adams

• GKSDEFS.BAS for VAX BASIC

• GKSDEFS.R32 for VAX BLISS

• GKSDEFS.H for VAX C

• GKSDEFS.LIB for VAX COBOL

• GKSDEFS.FOR for VAX FORTRAN using the GKS$ functions

GKSDEFS.BND for VAX FORTRAN using the FORTRAN binding functions

• GKSDEFS.PAS for VAX Pascal

• GKSDEFS.PLI for VAX PL/I routines declared as procedures (no value
returns)

• GKSDEFS.PL2 for VAX PL/I routines declared as functions

f^1
® VAX is a trademark of Digital Equipment Coorporation.

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Compiling, Linking, and Running DEC GKS Programs on VMS 2-5

The completion status code definition files located in SYS$LIBRARY are as
follows:

• GKSMSGS.ADA for VAX Ada
• GKSMSGS.BAS for VAX BASIC
• GKSMSGS.R32 for VAX BLISS
• GKSMSGS.H for VAX C

• GKSMSGS.LIB for VAX COBOL
• GKSMSGS.FOR for VAX FORTRAN
• GKSMSGS.PAS for VAX Pascal
• GKSMSGS.PLI for VAX PL/I

Each file includes comments that describe the exact method for using a given
definition file.

2.1.5 Compiling, Linking, and Running Your Programs

A program that uses DEC GKS function calls should be compiled and executed
as any other program. Use the compile command that is appropriate to the
language you are using and use the RUN command to execute the program
image.

DEC GKS functions are supplied as an installed shareable image library. An
installed shareable image makes linking faster and easier. Also, using DEC GKS
as a shareable image makes your program's resulting .EXE file smaller.

The symbols in the DEC GKS image have been inserted in the system image
library. Therefore, to link a compiled program to DEC GKS, you only need to
specify the name of your program's object file on the command line, as follows:

$ LINK MYPROG.OBJ RETURN

However, if you are using language binding functions in your program, you
need to link your program's object file with the appropriate binding object
library. To link your program to the FORTS binding object library, issue the
following command:

$ LINK MYPROG.OBJ, SYS$LIBRARY:GKSFORBND/LIBRARY (RETURN

2-6 Compiling, Linking, and Running DEC GKS Programs on VMS

2.1.6 Logical Names and DEC GKS Programming

NOTE

If you are unfamiliar with VMS logical names, then you may wish to
review the Introduction to VAX/VMS before reading this section.

In many DEC GKS programs, the execution of your application appears as
follows:

O CALL GKS~OPEN_GKS('SYSsERROR:')

A CALL GKS=OPEN_WS(1, GKS=K_CONID_DEFAULT,
* GKS=K WSTYPE_DEFAULT)

CALL GKSsACTIVATE_WS(1)

C Release the DEC GKS and workstation environments.
CALL GKSsDEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKSsCLOSE_GKSC)

The following numbers correspond to the numbers in the previous example:

O In this call to GKS$OPEN_GKS, the logical name SYS$ERROR is the only
argument to the function. This argument tells DEC GKS where to write
generated error messages.
If you pass the logical name SYS$ERROR (or the value 0), DEC GKS
translates this logical name and writes the error messages to the location
specified by the translation. By default, SYS$ERROR translates to the
logical name TT, which in turn translates to your process's default device
connection (error messages appear on your terminal's display surf ace).

If you choose, you can specify a VMS fide specification as an argument to
GKS$OPEN_GKS. In this way, you have a permanent record of generated
error messages for use during program debugging.

® The constant GKS$K_CONID DEFAULT (or the value 0) tells DEC GKS
to translate the logical name GKS$CONID in order to determine the name
of the device connection.
The constant GKS$K WSTYPE _DEFAULT (or the value 0) tells DEC GKS
to translate the logical name GKS$WSTYPE in order to determine the name
of the workstation type.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-7

Consequently, you can use the DEFINE or ASSIGN command on the DCL
command line to define the logical names to be the connection and type with
which you are working, as follows:

$ language_compile_command
$ LINK PROGRAM
$ DEFINE GKS$CONID ttb0
$ DEFINE GKS$WSTYPE 13
$ RUN PROGRAM

RETURN

(RETURN

$ DEFINE GKS$CONID tta0
$ DEFINE GKS$WSTYPE 12
$ RUN PROGRAM RETURN J

PROGRAM

RETURN

RETURN

! VT241 Color

RETURN

RETURN

! VT125 Black and White RETURN

Before you attempt to define GKS$CONID, you need to perform the following
tasks:

1. Make sure that you have allocated the device you need to access. The DCL
command SHOW DEVICE provides a list of devices on your system node.

2. Allocate the terminal using the command ALLOCATE (you may need
special privileges to allocate the device).

3. Use the command SHOW TERMINAL to make sure that the device's baud
rate, parity, and other settings match the settings of the physical device.

4. Define the logical GKS$CONID to be the logical name of the appropriate
device connection.

For more information concerning the terminal allocation process, refer to the
appropriate commands in the VAX/VMS DCL Dictionary.

There may be times when you do not wish to define the DEC GKS logical
names. In this case, or if you define an invalid value, DEC GKS translates
several logical names in the following order:

1. If the logical name GKS$CONID is undefined, DEC GKS translates the
logical name TT.

2. DEC GKS then translates TT, which always defaults to your process's
default device connection.

If the logical name GKS$WSTYPE is undefined, then DEC GKS sets the device
type to be GKS$K_VT240BW (the value 14, a black and white VT240).

The ability to define GKS$CONID and GKS$WSTYPE provides device inde-
pendency. For more information concerning device-independent DEC GKS
programs, refer to the DEC GKS User Manual.

2-8 Compiling, Linking, and Running DEC GKS Programs on VMS

lJ

l.~J

f1 2.1.6.1 Specifying Bit Masks as Workstation Type Values

You have the option of specifying the workstation type value in either a
hexadecimal, octal, or decimal longword value. In most cases, it is sufficient to
specify the type value in decimal.

However, some of the DEC GKS supported devices allow you to pass a bit
mask in the first word of the longword workstation type value. For example,
the following workstation type specifies default values for the DIGITAL LVP16
plotter:

$ DEFINE GKS$WSTYPE 51 RETURN

The following hexadecimal workstation type specifies to DEC GKS to use the
LVP 16 plotter in landscape mode, with a paper size of 11 x 17 inches:

$ DEFINE GKS$WSTYPE '/.x00020033 RETURN

For a complete list of all of the available bit masks for a given device, refer to
the DEC GKS Device Specifics Reference Manual.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-9

Chapter 3

Compiling, Linking, and Running DEC
GKS Programs on ULTRIX

The DEC GKS functions that begin with the prefix GKS$ are designed to be
used on a DIGITAL system. Those functions meet the functional GKS standard.
In other words, they perform the necessary tasks as designated by the GKS
standard.

However, these functions are in no way meant to meet a syntactical standard.
For instance, the DEC GKS function GKS$CELL _ARRAY might have a
different number of arguments than the cell array function in another GKS
implementation. As a result, programs written using the GKS$ interface are
not easily transportable; you have to edit the function names, and possibly the
number and order of function arguments.

Use the FORTRAN binding, and approved ISO and ANSI standard, for
transportab' 'ty.

3.1 ULTRIX Programming Considerations

The specific method for using DEC GKS software depends on the features
and conventions of each VAX language. This section discusses general issues
that must be considered when using any VAX language with DEC GKS. For
a discussion of the capabilities of each of the DEC GKS supported physical
devices, refer to the appropriate device-specific chapter in the DEC GKS Device
Specifics Reference Manual.

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-1

3.1.1 Supported Languages

DEC GKS supports the following languages:

• VAX FORTRAN

• VAX C

• CC (Portable C)

3.1.2 Capabilities of Supported Devices

In many applications, you may wish to write completely device-independent
programs. In this way, you can run your programs using different devices
without having to rewrite your programs. The DEC GKS User Manual outlines
the procedure for device-independent programming using DEC GKS.

However, you may wish to review the range of capab' 'ties of the DEC GKS
supported devices, or you may wish to write device-dependent subroutines
within your application. In any instance, it is helpful to review the DEC GKS
Device Specifics Reference Manual before you begin coding your application.
The device-dependent appendixes contain information concerning predefined
bundle index representations, color capabilities, initial input values, bit masks as
workstation type values, supported escape functions for that particular device,
and similar information.

3.1.3 Calling Sequences

Each DEC GKS function requires a specific calling sequence. The calling
sequence indicates the elements included in the language statement that calls
the function, and the order of those elements. The three elements are the
following:

• Call Type
High-level VAX languages call DEC GKS functions with CALL statements
or function references. For example, when using FORTRAN, you can use a
CALL statement to call DEC GKS functions.

• Function Identifier
All DEC GKS function names begin with the prefvc GKS$. FORTRAN
binding names begin with an uppercase G, and C binding names begin
with a lowercase g. The remainder of the name indicates the operation
performed by the function.

3-2 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

If writing programs to be transported across systems or across GKS imple-
mentations, you should use the appropriate language binding functions.
Refer to the DEC GKS FORTRAN Binding Reference Manual and the DEC
GKS C Binding Reference Manual for information concerning the FORTRAN
and C binding function names.

• Argument List
Arguments that are passed to DEC GKS functions must be listed in the
order shown in the syntax descriptions contained in this manual. See
Section 3.1.4.1 for more information concerning the function description
format used in this manual. The various language binding functions may
have an argument list that is different hom the corresponding GKS$
function.

The specific requirements for writing calls and passing arguments to DEC GKS
functions vary from one language to another. Whatever the language of the
calling program, DEC GKS$ binding functions expect the following:

• Integer arguments to be 32-bit longwords passed by reference.

• Real numbers to be in single-precision, floating-point format passed by
reference.

• Character strings to be passed by string descriptors.
• Arrays to be passed either by reference or by descriptor, depending on the

particular DEC GKS function.

Each language may have specific requirements concerning the language-
specific calling sequence. In VAX C, for example, strings are passed by a null
terminator. For a discussion of language-specific programming concerns, refer
to Appendix F, Language-Specific Programming Information, in the DEC GK5
Reference Manual.

NOTE

For all languages that need to declare DEC GKS functions as external
functions you should type the appropriate language definition file to
determine the actual function parameter identifiers specified in the
DEC GKS code. See Section 1.3 for more information concerning the
language definition files.

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-3

3.1.4 Constants and Include Files

DEC GKS constants are symbolic names that are syntactically equivalent to
literal integer constants. These constants are used in the following ways:

• As arguments to DEC GKS functions.

• As literal values to which you can compare a returned value from an
inquiry function (for example, you can compare the return value, from a
call to the function GKS$INQ _WS_TYPE, to the constant GKS$K_VT125).

• As literal completion status codes to which you can compare a function
return value.

NOTE

Constants (defines) for the bindings are in the binding specific
include files.

Many DEC GKS functions use constants as arguments, as shown by the
following function call:

GKS$CLEAR_WS(1, GKS$K_CLEAR_ALWAYS

You can compare one of the completion status codes to a function return value,
as follows, in this C example:

if (GKS$_SUCCESS == GKS$ACTIVATE_WS(1)

Most DEC GKS constants begin with the prefix GKS$K_ and are defined in a
definition file. All DEC GKS completion status code constants begin with the
prefix GKS$~RROR_ or DECGKS$~RROR~TEG_ and are defined in a
separate definition file. All DEC GKS bit mask constants begin with the prefix
GKS$M_.

You can either specify a literal value as an argument to a DEC GKS function,
or you can include the language definition files and use a defined constant
name instead. The use of constants adds to program legibility and program
documentation.

To review the list of DEC GKS constants, refer to Appendix B, DEC GKS
Constants, in the DEC GKS Reference Manual. To review the list of DEC
GKS completion status code constants, refer to Appendix D, DEC GKS Error
Messages, in the DEC GKS Reference Manual.

3-4 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

U

3.1.4.1 Including Definition Files

You use DEC GKS software primarily by placing calls to DEC GKS functions
in your program. However, when using DEC GKS, you need statements in
your program other than calls to GKS functions. The specific statements that
are needed depend on the VAX language you use. (For more information, refer
to Appendix F, Language-Specific Programming Information, in the DEC GKS
Reference Manual.)

DEC GKS constants and their values must be made available to all programs
using DEC GKS regardless of the language you use. All high-level languages
that use DEC GKS have a method for inserting an external file into the program
source code stream at compile time. Incorporating an external file is the method
for making DEC GKS constants available.

Your installation kit has been supplied with files that contain DEC GKS
constants and separate files that contain DEC GKS completion status code
constants. You incorporate these files into your program with a statement that
is appropriate to the language you are using.

For example, the C programming language provides the #INCLUDE statement
for inserting an external file into a program. Therefore, any C program that
uses the C binding should contain the following statement:

#INCLUDE <GKS/gks.h>

Any FORTRAN program that uses the FORTRAN binding functions should
contain the following statement:

INCLUDE '/usr/include/GKS/gksdefs.bnd'

The language definition files located in /usr/include/GKS are as follows:

• gksdefs.h for VAX C and CC (GKS$ binding)

• gks.h for VAX C and CC (C binding)

• gksdefs.bnd for VAX FORTRAN using the FORTRAN binding functions

The completion status code definition files located in usr/include/GKS are as
follows:

• gksmsgs.h for VAX C

Each file includes comments that describe the exact method for using a given
definition file.

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-5

3.1.5 Compiling, Linking, and Running Your Programs

A program that uses DEC GKS function calls should be compiled and executed
as any other program. Use the compile command that is appropriate to the
language you are using. To run an executable program, type the executable file
name that you specified.

NOTE

The \I RETURN convention indicates that _you type the backslash
character \, press Return, and then type text on the next line of the
screen.

3.1.5.1 Compiling and Linking GKS$ Programs

To compile and link a DEC GKS GKS$ program, use the following syntax:

vcc -o application applications\ (RETURN
-1GKS -lddif -dwt -lcursesX -lc -1X11 -lm -lc RETURN

3.1.5.2 Compiling and Linking C Binding Programs

To compile and link a DEC GKS C binding program, use the following syntax:

vcc -o application applications\ ~~RETURN
-1GKS -lddif -dwt -lcuraeaX -lc -1X11 -lm -lc (RETURN

3.1.5.3 Compiling and Linking FORTRAN Binding Programs

To compile and link a DEC GKS FORTRAN binding program, use the following
syntax:

fort -o application application .for\ (RETURN
-1GKSFORBND -lddif -dwt -lcuraeaX -lc -1X11 -lm -lc (RETURN

3-6 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

l~J

3.1.6 Environment Variables and DEC GKS Programming

In many DEC GKS programs, the execution of your application appears as
follows:

O CALL GKS$OPEN_GKS(stderr)

0 CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)

CALL GKS$ACTIVATE_WSC 1)

C Release the DEC GKS and r~orkstation environments.
CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS()

The following numbers correspond to the numbers in the previous example:

O In this call to GKS$OPEN_GKS, the name stderr is the only argument to
the function. This argument tells DEC GKS where to write generated error
messages.
If you pass the name stderr (or the value 0), DEC GKS writes the error
messages to the specified location. By default, stderr goes to the device
/dev/tty, which translates to your process's default device connection (error
messages appear on your terminal's display surface).
If you choose, you can specify a path name as an argument to
GKS$OPEN_GKS. In this way, you have a permanent record of generated
error messages for use during program debugging.

© The constant GKS$K_CONID DEFAULT (or the value 0) tells DEC GKS
to evaluate the environment variable GKSconid in order to determine the
name of the device connection.
The constant GKS$K WSTYPE DEFAULT (or the value 0) tells DEC GKS
to evaluate the environment variable GKSwstype in order to determine the
name of the workstation type.

Consequently, you can use the setenv command to your shell to define the
environment variables to be the connection and type with which you are
working, as follows:

csh> setenv GKSconid /dev/tty
csh> setenv GKSwstype 13
csh> # VT241 Color RETURN
csh> application RETURN

RETURN

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-7

csh> setenv GKSconid /dev/tt00
csh> setenv GKSwstype 12
csh> ## VT125 Black and White
csh> application RETURN

RETURN

RETURN

There may be times when you do not wish to define the DEC GKS environment
variables. In this case, or if you define an invalid value, DEC GKS translates
several environment variables in the following order:

1. If the environment variable GKSconid is undefined, DEC GKS uses logical
name /dev/tty for output.

2. If the environment variable GKSwstype is undefined, then DEC GKS sets
the device type to be GKS$K_VT240BW (the value 14, a black and white
VT240).

The ability to define GKSconid and GKSwstype provides device independency.
For more information concerning device-independent DEC GKS programs, refer
to the DEC GKS User Manual.

3.1.6.1 Specifying Bit Masks as Workstation Type Values

You have the option of specifying the workstation type value in either a
hexadecimal, octal, or decimal longword value. In most cases, it is sufficient to
specify the type value in decimal.

However, some of the DEC GKS supported devices allow you to pass a bit
mask in the first word of the longword workstation type value. For example,
the following workstation type specifies default values for the DIGITAL LVP16
plotter:

csh> setenv GKSwstype 51 RETURN

The following decimal workstation type specifies to DEC GKS to use the LVP16
plotter in landscape mode, with a paper size of 11 x 17 inches:

csh> setenv GKSwstype '/.x131123 RETURN

For a complete list of all of the available bit masks for a given device, refer to
the DEC GKS Device Specifics Reference Manual.

3-8 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

Chapter 4

Control Functions

The control functions establish the DEC GKS and workstation environments,
and control the workstation surface in a variety of ways. The following list
presents the control functions by category:

Category GKS Functions

GKS Environment

Workstation Environment

Display Surface Control

Additional Control

GKS$OPEN_GKS, GKS$CLOSE_GKS

GKS$OPEN_WS, GKS$ACTIVATE_WS,
GKS$DEACTIVATE_WS, GKS$CLOSE_WS

GKS$CLEAR_WS, GKS$REDRAW_SEG_ON WS,
GKS$SET_DEFER~TATE, GKS$UPDATE_WS

GKS$ESCAPE, GKS$MESSAGE

In a typical program, you need very few lines of code to tell DEC GKS about
the type of implementation you are using, the type of device you are using
for input or output, and the functionality allowed with that particular type
of device. (Input, output, and other types of devices are called workstations.)
You begin and end most DEC GKS sessions with lines of code similar to the
following:

C Establish the DEC GKS environment; write errors to the device
C represented by the logical name SYS$ERROR.

CALL GKS$OPEN_GKS('SYS$ERROR:')

C Open the default workstation, on the default device, and give
C the workstation an identification number. If you are working with

C a device which supports input, you can request input after this
C function call, but you cannot generate output.

CALL GKS$OPEN WS(1, GKS$K_CONID_DEFAULT,
* GKS$K WSTYPE_DEFAULT)

C Activate the workstation using its identification number. If the
C workstation supports output, you can generate output "primitives"
C after this function call.

Control Functions 4-1

CALL GKS$ACTIVATE_WS(1)

C Release the DEC GKS and workstation environments.
CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS()

The previous code example initiates actions by the DEC GKS kernel that
involve various operating states, tables, and lists. The tables and lists that are
accessible at a given time during program execution determine what types of
tasks you can perform (tasks such as input requests and output generation).
The following sections discuss the DEC GKS kernel, the DEC GKS operating
states, and the various tables and lists involved in working with DEC GKS.

4.1 The Kernel, Graphics Handlers, and Description Tables

The DEC GKS environment consists of the kernel, one or more graphics
handlers, at least two description tables, and a series of state lists. This section
discusses all but the state lists, which are described in detail in Section 4.1.2.

The DEC GKS kernel performs basic operations that do not depend on capa-
bilities specific to input, to output, or to the use of storage devices. The kernel
gives the DEC GKS functions access to the information and tools necessary
to perform properly. The kernel operations include calling certain inquiry
functions, maintaining certain tables, and issuing calls to graphics handlers.

The DEC GKS graphics handlers consist of functions that the kernel calls
to perform graphics operations on a particular workstation. The functions
include obtaining input, relaying output, and responding to inquiries for
workstation-specific information.

DEC GKS supplies graphics handlers for various devices such as the DIGITAL
VAXstation II/GPX and the VT240. If you are certain which devices your
DEC GKS programs will use, you should review the DEC GKS Device Specifics
Reference Manual. In this way, you can become familiar with the range
of capabilities of a particular device, and you can gain a sense of how the
supported devices vary.

The DEC GKS description table contains constant information about the GKS
implementation you are using. No matter what functions you call in your
program or no matter what application you run, the information in the DEC
GKS description table does not change. The DEC GKS kernel uses this constant
information about DEC GKS to initialize sections of the DEC GKS state list,
which is described in Section 4.1.2.

4-2 Control Functions

The DEC GKS description table contains information such as the level of GKS
you are using (with DEC GKS, level 2c), the number of available workstation
types, the list of workstation types, the maximum allowable open workstations,
and so forth. The DEC GKS description table is contained in the DEC GKS
kernel.

A workstation description table contains constant information about one partic-
ular device. No matter what functions you call in your program or no matter
what application you run, the information in a device's workstation description
table does not change, as long as you always use the same graphics handler.
Each graphics handler contains a workstation description table describing that
particular device. The workstation description table is used to initialize sections
of the workstation state list, which is described in Section 4.1.2.

The workstation description table contains information such as the workstation
type, the workstation category, the device-specific maximum coordinate values,
the default bundled output attribute values, and so forth.

4.1.1 Workstations

A workstation provides a common interface through which a DEC GKS
application program controls a graphics device. A workstation is usually a
physical device that has input and/or output capabilities. (The GKS$K_
WSCAT_MO, GKS$K_WSCAT~VII, and GKS$K_WSCAT_WISS workstations
are exceptions and are described in Table 4-1.)

The various capabilities of the workstation determine the workstation category.
Every workstation description table has an entry for the workstation category
of that particular type of workstation. The six workstation categories are as
follows:

Table 4-1: Workstation Categories

Category Description

GKS$K_WSCAT_OUTPUT A workstation of the category GKS$K_WSCAT_
OUTPUT can only display graphical images on a
single display surface. A GKS$K_WSCAT_OUTPUT
workstation can process all output functions with
the possible exception of the device-dependent
generalized drawing primitive (GDP) functions. For
more information concerning GDPs, refer to Chapter 5,
Output Functions.

Control Functions 4-3

Table 4-1 (Cont.~: Workstation Categories

Category Description

GKS$K_WSCAT~NPUT A workstation of the category GKS$K_WSCAT_INPUT
can only accept input, which must be accepted by at
least one type of logical input device. A GKS$K_
WSCA'T_INPUT workstation cannot accept the
generation of graphical images by DEC GKS output
functions. For more information concerning input, refer
to Chapter 8, Input Functions.

GKS$K_WSCAT_OUTIN A workstation of the category GKS$K_WSCAT OUTIN
combines the capabilities of GKS$K_WSCAT_OUTPUT
and GKS$K_WSCAT_INPUT workstations. This type
of workstation can display graphic images on the
workstation surface as well as accept input from the
logical input devices. Also, this type of workstation
must include at least one logical input device of each
class. For more information concerning logical input
devices, refer to Chapter 8, Input Functions.

GKS$K_WSCAT~VIO A workstation of the category GKS$K_WSCAT~VIO
(Metafile Output) stores image-specific data in a file
for use in reproducing the graphical image at a later
time, perhaps in another application program. For more
information concerning metafiles, refer to Chapter 10,
Metafile Functions.

GKS$K_WSCAT_NiI A workstation of the category GKS$K_WSCAT_1VII
(Metafile Input) allows an application program to read
and interpret items in a file that contains image-specific
data used to reproduce a graphic image. The file
containing the data to be interpreted must be produced
by a GKS$K_WSCAT_IVIO workstation. For more
information concerning metafiles, refer to Chapter 10,
Metafile Functions.

GKS$K_WSCAT_WISS A workstation of the category GKS$K_WSCAT_WISS
(workstation independent segment storage) can store
output primitives as a single unit during the execution
of a single application. The group of output primitives
is called a segment. You can manipulate the group
of output primitives within the defined segment as a
single entity. The only way to transfer segments from
one workstation to another is to store the segment
in workstation independent segment storage (WISS)
and then copy that segment to whichever open or
active workstation you desire. For more information
concerning segments, refer to Chapter 9, Segment
Functions.

4-4 Control Functions

4.1.2 Operating States and State Lists

The previous sections described the constructs, data structures, and tables
needed to maintain the static attributes of the DEC GKS implementation and
each workstation.

The DEC GKS and workstation states are not static. You can generate many
types of output with many different effects on the surface of the workstation,
you can use several devices, or you can create different segments. DEC GKS
must keep track of the current state of both the DEC GKS and the workstation
environments.

For example, the DEC GKS kernel must have access to a flag that designates
whether the DEC GKS software has been initialized, allowing access to
description tables and other structures. As another example, if you want to
output to a workstation, DEC GKS must have access to another flag that
designates whether that workstation is active or not.

To keep track of the information that is available to DEC GKS at a given time,
DEC GKS maintains its operating state and several different state lists.

The DEC GKS operating states are as follows:

• GKS$K_GKCL GKS is closed.

• GKS$K_GKOP GKS is open.

• GKS$K_WSOP At least one workstation is open.

• GKS$K WSAC At least one workstation is active.

• GKS$K_SGOP A segment is open.

For a better understanding, review the following code example. (It is similar to
the example presented at the beginning of the chapter.) Following the example,
Figure 4-1 shows the GKS operating states, the description tables and state
lists, and the control functions used to change operating states. You can use the
numbers in the example, in the figure, and in the description list to match the
lines of code with their effects on the DEC GKS operating state.

Control Functions 4-5

O CALL GKS$OPEN_GKS('SYS$ERROR')
© CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,

* GKS$K_WSTYPE_DEFAULT)
© CALL GKS$ACTIVATE_WS(1)

O CALL GKS$CREATE_SEG(1)

0 CALL GKS$CLOSE_SEG()

CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS()

The following numbers correspond to the numbers in the previous example and
to the numbers in Figure 4-1:

O Before you invoke DEC GKS, the operating state value is GKS$K_GKCL.
When DEC GKS is closed, you can call GKS$INQ _OPERATING _STATE,
which returns the current operating state, you can call GKS$OPEN_GKS,
or you can call DEC GKS functions to log and handle errors. To log and
handle errors, DEC GKS maintains the error state list. The error state list
contains entries that specify the error state and the error log file. If you
attempt to call DEC GKS functions while DEC GKS is closed (other than
those discussed in this paragraph), the call generates an error message.
For more information, refer to Chapter 12, Inquiry Functions, and to
Chapter 11, Error-Handling Functions.
In order to perform more tasks using DEC GKS, you must set the operating
state to GKS$K_GKOP. To do this, make a call to the control function
GKS$OPEN_GKS, and pass to the function the name of an error log file
so that DEC GKS knows where to write error messages. If you specify
SYS$ERROR, and if you have not redefined that logical name, DEC GKS
writes error messages to your terminal.
Once you open DEC GKS, you have enabled access to the DEC GKS
description table and the workstation description tables of the supported
graphics handlers. By calling GKS$OPEN_GKS, you have also allowed
access to the DEC GKS state list. The DEC GKS state list contains entries
that designate information such as the set of open workstations (if any), the
current normalization number, the current character height, and so forth.
Once DEC GKS is open, you can then specify output attributes (refer to
Chapter 6, Output Attribute Functions), set normalization transformations
(refer to Chapter 7, Transformation Functions), obtain values from the
DEC GKS state list, and obtain values from the DEC GKS and workstation

4-6 Control Functions

description tables (refer to Chapter 12, Inquiry Functions). If you attempt to
call other functions, DEC GKS generates an error message.

© To perform further tasks using DEC GKS (such as requesting input),
you must open at least one workstation. When you open the first work-
station, the DEC GKS operating state changes from GKS$K_GKOP to
GKS$K WSOP (at least one workstation open). To accomplish this, call
GKS$OPEN_WS and pass a numeric workstation identifier, a physical
device name or connection identifier (such as TT, the default connection
to your terminal), and a workstation type. (See GKS$OPEN_WS in this
chapter for more information.) The workstation identifier is an integer value
chosen by you for use in all references in the program to a specific, open or
active workstation.
For each workstation you open, there exists a workstation state list. This
list contains entries that specify whether output is deferred (buffered or
on hold), whether you have to update the workstation surface (redraw the
picture to fulfill a request for a picture change), whether the workstation
surface is empty by DEC GKS definition, whether the picture on the surface
represents all of the requests for output made thus far by the application
program, and so forth. Many control functions affect the values in this
table. See Section 4.2.1 for more information.
Once at least one workstation is open, you can call all functions except those
functions that open or close DEC GKS, perform output to a workstation,
create or insert segments, or write an item to a metafile output (GKS$K_
WSCAT~NiO) workstation (using the function GKS$WRITE_ITEM). If you
attempt to call these functions, DEC GKS produces an appropriate error
message.

© To perform output on a given workstation, you need to activate that
workstation. When you activate the first workstation, the DEC GKS
operating state changes from GKS$K_WSOP to GKS$K_WSAC (at least
one workstation active). To activate a workstation, call the control function
GKS$ACTIVATE _WS, and pass a workstation identifier specifying an
open workstation. When DEC GKS is in this operating state, you can call
all DEC GKS functions except GKS$OPEN_GKS, GKS$CLOSE_GKS,
or GKS$CLOSE_SEG. If you attempt to call these functions, DEC GKS
produces an appropriate error message.

~ When you open a segment, the DEC GKS operating state changes from
from GKS$K_WSAC to GKS$K_SGOP (segment open). To accomplish
this task, call GKS$CREATE _SEG and pass a segment name. The segment
name is chosen by you for use in all references in the program to a specific
segment. That segment is stored on all active workstations. To add output
primitives to the segment, you need only call the desired DEC GKS output
functions. Unless workstation independent segment storage (WISS) is open
and active during segment creation, segments stored on workstations cannot

Control Functions 4-7

be copied from one workstation to another. You can only copy segments
from WISS to an open or active workstation; you cannot copy a segment
from any other type of workstation.
When you create a segment, DEC GKS creates a segment state list. The
segment state list contains entries that specify the segment name, the set of
associated workstations, the detectability of the segment, and so forth.
In the GKS$K_SGOP operating state, you can call all GKS functions except
those that open or close DEC GKS, those that associate or copy the open
segment to another workstation, those that attempt to change the state of
the workstation, those that clear the workstation (GKS$CLEAR_WS), or
those that create segments (GKS$CREATE _SEG). If you attempt to call
those functions, DEC GKS generates an error message.

0 When you close the open segment, the DEC GKS kernel changes the
operating state from GKS$K_SGOP to GKS$K WSAC.

® If the operating state is GKS$K_WSAC, and if you deactivate the last
active workstation, the kernel changes the DEC GKS operating state from
GKS$K_WSAC to GKS$K WSOP.

O Similarly, if you close the last open workstation, the kernel changes the
DEC GKS operating state to GKS$K_GKOP.

= The final call in a single DEC GKS session should be to GKS$CLOSE_GKS;
after the call, access to the DEC GKS environment is closed and your GKS
session ends in an orderly fashion.

As you end your DEC GKS session, you must close an open segment (if one
exists), close and deactivate workstations, and close DEC GKS, in the proper
order. If you do not, your DEC GKS session does not end in an orderly fashion.

For example, if you fail to deactivate and to close an active workstation before
ending your program, the workstation may not return control to the user,
depending on the device.

4-8 Control Functions

lJ

Figure 4-1: GKS Operating States and Environment Control

GKS$K_GKCL

GKS
closed

Call O1
GKS$OPEN_GKS

First Call to
GKS$OPEN_WS

First call to
GKS$ACTIVATE_WS

Call
GKS$CREATE_SEG

0
r

GKS$K_GKOP

GKS
open

0

GKS$K_WSOP

At least one
workstation open

0

0

A

r
GKS$K_WSAC

At least one
workstation active

0

0

GKS$K_SGOP

Segment
open

Call
GKS$CLOSE_GKS

Call
GKS$CLOSE_WS

for last open workstation

Call
GKS$DEACTIVATE_WS

for last active workstation

Call
GKS$CLOSE _SEG

ZK-5029-86

Control Functions 4-9

4.2 Controlling the Workstation Display Surface

Depending on the type of device with which you are working, and depending
on the values of certain entries in the workstation description tables and state
lists, there may be times during program execution when the picture does not
contain all of the changes previously requested by the application program.
DEC GKS allows a workstation to delay the actions requested by a program in
order to utilize most efficiently the capabilities of a workstation.

Output deferral is one workstation attribute that affects the rate of picture
generation. By setting the deferral mode, you can buffer the generation of
output images before transmission to the surface in order to improve overall
rate of transmission, if a given workstation supports such buffering. Other
times, you can release buffered output so that the display surface reflects the
picture defined by the application.

4.2.1 Output Deferral

DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are as follows:

• GKS$K~1SAP—Generates output As Soon As Possible.

• GKS$K_BNIG—Generates output Before the Next Interaction Globally.

• GKS$K_BNIL—Generates output Before the Next Interaction Locally.

• GKS$K~STI—Generates output at Some TIme (as defined by the
workstation).

A local interaction happens on the workstation specified at the time of the
surf ace update, and a global interaction happens on any open workstation. An
interaction is a request for input using the DEC GKS input functions.

Depending on the capabilities of the workstation, it can defer output at any
level up to the level specified in the call to GKS$SET_DEFER_STATE. If the
workstation can defer output at the requested level, it does. If the workstation
cannot defer output at the requested level, it defers output at the next supported
lower level.

For example, if you specify GKS$K_ASAP in a call to GKS$SET_DEFER_
STATE, the workstation must generate output as soon as possible. If you
specify GKS$K_BNIG, the workstation can defer output at either GKS$K_
ASAP or GKS$K_BNIG, depending on its capabilities. If you specify GKS$K_
BNIL, the workstation can defer output on any level up to and including
GKS$K_BNIL, depending on its capabilities. If you specify GKS$K_ASTI,

4-10 Control Functions

the workstation can defer output at any of the four levels, depending on its
capabilities.

You can specify a suggested level of deferral by calling the function GKS$SET_
DEFER_STATE. To determine the default deferral state of a given workstation
type, you can call GKS$INQ _DEF_DEFER_STATE. To determine the current
state of the deferral mode, you can call GKS$INQ _WS_DEFER~ND_
UPDATE.

Writing applications with other graphics programs, you need to 'flush the
output buffer" in order to include all output in your picture. The DEC GKS
equivalent of this action is to urelease deferred output" (if there is any). To see
if generated output has been deferred by the workstation, you call the function
GKS$INQ _WS_DEFER_AND_UPDATE. To release deferred output without
updating the screen in any other way, call the function GKS$UPDATE _WS
and pass the argument GKS$K ~'OSTPONE SLAG. For example, the VT 125
and the VT240 defer output by default. If you are using those devices, you
need to release deferred output if you want to place the current image on the
workstation surface.

4.2.2 Implicit Surface Regenerations

Suppressed implicit regeneration of the currently generated output primitives is
the second workstation attribute that can place the workstation surface out of
date.

If you request a change to an output attribute bundle index, a change to a
segment attribute, or a change to the current workstation window or viewport,
the workstation can either make the change to the surface dynamically
(GKS$K~MM) or can implicitly regenerate the entire picture in order to
comply with the requested change (GKS$K_IRG).

Whether a workstation makes the change dynamically or requires an implicit
regeneration is a static capability of the particular workstation. You can call
either the function GKS$INQ_DYN_1VIOD_SEG or GKS$INQ_DYN~ViOD_
WS to determine if a workstation can make a certain change immediately or if
the picture must be implicitly regenerated.

If a workstation makes changes dynamically, then only the output primitives in
the picture that are affected by the change are regenerated and the surface does
not become out of date. For instance, for many of the supported workstations,
a call to the function GKS$SET_COLOR~EP (refer to Chapter 6, Output
Attribute Functions) changes color table entries dynamically.

Control Functions 4-11

When an implicit regeneration occurs, the workstation clears the surface,
implements the change, and then redraws only the- segments on the workstation
surface. You lose all output primitives not contained in segments. For instance,
for many of the supported workstations, a call to the function GKS$SET_
PLINE CEP (refer to Chapter 6, Output Attribute Functions) causes an implicit
regeneration on many workstations.

If a workstation makes changes by implicit regeneration, the workstation
may or may not regenerate the workstation surf ace at that point in the
program to implement the change. The implicit regeneration mode entry in the
workstation state list specifies whether the workstation currently allows implicit
regenerations, or if it suppresses them, leaving the workstation surface out
of date. You can call the function GKS$INQ _WS_DEFER~ND_UPDATE
to determine if the workstation is allowing regenerations (GKS$K~RG_
ALLOWED) or suppressing them (GKS$K~RG_SUPPRESSED).

Many of the DEC GKS supported devices suppress implicit regenerations
because of the possible loss of output primitives caused by an allowed regen-
eration. If you wish to change the implicit regeneration mode entry in the
workstation state list, you can call the function GKS$SET_DEFER_STATE.
Suppressing implicit regenerations allows you to make many changes to the
picture without incurring the overhead of a regeneration for every change.

When you are ready to update the workstation surface, you can call
GKS$UPDATE_WS, passing GKS$K~ERFORM~LAG, to perform the
single implicit regeneration. Rmember that if you call GKS$UPDATE _WS to
force a surface regeneration, you lose all primitives not contained in segments.

4.2.3 Workstation Surface State List Entries

When controlling the workstation surface, you should be aware of the display
surface empty and the new frame action necessary at update entries in the
workstation state list.

Several of the control functions clear the workstation surface if the display
surface empty entry is GKS$K_EMPTY. Under certain conditions, when you are
working with different clipping rectangles and generalized drawing primitives
(GDPs), the entry may contain GKS$K~TOTEMPTY when the surface is
actually empty. In such situations, when the entry contains GKS$NOTEMPTY,
the application program must decide whether or not there exists any 'invisible"
output to the workstation surface.

4-12 Control Functions

Also, you may wish to check the new frame action necessary at update entry
to determine if an implicit regeneration will occur if you update the surf ace
by calling GKS$UPDATE WS (passing GKS$K~'ERFORM~'LAG as an
argument). If the new frame entry is GKS$K_NEWFRAME~TOTNECESSARY,
then you can update the surf ace without the fear of losing primitives not
contained in segments. If the new frame entry is GKS$K_NEWFRAME _
NECESSARY, then a call to GKS$UPDATE_WS with the GKS$K~'ERFORM_
FLAG argument will cause an implicit regeneration, causing all primitives not
contained in segments to be lost.

For more informat-~on, refer to Chapter 12, Inquiry Functions.

4.3 Control lnquiries

The following list presents the inquiry functions that you should use to obtain
control function information when writing device-independent code:

GKS$INQ ACTIVE _WS

GKS$INQ _DYN_1VIOD_WS~TTB

GKS$INQ _LEVEL

GKS$INQ _OPEN_WS

GKS$INQ _OPERATING _STATE

GKS$INQ _WS_CATEGORY

GKS$INQ _WS_DEFER~ND_UPDATE

GKS$INQ _WS_1VIAX _NUM

GKS$INQ _WS_STATE

GKS$INQ _WS_TYPE

GKS$INQ _WSTYPE _LIST

For more information concerning device-independent programming, refer to the
DEC GKS User Manual.

4.4 Function Descriptions

This section describes the control functions in detail.

Control Functions 4-13

ACTIVATE WORKSTATION

ACTIVATE WORKSTATION

Operating States: WSOP, WSAC

Description
The function GKS$ACTIVATE _WS activates the specified workstation, allowing
all subsequently generated output to be sent to the workstation.

You must open DEC GKS and you must open the workstation you wish to
activate before calling GKS$ACTIVATE _WS. If the newly activated workstation
is the only active workstation, DEC GKS changes the operating state from
GKS$K_WSOP (at least one workstation open) to GKS$K_WSAC (at least one
workstation active).

Syntax
GKS~ACTIVATE_WS (workstation_idJ

GACWK (workstation_idJ

gactivate (workstation~d)

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

4-14 Control Functions

ACTIVATE WORKSTATION

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR~IEG~O

6 GKS$_ERROR_6

20 GKS$~RROR~O

25 GKS$_ERROR~S

29 GKS$_ERROR_29

33 GKS$~RROR_33

35 GKS$_ERROR_35

43 GKS$_ERROR_43

GKS not in proper state: GKS in
the ERROR state in routine ****

GKS not in proper state: GKS shall
be either in the state WSOP or in
the state WSAC in routine ****

Specified workstation identifier is
invalid in routine * * *

Specified workstation is not open in
routine ****

Specified workstation is active in
routine ****

Specified workstation is of category
MI in routine * * * *

Specified workstation is of category
INPUT in routine ****

Maximum number of simultane-
ously active workstations would be
exceeded in routine ****

Program Example
Example 4-1 illustrates the use of many of the DEC GKS control functions,
including GKS$ACTIVATE _WS.

Control Functions 4-15

ACTIVATE WORKSTATION

Example 4-1: GKS$CLEAR_WS and the GKS Control Functions

C This program writes a text string to the screen, and then
C clears the screen on the condition that it is not already clear.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID
REAL START_X, START Y, LARGER
DATA START_X / 0.1 /, START_Y / 0.5 /, LARGER / 0.03 /,
* WS_ID / 1 /

O CALL GKS$OPEN_GKS('SYS$ERROR:')
© CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
© CALL GKS$ACTIVATE_WS(WS_ID)

C Write a line of text to the screen at a legible text height.
CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$TEXT(START_X, START_Y, 'GKS$CLEAR_WS should erase this')

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

C Clear the screen conditionally
0 CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_CONDITIONALLY)

C Release the GKS and workstation environments.
© CALL GKS$DEACTIVATE_WS(WS_ID)

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O You must call the function GKS$OPEN_GKS to establish the DEC GKS
environment. The logical name, SYS$ERROR, usually defaults to the
standard output device (the terminal surface). DEC GKS translates the
logical name to determine where to output error messages. You may find it
convenient to pass a file specification so that you can review the generated
error messages at any given time.

© When you initialize the specified workstation environment, you assign the
workstation a numeric identifier (in this example, the number 1), a device
name (in this example, DEC GKS translates the logical name GKS$CONID
to determine the device name), and a workstation type (in this example,
GKS$K_VT240 represents the VT241 device type). If you choose not to use
DEC GKS constants and you wish to use default values, you can replace
the constants with the value 0.

4-16 Control Functions

ACTIVATE WORKSTATION

For more information concerning the constants used here, refer to
GKS$OPEN_WS in this section or to Chapter 1, Introduction to DEC
GKS.

© When activating a workstation using GKS$ACTIVATE _WS, use the
workstation identifier that you specified as the first argument in the call to
function GKS$OPEN_WS (in this example, the value 1).

4 Using default windows and viewports, the function GKS$TEXT outputs a
character string starting at the world coordinates (0.1, 0.5).
For more information concerning the coordinate systems, refer to Chapter 7,
Transformation Functions. For more information concerning text output,
refer to Chapter 5, Output Functions.

0 The function GKS$CLEAR WS, when passed GKS$K_CLEAR_
CONDITIONALLY, clears the workstation under the condition that the
surface contains output primitives. Since the previous function call wrote a
character string to the workstation surface, this call clears the screen.

© When deactivating and closing the open workstation, pass the numeric
workstation identifier previously specified in the call to GKS$OPEN_WS
(in this example, the value 1).

Control Functions 4-17

CLEAR WORKSTATION

CLEAR WORKSTATION

Operating States: WSOP, WSAC

Description
The function GKS$CLEAR_WS performs the tasks in the following order:

1. Generates all deferred output (see GKS$SET_DEFER_STATE in this
section).

2. If the display surf ace empty workstation state list entry is GKS$K_
NOTEMPTY, this function always clears the surface. If the surface is
empty (GKS$K~MPTY), then this function only clears the screen if you
specify GKS$K_CLEAR_ALWAYS as an argument. If no other worksta-
tions are associated with the segment, the segment is deleted. For more
information, refer to Chapter 9, Segment Functions.

After executing this function, DEC GKS sets the display surface empty worksta-
tion state list entry to GKS$K~MPTY, the workstation transformation ugdate
state entry to GKS$K~VOTPENDING, and the new frame necessary at update
state list entry to GKS$K~TEWFRAME~VOTNECESSARY.

Syntax
GKS~CLEAR_WS (worksiation~d, flag)

GCLRWK (workstation_id, control flag)

gclearws (workstation~d, clearflagJ

4-18 Control Functions

CLEAR WORKSTATION

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN—WS in this chapter).

flag

data type: integer
access: read-only
mechanism: by reference

This argument determines under which condition DEC GKS clears the screen.
This argument can be either of the following values or constants:

Value Constant Description

0 GKS$K_CLEAR_CONDITIONALLY Clear if the surface is not
empty.

1 GKS$K_CLEAR_ALWAYS Clear the workstation.

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$~RROR_NEG~O GKS not in proper state: GKS in
the ERROR state in routine ****

-37 DECGKS$_ERROR_NEG_37 Error in device handler during
event flag allocation in routine ****

6 GKS$~RROR_6 GKS not in proper state: GKS shall
be either in the state WSOP or in
the state WSAC in routine ****

Control Functions 4-19

CLEAR WORKSTATION

Error Completion
Number Status Code Message

20 GKS$~RROR~O Specified workstation identifier is
invalid in routine ****

25 GKS$~RROR_25 Specified workstation is not open in
routine ****

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine ****

35 GKS$_ERROR_35 Specified workstation is of category
INPUT in routine ****

Program Example
Refer to Example 4-1 in this section for a program example using a call to
GKS$CLEAR_WS.

4-20 Control Functions

CLOSE GKS

CLOSE GKS

Operating States: GKOP

Description
The function GKS$CLOSE_GKS releases the DEC GKS buffers, closes the
error log file, and deletes it if empty. GKS$CLOSE_GKS releases the DEC
GKS description table, the DEC GKS state list, and the workstation description
tables. A call to GKS$CLOSE _GKS must end each DEC GKS session.

You must call both GKS$DEACTIVATE_WS for each active workstation and
GKS$CLOSE WS for each open workstation before you call GKS$CLOSE _
GKS. If you do not, DEC GKS logs an error message.

A call to GKS$CLOSE _GKS changes the DEC GKS operating state from
GKS$K_GKOP (GKS open) to GKS$K_GKCL (GKS closed).

Syntax
GKSaCIOSE_GKS (J

GGKOP (J

gclosegks (J

Control Functions 4-21

CLOSE GKS

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$—ERROR—NEG _20

2 GKS$~RROR~

GKS not in proper state: GKS in
the ERROR state in routine ****

GKS not in proper state; GKS shall
be in the state GKOP in routine

Program Example
Refer to Example 4-1 in this section for a program example using a call to
GKS$CLOSE_GKS.

4-22 Control Functions

CLOSE WORKSTATION

CLOSE WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description
The function GKS$CLOSE_WS updates the workstation (equivalent to a call
to GKS$UPDATE_WS with the GKS$K~'ERFORM~LAG argument), closes
a workstation opened by a previous call to GKS$OPEN_WS, and releases a
specified workstation's state list. GKS$CLOSE _WS deassigns the channel used
for input/output to the device and removes the workstation from the set of
open workstations in the DEC GKS state list.

If you call this function to close the last open workstation, this function changes
the DEC GKS operating state from GKS$K_WSOP (at least one workstation
open) to GKS$K_GKOP (GKS open).

Be sure to deactivate a workstation with a call to GKS$DEACTIVATE _WS
before you attempt to close a workstation v~vith GKS$CLOSE _WS. If you do
not, DEC GKS logs an appropriate error message.

Syntax
GKS$CLOSE_WS (workstation~d)

GCLWK (workstativn~dJ

gclosews (workstation_idJ

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Control Functions 4-23

CLOSE WORKSTATION

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR~TEG~O

7 GKS$_ERROR_7

20 GKS$~RROR~O

25 GKS$_ERROR~S

29 GKS$~RROR~9

147 GKS$~RROR_147

GKS not in proper state: GKS in
the ERROR state in routine ****

GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC, or SGOP in routine ****

Specified workstation identifier is
invalid in routine * * * *

Specified workstation is not open in
routine ****

Specified workstation is active in
routine ****

Input queue has overflowed in
routine ****

Program Example
Refer to Example 4-1 in this section for a program example using a call to
GKS$CLOSE WS.

4-24 Control Functions

DEACTIVATE WORKSTATION

DEACTIVATE WORKSTATION

Operating States: WSAC

Description
The function GKS$DEACTIVATE_WS deactivates a specific workstation so that
subsequent output will not be sent to that workstation. A call to this function
removes the workstation from the set of active workstations in the DEC GKS
state list. Segments stored on the workstation are retained.

If a call to this function deactivates the last active workstation, this function
changes the DEC GKS operating state from GKS$K WSAC (at least one
workstation active) to GKS$K WSOP (at least one workstation open).

You must deactivate a workstation before you can close that workstation. Also,
you must deactivate and close all workstations (if applicable) before you can
close DEC GKS. Otherwise, DEC GKS logs an appropriate error message.

Syntax
GKS;DEACTIVATE WS (workstation~dJ

GDAWK (workstation~dJ

gdeactivate (workstation~dJ

Arguments
workstation~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Control Functions 4-25

DEACTIVATE WORKSTATION

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG_20

3 GKS$~RROR_3

20 GKS$_ERROR~O

30 GKS$~RROR_30

33 GKS$~RROR_33

35 GKS$~RROR_35

GKS not in proper state: GKS in
the ERROR state in routine ****

GKS not in proper state: GKS shall
be in the state WSAC in routine

Specified workstation identifier is
invalid in routine ****

Specified workstation is not active
in routine ****

Specified workstation is of category
MI in routine ****

Specified workstation is of category
INPUT in routine ****

Program Example
Refer to Example 4-1 in this section for a program example using a call to
GKS$DEACTIVATE _WS.

4-26 Control Functions

ESCAPE

ESCAPE

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$ESCAPE provides a method for individual DEC GKS im-
plementations to access capabilities of a specific workstation that are not fully
utilized by other functions. For example, the DEC GKS implementation uses
this function call to produce a hardcopy dump of a VT125/VT240 terminal
screen or to set the plotter pen speed on an LVP16 workstation.

DEC GKS Device Specifics Reference Manual describes the level of support for
the DEC GKS escape functions. For more information concerning the available
escapes, refer to the DEC GKS Device Specifics Reference Manual.

SYNTAX

GKS$ESCAPE (function_id, in_dat~record, in~ecorrLsize,
out_dat~record, out~ecora~size, total~ecor~size)

GESC (fund, dim~dr, idr, max_odr, len_odr, odrJ

gescape (function, indata, bufsize, vutdata, escout_sizeJ

Arguments
function~id

data type: integer
access: read-only
mechanism: by reference

This argument is the escape function identifier.

Control Functions 4-27

ESCAPE

in~data_record

data type: address (record)
access: read-only
mechanism: by reference

This argument is a pointer to the input data record buffer. For more infor-
mation concerning the structure of the input data record, refer to Chapter 1,
Introduction to DEC GKS.

in~recorc~size

data type: integer
access: read-only
mechanism: by reference

This argument is the size of the input data record in bytes. This argument
should be the exact size of the required input data record.

ou~data_record

data type: address (record)
access: modifiable
mechanism: by reference

This argument is a pointer to the output data record buffer. For more infor-
mation concerning the structure of the output data record, refer to Chapter 1,
Introduction to DEC GKS.

our_recora~size

data type: integer
access: modifiable
mechanism: by reference

On input, this argument contains the size of the output data record buffer in
bytes. On output, DEC GKS writes the amount of the buffer actually containing
the output data record. If the argument total ~ecord~size is larger than out _
recorcLsize, then you know that DEC GKS truncated the output data record
when writing to the buffer.

If this argument is the value 0, DEC GKS only checks for errors and then
writes the size of the output data record to total _record_size; the escape is not
performed. In this way, you can obtain the actual size of the data record to
compare it to your buffer space.

4-28 Control Functions

ESCAPE

total_recorc~size

data type:
access:
mechanism:

integer
write-only
by reference

This argument is the total size of the output data record in bytes. If the total
size of the output data record does not match the size of the output buffer, you
know that the record was either truncated to fit in the allocated space or was
smaller than the allocated space.

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG~O

8 GKS$~RROR_8

180 GKS$~RROR_180

181 GKS$_ERROR_181

182 GKS$_ERROR_182

GKS not in proper state: GKS in
the ERROR state in routine ****

GKS not in proper state: GKS
shall be in one of the .states GKOP,
WSOP, WSAC, or SGOP in routine

Specified escape function is not
supported in routine * * * *

Specified escape function iden-
tification is invalid in routine

Contents of escape data record are
invalid in routine ****

Program Example
Example 4-2 illustrates the use of the function GKS$ESCAPE. To achieve the
same effects, you should connect a printer to the printer port of the VT241
terminal. Following the program example, Figure 4-2 illustrates the program's
effect on a VT241 workstation.

Control Functions 4-29

ESCAPE

Example 4-2: Using the Escape Function

C This program outputs a tall, thin house from a VT240 screen to
C an attached printer.

IMPLICIT NONE
INCLUDE 'GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, IN_DATA(?),
* IN_SIZE, OUT_DATA(7), OUT_RECORD_SIZE,

0

C
C

C

0

*TOTAL_RECORD_SIZE, LIST_INTS(1), LIST_INTS_PTR
REAL PX (9) , PY (9)
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 /
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 /
DATA NUM_POINTS / 9 /, IN_SIZE / 16 /, WS_ID / 1 /,
* OUT_RECORD_SIZE / 28 /

EQUIVALENCE(IN_DATA(4), LIST_INTS_PTR)
LIST_INTS_PTR = '/.LOC(LIST_INTS)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$POLYLINE(NUM_POINTS, PX, PY)
Release deferred output. Pause Type RETURN when you are finished
viewing the picture.
CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5 , *)
Initialize escape data record.
IN_DATA (1) = 1
IN_DATA (2) = 0
IN_DATA (3) = 0
LIST_INTS(1) = WS_ID

CALL GKS$ESCAPE(GKS$K_ESC_PRINT, IN_DATA, IN_SIZE,
* OUT_DATA, OUT_RECORD_SIZE,
* TOTAL_RECORD_SIZE)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O These arrays contain the house's X and Y world coordinates. For example,
the first element of the array PX is the X value of the first point, and the
first element of the array PY is the Y value of the first point (.4, .1). This
program uses the default world coordinate plane with the starting point
(0, 0), the maximum X value 1.0, and the maximum Y value 1.0.

4-30 Control Functions

ESCAPE

© You must correctly initialize the data record size arguments. According to
the description of the GKS$K~SC~'RINT escape, the input data record is
16 bytes long (4 longword components). The initial size of the output data
record is 28 bytes long (GKS$ESCAPE ignores the output data record for
GKS$K~SC~'RINT).
If you initialize the argument OUT_RECORD_SIZE to be the value 0,
DEC GKS does not perform the escape, but instead returns the length of
the output data record to the argument TOTAL ~ZECORD_SIZE. This
functionality is useful when you are not sure if your output data record
buffer is large enough.

© This code outputs a tall, thin house to the VT241 terminal screen.

O The input data record passed to GKS$ESCAPE must contain the worksta-
tion identifier of the device containing the picture to be printed. In this
example, the variable WS~D represents the VT241 screen.
For a complete description of the DEC GKS standard escape data record
format, refer to Chapter 1, Introduction to DEC GKS. For a complete
description of the DEC GKS supported escapes and their data record
requirements, refer to Appendix I, DEC GKS GDPs and Escapes.

0 The call to GKS$ESCAPE outputs the picture to the attached printer.

Figure 4-2 shows the screen of a VT241 terminal after the program has run to
completion.

Control Functions 4-31

ESCAPE

Figure 4-2: Using the Escape Function—VT241

ZK-5043-86

4-32 Control Functions

MESSAGE

MESSAGE

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$MESSAGE allows an application program to deliver a mes-
sage to the user at an implementation-dependent location on the workstation
surface, or on a separate device associated with the workstation. (For example,
you may wish to send a message to the user stating the need to change the
paper in the plotter before you regenerate the picture.)

For information on the workstation-specific capabilities of GKS$MESSAGE,
refer to the DEC GKS Device Specifics Reference Manual.

SYNTAX

GKS~MESSAGE (workstation~d, message)

GMSG (workstation~d, message)

GMSGS - subset (workstation~d, l~r►essage, message)

gmessage (workstation~d, message)

Arguments
workstafior~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN WS in this chapter).

Control Functions 4-33

MESSAGE

message

data type:
access:
mechanism:

This argument is
workstation.

string
read-only
by descriptor

the text of the message to be delivered to the specified

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG_20

-39 DECGKS$~RROR~TEG_39

7 GKS$_ERROR_7

20 GKS$_ERROR_20

25 GKS$_ERROR_25

GKS not in proper state: GKS in
the ERROR state in routine ****

Descriptor is not acceptable in
routine ****

GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC, or SGOP in routine ****

Specified workstation identifier is
invalid in routine ****

Specified workstation is not open in
routine ****

36 GKS$_ERROR_36 Specified workstation is
Workstation Independent Segment
Storage in routine ****

101 GKS$_ERROR_101 Number of points is invalid in
routine ****

Program Example
Example 4-3 illustrates the use of the function GKS$MESSAGE. To achieve the
same effects, you need to do the following:

1. Determine the device connection identifier of the printer you want to use
as a workstation. The printer must be attached to your host system, not to

4-34 Control Functions

MESSAGE

your terminal. The DIGITAL Command Language (DCL) command SHOW
DEVICE may assist you.

2. Allocate that device for your use using the DCL command ALLOCATE.
(You may need special privileges to allocate a device.)

3. Use the DCL command SHOW TERMINAL for the allocated device, to
determine whether the baud rate, parity, and other terminal characteristics
match the communications settings on the printer. For more information on
these settings, refer to the programming guide for the printer.

4. Use the DCL command DEFINE to define GKS$CONID as the connection
identifier for the allocated device, and GKS$WSTYPE as the type of printer
you are using. For more information concerning the possible workstation
types, refer to the appropriate appendix in this manual.

Following the program example, Figure 4-3 illustrates the program's effect on a
VT241 workstation.

Example 4-3: Sending a Message to the User

C This program outputs a "tall, thin house" to
C an LA100 and then prints a message on the VT241 terminal
C screen.

IMPLICIT NONE
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR'
INTEGER WS_SCREEN, WS_PRINTER, NUM_POINTS

Q
REAL PX (9) , PY (9)
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 /
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 /
DATA NUM_POINTS / 9 /, WS_PRINTER / 1 /, WS_SCREEN / 2 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_PRINTER, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)
CALL GKS$ACTIVATE_WS(WS_PRINTER)

© CALL GKS$OPEN WS(WS_SCREEN, 'TT:', GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_SCREEN)

© CALL GKS$POLYLINE(NUM_POINTS, PX, PY)

(continued on next page)

Control Functions 4-35

MESSAGE

Example 4-3 (Cont.~: Sending a Message to the User

® CALL GKS$MESSAGE(WS_SCREEN, 'I just finished printing the house')
C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_SCREEN, GKS$K_POSTPONE_FLAG)
READ(5,*)

CALL GKS$DEACTIVATE_WS(WS_PRINTER)
CALL GKS$CLOSE_WS(WS_PRINTER)
CALL GKS$DEACTIVATE_WS(WS_SCREEN)
CALL GKS$CLOSE_WS(WS_SCREEN)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O These arrays contain the house's X and Y world coordinates. For example,
the first element of the array PX is the X value of the first point, and the
first element of the array PY is the Y value of the first point (.4, .1). This
program uses the default world coordinate plane with the starting point
0, 0), the maximum X value 1.0, and the maximum Y value 1.0.

© The logical name TT defaults to the device connection of your terminal,
which in this example is a VT241.

© This code outputs a tall, thin house to the printer.
® The call to GKS$MESSAGE outputs a message to the VT241 screen telling

the user that the program printed the picture of the house.

Figure 4-3 shows the screen of a VT241 terminal after the program has run to
completion.

4-36 Control Functions

MESSAGE

Figure 4-3: Sending the User aMessage—VT241

,just finished printing the house`

ZK-5044-86

Control Functions 4-37

OPEN GKS

OPEN GKS

Operating States: GKCL

Description
The function GKS$OPEN_GKS permits subsequent access to the DEC GKS
state list, DEC GKS description table, and the workstation description tables.

GKS$OPEN_GKS changes the DEC GKS operating state from GKS$K_GKCL
(GKS closed) to GKS$K_GKOP (GKS open). The error state list entry error file
is set to the value passed as an argument to this function.

When using DEC GKS, you usually call GKS$OPEN_GKS first. All functions
except emergency close, error handling, error logging, GKS$OPEN_GKS, and
GKS$INQ _OPERATING _STATE require at least the GKS$K_GKOP operating
state.

Syntax
GKS~OPEN_GKS (error_fi/e, ~, memory])

GOPKS (err_fi/e, ~, bul~er]J

gopengks (errfi/e, memory)

Arguments
error file

data type: string
access: read-only
mechanism: by descriptor

This argument is either a logical name or a physical name of a device or file
that points to the error log file. For information on how GKS handles errors,
refer to Chapter 11, Error-Handling Functions.

4-38 Control Functions

OPEN GKS

NOTE

If you pass the value 0, DEC GKS uses the translation of the logical
name SYS$ERROR as the error file.

memory

data type:
access:
mechanism:

integer
read-only
by reference

To maintain compatibility with the GKS standard, GKS$OPEN_GKS accepts an
optional second argument to indicate the amount of memory units available for
use by DEC GKS. If provided, DEC GKS ignores this argument.

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR~TEG~O

-39 DECGKS$_ERROR_NEG_39

-97 DECGKS$_ERROR_NEG_97

-98

1

200

DECGKS$~RROR_NEG_98

GKS$_ERROR_1

GKS$~RROR_200

GKS not in proper state: GKS in
the ERROR state in routine ****

Descriptor is not acceptable in
routine ****

Internal GKS error: Insufficient
buffer size for translated logical
name in routine ****

Internal GKS error: Too many
translations of logical name in
routine ****

GKS not in proper state: GKS shall
be in the state GKCL in routine

Specified error file is invalid in
routine ****

Control Functions 4-39

OPEN GKS

Program Example

Refer to Example 4-1 in this section for a program example using a call to
GKS$OPEN_GKS.

4-40 Control Functions

OPEN WORKSTATION

OPEN WORKSTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$OPEN WS initializes a workstation for use by DEC GKS,
permitting subsequent access to the specified workstation's state list. The
function associates the workstation identifier with a particular device of a
specified type, and initializes the workstation.

If establishing the first open workstation, GKS$OPEN WS changes the DEC
GKS operating state from GKS$K_GKOP (GKS open) to GKS$K WSOP (at
least one workstation open).

GKS$OPEN WS clears the display surface of previously generated images.
You must call this function, followed by a call to GKS$ACTIVATE WS, before
you attempt to generate output to this workstation.

Syntax
GKS~OPEN_WS (workstation~d, devic~connection~d, workstation_typeJ

GOPWK (workstation~d, coned, workstation_typeJ

gopenws (workstation~d, conid, workstation_typeJ

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation. You
choose whichever nonnegative integer value your application requires.

Control Functions 4-41

OPEN WORKSTATION

device_connecfion_id

data type: string
access: read-only
mechanism: by descriptor

This argument is the device connection identifier that is associated with a
particular device attached to the host system. This argument can be a logical
name, a DEC GKS constant value, or a VMS file specification.

As an option, you can pass either the DEC GKS constant GKS$K_CONID_
DEFAULT, or the value 0, by reference. (If you use VAX BASIC, you can pass a
null string, by reference.) If you use this option, DEC GKS translates the logical
name GKS$CONID and uses the translation as the name of the device. This
feature aids program flexibility; each time you execute your program, you can
use the DIGITAL Command Language commands DEFINE or ASSIGN to define
GKS$CONID to be the device connection of your choice. For more information,
refer to Chapter 1, Introduction to DEC GKS.

If the translation of GKS$CONID is not valid, DEC GKS uses the logical name
TT as the device. The logical name TT is equivalent to your default terminal
connection.

Using certain output-only workstation types, you can specify a file name for
this argument. When you specify a file name, DEC GKS places the graphical
information into the specified file in the current (or specified) directory. You
can then print or type the file on the workstation. If you omit the file extension,
DEC GKS uses the default extension .LIS. Otherwise, DEC GKS uses the file
name as specified. To determine whether your workstation supports an output-
only workstation type that would allow you to specify a file name for this
argument, refer to the DEC GKS Device Specifics Reference Manual.

NOTE

If you use GKS$OPEN_WS to create or to read a metafile, DEC
GKS uses file names for this argument exactly as specified, without
applying a default extension. For more information concerning
metafiles, refer to Chapter 10, Metafile Functions.

4-42 Control Functions

OPEN WORKSTATION

workstation type

data type:
access:
mechanism:

integer
read-only
by reference

This argument is an integer value that specifies the workstation type. To review
the list of possible workstation type values, refer to Appendix A, DEC GKS
Supported Workstations. For more information concerning valid workstation
type bitmasks for a given device, refer to the appropriate DEC GKS Device
Specifics Reference Manual.

As an option, you can pass either the GKS constant GKS$K_WSTYPE_
DEFAULT, or the value 0, by reference. If you use this option, GKS translates
the logical name GKS$WSTYPE and uses the translation as the name of the
workstation type. This feature aids program flexibility; each time you execute
your program, you can use the DIGITAL Command Language commands
DEFINE or ASSIGN to define GKS$WSTYPE to be the workstation type of your
choice. For more information, refer to Chapter 1, Introduction to DEC GKS.

If GKS$WSTYPE translates to the value 0, DEC GKS sets the default work-
station type to GKS$K_VT240BW (on a large VAX) or to GKS$K_VSII (on a
VAXstation).

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$-ERROR-NEG ~0

-30 DECGKS$-ERROR_NEG-30

-31 DECGKS$~RROR_NEG-31

GKS not in proper state: GKS in
the ERROR state in routine ****

Cannot load workstation handler:
error during image activation in
routine ****

Cannot load graphics handler:
invalid DFT in routine ****

Control Functions 4-43

OPEN WORKSTATION

Error
Number

Completion
Status Code Message

-35 DECGKS$~RROR~TEG_35

-39 DECGKS$~RROR~IEG_39

-97 DECGKS$_ERROR_NEG_97

-98 DECGKS$_ERROR_NEG_98

8 GKS$~RROR_8

20 GKS$~RROR~O

21 GKS$_ERROR~1

22 GKS$_ERROR~2

23 GKS$_ERROR_23

24 GKS$_ERROR~4

26 GKS$_ERROR_26

28 GKS$_ERROR~8

42 GKS$~RROR_42

Kernel has detected an unexpected
error from a graphics handler in
routine ****

Descriptor is not acceptable in
routine ****

Internal GKS error: Insufficient
buffer size for translated logical
name in routine ****

Internal GKS error: Too many
translations of logical name in
routine ****

GKS not in proper state: GKS
shall be in one of the states GKOP,
WSOP, WSAC or SGOP in routine

Specified workstation identifier is
invalid in routine ****

Specified connection identifier is
invalid in routine ****

Specified workstation type is
invalid in routine ****

Specified workstation type does not
exist in routine * * * *

Specified workstation is open in
routine ****

Specified workstation cannot be
opened in routine ****

Workstation Independent Segment
Storage is already open in routine

Maximum number of simultane-
ously open workstations would be
exceeded in routine * * * *

4-44 Control Functions

OPEN WORKSTATION

Program Example
Refer to Example 4-1 in this section for a program example using a call to
GKS$OPEN WS.

Control Functions 4-45

REDRAW ALL SEGMENTS ON WORKSTATION

REDRAW ALL SEGMENTS ON WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description
The function GKS$REDRAW_SEG_ON_WS clears the screen and redraws all
defined, visible segments. The function performs the following tasks in order:

1. Generates all deferred output (see GKS$SET_DEFER_STATE in this
section).

2. If the display surface empty workstation state list entry is GKS$K_
NOTEMPTY, this function clears the surface.

3. Places into effect pending workstation transformations.

4. Redisplays all visible segments that existed on the workstation surf ace
before the screen was cleared. All output not contained in segments is lost.

After executing this function, DEC GKS sets the workstation transformation
update state entry to GKS$K_NOTPENDING, and the new frame necessary at
update state list entry to GKS$K~TEWFRAME~TOTNECESSARY.

NOTE

You should use this function if you need to redraw the picture
regardless of the status of the new frame necessary at update entry.
Otherwise, use GKS$UPDATE_WS.

Syntax
GKS;REDRAW_SEG_ON_WS (workstation~dJ

GRSGWK (workstation~d)

gredrawsegws (workstation_idJ

4-46 Control Functions

REDRAW ALL SEGMENTS ON WORKSTATION

Arguments
workstafion~id

data type:
access:
mechanism:

integer
read-only
by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR~TEG~O

7 GKS$~RROR_7

20 GKS$~RROR_20

25 GKS$~RROR~S

33 GKS$~RROR_33

35 GKS$~RROR_35

36 GKS$_ERROR_36

GKS not in proper state: GKS in
the ERROR state in routine ****

GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC or SGOP in routine ****

Specified workstation identifier is
invalid in routine ****

Specified workstation is not open in
routine ****

Specified workstation is of category
MI in routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is
Workstation Independent Storage
in routine ****

Control Functions 4-47

REDRAW ALL SEGMENTS ON WORKSTATION

Program Example
Example 4-4 illustrates the use of the function GKS$REDRAW_SEG_ON_WS.
Following the program example, Figure 4-4 illustrates the program's effect on a
VT241 workstation.

Example 4-4: Redrawing Segments

0

C This program creates a segment and then calls
C GKS$REDRAW_SEG_ON WS.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, TRIANGLE
REAL PX(4), PY(4), LARGER
DATA WS_ID / 1 /, NUM_POINTS / 4 /, TRIANGLE / 1 /,
* LARGER / 0.02 /
DATA PX /.1, .9, .1, .1 /
DATA PY /.1, .9, .9, .1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

C Set the current bundle index to 1.
CALL GKS$SET_PLINE_INDEX(PLINE_INDEX)

CALL GKS$CREATE_SEG(TRIANGLE)
CALL GKS$POLYLINE(NUM_POINTS, PX, PY)
CALL GKS$CLOSE_SEG()

C Make the text easier to see and then generate the string.
CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$TEXT(0.1, 0.3,
* 'THIS IS NOT PART OF THE SEGMENT')

C Release def erred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5,*)

CALL GKS$RIDRAW_SEG_ON WS(WS_ID)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOS~ GKS ()
END

4-48 Control Functions

flEDBAW All SEGMENTS ON WORKSTATION

The following numbers correspond to the numbers in the previous example:

O These arrays contain the polygon's X and Y world coordinates. For
example, the first element of array PX is the X value of the first point and
the first element of array PY is the Y value. The first point of the polygon
is (.1, .1).

© This code creates a segment that contains a triangle. The code also
generates a text string to the screen that is independent of the segment.

0 The call to GKS$REDRAw~EG_ON_vVS redraws the triangle, but does
not redraw the text string since the string is not part of a segment.

Figure 4-4 shows the screen of the vT241 terminal after the program has run
to completion.

Control Functions 4-49

REDRAW All SEGMENTS ON WORKSTATION

Figure 4-4: Redrawing Segments—VT241

ZK-5045-86

4-50 Control Functions

SET DEFERRAL STATE

SET DEFERRAL STATE

Operating States: WSOP, WSAC, SGOP

Description
The function GKS$SET DEFER_STATE sets the workstation state list entries
deferral mode and implicit regeneration mode. Using this function, you can allow
a workstation to defer output, or you can either suppress or allow implicit
regenerations (see Section 4.2.1 for detailed information).

The deferral mode specifies the rate of output generation. Depending on the
capabilities of the workstation, it can defer output at any level up to the level
specified in the call to GKS$SET DEFER_STATE. If the workstation can defer
output at the requested level, it does. If the workstation cannot defer output at
the requested level, it defers output at the next supported lower level.

For example, if you specify GKS$K_ASAP in a call to GKS$SET_DEFER_
STATE, the workstation must generate output as soon as possible. If you specify
GKS$K_BNIG, the workstation can defer output at either GKS$K~SAP or
GKS$K_BNIG, depending on its capabilities. If you specify GKS$K BNIL, the
workstation can defer output on any level up to and including GKS$K_BNIL,
depending on its capabilities. If you specify GKS$K~STI, the workstation
can defer output at any of the four levels, depending on its capabilities. (For
more information concerning the definitions of the constants discussed in this
paragraph, refer to the def erral mode argument description.)

The implicit regeneration mode determines whether implicit regenerations
are allowed (GKS$K~RG_ALLOWED) or suppressed (GKS$K~RG_
SUPPRESSED). If you allow implicit regenerations, any pending or subsequent
surface change requiring regeneration (possibly output bundle index changes,
segment attribute changes, or workstation transformation changes) occurs at the
time of request. If you suppress regenerations, changes requiring regenerations
place the screen out of date (DEC GKS sets the new frame necessary at update
entry in the workstation state list to GKS$K_NEWFRAME~TECESSAR~.

Control Functions 4-51

SET DEFERRALSTATE

By suppressing implicit regenerations, you can make all necessary changes
without altering the workstation surface. Then, when you have requested all
changes, call GKS$UPDATE_WS to perform all of suppressed actions in a
single regeneration of the surface.

NOTE

When regenerating the surface of the workstation, DEC GKS clears
the surface before redrawing only the visible segments. All output
primitives not contained in segments are lost.

Syntax
GKSaSET_DEfER_STATE (workstation~d, deferral~r►ode,

regeneration~nodeJ

GSDS (workstation~d, defernode, reg_modeJ

gsetdeferst (workstation~d, defmode, irgmodeJ

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

deferral mode

data type: integer
access: read-only
mechanism: by reference

This argument specifies the maximum allowable deferral mode. The device
implements the highest supported mode up to, and including, this specified
mode. The argument can be any of the following values or constants.

4-52 Control Functions

SET DEFERRAL STATE

Value Constant Description

0 GKS$K_ASAP

1 GKS$K_BNIG

2 GKS$K_BNIL

3 GKS$K~STI

Generate images as soon as possible.

Generate images before the next interaction globally
(before you request input from anX open workstation).

Generate images before the next interaction locally (before
the next call for input from the specified workstation).

Generate images at some time. The exact time is deter-
mined by the workstation.

regeneratior~mode

data type:
access:
mechanism:

integer
read-only
by reference

This argument specifies the implicit regeneration mode. The argument can be
any of the following values or constants:

Value Constant Description

0

1

GKS$K_IRG_SUPPRESSED Image regeneration is suppressed.

GKS$K_IRG_ALLOWED Image regeneration is allowed.

Be aware that if you call GKS$SET DEFER_STATE and pass GKS$K~RG_
ALLOWED, you force the device to implicitly regenerate the surface at the
time of the function call. When DEC GKS implicitly regenerates a workstation
surface, it clears the surface and redraws all visible segments stored on that
workstation. You lose any output primitives not stored in segments.

Control Functions 4-53

SET DEFERRAL STATE

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$_ERROR_NEG~0

-26 DECGKS$_ERROR_NEG~6

-27 DECGKS$~RROR_NEG_27

7 GKS$_ERROR_7

20 GKS$~RROR~0

25 GKS$~RROR~S

33 GKS$~RROR~3

35 GKS$~RROR_35

36 GKS$_ERROR_36

GKS not in proper state: GKS in the
ERROR state in routine ****

Invalid value specified for deferral
mode in routine ****

Invalid value specified for regenera-
tion mode in routine * * *

GKS not in proper state: GKS shall
be in one of the states WSOP, WSAC
or SGOP in routine ****

Specified workstation identifier is
invalid in routine * * *

Specified workstation is not open in
routine ****

Specified workstation is of category
MI in routine ****

Specified workstation is of category
INPUT in routine ****

Specified workstation is Workstation
Independent Storage in routine ****

Program Example
Example 4-5 illustrates the use of the function, GKS$SET_DEFER~TATE.
Following the program example, Figure 4-5 illustrates the program's effect on a
VT241 workstation.

4-54 Control Functions

SET DEFERRAL STATE

Example 4-5: Suppressing Implicit Regeneration

0

C This program changes the color of a triangle from
C the default color green, to yellow. Then, the line
C changes from solid to dashed, and from yellow to blue.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, GREEN, NUM_POINTS, NUM FLAGS, INCR,
* PLINE_INDEX, TRIANGLE, BLUE
REAL PX(4), PY(4), LARGER, RED_INTENS,
* GREEN_INTENS, BLUE_INTENS
DATA WS_ID / 1 /, NUM_FLAGS / 13 /, GREEN / 1 /, NUM_POINTS / 4 /,
* RID_INTENS / 1.0000 /, GREEN_INTENS / 1.0000 /, BLUE / 3 /,
* BLUE_INTENS / 0.4200 /, PLINE_INDEX / 1 /, LARGER / 1.0 /,
* TRIANGLE / 1 /
INTEGER FLAGS(13)
DATA PX /.1, .9, .1, .1 /
DATA PY /.1, .9, .9, .1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIYATE_WS(WS_ID)

© CALL GKS$SET_DEFER_STATE(WS_ID, GKS$K_ASAP,
* GKS$K_IRG_SUPPRESSED)

© DO 100 INCR = 1, NUM_FLAGS, 1
FLAGS(INCR) = GKS$K_ASF_BUNDLED

100 CONTINUE
CALL GKS$SET_ASF(FLAGS)

® CALL GKS$CREATE_SEG(TRIANGLE)
CALL GKS$POLYLINE(NUM_POINTS, PX, PY)
CALL GKS$CLOSE_SEG()

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDAT'E_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5,*)

0 CALL GKS$SET_COLOR_REP(WS_ID, GREEN,
* RID_INTENS, GREEN_INTENS, BLUE_INTENS)

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

(continued on next page)

Control Functions 4-55

SET DEFERRAL STATE

Example 4-5 ~Cont.): Suppressing Implicit Regeneration

© CALL GKS$SET_PLINE_REP(WS_ID, PLINE_INDEX,
* GKS$K_LINETYPE_DASHED, LARGER, BLUE)

O CALL GKS$UPDATE_WS(WS_ID, GKS$K_PERFORM_FLAG)

CALL GKS$DEACTIYATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O These arrays contain the polygon's X and Y world coordinates. For
example, the first element of array PX is the X value of the first point and
the first element of array PY is the Y value. The first point of the polygon
is (.1, .1).

© The call to GKS$SET_DEFER~TATE does not defer output, but it does
suppress all implicit regenerations.

© This code initializes the array that designates attributes as either bundled
or individually specified. The DO loop initializes all thirteen members of
the array with the constant GKS$K_ASF_BUNDLED. The variable INCR
increments the array; the variable NUM~LAGS contains the number of
elements in the array (13).
For more information, refer to GKS$SET~SF in Chapter 6, Output
Attribute Functions.

© This code places the triangle in a segment.

0 This code changes the color representation from green to yellow. Changing
the color representation of a color index value does not necessitate an
implicit regeneration on a VT241; the change happens on the surface
immediately.

© Notice that DEC GKS suppresses the change to the polyline representation
since, on a VT241, changing the polyline requires an implicit regeneration
(which is suppressed through the call to GKS$SET DEFER_STATE).

O Once you call GKS$UPDATE_wS and pass the argument GKS$K_
PERFORM~LAG, DEC GKS clears the surface and regenerates the
segment with the new bundled polyline attributes.

4-56 Control Functions

SET DEFERRAL STATE

Figure 4-5 shows the screen of the VT241 terminal after the program has run
to completion.

Figure 4-5: Suppressing Implicit Regeneration—VT241

1

r
If

 J
ZK 52 t 8 86

Control Functions 4-57

UPDATE WORKSTATION

UPDATE WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description
The function GKS$UPDATE_WS generates all deferred output for the specified
workstation without first clearing the screen. Then, if the new frame neces-
sary at update entry in the workstation state list is GKS$K~TEWFRAME_
NECESSARY, and if you specify GKS$K_1'ERFORM~LAG to this function,
GKS$UPDATE _WS performs the following tasks in order:

1. Clears .the screen if the display surface empty entry in the workstation state
list is GKS$K~TOTEMPTY.

2. Places into effect pending workstation transformations.
3. Redisplays all visible segments that were stored on the workstation. All

output primitives not contained in segments are lost.

After executing the actions listed previously, DEC GKS sets the display sur-
face empty workstation state list entry to GKS$K~MPTY or to GKS$K_
NOTEMPTY according to the current state of the workstation surface, the
workstation transformation update state entry to GKS$K~TOTPENDING, and
the new frame necessary at update state list entry to GKS$K~TEWFRAME_
NOTNECESSARY. The deferral and regeneration mode entries in the
workstation state list have the same values as they did before the call to
GKS$UPDATE WS.

However, if at the call to GKS$UPDATE_WS the new frame necessary at update
entry in the workstation state list is GKS$K~TEWFRAME~TOTNECESSARY,
or if you specify GKS$K~'OSTPONE~LAG as an argument to this function,
GKS$UPDATE WS initiates only the transmission of any deferred output and
will continue to suppress implicit regenerations. Again, the deferral mode and
regeneration mode entries in the workstation state list have the same values as
they did before the call to GKS$UPDATE _WS.

4-58 Control Functions

UPDATE WORKSTATION

Syntax
GKS~UPDATE_WS (workstation~d, flag)

GUWK (workstation~d, re~flagJ

gupdate (workstation~d, regenflagJ

Arguments
workstatior~id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

flag

data type: integer
access: read-only
mechanism: by reference

This argument establishes the implicit regeneration mode The argument can be
any of the following values or constants:

Value Constant Description

0 GKS$K~'OSTPONE~LAG Suppress regeneration of images.

1 GKS$K_l'ERFORM_FLAG Perform regeneration.

Control Functions 4-59

UPDATE WORKSTATION

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine ****

-25 DECGKS$~RROR~TEG~S Invalid value specified for update
workstation flag in routine ****

7 GKS$_ERROR_7 GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC or SGOP in routine ****

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine * * * *

25 GKS$_ERROR~S Specified workstation is not open in
routine ****

33 GKS$~RROR_33 Specified workstation is of category
MI in routine ****

35 GKS$_ERROR_35 Specified workstation is of category
INPUT in routine ****

36 GKS$_ERROR_36 Specified workstation is
Workstation Independent Storage
in routine ****

Program Example
For a program example using a call to GKS$UPDATE—WS, refer to
Example 4-5 in this section.

For an example of this function updating a workstation surface after a change
to a workstation viewport and window, refer to Chapter 7, Transformation
Functions.

4-60 Control Functions

Chapter 5

Output Functions

The DEC GKS output functions generate the basic components, or primitives,
of all graphical pictures. The output functions are divided into the following
categories:

Category GKS Functions

Draw connected lines. GKS$POLYLINE

Mark locations with symbols. GKS$POLYMARKER

Draw text. GKS$TEXT

Fill a polygon. GKS$FILL _AREA

Color cells of a rectangle. GKS$CELL _ARRAY

Draw generalized drawing primitive. GKS$GDP

When you generate primitives on the workstation surface, you should be aware
of the following:

• DEC GKS operating state

• DEC GKS coordinate systems

• Transformations

• Clipping
• Deferred transformations and output

The following sections describe these issues related to output, and point to the
appropriate chapters in this manual that discuss the topics in full detail.

Output Functions 5-1

5.1 Output and the DEC GKS Operating State

As you call control functions, DEC GKS allows access to certain tables and lists.
You can never call a DEC GKS function that requires access to a table or list
that has not yet been made available. To determine which tables and lists are
accessible, and which DEC GKS functions you can call at a given point in the
application program, DEC GKS maintains an operating state.

The DEC GKS operating states are as follows:

• GKS$K_GKCL DEC GKS is closed.

• GKS$K_GKOP DEC GKS is open.

• GKS$K_WSOP At least one workstation is open.

• GKS$K_WSAC At least one workstation is active.

• GKS$K_SGOP A segment is open.

To call any of the output functions described in this chapter, the DEC GKS
operating state must be GKS$K_WSAC or GKS$K~GOP. To place DEC GKS
into the GKS$K_WSAC operating state, you need to do the following:

• Open DEC GKS (by calling GKS$OPEN_GKS).

• Open at least one workstation (by calling GKS$OPEN_WS).
• Activate at least one workstation (by calling GKS$ACTIVATE WS).

If you call an output function, DEC GKS generates the primitive on all
active workstations. If you call an output function during the GKS$K_SGOP
operating state, then the output primitive becomes part of a segment. (For
complete information concerning segments, refer to Chapter 9, Segment
Functions.)

If you wish to output to an active workstation, the workstation must be of type
GKS$K_WSCAT OUTPUT, GKS$K_WSCAT OUTIN, or GKS$K_WSCAT
MO. Only workstations of those categories support image generation. GKS$K_
WSCAT_OUTPUT and GKS$K_WSCAT OUTIN workstations generate output
primitives on the workstation surface; GKS$K_WSCAT~VIO workstations store
information about the function call in a file. For more information concerning
metafiles, refer to Chapter 10, Metafile Functions. For more information
concerning workstation categories or the DEC GKS operating states, refer to
Chapter 4, Control Functions.

5-2 Output Functions

5.2 Output Attributes

All of the output primitives have attributes that are stored in the DEC GKS state
list. Attributes are properties of the primitive, such as line thickness, color, and
style. Each attribute has an initial value, provided as a default setting. When
you call an output function, the current values of its attributes are bound to the
function, so that the output primitive reflects the current attribute values.

Output attribute functions can radically affect how the output primitive appears
on the workstation surf ace. For instance, depending on the current text attribute
values, the positioning point passed to the output function GKS$TEXT may be
the center point for the text string, the position of the first character in the text
string, or the position of the last character in the text string. The text output
attributes also determine whether the string runs horizontal to the workstation
X axis, vertical to the workstation X axis, or at a specified angle on the display
surface.

This chapter requires that you be familiar with the following attribute issues:

• The types of attributes available for a primitive.
• The effects of using individual and bundled attributes.
• The use of nominal sizes and scale factors.

• The use of foreground and background color.

For complete information on these and any other output attribute topics, refer
to Chapter 6, Output Attribute Functions.

5.3 Transformations and the DEC GKS Coordinate
Systems

When you input and output primitives, you are actually working with three
different coordinate systems. These coordinate systems are as follows:

• World coordinate system

• Normalized device coordinate (NDC) system

• Device coordinate system (workstation specific)

Notice that several program examples in this chapter generate a picture of an
arrow on the workstation surface. When specifying points in the arrow, you use
the world coordinate system. The programs pass the world coordinate points
(0.1,0.5),(0.9,0.5),(0.7, 0.6),(0.7,0.4),and(0.9,0.5).

Output Functions 5-3

A world coordinate plane is an imaginary Cartesian coordinate plane, with a
central point (0, 0), and an X and Y axis that extend to infinity in all directions.
You establish the limits of the X and Y boundaries within which you want to
work, and then create the picture you wish to output. All of the DEC GKS
output functions accept the world coordinate points of the particular output
primitive to be drawn. By default, the primitive must be drawn using the
coordinate range ([0,1] x [0,1]). (All of the program examples in this chapter
use this default coordinate range.)

DEC GKS use two separate transformations to translate your world coordi-
nates to NDC coordinates, and to translate your NDC coordinates to device
coordinates. During this process, portions of your primitives may be removed
from the final picture due to clipping. You need to be aware of the effects of
transformations and clipping on your generated output primitives. For complete
information concerning transformations, refer to Chapter 7, Transformation
Functions.

5.4 Output Deferral

When you output primitives, a workstation may postpone the generation of the
image on the workstation surface depending on the workstation's capabilities.
This postponement is called output deferral.

DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are GKS$K~SAP (generates
output as soon as possible), GKS$K_BNIG (generates output before the next
interaction globally), GKS$K_BNIL (generates output before the next interaction
locally), and GKS$K_ASTI (at some time).

You can specify a suggested level of deferral by calling the function GKS$SET_
DEFER_STATE. Depending on the capabilities of the workstation, it can defer
output at the highest level up to the level specified in the call to GKS$SET_
DEFER_STATE.

For detailed information concerning GKS$SET_DEFER_STATE and deferral,
refer to Chapter 4, Control Functions.

5-4 Output Functions

5.5 Output Inquiries

The following list presents the inquiry functions that you can use to obtain
output information when writing device-independent code:

GKS$INQ _AVAIL _GDP

GKS$INQ _ACTIVE _WS

GKS$INQ _GDP

GKS$INQ ~'IXEL

GKS$INQ ~'IXEL _ARRAY

GKS$INQ ~'IXEL _ARRAY_DIM

GKS$INQ _OPERATING _STATE

GKS$INQ _TEXT~XTENT

For more information concerning device-independent programming, refer to the
DEC GKS User Manual.

5.6 DEC GKS Output Function Descriptions

This section describes the DEC GKS output functions in detail.

Output Functions 5-5

CELL ARRAY

CELL ARRAY

Operating States: WSAC, SGOP

Description
The function GKS$CELL _ARRAY divides a designated rectangular area into
cells, and displays each cell in a specific color or shade.

You pass atwo-dimensional array containing color index values as one argu-
ment to this function. GKS$CELL _ARRAY maps the color index values to
corresponding cells within a rectangular area of the workstation surf ace. In
addition to the color index array, you specify an offset into the color array (a
starting element), the number of array columns to be mapped, and the number
of array rows to be mapped.

There is a one-to-one correspondence between the number of specified array
columns and rows, and the number of columns and rows by which DEC GKS
divides the cell array rectangle. Each of the columns within the rectangle is of
equal width, and each of the rows within the rectangle is of equal height. DEC
GKS maps the color index values from each specified color index array element
to the corresponding cell, moving from the starting point towards the diagonal
point along the X axis.

For more information concerning the initial color index values for a given
workstation, refer to the DEC GKS Device Specifics Reference Manual. To alter
the color associated with a certain index value, you can use the GKS function
GKS$SET_COLOR_REP (refer to Chapter 6, Output Attribute Functions).

5-6 Output Functions

CELL ARRAY

Syntax
G KS$ C E LL ~R RAY (starting~oint~r, starting~noint_ y, diagonal ~ pointer,

diagonal~oint_y, offset_column~►umber,
ofl~set~ow_number, number_of_columns,
number_of_rows, co/or_index_ values)

G CA (spx, spy, dpx, dimmer, dim_ y, scot, scow, nco/s, prows, cindexJ

gcellarray (rectangle, dimensions, color)

Arguments
starting_point~r
startin~poin~y

data type: real
access: read-only
mechanism: by reference

These arguments designate any corner of the cell array rectangle as the cell
array starting point. You pass these arguments as world coordinate values.

diagonal~oin~.x
diagonal_poin~y

data type: real
access: read-only
mechanism: by reference

These arguments specify the corner of the cell array that is diagonal to the
starting point, in world coordinates.

of~se~columr~number
oi~se~row_number

data type: integer
access: read-only
mechanism: by reference

These arguments are the off set into the color index array. The off set determines
the number of array columns and rows that you specify as arguments to

Output Functions 5-7

CELL ARRAY

GKS$CELL _ARRAY. For instance, if the offset is the first element of the array,
you can specify the full dimensions of the color index array as the 'number of
columns to map" and the 'number of rows to map."

If you specify an offset that begins mapping in the interior of the color index
array, you can only specify the remaining columns and rows as the number of
columns and rows to map. For instance, if you pass an array three columns
by four rows and specify an offset at element (2, 2), DEC GKS can only map
the indexes from the two columns and three rows that follow the offset array
element: elements (2, 2), (3, 2), (2, 3), (3, 3), (2, 4), (3, 4). If you attempt to
divide the rectangle into more columns and rows than those from the offset to
the last element in the array, DEC GKS generates an error.

Example 5-1 reproduces the situation described in the last paragraph.

number_of_columns
number_of_rows

data type: integer
access: read-only
mechanism: by reference

These arguments specify into how many columns and rows DEC GKS divides
the cell array rectangle. If you attempt to divide the rectangle into more
columns and rows than those from the offset element to the last element of the
color index array, DEC GKS generates an error. For more information, refer to
the previous argument descriptions and to Example 5-1.

color_inde~values

data type: 2-D array (integer)
access: read-only
mechanism: by descriptor

This argument is the two-dimensional array that contains the color index values.
Previous arguments determine the offset element, the number of array columns
to traverse, and the number of array rows to traverse.

When DEC GKS maps the values from the color index array to the cell array, it
starts at the corner cell containing the cell array starting point and maps towards
the diagonal point along the X axis. DEC GKS divides the cell array rectangle
into the number of cells equal to the number of array elements specified by
the previous arguments. Each cell is equal in width, and each cell is equal in
height.

5-8 Output Functions

lJ

CELL ARRAY

For more information on the color index array, refer to Example 5-1.

NOTE

The GKS$CELL _ARRAY example uses a FORTRAN column-major
color index array. You may produce a different cell array if you use
a language that supports row-major arrays (such as Pascal, C, and so
forth).

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$_ERROR~TEG_20 GKS not in proper state: GKS in
the error state in routine ****

-33 DECGKS$~RROR~TEG_33 Array descriptor is not acceptable
in routine ****

5 GKS$~RROR_5 GKS not in proper state: GKS shall
be either in the state wSAC or in
the state SGOP in routine ****

91 GKS$_ERROR_91 Dimensions of color array are
invalid in routine ****

Program Example
Example 5-1 illustrates the use of the function GKS$CELL _ARRAY. Following
the program example, Figures 5-3, 5-4, and 5-5 illustrate the program's effect
on a VT241 workstation.

Output Functions 5-9

CELL ARRAY

Example 5-1: Cell Array Output

C This program displays three cell array rectangles.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER COLORS(3, 4), NUM_COLS, NUM_ROWS, START_COL,
* START_ROW, WS_ID
REAL START_X, START_Y, DIAG_X, DIAG_Y
DATA COLORS /3,2,0, 1,3,2, 0,2,0, 3,1,1/
DATA WS_ID / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

START_X = 0.1
START_Y = 0.9
DIAG_X = 0.9
DIAG Y = 0.1

START_ROW = 1
START_COL = 1
NUM_COLS = 3
NUM_ROWS = 4

CALL GKS$CELL_ARRAY(START_X, START_Y, DIAG_X, DIAG_Y,
* START_COL, START_ROW, NUM_COLS, NUM_ROWS, '/.DESCR(COLORS))

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the screen.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

START_X = 0.1
START_Y = 0.9
DIAG X = 0.9
DIAG Y = 0.1

START_ROW = 2
START COL = 2
NUM_COLS = 2
NUM_ROWS = 3

(continued on next page)

5-10 Output Functions

CELL ARRAY

Example 5-1 (Copt.): Cell Array Output

© CALL GKS$CELL_ARRAY(START_X, START_Y, DIAG_X, DIAG_Y,
* START_COL, START_ROW, NUM_COLS, NUM_ROWS, '/.DESCR(COLORS))

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the screen.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

START_X = 0.1
START_Y = 0.1
DIAG_X = 0.9
DIAG Y = 0.9

START_ROW = 2
START_COL = 2
NUM_COLS = 2
NUM_ROWS = 3

O CALL GKS$CELL_ARRAY(START_X, START_Y, DIAG_X, DIAG_Y,
* START_COL, START_ROW, NUM_COLS, NUM_ROWS, '/.DESCR(COLORS))

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code initializes the variable COLORS with three columns and four
rows of color index values. By default, the index number 0 specifies black;
the index number 1 specifies green; the index number 2 specifies red, and
the index number 3 specifies blue. This program uses the same color index
array as the one pictured in Figure 5-1.

© This code creates a rectangle whose starting corner point is (.1, .9) in
world coordinates and whose diagonal corner point is (.9, .1) in world
coordinates. DEC GKS divides the cell array rectangle into three columns
of four rows.
GKS$CELL—ARRAY uses the color index value in the first column and in
the first row of the array COLORS. GKS$CELL _ARRAY assigns one color
to one cell until it colors all three columns and all four rows. After this
call, the upper left cell array is blue, the next cell to the right is red, the
last cell in that row is black, and so forth. To compare the contents of the

Outp~rt Functions 5-11

CELL ARRAY

color index array with the cell array on the screen, compare Figure 5-1 with
Figure 5-3.
You use the FORTRAN argument list built-in function %DESCR() to pass
an array by descriptor.

© In this call to GKS$CELL _ARRAY, the offset array element is now (2, 2).
This call divides the rectangle into the maximum allowable columns (2)
and rows (3) given the location of the offset element. To compare the
contents of the color index array with the cell array on the screen, compare
Figure 5-2 with Figure 5-4.

O In this call to GKS$CELL _ARRAY, the starting corner point is the lower left
corner. DEC GKS divides the cell along the X axis from the starting corner
point cell to the diagonal point cell. Notice how the cell array appears to
be a mirror image of the other cell array generated by this program. To
compare the contents of the color index array with the cell array on the
screen, compare Figure 5-2 with Figure 5-5.

5-12 Output Functions

CELL ARRAY

Figure 5-1: The Maximum Number of Cells in the Cell Array

FORTRAN Color Index Array Representation
(A Column-Major Array)

Offset
Row

y

1 2 3 ... #columns

(1-2)

(2,11

Blue Red

Green

1,3)

Black

(1,4)

Blue

rows

Offset Column

(2,2)

Blue

(3,1

(3-2)

Black

Red

12,3)

Red

(3,3)

Black

(2,41

Green

(3,4)

Green

Map at most
2 Columns

Map at most
3 rows

Z K-5030-86

Output Functions 5-13

CELL ARRAY

Figure 5-2: Possible Mapping Directions Using the Cell Array

VAX GKS maps from the starting point toward
the diagonal point, always along the X axis.

S

S

mapping direction

Blue Red

Red Black

Green Green

Green Green

Red Black

Blue Red

mapping direction

D D

D

mapping direction

Red Blue

Black Red

Green Green

Green Green

Black Red

Red Blue

mapping direction

By changing the starting and diagonal
points, you can choose between four
different mirror images.

S

S

ZK-5163-86

5-14 Output Functions

CELL ARRAY

Figure 5-3: Cell Array Output VT241

ZK 5047-86

Output Functions 5-15

CELL ARRAY

Figure 5-4: The Second Call for Cell Array Output VT241

Z K 5048 86

5-16 Output Functions

CELL ARRAY

Figure 5-5: The Third Call for Cell Array Output VT241

J
ZK-5049-86

Output Functions 5-17

FILL AREA

FILL AREA

Operating States: WSAC, SGOP

Description
The function GKS$FILL AREA draws a polygon and fills it with an interior
style.

The fill area interior style can be either hollow, solid, hatched, or patterned.
For instance, the default fill area interior style for most supported workstation
types is hollow (GKS$FILL _AREA draws the outline of the polygon, leaving
the interior hollow). For information on how to change the fill area attributes,
refer to Chapter 6, Output Attribute Functions.

Syntax
GKSaFIlL~1REA (number_of_points, x_coordinates, y_coordinates)

GfA (number_of~oints, px, pyJ

gfillarea (number_of~oints, points)

Arguments
number_of_points

data type: integer
access: read-only
mechanism: by reference

This argument specifies the number of points in the polygon.

5-18 Output Functions

Flll AREA

coordinates
y_coordinates

data type: array (real)
access: read-only
mechanism: by reference

These arguments are arrays containing the X and the Y values of the polygon's
world coordinate points. The number of array elements should match the value
of number_of_points.

You do not have to specify a closed polygon. If you do not specify a closed
polygon, DEC GKS connects the last point specified to the first point.

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the error state in routine ****

5 GKS$~RROR_5 GKS not in proper state: GKS shall
be either in the state WSAC or in
the state SGOP in routine ****

100 GKS$_ERROR_100 Number of points is invalid in
routine ****

Program Example
Example 5-2 illustrates the use of the function GKS$FILL _AREA. Following
the program example, Figure 5-6 illustrates the program's effect on a VT241
workstation.

Output Functions 5-19

FILL AREA

Example 5-2: Fill Area Output

C This program splits a rectangle in half and then
C fills both halves with different interior styles.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER NUM_POINTS, WS_ID, PURPLE_PATTERN
REAL PX (3) , PY (3) , PX2 (3) , PY2 (3)

0 DATA PX /.1, .9, .1/
DATA PY /.1, .9, .9/
DATA PX2 /.1, .9, .9/
DATA PY2 /.1, .1, .9/
DATA WS_ID / 1 /, NUM_POINTS / 3 /, PUR.PLE_PATTERN / 2 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$FILL_AREA(NUM_POINTS, PX, PY)

© CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_PATTERN)
CALL GKS$SET_FILL_STYLE_INDEX(PURPLE_PATTERN)

© CALL GKS$FILL_AREA(NUM_POINTS, PX2, PY2)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O These arrays contain the polygon's X and Y world coordinates. For
example, the first element of the array PX is the X value of the first point,
and the first element of the array PY is the Y value. The first world
coordinate point in the polygon is (.1, .1).

© In the call to GKS$FILL _AREA, you specify that there are three points in
the polygon, as well as the arrays containing the world coordinate points.

© This code changes the interior fill attribute from hollow to pattern, and then
specifies the index number of a pattern. Ort the VT241, the default pattern
for pattern index value 2 generates a purple pattern. If you are not working
with a VT241, you may have to specify a different pattern index value to

5-20 Output Functions

FILL AREA

achieve the same effects. For more information on GKS$SET~'ILL ANT_
STYLE and GKS$SET~ILL _STYLE INDEX, refer to Chapter 6, Output
Attribute Functions.

m This code fills the other triangle using the second set of X and Y world
coordinate values.

Figure 5-6 shows the screen of a VT241 terminal after the program runs to
completion.

Figure 5-6: Fill Area—VT241

ZK-5050-86

Output Functions 5-21

GDP

GDP

Operating States: wSAC, SGOP

Description
The function GKS$GDP generates a generalized drawing primitive (GDP)
of the type you specify, using given points and any additional information
contained in a data record. A GDP is adevice-specific primitive that is not
supported as a primitive by GKS. For instance, using DEC GKS, you can pass
a center world coordinate point and a perimeter point to this function, and
the specified workstation that supports such a GDP draws a circle on the
workstation surf ace.

The definition of the particular GDP primitive specifies which sets of attributes
the workstation uses to generate the primitive. For instance, the GDPs that
generate circles use the set of polyline attributes.

Depending on the workstation-dependent requirements of the GDP, DEC GKS
may or may not generate the primitive if certain points fall outside the current
workstation window. If a workstation cannot generate a GDP because points
fall outside of the current workstation window, DEC GKS generates an error
message.

For complete descriptions of all the DEC GKS supported GDPs, refer to
Appendix I, DEC GKS GDPs and Escapes.

Syntax
G KS~ G D P (number_of~oints, x_coordinates, y_coordinates, gdp_id,

data record, data~record_sizeJ

G G D P (number_of~voints, px, py, gdp_id, dim_dr, drJ
ggdp (number_of~points, points, function, data)

5-22 Output Functions

GDP

Arguments
number_of~oints

data type: integer
access: read-only
mechanism: by reference

This argument specifies the number of points in the GDP.

coordinates
y_coordinates

data type: array (real)
access: read-only
mechanism: by reference

These arguments are arrays containing the X and the Y values of the GDP's
world coordinate points. The number of array elements should match the value
of number_of_points.

gdp_id

data type: integer
access: read-only
mechanism: by reference

This argument is the GDP identifier. For a complete list of GDP identifiers,
refer to Appendix I, DEC GKS GDPs and Escapes.

datesrecord

data type: address (record)
access: read-only
mechanism: by reference

This argument is the address of the GDP data record. For information concern-
ing the structure of this data record, refer to Chapter 1, Introduction to DEC
GKS. For information concerning data record structures required for specific
GDPs, refer to Appendix I, DEC GKS GDPs and Escapes.

Output Functions 5-23

GDP

dat~recora~size

data type:
access:
mechanism:

integer
read-only
by reference

This argument is the GDP data record size in bytes.

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR~TEG_20

5 GKS$~RROR~

100 GKS$_ERROR_100

102 GKS$~RROR_102

103 GKS$_ERROR_103

104 GKS$_ERROR_104

105 GKS$_ERROR_105

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS shall
be either in the state WSAC or in
the state SGOP in routine ****

Number of points is invalid in
routine ****

Generalized Drawing Primitive
identifier is invalid in routine ****

Content of Generalized Drawing
Primitive data record is invalid in
routine ****

At least one active workstation is
not able to generate the specified
Generalized Drawing Primitive in
routine ****

At least one active workstation is
not able to generate the specified
Generalized Drawing Primitive
under the current transformation
and clipping rectangle in routine
**~*

5-24 Output Functions

GDP

Program Example

Example 5-3 illustrates the use of the function GKS$GDP. Following the
program example, Figure 5-7 illustrates the program's effect on a VT241
workstation.

Example 5-3: Generalized Drawing Primitive Output

C This program creates a filled circle using the GDP
C GKS$K_GDP_CIRCLE_3PT.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, DATA_RECORD(1), RECORD_SIZE

REAL PX (3) , PY (3)

DATA PX / 0.1, 0.5, 0.9 /
DATA PY / 0.5, 0.1, 0.5 /
DATA WS_ID / 1 /, NUM_POINTS / 3 /, RECORD_SIZE / 0 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT,
* GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

C Pass the identifier of the filled circle .
CALL GKS$GDP(NUM_POINTS, PX, PY,

O * GKS$K_GDP_CIRCLE_3PT, DATA_RECORD, RECORD_SIZE)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O The constant GKS$K_GDP CIRCLE_3PT specifies the GDP identification
number -102. This GDP creates a circle using three points on the circle's
circumference. This particular GDP does not require a data record to
perform its task. Notice that DEC GKS uses the current polyline attributes
to create the circle. For more information concerning available GDPs, refer
to Appendix I, DEC GKS GDPs and Escapes.

Output Functions 5-25

GOP

Figure 5-7 shows the screen of a VT241 terminal after the program runs to
completion.

Figure 5-7: Generalized Drawing Primitive Output—VT241

ZK-5833-HC

5-26 Output Functions

POLYLINE

POLYLINE

Operating States: WSAC, SGOP

Description
The function GKS$POLYLINE draws one or more straight lines, connecting the
world coordinate points in the order specified.

By default, GKS$POLYLINE draws line segments as solid lines, at the nominal
width, in the foreground color. For information on changing the polyline
attributes, refer to Chapter 6, Output Attribute Functions.

Syntax
GKS;POLYLINE (number_of~oints, x_coordinates, y_coordinatesJ

GPL (number_vf~oints, px, pyJ

gpolyline (number_of~oints, points)

Arguments
number_of_points

data type: integer
access: read-only
mechanism: by reference

This argument specifies the number of points in the polyline.

Output Functions 5-27

POLYLINE

coordinates
y_coordinates

data type: array (real)
access: read-only
mechanism: by reference

These arguments are arrays containing the X and the Y values of the polyline's
world coordinate points. The number of array elements should match the value
of number_of_points.

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the error state in routine ****

5 GKS$_ERROR_5 GKS not in proper state: GKS shall
be either in the WSAC or in the
state SGOP in routine ****

100 GKS$_ERROR_100 Number of points is invalid in
routine ****

Program Example
Example 5-4 illustrates the use of the function GKS$POLYLINE. Following
the program example, Figure 5-8 illustrates the program's effect on a VT241
workstation.

5-28 Output Functions

POLYUNE

Example 5-4: Polyline Output

C This program draws an arrow.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS
REAL PX(5), PY(5)

0 DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/
DATA WS_ID / 1 /, NUM_POINTS / 5 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$POLYLINE(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

0 These arrays contain the X and Y values of the polyline's world coordinates.
For example, the first element of the array PX is the X value of the first
point, and the first element of the array PY is the Y value of the first point.
The first world coordinate point in the polyline is (.1, .5).

© In the call to GKS$POLYLINE, you specify the number of world coordinate
points and the array variables.

Figure 5-8 shows the screen of a VT241 terminal after the program runs to
completion.

Output Functions 5-29

POLYLINE

Figure 5-8: Polyline Output—VT241

ZK-5051-86

5-30 Output Functions

POLYMARKEfl

POIYMARKER

Operating States: WSAC, SGOP

Description
The function GKS$POLYMARKER places one or more special symbols called
markers at the specified world coordinates.

By default, GKS$POLYMARKER produces an asterisk marker, at the nominal
size, in the workstation-specific default foreground color. For information on
changing these polymarker attributes, refer to Chapter 6, Output Attribute
Functions.

If clipping is enabled, and if the marker coordinate point is outside of the
clipping rectangle, then DEC GKS clips the entire marker. If clipping is enabled,
if the marker coordinate point is inside of the clipping rectangle, and if portions
of the marker exceed the boundaries of the clipping rectangle, the extent of the
clipping is device dependent. For more information concerning clipping, refer
to Chapter 7, Transformation Functions.

Syntax
GKS~POLYMARKER (number_of~oints, x_coordinates, y_coordinatesJ

GPM (number_of~oints, px, pyJ

gpolymarker (number_of~oints, points)

Arguments
number_of_points

data type: integer
access: read-only
mechanism: by reference

This argument specifies the number of marker coordinate locations.

Output Functions 5-31

POLYMARKER

coordinates
y_coordinates

data type: array (real)
access: read-only
mechanism: by reference

These arguments are arrays containing the X and the Y values of the marker's
world coordinate points. The number of array elements should match the value
of number_of_points.

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in
the error state in routine ****

5 GKS$~RROR_5 GKS not in proper state: GKS shall
be either in the state WSAC or in
the state SGOP in routine ****

100 GKS$_ERROR_100 Number of points is invalid in
routine ****

Program Example
Example 5-5 illustrates the use of the function GKS$POLYMARKER. Following
the program example, Figure 5-9 illustrates the program's effect on a VT241
workstation.

5-32 Output Functions

POLYMARKER

Example 5-5: Polymarker Output

C This program generates five markers.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS
REAL PX (5) , PY (5)

Q DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/
DATA WS_ID / 1 /, NUM_POINTS / 5 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$POLYMARICER(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O These arrays contain the X and Y values of the markers' world coordinates.
For example, the first element of the array PX is the X value of the first
marker point, and the first element of the array PY is the Y value. The first
marker world coordinate point is (.1, .5).

O In the call to GKS$POLYMARKER, you specify the number of world
coordinate points to be marked and the array variables.

Figure 5-9 shows the screen of a VT241 terminal after the program runs to
completion.

Output Functions 5-33

POLYMARKER

Figure 5-9: Polymarker Output—VT241

ZK-5052-86

5-34 Output Functions

TEXT

TEXT

Operating States: WSAC, SGOP

Description
The function GKS$TEXT writes a character string that DEC GKS positions
according to the specified world coordinates and according to the current text
attributes. The shape of the characters within the text string may vary depend-
ing on the current text attributes, the current normalization transformation, and
the particular workstation capab' 'ties.

There are text attributes that control the nongeometric text properties (text
font and precision, character expansion factor, character spacing, and text color
index) and the geometric text properties (character height, character-up vector,
character path, and character alignment). To determine the options concerning
the appearance of the text string on the workstation surface, review the text
attribute functions in Chapter b, Output Attribute Functions.

The amount of the string that DEC GKS clips depends on both the current
text attributes and the particular workstation capabilities. For string precision,
DEC GKS clips the string in aworkstation-dependent manner. For character
precision, DEC GKS clips the string character by character. For stroke precision,
DEC GKS clips the string exactly at the normalization viewport. For more in-
formation concerning clipping and normalization viewports, refer to Chapter 7,
Transformation Functions.

Syntax
GKS$TEXT (x_coordinate, y_coordinate, text_stringJ

GTX (px, py, text)

GTXS -subset (px, py, Itext, text)

gtext (position, text)

Output Functions 5-35

TEXT

Arguments
coordinate

y_coordinate

data type:
access:
mechanism:

real
read-only
by reference

These arguments are the world coordinates that position the text string.

Depending on the current text attributes, DEC GKS positions the first character,
the last character, or the middle of the text string at this world coordinate point.
By default, DEC GKS positi©ns the first character in the string at this point,
and writes subsequent characters to the right of the starting point. You should
review GKSSET_TEXT_UPVEC, GKSSET_TEXT~'ATH, and GKS$SET_
TEXT_ALIGN to see the options concerning placement of the text string on the
workstation surface. For more information, refer to Chapter 6, Output Attribute
Functions.

textstring

data type:
access:
mechanism:

string
read-only
by descriptor

This argument is the ASCII text string to be written to the workstation surface.

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$—ERROR—NEG-20

-33 DECGKS$~RROR—NEG-33

-34 DECGKS$—ERROR~TEG~4

5-36 Output Functions

GKS not in proper state: GKS in
the error state in routine *+**

Array descriptor is not acceptable
in routine ****

String length less than or equal to
0 in routine ****

TEXT

Error Completion
Number Status Code Message

5 GKS$—ERROR-5 GKS not in proper state: GKS shall
be either in the state WSAC or in
the state SGOP in routine ****

101 GKS$—ERROR_101 Invalid code in string in routine

Program Example
Example 5-6 illustrates the use of the function, GKS$TEXT. Following the
program example, Figure 5-10 illustrates the program's effect on a VT241
workstation.

Example 5-6: Text Output

C This program writes a string to the workstation using the
C default text attributes.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID
REAL WORLD X, WORLD Y, LARGER
DATA WS_ID / 1 /, WORLD X / 0.1 /, WORLD_Y / 0.5 /,
* LARGER / 0.04 /

CALL GKS$OPEN GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

C Increase text height by four times for clarity.
CALL GKS$SET_TEXT_HEIGHT(LARGER)

CALL GKS$TEXT(WORLD_X, WORLD_Y,
* 'TEXT: 0.04 WC units')

(continued on next page)

Output Functions 5-37

TEXT

Example 5-6 (Copt.): Text Output

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

Figure 5-10 shows the screen of a VT241 terminal after the program runs to
completion.

5-38 Output Functions

TEXT

Figure 5-10: Text Output—VT241

TE~CT : O . 04 WC urn i t s

ZK-5053-86

Output Functions 5-39

Chapter 6

Output Attribute Functions

The DEC GKS output attribute functions affect the appearance of generated
output primitives. The following list presents the output attribute functions by
category:

Category GKS Functions

Fill Area Attributes GKS$SET_FILL _COLOR~NDEX, GKS$SET_FILL _
INDEX, GKS$SET_FILL _INT_STYLE, GKS$SET_
FILL_STYLE_INDEX, GKS$SET_I'AT_REF_1'T,
GKS$SET~'AT_SIZE

Polyline Attributes GKS$SET_I'LINE_COLOR~NDEX, GKS$SET_
PLINE _INDEX, GKS$SET_I'LINE _LINETYPE,
GKS$SET_I'LINE _LINEWIDTH

Polymarker Attributes GKS$SET_1'MARK_COLOR_INDEX, GKS$SET_
PMARK_INDEX, GKS$SET~'MARK~IZE,
GKS$SET_I'MARK_TYPE

Text Attributes GKS$SET_TEXT~LIGN, GKS$SET_TEXT_COLOR_
INDEX, GKSSET_TEXT_EXPFAC, GKSSET_TEXT_
FONTPREC, GKSSET_TEXT_HEIGHT, GKSSET_
TEXT_INDEX, GKS$SET_TEXT~'ATH, GKS$SET_
TEXT_SPACING, GKS$SET_TEXT_UPVEC

Aspect Source Flags GKS$SET_ASF

Representations GKS$SET_COLOR~EP, GKS$SET~'ILL _REP,
GKS$SET~'AT_REP, GKS$SET_I'LINE~ZEP,
GKS$SET~'MARK_REP, GKS$SET TEXT_REP

f1

The DEC GKS state list stores the current value of the output attributes for each
output function. These attributes specify the exact appearance of the object
drawn. For example, when you call GKS$POLYLINE, the attributes line type,
width scale factor, and color specify the form, thickness, and color of the line.
In the DEC GKS state list, these current attributes are stored in the entries
current line type, current tine width scale factor, and current polyline color index.

Output Attribute Functions 6-1

When you call a DEC GKS output function, the attributes are bound to the
primitive. If the primitive's attributes are individual, then you cannot change
these attributes; changes to output attributes only affect subsequent output.
If the primitive's attributes are bundled, then you may be able to change the
attributes of previously generated primitives by calling one of the representation
functions, depending on the capabilities of your device. See Section 6.2 for
more information concerning individual and bundled attributes.

6.1 Types of Attributes

Attributes can affect geometric, nongeometric, and pick identification aspects
of a graphic image. The geometric and nongeometric aspects of a graphic
image directly affect how the primitive appears on the workstation surf ace. The
pick identification is used when performing pick input. For complete details
concerning pick input, refer to Chapter 8, Input Functions.

Most output functions have nongeometric attributes that are changeable (cell
arrays and generalized drawing primitives do not). Nongeometric attributes
affect the style and the pattern of the output primitives (such as polyline color,
text spacing, and fill area interior style). Since the nongeometric attributes
are scale factors and nominal sizes, the effects of these attributes are device
dependent.

Nominal sizes are the default sizes of markers and line widths as defined by a
graphics handler. In most cases the nominal size is also the smallest size that a
workstation can produce, but not always. DEC GKS multiplies the scale factor
values by the nominal size to reset a marker size or polyline width. The default
value for a scale factor is 1.0 (the nominal size multiplied by the value 1.0,
producing no change in size).

Geometric attributes affect the size or positioning of text and fill area primitives
(such as text height, character path, and pattern size). Fill area and text are
the only two output primitives that have changeable geometric attributes. The
geometric attributes are specified in world coordinate units. Therefore, since the
world coordinates are device independent, the geometric attributes are device
independent.

Table 6-1 lists the output attributes and whether an attribute is geometric or
nongeometric.

6-2 Output Attribute Functions

lr~

Table 6-1: Geometric and Nongeometric Output Attributes

Function Attribute Type

Polyline Polyline index Nongeometric

Line type Nongeometric

Line width scale factor Nongeometric

Polyline color index Nongeometric

Polymarker Polymarker index Nongeometric

Marker type Nongeometric

Marker size Nongeometric

Polymarker color index Nongeometric

Text Text index Nongeometric

Text height Geometric

Character up vector Geometric

Text path Geometric

Text alignment Geometric

Text font and precision Nongeometric

Character expansion factor Nongeometric

Character spacing Nongeometric

Text color index Nongeometric

Fill area Fill area index Nongeometric

Pattern size Geometric

Pattern reference point Geometric

Fill area interior style Nongeometric

Fill area style index Nongeometric

Fill area color index Nongeometric

Notice that there are no attribute functions specifically designed to alter the cell
array or the generalized drawing primitives (GDPs). A cell array is simply an
array of indexes that point to the workstation's color table.

Output Attribute Functions 6-3

The GDP has no attributes specifically designed for it. Depending on the
workstation-specific GDP data record, you may need to specify any number of
the polyline, polymarker, text, or fill area attribute values, depending on the
nature of the GDP.

6.2 Individual and Bundled Attribute Values

As stated previously, the current values of each attribute are listed individually
in the DEC GKS state list. By default, a call to an output function uses these
individual, attribute values to generate the primitive. Since DEC GKS stores
these individual attributes in the DEC GKS state list, they are essentially
device independent. If you specify attributes individually, you cannot change a
primitive's appearance on the workstation surface once you generate it.

However, there is a second method used to specify attribute values. Each
workstation can define a number of attribute bundles for an output primitive.
Each bundle is an entry in a table that contains attribute values for each of
the nongeometric values of that particular output primitive. DEC GKS stores
bundle tables in the workstation state lists, thereby making the bundle table
entries device dependent. You specify bundle table entries by specifying a
bundle index value that points into the table. Most workstations provide a
fill area bundle index 1, but the resulting fill area can look different on each
workstation.

For example, a polyline bundle contains table entries for polyline index, line
type, line width scale factor, and polyline color index. A workstation can define
a bundle table entry with the index 1 that specifies a solid line type. The
same workstation can define another bundle table entry with the index 2 that
specifies a dashed line type. The output attributes associated with a bundle
table index constitute that index's representation.

When you call an output function, DEC GKS uses the current, individual output
values stored in the DEC GKS state list, by default. If you wish to use the
device-dependent bundle table indexes, you must change the attribute's aspect
source flag (ASS. The ASFs are described in Section 6.2.1.

If you use bundled attributes for primitives, you may be able to change
the appearance of the generated primitive by redefining its bundle index
representation. For many workstations, changing index representations requires
an implicit regeneration, which erases all primitives not contained in segments.
For complete information concerning the representation functions, refer to
Section 6.2.2.

6-4 Output Attribute Functions

To review the initial individual output attributes, refer to Appendix C, DEC
GKS Attribute Values. To review the bundle tables available on a given
workstation, refer to the DEC GKS Device Specifics Reference Manual.

6.2.1 Aspect Source Flags (ASFs)

When you call an output function, DEC GKS uses the individual output
attributes by default. To use bundle tables of attributes, you must establish a
set of aspect source flags (ASFs).

The set of ASFs is athirteen-element integer array, one element for every
nongeometric output attribute (element 1 corresponds to the line type attribute,
element 2 corresponds to the line width scale factor attribute, and so forth).
Each element contains either the value GKS$K~SF_BUNDLED (0) or the
value GKS$K~SF~NDIVIDUAL (1). By passing this array to the function
GKS$SE~ASF, DEC GKS uses either the individual attribute value or the
bundled Value in the bundle table specified by the current bundle index.

For example, the following code illustrates the use of ASFs:

CALL GKSSSET_PLINE_LINETYPE(GKS$K_LINETYPE_SOLID)

C This function call produces a solid line.
CALL GKS$POLYLINE(2, PX, PY)

C ASF_FLAGS is athirteen-element integer array. The first
element corresponds to the line type attribute.
ASF_FLAGS(1) = GKS$K_ASF_BUNDLED
CALL GKS$SET_ASF(ASF_FLAGS)

C Polyline bundle index number 3 specifies a dashed line
C on this workstation.

CALL GKS$SET_PLINE_INDEX(3)

C This call produces a dashed line.
CALL GKS$POLYLINE(2, PX, PY)

Output Attribute Functions 6-5

For a complete discussion of ASFs, refer to the GKS$SET_ASF function
description in this chapter.

NOTE

If you store primitives in a segment and if you want to be able to
change the primitive's appearance elsewhere in the program, you
must set the primitive's ASF to be GKS$K~SF_BUNDLED before
you generate the primitive. In this way, the primitive's ASF is stored
in the segment with the primitive. If you want to change the primi-
tive's appearance, you call the appropriate SET REPRESENTATION
function (see Section 6.2.2) for the primitive's bundle index. If you
store the primitive in a segment using individual attributes, the
appearance of the primitive cannot be changed.

6.2.2 Dynamic Changes and Implicit Regeneration

When working with bundled attributes, you can use any bundle index value
predefined by your workstation. You can even alter the existing bundles table
entries, or create new entries, using the representation functions (GKS$SET_
PLINE_REP, GKS$SET~'MARK~EP, and so forth).

If you use the representation functions, use caution. Depending on the capabil-
ities of your workstation, DEC GKS may implement the change immediately,
or the change may require an implicit regeneration of the surf ace. An implicit
regeneration clears the screen and only redraws the visible segments. You lose
all primitives not contained in segments. Many of the DEC GKS supported
workstations suppress implicit regenerations since they cause you to lose all
primitives not contained in segments.

For a detailed discussion of implicit regeneration, refer to Chapter 4, Control
Functions.

6.3 Foreground and Background Colors

The default color index value is 1, which corresponds to the workstation's
foreground color. All of the default individual color indexes in the DEC GKS
state list are set to the value 1.

On a GKS$K_WSCAT_OUTIN or GKS$K_WSCAT_OUTPUT workstation, the
color of a 'blank" surface is called the background color. The color of characters
written to the workstation surface is called the foreground color.

6-6 Output Attribute Functions

Unless you change these color index values using the function GKS$SET_
COLOR~EP, the color index value 0 corresponds to the workstation's default
background color, and the color index value 1 corresponds to the workstation's
default foreground color. If the workstation supports more than two color
indexes, values greater than 1 correspond to alternative foreground colors.

6.4 Output Attribute Inquiries

The following list presents the inquiry functions that you can use to obtain
output attribute information when writing device-independent code:

GKS$INQ_COLOR~AC

GKS$INQ _COLOR_INDEXES

GKS$INQ_COLOR_REP

GKS$INQ SILL _FAC

GKS$INQ _FILL INDEXES

GKS$INQ SILL CEP

GKS$INQ ~NDIV~TTB

GKS$INQ _NiAX _WS_STATE _TABLE

GKS$INQ_OPEN_WS

GKS$INQ _I'AT_FAC

GKS$INQ ~'AT_INDEXES

GKS$INQ ~'AT_REP

GKS$INQ _I'LINE_FAC

GKS$INQ _I'LINE INDEXES

GKS$INQ _I'LINE ~tEP

GKS$INQ _I'MARK_FAC

GKS$INQ _I'MARK_INDEXES

GKS$INQ_I'MARK_REP

GKS$INQ _I'REDEF_COLOR _REP

GKS$INQ _1'REDEF_FILL _REP

GKS$INQ ~'REDEF_I'AT_REP

GKS$INQ _I'REDEF_1'LINE _REP

GKS$INQ ~'REDEF_I'MARK_REP

GKS$iNQ _I'REDEF_TEXT_REP

GKS$INQ_PRIM_ATTB

GKS$INQ _TEXT_FAC

GKS$INQ _TEXT~NDEXES

GKS$INQ _REP

For more information concerning device-independent programming, refer to the
DEC GKS User Manual.

6.5 Function Descriptions

These sections describe each of the DEC GKS attribute functions by category:
polyline attributes, polymarker attributes, text attributes, fill area attributes,
attribute source flags, and representation functions.

Output Attribute Functions 6-7

Fill Area Attributes

Fill Area Attributes
The DEC GKS functions described in this section affect the following geometric
and nongeometric fill attributes:

• Color index (nongeometric)

• Bundle index (nongeometric)

• Interior style (nongeometric)

Style index (nongeometric)

• Pattern reference point (geometric)

• Pattern size (geometric)

Each of these functions can alter the default values used in subsequent calls to
the GKS$FILLAREA function. For more information concerning GKS$FILL
AREA, refer to Chapter 5, Output Functions.

6-8 Output Attribute Functions

Fill Area Attributes
SET flll AREA COLOR INDEX

SET FILL AREA COLOR INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~ILL_COLOR~NDEX sets the current fill color index
entry in the DEC GKS state list to the specified index value.

Syntax
GKSSSET_flll_COLOR_INDEX (color~ndexJ

GSFACI (cindexJ

gsetfillcolourind (colour)

Arguments
color index

data type: integer
access: read-only
mechanism: by reference

This argument is the fill area color index. The default value for the fill area
color index entry is the value 1, which designates the default foreground
color. If a device cannot fill an area with the specified color, DEC GKS uses
workstation-dependent color. For more information concerning predefined color
indexes, refer to the DEC GKS Device Specifics Reference Manual.

Output Attribute Functions 6-9

Fill Area Attributes
SET FILL AREA COLOR INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG~O

8 GKS$~RROR_8

92 GKS$~RROR_92

GKS not in proper state: GKS in
the error state in routine * *

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Color index is less than zero in
routine ****

Program Example
Example 6-1 illustrates the use of the function GKS$SET~'ILL _COLOR—
INDEX. Following the program example, Figure 6-1 illustrates the program's
effect on a VT241 workstation.

6-10 Output Attribute Functions

fill Area Attributes
SET Flll AREA COLOR INDEX

Example 6-1: Changing the Fill Color Index

C This program changes the fill color of a triangle from
C the default color green to the color blue.

IMPLICIT NONE
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR'
INTEGER WS_ID, BLUE, NUM_POINTS
DATA WS_ID / 1 /, BLUE / 3 /, NUM_POINTS / 3 /

0 DATA PX /.1, .9, .1/
DATA PY /.1, .9, .9/
REAL PX (3) , PY (3)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_FILL_COLOR_INDEX(BLUE)
CALL GKS$FILL AREA(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O PX contains the polygon's X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .1).

© The function GKS$SET~'ILL _COLOR~NDEX changes the color from the
default color to blue, but only if the fill area color ASF is set to GKS$K_
ASF~NDIVIDUAL (the default setting).

Workstations other than the VT241 may predefine a different representation
of color index 3 (a color other than blue).

Figure 6-1 shows the screen of a VT241 terminal after the program has run to
completion.

Output Attribute Functions 6-11

Fill Area Attributes
SET Ill AREA COLOR INDEX

Figure 6-1: Changing the Fill Color Index—VT241

ZK-5071-86

6-12 Output Attribute Functions

Fill Area Attributes
SET FILL AREA INDEX

SET FILL AREA INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SE'~FILL INDEX establishes the index value pointing into
the fill area bundle table. The fill area bundle table contains entries for the fill
area interior style, fill area style index, and fill area color index attribute values.
When calling GKS$FILL SEA, DEC GKS uses the bundle table only if the
corresponding attribute source flag has been set to GKS$K~SF_BUNDLED.

For a list of the predefined fill area bundles for each workstation, refer to the
DEC GKS Device Specifics Reference Manual.

Syntax
GKS~SET_FILL_INDEX (index)

GSFAI (index)

gsetfillind (index)

Arguments
index

data type: integer
access: read-only
mechanism: by reference

This argument is the fill area bundle index. The default bundle index is the
value 1. For more information concerning predefined fill area bundle indexes,
refer to the DEC GKS Device Specifics Reference Manual.

Output Attribute Functions 6-13

Fill Area Attributes
SET FILL AREA INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG~O

8 GKS$~RROR_8

80 GKS$~RROR_80

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Fill area index is invalid in routine
***~

Program Example
Example 6-2 illustrates the use of the function GKS$SET~ILL INDEX.
Following the program example, Figure 6-2 illustrates the program's effect on a
VT241 workstation.

6-14 Output Attribute Functions

Fill Area Attributes
SET flll AREA INDEX

Example 6-2: Changing the Fill Index

C This program sets the Attribute Source Flags (ASFs) to bundled,
C and then displays the effects of using the first 10 index values
C in calls to GKS$SET_FILL_INDEX.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, INCR
DATA WS_ID / 1 /, NUM_POINTS / 3 /
DATA PX /.1, .9, .1/
DATA PY /.1, .9, .9/
REAL PX (3) , PY (3)
INTEGER FLAGS(13)
CHARACTER*2 STR

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

FLAGS(11) = GKS$K_ASF_BUNDLED
FLAGS(12) = GKS$K_ASF_BUNDLED
FLAGS(13) = GKS$K_ASF_BUNDLED
CALL GKS$SET_ASF(FLAGS)

DO 200 INCR = 1, 10, 1
CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_ALWAYS~)
CALL GKS$SET_FILL_INDEX(INCR)
CALL GKS$FILL_AREA(NUM_POINTS, PX, PY)
CALL LIB$CVT_DX_DX ('/.DESCR (INCR) , '/.DESCR (STR))
CALL GKS$SET_TEXT_HEIGHT(0.03)
CALL GKS$TEXT(.5, .4, 'Index: ')
CALL GKS$TEXT (. 8 , . 4 , '/.DESCR (STR))

C Release def erred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

200 CONTINUE

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example.

O PX contains the polygon's X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .1).

Output Attribute Functions 6-15

Fill Area Attributes
SET Flll AREA INDEX

© This code initializes the elements of the array that affect all of the nongeo-
metric polymarker attributes. This code sets the fill area ASFs to GKS$K_
ASF_BUNDLED. FLAGS(11) corresponds to the current fill area interior
style; FLAGS(12) corresponds to the current fill area style index; and,
FLAGS(13) corresponds to the fill area color index.

See the GKS$SET_ASF function description in this chapter for more
information.

© This code displays the triangle using ten of the fill area index values
available on the VT241. This code writes the index value that produced the
fill area, to the right of the triangle.

O This VMS Run-Time Library Routine translates the variable INCR to a text
string so that GKS$TEXT can write the fill area index value to the screen.

Figure 6-2 shows the screen of a VT241 terminal after the program has run to
completion. The color of the filled area is green.

6-16 Output Attribute Functions

Fill Area Attributes
SET Flll AREA INDEX

Figure 6-2: Changing the Fill Index—VT241

ZK 5072 86

Output Attribute Functions 6-17

Fill Area Attributes
SET Flll AREA INTERIOR STYLE

SET FILL AREA INTERIOR STYLE

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~ILL ~NT_STYLE sets the current dill area interior style
entry in the DEC GKS state list to be hollow, solid, pattern, or hatched.

If you select solid, GKS$FILL AREA fills the color designated by the current
fill area color index.

If you select pattern, GKS$FILL _AREA replicates a pattern (alternating colors)
to fill the interior of the polygon. The fill area attributes pattern size and
pattern reference point define the size and position of the start of the pattern
(see GKS$SET_1'AT_SIZE and GKS$SET~'AT~EF~'T in this section). The fill
area style index specifies the pattern to replicate (see GKS$SET_FILL _STYLE _
INDEX in this section). Patterns cover underlying primitives.

If you select hatched, GKS$FILL _AREA fills the interior of the polygon with a
series of designs in the color specified by the fill area color index. The fill area
style index specifies the chosen hatch style. White spaces within hatches do not
cover underlying primitives.

Syntax
GKS$SET_FILL_INT_STYLE (int_sty/eJ

GSFAIS (style)

gsetfillintstyle (style)

6-18 Output Attribute Functions

Fill Area Attributes
SET Flll AREA INTERIOR STYLE

Arguments
in~sty/e

data type: integer
access: read-only
mechanism: by reference

This argument designates the fill area interior style. The argument can be any
of the following values or constants:

Value Constant Description

0 GKS$K_INTSTYLE_HOLLOW Use an outline.

1 GKS$K_INTSTYLE_SOLID Use a color.

2 GKS$K~NTSTYLE_1'ATTERN Use a pattern.

3 GKS$K~NTSTYLE_HATCH Use crossed or parallel lines.

Error Messages

Error Completion
Number Status Code Message

-11

-20

8

DECGKS$_ERROR_NEG_11 Invalid value specified for fill area
interior style in routine ****

DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in
the error state in routine ****

GKS$~RROR_8 GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Program Exa m p I e
Example 6-3 illustrates the use of the function GKS$SET_FILL —INT STYLE.
Following the program example, Figure 6-3 illustrates the program's effect on a
VT241 workstation.

Output Attribute Functions 6-19

Fill Area Attributes
SET fill AREA INTERIOR STYLE

Example 6-3: Changing the Fill Area Interior Style

C This program splits a rectangle in half and then

C fills both halves with different styles.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, DARK_BLUE_PAT

Q

DATA WS_ID / 1 /, NUM_POINTS / 3
* DARK_BLUE_PAT / 6 /

/,

DATA PX /.1, .9, .1/
DATA PY /.1, .9, .9/
DATA PX2 /.1, .9, .9/
DATA PY2 /.1, .1, .9/
REAL PX (3) , PY (3) , PX2 (3) , PY2 (3)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_ws(Ws_ID)

CALL GKS$FILL AREA(NUM_POINTS, PX, PY)
CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_PATTERN
CALL GKS$SET_FILL_STYLE_INDEX(DARK_BLUE_PAT)
CALL GKS$FILL_AREA(NUM_POINTS, PX2, PY2)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O The arrays PX and PY contain the polygon's world coordinate values. For
example, the first element in both arrays specifies the first point (.1, .1).

© In the call to GKS$FILL—AREA, you specify that there are three points in
the polygon, as well as the arrays containing the world coordinate points.

© This code changes the interior fill attribute from hollow to pattern as long
as the current interior fill style ASF is set to GKS$K—ASF—INDIVIDUAL
(the default setting).

O This code changes the style to a style index that produces a dark blue
pattern by alternating blue and black colors, as long as the current fill area
style ASF is set to GKS$K~SF~NDIVIDUAL (the default setting).

Workstations other than the VT241 may use other style values to specify a
similar pattern. See GKS$SET_FILL _INT STYLE in this section for more
information.

6-20 Output Attribute Functions

Fill Area Attributes
SET flll AREA INTERIOR STYLE

Figure 6-3 shows the effects of the calls to GKS$FILL AREA. The color of the
top triangle is hollow green and the bottom triangle is a dark blue pattern.

Figure 6-3: Changing the Fill Area Interior Style—VT241

ZK 5073 86

Output Attribute Functions 6-21

Fill Area Attributes
SET flll AREA STYLE INDEX

SET FILL AREA STYLE INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~ILL _STYLE INDEX sets the current fill area style
index entry in the DEC GKS state list to the specified index value.

This function sets a specific pattern or hatch style to fill the interior of a
polygonal fill area. If the interior style is hollow or solid, the current style index
is ignored for the call to GKS$FILL AREA. If the interior style is pattern, you
must pass a pattern index value to this function. If the interior style is hatch,
you must pass a hatch style value to this function. Since hatch styles are device
dependent, the hatch style index is always a negative number.

Syntax
GKSZSET_Flll_STYLE_INDEX (styl~indexJ

GSFASI (sindexJ

gsetfillstyleind (index)

Arguments
stye_index

data type: integer
access: read-only
mechanism: by reference

This argument is the fill area style index. For information on the predefined
hatch and pattern styles, refer to the DEC GKS Device Specifics Reference Manual.
The initial fill area style index entry is the value 1. If you request a style index
that is not available on a particular workstation, that workstation uses the style
index 1. If the style index 1 is not present on the workstation, the result is
workstation dependent.

6-22 Output Attribute Functions

Fill Area Attributes
SET Flll AREA STYLE INDEX

Error Messages

r"1

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$~RROR_8

84 GKS$~RROR_84

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SLOP in routine

Style (pattern or hatch) index is
equal to zero in routine ****

Program Example
Refer to Example 6-3 in this section for a program example using a call to
GKS$SET~ILL _STYLE _INDEX.

Output Attribute Functions 6-23

Fill Area Attributes
SET PATTERN REFERENCE POINT

SET PATTERN REFERENCE POINT

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'AT~ZEF~'T sets the geometric attribute current
pattern reference point entry in the DEC GKS state list. This attribute represents
the starting point for a pattern used to fill the designated area. DEC GKS
uses this value for all subsequent calls to GKS$FILL AREA until you specify
another value.

NOTE

Most of the DEC GKS supported workstations do not fully support
this function. Those workstations that do not, do accept the func-
tion call but do not make any changes to the pattern. For more
information, refer to the DEC GKS Device Specifics Reference Manual.

Syntax
GKSSSET_PAT_REF_PT (x_coordinate, y_coordinateJ

GSPARF (px, pyJ

gsetpatrefpt (patrefJ

Arguments
coordinate

y_coordinate

data type: real
access: read-only
mechanism: by reference

These arguments designate the X and Y world coordinate unit values of the
pattern starting point.

6-24 Output Attribute Functions

Fill Area Attributes
SET PATTERN REFERENCE POINT

Error Messages

Error
Number

Completion
Status Code Message

—20 DECGKS$_ERROR_NEG~O

8 GKS$~RROR_8

GKS not in proper state: GKS in
the error state in routine *~**

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Output Attribute Functions 6-25

Fill Area Attributes
SET PATTERN SIZE

SET PATTERN SIZE

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'AT_SIZE specifies the geometric attribute current
pattern size entry in the DEC GKS state list, which is the height and width
vectors in world coordinate units. The pattern size is replicated for use within a
fill area. DEC GKS uses this value for all subsequent calls to GKS$FILL _AREA
until you specify another value.

NOTE

Most of the DEC GKS supported workstations do not fully support
this function. Those workstations that do not, do accept the func-
tion call but do not make any changes to the pattern. For more
information, refer to the DEC GKS Device Specifics Reference Manual.

Syntax
GKSaSET_PAT_SIZE (pattern width, pattern_heightJ

GSPA (px, pyJ

gsetpatsize (patsize)

Arguments
patterr~width
pattern height

data type: real
access: read-only
mechanism: by reference

These arguments specify the width and height in world coordinates units. DEC
GKS begins replicating the pattern representation at the pattern reference point,

6-26 Output Attribute Functions

Fill Area Attributes
SET PATTERN SIZE

and continues until the polygonal fill area in world coordinate space is filled
with the pattern.

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR_NEG~O

8 GKS$~RROR_8

87 GKS$~RROR_87

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Pattern size value is not positive in
routine ****

Output Attribute Functions 6-27

Polyline Attributes

Polyline Attributes
The DEC GKS functions described in this section affect the following polyline
attributes:

• Color index (nongeometric)

• Bundle index (nongeometric)

• Line type (nongeometric)

• Line width scale factor (nongeometric)

Depending on the ASF for the output attribute, each of these functions can
alter the default values used in subsequent calls to GKS$POLYLINE. For more
information concerning GKS$POLYLINE, refer to Chapter 5, Output Functions.

6-28 Output Attribute Functions

Polyline Attributes
SET POLYLINE COLOR INDEX

SET POLYLINE COLOR INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'LINE_COLOR~NDEX sets the current polyline color
index DEC GKS state list entry to the specified index value.

Syntax
GKSSSET_PLINE_COLOR_INDEX (color~ndexJ

GSPLCI (cindexJ

gsedinecolourind (colour)

Arguments
color index

data type: integer
access: read-only
mechanism: by reference

This argument is the polyline color index. DEC GKS uses the default fore-
ground color for default polyline color index (1). For more information
concerning predefined color indexes, refer to the DEC GKS Device Specifics
Reference Manual.

Output Attribute Functions 6-29

Polyline Attributes
SET POLYLINE COLOR INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR_NEG_20

8 GKS$~RROR_8

92 GKS$_ERROR_92

GKS not in proper state: GKS in
the error state in routine * * *

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Color index is less than zero in
routine ****

Program Example
Example 6-4 illustrates the use of the function GKS$SET~'LINE_COLOR_
INDEX. Following the program example, Figure 6-4 illustrates the program's
effect on a VT241 workstation.

6-30 Output Attribute Functions

Polyline Attributes
SET POLYLINE COLOR INDEX

Example 6-4: Changing the Polyline Color Index

C This program changes the color of an arrow from green to blue.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, BLUE, NUM_POINTS
DATA WS_ID / 1 /, BLUE / 3 /, NUM_POINTS / 5 /
REAL PX (5) , PY (5)

Q DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_PLINE_COLOR_INDEX(BLUE)
CALL GKS$POLYLINE(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O PX contains the polygon's X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

© The function GKS$SET-I'LINE_COLOR_INDEX changes the color from
the default color to blue, but only if the polyline color ASF is set to
GKS$K-ASF~NDIVIDUAL (the default setting).

The VT241 predefines the index value 3 to represent the color blue.
Workstations other than the VT241 may predefine a different representation
of color index 3 (a color other than blue).

Figure 6-4 shows the screen of a VT241 terminal after the program has run to
completion. The arrow changed from the default color green to the color blue.

Output Attribute Functions 6-31

Polyline Attributes
SET POLYLINE COLOR INDEX

Figure 6-4: Changing the Polyline Color Index—VT241

ZK 5054 86

6-32 Output Attribute Functions

Polyline Attributes
SET POLYLINE INDEX

SET POLYLINE INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_I'LINE _INDEX establishes the index value pointing
into the polyline bundle table. The polyline bundle table contains entries for
the polyline color index, polyline line type, and polyline linewidth scale factor
attribute values. When calling GKS$POLYLINE, DEC GKS uses the bundle
table only if the corresponding attribute source flag has been set to GKS$K_
ASF_BUNDLED.

For a list of the predefined polyline bundle entries for each workstation, refer to
the DEC GKS Device Specifics Reference Manual.

Syntax
GKS~SET_PLINE_INDEX (index)

GSPLI (pindexJ

gsedineind (index)

Arguments
index

data type: integer
access: read-only
mechanism: by reference

This argument is the polyline bundle index. The default bundle index is the
value 1. For more information concerning possible polyline bundle indexes,
refer to the DEC GKS Device Specifics Reference Manual.

Output Attribute Functions 6-33

Polyline Attributes
SET POLYLINE INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR_NEG_20

8 GKS$_ERROR_8

60 GKS$~RROR_60

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Polyline index is invalid in routine

Program Example
Example 6-5 illustrates the use of the function GKS$SET~'LINE~NDEX.
Following the program example, Figure 6-5 illustrates the program's effect on a
VT241 workstation.

6-34 Output Attribute Functions

Polyline Attributes
SET POLYLINE INDEX

Example 6-5: Changing the Polyline Index

C This program sets the Attribute Source Flags (ASFs) to bundled,
C and then displays the effects of using the first 10 index values
C in calls to GKS$SET_PLINE_INDEX.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, INCR
DATA WS_ID / 1 /, NUM_POINTS / 5 /
REAL PX (5) , PY (5)
DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/
INTEGER FLAGS(13)
CHARACTER*2 STR

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K VT240
CALL GKS$ACTIVATE_WS(WS_ID)

FLAGS(1) = GKS$K_ASF_BUNDLED
FLAGS(2) = GKS$K_ASF_BUNDLED
FLAGS(3) = GKS$K_ASF_BUNDLED
CALL GKS$SET_ASF(FLAGS)

DO 200 INCR = 1, 10, 1
CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_ALWAYS)
CALL GKS$SET_PLINE_INDEX(INCR)
CALL GKS$POLYLINE(NUM_POINTS, PX, PY)
CALL LIB$CVT_DX_DX ('/.DESCR (INCR) , '/.DESCR (STR))
CALL GKS$SET_TEXT_HEIGHT(0.03)
CALL GKS$TEXT(.1, .3, 'Index: ')
CALL GKS$TEXT (. 4 , . 3 , '/.DESCR (STR))

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5,*)

200 CONTINUE

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example.

O PX contains the polygon's X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

Output Attribute Functions 6-35

Polyline Attributes
SET POLYLINE INDEX

© This code initializes the elements of the array that affect all of the non-
geometric polyline attributes. This code sets the three polyline ASFs to
GKS$K~SF_BUNDLED. FLAGS(1) corresponds to the line type;
FLAGS(2) corresponds to the line width scale factor; and, FLAGS(3)
corresponds to the polyline color index.

See the GKS$SET~4SF function description in this chapter for more
information.

© This code displays the arrow using ten of the polyline index values available
on the VT241. This code writes the index value that produced the polyline,
in the lower left portion of the screen.

0 This VMS Run-Time Library Routine translates the variable INCR to a text
string so that GKS$TEXT can write the polyline index value to the screen.

Figure 6-5 shows the screen of a VT241 terminal after the program has run to
completion. The color of the arrow is green.

6-36 Output Attribute Functions

Polyline Attributes
SET POLYLINE INDEX

Figure 6-5: Changing the Polyline Index—VT241

~~ L

ti ,

S

1

,r
,r

~ ,r
r

I n d~ K 1 0

. r

~ J
ZK-5055-86

Output Attribute Functions 6-37

Polyline Attributes
SET LINETYPE

SET UNETYPE

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_l'LINE_LINETYPE sets the current polyline line type
entry in the DEC GKS state list to be solid, dashed, dotted, dashed-dotted, or
any one of the device-dependent types.

Every workstation capable of output (DEC GKS category GKS$K_WSCAT_
OUTPUT or GKS$K_WSCAT_OUTIN) defines at least four line types. For
more information concerning possible polyline line type values, refer to the
DEC GKS Device Specifics Reference Manual.

Syntax
GKSSSET_PLINE_LINETYPE

(line type)

GSLN (ItypeJ

gsetlinetype (type)

Arguments
line type

data type: integer
access: read-only
mechanism: by reference

This argument is the polyline line type. The argument can be any of the
following values or constants.

6-38 Output Attribute Functions

Polyline Attributes
SET LINETYPE

Value Constant Description

<0

1

2

3

4

>=5

GKS$K_LINETYPE~OLID

GKS$K _LINETYPE _DASHED

GKS$K _LINETYPE _DOTTED

GKS$K_LINETYPE _DASHED_DOTTED

Device-dependent types.

Use solid line.

Use dashed line.

Use dotted line.

Use dashed-dotted line.

Reserved: future standard-
ization.

The default for the current line type value is 1, which displays a solid line. If
you specify an unsupported line type, DEC GKS uses GKS$K_LINETYPE_
SOLID. For more information concerning predefined line type indexes, refer to
the DEC GKS Device Specifics Reference Manual.

Error Messages

Error
Number

Completion
Status Code Message

—20 DECGKS$~RROR~TEG_20

8 GKS$~RROR_8

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

63 GKS$~RROR_63 Specified linetype is equal to zero
in routine ****

Program Example
Example 6-6 illustrates the use of the function GKS$SET~'LINE_LINETYPE.
Following the program example, Figure 6-6 illustrates the program's effect on a
VT241 workstation.

Output Attribute Functions 6-39

Polyline Attributes
SET LINETYPE

Example 6-6: Changing the Polyline Line Type

C This program changes the solid lines of an arrow to
C dashed and dotted lines.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS
DATA WS_ID / 1 /, NUM_POINTS / 5 /
REAL PX (5) , PY (5)

Q DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_PLINE_LINETYPE(GKS$K_LINETYPE_DASHED_DOTTID)
CALL GKS$POLYLINE(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O PX contains the polygon's X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specil~ies the first point (.1, .5).

© The function GKS$SET_PLINE _LINETYPE changes the line type from
the default type to dashed and dotted, only if the line type ASF is set to
GKS$K~SF~NDIVID~JAL (the default setting).

Figure 6-6 shows the screen of a VT241 terminal after the program has run to
completion. The arrow changed from the default line type solid to the type
dashed-dotted.

6-40 Output Attribute Functions

Polyline Attributes
SET IINETYPE

Figure 6-6: Changing the Polyline Line Type—VT241

ZK-5056-86

Output Attribute Functions 6-41

Polyline Attributes
SET LINEWIDTH SCALE (ACTOR

SET LINEWIDTH SCALE FACTOR

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'LINE_LINEWIDTH sets the current polyline line
width scale factor entry in the DEC GKS state list.

DEC GKS calculates line width as the nominal line width, multiplied by the
line width scale factor. The line width scale factor is a real number that you
pass to GKS$SET~'LINE_LINEWIDTH. The graphics handler maps the value
to the nearest available line width defined by the graphics handler.

Syntax
GKS~SET_PLINE_LINEWIDTH (lin~widtl~ scal~factorJ

GSLwSC (►width)
gsetlinewidth (width)

Arguments
line_ widhl scale_ factor

data type: real
access: read-only
mechanism: by reference

This argument is the line width scale factor. The default for the current entry is
the value 1.0, which outputs a line of the nominal width.

6-42 Output Attribute Functions

Polyline Attributes
SET LINEWIDTH SCALE (ACTOR

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR~IEG~O

8 GKS$~RROR_8

65 GKS$~RROR_65

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Linewidth scale factor is less than
zero in routine * * * *

Program Example
Example 6-7 illustrates the use of the function GKS$SET_PLINE _LINEWIDTH.
Following the program example, Figure 6-7 illustrates the program's effect on a
VT241 workstation.

Output Attribute Functions 6-43

Polyline Attributes
SET LINEWIDTH SCALE (ACTOR

Example 6-7: Changing the Polyline Line Width

C This program increases the line width of an arrow 5 times.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS
REAL MIN_TIMES_FIVE
DATA WS_ID / 1 /, NUM_POINTS / 5 /,
* MIN_TIMES_FIVE / 5.0 /

0
REAL PX (5) , PY (5)
DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$SET_PLINE_LINEWIDTH(MIN_TIMES_FIVE)
CALL GKS$POLYLINE(NUM POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O PX contains the polygon's X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

© The function GKS$SET~'LINE _LINEWIDTH changes the line width from
the nominal width to five times the nominal width, only if the line width
scale factor ASF is set to GKS$K_ASF~NDIVIDUAL (the default setting).

Figure 6-7 shows the screen of a VT241 terminal after the program has run to
completion.

6-44 Output Attribute Functions

Polyline Attributes
SET LINEWIDTH SCALE (ACTOR

Figure 6-7: Changing the Polyline Line Width—VT241

ZK 5057 86

Output Attribute Functions 6-45

Polymarker Attributes

Polymarker Attributes
The DEC GKS functions described in this section affect the following poly-
marker attributes:

• Color index (nongeometric)
• Bundle index (nongeometric)
• Line type (nongeometric)

• Size (nongeometric)

Each of these functions can alter the default values used in subsequent calls
to the GKS$POLYMARKER function. For more information concerning
GKS$POLYMARKER, refer to Chapter 5, Output Functions.

6-46 Output Attribute Functions

Polymarker Attributes
SET POLYMARKER COLOR INDEX

SET POLYMARKER COLOR INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'MARK_COLOR~NDEX sets the current Polymarker
color index entry in the DEC GKS state list to the specified value.

Syntax
GKS~SET_PMARK_COLOR_INDEX (color~ndexJ

GSPMCI (cindexJ

gsetmarkercolourind (colour)

Arguments
color index

data type: integer
access: read-only
mechanism: by reference

This argument is the Polymarker color index. The default value for the Poly-
marker color index entry is the value 1, which designates the workstation's
default foreground color. For more information concerning predefined color
index values, refer to the DEC GKS Device Specifics Reference Manual.

Output Attribute Functions 6-47

Polymarker Attributes
SET POLYMARKER COLOR INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$_ERROR_8

92 GKS$_ERROR_92

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Color index is less than zero in
routine ****

Program Example
Example 6-8 illustrates the use of the function GKS$SET~'MARK_COLOR_
INDEX. Following the program example, Figure 6-8 illustrates the program's
effect on a VT241 workstation.

6-48 Output Attribute Functions

Polymarker Attributes
SET POLYMARKER COLOR INDEX

Example 6-8: Changing the Polymarker Color Index

C This outputs five blue asterisks
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, BLUE, NUM_POINTS
DATA WS_ID / 1 /, BLUE / 3 /, NUM_POINTS / 5 /
REAL PX (5) , PY (5)
DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_PMARK_COLOR_INDEX(BLUE)
CALL GKS$POLYMARKER(NUM POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O PX contains the markers' X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

© The function GKS$SET~'MARK_COLOR_INDEX changes the color from
the default color to blue, but only if the Polymarker color ASF is set to
GKS$K_ASF~NDIVIDUAL (the default setting).
Workstations other than the VT241 may predefine a different representation
of color index 3 (a color other than blue).

Figure 6-8 shows the screen of a VT241 terminal after the program has run to
completion.

Output Attribute Functions 6-49

Polymarker Attributes
SET POLYMARKER COLOR INDEX

Figure 6-8: Changing the Polymarker Color Index—VT241

ZK 5058-86

6-50 Output Attribute Functions

Polymarker Attributes
SET POLYMARKER INDEX

SET POLYMABKER INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'MARK_INDEX establishes the index value pointing
into the polymarker bundle table. The polymarker bundle table contains entries
for the polymarker color index, polymarker type, and polymarker size scale
factor attribute values. When calling GKS$POLYMARKER, DEC GKS uses the
bundle table only if the corresponding attribute source flag has been set to
GKS$K~SF_BUNDLED.

For a list of the predefined polymarker area bundles for each workstation, refer
to the DEC GKS Device Specifics Reference Manual.

Syntax
GKS~SET_PMARK_INDEX (index)

GSPMI (pindexJ

gsetmarkerind (index)

Arguments
index

data type: integer
access: read-only
mechanism: by reference

This argument is the polymarker bundle index. The default bundle index is the
value 1. For more information concerning predefined polymarker bundle table
indexes, refer to the DEC GKS Device Specifics Reference Manual.

Output Attribute Functions 6-51

Polymarker Attributes
SET POLYMARKER INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$~RROR_8

66 GKS$rERROR_66

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Polymarker index is invalid in
routine ****

Program Example
Example 6-9 illustrates the use of the function GKS$SET_I'MARK_INDEX.
Following the program example, Figure 6-9 illustrates the program's effect on a
VT241 workstation.

6-52 Output Attribute Functions

Polymarker Attributes
SET POLYMARKER INDEX

Example 6-9: Changing the Polymarker Index

C This program sets the Attribute Source Flags (ASFs) to bundled,
C and then displays the effects of using the first 10 index values
C in calls to GKS$SET_PMARK_INDEX.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, INCR
DATA WS_ID / 1 /, NUM_POINTS / 5 /
REAL PX (5) , PY (5)
DATA PX /.1,
DATA PY /.5,
INTEGER FLAGS(13)
CHARACTER*2 STR

.9, .7, .7, .9/

.5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

FLAGS(4) = GKS$K ASF_BUNDLED
FLAGS(5) = GKS$K_ASF_BUNDLED
FLAGS(6) = GKS$K_ASF BUNDLED
CALL GKS$SET_ASF(FLAGS)

DO 200 INCR = 1, 10, 1
CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_ALWAYS)
CALL GKS$SET_PMARK_INDEX(INCR)
CALL GKS$POLYMARKER(NUM_POINTS, PX, PY)
CALL LIB$CVT DX_DX ('/.DESCR (INCR) , '/.DESCR (STR))
CALL GKS$SET_TEXT_HEIGHT(0.03)
CALL GKS$TEXT(.1, .3, 'Index: ')
CALL GKS$TEXT (. 4 , . 3 , '/.DESCR (STR))

C Release deferred output. Pause. Type RETURN when you are finished

C viewing the picture.
CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5,*)

200 CONTINUE

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example.

0 PX contains the markers' X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

Output Attribute Functions 6-53

Polymarker Attributes
SET POLYMARKER INDEX

© This code initializes the elements of the array that affect all of the non-
geometric Polymarker attributes. This code sets the Polymarker ASFs to
GKS$K~SF_BUNDLED. FLAGS(4) corresponds to the marker type;
FLAGS(5) corresponds to the marker size scale factor; and, FLAGS(6)
corresponds to the Polymarker color index.
See the GKS$SET~SF function description in this chapter for more
information.

© This code displays the arrow using ten of the Polymarker index values
available on the VT241. This code writes the index value that produced the
Polymarker, in the lower left portion of the screen.

O This VMS Run-Time Library Routine translates the variable INCR to a text
string so that GKS$TEXT can write the dill area index value to the screen.

Figure 6-9 shows the screen of a VT241 terminal after the program has run to
completion. The markers are green.

6-54 Output Attribute Functions

Polymarker Attributes
SET POLYMARKER INDEX

Figure 6-9: Changing the Polymarker Index—VT241

Z n d• K i d

ZK 505986

Output Attribute Functions 6-55

Polymarker Attributes
SET MARKER TYPE

SET MARKER TYPE

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_PMARK_TYPE sets the current marker type entry in the
DEC GKS state list to be dots, plus signs, asterisks, circles, diagonal crosses, or
any of the device-dependent types.

Every workstation capable of output (of DEC GKS category GKS$K_WSCAT_
OUTPUT or GKS$K_WSCAT_OUTIN) defines at least five polymarker types.
For more information concerning predefined polymarker type, refer to the
DEC GKS Device Specifics Reference Manual.

Syntax
GKS$SET_PMARK_TYPE (marker_typeJ

GSMK (mtypeJ

gsetmarkertype (type)

Arguments
marker type

data type: integer
access: read-only
mechanism: by reference

This argument is the polymarker type. The argument can be any of the follow-
ing values or constants.

6-56 Output Attribute Functions

Polymarker Attributes
SET MARKER TYPE

Value Constant Description

<0

1

2

3

4

5

>=6

GKS$K_MARKERTYPE_DOT

GKS$K _IVIARKERTYPE _PLUS

GKS$ K —1VIARKERTYPE ASTERISK

GKS$K~VIARKERTYPE_CIRCLE

GKS$K_IVIARKERTYPE_DIAGONAL _
CROSS

Device-dependent types.

Use dots (.).

Use plus signs (+).

Use asterisks (*).

Use circles (o).

Use diagonal crosses (X).

Reserved: future
standardization.

The default index for the current polymarker type entry is GKS$K_
MARKERTYPE~►STERISK. For more information concerning possible line
type indexes, refer to the DEC GKS Device Specifics Reference Manual.

Error Messages

Error
Number

Completion
Status Code Message

—20 DECGKS$~RROR~tEG~O

8 GKS$~RROR_8

69 GKS$_ERROR_69

GKS not in proper state: GKS in
the error state in routine * * * *

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Specified marker type is equal to
zero in routine * * * *

Program Example
Example 6-10 illustrates the use of the function GKS$SET~'MARK_TYPE.
Following the program example, Figure 6-10 illustrates the program's effect on
a VT241 workstation.

Output Attribute Functions 6-57

Polymarker Attributes
SET MARKER TYPE

Example 6-10: Changing the Polymarker Type

C This program draws five circles.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS
DATA WS_ID / 1 /, NUM_POINTS / 5 /
REAL PX (5) , PY (5)

Q DATA PX /.1, .9, .7, .7, .9/
DATA PY /.5, .5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_CIRCLE)
CALL GKS$POLYMARKER(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

0 PX contains the markers' X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

© The function GKS$SE'T_1'MARK_TYPE changes the Polymarker type from
the default type to circles, only if the marker type ASF is set to GKS$K_
ASF~NDIVIDUAL (the default setting).

Figure 6-10 shows the screen of a VT241 terminal after the program has run to
completion.

6-58 Output Attribute Functions

Polymarker Attributes
SET MARKER TYPE

Figure 6-10: Changing the Polymarker Marker Type—VT241

O
O O

O

~ J
ZK 5060 86

Output Attribute Functions 6-59

Polymarker Attributes
SET MARKER SIZE SCALE FACTOR

SET MARKER SIZE SCALE FACTOR

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET~'MARK~IZE sets the current marker size scale factor
entry in the DEC GKS state list to the specified value for all polymarker types.

DEC GKS calculates marker size for all types (except the dot marker type) as
the nominal marker size multiplied by the marker size scale factor. The marker
size scale factor is a real number that you pass to GKS$SET~'MARK~IZE.
The graphics handler maps the value to the nearest available marker size
defined by the handler. (The dot marker type is always the smallest dot that
the workstation can produce.)

Syntax
GKS#SET_PMARK_SIZE (marker_siz~scal~factorJ

GSMKSC (sfactorJ

gsetmarkersize (size)

Arguments
marker_size_scale_fector

data type: real
access: read-only
mechanism: by reference

This argument is the marker size scale factor. The default for the current entry
is the value 1.0, which outputs a marker of the nominal size as defined by the
graphics handler.

6-60 Output Attribute Functions

Polymarker Attributes
SET MARKER SIZE SCALE FACTOR

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$_ERROR_NEG_20

8 GKS$~RROR_8

71 GKS$~RROR_71

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Marker size scale factor is less than
zero in routine * * * *

Program Example
Example 6-11 illustrates the use of the function GKS$SET~MARK—SIZE.
Following the program example, Figure 6-11 illustrates the program's effect on
a VT241 workstation.

Output Attribute Functions 6-61

Polymarker Attributes
SET MARKER SIZE SCALE (ACTOR

Example 6-11: Changing the Polymarker Size

C This program draws five at five times
C that of the default size.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS
REAL MIN_TIMES_FIVE
DATA WS_ID / 1 /, NUM_POINTS / 5 /,
* MIN_TIMES_FIVE / 5.0 /

REAL PX (5) , PY (5)
Q DATA PX /.1, .9, .7, .7, .9/

DATA PY /.5, .5, .6, .4, .5/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_PMARK_SIZE(MIN_TIMES_FIVE)
CALL GKS$POLYMARKER(NUM_POINTS, PX, PY)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O PX contains the markers' X world coordinate values and PY contains the
Y world coordinate values. For example, the first element in both arrays
specifies the first point (.1, .5).

© The function GKS$SET~'MARK_SIZE changes the marker size from the
nominal width to five times the nominal width, only if the marker size scale
factor ASF is set to GKS$K_ASF_INDIVIDUAL (the default setting).

Figure 6-11 shows the screen of a VT241 terminal after the program has run to
completion.

6-62 Output Attribute Functions

Text Attributes
SET MARKER SIZE SCALE (ACTOR

Figure 6-11: Changing the Polymarker Size VT241

Z K 506 t 86

Output Attribute Functions 6-63

Text Attributes

Text Attributes
The DEC GKS functions described in this section affect the following geometric
and nongeometric text attributes:

• Alignment (geometric)

• Color (nongeometric)
• Expansion factor (nongeometric)

• Font and precision (nongeometric)

• Height (geometric)

• Bundle Index (nongeometric)

• Path (geometric)

• Spacing (nongeometric)

• Up vector (geometric)

Character strings are defined within a text extent rectangle. A text extent
rectangle is an imaginary parallelogram that completely contains the character
string to be written. The character string itself and the text attributes character
height, character expansion factor, and character spacing define the limits of the
text extent rectangle.

Each of these functions can alter the default values used in subsequent calls to
the GKS$TEXT function. For more information concerning GKS$TEXT, refer to
Chapter 5, Output Functions.

6-64 Output Attribute Functions

Text Attributes
SET TEXT ALIGNMENT

SET TEXT ALIGNMENT

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_TEXT~LIGN sets the current text alignment entry in
the DEC GKS state list to a value that specifies the positioning of the text extent
rectangle. DEC GKS uses this value for all subsequent calls to GKS$TEXT until
you specify another value.

Once you have determined the starting point, the text path (see GKS$SET_
TEXT_1'ATH in this section), and the character up vector (see GKS$SET_
TEXT_UPVEC in this section), you have in effect established an imaginary line
running through the starting point, on which to output text. At this point, you
can use GKS$SET_TEXT_ALIGN to shift the text extent rectangle along this
established line.

The two arguments passed to this function establish the horizontal and vertical
position of the text extent rectangle on the imaginary text line. For example,
you can position the text extent rectangle horizontally so the starting point is to
the left, in the center, or to the right of the text extent rectangle.

Not only can you position the text extent rectangle horizontally along the
imaginary text line, you can position the rectangle vertically along the same
line. For example, you can position the text extent rectangle so that the starting
point is aligned with the top of the characters in the string, with the cap of
the characters, with the hal f line of the characters, with the base line of the
characters, or with the bottom line of the characters.

Figure 6-12 illustrates how you can align the text extent rectangle horizontally
and vertically. The text path is from right to left and the imaginary text line is
illustrated as a dashed line.

Output Attribute Functions 6-65

Text Attributes
SET TEXT ALIGNMENT

Figure 6-12: Horizontal and Vertical Text Alignment

HORIZONTAL ALIGNMENT

Text Path =Right

Vertical Alignment =Base

Left

Center

Right

- ~T e=

Text- ~

Text — ~ ~ ~ —

Note: Center aligns
the starting point
at the center of
the string.

Text Path =Right

Horizontal Alignment =Left

Top

Cap ,

Half

Base

Bottom

Right

~Rig~

—Niight—

~9hL

tght

VERTICAL ALIGNMENT

Note: In many fonts,
the Top and Cap
lines are equivalent.

ZK-5031-86

6-66 Output Attribute Functions

Text Attributes
SET TEXT ALIGNMENT

The default horizontal and vertical alignments depend on the text path, and can
be explicitly passed using the arguments GKS$K_TEXT~IALIGN~TORMAL
and GKS$K_TEXT_VALIGN_NORMAL. Figure 6-13 shows the default values
for each of the four text paths.

Figure 6-13: Default Horizontal and Vertical Text Alignments

NORMAL ALIGNMENTS

Path =Right +ext
Horizontal Alignment =Left Vertical Alignment =Base

Path =Left txeT~
Horizontal Alignment =Right Vertical Alignment =Base

Path = Up Path =Down

—f—
T
e
x
t

t
x
e

_ -
Horizontal Alignment -Center Horizontal Alignment =Center
Vertical Alignment =Base Vertical Alignment =Top

ZK-5032-86

For more information concerning the text extent rectangle or character output in
general, refer to the DEC GKS User Manual.

Output Attribute Functions 6-67

Text Attributes
SET TEXT ALIGNMENT

Syntax
GKSaSET_TEXT~ILIGN (horizontal, vertical)

GSTXAL (halign, valignJ

gsettextalign (align)

Arguments
horizontal

data type: integer
access: read-only
mechanism: by reference

This argument is the horizontal alignment for text output. The argument can be
any of the following values or constants.

Value Constant Description

0 GKS$K_TEXT_HALIGN_NORMAL Normal

1 GKS$K_TEXT_HALIGN_LEFT Left

2 GKS$K_TEXT_HALIGN_CENTER Center

3 GKS$K_TEXT—HALIGN_RIGHT Right

For more information on the use of these values and constants, refer to Figures
6-12 and 6-13 .

vertical

data type: integer
access: read-only
mechanism: by reference

This argument is the Vertical alignment for text output. The argument can be
any of the following values or constants.

6-68 Output Attribute Functions

Text Attributes
SET TEXT ALIGNMENT

Value Constant Description

0 GKS$K_TEXT_VALIGN_NORMAL

1 GKS$K_TEXT_VALIGN_TOP

2 GKS$K_TEXT VALIGN_CAP

3 GKS$K_TEXT_VALIGN_HALF

4 GKS$K_TEXT VALIGN_BASE

5 GKS$K_TEXT_VALIGN_BOTTOM

Normal

Top

Cap

Half

Base

Bottom

For more information on the use of these values and constants, refer to Figures
6-12 and 6-13 .

Error Messages

Error
Number

Completion
Status Code Message

-12 DECGKS$_ERROR_NEG_12

-13 DECGKS$_ERROR_NEG_13

-20 DECGKS$~RROR_NEG~O

8 GKS$~RROR_8

Invalid value specified for horizon-
tal component of text alignment in
routine ****

Invalid value specified for vertical
component of text alignment in
routine ****

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Program Example
Example 6-12 illustrates the use of the function GKS$SET_TEXT_ALIGN.
Following the program example, Figure 6-14 illustrates the program's effect on
a VT241 workstation.

Output Attribute Functions 6-69

Text Attributes
SET TEXT ALIGNMENT

Example 6-12: Changing the Text Alignment

C This program writes a string to the workstation using the
C normal text alignments for each of the text paths.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, ONE_PMARK, RED
REAL LARGER, START_PT_X, START_PT_Y
DATA WS_ID / 1 /, ONE_PMARK / 1 /, LARGER / 0.07 /,
* START_PT_X / 0.5 /, START_PT_Y / 0.5 /, RED / 2 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_WS(WS_ID)

0

0

CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$SET_PMARK_COLOR_INDEX(RED)
CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_PLUS)

CALL GKS$SET_TEXT_PATH(GKS$K_TEXT_PATH_RIGHT)
CALL GKS$SET_TEXT_ALIGN(GKS$K_TEXT_HALIGN_NORMAL,
* GKS$K_TEXT_VALIGN_NORMAL)
CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')
CALL GKS$POLYMARKER(ONE_PMARK, START_PT_X, START_PT_Y)

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

CALL GKS$SET_TEXT_PATH(GKS$K_TEXT_PATH_LEFT)
CALL GKS$SET_TEXT_ALIGN(GKS$K_TEXT_HALIGN_NORMAL,
* GKS$K_TEXT_VALIGN_NORMAL)
CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')
CALL GKS$POLYMARKER(ONE_PMARK, START_PT_X, START_PT_Y)

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

CALL GKS$SET_TEXT_PATH(GKS$K_TEXT_PATH_UP)
CALL GKS$SET_TEXT_ALIGN(GKS$K_TEXT_HALIGN_NORMAL,
* GKS$K_TEXT_VALIGN_NORMAL)
CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')
CALL GKS$POLYMARKER(ONE_PMARK, START_PT_X, START_PT Y)

(continued on next page)

6-70 Output Attribute Functions

Text Attributes
SET TEXT ALIGNMENT

Example 6-12 (Cont.~: Changing the Text Alignment

C Release deferred output . Pause . Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

© CALL GKS$SET_TEXT_PATH(GKS$K_TEXT_PATH_DOWN)
CALL GKS$SET_TEXT_ALIGN(GKS$K_TEXT_HALIGN_NORMAL,
* GKS$K_TEXT_VALIGN_NORMAL)
CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')
CALL GKS$POLYMARKER(ONE_PMARK, START_PT_X, START_PT_Y)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code increases the character height so that the string is easy to see.

© This code sets the polymarker color and type. A red plus sign marks the
text starting point.

© Set the text path to GKS$K_TEXT~'ATH~ZIGHT. Notice that the normal
alignment for this path includes horizontal alignment of the starting point
to the left and vertical alignment along the base of the letters.

O Set the text path to GKS$K_TEXT_I'ATH_LEFT. Notice that the normal
alignment for this path includes horizontal alignment of the starting point
to the right and vertical alignment along the base of the letters.

0 Set the text path to GKS$K_TEXT~'ATH_UP. Notice that the normal
alignment for this path includes horizontal alignment of the starting point
to the center and vertical alignment along the base of the first letter.

© Set the text path to GKS$K_TEXT~'ATH_DOWN. Notice that the normal
alignment for this path includes horizontal alignment to the center and
vertical alignment along the top of the first letter.

Figure 6-14 shows the screen of a VT241 terminal after the program has run to
completion. The text is in green and the plus sign is red.

Output Attribute Functions 6-71

Text Attributes
SET TEXT ALIGNMENT

Figure 6-14: Changing the Text Alignment—VT241

T
X
E

T>;E~E7~T

E

T

 J
ZK~5062~86

6-72 Output Attribute Functions

Text Attributes
SET TEXT COLOR INDEX

SET TEXT COLOR INDEX

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_TEXT_COLOR~NDEX sets the current text color index
entry in the DEC GKS state list to the specified value.

Syntax
GKS$SET_TEXT_COLOR_INDEX (co/or~ndexJ

GSTXCI (cindexJ

gsettextcolourind (index)

Arguments
color index

data type: integer
access: read-only
mechanism: by reference

This argument is the text color index. The default value for the text color index
entry is the value 1, which designates the default foreground color. For more
information concerning predefined color indexes, refer to the DEC GKS Device
Specifics Reference Manual.

Output Attribute Functions 6-73

Text Attributes
SET TEXT COLOR INDEX

Error Messages

Error
Number

Completion
Status Code Message

-20 DECGKS$~RROR~IEG_20

8 GKS$~RROR_8

92 GKS$~RROR_92

GKS not in proper state: GKS in
the error state in routine ****

GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

Color index is less than zero in
routine ****

Program Example
Example 6-13 illustrates the use of the function GKS$SET_TEXT_COLOR_
INDEX. Following the program example, Figure 6-15 illustrates the program's
effect on a VT241 workstation.

6-74 Output Attribute Functions

Text Attributes
SET TEXT COLOR INDEX

Example 6-13: Changing the Text Color Index

C This program produces a blue text string.
IMPLICIT NONE
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR'
INTEGER WS_ID, BLUE
REAL LARGER, START_PT_X, START_PT_Y
DATA WS_ID / 1 /, LARGER / 0.07 /, BLUE / 3 /,
* START_PT_X / 0.5 /, START_PT_Y / 0.5 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

O CALL GKS$SET_TEXT_HEIGHT(LARGER)

© CALL GKS$SET_TEXT_COLOR_INDEX(BLUE)
CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code increases the character height so that the string is easy to see.

© The function, GKS$SET_TEXT COLOR—INDEX, changes the color from
the default color to blue, but only if the text color ASF is set to GKS$K_
ASF_INDIVIDUAL (the default setting).
The VT241 predefines the color index value 3 to be blue. Workstations
other than the VT241 may predefine a different representation of color
index 3 (a color other than blue).

Figure 6-15 shows the screen of a VT241 terminal after the program has run to
completion. The text changed from the default color green to the color blue.

Output Attribute Functions 6-75

Text Attributes
SET TEXT COLOR INDEX

Figure 6-15: Changing the Text Color Index—VT241

TEXT

ZK~5063~86

6-76 Output Attribute Functions

Text Attributes
SET TEXT EXPANSION FACTOR

SET TEXT EXPANSION FACTOR

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_TEXT~XPFAC sets the current character expansion
factor entry in the DEC GKS state list to the specified value. This function alters
the width of the generated characters, but not the height.

When DEC GKS calculates the character width using the default character
height, the resulting text string is legible. However, certain normalization
transformations distort the text. You can either use GKS$SET_TEXT~XPFAC
or GKS$SET_TEXT~-IEIGHT to reestablish a legible character width. (For more
information concerning transformations, refer to Chapter 7, Transformation
Functions.)

Syntax
GKS;SET_TEXT_EXPFAC (e~ansion_factorJ

GSCHXP (efactorJ

gsetcharexpan (exp)

Arguments
expansior~factor

data type: real
access: read-only
mechanism: by reference

This argument is the character expansion factor. This value multiplied by the
width-to-height ratio specified in the original font specification determines the
new character width. The character height remains the same.

n
Output Attribute Functions 6-77

Text Attributes
SET TEXT EXPANSION FACTOR

The default for the current character expansion factor is the value 1.0, which
displays text using the width-to-height ratio specified in the font design.

Error Messages

Error Completion
Number Status Code Message

-20 DECGKS$~RROR~TEG_20 GKS not in proper state: GKS in
the error state in routine ****

-28 DECGKS$_ERROR_NEG_28 Invalid value specified for expan-
sion factor in routine ****

8 GKS$~RROR_8 GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

77 GKS$_ERROR_77 Character expansion factor is less
than or equal to zero in routine

Program Example
Example 6-14 illustrates the use of the function GKS$SET_TEXT~XPFAC.
Following the program example, Figure 6-16 illustrates the program's effect on
a VT241 workstation.

6-78 Output Attribute Functions

Text Attributes
SET TEXT EXPANSION FACTOR

Example 6-14: Changing the Character Expansion Factor

C This program increases text width by three times the
C nominal size.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID
REAL TIMES_THREE, START_PT_X, START_PT_Y, LARGER
DATA WS_ID / 1 /, TIMES_THREE / 3.0 /,
* START_PT_X / 0.5 /, START PT_Y / 0.5 /,
* LARGER / 0.03 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

C Make the text easy to read.
CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5 , *)

C Clear the screen and generate wider characters.
O CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_CONDITIONALLY)
© CALL GKS$SET_TEXT_EXPFAC(TIMES_THREE)

CALL GKS$TEXT(START_PT_X, START_PT_Y, 'TEXT')

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O Clear the screen conditionally.

© The function GKS$SET_TEXT—EXPFAC changes the expansion factor so
that text is displayed three times the width-to-height ratio specified in the
original font design, but only if the character expansion factor ASF is set to
GKS$K_ASF—INDIVIDUAL (the default setting).

Figure 6-16 shows the screen of a VT241 terminal after the program has run to
completion.

Output Attribute Functions 6-79

Text Attributes
SET TEXT EXPANSION (ACTOR

Figure 6-16: Changing the Character Expansion Factor—VT241

/ 1

T f~ ~-S T

ZK~5064-86

6-80 Output Attribute Functions

Text Attributes
SET TEXT FONT AND PRECISION

SET TEXT FONT AND PRECISION

Operating States: GKOP, WSOP, WSAC, SGOP

Description
The function GKS$SET_TEXT~ONTPREC sets the current text font and preci-
sion entry in the DEC GKS state list to the specified value.

When using this function, the types of fonts available for use depend on which
precision value you pass as an argument. The values, in order of increasing
precision, are as follows:

• String (GKS$K_TEXT~'RECISION_STRING)

• Character (GKS$K_TEXT~'RECISION_CHAR)

• Stroke (GKS$K_TEXT~'RECISION_STROKE)

As the precision increases, the precision of clipping, character size, character
spacing, character expansion factor, and the character up vector all improve.

If you specify string precision, and if you specify a starting position for the
string that is located outside of the current normalization viewport, the call
to GKS$SET_TEXT~ONTPREC causes the entire text string to be clipped. If
the starting point for the string is located inside of the current normalization
viewport, this function may cause the string to be clipped by character or by
stroke depending on the capabilities of the workstation. If you require string
precison, you cannot use the DEC GKS software fonts; you can only specify the
numbers of the device-dependent fonts available on your particular workstation.
For more information concerning the device-dependent fonts available on a
workstation, refer to the DEC GKS Device Specifics Reference Manual.

If you specify character precision, the call to GKS$SET_TEXT_FONTPREC
causes the text string to be clipped at the current normalization viewport on a
character-by-character basis. If you require character precison, you cannot use
the DEC GKS software fonts; you can only specify the numbers of the device-
dependent fonts available on your particular workstation. For more information
concerning the fonts available on a workstation, refer to the DEC GKS Device
Specifics Reference Manual.

Output Attribute Functions 6-81

Text Attributes
SET TEXT FONT AND PRECISION

If you specify stroke precision, the call to GKS$SET_TEXT_FONTPREC causes
the text string to be clipped exactly at the current normalization viewport.
This is the highest precision. when using this precision, you may make use
of the device-independent fonts that are available on all workstations. For a
description of each of these available software fonts and their values, refer to
Appendix G, DEC GKS Device-Independent Fonts.

Be aware that all images are clipped at the current workstation window. For
more information concerning clipping, refer to Chapter 7, Transformation
Functions.

Together, text font and precision specify the display quality of text and the
speed at which the text is displayed. Typically, use of a software font in stroke
precision produces higher-quality character symbols than use of a hardware font
in either character or string precision. However, character and string precision
use the workstation character generator, if available, to display text and thus
produce the images somewhat faster than stroke precision. Also, since character
and string precision are less precise in the application of the other text attributes
(for example, height and width), they require less calculation to represent each
character in a text string.

The default value for the current text font and precision entry specifies the
hardware font value, 1, and string precision.

Syntax
GKS~SET_TEXT_FONTPREC (font value, precision_valueJ

GSTXFP (font, precision)

gsettextfontp~ec (txfpJ

Arguments
fondvalue

data type: integer
access: read-only
mechanism: by reference

This argument is the font value. If you are using the character or string
precisions, refer to the DEC GKS Device Specifics Reference Manual for more

6-82 Output Attribute Functions

Text Attributes
SET TEXT FONT AND PRECISION

information. If using stroke precision, refer to Appendix G, DEC GKS Device-
Independent Fonts, in this manual.

precision

value

data type:
access:
mechanism:

integer
read-only
by reference

This argument is the precision value. See the function description for detailed
information concerning these values. The argument can be any of the following
values or constants:

Value Constant Description

0 GKS$K_TEXT_I'RECISION_STRING

1 GKS$K_TEXT_I'RECISION_CHAR

2 GKS$K_TEXT_I'RECISION_STROKE

Lowest precision

Moderate precision

Highest precision

Error Messages

Error
Number

Completion
Status Code Message

-14 DECGKS$_ERROR_NEG_14

-20 DECGKS$_ERROR_NEG_20

-32 DECGKS$_ERROR_NEG_32

-34 DECGKS$_ERROR_NEG_34

Invalid value specified for text
precision in routine ****

GKS not in proper state: GKS in
the error state in routine ****

Font file for stroke precision text
not found or unusable in routine

String length less than or equal to
0 in routine ****

Output Attribute Functions 6-83

Text Attributes
SET TEXT FONT AND PRECISION

Error Completion
Number Status Code Message

8 GKS$~RROR_8 GKS not in proper state: GKS
must be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine

75 GKS$_ERROR_75 Text font is equal to zero in routine

Program Example
Example 6-15 illustrates the use of the function GKS$SET_TEXT—FONTPREC.
Following the program example, Figure 6-17 illustrates the program's effect on
a VT241 workstation.

0

Example 6-15: Changing the Text Font and Precision

C This program changes the default font and precision to
C stroke/Old English.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, OLD_ENGLISH
REAL START_PT_X, START_PT_Y, LARGER
DATA WS_ID / 1 /, START_PT_X / 0.01 /, START_PT_Y / 0.5 /,
* LARGER / 0.05 /, OLD_ENGLISH / -18 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$SET_TEXT_HEIGHT(LARGER)

CALL GKS$SET_TEXT_FONTPREC(OLD_ENGLISH,
* GKS$K_TEXT_PRECISION_STROKE)
CALL GKS$TEXT(START_PT_X, START_PT_Y,
* 'THE MORAL KIOSK')

(continued on next page)

6-84 Output Attribute Functions

Text Attributes
SET TEXT FONT AND PRECISION

Example 6-15 (Coot.): Changing the Text Font and Precision

CALL GKS$DEACTIVATE_WS(WS_ID
CALL GKS$CLOSE_WS(WS_ID
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code increases the character height so that the string is easy to see.

© The function, GKS$SET_TEXT_FONTPREC, changes the font from the
hardware font 1, to the Old English software font -18. GKS$SET_TEXT_
FONTPREC also changes the precision from string to stroke. These changes
can only occur if the text font and precision ASF is set to GKS$K~SF_
INDIVIDUAL (the default setting).

Figure 6-17 shows the screen of a VT241 terminal after the program has run to
completion.

Output Attribute Functions 6-85

Text Attributes
SET TEXT FONT AND PRECISION

Figure 6-17: Changing the Text Font and Precision

~~~ ~tt~~A~ ~.s~cC~~~ 

~ J 
Z K 5065 86 

6-86 Output Attribute Functions 



Text Attributes 
SET TEXT HEIGHT 

SET TEXT HEIGHT 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function, GKS$SET_TEXT_HEIGHT, sets the geometric attribute, current 
character height entry in the DEC GKS state list to the specified world coordinate 
unit value. DEC GKS uses this value for all subsequent calls to GKS$TEXT until 
you specify another value. 

If you specify a new height to GKS$SET_TEXT_HEIGHT, DEC GKS expands 
text output to the closest height the workstation is capable of producing. 
Exercise caution if you change the size of the current normalization window 
since you may also have to readjust the character height. 

Also remember that changing the text height automatically changes the charac-
ter expansion factor and the character spacing, in proportion to the text height 
adjustment. (For more information concerning the world coordinate system and 
transformations, refer to Chapter 7, Transformation Functions.) 

Syntax 
GKSsSET_TEXT_HEIGHT (height) 

GSCHH (height) 

gsetcharheight (height) 

Arguments 
height 

data type: real 
access: read-only 
mechanism: by reference 

This argument is the character height; it specifies the character height in world 
coordinate units. Text height is an absolute value. 

Output Attribute Functions 6-87 



Text Attributes 
SET TEXT HEIGHT 

The default for the current text height is the world coordinate unit value 
0.01. The absolute world coordinate value 0.01 is one percent of the default 
normalization window height (1.0). 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

8 GKS$_ERROR_8 

77 GKS$_ERROR_77 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
must be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
**** 

Character height is less than or 
equal to zero in routine **** 

Program Example 
Example 6-16 illustrates the use of the function GKS$SET_TEXT~IEIGHT. 
Following the program example, Figure 6-18 illustrates the program's effect on 
a VT241 workstation. 

6-88 Output Attribute Functions 



Text Attributes 
SET TEXT HEIGHT 

Example 6-16: Changing the Text Height 

C This program increases character height. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID 
REAL THIRD_WC_POINT, START_PT_X, START_PT_Y 
DATA WS_ID / 1 /, THIRD_WC_POINT / 0.03 /, 
* START_PT_X / 0.1 /, START_PT_Y / 0.5 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$TEXT( START_PT_X, START_PT_Y, 'Life During Wartime' ) 
C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , * ) 

CALL GKS$SET_TEXT_HEIGHT( THIRD_WC_POINT ) 
CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 'Life During Wartime' ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This code outputs text in the default height of 0.01 world coordinate units. 

© The function GKS$SET_TEXT_HEIGHT changes the value to 0.03 world 
coordinate units. 

© This code clears the screen unconditionally. After the next call to 
GKS$TEXT, text is output to the screen at the new height. 

Figure 6-18 shows the screen of a VT241 terminal after the program has run to 
completion. 

Output Attribute Functions 6-89 



Text Attributes 
SET TEXT HEIGHT 

Figure 6-18: Changing the Text Height—VT241 

Life During l~artir►e 

ZK 5842 HC 

6-90 Output Attribute Functions 



Text Attributes 
SET TEXT INDEX 

SET TEXT INDEX 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET TEXT~NDEX establishes the index value pointing into 
the text bundle table. The text bundle table contains entries for the text font 
and precision, character expansion factor, character spacing, and text color index 
attribute values. When calling GKS$TEXT, DEC GKS uses the bundle table 
only if the corresponding attribute source flag has been set to GKS$K~SF_ 
BUNDLED. 

For a list of the available text bundles for each workstation, refer to the 
DEC GKS Device Specifics Reference Manual. 

Syntax 
GKSSSET_TEXT_INDEX (index) 

GSTXI (tindexJ 

gsettextind (index) 

Arguments 
index 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the text bundle index. The default bundle index is the value 
1. For more information concerning predefined text bundle table indexes, refer 
to the DEC GKS Device Specifics Reference Manual. 

Output Attribute Functions 6-91 



Text Attributes 
SET TEXT INDEX 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

8 GKS$~RROR_8 

72 GKS$_ERROR_72 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
must be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
**~* 

Text index is invalid in routine **** 

Program Example 
Example 6-17 illustrates the use of the function GKS$SET_TEXT_INDEX. 
Following the program example, Figure 6-19 illustrates the program's effect on 
a VT241 workstation. 

Example 6-17: Changing the Text Index 

C This program sets the Attribute Source Flags (ASFs) to bundled, 
C and then displays the effects of using the six index values 
C in calls to GKS$SET_TEXT_INDEX. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, FLAGS( 13 ), INCR 
REAL START_PT_X, START_PT_Y, LARGER 
DATA WS_ID / 1 /, START_PT_X / 0.1 /, START_PT_Y / 0.5 /, 
* LARGER / 0.03 / 
CHARACTER*2 STR 
CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

(continued on next page) 

6-92 Output Attribute Functions 



Text Attributes 
SET TEXT INDEX 

Example 6-17 (Copt.): Changing the Text Index 

O FLAGS(7) = GKS$K_ASF_BUNDLED 
FLAGS(8) = GKS$K_ASF_BUNDLED 
FLAGS(9) = GKS$K_ASF_BUNDLED 
FLAGS( 10) = GKS$K_ASF_BUNDLED 
CALL GKS$SET_ASF( FLAGS ) 

CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

© DO 200 INCR = 1, 6, 1 
CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 
CALL GKS$SET_TEXT_INDEX( INCR ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'Family of Max Desir' ) 

© CALL LIB$CVT DX_DX ( '/.DESCR ( INCR ) , '/.DESCR ( STR) ) 
CALL GKS$TEXT( .1, .3, 'Index: ') 
CALL GKS$TEXT ( . 4 , . 3 , '/.DESCR ( STR) ) 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

200 CONTINUE 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example. 

O This code initializes the elements of the array that affect all of the nonge-
ometric polymarker attributes. This code sets each ASF to GKS$K~SF_ 
BUNDLED. FLAGS(7) corresponds to the text font and precision; 
FLAGS(8) corresponds to the character expansion factor; FLAGS(9 ) 
corresponds to the character spacing; and, FLAGS( 10) corresponds to the 
text color index. 
See the GKS$SET—ASF function description in this chapter for more 
information. 

© This code displays the text using the six text index values available on the 
VT241. This code writes the index value that produced the text, in the 
lower left portion of the screen. 

0 This VMS Run-Time Library Routine translates the variable INCR to a text 
string so that GKS$TEXT can write the text index value to the screen. 

Output Attribute Functions 6-93 



Text Attributes 
SET TEXT INDEX 

Figure 6-19 shows the screen of a VT241 terminal after the program has run to 
completion. The color of the text is blue. 

Figure 6-19: Changing the Text Index—VT241 

~am11~ of Mox Deflr~ 

Indax: 

ZK-5067-86 

6-94 Output Attribute Functions 



Text Attributes 
SET TEXT PATH 

SET TEXT PATH 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_TEXT~'ATH sets the geometric attribute current text 
path entry in the DEC GKS state list to be the writing direction for the display 
of text. DEC GKS uses this value for all subsequent calls to GKS$TEXT until 
you specify another value. 

Once you have determined the starting point and the character up vector (see 
GKS$SET_TEXT_UPVEC in this section), you have in effect established an 
imaginary line running through the starting point to use when generating text 
primitives. You can output your text string with your aligned letter starting at 
the starting point (see GKS$SET_TEXT_ALIGN in this section). According to 
the current text path, the string either reads to the right along the imaginary 
line (the default), to the left along the imaginary line, upwards in a perpendic-
ular direction from the imaginary text line, or downwards in a perpendicular 
direction from the imaginary line. 

If using the default text alignment (see GKS$SET_TEXT~LIGN), DEC GKS 
places the first letter of this string at the starting point, and subsequent letters 
are written along the imaginary text line in the direction specified by a call to 
this function. The default text path is left to right along the imaginary text line 
(GKS$K _TEXT_I'ATH SIGHT). 

Figure 6-20 illustrates the writing direction for each value of text path. The 
figure assumes (0.0, 1.0) as the character up vector. 

Output Attribute Functions 6-95 



Text Attributes 
SET TEXT PATH 

Figure 6-20: Text Path Directions 

I P 

I ~ 

I H 
T 

IA 
I P

TFEL = HTAP PATH =RIGHT 

I 
P 

IA 
I T 
H 

ZK-1448-83 

Syntax 
GKSSSET_TEXT_PATH (text~athJ 

GSTXP (text~athJ 

gsettextpath (text~athJ 

6-96 Output Attribute Functions 



Text Attributes 
SET TEXT PATH 

Arguments 
tex~path 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the text path. The argument can be any of the following 
values or constants: 

Value Constant Description 

0 GKS$K_TEXT_I'ATH~IGHT Left to right 

1 GKS$K_TEXT_I'ATH_LEFT Right to left 

2 GKS$K_TEXT_I'ATH_UP Bottom to top 

3 GKS$K_TEXT_I'ATH_DOWN Top to bottom 

Error Messages 

Error Completion 
Number Status Code Message 

-15 DECGKS$~RROR~EG_15 Invalid value specified for text path 
in routine 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

8 GKS$~RROR_8 GKS not in proper state: GKS 
must be in one of the states GKOP, 
WSOP, WSAC, or SLOP in routine 
***~ 

Program Example 
Example 6-18 illustrates the use of the function GKS$SET_TEXT~'ATH. 
Following the program example, Figure 6-21 illustrates the program's effect on 
a VT241 workstation. 

Output Attribute Functions 6-97 



Text Attributes 
SET TEXT PATH 

Example 6-18: Changing the Text Path 

C This program shows each of the four text paths. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID 
REAL LARGER, START_PT_X, START_PT_Y 
DATA WS_ID / 1 /, LARGER / 0.05 /, 
* START_PT X / 0.5 /, START_PT Y / 0.5 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

CALL GKS$SET_TEXT_PATH( GKS$K_TEXT_PATH_LEFT ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'Burning' ) 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

CALL GKS$SET_TEXT_PATH( GKS$K_TEXT_PATH_DOWN ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'Down' ) 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

CALL GKS$SET_TEXT_PATH( GKS$K_TEXT_PATH_RIGHT ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'The' ) 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

CALL GKS$SET_TEXT_PATH( GKS$K_TEXT_PATH_UP ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'House' ) 

(continued on next page) 

6-98 Output Attribute Functions 



Text Attributes 
SET TEXT PATH 

Example 6-18 (Cont.~: Changing the Text Path 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This code increases the character height so that the string is easy to see. 

© Set the text path (in this case, to the left). 

0 Output the text string. 

Figure 6-21 shows the screen of a VT241 terminal after the program has run to 
completion. 

Output Attribute Functions 6-99 



Text Attributes 
SET TEXT PATH 

Figure 6-21: Changing the Text Path—VT241 

Z K 5068 86 

6-100 Output Attribute Functions 



Text Attributes 
SET TEXT SPACING 

SET TEXT SPACING 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_TEXT_SPACING sets the current text spacing entry in 
the DEC GKS state list to the specified value. 

DEC GKS measures the spacing between characters as a fraction of the character 
height; adjusting character height automatically proportionately adjusts spacing. 
The character spacing value 0.0 places the character bodies next to each other 
without any separating space contained in the font specification for the letter 
bodies. Whether or not the characters actually touch depends on the type 
of font you are using. Positive spacing values increase the space between 
characters; negative values decrease the space. Using negative spacing values, it 
is possible to overlap characters, or to actually reverse the text so that characters 
are written in the opposite direction. 

Syntax 
GKS~SET_TEXT_SPACING (spacing percentage) 

GSCHSP (spacing) 

gsetcharapace (spacing) 

Arguments 
spacing percentage 

data type: real 
access: read-only 
mechanism: by reference 

This argument is the character spacing factor. This value is a percentage of the 
current character height. The default for the current character spacing entry is 

the value 0.0, which displays text with adjacent character bodies. 

Output Attribute Functions 6-101 



Text Attributes 
SET TEXT SPACING 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR~TEG~O 

8 GKS$~RROR_8 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
must be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
*~*~ 

Program Example 
Example 6-19 illustrates the use of the function GKS$SET_TEXT—SPACING. 
Following the program example, Figure 6-22 illustrates the program's effect on 
a VT241 workstation. 

0 

Example 6-19: Changing the Character Spacing 

C This program decreases the character spacing enough so that 
C the characters overlap slightly. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID 
REAL START PT X, START_PT_Y, LARGER, OVERLAP 
DATA WS_ID / 1 /, START_PT_X / 0.2 /, START_PT_Y / 0.5 
* LARGER / 0.05 /, OVERLAP / -0.3 / 

/. 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

CALL GKS$SET_TEXT_SPACING( OVERLAP ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'Relentless Cookout' ) 

(continued on next page) 

6-102 Output Attribute Functions 



Text Attributes 
SET TEXT SPACING 

Example 6-19 (Cont.~: Changing the Character Spacing 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This code increases the character height so that the string is easy to see. 

© The function GKS$SET_TEXT_SPACING changes the spacing. from the 
default spacing to overlapping characters (a negative character spacing). 
These changes can occur only if the character spacing ASF is set to GKS$K_ 
ASF~NDIVIDUAL (the default setting). 

Figure 6-22 shows the screen of a VT241 terminal after the program has run to 
completion. 

Output Attribute Functions 6-103 



Text Attributes 
SET TEXT SPACING 

Figure 6-22: Changing the Character Spacing—VT241 

F~ 1 et-rt 1 ~~ ~~ro~.~au~ 

Z K -5069-86 

6-104 Output Attribute Functions 



Text Attributes 
SET TEXT UP VECTOR 

SET TEXT UP VECTOR 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_TEXT_UPVEC sets the geometric attribute current 
character up vector entry in the DEC GKS state list to the specified value. DEC 
GKS uses this value for all subsequent calls to GKS$TEXT until you specify 
another value. 

When you call GKS$TEXT, you specify the starting point for the text. In order 
to establish an imaginary line on which to output text, you must establish an 
upward direction. Once an upward direction has been established, DEC GKS 
draws an imaginary line that is perpendicular to this upward direction that runs 
through the starting point. This perpendicular line is the imaginary line on 
which you can output text, by the positioning of the text extent rectangle. 

You specify the upward direction for character placement as a directional 
vector. The vector begins at the starting point and proceeds in the direction of 
the current character up vector entry. You establish the character up vector by 
specif ying a slope for the line. 

For example, if you specify the world coordinates unit values (1.0, 1.0) as the 
character up vector, the up direction for the display of text follows the line 
passing from the starting point to the point one point above and one point to 
the right of the starting point. This would correspond to a 45-degree angle 
of rotation. Specifying the values (200.0, 200.0 ), or the values (5.0, 5.0 ), is 
equivalent to specifying (1.0, 1.0 ). 

Figure 6-23 illustrates some of the possible values of the character up vector. 

Output Attribute Functions 6-105 



Text Attributes 
SET TEXT UP VECTOR 

Figure 6-23: Examples of Character Up Vector Entries 

,~o 
,~o• 

JQ ' 
a~ 

Gr

Charup (0.0, 1.0) 

C' 

'S°~'G •O 
/j 
•O 

j 0 

ZK-1447-83 

The initial value for the current character up vector entry is (0.0, 1.0 ), which 
orients text perpendicular to the X-axis and parallel to the Y-axis, if the current 
character path is GKS$K_TEXT~'ATH~IGHT or GKS$K_TEXT~'ATH_ 
LEFT. 

Syntax 
GKS;SET_TEXT_UPVEC (x_vector_entry, y_vector_entryJ 

GSCHUP (x_vector, y_vector) 

gsetcharup (charupJ 

6-106 Output Attribute Functions 



Text Attributes 
SET TEXT UP VECTOR 

Arguments 
vector_entry 

y_vector_entry 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

These arguments are the X and Y unit values that establish the character up 
vector entry. Specifically, these values specify the slope of the character up 
vector. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG~O 

8 GKS$~RROR_8 

79 GKS$~RROR_79 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
must be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
**~* 

Length of character up vector is 
zero in routine +*** 

Program Example 
Example 6-20 illustrates the use of the function GKS$SET_TEXT_UPVEC. 
Following the program example, Figure 6-24 illustrates the program's effect on 
a VT241 workstation. 

Output Attribute Functions 6-107 



Text Attributes 
SET TEXT UP VECTOR 

Example 6-20: Changing the Up Character Vector 

C This program shifts the default character up vector 
C to the left . 

IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID 
REAL LARGER, START_PT_X, START_PT_Y, VECTOR_X, VECTOR_Y 
DATA WS_ID / 1 /, LARGER / 0.05 /, START_PT_X / 0.5 /, 
* START_PT_Y / 0.5 /, VECTOR_X / -1.0 /, VECTOR_Y / 1.0 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_TEXT_UPVEC( VECTOR_X, VECTOR_Y ) 

CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

CALL GKS$SET_TEXT_PATH( 
CALL GKS$TEXT( START_PT 
* 'John' ) 

C Release def erred output 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ 
READ(5,*) 

CALL GKS$SET_TEXT_PATH( 
CALL GKS$TEXT( START_PT 
* 'Paul' ) 

C Release def erred output 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ 
READ (5,*) 

GKS$K_TEXT_PATH_LEFT ) 
_X, START_PT_Y, 

. Pause. Type RETURN when you are finished 

ID, GKS$K_POSTPONE_FLAG ) 

GKS$K_TEXT_PATH_DOWN ) 
_X, START_PT_Y, 

. Pause. Type RETURN when you are finished 

ID, GKS$K_POSTPONE_FLAG ) 

CALL GKS$SET_TEXT_PATH( GKS$K_TEXT_PATH_RIGHT ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'George' ) 

C Release def erred output. Pause. Type RETURN when 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

you are finished 

(continued on next page) 

6-108 Output Attribute Functions 



Text Attributes 
SET TEXT UP VECTOR 

Example 6-20 (Cont.~: Changing the Up Character Vector 

CALL GKS$SET_TEXT_PATH( GKS$K_TEXT_PATH_UP ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 
* 'Ringo' ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This code alters the character up vector so that all text tilts to the left. 

© This code increases the character height so that the string is easy to see. 

© Set the text path (in this case, to the left). 

4 Generate the text string. 

Figure 6-24 shows the screen of a VT241 germinal after the program has run to 
completion. 

Output Attribute Functions 6-109 



Text Attributes 
SET TEXT UP VECTOR 

Figure 6-24: Changing the Up Character Vector—VT241 

1 

ZK-5G70-86 

6-110 Output Attribute Functions 



Aspect Source Flag Function 

Aspect Source Flag Function 
This section describes the aspect source flags (ASFs), which are nongeometric 
attributes. 

Output Attribute Functions 6-111 



Aspect Source Fiag Function 
SET ASPECT SOURCE FLAGS 

SET ASPECT SOURCEfIAGS 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET—ASF specifies to DEC GKS whether to use the bundled 
or the individual method for designating each of the nongeometric output 
attributes. 

There are thirteen nongeometric attribute source flags (ASF), numbered 1 to 
13. You pass an array with thirteen elements to GKS$SET—ASF. If the value 
in the corresponding element is GKS$K—ASF~NDIVIDUAL, DEC GKS uses 
the individual attribute setting. If the value in the corresponding element is 
GKS$K—ASF_BUNDLED, DEC GKS uses the bundle table index to find the 
attribute setting. 

The initial value for each ASF is individual, which causes the output functions 
to use the current individual value for each nongeometric attribute. Remember 
that when specified individually, attributes are workstation independent; when 
specified as a bundle, the attributes are workstation dependent. For instance, 
most workstations provide a fill area bundle index 1, but the resulting fill area 
can look different on each workstation. For more information concerning the 
bundle table indexes available for your workstation, refer to the DEC GKS 
Device Specifics Reference Manual. 

Syntax 
GKSSSETJ~SF (flags) 

GSASF (Nags) 

gsetasf (asfsJ 

6-112 Output Attribute Functions 



Aspect Source Flag Function 
SET ASPECT SOURCE FLAGS 

Arguments 

flags 

data type: array (integer) 
access: read-only 
mechanism: by reference 

This argument is the array of the thirteen attribute source flags (ASFs). There 
exists one element for each of the nongeometric output attributes, as follows: 

Number Nongeometric Attribute 

1 line type 

2 line width scale factor 

3 polyline color index 

4 marker type 

5 marker size scale factor 

6 polymarker color index 

7 text font and precision 

8 character expansion factor 

9 character spacing 

10 text color index 

11 fill area interior style 

12 fill area style index 

13 fill area color index 

Output Attribute Functions 6-113 



Aspect Source Flag Function 
SET ASPECT SOURCE FLAGS 

Error Messages 

Error Completion 
Number Status Code Message 

-10 DECGKS$_ERROR_NEG_10 Invalid value specified for ASF in 
routine **** 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

8 GKS$_ERROR_8 GKS not in proper state: GKS 
must be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
**** 

Program Exa m p I e 
Refer to Example 6-5 in this chapter for a program example using a call to 
GKS$SET_ASF. 

6-114 Output Attribute Functions 



f"1 Representation Functions 

Representation Functions 
The DEC GKS functions described in this section define or change the nonge-
ometric attributes associated with a given bundle table index. These attributes 
comprise the index's representation. Bundle representations are unique to each 
workstation (device dependent). 

Notice that DEC GKS must be in the GKS$K_WSOP state in order for you to 
call these functions. For more information concerning operating states, refer to 
Chapter 4, Control Functions. 

A list of the different nongeometric representation types follows: 

• Color representation 

• Fill representation 

• Pattern representation 

• Polyline representation 

• Polymarker representation 

• Text representation 

Output Attribute Functions 6-115 



Representation Functions 
SET COLOR REPRESENTATION 

SET COLOR REPRESENTATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_COLOR~EP allows you to redefine an existing color 
index representation, or to define a new representation, by specifying the red, 
green, and blue color intensities associated with a specified bundle index. 
The workstation maps the color you specify to the nearest available color the 
workstation can produce. 

All workstations define default color table entry indexes 0 and 1. By default, 
the value 0 corresponds to the default background color (the color of an empty 
display surf ace), and the value 1 corresponds to the default foreground color. 
Also by default, the values greater than the value 1 correspond to alternative 
foreground colors. 

Depending on the capabilities of your workstation, a call to this function 
may cause DEC GKS to implicitly regenerate the workstation surface. For 
information concerning implicit regeneration, refer to Chapter 4, Control 
Functions. 

Attribute values passed to this function must be valid for the specified worksta-
tion. For information, refer to the DEC GKS Device Specifics Reference Manual. 

Syntax 
GKS~SET_COLOR_REP (workstation_id, color_index, remintensity, 

green intensity, blue~ntensityJ 

GSCR (workstation~d, cindex, reds; green, b/ue_iJ 

gsetcolourrep (workstation~d, index, rep) 

6-116 Output Attribute Functions 



Representation Functions 
SET COLOR REPRESENTATION 

Arguments 
workstation~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that identifies an open workstation (refer to 
GKS$OPEN WS in Chapter 4, Control Functions). 

color index 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the color index value. By specifying a value to this function, 
you are redefining the associated color by specifying a blend of red, green, and 
blue intensities previously associated with this color index. 

recceintensity 
green intensity 
blue intensity 

data type: real 
access: read-only 
mechanism: by reference 

These arguments are the red, green, and blue intensities that form the desired 
color. RGB values must fall within the range 0.0 to 1.0, or DEC GKS generates 
an error. For more information concerning these intensities, refer to the DEC 
GKS Device Specifics Reference Manual. 

Output Attribute Functions 6-117 



Representation Functions 
SET COLOR REPRESENTATION 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

35 GKS$_ERROR_35 

36 GKS$_ERROR_36 

93 GKS$_ERROR_93 

96 GKS$_ERROR_96 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is 
Workstation Independent Segment 
Storage in routine **** 

Color index is invalid in routine 
**** 

Color is outside range [0,1 ] in 
routine **** 

Program Example 
Example 6-21 illustrates the use of the function GKS$SET_COLOR~EP. 
Following the program example, Figure 6-25 illustrates the program's effect on 
a VT241 workstation. 

6-118 Output Attribute Functions 



Representation Functions 
SET COLOR REPRESENTATION 

Example 6-21: Changing the Color Representation 

C This program changes the fill color of a triangle from 

C the color blue to the color pink. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, BLUE, NUM_POINTS 
REAL PX( 3 ), PY( 3 ), RID_INTENS, GREEN_INTENS, BLUE_INTENS 

DATA WS_ID / 1 /, BLUE / 3 /, NUM_POINTS / 3 /, 

* RED_INTENS / 0.6258 /, GREEN_INTENS / 0.2142 /, 

* BLUE_INTENS / 0.2142 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 
DATA PX /.1, .9, .1/ 
DATA PY /.1, .9, .9/ 

CALL GKS$SET_FILL_COLOR_INDEX( BLUE ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

CALL GKS$SET_COLOR_REP( WS_ID, BLUE, 
* RED_INTENS, GREEN_INTENS, BLUE_INTENS ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the polygon's X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the first point (.1, .1). 

© The function, GKS$SET_FILL _COLOR~NDEX, changes the color from 
the default color to blue. By default, the fill area color ASF is set to 
GKS$K~SF~NDIVIDUAL. 

Workstations other than the VT241 may predefine a different representation 
of color index 3 (a color other than blue). 

© As soon as you call GKS$SET_COLOR~EP, DEC GKS dynamically 
changes the blue triangle to a pink triangle. 

Output Attribute Functions 6-119 



Representation Functions 
SET COLOR REPRESENTATION 

Other workstations may not be able to dynamically alter the workstation 
surface, and may need to implicitly regenerate the surface to make a change 
to a color table entry. For information concerning implicit regenerations, 
refer to Chapter 4, Control Functions. 

Figure 6-25 shows the screen of the VT241 terminal after the program has run 
to completion. 

Figure 6-25: Changing the Color Representation—VT241 

ZK 5074 86 

6-120 Output Attribute Functions 



Representation Functions 
SET Flll AREA REPRESENTATION 

SET FILL AREA REPRESENTATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET—FILL CEP allows you to redefine an existing fill area 
bundle table index representation, or to define a new fill area bundle table index 
value, by specifying the fill area interior style, fill area style index value, and fill 
area color index associated with the specified bundle index. 

Depending on the capabilities of your workstation, a call to this function 
may cause DEC GKS to implicitly regenerate the workstation surface. For 
information concerning implicit regeneration, refer to Chapter 4, Control 
Functions. 

Attribute values passed to this function must be valid for the specified worksta-
tion. For information, refer to the DEC GKS Device Specifics Reference Manual. 

Syntax 
GKS$SET_Flll _REP (workstation~d, fill index, interior_sty/e, stye_index, 

co/or_index) 

GSFAR (workstation_id, index, style, sindex, cindexJ 

gsetfillrep (workstation~d, index, repJ 

Arguments 
workstation~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that identifies an open workstation (refer to 
GKS$OPEN_WS in Chapter 4, Control Functions). 

Output Attribute Functions 6-121 



Representation Functions 
SET flll AREA REPRESENTATION 

dill_index 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the fill area bundle table index value. By specifying a value 
to this function, you are redefining the interior style, style index, and color 
index entries in the associated bundle table. See GKS$SET_FILL—INDEX in 
this section for more information. 

interior style 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the interior style index value to be associated with the speci-
fied fill area index value. The argument can be any of the following values or 
constants: 

Value Constant Description 

0 GKS$K_INTSTYLE_HOLLOW Use an outline. 

1 GKS$K_INTSTYLE_SOLID Use color. 

2 GKS$K~NTSTYLE_I'ATTERN Use a pattern. 

3 GKS$K_INTSTYLE_HATCH Use crossed or parallel lines. 

See GKS$SET_FILL _INT_STYLE in this section for more information. 

stye_index 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the fill area style index. If you specified hollow or solid for the 
interior style argument, DEC GKS ignores this argument. For more information 
concerning the possible fill area style indexes, refer to the DEC GKS Device 
Specifics Reference Manual. 

6-122 Output Attribute Functions 



Representation Functions 
SET flll AREA REPRESENTATION 

color_index 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the fill area color index. For more information concerning the 
possible fill area color indexes, refer to the DEC GKS Device Specifics Reference 
Manual. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR~TEG~O 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

36 GKS$_ERROR_36 

80 GKS$~RROR_80 

83 GKS$_ERROR_83 

GKS not in proper state: GKS in 
the error state in routine * * * * 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is 
Workstation Independent Segment 
Storage in routine * * * 

Fill area index is invalid in routine 
**** 

Specified fill area interior style is 
not supported on this workstation 
in routine **** 

Output Attribute Functions 6-123 



Representation Functions 
SET Flll AREA REPRESENTATION 

Error Completion 
Number Status Code Message 

85 GKS$~RROR_85 Specified pattern index is invalid in 
routine * * * 

86 GKS$_ERROR_86 Specified hatch style is not sup-
ported on this workstation in 
routine **** 

93 GKS$_ERROR_93 Color index is invalid in routine 
**** 

Program Example 
Example 6-22 illustrates the use of the function GKS$SET_FILL _REP. 
Following the program example, Figure 6-26 illustrates the program's effect on 
a VT241 workstation. 

0 

Example 6-22: Changing the Fill Area Representation 

C This program sets the Attribute Source Flags (ASFa) to bundled, 
C shows the fill area corresponding to the index 2, and then 
C changes the attributes associated with fill area index 2, using 
C GKS$SET_FILL_REP. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, BLUE, NUM_POINTS, FILL_INDEX, 
* VERT_LINES, FLAGS( 13 ), SEG_NAME 
DATA WS_ID / 1 /, NUM_POINTS / 3 /, FILL_INDEX / 2 /, 
* VERT_LINES / -5 /, BLUE / 3 /, SEG_NAME / 1 / 
DATA PX /.1, .9, .1/ 
DATA PY /.1, .9, .9/ 
REAL PX (3) , PY (3 ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

FLAGS( 11 ) = GKS$K ASF_BUNDLID 
FLAGS( 12) = GKS$K ASF_BUNDLID 
FLAGS( 13) = GKS$K ASF_BUNDLID 
CALL GKS$SET_ASF( FLAGS ) 

(continued on next page) 

6-124 Output Attribute Functions 



Representation Functions 
SET Flll AREA REPRESENTATION 

Example 6-22 (Coot.): Changing the Fill Area Representation 

C Put all output in a segment. 
CALL GKS$CREATE_SEG( SEG_NAME ) 
CALL GKS$SET_FILL_INDEX( FILL_INDEX ) 
CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

CALL GKS$SET_FILL_REP( WS_ID, FILL_INDEX, 
* GKS$K_INTSTYLE_HATCH, VERT_LINES, BLUE ) 

C Cause a regeneration of the screen to see the change on a VT241. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the polygon's X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the first point (.1, .1). 

© This code initializes the elements of the array that affect all of the non-
geometric fill area attributes. This code sets each ASF to GKS$K_ASF_ 
BUNDLED. FLAGS( 11) corresponds to the current fill area interior style; 
FLAGS( 12) corresponds to the current fill area style index; and, 
FLAGS( 13) corresponds to the fill area color index. 
See the GKS$SET_ASF function description in this chapter for more 
information. 

© On a VT241, setting the fill area bundle table index to the value 2 specifies 
a fill area that is solid red. 

0 On a VT241, calling GKS$SET_FILL _REP causes an implicit regeneration 
that is suppressed by the workstation (by default). The attribute changes are 
not made and the screen is out of date. You need to call GKS$UPDATE _ 
WS to update the surface of the workstation. 

Output Attribute Functions 6-125 



Representation Functions 
SET FILL AREA REPRESENTATION 

If your workstation requires an implicit regeneration to implement changes 
to fill area representation but does not suppress the regeneration by default, 
the workstation redraws only the visible segments on the workstation 
surface. Output primitives not contained in segments are lost. For a 
complete discussion of implicit regeneration, refer to Chapter 4, Control 
Functions. 

Figure 6-26 shows the VT241 surface after the program was executed. The 
color of the triangle changed from red to blue. 

Figure 6-26: Changing the Fill Area Representation—VT241 

ZK 58a5 HC 

6-126 Output Attribute Functions 



Representation Functions 
SET PATTERN REPRESENTATION 

SET PATTERN flEPRESENTATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET~'AT—REP allows you to redefine an existing pattern 
bundle table index representation, or to define a new pattern bundle table index 
value, by specifying the number of cells high, the number of cells wide, and an 
array containing each cell's color index fill area, associated with the specified 
bundle index. 

Depending on the capabilities of your workstation, a call to this function 
may cause DEC GKS to implicitly regenerate the workstation surface. For 
information concerning implicit regeneration, refer to Chapter 4, Control 
Functions. 

Attribute values passed to this function must be valid for the specified worksta-
tion. For information, refer to the DEC GKS Device Specifics Reference Manual. 

Syntax 
G KS$ S ET_PAT_R E P (workstation_id, pattern index, 

offset_column_number, offset_row_number, 
num_columns, color_ind_array) 

G S PAR (workstation_id, pindex, dimmer, dim_ y, scol, scow, ncols, prows, 
cindexJ 

gsetpatrep (workstation_id, index, rep) 

Output Attribute Functions 6-127 



Representation Functions 
SET PATTERN REPRESENTATION 

Arguments 
workstatior~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that identifies an open workstation (refer to 
GKS$OPEN_WS in Chapter 4, Control Functions). 

pattern index 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the pattern bundle table index value. By specifying a value 
to this function, you are redefining the height, width, and color previously 
associated with this pattern bundle table index. 

of~se~columr~number 
of~se~row_number 

data type: integer 
access: read-only 
mechanism: by reference 

These arguments are the off set into the color index array. You can begin 
mapping color index values from the interior of the array, if you desire. 

The offset determines the number of array columns and rows that you specify 
as arguments to GKS$SET_1'AT_REP. For instance, if the offset is the first 
element of the array, you can specify the full dimensions of the color index 
array as the 'number of columns to map" and the '`number of rows to map." 

For a detailed discussion of this argument, refer to the GKS$CELL _ARRAY 
arguments in Chapter 5, Output Functions. 

6-12$ Output Attribute Functions 



Representation Functions 
SET PATTERN REPRESENTATION 

num_columns 
num_rows 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

These arguments specify the number of rows and columns, beginning at 
the offset element, to map from the color index array to the pattern. For a 
detailed discussion of this argument, refer to the GKS$CELL—ARRAY argument 
descriptions in Chapter 5, Output Functions. 

color_inde~array 

data type: 
access: 
mechanism: 

2D array (integer) 
read-only 
by descriptor 

This argument is the array containing the color index values for each individual 
cell in the pattern. The array must have at least the dimensions that you 
specified as the height and width arguments. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG~O 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine * * * * 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Output Attribute Functions 6-129 



Representation Functions 
SET PATTERN REPRESENTATION 

Error Completion 
Number Status Code Message 

35 GKS$~RROR_35 Specified workstation is of category 
INPUT in routine **** 

36 GKS$_ERROR_36 Specified workstation is 
Workstation Independent Segment 
Storage in routine **** 

85 GKS$~RROR_85 Specified pattern index is invalid in 
routine **** 

90 GKS$_ERROR_90 Interior style PATTERN is not 
supported on this workstation in 
routine **** 

91 GKS$_ERROR_91 

93 GKS$~RROR_93 

Dimensions of color array are 
invalid in routine * * * 

Color index is invalid in routine 
**** 

Program Example 
Example 6-23 illustrates the use of the function GKS$SET~'AT_REP. Following 
the program example, Figure 6-27 illustrates the program's effect on a VT241 
workstation. 

6-130 Output Attribute Functions 



Representation Functions 
SET PATTERN REPRESENTATION 

Example 6-23: Changing the Pattern Representation 

0 

0 
0 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, NUM_POINTS, BLUE, 
* FILL_INDEX, PAT_INDEX, NUM_ROWS, NUM_COLS, PAT_ARRAY ( 2,2 ), 
* SEG_NAME, OFFSET_COL, OFFSET_ROW 
DATA WS_ID / 1 /, NUM_POINTS / 4 /, 
* FILL_INDEX / 8 /, PAT_INDEX / 5 /, BLUE / 3 /, 
* NUM_ROWS / 2 /, NUM_COLS / 2 /, 
* PAT_ARRAY / 3,2, 2,3 /, 
* SEG_NAME / 1 /, OFFSET_COL / 1 /, OFFSET_ROW / 1 / 
DATA PX /.1, .9, .9, .1 / 
DATA PY /.1, .1, .9, .9 / 
REAL PX ( 4 ) , PY ( 4 ) 
INTEGER FLAGS( 13 ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

FLAGS( 11) = GKS$K_ASF_BUNDLED 
FLAGS( 12) = GKS$K_ASF_BUNDLED 
FLAGS( 13 ) = GKS$K ASF_BUNDLED 
CALL GKS$SET_ASF( FLAGS ) 

C Store the output in a segment. 
CALL GKS$CREATE_SEG( SEG_NAME ) 
CALL GKS$SET_FILL_INDEX( FILL_INDEX ) 
CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

CALL GKS$SET_PAT_REP( WS_ID, PAT_INDEX, OFFSET_COL, 
* OFFSET_ROW, NUM_COLS, NUM_ROWS, '/.DESCR( PAT ARRAY ) ) 

(continued on next page) 

Output Attribute Functions 6-131 



Representation Functions 
SET PATTERN REPRESENTATION 

Example 6-23 (Cont.): Changing the Pattern Representation 

C Update the screen to reflect the change. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ (5,*) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The fill area bundle table number 8 contains an entry for the pattern index. 
For the VT241, fill area bundle number 8 specifies an associated pattern 
index value of 5. 

© Define the pattern array. The pattern consists of alternating rows of blue 
and red combinations. Other workstations may define other index values 
for the colors blue and red. For more information, refer to the DEC GKS 
Device Specifics Reference Manual. 

© PX contains the polygon's X world coordinate values and PY contains the 
Y world coordinate values.. For example, the first element in both arrays 
specifies the first point (.1, .1). 

O This code initializes the elements of the array that affect all of the nonge-
ometric polymarker attributes. This code sets each ASF to GKS$K~SF_ 
BUNDLED. FLAGS( 11) corresponds to the current fill area interior style; 
FLAGS( 12) corresponds to the current fill area style index; and, 
FLAGS( 13) corresponds to the fill area color index. 
See the GKS$SET_ASF function description in this chapter for more 
information. 

0 On a VT241, setting the fill area bundle table index to the value 8 specifies 
a dark red pattern for the fill area style. 

® On a VT241, calling GKS$SET~'AT_REP causes an implicit regeneration 
that is suppressed by the workstation (by default). The attribute changes are 
not made and the screen is out of date. You need to call GKS$UPDATE_ 
WS to update the surface of the workstation. 

6-132 Output Attribute Functions 



Representation Functions 
SET PATTERN REPRESENTATION 

If your workstation requires an implicit regeneration to implement changes 
to pat~~ern representation but does not suppress the regeneration by default, 
the workstation redraws only the visible segments on the workstation 
surface. Output primitives not contained in segments are lost. For a 
complete discussion of implicit regeneration, refer to Chapter 4, Control 
Functions. 

Figure 6-27 shows the VT241 surface after the program was executed. The 
color of the triangle changed from a red and black pattern to a red and blue 
pattern. 

Figure 6-27: Changing the Pattern Representation—VT241 

ZK-5076-86 

Output Attribute Functions 6-133 



Representation Functions 
SET POLYLINE REPRESENTATION 

SET POLYLINE REPRESENTATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET~'LINE _REP allows you to redefine an existing polyline 
bundle table index representation, or to define a new polyline bundle table 
index value, by specifying the line type, the line width, and the line color index 
associated with the specified bundle index. 

Depending on the capabilities of your workstation, a call to this function 
may cause DEC GKS to implicitly regenerate the workstation surface. For 
information concerning implicit regeneration, refer to Chapter 4, Control 
Functions. 

Attribute values passed to this function must be valid for the specified worksta-
tion. For information, refer to the DEC GKS Device Specifics Reference Manual. 

Syntax 
GKS~SET_PLINE_REP (workstation_id, po/ylin~index, line type, 

line width, co/or_indexJ 

GSPLR (workstation~d, pindex, /type, /width, cindexJ 

gsetlinerep (workstation_id, index, rep) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that identifies an open workstation (refer to 
GKS$OPEN_WS in Chapter 4, Control Functions). 

6-134 Output Attribute Functions 



Representation Functions 
SET POLYLINE REPRESENTATION 

polyline index 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the polyline bundle table index value. By specifying a value to 
this function, you are redefining the polyline type, width, and color previously 
associated with this polyline bundle table index. 

line type 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument specifies the type of the polyline. The argument can be any of 
the following values or constants: 

Value Constant Description 

<0 

1 

2 

3 

4 

>=5 

GKS$K_LINETYPE _SOLID 

GKS$K_LINETYPE _DASHED 

GKS$K_LINETYPE _DOTTED 

GKS$K _LINETYPE _DASHED_DOTTED 

Device-dependent types. 

Use solid line. 

Use dashed line. 

Use dotted line. 

Use dashed-dotted line. 

Reserved: future standard-
ization. 

See GKS$SET-1'LINE—LINETYPE in this section for more information. 

line width 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

This argument is the line width scale factor that is multiplied by the worksta-
tion's nominal line width to adjust the width of the polyline. See GKS$SET_ 
PLINE—LINEWIDTH in this section for more information. 

Output Attribute Functions 6-135 



Representation Functions 
SET POLYLINE REPRESENTATION 

color index 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the color index of the polyline. See GKS$SET~'LINE_ 
COLOR_INDEX for more information. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$~RROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

35 GKS$_ERROR_35 

36 GKS$~RROR_36 

60 GKS$_ERROR_60 

63 GKS$_ERROR_63 

6-136 Output Attribute Functions 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is 
Workstation Independent Segment 
Storage in routine **** 

polyline index is invalid in routine 
**** 

Specified linetype is equal to zero 
in routine **** 



Representation Functions 
SET POLYLINE REPRESENTATION 

Error Completion 
Number Status Code Message 

64 GKS$~RROR_64 Specified linetype is not supported 
on this workstation in routine **** 

65 GKS$~RROR_65 Linewidth scale factor is less than 
zero in routine * * * * 

93 GKS$_ERROR_93 Color index is invalid in routine 
**** 

Program Example 
Example 6-24 illustrates the use of the function GKS$SET_I'LINE _REP. 
Following the program example, Figure 6-28 illustrates the program's effect on 
a VT241 workstation. 

0 

Example 6-24: Changing the Polyline Representation 

C This program sets the Attribute Source Flags (ASFs) to bundled, 
C shows the polyline corresponding to the bundle value 8, and then 
C changes the attributes of bundle number 8, using the function 
C GKS$SET_PLINE_REP. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, NUM_POINTS, PLINE_INDEX, GREEN, 
* SEG_NAME 
REAL TIMES_FIVE 
DATA WS_ID / 1 /, NUM_POINTS / 5 /, 
* PLINE_INDEX / 8 /, GREEN / 1 /, TIMES_FIVE / 5.0 /, 
* SEG_NAME / 1 / 

REAL PX (5) , PY (5 ) 
DATA PX /.1, .9, .7, .7, .9/ 
DATA PY /.5, .5, .6, .4, .5/ 
INTEGER FLAGS( 13 ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

(continued on next page) 

Output Attribute Functions 6-137 



Representation Functions 
SET POLYLINE REPRESENTATION 

Example 6-24 (Cont.): Changing the Polyline Representation 

© FLAGS( 1) = GKS$K_ASF_BUNDLED 
FLAGS(2) = GKS$K_ASF_BUNDLED 
FLAGS(3) = GKS$K_ASF_BUNDLED 
CALL GKS$SET_ASF( FLAGS ) 

C Store the output in a segment. 
CALL GKS$CREATE_SEG( SEG_NAME ) 

© CALL GKS$SET_PLINE_INDEX( PLINE_INDEX ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

O CALL GKS$SET_PLINE_REP( WS_ID, PLINE_INDEX, 
* GKS$K_LINETYPE_SOLID, TIMES_FIVE, GREEN ) 

C Update the screen to reflect the changes. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the polygon's X world coordinate values and PY contains the 
Y world coordinate values. For example, the .first element in both arrays 
specifies the first point (.1, .5 ). 

© This code initializes the elements of the array that affect all of the non-
geometric polyline attributes. This code sets each ASF to GKS$K~SF_ 
BUNDLED. FLAGS(1) corresponds to the line type; FLAGS(2) corre-
sponds to the line width scale factor; and, FLAGS(3) corresponds to the 
polyline color index. 
See the GKS$SET—ASF function description in this chapter for more 
information. 

© Using the VT241, setting the polyline index to the value 8 generates a red, 
dotted polyline of nominal width. 

6-138 Output Attribute Functions 



Representation Functions 
SET POLYLINE REPRESENTATION 

O On a VT241, calling GKS$SET~'LINE _REP causes an implicit regeneration 
that is suppressed by the workstation (by default). The attribute changes are 
not made and the screen is out of date. You need to call GKS$UPDATE_ 
wS to update the surface of the workstation. 
If your workstation requires an implicit regeneration to implement changes 
to polyline representation but does not suppress the regeneration by default, 
the workstation redraws only the visible segments on the workstation 
surf ace. Output primitives not contained in segments are lost. For a 
complete discussion of implicit regeneration, refer to Chapter 4, Control 
Functions. 

Figure 6-28 shows the screen of a VT241 terminal after the program has run to 
completion. 

Output Attribute Functions 6-139 



Representation Functions 
SET POLYLINE REPRESENTATION 

Figure 6-28: Changing the Polyline Representation—VT241 

ZK-5077-86 

6-140 Output Attribute Functions 



Representation Functions 
SET POLYMARKER REPRESENTATION 

SET POLYMARKER REPRESENTATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_1'MARK_REP allows you to redefine an existing 
polymarker bundle table index representation, or to define a new polymarker 
bundle table index value, by specifying the marker type, the marker size, and 
the marker color index associated with the specified bundle index. 

Depending on the capabilities of your workstation, a call to this function 
may cause DEC GKS to implicitly regenerate the workstation surface. For 
information concerning implicit regeneration, refer to Chapter 4, Control 
Functions. 

Attribute values passed to this function must be valid for the specified worksta-
tion. For information, refer to the DEC GKS Device Specifics Reference Manual. 

Syntax 
GKSSSET_PMARK_REP (workstation_id, po/ymarker_index, marker type, 

marker size, color index) 

GSPMR (workstation~d, pindex, mtype, sfactor, cindexJ 

gsetmarkerrep (workstation~d, index, rep) 

Arguments 
workstatior~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that identifies are open workstation (refer to 
GKS$OPEN_WS in Chapter 4, Control Functions). 

Output Attribute Functions 6-141 



Representation Functions 
SET POLYMARKER REPRESENTATION 

polymarker index 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the polymarker bundle table index value. By specifying a 
value to this function, you are redefining the polymarker type, size, and color 
previously associated with this polymarker bundle table index. 

marker type 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument specifies the type of the polymarker. The argument can be any 
of the following values or constants: 

Value Constant Description 

<0 

1 

2 

3 

4 

5 

>=6 

GKS$ K _NiARKERTYPE _DOT 

GKS$K_NiARKERTYPE_FLUS 

GKS$K _1VIARKERTYPE _ASTERISK 

GKS$K_NiARKERTYPE _CIRCLE 

GKS$K_NiARKERTYPE_DIAGONAL _CROSS 

Device-dependent types. 

Use dots (.). 

Use plus signs (+). 

Use asterisks (*). 

Use circles (o). 

Use diagonal crosses (X). 

Reserved: future standard-
ization. 

See GKS$SET-1'MARK—TYPE in this section for more information. 

marker size 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

This argument is the polymarker size scale factor that is multiplied by the 
workstation's nominal marker size to adjust the size of the polymarker. See 
GKS$SET_I'MARK_SIZE in this section for more information. 

6-142 Output Attribute Functions 



Representation Functions 
SET POLYMARKER REPRESENTATION 

color index 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the color index of the polymarker. See GKS$SET~'MARK_ 
COLOR~NDEX for more information. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

—20 DECGKS$~RROR—NEG ~0 

7 GKS$—ERROR_? 

20 GKS$—ERROR-20 

25 GKS$—ERROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

36 GKS$~RROR_36 

66 GKS$—ERROR_66 

69 GKS$—ERROR_69 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

,Specified workstation is of category 
INPUT in routine * * * 

Specified workstation is 
Workstation Independent Segment 
Storage in routine * * * * 

Polymarker index is invalid in 
routine **** 

Marker type is equal to zero in 
routine **** 

Output Attribute Functions 6-143 



Representation Functions 
SET POLYMARKER REPRESENTATION 

Error Completion 
Number Status Code Message 

70 GKS$_ERROR_70 Specified marker type is not sup-
. ported on this workstation in 

routine **** 

71 GKS$_ERROR_71 

93 GKS$_ERROR_93 

Specified marker size scale factor is 
less than zero in routine **** 

Color index is invalid in routine 
**** 

Program Example 
Example 6-25 illustrates the use of the function GKS$SET~'MARK—REP. 
Following the program example, Figure 6-29 illustrates the program's effect on 
a VT241 workstation. 

Example 6-25: Changing the Polymarker Representation 

C This program sets the Attribute Source Flags (ASFs) to bundled, 
C shows the polymarker corresponding to the bundle value 8, and then 
C changes the attributes of bundle number 8, using the function 
C GKS$SET_PMARK_REP. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, NUM_POINTS, 
* PMARK_INDEX, GREEN, SEG_NAME 
REAL PX(5 ), PY(5 ), TIMES_TEN 
DATA WS_ID / 1 /, NUM_POINTS / 5 /, 
* PMARK_INDEX / 8 /, GREEN / 1 /, TIMES_TEN / 10.0 /, 
* SEG_NAME / 1 / 
DATA PX /.1, .9, .7, .7, .9/ 
DATA PY /.5, .5, .6, .4, .5/ 
INTEGER FLAGS( 13 ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

(continued on next page) 

6-144 Output Attribute Functions 



Representation Functions 
SET POLYMARKER REPRESENTATION 

Example 6-25 (Cont.): Changing the Polymarker Representation 

FLAGS(4) = GKS$K_ASF BUNDLED 
FLAGS(5) = GKS$K_ASF_BUNDLED 
FLAGS(6) = GKS$K_ASF BUNDLED 
CALL GKS$SET_ASF( FLAGS ) 

C Store the output in a segment. 
CALL GKS$CREATE_SEG( SEG_NAME ) 
CALL GKS$SET_PMARK_INDEX( PMARK_INDEX ) 
CALL GKS$POLYMARKER( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

O CALL GKS$SET_PMARK_REP( WS_ID, PMARK_INDEX, 
* GKS$K_MARKERTYPE_PLUS, TIMES_TEN, GREEN ) 

C Update the surf ace to reflect the changes . 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the markers' X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the first point (.1, .5 ). 

© This code initializes the elements of the array that affect all of the non-
geometric polymarker attributes. This code sets each ASF to GKS$K_ 
ASF_BUNDLED. FLAGS(4) corresponds to the marker type; FLAGS(5 ) 
corresponds to the marker size scale factor; and, FLAGS(6) corresponds to 
the polymarker color index. 
See the GKS$SET_ASF function description in this chapter for more 
information. 

© Setting the polymarker index to the value 8 outputs a small, red circle of 
nominal size. 

Output Attribute Functions 6-145 



Representation Functions 
SET POLYMARKER REPRESENTATION 

O On a VT241, calling GKS$SET_I'MARK_REP causes an implicit regen-
eration that is suppressed by the workstation (by default). The attribute 
changes are not made and the screen is out of date. You need to call 
GKS$UPDATE _WS to update the surface of the workstation. 
If your workstation requires an implicit regeneration to implement changes 
to polymarker representation but_ does not suppress the regeneration 
by default, the workstation redraws only the visible segments on the 
workstation surface. Output primitives not contained in segments are lost. 
For a complete discussion of implicit regeneration, refer to Chapter 4, 
Control Functions. 

Figure 6-29 shows the screen of a VT241 terminal after the program has run to 
completion. 

6-146 Output Attribute Functions 



Representation Functions 
SET POLYMARKER REPRESENTATION 

Figure 6-29: Changing the Polymarker Representation—VT241 

ZK 585t HC 

Output Attribute Functions 6-147 



Representation Functions 
SET TEXT REPRESENTATION 

SET TEXT REPRESENTATION 

Operating States: WSOP, vVSAC, SGOP 

Description 
The function GKS$SET_TEXT_REP allows you to redefine an existing text 
bundle table index representation, or to define a new text bundle table index 
value, by specifying the text font and precision, the character expansion factor, 
the character spacing, and the text color index associated with the specified 
bundle index. 

Depending on the capabilities of your workstation, a call to this function 
may cause DEC GKS to implicitly regenerate the workstation surface. For 
information concerning implicit regeneration, refer to Chapter 4, Control 
Functions. 

Attribute values passed to this function must be valid for the specified worksta-
tion. For information, refer to the DEC GKS Device Specifics Reference Manual. 

Syntax 
G KS$ S ET_T EXT_R E P (workstation_id, text index, font_ value, 

precision value, expansion factor, character spacing, 
co/or_indexJ 

GSTXR (workstation_id, tindex, font, 
precision, efactor, spacing, cindexJ 

gsettextrep (workstation_id, index, rep) 

6-148 Output Attribute Functions 



Representation Functions 
SET TEXT REPRESENTATION 

Arguments 
workstatior~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that identifies an open workstation (refer to 
GKS$OPEN_WS in Chapter 4, Control Functions). 

textindex 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the text index value. By specifying a value to this function, 
you are redefining the associated text font, precision, expansion factor, spacing, 
and color previously associated with this text index value. 

fon~va/ue 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the font value. If you are using the character or string pre-
cisions, refer to the DEC GKS Device Specifics Reference Manual. for more 
information concerning hardware fonts. If using the stroke precision, refer to 
Appendix G, DEC GKS Device-Independent Fonts, in this manual. 

See GKS$SET_TEXT_FONTPREC in this section for more information concern-
ing the differences between hardware and software fonts. 

precisior~va/ue 

data type: integer 
access: read-only 
mechanism: by reference 

Output Attribute Functions 6-149 



Representation Functions 
SET TEXT REPRESENTATION 

This argument is the precision value. The argument can be any of the following 
values or constants: 

Value Constant Description 

0 GKS$K_TEXT_I'RECISION_STRING Lowest precision 

1 GKS$K_TEXT—I'RECISION_CHAR Moderate precision 

2 GKS$K_TEXT~'RECISION_STROKE Highest precision 

Depending on the precision you choose, you may have to use either hardware 
or software fonts. See GKS$SET_TEXT~ONTPREC for more information. 

expansion factor 

data type: real 
access: read-only 
mechanism: by reference 

This argument is the character expansion factor. This value multiplied by the 
width-to-height ratio specified in the original font specification determines the 
new character width. The character height remains the same. 

character spacing 

data type: real 
access: read-only 
mechanism: by reference 

This argument is the spacing factor. This value, multiplied times the text height, 
is the spacing value in world coordinates. If you specify a positive number, the 
spacing increases between letters (for example, the value 0.1 sets spacing to be 
one tenth the character height). If you specify a negative number, the spacing 
decreases (characters may overlap). If you specify the value 0.0, the bodies of 
the characters are adjacent, without any separating space not defined as part of 
the character body by the font design. 

See GKS$SET_TEXT SPACING in this section for more information. 

6-150 Output Attribute Functions 



Representation functions 
SET TEXT REPRESENTATION 

color index 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the color index of the text. See GKS$SET_TEXT_COLOR_ 
INDEX for more information. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG~O 

7 GKS$_ERROR_7 

20 GKS$_ERROR~O 

25 GKS$~RROR~S 

33 GKS$_ERROR_33 

35 GKS$_ERROR_35 

36 GKS$~RROR_36 

72 GKS$_ERROR_72 

75 GKS$_ERROR_75 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified workstation is 
Workstation Independent Segment 
Storage in routine * * * * 

Text index is invalid in routine * * * * 

Text font is equal to zero in routine 
**** 

Output Attribute Functions 6-151 



Representation Functions 
SET TEXT REPRESENTATION 

Error Completion 
Number Status Code Message 

76 GKS$_ERROR_76 

77 GKS$_ERROR_77 

93 GKS$_ERROR_93 

Requested text font is not supported 
for the specified precision on this 
workstation 

Character expansion factor is less 
than or equal to zero in routine 

**** 

Color index is invalid in routine 
**** 

Program Example 
Example 6-26 illustrates the use of the function GKS$SET_TEXT_REP. 
Following the program example, Figure 6-30 illustrates the program's effect on 
a VT241 workstation. 

0 

Example 6-26: Changing the Text Representation 

C This program changes the text representation of the index 
C value 5. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, FIVE, OLD_ENGLISH, GREEN, SEG_NAME 
REAL LARGER, START_PT_X, START_PT_Y, ONE_TENTH, TIMES_TWO 
DATA WS_ID / 1 /, LARGER / 0.03 /, FIVE / 5 /, 
* START_PT_X / 0.1 /, START_PT_Y / 0.5 /, 
* OLD_ENGLISH / -18 /, ONE_TENTH / 0.1 /, GREEN / 1 /, 
* TIMES_TWO / 0.02 /, SEG_NAME / 1 / 
INTEGER FLAGS( 13 ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

(continued on next page) 

6-152 Output Attribute Functions 



Representation Functions 
SET TEXT REPRESENTATION 

Example 6-26 (Cont.): Changing the Text Representation 

© FLAGS(7) = GKS$K_ASF_BUNDLED 
FLAGS(8) = GKS$K_ASF_BUNDLED 
FLAGS(9) = GKS$K_ASF_BUNDLED 
FLAGS( 10) = GKS$K_ASF_BUNDLID 
CALL GKS$SET_ASF( FLAGS ) 

C Store output in a segment. 
CALL GKS$CREATE_SEG( SEG_NAME ) 

© CALL GKS$SET_TEXT_INDEX( FIVE ) 
CALL GKS$TEXT( START_PT_X, START_PT_Y, 'Imitation Life' ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

O CALL GKS$SET_TEXT_REP( WS_ID, FIVE, OLD_ENGLISH, 
* GKS$K_TEXT_PRECISION_STROKE, TIMES_TWO, ONE_TENTH, GREEN 

C Update the surface to reflect the changes. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This code increases the character height so that the string is easy to see. 

© This code initializes the elements of the array that affect all of the nonge-
ometric polymarker attributes. This code sets each ASF to GKS$K_ASF_ 
BUNDLED. FLAGS(7) corresponds to the text font and precision; 
FLAGS(8) corresponds to the character expansion factor; FLAGS(9 ) 
corresponds to the character spacing; and, FLAGS( 10) corresponds to the 
text color index. 

See the GKS$SET~SF function description in this chapter for more 
information. 

4 Setting the text index to the value 5 outputs red text in stroke precision, 
with hardware font 1 at the default width and spacing. 

O On a VT241, calling GKS$SEL TEXT_REP causes an implicit regeneration 
that is suppressed by the workstation (by default). The attribute changes are 
not made and the screen is out of date. You need to call GKS$UPDATE _ 
WS to update the surface of the workstation. 

Output Attribute ~ Functions 6-153 



Representation Functions 
SET TEXT REPRESENTATION 

If your workstation requires an implicit regeneration to implement changes 
to text representation but does not suppress the regeneration by default, the 
workstation redraws only the visible segments on the workstation surface. 
Output primitives not contained in segments are lost. For a complete 
discussion of implicit regeneration, refer to Chapter 4, Control Functions. 

Figure 6-30 shows the screen of a VT241 terminal after the program has run to 
completion. 

Figure 6-30: Changing the Text Representation—VT241 

Dr~slf~►flan ~tl• 

 J 
ZK 5079.86 

6-154 Output Attribute Functions 



Chapter 7 

Transformation Functions 

The DEC GKS transformation functions allow you to compose a picture, to 
control how much of the picture is seen on the workstation surface, and to 
control how much of the workstation surface is used to display the picture. The 
following list presents the transformation functions by category: 

Category GKS Functions 

Normalization GKS$SELECT_XFORM, GKS$SET_CLIPPING, GKS$SET_ 
VIEWPORT, GKS$SET_VIEWPORT_I'RIORITY, GKS$SET_ 
WINDOW 

Workstation GKS$SET_WS_VIEWPORT, GKS$SET_WS_WINDOW 

When you request input and generate output by means of the workstation 
surface, you are actually working with a number of coordinate systems. The 
image is transformed from one coordinate system to the next. 

Using DEC GKS, you are working with three coordinate systems, as follows: 

• World coordinate system 

• Normalized device coordinate (NDC) system 

• Device coordinate system 

The world coordinate system is an imaginary coordinate plane used to plot 
a graphical image. The NDC system is adevice-independent, imaginary 
coordinate plane on which you compose a picture using designated portions of 
the world coordinate plane. Once you compose a picture on the NDC space, 
you can zoom in on the picture, pan across the picture, or zoom out of the 
picture, while controlling what portion of the device coordinate system is used 
to display the picture. You can display all or part of the picture in NDC space 
on the surface of the physical device. 

Transformation Functions 7-1 



When you call one of the DEC GKS output functions, you specify world 
coordinate points. Using a series of default windows and viewports, the output 
primitive is transformed from an image on the world coordinate plane, to an 
image on the NDC plane, and finally, to the surface of the workstation. 

If you do not change the default transformation settings, image shape and 
position are consistent, and your ability to compose complex pictures may be 
limited to what you can form on one area of the world coordinate system. The 
DEC GKS transformation functions allow you to set the windows, viewports, 
and other transformation features that control the transformation process, and 
usually, how generated output appears on the workstation surface. 

7.1 Worid Coordinates and Normalization Transformations 

The world coordinate system is an imaginary, Cartesian coordinate system 
whose X and Y axes extend infinitely in all four directions. The origin of the 
system is the point (0.0, 0.0). Depending on the type of data needed to plot 
your images, you can use any portion of the world coordinate plane. For 
instance, if the necessary data contains negative numbers, you can use the 
portions of the world coordinate system that extend into the negative portions 
of the axes. 

By default, DEC GKS transforms images according to a square world coordinate 
range whose lower left corner is the point (0.0, 0.0) and whose sides extend 
from the point 0.0 to 1.0 on both the X and Y axes. (From this point forward, 
this manual documents rectangular regions such as the default range as follows: 
([0,1 ] x [0,1 ]), zero to one on both the X and Y axes.) This range is called the 
default normalization window. 

DEC GKS transforms the plotted images, according to the current window, to 
an area on the NDC plane. You can reset the window many times while gen-
erating output primitives, or you can use only the default window, depending 
on the needs of your application. If your image is composed of points that lie 
outside of the world window, then those points may or may not be part of the 
image on the NDC plane depending on the current clipping indicator. Clipping 
is discussed in detail in Section 7.1.1. 

As an example, consider the formation of a picture of a house on the world 
coordinate plane. To illustrate the resetting of the normalization window, 
consider a coordinate range of ([0,10] x [0,10]). The following code example 
shows how to set such a range for the normalization window. 

7-2 Transformation Functions 



DATA PX / 4.0, 1.0, 1.0, 4.0, 2.5, 1.0, 4.0, 4.0, 1.0 / 
DATA PY / 1.0, 1.0, 7.0, 7.0, 9.0, 7.0, 1.0, 7.0, 1.0 / 
CALL GKS$SET_WINDOW( 1, 0.0, 10.0, 0.0, 10.0 ) 
CALL GKS$SELECT_XFORM( 1 ) 
CALL GKS$POLYLINE( 9, PX, PY ) 

PX contains the house's X world coordinate values and PY contains the Y world 
coordinate values. For example, the first element in both arrays specifies the 
lower right corner of the house (4.0, 1.0). 

In the call to GKS$SET WINDOW, the window's X axis minimum value is set 
to the point 0.0 and its maximum value is set to 10.0. The window's Y axis 
minimum and maximum values are set to the same world coordinates. These 
dimensions establish the rectangle used as the normalization window. 

The first argument to GKS$SET WINDOW (the number 1) specifies a normal-
ization transformation number. A normalization transformation is a transposition 
of an image from the world coordinate plane to the NDC plane. When you se-
lect normalization transformation number 1 by calling GKS$SELECT~CFORM, 
DEC GKS establishes a window of the range ([0,10] x [0,10]) to be the current 
normalization_ window. When you generate output using this code example, 
DEC GKS maps the current window to a default portion of the NDC space. 
Section 7.1.1 describes the NDC plane in detail. 

Figure 7-1 illustrates the formation of the house on the world coordinate 
plane. 

Transformation Functions 7-3 



Figure 7-1: The World Coordinate Plane 

WORLD COORDINATE PLANE 

i 

0,10 

1 

• 

I I I I I I I I 

❑D = Current Normalization Window 

1
10,0 

ZK-5033-86 

7-4 Transformation Functions 



7.1.1 The Normalized Device Coordinate ~NDC) System 

As mentioned in the previous section, the normalization transformation is the 
transposition of world coordinate points to NDC points. The NDC plane is a 
device-independent coordinate plane on which you compose graphical pictures. 
The NDC plane has an X and Y axis that in theory extends infinitely in all 
four directions with an origin at point (0.0, 0.0), but in practice, only images 
contained in the range ([0,1 ] x [0,1 ]) can ultimately be transformed to the surface 
of a physical device. 

When DEC GKS transforms an image from the normalization window to the 
NDC plane, there must be a corresponding rectangle on which to map the 
contents of the window. This rectangular portion of the NDC space is called 
the normalization viewport. The default viewport has the range ([0,1 ] x [0,1 ]) in 
NDC point values. The previous code example, by default, maps the contents 
of the current window to this default viewport. 

By default, DEC GKS maps the normalization window ([0,1 ] x [0,1 ]) in world 
coordinates to the viewport ([0,1 ] x [0,1 ]) in NDC point values. This trans-
formation is called the unity transformation, which has the normalization 
transformation number 0. You cannot reset the window and viewport associ-
ated with the unity transformation. All of the examples in Chapter 5, Output 
Functions, use the unity transformation. 

You can think of the normalization process as a way of possibly transposing a 
number of areas of the world coordinate plane onto the NDC plane in respect 
to current normalization window and viewport. For instance, DEC GKS maps 
the contents of the current normalization window onto the current viewport. 
If clipping is enabled (which is the default situation), the effect is like cutting 
the window from the world coordinate plane, mapping, and then pasting the 
window to the viewport on the NDC plane. DEC GKS maps only images or 
portions of images plotted within the boundaries of the normalization window 
to the area within the viewport on NDC space. If clipping is disabled, DEC GKS 
maps points that lie outside of the normalization window boundary to NDC 
space outside of the normalization viewport but within the range ([0,1 ] x [0,1 ]). 

Since DEC GKS clips images at the boundary of the normalization viewport, 
this viewport is also called the clipping rectangle. You can enable and disable 
clipping by calling the function GKS$SET_CLIPPING. Figure 7-2 illustrates the 
clipping process according to the argument passed to GKS$SET_CLIPPING. 

Transformation Functions 7-5 



Figure 7-2: The Clipping Rectangle 

+ ~n 

Normalization window 
(world coordinates) 

Possible 
normalization 

viewports 
(NDC coordinates) 

ZK-5139-86 

7-6 Transformation Functions 



As one option to consider while creating a picture, you can select different 
normalization transformations with different windows and viewports, thus 
mapping various portions of the world coordinate space onto different portions 
of the NDC space. (In DEC GKS, valid normalization transformation numbers 
range from 0 to 255, and can associate windows and viewports with all but the 
unity transformation number 0.) You can achieve the same effect by reassigning 
different windows and viewports to a single normalization number. 

In essence, you use the world coordinate space as a scratch pad and the NDC 
space as a pasteboard on which to compose an entire picture. For instance, if 
you want an output primitive to appear on the right side of a picture appearing 
on the workstation surface, you map the primitive to the right side of the 
NDC space during the normalization transformation. All picture composition is 
done using normalization transformations. Once you compose a picture on the 
NDC plane, you can output all or part of the picture to all or part of various 
workstation surf aces. 

The following code examples show how to compose a picture using different 
normalization windows and viewports. 

DATA PX / 4.0, 1.0, 1.0, 4.0, 2.5, 1.0, 4.0, 4.0, 1.0 / 
DATA PY / 1.0, 1.0, 7.0, 7.0, 9.0, 7.0, 1.0, 7.0, 1.0 / 

CALL GKS$SET_WINDOW( 1, 0.0, 10.0, 0.0, 10.0 ) 
CALL GKS$SET_VIEWPORT( 1, 0.5, 1.0, 0.5, 1.0 ) 
CALL GKS$SELECT_XFORM( 1 ) 

CALL GKS$POLYLINE( 9, PX, PY ) 

Normalization transformation number 1 transforms the window in Figure 7-1 
to a portion of the NDC space as shown in Figure 7-3. 

Transformation Functions 7-7 



Figure 7-3: The Normalization Viewport 

NORMALIZED DEVICE COORDINATE (NDC 1 PLANE 

0,1 

0,0.5 

~ I I I I 1 I 1 I 1 
~ o,0 0.5,0 

i 
= Current Normalization Viewport 

1
1,0 

ZK-5034-86 

7-8 Transformation Functions 



By selecting a different normalization transformation with a different viewport, 
you can transpose the same window onto another portion of the NDC space. 
To see how this is accomplished, review the following code example: 

DATA PX / 4.0, 1.0, 1.0, 4.0, 2.5, 1.0, 4.0, 4.0, 1.0 / 
DATA PY / 1.0, 1.0, ?.0, 7.0, 9.0, 7.0, 1.0, ?.0, 1.0 / 

CALL GKS$SET WINDOW( 1, 0.0, 10.0, 0.0, 10.0 ) 
CALL GKS$SET_VIEWPORT( 1, 0.5, 1.0, 0.5, 1.0 ) 

CALL GKS$SET WINDOW( 2, 0.0, 10.0, 0.0, 10.0 ) 
CALL GKS$SET VIEWPORT( 2, 0.0, 0.5, 0.0, 0.5 ) 

C Make normalization transformation #i the current transformation. 
CALL GKS$SELECT_XFORM(1 ) 
CALL GKS$POLYLINE( 9, PX, PY ) 

C Make normalization transformation #2 the current transformation. 
CALL GKS$SELECT_XFORM(2 ) 
CALL GKS$POLYLINE( 9, PX, PY ) 

After execution of this code example, the NDC space contains the images in 
Figure 7-4. In this manner, you can map a number of normalization windows 
to a number of viewports until you compose a complete picture on the NDC 
space. See Section 7.2 to learn how to display the composed picture on the 
workstation surface. 

Transformation Functions 7-9 



Figure 7-4: Composing a Picture on the N DC Plane 

NDC PLANE 

i 
0,1 

0,0 

i 
n =Current Normalization Viewport 

1,0 

ZK-5035-86 

7-10 Transformation Functions 



7.1.2 Overlapping Viewports 

When you define normalization viewports, it is possible to cause them to 
overlap on the NDC plane. You must consider the effects this has during 
input requests. Viewport input priority does not affect output; the order of the 
output function calls determines which primitive overwrites the other. If you 
are working with segments, the segment priorities affect overlapping segments. 
For more information, refer to Chapter 9, Segment Functions. 

To illustrate the need for a viewport priority list for use during input, consider 
two viewports: the viewport of the unity transformation number 0 ([0,1 ] x 
[0,1 ]), and a viewport, belonging to normalization transformation number 1, 
having the range ([0.5,1 ] x [0.5,1 ]) in NDC points. Notice that the viewport 
of normalization transformation number 1 overlaps the right side of the unity 
viewport. 

During stroke and locator input, the user positions the cursor on the device 
surface and returns one point (locator) or a szries of points (stroke) in device 
coordinates. DEC GKS translates the device coordinates to NDC points 
(Section 7.2 discusses this process in detail). 

Once the device coordinates are transformed to NDC points, DEC GKS 
must transform the NDC points to world coordinate points. To transform 
the point, DEC GKS transforms the point from its viewport (NDC) value to 
the corresponding window (world coordinate) value. However, if the user 
chooses a point on the right half of the default viewport, DEC GKS must 
decide whether to use the unity viewport or the overlapping viewport of 
transformation number 1 to transform the point to world coordinates. DEC 
GKS needs to know to which normalization window the point is to be mapped, 
either the window that corresponds to normalization transformation number 0, 
or 1. 

To decide which Viewport has a higher input priority, DEC GKS maintains 
a priority list. By default, DEC GKS assigns the highest priority to the unity 
transformation (0 ). So, in the previous example concerning overlapping 
viewports, DEC GKS would use the unity viewport to transform the NDC 
point. The viewports of all remaining transformations decrease in priority as 
their transformation numbers increase (viewport 0 higher than viewport 1, 1 
higher than 2, 2 higher than 3, and so forth). 

If you want to change the order of the viewport input priority list, you must call 
the function GKS$SET_VIEWPORT~'RIORITY. You specify a normalization 
transformation number whose priority is to be changed (for example, 1), a 
normalization transformation number as a reference (for example, 0), and a flag 
that specifies that the first transformation is to have a lower or higher priority 
than the reference transformation (for example, higher). 

Transformation Functions 7-11 



So, if you called GKS$SET_VIEWPORT~'RIORITY to give transformation 
number 1 a higher transformation (1 higher than 0, 0 higher than 2, 2 higher 
than 3, and so forth), then DEC GKS would use the viewport corresponding to 
transformation number 1 in all cases when viewports 1 and 0 overlap during 
locator and stroke input. 

For more information concerning locator and stroke input, refer to Chapter 8, 
Input Functions. 

7.2 Workstation Transformations 

DEC GKS must map the picture on the NDC plane to the surface of one or 
more workstations. To do this, DEC GKS uses a second window and a viewport 
called the workstation window and the workstation viewport. The workstation 
window is a rectangular portion of the NDC plane that is mapped onto the 
rectangular portion of the workstation surface called the workstation viewport. 
Whereas there can be numerous normalization transformations, there is only 
one current workstation window and one current workstation viewport. 

DEC GKS uses a default workstation window of the range ([0,1] x [0,1]) in 
NDC points, and uses a default workstation viewport, starting at the lower left 
corner, that is the largest rectangle on the device surface that maintains the 
shape of the picture in the workstation window (Section 7.3 discusses in detail 
the shape of the picture in the workstation window). If you choose, you can 
change the workstation window, but the new boundaries can be no larger than 
the default workstation window boundaries ([0,1 ] x [0,1 ]). DEC GKS clips all 
points that exceed the default workstation window boundaries before DEC GKS 
transforms the picture to device coordinates, regardless of the current clipping 
flag setting. 

Whereas the normalization transformation composes the picture on NDC space, 
the workstation transformation presents all or part of the picture on all or part 
of the device surface. For instance, by setting the workstation window, you can 
create the illusion of 'panning" across a picture, showing successive portions of 
it at a time, or 'zooming in," showing smaller portions of a picture at a time. 
The DEC GKS User Manual discusses this process in detail. 

Your application may require that you change the portion of the workstation 
surf ace used to display the picture. However, if your program runs on several 
devices, you may not know the proportions of the device coordinate system 
with which you are working. The proportions of the device coordinate system 
are completely device dependent; each device can have a completely dissimilar 
device coordinate plane with dissimilar maximum X and Y coordinate values. 

7-12 Transformation Functions 



To determine the maximum boundary of the workstation viewport, you should 
use the function, GKS$INQ ~1/IAX _DS_SIZE, which returns the maximum X 
and Y values of the workstation display surface. (For more information, refer 
to Chapter 12, Inquiry Functions, or to GKS$SET_WS_VIEWPORT in this 
chapter.) 

When you set the workstation window (by calling GKS$SET WS WINDOW) 
or the workstation viewport (by calling GKS$SET WS_VIEWPORT), the new 
window or viewport may not come into effect immediately, depending on the 
capab' 'ties of your device. Depending on your device, the new workstation 
window or workstation viewport may become current immediately, or the 
workstation surface may need to be implicitly regenerated before the new 
window or viewport becomes current. If the workstation needs to regenerate its 
surface to make a workstation transformation current, the screen is cleared and 
only the primitives stored in segments are redrawn. You lose all primitives not 
contained in segments. 

For a detailed discussion of implicit regeneration and surface update, refer to 
Chapter 4, Control Functions. 

The following code example shows how to change the workstation window and 
viewport on a device that suppresses implicit regenerations: 

CALL GKS$SET WINDOW( 1, 0.0, 10.0, 0.0, 10.0 ) 
CALL GKS$SET VIEWPORT( 1, 0.5, 1.0, 0.5, 1.0 ) 
CALL GKS$SET WINDOW( 2, 0.0, 10.0, 0.0, 10.0 ) 
CALL GKS$SET_VIEWPORT( 2, 0.0, 0.5, 0.0, 0.5 ) 

C Find the maximum X and Y device coordinate values of your 
C device's type. 

CALL GKS$INQ_MAX_DS_SIZE( GKS$K_VT240, ARG2, ARG3, MAX_X, 
* MAX_Y, ARG6, ARG? ) 

C Set a new workstation window in NDC points. 
CALL GKS$SET WS WINDOW( 1, 0.0, 1.0, 0.25, 1.0 ) 
CALL GKS$SET_WS_VIEWPORT( 1, 0.0, MAX_X, 0.0, MAX Y ) 

C Update the screen. Primitives not stored in segments are lost. 
CALL GKS$UPDATE_WS( 1, GKS$K_PERFORM_FLAG ) 

C Make normalization transformation #i the current transformation. 
CALL GKS$SELECT_XFORM( 1 ) 
CALL GKS$POLYLINE( 9, PX, PY ) 

C Make normalization transformation #2 the current transformation. 
CALL GKS$SELECT_XFORM(2 ) 
CALL GKS$POLYLINE( 9, PX, PY ) 

Transformation Functions 7-13 



After execution of this code example, the NDC space contains the images 
in Figure 7-5. Depending on your device, the surface of your workstation 
would look like Figure 7-6. In most instances, the workstation does not use 
the entire workstation viewport to display the picture. DEC GKS uses the 
portion of device coordinate space, starting at the lower left point, that is the 
largest rectangle within the current workstation viewport that maintains the 
shape of the picture contained in the workstation window. In order to map 
the entire workstation window to the entire viewport, you need to make sure 
that the window and viewport have the same proportions. See Section 7.3 for 
more information concerning window and viewport proportions. The DEC GKS 
User Manual contains examples working with the proportions of workstation 
windows and viewports. 

The entire process of an image generation, from normalization transformation 
to workstation transformation, is illustrated in Figure 7-7. 

7-14 Transformation Functions 

V 



Figure 7-5: The Workstation Window 

NDC PLANE 

0, .25 

~ ( 1 I 1 1 I 1 I I `  _~ 

0,0 1,0 

i 
= Current Workstation Window 

ZK-5036-86 

Transformation Functions 7-15 



Figure 7-6: The Picture on a Generic Device Surface 

DEVICE COORDINATE PLANE 

ZK-5037-86 

7-16 Transformation Functions 



Figure 7-7: The Entire DEC GKS Transformation Process 

WORLD COORDINATES 

Normalization 
window 

N DC COORDINATES 

Map to lower left corner 
(normalization viewport) 

Map to upper right corner 
(another normalization viewport► 

Map workstation window 
from NDC space to the 
current workstation 
viewport. 

DEVICE COORDINATES 

0 

ZK-5038.86 

Transformation Functions 7-17 



7.3 Relative Positioning and Shape 

There is one final consideration when redefining the normalization and 
worl~station window and viewport values, and that is the shape of the object 
to be drawn. By default, the image is mapped from a square world coordinate 
plane, to a square portion of the NDC plane, and finally to a square portion 
of the display surface plane. Logically, if you draw a tall, thin house in world 
coordinate values using the default transformations, you would see a tall, 
thin house on the workstation surface. However, if you define a tall, thin 
rectangular normalization window that contains your house and then map that 
window onto the default, square normalization viewport, the tall, thin house 
would appear shorter and wider due to mapping from window to viewport. 

Consequently, you should be aware of the difference between the relative 
position of the image and the aspect ratio of the image. In the case of the tall, 
thin house, all of the points retain their relative position when mapped from the 
normalization window to the viewport. If the X value of the tip of the house is 
located two-thirds of the way along the X axis in the window, it is also located 
two-thirds of the way along the X axis in the viewport. Relatively speaking, if 
the house is located in the center of the window, it will be located in the center 
of the viewport. 

If you want to retain the shape, or aspect ratio, of the image, you must map 
images from a window to a viewport that has the same proportion, or height-
to-width ratio. For example, if the X axis is two-thirds as large as the Y axis 
in the normalization window, you must map to a viewport whose X axis is 
two-thirds as large as the Y axis in order to retain the aspect ratio of your 
image. 

Figure 7-8 shows the difference between relative position and aspect ratio. Like 
the window and viewport on the left, all normalization transformations retain 
the relative position. The window and viewport on the right retain the aspect 
ratio of the tall, thin house as well as its relative position. 

7-18 Transformation Functions 



Figure 7-8: Relative Position and Aspect Ratio 

ASPECT RATIO 

0,1 

Window 
height is twice 

the width. 

i~ ~ ~ ~ ~ \\ / ~~ 
I~ 

0,0 

Mapping to a square 
only maintains relative 
position. 

i 
1,0 0,0 0.5,0 

Mapping to a viewport 
whose height is twice 
the width maintains 
both relative position 
and aspect ratio 
(shape►. 

1,0 

ZK-5040-86 

Transformation Functions 7-19 



In contrast to the normalization transformations, DEC GKS automatically 
retains the aspect ratio of the workstation window when mapping to the 
workstation viewport. The mapping from workstation window to workstation 
viewport is not necessarily one-to-one; DEC GKS might not use the entire 
defined workstation viewport. By default, DEC GKS uses the largest rectangle, 
starting at the lower left corner, within the workstation viewport that .retains the 
shape of the picture contained in the workstation window. 

For more information concerning normalization transformations, workstation 
transformations, relative positioning, and aspect ratio, refer to the DEC GKS 
User Manual. For more information concerning segments and transformations, 
refer to Chapter 9, Segment Functions. 

7.4 Transformation Inquiries 

The following list presents the inquiry functions that you can use to obtain 
transformation information when writing device-independent code: 

GKS$INQ _CLIP 

GKS$INQ _CURRENT~CFORMNO 

GKS$INQ ~ViAX _DS_SIZE 

GKS$INQ _I1/IAX ~CFORM 

GKS$INQ _WS~CFORM 

GKS$INQ ~CFORM 

GKS$INQ ~CFORM_LIST 

For more information concerning device-independent programming, refer to the 
DEC GKS User Manual. 

7.5 Function Descriptions 

This section describes the DEC GKS transformation functions in detail. 

7-20 Transformation Functions 



SELECT NORMALIZATION TRANSFORMATION 

SELECT NORMALIZATION TRANSFORMATION 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SELECT~CFORM sets the normalization transformation 
number in the DEC GKS state list as the current transformation, and uses the 
associated window and viewport to transform points from the world coordinate 
system to the NDC system for subsequent output generation. 

By default, DEC GKS uses the unity normalization transformation number 
0. Use this when you want to map the default normalization window to the 
default NDC viewport. 

Syntax 
GKS~SELECT~(FORM (transformation~wmberJ 

GSELNT (xformJ 

gselntran (transform) 

Arguments 
transformation number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the normalization transformation number. To set or reset 
windows and viewports associated with a transformation number, you pass this 
number to GKS$SET_WINDOW and GKS$SET_VIEWPORT. After selecting 
this number, any subsequent calls to output functions use the window and 
viewport associated with this number. 

Transformation Functions 7-21 



SELECT NORMALIZATION TRANSFORMATION 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

8 GKS$_ERROR_8 

50 GKS$_ERROR_50 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC or SGOP in routine 
**** 

Transformation number is invalid 
in routine **** 

Program Example 
Example 7-1 illustrates the use of the function GKS$SELECT~CFORM. 
Following the program example, Figure 7-9 illustrates the program's effect 
on a VT241 workstation. 

7-22 Transformation Functions 



SELECT NORMALIZATION TRANSFORMATION 

Example 7-1: Selecting a Normalization Transformation 

C This program changes the world viewport four times placing 
C the "tall, thin house" in each corner of the NDC space. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, UP_LEFT_CORNER, UP_RIGHT_CORNER, 
* LOW_LEFT_CORNER, LOW_RIGHT_CORNER, NUM_POINTS 
REAL PX (9 ) , PY (9 ) , PX_2 (5 ) , PY_2 (5 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA PX_2 / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA PY_2 / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA UP_LEFT_CORNER / 1 /, UP_RIGHT_CORNER / 2 /, 
* LOW_LEFT_CORNER / 3 /, LOW_RIGHT_CORNER / 4 /, 
* NUM_POINTS / 9 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( UP_LEFT_CORNER, 0.0, 0.5, 0.5, 1.0) 
CALL GKS$SET_VIEWPORT( UP_RIGHT_CORNER, 0.5, 1.0, 0.5, 1.0) 
CALL GKS$SET_VIEWPORT( LOW_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5) 
CALL GKS$SET_VIEWPORT( LOW_RIGHT_CORNER, 0.5, 1.0, 0.0, 0.5) 

C Outlining the default world window will result in the outlining of 
C the NDC plane, the workstation window, and the workstation 
C viewport, by default. 

CALL GKS$POLYLINE( 5, PX_2, PY_2 ) 

CALL GKS$SELECT_XFORM( UP_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Release def erred output. Pause. Type RETURN when you are finished 
C viewing the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

CALL GKS$SELECT_XFORM( UP_RIGHT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Release def erred output. Pause. Type RETURN when you are finished 
C viewing the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , * ) 

(continued on next page) 

Transformation Functions 7-23 



SELECT NORMALIZATION TRANSFORMATION 

Example 7-1 ~Cont.~: Selecting a Normalization Transformation 

CALL GKS$SELECT_XFORM( LOW_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Release deferred output . Pause . Type RETURN when you are finished 
C viewing the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE FLAG ) 
READ(5,*) 

CALL GKS$SELECT_XFORM( LOW_RIGHT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the house's X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the lower right corner of the house (0.4, 0.1). 

© This code sets the viewport to be the upper left corner of the NDC space 
and assigns this normalization transformation the value 1. The subsequent 
lines of code set the viewport to be the other three corners of the NDC 
space and assign the normalization transformations the values 2, 3, and 4. 

© This code selects the normalization transformation number 1, which 
corresponds to a default window and to a viewport that is the upper left 
corner of the NDC space. Until another transformation number is selected, 
output is mapped to the upper left corner of the default NDC plane. In 
this example, the tall, thin house is output to the upper left corner of the 
workstation surface. The next four sections of code change the world 
viewports to the other three corners of the NDC space and then generate 
the tall, thin house in the remaining corners of the default NDC space. 
When DEC GKS maps the default workstation window to the workstation 
surface, DEC GKS maps the window to the largest square area on the 
workstation surface (since the workstation window is square) so as to 
maintain the shape of the picture. 

7-24 Transformation Functions 



SELECT NORMALRATION TRANSFORMATION 

Figure 7-9 shows the screen of a VT241 terminal after the program has run to 
completion. 

Figure 7-9: Selecting the Normalization Transformation—VT241 

 1 

 J 
ZK-5080-86 

Transformation Functions 7-25 



SET CLIPPING INDICATOR 

SET CLIPPING INDICATOR 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_CLIPPING enables or disables clipping of the image at 
the normalization viewport boundary by setting the clipping flag in the DEC 
GKS state list. 

If clipping is enabled, DEC GKS clips all generated output primitives at the 
normalization viewport boundary. If clipping is disabled, primitives may exceed 
the normalization viewport boundaries. By default, DEC GKS clips primitives. 

NOTE 

This function works only for the normalization viewport. Pictures 
are always clipped at the workstation window despite the current 
status of the clipping flag. 

Syntax 
GKS~SET_CLIPPING (clip) 

GSCLIP (flag) 

gsetclip (indicator) 

Arguments 
clip 

data type: integer 
access: read-only 
mechanism: by reference 

This argument determines whether or not clipping is enabled or disabled. The 
argument can be either of the following values or constants. 

7-26 Transformation Functions 



SET CLIPPING INDICATOR 

Value Constant Description 

0 GKS$K~TOCLIP Clipping is off. 

1 GKS$K_CLIP Clipping is on. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

-23 DECGKS$_ERROR~TEG_23 Invalid value specified for clipping 
flag in routine **** 

8 GKS$~RROR_8 GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC or SGOP in routine 
**** 

Program Example 
Example 7-2 illustrates the use of the function GKS$SET_CLIPPING. Following 
the program example, Figure 7-10 illustrates the program's effect on a VT241 
workstation. 

Transformation Functions 7-27 



SET CLIPPING INDICATOR 

Example 7-2: Controlling Clipping at the World Viewport 

C This program generates a "tall, thin house" that overlaps 
C the normalization window and viewport. You can see 
C the overlapping portion if clipping is disabled. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, HALF, LOW_LEFT_CORNER, NUM_POINTS 

0 
REAL PX (9 ) , PY (9 ) , PX_2 (5 ) , PY_2 (5 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA PX_2 / 0.0, 0.5, 0.5, 0.0, 0.0 / 
DATA PY_2 / 0.0, 0.0, 0.5, 0.5, 0.0 / 
DATA NUM_POINTS / 9 /, HALF / 1 /, 
* LOW_LEFT_CORNER / 1 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Outlining the default world window will result in the outlining of 
C the NDC plane, the workstation window, and the workstation 
C viewport, by default. 

CALL GKS$POLYLINE( 5, PX_2, PY_2 ) 

C This window (half of the default window) and viewport (lower 
C left corner of the default viewport) are associated with 
C normalization transformation number 1. 

© CALL GKS$SET_WINDOW( HALF, 0.0, 0.9, 0.0, 0.5) 
CALL GKS$SET VIEWPORT( LOW_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5) 

© CALL GKS$SELECT_XFORM( LOW_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

(continued on next page) 

7-28 Transformation Functions 

lWJ 



SET CLIPPING INDICATOR 

Example 7-2 (Cont.~: Controlling Clipping at the World Viewport 

© CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 

C Draw the same house, using the same windows and viewports, but 
C with clipping disabled. Now you can see the portion of the house 
C that overlaps the window and viewport. 

CALL GKS$POLYLINE( NUM POINTS, PX, PY ) 
CALL GKS$DEACTIVATE_Ws( Ws_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the house's X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the lower right corner of the house (0.4, 0.1). 

© This code sets the normalization window to be half of the default plane and 
assigns the normalization transformation LOW LEFT CORNER 
(number 1). The tall, thin house is cut in half by the window boundary. 
The code also sets the viewport to be the lower left corner of the NDC 
space and assigns this normalization transformation the value 1. 

0 This code selects normalization transformation number 1 which has a 
smaller window by half and a viewport that is the lower left corner of the 
NDC space. By default, clipping is enabled; you only see half the house. 

® Once you disable clipping and redraw the picture, DEC GKS maps the 
entire house to the NDC space and eventually to the workstation surface. 

Figure 7-10 shows the screen of a VT241 terminal after the program has run to 
completion. 

Transformation Functions 7-29 



SET CLIPPING INDICATOR 

Figure 7-10: Enabling and Disabling Clipping VT241 

ZK-5843-HC 

7-30 Transformation Functions 



SET VIEWP08T INPUT PRIORITY 

SETVIEWPORT INPUT PRIORITY 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_VIEWPORT_I'RIORITY specifies the input priority of a 
given normalization transformation. If during stroke or locator input DEC GKS 
encounters a point on overlapping viewports in the NDC space, the viewport 
input priority list determines which normalization transformation to use when 
transforming the point back to world coordinate space. 

By default, the normalization transformations are ordered in a sequential list so 
that the transformation number 0 is the highest priority transformation, and the 
transformation number 255 is the lowest. When you request stroke or locator 
input, DEC GKS uses the viewport with the highest priority when transforming 
a point on overlapping viewports. 

To change the priority list using GKS$SET VIEWPORT~'RIORITY, you specify 
a normalization transformation number whose priority is to be changed, specify 
an index transformation number, and specify whether the first transformation is 
the next higher or lower priority. 

See Section 7.1.2 for more information concerning input and overlapping 
viewports. 

Syntax 
GKSSSET_VIEWPORT_PRIORITY (transformation umber, 

references trancenumber, 
relative~riority) 

GSVPIP (xform, ref~rform, rel~riorJ 

gseriiewportinputpri (transform, reference, priority) 

Transformation Functions 7-31 



SET VIEWPORT INPUT PRIORITY 

Arguments 
transformatior~number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the normalization transformation number whose priority you 
want to change. 

reference_trans_number 

data type: integer 
access: read-only 
mechanism: by reference 

This is a normalization transformation number to be used as a reference for 
changing the priority of the first transformation number. You specify whether 
or not the first number is of the next higher or lower priority than this reference 
number. If you specified lower, the first number is placed directly behind this 
reference number in the sequential priority list. If you specified higher, DEC 
GKS places the first number directly in front of this reference number in the 
sequential priority list. 

relative priority 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is a flag that determines whether or not the normalization 
transformation number is of higher or lower priority than the reference nor-
malization transformation number. The argument can be any of the following 
values or constants: 

Value Constant Description 

0 GKS$K_INPUT—I'RIORITY_HIGHER Higher priority 

1 GKS$K_INPUT_I'RIORITY_LOWER Lower priority 

7-32 Transformation Functions 



SET VIEWPORT INPUT P810RITY 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR~TEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

-24 DECGKS$~RROR~TEG~4 Invalid value specified for viewport 
priority flag in routine **** 

8 GKS$~RROR_8 GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC or SGOP in routine 
**** 

50 GKS$~RROR~O Transformation number is invalid 
in routine **** 

Program Example 
Example 7-3 illustrates the use of the function GKS$SET VIEWPORT 
PRIORITY. Following the program example, Figure 7-11 illustrates the pro-
gram's effect on a VT241 workstation. 

Transformation Functions 7-33 



SET VIEWPORT INPUT PRIORITY 

Example 7-3: Setting the Input Priority 

C This program accepts input twice from the same spot on the 
C workstation surface. When the input priority is changed, 
C the world coordinates returned are that of the other overlapping 
C viewport. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, ERROR_STATUS, INPUT_MODE, ECHO_FLAG, XFORM, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEFAULT, 
* LOW_LEFT_CORNER, RIGHT_HALF, DEVICE_NUM, NUM_POINTS, 
* PROMPT_ECHO_TYPE, DATA_RECORD( 1 ) 
REAL WORLD_COORD_X, WORLD_COORD_Y, 
* ECHO_AREA ( 4 ) , PX ( 5 ) , PY ( 5 ) , 
* LARGER 
DATA PX / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA PY / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA DEFAULT / 0 /, DEVICE_NUM / 1 /, LARGER / 0.04 /, 
* RIGHT_HALF / 1 /, LOW_LEFT_CORNER / 1 /, NUM_POINTS / 5 /, 
* WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C When you outline the entire default world coordinate space, you 
C also outline the entire NDC space, the entire workstation window, 
C and the entire workstation viewport. 

CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C This window and viewport are associated with the 
C normalization transformation number 1. 

CALL GKS$SET_WINDOW( LOW_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( RIGHT_HALF, 0.5, 1.0, 0.0, 1.0 ) 

C Select the new transformation and outline the new windows 
C and viewports. 

CALL GKS$SELECT_XFORM( 1 ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Assign a value to RECORD_BUFFER_LENGTH: 4 bytes. On output, 
C this argument should contain the value 0 since 
C GKS$INQ_LOCATOR_STATE does not write anything to the buffer. 

RECORD_BUFFER_LENGTH = 4 
O CALL GKS$INQ_LOCATOR_STATE( WS_ID, DEVICE_NUM, 

* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, ECHO_FLAG, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

(continued on next page) 

7-34 Transformation Functions 



SET VIEWPORT INPUT PRIORITY 

Example 7-3 ~Cont.): Setting the Input Priority 

© PROMPT_ECHO_TYPE = 1 
© CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, 0.7, 0.5, DEFAULT, 

* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD BUFFER_LENGTH ) 

© CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

C ********************************* 

C At this pause, just type RETURN. 
C ********************************* 

CALL GKS$REQUEST_LOCATOR( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

C Write the returned world coordinates. 
WRITE(5, *) WORLD_COORD_X, WORLD_COORD_Y 
CALL GKS$SELECT_XFORM( DEFAULT ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.01, 0.4, 'Higher priority VP: 0' ) 

C Set the current viewport (associated with the selected 
C transformation number i) to be a higher priority than the 
C default viewport. 

0 CALL GKS$SET VIEWPORT_PRIORITY( RIGHT HALF, DEFAULT, 
* GKS$K_INPUT_PRIORITY_HIGHER ) 

C Call for input from the same spot . 
© CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, 0.7, 0.5, DEFAULT, 

* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

(continued on next page) 

Transformation Functions 7-35 



SET VIEWPORT INPUT PRIORITY 

Example 7-3 (Cont.): Setting the Input Priority 

c *********************~*********** 
C At this pause, just type RETURN. 
C ********************************* 

CALL GKS$REQUEST_LOCATOR( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* XFORM, WORLD_COORD X, WORLD_COORD_Y ) 

C Write the returned world coordinates, this time from the smaller 
C viewport on the right half of the screen. 

WRITE(5, *) WORLD_COORD_X, WORLD_COORD Y 
CALL GKS$SELECT_XFORM( DEFAULT ) 
CALL GKS$TEXT( 0.01, 0.3, 'Higher priority VP: 1') 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The function GKS$INQ _LOCATOR_STATE enables you to change the 
input data record and other pertinent values that are needed to perform 
locator input. Locator input returns a single world coordinate point. 
For more information concerning the types of input in DEC GKS, refer 
to Chapter 8, Input Functions. For more information concerning the 
arguments to GKS$INQ _LOCATOR_STATE, refer to Chapter 12, Inquiry 
Functions. 

© The prompt and echo types are device independent. Depending on the type 
of prompt and echo type you choose, you may or may not need to pass an 
input data record. 
In this example, the type of prompt echo is a tracking plus sign. When 
using this prompt and echo type, pass a dummy data record; DEC GKS 
does not use the record. For more information, refer to Chapter 8, Input 
Functions. 

© The function GKS$INIT_LOCATOR sets the initial values needed to 
perform locator input, including the position in world coordinates, on 
which to place the tracking plus sign. This call places the plus sign on the 
world coordinate (0.7, 0.5). For more information, refer to Chapter 8, Input 
Functions. 

7-36 Transformation Functions 



SET VIEWPORT INPUT PRIORITY 

0 The function GKS$SE'I~LOCATOR~ViODE sets the operating mode of a 
specific locator class device and allows DEC GKS to accept input. At this 
point in the program, just press the RETURN key. The program returns 
the world coordinates from the viewport associated with the transformation 
number with the higher priority, unity transformation number 0. For more 
information, refer to Chapter 8, Input Functions. 

0 When you last requested input, the normalization transformation number 
0 had higher priority. Consequently, the world coordinates returned were 
from the default window. 
To return world coordinates from the window in the lower left corner of 
the world coordinate plane, whose viewport overlaps the default viewport 
on the right side of the NDC plane, give the transformation number 1 the 
higher priority. 

® When you initialize the tracking plus sign to the exact same spot on the 
workstation surface, and when you request locator input again, the program 
returns different world coordinates; it returns the world coordinates from 
the overlapping viewport associated with the normalization transformation 
number 1. 

Figure 7-11 shows the screen of a VT241 terminal after the program has run to 
completion. 

Transformation Functions 7-37 



SET VIEWPORT INPUT PRIORITY 

Figure 7-11: Setting the Input Priority—VT241 

1 
o . ~000000 
0.2000000 

0.5000000 
O.P500000 

Higher prime rite ~P: O 

Higher pric ri#.~ ~P: ~. 

ZK-5062-86 

7-38 Transformation Functions 



SET VIEWPORT 

SET VIEWPORT 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_VIEWPORT associates viewport boundaries on the 
NDC plane with a specified normalization transformation number. 

By default, DEC GKS uses the range ([0,1 ] x [0,1 ]), in NDC coordinates, as the 
normalization viewport. 

DEC GKS maps the normalization window onto the viewport. The image 
retains its position in the viewport relative to its position in the window, but the 
image's aspect ratio may differ. Also, if the image extends past the boundary of 
the window, it may or may not extend past the viewport boundary, depending 
on whether or not clipping is enabled or disabled. See Section 7.1 for more 
information concerning normalization transformations and clipping. 

Syntax 
GKS~SET_VIEWPORT (transformation_number, minimum~r_value, 

maximum~r_value, minimum_y_value, 
maximum_y_valueJ 

GSVP (xform, xmin, xmax, ymin, ymaxJ 

gseriiewport (transform, viewportJ 

Arguments 
transformation number 

data type: integer 
access: read-only 
mechanism: by reference 

Transformation Functions 7-39 



SET VIEWPORT 

This argument is the normalization transformation number. Once you select 
this number by calling GKS$SELECT~CFORM, any subsequent calls to output 
functions use the window and viewport associated with this number. 

minimum value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the X value in a rectangu-
lar viewport. Make sure that the lower left corner is located within the default 
normalization viewport range. See Section 7.1 for more information concerning 
normalization transformations. 

7-40 Transformation Functions 



SET VIEWPORT 

maximum 

value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the X value for the upper right corner of the viewport, 
and with the minimum X and Y values and maximum Y value, determines the 
rectangular area of the viewport within the NDC space. Make sure that the 
maximum X and Y values are located within the default normalization viewport 
boundaries. See Section 7.1 for more information concerning normalization 
transformations. 

minimum_y_va/ue 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the Y value in a rectangu-
lar viewport. Make sure that the lower left corner is located within the default 
normalization viewport range. See Section 7.1 for more information concerning 
normalization transformations. 

maximum_y_va/ue 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the Y value for the upper right corner of the viewport, 
and with the minimum X and Y values and maximum X value, determines the 
rectangular area of the viewport within the NDC space. Make sure that the 
maximum X and Y values are located within the default normalization viewport 
boundaries. See Section 7.1 for more information concerning normalization 
transformations. 

Transformation Functions 7-41 



SET VIEWPORT 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG~O 

8 GKS$_ERROR_8 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC or SGOP in routine 
**** 

50 GKS$_ERROR_50 Transformation number is invalid 
in routine **** 

51 GKS$_ERROR_51 Rectangle definition is invalid in 
routine **** 

52 GKS$_ERROR_52 Viewport is not within the 
Normalized Device Coordinate 
unit square in routine **** 

Program Example 
Refer to Example 7-1 in this section for a program example using a call to 
GKS$SET_VIEWPORT. 

7-42 Transformation Functions 



SET WINDOW 

SET WINDOW 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET_WINDOW associates normalization window boundaries 
on the world coordinate plane with a specified normalization transformation 
number. 

By default, DEC GKS uses the range ([o, l J x [0,1 ]), in world coordinates, as the 
normalization window. 

DEC GKS maps the normalization window onto the viewport. The image 
retains its position in the viewport relative to its position in the window, 
but the image's aspect ratio may differ. Also, if the image extends past the 
boundary of the world window, it may or may not extend past the viewport 
boundary, depending on whether or not clipping is enabled or disabled. See 
Section 7.1 for more information concerning normalization transformations and 
clipping. 

Syntax 
GKSSSET_WINDOW (transformation_number, minimum~r_va/ue, 

maximum~r_value, minimum_y_value, 
maximum_y_value) 

GSWN (xform, xmin, xmax, ymin, ymaxJ 

gsetwindow (transform, window) 

Transformation Functions 7-43 



SET WINDOW 

Arguments 
transformatior~number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the normalization transformation number. Once you select 
this number by calling GKS$SELECT~CFORM, any subsequent calls to output 
functions use the window and viewport associated with this number. 

minimum value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the X value in a rectangu-
lar window. 

7-44 Transformation Functions 



SET WINDOW 

maximum~va/ue 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the X value for the upper right corner of the window, 
and with the minimum X and Y values and maximum Y value, determines the 
rectangular area of the window within the world coordinate space. 

minimurr~y_value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the Y value in a rectangu-
lar window. 

maximum_y_value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the Y value for the upper right corner of the window, 
and with the minimum X and Y values and maximum X value, determines the 
rectangular area of the window within the world coordinate space. 

Transformation Functions 7-45 



SET WINDOW 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR~TEG~O 

8 GKS$_ERROR_8 

50 GKS$_ERROR_50 

51 GKS$_ERROR_51 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC or SGOP in routine 
**** 

Transformation number is invalid 
in routine **** 

Rectangle definition is invalid in 
routine **** 

Program Example 
Refer to Example 7-1 in this section for a program example using a call to 
GKS$SET_WINDOW. 

7-46 Transformation Functions 



SET WORKSTATION YIEWPORT 

SET WORKSTATION VIEWPORT 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_WS_VIEWPORT establishes the portion of the work-
station surface on which DEC GKS maps the workstation window. 

The default workstation viewport is the largest square on the workstation 
surface, beginning with the lower left corner. If you define a new workstation 
viewport or window such that the two are not proportionally equivalent, DEC 
GKS may not use the entire viewport. DEC GKS only uses the portion of the 
viewport that maintains the shape of the picture in the workstation window. 
See Section 7.2 for detailed information. 

NOTE 

If your workstation cannot implement an immediate change to the 
workstation window or viewport, the surface needs to be regenerated 
to establish the requested settings. If the surface is regenerated, the 
surface is cleared and only output primitives stored in segments are 
redrawn. You lose any primitives not contained in segments. For 
a detailed discussion of surface regeneration, refer to Chapter 4, 
Control Functions. 

Syntax 
GKS~SET_WORKSTATION_VIEWPORT (workstation number, 

minimum~r_va/ue, 
maximum~r_va/ue, 
minimum_y_va/ue, 
maximum_y_va/ueJ 

GSWKVP (workstation~d, xmin, xmax, ymin, ymaxJ 

gsetwsviewport (workstation_id, viewport) 

Transformation Functions 7-47 



SET WORKSTATION VIEWPORT 

Arguments 
workstation~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is a workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

minimum value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the X value in a rect-
angular workstation viewport. Make sure that this point is located within the 
display surface limits of the specified workstation. You should use the function 
GKS$INQ _11/IAX _DS_SIZE, which returns the maximum X and Y values of the 
workstation display surface. (For more information, refer to Chapter 12, Inquiry 
Functions.) 

maximum value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the X value for the upper right corner of the viewport, 
and with the minimum X and Y values and maximum Y value, determines 
the rectangular area of the workstation viewport within the device coordinate 
space. Make sure that the maximum X and Y values are located within the 
display surface limits of the specified workstation. You should use the function 
GKS$INQ _1VIAX _DS_SIZE, which returns the maximum X and Y values of the 
workstation display surface. (For more information, refer to Chapter 12, Inquiry 
Functions. ) 

7-48 Transformation Functions 



SET WORKSTATION VIEWPORT 

minimum_y_value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the Y value in a rect-
angular workstation viewport. Make sure that this point is located within the 
display surface limits of the specified workstation. You should use the function 
GKS$INQ ~1/IAX _DS_SIZE, which returns the maximum X and Y values of the 
workstation display surface. (For more information, refer to Chapter 12, Inquiry 
Functions.) 

maximum_y_value 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the Y value for the upper right corner of the viewport, 
and with the minimum X and Y values and maximum X value, determines 
the rectangular area of the workstation viewport within the device coordinate 
space. Make sure that the maximum X and Y values are located within the 
display surface limits of the specified workstation. You should use the function 
GKS$INQ ~/IAX _DS_SIZE, which returns the maximum X and Y values of the 
workstation display surface. (For more information, refer to Chapter 12, Inquiry 
Functions.) 

Transformation Functions 7-49 



SET WORKSTATION VIEWPORT 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG~O 

7 GKS$~RROR_7 

20 GKS$_ERROR~O 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

36 GKS$_ERROR_36 

51 GKS$_ERROR~ 1 

54 GKS$_ERROR_54 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Specified workstation is 
Workstation Independent Segment 
Storage in routine **** 

Rectangle definition is invalid in 
routine **** 

Workstation viewport is not within 
the display space in routine * * * * 

Program Example 
Example 7-4 illustrates the use of the function GKS$SET_WS_VIEWPORT. 
Following the program example, Figure 7-12 illustrates the program's effect on 
a VT241 workstation. 

7-50 Transformation Functions 



0 DATA PX / .4, .1, .1, .4, .25, .1, .4, 
DATA PY / .1, .1, .7, .7, .9, .7, .1, 
DATA PX_2 / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA PY_2 / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA NUM_POINTS / 9 /, WS_ID / 1 / 

SET WORKSTATION VIEWPORT 

Example 7-4: Establishing a Workstation Viewport 

C This program uses the default normalization transformations, 
C generates the "tall, thin house," updates the screen, 
C changes the workstation viewport to the lower left 
C corner of the VT241 surface, and generates the output again. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, NUM_POINTS, RASTER_Y, ERROR, METERS, 
* RASTER_X, DEFAULT 
REAL PX (9 ) , PY (9 ) . PX_2 (5 ) . PY_2 (5 ) , 
* DEVICE MAX_X, DEVICE MAX_Y 

.4, .1 / 

.7, .1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Outlining the default world window will result in the outlining of 
C the NDC plane, the workstation window, and the workstation 
C viewport, by default. 

CALL GKS$POLYLINE( 5, PX_2, PY_2 ) 

© CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

© CALL GKS$INQ_MAX_DS_SIZE( GKS$K_VT240, ERROR, METERS, 
* DEVICE MAX_X, DEVICE_MAX Y, RASTER_X, RASTER_Y ) 

O CALL GKS$SET_WS_VIEWPORT( WS_ID, 0.0, DEViCE_MAX_X/2.0, 
* 0.0, DEVICE_MAX_Y/2.0 ) 

C Update the screen so that the workstation can use the 

C new workstation viewport (as noted in the function 

C description section). 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C Outline the default windows and viewports and draw the house again. 
CALL GKS$POLYLINE( 5, PX_2, PY_2 ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

(continued on next page) 

Transformation Functions 7-51 



SET WORKSTATION VIEWPORT 

Example 7-4 (Copt.): Establishing a Workstation Viewport 

CALL GKS$DEACTIYATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the house's X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the lower right corner of the house (0.4, 0.1). 

© This code assumes the default normalization transformation. DEC GKS 
maps the default window to the default viewport, and then maps the 
default workstation window to the default viewport. 

0 The function GKS$INQ ~VIAX _DS_SIZE returns the maximum X and 
Y display surface coordinates in the arguments DEVICE_1VIAX~C and 
DEVICE_1VIAX_Y. For more information concerning the other arguments, 
refer to the GKS$INQ ~VIAX _DS~IZE function description in Chapter 12, 
Inquiry Functions. 

O The function GKS$SE'I;WS_VIEWPORT changes the workstation viewport 
to the lower left corner of the screen. The picture being displayed is still the 
same (the default workstation window), but the space on the workstation 
surface used to display the same picture has changed. 

Figure 7-12 shows the screen of a VT241 terminal after the program has run to 
completion. 

7-52 Transformation Functions 



SET WORKSTATION VIEWPORT 

Figure 7-12: Establishing a Workstation Viewport—VT241 

ZK-5083-86 

Transformation Functions 7-53 



SET WORKSTATION WINDOW 

SET WORKSTATION WINDOW 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_WS_WINDOW establishes the portion of the composed 
picture (on the NDC plane) that DEC GKS maps to the current workstation 
viewport. Despite the current value of the clipping flag, DEC GKS clips all 
pictures at the workstation window boundary. 

By default, DEC GKS uses the entire picture, mapping the default workstation 
window range ([0,1 ] x [0,1 ]), onto the largest square that the workstation can 
produce. 

NOTE 

If your workstation cannot implement an immediate change to the 
workstation window or viewport, the surface needs to be regenerated 
to establish the current settings. If the surface is regenerated, the 
surface is cleared and only output primitives stored in segments are 
redrawn. You lose any primitives not contained in segments. For 
a detailed discussion of surface regeneration, refer to Chapter 4, 
Control Functions. 

Syntax 
G KS$ S ET_WS_W I N D O W (workstation_id, minimum~r_ value, 

maximum~r_value, minimum_y_value, 
maximum_ y_ value) 

G SW KW N (workstation_id, xmin, xmax, ymin, ymaxJ 
gsetwswindow (workstation_id, window) 

7-54 Transformation Functions 



SET WORKSTATION WINDOW 

Arguments 
workstatior~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is a workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

minimum~va/ue 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the X value in a rectan-
gular workstation window, in NDC points. Make sure that this point is located 
within the default workstation window boundary. See Section 7.2 for more 
information concerning workstation transformations. 

maximum~va/ue 

data type: real 
access: read-only 
mechanism: by reference 

This argument specifies the lower left corner point of the Y value in a rectan-
gular workstation window, in NDC points. Make sure that this point is located 
within the default workstation window boundary. See Section 7.2 for more 
information concerning workstation transformations. 

minimum value 

data type: integer 
access: read-only 
mechanism: by reference 

This argument specifies the upper right corner of the X value of the window, 
and used with the maximum X and Y values, and the minimum Y value, 
determines the rectangular area of the workstation window within the NDC 
space. Make sure that the maximum X and Y values are located within the 

Transformation Functions 7-55 



SET WORKSTATION WINDOW 

default workstation window boundary. See Section 7.2 for more information 
concerning workstation transformations. 

minimum_y_va/ue 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument specifies the upper right corner of the Y value of the window, 
and used with the maximum X and Y values, and the minimum X value, 
determines the rectangular area of the workstation window within the NDC 
space. Make sure that the maximum X and Y values are located within the 
default workstation window boundary. See Section 7.2 for more information 
concerning workstation transformations. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR~O 

25 GKS$_ERROR_25 

33 GKS$_ERROR_33 

7-56 Transformation Functions 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 



SET WOflKSTATION WINDOW 

Error Completion 
Number Status Code Message 

36 GKS$~RROR_36 Specified workstation is 
Workstation Independent Segment 
Storage in routine **** 

51 GKS$_ERROR_51 Rectangle definition is invalid in 
routine **** 

53 GKS$_ERROR_53 Workstation window is not within 
the Normalized Device Coordinate 
unit square in routine * * * * 

Program Example 
Example 7-5 illustrates the use of the function GKS$SET WS—WINDOW. 
Following the program example, Figure 7-13 illustrates the program's effect on 
a VT241 workstation. 

0 

Example 7-5: Establishing a Workstation Window 

C This program uses the default normalization transformations, 

C generates the "tall, thin house," updates the screen, 

C changes the workstation window to the lower half of the 

C default workstation window, and generates the output again. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, NUM_POINTS, DEFAULT 
REAL PX (9) , PY (9) , PX_2 (5) , PY_2 (5 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 

DATA PX_2 / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA PY_2 / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA NUM_POINTS / 9 /, DEFAULT / 0 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 

CALL GKS$ACTIVATE_WS( WS_ID ) 

(continued on next page) 

Transformation Functions 7-57 



SET WORKSTATION WINDOW 

Example 7-5 (Copt.): Establishing a Workstation Window 

C Outlining the default world window will result in the outlining of 
C the NDC plane, the workstation window, and the workstation 
C viewport, by default. 

CALL GKS$POLYLINE( 5, PX_2, PY_2 ) 

© CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , * ) 

C Set a new workstation window that is the lower half of the 
C default workstation window. 

© CALL GKS$SET_WS_WINDOW( WS_ID, 0.0, 1.0, 0.0, 0.5 ) 

C UPDATE the surface so that DEC GKS can use the new 
C workstation window (as noted in the function description 
C section). 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C Outline the default NDC space and draw the house again. 
CALL GKS$POLYLINE( 5, PX_2, PY_2 ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O PX contains the house's X world coordinate values and PY contains the 
Y world coordinate values. For example, the first element in both arrays 
specifies the lower right corner of the house (0.4, 0.1). 

© This code assumes the default normalization transformation. DEC GKS 
maps the default window to the default viewport and then maps the default 
workstation window to the default workstation viewport. 

© The function GKS$SET_WS_WINDOW changes the workstation window 
to be the lower half of the NDC space. The picture is now half of what 
it was and will now be mapped onto the largest rectangle on the display 
surface, starting at lower left point within the current workstation viewport, 
that maintains the aspect ratio. Notice how DEC GKS does not map the 
current workstation window onto the entire workstation viewport, so as to 
maintain the shape of the picture. 

7-58 Transformation Functions 



SET WORKSTATION WINDOW 

Figure 7-13 shows the screen of a VT241 terminal after the program has run to 
completion. 

Figure 7-13: Establishing a Workstation Window—VT241 

ZK-5084-86 

Transformation Functions 7-59 





Chapter 8 

Input Functions 

The DEC GKS input functions allow an application program to accept input 
from a user. The following list presents the input functions by category: 

Category GKS Functions 

Initialization 

Mode Control 

Request Mode 

Sample Mode 

Event Mode 

GKS$INIT_CHOICE, GKS$INIT_LOCATOR, GKS$INIT_ 
PICK, GKS$INIT_STRING, GKS$INIT_STROKE, GKS$INIT_ 
VALUATOR 

GKS$SET_CHOICE~VIODE, GKS$SET_LOCATOR~VIODE, 
GKS$SET_I'ICK_NiODE, GKS$SET_STRING~VIODE, 
GKS$SET_STROKE~ViODE, GKS$SET_VALUATOR_1VIODE 

GKS$REQUEST_CHOICE, GKS$REQUEST_LOCATOR, 
GKS$REQUEST_l'ICK, GKS$REQUEST_STRING, GKS$REQUEST_ 
STROKE, GKS$REQUEST_VALUATOR 

GKS$SAMPLE _CHOICE, GKS$SAMPLE _LOCATOR, 
GKS$SAMPLE _PICK, GKS$SAMPLE _STRING, GKS$SAMPLE _ 
STROKE, GKS$SAMPLE_VALUATOR 

GKS$AWAIT~VENT, GKS$FLUSH _DEVICE EVENTS, 
GKS$GET_CHOICE, GKS$GET_LOCATOR, GKS$GET_I'ICK, 
GKS$GET_STRING, GKS$GET_STROKE, GKS$GET VALUATOR 

8.1 Physical and Logical Input Devices 

There are many physical devices that can provide input to a program. Common I,
physical devices include a terminal keyboard, a tablet, and a mouse. You can ~~
translate the information obtained from these physical devices in several ways. 
For instance, a letter typed at the keyboard can represent a decimal ASCII ~ 
value, a character value, a character string containing one letter, or many other 
values depending on how the program stores and then interprets the input. 

Input Functions 8-1 



Similarly, DEC GKS accepts several types of input. DEC GKS accepts real 
numbers (as real values, coordinate points, or as a series of coordinate points), 
integers (as choice numbers, segment names, or pick identifiers), and character 
strings. To translate and store input from the physical devices according to 
the DEC GKS data types, DEC GKS defines logical input devices. Logical input 
devices are abstractions of the physical input devices that allow the user to 
input data, using a similar visual interface, despite the differences in physical 
devices. The value returned from a logical input device is called the device's 
measure. 

DEC GKS defines the logical input devices by the following components: 

• A workstation identifier 

• An input class 

• A logical device number 

The following sections discuss each component in detail. 

8.1.1 The Workstation Identifier 

The workstation identifier specifies an open workstation, of category GKS$K_ 
WSCAT~NPUT or GKS$K WSCAT_OUTIN, on which one or more physical 
input devices are present. For instance, a single workstation supporting input 
may use both a mouse and a keyboard for input. 

The capabilities of a specified workstation determine the prompt and echo types 
available, and the methods used for signaling the acceptance of an input value 
(called input triggers). A cursor is an example of a prompt (see Section 8.2 for a 
detailed discussion of prompts and echo types). Pressing the RETURN key to 
signal the acceptance of a value is an example of a trigger. 

8.1.2 The Input Class 

The input class is the second input component, and it tells DEC GKS the data 
type of the information to be entered. The six input classes are as follows: 

• Locator 

• Stroke 

• Valuator 

• Choice 

• String 

• Pick 

8-2 Input Functions 



A locator class device first positions a prompt on the workstation surface. The 
user can then move the prompt (on a VT241, the user can press the arrow 
keys), and if you are using an applicable input mode, trigger the input device 
(on a VT241, by pressing the RETURN key). This input class returns two real 
numbers that represent world coordinate values. DEC GKS transforms the 
input point from a device coordinate point to a normalized device coordinate 
(NDC) point, and then from an NDC point to a corresponding world coordinate 
point. 

A stroke class device also positions a prompt on the workstation surface. The 
user can then move the prompt (on a VT241, by pressing the arrow keys) and, 
when choosing a desired device coordinate point, the user signals DEC GKS 
(on a VT241, by pressing the space bar; on the VAXstations, you specify a 
distance vector and the user enters points by pressing a button on the mouse). 
The user keeps choosing points until the desired sequence is entered. This 
input class returns a sequence of real numbers that are the corresponding 
world coordinate values of the stroke. DEC GKS transforms the input points 
from device coordinate points to NDC points, and then from NDC points to 
corresponding world coordinate points. 

For more information concerning the DEC GKS coordinate systems, refer to 
Chapter 7, Transformation Functions. 

A valuator class device creates a picture on the workstation surface that 
represents a real number or a series of real number values. You specify the 
lowest and highest values. For several workstations, the valuator class may 
look like a radio dial with a pointer to a current value. The user moves the 
cursor up and down the scale (on a VT241, using the arrow keys) until it is 
positioned as desired (on a VT241, pressing the RETURN key can trigger this 
class of device). This input class returns the real number representing the 
pointer's last position on the scale. 

A choice class device creates a picture on the workstation surface that lists 
a series of choices. The user sees the choices as you label them; the choices 
are represented internally by integer values. For several workstations, the 
choices can look like a menu, with the currently selected choice highlighted 
(on a VT241, in complement rnode). The user moves among the choices (on a 
VT241, by pressing the arrow keys) until the user's choice is highlighted. When 
triggered (on a VT241, by pressing the RETURN key), this input class returns 
the integer representing the selected choice. 

A string class device creates an area on the workstation surface on which the 
user can enter a character string. Optionally, you can provide an initial string 
to prompt the user. DEC GKS appends the input string to the initial string. 
The user can enter a string as large as the defined input buffer. On many 
workstations, pressing the RETURN key can trigger the string input devices. 

Input Functions 8-3 



A pick class device positions a prompt on the workstation surface. The user 
moves the prompt among the segments on the workstation surf ace (on a 
VT241, by using the arrow keys), and if you are using an applicable input 
mode, the user can trigger the device (on a VT241, by pressing the RETURN 
key). The pick device returns integers that represent the name of the picked 
segment or the pick identifier associated with portions of a segment. (For 
detailed information concerning pick identifiers, refer to Chapter 9, Segment 
Functions.) 

Figure 8-1 illustrates possible visual interfaces for the logical input classes. 

Figure 8-1: Logical Input Classes 

Locator Stroke Valuator Choice String Pick 

~~ Up 

+ Down prompt> Yes 

_ Exit ~ 

ZK-3061-84 

Differences between workstations' implementations of logical input classes 
may be significant. For example, using a stroke input device on a VAXstation, 
you can specify X and Y device coordinate change vectors to tell the graphics 
handler when to add another device coordinate point to the stroke. When 
the user specifies a point whose distance from the last entered point exceeds 
both the specified X and Y vectors, the input device accepts the point as the 
next point in the stroke. This affects the smoothness of the line, allowing 
you to create relatively curved shapes instead of jagged lines. If you specify a 
relatively short X and Y difference, DEC GKS accepts many of the input points 
as you move the mouse. 

In contrast, on the VT241, you must move the arrow keys and signal each 
time you have reached a point you want to be a part of the stroke. If the point 
exceeds the X and Y change vector values, then the graphics handler accepts 
the points. 

8-4 Input Functions 



n

8.1.3 The Device Number 

DEC GKS also uses the logical device number to differentiate between various 
methods of entering the same class of data on the same workstation. For 
instance, a workstation may use both the mouse and the arrow keys on a 
keyboard as two distinct stroke logical input devices. You can distinguish 
between the two input devices by their logical device number. For instance, the 
graphics handler could assign the logical device number 1 to the stroke device 
using the mouse, and could assign the number 2 to the stroke device using the 
arrow keys on the keyboard. when you request input on such a workstation, 
you specify whether you wish to use stroke logical input device 1 or 2 (the 
mouse or the keyboard). You need to tell the user which physical devices (such 
as keyboard keys, or mouse buttons) control the particular logical input device. 

8.2 Prompt and Echo Types 

There are differences in the way a single workstation can prompt the user and 
can echo the input when using the same logical device. Some differences may 
be subtle. For example, a workstation may use either a plus sign or a set of 
cross hairs as a prompt for a single locator device, both triggered by pressing 
the RETURN key. To distinguish between different visual interfaces available 
for a single logical input device, that device can have a number of prompt and 
echo types. 

For example, the VT241 graphics handler accepts seven different prompt 
and echo types for its locator input devices. The prompt can be any of the 
following: 

• A box (similar in appearance to the pick aperture used for pick input) 

• A tracking plus sign (+ ) 

• Across hair 

• A tracking cross (X ) 

• Aline from the initial locator position to the current locator position 

• A rectangle whose diagonal connects the initial and current positions 

• A numeric representation of the current locator position 

Since the graphics handlers use DEC GKS primitives such as lines, markers, 
and fill areas to construct input prompts, the graphics handler optionally uses 
additional information that determines how the prompt and echoed input 
appear on the surface. For instance, a handler may use a polyline output 
attribute that would affect the appearance of cross hairs on the surf ace. The 

Input Functions 8-5 



requirements depend on the needs of the different prompt and echo types on 
different physical devices. 

To pass information to meet the requirements of a certain prompt and echo 
type on a given logical input device, you use the input data record. You can 
either use the default data record or specify a new data record to one of the 
input initializing functions (GKS$INIT_LOCATOR, GKS$INIT STROKE, .and 
so forth). 

See Section 8.2.1 for a detailed discussion of input data records. To review 
the available prompt and echo types for a given logical input device on your 
workstation, use the appropriate workstation description table inquiry function 
or refer to Appendix J, DEC GKS Specific Input Values. 

8.2.1 Input Data Records 

Due to the needs of a given prompt and echo type for a logical input class, you 
need to pass an input data record if you choose to call one of the initializing 
input functions (GKS$INIT_LOCATOR, GKS$INIT_STROKE, and so forth). 
The data record contains information relevant to the input prompt interface. 
For instance, the input data record for a locator logical input device may 
specify output attributes that affect the thickness or color of cross hairs on the 
workstation surface. 

When the GKS standard describes the input data records, it specifies required 
and nonrequired components of the data record. If a component is required, 
you can be certain that all GKS graphics handlers use that component of the 
data record. If an input data record component is nonrequired, the device 
handler must be able to accept that component, but may or may not use that 
component when generating the input prompt and echo. For instance, if 
polyline color is a nonrequired part of the data record, the GKS implementation 
cannot generate an error if it encounters the component, but does not have to 
change the color of the prompt on the workstation surface. 

8-6 Input Functions 



NOTE 

In almost all cases, the DEC GKS supported graphics handlers 
require that you pass the complete GKS standard data record. 
Depending on the device, the graphics handler may or may not 
use all of the components. For variable-length data records, you 
must be sure to pass the correct size of the data record. For detailed 
information concerning the required data record size, the initial 
data record values, or the components actually used by a particular 
graphics handler, refer to Appendix J, DEC GKS Specific Input 
Values. 

The following sections describe the input data records defined by the GKS 
standard. Input data records are defined according to the logical input class 
and the prompt and echo type. The tables list the GKS standard data records. 
The column labelled Required either contains an R for required or an N for 
nonrequired. If you have a general understanding of input data records, you 
may only need to skim these sections. 

Input Functions 8-7 



Choice Class 

Choice Class 

The GKS standard defines the following prompt and echo type values: 

Echo 
Type 
Number Description 

1 Designate the current choice integer value using an implementation-
specific technique. The device can use any portion of the data record (for 
information specific to your device, refer to the DEC GKS Device Specifics 
Reference Manual. 

2 Use the device's capability for prompting. GKS compares the number of 
prompts requested with the number of maximum prompts on the device. 
The data record specifies whether each prompt is turned on or turned off. 

3 Using an appropriate technique, allow the user to select one of a group of 
choices, each choice labeled with a string. 

4 Using an alphanumeric keyboard, allow the user to select one of a group 
of choices, each choice labeled with a string. 

5 Map a segment to the echo area and map the segment's pick identifiers to 
a numeric choice value. 

Prompt and echo type numbers greater than or equal to the number 6 are 
reserved for future standardization. Numbers less than or equal to 0 are device 
dependent. 

Choice Class: Prompt and Echo Type 1 
The GKS standard does not define a data record for this prompt and echo type. 
The format of the record is device dependent. 

8-8 Input Functions 



Choice Class 

Choice Class: Prompt and Echo Type 2 

Position Data Type Required Description 

1 

2 

Integer R Number of choice alternatives. 

Array (integer) R Array of prompts turned either on or off. 
GKS$K_CHOICE_l'ROMPT_ON (0) or 
GKS$K_CHOICE_I'ROMPT_OFF (1). 

Choice Class: Prompt and Echo Types 3 and 4 

Position Data Type Required Description 

1 Integer R 

2 Array (string) R 

Number of choice strings. 

Array of strings as choice labels. 

NOTE 

DEC GKS supported graphics handlers implement the data record for 
choice prompt and echo type 3 using three components instead of 
two. For detailed information, refer to Appendix J, DEC GKS Specific 
Input Values. 

Choice Class: Prompt and Echo Type 5 

Position Data Type Required Description 

1 Integer R Segment name. 

2 Integer R Number of choice alternatives. 

3 Array (integer) R Array of pick identifiers. 

Input Functions 8-9 



Locator Class 

Locator Class 

The GKS standard defines the following prompt and echo type values: 

Echo 
Type 
Number Description 

1 Mark the current location in an implementation-specific manner. The 
device can use any portion of the data record (for information specific to 
your device, refer to the DEC GKS Device Specifics Reference Manual. 

2 Mark the current location by using a vertical and horizontal line as 
crosshairs. 

3 Mark the current location using a tracking cross. 

4 Mark the current location using a line connecting the current location to 
the initial location. 

5 Mark the current location using a rectangle whose diagonal is the current 
location and the initial location. 

6 Mark the current location by displaying a digital representation of the 
location. 

Prompt and echo type numbers greater than or equal to the number 7 are 
reserved for future standardization. Numbers less than or equal to 0 are device 
dependent. 

Locator Class: Prompt and Echo Types 1, 2, 3, 6 
The GKS standard does not define a data record. You pass a null data record to 
the initializing input function. 

8-10 Input Functions 



locator Class 

Locator Ciass: Prompt and Echo Type 4 

Position Data Type Required Description 

1 Integer N Attribute control flag. GKS$K~CF_CURRENT 
(0) or GKS$K~CF~PECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 1 is GKS$K~CF~PECIFIED: 

Position Data Type Required Description 

2 Integer N Line type aspect source flag. GKS$K~SF_ 
BUNDLED (0) or GKS$K~SF~NDIVIDUAL 
(1). 

3 Integer N Line width scale factor aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

4 Integer N Polyline color index aspect source flag. 
GKS$K~1SF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

5 Integer N Polyline index. 

6 Integer N Line type index. 

7 Real N Line width scale factor. 

5 Integer N Polyline color index. 

Input Functions 8-11 



locator Class 

Locator Class: Prompt and Echo Type 5 

Position Data Type Required Description 

1 Integer N Polyline/fill area control flag. GKS$K~CF_ 
POLYLINE (0) or GKS$K_ACF_FILL _AREA 
(1). Use a polyline or a filled area to draw the 
rectangle whose diagonal connects the current 
and initial points. 

2 Integer N Attribute control flag. GKS$K~CF_CURRENT 
(0) or GKS$K~CF_SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 1 is GKS$K~CF~'OLYLINE and component 2 is GKS$K_ACF_ 
SPECIFIED: 

Position Data Type Required Description 

3 Integer N Line type aspect source flag. GKS$K~SF_ 
BUNDLED (0) or GKS$K~SF_INDIVIDUAL 
(1). 

4 Integer N Line width scale factor aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

5 Integer N Polyline color index aspect source flag. 
GKS$K_ASF BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

6 Integer N Polyline index. 

7 Integer N Line type index. 

8 Real N Line width scale factor. 

9 Integer N Polyline color index. 

8-12 Input Functions 



locator Class 

If component 1 is GKS$K_ACF_FILL _AREA and component 2 is GKS$K_ 
ACF_SPECIFIED: 

Position Data Type Required Description 

3 Integer N Fill area interior style aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

4 Integer N Fill area style index aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

5 Integer N Fill area color index aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

6 Integer N Fill area index. 

7 Integer N Fill area interior style. GKS$K~NTSTYLE_ 
HOLLOW (0 }, GKS$K_INTSTYLE_SOLID (1), 
GKS$K~NTSTYLE_I'ATTERN (2 ), or GKS$K_ 
INTSTYLE ~-iATCH (3 ) 

8 Integer N Fill area style index. 

9 Integer N Fill area color index. 

Input Functions 8-13 



Pick Class 

Pick Class 

The GKS standard defines the following prompt and echo type values: 

Echo 
Type 
Number Description 

1 

2 

3 

Use an implementation-defined technique to highlight at least the picked 
primitive. The device can use any portion of any of the data record (for 
information specific to your device, refer to the DEC GKS Device Specifics 
Reference Manual. 

Echo the group of primitives that share the same pick identifier as the 
picked primitive. 

Echo the whole segment containing the picked primitive. 

Prompt and echo type numbers greater than or equal to the number 4 are 
reserved for future standardization. Numbers less than or equal to 0 are device 
dependent. 

Pick Class: All Prompt and Echo Types 
The GKS standard does not define a data record for this logical input device. 
The pick data record is device dependent. 

8-14 Input Functions 



String Class 

String Class 

The GKS standard defines the following prompt and echo type values: 

Echo 
Type 
Number Description 

1 Display the current string value in the echo area. 

Prompt and echo type numbers greater than or equal to the number 2 are 
reserved for future standardization. Numbers less than or equal to 0 are device 
dependent. 

String Class: Prompt and Echo Type 1 

Position Data Type Required Description 

1 

2 

Integer R Input buffer size in number of characters. 

Integer R Initial cursor position within the string. The 
initial position must follow the formula: 
1 <= initial position <= length_initial~tring 

Input Functions 8-15 



Stroke Ciass 

Stroke Class 

The GKS standard defines the following prompt and echo type values: 

Echo 
Type 
Number Description 

1 

2 

3 

4 

Display the stroke using implementation-defined techniques. The device 
can use any portion of the data record (for information specific to your 
device, refer to the DEC GKS Device Specifics Reference Manual. 

Display a digital representation of the current stroke position within the 
echo area. 

Display a marker at each point of the current stroke. 

Display a line joining successive points of the current stroke. 

Prompt and echo type numbers greater than or equal to the number 5 are 
reserved for future standardization. Numbers less than or equal to 0 are device 
dependent. 

Stroke Class: Prompt and Echo Type 1 and 2 

Position Data Type Required Description 

1 Integer R Input buffer size in number of points. 

2 Integer N Editing position expressed as a stroke point. 

3 Real N X world coordinate change vector. 

4 Real N Y world coordinate change vector. 

5 Real N Time interval, in seconds. 

8-16 Input Functions 



Stroke Class 

Stroke Class: Prompt and Echo Type 3 

Position Data Type Required Description 

1 Integer R Input buffer size, in number of stroke points. 

2 Integer N Editing position expressed as a stroke point. 

3 Real N X world coordinate change vector. 

4 Real N Y world coordinate change vector. 

5 Real N Time interval, in seconds. 

6 Integer N Attribute control flag. GKS$K—ACF_CURRENT 
(0) or GKS$K_ACF_SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 6 is GKS$K_ACF_SPECIFIED: 

Position Data Type Required Description 

7 Integer N Marker type aspect source flag. GKS$K~SF_ 
BUNDLED (0) or GKS$K~SF~NDIVIDUAL 
(1). 

8 Integer N Marker size scale factor aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

9 Integer N Polymarker color index aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ASF_ 
INDIVIDUAL (1). 

10 Integer N Polymarker index. 

11 Integer N Marker type index. 

12 Real N Marker size scale factor. 

13 Integer N Polymarker color index. 

Input Functions 8-17 



Stroke Class 

Stroke Class: Prompt and Echo Type 4 

Position Data Type Required Description 

1 Integer R Input buffer size, in number of stroke points. 

2 Integer N Editing position expressed as a stroke point. 

3 Real N X world coordinate change vector. 

4 Real N Y world coordinate change vector. 

5 Real N Time interval, in seconds. 

6 Integer N Attribute control flag. GKS$K~CF_CURRENT 
(0) or GKS$K_ACF_SPECIFIED (1). Use the 
currently set output attributes or specify new 
attributes in this data record. 

If component 6 is GKS$K—ACF—SPECIFIED: 

Position Data Type Required Description 

7 Integer N Line type aspect source flag. GKS$K~SF_ 
BUNDLED (0) or GKS$K~SF—INDIVIDUAL 
(1). 

8 Integer N Line width scale factor aspect source flag. 
GKS$K_ASF_BUNDLED (0) or GKS$K~SF_ 
INDIVIDUAL (1). 

9 Integer N Polyline color index aspect source flag. 
GKS$K_ASF BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

10 Integer N Polyline index. 

11 Integer N Line type index. 

12 Real N Line width scale factor. 

13 Integer N Polyline color index. 

8-18 Input Functions 



Valuator Class 

Valuator Class 

The GKS standard defines the following prompt and echo type values: 

Echo 
Type 
Number Description 

1 Designate the current value using implementation-specific techniques. The 
device can use any portion of the data record (for information specific to 
your device, refer to the DEC GKS Device Specifics Reference Manual. 

2 Display a graphical representation of the current value (such as a dial or 
pointer). 

3 Display a digital representation of the current value. 

Prompt and echo type numbers greater than or equal to the number 4 are 
reserved for future standardization. Numbers less than or equal to 0 are device 
dependent. 

Valuator Class: All Prompt and Echo Types 

Position Data Type Required Description 

1 

2 

Real R Low value of the numeric range. 

Real R High value of the numeric range. 

Input Functions 8-19 



8.2.1.1 Using an Input Data Record 

Of the input data records described in the previous section, the DEC GKS 
supported graphics handlers must use all required components, but can use any 
number of the nonrequired components. Appendix J, DEC GKS Specific Input 
Values, describes the data records required by the DEC GKS supported handlers 
for each of the supported prompt and echo types, for each of the logical input 
devices. 

As shown in the previous section, the input data record components can be of 
several different data types. Most languages provide a way for you to declare 
a contiguous record that can contain items of different data types, but when 
using some languages, you need to use language-specific means to create such 
a construct. 

For tutorial information concerning the use of input data records, refer to the 
DEC GKS Reference Manual. For information concerning data record declara-
tions, refer to the code examples in this chapter. 

8.3 Input Inquiries 

When using the DEC GKS input functions, you may need to inquire from the 
workstation description table, workstation state list, or both. If you require 
default values, inquire from the description table. If you require the currently 
set values, inquire from the state list. 

The following sections describe inquiry function programming technique. 

8.3.1 Default and Current Input Values 

If you do not want your application to set all of the input values individu-
ally before calling one of the initializing functions (GKS$INIT LOCATOR, 
GKS$INIT_STROKE, and so forth), you can pass the input variables to one of 
two inquiry functions. To obtain default input values, you call the functions 
GKS$INQ _DEF_LOCATOR _DATA, GKS$INQ _DEF_STROKE _DATA, and so 
forth. To obtain the current input values, you call the functions GKS$INQ _ 
LOCATOR_STATE, GKS$INQ _STROKE _STATE, and so forth. 

When calling those functions, you need to use caution when passing the data 
record buffer size to the inquiry functions. The buffer size is a modifiable 
variable (read/write), and when passed to the inquiry function, it must contain 
the size of the buffer in order for the inquiry function to properly return the 
contents of the data record. 

8-20 Input Functions 



After the function call, DEC GKS writes the amount of the buffer actually used. 
You can compare this value to the data record size to see if DEC GKS had to 
truncate the record when writing it to the buffer. If DEC GKS truncated the 
data record, you need to decide whether to continue execution or to alter the 
buffer size so that the entire record fits. 

For tutorial information concerning the use of input data records and their 
buffers, refer to the DEC GKS Reference Manual. For information concerning the 
lengths of data record buffers, refer to the code examples in this chapter. 

8.3.2 Device-Independent Programming 

Depending on the type of input you use, you may need to call a large number 
of inquiry functions to create adevice-independent program. For instance, you 
need to check the following information: 

• The level of GKS, which determines the supported input operating modes. 
This information is important for applications that need to be transported to 
other systems. (DEC GKS is a level 2c implementation.) 

• The category of the workstation. 

• The number of input devices of a given class supported by the workstation. 

• The prompt and echo types supported by a given workstation. 

• The maximum possible echo area available on a given workstation. 

• The data record information for a given workstation using a specified 
prompt and echo type (see Section 8.3.1 for detailed information). 

For information concerning device-independent programming technique, refer 
to the DEC GKS User Manual. All of the code examples in this book are device 
independent. 

The following list presents the inquiry functions that you can use to obtain 
input information when writing device-independent code. 

GKS$INQ _CHOICE _STATE 

GKS$INQ _CURRENT_XFORMNO 

GKS$INQ _DEF CHOICE _DATA 

GKS$INQ_DEF LOCATOR_DATA 

GKS$INQ _DEF_I'ICK_DATA 

GKS$INQ _DEF_STRING _DATA 

GKS$INQ _DEF_STROKE _DATA 

GKS$INQ _LOCATOR_STATE 

GKS$INQ _MAX_DS_SIZE 

GKS$INQ_OPEN_WS 

GKS$INQ ~'ICK_STATE 

GKS$INQ _STRING _STATE 

GKS$INQ _STROKE _STATE 

GKS$INQ _VALUATOR_STATE 

Input Functions 8-21 



GKS$INQ _DEF_VALUATOR_DATA GKS$INQ _WS_CATEGORY 

GKS$INQ ~NPUT_DEV GKS$INQ _WS~CFORM 

GKS$INQ—INPUT QUEUE _OVERFLOW GKS$INQ _XFORM 

GKS$INQ _LEVEL 

8.4 Overlapping Viewports 

This section assumes that you have a knowledge of the DEC GKS coordinate 
systems. You may want to review Chapter 7, Transformation Functions, before 
reading further. 

When defining normalization viewports, it is possible to cause them to overlap 
on the NDC plane. You must consider the effects this has during input 
requests. To illustrate the need for a viewport priority list for use during 
input, consider two normalization viewports: the default viewport ([0,1 ] x 
[0,1 ]) of the unity transformation, and a viewport, belonging to normalization 
transformation number 1, having the range ([0.5, 1 ] x [0.5, 1 ]) in NDC values. 
The viewport of normalization transformation number 1 overlaps the right half 
of the default viewport. 

During stroke and locator input, the user positions the cursor on the device 
surface and returns one point or a series of points in device coordinates. 
DEC GKS translates the device coordinates to NDC points, and then uses the 
viewport input priority to determine which normalization transformation to use 
when translating the points to world coordinates. 

To decide which normalization viewport has a higher input priority, DEC GKS 
maintains a priority list. By default, DEC GKS assigns the highest priority to 
the unity transformation (0 ). The viewports of all remaining transformations 
decrease in priority as their transformation numbers increase (viewport 0 higher 
than viewport 1, 1 higher than 2, 2 higher than 3, and so forth). 

When using a locator class device, DEC GKS uses the normalization transfor-
mation of the highest input priority that contains the input point. When using 
stroke input, DEC GKS uses the normalization transformation of the highest 
priority that contains all of the points in the stroke. Since a locator or stroke 
input device could not return device coordinate points that could fall outside of 
the default normalization viewport ([0,1 ] x [0,1 ~ ), the unity transformation can 
always be used to transform stroke input data. 

For more information concerning transformations and viewport priority, refer to 
Chapter 7, Transformation Functions. 

8-22 Input Functions 



8.5 Input Operating Modes 

Using DEC GKS, you can use any of the logical input devices in any of the 
following three input operating modes: 

• Request mode 

• Sample mode 

• Event mode 

If you need to have the application program work synchronously with the input 
process (if the application must pause to wait for input to be complete), then 
you can use request mode. Request mode is the only input mode that you can 
use without first calling one of the GKS$SET_class~l/IODE functions. 

If you need to have the application program work asynchronously with the 
input process (if the application must run while the user enters input), then you 
can use sample or event mode. Sample and event mode differ. Using sample 
mode, the application takes the current measure of an input device without the 
user having to trigger. While in event mode, the device handler places triggered 
input values in atime-ordered queue to be accessed when the application 
chooses. 

To change the input operating mode f or a given device you call one of the 
functions GKS$SET_LOCATOR~ViODE, GKS$SET STROKE~VIODE, and 
so forth. These functions serve the second purpose of enabling and disabling 
echoing of the input prompt. This feature is useful when the DEC GKS echo 
types are inadequate and you need to echo the input in an application-specific 
manner. 

By default, all device prompts are active at once. For instance, if you press the 
arrow keys, you alter all prompts on the workstation surface whose devices use 
the arrow keys. Device handlers can provide methods for the user to deactivate 
all prompts except one, for each logical input device. In this way, the user 
can cycle through the devices, changing only one measure at a time, in some 
device-specific order. For more information on cycling logical input devices, 
refer to Appendix J, DEC GKS Specific Input Values. 

NOTE 

You cannot cycle past a device whose echoing is disabled. 
(Normally, notification of the device's turn in the cycle is the 
displaying of the device's prompt.) Using the corresponding physical 
device will always alter the measure of a nonechoing device. For 
instance, if you use pick device 1 on the VT241 while disabling its 
echoing, pressing the arrow keys always changes the measure of this 

Input Functions 8-23 



device no matter how you cycle through the remaining prompting 
devices. 

The following sections describe each of the input operating modes in greater 
detail. 

8.5.1 Request Mode 

In request mode, the application program pauses, and DEC GKS waits for the 
user either to trigger the end of input or to perform a break. You can use a 
logical input device in request mode without calling GKS$SET_LOCATOR_ 
MODE, GKS$SET_STROKE_1ViODE, and so forth, as long as you have not 
previously set the device to some other mode (request mode is the DEC GKS 
default mode). 

In order to initialize a logical input device, you must make sure that the device's 
prompt does not currently appear on the workstation surface. To initialize a 
device, the device must be in request mode. 

You can place any or all of the supported logical input devices in request 
mode at any one time, but you can only request input from one device at a 
time. You request input, from a specified logical input device on a specified 
workstation, by calling one of the functions GKS$REQUEST_CHOICE, 
GKS$REQUEST_LOCATOR, GKS$REQUEST_1'ICK, GKS$REQUEST_STRING, 
GKS$REQUEST_STROKE, or GKS$REQUEST_VALUATOR. Once you request 
input by calling one of the GKS$REQUEST_class functions, the input prompt 
appears on the workstation surface (if echoing is enabled). 

In request mode, there are several ways to trigger or break a request for input. 
If the user triggers the logical input device (as described in Appendix J, DEC 
GKS Specific Input Values), DEC GKS writes the value GKS$K_STATUS_OK 
to the request function input status argument. If the user performs a break 
during the request for input, which may be a different action on different 
workstations, DEC GKS writes the value GKS$K_STATUS_NONE to the 
request function input status argument. 

Choice and pick logical input devices allow the user an option other than 
returning data or breaking input. These logical devices allow the user to end 
the input process without choosing or picking. If the user triggers the input 
device without moving the prompt, DEC GKS returns one of the appropriate 
values, GKS$K_STATUS~TOCHOICE or GKS$K_STATUS_NOPICK, to the 
input status argument. (DEC GKS also returns GKS$K_STATUS_NOPICK if 
the user is not currently positioning the aperture on a segment. ) 

8-24 Input Functions 



Example 8-1 illustrates the use of the locator logical input device in request 
mode. Following the program example, Figure 8-2 illustrates the program's 
effect on a VT241 workstation. 

Example 8-1: Using a Locator Logical Input Device in Request Mode 

c 

0 

0 
C 

0 

C 

This program initializes and requests locator input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 1 ), PROMPT_ECHO_TYPE, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, XFORM, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, 
* DEVICE_NUM 
REAL ECHO_AREA( 4 ), WORLD X, WORLD_Y 
DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 
CALL GKS$INQ_LOCATOR_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, XFORM, WORLD_X, WORLD_Y, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

PROMPT_ECHO_TYPE = 1 

Since the device is in request mode by default, initialize the device. 
CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, WORLD_X, 
* WORLD_Y, XFORM, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_LOCATOR( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* XFORM, WORLD_X, WORLD_Y ) 

Output the input locator position, in world coordinates. 
WRITE(6,*) WORLD_X, WORLD_Y 

CALL GKS$DEACTIVATE_ws( ws_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example. 

O The DEC GKS VT241 handler ignores the data record for all supported 
locator prompt and echo types. This is a dummy argument. 

© The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the prompt moves. 

Input Functions 8-25 



© The function GKS$INQ _LOCATOR_STATL initializes the variables you 
need to pass to the input functions. The argument GKS$K_VALUE_ 
REALIZED tells the graphics handler to return the input values as they 
are implemented, instead of the way that the application may have set the 
values (GKS$K_VALUE_SET). 
After the function calf, RECORD_BUFFER_LENGTH contains the amount 
of the buffer filled with the written data record. If RECORD_SIZE is larger 
than RECORD_BUFFER_LENGTH, then you know that the data record 
was truncated to f"it into your declared buffer. 

O This code assigns new values to the input variables. For instance, the 
prompt and echo type is set to the number 1. 

0 The function GKS$INIT_LOCATOR initializes the locator logical input 
device. 

© The function GKS$SET_LOCATOR_1VIODE sets the input operating mode 
to request and enables echo. Request input and enabled echo are the DEC 
GKS defaults. 

O The function GKS$REQUEST_LOCATOR causes the device handler 
to place the input prompt on the workstation surface. At this point in 
the application, the input process takes control and the user can enter 
input. The device handler writes the world coordinate values, and the 
normalization transformation number used to translate the points, to the 
last arguments. 

Figure 8-2 shows the screen of a VT241 terminal at the request for input. 

8-26 Input Functions 



Figure 8-2: Initializing the Locator Logical Input Device—VT241 

ZK-5086-86 

8.5.2 Sample Mode 

In sample mode, the application program and the input process operate 
asynchronously. The user changes the input measure, and when the application 
chooses, it samples (takes) the current measure of the logical input device. The 
application determines when to end the input session. 

As soon as you specify sample mode to one of the functions GKS$SET_ 
LOCATOR_11/IODE, GKS$SET~TROKE~ViODE, and so forth, the input 
prompt appears on the workstation surface (if echoing is enabled). At this 
point, the user can enter input, but cannot trigger the device or cancel input. 

After you place the device in sample mode, you cannot reinitialize the device 
(by calling one of the GKS$INIT_class functions) until you remove the device's 
prompt from the workstation surface. To do this, place the device in request 
mode, reinitialize the device, and then place the device back into sample mode. 

Input Functions 8-27 



If you choose, you can place any or all of the supported logical input devices 
into sample mode at one time, but you only sample from one device at a time. 
At any point in the application, the program can call one of the functions 
GKS$SAMPLE_LOCATOR, GKS$SAMPLE_STROKE, and so forth, and the 
device handler returns the current measure from the specified workstation and 
the specified logical input device. When the program reaches some application-
defined condition, the application can remove the input prompt from the 
workstation surface by changing the input mode from sample mode back to 
request mode. 

When sampling choice and pick logical input devices, you can obtain an 
additional input status called GKS$K_STATUS~TOCHOICE (if the user did 
not alter the device's measure since it had been activated) or GKS$K_STATUS_ 
NOPICK (if the user did not move the aperture, or if the user is not currently 
positioning the aperture on a segment). Under the specified conditions, DEC 
GKS writes these values to the input status argument. 

Example 8-2 illustrates the use of the locator logical input device in sample 
mode. Following the program example, Figures 8-3 through 8-5 illustrate the 
program's effect on a VT241 workstation. 

Example 8-2: Using a Locator Logical Input Device in Sample Mode 

C This program initializes and samples locator input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 

O INTEGER WS_ID, DATA_RECOR.D( 1 ), PROMPT_ECHO_TYPE, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, XFORM, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, 
* DEVICE_NUM 

© REAL ECHO_AREA(4 ), WORLD_X, WORLD_Y, LARGER 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, LARGER / 0.03 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, 
* GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

© CALL GKS$INQ_LOCATOR_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, XFORM, WORLD_X, WORLD_Y, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Set the initial position of the cursor. 
WORLD_X = 0.9 
WORLD_Y = 0.0 

(continued on next page) 

8-28 Input Functions 

~-



Example 8-2 (Cont.~: Using a Locator Logical Input Device in Sample 
Mode 

C To initialize a device, make sure it's in request mode (the DEC 

~ GKS def cult) . 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, WORLD_X, 

* WORLD_Y, XFORM, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

0 CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 

C Instruct the user. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Move the locator upwards.' ) 
CALL GKS$TEXT( 0.05, 0.90, 'I will say when to stop.') 

C Do until the user moves the cursor closest to the top of the 

C device surface . 
DO WHILE ( WORLD_Y .LT. 0.9 ) 

© CALL GKS$SAMPLE_LOCATOR( WS_ID, DEVICE_NUM, 
* XFORM, WORLD_X, WORLD_Y ) 

C Tease the user as the prompt gets closer. 

IF ( ( WORLD_Y .GT. 0.1) .AND. 
* ( WORLD_Y .LT. 0.5 ) ) THEN 

CALL GKS$TEXT( 0.05, 0.85, 'You are still far away.') 

ENDIF 
IF ( ( WORLD_Y .GT. 0.5 ) .AND. 
* ( WORLD_Y .LT. 0.7 ) ) THEN 

CALL GKS$TEXT( 0.05, 0.80, 'You are getting closer.') 

ENDIF 
IF ( ( WORLD_Y .GT. 0.7 ) .AND. 
* ( WORLD_Y .LT. 0.9 ) ) THEN 

CALL GKS$TEXT( 0.05, 0.75, 'You are REALLY close.') 

ENDIF 

ENDDO 

CALL GKS$TEXT( 0.05, 0.70, 'YOU MADE IT!!!') 

C Turn off the sample prompt. 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

(continued on next page) 

Input Functions 8-29 



Example 8-2 (Cont.): Using a Locator Logical Input Device in Sample 
Mode 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The DEC GKS VT241 handler ignores the data record for all supported 
locator prompt and echo types. This is a dummy argument. 

© The echo area variable is an array of real numbers representing the 
rectangular echo area in device coordinates. The echo area defines a 
portion of the workstation surface on which the prompt moves. 

© The function GKS$INQ _LOCATOR_STATE initializes the variables you 
need to pass to the input functions. The argument GKS$K VALUE_ 
REALIZED tells the graphics handler to return the input values as they 
are implemented, instead of the way that the application may have set the 
values (GKS$K_VALUE_SET). 
After the function call, RECORD_BUFFER_LENGTH contains the amount 
of the buffer filled with the written data record. If RECORD_SIZE is larger 
than RECORD_BUFFER_LENGTH, then you know that the data record 
was truncated to fit into your declared buffer. 

O The function GKS$INIT_LOCATOR initializes the locator logical input 
device. 

0 The function GKS$SET_LOCATOR_IVIODE sets the input operating mode 
to sample and enables echo. 

© In the loop, the call to GKS$SAMPLE _LOCATOR writes the current 
measure of the device to its arguments until the user moves the cursor 
close to the top of the workstation surface. Note that when using a VT241 
locator device number 1, the user moves the cursor using the arrow keys. 
Pressing RETURN has no effect in sample mode; the application has 
complete control in accepting a sample input value. 

O when sampling is complete, the call to GKS$SET_LOCATOR~VIODE sets 
the input operating mode to request mode, removes the prompt from the 
workstation surface, and ends the sample input session. 

8-30 Input Functions 



Figures 8-3 through 8-5 show the screen of a VT241 terminal as the user 
moves the cursor towards the top of the workstation surf ace. Notice that 
triggering the device does not affect the acceptance of input. 

Figure 8-3: The Locator Logical Input Device in Sample Mode—
VT241 

Move the locator upwards. 
I wi l l say when to stop. 

J 
ZK 5970 HC 

Input Functions 8-31 



Figure 8-4: The Locator Logical Input Device in Sample Mode—
VT241 

M v h r o e t e locato upwards, 
I wi l l say when to stop, 
You are still far away, 
You are getting closer, 

ZK 5815~HC 

8-32 Input Functions 



Figure 8-5: The Locator Logical Input Device in Sample Mode-
VT241 

Move the locator upwards, 
I wi l l say when to stop, 
You are still far away, 
You are getting closer, 
You are REALLY close, 
YOU MADE IT!!! 

1 

 J 
ZK-5816-HC 

8.5.3 Event Mode 

In event mode, the application program and the input process operate 
asynchronously. Event mode differs from sample mode in that the user must 
trigger input values that DEC GKS then places in atime-ordered queue. Each 
set of input values is a report. The application chooses when to remove the 
reports from the queue, beginning with the first input value entered by the 
user. 

As soon as you specify event mode to one of the functions GKS$SET_ 
LOCATOR_1VIODE, GKS$SET_STROKE~ViODE, and so forth, the input 
prompt appears on the workstation surface (if echoing is enabled). At this 
point, the user can generate events that the device handler places in the event 
input queue. 

After you place the device in event mode, you cannot reinitialize the device 
(by calling one of the GKS$INIT_class functions) until you remove the device's 
prompt from the workstation surface. To do this, place the device in request 
mode, reinitialize the device, and then place the device back into event mode. 

Input Functions 8-33 



When you choose, you can process reports generated by the user. To remove 
reports from the event input queue, call the function GKS$AWAIT_EVENT. 
GKS$AWAIT~VENT checks the event queue, for a length of time up to the 
amount specified by the time-out argument. If the event queue contains at 
least one report, then GKS$AWAIT~VENT removes the oldest report, places 
it in the current event report entry in the DEC GKS state list, and allows the 
application to resume. If the queue remains empty for the entire time-out 
period, GKS$AWAIT~VENT writes GKS$K_INPUT_CLASS_NONE to its 
input class argument and allows the application to resume. 

Each input report contains the following information that corresponds to the 
generated event: 

• The workstation identifier 

• The input class of the device 

• The logical input device number 

To process the information in the current event report, you need to check the 
value written to the input class argument of GKS$AWAIT_EVENT. Once you 
determine the class of the device that generated the event, you call one of the 
functions GKS$GET_LOCATOR, GKS$GET_STROKE, and so forth. 

Remember that repeated calls to one of the functions GKS$GET_LOCATOR, 
GKS$GET_STROKE, and so forth, will write the same values to the output 
arguments since these funtions always obtain information from the current 
event report. The current event report does not change unless you call 
GKS$AWAIT_EVENT to fetch another report from the queue. Once you do 
this, a subsequent call to one of the GKS$GET_class functions obtains new 
input values. 

If you decide that you have enough information from a particular logical input 
device, you can place the device back in request mode (stopping the generation 
of further events), and you can then flush all of the events generated by that 
device that remain in the event input queue. To flush reports generated by a 
logical input device from the event input queue, call the function GKS$FLUSH_ 
DEVICE EVENTS. 

The following sections present the following information: 

• A program example using event mode 
• The handling of simultaneously generated events (GKS$K~NQ ~VIORE _ 

SIMUL _EVENTS) 

• The handling of input queue overflow (GKS$K_INQ _INPUT_QUEUE _ 
OVERFLOW) 

8-34 Input Functions 



8.5.3.1 Program Example Using Event Mode 

Example 8-3 illustrates the use of the locator logical input device in event 
mode. Following the program example, Figures 8-6 through 8-8 illustrate the 
p'rogram's effect on a VT241 workstation. 

Example 8-3: Using a Locator Logical Input Device in Event Mode 

C 

0 

This program initializes and generates locator events from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 1 ), PROMPT_ECHO_TYPE, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, XFORM, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, 
* DEVICE_NUM, CLASS 
REAL ECHO_AREA( 4 ), WORLD_X, WORLD_Y, LARGER 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, LARGER / 0.03 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, 
* GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Obtain the current locator input values. 
CALL GKS$INQ_LOCATOR_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, XFORM, WORLD X, WORLD_Y, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD BUFFER_LENGTH, RECORD_SIZE ) 

C 

C 
C 

0 

0 

C 

Set the initial position of the cursor. 
WORLD_X = 0.9 
WORLD_Y = 0.0 

To initialize a device, make sure it's in request mode (the DEC 
GKS default) . 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, WORLD_X, 
* WORLD_Y, XFORM, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

Inform the user . 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Move the locator upwards.' ) 
CALL GKS$TEXT( 0.05, 0.90, 'Trigger until I say to stop.') 

(continued on next page) 

Input Functions 8-35 



Example 8-3 ~Cont.): Using a Locator Logical Input Device in Event 
Mode 

C Do until the user moves the cursor closest to the top of the 
C device surface. 

DO WHILE ( WORLD_Y .LT. 0.9 ) 

C Check the event queue. 
© CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 

IF ( CLASS .NE. GKS$K_INPUT_CLASS_NONE) THEN 
CALL GKS$GET_LOCATOR( XFORM, WORLD_X, WORLD_Y ) 

ENDIF 

C Tease the user as the prompt gets closer. 
IF ( ( WORLD_Y .GT. 0.1 ) .AND. 
* ( WORLD_Y .LT. 0.5 ) ) THEN 

CALL GKS$TEXT( 0.05, 0.85, 'You are still far away.') 
ENDIF 
IF ( ( WORLD_Y .GT. 0.5) .AND. 
* ( WORLD_Y .LT. 0.7 ) ) THEN 

CALL GKS$TEXT( 0.05, 0.80, 'You are getting closer.') 
ENDIF 
IF ( ( WORLD_Y .GT. 0.7 ) .AND. 
* ( WORLD_Y .LT. 0.9 ) ) THEN 

CALL GKS$TEXT( 0.05, 0.75, 'You are REALLY close.') 
ENDIF 

ENDDO 

CALL GKS$TEXT( 0.05, 0.70, 'YOU MADE IT!!!') 

C Turn off the event prompt. 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The DEC GKS VT241 handler ignores the data record for all supported 
locator prompt and echo types. This is a dummy argument. 

© The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the prompt moves. 

© The function GKS$INQ _LOCATOR_STATE initializes the variables you 
need to pass to the input functions. The argument GKS$K_VALUE_ 
REALIZED tells the graphics handler to pass the input values as they are 
implemented, instead of the way that the application may have set the 
values (GKS$K_VALUE_SET). 

8-36 Input Functions 



After the function call, RECORD_BUFFER_LENGTH contains the amount 
of the buffer filled with the written data record. If RECORD_SIZE is larger 
than RECORD_BUFFER_LENGTH, then you know that the data record 
was truncated to fit into your declared buffer. 

O The function GKS$INIT_LOCATOR initializes the locator logical input 
device. 

0 The function GKS$SET_LOCATOR_1VIODE sets the input operating mode 
to event and enables echo. 

© In the loop, the call to GKS$AWAIT~VENT immediately checks the input 
queue (as specified by the time-out argument of 0). If the user has not yet 
entered an event, or if the application has removed all reports generated 
thus far, GKS$AWAIT~VENT returns GKS$K~NPUT_CLASS~TONE to 
its input class argument. 

O As long as the input-class argument is not GKS$K~NPUT_CLASS_ 
NONE, you can call GKS$GET_LOCATOR, since that is the only other 
device class that can generate an event. 

When accepting event reports is complete, the call to GKS$SET_ 
LOCATOR_NiODE sets the input operating mode to request mode, 
removes the prompt from the workstation surface, and ends the event input 
session. 

Figure 8-6 illustrates the surface of the VT241 when the input mode is set. 
Figure 8-7 illustrates the surface of the VT241 when the user moves the cursor 
but does not trigger the device. Figure 8-8 illustrates the surface of the VT241 
when the user triggers an event. 

Input Functions 8-37 



Figure 8-6: The Locator Logical Input Device in Event Mode—VT241 

~/ 

Move the locator inwards, 
Trigger unti l I say to stop, 

ZK 5834 HC 

8-38 Input Functions 



Figure 8-7: The Locator Logical Input Device in Event Mode—VT241 

Move the locator u wards, p 
Trigger unti l I say to stop. 

ZK 5835~HC 

Input Functions 8-39 



Figure 8-8: The Locator Logical Input Device in Event Mode—VT241 

Move the locator upwards, 
Trigger unti l I say to stop, ~—

YOU MADE IT!! ! 

 J 
ZK 5837 HC 

8.5.3.2 Placing Multiple Devices into Event Mode 

This section describes the following: 

• Methods by which you place more than one logical input device into event 
mode. 

• How to handle simultaneous events. 

• An example of cycling through devices currently in event mode. 

Example 8-4 places both a pick and valuator logical input device into event 
mode, and handles simultaneously generated events. This example places two 
diagonally split boxes on the workstation's surface and defines them as separate 
segments. (This portion of the Example 8-7.) Using pick input to choose the 
appropriate box and valuator input to determine the amount of scaling, the user 
can generate events to increase or decrease the size of each box. Input ends 
when the user picks the triangle labeled STOP. 

Following the program example, Figures 8-9 through 8-12 illustrate the effects 
of this program on a VT241. 

8-40 Input Functions 



Example 8-4: Placing Two Devices into Event Mode 

C This program generates events from two devices on a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, INITIAL_STATUS, SEGMENT, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, PICK_INPUT_STATUS, DEVICE_NUM, BOX_1, BOX_2, 
* TRIANGLE_1, TRIANGLE_2, NUM_POINTS, CLASS 
REAL ECHO_AREA( 4 ), PICK_DATA_RECORD( 1 ), 
* VAL_DATA_RECORD( 2 ) 
REAL X_VALUES( 4 ), Y_VALUES( 4 ), LARGER, 
* XFORM_MATRIXI( 6 ), XFORM_MATRIX2( 6 ), VALUE, 
* UPPER_LIMIT, LOWER_LIMIT 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, BOX_1 / 1 /, 
* BOX_2 / 2 /, TRIANGLE_1 / 1 /, TRIANGLE_2 / 2 /, 
* NUM_POINTS / 4 /, LARGER / 0.03 / 
DATA X_VALUES / 0.1, 0.4, 0.1, 0.1 / 
DATA Y_VALUES / 0.3, 0.6, 0.6, 0.3 / 

C The two elements in the valuator data record are the upper 
C and lower limits. 

EQUIVALENCE( VAL_DATA_RECORD( 1 ), LOWER_LIMIT ) 
EQUIVALENCE( VAL_DATA_RECORD( 2 ), UPPER_LIMIT ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

CALL GKS$CREATE_SEG( BOX_1 ) 
CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
X_VALUES( 3) = 0.4 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

(continued on next page) 

Input Functions 8-41 



Example 8-4 (Cont.~: Placing Two Devices into Event Mode 

X_VALUES( 2) = 0.9 
X_VALUES( 3) = 0.6 
X VALUES( 4) = 0.6 
Y_VALUES( 3) = 0.6 

CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 

CALL GKS$CREATE_SEG( BOX_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
X_VALUES( 3) = 0.9 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL AREA( NUM_POINTS, X VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

CALL GKS$SET_SEG_DETECTABILITY( BOX_1, GKS$K_DETECTABLE 
CALL GKS$SET_SEG_DETECTABILITY( BOX_2, GKS$K_DETECTABLE 

CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.2, 0.45, '1') 
CALL GKS$TEXT( 0.3, 0.45, '2') 
CALL GKS$TEXT( 0.7, 0.45, '1') 
CALL GKS$TEXT( 0.8, 0.45, 'STOP') 

C Declare a data length of one long word which will hold the 

C size of the pick prompt. 

® RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT MODE, 
* ECHO_FLAG, INITIAL_STATUS, SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, PICK_DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

SEGMENT = BOX_1 
PICK_ID = TRIANGLE_1 
INITIAL_STATUS = GKS$K_STATUS_NOPICK 

(continued on next page) 

8-42 Input Functions 



Example 8-4 (Copt.): Placing Two Devices into Event Mode 

C Initialize the segment transformation matrixes to the unity 
C transformtation. 

CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 
* 1.0, GKS$K_COORDINATES_WC, XFORM_MATRIXI ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 
* 1.0, GKS$K_COORDINATES_WC, XFORM_MATRIX2 ) 

C To initialize a device, make sure it's in request mode (the DEC 
C GKS default) . 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, INITIAL_STATUS, 
* SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA, 
* PICK_DATA_RECORD, RECORD_BUFFER_LENGTH ) 

C Set the input operating mode to event. 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

C Reinitialize the input values for the valuator device. 
0 RECORD_BUFFER_LENGTH = 8 

CALL GKS$INQ_VALUATOR_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE, 
* PROMPT_ECHO_TYPE, ECHO_AREA, VAL_DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

VALUE = 1.0 
UPPER_LIMIT = 1.5 
LOWER_LIMIT = 0.5 

CALL GKS$INIT_VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE, PROMPT_ECHO_TYPE, ECHO_AREA, 
* VAL_DATA_RECORD, RECORD BUFFER_LENGTH 

CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

(continued on next page) 

Input Functions 8-43 



Example 8-4 (Cont.): Placing Two Devices into Event Mode 

C Tell the user the task. 
CALL GKS$TEXT( 0.05, 0.95, 
* 'Move the cursor to scale a box.' ) 
CALL GKS$TEXT( 0.05, 0.90, 
* 'PF1 cycles i~,put devices ') 
CALL GKS$TEXT( 0.05, 0.85, 
* 'PF2 activates all devices.') 
CALL GKS$TEXT( 0.05, 0.80, 
* 'To finish, pick STOP.' ) 

C Initialize variables. 
PICK_INPUT_STATUS = GKS$K_STATUS_NOPICK 

C Do until the user picks the second triangle in the second box. 
© DO WHILE (( SEGMENT .NE. 2) .OR. ( PICK_ID .NE. 2 )) 

C Check the event queue. 
CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 

C Check for queue overflow . 
O CALL GKS$INQ_INPUT_QUEUE_OVERFLOW( ERROR_STATUS, WS_ID, 

* CLASS, DEVICE_NUM ) 

C If the queue has overflowed... 
IF ( ERROR_STATUS .EQ. 0) THEN 

CALL OVERFLOW( WS_ID, CLASS, DEVICE_NUM, PICK_INPUT_STATUS, 
* SEGMENT, PICK_ID, XFORM_MATRIXI, XFORM_MATRIX2 ) 
ENDIF 

CALL SCALE_IT( WS_ID, CLASS, DEVICE_NUM, PICK_INPUT_STATUS, 
* SEGMENT, PICK_ID, XFORM_MATRIXI, XFORM_MATRIX2 ) 

ENDDO 

C Turn off the event prompts. 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

(continued on next page) 

8-44 Input Functions 



Example 8-4 (Cont.): Placing Two Devices into Event Mode 

c **************************************************************** 
C Scale the appropriate segment... 

SUBROUTINE SCALE_IT( WS_ID, CLASS, DEVICE_NUM, 
* PICK_INPUT_STATUS, SEGMENT, PICK_ID, XFORM_MATRIXI, 
* XFORM_MATRIX2 ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INCLUDE 'SYS$LIBR.ARY:GKSMSGS.FOR' 
INTEGER CLASS, PICK_INPUT_STATUS, WS_ID, DEVICE_NUM, 
* PICK_ID, SEGMENT, MORE_EVENTS, ERROR_STATUS 
REAL VALUE, XFORM_MATRIXI( 6 ), XFORM_MATRIX2( 6 ), FIXED_X, 
* FIXED_Y, TEMP_X( 1 ), TEMP_Y( 1 ) 

C Get all of the simultaneous event reports. 
MORE_EVENTS = GKS$K_MORE_EVENTS 
DO WHILE ( MORE_EVENTS .NE. GKS$K_NOMORE_EVENTS ) 

IF ( CLASS .EQ. GKS$K_INPUT_CLASS_VALUATOR ) THEN 
CALL GKS$GET_VALUATOR( VALUE ) 

ELSE IF ( CLASS .EQ. GKS$K_INPUT_CLASS_PICK ) THEN 
CALL GKS$GET_PICK( PICK_INPUT_STATUS, SEGMENT, 

* PICK_ID ) 
ENDIF 

C Set the flag MORE_EVENTS... 
CALL GKS$INQ_MORE_SIMUL_EVENTS( ERROR_STATUS, 
* MORE_EVENTS ) 

C If there are more simultaneous events, take them from the queue... 
IF ( MORE_EVENTS .EQ. GKS$K_MORE_EVENTS) THEN 

CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 
ENDIF 
ENDDO 

C If appropriate, scale the segment. 
IF ((( PICK_INPUT_STATUS .NE. GKS$K_STATUS_NOPICK ) .AND. 
* ( VALUE .NE. 1.0 )) .AND. 
* ( CLASS .NE. GKS$K_INPUT_CLASS_NONE )) THEN 

(continued on next page) 

Input Functions 8-45 



Example 8-4 (Copt.): Placing Two Devices into Event Mode 

C Scale the appropriate segment... 
IF (SEGMENT .EQ. 1 ) THEN 

FIXED_X = 0.25 
FIXED_Y = 0.45 ' 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIXI, 

* FIXED_X, FIXED_Y, 0.0, 0.0, 0.0, VALUE, 
* VALUE, GKS$K_COORDINATES WC, XFORM_MATRIXI ) 

CALL GKS$SET_SEG_XFORM( SEGMENT, XFORM_MATRIXI ) 
ELSE 

FIXED_X = 0.75 
FIXED_Y = 0.45 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX2, 

* FIXED_X, FIXED_Y, 0.0, 0.0, 0.0, VALUE, 
* VALUE, GKS$K_COORDINATES_WC, XFORM_MATRIX2 ) 

CALL GKS$SET_SEG_XFORM( SEGMENT, XFORM_MATRIX2 ) 
ENDIF 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

ENDIF 

END 

The following numbers correspond to the numbers in the previous example: 

O This application must define the two data records PICK_DATA_RECORD 
and VAL _DATA_RECORD. PICK_DATA~ECORD contains a single real 
value that is the size of the pick aperture in device coordinates, as required 
by the VT241 graphics handler. VAL _DATA_RECORD contains two real 
values that are the upper and lower limits of the real values. 

© This code declares two separate segment transformation matrixes. These 
matrixes are required for scaling the boxes. 

0 The next lines of code draw and label each of the boxes. The two boxes are 
segments 1 and 2. The upper triangle within each box has a pick identifier 
of 1, and the other triangles have a pick identifier of 2. 

O This code initializes the pick logical input device with the requested input 
values. 

0 This code initializes the valuator logical input device with the requested 
input values. The upper limit of the real values is 1.5, which increases the 
size of the box by 50 percent. The lower limit is 0.5, which decreases the 
size of the box by 50 percent. 

® The WHILE loop calls the SCALE _IT subroutine until the user picks the 
second pick identifier (the lower triangle labelled STOP) in the second 
segment. 

O This code calls the OVERFLOW subroutine in the event of an event input 
queue overflow. Section 8.5.3.3 describes this subroutine in detail. 

8-46 Input Functions 



® The file GKSMSGS.FOR contains the constants that correspond with the 
DEC GKS error messages. The application includes this file to check for an 
error caused by the event input queue overflow. 

© This WHILE loop gets information from the current event report depending 
on the value of the input class argument established in the previous call to 
GKS$AWAIT~VENT. The loop checks for simultaneous events (multiple 
events entered in the queue by a single ' ' ng of a trigger) using a call to 
GKS$INQ ~VIORE _SIMUL EVENTS. If more simultaneous events exist, 
this code calls GKS$AWAIT~VENT to remove the event from the queue 
and process the information according to the input class of the device 
that generated the event. This loop continues until there are no more 
simultaneous events. 

m This code checks to make sure that the input values would make a change 
to the current picture. (For instance, if the scaling factor is 1.0, then the 
application does not scale the segment.) If the values are appropriate, this 
code creates the corresponding segment transformation matrix and then 
scales the segment. 

Figure 8-9 illustrates the effects of the program example before the user triggers 
any input; both of the logical input devices display their prompts. Figure 8-10 
shows the workstation surface if the user presses the PF1 key; only the valuator 
device is active and displaying a prompt. DEC GKS determines in which order 
to place the devices in the input cycle. Figure 8-11 shows the workstation 
surface if the user presses the PF1 key again; only the pick device is active 
and displaying a prompt. Figure 8-12 shows the effects of generating events 
on both devices. Notice that the user has control over which input values are 
accepted (placed on the input queue by triggering the device); using sample 
mode, the application program has control over which input values are accepted 
(at the time of sampling). 

Input Functions 8-47 



Figure 8-9: Placing Two Devices in Event Mode—VT241 

Move the cursor to scale a box , 

PF1 cycles input devices, 
PF2 activates al l devices, 
To finish, pick STOP , 

ZK 5817~HC 

8-48 Input Functions 



Figure 8-10: Placing Two Devices in Event Mode—VT241 

M_~e the cursor to scale a box , 
FFi cucles input devices , 
PF2 activates al l devices , 
?~ finish, pica STGP, 

ZK 5818-HC 

Input Functions 8-49 



Figure 8-11: Placing Two Devices in Event Mode—VT241 

ZK~5612•HC 

8-50 Input Functions 



Figure 8-12: Placing Two Devices in Event Mode—VT241 

ZK~5819-HC 

8.5.3.3 Event Input Queue Overflow 

Since the user can generate events as soon as you call one of the functions 
GKS$SET_LOCATOR_I1/IODE, GKS$SET~TROKE~ViODE, and so forth, it is 
possible for the user to fill the event input queue before the application has the 
chance to remove any of the event reports. 

If you attempt to call either GKS$AWAIT~VENT or GKS$FLUSH~VENTS 
in this situation, then DEC GKS logs an initial event input queue overflow 
error (GKS$K~RROR_147 Input queue has overflowed). If you continue to 
call either GKS$AWAIT~VENT or GKS$FLUSH EVENTS, the functions still 
perform their task but the logical input devices cannot accept additional input 
until you clear the input queue. Since you can generate error GKS$K~RROR_ 
147 many times while attempting to clear the queue, DEC GKS logs the error 
only once, the first time it occurs. 

To test for input queue overflow, you can call the function GKS$INQ _INPUT_ 
QUEUE _OVERFLOW immediately after a call to GKS$AWAIT_EVENT. If the 
error status argument to GKS$INQ ~NPUT_QUEUE _OVERFLOW is equal to 
the value 0, then the following is true. 

Input Functions 8-51 



• The event input queue has overflowed. 

• Information about the overflow is available. 

• GKS$INQ _INPUT_QUEUE _OVERFLOW writes the workstation identifier, 
the input class, and the logical device number of the device that last 
accepted input to its output arguments. 

If the error status argument to GKS$INQ~NPUT_QUEUE_OVERFLOW is 
not equal to the value 0, then the information needed to write to the output 
arguments is not available. In this case, the error status argument can equal 
one of the following values. 

• GKS$K~RROR_7 GKS not in proper state. 

• GKS$K~RROR_148 Input queue has not overflowed since GKS 
was opened or since the last invocation of INQUIRE INPUT QUEUE 
OVERFLOW. 

• GKS$K~RROR_149 Input queue has overflowed, but the associated 
workstation has been closed. 

If the event input queue overflows, you can continue to call GKS$AWAIT_ 
EVENT, removing the reports one by one until a call returns GKS$K_INPUT_ 
CLASS~TONE. As a second option, you can call the function GKS$FLUSH_ 
DEVICE EVENTS to remove the remaining reports generated by a device of a 
single input class. By calling GKS$FLUSH _DEVICE EVENTS for all possible 
logical input classes, you clear the buffer and allow the user to enter input 
again. 

Example 8-5 presents one method of handling an event input queue overflow. 

8-52 Input Functions 

l.J 



Example 8-5: Subroutine Handling Event Queue Overflow 

C Check for queue overf low . 
CALL GKS$INQ_INPUT_QUEUE_OVERFLOW( ERROR_STATUS, WS_ID, 
* CLASS, DEVICE_NUM ) 

C If the event input queue has overflowed... 

O IF ( ERROR_STATUS .EQ. 0) THEN 
CALL OVERFLOW( WS_ID, CLASS, DEVICE_NUM, PICK_INPUT_STATUS, 

* SEGMENT, PICK_ID, XFORM_MATRIXI, XFORM_MATRIX2 ) 
ENDIF 

C **************************************************************** 

C Take care of the input queue overflow... 
SUBROUTINE OVERFLOW( WS_ID, CLASS, DEVICE_NUM, 
* PICK_INPUT_STATUS, SEGMENT, PICK_ID, XFORM_MATRIXI 
* XFORM_MATRIX2 ) 

C 

C 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER CLASS, PICK_INPUT_STATUS, WS_ID, DEVICE_NUM, 
* PICK_ID, SEGMENT 
REAL VALUE, XFORM_MATRIXI( 6 ), XFORM_MATRIX2( 6 ) 

Stop any further input. 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

DO WHILE (( CLASS .NE. GKS$K_INPUT_CLASS_NONE) .AND. 
* ( CLASS .NE. GKS$K_INPUT_CLASS_PICK )) 

Check the event queue. 
CALL SCALE_IT( WS_ID, CLASS, DEVICE_NUM, PICK_INPUT_STATUS, 
* SEGMENT, PICK_ID, XFORM_MATRIXI, XFORM_MATRIX2 ) 

ENDDO 

(continued on next page) 

Input Functions 8-53 



Example 8-5 (Cont.~: Subroutine Handling Event Queue Overflow 

C If there is a pick event left, read the report. 
IF (CLASS .EQ. GKS$K_INPUT_CLASS_PICK ) THEN 

CALL GKS$GET_PICK( PICK_INPUT_STATUS, SEGMENT, 
* PICK_ID ) 
ENDIF 

C Flush the queue of all event reports. 
© CALL GKS$FLUSH_DEVICE_EVENTS( WS_ID, 

* GKS$K_INPUT_CLASS_VALUATOR, DEVICE_NUM ) 
CALL GKS$FLUSH_DEVICE_EVENTS( WS_ID, 
* GKS$K_INPUT_CLASS_PICK, DEVICE_NUM ) 

C Notify the user and 
0 CALL GKS$REDRAW_SEG 

CALL GKS$TEXT( 0.05 
CALL GKS$TEXT( 0.05 
CALL GKS$TEXT( 0.05 
CALL GKS$UPDATE_WS( 
READ (5 , * ) 

return to event mode... 
_ON_WS( WS_ID ) 
, 0.95, 'You entered input too fast!' ) 
0.90, 'Please enter the input again.' ) 

, 0.85, 'Press RETURN when ready.' ) 
WS_ID, GKS$K_POSTPONE_FLAG ) 

CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_EVENT, GKS$K_ECHO ) 

END 

The following numbers correspond to the numbers in the previous example: 

O If the error status argument to GKS$INQ _INPUT_QUEUE _OVERFLEW is 
the value 0, then there has been an overflow. 

© You can stop the further generation of events by placing all logical input 
devices in request mode, thus removing the prompts from the workstation 
surface. 

0 This code removes each of the reports and scales the appropriate segment 
until it reaches a pick event or the end of the queue. .The effect is to obtain 
the next pick event report, if one exists on the queue. 

0 You can use GKS$FLUSH_DEVICE_EVENTS to remove all reports 
remaining in the queue. 

0 This code notifies the user as to the cause of the delay in processing and 
then places the devices back into event mode. At this point, the user can 
once again generate event reports. 

8-54 Input Functions 



8.6 Function Descriptions 

This section describes the DEC GKS input functions in detail. 

Input Functions 8-55 



Initializing Input 

Initializing Input 

This section describes the functions used to specify input values to the logical 
input devices. In order to initialize a logical input device, you need to make 
sure that the device's prompt is not currently present on the surface of the 
workstation. So, to initialize a device, make sure that the device is in request 
mode (GKS$K~NPUT-11/IODE_REQUEST). This is the DEC GKS default 
mode. 

If the device is in request mode and you activate an input device without first 
calling one of the GKS$INIT_class functions, the logical input device uses the 
device's default values (see Section 8.3.2 for more information). 

This section describes the following functions: 

• GKS$INIT CHOICE 

• GKS$INIT_LOCATOR 

• GKS$INIT~'ICK 

• GKS$INIT~TRING 

• GKS$INIT~TROKE 

• GKS$INIT_VALUATOR 

8-56 Input Functions 



Initializing Input 
INITIALIZE CHOICE 

INITIALIZE CHOICE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$INIT_CHOICE establishes the initial values of a choice class 
device only if the device's prompt is not currently present on the workstation 
surface (the device must be in request mode). The initial values include the 
initial choice value, the prompt and echo type, the echo area, and the data 
record. Subsequent requests for choice input use the values you specify. 

Syntax 
GKS$INITIALIZE CHOICE (workstation_id, device number, initial status, 

initial choice, prompt_echo_type, echo area, 
datesrecord, size_of_record) 

G I N C H (workstation_id, dev_num, in_status, in_choice, p_e_type, x_min, 
x_max, y_min, y_max, dim_dr, drJ 

ginitchoice (workstation_id, dev, init, pet, area, record) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

Input Functions 8-57 



Initializing Input 
INITIALIZE CHOICE 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

initial status 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the initial status of the logical input device. This argument 
determines whether a value is returned if the user triggers the request before 
moving the cursor. The argument can be either of the following constants or 
values: 

Value Constant Description 

1 GKS$K_STATUS_OK The initial choice is chosen. 

2 GKS$K_STATUS_NOCHOICE No value is returned. 

initial choice 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer representing the initial highlighted choice. 

promp~echo_type 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the prompt and echo type. 

8-58 Input Functions 



Initializing Input 
INITIALIZE CHOICE 

echo area 

data type: array (real) 
access: read-only 
mechanism: by reference 

This argument is the echo area, which is afour-element array specifying the 
area on the workstation surface on which the prompt appears. Pass the device 
coordinates in the order X ~VIINIMUM, X ~1/IAXIMUM, Y~VIINIMUM, 
Y~1/IAXIMUM. 

data record 

data type: address (record) 
access: read-only 
mechanism: by reference 

This argument is a pointer to the data record whose size and contents are 
dependent on the prompt and echo type, and on the graphics handler require-
ments. Each workstation may require a different data record structure with 
different contents. 

size_of_record 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the amount of the data record buffer containing the actual 
data record, in bytes. 

Input Functions 8-59 



Initializing Input 
INITIALIZE CHOICE 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR~TEG_20 

-90 DECGKS$_ERROR_NEG_90 

-93 DECGKS$_ERROR_NEG_93 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$~RROR_25 

38 GKS$~RROR_38 

46 GKS$_ERROR_46 

51 GKS$_ERROR_51 

120 GKS$_ERROR_120 

122 GKS$_ERROR_122 

123 GKS$_ERROR_123 

140 GKS$_ERROR_140 

8-60 Input Functions 

GKS not in proper state: GKS in 
the error state in routine **** 

Internal GKS error: Bad memory 
freed in routine **** 

Internal GKS error: Prompt and 
echo type not supported in routine 
**** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Contents of input data record are 
invalid in routine **** 

Rectangle definition is invalid in 
routine **** 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist in 
routine **** 

Specified segment does not exist 
on specified workstation in routine 
**** 

Specified input device is not present 
on workstation in routine **** 



Initializing Input 
INITIALIZE CHOICE 

Error Completion 
Number Status Code Message 

141 GKS$~RROR_141 Input device is not in REQUEST 
mode in routine * * * * 

144 GKS$_ERROR_144 Specified prompt and echo type is 
not supported on this workstation 
in routine * * * 

145 GKS$_ERROR_145 Echo area is outside display space 
in routine * * * * 

146 GKS$~RROR_146 Contents of input data record are 
invalid in routine * * * * 

152 GKS$_ERROR_152 Initial value is invalid in routine 
**** 

Program Example -
Example 8-6 illustrates the use of the function GKS$INIT_CHOICE. Following 
the program example, Figure 8-13 illustrates the program's effect on a VT241 
workstation. 

0 

Example 8-6: Using a Choice Logical Input Device in Request Mode 

C This program initializes and requests choice input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD(3 ), NUM_CHOICES, SIZES(3 ), 
* ADDRESSES(3 ), PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, INITIAL_CHOICE, DEVICE_NUM, INPUT_CHOICE, 
* INITIAL_STATUS 
REAL ECHO_AREA(4 ) 

CHARACTER*80 CURRENT_STRINGS(3 ) 

DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

(continued on next page) 

Input Functions 8-61 



Initializing Input 
INITIALIZE CHOICE 

Example 8-6 (Cont.): Using a Choice Logical Input Device in Request 
Mode 

C First element in the data record is the number of choices. 
EQUIVALENCE( DATA_RECORD(1), NUM_CHOICES ) 
CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Establish the size of the record buffer: 12 bytes. 
RECORD_BUFFER_LENGTH = 12 

C The second element in the VT241 choice data record is the pointer to 
C the array containing sizes of each choice character string. You need 
C to initialize the pointer so that the array can be initialized. 

® DATA_RECORD ( 2) _ '/.LOC ( SIZES (1) ) 

C The third element in the VT241 choice data record is the pointer to the 
C array containing the pointers to the strings to be used. You need 
C to initialize the pointer so that the array can be initialized. 

DATA_RECORD ( 3) _ '/.LOC ( ADDRESSES (1) ) 
ADDRESSES ( 1) _ '/.LOC ( CURRENT_STRINGS ( 1 ) ) 
ADDRESSES( 2) _ '/.LOC( CURRENT_STRINGS( 2) ) 
ADDRESSES( 3) _ '/.LOC( CURRENT_STRINGS( 3) ) 

0 
C Inquire about the default values. 

NUM_CHOICES = 3 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

(continued on next page) 

8-62 Input Functions 



Initializing Input 
INITIALIZE CHOICE 

Example 8-6 (Copt.): Using a Choice Logical Input Device in Request 
Mode 

PROMPT_ECHO_TYPE = 1 
INITIAL_CHOICE = 2 

C Establish sizes of prompt strings... 
SIZES( 1) = 6 
SIZES(2) = 6 
SIZES(3) = 7 

C Establish locations of prompt strings... 
ADDRESSES ( 1 ) _ '/.LOC ( 'Castro' ) 
ADDRESSES (2) _ '/.LOC ( 'Street' ) 
ADDRESSES(3) _ '/.LOC( 'Station' ) 

C Since the device is in request mode by default, initialize the device. 
O CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 

* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

© CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* INPUT_CHOICE ) 

C Output the input choice number. 
WRITE(6,*) INPUT_CHOICE 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O For a VT241 choice logical input device with a prompt and echo type 1, the 
data record contains three values: the number of choices, the address of an 
array containing the size of the prompt strings, and the address of an array 
containing the addresses of the prompt strings. 

© The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the choice appears. 

© The program uses this array to store the current choice strings. If you 
do not initialize the elements in the array ADDRESSES to point to the 
elements in CURRENT_STRINGS, the function GKS$INQ _CHOICE _ 
STATE does not have a buffer in which to write the current strings. 

Input Functions 8-63 



Initializing Input 
INITIALIZE CHOICE 

~ Before calling GKS$INQ _CHOICE _STATE, you must initialize three 
modifiable arguments: RECORD_BUFFER_LENGTH, DATA~ECORD( 
2 ), DATA~ECORD(3 ), and the buffers for the current choice strings. 
The argument RECORD_BUFFER_LENGTH tells DEC GKS -the size of the 
buffer. The two components of DATA_RECORD contain addresses that tell 
DEC GKS where to write the initial string addresses and the initial strings. 
If you do not initialize these three modifiable arguments, you generate an 
error. 

0 This code sets the number of choices to be the number 3. 

© The function GKS$INQ _CHOICE _STATE initializes the variables you need 
to pass to the input functions. After the function call, RECORD_BUFFER_ 
LENGTH contains the amount of the buffer filled with the written data 
record. If RECORD_SIZE is larger than RECORD_BUFFER_LENGTH, 
then you know that the data record was truncated to fit into your declared 
buffer. 

O The function GKS$INIT_CHOICE initializes the choice logical input device. 

The call to GKS$SET_CHOICE~1/IODE places the logical input device into 
request mode and enables echoing of the input. 

O The function GKS$REQUEST_CHOICE prompts the user for input. The 
integral choice is written to the last argument. 

Figure 8-13 shows the screen of a VT241 terminal at the request for input. 

8-64 Input Functions 



Initializing Input 
INITIALIZE CHOICE 

Figure 8-13: Requesting Input from a Choice Logical Input Device—
VT241 

Street 

ZK-5085-86 

Input Functions 8-65 



Initializing Input 
INITIALIZE LOCATOR 

INITIALRE LOCATOR 

Operating States: WSOP, WSAC, SGOP 

Description 

The function GKS$INIT_LOCATOR establishes the initial values of a locator 
class logical input device only if the device's prompt is not currently present 
on the workstation surface (the device must be in request mode). The initial 
values include the world coordinates of the initial locator, the normalization 
transformation used to transform the initial locator point, the prompt and echo 
type, the echo area, and the data record. Subsequent requests for locator input 
use the values you specify. 

For more information about the locator position and echo types 2 and 3, see the 
Chapter 1, VAXstation Workstation Specifics, in the DEC GKS Device Specifics 
Reference Manual. 

If you do not call GKS$INIT_LOCATOR before you request. input from a locator 
logical input device, DEC GKS uses the default input values. 

Syntax 
G KS$ I N IT_LO CATO R (workstation_id, device number, initialer_ value, 

initial _ y_ value, transformation number, 
prompt_echo_type, echo area, data record, 
size_of_recordJ 

G I N LC (workstation~id, dev_num, x_form, px, py, p_e_type, x_min, x_max, 
y_min, y_max, dim_dr, drJ 

ginitloc (workstation_iddev, init, pet, area, record) 

8-66 Input Functions 



Initializing Input 
INITIALIZE LOCATOR 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

initial~va/ue 
initial_y_value 

data type: real 
access: read-only 
mechanism: by reference 

These arguments are the real numbers representing the initial position of the 
prompt, in world coordinates. 

transformation number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the normalization transformation number used to transform 
the initial point from world coordinates to normalized device coordinates. 

Input Functions 8-67 



Initializing Input 
INITIALIZE LOCATOR 

promp~echo_type 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the prompt and echo type. 

echo area 

data type: array (real) 
access: read-only 
mechanism: by reference 

This argument is the echo area, which is afour-element array specifying the 
area on the workstation surface on which the prompt appears. Pass the device 
coordinates in the order X _11/IINIMUM, X —MAXIMUM, Y—I1/IINIMUM, 
Y-1ViAXIMUM. 

data record 

data type: address (record) 
access: read-only 
mechanism: by reference 

This argument is a pointer to the data record whose size and contents are 
dependent on the prompt and echo type, and on the graphics handler require-
ments. Each workstation may require a different data record structure with 
different contents. 

size_of_record 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the amount of the data record buffer containing the actual 
data record, in bytes. 

8-68 Input Functions 



Initializing Input 
INITIALIZE LOCATOR 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 ~DECGKS$_ERROR_NEG_20 

-93 DECGKS$~RROR_NEG_93 

7 GKS$_ERROR_7 

20 GKS$~RROR~O 

25 GKS$_ERROR_25 

38 GKS$~RROR_38 

46 GKS$_ERROR_46 

51 GKS$_ERROR_51 

60 GKS$~RROR_60 

63 GKS$_ERROR_63 

65 GKS$_ERROR_65 

80 GKS$~RROR_80 

84 GKS$_ERROR_84 

92 GKS$_ERROR_92 

GKS not in proper state: GKS in 
the error state in routine **** 

Internal GKS error: Prompt and 
echo type not supported in routine 
**** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Contents of input data record are 
invalid in routine **** 

Rectangle definition is invalid in 
routine **** 

Polyline index is invalid in routine 
**** 

Linetype is equal to zero in routine 
**** 

Linewidth scale factor is less than 
zero in routine * * * * 

Fill area index is invalid in routine 
**** 

Style (pattern or hatch) index is 
equal to zero in routine **** 

Color index is less than zero in 
routine **** 

Input Functions 8-69 



Initializing Input 
INITIALIZE LOCATOR 

Error Completion 
Number Status Code Message 

140 GKS$~RROR_140 Specified input device is not present 
on workstation in routine **** 

141 GKS$_ERROR_141 Input device is not in REQUEST 
mode in routine * * 

144 GKS$_ERROR_144 Specified prompt and echo type is 
not supported on this workstation 
in routine **** 

145 GKS$~RROR_145 Echo area is outside display space 
in routine **** 

152 GKS$_ERROR_152 Initial value is invalid in routine 
**** 

Program Example 
To see an example of a call to this function, refer to Example 8-1. 

8-70 Input Functions 



Initializing Input 
INITIALIZE PICK 

INITIALIZE PICK 

Operating States: WSOP, wSAC, SGOP 

Description 
This function establishes the initial values of a pick class logical input device 
only if the device's prompt is not currently present on the workstation surface 
(the device must be in request mode). The initial values include the initial 
status value, the initial segment, the initial pick identifier, the prompt and echo 
type, the echo area, and the data record. Subsequent requests for pick input use 
the values you specify. 

If you do not call GKS$INIT~'ICK before you request input from a pick logical 
input device, DEC GKS uses the default input values. For more information 
concerning the default input values, refer to the DEC GKS Device Specifics 
Reference Manual. 

Syntax 
G KS$ I N I T_P I C K (workstation_id, device number, initial _status, 

initial _segment, initial ~ick_id, echo_ type, echo area, 
data record, size_of_record) 

G I N PK (workstation~d, dev_num, istatus, isegment, i~vick_id, p_e_type, 
x_min, x_max, y_min, y~nax, dim_dr, drJ 

ginitchoice (workstation~ddev, init, pet, area, record) 

Input Functions 8-71 



Initializing Input 
INITIALIZE PICK 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class, operating on the same workstation. 

initial status 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the initial status of the logical input device. This argument 
determines whether a value is returned if the user triggers the request before 
moving the cursor. The argument can be either of the following constants or 
values: 

Value Constant Description 

1 GKS$K_STATUS_OK The initial segment and pick identifier are 
chosen. 

2 GKS$K_STATUS~IOPICK No segment or pick identifier is returned. 

8—?2 Input Functions 



Initializing Input 
INITIALIZE PICK 

initial segment 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the segment identifier that tells DEC GKS on which segment 
to place the prompt initially. 

initial_picl~id 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the pick identifier used to tell DEC GKS where in the chosen 
segment to place the prompt initially. A pick identifier is an integer that 
represents a portion of segment, allowing you to pick primitives instead of 
picking the entire segment. 

echo type 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the prompt and echo type. 

echo area 

data type: 
access: 
mechanism: 

array (real) 
read-only 
by reference 

This argument is the echo area, which is afour-element array specifying the 
area on the workstation surface on which the prompt appears. Pass the device 
coordinates in the order X —11/IINIMUM, X _MAXIMUM, Y_1VIINIMUM, 
Y-1VIAXIMUM. 

data record 

data type: 
access: 
mechanism: 

This argument 

address (record) 
read-only 
by reference 

is a pointer to the data record whose size and contents are 

Input Functions 8-73 



Initializing Input 
INITIALIZE PICK 

dependent on the prompt and echo type, and on the graphics handler require-
ments. Each workstation may require a different data record structure with 
different contents. 

size_of_record 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the amount of the data record buffer containing the actual 
data record, in bytes. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR_NEG~O GKS not in proper state: GKS in 
the error state in routine * * * * 

-93 DECGKS$_ERROR_NEG_93 Internal GKS error: Prompt and 
echo type not supported in routine 
**** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

20 GKS$_ERROR_20 Specified workstation identifier is 
invalid in routine **** 

25 GKS$~RROR_25 Specified workstation is not open in 
routine **** 

3 7 GKS$_ERROR _3 7 Specified workstation is not of 
category OUTIN in routine **** 

46 GKS$~RROR_46 Contents of input data record are 
invalid in routine **** 

51 GKS$_ERROR_51 Rectangle definition is invalid in 
routine **** 

8-74 Input Functions 



Initializing Input 
INITIALIZE PICK 

Error Completion 
Number Status Code Message 

140 GKS$_ERROR_140 Specified input device is not present 
on workstation in routine **** 

141 GKS$_ERROR_141 Input device is not in REQUEST 
mode in routine * * * * 

144 GKS$_ERROR_144 Specified prompt and echo type is 
not supported on this workstation 
in routine * * * * 

145 GKS$~RROR_145 

152 GKS$~RROR_152 

Echo area is outside display space 
in routine **** 

Initial value is invalid in routine 
**** 

Program Example 
Example 8-7 illustrates the use of the function GKS$INIT~'ICK. Following 
the program example, Figure 8-14 illustrates the program's effect on a VT241 
workstation. 

Example 8-7: Using a Pick Logical Input Device in Request Mode 

C This program initializes and requests pick input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, INITIAL_STATUS, SEGMENT, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, 
* DEVICE_NUM, BOX_1, BOX_2, TRIANGLE_1, 
* TRIANGLE_2, NUM_POINTS 

O REAL ECHO_AREA(4), DATA_RECORD( 1 ) 
REAL X_VALUES(4 ), Y VALUES(4 ) 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, BOX_1 / 1 /, 
* BOX_2 / 2 /, TRIANGLE_1 / 1 /, TRIANGLE_2 / 2 /, 
* NUM_POINTS / 4 / 
DATA X_VALUES / 0.1, 0.4, 0.1, 0.1 / 
DATA Y_VALUES / 0.3, 0.6, 0.6, 0.3 / 

(continued on next page) 

Input Functions 8-75 



Initializing Input 
INITIALIZE PICK 

Example 8-7 (Cont.): Using a Pick Logical Input Device in Request 
Mode 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID 

CALL GKS$CREATE_SEG( BOX_1 ) 
CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES 
X_VALUES( 3) = 0.4 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES 
CALL GKS$CLOSE_SEG() 

X_VALUES( i ) = 0.6 
X_VALUES( 2) = 0.9 
X_VALUES( 3) = 0.6 
X_VALUES( 4) = 0.6 
Y_VALUES( 3) = 0.6 

CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 

0 

0 

CALL GKS$CREATE_SEG( BOX_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES 
X_VALUES( 3) = 0.9 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES 
CALL GKS$CLOSE_SEG() 

CALL GKS$SET_SEG_DETECTABILITY( BOX_1, GKS$K_DETECTABLE 
CALL GKS$SET_SEG_DETECTABILITY( BOX_2, GKS$K_DETECTABLE 

CALL GKS$SET_TEXT_HEIGHT( 0.03 ) 
CALL GKS$TEXT( 0.2, 0.45, '1') 
CALL GKS$TEXT( 0.3, 0.45, '2') 
CALL GKS$TEXT( 0.7, 0.45, '1') 
CALL GKS$TEXT( 0.8, 0.45, '2') 

(continued on next page) 

8-76 Input Functions 



Initializing Input 
INITIALIZE PICK 

Example 8-7 ~Cont.~: Using a Pick Logical Input Device in Request 
Mode 

C Declare a data length of one long word which will hold the 
C size of the pick prompt. 

© RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

SEGMENT = BOX_1 
PICK_ID = TRIANGLE_1 
PROMPT_ECHO_TYPE = 1 
INITIAL_STATUS = GKS$K_STATUS_NOPICK 

C Since the device is in request mode by default, initialize the device. 
CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, INITIAL_STATUS, 
* SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_PICK( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* SEGMENT, PICK_ID ) 

C Output the segment number and pick identifier. 
WRITE(6,*) INPUT_STATUS, SEGMENT, PICK_ID 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The DEC GKS VT241 handler requires a data record for prompt and echo 
type 1 that contains a real value (size of the pick aperture prompt in device 
coordinates). 
The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surf ace on which the prompt moves. 

© This code creates a box on the left side of the workstation surface and 
places it in a segment. The code divides the box diagonally and sets pick 
identifiers for each of the created triangles. 

© This code resets the X and Y world coordinate values so that the position of 
the box changes. 

Input Functions 8-77 



Initializing Input 
INITIALIZE PICK 

O This code creates a box on the right side of the workstation surface and. 
places it in a segment. ~ The code divides the box diagonally and sets pick 
identifiers for each of the created triangles. 

0 This code labels the triangles by their pick identifiers. 

© The function GKS$INQ ~'ICK_STATE initializes the variables you need 
to pass to the input functions. The argument GKS$K_VALUE~EALIZED 
tells the graphics handler to pass the input values as they are implemented, 
as opposed to the way that the application may have set the values 
(GKS$K_VALUE_SET). 
After the function call, RECORD_BUFFER_LENGTH contains the amount 
of the buffer filled with the written data record. If RECORD_SIZE is larger 
than RECORD_BUFFER_LENGTH, then you know that the data record 
was truncated to fit into your declared buffer. 

O This code assigns new values to the input variables. For instance, the initial 
segment identifier has the value 1. 

The function GKS$INIT_I'ICK initializes the request for choice input. 
© The call to GKS$SET~'ICK_NiODE places the logical input device into 

request mode and enables echoing of the input. 
m The function GKS$REQUEST_I'ICK prompts the user for input. The 

segment and pick identifiers are written to the last arguments. 

Figure 8-14 shows the screen of a VT241 terminal at the request for input. 

8-78 Input Functions 



Initializing Input 
INITIALIZE PICK 

Figure 8-14: Requesting Input from the Pick Input Device—VT241 

ZK 5087 86 

Input Functions 8-79 



Initializing Input 
INITIALIZE STRING 

INITIALIZE STRING 

Operating States: WSOP, WSAC, SGOP 

Description 

The function GKS$INIT_STRING establishes the initial values of a string class 
logical input device only if the device's prompt is not currently present on the 
workstation surface (the device must be in request mode). The initial values 
include the initial string value, the prompt and echo type, the echo area, and 
the data record. Subsequent requests for choice input use the values you 
specify. 

If you do not call GKS$INIT_STRING before you request input from the string 
logical input device, GKS uses the default input values. 

Syntax 
G KS$ I N IT_STR I N G (workstation_id, device number, initial string, 

echo type, echo area, datesrecord, size_of_recordJ 

G I N ST (workstation_id, dev_num, /string, istring, p_e_type, x_min, x_max, 
y_min, y_max, buf_len, i_cur~os, dim_dr, drJ 

GINST -Subset, (workstation_id, dev_num, /string, istring, p_e_type, x_min, 
x_max, y_min, y_max, buf_len, i_cur~vos, dim_dr, drJ 

ginitstring (workstation_iddev, init, pet, area, record) 

Arguments 

workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

8-80 Input Functions 



Initializing Input 
INITIALIZE STRING 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

initial string 

data type: string 
access: read-only 
mechanism: by descriptor 

This argument is the initial string displayed on the workstation surface. Once 
you request input, the user can delete or edit the initial string; otherwise, the 
newly input string is appended to the initial string. 

echo type 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the prompt and echo type. 

echo area 

data type: array (real) 
access: read-only 
mechanism: by reference 

This argument is the echo area, which is afour-element array specifying the 
area on the workstation surface on which the prompt appears. Pass the device 
coordinates in the order X _MINIMUM, X _MAXIMUM, Y—MINIMUM, 
Y~VIAXIMUM. 

da ta_record 

data type: address (record) 
access: read-only 
mechanism: by reference 

This argument is a pointer to the data record whose size and contents are 
dependent on the prompt and echo type, and on the graphics handler require-

Input Functions 8-81 



Initializing Input 
INITIALIZE STRING 

ments. Each workstation may require a different data record structure with 
different contents. Refer to the DEC GKS Device Specifics Reference Manual for 
more information concerning the device's data record requirements. 

size_of_record 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the amount of the data record buffer containing the actual 
data record, in bytes. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

-34 DECGKS$~RROR_NEG_34 

-93 DECGKS$_ERROR_NEG_93 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$—ERRORS 

38 GKS$_ERROR_38 

46 GKS$_ERROR_46 

8-82 Input Functions 

GKS not in proper state: GKS in 
the error state in routine **** 

String length less than or equal to 
0 in routine **** 

Internal GKS error: Prompt and 
echo type not supported in routine 
**** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Contents of input data record are 
invalid in routine **** 



Initializing Input 
INITIALIZE STRING 

Error Completion 
Number Status Code Message 

51 GKS$~RROR~51 Rectangle definition is invalid in 
routine **** 

140 GKS$_ERROR_140 Specified input device is not present 
on workstation in routine **** 

141 GKS$~RROR_141 Input device is not in REQUEST 
mode in routine * * * 

144 GKS$_ERROR_144 Specified prompt and echo type is 
not supported on this workstation 
in routine **** 

145 GKS$~RROR_145 

152 GKS$~RROR_152 

154 GKS$~RROR_154 

Echo area is outside display space 
in routine **** 

Initial value is invalid in routine 
**** 

Length of the initial string is greater 
than the buffer size in routine **** 

Program Example 
Example 8-8 illustrates the use of the function GKS$INIT~TRING. Following 
the program example, Figure 8-15 illustrates the program's effect on a VT241 
workstation. 

Input Functions 8-83 



Initializing Input 
INITIALIZE STRING 

Example 8-8: Using a String Logical Input Device in Request Mode 

0 

0 

C This program initializes and requests string input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 2 ), 
* PROMPT_ECHO_TYPE, ERROR_STATUS, BUFFER_LENGTH, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, STRING_SIZE, 
* CUR_POSITION 
REAL ECHO_AREA( 4 ) 
CHARACTER*80 INITIAL_STRING, INPUT_STRING 
DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

C First element in the data record is length of the buffer that 
C contains the input string. 

EQUIVALENCE( DATA_RECORD( 1 ), BUFFER_LENGTH ) 
EQUIVALENCE( DATA_RECORD( 2 ), CUR_POSITION ) 
CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 
RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ_STRING_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STRING, 
* STRING_SIZE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

0 

C 

BUFFER_LENGTH = 15 
PROMPT_ECHO_TYPE = 1 

Since the device is in request mode by default, initialize the device. 
CALL GKS$INIT_STRING( WS_ID, DEVICE_NUM, 'GKS>', 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_STRING_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

(continued on next page) 

8-84 Input Functions 



Initializing Input 
INITIALIZE STRING 

Example 8-8 (Copt.): Using a String Logical Input Device in Request 
Mode 

CALL GKS$REQUEST_STRING( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* INPUT_STRING, STRING_SIZE ) 

C Output the input string and its size. 
WRITE(6,*) INPUT_STRING, STRING_SIZE 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O For all logical input prompt and echo types, the data record contains the 
length of the buffer and the initial editing position . This buffer can only be 
as large as the maximum size supported by the workstation. To obtain that 
size, you can call GKS$INQ _DEF_STRING _DATA. 

© The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the initial string appears. 

© The defined string variables can contain a string the length of the terminal 
screen. You can alter the maximum size of the input string, every time you 
initialize the string logical input device, by changing the value associated 
with the buffer length. 

O The function GKS$INQ _STRING _STATE initializes the variables you need 
to pass to the input functions. After the function call, RECORD_BUFFER_ 
LENGTH contains the amount of the buffer filled with the written data 
record. If RECORD_SIZE is larger than RECORD_BUFFER_LENGTH, 
then you know that the data record was truncated to fit into your declared 
buffer. 

0 This code assigns new values to the input variables. For instance, the buffer 
length is defined to be 15 bytes. 

© The function GKS$INIT STRING initializes the string logical input device. 

Input Functions 8-85 



Initializing Input 
INITIALIZE STRING 

O The call to GKS$SET_STRING~1/IODE places the logical input device into 
request mode and enables echoing of the input. 

The function GKS$REQUEST STRING prompts the user for input. The 
input string is written to the second to last argument. The last argument 
contains the size of the input string. 

Figure 8-15 shows the screen of a VT241 terminal at the request for input. 

Figure 8-15: Requesting from the String Logical Input Device 
VT241 

cis: 

1 

 J 
Z K 5088 BE 

8-86 Input Functions 



Initializing Input 
INITIALIZE STROKE 

INITIALIZE STROKE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$INIT_STROKE establishes the initial values of a stroke class 
logical input device only if the device's prompt is not currently present on the 
workstation surface (the device must be in request mode). The initial values 
include the number of points in the initial stroke, the world coordinate values 
in the initial stroke, the normalization transformation number used to translate 
world coordinates of the initial stroke to NDC points, the prompt and echo 
type, the echo area, and the data record. Subsequent requests for choice input 
use the values you specify. 

If you do not call GKS$INIT_STROKE before you request input from a stroke 
logical input device, DEC GKS uses the default input values. 

Syntax 

G KS~ I N IT_STR O KE (workstation_id, device umber, initial_number_points, 
initial _stroke~r_ values, initial _stroke_ y_ values, 
transformation number, echo type, echo area, 
data record, size_of_record) 

G I N S K (workstation_id, dev_num, xform, num~vts, px, py, p_e_type, x_min, 
x_max, y_min, y_max, buf_len, dim_dr, drJ 

ginitstroke (workstation_iddev, init, pet, area, record) 

Input Functions 8-87 



Initializing Input 
INITIALIZE STROKE 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

initial_number_pnints 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the number of points in the initial stroke. 

initials troke_~ va/ ues 
initial_stroke_y_va/ues 

data type: array (real) 
access: read-only 
mechanism: by reference 

These arguments are the X and Y world coordinate values in the initial stroke. 

transformation number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the normalization transformation number used to transform 
the initial stroke from world coordinates to normalized device coordinates. 

8-88 Input Functions 



Initializing Input 
INITIALIZE STROKE 

echo type 

data type: 
access: 
mechanism: 

This argument is 

echo area 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

the prompt and echo type. 

(real) 
read-only 
by reference 

This argument is the echo area, which is afour-element array specifying the 
area on the workstation surface on which the prompt appears. Pass the device 
coordinates in the order X ~VIINIMUM, X _1VIAXIMUM, Y~ViINIMUM, 
Y_IVIAXIMUM. 

data record 

data type: 
access: 
mechanism: 

address (record) 
read-only 
by reference 

This argument is a pointer to the data record whose size and contents are 
dependent on the prompt and echo type, and on the graphics handler require-
ments. Each workstation may require a different data record structure with 
different contents. 

size_of_record 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the amount of the data record buffer containing the actual 
data record, in bytes. 

Input Functions 8-89 



Initializing Input 
INITIALIZE STROKE 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR~IEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

-93 DECGKS$~RROR~IEG_93 Internal GKS error: Prompt and 
echo type not supported in routine 
**** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

20 GKS$_ERROR_20 Specified workstation identifier is 
invalid in routine **** 

25 GKS$~RROR_25 Specified workstation is not open in 
routine **** 

38 GKS$—ERROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

46 GKS$_ERROR_46 Contents of input data record are 
invalid in routine * * * * 

51 GKS$_ERROR_51 Rectangle definition is invalid in 
routine **** 

60 GKS$_ERROR_60 Polyline index is invalid in routine 
**** 

63 GKS$_ERROR_63 Linetype is equal to zero in routine 
**** 

65 GKS$_ERROR_65 Linewidth scale factor is less than 
zero in routine * * * * 

66 GKS$~RROR_66 Polymarker index is invalid in 
routine **** 

67 GKS$._.ERROR_67 A representation for the specified 
Polymarker index has been defined 
on this workstation in routine *** * 

8-90 Input Functions 



Initializing Input 
INITIALIZE STROKE 

Error Completion 
Number Status Code Message 

69 GKS$_ERROR_69 Marker type is equal to zero in 
routine * * * * 

92 GKS$_ERROR_92 Color index is less than zero in 
routine * * * * 

140 GKS$~RROR_140 Specified input device is not present 
on workstation in routine **** 

141 GKS$_ERROR_141 ~ Input device is not in REQUEST 
mode in routine * * * 

144 GKS$_ERROR_144 Specified prompt and echo type is 
not supported on this workstation 
in routine **** 

145 GKS$_ERROR_145 Echo area is outside display space 
in routine * * * * 

152 GKS$_ERROR_152 Initial value is invalid in routine 
**** 

153 GKS$~RROR_153 The number of points in the initial 
stroke is greater than the buffer 
size in routine **** 

Program Example 
Example 8-9 illustrates the use of the function GKS$INIT_STROKE. Following 
the program example, Figure 8-16 illustrates the program's effect on a VT241 
workstation. 

Input Functions 8-91 



Initializing Input 
INITIALIZE STROKE 

Example 8-9: Using a Stroke Logical Input Device in Request Mode 

0 

C This program initializes and requests stroke input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 6 ), BUFFER_SIZE, 
* DIMENSION, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* TRANSFRM, NUM_POINTS, INPUT_MODE, ECHO_FLAG, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, 
* RET_SIZE_X, RET_SIZE_Y, I, EDIT_POSITION, ATTS_FLAG 
REAL ECHO_AREA( 4 ), STROKE_X( 50 ), 
* STROKE_Y( 50 ), X_INT, Y_INT, TIME_INT 
DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

C First element in the data 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 

record is the buffer size. 
1 ), BUFFER_SIZE) 
2 ), EDIT_POSITION) 
3 ), X_INT) 
4 ), Y_INT) 
5 ), TIME_INT) 
6 ), ATTS_FLAG) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 
CALL GKS$ACTIVATE_WS( WS_ID ) 
RECORD_BUFFER_LENGTH = 24 
CALL GKS$INQ_STROKE_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, DIMENSION, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, TRANSFRM, NUM_POINTS, STROKE_X, 
* STROKE_Y, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECOR.D, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

BUFFER_SIZE = 256 
PROMPT_ECHO_TYPE = 1 

C By specifying to DEC GKS to use the current attributes flag, you 
C need to pass the 24 byte data record instead of the 52 byte record. 

ATTS_FLAG = GKS$K_ACF_CURRENT 

(continued on next page) 

8-92 Input Functions 



Initializing Input 
INITIALIZE STROKE 

Example 8-9 ~Cont.): Using a Stroke Logical Input Device in Request 
Mode 

C Since the device is in request mode by default, initialize the device. 

0 CALL GKS$INIT_STROKE( WS_ID, DEVICE_NUM, 
* NUM_POINTS, STROKE_X, STROKE_Y, TRANSFRM, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

© CALL GKS$SET_STROKE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

O CALL GKS$REQUEST_STROKE( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, TRANSFRM, NUM_POINTS, '/.DESCR( STROKE_X ), 

* '/.DESCR( STROKE_Y ), RET_SIZE_X, RET_SIZE_Y ) 

C Output the input stroke values. 
DO I = 1, RET_SIZE_X, 1 
WRITE(6,*) STROKE_X( I ), STROKE Y(I ) 
END DO 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

0 The DEC GKS VT241 reads the first six stroke data record components (24 
bytes) for prompt and echo type 1. If the sixth component is GKS$K~CF_ 
CURRENT, then you must specify 24 bytes as the size of the record. If the 
sixth component is GKS$K_ACF_SPECIFIED, you need to pass the 52-byte 
record that contains all of the attribute specifications. For more information, 
see Section 8.2.1, or refer to the DEC GKS Device Specifics Reference Manual. 

© The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the prompt moves. 

© The function GKS$INQ _STROKE _STATE initializes the variables you 
need to pass to the input functions. The argument GKS$K_VALUE _ 
REALIZED tells the graphics handler to pass the input values as they are 
implemented, as opposed to the way that the application may have set the 
values (GKS$K_VALUE_SET). 

After the function call, RECORD_BUFFER_LENGTH contains the amount 
of the buffer filled with the written data record. If RECORD_SIZE is larger 
than RECORD_BUFFER_LENGTH, then you know that the data record 
was truncated to fit into your declared buffer. 

Input Functions 8-93 



Initializing Input 
INITIALIZE STROKE 

O This code assigns new values to the input variables. For instance, the buffer 
size is set to 256. To check the maximum allowable buffer size, call the 
function GKS$INQ _DEF_STROKE _DATA. 

0 The function GKS$INIT_STROKE initializes the request for stroke input. 
© The call to GKS$SET_STROKE_1VIODE places the logical input device into 

request mode and enables echoing of the input. 

O The function GKS$REQUEST_STROKE prompts the user for input. The 
stroke world coordinate values are written to the arguments of this function. 

Figure 8-16 shows the screen of a VT241 terminal at the request for input. 

Figure 8-16: Requesting from the Stroke Logical Input Device—
VT241 

~x 

ZK 5089 SE 

8-94 Input Functions 



Initializing Input 
INITIALIZE VALUATOR 

INITIALIZE VALUATOfl 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$INIT_VALUATOR establishes the initial values of a valuator 
class logical input device only if the device's prompt is not currently present 
on the workstation surface (the device must be in request mode). The initial 
values include the initial valuator value, the prompt and echo type, the echo 
area, and the data record. Subsequent requests for choice input use the values 
you specify. 

If you do not call GKS$INIT_VALUATOR before you request input from a 
valuator logical input device, DEC GKS uses the default input values. 

Syntax 
G KS$ I N IT_VALU ATO R (workstation_id, device number, initial _value, 

echo type, echo area, datesrecord, size_of_record) 

G I NVL (workstation_id, dev_num, (value, p_e_type, x_min, x_max, y_min, 
y_max, low_val, high_val, dim_dr, drJ 

ginitval (workstation_iddev, init, pet, area, record 

Arguments 
workstafion_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

Input Functions 8-95 



Initializing Input 
INITIALIZE VALUATOR 

device number 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

initial value 

data type: 
access: 
mechanism: 

This argument is 

echo type 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

the real number representing the initial value. 

integer 
read-only 
by reference 

This argument is the prompt and echo type. 

echo area 

data type: 
access: 
mechanism: 

(real) 
read-only 
by reference 

This argument is the echo area, which is afour-element array specifying the 
area on the workstation surface on which the prompt appears. Pass the device 
coordinates in the order X —MINIMUM, X _1VIAXIMUM, Y_IViINIMUM, 
Y~VIAXIMUM. 

data record 

data type: 
access: 
mechanism: 

address (record) 
read-only 
by reference 

This argument is a pointer to the data record whose size and contents are 
dependent on the prompt and echo type, and on the graphics handler require-
ments. Each workstation may require a different data record structure with 
different contents. 

8-96 Input Functions 



Initializing Input 
INITIALIZE VALUATOR 

size_of_record 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the amount of the data record buffer containing the actual 
data record, in bytes. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

-93 DECGKS$_ERROR_NEG_93 

7 GKS$_ERROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

38 GKS$_ERROR_38 

46 GKS$_ERROR_46 

51 GKS$_ERROR_51 

140 GKS$_ERROR_140 

141 GKS$~RROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

Internal GKS error: Prompt and 
echo type not supported in routine 
**** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine * * * * 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Contents of input data record are 
invalid in routine **** 

Rectangle definition is invalid in 
routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine **** 

Input Functions 8-97 



Initializing Input 
INITIALIZE VALUATOR 

Error Completion 
Number Status Code Message 

144 GKS$_ERROR_144 Specified prompt and echo type is 
not supported on this workstation 
in routine **** 

145 GKS$_ERROR_145 Echo area is outside display space 
in routine **** 

152 GKS$_ERROR_152 Initial value is invalid in routine 
**** 

Program Example 
Example 8-10 illustrates the use of the function GKS$INIT_VALUATOR. 
Following the program example, Figure 8-17 illustrates the program's effect on 
a VT241 workstation. 

Example 8-10: Using a Valuator Logical Input Device in Request 
Mode 

c 

0 

C 

This program initializes and requests valuator input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, DEVICE_NUM 
REAL ECHO_AREA(4 ), DATA_RECORD(2 ), UPPER_LIMIT, 
* LOWER_LIMIT, VALUE 
DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

The elements in the data record are the upper and lower limits. 
EQUIVALENCE( DATA_RECORD( i ), LOWER_LIMIT ) 
EQUIVALENCE( DATA_RECORD(2 ), UPPER_LIMIT ) 
CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

(continued on next page) 

8-98 Input Functions 



Initializing Input 
INITIALIZE VALUATOR 

Example 8-10 (Copt.): Using a Valuator Logical Input Device in 
Request Mode 

RECORD_BUFFER_LENGTH = 8 
Q CALL GKS$INQ_VALUATOR_STATE( WS_ID, DEVICE_NUM, 

* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE, 
* PROMPT_ECHO_TYPE, ECHO AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

VALUE = 1.5 
UPPER_LIMIT = 3.0 
LOWER_LIMIT = 0.0 
PROMPT_ECHO_TYPE = 1 

C Since the device is in request mode by default, initialize the device. 
0 CALL GKS$INIT_VALUATOR( WS_ID, DEVICE_NUM, 

* VALUE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH) 

© CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

O CALL GKS$REQUEST_VALUATOR( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, VALUE ) 

C Output the input valuator number. 
WRITE(6,*) VALUE 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the prompt moves. 
The DEC GKS VT241 graphics handler uses two components of the 
valuator input data record for prompt and echo type 1: the real value 
representing an upper limit, and another real value representing a lower 
limit. 

© The VT241 supports three valuator prompt and echo types represented by 
the integers 1, 2, and 3. Types 1 and 2 prompt the user with a rectangle 
and a horizontal scale. If using one of these types, the user moves an 
arrow, using the arrow keys, along the scale between the upper and lower 
limits. If using type 3, DEC GKS changes a single digital representation of 

Input Functions 8-99 



Initializing Input 
INITIALIZE VALUATOR 

the real values between the upper and lower limits, the user controlling the 
change of numbers using the arrow keys. 

© The function GKS$INQ _VALUATOR_STATE initializes the variables you 
need to pass to the input functions. After the function call, RECORD_ 
BUFFER_LENGTH contains the amount of the buffer filled with the 
written data record. If RECORD_SIZE is larger than RECORD_BUrrER_ 
LENGTH, then you know that the data record was truncated to fit into your 
declared buffer. 

O This code assigns new values to the input variables. For instance, the upper 
limit is set to the real value 3.0. 

0 The function GKS$INIT_VALUATOR initializes the request for valuator 
input. 

4 The call to GKS$SET VALUATOR_I1/IODE places the logical input device 
into request mode and enables echoing of the input. 

O The function GKS$REQUEST_VALUATOR prompts the user for input. The 
input real value is written to the last argument. 

Figure 8-17 shows the screen of a VT241 terminal at the request for input. 

8-100 Input Functions 



Initializing Input 
INITIALIZE VALUATOR 

Figure 8-17: Requesting from the Valuator Logical Input Device—
VT241 

{} . ~ p t} 

 J 
ZK 5217 86 

Input Functions 8-101 



Setting Input Operating Modes 

Setting Input Operating Modes 

This section describes the functions used to control prompt echoing and to 
change the input operating mode (see Section 8.5 for more information). You 
do not have to call these functions to initiate the input process. If you choose, 
you can call the appropriate request function (request is the default input 
operating mode for DEC GKS) and the logical input device echoes input by 
default. 

If you set the input operating mode to either sample or event mode, the input 
prompt appears on the workstation surface at the time that you call one of these 
functions. If you set the input operating mode to request, the prompt does not 
appear on the workstation surface until you call one of the GKS$REQUEST_ 
class functions. 

This section describes the following functions: 

• GKS$SET~ViODE_CHOICE 

• GKS$SET_NiODE_LOCATOR 

• GKS$SET_NiODE WICK 

• GKS$SET_1VIODE_STRING 

• GKS$SET_NiODE _STROKE 

• GKS$SET~ViODE_VALUATOR 

8-102 Input Functions 



Setting Input Operating Modes 
SET CHOICE MODE 

SET CHOICE MODE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_CHOICE_1ViODE establishes the operating mode of 
a choice logical input device, and determines whether DEC GKS echoes the 
prompt and input values on the workstation surface. 

Syntax 
GKS$SET_CHOICE_MODE (workstation_id, device number, 

operating mode, echo_flagJ 

G S C H M (workstation_id, dev_num, operating mode, echo) 

gsetchoicemode (workstation_id, dev, operating mode, echo) 

Arguments 
worksfation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

Input Functions 8-103 



Setting Input Operating Modes 
SET CHOICE MODE 

operating mode 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the operating mode specifying the method of input. This 
argument can be any of the following values, according to the DEC GKS 
standard: 

Value Constant Description 

0 GKS$K~NPUT_IVIODE_REQUEST Request mode 

1 GKS$K_INPUT_1VIODE_SAMPLE Sample mode 

2 GKS$K_INPUT_1VIODE_EVENT Event mode 

echo_ flag 

data type: integer 
access: ~ read-only 
mechanism: by reference 

This argument is the echo flag. This flag determines whether or not the prompt 
and input values are echoed on the workstation surface. This argument can be 
either of the following values or constants: 

Value Constant Description 

0 GKS$K_ Disable the echo. 
NOECHO 

1 GKS$K~CHO Enable the echo. 

8-104 Input Functions 



Setting Input Operating Modes 
SET CHOICE MODE 

Error Messages 

Error Completion 
Number Status Code Message 

-16 DECGKS$_ERROR_NEG_16 Echo switch is invalid in routine 
**** 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine * * * * 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

20 GKS$~RROR~O Specified workstation identifier is 
invalid in routine **** 

25 GKS$_ERROR_25 Specified workstation is not open in 
routine **** 

38 GKS$_ERROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$~RROR_140 Specified input device is not present 
on workstation in routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-6. 

Input Functions 8-105 



Setting Input Operating Modes 
SET LOCATOR MODE 

SET LOCATOR MODE 

Operating States: wSOP, WSAC, SLOP 

Description 
The function GKS$SET_LOCATOR_MODE establishes the operating mode of 
a locator logical input device, and determines whether DEC GKS echoes the 
prompt and input values on the workstation surface. 

Syntax 
GKS$SET_LOCATOR_MODE (workstation_id, device number, 

operating mode, echo_flagJ 

GSLCM (workstation~d, dev~um, operating mode, echo) 

gsetlocmode (workstation~d, dev operating~r►ode, echo) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_wS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

8-106 Input Functions 



Setting Input Operating Modes 
SET LOCATOR MODE 

operating mode 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the operating mode specifying the method of input. This 
argument can be any of the following values, according to the ANSI GKS 
standard: 

Value Constant Description 

0 GKS$K~NPUT~VIODE_ 
REQUEST 

1 GKS$K_INPUT~VIODE_SAMPLE 

2 GKS$K_INPUT_I1/IODE~VENT 

Request mode 

Sample mode 

Event mode 

echo_flag 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the echo flag. This flag determines whether or not the prompt 
and input values are echoed on the workstation surface. This argument can be 
either of the following values or constants: 

Value Constant Description 

0 GKS$K_ 
NOECHO 

Disable the echo. 

1 GKS$K_ECHO Enable the echo. 

Input Functions 8-107 



Setting Input Operating Modes 
SET LOCATOR MODE 

Error Messages 

Error Completion 
Number Status Code Message 

-16 DECGKS$_ERROR_NEG_16 Echo switch is invalid in routine 
**** 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

20 GKS$_ERROR_20 Specified workstation identifier is 
invalid in routine **** 

25 GKS$_ERROR_25 Specified workstation is not open in 
routine **** 

38 GKS$_ERROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$_ERROR_140 Specified input device is not present 
on workstation in routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-1. 

8-108 Input Functions 



Setting Input Operating Modes 
SET PICK MODE 

SET PICK MODE 

Operating States: WSOP, WSAC, SGOP 

Description 
This function establishes the operating mode of a pick logical input device, 
and determines whether DEC GKS echoes the prompt and input values on the 
workstation surface. 

Syntax 

GKS~SET_PICK_MODE (workstation_id, device number, operating mode, 
echo_flagJ 

GSPKM (workstation~d, dev_num, operating mode, echo) 

gsetpickmode (workstation_id, devoperating~node, echo) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN _WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. To see if your workstation 
supports more than one logical device type, refer to the DEC GKS Device 
Specifics Reference Manual. 

Input Functions 8-109 



Setting Input Operating Modes 
SET PICK MODE 

operating mode 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the operating mode specifying the method of input. This 
argument could be any of the following values, according to the ANSI GKS 
standard: 

Value Constant Description 

0 GKS$K_INPUT~VIODE~EQUEST Request mode 

1 GKS$K_INPUT_NiODE_SAMPLE Sample mode 

2 GKS$K_INPUT_1VIODE_EVENT Event mode 

echo_f/ag 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the echo flag. This flag determines whether or not the prompt 
and input values are echoed on the workstation surface. This argument can be 
either of the following values or constants: 

Value Constant Description 

0 GKS$K_NOECHO Disable the echo. 

1 GKS$K_ECHO Enable the echo. 

8-110 Input Functions 



Setting Input Operating Modes 
SET PICK MODE 

Error Messages 

Error Completion 
Number Status Code Message 

-16 DECGKS$_ERROR_NEG_16 Echo switch is invalid in routine 
**** 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

20 GKS$~RROR~O Specified workstation identifier is 
invalid in routine **** 

25 GKS$_ERROR_25 Specified workstation is not open in 
routine **** 

38 GKS$~RROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$~RROR_140 Specified input device is not present 
on workstation in routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-7. 

Input Functions 8-111 



Setting Input Operating Modes 
SET STRING MODE 

SET STRING MOUE 

Operating States: WSOP, WSAC, SGOP 

Description 

This function establishes the operating mode of a string logical input device, 
and specifies whether DEC GKS echoes the prompt and input values on the 
workstation surface. 

Syntax 
GKSZSET_STRING_MODE (workstation~d, devicesnumber, 

operating node, echo_NagJ 

GSSTM (workstation~d, dev~►um, operating~r►ode, echo) 

gsetstringmode (workstation_id, devoperating_mode, echo) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

8-112 Input Functions 



Setting Input Operating Modes 
SET STRING MODE 

operating mode 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the operating mode specifying the method of input. This 
argument could be any of the following values, according to the ANSI GKS 
standard: 

Value Constant Description 

0 GKS$K—INPUT_1VIODE BEQUEST Request mode 

1 GKS$K~NPUT-1VIODE—SAMPLE Sample mode 

2 GKS$K—INPUT_1VIODE~VENT Event mode 

echo flag 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the echo flag. This flag determines whether or not the prompt 
and input values are echoed on the workstation surface. This argument can be 
either of the following values or constants: 

Value Constant Description 

0 GKS$K_IVOECHO Disable the echo. 

1 GKS$K~CHO Enable the echo. 

Input Functions 8-113 



Setting Input Operating Modes 
SET STRING MODE 

Error Messages 

Error Completion 
Number Status Code Message 

-16 DECGKS$_ERROR_NEG_16 Echo switch is invalid in routine 
**** 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

20 GKS$_ERROR~O Specified workstation identifier is 
invalid in routine **** 

25 GKS$_ERROR_25 Specified workstation is not open in 
routine **** 

38 GKS$_ERROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$_ERROR_140 Specified input device is not present 
on workstation in routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-8. 

8-114 Input Functions 



Setting Input Operating Modes 
SET STROKE MODE 

SET STROKE MODE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_STROKE _1VIODE establishes the operating mode of 
a stroke logical input device, and determines whether DEC GKS echoes the 
prompt and input values on the workstation surface. 

Syntax 
GKS~SET_STROKE_MODE (workstation_id, device number, 

operating mode, echo_ flag) 

G SS KM (workstation_id, dev_num, operating mode, echo) 

gsetstringmode (workstation_id, dev,operating_mode, echo) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

Input Functions 8-115 



Setting Input Operating Modes 
SET STROKE MODE 

operating mode 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the operating mode specifying the method of input. This 
argument could be any of the following values, according to the ANSI GKS 
standard: 

Value Constant Description 

0 GKS$K—INPUT_NiODE_IZEQUEST Request mode 

1 GKS$K_INPUT_IVIODE_SAMPLE Sample mode 

2 GKS$K_INPUT—IVIODE_EVENT Event mode 

echo_f/ag 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the echo flag. This flag determines whether or not the prompt 
and input values are echoed on the workstation surface. This argument can be 
either of the following values or constants: 

Value Constant Description 

0 GKS$K~TOECHO Disable the echo. 

1 GKS$K—ECHO Enable the echo. 

8-116 Input Functions 



Setting Input Operating Modes 
SET STROKE MODE 

Error Messages 

Error Completion 
Number Status Code Message 

-16 DECGKS$_ERROR_NEG_16 Echo switch is invalid in routine 
**** 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine * * * * 

7 GKS$_ERROR_7 GKS not in proper state; GKS shall 
be in one of the states ~NSOP, 
WSAC, or SGOP in routine **** 

20 GKS$_ERROR~O Specified workstation identifier is 
invalid in routine * * 

25 GKS$_ERROR_25 Specified workstation is not open in 
routine **** 

38 GKS$_ERROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$_ERROR_140 Specified input device is not present 
on workstation in routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-9. 

Input Functions 8-117 



Setting Input Operating Modes 
SET VALUATOR MODE 

SET VALUATOR MODE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_VALUATOR—MODE establishes the operating mode of 
a valuator logical input device, and determines whether DEC GKS echoes the 
prompt and input values on the workstation surface. 

Syntax 
GKS$SET_VALUATOR_MODE (workstation~d, device number, 

operating mode, echo_flagJ 

GSVLM (workstation_id, dev_num, operating mode, echo) 

gsetvalmode (workstation_id, devoperating~node, echo) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

8-118 Input Functions 



Setting Input Operating Modes 
SET VALUATOR MODE 

operating mode 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the operating mode specifying the method of input. This 
argument could be any of the following values, according to the ANSI GKS 
standard: 

Value Constant Description 

0 GKS$K~NPUT~ViODE_REQUEST Request mode 

1 GKS$K_INPUT_IVIODE_SAMPLE Sample mode 

2 GKS$K_INPUT~ViODE~VENT Event mode 

echo flag 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the echo flag. This flag determines whether or not the prompt 
and input values are echoed on the workstation surface. This argument can be 
either of the following values or constants: 

Value Constant Description 

0 GKS$K~TOECHO Disable the echo. 

1 GKS$K~CHO Enable the echo. 

Input Functions 8-119 



Setting Input Operating Modes 
SET VALUATOR MODE 

Error Messages 

Error Completion 
Number Status Code Message 

-16 DECGKS$_ERROR_NEG_16 Echo switch is invalid in routine 
**** 

-20 DECGKS$_ERROR~IEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state; GKS shall 

20 GKS$_ERROR~O 

25 GKS$~RROR~S 

38 GKS$_ERROR_38 

140 GKS$_ERROR_140 

be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine * * * * 

Program Example 
To see an example of a call to this function, refer to Example 8-10. 

8-120 Input Functions 



Requesting Input 

Requesting Input 

This section describes the functions used to initiate the request for input from 
a logical input device. With DEC GKS, the default input operating mode is 
request mode. See Section 8.5 for information concerning the different types of 
input operating modes. 

This section describes the following functions: 

• GKS$REQUEST_CHOICE 

• GKS$REQUEST_LOCATOR 

• GKS$REQUEST~'ICK 

• GKS$REQUEST~TRING 

• GKS$REQUEST_STROKE 

• GKS$REQUEST VALUATOR 

Input Functions 8-121 



Requesting Input 
REQUEST CHOICE 

REQUEST CHOICE 

Operating States: WSOP, ~ WSAC, SGOP 

Description 
The function GKS$REQUEST_CHOICE prompts the user for input according to 
the specifications you may have passed to GKS$INIT_CHOICE and GKS$SET_ 
CHOICE~VIODE. At this point in the application program, the user makes a 
selection from several possibilities (for example, by moving the cursor through 
a menu) and then signals whether or not the input is valid. 

If the user accepts the input, the function writes GKS$K_STATUS_OK to the 
status argument, and the positive integer representing the user's choice to the 
input argument. 

If the user invokes a break action, the function returns GKS$K_STATUS_ 
NONE to the status argument, and the value 0 to the input argument. For 
choice class logical input devices, the value 0 indicates a break; the status 
GKS$K_STATUS_OK indicates input; and the status GKS$K_STATUS_ 
NOCHOICE indicates that the user did not make a choice (input was triggered 
without the cursor being moved). 

Syntax 
GKS$REQUEST_CHOICE (workstation_id, device number, input status, 

choice_valueJ 

GRQCH (workstation_id, dev~um, in_status, cl~numJ 

gregchoice (workstation_id, dev, response) 

8-122 Input Functions 



Requesting Input 
REQUEST CHOICE 

Arguments 

workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be any of the following values or constants: 

Value Constant Description 

0 GKS$K_STATUS_NONE Input break. 

1 GKS$K_STATUS_OK Input obtained. 

2 GKS$K_STATUS_NOCHOICE Triggered without choosing. 

choice value 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
user's choice. 

Input Functions 8-123 



Requesting Input 
REQUEST CHOICE 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR~EG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR _20 

25 GKS$_ERROR_25 

38 GKS$_ERROR_38 

140 GKS$_ERROR_140 

141 GKS$_ERROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine * * * * 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-6. 

8-124 Input Functions 



Requesting Input 
REQUEST LOCATOR 

REQUEST LOCATOR 

Operating States: WSOP, WSAC, SLOP 

Description 
The function GKS$REQUEST_LOCATOR prompts the user for input according 
to the specifications you may have passed to GKS$INIT_LOCATOR and 
GKS$SET_LOCATOR_NiODE. At this point in the application program, the 
user positions the cursor within the echo area, indicating a device coordinate 
corresponding to a world coordinate point, and then signals whether or not the 
input is valid. 

For more information about the locator position and echo types 2 and 3, see the 
Chapter 1, VAXstation Workstation Specifics, in the DEC GKS Device Specifics 
Reference Manual. 

If the user accepts the input, the function writes GKS$K_STATUS_OK to the 
status argument and writes the information about the input point to the last 
three arguments. One argument contains the transformation number used to 
transform the device coordinate to a world coordinate point. The remaining 
arguments contain the corresponding world coordinate points. 

If the user invokes a break action, the function writes GKS$K_STATUS_NONE 
to the status argument. DEC GKS ignores the current input values of the locator 
class device if the user invokes a break action. 

Syntax 
GKS~REaUEST_LOCATOR (workstation~d, device number, input status, 

transformation number, world~r, worl~LyJ 

GRaLC (workstation~d, dev_num, in_status, x_form, pos_x, pos_yJ 

gregloc (workstation~d, dev, response) 

Input Functions 8-125 



Requesting Input 
REaUESTLOCATOR 

Arguments 

workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_STATUS_NONE No input obtained. 

1 GKS$K_STATUS_OK Input obtained. 

transformation number 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of the normalization 
transformation used to translate the input point to a world coordinate point. 

8-126 Input Functions 



Requesting Input 
REaUESTIOCATOR 

world~r 
world_y 

data type: 
access: 
mechanism: 

real 
write-only 
by reference 

These are the arguments to which DEC GKS writes the X and Y world coordi-
nate values. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR _25 

38 GKS$~RROR_38 

140 GKS$_ERROR_140 

141 GKS$_ERROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine 

Program Example 
To see an example of a call to this function, refer to Example 8-1. 

Input Functions 8-127 



Requesting Input 
REQUEST PICK 

REQUEST PICK 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$REQUEST_I'ICK prompts the user for input according to the 
specifications you may have passed to GKS$INIT_1'ICK and GKS$SET_I'ICK_ 
MODE. At this point in the application program, the user positions a cursor on 
a portion of a segment and then signals whether or not the input is valid. 

If the user accepts the input, the function writes GKS$K_STATUS_OK to 
the status argument, and writes the integers representing the name of the 
chosen segment and the chosen pick identifier (refer to GKS$SET~'ICK~D in 
Chapter 9, Segment Functions) to the last two arguments. 

If the user invokes a break action, the function returns GKS$K_STATUS_ 
NONE to the status argument, and the input values are invalid. If the user 
triggered the input measure before moving the prompt, or if the user triggers 
input while the cursor is not positioned on a segment, then this function writes 
GKS$K_STATUS_NOPICK to the status argument. 

Syntax 
G KS$ R E QU E ST_PI C K (workstation_id, device number, input status, 

segment name, pick_id) 

GRQPK (workstation_id, dev_num, in_status, segment name, pick_idJ 

gregpick (workstation_id, dev, response) 

8-128 Input Functions 



Requesting Input 
REQUEST PICK 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN _WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be any of the following values or constants: 

Value Constant Description 

0 GKS$K_STATUS~NONE Break during input. 

1 GKS$K_STATUS_OK Input obtained. 

2 GKS$K_STATUS—NOPICK Input triggered without picking. 

segmentname 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
chosen segment. 

Input Functions 8-129 



Requesting Input 
REQUEST PICK 

picl mid 

data type: 
access: 
mechanism: 

integer 
write-only 
by reference 

This is the argument to which DEC GKS writes the integer pick identifier value 
associated with the picked primitive within the segment. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_ZO 

25 GKS$~RROR_25 

37 GKS$_ERROR_37 

140 GKS$_ERROR_140 

141 GKS$_ERROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is not of 
category OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine * * * * 

Program Example 
For an example of a call to this function, refer to Example 8-7. 

8-130 Input Functions 



Requesting Input 
REQUEST STRING 

REQUEST STRING 

Operating States: WSOP, WSAC, SGOP 

Description 

The function GKS$REQUEST_STRING prompts the user for input according to 
the specifications you may have passed to GKS$INIT_STRING and GKS$SET_ 
STRING~1/IODE. At this point in the application program, the user enters a 
string of characters at the prompt and then signals whether or not the input is 
valid. 

When requesting string input, the following two buffers exist: 

• The application's string buffer, whose size you specify when you pass the 
buffer argument by descriptor to GKS$REQUEST_STRING. 

• The logical input device's string buffer, whose size you can specify in the 
call to GKS$INIT_STRING. 

If the user accepts the input, the function writes GKS$K_STATUS_OK to the 
status argument, the character string to the application's buffer, and the length 
of the character string to the last argument. If the entered string is larger than 
the application's buffer, then you lose all additional data. You must make sure 
that your application's buffer is as large as the device's string buffer. 

If the user invokes a break action, the function returns GKS$K_STATUS_ 
NONE to the status argument, and the input arguments are not valid. 

Syntax 
GKS~REQUEST_STRING (workstation_id, device number, input status, 

string buffer, string_sizeJ 

G R QST (workstation_id, dev_num, in_status, num_char, cstringJ 

GRQST -Subset (workstation_id, dev_num, in_status, num_char, cstringJ 

gregstring (workstation_id, dev, response) 

Input Functions 8-131 



Requesting Input 
REQUEST STRING 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. To see if your workstation 
supports more than one logical device type, refer to the DEC GKS Device 
Specifics Reference Manual. 

inputstatus 

~ data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_STATUS_NONE No input obtained. 

1 GKS$K_STATUS_OK Input obtained. 

string buffer 

data type: string 
access: write-only 
mechanism: by descriptor, data type in descriptor 

This is the argument to which DEC GKS writes the input character string. This 
is the application's string buffer. 

8-132 Input Functions 



Requesting Input 
REQUEST STRING 

string size 

data type: 
access: 
mechanism: 

integer 
write-only 
by reference 

This is the argument to which DEC GKS writes the size of the character string, 

in bytes. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$~RROR_7 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

38 GKS$~RROR_38 

140 GKS$_ERROR_140 

141 GKS$—ERROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine * * * * 

Program Example 
To see an example of a call to this function, refer to Example 8-8. 

Input Functions 8-133 



Requesting Input 
REQUEST STROKE 

REQUEST STROKE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$REQUEST_STROKE prompts the user for input according to 
the specifications you may have passed to GKS$INIT STROKE and GKS$SET_ 
STROKE_I1/IODE. At this point in the application program, the user designates 
certain points to be contained in the stroke and then signals whether or not the 
input is valid. 

If the user accepts the input, the function writes GKS$K_STATUS_OK to the 
status argument, and writes the normalization transformation number used to 
translate the device coordinates to world coordinate points, the returned stroke 
points, the number of entered points, and the number of accepted points to the 
corresponding output arguments. 

When requesting stroke input, the following two buffers exist: 

• The application's stroke buffer, whose size you specify when you pass the 
buffer argument by descriptor to GKS$REQUEST_STROKE. 

• The logical input device's stroke buffer, whose size you can specify in the 
call to GKS$INIT STROKE. 

DEC GKS can return points up to the number specified by the size of the 
application's X and Y coordinate buffers. If the size of the entered stroke is 
larger than the number of points placed in the application's buffers, you lose all 
additional data. You must make sure that your application's buffers are as large 
as the device's stroke buffers. 

If the user invokes a break action, the function returns GKS$K_STATUS_ 
NONE to the status argument, and the input values are not valid. 

8-134 Input Functions 



Requesting Input 
REQUEST STROKE 

Syntax 
GKS$REQUEST_STROKE (workstation_id, device number, input status, 

transformation number, num_entered~oints, 
stroke~buffer~r, stroke buffer_ y, stroke_size~r, 
stroke_size_yJ 

G R QS K (workstation~d, dev_num, max~ts, in_status, xform, num~ts, px, 
pyJ 

gregstroke (workstation~d, dev, response) 

Arguments 

workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be either of the following values or constants. 

Input Functions 8-135 



Requesting Input 
REQUEST STROKE 

Value Constant Description 

0 GKS$K_STATUS~IONE No input obtained. 

1 GKS$K_STATUS_OK Input obtained. 

transformation number 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of the normalization 
transformation used to translate the input points to world coordinate points. 

num_entered_points 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of points in the 
stroke entered by the user. 

stroke_buffer~r 
stroke_buffer_y 

data type: array (real) 
access: write-only 
mechanism: by reference 

These are the arguments to which DEC GKS writes the X and Y world coordi-
nate values of the accepted stroke. These arguments are the application's stroke 
buffer. 

stroke_size~r 
stroke_size_y 

data type: integer 
access: write-only 
mechanism: by reference 

These are the arguments to which DEC GKS writes the number of stroke points 
that DEC GKS actually accepted. 

8-136 Input Functions 



Requesting Input 
REQUEST STROKE 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$~RROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

38 GKS$_ERROR_38 

140 GKS$~RROR_140 

141 GKS$_ERROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine * * * * 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine * * * * 

Program Example 
For an example of a call to this function, refer to Example 8-9. 

Input Functions 8-137 



Requesting Input 
REQUEST VALUATOR 

REQUEST VALUATOR 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$REQUEST_VALUATOR prompts the user for input according 
to the specifications you may have passed to GKS$INIT VALUATOR and 
GKS$SET VALUATOR_1ViODE. At this point in the application program, the 
user selects a value within a defined range and then signals whether or not the 
input is valid. 

If the user accepts the input, the function writes GKS$K_STATUS_OK to the 
status argument, and the selected real number to the input argument. 

If the user invokes a break action, the function returns GKS$K_STATUS_ 
NONE to the status argument, and the input value is not valid. 

Syntax 
GKS$REQUEST_VALUATOR (workstation_id, device number, input status, 

real value) 

GRaVL (workstation_id, dev_num, in_status, value) 

gregval (workstation_id, dev, response) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

8-138 Input Functions 



Requesting Input 
REQUEST VALUATOR 

device number 

--data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_STATUS_NONE No input obtained. 

1 GKS$K_STATUS_OK Input obtained. 

real value 

data type: real 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the real number chosen by the 
user. 

Input Functions 8-139 



Requesting Input 
REQUEST VALUATOR 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

38 GKS$~RROR_38 

140 GKS$~RROR_140 

141 GKS$_ERROR_141 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in REQUEST 
mode in routine * * * * 

Program Example 
For an example of a call to this function, refer to Example 8-10. 

8-140 Input Functions 



Sampling Input 

Sampling Input 

This section describes the functions used to sample the current measure of 
a logical input device. DEC GKS returns the measure of the device without 
requiring a trigger from the user. See Section 8.5 for information concerning 
the different types of input operating modes. 

This section describes the following functions: 

• GKS$SAMPLE _CHOICE 

• GKS$SAMPLE_LOCATOR 

• GKS$SAMPLE WICK 

• GKS$SAMPLE _STRING 

• GKS$SAMPLE _STROKE 

• GKS$SAMPLE_VALUATOR 

Input Functions 8-141 



Sampling Input 
SAMPLE CHOICE 

SAMPLE CHOICE 

Operating States: WSOP, vVSAC, SGOP 

Description 
The function GKS$SAMPLE _CHOICE writes the current measure of the 
specified choice logical input device to the corresponding output argument. 

If the input is valid, the function writes GKS$K_STATUS_OK to the status 
argument and writes the positive integer representing the user's choice to the 
input argument. 

If the initial choice status is GKS$K_STATUS—NOCHOICE, and if the user 
did not move the prompt from its initial position, this function writes GKS$K_ 
STATUS_NOCHOICE to the status argument (this indicates that the user did 
not make a choice yet). 

Syntax 
GKS~SAMPLE_CHOICE (workstation~d, devicesnumber, input status, 

choice_valueJ 

GSMCH (workstation_id, dev_num, in_status, c%numJ 

gsamplechoice (workstation_id, dev, response) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

8-142 Input Functions 



Sampling Input 
SAMPLE CHOICE 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be either of the following values or constants: 

Value Constant Description 

1 GKS$K_STATUS_OK Input obtained. 

2 GKS$K_STATUS_NOCHOICE Sampled without choosing. 

choice value 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
user's choice. 

Input Functions 8-143 



Sampling Input 
SAMPLE CHOICE 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR~EG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR~O 

25 GKS$_ERROR_25 

38 GKS$~RROR_38 

140 GKS$_ERROR_140 

142 GKS$_ERROR_142 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine * * * 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in SAMPLE 
mode in routine **** 

Program Example 
Example 8-11 illustrates the use of the function GKS$SAMPLE_CHOICE. 
Following the program example, Figures 8-18 through 8-20 illustrate the 
program's effect on a VT241 workstation. 

8-144 Input Functions 



Sampling Input 
SAMPLE CHOICE 

Example 8-11: Using a Choice Logical Input Device in Sample Mode 

C This program initializes and Samples choice input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 3 ), NUM_CHOICES, SIZES( 3 ), 
* ADDRESSES( 3 ), PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 

* INPUT_STATUS, INITIAL_CHOICE, DEVICE_NUM, INPUT_CHOICE, 

* INITIAL_STATUS, NUM_POINTS, COLORI, COLOR2, COLOR3 
REAL ECHO_AREA( 4 ), PX( 4 ), PY( 4 ), LARGER 
DATA PX / 0.05, 0.1, 0.075, 0.05 / 
DATA PY / 0.85, 0.85, 0.80, 0.85 / 
DATA NUM_POINTS / 4 /, COLORI / 1 /, COLOR2 / 2 /, 

* COLOR3 / 3 /, LARGER / 0.03 / 

CHARACTER*80 CURRENT_STRINGS( 3 ) 

DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

C First element in the data record is the number of choices. 
EQUIVALENCE( DATA_RECORD(1), NUM_CHOICES ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN WS( WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240 ) 

CALL GKS$ACTIVATE_WS( WS_ID ) 

C Establish the size of the record buffer: 12 bytes. 
RECORD_BUFFER_LENGTH = 12 

C The second element in the VT241 choice data record is the pointer to 

C the array containing sizes of each choice character string. You need 

C to initialize the pointer so that the array can be initialized. 

DATA_RECORD ( 2) _ '/.LOC ( SIZES (1) ) 

C The third element in the VT241 choice data record is the pointer to the 

C array containing the pointers to the strings to be used. You need 

C to initialize the pointer so that the array can be initialized. 

DATA_RECOR.D ( 3) _ '/.LOC ( ADDRESSES (1) ) 
ADDRESSES( 1) _ '/.LOC( CURRENT_STRINGS( 1 ) ) 
ADDRESSES ( 2) _ '/.LOC ( CURRENT_STRINGS ( 2) ) 

ADDRESSES( 3) _ '/.LOC( CURRENT_STRINGS( 3) ) 

C Inquire about the current values. 
NUM_CHOICES = 3 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 

* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 

* INITIAL_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA, 

* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

(continued on next page) 

Input Functions 8-145 



Sampling Input 
SAMPLE CHOICE 

Example 8-11 (Cont.j: Using a Choice Logical Input Device in Sample 
Mode 

C Set the initial choice status. 
INITIAL_STATUS = GKS$K_STATUS_OK 

C Establish sizes of prompt strings... 
SIZES( 1 ) = 4 
SIZES( 2) = 5 
SIZES( 3) = 4 

C Establish locations of prompt strings... 
ADDRESSES ( 1 ) _ '/.LOC ( ' Pink' ) 
ADDRESSES ( 2) _ '/.LOC ( ' Green' ) 
ADDRESSES ( 3) _ '/.LOC ( ' Blue' ) 

C To initialize a device, make sure it's in request mode (the DEC 
C GKS default) . 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH ) 

0 CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 

C Initialize color indexes. 
CALL GKS$SET_COLOR_REP( WS_ID, COLORI, 0.6258, 0.2142, 
* 0.2142 ) 
CALL GKS$SET_COLOR_REP( WS_ID, COLOR2, 0.1400, 1.000, 
* 0.1400 ) 
CALL GKS$SET_COLOR_REP( WS_ID, COLORS, 0.0, 0.0, 
* 0.8400 ) 
CALL GKS$SET_FILL_COLOR_INDEX( COLORI ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

(continued on next page) 

8-146 Input Functions 



Sampling Input 
SAMPLE CHOICE 

Example 8-11 ~Cont.~: Using a Choice Logical Input Device in Sample 
Mode 

C Tell the user how to change colors. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Move the arrow keys to') 
CALL GKS$TEXT( 0.05, 0.90, 'change the triangle colors.') 

C Do until the surface is full. 
DO WHILE ( PX( 2) .LT. 0.95 ) 

© CALL GKS$SAMPLE_CHOICE( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, INPUT_CHOICE ) 

C Depending on the sample, change the color. 
IF ( INPUT_CHOICE .EQ. 1) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( COLORI ) 
ENDIF 
IF (INPUT_CHOICE .EQ. 2) THEN 

CALL GKS$SET_FILL_COLOR_JNDEX( COLOR2 ) 
ENDIF 
IF ( INPUT_CHOICE .EQ. 3) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( COLOR3 ) 
ENDIF 

CALL GKS$FILL AREA( NUM_POINTS, PX, PY ) 

PY( 1 ) = PY( 1) - 0.06 
PY( 2) = PY( 2) - 0.06 
PY( 3) = PY( 3) - 0.06 
PY( 4) = PY( 4) - 0.06 

IF (PY( 2) .LT. 0.05 ) THEN 
PY( 1) = 0.85 
PY( 2) = 0.85 
PY( 3) = 0.80 
PY( 4) = 0.85 
PX( 1) = PX( 1) + 0.06 
PX( 2) = PX( 2) + 0.06 
PX( 3) = PX{ 3) + 0.06 
PX( 4) = PX( 4) + 0.06 

ENDIF 

ENDDO 

(continued on next page) 

Input Functions 8-147 



Sampling Input 
SAMPLE CHOICE 

Example 8-11 (Cont.~: Using a Choice Logical Input Device in Sample 
Mode 

C Turn off the sample prompt. 

O CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

0 The call to GKS$SET_CHOICE ~VIODE sets the input operating mode to 
sample. At this point in the program, the choice prompt appears on the 
workstation surface and the user can change the measure of the device. 

© This call to GKS$SAMPLE_CHOICE retrieves the current input value 
(without the user having to trigger the device). The WHILE loop ends 
when the program fills the workstation surface with triangles. 

© This code draws triangles in columns. 

D The call to GKS$SET_CHOICE ~1/IODE returns the logical input device to 
request mode. At this point, the device handler removes the choice prompt 
from the workstation surface and the user can no longer enter input. 

Figure 8-18 illustrates the surface of the VT241 when the input mode is 
set. Figure 8-19 illustrates the surface of the VT241 when the user moves 
the prompt to the second choice. Notice that the user need only move the 
prompt to another color (without triggering) and the color of the triangles 
change accordingly. Figure 8-20 illustrates the surface of the VT241 when the 
workstation surface is full. 

8-148 Input Functions 



Sampling Input 
SAMPLE CHOICE 

Figure 8-18: The Choice Logical Input Device in Sample Mode—
VT241 

ZK 5822 HC 

Input Functions 8-149 



Sampling Input 
SAMPLE CHOICE 

Figure 8-19: The Choice Logical Input Device in Sample Mode—
VT241 

ZK-5824-HC 

8-150 Input Functions 



Sampling Input 
SAMPLE CHOICE 

Figure 8-20: The Choice Logical Input Device in Sample Mode—
VT241 

 J 
ZK-5825-HC 

Input Functions 8-151 



Sampling Input 
SAMPLE LOCATOR 

SAMPLE LOCATOR 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SAMPLE _LOCATOR writes the current measure of the 
specified device and the corresponding normalization transformation number to 
the appropriate output arguments. 

Syntax 
GKSSSAMPLE_LOCATOR (workstation_id, device number, 

transformation umber, world_x, worla! yJ 

GSMLC (workstation~d, dev_num, x_form, poster, po~yJ 

gsamplsloc (workstation~d, dev, response) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

8-152 Input Functions 



Sampling Input 
SAMPLE LOCATOR 

transforma Lion_number 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the normalization trans-
formation number used to translate the input point to a world coordinate 
point. 

world~r 
worlc~y 

data type: real 
access: write-only 
mechanism: by reference 

These are the arguments to which DEC GKS writes the X and Y world coordi-
nate values. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

20 GKS$~RROR~O Specified workstation identifier is 
invalid in routine **** 

25 GKS$_ERROR_25 Specified workstation is not open in 
routine **** 

Input Functions 8-153 



Sampling Input 
SAMPLE LOCATOR 

Error Completion 
Number Status Code Message 

38 GKS$~RROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$~RROR_140 

142 GKS$_ERROR_142 

Specified input device is not present 
on workstation in routine **** 

Input device is not in SAMPLE 
mode in routine **** 

Program Example 
For an example of a call to this function, refer to Example 8-2. 

8-154 Input Functions 



Sampling Input 
SAMPLE PICK 

SAMPLE PICK 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SAMPLE~'ICK writes the current measure of the specified 
pick logical input device to the corresponding output argument. 

If the input is valid, the function writes GKS$K_STATUS_OK to the status 
argument and writes the positive integers representing the picked segment and 
the pick identifier to the output arguments. 

If the initial choice status is GKS$K_STATUS~TOPICK, and if the user did not 
move the prompt, this function writes GKS$K_STATUS_NOPICK to the status 
argument (this indicates that the "user did not pick a segment yet). The logical 
input device also returns GKS$K_STATUS_NOPICK if the user moved the 
prompt but the aperture is not touching a segment at the time of the sample. 

Syntax 
GKSSSAMPLE_PICK (workstation~d, device number, input status, 

segment name, pick_idJ 

GSMPK (workstation~d, dev_num, in_status, segment~►ame, pick_idJ 

gsamplepick (workstation_id, dev, response) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

Input Functions 8-155 



Sampling Input 
SAMPLE PICK 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process. 
This argument can be either of the following values or constants: 

Value Constant Description 

1 GKS$K_STATUS_OK Input obtained. 

2 GKS$K_STATUS_NOPICK Sampled without picking. 

segmen~.name 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
chosen segment. 

picl mid 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer pick identifier value 
associated with the picked primitive within the segment. For more information, 
refer to Chapter 9, Segment Functions. 

8-156 Input Functions 



Sampling Input 
SAMPLE PICK 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR~0 

25 GKS$_ERROR~S 

37 GKS$~RROR_37 

140 GKS$_ERRO~R_140 

142 GKS$_ERROR_142 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is not of 
category OUTIN in routine **** 

Specified input device is not present 
on workstation in routine * * * 

Input device is not in SAMPLE 
mode in routine **** 

Program Example 
Example 8-12 illustrates the use of the function GKS$SAMPLE—PICK. 
Following the program example, Figures 8-21 through 8-23 illustrate the 
program's effect on a VT241 workstation. 

Input Functions 8-157 



Sampling Input 
SAMPLE PICK 

Example 8-12: Using a Pick Logical Input Device in Sample Mode 

C This program initializes and samples pick input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, INITIAL_STATUS, SEGMENT, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, 
* DEVICE_NUM, BOX_1, BOX_2, TRIANGLE_1, 
* TRIANGLE_2, NUM_POINTS 
REAL ECHO_AREA(4), DATA_RECORD( 1 ) 
REAL X_VALUES( 4 ), Y_VALUES( 4 ), LARGER 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, BOX_1 / 1 /, 
* BOX_2 / 2 /, TRIANGLE_1 / 1 /, TRIANGLE_2 / 2 /, 
* NUM_POINTS / 4 /, LARGER / 0.03 / 
DATA X_VALUES / 0.1, 0.4, 0.1, 0.1 / 
DATA Y_VALUES / 0.3, 0.6, 0.6, 0.3 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

O CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

CALL GKS$CREATE_SEG( BOX_1 ) 
CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
X_VALUES( 3) = 0.4 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

X_VALUES( 1 ) = 0.6 
X_VALUES( 2) = 0.9 
X_VALUES( 3) = 0.6 
X_VALUES( 4) = 0.6 
Y_VALUES( 3) = 0.6 

CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 

(continued on next page) 

8-158 Input Functions 



Sampling Input 
SAMPLE PICK 

Example 8-12 ~Cont.~: Using a Pick Logical Input Device in Sample 
Mode 

CALL GKS$CREATE_SEG( BOX_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
X_VALUES( 3) = 0.9 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

CALL GKS$SET_SEG_DETECTABILITY( BOX_1, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( BOX_2, GKS$K_DETECTABLE ) 

CALL GKS$SET_TEXT_HEIGHT( 0.03 ) 
CALL GKS$TEXT( 0.2, 0.45, '1') 
CALL GKS$TEXT( 0.3, 0.45, '2') 
CALL GKS$TEXT( 0.7, 0.45, '1') 
CALL GKS$TEXT( 0.8, 0.45, '2') 

C Declare a data length of one long word which will hold the 
C size of the pick prompt. 

RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Establish initial values. 
SEGMENT = BOX_1 
PICK_ID = TRIANGLE_1 
INITIAL_STATUS = GKS$K_STATUS_OK 

C To initialize a device, make sure it's in request mode (the DEC 
C GKS def ault) . 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, INITIAL_STATUS, 
* SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

(continued on next page) 

Input Functions 8-159 



Sampling Input 
SAMPLE PICK 

Example 8-12 (Cont.~: Using a Pick Logical Input Device in Sample 
Mode 

© CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 

C Tell the user the task. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Move the cursor to a triangle.' ) 

CALL GKS$TEXT( 0.05, 0.90, 'I will say if it is correct.') 

C Do until the user picks the second triangle in the second box. 

DO WHILE (( SEGMENT .NE. 2) .OR. ( PICK_ID .NE. 2 )) 

© CALL GKS$SAMPLE_PICK( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* SEGMENT, PICK_ID ) 

C Tease the user as s/he gets closer. 

O IF (( SEGMENT .EQ. 1 ) .AND. ( PICK_ID .EQ. 1 )) THEN 
CALL GKS$TEXT( 0.05, 0.85, 

* 'You are pretty far away.') 
ENDIF 
IF (( SEGMENT .EQ. 1 ) .AND. ( PICK_ID .EQ. 2 )) THEN 

CALL GKS$TEXT( 0.05, 0.80, 
* 'You are getting closer.') 
ENDIF 
IF (( SEGMENT .EQ. 2) .AND. ( PICK_ID .EQ. 1 )) THEN 

CALL GKS$TEXT( 0.05, 0.75, 
* 'You are REALLY close.') 
ENDIF 
ENDDO 

CALL GKS$TEXT( 0.05, 0.70, 'YOU MADE IT!!!') 

0 
C Turn off the sample prompt. 

CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

0 This code establishes the same divided boxes that appear in Example 8-7. 

© The call to GKS$SET_I'ICK_11/IODE sets the input operating mode to 
sample. At this point in the program, the pick aperture appears on the 
workstation surface and the user can change the measure of the device. 

8-160 Input Functions 



Sampling Input 
SAMPLE PICK 

© This call to GKS$SAMPLE~'ICK retrieves the current input value (without 
the user having to trigger the device). The WHILE loop ends when the user 
picks the second triangle in the second box. 

© This code teases the user, saying how close the apzi tore is to segment 2, 
pick identifier 2. 

0 The call to GKS$SET-1'ICK_NiODE returns the logical input device to 
request mode. At this point, the device handler removes the aperture from 
the workstation surface and the user can no longer enter input. 

Figure 8-21 illustrates the surface of the VT241 when the input mode is set. 
Figure 8-22 illustrates the surface of the VT241 when the user moves the 
aperture closer to the required segment and pick identifier. Notice that the user 
need only move the aperture to another pick identifier (without triggering) and 
a new message appears on the workstation surface. Figure 8-23 illustrates the 
surface of the' VT241 when the user picks the correct triangle. 

Input Functions 8-161 



Sampling Input 
SAMPLE PICK 

Figure 8-21: The Pick Logical Input Device in Sample Mode VT241 

ZK-5838-HC 

8-162 Input Functions 



Sampling Input 
SAMPLE PICK 

Figure 8-22: The Pick Logical Input Device in Sample Mode VT241 

ZK-5820-HC 

Input Functions 8-163 



Sampling Input 
SAMPLE PICK 

Figure 8-23: The Pick Logical Input Device in Sample Mode—VT241 

Move the cursor to a triangle, 

I wi l l say if it is correct , 
You are pretty far away, 
You are getting closer, 
You are REALLY close, 
YOU MADE IT~ ~ ~ 

ZK-5821-HC 

8-164 Input Functions 



Sampling Input 
SAMPLE STRING 

SAMPLE STRING 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SAMPLE STRING writes the current measure of the 
specified string logical input device to the appropriate output arguments. 

When activating string input, the following two buffers exist: 

• The application's string buffer, whose size you specify when you pass the 
buffer argument by descriptor to GKS$SAMPLE _STRING. 

• The logical input device's string buffer, whose size you can specify in the 
call to GKS$INIT_STRING. 

When sampling a string, DEC GKS takes the first characters in the entered text 
string, including any initial prompt, up to the number of characters specified by 
the size of the application's buffer. If the size of the entered string is larger than 
the number of characters placed in the application's buffer, DEC GKS performs 
the following tasks: 

• Removes the sampled string (the size of the application's buffer) from the 
device's buffer. 

• Places the the sampled string in the application's buffer. 

• Leaves any remaining characters in the device's buffer. You need to call 
GKS$SAMPLE _STRING again to access the remaining characters. 

Syntax 
GKS~SAMPLE_STRING (workstation_id, device number, string buffer, 

string size, total _string_sizeJ 

GSMST (workstation_id, dev_num, num_char, cstringJ 

GSMST -Subset (workstation_id, dev_num, num_char, cstring) 

gsamplestring (workstation_id, dev, response) 

Input Functions 8-165 



Sampling Input 
SAMPLE STRING 

Arguments 

workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_wS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

string buffer 

data type: string 
access: write-only 
mechanism: by descriptor 

This is the argument to which DEC GKS writes the input character string. This 
is the application's buffer. 

string size 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of bytes in the 
string accepted by the input sample. 

total_string_size 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the total number of characters 
in the device's buffer, in bytes. If this argument's value is greater than the value 

8-166 Input Functions 



Sampling Input 
SAMPLE STRING 

of string_size, you may wish to call GKS$SAMPLE _STRING again to obtain 
the characters remaining in the device's buffer. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

7 GKS$—ERROR_? 

20 GKS$—ERROR_20 

25 GKS$—ERROR_25 

38 GKS$—ERROR_38 

140 GKS$~RROR_140 

142 GKS$—ERROR_142 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in SAMPLE 
mode in routine 

Program Example 
Example 8-13 illustrates the use of the function GKS$SAMPLE _STRING. 
Following the program example, Figures 8-24 through 8-27 illustrate the 
program's effect on a VT241 workstation. 

Input Functions 8-167 



Sampling Input 
SAMPLE STRING 

Example 8-13: Using a String Logical Input Device in Sample Mode 

C This program initializes and samples string input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 2 ), 
* PROMPT_ECHO_TYPE, ERROR_STATUS, BUFFER_LENGTH, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, STRING_SIZE, 
* CUR_POSITION, TOTAL_STRING_SIZE, INCR, INCR2, 
* EVENT FLAG 
REAL*8 TIME 
REAL ECHO_AREA( 4 ), START_X, START_Y, X_VECTOR, Y_VECTOR, 
* LARGER 
CHARACTER*31 INITIAL_STRING, STRING_BUFFER 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, LARGER / 0.03 / 

C First element in the data record is length of the buffer that 
C contains the input string. 

EQUIVALENCE( DATA_RECORD( 1 ), BUFFER_LENGTH ) 
EQUIVALENCE( DATA_RECORD( 2 ), CUR_POSITION ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 
CALL GKS$ACTIVATE_WS( WS_ID ) 

RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ_STRING_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STRING, 
* STRING_SIZE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

0 
C Change the current input values. 

ECHO_AREA( 1 ) = 437 
BUFFER_LENGTH = 31 
CUR_POSITION = 1 

C To initialize a device, make sure it's in request mode (the DEC 
C GKS def cult) . 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_STRING( WS_ID, DEVICE_NUM, ' ' 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

(continued on next page) 

8-168 Input Functions 



Sampling Input 
SAMPLE STRING 

Example 8-13 (Cont.~: Using a String Logical Input Device in Sample 
Mode 

C Tell the user what is happening. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Every 20 seconds, type a string.') 
CALL GKS$TEXT( 0.05, 0.90, 'I will use them in my design.') 

© CALL GKS$SET_STRING_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 

C Set the initial text settings and attributes. 
START_X = 0.05 
START_Y = 0.70 
X_VECTOR = 0.0 
Y VECTOR = 1.0 

C Obtain an event flag for the timer. 

CALL LIB$GET_EF( EVENT_FLAG ) 

C Do for three lines. 
DO 200 INCR = 1, 3, 1 

IF ( INCR .NE. 1 ) THEN 

C Give the user a 20-second break. 
® CALL SYS$BINTIM( '0 :00:20', TIME ) 

CALL SYS$SETIMR ( '/.VAL ( EVENT_FLAG ) , - ( TIME ) „ ) 
CALL SYS$WAITFR( '/.VAL( EYENT_FLAG ) ) 

C Sample the string. 

O CALL GKS$SAMPLE_STRING( WS_ID, DEVICE_NUM, 
* STRING_BUFFER, STRING_SIZE, TOTAL_STRING_SIZE ) 
ELSE 

C Provide the first string. 
STRING_BUFFER = 'I" 11 give you the first string.' 

ENDIF 

C Create a design with a text string. 

0 DO 300 INCR2 = 1, 3, 1 
CALL GKS$SET_TEXT_UPVEC( X_VECTOR, Y_VECTOR ) 

CALL GKS$TEXT( START_X, START_Y, 
* STRING_BUFFER ) 

X_VECTOR = X VECTOR + 0.1 
Y_VECTOR = Y VECTOR - 0.1 

300 CONTINUE 

(continued on next page) 

Input Functions 8-169 



Sampling Input 
SAMPLE STRING 

Example 8-13 (Copt.): Using a String Logical Input Device in Sample 
Mode 

C Reset variables. 
START_Y = START_Y - 0.01 
STRING_BUFFER = ' 

200 CONTINUE 

C Free the event flag used for the timer . 
CALL LIB$FREE_EF( EVENT_FLAG ) 

C Turn off the sample prompt. 
© CALL GKS$SET_STRING_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O Changing the value of variable ECHO_AREA(1) widens the echo area so 
that the user can enter a larger string than the one which the default area 
allows. 

© The call to GKS$SET_STRING-1VIODE sets the input operating mode to 
sample. At this point in the program, the string prompt appears on the 
workstation surface and the user can change the measure of the device. 

© This code creates a 20-second timer that allows the user to enter and alter a 
character string. For more information concerning these function calls, refer 
to the Introduction to VMS System Routines and to the VAX/VMS Run-Time 
Library Routines Reference Manual. 

O This call to GKS$SAMPLE—STRING retrieves the current input value 
(without the user having to trigger the device). This loop requires two 
strings from the user. The program provides the first string. 

0 This code outputs the strings by adjusting the character-up vector. This 
creates a pinwheel design on the workstation surface. 

© The call to GKS$SET_STRING-1VIODE returns the logical input device to 
request mode. At this point, the device handler removes the string prompt 
from the workstation surface and the user can no longer enter input. 

8-170 Input Functions 



Sampling Input 
SAMPLE STRING 

Figure 8-24 illustrates the surface of the VT241 just after the input mode is 
set. Figure 8-25 illustrates the surface of the VT241 after the user types a 
string (note that if the user presses RETURN, nothing happens the application 
decides when to sample input). Figure 8-26 illustrates the surface of the VT241 
after the program accepts the first string. Notice that the user need only enter 
and alter the string (without triggering) and the program samples the current 
string accordingly. Figure 8-27 illustrates the surface of the VT241 after the 
user entered all strings. 

Figure 8-24: The String Logical Input Device in Sample Mode—
VT241 

Every 20 seconds, type a string, 
I wi l l use theM in My design, 

 1 

ZK-5823-HC 

Input Functions 8-171 



Sampling Input 
SAMPLE STRING 

Figure 8-25: The String Logical Input Device in Sample Mode—
VT241 

Every 20 seconds, type a string. 
I wi l l use theM in My design, 

I + ~ ~ ~~~~ 
lve 

~ou 
y ou 

~he 
he 

th e

first 
first 
first 

string, 

string, 

st 
ring 

Bil l Buckner, and JiM Rice, 

ZK-5826-HC 

8-172 Input Functions 



Sampling Input 
SAMPLE STRING 

Figure 8-26: The String Logical Input Device in Sample Mode—
VT241 

Every 20 seconds, type a string. 

I wil l use theM in My design, 

I+ ~ } }~E
~1vQ 

ou the first string, 

~~' 

~~ 

you 

u

the 

the

first string. 
`444 

r̀ ~' 
`~~ ~`'~'• 

°> 
~` h.. f  i  r s t 

s t r i n g~ 

~~ . ~` N.. ~/,~~ ,~ ~ 

~. 
4~ ~ 

N., 

ZK-5813-HC 

Input Functions 8-173 



Sampling Input 
SAMPLE STRING 

Figure 8-27: The String Logical Input Device in Sample Mode—
VT241 

Every 20 seconds, type a string, 
I wi l l use then, in n,y design, 

I + ~ ~ }~~ ~ou ~he first string, 
ou ~lv e you he first string, 

~ M ~ ~'~;'r`~•. the f i r .4<, , r,c. ~ N ~~.. s t 
s t r 

~ .. >~y ~~r' ~, 
~~ . 

~> 'icy '` ~, 

a ~ Y~. ~.. ~,, ~ 
d ~. 

to ~(~ ~ 
s r... 
e+ 

r..~°~ 
m ~! ~+ 
c '> ' 

 1 

 J 
ZK-5814-HC 

8-174 Input Functions 



Sampling Input 
SAMPLE STROKE 

SAMPLE STROKE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SAMPLE _STROKE writes the current measure of the 
specified stroke logical input device to the corresponding output arguments. 

When activating stroke input, the following two buffers exist: 

• The application's stroke buffer, whose size you specify when you pass the 
buffer argument by descriptor to GKS$SAMPLE_STROKE. 

• The logical input device's stroke buffer, whose size you can specify in the 
call to GKS$INIT STROKE. 

When sampling stroke input, DEC GKS accepts any initial stroke points and 
translates entered points according to the current normalization transformation. 
DEC GKS can accept points up to the number specified by the size of the 
application's buffer. If the size of the entered stroke is larger than the number 
of stroke points placed in the application's buffer, DEC GKS performs the 
following tasks: 

• Removes the sampled stroke (the size of the application's buffer) from the 
device's buffer. 

• Places the the sampled stroke in the application's buffer. 

• Leaves any remaining points in the device's buffer. You need to call 
GKS$SAMPLE _STROKE again to access the remaining characters. 

Input Functions 8-175 



Sampling Input 
SAMPLE STROKE 

Syntax 
GKS~SAMPLE_STROKE (workstation~d, device~►umber, 

transformation~►umber, num_entered_points, 
strok~buffer~r, stroke_buffer_y, strok~size~r, 
stroke_siz~yJ 

GSMSK (workstation_id, dev_num, marts, xform, num~ts, px, pyJ 

gsamplestroke (workstation~d, dev, response) 

Arguments 
workstatior~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a previous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

transformation number 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of the normalization 
transformation used to translate the input points to world coordinate points. 

8-176 Input Functions 



Sampling Input 
SAMPLE STROKE 

num_entered_points 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the total number of points in 
the stroke entered by the user. 

stroke_buffer~r 
stroke_buffer_y 

data type: array (real) 
access: write-only 
mechanism: by descriptor 

These are the arguments to which DEC GKS writes the X and Y world coordi-
pate values of the accepted stroke. These arguments are the application's stroke 
buffer. 

stroke_size~r 
stroke_size_y 

data type: integer 
access: write-only 
mechanism: by reference 

These are the arguments to which DEC GKS writes the number of stroke points 
actually accepted in the application buffer. 

Input Functions 8-177 



Sampling Input 
SAMPLE STROKE 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR~S 

38 GKS$_ERROR_38 

140 GKS$~RROR_140 

142 GKS$_ERROR_142 

GKS not in proper state: GKS in 
the error state in routine * * * * 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in SAMPLE 
mode in routine * * * * 

Program Example 
Example 8-14 illustrates the use of the function GKS$SAMPLE_STROKE. 
Following the program example, Figures 8-28 through 8-33 illustrate the 
program's effect on a VT241 workstation. 

8-178 Input Functions 



Sampling Input 
SAMPLE STROKE 

Example 8-14: Using a Stroke Logical Input Device in Sample Mode 

C This program initializes and samples stroke input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 6 ), BUFFER_SIZE, 
* DIMENSION, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* TRANSFRM, NUM_ENTERID_POINTS, INPUT_MODE, ECHO_FLAG, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, 
* I, IDIT_POSITION, ATTS_FLAG, TEXT, INCR, INCR2, EVENT_FLAG, 
* RET_SIZE_BUF( 3 ), RET_SIZE_X, RET_SIZE_Y 
REAL ECHO_AREA( 4 ), STROKE_X( 50 ), 
* STROKE_Y( 50 ), X_INT, Y_INT, TIME_INT, 
* STROKE_BUFFER_X( 3, 50 ), STROKE_BUFFER_Y( 3, 50 ), 
* LARGER 
REAL*8 TIME 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, TEXT / 1 /, 
* LARGER / 0.03 / 

C First element in the data 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 

record is the buffer size. 
1 ), BUFFER_SIZE) 
2 ), IDIT_POSITION) 
3 ), X_INT) 
4 ), Y_INT) 
5 ) , TIME_INT) 
6 ), ATTS_FLAG) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_wS( ws_ID ) 

RECORD_BUFFER_LENGTH = 24 
CALL GKS$INQ_STROKE_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZID, DIMENSION, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, TR.ANSFRM, NUM_ENTERID_POINTS, 
* STROKE_X, STROKE_Y, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Allow a buffer that is large enough. 
C TRANSFRM = 0 

C By specifying to DEC GKS to use the current attributes flag, you 
C need to pass the 24 byte data record instead of the 52 byte record. 

ATTS_FLAG = GKS$K_ACF_CURRENT 

(continued on next page) 

Input Functions 8-179 



Sampling Input 
SAMPLE STROKE 

Example 8-14 (Cont.): Using a Stroke Logical Input Device in Sample 
Mode 

C To initialize a device, make sure it's in request mode (the DEC 

C GKS default) . 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

0 

CALL GKS$INIT_STROKE( WS_ID, DEVICE_NUM, 
* NUM_ENTERED_POINTS, STROKE_X, STROKE_Y, TR,ANSFRM, 

* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_STROKE_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 

C Tell the user how many sets of stroke points to enter. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 
* 'Every 20 seconds, enter points.') 
CALL GKS$TEXT( 0.05, 0.90, 
* 'I" 11 show the three fill areas.') 

C Obtain an event flag for the timer . 
CALL LIB$GET_EF( EVENT_FLAG ) 

C Do for three sets of stroke points . 
DO 200 INCR = 1, 3, 1 

C Give the user a 20-second break. 
© CALL SYS$BINTIM( '0 :00:20', TIME ) 

CALL SYS$SETIMR ( '/.VAL ( EVENT_FLAG ) , - ( TIME ) „ ) 
CALL SYS$WAITFR( '/.VAL( EVENT_FLAG ) ) 

C Sample the stroke. 
© CALL GKS$SAMPLE_STROKE( WS_ID, DEVICE_NUM, 

* TRANSFRM, NUM_ENTERED_POINTS, '/.DESCR( STROKE_X ), 
* '/.DESCR( STROKE_Y ), RET_SIZE_X, RET_SIZE_Y ) 

O RET_SIZE_BUF( INCR ) = MIN( RET_SIZE_X, RET_SIZE_Y ) 

C Put the strokes in a buffer. 
DO 300 INCR2 = 1, RET_SIZE_BUF( INCR ), 1 
STROKE_BUFFER_X( INCR, INCR2 ) = STROKE_X( INCR2 ) 
STROKE_BUFFER_Y( INCR, INCR2 ) = STROKE_Y( INCR2 ) 

300 CONTINUE 

200 CONTINUE 

(continued on next page) 

8-180 Input Functions 



Sampling Input 
SAMPLE STROKE 

Example 8-14 (Copt.): Using a Stroke Logical Input Device in Sample 
Mode 

C Free the event flag used for the timer. 
CALL LIB$FREE_EF( EVENT_FLAG ) 

C Get rid of the stroke prompt... 
0 CALL GKS$SET_STROKE_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

C Present the corresponding fill areas. Press RETURN when you are 
C ready to view the next fill area. 

© CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 
CALL GKS$TEXT( 0.05, 0.95, 
* 'Here are the fill areas.') 
CALL GKS$CREATE_SEG( TEXT ) 
CALL GKS$TEXT( 0.05, 0.90, 
* 'Press RETURN when ready.') 
CALL GKS$CLOSE_SEG() 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

DO 400 INCR = 1, 3, 1 

C Put the current stroke in the temporary buffer. 
DO 500 INCR2 = 1, RET_SIZE_BUF( INCR ), 1 
STROKE_X( INCR2 ) = STROKE_BUFFER_X( INCR, INCR2 
STROKE_Y( INCR2 ) = STROKE BUFFER_Y( INCR, INCR2 

500 CONTINUE 

CALL GKS$FILL_AREA( RET_SIZE_BUF( INCR ), 
* STROKE_X, STROKE_Y ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 
IF ( INCR .EQ. 3) THEN 

CALL GKS$DELETE_SEG( TEXT ) 
ENDIF 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

400 CONTINUE 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The call to GKS$SET_STROKE _1VIODE sets the input operating mode to 
sample. At this point in the program, the stroke prompt appears on the 
workstation surface and the user can enter or alter stroke points. 

Input Functions 8-181 



Sampling Input 
SAMPLE STROKE 

© This code creates a 20-second timer that allows the user to enter and alter a 
character string. For more information concerning these function calls, refer 
to the Introduction to VMS System Routines, and to the VAX/VMS Run-Time 
Library Routines Reference Manual. 

© This call to GKS$SAMPLE _STROKE retrieves the current input value 
(without the user having to trigger the device). The loop allows the user to 
enter three sets of stroke points. 

O This code sets the correct size of the buffer and stores the stroke points in a 
two-dimensional array. 

0 The call to GKS$SET~TROKE ~1/IODE returns the logical input device to 
request mode. At this point, the device handler removes the stroke prompt 
from the workstation surface and the user can no longer enter input. 

© This code uses each of the sets of stroke points to create and display a fill 
area. 

Figure 8-28 illustrates the surface of the VT241 just before the program accepts 
the first set of stroke points. Notice that the user need only enter points 
(without triggering) and the program accepts the current set. Figures 8-29 and 
8-30 illustrate the remaining sets of stroke points entered by the user. Figures 
8-31 through 8-33 show the fill areas generated from the set of entered stroke 
points. 

8-182 Input Functions 



Sampling Input 
SAMPLE STROKE 

Figure 8-28: The Stroke Logical Input Device in Sample Mode—
VT241 

r 'n \ Every 20 seconds, ente poi ts, 
I' l l show the three fi l l areas, 

X 

ZK-5827-HC 

Input Functions 8-183 



Sampling Input 
SAMPLE STROKE 

Figure 8-29: The Stroke Logical Input Device in Sample Mode—
VT241 

Every 20 seconds, enter points. 
I' l l show the three fi l l areas, 

 J 
ZK-5828-HC 

8-184 Input Functions 



Sampling Input 
SAMPLE STROKE 

Figure 8-30: The Stroke Logical Input Device in Sample Mode—
VT241 

Every '0 seconds, enter points, 
I' l l show the three fi l l areas, 

J 
ZK-5829-HC 

Input Functions 8-185 



Sampling Input 
SAMPLE STROKE 

Figure 8-31: The Stroke Logical Input Device in Sample Mode—
VT241 

Here are the fill areas, 
Press RETURN when ready, 

ZK~5830-HC 

8-186 Input Functions 



Sampling Input 
SAMPLE STROKE 

Figure 8-32: The Stroke Logical Input Device in Sample Mode 
VT241 

Press RETURN when ready, 

ZK 5831 HC 

Input Functions 8-187 



Sampling Input 
SAMPLE STROKE 

Figure $-33: The Stroke Logical Input Device in Sample Mode-
VT241 

r w n P ess RETURN he read 

ZK-5832-HC 

8-188 Input Functions 



Sampling Input 
SAMPLE VALUATOR 

SAMPLE VALUATOR 

Operating States: WSOP, WSAC, SLOP 

Description 
The function GKS$SAMPLE _VALUATOR writes the current measure of the 
specified valuator logical input device to the corresponding output argument. 

Syntax 
GKSsSAMPIE_VALUATOR (workstation_id, device number, real_valueJ 

GSMVL (workstation_id, dev_num, value) 

gsampleval (workstation_id, dev, response) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier specified in a prgv~ous call to 
GKS$OPEN_WS. 

device number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the device number that differentiates logical devices of the 
same class operating on the same workstation. 

Input Functions 8-189 



Sampling Input 
SAMPLE VALUATOR 

real value 

data type: 
access: 
mechanism: 

real 
write-only 
by reference 

This is the argument to which DEC GKS writes the current measure of the 
valuator device. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR~O 

25 GKS$_ERROR_25 

38 GKS$_ERROR_38 

140 GKS$_ERROR_140 

142 GKS$_ERROR_142 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

Specified input device is not present 
on workstation in routine **** 

Input device is not in SAMPLE 
mode in routine * * * * 

Program Example 
Example 8-15 illustrates the use of the function GKS$SAMPLE_VALUATOR. 
Following the program example, Figures 8-34 through 8-36 illustrate the 
program's effect on a VT241 workstation. 

8-190 Input Functions 



Sampling Input 
SAMPLE VALUATOR 

Example 8-15: Using a Valuator Logical Input Device in Sample Mode 

C This program initializes and samples valuator input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, DEVICE_NUM, BOX, INCR, DUMMY_INTEGER, 
* NEW_FRAME_FLAG 
REAL ECHO_AREA( 4 ), DATA_RECORD( 2 ), UPPER_LIMIT, 
* LOWER_LIMIT, VALUE, BOX_X( 5 ), BOX_Y( 5 ), LARGER, 
* XFORM_MATRIX( 6 ) 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, BOX / 1 /, 
* LARGER / 0.03 / 
DATA BOX_X / 0.4, 0.6, 0.6, 0.4, 0.4 / 
DATA BOXY / 0.4, 0.4, 0.6, 0.6, 0.4 / 

C The elements in the data record are the upper and lower limits. 
EQUIVALENCE( DATA_RECORD( 1 ), LOWER_LIMIT ) 
EQUIVALENCE( DATA_RECORD( 2 ), UPPER_LIMIT ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ_VALUATOR_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

VALUE = 1.0 
UPPER_LIMIT = 2.0 
LOWER_LIMIT = 0.001 

C To initialize a device, make sure it's in request mode (the DEC 

C GKS default) . 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD BUFFER_LENGTH ) 

0 CALL GKS$SET VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 

(continued on next page) 

Input Functions 8-191 



Sampling Input 
SAMPLE VALUATOR 

Example 8-15 (Cont.~: Using a Valuator Logical Input Device in 
Sample Mode 

4 

0 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

CALL GKS$CREATE_SEG( BOX ) 
CALL GKS$FILL_AREA( 5, BOX_X, BOXY ) 
CALL GKS$CLOSE_SEG() 

C Inform the user about the task. 
CALL GKS$TEXT( 0.05, 0.95, 
* 'Alter the box " s size.' ) 
CALL GKS$TEXT( 0.05, 0.90, 
* 'To stop, set the value to 2.0.' ) 

DO WHILE ( VALUE .NE. 2.0 ) 

CALL GKS$SAMPLE_VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE ) 

C Scale the segment according to the VALUE argument. 
CALL GKS$EVAL_XFORM_MATRIX( 0.5, 0.5, 0.0, 0.0, 0.0, 
* VALUE, VALUE, GKS$K_COORDINATES_WC, XFORM_MATRIX ) 

IF ( VALUE .NE. 1.0 ) THEN 
CALL GKS$SET_SEG_XFORM( BOX, XFORM_MATRIX ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

ENDIF 
ENDDO 

C Turn off the sample prompt. 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The call to GKS$SET_VALUATOR-1VIODE sets the input operating mode 
to sample. At this point in the program, the valuator prompt appears on 
the workstation surface and the user can change the measure of the device. 

© This code creates a segment containing a square fill area. The program 
scales this box according to the sampled value of the valuator device. 

8-192 Input Functions 



Sampling Input 
SAMPLE VALUATOR 

© This call to GKS$SAMPLE_VALUATOR retrieves the current input value 
(without the user having to trigger the device). The loop ends when the 
user moves the prompt to the value 2.0. 

O The call to GKS$SET_VALUATOR~VIODE returns the logical input device 
to request mode. At this point, the device handler removes the valuator 
prompt from the workstation surface and the user can no longer enter 
input. 

Figure 8-34 illustrates the surface of the VT241 when the input mode is 
set. Figure 8-35 illustrates the surface of the VT241 when the user moves 
the prompt. Notice that the user need only move the prompt to another 
value (without triggering) and the program scales the segment accordingly. 
Figure 8-36 illustrates the surface of the VT241 when the program ends. 

Input Functions 8-193 



Sampling Input 
SAMPLE VALUATOR 

Figure 8-34: The Valuator Logical Input Device in Sample Mode—
VT241 

ZK 5840 HC 

8-194 Input Functions 



Sampling Input 
SAMPLE VALUATOR 

Figure 8-35: The Valuator Logical Input Device in Sample Mode 
VT241 

ZK 5839-HC 

Input Functions 8-195 



Sampling Input 
SAMPLE VALUATOR 

Figure 8-36: The Valuator Logical Input Device in Sample Mode 
VT241 

ZK-5841-HC 

8-196 Input Functions 



Obtaining Input in Event Mode 

Obtaining Input in Event Mode 

This section describes the functions used to remove, read, and flush input 
reports from the event queue. You should use GKS$AWAIT_EVENT to fetch 
a report from the queue and to place it in the current event report entry in the 
DEC GKS state list. Also, GKS$AWAIT~VENT writes the logical input class of 
the device that accepted the current report to one of its output arguments. To 
read the input information from the current event report, call the appropriate 
GKS$GET_class function. If you call one of the GKS$GET_class functions for 
an event in the current event report that was not generated by a device of the 
corresponding class, you generate an error. 

Remember that repeated calls to one of the functions GKS$GET_LOCATOR, 
GKS$GET_STROKE, and so forth, will write the same values to the output ar-
guments since these functions always obtain information from the current event 
report. The current event report does not change unless you call GKS$AWAIT_ 
EVENT to fetch another report from the queue. Once you do this, a subsequent 
call to one of the GKS$GET_class functions obtains new input values. 

See Section 8.5 for information concerning event operating modes. 

This section describes the following functions: 

• GKS$AWAIT_EVENT 

• GKS$FLUSH_DEVICE~VENTS 

• GKS$GET_CHOICE 

• GKS$GET_LOCATOR 

• GKS$GET_I'ICK 

• GKS$GET_STRING 

• GKS$GET_STROKE 

• GKS$GET_VALUATOR 

Input Functions 8-197 



Obtaining Input in Event Mode 
AWAIT EVENT 

AWAIT EVENT 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$AWAIT~VENT examines the input queue for all input 
devices. 

DEC GKS searches the input queue for an event and, if the input queue is 
empty, suspends the application program until either of the following happens: 

• An event appears on the input queue. 

• The time period specified in the time-out argument expires. 

If you specify zero (0.0) as the time-out argument, DEC GKS checks the input 
queue immediately without suspending the application. 

When GKS$AWAIT~VENT checks the event input queue, its subsequent 
action depends on the state of the queue. If the queue contains reports, this 
function performs the following tasks: 

• Removes the oldest event report from the queue. 

• Writes information to the current event report entry in the DEC GKS state 
list. 

• Writes the event's workstation identifier, input class, and logical device 
number to its corresponding output arguments. 

If the time-out period has expired, and if GKS$AWAIT~VENT finds the queue 
to be empty, this function writes GKS$K_INPUT_CLASS~TONE to its input 
class argument. 

If you generate the queue-overflow error, this function still performs its task as 
described. See Section 8.5.3.3 for information concerning input-queue overflow. 

8-198 Input Functions 



Obtaining Input in Event Mode 
AWAIT EVENT 

Syntax 
GKSSAWAIT_EVENT (time out, workstation_id, input class, 

device_numberJ 

GWAIT (time out, ws~d, in_class, dev~um) 

gawaitevent (timeout, event) 

Arguments 
time_out 

data type: real 
access: read-only 
mechanism: by reference 

This argument is the amount of time to wait for an event to appear in the input 
queue. This argument is specified in the following format: 

ss.hh 

Where ss is seconds and hh is hundreds of a second. This argument cannot be 
negative and cannot be larger than 356,400 seconds (99 hours). 

If this argument is zero (0.0 ), this function allows application execution to 
continue and either removes the oldest event or, if there are no events in the 
queue, returns GKS$K_INPUT CLASS—NONE to the input class argument. 

workstatior~id 

data type: integer 
access: write-only 
mechanism: by reference 

This argument is the workstation identifier that corresponds to the logical input 
device that accepted the event. 

Input Functions 8-199 



Obtaining Input in Event Mode 
AWAIT EVENT 

inputclass 

data type: 
access: 
mechanism: 

integer 
write-only 
by reference 

This argument is the input class that corresponds to the logical input device 
that accepted the event. This argument can be any of the following: 

Value Constant Description 

0 GKS$K_INPUT_CLASS_NONE 

1 GKS$K_INPUT_CLASS_LOCATOR 

2 GKS$K_INPUT_CLASS_STROKE 

3 GKS$K_INPUT_CLASS_VALUATOR 

4 GKS$K_INPUT_CLASS_CHOICE 

5 GKS$K~NPUT_CLASS_I'ICK 

6 GKS$K_INPUT_CLASS_STRING 

Input queue is empty. 

Event from a locator device. 

Event from a stroke device. 

Event from a valuator device. 

Event from a choice device. 

Event from a pick device. 

Event from a string device. 

device number 

data type: 
access: 
mechanism: 

integer 
write-only 
by reference 

This argument is the device number that corresponds to the logical input device 
that accepted the event. 

8-200 Input Functions 



Obtainieg Input in Event Mode 
AWAIT EVENT 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

147 GKS$~RROR_147 Input queue has overflowed in 
routine **** 

151 GKS$_ERROR_151 Timeout is invalid in routine * * * * 

Program Example 
To see an example of a call to this function, refer to Example 8-3. 

Input Functions 8-201 



Obtaining Input in Event Mode 
FLUSH DEVICE EVENTS 

FLUSH DEVICE EVENTS 

Operating States: WSOP, WSAC, SLOP 

Description 
The function GKS$FLUSH_DEVICE~VENTS removes all events generated by 
one class of input device from the input queue. This function performs its task 
even if it generates the queue-overflow error message. 

See Section 8.5.3 for information concerning the flushing of the device queue, 
and see Section 8.5.3.3 for information concerning input-queue overflow. 

Syntax 

GKS~fIUSH_DEVICE_EVENTS (workstation~d, input class, 
devic~numberJ 

GfLUSH (workstativn_id, in_class, dev~um) 

gflushevents (workstation~dclass,devJ 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the workstation identifier that corresponds to the logical input 
device of the events to be removed from the input queue. 

inputclass 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the input class that corresponds to the logical input device of 

8-202 Input Functions 



Obtaining Input in Event Mode 
fIUSH DEVICE EVENTS 

the events to be removed from the input queue. This argument can be any of 
the following: 

Value Constant Description 

1 GKS$K_INPUT_CLASS_LOCATOR 

2 GKS$K_INPUT_CLASS_STROKE 

3 GKS$K_INPUT_CLASS_VALUATOR 

4 GKS$K_INPUT_CLASS_CHOICE 

5 GKS$K~NPUT_CLASS_I'ICK 

6 GKS$K~NPUT_CLASS_STRING 

Event from a locator device. 

Event from a stroke device. 

Event from a valuator device. 

Event from a choice device. 

Event from a pick device. 

Event from a string device. 

device number 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the device number that corresponds to the logical input device 
of the events to be removed from the queue. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR~TEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Input Functions 8-203 



Obtaining Input in Event Mode 
FLUSH DEVICE EVENTS 

Error Completion 
Number Status Code Message 

38 GKS$_ERROR_38 Specified workstation is neither of 
category INPUT nor of category 
OUTIN in routine **** 

140 GKS$_ERROR_140 Specified input device is not present 
on workstation in routine **** 

147 GKS$_ERROR_147 Input queue has overflowed in 
routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-5. 

8-204 Input Functions 



Obtaining Input in Event Mode 
GET CHOICE 

GET CHOICE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$GET_CHOICE obtains information from the current event 
report entry in the DEC GKS state list and writes the choice status and choice 
value to the output arguments. 

Syntax 
GKS;GET_CHOICE (input status, choice_valueJ 

GGTCH (in_status, ch_numJ 

ggetchoice (response) 

Arguments 
inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input process 
for the current event report. This argument can be either of the following 
values or constants: 

Value Constant Description 

1 GKS$K_STATUS_OK Input obtained. 

2 GKS$K_STATUS_NOCHOICE Triggered without choosing. 

Input Functions 8-205 



Obtaining Input in Event Mode 
GET CHOICE 

choice_ va/ ue 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
user's choice for the current event report. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

150 GKS$_ERROR_150 No input value of the correct class 
is in the current event report in 
routine **** 

Program Example 
Example 8-16 illustrates the use of the function GKS$GET_CHOICE. 

8-206 Input Functions 



Obtaining Input in Event Mode 
GET CHOICE 

Example 8-16: Using a Choice Logical Input Device in Event Mode 

C This program initializes and accepts choice events from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 3 ), NUM_CHOICES, SIZES( 3 ), 
* ADDRESSES( 3 ), PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, INITIAL_CHOICE, DEVICE_NUM, INPUT_CHOICE, 
* INITIAL_STATUS, NUM_POINTS, COLORI, COLOR2, COLOR3, 
* CLASS 
REAL ECHO_AREA( 4 ), PX( 4 ), PY( 4 ), LARGER 
DATA PX / 0.05, 0.1, 0.075, 0.05 / 
DATA PY / 0.85, 0.85, 0.80, 0.85 / 
DATA NUM_POINTS / 4 /, COLORI / 1 /, COLOR2 / 2 /, 
* COLOR3 / 3 /, LARGER / 0.03 / 

CHARACTER*80 CURRENT_STRINGS( 3 ) 

DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

C First element in the data record is the number of choices. 
EQUIVALENCE( DATA_RECORD(1), NUM_CHOICES ) 
CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Establish the size of the record buffer: 12 bytes. 
RECORD_BUFFER_LENGTH = 12 

C The second element in the VT241 choice data record is the pointer to 
C the array containing sizes of each choice character string. You need 
C to initialize the pointer so that the array can be initialized. 

DATA_RECORD ( 2) _ '/.LOC ( SIZES (1) ) 

C The third element in the VT241 choice data record is the pointer to the 
C array containing the pointers to the strings to be used. You need 
C to initialize the pointer so that the array can be initialized. 

DATA_RECORD ( 3) _ '/.LOC ( ADDRESSES (1) ) 
ADDRESSES ( 1 ) _ '/.LOC ( CURRENT_STRINGS ( 1 ) ) 
ADDRESSES ( 2) _ '/.LOC ( CURRENT_STRINGS ( 2) ) 
ADDRESSES ( 3) _ '/.LOC ( CURRENT_STRINGS ( 3) ) 

(continued on next page) 

Input Functions 8-207 



Obtaining Input in Event Mode 
GET CHOICE 

Example 8-16 (Copt.): Using a Choice Logical Input Device in Event 
Mode 

C Inquire about the default values. 
NUM_CHOICES = 3 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 

* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 

* INITIAL_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA, 

* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Set the initial status. 
INITIAL_STATUS = GKS$K_STATUS_OK 

C Establish sizes of prompt strings... 
SIZES( 1 ) = 4 
SIZES( 2) = 5 
SIZES( 3) = 4 

C Establish locations of prompt strings... 
ADDRESSES ( 1) _ '/.LOC ( ' Pink' ) 
ADDRESSES ( 2) _ '/.LOC ( ' Green' ) 
ADDRESSES ( 3) _ '/.LOC ( ' Blue' ) 

C To initialize a device, make sure it's in request mode (the DEC 

C GKS default) . 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH ) 

0 CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

C Initialize color indexes. 
CALL GKS$SET_COLOR_REP( WS_ID, COLORI, 0.6258, 0.2142, 
* 0.2142 ) 
CALL GKS$SET_COLOR_REP( WS_ID, COLOR2, 0.1400, 1.000, 
* 0.1400 ) 
CALL GKS$SET_COLOR_REP( WS_ID, COLOR3, 0.0, 0.0, 
* 0.8400 ) 
CALL GKS$SET_FILL_COLOR_INDEX( COLORI ) 
CALL GKS$SET_FIi.L_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

(continued on next page) 

8-208 Input Functions 



Obtaining Input in Event Mode 
GET CHOICE 

Example 8-16 (Cont.): Using a Choice Logical Input Device in Event 
Mode 

C Tell the user how to change colors. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Move the arrow keys to') 
CALL GKS$TEXT( 0.05, 0.90, 'change the triangle colors.') 

C Do until the surface is full. 
DO WHILE ( PX( 2) .LT. 0.95 ) 

C Check the event queue. 
CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 

© IF ( CLASS .NE. GKS$K_INPUT_CLASS_NONE) THEN 
CALL GKS$GET_CHOICE( INPUT_STATUS, INPUT_CHOICE ) 

ENDIF 

C Depending on the event values, change the color. 
IF ( INPUT_CHOICE .EQ. 1 ) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( COLORI ) 
ENDIF 
IF ( INPUT_CHOICE .EQ. 2) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( COLOR2 ) 
ENDIF 
IF ( INPUT_CHOICE .EQ. 3) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( COLORS ) 
ENDIF 

C Draw the triangles. 
CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 

C Adjust the position of the triangles. 
PY( 1 ) = PY( 1 ) - 0.06 
PY( 2) = PY( 2) - 0.06 
PY( 3) = PY( 3) - 0.06 
PY( 4) = PY( 4) - 0.06 

(continued on next page) 

Input Functions 8-209 



Obtaining Input in Event Mode 
GET CHOICE 

Example 8-16 (Cont.): Using a Choice Logical Input Device in Event 
Mode 

I F (PY (2) . LT . 0.05) THEN 
PY ( 1 ) = 0.85 
PY(2) = 0.85 
PY(3) = 0.80 
PY(4) = 0.85 
PX( 1 ) = PX( 1 ) + 0.06 
PX(2) = PX(2) + 0.06 
PX(3) = PX(3) + 0.06 
PX(4) = PX(4) + 0.06 

ENDIF 

ENDDO 
C Turn off the event prompt. 

O CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The call to GKS$SET_CHOICE _MODE sets the input operating mode to 
event. At this point in the program, the choice prompt appears on the 
workstation surface and the user can trigger the device to place an event 
report on the input queue. 

© If there is an event report on the input queue, GKS$AWAIT~VENT 
removes the report and GKS$GET_CHOICE retrieves the input values. 
Notice that the user must trigger the device (or the time specified in an 
argument to GKS$AWAIT~VENT must expire) to place an event report on 
the input queue. 

© This code draws triangles in columns. 

O The call to GKS$SET_CHOICE ~ViODE returns the logical input device to 
request mode. At this point, the device handler removes the choice prompt 
from the workstation surface and the user can no longer enter input. 

8-210 Input Functions 



Obtaining Input in Event Mode 
GET CHOICE 

The images generated by this program are identical to the images generated 
by Example 8-11. The difference is that the user must trigger the device (or 
allow the time-out argument for GKS$AWAIT~VENT to expire) before an 
event report appears on the input queue. Using sample mode, the application 
program controls the acceptance of the choice without user action. 

Input Functions 8-211 



Obtaining Input in Event Mode 
GET LOCATOR 

GET LOCATOR 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$GET_LOCATOR obtains information from the current 
event report entry in the DEC GKS state list and writes the normalization 
transformation and the X and Y world coordinate point values to the output 
arguments. 

Syntax 
GKS;GET_LOCATOR (transformation_number, world~r, world_yJ 

GGTLC (x_form, poster, po~yJ 

ggetloc (response) 

Arguments 
transformation number 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the normalization transfor-
mation number used to translate the current event's input point to a world 
coordinate point. 

world~r 
world_y 

data type: real 
access: write-only 
mechanism: by reference 

These are the arguments to which DEC GKS writes the X and Y world coordi-
nate values for the current event record. 

8-212 Input Functions 

lr/ 



Obtaining Input in Event Mode 
GET LOCATOR 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR~TEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

150 GKS$_ERROR_150 No input value of the correct class 
is in the current event report in 
routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-3. 

Input Functions 8-213 



Obtaining Input in Event Mode 
GET PICK 

GET PICK 

Operating States: wSOP, wSAC, SGOP 

Description 
The function GKS$GET_PICK obtains information from the current event report 
entry in the DEC GKS state list and writes the input status, segment name, and 
pick identifier to the output arguments. 

Syntax 
GKS$GET_PICK (input status, segment~ame, pick_idJ 

GGTPK (input status, segment~ame, pick_idJ 

ggetpick (response) 

Arguments 
inputstatus 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the status of the input values in 
the current event report. This argument can be either of the following values or 
constants: 

Value Constant Description 

1 GKS$K_STATUS_OK Input obtained. 

2 GKS$K_STATUS~TOPICK Triggered without picking. 

8-214 Input Functions 



Obtaining Input in Event Mode 
GET PICK 

segmentname 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
segment name in the current event report. 

picl mid 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the integer representing the 
pick identifier for the current event report. 

Error Messages 

Error Completion 
Number Status Code Message 

—20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine * * * * 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

150 GKS$_ERROR_150 No input value of the correct class 
is in the current event report in 
routine **** 

Program Example 
To see an example of a call to this function, refer to Example 8-4. 

Input Functions 8-215 



Obtaining Input in Event Mode 
GET STRING 

GET STRING 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$GET_STRING obtains information from the current event 
report entry in the DEC GKS state list and writes the string, the string size, and 
the number of characters written to the output arguments. 

When activating string input, the following two buffers exist: 

• The application's string buffer, whose size you specify when you pass the 
buffer argument by descriptor to GKS$GET_STRING. 

• The logical input device's string buffer, whose size you can specify in the 
call to GKS$INIT STRING. 

When reading a string from the current, event report, DEC GKS removes char-
acters up to the number that fit into the application's buffer. If the size of 
the string in the current event report is larger than the application's buffer, 
you need to call GKS$GET_STRING again, using a larger application buffer, 
in order to obtain .the entire string contained in the report. (Remember that 
the string contained in the current report does not change until you call 
GKS$AWAIT~VENT to replace the current report.) 

NOTE 

The initial string only appears in the first generated string event 
report. Subsequent string reports do not contain the initial string. 

Syntax 
GKS=GET_STRING (stringJiul~er, string size, report_string_size) 

GGTST (num_char, cstringJ 

GGTST- Subset (num_char, cstringJ 

ggetstring (response) 

8-216 Input Functions 



Obtaining Input in Event Mode 
GET STRING 

Arguments 
string buffer 

data type: string 
access: write-only 
mechanism: by descriptor 

This is the argument to which DEC GKS writes the input character string. This 
is the application's buffer. 

string size 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of bytes in the 
string accepted from the current event. 

repor~string_size 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the total size of the string found 
in the current event report. If this value is larger than string size, you may 
want to call GKS$GET—STRING, passing a larger buffer, to obtain the entire 
string contained in the report. 

Input Functions 8-217 



Obtaining Input in Event Mode 
GET STRING 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

150 GKS$_ERROR_150 No input value of the correct class 
is in the current event report in 
routine **** 

Program Example 
Example 8-17 illustrates the use of the function GKS$GET_STRING. 

Example 8-17: Using a String Logical Input Device in Event Mode 

C This program initializes and accepts string events from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD(2 ), 
* PROMPT_ECHO_TYPE, ERROR_STATUS, BUFFER_LENGTH, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, STRING_SIZE, 
* CUR_POSITION, REPORT_STRING_SIZE, INCR, INCR2, CLASS 
REAL ECHO_AREA(4 ), START_X, START_Y, X_VECTOR, Y_VECTOR, 
* LARGER, TIME 
CHARACTER*31 INITIAL_STRING, STRING_BUFFER 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, LARGER / 0.03 /, 
* TIME / 20.0 / 

C First element in the data record is length of the buffer that 
C contains the input string. 

EQUIVALENCE( DATA_RECORD( 1 ), BUFFER_LENGTH ) 
EQUIVALENCE( DATA_RECORD(2 ), CUR_POSITION ) 

(continued on next page) 

8-218 Input Functions 



Obtaining Input in Event Mode 
GET STRING 

Example 8-17 (Cont.): Using a String Logical Input Device in Event 
Mode 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ_STRING_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STRING, 
* STRING_SIZE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

ECHO_AREA( 1) = 437 
BUFFER_LENGTH = 31 
CUR_POSITION = 1 

C To initialize a device, make sure it's in request mode (the DEC 
C GKS default) . 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_STRING( WS_ID, DEVICE_NUM, ' ' 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

(continued on next page) 

Input Functions 8-219 



Obtaining Input in Event Mode 
GET STRING 

Example 8-17 (Cont.~: Using a String Logical Input Device in Event 
Mode 

C Tell the user what is happening. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 'Every 20 seconds, type a string.') 
CALL GKS$TEXT( 0.05, 0.90, 'I will use them in my design.') 

© CALL GKS$SET_STRING_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

C Set the initial text settings and attributes. 
START_X = 0.05 
START_Y = 0.70 
X_VECTOR = 0.0 
Y_VECTOR = 1.0 

C Do for three lines. 
DO 200 INCR = 1, 3, 1 

IF ( INCR .NE. 1 ) THEN 

C Ask for a string... 
CALL GKS$SET_TEXT_UPVEC( 0.0, 1.0 ) 
CALL GKS$TEXT( 0.05, 0.85, 
* 'Please enter a string.') 
CALL GKS$SET_TEXT_UPVEC( X_VECTOR, Y_VECTOR ) 

C Check the event queue. 
CALL GKS$AWAIT_EVENT( TIME, WS_ID, CLASS, DEVICE_NUM ) 

C If the user entered a string, get it... 
© IF (CLASS .NE. GKS$K_INPUT_CLASS_NONE ) THEN 

CALL GKS$GET_STRING( STRING_BUFFER, STRING_SIZE, 
* REPORT_STRING_SIZE ) 

C Otherwise, ask for a string... 
ENDIF 

ELSE 
C Provide the first string. 

STRING_BUFFER = 'I" 11 give you the first string.' 
ENDIF 

(continued on next page) 

8-220 Input Functions 



Obtaining Input in Event Mode 
GET STRING 

Example 8-17 (Cont.): Using a String Logical Input Device in Event 
Mode 

C Create a design with a text string. 
DO 300 INCR2 = 1, 3, 1 

CALL GKS$SET_TEXT_UPVEC( X_VECTOR, Y_VECTOR ) 
CALL GKS$TEXT( START_X, START_Y, 

* STRING_BUFFER ) 
X_VECTOR = X_VECTOR + 0.1 
Y_VECTOR = Y_VECTOR - 0.1 

300 CONTINUE 

C Reset variables. 
START_Y = START_Y - 0.01 
STRING_BUFFER = ' ' 

200 CONTINUE 

C Turn off the event prompt. 
0 CALL GKS$SET_STRING_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O Changing the value of variable ECHO—AREA(1) widens the echo area so 
that the user can enter a larger string than the one which the default area 
allows. 

© The call to GKS$SET_STRING —11/IODE sets the input operating mode 
to event. At this point in the program, the string prompt appears on the 
workstation surf ace and the user can trigger the device to enter an event 
report on the input queue. 

© If there is an event report on the input queue, GKS$AWAIT_EVENT 
removes the report and GKS$GET_STRING retrieves the input values. 
Notice that the user must trigger the device (or the time specified in an 
argument to GKS$AWAIT~VENT must expire) to place an event report on 
the input queue. 

O This code outputs the strings by adjusting the character-up vector. This 
creates a 'pinwheel" design on the workstation surface. 

Input Functions 8-221 



Obtaining Input in Event Mode 
GET STRING 

0 The call to GKS$SET_STRING ~VIODE returns the logical input device to 
request mode. At this point, the device handler removes the string prompt 
from the workstation surface and the user can no longer enter input. 

The images generated by this program are identical to the images generated 
by Example 8-13. The difference is that the user must trigger the device (or 
allow the time-out argument for GKS$AWAIT_EVENT to expire) before an 
event report appears on the input queue. Using sample mode, the application 
program controls the acceptance of the string without user action (triggering). 

8-222 Input Functions 



Obtaining Input in Event Mode 
GET STROKE 

GET STROKE 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$GET_STROKE obtains information from the current event 
report entry in the DEC GKS state list and writes the normalization transforma-
tion, the number of entered points, the stroke point values, and the number of 
accepted stroke point values to the output arguments. 

When activating stroke input, the following two buffers exist: 

• The application's stroke buffer, whose size you specify when you pass the 
buffer argument by descriptor to GKS$GET_STROKE. 

• The logical input device's ..stroke buffer, whose size you can specify in the 
call to GKS$INIT STROKE. 

When reading stroke points from the current event report, DEC GKS removes 
points up to the number that fit into the application's buffer. If the size of 
the stroke in the current event report is larger than the application's buffer, 
you need to call GKS$GET STROKE again, using a larger application buffer, 
in order to obtain the entire stroke contained in the report. (Remember that 
the stroke contained in the current report does not change until you call 
GKS$AWAIT~VENT to replace the current report.) 

NOTE 

The initial stroke appears only in the first generated stroke event 
report. Subsequent stroke reports do not contain the initial stroke. 

Input Functions 8-223 



Obtaining Input in Event Mode 
GET STROKE 

Syntax 
GKS~GET_STROKE (transformation_number, num_entered_points, 

stroke_buffer~r, stroke_bufler_y, stroke_size~r, 
strok~siz~yJ 

GSTSK (max~pts, xform, num~ts, px, pyJ 

gsetstroke (response) 

Arguments 
transformation number 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of the normalization 
transformation used to translate points in the current event _report to world 
coordinate points. 

num_entered_points 

data type: integer 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the number of points in the 
stroke in the current event report. 

stroke_buffer~r 
stroke_bufler_y 

data type: array (real) 
access: write-only 
mechanism: by descriptor 

These are the arguments to which DEC GKS writes the X and Y world co-
ordinate values from the current event report. These arguments are the 
application's stroke buffer. 

8-224 Input Functions 



Obtaining Input in Event Mode 
GET STROKE 

stroke_size~r 
stroke_size_y 

data type: integer 
access: write-only 
mechanism: by reference 

These are the arguments to which DEC GKS writes the number of stroke points 
actually accepted from the current event report and placed in the application 
buffer. If the values in these arguments are less than num_entered_points, 
then you may want to call GKS$GET_STROKE again, passing a larger bufffer, 
to obtain the entire stroke entered. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

150 GKS$~RROR_150 No input value of the correct class 
is in the current event report in 
routine **** 

Program Example 
Example 8-18 illustrates the use of the function GKS$GET_STROKE. 

Input Functions 8-225 



Obtaining Input in Event Mode 
GET STROKE 

Example 8-18: Using a Stroke Logical Input Device in Event Mode 

C This program initializes and accepts stroke events from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, DATA_RECORD( 6 ), BUFFER_SIZE, 
* DIMENSION, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* TRANSFRM, NUM_ENTERED_POINTS, INPUT_MODE, ECHO_FLAG, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, 
* RET_SIZE_X, RET_SIZE_Y, I, IDIT_POSITION, ATTS_FLAG, TEXT 
* INCR, INCR2, RET_SIZE_BUF( 3 ), CLASS 
REAL ECHO_AREA( 4 ), STROKE_X( 50 ), 
* STROKE_Y( 50 ), X_INT, Y_INT, TIME_INT, 
* STROKE_BUFFER_X( 3, 50 ), STROKE_BUFFER_Y( 3, 50 ), 
* LARGER, TIME 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, TEXT / 1 /, 
* LARGER / 0.03 /, TIME / 20.0 / 

C First element in the data 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 
EQUIVALENCE( DATA_RECORD( 

C 

C 
C 

record is the buffer size. 
1 ) , BUFFER_SIZE) 
2 ), EDIT_POSITION) 
3 ), X_INT) 
4 ), Y_INT) 
5 ), TIME_INT) 
6 ), ATTS_FLAG) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 
CALL GKS$ACTIVATE_WS( WS_ID ) 

RECORD_BUFFER_LENGTH = 24 
CALL GKS$INQ_STROKE_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, DIMENSION, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, TRANSFRM, NUM_ENTERED_POINTS, 
* STROKE_X, STROKE_Y, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

Allow a buffer that is large enough. 
BUFFER_SIZE = 256 

By specifying to DEC GKS to use the current attributes flag, you 
need to pass the 24 byte data record instead of the 52 byte record. 
ATTS_FLAG = GKS$K_ACF_CURRENT 

(continued on next page) 

8-226 Input Functions 



Obtaining Input in Event Mode 
GET STROKE 

Example 8-18 (Copt.): Using a Stroke Logical Input Device in Event 
Mode 

C To initialize a device, make sure it's in request mode (the DEC 
C GKS default) . 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_STROKE( WS_ID, DEVICE_NUM, 
* NUM_ENTERED_POINTS, STROKE_X, STROKE_Y, TRANSFRM 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

O CALL GKS$SET_STROKE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_EVENT, GKS$K_ECHO ) 

C Tell the user how many sets of stroke points to enter. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.05, 0.95, 
* 'Every 20 seconds, enter points.') 
CALL GKS$TEXT( 0.05, 0.90, 
* 'I" 11 show the three fill areas.') 

C Do for three sets of stroke points . 
DO 200 INCR = 1, 3, 1 

C Check the event queue. 
CALL GKS$AWAIT_EVENT( TIME, WS_ID, CLASS, DEVICE_NUM ) 

C If the user entered a stroke, get it... 
© IF ( CLASS .NE. GKS$K_INPUT_CLASS_NONE) THEN 

CALL GKS$GET_STROKE( TRANSFRM, NUM_ENTERED_POINTS, 
* '/.DESCR ( STROKE_X ) , '/.DESCR ( STROKE_Y ) , 
* RET_SIZE_X, RET_SIZE_Y ) 
ENDIF 

RET_SIZE_BUF( INCR ) = MIN( RET_SIZE_X, RET_SIZE_Y ) 

(continued on next page) 

Input Functions 8-227 



Obtaining Input in Event Mode 
GET STROKE 

Example 8-18 (Cont.~: Using a Stroke Logical Input Device in Event 
Mode 

C Put the strokes in a buffer. 
© DO 300 INCR2 = 1, RET_SIZE_BUF( INCR ), 1 

STROKE_BUFFER_X( INCR, INCR2) = STROKE_X( INCR2 ) 
STROKE_BUFFER_Y( INCR, INCR2) = STROKE_Y( INCR2 ) 

300 CONTINUE 

200 CONTINUE 

C Get rid of the stroke prompt... 
O CALL GKS$SET_STROKE_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

C Present the corresponding fill areas. Press RETURN when you are 
C ready to view the next fill area. 

0 CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 
CALL GKS$TEXT( 0.05, 0.95, 
* 'Here are the fill areas.') 
CALL GKS$CREATE_SEG( TEXT ) 
CALL GKS$TEXT( 0.05, 0.90, 
* 'Press RETURN when ready.') 
CALL GKS$CLOSE_SEG() 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

DO 400 INCR = 1, 3, 1 

C Put the current stroke in the temporary buffer. 
DO 500 INCR2 = 1, RET_SIZE_BUF( INCR ), 1 
STROKE_X( INCR2 ) = STROKE_BUFFER_X( INCR, INCR2 
STROKE_Y( INCR2 ) = STROKE_BUFFER_Y( INCR, INCR2 

500 CONTINUE 

CALL GKS$FILL_AREA( RET_SIZE_BUF( INCR ), 
* STROKE_X, STROKE_Y ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 
IF ( INCR .EQ. 3) THEN 

CALL GKS$DELETE_SEG( TEXT ) 
ENDIF 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

400 CONTINUE 

(continued on next page) 

8-228 Input Functions 



Obtaining Input in Event Mode 
GET STROKE 

Example 8-18 (Copt.): Using a Stroke Logical Input Device in Event 
Mode 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O The call to GKS$SET_STROKE -1VIODE sets the input operating mode to 
event. At this point in the program, the stroke prompt appears on the 
workstation surface and the user can enter stroke points, trigger the device, 
and enter the event report on the input queue. 

© If there is an event report on the input queue, GKS$AWAIT_EVENT 
removes the report and GKS$GET_STROKE retrieves the input values. 
Notice that the user must trigger the device (or the time specified in an 
argument to GKS$AWAIT~VENT must expire) to place an event report on 
the input queue. 

© This code sets the correct size of the buffer and stores the stroke points in a 
two-dimensional array. 

O The call to GKS$SET_STROKE _1VIODE returns the logical input device to 
request mode. At this point, the device handler removes the stroke prompt 
from the workstation surface and the user can no longer enter input. 

0 This code uses each of the sets of stroke points to create and display a fill 
area. 

The images generated by this program are identical to the images generated 
by Example 8-14. The difference is that the user must trigger the device (or 
allow the time-out argument for GKS$AWAIT~VENT to expire) before an 
event report appears on the input queue. Using sample mode, the application 
program controls the acceptance of the stroke without user action (triggering). 

Input Functions 8-229 



Obtaining Input in Event Mode 
GET VALUATOR 

GET VALUATOR 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$GET_VALUATOR obtains information from the current 
event report entry in the DEC GKS state list and writes the real value output 
argument. 

Syntax 
GKS;GET_VALUATOR (real value) 
GGTVI (value) 

ggetval (response) 

Arguments 
real_va/ue 

data type: real 
access: write-only 
mechanism: by reference 

This is the argument to which DEC GKS writes the current measure of the 
valuator device. 

8-230 Input Functions 



Obtaining Input in Event Mode 
GET VALUATOR 

Error Messages 

f'1 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR~EG~O GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state; GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP 

150 GKS$_ERROR_150 No input value of the correct class 
is in the current event report in 
routine * * * 

Program Example 
To see an example of a call to this function, refer to Example 8-4. 

Input Functions 8-231 





Chapter 9 

Segment Functions 

The DEC GKS segment functions create, manipulate, and delete stored groups 
of output primitives called segments. The segment functions can be divided into 
the following categories: 

Category GKS Functions 

Using Segments 

Primitive Attributes 

Segment Attributes 

Segment Transformations 

GKS$ASSOC_SEG _WITH _WS, GKS$CLOSE _SEG, 
GKS$COPY_SEG_TO_WS, GKS$CREATE_SEG, 
GKS$DELETE_SEG, GKS$DELETE_SEG~ROM_WS, 
GKS$INSERT_SEG, GKS$RENAME _SEG 

GKS$SET_I'ICK~D 

GKS$SET_SEG _DETECTABILITY, GKS$SET_SEG _ 
HIGHLIGHTING, GKS$SET_SEG~'RIORITY, 
GKS$SET_SEG _VISIBILITY 

GKS$ACCUM~CFORM_IVIATRIX, GKS$EVAL _ 
XFORM _MATRIX, GKS$SET_SEG ~CFORM 

When producing output, you may wish to reproduce a graphic image at 
different positions within a single picture, possibly across different devices, 
and possibly at different points during program execution. It is inefficient to 
call all of the DEC GKS output and attribute functions every time you want to 
reproduce such an image. DEC GKS provides a method of storing groups of 
output primitives, output attributes, and clipping information in a segment. 

Segment Functions 9-1 



9.1 Creating, Using, and Deleting Segments 

To use segments, your workstation should be one of the categories GKS$K_ 
WSCAT_OUTPUT, GKS$K_WSCAT_OUTIN, GKS$K_WSCAT_11/IO, or 
GKS$K_WSCAT_WISS (described in Section 9.2). When you create a segment, 
the segment is stored on all active workstations. 

To create a segment, DEC GKS must be in the operating state GKS$K_WSAC 
(at least one workstation active). When DEC GKS is in this state, you can call 
GKS$CREATE _SEG, which creates a segment on all active workstations. The 
only argument passed to GKS$CREATE_SEG is the segment name. You use a 
segment name to identify a particular segment. 

After you call the function GKS$CREATE _SEG, the DEC GKS operating state 
changes to GKS$K_SGOP (segment open). Subsequent calls to the DEC GKS 
output and output attribute functions produce primitives that are stored in the 
segment on all active workstations. When you have created the desired image, 
call the function GKS$CLOSE _SEG. This call closes the segment, causing the 
DEC GKS operating state to change back to GKS$K_WSAC. 

For a clearer understanding of the segment creation process, review the 
following code example: 

INTEGER BOX, NUM_POINTS, WS_ID 
REAL X_VALUES(5 ), Y_VALUES (5 ) 
DATA X_VALUES / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA Y_VALUES / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA WS_ID / 1 /, BOX / 1 /, NUM_POINTS / 5 / 

CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$CREATE_SEG( BOX ) 
CALL GKS$POLYLINE( NUM_POINTS, X_VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

In this code example, the workstation WS~D stores the segment BOX that 
contains an outline of a box. 

9-2 Segment Functions 



When you call the function GKS$CREATE _SEG, the DEC GKS operating state 
changes from GKS$K_WSAC to GKS$K_SGOP. GKS$K_SGOP signifies that a 
segment is open, or being created. Also, calling GKS$CREATE _SEG establishes 
the segment state list associated with the segment name, and DEC GKS records 
the segment name (in the DEC GKS state list) as the name of the currently 
open segment. 

Segments cannot contain other segments, or in other words, segments can-
not be nested. Therefore, if you call GKS$CREATE _SEG, you must call 
GKS$CLOSE_SEG before you attempt to call GKS$CREATE_SEG again. Until 
you call GKS$CLOSE_SEG, DEC GKS associates all generated output primi-
tives with the name of the open segment. When you call GKS$CLOSE_SEG, 
the DEC GKS operating state changes from GKS$K_SGOP back to GKS$K_ 
WSAC. After you close a segment, you cannot reopen the segment to add more 
output primitives. 

If you need to, you can rename the segment using the function GKS$RENAME _ 
SEG. If you are keeping an ordered list of segments, calls to this function may 
be useful. 

There are three ways to delete segments. If you use the function 
GKS$DELETE_SEG~ROM_WS, DEC GKS deletes the segment from the 
specified workstation. If you use GKS$DELETE_SEG, DEC GKS deletes 
the specified segment from all workstations storing the segment. If you call 
GKS$CLEAR_WS, and if the surface is cleared, you delete all segments stored 
on that workstation. 

For more information concerning the DEC GKS operating states or the segment 
state list, refer to Chapter 4, Control Functions. 

NOTE 

If you store primitives in a segment and if you want to be able 
to change the primitive's appearance elsewhere in the program, 
you must set the primitive's ASF to be GKS$K_ASF_BUNDLED 
before you generate the primitive. In this way, the primitive's 
ASF is stored in the segment with the primitive. If you want to 
change the primitive's appearance, you call the appropriate SET 
REPRESENTATION function for the primitive's bundle index. If 
you store the primitive in a segment using individual attributes, 
the appearance of the primitive cannot be changed after primitive 
generation. For more information, refer to Chapter 6, Output 
Attribute Functions. 

Segment Functions 9-3 



9.1.1 Pick Identification 

One of the DEC GKS logical input classes is the pick input class. Through this 
process, the user can choose a segment, and possibly a portion of the segment, 
as displayed on the surface of the workstation. 

The following is an example of a call requesting pick input: 

CALL GKS$REQUEST_PICK( 1, ARG_1, ARG_2, 
* SEGMENT_NAME, PICK_ID ) 

The arguments SEGMENT_NAME and PICK—ID are write-only arguments. At 
the completion of the function call, SEGMENT~TAME contains the name value 
of the chosen segment. 

Also, after completion of the function call, the argument PICK_ID contains a 
value called the pick identifier of the primitive chosen during pick input. The 
pick identifier is a numeric output attribute. Like other output attribute values 
(line type, line width, color, text alignment, and so forth), the pick identifier is 
bound to an output primitive at the time of generation, and you cannot change 
its value. However, you can change the current pick identifier value before 
generating each output primitive. In doing so, DEC GKS associates a different 
numeric pick identifier value with each generated primitive. 

During segment creation, you can use pick identifiers to establish a hierarchy 
within the segment. During pick input, DEC GKS returns the same segment 
name if the pick prompt touches the same segment, but may return different 
pick identifiers depending on which primitive within the segment the pick 
prompt touches. 

For example, Figure 9-1 shows five distinct output primitives (one line and four 
markers). The following example shows how to assign different pick identifiers 
to distinct primitives within the same segment. 

9-4 Segment Functions 

lJ 



Figure 9-1: Primitives Within a Segment 

Each of the five primitives within this segment can have 
a different pick identifier. 

ZK 5213 86 

C The segment's name is 99. 
CALL GKS$CREATE_SEG( 99 ) 

C The line's pick identifier is 1. 
CALL GKS$SET_PICK_ID( 1 ) 
CALL GKS$POLYLINE( 5, X_VALUES, Y_VALUES ) 

C The marker in the upper left corner has a pick identifier of 2. 
CALL GKS$SET_PICK_ID( 2 ) 
CALL GKS$POLYMARKER( 1, X VALUE_1, Y_VALUE_1 ) 

C The marker in the upper right corner has a pick identifier of 3. 
CALL GKS$SET_PICK_ID( 3 ) 
CALL GKS$POLYMARKER( 1, X_VALUE_2, Y_VALUE_2 ) 

C The marker in the lower left corner has a pick identifier of 4. 
CALL GKS$SET_PICK_ID( 4 ) 
CALL GKS$POLYMARKER( 1, X_VALUE_3, Y_VALUE_3 ) 

C The marker in the lower right corner has a pick identifier of 5. 
CALL GKS$SET_PICK_ID( 5 ) 
CALL GKS$POLYMARKER( 1, X_VALUE_4, Y_VALUE_4 ) 

CALL GKS$CLOSE_SEG() 

Segment Functions 9-5 



Figure 9-2 illustrates the pick identifiers returned depending on the position of ~-
the pick prompt during input. To see how to use pick identifiers, refer to the 
program example for GKS$SET_1'ICK_ID in this chapter. 

Figure 9-2: Returned Pick Identifiers 

0 

Given the position of each of the prompts, the graphics 
handler returns the pick identifier value listed in each 
prompt. For all prompts, the graphics handler returns 
the segment name 99. 

ZK-5214-86 

9.2 Workstations and Segment Storage 

When DEC GKS stores a segment on an active GKS$K_WSCAT_OUTPUT, 
GKS$K_WSCAT OUTIN, or GKS$K_WSCAT_11/i0 workstation, the method 
of storage is called workstation dependent segment storage (WDSS). On these 
workstations, you can control the segment attributes (see Section 9.4), you 
can move or alter the shape of the segment using the segment transformation 
functions (see Section 9.4.4.1), or you can delete the segment (either from a 
single workstation or from all workstations storing the segment). 

If you are creating segments using the WDSS method of storage, you cannot 
copy a segment from one workstation to another. Also, you cannot recall a 
segment once it has been deleted from a workstation. You can only alter the 
segment's position within the picture by changing the segment transformation. 

9-6 Segment Functions 



To copy a segment, or to reassociate a segment with a workstation after deletion 
from that particular workstation, you need to store the segment in workstation 
independent segment storage (WISS). Once a segment is stored in WISS, the 
segment is independent of any workstation and can be copied from WISS to 
other workstations. 

By storing a segment on a WISS workstation, you can delete a segment from 
a particular workstation (that is not WISS). Then, when you need to use the 
deleted segment later in the program, you can 

associate the segment stored on 
WISS with the other workstation, copy the segment to the other workstation, or 

insert the segment's primitives into the output stream of the other workstation. 

If you associate a segment stored on a WISS workstation with another worksta-
tion, the other workstation stores an identical segment. If you copy a segment 
from a WISS. workstation to another workstation, the segment's primitives are 
copied to the surface of the second workstation, but the second workstation 
does not store them in a segment. If you insert a segment into the output 
stream of another workstation, DEC GKS transforms and then copies all of the 
segment's primitives onto the surface of the other workstation, but the second 
workstation does not store them in a segment. If you are creating a segment, 
you can insert another segment's primitives into the newly created segment, 
but those primitives become part of the new segment and are no longer bound 
by the old segment name (see GKS$INSERT_SEG in this chapter for more 
information). 

DEC GKS implements the WISS data structure as a workstation. To store 
a segment using WISS, open and then activate WISS specifying GKS$K_ 
WSTYPE _WISS (value 5) as the workstation type. When you open WISS, you 
can specify GKS$K_CONID_DEFAULT as the connection identifier argument. 
(If you specify GKS$K_WSTYPE_WISS, DEC GKS ignores the connection 
identifier argument). 

Once you activate the WISS workstation and create segments, you can use 
the DEC GKS functions GKS$ASSOC_SEG_WITH_WS, GKS$COPY_SEG_ 
TOWS, and GKS$INSERT_SEG. Example 9-1 shows the difference between 
GKS$ASSOC_SEG_WITH_WS and GKS$COPY_SEG_TO_WS. To see a 
program example using GKS$INSERT SEG, refer to the appropriate function 
description in this chapter. 

Segment Functions 9-7 



Example 9-1: Comparing GKS$ASSOC_SEG_WITH_WS and 
G KS$CO PY_S EG _TO_WS 

C This program draws a house in the lower left corner of the 
C screen and a line of text in the upper left corner. The program 

C redraws the segments. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, 
* UPPER_LEFT_CORNER, WISS, TITLE, NUM_POINTS 
REAL PX (9 ), PY (9 ), WORLD_X, WORLD_Y, LARGER 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE / 1 /, UPPER_LEFT_CORNER / 2 /, WISS / 2 /, 
* TITLE / 2 /, WORLD_X / 0.1 /, WORLD_Y / 0.5 /, 
* LARGER / 0.03 /, WS_ID/ 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

0 
C Only activate the WISS workstation. 

CALL GKS$ACTIVATE_WS( WISS ) 

C Create two segments and store them on the WISS workstation. 
CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( UPPER_LEFT_CORNER, 0.0, 0.5, 0.5, 1.0 ) 

CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

CALL GKS$CREATE_SEG( TITLE ) 
CALL GKS$SELECT_XFORM( UPPER_LEFT_CORNER ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( WORLD_X, WORLD_Y, 'Associated segment.' ) 
CALL GKS$CLOSE_SEG() 

(continued on next page) 

9-8 Segment Functions 



Example 9-1 (Copt.): Comparing GKS$ASSOC_SEG_WITH_WSend 
GKS$COPY_SEG_TO_WS 

CALL GKS$ACTIVATE_WS( WS_ID ) 

C Associate the text with the VT241, but only copy the house. 
© CALL GKS$ASSOC_SEG WITH_WS( WS_ID, TITLE ) 

CALL GKS$COPY_SEG_TO_WS( WS_ID, HOUSE ) 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Redraw all segments forcing an update to the screen. 
© CALL GKS$RIDRAW_SEG_ON_WS( WS_ID ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$DEACTIVATE_WS( WISS ) 
CALL GKS$CLOSE_WS( WISS ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O If you activate only the WISS workstation, DEC GKS stores created 
segments only on the WISS workstation. The VT241 screen remains clear. 

© By associating the segment containing text, the VT241 stores the segment. 
By copying the segment containing the house, DEC GKS draws the 
primitives to the VT241 screen, but the VT241 does not store the segment. 

© When you redraw all segments, you force DEC GKS to update the screen, 
eliminating all primitives not contained in segments. The house disappears 
and the text remains on the VT241 since it is stored as a segment. 

Figure 9-3 shows the screen of a VT241 terminal after the program has run to 
completion. 

Segment Functions 9-9 



Figure 9-3: Comparing GKS$ASSOC_SEG_WITH_WS and 
G KS$CO PY_S EG _TO_WS-VT241 

Asa~a i ~t ~r ~~~'M~M'It . 

ZK-5090-86 

9.3 Segments and Surface Update 

When you request changes to segment attributes (described in Section 9.4), 
the change may take place immediately (dynamically) or DEC GKS may need 
to update the surface to implement the change (an implicit regeneration), 
depending on the capabilities of your device. An implicit regeneration clears 
the screen and only redraws the primitives stored in segments. All segments 
not stored in primitives are lost. You can use the function GKS$INQ _DYN_ 
MOD_SEG ~TTB to determine if a request for a segment attribute change 
requires an implicit regeneration on your device. 

There are two ways to determine whether your device requires an implicit 
regeneration to implement a change. If you are making only a few changes, 
you can call GKS$INQ _WS_DEFER_AND_UPDATE to determine if the new 
frame necessary at update flag is YES. If you are making many different changes, 
calling GKS$INQ _WS_DEFER_AND_UPDATE each time is inefficient. 

9-10 Segment Functions 



You can call GKS$INQ _DYN ~VIOD_SEG _ATTB once to determine for which 
changes your workstation requires an implicit regeneration. Then, you can set 
flags to force regenerations only when you make changes that require them. If 
you need to regenerate the picture on the workstation surface when changing 
segment attributes, you simply call GKS$UPDATE_WS and pass GKS$K_ 
PERFORM _FLAG as an argument. 

NOTE 

If you want to redraw all of the segments on the workstation surface 
regardless of the current status of the new frame flag, you can call 
GKS$REDRAW~EG_ON_WS. A call to this function is equivalent 
to a call to GKS$UPDATE_WS while the new frame flag is set to 
YES, and while passing the argument GKS$K_I'ERFORM_FLAG. 

The following requests for changes to segments may require an implicit 
regeneration of the screen depending on the capabilities of your device (see 
Section 9.4 for a complete descriptions of the segment attributes): 

Change Possible Effect 

Segment priority If you call the following functions: 

• GKS$DELETE _SEG 

• GKS$DELETE _SEG _FROM _WS 

• GKS$ASSOC_SEG_WITH_WS 

• GKS$SET_SEG _PRIORITY 

• GKS$SET_SEG ~CFORM 

• GKS$SET_SEG_VISIBILITY 

You may have created a situation in which two 
segments of different priorities overlap, or in which 
an overlapped segment must now be made completely 
visible, or in which visibility changes. In all cases, 
DEC GKS must take the segments' priorities into 
consideration before determining if the picture is out 
of date. 

Segment transformation Many workstations are unable to reposition segments 
dynamically, thus requiring an implicit regeneration. 

Segment Functions 9-11 



Change Possible Effect 

Segment visibility 

Segment highlighting 

Segment deletion 

Some workstations may be able to make an invisible 
segment visible dynamically, but may need an 
implicit regeneration to make visible segments 
invisible, since visible-to-invisible changes require 
that the segments ubeneath" the segment be redrawn. 
Some workstations may need an implicit regeneration 
to perform both, and some workstations may be able 
to make both changes dynamically. 

Some workstations may need to implicitly regenerate 
the surface before they can highlight a segment. 

Segment deletion may require reproducing the 
segments ubeneath" the deleted segment. Calling 
either GKS$DELETE _SEG or GKS$DELETE _SEG _ 
FROM _WS can require an implicit regeneration of 
the screen, depending on the capabilities of your 
workstation. 

There are other conditions under which DEC GKS may require a surface 
regeneration, depending on the capabilities of your device. For example, if you 
attempt to alter the polyline representation (refer to Chapter 6, Output Attribute 
Functions), the VT241 requires an implicit regeneration to affect this change. 

Therefore, if you are going to make certain output attribute changes or work-
station transformation changes, you need to put all important output primitives 
into segments so that they are not lost when you update the surface. For 
complete information as to changes that may require implicit regeneration, on 
GKS$UPDATE_WS, or on GKS$REDRAW_SEG_ON_WS, refer to Chapter 4, 
Control Functions. 

9.4 Segment Attributes 

Just as a workstation stores the output attributes of a primitive when it is a 
part of a segment, a workstation stores segment attributes that affect all of the 
primitives stored within a segment. The segment attributes are as follows: 

• Detectability 

• Highlighting 

• Priority 

• Transformation 

• Visibility 

The following sections describe the segment attributes in detail. 

9-12 Segment Functions 

u 



9.4.1 Detectability 

This segment attribute determines whether or not the segment can be chosen 
during pick input. Pick input is only available on GKS$K_WSCAT_OUTIN 
workstations. By default, DEC GKS segments are undetectable (GKS$K_ 
UNDETECTABLE). 

In order for you to pick a segment, it must be both detectable and visible 
(GKS$K_VISIBLE). In many applications, if you do not want the user to be 
able to pick a segment, you should make the segment invisible as well as 
undetectable. Remember that making a segment undetectable does not make 
the segment invisible; these are two separate segment attributes. 

For more information concerning detectability, refer to GKS$SET_SEG _ 
DETECTABILITY in this chapter. For more information concerning pick input, 
refer to Chapter 8, Input Functions. 

9.4.2 Highlighting 

This segment attribute determines whether or not a workstation presents a 
highlighted segment on the workstation surface to draw the attention of the 
user to that segment. By default, DEC GKS segments are not highlighted 
(GKS$K_NORMAL). 

Highlighting is device dependent and can be implemented in any of the 
following ways: 

• Blinking all primitives in a segment 

• Outlining the segment extent rectangle 

• Reversing the foreground and background colors within the segment extent 
rectangle 

• Outlining of all output primitives stored within the segment 

The segment extent rectangle is the rectangle that outlines all of the NDC 
points of the primitives stored in the segment. For more information concerning 
highlighting, refer to GKS$SET_SEG_HIGHLIGHTING in this chapter. 

Segment Functions 9-13 



9.4.3 Priority 

This segment attribute determines which segment's primitives take priority 
when two segments overlap on the workstation surface. To assign a priority 
to a segment, you assign to the segment a real number greater than or equal 
to the value 0.0, and less than or equal to the value 1.0. Segments with the 
priority 0.0 have the lowest priority, and segments with the priority 1.0 have 
the highest priority. By default, DEC GKS segments have a priority value 
of 0.0. 

Different devices implement segment priority differently. Either a device 
supports an infinite number of priorities (theoretically), or the device supports 
a specific number of priorities. If the device supports an infinite amount of 
priorities, the maximum number o f segment priorities supported entry in the 
workstation description table is the value 0. Otherwise, the entry contains the 
number of priorities supported. (To access this table entry, call the function 
GKS$INQ _SEG _PRIORITY.) 

If the number of priorities supported is not 0 (specifying an infinite number of 
supported priorities), then DEC GKS divides the 0.0 to 1.0 priority range into 
subranges according to the number of supported priorities. If you specify, for 
two different segments, two different priority values that fall within the same 
subrange, those segments have the same priority. For instance, if a workstation 
supports two segment priorities, all segments with the specified values between 
0.0 and 0.5 inclusive have the same priority, and values between 0.51 and 1.0 
have the same priority. 

For more information concerning segment priority, refer to GKS$SET_SEG_ 
PRIORITY in this chapter. 

9.4.4 Transformation 

When DEC GKS creates a picture containing segments, it places into effect the 
current normalization transformation, applies the current segment transformation 
to each segment, and if you have enabled clipping, clips the picture at the 
current normalization viewport. By default, DEC GKS applies the identity 
segment transformation to all segments. The identity transformation makes no 
changes to the size or position of the segment. 

If you desire, you can change the segment transformation that affects the 
following components of segment appearance. 

9-14 Segment Functions 

~J 



Component Description 

Scaling The first step in the segment transformation process is to scale the 
segment. Scaling determines the size of the segment extent rectangle, 
either enlarging or decreasing the total size of the segment. 

Rotation The second step in the segment transformation process is to rotate 
the segment. Rotation determines the positioning of the segment 
by establishing a fixed coordinate point in the segment, and then 
rotating the remaining segment points around the fixed point axis by 
a specified number of radians. 

Translation The last step in the segment transformation process is to translate 
the segment's coordinate points to new points according to vector 
coordinate values. Simply, it shifts the segment position in NDC 
space. 

Figure 9-4 illustrates the effects of scaling, rotation, and shifting. 

Segment Functions 9-15 



Figure 9-4: Scaling, Rotation, and Translation 

All points are NDC points 

(.25,.7) Fixed Point 

Defined 
segment 

(.25,.7) 

• 

(.1,.1) 

Then, rotation 

• 

(.1,.1) 

(.25,.7) Fixed Point 

Scaling 

• 

(.1,.1) 

Finally, translation 

(.25,.7) 
• 

ZK-5041-86 

9-16 Segment Functions 



The first decision you must make when working with segment transformations 
is whether to specify your fixed point in a world or NDC coordinate point. 
If you want to transform portions of the segment according to the current 
normalization transformation mapping, specify world coordinates. DEC GKS 
maps the specified world coordinate point to the NDC plane and then performs 
the rotation or scaling. 

If you want to transform the segment as stored on the NDC space (regardless of 
the current normalization transformation), specify an NDC point as your fixed 
point. 

Next, if you want to scale or to rotate the segment, you must decide which 
point in the segment to use as an axis, or a fixed point. when DEC GKS scales 
the segment, the fixed point is the only point that maintains its position as the 
segment decreases or increases in size either towards or away from the fixed 
point. when DEC GKS rotates the segment, it uses the fixed point as the axis 
around which the other points in the segment rotate. If you do not wish to 
scale or rotate the segment, you can specify the value 0.0 for both fixed point 
coordinate values. 

If you decide to shift the segment, you need to establish a translation vector. 
The translation vector is expressed by two real number values that specify by 
how much the X and Y segment coordinate values change. When DEC GKS 
translates the segment, it adds the values specified in the translation vector 
to the segment's X and Y values, moving the segment within the specified 
coordinate plane. If you do not wish to translate the segment's position, you 
can specify the value 0.0 for both components of the translation vector. 

If you decide to rotate the segment, you must decide on an angle o f rotation 
in radians. A radian is a measure of an angle. A full circle, 360 degrees, 
equals 2*pi radians, one radian equaling 180/pi degrees. The value pi equals 
approximately 3.14. DEC GKS rotates the segment on the axis of the fixed 
point by the radian specified as the angle of rotation. Positive rotation values 
rotate counter clockwise; negative rotation values rotate clockwise. If you do 
not wish to rotate the segment, you can specify 0.0 for the angle of rotation. 

Finally, if you decide to scale the segment, you need to establish the scale 
factors. You express a scale factor as two real number values; DEC GKS multi-
plies the X and Y segment coordinate values by the scale factor components to 
determine the new size of the segment. If you do not want to scale the segment 
(keeping the segment the same size), specify the value 1.0 for both components 
of the scale factor. Values less than 1.0 decrease the segment size, and values 
greater than 1.0 increase the segment size. 

Segment Functions 9-17 



Once you have decided how to scale, rotate, and translate a segment, you 
must construct a transformation matrix. A transformation matrix is asix-element 
array of real values. To assist you in the creation of of a transformation 
matrix, DEC GKS provides the utility functions GKS$EVAL ~CFORM_NiATRIX 
and GKS$ACCUM_XFORM_11/IATRIX. The function GKS$EVAL _XFORM_ 
MATRIX has the following function syntax: 

GKS$EVAL_XFORM_MATRIX (fixed_point~c, fixed_point_y, translation_vec_x, 

translation_vec_y, rotation, scale~c, scale_y, type_of_coordinates, 
transformation matrix ) 

After evaluating the first eight arguments, GKS$EVAL _XFORM_1VIATRIX 
establishes the appropriate transformation matrix and writes the six-element 
array of real numbers to the last argument transformation _matrix. For detailed 
information concerning this function, refer to GKS$EVAL _XFORM_NiATRIX in 
this chapter. 

The function GKS$ACCUM_XFORM_1VIATRIX is identical to GKS$EVAL _ 
XFORM_1VIATRIX, except that its first read-only argument is another transfor-
mation matrix, as follows: 

GKS$ACCUM_XFORM_MATRIX (first~cform_matrix, fixed_point~c, fixed_point_y, 
translation_vec~c, translation_vec_y, rotation, scale~c, scale_y, type_of_coordinates, 
accumulated~cform_matrix ) 

If you have a previously constructed transformation matrix to which you 
want to add translation, shifting, and scaling values, you call GKS$ACCUM_ 
XFORM~VIATRIX. DEC GKS creates a new transformation matrix using the 
first matrix and the specified scaling, rotation, and translation information, and 
then returns the resulting transformation matrix to the last argument. 

Once you have established the desired transformation matrix, either by 
accumulating matrixes or by evaluating a single matrix, you can set the segment 
transformation using GKS$SET SEG_XFORM, which takes the name of 
a segment and the transformation matrix identifier as its arguments. DEC 
GKS applies the specified transformation to the stored segment on the NDC 
plane. This current transformation remains in effect until you change it. 
Before copying a segment, associating a segment, or inserting a segment on a 
workstation, DEC GKS first checks the current segment transformation in the 
segment state list, and applies that transformation to the stored segment. 

You may have to update the workstation surface in order to see the change in 
the segment transformation. See Section 9.3 for more information concerning 
surface update. 

To illustrate the entire process of segment transformation, review the following 
sequence of examples and figures. 

9-18 Segment Functions 

lJ 



In Example 9-2, all of the coordinate values are world coordinates. The fixed 
point is the tip of the house (0.25, 0.9). The translation vector represents the 
number of X and Y values by which we want to increase or decrease the present 
coordinates; in this example, the Y values increase by two world coordinate 
point units (0.0, 0.2). The angle of rotation is 30 degrees (pi/6 radians). The 
scale factors represent a 50 percent decrease in size for both the X and Y axes 
(0.5, 0.5). 

If we specify all of the necessary arguments in a single call to GKS$EVAL _ 
XFORM_1VIATRIX, DEC GKS always scales, then rotates, and finally translates 
the segment, in that order. Following the example, Figure 9-5 illustrates the 
effects of the example on a VT241. 

Segment Functions 9-19 



Example 9-2: The Effects of a Segment Transformation 

C This program transforms the house contained in a segment. 
_IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, NUM_POINTS 
REAL FIXED_X, FIXID Y, VECTOR_X, VECTOR_Y, ROTATION, 
* SCALE_X, SCALE_Y, NULL, XFORM_MATRIX( 6 ) 
REAL PX (9 ), PY (9 ) 
DATA FIXED_X / 0.25 / FIXED Y / 0.9 /, VECTOR_X / 0.0 /, 
* VECTOR_Y / 0.2 /, SCALE_X / 0.5 /, SCALE_Y / 0.5 /, 
* NULL / 0.0 /, NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE / 1 /, WS_ID / 1 / 
DATA PX / .4, 
DATA PY / .1, 

.1, .1, .4, .25, .1, .4, .4, .1 / 

.1, .7, .7, .9, .7, .1, .7, .1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SELECT XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 

CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , *) 

C Rotation equals pi divided by 6 (30 degrees). 
ROTATION = 3.14/6.0 

C Set scaling, rotation, and translation. 
O CALL GKS$EVAL_XFORM_MATRIX( FIXED_X, FIXED_Y, vECTOR_X, 

* VECTOR_Y, ROTATION, SCALE_X, SCALE_Y, 
* GKS$K_COORDINATES WC, XFORM_MATRIX ) 

0 
C Transform the segment. 

CALL GKS$SET_SEG_XFORM( HOUSE, XFORM_MATRIX ) 

(continued on next page) 

9-20 Segment Functions 



Example 9-2 (Cont.): The Effects of a Segment Transformation 

C Update the screen to show the transformed house. 
© CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

0 This call selects a normalization transformation with the new viewport. 
DEC GKS transforms all output in segments to the new viewport. For 
the existence of the segment, the segment's primitives are clipped at this 
viewport boundary. 

© Using a VT241, you cannot dynamically alter the segment currently 
displayed on the workstation surface by calling GKS$SET~EG~CFORM. 
Calling this function at this point in the program changes the segment 
transformation in the segment state list, and sets flags in the workstation 
state list telling DEC GKS that the surface is out of date and that an update 
is necessary. 

© Calling GKS$UPDATE _WS updates the position of the image on the work-
station surface. The function GKS$REDRAW_SEG_ON_WS accomplishes 
the same task. Using both functions, all output not contained in segments 
is lost. 

Figure 9-5 shows the screen of a VT241 terminal after the program has run to 
completion. 

Segment Functions 9-21 



Figure 9-5: The EfFects of a Segment Transformation—VT241 

ZK-5091-86 

In some applications, you may want to have more control over the order in 
which DEC GKS transforms segments. Simply, you may want to transform 
the segment in some other order besides scaling, then rotating, and finally 
translation. You can accomplish this task by calling GKS$ACCUM ~CFORM _ 
MATRIX. 

For example, you may wish to translate, then scale, and finally rotate the 
segment. Assuming all of the variable declarations of the last code example, 
review the following code. 

9-22 Segment Functions 



C To change the normal transformation order, set the translation... 
CALL GKS$EVAL_XFORM_MATRIX( NULL, NULL, VECTOR_X, 
* VECTOR_Y, NULL, 1.0, 1.0, 
* GKS$K_COORDINATES_WC, XFORM_MATRIX_1 ) 

C Accumulate the scaling... 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX_1, FIXED_X, FIXED_Y, 
* NULL, NULL, NULL, SCALE_X, SCALE_Y, GKS$K_COORDINATES_WC, 
* XFORM_MATRIX_2 ) 

C And add the rotation... 
CALL GKS$ACCUM_XFORM_I~tATRIX( XFORM_MATRIX_2, FIXED_X, FIXID_Y, 
* NULL, NULL, ROTATION, 1.0, 1.0, GKS$K_COORDINATES_WC, 
* XFORM_MATRIX_3 ) 

If you pass all three values to GKS$EVAL _XFORM-1VIATRIX, DEC GKS scales, 
then rotates, and finally translates. Using the two calls to GKS$ACCUM_ 
XFORM~VIATRIX, you force DEC GKS to translate, scale, and then rotate the 
segment, in that order. 

9.4.4.1 Normalization and Segment Transformations, and Clipping 

When you generate an output primitive during segment creation, DEC GKS 
stores the primitive, the currently associated output attributes, the current 
clipping rectangle (the current normalization viewport), and the pick identifier 
value (refer to Section 9.1.1). 

When DEC GKS generates one of the primitives in a given segment, the 
primitive is transformed by the current normalization transformation, then the 
primitive is transformed by the specified segment transformation, and finally, if 
clipping was enabled before you generated the segment primitive (the default 
clipping status), the primitive is clipped at the stored normalization viewport 
boundary, not necessarily the current normalization viewport boundary. 

If clipping is not enabled at the time you generate an output primitive during 
segment creation, DEC GKS stores the default normalization viewport ([0,1] x 
[0,1 ]) as the clipping rectangle for the generated primitive. 

Consequently, when you translate a segment's position using GKS$EVAL _ 
XFORM _1VIATRIX or GKS$ACCUM ~CFORM _1VIATRIX, and if the segment 
crosses the viewport boundary, whether DEC GKS clips the primitives depends 
on the status of the clipping flag at the time of primitive generation. 

Segment Functions 9-23 



Example 9-3 implements the normalization transformation, implements the 
segment transformation, and then clips the segment at the viewport boundary. 
Following the program example, Figure 9-6 illustrates the effects of the example 
on a VT241. 

Example 9-3: Segment Transformations and Clipping 

C This program transforms the house contained in a segment and 

C clips it at the stored normalization viewport (clipping 

C rectangle) . 
IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, NUM_POINTS 
REAL VECTOR_Y, NULL, XFORM_MATRIX( 6 ), NO_CHANGE 
REAL PX (9) , PY (9 ) 
DATA VECTOR_Y / 0.1 /, NULL / 0.0 / 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE / 1 /, NO_CHANGE / 1.0 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C 
C 

0 
C 

Set the clipping boundary to be the lower left corner of the 
default normalization viewport. 
CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
Even though clipping is the default, specify it to be clear. 
CALL GKS$SET_CLIPPING( GKS$K_CLIP ) 

CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Set the current clipping rectangle to be the unity normalization 
C viewport ([0,1] X [0,1]). DEC GKS uses the stored viewport (lower 
C left corner), not this viewport, to clip the segment primitive. 

CALL GKS$SELECT_XFORM( 0 ) 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

(continued on next page) 

9-24 Segment Functions 



Example 9-3 ~Cont.~: Segment Transformations and Clipping 

C Translate the house's position upwards by 1 world coordinate. 
CALL GKS$EVAL XFORM_MATRIX( NULL, NULL, NULL, 
* VECTOR_Y, NULL, NO_CHANGE, NO_CHANGE, 
* GKS$K_COORDINATES WC, XFORM_MATRIX ) 

C Transform the segment and update the screen. 
CALL GKS$SET_SEG_XFORM( HOUSE, XFORM_MATRIX ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C Pause. Type RETURN when you are finished viewing the picture. 
READ(5,*) 

C Translate the house's position upwards by 1 world coordinate. 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, NULL, NULL, 
* NULL, VECTOR_Y, NULL, NO_CHANGE, NO_CHANGE, 
* GKS$K_COORDINATES WC, XFORM_MATRIX ) 

C Transform the segment and update the screen. 
CALL GKS$SET_SEG_XFORM( HOUSE, XFORM_MATRIX ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C Pause. Type RETURN when you are finished viewing the picture. 
READ(5,*) 

C Again, translate the house's position upwards by 1 world coordinate. 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, NULL, NULL, 
* NULL, VECTOR Y, NULL, NO_CHANGE, NO_CHANGE, 
* GKS$K_COORDINATES_WC, XFORM MATRIX ) 

C Transform the segment. 
CALL GKS$SET_SEG_XFORM( HOUSE, XFORM MATRIX ) 

C Update the surface to initiate the change. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This call selects a normalization transformation with the new viewport. 

© Enabling clipping (the default setting) stores the new clipping window with 
any subsequently generated output primitives. 

Segment Functions 9-25 



Although this program generates only one output primitive, you can change 
the clipping flag every time you output a primitive depending on the needs 
of your application. The current clipping rectangle is bound to subsequently 
generated primitives until you change the rectangle. 

© This call to GKS$EVAL ~CFORM AVIATRIX alters the Y translation com-
ponent so that the top portion of the house extends past the clipping 
rectangle. 

On the VT241, you need to update the workstation surface to see changes in a 
segment transformation. Figure 9-6 shows the screen of a VT241 terminal after 
the program has run to completion. 

Figure 9-6: Segment Transformations and Clipping—VT241 

ZK-5092-86 

During transformation, asegment's primitives may exceed the default normal-
ization viewport, defined as ([0,1 ] x [0,1 ]). DEC GKS can store segments that 
exceed the default normalization viewport in NDC space. 

9-26 Segment Functions 

l.,J 



However, even though DEC GKS can store segments that exceed the default 
normalization viewport boundary, those portions cannot be displayed on 
the surface of the workstation. DEC GKS clips all pictures at least at that 
workstation window boundary during the workstation transformation, and the 
maximum workstation window is ([0,1 ] x [0,1 ]) on the NDC plane. 

9.4.4.2 Implementing Multiple Transformations 

To understand the most complex combination of transformations, review the 
following code example: 

C 
C 

0 

0 

These lines of code insert one segment's primitives into 
an open segment . 
CALL GKS$SELECT_XFORM( NORM ) 
CALL GKS$SET_SEG_XFORM( SEG_ONE, MATRIX_ONE ) 
CALL GKS$SET_CLIPPING( GKS$K_CLIP ) 
CALL GKS$SET_SEG_XFORM( SEG_TWO, MATRIX_TWO ) 

CALL GKS$CREATE_SEG( SEG_ONE ) 
CALL GKS$INSERT_SEG( SEG_TWO, MATRIX_THREE ) 
CALL CLOSE_SEG() 

In the previous example, there are four different transformations involved 
in the creation of the segment SEG _ONE. DEC GKS implements those 
transformations and clipping, in a cumulative fashion, in the following order: 

O The first transformation that DEC GKS implements is always the current 
normalization transformation (NORM). 

© If you are inserting a segment from WISS, DEC GKS always implements 
the inserted segment's transformation (MATRIX _TWO). 

© Again, if you are inserting a segment from WISS, DEC GKS always 
implements the transformation specified in the call to GKS$INSERT_SEG, 
which is called the insertion matrix (MATRIX_THREE). 

O Lastly, DEC GKS implements the transformation of the created segment 
(MATRIX _ONE). 

0 After all normalization and segment transformations are implemented, 
DEC GKS clips at the normalization viewport stored with the primitives in 
SEG _ONE (the viewport associated with NORM). 

After the normalization and segment transformations, DEC GKS always applies 
a workstation transformation to the picture. DEC GKS clips all pictures at the 
workstation viewport boundary. 

Segment Functions 9-27 



Figure 9-7 illustrates the transformation and clipping pipeline. 

9-28 Segment Functions 



Figure 9-7: The Transformation and Clipping Pipeline 

Flow Chart Does not include Metafile Input/Output 

Application 

Normalization 
Transformation 

Clipping 
Rectangle 

Stored 

Active WDDS Workstations 
... -t r 

Segment /\Segment 
~~ 

~ 

Workstation 
Dependent '~ 
Segment 
Storage ~ 

Segment 
Transformation 

Active WISS Workstation 

,Segment 

Associate Segment 

Copy Segment 

Segment 

Workstation 
Independent 

Segment 
Storage 

Segment 
Transformation 

Clipping 

Workstation 
Transformation 

Workstation Surface 

Insertion 
Transformation 

N ~ _ "Not" 

Insert 
Segment 

ZK-5042-86 

Segment Functions 9-29 



9.4.5 Visibility 

This segment attribute determines if the segment is visible on the workstation 
surface. By default, DEC GKS segments are visible (GKS$K_VISIBLE). 

Visibility can be used to hide a segment from a user until the segment is 
needed. For instance, segment visibility is a useful way to control the displaying 
of messages and menus, although GKS$MESSAGE and GKS$REQUEST_ 
CHOICE can perform the same task. 

By default, the visibility segment attribute is set to GKS$K_VISIBLE. Keep in 
mind that a segment must be both visible and detectable in order to pick that 
segment during pick input (refer to Chapter 8, Input Functions). 

9.5 Segment Inquiries 

The following list presents the inquiry functions that you can use to obtain 
segment information when writing device-independent code: 

GKS$INQ _ACTIVE _WS 

GKS$INQ _CLIP 

GKS$INQ _DYN _1VIOD_SEG ~TTB 

GKS$INQ _LEVEL 

GKS$INQ NAME _OPEN _SEG 

GKS$INQ _OPEN _WS 

GKS$INQ _OPERATING _STATE 

GKS$INQ_I'ICK~D 

GKS$INQ _SEG ~TTB 

GKS$INQ _SEG NAMES 

GKS$INQ _SEG _NAMES_ON _WS 

GKS$INQ _SET~SSOC_WS 

GKS$INQ _WS_CATEGORY 

GKS$INQ _WS_DEFER ~ND_UPDATE 

GKS$INQ _WS_1ViAX ~1UM 

GKS$INQ _WS_STATE 

GKS$INQ_WS_TYPE 

For more information concerning device-independent programming, refer to the 
DEC GKS User Manual. 

9.6 Function Descriptions 

This section describes the DEC GKS segment functions in detail. 

9-30 Segment Functions 



ACCUMULATE TRANSFORMATION MATRIX 

ACCUMULATE TRANSFORMATION MATRIX 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$ACCUM_XFORM_1VIATRIX accepts a specified transfor-
mation matrix, concatenates new segment transformation component values, 
and then writes the accumulated transformation to the last argument of the 
function. The only way to achieve a cumulative effect from successive segment 
transformations is to use GKS$ACCUM_XFORM_1ViATRIX. 

See Section 9.4.4.1 for a detailed description of segment transformation and 
transformation matrixes. 

Syntax 
GKS$ACCUM ~CFORM _MATRIX (first~rform_matrix, fixed~voint~r, 

fixed~oint_ y, translation_ vec~.x, 
translation_ vex y, rotation, sca/e~r, 
scale_y, type_of_coordinates, 
a ccumul a ted~ dorm _matrix) 

GACTM (matrix, fx, fy, x_vector, y_vector, rotate, sca/e~r, scale_y, w~ndc, 
nmatrixJ 

gaccumtran (segtran, ppoint, pshift, angle, pscale, coord, result) 

Segment Functions 9-31 



ACCUMULATE TRANSFORMATION MATRIX 

Arguments 
first xform_matrix 

data type: array (real) 
access: read-only 
mechanism: by reference 

This argument is asix-element transformation matrix created previously by 
a call to either GKS$EVAL ~CFORM ~1/IATRIX or GKS$ACCUM ~CFORM _ 
MATRIX. You declare this argument as asix-element, single dimension array. 

fixec~pointx 
fixed point y 

data type: real 
access: read-only 
mechanism: by reference 

These arguments are the coordinates of the fixed point, used as the axis point 
during segment scaling and rotation. You can express this point as a world 
coordinate point or as an NDC point depending on the value you passed to the 
argument type_of_coordinates. 

If you do not wish to scale or rotate the segment, you can pass the value 0.0 for 
both arguments. 

translatior~vec~r 
trans/ation_vec_y 

data type: real 
access: read-only 
mechanism: by reference 

These arguments express the coordinate values to be added to all segment X 
and Y values in order to alter the position of the segment. You can express 
these values as world coordinate values or as NDC values depending on the 
value you passed to the argument type_of_coordinates. 

If you do not wish to translate the segment, you can pass the value 0.0 for both 
arguments. 

9-32 Segment Functions 



ACCUMULATE TRANSFORMATION MATRIX 

rotation 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

This argument is the measure of the angle of segment rotation around the 
fixed-point axis, in radians. To calculate radians, use the formula 
360 degrees = 2*pi radians. 

If you do not wish to rotate the segment, you can pass the value 0.0 for this 
argument. 

scaler 
scale_ y 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

These arguments are the real number values that are multiplied times all of the 
segment's X and Y coordinates except the fixed point, to determine the new X 
and Y positions of the scaled segment. 

If you do not wish to scale the segment, you can pass the value 1.0 for these 
arguments. 

type_of_coordinates 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the flag that determines whether DEC GKS uses world 
coordinates or NDC coordinate values for the fixed point and translation vector 
arguments. This argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_COORDINATES_WC 

1 GKS$K_COORDINATES—NDC 

The fixed point and translation vectors are 
world coordinate values. 

The fixed point and translation vectors are 
NDC values. 

Segment Functions 9-33 



ACCUMULATE TRANSFORMATION MATRIX 

Use caution when specifying GKS$K_COORDINATES_WC. DEC GKS uses the 
current normalization transformation to transform the fixed point from world 
coordinates to NDC values. The current normalization transformation might 
not be the same as the one used during primitive generation. If the current 
normalization transformation is different, the result may be unexpected. 

a ccum ula ted~rform_ma trix 

data type: 
access: 
mechanism: 

array (real) 
write-only 
by reference 

This argument is the six-element transformation matrix that results from the 
concatenation of the new scaling, rotation, and translation component values 
with the argument first ~cform matrix. You can use this value as an argument 
to GKS$SET_SEG ~CFORM to establish a cumulative segment transformation. 
You declare this argument as asix-element, single-dimension array. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

8 GKS$~RROR_8 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
**** 

Program Example 
Example 9-4 illustrates the use of the function GKS$ACCUM ~CFORM _ 
MATRIX. Following the program example, Figure 9-8 illustrates the program's 
effect on a VT241 workstation. 

9-34 Segment Functions 



ACCUMULATE TRANSFORMATION MATRIX 

Example 9-4: Showing the Cumulative Effect of GKS$ACCUM_ 
XFORM_MATRIX 

C This program transforms the house contained in a segment. 
IMPLICIT NONE 
INCLUDE °SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, NUM_POINTS 
REAL VECTOR_Y, NULL, XFORM_MATRIX( 6 ), NO_CHANGE 
REAL PX (9 ) , PY (9 ) 
DATA VECTOR_Y / 0.1 /, NULL / 0.0 / 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE / 1 /, NO_CHANGE / 1.0 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

0 
CALL GKS$SET VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 

CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$POLYLINE( NUM POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Shift the house upwards by 1 world coordinate. 
CALL GKS$EVAL_XFORM_MATRIX( NULL, NULL, NULL, 
* VECTOR_Y, NULL, NO_CHANGE, NO_CHANGE, 
* GKS$K_COORDINATES_WC, XFORM_MATRIX ) 

C Transform the segment and update the screen. 
© CALL GKS$SET_SEG_XFORM( HOUSE, XFORM_MATRIX ) 
© CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C Release def erred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

(continued on next page) 

Segment Functions 9-35 



ACCUMULATE TRANSFORMATION MATRIX 

Example 9-4 (Copt.): Showing the Cumulative Effect of GKS$ACCUM_ 
XFORM_MATRIX 

C Shift the house upwards by 1 more world coordinate. 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, NULL, NULL, 
* NULL, VECTOR_Y, NULL, NO_CHANGE, NO_CHANGE, 
* GKS$K_COORDINATES_WC, XFORM_MATRIX ) 

C Transform the segment the segment and update the screen. 
CALL GKS$SET_SEG_XFORM( HOUSE, XFORM_MATRIX ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Again, shift the house upwards by 1 more world coordinate. 
CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, NULL, NULL, 
* NULL, VECTOR_Y, NULL, NO_CHANGE, NO_CHANGE, 
* GKS$K_COORDINATES_WC, XFORM_MATRIX ) 

C Transform the segment. 
CALL GKS$SET_SEG_XFORM( HOUSE, XFORM_MATRIX ) 

C Update the surface to initiate the change. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This call selects a normalization transformation with the new viewport. 
DEC GKS transforms all output in segments to the new viewport. 

4 Using the VT241, you cannot dynamically alter the segment, currently 
displayed on the workstation surface, by calling GKS$SET_SEG ~CFORM. 
Calling this function at this point in the program changes the segment 
transformation in the segment state list, and sets flags in the workstation 
state list telling DEC GKS that the surface is out of date and that an update 
is necessary. 

9-36 Segment Functions 



ACCUMULATE TRANSFORMATION MATRIX 

© Calling GKS$UPDATE _WS updates the position of the image on the work-
station surface. The function GKS$REDRAW_SEG _ON _WS accomplishes 
the same task. Using both functions, all output not contained in segments 
is lost. 

O Using GKS$ACCUM_XFORM_NiATRIX, you can add transformation 
components to a previously set transformation. In this program, the house 
gradually moves upward, one Y world coordinate point at a time, using 
GKS$ACCUM ~CFORM AVIATRIX. 

Figure 9-8 shows the screen of a VT241 terminal after the program has run to 
completion. 

Segment Functions 9-37 



ACCUMULATE TRANSFORMATION MATRIX 

Figure 9-8: The Cumulative Effect of GKS$ACCUM~CFORM_ 
MATRIX—VT241 

ZK-5093-86 

9-38 Segment Functions 



ASSOCIATE SEGMENT WITH WORKSTATION 

ASSOCIATE SEGMENT WITH WORKSTATION 

Operating States: WSOP, WSAC 

Description 
The function GKS$ASSOC_SEG_WITH_WS takes a segment stored in work-
station independent segment storage (WISS), and stores the segment on the 
specified workstation. 

See Section 9.2 for more information concerning WISS. 

Syntax 
GKS$ASSOC_SEG_WITH_WS (workstation_id, segment name) 

GASGWK (workstation~d, segment~ameJ 

gassocsegws (workstation~d, segment~ameJ 

Arguments 
workstation~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value associated with an open or active worksta-
tion. 

segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a segment that is stored on a 
WISS workstation. 

Segment Functions 9-39 



ASSOCIATE SEGMENT WITH WORKSTATION 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

6 GKS$_ERROR_6 

20 GKS$~RROR_20 

25 GKS$_ERROR_25 

27 GKS$_ERROR_27 

33 GKS$_ERROR_33 

35 GKS$~RROR_35 

120 GKS$_ERROR_120 

124 GKS$_ERROR_124 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be either in the state WSOP or in 
the state WSAC in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Workstation Independent Segment 
Storage is not open in routine * * * * 

Specified workstation is of category 
MI in routine * * * * 

Specified workstation is of category 
INPUT in routine **** 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist on 
Workstation Independent Storage 
in routine **** 

Program Example 
Refer to Example 9-1 in this chapter for a program example using a call to 
GKS$ASSOC_SEG _WITH _WS. 

9-40 Segment Functions 



ll'"1 CLOSE SEGMENT 

CLOSE SEGMENT 

Operating States: CLOSE SEGMENT 

Description 
The function GKS$CLOSE~EG closes a segment. After you call this function, 
you can no longer add output primitives to that segment. You cannot reopen a 
segment. 

Calling this function changes the DEC GKS operating state from GKS$K_SGOP 
(segment open) to GKS$K_WSAC (at least one workstation active). 

Syntax 
GKSSCLOSE_SEG (J 

GCLSG (J 

gcloseseg () 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

4 GKS$_ERROR_4 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in the state SGOP in routine_ 
**** 

Segment Functions 9-41 



CLOSE SEGMENT 

Program Exa m p I e 

Example 9-5 illustrates the use of the function GKS$CLOSE _SEG. Following 
the program example, Figure 9-9 illustrates the effect of this example on a 
VT241. 

Example 9-5: Drawing a House and Placing It in a Segment 

C This program draws a house in the lower left corner of the 
C screen. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, NUM_POINTS 
REAL PX (9 ) , PY (9 
DATA PX / .4, .1, .1, 
DATA PY / .1, .1, .7, 
DATA NUM_POINTS / 9 /, 

) 
.4, .25, .1, .4, .4, .1 / 
.7, .9, .7, .1, .7, .1 / 
LOWER_LEFT_CORNER / 1 /, 

* HOUSE / 1 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 

CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

9-42 Segment Functions 



CLOSE SEGMENT 

Figure 9-9 shows the screen of a VT241 terminal after the program has run to 
completion, 

Figure 9-9: House in the Lower Left Corner of the Screen—VT241 

Z K 5098 86 

Segment Functions 9-43 



COPY SEGMENT TO WORKSTATION 

COPY SEGMENT TO WORKSTATION 

Operating States: WSOP, WSAC 

Description 
The function GKS$COPY_SEG_TO_WS takes a segment stored in workstation 
independent segment storage (WISS), transforms it according to its segment 
transformation, clips it according to the stored clipping rectangles for each 
primitive, and then copies its primitives to the specified workstation. The 
specified workstation does not store the primitives in a segment. 

See Section 9.2 for more information concerning WISS. 

Syntax 
GKSSCOPY_SEG_TO-WS (workstation_id, segment~►ameJ 
GCSGWK (workstation~d, segment_nameJ 

gcopysegws (workstation_id, segment~ameJ 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value associated with an open or active worksta-
tion. This value cannot be GKS$K_WSTYPE_WISS. 

9-44 Segment Functions 



COPY SEGMENT TO WORKSTATION 

segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a segment. This segment must 
be stored on a WISS workstation. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR~TEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

-94 DECGKS$_ERROR_NEG_94 Internal GKS error: Corrupted 
segment memory in routine * * * * 

6 GKS$._ERROR_6 GKS not in proper state: GKS shall 
be either in the state WSOP or in 
the state WSAC in routine **** 

20 GKS$~RROR~O Specified workstation identifier is 
invalid in routine * * * * 

25 GKS$_ERROR _25 Specified workstation is not open in 
routine **** 

27 GKS$_ERROR_27 Workstation Independent Segment 
Storage is not open in routine **** 

33 GKS$~RROR_33 Specified workstation is of category 
MI in routine **** 

35 GKS$_ERROR_35 Specified workstation is of category 
INPUT in routine **** 

Segment Functions 9-45 



COPY SEGMENT TO WORKSTATION 

Error Completion 
Number Status Code Message 

36 GKS$_ERROR_36 Specified workstation is of category 
Workstation Independent Segment 
Storage in routine **** 

120 GKS$~RROR_120 Specified segment name is invalid 
in routine **** 

124 GKS$~RROR_124 Specified segment does not exist on 
Workstation Independent Storage 
in routine **** 

Program Example 
Refer to Example 9-1 in this chapter for a program example using a call to 
GKS$COPY_SEG _TO_WS. 

9-46 Segment Functions 



CREATE SEGMENT 

CREATE SEGMENT 

Operating States: WSCA 

Description 
The function GKS$CREATE AEG opens a segment on all active workstations 
and names that segment. All subsequent calls to output functions add output 
primitives to the segment until you call GKS$CLOSE_SEG. DEC GKS stores 
output primitives, output attributes, and the current clipping rectangle for each 
of the primitives. You cannot nest a call to GKS$CREATE_SEG within the 
creation of another segment. See Section 9.1 for more information. 

DEC GKS must be in the GKS$K_WSAC (at least one workstation active) 
operating state to call this function. After calling GKS$CREATE_SEG, the 
operating state changes from GKS$K_WSAC to GKS$K_SGOP (segment 
open). 

Syntax 
GKS$CREATE_SEG (segment_nameJ 
GCRSG (segment_nameJ 
gcreateseg (segment_nameJ 

Arguments 
segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. You cannot 
use the same identifier to name two different segments. Using DEC GKS, you 
must use positive integers as segment names. 

Segment Functions 9-47 



CREATE SEGMENT 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

3 GKS$~RROR_3 GKS not in proper state: GKS shall 
be in the state WSAC in routine 
**** 

120 GKS$_ERROR_120 

121 GKS$_ERROR_121 

Specified segment name is invalid 
in routine **** 

Specified segment name is already 
in use in routine **** 

Program Example 
Refer to Example 9-5 in this chapter for a program example using a call to 
GKS$CREATE _SEG. 

9-48 Segment Functions 



DELETE SEGMENT 

DELETE SEGMENT 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$DELETE—SEG deletes the specified segment from all work-
stations storing that segment. You can delete any defined segment, but you 
cannot delete an open segment. 

Calling this function deletes the specified segment's state list. 

Syntax 
GKSaDELETE_SEG (segment name) 

GDSG (segment name) 

gdelseg (segment~►ameJ 

Arguments 
segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. 

Segment Functions 9-49 



DELETE SEGMENT 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

120 GKS$_ERROR_120 

122 GKS$_ERROR_122 

125 GKS$_ERROR_125 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist in 
routine **** 

Specified segment is open in 
routine **** 

Program Example 
Example 9-6 illustrates the use of the function GKS$DELETE—SEG. 

9-50 Segment Functions 



DELETE SEGMENT 

Example 9-6: Deleting Segments on All Open and Active 
Workstations 

C This program draws a house in the lower left corner of the 
C screen and then deletes it. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, WISS, 
* NUM_POINTS 
REAL PX (9 ) , PY (9 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE / 1 /, WISS / 2 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

CALL GKS$ACTIVATE_WS( WISS ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 

C DEC GKS stores this segment on WS_ID and the WISS workstation. 
CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Close the currently open segment. 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 

READ (5,*) 

C Delete the segment from all open and active workstations. 

© CALL GKS$DELETE_SEG( HOUSE ) 

(continued on next page) 

Segment Functions 9-51 



DELETE SEGMENT 

Example 9-6 (Copt.): Deleting Segments on All Open and Active 
Workstations 

C You have to update the screen to delete the output primitives 
C from the surface . 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$DEACTIVATE_WS( WISS ) 
CALL GKS$CLOSE_WS( WISS ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This line of code opens a WISS workstation. From this point forward, 
anytime DEC GKS stores output in a segment on the VT241, it stores the 
same output in the same segment on the WISS workstation. 

© After this line of code is executed, you cannot copy the segment HOUSE 
from the WISS workstation to the workstation WS—ID, since this line 
deletes the segment from all workstations. 

9-52 Segment Functions 



DELETE SEGMENT FROM WORKSTATION 

DELETE SEGMENT FROM WORKSTATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$DELETE —SEG—FROM _WS deletes the segment from 
the specified workstation storing that segment. You can delete any defined 
segment, but you cannot delete an open segment. 

If you delete the segment from the last workstation supporting a given segment, 
calling this function deletes the specified segment's state list, which has the 
same effect as a call to the function GKS$DELETE_SEG. 

Syntax 
GKSSDELETE_SEG_FROM_WS (workstation~d, segment~ameJ 

GDSGWK (workstation_id, segment~►ameJ 
gdelseg (workstation_id, segment~ameJ 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value associated with an open or active 
workstation. 

Segment Functions 9-53 



DELETE SEGMENT FROM WORKSTATION 

segmentname 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the integer value that identifies a stored segment. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

33 GKS$~RROR_33 

35 GKS$~RROR_35 

120 GKS$_ERROR_120 

123 GKS$~RROR_123 

125 GKS$_ERROR_125 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC, or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is of category 
MI in routine **** 

Specified workstation is of category 
INPUT in routine **** 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist 
on specified workstation in routine 
**** 

Specified segment is open in 
routine **** 

9-54 Segment Functions 



DELETE SEGMENT FROM WORKSTATION 

Program Example 
Example 9-7 illustrates the use of the function GKS$DELETE _SEG FROM _ 
WS. 

Example 9-7: Deleting Segments on a Specific Workstation 

C This program draws a house in the lower left corner of the 

C screen and then deletes it from the VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE, WISS, 

* NUM_POINTS 
REAL PX (9 ) , PY (9 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 

DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 

DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 

* HOUSE / 1 /, WISS / 2 /, WS_ID / 1 / 

0 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID DEFAULT, GKS$K VT240 ) 

CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 

* GKS$K_WSTYPE_WISS ) 

CALL GKS$ACTIVATE_WS( WISS ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 

CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 

C DEC GKS stores this segment on WS_ID and the WISS workstation. 

CALL GKS$CREATE_SEG( HOUSE ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 

READ(5,*) 

C Delete the segment from WS_ID and update the screen. 

© CALL GKS$DELETE_SEG_FROM_WS( WS_ID, HOUSE ) 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

(continued on next page) 

Segment Functions 9-55 



DELETE SEGMENT FROM WORKSTATION 

Example 9-7 ~Cont.): Deleting Segments on a Specific Workstation 

C Pause. Type RETURN when you are finished 
C viewing the picture. 

READ (5 , *) 

C Associate HOUSE in WISS with WS_ID. 
© CALL GKS$ASSOC_SEG_WITH_WS( WS_ID, HOUSE ) 

C Update the surface to initiate the change. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$DEACTIVATE_WS( WISS ) 
CALL GKS$CLOSE_WS( WISS ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This line of code opens a WISS workstation. From this point forward, 
anytime DEC GKS stores output in a segment on the VT241, it stores the 
same output in the same segment on the WISS workstation. 

© After this line of code is executed, the segment HOUSE is deleted from 
the workstation WS~D. However, the WISS workstation still retains the 
segment HOUSE. 

© If you want the workstation WS_ID to store the segment HOUSE again, 
you have to associate the segment with the workstation. Afterwards, WS_ 
ID stores the segment HOUSE. 

9-56 Segment Functions 



EVALUATE TRANSFORMATION MATRIX 

EVALUATE TRANSFORMATION MATRIX 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$EVAL _XFORM_1VIATRIX accepts scaling, rotation, and 
translation component values, and then writes a transformation matrix to the 
last argument of the function. You specify the transformation matrix as an 
argument to GKS$SET SEG—XFORM to establish a segment transformation. 

See Section 9.4.4 for a detailed description of segment transformation and 
transformation matrixes. 

Syntax 
GKS~EVAL (FORM _MATRIX (fixed~voint~r, fixed~voint_y, 

translation_ vec_x, translation_ vex y, 
rotation, scaler, scale_ y, type_of_ 
coordinates, transformation_matrixJ 

G EVT M K (fx, fy, x_ vector, y_ vector, rotate, scaler, scale_ y, we_ndc, 
matrix) 

gevaltran (ppoint, pshift, angle, pscale, coord, result) 

Segment Functions 9-57 



EVALUATE TRANSFORMATION MATRIX 

Arguments 
fixed_point~r 
fixed_poin~y 

data type: real 
access: read-only 
mechanism: by reference 

These arguments are the coordinates of the fixed point, used as the only 
constant coordinate point during scaling and as the axis point during segment 
rotation. You can express this point as a world coordinate point or as an NDC 
point depending on the value you passed to the argument type_of_coordinates. 

If you do not wish to scale or rotate the segment, you can pass the value 0 for 
both arguments. 

translation_vec~r 
translation_vec_y 

data type: real 
access: read-only 
mechanism: by reference 

These arguments express the coordinate values to be added to all segment X 
and Y values in order to alter the position of the segment. You can express 
these values as world coordinate values or as NDC values depending on the 
value you passed to the argument type_of_coordinates. 

If you do not wish to translate the segment, you can pass the value 0 for both 
arguments. 

rotation 

data type: real 
access: read-only 
mechanism: by reference 

This argument is the measure of the angle of segment rotation around the fixed 
point axis, in radians. To calculate radians, use the formula 360 degrees = 2*pi. 

If you do not wish to rotate the segment, you can pass the value 0 for this 
argument. 

9-58 Segment Functions 



EVALUATE TRANSFORMATION MATRIX 

sca/e~r 
scale_y 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

These arguments are the real number values that are multiplied times all of the 
segment's X and Y coordinates except the fixed point, to determine the new X 
and Y positions of the scaled segment. 

If you do not wish to scale the segment, you can pass the value 1.0 for these 
arguments. 

type_of_coordinates 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the flag that determines whether GKS uses world coordinates 
or NDC coordinate values for the fixed point and shift vector arguments. This 
argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_COORDINATES_WC 

1 GKS$K_COORDINATES_NDC 

The fixed point and shift vectors are world 
coordinate values. 

The fixed point and shift vectors are NDC 
values. 

Use caution when specifying GKS$K_COORDINATES_WC. DEC GKS uses the 
current normalization transformation to transform the. fixed point from world 
coordinates to NDC values. The current normalization transformation might 
not be the same as the one used during primitive generation. If the current 
normalization transformation is different, the result may be unexpected. 

Segment Functions 9-59 



EVALUATE TRANSFORMATION MATRIX 

tra n s fo rm a ti o r~ m a trix 

data type: 
access: 
mechanism: 

array (real) 
write-only 
by reference 

This argument is the six-element transformation matrix that results from the 
evaluation of the scaling, rotation, and shifting component values. You can use 
this value as an argument to GKS$SET_SEG~CFORM to establish a segment 
transformation. You declare this argument as asix-element, single-dimension 
array. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

—20 DECGKS$—ERROR_NEG-20 

8 GKS$_ERROR-8 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS 
shall be in one of the states GKOP, 
WSOP, WSAC, or SGOP in routine 
**** 

Program Example 
Refer to Example 9-2 in this chapter for a program example using a call to 
GKS$EVAL _XFORM~VIATRIX. 

9-60 Segment Functions 



INSERT SEGMENT 

INSERT SEGMENT 

Operating States: WSAC, SGOP 

Description 
The function GKS$INSERT_SEG takes a segment stored in a workstation 
Independent segment storage (WISS) workstation, transforms it according to 
the segment's current transformation, and transforms it again according to the 
transformation matrix specified in the call to GKS$INSERT_SEG (the effect 
of the two transformations are cumulative). Then, if the operating state is 
GKS$K_WSAC (at least one workstation active), GKS$INSERT_SEG copies the 
segment's output primitives onto the surface of all active workstations. 

If you call GKS$INSERT_SEG when another segment is open (DEC GKS 
operating state GKS$K_SGOP), DEC GKS inserts the specified segment's 
output primitives into the open segment. 

Whether or not you have a segment open at the, time of the call to 
GKS$INSERT_SEG, the active workstations do not store the inserted segment 
primitives as a segment; the workstations only generate the inserted segment's 
primitives. 

DEC GKS applies only the current clipping rectangle to the inserted primitives, 
and if a segment is currently open, applies the segment attributes of the open 
segment (transformation, highlighting, visibility, and so forth) to the inserted 
primitives. The inserted primitive's attributes (line type, text expansion factor, 
and so forth) remain unchanged. 

Syntax 
GKS~INSERT_SEG (segment name, insertion~rform_mairixJ 

GINSG (segment~ame, matrix) 

ginsertseg (segment~ame, segtranJ 

Segment Functions 9-61 



INSERT SEGMENT 

Arguments 
segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. 

insertion~rform_ma trix 

data type: array (real) 
access: read-only 
mechanism: by reference 

This argument is the six-element insertion transformation matrix. If a transfor-
mation has been specified for the segment to be inserted, DEC GKS calculates 
the accumulated effect of the segment transformation and then the insertion 
transformation, in that order. You can formulate an insertion transforma-
tion using either GKS$EVAL _XFORM _1VIATRIX or GKS$ACCUM _XFORM _ 
MATRIX. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$—ERROR_NEG~O GKS not in proper state: GKS in 
the error state in routine **** 

5 GKS$—ERROR-5 GKS not in proper state: GKS shall 
be either in the state WSAC or in 
the state SGOP in routine **** 

27 GKS$—ERROR_27 Workstation Independent Segment 
Storage is not open in routine **** 

120 GKS$_ERROR-120 Specified segment name is invalid 
in routine * * * * 

9-62 Segment Functions 



INSERT SEGMENT 

Error Completion 
Number Status Code Message 

124 GKS$_ERROR_124 Specified segment does not exist on 
Workstation Independent Segment 
Storage in routine **** 

125 GKS$_ERROR_125 Specified segment is open in 
routine **** 

Program Example 

Example 9-8 illustrates the use of the function GKS$INSERT SEG. Following 
the program example, Figure 9-10 illustrates the program's effect on a VT241 
workstation. 

Example 9-8: Inserting a Segment's Primitives into Another Segment 

C This program draws a house in the lower left corner of the 
C screen and then inserts that house into other segments. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE_1, HOUSE_2, 
* WISS, NUM_POINTS, UPPER_LEFT_CORNER, 
* UPPER_RIGHT_CORNER, LOWER_RIGHT_CORNER 
REAL PX (9 ), PY (9 ), NULL, NO_CHANGE, 
* XFORM_MATRIX(6 ), UP, RIGHT 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE_1 / 1 /, HOUSE_2 / 2 /, WISS / 2 /, 
* NULL / 0.0 /, NO_CHANGE / 1.0 /, WS_ID / 1 /, 
* UP / 0.5 /, RIGHT / 0.5 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$OPEN WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

CALL GKS$ACTIVATE_WS( WS_ID ) 
CALL GKS$ACTIVATE_WS( WISS ) 

O CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 

(continued on next page) 

Segment Functions 9-63 



INSERT SEGMENT 

Example 9-8 ~Cont.): Inserting a Segment's Primitives into Another 
Segment 

C Create a segment in the lower left corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_1 ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Deactivate WISS so that no other segments are stored there. 
CALL GKS$DEACTIVATE_WS( WISS ) 

C Turn off the clipping so that transformed houses are visible. 
CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 

C Change the matrix value. 
CALL GKS$EVAL_XFORM_MATRIX( NULL, NULL, RIGHT, NULL, 
* NULL, NO_CHANGE, NO_CHANGE, GKS$K_COORDINATES_NDC, 
* XFORM_MATRIX ) 

(continued on next page) 

9-64 Segment Functions 



INSERT SEGMENT 

Example 9-8 (Cont.): Inserting a Segment's Primitives into Another 
Segment 

C Create a segment in the lower right corner by inserting 
C HOUSE_1's primitives into HOUSE_2. 

CALL GKS$CREATE_SEG( HOUSE_2 ) 
Q CALL GKS$INSERT_SEG( HOUSE_1, XFORM_MATRIX ) 

CALL GKS$CLOSE_SEG() 

C Change the matrix value. 
CALL GKS$EVAL_XFORM_MATRIX( NULL, NULL, NULL, UP, 
* NULL, NO_CHANGE, NO_CHANGE, GKS$K_COORDINATES_NDC, 
* XFORM_MATRIX ) 

C Just insert the primitives in the upper left corner using 

C GKS$INSERT_SEG. 
© CALL GKS$INSERT_SEG( HOUSE_1, XFORM_MATRIX ) 

C Change the matrix value. 
CALL GKS$EVAL_XFORM_MATRIX( NULL, NULL, RIGHT, UP, 
* NULL, NO_CHANGE, NO_CHANGE, GKS$K_COORDINATES_NDC, 
* XFORM_MATRIX ) 

C Just insert the primitives in the upper right corner using 

C GKS$INSERT_SEG. 
CALL GKS$INSERT_SEG( HOUSE_1, XFORM_MATRIX ) 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

C Redraw all of the segments. House primitives at the top are deleted. 

CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WISS ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O These lines of code establish the normalization window to be the lower left 
corner of the NDC space. 

Segment Functions 9-65 



INSERT SEGMENT 

4 Using GKS$EVAL _XFORM_MATRIX, you can create the transformation 
matrix that you need to pass to GKS$INSERT_SEG as an argument. This 
matrix specifies a position translation of 0.5 NDC points to the right. When 
this matrix is passed to GKS$INSERT_SEG while a segment is open, the 
house's primitives are transformed and made a part of the open segment. 

© Inserting segments when the DEC GKS operating state is GKS$K_WSAC 
causes the output primitives to be written to the workstation surface, but 
the primitives are not stored in a segment. These segment primitives are 
translated 0.5 NDC points in an upwards direction. 

4 The call to GKS$REDRAW SEG_ON_WS redraws all segments and 
deletes all primitives outside of segments. 

Figure 9-10 shows the screen of a VT241 terminal after the program has run to 
completion. 

9-66 . Segment Functions 



INSERT SEGMENT 

Figure 9-10: Inserting a Segment's Primitives into Another 
Segment VT241 

 J 
ZK-5095-86 

Segment Functions 9-67 



RENAME SEGMENT 

RENAME SEGMENT 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$RENAME _SEG changes the segment name from its former 
name to a new name. Once you have renamed a segment, you can reuse the 
old segment name. 

Syntax 
GKS$RENAME_SEG (old name, new_nameJ 

GRENSG (olrLname, new_nameJ 

grenameseg (old, newt 

Arguments 
old_name 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that was used to identify the segment. After 
the call to GKS$RENAME _SEG, you are free to use this identifier to name 
another segment. 

new_name 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that now identifies the segment. 

9-68 Segment Functions 



RENAME SEGMENT 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$~RROR_7 

120 GKS$~RROR_120 

121 GKS$_ERROR_121 

122 GKS$_ERROR_122 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified segment name is invalid 
in routine **** 

Specified segment name is already 
in use in routine **** 

Specified segment does not exist in 
routine **** 

Program Example 
Example 9-9 illustrates the use of the function GKS$RENAME _SEG. 

Segment Functions 9-69 



RENAME SEGMENT 

Example 9-9: Renaming a Segment 

C This program draws a house in the lower left corner of the 
C screen and then renames it. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE_1, HOUSE_2, 
* LOWER_RIGHT_CORNER, UPPER_LEFT_CORNER, HOUSE_3, 
* NUM_POINTS 
REAL PX (9 ), PY (9 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .i, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE_1 / 1 /, HOUSE_2 / 2 /, LOWER_RIGHT_CORNER / 2 /, 
* UPPER_LEFT_CORNER / 3 /, HOUSE_3 / 3 /, WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

0 CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( LOWER_RIGHT_CORNER, 0.5, 1.0, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( UPPER_LEFT_CORNER, 0.0, 0.5, 0.5, 1.0 ) 

C Create a segment in the lower left corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_1 ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Create a second segment in the lower right corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_2 ) 
CALL GKS$SELECT_XFORM( LOWER_RIGHT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Create a third segment in the upper left corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_3 ) 
CALL GKS$SELECT_XFORM( UPPER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Delete houses 1 and 2. 
CALL GKS$DELETE_SEG( HOUSE_1 ) 
CALL GKS$DELETE_SEG( HOUSE_2 ) 

(continued on next page) 

9-70 Segment Functions 



RENAME SEGMENT 

Example 9-9 ~Cont.): Renaming a Segment 

C Redraw all of the segments. 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

C Since it is the only one left, rename HOUSE_3 to be HOUSE_1. 
© CALL GKS$RENAME_SEG( HOUSE_3, HOUSE_1 ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O These lines of code establish three different normalization transformations 
in three corners of the NDC plane. 

© After deleting segments, you may want to keep all closed segments in 
numerical order. You can use GKS$RENAME _SEG to maintain an orderly 
progression of segment names. 

Segment Functions 9-71 



SET PICK ID 

SET PICK ID 

Operating States: GKOP, WSOP, WSAC, SGOP 

Description 

This funcrion sets the current pick identifier value in the DEC GKS state list to 
be the number you specify. All subsequent output primitives stored in segments 
are assigned this value until you change it. 

Setting pick identifiers allows you another level of naming sections within 
segments so that a user can pick portions of a segment without having to pick 
the whole segment. 

NOTE 

DEC GKS continues to recognize the last pick identifier specified, 
even after you close a segment. If you open another segment, DEC 
GKS continues to associate the current segment identifier with the 
newly output images. Consequently, if you specify a pick identifier 
in one segment, make sure that you set the pick identifier properly 
when opening another segment. 

Syntax 

SET PICK IDENTIFIER (pick_idJ 

GSPKID (pick_idJ 

gsetpickid (pick_idJ 

9-72 Segment Functions 



SET PICK ID 

Arguments 
picl~id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the new pick identifier. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

8 GKS$~RROR_8 GKS not in proper state; GKS shall 
be in ore of the states GKOP, 
WSOP, WSAC, or SLOP 

9 7 GKS$~RROR _9 7 Pick identifier is invalid 

Program Example 
Example 9-10 illustrates the use of the function GKS$SET~'ICK~D. Following 
the program example, Figure 9-11 illustrates the program's effect on a VT241 
workstation. 

Segment Functions 9-73 



SET PICK ID 

Example 9-10: Setting Pick Identifiers 

0 

C This program initializes and requests pick input from a VT241. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, INITIAL_STATUS, SEGMENT, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS DEVICE_NUM, INPUT_CHOICE, 
* BOX_1, BOX_2, TRIANGLE_1, TRIANGLE_2, NUM_POINTS 
REAL ECHO_AREA(4), DATA_RECORD( 1 ) 
REAL X_VALUES( 4 ), Y_VALUES( 4 ) 
DATA WS_ID / 1 /, DEVICE_NUM / 1 /, BOX_1 / 1 /, 
* BOX_2 / 2 /, TRIANGLE_1 / 1 /, TRIANGLE_2 / 2 /, 
* NUM_POINTS / 4 / 
DATA X_VALUES / 0.1, 0.4, 0.1, 0.1 / 
DATA Y_VALUES / 0.3, 0.6, 0.6, 0.3 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

CALL GKS$CREATE_SEG( BOX_1 ) 
CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
X_VALUES( 3) = 0.4 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

X_VALUES( 2) = 0.9 
X_VALUES( 3) = 0.6 
X_VALUES( 4) = 0.6 
Y_VALUES( 3) = 0.6 

CALL GKS$SET_PICK_ID( TRIANGLE_1 ) 

(continued on next page) 

9-74 Segment Functions 



SET PICK ID 

Example 9-10 (Cont.~: Setting Pick Identifiers 

O 

0 

CALL GKS$CREATE_SEG( BOX_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 2 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
X_VALUES( 3) = 0.9 
Y_VALUES( 3) = 0.3 
CALL GKS$SET_PICK_ID( TRIANGLE_2 ) 
CALL GKS$SET_FILL_COLOR_INDEX( 3 ) 
CALL GKS$FILL_AREA( NUM_POINTS, X_VALUES, Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

CALL GKS$SET_SEG_DETECTABILITY( BOX_1, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( BOX_2, GKS$K_DETECTABLE ) 

CALL GKS$SET_TEXT_HEIGHT( 0.03 ) 
CALL GKS$TEXT( 0.2, 0.45, '1' ) 
CALL GKS$TEXT( 0.3, 0.45, '2' ) 
CALL GKS$TEXT( 0.7, 0.45, '1' ) 
CALL GKS$TEXT( 0.8, 0.45, '2' ) 

C Declare a data length of one long word which will hold the 
C size of the pick prompt. 

© RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

SEGMENT = BOX_1 
PICK_ID = TRIANGLE_1 
PROMPT_ECHO_TYPE = 1 
INITIAL_STATUS = GKS$K_STATUS_NOPICK 

CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, INITIAL_STATUS, 
* SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

(continued on next page) 

Segment Functions 9-75 



SET PICK ID 

Example 9-10 (Cont.~: Setting Pick Identifiers 

CALL GKS$REQUEST_PICK( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* SEGMENT, PICK_ID ) 

C Output the input choice number. 
WRITE(6,*) INPUT_STATUS, SEGMENT, PICK_ID 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

0 The data record is one real value that represents the size of the pick prompt 
(or, aperture) in device coordinates. 

The echo area variable is an array of real numbers representing the 
rectangular echo area, in device coordinates. The echo area defines a 
portion of the workstation surface on which the prompt moves. 

© This code creates a box on the left side of the workstation surface and 
places it in a segment. The code divides the box diagonally and sets pick 
identifiers for each of the created fill area triangles. 

© This code resets the X and Y world coordinate values so that the coordinate 
values specify a new position for the next box. 

O This code creates a box on the right side of the workstation surface and 
places it in a segment. The code divides the box diagonally and sets pick 
identifiers for each of the created triangles. 

0 This code labels the triangles by their pick identifiers. 

This code initializes the size of the data record. This variable is a modifiable 
variable passed to GKS$INQ _I'ICK_STATE, and you must initialize it 
before calling the inquiry function. 

The function GKS$INQ—I'ICK_STATE initializes the variables needed by 
the input functions. The argument GKS$K_VALUE_REALIZED tells the 
graphics handler to pass the input values as they are implemented by the 
graphics handler, as opposed to the way that the application may have set 
the values (GKS$K_VALUE_SET). 

9-76 Segment Functions 



SET PICK ID 

The second to last argument specifies the length of the argument that 
is to contain the data record. After DEC GKS returns the data record, it 
modifies this argument to contain the length of the returned data record. By 
comparing the last two arguments, you can tell whether your data record 
variable was large enough to hold the entire data record. 

O This code assigns new values to the input variables. For instance, the initial 
segment identifier has the value 1. 

The function GKS$INIT_I'ICK initializes the request for choice input. 
© You must pass GKS$K~NPUT-1VIODE_REQUEST as an argument to the 

function GKS$SET~'ICK~VIODE, since the DEC GKS software does not 
support sample or event mode. You can use this function to enable (as in 
this example) or to disable input prompt echoing. 

m The function GKS$REQUEST_'ICK prompts the user for input. The 
segment and pick identifiers are written to the last arguments. 

Figure 9-11 shows the screen of a VT241 terminal at the request for input. 

Segment Functions 9-77 



SET PICK ID 

Figure 9-11: Setting Pick Identifiers—VT241 

ZK-5087-86 

9-78 Segment Functions 



SET SEGMENT DETECTABILITY 

SET SEGMENT DETECTABILITY 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_SEG _DETECTABILITY controls the segment attribute 
that determines whether or not the user can choose a segment during pick 
input. (A segment has to be both detectable and visible in order to be picked. ) 

Syntax 
SET DETECTABILITY (segment name, detectability_flagJ 

GSDTEC (segment~►ame, detect) 

gsetdet (segment~►ame, detectabilityJ 

Arguments 
segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. 

delectability_flag 

data type: integer 
access: read-only 
mechanism: by reference 

Segment Functions 9-79 



SET SEGMENT DETECTABILITY 

This argument is the flag that determines whether or not the user can 
pick the specified segment. By default, DEC GKS segments are GKS$K_ 
UNDETECTABLE. This argument can be either of the following values or 
constants. 

Value Constant Description 

0 GKS$K_UNDETECTABLE You cannot pick the segment. 

1 GKS$K_DETECTABLE You can pick the segment, if visible. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

120 GKS$_ERROR_120 Specified segment name is invalid 
in routine **** 

122 GKS$_ERROR_122 Specified segment does not exist in 
routine **** 

Program Example 
Example 9-11 illustrates the use of the function GKS$SET_SEG_ 
DETECTABILITY. 

9-80 Segment Functions 



SET SEGMENT DETECTABILITY 

Example 9-11: Controlling the Detectability of Segments 

C This program draws a house in the lower left corner of the 
C screen and an undetectable house in the upper right corner. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE_1, HOUSE_2, 
* UPPER_RIGHT_CORNER, INITIAL_STATUS, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, SEGMENT_NAME, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, NUM_POINTS, DEVICE_NUM 
REAL PX (9 ), PY (9 ), ECHO_AREA( 4 ), DATA_RECORD( 1 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE_1 / 1 /, HOUSE_2 / 2 /, UPPER_RIGHT_CORNER / 2 /, 
* WS_ID / 1 /, DEVICE_NUM / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( UPPER_RIGHT_CORNER, 0.5, 1.0, 0.5, 1.0 ) 

C Create a segment in the lower left corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_1 ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Create a second segment in the upper right corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_2 ) 
CALL GKS$SELECT_XFORM( UPPER_RIGHT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

0 
C Make HOUSE_1 detectable. 

CALL GKS$SET_SEG_DETECTABILITY( HOUSE_1, GKS$K_DETECTABLE ) 

(continued on next page) 

Segment Functions 9-81 



SET SEGMENT DETECTABILITY 

Example 9-11 (Cont.): Controlling the Detectability of Segments 

C Inquire, initialize, set, and request pick input. 
RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, SEGMENT_NAME, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

SEGMENT_NAME = HOUSE_1 
PROMPT_ECHO_TYPE = 1 
DEVICE NUM = 1 
ECHO_AREA( 1 ) = 0.0 
ECHO_AREA( 2) = 479.0 
ECHO_AREA( 3) = 0.0 
ECHO_AREA( 4) = 479.0 

0 

0 

CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, 
* GKS$K_STATUS_OK, SEGMENT_NAME, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_PICK( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* SEGMENT_NAME, PICK_ID ) 

C Output the input segment name. 
WRITE(6,*) INPUT_STATUS, SEGMENT_NAME 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O By setting the segment attribute of HOUSE_1 to GKS$K_DETECTABLE, 
you allow the segment to be picked during input. 

© The function GKS$INQ ~'ICK_STATE obtains default values needed for 
pick input. For more information, refer to Chapter 12, Inquiry Functions. 

© Setting the segment name to HOUSE _1 ensures an initial pick value of 1. 
Since HOUSE _2 is undetectable, you cannot set the initial segment name 
to be 2. 

9-82 Segment Functions 



SET SEGMENT DETECTABILITY 

O The call to GKS$INIT~'ICK initializes input values. For more information 
concerning this function, refer to Chapter 8, Input Functions. 

0 The call to GKS$SET_I'ICK_I1/IODE controls the prompt echo. For more 
information concerning this function, refer to Chapter 8, Input Functions. 

© The call to GKS$REQUEST_I'ICK initiates pick input. 

O No matter how many times you execute this program, you will never be 
able to pick HOUSE ~, so that the returned segment name has the value 2. 
The variable INPUT STATUS determines whether or not the input is valid 
(refer to Chapter 8, Input Functions). 

If you attempt to pick HOUSE ~, this function always writes an input status 
value of GKS$K_STATUS~TOPICK and a SEGMENT~TAME value of 1 (the 
integer value associated with HOUSE _1). 

Figure 9-12 shows the screen of a VT241 terminal if the user attempts to pick 
the undetectable house. Notice that the graphics handler does not outline the 
house's extent rectangle; this tells the user that the house is not detectable. 

Segment Functions 9-83 



SET SEGMENT DETECTABILITY 

Figure 9-12: Setting Pick Detectability VT241 

ZK 5215 86 

9-84 Segment Functions 



SET SEGMENT HIGHLIGHTING 

SET SEGMENT HIGHLIGHTING 

Operating States: WSOP, WSAC, SGOP 

Description 

The function GKS$SET_SEG_HIGHLIGHTING controls the segment attribute 
that determines whether or not the specified segment is highlighted. 

For example, if you use this function to highlight a segment on a VT241, DEC 
GKS places the segment extent rectangle into an alternative foreground color to 
draw attention to the specified segment. 

If you attempt to highlight an invisible segment, the highlighting does not take 
effect until you make the segment visible again. 

Syntax 
GKS$SET_SEG_HIGHLIGHTING (segment name, highlighting flag) 

GSHLIT (segment name, high) 

gsethighlight (segment name, highlighting) 

Arguments 

segmen~.name 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. 

Segment Functions 9-85 



SET SEGMENT HIGHLIGHTING 

highlighting flag 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the flag that determines whether or not DEC GKS highlights 
the specified segment. By default, DEC GKS segments are not highlighted. This 
argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_NORMAL DEC GKS does not highlight the segment. 

1 GKS$K_HIGHLIGHTED DEC GKS highlights the segment, if visible. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$~RROR~EG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$_ERROR_7 GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

120 GKS$—ERROR_120 

122 GKS$_ERROR_122 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist in 
routine **** 

Program Example 
Example 9-12 illustrates the use of the function GKS$SET_SEG_ 
HIGHLIGHTING. Following the program example, Figure 9-13 illustrates 
the program's effect on a VT241 workstation. 

9-86 Segment Functions 



SET SEGMENT HIGHLIGHTING 

Example 9-12: Highlighting a Segment 

C This program draws a house in the lower left corner of the 

C screen and a highlighted house in the upper right. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE_1, HOUSE_2, 

* UPPER_RIGHT_CORNER, NUM_POINTS 
REAL PX (9 ) , PY (9 
DATA PX / .4, .1, .1, 
DATA PY / .1, .i, .7, 
DATA NUM_POINTS / 9 /, 
* HOUSE_1 / 1 /, HOUSE_2 / 2 /, UPPER_RIGHT_CORNER / 2 /, 

* WS_ID / 1 / 

) 
.4, .25, .1, .4, .4, .1 / 
.7, .9, .7, .1, .7, .1 / 
LOWER_LEFT_CORNER / 1 /, 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 

CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 

CALL GKS$SET_VIEWPORT( UPPER_RIGHT_CORNER, 0.5, 1.0, 0.5, 1.0 ) 

C Create a segment in the lower left corner of the surface. 

CALL GKS$CREATE_SEG( HOUSE_1 ) 

CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 

CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

CALL GKS$CLOSE_SEG() 

C Create a second segment in the upper right corner of the surface. 

CALL GKS$CREATE_SEG( HOUSE_2 ) 
CALL GKS$SELECT_XFORM( UPPER_RIGHT_CORNER ) 

CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 

C viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 

READ(5,*) 

C Highlight HOUSE_2. 
CALL GKS$SET_SEG_HIGHLIGHTING( HOUSE_2, GKS$K_HIGHLIGHTED ) 

C Update the surface to initiate the change. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

(continued on next page) 

Segment Functions 9-87 



SET SEGMENT HIGHLIGHTING 

Example 9-12 (Cont.): Highlighting a Segment 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

Figure 9-13 shows the screen of a VT241 terminal after the first pause in the 
program. 

Figure 9-13: Highlighting a Segment VT241 

ZK-5099-86 

9-88 Segment Functions 



SET SEGMENT PRIORITY 

SET SEGMENT PRIORITY 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_SEG—PRIORITY sets the segment attribute that de-
termines which segment takes priority when two segments overlap on the 
workstation surface. The segment priority determines which segment takes 
precedence on the workstation surface, and which segment is chosen if the user 
chooses the overlapping area during pick input. 

DEC GKS implements segment priority on a scale of real numbers from the 
value 0.0 to the value 1.0. Segments with the priority 0.0 have the lowest 
priority, and segments with the priority 1.0 have the highest priority. 

Different devices implement segment priority differently. Either a device 
supports an infinite number of priorities (theoretically), or the device supports 
a specific number of priorities. If the device supports an infinite amount of 
priorities, the maximum number of segment priorities supported entry in the 
workstation description table is the value 0. Otherwise, the entry contains the 
number of priorities supported. (To access this table entry, call the function 
GKS$INQ —SEG —PRIORITY.) 

If the number of priorities supported is not 0.0, then DEC GKS divides the 
0.0 to 1.0 priority range into subranges according to the number of supported 
priorities. If you specify, for two different segments, two different priority 
values that fall within the same subrange, those segments have the same 
priority. For instance, if a workstation supports two segment priorities, all 
segments with the specified values between 0.0 and 0.5 inclusive have the same 
priority, and values between 0.51 and 1.0 have the same priority. 

Syntax 
GKS~SET_SEG_PRIORITY (segment name, priority) 

GSSGP (segment name, priority) 

gsetsegpri (segment name, priority) 

Segment Functions 9-89 



SET SEGMENT PRIORITY 

Arguments 
segmentname 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the integer value that identifies a stored segment. 

priority 

data type: 
access: 
mechanism: 

real 
read-only 
by reference 

This argument is a real number between the value 0 and the value 1.0 that 
determines the segment priority. The initial segment priority is the value 0.0. 
For information concerning your device's implementation of segment priority, 
refer to the DEC GKS Device Specifics Reference Manual. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

120 GKS$_ERROR_120 

122 GKS$_ERROR_122 

126 GKS$_ERROR_126 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist in 
routine **** 

Segment priority is outside the 
range [0,1 ] in routine 

9-90 Segment Functions 



SET SEGMENT PRIORITY 

Program Example 
Example 9-13 illustrates the use of the function GKS$SET_SEG ~'RIORITY. 
Following the program example, Figure 9-14 illustrates the program's effect on 
a VT241 workstation. 

Example 9-13: Setting Segment Priorities 

C This program draws a house in the lower left corner of the 
C screen and a large house. Then, the program sets the smaller 
C house to have a higher priority. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, SMALL_HOUSE, 
* LARGE_HOUSE, UNITY, NUM_POINTS, RED 
REAL PX (6 ), PY (6 ), HIGHER, LOWER 
DATA PX / .4, .1, .1, .25, .4, .4 / 
DATA PY / .1, .1, .7, .9, .7, .1 / 
DATA NUM_POINTS / 6 /, LOWER_LEFT_CORNER / 1 /, 
* SMALL_HOUSE / 1 /, LARGE_HOUSE / 2 /, UNITY / 0 /, 
* WS_ID / 1 /, HIGHER / 1.0 /, LOWER / 0.0 /, RED / 2 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.7, 0.0, 0.5 ) 

C 

0 

C 

Create a segment in the lower left corner of the surface. 
CALL GKS$CREATE_SEG( SMALL_HOUSE ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_HOLLOW ) 
CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

Create a second segment in the upper right corner of the surface. 
CALL GKS$CREATE_SEG( LARGE_HOUSE ) 
CALL GKS$SELECT_XFORM( UNITY ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 
CALL GKS$SET_FILL_COLOR_INDEX( RED ) 
CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

(continued on next page) 

Segment Functions 9-91 



SET SEGMENT PRIORITY 

Example 9-13 (Cont.): Setting Segment Priorities 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Give the smaller house a higher priority. 
© CALL GKS$SET_SEG_PRIORITY( LARGE_HOUSE, LOWER ) 

CALL GKS$SET_SEG_PRIORITY( SMALL_HOUSE, HIGHER ) 

C Redraw the segments. 
O CALL GKS$RIDRAW_SEG_ON_WS( WS_ID ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O These lines of code establish a hollow interior style for the small house. 

© These lines of code establish a solid interior style for the large house. The 
large house overlaps the smaller house. If you choose the overlapped area 
during pick input, the device would return the name of the larger house. 

© By giving the smaller house a priority of 1.0 and the larger house a priority 
of 0.0, the smaller house has a higher priority. 

O Once you redraw the segments, the new priorities take effect. The smaller 
house now overlaps the larger house. If you choose the overlapped area 
during pick input, the device would now return the name of the smaller 
house. 

Figure 9-14 shows the screen of a VT241 terminal after the program has run to 
completion. 

9-92 Segment Functions 



SET SEGMENT PRIORITY 

Figure 9-14: Setting Segment Priorities VT241 

ZK-5100-86 

Segment Functions 9-93 



SET SEGMENT VISIBILITY 

SET SEGMENT VISIBILITY 

Operating States: WSOP, WSAC, SGOP 

Description 

The function GKS$SET_SEG_VISIBILITY sets the segment attribute that 
determines whether or not a segment is visible on the workstation surface. 

A segment must be both visible and detectable if you want the user to be able 
to choose the segment during pick input. 

Syntax 
GKS$SET_SEG_VISIBILITY (segment name, visibility_flagJ 

GSVIS (segment~ame, visible) 

gseriis (segment name, visibility) 

Arguments 

segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. 

visibility flag 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the flag that determines whether or not DEC GKS makes the 
specified segment visible on the workstation surface. By default, DEC GKS 
segments are GKS$K_VISIBLE. 

9-94 Segment Functions 



SET SEGMENT VISIBILITY 

Depending on the capabilities of the device, and whether or not the specified 
segment overlaps other segments, you may need to call either GKS$UPDATE_ 
WS or GKS$REDRAW_SEG _ON _WS to update the picture on the surface of 
the workstation. For more information, refer to the DEC GKS Device Specifics 
Reference Manual. 

This argument can be either of the following values or constants: 

Value Constant Description 

0 GKS$K_INVISIBLE DEC GKS does not show the segment. 

1 GKS$K_VISIBLE DEC GKS shows the segment on the workstation 
surface. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

120 GKS$~RROR_120 

122 GKS$_ERROR_122 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist in 
routine **** 

Program Example 
Example 9-14 illustrates the use of the function GKS$SET_SEG_VISIBILITY. 

Segment Functions 9-95 



SET SEGMENT VISIBILITY 

Example 9-14: Setting the Visibility of a Segment 

C This program draws a house in the lower left corner of the 
C screen and an invisible house in the upper right corner. 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, LOWER_LEFT_CORNER, HOUSE_1, HOUSE_2, 
* UPPER_RIGHT_CORNER, NUM_POINTS 
REAL PX (9 ) , PY (9 ) 
DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1 / 
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1 / 
DATA NUM_POINTS / 9 /, LOWER_LEFT_CORNER / 1 /, 
* HOUSE_1 / 1 /, HOUSE_2 / 2 /, UPPER_RIGHT_CORNER / 2 /, 
* WS_ID / 1 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

CALL GKS$SET_VIEWPORT( LOWER_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( UPPER_RIGHT_CORNER, 0.5, 1.0, 0.5, 1.0 ) 

C Create a segment in the lower left corner of the surface . 
CALL GKS$CREATE_SEG( HOUSE_1 ) 
CALL GKS$SELECT_XFORM( LOWER_LEFT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Create a second segment in the upper right corner of the surface. 
CALL GKS$CREATE_SEG( HOUSE_2 ) 
CALL GKS$SELECT_XFORM( UPPER_RIGHT_CORNER ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 
CALL GKS$CLOSE_SEG() 

C Release deferred output. Pause. Type RETURN when you are finished 
C viewing the picture. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , * ) 

C Make HOUSE_2 invisible. 
CALL GKS$SET_SEG_VISIBILITY( HOUSE_2, GKS$K_INVISIBLE ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K._PERFORM_FLAG ) 

C Pause. Type RETURN when you are finished 
C viewing the picture. 

READ(5,*) 

(continued on next page) 

9-96 Segment Functions 



SET SEGMENT VISIBILITY 

Example 9-14 (Cont.): Setting the Visibility of a Segment 

C Make HOUSE_2 visible again. 
CALL GKS$SET_SEG_VISIBILITY( HOUSE_2, GKS$K_VISIBLE ) 

C Update the surface to initiate the change. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

Segment Functions 9-97 



SET SEGMENT TRANSFORMATION 

SET SEGMENT TRANSFORMATION 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$SET_SEG_XFORM applies the translation, rotation, and 
scaling values of a segment transformation to the stored segment. You 
should use the functions GKS$EVAL _XFORM_1VIATRIX and GKS$ACCUM_ 
XFORM_NiATRIX, described in this chapter, to create the transformation 
matrix. 

DEC GKS applies this segment transformation to all workstations that are 
currently storing the segment. Changes in segment transformation may or may 
not take place immediately. Depending on the capabilities of the workstation, 
you may have to update the surface in order to show the effects of a change 
in segment transformation (refer to the DEC GKS Device Specifics Reference 
Manual.) 

Segment transformations are not cumulative. Every time you call GKS$SET_ 
SEG~CFORM, DEC GKS applies the specified matrix to the segment as stored 
on NDC space. If you need to have a cumulative effect to segment transforma-
tions, refer to GKS$ACCUM_XFORM_1VIATRIX in this chapter. 

To understand the order in which DEC GKS applies different types of transfor-
mations, review the transformation and clipping pipeline in Figure 9-7. 

Syntax 
GKS~SET_SEG~(fORM (segment name, transformation_matrixJ 

GSSGT (segment name, matrix) 

gsetsegtran (segment name, segtranJ 

9-98 Segment Functions 



SET SEGMENT TRANSFORMATION 

Arguments 
segmentname 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that identifies a stored segment. 

transformation matrix 

data type: array (real) 
access: read-only 
mechanism: by reference 

This argument is asix-element transformation matrix created previously by 
a call to either GKS$EVAL _XFORM~ViATRIX or GKS$ACCUM_XFORM_ 
MATRIX. 

Error Messages 

Error Completion 
Number Status Code Message 

-20 DECGKS$_ERROR~EG_20 GKS not in proper state: GKS in 
the error state in routine **** 

-22 DECGKS$_ERROR_NEG_22 Invalid segment transformation in 
routine **** 

7 GKS$_..ERROR_7 GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

120 GKS$_ERROR_120 

122 GKS$~RROR_122 

Specified segment name is invalid 
in routine **** 

Specified segment does not exist in 
routine **** 

Segment Functions 9-99 



SET SEGMENT TRANSFORMATION 

Program Example 
Refer to Example 9-2 in this chapter for a program example using a call to 
GKS$SET_SEG—XFORM. 

9-100 Segment Functions 



Chapter 7 0 

Metafile Functions 

The DEC GKS metafile functions provide a mechanism for long-term storage, 
communication, and reproduction of a graphical image. Metafiles created by 
an application can be used by other applications on other computer systems to 
reproduce a picture. When you store picture information in a meta fi le, you store 
specific information concerning the output primitives contained in the picture, 
the corresponding output attributes, and other information that may be needed 
to reproduce the picture. 

When DEC GKS creates a metafile, it uses one of two formats to store the 
information about the generated picture. DEC GKS can create either GKSM 
(GKS Metafiles) or CGM metafiles (Computer Graphics Metafiles). 

The format of GKSM metafiles is defined by the GKS standard. When using the 
GKSM metafile format, DEC GKS stores an audit of the generation of DEC GKS 
primitives. All of the programs in this chapter create and read GKSM metafiles. 
For more information concerning GKSM metafiles, refer to Section 10.1. 

The format of CGM metafiles is defined by the CGM ANSI X3.122-1986 
standard. This metafile format consists of a set of elements that can be used to 
describe a single graphical picture. CGM metafiles are designed for use with 
many types of graphics applications, including DEC GKS applications. If you 
need to create a CGM metafile for use with other applications, possibly on 
other systems, you can use DEC GKS to create the file. However, DEC GKS 
cannot read CGM metafiles. For more information concerning CGM metafiles, 
refer to Section 10.2 . 

A short-term method of storing output primitives is to store them in segments. 
For more information concerning segments, refer to Chapter 9, Segment 
Functions. 

Metafile Functions 10-1 



10.1 Creating GKSM Metafiles 

To create a GKSM metafile, you open and then activate a metafile workstation 
using the constant GKS$K_GKSM_OUTPUT (numeric value 2) as a worksta-
tion type for GKS$K_WSCAT_1VI0 workstations. As the device connection, 
name the file specification of the file that is to contain the metafile information. 
(DEC GKS uses the file name exactly as specified, without using a default file 
extension.) You can open and activate as many GKS$K_GKSM_OUTPUT 
workstations as determined by the maximum allowable open and active work-
stations, sending appropriate output to the appropriate active GKS$K_GKSM_ 
OUTPUT workstation. 

Once the GKS$K_GKSM_OUTPUT workstation is active, DEC GKS records 
information about the current state of the picture, such as output attribute 
information. Then, as you call DEC GKS functions, pertinent information 
about the function call is recorded in a metafile record. GKS$K_WSCAT~VIO 
workstations record the following information: 

• The control functions that affect the appearance of the picture on the 
workstation surface. 

• Output primitives, if the GKS$K_WSCAT_MO workstation is active at the 
time of the function call. The primitives are stored in a form equivalent to 
NDC points. 

• Output attribute settings that are current at the time of primitive generation. 
• Segments, if the GKS$K_WSCAT_MO workstation is active at the time of 

the call to GKS$CREATE_SEG. 

• Geometric attribute data (such as character height, character-up vector, and 
so forth) affecting stored text primitives, in a form equivalent to normalized 
device coordinates (NDC). 

• Normalization transformation information such as the clipping rectangle. 
DEC GKS does not record workstation transformations. 

• Data that is specific to the application, or information that DEC GKS 
metafiles cannot store through standard calls to DEC GKS functions (stored 
using the function GKS$WRITE _ITEM). 

If a call to a DEC GKS function is not applicable to the graphical picture, such 
as calls to certain control or inquiry functions, DEC GKS does not store the 
function call information in the metafile. Since metafiles record information 
pertinent to output only, DEC GKS metafiles do not record information about 
input function calls. 

10-2 Metafile Functions 



When you create a GKSM metafile, DEC GKS produces a meta file header, and 
for each function call necessary to reproduce the current environment, DEC 
GKS writes a series of items to the metafile. The items generated by a function 
call roughly correspond to the actual function call or to the state of the picture 
when the call was made. 

For each item, DEC GKS produces an item header and an item data record. 
The DEC GKS standard specifies this general format for data storage within 
GKSM metafiles (metafile header followed by an item header followed by an 
item data record, and so forth), but the individual item data record format is 
implementation specific. For instance, some implementations may store all item 
data as a string of characters, whereas some implementations may store some 
information as binary-encoded integer values and some information in character 
strings. 

An item type is an integer value that corresponds to a DEC GKS function. For 
instance, an item of type 3 corresponds to a call to GKS$UPDATE _WS. The 
item type is contained in the item header. 

When creating GKSM metafiles, you do not need to be aware of the information 
contained in the item header or the item data record. Once you activate a 
GKS$K_GKSM_OUTPUT workstation and call output functions, DEC GKS 
formats the graphical output information within the metafile for you. 

When you close the GKS$K_WSCAT_IVIO workstation, DEC GKS writes an 
item of type 0 to the metafile to specify that it is the last item in the metafile. 

10.2 Creating CGM Metafiles 

To create a CGM metafile, you open and then activate a workstation using the 
constant GKS$K_CGM_OUTPUT (numeric value 7) as a workstation type for 
GKS$K_WSCAT_IVIO workstations. As the device connection, name the file 
specification of the file that is to contain the metafile information. (DEC GKS 
uses the file name exactly as specified, without using a default file extension.) 
You can open and activate as many GKS$K_CGM_OUTPUT workstations 
as determined by the maximum allowable open and active workstations, 
sending appropriate output to the appropriate active GKS$K_CGM_OUTPUT 
workstation. 

Metafile Functions 10-3 



Once the GKS$K_GKSM_OUTPUT workstation is active, DEC GKS places the 
graphical information into elements, by category. The element categories are as 
follows: 

Category Description 

Delimiter Elements Separate structures within the metafile. 

Metafile Descriptor Elements Describe the functional content and 
unique characteristics of the CGM 
metafile. 

Picture Descriptor Elements Define the limits of the virtual device 
coordinates (VDCs) and the parameter 
modes for the attribute elements. 

Control Elements Specify size and and precision of VDC 
coordinates, and format descriptions of 
the CGM elements. 

Graphical Primitive Elements Describe the geometric objects in the 
picture. 

Attribute Elements Describe the various appearances of the 
graphical elements. 

Escape Elements Describe device- and system-specific 
functionality. 

External Elements Pass information not needed for the 
creation of a picture (for instance, a 
message sent to the user of the metafile). 

The elements may have associated data. For instance, the graphical primitive 
elements may specify VDC points. (The DEC GKS NDC points correspond to 
the CGM VDC points.) DEC GKS determines the element data from your DEC 
GKS function calls. 

All of the CGM metafile elements are grouped into structures that are similar in 
appearance to an application program. DEC GKS creates a metafile description 
at the top of the file. Other structures include the metafile default structure 
and the metafile picture structure. Each structure begins and ends with the 
appropriate delimiter elements. 

Unlike GKSM metafile items, CGM metafile elements have a certain format, or 
encoding. DEC GKS can create CGM metafile elements in one of the following 
encodings. 

10-4 Metafile Functions 



Encoding Description 

Character This encoding requires that the CGM metafile elements and their 
parameters be stored in a character-coded format as specified by the 
CGM standard. Using this encoding, your metafiles use a minimum 
amount of physical storage. 

Binary This encoding requires that the CGM metafile elements and their 
parameters be stored in binary code. Using this encoding, many of 
the applications and machines can store and read CGM metafiles with 
greater ease. 

Version 4.0 of DEC GKS does not support binary encoding. 

Clear Text This encoding requires that the CGM metafile elements and their 
parameters be stored in text. Using this encoding, you can type, print, 
or edit the CGM metafile so that you can review its contents before 
reading the file. 

To specify an encoding for your metafiles, you can use either of the following 
bit masks on the command line: 

%x00020007 Character encoding 

%x00040007 Clear text encoding 

If you choose, you can use bitmask constant values within your program to 
specify an encoding, as follows: 

CALL GKS$OPEN WS( WS_ID, 'CGM_METAFILE.TXT', 

* GKS$K_CGM_OUTPUT .OR. GKS$M_CHAR.ACTER_ENCODING ) 

C or, 

CALL GKS$OPEN_WS( WS_ID, 'CGM_METAFILE.TXT', 

* GKS$K_CGM_OUTPUT .OR. GKS$M_CLEAR_TEXT_ENCODING ) 

For more information concerning constants, refer to Appendix B, DEC GKS 
Constants. For more information concerning bitmasks, refer to Appendix A, 
DEC GKS Supported Workstations. 

Remember that when you create CGM metafiles, you do not need to be aware 
of the information contained in the individual elements. Once you activate 
a GKS$K_CGM_OUTPUT workstation and call output functions, DEC GKS 
formats the graphical output information within the metafile for you. 

Metafile Functions 10-5 



For detailed information concerning the CGM metafile format for the supported 
encodings, refer to Appendix E, DEC GKS Metafile Structure. 

NOTE 

DEC GKS Version 4.0 allows you to create CGM metafiles for other 
applications that may require this metafile format. This version of 
DEC GKS cannot read CGM metafiles. 

10.3 Reading a GKSM Metafile 

To reproduce a graphical image from a GKSM metafile, you must open a 
metafile input (GKS$K_WSCAT_1VII) workstation. DEC GKS defines the 
constant GKS$K_GKSM_INPUT (numeric value 3) as the workstation type for 
GKS$K_WSCAT~VII workstations. Also, when you open the GKS$K_GKSM_ 
INPUT workstation, specify the name of the file containing the recorded data 
items as the connection identifier argument. (DEC GKS uses the file name 
exactly as specified, without using a default file extension.) You can only open 
one GKS$K_GKSM_INPUT workstation for every corresponding physical file. 

When you open a GKS$K_GKSM_INPUT workstation, the first item that 
was written to the metafile becomes the current item. The current item is the 
item that is processed when you call the function GKS$GET~TEM. As with 
GKS$K_GKSM_INPUT workstations, you can open as many GKS$K_GKSM_ 
INPUT workstations as DEC GKS permits in total workstations, interpreting 
items from the appropriate metafile on the appropriate active workstations. 

To reproduce the graphic image stored in the metafile, you must call 
GKS$GET~TEM, GKS$READ_ITEM, and GKS$INTERPRET_ITEM for all 
of the applicable items in the metafile, until you reach the item of type 0 (spec-
ifying the last item). The function GKS$GET~TEM writes the item type, and 
the length of the data record of the current item, to its last two arguments. The 
function GKS$READ_ITEM writes the item data record to its last argument and 
causes the next item in the metafile to become the current item. The function 
GKS$INTERPRET_ITEM reads information about an item and reproduces the 
desired action on all active GKS$K_WSCAT_OUTPUT and GKS$K_WSCAT_ 
OUTIN workstations. 

In most applications, you call GKS$INTERPRET_ITEM for all items in a 
metafile. However, there are instances when you may Mot wish to do this. 

10-6 Metafile Functions 



For example, if the creator of the metafile called the function GKS$WRITE_ 
ITEM to pass user-defined data to the metafile, then you need to handle this 
information in a special manner. For instance, if the user-defined data is a text 
string containing information for the application programmer, then, instead of 
passing the record to GKS$INTERPRET~TEM, you should store or write the 
text string as desired. You can identify user-defined data by checking the item 
type; all item types greater than 100 are items containing user-defined data. 
DEC GKS metafiles reserve item data numbers 1 through 100. (If you are not 
using DEC GKS GKSM metafiles, the reserved item numbers may differ.) 

As another example, if you checked the item type and found it to be 3 
(which is a call to the function GKS$UPDATE _WS), you may not want to 
interpret that item if it would delete important output primitives already on the 
workstation surface. For more information concerning the effects of a call to 
GKS$UPDATE _WS, refer to Chapter 4, Control Functions. 

If after calling GKS$GET~TEM, you decide that you do not want to interpret 
the item, pass the value 0 as the data length argument to GKS$READ_ITEM. 
This skips the current item, causing the next item in the file to become the 
current item. 

10.4 Using the Metafile Functions in Programs 

Example 10-1 illustrates the creation of a GKSM metafile. 

Example 10-1: Creating a Metafile 

C This program creates a metaf ile that sends information about the 
C programmer who created the metafile, and then draws a filled 

C square in the middle of the NDC space. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBR,ARY:GKSDEFS.FOR' 
INTEGER WS_ID, META_OUT, USER_DEFINED, ITEM_LENGTH, 
* NUM_POINTS 
CHARACTER*80 CONTACT_INFO 
REAL PX ( 5) , PY (5 ) 
DATA PX / .3, .7, .7, .3, .3 / 
DATA PY / .3, .3, .7, .7, .3 / 
DATA NUM_POINTS / 5 /, WS_ID / 1 /, META_OUT / 2 /, 

* USER_DEFINED / 101 /, ITEM_LENGTH / 80 / 
Q DATA CONTACT_INFO 

* / 'Programmers : Jim and Cathy D "Augustine . 
* Telephone: 555-5555' / 

(continued on next page) 

Metafile Functions 10-7 



Example 10-1 ~Cont.~: Creating a Metafile 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Open and activate the MO workstation, sending data items to the 
C f ile METAFILE.DAT. 

CALL GKS$OPEN_WS( META_OUT, 'METAFILE.DAT', 
* GKS$K_GKSM_OUTPUT ) 

© CALL GKS$ACTIVATE_WS( META_OUT ) 

C Tell the next user of the metafile whom to call if 
C problems are encountered. 

© CALL GKS$WRITE_ITEM( META_OUT, USER_DEFINED, 
* ITEM_LENGTH , '/.REF ( CONTACT_INFO ) ) 

C Set the interior fill style to solid. 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 

C Draw the square in the middle of the NDC space. 
CALL GKS$FILL_AREA( NUM_POINTS, PX, PY ) 

C Close and deactivate all workstations 
CALL GKS$DEACTIVATE_WS( META_OUT ) 
CALL GKS$CLOSE_WS( META_OUT ) 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O This code intializes user-defined data to be sent to the metafile. This 
information includes the name of the programmer who created the metafile 
and the programmer's telephone number. 

© Once you activate a GKS$K_WSCAT_NiO workstation, DEC GKS writes 
all subsequent output, associated attributes, and current transformation 
information to the corresponding metafile. 

© The call to GKS$WRITE _ITEM writes the user-defined data (in this 
example, information about the programmer who created the metafile) as 
an item in the metafile. The item type is USER_DEFINED, or, the value 
101. Any other programs using the created metafile must know that items 
numbered 101 pass this type of information; or the application can skip all 
user-defined information when using the metafile. 
For more information, refer to GKS$WRITE_ITEM in this chapter. 

This program generates a square, solid, green fill area in the center of the 
workstation surface. 

10-8 Metafile Functions 



Example 10-2 reads and interprets the metafile created by Example 10-1. 

Example 10-2: Interpreting and Producing a Picture from a Metafile 

C This program interprets and produces a picture from a 
C metaf ile . 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, META_IN, USER_DEFINED, ITEM_LENGTH, 
* ITEM_TYPE, MAX_LENGTH, END_METAFILE, CHAR_LENGTH 
REAL ITEM_DATA_RECORD( 500 ) 
CHARACTER*80 CONTACT_INFO 
DATA WS_ID / 1 /, META_IN / 2 /, 
* USER_DEFINED / 100 /, MAX_LENGTH / 500 /, 
* END_METAFILE / 0 /, CHAR_LENGTH / 80 / 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C Open the MI workstation. 
O CALL GKS$OPEN_WS( META_IN, 'METAFILE.DAT', 

* GKS$K_GKSM_INPUT ) 

© CALL GKS$GET_ITEM( META_IN, ITEM_TYPE, ITEM_LENGTH ) 
DO WHILE( ITEM_TYPE .NE. END_METAFILE ) 

C If it is the contact programmer information. . . 
© IF ( ITEM_TYPE .GE. USER_DEFINED ) THEN 

CALL GKS$READ_ITEM( META_IN, CHAR_LENGTH, 
* '/.REF ( CONTACT_INFO ) ) 

C Open a f ile, store the contact information, and close the file. 
OPEN( UNIT=1, FILE='TEMP.TXT', STATUS='NEW' ) 
WRITE(1,*) CONTACT_INFO 
CLOSE( UNIT=1 ) 

0 
C Otherwise, read and interpret the item. . . 

ELSE 
CALL GKS$READ_ITEM( META_IN, MAX_LENGTH, 

* ITEM_DATA_RECORD ) 
CALL GKS$INTERPRET_ITEM( ITEM_TYPE, ITEM_LENGTH, 

* ITEM_DATA_RECORD ) 
ENDIF 

C If you want to find out the item types actually written to the 
C metaf ile, you can include this line. 

0 C WRITE(6,*) ITEM_TYPE, ITEM_LENGTH 

(continued on next page) 

Metafile Functions 10-9 



Example 10-2 (Copt.): Interpreting and Producing a Picture from a 
Metafile 

C Get another item. 
CALL GKS$GET_ITEM( META_IN, ITEM_TYPE, ITEM_LENGTH 
ENDDO 

C Close and deactivate all workstations 
CALL GKS$CLOSE_WS( META_IN 
CALL GKS$DEACTIVATE_WS( WS_ID 
CALL GKS$CLOSE_WS( WS_ID 
CALL GKS$CLOSE_GKS() 
END 

The following numbers correspond to the numbers in the previous example: 

O When you open a GKS$K_WSCAT_1VII workstation, you can call 
GKS$GET_ITEM, GKS$READ_ITEM, and GKS$INTERPRET_ITEM. 
These functions access items stored in the file METAFILE.DAT that was 
created by the program in Example 10-1. 

© These lines of code estabish a loop to read all items in the metafile until the 
program reaches the last item (item of type 0). The example gets a single 
item and checks to see if it is item 0, which signifies the end of the metafile. 
If the item is not item 0, then the program enters the loop. 
The first call to the function GKS$GET_ITEM is outside of the loop. 
GKS$GET_ITEM writes the current item's type and size to its last two 
arguments. The remaining calls to this function occur at the bottom of the 
loop. 

© If the item type is greater than the value 100, then the application must 
handle this user-defined information. This application must know that 
user-defined data with an item type of 101 contains a character string 
(specified in Example 10-1). 
Once you obtain the string, you can store it in a file, as this program does. 

O If the item does not contain user-defined data, then interpret the item and 
send all graphical information to all active workstations. 

0 If you want to see the item types of every item read from this metafile, 
you can include this line of code. In this example, the item types are the 
values 71, 61, 1, 101, 43, and so forth. A value of 71 corresponds to the 
effects of a call to GKS$SET_WS_WINDOW; avalue of 61 corresponds 
to the effects of a call to GKS$SELECT_XFORM; avalue of 1 corresponds 
to the effects of a call to GKS$OPEN_WORKSTATION; avalue of 101 
corresponds to user-defined data, which cannot be interpreted and must be 
handled according to its data type; a value of 43 corresponds to the effects 
of a call to GKS$SET~SF, and so forth. For a complete list of item types 

10-10 Metafile Functions 



and their corresponding DEC GKS function calls, refer to Appendix E, DEC 
GKS Metafile Structure. 

If you type the file containing the user-defined data from the metafile, you will 
see the following: 

$ TYPE TEMP.TXT [RETURN 
Programmers: Jim and Cathy D'Augustine. Telephone: 555-5555 

For detailed information concerning the DEC GKS item types and other metafile 
structural information, refer to Appendix E, DEC GKS Metafile Structure. 

10.5 Metafile Inquiries 

The following list presents the inquiry functions that you can use to obtain 
information when writing device-independent code: 

GKS$INQ _LEVEL 

GKS$INQ_OPEN_WS 

GKS$INQ _OPERATING _STATE 

GKS$INQ _WS_STATE 

GKS$INQ _WSTYPE _LIST 

For more information concerning device-independent programming, refer to the 
DEC GKS User Manual. 

10.6 Function Descriptions 

This section describes the DEC GKS metafile functions in detail. All of the DEC 
GKS metafile functions work with GKSM metafiles only. 

Metafile Functions 10-11 



GKSSGET_ITEM 

GKSSGET_ITEM 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$GET~TEM writes the item type and the length of the item 
data record, from the current item in a metafile, to the last two arguments. 

Format 
GKS$GET_ITEM (workstation_id, item type, item_dat~length) 

GGTITM (workstation_id, item type, len_drJ 

ggettypegksm (workstation_id, result) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that represents an open metafile input 
(GKS$K—WSCAT~ViI) workstation. You can open more than one GKS$K—
WSCAT~VII workstation at a time, depending on the needs of your application. 

item type 

data type: integer 
access: write-only 
mechanism: by reference 

This argument is an integer value that represents the DEC GKS function 
call corresponding to the metafile item type. For a list of item types and 
the corresponding function names, refer to Appendix E, DEC GKS Metafile 
Structure. 

10-12 Metafile Functions 



GKSSGET_ITEM 

item_data_length 

data type: 
access: 
mechanism: 

integer 
write-only 
by reference 

This argument is the length of the item data record, in bytes. You should 
compare this value with your maximum data size to make sure that you defined 
a data record variable large enough to hold the entire data record. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$~RROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

34 GKS$_ERROR_34 

162 GKS$_ERROR_162 

163 GKS$_ERROR_163 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SLOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is not of 
category MI in routine **** 

No item is left in GKS Metafile 
input in routine **** 

Metafile item is invalid in routine 
**** 

Program Example 
For an example of a call to this function, see Example 10-2. 

Metafile Functions 10-13 



INTERPRET ITEM 

INTERPRET ITEM 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$INTERPRET_ITEM reads an item data record obtained by 
a call to GKS$READ_ITEM. Then, if the item type corresponds to a call to a 
function that affects graphical representation, this function makes appropriate 
changes to the DEC GKS state list, and generates the specified graphical 
output on all active GKS$K_WSCAT_OUTPUT and GKS$K_WSCAT_OUTIN 
workstations. 

If the item type identifies user-defined data, GKS$INTERPRET~TEM generates 
an error indicating that it cannot interpret the item. 

Format 
GKS~INTERPRET_ITEM (item type, item_dat~length, item_dat~recordJ 

GIITM (item type, len_dr, dim_dr, drJ 

ginterpret (typeand/enth, date) 

Arguments 
item type 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that represents the DEC GKS function call 
corresponding to the metafile item type. You can obtain this value by calling 
the function GKS$GET~TEM. For a list of item types and the corresponding 
function names, refer to Appendix E, DEC GKS Metafile Structure. 

10-14 Metafile Functions 



INTERPRET ITEM 

item_data_length 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the length of the item data record, in bytes. You can obtain 
this value by calling the function GKS$GET~TEM. 

item_data_record 

data type: record 
access: read-only 
mechanism: by reference 

This argument is the item's data record. You can obtain the item's data record 
by calling the function GKS$READ~TEM. 

Error Messages 

Error Completion 
Number Status Code Message 

-18 DECGKS$_ERROR~TEG_18 The following error occurred when 
GKS was interpreting an item, **** 

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in 
the error state in routine **** 

7 GKS$~RROR_7 GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

161 GKS$~RROR_161 

163 GKS$~RROR_163 

164 GKS$_ERROR_164 

Item length is invalid in routine 
**** 

Metafile item is invalid in routine 
**** 

Item type is not a valid GKS item 
in routine **** 

Metafile Functions 10-15 



INTERPRET ITEM 

Error Completion 
Number Status Code Message 

165 GKS$~RROR_165 Content of item data record is 
invalid for the specified item type 
in routine **** 

167 GKS$_ERROR_167 

168 GKS$_ERROR_168 

User item cannot be interpreted in 
routine **** 

Specified function is not supported 
in this level of GKS in routine **** 

Program Example 
For an example of a call to this function, see Example 10-2. 

10-16 Metafile Functions 



READ ITEM FROM GKSM 

READ ITEM FROM GKSM 

Operating States: WSOP, WSAC, SGOP 

Description 
The function GKS$READ_ITEM reads the current metafile item's data record 
and then writes the record to its last argument. 

You should compare the maximum length for the data record (as passed to 
this function) with the actual length of the data record (as GKS$GET_ITEM 
writes to one of its arguments). If the actual size of the record is larger than 
the maximum allocated space, DEC GKS truncates the record causing loss of 
information. 

After returning the item's data record to the application program, GKS$READ_ 
ITEM makes the next item in the metafile the current item. If you want to skip 
an item for any reason, specify the value 0 as the maximum record length; this 
causes the next item in the metafile to become the current item. 

Format 
GKSSREAD_ITEM (workstation~d, max_record_length, item_data~recvrdJ 

GRDITM (workstation_id, len_dr, len_buf, dr~ufJ 

greadgksm (workstation_id, length, record) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that represents an open metafile input 
(GKS$K_WSCAT_1VII) workstation. You can open more than one GKS$K_ 
WSCAT~1/II workstation at a time, depending on the needs of your application. 

Metafile Functions 10-17 



READ ITEM FROM GKSM 

maximum_record_size 

data type: 
access: 
mechanism: 

integer 
read-only 
by reference 

This argument is the maximum length of the declared variable that is to hold 
the item's data record, in bytes. If the actual data record is larger than this 
maximum value, DEC GKS truncates the item's data record. 

item_data_record 

data type: 
access: 
mechanism: 

record 
write-only 
by reference 

This argument is the item's data record. 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$_ERROR_NEG_20 

7 GKS$_ERROR_7 

20 GKS$_ERROR_20 

25 GKS$_ERROR_25 

34 GKS$_ERROR_34 

162 GKS$_ERROR_162 

10-18 Metafile Functions 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be in one of the states WSOP, 
WSAC or SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not open in 
routine **** 

Specified workstation is not of 
category MI in routine **** 

No item is left in GKS Metafile 
input in routine * * * * 



READ ITEM FROM GKSM 

Error Completion 
Number Status Code Message 

163 GKS$~RROR_163 Metafile item is invalid in routine 
**** 

165 GKS$~RROR_165 Content of item data record is 
invalid for the specified item type 
in routine **** 

166 GKS$~RROR_166 Maximum item data record is 
invalid in routine **** 

Program Example 
For an example of a call to this function, see Example 10-2. 

Metafile Functions 10-19 



WRITE ITEM TO GKSM 

WRITE ITEM TO GKSM 

Operating States: WSAC, SGOP 

Description 
The function GKS$WRITE STEM writes auser-defined data item record to a 
metafile. 

For example, you could precede each call to an output function by writing 
a character string to the metafile, describing the component of the picture 
generated by the subsequent function call. You can establish a specific item 
type greater than the value 100 to specify such a description. As an alternative, 
the application program can treat any item type greater than the value 100 as 
such a description. 

If you are using a metafile structure that is different from a GKSM metafile, 
you may have to specify different item data record values to this function. For 
more information concerning the structure of DEC GKS GKSM metafiles, refer 
to Appendix E, DEC GKS Metafile Structure. 

Format 
GKS$WRITE_ITEM (workstation_id, item type, item_dat~length, 

item_dat~recordJ 

GWITM (workstation~d, item type, len_dr, dim_dr, drJ 

gwritegksm (workstation_id, type, length, data) 

Arguments 
workstation_id 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the integer value that represents an active metafile output 
(GKS$K_WSCAT_1VI0) workstation. You can activate more than one 

10-20 Metafile Functions 



WRITE ITEM TO GKSM 

GKS$K_WSCAT_Ni0 metafile at one time, depending on the needs of your 
application. 

item type 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is an integer value that represents the DEC GKS function call 
corresponding to the metafile item type. You can only use item types greater 
than the value 100 for user-defined data. 

item_data_length 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the length of the item data record, in bytes. 

item_dafa_record 

data type: record 
access: read-only 
mechanism: by reference 

This argument is the item's data record. 

Metafile Functions 10-21 



WRITE ITEM TO GKSM 

Error Messages 

Error 
Number 

Completion 
Status Code Message 

-20 DECGKS$~RROR_NEG_20 

5 GKS$_ERROR_5 

20 GKS$~RROR~O 

30 GKS$~RROR_30 

32 GKS$~RROR_32 

160 GKS$_ERROR_160 

161 GKS$_ERROR_161 

GKS not in proper state: GKS in 
the error state in routine **** 

GKS not in proper state: GKS shall 
be either in the state WSAC or in 
the state SGOP in routine **** 

Specified workstation identifier is 
invalid in routine **** 

Specified workstation is not active 
in routine **** 

Specified workstation is not of 
category MO in routine **** 

Item type is not allowed for user 
items in routine **** 

Item length is invalid in routine 
**** 

Program Example 
For an example of a call to this function, see Example 10-1. 

10-22 Metafile Functions 



Chapter 11 

Error-Handling Functions 

The DEC GKS error-handling functions provide a method for you to control 
the generation of messages to the user, and a method of exit when a DEC 
GKS function call generates an error. The following list presents the DEC GKS 
error-handling functions: 

• GKS$EMERGENCY_CLOSE 

• GKS$ERROR~-IANDLER 

• GKS$LOG ERROR 

• GKS$SET~RROR_HANDLER 

DEC GKS recognizes a number of error situations or conditions. These error 
conditions are detected within DEC GKS functions, within procedures called by 
DEC GKS functions (such as calls to the graphics handler procedures), or within 
other areas of the application program. 

For errors occurring in areas of the application program other than in DEC 
GKS function calls, either the application program regains control or program 
execution terminates abnormally. If the application program regains control, it 
can attempt to properly close DEC GKS or, failing that, attempt an emergency 
closure by calling the function GKS$EMERGENCY_CLOSE. If the program 
terminates abnormally, the results are unpredictable. In the worst case, you 
lose all graphical information produced before the error. 

For errors detected within procedures called by DEC GKS, if the procedure does 
not generate a fatal error, then the DEC GKS error handlers may be able to 
process the error. If the procedure does not generate a fatal error, you should be 
able to save graphical data. Otherwise, the application program regains control, 
or the application program is forced to call GKS$EMERGENCY_CLOSE, or in 
the worst case, you lose all graphical data produced before the error. 

Error-Handling Functions 11-1 



For errors detected within DEC GKS functions, DEC GKS performs the 
following tasks: 

1. Sets the DEC GKS error state to ON to prohibit modification of DEC GKS 
variables. 

2. Calls GKS$ERROR_HANDLER and passes the appropriate arguments. 

3. Performs function-specific error reaction or cleanup. 

4. Sets the DEC GKS error state to OFF. 

You can allow DEC GKS to call its own error handler, or you can provide an 
error handler of your own. An application-supplied, error-handling function 
can interpret information about the error and store data in a data area for 
subsequent analysis. Since application-supplied handlers do not have to 
generate the standard DEC GKS error messages, such a handler can change 
the format or the text of the messages sent to the user. Also, application-
supplied handlers can decide whether to abort a program or to continue despite 
generated errors, if the errors are not fatal. 

A fatal error occurs within DEC GKS when internal data structures are cor-
rupted, or when accurate and meaningful execution of DEC GKS functions is 
no longer possible. when a fatal error occurs, DEC GKS executes the current 
error handler and then terminates execution of the application. 

The DEC GKS error-handling function calls the error-logging function to display 
an error message, and then control returns to the error-handling function. The 
DEC GKS error-handling function GKS$ERROR_HANDLER is available to you 
as well. You can call GKS$ERROR_HANDLER from an application-supplied 
handler, if you desire. 

The GKS standard dictates that every error-handling function, whether it be 
the DEC GKS supplied function or an application-supplied function, accept the 
following information from DEC GKS upon error generation: 

• The GKS error number corresponding to the appropriate error condition 
(refer to Appendix D, DEC GKS Error Messages) 

• The name of the GKS function that generated the error condition 

• The name of the error file specified in the application program in the call to 
GKS$OPEN _GKS 

To implement an application-supplied, error-handling function, you must define 
a function with three parameters corresponding to the values listed previously: 
the DEC GKS error number, the name of the DEC GKS function that generated 
the error, and the name of the error file. Then, you must pass the address 
of your error-handling #unction to GKS$SET~RROR_HANDLER. For more 
information, refer to GKS$SET_ERROR_HANDLER in this chapter. 

11-2 Error-Handling Functions 

U 

l.~ 



11.1 Function Descriptions 

This section describes the DEC GKS error-handling functions in detail. 
Remember that none of the DEC GKS error-handling functions generate 
errors. 

Error-Handling Functions 11-3 



EMERGENCY CLOSE GKS 

EMERGENCY CLOSE GKS 

Operating States: GKCL, GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$EMERGENCY_CLOSE attempts to perform a rapid and 
orderly closure of DEC GKS. 

Usually, you call this function for error conditions detected outside of DEC 
GKS. If possible, the call to this function closes any open segment, updates all 
active workstations, deactivates those workstations, closes all open worksta-
tions, and then closes DEC GKS. 

Syntax 
GKSaEMERGENCY_CLOSE 

GECLKS 

gemergencyclosegks 

Program Example 
Example 11-1 illustrates the use of the function GKS$EMERGENCY_CLOSE. 
Following the program example, Figure 11-1 illustrates the program's effect on 
a VT241 workstation. 

11-4 Error-Handling Functions 



EMERGENCY CLOSE GKS 

Example 11-1: Executing an Emergency Closure of DEC GKS 

0 

0 

C This program implements a user-defined error handler. 
IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER NEW_ERROR_HANDLER( 2 ), NULL, WS_ID, 
* BAD_WS_ID 
DATA NULL / 0 /, WS_ID / 1 /, BAD_WS_ID / 69 / 

C 

EXTERNAL HANDLE_IT 

Tell GKS to use this routine instead of GKS$ERROR_HANDLER 
NEW_ERROR_HANDLER( 1 ) _ '/.LOC( HANDLE_IT ) 
NEW_ERROR_HANDLER( 2) = NULL 

CALL GKS$SET_ERROR_HANDLER( NEW_ERROR_HANDLER ) 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 

C Cause an error by passing an identifier of a workstation that 
C isn't open. 

CALL GKS$ACTIVATE_WS( BAD_WS_ID ) 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END 

C HANDLE_IT function. 
FUNCTION HANDLE_IT( ERROR, FUNCTION_NAME, 
* ERROR_FILE_NAME ) 

INTEGER ERROR, WS_ID_INVALID, WS_NOT_OPEN 
CHARACTER*80 FUNCTION_NAME, ERROR_FILE_NAME 

C Variables for the corresponding GKS error numbers. 
DATA WS_ID_INVALID / 20 /, WS_NOT_OPEN / 25 / 

C Error decision -- stop if it's a bad workstation. 
IF ( ERROR .EQ. WS_ID_INVALID .OR. 
* ERROR .EQ. WS_NOT_OPEN ) THEN 

(continued on next page) 

Error-Handling Functions 11-5 



EMERGENCY CLOSE 6KS 

Example 11-1 (Cont.): Executing an Emergency Closure of DEC GKS 

C Do not continue with the application. 
CALL GKS$LOG_ERROR( ERROR, FUNCTION_NAME, 

* ERROR_FILE_NAME ) 

WRITE(6,*) 'SEVERE ERROR.' 

WRITE(6,*) 'After viewing the error message,' 
WRITE(6,*) 'Press RETURN to abort.' 

C Pause. Type RETURN when you are finished 
C viewing the screen. 

READ(5,*) 
CALL GKS$EMERGENCY_CLOSE() 
STOP 

ELSE 

C Continue normally by logging the error. 
CALL GKS$ERROR_HANDLER( ERROR, FUNCTION_NAME, 

* ERROR_FILE_NAME ) 
RETURN 

END IF 
END 

The following numbers correspond to the numbers in the previous example: 

O This code declares the two-element array that you need to pass to 
GKS$SET~RROR_HANDLER. For more information, refer to GKS$SET_ 
ERROR_HANDLER in this chapter. 

© This is the declaration of the external error-handling function. 
© In the first element of the two-element array passed to GKS$SET~RROR_ 

HANDLER, you assign the address of the external error-handling function. 
The second element of the array must always be zero, unless you are 
programming in Pascal (see the function description in this chapter). 

O The call to GKS$SET_ERROR_HANDLER tells DEC GKS to pass control to 
the application's error handler upon error generation. (If you do not imple-
ment an application-specified error handler, DEC GKS calls GKS$ERROR_ 
HANDLER upon error generation.) 

0 All DEC GKS error handlers must have these parameters: the error number, 
the function name, and the error file name. As soon as GKS$ACTIVATE _ 
WS encounters the bad workstation identifier in the first program, DEC 
GKS passes control to this application-defined error handler. 

11-6 Error-Handling Functions 



EMERGENCY CLOSE GKS 

© If the error involved a bad workstation identifier (in this example, it did), 
then this code logs the DEC GKS standard error message and then explains 
why the program aborts execution. The call to GKS$EMERGENCY_CLOSE 
attempts an orderly closure of DEC GKS. 

O If DEC GKS generates any other error, then the call to GKS$ERROR_ 
HANDLER provides the standard DEC GKS response to errors: log the 
standard error message and continue with execution. 

Figure 11-1 shows the screen of a VT241 terminal after the program has run to 
completion. 

Figure 11-1: Executing an Emergency Closure of DEC GKS VT241 

XGKS-E-ERROR_2a, Specified workstation is not open in routine gkstactivate_ws 

SEVERE ERROR. 

After viewing the error message, 
Press RETURN to abort. 

~_ J 
ZK-5103-86 

Error-Handling Functions 11-7 



ERROR HANDLING 

ERROR HANDLING 

Operating States: GKCL, GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$ERROR~-iANDLER calls GKS$LOG~RROR and allows 
continued program execution. By default, DEC GKS calls this function when it 
encounters an error condition. 

If you choose, you can write your own error handler to replace this function. If 
you write your own error handler, you pass the address of your error-handling 
subroutine to GKS$SET_ERROR_HANDLER (refer to Example 11-1). For 
more information, refer to GKS$SET~RROR~IANDLER in this chapter. 

For information concerning the various DEC GKS error conditions, refer to 
Appendix D, DEC GKS Error Messages. 

Format 
GKSZERROR_HANDLER (error number, function name, error_fileJ 

GERHND (error number, fun_id, error_fi/eJ 

gerrorhand (error umber, funcname, perr6leJ 

Arguments 
error number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the number of the DEC GKS error message as dictated by 
the GKS standard or, in the case of negative error numbers, as dictated by the 
VMS implementations of GKS. To review the numbers of the DEC GKS error 
messages, refer to Appendix D, DEC GKS Error Messages. 

11-8 Error-Handling Functions 



ERROR HANDLING 

functior~name 

data type: string 
access: read-only 
mechanism: by descriptor 

This argument is the text string containing the name of the DEC GKS function 
that detected the error. 

error file 

data type: string 
access: read-only 
mechanism: by descriptor 

This argument is a text string containing the name of the error logging file that 
was specified in a call to GKS$OPEN _GKS. 

f~1 
Program Example 

For an example of a call to this function, see Example 11-1. 

Error-Handling Functions 11-9 



LOG ERROR 

L06 ERROR 

Operating States: GKCL, GKOP, wSOP, WSAC, SGOP 

Description 
The function GKS$LOG~RROR writes the standard DEC GKS error message, 
which includes the number of the error and the text of the message, to the error 
file and returns to the procedure or function that called it. 

The DEC GKS supplied error handler GKS$ERROR~-iANDLER automatically 
calls this function. An application-supplied error handler can call this function 
if the need arises. 

Format 
GKSaLOG_ERROR (error number, function~ame, error_fi/eJ 

GERLOG (error number, fun_id, error_fileJ 

genorlog (error number, funcname, perfi/eJ 

Arguments 
error number 

data type: integer 
access: read-only 
mechanism: by reference 

This argument is the number of the DEC GKS error message as dictated by 
the standard or, in the case of negative error numbers, as dictated by the 
VMS implementations of GKS. To review the numbers of the DEC GKS error 
messages, refer to Appendix D, DEC GKS Error Messages. 

11-10 Error-Handling Functions 



LOG ERROR 

function 

name 

data type: string 
access: read-only 
mechanism: by descriptor 

This argument is the text string containing the name of the DEC GKS function 
that detected the error. 

error file 

data type: string 
access: read-only 
mechanism: by descriptor 

This argument is a text string containing the name of the error logging file that 
was specified in a call to GKS$OPEN_GKS. 

Program Exa m p I e 
For an example of a call to this function, see Example 11-1. 

Error-Handling Functions 11-11 



SET ERROR HANDLER 

SET ERROR HANDLER 

Operating States: GKCL, GKOP, WSOP, WSAC, SGOP 

Description 
The function GKS$SET~RROR_HANDLER establishes an application-defined 
error handler as the function that DEC GKS calls upon error generation. The 
error handler, whose address you pass to GKS$SET~RROR_HANDLER, 
replaces the DEC GKS supplied error handler GKS$ERROR~-iANDLER. 

Within your user-defined error handler, you can only call the DEC GKS func-
tions GKS$EMERGENCY_CLOSE, GKS$ERROR_HANDLER, GKS$LOG_ 
ERROR, or any of the inquiry functions. 

Format 
GKS$SET_ERROR_HANDLER (new handler, [old_handlerJJ 

Arguments 
new_hand/er 

data type: bound procedure value 
access: read-only 
mechanism: by reference 

This argument is the application-defined, error-handling function or procedure. 

This argument is passed by bound procedure value, by reference, for the 
use of the languages that support up-level addressing (such as Pascal). If 
your language does not support up-level addressing (in languages such as 
FORTRAN or BASIC), then you must declare this argument to be an integer 
array composed of two elements. The first element must contain the address of 
the application-defined handler, and the second element must contain the value 
0. Pass this integer array by reference. 

11-12 Error-Handling Functions 



SET ERROR HANDLER 

old handler 

data type: bound procedure value 
access: write-only 
mechanism: by reference 

This optional argument is the function or procedure previously used to handle 
errors. Since this value is 64 bits long, you should declare the argument to be 
an integer array of two elements, and you pass this array by reference. DEC 
GKS writes the address of the old error handler to the first element of your 
array; you can pass this array to GKS$SET~RROR_HANDLER if at some time 
you want to reestablish the old error handler. 

Program Example 
For an example of a call to this function, see Example 11-1. 

Error-Handling Functions 11-13 





Index 

("1 

A 
Access type, 1-11 
Accumulating 

segment transformations, 9-22 
Activating workstations, 4-7, 4-13 
Alignment 

text, 6-65 
extent rectangle, 6-64 

Angles 
See also Segments 
rotation, 9-17 

ANSI 
GKS standard, 1-1 

Appearance 
attributes, 6-1 

Arguments 
characteristics of, 1-11 
descriptions, 1-10 
list, 2-3, 3-3 

C binding, 2-3, 3-3 
FORTRAN binding, 2-3, 3-3 

Arrays 
color index, 5-6 

ASFs, 6-5, 6-112 
Aspect ratio, 7-18 

See also Transformations 
Association 

See also Segments 
segments, 9-6 
windows and viewports, 7-7 

Asynchronous input, 8-23 
See also Input 

Attribute functions, 6-1 to 6-154 
ASFs, 6-111 to 6-114 
fill area, 6-8 to 6-27 

Attribute functions (cont'd.) 
GKS$SET_ASF, 6-112 
GKS$SET_COLOR_REP, 6-116 
GKS$SET_FILL _COLOR_INDEX, 6-9 
GKS$SET_FILL _INDEX, 6-13 
GKS$SET_FILL _INT_STYLE, 6-18 
GKS$SET_FILL _REP, 6-121 
GKS$SET_FILL_STYLE_INDEX, 6-22 
GKS$SET_PAT_REF_PT, 6-24 
GKS$SET_PAT_REP, 6-127 
GKS$SET_PAT_SIZE, 6-26 
GKS$SET_PLINE_COLOR_INDEX, 6-29 
GKS$SET_PLINE_LINETYPE, 6-38 
GKS$SET_PLINE_LINEWIDTH, 6-42 
GKS$SET_PLINE_REP, 6-134 
GKS$SET_PMARK_COLOR_INDEX, 6-47 
GKS$SET_PMARK_REP, 6-141 
GKS$SET_PMARK_SIZE, 6--60 
GKS$SET_PMARK_TYPE, 6-56 
GKS$SET_TEXT_ALIGN, 6-65 
GKS$SET_TEXT_EXPFAC, 6-77 
GKS$SET_TEXT_FONTPREC, 6-81 
GKS$SET_TEXT_HEIGHT, 6-87 
GKS$SET_TEXT_PATH, 6-95 
GKS$SET_TEXT_REP, 6-148 
GKS$SET_TEXT_SPACING, 6-101 
GKS$SET_TEXT_UPVEC, 6-105 
polyline, 6-28 to 6-45 
polymarker, 6-46 to 6-63 
representations, 6-115 
representationsEND, 6-154 
text, 6-64 to 6-110 

Attributes, 1-3 
Attribute Source Flags, 6-5 
bound to primitives, 6-2 
bundled, 6-4 

Index-1 



Attributes (cont'd.) 
GDPs, 6-4 
geometric and nongeometric, 6-2 
implicit regenerations, 6-6 

segments, 9-10 
individual, 6-4 
input prompt and echo types, 8-5 
metafiles, 10-2 
pick identification, 9-4 
segments, 9-12 
text 

extent rectangle, 6-64 
Attribute Source Flags, 6-5, 6-1 12 
Audit metafiles, 10-1 
Axes, 7-1 

See also Coordinates 
See also Segments 
segment fixed point, 9-17 

B 
Background 

color, 6-6 
Binding 

attributes to primitives, 6-2 
Bindings, 1-1 
Bit masks, 2-9, 3-8 
Boundaries 

See Windows or Viewports 
Break input, 8-24 
Buffers 

See also Data records 
See also Input 
input data record, 8-6 
string input, 8-3 
stroke input, 8-3 

Bundles, 6-4 
See also Attributes 
color, 6-1 16 
fill area, 6-13, 6-121 
pattern styles, 6-127 
polyline, 6-33, 6-134 
polymarkers, 6-51, 6-141 
text, 6-91, 6-148 

C 
Calling sequences, 2-2, 3-2 
Calls 

error handler, 1 1-1 
function 

1 ndex-2 

Calls 
function (cont'd.) 

reproducing, 10-3 
CALL statement, 2-2, 3-2 
Categories 

See also Workstations 
workstations, 4-3 

list of, 4-3 
Cell arrays, 5-6 
CGM metafiles 

creating, 10-3 to 10-6 
Change vectors 

input, 8-3 
segment translation, 9-17 

Characters 
height, 6-87 
input, 8-3 
strings, 5-35 
text extent rectangle, 6-64 

Choice 
See also Input 
input class, 8-2 
specifying NOCHOICE input, 8-24, 8-28 

Circles 
using GDPs, 5-22 

Glasses 
See also Input 
See also Logical input devices 
choice, 8-2 
input, 8-2 
locator, 8-2 
pick, 8-2 
string, 8-2 
stroke, 8-2 
valuator, 8-2 

Cleanup 
error handling, 1 1-2 

Clearing 
See also Workstations 
workstation surface, 4-17, 4-18 

implicit regeneration, 4-11 
Clipping, 7-5 

See also Transformations 
pipeline 

multiple transformations, 9-27 
segments, 9-23 
text precison, 6-81 

Closing 
See also GKS 
See also Workstations 
GKS, 4-8 



Closing 
GKS (cont'd.) 

error handling, 11-1 
segments, 4-8 
workstations, 4-8 

Colors 
See also Attributes 
background, 6-6 
fill area, 6-9 
foreground, 6-6 
indexes 

arrays, 5-6 
markers, 6-47 
polyline, 6-29 
representation, 6-116 
text, 6-73 

Column-major 
cell array, 5-9 

Comments 
FORTRAN, 1-12 

Compile 
programs, 2-6 

Compiling 
ULTRIX programs, 3-6 

Complement mode 
highlighting segments, 9-13 

Components 
See also Rotation 
See also Scale 
See also Translation 
segment transformations, 9-14 

Composition 
See also Transformations 
picture, 1-3 
pictures, 7-1 

Conditions 
error, 11-1 

Connection identifiers, 4-16, 4-42 
default, 4-42 
GKS$CONID, 2-7 
GKSconid, 3-7 
metafiles, 10-2 

Constants 
arguments, 2-4, 3-4 
requirements, 2-5, 3-5 

Continuation characters 
FORTRAN, 1-12 

Control 
error handling, 11-1 
workstation surface, 4-10 

Control functions, 4-1 to 4-60 

Control functions (cont'd.) 
GKS$ACTIVATE_WS, 4-13 
GKS$CLEAR_WS, 4-18 
GKS$CLOSE _GKS, 4-21 
GKS$CLOSE_WS, 4-23 
GKS$DEACTIVATE_WS, 4-25 
GKS$ESCAPE, 4-27 
GKS$MESSAGE, 4-33 
GKS$OPEN_GKS, 4-38 
GKS$OPEN_WS, 4-41 
GKS$REDRAW_SEG_ON_WS, 4-46 
GKS$SET_DEFER_STATE, 4-51 
GKS$UPDATE_WS, 4-58 
introduction to, 4-1 to 4-13 
metafiles, 10-2 

Coordinates 
See also Transformations 
format, 1-6 
input change vectors, 8-3 
locator and stroke input, 8-3 
maximum device, 7-12 
systems, 7-1 

used for output, 5-3 
viewport input priority, 7-1 1, 8-22 

Copying segments, 9-6 
Creating 

metafiles, 10-2 
segments, 9-2 

Current 
See also Transformations 
metafile item, 10-6 
state list entries, 6-1 
windows and viewports, 7-13 

Current event report entry, 8-34 
See also Event mode 
See also Input 

Cycling 
disabled input echo, 8-23 
logical input device control, 8-23 

D 
Data 

user defined, 10-7 
metafiles, 10-2 

Data declarations 
FORTRAN, 1-12 

Data records 
See also Escapes 
See also GDPs 
See also Input 

Index-3 



Data records (cont'd.) 
escape/GDP 

standard, 1-7 
input, 8-7, 8-20 

prompt and echo types, 8-5 
sizes, 8-20 
standard, 8-6 
using inquiry functions, 8-20 

metafile 
item, 10-3 

returning, 1-14 
Data structures 

See also GKS 
GKS, 4-2 

Data types 
arguments, 1-1 1 

DCL command line 
GKS logical names, 2-7 

Deactivating 
See also Workstations 
workstation environment, 4-25 
workstations, 4-8 

Debug 
FORTRAN programs 

on a VT241, 1-13 
Decimal 

workstation type value, 3-8 
Declaring 

GKS functions 
externally, 2-3, 3-3 

Defaults 
See also Attributes 
See also Transformations 
colors, 6-6 
GKS error handler, 11-8 
identity segment transformation, 9-14 
normalization window, 7-2 
unity transformation, 7-5 

Deferral 
See also Implicit regenerations 
GKS$K_ASAP, 4-52 
GKS$K_ASTI, 4-52 
GKS$K_BNIG, 4-52 
GKS$K_BNIL, 4-52 
GKS$UPDATE_WS, 4-58 
image generation 

GKS$SET_DEFER_STATE, 4-51 
output, 4-10, 5-4 
VT241, 1-13 

Define 
user metafile data, 10-7 

Index-4 

Definition files, 2-4, 3-4 
including, 2-5, 3-5 
list of, 2-5, 3-5 

Degrees 
See also GDPs 
See also Segments 
translating to radians, 9-17 

Deleting segments, 9-2 
Deletion 

segments, 9-3 
Descriptions 

functions, 1-9 
Description tables, 4-2 
Detecting 

errors, 1 1-1 
segments, 9-13 

Device coordinates, 7-1 
See also Transformations 
See also Workstations 

Device dependent 
bundled attributes, 6-4 

Device independent, 4-16 
output attributes, 6-2 

Device-Independent programming 
input, 8-21 

Devices 
See also Workstations 
connection, 4-42 
default, 4-42 
logical input, 8-1 
manipulation 

GKS$ESCAPE, 4-27 
maximum coordinate values, 7-12 

Disable clipping, 7-5 
Display 

See also Workstations 
surface, 7-1 

Display surface empty entry, 4-46, 4-58 
Dynamic modification 

See also Implicit regeneration 
attributes, 4-1 1 
workstation transformations, 4-1 1 

E 
Echo 

See also Input 
cycling and disabled echo, 8-23 
input values, 8-23 
prompt and echo types, 8-5 



I "~1 

I"1 

Emergency 
closure of GKS, 1 1-1 

Enable clipping, 7-5 
Ending 

GKS program, 4-21 
Entries 

See also GKS 
bundle table, 6-4 
bundle tables, 6-4 
GKS state list 

output attributes, 6-1 
Environment 

GKS, 4-1 
workstation, 4-1 

Environment variables 
GKS programming, 3-7 

Error handling 
GKS, 1-4 

Error-handling functions, 11-1 to 11-13 
GKS$EMERGENCY_CLOSE, 11-4 
GKS$ERROR_HANDLER, 11-8 
GKS$LOG_ERROR, 11-10 
GKS$SET_ERROR_HANDLER, 11-12 
introduction to, 11-1 to 11-2 

Errors 
file, 1 1-2 
logging, 4-6, 1 1-10 
state list, 4-38 
states, 11-2 
status files, 2-4, 3-4 

Error status files 
list of, 2-6, 3-5 

Escapes 
data records, 1-7 
GKS$ESCAPE, 4-27 

Event input queue, 8-33 
overflow, 8-51 

Event mode, 8-33 to 8-54 
See also Input 
cycling devices, 8-23 
multiple device use, 8-40 
simultaneous events, 8-40 

Executing 
programs, 2-6 

Expansion 
See also Scale 
See also Segments 
segments, 9-17 
text, 6-77 

Extent rectangle, 6-64 
See also Attributes 

Extent rectangle (cont'd.► 
See also Segments 
See also Text 
segments 

highlighting, 9-13 
External functions 

declaring GKS functions, 2-3, 3-3 

F 
Fatal errors, 11-1 
Figures 

format, 1-13 
Files 

definition, 2-4, 3-4 
list of, 2-5, 3-5 

error, 1 1-2 
error status, 2-4, 3-4 

list of, 2-6, 3-5 
metafiles, 10-1 

File specifications 
connection id 

default, 4-42 
metafiles, 10-2 

Fill areas, 5-18 
See also Attributes 
bundles, 6-13 
interior styles, 6-18 
representation, 6-121 
style indexes, 6-22 

Fixed points 
See also Rotation 
See also Scale 
See also Segments 
segment transformations, 9-17 

Flags 
See also Attributes 
attribute source, 6-5, 6-112 

Flush 
Event queue, 8-34 

Fonts 
establishing, 6-81 

Foreground color, 6-6 
Format 

function descriptions, 1-9 
metafiles, 10-3 

FORTRAN 
constructs, 1-12 

FORTRAN binding, 1-1 
linking programs 

VMS, 2-6 

Index-5 



Functional standards 
See also GKS 

Functions 
See also GKS 
attribute, 6-1 
DEC GKS categories, 1-2 
descriptions, 1-9 
error handling, 1 1-1 
escape, 4-27 
external 

declaring, 2-3, 3-3 
identifiers, 2-3, 3-2 
input, 8-1 
presentation, 1-9 to 1-14 
segments, 9-1 
transformation, 7-1 
utility, 9-18 

G 
GDPs, 5-22 to 5-26 

circles, 5-22 
data records, 1-7 
output attributes, 6-4 

Generalized drawing primitives 
See GDP 

Generation 
See also Output 
output, 5-1 

attributes, 6-1 
pictures, 7-1 

Geometric attributes, 6-2 
GKS 

ANSI and ISO standards, 1-1 
categories of functions, 1-2 
closing, 4-8 
data structures, 4-2 
description table, 4-2 
environment, 4-1, 4-21 

initialization of, 4-38 
environment variables, 3-7 
error handling, 1-4, 1 1-1 
HELP, 2-2 
input 

levels of, 1-4 
introduction to, 1-1 to 1-6 
kernel, 4-2 
levels, 1-4 
logical names, 2-7 
metafile standard, 10-1 
opening, 4-6 

Index-6 

GKS (cont'd.~ 
output 

levels of, 1-4 
programming, 2-1 to 2-9, 3-1 to 3-8 
release notes, 2-2 
state list 

output attributes, 6-1 
GKS$ACCUM_XFORM_MATRIX, 9-31 to 9-38 
GKS$ACTIVATE_WS, 4-13 to 4-17 
GKS$ASSOC_SEG_WITH_WS, 9-39 to 9-40 
GKS$AWAIT_EVENT, 8-34, 8-198 to 8-201 

example, 8-35 
GKS$CELL_ARRAY, 5-6 to 5-17 
GKS$CLEAR_WS, 4-18 to 4-20 
GKS$CLOSE _GKS, 4-21 to 4-22 
GKS$CLOSE _SEG, 9-41 to 9-43 
GKS$CLOSE_WS, 4-23 to 4-24 
GKS$CONID, 2-7, 4-16, 4-42 
GKS$COPY_SEG_TO_WS, 9-44 to 9-46 
GKS$CREATE_SEG, 9-47 to 9-48 
GKS$DEACTIVATE_WS, 4-25 to 4-26 
GKS$DELETE_SEG, 9-49 to 9-52 
GKS$DELETE_SEG_FROM_WS, 9-53 to 9-56 
GKS$EMERGENCY_CLOSE, 11-4 to 11-7 
GKS$ERROR_HANDLER, 1 1-8 to 1 1-9 
GKS$ESCAPE, 4-27 to 4-32 
GKS$EVAL_XFORM_MATRIX, 9-57 to 9-60 
GKS$FILL_AREA, 5-18 to 5-21 
GKS$FLUSH_DEVICE_EVENTS, 8-34, 8-52, 

8-202 to 8-204 
example, 8-53 

GKS$GDP, 5-22 to 5-26 
GKS$GET_CHOICE, 8-205 to 8-211, 8-231 
GKS$GET_ITEM, 10-12 to 10-13 
GKS$GET_LOCATOR, 8-212 to 8-213 

example, 8-35 
GKS$GET_PICK, 8-214 to 8-215 

example, 8-40 
GKS$GET_STRING, 8-216 to 8-222 
GKS$GET_STROKE, 8-223 to 8-229 
GKS$GET_VALUATOR, 8-230 

example, 8-40 
GKS$INIT_CHOICE, 8-57 to 8-64 
GKS$INIT_LOCATOR, 8-66 to 8-70 
GKS$INIT_PICK, 8-71 to 8-78 
GKS$INIT_STRING, 8-80 to 8-86 
GKS$INIT_STROKE, 8-87 to 8-95 
GKS$INIT_VALUATOR, 8-95 to 8-100 
GKS$INQ_INPUT_QUEUE_OVERFLOW, 8-51 

example, 8-40 



GKS$INQ _MORE _SIMUL _EVENTS 
example, 8-40 

GKS$INSERT_SEG, 9-61 to 9-66 
GKS$INTERPRET_ITEM, 10-14 to 10-16 
GKS$K_ASAP, 1-13 
GKS$K_CONID_DEFAULT, 4-16, 4-42 
GKS$K_PERFORM_FLAG, 4-59 
GKS$K_POSTPONE_FLAG, 4-59 
GKS$K_WSTYPE_DEFAULT, 4-43 
GKS$LOG_ERROR, 11-10 to 1 1-1 1 
GKS$MESSAGE, 4-33 to 4-37 
GKS$OPEN_GKS, 4-38 to 4-40 
GKS$OPEN_WS, 4-41 to 4-45 
GKS$POLYLINE, 5-27 to 5-30 
GKS$POLYMARKER, 5-31 to 5-34 
GKS$READ_ITEM, 10-17 to 10-19 
GKS$REDRAW_SEG_ON_WS, 4-46 to 4-50 
,GKS$RENAME_SEG, 9-68 to 9-71 
GKS$REQUEST_CHOICE, 8-122 to 8-124 
GKS$REQUEST_LOCATOR, 8-125 to 8-127 

example, 8-25 
GKS$REQUEST_PICK, 8-128 to 8-130 
GKS$REQUEST_STRING, 8-131 to 8-133 
GKS$REQUEST_STROKE, 8-134 to 8-137 
GKS$REQUEST_VALUATOR, 8-138 to 8-140 
GKS$SAMPLE _CHOICE, 8-142 to 8-151 
GKS$SAMPLE_LOCATOR, 8-152 to 8-154 

example, 8-28 
GKS$SAMPLE _PICK, 8-155 to 8-164 
GKS$SAMPLE _STRING, 8-165 to 8-174 
GKS$SAMPLE _STROKE, 8-175 to 8-188 
GKS$SAMPLE_VALUATOR, 8-189 to 8-196 
GKS$SELECT_XFORM, 7-21 to 7-25 
GKS$SET_ASF, 6-112 to 6-114 
GKS$SET-CHOICE _MODE, 8-103 to 8-105 
GKS$SET_CLIPPING, 7-26 to 7-29 
GKS$SET_COLOR _REP, 6-116 to 6-120 
GKS$SET_DEFER_STATE, 4-51 to 4-57 
GKS$SET_ERROR_HANDLER, 1 1-12 to 11-13 
GKS$SET_FILL _COLOR_INDEX, 6-9 to 6-12 
GKS$SET_FILL _INDEX, 6-13 to 6-17 
GKS$SET_FILL _INT_STYLE, 6-18 to 6-21 
GKS$SET_FILL _REP, 6-121 to 6-126 
GKS$SET_FILL_STYLE_INDEX, 6-22 to 6-23 
GKS$SET_LOCATOR _MODE, 8-106 to 8-108 
GKS$SET_PAT_REF_PT, 6-24 to 6-25 
GKS$SET_PAT_REP, 6-127 to 6-133 
GKS$SET_PAT_SIZE, 6-26 to 6-27 
GKS$SET_PICK_ID, 9-72 to 9-77 
GKS$SET_PICK_MODE, 8-109 to 8-111 
GKS$SET_PLINE_COLOR_INDEX, 6-29 to 6-32 

GKS$SET_PLINE_INDEX, 6-33 to 6-37 
GKS$SET_PLINE_LINETYPE, 6-38 to 6-41 
GKS$SET_PLINE_LINEWIDTH, 6-42 to 6-45 
GKS$SET_PLINE_REP, 6-134 to 6-140 
GKS$SET_PMARK_COLOR_INDEX, 6-47 to 6-50 
GKS$SET_PMARK_INDEX, 6-51 to 6-55 
GKS$SET_PMARK_REP, 6-141 to 6-147 
GKS$SET_PMARK_SIZE, 6-60 to 6-63 
GKS$SET_PMARK_TYPE, 6-56 to 6-59 
GKS$SET_SEG_DETECTABILITY, 9-79 to 9-83 
GKS$SET_SEG_HIGHLIGHTING, 9-85 to 9-88 
GKS$SET_SEG_PRIORITY, 9-89 to 9-93 
GKS$SET_SEG_VISIBILITY, 9-94 to 9-97 
GKS$SET_SEG_XFORM, 9-98 to 9-100 
GKS$SET_STRING_MODE, 8-112 to 8-114 
GKS$SET_STROKE_MODE, 8-115 to 8-117 
GKS$SET_TEXT_ALIGN, 6-65 to 6-72 
GKS$SET_TEXT_COLOR_INDEX, 6-73 to 6-76 
GKS$SET_TEXT_EXPFAC, 6-77 to 6-80 
GKS$SET_TEXT_FONTPREC, 6-81 to 6-86 
GKS$SET_TEXT_HEIGHT, 6-87 to 6-90 
GKS$SET_TEXT_INDEX, 6-91 to 6-94 
GKS$SET_TEXT_PATH, 6-95 to 6-100 
GKS$SET_TEXT_REP, 6-148 to 6-154 
GKS$SET_TEXT_SPACING, 6-101 to 6-104 
GKS$SET_TEXT_UPVEC, 6-105 to 6-1 10 
GKS$SET_VALUATOR_MODE, 8-118 to 8-120 
GKS$SET_VIEWPORT, 7-39 to 7-42 
GKS$SET_VIEWPORT_PRIORITY, 7-31 to 7-37 
GKS$SET_WINDOW, 7-43 to 7-46 
GKS$SET_WS_VIEWPORT, 7-47 to 7-52 
GKS$SET_WS_WINDOW, 7-54 to 7-59 
GKS$TEXT, 5-35 to 5-39 
GKS$UPDATE_WS, 4-58 to 4-60 
GKS$WRITE_ITEM, 10-20 to 10-22 
GKS$WSTYPE, 2-7, 4-43 
GKSconid, 3-7 
GKSM metafiles, 10-1 

creating, 10-2 to 10-3 
GKSwstype, 3-7 
Graphics 

interactive, 8-1 
Graphics handlers, 4-2 

See also Devices 
See also Workstations 
input, 8-5 
interactive 

See also Input 
nominal sizes, 6-2 

Index-7 



H 
Handlers, 4-2 

See also Devices 
See also Workstations 
errors, 1 1-1 
input, 8-5 
nominal sizes, 6-2 

Hardware fonts, 6-81 
See also Fonts 

Hatches, 6-18 
See also Fill areas 
fill areas, 5-18 
style index values, 6-22 

Height 
See also Attributes 
See also Transformations 
text, 6-87 
to width ratio, 7-18 

HELP 
GKS, 2-2 

Hexadecimal 
workstation type value, 2-9 

Highlighting 
segments, 9-13 

Hollow 
fill area interior style, 6-18 
fill areas, 5-18 

i 

Identifiers 
pick, 8-4, 9-4 
workstation, 4-16 

Identity 
segment transformation, 9-18 

Implicit regenerations, 4-1 1 
See also Deferral 
attribute changes, 6-6 
GKS$REDRAW_SEG_ON_WS, 4-46 
segments, 9-10 
workstation transformations, 7-13 

Include 
definition files, 2-5, 3-5 
files, 2-4, 3-4 

INCLUDE statement 
all languages, 2-5, 3-5 

Indexes 
See also Attributes 
See also Bundles 
color, 6-1 16 

Index-8 

Indexes 
color (cont'd.) 

arrays, 5-6 
fill area, 6-13, 6-121 

styles, 6-22 
interior style, 5-20 
into bundle tables, 6-4 
pattern styles, 6-127 
polyline, 6-134 
polymarkers, 6-141 
text, 6-91, 6-148 

Individual attributes, 6-4 
Initialize 

See also GKS 
See also Workstations 
GKS environment, 4-38 
workstation environment, 4-41 

Initial string 
input, 8-3 

Input 
asynchronous, 8-23 
breaking, 8-24 
classes, 8-2, 8-3 
current values, 8-20 
cycling device control, 8-23 " 
data record 

sizes, 8-20 
using inquiry functions, 8-20 

data records 
standard, 8-6 

default values, 8-20 
device-independent programming, 8-21 
event mode, 8-33 to 8-54 

flushing the queue, 8-34 
simultaneous events, 8-40 

event queue, 8-33 
event queue overflow, 8-51 
inquiry function use, 8-20 
logical device number, 8-2 
logical devices, 8-1 
measure, 8-2 
menus, 8-3 
metafiles, 10-1, 10-2 
operating modes, 8-23 to 8-54 
physical devices, 8-1 
pick 

visibility, 9-30 
pick identification, 9-4 
request mode, 8-24 to 8-27 
sample mode, 8-27 to 8-33 
segment detectability, 9-13 



Input (cont'd.) 
segments, 9-4 
specifying no input, 8-24 
synchronous, 8-23 
text, 8-3 
triggers, 8-2, 8-24 
viewport priority, 7-11, 8-22 
workstation category, 4-3 

Input data record 
sizes, 8-20 

Input data records 
standard list, 8-7 to 8-19 

Input functions, 8-1 to 8-231 
function descriptions, 8-55 to 8-231 
GKS$AWAIT_EVENT, 8-198 
GKS$FLUSH_DEVICE_EVENTS, 8-202 
GKS$GET_CHOICE, 8-205 
GKS$GET_LOCATOR, 8-212 
GKS$GET_PICK, 8-214 
GKS$GET_STRING, 8-216 
GKS$GET_STROKE, 8-223 
GKS$GET_VALUATOR, 8-230 
GKS$INIT_CHOICE, 8-57 
GKS$INIT_LOCATOR, 8-66 
GKS$INIT_PICK, 8-71 
GKS$INIT_STRING, 8-80 
GKS$INIT_STROKE, 8-87 
GKS$INIT_VALUATOR, 8-95 
GKS$REQUEST_CHOICE, 8-122 
GKS$REQUEST_LOCATOR, 8-125 
GKS$REQUEST_PICK, 8-128 
GKS$REQUEST_STRING, 8-131 
GKS$REQUEST_STROKE, 8-134 
GKS$REQUEST_VALUATOR, 8-138 
GKS$SAMPLE _CHOICE, 8-142 
GKS$SAMPLE_LOCATOR, 8-152 
GKS$SAMPLE_PICK, 8-155 
GKS$SAMPLE_STRING, 8-165 , 
GKS$SAMPLE_STROKE, 8-175 
GKS$SAMPLE_VALUATOR, 8-189 
GKS$SET_CHOICE_MODE, 8-103 
GKS$SET_LOCATOR_MODE, 8-106 
GKS$SET_PICK_ID, 9-72 
GKS$SET_PICK_MODE, 8-109 
GKS$SET_STRING_MODE, 8-112 
GKS$SET_STROKE _MODE, 8-115 
GKS$SET_VALUATOR_MODE, 8-118 
introduction to, 8-1 to 8-54 

Input operating modes, 8-23 
Inquiry functions 

input use, 8-20 

Inserting segments, 9-6 
Interactive graphics, 8-1 

See also Input 
Interface 

prompt and echo types, 8-5 
Interior styles, 5-20 

See also Attributes 
See also Hatches 
See also Patterns 
of fill areas, 6-18 

Interpret 
metafiles, 10-1 

Items 
metafile header, 10-3 

K 
Kernel 

GKS, 4-2 

L 
Languages 

argument data types, 2-3, 3-3 
bindings, 1-1 
calling sequences, 2-2, 3-2 
declaring external functions, 2-3, 3-3 
GKS, 2-1, 3-1 

Lengths 
See also, Data records 
See also Input 
input data records, 8-6 
metafile data record, 10-6 

Levels 
of GKS, 1-4 

Lines 
See also Attributes 
See also Output 
generating, 5-27 
type, 1-3 
types, 6-38 
width, 6-42 

Linking, 2-6 
ULTRIX C programs, 3-6 
ULTRIX FORTRAN programs, 3-6 
ULTRIX GKS$ programs, 3-6 
ULTRIX programs, 3-6 
VMS 

FORTRAN binding, 2-6 
Lists 

See also GKS 

Index-9 



Lists (cont'd.) 
See also Input 
See also Workstations 
argument, 2-3, 3-3 
viewport input priority, 7-1 1, 8-22 

Locator 
input class, 8-2 
viewport input priority, 7-1 1, 8-22 

Logging 
errors, 1 1-10 

Logical input devices, 8-1 
See also Input 
number, 8-2 

Logical names 
GKS programming, 2-7 

M 
Mapping 

See also Transformations 
aspect ratio, 7-18 
cell array 

direction, 5-8 
color indexes, 5-6 
workstation transformations, 7-12 

Markers, 5-31 
See also Attributes 
See also Output 
size, 6-60 
types, 6-56 

Matrix 
See also Rotation 
See also Scale 
See also Translation 
segment transformation, 9-18 

Measure 
See also Logical input devices 
cycling input device control, 8-23 
input device, 8-2 

Menus 
See also Choice 
input, 8-3 

Messages 
See also Errors 
logging errors, 11-1 
produced by error handler, 1 1-1 
sent to workstations, 4-33 

Metafile functions, 10-1 to 10-22 
GKS$GET_ITEM, 10-12 
GKS$INTERPRET_ITEM, 10-14 

Index-10 

Metafile functions (cont'd.) 
GKS$READ_ITEM, 10-17 
GKS$WRITE_ITEM, 10-20 
introduction to, 10-1 to 10-1 1 

Metafiles, 1-4 
creating, 10-3 
creating CGM metafiles, 10-3 
current item, 10-6 
item header, 10-3 
reading, 10-6 to 10-7 
reproducing pictures, 10-1 
structure, 10-3 
user-defined data, 10-7 
workstation categories, 4-3 

Mirror images 
cell arrays, 5-6 

Modes 
See also Input 
Event, 8-23 
input operating, 8-23 
Request, 8-23 
Sample, 8-23 

Multiple tranformations 
See also Segments 
See also Transformations 

Multiple transformations, 9-27 

N 
Names 

error messages, 11-1 
segment, 9-2 

NDC, 7-1 
See also Transformations 
fixed points, 9-17 

New frame necessary entry, 4-46 
New frame necessary at update entry, 9-10 
Nominal sizes, 6-2 
Nongeometric attributes, 6-2 

See also Attributes 
Normalization 

clipping, 7-5 
overlapping viewports, 7-1 1 
transformations, 1-3 

maximum number, 7-7 
viewports, 7-5 
windows, 7-2 

Normalization transformations 
See also Transformations 

Normalized device coordinates 
See NDC 



'"""1

n 

r"1 

Numbers 
See also Errors 
See also Input 
error messages 

handling, 1 1-1 
logical device, 8-2 

O 
OFF 

error state, 11-2 
Offset 

cell array, 5-7 
ON 

error state, 11-2 
One-to-one 

See also Mapping 
transformations, 7-18 

Opening 
GKS, 4-6 
GKSM metafile workstations, 10-2 
segments, 4-7, 9-3 
workstations, 4-7, 4-16 

Operating modes 
input, 8-23 to 8-54 

Operating states, 4-5 
using output, 5-2 

Operating system 
ULTRIX, 3-1 
VMS, 2-1 

Order 
See also Transformations 
multiple transformations, 9-27 
viewport input priority, 7-11 

Origin 
See also Transformations 
world coordinate system, 7-2 

Output 
See also Attributes 
altering the primitive, 5-3 
attribute functions 

See also Attribute Functions, 6-1 
attributes, 1-3, 5-3 
bound attributes, 6-2 
default windows and viewports, 5-3 
deferral, 4-10, 5-4 

VT241, 1-13 
list of primitives, 1-2 
lost during transformations, 7-13 
metafiles, 10-1, 10-2 
pick identification, 9-4 

Output (cont'd.) 
pictures, 7-1 
segments, 9-1 
valid operating states, 5-2 
workstation categories, 5-2 
workstation category, 4-3 

Output functions, 5-1 to 5-39 
descriptions of, 5-5 to 5-39 
GKS$CELL _ARRAY, 5-6 to 5-17 
GKS$FILL _AREA, 5-18 
GKS$POLYLINE, 5-27 
GKS$POLYMARKER, 5-31 
GKS$TEXT, 5-35 
introduction to, 5-1 to 5-4 

Overflow 
event input queue, 8-51 

Overlapping 
See also Transformations 
segments, 9-14 
viewports, 7-11 

Overlapping viewports, 8-22 

P 
Passing mechanisms 

arguments, 1-1 1 
Pasteboard 

See also Transformations 
normalization viewport, 7-5 

Path 
See also Text 
text, 6-95 

Patterns, 6-18 
See also Attributes 
fill areas, 5-18 
reference points, 6-24 
representation, 6-127 
specifying size, 6-26 
style index values; 6-22 

Pending 
See also Implicit regenerations 
bundle changes, 4-1 1 
output generation, 4-10 
segment attribute changes, 4-11 
workstation transformations, 4-11 

pi, 9-17 
See also GDPs 
See also Segments 

Pick 
See also Input 
See also Segments 

Index-11 



Pick ~cont'd.~ 

identifier, 8-4, 9-4 
input class, 8-2 
segment detectability, 9-13 
specifying NOPICK input, 8-24, 8-28 
visibility, 9-30 

Pictures 
See also Output 
See also Transformations 
composition, 1-3, 7-1 
reproducing 

metafiles, 10-1 
shape, 7-18 

Pipeline 
See also Segments 
multiple transformations, 9-27 

Plotting 
See also Transformations 
pictures, 7-1 

Pointers 
See also Bundles 
into bundle tables, 6-4 

Points 
See also Transformations 
coordinate, 7-1 
pattern reference, 6-24 
segments 

fixed points, 9-17 
viewport input priority, 7-1 1 

Polygons 
See also Attributes 
See also Output 
fill areas, 5-18 
using GKS$POLYLINE, 5-27 

Polyline 
line type, 1-3 

Polylines 
See also Attributes 
See also Output 
bundles, 6-33 
line type, 6-38 
representation, 6-134 

Polymarkers 
See also Output 
See also Transformations 
bundle table, 6-51 
representation, 6-141 

Positioning 
primitives, 7-7 
relative, 7-18 

Index-12 

Precision text 
establishing, 6-81 

Presentation 
See also Transformations 
pictures, 7-12 

Primitives 
See also Attributes 
See also Output 
bound attributes, 6-2 
clipping segments, 9-23 
highlighting, 9-13 
input prompt and echo types, 8-5 
list, 1-2 
lost during regeneration, 4-1 1 
lost during transformations, 7-13 
output, 5-1 to 5-4 
output attributes, 6-1 
pick identification, 9-4 
reproducing 

metafiles, 10-1 
segment detectability, 9-13 
segments, 9-1 
transformation, 7-2 

Priority 
See also Input 
segments, 9-14 
viewport input, 7-1 1, 8-22 

Programming 
See also GKS 
device independency, 4-16 
device-independent input, 8-21 
error handling, 11-1 
GKS, 2-1, 3-1 

Programs 
examples 

format, 1-12 
execution of, 2-6 
logical names, 2-7, 3-7 
pausing, 1-13 

Prompt and echo types, 8-5 
See also Input 
standard data records, 8-6 

Proportionate 
See also Transformations 
aspect ratio, 7-18 

Q 
Queue 

event input, 8-33 



~"1 

R 
Radians 

Translating to degrees, 9-17 
Ranges 

See also Transformations 
coordinate format, 1-6 
windows and viewports, 7-2 

Ratio 
See also Transformations 
aspect, 7-18 

Reading a metafile, 10-6 
READ statement 

in FORTRAN, 1-13 
Real numbers 

input, 8-3 
Records 

See also Escapes 
See also GDPs 
See also Input 
escape/GDP data, 1-7 
input, 8-7 

prompt and echo types, 8-5 
standard, 8-6 

Rectangles 
See also Attributes 
See also Tranformations 
clipping, 7-5 

segments, 9-23 
text extent, 6-64 

Regenerations 
controling 

GKS$SET_DEFER_STATE, 4-51 
GKS$UPDATE_WS, 4-58 
segments, 9-10 
workstation surface, 4-11 
workstation transformations, 7-13 

Relative positioning, 7-18 
Release notes 

GKS, 2-2 
Releasing DEC GKS buffers, 4-21 
Renaming 

segments, 9-3 
Reports 

current event on input queue, 8-33 
Representations 

See also Attributes 
bundle table entries, 6-4 
color, 6-116 
fill area, 6-121 
functions, 6-6, 6-115 

Representations (cont'd.~ 
implicit regenerations, 6-6 
pattern, 6-127 
polyline, 6-134 
polymarker, 6-141 
text, 6-148 

Reproducing 
metafiles, 10-1 

Request mode, 8-24 to 8-27 
See also Input 
breaking, 8-24 

Reverse video 
highlighting segments, 9-13 

Rotation 
fixed points, 9-17 
segments, 9-14 

RUN DCL command, 2-6 

S 
Sample mode, 8-27 to 8-33 
Scale 

See also Segments 
fixed points, 9-17 
segments, 9-14 
valuator input, 8-3 

Scale factors, 6-2 
Scratch pad 

See also Transformations 
normalization window, 7-5 

Segment functions, 9-1 to 9-100 
GKS$ACCUM_XFORM_MATRIX, 9-31 
GKS$ASSOC_SEG_WITH_WS, 9-39 
GKS$CLOSE_SEG, 9-41 
GKS$COPY_SEG_TO_WS, 9-44 
GKS$CREATE_SEG, 9-47 
GKS$DELETE_SEG, 9-49 
GKS$DELETE_SEG_FROM_WS, 9-53 
GKS$EVAL_XFORM_MATRIX, 9-57 
GKS$INSERT_SEG, 9-61 
GKS$RENAME_SEG, 9-68 
GKS$SET_SEG_DETECTABILITY, 9-79 
GKS$SET_SEG_HIGHLIGHTING, 9-85 
GKS$SET_SEG_PRIORITY, 9-89 
GKS$SET_SEG_VISIBILITY, 9-94 
GKS$SET_SEG_XFORM, 9-98 
introduction to, 9-1 to 9-30 

Segments 
accumulated transformations, 9-22 
associating, 9-6 
attributes, 9-12 

Index-13 



Segments (cont'd.) 
clipping, 9-23 
closing, 4-8 
copying, 9-6 
creating, 9-2 
deleting, 9-2 
deletion, 9-3 
detectability, 9-13 
highlighting, 9-13 
input, 9-4 
inserting, 9-6 
metafiles, 10-2 
names, 9-2 
opening, 4-7, 9-3 
order of transformation, 9-22 
overlapping, 9-14 
priority, 9-14 
redrawing, 4-46 
redrawn, 4-11 
renaming, 9-3 
rotating, 9-14 
scaling, 9-14 
selecting a transformation, 9-18 
state list, 4-46, 9-3 
storage, 9-6 
surface update, 9-10 
transformation matrix, 9-18 
transformations, 9-14 to 9-30 
translating, 9-14 
visibility, 9-30 
WDSS, 9-6 
WISS, 9-6 

Settings 
See also Attributes 
See also Transformations 
attribute values, 6-1 
pattern sizes, 6-26 
segment transformations, 9-18 
windows and viewports, 7-3 

Shape 
picture, 7-18 

Shareable image library 
GKS functions, 2-6 

Shift segments, 9-14 
Shrink segments, 9-17 
Simultaneous events, 8-40 

See also Input 
Sizes 

input data record, 8-20 
markers, 6-60 
patterns, 6-26 

Index-14 

Sizes (cont'd.) 
segments, 9-17 

Software fonts, 6-81 
Solid 

See also Attributes 
fill area interior style, 6-18 
fill areas, 5-18 

Spacing text, 6-101 
Standards 

See also ANSI 
See also GKS 
DEC GKS escape/GDP data records, 1-7 
functional vs. syntactical, 1-1 
input data records, 8-6 
Input data records, 8-7 to 8-19 
metafiles, 10-1 

State lists 
DEC GKS, 9-3 
GKS, 4-5 

initializing, 4-38 
output attributes, 6-1 

segment, 4-5, 9-3 
surface control entries, 4-12 
workstation, 4-5 

attributes, 6-4 
initialization of, 4-41 

Statements 
CALL, 2-2, 3-2 
INCLUDE, 2-5, 3-5 
READ, 1-13 

States 
error, 1 1-2 
operating, 4-5 

stderr, 3-7 
Storage 

metafiles, 1-4, 10-1 
segments, 9-6 

Strings 
See also Text 
declaring 

FORTRAN, 1-12 
input class, 8-2 
text extent rectangle, 6-64 

Stroke 
input class, 8-2 
viewport input priority, 8-22 
viewport priority, 7-1 1 

Structure 
metafiles, 10-3 

Styles 
See also Attributes 



Styles (cont'd.) 
fill areas, 6-22 

Surface 
See also Implicit regenerations 
control, 4-10 
foreground and background colors, 6-6 
implicit regenerations 

attribute changes, 6-6 
regeneration, 4-1 1 
state list entries, 4-12 
update 

segments, 9-10 
Symbols 

polymarkers, 5-31 
Synchronous input, 8-23 

See also Input 
Syntactical standards 

See also FORTRAN binding 
Syntax 

format, 1-9 
SYS$ERROR, 2-7, 4-6, 4-16, 4-38 
SYS$OUTPUT, 4-42 

T 
Tables 

See also Attributes 
See also Bundles 
attribute bundle, 6-4 
color index, 6-1 16 
fill area bundle index, 6-121 
pattern style bundle index, 6-127 
polyline bundle index, 6-134 
polymarker bundle index, 6-141 
text bundle index, 6-148 

Terminating 
error handling, 1 1-1 
GKS environment, 4-21 
request input, 8-24 
workstation environment, 4-23 

Text, 5-35 
See also Attributes 
See also GKS$TEXT 
alignment, 6-65 
attributes, 5-35 
bundles, 6-91 
character width, 6-77 
expansion factor, 6-77 
extent rectangle, 6-64 
fonts, 6-81 
height, 6-87 

Text (cont'd.) 
input, 8-3 
path, 6-95 
precision, 6-81 
representation, 6-148 
spacing, 6-101 
up-vector, 6-105 

Time input vector, 8-3 
Toggling 

logical input device control, 8-23 
Transformation functions, 7-1 to 7-59 

GKS$SELECT_XFORM, 7-21 
GKS$SET_CLIPPING, 7-26 
GKS$SET_VIEWPORT, 7-39 
GKS$SET_VIEWPORT_PRIORITY, 7-31 
GKS$SET_WINDOW, 7-43 
GKS$SET_WS_VIEWPORT, 7-47 
GKS$SET_WS_WINDOW, 7-54 
introduction to, 7-1 to 7-20 

Transformations 
aspect ratio, 7-18 
deferred 

placed into effect, 4-46 
entire process, 7-14 
implicit regenerations, 7-13 
input change vectors, 8-3 
metafiles, 10-2 
multiple, 9-27 
normalization, 1-3, 7-2 to 7-12 

clipping, 7-5 
maximum number, 7-7 
overlapping viewports, 7-1 1 
text height, 6-87 

normalization viewports, 7-5 
normalization windows, 7-2 
overlapping viewports, 8-22 
relative positioning, 7-18 
segments, 9-14 to 9-30 

accumulating, 9-22 
fixed points, 9-17 
matrix, 9-18 

unity, 7-5 
used for output, 5-3 
used in input, 8-3 
viewport input priority, 8-22 
workstation, 1-3, 7-12 

Transformations> identity (segment), 9-18 
Translations 

segments, 9-14 
viewport input priority, 7-1 1 

Index-15 



Transporting 

metafiles, 10-1 
Transposing 

aspect ratio, 7-18 
pictures, 7-5 
relative positioning, 7-18 

Triggers 
input, 8-2, 8-24 

Truncation 
of metafile data record, 10-17 

TT, 2-7, 4-7, 4-42 
TTY, 3-7 
Types 

input data types, 8-2 
lines, 6-38 
markers, 6-56 
prompt and echo, 8-5 
transformation combinations, 9-27 
workstation 

metafile, 10-2 
workstations, 4-3 

default, 4-43 

u 

ULTRIX operating system, 3-1 to 3-8 
Unity transformation, 7-5 
Update 

See also Implicit regenerations 
attribute changes, 6-6 
regenerating the surface, 4-11 
releasing deferred output, 4-10 
surface 

segments, 9-10 
the workstation surface, 4-10 
transformations, 4-46 
workstation surface, 4-58 

Up-vector 
text, 6-105 

User defined 
error handler, 1 1-1 
metafile data, 10-7 

Utility functions, 9-18 

V 
Valuator 

input class, 8-2 
Values 

attribute, 6-1 
maximum device coordinates, 7-12 

Index-16 

VAX languages, 2-1, 3-1 
VAXstations 

stroke implementation, 8-3 
using input data records, 8-20 

Vectors 
See also GDPs 
See also Segments 
input coordinates, 8-3 
input time, 8-3 
text up-vector, 6-105 
translation point, 9-17 

Viewports 
See also Transformations 
input priority, 7-1 1, 8-22 
normalization, 7-5 
overlapping, 8-22 
workstation, 7-12 

Visibility segments, 9-30 
Visual interface 

See also Input 
input prompt and echo types, 8-5 

VMS LINK command, 2-6 
VMS operating system, 2-1 to 2-9 
VT240 

input class implementation, 8-3 

W 
W DSS, 9-2 

See also Segments 
Width 

See also Attributes 
See also Transformations 
character, 6-77 
lines, 6-42 
to height ratio, 7-18 

Windows 
See also Transformations 
workstation, 7-12 

WISS, 4-3, 9-6 
Workstations 

activating, 4-7, 4-13 
clearing the surface, 4-18 
closing, 4-8 
deactivating, 4-8, 4-25 
definition of, 4-3 
description tables, 4-2 
device coordinates, 7-1 
device manipulation 

GKS$ESCAPE, 4-27 
environment, 4-1 



Workstations 
environment ~cont'd.► 

Initialization of, 4-41 
terminating, 4-23 

foreground and background colors, 6-6 
identifier, 4-16 
identifiers 

input, 8-2 
implicit regenerations 

transformations, 7-13 
maximum device coordinates, 7-12 
nominal sizes, 6-2 
opening, 4-7, 4-16 
output attributes, 6-1 
sending messages to, 4-33 
state list 

attributes, 6-4 
color table, 6-116 
fill area bundle table, 6-121 
pattern style bundle table, 6-127 
polyline bundle table, 6-134 

polymarker bundle table, 6-141 
text bundle table, 6-148 

stored segments, 9-2 
surface, 7-1 
surface control, 4-10 
surface regeneration, 4-1 1 
transformations, 1-3, 7-12 to 7-18 

aspect ratio, 7-18 
types, 4-3 

decimal, 3-8 
default, 4-43 
hexadecimal, 2-9 
metafile, 10-2 

update 
segments, 9-10 

V'Vorld coordinates, 7-1 
See also Transformations 
fixed points, 9-17 
origin, 7-2 

Writing to metafiles, 10-3 

Index-17 





Reader's Comments DEC GKS Reference Manual 
Volume I 

AA—HW43C—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (.useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is  

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



~ — — Do Not Tear -Fold Here and Tape 

d agao a 
TM 

— -- Do Not Tear -Fold Here 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

No Postage 
Necessary 
if Mailed 

in the 
United States 

C
u
t 

A
lo

n
g

 D
o
tt
e
d
 L

in
e

 



Reader's Comments DEC GKS Reference Manual 
Volume I 

AA—HW43C—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



— Do Not Tesr -Fold Here and Tape 

d 
a9ao 

a 

TM 

-- Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

C
u

t 
A

lo
n
g
 D

o
tt

e
d

 L
in

e
 


