DEC GKS Reference Manual

Volume |

Order Number: AA-HW43C-TE

April 1989

This document is an encyclopedic reference to the DEC GKS level 2¢ run-time
functions. This volume contains information on the DEC GKS control, output, output
attribute, transformation, input, segment, metafile, and error-handling functions.
DEC GKS software users can review release notes by typing HELP GKS RELEASE _

NOTES on the DCL command line.

Revision/Update Information:

Operating System and Version:

Software Version:

digital equipment corporation
maynard, massachusetts

This revised document supersedes the
VAX GKS Reference Manual Volume | (Order
No. Al-HW43B-TE).

VMS Version 4.7 or higher. ULTRIX Version 3.0
or higher. VAXstation requirement: VAXstation
Windowing Software Versions 3.1 or higher, or
DECwindows Version 1.0.

DEC GKS Version 4.0

First Printing March 1984
Revised November 1984, May 1986, March 1987, April 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1984, 1986, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: &)
ALL—-IN-1 EduSystem RT

DEC IAS ULTRIX
DEC/CMS MASSBUS UNIBUS
DEC/MMS PDP VAX

DECnet PDT VAXcluster
DECmate P/0OS VMS
DECsystem—-10 Professional vT
DECSYSTEM-20 Q-bus Work Processor
DECUS Rainbow

DECwriter RSTS

DIBOL RSX dilgli|t|a]l

ZK5203

Contents

XVii

xXi

11
1.2

13

14

Introduction to DEC GKS

GKS Function Categories
GKS Levels e,
Coordinate Range Format
1.3.1 Standard Escape/GDP Data Records
Function Presentation Format
1.4.1 Function Description
1.4.2 Function Syntax i iriunn..
1.4.3 Argument Descriptions
1.4.4 ErrorMessage List,
145 Program Examples
1.4.6 ReturningaDataRecord

1-9

1-9
1-10
1-10
1-12
1-12
1-14

~

Chapter 2 Compiling, Linking, and Running DEC GKS Programs on VMS u
2.1 VMS Programming Considerations 2-1
2.1.1 OnlineHelp 2-2
2.1.2 Capabilities of Supported Devices 2-2
213 Calling Sequences i 2-2
214 Constants and Include Files 2-4
2.1.41 Including Definition Files 2-5
2.15 Compiling, Linking, and Running Your Programs 2-6
2.1.6 Logical Names and DEC GKS Programming 2-7
2.1.6.1 Specifying Bit Masks as Workstation Type
Values 2-9
Chapter 3 Compiling, Linking, and Running DEC GKS Programs on
ULTRIX
3.1 ULTRIX Programming Considerations 3-1
3.1.1 Supported Languages 3-2
3.1.2 Capabilities of Supported Devices 3-2
3.13 Calling Sequences 3-2
3.1.4 Constants and Include Files e e e 3-4 u
3.1.4.1 Including Definition Files 3-5
' 3.15 Compiling, Linking, and Running Your Programs 3-6
3.1.6.1 Compiling and Linking GKS$ Programs 3-6
3.1.6.2 Compiling and Linking C Binding Programs 3-6
3.1.5.3 Compiling and Linking FORTRAN Binding
Programs, 3-6
3.1.6 Environment Variables and DEC GKS Programming 3-7
3.1.6.1 Specifying Bit Masks as Workstation Type
Values e 3-8
Chapter 4 Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables 4-2
4.1.1 Workstations 4-3
4.1.2 Operating States and State Lists. 4-5
4.2 Controlling the Workstation Display Surface 4-10
4.2.1 OutputDeferral 4-10
42.2 Implicit Surface Regenerations 4-11
423 Workstation Surface State List Entries

4-12 ‘)

ﬂ

4.3 Control Inquiries, 4-13
4.4 Function Descriptions 4-13
ACTIVATE WORKSTATION i 4-14
CLEAR WORKSTATION e 4-18
CLOSE GKS i e e e 4-21
CLOSE WORKSTATION e 4-23
DEACTIVATE WORKSTATION i 4-25
ESCAPE e 4-27
MESSAGE e e 4-33
OPEN GKS i e e 4-38
OPEN WORKSTATION it 4-41
REDRAW ALL SEGMENTS ON WORKSTATION 4-46
SET DEFERRAL STATE i 4-51
UPDATE WORKSTATION i, 4-58
Chapter 5 Output Functions
5.1 Output and the DEC GKS Operating State 5-2
5.2 Output Attributes 5-3
5.3 Transformations and the DEC GKS Coordinate Systems 5-3
54 OutputDeferral 5-4
5.5 Outputinquiries 5-5
5.6 DEC GKS Output Function Descriptions 5-5
CELL ARRAY e 5-6
FILL AREA e e e 5-18
GDP . . e 5-22
POLYLINE e 5-27
POLYMARKER i it e e 5-31
TEXT e e e e 5-35

Chapter 6 Output Attribute Functions

6.1 Typesof Attributes, 6-2
6.2 Individual and Bundled Attribute Values 6-4
6.2.1 Aspect Source Flags (ASFs). 6-5

6.2.2 Dynamic Changes and Implicit Regeneration. 6-6

6.3 Foreground and Background Colors 6-6
6.4 Output Attribute Inquiries 6-7
6.5 Function Descriptions 6-7
FILLAREA ATTRIBUTESttt i i e i 6-8

SET FILL AREA COLORINDEX, 6-9

SET FILL AREAINDEX0ttt 6-13

SET FILL AREA INTERIORSTYLE 6-18

SET FILL AREA STYLEINDEX0iiiiiinnnnnnnn 6-22

SET PATTERN REFERENCE POINT, 6-24
SETPATTERN SIZE ittt 6-26

POLYLINE ATTRIBUTES ittt 6-28

SET POLYLINE COLORINDEXcuiininnnnn.n 6-29

SET POLYLINE INDEXttt ittt e i 6-33

SET LINETYPE e et e e e 6-38

SET LINEWIDTHSCALEFACTOR.iiiiinn 6-42
POLYMARKER ATTRIBUTESt 6-46

SET POLYMARKER COLORINDEXcoviuevun.. 6-47

SET POLYMARKERINDEXttt 6-51
SETMARKER TYPE ittt 6-56

SET MARKER SIZE SCALEFACTOR 6-60

TEXT ATTRIBUTES it e e e i e e 6-64

SET TEXT ALIGNMENT i i i 6-65

SET TEXT COLORINDEX0iiiiiinninannnnnn 6-73

SET TEXT EXPANSION FACTORciviinnn... 6-77

SET TEXT FONT ANDPRECISION 6-81

SET TEXTHEIGHT i i i 6-87

SET TEXT INDEX i i e et e e 6-91

SET TEXT PATH i et e e 6-95
SETTEXTSPACING e i 6-101
SETTEXTUPVECTORttt 6-105

ASPECT SOURCE FLAGFUNCTION0.u.. 6-111

SET ASPECT SOURCE FLAGSt 6-112
REPRESENTATION FUNCTIONS 6-115

SET COLOR REPRESENTATION 6-116

Vi

SET FILL AREA REPRESENTATION 6-121

SET PATTERN REPRESENTATION 6-127

SET POLYLINE REPRESENTATION 6-134

SET POLYMARKER REPRESENTATION e 6-141

SET TEXT REPRESENTATION 6-148

Chapter 7 Transformation Functions

7.1 World Coordinates and Normalization Transformations 7-2
7.11 The Normalized Device Coordinate (NDC) System 7-5

7.1.2 Overlapping Viewports 7-11

7.2 Workstation Transformations 7-12
7.3 Relative PositioningandShape 7-18
7.4 Transformation Inquiries 7-20
7.5 Function Descriptions 7-20
SELECT NORMALIZATION TRANSFORMATION 7-21

SET CLIPPING INDICATORottt i i e e i 7-26

SET VIEWPORT INPUT PRIORITY i 7-31

SET VIEWPORT it et e e 7-39

SET WINDOW i it et et e e 7-43

SET WORKSTATION VIEWPORT0t 7-47

SET WORKSTATION WINDOW i it 7-54

Chapter 8 Input Functions

8.1 Physical and Logical InputDevices 8-1
8.1.1 The Workstation Identifier 8-2

8.1.2 ThelnputClass0 iiiiinnenen.. 8-2

8.1.3 The Device Number. 8-5

8.2 Promptand Echo Types, 8-5
8.2.1 InputDataRecords 8-6

CHOICE CLASSot e e e e et 8-8
LOCATOR CLASS i i e e e e 8-10

PICK CLASS e 8-14
STRING CLASS e e e e e 8-15
STROKE CLASS i et e e 8-16

viii

8.3

8.4

8.5

8.6

VALUATOR CLASS i e
8.2.1.1 Using an Input DataRecord

Input Inquiries e
8.3.1 Default and Current Input Values
8.3.2 Device-Independent Programming

Overlapping Viewports

Input OperatingModes
8.5.1 Request Modeo
8.5.2 SampleMode e
8.5.3 EventMode
8.5.3.1 Program Example Using Event Mode
8.5.3.2 Placing Multiple Devices into Event Mode
8.5.3.3 Eventinput Queue Overflow.

Function Descriptions
INITIALIZING INPUT e e e

SETPICKMODE
SETSTRINGMODE i,
SETSTROKEMODE i,
SET VALUATORMODE it
REQUESTING INPUT i i

8-19
8-20

8-20
8-20
8-21

8-22
8-23
8-24

8-27
8-33

8-51

SAMPLE VALUATOR i 8-189
OBTAINING INPUT INEVENTMODE 8-197
AWAIT EVENT e e 8-198
FLUSH DEVICE EVENTS 8-202
GET CHOICE. e e e 8-205
GET LOCATOR e e 8-212
GET PICK 8-214
GET STRING. 8-216
GET STROKE e 8-223
GET VALUATOR e e 8-230
Chapter 9 Segment Functions

9.1 Creating, Using, and Deleting Segments 9-2
9.1.1 Pick Identification 9-4
9.2 Workstations and Segment Storage 9-6
9.3 Segments and Surface Update 9-10
9.4 Segment Attributes 9-12
9.4.1 Detectability 9-13
9.4.2 Highlighting 9-13
943 Priority 9-14
944 Transformation 9-14

9.4.4.1 Normalization and Segment Transformations, and
Clipping i ., 9-23
9.4.4.2 Implementing Multiple Transformations 9-27
9.4.5 Visibility e 9-30
9.5 SegmentliInquiries. 9-30
9.6 Function Descriptions 9-30
ACCUMULATE TRANSFORMATION MATRIX 9-31
ASSOCIATE SEGMENT WITH WORKSTATION 9-39
CLOSE SEGMENT ittt et e e 9-41
COPY SEGMENT TO WORKSTATION 9-44
CREATE SEGMENT i e e 9-47
DELETE SEGMENT e 9-49
DELETE SEGMENT FROM WORKSTATION 9-53
EVALUATE TRANSFORMATION MATRIX 9-57
INSERT SEGMENT i i 9-61
RENAME SEGMENT i e 9-68

SET PICK ID . . .ttt e e 9-72
SET SEGMENT DETECTABILITYot 9-79
SET SEGMENT HIGHLIGHTINGt 9-85
SET SEGMENT PRIORITYttt 9-89
SET SEGMENT VISIBILITY e 9-94
SET SEGMENT TRANSFORMATION ciu... 9-98
Chapter 10 Metafile Functions
10.1 CreatingGKSM Metafiles 10-2
10.2 CreatingCGM Metafiles 10-3
10.3 ReadingaGKSM Metafile. 10-6
10.4 Using the Metafile FunctionsinPrograms 10-7
10.5 Metafilelnquiries 10-11
10.6 FunctionDescriptions0t iienen... 10-11
GKSSGET _ITEMt et 10-12
INTERPRET ITEM e 10-14
READITEMFROM GKSM ittt 10-17
WRITEITEM TOGKSM e et 10-20
Chapter 11 Error-Handling Functions
111 FunctionDescriptions i, 11-3
EMERGENCY CLOSE GKS\ttt iiiii e 11-4
ERROR HANDLING i it i i e i 11-8
LOGERROR iiiit ittt e e et e i e 11-10
SETERRORHANDLERttt 11-12
Index

Examples
4-1
4-2
4-3

4-5
5-1
5-2
5-3
5-4
5-5
5-6
6-1
6-2
6-3
6-4
6-5
6-6
6-7

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

GKS$CLEAR_WS and the GKS Control Functions 4-16
Usingthe Escape Function 4-30
Sending aMessagetotheUser 4-35
Redrawing Segments. i 4-48
Suppressing Implicit Regeneration. 4-55
Cell Array Output i e e e e e 5-10
Fill Area Output ittt i i ii i 5-20
Generalized Drawing Primitive Output 5-25
Polyline Output i i e 5-29
Polymarker Outputttt ininiinnnnnnnnn 5-33
TexXt OUPULttt et i e e e e 5-37
Changing the FillColorIndex 6-11
Changing the Fill Index. 6-15
Changing the Fill Area InteriorStyle 6-20
Changing the Polyline Color Indexcoouou... 6-31
Changing the Polyline Index 6-35
Changing the Polyline Line Type 6-40
Changing the Polyline Line Width 6-44
Changing the Polymarker Color Index 6-49
Changing the Polymarker Index. 6-53
Changing the Polymarker Type 6-58
Changing the Polymarker Size 6-62
Changing the Text Alignment, 6-70
Changing the TextColorIndex 6-75
Changing the Character Expansion Factor 6-79
Changing the Text Font and Precision 6-84
Changingthe TextHeight.0, 6-89
Changingthe TextIndex 6-92
Changingthe TextPath 6-98
Changing the Character Spacingcooveuuenn.n. 6-102
Changing the Up Character Vector P 6-108
Changing the Color Representation 6-119
Changing the Fill Area Representation 6-124
Changing the Pattern Representation 6-131
Changing the Polyline Representation 6-137

xii

6-25
6-26
7-1

7-3
7-4
7-5
8-1

8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
9-1

9-2

9-4
9-56
9-6
9-7
9-8
9-9
9-10
9-11
9-12

Changing the Polymarker Representation 6-144
Changing the Text Representation 6-152
Selecting a Normalization Transformation 7-23
Controlling Clipping at the World Viewport 7-28
Setting the Input Priority 7-34
Establishing a Workstation Viewport 7-51
Establishing a Workstation Window 7-57
Using a Locator Logical Input Device in Request Mode 8-25
Using a Locator Logical Input Device in Sample Mode 8-28
Using a Locator Logical Input Device in Event Mode 8-35
Placing Two Devices into EventMode. 8-41
Subroutine Handling Event Queue Overflow 8-53
Using a Choice Logical Input Device in Request Mode 8-61
Using a Pick Logical Input Device in Request Mode 8-75
Using a String Logical Input Device in Request Mode 8-84
Using a Stroke Logical Input Device in Request Mode 8-92
Using a Valuator Logical Input Device in Request Mode 8-98
Using a Choice Logical Input Device in Sample Mode 8-145
Using a Pick Logical Input Device in Sample Mode 8-158
Using a String Logical Input Device in Sample Mode 8-168
Using a Stroke Logical Input Device in Sample Mode 8-179
Using a Valuator Logical Input Device in Sample Mode 8-191
Using a Choice Logical Input Device in EventMode 8-207
Using a String Logical Input Device in Event Mode 8-218
Using a Stroke Logical Input Device in EventMode. 8-226
Comparing GKS$ASSOC_SEG_WITH_WS and

GKS$COPY_SEG_TO_WS e 9-8
The Effects of a Segment Transformation 9-20
Segment Transformations and Clipping 9-24
Showing the Cumulative Effect of GKS$ACCUM_XFORM_MATRIX . . . 9-35
Drawing a House and Placing Itina Segment 9-42
Deleting Segments on All Open and Active Workstations 9-51
Deleting Segments on a Specific Workstation 9-55
Inserting a Segment’s Primitives into Another Segment 9-63
RenamingaSegment.ttt 9-70
Setting Pick Identifiers i 9-74
Controlling the Detectability of Segments 9-81
Highlightinga Segment oo, 9-87 u

9-13 Setting Segment Priorities 9-91
9-14 Setting the Visibilty of aSegment 9-96
10-1 CreatingaMetafile 10-7
10-2 Interpreting and Producing a Picture from a Metafile 10-9
11-1 Executing an Emergency Closure of DECGKS 11-5
Figures
1-1 Possible DEC GKS Primitives 1-3
1-2 Functionality by GKS Levels 1-5
1-3 Coordinate Range Presentation 1-6
4-1 GKS Operating States and Environment Control 4-9
4-2 Using the Escape Function—VT241 4-32
4-3 Sending the User a Message—VT241 4-37
4-4 Redrawing Segments—VT241. 4-50
4-5 Suppressing Implicit Regeneration—VT241 4-57
5-1 The Maximum Number of Cells in the Cell Array. 5-13
5-2 Possible Mapping Directions Using the Cell Array 5-14
5-3 Cell Array Output—VT241 5-15
5-4 The Second Call for Cell Array Output—VT241................. 5-16
5-5 The Third Call for Cell Array Output—VT241 5-17
5-6 Fill Area—VT241 5-21
5-7 Generalized Drawing Primitive Qutput—VT241 5-26
5-8 Polyline Output—VT241 5-30
5-9 Polymarker Output—VT241, 5-34
5-10 Text Output—VT241 e 5-39
6-1 Changing the Fill Color Index—VT241 6-12
6-2 Changing the Fill Index—VT241. 6-17
6-3 Changing the Fill Area Interior Style—VT241 6-21
6-4 Changing the Polyline Color Index—VT241 6-32
6-5 Changing the Polyline Index—VT241 6-37
6-6 Changing the Polyline Line Type—VT241 6-41
6-7 Changing the Polyline Line Width—VT241 6-45
6-8 Changing the Polymarker Color Index—VT241 6-50
6-9 Changing the Polymarker Index—VT241...................... 6-55
6-10 Changing the Polymarker Marker Type—VT241 6-59
6-11 Changing the Polymarker Size—VT241....................... 6-63
6-12 Horizontal and Vertical Text Alignment 6-66

6-13 Default Horizontal and Vertical Text Alignments 6-67 .

6-14 Changing the Text Alignment—VT241 6-72 w
6-15 Changing the Text Color Index—VT241 6-76
6-16 Changing the Character Expansion Factor—VT241 6-80
6-17 Changing the Text Font and Precision 6-86
6-18 Changing the Text Height—VT241. 6-90
6-19 Changing the Text Index—VT241 6-94
6-20 Text Path Directions e e 6-96
6-21 Changing the Text Path—VT241 6-100
6-22 Changing the Character Spacing—VT241 6-104
6-23 Examples of Character Up VectorEntries 6-106
6-24 Changing the Up Character Vector—VT241 6-110
6-25 Changing the Color Representation—VT241 6-120
6-26 Changing the Fill Area Representation—VT241 6-126
6-27 Changing the Pattern Representation—VT241.................. 6-133
6-28 Changing the Polyline Representation—VT241 6-140
6-29 Changing the Polymarker Representation—VT241 6-147
- 6-30 Changing the Text Representation—VT241.................... 6-154
7-1 The World Coordinate Plane 7-4
7-2 TheClippingRectanglec.coiuiuimrenennnnann. 7-6 v
7-3 The Normalization Viewporty . 7-8
7-4 Composing a Picture onthe NDCPlane 7-10
7-5 The Workstation Window 7-15
7-6 The Picture on a Generic Device Surface 7-16
7-7 The Entire DEC GKS Transformation Process 7-17
7-8 Relative Position and AspectRatio 7-19
7-9 Selecting the Normalization Transformation—VT241 7-25
7-10 Enabling and Disabling Clipping—VT241. 7-30
7-11 Setting the Input Priority—VT241 7-38
7-12 Establishing a Workstation Viewport—VT241. 7-53
7-13 Establishing a Workstation Window—VT241 7-59
8-1 Logical Input Classes 8-4
8-2 Initializing the Locator Logical Input Device—VT241 8-27
8-3 The Locator Logical Input Device in Sample Mode—VT241 8-31
8-4 The Locator Logical Input Device in Sample Mode—VT241 8-32
8-5 The Locator Logical Input Device in Sample Mode—VT241 8-33
8-6 The Locator Logical Input Device in Event Mode—VT241.......... 8-38
8-7 The Locator Logical Input Device in Event Mode—VT241.......... 8-39 u

Xiv

8-8

8-9

8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24
8-25
8-26
8-27
8-28
8-29
8-30
8-31
8-32
8-33
8-34
8-35
8-36
9-1

9-2

9-3

9-4
9-5
9-6

9-8

The Locator Logical Input Device in Event Mode—VT241.......... 8-40
Placing Two Devices in Event Mode—VT241 8-48
Placing Two Devices in Event Mode—VT241 8-49
Placing Two Devices in Event Mode—VT241 - 8-50
Placing Two Devices in Event Mode—VT241 8-51
Requesting Input from a Choice Logical Input Device—VT241..... .. 8-65
Requesting Input from the Pick Input Device—VT241 8-79
Requesting from the String Logical Input Device—VT241 8-86
Requesting from the Stroke Logical Input Device—VT241 8-94
Requesting from the Valuator Logical Input Device—VT241 8-101
The Choice Logical Input Device in Sample Mode—VT241 8-149
The Choice Logical Input Device in Sample Mode—VT241 8-150
The Choice Logical Input Device in Sample Mode—VT241 8-151
The Pick Logical Input Device in Sample Mode—VT241........... 8-162
The Pick Logical Input Device in Sample Mode—VT241........... 8-163
The Pick Logical Input Device in Sample Mode—VT241........... 8-164
The String Logical Input Device in Sample Mode—VT241 8-171
The String Logical Input Device in Sample Mode—VT241 8-172
The String Logical Input Device in Sample Mode—VT241 8-173
The String Logical Input Device in Sample Mode—VT241 8-174
The Stroke Logical Input Device in Sample Mode—VT241 8-183
The Stroke Logical Input Device in Sample Mode—VT241 8-184
The Stroke Logical Input Device in Sample Mode—VT241 8-185
The Stroke Logical Input Device in Sample Mode—VT241 8-186
The Stroke Logical Input Device in Sample Mode—VT241 8-187
The Stroke Logical Input Device in Sample Mode—VT241 8-188
The Valuator Logical Input Device in Sample Mode—VT241........ 8-194
The Valuator Logical Input Device in Sample Mode—VT241........ 8-195
The Valuator Logical Input Device in Sample Mode—VT241........ 8-196
Primitives Withina Segment 9-5
Returned Pick Identifiers, 9-6
Comparing GKS$ASSOC_SEG_WITH_WS and

GKS$COPY_SEG_TO_WS—VT241. 0. 9-10
Scaling, Rotation, and Translation 9-16
The Effects of a Segment Transformation—VT241 9-22
Segment Transformations and Clipping—VT241 9-26
The Transformation and Clipping Pipeline 9-29
The Cumulative Effect of GKS$ACCUM_XFORM_MATRIX—VT241 . . 9-38

XV

9-9 House in the Lower Left Corner of the Screen—VT241 9-43

9-10 Inserting a Segment’s Primitives into Another Segment—VT241 9-67
9-11 Setting Pick Identifiers—VT241 9-78
9-12 Setting Pick Detectability—VT241 9-84
9-13 Highlighting a Segment—VT241 9-88
9-14 Setting Segment Priorities—VT241 9-93
11-1 Executing an Emergency Closure of DEC GKS—VT241 11-7
Tables
4-1 Workstation Categoriesttt 4-3
6-1 Geometric and Nongeometric Output Attributes 6-3

XVi

Preface

Manual Objectives

This manual provides encyclopedic reference to the DEC Graphical Kernel
System (GKS) and provides examples illustrating DEC GKS function calls. DEC
GKS is a level 2c GKS implementation. For more information concerning GKS
implementation levels, refer to Chapter 1, Introduction to DEC GKS.

NOTE

ﬂ Before reading this manual, you should review the DEC GKS release
notes by typing the following:

$ HELP GKS RELEASE_NOTES[RETURN

Intended Audience

This manual is intended for experienced application programmers who need to
reference information concerning the DEC GKS functions. Readers should be
familiar with one high-level language and the DIGITAL Command Language
(DCL). (For more information concerning DCL, refer to the VAX/VMS DCL
Dictionary.)

Refer to the DEC GKS Binding Reference Manuals for information specific

to the binding you use with DEC GKS. The available bindings for DEC GKS
Version 4.0 are FORTRAN, C, and GKS$. These manuals are designed for the
experienced user of DEC GKS who needs to know the binding syntax and brief
argument descriptions.

XVii

Although there are lengthy introductions at the beginning of each of the v
chapters, this manual is not tutorial in nature. New users who need tutorial u
information and moderately experienced users needing programming

suggestions should refer to the DEC GKS User Manual.

Document Structure

Xviii

This manual is contained in two volumes. Volume I contains the following
information:

Chapter 1, Introduction to DEC GKS, provides an introduction to the DEC
GKS product and to the format of this reference manual.

Chapter 2, Compiling, Linking, and Running DEC GKS Programs on VMS,
provides information about DEC GKS and the VMS operating system.

Chapter 3, Compiling, Linking, and Running DEC GKS Programs on
ULTRIX, provides information about DEC GKS and the ULTRIX operating
system.

Chapter 4, Control Functions, provides information concerning the
establishment of the DEC GKS and workstation environments.

Chapter 5, Output Functions, provides information concerning the
generation of output primitives. ‘ j

Chapter 6, Output Attribute Functions, provides information concerning the
output attributes.

Chapter 7, Transformation Functions, provides information concerning the
normalization and workstation transformations.

Chapter 8, Input Functions, provides information concerning input.
Chapter 9, Segment Functions, provides information concerning the storage
of output primitives in segments.

Chapter 10, Metafile Functions, provides information concerning long-term
storage of graphical images.

Chapter 11, Error-Handling Functions, provides information concerning
error-handling by the application program.

Volume II of this manual contains the following information:

Chapter 12, Inquiry Functions, provides information concerning the
acquisition of DEC GKS and workstation status information.

The appendixes, which include the following:
— Appendix A, DEC GKS Supported Workstations
= Appendix B, DEC GKS Constants

= Appendix C, DEC GKS Attribute Values

= Appendix D, DEC GKS Error Messages

= Appendix E, DEC GKS Metafile Structure

— Appendix F, Language-Specific Programming Information
= Appendix G, DEC GKS Device-Independent Fonts

—= Appendix H, DEC GKS Color Chart

= Appendix I, DEC GKS GDPs and Escapes

= Appendix J, DEC GKS Specific Input Values

Associated Documents

You may find the following documents useful when using DEC GKS:

® DEC GKS User Manual—For programmers who need tutorial information or
guides to programming technique.

e DEC GKS FORTRAN Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the FORTRAN binding.

* DEC GKS GKS$ Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the GKS$ binding.

* DEC GKS C Binding Reference Manual—For programmers who need specific
syntax and argument descriptions for the C binding.

* DEC GKS Device Specifics Reference Manual—For programmers who need
information about specific devices.

® Building a DEC GKS Workstation Handler System—For programmers who
need to build DEC GKS workstation graphics handlers.

® Building a DEC GKS Device Handler System—For programmers who need
to provide support for a device unsupported by the DEC GKS graphics
handlers.

® DEC GKS Installation Guide—For system managers who install the DEC
GKS software, including the Run-Time installation, on VMS and ULTRIX
operating systems.

Xix

Conventions

Convention Meaning
The symbol represents a single
stroke of the RETURN key on a terminal.
$ RUN GKSPROG In interactive examples, the user’s response
to a prompt is printed in red; system prompts
are printed in black.
INTEGER X A vertical ellipsis indicates that not all of
. the text of a program or program output is
illustrated. Only relevant material is shown
. in the example.
X=5
option, . .. A horizontal ellipsis indicates that additional

[output-source, . . .]

deferral mode

arguments, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

All names of the DEC GKS description table
and state list entries, and of the workstation
description table and state list entries, are
italicized.

XX

Summary of Technical Changes

New and Changed Features

This manual is a revision of the DEC GKS Reference Manual and contains the
following new and changed features.

All device specific appendixes in Version 3.0, K through R, are now
documented in the DEC GKS Device Specifics Reference Manual.

The sections of Appendix B, DEC GKS Constants, in the DEC GKS Reference
Manual, describing the following:

® An error handling state description
* The FORTRAN binding constant name GGFACP

The sections of Appendix D, DEC GKS Error Messages, in the DEC GKS
Reference Manual, describing a new message.

The sections of Appendix F, Language-Specific Programming Information,
in the DEC GKS Reference Manual, describing corrected type definitions in
the Programming in VAX Pascal section.

The sections of Appendix I, DEC GKS GDPs and Escapes, in the DEC GKS
Reference Manual, describing the following:

* The new fill area set GDP
* New escape functions
® Corrections to the Set Writing Mode function

The sections of Appendix J, DEC GKS Specific Input Values, in the DEC
GKS Reference Manual, describing Locator and Stroke Input classes.

xXi

Chapter 1
Introduction to DEC GKS

The Graphical Kernel System (GKS) is a set of graphics functions that can be
used by numerous types of graphics applications to produce two-dimensional
pictures on graphics output devices. GKS is defined by the ANSI X3.124-1985
and the ISO 7942-1985 standards. DEC GKS adheres to both standards. When
this manual refers to the GKS standard, the reference applies to both standards.

The GKS standard provides a functional standard, and syntactical standards
called language bindings. The functional standard determines the effects
produced by a particular GKS function, but does not specify the function name
or the number of function parameters. Therefore, a given function in two
different GKS implementations can produce the same effects, but may have a
different function name or a different number of parameters.

DEC GKS implements the functional standard using function names beginning
with the prefix GKS$. These functions should be used when programming with
the VMS implementation of DEC GKS. If you use the GKS$ functions, you
have to edit your program if you want to transport the program across systems
or across GKS implementations.

DEC GKS also implements approved syntactical language bindings. For DEC
GKS Version 4.0, these include the GKS FORTRAN and GKS C bindings.
The language bindings in general, and specifically the FORTRAN and C
bindings, provide standard function names and a standard number of function
parameters. If you write programs to be transported across systems or across
GKS implementations, you should use the appropriate language binding.

Introduction to DEC GKS 1-1

1.1 GKS Function Categories

The DEC GKS function categories are as follows:

e Control

¢ Output

¢ Output attribute
¢ Transformation

¢ Input

® Segment

* Metafile

® Error-handling
~ Inquiry

The control functions determine which DEC GKS functions you can call at a
given point in your program. They also control the buffering of output and the
regeneration of segments on the workstation surface.

The output functions produce picture components, called primitives, of the

following types:

* Polylines—Lines

* Polymarkers—Symbols

* Fill areas—Filled polygons

® Text—Character strings

® Cell Array—TFilled cells of a rectangle

* Generalized drawing primitives—A workstation-dependent image such as a
circle

Figure 1-1 illustrates possible representations of output primitives.

1-2 Introduction to DEC GKS

m

Figure 1-1: Possible DEC GKS Primitives

I[> Polyline
*

* * % Polymarker
*

R RN
N Rt
A Fill area
O O
XXX

QB0 e e et et

Cell array

hello

GDP

ZK-5346-86

Output attributes affect the appearance of a primitive. For instance, by

changing the line type attribute, you can produce solid, dashed, dotted, or
dashed-dotted lines.

Transformations affect the composition of the graphical picture and the
presentation of that picture. There are normalization and workstation
transformations. The normalization transformations allow you to use various
coordinate ranges for different primitives within a single picture. In this way,
you can use a coordinate range that suits each particular primitive in a large
picture.

Introduction to DEC GKS 1-3

The workstation transformations control the portion of the picture that you see
on the workstation’s surface, and the portion of the surface used to display the
picture. Using workstation transformations, you can pan across a picture, zoom
in to a picture, or zoom out of a picture.

The input functions allow an application to accept data from a user.

The segment functions store and manipulate groups of primitives called
segments.

The metafile functions allow you to store and to recall an audit of calls to DEC
GKS functions. Using metafiles, you can store a DEC GKS session so that
another application can interpret that session, thus reproducing the picture
created by the original application. For more information concerning metafiles,
refer to Chapter 10, Metafile Functions.

The error-handling functions allow you to invoke a user-written error handler
when a call to another DEC GKS function generates an error. For more
information concerning error-handling, refer to Chapter 11, Error-Handling
Functions.

The inquiry functions obtain either default or current information from the DEC
GKS data structures.

If you need more tutorial information concerning DEC GKS concepts, refer to
the DEC GKS User Manual.

1.2 GKS Levels

14

The GKS standard defines levels of a GKS implementation that address the
most common classes of graphic devices and application needs. The levels are
determined primarily by input and output capabilities. The output level values
are represented by the characters m, 0, 1, and 2. The input level values are
represented by the characters a, b, and c.

The DEC GKS software is a level 2c implementation, incorporating all of the
GKS output capabilities (level 2) and all of the input capabilities (level c).
This manual uses the term DEC GKS when describing the 2c level DEC GKS
product.

Figure 1-2 defines the 12 upwardly compatible levels of GKS. DEC GKS
implements all listed functionality.

Introduction to DEC GKS

o

Figure 1-2: Functionality by GKS Levels

m

Output
Levels

Input Levels

No input, minimal control,
individual attributes, one
settable normalization
transformation, subset

of output and attribute
functions.

Request input, set
operating mode and
initialize functions for input
devices, no pick input.

Sample and event input
no pick.

Basic control,

bundled attributes,
multiple normalization
transformations, all output
and attribute functions,
optional metafiles.

Set viewport input priority.

All of level mc, above.

Full output including
settable bundles,
multiple workstations,
basic segmentation, no
workstation independent
segment storage,
metafiles.

Request pick, set operating
mode and initialize
functions for pick input.

Sample and event input
for pick.

Workstation independent
segment storage

All of level 1b, above.

ZK-5027-86

Introduction to DEC GKS 1-5

Pick input is one of the DEC GKS logical input classes used to specify segments
present on the surface of a device. Request, sample, and event are GKS input
operating modes. DEC GKS supports all three input operating modes. For
more information on pick input or operating modes, refer to Chapter 8, Input
Functions.

Workstation independent segment storage (WISS) provides a way to store
segments so that one segment can be transported to different devices. For more
information, refer to Chapter 9, Segment Functions.

1.3 Coordinate Range Format

When specifying a coordinate range, whether the range is located in world
coordinate space, normalized device coordinate space, or device coordinate
space, this manual uses a single notation.

The syntax of this rectangular range specification is as follows:
([x—min, x_max] X [y_min, y_max])

Figure 1-3 illustrates the rectangular coordinate area.

Figure 1-3: Coordinate Range Presentation

X_-min, y_max : X_max, y_max
Xx_min, y_min X_max, y-min
ZK-5491-86

For more information concerning the DEC GKS coordinate systems, refer to
Chapter 7, Transformation Functions.

Introduction to DEC GKS

m 1.3.1 Standard Escape/GDP Data Records

When calling the functions GKSSESCAPE or GKS$GDP (generalized drawing
primitive), you may need to pass a data record. DEC GKS has a standard
escape/GDP data record that contains up to three integer components and four
array addresses.

To use an escape or GDP data record, you need to perform the following tasks:

1.

Look up the escape or GDP description in Appendix I, DEC GKS GDPs and
Escapes, in the DEC GKS Reference Manual.

Determine the size and contents of the required data record (if one is
required).

Declare the data record as determined by your particular programming
language. Each of the seven components of the data record is an integer
value. The record is read only, passed by reference.

Pass to GKS$ESCAPE or GKS$GDP only the data record components
required by the escape or GDP. For instance, if an escape or GDP only
requires 5 data record components, omit values from components 6 and 7.

Pass to GKSS8ESCAPE or GKS$GDP the exact size of the valid portion of
the data record, as specified in Appendix I, DEC GKS GDPs and Escapes, in
the DEC GKS Reference Manual. For instance, if an escape or GDP requires
5 valid components to the data record, then pass the value 20 as the data
record size (each component being a longword in length).

The DEC GKS standard escape/GDP data record is as follows.

Introduction to DEC GKS 1-7

Position Data Type Description
1 Integer Number of integer values passed in the data record.
2 Integer Number of real values passed in the data record.
3 Integer Number of string addresses passed in the data record.
4 Integer Address of array of integers with exactly as many
(address) elements as the number specified in component
number 1.
5 Integer Address of array of real numbers with exactly as many
(address) elements as the number specified in component
number 2.
6 Integer Address of array of string lengths with exactly as many
(address) elements as the number specified in compoenent
number 3.
7 Integer Address of array of string addresses with exactly as
(address) many elements as the number specified in component
number 3.

After performing a task, some escape functions pass information back to

you by use of an output data record. This output data record is identical in
format to the input data record, except that the output record’s components
are modifiable. You pass the buffer sizes in the first three components and the
addresses of your buffers in the last four components. DEC GKS modifies the
first three components to contain the number of elements DEC GKS actually
used to write output data to each of the corresponding buffers.

If you are using an escape function and you need to determine the size
required by the entire output data record buffer, you can pass the value 0 to the
output record buffer size (documented as the argument record_buffer_length
in the GKS$ESCAPE function description, described in Chapter 4, Control
Functions, in the DEC GKS Reference Manual). When you pass the value 0 as
this argument, GKS$ESCAPE does not perform the escape, but instead returns
the size of the output data record to argument record_size. In this manner, you
can be sure that you declared an output data record buffer that is large enough
to hold the entire data record. ‘

To place array addresses in the fourth, fifth, sixth, and seventh components

of the data record, you need to use a technique specific to your programming
language. For instance, using VAX FORTRAN, you can use the %LOC built-in
function. For more information concerning addresses and pointers, refer to
the documentation set for your programming language. For more information
concerning the use of %LOC and data records, refer to the choice input
examples in Chapter 8, Input Functions, in the DEC GKS Reference Manual.

Introduction to DEC GKS

N

O

m

ﬁ’

For more information, refer to Appendix I, DEC GKS GDPs and Escapes, in the
DEC GKS Reference Manual or to the DEC GKS Device Specifics Reference Manual.

NOTE

Remember that the DEC GKS input data records have a format that
is completely different from the DEC GKS standard escape/GDP
data record format. To review the GKS standard input data records,
refer to Chapter 8, Input Functions, in the DEC GKS Reference
Manual. To review the actual data records required by the DEC GKS
graphics handlers, refer to Appendix J, DEC GKS Specific Input
Values, in the DEC GKS Reference Manual.

1.4 Function Presentation Format

This section describes the format used to provide information about each of
the DEC GKS functions that use the GKS$ prefix. If you are using a language
binding, you can find a similar discussion concerning the format of binding
function descriptions at the beginning of the appropriate language binding
book.

The following sections describe the format used to present each of the DEC
GKS function descriptions.

1.4.1 Function Description

Each function description in this manual begins with the English version of the
function name at the top of the page. This function name is located at the top
of each subsequent page of the function description.

The first paragraph of the function description list the following items:

e The GKS standard function name.

* The valid operating states during which a call to the function is permitted
(for more information, refer to Chapter 4, Control Functions).

Following the listed information is a short description of the function. Within
this description is pertinent information about the DEC GKS operating state,
the DEC GKS description table and state list, and the workstation description
table and state list.

Introduction to DEC GKS 1-9

1.4.2 Function Syntax

The syntax section of the function description lists the syntax of a call to the
DEC GKS function. The syntax of each DEC GKS function call is available for
the GKS$, FORTRAN, and C bindings. This syntax includes the argument list
for each binding.

Following each syntax section is an argument section that lists each GKS$
argument on a separate line.

All of the DEC GKS functions always return a longword condition status value.
For a description of the longword status value, refer to Appendix D, DEC GKS
Error Messages. For information concerning DEC GKS error handling, refer to

Chapter 11, Error-Handling Functions.

1.4.3 Argument Descriptions

The argument descriptions for each of the functions appear as follows:

Arguments
workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation.

1-10 Introduction to DEC GKS

The arguments passed to DEC GKS functions must be of specific data types and
they must be passed by specific mechanisms. In the function descriptions, these
data types are described in the list following each of the argument names.

For each argument, the listed values include:

® The data type of the argument
® The type of access made by the function
¢ The argument-passing mechanism and form

Most of the passing mechanisms required by DEC GKS functions are the
default mechanisms of VAX FORTRAN. (This manual clearly documents
those functions requiring different passing mechanisms in the section labeled
Arguments within each function description.) Refer to the DEC GKS C Binding
Reference Manual for information about C binding passing mechanisms.

The other VAX high-level languages use different default passing mechanisms.
If you are using a high-level language other than FORTRAN, you may need
to use the argument-passing extensions for that language. The include file

for some languages (for example, Pascal, BASIC, and PL/I) define the default
passing mechanisms for each DEC GKS function call.

Some of the descriptions of data types in this manual are not worded in exactly
the same manner as in the VMS documentation. For instance, when this
manual says that an argument is of the data type “real,” the corresponding VMS
data type is “F_floating point.” The following list presents the notation used in
this manual and the corresponding VMS notation:

GKS Type/Mechanism Corresponding VMS Type/Mechanism
Integer Longword integer (signed)
Real F_floating point
String Character-coded text string
Address (record) Longword integer (signed)
This is an address of a data record.
Type: array (integer) Type: longword integer (signed)
Mechanism: by reference Mechanism: by reference, array reference

For a complete discussion of the argument-passing mechanisms, refer to

the VAX/VMS Run-Time Library Routines Reference Manual. For information
concerning language-specific passing extensions, refer to the appropriate VAX
high-level language manual.

Introduction to DEC GKS 1-11

1.4.4 Error Message List

The function descriptions list all errors that can possibly be generated by a
call to that specific DEC GKS function. For a complete description of the error
message, the possible cause, and the possible user action, refer to Appendix D,

DEC GKS Error Messages.

1.4.5 Program Examples

1-12

Each function description either lists a program example or refers you to
another example that calls the specified DEC GKS function. All functions are
written in FORTRAN for use with the VT241, for consistency in presentation.
FORTRAN-specific constructs are flagged. However, if you are unfamiliar with
FORTRAN, you may wish to review the following list of FORTRAN-specific
constructs used in the program examples in this manual:

Construct

Description

IMPLICIT NONE

DATA
CHARACTER*80
INTEGER var(3)

%DESCR
%VAL
%REF

LEN

%LOC(array)

This statement prevents the VAX FORTRAN compiler
from implicitly declaring variable names that you have
not declared.

This character, located in the first column of the line,
signifies that the entire line contains a comment.

This character, located in column six, is a continuation
character. This character signifies that the previous line
of code continues onto the line marked with the
asterisk (*).

The DATA statement initializes program variables with
data.

This identifier is used to declare a character string of
length 80.

This declaration declares a three-element array of type
INTEGER.

These constructs are argument list built-in functions
used to pass arguments by descriptor, by value, and by
reference.

This construct is a built-in function that returns the
length of a string.

This built-in function returns the address of its argument.

In many of the FORTRAN examples in this book, the following lines of code
cause the program to pause, so that you can view the image on the workstation
surface as it is being created.

Introduction to DEC GKS

o

C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(1, GKS$K_POSTPONE_FLAG)

READ(5, *)

Since DEC GKS allows the VT241 to defer, or buffer, output, you have to
update the screen with a call to GKS$UPDATE_WS in order to view the
picture created by all previous function calls in the program. The FORTRAN
READ statement causes the pause in program execution.

Since the rate of deferral may differ on various workstations, you may wish
to use the function GKS$INQ_WS_DEF_AND_UPDATE to check the current
deferral mode. If the deferral mode is anything other than GKS$K_ASAP,
you may wish to update the workstation surface occasionally when you

are debugging your program. If you want to change the deferral mode so
that the workstation surface is always current, you can call the function
GKS$SET_DEFER_STATE to change the current deferral mode.

For detailed information concerning the DEC GKS deferral mode, refer to
Chapter 4, Control Functions.

Also, all program examples include the following line:
CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT, GKS$K_VT240)

To convert the program for use with a device other than a VT241, change the
constant GKS$K_VT240 to the appropriate workstation constant value (refer
to Appendix A, DEC GKS Supported Workstations), and change any device
specific information within the program (such as bundled attribute values). The
device-specific information within each program is noted as such.

After many of the program examples, there is an illustration representing the
graphical image generated on the surface of the VT241. Since there are visual
differences between the written page and the workstation surface, the image
may appear different on your device surface. Also, different devices produce
different results.

Introduction to DEC GKS 1-13

For instance, the color may be a different hue or lines may not as perfectly
smooth as presented in the figure. The figures in this manual serve the purpose
of showing relative positioning, general color (where applicable), and general
shape of the graphical image on the surface of the VT241.

1.4.6 Returning a Data Record

The DEC GKS FORTRAN binding does not return data records. This restriction
conforms with the GKS Standard. Use the GKS$ function with FORTRAN if
you want to return the data record.

1-14 Introduction to DEC GKS

Chapter 2

Compiling, Linking, and Running DEC
GKS Programs on VMS

The DEC GKS functions that begin with the prefix GKS$ are designed to be
used on one of the VMS systems. Those functions meet the functional GKS

standard. In other words, they perform the necessary tasks as designated by
the GKS standard.

However, these functions are in no way meant to meet a syntactical standard.
For instance, the DEC GKS function GKS$CELL _ARRAY might have a
different number of arguments than the cell array function in another GKS
implementation. As a result, programs written using the GKS$ interface are
not easily transportable; you have to edit the function names, and possibly the
number and order of function arguments.

2.1 VMS Programming Considerations

The specific method for using DEC GKS software depends on the features and
conventions of each VAX language. This section discusses general issues that
must be considered when using any VAX language with DEC GKS.

NOTE

Some of the VAX languages have language-specific requirements
for using VAX GKS. For a complete discussion, you should refer to
Appendix F, Language-Specific Programming Information, before
coding your programs. For a discussion of the capabilities of each
of the DEC GKS supported physical devices, refer to the DEC GKS
Device Specifics Reference Manual.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-1

2.1.1 Online Help

DEC GKS provides an online HELP library. To access this information, type
the following:

$ HELP GKS[RETURN

Before using the DEC GKS software, you should review the release notes for
information pertinent to the current release. To review the release notes, type
the following:

$ HELP GKS RELEASE_NOTES [RETURN

2.1.2 Capabilities of Supported Devices

In many applications, you may wish to write completely device-independent
programs. In this way, you can run your programs using different devices
without having to rewrite your programs. The DEC GKS User Manual outlines
the procedure for device-independent programming using DEC GKS.

However, you may wish to review the range of capabilities of the DEC GKS
supported devices, or you may wish to write device-dependent subroutines
within your application. In any instance, it is helpful to review the device-
specific appendixes in this manual before you begin coding your application.
The device-dependent appendixes contain information concerning predefined
bundle index representations, color capabilities, initial input values, bit masks as
workstation type values, supported escape functions for that particular device,
and similar information.

2.1.3 Calling Sequences

Each DEC GKS function requires a specific calling sequence. The calling
sequence indicates the elements included in the language statement that calls
the function, and the order of those elements. The three elements are the
following:
¢ Call Type

High-level VAX languages call DEC GKS functions with CALL statements

or function references. For example, when using FORTRAN, you can use a
CALL statement to call DEC GKS functions.

2-2 Compiling, Linking, and Running DEC GKS Programs on VMS

U

\

Function Identifier

All DEC GKS function names begin with the prefix GKS$. FORTRAN
binding names begin with an uppercase G, and C binding names begin
with a lowercase g. The remainder of the name indicates the operation
performed by the function.

If writing programs to be transported across systems or across GKS
implementations, use the appropriate language binding functions. Refer
to the DEC GKS FORTRAN Binding Reference Manual and the DEC GKS C
Binding Reference Manual for information concerning the FORTRAN and C
binding function names.

Argument List

Arguments that are passed to DEC GKS functions must be listed in the
order shown in the syntax descriptions contained in this manual. See
Section 3.1.4.1 for more information concerning the function description
format used in this manual. The various language binding functions may

have an argument list that is different from the corresponding GKS$
function.

The specific requirements for writing calls and passing arguments to DEC GKS
functions vary from one language to another. Whatever the language of the
calling program, DEC GKS functions expect the following:

Integer arguments to be 32-bit longwords passed by reference.

Real numbers to be in single-precision, floating-point format passed by
reference.

Character strings to be passed by string descriptors.

Arrays to be passed either by reference or by descriptor, depending on the
particular DEC GKS function.

Each language may have specific requirements concerning the language-specific
calling sequence. For a discussion of language-specific programming concerns,
refer to Appendix F, Language-Specific Programming Information.

NOTE

For all languages that need to declare DEC GKS functions as external
functions, you should type the appropriate language definition file to
determine the actual function parameter identifiers specified in the
DEC GKS code. See Section 1.3 for more information concerning the
language definition files.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-3

2.1.4 Constants and Include Files

DEC GKS constants are symbolic names that are syntactically equivalent to
literal integer constants. These constants are used in the following ways:

® As arguments to DEC GKS functions.

® As literal values to which you can compare a returned value from an
inquiry function (for example, you can compare the return value, from a
call to the function GKS$INQ_WS_TYPE, to the constant GKS$K_VT125).

® As literal completion status codes to which you can compare a function
return value.

Many DEC GKS functions use constants as arguments, as shown by the
following function call:

GKS$CLEAR_WS(1, GKS$K_CLEAR_ALWAYS)

You can compare one of the completion status codes to a function return value,
as follows:

IF (GKS$_SUCCESS = GKS$ACTIVATE_WS(1))

Most DEC GKS constants begin with the prefix GKS$K and are defined in a
definition file. All DEC GKS completion status code constants begin with the
prefix GKS$_ERROR_ or DECGKS$_ERROR_NEG_ and are defined in a
separate definition file. All DEC GKS bit mask constants begin with the prefix
GKS$M_.

You can either specify a literal value as an argument to a DEC GKS function,
or you can include the language definition files and use a defined constant
name instead. The use of constants adds to program legibility and program
documentation.

To review the list of DEC GKS constants, refer to Appendix B, DEC GKS
Constants. To review the list of DEC GKS completion status code constants,
refer to Appendix D, DEC GKS Error Messages.

2-4 Compiling, Linking, and Running DEC GKS Programs on VMS

m 2.1.4.1 Including Definition Files

You use DEC GKS software primarily by placing calls to DEC GKS functions in
your program. However, when using DEC GKS, you need statements in your
program other than calls to GKS functions. The specific statements that are
needed depend on the VAX language you use. (For more information, refer to
Appendix F, Language-Specific Programming Information).

DEC GKS constants and their values must be made available to all programs
using DEC GKS regardless of the VAX language you use. All VAX high-level
languages that use DEC GKS have a method for inserting an external file into
the program source code stream at compile time. Incorporating an external file
is the method for making DEC GKS constants available.

Your installation kit has been supplied with several files that contain DEC
GKS constants and separate files that contain DEC GKS completion status code
constants. You incorporate these files into your program with a statement that
is appropriate to the language you are using.

For example, BASIC provides the %INCLUDE statement for inserting an
external file into a program. Therefore, any BASIC program that uses DEC GKS
should contain the following statement:

%INCLUDE "SYS$LIBRARY:GKSDEFS.BAS"

(’ In the previous statement, the identifier SYSSLIBRARY is the logical name of
the directory that contains the files containing DEC GKS constants.

The language definition files located in SYSSLIBRARY are as follows:

* GKSDEFS.ADA for VAX™ Ada®

e GKSDEFS.BAS for VAX BASIC

e GKSDEFS.R32 for VAX BLISS

e GKSDEFS.H for VAX C

e GKSDEFS.LIB for VAX COBOL

e GKSDEFS.FOR for VAX FORTRAN using the GKS$ functions

e GKSDEFS.BND for VAX FORTRAN using the FORTRAN binding functions
e GKSDEFS.PAS for VAX Pascal

e GKSDEFS.PLI for VAX PL/I routines declared as procedures (no value
returns)

e GKSDEFS.PL2 for VAX PL/I routines declared as functions

™ VAX is a trademark of Digital Equipment Coorporation.
(‘ ’ ® Adaisa registered trademark of the U.S. Government (Ada Joint Program Office).

Compiling, Linking, and Running DEC GKS Programs on VMS 2-5

The completion status code definition files located in SYS$LIBRARY are as
follows:

* GKSMSGS.ADA for VAX Ada

* GKSMSGS.BAS for VAX BASIC

* GKSMSGS.R32 for VAX BLISS

* GKSMSGS.H for VAX C

¢ GKSMSGS.LIB for VAX COBOL

* GKSMSGS.FOR for VAX FORTRAN

* GKSMSGS.PAS for VAX Pascal

* GKSMSGS.PLI for VAX PL/I

Each file includes comments that describe the exact method for using a given
definition file.

2.1.5 Compiling, Linking, and Running Your Programs

A program that uses DEC GKS function calls should be compiled and executed
as any other program. Use the compile command that is appropriate to the
language you are using and use the RUN command to execute the program
image.

DEC GKS functions are supplied as an installed shareable image library. An
installed shareable image makes linking faster and easier. Also, using DEC GKS
as a shareable image makes your program’s resulting .EXE file smaller.

The symbols in the DEC GKS image have been inserted in the system image
library. Therefore, to link a compiled program to DEC GKS, you only need to
specify the name of your program’s object file on the command line, as follows:

$ LINK MYPROG.0BJ[RETURN

However, if you are using language binding functions in your program, you
need to link your program’s object file with the appropriate binding object
library. To link your program to the FORTRAN binding object library, issue the
following command:

$ LINK MYPROG.OBJ, SYS$LIBRARY:GKSFORBND/LIBRARY [RETURN

2-6 Compiling, Linking, and Running DEC GKS Programs on VMS

C\

ﬁ 2.1.6 Logical Names and DEC GKS Programming

NOTE

If you are unfamiliar with VMS logical names, then you may wish to
review the Introduction to VAX/VMS before reading this section.

In many DEC GKS programs, the execution of your application appears as
follows:

1] CALL GKS$OPEN_GKS('SYS$ERROR:')

(] CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)

CALL GKS$ACTIVATE_WS(1)

Cc Release the DEC GKS and workstation environments.
CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS()

The following numbers correspond to the numbers in the previous example:

© In this call to GKS$OPEN_GKS, the logical name SYS$ERROR is the only
ﬁ argument to the function. This argument tells DEC GKS where to write

generated error messages.
If you pass the logical name SYS$ERROR (or the value 0), DEC GKS
translates this logical name and writes the error messages to the location
specified by the translation. By default, SYSSERROR translates to the
logical name TT, which in turn translates to your process’s default device
connection (error messages appear on your terminal’s display surface).
If you choose, you can specify a VMS file specification as an argument to
GKS$OPEN_GKS. In this way, you have a permanent record of generated
error messages for use during program debugging.

® The constant GKS$K_CONID_DEFAULT (or the value 0) tells DEC GKS
to translate the logical name GKS$CONID in order to determine the name
of the device connection.
The constant GKS$K_WSTYPE_DEFAULT (or the value 0) tells DEC GKS
to translate the logical name GKS$WSTYPE in order to determine the name
of the workstation type.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-7

Consequently, you can use the DEFINE or ASSIGN command on the DCL
command line to define the logical names to be the connection and type with
which you are working, as follows:

$ language_compile_command PROGRAM [RETURN]

$ LINK PROGRAM[RETURN]

$ DEFINE GKS$CONID ttbO[RETURN]

$ DEFINE GKS$WSTYPE 13 ! VT241 Color [RETURN
$ RUN PROGRAM [RETURN

$ DEFINE GKS$CONID ttaO[RETURN
$ DEFINE GKS$WSTYPE 12 ! VT125 Black and White [RETURN

$ RUN PROGRAM [RETURN

Before you attempt to define GKS$CONID, you need to perform the following
tasks:

1. Make sure that you have allocated the device you need to access. The DCL
command SHOW DEVICE provides a list of devices on your system node.

2. Allocate the terminal using the command ALLOCATE (you may need
special privileges to allocate the device).

3. Use the command SHOW TERMINAL to make sure that the device’s baud
rate, parity, and other settings match the settings of the physical device.

4. Define the logical GKSSCONID to be the logical name of the appropriate
device connection.

For more information concerning the terminal allocation process, refer to the
appropriate commands in the VAX/VMS DCL Dictionary.

There may be times when you do not wish to define the DEC GKS logical
names. In this case, or if you define an invalid value, DEC GKS translates
several logical names in the following order:

1. If the logical name GKS$CONID is undefined, DEC GKS translates the
logical name TT.

2. DEC GKS then translates TT, which always defaults to your process’s
default device connection.

If the logical name GKS$WSTYPE is undefined, then DEC GKS sets the device
type to be GKS$K_VT240BW (the value 14, a black and white VT240).

The ability to define GKS$CONID and GKS$WSTYPE provides device inde-
pendency. For more information concerning device-independent DEC GKS
programs, refer to the DEC GKS User Manual.

2-8 Compiling, Linking, and Running DEC GKS Programs on VMS

ﬂ 2.1.6.1 Specifying Bit Masks as Workstation Type Values

You have the option of specifying the workstation type value in either a
hexadecimal, octal, or decimal longword value. In most cases, it is sufficient to
specify the type value in decimal.

However, some of the DEC GKS supported devices allow you to pass a bit
mask in the first word of the longword workstation type value. For example,
the following workstation type specifies default values for the DIGITAL LVP16
plotter:

$ DEFINE GKS$WSTYPE 51 [RETURN

The following hexadecimal workstation type specifies to DEC GKS to use the
LVP16 plotter in landscape mode, with a paper size of 11 x 17 inches:

$ DEFINE GKS$WSTYPE %x00020033 [RETURN

For a complete list of all of the available bit masks for a given device, refer to
the DEC GKS Device Specifics Reference Manual.

Compiling, Linking, and Running DEC GKS Programs on VMS 2-9

Chapter 3

Compiling, Linking, and Running DEC
GKS Programs on ULTRIX

The DEC GKS functions that begin with the prefix GKS$ are designed to be
used on a DIGITAL system. Those functions meet the functional GKS standard.
In other words, they perform the necessary tasks as designated by the GKS
standard.

However, these functions are in no way meant to meet a syntactical standard.
For instance, the DEC GKS function GKS$CELL _ARRAY might have a
different number of arguments than the cell array function in another GKS
implementation. As a result, programs written using the GKS$ interface are
not easily transportable; you have to edit the function names, and possibly the
number and order of function arguments.

Use the FORTRAN binding, and approved ISO and ANSI standard, for
transportability.

3.1 ULTRIX Programming Considerations

The specific method for using DEC GKS software depends on the features
and conventions of each VAX language. This section discusses general issues
that must be considered when using any VAX language with DEC GKS. For

a discussion of the capabilities of each of the DEC GKS supported physical
devices, refer to the appropriate device-specific chapter in the DEC GKS Device
Specifics Reference Manual.

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-1

3.1.1 Supported Languages

DEC GKS supports the following languages:

e VAX FORTRAN
e VAXC
e CC (Portable C)

3.1.2 Capabilities of Supported Devices

In many applications, you may wish to write completely device-independent
programs. In this way, you can run your programs using different devices
without having to rewrite your programs. The DEC GKS User Manual outlines
the procedure for device-independent programming using DEC GKS.

However, you may wish to review the range of capabilities of the DEC GKS
supported devices, or you may wish to write device-dependent subroutines
within your application. In any instance, it is helpful to review the DEC GKS
Device Specifics Reference Manual before you begin coding your application.
The device-dependent appendixes contain information concerning predefined
bundle index representations, color capabilities, initial input values, bit masks as
workstation type values, supported escape functions for that particular device,
and similar information.

3.1.3 Calling Sequences

Each DEC GKS function requires a specific calling sequence. The calling
sequence indicates the elements included in the language statement that calls
the function, and the order of those elements. The three elements are the
following:
e Call Type

High-level VAX languages call DEC GKS functions with CALL statements

or function references. For example, when using FORTRAN, you can use a
CALL statement to call DEC GKS functions. - '

¢ Function Identifier

All DEC GKS function names begin with the prefix GKS$. FORTRAN
binding names begin with an uppercase G, and C binding names begin
with a lowercase g. The remainder of the name indicates the operation
performed by the function.

3-2 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

If writing programs to be transported across systems or across GKS imple-
mentations, you should use the appropriate language binding functions.
Refer to the DEC GKS FORTRAN Binding Reference Manual and the DEC
GKS C Binding Reference Manual for information concerning the FORTRAN
and C binding function names.

Argument List

Arguments that are passed to DEC GKS functions must be listed in the
order shown in the syntax descriptions contained in this manual. See
Section 3.1.4.1 for more information concerning the function description
format used in this manual. The various language binding functions may
have an argument list that is different from the corresponding GKS$
function.

The specific requirements for writing calls and passing arguments to DEC GKS
functions vary from one language to another. Whatever the language of the
calling program, DEC GKS$ binding functions expect the following:

Integer arguments to be 32-bit longwords passed by reference.

Real numbers to be in single-precision, floating-point format passed by
reference.

Character strings to be passed by string descriptors.

Arrays to be passed either by reference or by descriptor, depending on the
particular DEC GKS function.

Each language may have specific requirements concerning the language-
specific calling sequence. In VAX C, for example, strings are passed by a null
terminator. For a discussion of language-specific programming concerns, refer
to Appendix F, Language-Specific Programming Information, in the DEC GKS
Reference Manual.

NOTE

For all languages that need to declare DEC GKS functions as external
functions you should type the appropriate language definition file to
determine the actual function parameter identifiers specified in the
DEC GKS code. See Section 1.3 for more information concerning the
language definition files.

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-3

3.1.4 Constants and Include Files

DEC GKS constants are symbolic names that are syntactically equivalent to
literal integer constants. These constants are used in the following ways:
e As arguments to DEC GKS functions.

® As literal values to which you can compare a returned value from an
inquiry function (for example, you can compare the return value, from a
call to the function GKS$INQ _WS_TYPE, to the constant GKS$K_VT125).

® As literal completion status codes to which you can compare a function

return value.
NOTE
Constants (defines) for the bindings are in the binding specific
include files.

Many DEC GKS functions use constants as arguments, as shown by the
following function call:

GKS$CLEAR_WS(1, GKS$K_CLEAR_ALWAYS)

You can compare one of the completion status codes to a function return value,
as follows, in this C example:

if (GKS$_SUCCESS == GKS$ACTIVATE_WS(1))

Most DEC GKS constants begin with the prefix GKS$K_ and are defined in a
definition file. All DEC GKS completion status code constants begin with the
prefix GKS$_ERROR_ or DECGKS$_ERROR_NEG_ and are defined in a
separate definition file. All DEC GKS bit mask constants begin with the prefix
GKS$M_.

You can either specify a literal value as an argument to a DEC GKS function,
or you can include the language definition files and use a defined constant
name instead. The use of constants adds to program legibility and program
documentation.

To review the list of DEC GKS constants, refer to Appendix B, DEC GKS
Constants, in the DEC GKS Reference Manual. To review the list of DEC
GKS completion status code constants, refer to Appendix D, DEC GKS Error
Messages, in the DEC GKS Reference Manual.

3—4 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

m 3.1.4.1 Including Definition Files

You use DEC GKS software primarily by placing calls to DEC GKS functions
in your program. However, when using DEC GKS, you need statements in
your program other than calls to GKS functions. The specific statements that
are needed depend on the VAX language you use. (For more information, refer
to Appendix F, Language-Specific Programming Information, in the DEC GKS
Reference Manual.)

DEC GKS constants and their values must be made available to all programs
using DEC GKS regardless of the language you use. All high-level languages
that use DEC GKS have a method for inserting an external file into the program
source code stream at compile time. Incorporating an external file is the method
for making DEC GKS constants available.

Your installation kit has been supplied with files that contain DEC GKS
constants and separate files that contain DEC GKS completion status code
constants. You incorporate these files into your program with a statement that
is appropriate to the language you are using.

For example, the C programming language provides the #INCLUDE statement
for inserting an external file into a program. Therefore, any C program that
uses the C binding should contain the following statement:

(h ’ #INCLUDE <GKS/gks.h>

Any FORTRAN program that uses the FORTRAN binding functions should
contain the following statement:

INCLUDE '/usr/include/GKS/gksdefs.bnd’
The language definition files located in /usr/include/GKS are as follows:

e gksdefs.h for VAX C and CC (GKS$ binding)
e gks.h for VAX C and CC (C binding)
e gksdefs.bnd for VAX FORTRAN using the FORTRAN binding functions

The completion status code definition files located in usr/include/GKS are as
follows:

* gksmsgs.h for VAX C

Each file includes comments that describe the exact method for using a given
definition file.

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-5

i
i

3.1.5 Compiling, Linking, and Running Your Programs

A program that uses DEC GKS function calls should be compiled and executed
as any other program. Use the compile command that is appropriate to the
language you are using. To run an executable program, type the executable file
name that you specified.

NOTE

The convention indicates that you type the backslash
character \, press Return, and then type text on the next line of the
screen.

3.1.5.1

Compiling and Linking GKS$ Programs
To compile and link a DEC GKS GKS$ program, use the following syntax:

vce -o application application.c\|RETURN
-1GKS -1ddif -dwt -lcursesX -1lc -1X11 -1m -1c [RETURN

3.1.5.2

Compiling and Linking C Binding Programs
To compile and link a DEC GKS C binding program, use the following syntax:

vce -o application application.c\[RETURN
-1GKS -1ddif -dwt -lcursesX -1lc -1X11 -1m -1c [RETURN

3.1.5.3

Compiling and Linking FORTRAN Binding Programs
To compile and link a DEC GKS FORTRAN binding program, use the following
syntax:

fort -o application application.for\|RETURN
-1GKSFORBND -1ddif -dwt -lcursesX -1lc -1X11 -1m -1c (RETURN

3-6 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

ﬁ 3.1.6 Environment Variables and DEC GKS Programming

In many DEC GKS programs, the execution of your application appears as

follows:
(1) CALL GKS$OPEN_GKS(stderr)
] CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,

* GKS$K_WSTYPE_DEFAULT)
CALL GKS$ACTIVATE_WS(1)

C Release the DEC GKS and workstation environments.
CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS()

The following numbers correspond to the numbers in the previous example:

© In this call to GKS$OPEN_GKS, the name stderr is the only argument to

the function. This argument tells DEC GKS where to write generated error

messages.

If you pass the name stderr (or the value 0), DEC GKS writes the error

messages to the specified location. By default, stderr goes to the device
m /dev/tty, which translates to your process’s default device connection (error

messages appear on your terminal’s display surface).

If you choose, you can specify a path name as an argument to

GKS$OPEN_GKS. In this way, you have a permanent record of generated

error messages for use during program debugging.

@® The constant GKS$K_CONID_DEFAULT (or the value 0) tells DEC GKS
to evaluate the environment variable GKSconid in order to determine the
name of the device connection.

The constant GKS$K_WSTYPE_DEFAULT (or the value 0) tells DEC GKS
to evaluate the environment variable GKSwstype in order to determine the
name of the workstation type.

Consequently, you can use the setenv command to your shell to define the
environment variables to be the connection and type with which you are
working, as follows:

csh> setenv GKSconid /dev/tty|RETURN

csh> gsetenv GKSwstype 13
csh> # VT241 Color {RETURN
csh> application{RETURN

Compiling, Linking, and Running DEC GKS Programs on ULTRIX 3-7

csh> setenv GKSconid /dev/tt00 [RETURN]
csh> setenv GKSwstype 12

csh> # VT125 Black and White [RETURN] U
csh> application |RETURN]

There may be times when you do not wish to define the DEC GKS environment
variables. In this case, or if you define an invalid value, DEC GKS translates
several environment variables in the following order:

1. If the environment variable GKSconid is undefined, DEC GKS uses logical
name /dev/tty for output.

2. If the environment variable GKSwstype is undefined, then DEC GKS sets
the device type to be GKS$K_VT240BW (the value 14, a black and white
VT240).

The ability to define GKSconid and GKSwstype provides device independency.
For more information concerning device-independent DEC GKS programs, refer
to the DEC GKS User Manual.

3.1.6.1 Specifying Bit Masks as Workstation Type Values

You have the option of specifying the workstation type value in either a ‘)
hexadecimal, octal, or decimal longword value. In most cases, it is sufficient to ‘
specify the type value in decimal.

However, some of the DEC GKS supported devices allow you to pass a bit
mask in the first word of the longword workstation type value. For example,
the following workstation type specifies default values for the DIGITAL LVP16
plotter:

csh> setenv GKSwstype 51 [RETURN

The following decimal workstation type specifies to DEC GKS to use the LVP16
plotter in landscape mode, with a paper size of 11 x 17 inches:

csh> setenv GKSwstype %x131123[RETURN

For a complete list of all of the available bit masks for a given device, refer to
the DEC GKS Device Specifics Reference Manual.

3-8 Compiling, Linking, and Running DEC GKS Programs on ULTRIX

Chapter 4
Control Functions

The control functions establish the DEC GKS and workstation environments,
and control the workstation surface in a variety of ways. The following list
presents the control functions by category:

Category GKS Functions

GKS Environment GKS$OPEN _GKS, GKS$CLOSE_GKS

Workstation Environment GKS$OPEN_WS, GKS$ACTIVATE_WS,
GKS$DEACTIVATE_WS, GKS$CLOSE_WS

Display Surface Control GKS$CLEAR_WS, GKS$REDRAW_SEG_ON_WS,
GKSSET_DEFER_STATE, GKSUPDATE_WS

Additional Control GKS$ESCAPE, GKS$MESSAGE

In a typical program, you need very few lines of code to tell DEC GKS about
the type of implementation you are using, the type of device you are using
for input or output, and the functionality allowed with that particular type
of device. (Input, output, and other types of devices are called workstations.)
You begin and end most DEC GKS sessions with lines of code similar to the
following:

C Establish the DEC GKS environment; write errors to the device
[represented by the logical name SYS$ERROR.

CALL GKS$OPEN_GKS('SYS$ERROR:')
C Open the default workstation, on the default device, and give
C the workstation an identification number. If you are working with
C a device which supports input, you can request input after this
C function call, but you cannot generate output.

CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,

* GKS$K_WSTYPE_DEFAULT)
C Activate the workstation using its identification number. If the
C workstation supports output, you can generate output "primitives"
C after this function call.

Control Functions 4-1

CALL GKS$ACTIVATE_WS(1)

C Release the DEC GKS and workstation environments.
CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS()

The previous code example initiates actions by the DEC GKS kernel that
involve various operating states, tables, and lists. The tables and lists that are
accessible at a given time during program execution determine what types of
tasks you can perform (tasks such as input requests and output generation).
The following sections discuss the DEC GKS kernel, the DEC GKS operating
states, and the various tables and lists involved in working with DEC GKS.

4.1 The Kernel, Graphics Handlers, and Description Tables

The DEC GKS environment consists of the kernel, one or more graphics
handlers, at least two description tables, and a series of state lists. This section
discusses all but the state lists, which are described in detail in Section 4.1.2.

The DEC GKS kernel performs basic operations that do not depend on capa-

bilities specific to input, to output, or to the use of storage devices. The kernel

gives the DEC GKS functions access to the information and tools necessary u
to perform properly. The kernel operations include calling certain inquiry

functions, maintaining certain tables, and issuing calls to graphics handlers.

The DEC GKS graphics handlers consist of functions that the kernel calls
to perform graphics operations on a particular workstation. The functions
include obtaining input, relaying output, and responding to inquiries for
workstation-specific information.

DEC GKS supplies graphics handlers for various devices such as the DIGITAL
VAXstation II/GPX and the VT240. If you are certain which devices your
DEC GKS programs will use, you should review the DEC GKS Device Specifics
Reference Manual. In this way, you can become familiar with the range

of capabilities of a particular device, and you can gain a sense of how the
supported devices vary.

The DEC GKS description table contains constant information about the GKS
implementation you are using. No matter what functions you call in your
program or no matter what application you run, the information in the DEC
GKS description table does not change. The DEC GKS kernel uses this constant
information about DEC GKS to initialize sections of the DEC GKS state list,
which is described in Section 4.1.2.

4-2 Control Functions

\
\

you are using (with DEC GKS, level 2c), the number of available workstation
types, the list of workstation types, the maximum allowable open workstations,
and so forth. The DEC GKS description table is contained in the DEC GKS
kernel.

A workstation description table contains constant information about one partic-
ular device. No matter what functions you call in your program or no matter
what application you run, the information in a device’s workstation description
table does not change, as long as you always use the same graphics handler.
Each graphics handler contains a workstation description table describing that
particular device. The workstation description table is used to initialize sections
of the workstation state list, which is described in Section 4.1.2.

m The DEC GKS description table contains information such as the level of GKS
|

The workstation description table contains information such as the workstation
type, the workstation category, the device-specific maximum coordinate values,
the default bundled output attribute values, and so forth.

4.1.1 Workstations

A workstation provides a common interface through which a DEC GKS
application program controls a graphics device. A workstation is usually a

m physical device that has input and/or output capabilities. (The GKS$K_
WSCAT_MO, GKS$K_WSCAT_MI, and GKS$K_WSCAT_WISS workstations
are exceptions and are described in Table 4-1.)

The various capabilities of the workstation determine the workstation category.
Every workstation description table has an entry for the workstation category
of that particular type of workstation. The six workstation categories are as
follows:

Table 4—-1: Workstation Categories

Category Description

GKS$K_WSCAT_OUTPUT A workstation of the category GKS$K_WSCAT_.
OUTPUT can only display graphical images on a
single display surface. A GKS$K_WSCAT_OUTPUT
workstation can process all output functions with
the possible exception of the device-dependent
generalized drawing primitive (GDP) functions. For
more information concerning GDPs, refer to Chapter 5,
Output Functions.

Control Functions 4-3

Table 4—1 (Cont.): Workstation Categories -

Category Description v

GKS$K_WSCAT_INPUT A workstation of the category GKS$K_WSCAT_INPUT
can only accept input, which must be accepted by at
least one type of logical input device. A GKS$K_
WSCAT_INPUT workstation cannot accept the
generation of graphical images by DEC GKS output
functions. For more information concerning input, refer
to Chapter 8, Input Functions.

GKS$K_WSCAT_OUTIN A workstation of the category GKS$K_WSCAT_OUTIN
combines the capabilities of GKS$K_WSCAT_OUTPUT
and GKS$K_WSCAT_INPUT workstations. This type
of workstation can display graphic images on the
workstation surface as well as accept input from the
logical input devices. Also, this type of workstation
must include at least one logical input device of each
class. For more information concerning logical input
devices, refer to Chapter 8, Input Functions.

GKS$K_WSCAT_MO A workstation of the category GKS$K_WSCAT_MO
(Metafile Output) stores image-specific data in a file
for use in reproducing the graphical image at a later
time, perhaps in another application program. For more
information concerning metafiles, refer to Chapter 10,

Metafile Functions. ‘ ’
GKS$K_WSCAT_MI A workstation of the category GKS$K_WSCAT_MI .

(Metafile Input) allows an application program to read

and interpret items in a file that contains image-specific

data used to reproduce a graphic image. The file

containing the data to be interpreted must be produced

by a GKS$K_WSCAT_MO workstation. For more

information concerning metafiles, refer to Chapter 10,

Metafile Functions.

GKS$K_WSCAT_WISS A workstation of the category GKS$K_WSCAT_WISS
(workstation independent segment storage) can store
output primitives as a single unit during the execution
of a single application. The group of output primitives
is called a segment. You can manipulate the group
of output primitives within the defined segment as a
single entity. The only way to transfer segments from
one workstation to another is to store the segment
in workstation independent segment storage (WISS)
and then copy that segment to whichever open or
active workstation you desire. For more information
concerning segments, refer to Chapter 9, Segment
Functions.

44 Control Functions

ﬁ 4.1.2 Operating States and State Lists

The previous sections described the constructs, data structures, and tables
needed to maintain the static attributes of the DEC GKS implementation and
each workstation.

The DEC GKS and workstation states are not static. You can generate many
types of output with many different effects on the surface of the workstation,
you can use several devices, or you can create different segments. DEC GKS
must keep track of the current state of both the DEC GKS and the workstation
environments.

For example, the DEC GKS kernel must have access to a flag that designates
whether the DEC GKS software has been initialized, allowing access to
description tables and other structures. As another example, if you want to
output to a workstation, DEC GKS must have access to another flag that
designates whether that workstation is active or not.

To keep track of the information that is available to DEC GKS at a given time,
DEC GKS maintains its operating state and several different state lists.

The DEC GKS operating states are as follows:

n * GKS$K_GKCL—GKS is closed.
* GKS$K_GKOP—GKS is open.
* GKS$K_WSOP—AL least one workstation is open.
* GKS$K_WSAC—ALt least one workstation is active.
* GKS$K_SGOP—A segment is open.

For a better understanding, review the following code example. (It is similar to
the example presented at the beginning of the chapter.) Following the example,
Figure 4-1 shows the GKS operating states, the description tables and state
lists, and the control functions used to change operating states. You can use the
numbers in the example, in the figure, and in the description list to match the
lines of code with their effects on the DEC GKS operating state.

Control Functions 4-5

CALL GKS$OPEN_GKS('SYS$ERROR')

CALL GKS$OPEN_WS(1, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)

CALL GKS$ACTIVATE_WS(1)

CALL GKS$CREATE_SEG(1)
CALL GKS$CLOSE_SEG()

CALL GKS$DEACTIVATE_WS(1)
CALL GKS$CLOSE_WS(1)
CALL GKS$CLOSE_GKS(Q)

The following numbers correspond to the numbers in the previous example and
to the numbers in Figure 4-1:

Before you invoke DEC GKS, the operating state value is GKS$K_GKCL.
When DEC GKS is closed, you can call GKS$INQ_OPERATING_STATE,
which returns the current operating state, you can call GKSSOPEN_GKS,
or you can call DEC GKS functions to log and handle errors. To log and
handle errors, DEC GKS maintains the error state list. The error state list
contains entries that specify the error state and the error log file. If you
attempt to call DEC GKS functions while DEC GKS is closed (other than
those discussed in this paragraph), the call generates an error message.
For more information, refer to Chapter 12, Inquiry Functions, and to
Chapter 11, Error-Handling Functions.

In order to perform more tasks using DEC GKS, you must set the operating
state to GKS$K_GKOP. To do this, make a call to the control function
GKS$OPEN_GKS, and pass to the function the name of an error log file
so that DEC GKS knows where to write error messages. If you specify
SYS$ERROR, and if you have not redefined that logical name, DEC GKS
writes error messages to your terminal.

Once you open DEC GKS, you have enabled access to the DEC GKS
description table and the workstation description tables of the supported
graphics handlers. By calling GKS$OPEN_GKS, you have also allowed
access to the DEC GKS state list. The DEC GKS state list contains entries
that designate information such as the set of open workstations (if any), the
current normalization number, the current character height, and so forth.

Once DEC GKS is open, you can then specify output attributes (refer to
Chapter 6, Output Attribute Functions), set normalization transformations
(refer to Chapter 7, Transformation Functions), obtain values from the
DEC GKS state list, and obtain values from the DEC GKS and workstation

4-6 Control Functions

W,

description tables (refer to Chapter 12, Inquiry Functions). If you attempt to
call other functions, DEC GKS generates an error message.

To perform further tasks using DEC GKS (such as requesting input),

you must open at least one workstation. When you open the first work-
station, the DEC GKS operating state changes from GKS$K_GKOP to
GKS$K_WSOP (at least one workstation open). To accomplish this, call
GKS$OPEN_WS and pass a numeric workstation identifier, a physical
device name or connection identifier (such as TT, the default connection

to your terminal), and a workstation type. (See GKS$OPEN_WS in this
chapter for more information.) The workstation identifier is an integer value
chosen by you for use in all references in the program to a specific, open or
active workstation.

For each workstation you open, there exists a workstation state list. This
list contains entries that specify whether output is deferred (buffered or

on hold), whether you have to update the workstation surface (redraw the
picture to fulfill a request for a picture change), whether the workstation
surface is empty by DEC GKS definition, whether the picture on the surface
represents all of the requests for output made thus far by the application
program, and so forth. Many control functions affect the values in this
table. See Section 4.2.1 for more information.

Once at least one workstation is open, you can call all functions except those
functions that open or close DEC GKS, perform output to a workstation,
create or insert segments, or write an item to a metafile output (GKS$K_
WSCAT_MO) workstation (using the function GKS$WRITE _ITEM). If you
attempt to call these functions, DEC GKS produces an appropriate error
message.

To perform output on a given workstation, you need to activate that
workstation. When you activate the first workstation, the DEC GKS
operating state changes from GKS$K_WSOP to GKS$K_WSAC (at least
one workstation active). To activate a workstation, call the control function
GKS$ACTIVATE__WS, and pass a workstation identifier specifying an
open workstation. When DEC GKS is in this operating state, you can call
all DEC GKS functions except GKS$OPEN_GKS, GKS$CLOSE _GKS,

or GKS$CLOSE_SEG. If you attempt to call these functions, DEC GKS
produces an appropriate error message.

When you open a segment, the DEC GKS operating state changes from
from GKS$K_WSAC to GKS$K_SGOP (segment open). To accomplish
this task, call GKS$CREATE_SEG and pass a segment name. The segment
name is chosen by you for use in all references in the program to a specific
segment. That segment is stored on all active workstations. To add output
primitives to the segment, you need only call the desired DEC GKS output
functions. Unless workstation independent segment storage (WISS) is open
and active during segment creation, segments stored on workstations cannot

Control Functions 4-7

be copied from one workstation to another. You can only copy segments
from WISS to an open or active workstation; you cannot copy a segment
from any other type of workstation.

When you create a segment, DEC GKS creates a segment state list. The
segment state list contains entries that specify the segment name, the set of
associated workstations, the detectability of the segment, and so forth.

In the GKS$K_SGOP operating state, you can call all GKS functions except
those that open or close DEC GKS, those that associate or copy the open
segment to another workstation, those that attempt to change the state of
the workstation, those that clear the workstation (GKS$CLEAR_WS), or
those that create segments (GKS$CREATE_SEG). If you attempt to call
those functions, DEC GKS generates an error message.

©® When you close the open segment, the DEC GKS kernel changes the
operating state from GKS$K_SGOP to GKS$K_WSAC.

O If the operating state is GKS$K_WSAC, and if you deactivate the last
active workstation, the kernel changes the DEC GKS operating state from
GKS$K_WSAC to GKS$K_WSOP.

@ Similarly, if you close the last open workstation, the kernel changes the
DEC GKS operating state to GKS$K_GKOP.

© The final call in a single DEC GKS session should be to GKS$CLOSE_GKS;

after the call, access to the DEC GKS environment is closed and your GKS
session ends in an orderly fashion.

As you end your DEC GKS session, you must close an open segment (if one
exists), close and deactivate workstations, and close DEC GKS, in the proper
order. If you do not, your DEC GKS session does not end in an orderly fashion.

For example, if you fail to deactivate and to close an active workstation before
ending your program, the workstation may not return control to the user,
depending on the device.

4-8 Control Functions

O

W

ﬁ Figure 4-1: GKS Operating States and Environment Control

GKS$K_GKCL

GKS
closed

Call ©) Call

GKS$OPEN_GKS GKS$CLOSE _GKS

GKS$K_GKOP

GKS
open

First Call to Q) A @ Call

GKS$OPEN_WS GKS$CLOSE_WS
for last open workstation

GKS$K_WSOP
ﬁ At least one
workstation open

First call to @ @ Call

GKS$ACTIVATE_WS GKS$DEACTIVATE_WS
for last active workstation

GKS$K_WSAC

At least one
workstation active

Call ® ® Call

GKS$CREATE_SEG GKS$CLOSE_SEG

GKS$K_SGOP

Segment
open

ZK-5029-86

Control Functions 4-9

4.2 Controlling the Workstation Display Surface

Depending on the type of device with which you are working, and depending
on the values of certain entries in the workstation description tables and state
lists, there may be times during program execution when the picture does not
contain all of the changes previously requested by the application program.
DEC GKS allows a workstation to delay the actions requested by a program in
order to utilize most efficiently the capabilities of a workstation.

Output deferral is one workstation attribute that affects the rate of picture
generation. By setting the deferral mode, you can buffer the generation of
output images before transmission to the surface in order to improve overall
rate of transmission, if a given workstation supports such buffering. Other
times, you can release buffered output so that the display surface reflects the
picture defined by the application.

4.2.1 Output Deferral

DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are as follows:

* GKS$K_ASAP—Generates output As Soon As Possible.
* GKS$K_BNIG—Generates output Before the Next Interaction Globally.
* GKS$K_BNIL—Generates output Before the Next Interaction Locally.

* GKS$K_ASTI—Generates output at Some TIme (as defined by the
workstation).

A local interaction happens on the workstation specified at the time of the
surface update, and a global interaction happens on any open workstation. An
interaction is a request for input using the DEC GKS input functions.

Depending on the capabilities of the workstation, it can defer output at any
level up to the level specified in the call to GKS$SET_DEFER_STATE. If the
workstation can defer output at the requested level, it does. If the workstation
cannot defer output at the requested level, it defers output at the next supported
lower level.

For example, if you specify GKS$K_ASAP in a call to GKS$SET_DEFER _
STATE, the workstation must generate output as soon as possible. If you
specify GKS$K_BNIG, the workstation can defer output at either GKS$K
ASAP or GKS$K_BNIG, depending on its capabilities. If you specify GKS$K_
BNIL, the workstation can defer output on any level up to and including
GKS$K_BNIL, depending on its capabilities. If you specify GKS$K_ASTI,

4-10 Control Functions

the workstation can defer output at any of the four levels, depending on its
ﬂ capabilities.

DEFER_STATE. To determine the default deferral state of a given workstation
type, you can call GKS$INQ _DEF_DEFER_STATE. To determine the current
state of the deferral mode, you can call GKS$INQ_WS_DEFER_AND_
UPDATE.

Writing applications with other graphics programs, you need to “flush the
output buffer” in order to include all output in your picture. The DEC GKS
equivalent of this action is to “release deferred output” (if there is any). To see
if generated output has been deferred by the workstation, you call the function
GKS$INQ_WS_DEFER_AND_UPDATE. To release deferred output without
updating the screen in any other way, call the function GKS$UPDATE_WS
and pass the argument GKS$K_POSTPONE_FLAG. For example, the VT125
and the VT240 defer output by default. If you are using those devices, you
need to release deferred output if you want to place the current image on the
workstation surface.

|
‘ You can specify a suggested level of deferral by calling the function GKS$SET_—
|
|

4.2.2 Implicit Surface Regenerations

ﬁ Suppressed implicit regeneration of the currently generated output primitives is
‘ the second workstation attribute that can place the workstation surface out of
date.

If you request a change to an output attribute bundle index, a change to a
segment attribute, or a change to the current workstation window or viewport,
the workstation can either make the change to the surface dynamically
(GKS$K_IMM) or can implicitly regenerate the entire picture in order to
comply with the requested change (GKS$K_IRG).

Whether a workstation makes the change dynamically or requires an implicit
regeneration is a static capability of the particular workstation. You can call
either the function GKS$INQ _DYN_MOD_SEG or GKS$INQ_DYN_MOD_.
WS to determine if a workstation can make a certain change immediately or if
the picture must be implicitly regenerated.

If a workstation makes changes dynamically, then only the output primitives in
the picture that are affected by the change are regenerated and the surface does
not become out of date. For instance, for many of the supported workstations,
a call to the function GKS$SET_COLOR_REP (refer to Chapter 6, Output
Attribute Functions) changes color table entries dynamically.

Control Functions 4-11

L

When an implicit regeneration occurs, the workstation clears the surface,

implements the change, and then redraws only the segments on the workstation u
surface. You lose all output primitives not contained in segments. For instance,
for many of the supported workstations, a call to the function GKS$SET_
PLINE_REP (refer to Chapter 6, Output Attribute Functions) causes an implicit
regeneration on many workstations.

If a workstation makes changes by implicit regeneration, the workstation

may or may not regenerate the workstation surface at that point in the
program to implement the change. The implicit regeneration mode entry in the
workstation state list specifies whether the workstation currently allows implicit
regenerations, or if it suppresses them, leaving the workstation surface out

of date. You can call the function GKS$INQ_WS_DEFER_AND_UPDATE

to determine if the workstation is allowing regenerations (GKS$K_IRG_
ALLOWED) or suppressing them (GKS$K_IRG_SUPPRESSED).

Many of the DEC GKS supported devices suppress implicit regenerations
because of the possible loss of output primitives caused by an allowed regen-
eration. If you wish to change the implicit regeneration mode entry in the
workstation state list, you can call the function GKS$SET_DEFER_STATE.
Suppressing implicit regenerations allows you to make many changes to the
picture without incurring the overhead of a regeneration for every change.

When you are ready to update the workstation surface, you can call
GKS$UPDATE_WS, passing GKS$K_PERFORM_FLAG, to perform the U
single implicit regeneration. Rmember that if you call GKS$UPDATE_WS to

force a surface regeneration, you lose all primitives not contained in segments.

4.2.3 Workstation Surface State List Entries

When controlling the workstation surface, you should be aware of the display
surface empty and the new frame action necessary at update entries in the
workstation state list.

Several of the control functions clear the workstation surface if the display
surface empty entry is GKSSK_EMPTY. Under certain conditions, when you are
working with different clipping rectangles and generalized drawing primitives
(GDPs), the entry may contain GKS$K_NOTEMPTY when the surface is
actually empty. In such situations, when the entry contains GKS$NOTEMPTY,
the application program must decide whether or not there exists any “invisible”
output to the workstation surface.

4-12 Control Functions

Also, you may wish to check the new frame action necessary at update entry

to determine if an implicit regeneration will occur if you update the surface

by calling GKS$UPDATE_WS (passing GKS$K_PERFORM_FLAG as an
argument). If the new frame entry is GKS$K_NEWFRAME_NOTNECESSARY,
then you can update the surface without the fear of losing primitives not
contained in segments. If the new frame entry is GKS$K_NEWFRAME _
NECESSARY, then a call to GKS$UPDATE_WS with the GKS$K_PERFORM _
FLAG argument will cause an implicit regeneration, causing all primitives not
contained in segments to be lost.

For more information, refer to Chapter 12, Inquiry Functions.

4.3 Control Inquiries

The following list presents the inquiry functions that you should use to obtain
control function information when writing device-independent code:

m GKS$INQ_ACTIVE_WS GKS$INQ_WS_DEFER_AND_UPDATE
GKS$INQ _DYN_MOD_WS_ATTB GKS$INQ_WS_MAX_NUM
GKS$INQ_LEVEL GKS$INQ _WS_STATE
GKS$INQ_OPEN_WS GKS$INQ_WS_TYPE
GKS$INQ_OPERATING_STATE GKS$INQ_WSTYPE_LIST

GKS$INQ_WS_CATEGORY

For more information concerning device-independent programming, refer to the
DEC GKS User Manual.

4.4 Function Descriptions

This section describes the control functions in detail.

Control Functions 4-13

ACTIVATE WORKSTATION

ACTIVATE WORKSTATION

Operating States: WSOP, WSAC

Description

The function GKS$ACTIVATE_WS activates the specified workstation, allowing
all subsequently generated output to be sent to the workstation.

\

You must open DEC GKS and you must open the workstation you wish to

‘ activate before calling GKS$ACTIVATE_WS. If the newly activated workstation
| is the only active workstation, DEC GKS changes the operating state from

‘ GKS$K_WSOP (at least one workstation open) to GKS$K_WSAC (at least one
‘ workstation active).

\

Syntax \/

GKSSACTIVATE_WS (workstation_id)
GACWK (workstation_id)
gactivate (workstation_id)

| Arguments

|

| workstation_id

| data type: integer
access: read-only
mechanism: by reference

GKS$OPEN_WS in this chapter).

i
This argument is an integer value that identifies an open workstation (refer to
4-14 Control Functions

\

ACTIVATE WORKSTATION

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine ##**#

6 GKS$_ERROR_6 GKS not in proper state: GKS shall
be either in the state WSOP or in
the state WSAC in routine »*#»

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine #**»

25 GKS$_ERROR_25 Specified workstation is not open in
routine **»»

29 GKS$_ERROR_29 Specified workstation is active in
routine ***»

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine #*#**

35 GKS$_ERROR_35 Specified workstation is of category
INPUT in routine #»#»*

43 GKS$_ERROR_43 Maximum number of simultane-

ously active workstations would be
exceeded in routine **=x

Program Example

Example 4-1 illustrates the use of many of the DEC GKS control functions,
including GKS$ACTIVATE_WS.

Control Functions 4-15

ACTIVATE WORKSTATION

Example 4-1: GKS$CLEAR_WS and the GKS Control Functions

C This program writes a text string to the screen, and then
C clears the screen on the condition that it is not already clear.

IMPLICIT NONE

INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

INTEGER WS_ID

REAL START_X, START.Y, LARGER

DATA START_X / 0.1 /, START.Y / 0.5 /, LARGER / 0.03 /,

* WS_ID / 1/

(14 CALL GKS$OPEN_GKS('SYS$ERROR:')
(24 CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
(3] CALL GKS$ACTIVATE_WS(WS_ID)

C Write a line of text to the screen at a legible text height.
CALL GKS$SET_TEXT_HEIGHT(LARGER)
(4] CALL GKS$TEXT(START_X, START_Y, 'GKS$CLEAR_WS should erase this')

Cc Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)

READ(5, *)

c Clear the screen conditionally
CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_CONDITIONALLY)

C Release the GKS and workstation environments.
CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

© You must call the function GKS$OPEN_GKS to establish the DEC GKS
environment. The logical name, SYSSERROR, usually defaults to the
standard output device (the terminal surface). DEC GKS translates the
logical name to determine where to output error messages. You may find it
convenient to pass a file specification so that you can review the generated
error messages at any given time.

® When you initialize the specified workstation environment, you assign the
workstation a numeric identifier (in this example, the number 1), a device
name (in this example, DEC GKS translates the logical name GKS$CONID
to determine the device name), and a workstation type (in this example,
GKS$K_VT240 represents the VT241 device type). If you choose not to use
DEC GKS constants and you wish to use default values, you can replace
the constants with the value 0.

4-16 Control Functions

W,

ACTIVATE WORKSTATION

For more information concerning the constants used here, refer to
GKS$OPEN_WS in this section or to Chapter 1, Introduction to DEC
GKS.

When activating a workstation using GKS$ACTIVATE_WS, use the
workstation identifier that you specified as the first argument in the call to
function GKS$OPEN_WS (in this example, the value 1).

Using default windows and viewports, the function GKS$TEXT outputs a
character string starting at the world coordinates (0.1, 0.5).

For more information concerning the coordinate systems, refer to Chapter 7,
Transformation Functions. For more information concerning text output,
refer to Chapter 5, Output Functions.

The function GKS$CLEAR_WS, when passed GKS$K_CLEAR_
CONDITIONALLY, clears the workstation under the condition that the
surface contains output primitives. Since the previous function call wrote a
character string to the workstation surface, this call clears the screen.
When deactivating and closing the open workstation, pass the numeric
workstation identifier previously specified in the call to GKSSOPEN_WS
(in this example, the value 1).

Control Functions 4-17

CLEAR WORKSTATION

CLEAR WORKSTATION

Operating States: WSOP, WSAC

Description
The function GKS$CLEAR_WS performs the tasks in the following order:

1. Generates all deferred output (see GKS$SET_DEFER_STATE in this
section).

2. If the display surface empty workstation state list entry is GKS$K_
NOTEMPTY, this function always clears the surface. If the surface is
empty (GKS$K_EMPTY), then this function only clears the screen if you
specify GKS$K_CLEAR_ALWAYS as an argument. If no other worksta-
tions are associated with the segment, the segment is deleted. For more
information, refer to Chapter 9, Segment Functions.

After executing this function, DEC GKS sets the display surface empty worksta-
tion state list entry to GKS$K_EMPTY, the workstation transformation update
state entry to GKS$K_NOTPENDING, and the new frame necessary at update
state list entry to GKS$K_NEWFRAME_NOTNECESSARY.

Syntax
GKSSCLEAR_WS (workstation_id, flag)

GCLRWK (workstation_id, control _flag)
gclearws (workstation_id, clearflag)

4-18 Control Functions

i
~ CLEAR WORKSTATION

Arguments
workstation_id
data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

flag

data type: integer
access: read-only
mechanism: by reference

This argument determines under which condition DEC GKS clears the screen.
This argument can be either of the following values or constants:

‘ . Value Constant Description
0 GKS$K_CLEAR_CONDITIONALLY Clear if the surface is not
empty.
1 GKS$K_CLEAR_ALWAYS Clear the workstation.

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine #++=

=37 DECGKS$_ERROR_NEG_37 Error in device handler during
event flag allocation in routine #s**

6 GKS$_ERROR_6 GKS not in proper state: GKS shall

be either in the state WSOP or in
the state WSAC in routine ##»=

Control Functions 4-19

CLEAR WORKSTATION

Error Completion

Number Status Code Message

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine »»*»

25 GKS$_ERROR_25 Specified workstation is not open in
routine #s++

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine #*#=

35 GKS$_ERROR_35 Specified workstation is of category

INPUT in routine ##s+

Program Example

Refer to Example 4-1 in this section for a program example using a call to

GKS$CLEAR_WS.

4-20 Control Functions

()

CLOSE GKS

CLOSE GKS

Operating States: GKOP

Description

The function GKS$CLOSE _GKS releases the DEC GKS buffers, closes the
error log file, and deletes it if empty. GKS$CLOSE_GKS releases the DEC
GKS description table, the DEC GKS state list, and the workstation description
tables. A call to GKS$CLOSE_GKS must end each DEC GKS session.

You must call both GKS$DEACTIVATE_WS for each active workstation and
GKS$CLOSE_WS for each open workstation before you call GKS$CLOSE
GKS. If you do not, DEC GKS logs an error message.

A call to GKS$CLOSE_GKS changes the DEC GKS operating state from
GKS$K_GKOP (GKS open) to GKS$K_GKCL (GKS closed).

Syntax
GKSSCLOSE_GKS ()

GGKOP ()
gclosegks ()

Control Functions 4-21

CLOSE GKS

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine »*#x

2 GKS$_ERROR_2 GKS not in proper state; GKS shall

be in the state GKOP in routine

kR

Program Example

Refer to Example 4-1 in this section for a program example using a call to
GKS$CLOSE_GKS.

4-22 Control Functions

a

CLOSE WORKSTATION

CLOSE WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$CLOSE__WS updates the workstation (equivalent to a call
to GKS$UPDATE_WS with the GKS$K_PERFORM_FLAG argument), closes
a workstation opened by a previous call to GKS$OPEN_WS, and releases a
specified workstation’s state list. GKS$CLOSE_WS deassigns the channel used
for input/output to the device and removes the workstation from the set of
open workstations in the DEC GKS state list.

If you call this function to close the last open workstation, this function changes
the DEC GKS operating state from GKS$K_WSOP (at least one workstation
open) to GKS$K_GKOP (GKS open).

Be sure to deactivate a workstation with a call to GKS$DEACTIVATE_WS
before you attempt to close a workstation with GKS$CLOSE_WS. If you do
not, DEC GKS logs an appropriate error message.

Syntax
GKSSCLOSE_WS (workstation_id)
GCLWK (workstation_id)
gclosews (workstation_id)
Arguments
workstation_id
data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Control Functions 4-23

CLOSE WORKSTATION

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine ###=

7 GKS$_ERROR_7 GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC, or SGOP in routine #*»»

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine ss*»

25 GKS$_ERROR_25 Specified workstation is not open in
routine »ss=

29 GKS$_ERROR_29 Specified workstation is active in
routine #s#»

147 GKS$_ERROR_147

Input queue has overflowed in)
routine »»++ v

Program Example

Refer to Example 4-1 in this section for a program example using a call to
GKS$CLOSE_WS.

4-24 Control Functions

()

DEACTIVATE WORKSTATION

DEACTIVATE WORKSTATION

Operating States: WSAC

Description

The function GKS$DEACTIVATE_WS deactivates a specific workstation so that
subsequent output will not be sent to that workstation. A call to this function
removes the workstation from the set of active workstations in the DEC GKS
state list. Segments stored on the workstation are retained.

If a call to this function deactivates the last active workstation, this function
changes the DEC GKS operating state from GKS$K_WSAC (at least one
workstation active) to GKS$K_WSOP (at least one workstation open).

You must deactivate a workstation before you can close that workstation. Also,
you must deactivate and close all workstations (if applicable) before you can
close DEC GKS. Otherwise, DEC GKS logs an appropriate error message.

Syntax

GKSSDEACTIVATE_WS (workstation_id)
GDAWK (workstation_—id)
gdeactivate (workstation_id)

Arguments

workstation_id

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Control Functions 4-25

DEACTIVATE WORKSTATION

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine »**=*

3 GKS$_ERROR_3 GKS not in proper state: GKS shall
be in the state WSAC in routine
ko

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine #»=

30 GKS$_ERROR_30 Specified workstation is not active
in routine #*#*»

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine *#*»=*

35 GKS$_ERROR_35 Specified workstation is of category

INPUT in routine ##=

Program Example

Refer to Example 4-1 in this section for a program example using a call to
GKS$DEACTIVATE _WS.

4-26 Control Functions

ESCAPE
ESCAPE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$ESCAPE provides a method for individual DEC GKS im-
plementations to access capabilities of a specific workstation that are not fully
utilized by other functions. For example, the DEC GKS implementation uses
this function call to produce a hardcopy dump of a VT125/VT240 terminal
screen or to set the plotter pen speed on an LVP16 workstation.

DEC GKS Device Specifics Reference Manual describes the level of support for
the DEC GKS escape functions. For more information concerning the available
escapes, refer to the DEC GKS Device Specifics Reference Manual.

SYNTAX

GKSSESCAPE (function—id, in—data_record, in_—record_size,
out__data_record, out__record__size, total__record__size)

GESC (fun—id, dim_.idr, idr, max_odr, len_odr, odr)
gescape (function, indata, bufsize, outdata, escout__size)

Arguments
function_id
data type: integer
access: read-only
mechanism: by reference

This argument is the escape function identifier.

Control Functions 4-27

ESCAPE

in_data_record

data type: address (record)
access: read-only
mechanism: by reference

This argument is a pointer to the input data record buffer. For more infor-
mation concerning the structure of the input data record, refer to Chapter 1,
Introduction to DEC GKS.

in_record_size

data type: integer
access: read-only
mechanism: by reference

This argument is the size of the input data record in bytes. This argument
should be the exact size of the required input data record.

out_data_record

data type: address (record)
access: modifiable
mechanism: by reference

This argument is a pointer to the output data record buffer. For more infor-
mation concerning the structure of the output data record, refer to Chapter 1,
Introduction to DEC GKS.

our_record_size

data type: integer
access: modifiable
mechanism: by reference

On input, this argument contains the size of the output data record buffer in
bytes. On output, DEC GKS writes the amount of the buffer actually containing
the output data record. If the argument total_record_size is larger than out_
record_size, then you know that DEC GKS truncated the output data record
when writing to the buffer.

If this argument is the value 0, DEC GKS only checks for errors and then
writes the size of the output data record to total_record_size; the escape is not
performed. In this way, you can obtain the actual size of the data record to
compare it to your buffer space.

4-28 Control Functions

ESCAPE

total_record_size

data type: integer
access: write-only
mechanism: by reference

This argument is the total size of the output data record in bytes. If the total
size of the output data record does not match the size of the output buffer, you
know that the record was either truncated to fit in the allocated space or was
smaller than the allocated space.

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine *#**#

8 GKS$_ERROR_8 GKS not in proper state: GKS
shall be in one of the states GKOP,
WSOP, WSAC, or SGOP in routine
Wk

180 GKS$_ERROR_180 Specified escape function is not
supported in routine #»»

181 GKS$_ERROR_181 Specified escape function iden-
tification is invalid in routine
hkkg

182 GKS$_ERROR_182 Contents of escape data record are

invalid in routine #+*»

Program Example

Example 4-2 illustrates the use of the function GKS$ESCAPE. To achieve the
same effects, you should connect a printer to the printer port of the VT241
terminal. Following the program example, Figure 4-2 illustrates the program’s
effect on a VT241 workstation.

Control Functions 4-29

ESCAPE

Example 4-2: Using the Escape Function

C This program outputs a tall, thin house from a VT240 screen to
C an attached printer.

IMPLICIT NONE

INCLUDE 'GKSDEFS.FOR'

INTEGER WS_ID, NUM_POINTS, IN_DATA(7),

* IN_SIZE, OUT_DATA(7), OUT_RECORD_SIZE,

*TOTAL_RECORD_SIZE, LIST_INTS(1), LIST_INTS_PTR

REAL PX (9), PY (9)

(1] DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1/
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1/
(2] DATA NUM_POINTS / 9 /, IN_SIZE / 16 /, WS_ID / 1 /,

* OUT_RECORD_SIZE / 28 /

EQUIVALENCE(IN_DATA(4), LIST_INTS_PTR)
LIST_INTS_PTR = %LOC(LIST_INTS)

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

3] CALL GKS$POLYLINE(NUM_POINTS, PX, PY)
C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.
CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5, *)
C Initialize escape data record...
© INDATA(1) =1
INDATA(2) =0
INDATA(3) =0
LIST_INTS(1) = WS_ID
(5] CALL GKS$ESCAPE(GKS$K_ESC_PRINT, IN_DATA, IN_SIZE,

* OUT_DATA, OUT_RECORD_SIZE,
* TOTAL_RECORD_SIZE)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()

END

The following numbers correspond to the numbers in the previous example:

© These arrays contain the house’s X and Y world coordinates. For example,
the first element of the array PX is the X value of the first point, and the
first element of the array PY is the Y value of the first point (.4, .1). This
program uses the default world coordinate plane with the starting point
(0, 0), the maximum X value 1.0, and the maximum Y value 1.0.

4-30 Control Functions

o0

ESCAPE

You must correctly initialize the data record size arguments. According to
the description of the GKS$K_ESC_PRINT escape, the input data record is
16 bytes long (4 longword components). The initial size of the output data
record is 28 bytes long (GKS$ESCAPE ignores the output data record for
GKS$K_ESC_PRINT).

If you initialize the argument OUT_RECORD_SIZE to be the value 0,
DEC GKS does not perform the escape, but instead returns the length of
the output data record to the argument TOTAL _RECORD_SIZE. This
functionality is useful when you are not sure if your output data record
buffer is large enough.

This code outputs a tall, thin house to the VT241 terminal screen.

The input data record passed to GKS$ESCAPE must contain the worksta-
tion identifier of the device containing the picture to be printed. In this
example, the variable WS_ID represents the VT241 screen.

For a complete description of the DEC GKS standard escape data record
format, refer to Chapter 1, Introduction to DEC GKS. For a complete
description of the DEC GKS supported escapes and their data record
requirements, refer to Appendix I, DEC GKS GDPs and Escapes.

The call to GKS$ESCAPE outputs the picture to the attached printer.

Figure 4-2 shows the screen of a VT241 terminal after the program has run to
completion.

Control Functions 4-31

ESCAPE

Figure 4-2: Using the Escape Function—VT241

f

ZK-5043-85

4-32 Control Functions

m MESSAGE

MESSAGE

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$MESSAGE allows an application program to deliver a mes-
sage to the user at an implementation-dependent location on the workstation
surface, or on a separate device associated with the workstation. (For example,
you may wish to send a message to the user stating the need to change the
paper in the plotter before you regenerate the picture.)

For information on the workstation-specific capabilities of GKS$MESSAGE,
refer to the DEC GKS Device Specifics Reference Manual.

m SYNTAX
GKSSMESSAGE (workstation_id, message)

GMSG (workstation_id, message)
GMSGS - subset (workstation_id, | _message, message)
gmessage (workstation_id, message)

Arguments
workstation_id
data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Control Functions 4-33

MESSAGE

message

data type: string

access: read-only
mechanism: by descriptor

This argument is the text of the message to be delivered to the specified
workstation.

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine *#»*

-39 DECGKS$_ERROR_NEG_39 Descriptor is not acceptable in
routine #*»

7 GKS$_ERROR_7 GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC, or SGOP in routine #***

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine #x*

25 GKS$_ERROR_25 Specified workstation is not open in
routine *#*»

36 GKS$_ERROR_36 Specified workstation is

Workstation Independent Segment
Storage in routine **sx

101 GKS$_ERROR_101 Number of points is invalid in
routine #+»*

Program Example

Example 4-3 illustrates the use of the function GKS$MESSAGE. To achieve the
same effects, you need to do the following:

1. Determine the device connection identifier of the printer you want to use
as a workstation. The printer must be attached to your host system, not to

4-34 Control Functions

W

MESSAGE

your terminal. The DIGITAL Command Language (DCL) command SHOW
DEVICE may assist you.

2. Allocate that device for your use using the DCL command ALLOCATE.
(You may need special privileges to allocate a device.)

3. Use the DCL command SHOW TERMINAL for the allocated device, to
determine whether the baud rate, parity, and other terminal characteristics
match the communications settings on the printer. For more information on
these settings, refer to the programming guide for the printer.

4. Use the DCL command DEFINE to define GKS$CONID as the connection
identifier for the allocated device, and GKS$WSTYPE as the type of printer
you are using. For more information concerning the possible workstation
types, refer to the appropriate appendix in this manual.

Following the program example, Figure 4-3 illustrates the program’s effect on a
VT241 workstation.

Example 4—-3: Sending a Message to the User

C This program outputs a "tall, thin house" to
C an LA100 and then prints a message on the VT241 terminal
C screen.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_SCREEN, WS_PRINTER, NUM_POINTS
REAL PX (9), PY (9)
L1 DATA PX / .4, .1, .1, .4, .25, .1, .4, .4, .1/
DATA PY / .1, .1, .7, .7, .9, .7, .1, .7, .1/
DATA NUM_POINTS / 9 /, WS_PRINTER / 1 /, WS_SCREEN / 2 /
CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_PRINTER, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)
CALL GKS$ACTIVATE_WS(WS_PRINTER)
CALL GKS$OPEN_WS(WS_SCREEN, 'TT:', GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_SCREEN)
(3] CALL GKS$POLYLINE(NUM_POINTS, PX, PY)

(continued on next page)

Control Functions 4-35

o

l

\J/

Example 4—-3 (Cont.): Sending a Message to the User

(1) CALL GKS$MESSAGE(WS_SCREEN, 'I just finished printing the house')
C Release deferred output. Pause. Type RETURN when you are finished
C viewing the picture.
CALL GKS$UPDATE_WS(WS_SCREEN, GKS$K_POSTPONE_FLAG)
READ(S, *)

CALL GKS$DEACTIVATE_WS(WS_PRINTER)
CALL GKS$CLOSE_WS(WS_PRINTER)
CALL GKS$DEACTIVATE_WS(WS_SCREEN)
CALL GKS$CLOSE_WS(WS_SCREEN)

CALL GKS$CLOSE_GKS()

END

@ These arrays contain the house’s X and Y world coordinates. For example,

the first element of the array PX is the X value of the first point, and the

first element of the array PY is the Y value of the first point (.4, .1). This

program uses the default world coordinate plane with the starting point

(0, 0), the maximum X value 1.0, and the maximum Y value 1.0. u
® The logical name TT defaults to the device connection of your terminal,

which in this example is a VT241.

This code outputs a tall, thin house to the printer.

The call to GKSSMESSAGE outputs a message to the VT241 screen telling
the user that the program printed the picture of the house.

The following numbers correspond to the numbers in the previous example:
|

Figure 4-3 shows the screen of a VT241 terminal after the program has run to
completion.

4-36 Control Functions

MESSAGE

Figure 4—3: Sending the User a Message—VT241

I/Just finished printing the hous;

ZK-5044-86

Control Functions 4-37

OPEN GKS

OPEN GKS

Operating States: GKCL

Description

The function GKS$OPEN_GKS permits subsequent access to the DEC GKS
state list, DEC GKS description table, and the workstation description tables.

GKS$OPEN _GKS changes the DEC GKS operating state from GKS$K_GKCL
(GKS closed) to GKS$K_GKOP (GKS open). The error state list entry error file
is set to the value passed as an argument to this function.

When using DEC GKS, you usually call GKS$OPEN_GKS first. All functions
except emergency close, error handling, error logging, GKSSOPEN_GKS, and
GKS$INQ _OPERATING _STATE require at least the GKS$K_GKOP operating
state.

Syntax
GKSSOPEN_GKS (error_file, [, memory])
GOPKS (err—file, [, buffer])
gopengks (errfile, memory)
Arguments
error—file
data type: string
access: read-only
mechanism: by descriptor

This argument is either a logical name or a physical name of a device or file
that points to the error log file. For information on how GKS handles errors,
refer to Chapter 11, Error-Handling Functions.

4-38 Control Functions

\J

OPEN GKS

NOTE

If you pass the value 0, DEC GKS uses the translation of the logical
name SYS$ERROR as the error file.

memory

data type: integer
access: read-only
mechanism: by reference

To maintain compatibility with the GKS standard, GKS$OPEN _GKS accepts an
optional second argument to indicate the amount of memory units available for
use by DEC GKS. If provided, DEC GKS ignores this argument.

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine »»**

-39 DECGKS$_ERROR_NEG_39 Descriptor is not acceptable in
routine »#«*

-97 DECGKS$_ERROR_NEG_97 Internal GKS error: Insufficient

buffer size for translated logical
name in routine ***

-98 DECGKS$_ERROR_NEG_98 Internal GKS error: Too many
translations of logical name in
routine *#++

1 GKS$__ERROR_1 GKS not in proper state: GKS shall
be in the state GKCL in routine

ok

200 GKS$_ERROR_200 Specified error file is invalid in
routine *#*»

Control Functions 4-39

OPEN GKS

Program Example

Refer to Example 4-1 in this section for a program example using a call to
GKS$OPEN_GKS.

4-40 Control Functions

ﬁ OPEN WORKSTATION

OPEN WORKSTATION

Operating States: GKOP, WSOP, WSAC, SGOP

Description

The function GKS$OPEN_WS initializes a workstation for use by DEC GKS,
permitting subsequent access to the specified workstation’s state list. The
function associates the workstation identifier with a particular device of a
specified type, and initializes the workstation.

If establishing the first open workstation, GKS$OPEN_WS changes the DEC
GKS operating state from GKS$K_GKOP (GKS open) to GKS$K_WSOP (at
least one workstation open).

GKS$OPEN_WS clears the display surface of previously generated images.
ﬁ You must call this function, followed by a call to GKS$ACTIVATE_WS, before
you attempt to generate output to this workstation.

Syntax
GKSSOPEN_WS (workstation_id, device_connection_id, workstation_type)
GOPWK (workstation_id, con—id, workstation_type)
gopenws (workstation_id, conid, workstation_type)
Arguments
workstation_id
data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation. You
choose whichever nonnegative integer value your application requires.

h

Control Functions 4—41

e

OPEN WORKSTATION

device_connection_id

data type: string
access: read-only
mechanism: by descriptor

This argument is the device connection identifier that is associated with a
particular device attached to the host system. This argument can be a logical
name, a DEC GKS constant value, or a VMS file specification.

As an option, you can pass either the DEC GKS constant GKS$K_CONID_
DEFAULT, or the value 0, by reference. (If you use VAX BASIC, you can pass a
null string, by reference.) If you use this option, DEC GKS translates the logical
name GKS$CONID and uses the translation as the name of the device. This
feature aids program flexibility; each time you execute your program, you can
use the DIGITAL Command Language commands DEFINE or ASSIGN to define
GKS$CONID to be the device connection of your choice. For more information,
refer to Chapter 1, Introduction to DEC GKS.

If the translation of GKS$CONID is not valid, DEC GKS uses the logical name
TT as the device. The logical name TT is equivalent to your default terminal
connection.

Using certain output-only workstation types, you can specify a file name for
this argument. When you specify a file name, DEC GKS places the graphical
information into the specified file in the current (or specified) directory. You
can then print or type the file on the workstation. If you omit the file extension,
DEC GKS uses the default extension .LIS. Otherwise, DEC GKS uses the file
name as specified. To determine whether your workstation supports an output-
only workstation type that would allow you to specify a file name for this
argument, refer to the DEC GKS Device Specifics Reference Manual.

NOTE

If you use GKS$OPEN_WS to create or to read a metafile, DEC
GKS uses file names for this argument exactly as specified, without
applying a default extension. For more information concerning
metafiles, refer to Chapter 10, Metafile Functions.

4—-42 Control Functions

OPEN WORKSTATION

workstation_type

data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that specifies the workstation type. To review
the list of possible workstation type values, refer to Appendix A, DEC GKS
Supported Workstations. For more information concerning valid workstation
type bitmasks for a given device, refer to the appropriate DEC GKS Device
Specifics Reference Manual.

As an option, you can pass either the GKS constant GKS$K_WSTYPE _
DEFAULT, or the value 0, by reference. If you use this option, GKS translates
the logical name GKS$WSTYPE and uses the translation as the name of the
workstation type. This feature aids program flexibility; each time you execute
your program, you can use the DIGITAL Command Language commands
DEFINE or ASSIGN to define GKSSWSTYPE to be the workstation type of your
choice. For more information, refer to Chapter 1, Introduction to DEC GKS.

If GKS$WSTYPE translates to the value 0, DEC GKS sets the default work-
station type to GKS$K_VT240BW (on a large VAX) or to GKS$K_VSII (on a
VAXstation).

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine s+

~-30 DECGKS$_ERROR_NEG_30 Cannot load workstation handler:

error during image activation in
routine #+*+

=31 DECGKS$_ERROR_NEG_31 Cannot load graphics handler:
invalid DFT in routine #+*+

Control Functions 4—43

OPEN WORKSTATION

Error Completion

Number Status Code Message

-35 DECGKS$_ERROR_NEG_35 Kernel has detected an unexpected
error from a graphics handler in
routine *»**

-39 DECGKS$_ERROR_NEG_39 Descriptor is not acceptable in
routine *»»

-97 DECGKS$_ERROR_NEG_97 Internal GKS error: Insufficient
buffer size for translated logical
name in routine »*»»

-98 DECGKS$_ERROR_NEG_98 Internal GKS error: Too many
translations of logical name in
routine *#**»

8 GKS$_ERROR_8 GKS not in proper state: GKS
shall be in one of the states GKOP,
WSOP, WSAC or SGOP in routine
L2t 1]

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine ##**+

21 GKS$_ERROR 21 Specified connection identifier is
invalid in routine *»*=

22 GKS$_ERROR_22 Specified workstation type is
invalid in routine **+=

23 GKS$_ERROR_23 Specified workstation type does not
exist in routine *«#»

24 GKS$_ERROR_24 Specified workstation is open in
routine *»*»

26 GKS$_ERROR_26 Specified workstation cannot be
opened in routine *s*»

28 GKS$_ERROR_28 Workstation Independent Segment
Storage is already open in routine
kR

42 GKS$_ERROR_42 Maximum number of simultane-

ously open workstations would be
exceeded in routine »*»»

4-44 Control Functions

m OPEN WORKSTATION

Program Example

Refer to Example 4-1 in this section for a program example using a call to
GKS$OPEN_WS.

Control Functions 4-45

REDRAW ALL SEGMENTS ON WORKSTATION

REDRAW ALL SEGMENTS ON WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$REDRAW_SEG_ON_WS clears the screen and redraws all
defined, visible segments. The function performs the following tasks in order:

1. Generates all deferred output (see GKS$SET_DEFER_STATE in this
section).

2. If the display surface empty workstation state list entry is GKS$K_
NOTEMPTY, this function clears the surface.

3. Places into effect pending workstation transformations.
4. Redisplays all visible segments that existed on the workstation surface

before the screen was cleared. All output not contained in segments is lost.

After executing this function, DEC GKS sets the workstation transformation
update state entry to GKS$K_NOTPENDING, and the new frame necessary at
update state list entry to GKS$K_NEWFRAME_NOTNECESSARY.

NOTE

You should use this function if you need to redraw the picture
regardless of the status of the new frame necessary at update entry.
Otherwise, use GKS$UPDATE_WS.

Syntax

GKSSREDRAW_SEG_ON_WS (workstation—id)
GRSGWK (workstation_id)
gredrawsegws (workstation_.id)

4-46 Control Functions

REDRAW ALL SEGMENTS ON WORKSTATION

Arguments
workstation_id
data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in

ﬁ the ERROR state in routine ***=

7 GKS$_ERROR_7 GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC or SGOP in routine ***»

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine ***»

25 GKS$_ERROR_25 Specified workstation is not open in
routine *#*»#

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine #»*»

35 GKS$_ERROR_35 Specified workstation is of category
INPUT in routine #**#»»

36 GKS$_ERROR_36 Specified workstation is

Workstation Independent Storage
in routine #»*

Control Functions 4—47

REDRAW ALL SEGMENTS ON WORKSTATION

Program Example

Example 4-4 illustrates the use of the function GKSSREDRAW_SEG_ON_WS.
Following the program example, Figure 4-4 illustrates the program’s effect on a
VT241 workstation.

Example 4—4: Redrawing Segments

C This program creates a segment and then calls
c GKS$REDRAW_SEG_ON_WS.
IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_POINTS, TRIANGLE
REAL PX(4), PY(4), LARGER
DATA WS_ID / 1 /, NUM_POINTS / 4 /, TRIANGLE / 1 /,
* LARGER / 0.02 /
DATA PX /.1, .9, .1, .1/
DATAPY /.1, .9, .9, .1/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

C Set the current bundle index to 1.
CALL GKS$SET_PLINE_INDEX(PLINE_INDEX)

(2] CALL GKS$CREATE_SEG(TRIANGLE)
CALL GKS$POLYLINE(NUM_POINTS, PX, PY)
CALL GKS$CLOSE_SEG()

C Make the text easier to see and then generate the string.
CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$TEXT(0.1, 0.3,
* 'THIS IS NOT PART OF THE SEGMENT')

C Release deferred output. Pause. Type RETURN when you are finished
Cc viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)

READ (5, *)

(3] CALL GKS$REDRAW_SEG_ON_WS(WS_ID)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()

END

4-48 Control Functions

| ﬂ REDRAW ALL SEGMENTS ON WORKSTATION

The following numbers correspond to the numbers in the previous example:

© These arrays contain the polygon’s X and Y world coordinates. For
example, the first element of array PX is the X value of the first point and
the first element of array PY is the Y value. The first point of the polygon
is (.1, .1).

@ This code creates a segment that contains a triangle. The code also
generates a text string to the screen that is independent of the segment.

© The call to GKSSREDRAW_SEG_ON_WS redraws the triangle, but does
not redraw the text string since the string is not part of a segment.

Figure 4-4 shows the screen of the VT241 terminal after the program has run
to completion.

Control Functions 4—49

REDRAW ALL SEGMENTS ON WORKSTATION

Figure 4—4: Redrawing Segments—VT241

ﬁ

ZK-5045-86

4-50 Control Functions

ﬁ SET DEFERRAL STATE

SET DEFERRAL STATE

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$SET_DEFER_STATE sets the workstation state list entries
deferral mode and implicit regeneration mode. Using this function, you can allow
a workstation to defer output, or you can either suppress or allow implicit
regenerations (see Section 4.2.1 for detailed information).

The deferral mode specifies the rate of output generation. Depending on the

capabilities of the workstation, it can defer output at any level up to the level

specified in the call to GKS$SET_DEFER_STATE. If the workstation can defer

output at the requested level, it does. If the workstation cannot defer output at
ﬁ the requested level, it defers output at the next supported lower level.

For example, if you specify GKS$K_ASAP in a call to GKS$SET_DEFER _
STATE, the workstation must generate output as soon as possible. If you specify
GKS$K_BNIG, the workstation can defer output at either GKS$K_ASAP or
GKS$K_BNIG, depending on its capabilities. If you specify GKS$K_BNIL, the
workstation can defer output on any level up to and including GKS$K _BNIL,
depending on its capabilities. If you specify GKS$K_ASTI, the workstation
can defer output at any of the four levels, depending on its capabilities. (For
more information concerning the definitions of the constants discussed in this
paragraph, refer to the deferral _mode argument description.)

The implicit regeneration mode determines whether implicit regenerations

are allowed (GKS$K_IRG_ALLOWED) or suppressed (GKS$K_IRG_
SUPPRESSED). If you allow implicit regenerations, any pending or subsequent
surface change requiring regeneration (possibly output bundle index changes,
segment attribute changes, or workstation transformation changes) occurs at the
time of request. If you suppress regenerations, changes requiring regenerations
place the screen out of date (DEC GKS sets the new frame necessary at update
entry in the workstation state list to GKS$K_NEWFRAME_NECESSARY).

Control Functions 4-51

SET DEFERRAL STATE

By suppressing implicit regenerations, you can make all necessary changes
without altering the workstation surface. Then, when you have requested all
changes, call GKSSUPDATE_WS to perform all of suppressed actions in a
single regeneration of the surface.

NOTE

When regenerating the surface of the workstation, DEC GKS clears
the surface before redrawing only the visible segments. All output
primitives not contained in segments are lost.

Syntax

GKSSSET_DEFER_STATE (workstation—id, deferral_mode,

regeneration_mode)

GSDS (workstation_id, def_mode, reg_mode)

gsetdeferst (workstation_id, defmode, irgmode)
Arguments

workstation_id

data type: integer

access: read-only

mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

deferral_mode

data type: integer
access: read-only
mechanism: by reference

This argument specifies the maximum allowable deferral mode. The device
implements the highest supported mode up to, and including, this specified
mode. The argument can be any of the following values or constants.

4-52 Control Functions

m SET DEFERRAL STATE

Value Constant Description

0 GKS$K_ASAP Generate images as soon as possible.

1 GKS$K_BNIG Generate images before the next interaction globally
(before you request input from any open workstation).

2 GKS$K_BNIL Generate images before the next interaction locally (before

the next call for input from the specified workstation).

3 GKS$K_ASTI Generate images at some time. The exact time is deter-
mined by the workstation.

regeneration_mode

data type: integer
access: read-only
mechanism: by reference

This argument specifies the implicit regeneration mode. The argument can be
any of the following values or constants:

l . Value Constant Description
0 GKS$K_IRG_SUPPRESSED Image regeneration is suppressed.
1 GKS$K_IRG_ALLOWED Image regeneration is allowed.

Be aware that if you call GKS$SET_DEFER_STATE and pass GKS$K_IRG_
ALLOWED, you force the device to implicitly regenerate the surface at the
time of the function call. When DEC GKS implicitly regenerates a workstation
surface, it clears the surface and redraws all visible segments stored on that
workstation. You lose any output primitives not stored in segments.

Control Functions 4-53

SET DEFERRAL STATE

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in the
ERROR state in routine #**»

-26 DECGKS$_ERROR_NEG_26 Invalid value specified for deferral
mode in routine *#**»

-27 DECGKS$_ERROR_NEG_ 27 Invalid value specified for regenera-
tion mode in routine ***»

7 GKS$_ERROR_7 GKS not in proper state: GKS shall
be in one of the states WSOP, WSAC
or SGOP in routine *#»»

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine »**»

25 GKS$_ERROR_25 Specified workstation is not open in
routine *»*»

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine *»»»

35 GKS$_ERROR_35 Specified workstation is of category
INPUT in routine ##**+

36 GKS$_ERROR_36 Specified workstation is Workstation

Independent Storage in routine s**»

Program Example

Example 4-5 illustrates the use of the function, GKS$SET_DEFER_STATE.
Following the program example, Figure 4-5 illustrates the program’s effect on a
VT241 workstation.

4-54 Control Functions

SET DEFERRAL STATE

Example 4-5: Suppressing Implicit Regeneration

aaa

100

This program changes the color of a triangle from

the default color green, to yellow. Then, the line

changes from solid to dashed, and from yellow to blue.
IMPLICIT NONE

INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

INTEGER WS_ID, GREEN, NUM_POINTS, NUM_FLAGS, INCR,
* PLINE_INDEX, TRIANGLE, BLUE

REAL PX(4), PY(4), LARGER, RED_INTENS,
* GREEN_INTENS, BLUE_INTENS

DATA WS_ID / 1 /, NUM_FLAGS / 13 /, GREEN / 1 /, NUM_POINTS / 4 /,
* RED_INTENS / 1.0000 /, GREEN_INTENS / 1.0000 /, BLUE / 3 /,
* BLUE_INTENS / 0.4200 /, PLINE_INDEX / 1 /, LARGER / 1.0 /,
* TRIANGLE / 1 /

INTEGER FLAGS(13)

DATAPX /.1, .9, .1, .1/

DATAPY /.1, .9, .9, .1/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$SET_DEFER_STATE(WS_ID, GKS$K_ASAP,
* GKS$K_IRG_SUPPRESSED)

DO 100 INCR = 1, NUM_FLAGS, 1
FLAGS(INCR) = GKS$K_ASF_BUNDLED
CONTINUE

CALL GKS$SET_ASF(FLAGS)

CALL GKS$CREATE_SEG(TRIANGLE)

CALL GKS$POLYLINE(NUM_POINTS, PX, PY)

CALL GKS$CLOSE_SEG()

Release deferred output. Pause. Type RETURN when you are finished
viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)

READ(5, *)

CALL GKS$SET_COLOR_REP(WS_ID, GREEN,

* RED_INTENS, GREEN_INTENS, BLUE_INTENS)

Release deferred output. Pause. Type RETURN when you are finished
viewing the picture.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)

READ(5, *)

(continued on next page)

Control Functions 4-55

SET DEFERRAL STATE

Example 4-5 (Cont.): Suppressing Implicit Regeneration

(G CALL GKS$SET_PLINE_REP(WS_ID, PLINE_INDEX,
* GKS$K_LINETYPE_DASHED, LARGER, BLUE)
o CALL GKS$UPDATE_WS(WS_ID, GKS$K_PERFORM_FLAG)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()

END

The following numbers correspond to the numbers in the previous example:

© These arrays contain the polygon’s X and Y world coordinates. For
example, the first element of array PX is the X value of the first point and
the first element of array PY is the Y value. The first point of the polygon
is (.1, .1).

@ The call to GKS$SET_DEFER_STATE does not defer output, but it does
suppress all implicit regenerations.

© This code initializes the array that designates attributes as either bundled
or individually specified. The DO loop initializes all thirteen members of
the array with the constant GKS$K_ASF_BUNDLED. The variable INCR
increments the array; the variable NUM_FLAGS contains the number of
elements in the array (13).
For more information, refer to GKS$SET_ASF in Chapter 6, Output
Attribute Functions.

This code places the triangle in a segment.

This code changes the color representation from green to yellow. Changing
the color representation of a color index value does not necessitate an
implicit regeneration on a VT241; the change happens on the surface
immediately.

O Notice that DEC GKS suppresses the change to the polyline representation
since, on a VT241, changing the polyline requires an implicit regeneration
(which is suppressed through the call to GKS$SET_DEFER_STATE).

@ Once you call GKSSUPDATE_WS and pass the argument GKS$K_
PERFORM_FLAG, DEC GKS clears the surface and regenerates the
segment with the new bundled polyline attributes.

4-56 Control Functions

SET DEFERRAL STATE

Figure 4-5 shows the screen of the VT241 terminal after the program has run
to completion.

Figure 4-5: Suppressing Implicit Regeneration—VT241

o J

ZK-5218.86

Control Functions 4-57

UPDATE WORKSTATION

UPDATE WORKSTATION

Operating States: WSOP, WSAC, SGOP

Description

The function GKS$UPDATE_WS generates all deferred output for the specified
workstation without first clearing the screen. Then, if the new frame neces-
sary at update entry in the workstation state list is GKS$K_NEWFRAME _
NECESSARY, and if you specify GKS$K_PERFORM_FLAG to this function,
GKS$UPDATE_WS performs the following tasks in order:

1. Clears the screen if the display surface empty entry in the workstation state
list is GKS$K_NOTEMPTY.

2. Places into effect pending workstation transformations.

3. Redisplays all visible segments that were stored on the workstation. All
output primitives not contained in segments are lost.

After executing the actions listed previously, DEC GKS sets the display sur-
face empty workstation state list entry to GKS$K_EMPTY or to GKS$K _
NOTEMPTY according to the current state of the workstation surface, the
workstation transformation update state entry to GKS$K_NOTPENDING, and
the new frame necessary at update state list entry to GKS$K_NEWFRAME _
NOTNECESSARY. The deferral and regeneration mode entries in the
workstation state list have the same values as they did before the call to
GKS$UPDATE_WS.

However, if at the call to GKS$UPDATE_WS the new frame necessary at update
entry in the workstation state list is GKS$K_NEWFRAME_NOTNECESSARY,
or if you specify GKS$K_POSTPONE_FLAG as an argument to this function,
GKS$UPDATE_WS initiates only the transmission of any deferred output and
will continue to suppress implicit regenerations. Again, the deferral mode and
regeneration mode entries in the workstation state list have the same values as
they did before the call to GKS$UPDATE_WS.

4-58 Control Functions

m UPDATE WORKSTATION

Syntax
GKSSUPDATE_WS (workstation_id, flag)
GUWK (workstation_id, reg_flag)
gupdate (workstation_id, regenflag)
Arguments
workstation_id
data type: integer
access: read-only
mechanism: by reference

This argument is an integer value that identifies an open workstation (refer to
GKS$OPEN_WS in this chapter).

n flag

data type: integer
access: read-only
mechanism: by reference

This argument establishes the implicit regeneration mode The argument can be
any of the following values or constants:

Value Constant Description
0 GKS$K_POSTPONE_FLAG Suppress regeneration of images.
1 GKS$K_PERFORM_FLAG Perform regeneration.

Control Functions 4-59

UPDATE WORKSTATION

Error Messages

Error Completion

Number Status Code Message

-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the ERROR state in routine ##+*+

-25 DECGKS$_ERROR_NEG_25 Invalid value specified for update
workstation flag in routine »s»»

7 GKS$_ERROR_7 GKS not in proper state: GKS shall
be in one of the states WSOP,
WSAC or SGOP in routine *#**=*

20 GKS$_ERROR_20 Specified workstation identifier is
invalid in routine ##»#=

25 GKS$_ERROR_25 Specified workstation is not open in
routine *»»»

33 GKS$_ERROR_33 Specified workstation is of category
MI in routine ***=*

35 GKS$_ERROR_35 Specified workstation is of category
INPUT in routine ##»+

36 GKS$_ERROR_36 Specified workstation is

Workstation Independent Storage
in routine #+*»

Program Example

For a program example using a call to GKS$UPDATE_WS, refer to
Example 4-5 in this section.

For an example of this function updating a workstation surface after a change
to a workstation viewport and window, refer to Chapter 7, Transformation

Functions.

4-60 Control Functions

Chapter 5
Output Functions

The DEC GKS output functions generate the basic components, or primitives,
of all graphical pictures. The output functions are divided into the following

categories:

Category GKS Functions
Draw connected lines. GKS$POLYLINE
Mark locations with symbols. GKS$POLYMARKER
Draw text. GKS$TEXT

Fill a polygon. GKS$FILL _AREA
Color cells of a rectangle. GKS$CELL _ARRAY
Draw generalized drawing primitive. GKS$GDP

When you generate primitives on the workstation surface, you should be aware
of the following;:

DEC GKS operating state

DEC GKS coordinate systems
Transformations

Clipping

Deferred transformations and output

The following sections describe these issues related to output, and point to the
appropriate chapters in this manual that discuss the topics in full detail.

Output Functions 5-1

5.1 Output and the DEC GKS Operating State u

As you call control functions, DEC GKS allows access to certain tables and lists.
You can never call a DEC GKS function that requires access to a table or list
that has not yet been made available. To determine which tables and lists are
accessible, and which DEC GKS functions you can call at a given point in the
application program, DEC GKS maintains an operating state.

The DEC GKS operating states are as follows:

¢ GKS$K_GKCL—DEC GKS is closed.

* GKS$K_GKOP—DEC GKS is open.

* GKS$K_WSOP—At least one workstation is open.
* GKS$K_WSAC—ALt least one workstation is active.
* GKS$K_SGOP—A segment is open.

To call any of the output functions described in this chapter, the DEC GKS
operating state must be GKS$K_WSAC or GKS$K_SGOP. To place DEC GKS
into the GKS$K_WSAC operating state, you need to do the following:

® Open DEC GKS (by calling GKS$OPEN_GKS).
® Open at least one workstation (by calling GKS$OPEN_WS).
® Activate at least one workstation (by calling GKS$ACTIVATE_WS). u

If you call an output function, DEC GKS generates the primitive on all
active workstations. If you call an output function during the GKS$K_SGOP
operating state, then the output primitive becomes part of a segment. (For
complete information concerning segments, refer to Chapter 9, Segment
Functions.)

If you wish to output to an active workstation, the workstation must be of type
GKSK_WSCAT_OUTPUT, GKSK_WSCAT_OUTIN, or GKS$K_WSCAT_
MO. Only workstations of those categories support image generation. GKS$K__
WSCAT_OUTPUT and GKS$K_WSCAT_OUTIN workstations generate output
primitives on the workstation surface; GKS$K_WSCAT_MO workstations store
information about the function call in a file. For more information concerning
metafiles, refer to Chapter 10, Metafile Functions. For more information
concerning workstation categories or the DEC GKS operating states, refer to
Chapter 4, Control Functions.

5-2 Output Functions

("\ 5.2 Output Attributes

N

All of the output primitives have attributes that are stored in the DEC GKS state
list. Attributes are properties of the primitive, such as line thickness, color, and
style. Each attribute has an initial value, provided as a default setting. When
you call an output function, the current values of its attributes are bound to the
function, so that the output primitive reflects the current attribute values.

Output attribute functions can radically affect how the output primitive appears
on the workstation surface. For instance, depending on the current text attribute
values, the positioning point passed to the output function GKS$TEXT may be
the center point for the text string, the position of the first character in the text
string, or the position of the last character in the text string. The text output
attributes also determine whether the string runs horizontal to the workstation
X axis, vertical to the workstation X axis, or at a specified angle on the display
surface.

This chapter requires that you be familiar with the following attribute issues:

* The types of attributes available for a primitive.

® The effects of using individual and bundled attributes.
* The use of nominal sizes and scale factors.

¢ The use of foreground and background color.

For complete information on these and any other output attribute topics, refer
to Chapter 6, Output Attribute Functions.

5.3 Transformations and the DEC GKS Coordinate
Systems

When you input and output primitives, you are actually working with three
different coordinate systems. These coordinate systems are as follows:

®* World coordinate system

* Normalized device coordinate (NDC) system

¢ Device coordinate system (workstation specific)

Notice that several program examples in this chapter generate a picture of an
arrow on the workstation surface. When specifying points in the arrow, you use
the world coordinate system. The programs pass the world coordinate points
(0.1,05), (0.9, 0.5), (0.7, 0.6), (0.7, 0.4), and (0.9, 0.5).

Output Functions 5-3

A world coordinate plane is an imaginary Cartesian coordinate plane, with a
central point (0, 0), and an X and Y axis that extend to infinity in all directions.
You establish the limits of the X and Y boundaries within which you want to
work, and then create the picture you wish to output. All of the DEC GKS
output functions accept the world coordinate points of the particular output
primitive to be drawn. By default, the primitive must be drawn using the
coordinate range ([0,1] x [0,1]). (All of the program examples in this chapter
use this default coordinate range.)

DEC GKS use two separate transformations to translate your world coordi-
nates to NDC coordinates, and to translate your NDC coordinates to device
coordinates. During this process, portions of your primitives may be removed
from the final picture due to clipping. You need to be aware of the effects of
transformations and clipping on your generated output primitives. For complete
information concerning transformations, refer to Chapter 7, Transformation
Functions.

5.4 Output Deferral

When you output primitives, a workstation may postpone the generation of the
image on the workstation surface depending on the workstation’s capabilities.
This postponement is called output deferral.

DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are GKS$K_ASAP (generates
output as soon as possible), GKS$K_BNIG (generates output before the next
interaction globally), GKS$K_BNIL (generates output before the next interaction
locally), and GKS$K_ASTI (at some time).

You can specify a suggested level of deferral by calling the function GKS$SET_—
DEFER_STATE. Depending on the capabilities of the workstation, it can defer
output at the highest level up to the level specified in the call to GKS$SET_
DEFER_STATE.

For detailed information concerning GKS$SET_DEFER_STATE and deferral,
refer to Chapter 4, Control Functions.

5-4 Output Functions

U

./

5.5 Output Inquiries

The following list presents the inquiry functions that you can use to obtain
output information when writing device-independent code:

GKS$INQ_AVAIL _GDP GKS$INQ_PIXEL _ARRAY
GKS$INQ_ACTIVE_WS GKS$INQ_PIXEL _ARRAY_DIM
GKS$INQ_GDP GKS$INQ_OPERATING_STATE
GKS$INQ_PIXEL GKS$INQ _TEXT_EXTENT

For more information concerning device-independent programming, refer to the
DEC GKS User Manual.

5.6 DEC GKS Output Function Descriptions

m This section describes the DEC GKS output functions in detail.

Output Functions 5-5

CELL ARRAY

CELLARRAY

Operating States: WSAC, SGOP

Description

The function GKS$CELL _ARRAY divides a designated rectangular area into
cells, and displays each cell in a specific color or shade.

You pass a two-dimensional array containing color index values as one argu-
ment to this function. GKS$CELL _ARRAY maps the color index values to
corresponding cells within a rectangular area of the workstation surface. In
addition to the color index array, you specify an offset into the color array (a
starting element), the number of array columns to be mapped, and the number
of array rows to be mapped.

There is a one-to-one correspondence between the number of specified array u
columns and rows, and the number of columns and rows by which DEC GKS

divides the cell array rectangle. Each of the columns within the rectangle is of

equal width, and each of the rows within the rectangle is of equal height. DEC

GKS maps the color index values from each specified color index array element

to the corresponding cell, moving from the starting point towards the diagonal |
point along the X axis. ‘

For more information concerning the initial color index values for a given
workstation, refer to the DEC GKS Device Specifics Reference Manual. To alter
the color associated with a certain index value, you can use the GKS function
GKS$SET_COLOR_REP (refer to Chapter 6, Output Attribute Functions).

5-6 Output Functions

CELL ARRAY

Syntax
GKSSCELL _ARRAY (starting_point__x, starting_point__y, diagonal _point_x,
diagonal _point_y, offset__column_number,
offset_row_number, number—of_columns,
number—of_rows, color—index_values)
GCA (spx, spy, dpx, dim_x, dim_—y, scol, srow, ncols, nrows, cindex)
geellarray (rectangle, dimensions, color)
Arguments
starting_point_x
starting_point_y
data type: real
access: read-only
mechanism: by reference

These arguments designate any corner of the cell array rectangle as the cell
array starting point. You pass these arguments as world coordinate values.

diagonal_point_x
diagonal_point_y
data type: real

access: read-only
mechanism: by reference

These arguments specify the corner of the cell array that is diagonal to the
starting point, in world coordinates.

offset_column_number
offset_row_number

data type: integer

access: read-only
mechanism: by reference

These arguments are the offset into the color index array. The offset determines
the number of array columns and rows that you specify as arguments to

Output Functions 5-7

CELL ARRAY

),

GKS$CELL _ARRAY. For instance, if the offset is the first element of the array,
you can specify the full dimensions of the color index array as the “number of
columns to map” and the “number of rows to map.”

If you specify an offset that begins mapping in the interior of the color index
array, you can only specify the remaining columns and rows as the number of
columns and rows to map. For instance, if you pass an array three columns
by four rows and specify an offset at element (2, 2), DEC GKS can only map
the indexes from the two columns and three rows that follow the offset array
element: elements (2, 2), (3, 2), (2, 3),(3,3),(2, 4), (3, 4). If you attempt to
divide the rectangle into more columns and rows than those from the offset to
the last element in the array, DEC GKS generates an error.

Example 5-1 reproduces the situation described in the last paragraph.

number—_of-_columns
number_of_rows

data type: integer
access: read-only
mechanism: by reference u

These arguments specify into how many columns and rows DEC GKS divides
the cell array rectangle. If you attempt to divide the rectangle into more
columns and rows than those from the offset element to the last element of the
color index array, DEC GKS generates an error. For more information, refer to
the previous argument descriptions and to Example 5-1.

color_index_values

data type: 2-D array (integer)
access: read-only
mechanism: by descriptor

This argument is the two-dimensional array that contains the color index values.
Previous arguments determine the offset element, the number of array columns
to traverse, and the number of array rows to traverse.

When DEC GKS maps the values from the color index array to the cell array, it
starts at the corner cell containing the cell array starting point and maps towards
the diagonal point along the X axis. DEC GKS divides the cell array rectangle
into the number of cells equal to the number of array elements specified by
the previous arguments. Each cell is equal in width, and each cell is equal in

height. u

5-8 Output Functions

ﬂ CELL ARRAY

For more information on the color index array, refer to Example 5-1.

NOTE

The GKS$CELL _ARRAY example uses a FORTRAN column-major
color index array. You may produce a different cell array if you use

a language that supports row-major arrays (such as Pascal, C, and so
forth).

Error Messages

Error Completion
Number Status Code Message
-20 DECGKS$_ERROR_NEG_20 GKS not in proper state: GKS in
the error state in routine »s»=
-33 DECGKS$_ERROR_NEG_33 Array descriptor is not acceptable
m in routine #*»
5 GKS$_ERROR_5 GKS not in proper state: GKS shall

be either in the state WSAC or in
the state SGOP in routine ##**

91 GKS$_ERROR_91 Dimensions of color array are
invalid in routine #*»*»

Program Example

Example 5-1 illustrates the use of the function GKS$CELL _ARRAY. Following
the program example, Figures 5-3, 5-4, and 5-5 illustrate the program’s effect
on a VT241 workstation.

Output Functions 5-9

CELL ARRAY

Example 5-1

Cell Array Output

C This program displays three cell array rectangles.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER COLORS(3, 4), NUM_COLS, NUM_ROWS, START_COL,
* START_ROW, WS_ID

REAL START_X, START_Y, DIAG_X, DIAG.Y
o DATA COLORS /3,2,0, 1,3,2, 0,2,0,

DATA WS_ID / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

START_X
START_Y
DIAG_X
DIAG_Y

oooo

START_ROW
START_COL
NUM_COLS
NUM_ROWS

(2] CALL GKS$CELL_ARRAY(START_X, START_Y, DIAG_X, DIAG.Y,

- © © -

-

1
3
4

* START_COL, START_ROW, NUM_COLS, NUM_ROWS, %DESCR(COLORS))

C Release deferred output. Pause.

¢ viewing the screen.

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)

READ(5, *)

START_X
START_Y
DIAG_X
DIAG_Y

START_ROW
START_COL
NUM_COLS
NUM_ROWS

NN

[eNeNeoNe)

-0 O~

Type RETURN when you are finished

5-10 Output Functions

(continued on next page)

\/

m CELL ARRAY

Example 5—1 (Cont.): Cell Array Output

(3] CALL GKS$CELL_ARRAY(START_X, START_Y, DIAG_X, DIAG_Y,
* START_COL, START_ROW, NUM_COLS, NUM_ROWS, %DESCR(COLORS))

C Release deferred output. Pause. Type RETURN when you are finished

C viewing the screen.
CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5, *)
START_X = 0.1
START_Y = 0.1
DIAG.X =0.9
DIAG.Y =0.9
START_ROW = 2
START_COL = 2
NUM_COLS = 2
NUM_ROWS = 3
© CALL GKS$CELL_ARRAY(START_X, START_Y, DIAG_X, DIAG_Y,
ﬁ * START_COL, START_ROW, NUM_COLS, NUM_ROWS, %DESCR(COLORS))

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()

END

The following numbers correspond to the numbers in the previ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>