
DEC GKS User Manual
Order Number: AA—HW45C—TE

April 1989

This document is an instructional manual that is supplementary to the DEC GKS
Reference Manual, and contains information for both the novice and the moderately
experienced GKS programmer. Before reading further, software users may wish
to review the release notes by typing HELP GKS RELEASE_NOTES on the DCL
command line.

Revision/Update Information:

Operating System and Version:

Software Version:

digital equipment corporation
maynard, massachusetts

This revised document supersedes the VAX GKS
User Manual Order No. AI—HW45B—TE).

VMS Version 4.7 or higher. ULTRIX Version 3.0
or higher. VAXstation requirement: VAXstation
Windowing Software Versions 3.3 or higher, or
DECwindows Version 1.0.

DEC GKS Version 4.0

First Printing May 1984
Revised March 1986, May 1987, April 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that
is not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1984, 1986, 1987, 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ALL—IN-1 EduSystem
DEC IAS
DEC/CMS MASSBUS
DEC/MMS PDP
DECnet PDT
DECmate P/OS
DECsystem-10 Professional
DECSYSTEM-20 Q—bus
DECUS Rainbow
DECwriter RSTS
DIBOL RSX

RT
ULTRIX
UNIBUS
VAX
VAXcluster
VMS
VT
Work Processor

d Gg80 a TM

ZK4629

Contents

Preface x;

Chapter 1 Introducing DEC GKS

1.1 DEC GKS 1 _2
1.1.1 The GKS Standard 1-2
1.1.2 DEC GKS Programming 1-3
1.1.3 DEC GKS Function Categories 1-6
1.1.4 DEC GKS Workstation Categorization 1-9
1.1.5 GKS Levels 1-10
1.1.6 DEC GKS Function Calls 1-12

1.2 Program Examples Used in This Manual 1-13

Chapter 2 Programming With DEC GKS

2.1 Using DEC GKS Control Functions 2-1

2.2 Plotting a Picture 2-3

2.3 Generating Output 2-4
2.3.1 Generating Text 2-5
2.3.2 Generating Markers 2-6
2.3.3 Generating POlylines and Fill Areas 2-7
2.3.4 Generating Cell Arrays 2-9

2.4 Altering the Appearance of the Primitives 2-12

2.5 Working with Segments 2-15

iii

2.6 Controlling the Workstation Surface 2-17

Chapter 3 Writing Device-Independent Programs

3.1 Writing Device-Independent Code 3-3
3.1.1 Specifying the Connection and Device Type 3-3

3.1.2 Checking the Deferral Mode 3-7

3.1.3 Setting Workstation-Dependent Output Attributes 3-9
3.1.4 Working with Color and Monochrome Devices 3-1 1

3.1.5 Requiring an Implicit Regeneration 3-16

3.1.6 The Device-Independent Program 3-17

3.2 Presentation of Program Examples in this Manual 3-24

Chapter 4 Composing and Transforming Pictures

4.1 DEC GKS Coordinate Systems 4-2
4.1.1 The World Coordinate System 4-2
4.1.2 The NDC and Device Coordinate Systems 4-6

4.2 Composing a Picture 4- 7
4.2.1 Changing the Default Normalization Transformation 4-8

4.2.2 Altering the Aspect Ratio 4-13

4.2.3 Clipping a Primitive 4-18

4.3 Viewing the Composed Picture 4-19
4.3.1 Choosing Between Aspect Ratio and Drawing the Entire

Picture 4-21
4.3.2 Mapping a Picture to the Entire Workstation Surface 4-25
4.3.3 Zooming In and Out of a Picture 4-28
4.3.4 Panning Across a Picture 4-31
4.3.5 Using a Smaller Portion of the Workstation Surface 4-34

4.4 Program Example Used in this Chapter 4-36

iv

Chapter 5 Generating Output

5.1 Output Attributes 5-2
5.1.1 Geometric and Nongeometric Attributes 5-2
5.1.2 Individual and Bundled Attributes 5-3
5.1.3 Aspect Source Flags 5-6
5.1.4 Bundle Index Representations 5-13
5.1.5 Text Attributes 5-18

5.2 Using Segments 5-24
5.2.1 Workstation Independent Segment Storage 5-25
5.2.2 Segment Transformations 5-29
5.2.3 Segment Attributes 5-42

5.3 Surface Regeneration 5-46
5.3.1 Controlling Output Deferral 5-47
5.3.2 Controlling Implicit Regenerations 5-47

5.4 Program Example Used in this Chapter 5-49

Chapter 6 Requesting Input

6.1 Logical Input Devices 6-2

6.2 DEC GKS Input Modes 6-4
6.2.1 Requesting Input from Logical Input Devices 6-4

6.3 Prompt and Echo Types 6-7
6.3.1 Data Records 6-8
6.3.2 Inquiry Functions and Data Record Buffer Siies 6-11

6.4 Requesting Pick Input 6-14

6.5 Requesting Valuator Input 6-23

6.6 Requesting Choice Input 6-27

6.7 Input Viewport Priority 6-37
6.7.1 Restricting Movement of Locator, Stroke, and Pick

Prompts 6-46

6.8 Program Example Used in this Chapter 6-48

v

Chapter 7 Sampling Input and Generating Events

7.1 Choosing an Input Operating Mode 7-1
7.1.1 Logical Input Devices and Asynchronous Input 7-3
7.1.2 Sample Mode 7-7
7.1.3 Event Mode 7-10

7.1.3.1 Removing Events from the Queue 7-14
7.1.3.2 Simultaneous Event Generation and Input Queue

Overflow 7-16
7.1.4 Input Operating Mode Differences 7-19

7.2 Documenting Logical Input Devices 7-21
7.2.1 Using Workstation Independent Storage (WISS) 7-22
7.2.2 Defining the Input Subroutine 7-23
7.2.3 Creating the Help Segment 7-28

7.3 Initializing the Logical Input Devices 7-31
7.3.1 Initializing the Pick Device 7-31
7.3.2 Initializing the Choice and Valuator Devices 7-33
7.3.3 Avoiding Overlapping Echo Areas 7-36

7.4 Accepting Input 7-39
7.4.1 Sampling Pick Input 7-39
7.4.2 Using the Help Screen 7-46
7.4.3 Storing Current Input Values 7-51
7.4.4 Checking for Generated Events 7-55

7.5 Program Example Used in this Chapter 7-70

Appendix A DEC GKS Glossary

Appendix B Sample Programs

B.1 FORTRAN Binding B-1

6.2 C Binding B-6

B.3 VAX C B-13

6.4 VAX Pascal 6-21

6.5 VAX Ada B-28

vi

~,J

B.6 VAX PL/I B-35

B. 7 VAX BASIC B-42

B.8 VAX COBOL g-48

B.9 VAX BLISS B-60

Index

Examples
2-1 Generating the Plotted Picture 2—g
2-2 Controlling the Surface of the VT241 2-20
3-1 ADevice-Independent Program 3-18
3-2 The User Manual Program Example Template 3-24
4-1 Using the DEC GKS Transformations 4-37
5-1 Using DEC GKS Output Functions 5-50
6-1 Using the DEC GKS Input Functions 6-48
7-1 Using the DEC GKS Asynchronous Input Functions 7-71
B-1 FORTRAN Binding Sample Program B-2
B-2 C Binding Sample Program B-7
B-3 VAX C Sample Program B-14
B-4 VAX Pascal Sample Program B-22
B-5 VAX Ada Sample Program B-30
B-6 VAX PL/I Sample Program B-35
B-7 VAX BASIC Sample Program B-42
B-8 VAX COBOL Sample Program B-49
B-9 VAX BLISS Sample Program B-60

Figures
1-1 Generating a Text Output Primitive VT241 1-6
1-2 Possible DEC GKS Primitives VT241 1-8
1-3 Functionality by GKS Levels 1-1 1
2-1 Plotting a Picture in Default World Coordinate Space 2-4
2-2 Generating a Picture on the VT241 2-12
2-3 Changing the Appearance of the Picture 2-15

vii

2-4 Changing the Portion of the Surface Used for the Picture 2-23

3-1 Starry Night on a VAXstation Workstation 3-30

3-2 Starry Night on a VT240 Terminal 3-31

3-3 Starry Night on a TEKTRONIX 4014 Terminal 3-32

3-4 Starry Night on an LCG01 Printer 3-33

3-5 Starry Night on an LA 100 Printer 3-34

4-1 Plotting Portions of a Picture in World Coordinates 4-4

4-2 Composing a Picture on the NDC Plane 4-5

4-3 The DEC GKS Transformations 4-7

4-4 Changing Normalization Viewport 4-12

4-5 Mapping to the New Normalization Viewport 4-13

4-6 Choosing Various Normalization Viewports 4-14

4-7 Viewing the Aspect Ratio of Transformed Primitives VT241 4-17

4-8 Clipping Output Primitives 4-19

4-9 Maintaining Shape Over the Portion of Visible Picture 4-23

4-10 Maintaining Visible Primitives Over Picture Shape 4-24

4-11 Using the Entire Display Surface VT241 4-28

4-12 Zooming In on a Picture VT241 4-31

4-13 Panning Across a Picture VT241 4-34

4-14 Reducing the Workstation Surface Area VT241 4-36

5-1 Default Aspect Source Flag Settings 5-8

5-2 Specifying Bundled Aspect Source Flag Settings 5-11

5-3 Specifying Bundled and Individual ASFs 5-12

5-4 Changing the Bundle Representation VT241 5-17

5-5 Generating Text VT241 5-21

5-6 Reducing the Normalization Viewport VT241 5=22

5-7 Clipping the Adjusted Text ~ 5-23

5-8 Adjusting Text to Normalization Transformation Changes VT241 5-24

5-9 Order of Segment Transformations 5-30

5-10 Placement of the House on NDC Space 5-37

5-11 Transformed Segments VT241 5-38

5-12 Accumulating the Tree Segment Transformation VT241 5-39

5-13 Accumulating a Translation of the Tree VT241 5-40

5-14 Restoring the Identity Transformation of the Tree VT241 5-41

5-15 Moving Past the House's Clipping Rectangle VT241 5-42

5-16 Changing Segment Priorities VT241 5-45

5-17 Segment Highlighting and Visibility VT241 5-46

6-1 Possible Prompts for DEC GKS Logical Input Classes 6-3

viii

6-2 Possible Locator Prompts ~ 6-8
6-3 Sending a Message to the User VT241 6-17
6-4 Specifying GKS$K_STATUS_NOPICK VT241 6-21
6-5 Forcing the User to Pick a Segment VT241 6-22
6-6 Picking a Segment VT241 6-23
6-7 The VT241 Valuator Prompt VT241 6-27
6-8 Specifying a Large Scaling Value VT241 6-33
6-9 Choosing "No" VT241 6-34
6-10 Specifying an Additional, Smaller Scaling Value VT241 6-35
6-11 Choosing "Yes" VT241 6-36
6-12 Presenting the Scaled Segment as Specified VT241 6-37
6-13 The Initial Locator Prompt Position VT241 6-41
6-14 Unity Transformation Measure VT241 6-42
6-15 Transformation Number 1 Measure VT241 6-43
6-16 Using Normalization Transformation Number 1 6-44
6-17 Using Normalization Transformation Number 0 6-45
6-18 Restricting the Echo Area 6-47
7-1 Activating Two Input Devices of the Same Class 7-4
7-2 Changing the Measure of Two Active Choice Devices 7-5
7-3 Changing the Measure of One Active Choice Device 7-6
7-4 Activating a Pick Device in Sample Mode 7-7
7-5 Sampling a Pick Device 7-8
7-6 Placing a Choice Device in Event Mode 7-10
7-7 Generating Event Input Reports 7-12
7-8 Processing Information from the Queue 7-13
7-9 Removing Reports from the Queue 7-15
7-10 Generating Simultaneous Event Reports 7-16
7-11 Comparing the Three Input Operating Modes 7-20
7-12 The Message Board VT241 7-27
7-13 The Initial Input Device Prompts VT241 7-28
7-14 Picking Segments in Sample Mode VT241 7-44

7-15 Picking Segments in Sample Mode VT241 7-45
7-16 Picking Segments in Sample Mode VT241 7-46
7-17 Picking the HELP/EXIT Segment VT241 7-50
7-18 Displaying a Help Screen VT241 7-51

7-19 Picking the Tree VT241 7-61

7-20 Choosing a Value VT241 7-62

7-21 Triggering the Device VT241 7-63

ix

7-22 Triggering a Second Time VT241 7-64

7-23 Stopping Scaling of the Tree VT241 7-65

7-24 Picking the Road VT241 7-66

7-25 Choosing to Reset the Picture VT241 7-67

7-26 Picking the House VT241 7-68

7-27 Choosing to Exit from the Program VT241 7-69

7-28 The Final Picture VT241 7-70

V
x

Preface

Manual Objectives

This document is instructional, is supplementary to the DEC GKS Reference
Manual, and contains information for both the novice and the moderately
experienced DEC GKS programmer. Since the focus of this book is
programming technique as opposed to complete product description, you may
wish to review the introductory sections of each of the chapters in the DEC GKS
Reference Manual as you read this book.

NOTE

Before reading this manual, you should review the DEC GKS release
notes by typing the following:

$ HELP GKS RELEASE_NOTES

Intended Audience

This manual is intended for experienced application programmers who need
information supplementary to the DEC GKS Reference Manual. Readers should
be familiar with one high-level language and the DIGITAL Command Language
(DCL). (For more information concerning DCL, refer to the VAX/VMS DCL
Dictionary.)

xi

Document Structure

This manual contains the following components:

• Chapter 1, Introducing DEC GKS, provides a brief introduction to the GKS
standard and to DEC GKS.

• Chapter- 2, Programming With DEC GKS, introduces basic DEC GKS
programming techniques.

• Chapter 3, Writing Device-Independent Programs, introduces the method of
using inquiry functions to write device-independent programs.

• Chapter 4, Composing and Transforming Pictures, provides information
concerning the DEC GKS coordinate systems, picture composition, and
zooming in and out of a picture.

• Chapter 5, Generating Output, provides information concerning DEC GKS
output primitives, individual and bundled attributes, aspect source flags,
segment formation, segment transformation, segment clipping, segment
attributes, surface regeneration, and output deferral.

• Chapter 6, Requesting Input, provides information concerning the logical
input device classes, normalization viewport priority, input data records,
and synchronous input.

• Chapter 7, Sampling Input and Generating Events, provides information
concerning input process documentation, simultaneously active input
devices, and asynchronous input.

• Appendix A, DEC GKS Glossary, provides definitions for DEC GKS
terminology.

• Appendix B, Sample Programs, provides a listing of the sample DEC GKS
program Starry Night (described in Chapter 3, Writing Device-Independent
Programs), coded in all supported languages.

Associated Documents

You may find the following documents useful when using DEC GKS:

• DEC GKS User Manual—For programmers who need tutorial information or
guides to programming technique.

• DEC GKS FORTRAN Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the FORTRAN Binding.

• DEC GKS GKS$ Binding Reference Manual—For programmers who need
specific syntax and argument descriptions for the GKS$ Binding.

xii

• DEC GKS C Binding Reference Manual—For programmers who need specific
syntax and argument descriptions for the C Binding.

• DEC GKS Device Specific Reference Manual—For programmers who need
information about specific devices.

• Building a DEC GKS Workstation Handler System—For programmers who
need to build DEC GKS workstation graphics handler.

• Building a DEC GKS Device Handler System—For programmers who need
to provide support for a device unsupported by the DEC GKS graphics
handlers.

• DEC GKS Installation Guide—For system managers who install the DEC
GKS VMS software, including the Run-Time installation, on VMS and
ULTRIX operating systems.

Conventions

Convention Meaning

RETURN

$ RUN GKSPROG

INTEGER X

option, . . .

READ(5,*)

RETURN

The symbol RETURN represents a single
stroke of the RETURN key on a terminal.

In interactive examples, the user's response
to a prompt is printed in red; system prompts
are printed in black.

A vertical ellipsis indicates that not all of
the text of a program or program output is
illustrated. Only relevant material is shown
in the example.

A horizontal ellipsis indicates that additional
arguments, options, or values can be entered.
A comma that precedes the ellipsis indicates
that successive items must be separated by
commas.

The chapters in this manual add calls to
subroutines contained in Example 3-2. This
example serves as a base for all subsequent
examples in the book. Code marked in
blue is new code that you must add to
Example 3-2 so you can execute the new
subroutines for a given chapter.

Convention Meaning

[output-source, . . . J

deferral mode

Square brackets, in function synopses and a
few other contexts, indicate that a syntactic
element is optional.

All names of the DEC GKS description table
and state list entries, and of the workstation
description table and state list entries, are
italicized.

xiv

Chapter 1

Introducing DEC GKS

DEC GKS is a run-time library of graphical functions that are defined by
the ANSI X3.124-1985 and ISO 7942-1985 Graphical Kernel System (GKS)
standards. when this manual refers to the 'GKS standard," the reference
applies to either the ANSI or ISO standard.

This chapter provides a general overview of DEC GKS concepts. The remaining
chapters show you how to apply the DEC GKS concepts presented in this
chapter to actual application programs. The remaining chapters in this manual
cover the following topics:

• Basic programming techniques
• Device-independent programming

• Transformations and picture composition

• Generating output

• Accepting input

This manual defines DEC GKS terminology as needed to describe examples
and programming technique. (Key concepts are italicized and defined in
Appendix A, DEC GKS Glossary.) Some descriptions contain only enough
information to understand the topic of discussion. After reading a chapter in
this manual, you may wish to review the corresponding chapter in the DEC
GKS Reference Manual. The DEC GKS Reference Manual contains the complete
DEC GKS product description.

Introducing DEC GKS 1-1

7.1 DEC GKS

The DEC Graphical Kernel System (GKS) is a set of run-time functions that
provides application programs with a standard method of producing graphics
on a potentially large number of physical devices (such as workstations,
terminal screens, pen plotters, or graphics printers). By using DEC GKS,
you do not need to be concerned with the system-specific or device-specific
requirements for producing graphical images. You can spend more time
developing your particular application.

DEC GKS performs device-independent tasks in a body of code called the
DEC GKS kernel. To produce graphical images on a physical device, DEC GKS
uses bodies of code called workstation handlers. A workstation handler can
manipulate one or more physical devices. DEC GKS calls a workstation handler
using an integer value known as a workstation identifier.

For example, the workstation handler identified by the number 41 works
with the VAXstation I, the VAXstation II, and the VAXstation II/GPX physical
devices. These physical devices are DEC GKS workstations with both input
and output capab' 'ties. Section 1.1.4 describes the categories of DEC GKS
workstations in further detail.

To produce images on a series of • hysical devices that use a particular graphics
language (such as the PostScript"~~ graphics language), DEC GKS uses bodies of
code called graphics handlers.

This manual refers to all types of handlers as graphics handlers.

1.1.1 The GKS Standard

The GKS standard specifies both a functional standard and a syntactical
standard for GKS routines. A functional standard specifies the task that a
function must perform, but does not impose a standard function name or
syntax. A syntactical standard specifies the function name, syntax, and task.

DEC GKS implements the functional standard as a group of run-time functions
whose identifiers begin with the prefix GKS$. These functions perform tasks as
required by the functional GKS standard. You should use the GKS$ functions
if you plan to run your applications only on machines that have the DEC
architecture.

® PostScript is a trademark of Adobe Systems, Inc.

1-2 Introducing DEC GKS

DEC GKS also implements the syntactical standard (the FORTRAN and C
bindings) as a group of functions for use only in FORTRAN and C application
programs. These bindings offer a complete set of GKS functions with standard
identifier and parameter names for each of the binding functions. By using the
FORTRAN and C binding functions, you can transport your programs from
one GKS implementation to another. The FORTRAN binding functions all
begin with the letter G. The C binding functions all begin with the letter g.
For complete information concerning the FORTRAN binding, refer to DEC GKS
FORTRAN Binding Reference Manual. For complete information concerning the
C binding, refer to DEC GKS C Binding Reference Manual.

If you are programming using a DEC GKS supported language other than
FORTRAN or C, you must use the GKS$ functions. In the near future, there
will be GKS standard language bindings approved for other languages.

1.1.2 DEC GKS Programming

The DEC GKS kernel and graphics handlers perform tasks according to values
in DEC GKS internal data structures. The values in these data structures
deternune which DEC GKS functions you can call at a given point in your
application. To be able to perform input and output, almost all DEC GKS
programs need to call a small set of DEC GKS control functions.

The following FORTRAN example uses the GKS$ functions to illustrate control
function calls used by most DEC GKS applications:

INTEGER WS_ID, SEG_NAME
DATA WS_ID / 1 /, SEG_NAME / 1 /

O CALL GKS$OPEN_GKS('SYS$ERROR:')
© CALL GKS$OPEN WS(WS_ID, 'TTAO:', 13)
® CALL GKS$ACTIVATE_WS(WS_ID)

C Create a segment.
® CALL GKS$CREATE_SEG(SEG_NAME)
0 CALL GKS$TEXT(0.1, 0.5, 'DEC GKS looks mah-velour!')

CALL GKS$CLOSE_SEG()

C Release the DEC GKS and workstation environments.
® CALL GKS$DEACTIVATE_WS(WS_ID)

CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()

The following numbers correspond to the numbers in the previous example:

O The call to the control function GKS$OPEN_GKS establishes certain
DEC GKS data structures necessary for all DEC GKS programming. The
argument to this function (in this example, the logical name SYS$ERROR),
specifies a file to which DEC GKS writes generated error messages.

Introducing DEC GKS 1-3

You cannot perform many tasks unless you make calls to more DEC GKS
control functions.

© The call to the control function GKS$OPEN_WS establishes certain DEC
GKS data structures necessary for a program that requires user input. The
first argument to GKS$OPEN_WS is a workstation identifier. You use the
workstation identifier whenever you need to refer to that particular device.
The second argument specifies the connection identifier used to connect the
device to the system. The third argument is the workstation type identifier.
DEC GKS predefines the number 13 to specify the graphics handler that
works with the VT241 color terminal. (For a list of the DEC GKS devices
and their corresponding workstation type values, refer to Appendix A, DEC
GKS Supported Workstations, in the DEC GKS Reference Manual.)
You must call GKS$OPEN_GKS before you call GKS$OPEN_WS.
Depending on the needs of your application, you can open more than one
workstation at a time. After the call to GKS$OPEN_WS, you can request
input from the device, but you cannot generate output.

© The call to GKS$ACTIVATE WS alters values in the DEC GKS data
structures necessary for a program that requires output generation. The
argument passed to this function is the workstation identifier of an open
workstation.
Once you call GKS$ACTIVATE _WS, DEC GKS produces any generated
output on all workstations that are active at the time of output generation.

O The call to GKS$CREATE_SEG establishes DEC GKS data structures
necessary for the creation of a segment. A segment is a group of output
images that can be stored and manipulated as a group. Using DEC GKS
output functions, an output primitive is an image produced by a single call
to an output function.
Placing output primitives in a segment allows greater flexibility in the
presentation of the image. For instance, you have the ability to scale and
rotate segments, whereas you cannot scale or rotate primitives that are not
stored in segments.
After the call to GKS$OPEN_SEG and before the call to GKS$CLOSE_
SEG, DEC GKS stores any generated output. Once you close a segment,
you cannot add or delete primitives from the segment. You must call
GKS$ACTIVATE _WS for at least one workstation before you can create a
segment.
The argument passed to GKS$CREATE _SEG is an integer value called the
segment name. DEC GKS uses this segment name to identify a particular
segment.

1-4 Introducing DEC GKS

0 The call to the output function GKS$TEXT produces a text string on the
surface of the workstation. The first two arguments are coordinate points
used as the starting point for the text string. By default, DEC GKS accepts
coordinate points in the square range with a lower left corner of (0.0, 0.0),
and extending from 0.0 to 1.0 on both the X and Y axes. You plot your
primitive within the default range, and DEC GKS transforms the square
range to the largest square that your active workstation can produce, with
the lower left corner of the range corresponding to the lower left corner of
the workstation.
Figure 1-1 illustrates the screen of the VT241 after executing this program.
If you are using any other type of terminal, substitute the integer value 0
as the second argument to GKS$OPEN_WS, and by default, DEC GKS
uses your terminal connection. You also need to replace the workstation
identifier 13 with the identifier appropriate for your workstation type.

© The last three function calls release the DEC GKS and graphics handler
data structures. You must deactivate a workstation before you close it.

You

must close all open workstations before you close DEC GKS.

NOTE

From this point on, this manual describes rectangular coordinate
ranges as follows: ([0,1] x [1,10]). In this example, the coordinate
range specifies a rectangular region whose X borders extend from
0.0 to 1.0, and whose Y borders extend from 1.0 to 10.0. The lower
left corner of the rectangle is the point (0.0, 1.0) and the upper
right point is (1.0, 10.0). For a pictorial explanation of this range
notation, refer to Chapter 1, Introduction to DEC GKS, in the DEC
GKS Reference Manual.

Introducing DEC GKS 1-5

Figure 1-1: Generating a Text Output Primitive—VT241

VAX GKS looks Mah-velour!

\ _/

ZK 53t6-86

NOTE

All figures in this manual depicting a workstation surface may
appear slightly different than what you see on the surface of the
actual workstations. The drawings provide you with the following
information concerning the output primitives in a generated
picture: relative position on the display surface, the picture's shape,
approximate color representations, and approximate patterns.

1.1.3 DEC GKS Function Categories

The DEC GKS function categories are as follows:

• Control

• Output

• Output attribute

• Transformation

• Input

• Segment

• Metafile

1-6 Introducing DEC GKS

• Error-handling

Inquiry

The control functions determine which DEC GKS functions you can call at a
given point in your program. They also control the buffering of output and the
regeneration of segments on the workstation surface.

The output attributes produce primitives of the following types:

• Polylines—Lines.

• Polymarkers—Symbols.

• Fill areas—Filled polygons.

• Text—Character strings.

• Cell Array—Filled cells of a rectangle.

• Generalized Drawing Primitives—A workstation-dependent image such as
a circle.

Figure 1-2 illustrates possible output from each of the types of output
primitives.

Introducing DEC GKS 1-7

Figure 1-2: Possible DEC GKS Primitives—VT241

l~J
Polyline

~ ~ Polymarker

■ ■ ■ ~ ■ ■ ■
■ ■ ■ ■ ■ ■

Fill area

Cell array

hello Tex

0 GDP

ZK-5346-86

Output attributes affect the appearance of a primitive. For instance, by
changing the line type attribute, you can produce solid, dashed, dotted, or
dashed-dotted lines.

Transformations affect the composition of the graphical picture and the
presentation of that picture. There are normalization and workstation
transformations. The normalization transformations allow you to use various
coordinate ranges for different primitives within a single picture. In this way,
you can use a coordinate range that suits each particular primitive in a large
picture.

1-8 Introducing DEC GKS

The workstation transformations control the portion of the picture that you see
on the workstation's surface, and the portion of the surface used to display the
picture. Using workstation transformations, you can pan across a picture, zoom
in to a picture, or zoom out of a picture.

The input functions allow an application to accept input from a user.

The segment functions store and manipulate segments.

The metafile functions allow you to store and to recall an audit of calls to DEC
GKS functions. Using metafiles, you can store a DEC GKS session so that
another application can interpret that session, thus reproducing the picture
created by the original application. This manual does not discuss metafiles
in detail. For more information concerning metafiles, refer to the DEC GKS
Reference Manual.

The error-handling functions allow you to invoke auser-written error handler
when a call to another DEC GKS function generates an error. This manual
does not discuss error-handling in detail. For more information concerning
error-handling, refer to the DEC GKS Reference Manual.

The inquiry functions return valuable default and current information about
DEC GKS or about the device with which you are working. Chapter 3, Writing
Device-Independent Programs, describes the DEC GKS inquiry functions and
how you use them to write device-independent programs.

1.1.4 DEC GKS Workstation Categorization

The various capabilities of each physical device determine the workstation
category. Most workstations fall into the following categories:

Category Description

GKS$K_WSCAT_OUTPUT A workstation of the category GKS$K_WSCAT_
OUTPUT can only display graphical images on
a single display surface. An example of a device
placed in this workstation category is a printer, such
as the LA210.

GKS$K_WSCAT_INPUT A workstation of the category GKS$K_WSCAT_
INPUT can only accept input by means of
a mouse, a tablet, a keyboard, and so forth.
None of the DEC GKS supported devices are
GKS$K_WSCAT_INPUT.

~"1
Introducing DEC GKS 1-9

Category Description

GKS$K_WSCAT_OUTIN A workstation of category GKS$K_WSCAT_OUTIN
can display graphical images on the workstation
surface as well as accept input. Examples of a
device placed in this workstation category are
terminals and workstations, such as the VT240 and
the VAXstations.

DEC GKS also implements workstations of special categories. The workstation
categories GKS$K WSCAT~ViO, GKS$K WSCAT~1/II, and GKS$K WSCAT_
WISS store metafiles and segments. Chapter 5, Generating Output, describes
the category GKS$K_WSCAT_WISS. For more information concerning
metafiles, refer to the DEC GKS Reference Manual.

In this manual, the term workstation surface applies to the portion of the
workstation capable of displaying output. Using a VT241, the surface is the
terminal screen. Using an LA210 printer, the surface is a single sheet of paper.

1.1.5 GKS Levels

The GKS standard defines 121evels of GKS implementation defined by input
and output capability. The input and output levels are mutually independent.
The output levels are subsets of the next highest levels; likewise, the input
levels are subsets of the next highest input levels.

Output levels are indicated in order of increasing capability by the characters
m, 0, 1, and 2. The input levels are indicated in order of increasing capability
by the characters a, b, and c.

The DEC GKS software is a level 2c implementation, incorporating all of the
GKS output capabilities (level 2) and all input capabilities (level c). From this
point on, this manual uses the term 'DEC GKS" when describing the 2c level
DEC GKS product.

Figure 1-3 defines the 12 upwardly compatible levels of GKS, and outlines the
functionality offered by DEC GKS. DEC GKS implements the highest level of
GKS (level 2c).

1-10 Introducing DEC GKS

Figure 1-3: Functionality by GKS Levels

Output
Levels

m

0

1

2

Input Levels

a b

i
i c

No input, minimal control,
individual attributes, one
settable normalization
transformation, subset
of output and attribute
functions.

Request input, set
operating mode and
initialize functions for input
devices, no pick input.

Sample and event input
no pick.

Basic control,
bundled attributes,
multiple normalization
transformations, all output
and attribute functions,
optional metafiles.

Set viewport input priority. All of level mc, above.

Full output including
settable bundles,
multiple workstations,
basic segmentation, no
workstation independent
segment storage,
metafiles.

Request pick, set operating
mode and initialize
functions for pick input.

Sample and event input
for pick.

Workstation independent
segment storage

All of level 1 b, above. All of level 1 c, above.

ZK-5027-~

The GKS input levels are determined by three types of input operating modes.
The input operating modes are called request, sample, and event mode. In
request mode, the application program waits for the user to enter input. Once
the user signals the end of input, the application resumes. In sample and event

Introducing DEC GKS 1-11

mode, the application program and the input process operate asynchronously,
so that the user enters input as the application program continues to execute.

1.1.6 DEC GKS Function Calls

To call either a GKS$, FORTRAN, or C binding function, use the calling
sequence required by the language you use to write the application program.
For instance, you precede the function identifier with the FORTRAN CALL
statement when using VAX FORTRAN with the GKS$ functions. For an
example, see the following code:

CALL GKS$OPEN_GKS('SYS$ERROR:')

As a second option, you can check the status of the returned condition value,
as follows:

STATUS = GKS$OPEN_GKS('SYS$ERROR:')

If you use the FORTRAN binding, code a function call as follows:

CALL GOPKS('SYS$ERROR:')

Or, as follows:

STATUS = GOPKS('SYS$ERROR:')

DEC GKS also provides language-specific definition files that you can include in
your application programs. In most applications, you will need to include this
file in order to take full advantage of the DEC GKS function calls. For instance,
the definition files enable you to use the DEC GKS constants in conjunction
with GKS function calls.

The following FORTRAN code example illustrates the use of the FORTRAN
definition file:

C Include the definition file . . .
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

CALL GKS$CLEAR_WS(WS_ID, GKS$K_CLEAR_ALWAYS)

The definition file GKSDEFS.FOR contains the definition of the constant
GKS$K_CLEAR~LWAYS. Many of the DEC GKS constants begin with the
prefix GKS$K. For more information concerning the DEC GKS constants and
definition files, refer to Chapter 1, Introduction to DEC GKS, in the DEC GKS
Reference Manual. For information concerning constants that are defined as
error condition codes, refer to Appendix D, DEC GKS Error Messages, in the
DEC GKS Reference Manual.

1-12 Introducing DEC GKS

After you write and edit your FORTRAN DEC GKS application, you compile,
link, and run your program, as follows:

$ FORTRAN GKS_PROGRAM
$ LINK GKS_PROGRAM
$ RUN GKS_PROGRAM

For information unique to your language's program development, refer to the
appropriate language documentation.

If you are programming using the FORTRAN language binding, the process is
the same except for the linking of your object module. You need to link your
FORTRAN binding program with the appropriate binding object library. There
are several ways to do this. The following example presents one method:

$ DEFINE GKSFORBND SYS$LIBRARY:GKSFORBND
$ LINK BND_PROGRAM.OBJ, GKSFORBND/LIBRARY

1.2 Program Examples Used in This Manual

With the exception of the program example in Chapter 2, Programming With
DEC GKS, all program examples in this manual are based on the Starry Night
program in Example 3-2. Additional examples slightly alter subroutines in the
Starry Night program, or they call additional subroutines. You may want to
key in this program so that you can follow program execution as you read the
manual. If you are not programming in VAX FORTRAN, this manual presents
the Starry Night program written in each of the DEC GKS supported languages,
in Appendix B, Sample Programs.

All program examples in this manual are written in VAX FORTRAN for
consistency. Where confusion may occur, VAX FORTRAN specific constructs
are flagged. However, if you are unfamiliar with FORTRAN, you may wish to
review the following list of FORTRAN-specific constructs used in the program
examples in this manual.

Construct Description

IMPLICIT NONE This statement prevents the VAX FORTRAN compiler
from implicitly declaring variable names that you have not
declared.

C This character, located in the first column of the line,
signifies that the entire line contains a comment.

Introducing DEC GKS 1-13

Construct Description

* This character, located in column six, is a continuation
character. This character signifies that the previous line of
code continues onto the line marked with the asterisk (*).

DATA The DATA statement initializes program variables with data.

CHARACTER*80 This identifier is used to declare a character string of length
80.

INTEGER VAR(3) This declaration declares athree-element array of type
INTEGER.

%DESCR These constructs are argument listpass arguments by
%VAL descriptor, by value, and by reference.

LEN This construct is a built-in function that returns the length of
a string.

%LOC(array) This built-in function returns the address of its argument.

1-14 Introducing DEC GKS

u

Chapter 2

Programming With DEC GKS

This chapter provides an introduction to the following DEC GKS programming
concepts:

• Control functions
• Picture coordinate points

• Output attributes

• Segments

• Surf ace regeneration

2.1 Using DEC GKS Control Functions

The first decision that you must make concerns physical devices. Once
you choose a physical device of category GKS$K_WSCAT_OUTPUT or
GKS$K_WSCAT_OUTIN, you need to locate the appropriate workstation type
identifier. Appendix A, DEC GKS Supported Workstations, in the DEC GKS
Reference Manual, lists the DEC GKS constants used to designate workstation
types. In this chapter, to demonstrate the creation of a DEC GKS application
program, the assumption is made that you are working at a VT241 color
terminal.

Programming With DEC GKS 2-1

Consequently, the shell of a DEC GKS program appears as follows:

© INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
IMPLICIT NONE
INTEGER WS_ID
DATA WS_ID / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

C The body of the program goes here...

© CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code includes the DEC GKS FORTRAN definition file. By including
the FORTRAN definition file, you can use the DEC GKS constants
as arguments to the DEC GKS function calls. The use of DEC GKS
constants allows quicker coding, better program documentation, and easier
debugging.
This code also defines the variable WS_ID as containing the value 1. This
variable is used as a workstation identifier.

© This code first opens the DEC GKS data structures and specifies the
translation of the logical name SYS$ERROR as the destination of all error
messages. When using a VT241, the default translation of SYS$ERROR
is your terminal screen. For efficient debugging, you may wish to pass a
VMS file specification to GKS$OPEN_GKS, so that you can store the error
messages. If you choose this option, generated error messages no longer
appear on your workstation surface.
This code also opens a workstation by assigning WS~D (the value 1)
as the workstation identifier, GKS$K_CONID_DEFAULT as the device
connection (the physical connection identification between the device
and the host computer), and GKS$K_VT240 as the workstation type (a
color VT241 terminal). When programming with DEC GKS, you often
want to use the surface of your terminal to create graphical images. By
specifying GKS$K_CONID_DEFAULT, DEC GKS uses the translation
of the logical name TT (the default device connection to your VT241
terminal) to establish the connection to your device. Chapter 3, Writing
Device-Independent Programs, shows you how to use this constant to

2-2 Programming With DEC GKS

specify various device connections at the DIGITAL Command Language
(DCL) level.

NOTE

If you are using a VAXstation, DEC GKS does not use the
connection identifier argument to GKS$OPEN_WS as a device
connection. DEC GKS uses this string as a label that is placed
at the top of the auxiliary window created for DEC GKS output.
Notice that if you specify GKS$K_CONID_DEFAULT to
GKS$OPEN_WS using a VAXstation, the logical name TT
appears at the top of the newly created DEC GKS window.

After activating the open workstation, you can generate output to the
workstation surface.

© This code releases the DEC GKS and the workstation environments. You
must call these functions at the end of your DEC GKS programs in order to
assure an orderly exit from your program.

If you are not using a VT241, many of the program examples written in this
chapter will not execute properly. Before you can do further testing, you must
look up the DEC GKS constant corresponding to your workstation in Appendix
A, DEC GKS Supported Workstations, in the DEC GKS Reference Manual.
Whenever a program in this chapter contains a call to GKS$OPEN_WS and
passes the constant GKS$K_VT240, substitute the constant appropriate for your
workstation. The only restriction is that your workstation must be of the DEC
GKS category GKS$K_WSCAT OUTPUT or GKS$K_WSCAT_OUTIN.

2.2 Plotting a Picture

Once you have called the DEC GKS control functions that establish the DEC
GKS and workstation environments, you may want to produce a picture on the
surface of the workstation. To do this, you need to plot your picture within
the square coordinate range ([0,1] x [0,1]). This coordinate range is the default
portion of the imaginary world coordinate range.

Once you establish your world coordinate points, you pass them to the desired
output function. DEC GKS transforms the plotted picture through the DEC
GKS coordinate systems and draws the picture on the largest square that
your workstation can produce, with the lower left corner of the default world
coordinate square corresponding with the lower left corner of the surface of
your workstation. (Chapter 4, Composing and Transforming Pictures, describes
the DEC GKS coordinate systems in detail.)

Programming With DEC GKS 2-3

Figure 2-1 illustrates a picture plotted in the default range.

Figure 2-1: Plotting a Picture in Default World Coordinate Space

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 T

Starry Night

•~'~ ~

•

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ZK-5149.86

2.3 Generating Output

Once you plot your picture on the default portion of the world coordinate
space, you pass the coordinate values to the appropriate DEC GKS output
function. The DEC GKS output functions generate the basic components, or
primitives, of all pictures.

The DEC GKS output functions are as follows:

• GKS$POLYLINE Draws connected lines between requested points.

• GKS$POLYMARKER Marks one or more locations with symbols.

• GKS$TEXT Draws character strings.

• GKS$FILL—AREA Fills a polygon.

2-4 Programming With DEC -GKS

• GKS$CELL ARRAY "Colors" cells of a specified rectangle.

• GKS$GDP Draws adevice-dependent primitive called a generalized
drawing primitive (GDP).

To generate the plotted picture, you can use GKS$TEXT to generate the title,
GKS$POLYMARKER to generate the stars, GKS$POLYLINE to generate the
horizon, GKS$FILL _AREA to generate the house and tree, and GKS$CELL _
ARRAY to generate the sidewalk and road.

When you generate DEC GKS primitives using the output functions, there are
default attributes that affect the way in which the primitives appear on the
workstation surface. For instance, if you call GKS$POLYLINE to output a line,
the line is drawn solid (instead of dashed or dotted), in the foreground color
(instead of other shades or colors that the workstation can produce), and at the
smallest width that the device handler supports (instead of a wider width).

The foreground color is the color that your workstation uses, by default, to
present text on the screen. The workstation uses the background color to fill the
surface 'behind" the text. On a VT241, the default background color is black
and the default foreground color is green. Section 2.4 discusses color and other
output attributes in detail.

The following sections add code to the control function example until it
produces the desired picture. The blue lines in the code examples are lines
you must add to the first code example in this chapter to generate the plotted
picture. Example 2-1 is the complete program example that generates the initial
Starry Night picture.

2.3.1 Generating Text

As the first task, you can add the text at the top of the picture in Figure 2-1.
The following code example illustrates text generation:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID

Q REAL TEXT_START_X, TEXT_START_Y
DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,
* TEXT_START_Y / 0.9 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

Programming With DEC GKS 2-5

© CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,

* 'Starry Night')

C The remaining body of the program goes here...

CALL GKS$DEACTIVATE_Ws(ws_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

0 This code defines two variables that specify the X and Y world coordinate
values of the text starting point. By default, the base position of the first
letter of the text string appears at (0.05, 0.9). This coordinate point is in
the upper left corner of the default, square section of the world coordinate
space. (Chapter 5, Generating Output, discusses the text attributes in
further detail.)

© This code generates the text string at the specified world coordinates.

2.3.2 Generating Markers

Now, you can add the code that generates the stars in Figure 2-1, as follows:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

O INTEGER WS_ID, NUM_STARS

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),

* STARS_Y_VALUES(6)

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,
* TEXT_START_Y / 0.9 /, NUM_STARS / 6 /
DATA STARS_X_VALUES / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 /

DATA STARS_Y_VALUES / 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)

CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')

2-6 Programming With DEC GKS

* HOUSE_X(12
* LAND_Y(15)

DATA WS_ID /

), HOUSE_Y(12), LAND_X(15

1 /, TEXT_START X / 0.05 /,
* TEXT_START_Y

* NUM_TREE_PTS
* NUM_LAND_PTS

/

/
/

0.9 /, NUM_STARS / 6 /,

29 /, NUM_HOUSE_PTS / 12
15 /

© CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,
* STARS_Y_VALUES)

C The remaining body of the program goes here...

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This body of code defines the variables that you need to pass as arguments
to GKS$POLYMARKER. The variable NUM_STARS specifies the number
of markers to generate.
Notice the two arrays STARS~C _VALUES and STARS_Y_VALUES. The
array STARS~C _VALUES contains the X world coordinate values of all six
markers to be generated, and STARS_Y VALUES contains all six Y world
coordinate values. So, the first marker location is (0.05, 0.7), the second
location is (0.06, 0.86), and so forth. All output functions to which you
pass a list of world coordinate values require arrays of this structure.

© This code generates the markers. By default, DEC GKS generates the
smallest asterisk that the VT241 device handler supports.

2.3.3 Generating Polylines and Fill Areas

Once you know how to construct arrays containing the X and Y values of a
list of world coordinate values, you can call GKS$POLYLINE and GKS$FILL _
AREA to construct the horizon line, the house, and the tree, as follows:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,
* NUM_HOUSE_PTS, NUM_LAND_PTS

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),
* STARS_Y_VALUES(6), TREE_X(29), TREE_Y(29),

),

/,

DATA STARS_X_VALUES / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 /
DATA STARS_Y_VALUES / 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 /

Programming With DEC GKS 2-7

DATA TREE_X / 0.425, 0.5, 0.52, 0.54, 0.6,

* 0.56, 0.559, 0.64, 0.69, 0.689, 0.66,

* 0.63, 0.645, 0.59, 0.53, 0.48, 0.45,

* 0.42, 0.375, 0.35, 0.375, 0.44, 0.45,

* 0.515, 0.51, 0.495, 0.475, 0.425 /

0.575,

DATA TREE_Y / 0.28, 0.3, 0.26, 0.3, 0.28, 0 33,

* 0.42, 0.49, 0.53, 0.57, 0.61, 0.64,

* 0.66, 0.71, 0.76, 0.78, 0.75, 0.71,

* 0.65, 0.645, 0.6, 0.55, 0.54, 0.5,

* 0.5, 0.425, 0.38, 0.33, 0.28 /

DATA HOUSE_X / 0.1, 0.3, 0.3, 0.325, 0.3, 0.3,

* 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 /
DATA HOUSE_Y / 0.3, 0.3, 0.6, 0.6, 0 64, 0.75,

* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 /

DATA LAND_X / 0.0, 0.04, 0.055, 0.08, 0.1, 0 3,

* 0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0 95, 1 0 /

DATA LAND_Y / 0.35, 0.375, 0.376, 0.36, 0.365, 0.366,

* 0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375,

* 0.385 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,

* 'Starry Night')
CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,

* STARS_Y_VALUES)

0 CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE_X, TREE_Y)

C The remaining body of the program goes here...

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following number corresponds to the number in the previous example:

O These three lines of code generate the house, the tree, and the horizon
line. By default, DEC GKS uses a hollow fill area for the tree and the
house. When generating hollow fill areas, DEC GKS outlines the polygon
by connecting the specified world coordinate points with lines.

2-8 Programming With DEC GKS

2.3.4 Generating Cell Arrays

As the last step in producing the desired picture, you can call GKS$CELL_
ARRAY to create the sidewalk and road. Example 2-1 shows the complete set
of calls needed to generate the plotted picture in Figure 2-1, on a VT241.

Example 2-1: Generating the Plotted Picture

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,
* NUM_HOUSE_PTS, NUM_LAND_PTS, SIDE_OFF_COL,
* SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW,
* SIDE_COLORS(1, 2), ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, ROAD_COLORS(10, 1)

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),
* STARS_Y_VALUES(6), TREE_X(29), TREE_Y(29),
* HOUSE_X(12), HOUSE_Y(12), LAND_X(15),
* LAND_Y(15), SIDE_START_X, SIDE_START_Y, SIDE_DIAG_X,
* SIDE_DIAG_Y, ROAD_START_X, ROAD_START_Y, ROAD_DIAG_X,
* ROAD_DIAG_Y

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,
* TEXT_START_Y / 0.9 /, NUM_STARS / 6 /,
* NUM_TREE_PTS / 29 /, NUM_HOUSE_PTS / 12 /,

O * NUM_LAND_PTS / 15 /, SIDE_START_X / 0.2 /,
* SIDE_START_Y / 0.3 /, SIDE_DIAG_X / 0.25 /,
* SIDE_DIAG_Y / 0.15 /, SIDE_OFF_COL / 1 /,
* SIDE_OFF_ROW / 1 /, SIDE_NUM_COL / 1 /,
* SIDE_NUM_ROW / 2 /, ROAD_START_X/ 0.0 /,
* ROAD_START_Y / 0.15 /, ROAD_DIAG_X / 1.0 /,
* ROAD_DIAG_Y / 0.0 /, ROAD_OFF_COL / 1 /,
* ROAD_OFF_ROW / 1 /, ROAD_NUM_COL / 10 /,
* ROAD_NUM_ROW / 1 /

Q DATA SIDE_COLORS / 3, 2 /
DATA ROAD_COLORS / 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 /

DATA STARS_X_VALUES / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 /
DATA STARS_Y_VALUES / 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 /

(continued on next page)

Programming With DEC GKS 2-9

Example 2-1 (Cont.): Generating the Plotted Picture

DATA TREE_X / 0.425, 0.5, 0.52, 0.54, 0.6, 0.575,
* 0.56, 0.559, 0.64, 0.69, 0.689, 0.66,
* 0.63, 0.645, 0.59, 0.53, 0.48, 0.45,
* 0.42, 0.375, 0.35, 0.375, 0.44, 0.45,
* 0.515, 0.51, 0.495, 0.475, 0.425 /
DATA TREE_Y / 0.28, 0.3,
* 0.42, 0.49, 0.53, 0.57,
* 0.66, 0.71, 0.76, 0.78,
* 0.65, 0.645, 0.6, 0.55,
* 0.5, 0.425, 0.38, 0.33,

DATA HOUSE_X / 0.1, 0.3,
* 0.25, 0.25, 0.2, 0.075,
DATA HOUSE_Y / 0.3, 0.3,
* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 /

0.26, 0.3, 0.28, 0 33,
0.61, 0.64,
0.75, 0.71,
0.54, 0.5,
0.28 /

0.3, 0.325, 0.3, 0.3,
0.1, 0.1 /
0.6, 0.6, 0.64, 0.75,

DATA LAND X / 0.0, 0.04, 0.055, 0.08, 0.1, 0.3,
* 0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 /
DATA LAND_Y / 0.35, 0.375, 0.376, 0.36, 0.365, 0.366,
* 0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375,
* 0.385 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN WS(WS_ID, GKS$K_CONID DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')
CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,
* STARS_Y_VALUES)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)
CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE_X, TREE Y)

Q CALL GKS$CELL_ARRAY(SIDE_START_X, SIDE_START_Y,
* SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL, SIDE_OFF_ROW,
* SIDE_NUM_COL, SIDE_NUM_ROW, '/.DESCR(SIDE_COLORS))

CALL GKS$CELL_ARRAY(ROAD_START_X, ROAD_START_Y,
* ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, '/.DESCR(ROAD_COLORS))

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

2-10 Programming With DEC GKS

The following numbers correspond to the numbers in the previous example:

O This code defines the variables to be passed as arguments to the
GKS$CELL ARRAY function. GKS$CELL _ARRAY divides a designated
rectangular area into smaller rectangles, and displays each rectangle
(or cell) in a specified color or shade. You must specify the colors in a
two-dimensional array of integer values. The integer values are called
color indexes. Some color indexes are predefined by the device handler
to represent given colors (the VT241 defines the integer index value 3 to
represent the color blue). Section 2.4 discusses color indexes in greater
detail.
The GKS$CELL _ARRAY function requires a starting point and a diagonal
point in world coordinate values. Using these points, DEC GKS creates a
rectangular region on the world coordinate plane.
GKS$CELL _ARRAY requires an offset column and row number. These
numbers determine an offset into the color index array from which to begin
reading values. This code specifies that DEC GKS must begin reading index
values at element (1, 1) in the color index array.
GKS$CELL—ARRAY also requires the number of rows and columns
in which DEC GKS is to divide the cell array. DEC GKS divides the
rectangle into rows and columns of equal size, and maps the corresponding
color indexes from the index array to the cells of the rectangle. You can
determine the maximum allowable number of cell array rows and columns
by calculating the number of rows and columns from the offset starting
element to the last element of the color index array.

© This code defines the color index values. By default, the VT241 handler
defines the value 2 to represent the color red, and the value 3 to represent
blue.

© This code generates the cell arrays. The sidewalk contains two alternating
red and blue cells, and the road contains ten cells.

Figure 2-2 illustrates the workstation surface after you execute the code
example.

Programming With DEC GKS 2-11

Figure 2-2: Generating a Picture on the VT241

ZK-5141-86

2.4 Altering the Appearance of the Primitives

When reviewing the picture generated by the code examples presented in this
chapter, think about how the overall presentation can be improved by altering
the appearance of the output primitives. For instance, the polyline representing
the horizon appears in front of the house and tree, when it should appear to
be behind those objects; the house and tree could appear in a more striking
manner; and, the default text size is difficult to read.

Consequently, you may wish to alter the appearance of the output primitives
without having to change the plotting of the picture, or having to use different
types of primitives. To do this, you can set the output primitive's individual
output attributes. For instance, you distinguish between different polylines
drawn in a single picture, you can change the color, thickness, and line type
(solid, dashed, dotted, or dashed-dotted).

2-12 Programming With DEC GKS

By default, DEC GKS uses the individual output attribute settings when
generating primitives. Individual settings affect one single attribute associated
with a primitive. The polyline individual attributes are line type, line width
scale factor, and color. There is a way to specify attributes fora given primitive
in bundles, so that you can control all attributes as a group. For instance, a
single polyline bundle entry has values for line type, line width scale factor,
and color. Bundles are discussed in detail in Chapter 5, Generating Output.

To see how altering default attributes can change the appearance of your
picture, review the changes to the code example presented previously. Code
marked in blue is the code you must add to each previous example to produce
the specified results. (Example 2-2 presents the complete alteration of the
Starry Night program.)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* BLUE

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),

* LARGER, WIDER

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,

O * LARGER / 0.04 /, BLUE / 3 /,
* WIDER / 3.0 /

CALL GKS$OPEN_GK~('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

© CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_PLUS)
CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_SOLID)
CALL GKS$SET_PLINE_LINETYPE(GKS$K_LINETYPE_DASHED_DOTTED)
CALL GKS$SET_PLINE_LINEWIDTH(WIDER)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')
CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,
* STARS_Y_VALUES)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)
CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE_X, TREE_Y)

© CALL GKS$SET_FILL_COLOR_INDEX(BLUE)
CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

Programming With DEC GKS 2-13

CALL GKS$CELL ARRAY(SIDE_START_X, SIDE_START_Y,

* SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL, SIDE_OFF_ROW,

* SIDE_NUM_COL, SIDE_NUM_ROW, '/.DESCR(SIDE_COLORS))
CALL GKS$CELL ARRAY(ROAD_START_X, ROAD_START_Y,

* ROAD_DIAG_X, ROAD_DIAG Y, ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, '/.DESCR(ROAD_COLORS))

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

0 This code defines variables to be passed as arguments to the output
attribute functions. Notice that BLUE is defined to be the integer 3. The
VT241 graphics handler predefines the index 3 to represent the color blue.

© This code sets the text height to the value 0.04 in world coordinate units
(notice in the final picture how DEC GKS Nadjusts" the character spacing
according to the change in character height), changes the markers to plus
signs (+), sets a fill area to solid (the default is hollow, which appears as an
outline of the fill area), changes the polyline from solid to dashed-dotted,
and increases the line width three times. These primitive attribute settings
remain in effect for all subsequently generated primitives, unless you
change the attribute settings.

© This code changes the fill area color index to the value specified by the
variable BLUE (the index 3). This causes the house to be a different color
than the tree.

Figure 2-3 illustrates the surface of the VT241 workstation after you execute
the last code example.

2-14 Programming With DEC GKS

Figure 2-3: Changing the Appearance of the Picture

ZK-5143-86

2.5 Working with Segments

When you create a picture using DEC GKS, you may want to reproduce a
graphical image at different positions within a single picture or you may
want to treat a graphical image as a single unit. You can treat one or more
output primitives as a unit by storing them in a segment. When working with
segments, both the individual primitives and the segment have attributes.

You can use the segment attributes to highlight the primitives in a defined
segment, to control the visibility of a segment, to set the priority of segments
(used when two segments overlap on the display surface), to transform a
segment, and so forth. Chapter 5, Generating Output, explains the segment
attributes in detail.

Programming With DEC GKS 2-15

The following code example places the land and the house into a single
segment:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* LAND_HOUSE

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,

O * LAND_HOUSE / 1 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K VT240
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_PLUS)
CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_SOLID)
CALL GKS$SET_PLINE_LINETYPE(GKS$K_LINETYPE_DASHED_DOTTED
CALL GKS$SET_PLINE_LINEWIDTH(WIDER)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')
CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,
* STARS_Y_VALUES)
CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE_X, TREE_Y

CALL GKS$CELL_ARR.AY(SIDE_START_X, SIDE_START_Y,
* SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL, SIDE_OFF_ROW,
* SIDE_NUM_COL, SIDE_NUM_ROW, '/.DESCR(SIDE_COLORS))
CALL GKS$CELL_ARRAY(ROAD_START_X, ROAD_START_Y,
* ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, '/.DESCR(ROAD_COLORS))

© CALL GKS$CREATE_SEG(LAND_HOUSE)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)
CALL GKS$SET_FILL_COLOR_INDEX(BLUE)
CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$CLOSE_SEG()

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code defines the segment name LAND_HOUSE to be the value 1.
This program passes LAND_HOUSE to GKS$CREATE _SEG.

© This code defines a segment that contains the primitives representing the
land and the house. At this point in the program, you cannot open another
segment until you close LAND_HOUSE.

2-16 Programming With DEC GKS

n

Notice that executing this program does not generate a different picture than
the one generated by the previous example. This program simply illustrates
how to store a segment.

To add primitives to the segment definition, you call DEC GKS output functions
while the segment is open. DEC GKS stores the current output attribute
settings with the primitive when you call the output function. If you desire,
you can call a DEC GKS function while a segment is open to change a current
individual primitive attribute setting. Bear in mind that a change to the current
individual attribute setting only affects subsequently generated primitives.

If you use individual attributes settings for primitives stored in a segment (the
default situation), then you cannot change the primitive's attributes for the
remaining existence of the segment. You need to use bundled attributes if
your application requires that you change attributes after segment creation.
Chapter 5, Generating Output, explains how to use bundled attributes.

Manipulating segments is one of the most powerful features of a 2c
implementation of GKS. Use of segments becomes crucial when controlling
changes to the workstation surface. At times, you may need to redraw the
picture on the surface of the workstation in order to reflect a change made by
the application program. When this redrawing occurs, DEC GKS only redraws
primitives contained in segments.

Consequently, you should place retainable graphical data in segments.
Otherwise, this graphical data is lost when DEC GKS performs certain surface
control operations. Section 2.6 discusses control of the workstation surface in
greater detail.

2.6 Controlling the Workstation Surface

When you request certain changes to the workstation surface, those changes
may occur dynamically, or the change may require an implicit regeneration of all
segments on the workstation surface.

If a change is dynamic, the device handler makes the changes to the surface
immediately, without losing output primitives not contained in segments.

If a change requires an implicit regeneration, the device may perform either of
two operations as follows:

1. Take action immediately by clearing the surface and only redrawing the
currently defined, visible segments.

2. Postpone the requested changes until you update the surface of the
workstation.

Programming With DEC GKS 2-17

When you update a workstation, you can perform one of two tasks depending
on the argument you pass to GKS$UPDATE_WS. If you pass the flag
GKS$K—I'OSTPONE_FLAG, you release any deferred output to the surface of
the workstation. If you pass the flag GKS$K-1'ERFORM_FLAG and if the
workstation surface is out of date, you force a surface regeneration to occur.
(For more information concerning output deferral, refer to Chapter 3, Writing
Device-Independent Programs.)

For example, consider the changing of a color representation. A color
representation is a set of red, green, and blue intensities that a workstation
associates with a given color index. By default, a VT241 associates the index
3 with color intensities that yield the primary color blue. If you reassociate
the color intensities associated with the index 3, the VT241 makes the color
representation change immediately, without requiring an implicit regeneration.
(Note that if you are using a workstation other than a VT241, a change to
the color representation may cause an immediate or a suppressed implicit
regeneration of the surface.)

The following code example illustrates a change to the color representation,
which changes the color of the sidewalk, road, and house:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* BLUE, LAND_HOUSE, RED

REAL TEXT_START_X, TEXT_START_Y, STARS_X VALUES(6),

* ROAD_DIAG_Y, LARGER, WIDER, RID_INTENS_1, RID_INTENS_2,
* GREEN_INTENS_1, GREEN_INTENS_2, BLUE_INTENS_1,
* BLUE_INTENS_2

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,

Q * RID_INTENS_1 / 0.56 /, GREEN_INTENS_1 / 0.0 /
* BLUE_INTENS_1 / 0.0 /, RID_INTENS_2 / 0.8538 /,
* GREEN_INTENS_2 / 0.6646 /, BLUE_INTENS_2 / 0.2862 /,
*RID/2/, BLUE/3/

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIYATE_WS(WS_ID)

CALL GKS$SET_TEXT_HEIGHT(LARGER)

2-18 Programming With DEC GKS

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')

CALL GKS$CREATE_SEG(LAND_HOUSE)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)
CALL GKS$SET_FILL_COLOR_INDEX(BLUE)
CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$CLOSE_SEG()

© CALL GKS$SET_COLOR_REP(WS_ID, BLUE, RED_INTENS_1,
* GREEN_INTENS_1, BLUE_INTENS_1)

CALL GKS$SET_COLOR_REP(WS_ID, RED, RED_INTENS_2,
* GREEN_INTENS_2, BLUE_INTENS_2)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code redefines the red, green, and blue intensities for the indexes 2
and 3. Consequently, all primitives with the associated color indexes 2 or 3
reflect the immediate color change.
You can use the color chart in Appendix H, DEC GKS Color Chart,
of the DEC GKS Reference Manual, to match red, green, and blue color
intensity combinations with the resulting color. In this example, the new
representation of index 2 is associated with the color amber, and the new
representation of index 3 is associated with the color brown.

O This code generates the immediate change to the color representation for
all primitives whose color indexes are 2 or 3. Notice that DEC GKS does
not implicitly regenerate the workstation surf ace; if a regeneration occurred,
all primitives not contained in segments would have been cleared from the
workstation surface.

As another example, you can change the rectangular area on the workstation
surface containing the generated picture. Using a VT241, if you change this
rectangle after generating output, the VT241 postpones an implicit regeneration
causing the picture on the surface to be out of date, and you must update the
surface in order to see the change. (Note that devices other than a VT241
may either implement the change dynamically, may cause an immediate
regeneration, or, may postpone a regeneration causing the surface to be out of
date.) Example 2-2 illustrates the entire process.

Programming With DEC GKS 2-19

Example 2-2: Controlling the Surface of the VT241

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,
* NUM_HOUSE_PTS, NUM_LAND_PTS, SIDE_OFF_COL,
* SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM ROW,
* SIDE_COLORS(1, 2), ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, ROAD_COLORS(10, 1),
* LAND_HOUSE, RED, BLUE

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),
* STARS_Y VALUES(6), TREE_X(29), TREE_Y(29),
* HOUSE_X(12), HOUSE_Y(12), LAND_X(15),
* LAND_Y(15), SIDE_START_X, SIDE_START_Y, SIDE_DIAG_X,
* SIDE_DIAG_Y, ROAD_START_X, ROAD_START_Y, ROAD_DIAG_X,
* ROAD_DIAG_Y, RED_INTENS_1, RED_INTENS_2,
* GREEN_INTENS_1, GREEN_INTENS_2, BLUE_INTENS_1,
* BLUE_INTENS_2, LARGER, WIDER

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,
* TEXT_START_Y / 0.9 /, NUM_STARS / 6 /,
* NUM_TREE_PTS / 29 /, NUM_HOUSE_PTS / 12 /,
* NUM_LAND_PTS / 15 /, SIDE_START_X / 0.2 /,
* SIDE_START_Y / 0.3 /, SIDE_DIAG_X / 0.25 /,
* SIDE_DIAG_Y / 0.15 /, SIDE_OFF_COL / 1 /,
* SIDE_OFF_ROW / 1 /, SIDE_NUM_COL / 1 /,
* SIDE_NUM_ROW / 2 /, ROAD_START_X/ 0.0 /,
* ROAD_START_Y / 0.15 /, ROAD_DIAG_X / 1.0 /,
* ROAD_DIAG_Y / 0.0 /, ROAD_OFF_COL / 1 /,
* ROAD_OFF_ROW / 1 /, ROAD_NUM_COL / 10 /,
* ROAD_NUM_ROW / 1 /, LAND_HOUSE / 1 /,
* RED_INTENS_1 / 0.56 /, GREEN_INTENS_1 / 0.0 /
* BLUE_INTENS_1 / 0.0 /, RED_INTENS_2 / 0.8538 /,
* GREEN_INTENS_2 / 0.6646 /, BLUE_INTENS_2 / 0.2862 /,
* RID / 2 /, BLUE / 3 /, LARGER / 0.04 /,
* WIDER / 3.0 /

DATA SIDE_COLORS / 3, 2 /
DATA ROAD_COLORS / 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 /

DATA STARS_X VALUES / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 /
DATA STARS Y_VALUES / 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 /

(continued on next page)

2-20 Programming With DEC GKS

Example 2-2 (Cont.~: Controlling the Surface of the VT241

DATA TREE_X / 0.425, 0.5, 0.52, 0.54, 0.6, 0.575,
* 0.56, 0.559, 0.64, 0.69, 0.689, 0.66,
* 0.63, 0.645, 0.59, 0.53, 0.48, 0.45,
* 0.42, 0.375, 0.35, 0.375, 0.44, 0.45,
* 0.515, 0.51, 0.495, 0.475, 0.425 /
DATA TREE_Y / 0.28, 0.3, 0.26, 0.3, 0.28, 0.33,
* 0.42, 0.49, 0.53, 0.57, 0.61, 0.64,
* 0.66, 0.71, 0.76, 0.78, 0.75, 0.71,
* 0.65, 0.645, 0.6, 0.55, 0.54, 0.5,
* 0.5, 0.425, 0.38, 0.33, 0.28 /

DATA HOUSE_X / 0.1, 0.3, 0.3, 0.325, 0.3, 0.3,
* 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 /
DATA HOUSE_Y / 0.3, 0.3, 0.6, 0.6, 0.64, 0.75,
* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 /

DATA LAND_X / 0.0, 0.04, 0.055, 0.08, 0.1, 0.3,
* 0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 /
DATA LAND_Y / 0.35, 0.375, 0.376, 0.36, 0.365, 0.366,
* 0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375,
* 0.385 /

CALL GKS$OPEN_GKS('SYS$ERROR:')
CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_PLUS)
CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_SOLID)
CALL GKS$SET_PLINE_LINETYPE(GKS$K_LINETYPE_DASHID_DOTTID)
CALL GKS$SET_PLINE_LINEWIDTH(WIDER)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')
CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,
* STARS_Y VALUES)
CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE X, TREE_Y)
CALL GKS$CELL_ARRAY(SIDE_START_X, SIDE_START_Y,
* SIDE_DIAG_X, SIDE_DIAG Y, SIDE_OFF_COL, SIDE_OFF_ROW,
* SIDE_NUM_COL, SIDE_NUM_ROW, '/.DESCR(SIDE_COLORS))
CALL GKS$CELL_ARRAY(ROAD_START_X, ROAD_START_Y,
* ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, '/.DESCR(ROAD_COLORS))

CALL GKS$CREATE_SEG(LAND_HOUSE)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)
CALL GKS$SET_FILL_COLOR_INDEX(BLUE)
CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$CLOSE_SEG()

(continued on next page)

Programming With DEC GKS 2-21

Example 2-2 (Cont.): Controlling the Surface of the VT241

CALL GKS$SET_COLOR_REP(WS_ID, BLUE, RED_INTENS_1,
* GREEN_INTENS_1, BLUE_INTENS_1)
CALL GKS$SET_COLOR_REP(WS_ID, RED, RED_INTENS_2,

* GREEN_INTENS_2, BLUE_INTENS_2)

D CALL GKS$SET_WS_VIEWPORT(WS_ID, 0.0, 250.0, 0.0,
* 250.0)

© CALL GKS$UPDATE WS(WS_ID, GKS$K_PERFORM_FLAG)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O The call to GKS$SET_WS_VIEWPORT changes the area of the workstation
surface on which DEC GKS generates the picture. This code defines the
lower left corner of the VT241 surface as the area on which to generate
output. On a VT241, the maximum X value in device coordinates is 4 79.0,
and the maximum Y value is 767.0.

© The VT241 handler does not change the area on which to generate
output until you force a regeneration of the surface. Once you call
GKS$UPDATE WS and pass GKS$K~'ERFORM_FLAG as an argument
(perform the regeneration), DEC GKS clears the screen, makes the requested
change(s), and redraws only the primitives in currently defined, visible
segments. In this example, only the house and the horizon line are part of
a segment definition; all other output primitives are lost.

Figure 2-4 illustrates the surface of the VT241 workstation after you execute
the last code example.

2-22 Programming With DEC GKS

Figure 2-4: Changing the Portion of the Surface Used for the Picture

ZK-5147-86

After seeing the preceding code examples, you may have certain questions. You
may want to know the following information:

• Whether your device is deferring output.

• How to obtain the device's maximum coordinate values.

• How you can tell whether your workstation postpones regenerations or
performs them as soon as they are needed.

• How you can tell whether your picture is out of date so that you can force
a picture regeneration.

• What to do if you are writing a single program that must run on many
devices with different capabilities.

To provide information needed to control the workstation surface and to
program in adevice-independent manner, you can use the DEC GKS inquiry
functions. The inquiry functions return information concerning deferred
output, device coordinate values, postponed regenerations, and other useful
information. Chapter 3, Writing Device-Independent Programs, discusses the
inquiry functions and device-independent programming in greater detail.

Programming With DEC GKS 2-23

Chapter 3

Writing Device-Independent Programs

This chapter provides an introduction to writing device-independent programs.
The discussion of device independency involves the following topics:

• Device connection and type

• Deferral mode

• Workstation-dependent output attributes

• Color

• Implicit regenerations

The only way that you can access the information stored in the DEC GKS data
structures is to use the DEC GKS inquiry functions. These structures contain
information that you can use to make valuable programming decisions.

The following table presents an overview of the DEC GKS data structures.

Table/List Description

GKS description table This table contains constant information about
the DEC GKS implementation you are using,
such as the level of GKS (with DEC GKS, level
2c), the number of available workstation types,
the list of workstation types, the maximum
allowable open workstations, and so forth.

If you are transporting your programs from one
implementation of GKS to another, you may
need to inquire about the implementation of
GKS on a given system, so that your program
does not call unsupported functions.

Writing Device-Independent Programs 3-1

Table/List Description

Workstation description table

GKS state list

Workstation state list

Segment state list

This type of table contains constant information
about one particular workstation, such as the
workstation type, the workstation category, the
device-specific maximum coordinate values,
the different bundled output attribute values,
and so forth. Each graphics handler contains
a workstation description table describing that
particular device.

If your DEC GKS application uses more than
one workstation at a time, or if you are unsure
of the capabilities of your workstation, you may
need to inquire about the values contained in
the workstation description table.

This list contains entries that specify the current
DEC GKS values such as the set of open
workstations (if any), the current normalization
transformation number, the current character
height, and so forth.

If you need to check the alterable DEC GKS
values, you may need to inquire about the
values contained in the DEC GKS state list.

For each workstation you open, DEC GKS
creates a workstation state list. This list contains
entries that specify whether output is deferred,
whether or not the surface has to be redrawn to
fulfill an output request, whether the workstation
surface is "empty" by GKS definition, whether
the picture on the surface represents all of
the requests for output made thus far by the
application program, and so forth.

If you need information concerning the current
state of a particular workstation, you may need
to inquire about the values contained in the
workstation state list.

DEC GKS maintains a segment state list.
The segment state list contains entries that
specify the segment name, the set of associated
workstations, the detectability of the segment,
and so forth.

If you need information concerning a particular
segment, you may need to inquire about the
values contained in the segment state list.

3-2 Writing Device-Independent Programs

l~

3.1 Writing Device-Independent Code

If you executed the program examples presented in this manual so far, and if
you are not using a VT241, you may have experienced some difficulties. For
instance, you had to replace the constant GKS$K_VT240 with the constant that
corresponded to your workstation. Also, your workstation's graphics handler
may or may not have responded to the calls to GKS$SET_COLOR_REP and
GKS$SET_WS_VIEWPORT in exactly the same way as the VT240 handler.
Perhaps your workstation did not need to perform an implicit regeneration to
change the workstation viewport. Perhaps it did not associate the integers 2
and 3 with the colors red and blue by default.

Considering the effort of altering your program every time you run it using
a different physical device, DEC GKS provides logical names, constants, and

inquiry functions so that you can write device-independent programs. The
inquiry functions also allow you to ask for values associated with both the
default and current state of DEC GKS or of a particular supported device.

In Chapter 2, Programming With DEC GKS, Example 2-2 presented the com-
plete program needed to generate output, to change two color representations,
and to change the workstation viewport. To review code that performs the
same tasks in adevice-independent manner, see Example 3-1 in Section 3.1.6.
The following subsections explain each device-independent programming
technique individually.

3.1.1 Specifying the Connection and Device Type

When you write a program that is device-independent, your first step is to
specify the proper device connection and type identifier. To see how this is
accomplished, review the following lines of code from Example 3-1:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

O CALL GKS$OPEN_GKS('ERROR_FILE.TXT')

a CALL GKS$OPEN WS(WS_ID, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)

Writing Device-Independent Programs 3--3

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O The call to GKS$OPEN_GKS is similar to the calls in previous code
examples. However, this call specifies a file in the current directory to
which DEC GKS writes any generated error messages. You may wish to do
this so that you always have a copy of the errors generated during program
execution.

© This call to GKS$OPEN_WS contains the argument constants GKS$K_
CONID_DEFAULT and GKS$K_WSTYPE_DEFAULT. These constants
tell DEC GKS that it must perform a series of logical name translations to
obtain the device connection and the device type.

The constant GKS$K_CONID_DEFAULT (or, for most supported languages,
the value 0) tells DEC GKS to translate the logical name GKS$CONID
in order to determine the name of the device connection. The constant
GKS$K_WSTYPE _DEFAULT tells DEC GKS to translate the logical name
GKSSWSTYPE to determine the name of the workstation type. Consequently,
you can use the DEFINE or ASSIGN command on the DCL command line to
define the logical names to be the connection and type with which you are
working, as follows:

$ FORTRAN PROGRAM RETURN
$ LINK PROGRAM(ETURN
$ DEFINE GKS$CONID ttb0
$ DEFINE GKSSWSTYPE 13
$ RIJN PROGRAM (RETURN

$ DEFINE GKS$CONID tta3
$ DEFINE GKSSWSTYPE 12 ! VT125 Black and White
$ RUN PROGRAM

RETURN
! VT241 Color RETURN

RETURN
(RETURN !RETURN

Before you attempt to define GKS$CONID, you need to perform the following
tasks:

1. Make sure that you have allocated the device you need to access. The DCL
command SHOW DEVICE provides a list of devices on your system node.

2. Allocate the terminal using the command ALLOCATE (you may need
special privileges to allocate the device).

3. Use the command SHOW TERMINAL to make sure that the device's baud
rate, parity, and other settings match the settings of the physical device.

3-4 Writing Device-Independent Programs

4. Define the logical GKS$CONID to be the logical name of the appropriate
device connection.

For more information concerning the terminal allocation process, refer to the
appropriate commands in the VAX jVMS DCL Dictionary.

There may be times when you do not wish to define the DEC GKS logical
names. In this case, or if you define an invalid value, DEC GKS translates
several logical names in the following order:

1. If the logical name GKS$CONID is undefined, DEC GKS translates the
logical name TT.

2. DEC GKS then translates TT, which always defaults to your process' default
device connection.

If the logical name GKS$WSTYPE translates to the value 0 (GKS$WSTYPE
being undefined), then DEC GKS sets the device type to be GKS$K VT240BW
(the value 14, a black and white VT240).

It is possible to specify a number for a device type that is unsupported by the
implementation of GKS. For instance, if a user specified the value 999 as the
translation for GKS$WSTYPE, the call to the function GKS$OPEN_WS would
cause an error, since the workstation type 999 is not a DEC GKS supported
graphics handler.

To see the function calls that prevent this from happening, refer to the
following code from Example 3-1:

IMPLICIT NONE
INCLUDE 'SYS~LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* INQUIRY_OKAY, ERROR_STATUS, CATEGORY

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,

* INQUIRY_OKAY / 0 /

Writing Device-Independent Programs 3-5

O CALL GKS$INQ_WS_CATEGORY(GKS$K WSTYPE_DEFAULT,
* ERROR_STATUS, CATEGORY)

C Make sure that the workstation type is valid.
© IF ((ERROR_STATUS .NE. INQUIRY_OKAY) .OR.

* ((CATEGORY .NE. GKS$K_WSCAT_OUTPUT) .AND.
* (CATEGORY .NE. GKS$K_WSCAT_OUTIN))) THEN

WRITE(6,*)
* 'The specified workstation type is invalid.'

WRITE(6,*) 'Error status:', ERROR_STATUS
STOP

ENDIF

CALL GKS$OPEN WS(WS_ID, GKS$K_CONID DEFAULT,
* GKS$K_WSTYPE_DEFAULT)
CALL GKS$ACTIVATE_WS(WS_ID)

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code calls the inquiry function GKS$INQ _WS_CATEGORY, which
writes the integer value associated with the category of the translated
workstation type (GKSK_WSCAT_OUTPUT, GKSK_WSCAT_OUTIN,
and so forth) to the argument CATEGORY. If the translation of GKS$K_
WSTYPE_DEFAULT is a valid DEC GKS supported workstation, the
inquiry returns the value 0 (the constant value: GKS$_SUCCESS) to the
argument ERROR_STATUS. If the inquiry function encounters an error, it
returns the number of the appropriate error message in ERROR_STATUS.
(To review the error message numbers, refer to Appendix D, DEC GKS
Error Messages, in the DEC GKS Reference Manual.) All inquiry functions
use this method to report the success or failure of an inquiry function call.

© This code makes sure that the user defined GKS$WSTYPE as a supported
workstation type (if ERROR_STATUS = INQUIRY_OKAY), and makes sure
that the workstation supports output on either a printer or a terminal (valid
categories are GKS$K WSCAT_OUTPUT and GKS$K_WSCAT_OUTIN).
If the workstation is not capable of generating the output that the program
requires, this program writes a message to SYS$OUTPUT, and program
execution stops.

NOTE

Whether or not you use the DEC GKS constants, you should print
the definition file for your supported language to see whether it
contains code that can be useful to your application.

3-6 Writing Device-Independent Programs

3.1.2 Checking the Deferral Mode

As mentioned in Chapter 1, Introducing DEC GKS, the graphics handlers have
a default setting for the output deferral mode and the surface regeneration flag.
In adevice-independent program, you can check the current or default values
and change them as your program requires.

By setting the deferral mode, you can buffer the generation of output images,
if the given workstation supports such buffering, before transmission to the
workstation surface. In this manner, you improve overall rate of transmission.
In the application program, you can periodically release buffered output so that
the display surface reflects the picture defined by the application up to that
point in execution.

To understand deferral mode, review the following descriptions of the four
possible deferral modes, in increasing order of deferral:

• GKS$K~SAP The workstation generates output as soon as possible.

• GKS$K_BNIG The workstation generates output before the next global
interaction.

• GKS$K_BNIL The workstation generates output before the next local
interaction.

• GKS$K~STI The workstation generates output at some time.

An interaction is a request for input using the DEC GKS input functions. A
global interaction happens on any open workstation, and a local interaction
happens on a specified workstation (remember that a DEC GKS program can
allocate device connections in order to open and activate several workstations).

Depending on its capabilities, the workstation can defer output at any level up
to the level specified in the call to GKS$SET_DEFER_STATE. For example,
if you specify GKS$K_ASAP in a call to GKS$SET_DEFER_STATE, the
workstation can only generate output as soon as possible if the workstation
supports that level. If you specify GKS$K_BNIG, the workstation can use the
deferral mode GKS$K_ASAP or GKS$K_BNIG, depending on its capabilities.
If you specify GKS$K_BNIL, the workstation can defer output in any of the
modes GKSK_ASAP, GKSK_BNIG, or GKS$K_BNIL, depending on its
capab' 'ties. If you specify GKS$K_ASTI, the workstation can defer output at
any level, as defined by the given workstation.

The implicit regeneration modes are described in Chapter 1, Introducing DEC
GKS. Usually, you do not want the workstation to regenerate the picture unless
you request an update. Consequently, most applications require a suppression
of surface regenerations, giving the application program the power to specify

Writing Device-Independent Programs 3-7

when the device handler regenerates a surface. Remember that a surface
regeneration deletes all output primitives not contained in segments.

To see how to check the current deferral and implicit regeneration modes,
review the following code from Example 3-1:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* DUMMY_INTEGER, WS_TYPE

CHARACTER*80 DUMMY_STRING

C Make sure that the deferral mode and regeneration flag are
C properly set.

O CALL GKS$INQ WS TYPE(WS_ID, ERROR_STATUS, DUMMY_STRING,
* WS_TYPE, DUMMY_INTEGER)

© CALL GKS$INQ_DEF_DEFER_STATE(WS_TYPE, ERROR_STATUS,
* DEF_MODE, REGEN_FLAG)

C You can check the status of the inquiry function execution, as
C follows:

® IF (ERROR_STATUS .NE. INQUIRY_OKAY) THEN
WRITE(6,*)

* 'The deferral inquiry caused an error.'
WRITE(6,*) 'Error status:', ERROR_STATUS
STOP

ENDIF

C Defer output as long as possible and suppress implicit
C regenerations.

© IF ((DEF_MODE .NE. GKS$K_ASTI) .OR.
* (REGEN_FLAG .NE. GKS$K_IRG_SUPPRESSED)) THEN

CALL GKS$SET_DEFER_STATE(WS_ID, GKS$K_ASTI,
* GKS$K_IRG_SUFPRESSED)
ENDIF

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code calls the inquiry function GKS$INQ _WS_TYPE to determine the
workstation type that corresponds to WS_ID. You need the workstation
type to determine the default deferral mode and regeneration flag of the
workstation.

3-8 Writing Device-Independent Programs

The arguments DUMMY~NTEGER and DUMMY_STRING contain
information that is not useful to this particular application yet may
be useful in other programs. For more information concerning these
arguments, refer to Chapter 12, Inquiry Functions, in the DEC GKS Reference
Manual.

© Using the variable WS_TYPE, which the previous function call initialized,
you can inquire about the default deferral mode and regeneration flag.
Inquiry functions requiring a workstation type for an argument obtain
information from the workstation description table (default information);
functions requiring a workstation identifier obtain information from the
workstation state list of a particular workstation (current status information).

© This code checks the execution of the last inquiry function. If it is uncertain
whether an inquiry function call will encounter an error, you can check the
error status argument after such calls to inquiry functions. You can transfer
control if an inquiry function writes anything but GKS$_SUCCESS to the
error status argument.

0 This code changes the deferral mode to GKS$K~STI and the regeneration
flag to GKS$K ERG _SUPPRESSED (as opposed to GKS$K ERG _
ALLOWED), if those are not the workstation's default values. By specifying
these values, the device buffers output (for as long as the device's
capabilities allow up to 'gat some device-determined time") and suppresses
all required surface regenerations until the application updates the surface.

NOTE

When debugging your DEC GKS programs, you may wish to see
generated output as you debug. To do this, set the deferral mode
to GKS$K_ASAP. After you debug your program, you can set the
deferral mode to any desired mode.

3.1.3 Setting Workstation-Dependent Output Attributes

Just after the data initialization section in Example 3-1, the application sets
the character height attribute to be LARGER (the real value 0.04, specified in
world coordinates). Character height is called a geometric attribute. Geometric
attributes affect the size or positioning of output primitives, in world coordinate
units. Since you express these attributes in world coordinate units, the effect is
transformable to any workstation surface (although the results differ according
to hardware capabilities); the geometric attributes are device-independent.

Writing Device-Independent Programs 3-9

In that section of Example 3-1, the application also sets the attributes marker
type, fill interior style, line type, and line width. These attributes are called
nongeometric attributes. Nongeometric attributes affect the size or pattern of
an output primitive in scale factors (real values) and nominal sizes (real values
representing the default size as determined by the graphics handler). Since the
device handler can obtain an unsupported value by multiplying the scale factor
times the nominal size, the nongeometric attributes are device-dependent.

Use caution when setting device-dependent attributes in adevice-independent
program. In Example 3-1, setting the marker type, fill interior style, and line
type is not difficult because the application specifies settings that are required
by the standard; all DEC GKS graphics handlers support the settings used in
this application.

However, depending on the capabilities of the device, this application could
specify a line width that results in a value unsupported by the device. You may
need to inquire about the maximum supported line width before you set this
attribute.

Review the following code from Example 3-1 that .checks the maximum
supported line width.

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* DUMMY_INT_ARRAY(50)

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),

* NOM_WIDTH, MAX_WIDTH

C Make sure that you don't ask for a -.line wider than the
C workstation's widest line.

O CALL GKS$INQ_PLINE_FAC(WS_TYPE, ERROR_STATUS,
* DUMMY_INTEGER, '/.DESCR(DUMMY_INT_ARRAY), DUI~Y_INTEGER,
* NOM_WIDTH, DUMMY_REAL, MAX WIDTH, DUMMY_INTEGER,
* DUMMY_INTEGER)

© DO WHILE ((WIDER * NOM_WIDTH) .GT. MAX_WIDTH)
WIDER =WIDER - 0.1

ENDDO

CALL GKS$SET_PLINE_LINEWIDTH(WIDER)

3-10 Writing Device-Independent Programs

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O This code inquires about the device's polyline~ fa ' 'ties, including the
maximum supported line width. The variables DUMMY_INT, DUMMY
INT_ARRAY, and DUMMY_REAL are arguments whose values are of
no use to this application. For more information concerning GKS$INQ _
PLINE _FAC, refer to Chapter 10, Inquiry Functions, in the DEC GKS
Reference Manual.

© This code checks to make sure that the line width, resulting from the
multiplication of the nominal width and the scale factor specified by the
application, is not greater than the maximum supported width. This code
equates WIDER with the scale factor that produces the largest line width
allowed by the device handler.

3.1.4 Working with Color and Monochrome Devices

When Example 3-1 creates cell arrays, changes the fill area interior color index,
or changes the color representation of a color index, it must check for three
conditions, as follows:

1. If the device can produce color primitives.

2. If the device is monochrome, but can produce shades of a single color.

3. If the device is strictly monochrome, supporting only two colors.

To see how Example 3-1 handles the three different conditions, review the
following code example:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* ERROR_STATUS, DUMMY_INT, COLOR_FLAG, NUM_INDEXES,
* CATEGORY THREE, DARK, LIGHT, NEW_FRAME_FLAG

REAL TEXT_START_X, TEXT_START_Y, STARS X VALUES(6),

* BW_X_VALUES(9), BW_Y_VALUES(9), BW RED_INTENS,
* BW_GREEN_INTENS, BW BLUE_INTENS

Writing Device-Independent Programs 3-11

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,

~J
* BW_RED_INTENS / 1.0 /, BW_GREEN_INTENS / 0.0 /,
* BW_BLUE_INTENS / 0.0 /, BW_NUM_PTS / 9 /,
* THREE / 3 /, DARK / 3 /, LIGHT / 2 /

DATA BW_X_VALUES / 0.0, 0.0, 0.2, 0.2, 0.25, 0.25,
* 1.0, 1.0, 0.0 /
DATA BW_Y_VALUES / 0.0, 0.15, 0.15, 0.3, 0.3, 0.15,
* 0.15, 0.0, 0.0 /

C Check to see whether you are working with a color workstation.
O CALL GKS$INQ_COLOR_FAC(WS_TYPE, ERROR_STATUS,

* DUMMY_INT, COLOR_FLAG, NUM_INDEXES)

C For all workstations with only 2 color indexes, use
C GKS$FILL_AREA instead of GKS$CELL_ARRAY for the sidewalk and road.

© IF (NU'M_INDEXES .LT. THREE) THEN
CALL GKS$SET_FILL_INT_STYLE(

* GKS$K_INTSTYLE_HATCH)
CALL GKS$FILL_AREA(BW_NUM_PTS, BW_X_VALUES,

* BW_Y_VALUES)
CALL GKS$SET_FILL_INT_STYLE(

* GKS$K_INTSTYLE_SOLID)
ELSE

CALL GKS$CELL_ARRAY(SIDE_START_X, SIDE_START_Y,
* SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL,
* SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW,
* '/.DESCR(SIDE_COLORS))

CALL GKS$CELL_ARRAY(ROAD_START_X, ROAD_START_Y,
* ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL,
* ROAD_OFF_ROW, ROAD_NUM_COL, ROAD_NUM_ROW,
* y.DESCR(ROAD_COLORS))
ENDIF

CALL GKS$CREATE_SEG(LAND_HOUSE)
CALL GKS$POLYLINE(NUM_LAND PTS, LAND_X, LAND Y)

C Only change the color index if working with a workstation
C with more than two color indexes.

© IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$CLOSE_SEG()

C If using a two-color-index workstation, do not change the color
C representation.

O IF (NUM_INDEXES .LT. THREE) THEN
GO TO 100

ENDIF

3-12 Writing Device-Independent Programs

C Set the color representation for color workstations with limited
C representation capabilities.

0 IF ((NUM COLORS .LE. 8) .AND.
* (COLOR_FLAG .EQ. GKS$K_COLOR)) THEN

CALL GKS$SET_COLOR_REP(WS_ID, LIGHT,
* 1.0, 0.0, 1.0)

CALL GKS$SET_COLOR_REP(WS_ID, DARK,
* 0.0, 1.0, 1.0)
ELSE

C The color representation change will alter the shading on these
C monochrome workstations.

- IF (COLOR_FLAG .EQ. GKS$K_MONOCHROME) THEN
CALL GKS$SET_COLOR_REP(WS_ID, DARK,

* BW_RID_INTENS, BW_GREEN_INTENS,
* BW_BLUE_IHTENS)

ELSE
C Change the color representation for the rest of the color
C workstations.

CALL GKS$SET_COLOR_REP(WS_ID, DARK,
* RID_INTENS_1, GREEN_IHTENS_1,
* BLUE_INTENS_1)

ENDIF
CALL GKS$SET_COLOR_REP(WS_ID, LIGHT,

* RID_INTENS_2, GREEN_INTENS_2,
* BLUE_INTENS_2)
ENDIF

100 CONTINUE

C Check to see whether the picture on the screen is out of date (if
C there is a suppressed implicit regeneration).

CALL GKS$INQ_WS_DEFER_AND_UPDATE(WS_ID,
* ERROR_STATUS, DUMMY_INTEGER, DUMMY_INTEGER,
* DUMMY_INTEGER, NEW_FRAME_FLAG)

C Release deferred output. Regenerate if necessary. Press
C RETURN when you are finished viewing the picture.

'~ IF (NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY) THEN
CALL GKS$UPDATE_WS(WS_ID, GKS$K_PERFORM_FLAG)
READ(5,*)

ELSE
CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

ENDIF

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

The following numbers correspond to the numbers in the previous example:

O The call to GICS$INQ _COLOR~AC checks the color fa ' 'ties of a given
dev~e. in this call, several arguments are dummy arguments, the argument
COLOR SLAG determines whether the device is color or monochrome,

Writing Device-Independent Programs 3-13

and the argument NUM~NDEXES determines the number of supported
indexes.
If a device supports more than two color indexes, a change to the
color representation can change the picture significantly. If a device is
monochrome, and if it has more than two color indexes, a change to the
color representation of an index value can change portions of the picture to
a different shade of the supported foreground color.

© This code determines whether the program draws the sidewalk and road as
cell arrays or as one filled area.
If a device does not support a particular color index, it uses the default
foreground color to represent the index. So, if you attempt to draw a
cell array that requires unsupported color indexes, you generate two solid
rectangles. This program chooses to draw a hatched pattern whenever
running on a device supporting only two color indexes.
Notice that the program resets the interior fill style so that subsequent calls
to GKS$FILL—AREA once again generate a solid fill.

© If the device on which the program is running supports more than two
color indexes, this code changes the fill color index to DARK. This ensures
that the house is a different color or shade than the tree.
The use of the arguments DARK and LIGHT replace the previous
arguments RED and BLUE. On a VT241, the color indexes 2 and 3
represent the primary colors red and blue, but VAXstation II/GPX users
will notice that those indexes represent the primary colors red and green.
Other devices may represent the indexes as two different colors. Since this
program changes the color representation later in the program, it serves a
purpose to name the color indexes DARK and LIGHT so that they reflect
the changes to be made to the index values.

O This code determines whether the device supports only two color indexes.
If the device has only two indexes, the program chooses not to make a
change to the color representations. Otherwise, the program changes the
color representations according to the capabilities of the device.

0 This code conditionally alters the color representation of the index values
DARK (3) and LIGHT (2).
If the device has limited color ability, this code makes DARK and LIGHT
represent alternative colors. To do this, you pass the appropriate red, green,
and blue color intensities, along with the color index whose representation
you are changing, to the function GKS$SET_COLOR~EP. The graphics
handler maps the color representation values to the closest values supported
by the device.
If the device is monochrome, this code changes the color representations so
that they represent two different shades of the supported color.

3-14 Writing Device-Independent Programs

f"4
Otherwise, this code changes the color representation to values that
produce the color amber for index value LIGHT (2), and the color brown
for index value DARK (3). If you run this program on a device that does
not support these colors, the device produces the closest supported color.

© This code inquires about the current state of the workstation surface. The
function GKS$INQ _WS_DEFER_AND_UPDATE passes a value to the
argument NEW~RAME~LAG that tells you whether the picture on
the surface is out of date. If a picture is out of date, the device needs to
regenerate the picture on the workstation surface before implementing all
changes requested by the program thus far.

O If the request for a change to a color representation placed the workstation
surface out of date, then this code requests an implicit regeneration (by
passing GKS$K~'ERFORM~LAG to GKS$UPDATE_WS). Keep in mind
that an implicit regeneration deletes all output primitives not contained
in segments. However, most devices of the category GKS$K_WSCAT_
OUTIN are able to change a color representation without placing the screen
out of date. Devices of the category GKS$K_WSCAT_OUTPUT behave
differently according to their capabilities.
If the request for a change to a color representation does not place the
workstation surface out of date, then this code releases all deferred output
(by passing GKS$K~'OSTPONE SLAG to GKS$UPDATE _WS). This
code does not perform an implicit regeneration. It simply places all output
primitives on the surface so that you can view an up-to-date picture. Many
of the programs in the DEC GKS Reference Manual use this function call to
update a picture for viewing.
The use of the FORTRAN READ statement causes the program to pause so
that the user can view the current picture. The user presses RETURN when
ready to continue.

NOTE

Although most workstations support the interior fill styles GKS$K_
INTSTYLE~-IOLLOW, GKS$K~NTSTYLE_SOLID, GKS$K_
INTSTYLE_I'ATTERN, and GKS$K_INTSTYLE_HATCHED, some
workstations may not. If an interior style is not supported, DEC GKS
uses adevice-determined style.

If you make more than one change to a color representation in a device-
dependent program, you may want to use the function GKS$INQ _DYN_
MOD_WS. By using this function, you can determine whether the device
requires an implicit regeneration for color representation changes. If you find
that the device does not require an implicit regeneration, you do not have to
keep checking the current state of NEW_FRAME~LAG every time you make a
change to the color representation, as in Example 3-1.

Writing Device-Independent Programs 3-15

3.1.5 Requiring an Implicit Regeneration

When reviewing the code in Example 3-1, you see that a change to the color
representation can be implemented either dynamically or by implicit regen-
eration. Other changes are s' ' arly implemented, such as all representation
changes (Chapter 5, Generating Output, describes the representation changes),
changes to segment attributes (such as highlighting or visibility), and changes
to the workstation transformation (for instance, changing the portion of the
workstation surface on which to place the picture).

Example 3-1 requests a change in the workstation transformation, as shown in
the following example:

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,

* DUMMY_INTEGER, NEW_FRAME_FLAG

REAL TEXT_START_X, TEXT_START_Y, STARS_X VALUES(6),

* MAX_X, MAX Y

C Inquire about the maximum device coordinate values.
O CALL GKS$INQ_MAX_DS_SIZE(WS_TYPE, ERROR_STATUS,

* DUMMY_INTEGER, MAX_X, MAX_Y, DUMMY_INTEGER, DUMMY_INTEGER)

C Use the lower left quarter of the display surface.
© CALL GKS$SET_WS_VIEWPORT(WS_ID, 0.0, MAX_X/2.0, 0.0,

C Check to see whether the picture on the screen is out of date.
© CALL GKS$INQ_WS_DEFER_AND_UPDATE(WS_ID, ERROR_STATUS,

* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER,
* NEW_FRAME_FLAG)

C Release deferred output. Regenerate if necessary. Press
C RETURN when you are finished viewing the picture.

IF (NEW_FRAME FLAG .EQ. GKS$K_NEWFR.AME_NECESSARY) THEN
CALL GKS$UPDATE WS(WS_ID, GKS$K_PERFORM_FLAG)
READ (5,*)

ELSE
CALL GKS$UPDATE WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5,*)

ENDIF

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

3-16 Writing Device-Independent Programs

The following numbers correspond to the numbers in the previous example:

O This code inquires about the size of the workstation surface. The function
GKS$INQ ~VIAX _DS_SIZE writes the maximum X and Y values of the
device coordinate plane in the arguments MAX ~C and MAX Y.

0 This code changes the portion of the workstation surface on which to output
the picture (in this example, to the lower left quarter of the workstation
surface). To do this, you calculate half of the X and Y maximum values,
and then specify 0.0 to half for both the X and Y maximum values as the
portion of the workstation surf ace.

© Since a change to the portion of the workstation on which to output
pictures can be made dynamically or by implicit regeneration, you need
to check the NEW~RAME~LAG argument passed to GKS$INQ_WS_
DEFER_AND_UPDATE. Again, if you change the workstation viewport
often, it is more efficient to call GKS$INQ _DYN~VIOD_WS to determine
whether the device handler makes the change dynamically or by implicit
regeneration.
Also, you do not need to update a workstation just before the end of a
program (as in Example 3-1). DEC GKS releases deferred output and if
needed, regenerates the surface, before closing a workstation (which occurs
when you call GKS$CLOSE WS).

r 3.1.6 The Device-Independent Program

Example 3-1 lists the complete device-independent program described in the
previous sections.

Writing Device-Independent Programs 3-17

Example 3-1: ADevice-Independent Program

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, NUM_STARS, NUM_TREE_PTS,
* NUM_HOUSE_PTS, NUM_LAND_PTS, SIDE_OFF_COL,
* SIDE_OFF ROW, SIDE_NUM_COL, SIDE_NUM_ROW,
* SIDE_COLORS(1, 2), ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, ROAD_COLORS(10, 1),
* LAND_HOUSE, LIGHT, DARK, ERROR_STATUS, INQUIRY_OKAY,
* CATEGORY, DU1~►II~Y_INTEGER, WS_TYPE, DEF_MODE,
* REGEN_FLAG, DUMMY_INT_ARRAY(50), BW_NUM_PTS,
* COLOR_FLAG, NEW FRAME_FLAG, THREE, NUM_INDEXES,
* NUM_COLORS

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),
* STARS_Y_VALUES(6), TREE_X(29), TREE_Y(29),
* HOUSE_X(12), HOUSE_Y(12), LAND_X(15),
* LAND_Y(15), SIDE_START_X, SIDE_START Y, SIDE_DIAG_X,
* SIDE_DIAG_Y, ROAD_START_X, ROAD_START_Y, ROAD_DIAG_X,
* ROAD_DIAG_Y, RED_INTENS_1, RED_INTENS_2,
* GREEN_INTENS_1, GREEN_INTENS_2, BLUE_INTENS_1,
* BLUE_INTENS_2, LARGER, WIDER, MAX_WIDTH, DUMMY_REAL,
* BW_RED_INTENS, BW_GREEN_INTENS, BW_BLUE_INTENS,
* BW_X VALUES(9), BW_Y VALUES(9), NOM_WIDTH, MAX_X,
* ~_y

CHARACTER*80 DUMMY_STRING

DATA WS_ID / 1 /, TEXT_START_X / 0.05 /,
* TEXT_START_Y / 0.9 /, NUM_STARS / 6 /,
* NUM_TREE_PTS / 29 /, NUM_HOUSE_PTS / 12 /,
* NUM_LAND_PTS / 15 /, SIDE_START_X / 0.2 /,
* SIDE_START_Y / 0.3 /, SIDE_DIAG_X / 0.25 /,
* SIDE_DIAG_Y / 0.15 /, SIDE_OFF_COL / 1 /,
* SIDE_OFF_ROW / 1 /, SIDE_NUM_COL / 1 /,
* SIDE_NUM_ROW / 2 /, ROAD_START_X/ 0.0 /,
* ROAD_START_Y / 0.15 /, ROAD_DIAG_X / 1.0 /,
* ROAD DIAG_Y / 0.0 /, ROAD_OFF_COL / 1 /,
* ROAD_OFF_ROW / 1 /, ROAD_NUM_COL / 10 /,
* ROAD_NUM_ROW / 1 /, LAND_HOUSE / 1 /,
* RED_INTENS_1 / 0.56 /, GREEN_INTENS_1 / 0.0 /
* BLUE_INTENS_1 / 0.0 /, RED_INTENS_2 / 0.8538 /,
* GREEN_INTENS_2 / 0.6646 /, BLUE_INTENS_2 / 0.2862 /,
* LIGHT / 2 /, DARK / 3 /, LARGER / 0.04 /,
* WIDER / 3.0 /, INQUIRY_OKAY / 0 /, BW_RED_INTENS / 1.0 /,
* BW_GREEN_INTENS / 0.0 /, BW_BLUE_INTENS / 0.0 /,
* BW_NUM_PTS / 9 /, THREE / 3 /

(continued on next page)

3-18 Writing Device-Independent Programs

Example 3-1 (Cont.): ADevice-Independent Program

DATA BW_X_VALUES / 0.0, 0.0, 0.2, 0.2, 0.25, 0.25,
* 1.0, 1.0, 0.0 /
DATA BW_Y_VALUES / 0.0, 0.15, 0.15, 0.3, 0.3, 0.15,
* 0.15, 0.0, 0.0 /

DATA SIDE_COLORS / 3, 2 /
DATA ROAD_COLORS / 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 /

DATA STARS_X_VALUES / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 /
DATA STARS_Y_VALUES / 0.7, 0.86, 0.81, 0.8fi, 0.701, 0.82 /

DATA TREE_X / 0.425, 0.5, 0.52, 0.54, 0.6, 0.575,
* 0.56, 0.559, 0.64, 0.69, 0.689, 0.66,
* 0.63, 0.645, 0.59, 0.53, 0.48, 0.45,
* 0.42, 0.375, 0.35, 0.375, 0.44, 0.45,
* 0.515, 0.51, 0.495, 0.475, 0.425 /
DATA TREE_Y / 0.28, 0.3, 0.26, 0.3, 0.28, 0.33,
* 0.42, 0.49, 0.53, 0.57, 0.61, 0.64,
* 0.66, 0.71, 0.76, 0.78, 0.75, 0.71,
* 0.65, 0.645, 0.6, 0.55, 0.54, 0.5,
* 0.5, 0.425, 0.38, 0.33, 0.28 /

DATA HOUSE_X / 0.1, 0.3, 0.3, 0.325, 0.3, 0.3,
* 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 /
DATA HOUSE_Y / 0.3, 0.3, 0.6, 0.6, 0.64, 0.75,
* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 /

DATA LAND_X / 0.0, 0.04, 0.055, 0.08, 0.1, 0.3,
* 0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 I
DATA LAND_Y / 0.35, 0.375, 0.376, 0.36, 0.365, 0.366,
* 0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375,
* 0.385 1

CALL GKS$OPEN_GKS('ERROR_FILE.TXT')

CALL GKS$INQ_WS_CATEGORY(GKS$K_WSTYPE_DEFAULT,
* ERROR_STATUS, CATEGORY)

C Make sure that the workstation type is valid.
IF ((ERROR_STATUS .NE. INQUIRY_OKAY) .OR.
* ((CATEGORY .NE. GKS$K WSCAT_OUTPUT) .AND.
* (CATEGORY .NE. GKS$K_WSCAT_OUTIN))) THEN

WRITE(6,*)
* 'The specified workstation type is invalid '

WRITE(6,*) 'Error status:', ERROR_STATUS
STOP

ENDIF

CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT,
* GKS$K_WSTYPE_DEFAULT)
CALL GKS$ACTIVATE_WS(WS_ID)

(continued on next page)

Writing Device-Independent Programs 3-19

Example 3--1 ~Cont.): ADevice-Independent Program

C Make sure that the def erral mode and regeneration flag are
C properly set.

CALL GKS$INQ_WS_TYPE(WS_ID, ERROR_STATUS, DUMMY_STRING,
* WS_TYPE, DUMMY_INTEGER)

CALL GKS$INQ_DEF_DEFER_STATE(WS_TYPE, ERROR_STATUS,
* DEF_MODE, REGEN_FLAG)

C You can check the status of the inquiry function execution, as
C follows:

IF (ERROR_STATUS .NE. INQUIRY_OKAY) THEN
WRITE(6,*)

* 'The deferral inquiry caused an error.'
WRITE(6,*) 'Error status:', ERROR_STATUS
STOP

ENDIF

C Defer output as long as possible and suppress implicit
C regenerations.

IF ((DEF_MODE .NE. GKS$K_ASTI) .OR.
* (REGEN_FLAG .NE. GKS$K_IRG_SUPPRESSED)) THEN

CALL GKS$SET_DEFER_STATE(WS_ID, GKS$K_ASTI,
* GKS$K_IRG_SUPPRESSED)
ENDIF

CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_PLUS
CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_SOLID)
CALL GKS$SET_PLINE_LINETYPE(GKS$K_LINETYPE_DASHID_DOTTED)

C Make sure that you don't ask for a line wider than the
C workstation's widest line.

CALL GKS$INQ_PLINE_FAC(WS_TYPE, ERROR_STATUS,
* DUMMY_INTEGER, '/.DESCR(DUMMY_INT_ARRAY), DUMMY_INTEGER,
* NOM_WIDTH, DUMMY_REAL, MAX_WIDTH, DUMMY_INTEGER,
* DUMMY_INTEGER)

DO WHILE ((WIDER * NOM_WIDTH) .GT. MAX WIDTH)
WIDER = WIDER - 0.1

ENDDO

CALL GKS$SET_PLINE_LINEWIDTH(WIDER)

CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')
CALL GKS$POLYMARKER(NUM_STARS, STARS_X VALUES,
* STARS_Y_VALUES)
CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE_X, TREE_Y)

C Check to see whether you are working with a color workstation.
CALL GKS$INQ_COLOR_FAC(WS_TYPE, ERROR_STATUS,
* NUM_COLORS, COLOR_FLAG, NUM_INDEXES)

(continued on next page)

3-20 Writing Device-Independent Programs

Example 3-1 (Copt.): ADevice-Independent Program

C For all workstations with only 2 color indexes, use
C GKS$FILL_AREA instead of GKS$CELL_ARRAY for the sidewalk and road.

IF (NUM_INDEXES .LT. THREE) THEN
CALL GKS$SET_FILL_INT_STYLE(

* GKS$K_INTSTYLE_HATCH)
CALL GKS$FILL_AREA(BW_NUM_PTS, BW_X_VALUES,

* BW_Y VALUES)
CALL GKS$SET_FILL_INT_STYLE{

* GKS$K_INTSTYLE_SOLID)
ELSE

CALL GKS$CELL_ARRAY(SIDE_START_X, SIDE_START_Y,
* SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL,
* SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW,
* '/.DESCR(SIDE_COLORS))

CALL GKS$CELL_ARRAY(ROAD_START_X, ROAD_START_Y,
* ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL,
* ROAD_OFF_ROW, ROAD_NUM_COL, ROAD_NUM_ROW,
* '/.DESCR(ROAD_COLORS))
ENDIF

CALL GKS$CREATE_SEG(LAND_HOUSE)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)

C Only change the color index if working with a workstation
C with more than two color indexes.

IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

CALL GKS$FILL_AREA(NUIK_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$CLOSE_SEG()

C If using a two-color-index workstation, do not change the color
C representation.

IF (NUM_INDEXES .LT. THREE) THEN
GO TO 100

ENDIF

C Set the color representation for color workstations with limited
C representation capabilities.

IF ((NUM_COLORS .LE. 8) .AND.
* (COLOR_FLAG .EQ. GKS$K_COLOR)) THEN

CALL GKS$SET_COLOR_REP(WS_ID, LIGHT,
* 1.0, 0.0, 1.0)

CALL GKS$SET_COLOR_REP(WS_ID, DARK,
* 0.0, 1.0, 1.0)
ELSE

(continued on next page)

Writing Device-Independent Programs 3-21

Example 3-1 (Coot.): ADevice-Independent Program

C The color representation change will alter the shading on these

C monochrome workstations.
IF (COLOR_FLAG .EQ. GKS$K_MONOCHROME) THEN

CALL GKS$SET_COLOR_REP(WS_ID, DARK,
* BW_RED_INTENS, BW_GREEN_INTENS,
* BW_BLUE_INTENS)

ELSE
C Change the color representation for the rest of the color

C workstations.
CALL GKS$SET_COLOR_REP(WS_ID, DARK,

* RED_INTENS_1, GREEN_INTENS_1,
* BLUE_INTENS_1)

ENDIF
CALL GKS$SET_COLOR_REP(WS_ID, LIGHT,

* RED_INTENS_2, GREEN_INTENS_2,
* BLUE_INTENS_2)
ENDIF

100 CONTINUE

C Check to see whether the picture on the screen is out of date (if

C there is a suppressed implicit regeneration).
CALL GKS$INQ WS_DEFER_AND_UPDATE(WS_ID,

* ERROR_STATUS, DUMMY_INTEGER, DUMMY_INTEGER,
* DUMMY_INTEGER, NEW_FRAME_FLAG)

C Release def erred output. Regenerate if necessary. Press

C RETURN when you are finished viewing the picture.

IF (NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY) THEN

CALL GKS$UPDATE_WS(WS_ID, GKS$K_PERFORM_FLAG)

READ(5,*)
ELSE

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)

ENDIF

C Inquire about the maximum device coordinate values.
CALL GKS$INQ_MAX DS_SIZE(WS_TYPE, ERROR_STATUS,
* DUMMY_INTEGER, MAX_X, MAX_Y, DUMMY_INTEGER, DUMMY_INTEGER)

C Use the lower left quarter of the display surface.
CALL GKS$SET WS_VIEWPORT(WS_ID, 0.0, MAX_X/2.0, 0.0,

C Check to see whether the picture on the screen is out of date.
CALL GKS$INQ_WS DEFER_AND_UPDATE(WS_ID, ERROR_STATUS,
* DUMMY_INTEGER, DUNIl~IY_INTEGER, DUMMY_INTEGER,
* NEW_FRAME_FLAG)

(continued on next page)

3-22 Writing Device-Independent Programs

Example 3-1 (Cont.): ADevice-Independent Program

C Release deferred output. Regenerate if necessary. Press
C RETURN when you are finished viewing the picture.

IF (NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY) THEN
CALL GKS$UPDATE_WS(WS_ID, GKS$K_PERFORM_FLAG)
READ(5,*)

ELSE
CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ (5,*)

ENDIF

CALL GKS$DEACTIVATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()
END

Writing Device-Independent Programs 3-23

3.2 Presentation of Program Examples in this Manual

From this point forward, all program examples in this manual are written in
a device-independent manner. Therefore, you should be able to execute the
examples no matter which type of device you use.

Also, in an attempt to present DEC GKS programming techniques without
confusing you with the specifics of many different applications, almost all
examples in this manual use the same Starry Night picture of the house, tree,
horizon, and so forth. Therefore, you can concentrate on the new concepts
presented in a given chapter.

Example 3-2 makes a few changes to the program thus far presented, as
follows:

• This program splits the task of setting up, drawing the picture, and cleaning
up into three distinct subroutines.

• This program places each primitive in a separate segment.

• Some of the inquiry function calls and INCLUDE statements need to be
used in several subroutines.

Example 3-2 presents the base example for all other examples in this manual
(Starry Night). The remaining examples in the manual slightly alter these
subroutines and add new subroutines to this program.

Example 3-2: The User Manual Program Example Template

IMPLICIT NONE
INTEGER WS_ID, HOUSE, TREE, HORIZON, STARS, TITLE,
* SIDE, ROAD

DATA WS_ID / 1 /, TITLE / 1 /, STARS / 2 /, TREE / 3 /,
* SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, HOUSE / 7 /

CALL SETUP(WS_ID)
CALL DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)
CALL CLEANUP(WS_ID)

END

C **
C Set up the DEC GKS and the workstation environments.

SUBROUTINE SETUP(WS_ID)

(continued on next page)

3-24 Writing Device-Independent Programs

Example 3-2 (Cont.): The User Manual Program Example Template

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, ERROR_STATUS, CATEGORY, INQUIRY_OKAY,
* DUMMY_INTEGER, DEF_MODE, REGEN_FLAG, WS_TYPE

CHARACTER*80 DUMMY_STRING

DATA INQUIRY_OKAY / 0 /

CALL GKS$OPEN_GKS('Error_f ile.txt')

CALL GKS$INQ_WS_CATEGORY(GKS$K_WSTYPE_DEFAULT,
* ERROR_STATUS, CATEGORY)

C Make sure that the workstation type is valid.
IF ((ERROR_STATUS .NE. INQUIRY_OKAY) .OR.
* ((CATEGORY .NE. GKS$K_WSCAT_OUTPUT) .AND.
* (CATEGORY .NE. GKS$K_WSCAT_OUTIN))) THEN

WRITE(6,*)
* 'The specified workstation type is invalid.'

WRITE(6,*) 'Error .status:', ERROR_STATUS
STOP

ENDIF

CALL GKS$OPEN_WS(WS_ID, GKS$K_CONID_DEFAULT,
* GKS$K WSTYPE_DEFAULT)
CALL GKS$ACTIVATE_WS(WS_ID)

C Make sure that the deferral mode and regeneration flag are
C properly set.

CALL GKS$INQ WS_TYPE(WS_ID, ERROR_STATUS, DUMMY_STRING,
* WS_TYPE, DUMMY_INTEGER)

CALL GKS$INQ_DEF_DEFER_STATE(WS_TYPE, ERROR_STATUS,
* DEF_MODE, REGEN FLAG)

C You can check the status of the inquiry function execution, as
C follows:

IF (ERROR_STATUS .NE. INQUIRY_OKAY) THEN
WRITE(6,*)

* 'The deferral inquiry caused an error.'
WRITE(6,*) 'Error status:', ERROR_STATUS
STOP

ENDIF

C Defer output as long as possible and suppress implicit
C regenerations.

IF ((DEF_MODE .NE. GKS$K_ASTI) .OR.
* (REGEN_FLAG .NE. GKS$K_IRG_SUPPRESSED)) THEN

CALL GKS$SET_DEFER_STATE(WS_ID, GKS$K ASTI,
* GKS$K_IRG_SUPPRESSED)
ENDIF

RETURN
END

(continued on next page)

Writing Device-Independent Programs 3-25

Example 3-2 (Cont.~: The User Manual Program Example Template

c **
C Draw the picture, and place each primitive in a segment...

SUBROUTINE DR.AW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE,
* HORIZON, NUM_STARS, NUM_TREE_PTS,
* NUM HOUSE_PTS, NUM_LAND_PTS, SIDE_OFF_COL,
* SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW,
* SIDE_COLORS(1, 2), ROAD_OFF_COL, ROAD_OFF_ROW,
* ROAD_NUM_COL, ROAD_NUM_ROW, ROAD_COLORS(10, 1),
* LIGHT, DARK, ERROR_STATUS, INQUIRY_OKAY,
* DUMMY_INTEGER, WS_TYPE, DUMNIY_INT_ARRAY(50),
* COLOR_FLAG, NUM_INDEXES, THREE, BW_NUM_PTS

CHARACTER*80 DUMMY_STRING

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES(6),
* STARS_Y_VALUES(6), TREE_X(29), TREE_Y(29),
* HOUSE_X(12), HOUSE_Y(12), LAND_X(15),
* LAND_Y(15), SIDE_START X, SIDE_START_Y, SIDE_DIAG_X,
* SIDE_DIAG_Y, ROAD_START_X, ROAD_START_Y, ROAD_DIAG_X,
* ROAD_DIAG_Y, LARGER, WIDER, MAX_WIDTH, DUMMY_REAL,
* NOM_WIDTH, BW_X_VALUES(9), BW_Y_VALUES(9)

DATA TEXT_START_X / 0.05 /,
* TEXT_START_Y / 0.9 /, NUM_STARS / 6 /,
* NUM_TREE_PTS / 29 /, NUM_HOUSE_PTS / 12 /,
* NUM_LAND_PTS / 15 /, SIDE_START_X / 0.2 /,
* SIDE_START_Y / 0.15 /, SIDE_DIAG_X / 0.25 /,
* SIDE_DIAG_Y / 0.3 /, SIDE_OFF_COL / 1 /,
* SIDE_OFF_ROW / 1 /, SIDE_NUM_COL / 1 /,
* SIDE_NUM_ROW / 2 /, ROAD_START_X/ 0.0 /,
* ROAD_START_Y / 0.15 /, ROAD_DIAG_X / 1.0 /,
* ROAD_DIAG_Y / 0.0 /, ROAD_OFF_COL / 1 /,
* ROAD_OFF_ROW / 1 /, ROAD_NUM_COL / 10 /,
* ROAD_NUM_ROW / 1 /, LIGHT / 2 /, DARK / 3 /,
* LARGER / 0.04 /, WIDER / 3.0 /, INQUIRY_OKAY / 0 /,
* THREE / 3 /, BW_NUM_PTS / 9 /

DATA BW_X_VALUES / 0.0, 0.0, 0.2, 0.2, 0.25, 0.25,
* 1.0, 1.0, 0.0 /
DATA BW_Y_VALUES / 0.0, 0.15, 0.15, 0.3, 0.3, 0.15,
* 0.15, 0.0, 0.0 /

DATA SIDE_COLORS / 3, 2 /
DATA ROAD_COLORS / 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 /

DATA STARS_X_VALUES / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 /
DATA STARS_Y_VALUES / 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 /

(continued on next page)

3-26 Writing Device-Independent Programs

Example 3-2 (Coot.): The User Manual Program Example Template

DATA TREE_X / 0.425, 0.5, 0.52, 0.54, 0.6, 0.575,
* 0.56, 0.559, 0.64, 0.69, 0.689, 0.66,
* 0.63, 0.645, 0.59, 0.53, 0.48, 0.45,
* 0.42, 0.375, 0.35, 0.375, 0.44, 0.45,
* 0.515, 0.51, 0.495, 0.475, 0.425 /
DATA TREE_Y / 0.28, 0.3, 0.26, 0.3, 0.28, 0.33,
* 0.42, 0.49, 0.53, 0.57, 0.61, 0.64,
* 0.66, 0.71, 0.76, 0.78, 0.75, 0.71,
* 0.65, 0.645, 0.6, 0.55, 0.54, 0.5,
* 0.5, 0.425, 0.38, 0.33, 0.28 /

DATA HOUSE_X / 0.1, 0.3, 0.3, 0.325, 0.3, 0.3,
* 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 /
DATA HOUSE_Y / 0.3, 0.3, 0.6, 0.6, 0.64, 0.75,
* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 /

DATA LAND_X / 0.0, 0.04, 0.055, 0.08, 0.1, 0.3,
* 0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 /
DATA LAND_Y / 0.35, 0.375, 0.376, 0.36, 0.365, 0.366,
* 0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375,
* 0.385 /

CALL GKS$SET_TEXT_HEIGHT(LARGER)
CALL GKS$SET_PMARK_TYPE(GKS$K_MARKERTYPE_PLUS)
CALL GKS$SET_FILL_INT_STYLE(GKS$K_INTSTYLE_SOLID)
CALL GKS$SET_PLINE_LINETYPE(GKS$K_LINETYPE_DASHED DOTTID)

C Obtain the workstation type.
CALL GKS$INQ WS_TYPE(WS_ID, ERROR_STATUS, DUMMY_STRING,
* WS_TYPE, DUMMY_INTEGER)

C Make sure that you don't ask for a line wider than the
C workstation's widest line.

CALL GKS$INQ_PLINE_FAC(WS_TYPE, ERROR_STATUS,
* DUMMY_INTEGER, y.DESCR(DUMMY_INT_ARRAY), DUMMY_INTEGER,
* NOM_WIDTH, DUMMY_REAL, MAX_WIDTH, DUMMY_INTEGER,
* DUMMY_INTEGER)

DO WHILE ((WIDER * NOM WIDTH) .GT. MAX_WIDTH)
WIDER = MAX_WIDTH/NOM_WIDTH

ENDDO

CALL GKS$SET_PLINE_LINEWIDTH(WIDER)

CALL GKS$CREATE_SEG(TITLE)
CALL GKS$TEXT(TEXT_START_X, TEXT_START_Y,
* 'Starry Night')
CALL GKS$CLOSE_SEG()

CALL GKS$CREATE_SEG(STARS)
CALL GKS$POLYMARKER(NUM_STARS, STARS_X_VALUES,
* STARS_Y_VALUES)
CALL GKS$CLOSE_SEG()

(continued on next page)

Writing Device-Independent Programs 3-27

Example 3-2 (Copt.): The User Manual Program Example Template

CALL GKS$CREATE_SEG(TREE)
CALL GKS$FILL_AREA(NUM_TREE_PTS, TREE_X, TREE_Y)
CALL GKS$CLOSE_SEG()

C Check to see whether you are working with a color workstation.
CALL GKS$INQ_COLOR_FAC(WS_TYPE, ERROR_STATUS,
* DUMMY_INTEGER, COLOR FLAG, NUM_INDEXES)

C For all workstations with less than three color indexes,
C use GKS$FILL_AREA instead of GKS$CELL_ARRAY for the sidewalk
C and road.

IF (NUM_INDEXES .LT. THREE) THEN
CALL GKS$CREATE_SEG(SIDE)
CALL GKS$SET_FILL_INT_STYLE(

* GKS$K_INTSTYLE_HATCH)
CALL GKS$FILL_AREA(BW_NUM_PTS, BW_X VALUES,

* BW_Y VALUES)
CALL GKS$SET_FILL_INT_STYLE(

* GKS$K_INTSTYLE_SOLID)
CALL GKS$CLOSE_SEG()

ELSE
C CALL GKS$CREATE_SEG(SIDE)

CALL GKS$CELL_ARRAY(SIDE_START_X, SIDE_START_Y,
* SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL,
* SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW,
* y.DESCR (S IDE_COLORS))

C CALL GKS$CLOSE_SEG()
C CALL GKS$CREATE_SEG(ROAD)

CALL GKS$CELL_ARRAY(ROAD START X, ROAD_START_Y,
* ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL,
* ROAD_OFF_ROW, ROAD_NUM_COL, ROAD_NUM_ROW,
* y.DESCR(ROAD_COLORS))

C CALL GKS$CLOSE_SEGC)
ENDIF

CALL GKS$CREATE_SEG(HORIZON)
CALL GKS$POLYLINE(NUM_LAND_PTS, LAND_X, LAND_Y)
CALL GKS$CLOSE_SEG()

CALL GKS$CREATE_SEG(HOUSE)
C Only change the color index if working with a workstation
C with more than two color indexes.

IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)
CALL GKS$CLOSE_SEG()

RETURN
END

(continued on next page)

3-28 Writing Device-Independent Programs

V

Example 3-2 (Cont.): The User Manual Program Example Template

c **

C Clean up the DEC GKS and the workstation environments.
SUBROUTINE CLEANUP(WS_ID)

IMPLICIT NONE
INTEGER WS_ID

CALL GKS$DEACTIYATE_WS(WS_ID)
CALL GKS$CLOSE_WS(WS_ID)
CALL GKS$CLOSE_GKS()

RETURN
END

Figures 3-1 through 3-5 illustrate the output from Example 3-2 on five
different supported workstations. Notice that the picture occupies a larger or
smaller portion of the workstation surface depending on the width-to-height
ratio of the device surface. By default, DEC GKS generates output on the
largest square that the workstation can produce, with the lower left corner of
the default world coordinate space corresponding with the lower left corner of
the workstation surface.

Writing Device-Independent Programs 3-29

Figure 3-1: Starry Night on a VAXstation Workstation

KB MENU TT: KB

Starry Night

-}-

ZK-5188-86

3-30 Writing Device-Independent Programs

Figure 3-2: Starry Night on a VT240 Terminal

ZK-5190-86

Writing Device-Independent Programs 3-31

Figure 3-3: Starry Night on a TEKTRONIX-4014 Terminal

ZK 5844-HC

3-32 Writing Device-Independent Programs

Figure 3-4: Starry Night on an LCG01 Printer

ZK-5189-86

Writing Device-Independent Programs 3-33

Figure 3-5: Starry Night on an LA100 Printer

~d
0

0

O

O

O

O

O

O

O

O

O~ I
I

O~
I

O~
I

OI
I

O;

i
~i

Starry Night

'~'

0

0

O

O

O

O

O

O

O

O

O

O

O

O

O

O

ZK-5187-86

3-34 Writing Device-Independent Programs

Chapter 4

Composing and Transforming Pictures

This chapter provides an overview of picture transformation that you need as a
basis for learning additional details of output generation. This chapter discusses
the following concepts in detail:

• Normalization transformations (picture composition)

• Clipping of primitives

• Workstation windows (zooming in and out of a picture)
• Workstation viewports (using portions of the device surface)

Using DEC GKS, you can transform segments as well as primitives and pictures.
Chapter 5, Generating Output, discusses segment transformations in detail.

NOTE

Section 4.4 contains the code that you must add to the Starry Night
program in Example 3-2 to produce the program example contained
in this chapter. You may wish to add this code to the base program
so that you .can execute the program while reading this chapter. The
lines of blue code in the example signify the new code that you need
to add to Example 3-2.

Composing and Transforming Pictures 4-1

4.1 DEC GKS Coordinate Systems

In the previous chapters in this manual, you plotted your picture on the default
world coordinate range ([0,1] x [0,1]), and DEC GKS drew the picture on the
largest square that your workstation could produce, with the lower left corner
of the world coordinate range corresponding to the lower left corner of the
workstation surface.

The DEC GKS coordinate system offers greater flexibility than that provided by
using default transformations. The DEC GKS coordinate systems address the
following needs of graphical programming:

• Ability to plot portions of a picture on separate world coordinate ranges
(ranges that contain coordinate point values that are relevant to the data)

• Ability to construct a picture on adevice-independent coordinate plane

• Ability to show any portion of the composed picture on any portion of any
workstation surface.

To meet the needs of graphical programming, DEC GKS uses the following
three distinct coordinate systems when producing any picture.

• World coordinate system

• Normalized device coordinate (NDC) system

• Device coordinate system

You use portions of the world coordinate system to plot your output primitives,
a portion of the device-independent NDC coordinate plane to compose a
complete picture, and a portion of the device coordinate plane to present all or
part of your picture on all or part of the surf ace of the workstation.

The following sections describe the three systems.

4.1.1 The World Coordinate System

The world coordinate plane is an imaginary coordinate plane used to plot a
graphical primitive or picture. This imaginary plane consists of an X and a Y
axis that extend infinitely in all four directions, and whose intersecting origin is
the point (0.0, 0.0).

The infinite world coordinate system gives you the flexibility to plot any output
primitive according to whatever data is relevant. If your data contains negative
numbers, you can use a portion of the world coordinate plane that contains
negative X and Y values. Or, if your primitive requires coordinate points from

4-2 Composing and Transforming Pictures

0.0 to 500.0, you can map the primitive to the rectangular world coordinate
range ([0,500] x [0,500)).

You pass the world coordinate points of your plotted image to the DEC GKS
output functions. The rectangulaz portion of the world coordinate system in
which you plot a graphical image is called the normalization window. By telling
DEC GKS which portion of the world coordinate plane you are using for your
normalization window, you can map different windows to a rectangular portion
of the normalized device coordinate (NDC) plane called the normalization
viewport. The process of mapping from the world coordinate range to the NDC
range is called the normalization transformation.

You can envision this process as cutting portions of the world coordinate plane
and pasting them on the NDC plane. The world coordinate range is a scratch
pad and the NDC range is your pasteboard. Figures 4-1 and 4-2 illustrate the
mapping process from normalization windows to corresponding normalization
viewports.

Composing and Transforming Pictures 4-3

Figure 4-1: Plotting Portions of a Picture in World Coordinates

soo A

-700

(0,0) - 300

r~
~~

-goo

World Coordinate Range

❑ =Normalization windows
ZK-5341-86

4-4 Composing and Transforming Pictures

Figure 4-2: Composing a Picture on the N DC Plane

([100,300] x [150,600]

(0,0)
r

Mapping to NDC Space

.......
[-700,-400] x [-350,-700])

1.0

ZK-5338-86

Composing and Transforming Pictures 4-5

Previous chapters in this manual used the DEC GKS default transformations.
By default, DEC GKS defines the world coordinate range ([0,1) x [0,1]) to
be the normalization window and the NDC range ([0,1] x [0,1]) to be the
normalization viewport. After mapping the window to the viewport, DEC GKS
maps the NDC range ([0,1] x [0,1]) to the largest portion of the workstation
surface that maintains the picture's shape. Since the default portion of the
NDC plane is square, DEC GKS maps the picture to the largest square portion
of the workstation surface, with the lower left corner of the default NDC space
corresponding to the lower left corner of the workstation surface.

4.1.2 The NDC and Device Coordinate Systems

The normalized device coordinate (NDC) system is adevice-independent
system used to contain an entire picture. You construct the picture using
applicable normalization transformations that map primitives from the world
coordinate range to NDC space.

When you generate output, DEC GKS performs a second transformation called
the workstation transformation. This transformation maps a portion of the NDC
space (the workstation window) onto a portion of the device coordinate space
(workstation viewport).

Theoretically, the NDC space is an infinite coordinate plane. You can map any
normalization window from the world coordinate plane to any rectangle on
the NDC space. However, when DEC GKS maps images from the NDC space
to the surface of the physical device, the largest possible portion of the NDC
space that can be mapped is ([0,1) x [0,1]). Consequently, only images mapped
within this square portion of the NDC space can subsequently be mapped onto
the physical device surface. (Remember that the maximum X and Y values in
the device coordinate system can be different values on different devices.)

The NDC plane is an intermediate coordinate system that is independent
of both the needs of the application (plotting primitives) and of the device
coordinate requirements (displaying the picture on the workstation surface).
You use the workstation transformation to map all or part of the NDC range
([0,1] x [0,1]) onto all or part of the device coordinate range.

Figure 4-3 illustrates both the normalization and workstation tranformation
process.

4-6 Composing and Transforming Pictures

Figure 4-3: The DEC GKS Transformations

WORLD COORDINATES

Normalization
window

NDC COORDINATES

Map to lower left corner
(normalization viewport►

Map to upper right corner
(another normalization viewport)

Map workstation window
from NDC space to the
current workstation
viewport.

DEVICE COORDINATES

0

ZK 5038 86

4.2 Composing a Picture

In Example 3-2, all of the primitives in the picture have coordinate points
that fall within the default normalization window on the world coordinate

Composing and Transforming Pictures 4-7

plane. DEC GKS maps that range to the normalized device coordinate (NDC)
space. In many applications, this is an inconvenient way of plotting pictures. A
portion of the world coordinate system that allows easy plotting of the sidewalk
and road may not provide an easy system for plotting the house (notice all of
the real numbers of different sizes needed to plot the house). Perhaps you want
to plot the house without having to use the decimal portion of the coordinate
points. Perhaps your application contains data expressed in negative numbers.

To make it easier to plot your pictures, DEC GKS allows you to plot a single
primitive (the house, the tree, and so forth) on any rectangular portion of the
world coordinate plane, and to map all of these portions onto the NDC space,
thereby composing a complete picture.

4.2.1 Changing the Default Normalization Transformation

In subroutine DRAW~'ICTURE in Example 3-2, the code plots all output
primitives within the default normalization window ([o, l] x [o, l])and DEC
GKS maps them to the default normalization viewport ([o,l] x [o,l]). Since
the picture contains several different output primitives, it is unlikely that an
application plots all images within the same normalization window.

To illustrate the composition of pictures using various normalization windows
and viewports, this section shows how to alter the plotting of the house and
how to map the house onto different normalization viewports on the NDC
space.

Let's assume that it is desirable to plot all of the house's points without using
the decimal portion of the real number world coordinate value. To do this,
review the house's current world coordinate values, as follows:

c **
C Draw the picture, and place each primitive in a segment...

SUBROUTINE DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'

DATA HOUSE_X / 0.1, 0.3, 0.3, 0.325, 0.3, 0.3,
* 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 /
DATA HOUSE_Y / 0.3, 0.3, 0.6, 0.6, 0.64, 0.75,
* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 /

4-8 Composing and Transforming Pictures

The range of X values is from 0.075 to 0.325, and the range of Y values is from
0.3 to 0.75. So, to work with numbers that are easier to understand, you can
define a normalization window with an X range from 75.0 to 325.0, and a Y
range from 300.0 to 750.0 ([75,325] x [300,750]).

To see how to define a new normalization window, review the following code:

C **
C Draw the picture, and place each primitive in a segment...

SUBROUTINE DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER H_NORM_LEFT,

DATA H_NORM_LEFT / 1 /

O DATA HOUSE_X / 100.0, 300.0, 300.0, 325.00, 300.0, 300.0,
* 250.0, 250.0, 200.0, 75.0, 100.0, 100.0 /
DATA HOUSE_Y / 300.0, 300.0, 600.0, 600.0, 640.0, 750.0,
* 750.0, ?00.0, 750.0, 600.0, 600.0, 3.00 /

CALL GKS$CREATE_SEG(HOUSE)
C Only change the color index if working with a workstation
C that has more than two color indexes.

IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

® CALL GKS$SET_WINDOW(H_NORM_LEFT, 75.0, 325.0, 300.0, 750.0)

® CALL GKS$SELECT_XFORM(H_NORM_LEFT)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$CLOSE_SEG()

The following numbers correspond to the numbers in the previous example:

O When using a different world window for the plotting of the house,
you specify points that fall within the dimensions of the window
([75,325] x [300,750]).

Composing and Transforming Pictures 4-9

• This call to GKS$SET_WINDOW associates the normalization window
([75,325] x [300,750]) with the normalization transformation number 1
(H~TORM_LEFT). This program uses the variable H~10RM_LEFT
because this normalization transformation eventually places the house in
the left portion of the picture.
Keep in mind that this call does not change the current normalization
window; it only associates a window with a normalization transformation
number.

0 This call to GKS$SELECT~CFORM actually changes the current nor-
malization transformation from the default (whose window has the
range ([0,1] x [0,1])) to H~TORM_LEFT (whose window has the range
([75,325] x [300,750])). From this point on (unless you change the normal-
ization transformation again), mapping of all output primitives takes place
using the window and viewport associated with H~TORM_LEFT.

If you are plotting a picture in a portion of the world coordinate plane that is
not the default range, you need to associate the window dimensions with a
normalization number by calling GKS$SET_WINDOW, and you need to tell
DEC GKS to use the normalization window and viewport associated with the
new normalization number by calling GKS$SELECT~CFORM.

DEC GKS supports a range of normalization transformation numbers from the
value 0 to 255. You can either choose a new normalization number each time
you wish to use a new window or viewport, or you can redefine the window
or viewport associated with a single number, depending on the needs of your
application.

The value 0 is a special normalization number. This is the DEC GKS default
normalization transformation that maps primitives from the world coordinate
range ([0,1] x [O,lJ) to the NDC range ([0,1] x [0,1]). All of the program
examples in the previous chapters in this manual use the default transformation.

You cannot pass the value 0 to GKS$SET_WINDOW. You cannot change the
normalization window and viewport associated with the default normalization
transformation. The default normalization is also called the unity transformation.

If you need to use a window and viewport with other than the default ranges,
you need to associate the new ranges with some other valid normalization
transformation number.

If you want to use a normalization viewport other than the default, you need
to associate a normalization viewport range with the appropriate normalization
number. In the last example, the house is mapped to the default normalization
viewport, since the application failed to specify a different viewport range.
To see how to map the house into its proper place in the picture, review the
following code:

4-10 Composing and Transforming Pictures

0

C **
C Draw the picture, and place each primitive in a segment...

SUBROUTINE DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER H_NORM_LEFT, UNITY,

DATA H_NORM_LEFT / 1 /, UNITY / 0 /

DATA HOUSE_X / 100.0, 300.0, 300.0, 325.00, 300.0, 300.0,
* 250.0, 250.0, 200.0, 75.0, 100.0, 100.0 /
DATA HOUSE_Y / 300.0, 300.0, 600.0, 600.0, 640.0, ?50.0,
* 750.0, 700.0, 750.0, 600.0, 600.0, 3.00 /

CALL GKS$CREATE_SEG(HOUSE)
C Only change the color index if working with a workstation
C that has more than two color indexes.

IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

CALL GKS$SET_WINDOW(H_NORM_LEFT, 75.0, 325.0, 300.0, 750.0
CALL GKS$SET_VIEWPORT(H_NORM_LEFT, 0.075, 0.325, 0.3, 0.75
CALL GKS$SELECT_XFORM(H_NORM_LEFT)

CALL GKS$FILL_AR.EA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$CLOSE_SEG()

© CALL GKS$SELECT_XFORM(UNITY)

The following numbers correspond to the numbers in the previous example:

O This code associates a normalization viewport rectangle on the left side
of the NDC space with the normalization transformation H NORM _
LEFT. DEC GKS maps the house from the normalization window already
associated with H NORM _LEFT to this viewport. Figure 4-4 illustrates
the space occupied by this normalization viewport. Figure 4-5 illustrates
the NDC space after generating the house using the normalization
transformation H_NORM_LEFT.

© This code resets the current normalization number to the value 0 (the
number of the unity transformation) so that subsequent calls to output
functions use the default normalization window and viewport.

Composing and Transforming Pictures 4-11

Figure 4-4: Changing Normalization Viewport

NDC SPACE

Starry Night

-~.

~'Tf

~'

...r....~r~.~

~-

= CURRENT NORMALIZATION VIEWPORT

ZK 5205 86

4-12 Composing and Transforming Pictures

Figure 4-5: Mapping to the New Normalization Viewport

NDC SPACE

Starry Night

r

►'

n =HOUSE'S NORMALIZATION VIEWPORT

ZK 5210 86

When you execute the code after making these changes to Example 3-2, notice
that the example produces the same picture on the device surface as the original
example.

4.2.2 Altering the Aspect Ratio

To this point, this chapter has described how to plot a primitive in a different
normalization window. This section expands on this idea by describing how
to alter the shape of a primitive in a normalization window by altering the
dimensions of the normalization viewport.

For example, once you plot the house, you can map that house onto any
number of normalization viewports on the NDC space. Not only can you map
the house onto different viewports, you can alter the size and proportion of
those viewports to alter the shape of the house. The proportionate shape of
primitives contained in a window is called the aspect ratio. To calculate the
aspect ratio of primitives in a given window, divide MAX _WINDOW_UNITS_
Y by MAX _WINDOW UNITS_X.

You can envision the process of altering aspect ratio as stretching or shrinking
a primitive to fit inside of the boundary of the normalization viewport. By
altering the aspect ratio, you can produce a vanishing effect or you can simulate
scaling (shrinking and expanding).

Composing and Transforming Pictures 4-13

Figure 4-6 outlines two normalization viewports that you can use to map
the house to NDC space. When mapping the house from the normalization
window to the two designated viewports, DEC GKS maintains the relative
position of each of the coordinate points within the viewport. However, in
maintaining the relative position of the points, mapping to a normalization
viewport whose proportion is different than the corresponding window causes
an alteration in the primitives' aspect ratio. For instance, the smaller viewport
produces a house shorter and wider than the plotted primitive, and the larger
viewport produces a house taller and more narrow than the plotted primitive.

Figure 4--6: Choosing Various Normalization Viewports

NDC SPACE

1 = NORMALIZATION VIEWPORTS

ZK 5204 86

4-14 Composing and Transforming Pictures

The following code shows you how to map the house to several normalization
viewports. Figure 4-7 illustrates an approximation of the picture generated by
this code. Keep in mind that the picture may appear differently on each device.

c **
C Draw the picture, and place each primitive in a segment...

SUBROUTINE DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER H_NORM_LEFT, UNITY, H_NORM_FRONT, H_NORM_BACK,

DATA UNITY / 0 /, H_NORM_LEFT / 1 /, H_NORM_BACK / 2 /,
* H_NORM_FRONT / 3 /

CALL GKS$CREATE_SEG(HOUSE)
C Only change the color index if working with a color workstation
C (or a VT125/240 or a VAXstation).

IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

CALL GKS$SET_WINDOW(H_NORM_LEFT, 75.0, 325.0, 300.0, 750.0)
CALL GKS$SET_VIEWPORT(H_NORM_LEFT, 0.075, 0.325, 0.3, 0.75)
CALL GKS$SELECT XFORM(H_NORM_LEFT)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

O CALL GKS$SET WINDOW(H_NORM BACK, 75.0, 325.0, 300.0, 750.0)
CALL GKS$SET_VIEWPORT(H_NORM_BACK, 0.32, 0.465, 0.345, 0.47)
CALL GKS$SELECT XFORM(H_NORM_BACK)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

© CALL GKS$SET_WINDOW(H_NORM_FRONT, 75.0, 325.0, 300.0, 750.0)
CALL GKS$SET_VIEWPORT(H_NORM_FRONT, 0.6, 0.8, 0.15, 1.0)
CALL GKS$SELECT_XFORM(H_NORM_FRONT)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$CLOSE_SEG()

CALL GKS$SELECT_XFORM(UNITY)

The following numbers correspond to the numbers in the previous example:

O This code spe ' 'es a normalization window and viewport that DEC GKS
associates with the normalization transformation number 2 (H~IORM_
BACK). After calling GKS$SELECT~CFORM and passing H_NORM_
BACK, DEC GKS maps all output (the house) from the associated window
to the associated viewport. The new viewport space is a small rectangular

Composing and Transforming Pictures 4-15

area between the leftmost house and the tree. Mapping to this viewport
gives the effect of mapping a small house in the distance. (Notice that the
specified window is always the same world coordinate space containing the
plotted house.)

© This code specifies the same normalization window containing the plotted
house, but specifies a tall, thin viewport at the rightmost portion of the
picture. After selecting H_NORM_FRONT, DEC GKS maps all generated
output from the associated window to the associated viewport. Mapping
to this viewport gives the effect of mapping a tall house to the forefront of
the picture. Notice how this newly generated house covers, or occludes, the
tree.

4-16 Composing and Transforming Pictures

Figure 4-7: Viewing the Aspect Ratio of Transformed Primitives—
VT241

ZK 5343-86

When you compose a picture, you need to be aware of the proportion of your
normalization window as compared to your normalization viewport. If you
map a primitive from a square window to a rectangular viewport whose X
dimension is twice its Y dimension, the primitive will appear shorter and fatter
than the primitive plotted in the _world coordinate space. To maintain the
aspect ratio of the plotted picture (as was done with the leftmost house), your
normalization window and viewport must be proportionally equivalent.

Composing and Transforming Pictures 4-17

4.2.3 Clipping a Primitive

In previous chapters, when you mapped primitives from the default normaliza-
tion window to the default viewport, GKS mapped the entire primitive to the
NDC plane. There was no portion of any primitive that was omitted from the
picture generated on the surface of the workstation.

During normalization transformations involving viewports whose ranges are
smaller than the default range ([0,1] x [0,1]), portions of primitives extending
outside of the normalization window may or may not be mapped to the NDC
space, depending on the current clipping flag. The normalization viewport is
also called the clipping rectangle.

By default, all primitives are clipped at the normalization viewport. To change
the current clipping flag, you pass either GKS$K_CLIP or GKS$K~TOCLIP
to the function GKS$SET_CLIPPING. Figure 4-8 illustrates the difference in
mapping depending on the current status of the clipping flag. Notice in the
figure that the stars, which are located completely outside of the normalization
window, are mapped to the NDC space when the clipping flag is set to
GKS$K~TOCLIP.

4-18 Composing and Transforming Pictures

Figure 4—$: Clipping Output Primitives

~n
L

Normalization window
(world coordinates)

Possible
normalization

viewports
(NDC coordinates)

ZK-5139-86

4.3 Viewing the Composed Picture

Once you compose a picture using the DEC GKS normalization transformation
functions, you must decide how you wish to present the picture on the
workstation surface. For instance, you need to decide whether you wish to

Composing and Transforming Pictures 4-19

show the user the entire picture, whether you want to zoom in on particular
objects, whether you want to pan across a picture, and how much of the device
surface you need in order to display the portion of the picture on a given
workstation.

To make decisions concerning picture presentation, you must have a knowledge
of the DEC GKS workstation transformation process. The workstation transfor-
mations take place from NDC space to the device coordinate plane (the surface
of the physical device). As with normalization transformations, DEC GKS uses
a window and viewport to perform this mapping. DEC GKS maps the picture
from the workstation window (located in NDC space) to the workstation viewport
(located on the device coordinate plane). The range of the device coordinate
plane is completely device dependent.

By default, DEC GKS maps the composed pictures from the workstation
window range ([0,1] x [0,1]) to the workstation viewport range that maintains
the picture's aspect ratio. Since the default workstation window is a square,
DEC GKS maps the picture to the largest square area on the device plane
(which will maintain the aspect ratio of the picture), whose lower left corner is
the origin of the device coordinate system (0.0, 0.0).

Unlike the normalization transformations, you have limited control over the
workstation windows and viewports since you must work with limitations
placed on both ranges. To make the distinction between the two types of
transformations, you can think of the normalization transformations as being
device-independent picture composition, and the workstation transformations
as being device-dependent picture presentation. (You pass a normalization
transformation number when calling the function GKS$SET_WINDOW, but
you pass a workstation identifier when calling GKS$SET_WS_WINDOW.)
There can be many normalization transformations used to create a single
picture, but there is only one current workstation transformation, with one
window and viewport used to present a picture.

Even though DEC GKS stores primitives outside the default NDC range
([0,1] x [0,1]), you cannot define a workstation window larger than that default
range. If you attempt to do so, DEC GKS generates an error. Simply, there
is no way to map a primitive located outside of that default NDC range to
the physical device surface. DEC GKS clips all primitives at the workstation
window, regardless of the current clipping flag. The clipping flag only controls
clipping at the normalization viewport. You can control clipping of primitives
during output generation, but you cannot control the required clipping of the
picture at the workstation window.

4-20 Composing and Transforming Pictures

When working with the workstation viewport, you cannot define a viewport
that is larger than the display surface. If you attempt to do so, DEC GKS
generates an error. When redefining the workstation viewport, you should use
the inquiry function GKS$INQ ~VIAX _DS_SIZE to determine the limits of the
device's coordinate plane.

You need to keep in mind that DEC GKS always maintains the picture's aspect
ratio when mapping to the workstation viewport. This means that DEC GKS
may not use the entire defined viewport; DEC GKS uses the largest rectangle
within the current workstation viewport that is proportionately equivalent to
current workstation window. So, if the current workstation window is square,
DEC GKS maps the contents of the square workstation window to the largest
square space within the current workstation viewport beginning at the lower
left corner.

Another consideration when working with the workstation transformations is
whether or not the screen is out of date. Using most of the DEC GKS supported
devices, if you make a change to the workstation window or viewport after you
generate output, you need to regenerate the surface of the workstation (if the
workstation does not perform this action by default) to implement the changes.
In making such a change, you cause all primitives not contained in segments to
be cleared from the workstation surface.

Even though your control over the workstation transformation is 'ted,
the effects on the representation of your picture can be quite impressive. As
mentioned at the beginning of this section, you can pan across a picture, and
zoom in and out of a picture. The remaining sections in this chapter illustrate
workstation transformations according to specific tasks.

The following subsections describe methods you use when mapping to the
entire workstation window, and describe methods of viewing the composed
picture.

4.3.1 Choosing Between Aspect Ratio and Drawing the Entire
Picture

Since DEC GKS always maps the workstation window to the largest rectangle
within the current workstation viewport that is proportionately equivalent to
current workstation window, the device handler may or may not use the entire
surface of the workstation to present the picture. Logically, you need to define
a workstation window within the ([0,1] x [0,1]) NDC boundary that has the
same proportions as the entire device coordinate plane.

Composing and Transforming Pictures 4-21

Before you can write a program that uses the entire workstation surface to
display the picture, you need to make a decision. Do you want to maintain the
shape of your composed picture, or do you want to draw the entire picture on
the workstation's surface? When using the entire workstation surface to present
a picture, you can either maintain the picture's aspect ratio or show the whole
picture, but you cannot do both.

To maintain the shape of the Starry Night picture as composed on the NDC
plane, you need to define a workstation window within the range

([o,

l] x
[o,

l])

that is proportionate to the dimensions of the device coordinate system.
However, if you do this, DEC GKS clips the portion of the picture exceeding
the newly proportionate workstation window boundary. To maintain shape
while using the entire display surface, you probably will not be able to show
the entire picture. Figure 4-9 illustrates the portion of the NDC space mapped
to the workstation surface.

4-22 Composing and Transforming Pictures

Figure 4-9: Maintaining Shape Over the Portion of Visible Picture

N DC Space

Part of the picture
displayed on the

workstation.

ZK-5340-86

If you decide that you want to show all of the primitives in the composed
picture, you must map all of your primitives into the portion of the NDC range
([0,1] x [0,1])that is proportionate to the device coordinate plane. However,
if you adjust the mapping of all of your primitives in this way, you alter
the aspect ratio of your primitives. Simply, your picture appears flattened or
stretched. The program examples in this chapter alter the aspect ratio in order
to present the entire composed picture. Figure 4-10 illustrates the effects of
altering the normalization viewports so as to display all generated primitives.

Composing and Transforming Pictures 4-23

Figure 4--10: Maintaining Visible Primitives Over Picture Shape

N DC Space

Picture displayed
on the

workstation.

ZK-5339-86

If both aspect ratio and entire picture presentation is crucial to your application,
you need to use a smaller portion of your workstation's surface that is
proportional to your picture. Section 4.3.5 describes how to alter the portion of
the workstation surf ace used to present a picture.

4-24 Composing and Transforming Pictures

n 4.3.2 Mapping a Picture to the Entire Workstation Surface

As mentioned in the previous section, the examples in this chapter define a
workstation window that is proportionate to the device coordinate plane, and
then map all primitives within the proportionate area of the NDC space. This
process alters the shape of the Starry Night program. The most difficult aspect
of this process is to write code that is device independent, when you do not
know the exact dimensions of any given display surface.

The following code examples show how to alter the code in the subroutine
DR.AW~'ICTURE in Example 3-2, so that DEC GKS maps from a workstation
window with the same proportion as the appropriate device coordinate plane.

C Draw the picture, and place each primitive in a segment...
SUBROUTINE DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE,

* WS_TYPE, ERROR_STATUS, CATEGORY, LARGEST VIEWPORT

REAL TEXT_START_X, TEXT_START_Y, STARS_X VALUES(6),

* DISPLAY_X, DISPLAY_Y, MAX_COORD, RATIO_X, RATIO_Y

CALL GKS$INQ_WS_CATEGORY(GKS$K_WSTYPE_DEFAULT,
* ERROR_STATUS, CATEGORY)

O IF (CATEGORY .NE. GKS$K_WSCAT_OUTIN) THEN
WRITE(6,*)

* 'The specified workstation type is not OUTIN.'
STOP

ENDIF

© CALL GKS$INQ_MAX_DS_SIZE(WS_TYPE, ERROR_STATUS,
* DUMMY_INTEGER, DISPLAY_X, DISPLAY_Y, DUMMY_INTEGER,
* DUMMY_INTEGER)

© MAX_COORD = MAX(DISPLAY_X, DISPLAY_Y)

O IF ((DISPLAY_X / MAx_COOR.D) .EQ. 1.0) THEN
RATIO_X = 1.0
RATIO_Y = DISPLAY Y / MAX_COORD

ELSE
RATIO_X = DISPLAY X / MAX_COORD
RATIO Y = 1.0

ENDIF

Composing and Transforming Pictures 4-25

0 CALL GKS$SET_VIEWPORT(LARGEST_VIEWPORT, 0.0, RATIO_X, 0.0,
* RATIO_Y)
CALL GKS$SELECT_XFORMC LARGEST_VIEWPORT)

® CALL GKS$SET_WS_WINDOW(WS_ID, 0.0, RATIO_X, 0.0, RATIO_Y)
CALL GKS$SET_WS_VIEWPORT(WS_ID, 0.0, DISPLAY_X, 0.0,
* DISPLAY_Y)

CALL GKS$CREATE_SEG(HOUSE)
C Only change the color index if working with a color workstation
C (or a VT125/240 or a VAXstation).

IF (NUM_INDEXES .GE. THREE) THEN
CALL GKS$SET_FILL_COLOR_INDEX(DARK)

ENDIF

O CALL GKS$SET_WINDOW(H_NORM_LEFT, 75.0, 325.0, 300.0, 750.0)
CALL GKS$SET_VIEWPORT(H NORM_LEFT, 0.075*RATIO_X, 0.325*RATIO_X,
* 0.3*RATIO Y, 0.75*RATIO_Y)
CALL GKS$SELECT_XFORMC H_NORM_LEFT)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$SET_WINDOW(H_NORM_BACK, 75.0, 325.0, 300.0, 750.0)
CALL GKS$SET_VIEWPORT(H_NORM_BACK, 0.32*RATIO_X, 0.465*RATIO_X,
* 0.345*RATIO_Y, 0.47*RATIO_Y)
CALL GKS$SELECT_XFORM(H_NORM_BACK)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$SET_WINDOW(H_NORiK_FRONT, 75.0, 325.0, 300.0, 750.0)
CALL GKS$SET_VIEWPORT(H_NORM_FRONT, 0.6*RATIO_X, 0.8*RATIO_X,
* 0.15*RATIO_Y, 1.0*RATIO_Y)
CALL GKS$SELECT_XFORM(H_NORM_FRONT)

CALL GKS$FILL_AREA(NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y)

CALL GKS$CLOSE_SEG()

® CALL GKS$SELECT_XFORM(LARGEST_VIEWPORT)

RETURN
END

The following numbers correspond to the numbers in the previous example:

O This code ends program execution if the workstation is not of the type
GKS$K_WSCA'I~OUTIN. The DEC GKS supported GKS$K_WSCAT_
OUTIN workstations illustrate panning and zooming better than the
GKS$K_WSCAT_OUTPUT workstations. You can alter this line of code
if you want to see the effects on a particular GKS$K_WSCAT_OUTPUT
workstation.

© The call to GKS$INQ ~VIAX _DS~IZE returns the maximum X and Y
values of the device coordinate system.

4-26 Composing and Transforming Pictures

® Using the FORTS built-in function MAX, this code determines which
maximum coordinate value is larger.

© This code determines the ratio of the maximum X and Y device coordinate
values to the larger of the two. In this manner, you establish one ratio
equivalent to 1.0 (the largest NDC value that you can use as a dimension
of the workstation window), and you establish another ratio that is less
than 1.0. Having established these values, you can define a portion of
the default NDC space ([0,1] x [0,1])that is proportionately equivalent to
whichever device coordinate plane you use.

® This code establishes LARGEST_VIEWPORT (1) to be the current
normalization transformation. This normalization transformation maps
the default normalization window to the space on the NDC plane that is
proportional to the display surface. Most of the output primitives in the
picture use this normalization transformation.

© This code sets the workstation transformation so that mapping takes place
from the proportionately scaled workstation window to the entire display
surface.

O If you define or redefine normalization transformations, you need to make
sure that you multiply all NDC coordinate values by the appropriate X or
Y ratio. In this manner, you assure that all primitives ultimately appear
within the workstation window (which is proportional to the display surface
size).
In this application, the normalization windows are not made proportional
to the current display surface size. Consequently, the picture's aspect
ratio on the display surface may be different than the aspect ratio of the
plotted image (you plot on a square normalization window, and then map
to a potentially rectangular normalization viewport). The normalization
windows used to plot primitives should use proportions required by the
needs of your application, not by the needs of any one device coordinate
system.

This code reestablishes the normalization transformation LARGES'~
VIEWPORT so that all subsequently generated output uses this normaliza-
tion transformation.

Figure 4-11 illustrates the effect of the previous code example on the VT241.
Remember that the picture fills the device coordinate range of any device and
may appear differently on various workstations.

Composing and Transforming Pictures 4-27

Figure 4-11: Using the Entire Display Surface—VT241

ZK•5199-86

4.3.3 Zooming In and Out of a Picture

One of the most useful graphical effects that you can achieve using the
workstation transformations is the zooming effect. By zooming in and out of
a picture, you can give the effect of movement and distance. For instance,
you can alter the code in subroutine DRAW_I'ICTURE in Example 3-2 to give
the effect of the user moving towards the house in the distance (closest to the
horizon).

To see how to zoom in and out of a picture, review the following code.

C **

C Draw the picture, and place each primitive in a segment...
SUBROUTINE DRAW_PICTURE(WS_ID, TITLE, STARS, TREE, SIDE,
* ROAD, HOUSE, HORIZON

C Find out if workstation transformations require implicit
C regenerations, or if the change is made immediately...

O CALL GKS$INQ_DYN_MOD_WS ATTB(WS_TYPE, ERROR_STATUS,

* DUMMY_INTEGER, DU1~IY_INTEGER, DUMMY_INTEGER,
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER,
* WS_XFORMS

4-28 Composing and Transforming Pictures

CALL GKS$UPDATE_WS(WS_ID, GKS$K_POSTPONE_FLAG)
READ(5,*)
CALL ZOOM_PICTURE(WS_ID, WS_XFORMS, RATIO_X, RATIO_Y)

RETURN
END

C **
C Zoom in on the picture. . .

© SUBROUTINE ZOOM_PICTURE(WS_ID, WS_XFORMS, RATIO_X, RATIO_Y)

IMPLICIT NONE
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR'
INTEGER WS_ID, WS_XFORMS, INCR, ERROR_STATUS, DUMMY_INTEGER,
* NEW FRAME_FLAG

REAL RATIO_X, RATIO_Y, START_X, START Y, MAX_X, MAX_Y

DATA START_X / 0.0 /, START Y / 0.0 /

C Use local variables MAX_X and MAX_Y...
MAX_X = RATIO_X
MAX_Y = RATIO_Y

© DO 200 INCR = 1, 3, 1

0

MAX_Y = MAX Y - (MAX_Y * 0.12)
MAX_X = MAX_X - (MAX_X * 0.12)
START_X = START_X + (MAX_X * 0.12)
START_Y = START_Y + (MAX_Y * 0.12)

CALL GKS$SET_WS WINDOW(WS_ID, START X, MAX_X,
* START_Y, MAX Y)

IF (WS XFORMS .EQ. GKS$K_IRG) THEN
CALL GKS$UPDATE WS(WS_ID, GKS$K_PERFORM_FLAG)

ENDIF '

© 200 CONTINUE

DO 300 INCR = 1, 3, 1

MAX_X = MAX_X + (MAX_X * 0.12)
MAX_Y = MAX_Y + (MAX_Y * 0.12)
START_X = START_X - (MAX_X * 0.12)
START_Y = START_Y - (MAX_Y * 0.12)

IF (INCR .EQ. 3) THEN
MAX_X = RATIO_X
MAX_Y = RATIO_Y
START_X = 0.0
START_Y = 0.0

ENDIF

CALL GKS$SET_WS WINDOW(WS_ID, START_X, MAX_X,
* START_Y, MAX Y)

IF (WS_XFORMS .EQ. GKS$K_IRG) THEN
CALL GKS$UPDATE_WS(WS_ID, GKS$K_PERFORM_FLAG

ENDIF

300 CONTINUE

n

Composing and Transforming Pictures 4-29


~~~ 

END 

The following numbers correspond to the numbers in the previous example: 

O This code inquires as to whether or not workstation transformations require 
implicit regenerations or if the changes are made immediately. You can 
pass the flag WS~CFORMS to all subroutines that make workstation 
transformation changes. By comparing the flag to GKS$K~RG (Implicit 
Regeneration), you know whether you need to force a regeneration to 
update the workstation surface. 

© This code, located within subroutine DRAW~'ICTURE, updates the 
surface of the workstation by releasing all deferred output. The call to 
GKS$UPDATE _WS does not cause an implicit regeneration. 

This code calls the subroutine ZOOM ~'ICTURE, which zooms into the 
middle of the picture composed on the NDC plane. 

0 The program passes WS~D, RATIO_X, and RATIO Y to ZOOM _ 
PICTURE. RATIO~C and RATIO_Y are the maximum X and Y NDC 
values of the current workstation window. These values are of the same 
proportion as the maximum X and Y device coordinate values. To zoom in 
on a picture, you need to reduce the dimension of the workstation window, 
zooming in on a particular point (in this code, the middle of the picture), 
while keeping the workstation viewport the same size. 
This code also assigns the values RATIO~C and RATIO.Y to the local 
variables MAX ~C and MAX Y. 

© This loop zooms into the middle of the picture in three steps. The code 
reduces the workstation window maximum X and Y values by twelve 
percent and increases the starting points by the same percentage. 
Keep in mind that in order to map the workstation window onto the 
entire workstation surface, you must specify a window that has the same 
proportion as the maximum device coordinate plane. If you do not, DEC 
GKS does not use the entire workstation viewport to display the picture; 
DEC GKS uses the largest rectangle within the current workstation viewport 
that maintains the aspect ratio of the workstation window. Consequently, if 
you reduce the maximum X and Y values by a certain percentage, you need 
to increase the starting points by the same percentage in order to maintain 
the proportion of the window. 

0 This code sets the workstation window, and if the device handler requires 
an implicit regeneration to implement the change, generates the implicit 
regeneration. Any primitives not contained in segments are cleared from 
the workstation surface. 

4-30 Composing and Transforming Pictures 



® Figure 4-12 illustrates the surface of the VT241 at this point in the program 
execution. Keep in mind that the picture may appear differently on other 
devices. 

O This code zooms out of the picture in three steps, updating the surface as 
needed. 

~ This code ensures that the last picture on the workstation surface reflect the 
workstation window as it was when ZOOM ~'ICTURE was called. 

Figure 4-12: Zooming In on a Picture—VT241 

ZK-5148-86 

4.3.4 Panning Across a Picture 

As described in Section 4.3.3, the most important aspect to zooming in on 
a picture is maintaining the proportion of the workstation window as you 
decrease its size. Panning across the picture is easier than zooming since 
you do not have to alter the size of the window. You only need to move the 
window from position to position on the NDC space. Panning across a picture 
is useful when you do not want to show the user the entire picture at one time. 

Composing and Transforming Pictures 4-31 



To see how to pan across a picture, review the code added to subroutine 
ZOOM_1'ICTURE from Example 3-2. 

C ************************************************************ 

C Zoom in on the picture... 
SUBROUTINE ZOOM_PICTURE( WS_ID, WS_XFORMS, RATIO_X, RATIO_Y ) 

READ (5,*) 
CALL PAN PICTURE( WS_ID, WS_XFORMS, START_X, MAX_X, 
* START_Y, MAX_Y ) 
READ (5,*) 

C ************************************************************* 

C Pan across the picture, first left, then right... 
O SUBROUTINE PAN_PICTURE( WS_ID, WS XFORMS, START_X, MAx_X, 

* START_Y, MAX_Y ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_XFORMS, INCR, ERROR_STATUS, DUMMY_INTEGER, 
* NEW_FRAME_FLAG 

REAL MAX X, MAX_Y, START_X, START_Y 

DO 400 INCR = 1, 3, 1 

MAX_X = MAX_X - 0.075 
START X = START_X - 0.075 

CALL GKS$SET_WS_WINDOW( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

IF ( WS_XFORMS .EQ. GKS$K_IRG ) THEN 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

ENDIF 

© 400 CONTINUE 

DO 500 INCR = 1, 3, 1 

MAX_X = MAX_X + 0.075 
START X = START_X + 0.075 

CALL GKS$SET_WS WINDOW( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

IF (WS_XFORMS .EQ. GKS$K_IRG ) THEN 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

ENDIF 

500 CONTINUE 

RETURN 
END 

4-32 Composing and Transforming Pictures 



The following numbers correspond to the numbers in the previous example: 

O In subroutine ZOOM ~'ICTURE, you reduce the size of the current 
workstation window. You pass the reduced window dimensions (START_ 
X, START_Y, MAX ~C, and MAX _Y) to PAN ~'ICTURE. 

© The loops used in PAN ~'ICTURE are identical to the loops used in 
ZOOM ~'ICTURE except that this code subtracts three quarters of an NDC 
point from both X workstation window values. In effect, this shifts the 
workstation window further left within the NDC space. 

© Figure 4-13 illustrates the surface of the VT241 at this point in the program 
execution. Keep in mind that the picture may appear differently on other 
devices. 

© This code shifts the workstation window back to the right within the NDC 
space. Consequently, the position of the workstation window within NDC 
space is the same as it was when you called PAN_1'ICTURE. 

Composing and Transforming Pictures 4-33 



Figure 4-13: Panning Across aPicture—VT241 

ZK-5207-86 

4.3.5 Using a Smaller Portion of the Workstation Surface 

The theory behind using a smaller portion of the workstation surface is the 
same as the theory behind using the entire device coordinate plane. As long 
as the workstation window and viewport are proportionately equivalent, DEC 
GKS maps the entire window to the entire viewport space. 

To see how to "shrink" the picture on the surface of the workstation, review the 
code added to the subroutine DRAW~'ICTURE in Example 3-2. 

4-34 Composing and Transforming Pictures 



c ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

C 

CALL GKS$UPDATE WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
REND C5 . *) 
CALL ZOOM_PICTURE( WS_ID, WS_XFORMS, RATIO X, RATIO_Y ) 
READ (5,*) 
CALL SHRINK_PICTURE( WS_ID, WS_XFORMS, DISPLAY_X, 
* DISPLAY_Y ) 

************************************************************ 
C Shrink and then expand the portion of the display surface used... 

SUBROUTINE SHRINK_PICTURE( WS_ID, WS_XFORMS, DISPLAY X, 
* DISPLAY_Y ) 

IMPLICIT NONE 
INCLUDE 'SYSsLIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_XFORMS, INCR, ERROR_STATUS, DUMIKY_INTEGER, 
* NEW_FRAME_FLAG 

REAL DISPLAY_X, DISPLAY_Y, START_X, START_Y, MAX X, MAX_Y 

DATA START_X / 0.0 /, START_Y / 0.0 / 

MAX_X = DISPLAY_X 
MAX_Y = DISPLAY_Y 

MAX_Y = MAX_Y - (MAX_Y * 0.3 ) 
MAX_X = MAX_X - ( MAX_X * 0.3 ) 
START_X = START_X + ( MAX_X * 0.3 ) 
START_Y = START_Y + ( MAX_Y * 0.3 ) 

CALL GKSsSET_WS_VIEWPORT( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

IF (WS_XFORMS .EQ. GKSZK_IRG ) THEN 
CALL GKSsUPDATE_WS( WS_ID, GKS=K_PERFORM_FLAG ) 

ENDIF 

MAX_Y = DISPLAY_Y 
MAX_X = DISPLAY_X 
START_X = 0.0 
START_Y = 0.0 

CALL GKSZSET_WS_VIEWPORT( WS_ID, START X, MAX_X, 
* START_Y, MAX_Y ) 

IF (WS_XFORMS .EQ. GKS:K_IRG ) THEN 
CALL GKSaUPDATE_WS( WS_ID, GKSSK_PERFORM_FLAG ) 

ENDIF 

RETURN 
END 

Composing and Transforming Pictures 4-35 



The following numbers correspond to the numbers in the previous example: 

O This code proportionately reduces the size of the workstation viewport in 
the same way that you reduce the workstation window when zooming in 
on a picture. In this manner, you can map the entire picture to the entire 
range of the reduced workstation viewport. 
Figure 4-14 illustrates the surface of the VT241 at this point in the program 
execution. Keep in mind that the picture may appear differently on other 
devices. 

© This code restores the workstation viewport to the entire device coordinate 
range. 

Figure 4-14: Reducing the Workstation Surface Area--VT241 

ZK 5202 86 

4.4 Program Example Used in this Chapter 

Example 4-1 presents all of the changes that you need to make to Example 3--2 
in order to follow the code examples in this chapter. 

4-36 Composing and Transforming Pictures 



Example 4-1: Using the DEC GKS Transformations 

c ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 

* COLOR_FLAG, NUM_INDEXES, THREE, BW_NUM_PTS, H_NORM_LEFT, 
* LARGEST_VIEWPORT, H_NORM_FRONT, H_NORM_BACK, CATEGORY, 
* WS_XFORMS 

REAL TEXT_START_X, TEXT_START_Y, STARS_X_VALUES( 6 ), 

* DISPLAY_X, DISPLAY_Y, ~IAX_COORD, RATIO_X, RATIO_Y 

DATA TEXT_START_X / 0.05 /, 

* THREE / 3 /, BW_NUM_PTS / 9 /, H_NORM_LEFT / 1 /, 
* LARGEST_VIEWPORT / 4 /, H_NORM_BACK / 2 /, 
* H_NORM_FRONT / 3 / 

DATA HOUSE_X / 100.0, 300.0, 300.0, 325.00, 300.0, 300.0, 
* 250.0, 250.0, 200.0, 75.0, 100.0, 100.0 / 
DATA HOUSE_Y / 300.0, 300.0, 600.0, 600.0, 640.0, 750.0, 
* 750.0, 700.0, 750.0, 600.0, 600..0, 3.00 / 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, 
* ERROR_STATUS, CATEGORY ) 

C Only allow execution for terminal screens... 
IF (CATEGORY .NE. GKS$K_WSCAT_OUTIN ) THEN 

WRITE(6,*) 
* 'The specified workstation type is not OUTIN.' 

STOP 
ENDIF 

C Obtain the maximum X and Y device coordinate values... 
CALL GKS$INQ_MAX_DS_SIZE( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DISPLAY_X, DISPLAY_Y, DUMMY_INTEGER, 
* DUMMY_INTEGER ) 

(continued on next page) 

Composing and Transforming Pictures 4-3? 



Example 4-1 (Copt.): Using the DEC GKS Transformations 

C Find out which maximum value is largest... 

MAX_COORD = MAX( DISPLAY_X, DISPLAY_Y ) 

C Depending on which is larger, establish the X to Y (or Y to X) 

C ratio. To establish a portion of the NDC space that is the same 

C proportion as the display coordinate system, use the values 1.0 and 

C the Y/X---X/Y ratio as the maximum normalization viewport values. 

IF (( DISPLAY_X / MAX_COORD ) .EQ. 1.0 ) THEN 

RATIO_X = 1.0 
R.ATIO_Y = DISPLAY_Y / MAX_COORD 

ELSE 
RATIO_X = DISPLAY_X / MAX_COORD 

RATIO_Y = 1.0 

ENDIF 

C Establish a normalization viewport that is proportionate to the 

C device coordinate plane. 

CALL GKS$SET_VIEWPORT( LARGEST_VIEWPORT, 0.0, RATIO_X, 0.0, 

* RATIO_Y ) 
CALL GKS$SELECT_XFORM( LARGEST_VIEWPORT ) 

C Establish the same portion of the NDC space to be the workstation 

C window, and establish the entire device coordinate plane as the 

C workstation viewport. 

CALL GKS$SET_WS_WINDOW( WS_ID, 0.0, RATIO_X, 0.0, R.ATIO_Y ) 

CALL GKS$SET_WS_VIEWPORT( WS_ID, 0.0, DISPLAY_X, 0.0, 

* DISPLAY_Y ) 

CALL GKS$CREATE_SEG( HOUSE ) 

C Only change the color index if working with a color workstation 

C (or a VT125/240 or a VAXstation). 

IF ( NUM_INDEXES .GE. THREE ) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( DARK ) 

ENDIF 

CALL GKS$SET_WINDOW( H_NORM_LEFT, 75.0, 325 0, 300.0, 750.0 ) 

C When working with NDC points, you need to translate the point by 

C multiplying by the appropriate ratio. In this way, the whole 

C picture is mapped to the proportionate viewport. 

CALL GKS$SET_VIEWPORT( H_NORM_LEFT, 0.075*RATIO_X, 0.325*RATIO_X, 

* 0.3*RATIO_Y, 0.75*RATIO_Y ) 

CALL GKS$SELECT_XFORM( H_NORM_LEFT ) 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 

CALL GKS$SET_WINDOW( H_NORM_BACK, 75.0, 325.0, 300.0, 750.0 ) 

CALL GKS$SET_VIEWPORT( H_NORM_BACK, 0.32*RATIO_X, 0.465*RATIO_X, 

~ 0.345*RATIO_Y, 0.47*RATIO_Y ) 

CALL GKS$SELECT_XFORM( H_NORM_BACK ) 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 

(continued on next page) 

4-38 Composing and Transforming Pictures 



Example 4-1 (Cont.~: Using the DEC GKS Transformations 

CALL GKS$SET_WINDOW( H_NORM_FRONT, 75.0, 325.0, 300.0, 750.0 ) 
CALL GKS$SET_VIEWPORT( H_NORM_FRONT, 0.6*RATIO_X, 0.8*RATIO_X, 
* 0.15*RATIO_Y, 1.0*RATIO_Y ) 
CALL GKS$SELECT_XFORM( H_NORM_FRONT ) 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 

CALL GKS$CLOSE_SEG() 

CALL GKS$SELECT_XFORM( LARGEST_VIEWPORT ) 

C Find out if workstation transformations require implicit 
C regenerations, or if the change is made immediately... 

CALL GKS$INQ_DYN_MOD_WS_ATTB( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, DUMNIY_INTEGER, DUMMY_INTEGER, 
* WS_XFORMS ) 

C Flush def erred output. Type RETURN when you are finished viewing 
C the picture... 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , * ) 

C Zoom in and out, and then reduce the portion of the surface used 
C for picture generation... 

CALL ZOOM_PICTURE( WS_ID, WS_XFORMS, RATIO_X, RATIO_Y ) 
READ (5,*) 
CALL SHRINK_PICTURE( WS_ID, WS_XFORMS, DISPLAY_X, 
* DISPLAY_Y ) 

RETURN 
END 

C ************************************************************ 

C From this point forward, all code is additional code that you 
C need to add to the "Starry Night" program. 
C ************************************************************ 

C ************************************************************ 

C Zoom in on the picture... 
SUBROUTINE ZOOM_PICTURE( WS_ID, WS_XFORMS, RATIO_X, RATIO_Y ) 

IMPLICIT NONE 
INCLUDE 'SYSSLIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS XFORMS, INCR, ERROR_STATUS, DiJMMY_INTEGER, 
* NEW FRAME_FLAG 

REAL RATIO X, RATIO_Y, START_X, START_Y, MAX_X, MAX Y 

DATA START X / 0.0 /, START_Y / 0.0 / 

C Use local variables MAX_X and MAX_Y... 
MAX_X = RATIO_X 
MAX_Y = RATIO_Y 

(continued on next page) 

Composing and Transforming Pictures 4-39 



Example 4-1 (Cont.~: Using the DEC GKS Transformations 

C Zoom in on 3 increments... 
DO 200 INCR = 1, 3, 1 

C Reduce the workstation window by 12'/.... 
MAX_Y = MAX_Y - (MAX_Y * O.i2 ) 
MAX_X = MAX_X - ( MAX_X * 0.12 ) 
START_X = START_X + ( MAX X * 0.12 ) 
START Y = START_Y + ( MAX Y * 0.12 ) 

C Establish the new workstation window... 
CALL GKS$SET_WS_WINDOW( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

C If regeneration is needed, do it... 
IF (WS_XFORMS .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

200 CONTINUE 

C Now that the current workstation window is a small portion of 
C the entire picture, pan across the NDC plane... 

READ (5,*) 
CALL PAN_PICTURE( WS_ID, WS_XFORMS, STl~RT_X, MAX_X, 
* START_Y, MAX_Y ) 

READ (5 , *) 

C In 3 increments, zoom out... 
DO 300 INCR = 1, 3, 1 

MAX_X = MAX_X + ( MAX_X * 0.12 ) 
MAX_Y = MAX_Y + ( MAX_Y * 0.12 ) 
START_X = START_X - ( MAX X * 0.12 ) 
START_Y = START Y - ( MAX Y * 0.12 ) 

C If it is the last increment, do not rely on the calculations. 
C Just reset the workstation window to be the proportionate window 
C that was in place when you called ZOOM_PICTURE... 

IF (INCR .EQ. 3) THEN 
MAX_X = RATIO_X 
MAX_Y = RATIO Y 
START_X = 0.0 
START_Y = 0.0 

ENDIF 

CALL GKS$SET WS_WINDOW( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

C If regeneration is needed, do it... 
IF (WS_XFORMS .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

300 CONTINUE 

(continued on next page) 

4-40 Composing and Transforming Pictures 

~J 



Example 4-1 (Cont.~: Using the DEC GKS Transformations 

RETURN 
END 

C ************************************************************ 
C Pan across the picture, first left, then right... 

SUBROUTINE PAN_PICTURE( WS_ID, WS XFORMS, START_X, MAX_X, 
* START_Y, MAX Y ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_XFORMS, INCR, ERROR_STATUS, DUI~IY_INTEGER, 
* NEW_FRAME_FLAG 

REAL MAX_X, MAX_Y, START_X, START_Y 

C In 3 increments, pan to the left... 
DO 400 INCR = 1, 3, 1 

MAX_X = MAX_X - 0.075 
START_X = START_X - 0.075 

CALL GKS$SET_WS WINDOW( WS_ID, START X, MAX_X, 
* START_Y, MAX_Y ) 

C If regeneration is needed, do it... 
IF (WS_XFORMS .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

400 CONTINUE 

C In 3 increments, pan to the right.. 
DO 500 INCR = 1, 3, 1 

MAX_X = MAX_X + 0.075 
START_X = START_X + 0.075 

CALL GKS$SET_WS WINDOW( WS_ID, START X, MAX_X, 
* START_Y, MAX Y ) 

C If regeneration is needed, do it... 
IF (WS_XFORMS .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

500 CONTINUE 

C 

RETURN 
END 

************************************************************ 
C Shrink and then expand the portion of the display surface used... 

SUBROUTINE SHRINK_PICTURE( WS_ID, WS XFORMS, DISPLAY_X, 
* DISPLAY_Y ) 

(continued on next page) 

Composing and Transforming Pictures 4-41 



Example 4-1 (Coot.): Using the DEC GKS Transformations 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_XFORMS, INCR, ERROR_STATUS, DUI~Y_INTEGER, 
* NEW FRAME_FLAG 

REAL DISPLAY_X, DISPLAY_Y, START_X, START_Y, MAX_X, MAX_Y 

DATA START X / 0.0 /, START_Y / 0.0 / 

C Use local variables... 
MAX_X = DISPLAY_X 
MAX_Y = DISPLAY_Y 

MAX_Y = MAX_Y - (MAX_Y * 0.3 ) 
MAX_X = MAX_X - ( MAX_X * 0.3 ) 
START_X = START_X + ( MAX X * 0.3 ) 
START_Y = START_Y + ( MAX_Y * 0.3 ) 

CALL GKS$SET_WS_VIEWPORT( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

C If regeneration is needed, do it... 
IF (WS_XFORMS .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

C Set the workstation vie~rport to the entire device coordinate space. 
MAX_Y = DISPLAY_Y 
MAX_X = DISPLAY_X 
START_X = 0.0 
START_Y = 0.0 

CALL GKS$SET_WS_VIEWPORT( WS_ID, START X, MAX_X, 
* START_Y, MAX Y ) 

C If regeneration is needed, do it... 
IF ( WS_XFORMS .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WSC WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

RETURN 
END 

4-42 Composing and Transforming Pictures 



Chapter 5 

Generating Output 

This chapter provides an overview of issues related to output generation. For 
instance, you can generate the same polyline in the same position several times 
during program execution, but depending on certain state list entries, that line 
can have a different appearance for each generation. Also, whether or not the 
line is part of a segment may affect its appearance on the workstation surface. 

This chapter discusses the following concepts in detail: 

• Geometric and nongeometric output attributes 

• Individual and bundled output attributes 

• Aspect Source Flags 

• Text attributes 

• Segment transformations and clipping 

• Segment attributes 

• Surface update and regeneration 

NOTE 

Section 5.4 contains the code that you must add to the Starry Night 
program in Example 3-2 to produce the program example contained 
in this chapter. You may wish to add this code to the base program 
so that you can execute the program while reading this chapter. The 
lines of blue code in the example signify the new code that you need 
to add to Example 3-2. 

Generating Output 5-1 



5.1 Output Attributes 

An output attribute is an aspect of an output primitive that determines how the 
primitive appears on the surf ace of the workstation. For instance, when calling 
the function GKS$POLYLINE, DEC GKS must know whether to represent the 
line as a solid line, a dashed line, a dotted line, or a dashed and dotted line. 
The current attribute settings determine how DEC GKS represents an output 
primitive. 

When generating lines on the workstation surface, you can also alter the line 
width and the line color. Most of the other output primitives have alterable 
attributes that affect the appearance of the corresponding primitive (generalized 
drawing primitives and cell arrays do not). For instance, when generating text, 
you can alter the character spacing or the text color. 

DEC GKS stores the default output attribute values for a given workstation in 
the workstation description table. DEC GKS stores the current values in the 
GKS and workstation state lists. You can use the inquiry functions to obtain 
information about the default or current attribute settings. 

All primitives have a special type of attribute called the pick identifier. This 
attribute does not affect how the primitive appears on the surface of the 
workstation upon primitive generation. You can use the pick identifier as an 
aid during pick input. Chapter 6, Requesting Input, discusses the use of the 
pick identifier during pick input. 

5.1.1 Geometric and Nongeometric Attributes 

Of the attributes that affect the appearance of the primitive at the time of 
generation, there are geometric attributes and nongeometric attributes. 

Nongeometric attributes affect the style and the pattern of the output primitives 
(such as polyline color, text spacing, and fill area internal style). Since many 
of the nongeometric attributes involve scale factors and nominal sizes, the 
effects of these attributes are device dependent. Most output primitives have 
nongeometric attributes (cell arrays and GDPs do not). 

Nominal sizes are the default sizes of markers and line widths as defined by a 
graphics handler. In most cases the nominal size is also the smallest size that 
a workstation can produce, but not always. To reset a marker size or polyline 
width, DEC GKS multiplies the scale factor values by the nominal size. The 
default value for a scale factor is 1.0 (the nominal size multiplied by the value 
1.0, producing no change in the default size). 

5-2 Generating Output 



When you alter the nongeometric attributes, you could possibly specify a scale 
factor creating a size that is larger than the workstation's largest size. If this 
happens, the graphics handler ignores the scale specification and uses the 
largest size defined by the handler. You can obtain the smallest, largest, and 
nominal sizes by calling .one of the functions GKS$INQ ~'REDEF primitive_ 
FAC. 

Geometric attributes affect the size or positioning of text and fill area primitives 
(such as character height, character path, and pattern size). Fill area and text 
are the only two output primitives that have changeable geometric attributes. 
The geometric attributes are specified in world coordinate units. Since the 
world coordinates are device independent, the geometric attributes are device 
independent. 

For a list of the nongeometric and geometric attributes, refer to Chapter 5, 
Output Attribute Functions, in the DEC GKS Reference Manual. 

5.1.2. Individual and Bundled Attributes 

In the previous chapters in this manual, the code examples contain code that 
changes attribute values as follows: 

CALL GKS$SET_TEXT HEIGHT( LARGER ) 
CALL GKS$SET_PMARK_TYPE( GKS$K_MARKERTYPE_PLUS ) 
CALL GKS$SET_FILL_INT_STYLEC GKS$K_INTSTYLE_SOLID ) 
CALL GKS$SET_PLINE_LINETYPE( GKS$K_LINETYPE DASHID_DOTTID ) 

Obtain the workstation type. 
CALL GKS$INQ WS_TYPE( WS_ID, ERROR_STATUS, DiJNIlKY_STRING, 

* WS_TYPE, DUI~QY_INTEGER ) 

C Make sure that you don't ask for a line wider than the 
C workstation's widest line. 

CALL GKS$INQ PLINE FAC( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, y.DESCR( DUMMY_INT_ARRAY ), DUI~IY_INTEGER, 
* NOM_WIDTH, DUMMY_REAL, MAX_WIDTH, DUMMY_INTEGER, 
* DUMMY_INTEGER ) 

DO WHILE (( WIDER * NOM_WIDTIi) .GT. MAX_WIDTH ) 
WIDER =WIDER - 0.1 

ENDDO 

CALL GKS$SET_PLINE_LINEWIDTH( WIDER ) 

Generating Output 5-3 



In this way, the program alters the following output attributes: 

• Character height (geometric attribute) 

• Marker type {nongeometric attribute) 

• Fill area interior style (nongeometric attribute) 

• Line type (nongeometric attribute) 

• Line width (nongeometric attribute) 

The only nongeometric attribute change that involves scaling is the change 
to the line width (the call to GKS$SET~'LINE _LINEWIDTH). If you request 
a size that is too large, DEC GKS uses the largest size supported by the 
workstation without generating an error. However, if you specify the value 0.0 
or a negative scale value, DEC GKS generates an error. 

In all of the attribute changes presented so far in this manual, the programs 
changed individual attribute settings. when you need to change one attribute 
value, you called a single output attribute function that alters that setting. 
The DEC GKS state list stores the current individual attribute setting for each 
attribute (the entry far current line type can be GKS$K_LINETYPE_SOLID (1), 
the entry for current line width scale factor can be 2.0, and so forth). 

By default, DEC GKS checks the current individual attributes settings before 
generating the requested output primitive. The individual settings are device 
independent; changing the individual line type to GKS$K_LINETYPE_SOLID 
causes the next generated line to be solid no matter on which device DEC GK;S 
generates the primitive. 

When altering the geometric output attributes of a primitive, you can only alter 
them individually. When altering the nongeometric attributes of a primitive, 
you have the option of changing the values individually, or changing them in a 
bundle. 

Bundles are groupings of nongeometric attribute settings. Each workstation 
predefines a bundle table for each primitive that has nongeometric attributes. 
Each table contains all the defined bundle groups for its primitive. To access a 
given bundle, you must specify an integer index value that refers to one group 
of bundled settings within the table. 

For example, a graphics handler can predefine the index value 1 to represent a 
solid green line with a width scale factor of 1.0 (the nominal width). A portion 
of a default polyline bundle table can be as follows: 

5-4 Generating Output 



Line Line Color 
Index Type Width Index Description 

1 1 1.0 1 Solid green 

2 1 1.0 2 Solid red 

3 1 1.0 3 Solid blue 

2b 4 1.0 5 Dashed-dotted magenta 

2 7 4 1.0 6 Dashed-dotted yellow 

28 4 1.0 7 Dashed-dotted black 

In previous programs, you specify numeric values to represent colors. Those 
numeric values are color index values that point into a color table. For instance, 
the default LCGO1 color index table is as follows: 

Red Green Blue 
Index Color Intensity Intensity Intensity 

0 White 1.0 1.0 1.0 

l Green 0.0 1.0 0.0 

2 Red 1.0 0.0 0.0 

3 Blue 0.0 0.0 1.0 

4 Cyan 0.0 1.0 1.0 

5 Magenta 1.0 0.0 1.0 

6 Yellow 1.0 1.0 0.0 

7 Black 0.0 0.0 0.0 

Appendix H, DEC GKS Color Chart, in the DEC GKS Reference Manual, 
provides a set of red, green, and blue intensities to use as a guide when 
defining color index values. 

Each color index points to a set of red, green, and blue intensity values that 
actually determine the color represented by the index value. As with all bundle 
tables, you have the option of using the predefined representations of index 
values, you may be able to define representations for additional index values, 
or you can redefine an existing representation of index values. 

Generating Output 5-5 



If you define or change a bundle index value used by a primitive already 
generated on the workstation surf ace, you may or may not cause an implicit 
regeneration of the surf ace. If an implicit regeneration occurs, you lose all 
output not contained in segments. Section 5.1.4 discusses representation 
changes in detail. 

DEC GKS stores the current bundle table representations in the workstation 
state list. Since each graphics handler can predefine different bundle tables 
with a different number of index values, the bundled attributes are device 
dependent. 

If you use bundled attributes, you save time. You do not have to set the 
nongeometric attributes individually (with separate function calls). With a 
single function call, you can set a group of attributes. 

DEC GKS binds either the GKS$K_ASF~NDIVIDUAL or the GKS$K_ 
ASF_BUNDLED attributes to a primitive at the time of output generation. If 
you specified a primitive's attributes individually, then you cannot alter its 
appearance in subsequent portions of the program. If you specified a primitive's 
attributes using a bundle index, and if the primitive is in a segment (or if 
your workstation supports dynamic attribute changes), then you can alter the 
primitive by redefining representation of its bundle index. You change the 
representation of a bundle index by calling one of the GKS$SET_primitive_REP 
functions. 

Before output generation, DEC GKS must determine whether to use individual 
or bundled attributes f or a specified primitive. To determine which type of 
attribute to use, DEC GKS checks the attribute's aspect source flag. Section 5.1..3 
describes aspect source flags in detail. 

5.1.3 Aspect Source Flags 

When you call an output function, DEC GKS must determine whether to use 
the current individual attributes associated with a primitive, whether to use all. 
of the attribute values associated with the current bundle index, or whether to 
use some individual settings and some bundled settings. 

To determine which setting to use for which nongeometric attribute, DEC GKS 
checks the current value of the aspect source flag (ASF). The aspect source 
flags are elements of the DEC GKS state list that contain either the value 
GKS$K_ASF BUNDLED (0) or the value GKS$K`ASF~NDIVIDUAL (1). If' 
the attribute ASF contains GKS$K_ASF_INDIVIDUAL (the default situation), 
DEC GKS uses the individual setting for that particular attribute. If the ASF 
contains GKS$K_ASF_BUNDLED, DEC GKS determines the current bundle 

5-6 Generating Output 



index, enters the appropriate bundle table, obtains the value for the particular 
setting, and uses that setting during output generation. 

Figure 5-1 illustrates action taken by DEC GKS for the default polyline aspect 
source flag settings. 

Generating Output 5-7 



Figure 5-1: Default Aspect Source Flag Settings 

Function Call 

CALL GKS$POLYLINE(NUM_PTS, PTS_X, PTS_Y) 

CVAX GKS~ 

Checks the polyline 
ASFs in the 
VAX GKS state list. 

1) 

2) 

3) 

13) 

Current linetype ASF 

Current linewidth ASF 

Current polyline color index ASF 

Current fill area color index ASF 

Checks the color 
index representation 
in the workstation 
state list. 

Index Red Green Blue 

1 0.0 1.0 0.0 

2 . 

1 

1 = GKS$K~SF_INDIVIDUAL 

For all three attributes, 
checks the individual 
settings in the VAX GKS 
state list. 

Current linetype 

Current linewidth 

Current polyline color index 

Generates a green, solid line at the nominal line width. 

1 

1.0 0
1 = GKS$K_LINETYPE_SOLID 

ZK 5224-86 

5—$ Generating Output 



Since there are a total of thirteen nongeometric attributes, DEC GKS requires 
that you define athirteen-element integer array. Each element of the array 
corresponds to a single aspect source flag. Depending on the contents of the 
array elements, DEC GKS uses individual or bundled attribute values during 
the next call to generate output. You must structure the thirteen-element 
integer array as follows: 

Element Nongeometric Attribute 

1 line type 

2 line width scale factor 

3 polyline color index 

4 marker type 

5 marker size scale factor 

6 polymarker color index 

7 text font and precision 

8 character expansion factor 

9 character spacing 

10 text color index 

11 fill area interior style 

12 fill area style index 

13 fill area color index 

After you define your array with each element containing either GKS$K_ASF 
BUNDLED (0) or GKS$K_ASF~NDIVIDUAL (1), you pass the array to the 
functions GKS$SET—ASF as follows: 

CALL GKS$SET_ASF( FLAG_ARRAY ) 

When working with bundled attribute values, you can either allow the device 
handler to use the default index value or you can specify a new index value. 
For instance, you specif y a new polyline bundle index value to the device 
handlers as follows. 

Generating Output 5-9 



C Setting a polyline index value... 
CALL GKS$SET_PLINE_INDEX(4 ) 

Figure 5-2 illustrates what happens if you pass GKS$K—ASF_BUNDLED in 
the first three elements of the integer array (which correspond to line type, line 
width, and line color). 

DEC GKS treats each nongeometric attribute value separately according to 
its current ASF. Depending on the ASF value, DEC GKS can use individual 
settings or bundled settings for the generation of an output primitive. 
Figure 5-3 illustrates what happens if you define GKS$K~SF_BUNDLED for 
some polyline ASF flags and GKS$K~SF_INDIVIDUAL for other polyline 
flags. If an attribute's ASF is set to GKS$K~SF_BUNDLED and you have not 
set a bundle index, DEC GKS uses bundle index 1 by default. 

5-10 Generating Output 



Figure 5-2: Specifying Bundled Aspect Source Flag Settings 

unction Call 

CALL GKS$POLYLINE(NUM_PTS, PTS~C, PTS_Y) 

C X GKS 

Checks the polyline 
ASFs in the 
VAX GKS state list. 

r 
1) 

2) 

3) 

13) 

Current linetype ASF 

Current linewidth ASF 

Current polyline color index ASF 

Current fill area color index ASF 

Checks the current 
polyline bundle table in the 
workstation state list. 

Index Linetype Linewidth Color 

... 
:s~ 2 

3 

2 = GKS$K_LINETYPE_DASHED 

0 = GKS$K_ASF_BUNDLED 

For all three attributes, 
checks the current 
polyline index value 
in the VAX GKS state list. 

Current polyline bundle index 

Checks the color index representation 
in the workstation state list. 

Index Red Green Blue 

1 . 
,. 

Generates a red, dashed line at 
3.0 times the nominal line width. 

ZK•5225.86 

Generating Output 5-11 



Figure 5-3: Specifying Bundled and Individual ASFs 

CALL GKS$POLYLINE(NUM_PTS, PTS_X, PTS_Y) 

VAX GKS 

Checks the polyline 
ASFs in the 
VAX GKS state list. 

r 

1) 

2) 

3) 

13) 

Current linetype ASF 

Current linewidth ASF 

Current polyline color index ASF 

Current fill area color index ASF 

Checks current bundle value. 

Polyline index 

For color, 
checks bundle table in WS state list 

2 2 3.0 

Checks color index representation 
in the WS state list. 

2 

GKS$K_ASF_INDIVIDUAL 

GKS$K_ASF_INDIVIDUAL 

GKS$K_ASF_BUNDLED 

For line type and width, 
checks individual settings 
in VAX GKS State List 

Current linetype 

Current linewidth 

CRESULT Generates a red, solid line at 
the nominal line width. 

1 = GKS$K_LINETYPE_SOLIID 

ZK 5226 X36 

5-12 Generating Output 



. 5.1.4 Bundle Index Representations 

The separate nongeometric attribute settings that comprise an attribute bundle 
are the representation of the bundle index. For instance, the representation of 
polyline bundle index 3 for the LCGO1 includes a solid line type, a nominal 
line width, and a color index of 3. By default, the color representation for index 
number 3 is the color blue. The following table illustrates the representation of 
bundle index 3: 

Line Line Color 
Index Type Width Index Description 

3 1 1.0 3 Solid blue 

A graphics handler supports a given number of bundle representations. Of that 
maximum number of bundle indexes, the graphics handler can predefine any 
number of them. 

Bundle representations are not static. You can change the attribute settings 
associated with a predefined bundle index, or you can establish a new 
representation for a supported index value that was not predefined. To 
establish or change a representation associated with a given index value, 
you use the SET REPRESENTATION functions (GKS$SET~'LINE_REP, 
GKS$SET~'MARK_IZEP, and so forth). 

For instance, the first three index values in the VT125/240 fill area bundle table 
are as follows: 

Interior Style Color 
Index Style Index Index Description 

1 1 NA 1 Green solid fill 

2 1 NA 2 Red solid fill 

3 1 NA 3 Blue solid fill 

Generating Output 5-13 



NOTE 

DEC GKS only uses the interior fill style index for interior styles 
GKS$K~NTSTYLE~'ATTERN and GKS$K~NTSTYLE~IATCH. 
For solid fill interior styles (GKS$K~NTSTYLE_SOLID), the interior 
fill style is not applicable. 

In the previous code examples in this chapter, the examples represent the tree 
and house as solid fill areas of two distinct colors. The following example uses 
individual and bundled nongeometric fill area attributes: 

c ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL GKS$CREATE_SEG( STARS ) 
CALL GKS$POLYMARKER( NUM_STARS, STARS_X_VALUES, 
* STARS_Y_VALUES ) 
CALL GKS$CLOSE_SEG() 

C Use a bundle index for some of the fill area attributes. 
CALL FILL_ATTS( WS_ID, WS_TYPE ) 

C 

CALL GKS$CREATE_SEG( TREE ) 
CALL GKS$FILL_AREA( NUM_TREE_PTS, TREE_X, TREE_Y ) 
CALL GKS$CLOSE_SEG() 

************************************************************* 
C Use bundled attribute values for most of the fill attributes... 

SUBROUTINE FILL ATTS( WS_ID, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, FILL_INDEX, STYLE_INDEX, ASP_SOURCE_FLAGS( 13 ), 

* RID , WS_TYPE , DUI~Il~IY_ I NT_ARRAY ( 150 ) , DUMMY_ I NTEGER , 
* ERROR_STATUS, INQUIRY_OKAY, NUM_HATCH, NUM_FILL_INDEXES 

DATA FILL_INDEX / 2 /, STYLE_INDEX / -5 /, RID / 2 /, 
* INQUIRY_OKAY / 0 / 

C Set all attributes to be individual (the default)... 
Q DATA ASP_SOURCE_FLAGS / 1,1,1,1,1,1,1,1,1,1,1,1,1 / 

C Make sure that the fill index number 2 and the hatch 
C style -5 are valid. 

© CALL GKS$INQ_FILL_FAC( WS_TYPE, ERROR_STATUS, DUMMY_INTEGER, 
* '/.DESCR( DUMMY_INT_ARRAY ), NUM HATCH, 
* '/.DESCR ( DUI~IY_ I NT_ARRAY ) , NUM_F I LL_ I NDEXES , DUMMY_ INTEGER ) 

5-14 Generating Output 



C If the workstation does not have enough indexes or hatch styles, 
signal the errors. 
IF (( NUM_HATCH .LT. 5) .OR. 
* (( NUM_FILL_INDEXES .LT. FILL_INDEX) .OR. 
* (ERROR_STATUS .NE. INQUIRY_OKAY ))) THEN 

WRITE (6,*) 
* 'Fill area facilities not adequate for this program.' 

WRITE (6,*) ERROR_STATUS, NUM_FILL_INDEXES, NUM_HATCH 
GO TO 300 

ENDIF 

© ASP_SOURCE_FLAGS( 11) = GKS$K_ASF BUNDLED 
ASP_SOURCE_FLAGS( 12) = GKS$K_ASF BUNDLED 
ASP_SOURCE_FLAGS( 13) = GKS$K_ASF_INDIVIDUAL 
CALL GKS$SET_ASF( ASP_SOURCE_FLAGS ) 

C Set the representation for bundle index 2. 
Q CALL GKS$SET_FILL_REP( WS_ID, FILL_INDEX, 

* GKS$K_INTSTYLE_HATCH, STYLE_INDEX, RED ) 

C Set the current fill bundle index. 
0 CALL GKS$SET_FILL_INDEX( FILL_INDEX ) 

RETURN 
300 STOP 

END 

The following numbers correspond to the numbers in the previous example: 

O This code sets all elements of ASP_SOURCE~LA.GS to the value 1 
(GKS$K~SF~NDIVIDUAL), which is the default setting. 

© This code checks the graphic handlers fill area attribute fa ' 'ties to see how 
many fill and hatch indexes are supported. Since this subroutine uses 2 
(FILL INDEX) as the fill area index, and -5 (HATCH~NDEX) as the style 
index, you need to be sure that the graphics handler supports at least two 
fill indexes and five hatch styles. 
The hatch style index points into the style bundle table. Since all hatch 
styles are device dependent (the GKS standard does not define standard 
hatch styles), their index values are negative. 
If the device does not support enough fill area or index styles, the program 
stops execution. 

® This code changes the elements of ASP_SOURCE_FLAGS that correspond 
with the nongeometric fill area attributes. Notice that the flags specify 
GKS$K _ASF_BUNDLED for fill area interior style and style only. when 
the graphics handler generates the fill area, it uses the individual setting for 
color. 
To tell DEC GKS which ASF values to use, you must pass ASP_SOURCE _ 
FLAGS to GKS$SET_ASF. 

Generating Output 5-15 



© This call to GKS$SET~'ILL _REP changes the fill area representation 
associated with fill index number 2 (FILL INDEX). The new representation 
is as follows: 

Interior Style Color 
Index Style Index Index Description 

2 3 -5 2 Red hatched dill 

0 To tell the graphics handler which index value to use for the fill area 
bundled values, call GKS$SET~'ILL INDEX and pass the index value 2 
(FILL INDEX). 

Figure 5-4 illustrates the effects of this subroutine on the workstation surface. 
Keep in mind that the picture may look different depending on the device you 
are using. Notice that the colors of the house and tree did not change to red 
(as specified in bundle representation number 2), since the graphics handler 
continued to use the individual color attribute setting. 

5-16 Generating Output 



Figure 5-4: Changing the Bundle Representation—VT241 

i►, 

i
IIIIIIIIIIII 

ZK•5195-86 

When you change individual attribute settings, the change does not take place 
until subsequent generation of the appropriate output primitive. This is not true 
for bundle representation changes. A change to a bundle representation affects 
previously generated primitives whose attributes are bound to that bundle 
representation. 

When you call the SET REPRESENTATION functions, DEC GKS can either 
make the change immediately or can require an implicit regeneration of the 
workstation surface to make the change. In Chapter 2, Programming With DEC 
GKS, the change to the color representation causes the VT241 to make the 
changes immediately, without redrawing the entire picture. However, other 
devices may require a surface regeneration, which would delete all primitives 
not contained in segments. 

In the previous example, there exists no previously generated fill areas that are 
affected by the change to the bundle representation. Consequently, you do not 
have to check for a postponed surface regeneration. See Section 5.3 for more 
information concerning deferral and regeneration. 

Generating Output 5-17 



5.1.5 Text Attributes 

When you work with normalization transformation changes, you may find that 
you need to alter the text attributes in order to maintain the size and proportion 
of the character string. 

For example, if you map a normalization window onto a small portion of 
the default NDC space ([0,1 ] x [0,1 ] ), the text maintains its relative position, 
its alignment, color, font, precision, path, and direction. However, the text 
may then appear small, crowded, and possibly skewed when mapped to the 
workstation viewport. 

Fortunately, DEC GKS calculates the character spacing and width according 
to the current text height. Consequently, you can adjust all three attributes 
by adjusting the character height to the current normalization transformation 
proportions. 

The following code example illustrates how to adjust text height: 

INTEGER WS_ID, HOUSE, TREE, HORIZON, STARS, TITLE, 
* SIDE, ROAD 

DATA WS_ID / 1 /, TITLE / 1 /, STARS / 2 /, 
* TREE / 3 /, SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, 
* HOUSE / 7 / 

CALL SET UP( WS_ID ) 

CALL DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL TITLE_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL CLEANUP( WS_ID ) 

END 

C ************************************************************* 
C Adjusting text according to normalization transformations. 

SUBROUTINE TITLE_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, UNITY, UPPER_QUARTER 

REAL TEXT_START_X, TEXT_START_Y, HEIGHT_RATIO, 
* NEW_MAX_X, NEW_MIN_Y, WIDTH_RATIO, LARGER, TEMP 

5-18 Generating Output 



DATA TEXT_START_X / 0.05 /, TEXT_START Y / 0.9 /, 
* UNITY / 0 /, UPPER_QUARTER / 1 /, NEW_MAX_X / 0.6 /, 
* NEW MIN_Y / 0.5 /, LARGER / 0.04 / 

C Clear the screen and delete all of the segments from WS_ID. 
O CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 

C Set the text height as in the previous subroutine. 
© CALL GKS$SET_TEXT_HEIGHT( LARGER ) 

CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 

C Pause. Type RETURN when finished viewing the picture. Then 
C clear the screen. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 
CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 

C Map the default normalization window to the upper left quarter 
C of the NDC space. When text is mapped to a smaller viewport, 
C the character height, character width, and character spacing 
C is effected. 

© CALL GKS$SET_WINDOW( UPPER_QUARTER, 0.0, 1.0, 
* 0.0, 1.0 ) 
CALL GKS$SET_VIEWPORT( UPPER_QUARTER, 0.0, NEW_MAX X, 
* NEW_MIN_Y, 1.0 ) 
CALL GKS$SELECT XFORM( UPPER_QUARTER ) 

C Show the effects on text height... 
® CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 

C Pause. Type RETURN when finished viewing the picture. Then 
C clear the screen. 

CALL GKS$UPDATE WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 
CALL GKS$CLEAR_WS( WS_ID, GKS$K CLEAR_ALWAYS ) 

C Determine the change to the Y values made from the normalization 
C transformation change. 

0 HEIGHT_RATIO = ( 1.0 - NEW MIN_Y) / 1.0 
WIDTH_RATIO = NEW_MAX_X / 1.0' 

C Turn off clipping and adjust the text height. 
© CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 

CALL GKS$SET_TEXT_HEIGHT( LARGER + (LARGER * HEIGHT_RATIO )) 

O CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Reset the normalization viewport. 
CALL GKS$SET_CLIPPING( GKS$K_CLIP ) 
CALL GKS$SELECT_XFORM( UNITY ) 

RETURN 
END 

Generating Output 5-19 



The following numbers correspond to the numbers in the previous example: 

O This code clears the workstation and also deletes all segments associated 
with ,the workstation. Once deleted, you cannot recall these segments. 
See Section 5.2.1 for more information concerning more efficient segment 
storage. 

® This code generates text in the same proportions as most previous examples 
in this manual. Figure 5-5 illustrates the generated text. 

a 

This code maps all output to the upper left quarter of the NDC space 
([0,0.5] x [0.5,1.0]). Since you specify text height in world coordinate units, 
the new normalization transformation reduces the height proportionately 
with the viewport reduction. Also, since character spacing and width are 
dependent on character height, those attribute values are reduced. 

4 This code generates the reduced text using the new normalization 
transformation. Figure 5-6 illustrates the generated text. 

0 This code calculates the reduction ratio of the Y NDC range according to 
the changes in the normalization viewport. The change in the Y range 
affects text height whereas the change to the X range does not. 

4 Since the change in text height within the world coordinate space may 
cause the text to exceed the defined normalization window, you should 
turn off clipping so that DEC GKS maps all of the text to NDC space. 
Figure 5-7 illustrates the need to turn off clipping. 
When you adjust the text height, you use the calculated Y axis ratio. 
Adjusting the text height automatically adjusts the character spacing and 
width. 

O This code generates the adjusted text. Figure 5-8 illustrates the effect of the 
adjustment. 

If you use normalization transformations whose viewport boundaries are 
disproportionate to the window boundaries (for instance, mapping a square to 
a wide rectangle), then you may need to adjust the character expansion factor 
so that the text width is adequate. For more information concerning character 
expansion, refer to Chapter 5, Output Attribute Functions, in the DEC GKS 
Reference Manual. 

5-20 Generating Output 



Figure 5-5: Generating Text—VT241 

Starry Night 

ZK 5206 86 

Generating Output 5-21 



Figure 5-6: Reducing the Normalization Viewport—VT241 

!tarry Nl~ht 1 

ZK-5200-86 

5-22 Generating Output 



Figure 5-7: Clipping the Adjusted Text 

Adjusted text height 
in world coordinate units. 

.Star 
=Normalization window boundary 

Previous text height. 

ZK-5227-86 

Generating Output 5-23 



Figure 5--8: Adjusting Text to Normalization Transformation 
Changes-VT241 

/ Starr Ni ht y ~ 1 

ZK-5201-86 

5.2 Using Segments 

In all previous code examples, the only purpose for placing the output 
primitives into segments was the following: 

• To keep the primitives from being deleted upon surface regeneration 

• To take advantage of having output attributes bound to the primitives at the 
time of generation. 

As an example of binding attribute values to a primitive, consider the 
regeneration of the horizon. Every time DEC GKS needs to regenerate that 
segment, it knows to draw adashed-dotted line, to increase the width, to 
represent that line according to color index number 1, and to clip that horizon 
line at the default normalization viewport, ([0,1 ] x [o, l ]) in NDC space. 

Consequently, when DEC GKS creates a segment, it stores the attribute and 
clipping information at the time of output generation. You cannot change these 
attributes and settings for the previously generated primitive. As an example, if 
you change the normalization window so that the horizon's plotted points fall 

5-24 Generating Output 



outside of the current window and viewport, DEC GKS still draws and clips the 
horizon as generated. 

In fact, DEC GKS stores the primitive's NDC coordinate values, since you 
may have composed portions of a segment from many different normalization 
windows; the NDC space has workable limitations and is device independent. 

The following sections discuss how to take advantage of the full capabilities 
provided in DEC GKS segment support. 

5.2.1 Workstation Independent Segment Storage 

One advantage to using segments is that it provides a means to transport 
output primitives hom adevice-independent storage structure to various 
workstations. This storage structure is called workstation independent segment 
storage (WISS). 

WISS is a data structure that stores information pertinent to the primitives 
contained in a segment. Since DEC GKS treats WISS as a workstation, all you 
have to do is activate WISS as you do any other workstation at the time of 
segment creation. 

To insure that your level of GKS supports the WISS workstation, you can use 
the following code: 

C Make sure that WISS is supported. 
CALL GKS$INQ_LEVEL( ERROR_STATUS, GKS_LEVEL ) 

IF (( ERROR_STATUS .NE. INQUIRY_OKAY) .OR. 
* (GKS_LEVEL .LT. GKS$K_LEVEL_2A )) THEN 

WRITE(6,*) 
* 'This level of GKS does not support WISS.' 

WRITE(6,*) 'Error status:', ERROR_STATUS 
STOP 

ENDIF 

To open and activate WISS, use the following code: 

GKS$OPEN_WS( 2, 'THIS_IS_IGNORED.TXT', GKS$K_WSTYPE_WISS ) 
GKS$ACTIVATE(2 ) 

Generating Output 5-25 



C Create segments... 

Once you store all desired segments on WISS, you can deactivate the 
workstation as you do any other. However, you cannot close WISS unless you 
are finished using WISS for storage. In other words, you cannot copy segments 
from WISS to other open workstations unless WISS is open. When you are 
finished using WISS, you can close WISS as you do any other workstation. 
Once you close WISS, DEC GKS deletes all stored segments in WISS. 

There are three ways to transport a segment (or its primitives) from WISS to 
other open workstations, as follows: 

1. Associate the segment so that the receiving workstation stores the identical 
segment. 

2. Copy the segment's primitives so that the receiving workstation generates 
the primitives but does not store them as a segment. 

3. Insert the segment's primitives so that the receiving workstation generates 
the primitives but does not store them as a segment. 

The difference between copying and inserting a segment is that you can insert 
a segment's primitives into an open segment, but you cannot copy a segment's 
primitives into an open segment. The receiving workstation does not treat the 
inserted set of segment primitives as a segment, but does add those transformed 
primitives to the segment being created. If you insert a segment at a time when 
there is no segment open, segment insertion transforms the segment and then 
copies the primitives to the workstation surface. (When a segment is open, 
DEC GKS is in the operating state GKS$K_SGOP.) 

During segment insertion, DEC GKS allows you to specify an additional 
segment transformation matrix to apply to the inserted segment primitives. 
A segment transformation allows you to scale, rotate, and shift (or, translate) 
all of the primitives in the segment. To review the order in which DEC GKS 
applies normalization, segment, and insertion transformations, refer to Chapter 
9, Segment Functions, in the DEC GKS Reference Manual. See Section 5.2.2 for 
detailed information concerning segment transformations. 

In the subroutine TITLE~TTS, the call to GKS$CLEAR_WS deletes all 
segments stored in workstation dependent segment storage (WDSS) on the 
workstation WS~D. In the previous subroutine, there was no way to recall 
those segments without recreating them. The following example shows you 
how to use WISS to copy the segments back to the workstation after deletion 
(as long as you do not delete them from WISS). 

5-26 Generating Output 



INTEGER WS_ID, HOUSE, TREE, HORIZON, STARS, TITLE, 
* SIDE, ROAD, WISS 

DATA WS_ID / 1 /, WISS / 2 /, TITLE / 1 /, STARS / 2 /, 
* TREE / 3 / , SIDE / 4 / , ROAD / 5 j , HORIZON / 6 / , 
* HOUSE / 7 / 

CALL SETUP( WS_ID, WISS ) 

CALL DRAW_PICTIJRE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL TITLE_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL CLEANUP( WS_ID, WISS ) 

END 

C ************************************************************ 
C Set up the DEC GKS and the workstation environments... 

SUBROUTINE SETUP( WS_ID, WISS ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, ERROR_STATUS, CATEGORY, INQUIRY_OKAY, 
* DUMMY_INTEGER, DEF_MODE, REGEN_FLAG, WISS 

CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_DEFAULT ) 
CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

CALL GKS$ACTIVATE_WS( WS_ID ) 

C ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WISS, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 

C Store the segments in Workstation Independent Storage. 
CALL GKS$ACTIVATE_WS( WISS ) 

CALL GKS$CREATE_SEG( TITLE ) 
CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 
* 'Starry Night' ) 
CALL GKS$CLOSE_SEG() 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 
CALL GKS$CLOSE_SEG() 

Generating Output 5-27 



C Reset the normalization transformation to the default 
CALL GKS$SELECT_XFORM( UNITY ) 

C Do not store any more segments in WISS. 
CALL GKS$DEACTIVATE_WS( WISS ) 

RETURN 
END 

C ************************************************************* 

C Adjusting text according to normalization transformations. 
SUBROUTINE TITLE ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

C Turn off clipping and adjust the text height. 
CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER + (LARGER * HEIGHT_RATIO )) 

CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

C 

C 
C 
C 

C 
C 

0 

Reset the normalization viewport. 
CALL GKS$SET_CLIPPING( GKS$K_CLIP ) 
CALL GKS$SELECT_XFORM( UNITY ) 

Redraw the segments unconditionally. A call to GKS$UPDATE_WS 
with the argument GKS$K_PERFORM_FLAG will do the same thing, 
but only if the workstation surface is out of date. 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 
READ (5,*) 

Restore the picture. Associate 
WS_ID stores the primitives as 
CALL GKS$ASSOC_SEG_WITH WS( WS_ 
CALL GKS$ASSOC_SEG WITH_WS( WS_ 
CALL GKS$ASSOC_SEG_WITH WS( WS_ 
CALL GKS$ASSOC_SEG_WITH WS( WS_ 
CALL GKS$ASSOC_SEG_WITH_WS( WS_ 
CALL GKS$ASSOC_SEG_WITH WS( WS_ 
CALL GKS$ASSOC_SEG_WITH_WS( WS_ 

segments on WISS with WS_ID. 
segments. 
ID, TITLE ) 
ID, STARS ) 
ID, TREE ) 
ID, SIDE ) 
ID, ROAD ) 
ID, HOUSE ) 
ID, HORIZON ) 

C Redraw the segments. 
CALL GKS$REDR.AW_SEG_ON_WS( WS_ID ) 

C 

RETURN 
END 

************************************************************ 
C Clean up the DEC GKS and the workstation environments... 

SUBROUTINE CLEANUP( WS_ID, WISS ) 

IMPLICIT NONE 
INTEGER WS_ID, WISS 

CALL GKS$DEACTIVATE_WS( WS_ID ) 

5-28 Generating Output 



CALL GKS$CLOSE_WS( WS_ID ) 
© CALL GKS$CLOSE_WS( WISS ) 

CALL GKS$CLOSE_GKS() 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This code opens WISS and assigns the workstation identifier 2 (WISS). 
DEC GKS ignores the connection identifier argument (GKS$K_CONID_ 
DEFAULT). This example chooses not to activate WISS until segment 
creation. 

© Just before segment creation, this code activates WISS as it does any 
other workstation. DEC GKS generates created segments on all active 
workstations (in this example, workstations WS~D and WISS). 

© Once segment creation is complete, this code deactivates WISS. 

O This call to GKS$REDRAW_SEG_ON_WS only clears the screen since the 
previous call to GKS$CLEAR_WS deleted all segments stored on WS~D. 
Note that the call to GKS$REDRAW_SEG _ON _WS deletes all primitives 
not contained in a segment (the text at the top of the workstation surface). 

0 This code associates all segments on WISS with WS~D. The next call to 
GKS$REDRAW_SEG _ON _WS reproduces the entire Starry Night picture 
since all segments are once again stored on WS~D. 

© This code closes WISS. 

5.2.2 Segment Transformations 

When generating a picture containing a segment, DEC GKS performs tasks in 
the following order: 

1. Establishes the current normalization transformation. 

2. Applies the current segment transformation to the primitives in the defined 
segment. 

3. Clips each of the segment primitives according to the bound clipping 
rectangles. 

4. If clipping is enabled, clips the entire picture at the current clipping 
rectangle (normalization viewport in NDC space). 

The segment transformation is the establishment of a matrix designating values 
for scaling, rotation, and translation. When DEC GKS applies a segment 
transformation, it first applies the scaling values, then applies the rotation 
values, and last applies the translation values. Figure 5-9 illustrates this 
process. 

Generating Output 5-29 



Figure 5-9: Order of Segment Transformations 

All paints are NDC points 

(.25,.7) Fixed Point 

Defined 
segment 

(.25,.7) 

• 

(.1,.1) 

Then, rotation 

• 

(.1,.1) 

(.25,.7) Fixed Point 

Scaling 

• 

(.1,.1) 

Finally, translation 

(.25,.7) 
• 

ZK-5041-86 

By default, DEC GKS applies the identity segment transformation to all 
segments. This transformation specifies the values 0.0 for both the X and Y 
fixed points, 0.0 for the X and Y translation vectors, 0.0 for the rotation value, 
and 1.0 for the X and Y scaling values. The identity transformation makes no 
changes to the segment primitives as they are stored and clipped on the NDC 
coordinate plane. 

5-30 Generating Output 



To take advantage of segment transformations, you need to specify component 
values to either GKS$EVAL ~CFORM AVIATRIX or GKS$ACCUM ~CFORM _ 
MATRIX, and then pass the matrix to GKS$SET_SEG~CFORM to establish 
that transformation as the current segment transformation. The following code 
example shows how to work with segment transformations: 

INTEGER WS_ID, HOUSE, TREE, HORIZON, STARS, TITLE, 
* SIDE, ROAD, WISS 

DATA WS_ID / 1 /, WISS / 2 /, TITLE / 1 /, STARS / 2 /, 
* TREE / 3 /, SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, 
* HOUSE / 7 / 

CALL SETUP( WS_ID, WISS ) 

CALL DRAW_PICTURE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL TITLE_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL SEG_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON ) 

CALL CLEANUP( WS_ID, WISS ) 

END 

C ************************************************************ 

C Draw the picture, and place each primitive in a segment... 
SUBROUTINE DRAW_PICTURE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

Q DATA HOUSE_X / 100.0, 300.0, 300.0, 325.00, 300.0, 300.0, 
* 250.0, 250.0, 200.0, 75.0, 100.0, 100.0 / 
DATA HOUSE_Y / 300.0, 300.0, 600.0, 600.0, 640.0, ?50.0, 
* 750.0, 700.0, 750.0, 600.0, 600.0, 3.00 / 

C Map the house onto a small portion of the NDC apace.. 
CALL GKS$SET WINDOW( HOUSE_NORM, 75.0, 325.0, 300.0, 
* 750.0 ) 
CALL GKS$SET_VIEWPORT( HOUSE_NORM, 0.075, 0.325, 
* 0.3, 0.75 ) 

© CALL GKS$SELECT_XFORM( HOUSE_NORM ) 

CALL GKS$CREATE_SEG( HOUSE ) 
C Only change the color index if working with a color workstation 
C (or a VT125/240 or a VAXatation). 

IF ( NUM_INDEXES .GE. THREE ) THEN 
CALL GKS$SET_FILL_COLOR_INDEX( DARK ) 

ENDIF 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 
CALL GKS$CLOSE_SEG() 

Generating Output 5--31 



C Reset the normalization transformation to the default... 
CALL GKS$SELECT_XFORM( UNITY ) 

C ************************************************************ 

C Illustrate segment transformations... 
SUBROUTINE SEG_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, ERROR_STATUS, NUM_PRIORITIES, DUMMY_INTEGER, 
* WS_TYPE, SEG_XFORM, VIS_TO_INVIS, HIGH_CHANGE, 
* PRIOR_CHANGE 

CHARACTER*80 DUMMY_STRING 

REAL HOUSE_XFORM_MATRIX( 6 ), DUNINIY_REAL, 
* HOUSE_ROTATION, TREE_ROTATION, HOUSE_FIXED_X, 
* TREE_XFORM_MATRIX( 6 ), HOUSE_FIXED Y, TREE_FIXED_X, 
* TREE_FIXED_Y, VECTOR_X, VECTOR_Y, SCALE_X_1, 
* SCALE_Y_1, SCALE_X_2, SCALE_Y_2, 
* TITLE_XFORM_MATRIX( 6 ), IDENTITY( 6 ), DUMMY_SCALE 

DATA HOUSE_FIXED_X / 0.2 /, 
* HOUSE_FIXED Y / 0.525 /, TREE_FIXED_X / 0.52 /, 
* TREE_FIXED_Y / 0.35 /, VECTOR_X / 0.33 /, 
* VECTOR_Y / -0.1 /, SCALE_X_1 / 0.25 /, 
* SCALE_Y_1 / 0.25 /, DUMMY_REAL / 0.0 /, 
* SCALE_X_2 / 5.2 /, SCALE_Y_2 / 5.2 /, 
* DUMMY_SCALE / 1.0 / 

C The house's rotation is 180 degrees and the tree's rotation 
C is -20 degrees. 

0 HOUSE_ROTATION = 3.14 
TREE_ROTATION = -3.14/9.0 

C Obtain the workstation type. 
CALL GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, DUMHIY_STRING, 
* WS_TYPE, DUMMY_INTEGER ) 

C Find out if changes to the segment attributes require 
C implicit regenerations or if changes occur immediately... 

® CALL GKS$INQ_DYN_MOD_SEG_ATTB( WS_TYPE, ERROR_STATUS, 
* SEG_XFORM, VIS_TO_INVIS, DUMMY_INTEGER, HIGH_CHANGE, 
* PRIOR_CHANGE, DUMMY_INTEGER, DUI~Il~IY_INTEGER ) 

C Establish an identity segment transformation... 
O CALL GKS$EVAL_XFORM_MATRIX( DUI~IY_REAL, DUMMY_REAL, 

* DUMMY_REAL, DUMMY_REAL, DUMMY_REAL, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, IDENTITY ) 

C Flip the house onto its roof... 
CALL GKS$EVAL_XFORM_MATRIX( HOUSE_FIXED_X, HOUSE_FIXED_Y, 
* DUMMY_REAL, DUMMY_REAL, HOUSE_ROTATION, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( HOUSE, HOUSE_XFORM_MATRIX ) 

5-32 Generating Output 



C Shrink the tree... 
CALL GKS$EVAL_XFORM_MATRIX( TREE_FIXID_X, TREE FIXID_Y, 
* DUMMY_REAL, DUMMY_REAL, DUN~HIY_REAL, SCALE_X_1, 
* SCALE_Y_1, GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM_MATRIX ) 

C Move the title... 
CALL GKS$EVAL_XFORM_MATRIX( DUMMY_REAL, DUMMY_REAL, 
* VECTOR_X, VECTOR_Y, DUMMY_REAL, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, TITLE_XFORM_MATRIX ) 
CALL GKS$SET_SEG XFORM( TITLE, TITLE XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
C If regeneration is needed, do it... 

© IF ( SEG_XFORM .EQ. GKS$K_IRG ) THEN 
CALL GKS$UPDATE WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

C By accumulating the tree's matrix, we can add to the 
C translation increment by increment... 

CALL GKS$ACCUM_XFORM MATRIX( TREE_XFORM_MATRIX, 
* TREE_FIXID_X, TREE_FIXID_Y, DUMMY_REAL, DUMMY_REAL, 
* TREE_ROTATION, SCALE_X_2, SCALE_Y_2, 
* GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
IF ( SEG_XFORM .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE MS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

C By accumulation, shift the tree's X coordinate points by 0.15. 
CALL GKS$ACCUM_XFORM_MATRIX( TREE_XFORM_MATRIX, 
* DUMMY_REAL, DUMMY_REAL, 0.15, 0.0, DUMMY_REAL, 
* DUMMY_SCALE, DUI~Y_SCALE, GKS$K_COORDINATES_NDC, 
* TREE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
IF ( SEG_XFORM .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

Generating Output 5-33 



C Return the tree to its original size and position... 
® CALL GKS$SET_SEG_XFORM( TREE, IDENTITY ) 

C Pause. Type RETURN when finished viewing the picture. 
IF (SEG_XFORM .EQ. GKS$K_IRG) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

C Shift the house past its normalization viewport boundary to show 
C how segments are clipped... 

® CALL GKS$ACCUM_XFORM MATRIX( HOUSE_XFORM_MATRIX, 
* DUMMY_REAL, DUMMY_REAL, 0.1, 0.0, DUI~+IY_REAL, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 
CALL GKS$SET_SEG XFORM( HOUSE, HOUSE_XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
® IF (SEG XFORM .EQ. GKS$K_IRG) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

ENDIF 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This code plots the house using different world coordinate points. In order 
to map the house to the NDC plane with the rest of the picture, you need 
to redefine the normalization window and viewport before you generate the 
house. 

© ~ This code redefines the normalization window and viewport for the 
generation of the house only. Figure 5-10 illustrates the mapping of the 
house to NDC space. 

© This code declares the variable that will contain the segment transformation 
matrix, a real array with 6 elements. 

O This code defines the fixed point values, the translation vectors, and the 
scale factors. The translation vectors are X and Y values that are added to 
the current coordinates to alter the segment's position. The scale factors are 
values that are multiplied by the distance between a segment's fixed point 
and points in the segment primitives, shrinking or expanding the segment. 
The fixed points are values that are needed to scale the segment, and are 
needed to specify an axis on which to rotate the segment. 

5-34 Generating Output 



0 This code establishes two rotation values in radians. Specifying negative 
radian values turns the segment counterclockwise. You specify a full circle 
by passing 2*pi radians. You specify 180 degrees by passing pi radians. 
The value pi equals approximately 3.14. 

® This code inquires whether or not DEC GKS needs to regenerate 
the workstation surface in order to implement changes to segment 
transformations and other segment attributes. The arguments SEG _ 
XFORM, VIS_TO_INVIS, HIGH_CHANGE, and PRIOR_CHANGE can 
be compared to the constant GKS$K~RG (Implicit ReGeneration) to see 
if the graphics handler requires a surf ace regeneration or if the change is 
immediate. 

O This code creates an identity matrix using GKS$EVAL _XFORM~VIATRIX. 
The component variables DUMMY_REAL (0.0) and DUMMY_SCALE 
(1.0) are used to specify no change to the original position or size of the 
segment as defined. This code does not place this transformation into effect 
for any segment, it only creates a matrix. 
The argument GKS$K_COORDINATES~TDC specifies that the fixed point 
and translation components are expressed in NDC points. If. you choose, 
you can work with world coordinate values by passing the argument 
GKS$K_COORDINATES_wC. If you choose world coordinates, DEC 
GKS transforms the fixed points to the NDC plane using the current 
normalization transformation. If the current transformation is different than 
the ones used during segment creation, you may obtain unexpected results. 

This code establishes the current segment transformation for the house. 
If you call GKS$SET_SEG~CFORM twice using the same transformation 
matrix, DEC GKS produces a segment of the same size and position. 
A call to GKS$SET_SEG_XFORM only replaces one current segment 
transformation with another one. The effects are not cumulative. 

© Figure 5-11 illustrates the effects of the current segment transformation 
values. 

m To establish a matrix that simulates a cumulative effect of several 
segment transformations, you can use GKS$ACCUM_XFORM_NiATRIX. 
GKS$ACCUM _XFORM _1VIATRIX accepts a transformation matrix as 
its first argument, mathematically implements the scaling, rotation, and 
translation values specified as the next set of arguments, and writes a new 
matrix to the last argument. GKS$ACCUM_XFORM_NiATRIX creates a 
new matrix that is functionally equivalent to establishing the first matrix 
and then implementing the new component values from that size and 
position. 

m Figure 5-12 shows the effect of the matrix created by the call to 
GKS$ACCUM _XFORM _.MATRIX. 

Generating Output 5-35 



® Figure 5-13 shows the effect of the matrix created by the second call to 
GKS$ACCUM ~CFORM ~ViATRIX. 

® This code reestablishes the identity transformation for the tree. 

m Figure 5-14 illustrates the effect of the identity transformation on the tree. 

® After accumulating the house's transformation by adding an X translation 
vector of 0.1, the house is no longer contained in the normalization 
viewport that DEC GKS stores with the segment as its clipping rectangle. 

Keep in mind that the house is the only primitive that uses a different 
normalization viewport (clipping rectangle); the program maps all other 
primitives to the default NDC area ([0,1 ] x [0,1 ] ). DEC GKS stores clipping 
rectangles with segment primitives at the time of creation. Their clipping 
rectangles cannot be changed. 

m Figure 5-15 illustrates the surface of the workstation after executing this 
code. After translating the house, the primitive exceeds the normalization 
viewport that was in effect when the house was placed in the segment. 
The only way to prevent clipping of segments during translation or scaling 
(when they may cross their bound clipping rectangles) is to disable clipping 
when you create the segment, as follows: 

C Disable clipping... 
CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 

CALL GKS$CREATE_SEG( HOUSE ) 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 
CALL GKS$CLOSE_SEG() 

C Re-enable clipping (if desired)... 
CALL GKS$SET_CLIPPING( GKS$K_CLIP ) 

5-36 Generating Output 



Figure 5-10: Placement of the House on N DC Space 

NDC SPACE 

Starry Night 

= HOUSE'S NORMALIZATION VIEWPORT 

ZK 520 86 

Generating Output 5-37 



Figure 5-11: Transformed Segments—VT241 

ZK-5208-86 

5--38 Generating Output 



Figure 5-12: Accumulating the Tree Segment Transformation—
VT241 

ZK-5196-86 

Generating Output 5-39 



Figure 5-13: Accumulating a Translation of the Tree—VT241 

+ + 
—Starr Night -~ 

-~. -.~" 

~~ 

ZK-5198-86 

5-40 Generating Output 



Figure 5-14: Restoring the Identity Transformation of the 
Tree—VT241 

ZK-5197-86 

Generating Output 5-41 



Figure 5-15: Moving Past the House's Clipping Rectangle—VT241 

l~/ 

ZKb209 86 

5.2.3 Segment Attributes 

The previous subsection described segment transformations. Segment 
transformation is only one type of segment attribute. The following is a list of 
the segment attributes: 

• Detectability 

• Highlighting 

• Priority 

• Transformation 

• Visibility 

Segment detectability is an attribute that you use during pick input. Chapter 6, 
Requesting Input, discusses segment detectability in greater detail. 

The following example shows you the code you need to add to the SEG~4TTS 
subroutine to see the effects of segment highlighting, priority, and visibility: 

5-42 Generating Output 



c ************************************************************ 
C Illustrate segment transformations... 

SUBROUTINE SEG_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

C Obtain the workstation type. 
CALL GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, DUMMY_STRING, 
* WS_TYPE, DUMMY_INTEGER ) 

C Find out if changes to the segment attributes require 
C implicit regenerations or if changes occur immediately... 

O CALL GKS$INQ_DYN_MOD_SEG_ATTB( WS_TYPE, ERROR_STATUS, 
* SEG_XFORM, VIS_TO_INVIS, DUMMY_INTEGER, HIGH_CHANGE, 
* PRIOR_CHANGE, DUMMY_INTEGER, DUMMY_INTEGER ) 

C Inquire about the segment priority capabilities... 
© CALL GKS$INQ_SEG_PRIORITY( WS_ID, ERROR_STATUS, 

* NUM PRIORITIES ) 

C Give the land a higher priority than the house... 
© IF (NUM PRIORITIES .EQ. 0) THEN 

CALL GKS$SET_SEG_PRIORITY( HOUSE, 0.1 ) 
CALL GKS$SET_SEG_PRIORITY( HORIZON, 0.2 ) 

ELSE 
CALL GKS$SET_SEG_PRIORITY( HOUSE, 0.1 ) 
CALL GKS$SET_SEG_PRIORITY( HORIZON, 1.0 ) 

ENDIF 

C Pause. Type RETURN when finished viewing the picture. 
C GKS$UPDATE_WS would not redraw the segments since a change 
C in priority does not require a new frame. 

O IF (PRIOR_CHANGE .EQ. GKS$K_~IRG ) THEN 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 

C CALL GKS$RIDRAW_SEG_ON_WS( WS_ID ) 
READ (5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

C Change some of the segment attributes... 
CALL GKS$SET_SEG_HIGHLIGHTING( TREE, GKS$K_HIGHLIGHTED ) 
CALL GKS$SET_SEG VISIBILITY( HORIZON, GKS$K_INVISIBLE ) 

Generating Output 5-43 



C Pause . Type RETURN when finished viewing the picture . 
0 IF (( HIGH_CHANGE .EQ. GKS$K_IRG) .OR. 

* (VIS_TO_INVIS .EQ. GKS$K_IRG )) THEN 
CALL GKS$UPDATE_ws( ws_ID, GKS$K_PERFORM_FLAG ) 
READ (5,*) 

ELSE 
CALL GKS$UPDATE_ws( ws_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This code inquires whether or not DEC GKS needs to regenerate 
the workstation surface in order to implement changes to segment 
transformations and other segment attributes. The arguments SEG _ 
XFORM, VIS_TO_INVIS, HIGH_CHANGE, and PRIOR_CHANGE can 
be compared to the constant GKS$K~RG (Implicit ReGeneration) to see 
if the graphics handler requires a surface regeneration or if the change is 
immediate. 

© This code inquires how many segment priorities the graphics handler 
supports. 

© If the previous inquiry returned the number 0, then the graphics handler 
supports a theoretically infinite number of priorities between 0.0 and 1.0; 
the difference between the priorities of the house and the horizon can be 
minimal. 
If the inquiry returned a number other than zero, DEC GKS divides the 
range 0.0 to 1.0 into the number specified by the inquiry. For instance, if 
the inquiry returned the number 2, DEC GKS assigns the same priority to 
all priorities between 0.0 and 0.5 inclusive, and assigns the same priority to 
all priorities between 0.5 and 1.0. If two segments have the same priority, 
the resulting picture is device dependent. 
This code reassigns the segment priorities so that the horizon line appears 
in front of the house. 

O Figure 5-16 illustrates the effect of this code on the picture. 

0 Figure 5-17 illustrates the effects of segment highlighting (the tree is 
highlighted) and visibility (the horizon line is made invisible). 

5-44 Generating Output 



Figure 5-16: Changing Segment Priorities—VT241 

ZK-5211 86 

Generating Output 5--45 



Figure 5-17: Segment Highlighting and Visibility—VT241 

Z K 5203 86 

5.3 Surface Regeneration 

Two issues to remember when generating output are output deferral and 
surface regeneration. The deferral of output can delay generation of a picture so 
that you cannot predict how much of a picture is on the workstation surface at 
any given moment in the program. The regeneration of the workstation surface 
clears the screen and only redraws visible segments; output not contained in 
segments is lost. 

All of the programs presented so far in this manual have controlled output 
deferral and surface regeneration so that you have complete control over the 
picture presented on the workstation surface. This section serves as a quick 
reminder and guide to the control of the DEC GKS output deferral and implicit 
regeneration modes. 

5-46 Generating Output 



f"1 5.3.1 Controlling Output Deferral 

If your device supports output deferral, you can use the following code to 
control the deferral mode: 

CALL GKS$INQ_DEF_DEFER_STATE( WS_TYPE, ERROR_STATUS, 
* DEF_MODE, REGEN_FLAG ) 

C Defer output as long as possible and suppress implicit 
C regenerations. 

IF (( DEF MODE .NE. GKS$K_ASTI) .OR. 
* (REGEN_FLAG .NE. GKS$K_IRG_SUPPRESSED )) THEN 

CALL GKS$SET_DEFER_STATE( WS_ID, GKS$K_ASTI, 
* GKS$K_IRG_SUPPRESSED ) 
ENDIF 

When you need to see all generated output on the workstation surface, you can 
flush the output buffer with the following call: 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 

In calling this function, you allow the transmission of deferred data only, 
without causing an implicit regeneration of the workstation surface. 

NOTE 

When debugging your DEC GKS programs, you may wish to see 
generated output as you debug. To do this, set the deferral mode 
to GKS$K_ASAP. After you debug your program, you can set the 
deferral mode to any desired mode. 

5.3.2 Controlling Implicit Regenerations 

When you make changes to the following bundle representations, workstation 
state list entries, and transformations, you need to be aware that DEC GKS 
may implement the change dynamically or by implicitly regenerating only the 
segments on the workstation's surface: 

• Polyline bundle representations 
• Polymarker bundle representations 

• Text bundle representations 

• Fill area representations 

• Pattern representations 

• Color representations 

• Segment attributes 

• Workstation transformations 

Generating Output 5-47 



If you make any of these changes in your program, you should go through the 
following process to control possible regeneration to prevent the unnecessary 
loss of generated output. 

First, you must check to see if the workstation is suppressing or allowing 
implicit regenerations, as follows: 

CALL GKS$INQ_DEF_DEFER_STATE( WS_TYPE, ERROR_STATUS, 
* DEF_MODE, REGEN_FLAG ) 

C Defer output as long as possible and suppress implicit 
C regenerations. 

IF (( DEF MODE .NE. GKS$K_ASTI) .OR. 
* (REGEN_FLAG .NE. GKS$K_IRG_SUPPRESSED )) THEN 

CALL GKS$SET_DEFER_STATE( WS_ID, GKS$K_ASTI, 
* GKS$K_IRG_SUPPRESSED ) 
ENDIF 

Once you have made sure that regenerations are suppressed, you can check to 
see if a requested change places the screen out of date in one of the following 
two ways: 

1. If you do not request many bundle representation or workstation 
transformation changes, you can inquire directly about the state of the 
workstation surface. Calling GKS$UPDATE_WS and passing GKS$K_ 
PERFORM SLAG forces an implicit regeneration if the surf ace is out of 
date, causing the deletion of any output that is not part of a segment. 
The following code illustrates how to conditionally force an implicit 
regeneration: 

C Check to see if the picture on the screen is out of date. 
CALL GKS$INQ_WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUNIl~IY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release deferred output. Regenerate if necessary. Type 
C RETURN when you are finished viewing the picture. 

IF (NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY) THEN 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
C If a regeneration is not required, just release deferred 
C output. 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

2. If you request many changes of one type, you may wish to see if the 
graphics handler requires a regeneration to implement the change, set a 
flag, and then conditionally regenerate every time you make that particular 
change. You can use either GKS$INQ _DYN ~1/IOD_WS_ATTB or 
GKS$INQ _DYN_1ViOD_SEG _ATTB to obtain the necessary information 

5-48 Generating Output 



about required regenerations. The following code shows how to set a 
regeneration flag for workstation transformations: 

C Find out if workstation transformations require implicit 
C regenerations, or if the change is made immediately... 

CALL GKS$INQ DYN MOD WS ATTB( WS TYPE, ERROR_STATUS, 
* DUI~+IY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* WS_XFORMS ) 

CALL GKS$SET_WS_WINDOW( WS_ID, START_X, MAX_X, 
* START_Y, MAX_Y ) 

C If a regeneration is needed, do it... 
IF (WS_XFORMS .EQ. GKS$K_IRG) THEN 

CALL GKS$UPDATE_ws( ws_ID, GKS$K_PERFORI~_FLAG ) 
ENDIF 

5.4 Program Example Used in this Chapter 

Example 5-1 presents all of the changes that you need to make to Example 3-2 
in order to follow the code examples in this chapter. 

Generating Output 5-49 



Example 5-1: Using DEC GKS Output Functions 

IMPLICIT NONE 
INTEGER WS_ID, HOUSE, TREE, HORIZON, STARS, TITLE, 
* SIDE, ROAD, WISS 

DATA WS_ID / 1 /, WISS / 2 /, TITLE / 1 /, STARS / 2 /, 
* TREE / 3 /, SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, 
* HOUSE / 7 / 

CALL SETUP( WS_ID, WISS ) 

CALL DRAW_PICTURE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL TITLE_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL SEG_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON ) 

C 

CALL CLEANUP( WS_ID, WISS ) 

END 

************************************************************ 

C Set up the DEC GKS and the workstation environments. . . 
SUBROUTINE SETUP( WS_ID, WISS ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, ERROR_STATUS, CATEGORY, INQUIRY_OKAY, 
* DUMMY_INTEGER, DEF_MODE, REGEN_FLAG, WISS, GKS_LEVEL 

C Make sure that WISS is supported. 
CALL GKS$INQ_LEVEL( ERROR_STATUS, GKS_LEVEL ) 

IF (( ERROR_STATUS .NE. INQUTRY_OKAY ) .OR. 
* ( GKS_LEVEL .LT. GKS$K_LEVEL_2A )) THEN 

WRITE(6,*) 
* 'This level of GKS does not support WISS. ' 

WRITE(0,*) 'Error status: ' , ERROR_STATUS 
STOP 

ENDIF 

CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_DEFAULT ) 
CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

RETURN 
200 STOP 

END 

5-50 Generating Output 
(continued on next page) 



Example 5--1 (Copt.): Using DEC GKS Output Functions 

c ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DR.AW_PICTURE( WS_ID, WISS, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID. WISS, 

* UNITY, HOUSE_NORM 

DATA WS_ID / 1 /, WISS / 2 / 

* UNITY / 0 /, HOUSF;_NOR.M / 1 / 

DATA HOUSE_X / 100.0, 300.0, 300.0, 325.00, 300.0, 300.0, 
* 250.0, 250.0, 200.0, 75.0, 100.0, 100.0 / 
DATA HOUSE_X / .300.0, 300.0, 600.0, 600.0, 640.0, 750.0, 
* 750.0, 700.0, 750.0, 600.0, 600.0, 3.00 / 

C Store the segments in Workstation Independent Storage. 
CALL GKS$ACTIVATE,_WSC WISS ) 

CALL GKS$CREATE_SEG( TITLE ) 
CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 
* 'Starry Night' ) 
CALL GKS$CLOSE_SEG() 

C ~***~**************************************************** 
C Use a bundle index for some of the fill area attributes. 
C ***NOTE*** If you execute this subroutine, all fill areas will 
C be hatched from this point on in the program. 
C CALL FILL_ATTS( WS_ID, WS_TYPE ) 
C ******~*************************************************~ 

(continued on next page) 

Generating Output 5--51 



Example 5-1 ~Cont.): Using DEC GKS Output Functions 

CALL GKS$CREATE_SEG( TREE ) 
CALL GKS$FILL_AREA( NUM_TREE_PTS, TREE_X, TREE_Y ) 
CALL GKS$CLOSE_SEG() 

C Map the house onto a small portion of the NDC space. 
CALL GKS$SET_WINDOW( HOUSE_NORM, 75.0, 325.0, 300.0, 
* 750.0 ) 
CALL GKS$SET_VIEWPORT( HOUSE_NORM, 0.075, 0.325, 
* 0.3, 0.75 ) 
CALL GKS$SELECT_XFORM( HOUSE_NORM ) 

CALL GKS$CREATE_SEG( HOUSE ) 
C Only change the color index if working with a color workstation 
C (or a VT125/240 or a VAXstation). 

IF ( NUM_INDEXES .GE. THREE) THEN 
CALL GKS$SET_FILL_COLOR_INDEX( DARK ) 

ENDIF 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 
CALL GKS$CLOSE_SEG() 

C Reset the normalization transformation to the default... 
CALL GKS$SELECT_XFORM( UNITY ) 

C Do not store any more segments in WISS. 
CALL GKS$DEACTIVATE_WS( WISS ) 

RETURN 
END 

C ************************************************************ 

C Clean up the DEC GKS and the workstation environments... 
SUBROUTINE CLEANUP( WS_ID, WISS ) 

IMPLICIT NONE 
INTEGER WS_ID, WISS 

CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WISS ) 
CALL GKS$CLOSE_GKS() 

RETURN 
END 

C ************************************************************ 
C From this point forward, all code is additional code that you 
C need to add to the "Starry Night" program. 
C ************************************************************ 

(continued on next page) 

5-52 Generating Output 



Example 5-1 ~Cont.): Using DEC GKS Output Functions 

C ************************************************************* 
C Use bundled attribute values for most of the fill attributes . . . 

SUBROUTINE FILL_ATTS( WS_ID, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, FILL_INDEX, STYLE_INDEX, ASP_SOURCE_FLAGSC 13 ), 
* RED, WS TYPE, DiJMMY_INT_ARRAY( 150 ), DUMMY_INTEGER, 
* ERROR_STATUS, INQUIRY_OKAY, NUM_HATCH, NUM_FILL_INDEXES 

DATA FILL_INDEX / 2 /, STYLE_INDEX / -5 /, RID / 2 /, 
* INQUIRY_OKAY / 0 / 

C Set all attributes to be individual (the default)... 
DATA ASP SOURCE_FLAGS / 1,1,1,1,1,1,1,1,1,1,1,1,1 / 

C Make sure that the fill index number 2 and the hatch 
C style -5 are valid. 

CALL GKS$INQ_FILL_FAC( WS_TYPE, ERROR_STATUS, DUMMY_INTEGER, 
* 'i.DESCR ( DUMMY_INT_AR.RAY ) , NUM_HATCH , 
* '/.DESCR( DUMMY_INT ARRAY ), NUM_FILL_INDEXES, DUMMY_INTEGER ) 

I 

C If the workstation does not have enough indexes or hatch styles, I 
C signal the errors. 

IF (( NUM_HATCH .LT. 5) .OR. 
* (( NUM_FILL_INDEXES .LT. FILL_INDEX ) .OR. 
* ( ERROR_STATUS .NE. INQUIRY_OKAY ))) THEN 

WRITE(6,*) 
* 'Fill area facilities not adequate for this program.' 

WRITE(6,*) ERROR_STATUS, NUM_FILL_INDEXES, NUM_HATCH 
GO TO 300 

ENDIF 

ASP_SOURCE_FLAGS( 11 ) = GKS$K_ASF_BUNDLED 
ASP_SOURCE_FLAGS( 12 ) = GKS$K_ASF_BUNDLED 
ASP_SOURCE_FLAGS( 13 ) = GKS$K_ASF_INDIVIDUAL 
CALL GKS$SET_ASF( ASP_SOURCE_FLAGS ) 

C Set the representation for bundle index 2. 
CALL GKS$SET_FILL_REP( WS_ID, FILL_INDEX, 
* GKS$K_INTSTYLE_HATCH, STYLE_INDEX, RED } 

C Set the current fill bundle index. 
CALL GKS$SET_FILL_INDEX( FILL_INDEX ) 

RETURN 
300 STOP 

END 

(continued on next page) 

Generating Output 5-53 



Example 5-1 (Copt.): Using DEC GKS Output Functions 

c ************************************************************* 
C Adjusting text according to normalization transformations. 

SUBROUTINE TITLE ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, UNITY, UPPER_QUARTER 

REAL TEXT_START_X, TEXT_START_Y, HEIGHT_RATIO, 
* NEW_MAX_X, NEW_MIN_Y, WIDTH_RATIO, LARGER, TEMP 

DATA TEXT_START_X / 0.05 /, TEXT_START_Y / 0.9 /, 
* UNITY / 0 /, UPPER_QUARTER / 1 /, NEW_MAX_X / 0.6 /, 
* NEW_MIN_Y / 0.5 /, LARGER / 0.04 / 

C Clear the screen, which deletes all of the segments from WS_ID. 
CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 

C Set the text height as in the previous subroutine. 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 

C Pause. Type RETURN when finished viewing the picture. Then 
C clear the screen. 

CALL GKS$UPDATE WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 
CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 

C Map the default normalization window to the upper left quarter 
C of the NDC space. When text is mapped to a smaller viewport, 
C the character height, character width, and character spacing 
C is effected . 

CALL GKS$SET WINDOW( UPPER_QUARTER, 0.0, 1.0, 
* 0.0, 1.0 ) 
CALL GKS$SET_VIEWPORT( UPPER_QUARTER, 0.0, NEW_MAX X, 
* NEW_MIN_Y, 1.0 ) 
CALL GKS$SELECT_XFORM( UPPER_QUARTER ) 

C Show the effects on text height... 
CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 

C Pause. Type RETURN when finished viewing the picture. Then 
C clear the screen. 

CALL GKS$UPDATE WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , *) 
CALL GKS$CLEAR_WS( WS_ID, GKS$K_CLEAR_ALWAYS ) 

C Determine the change to the Y values made from the normalization 
C transformation change. 

HEIGHT_RATIO = ( 1.0 - NEW_MIN_Y) / 1.0 
WIDTH_RATIO = NEW_MAX_X / 1.0 

(continued on next page) 

5-54 Generating Output 



Example 5-1 ~Cont.): Using DEC GKS Output Functions 

C Turn off clipping and adjust the text height. 
CALL GKS$SET_CLIPPING( GKS$K_NOCLIP ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER + (LARGER * HEIGHT_RATIO )) 

CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

C Reset the normalization viewport. 
CALL GKS$SET_CLIPPING( GKS$K_CLIP ) 
CALL GKS$SELECT_XFORM( UNITY ) 

C Restore the picture. Associate segments on WISS with WS_ID. 
C WS_ID stores the primitives as segments. 

CALL GKS$ASSOC_SEG_WITH WS( WS_ID, TITLE ) 
CALL GKS$ASSOC_SEG_WITH WS( WS_ID, STARS ) 
CALL GKS$ASSOC_SEG_WITH_WS( WS_ID, TREE ) 
CALL GKS$ASSOC_SEG_WITH WS( WS_ID, SIDE ) 
CALL GKS$ASSOC_SEG WITH_WS( WS_ID, ROAD ) 
CALL GKS$ASSOC_SEG_WITH_WS( WS_ID, HOUSE ) 
CALL GKS$ASSOC_SEG_WITH_WS( WS_ID, HORIZON ) 

C Redraw the segments unconditionally. A call to GKS$UPDATE WS 
C with the argument GKS$K_PERFORM_FLAG will do the same thing, 
C but only if the workstation surface is out of date. 

CALL GKS$RIDRAW_SEG_ON_WS( WS_ID ) 

RETURN 
END 

C ************************************************************ 

C Illustrate segment transformations... 
SUBROUTINE SEG_ATTS( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, ERROR_STATUS, NUM_PRIORITIES, DUMMY_INTEGER, 
* WS_TYPE, SEG_XFORM, VIS_TO_INVIS, HIGH_CHANGE, 
* PRIOR_CHANGE 

CHARACTER*80 DUMMY_STRING 

(continued on next page) 

Generating Output 5-55 



Example 5-1 (Copt.): Using DEC GKS Output Functions 

REAL HOUSE_XFORM_MATRIX( 6 ), DtJMMY_REAL, 
* HOUSE_ROTATION, TREE_ROTATION, HOUSE_FIXED_X, 
* TREE_XFOR,M_MATRIX( 6 ), HOUSE_FIXID_Y, TREE_FIXED_X, 
* TREE_FIXID Y, VECTOR_X, VECTOR_Y, SCALE_X_1, 
* SCALE_Y_1, SCALE_X_2, SCALE_Y_2, 
* TITLE_XFORM MATRIX( 6 ), IDENTITY( 6 ), DUMMY_SCALE 

DATA HOUSE_FIXED X / 0.2 /, 
* HOUSE_FIXED Y / 0.525 /, TREE_FIXID_X / 0.52 /, 
* TREE_FIXID Y / 0.35 /, VECTOR_X / 0.33 /, 
* VECTOR Y / -0.1 /, SCALE_X_1 / 0.25 /, 
* SCALE_Y_1 / 0.25 /, DUMMY_REAL / 0.0 /, 
* SCALE_X_2 / 5.2 /, SCALE_Y_2 / 5.2 /, 
* DUMMY_SCALE / 1.0 / 

C The house's rotation is 180 degrees and the tree's rotation 
C is -20 degrees. 

HOUSE_ROTATION = 3.14 
TREE_ROTATION = -3.14/9.0 

C Obtain the workstation type. 
CALL GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, DUMMY_STRING, 
* WS_TYPE, DUMMY_INTEGER ) 

C Find out if changes to the segment attributes require 
C implicit regenerations or if changes occur immediately... 

CALL GKS$INQ_DYN_MOD_SEG_ATTB( WS_TYPE, ERROR_STATUS, 
* SEG_XFORM, VIS_TO_INVIS, DUMMY_INTEGER, HIGH_CHANGE, 
* PRIOR_CHANGE, DUMMY_INTEGER, DUMMY_INTEGER ) 

C Establish an identity segment transformation... 
CALL GKS$EVAL XFORM_MATRIX( DUI~Il~IY_REAL, DUMMY_REAL, 
* DUMMY_REAL, DUMMY_REAL, DUMMY_REAL, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, IDENTITY ) 

C Flip the house onto its roof... 
CALL GKS$EVAL_XFORM_MATRIX( HOUSE_FIXID_X, HOUSE_FIXED_Y, 
* DUMMY_REAL, DUMMY_REAL, HOUSE_ROTATION, DUMHIY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( HOUSE, HOUSE_XFORM_MATRIX ) 

C Shrink the tree... 
CALL GKS$EVAL_XFORM_MATRIX( TREE_FIXID_X, TREE_FIXED_Y, 
* DUMMY_REAL, DUMMY_REAL, DUI~+IIKY_REAL, SCALE_X_1, 
* SCALE_Y_1, GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM MATRIX ) 

C Move the title... 
CALL GKS$EVAL_XFORM_MATRIX( DUI~Il~IY_REAL, DUMMY_REAL, 
* VECTOR_X, VECTOR_Y, DUMMY_REAL, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, TITLE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( TITLE, TITLE_XFORM_MATRIX ) 

(continued on next page) 

5-56 Generating Output 



Example 5-1 (Cont.): Using DEC GKS Output Functions 

C Pause. Type RETURN when finished viewing the picture. 
IF C SEG_XFORM .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WSC WS_ID, GKS$K_PERFORM_FLAG ) 
READC5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ C5 , *) 

ENDIF 

C By accumulating the tree's matrix, we can add to the 
C translation increment by increment... 

CALL GKS$ACCUM_XFORM_MATRIXC TREE_XFORM_MATRIX, 
* TREE_FIXID_X, TREE_FIXID_Y, DUMMY_REAL, DUMIKY_REAL, 
* TREE_ROTATION, SCALE_X_2, SCALE_Y_2, 
* GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
IF C SEG_XFORM .EQ. GKS$K_IRG) THEN 

CALL GKS$UPDATE_WSC WS_ID, GKS$K_PERFORM_FLAG ) 
READ C5,*) 

ELSE 
CALL GKS$UPDATE_WSC WS_ID, GKS$K_POSTPONE_FLAG ) 
READ C5 , * ) 

ENDIF 

C By accumulation, shift the tree's X coordinate points by 0.15. 
CALL GKS$ACCUM_XFORM_MATRIX( TREE_XFORM_MATRIX, 
* DUMMY_REAL, DUMMY_REAL, 0.15., 0.0, DUMMY_REAL, 
* DUMI~+IY_SCALE, DUI~tY_SCALE, GKS$K_COORDINATES_NDC, 
* TREE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORMC TREE, TREE_XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
IF C SEG_XFOR~M .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WSC WS_ID, GKS$K_PERFORM_FLAG ) 
READ C5 , *) 

ELSE 
CALL GKS$UPDATE_WSC WS_ID, GKS$K_POSTPONE_FLAG ) 
READ C5 , *) 

ENDIF 

C Return the tree to its original size and position... 
CALL GKS$SET_SEG_XFORMC TREE, IDENTITY ) 

C Pause. Type RETURN when finished viewing the picture. 
IF C SEG_XFORM .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WSC WS_ID, GKS$K_PERFORM_FLAG ) 
READ C5 . *) 

ELSE 
CALL GKS$UPDATE_WSC WS_ID, GKS$K_POSTPONE_FLAG ) 
READ C5 . *) 

ENDIF 

(continued on next page) 

Generating Output 5-57 



Example 5-1 (Cont.~: Using DEC GKS Output Functions 

C Shift the house past its normalization viewport boundary to show 
C how segments are clipped... 

CALL GKS$ACCUM_XFORM_MATRIX( HOUSE_XFORM_MATRIX, 
* DUMMY_REAL, DUMMY_REAL, 0.1, 0.0, DUMMY_REAL, DUMMY_SCALE, 
* DUMMY_SCALE, GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 
CALL GKS$SET_SEG_XFORM( HOUSE, HOUSE XFORM_MATRIX ) 

C Pause. Type RETURN when finished viewing the picture. 
IF (SEG_XFORM .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

ENDIF 

C Inquire about the segment priority capabilities.. 
CALL GKS$INQ_SEG_PRIORITY( WS_ID, ERROR_STATUS, 
* NUM_PRIORITIES ) 

C Give the land a higher priority than the house... 
IF ( NUM_PRIORITIES .EQ. 0) THEN 

CALL GKS$SET_SEG PRIORITY( HOUSE, 0.1 ) 
CALL GKS$SET_SEG_PRIORITY( HORIZON, 0.2 ) 

ELSE 
CALL GKS$SET_SEG PRIORITY( HOUSE, 0.1 ) 
CALL GKS$SET_SEG_PRIORITY( HORIZON, 1.0 ) 

ENDIF 

C Pause. Type RETURN when finished viewing the picture. 
IF (PRIOR_CHANGE .EQ. GKS$K_IRG ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ(5,*) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE FLAG ) 
READ(5,*) 

ENDIF 

C Change some of the segment attributes... 
CALL GKS$SET_SEG_HIGHLIGHTING( TREE, GKS$K_HIGHLIGHTED ) 
CALL GKS$SET_SEG VISIBILITY( HORIZON, GKS$K_INVISIBLE ) 

(continued on next page) 

5-58 Generating Output 



Example 5-1 ~Cont.~: Using DEC GKS Output Functions 

C Pause. Type RETURN when finished viewing the picture. 
IF (( HIGH_CHANGE .EQ. GKS$K_IRG ) .OR. 
* ( VIS_TO_INVIS .EQ. GKS$K_IRG )) THEN 

CALL GKS$UPDATE WS( WS_ID, GKS$K_PERFORM_FLAG ) 
READ (5 , *) 

ELSE 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , * ) 

ENDIF 

RETURN 
END 

Generating Output 5-59 





Chapter 6 

Requesting Input 

The DEC GKS input process allows the application program to obtain data from 
a user. The data is classified according to the DEC GKS data types (coordinate 
points, segment names, real numbers, and integer values). The input process 
can either operate synchronously or asynchronously with the application 
program. 

This chapter discusses general input concepts and the DEC GKS request input 
mode. Request mode allows the application program and the input process 
to operate synchronously, causing the application program to pause until the 
user responds to the input prompt. The two asynchrounous input operating 
modes, sample and event mode, are described in Chapter 7, Sampling Input 
and Generating Events. 

This chapter discusses the following concepts in detail: 

• Logical input devices 

• Input requests 

• Input initialization 

• Prompt and echo types 

• Data records 

• Input viewport priority 

NOTE 

Section 6.8 contains the code that you must add to the Starry Night 
program in Example 3-2 to produce the program example contained 
in this chapter. You may wish to add this code to the base program 
so that you can execute the program while reading this chapter. The 
lines of blue code in the example signify the new code that you need 
to add to Example 3-2. 

Requesting Input 6-1 



6.1 Logical Input Devices 

When you input information using DEC GKS, you use two types of related 
devices. These devices are the physical input devices and the logical input 
devices. 

The physical input devices on a workstation can be numerous and varied. A 
single workstation can use a keyboard, a mouse, a tablet, and cross-hairs to 
input information. Depending on the software specifications, you can use any 
combination of physical input devices to specify input. For instance, on a given 
workstation, you can type a text string using the keyboard, and signal the end 
of input by pressing a button on the mouse. 

Since there is a wide variety of physical input devices, DEC GKS maintains 
device independence by using logical input devices. A logical input device 
is DEC GKS software that accepts input of one data type, from one open 
workstation, using only one combination of physical input devices. With 
care, you can use logical input devices without worry about the differences in 
physical input devices on various workstations. 

DEC GKS logical input devices consist of the following three components: 

• Workstation identifier 

• Logical device number 

• Input class 

The workstation identifier specifies the particular workstation on which to 
input information. When DEC GKS prompts for input, it needs to know the 
workstation's physical capab' 'ties, and it needs to access information in the 
workstation description table and state list. 

The input class specifies the data type of the input information. The DEC GKS 
input classes and return data types are as follows: 

• Locator Accepts a device coordinate point (two real numbers), transforms 
that point, and returns a corresponding world coordinate value. 

• Stroke Accepts a series of device coordinate points (pairs of real numbers), 
transforms those points, and returns a corresponding series of world 
coordinate points. 

• Valuator Accepts a real value from a specified range (some graphics 
handlers may prompt the user with a picture that looks like a radio dial 
with a pointer to the current value). 

• Choice Accepts an integer value that specifies a choice (some graphics 
handlers may prompt the user with a menu with the current choice 
highlighted). 

6-2 Requesting Input 



• String Accepts a character string. 

• Pick Accepts a device coordinate point (two real numbers), transforms that 
point, and returns the name of the segment (an integer) whose primitives) 
contain that point. 

Figure 6-1 illustrates the visual prompts that a graphics handler may use to 
implement the DEC GKS logical input classes. For each logical input class, 
you choose from the graphic handlers' available prompt and echo types. Each 
graphic handler can support a different number of prompt and echo types for a 
given input class. Section 6.3 discusses prompt and echo types in detail. 

Figure 6-1: Possible Prompts for DEC GKS Logical Input Classes 

Locator Stroke Valuator Choice String Pick 

+ prompt> Yes 

~~ Up 

Down 

Exit 

ZK-3061-84 

The logical device number differentiates between different physical input devices 
used to enter the same class of data on the same workstation. For instance, 
a workstation may use both a mouse and the arrow keys on a keyboard for 
two distinct stroke logical input devices. You can distinguish between the two 
different logical input devices by their logical device numbers. For instance, the 
graphics handler could assign the logical device number 1 to the stroke device 
using the mouse, and could assign the number 2 to the stroke device using the 
arrow keys on the keyboard. When you request input on such a workstation, 
you specify whether you wish to use stroke logical input device 1 or 2 (the 
mouse or the keyboard). 

Requesting Input 6-3 



6.2 DEC GKS Input Modes 

As a level 2c implementation, DEC GKS offers three input operating modes as 
follows: 

• Request mode 

• Sample mode 

• Event mode 

Request mode allows the application program to operate synchronously with 
the input process. This chapter uses only request mode functions to illustrate 
the general DEC GKS input concepts. 

Using sample and event modes, the application program and the input 
process operate asynchronously, allowing the application program to continue 
processing while the user enters input values. Chapter 7, Sampling Input and 
Generating Events, describes sample and event mode in detail, and illustrates 
instances when one operating mode may be more appropriate than the others. 

6.2.1 Requesting Input from Logical Input Devic 

In request mode, the application pauses, and DEC GKS waits for the user to 
signal the end of input (this process is called triggering) or to signal a break. 
You can envision the application process and the request input process as 
operating synchronously. 

When altering the values of a given logical input device by manipulating 
the prompt, the user changes the device's measure. when the user triggers 
the device, the handler writes the measure at the time of triggering to the 
application. A user can also signify 'ono returned input" to the application by 
performing a break. Each graphics handler defines the way in which a user 
breaks the input process for a given input class. 

To request input, you call one of the functions GKS$REQUEST_LOCATOR, 
GKS$REQUEST_STROKE, GKS$REQUEST_VALUATOR, GKS$REQUEST_ 
CHOICE, GKS$REQUEST~TRING, or GKS$REQUEST-PICK. Once you call 
one of these functions, the input prompt for the specified logical input device 
appears on the surface of the workstation. The following code illustrates a call 
to GKS$REQUEST_LOCATOR. 

6-4 Requesting Input 

~J 



C Make sure that the device supports locator input... 
O CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 

* NUM_LOCATOR_DEVICES, DUMMY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER ) 

IF (NUM_LOCATOR_DEVICES .EQ. ~) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'locator input.' 
STOP 

ENDIF 

© CALL GKS$REQUEST_LOCATOR( 1, 1, INPUT_STATUS, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

The following numbers correspond to the numbers in the previous example: 

O These lines of code check to make sure that the workstation type supports 
at least one device. If the workstation type does not support a locator 
device, then this code stops program execution. 

© This call to GKS$REQUEST_LOCATOR requests input from the open 
workstation identified by the integer value 1, and from the locator logical 
device number 1. The workstation identifier is 1; the logical input class is 
locator; and, the logical device number is 1. 

The call to GKS$REQUEST_LOCATOR uses the default prompt and echo 
type that is determined by the graphics handler. After the user triggers or 
breaks input in a manner determined by the default prompt and echo type, 
GKS$REQUEST_LOCATOR writes the following values to its arguments: 

Argument Written Value 

INPUT~TATUS This argument specifies whether the user returned valid 
input (GKS$K~TATUS_OK) or a break in the input process 
(GKS$K_STATUS~IONE). Choice and pick devices can 
return an additional value in this argument. If the user 
triggers input without moving through the choices or 
without picking a valid segment, this argument specifies that 
the user does not want to input a value (GKS$K_STATUS_ 
NOCHOICE or GKS$K_STATUS_NOPICK). 

Requesting Input 6-5 



Argument Written Value 

XFORM When transforming the device coordinate to NDC points, 
DEC GKS uses the current workstation window and 
viewport. However, when transforming a point from the 
NDC space to world coordinate space, DEC GKS must use a 
normalization viewport corresponding to the input viewport 
priority. This operation is crucial when the returned device 
coordinate point transforms to a point on the NDC space 
where two or more normalization viewports overlap. 

After requesting input, this argument specifies the 
normalization transformation number that corresponds to 
the normalization viewport and window used to transform 
the NDC point to a world coordinate point. Section 6.7 
discusses input viewport priority in detail. 

WORLD_COORD~C These arguments specify the X and Y components of 
WORLD_COORD_Y the world coordinate point corresponding to the device 

coordinate point that the user entered. 

Depending on the needs of your application, you may wish to control whether 
DEC GKS echos the input on the workstation surface. For instance, you may 
wish to enter a point on the workstation surface without seeing cross hairs, 
tracking plus signs or any other prompt on the surface. To eliminate prompting, 
you can call one of the SET MODE functions. 

The following code illustrates how to control the echoing of input: 

CALL GKS$SET_LOCATOR_MODE( 1, 1, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_LOCATOR( 1, 1, INPUT_STATUS, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

When you call GKS$SET_LOCATOR~1/IODE, you pass the workstation 
identifier and the device number. The argument GKS$K_INPUT_1VIODE _ 
REQUEST specifies that the input device operates in request mode. Whenever 
you call one of the SET MODE functions, you must pass GKS$K_INPUT_ 
MODE~EQUEST as the third argument. Otherwise, you generate an error. 

The argument GKS$K~CHO specifies that you want the prompt to echo on 
the workstation surface. This is the default setting. 

For more information concerning the SET MODE functions, refer to the DEC 
GKS Reference Manual. 

6-6 Requesting Input 

l.J 



6.3 Prompt and Echo Types 

Many times, you may find that the default prompt and echo type does not suit 
your application. For instance, you may wish to have the prompt for the choice 
logical input device look like a menu; you may want control of the number of 
items in a menu; and, you may want to label the menu items so that the labels 
apply to your application. 

To have greater control of the input prompt, you need to choose from one of 
the prompt and echo types available on your workstation. The prompt and 
echo types determine the different visual interfaces used to prompt the user for 
a given logical input device. 

For example, the GKS standard specifies six different prompt and echo types for 
a locator input device. A graphics handler may implement any of the following 
locator prompts: 

1. A tracking plus sign (+ ) 

2. Across hair 

3. A tracking cross (X ) 

4. Aline from the initial locator position to the current locator position 

5. A rectangle whose diagonal connects the initial and current positions 

6. A numeric representation of the current locator position 

Figure 6-2 illustrates possible implementations of the six standard prompt and 
echo types. 

Requesting input 6-7 



Figure 6-2: Possible Locator Prompts 

1 

4 

2 

5 

3 

0.500 0.750 

6 

x 

ZK-5342-86 

Of the prompt and echo types defined by the GKS standard, a graphics handler 
may implement any number of them. If you are unaware of the capabilities 
of your device, or if you write an application that runs on several devices 
of varying prompt and echo type support, you need ~ to inquire about the 
supported prompt and echo types of each device. You can choose from the 
prompt and echo types available on a particular workstation. 

To choose a prompt and echo type other than the default, you must pass the 
desired prompt and echo type number to the appropriate INITIALIZE input 
function. Section 6.4 contains an example of a call to GKS$INIT—PICK. 

For a complete description of the GKS standard prompt and echo types for each 
class of logical input device, refer to Chapter 8, Input Functions, in the DEC 
GKS Reference Manual. 

6.3.1 Data Records 

Since the graphics handlers use DEC GKS primitives such as lines, markers, 
and fill areas to construct input prompts, the graphics handler optionally uses 
additional information that determines how the prompt and echoed input 
appears on the surface. For instance, a handler may use a polyline output 
attribute that would affect the appearance of cross hairs on the surface. The 
requirements depend on the needs of the different prompt and echo types on 
different physical devices. 

6-8 Requesting Input 



To pass information to meet the requirements of a certain prompt and echo 
type on a given logical input device, you adjust components of the input data 
record. The input data record is a series of components, contiguous in memory, 
that specify additional information needed to implement a certain prompt 
interface (according to a prompt and echo type value). 

The GKS standard establishes a data record for all of the prompt and echo 
types for each logical input class. For instance, the GKS standard specifies that 
stroke prompt and echo type 4 is a line connecting stroke points that the user 
enters. The GKS standard also specifies a standard 6-component/ 13-component 
input data record for a stroke logical input device prompt and echo type 4. 

The following table contains the GKS standard input data record for stroke 
prompt and echo type 4. The column marked '`Required" specifies whether all 
GKS graphics handlers requires (R) or does not require (N) a component. A 
graphics handler can optionally use any of the remaining components. The 
standard data record for stroke prompt and echo type 4 is as follows: 

Standard Data Record: 

Position Data Type Required Description 

1 

2 

3 

4 

5 

6 

Integer R Input buffer size, in number of stroke points. 

Integer N Editing position expressed as a stroke point. 

Real N X world coordinate change vector. 

Real N Y world coordinate change vector. 

Real N Time interval, in seconds. 

Integer N Attribute control flag. GKS$K~CF_ 
CURRENT (0) or GKS$K_ACF~PECIFIED 
(1). Use the currently set output attributes or 
specify new attributes in this data record. 

If component 6 is GKS$K~CF~PECIFIED: 

Position Data Type Required Description 

7 

8 

Integer N Line type aspect source flag. GKS$K_ASF_ 
BUNDLED (0) or GKS$K~ASF_INDIVIDUAL 
(1). 

Integer N Line width scale factor aspect source 
flag. GKS$K~SF_BUNDLED (0) or 
GKS$K~SF~NDIVIDUAL (1). 

Requesting Input 6-9 



Position Data Type Required Description 

9 Integer N Polyline color index aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ 
ASF_INDIVIDUAL (1). 

10 Integer N Polyline index. 

11 Integer N Line type index. 

12 Real N Line width scale factor. 

13 Integer N Polyline color index. 

In order to compare the difference between a GKS standard data record and 
a given graphics handler's implementation of a data record, the following list 
presents the data record for stroke prompt and echo type 4 on the VAXstations. 

The column labeled 'Used" specifies whether the VAXstation graphics handler 
uses (U) or ignores (I) a given component of the stroke data record. As stated in 
the GKS standard data record description, the VAXstation graphics handler must 
use component number 1, the stroke buffer. The VAXstation handler chooses 
to use components 2, 3, 4, and 6, but ignores component 5, and components 7 
through 13, if passed in the data record. The VAXstation input data record for 
stroke prompt and echo type 4 is as follows. 

VAXstation Data Record: 

Position Data Type Used Description 

1 

2 

3 

4 

5 

6 

Integer U Input buffer size, in number of stroke points. 

Integer U Editing position expressed as a stroke point. 

Real U X world coordinate change vector. 

Real U Y world coordinate change vector. 

Real I Time interval, in seconds. 

Integer U Attribute control flag. GKS$K_ACF_ 
CURRENT (0) or GKS$K_ACF_SPECIFIED 
(1). Use the currently set output attributes or 
specify new attributes in this data record. 

If component 6 is GKS$K_ACF_SPECIFIED, you must pass the following 
components: 

6--10 Requesting Input 



Position Data Type Used Description 

7 Integer I Line type aspect source flag. GKS$K~.SF_ 
BUNDLED (0) or GKS$K~SF_INDIVIDUAL 
( 1 

8 Integer I Line width scale factor aspect source 
flag. GKS$K_ASF_BUNDLED (0) or 
GKS$K~SF~NDIVIDUAL (1). 

9 Integer I Polyline color index aspect source flag. 
GKS$K~SF_BUNDLED (0) or GKS$K_ 
ASF~NDIVIDUAL (1). 

10 Integer I Polyline index. 

11 Integer I Line type index. 

12 Real I Line width scale factor. 

13 Integer I Polyline color index. 

You establish data record values by initializing a device. To initialize a 
device, you pass the data record to the appropriate GKS$INIT_class function. 
(Section 6.4 contains an example of a call to GKS$INIT_I'ICK.) To initialize 
a logical input device, you must make sure that the device's prompt is not 
currently on the workstation surface. To make ,sure that the prompt is removed, 
you call one of the GKS$SET_class~VIODE functions to set the device to 
request mode. 

For more information concerning the stroke data record components, refer 
to Chapter 6, Input Functions, in the DEC GKS Reference Manual. For more 
information concerning the VAXstation logical input devices, refer to Chapter 
1, VAXstation Workstation Specifics in the DEC GKS Device Specific Reference 
Manual. 

6.3.2 Inquiry Functions and Data Record Buffer Sizes 

When you decide to change the default input values by calling one of the 
GKS$INI'~class input functions, you need to pass a valid data record. To 
obtain a valid data record, you can either construct the record according to the 
GKS standazd data record specifications for your chosen prompt and echo type, 
or you can call an inquiry function to obtain the default (or currently specified) 
data record. 

If you choose to call an inquiry function, you must use caution when defining 
data record buffer sizes. The buffer size is a modifiable variable (read/write), 
and when passed to the inquiry function, must contain the exact size of the 
buffer in order for the inquiry function to properly return the contents of the 
data record. DEC GKS requires that you pass a data record at least as large as 

Requesting Input 6-11 



the record specified for your chosen prompt and echo type. For instance, if you 
choose valuator prompt and echo type number 2, the GKS standard specifies 
that the data record must be 2 components (a total size of 8 bytes). When you 
call GKS$INIT_VALUATOR, your data record buffer must be at least 8 bytes 
long, and you must specify to the function that 8 bytes of the buffer contain 
the data record components (in some cases, the data record may not fill your 
declared buffer). 

To obtain input data records and other values, you can either inquire from 
the workstation description table (default values) or from the workstation 
state list (current values). To obtain default values, you call the functions 
GKS$INQ DEF_LOCATOR _DATA, GKS$INQ _DEF~TROKE _DATA, and 
so forth. To obtain the current values, you call the functions GKS$INQ _ 
LOCATOR~TATE, GKS$INQ STROKE STATE, and so forth. 

After the function call, the graphics handler writes the amount of the buffer 
actually used to the buffer size argument. You can compare this value to the 
data record size to see if the entire data record fits in the buffer, or to see if 
the graphics handler truncates the record when writing it to the buffer. If the 
graphics handler truncates the data record, you need to decide whether to 
continue execution or to alter the buffer size so that the entire data record fits. 

The following is an example of a call to GKS$INQ _LOCATOR~TATE: 

INTEGER WS_ID, ERROR_STATUS, INPUT_MODE, ECHO_FLAG, 
* XFORM, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, PROMPT_ECHO_TYPE, DATA_SIZE, DEVICE_NUM 

O INTEGER DATA_RECORDC 1 ) 
REAL WORLD_X, WORLD_Y, ECHO_AREA(4 ) 
DATA WS_ID / 1 /, DEVICE_NUM / 1 / 

CALL GKS$OPEN_GKSC 'SYS$ERROR:' ) 
CALL GKS$OPEN_WSC WS_ID, GKS$K_CONID_DEFAULT, GKS$K_VT240 ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

C The argument RECORD_BUFFER_LENGTH is four bytes long. 
© RECORD_BUFFER_LENGTH = 4 

C Inquire about the current values... 
® CALL GKS$INQ_LOCATOR_STATEC WS_ID, DEVICE_NUM, 

* GKS$K VALUE_REALIZED, ERROR_STATUS, INPUT_STATUS, 
* ECHO_FLAG, XFORM, WORLD_X, WORLD_Y, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

6-12 Requesting Input 



IF (RECORD_BUFFER_LENGTH .LT. RECORD_SIZE) THEN 
WRITE(6~*) 'DEC GKS wrote only part of the record' 
WRITE (6,*) 'to the buffer.' 

ENDIF 

The following numbers correspond to the numbers in the previous example: 

O The locator prompt and echo type does not use the data record. This is a 
dummy variable. 

© You must specify the input data record buffer size (4 bytes) before you 
call GKS$INQ _LOCATOR~TATE, GKS$INQ _STROKE _STATE, and so 
forth. After the function call, the argument RECORD_BUErER_LENGTH 
contains the value 0 (the amount of the buffer containing the data record). 

0 The argument GKS$K_VALUE~EALIZED tells the graphics handler to 
pass the input values as they are implemented, as opposed to the way that 
the application may have previously set the values (GKS$K_VALUE_SET). 

The functions GKS$INQ _DEF_CHOICE _DATA and GKS$INQ _CHOICE _ 
STATE functions are designed so that you can call them twice. If you pass the 
value 0 in the first component of the data record, these inquiry functions only 
write the number of default or current choices back to the first component of 
the data record and ignore all other arguments. 

Before you call the function a second time, you need to perform the following 
steps: 

• Check to make sure that your buffers can hold the number of choice strings 
returned in the first call. 

• Initialize the second component of your choice data record so that it 
contains the address of the array containing the sizes of your allocated 
string buffers. 

• Initialize the third component of your data record so that it contains the 
address of the array containing the addresses of your string buffers. The 
graphics handler only uses as much of the string buffer as specified in the 
array of string sizes to write the choice strings. 

When you call these inquiry functions a second time, DEC GKS performs the 
following tasks: 

• Writes values to all output arguments. 

• Writes the sizes of the returned strings in the array whose address is located 
in the second component of the data record. 

Requesting Input 6-13 



• Uses the address in the third component of the data record to locate the 
array of string addresses, and uses the string addresses to write the strings 
into the buffers. 

If you do not establish the correct pointers, your program generates errors. To 
see an example of two calls to these inquiry functions in a single program, refer 
to Chapter 12, Inquiry Functions, in the DEC GKS Reference Manual. For more 
information on the remaining input inquiry functions, refer to the program 
examples in this chapter. 

6.4 Requesting Pick Input 

Since the program examples in this book use segments to store primitives, it 
can be useful to require the user to tell the application which segment to alter. 
You can do this by initializing and requesting pick input. 

Pick input allows the user to move a cursor, or aperture, on the surface of the 
workstation. When the aperture comes in contact with a primitive in a segment, 
the graphics handler highlights the segment in adevice-dependent manner. 
When the user triggers input, the pick logical input device returns the segment 
name (DEC GKS uses integer values as segment names), and the pick identifier 
of the picked primitive. 

The pick identifier is a primitive output attribute that allows you to define 
another level of naming individual primitives within a single segment. At 
the time of primitive generation, DEC GKS assigns the current pick identifier 
integer value to the primitive. If you want to assign a primitive a different 
pick identifier value, you must call GKS$SET~'ICK~D before generating the 
primitive. DEC GKS assigns the new pick identifier value to all subsequently 
generated primitives. For examples illustrating the use of pick identifiers, refer 
to Chapter 9, Segment Functions, in the DEC GKS Reference Manual. 

The code that you have to add to the DRAW~'ICTURE subroutine in 
Example 3-2 to use DEC GKS pick logical input devices is as follows: 

C ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 
CALL GKS$CLOSE_SEG() 

C Ask the user for input... 
O CALL GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, TREE, 

* SIDE, ROAD, HOUSE, HORIZON ) 

6-14 Requesting Input 



RETURN 
END 

C ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, CATEGORY, ERROR_STATUS, FILL PTS, FOREGROUND, 
* BACKGROUND, UNITY, PICKED_SEGMENT, WS_TYPE 
REAL FILL_X( 5 ), FILL_Y( 5 ) 

DATA FILL_PTS / 5 /, FOREGROUND / 1 /, BACKGROUND / 0 /, 
* UNITY / 0 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, 
* ERROR_STATUS, CATEGORY ) 

IF ( CATEGORY .NE. GKS$K_WSCAT_OUTIN ) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'both input and output.' 
STOP 

ENDIF 

C Make sure that you are using the unity transformation... 
CALL GKS$SELECT_XFORM( UNITY ) 

C Fill an area on which to send the user a message. 
© CALL GKS$SET_FILL_COLOR_INDEX( FOREGROUND ) 

CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 

C Write the message... 
CALL GKS$SET_TEXT_HEIGHT( 0.028 ) 
CALL GKS$SET_TEXT_COLOR_INDEX( BACKGROUND ) 
CALL GKS$TEXT( 0.05, 0.25, 
* 'Which segment would you like to scale?' ) 
CALL GKS$TEXT( 0.05, 0.2, 
* 'Move the cursor, outline your chosen' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* 'segment, and then trigger input.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Press RETURN when ready.)' ) 

Requesting Input 6-15 



C The user presses RETURN when ready to pick... 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , *) 

C Erase the message and redraw the segments... 

0 CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

C Make sure that all of the segments are detectable... 

© CALL GKS$SET_SEG_DETECTABILITY( TITLE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( STARS, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( TREE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( SIDE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( ROAD, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( HOUSE, GKS$K DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( HORIZON, GKS$K_DETECTABLE 

C Initialize and request pick input... 

O CALL PICK_IT( WS_ID, WS_TYPE, PICKED_SEGMENT ) 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This code calls subroutine GO~OR~NPUT. To initialize pick input, you 
need to pass the segment names as arguments. You can use the arguments 
WS—ID and WS_TYPE when calling inquiry functions. 

© This code defines a fill area border at the bottom of the default 
normalization window. After calling GKS$FILL ~4REA, you have an area 
of the workstation surface on which to output messages to the user. 

© The call to GKS$INQ _WS_CATEGORY returns the workstation category. 
To perform pick input, you must be working with a workstation of category 
GKS$K_WSCAT_OUTIN. 

O This code outputs a message telling the user to press RETURN when 
ready to pick a segment. Figure 6-3 illustrates the workstation surface 
after execution of this code. Remember that the figure illustrates output 
from a VT241 terminal and that the picture you see on the surface of your 
workstation may differ. 

0 At this point in the program, you need to call GKS$REDRAW_SEG _ON _ 
WS to update the surface of the workstation. A call to GKS$UPDATE_WS 
passing the argument GKS$K_I'ERFORM_FLAG does not work since 
you have not requested a change that switches the new frame necessary 
at update DEC GKS state list flag to YES (possibly changes such as 
workstation transformations, segment transformations, and so forth). 
GKS$REDRAW_SEG_ON_WS clears the surface and redraws all segments 
despite the setting of the new frame flag. 

6-16 Requesting Input 



@ This code sets the segment detectability attribute so that the user can pick 
any of the defined segments. Segments must be both visible and detectable 
in order to be picked. By default, segments are not detectable. 

O The subroutine PICKET contains the code that initializes and requests pick 
input. 

Figure 6-3: Sending a Message to the User—VT241 

'.1~ ~ } I've =_. ~ =_~ r~ , au+. 1 1'l~ ~-your _ha~~n 
r~FI~I -It ~ ~~I :~ trlF~'I 4r' 1~~~' I~ 1''I~~~.t 

ZK-5310-86 

The following code example presents the subroutine PICK_IT: 

c ************************************************************ 
C This function allows a user to pick a segment... 

SUBROUTINE PICK_IT( WS_ID, WS_TYPE, PICKED_SEGMENT ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, INITIAL_STATUS, PICKED_SEGMENT, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, 
* INPUT_CHOICE, DUMMY_INTEGER, DATA_RECORD( 10 ), 
* NUM_PICK_DEVICES, FILL_PTS, STATUS, WS_TYPE 
REAL ECHO AREA(4 ), FILL_X(5 ), FILL_Y(5 ) 
DATA DEVICE_NUM / 1 /, FILL_PTS / 5 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

Requesting Input 6-17 



0 
C Make sure that the device supports pick input... 

CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMNIY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, NUM_PICK DEVICES, DUMMY_INTEGER ) 

IF ( NUM_PICK_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'pick input.' 
STOP 

ENDIF 

C Give the data record the size of your data record buffer and 
C inquire about the realized pick values. 

© RECORD_BUFFER_LENGTH = 40 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Make sure that the data record was not truncated... 
© IF ( RECORD_SIZE .LT. RECORD_BUFFER_LENGTH) THEN 

WRITE(6,*) 'The data record was truncated.' 
WRITE(6,*) 'Declare a larger buffer.' 
STOP 

ENDIF 
C Allow entrance into the loop... 

O INPUT_STATUS = GKS$K_STATUS_NOPICK 
C Loop until the user picks a segment... 

0 DO WHILE ( ( INPUT_STATUS .EQ. GKS$K_STATUS_NOPICK) .OR. 
* ( INPUT_STATUS .EQ. GKS$K_STATUS_NONE )) 

C Make sure that the pick aperture is not placed on any segment... 
INITIAL_STATUS = GKS$K_STATUS_NOPICK 

C Since the device is in request mode by default, initialize the device. 
© CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, INITIAL_STATUS, 

* PICKED_SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

C Make sure that echo is enabled... 
O CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

C Request input. PICKED_SEGMENT contains the chosen segment's 
C name 

CALL GKS$REQUEST_PICK( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, PICKED_SEGMENT, PICK_ID ) 

C Send a message to the user if a segment is not picked... 
IF ( INPUT_STATUS .EQ. GKS$K_STATUS_NOPICK) THEN 

CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.25, 

* 'I cannot let you go until you pick' ) 
CALL GKS$TEXT( 0.05, 0.2, 

* 'a segment!' ) 
CALL GKS$TEXT( 0.05, 0.02, 

* '(Press RETURN when ready.)' ) 

6-18 Requesting Input 



C The user presses RETURN when ready to pick again... 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

C Erase the message and redraw the segments... 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

ENDIF 
ENDDO 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O The call to GKS$INQ _INPUT_DEV obtains the number of pick devices 
supported by the workstation. If the number of devices is not at least one, 
then execution of this program ceases. 

© The call to GKS$INQ ~'ICK~TATE obtains the current input values. In 
this example, the current values also happen to be the default values; the 
code has not reset the values in a previous call to GKS$INIT_I'ICK. The 
code contains GKS$INQ _1'ICK_STATE instead of GKS$INQ _DEF~'ICK_ 
DATA because inquiring about the pick state initializes all of the input 
values you need to call GKS$INIT_1'ICK. 
This code uses the default pick prompt and echo type for the given 
workstation. Since the GKS standard does not define a pick data record, 
you do not know the size or contents of a data record required by a 
graphics handler. Consequently, this code declares a large, 10-component 
data record (as an integer array). The code initializes the modifiable 
argument RECORD_BUFFER_LENGTH to be the size of DATA~ECORD 
(40 bytes). After the call to GKS$INQ~'ICK_STATE, RECORD_BUFr'ER_ 
LENGTH contains the amount of the buffer containing the data record. 

© This code checks to make sure that the graphics handler did not truncate 
the data record when writing it to the buffer. After the call to GKS$INQ _ 
PICK_STATE, RECORD_SIZE contains the size of the data record and 
RECORD_BUFFER_LENGTH contains the amount of the buffer containing 
data record components. RECORD_SIZE should not be larger than 
RECORD_BUFrER _LENGTH. 

Requesting Input 6-19 



O This code sets the initial input status to be GKS$K_STATUS~TOPICK. 
When you pass this status value to GKS$INIT~'ICK, the graphics handler 
attempts to place the pick aperture on a portion of the surf ace not occupied 
by a segment. If the aperture does appear on a segment, the segment may 
or may not be highlighted, depending on the graphics handler. If you want 
to guide a user to an initially picked segment, you can specify the segment 
name and the status GKS$K_STATUS_OK to GKS$INIT~'ICK. 
If the user triggers input without highlighting a segment on the workstation 
surface using the pick aperture, the function GKS$REQUEST~'ICK returns 
the status GKS$K_STATUS~TOPICK. This program does not allow a 
returned status of GKS$K_STATUS~TOPICK or GKS$K_STATUS~TONE 
(a break in input). 
Figure 6-4 illustrates what happens when the user moves the aperture 
so that it does not touch a segment. Figure 6-5 illustrates the message 
sent to the user if the return status is GKS$K_STATUS~OPICK or 
GKS$K_STATUS_NONE. 

0 This code creates a loop that continues until the user picks a segment. For 
this example, assume that the user picks the house. Figure 6-6 illustrates 
the highlighted house. To pick the house, the user needs to trigger input 
while the house is highlighted. 

d The call to GKS$INIT_I'ICK establishes the default pick prompt and echo 
type, but assures an initial status of GKS$K_STATUS~TOPICK. (If you do 
not alter any of the initial status, you can just call GKS$REQUEST~'ICK 
and use the default input values.) Notice that you pass the argument 
RECORD_BUFrER_LENGTH to GKS$INIT~'ICK. You need to tell the 
graphics handler how much of the data record contains valid information. 
If your data record was truncated during the call to GKS$INQ WICK_ 
STATE, the RECORD_BUrrER_LENGTH argument to GKS$INIT_I'ICK 
would generate an error. 

O This code assures that the graphics handler echos input on the workstation 
surface (the default situation). You do not need to call this function unless 
you want to turn off the echo. 

The call to GKS$REQUEST~'ICK initiates the pick input process. After the 
user triggers input, the value of the argument INPUT_STATUS contains 
either GKS$K_STATUS_NOPICK, GKS$K_STATUS_OK, or GKS$K_ 
STATUS_NONE. The segment name written to PICKED_SEGMENT is not 
valid unless the input status is GKS$K_STATUS_OK. 

6--20 Requesting Input 



Figure 6-4: Specifying GKS$K_STATUS_NOPICK—VT241 

ZK-5320-86 

Requesting Input 6-21 



Figure 6-5: Forcing the User to Pick aSegment—VT241 

ZK-5315-86 

6-22 Requesting Input 



Figure 6-6: Picking a Segment—VT241 

Starry Night 

-~-

 J 
ZK-5415-86 

6.5 Requesting Valuator Input 

The valuator logical input device returns a real number value. After the user 
picks a segment, you can use the valuator logical input device to retrieve a 
segment scaling value. The following code example perf orms this task. 

c ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

C Scale the segment... 
CALL SPECIFY VALUE( WS_ID, WS_TYPE, PICKED_SEGMENT, 
* TITL"E, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON ) 

RETURN 
END 

Requesting Input 6-23 



C ************************************************************ 

C Specify a value for scaling... 
SUBROUTINE SPECIFY VALUE( WS_ID, WS_TYPE, PICKED_SEGMENT, 
* TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_TYPE, PICKED_SEGMENT, 
* TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON, 
* PROMPT_ECHO_TYPE, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, DEVICE_NUM, FILL_PTS, NUM_VAL DEVICES, 
* DUMMY_INTEGER 
REAL ECHO_AREA( 4 ), DATA_RECORD( 2 ), UPPER_LIMIT, 
* LOWER_LIMIT, VALUE, FILL_X( 5 ), FILL_Y( 5 ), 
* FIXED_X, FIXED_Y, XFORM_MATRIX( 6 ), NULL, NO_CHANGE 
DATA DEVICE_NUM / 1 /, FILL_PTS / 5 /, NULL / 0.0 /, 
* NO_CHANGE / 1.0 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

C According to the standard, the elements in the data record are 
C the upper and lower limits for all prompt and echo types. 

O EQUIVALENCE( DATA_RECORD( 1 ), LOWER_LIMIT ) 
EQUIVALENCE( DATA_RECORD( 2 ), UPPER_LIMIT ) 

C Make sure that the device supports valuator input... 
© CALL GKS$INQ_INPUT DEV( WS_TYPE, ERROR_STATUS, 

* DUMMY_INTEGER, DUU~IY_INTEGER, NUM_VAL_DEVICES, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER ) 

0 

0 

IF (NUM_VAL_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'valuator input.' 
STOP 

ENDIF 

RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ VALUATOR_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD BUFFER_LENGTH, RECORD_SIZE ) 

CALL GKS$EVAL XFORM_MATRIX( NULL, NULL, NULL, NULL, 
* NULL, NO_CHANGE, NO_CHANGE, GKS$K_COORDINATES_NDC, 
* XFORM_MATRIX ) 

VALUE = 1.0 
UPPER_LIMIT = 1.5 
LOWER_LIMIT = 0.5 

C Write the message... 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.25, 
* '1.5 increases the segment size 50'/.' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* '0.5 decreases the segment size 50'/.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Move indicator and trigger input.)' ) 

6-24 Requesting Input 



C Since the device is in request mode by default, initialize the device.. 
CALL GKS$INIT VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD BUFFER_LENGTH ) 

CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST VALUATOR( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, VALUE ) 

C Establish fixed points for segments depending on which 
IF ( PICKED_SEGMENT .EQ TITLE ) THEN 

FIXED_X = 0.3 
FIXED_Y = 0.925 

ELSEIF ( PICKED_SEGMENT .EQ. STARS ) THEN 
FIXED_X = 0.5 
FIXED_Y = 0.8 

ELSEIF ( PICKED_SEGMENT .EQ. TREE) THEN 
FIXED_X = 0.52 
FIXED_Y = 0.51 

ELSEIF ( PICKED_SEGMENT .EQ. SIDE) THEN 
FIXED_X = 0.225 
FIXED_Y = 0.22 

ELSEIF ( PICKED_SEGMENT .EQ. ROAD ) THEN 
FIXED_X = 0.5 
FIXED_Y = 0.075 

ELSEIF ( PICKED_SEGMENT .EQ. HORIZON ) THEN 
FIXED_X = 0.1 
FIXED_Y = 0.35 

ELSEIF ( PICKED_SEGMENT .EQ. HOUSE ) THEN 
FIXED_X = 0.2 
FIXED_Y = 0.5 

ENDIF 

© CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, FIXID_X, 
* FIXED_Y, NULL, NULL, NULL, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, XFORM_MATRIX ) 

C Transform the segment and update the screen. 
CALL GKS$SET_SEG_XFORM( PICKED_SEGMENT, XFORM_MATRIX ) 

C Erase the message and redraw the segments... 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

RETURN 
END 

Requesting Input 6-25 



The following numbers correspond to the numbers in the previous example: 

O This code allows the arguments DATA~ECORD(1) and LOWER_LIMIT 
to share the same memory location, and DATA_RECORD(2) and 
UPPER_LIMIT to share the same location. In this way, UPPER_LIMIT 
and LOWER_LIMIT are properly documented as real number range 
specifications. 

© This code checks to make sure that the workstation supports at least one 
valuator logical input device. 

© This code specifies a data record buffer of 8 bytes. The prompt and echo 
type has no bearing on the data record size when you use a valuator class 
device. The GKS standard states that all graphics handlers must implement 
and use a two component data record containing the lower and upper 
bound values of the real number range. 

O This code creates an identity matrix. Setting this matrix to be the current 
transformation matrix causes no change to the segment stored on the NDC 
plane. 

0 This code specifies that the upper limit is the real value 1.5, that the lower 
limit is 0.5, and that the indicator points to the current value of 1.0 (the 
exact_ middle of the real number range). The value that the user returns is 
used for scaling the picked segment. A value of 1.5 increases the segment 
size by 50 percent; a value of 1.0 maintains the current size; and, the value 
0.5 decreases the segment size by 50 percent. 

© This code initializes the valuator logical input device using the new range 
specification, the current value specification, and the default prompt and 
echo type. 

O This code requests input. After the call to GKS$REQUEST VALUATOR, 
the argument VALUE contains the user's value specification. Figure 6-7 
illustrates the valuator prompt on the VT241 before the user moves the 
indicator. 

This code defines a valid fixed point on the NDC plane for each of the 
segments. Each of the fixed points are located in the center of the given 
segment. You need to define a fixed point in order to scale a segment. 

© This code accumulates the scaling value specified by the user with the 
identity matrix, and then transforms the segment accordingly. In this 
example, the user picked the house to be scaled. 

6-26 Requesting Input 



Figure 6-7: The VT241 Valuator Prompt—VT241 

y r ~.~ ~ F ~'=_~'=d5=_ lrlE' ~~'~~~lprlt 51tA J'J~~ 

iMow~e Indicat ~~r and trigger input , 

ZK-5319-86 

6.6 Requesting Choice Input 

In the previous code examples, the user is only allowed to specify a single 
scaling value. To improve the program, you can ask if the user is satisfied 
with the scaling. If the user is not satisfied with the scaling, then you can offer 
another chance to increase or decrease the scaling. 

By adding code to the GO—FOR~NPUT and SPECIFY_VALUE subroutines, 
you can use a choice logical input device to offer the user the option of 
continued segment scaling. The following code performs this task. The 
numbers in this code example are not sequential because they follow the order 
in which the lines of code are executed. 

C ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

C Initialize and request pick input... 
CALL PICK_IT( WS_ID, WS_TYPE, PICKED_SEGMENT ) 

Requesting Input 6-27 



C Scale the segment... 
CALL SPECIFY_VALUE( WS_ID, WS_TYPE, PICKED_SEGMENT, 
* TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON ) 

C Show the final picture... 
FILL Y( 3) = 0.1 
FILLY( 4) = 0.1 
CALL GKS$FILL_AREA( FILL PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.05, 
* 'Here is the scaled segment.' ) 

C Press RETURN when finished viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

RETURN 
END 

C ************************************************************ 

C Specify a value for scaling .. . 
SUBROUTINE SPECIFY_VALUE( WS_ID, WS_TYPE, PICKED_SEGMENT, 
* TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_TYPE, PICKID_SEGMENT, 

* DUMMY_INTEGER, FINISHED_FLAG 

CALL GKS$EVAL XFORM_MATRIX( NULL, NULL, NULL, NULL, 
* NULL, NO_CHANGE, NO_CHANGE, GKS$K_COORDINATES_NDC, 
* XFORM_MATRIX ) 

O 300 CONTINUE 

VALUE = 1.0 
UPPER_LIMIT = 1.5 
LOWER_LIMIT = 0.5 

CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, FIXED_X, 
* FIXED_Y, NULL, NULL, NULL, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, XFORM_MATRIX ) 

C Transform the segment and update the screen. 
CALL GKS$SET_SEG_XFORM( PICKED_SEGMENT, XFORM_MATRIX ) 

C Erase the message and redraw the segments... 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

6-28 Requesting input 



CALL SATISFIED_CHOICE( WS_ID, WS_TYPE, FINISHED_FLAG ) 
C If the user isn't satisfied with the scaling... 

IF (FINISHED_FLAG .EQ. 2) THEN 
GO TO 300 

ENDIF 

C When the user is satisfied, redraw the segments. 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

RETURN 
END 

C ************************************************************ 
C This function makes sure that the user is satisfied with input. 

SUBROUTINE SATISFIED_CHOICE( WS_ID, WS_TYPE, FINISHED_FLAG ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_TYPE, FINISHED_FLAG, DATA_RECORD( 3 ), 
* NUM_CHOICES, SIZES( 10 ), ADDRESSES( 10 ), PROMPT_ECHO_TYPE, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, INITIAL_CHOICE, DEVICE_NUM, 
* INPUT_CHOICE, INITIAL_STATUS, FILL_PTS, NUM_CHOICE_DEVICES, 
* LIST_PROMPT_TYPES( 6 ), PROMPT_RETURN_SIZE, PROMPT_FLAG, 
* INCR, DUMMY_INTEGER 
REAL ECHO_AREA( 4 ), FILL_X( 5 ), FILL_Y( 5 ) 

CHARACTER*80 DEFAULT_STRINGS( 2 ) 

DATA DEVICE_NUM / 1 /, FILL_PTS / 5 /, PROMPT_FLAG / 0 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

C First element in the data record is the number of choices. 
© EQUIVALENCE( DATA_RECORD(1), NUM_CHOICES ) 

C Make sure that the device supports choice input... 
CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER, 
* NUM_CHOICE_DEVICES, DUMMY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_CHOICE_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice input.' 
STOP 

ENDIF 

C Establish the size of the record buffer: 12 bytes. 
0 RECORD_BUFFER_LENGTH = 12 

C The second element in the choice data record for prompt and echo type 1 
C is the pointer to the array containing sizes of each choice character 
C string. You need to initialize the pointer so that the array can be 
C initialized. 

© DATA_RECORD ( 2) _ '/.LOC ( SIZES ( 1 ) ) 

C The third element in the VT241 choice data record is the pointer to the 
C array containing the pointers to the strings to be used. You need 
C to initialize the pointer so that the array can be initialized. 

O DATA_RECORD ( 3) _ '/.LOC ( ADDRESSES ( 1 ) ) 
ADDRESSES ( 1) _ '/.LOC ( DEFAULT_STRINGS ( 1 ) ) 
ADDRESSES ( 2) _ '/.LOC ( DEFAULT_STRINGS ( 2) ) 

Requesting Input 6-29 



C Inquire about the default values. 
NUM_CHOICES = 2 

C Obtain the available prompt and echo types... 
CALL GKS$INQ_DEF_CHOICE DATA( WS_TYPE, DEVICE_NUM, 
* ERROR_STATUS, DUMMY_INTEGER, DUI~IY_INTEGER, 
* '/.DESCR( LIST_PROMPT_TYPES), ECHO AREA, DATA_RECORD, 
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

C Obtain the remaining default input values... 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

DO 400 INCR = 1, PROMPT_RETURN_SIZE, 1 
IF ( LIST_PROMPT_TYPES( INCR ) .EQ. 3) THEN 

PROMPT_FLAG = 1 
ENDIF 

400 CONTINUE 

C If the workstation does not support prompt and echo type 3... 
IF ( PROMPT_FLAG .EQ. 0) THEN 

WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice prompt and echo type 3.' 
STOP 

ENDIF 

PROMPT_ECHO_TYPE = 3 
INITIAL_CHOICE = 1 
INITIAL_STATUS = GKS$K_STATUS_OK 

C 

C 

C 

Establish sizes of prompt strings. 
SIZES( 1) = 3 
SIZES( 2) = 2 
Establish locations of prompt strings... 
ADDRESSES ( 1) _ '/.LOC ( ' Yes' ) 
ADDRESSES ( 2) _ '/.LOC ( ' No' ) 

Write the message... 
CALL GKS$FILL AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.25, 
* 'Choose YES if you are satisfied with' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* 'your input, otherwise choose N0.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Move indicator and trigger input.)' ) 

C Since the device is in request mode by default, initialize the device. 
CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* FINISHID_FLAG ) 

RETURN 
END 

6-30 Requesting Input 



The following numbers correspond to the numbers in the previous example: 

O This FORTRAN label provides a means for looping. 
© This code calls the subroutine SATISFIED_CHOICE. After the subroutine 

call, the argument FINISHED_FLAG contains either the value 1 
(corresponding to Yes) or the value 2 (corresponding to No). If the user 
chooses No, then control transfers to the label 300, and the program offers 
the user another chance to scale the segment. The effects of the scaling are 
cumulative, with each additional specified scale value being combined with 
the last transformation matrix to form a new matrix. 

© This code makes it easier to understand that the first data record component 
is the number of choices. 

O This code checks to make sure that the given workstation supports at least 
one choice logical input device. 

0 This code specifies the size of the data record buffer. 
© This code initializes the second component of the choice data record. This 

component is the address of the array that contains the size of the string 
buffers. 

O This code initializes the third component of the choice data record. This 
component is the address of the array that contains the addresses of the 
string buffers. 

This code initializes the array of string addresses to point to each of the 
string buffers. Once you have initialized all of the string buffers, you can 
call the choice inquiry functions. 
The choice inquiry functions require string buffers in which to write the 
default or current choice strings. If you do not initialize all of the buffer 
addresses, calls to the choice inquiry functions generate errors. 

© Once you tell the graphics handler how many choice string buffers 
you have, you can call the inquiry functions. This subroutine calls 
GKS$INQ _DEF_CHOICE _DATA to obtain the supported prompt and 
echo types for the workstation, and it calls GKS$INQ _CHOICE _STATE to 
obtain the rest of the choice input data values. 

m 

This subroutine chooses to use choice prompt and echo type number 3. 
This code checks to make sure that the device supports that prompt and 
echo type. 
All of the DEC GKS devices currently implement choice prompt and echo 
type number 3 using three data record components. For more information 
concerning the GKS standard choice data records, refer to Chapter 6, 
Input Functions, in the DEC GKS Reference Manual. For more information 
concerning the DEC GKS supported graphics handlers and their choice 
logical input devices, refer to the appropriate chapter in the DEC GKS 
Device Specific Reference Manual. 

Requesting Input 6-31 



m  

This code initializes the choice strings so that they apply to the 
requirements of the program. The choices are Yes and No. 

® This code sends a message to the user. The message asks if the user is 
satisfied with the scaled segment. 

® This code initializes the choice logical input device with the appropriate 
prompt and echo type, and with the new choice labels. 

m 

This code requests input. The argument FINISHED_FLAG contains either 
the value 1 (Yes) or 2 (No). 

® This code generates the picture including the scaled segment as specified by 
the user. 

The following figures represent samples of user input using the looping 
mechanism and the SATISFIED_CHOICE subroutine. Figure 6-8 illustrates 
a large scaling specification. Figure 6-9 illustrates a No response using the 
choice logical input device. Figure 6-10 illustrates a second, smaller scaling 
specification. Figure 6-11 illustrates a Yes response using the choice logical 
input device. Figure 6-12 illustrates the picture of the scaled segment as 
specified by the user. 

6-32 Requesting Input 



Figure 6-8: Specifying a Large Scaling Value—VT241 

ZK-5318-86 

Requesting Input 6-33 



Figure 6-9: Choosing "No"—VT241 

Chaase YES if you are satisfied with 

your input, otherwise choose PdO. 

(Move indicator and trigger input.) 

ZK-5308-86 

6-34 Requesting Input 



Figure 6-10: Specifying an Additional, Smaller Scaling Value—
VT241 

ZK-5317-86 

Requesting input 6-35 



Figure 6-11: Choosing "Yes"—VT241 

(Move indicator and trigger Input , ) 

ZK-5309-86 

6-36 Requesting Input 



Figure 6-12: Presenting the Scaled Segment as Specified—VT241 

ZK•5312-86 

6.7 Input Viewport Priority 

During locator and stroke input, the user positions the prompt on the 
workstation surface and returns one point or a series of points in device 
coordinates. DEC GKS translates the device coordinates to NDC points, 
and then uses the viewport input priority to determine which normalization 
transformation to use when translating the points to world coordinates. 

To decide which normalization viewport has a higher input priority, DEC GKS 
maintains a priority list. By default, DEC GKS assigns the highest priority to 
the unity transformation (0 ). The viewports of all remaining transformations 
decrease in priority as their transformation numbers increase (viewport 0 higher 
than viewport 1, 1 higher than 2, 2 higher than 3, and so forth). 

When using a locator class device, DEC GKS uses the normalization 
transformation of the highest input priority that contains the input point. when 
using stroke input, DEC GKS uses the normalization transformation of the 
highest priority that contains all of the points in the stroke. Since a locator or 
stroke input device could not return device coordinate points that could fall 
outside of the default normalization viewport ([0,1 ] x [0,1 ] ), you can always use 
the unity transformation to transform stroke input data. 

Requesting Input 6-37 



The subroutine VIEW~'RIORITY illustrates the use of input viewport priority 
when using a locator logical input device: 

c ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

C Make the segments invisible so that you can run the viewport 
C priority subroutine... 

CALL GKS$SET_SEG VISIBILITY( TITLE, Gf~S$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( STARS, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( TREE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( SIDE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( ROAD, GKS$K_IHVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( HORIZON, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( HOUSE, GKS$K_INVISIBLE ) 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

CALL VIEW_PRIORITY( WS_ID, WS_TYPE ) 

RETURN 
END 

C ************************************************************ 
C This program accepts input twice from the same spot on the 
C workstation surface. When the input priority is changed, 
C the world coordinates returned are that of the other overlapping 
C viewport. 

SUBROUTINE VIEW_PRIORITY( WS_ID, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, ERROR_STATUS, INPUT_MODE, ECHO FLAG, XFORM, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEFAULT, 
* LOW_LEFT_CORNER, RIGHT_HALF, DEVICE_NUM, NUM_POINTS, 
* PROMPT ECHO TYPE, DATA_RECORD( 1 ), WS_TYPE, DUI~IlKY_INTEGER, 
* NUM_LOC DEVICES, FOREGROUND 
REAL WORLD_COORD X, WORLD_COORD_Y, 

* ECHO_AREA ( 4 ) , PX ( 5 ) , PY ( 5 ) , PX_2 ( 5 ) , PY_2 ( 5 ) , 
* LARGER 
DATA PX / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA PY / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA DEFAULT / 0 /, DEVICE_NUM / 1 /, LARGER / 0.04 /, 
* RIGHT_HALF / 1 /, LOW_LEFT_CORNER / 1 /, NUM_POINTS / 5 /, 
* FORGROUND / 1 / 

0 
C Make sure that the device supports locator input... 

CALL GKS$INQ_INPUT DEV( WS_TYPE, ERROR_STATUS, 
* NUM_LOC DEVICES, DUMMY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, DUI~Y_INTEGER, DUMMY_INTEGER ) 

6-38 Requesting Input 



IF ( NUM_LOC_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'locator input.' 
STOP 

ENDIF 

C When you outline the entire default world coordinate space, you 
C also outline the entire NDC space, the entire workstation window, 
C and the entire workstation viewport. 

CALL GKS$SET_PLINE_LINETYPE( GKS$K_LINETYPE_SOLID ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C This window and viewport are associated with the 
C normalization transformation number 1. 

CALL GKS$SET_WINDOW( LOW_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET_VIEWPORT( RIGHT_HALF, 0.5, 1.0, 0.0, 1.0 ) 

C Select the new transformation and outline the new windows 
C and viewports. 

CALL GKS$SELECT_XFORM( 1 ) 
CALL GKS$POLYLINE( NUM POINTS, PX, PY ) 

C Assign a value to RECORD_BUFFER_LENGTH: 4 bytes. On output, 
C this argument should contain the value 0 since 
C GKS$INQ_LOCATOR_STATE does not write anything to the buffer. 

© RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_LOCATOR_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT MODE, ECHO_FLAG, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

C Since the device is in request mode by default, initialize the device. 
CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, 0.7, 0.5, DEFAULT, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD BUFFER_LENGTH ) 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

C ********************************* 
C At this pause, just type RETURN. 
C ********************************* 

0 CALL GKS$REQUEST_LOCATOR( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

C Write the returned world coordinates. 
® WRITE(5, *) WORLD_COORD_X, WORLD_COORD_Y 

CALL GKS$SELECT_XFORM( DEFAULT ) 
CALL GKS$SET_TEXT_COLOR_INDEX( FOREGROUND ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.01, 0.4, 'Higher priority VP: 0') 

C Set the current viewport (associated with the selected 
C transformation number 1) to be a higher priority than the 
C default viewport. 

CALL GKS$SET_VIEWPORT PRIORITY( RIGHT_HALF, DEFAULT, 
* GKS$K_INPUT_PRIORITY_HIGHER ) 

Requesting Input 6-39 



C Since the device is in request mode by default, initialize the device.. 

CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, 0.7, 0.5, DEFAULT, 

* PROMPT_ECHO_TYPE, ECHO AREA, DATA_RECORD, 

* RECORD_BUFFER_LENGTH ) 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

C ********************************* 

C At this pause, just type RETURN. 
C ********************************* 

CALL GKS$REQUEST_LOCATOR( WS_ID, DEYICE_NUM, INPUT_STATUS, 

* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

C Write the returned world coordinates, this time from the smaller 

C viewport on the right half of the screen. 
WRITE(5, *) WORLD_COORD_X, WORLD_COORD Y 
CALL GKS$SELECT_XFORM( DEFAULT ) 
CALL GKS$TEXT( 0.01, 0.3, 'Higher priority VP: 1') 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This code makes sure that the device supports locator input. 

© This code inquires about the default locator input values. 

© This code initializes the locator logical input device with default input 
values, and with the initial locator world coordinate values 0.7 and. 
0.5. Using the normalization transformation specified by the argument 
DEFAULT (0, the unity transformation), the graphics handler transforms 
the initial point and places the locator prompt on the corresponding 
position on the workstation surface (device coordinate plane). 

4 Figure 6-13 illustrates the workstation surface after the request for locator 
input. 

0 After the user triggers the locator input device, the graphics handler 
returns the same world coordinate points specified as the original prompt 
position (0.7, 0.5). Since the unity normalization ~ transformation has the 
highest viewport input priority, the handler uses the unity transformation 
to transform the prompt position back to world coordinates. Figure 6-14 
illustrates the surface of the workstation after the user triggers input. 

© This code sets normalization transformation number 1 (whose viewport 
occupies the right half of the default NDC space) to be higher than the 
unity transformation (0 ). 

6-40 Requesting Input 



O The second time that the user triggers input from the same prompt position, 
the graphics handler uses the window and viewport associated with 
normalization transformation number 1, since it now has a higher priority. 
As a result, the handler transforms the same prompt position to the world 
coordinate point (0.2, 0.25 ). Figure 6-15 illustrates the workstation surface 
after the user triggers input a second time. 

Figure 6-13: The Initial Locator Prompt Position—VT241 

1 

~~ 

 J 
ZK-5311-86 

Requesting Input 6-41 



Figure 6-14: Unity Transformation Measure—VT241 

0.7000000 
i 

0.500000 

Higher priorit 

0 

y VP : 0 

1 

 J 
ZK-5313-86 

6-42 Requesting Input 



Figure 6-15: Transformation Number 1 Measure—VT241 

1 
o . ~oa0000 
0. 000004 

0.500000 
0. 50000 

Higher priorit 

Higher priorit 

0 
4 

y t~ F ~? 

u VP : i 

 J 
ZK•5314-86 

Given the set normalization transformations and input viewport priorities in 
the previous code example (normalization transformation number 1 being 
higher priority than 0), the following figures illustrate which normalization 
transformation the graphics handler uses to transf orm a given stroke. 
Figure 6-16 illustrates a stroke located within the transformed range of 
normalization transformation number 1. Figure 6-17 illustrates a stroke that 
exceeds the transformed range of normalization number 1. 

Requesting Input 6-43 



Figure 6-16: Using Normalization Transformation Number 1 

VPO 

VP1 

The handler uses VP1. 

ZK-5344-86 

6-44 Requesting Input 



Figure 6-17: Using Normalization Transformation Number 0 

VPO 

VP1 

The handler uses VPO. 

ZK-5345-86 

Since in Figure 6-17 normalization transformation number 1 (which has the 
viewport of higher priority) cannot contain the entire stroke, the handler uses 
the normalization transformation with the next highest priority that contains all 
stroke points (in this case, transformation 0). 

Requesting Input 6-45 



6.7.1 Restricting Movement of Locator, Stroke, and Pick Prompts 

In some applications, you may wish to limit the range of the locator, stroke, or 
pick prompt so that you have complete control over the input values returned 
by the input device. Using stroke and locator input with a picture composed of 
overlapping viewports, you can restrict the input prompt to a single portion of 
the workstation surface. By restricting the movement of the prompt, you limit 
the number of normalization transformation numbers DEC GKS can use to 
translate a given input point or series of input points. Using a pick device, you 
can use the echo area along with the visib' 'ty and detectability attributes of 
each segment to control which segments the user can and cannot pick. 

Assuming the normalization transformations established in the previous 
code example, you have two possible normalization transformations used to 
transform an input point (0 and 1). If you want the user to enter a point or a 
series of points to be transformed using normalization transformation number 
1, you need to make sure that the input device cannot return a point that falls 
outside of normalization viewport 1. 

To accomplish this, you adjust the input echo area. Adjusting the echo area 
restricts the amount of the workstation surface that the user can use to move 
the prompt. 

For example, the following code illustrates a method used to limit the echo area 
for a stroke device: 

C Assume that there are no pending workstation transformations. 
C Obtain the dimensions of the current workstation viewport... 

CALL GKS$INQ_WS_XFORM( WS_ID, ERROR_STATUS, 
* XFORM_PENDING_FLAG, REQUESTED_WS_WINDOW, CURRENT_WS WINDOW, 
* REQUESTED_WS VIEWPORT, CURRENT_WS_VIEWPORT ) 

C Use the right half, of the current viewport as the echo area. 
CURRENT WS VIEWPORT(1) = CURRENT_WS VIEWPORT(2) / 2 
ECHO_AREA(1) =CURRENT WS VIEWPORT ( 1 ) 
ECHO_AREA(2) = CURRENT_WS_VIEWPORT (2 ) 
ECHO_AREA(3) =CURRENT WS_VIEWPORT (3 ) 
ECHO_AREA(4) =CURRENT WS_VIEWPORT (4 ) 

C Initialize the new echo area... 
CALL GKS$INIT_STROKE( WS_ID, DEVICE_NUM, NUMBER_PTS, 
* X_PTS, Y_PTS, XFORM, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD BUFFER_LENGTH ) 

6-46 Requesting Input 



C Give normalization viewport i a higher priority than 0... 
CALL GKS$SET VIEWPORT_PRIORITY( 1, 0, 
* GKS$K_INPUT_PRIORITY_HIGHER ) 

Figure 6-18 illustrates the surface of the workstation when the user attempts to 
move the prompt past the currently defined echo area. 

Figure 6-18: Restricting the Echo Area 

VPO 

VP1 

The handler still uses VP1. 

ZK-5854-HC 

Requesting Input 6-47 



6.8 Program Example Used in this Chapter 

Example 6-1 presents all of the changes that you need to make to Example 3-2 
in order to follow the code examples in this chapter. 

Example 6-1: Using the DEC GKS Input Functions 

IMPLICIT NONE 
INTEGER WS_ID, HOUSE, TREE, HORIZON, STARS, TITLE, 
* SIDE, ROAD 

DATA WS_ID / 1 /, TITLE / 1 /, STARS / 2 /, TREE / 3 /, 
* SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, HOUSE / ? / 

CALL SETUP( WS_ID ) 

CALL DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL CLEANUP( WS_ID ) 

END 

C ************************************************************ 
C Draw the. picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ) 
CALL GKS$CLOSE_SEG() 

C Ask the user for input... 
CALL GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, TREE, 
* SIDE, ROAD, HOUSE, HORIZON ) 

RETURN 
END 

C ************************************************************ 
C From this point forward, all code is additional code that you 
C need to add to the "Starry Night" program. 
C ************************************************************ 

C ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

(continued on next page) 

6-48 Requesting Input 



Example 6-1 (Copt.): Using the DEC GKS Input Functions 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, CATEGORY, ERROR_STATUS, FILL_PTS, FOREGROUND, 
* BACKGROUND, UNITY, PICKID_SEGMENT, WS_TYPE 
REAL FILL_X( 5 ), FILL_Y( 5 ) 

DATA FILL_PTS / 5 /, FOREGROUND / 1 /, BACKGROUND / 0 /, 
*UNITY/0/ 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, 
* ERR,OR_STATUS, CATEGORY ) 

IF ( CATEGORY .NE. GKS$K WSCAT_OUTIN ) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'both input and output.' 
STOP 

ENDIF 

C Make sure that you are using the unity transformation.. 
CALL GKS$SELECT_XFORM( UNITY ) 

C Fill an area on which to send the user a message... 
CALL GKS$SET_FILL_COLOR_INDEX( FOREGROUND ) 
CALL GKS$FILL_AREA( FILL PTS, FILL_X, FILL Y ) 

C Write the message... 
CALL GKS$SET_TEXT_HEIGHT( 0.028 ) 
CALL GKS$SET_TEXT_COLOR_INDEX( BACKGROUND ) 
CALL GKS$TEXT( 0.05, 0.25, 
* 'Which segment would you like to scale?' ) 
CALL GKS$TEXT( 0.05, 0.2, 
* 'Move the cursor, outline your chosen' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* 'segment, and then trigger input.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Press RETURN when ready.)' ) 

C The user presses RETURN when ready to pick... 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Erase the message and redraw the segments... 
CALL GKS$RIDRAW_SEG_ON_WS( WS_ID ) 

(continued on next page) 

Requesting Input 6-49 



Example 6-1 (Copt.): Using the DEC GKS Input Functions 

C Make sure that all of the segments are detectable... 
CALL GKS$SET_SEG_DETECTABILITY( TITLE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( STARS, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( TREE, GKS$K DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( SIDE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( ROAD, GKS$K DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( HOUSE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( HORIZON, GKS$K_DETECTABLE ) 

C Initialize and request pick input... 
CALL PICK_IT( WS_ID, WS TYPE, PICKID_SEGMENT ) 

C Scale the segment... 
CALL SPECIFY VALUE( WS_ID, WS_TYPE, PICKED_SEGMENT 
* TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON ) 

C Show the final picture. 
FILL Y( 3) = 0.1 
FILL Y( 4) = 0.1 
CALL GKS$FILL_AREA( FILL PTS, FILL_X, FILL Y ) 
CALL GKS$TEXT( 0.05, 0.05, 
* 'Here is the scaled segment.' ) 

C Press RETURN when finished viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , *) 

C Make the segments invisible so that you can run the viewport 
C priority subroutine... 

CALL GKS$SET_SEG VISIBILITY( TITLE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( STARS, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( TREE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( SIDE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( ROAD, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HORIZON, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HOUSE, GKS$K_INVISIBLE ) 
CALL GKS$REDRAW_SEG_ON WS( WS_ID ) 

CALL VIEW_PRIORITY( WS_ID, WS_TYPE ) 

RETURN 
END 

C 
C This function allows a user to pick a segment... 

SUBROUTINE PICK_IT( WS_ID, WS_TYPE, PICKED_SEGMENT ) 

(continued on next page) 

6-50 Requesting Input 



Example 6-1 (Copt.): Using the DEC GKS Input Functions 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, INITIAL_STATUS, PICKED_SEGMENT, 
* PICK_ID, PROMPT_ECHO_TYPE, ERROR_STATUS, 
* INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, DEVICE_NUM, 
* INPUT_CHOICE, DUMMY_INTEGER, DATA_RECORD( 10 ), 
* NUM PICK DEVICES, FILL_PTS, STATUS, WS_TYPE 
REAL ECHO_AREA( 4 ), FILL_X( 5 ), FILL_Y( 5 ) 
DATA DEVICE_NUM / 1 /, FILL_PTS / 5 / 
DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

C Make sure that the device supports pick input... 
CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, NUM_PICK_DEVICES, DUMMY_INTEGER ) 

IF ( NUM_PICK_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'pick input.' 
STOP 

ENDIF 

C Give the data record the size of your data record buffer and 
C inquire about the realized pick values. 

RECORD_BUFFER_LENGTH = 40 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, PICKID_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Make sure that the data record was not truncated... 
IF ( RECORD_SIZE .LT. RECORD BUFFER_LENGTH ) THEN 

WRITE(6,*) 'The data record was truncated.' 
WRITE(6,*) 'Declare a larger buffer.' 
STOP 

ENDIF 

C Allow entrance into the loop... 
INPUT_STATUS = GKS$K_STATUS_NOPICK 

C Loop until the user picks a segment... 
DO WHILE ( ( INPUT_STATUS .EQ. GKS$K_STATUS_NOPICK) .OR. 
* ( INPUT_STATUS .EQ. GKS$K_STATUS_NONE )) 

C Make sure that the pick aperture is not placed on any segment... 
INIT.IAL_STATUS = GKS$K_STATUS_NOPICK 

C Since the device is in request mode by default, initialize the device.. 
CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, INITIAL_STATUS, 
* PICKED_SEGMENT, PICK_ID, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH ) 

(continued on next page) 

Requesting Input 6-51 



Example 6-1 (Cont.): Using the DEC GKS Input Functions 

C Make sure that echo is enabled... 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

C Request input. PICKED_SEGMENT contains the chosen segment's 
C name. 

CALL GKS$REQUEST_PICK( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, PICKID_SEGMENT, PICK_ID ) 

C Send a message to the user if a segment is not picked.. 
IF ( INPUT_STATUS .EQ. GKS$K_STATUS_NOPICK ) THEN 

CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.25, 

* 'I cannot let you go until you pick' ) 
CALL GKS$TEXT( 0.05, 0.2, 

* 'a segment!' ) 
CALL GKS$TEXT( 0.05, 0.02, 

* '(Press RETURN when ready.)' ) 

C The user presses RETURN when ready to pick again... 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5 , *) 

C Erase the message and redraw the segments... 
CALL GKS$RIDRAW_SEG_ON WS( WS_ID ) 

ENDIF 
ENDDO 

RETURN 
END 

C ************************************************************ 

C Specify a value for scaling .. . 
SUBROUTINE SPECIFY VALUE( WS_ID, WS_TYPE, PICKID_SEGMENT, 
* TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_TYPE, PICKID_SEGMENT, 
* TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON, 
* PROMPT_ECHO_TYPE, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, RECORD BUFFER_LENGTH, RECORD_SIZE, 
* INPUT_STATUS, DEVICE_NUM, FILL_PTS, NUM_VAL_DEVICES, 
* DUMMY_INTEGER, FINISHID_FLAG 
REAL ECHO_AREA( 4 ), DATA_RECORD( 2 ), UPPER_LIMIT, 
* LOWER_LIMIT, VALUE, FILL_X( 5 ), FILL_Y( 5 ), 
* FIXID_X, FIXID_Y, XFORM_MATRIX( 6 ), NULL, NO_CHANGE 
DATA DEVICE_NUM / 1 /, FILL PTS / 5 /, NULL / 0.0 /, 
* NO_CHANGE / 1.0 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

(continued on next page) 

6-52 Requesting Input 

u 



Example 6-1 (Cont.~: Using the DEC GKS Input Functions 

According to the standard, the elements in the data record are 
the upper and lower limits for all prompt and echo types. 
EQUIVALENCE( DATA_RECORD( 1 ), LOWER_LIMIT 
EQUIVALENCE( DATA_RECORD( 2 ), UPPER_LIMIT ) 

C Make sure that the device supports valuator input... 
CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUI~Il~IY_INTEGER, NUM VAL_DEVICES, 
* DUMMY_INTEGER, DUMHIY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_VAL_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'valuator input.' 
STOP 

ENDIF 

RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ VALUATOR_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT MODE, ECHO_FLAG, VALUE, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RETURN_SIZE ) 

CALL GKS$EVAL_XFORM_MATRIX( NULL, NULL, NULL, NULL, 
* NULL, NO_CHANGE, NO_CHANGE, GKS$K_COORDINATES_NDC, 
* XFORM_MATRIX ) 

300 CONTINUE 

VALUE.= 1.0 
UPPER_LIMIT = 1.5 
LOWER_LIMIT = 0.5 

C Write the message... 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.25, 
* '1.5 increases the segment size 50'/.' ) 
-CALL GKS$TEXT( 0.05, 0.15, 
* '0.5 decreases the segment size 50'/.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Move indicator and trigger input.)' ) 

C Since the device is in request mode by default, initialize the device.. 
CALL GKS$INIT VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE, PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_VALUATOR( WS_ID, DEVICE_NUM, 
* INPUT_STATUS, VALUE ) 

(continued on next page) 

Requesting Input 6-53 



Example 6-1 (Copt.): Using the DEC GKS Input Functions 

C Establish fixed points for segments depending on which 
IF ( PICKID_SEGMENT .EQ. TITLE ) THEN 

FIXED_X = 0.3 
FIXED_Y = 0.925 

ELSEIF ( PICKID_SEGMENT . EQ . STARS ) THEN 
FIXID_X = 0.5 
FIXID_Y = 0.8 

ELSEIF (PICKID_SEGMENT . EQ . TREE) THEN 
FIXID X = 0.52 
FIXID_Y = 0.51 

ELSEIF ( PICKID_SEGMENT . EQ . SIDE) THEN 
FIXID_X = 0.225 
FIXID_Y = 0.22 

ELSEIF (PICKID_SEGMENT . EQ . ROAD ) THEN 
FIXID_X = 0.5 
FIXID_Y = 0.075 

ELSEIF (PICKED_SEGMENT .EQ. HORIZON ) THEN 
FIXID_X = 0.1 
FIXID_Y = 0.35 

ELSEIF ( PICKID_SEGMENT . EQ . HOUSE ) THEN 
FIXID_X = 0.2 
FIXID_Y = 0.5 

ENDIF 

CALL GKS$ACCUM_XFORM_MATRIX( XFORM_MATRIX, FIXID_X, 
* FIXID_Y, NULL, NULL, NULL, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, XFORM MATRIX ) 

C Transform the segment and update the screen. 
CALL GKS$SET_SEG_XFORM( PICKID_SEGMENT, XFORM_MATRIX ) 

C Erase the message and redraw the segments... 
CALL GKS$RIDRAW_SEG_ON WS( WS_ID ) 

CALL SATISFIID_CHOICE( WS_ID, WS_TYPE, FINISHID FLAG ) 
C If the user isn't satisfied with the scaling... 

IF (FINISHID_FLAG . EQ . 2) THEN 
GO TO 300 

ENDIF 

C When the user is satisfied, redraw the segments. 
CALL GKS$RIDRAW_SEG_ON_WS( WS_ID ) 

RETURN 
END 

C ************************************************************ 

C This function makes sure that the user is satisfied with input... 
SUBROUTINE SATISFIID_CHOICE( WS_ID, WS_TYPE, FINISHID_FLAG ) 

(continued on next page) 

6-54 Requesting Input 



Example 6-1 (Coot.): Using the DEC GKS Input Functions 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS TYPE, FINISHED_FLAG, DATA_RECORD( 3 ), 
* NUM_CHOICES, SIZES( 10 ), ADDRESSES( 10 ), PROMPT_ECHO_TYPE, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, INPUT_STATUS, INITIAL_CHOICE, DEVICE_NUM, 
* INPUT_CHOICE, INITIAL_STATUS, FILL_PTS, NUM_CHOICE_DEVICES, 
* LIST_PROMPT_TYPES( 6 ), PROMPT_RETURN_SIZE, PROMPT_FLAG, 
* DUMMY_INTEGER, INCR 
REAL ECHO_AREA( 4 ), FILL_X( 5 ), FILL_Y( 5 ) 

CHARACTER*80 DEFAULT_STRINGS( 2 ) 

DATA DEVICE_NUM / 1 /, FILL_PTS / 5 /, PROMPT_FLAG / 0 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

C First element in the data record is the number of choices. 
EQUIVALENCE( DATA_RECORD(1), NUM_CHOICES ) 

C Make sure that the device supports choice input... 
CALL GKS$INQ_INPUT DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* NUM_CHOICE_DEVICES, DU1~IY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_CHOICE_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice input.' 
STOP 

ENDIF 

C Establish the size of the record buffer: 12 bytes. 
RECORD_BUFFER_LENGTH = 12 

C The second element in the choice. data record for prompt and echo type 1 

C is the pointer to the array containing sizes of each choice character 

C string. You need to initialize the pointer so that the array can be 

C initialized. 
DATA_RECORD ( 2) _ '/.LOC ( SIZES ( 1) ) 

C The third element in the VT241 choice data record is the pointer to the 

C array containing the pointers to the strings to be used. You need 

C to initialize the pointer so that the array can be initialized. 
DATA_RECORD ( 3) _ '/.LOC ( ADDRESSES ( 1) ) 
ADDRESSES ( 1 ) _ '/.LOC ( DEFAULT_STRINGS ( 1 ) ) 
ADDRESSES( 2) _ '/.LOC( DEFAULT_STRINGS( 2) ) 

C Inquire about the default values. 
NUM_CHOICES = 2 

(continued on next page) 

Requesting Input 6-55 



Example 6-1 (Copt.): ~ Using the DEC GKS Input Functions 

C Obtain the available prompt and echo types... 
CALL GKS$INQ_DEF_CHOICE_DATA( WS_TYPE, DEVICE_NUM, 
* ERROR_STATUS, DUMMY_INTEGER, DUMMY_INTEGER, 
* '/.DESCR( LIST_PROMPT_TYPES), ECHO AREA, DATA_RECORD, 
* PROMPT_RETURN_SIZE, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

C Obtain the remaining default input values... 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA, 
* DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

DO 400 INCR = 1, PROMPT_RETURN_SIZE, 1 
IF ( LIST_PROMPT_TYPES( INCR ) .EQ. 3) THEN 

PROMPT_FLAG = 1 
ENDIF 

400 CONTINUE 

C If~the workstation does not support .prompt and echo type 3... 
IF (PROMPT_FLAG .EQ. 0~) THEN 

WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice prompt and echo type 3.' 
STOP 

ENDIF 

PROMPT_ECHO_TYPE = 3 
INITIAL_CHOICE = 1 
INITIAL_STATUS = GKS$K_STATUS_OK 

C Establish sizes of prompt strings. 
SIZES( 1) = 3 
SIZES( 2) = 2 

C Establish locations of prompt strings... 
ADDRESSES ( i) _ '/.LOC ( ' Yes' ) 
ADDRESSES ( 2) _ '/,LOC ( ' No' ) 

C Write the message... 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.25, 

* ' Choose YES if you are satisfied with' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* 'your input, otherwise choose N0.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Move indicator and trigger input.)' ) 

C Since the device is in request mode by default, initialize the device.. 
CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH ) 

(continued on next page) 

6-56 Requesting Input 



Example 6-1 (Cont.): Using the DEC GKS Input Functions 

CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* FINISHID_FLAG ) 

RETURN 
END 

C ************************************************************ 
C This program accepts input twice from the same spot on the 
C workstation surface. When the input priority is changed, 
C the world coordinates returned are that of the other overlapping 
C viewport. 

SUBROUTINE VIEW_PRIORITY( WS_ID, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, ERROR_STATUS, INPUT_MODE, ECHO_FLAG, XFORM, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE, INPUT_STATUS, DEFAULT, 
* LOW_LEFT_CORNER, RIGHT_HALF, DEVICE_NUM, NUM_POINTS, 
* PROMPT_ECHO_TYPE, DATA_RECORD( 1 ), WS_TYPE, DUI~+IY_INTEGER, 
* NUM_LOC_DEVICES, FOREGROUND 
REAL WORLD_COORD X, WORLD_COORD_Y, 

* ECHO_AREA ( 4 ) , PX ( 5 ) , PY ( 5 ) , PX_2 ( 5 ) , PY_2 ( 5 ) , 
* LARGER 
DATA PX / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA PY / 0.0, 0.0, 1.0, 1.0, 0.0 / 
DATA DEFAULT / 0 /, DEVICE_NUM./ 1 /, LARGER / 0.04 /, 
* RIGHT_HALF / 1 /, LOW_LEFT_CORNER / 1 /, NUM_POINTS / 5 /, 
* FOREGROUND / 1 / 

C Make sure that the device supports locator input... 
CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* NUM_LOC_DEVICES, DUMMY_INTEGER, DUI~IY_INTEGER, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_LOC_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'locator input.' 
STOP 

ENDIF 

C When-you outline the entire default world coordinate space, you 
C also outline the entire NDC space, the entire workstation window, 
C and the entire workstation viewport. 

CALL GKS$SET_PLINE_LINETYPE( GKS$K_LINETYPE_SOLID ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

(continued on next page) 

Requesting Input 6-57 



Example 6-1 (Copt.): Using the DEC GKS Input Functions 

C This window and viewport are associated with the 
C normalization transformation number 1. 

CALL GKS$SET WINDOW( LOW_LEFT_CORNER, 0.0, 0.5, 0.0, 0.5 ) 
CALL GKS$SET VIEWPORT( RIGHT_HALF, 0.5, 1.0, 0.0, 1.0 ) 

C Select the new transformation and outline the new windows 
C and viewports. 

CALL GKS$SELECT_XFORM( 1 ) 
CALL GKS$POLYLINE( NUM_POINTS, PX, PY ) 

C Assign a value to RECORD BUFFER_LENGTH: 4 bytes. On output, 
C this argument should contain the value 0 since 
C GKS$INQ_LOCATOR_STATE does not write anything to the buffer. 

RECORD_BUFFER_LENGTH = 4 
CALL GKS$INQ_LOCATOR_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT MODE, ECHO_FLAG, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y, PROMPT_ECHO TYPE, 
* ECHO_AREA, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE ) 

C Since the device is in request mode by default, initialize the device... 
CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, 0.7, 0.5, DEFAULT, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

C ********************************* 

C At this pause, just type RETURN. 
C ********************************* 

CALL GKS$REQUEST_LOCATOR( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

C Write the returned world coordinates. 
WRITE(5, *) WORLD_COORD X, WORLD_COORD Y 
CALL GKS$SELECT_XFORM( DEFAULT ) 
CALL GKS$SET_TEXT_COLOR_INDEX( FOREGROUND ) 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$TEXT( 0.01, 0.4, 'Higher priority VP: 0') 

C Set the current viewport (associated with the selected 
C transformation number i) to be a higher priority than the 
C default viewport. 

CALL GKS$SET_VIEWPORT_PRIORITY( RIGHT HALF, DEFAULT, 
* GKS$K_INPUT_PRIORITY_HIGHER ) 

C Since the device is in request mode by default, initialize the device.. 
CALL GKS$INIT_LOCATOR( WS_ID, DEVICE_NUM, 0.7, 0.5, DEFAULT, 
* PROMPT_ECHO_TYPE, ECHO_AREA, DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 
CALL GKS$SET_LOCATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

(continued on next page) 

6-58 Requesting Input 



Example 6-1 (Cont.): Using the DEC GKS Input Functions 

c ********************************* 
C At this pause, just type RETURN. 
C ********************************* 

CALL GKS$REQUEST_LOCATOR( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* XFORM, WORLD_COORD_X, WORLD_COORD_Y ) 

C Write the returned v►orld coordinates, this time from the smaller 
C viewport on the right half of the screen. 

WRITE(5, *) WORLD_COORD_X, WORLD_COORD Y 
CALL GKS$SELECT_XFORM( DEFAULT ) 
CALL GKS$TEXT( 0.01, 0.3, 'Higher priority VP: i') 

RETURN 
END 

Requesting Input 6-59 





Chapter 7 

Sampling Input and Generating Events 

This chapter describes sample and event input operating modes, and discusses 
the following related issues in detail: 

• Concurrent activation of several logical input devices 
• Differences among the three input operating modes 
• Help screens using segment visibility 
• Storage and restoration of current input values 

NOTE 

Section 7.5 contains the code that you must add to the Starry Night 
program in Example 3-2 to produce the program example contained 
in this chapter. You may wish to add this code to the base program 
so that you can execute the program while reading this chapter. The 
lines of blue code in the example signify the new code that you need 
to add to Example 3-2. 

7.1 Choosing an Input Operating Mode 

Chapter 6, Requesting Input, discusses the general concepts concerning the 
DEC GKS input process. All program examples used in the chapter place 
the logical input devices in request input operating mode. Most of the 
programming techniques described in the chapter are also applicable when 
using either sample or event mode. For instance, no matter which input 
operating mode your application requires, you need to remember the following 
issues. 

• That your workstation supports input. 
• That your workstation supports the desired prompt and echo types. 

Sampling Input and Generating Events 7-1 



• That you properly obtain current and default input values as needed. 

• That you properly define the input data record. 

• That you initialize logical input devices, if necessary, using one of the 
GKS$INIT_class functions. 

To use one of the GKS$INIT_class functions, you must make sure that the 
input device's prompt is not currently on the workstation surface. So, to 
initialize a device, you must make sure that the device is set to request 
mode (this is the DEC GKS default mode). 

• That the logical input device be in the desired mode (if need be, by calling 
one of the GKS$SET_class~l/IODE functions). 

This chapter concentrates on the differences among the three input operating 
modes so that you can decide which modes are necessary for your application. 
For this reason, this chapter does not explain, in detail, concepts already 
outlined in Chapter 6, Requesting Input. 

The first decision that you must make when choosing an input operating mode 
is whether you need to use a synchronous or asynchronous input operating 
mode. Asynchronous input operating mode synchronizes the process so that 
the application pauses when the user enters input and continues when the user 
triggers the input device. An asynchronous input operating mode allows the 
application to continue to execute while the user enters input on the logical 
input devices. Consequently, if your application cannot perform any work until 
it receives input from the user, then you should use the DEC GKS synchronous 
input operating mode (request mode). If .your application should continue to 
process as the user enters input values, then you should use one of the DEC 
GKS asynchronous input operating modes (sample or event mode). 

If you decide to use sample or event mode, you need to decide who, according 
to the needs of your application, should have more control over the entering of 
input values: the application program or the user. 

During sample mode, the user can change the current measure of a given 
device by altering the position of the prompt, but the user cannot trigger the 
device. At any time determined by the application program, the application 
samples (takes) the current measure of the device. The user specifies possible 
input values, but the application controls when values are actually accepted. 
When the application chooses, it ends the sampling input process. 

During event mode, the user can change the measure of the device and trigger 
a desired value in the same manner as in request input mode. However, in 
event mode, the input prompt does not dissappear when the user triggers the 
device. Every time the user triggers the device, the action generates an event 
report. The DEC GKS input process places these reports on atime-ordered 
queue (first in, first out). When the application chooses, it removes the reports 

7-2 Sampling Input and Generating Events 



and processes the input. Also, when the application chooses, it ends the event 
input process. 

Consequently, if you want the application to control the timing of the 
acceptance of input values, use sample mode. If you want the user to control 
the entering of input values, use event mode. 

The following subsections discuss issues involved in choosing an appropriate 
input operating mode for your application program. 

7.1.1 Logical Input Devices and Asynchronous Input 

When using only request mode, the device handler does not place the logical 
input device's prompt on the workstation surface until you call one of the 
GKS$REQUEST_class functions. Since the application pauses until one request 
for input is complete, you can have at most one logical input device prompt 
present on the workstation surface at any one time. If using only request mode, 
you have need for only one logical input device (numbered 1) for each of the 
input classes (choice, locator, pick, string, stroke, and valuator). 

When you use sample and event input modes, the prompt appears on the 
workstation surface as soon as you call the appropriate GKS$SET_class~ViODE 
function. Since you can call the GKS$SET_class~ViODE function for several 
devices, possibly of the same class, setting each to any of the three modes, DEC 
GKS provides you with more than one logical input device number for each 
class. (To review the DEC GKS supported input devices, refer to Appendix J, 
DEC GKS Specific Input Values, in the DEC GKS Reference Manual.) 

For example, depending on the needs of your application, you can place two 
choice devices in any of the following combination of input operating modes: 

• Both in sample mode, by calling GKS$SET_CHOICE_1VIODE for each 
device. 

• Both in event mode, by calling GKS$SET_CHOICE ~VIODE for each 
device. 

• One in sample and one in event mode, by calling GKS$SET_CHOICE_ 
MODE for each device. 

• One device in either sample or event mode, and the other device in request 
mode. To do this, you call GKS$SET_CHOICE~VIODE for each device, 
followed by a call to GKS$REQUEST_CHOICE to activate the other 
device's prompt. (The user can only view the prompt of a single device in 
request mode at any given time.) 

Sampling Input and Generating Events 7-3 



When you activate two choice devices, you can use the choice device numbers 

1 and 2. To do this, you must make sure that the echo areas for both choice 
menus do not overlap. Figure 7-1 illustrates two choice devices on the 
workstation surface. 

Figure 7-1: Activating Two Input Devices of the Same Class 

TREE 

STARS 

TITLE 

Device 1 

GREEN 

BLUE 

J 
Device 2 

ZK-5888-HC 

The following questions may arise when using several logical input devices 
concurrently: 

• Does the user alter the measure and trigger the devices using the same 
physical device (for instance, keys on the keyboard)? 

• If the input devices do use the same physical device, how can the user 
alter the measure and trigger one device without altering the measure and 
triggering the second device? 

• If the input devices do not use the same physical device, how does the user 
know how to manipulate each device? 

The answer to each question depends on the workstation you are using. Using 
a VT240, all devices are active concurrently. So, if the user presses a key that 
affects both devices, both devices reflect the change in their measures. 

For example, choice device number 1 requires that the user press the arrow 
keys to change the measure and the RETURN key to trigger the device. 

7-4 Sampling Input and Generating Events 



Choice device number 2 uses the VT240 keypad differently. If the user presses 
either the arrow keys or one of the numbered numeric keypad keys, the 
handler highlights the appropriate choice (if the user pressed a numbered key, 
the handler highlights the choice whose number corresponds to the key), and 
triggers the device immediately. Using device number 2, pressing the RETURN 
key has no effect. 

Figure 7-2 illustrates the effect of the user pressing the DOWN arrow key. 
Notice that the handler only changes the current measure of the first device, 
but triggers the second device. If the second device is in request mode, the 
prompt is removed from the workstation surface. 

Figure 7-2: Changing the Measure of Two Active Choice Devices 

HOUSE 

STARS 

TITLE 

RED 

BLUE 

Device 1 Device 2 

TRIGGER 

ZK-5889-HC 

Using the VT240, you need to press the PF1 key, on the numeric keypad, in 
order to cycle logical input devices. Each time the user presses the PF1 key, a 
different logical input device remains active, as determined by ahandler-specific 
order. Figure 7-3 illustrates the effect of the user pressing the PF1 key followed 
by pressing the DOWN arrow key. Notice how none of the choices in device 2 
are shaded since that device is currently inactive. To activate the second device 
(and to deactivate the first), the user must press the PF1 key again. 

Sampling Input and Generating Events 7-5 



Figure 7-3: Changing the Measure of One Active Choice Device 

HOUSE 

TREE 

TITLE 

Device 1 

RED 

GREEN 

BLUE 

Device 2 
ZK-5890-HC 

Finally, if you are using some other device, the results may be very different. 
For instance, a workstation may not support choice device number 2 using the 
same keyboard keys as the VT240. As another example, the VAXstations do 
not support cycling, but they do support a method for locking the measure of a 
specified device prompt (refer to Appendix J, DEC GKS Specific Input Values, 
in the DEC GKS Reference Manual). 

Consequently, the use of concurrently active device prompts requires that you 
provide the user with a greater level of documentation. If the user does not 
know how to cycle through devices, or how to trigger the different devices, the 
user could have great difficulty providing accurate input for your application 
program. 

Finally, you must remember that the more you rely on device-specific input 
devices in an application, the more implementation-specific your program 
becomes. If you write code that is DEC GKS specific, you should use internal 
documentation to tell future programmers that they may need to alter the code 
that manipulates concurrently active logical input devices. 

7-6 Sampling Input and Generating Events 



7.1.2 Sample Mode 

To use sample mode, you initialize the logical input device (if the device is in 
request mode the DEC GKS default mode) and set the input operating mode 
of the device to GKS$K~NPUT_1VIODE_SAMPLE. Once you call one of the 
GKS$SET_class-1VIODE functions, the device handler activates the specified 
logical input device and the prompt appears on the workstation surface. 

Once the prompt appears on the workstation surface, the user can alter the 
current measure of the device. For instance, if you place a pick device in 
sample mode, the pick aperture appears on the surface of the workstation. 
At this time, the user can move the aperture, highlighting visible segments. 
Figure 7-4 illustrates this process. 

Figure 7-4: Activating a Pick Device in Sample Mode 

CALL GKS:SET_ P I CK_ MODE C 
* 1 , 1 , GKS=K_ MODE_ SAMPLE , 
* GKS:K_ ECHO 

ZK-5892-HC 

Sampling Input and Generating Events 7-7 



Figure 7-5: Sampling a Pick Device 

TAKE 
CURRENT MEASURE 

CALL GKSSSAMPLE_ PICK C 

* 1 , 1 , INPUT_ STATUS , 

* SEGMENT_ NAME, 

* PICK_ID) 

I F C SEGMENT_ NAME . EQ . TREE) THEN 

CSHRINK IT) 

I F C SEGMENT_ NAME . EQ . HOUSE) THEN 

t EXPAND IT ) 

PROCESS INPUT 

ZK-5895-HC 

• 

In Figure 7-5, the program samples the current measure of the pick device. 
Notice in Figure 7-5 that you specify the following arguments, in the following 
order, to GKS$SAMPLE_I'ICK: 

1. Workstation identifier To identify the logical input device. 
2. Device number To identify the logical input device. 

3. Input status To see if the user is picking a segment or specifying 
GKS$K _STATUS_NOPICK. 

7-8 Sampling Input and Generating Events 



4. Segment name To contain the name of the currently picked segment. 
5. Pick identifier To contain the identifying number of the set of primitives 

Currently picked. 

In Figure 7-5, GKS$SAMPLE~'ICK writes the integer value TREE to the 
SEGMENT~TAME argument. Once the application program samples the 
device, the program can perform tasks depending on the sampled values. In 
Figure 7-5, the program shrinks the segment if the sampled name is TREE and 
expands the segment if the sampled name is HOUSE. 

After the application samples the device, it does not matter if the user moves 
the prompt to a different segment. Notice that in Figure 7-5, the current 
measure of the pick device is HOUSE, but at the time of the sampling, it was 
TREE. Consequently, DEC GKS shrinks the size of the tree and leaves the size 
of the house unaltered. The value of SEGMENT_NAME does not change until 
the application program calls GKS$SAMPLE_I'ICK again. The application 
program controls when an input device's measure is accepted; the user can only 
supply possible measures. 

If you want to remove the pick prompt from the workstation surface, place the 
logical input device into request mode, as follows: 

CALL GKS$SET_PICK_MODE( 1, 1, GKS$K_INPUT_MODE_REQUEST, 
* GKS$K_ECHO ) 

Once you set a device to request mode, the device handler removes the device's 
prompt from the workstation surface. At this point, you can call one of the 
GKS$INIT_class functions to reinitialize the device, if you choose. You can 
only initialize devices that are in request mode. If you need to sample the pick 
device in some subsequent portion of your program, simply reset the input 
mode to GKS$K_INPUT_IVIODE_SAMPLE by calling GKS$SET~'ICK_1VIODE 
again. At this point, the device handler places the prompt on the workstation 
surface again. 

Sampling Input and Generating Events 7-9 



7.1.3 Event Mode 

To use event mode, you initialize the logical input device (if the device is in 
request mode the DEC GKS default mode) and set the input operating mode 
of the device to GKS$K~NPUT—MODE—EVENT. Once you call one of the 
GKS$SET_class-11/IODE functions, the device handler activates the specified 
logical input device and the prompt appears on the workstation surface. 

Once the prompt appears on the workstation surface, the user can alter the 
measure and trigger the device as often as desired. For instance, if you place a 
choice device in event mode, the prompt appears on the workstation surface as 
soon as you call GKS$SET_CHOICE~ViODE. Figure 7-6 illustrates the effect 
of such a call. 

Figure 7-6: Placing a Choice Device in Event Mode 

CTELL THE USER TO CHOOSE THREE 
ITEMS IN ANY COMBINATION) 

CALL GKS:SET_CHOICE_MODE C —' 
* 1 , 1 , GKS:K_ INPUT_ MODE_ EVENT, 
* GKS:K_ ECHO 

TREE 

STARS 

TITLE 

ZK-5893-HC 

7-10 Sampling Input and Generating Events 



Every time the user triggers the input device, the device handler places a 
report on the event input queue located in the DEC GKS state list. Each report 
includes the following information: 

• The workstation identifier 
• The input class of the logical input device 
• The logical input device number 
• Input data (varies according input class) 

Figure 7-7 illustrates the generation of event input reports. If required by the 
application, the program can perform any number of tasks before removing 
reports from the queue, and can create a picture such as the one in Figure 7-8, 
using the information obtained from the queue. 

Sampling Input and Generating Events 7-11 



Figure 7-7: Generating Event Input Reports 

Workstation Surface 

1 

HOUSE 

STARS 

TITLE 

F. 

TREE 

STARS 

TITLE 

HOUSE 

T~ 

STARS 

TITLE 

TRIGGER 

~ ~ 

TRIGGER 

Input Queue 

1 
CHOICE 

1 
TREE 

TRIGGER 

1 
CHOICE 

1 
HOUSE 

1 
CHOICE 

1 
TREE 

1 1 1 
CHOICE CHOICE CHOICE 

~ 1 1 1 
TREE HOUSE TREE 

ZK-5898-HC 

7-12 Sampling Input and Generating Events 



Figure 7-8: Processing Information from the Queue 

ZK-5891-HC 

If you want to remove the choice prompt from the workstation surface, place 
the logical input device into request mode, as follows: 

CALL GKS$SET_CHOICE_MODE( 1, 1, GKS$K_INPUT_MODE_REQUEST, 
* GKS$K_ECHO ) 

Once you set a device to request mode, the device handler removes the device's 
prompt from the workstation surface. At this point, you can call one of the 
GKS$INIT_class functions to reinitialize the device, if you choose. You can 
only initialize devices that are in request mode. If you need to have the user 
generate events using the pick device in some subsequent portion of your 
program, simply reset the input mode to GKS$K_INPUT-1VIODE_EVENT by 
calling GKS$SET~'ICK~1/IODE again. At this point, the device handler places 
the prompt on the workstation surface again. 

Sampling Input and Generating Events 7-13 



7.1.3.1 Removing Events from the Queue 

At any time, the application program can attempt to remove reports from the 
event input queue. The application can reset the operating mode of the choice 
device to GKS$K~NPUT~VIODE~EQUEST (removing the prompt from 
the workstation surface), perform any number of tasks, and then remove the 
reports from the queue when the application needs to process the input. 

To remove an event input report from the queue, you call the function 
GKS$AWAIT~VENT. This function provides the application with information 
about the oldest report on the event input queue. This function has four 
arguments, as follows: 

• Time out period, in seconds (read only) 

• Workstation identifier of the input device that generated the report (write 
only) 

• Input class of the input device that generated the report (write only) 

• Logical input device number (write only) 

GKS$AWAIT_EVENT suspends the execution of your application, while 
checking the status of the event queue, for a length of time from zero (0 ) 
seconds up to the amount of time specified in its time-out argument. By 
specifying 0 seconds as a time-out argument, the handler checks the event 
queue immediately, without suspending program execution. 

If the event queue contains at least one report, then a call to GKS$AWAIT_ 
EVENT performs the following tasks: 

• Removes the oldest report. 

• Places it in the current event report entry in the DEC GKS state list. 

• Writes the workstation identifier, the input class, and the logical input 
device number of the current event report to its last three arguments. 

• Allows the application to resume. 

If the queue remains empty for the entire time-out period (meaning that 
the user has not triggered any of the devices), GKS$AWAIT~VENT writes 
GKS$K—INPUT_CLASS~TONE to its input class argument and allows the 
application to resume. 

Once you call GKS$AWAIT~VENT, you can check the value of its input class 
argument. You need to know the input class of the device that generated 
the input located in the current event report before you can access that 
information. To access the current report, you call one of the GKS$GET_class 
functions. Figure 7-9 illustrates this process. In the figure, notice that the 
application checks the value of the CLASS argument (set by the call to 

7--14 Sampling Input and Generating Events 



GKS$AWAITEVENT) before attempting to call GKS$GET_CHOICE. The code 
makes sure that a choice device generated the current event before calling 
GKS$GET_CHOICE. If you call a GKS$GET_class function whose class does 
not match the class of the input device that generated the current event report, 
you generate an error. 

Figure 7-9: Removing Reports from the Queue 

Input Queue 

CALL GKStAWAIT_EVENT( 
0.0, WS_ID, CLASS, DEVICE_NU 

1 1 ~ 
CHOICE CHOICE ~ 

1 1 ~ 
h) TREE HOUS 

---- ~ - 

I F (CLASS . ED . GKS$K_I NPUT_MODE_CHO I CE) THEN 
CALL GKS$GET_CHOICE( INPUT_STATUS, 

+ CHOICE) 

GKS$GET_CHO I CE writes TREE to i t s 
argument CHOICE. 

Current Event Report 

1 
CHOICE 

ZK-5896-HC 

Remember that the information in the current event report does not change 
until you call GKS$AWAIT EVENT to retrieve another report from the 
queue. If you do not call GKS$AWAITEVENT, repeated calls to one of the 
GKS$GET class functions obtain the same set of input information from the 
current event report. 

After you process the information in the current report, you can call 
GKS$AWAITEVENT, repeatedly, until either you obtain all the input you 
need or until the queue is empty. If the queue is empty, GKS$AWAITEVENT 
writes GKS$K~NPUT_CLASS~TONE to its class argument. Once you 
encounter the value GKS$K~NPUT CLASS—NONE, you can either call 
GKS$AWAITEVENT to see if the user has generated an event since the last 

Sampling Input and Generating Events 7-15 



time you checked the queue, or you can end the event input portion of your 
application program. 

7.1.3.2 Simultaneous Event Generation and Input Queue Overflow 

When you use event input, there are two special circumstances to keep in mind: 
simultaneous events and input queue overflow. When these situations occur, 
you need to perform additional tasks to properly remove events from the input 
queue. 

When the user generates an event report, there is an additional component to 
the event input report that specifies whether there are any remaining reports 
on the queue that were generated at the same time. For instance, if you 
have two active devices in event mode that recognize the RETURN key as a 
trigger, pressing the RETURN key once generates two reports simultaneously. 
Figure 7-10 illustrates this situation. 

Figure 7-10: Generating Simultaneous Event Reports 

HOUSE 

TRH. 

STARS 

TITLE 

1.5 

0.5 

TRIGGER 

i

Current Event Report: 

Event Queue 

1 
CHOICE 

1 
HOUSE 

i 

1 
CHOICE 

1 
LAST 
TREE 

1 
VALUATOR 

1 
NOT_LAST 

1.25 

ZK-5897-HC 

7-16 Sampling Input and Generating Events 



Notice the current event report values in Figure 7-10. The currently chosen 
value is HOUSE. If the device handler chooses to enter the events into the 
queue in the order shown (report entry on the queue is completely handler 
dependent), and if the application processes the information one event report 
at a time, the application may scale HOUSE (the current value) when the user 
actually wanted to scale TREE (the value simultaneously entered). To prevent a 
situation like this, you need to check to see if the event taken from the queue 
is the last in a series of simultaneously generated events. To check for this 
situation, you use the following code: 

CALL GKS$INQ_MORE_SIMUL_EVENTS( ERROR_STATUS, EVENTS_FLAG 

If the argument EVENTSELAG equals GKS$K_NiOREEVENTS, there are 
additional reports on the queue that the user generated at the same time as the 
report you just removed from the queue. If the order of report processing needs 
to be precise, you can perform the following tasks: 

1. Remove a report from the queue. 

2. Call GKS$INQ _MORE _SIMUL EVENTS. 

3. Check the EVENTS_FLAG argument. 

4. If EVENT_FLAG equals GKS$K~VIOREEVENTS, remove another 
report from the queue and repeat this process. If EVENT_FLAG equals 
GKS$K_NOMOREEVENTS, you have removed all simultaneously 
generated event reports. 

Once you remove all simultaneously generated reports, your application can 
decide in which order to process the input. 

If you activate more than one device in event mode, and if the user chooses 
not to cycle through the devices while entering input, rapid triggering of many 
devices may cause the input queue to overflow. In this situation, the device 
handler does not accept additional reports until you completely clear the queue 
of all reports. Usually, you check for input queue overflow immediately after a 
call to GKS$AWAIT EVENT, since that is the point in your application when it 
would be most helpful to know the status of the event input queue. To test for 
input queue overflow, you use the following code: 

CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM 

Sampling Input and Generating Events 7-17 



CALL GKS$INQ_INPUT_QUEUE_OVERFLOW( ERROR_STATUS, WS_ID, 

* CLASS, DEVICE_NUM ) 

To determine whether the input queue has overflowed, you need to check the 
ERROR_STATUS argument. If ERROR_STATUS is equal to the value 0, then 
the following is true: 

• The event input queue has overflowed. 

• Information about the overflow is available. 

• GKS$INQ ~NPUT_QUEUE _OVERFLOW writes the workstation identifier, 
the input class, and the logical device number of the device that caused the 
overflow, to its output arguments. 

If ERROR_STATUS is not equal to the value 0, then the queue may or may not 
have overflowed. However, if the queue did overflow, there is no information 
available about what caused the overflow (the workstation associated with 
the input device that caused the overflow has been closed). In this case, 
ERROR~TATUS can equal one of the following values: 

• GKS$K~RROR_7 GKS not in proper state. 

• GKS$K~RROR_148 Input queue has not overflowed since GKS 
was opened or since the last invocation of INQUIRE INPUT QUEUE 
OVERFLOW. 

• GKS$K~RROR_149 Input queue has overflowed, but the associated 
workstation has been closed. 

If the event input queue overflows, you should deactivate all devices currently 
in event mode (by using the appropriate GKS$SET_class~VIODE funtion 
to place them in request mode) so that the user cannot attempt to generate 
additional reports. Then, you can continue to call GKS$AWAIT~VENT, 
removing the reports one by one until a call returns GKS$K~NPUT CLASS_ 
NONE, signaling an empty queue. As you remove reports from the queue, you 
can continue to process the input if your application requires. Once the queue 
is empty, you can place the devices in event mode again, allowing the user to 
generate additional reports. 

As a second option, you can call the function GKS$FLUSH _DEVICE EVENTS 
to remove the remaining reports generated by a device of a single input class. 
By calling GKS$FLUSH_DEVICE_EVENTS for all possible logical input 
classes, you clear the buffer and allow the user to enter input again. Assuming 
the active logical input devices shown in Figure 7-10, the following code clears 
the event input queue. 

7-18 Sampling Input and Generating Events 



CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 

CALL GKS$INQ_INPUT_QUEUE_OYERFLOW( ERROR_STATUS, WS_ID, 
* CLASS, DEVICE_NUM ) 

IF (ERROR_STATUS .EQ. 0) THEN 
CALL GKS$FLUSH_DEVICE_EVENTS( 1, 

* GKS$K_INPUT_CLASS_VALUATOR, 1 ) 
CALL GKS$FLUSH_DEVICE_EVENTS( 1, GKS$K_INPUT_CLASS_CHOICE, 

* 1 ) 
ENDIF 

7.1.4 Input Operating Mode Differences 

When you choose one of the three available input operating modes, it is helpful 
to see the differences when all three modes are used in a similar application. 

Imagine a program that uses locator input. The program places the cursor at 
the bottom of the workstation surface (a Y value of 0) and prompts the user to 
move the cursor to the top of the surface (a maximum Y value). 

Using request mode, you can only determine the position of the locator prompt 
once. As soon as the user moves the locator prompt and then triggers the 
device, the input process ends (until you call GKS$REQUEST_LOCATOR 
again). 

Using sample and event mode, the program can loop to continually check for a 
change in the input value. Using sample mode, the application can continually 
monitor the position of the prompt without a trigger from the user. Using event 
mode, the application is not aware of a change in the position of the locator 
prompt until the user triggers the device (placing a report on the queue), and 
until the application removes the report from the queue and processes the 
input. 

Clearly, such an application favors sample input, since the application can 
easily and continually monitor the position of the locator prompt. Using this 
example, you can compare the differences in the ways in which the operating 
modes perform. In this way, you can judge which input operating mode best 
serves a particular type of application. Figure 7-11 illustrates the locator input 
example described in this section. 

Sampling Input and Generating Events 7-19 



Figure 7-11: Comparing the Three Input Operating Modes 

Request 

You made it! 

You made it! 

Prompt 
Removed. 
Input ends. 

Sample 

Keep going. 

Keep going. 
Getting closer. 

Keep going. 
Getting closer. 
You made it! 

Keep going. 
Getting closer. 
You made it! 

Keep going. 
Getting closer. 
You made it! 

Input 
Continues. 

Event 

You made it! 

You made it! 

Input 
Continues. 

Trigger 

No Trigger 

No Trigger 

No Trigger 

TRIGGER 

 1 

ZK-5894-HC 

7-20 Sampling Input and Generating Events 



7.2 Documenting Logical Input Devices 

When using only a single logical input device of each class in request mode, the 
user needs minimal documentation to understand how to operate the device. 
By default, most of the devices require the use of arrow keys and a mouse (to 
alter the measure of the device), the RETURN key and the mouse buttons (to 
trigger the device), and the keyboard (to type a string). 

When using more than one active logical input device and when specifying 
more than one input operating mode, you need to provide the user with more 
documentation. For instance, the user needs to know the following: 

• What type of input information each device accepts, and how the applica-
tion uses this information. 

• How to change the measure and trigger each device. 
• How to cycle through devices. 

• How to end the input process. 

The following list presents several ways to provide the user with adequate 
documentation: 

• Input instructions located in a distinct window. (This method is used in the 
program example in Chapter 6, Requesting Input.) 

• Input instructions listed at the beginning of the input process and cleared 
from the surface once input begins. 

• A help screen using segment visibility to control its presence on the 
workstation surface. 

• Written documentation available to the users at the time of application 
execution. 

• Labels placed on the top of the input device echo areas. (For more 
information, refer to Appendix J, DEC GIBS Specific Input Values, in the 
DEC GKS Reference Manual.) 

Although you can choose any method to document your application, these 
sections show you how to use segment visibility to hide and to present a help 
screen. 

When you decide to use segment visibility to hide a help screen from the 
user (until the user requests help), you need to find a method of creating the 
segment without having the text appear on the active workstation's surface. 
One way of accomplishing this is to perform the following tasks. 

Sampling Input and Generating Events 7-21 



• Deactivate the GKS$K_WSCAT_OUTIN workstation so that the help text 

does not appear on its surface. 

• Activate workstation independent segment storage (WISS) to store the help 
screen segment. 

• Create the help screen segment. 

• Set the visibility of the help screen segment to GKS$K~NVISIBLE (you 
don't want the help text to be visible until the user asks for help). 

• Associate the help screen segment to the GKS$K_WSCAT_OUTIN 
workstation. 

• Deactivate WISS (no other segments need be stored in WISS). 

• Activate the GKS$K_WSCAT_OUTIN workstation to enable further output. 

When you finish performing these tasks, the GKS$K_WSCAT_OUTIN work-
station contains an invisible segment. When requiring help, the user signals 
the application. The application makes the segments in the current picture 
invisible, deactivates the input devices, and makes only the help text visible. 
When the user chooses, the application resets visibility attributes, and the user 
can once again view the picture and enter valid input. 

Example 7-1 uses a help screen to inform the user about logical input devices. 
The following sections explain the code in Example 7-1 that establishes a help 
screen. 

7.2.1 Using Workstation Independent Storage (WISS) 

The following code from Example 7-1 is identical to tt►e code used to work 
with WISS in Chapter 5, Generating Output: 

IMPLICIT NONE 
INTEGER WS_ID, WISS, HOUSE, TREE, HORIZON, STARS, TITLE, 

* SIDE, ROAD 

DATA WS_ID / 1 /, WISS / 2 /, TITLE / 1 /, STARS / 2 /, 

* TREE / 3 /, SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, 

* HOUSE / 7 / 

O CALL SETUP( WS_ID, WISS ) 
CALL DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 

* ROAD, HOUSE, HORIZON ) 
CALL CLEANUP( WS_ID, WISS ) 

END 

C ************************************************************ 

C Set up the DEC GKS and the workstation environments... 

SUBROUTINE SETUP( WS_ID, WISS ) 

7-22 Sampling Input and Generating Events 



IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WISS, 

* GKS_LEVEL 

C Make sure that WISS is supported. 
© CALL GKS$INQ_LEVEL( ERROR_STATUS, GKS_LEVEL ) 

IF (( ERROR_STATUS .NE. INQUIRY_OKAY ) .OR. 
* ( GKS_LEVEL .LT. GKS$K_LEVEL_2A )) THEN 

WRITE(6,*) 
* 'This level of GKS does not support WISS.' 

WRITE(6,*) 'Error status:', ERROR_STATUS 
STOP 

ENDIF 

C Open WISS so that you can store the help information. 
CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

The following numbers correspond to the numbers in the previous example: 

O Pass the argument WISS (2 ), the workstation identifier for WISS, to both 
the SET UP and CLEAN _UP subroutines. In this way, each workstation is 
opened and activated, if appropriate. 

© Check to make sure that the implementation level of GKS is at least level 
2a. GKS level 2a and above support segments stored on WISS. 

7.2.2 Defining the Input Subroutine 

Example 7-1 establishes a single subroutine that controls the entire input 
process for the application. Chapter 6, Requesting Input, uses a similar 
subroutine. The subroutine GO~OR~NPUT is as follows: 

c ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

Sampling Input and Generating Events 7-23 



0 
C Ask the user for input... 

CALL GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, TREE, 
* SIDE, ROAD, HOUSE, HORIZON ) 

C 

RETURN 
END 

************************************************************ 

C Coordinate user input... 
SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, CATEGORY, ERROR_STATUS, FILL PTS, FOREGROUND, 
* BACKGROUND, UNITY, HELP, HELP_BOX, WS_TYPE, WISS 
REAL FILL_X( 5 ), FILL_Y( 5 ), TEXT_EXTENT_X( 4 ), 
* TEXT_EXTENT_Y( 4 ), DUMMY_REAL( 4 ) 

DATA FILL_PTS / 5 /, FOREGROUND / 1 /, BACKGROUND / 0 /, 
* UNITY / 0 /, HELP / 8 /, HELP_BOX / 9 /, WISS / 2 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, 
* ERROR_STATUS, CATEGORY ) 

IF (CATEGORY .NE. GKS$K_WSCAT_OUTIN ) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'both input and output.' 
STOP 

ENDIF 

C Make sure that you are using the unity transformation 
CALL GKS$SELECT_XFORM( UNITY ) 

C Fill an area on which to send the user a message... 
CALL GKS$SET_FILL_COLOR_INDEX( FOREGROUND ) 
CALL GKS$FILL AREA( FILL PTS, FILL_X, FILLY ) 

C Create the help segment. 
© CALL CREATE_HELP( WS_ID, WISS, HELP ) 

C Set the proper text attributes. 
O CALL GKS$SET_TEXT_HEIGHT( 0.04 ) 

CALL GKS$SET_TEXT_COLOR_INDEX( BACKGROUND ) 
CALL GKS$SET_TEXT_SPACING( -0.3 ) 

7-24 Sampling Input and Generating Events 



0 
C Create the HELP/EXIT segments. 

CALL GKS$CREATE_SEG( HELP_BOX ) 
CALL GKS$INQ_TEXT_EXTENT( WS_ID, 0.65, 0.9, 'HELP/EXIT', 
* ERROR_STATUS, DUMMY_REAL, DUMMY_REAL, TEXT_EXTENT_X, 
* TEXT_EXTENT Y ) 
TEXT_EXTENT_X( 1) = TEXT_EXTENT_X( 1 ) - 0.01 
TEXT_EXTENT_X( 4) = TEXT_EXTENT_X(4) - 0.01 
TEXT_EXTENT_X( 2) = TEXT_EXTENT_X( 2) + 0.01 
TEXT_EXTENT_X( 3) = TEXT_EXTENT_X( 3) + 0.01 
TEXT_EXTENT_Y( 1) = TEXT_EXTENT_Y( 1 ) - 0.01 
TEXT_EXTENT_Y( 2) = TEXT_EXTENT_Y(2) - 0.01 
TEXT_EXTENT_Y( 3) = TEXT_EXTENT Y( 3) + 0.01 
TEXT_EXTENT_Y( 4) = TEXT_EXTENT_Y(4) + 0.01 
CALL GKS$FILL_AREA( 4, TEXT_EXTENT_X, TEXT_EXTENT_Y ) 
CALL GKS$TEXT( 0.65, 0.9, 
* 'HELP/EXIT' ) 
CALL GKS$CLOSE_SEG() 

C Initialize all input devices. 
® CALL INIT_DEVICES( WS_ID, WS_TYPE ) 

C Make sure that all of the segments are detectable... 
O CALL GKS$SET_SEG_DETECTABILITY( TITLE, GKS$K DETECTABLE ) 

CALL GKS$SET_SEG DETECTABILITY( STARS, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( TREE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( SIDE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( ROAD, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( HOUSE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( HORIZON, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( HELP, GKS$K_UNDETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( HELP_BOX, GKS$K_DETECTABLE ) 

C Reset the attribute values and the message board. 
CALL GKS$SET_TEXT_HEIGHT( 0.033 ) 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 

CALL GKS$TEXT( 0.05, 0.25,. 
* 'When prompted, scale the picture elements.' ) 
CALL GKS$TEXT( 0.05, 0.20, 
* 'If you need help or if you are ready to finish,' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* 'move the square prompt to HELP/EXIT.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Press RETURN when ready.)' ) 

C The user presses RETURN when ready to pick... 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

C Erase the message and redraw the segments... 
CALL GKS$REDRAW_SEG_ON_WS( WS_ID ) 

C Get the input values. 
© CALL GET_VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 

* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE) 

Sampling Input and Generating Events 7-25 



C Show the final picture . . . 

FILL Y(4) = 0.1 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.05, 
* 'Here is the altered picture.' ) 

C Press RETURN when finished viewing the picture . 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

0 This code calls the GO~OR~NPUT subroutine from DRAW_1'ICTURE. 
GO~OR~NPUT coordinates all of the subroutines to used to manage the 
input process for this application. 

4 GO_FOR~NPUT defines the two new segment names HELP and HELP 
BOX. HELP is the segment containing the help screen. HELP_BOX is the 
rectangular area on the workstation surface, labeled HELP/EXIT, that the 
user needs to pick when asking for the help screen. 

© This code calls CREATE _HELP. This subroutine creates the help screen 
segment and associates it with the GKS$K_WSCAT_OUTIN workstation. 
Section 7.2 explains this subroutine in detail. 

O This code establishes attributes needed to write a message to the user inside 
of a fill area. Chapter 6, Requesting Input, uses this type of message board. 

0 This code creates a small rectangular segment labeled HELP/EXIT. The 
call to GKS$INQ _TEXT~XTENT provides the rectangular dimensions 
of the text extent rectangle for the string HELP/EXIT. By increasing the 
dimensions slightly, the rectangular, hollow fill area outlines the text 
without obscuring it. 
If there is a need to see the help screen, the user picks this segment. 

© This call to the INIT_DEVICES subro~rtine initializes all of the logical input 
devices needed for this application. Section 7.3 explains this subroutine in 
detail. 

O This code establishes whether the user can pick specified segments (the 
detectability attribute). Only the help screen segment is undetectable. 

This code writes the text of the initial message to the message board. 

© This code calls the subroutine GET VALUES. This subroutine asks for 
input from the user, and the user can end the input process by picking the 
HELP/EXIT segment. Section 7.4 explains this subroutine in detail. 

7-26 Sampling Input and Generating Events 



i 
Figure 7-12 illustrates the surface of the workstation when the application 
creates the message board. Figure 7-13 illustrates the surface as soon as the 
application calls GET_VALUES (allowing the user to enter input). 

Figure 7-12: The Message Board—VT241 

t s r r ~._~ Pd i ~~_ I-~ t. HELP/EXIT 

~-

When pror~ipted, scale the picture elements, 
If you need help or if you are ready to finish, 
move the square pror~pt to HELP/EXIT, 

(Press RETURN when ready,) 

ZK 5951 HC 

Sampling Input and Generating Events 7-27 



Figure 7-13: The Initial Input Device Prompts—VT241 

Starry Night 
~" 

~-

1,5G4 

~~ .~ 

Title 

_, t. 3 t-

Tr' 

_~ 1 ~_~NI,I ~ 1 ~`. 

F' _red 

H~ ~1• i ~~ ~►~ 
Hnii_a 

F'e_ =+.. 

J 
ZK-5952-HC 

7.2.3 Creating the Help Segment 

Before the application in Example 7-1 attempts to initialize the logical input 
devices, it calls the subroutine CREATE~iELP. This subroutine creates a 
segment containing the text of a help screen, and accomplishes this task so that 
the user does not view the help screen unless needed. The CREATE~LP 
subroutine is as follows. 

7-28 Sampling Input and Generating Events 



C ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

C Create the HELP segment. 
CALL CREATE_HELP( WS_ID, WISS, HELP ) 

C 

RETURN 
END 

************************************************************ 
C This subroutine creates a HELP screen... 

SUBROUTINE CREATE_HELP( WS_ID, WISS, HELP 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WISS, HELP, BACKGROUND 

DATA BACKGROUND / 1 / 

C Only create the help screen on WISS. 
O CALL GKS$DEACTIVATE_WS( WS_ID ) 

CALL GKS$ACTIVATE_WS( WISS ) 

C Set the necessary attributes. 
CALL GKS$SET_TEXT_HEIGHT( 0.033 ) 
CALL GKS$SET_TEXT_SPACING( -0.4 ) 
CALL GKS$SET_TEXT_COLOR_INDEX( BACKGROUND ) 

C Create the help screen. 
CALL GKS$CREATE_SEG( HELP ) 
CALL GKS$TEXT( 0.05, 0.9, 
* 'DEVICES---One device chooses a picture item, one' ) 
CALL GKS$TEXT( 0.1, 0.85, 
* 'changes the current scaling value, and one either' ) 
CALL GKS$TEXT( 0.1, 0.80, 
* 'stops further scaling of a specified element, or' ) 
CALL GKS$TEXT( 0.1, 0.75, 
* 'it resets all elements to their original scaling' ) 
CALL GKS$TEXT( 0.1, 0.70, 
* 'and enables subsequent scaling.') 
CALL GKS$TEXT( 0.05, 0.65, 
* 'CYCLING INPUT DEVICES---If you have a numeric') 
CALL GKS$TEXT( 0.1, 0.60, 
* 'keypad, you can use the two keys, in the upper' ) 
CALL GKS$TEXT( 0.1, 0.55, 
* 'left corner, to turn devices on and off.' ) 
CALL GKS$TEXT( 0.1, 0.50, 
* 'Otherwise, all devices move synchronously.' ) 

Sampling Input and Generating Events 7-29 



CALL GKS$TEXT( 0.05, 0.45, 
* 'MOVING THE PROMPTS---Use whatever your device' ) 
CALL GKS$TEXT( 0.1, 0.40, 
* 'normally uses to move a cursor on the surface.' ) 
CALL GKS$TEXT( 0.1, 0.35, 
* 'This can include arrow keys, a mouse, a puck,' ) 

CALL GKS$TEXT( 0.1, 0.30, 
* 'or a joy disk.' ) 
CALL GKS$TEXT( 0.05, 0.25, 
* 'ENTERING VALUES---To enter values, you need to ) 
CALL GKS$TEXT( 0.1, 0.20, 
* 'use whatever your device normally uses, such as ' ) 

CALL GKS$TEXT( 0.1, 0.15, 
* 'the RETURN key, mouse button, or puck button; to' ) 

CALL GKS$TEXT( 0.1, 0.10, 
* 'pick an element, all you have to do is align the ' ) 
CALL GKS$TEXT( 0.1, 0.05, 
* 'rectangular prompt with the element you choose.' ) 
CALL GKS$TEXT( 0.1, 0.001, 
* 'Do you want to QUIT or CONTINUE?' ) 

CALL GKS$CLOSE_SEG() 

0 
0 

C Associate the help screen and reactivate the workstation. 

CALL GKS$SET_SEG_VISIBILITY( HELP, GKS$K_INVISIBLE ) 

CALL GKS$ASSOC_SEG_WITH_WS( WS_ID, HELP ) 
CALL GKS$DEACTIVATE_WS( WISS ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O When you deactivate WS~D, generated output does not appear on the 
workstation surface. By activating WISS, you can place the help screen text 
in a stored segment. 

© This code creates the text of the help screen. The text explains to the user 
how to use the logical input devices used in this application. 

© By making the segment invisible, it will not appear on the workstation 
surface once you associate the help screen segment with WS~D. 

O This code associates the help screen segment, stored in WISS, with the 
open workstation (WS_ID). 

0 Once you deactivate WISS, you cannot store segments on WISS. By acti-
vating WS—ID, you enable further generation of output on the workstation 
surface. 

7-30 Sampling Input and Generating Events 



f1 7.3 Initializing the Logical Input Devices 

This section describes the INIT DEVICES subroutine in Example 7-1. 
However, this section does not repeat basic information about input device 
initialization already presented in Chapter 6, Requesting Input. 

When using sample and event mode, you need to be careful when initializing 
devices. Since you cannot initialize a device whose prompt is currently present 
on the surface of the workstation, you need to make sure that a device is 
set to request mode (the DEC GKS default mode) before you call one of the 
GKS$INIT class functions. 

The first two sections explain the initial values of the three logical input devices 
used in Example 7-1. The last section describes precautions you need to take 
when defining echo areas of concurrently active input devices. 

7.3.1 Initializing the Pick Device 

The following code is the initial section of the INIT_DEVICES subroutine in 
Example 7-1, which includes the pick device initialization. 

c ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

C Initialize all input devices. 
CALL INIT_DEVICES( WS_ID, WS_TYPE ) 

C 

RETURN 
END 

************************************************************ 

C This subroutine initializes all input devices... 
SUBROUTINE INIT_DEVICES( WS_ID, WS_TYPE ) 

Sampling Input and Generating Events 7-31 



0 

IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_TYPE, ERROR_STATUS, DUMMY_INTEGER, 
* NUM_PICK_DEVICES, DEVICE_NUM, INPUT_MODE, ECHO_FLAG, 
* INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, PICK_DATA_RECORD( 10 ), 
* CHOICE_DATA_RECORD( 3 ), NUM_VAL DEVICES, NUM_CHOICES, 
* NUM_CHOICE_DEVICES, SIZES( 10 ), ADDRESSES( 10 ), 
* LIST_PROMPT_TYPES( 10 ), PROMPT_RETURN_SIZE, PROMPT_FLAG, 
* INITIAL_CHOICE, INCR, AREA FLAG, VAL_RECORD_BUFFER_LENGTH, 
* VAL_PROMPT_ECHO_TYPE 
REAL CHOICE_ECHO_AREA( 4 ), VAL_ECHO_AREA( 4 ), 

~* ECHO_AREA( 4 ), DUMMY_ARRAY( 4 ), VAL_DATA_RECORD( 2 ), 
* VALUE, UPPER_LIMIT, LOWER_LIMIT, MAX_COORD, DISPLAY_X, 
* DISPLAY_Y 

CHARACTER*80 DEFAULT_STRINGS( 2 ) 

DATA DEVICE_NUM / 1 / 

C Initialize the pick device. 
C Make sure that the device supports pick input... 

CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMNIY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, NUM_PICK_DEVICES, DUMMY_INTEGER ) 

IF ( NUM_PICK_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'pick input.' 
STOP 

ENDIF 

C Give the data record the size of your data record buffer and 
C inquire about the realized pick values. 

RECORD_BUFFER_LENGTH = 40 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, PICK_DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Make sure that the data record was not truncated... 
IF ( RECORD_SIZE .LT. RECORD_BUFFER_LENGTH ) THEN 

WRITE(6,*) 'The data record was truncated.' 
WRITE(6,*) 'Declare a larger buffer.' 
STOP 

ENDIF 
C Make sure that the pick aperture is not placed on any segment. 

INITIAL_STATUS = GKS$K_STATUS_NOPICK 

C Make sure that the device is in request mode (the DEC GKS default). 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

7-32 Sampling Input and Generating Events 



C Initialize the device... 
CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, PICK_DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O When you declare and define arguments to the GKS$INIT_class functions, 
you should use caution when naming variables. If you do not, you may 
pass the wrong variable to an initializing function. For instance, in this 
code; the data record buffers are named PICK_DATA~ECORD, and 
CHOICE_DATA~ZECORD. There is no confusion as to which buffer you 
pass to which initializing function. 

© This code sets the initial input status to GKS$K_STATUS~TOPICK and 
uses the remaining default pick values to intialize the device. Section 7.4.1 
discusses the function of this pick device. 

7.3.2 Initializing the Choice and Valuator Devices 

The following code is the portion of subroutine INIT_DEVICES that initializes 
the choice and valuator devices: 

c ************************************************************ 
C This subroutine initializes all input devices... 

SUBROUTINE INIT_DEVICES( WS_ID, WS_TYPE ) 

C First element in the data record is the number of choices. 
EQUIVALENCE( CHOICE_DATA_RECORD( 1 ), NUM_CHOICES ) 

C According to the standard, the elements in the data record are 
C the upper and lower limits for all prompt and echo types. 

EQUIVALENCE( VAL_DATA_RECORD( 1 ), LOWER_LIMIT ) 
EQUIVALENCE( VAL_DATA_RECORD(2 ), UPPER_LIMIT ) 

Sampling. lnput and Generating Events 7-33 



C Initialize the choice and valuator devices... 
C Make sure that the device supports choice input... 

CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* NUM_CHOICE_DEVICES, DUMMY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_CHOICE_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice input.' 
STOP 

ENDIF 

C Make sure that the device supports valuator input... 
CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, NUM_VAL_DEVICES, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_VAL_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'valuator input.' 
STOP 

ENDIF 

Obtain the default valuator values... 
VAL_RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ_VALUATOR_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE, 
* VAL_PROMPT_ECHO_TYPE, VAL_ECHO_AREA, VAL_DATA_RECORD, 
* VAL_RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Establish the size of the choice record buffer: 12 bytes. 
RECORD_BUFFER_LENGTH = 12 

1 
C The second element in the choice data record for prompt and echo type i 
C is the pointer to the array containing sizes of each choice character 
C string. You need to initialize the pointer so that the array can be 
C initialized. 

CHOICE_DATA_RECORD ( 2) _ '/.LOC ( SIZES ( 1 ) ) 

C The third element in the VT241 choice data record is the pointer to the 
C array containing the pointers to the strings to be used. You need 
C to initialize the pointer so that the array can be initialized. 

CHOICE_DATA_RECORD ( 3) _ '/.LOC ( ADDRESSES ( 1) ) 
ADDRESSES( 1 ) _ '/.LOC( DEFAULT_STRINGS( 1 ) ) 
ADDRESSES ( 2) _ '/.LOC ( DEFAULT_STRINGS ( 2) ) 

C Initialize NUM_CHOICES to 10. 
NUM_CHOICES = 10 

C Obtain the available prompt and echo types... 
CALL GKS$INQ_DEF_CHOICE DATA( WS_TYPE, DEVICE_NUM, 
* ERROR_STATUS, DUMMY_INTEGER, DUI~II~IY_INTEGER, 
* '/.DESCR( LIST_PROMPT_TYPES), CHOICE_ECHO_AREA, 
* CHOICE_DATA_RECORD, PROMPT_RETURN_SIZE, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Obtain the remaining default input values... 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT_ECHO_TYPE, CHOICE_ECHO_AREA, 
* CHOICE_DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

7-34 Sampling Input and Generating Events 



DO 400 INCR = 1, PROMPT_RETURN_SIZE, 1 
IF ( LIST_PROMPT_TYPES( INCR ) .EQ. 3) THEN 

PROMPT_FLAG = 1 
ENDIF 

400 CONTINUE 

C If the workstation does not support prompt and echo type 3. 
IF ( PROMPT_FLAG .EQ. 0) THEN 

WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice prompt and echo type 3.' 
STOP 

ENDIF 

0 C Make sure that the two echo areas don't conflict.. 

C Initialize the choice device... 
PROMPT_ECHO_TYPE = 3 
INITIAL_CHOICE = 1 
NUM_CHOICES = 8 
INITIAL_STATUS = GKS$K_STATUS_NOCHOICE 

C Establish sizes of prompt strings... 
SIZES( 1 ) = 5 
SIZES( 2) = 5 
SIZES( 3) = 4 
SIZES( 4) = 8 
SIZES( 5) = 4 
SIZES( 6) = 7 
SIZES( 7) = 5 
SIZES( 8) = 5 

C Establish locations of prompt strings.. 
ADDRESSES ( 1) _ '/.LOC 'Title' ) 
ADDRESSES ( 2) _ '/.LOC 'Stars' ) 
ADDRESSES ( 3) _ '/.LOC 'Tree' ) 
ADDRESSES ( 4) _ '/.LOC 'Sidewalk' ) 
ADDRESSES ( 5) _ '/.LOC 'Road' ) 
ADDRESSES ( 6) _ '/.LOC 'Horizon' ) 
ADDRESSES ( 7) _ '/.LOC 'House' ) 
ADDRESSES ( 8) _ '/.LOC 'Reset' ) 

C Make sure that the device is in request mode (the DEC GKS default). 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* CHOICE_ECHO_AREA, CHOICE_DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

C Initialize the valuator device... 
VALUE = 1.0 
UPPER_LIMIT = 1.5 
LOWER_LIMIT = 0.5 

C Make sure that the device is in request mode (the DEC GKS default). 

CALL GKS$SET VALUATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

Sampling Input and Generating Events 7-35 



CALL GKS$INIT_VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE, VAL_PROMPT ECHO_TYPE, VAL_ECHO_AREA, 
* VAL_DATA_RECORD, VAL_RECORD_BUFFER_LENGTH ) 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

0 The code removed from this section establishes echo areas for the choice 
and valuator devices that do not overlap on the workstation surface. 
(Section 7.3.3 discusses this code in detail.) Using some of the DEC GKS 
supported workstations, if you attempt to define echo areas for these 
types of devices, you generate an error. Using the VAXstations, you do not 
generate an error, but the user would have to pop and push the overlapping 
windows (that contain each input device) in order to view an entire device 
while entering input. 

© This code establishes eight titles for the items in the choice menu. There is 
a title for each of the segments in the Starry Night picture (the house, the 
tree, and so forth), and there is a title for Reset. Section 7.4.4 discusses how 
the choices in this menu affect the picture. 

© This code establishes the limits of the valuator device. Section 7.4.4 
discusses how these values affect the picture. 

7.3.3 Avoiding Overlapping Echo Areas 

As mentioned, the user needs to be able to see the entire prompt of certain 
logical input devices (valuator, choice, and string) in order to easily enter 
input. If you activate several of these devices concurrently and if you specify 
overlapping echo areas, you can generate an error message on some DEC 
GKS supported workstations. Even if you do not generate an error on certain 
types of workstations (for instance, the VAXstations), you require that the user 
perform additonal tasks to view the entire prompt of a given input device. 
(Using a VAXstation, the user has to pop and push the windows containing the 
input devices to view the entire prompt of an underlying device.) 

To avoid this situation, the subroutine INIT DEVICES calculates the echo areas 
of the valuator and choice devices so that the areas do not overlap on the 
workstation surface. The portion of INIT_DEVICES that performs this task is 
as follows. 

7-36 Sampling Input and Generating Events 



C 

C 

(~1 

Make sure that the two echo areas don't conflict... 
IF ((( CHOICE_ECHO_AREA( 1 ) .EQ. VAL_ECHO_AR.F.A( 1 ) ) .OR. 
* ( CHOICE_ECHO_AREA( 2) .EQ. VAL_ECHO_AREA( 2 ) )) .OR. 
* (( CHOICE_ECHO_AREA( 3) .EQ. VAL_ECHO_AREA( 3 ) ) .OR. 
* ( CHOICE_ECHO_AREA( 4) .EQ. VAL_ECHO_AR.EA( 4 ) ))) THEN 

CALL GKS$INQ_MAX DS_SIZE( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DISPLAY_X, DISPLAY_Y, DUMMY_INTEGER, 
* DUMMY_INTEGER ) 

MAX_COORD = MAX( DISPLAY_X, DISPLAY_Y ) 

IF ( DISPLAY_X .NE. DISPLAY_Y ) THEN 
IF (( DISPLAY_X / MAX_COORD ) .EQ. 1.0) THEN 

CHOICE_ECHO_AREA( 1 ) = DISPLAY_X -
* ( DISPLAY_X - DISPLAY_Y ) 

CHOICE_ECHO_AREA( 2) = DISPLAY_X 
CHOICE_ECHO_AREA( 3) = 0.0 
CHOICE_ECHO_AREA( 4) = DISPLAY_Y / 2.02 
VAL_ECHO AREA( 1 ) = DISPLAY_X -

* ( DISPLAY_X - DISPLAY_Y ) 
VAL_ECHO AREA( 2) = DISPLAY_X 
VAL_ECHO_AREA( 3) = DISPLAY_Y / 1.98 
VAL_ECHO_AREA( 4) = DISPLAY_Y 

Make sure the pick area does not conflict... 
DO WHILE ( ECHO_AREA( 2) .GE. VAL_ECHO_AREA( 1 ) ) 

VAL_ECHO_AREA( 1 ) = VAL_ECHO_AREA( 1) + 
* ( VAL_ECHO_AREA( 1) / 100 ) 

CHOICE_ECHO_AREA( 1 ) = CHOICE_ECHO_AREA( 1) + 
* ( CHOICE_ECHO_AREA( 1 ) / 100 ) 

ENDDO 
ELSE 

CHOICE_ECHO_AREA( 1) = 0.0 
CHOICE_ECHO_AREA( 2) = DISPLAY_X / 2.02 
CHOICE_ECHO_AREA( 3) = DISPLAY_Y -

( DISPLAY_Y - DISPLAY_X ) 
CHOICE_ECHO_AREA( 4) = DISPLAY_Y 
VAL_ECHO_AREA( 1 ) = DISPLAY_X / 1.98 
VAL_ECHO_AREA( 2) = DISPLAY_X 
VAL_ECHO_AREA( 3) = DISPLAY_Y -

( DISPLAY_Y - DISPLAY_X ) 
VAL_ECHO_AREA( 4) = DISPLAY_Y 

Make sure the pick area does not conflict... 
DO WHILE ( ECHO_AREA( 4) .GE. VAL_ECHO_AREA( 3) ) 

VAL_ECHO_AREA( 1 ) = VAL_ECHO_AREA( 1 ) + 
( VAL_ECHO_AREA( 1 ) / 100 ) 

CHOICE_ECHO_AREA( 1 ) = CHOICE_ECHO_AREA( 1 ) + 
( CHOICE_ECHO_AREA( 1 ) / 100 ) 

ENDDO 

ENDIF ! MAX_COORD equals DISPLAY_X or DISPLAY_Y 
ELSE ! ELSE, if the surface is square... 

Sampling Input and Generating Events 7-37 



WRITE(6,*) 'The workstation surface is square.' 
WRITE(6,*) 'Any echo area I pick will cover' 
WRITE(6,*) 'part of the picture. You need to' 
WRITE(6,*) 'alter program transformations.' 
STOP 

ENDIF ! If the surface is square 
ENDIF ! If the echo areas conflict. 

The following numbers correspond to the numbers in the previous example: 

O This IF clause checks to see if the default echo areas for the choice and 
valuator devices overlap. 

© If the areas overlap, then this code obtains the maximum X and Y values of 
the workstation surface (display size). 

© This code determines whether the workstation surface is wider than tall 
(maximum X value larger than maximum Y value), or, if it is taller than 
wide (Y larger than X). 

O This IF clause checks to see if the workstation surface is not square. 

0 This IF clause checks to see if the surface is wider than tall (X is larger 
than Y). 

Q This code determines the area on the workstation surf ace that is not used 
to contain the picture, divides it in half, and defines the echo areas of the 
devices. 
Remember that by default, DEC GKS uses the largest square area on the 
workstation surface, beginning in the lower left corner, to present the 
picture. If the surface is rectangular, and if the surface is wider than tall, 
then this leaves extra space on the right side of the surface on which to 
prompt the user for input. 

O This code makes sure that the choice and valuator devices do not conflict 
with the pick echo area. 
This code determines the area on the workstation surface that is not used 
to contain the picture, divides it in half, and defines the echo areas of the 
devices. Since this portion of the IF statement executes if the workstation 
surface is taller than wide, then this code uses the extra space. on the top of 
the surface on which to prompt the user for input. 

© If the workstation surface is square, there is no way to position the choice 
and valuator devices without covering a portion of the picture. If this 
happens, this code tells the programmer the problem and makes the 
suggestion to alter the workstation transformations so both the picture and 
the input devices can fit on the surf ace at one time. Since this requires 
additional programming, this code uses the STOP command to halt 
program execution. 

7-38 Sampling Input and Generating Events 



7.4 Accepting Input 

Example 7-1 allows the user to enter input using pick, choice, and valuator 
devices that are active concurrently. In essence, this example performs the same 
task as the example in Chapter 6, Requesting Input, allowing the user to scale a 
segment. However, Example 7-1 also allows the user to do the following: 

• Scale more than one segment in the Starry Night picture. 
• Scale segments more than once without having to be prompted by the 

application. 

• Use a help screen interactively. 
• Stop subsequent scaling of a segment. 
• Reset the Starry Night picture, if dissatisfied with prior scaling attempts. 

This program accomplishes this task in the following manner: 

• By placing the pick device in sample mode. 
• By placing the choice and valuator devices in event mode. 
• By using an additional choice device in request mode, to ask if the user is 

finished scaling the picture. 

The following sections describe each component of the GET_VALUES subrou-
tine in Example 7-1. 

7.4.1 Sampling Pick Input 

The application in Example 7-1 activates a pick logical input device, in sample 
mode, that allows the user to indicate the segment to be scaled. The following 
code illustrates the portion of the subroutine GET_VALUES that samples the 
pick device. 

Sampling Input and Generating Events 7-39 



0 

C ************************************************************ 

C Coordinate user input... 
SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 

* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

C Get the input values. 
CALL GET VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 

* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE) 

C 

RETURN 
END 

************************************************************ 

C This subroutine obtains input values... 
SUBROUTINE GET_VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 

* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 

* HORIZON, HELP, HELP_BOX, DEVICE_NUM, FINISHED_FLAG, 
* PICKED_SEGMENT, PICK_INPUT_STATUS, INPUT_STATUS, 
* PICK_ID, CLASS, ERROR_STATUS, INPUT_CHOICE, RESET, 

* MORE_EVENTS_FLAG, DUNII~IY_INTEGER, NEW_FRAME_FLAG, WS_TYPE, 
* CURRENT_SEGMENT, INITIAL_STATUS, PROMPT_ECHO_TYPE, 
* PICK_DATA_RECORD( 10 ), RECORD_BUFFER_LENGTH, REPEAT_FLAG, 
* HELP_FLAG, VALUE_FLAG, LOCKED_SEGMENT, INCR 
REAL IDENTITY( 6 ), TITLE_XFORM_MATRIX( 6 ), 
* STARS_XFORM_MATRIX( 6 ), HOUSE_XFORM_MATRIX( 6 ), 
* TREE_XFORM_MATRIX( 6 ), SIDE_XFORM_MATRIX( 6 ), 
* ROAD_XFORM_MATRIX( 6 ), HORIZON_XFORM_MATRIX( 6 ), VALUE, 
* FIXED_X, FIXED_Y, CURRENT_VALUE, ECHO_AREA( 4 ) 

DATA DEVICE_NUM / 1 /, FINISHED_FLAG / 0 /, RESET / 8 / 

C Place the devices in the proper input mode. 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR MODE( WS_ID, DEVICE_NUM 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

7-40 Sampling Input and Generating Events 



C Create an identity matrix and initial transformation matrixes. 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, IDENTITY ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, TITLE_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, STARS_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, SIDE_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, ROAD XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, HORIZON XFORM_MATRIX ) 

HELP_FLAG = 0 
REPEAT_FLAG = 0 
VALUE = 1.0 
VALUE_FLAG = 0 
CURRENT VALUE = 1.0 
LOCKED_SEGMENT = 0 
DO WHILE (FINISHED_FLAG .NE. 1 ) 

CALL GKS$SAMPLE_PICK( WS_ID, DEVICE_NUM, 
* PICK_INPUT_STATUS, PICKED_SEGMENT, PICK_ID ) 

IF (( LOCKED_SEGMENT .NE. 0) .AND. 
* ( PICKED_SEGMENT .NE. LOCKED_SEGMENT )) THEN 

LOCKED_SEGMENT = 0 
ENDIF 

IF (( PICKED_SEGMENT .NE. HELP_BOX ) .AND. 
* ( HELP_FLAG .EQ. 1 )) THEN 

HELP_FLAG = 0 
ENDIF 

IF (HELP_FLAG .EQ. 1) THEN 
PICKED_SEGMENT = TITLE 
PICK_INPUT_STATUS = GKS$K_STATUS_NOPICK 

ENDIF 

IF (( PICKED_SEGMENT .EQ. HELP_BOX ) .AND. 
* ( HELP_FLAG .NE. 1 )) THEN 

CALL GET_HELP( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, 
* FINISHED_FLAG, WS_TYPE ) 

HELP_FLAG = 1 

ELSE 

ENDIF ! If segment equals help. 

Sampling Input and Generating Events 7-41 



C Set the current segment , current value , and entered value flag . . . 
CURRENT_SEGMENT = PICKED_SEGMENT 
CURRENT VALUE =VALUE 
VALUE_FLAG = 0 

ENDDO 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This code sets the logical input devices to the proper input operating modes. 
The pick device is in sample mode; the valuator and choice devices are in 
event mode. 

© This code establishes the initial transformation matrixes for each of the 
segments and creates a single identity matrix. The application can use the 
identity matrix to return any segment to its original size, shape, and relative 
position within the picture. 

0 This application uses a series of flags as it loops, continually sampling the 
currently picked segment. This code initializes these flags, as follows: 

• The HELP~LAG signifies whether the user had just used the help 
screen. 

• The REPEAT~LAG signifies whether you would be repeating a scaling 
value for the same segment without having moved the pick prompt. 

• The VALUE _FLAG signifies whether there has been a change in the 
current real value used for scaling. 

• The LOCKED_SEGMENT signifies which segment is currently set to 
GKS$K_UNDETECTABLE (cannot be picked, stopping further scaling). 

• The FINISHED~LAG signifies whether the user wishes to stop 
entering any further input. 

0 This code samples the current measure of the pick device. 

® If the user has moved the pick prompt to a new segment, and if the user 
had previously specified a segment to lock, then this code resets LOCKED_ 
SEGMENT to zero (0 ). This application uses LOCKED_SEGMENT 
elsewhere in the program to set the segment's detectablity to GKS$K_ 
UNDETECTABLE, stopping further scaling of that segment. 

® If the user had requested the help screen, and if the user has moved the 
pick prompt off of the HELP_BOX segment, then this code resets the help 
flag. When the user requests the help screen, this flag is set to the value 1. 
The value is not reset until the user moves the prompt off of the HELP_ 
BOX segment. This code avoids an infinite loop when the user requests 
help. 

7-42 Sampling Input and Generating Events 



O This code temporarily assigns a value to PICKED_SEGMENT as a signal 
that the user already viewed the help screen. In this way, HELP~LAG can 
be reset to zero (0) the next time through the loop. 

This code determines whether the currently picked segment is the help 
screen segment (HELP_BO~. If it is, then this program calls the subroutine 
GETS-IELP. Section 7.4.2 describes this subroutine in detail. 

© If the user requires the help screen, set HELP_FLAG to 1. 

m If the user does not require help, then, in this ELSE clause, this application 
checks the event queue to see if the user specified new valuator or choice 
input. Section 7.4.4 describes this portion of the code in detail. 

m This code resets flags, and establishes the current choice and valuator 
values. The application compares the current input with new input to 
determine changes in subsequently specified input values. 

Figures 7-14 through 7-16 illustrate the effect of sampling different segments. 
In Figures 7-14 and 7-15, using the VT241, the measures of the choice and 
valuator devices change along with the pick device (pressing the arrow keys 
alters the measures of all of these active devices). After pressing the PF1 key 
until only the pick prompt is active, Figure 7-16 illustrates the difference in 
appearance; notice that the valuator arrow is gone and that none of the choices 
are highlighted. 

Sampling Input and Generating Events 7-43 



Figure 7-14: Picking Segments in Sample Mode—VT241 

1,50 
~~ t. ~ri•~ u Night 

.~"

HELF E~~.IT 

~' 

~~. 

r'.~ 

n . 50C~ 

T 1~ 1~ 

t 31'= 

Tr'~~ 

_~irJ~i i~1~. 

F'n.3r~ 

Hor•i~an 

Hni i=a 

F'F_ =+. 

 i 
ZK-5953-HC 

7-44 Sampling Input and Generating Events 



Figure 7-15: Picking Segments in Sample Mode—VT241 

r 
~t. .3rru Night. 
 X0

1

I 

HELP-Er~IT 
1, 5 ~~~;~ 

..— r~ {_ 
.y

~~ 

~). 50C~ 

Tit. 1~ 
_,t ~r= 

Tr~~ 

:~icl~~.~~1~. 

F'r~ 3 rJ 

u_ i~:,-,

H~~~~=~ 

F'e_et. 

ZK-5954-HC 

Sampling Input and Generating Events 7-45 



Figure 7-16: Picking Segments in Sample Mode—VT241 

1 

~~ t .3rrN PJ igh+.~ NELF' E:~ iT 

-~ 

.~~~~ti~ ~r~~. 

1.544 

~~, 540 

Ti+. le 
_~+dt'= 

Tree 

_~ i ,_!e~ ~e 1 E. 
F'..3r~ 
Hr_~1' 1:C~n 

H~~~~_e 

pe_et 

ZK-5955-HC 

7.4.2 Using the Help Screen 

When the user picks the HELP_BOX segment (the rectangle on the surface 
labeled HELP/EXIT), this application places a help screen on the surface of the 
workstation. This section describes the GET~IELP subroutine in Example 7-1. 

c ************************************************************ 
C This subroutine obtains input values... 

SUBROUTINE GET_VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 

* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE ) 

IF (( PICKED_SEGMENT .EQ. HELP_BOX) .AND. 
* (HELP_FLAG .NE. 1 )) THEN 

7-46 Sampling Input and Generating Events 



CALL GET_HELP( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, 
* FINISHED_FLAG, WS_TYPE ) 

C ************************************************************ 
C This subroutine makes the help screen visible... 

SUBROUTINE GET_HELP( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, FINISHID_FLAG, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, HELP, HELP_BOX, DEVICE_NUM, FINISHED_FLAG, 
* NEW_FRAME_FLAG, DUMMY_INTEGER, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* CHOICE_DATA_RECORD( 3 ), RECORD BUFFER_LENGTH, RECORD_SIZE, 
* TEMP_DATA_RECORD( 3 ), TEMP_RBL, TEMP_RECORD_SIZE, 
* LIST_PROMPT_TYPES, PROMPT_RETURN_SIZE, TEMP_INITIAL_STATUS, 
* TEMP_INITIAL_CHOICE, NUM_CHOICES, SIZES( 10 ), 
* ADDRESSES( 10 ), TEMP_SIZES( 2 ), TEMP_ADDRESSES( 2 ), 
* INPUT_STATUS, CHOICE, WS_TYPE, CONTINUE 

CHARACTER*80 CURRENT_STRINGS( 10 ), 
* TEMP_CURRENT_STRINGS( 2 ) 

REAL ECHO_AREA( 4 ), TEMP_ECHO_AREA( 4 ) 

DATA DEVICE_NUM / 1 /, CONTINUE / 1 / 

EQUIVALENCE( CHOICE_DATA_RECORD( 1 ), NUM_CHOICES ) 

C Reset visibility of all segments and deactivate the input prompts. 
CALL GKS$SET_SEG VISIBILITY( TITLE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( STARS, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( TREE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( SIDE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( ROAD, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( HOUSE, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HORIZON, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HELP_BOX, GKS$K_INVISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HELP, GKS$K_VISIBLE ) 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_REQUEST, GKS$K_ECHO ) 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

Sampling Input and Generating Events 7-47 



C Release deferred output. Regenerate if necessary. 
IF ( NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

C 

C 

Ask the user to quit or to continue... 
CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* CHOICE ) 

Reset the visibility of the segments. 
CALL GKS$SET_SEG VISIBILITY( TITLE, GKS$K VISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( STARS, GKS$K VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( TREE, GKS$K VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( SIDE, GKS$K VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( ROAD, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG VISIBILITY( HOUSE, GKS$K VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HORIZON, GKS$K VISIBLE ) 
IF (CHOICE .EQ. CONTINUE) THEN 
CALL GKS$SET_SEG_VISIBILITY( HELP_BOX, GKS$K VISIBLE ) 
ENDIF 
CALL GKS$SET_SEG_VISIBILITY( HELP, GKS$K_INVISIBLE ) 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ_WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUMHIY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release deferred output. Regenerate if necessary. 
IF ( NEW_FRAME_FLAG .EQ. GKS$K_NEWFR.AME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

C Set values depending on the user's choice. 
IF ( CHOICE .EQ. CONTINUE ) THEN 

FINISHED_FLAG = 0 
C Reset the choice device with its previous values... 

C Reactivate the input devices... 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

ELSE 
FINISHED_FLAG = 1 
CALL GKS$DELETE_SEG( HELP_BOX ) 

ENDIF 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O This subroutine makes Starry Night invisible, deactivates the logical input 
devices, and displays a help screen. When the help screen is visible to the 
user, this subroutine uses another choice device, in request mode, to ask 

7-48 Sampling Input and Generating Events 



the user to either continue scaling or exit from the program. Since this 
subroutine activates a second choice device, it defines duplicate variables 
(such as ECHO~REA and TEMP~CHO~REA) to store the current 
choice values and to present the new Continue/Exit menu. 

0 This code changes the visibility of the segments so that only the help screen 
is visible. 

~ This code places all of the current logical input devices in request mode 
so that the device handler removes their prompts from the workstation 
surface. At this point, you can call one of the GKS$INIT_class functions to 
reinitialize the device. 

~ The missing code that belongs here stores the current choice values 
(House/Tree . . . )and places the Continue/Exit menu on the workstation 
surface. Section 7.4.3 discusses this code in detail. 

~ This code updates the surface of the workstation if necessary. At this point 
in the program the new visibility attributes of the segments take effect; only 
the help screen is visible on the workstation surface. 

m This call to GKS$REQUEST_CHOICE places the Continue/Exit choice 
menu on the workstation surface. The application pauses until the user 
makes a decision. 

O This code resets the visibility attributes of the segments so that Starry Night 
is once again visible on the workstation surface. 

~ This code reestablishes the old choice values (House/Tree . . .) by reinitial-
izing the choice device, reactivates the remaining logical input devices, and 
sets FINISHED~I.AG to the appropriate value. 

Figure 7-17 illustrates the workstation surface as the user moves the prompt 
to the HELP_BOX segment. As soon as the pick aperture touches the box, the 
help screen becomes visible. Figure 7-18 illustrates the help screen and the 
Continue/E~dt menu. 

Sampling Input and Generating Events 7-49 



Figure 7--17: Picking the HELP/EXtT Segment-VT241 

r 
'~t ,3r•. r, ~ Night• 

~' 

~~=LF/E;'~ IT~ 

~r~~. 
..~.r~ 

1,504 

(r , 540 

Title 

~ters 

Tree 

Sideu~alk, 

P,aad 
Hari~an 

Haase 

~ese+r 

ZK-5956-HC 

7-50 Sampling Input and Generating Events 



Figure 7-18: Displaying a Help Screen—VT241 

I~E1ti!_E'_, --~ de'.;:'i _e :hoo_.o~ a pi:_tut••e item, one 
:_ha►~'eC. the ~~ur••r••ent _~Lal ing '~,~~al~.!e, a~~d one eit.V-~er 
~,tnpc. f~trt..her s_alinq' nf. a ~.pe=lfied element, nr 

it reeeta all element,_• to their ~r-•i~~'inal ~•_aling' 
•~ en.~ 1 ea : uhse~paent aca 1 i ~ , 

!:;`rsLIP~: irk IT UEVI~ES---If yaa have a r~arneri~_ 
k.e!~pad, you :_an u_•e the ti.~o k.ea1, in the upper-
left •=orner, to turn det.~i=es on and off, 
Qt..her!~~i.e, all de',-icee nho'„e ayn_hror~~._lu, 

r~]t/IPJ~~, TF~ F'R~1FT=~---I}ae ~~hate'~,~er !~aur ~e'.:~i e 
nor•~mally uee_. t..o mo'•ve a _ur•_or on the =_.ur-~f.3;_e, 
Thi= ~~ in<_ 1 ude arr~,!,~ ~~.~=~, a mn~ ~.=~p, a p! !:~:. , 

Er••~TEPirl; ~'ALI_IE---To ent..er '•.,'alu.e=, !~oii. need t.o 
~ i,_,e !:..~hatre'•.;~er. ~a~~ ~.r•• de'•:~i a nnr'ma 11!a u~.ee, _u._h •3_ 
the FETI_~Pd E:.e!a, rnc~a_e k~~.t.ton, ar puel~:. ~~t..t.~on; t,n 

pik. an e1er,7ent., all ~aou ha'•~~e to do i_ align the 
re_tang~~!lar prompt !~ait.h the element !~a~. •;:hooae. 

_. ii r_I t. 1 r'I I I, N 

ZK-5957-HC 

7.4.3 Storing Current Input Values 

The application in Example 7-1 requires the use of a choice input device to 
obtain input from the user that affects subsequent execution of the program. 
Using the Continue/Exit choice menu, the application cannot continue to 
process until it knows whether the user wants to continue scaling or to eat 
from the program. 

The use of such a menu presents the problem of using two logical input devices 
of the same class in the same application. If your application requires this, you 
must choose one of the solutions to the problem. 

Sampling Input and Generating Events 7-51 



• Use two distinct logical input device numbers for each device. 

• Use the same device number, and reinitialize the device each time you need 
a change. 

If you use two distinct logical input device numbers, you may have two devices 
that look the same to the user, but that measure and trigger differently. For 
instance, using the VT241, choice device number 1 requires that the user press 
the arrow keys to change the measure and the RETURN key to trigger. Choice 
device number 2 requires that the user press either the arrow keys or one of the 
numeric keypad keys to both change the measure and trigger the device (the 
user does not need to press RETURN). Consequently, if you use two distinct 
logical input device numbers for devices of the same class, you need to be sure 
that the user knows the differences in the ways in which the two devices are 
measured and triggered. 

The application in Example 7-1 uses a single choice device (numbered 1), and 
reinitializes the device when it needs a cliff Brent choice menu. For this purpose, 
DEC GKS provides you with the following input inquiry functions: 

• Ones that write the default input values to its arguments. (GKS$INQ _ 
DEF_CHOICE _DATA, GKS$INQ _DEF_LOCATOR_DATA, GKS$INQ _ 
DEF~'ICK_DATA, GKS$INQ_DEF~TRING_DATA, GKS$INQ_DEF_ 
STROKE_DATA, and GKS$INQ_DEF_VALUATOR_DATA) 

• Ones that write the current input values to its arguments. (GKS$INQ _ 
CHOICE_STATE, GKS$INQ_LOCATOR_STATE, GKS$INQWICK_ 
STATE, GKS$INQ _STRING STATE, GKS$INQ _STROKE _STATE, and 
GKS$INQ _VALUATOR_STATE) 

When reinitializing a single logical input device, you accomplish this by 
performing the following tasks: 

• By storing the current values of the device using one of the GKS$INQ _ 
class_STATE functions. 

• By obtaining the default values of the device using one of the GKS$INQ _ 
DEF_class_DATA functions. 

• By reinitializing the device using different values. 

Once you are finished using one device, you can reinitialize the device using 
the values that you had stored in buffers, thus reestablishing the values of the 
old device. 

7-52 Sampling Input and Generating Events 

lJ 



The following code from Example 7-1 illustrates this process: 

0 

c ************************************************************ 
C This subroutine makes the help screen visible... 

SUBROUTINE GET_HELP( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, FINISHED_FLAG, WS_TYPE ) 

CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

C Store the current choice values... 
CHOICE_DATA_RECORD( 1 ) = 10 
CHOICE_DATA_RECORD( 2) _ '/.LOC( SIZES( 1 ) ) 
SIZES( 1) = 80 
SIZES( 2) = 80 
SIZES( 3) = 80 
SIZES( 4) = 80 
SIZES( 5) = 80 
SIZES( 6) = 80 
SIZES( 7) = 80 
SIZES( 8) = 80 
SIZES( 9) = 80 
SIZES( 10 ) = 80 
CHOICE_DATA_RECORD( 3) _ '/.LOC( ADDRESSES( 1) ) 
ADDRESSES ( 1) = y.LOC ( CURRENT_STRINGS ( 1) ) 
ADDRESSES ( 2) _ '/.LOC ( CURRENT_STRINGS ( 2) ) 
ADDRESSES ( 3) _ '/.LOC ( CURRENT_STRINGS ( 3) ) 
ADDRESSES ( 4) _ '/.LOC ( CURRENT_STRINGS (4) ) 
ADDRESSES( 5) _ '/.LOC( CURRENT_STRINGS( 5) ) 
ADDRESSES ( 6) = y.LOC ( CURRENT_STRINGS ( 6) ) 
ADDRESSES( 7) = y.LOC( CURRENT_STRINGS( 7) ) 
ADDRESSES ( 8) = y.LOC ( CURRENT_STRINGS ( 8) ) 
ADDRESSES ( 9) _ '/.LOC ( CURRENT_STRINGS ( 9) ) 
ADDRESSES( 10 ) _ '/.LOC( CURRENT_STRINGS( 10 ) ) 

C Save the current choice input initialization values... 
RECORD_BUFFER_LENGTH = 12 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT ECHO_TYPE, ECHO_AREA, 
* CHOICE_DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Obtain the default values and put them in temporary buffers. 
TEMP_DATA_RECORD( 1) = 2 
TEMP DATA_RECORD( 2) _ '/.LOC( TEMP_SIZES( 1) ) 
TEMP_DATA_RECORD( 3) _ '/.LOC( TEMP_ADDRESSES( 1) ) 
TEMP_ADDRESSES( 1) _ '/.LOC( TEMP_CURRENT_STRINGS( 1) ) 
TEMP ADDRESSES( 2) _ '/.LOC( TEMP_CURRENT_STRINGS( 2) ) 

Sampling Input and Generating Events 7-53 



0 
C Inquire the default values... 

TEMP RBL = 12 
CALL GKS$INQ_DEF_CHOICE_DATA( WS_TYPE, DEVICE_NUM, 
* ERROR_STATUS, DUMMY_INTEGER, DUMNIY_INTEGER, 
* '/.DESCR( LIST_PROMPT_TYPES), TEMP_ECHO AREA, 
* TEMP_DATA_RECORD, PROMPT_RETURN_SIZE, TEMP_RBL, 
* TEMP_RECORD_SIZE ) 

C Set temporary values... 
TEMP_INITIAL_CHOICE = 1 
TEMP_INITIAL_STATUS = GKS$K_STATUS_OK 
TEMP_SIZES( 1) = 8 
TEMP_SIZES( 2) = 4 
TEMP ADDRESSES ( i) _ '/.LOC ( ' Continue' ) 
TEMP_ADDRESSES ( 2) _ '/.LOC ( ' Exit' ) 

C Reinitialize the choice device... 
CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* TEMP_INITIAL_STATUS, TEMP_INITIAL_CHOICE, 
* PROMPT ECHO_TYPE, TEMP_ECHO_AREA, TEMP_DATA_RECORD, 
* TEMP_RBL ) 

C Ask the user to quit or to continue... 
CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* CHOICE ) 

C Set values depending on the user's choice. 
IF ( CHOICE .EQ. CONTINUE ) THEN 

FINISHED_FLAG = 0 
C Reset the choice device with its previous values... 

O CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, CHOICE DATA_RECORD, RECORD_BUFFER_LENGTH ) 

C Reactivate the input devices... 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT MODE_EVENT, GKS$K_ECHO ) 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O Deactivate the devices by removing their prompts from the workstation 
surface. At this point, you can reinitialize the devices by calling one of the 
GKS$INIT class functions. 

7-54 Sampling Input and Generating Events 



© This code establishes the sizes and locations of the buffers that will hold the 
current choice data. This application assumes that it does not know how 
many choices are in the current menu, so it establishes ten buffers. Also 
assuming that the sizes of the choice labels are unknown, the application 
defines string buffers that can hold labels up to 80 characters in length. 

© This call to GKS$INQ _CHOICE _STATE writes the current choice values 
(whose labels are House, Tree, and so forth), exactly as the user left it, to 
its arguments. The application will use these values later to reinitialize the 
choice device when it needs the previously used menu again. 

O This code establishes temporary buffers for use only within the GET~IELP 
subroutine. These temporary buffers will hold the values used for the 
Continue/Exit menu. 

0 The call to GKS$INQ _DEF_CHOICE _DATA obtains the default values for 
choice device number 1. 

® The new labels are Continue and Exit. 

O If the user chooses to continue, this code reinitializes the choice device with 
the stored values of the House/Tree menu. 

7.4.4 Checking for Generated Events 

The remaining portion of the GET_VALUES subroutine in Example 7-1 checks 
the event queue for input. The effects of this input depend on the types and 
order of the input values. The following portion of GET_VALUES shows how 
to obtain input hom the event queue: 

c ************************************************************ 
C This subroutine obtains input values... 

SUBROUTINE GET_VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE ) 

IF (( PICKED_SEGMENT .EQ. HELP_BOX) .AND. 
* (HELP_FLAG .NE. 1 )) THEN 

ELSE 

C Check the event queue. 
O CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 

C Check for queue overflow . 
© CALL GKS$INQ_INPUT_QUEUE_OVERFLOW( ERROR_STATUS, WS_ID, 

* CLASS, DEVICE_NUM ) 

Sampling Input and Generating Events 7-55 



C If the queue has overflowed... 
IF ( ERROR_STATUS .EQ. 0) THEN 
CALL GKS$FLUSH_DEVICE_EVENTS( WS_ID, 
* GKS$K_INPUT_CLASS_VALUATOR, DEVICE_NUM ) 
CALL GKS$FLUSH_DEVICE_EVENTS( WS_ID, 
* GKS$K_INPUT_CLASS_CHOICE, DEVICE_NUM ) 
CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 
ENDIF 

100 CONTINUE 
® IF ( CLASS .EQ. GKS$K_INPUT_CLASS_CHOICE) THEN 

CALL GKS$GET_CHOICE( INPUT_STATUS, INPUT_CHOICE ) 

IF ( INPUT_STATUS .NE. GKS$K_STATUS_NOCHOICE ) THEN 
IF ( INPUT_CHOICE .NE. RESET) THEN 

CALL GKS$SET_SEG_DETECTABILITY( INPUT_CHOICE, 
* GKS$K_UNDETECTABLE ) 

C Don't let the user scale the segment any more. 
LOCKED_SEGMENT = PICKED_SEGMENT 

ELSE 
0 CALL GKS$SET_SEG_XFORM( TITLE, IDENTITY ) 

DO 200 INCR = 1, 6, 1 
TITLE_XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

200 CONTINUE 
CALL GKS$SET_SEG_XFORM( STARS, IDENTITY ) 
DO 300 INCR = 1, 6, 1 
STARS XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

300 CONTINUE 
CALL GKS$SET_SEG_XFORM( HOUSE, IDENTITY ) 
DO 400 INCR = 1, 6, 1 
HOUSE_XFORM_MATRIX( INCR) = IDENTITY( INCR ) 

400 CONTINUE 
CALL GKS$SET_SEG_XFORM( TREE, IDENTITY ) 
DO 500 INCR = 1, 6, 1 
TREE_XFORM_1rIATRIX ( INCR ) = IDENTITY ( INCR ) 

500 CONTINUE 
CALL GKS$SET_SEG_XFORM( SIDE, IDENTITY ) 
DO 600 INCR = 1, 6, 1 
SIDE_XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

600 CONTINUE 
CALL GKS$SET_SEG_XFORM( ROAD, IDENTITY ) 
DO 700 INCR = 1, 6, 1 
ROAD_XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

700 CONTINUE 
CALL GKS$SET_SEG_XFORM( HORIZON, IDENTITY ) 
DO 800 INCR = 1, 6, 1 
HORIZON_XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

800 CONTINUE 

7-56 Sampling Input and Generating Events 



CALL GKS$SET_SEG DETECTABILITY( TITLE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( STARS, 
* GKS$K DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( HOUSE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( TREE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( SIDE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( ROAD, 
* GKS$K DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( HORIZON, 
* GKS$K_DETECTABLE ) 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ_WS DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 

* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release deferred output. Regenerate if necessary. 
IF (NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

ENDIF ! If choice does not equal reset. 
ENDIF ! If input status does not equal no choice 

ENDIF ! If input class equals choice. 

IF ( CLASS .EQ. GKS$K_INPUT_CLASS VALUATOR ) THEN 
CALL GKS$GET_VALUATOR( VALUE ) 
VALUE_FLAG = 1 

ENDIF 

C Check for simultaneously entered events... 
CALL GKS$INQ_MORE_SIMUL_EVENTS( ERROR_STATUS, 
* MORE_EVENTS_FLAG ) 

C If there are more simultaneous events, take them from the queue 
IF ( MORE_EVEHTS_FLAG .EQ. GKS$K_MORE_EVENTS) THEN 

CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 
GOTO 100 

ENDIF 

IF (PICK_INPUT_STATUS .EQ. GKS$K_STATUS_NOPICK ) THEN 
REPEAT_FLAG = 1 

ELSEIF ( VALUE .EQ. 1.0 ) THEN 
REPEAT_FLAG = 1 

ELSEIF (( VALUE_FLAG .EQ. 0) .AND. 
* ( PICKED_SEGMENT .EQ. CURRENT_SEGMENT )) THEN 

REPEAT FLAG = 1 
ELSEIF ( PICKED_SEGMENT .EQ. LOCKED_SEGMENT ) THEN 

REPEAT_FLAG = 1 
ENDIF 

Sampling Input and Generating Events 7-57 



C Establish fixed points for segments depending on picked segment. 
IF ( REPEAT_FLAG .EQ. 0) THEN 
IF ( PICKID_SEGMENT .EQ. TITLE) THEN 

FIXID_X = 0.3 
FIXID_Y = 0.925 
CALL GKS$ACCUM_XFORM_MATRIX( TITLE_XFORM_MATRIX, 

* FIXED_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, TITLE_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( TITLE, TITLE_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT .EQ. STARS ) THEN 

FIXID_X = 0.5 
FIXED_Y = 0.8 
CALL GKS$ACCUM_XFORM_MATRIX( STARS_XFORM MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, STARS_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( STARS, STARS_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT . EQ . TREE) THEN 

FIXED_X = 0.52 
FIXID_Y = 0.51 
CALL GKS$ACCUM_XFORM_MATRIX( TREE_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT .EQ. SIDE ) THEN 

FIXID_X = 0.225 
FIXID_Y = 0.22 
CALL GKS$ACCUM_XFORM MATRIX( SIDE_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, SIDE_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( SIDE, SIDE_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT .EQ. ROAD ) THEN 

FIXID_X = 0.5 
FIXID_Y = 0.075 
CALL GKS$ACCUM_XFORM_MATRIX( ROAD_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, ROAD_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( ROAD, ROAD_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT .EQ. HORIZON ) THEN 

FIXID_X = 0.1 
FIXID_Y = 0.35 
CALL GKS$ACCUM_XFORM_MATRIX( HORIZON_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, HORIZON_XFORM_MATRIX ) 

CALL GKS$SET_SEG XFORM( HORIZON, HORIZON_XFORM_MATRIX ) 
ELSEIF ( PICKED_SEGMENT .EQ. HOUSE ) THEN 

FIXID_X = 0.2 
FIXID_Y = 0.5 
CALL GKS$ACCUM_XFORM_MATRIX( HOUSE_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( HOUSE, HOUSE_XFORM_MATRIX ) 
ENDIF ! Scaling. 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

7-58 Sampling Input and Generating Events 



C Release deferred output. Regenerate if necessary. 
IF (NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

ENDIF ! If we aren't repeating a transformation... 

C Reset the repeating transformations flag. 
REPEAT_FLAG = 0 

ENDIF ! If segment equals help. 

C Set the current segment , current value , and entered value flag . . . 
CURRENT_SEGMENT = PICKED_SEGMENT 
CURRENT VALUE =VALUE 
VALUE_FLAG = 0 

ENDDO 

RETURN 
END 

The following numbers correspond to the numbers in the previous example: 

O The call to GKS$AWAIT~VENT checks the event input queue immediately 
(0.0 seconds). If there was at least one event on the queue, the call removes 
the oldest report, places it in the current event report in the DEC GKS state 
list, and writes either GKS$K~NPUT_CLASS_VALUATOR or GKS$K_ 
INPUT_CLASS_CHOICE to its CLASS argument (depending on which 
device generated the event). If there were no reports on the queue at the 
time of the call, GKS$AWAIT~VENT writes GKS$K_INPUT_CLASS_ 
NONE to its CLASS argument. 

© The call to GKS$INQ _INPUT_QUEUE _OVERFLOW returns zero (0) to its 
ERROR~TATUS argument if the queue has overflowed and if information 
about the overflow is available. 

© If the overflow occurred, this code flushes all reports generated by choice 
and valuator devices (the only possible reports that the user can generate 
using this application) and calls GKS$AWAIT~VENT to reset the CLASS 
argument (which will probably be GKS$K_INPUT CLASS~TONE). 

O If GKS$AWAIT~VENT wrote GKS$K~NPUT_CLASS_CHOICE to its 
CLASS argument, then this code calls GKS$GET_CHOICE to obtain the 
input. If the choice is anything other than Reset, then this code locks the 
segment by setting its attribute to be GKS$K_UNDETECTABLE. This action 
disables further scaling of the segment. 

0 If the user chose Reset, then this code sets all of the segment trans-
formations equal to the identity transformation (reestablishing the seg-
ment's original size), and sets all of the segment's attributes to GKS$K_ 
UNDETECTABLE. 

© This code updates the workstation surface if necessary. 

Sampling Input and Generating Events 7-59 



O If the CLASS argument to GKS$AWAIT~VENT is GKS$K~NPUT_ 
CLASS_VALUATOR, then this code calls GKS$GET_VALUATOR to obtain 
the value and then resets the flag that specifies that there is a newly 
specified value. 

If there exists a simultaneously generated report, this code calls 
GKS$AWAIT~VENT to remove that report from the queue, and then 
redirects control to line 100. At line 100, the application processes the input 
in a manner dependent on whether the current report was generated by a 
choice or valuator device. 

© This code checks current values to determine whether there is a need to 
scale a segment. If the user has not specified a new segment or a new 
scaling value, then the application does not attempt to scale. This avoids 
resetting the same scaling value for the same segment twice in a row. (If 
there is no need to adjust scaling, the application sets REPEAT_FLAG to 
the value 1.) 

m This code scales the appropriate segment. 

Figures 7-19 to 7-28 illustrate the effects of input possibly generated by the 
user. The following list describes each figure separately: 

• Figure 7-19 shows the workstation surface after the user cycles to the pick 
device and then picks the tree. 

• Figure 7-20 shows the workstation surface after the user cycles to the 
valuator device and alters its measure. 

• Figure 7-21 shows the workstation surface after the user triggers the 
valuator device. Figure 7-22 shows the surface when the user triggers the 
valuator device a second time. 

• Figure 7-23 shows the workstation surface after the user cycles to the 
choice device, triggers the device (entering the choice Tree), and then 
cycles to the pick device. Notice how the extent rectangle of the tree is not 
visible. The application stops further scaling of this segment; its attribute is 
GKS$K_UNDETECTABLE. 

• Figure 7-24 shows the workstation surface after the user picks the road. 
• Figure 7-25 shows the workstation surface after the user cycles to the 

choice device and triggers on the 'Reset" choice. All segments regain their 
original shape and their attributes are reset to GKS$K_DETECTABLE. 

• Figure 7-26 shows the workstation surface after the user cycles to the pick 
device and picks the house. 

7-60 Sampling Input and Generating Events 

lam! 



• Figure 7-27 shows the workstation surface after the user picks the help box 
and chooses to stop execution of the program. 

• Figure 7-28 shows the workstation surface after the user triggers on the 
Exit choice. 

Figure 7-19: Picking the Tree—VT241 

r 
t. arr~ ~a Night 

,.. 

1,5~~~ 

c), ~~~n 

Ti+. le 

='t ~ ~ = 
Tr'~_ 

_~i~.l=~~~31~. 

F'.~~c! 

H~ ~r' i ~~ ~n 

H~~~~== 
F'~==+. 

ZK-5958-HC 

Sampling Input and Generating Events 7-61 



Figure 7-20: Choosing aValue—VT241 

t. ,3 r~ r ~~ PJ i a' h +, HELF%EXIT 

~" 

~ , ~r1~ 

.~`~ 
''~ 

r,, ~r,r, 

Ti+. le 

_~ ~ 3 r"" 

Tr =: 

_~l~:l~i ,i31~ . 

F'~_ ~c! 

H~ ~ri~_~r-~ 

H~,~~_~ 

F'~_et 

ZK-5959-HC 

7-62 Sampling Input and Generating Events 



Figure 7-21: Triggering the Device—VT241 

St. ar• rW Night. HELP%EY,IT 
1,50 

_ 

~~ 

'Jr
4 

•`~ 

0.6~~ 

Tit1F 
_; t. .y ~ 

Tr- ~
1

e 

Hc~r- i ~~ ~n 

Hnii_a 

F~F_.Ft. 

ZK-5960-HC 

Sampling Input and Generating Events 7-63 



Figure 7-22: Triggering a Second Time—VT241 

i 1 
i , rn~~ 

~~ 

n, rr,n 

Ti+.. le 
t. .~r -

Tr ~~ 

~~ 1 i~i?I,.1•y 1 ~. 

Hc~►' i ~ _~n 

Hnii._a 

F~~_Ft. 

ZK-596t •HC 

7-64 Sampling Input and Generating Events 



Figure 7-23: Stopping Scaling of the Tree—VT241 

1,5nn 

,, 

.- 

r, ~r,r, 
'J 1 V Y ': 

Ti+.. le 
_, t. .3 ~ _ 

T •r : _ 
t 

F' _~ ~~_! 

Hc~►•' i ~~ ~n 

Hr~ii==
F~~_~t. 

ZK-5962-HC 

Sampling Input and Generating Events 7-65 



Figure 7-24: Picking the Road—VT241 

~r rr,'~ 1,_~. 

rl ~ ~r1(~ 

Title 
:~t.e► _ 

Tree 

~~ i ~_lei,.,i.e 1 E~. 

F'r: 3~:! 

Hc~►- i ~~ ~n 

H~~ii_~ 

F'e_et. 

 J 
ZK•5963-HC 

7-66 Sampling Input and Generating Events 



Figure 7-25: Choosing to Reset the Picture—VT241 

ZK-5964-HC 

Sampling Input and Generating Events 7-67 



Figure 7-26: Picking the House—VT241 

r 
HELPiE;!IT 

1 ~ 5r~r, 

ii, ~~~t~ 

Ti+. 1~ 

_; t. .y ~ 

Tr~~ 

_~ i cle~ .,~.y 1 ~`. 

F' _~.~c! 

Har• i ~~ ~n 

H~ ~~~_.~ 

F'e= :+. 

 J 
ZK-5965-HC 

7-68 Sampling Input and Generating Events 



Figure 7-27: Choosing to Exit from the Program—VT241 

I~E''~~'IcE'=;---~lne ~e'•:'1=•e :f'~0~~_e~ •3 ~itu.re iter~n, ~~nA 
_h•3n~~~= +.ho _! rrr~en+. _~_31 in!~' :;.31! ce. •3nC1 nna Ait.l~pr-. 

t.nF~_ f•!i.'i~+•her-• =31ir-~~' Cat' 3 _~'e~_lf1pC~ eleMFr'~#•, 41'' 

1~. ';2_.8t.5 •311 F1FI,•tAr-it,~ tr t.l7al; G7'•1~'lr"i•31 =_~llt"r~' 

and An3hla_. =.~J.h=.A~Uant _-=311n~'. 

G`r'GLIr~~1G ir~~ IT i~E~'~~I~:E~---If uo! ~. h.3',~F 3 nU.MA';•ln 
L'.z!~F~~3d, !.{n! i. _3n i_t~.a t.h~ t.t:,in b:.e~a~, In the Ur~r~~r.. 

left. _nrr,pr•, t.n +~J.rn da'..,~ie on •3nr~ r~f•f. 
i it.rier~;al_e, •311 r_!F',;i _a_ p,~rr,re _.!~n_•h•;~r~r-,r~!r._.1!.{, 

rlcl'',+I►'~•r THE F'F'i ir1F'T'=,---I I_F i:~~-i.3t,F~•.:~e; ~~n! i.; ~e~•.;~i;_e 
nC?'; h~b311!.{ ! ic.a_ t.~~ Mr~~.;~e 3 _! i.t•c.n~; ran t.f"ie =•U.rf 3.'8. 
Thi= .3n in:_1ltde .3t•~;~~i::i k.~~~{_. 3 P~lOr1:, 3 ~U.•::1'., 

EPdTEF'Ir.N; 'tiJ~l_~---Tn erit.eY. x,;.31! to=., !~r~rJ. rleed t.G 

U. e i:..~-i•3te'••;'='; !-{OU.1" Cl►3'••:'1~.e t'n~~r~M•311!a !(cf?~. !t.h 3 

t•I-re RET~ IF'r! ~•.e!a, prr~~! i.=a biJ.t.t.r_u7, rt'• prJ.~:~:. b! i.t.t.Cn; t.~~ 

pi _1:. 3r~ e 1 eh+gin+.•, •311 !a~,! r. h.3~•~~z t.n r~~, is a1 i~a'n +.{-,a 
r,e_•t.3r'r~'U.13r~ pt'np~~pt, i:,rit.l7 t.h2 eleMer~t. !~~!i. _•~~p_a, 

~:_ II=I r-, t. i r-~ u_~. 

ZK-5966-HC 

Sampling Input and Generating Events 7-69 



Figure 7-28: The Final Picture—VT241 

ZK-5967-HC 

7.5 Program Example Used in this Chapter 

Example 7-1 presents all of the changes that you need to make to Example 3-2 
in order to follow the code examples in this chapter. 

7-70 Sampling Input and Generating Events 



Example 7-1: Using the DEC GKS Asynchronous Input Functions 

IMPLICIT NONE 
INTEGER WS_ID, WISS, HOUSE, TREE, HORIZON, STARS, TITLE, 
* SIDE, ROAD 

DATA WS_ID / 1 /, WISS / 2 /, TITLE / 1 /, STARS / 2 /, 
* TREE / 3 /, SIDE / 4 /, ROAD / 5 /, HORIZON / 6 /, 
* HOUSE / 7 / 

CALL SETUP( WS_ID, WISS ) 
CALL DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 
CALL CLEANUP( WS_ID, WISS ) 

END 

C ************************************************************ 
C Set up the DEC GKS and the workstation environments.. 

SUBROUTINE SETUP( WS_ID, WISS ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, ERROR_STATUS, CATEGORY, INQUIRY_OKAY, 
* DUMMY_INTEGER, DEF MODE, REGEN_FLAG, WS_TYPE, WISS, 
* G'~KS LEVEL 

CHARACTER*80 DUMMY_STRING 

DATA INQUIRY_OKAY / 0 / 

CALL GKS$OPEN_GKS( 'temp.txt' ) 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, 
* ER.ROR_STATUS, CATEGORY ) 

C Make sure that the workstation type is valid. 
IF (( ERROR_STATUS .NE. INQUIRY_OKAY ) .OR. 
* (( CATEGORY .EQ. GKS$K WSCAT_MI ) .OR. 
* (( CATEGORY .EQ. GKS$K WSCAT_MO ) .OR. 
* (( CATEGORY .EQ. GKS$K_WSCAT_INPUT ) .OR. 
* ( CATEGORY .EQ. GKS$K WSCAT_WISS ))))) THEN 

WRITE(6,*) 
* 'The specified workstation type is invalid.' 

WRITE(6,*) 'Error status:', ERROR_STATUS 
STOP 

ENDIF 

CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID DEFAULT, 
* GKS$K WSTYPE_DEFAULT ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

(continued on next page) 

Sampling Input and Generating Events 7-71 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C Make sure that WISS is supported. 
CALL GKS$INQ_LEVEL( ERROR_STATUS, GKS_LEVEL ) 

IF (( ERROR_STATUS .NE. INQUIRY_OKAY ) .OR. 
* ( GKS_LEVEL .LT. GKS$K_LEVEL_2A )) THEN 

WRITE(6,*) 
* 'This level of GKS does not support WISS ' 

WRITE(6,*) 'Error status:', ERROR_STATUS 
STOP 

ENDIF 

C Open WISS so that you can store the help information. 
CALL GKS$OPEN_WS( WISS, GKS$K_CONID_DEFAULT, 
* GKS$K_WSTYPE_WISS ) 

RETURN 
END 

C ************************************************************ 

C Draw the picture, and place each primitive in a segment... 
SUBROUTINE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZON ) 

C Ask the user for input... 
CALL GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, TREE, 
* SIDE, ROAD, HOUSE, HORIZON ) 

C 

RETURN 
END 

************************************************************ 

C Clean up the DEC GKS and the workstation environments. 
SUBROUTINE CLEANUP( WS_ID, WISS ) 

INTEGER WS_ID 

CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WISS ) 
CALL GKS$CLOSE_GKS() 

RETURN 
END 

C ************************************************************ 
C From this point forward, all code is additional code that you 
C need to add to the "Starry Night" program. 
C ************************************************************ 

(continued on next page) 

7-72 Sampling Input and Generating Events 



Example 7-1 (Cont.~: Using the DEC GKS Asynchronous Input 
Functions 

c ************************************************************ 
C Coordinate user input... 

SUBROUTINE GO_FOR_INPUT( WS_ID, WS_TYPE, TITLE, STARS, 
* TREE, SIDE, ROAD, HOUSE, HORIZON ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBR.ARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, CATEGORY, ERROR_STATUS, FILL_PTS, FOREGROUND, 
* BACKGROUND, UNITY, HELP, HELP_BOX, WS_TYPE, WISS 
REAL FILL_X( 5 ), FILL_Y( 5 ), TEXT_EXTENT_X( 4 ), 

* TEXT_EXTENT_Y ( 4 ) , DUI~IY_REAL ( 4 ) 

DATA FILL_PTS / 5 /, FOREGROUND / 1 /, BACKGROUND / 0 /, 
* UNITY / 0 /, HELP / 8 /, HELP_BOX / 9 /, WISS / 2 / 

DATA FILL_X / 0.0, 1.0, 1.0, 0.0, 0.0 / 
DATA FILLY / 0.0, 0.0, 0.3, 0.3, 0.0 / 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, 
* ERROR_STATUS, CATEGORY ) 

IF ( CATEGORY .NE. GKS$K_WSCAT_OUTIN ) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'both input and output.' 
STOP 

ENDIF 

C Make sure that you are using the unity transformation... 
CALL GKS$SELECT_XFORM( UNITY ) 

C Fill an area on which to send the user a message... 
CALL GKS$SET_FILL_COLOR_INDEX( FOREGROUND ) 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 

C Create the HELP segment. 
CALL CREATE_HELP( WS_ID, WISS, HELP ) 

(continued on next page) 

Sampling Input and Generating Events 7-73 



Example 7-1 (Cont.~: Using the DEC GKS Asynchronous Input 
Functions 

C Set the proper text attributes. 
CALL GKS$SET_TEXT_HEIGHT( 0.04 ) 
CALL GKS$SET_TEXT_COLOR_INDEX( BACKGROUND ) 
CALL GKS$SET_TEXT_SPACING( -0.3 ) 

C Create the HELP/EXIT segments. 

CALL GKS$CREATE_SEG( HELP_BOX ) 
CALL GKS$INQ_TEXT_EXTENT( WS_ID, 0.65, 0.9, 'HELP/EXIT', 

* ERROR_STATUS, DUMMY_REAL, DUMMY_REAL, TEXT_EXTENT_X, 

* TEXT_EXTENT_Y ) 
TEXT_EXTENT_X( 1 ) = TEXT_EXTENT_X( 1) - 0.01 
TEXT_EXTENT_X( 4) = TEXT_EXTENT_X( 4) - 0.01 
TEXT_EXTENT_X( 2) = TEXT_EXTENT_X( 2) + 0.01 
TEXT_EXTENT_X( 3) = TEXT_EXTENT_X( 3) + 0.01 
TEXT_EXTENT_Y( 1) = TEXT_EXTENT_Y( 1) - 0.01 
TEXT_EXTENT_Y( 2) = TEXT_EXTENT_Y( 2) - 0.01 
TEXT_EXTENT_Y( 3) = TEXT_EXTENT_Y( 3) + 0.01 
TEXT_EXTENT_Y( 4) = TEXT_EXTENT Y( 4) + 0.01 
CALL GKS$FILL_AREA( 4, TEXT_EXTENT_X, TEXT_EXTENT_Y ) 
CALL GKS$TEXT( 0.65, 0.9, 
* 'HELP/EXIT' ) 
CALL GKS$CLOSE_SEG() 

C Initialize all input devices. 
CALL INIT_DEVICES( WS_ID, WS_TYPE ) 

C Make sure that all of the segments are detectable... 
CALL GKS$SET_SEG_DETECTABILITY( TITLE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( STARS, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( TREE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( SIDE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( ROAD, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( HOUSE, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG DETECTABILITY( HORIZON, GKS$K_DETECTABLE ) 
CALL GKS$SET_SEG_DETECTABILITY( HELP, GKS$K UNDETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( HELP_BOX, GKS$K_DETECTABLE ) 

C Reset the attribute values and the message board. 
CALL GKS$SET_TEXT_HEIGHT( 0.033 ) 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 

CALL GKS$TEXT( 0.05, 0.25, 
* 'When prompted, scale the picture elements.' ) 
CALL GKS$TEXT( 0.05, 0.20, 

* ' If you need help or if you are ready to finish , ' ) 
CALL GKS$TEXT( 0.05, 0.15, 
* 'move the square prompt to HELP/EXIT.' ) 
CALL GKS$TEXT( 0.05, 0.02, 
* '(Press RETURN when ready.)' ) 

(continued on next page) 

~.l 
7-74 Sampling Input and Generating Events 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C The user presses RETURN when ready to pick... 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ (5,*) 

C Erase the message and redraw the segments... 
CALL GKS$RIDRAW_SEG_ON WS( WS_ID ) 

C Get the input values. 
CALL GET_VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE) 

C Show the final picture... 
FILLY( 3) = 0.1 
FILLY( 4) = 0.1 
CALL GKS$FILL_AREA( FILL_PTS, FILL_X, FILLY ) 
CALL GKS$TEXT( 0.05, 0.05, 
* 'Here is the altered picture.' ) 

C Press RETURN when finished viewing the picture. 
CALL GKS$UPDATE_WS( WS_ID, GKS$K_POSTPONE_FLAG ) 
READ(5,*) 

RETURN 
END 

C ************************************************************ 
C This subroutine creates a help screen... 

SUBROUTINE CREATE_HELP( WS_ID, WISS, HELP 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WISS, HELP, BACKGROUND 

DATA BACKGROUND / 1 / 

C Only create the help screen on WISS. 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$ACTIVATE_WS( WISS ) 

C Set the necessary attributes. 
CALL GKS$SET_TEXT_HEIGHT( 0.033 ) 
CALL GKS$SET_TEXT_SPACING( -0.4 ) 
CALL GKS$SET_TEXT_COLOR_INDEX( BACKGROUND ) 

(continued on next page) 

Sampling Input and Generating Events 7-75 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C Create the help screen. 
CALL GKS$CREATE_SEG( HELP ) 
CALL GKS$TEXT( 0.05, 0.9, 
* 'DEVICES---One device chooses a picture item, one' ) 
CALL GKS$TEXT( 0.1, 0.85, 
* 'changes the current scaling value, and one either' ) 
CALL GKS$TEXT( 0.1, 0.80, 
* ' stops further scaling of a specified element , or' ) 
CALL GKS$TEXT( 0.1, 0.75, 
* 'it resets all elements to their original scaling' ) 
CALL GKS$TEXT( 0.1, 0.70, 
* 'and enables subsequent scaling.') 

CALL GKS$TEXT( 0.05, 0.65, 
* 'CYCLING INPUT DEVICES---If you have a numeric') 
CALL GKS$TEXT( 0.1, 0.60, 
* 'keypad, you can use the two keys, in the upper' ) 
CALL GKS$TEXT( 0.1, 0.55, 
* 'left corner, to turn devices on and off.' ) 
CALL GKS$TEXT( 0.1, 0.50, 
* 'Otherwise, all devices move synchronously.' ) 
CALL GKS$TEXT( 0.05, 0.45, 
* 'MOVING THE PROMPTS---Use whatever your device' ) 
CALL GKS$TEXT( 0.1, 0.40, 
* 'normally uses to move a cursor on the surface.' ) 
CALL GKS$TEXT( 0.1, 0.35, 
* 'This can include arrow keys, a mouse, a puck,' ) 
CALL GKS$TEXT( 0.1, 0.30, 
* 'or a joy disk.' ) 
CALL GKS$TEXT( 0.05, 0.25, 
* 'ENTERING VALUES---To enter values, you need to ' ) 
CALL GKS$TEXT( 0.1, 0.20, 
* 'use whatever your device normally uses, such as ' ) 
CALL GKS$TEXT( 0.1, 0.15, 
* 'the RETURN key, mouse button, or puck button; to' ) 
CALL GKS$TEXT( 0.1, 0.10, 
* 'pick an element, all you have to do is align the ' ) 
CALL GKS$TEXT( 0.1, 0.05, 
* 'rectangular prompt with the element you choose.' ) 
CALL GKS$TEXT( 0.1, 0.001, 
* 'Do you want to QUIT or CONTINUE?' ) 

CALL GKS$CLOSE_SEG() 

(continued on next page) 

7-76 Sampling Input and Generating Events 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C Associate the help screen and reactivate the workstation. 
CALL GKS$SET_SEG VISIBILITY( HELP, GKS$K_INVISIBLE ) 
CALL GKS$ASSOC_SEG WITH_WS( WS_ID, HELP ) 
CALL GKS$DEACTIVATE_WS( WISS ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

RETURN 
END 

C ************************************************************ 
C This subroutine initializes all input devices.. 

SUBROUTINE INIT_DEVICES( WS_ID, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, WS_TYPE, ERROR_STATUS, DUMMY_INTEGER, 
* NUM_PICK_DEVICES, DEVICE_NUM, INPUT_MODE, ECHO_FLAG, 
* INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, DATA_RECORD, RECORD_BUFFER_LENGTH, 
* RECORD_SIZE, PICK_DATA_RECORD( 10 ), 
* CHOICE DATA_RECORD( 3 ), NUM_VAL DEVICES, NUM_CHOICES, 
* NUM_CHOICE_DEVICES, SIZES( 10 ), ADDRESSES( 10 ), 
* LIST_PROMPT_TYPES( 10 ), PROMPT_RETURN_SIZE, PROMPT_FLAG, 
* INITIAL_CHOICE, INCR, AREA_FLAG, VAL_RECORD_BUFFER_LENGTH 
* VAL_PROMPT_ECHO_TYPE 
REAL CHOICE_ECHO_AREA( 4 ), VAL_ECHO_AREA( 4 ), 
* ECHO_AREA( 4 ), DUMMY_ARRAY( 4 ), VAL_DATA_RECORD( 2 ), 
* VALUE, UPPER_LIMIT, LOWER_LIMIT, MAX_COORD, DISPLAY_X, 
* DISPLAY_Y 

CHARACTER*80 DEFAULT_STRINGS( 2 ) 

DATA DEVICE_NUM / 1 / 

C First element in the data record is the number of choices. 
EQUIVALENCE( CHOICE_DATA_RECORD( 1 ), NUM_CHOICES ) 

C According to the standard, the elements in the data record are 
C the upper and lower limits for all prompt and echo types. 

EQUIVALENCE( VAL DATA_RECORD( 1 ), LOWER_LIMIT ) 
EQUIVALENCE( VAL DATA_RECORD( 2 ), UPPER_LIMIT ) 

(continued on next page) 

Sampling Input and Generating Events 7-77 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C Initialize the pick device. 
C Make sure that the device supports pick input... 

CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* DUMMY_INTEGER, NUM_PICK_DEVICES, DUMMY_INTEGER ) 

IF ( NUM_PICK_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'pick input.' 
STOP 

ENDIF 

C Give the data record the size of your data record buffer and 
C inquire about the realized pick values. 

RECORD_BUFFER_LENGTH = 40 
CALL GKS$INQ_PICK_STATE( WS_ID, DEVICE_NUM, 
* GKS$K_VALUE_REALIZED, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, PICK_DATA_RECORD, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Make sure that the data record was not truncated... 
IF ( RECORD_SIZE .LT. RECORD_BUFFER_LENGTH ) THEN 

WRITE(6,*) 'The data record was truncated.' 
WRITE(6,*) 'Declare a larger buffer.' 
STOP 

ENDIF 
C Make sure that the pick aperture is not placed on any segment. 

INITIAL_STATUS = GKS$K_STATUS_NOPICK 

C Make sure that the device is in request mode (the DEC GKS default). 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

C Initialize the device... 
CALL GKS$INIT_PICK( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, PICKED_SEGMENT, PICK_ID, 
* PROMPT_ECHO_TYPE, ECHO_AREA, PICK_DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

C Initialize the choice and valuator devices... 
C Make sure that the device supports choice input... 

CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER, 
* NUM_CHOICE_DEVICES, DUMMY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_CHOICE_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice input.' 
STOP 

ENDIF 

(continued on next page) 

7-78 Sampling Input and Generating Events 



Example 7-1 (Cont.): Using the DEC GKS Asynchronous Input 
Functions 

C Make sure that the device supports valuator input... 
CALL GKS$INQ_INPUT_DEV( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DUNIl~IY_INTEGER, NUM_VAL_DEVICES, 
* DUMMY_INTEGER, DUI~IY_INTEGER, DUMMY_INTEGER ) 

IF ( NUM_VAL_DEVICES .EQ. 0) THEN 
WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'valuator input.' 
STOP 

ENDIF 

C Obtain the default valuator values... 
VAL_RECORD_BUFFER_LENGTH = 8 
CALL GKS$INQ VALUATOR_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, VALUE, 
* VAL_PROMPT_ECHO_TYPE, VAL_ECHO_AREA, VAL_DATA_RECORD, 
* VAL_RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

C Establish the size of the choice record buffer: 12 bytes. 
RECORD_BUFFER_LENGTH = 12 

C The second element in the choice data record for prompt and echo type 1 
C is the pointer to the array containing sizes of each choice character 
C string. You need to initialize the pointer so that the array can be 
C initialized. 

CHOICE_DATA_RECORD( 2) _ '/.LOC( SIZES( 1 ) ) 

C The third element in the VT241 choice data record is the pointer to the 
C array containing the pointers to the strings to be used. You need 
C to initialize the pointer so that the array can be initialized. 

CHOICE_DATA_RECORD( 3) _ '/.LOC( ADDRESSES( 1 ) ) 
ADDRESSES ( 1) _ '/.LOC ( DEFAULT_STRINGS ( 1 ) ) 
ADDRESSES ( 2) _ '/.LOC ( DEFAULT_STRINGS ( 2) ) 

C There are ten choices. 
NUM_CHOICES = 10 

C Obtain the available prompt and echo types... 
CALL GKS$INQ_DEF_CHOICE DATA( WS_TYPE, DEVICE_NUM, 
* ERROR_STATUS, DUMMY_INTEGER, DU1~IY_INTEGER, 
* '/.DESCR( LIST_PROMPT_TYPES), CHOICE_ECHO_AREA, 
* CHOICE_DATA_RECORD, PROMPT_RETURN_SIZE, 
* RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

(continued on next page) 

Sampling Input and Generating Events 7-79 



Example 7-1 (Cont.): Using the DEC GKS Asynchronous Input 
Functions 

C Obtain the remaining default input values... 

CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT_ECHO_TYPE, CHOICE_ECHO_AREA, 

* CHOICE_DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE ) 

DO 400 INCR = 1, PROMPT_RETURN_SIZE, 1 
IF ( LIST_PROMPT_TYPES( INCR ) .EQ. 3) THEN 

PROMPT_FLAG = 1 
ENDIF 

400 CONTINUE 

C If the workstation does not support prompt and echo type 3... 
IF (PROMPT_FLAG .EQ. 0) THEN 

WRITE(6,*) 'The workstation does not support' 
WRITE(6,*) 'choice prompt and echo type 3.' 
STOP 

ENDIF 

C Make sure that the two echo areas don't conflict... 
IF ((( CHOICE_ECHO_AREA( 1) .EQ. VAL_ECHO_AREA( 1 ) ) .OR. 
* ( CHOICE_ECHO_AREA( 2) .EQ. VAL_ECHO_ARE.A( 2 ) )) .OR. 
* (( CHOICE_ECHO_AREA( 3) .EQ. VAL_ECHO_AREA( 3 ) ) .OR. 
* ( CHOICE_ECHO_AREA( 4) .EQ. VAL_ECHO_AREA( 4 ) ))) THEN 

CALL GKS$INQ_MAX_DS_SIZE( WS_TYPE, ERROR_STATUS, 
* DUMMY_INTEGER, DISPLAY_X, DISPLAY_Y, DUMMY_INTEGER, 
* DUMMY_INTEGER ) 

MAX_COORD = MAX( DISPLAY_X, DISPLAY_Y ) 

IF (DISPLAY_X .NE. DISPLAY Y) THEN 
IF (( DISPLAY_X / MAX_COORD ) .EQ. 1.0 ) THEN 

* 

CHOICE_ECHO_AREA( 1) = DISPLAY_X -
( DISPLAY_X - DISPLAY_Y ) 

CHOICE_ECHO_AREA( 2) = DISPLAY_X 
CHOICE_ECHO_AREA( 3) = 0.0 
CHOICE_ECHO_AREA( 4) = DISPLAY_Y / 2.02 
VAL_ECHO_AREA( 1 ) = DISPLAY_X -

( DISPLAY_X - DISPLAY_Y ) 
VAL_ECHO_AREA( 2) = DISPLAY_X 
VAL_ECHO_AREA( 3) = DISPLAY_Y / 1.98 
VAL_ECHO_AREA( 4) = DISPLAY_Y 

(continued on next page) 

7-80 Sampling Input and Generating Events 



Example 7-1 (Cont.): Using the DEC GKS Asynchronous Input 
Functions 

c 

C 

Make sure the pick area does not conflict... 
DO WHILE ( ECHO_AREA( 2) .GE. VAL_ECHO_AREA( 1) ) 

VAL_ECHO_AREA( 1 ) = VAL_ECHO_AREA( 1 ) + 
( VAL_ECHO_AREA( 1 ) / 100 ) 

CHOICE_ECHO_AREA( 1) = CHOICE_ECHO_ARF.A( 1 ) + 
( CHOICE_ECHO_AREA( 1 ) / 100 ) 

ELSE 

ENDDO 

CHOICE_ECHO_AR.EA( 1) = 0.0 
CHOICE_ECHO_AREA( 2) = DISPLAY_X / 2.02 
CHOICE_ECHO_AREA( 3) = DISPLAY_Y -

( DISPLAY_Y - DISPLAY_X ) 
CHOICE_ECHO_AREA( 4) = DISPLAY_Y 
VAL_ECHO_AREA( 1 ) = DISPLAY_X / 1.98 
VAL_ECHO_AREA( 2) = DISPLAY_X 
VAL_ECHO_AREA( 3) = DISPLAY_Y -

( DISPLAY_Y - DISPLAY_X ) 
VAL_ECHO_AREA( 4) = DISPLAY_Y 

Make sure the pick area does not conflict... 
DO WHILE ( ECHO_AREA( 4) .GE. VAL_ECHO_AREA( 3) ) 

VAL_ECHO_AREA( 1 ) = VAL_ECHO_AREA( 1) + 
( VAL_ECHO_AREA( 1 ) / 100 ) 

CHOICE_ECHO_AREA( 1 ) = CHOICE_ECHO_AREA( 1 ) + 
( CHOICE_ECHO_AREA( 1 ) / 100 ) 

ENDDO 

ENDIF ! MAX_COORD equals DISPLAY_X or DISPLAY_Y 

ELSE ! ELSE, if the surface is square... 

WRITE(6,*) 'The workstation surface is square.' 
WRITE(6,*) 'Any echo area I pick will cover' 
WRITE(6,*) 'part of the picture. You need to' 
WRITE(6,*) 'alter program transformations.' 
STOP 

ENDIF ! If the surface is square 
ENDIF ! If the echo areas conflict. 

C Initialize the choice device... 
PROMPT_ECHO_TYPE = 3 
INITIAL_CHOICE = 1 
NUM_CHOICES = 8 
INITIAL_STATUS = GKS$K_STATUS_NOCHOICE 

(continued on next page) 

Sampling Input and Generating Events 7-81 



Example 7-1 (Cont.~: Using the DEC GKS Asynchronous Input 
Functions 

C Establish sizes of prompt strings... 
SIZES( 1 ) = 5 
SIZES( 2) = 5 
SIZES( 3) = 4 
SIZES( 4) = 8 
SIZES( 5) = 4 
SIZES( 6) = 7 
SIZES( 7) = 5 
SIZES( 8) = 5 

C Establish locations of prompt strings... 
ADDRESSES ( 1 ) _ '/.LOC ( ' Title' ) 
ADDRESSES ( 2) _ '/.LOC ( ' Stars' ) 
ADDRESSES ( 3) _ '/.LOC ( ' Tree' ) 
ADDRESSES (4) _ '/.LOC ( ' Sidewalk' ) 
ADDRESSES ( 5) _ '/.LOC ( ' Road' ) 
ADDRESSES ( 6) _ '/.LOC ( ' Horizon' ) 
ADDRESSES ( 7) _ '/.LOC ( ' House' ) 
ADDRESSES ( 8) _ '/.LOC ( ' Reset' ) 

C Make sure that the device is in request mode (the DEC GKS default). 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* CHOICE_ECHO_AREA, CHOICE_DATA_RECORD, 
* RECORD_BUFFER_LENGTH ) 

C Initialize the valuator device... 
VALUE = 1.0 
UPPER_LIMIT = 1.5 
LOWER_LIMIT = 0.5 

C Make sure that the device is in request mode (the DEC GKS default). 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_REQUEST, GKS$K_ECHO ) 

CALL GKS$INIT_VALUATOR( WS_ID, DEVICE_NUM, 
* VALUE, VAL_PROMPT_ECHO_TYPE, VAL_ECHO_AREA, 
* VAL_DATA_RECORD, VAL_RECORD_BUFFER_LENGTH ) 

RETURN 
END 

(continued on next page) 

7-82 Sampling Input and Generating Events 



Example 7-1 ~Cont.): Using the DEC GKS Asynchronous Input 
Functions 

c ************************************************************ 
C This subroutine obtains input values... 

SUBROUTINE GET_VALUES( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, HELP, HELP_BOX, DEVICE_NUM, FINISHID_FLAG, 
* PICKED_SEGMENT, PICK_INPUT_STATUS, INPUT_STATUS, 
* PICK_ID, CLASS, ERROR_STATUS, INPUT_CHOICE, RESET, 
* MORE_EVENTS_FLAG, DUI~IY_INTEGER, NEW_FRAME_FLAG, WS_TYPE, 
* CURRENT_SEGMENT, INITIAL_STATUS, PROMPT_ECHO_TYPE, 
* PICK_DATA_RECORD( 10 ), RECORD_BUFFER_LENGTH, REPEAT_FLAG, 
* HELP_FLAG, VALUE_FLAG, LOCKED_SEGMENT, INCR 
REAL IDENTITY( 6 ), TITLE_XFORM_MATRIX( 6 ), 
* STARS_XFORM_MATRIX( 6 ), HOUSE_XFORM_MATRIX( 6 ), 
* TREE_XFORM_MATRIX( 6 ), SIDE_XFORM_MATRIX( 6 ), 
* ROAD_XFORM_MATRIX( 6 ), HORIZON_XFORM_MATRIX( 6 ), VALUE, 
* FIXED_X, FIXED_Y, CURRENT_VALUE, ECHO_AREA( 4 ) 

DATA DEVICE_NUM / 1 /, FINISHED_FLAG / 0 /, RESET / 8 / 

C Place the devices in the proper input mode. 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_SAMPLE, GKS$K_ECHO ) 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR MODE( WS_ID, DEVICE_NUM, 
* GKS$K_INPUT MODE_EVENT, GKS$K_ECHO ) 

C Create an identity matrix and initial transformation matrixes. 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, IDENTITY ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, TITLE_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, STARS_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, HOUSE_XFORM_MATRIX ) 
CALL GKS$EVAL XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, SIDE_XFORM_MATRIX ) 
CALL GKS$EVAL XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, ROAD_XFORM_MATRIX ) 
CALL GKS$EVAL_XFORM_MATRIX( 0.0, 0.0, 0.0, 0.0, 0.0, 
* 1.0, 1.0, GKS$K_COORDINATES_NDC, HORIZON_XFORM_MATRIX ) 

(continued on next page) 

Sampling Input and Generating Events 7-83 



Example 7-1 (Cont.): Using the DEC GKS Asynchronous Input 
Functions 

HELP_FLAG = 0 
REPEAT_FLAG = 0 
VALUE = 1.0 
VALUE_FLAG = 0 
CURRENT_VALUE = 1.0 
LOCKED_SEGMENT = 0 
DO WHILE (FINISHED_FLAG .NE. 1 ) 

CALL GKS$SAMPLE_PICK( WS_ID, DEVICE_NUM, 
* PICK_INPUT_STATUS, PICKED_SEGMENT, PICK_ID ) 

IF (( LOCKED_SEGMENT .NE. 0) .AND. 
* ( PICKED_SEGMENT .NE. LOCKED_SEGMENT )) THEN 

LOCKED_SEGMENT = 0 
ENDIF 

IF (( PICKED_SEGMENT .NE. HELP_BOX ) .AND. 
* ( HELP_FLAG .EQ. 1 )) THEN 

HELP_FLAG = 0 
ENDIF 

IF ( HELP_FLAG .EQ. 1) THEN 
PICKED_SEGMENT = TITLE 
PICK_INPUT_STATUS = GKS$K_STATUS_NOPICK 

ENDIF 

IF (( PICKED_SEGMENT .EQ. HELP_BOX ) .AND. 
* ( HELP_FLAG .NE. 1 )) THEN 

CALL GET_HELP( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, 
* FINISHED_FLAG, WS_TYPE ) 

HELP_FLAG = 1 

ELSE 

C Check the event queue. 
CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 

C Check for queue overflow . 
CALL GKS$INQ_INPUT_QUEUE_OVERFLOW( ERROR_STATUS, WS_ID, 
* CLASS, DEVICE_NUM ) 

C If the queue has overflowed... 
IF ( ERROR_STATUS .EQ. 0) THEN 
CALL GKS$FLUSH_DEVICE_EVENTS( WS_ID, 
* GKS$K_INPUT_CLASS_VALUATOR, DEVICE_NUM ) 
CALL GKS$FLUSH_DEVICE_EVENTS( WS_ID, 
* GKS$K_INPUT_CLASS_CHOICE, DEVICE_NUM ) 
CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 
ENDIF 

100 CONTINUE 

(continued on next page) 

7-84 Sampling Input and Generating Events 



Example 7-1 (Cont.~: Using the DEC GKS Asynchronous Input 
Functions 

IF ( CLASS .EQ. GKS$K_INPUT_CLASS_CHOICE) THEN 
CALL GKS$GET_CHOICE( INPUT_STATUS, INPUT_CHOICE ) 

IF ( INPUT_STATUS .NE. GKS$K_STATUS_NOCHOICE ) THEN 
IF ( INPUT_CHOICE .NE. RESET) THEN 

CALL GKS$SET_SEG_DETECTABILITY( INPUT_CHOICE, 
* GKS$K_UNDETECTABLE ) 

C Don't let the user scale the segment any more. 
LOCKED_SEGMENT = PICKED_SEGMENT 

ELSE 

CALL GKS$SET_SEG_XFORM( TITLE, IDENTITY ) 
DO 200 INCR = 1, 6, 1 
TITLE_XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

200 CONTINUE 
CALL GKS$SET_SEG_XFORM( STARS, IDENTITY ) 
DO 300 INCR = 1, 6, 1 
STARS_XFORM_MATRIX( INCR) = IDENTITY( INCR ) 

300 CONTINUE 
CALL GKS$SET_SEG_XFORM( HOUSE, IDENTITY ) 
DO 400 INCR = 1, 6, 1 
HOUSE_XFORM_MATRIX( INCR) = IDENTITY( INCR ) 

400 CONTINUE 
CALL GKS$SET_SEG_XFORM( TREE, IDENTITY ) 
DO 500 INCR = 1, 6, 1 
TREE_XFORM_MATRIX( INCR ) = IDENTITY( INCR ) 

500 CONTINUE 
CALL GKS$SET_SEG_XFORM( SIDE, IDENTITY ) 
DO 600 INCR = 1, 6, 1 
SIDE_XFORM_MATRIX( INCR) = IDENTITY( INCR ) 

600 CONTINUE 
CALL GKS$SET_SEG_XFORM( ROAD, IDENTITY ) 
DO 700 INCR = 1, 6, 1 
ROAD_XFORM MATRIX( INCR ) = IDENTITY( INCR ) 

700 CONTINUE 

CALL GKS$SET_SEG XFORM( HORIZON, IDENTITY ) 
DO 800 INCR = 1, 6, 1 
HORIZON_XFORM_MATRIX( INCR ) = IDENTITY( INCR 

800 CONTINUE 

(continued on next page) 

Sampling Input and Generating Events 7-85 



Example 7-1 (Cont.): Using the DEC GKS Asynchronous Input 
Functions 

CALL GKS$SET_SEG_DETECTABILITY( TITLE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( STARS, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( HOUSE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG DETECTABILITY( TREE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( SIDE, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( ROAD, 
* GKS$K_DETECTABLE ) 

CALL GKS$SET_SEG_DETECTABILITY( HORIZON, 
* GKS$K_DETECTABLE ) 

C Check to see whether the picture on the screen is out of date. 

CALL GKS$INQ_WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DU1~IY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release def erred output. Regenerate if necessary. 
IF ( NEW_FRAME_FLAG .EQ. GKS$K_NEWFR.AME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

ENDIF ! If choice does not equal reset. 
ENDIF ! If input status does not equal no choice. 

ENDIF ! If input class equals choice. 

IF ( CLASS .EQ. GKS$K_INPUT_CLASS VALUATOR ) THEN 
CALL GKS$GET_VALUATOR( VALUE ) 
VALUE_FLAG = 1 

ENDIF 

C Check for simultaneously entered events... 
CALL GKS$INQ_MORE_SIMUL_EVENTS( ERROR_STATUS, 
* MORE_EVENTS_FLAG ) 

C If there are more simultaneous events, take them from the queue... 
IF ( MORE_EVENTS_FLAG .EQ. GKS$K_MORE_EVENTS) THEN 

CALL GKS$AWAIT_EVENT( 0.0, WS_ID, CLASS, DEVICE_NUM ) 
GOTO 100 

ENDIF 

(continued on next page) 

7-86 Sampling Input and Generating Events 



Example 7-1 (Cont.): Using the DEC GKS Asynchronous Input 
Functions 

IF ( PICK_INPUT_STATUS .EQ. GKS$K_STATUS_NOPICK ) THEN 
REPEAT_FLAG = 1 

ELSEIF ( VALUE .EQ. 1.0 ) THEN 
REPEAT_FLAG = 1 

ELSEIF (( VALUE_FLAG .EQ. 0) .AND. 
* ( PICKID_SEGMENT .EQ. CURRENT_SEGMENT )) THEN 

REPEAT_FLAG = 1 
ELSEIF ( PICKID_SEGMENT . EQ . LOCKID_SEGMENT ) THEN 

REPEAT_FLAG = 1 
ENDIF 

C Establish fixed points for segments depending on picked segment. 
IF ( REPEAT_FLAG .EQ. 0) THEN 
IF ( PICKID_SEGMENT .EQ. TITLE ) THEN 

FIXID_X = 0.3 
FIXID_Y = 0.925 
CALL GKS$ACCUM_XFORM_MATRIX( TITLE_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, TITLE XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( TITLE, TITLE_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT .EQ. STARS ) THEN 

FIXID_X = 0.5 
FIXED_Y = 0.8 
CALL GKS$ACCUM_XFORM_MATRIX( STARS_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, STARS_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( STARS, STARS_XFORM_MATRIX ) 
ELSEIF ( PICKID_SEGMENT . EQ . TREE) THEN 

FIXID_X = 0.52 
FIXID_Y = 0.51 
CALL GKS$ACCUM_XFORM_MATRIX( TREE_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, TREE_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( TREE, TREE_XFORM_MATRIX ) 

ELSEIF ( PICKID_SEGMENT . EQ . SIDE ) THEN 
FIXID_X = 0.225 
FIXID_Y = 0.22 
CALL GKS$ACCUM_XFORM_MATRIX( SIDE_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, SIDE_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( SIDE, SIDE_XFORM_MATRIX ) 

ELSEIF ( PICKID_SEGMENT . EQ . ROAD ) THEN 
FIXID_X = 0.5 
FIXID_Y = 0.075 
CALL GKS$ACCUM_XFORM_MATRIX( ROAD_XFORM_MATRIX, 

* FIXID_X, FIXID_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, ROAD_XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( ROAD, ROAD_XFORM_MATRIX ) 

(continued on next page) 

Sampling Input and Generating Events 7-87 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

ELSEIF ( PICKED_SEGMENT .EQ. HORIZON ) THEN 
FIXED_X = 0.1 
FIXED_Y = 0.35 
CALL GKS$ACCUM_XFORM_MATRIX( HORIZON_XFORM_MATRIX, 

* FIXED_X, FIXED_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, HORIZON XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( HORIZON, HORIZON_XFORM_MATRIX ) 
ELSEIF ( PICKED_SEGMENT .EQ. HOUSE ) THEN 

FIXED_X = 0.2 
FIXED_Y = 0.5 
CALL GKS$ACCUM_XFORM_MATRIX( HOUSE_XFORM MATRIX, 

* FIXED_X, FIXED_Y, 0.0, 0.0, 0.0, VALUE, VALUE, 
* GKS$K_COORDINATES_NDC, HOUSE XFORM_MATRIX ) 

CALL GKS$SET_SEG_XFORM( HOUSE, HOUSE_XFORM_MATRIX ) 
ENDIF ! Scaling. 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release deferred output. Regenerate if necessary. 
IF ( NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

ENDIF ! If we aren't repeating a transformation... 

C Reset the repeating transformations flag. 
REPEAT_FLAG = 0 

ENDIF ! If segment equals help. 

C Set the current segment, current value, and entered value flag... 
CURRENT_SEGMENT = PICKED_SEGMENT 
CURRENT_VALUE = VALUE 
VALUE_FLAG = 0 

ENDDO 

RETURN 
END 

(continued on next page) 

7-88 Sampling Input and Generating Events 



Example 7-1 (Cont.~: Using the DEC GKS Asynchronous Input 
Functions 

c ************************************************************ 
C This subroutine makes the help screen visible... 

SUBROUTINE GET_HELP( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 
* HOUSE, HORIZON, HELP, HELP_BOX, FINISHID_FLAG, WS_TYPE ) 

IMPLICIT NONE 
INCLUDE 'SYS$LIBRARY:GKSDEFS.FOR' 
INTEGER WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZON, HELP, HELP_BOX, DEVICE_NUM, FINISHED_FLAG, 
* NEW_FRAME_FLAG, DUMMY_INTEGER, ERROR_STATUS, INPUT_MODE, 
* ECHO_FLAG, INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* CHOICE_DATA_RECORD( 3 ), RECORD_BUFFER_LENGTH, RECORD_SIZE, 
* TEMP_DATA_RECORD( 3 ), TEMP_RBL, TEMP_RECORD_SIZE, 
* LIST_PROMPT_TYPES, PROMPT_RETURN_SIZE, TEMP_INITIAL_STATUS, 
* TEMP_INITIAL_CHOICE, NUM_CHOICES, SIZES( 10 ), 
* ADDRESSES( 10 ), TEMP_SIZES( 2 ), TEMP_ADDRESSES( 2 ), 
* INPUT_STATUS, CHOICE, WS_TYPE, CONTINUE 

CHARACTER*80 CURRENT_STRINGS( 10 ), 
* TEMP_CURRENT_STRINGS( 2 ) 

REAL ECHO_AREA( 4 ), TEMP_ECHO_AREA( 4 ) 

DATA DEVICE_NUM / 1 /, CONTINUE / 1 / 

EQUIVALENCE( CHOICE_DATA_RECORD( 1 ), NUM_CHOICES ) 

C Reset visibility 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 
CALL GKS$SET_SEG 

CALL GKS$SET 
* GKS$K_INPUT 
CALL GKS$SET 
* GKS$K_INPUT 
CALL GKS$SET 
* GKS$K_INPUT 

of all segments and deactivate the input prompts. 
VISIBILITY( TITLE, GKS$K_INVISIBLE ) 
VISIBILITY( STARS, GKS$K_INVISIBLE ) 
_VISIBILITY( TREE, GKS$K_INVISIBLE ) 
_VISIBILITY( SIDE, GKS$K_INVISIBLE ) 
VISIBILITY( ROAD, GKS$K_INVISIBLE ) 
_VISIBILITY( HOUSE, GKS$K_INVISIBLE ) 
_VISIBILITY( HORIZON, GKS$K_INVISIBLE ) 
_VISIBILITY( HELP_BOX, GKS$K_INVISIBLE ) 
_VISIBILITY( HELP, GKS$K_VISIBLE ) 

_CHOICE_MODE( WS_ID, DEVICE_NUM, 
_MODE_REQUEST, GKS$K_ECHO ) 
_PICK_MODE( WS_ID, DEVICE_NUM, 
_MODE_REQUEST, GKS$K_ECHO ) 
_VALUATOR_MODE( WS_ID, DEVICE_NUM, 
_MODE_REQUEST, GKS$K_ECHO ) 

(continued on next page) 

Sampling Input and Generating Events 7-89 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C Store the current choice values... 
CHOICE_DATA_RECORD( 1) = 10 
CHOICE_DATA_RECORD( 2) _ '/.LOC( SIZES( 1 ) ) 
SIZES( 1 ) = 80 
SIZES( 2) = 80 
SIZES( 3) = 80 
SIZES( 4) = 80 
SIZES( 5) = 80 
SIZES( 6) = 80 
SIZES( 7) = 80 
SIZES( 8) = 80 
SIZES( 9) = 80 
SIZES( 10 ) = 80 
CHOICE_DATA_RECORD( 3) _ '/.LOC( ADDRESSES( 1) ) 
ADDRESSES( 1 ) _ '/.LOC( CURRENT_STRINGS( 1 ) ) 
ADDRESSES( 2) _ '/.LOC( CURRENT_STRINGS( 2) ) 
ADDRESSES( 3) _ '/.LOC( CURRENT_STRINGS( 3) ) 
ADDRESSES ( 4) _ '/.LOC ( CURRENT_STRINGS ( 4) ) 
ADDRESSES( 5) _ '/.LOC( CURRENT_STRINGS( 5) ) 
ADDRESSES( 6) _ '/.LOC( CURRENT_STRINGS( 6) ) 
ADDRESSES ( 7) _ '/.LOC ( CURRENT_STRINGS ( 7) ) 
ADDRESSES( 8) _ '/.LOC( CURRENT_STRINGS( 8) ) 
ADDRESSES( 9) _ '/.LOC( CURRENT_STRINGS( 9) ) 
ADDRESSES( 10 ) _ '/.LOC( CURRENT_STRINGS( 10 ) ) 

C Save the current choice input initialization values... 
RECORD_BUFFER_LENGTH = 12 
CALL GKS$INQ_CHOICE_STATE( WS_ID, DEVICE_NUM, 
* ERROR_STATUS, INPUT_MODE, ECHO_FLAG, INITIAL_STATUS, 
* INITIAL_CHOICE, PROMPT_ECHO_TYPE, ECHO_AREA, 
* CHOICE_DATA_RECORD, RECORD_BUFFER_LENGTH, RECORD_SIZE 

C Obtain the default values and put them in temporary buffers. 
TEMP_DATA_RECORD( 1 ) = 2 
TEMP_DATA_RECORD( 2) _ '/.LOC( TEMP_SIZES( 1 ) ) 
TEMP_DATA_RECORD( 3) _ '/.LOC( TEMP_ADDRESSES( 1 ) ) 
TEMP_ADDRESSES( 1) _ '/.LOC( TEMP_CURRENT_STRINGS( 1 ) ) 
TEMP_ADDRESSES( 2) _ '/.LOC( TEMP_CURRENT_STRINGS( 2) ) 

C Inquire the default values... 
TEMP_RBL = 12 
CALL GKS$INQ_DEF_CHOICE_DATA( WS_TYPE, DEVICE_NUM, 
* ERROR_STATUS, DUMMY_INTEGER, DUMMY_INTEGER, 
* '/.DESCR( LIST_PROMPT_TYPES), TEMP_ECHO_AREA, 
* TEMP_DATA_RECORD, PROMPT_RETURN_SIZE, TEMP_RBL, 
* TEMP_RECORD_SIZE ) 

(continued on next page) 

7-90 Sampling Input and Generating Events 



Example 7-1 (Cont.~: Using the DEC GKS Asynchronous Input 
Functions 

C Set temporary values... 
TEMP_INITIAL_CHOICE = 1 
TEMP_INITIAL_STATUS = GKS$K_STATUS_OK 
TEMP_SIZES( 1 ) = 8 
TEMP_SIZES( 2) = 4 
TEMP_ADDRESSES( 1) _ '/.LOC( 'Continue' ) 
TEMP_ADDRESSES( 2) _ '/.LOC( 'Exit' ) 

C Reinitialize the choice device... 
CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 
* TEMP_INITIAL_STATUS, TEMP_INITIAL_CHOICE, 
* PROMPT_ECHO_TYPE, TEMP_ECHO_AREA, TEMP_DATA_RECORD, 
* TEMP_RBL ) 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ_WS_DEFER AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUI~+IY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release def erred output. Regenerate if necessary. 
IF ( NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

C Ask the user to quit or to continue... 
CALL GKS$REQUEST_CHOICE( WS_ID, DEVICE_NUM, INPUT_STATUS, 
* CHOICE ) 

C Reset the visibility of the segments. 
CALL GKS$SET_SEG_VISIBILITY( TITLE, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( STARS, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( TREE, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( SIDE, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( ROAD, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HOUSE, GKS$K_VISIBLE ) 
CALL GKS$SET_SEG_VISIBILITY( HORIZON, GKS$K_VISIBLE ) 
IF (CHOICE .EQ. CONTINUE) THEN 
CALL GKS$SET_SEG VISIBILITY( HELP_BOX, GKS$K_VISIBLE ) 
ENDIF 
CALL GKS$SET_SEG_VISIBILITY( HELP, GKS$K_INVISIBLE ) 

C Check to see whether the picture on the screen is out of date. 
CALL GKS$INQ_WS_DEFER_AND_UPDATE( WS_ID, ERROR_STATUS, 
* DUMMY_INTEGER, DUMMY_INTEGER, DUMMY_INTEGER, 
* NEW_FRAME_FLAG ) 

C Release def erred output. Regenerate if necessary. 
IF ( NEW_FRAME_FLAG .EQ. GKS$K_NEWFRAME_NECESSARY ) THEN 

CALL GKS$UPDATE_WS( WS_ID, GKS$K_PERFORM_FLAG ) 
ENDIF 

(continued on next page) 

Sampling Input and Generating Events 7-91 



Example 7-1 (Copt.): Using the DEC GKS Asynchronous Input 
Functions 

C Set values depending on the user's choice. 
IF ( CHOICE .EQ. CONTINUE) THEN 

FINISHED_FLAG = 0 

C Reset the choice device with its previous values... 
CALL GKS$INIT_CHOICE( WS_ID, DEVICE_NUM, 

* INITIAL_STATUS, INITIAL_CHOICE, PROMPT_ECHO_TYPE, 
* ECHO_AREA, CHOICE_DATA_RECORD, RECORD_BUFFER_LENGTH ) 

C Reactivate the input devices... 
CALL GKS$SET_CHOICE_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 
CALL GKS$SET_PICK_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_SAMPLE, GKS$K_ECHO ) 
CALL GKS$SET_VALUATOR_MODE( WS_ID, DEVICE_NUM, 

* GKS$K_INPUT_MODE_EVENT, GKS$K_ECHO ) 

ELSE 
FINISHED_FLAG = 1 
CALL GKS$DELETE_SEG( HELP_BOX ) 

ENDIF 

RETURN 
END 

7-92 Sampling Input and Generating Events 



Appendix A 

DEC GKS Glossary 

This appendix is a list of definitions of some of the DEC GKS terminology used 
in the DEC GKS documentation. 

active devices 
Logical input devices whose prompts currently appear on the workstation 
surface. To deactivate a logical input device, you remove its prompt from 
the workstation surface by placing the device in request mode. 

aperture 
A pick logical input cursor that a user positions on a segment to be picked. 

aspect ratio 
A ratio of Y to X used to describe the shape of a rectangle in a particular 
coordinate system. The aspect ratio of the rectangular region affects the 
shapes of the output primitives contained in the region. 

asynchronous input 
A method of interaction between an application and its user. DEC GKS 
sample and event asynchronous input modes allow the user to enter input 
values while the application continues to execute. See also synchronous 
input. 

attribute 
A particular property that applies to an output primitive (such as character 
height) or to a segment (such as highlighting). 

attribute source flag (ASF► 
A setting that tells DEC GKS to use either individual or bundled attribute 
settings when generating an output primitive. 

DEC GKS Glossary A-1 



background color 
The color of a blank workstation surface. 

baseline 
A horizontal line within a character body which, for many character 
definitions, has the appearance of being the lower limit of the character 
shape. A descender passes below this line. All baselines in a font are in 
the same position in the character bodies. 

bound attributes 
Attribute values that DEC GKS assigns to a primitive at the time of output 
generation. Bound attribute values cannot be changed. 

break 
A device-dependent method the user has of terminating the input process 
without changing the measure of a logical input device. See also measure. 

bundle index 
An integer value that specifies a single entry in a bundle table for a 
particular output primitive. A bundle table entry contains settings for each 
nongeometric attribute of an output primitive. 

bundle table 
A workstation-dependent table associated with a particular output 
primitive. Entries in the table specify all the workstation-dependent aspects 
of a primitive. Bundle tables exist for the output primitives polyline, 
polymarker, text and fill area. See also attribute. 

caplines 
A horizontal line within a character body, which, for many character 
definitions, has the appearance of being the upper limit of the character 
shape. An ascender may pass above this line and in some languages an 
additional mark (for example, an accent) over the character may be defined 
above this line. All caplines in a font are in the same position in the 
character bodies. 

cell array 
An output primitive consisting of a rectangular grid of equal size rectangular 
cells, each having a single color or shade. 

centerline 
A vertical line bisecting the character body. 

A-2 DEC GKS Glossary 



character body 
A rectangle used by a font designer to define a character shape. All 
character bodies in a font have the same height. 

choice device 
A logical input device providing a nonnegative integer defining one of a 
set of alternatives. An example of a choice prompt is a menu with a single 
highlighted choice. 

clipping 
Removing parts of output primitives that extend outside a window or 
viewport. 

color table 
A workstation-dependent table, in which the entries associate red, green 
and blue intensity values to color indexes. Color indexes are integer values 
that indicate individual color table entries. 

current event report 
The oldest event report, which is removed from the event input queue and 
placed into the DEC GKS state list by a call to GKS$AWAIT~VENT (as 
long as the queue contains at least one report). See also event input queue 
and report. 

cycling 
A process by which a user activates the prompt of only one logical input 
device and deactivates all other prompts, activating each prompt in 
succession in some device-specific order. See also active devices. 

deferred output 
A process of delaying the transmission of output primitives to the surface of 
a workstation. 

device coordinate system 
A physical device's coordinate system used by a DEC GKS workstation. 
Device coordinate units are device dependent, and are expressed either in 
meters or some device-specific unit of measure. You use all or part of the 
device coordinate system to present graphical pictures. 

device dependent 
A property that is unique to a particular device (terminal, plotter, 
workstation, and so forth). For instance, the device coordinate system range 
is device dependent; its minimum and maximum X and Y values differ from 
device to device. 

DEC GKS Glossary A-3 



device independent 
A property that remains consistent no matter which device you use 
(terminal, plotter, workstation, and so forth). For instance, text height, since 
it is expressed in world coordinates, is a device independent attribute; a 
single value can apply to any workstation you use. 

display surface 
See workstation surface. 

dynamic changes 
Attribute or transformation changes that DEC GKS can implement without 
having to redraw the entire picture on the workstation surface. 

echo 
Visual indication on the workstation surface of the current logical input 
device measure. See also prompt and echo types. 

escape 
A function used to access implementation or device-dependent features 
other than output generation (Generalized Drawing Primitives access 
device-dependent output features). 

event mode 
An asynchronous input operating mode that allows the user to trigger 
input devices, placing event reports on the event input queue. When the 
application chooses, it removes the oldest report from the queue, places 
it in the current event report, and processes the information. See also 
asynchronous input and report. 

event input queue 
A time-ordered queue on which a device handler places an input report, 
which the input process generates each time the user triggers a device in 
event mode. See also report and trigger. 

event queue overflow 
A condition that occurs when the queue cannot accept subsequently 
generated reports. In order to allow the user to generate further reports, 
you need to empty the event input queue. See also report. 

fill area 
An output primitive consisting of a polygon which may be hollow or may 
be filled with a uniform color, a pattern, or a hatch style. 

A-4 DEC GKS Glossary 



fill area bundle table 
A table associating specific values, for all fill area nongeometric attributes, 
with a fill area bundle index. This table contains entries consisting of 
interior style, style index, and color index. See also index. 

foreground colors 
Colors that a workstation uses to represent output primitives. 

generalized drawing primitive GDP) 
An output primitive used to address special geometrical workstation 
capabilities, such as a curve drawing. For example, a workstation can 
support a GDP that draws circles. 

geometric attributes 
Primitive attributes that are device-dependent attributes. For instance, 
character height, character path, and pattern size are geometric attributes. 

GKS level 
A value from both the output levels (m, 0, 1, 2) and the input levels (a, b, 
c) that together define the minimal functional capabilities provided by a 
specific GKS implementation. 

GKS Metafile (GKSM) 
A standard metafile structure used by DEC GKS. See also metafile. 

graphics handler 
A device-dependent part of a DEC GKS implementation that supports a 
physical device. The DEC GKS kernel uses graphics handlers to perform 
the device-dependent tasks involved with output generation and input 
requests. 

halfline 
A horizontal line between the capline and the baseline within the character 
body, on which a horizontal string of characters in a font would appear 
centrally placed in the vertical direction. All halflines in a font are in the 
same position in the character bodies. 

hatch 
One possible method of filling the interior of a fill area primitive. DEC GKS 
fills the interior with an arrangement of one or more sets of parallel lines. 
When generating hatches, DEC GKS overlays the hatch so that portions of 
the underlying primitives are still visible. 

DEC GKS Glossary A-5 



highlighting 
A device-independent way of emphasizing a segment by modifying its 
appearance on the workstation surface. For example, an implementation of 
GKS can highlight a segment by causing all segment primitives to blink on 
and off . 

identity transformation 
A default segment transformation (number 0) that makes no changes to the 
segment as stored on the NDC plane. 

implicit regeneration 
A process of clearing the workstation surface and redrawing only the 
stored segments. DEC GKS performs implicit regenerations if you request 
an attribute or transformation change that cannot be implemented 
dynamically. If an implicit regeneration occurs, you lose all primitives not 
stored in segments. See also segments. 

index 
An integer value that specifies a single entry in a bundle table. See also 
bundle table. 

input class 
A set of input devices that returns the same DEC GKS data type. The input 
classes are locator, stroke, valuator, choice, pick, and string. 

interaction 
A request for input from an application user. 

inquiry function 
A function that returns default or current values contained in DEC GKS 
data structures. Calls to these functions have no effect on the DEC GKS 
operating state or on the currently generated picture. 

kernel 
A part of a GKS implementation that performs device-independent tasks. 
To perform device-dependent tasks, the DEC GKS kernel calls a specified 
graphics handler. 

locator device 
A logical input device that accepts a device coordinate point and returns the 
corresponding world coordinate points. See also world coordinate system. 

A-6 DEC GKS Glossary 



lock 
A disabling of an active logical input device prompt so that its measure 
cannot be changed. See also active devices, event mode, and measure. 

logical input device 
An abstraction of one or more physical devices that delivers logical input 
values to the program. Logical input device classes are locator, stroke, 
valuator, choice, pick and string. 

mapping 
A process of transferring the contents of a window to the interior of 
a viewport. Mapping in a normalization transformation establishes a 
one-to-one correspondence between the points in both the window and 
the viewport. Mapping in a workstation transformation establishes a 
one-to-one correspondence between the points in the window, and the 
points in the section of the viewport that maintains the aspect ratio of the 
picture. See also aspect ratio. 

marker 
A symbol with a specified appearance that you use to identify a particular 
location. 

measure 
A current value of a logical input device. 

metafile 
An audit of a DEC GKS picture generation session. Metafiles are used for 
long-term graphical data storage. You can use a metafile to reproduce a 
picture generated by another application program. 

MI 
An abbreviation for the DEC GKS metafile input workstation category. 

MO 
An abbreviation for the DEC GKS metafile output workstation category. 

nominal sizes 
A default line width or marker size as determined by the graphics handler. 
DEC GKS adjusts these sizes by multiplying the nominal size times the 
current scale factor value. 

DEC GKS Glossary A-7 



nongeometric attributes 
Primitive attributes that are device-independent. For instance, line type, 
marker size scale factor, and fill area interior style are nongeometric 
attributes. 

normalization transformation 
A process of mapping a window in world coordinate space into a 
viewport in normalized device coordinate space. You use normalization 
transformations to compose adevice-independent picture. 

normalized device coordinate (NDC) system 
A device-independent coordinate system. You use the NDC coordinate 
system as a pasteboard on which to compose a complete graphical picture. 

occludes 
Overlaps. 

operating modes 
Synchronous and asynchronous methods of input. The three input 
operating modes are request, sample, and event mode. 

operating state 
An ability to access a given number of DEC GKS data structures depending 
on the previously called control functions. The current DEC GKS operating 
state determines which DEC GKS functions you can or cannot call at a 
given point in an application program. 

output primitive 
See 

primitive. 

overflow 
See event queue overflow. 

pattern 
A pattern is a cell array that alternates its cells in a sequence of colors or 
shades. Patterns always overwrite any underlying primitives. 

physical device 
A tool used to generate graphical output or accept graphical input. 
Terminals, plotters, printers, and workstations are examples of physical 
devices. 

A-8 DEC GKS Glossary 



pick device 
A logical input device that accepts a device coordinate point and returns the 
name of the segment that contains the picked primitive. DEC GKS segment 
names are integer values. See also segment. 

pick identifier 
An output attribute that allows you to name output primitives within a 
segment. At the time of primitive generation, DEC GKS assigns the current 
pick identifier integer value to the primitive. During pick input, the pick 
logical input device returns both the name of the segment that contains the 
picked primitives, and that primitive's pick identifier. 

picture 
A collection of output primitives or segments displayed at any one time on 
a workstation surface. 

pixel 
The smallest element of a display surface that can be independently 
assigned a color or intensity. 

polyline 
An output primitive consisting of a set of connected lines. 

polyline bundle table 
A table associating specific values, for all polyline nongeometric attributes, 
with a polyline bundle index. This table contains entries consisting of line 
type, line width scale factor, and polyline color index. See also index. 

polymarker 
An output primitive consisting of a set of locations indicated by a symbol. 

polymarker bundle table 
A table associating specific values, for all polymarker nongeometric 
attributes, with a polymarker bundle index. This table contains entries 
consisting of marker type, marker size scale factor, and polymarker color 
index. See also index. 

primitive 
An element that you use to construct a graphical picture. The output 
primitives are polyline, polymarker, text, fill area, cell array, and 
generalized drawing primitive. 

primitive attribute 
See attribute. 

DEC GKS Glossary A-9 



prompt 
A visual indication on the workstation surface of the current value of a 
logical input device. 

prompt and echo types 
Different visual indications used by devices of a logical input class. For 
example, a locator logical input device can prompt a user by placing cross 
hairs, a tracking plus sign, or a cross on the workstation surface. 

queue 
See event input queue. 

raster graphics 
Computer graphics in which a display image is composed of an array of 
pixels arranged in rows and columns. 

raster units 
Number of pixel rows and columns on a physical device. 

report 
A data structure that the input process creates and places on the queue 
when a user triggers a device in event mode. The data structure contains 
a workstation identifier, a device number, an input class specification, a 
simultaneous event flag, and input data. See also event mode, simultaneous 
event, and trigger. 

representation 
The attribute or RGB settings for a single bundle table entry. 

request mode 
A synchronous input operating mode that allows the user to trigger 
a logical input device once, returning its current measure. See also 
synchronous input and trigger. 

rotation 
Turning all or part of a segment around a fixed point axis. 

sample mode 
An asynchronous input operating mode that allows the application program 
to read the current measure of a logical input device; the user can only 
control the current measure and cannot trigger the device. See also 
asynchronous input and measure. 

A-10 DEC GKS Glossary 



scaling 
Enlarging or reducing all or part of a segment toward or away from a fixed 
point axis. 

segment 
A collection of output primitives that can be manipulated as a unit. 

segment attributes 
Properties that apply to segments. Segment attributes are visibility, 
highlighting, detectability, segment priority, and segment transformation. 
See also attributes. 

segment priority 
A segment attribute used to determine which of several overlapping 
segments takes precedence. 

segment transformation 
A number specifying an associated matrix that expresses values for segment 
scaling, rotation, and translation. 

simultaneous events 
Several event reports generated by a trigger that affects several devices 
active at the same time. The device handler places the simultaneously 
generated events on the queue in some device-specific order. See also event 
mode and report. 

string device 
A logical input device that accepts and returns a character string. 

stroke device 
A logical input device that accepts a set of device coordinate points and 
returns the set of corresponding world coordinate points. See also world 
coordinate system. 

synchronous input 
A method of interaction between an application and its user. DEC GKS 
request mode causes the application to pause while the user alters the 
measure of a device and triggers input. After the user triggers the device, 
the device handler removes the device's prompt from the workstation 
surface and application execution resumes. See also asynchronous input. 

text 
An output primitive consisting of a character string. 

DEC GKS Glossary A-11 



text bundle table 
A table associating specific values, for all text nongeometric attributes, with 
a text bundle index. This table contains entries consisting of text font and 
precision, character expansion factor, character spacing and text color index. 
See also index. 

text font and precision 
A text attribute having the components font and precision, which together 
determine the shape of the characters being output on a particular 
workstation. In addition, the precision describes the effectiveness of the 
other text attributes. In order of increasing permitted effectiveness, the 
precisions are string, character and stroke. 

transformation 
A mapping of primitives from one coordinate system's window to another 
coordinate system's viewport. 

translation 
Altering a segment's coordinate points so that the segment appears in a 
new position in the picture. 

trigger 
An indication from the user telling a logical input device to accept the 
current input value. An example of an input trigger is the pressing of the 
RETURN key. 

unity transformation 
A default normalization transformation (number 0) that uses the default 
normalization window and viewport. 

update 
To release deferred output and to implement all previously requested 
changes to the picture, if necessary. 

valuator device 
A logical input device that accepts and returns real values. 

viewport 
A defined rectangular area on a coordinate system into which DEC GKS 
maps primitives contained in a window. 

window 
A defined rectangular area on a coordinate system from which DEC GKS 
maps primitives to a viewport. 

A-12 DEC GKS Glossary 

V 

V 



workstation 
An abstract graphical device that includes a physical device and a software 
graphics handler that drives the physical device. 

workstation dependent segment storage (WDSS) 
Segment storage on a workstation other than a workstation of the category 
workstation independent segment storage. Segments cannot be transferred 
from WDSS to another workstation. 

workstation handler 
See graphics handlers. 

workstation independent segment storage SWISS) 
A special workstation type, where segments can be stored and later 
transferred to other workstations. 

workstation surface 
That portion of the device space corresponding to the area available for 
displaying images or for input working space (such as a digitizer). 

workstation transformation 
A transformation that maps the boundary and interior of a workstation 
window into the boundary and interior of a workstation viewport (part of 
display space), preserving aspect ratio. The effect of preserving aspect ratio 
is that the interior of the workstation window may not map to the whole of 
the workstation viewport. You use workstation transformations to control 
the amount of the picture shown on a given portion of a workstation 
surf ace. 

world coordinate system 
An imaginary device-independent Cartesian coordinate system that you use 
to plot output primitives. Once you plot a primitive in world coordinates, 
you must establish the proper normalization transformation, and then pass 
the world coordinate points to an output function. 

DEC GKS Glossary A-13 





Appendix B 

Sample Programs 

This appendix contains Example 3-2 written in all of the DEC GKS 
supported languages. Example 3-2 is the Starry Night program that is 
used as a base for every program example presented in this manual. For 
detailed information concerning this example, refer to Chapter 3, Writing 
Device-Independent Programs. 

To use this program, you must have the appropriate definition file in the 
same directory as your source program. The definition file GKSDEFS.ext is 
located in the directory SYS$LIBRARY. For detailed information concerning 
the various definition files, refer to Chapter 1, Introduction to DEC GKS, in 
the DEC GKS Reference Manual. 

6.1 FORTRAN Binding 

Example B-1 presents the Starry Night program written in VAX FORTRAN 
using the DEC GKS FORTRAN binding. To link this program, you need to 
execute the following command on the DIGITAL Command Line: 

$ LINK object_module, SYS$LIBRARY:GKSFORBND/LIBRARY RETURN , 

Sample Programs B-1 



Example B-1: FORTRAN Binding Sample Program 

INTEGER WKID, HOUSE, TREE, HORIZ, STARS, TITLE, SIDE, ROAD 

DATA WKID / 1 /, TITLE / 1 /, STARS / 2 /, TREE / 3 /, 
* SIDE / 4 /, ROAD / 5 /, HORIZ / 6 /, HOUSE / ? / 

EXTERNAL SETUP, DEPICT, TIDYUP 

CALL SETUP( WKID ) 
CALL DEPICT( WKID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZ ) 
CALL TIDYUP( WKID ) 

END 

C ************************************************************ 

C Set up the DEC GKS and the workstation environments... 
SUBROUTINE SETUP( WKID ) 

INCLUDE 'SYS$LIBRARY:GKSDEFS.BND' 
INTEGER WKID, ERRIND, WKCAT, OKAY, IDUMMY, DEFMOD, REGMOD 

CHARACTER*80 SDUI~tY 

DATA OKAY / 0 / 

OPEN ( UNIT=1, FILE='SYS$ERROR:', STATUS='NEW' ) 
CALL GOPKS ( 1 ) 

CALL GQWKCA( GWSDEF, ERRIND, WKCAT ) 

C Make sure that the workstation type is valid. 
IF (( ERRIND .NE. OKAY ) .OR. 
* (( WKCAT .NE. GOUTPT ) .AND. ( WKCAT .NE. GOUTIN ))) THEN 

WRITE(6,*) 
* 'The specified workstation type is invalid.' 

WRITE(6,*) 'Error status:', ERRIND 
STOP 

ENDIF 

CALL GOPWK( WKID, GWCONID, GWSDEF ) 
CALL GACWK( WKID ) 

C Make sure that the deferral mode and regeneration flag are 
C properly set. 

CALL GQWKC( WKID, ERRIND, SDUNIl~IY, WTYPE ) 

CALL GQDDS( WTYPE, ERRIND, DEFMOD, REGMOD ) 

C You can check the status of the inquiry function execution, as 
C follows: 

IF (ERRIND .NE. OKAY ) THEN 
WRITE(6,*) 'The deferral inquiry caused an error.' 
WRITE(6,*) 'Error status:', ERRIND 
STOP 

ENDIF 

(continued on next page) 

B-2 Sample Programs 



Example B-1 ~Cont.): FORTRAN Binding Sample Program 

C Def er output as long as possible and suppress implicit 
C regenerations. 

IF (( DEFMOD .NE. GASTI ) .AND. ( REGMOD .NE. GSUPPD )) THEN 
CALL GSDS( WKID, GASTI, GSUPPD ) 

ENDIF 

RETURN 
END 

C ************************************************************ 
C Draw the picture, and place each primitive in a segment... 

SUBROUTINE DEPICT( WKID, TITLE, STARS, TREE, SIDE, 
* ROAD, HOUSE, HORIZ ) 

INCLUDE 'SYS$LIBRARY:GKSDEFS.BND' 

INTEGER WKID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, 
* HORIZ, NSTARS, NTREE, NHOUSE, NLAND, SOFFC, 
* SOFFR, SNUMC, SNUMR, SCOLOR( 1, 2 ), ROFFC, ROFFR, 
* RNUMC, RNUMR, RCOLOR( 10, 1 ), 
* SDIMX, SDIMY, LIGHT, DARK, ERRIND, IDUMMY, WTYPE, 
* COLA, NPCI, THREE, NBW, RDIMX, RDIMY, ELEMNT 

CHARACTER*80 SDUMMY 

REAL TEXTX, TEXTY, STARSX( 6 ), 
* STARSY( 6 ), TREEX( 29 ), TREEY( 29 ), 
* HOUSEX( 12 ), HOUSEY( 12 ), LANDX( 15 ), 
* LANDY( 15 ), SSTRTX, SSTRTY, SDIAGX, 
* SDIAGY, RSTRTX, RSTRTY, RDIAGX, 
* RDIAGY, LARGER, WIDER, RLWMAX, RDUMMY, 
* NOMLW, BWX( 9 ), BWY( 9 ) 

DATA TEXTX / 0.05 /, 
* TEXTY / 0.9 /, NSTARS / 6 /, NTREE / 29 /, NHOUSE / 12 /, 
* NLAND / 15 /, SSTRTX / 0.2 /, SSTRTY / 0.3 /, 
* SDIAGX / 0.25 /, SDIAGY / 0.15 /, 
* SDIMX / 1 /, SDIMY / 2 /, SOFFC / 1 /, SOFFR / 1 /, 
* SNUMC / 1 /, SNUMR / 2 /, RSTRTX/ 0.0 /, 
* RSTRTY / 0.15 /, RDIAGX / 1.0 /, RDIAGY / 0.0 /, 
* RDIMX / 10 /, RDIMY / 1 /, ROFFC / 1 /, ROFFR / 1 /, 
* RNUMC / 10 /, RNUMR / 1 /, LIGHT / 2 /, DARK / 3 /, 
* LARGER / 0.04 /, WIDER / 3.0 /, THREE / 3 /, NBW / 9 /, 
* ELEMNT / 1 / 

DATA BWX / 0.0, 0.0, 0.2, 0.2, 0.25, 0.25, 1.0, 1.0, 0.0 / 
DATA BWY / 0.0, 0.15, 0.15, 0.3, 0.3, 0.15, 0.15, 0.0, 0.0 / 

DATA SCOLOR / 2, 3 / 
DATA RCOLOR / 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 / 

(continued on next page) 

Sample Programs B-3 



Example B-1 (Cont.): FORTRAN Binding Sample Program 

DATA STARSX / 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 / 

DATA STARSY / 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 / 

DATA TREEX / 0.425, 0.5, 0.52, 0.54, 0.6, 0.575, 
* 0.56, 0.559, 0.64, 0.69, 0.689, 0.66, 
* 0.63, 0.645, 0.59, 0.53, 0.48, 0.45, 
* 0.42, 0.375, 0.35, 0.375, 0.44, 0.45, 
* 0.515, 0.51, 0.495, 0.475, 0.425 / 
DATA TREEY / 0.28, 0.3, 0.26, 0.3, 0.28, 0.33, 
* 0.42, 0.49, 0.53, 0.57, 0.61, 0.64, 
* 0.66, 0.71, 0.76, 0.78, 0.75, 0.71, 
* 0.65, 0.645, 0.6, 0.55, 0.54, 0.5, 
* 0.5, 0.425, 0.38, 0.33, 0.28 / 

DATA HOUSEX / 0.1, 0.3, 0.3, 0.325, 0.3, 0.3, 
* 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 / 
DATA HOUSEY / 0.3, 0.3, 0.6, 0.6, 0.64, 0.75, 
* 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 / 

DATA LANDX / 0.0, 0.04, 0.055, 0.08, 0.1, 0.3, 
* 0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 / 
DATA LANDY / 0.35, 0.375, 0.376, 0.36, 0.365, 0.366, 
* 0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375, 
* 0.385 / 

CALL GSCHH( LARGER ) 
CALL GSMK( GPLUS ) 
CALL GSFAIS( GSOLID ) 
CALL GSLN( GLDASD ) 

C Obtain the workstation type. 
CALL GQWKC( WKID, ERRIND, SDUMMY, WTYPE ) 

C Make sure that you don't ask for a line wider than the 
C workstation's widest line. 

CALL GQPLF( WTYPE, ELEMNT, ERRIND, IDUMMY, IDUMMY, IDUMMY, 
* NOMLW, R.DUMMY, RLWMAX, IDUMMY ) 

DO WHILE (( WIDER * NOMLW ) .GT. RLWMAX ) 
WIDER = WIDER - 0.1 

ENDDO 

CALL GSLWSC( WIDER ) 
CALL GCRSG( TITLE ) 
CALL GTX( TEXTX, TEXTY, 'Starry Night' ) 
CALL GCLSG() 

CALL GCRSG( STARS ) 
CALL GPM( NSTARS, STARSX, STARSY ) 
CALL GCLSG() 

(continued on next page) 

B-4 Sample Programs 



Example B-1 (Cont.~: FORTRAN Binding Sample Program 

CALL GCRSG( TREE ) 
CALL GFA( NTREE, TREEX, TREEY ) 
CALL GCLSG() 

C Check to see if you are working with a color workstation. 
CALL GQCF( WTYPE, ERRIND, IDUMMY, COLA, NPCI ) 

C For all workstations with only 2 color indexes, use a f ill area 
C instead of a cell array for the sidewalk and road. 

IF ( NPCI .LT. THREE ) THEN 
CALL GCRSG( SIDE ) 
CALL GSFAIS( GHATCH ) 
CALL GFA( NBW, BWX, BWY ) 
CALL GSFAIS( GSOLID ) 
CALL GCLSG() 

ELSE 
CALL GCRSG( SIDE ) 
CALL GCA( SSTRTX, SSTRTY, SDIAGX, SDIAGY, SDIMX, SDIMY, 

* SOFFC, SOFFR, SNUMC, SNUMR, SCOLOR ) 
CALL GCLSG() 
CALL GCRSG( ROAD ) 
CALL GCA( RSTRTX, RSTRTY, RDIAGX, RDIAGY, RDIMX, RDIMY, 

* ROFFC, ROFFR, RNUMC, RNUMR, RCOLOR ) 
CALL GCLSG() 

ENDIF 

CALL GCRSG( HORIZ ) 
CALL GPL( NLAND, LANDX, LANDY ) 
CALL GCLSG() 

CALL GCRSG( HOUSE ) 
C Only change the color index if working with a workstation 
C with more than two color indexes. 

IF ( NPCI .GE. THREE) THEN 
CALL GSFACI( DARK ) 

ENDIF 
CALL GFA( NHOUSE, HOUSEX, HOUSEY ) 
CALL GCLSG() 

RETURN 
END 

(continued on next page) 

Sample Programs B-5 



Example B-1 (Copt.): FORTRAN Binding Sample Program 

c ************************************************************ 
C Clean up the DEC GKS and the workstation environments. 

SUBROUTINE TIDYUP( WKID ) 

INTEGER WKID 

CALL GUWK( WKID, GPERFO ) 
READ (5 , * ) 

CALL GDAWK( WKID ) 
CALL GCLWK( WKID ) 
CALL GCLKS() 

RETURN 
END 

6.2 C Binding 

Example B-2 presents the Starry Night program written in the GKS C 
Binding. 

B-6 Sample Programs 



Example B-2: C Binding Sample Program 

#include "gks.h" 
#include <stdio.h> 

#def ine MAX_STRING 80 
#def ine MAX_INT 50 
#def ine NUM_SIDE_COLORS 2 
#def ine NUM_ROW_COLORS 10 
#def ine NUM_STARS 6 
#def ine NUM_TREE 29 
#def ine NUM_HOUSE 12 
#def ine NUM_LAND 15 
#def ine NUM_BW 9 

main () 
{ 

Gint ws_id, 
house, 
tree, 
horizon, 
stars, 
title, 
side, 
road; 

/* Initialize variables 
ws_id = 1; 
title = 1; 
stars = 2; 
tree = 3; 
side = 4; 
road = 5; 
horizon = 6; 
house = 7; 

*/ 

setup (ws_id); 

draw_picture (ws_id, title, stars, tree, side, road, house, horizon); 

cleanup (ws_id); 

} /* end main */ 

(continued on next page) 

Sample Programs B-7 



Example B-2 (Cont.~: C Binding Sample Program 

/* 
/* Set up the DEC GKS and the workstation environments... 

/* 

setup (ws_id) 
Gint ws_id; 
{ 

Gint error_status = 0, 
ws_size = 0, 
buf size = 0 , 
fac_size = 0, 
inquire_okay = 0, 
index = 0, 
regen_f lag = 0 ; 

Gint ws_type = 0; 
Gwsct ct; 
Gwscat category; 
Gdef er def ; 
Gdefmode def mode; 
Girgmode regen_mode; 
Gwstype type = 0; 
Gwsclass class; 
Glnbundl rep; 
Glnf ac f ac ; 
Gcof ac col_f ac ; 
Gconn conid = 0; 

/* Initialize variables 
inquire_okay = 0; 
def . defmode = GASAP ; 
def.irgmode = GALLOWED; 

*/ 

*/ 
*/ 
*/ 

gopengks(stderr, GDEFAULT_MEM_SIZE); 
gingwscategory (dctype , d~category , ~ierror_status) ; 

/* Make sure that the workstation type is valid. */ 
if ((error_status != inquire_okay) I I 

((category != GOUTIN) ~~ 
(category != GMO))) { 
printf ("The specified workstation type is invalid\n"); 
printf ( "Error status : '/.d\n" , error_status) ; 
return; 

} 

gopenws(ws_id, d~conid, ditype) ; 
gactivatews(ws_id); 

/* Make sure the deferral mode and regeneration flag are properly set 
gingwsconntype (ws_id, buf size , dtws_size , duct , ~ierror_status) ; 

gingdefdeferst (diws_type, d~def , d~error_status) ; 

*/ 

(continued on next page) 

B-8 Sample Programs 



Example B-2 (Copt.): C Binding Sample Program 

/* Check the status of the inquiry function execution */ 

if (error_status != inquire_okay) { 
printf ("The deferral inquiry caused an error\n"); 

printf ("Error status : '/.d\n" , error_status) ; 
return; 

} 

/* Defer output as long as possible and suppress implicit regenerations 

if ( (def .defmode ! = GASTI) d~k (def . irgmode ! = GSUPPRESSED) ) 
gsetdef erst (ws_id , def mode , regen_mode) ; 

} /* end setup */ 

/* */ 
/* Draw the picture, and place each primitive in a segment... */ 

/* */ 

draw_picture (ws_id, title, stars, tree, side, road, house, horizon) 

Gint ws_id, 
title , 
stars, 
tree, 
side, 
road, 
house, 
horizon; 

{ 

Gint num_stars = 6, 
num_tree_pts = 29, 
num_house_pts = 12, 
num_land_pts = 15, 
side_colors [NUM_SIDE_COLORS] _ {2, 3}, 
road_colors [NUM_ROW_COLORS] _ {2, 3, 2, 3, 2, 3, 2, 3, 2, 3}, 

light, 
dark, 
error_status = 0, 
ws_type, 
color_flag, 
num_indexes, 
line_type, 
bufsize = 0, 
fac_size = 0, 
index = 2, 
three, 
bw_num_pts; 

Gwstype type = 0; 
Gwsclass class; 
Glnbundl rep; 
Glnf ac f ac ; 
Gcof ac col_f ac ; 

*/ 

(continued on next page) 

Sample Programs B-9 



Example B-2 (Cont.): C Binding Sample Program 

Gpoint text_start, 
stars_values [NUM_STARS] _ 
{ {0.05,0.7},{0.06,0.86},{0.36,0.81},{0.66,0.86},{0.835,0.701}, 
{0.92,0.82} }, 

bw_values [NUM_BW] _ 
{ {0.0,0.0},{0.0,0.15},{0.2,0.15},{0.2,0.3},{0.25,0.3},{0.25,0.15}, 
{1.0,0.15},{1.0,0.0},{0.0,0.0} }, 

house_values[NUM_HOUSE] _ 
{ {0.1,0.3},{0.3,0.3},{0.3,0.6},{0.325,0.6},{0.3,0.64},{0.3,0.75}~ 

{0.25,0.75},{0.25,0.7},{0.2,0.75},{0.075,0.6},{0.1,0.6}, 
{0.1,0.3} }, 

land_values [NUM_LAND] _ 
{ {0.0,0.35},{0.04,0.375},{0.055,0.376},{0.08,0.36},{0.1,0.365}, 
{0.3,0.366},{0.375,0.38},{0.44,0.385},{0.49,0.375},{0.56,0.36}, 
{0.68,0.38},{0.8,0.35},{0.9,0.359},{0.95,0.375},{1.0,0.385} }, 

tree_values [NUM_TREE] _ 
{ {0.425,0.28},{0.5,0.3},{0.52,0.26},{0.54,0.3},{0.6,0.28}, 
{0.575,0.33},{0.56,0.42},{0.559,0.49},{0.64,0.53},{0.69,0.57}, 
{0.689,0.61},{0.66,0.64},{0.63,0.66},{0.645,0.71},{0.59,0.76}, 
{0.53,0.78},{0.48,0.75},{0.45,0.71},{0.42,0.65},{0.375,0.645}, 
{0.35,0.6},{0.375,0.55},{0.44,0.54},{0.45,0.5},{0.515,0.5}, 
{0.51,0.425},{0.495,0.38},{0.475,0.33},{0.425,0.28} }; 

Gfloat larger, 
wider; 

Grect side_rectangle_coordinates, road_rectangle_coordinates; 
Gidim side_rectangle_dim, road_rectangle_dim; 
Gchar text_str; 

(continued on next page) 

B-10 Sample Programs 



Example B-2 (Cont.): C Binding Sample Program 

/* Initialize variables */ 
text_start.x = 0.05; 
text_start.y = 0.9; 
side_rectangle_coordinates.ul.x = 0.2; 
side_rectangle_coordinates.ul.y = 0.3; 
side_rectangle_coordinates.lr.x = 0.25; 
side_rectangle_coordinates.lr.y = 0.15; 
side_rectangle_dim.x_dim = 1; 
side_rectangle_dim.y_dim = 2; 
road_rectangle_coordinates.ul.x= 0.0; 
road_rectangle_coordinates.ul.y= 0.15; 
road_rectangle_coordinates.lr.x= 1.0; 
road_rectangle_coordinates.lr.y= 0.0; 
road_rectangle_dim.x_dim= 10; 
road_rectangle_dim.y_dim = 0.0; 
light = 2; 
dark = 3; 
larger = 0.04; 
wider = 3.0; 
three = 3; 
bw_num_pts = 9; 
line_type = 1; 
fac.nom_width = 0.0; 
fac.max_width = 0.0; 

gsetcharheight (larger); 
gsetmarkertype (GMK_PLUS); 
gsetfillintstyle(GSOLID); 
gsetlinetype (GLN_DASHED, GLN DOTTID); 

/* Obtain the workstation type. */ 
gingwsclass ( ditype , dtclass , d~error_status ) ; 

/* Make sure that you don't ask for a line wider than the */ 
/* workstation's widest line. */ 
gingpatf acil (ditype , buf size , dtf ac_size , dtf ac , dterror_status) ; 
while (wider * fac.nom_width > fac.max_width) 

wider -= 0.1; 
gsetlinewidth(wider); 

gcreateseg (title); 
text_str = "STARRY NIGHT"; 
gtext (dttext_start , "STARRY NIGHT") ; 
gcloseseg(); 

gcreateseg(stars); 
gpolymarker(num_stars,stars_values); 
gcloseseg(); 

gcreateseg(tree) ; 
gfillarea(num_tree_pts, tree_values); 
gcloseseg(); 

(continued on next page) 

Sample Programs B-11 



Example B-2 (Copt.): C Binding Sample Program 

/* CHECK TO SEE IF YOU ARE WORKING WITH A COLOR WORKSTATION */ 
gingcolourf acil ( ditype , buf size , dif ac_size , dtcol_fac , ~ierror_status) ; 

/* For all monochrome workstations (not including the VT125/240 or */ 

/* the monochrome VAXStations), use GKS$FILL_AREA instead of */ 

/* GKS$CELL_ARRAY for the sidewalk and road. */ 
if (col_f ac.coavail != GCOLOUR) { 

gcreateseg(side); 
gsetf illintstyle (GHATCH); 
gfillarea(bw_num_pts, bw_values); 
gsetf illintstyle(GSOLID); 
gcloseseg(); 

} else { 

gcreateseg(side); 
gcellarray (d~side_rectangle_coordinates, d~side_rectangle_dim, 

d~side_colors); 
gcloseseg(); 
gcreateseg(road); 
gcellarray (d~road_rectangle_coordinates, d~road_rectangle_dim, 

d~road_colors); 
gcloseseg(); 

} 

gcreateseg(horizon); 
gpolyline (num_land_pts, land_values); 
gcloseseg(); 

gcreateseg(house); 

/* Only change the color index if working with a color workstation */ 
/* (or a VT125/240 or a VAXstation). */ 
if (col_fac.coavail == GCOLOUR) 

gsetfillcolourind(dark) ; 

gfillarea(num_house_pts, house_values); 
gcloseseg(); 

} /* end draw_picture */ 

/* */ 
/* Clean up the DEC GKS and the workstation environments... */ 

/* */ 

cleanup (ws_id) 
Gint ws_id; 
{ 

gupdatews(ws_id, GPERFORM); 
getchar (); 

(continued on next page) 

B-12 Sample Programs 



~'"1 
Example B-2 (Cont.~: C Binding Sample Program 

gdeactivatews(ws_id); 
gclosews(ws_id); 
gclosegks(); 

} /* end cleanup */ 

B.3 VAX C 

Example B-3 presents the Starry Night program written in VAX C. 

Sample Programs B-13 



Example B-3: VAX C Sample Program 

#include <gksdefs.h> 
#include <descrip.h> 
#include <stdio.h> 

#define MAX_STRING 80 
#define MAX_INT 50 
#define NUM_SIDE_COLORS 2 
#define NUM_ROW_COLORS 10 
#define NUM_STARS 6 
#define NUM_TREE 29 
#define NUM_HOUSE 12 
#define NUM_LAND 15 
#define NUM_BW 9 

struct dsc$descriptor_a2 { 
unsigned short dsc$w_length; 

unsigned char 
unsigned char 
char 
char 

unsigned char 
struct { 

unsigned 
unsigned dsc$v_fl_redim 
unsigned dsc$v_fl_column 
unsigned dsc$v_fl_coeff 
unsigned dsc$v_fl_bounds 

} dsc$b_af lags ; 
unsigned char 
unsigned long 

char 
long 
struct { 

long dsc$1_1; 
long dsc$1_u; 

} dsc$bounds [2] ; 
}; 

/* length of an array element in bytes, 
or if dsc$b_dtype is DSC$K_DTYPE_V, bits, 
or if dsc$b_dtype is DSC$K_DTYPE_P, digits (4 bits 
each) */ 

dsc$b_dtype; /* data type code */ 
dsc$b_class; /* descriptor class code = DSC$K_CLASS A */ 
*dsc$a_pointer; /* address of first actual byte of data storage 
dsc$b_scale; /* scale multiplier to convert from internal to 

form */ 
dsc$b_digits; /* number of decimal digits in internal representation */ 

4; 
1; 
1; 
1; 
1; 

dsc$b_dimct; 
dsc$1_arsize; 

*dsc$a_a0; 
dsc$1 m [ 2 ]; 

/* reserved, must be 
/* if set, indicates 
/* if set, indicates 
/* if set , indicates 
/* if set, indicates 

*/ 

external 

zero */ 
the array can be redimensioned */ 
column-major order (FORTRAN) */ 
the multipliers block is present */ 
the bounds block is present */ 

/* number of dimensions */ 
/* total size of array in bytes, 
or if dsc$b_dtype is DSC$K_DTYPE_P, digits (4 bits each) 

/* add of ele w/ zero coefficients */ 
/* Addressing coefficients (multipliers) */ 

/* Lower bound */ 
/* Upper bound */ 

#define DESC_ARRAY(name, length, ptr) struct dsc$descriptor_a \ 
name = {4, DSC$K_DTYPE_L, DSC$K_CLASS_A, ptr, 0, 0, {0, 0, 0, 0, 0},\ 

1, length * 4} 

#define DESC_ARRAY_2(name, dims, dim2, ptr) struct dsc$descriptor_a2 \ 
name = {4, DSC$K_DTYPE_L, DSC$K_CLASS A, ptr, 0, 0, {0, 0, 0, 1, 1},\ 

2, dims * dim2 * 4, ptr, {diml, dim2}, {0, dims - 1, 0, dim2 - 1}} 

*/ 

(continued on next page) 

B-14 Sample Programs 



Example B-3 (Cont.): VAX C Sample Program 

" main () 
{ 

int ws_id, 
house, 
tree, 
horizon, 
stars, 
title, 
side, 
road; 

/* Initialize variables 
ws_id = 1; 
title = 1; 
stars = 2; 
tree = 3; 
side = 4; 
road = 5; 
horizon = 6; 
house = 7; 

*/ 

setup (ws_id); 

draw_picture (ws_id, title, stars, tree, side, road, house, horizon); 

cleanup (ws_id); 

} /* end main */ 

/* */ 
/* Set up the DEC GKS and the workstation environments... */ 
/* */ 

setup (ws_id) 
int ws_id; 

{ 

int error_status, 
category, 
inquire okay, 
dummy_integer, 
def _mode , 
regen_f lag , 
ws_type; 

struct dsc$descriptor dummy_dsc; 
char dummy_string [MAX_STRING]; 

$DESCRIPTOR( error_f ile, "sys$error:"); 

(continued on next page) 

Sample Programs B-15 



Example B-3 (Copt.): VAX C Sample Program 

/* Initialize variables */ 
inquire_okay = 0; 
dummy_dsc.dsc$a_pointer = dummy_string; 
dummy_dsc.dsc$w_length = (short) MAX_STRING; 

gks$open_gks (d~error_f ile) ; 

gks$inq_ws_category (dtGKS$K_WSTYPE_DEFAULT, dterror_atatus, d~category); 

/* Make sure that the workstation type is valid. */ 

if ((error_statua != inquire_okay) I I 
((category != GKS$K WSCAT_OUTIN) dr,~t 
(category != GKS$K WSCAT MO))) { 
printf ("The specified workstation type is invalid\n"); 

printf ("Error status : '/.d\n" , error_status) ; 
return; 

} 

gks$open_ws (daws_id, dtGKS$K_CONID_DEFAULT, dtGKS$K_WSTYPE_DEFAULT); 

gks$activate_ws (d~ws_id), 

/* Make sure the deferral mode and regeneration flag are properly set */ 

gks$inq_ws_type (d~ws_id , ~terror_status , d~dummy_dsc , lows type , 
dtdummy_integer); 

gks$inq_def def er_state (dews type , d~error_status , d~def mode , 
drregen_f lag) ; 

/* Check the status of the inquiry function execution */ 

if (error_status != inquire_okay) { 
printf ("The deferral inquiry caused an error\n"); 

printf ("Error status : '/.d\n" , error_status) ; 
return ; 

} 

/* Defer output as long as possible and suppress implicit regenerations */ 

if ( (def _mode ! = GKS$K ASTI) drdr (regen_f lag ! = GKS$K_IRG_SUPPRESSID) ) 
gks$set_def er_state (dtws_id, dtGKS$K_ASTI , drGKS$K_IRG_SUPPRESSID) ; 

} /* end setup */ 

(continued on next page) 

B-16 Sample Programs 



Example B-3 (Cont.~: VAX C Sample Program 

I* */ 
/* Draw the picture, and place each primitive in a segment... */ 
/* */ 

draw_picture (ws_id, title, stars, tree, side, road, house, horizon) 
int ws_id, 

title, 
stars, 
tree, 
side, 
road, 
house, 
horizon; 

{ 

int num_stars, 
num_tree_pts, 
num_house_pts, 
num_land_pts, 
side_of f _col , 
s ide_of f _row , 
side_num_col, 
side_num_row, 
side_colors [NUM_SIDE_COLORS] _ {2, 3}, 
road_off_col, 
road_off_row, 
road_num_col, 
road_num_row, 
road_colors [NUM_ROW_COLORS] _ {2, 3, 2, 3, 2, 3, 2, 3, 2, 3}, 
light, 
dark, 
error_status, 
dummy_integer, 
ws_type, 
dummy_int_array [MAX_INT], 
color_f lag, 
num_indexes, 
three, 
bw_num_pts; 

(continued on next page) 

Sample Programs B-17 



Example B-3 (Cont.): VAX C Sample Program 

float text_start_x, 
text_start_y, 
stars_x_values [NUM_STARS] _ {0.05, 0.06, 0.36, 0.66, 0.835, 0.92}, 
stars_y_values [NUM_STARS] _ {0.7, 0.86, 0.81, 0.86, 0.701, 0.82}, 

tree x [NUM_TREE] _ {0.425, 0.5, 0.52, 0.54, 0.6, 0.575, 
0.56, 0.559, 0.64, 0.69, 0.689, 0.66, 
0.63, 0.645, 0.59, 0.53, 0.48, 0.45, 
0.42, 0.375, 0.35, 0.375, 0.44, 0.45, 
0.515, 0.51, 0.495, 0.475, 0.425}, 

tree_y [NUM_TREE] _ {0.28, 0.3, 0.26, 0.3, 0.28, 0.33, 
0.42, 0.49, 0.53, 0.57, 0.61, 0.64, 
0.66, 0.71, 0.76, 0.78, 0.75, 0.71, 
0.65, 0.645, 0.6, 0.55, 0.54, 0.5, 
0.5, 0.425, 0.38, 0.33, 0.28}, 

house_x [NUM_HOUSE] _ {0.1, 0.3, 0.3, 0.325, 0.3, 0.3, 
0.25, 0.25, 0.2, 0.075, 0.1, 0.1}, 

house_y [NUM_HOUSE] _ {0.3, 0.3, 0.6, 0.6, 0.64, 0.75, 
0.75, 0.7, 0.75, 0.6, 0.6, 0.3}, 

land_x [NUM_LAND] _ {0.0, 0.04, 0.055, 0.08, 0.1, 0.3, 0.375, 
0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 
1 0}, 

land_y [NUM_LAND] _ {0.35, 0.375, 0.376, 0.36, 0.365, 0.366, 0.38, 
0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375, 
0.385}, 

side_start x, 
side_start_y, 
side_diag_x, 
side_diag_y, 
road_start_x, 
road_start_y, 
road_diag_x, 
road_diag_y, 
larger, 
wider, 
max_width, 
dummy_real, 
nom_width, 
bw_x_values [NUM_BW] _ {0.0, 0.0, 0.2, 0.2, 0.25, 0.25, 

1.0, 1.0, 0.0 }, 
bw_y_values [NUM_BW] _ {0.0, 0.15, 0.15, 0.3, 0.3, 0.15, 

0.15, 0.0, 0.0 }; 

(continued on next page) 

B-18 Sample Programs 



P"1 

P1 

Example B-3 (Copt.): VAX C Sample Program 

DESC_ARRAY( integer_dsc, MAX_INT, dummy_int_array); 
DESC_ARRAY_2( side_integer_dsc2, i, 2, side_colors); 
DESC_ARRAY_2( road_integer_dsc2, 10, 1, road_colors); 
$DESCRIPTOR(title_dsc, "Starry Night"); 
struct dsc$descriptor dummy_dsc; 
char dummy_string [MAX_STRING]; 

/* Initialize variables */ 
text_start x = 0.05; 
text_start_y = 0.9; 
num_stars = 6; 
num_tree_pts = 29; 
num_house_pts = 12; 
nwn_land_pts = 15; 
side_start_x = 0.2; 
side_atart_y = 0.3; 
side_diag_x = 0.25; 
side_diag_y = 0.15; 
side_off _col = 0 ; 
side_off_row = 0; 
side_num_col = 1; 
side_num_row = 2; 
road_start_x = 0.0; 
road_start_y = 0.15; 
road_diag_x = 1.0; 
road_diag_y = 0.0; 
road_of f _col = 0 ; 
road_of f _row = 0 ; 
road_num_col = 10; 
road num_row = 1; 
light = 2; 
dark = 3; 
larger = 0.04; 
wider = 3.0; 
three = 3; 
bw_num_pts = 9; 
dummy_dsc.dsc$a_pointer = dummy_string; 
dummy_dsc.dsc$w_length = (short) MAX_STRING; 

gks$set_text_height (dtlarger); 
gks$set_pmark_type (dtGKS$K_MARKERTYPE_PLUS); 
gks$set_fill_int_style (dtGKS$K_INTSTYLE_SOLID); 
gks$set_pline_linetype (dtGKS$K_LINETYPE_DASHED_DOTTID); 

(continued on next page) 

Sample Programs B-19 



Example B-3 (Cont.~: VAX C Sample Program 

/* Obtain the workstation type. */ 
gks$inq_ws_type ( daws_id , dterror_status , d~dummy_dsc , daws_type , 

dtdummy_integer) ; 

/* Make sure that you don't ask for a line wider than the */ 
/* workstation's widest line. */ 
gks$inq_pline_f ac (laws_type , d~error_status , dtdummy_integer , 

d~integer_dsc , dtdummy_integer , dinom width , 
dtdummy_real , ~imax_width , ~idummy_integer , dcdummy_integer) ; 

while (wider * nom_width > max_width) 
wider -= 0.1; 

gks$set_pline_linewidth (dtwider); 

gks$create_seg (datitle); 
gks$text (dctext_start_x, drtext_start_y, dttitle_dsc) ; 

gks$create_seg (dtstars) ; 
gks$polymarker (d~num_stars, dtstars x_values, d~stars_y_values); 
gks$close_seg (); 

gks$create_seg (dttree) ; 
gks$f ill_area (danum_tree_pts , dttree_x, dttree_y) ; 

/* CHECK TO SEE IF YOU ARE WORKING WITH A COLOR WORKSTATION */ 
gks$inq_color_f ac ( dcws_type , dterror_statua , ~idummy_integer , d~color_f lag , 

~num_indexes); 

/* For all workstations that have less than 2 color indexes, */ 
/* use GKS$FILL_AR.EA instead of GKS$CELL_ARRAY for the */ 
/* sidewalk and road. */ 
if (num_indexes < three) { 

gks$create_seg (dtside) ; 
gks$set_f ill_int_style (dtGKS$K_INTSTYLE_HATCH); 
gks$f ill_area (d~bw_num_pts , d~bw_x_values , dtbw_y_values) ; 
gks$set_f ill_int_style (dtGKS$K_INTSTYLE_SOLID); 
gks$close_seg (); 

} else { 
gks$create_seg (d~side) ; 
gks$cell_array (d~side_start_x, ~iside_start_y, 

d~side_diag_x, dtside_diag_y, d~side_off_col, 
dtaide_off_row, d~side_num_col, d~side_num_row, 
d~side_integer_dsc2); 

(continued on next page) 

B-20 Sample Programs 



P1 

r'1 

Example B-3 ~Cont.): VAX C Sample Program 

gks$close_seg (); 
gks$create_seg (daroad) ; 
gks$cell_array (diroad_start_x, daroad_start_y, 

dtroad_diag_x , dtroad_diag_y , dtroad_of f _col , 
d~road_off_row, d~road_num_col, d~road_num_row, 
dtroad_integer_dsc2); 

} 

gks$create_seg (dthorizon); 
gks$polyline (dtnum_land_pts, d~land_x, d~land_y) ; 
gks$close_seg (); 

gks$create_seg (dthouse); 

/* Only change the color index if working with a workstation 
/* that has three or more color indexes 
if (num_indexes >= three) 

gks$set_f ill_color_index (dtdark) ; 

gks$fill_area (dcnum_house_pts, d~house x, dthouse_y) ; 

} /* end draw_picture */ 

/* */ 
/* Clean up the DEC GKS and the workstation environments... */ 
/* */ 

cleanup (ws_id) 
int ws_id; 
{ 

gks$update_ws (dtws_id, dtGKS$K_PERFORM_FLAG); 
getchar (); 

gks$deactivate_ws (dtws_id); 
gks$close_ws (dtws_id); 
gks$close_gks (); 

} /* end cleanup */ 

8.4 VAX Pascal 

Example B-4 presents the Starry Night program written in VAX Pascal. 
To compile this program, you need to copy SYS$LIBRARY:GKSDEFS.PAS 
to your local directory and then execute the following command on the 
DIGITAL Command Line: 

$ PASCAL/ENVIRONMENT GKSDEFS.PAS RETURN 

Sample Programs B-21 



Example B-4: VAX Pascal Sample Program 

[INHERIT ('GKSDEFS')] 
PROGRAM STARRY_NIGHT( INPUT, OUTPUT ); 

CONST 

WS_ID = 
TITLE = 
STARS = 
TREE = 
SIDE = 
ROAD = 

VAR 

1; 
1; 
2; 
3; 
4; 
5; 

HORIZON = 6; 
HOUSE = 7; 

SETUP_OK BOOLEAN; 

{Set up the DEC GKS and the workstation environments. 
FUNCTION SETUP( WS_ID INTEGER ) BOOLEAN; 

CONST 

INQUIRY_OKAY = 0; 

VAR 

WS_TYPE INTEGER; 
ERROR_STATUS, CATEGORY INTEGER; 
DUI~Il~IY_INTEGER, DEF MODE, REGEN_FLAG INTEGER; 
DUI~IY_STRING VARYING [ 80 ] OF CHAR; 

BEGIN {Function SETUP } 

{ Initialize the successful setup flag as true } 
SETUP := TRUE; 

GKS$OPEN_GKS( 'SYS$ERROR:' )~ 

..} 

GKS$INQ_WS_CATEGORY( GKS$K WSTYPE_DEFAULT, ERROR_STATUS, CATEGORY 

{ Make sure that the workstation type is valid. } 
IF (( ERROR_STATUS <> INQUIRY_OKAY ) OR 

(( CATEGORY <> GKS$K_WSCAT_OUTPUT ) AND 
( CATEGORY <> GKS$K_WSCAT_OUTIN ))) THEN 
BEGIN 

{ Setup was not completed properly - invalid 
workstation type. } 

WRITELN( 'The specified workstation type is invalid.' ); 
WRITELN( 'Error status:', ERROR_STATUS ); 
SETUP := FALSE; 

END 

)~ 

(continued on next page) 

B-22 Sample Programs 



Example B-4 (Cont.): VAX Pascal Sample Program 

{ If workstation is valid, continue to set up workstation. } 
ELSE 

BEGIN 
GKS$OPEN_WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_WSTYPE_DEFAULT 
GKS$ACTIVATE_WS( WS_ID ); 

{ Make sure that the deferral mode and regeneration flag are 
properly set. } 

GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, DUMMY_STRING, 
WS_TYPE, DUMMY_INTEGER ); 

GKS$INQ_DEF_DEFER_STATE( WS_TYPE, ERROR_STATUS, 
DEF_MODE, REGEN_FLAG ); 

{ You can check the status of the inquiry function execution, 
as follows: } 

IF ( ERROR_STATUS <> INQUIRY_OKAY) THEN 
BEGIN 

{ Setup was not completed properly - invalid 
deferral inquiry. } 

WRITELN( 'The deferral inquiry caused an error.' ); 
WRITELN( 'Error status:', ERROR_STATUS ); 
SETUP := FALSE; 

END 

ELSE 
{ Defer output as long as possible and suppress implicit 

regenerations. } 
IF (( DEF MODE <> GKS$K_ASTI ) AND 

( REGEN_FLAG <> GKS$K_IRG_SUPPRESSID )) THEN 
GKS$SET DEFER_STATE( WS_ID, GKS$K_ASTI, 
GKS$K_IRG_SUPPRESSID ); 

END; { Original if } 

END; {Function SETUP } 

{Draw the picture, and place each primitive in a segment...} 
PROCIDURE DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 

ROAD, HOUSE, HORIZON INTEGER ); 

CONST 

): 

(continued on next page) 

Sample Programs B-23 



Example B-4 (Cont.~: VAX Pascal Sample Program 

TEXT_START X = 0.05; 
TEXT_START_Y = 0.9; 
NUM_STARS = 6; 
NUM_TREE_PTS = 29; 
NUM_HOUSE_PTS = 12; 
NUM_LAND_PTS = 15; 
SIDE_START_X = 0.2; 
SIDE_START_Y = 0.3; 
SIDE_DIAG_X = 0.25; 
SIDE_DIAG_Y = 0.15; 
SIDE_OFF_COL = 1; 
SIDE_OFF_ROW = 1; 
SIDE_NUM_COL = 1; 
SIDE_NUM_ROW = 2; 
ROAD_START X = 0.0; 
ROAD_START_Y = 0.15; 
ROAD_DIAG_X = 1.0; 
ROAD_DIAG Y = 0.0; 
ROAD_OFF_COL = 1; 
ROAD_OFF_ROW = 1; 
ROAD_NUM_COL = 10; 
ROAD_NUM_ROW = 1; 
LIGHT = 2; 
DARK = 3; 
LARGER = 0.04; 
THREE = 3; 
BW_NUM_PTS = 9; 

VAR 

ERROR_STATUS INTEGER; 
DUI~IY_INTEGER, WS_TYPE INTEGER; 
COLOR_FLAG, NUM_INDEXES INTEGER; 
MA)C_WIDTH, DUMMY_REAL, NOM_WIDTH REAL; 
WIDER REAL; 

DUMMY_INT_ARRAY [STATIC] ARRAY[ 1..50 ] OF INTEGER; 
DUMNIY_STRING VARYING [ 80 ] OF CHAR; 

SIDE_COLORS [STATIC] ARRAY[ 1..1, 1..2 ] OF INTEGER :_ 
2, 3) ); 

ROAD_COLORS [STATIC] ARRAY[ 1..10, 1..1 ] OF INTEGER:= 
C C2). C3). C2), C3). C2). 

C3). C2). C3). C2). C3) ): 

STARS_X_VALUES [STATIC] ARRAY [ 1. . 6 ] OF REAL : _ 
( 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 ); 

STARS_Y VALUES [STATIC] ARRAY[ 1..6 ] OF REAL :_ 
0.7, 0.86, 0.81, 0.86, 0.701, 0.82 ); 

(continued on next page) 

B-24 Sample Programs 



Example B-4 (Cont.~: VAX Pascal Sample Program 

TREE X [STATIC] ARRAY [ 1. .29 ] OF REAL : _ 
( 0.425, 0.5, 0.52, 0.54, 0.6, 0.575, 
0.56, 0.559, 0.64, 0.69, 0.689, 0.66, 
0.63, 0.645, 0.59, 0.53, 0.48, 0.45, 
0.42, 0.375, 0.35, 0.375, 0.44, 0.45, 
0.515, 0.51, 0.495, 0.475, 0.425 ); 

TREE_Y [STATIC] ARRAY [ 1. .29 ] OF REAL : _ 
( 0.28, 0.3, 0.26, 0.3, 0.28, 0.33, 
0.42, 0.49, 0.53, 0.57, 0.61, 0.64, 
0.66, 0.71, 0.76, 0.78, 0.75, 0.71, 
0.65, 0.645, 0.6, 0.55, 0.54, 0.5, 
0.5, 0.425, 0.38, 0.33, 0.28 ); 

HOUSE_X [STATIC] ARRAY [ 1. .12 ] OF REAL : _ 
( 0.1, 0.3, 0.3, 0.325, 0.3, 0.3, 
0.25, 0.25, 0.2, 0.075, 0.1, 0.1 ); 

HOUSE_Y [STATIC] ARRAY[ 1..12 ] OF REAL :_ 
( 0.3, 0.3, 0.6, 0.6, 0.64, 0.75, 
0.75, 0.7, 0.75, 0.6, 0.6, 0.3 ); 

LAND X [STATIC] ARRAY [ 1. .15 ] OF REAL : _ 
( 0.0, 0.04, 0.055, 0.08, 0.1, 0.3, 
0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 ): 

LAND_Y [STATIC] ARRAY [ 1. .15 ] OF REAL : _ 
( 0.35, 0.375, 0.376, 0.36, 0.365, 0.366, 
0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375, 0.385); 

BW_X_VALUES [STATIC] ARRAY[ 1..9 ] OF REAL :_ 
( 0.0, 0.0, 0.2, 0.2, 0.25, 0.25, 1.0, 1.0, 0.0 ); 

BW_Y_VALUES [STATIC] ARRAY [ 1. . 9 ] OF REAL : _ 
( 0.0, 0.15, 0.15, 0.3, 0.3, 0.15, 0.15, 0.0, 0.0 ); 

BEGIN {Procedure DR.AW_PICTIJRE } 

WIDER := 3.0; 
GKS$SET_TEXT_HEIGHT( LARGER ); 
GKS$SET PMARK_TYPE( GKS$K_MARKERTYPE_PLUS ); 
GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ); 
GKS$SET_PLINE_LINETYPE( GKS$K_LINETYPE_DASHED_DOTTED ); 

(continued on next page) 

Sample Programs B-25 



Example B-4 (Cont.): VAX Pascal Sample Program 

{ Obtain the workstation type. } 
GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, DUMMY_STRING, 

WS_TYPE, DtTMMY_INTEGER ); 

{ Make sure that you don't ask for a line wider than the 
workstation's widest line. } 

GKS$INQ_PLINE_FAC( WS TYPE, ERROR_STATUS, 
DUMNIY_INTEGER, DUMMY_INT_ARRAY, DUMMY_INTEGER, 
NOM_WIDTH , DUMHIY_REAL , MAX WIDTH , DUNIl~IY_INTEGER, 
DUI~Il~IY_ I NTEGER ) ; 

WHILE (( WIDER * NOM_WIDTH ) > MAX WIDTH ) DO 
WIDER := WIDER - 0.1; 

GKS$SET_PLINE_LINEWIDTH( WIDER ); 

GKS$CREATE_SEGC TITLE ); 
GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ); 
GKS$CLOSE_SEG; 

GKS$CREATE_SEG( STARS ); 
GKS$POLYMARKER( NUM_STARS, STARS_X_VALUES, STARS_Y_VALUES ); 
GKS$CLOSE_SEG; 

GKS$CREATE_SEG( TREE ); 
GKS$FILL_AREA( NUM_TREE_PTS, TREE_X, TREE_Y ); 
GKS$CLOSE_SEG; 

{ Check to see if you are working with a color workstation. } 
GKS$INQ_COLOR_FAC( WS TYPE, ERROR_STATUS, 

DUMNIY_INTEGER, COLOR_FLAG, NUM_INDEXES ); 

(continued on next page) 

B-26 Sample Programs 

l~ 



Example B-4 (Cont.): VAX Pascal Sample Program 

{ For all workstations that have less than three color indexes, 
use GKS$FILL_AREA instead of GKS$CELL_ARRAY for the 
sidewalk and road. } 

IF ( NUM_INDEXES < THREE ) THEN 
BEGIN 

GKS$CREATE_SEG( SIDE ); 
GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_HATCH ); 
GKS$FILL_AREA( BW_NUM_PTS, BW_X_VALUES, BW_Y VALUES ); 
GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ); 
GKS$CLOSE_SEG; 

END 
ELSE 

BEGIN 
GKS$CREATE_SEG( SIDE ); 
GKS$CELL_ARRAY( SIDE_START_X, SIDE_START_Y, 

SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL, 
SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW, 
SIDE_COLORS ); 

GKS$CLOSE_SEG; 
GKS$CREATE_SEG( ROAD ); 
GKS$CELL_ARRAY( ROAD_START X, ROAD_START_Y, 

ROAD_DIAG X, ROAD_DIAG_Y, ROAD_OFF_COL, 
ROAD_OFF_ROW, ROAD_NUM_COL, ROAD_NUM_ROW, 
ROAD_COLORS ); 

GKS$CLOSE_SEG; 
END; 

GKS$CREATE_SEG( HORIZON ); 
GKS$POLYLINE( NUM_LAND_PTS, LAND_X, LAND_Y ); 
GKS$CLOSE_SEG; 

GKS$CREATE_SEG( HOUSE ); 
{ Only change the color index if working with a workstation 

with three or more color indexes.} 
IF ( NUM_INDEXES > THREE ) THEN 

GKS$SET_FILL_COLOR_INDEX( DARK ); 

GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE Y ); 
GKS$CLOSE_SEG; 

END; {Procedure DRAW_PICTURE } 

(continued on next page) 

Sample Programs B-27 



Example B-4 (Cont.): VAX Pascal Sample Program 

{*****************************************************************} 
{ Clean up the DEC GKS and the workstation environments. } 

PROCEDURE CLEANUP( WS_ID INTEGER ); 

VAR C CHAR; 

BEGIN {Procedure CLEANUP } 

GKS$UPDATE_WS( WS_ID, 1 ); 
READ ( C ) ; 

GKS$DEACTIVATE_WS( WS_ID ); 
GKS$CLOSE_WS( WS_ID ); 
GKS$CLOSE_GKS; 

END; {Procedure CLEANUP } 

BEGIN { Main Program } 

{ Set up _workstation and return flag to show if workstation was set 
up properly. } 

SETUP_OK := SET_UP( WS_ID ); 

{ If the workstation was set up properly, execute the 
remainder of the program. } 

IF ( SETUP_OK ) THEN 
BEGIN 

DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, 
ROAD, HOUSE, HORIZON ); 

CLEANUP( WS_ID ); 
END; 

END. {Main Program } 

6.5 VAX Ada 

Example B-5 presents the Starry Night program written in VAX® Ada.®

The following DIGITAL Command Language commands assume that your 
source code file is called STARRY_NIGHT.ADA, and that your definition 
file, source code, and ACS library are all in the directory [DIRECTORY]. To 
run this program, you need to execute the following commands on the DCL 
Line: 

® VAX is a trademark of DIGITAL Equipment Corporation. 

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office). 

B-28 Sample Programs 



3 SET DEFAULT [DIRECTORY]~RETURN 
Z ACS CREATE LIBRARY [DIRECTORY] RETURN
S ACS SET LIBRARY [DIRECTORY] RETURN)
S ADA GKSDEFS.ADA~RETURN 
$ ADA STARRY_NIGHT.ADA RETURN
= ACS LINK STARRY  NIGHT  RETURN 
Z RUN STARRY NIGHT  RETURN 

Sample Programs B-29 



Example B-5: VAX Ada Sample Program 

with gksdef s ; use gksdef s ; 
with text_io; use text_io; 

procedure starry night is 

ws_id 
title 
stars 
tree 
side 
road 
horizon: 
house 

package INT_IO is new INTEGER_IO( NUM => INTEGER ); 
************************************************************ 

Set up the DEC GKS and the workstation environments... 

procedure setup ( ws_id in integer ) is 
error_status, category, inquiry_okay integer; 
dummy_integer, def _mode, regen_f lag integer; 

status, ws_type integer; 
dummy_string string ( 1..80 ); 

constant integer := i; 
constant integer := 1; 
constant integer := 2; 
constant integer := 3; 
constant integer := 4; 
constant integer := 5; 
constant integer := 6; 
constant integer := 7; 

begin 
inquiry_okay .= 0; 

gks_open_gks( status, "SYS$ERROR:" ); 
gks_inq_ws_category( status, GKS_K WSTYPE_DEFAULT, 

error_status, category ); 

Make sure that the workstation type is valid. 
if (( error_status /= inquiry_okay ) or 

(( category /= GKS_K WSCAT_OUTPUT ) and 
( category /= GKS_K_WSCAT_OUTIN ))) then 
put ( "The specified workstation type is invalid." ); 
put ( "Error status:" ); 
int_io.put ( error_status ); 
return; 

end if ; 

gks_open_ws( status, ws_id, GKS_K_CONID_DEFAULT, 
GKS_K WSTYPE_DEFAULT ); 

gks_activate_ws( status, ws_id ); 

Make sure that the def erral mode and regeneration flag are 
properly set. 
gks_inq_ws_type ( status, ws_id, error_status, dummy_string, 

ws_type, dummy_integer ); 
gks_inq_def_def er_state( status, ws_type, error_status, def _mode, 

regen_f lag ) ; 

(continued on next page) 

B-30 Sample Programs 



Example B-5 ~Cont.): VAX Ada Sample Program 

You can check the status of the inquiry function execution, as 
follows: 
if (error_status /= inquiry_okay ) then 

put( "The deferral inquiry caused an error." ); 
put( "Error status:" ); 
int_io.put( error_atatus ); 
return; 

end if ; 

Defer output as long as possible and suppress implicit 
regenerations. 
if (( def mode /= GKS_K_ASTI ) and 

( regen_flag /= GKS_K_IRG_SUPPRESSID )) then 
gks_set_defer_state( status, ws_id, GKS_K_ASTI, 

GKS_K_IRG_SUPPRESSID ); 
end if ; 

end setup; 
************************************************************ 

Draw the picture, and place each primitive in a segment... 
procedure draw_picture ( ws_id, title, stars, tree, side, 

road, house, horizon in integer ) is 

num_stars constant integer := 6; 
num_tree_pts constant integer := 29; 
num_house_pts: constant integer := 12; 
num_land_pts constant integer := 15; 
side_off_col constant integer := 1; 
side_off_row constant integer := 1; 
side_num_col constant integer := 1; 
side_num_row constant integer := 2; 
road_off_col constant integer := 1; 
road_off_row constant integer := 1; 
road_num_col constant integer := 10; 
road_num_row constant integer := 1; 

light constant integer := 2; 
dark constant integer := 3; 
bw_num_pts constant integer := 9; 
error_status integer; 
inquire_okay integer := 0; 
ws_type integer; 
color_f lag integer; 
num_indexes integer; 
dummy_string string ( 1..80 ); 
status integer; 
dummy_int_array INTEGER ARRAY (1..50); 

(continued on next page) 

Sample Programs B-31 



Example B-5 (Copt.): VAX Ada Sample Program 

side_colors constant INTEGER_MATRIX_TYPE(1..1,1..2) :_ 

road_colors constant INTEGER_MATRIX_TYPE(1..10,1..1) :_ 
( 1 => C1=>2). 2 => C1=>3). 3 => C1=>2). 
4 => (1=>3), 5 => (1=>2), 6 => (1=>3), 

text_start_x 
text_start_y 
side_start_x . 
side_start_y . 
side_diag_x 
side_diag_y 
road_start_x 
road_start_y 
road_diag_x 
road_diag_y 

constant float 
constant float 
constant float 
constant float 
constant float 
constant float 
constant float 
constant float 
constant float 
constant float 

.= 0.05; 

.= 0.9; 

.= 0.2; 

.= 0.3; 

.= 0.25; 

.= 0.15; 

.= 0.0; 

.= 0.15; 

.= 1.0; 

.= 0.0; 

larger float .= 0.04; 
wider float .= 3.0; 
max_width float; 
dummy_real: float; 
nom_width float; 
dummy_integer integer; 

stars_x_values constant FLOAT_ARRAY(1..6) :_ 
( 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 ); 

stars_y_values constant FLOAT_ARR.AY(1..6) :_ 
( 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 ); 

tree_x constant FLOAT_ARRAY(1..29) ._ 
( 0.425, 0.5, 0.52, 0.54, 0.6, 0.575, 
0.56, 0.559, 0.64, 0.69, 0.689, 0.66, 
0.63, 0.645, 0.59, 0.53, 0.48, 0.45, 
0.42, 0.375, 0.35, 0.375, 0.44, 0.45, 
0.515, 0.51, 0.495, 0.475, 0.425 ); 

tree_y 

house_x 

house_y 

constant FLOAT_ARRAY(1..29) :_ 
( 0.28, 0.3, 0.26, 0.3, 0.28, 0.33, 
0.42, 0.49, 0.53, 0.57, 0.61, 0.64, 
0.66, 0.71, 0.76, 0.78, 0.75, 0.71, 
0.65, 0.645, 0.6, 0.55, 0.54, 0.5, 
0.5, 0.425, 0.38, 0.33, 0.28 ); 
constant FLOAT_ARRAY(1..12) :_ 

( 0.1, 0.3, 0.3, 0.325, 0.3, 0.3, 
0.25, 0.25, 0.2, 0.075, 0.1, 0.1 ); 
constant FLOAT_ARRAY(1..12) :_ 

( 0.3, 0.3, 0.6, 0.6, 0.64, 0.75, 
0.75, 0.7, 0.75, 0.6, 0.6, 0.3 ); 

(continued on next page) 

B-32 Sample Programs 



Example B-5 (Cont.~: VAX Ada Sample Program 

land_x constant FLOAT_ARRAY(1..15) :_ 
( 0.0, 0.04, 0.055, 0.08, 0.1, 0.3, 
0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 ); 

land_y constant FLOAT_ARRAY(1..15) :_ 
( 0.35, 0.375, 0.376, 0.36, 0.365, 0.366, 
0.38, 0.385, 0.375, 0.36, 
0.385 ); 

0.38, 0.35, 0.359, 0.375, 

bw_x_values constant FLOAT_ARRAY(1..9) :_ 
( 0.0, 0.0, 0.2, 0.2, 0.25, 0.25, 1.0, 1.0, 0.0 ); 

bw_y_values constant FLOAT_ARRAY(1..9) :_ 
( 0.0, 0.15, 0.15, 0.3, 0.3, 0.15, 0.15, 0.0, 0.0 ); 

begin 
gks_set_text height( status, larger ); 
gks_set_pmark_type( status, GKS_K_MARKERTYPE_PLUS ); 
gks_set_fill_int_style( status, GKS_K_INTSTYLE_SOLID ); 
gks_set_pline_linetype( status, GKS_K_LINETYPE_DASHED DOTTED ); 

Obtain the workstation type. 
gks_inq_ws_type( status, ws_id, error_status, dummy_string, 

ws_type, dummy_integer ); 

Make sure that you don't ask for a line wider than the 
workstation's widest line. 
gks_inq_pline_fac( status, ws_type, error_status, dummy integer, 

dummy_int_array, dummy_integer, nom width, dummy_real, 
max_width, dummy_integer, dummy_integer ); 

while ( wider * nom_width ) > max_width loop 
wider .= wider - 0.1; 

end loop; 

gks_set_pline_linewidth( status, wider ); 

gks_create_seg( status, title ); 
gks_text( status, text_start_x, text_start_y, "Starry Night" ); 
gks_close_seg( status ); 

gks_create_seg( status, stars ); 
gks_polymarker( status, num_stars, stara_x_values, stars_y_values ); 
gks_close_seg( status ); 

(continued on next page) 

Sample Programs B-33 



Example B-5 (Copt.): VAX Ada Sample Program 

gks_create_seg( status, tree ); 
gks_f ill_area( status, num_tree_pts, tree_x, tree_y ); 
gks_close_seg( status ); 

Check to see if you are working with a color workstation. 
gks_inq_color_fac( status, ws_type, error_status, dummy_integer, 

color_f lag, num_indexes ); 

For all workstations that have less than three color indexes, 
use GKS$FILL_AREA instead of GKS$CELL_ARRAY for the 
sidewalk and road. 
if num_indexes < 3 then 

gks_create_seg( status, side ); 
gks_set_f ill_int_style( status, GKS_K_INTSTYLE_HATCH ); 
gks_fill_area( status, bw_num_pts, bw_x_values, bw_y_values 
gks_set_fill_int_style( status, GKS_K_INTSTYLE_SOLID ); 
gks_close_seg( status ); 

else 
gks_create_seg( status, side ); 
gks_cell_array( status, side_start_x, side_start_y, 

side_diag_x, side_diag_y, side_off_col, side_off_row, 
side_num_col, side_num_row, side_colors ); 

gks_close_seg( status ); 
gks_create_seg( status, road ); 
gks_cell_array( status, road_start_x, road_start_y, 

road_diag_x, road_diag_y, road_off_col, 
road_off_row, road_num_col, road_num_row, 
road_colors ); 

gks_close_seg( status ); 
end if ; 

gks_create_seg( status, horizon ); 
gks_polyline( status, num_land_pts, land_x, land_y ); 
gks_close_seg( status ); 

gks_create_seg( status, house ); 
Only change the color index if working with a workstation 
with more than three color indexes. 
if num_indexes >= 3 then 

gks_set_fill_color_index( status, dark ); 
end if ; 
gks_f ill_area( status, num_house_pts, house_x, house_y ); 
gks_close_seg ( status ); 

end draw_picture; 
************************************************************ 

Clean up the DEC GKS and the workstation environments... 
procedure cleanup( ws_id: in integer ) is 

status integer; 
dummy_string string(1..1); 
begin 
gks_update_ws( status, ws_id, GKS_K_PERFORM_FLAG ); 

): 

(continued on next page) 

B-34 Sample Programs 



Example B-5 (Copt.): VAX Ada $ample Program 

get( dummy_string ); 
gka_deactivate_ws( status, ws_id ); 
gks_close_ws( status, ws_id ); 
gks_close_gks( status ); 

end cleanup; 
main procedure starry_night 

begin 

setup( ws_id ); 
draw_picture( ws_id, title, stars, tree, side, road, house, horizon ); 
cleanup( wa_id ); 

end starry_night; 

6.6 VAX PL/1 

Example B-6 presents the Starry Night program written in VAX PL/I. 

Example B-6: VAX PL/I Sample Program 

starry night: PROCIDURE OPTIONS( MAIN ); 

/* External procedure declarations for GKS */ 
'/.INCLUDE 'sys$library:gksdefs.pli' ; 

DECLARE SETUP ENTRY( FIXID BIN ); 
DECLARE CLEANUP ENTRY( FIXED BIN ); 
DECLARE DRAW_PICTURE ENTRY 

( FIXID BIN, FIXED BIN, FIXID BIN, FIXED BIN, 
FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN ); 

DECLARE WS_ID FIXID BIN INITIAL( 1 ), 
TITLE FIXED BIN INITIAL( 1 ), 
STARS FIXED BIN INITIAL( 2 ), 
TREE FIXID BIN INITIAL( 3) , 
SIDE FIXID BIN INITIAL( 4 ), 
ROAD FIXED BIN INITIAL( 5 ), 
HORIZON FIXID BIN INITIAL( 6 ), 
HOUSE FIXED BIN INITIAL( 7 ); 

CALL SETUP( WS_ID ); 
CALL DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON ); 
CALL CLEANUP( WS_ID ); 

END starry_night; 

(continued on next page) 

Sample Programs B-35 



Example B-6 (Cont.►: VAX PL/I Sample Program 

/* Set up the DEC GKS and the workstation environments. */ 
setup: PROCEDURE( WS_ID ); 

'/.INCLUDE 'sys$library:gksdefs.pli'; 

DECLARE (WS_ID, WS_TYPE, ERROR_STATUS, CATEGORY, 
DUI~IlKY_INTEGER, DEF_MODE, REGEN_FLAG) FIXED BIN; 

DECLARE INQUIRY_OKAY FIXID BIN INITIAL( 0 ); 
DECLARE DUMMY_STRING CHAR(80); 

CALL GKS$OPEN_GKS( 'SYS$ERROR:' ); 

CALL GKS$INQ_WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, ERROR_STATUS, CATEGORY ); 

/* Make sure that the workstation type is valid. */ 
IF (( ERROR_STATUS "= INQUIRY_OKAY ) I 

(( CATEGORY "= GKS$K WSCAT_OUTPUT ) dt 
(( CATEGORY "= GKS$K_WSCAT_OUTIN )))) THEN 

D0, 
PUT SKIP LIST('The specified workstation type is invalid.'); 
PUT SKIP LIST('Error status:', ER.ROR_STATUS ); 
STOP; 
END; 

CALL GKS$OPEN WS( WS_ID, GKS$K_CONID_DEFAULT, GKS$K_WSTYPE_DEFAULT ); 
CALL GKS$ACTIVATE_WS( WS_ID ); 

/* 
* Make sure that the deferral mode and regeneration flag are 
* properly set. 
*/ 

CALL GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, AUMNIY_STRING, 
WS_TYPE, DiJMMY_INTEGER ); 

CALL GKS$INQ_DEF_DEFER_STATE( WS_TYPE, ERROR_STATUS, 
DEF_MODE, REGEN_FLAG ); 

/* 
* You can check the status of the inquiry routine execution, as 
* follows: 
*/ 

IF ( ERROR_STATUS "= INQUIRY_OKAY ) THEN 
D0, 
PUT SKIP LIST ('The deferral inquiry caused an error.'); 
PUT SKIP LIST ('Error status:', ERROR_STATUS ); 
STOP; 
END; 

(continued on next page) 

B-36 Sample Programs 



Example B-6 (Cont.►: VAX PL/I Sample Program 

/* 
* Defer output as long as possible and suppress 
* implicit regenerations. 
*/ 
IF (( DEF_MODE "= GKS$K_ASTI ) dt 

( REGEN_FLAG "= GKS$K_IRG_SUPPRESSED )) THEN 
CALL GKS$SET_DEFER_STATE( WS_ID, GKS$K_ASTI, GKS$K_IRG_SUPPRESSID ); 

END setup; 

/* Draw the picture, and place each primitive in a segment. */ 
draw_picture: PROCIDURE( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, 

HOUSE, HORIZON ); 

'/.INCLUDE 'sys$library:gksdefs.pli'; 

DECLARE (WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON, 
ERROR_STATUS, 
DUMNIY_INTEGER, WS_TYPE, DUMMY_INT_ARRAY( 50 ), 
COLOR_FLAG, NUM_INDEXES ) FIXED BIN; 

DECLARE DUMMY_STRING CHAR(80); 

DECLARE ( MAX_WIDTH, DUMMY_REAL, NOM_WIDTH ) FLOAT BIN; 

(continued on next page) 

Sample Programs B-37 



Example B-6 (Cont.): VAX PL/I Sample Program 

DECLARE TEXT_START X FLOAT BIN INITIAL( 0.05 ), 
TEXT_START_Y FLOAT BIN INITIAL( 0.9 ), 
NUM_STARS FIXED BIN INITIAL( 6 ), 
NUM_TREE_PTS FIXID BIN INITIAL( 29 ), 
NUM_HOUSE_PTS FIXID BIN INITIAL( 12 ), 
NUM_LAND_PTS FIXID BIN INITIAL( 15 ), 
SIDE_START_X FLOAT BIN INITIAL( 0.2 ), 
SIDE_START Y FLOAT BIN INITIAL( 0.3 ), 
SIDE_DIAG_X FLOAT BIN INITIAL( 0.25 ), 
SIDE_DIAG_Y FLOAT BIN INITIAL( 0.15 ), 
SIDE_OFF_COL FIXID BIN INITIAL ( 1 ) , 
SIDE_OFF_ROW FIXID BIN INITIAL( 1 ), 
SIDE_NUM_COL FIXID BIN INITIAL( 1 ), 
SIDE_NUM_ROW FIXID BIN INITIAL( 2 ), 
ROAD_START_X FLOAT BIN INITIAL( 0.0 ), 
ROAD_START Y FLOAT BIN INITIAL( 0.15 ), 
ROAD_DIAG_X FLOAT BIN INITIAL( 1.0 ), 
ROAD_DIAG Y FLOAT BIN INITIAL( 0.0 ), 
ROAD_OFF_COL FIXID BIN INITIAL( 1 ), 
ROAD_OFF_ROW FIXID BIN INITIAL( 1 ), 
ROAD NUM_COL FIXID BIN INITIAL( 10 ), 
ROAD_NUM_ROW FIXID BIN INITIAL( 1 ), 
LIGHT FIXID BIN INITIAL( 2 ), 
DARK FIXID BIN INITIAL( 3 ), 
LARGER FLOAT BIN INITIAL( 0.04 ), 
WIDER FLOAT BIN INITIAL( 3.0 ), 
THREE FIXID BIN INITIAL( 3 ), 
BW_NUM_PTS FIXID BIN INITIAL( 9 ); 

DECLARE BW_X_VALUES (9) FLOAT BIN INITIAL 
( 0.0, 0.0, 0.2, 0.2, 0.25, 0.25, 1.0, 1.0, 0.0 ); 

DECLARE BW_Y_VALUES (9) FLOAT BIN INITIAL 
( 0.0, 0.15, 0.15, 0.3, 0.3, 0.15, 0.15, 0.0, 0.0 ); 

DECLARE SIDE_COLORS ( 1, 2) FIXID BIN INITIAL ( 2, 3 ); 
DECLARE ROAD_COLORS ( 10, 1) FIXID BIN INITIAL 

C 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 ) ; 
DECLARE STARS_X_VALUES (6) FLOAT BIN INITIAL 

( 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 ); 
DECLARE STARS_Y_VALUES (6) FLOAT BIN INITIAL 

( 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 ); 

(continued on next page) 

B-38 Sample Programs 



Example B-6 (Cont.): VAX PL/I Sample Program 

DECLARE TREE_X (29) FLOAT BIN INITIAL 
( 0.425, 0.5, 0.52, 0.54, 0.6, 0.575, 
0.56, 0.559, 0.64, 0.69, 0.689, 0.66, 
0.63, 0.645, 0.59, 0.53, 0.48, 0.45, 
0.42, 0.375, 0.35, 0.375, 0.44, 0.45, 
0.515, 0.51, 0.495, 0.475, 0.425 ); 

DECLARE TREE_Y (29) FLOAT BIN INITIAL 
( 0.28, 0.3, 0.26, 0.3, 0.28, 0.33, 
0.42, 0.49, 0.53, 0.57, 0.61, 0.64, 
0.66, 0.71, 0.76, 0.78, 0.75, 0.71, 
0.65, 0.645, 0.6, 0.55, 0.54, 0.5, 
0.5, 0.425, 0.38, 0.33, 0.28 ); 

DECLARE HOUSE_X (12) FLOAT BIN INITIAL 
( 0.1, 0.3, 0.3, 0.325, 0.3, 0.3, 
0.25, 0.25, 0.2, 0.075, 0.1, 0.1 ); 

DECLARE HOUSE_Y (12) FLOAT BIN INITIAL 
( 0.3, 0.3, 0.6, 0.6, 0.64, 0.75, 
0.75, 0.7, 0.75, 0.6, 0.6, 0.3 ); 

DECLARE LAND_X (15) FLOAT BIN INITIAL 
( 0.0, 0.04, 0.055, 0.08, 0.1, 0.3, 
0.375, 0.44, 0.49, 0.56, 0.68, 0.8, 0.9, 0.95, 1.0 ); 

DECLARE LAND_Y (15) FLOAT BIN INITIAL 
( 0.35, 0.375, 0.376, 0.36, 0.365, 0.366, 
0.38, 0.385, 0.375, 0.36, 0.38, 0.35, 0.359, 0.375, 0.385 ); 

CALL GKS$SET_TEXT_HEIGHT( LARGER ); 
CALL GKS$SET_PMARK_TYPE( GKS$K_MARKERTYPE_PLUS ); 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ); 
CALL GKS$SET_PLINE_LINETYPE( GKS$K_LINETYPE_DASHID_DOTTID ); 

/* Obtain the workstation type. */ 
CALL GKS$INQ_WS_TYPE( WS_ID, ERROR_STATUS, DUMNIY_STRING, 

WS_TYPE, DUI~IY_INTEGER ) ; 

/* 
* Make sure that you don't ask for a line wider than the 
* workstation's widest line. 
*/ 

CALL GKS$INQ_PLINE_FAC( WS_TYPE, ERROR_STATUS, 
DUMMY_INTEGER, DUMMY_INT_ARRAY, DUMMY_INTEGER, 
NOM WIDTH, DUMMY_REAL, MAX WIDTH, DUMMY_INTEGER, DUMMY_INTEGER ); 

DO WHILE (( WIDER * NOM_WIDTH ) > MAX_WIDTH ); 
WIDER = WIDER - 0.1; 

END; 

CALL GKS$SET_PLINE_LINEWIDTH( WIDER ); 

CALL GKS$CREATE_SEG( TITLE ); 
CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ); 
CALL GKS$CLOSE_SEG(); 

(continued on next page) 

Sample Programs B-39 



Example B-6 (Cont.►: VAX PL/I Sample Program 

CALL GKS$CREATE_SEG( STARS ); 
CALL GKS$POLYMARKER( NUM_STARS, STARS_X_VALUES, STARS_Y_VALUES ); 

CALL GKS$CLOSE_SEG(); 

CALL GKS$CREATE_SEG( TREE ); 
CALL GKS$FILL_AREA( NUM_TREE_PTS, TREE_X, TREE_Y ); 

CALL GKS$CLOSE_SEG(); 

/* Check to see if you are working with a color workstation. 

CALL GKS$INQ_COLOR_FAC( WS_TYPE, ERROR_STATUS, 
DUMMY_INTEGER, COLOR_FLAG, NUM_INDEXES ); 

*/ 

/* 
* For all workstations with less than three color indexes, 

* use GKS$FILL_AREA instead of GKS$CELL_ARRAY for the sidewalk 

* and road. 
*/ 
IF ( NUM_INDEXES < THREE ) THEN 

D0; 
CALL GKS$CREATE_SEG( SIDE ); 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_HATCH ); 
CALL GKS$FILL_AREA( BW_NUM_PTS, BW_X_VALUES, BW_Y VALUES ); 

CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ); 

CALL GKS$CLOSE_SEG(); 
END; 

ELSE 

D0; 
CALL 
CALL 

CALL 
CALL 
CALL 

CALL 
END; 

GKS$CREATE_SEG( SIDE ); 
GKS$CELL_ARRAY( SIDE_START_X, 

SIDE_DIAG_X, SIDE_DIAG_ 
SIDE_OFF_ROW, SIDE_NUM_ 
SIDE_COLORS ); 

GKS$CLOSE_SEG(); 
GKS$CREATE_SEG( ROAD ); 
GKS$CELL ARRAY( ROAD_START_X, 

ROAD_DIAG_X, ROAD_DIAG_ 
ROAD_OFF_ROW, ROAD_NUM_ 
ROAD_COLORS ); 

GKS$CLOSE_SEG(); 

SIDE_START_Y, 
Y, SIDE_OFF_COL, 
COL, SIDE_NUM_ROW, 

ROAD_START_Y, 
Y, ROAD_OFF_COL, 
COL, ROAD_NUM_ROW, 

CALL GKS$CREATE_SEG( HORIZON ); 
CALL GKS$POLYLINE( NUM_LAND_PTS, LAND_X, LAND_Y ); 
CALL GKS$CLOSE_SEG(); 

(continued on next page) 

B-40 Sample Programs 



Example B-6 (Cont.~: VAX PL/I Sample Program 

CALL GKS$CREATE_SEG( HOUSE ); 
/* 
* Only change the color index if working with a 
* workstation with more than three color indexes. 
*/ 
IF ( NUM_INDEXES >= THREE ) THEN 

CALL GKS$SET_FILL_COLOR_INDEX( DARK ); 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X, HOUSE_Y ); 
CALL GKS$CLOSE_SEG(); 

END draw_picture; 

/* Clean up the DEC GKS and the workstation environments. 
cleanup: PROCEDURE( WS_ID ); 

'/.INCLUDE 'sys$library:gksdefs.pli'; 

DECLARE (WS_ID, DUMMY) FIXED BIN; 

CALL GKS$UPDATE_WS( WS_ID, 1 ); 
GET LIST ( DUI~IY ) ; 

CALL GKS$DEACTIVATE_WS( WS_ID ); 
CALL GKS$CLOSE_WS( WS_ID ); 
CALL GKS$CLOSE_GKS(); 

END cleanup; 

*/ 

Sample Programs B-41 



6.7 VAX BASIC 

Example B-7 presents the Starry Night program written in VAX BASIC. 

Example B-7: VAX BASIC Sample Program 

10 OPTION TYPE = EXPLICIT 

DECLARE LONG CONSTANT WS_ID = 1'/. 
DECLARE LONG CONSTANT TITLE = 1'/. 
DECLARE LONG CONSTANT STARS = 2'/. 
DECLARE LONG CONSTANT TREE = 3'/. 
DECLARE LONG CONSTANT SIDE = 4'/. 
DECLARE LONG CONSTANT ROAD = 5'/. 
DECLARE LONG CONSTANT HORIZON = 6'/. 
DECLARE LONG CONSTANT HOUSE = 7'/. 

CALL SETUP( WS_ID ) 
CALL DRAW_PICTURE( WS_ID, TITLE, STARS, TREE, SIDE, ROAD, HOUSE, HORIZON ) 
CALL CLEANUP( WS_ID ) 
END 

100 

! Clean up DEC GKS and the workstation environment. 

SUB CLEANUP( LONG WS_ID ) 

OPTION TYPE = EXPLICIT 
DECLARE STRING DtJMMY_STRING 

! Update the workstation and wait for keypress to continue. 
CALL GKS$UPDATE_WS ( WS_ID, 1'/. ) 
INPUT " ; DIJMMY_STRING 

! Close up the workstation and GKS. 
CALL GKS$DEACTIVATE_WS( WS_ID ) 
CALL GKS$CLOSE_WS( WS_ID ) 
CALL GKS$CLOSE_GKS() 
END SUB 

200 

! Set up DEC GKS and the workstation environment. 

SUB SETUP( LONG WS_ID ) 
OPTION TYPE = EXPLICIT 
'/.NOLIST 
'/.INCLUDE "SYS$LIBRARY:GKSDEFS.BAS" 
'/.LIST 

(continued on next page) 

B-42 Sample Programs 



Example B-7 (Copt.): VAX BASIC Sample Program 

DECLARE LONG CONSTANT INQUIRY_OKAY = 0'/. 

DECLARE LONG 
DECLARE LONG 
DECLARE LONG 
DECLARE STRING 

WS_TYPE 
ERROR_STATUS, CATEGORY 
DUMMY_INTEGER, DEF_MODE, REGEN_FLAG 
DUI~Y_STRING 

! Open GKS and inquire the workstation category. 
CALL GKS$OPEN_GKS( 'SYS$ERROR:' ) 
CALL GKS$INQ WS_CATEGORY( GKS$K_WSTYPE_DEFAULT, ERROR_STATUS, CATEGORY ) 

Make sure that the workstation type is valid for this program 
and that an error did not occur in inquiring the workstation category. 
Change the category below to GKS$K WSCAT_WISS 

210 IF ERROR_STATUS <> INQUIRY_OKAY ~ 
OR CATEGORY <> GKS$K_WSCAT_OUTPUT ~ 
AND CATEGORY <> GKS$K_WSCAT_OUTIN THEN 

PRINT "The specified workstation type is invalid." 
PRINT "Error status:", ERROR_STATUS 
STOP 

END IF 

300 

! Open and activate the workstation. 
CALL GKS$OPEN_WS( WS_ID, GKS$K_CONID DEFAULT, GKS$K_WSTYPE_DEFAULT ) 
CALL GKS$ACTIVATE_WS( WS_ID ) 

! Make sure that the deferral mode and regeneration flag are 
! properly set. 
CALL GKS$INQ_WS_TYPE( 

WS_ID, ERROR_STATUS, DUMMY_STRING, WS_TYPE, DUMMY_INTEGER ) 

CALL GKS$INQ DEF_DEFER_STATE( WS_TYPE, ERROR_STATUS, dt 
DEF_MODE, REGEN_FLAG ) 

! Make sure that the defer inquiry did not cause an error. 
IF ( ERROR_STATUS <> INQUIRY_OKAY ) THEN 

PRINT 'The def erral inquiry caused an error.' 
PRINT 'Error status:', ERROR_STATUS 
STOP 

END IF 

! Defer output as long as possible and suppress implicit 
! regenerations. 
IF DEF_MODE <> GKS$K_ASTI AND REGEN_FLAG <> GKS$K_IRG_SUPPRESSED dt 
THEN 

CALL GKS$SET_DEFER_STATE( WS_ID, GKS$K_ASTI, GKS$K_IRG_SUPPRESSED ) 
END IF 
END SUB 

! Draw the picture, and place each primitive in a segment. 

(continued on next page) 

Sample Programs B-43 



Example B-7 (Cont.~: VAX BASIC Sample Program 

SUB DRAW_PICTURE( LONG WS_ID, TITLE, STARS, TREE, SIDE, dt 
ROAD, HOUSE, HORIZON ) 

OPTION TYPE = EXPLICIT 
'/.NOLIST 
'/.INCLUDE "SYS$LIBRARY:GKSDEFS.BAS" 
'/.LIST 
DECLARE SINGLE CONSTANT TEXT_START_X = 0.05 
DECLARE SINGLE CONSTANT TEXT_START_Y = 0.9 
DECLARE LONG CONSTANT NUM_STARS = 6'/. 
DECLARE LONG CONSTANT NUM_TREE_PTS = 29'/. 
DECLARE LONG CONSTANT NUM_HOUSE_PTS = 12'/. 
DECLARE LONG CONSTANT NUM_LAND_PTS = 15'/. 
DECLARE SINGLE CONSTANT SIDE_START_X = 0.2 
DECLARE SINGLE CONSTANT SIDE_START_Y = 0.3 
DECLARE SINGLE CONSTANT SIDE_DIAG_X = 0.25 
DECLARE SINGLE CONSTANT SIDE_DIAG Y = 0.15 
DECLARE LONG CONSTANT SIDE_OFF_COL = 0'/. 
DECLARE LONG CONSTANT SIDE_OFF_ROW = 0'/. 
DECLARE LONG CONSTANT SIDE_NUM_COL = 1'/. 
DECLARE LONG CONSTANT SIDE_NUM_ROW = 2'/. 
DECLARE SINGLE CONSTANT ROAD_START_X = 0.0 
DECLARE SINGLE CONSTANT ROAD_START_Y = 0.15 
DECLARE SINGLE CONSTANT ROAD_DIAG_X = 1.0 
DECLARE SINGLE CONSTANT ROAD DIAG_Y = 0.0 
DECLARE LONG CONSTANT ROAD_OFF_COL = 0'/. 
DECLARE LONG CONSTANT ROAD_OFF_ROW = 0'/. 
DECLARE LONG CONSTANT ROAD_NUM_COL = 10'/. 
DECLARE LONG CONSTANT ROAD_NUM_ROW = 1'/. 
DECLARE LONG CONSTANT LIGHT = 2'/. 
DECLARE LONG CONSTANT DARK = 3'/. 
DECLARE SINGLE CONSTANT LARGER = 0.04 
DECLARE LONG CONSTANT THREE = 3'/. 
DECLARE LONG CONSTANT BW_NUM_PTS = 9'/. 

DECLARE LONG ERROR_STATUS, DUMMY_INTEGER 
DECLARE LONG WS_TYPE, COLOR_FLAG, NUM_INDEXES 
DECLARE SINGLE MAX_WIDTH, DUI~IY_REAL,NOM_WIDTH 
DECLARE SINGLE WIDER 
DECLARE STRING DiTMMY_STRING 

DECLARE LONG SIDE_COLORS( 0, 1 ) 
DECLARE LONG ROAD_COLORS( 9, 0 ) 
DECLARE LONG DUMMY_INT_ARRAY( 49 ) 
DECLARE LONG I 

DECLARE SINGLE STARS_X VALUES( 5 ), STARS_Y_VALUES( 5 ), TREE_X( 28 ) 
DECLAR.E~SINGLE TREE_Y( 28 ), HOUSE_X( 11 ), HOUSE_Y( it ), LAND_X( 14 ) 
DECLARE SINGLE LAND_Y( 14 ), BW_X_VALUES( 8 ), BW_Y_VALUES( 8 ) 

!Data Section 

(continued on next page) 

B-44 Sample Programs 



Example B-7 ~Cont.): VAX BASIC Sample Program 

!sw_x_vALUEs 
DATA 0.0, 0.0, 0.2, 0.2, 0.25, 0.25, 1.0, 1.0, 0.0 

!sW_Y_VALUES 
DATA 0.0, 0.15, 0.15, 0.3, 0.3, 0.15, 0.15, 0.0, 0.0 

!SIDE_COLORS 
DATA 2, 3 

!ROAD_COLORS 
DATA 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 

!STARS_X_VALUES 
DATA 0.05, 0.06, 0.36, 0.66, 0.835, 0.92 

!STARS_Y_VALUES 
DATA 0.7, 0.86, 0.81, 0.86, 0.701, 0.82 

!TREE_X 
DATA 0.425, 0.5, 0.52, 
DATA 0.689, 0.66, 0.63, 
DATA 0.35, 0.375, 0.44, 

0.54, 0.6, 0.575, 0.56, 0.559, 0.64, 0.69 
0.645, 0.59, 0.53, 0.48, 0.45, 0.42, 0.375 
0.45, 0.515, 0.51, 0.495, 0.475, 0.425 

!TREE_Y 
DATA 0.28, 0.3, 0.26, 0.3, 0.28, 0.33, 0.42, 0.49, 0.53, 0.57, 0.61 
DATA 0.64, 0.66, 0.71, 0.76, 0.78, 0.75, 0.71, 0.65, 0.645 ,0.6, 0.55 
DATA 0.54, 0.5, 0.5, 0.425, 0.38, 0.33, 0.28 

!HOUSE_X 
DATA 0.1, 0.3, 0.3, 0.325, 0.3, 0.3, 0.25, 0.25, 0.2, 0.075, 0.1, 0.1 

!HOUSE_Y 
DATA 0.3, 0.3, 0.6, 0.6, 0.64, 0.75, 0.75, 0.7, 0.75, 0.6, 0.6, 0.3 

!LAND_X 
DATA 0.0, 0.04, 0.055, 0.08, 0.1, 0.3, 0.375, 0.44, 0.49, 0.56, 0.68 
DATA 0.8, 0.9, 0.95, 1.0 

!LAND_Y 
DATA 0.35, 0.375, 0.376, 0.36, 0.365, 0.366, 0.38, 0.385, 0.375, 0.36 
DATA 0.38, 0.35, 0.359, 0.375, 0.385 

! Read in the data into the appropriate arrays. 
FORI=0T08 

READ BW_X_VALUES( I 
NEXT I 
FORI =0T08 

READ sW_Y_VALUES( I ) 
NEXT I 

FOR I = 0 TO 1 
READ SIDE_COLORS( 0, I ) 

NEXT I 

(continued on next page) 

Sampie Programs B-45 



Example B-7 (Cont.~: VAX BASIC Sample Program 

FOR I = 0 TO 9 
READ ROAD_COLORS( I, 0 ) 

NEXT I 

FOR I = 0 TO 5 
READ STARS_X_VALUES( I ) 

NEXT I 

FORI=0T05 
READ STARS_Y_VALUES( I ) 

NEXT I 

FOR I = 0 TO 28 
READ TREE_X( I ) 

NEXT I 

FOR I = 0 TO 28 
READ TREE_Y( I ) 

NEXT I 

FOR I = 0 TO 1l 
READ HOUSE_X( I ) 

NEXT I 

FOR I = 0 TO 1l 
READ HOUSE_Y( I ) 

NEXT I 

FORI=0T014 
READ LAND_X( I ) 

NEXT I 

FOR I = 0 TO 14 
READ LAND_Y( I ) 

NEXT I 

! Set selected output attributes. 
WIDER = 3.0 
CALL GKS$SET_TEXT_HEIGHT( LARGER ) 
CALL GKS$SET_PMARK_TYPE( GKS$K_MARKERTYPE_PLUS ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 
CALL GKS$SET_PLINE_LINETYPE( GKS$K_LINETYPE_DASHED_DOTTED ) 

! Obtain the workstation type. 
CALL GKS$INQ WS_TYPE( 

WS_ID, ERROR_STATUS, DUMMY_STRING, WS_TYPE, DUMMY_INTEGER 

! Make sure that you don't ask for a line wider than the 
! workstation's widest line. 
CALL GKS$INQ_PLINE_FAC( WS_TYPE, ERROR_STATUS, DUMMY_INTEGER, ~ 

DUMMY_INT_ARR.AY(), DUMNIY_INTEGER, NOM_WIDTH, DUMMY_REAL, d~ 
MAX_WIDTH, DUMMY_INTEGER, DUMMY_INTEGER ) 

(continued on next page) 

B-46 Sample Programs 



Example B-7 (Copt.): VAX BASIC Sample Program 

! If the linewidth is wider than the workstation's widest line 
! decrement it until it is not. 
WHILE ( WIDER * NOM_WIDTH ) > MAX_WIDTH 

WIDER = WIDER - 0.1 
NEXT 

! Set the polyline linewidth. 
CALL GKS$SET_PLINE_LINEWIDTH( WIDER ) 

! Ouput the title as a segment. 
CALL GKS$CREATE_SEG( TITLE ) 
CALL GKS$TEXT( TEXT_START_X, TEXT_START_Y, 'Starry Night' ) 
CALL GKS$CLOSE_SEG() 

! Output the stars as a segment. 
CALL GKS$CREATE_SEG( STARS ) 
CALL GKS$POLYMARKER( NUM_STARS, STARS_X_VALUES(), STARS Y VALUES() ) 
CALL GKS$CLOSE_SEG() 

! Output the tree as a segment. 
CALL GKS$CREATE_SEG( TREE ) 
CALL GKS$FILL_AREA( NUM_TREE_PTS, TREE_X(), TREE_Y() ) 
CALL GKS$CLOSE_SEG() 

! Check to see if you are working with a color workstation. 
CALL GKS$INQ_COLOR_FAC( WS_TYPE, ERROR_STATUS, 

DUI~IY_INTEGER, COLOR_FLAG, NUM_INDEXES ) 

! Output the sidewalk and the road as segments. 
! For all monochrome that have less than 3 color indexes, 
! use GKS$FILL AREA instead of GKS$CELL_ARRAY for the 
! sidewalk and road. 
IF NUM_INDEXES < THREE THEN 

CALL GKS$CREATE_SEG( SIDE ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_HATCH ) 
CALL GKS$FILL AREA( BW_NUM_PTS, BW X VALUES(), BW_Y_VALUES() ) 
CALL GKS$SET_FILL_INT_STYLE( GKS$K_INTSTYLE_SOLID ) 
CALL GKS$CLOSE_SEG() 

ELSE 
CALL GKS$CREATE_SEG( SIDE ) 
CALL GKS$CELL_ARRAY( SIDE_START_X, SIDE_START_Y, ~ 

SIDE_DIAG_X, SIDE_DIAG_Y, SIDE_OFF_COL, dt 
SIDE_OFF_ROW, SIDE_NUM_COL, SIDE_NUM_ROW, dt 
SIDE_COLORS( ) ) 

CALL GKS$CLOSE_SEG() 
CALL GKS$CREATE_SEG( ROAD ) 
CALL GKS$CELL_ARRAY( ROAD_START_X, ROAD_START_Y, dt 

ROAD_DIAG_X, ROAD_DIAG_Y, ROAD_OFF_COL, dt 
ROAD_OFF_ROW, ROAD_NUM_COL, ROAD_NUM_ROW, ~ 
ROAD_COLORS( ) ) 

CALL GKS$CLOSE_SEG() 
END IF 

(continued on next page) 

Sample Programs B~47 



Example B-7 (Copt.): VAX BASIC Sample Program 

! Output the horizon as a segment. 
CALL GKS$CREATE_SEG( HORIZON ) 
CALL GKS$POLYLINE( NUM_LAND_PTS, LAND_X(), LAND_Y() ) 
CALL GKS$CLOSE_SEG() 

! Output the house as a segment. 
CALL GKS$CREATE_SEG( HOUSE ) 
! Only change the color index if working with a workstation 
! that has more than two color indexes. 
IF NUM_INDEXES >= THREE THEN 

CALL GKS$SET_FILL_COLOR_INDEX( DARK ) 
END IF 

CALL GKS$FILL_AREA( NUM_HOUSE_PTS, HOUSE_X(), HOUSE_Y() ) 
CALL GKS$CLOSE_SEG() 
END SUB 

6.8 VAX COBOL 

Example B-8 presents the Starry Night program written in VAX COBOL. 
The DIGITAL Command Language commands assume that you entered 
the code listed in the BUILDESC routine (refer to Appendix F, Language-
Specific Programming Information, in the DEC GKS Reference Manual). To 
link this program, you need to execute the following commands on the 
DCL line: 

$ MACRO BUILDESC RETURN 
$ LINK cobol_program, BUILDESC 

B-48 Sample Programs 

RETURN 



Example B-8: VAX COBOL Sample Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. Starry-Night. 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 
COPY GKSDEFS. 
01 ONE PIC S9(9) USAGE IS COMP VALUE 1. 
O1 WS-ID PIC S9(9) USAGE IS COMP VALUE 1. 
O1 WS-TYPE PIC S9(9) USAGE IS COMP VALUE 1. 
01 TITLE PIC S9(9) USAGE IS COMP VALUE 1. 
O1 STARS PIC S9(9) USAGE IS COMP VALUE 2. 
01 TREE PIC S9(9) USAGE IS COMP VALUE 3. 
01 SIDE PIC S9(9) USAGE IS COMP VALUE 4. 
O1 ROAD PIC S9(9) USAGE IS COMP VALUE 5. 
O1 HORIZON PIC S9(9) USAGE IS COMP VALUE 6. 
O1 HOUSE PIC S9(9) USAGE IS COMP VALUE 7. 
O1 ARRAY_D. 

05 desc OCCURS 11 TIMES PIC S9(9) USAGE IS COMP. 
01 DUMMY-STRING Display. 

03 MAIN-DUMMY PIC X(80). 
01 ERROR-MESSAGE Display. 

03 TEXT-PART PIC X(14) VALUE "Error Status: " 
03 ERROR-OUT PIC Z(9) USAGE IS DISPLAY. 

O1 ERROR-STATUS PIC S9(9) USAGE IS COMP. 
O1 CATEGORY PIC S9(9) USAGE IS COMP. 
O1 INQUIRY-OKAY PIC S9(9) USAGE IS COMP VALUE ZERO. 
O1 DUMMY-INTEGER PIC S9(9) USAGE IS COMP. 
O1 DEF-MODE PIC S9(9) USAGE IS COMP. 
O1 REGEN-FLAG PIC S9(9) USAGE IS COMP. 
01 NUM_STARS PIC S9(9) USAGE IS COMP VALUE 6. 
O1 NUM_TREE_PTS PIC S9(9) USAGE IS COMP VALUE 29. 
O1 NUM_HOUSE_PTS PIC S9(9) USAGE IS COMP VALUE 12. 
O1 NUM_LAND_PTS PIC S9(9) USAGE IS COMP VALUE 15. 
01 SIDE-OFF-COL PIC S9(9) USAGE IS COMP VALUE 1. 
O1 SIDE-OFF-ROW PIC S9(9) USAGE IS COMP VALUE 1. 
O1 SIDE-NUM-COL PIC S9(9) USAGE IS COMP VALUE 1. 
O1 SIDE-NUM-ROW PIC S9(9) USAGE IS COMP VALUE 2. 
O1 SIDE-START-X USAGE IS COMP-1 VALUE 0.2. 
O1 SIDE-START-Y USAGE IS COMP-1 VALUE 0.3. 
O1 SIDE-DIAG-X USAGE IS COMP-1 VALUE 0.25. 
O1 SIDE-DIAG-Y USAGE IS COMP-1 VALUE 0.15. 

(continued on next page) 

Sample Programs B-49 



Example B-8 (Cont.): VAX COBOL Sample Program 

01 SIDEWALK. 
05 SIDE-DATA. 

10 FILLER PIC S9(9) USAGE IS COMP VALUE 2. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE 3. 

05 SIDE-STUFF REDEFINES SIDE-DATA. 
10 DIM1 OCCURS 1 TIMES. 

15 SIDE-COLORS OCCURS 2 TIMES PIC S9(9) USAGE IS COMP. 
O1 ROAD-OFF-COL PIC S9(9) USAGE IS COMP VALUE 1. 
01 ROAD-OFF-ROW PIC S9(9) USAGE IS COMP VALUE 1. 
O1 ROAD-NUM-COL PIC S9(9) USAGE IS COMP VALUE 10. 
01 ROAD-NUM-ROW PIC S9(9) USAGE IS COMP VALUE 1. 
O1 ROAD-START-X USAGE IS COMP-1 VALUE 0.0. 
O1 ROAD-START-Y USAGE IS COMP-1 VALUE 0.15. 
O1 ROAD-DIAG-X USAGE IS COMP-1 VALUE 1.0. 
O1 ROAD-DIAG-Y USAGE IS COMP-1 VALUE 0.0. 
01 ROAD-ARRAY. 

05 ROAD-DATA. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 2. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 3. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 2. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 3. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 2. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 3. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 2. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 3. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 2. 
10 FILLER PIC S9(9) USAGE IS COMP VALUE IS 3. 

05 ROAD-STUFF REDEFINES ROAD-DATA. 
10 DIM1 OCCURS 10 TIMES. 

15 ROAD-COLORS OCCURS 1 TIMES PIC S9(9) USAGE IS COMP. 
01 LIGHT PIC S9(9) USAGE IS COMP VALUE 2. 
01 DARK PIC S9(9) USAGE IS COMP VALUE 3. 
O1 THREE PIC S9(9) USAGE IS COMP VALUE 3. 
O1 BW-NUM-PTS PIC S9(9) USAGE IS COMP VALUE 9. 
01 COLOR-FLAG PIC S9(9) USAGE IS COMP. 
01 NUM-INDEXES PIC S9(9) USAGE IS COMP. 
O1 INT-ARRAY. 

(continued on next page) 

B-50 Sample Programs 



Example B-8 1Cont.~: VAX COBOL Sample Program 

05 DiJMMY-INT-ARRAY OCCURS 50 TIMES PIC S9 (9) USAGE IS COMP. 
O1 TEXT-START-X USAGE IS COMP-1 VALUE 0.05. 
01 TEXT-START-Y USAGE IS COMP-1 VALUE 0.9. 
01 LARGER USAGE IS COMP-1 VALUE 0.04. 
O1 WIDER USAGE IS COMP-1 VALUE 3.0. 
01 MAX-WIDTH USAGE IS COMP-1. 
O1 DUMHIY-REAL USAGE IS COMP-1. 
O1 NOM_WIDTH USAGE IS COMP-1. 
01 WIDTH-RESULT USAGE IS COMP-1. 
01 ARRAY-DEFINITIONS-FLOAT USAGE IS COMP-1. 

05 X-STAR-ARRAY. 
10 FILLER VALUE 0.05. 
10 FILLER VALUE 0.06. 
10 FILLER VALUE 0.36. 
10 FILLER VALUE 0.66. 
10 FILLER VALUE 0.835. 
10 FILLER VALUE 0.92. 

05 STARS-X-VALUES REDEFINES X-STAR-ARRAY. 
10 X-STAR OCCURS 6 TIMES. 

05 Y-STAR-ARRAY. 
10 FILLER VALUE 0.7. 
10 FILLER VALUE 0.86. 
10 FILLER VALUE 0.81. 
10 FILLER VALUE 0.86. 
10 FILLER VALUE 0.701. 
10 FILLER VALUE 0.82. 

05 STARS-Y-VALUES RIDEFINES Y-STAR-ARRAY. 
10 Y-STAR OCCURS 6 TIMES. 

05 X-TREE-ARRAY. 
10 FILLER VALUE 0.425. 
10 FILLER VALUE 0.5. 
10 FILLER VALUE 0.52. 
10 FILLER VALUE 0.54. 
10 FILLER VALUE 0.6. 
10 FILLER VALUE 0.575. 
10 FILLER VALUE 0.56. 
10 FILLER VALUE 0.559. 
10 FILLER VALUE 0.64. 
10 FILLER VALUE 0.69. 
10 FILLER VALUE 0.689. 
10 FILLER VALUE 0.66. 
10 FILLER VALUE 0.63. 
10 FILLER VALUE 0.645. 
10 FILLER VALUE 0.59. 
10 FILLER VALUE 0.53. 
10 FILLER VALUE 0.48. 

(continued on next page) 

Sample Programs B-51 



Example B-8 (Copt.): VAX COBOL Sample Program 

10 FILLER VALUE 0.45. 
10 FILLER VALUE 0.42. 
10 FILLER VALUE 0.375. 
10 FILLER VALUE 0.35. 
10 FILLER VALUE 0.375. 
10 FILLER VALUE 0.44. 
10 FILLER VALUE 0.45. 
10 FILLER VALUE 0.515. 
10 FILLER VALUE 0.51. 
10 FILLER VALUE 0.495. 
10 FILLER VALUE 0.475. 
10 FILLER VALUE 0.425. 

05 TREE-X REDEFINES X-TREE-ARRAY. 
10 TREE-X-ITEM OCCURS 29 TIMES. 

05 Y-TREE-ARRAY. 
10 FILLER VALUE 0.28. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.26. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.28. 
10 FILLER VALUE 0.33. 
10 FILLER VALUE 0.42. 
10 FILLER VALUE 0.49. 
10 FILLER VALUE 0.53. 
10 FILLER VALUE 0.57. 
10 FILLER VALUE 0.61. 
10 FILLER VALUE 0.64. 
10 FILLER VALUE 0.66. 
10 FILLER VALUE 0.71. 
10 FILLER VALUE 0.76. 
10 FILLER VALUE 0.78. 
10 FILLER VALUE 0.75. 
10 FILLER VALUE 0.71. 
10 FILLER VALUE 0.65. 
10 FILLER VALUE 0.645. 
10 FILLER VALUE 0.6. 
10 FILLER VALUE 0.55. 
10 FILLER VALUE 0.54. 
10 FILLER VALUE 0.5. 
10 FILLER VALUE 0.5. 
10 FILLER VALUE 0.425. 
10 FILLER VALUE 0.38. 
10 FILLER VALUE 0.33. 
10 FILLER VALUE 0.28. 

05 TREE-Y REDEFINES Y-TREE-ARRAY. 
10 TREE-Y-ITEM OCCURS 29 TIMES. 

(continued on next page) 

B-52 Sample Programs 



Example B-8 (Cont.): VAX COBOL Sample Program 

05 X-HOUSE-ARRAY. 
10 FILLER VALUE 0.1. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.325. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.25. 
10 FILLER VALUE 0.25. 
10 FILLER VALUE 0.2. 
10 FILLER VALUE 0.075. 
10 FILLER VALUE 0.1. 
10 FILLER VALUE 0.1. 

05 HOUSE-X RIDEFINES X-HOUSE-ARRAY. 
10 HOUSE-X-ITEM OCCURS 12 TIMES. 

05 Y-HOUSE-AR.R.AY . 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.6. 
10 FILLER VALUE 0.6. 
10 FILLER VALUE 0.64. 
10 FILLER VALUE 0.75. 
10 FILLER VALUE 0.75. 
10 FILLER VALUE 0.7. 
10 FILLER VALUE 0.75. 
10 FILLER VALUE 0.6. 
10 FILLER VALUE 0.6. 
10 FILLER VALUE 0.3. 

05 HOUSE-Y REDEFINES Y-HOUSE-ARRAY. 
10 HOUSE-Y-ITEM OCCURS 12 TIMES. 

05 LAND-X-ARRAY. 
10 FILLER VALUE 0.0. 
10 FILLER VALUE 0.04. 
10 FILLER VALUE 0.055. 
10 FILLER VALUE 0.08. 
10 FILLER VALUE 0.1. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.375. 
10 FILLER VALUE 0.44. 
10 FILLER VALUE 0.49. 
10 FILLER VALUE 0.56. 
10 FILLER VALUE 0.68. 
10 FILLER VALUE 0.8. 
10 FILLER VALUE 0.9. 
10 FILLER VALUE 0.95. 
10 FILLER VALUE 1.0. 

(continued on next page) 

Sample Programs B-53 



Example B-8 (Cont.): VAX COBOL Sample Program 

05 LAND-X REDEFINES LAND-X-ARRAY. 
10 LAND-X-ITEM OCCURS 15 TIMES. 

05 LAND-Y-ARRAY. 
10 FILLER VALUE 0.35. 
10 FILLER VALUE 0.375. 
10 FILLER VALUE 0.376 
10 FILLER VALUE 0.36. 
10 FILLER VALUE 0.365 
10 FILLER VALUE 0.366 
10 FILLER VALUE 0.38. 
10 FILLER VALUE 0.385. 
10 FILLER VALUE 0.375 
10 FILLER VALUE 0.36. 
10 FILLER VALUE 0.38. 
10 FILLER VALUE 0.35. 
10 FILLER VALUE 0.359. 
10 FILLER VALUE 0.375. 
10 FILLER VALUE 0.385. 

05 LAND-Y REDEFINES LAND-Y-ARRAY. 
10 LAND-Y-ITEM OCCURS 15 TIMES. 

05 BW-X-VALUES-ARRAY. 
10 FILLER VALUE 0.0. 
10 FILLER VALUE 0.0. 
10 FILLER VALUE 0.2. 
10 FILLER VALUE 0.2. 
10 FILLER VALUE 0.25. 
10 FILLER VALUE 0.25. 
10 FILLER VALUE 1.0. 
10 FILLER VALUE 1.0. 
10 FILLER VALUE 0.0. 

05 BW-X-VALUES REDEFINES BW-X-VALUES-ARRAY. 
10 BW-X-ITEM OCCURS 9 TIMES. 

05 BW-Y-VALUES-ARRAY. 
10 FILLER VALUE 0.0. 
10 FILLER VALUE 0.15. 
10 FILLER VALUE 0.15. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.3. 
10 FILLER VALUE 0.15. 
10 FILLER VALUE 0.15. 
10 FILLER VALUE 0.0. 
10 FILLER VALUE 0.0. 

05 BW-Y-VALUES REDEFINES BW-Y-VALUES-ARRAY. 
10 BW-Y-ITEM OCCURS 9 TIMES. 

(continued on next page) 

B-54 Sample Programs 



Example B-8 (Cont.~: VAX COBOL Sample Program 

PROCIDURE DIVISION. 
TOP-LEVEL. 

Perform SET-UP. 
Perform DRAW-PICTURE. 
Perform CLEAN-UP. 
STOP RUN. 

*** 
*** Set Up the DEC GKS and Workstation environments .. 
*** 
SET-UP. 

Call "GKS$OPEN_GKS" using 
BY DESCRIPTOR "SYS$ERROR:". 

Call "GKS$INQ_WS_CATEGORY" using 
BY REFERENCE GKS$K_WSTYPE_DEFAULT, 
BY REFERENCE ERROR-STATUS, 
BY REFERENCE CATEGORY. 

*** Make sure the workstation type is valid 
If ERROR-STATUS is not equal to INQUIRY-OKAY or 

CATEGORY is not equal to GKS$K_WSCAT_OUTPUT and 
is not equal to GKS$K_WSCAT_OUTIN ) 

Display "The Specified Workstation Type is invalid" 
Move ERROR-STATUS to ERROR-OUT 
Display ERROR-MESSAGE 
Go To EMERGENCY-EXIT. 

Call "GKS$OPEN_WS" using 
BY REFERENCE WS-ID, 
BY DESCRIPTOR GKS$K_CONID_DEFAULT, 
BY REFERENCE GKS$K_WSTYPE_DEFAULT. 

Call "GKS$ACTIVATE WS" using 
BY REFERENCE WS-ID. 

*** Make sure that the deferral mode and regeneration flag are 
*** properly set 

Call "GKS$INQ_WS_TYPE" using 
BY REFERENCE WS-ID, 
BY REFERENCE ERROR-STATUS, 
BY DESCRIPTOR DUMMY-STRING, 
BY REFERENCE WS-TYPE, 
BY REFERENCE DUMMY-INTEGER. 

Call "GKS$INQ_DEF_DEFER_STATE" using 
BY REFERENCE WS-TYPE, 
BY REFERENCE ERROR-STATUS, 
BY REFERENCE DEF-MODE, 
BY REFERENCE REGEN-FLAG. 

(continued on next page) 

Sample Programs B-55 



Example B-8 (Cont.): VAX COBOL Sample Program 

*** 

*** 

You can check the status of the inquiry function execution, as 
follows: 
If ERROR-STATUS is not equal to INQUIRY-OKAY 

Display "The def erral inquiry caused an error" 
Move ERROR-STATUS to ERROR-OUT 
Display ERROR-MESSAGE 
Go To EMERGENCY-EXIT. 

Defer output as long as possible and suppress implicit 
regenerations 
If DEF-MODE is not equal to GKS$K_ASTI and 

REGEN-FLAG is not equal to GKS$K_IRG_SUPPRESSED 
Call "GKS$SET_DEFER_STATE" using 
BY REFERENCE WS-ID, 
BY REFERENCE GKS$K_ASTI, 
BY REFERENCE GKS$K_IRG_SUPPRESSED. 

*** 

*** Draw the picture and place each primitive in a segment 
*** 

DRAW-PICTURE. 

*** 

Call "GKS$SET_TEXT HEIGHT" using 
BY REFERENCE LARGER. 

Call "GKS$SET_PMARK_TYPE" using 
BY REFERENCE GKS$K_MARKERTYPE_PLUS. 

Call "GKS$SET_FILL_INT_STYLE" using 
BY REFERENCE GKS$K_INTSTYLE_SOLID. 

Call "GKS$SET_PLINE_LINETYPE" using 
BY REFERENCE GKS$K_LINETYPE_DASHED_DOTTED. 

Obtain the workstation Type 
Call "GKS$INQ_WS_TYPE" using 

BY REFERENCE WS-ID, 
BY REFERENCE ERROR-STATUS, 
BY DESCRIPTOR DUMMY-STRING, 
BY REFERENCE WS-TYPE, 
BY REFERENCE DUMMY-INTEGER. 

(continued on next page) 

B-56 Sample Programs 



Example B-8 ~Cont.): VAX COBOL Sample Program 

*** 
*** 

Make sure that you don't ask for a line wider than the 
workstations widest line 
Call "GKS$INQ_PLINE_FAC" using 

BY REFERENCE WS-TYPE, 
BY REFERENCE ERROR-STATUS, 
BY REFERENCE DUMMY-INTEGER, 
BY DESCRIPTOR INT-ARRAY, 
BY REFERENCE DUMMY-INTEGER, 
BY REFERENCE NOM-WIDTH, 
BY REFERENCE DUMMY-REAL, 
BY REFERENCE MAX-WIDTH, 
BY REFERENCE DUMMY-INTEGER, 
BY REFERENCE DUMMY-INTEGER. 

Multiply WIDER by MAX-WIDTH giving WIDTH-RESULT. 
Perform Until WIDTH-RESULT is Less Than MAX-WIDTH 

SUBTRACT 0.1 FROM WIDER 
Multiply WIDER by MAX-WIDTH giving WIDTH-RESULT 
End-Perform . 

Call "GKS$SET_PLINE_LINEWIDTH" using 
BY REFERENCE WIDER. 

Call "GKS$CREATE_SEG" using 
BY REFERENCE TITLE. 

Call "GKS$TEXT" using 
BY REFERENCE TEXT-START-X, 
BY REFERENCE TEXT-START-Y, 
BY DESCRIPTOR "Starry Night". 

Call "GKS$CLOSE_SEG". 

Call "GKS$CREATE_SEG" using 
BY REFERENCE STARS. 

Call "GKS$POLYMARKER" using 
BY REFERENCE NUM-STARS, 
BY REFERENCE STARS_X_VALUES, 
BY REFERENCE STARS Y_VALUES. 

Call "GKS$CLOSE_SEG". 

Call "GKS$CREATE_SEG" using 
BY REFERENCE TREE. 

Call "GKS$FILL_AREA" using 
BY REFERENCE NUM-TREE-PTS, 
BY REFERENCE TREE-X, 
BY REFERENCE TREE-Y. 

Call "GKS$CLOSE_SEG". 

(continued on next page) 

Sample Programs B-57 



Example B-8 (Copt.): VAX COBOL Sample Program 

*** 

*** 

Check to see if working with a color workstation 
Call "GKS$INQ_COLOR_FAC" using 

BY REFERENCE WS-TYPE, 
BY REFERENCE ERROR-STATUS, 
BY REFERENCE DUMMY-INTEGER, 
BY REFERENCE COLOR-FLAG, 
BY REFERENCE NUM-INDEXES. 

For all workstations with less than three color indexes, 
USE GKS$FILL_AREA instead of GKS$CELL_ARRAY for the sidewalk 
and road 
If NUM-INDEXES is less than THREE 

Call "GKS$CREATE_SEG" using 
BY REFERENCE SIDE 

Call "GKS$SET_FILL_INT_STYLE" using 
BY REFERENCE GKS$K_INTSTYLE_HATCH 

Call "GKS$FILL_AREA" using 
BY REFERENCE BW_NUM_PTS, 
BY REFERENCE BW_X_VALUES, 
BY REFERENCE BW_Y_VALUES 

Call "GKS$SET_FILL_INT_STYLE" using 
BY REFERENCE GKS$K_INTSTYLE_SOLID 

Call "GKS$CLOSE_SEG" 

Else 
Build a Descriptor of the Side Walk Color array 

Call "BUILDESC" using 
BY REFERENCE ARRAY_D, 
BY DESCRIPTOR SIDE_COLORS(1,1), 
BY VALUE SIDE_NUM_COL, 
BY VALUE SIDE_NUM_ROW 

Call "GKS$CREATE_SEG" using 
BY REFERENCE SIDE 

Call "GKS$CELL_ARRAY".using 
BY REFERENCE SIDE_START_X, 
BY REFERENCE SIDE_START_Y, 
BY REFERENCE SIDE_DIAG_X, 
BY REFERENCE SIDE_DIAG_Y, 
BY REFERENCE SIDE_OFF_COL, 
BY REFERENCE SIDE_OFF_ROW, 
BY REFERENCE SIDE_NUM_COL 
BY REFERENCE SIDE_NUM_ROW, 
BY REFERENCE ARRAY_D 

Call "GKS$CLOSE_SEG" 

(continued on next page) 

B-58 Sample Programs 



Example B-8 (Cont.): VAX COBOL Sample Program 

*** Build a descriptor of the road color array 
Call "BUILDESC" using 

BY REFERENCE ARRAY_D, 
BY DESCRIPTOR ROAD_COLORS(1,1), 
BY VALUE ROAD_NUM_COL, 
BY VALUE ROAD_NUM_ROW 

Call "GKS$CREATE_SEG" using 
BY REFERENCE ROAD 

Call "GKS$CELL_ARRAY" using 
EY REFERENCE ROAD_START_X, 
BY REFERENCE ROAD_START_Y, 
BY REFERENCE ROAD_DIAG_X, 
BY REFERENCE ROAD_DIAG_Y, 
BY REFERENCE ROAD_OFF_COL, 
BY REFERENCE ROAD_OFF_ROW, 
BY REFERENCE ROAD_NUM_COL 
BY REFERENCE ROAD_NUM_ROW, 
BY REFERENCE ARRAY_D 

Call "GKS$CLOSE_SEG". 

Call "GKS$CREATE_SEG" using 
BY REFERENCE HORIZON. 

Call "GKS$POLYLINE" using 
BY REFERENCE NUM-LAND-PTS, 
BY REFERENCE LAND-X, 
BY REFERENCE LAND-Y. 

Call "GKS$CLOSE_SEG". 

Call "GKS$CREATE_SEG" using 
BY REFERENCE HOUSE. 

If NUM-INDEXES is Greater than THREE or equal to THREE 
Call" GKS$SET_FILL_COLOR_INDEX" using 

BY REFERENCE DARK. 
Call "GKS$FILL_AREA" using 

BY REFERENCE NUM-HOUSE-PTS, 
BY REFERENCE HOUSE-X, 
BY REFERENCE HOUSE-Y. 

Call "GKS$CLOSE_SEG". 

*** 

*** Clean up the DEC GKS and workstation Environments 

(continued on next page) 

Sample Programs 6-59 



Example B-8 (Copt.): VAX COBOL Sample Program 

CLEAN-UP. 
Call "GKS$UPDATE_WS" using 

BY REFERENCE WS-ID, 
BY REFERENCE ONE. 

Accept DUMMY-STRING. 
Call "GKS$DEACTIVATE_WS" using 

BY REFERENCE WS-ID. 
Call "GKS$CLOSE_WS" using 

BY REFERENCE WS-ID. 
Call "GKS$CLOSE_GKS". 

*** 

*** Stop the program if we get an error 

EMERGENCY-EXIT. 
STOP RUN. 

B.9 VAX BLISS 

Example B-9 presents the Starry Night program written in VAX BLISS. 

Example B-9: VAX BLISS Sample Program 

'/.TITLE 'SAMPLE - DEC GKS Sample Program, coded in BLISS-32' 
MODULE SAMPLE ( ! DEC GKS Sample Program 

IDENT = '1-001', ! File: SAMPLE.B32 
MAIN = SAMPLE 

BEGIN 
'/.SBTTL 'Declarations' 

SWITCHES: 

WITCHES ADDRESSING_MODE (EXTERNAL = GENERAL, NONEXTERNAL = WORD_RELATIVE); 

LINKAGES: 

NONE 

TABLE OF CONTENTS: 

(continued on next page) 

B-60 Sample Programs 



Example B-9 (Copt.): VAX BLISS Sample Program 

FORWARD ROUTINE 
SAMPLE; ! The sample program 

i 

! INCLUDE FILES: 
i 

LIBRARY 'SYS$LIBRARY:STARLET'; 

REQUIRE 'SYS$LIBRARY:GKSDEFS.R32'; 

MACROS: 

! System symbols 

! DEC GKS symbols 

Macro to declare PSECTs for a facility, given the facility prefix. 

The declarations are very dependent on the linker algorithm for 
sorting PSECTs. Currently that algorithm divides PSECTs into four 

groups depending on WRITE vs NOWRITE and EXECUTE vs NOEXECUTE. 
Therefore in order to get compact programs, PLIT is made EXECUTABLE 

to get it close to CODE. 

Example of use: 

PSECT DECLARATIONS: 

DECLARE_PSECTS (FOR); ! Declare PSECTs for FOR$ facility 

Note: since the methodology manual does not yet specify where PSECT 
declarations go in a module, they are put between EQUATED SYMBOLS 

and OWN STORAGE (which is after INCLUDE files) . 

MACRO 
DECLARE_PSECTS (FAC) _ 
PSECT 
CODE _ '/.NAME ('_', FAC, $CODE) (READ, NOWRITE, EXECUTE, SHARE, PIC, 

ADDRESSING_MODE (WORD_RELATIVE)), 
PLIT = '/.NAME ('_', FAC, $CODE) (READ, NOWRITE, EXECUTE, SHARE, PIC, 

ADDRESSING_MODE (WORD_RELATIVE)), 
OWN = '/.NAME ('_', FAC, $DATA) (READ, WRITE, NOEXECUTE, NOSHARE, PIC, 

ADDRESSING_MODE (LONG_RELATIVE)), 
GLOBAL = '/.NAME ('_', FAC, $DATA) (READ, WRITE, NOEXECUTE, NOSHARE, PIC, 

ADDRESSING_MODE (LONG_RELATIVE)) '/.; 

(continued on next page) 

Sample Programs B--61 



Example B-9 (Cont.): VAX BLISS Sample Program 

!+ 
! Define macro for declaring PIC (position independent) dispatch tables 
! as OWN storage (would be better if BIND table = PLIT (...), however, 
! BLISS doesn't allow table to be referenced inside PLIT definition, 
! so use OWN storage instead). The OWN storage is temporarily defined 
! to be same PSECT as code, then DECLARE_PSECTS should be called again 
! to restore OWN to _fac$DATA PSECT. 
i-

MACRO 
DISPATCH_PSECTS (FAC) _ 
PSECT 
CODE _ '/.NAME ('_', FAC, $CODE) (READ, NOWRITE, EXECUTE, SHARE, PIC, 

ADDRESSING_MODE (WORD_RELATIVE)), 
PLIT = '/.NAME ('_', FAC, $CODE) (READ, NOWRITE, EXECUTE, SHARE, PIC, 

ADDRESSING_MODE (WORD RELATIVE)), 
OWN = '/.NAME ('_', FAC, $CODE) (READ, NOWRITE, EXECUTE, SHARE, PIC, 

ADDRESSING_MODE (WORD_RELATIVE)), 
GLOBAL = '/.NAME ('_', FAC, $CODE) (READ, NOWRITE, EXECUTE, SHARE, PIC, 

ADDRESSING MODE (WORD_RELATIVE)) %; 

EQUATED SYMBOLS: 

NONE 

FIELDS: 

NONE 

STRUCTURES: 

NONE 

PSECTS: 

ECLARE_PSECTS (GKS); 

OWN STORAGE: 

NONE 

EXTERNAL REFERENCES: 

! Declare PSECTs for GKS$ facility 

(continued on next page) 

B--62 Sample Programs 



Example B-9 (Cont.,: VAX BLISS Sample Program 

EXTERNAL ROUTINE 
STR$COPY_DX, 
STR$CONCAT, 
LIB$GET_INPUT, 
STR$COPY_R, 
STR$FREE1_DX, 
LIB$GET_VM, 
LIB$FREE_VM, 
LIB$PUT_OUTPUT; 

'/.SBTTL ' Package of macros for string processing' 
t 

! Macro to initialize a dynamic descriptor. 
i-

MACRO 
INIT_DESCRIPTOR (DESCR) _ 

DESCR [DSC$W_LENGTH] = 0; 
DESCR [DSC$B_DTYPE] = DSC$K_DTYPE_T; 
DESCR [DSC$B_CLASS] = DSC$K_CLASS_D; 
DESCR [DSC$A_POINTER] = 0; 

./ 

!+ 

! Macro to discard a dynamic descriptor. 
i-

DISCARD_DESCRIPTOR (DESCR) _ 
BEGIN 

LOCAL 
FREE_STATUS; 

FREE_STATUS = STR$FREE1_DX (DESCR); 

IF ( NOT .FREE_STATUS) THEN SIGNAL_STOP 

END; 

Copy a string, by descriptor 
Concatenate strings 
Get a line from SYS$INPUT 
Copy a string, by reference 
Free a dynamic string 
Get virtual memory 
Free virtual memory 
Write a line on SYS$OUTPUT: 

(.FREE_STATUS); 

!+ 

! Macro to build a text line using FAO. This is a convenience macro. 
i-

BUILD_TEXT_LINE (DESCR, CTL_STRING, FAO_ARGS) _ 
BEGIN 

LOCAL 
FAO_STATUS, 
COPY_STATUS; 

(continued on next page) 

Sample Programs B-63 



Example B-9 ~Cont.): VAX BLISS Sample Program 

CTL_STR_DSC [DSC$W_LENGTH] _ '/.CHARCOUNT (CTL_STRING); 
CTL_STR_DSC [DSC$B_DTYPE] = DSC$K_DTYPE_T; 
CTL_STR_DSC [DSC$B_CLASS] = DSC$K_CLASS_S; 
CTL_STR_DSC [DSC$A_POINTER] = CH$PTR (UPLIT (CTL_STRING)); 
FAO_STATUS = $FAO ( ! 

CTL_STR_DSC, ! 
OUT_LENGTH, ! 
TEMP_STR_DSC, ! 
'/.REMOVE (FAO_ARGS)) ; 

IF ( NOT .FAO_STATUS) THEN SIGNAL_STOP (.FAO_STATUS); 

COPY_STATUS = STR$COPY_R (DESCR, OUT_LENGTH, 
.TEMP_STR_DSC [DSC$A_POINTER]); 

.COPY_STATUS 
END 

/. , 
i+ 

! Macro to format and print a line. Errors are returned to the caller. 

! This is a convenience macro. 
i-

PRINT_LINE (TEXT, VARS) _ 
BEGIN 

LOCAL 
BUILD_STATUS, 
PRINT_STATUS; 

BUILD_STATUS = BUILD_TEXT_LINE (LINE_DESC, '/.STRING ('/.REMOVE (TEXT)), 
VARS) ; 

IF ( NOT .BUILD_STATUS) THEN RETURN (.BUILD_STATUS); 

PRINT_STATUS = LIB$PUT_OUTPUT (LINE_DESC); 

IF ( NOT .PRINT_STATUS) THEN RETURN (.PRINT_STATUS); 

END 

'/.SBTTL 'SAMPLE - DEC GKS Sample Program' 
ROUTINE SAMPLE ! DEC GKS Sample Program 

(continued on next page) 

B-64 Sample Programs 



Example B-9 (Copt.): VAX BLISS Sample Program 

!+♦ 

! FUNCTIONAL DESCRIPTION: 
i 

! This routine uses DEC GKS to display the sample picture. 
i 

! CALLING SEQUENCE: 
i 

! ret_status.wlc.v = SAMPLE () 
i 

! FORMAL PARAMETERS: 
i 

! NONE 
i 

! IMPLICIT INPUTS: 
i 

! NONE 
i 

! IMPLICIT OUTPUTS: 
i 

! NONE 
i 

! COMPLETION STATUS: 
i 

! SS$_NORMAL Normal successful completion 
! Any error from calling the VMS RTL. 

i 

! SIDE EFFECTS: 

Does output using DEC GKS. 
Waits for the picture to be admired before returning. 

BEGIN 

LOCAL 
i+ 

! Stuff for BUILD_TEXT_LINE 

CTL_STR_DSC BLOCK [8, BYTE], 
TEMP_STR_DSC BLOCK [8, BYTE], 
TEMP_STRING VECTOR [132, BYTE], 
OUT_LENGTH, 

(continued on next page) 

Sample Programs B-65 



Example B-9 (Copt.): VAX BLISS Sample Program 

~+ 
! Stuff for PRINT_LINE 
i-

LINE_DESC BLOCK [8, BYTE], 
i+ 

! End of stuff for PRINT_LINE 
i-

ERROR_STATUS, 
CATEGORY, 
INQUIRE_OKAY, 
DU1~IY_ I NTEGER , 
DEF_MODE, 
REGEN_FLAG, 
WS_TYPE, 
ERROR_FILE BLOCK [8, BYTE], 
DUI~Y_DSC BLOCK [8 , BYTE] , 
WS_ID; 

LABEL 
SETUP, 
DRAW_PICTURE, 
CLEANUP; 

i+ 

! Set up TEMP_STR_DSC for BUILD_TEXT_LINE 
i-

TEMP_STR_DSC [DSC$W_LENGTH] = 132; 
TEMP_STR_DSC [DSC$B_DTYPE] = DSC K_DTYPE_T; 
TEMP_STR_DSC [DSC$B_CLASS] = DSC K_CLASS_S; 
TEMP_STR_DSC [DSC$A_POINTER] = CH$PTR (TEMP_STRING); 

i+ 

! Set up LINE_DESC for PRINT_LINE 
i 

INIT_DESCRIPTOR (LINE_DESC); 
i+ 

! Initialize DEC GKS. Error messages to SYS$ERROR:. 
i 

SETUP 
BEGIN 
ERROR_FILE [DSC$W_LENGTH] _ '/.CHARCOUNT ('SYS$ERROR:'); 
ERROR_FILE [DSC$B_DTYPE] = DSC$K_DTYPE_T; 
ERROR_FILE [DSC$B_CLASS] = DSC$K_CLASS_S; 
ERROR_FILE [DSC$A_POINTER] = UPLIT ('SYS$ERROR:'); 
GKS$OPEN_GKS (ERROR_FILE); 

(continued on next page) 

B-66 Sample Programs 



Example B-9 (Copt.): VAX BLISS Sample Program 

!+ 
! Make sure that this is a suitable workstation. 
i-

GKS$INQ_WS_CATEGORY (GKS$K WSTYPE_DEFAULT, ERROR_STATUS, CATEGORY); 

IF ((.ERROR_STATUS NEQ 0) OR 
((.CATEGORY NEQ GKS$K_WSCAT_OUTIN) AND (.CATEGORY NEQ GKS$K WSCAT_MO))) 

THEN 
BEGIN 
PRINT_LINE (<'The specified workstation type is invalid'>, <' '>); 
PRINT_LINE (<'Error status: !SL'>, <.ERROR_STATUS>); 
RETURN (SS$_NORMAL); 
END; 

INIT_DESCRIPTOR (DUMMY_DSC); 
WS_ID = 1; 
GKS$OPEN_WS (WS_ID, DU1~IY_DSC, '/.REF (GKS$K_WSTYPE_DEFAULT)); 
GKS$ACTIVATE_WS (WS_ID); 

i+ 

! Make sure the deferral mode and regeneration flags are properly set. 

GKS$INQ WS_TYPE (WS_ID, ERROR_STATUS, DUMMY_DSC, WS_TYPE, DUMMY_INTEGER); 
GKS$INQ_DEF_DEFER_STATE (WS_TYPE, ERROR_STATUS, DEF_MODE, REGEN_FLAG); 

i+ 

! Check the status of the inquiry function execution. 
i-

IF (.ERROR_STATUS NEQ 0) 
THEN 

BEGIN 
PRINT_LINE (<'The def erral inquiry caused an error'>, <' '>); 
PRINT_LINE (<'Error status: !SL'>, <.ERROR_STATUS>); 
RETURN (SS$_NORMAL); 
END; 

i♦ 
! Defer output as long as possible and suppress implicit regenerations. 
i-

IF ((.DEF_MODE NEQ GKS$K_ASTI) AND (.REGEN_FLAG NEQ GKS$K_IRG_SUPPRESSED)) 
THEN 

BEGIN 
GKS$SET_DEFER_STATE (WS_ID, '/.REF (GKS$K_ASTI), 

'/.REF (GKS$K_IRG_SUPPRESSED)); 
END; 

END; 

(continued on next page) 

Sample Programs B-67 



Example B-9 (Cont.): VAX BLISS Sample Program 

~+ 
! Draw the picture, placing each primitive in a segment. 
i 

DRAW_PICTURE 
BEGIN 

LOCAL 
WIDER, 
NOM_WIDTH, 
MAX_WIDTH, 
DUMNIY_REAL , 
NUM_INDEXES, 
TITLE_DSC BLOCK [8 , BYTE] , 
INTEGER_DSC BLOCK [20, BYTE], 
DUNINIY_INTEGER_ARRAY VECTOR [50] , 
SIDE_ARRAY DSC BLOCK [44 , BYTE] , 
SIDE_COLORS REF VECTOR [2], 
ROAD_ARRAY_DSC BLOCK [44, BYTE], 
ROAD_COLORS REF VECTOR [ 10] , 
COLOR_FLAG, 
DSC_PTR REF VECTOR; 

INTEGER_DSC [DSC$W_LENGTH] = 4; 
INTEGER_DSC [DSC$B_DTYPE] = DSC$K DTYPE_L; 
INTEGER_DSC [DSC$B_CLASS] = DSC$K_CLASS_A; 
INTEGER_DSC [DSC$A_POINTER] = DUMMY_INTEGER_ARRAY [0]; 
INTEGER_DSC [DSC$B_SCALE] = 0; 
INTEGER_DSC [DSC$B_DIGITS] = 0; 
INTEGER_DSC [DSC$B AFLAGS] = 0; 
INTEGER_DSC [DSC$B_DIMCT] = 1; 
INTEGER_DSC [DSC$L_ARSIZE] = 50*4; 
INTEGER_DSC [DSC$A_AO] = DUMMY_INTEGER ARRAY [0] ; 

(continued on next page) 

B-68 Sample Programs 



Example B-9 (Cont.~: VAX BLISS Sample Program 

SIDE_COLORS = UPLIT (2, 3); 
SIDE_ARRAY_DSC [DSC$W_LENGTH) = 4; 
SIDE_ARRAY_DSC [DSC$B_DTYPE] = DSC$K_DTYPE_L; 
SIDE_ARRAY_DSC [DSC$B_CLASS] = DSC$K_CLASS_A; 
SIDE_ARR.AY_DSC [DSC$A_POINTER] = SIDE_COLORS [0] ; 
SIDE_ARRAY_DSC [DSC$B_SCALE] = 0; 
SIDE_ARRAY_DSC [DSC$B_DIGITS] = 0; 
SIDE_ARRAY_DSC [DSC$B_AFLAGS] = 0; 
SIDE_ARRAY_DSC [DSC$V_FL_COEFF] = 1; 
SIDE_ARRAY_DSC [DSC$V_FL_BOUNDS] = 1; 
SIDE_ARRAY_DSC [DSC$B_DIMCT] = 2; 
SIDE_ARRAY_DSC [DSC$L_ARSIZE] = 1*2*4; 
SIDE_ARRAY_DSC [DSC$A AO] = SIDE_COLORS [0] ; 
DSC_PTR =SIDE ARRAY_DSC [DSC$L_M1]; 
DSC_PTR [0] = 1; ! M1 
DSC_PTR [ 1 ] = 2 ; ! M2 
DSC_PTR [2] = 0 ; ! L1 
DSC_PTR [3] = 0 ; ! U1 
DSC_PTR [4] = 0 ; ! L2 
DSC_PTR [5] = 1; ! U2 

ROAD_COLORS = UPLIT (2, 3, 2, 3, 2, 3, 2, 3, 2, 3); 
ROAD_ARRAY_DSC [DSC$W_LENGTH] = 4; 
ROAD_ARRAY_DSC [DSC$B_DTYPE] = DSC$K_DTYPE_L; 
ROAD_ARRAY_DSC [DSC$B_CLASS] = DSC$K_CLASS_A; 
ROAD_ARRAY_DSC [DSC$A_POINTER] = ROAD_COLORS [0] ; 
ROAD_ARRAY_DSC [DSC$B_SCALE] = 0; 
ROAD AR.RAY_DSC [DSC$B_DIGITS] = 0; 
ROAD_ARRAY_DSC [DSC$B_AFLAGS] = 0; 
ROAD_ARRAY_DSC [DSC$V_FL_COEFF] = 1; 
ROAD_ARRAY_DSC [DSC$V_FL_BOUNDS] = 1; 
ROAD_ARRAY_DSC [DSC$B_DIMCT] = 2; 
ROAD_ARRAY_DSC [DSC$L_ARSIZE] = 10*1*4; 
ROAD_ARRAY_DSC [DSC$A_AO] = ROAD_COLORS [0]; 
DSC_PTR =ROAD ARRAY_DSC [DSC$L_M1]; 
DSC_PTR [0] = 10; ! M1 
DSC_PTR [ 1 ] = 1; ! M2 
DSC_PTR [2] = 0 ; ! L1 
DSC_PTR [3] = 9 ; ! U1 
DSC_PTR [4] = 0 ; ! L2 
DSC_PTR [5] = 0 ; ! U2 
GKS$SET_TEXT_HEIGHT ('/.REF ('/.E' 0.04')) ; 
GKS$SET_PMARK_TYPE ('/.REF (GKS$K_MARKERTYPE_PLUS)); 
GKS$SET_FILL_INT_STYLE ('/.REF (GKS$K_INTSTYLE_SOLID)); 
GKS$SET_PLINE_LINETYPE ('/.REF (GKS$K_LINETYPE_DASHED_DOTTED)); 

(continued on next page) 

Sample Programs B-69 



Example 6-9 (Copt.): VAX BLISS Sample Program 

!♦ 
! Obtain the workstation type. 
i-

GKS$INQ_WS_TYPE (WS_ID, ERROR_STATUS, DUMMY_DSC, WS_TYPE, DUMMY_INTEGER); 
i+ 

! Don't ask for too wide a line. 
i-

GKS$INQ_PLINE_FAC (WS_TYPE, ERROR_STATUS, DUMMY_INTEGER, INTEGER_DSC, 
DUMMY_INTEGER, NOM_WIDTH, DUMMY_REAL, MAX_WIDTH, DUMMY_INTEGER, 
DUMMY_INTEGER); 

BEGIN 

LOCAL 
TEMP; 

BUILTIN 
MULF, 
CMPF, 
SUBF; 

WIDER = '/.E' 3.0' ; 

WHILE (MULF (WIDER, NOM WIDTH, TEMP); CMPF (TEMP, MAX WIDTH) GTR 0) DO 
BEGIN 
SUBF (WIDER, '/.E' 0.1' , WIDER) ; 
END; 

END; 
GKS$SET_PLINE_LINEWIDTH (WIDER); 
GKS$CREATE_SEG ('/.REF (1)) ; ! Title 
TITLE_DSC [DSC$W_LENGTH] _ '/.CHARCOUNT ('Starry Night') ; 
TITLE_DSC [DSC$B_DTYPE] = DSC$K_DTYPE_T; 
TITLE_DSC [DSC$B_CLASS] = DSC$K_CLASS_S; 
TITLE_DSC [DSC$A_POINTER] = UPLIT ('Starry Night'); 
GKS$TEXT ('/.REF ('/.E' 0.05') , '/.REF ('/.E' 0.9') , TITLE DSC) ; 
GKS$CLOSE_SEG (); 
GKS$CREATE_SEG ('/.REF (2)) ; ! Stars 
GKS$P~'L.YMARKER ('/.REF (6) , 

UPLIT ('/.E' 0.05' , '/.E' 0.06' , '/.E' 0.36' , '/.E' 0.66' , '/.E' 0.835' , '/.E' 0.92') , 
UPLIT ('/.E' 0.7' , '/.E' 0.86' , '/.e' 0.81' , '/.E' 0.86' , '/.E' 0.701' , '/.E' 0.82')) ; 

GKS$CLOSE_SEG (); 

(continued on next page) 

B-70 Sample Programs 



Example B-9 (Cont.~: VAX BLISS Sample Program 

GKS$CREATE_SEG ('/.REF (3)) ; ! Tree 
GKS$FILL_AREA ('/.REF (29) , 

UPLIT ('/.E' 0.425' , '/.E' 0.5' , '/.E' 0.52' , '/.E' 0.54' , '/.E' 
'/.E' 0.56' , '/.E' 0.559' , '/.E' 0.64' , '/.E' 0.69' , '/.E' 0.689' 
'/.E' 0.645' , '/.E' 0.59' , '/.E' 0.53' , '/.E' 0.48' , '/.E' 0.45' , 
'/.E' 0.35' , '/.E' 0.375' , '/.E' 0.44' , '/.E' 0.45' , '/.E' 0.515' 
'/.E' 0.475' , '/.E' 0.425') , 
UPLIT ('/.E' 0.28' , '/.E' 0.3' , '/.E' 0.26' , '/.E' 0.3' , '/.E' 0 . 
'/.E' 0.42' , '/.E' 0.49' , '/.E' 0.53' , '/.E' 0.57' , '/.E' 0.61' , 
'/.E' 0.71' , '/.E' 0.76' , '/.E' 0 . ?8' , '/.E' 0.75' , '/.E' 0.71' , 
'/.E' 0.6' , '/.E' 0.55' , '/.E' 0.54' , '/.E' 0.5' , '/.E' 0.5' , '/.E' 
'/.E' 0.33' , '/.E' 0.28')) ; 

GKS$CLOSE_SEG (); 
i+ 

! Check for a color workstation. 
i 

0.6' , '/.E' 0.575' , 
'/.E' 0.66' , '/.E' 0.63' , 

'/.E' 0.42' , '/.E' 0.375' , 
'/.E' 0.51' , '/.E' 0.495' , 

28' , '/.E' 0.33' , 
'/.E' 0.64' , '/.E' 0.66' , 
'/.E' 0.65' , '/.E' 0.645' , 
0.425' , '/.E' 0.38' , 

GKS$INQ_COLOR_FAC (WS_TYPE, ERROR_STATUS, DUNIMY_INTEGER, COLOR_FLAG, 
NUM_INDEXES); 

i+ 

! For all workstations with leas than 3 color indexes, 
! use GKS$FILL_AREA instead of GKS$CELL_ARRAY for the sidewalk 
! and road. 
i-

IF (.COLOR_FLAG NEQ GKS$K_COLOR) 
THEN 

BEGIN 
GKS$CREATE_SEG ('/.REF (4)) ; ! Side 
GKS$SET_FILL_INT_STYLE ('/.REF (GKS$K_INTSTYLE_HATCH)); 
GKS$FILL_AREA ('/.REF (9) , 

UPLIT ('/.E' 0.0' , '/.E' 0.0' , '/.E' 0.2' , '/.E' 0.2' , '/.E' 0.25' , '/.E' 0.25' , 

UPLIT ('/.E' 0.0' , '/.E' 0.15' , '/.E' 0.15' , '/.E' 0.3' , '/.E' 0.3' , '/.E' 0.15' , 
'/.E' 0.15' , '/.E' 0.0' , '/.E' 0.0')) ; 

GKS$SET_FILL_INT_STYLE ('/.R,EF (GKS$K_INTSTYLE_SOLID)); 
GKS$CLOSE_SEG (); 
END 

ELSE 
BEGIN 
GKS$CREATE_SEG ('/.REF (4)) ; 
GKS$CELL_ARRAY ('/.REF ('/.E' 0.2' ) 

'/.REF ('/.E' 0.15') , '/.REF (0) 
SIDE_ARRAY_DSC); 

GKS$CLOSE_SEG (); 
GKS$CREATE_SEG ('/.REF (5)) ; 
GKS$CELL_ARRAY ('/.RE.F ('/.E' 0.0' 

'/.REF ('/.E' 0.0') , '/.REF CO) , 
ROAD_ARRAY_DSC); 

GKS$CLOSE_SEG (); 
END; 

! Side 
'/.REF ('/.E' 0.3') , '/.REF ('/.E' 0.25') , 

'/.REF (o) , '/.R~' (1) . '/.RFC' C2) 

! Road 
'/.REF ('/.E' 0.15') , '/.REF ('/.E' 1.0') , 

'/.REF (0) , '/.REF (10) , '/.REF (1) , 

(continued on next page) 

Sample Programs B-71 



Example B-9 (Copt.): VAX BLISS Sample Program 

GKS$CREATE_SEG ('/.REF (6)) ; ! Horizon 
GKS$POLYLINE ('/.REF (15) , 

UPLIT ('/.E' 0.0' , '/.E' 0.04' , '/.E' 0.055' , '/.E' 0.08' , '/.E' 0.1' , '/.E' 0.3' , 
'/.E' 0.375' , '/.E' 0.44' , '/.E' 0.49' , '/.E' 0.56' , '/.E' 0.68' , '/.E' 0.8' , '/.E' 0.9' , 
'/.E' 0.95' , '/.E' 1.0') , 
UPLIT ('/.E' 0.35' , '/.E' 0.375' , '/.E' 0.376' , '/.E' 0.36' , '/.E' 0.365' , '/.E' 0.366' , 
'/.E' 0.38' , '/.E' 0.385' , '/.E' 0.375' , '/.E' 0.36' , '/.E' 0.38' , '/.E' 0.35' , '/.E' 0.359' , 
'/.E' 0.375' , '/.E' 0.385')) ; 

GKS$CLOSE_SEG (); 
GKS$CREATE_SEG ('/.REF (7)) ; ! House 

!+ 

! Only change the color index if working with a workstation 
! with more than two color indexes. 

i 

IF (.COLOR_FLAG EQL GKS$K_COLOR) 
THEN 

BEGIN 
GKS$SET_FILL_COLOR_INDEX ('/.REF (3)); 
END; 

GKS$FILL_AREA ('/.REF (12) , 
UPLIT ('/.E' 0.1' , '/.E' 0.3' , '/.E' 0.3' , '/.E' 0.325' , '/.E' 0.3' , '/.E' 0.3' , '/.E' 0.25' , 
'/.E' 0.25' , '/.E' 0.2' , '/.E' 0.075' , '/.E' 0.1' , %E' 0.1') , 
UPLIT ('/.E' 0.3' , '/.E' 0.3' , '/.E' 0.6' , '/.E' 0.6' , '/.E' 0.64' , '/,E' 0.75' , '/.E' 0.75' , 
'/.E' 0.7' , '/.E' 0.75' , '/.E' 0.6' , '/.E' 0.6' , '/.E' 0.3')) ; 

GKS$CLOSE_SEG (); 
END; 

CLEANUP 
BEGIN 
GKS$UPDATE_WS (WS_ID, '/.REF (GKS$K_PERFORM_FLAG)); 
LIB$GET_INPUT (DUMMY_DSC); 
GKS$DEACTIVATE_WS (WS_ID); 
GKS$CLOSE_WS (WS_ID); 
GKS$CLOSE_GKS (); 
END; 
DISCARD_DESCRIPTOR (LINE_DESC); 
RETURN (SS$_NORMAL); 
END; ! of routine SAMPLE 

END ! End of module SAMPLE 

B-72 Sample Programs 



Index 

A 
Accumulate 

See also Rotation 
See also Scale 
See also Translation 

Accumulate segment transformations, 5-35 
Activating workstations, 1-4 
ANSI 

See also GKS 
GKS standard, 1-1 

Aperture 
pick, 6-14 

Applications 
control functions, 1-3 
device independent, 3-1 
sample program, 3-24 
shell of a program, 2-2 
supported language programs, B-1 

ASFs 
See Aspect source flags 

Aspect ratio, 4-13 to 4-17 
See also Transformations 
picture, 4-19 

Aspect source flags, 5-6 
See also Attributes 

ASSIGN DCL command, 3-4 
Associating segments, 5-25 
Asterisks 

markers, 2-7 
Asynchronous 

See also Input 
choosing operating modes, 7-1 
input operating modes, 1-11 

Asynchronous input, 6-4 

r"1 

Attributes, 1-8, 2-12 to 2-15, 3-9, 
5-2 to 5-24 

bundled, 5-3 
bundle index representations, 5-13 
geometric, 3-9, 5-2 
individual, 2-13, 5-3 

example, 2-13 
nongeometric, 3-9, 5-2 
segment, 5-42 
text, 5-18 
using aspect source flags, 5-6 

B 
Background 

colors, 2-5 
Binding 

C, 1-2 
FORTRAN, 1-2 

Boundaries 
See also Input 
See also Transformations 
input echo area, 6-46 

Break 
See also Input 
request mode, 6-4 

Bundles 
See also Attributes 
attributes, 5-3 to 5-6 
implicit regenerations, 5-6 

C 
C 

sample program, B-13 

Index-1 



Calling sequences, 1-12 
CALL statement, 1-12 
Categories, 1-2 

GKS function, 1-6 
C binding, 1-2 
C Binding 

sample program, B-6 
Cell arrays 

See also Patterns 
diagonal points, 2-1 1 
generating, 2-9 
starting points, 2-1 1 

Choice 
See also Input 
example, 6-27 
input data record initialization, 6-14 
logical input class, 6-2 
overlapping echo areas, 7-36 

Classes 
See also Input 
logical input devices, 6-2 

Clearing workstation surface, 2-17 
Clipping 

See also Transformations 
flag, 4-18 
picture, 4-19 
primitives, 4-18 to 4-19 
rectangle, 4-18 
segments, 5-36 

Closing 
GKS, 1-5 
workstations, 1-5 

Colors 
See also Attributes 
background, 2-5 
foreground, 2-5 
indexes, 2-1 1 
inquiry functions, 3-1 1 
representation, 2-17 

Columns 
See also Cell arrays 
See also Patterns 
cell array, 2-1 1 

Comments 
FORTRAN, 1-13 

Compilation, 1-13 
Composition 

See also Transformations 
altering the aspect ratio, 4-13 
clipping a primitive, 4-18 

Index-2 

Composition (cont'd.) 
default normalization transformations, 4-8 
NDC and Device Coordinate Systems, 4-6 
panning, 4-31 
pictures, 1-8, 4-1 to 4-42 
zooming, 4-28 

Connection identifiers, 1-4, 3-3 
VAXstations, 2-3 

Constants 
definiton files, 1-12 

Continuation characters 
FORTRAN, 1-13 

Control functions, 1-3, 2-1 
Coordinates 

See also Echo area 
See also Transformations 
maximum display size, 4-21 
NDC and Device Coordinate Systems, 4-6 
ranges, 1-5 
systems, 4-1 to 4-42 
world, 1-5 

Copying segments, 5-25 
Creating 

segments, 1-4 
Current event report entry, 7-2, 7-14 
Current input values 

storing, 7-51 
Cursor movement 

See also Prompt and echo types 
restricting input, 6-46 

D 
Data declarations 

FORTRAN, 1-13 
Data records 

input, 6-8 
Data structures 

GKS, 1--3 
DCL 

ALLOCATE command, 3-4 
ASSIGN command, 3-4 
DEFINE command, 3-4 

DEC GKS 
See GKS 

Deferral 
modes, 3-7 
output, 5-47 
Output, 2-18 

DEFINE DCL command, 3-4 



r1 

Definitions 
files, 1-12 

Deleting segments, 5-26 
Delectability 

segments, ~5-42 
Developing 

programs, 1-13 
Device coordinate system, 4-6 

See also Transformations 
Device independence, 3-1 to 3-34 

checking the deferral mode, 3-7 
color and monochrome devices, 3-1 1 
sample program, 3-17 
specifying connection and device type for, 
writing code for, 3-3 

Device independency, 1-2 
Devices 

See also Terminals 
color support, 3-1 1 
device-independent programming, 3-1 
logical input, 6-2 
maximum display size, 4-21 
Monochrome, 3-1 1 
physical, 1-2 

Diagonal points 
cell arrays, 2-1 1 

Displays 
maximum size, 4-21 

Documentation 
input process user, 7-21 

Dynamic changes, 2-17 

E 

Event mode, 7-1 to 7-92 
See also Input 
accessing the current report, 7-14 
choosing over sample mode, 7-2 
emptying the queue, 7-14 
flushing the input queue, 7-18 
generating reports, 7-1 1 
help screens, 7-21 
initializing devices, 7-31 
input queue overflow, 7-18 
introduction, 7-10 to 7-13 
overlapping echo areas, 7-36 to 7-39 
placing an event on the queue, 7-2 

3-3 removing reports from the queue, 7-14 
removing the prompt, 7-13 
sample program, 7-70 
simultaneously generated events, 7-16 
user documentation, 7-21 

Executing programs, 1-13, 3-4 
Exiting GKS programs, 2-3 
Expand 

See also Scale 
See also Segments 
See also Transformations 

Expanding primitives, 4-14 

Echo area 
See also Input 
locator devices, 6-46 
overlapping, 7-36 
pick devices, 6-46 
stroke devices, 6-46 

Environments 
See also GKS 
See also Workstations 
control, 1-3 

Error handling 
GKS, 1-9 
inquiry functions, 3-9 
messages, 1-3 

Evaluating segment transformations, 5-35 
Event input queue, 7-2 

overflow, 7-18 

F 
Files 

definition, 1-12 
error messages, 1-3 

Fill areas 
generating, 2-7 
internal styles, 3-15 

Flag 
See also Transformations 
clipping, 4-18 

Foreground 
colors, 2-5 

FORTRAN 
CALL statement, 1-12 
constructs, 1-13 

FORTRAN binding, 1-2 
linking, 1-13 
sample program, B-1 

Functional standard 
GKS, 1-2 

Functions 
calling sequences, 1-12 
categories, 1-6 

Index-3 



Functions (cont'd.) 
control, 1-3, 2-1 
GKS, 1-2 
output, 2-3, 2-4 
return status, 1-12 
syntax, 1-2 

G 
Generating 

cell arrays, 2-9 
fill areas, 2-7 
output, 1-4 
polymarkers, 2-6 
text, 2-5 

Geometric attributes, 3-9, 5-2 
GKS 

closing, 1-5 
control, 1-3 
data structures, 1-3 

inquiring from, 3-1 to 3-34 
list of, 3-1 

description, 1-1 to 1-14 
device independency, 1-2 
error handling, 1-9 
function categories, 1-6 
functions 

calling sequence, 1-12 
kernel, 1-2 
levels, 1-10 
opening, 1-3 
shell of a program, 2-2 

GKS$AWAIT_EVENT, 7-14 
GKS$CONID, 3-4 
GKS$FLUSH _DEVICE _EVENTS, 7-18 
GKS$INQ_INPUT_QUEUE_OVERFLOW, 7-18 

error status argument, 7-18 
possible errors, 7-18 

GKS$K_CONID_DEFAULT, 3-4 
GKS$K_INPUT_CLASS_NONE, 7-14 
GKS$K_MORE_EVENTS, 7-17 
GKS$K_WSTYPE_DEFAULT, 3-4 
GKS$WSTYPE, 3-4 
Graphics 

handlers, 1-2 
languages, 1-2 

Gray scales, 3-14 
See also Colors 

Index-4 

H 
Handlers 

generating event reports, 7-1 1 
graphics, 1-2 
workstations, 1-2 

Hatches, 3-15 
See also Attributes 
See also Patterns 

Help screens, 7-21, 7-46 
example, 7-28 to 7-30 

Highlighting 
segments, 5-42 

i 

Identifiers 
connection, 1-4, 3-3 
GKS functions, 1-2 
workstations, 1-2, 1-4, 3-3 

Identity transformation 
segments, 5-30 

Implicit regenerations, 5-46 
color changes, 3-15 
introduction to, 2-17 to 2-23 
list of causes, 5-47 

INCLUDE statement, 1-12 
Indexes 

See also Attributes 
bundles, 5-5, 5-6 
color, 2-11, 3-14 

Individual attributes, 2-13 
Input, 1-4 

asynchronous, 6-4, 7-1 to 7-92 
choosing operating modes, 7-1 
class, 6-2 
data records, 6-8 

buffer sizes, 6-1 1 
default values, 6-5 
echo area control, 6-6, 6-46 
help screens, 7-21, 7-46 

example, 7-28 to 7-30 
levels, 1-10 
logical devices, 6-2 
operating modes, 1-1 1, 6-4 

differences, 7-19 to 7-21 
overlapping echo areas, 7-36 to 7-39 
physical devices, 6-2 
program example, 6-48 
prompt and echo types, 6-7 
reinitializing input devices, 7-52 



Input ~cont'd.) 
request choice, 6-27 
requesting 

logical devices, 6-4 
request pick, 6-14 
request valuator, 6-23 
restricting cursor movement, 6-46 
simultaneously active devices, 7-3 
status, 6-5 
storing current values, 7-51 
synchronous, 6-1 to 6-59 
user documentation, 7-3, 7-21 to 7-30 

help segment, 7-28 
workstation independent storage, 7-22 

viewport priority, 6-37 
workstation category, 1-9 

Input data records 
example, 6-9 
initialization, 6-1 1 
sizes, 6-1 1 

Input operating modes 
See also Event mode 
See also Request mode 
See also Sample mode 
choosing, 7-1 to 7-21 

event, 7-10 
sample, 7-7 

Inquiry functions, 3-1 to 3-34 
error-handling, 3-9 

Inserting segments, 5-25 
Internal styles 

See also Attributes 
See also Fill areas 
fill area, 3-15 

ISO 
See also GKS 
GKS standard, 1-1 

K 
Kernel, 1-2 

See also GKS 

L 
LA 100 

Starry Night picture, 3-34 
LA210, 1-10 
Languages 

sample program, B-1 

LCG01 
sample bundle table, 5-4 
Starry Night picture, 3-33 

Levels 
GKS, 1-10 

Libraries 
FORTRAN binding, 1-13 

Lines 
See also Attributes 
See also Output 
type, 1-8 

Linking 
FORTRAN binding, 1-13 

Locator 
See also Input 
logical input class, 6-2 
viewport input priority, 6-37 

Logical input devices, 6-2 
See also Input 
device number, 6-2 
input class, 6-2 
reinitializing, 7-52 
simultaneously active, 7-3 to 7-6 
user documentation, 7-21 

logical name 
TT, 2-3, 3-5 

M 
Mapping 

See also Transformations 
altering the aspect ratio, 4-13 
clipping a primitive, 4-18 
coordinate systems, 4-1 to 4-42 
default normalization transformations, 4-8 
NDC and Device Coordinate Systems, 4-6 
panning, 4-31 
zooming, 4-28 

Markers 
See also Attributes 
See also Output 
See Polymarkers 

Matrix 
See also Rotation 
See also Scale 
See also Segments 
See also Translation 
segment transformations, 5-35 

Maximum display size, 4-21 
See also Transformations 

Index-5 



Measure 
See also Input 
request mode, 6-4 
sample mode, 7-2 

Metafiles, 1-9 
workstation categories, 1-10 

Modes 
See also Implicit regenerations 
See also Input 
choosing, 7-1 
deferral, 3-7 
input differences, 7-19 
input operating, 1-1 1 

Monochrome 
See also Colors 
See also Devices 
devices, 3-1 1 

N 
Names 

functions, 1-2 
segment, 1-4 

NDC system, 4-6 
See also Transformations 

Nominal sizes, 5-2 
Nongeometric attributes, 3-9, 5-2 
Normalization transformations, 1-8 

default, 1-5, 4-2 
Normalized device coordinate (NDC System 

See NDC 

0 
Offsets 

See also Cell arrays 
See also Patterns 
cell array color index array, 2-1 1 

Open 
See also GKS 
See also Workstations 

Opening 
GKS, 1-3 
segments, 1-4 
workstations, 1-4 

Operating modes 
See also Event mode 
See also Request mode 
See also Sample mode 
input, 1-1 1, 6-4, 7-1 

Index-6 

Output 
See also Attributes 
See also Segments 
attributes, 1-8, 2-12, 3-9 
deferral, 2-18, 3-7, 5-47 
functions, 2-3, 2-4 
generation, 1-4, 2-4 to 2-12 
levels, 1-10 
list of primitives, 1-7 
primitives, 1-4 
sample program, 5-49 
workstation category, 1-9 

P 
Panning 

See also Transformations 
pictures, 4-31 

Patterns, 3-15 
See also Cell arrays 

Physical devices, 1-2 
See also Devices 

Pick 
See also Input 
See also Segments 
aperture, 6-14 
example, 6-14 
logical input class, 6-2 

Pictures 
See also Transformations 
aspect ratio, 4-19 
clipping, 4-19 
composition, 1-8 
composition of, 4-7 
panning, 4-31 
plotting, 2-3, 4-8 
presentation, 4-1 to 4-42 
zooming, 4-28 

Plotting 
See also Output 
See also Transformations 
pictures, 2-3, 4-8 
primitives, 2-3 

Polyline 
See also Attributes 
See also Output 
line type, 1-8 

Polymarker 
See also Attributes 
See also Output 



Polymarker (cont'd.) 
generation, 2-6 

Polymarkers 
asterisks, 2-7 

PostScript, 1-2 
Primitives, 1-4 

See also Attributes 
See also Output 
See also Segments 
attributes, 2-12, 5-2 
clipping, 4-18 to 4-19 
expanding, 4-14 
generation, 2-4 to 2-12 
list of, 1-7, 2-4 
plotting, 2-3 
shape, 4-13 to 4-17 
shrinking, 4-14 

Priorities 
segments, 5-42 
viewport input, 6-37 

Programs 
developing, 1-13 
executing, 1-13, 3-4 
running, 1-13 
sample, 3-24 
sample program, 1-13 
supported language samples, B-1 

Prompt and echo types, 6-7 
See also Input 
event mode 

removing the prompt, 7-13 
sample mode 

removing the prompt, 7-9 
simultaneously active devices, 7-3 
user documentation, 7-21 

Q 
Queue 

See also Event mode 
event input overflow, 7-18 
removing reports, 7-14 

R 
Ranges 

See also Echo area 
See also Transformations 
coordinates, 1-5 

READ statement 
FORTRAN, 3-15 

Records 
input data, 6-8 

Rectangle 
See also Transformations 
clipping, 4-18 

Regenerations, 2-17, 3-16 to 3-17, 5-46 
color changes, 3-15 
list of causes, 5-47 

Reports, 7-2 
See also Event mode 
entered on the queue, 7-11 
removing from the queue, 7-14 

Representation 
See also Attributes 
See also Bundles 

Representations, 5-3 to 5-6 
color, 2-17 
implicit regenerations, 5-6 

Request mode, 6-1 to 6-59 
choosing over sample and event mode, 7-2 
help screens, 7-21 
removing event prompts, 7-14 
sample program, 6-48 
user documentation, 7-21 

Return status 
function, 1-12 

Rotating 
segments, 1-4 

Rotation, 5-29 
See also Segments 

Rows 
cell array, 2-1 1 

Running programs, 1-13 
Run-time libraries 

DEC GKS, 1-1 

S 
Sample mode, 7-1 to 7-92 

See also input 
choosing over event mode, 7-2 
help screens, 7-21 
initializing devices, 7-31 
introduction, 7-7 to 7-9 
overlapping echo areas, 7-36 to 7-39 
removing the prompt, 7-9 
sample program, 7-70 
user documentation, 7-21 

Sample program, 3-24 
supported languages, B-1 

Index-7 



Scale, 5-29 
See also Segments 
factors, 5-2 
shading, 3-14 

Scaling 
segments, 1-4 

Segments, 5-24 to 5-46 
associate, 7-21 
associating, 5-25 
attributes, 5-42 
clipping, 5-36 
copying, 5-25 
creatiing, 1-4 
deleting, 5-26 
help screens, 7-21 
identity transformation, 5-30 
inserting, 5-25 
introduction, 2-15 to 2-17 
names, 1-4 
opening, 1-4 
rotating, 1-4 
scaling, 1-4, 5-2 
storing 

workstation independent, 5-25 
transformations, 5-29 
translating, 1-4 
visibility, 7-21 

Shape 
primitives, 4-13 to 4-17 

Shifting 
See Translation 

Shrinking 
See also Scale 
See also Segments 

Shrinking primitives, 4-14 
Simultaneous events, 7-16 

See also Event mode 
Size 

See also Queens 
See also Transformations 
input data records, 6-11 
maximum display, 4-21 
nominal, 5-2 

Standards 
GKS, 1-1 

functional, 1-2 
syntactical, 1-2 

input data records, 6-8 
prompt and echo types, 6-7 

Index-8 

Starry Night 
sample program, 1-13, 3-24 
supported language programs, B-1 

Starting points 
cell arrays, 2-1 1 
text, 2-6 

Statements 
CALL, 1-12 
include, 1-12 

Status 
function return, 1-12 

Storage 
of metafiles, 1-9 
segment, 5-25 

Strings 
See also Input 
See also Text 
declaring 

FORTRAN, 1-13 
logical input class, 6-2 

Stroke 
logical input class, 6-2 
viewport input priority, 6-37 

Styles 
internal fill area, 3-15 

Surfaces 
See also Tranformations 
See also Workstations 
implict regenerations, 5-46 
workstation, 1-10, 2-17 

Synchronous 
choosing operating modes, 7-1 
input, 6-4 
input operating modes, 1-1 1 

Syntactical standard 
GKS, 1-2 

SYS$ERROR, 1-3 

T 
TEKTRONIX 

Starry Night picture, 3-32 
Terminals 

See also Devices 
See also Workstations 
workstations, 1-10 

Text, 1-5 
See also Attributes 
See also Output 
attributes, 5-18 
generation, 2-5 



Text (cont'd.~ 
height, 2-14 
starting point, 2-6 

Transformation of 
segments, 1-4 

Transformations, 4-1 to 4-42 
altering the aspect ratio, 4-13 
clipping a primitive, 4-18 
effect on text, 5-18 
NDC and Device Coordinate Systems, 
normalization, 1-5, 1-8 

changing, 4-8 
default, 4-2 

panning, 4-31 
sample program, 4-36 
segments 

matrix, 5-35 
viewport input priority, 6-37 
workstation, 1-8 
zooming, 4-28 

Translating 
segments, 1-4 

Translation, 5-29 
See also Segments 

Trigger 
See also Input 
event mode, 7-2 
request mode, 6-4 

TT, 2-3, 3-5 
Types 

See also Clones 
See also Input 
See also Workstations 
prompt and echo, 6-7 
workstation, 2-1 
workstation identifiers, 3-3 

u 

VAX Ada 
sample program, B-29 

VAX BASIC 
sample program, B-42 

VAX BLISS 
sample program, B-60 

VAX COBOL 
sample program, B-48 

VAX Pascal 
4-6 SAMPLE program, B-21 

VAX PL/I 
sample program, B-35 

VAXstations 
connection identifiers, 2-3 
Starry Night picture, 3-29 
workstation identifiers, 1-2 

Viewports 
See also Input 
See also Transformations 
input priority, 6-37 
normalization, 4-3 

Visibility 
segments, 5-42 

VT240 
Starry Night picture, 3-31 
workstation identifier, 1-4 

Update 
See also Implicit regenerations 

Updating workstation surface, 2-17 

V 
Valuator 

example, 6-23 
logical input class, 6-2 
overlapping echo areas, 7-36 

W 
WDSS, 5-25 

See also Segments 
Windows 

See also Transformations 
normalization, 4-3 
viewport, 4-6 
workstation, 4-6 

WISS, 5-25 
See also Segments 
storing help screens, 7-22 to 7-23 
workstation category, 1-10 

Workstations, 1-2 
See also Devices 
See also Terminals 
activating, 1-4 
categories, 1-2, 1-9 
clearing the surface, 2-17 
closing, 1-5 
control, 1-3 
handlers, 1-2 
identifiers, 1-2, 1-4, 3-3 
implicit regenerations, 5-46 

Index-9 



Workstations (cont'd.) 
maximum display size, 4-21 
opening, 1-4 
surface, 1-10, 2-17 
transformations, 1-8 
types, 2-1 
WISS, 5-25 

Index-10 

World coordinates, 1-5, 2-3, 4-2 to 4-6 

Z 
Zooming 

See also Transformations 
pictures, 4-28 



Reader's Comments DEC GKS User Manual 
AA—HW45C—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

  Phone  



Do Not Tear -Fold Here and Tape 

d a9eo a 
TM 

— Do Not Tear -Fold Here 
I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL 6E PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

No Postage 
Necessary 
if Mailed 

in the 
United States 



Reader's Comments DEC GKS User Manual 
AA—HW45C—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your- assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less  

What I like best about this manual is  

What I like least about this manual is  

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version   of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



— Do Not Tear -Fold Here and Tape 

a 9 eo 

a 

TM 

— Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 


