
VAX CRun-Time Library Reference Manual 
Order Number: AA—JP84D—TE 

February 1991 

This manual describes the functions and macros in the VAX CRun-Time Library. 

Revision/Update Information: This revised manual supersedes the 
VAX CRun- Mme Library Reference Manual, 
(Order Number AA—JP84C—TE}. 

Operating System and Version: VMS Version 5.2 or higher 

Software Version: VAX C Version 3.2 

digital equipment corporation 
maynard, massachusetts 



First Printing, May 1982 
Revised, April 1985 
Revised, March 1987 
Revised, January 1989 
Revised, December 1989 
Revised, February 1991 

The information in this document is subject to change without notice and should not 
be construed as a commitment by Digital Equipment Corporation. Digital Equipment 
Corporation assumes no responsibility for any errors that may appear in this document. 

The software described in this document is furnished under a license and may be used 
or copied only in accordance with the terms of such license. 

No responsibility is assumed for the use or reliability of software on equipment that is 
not supplied by Digital Equipment Corporation or its affiliated companies. 

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to 
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and 
Computer Software clause at DEARS 252.227-7013. 

© Digital Equipment Corporation 1982, 1985, 1987, 1989, 1991. 

All Rights Reserved. 
Printed in U.S.A. 

The postpaid Reader's Comments forms at the end of this document request your 
critical evaluation to assist in preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DEC DIBOL 
DEC/CMS EduSystem 
DEC/MMS IAS 
DECnet MASSBUS 
DECsystem-10 PDP 
DECSYSTEM-20 PDT 
DECUS RSTS 
DECwriter RSX 

UNIBUS 
VAX 
VAXcluster 
VMS 
VT 

d a9aoou~ 
UNIX is a registered trademark of UNIX System Laboratories, Inc. 

ZK5629 



Contents 

Preface   xvii 

Chapter 1 VAX CRun-Time Library Information 

1.1 Using the VAX CRun-Time Library   1-2 
1.1.1 Using the VAX C RTL Object Libraries   1-2 
1.1.2 Using the VAX C RTL as a Shareable Image   1-3 
1.1.3 Macros  1—q. 

1.2 VAX C RTL Function and Macro Syntax   1-6 
1.2.1 UNIX-Style File Specifications   1-8 

1.3 Input and Output on VMS Systems   1-10 
1.3.1 RMS Record and File Formats  1-13 
1.3.2 Stream Access to RMS Record Files   1-15 

1.4 Specific Portability Concerns   1-18 

Chapter 2 Understanding Input and Output 

2.1 UNIX I/O   2-5 

2.2 Standard I/O   2-6 

2.3 Conversion Specifications  2-7 
2.3.1 Converting Input Information   2-8 
2.3.2 Converting Output Information   2-11 

2.4 Terminal )/O   2-13 

iii 



2.5 Program Examples  2-14 

Chapter 3 Character, String, and Argument List Functions and Macros 

3.1 Character Classification Macros   3-4. 

3.2 Character Conversion Functions and Macros   3-9 

3.3 String and Argument List-Handling Functions and Macros   3-11 

3.4 Program Examples  3-12 

Chapter 4 Error- and Signal-Handling 

4.1 Error Handling   4-3 

4.2 Signal Handling   4-5 

4.3 Program Example  4-7 

Chapter 5 Subprocess Functions 

5.1 Implementing Child Processes in VAX C   5-2 

5.2 The exec Functions   5-4 
5.2.1 Exec Processing   5-4 
5.2.2 Exec Error Conditions   5-5 

5.3 Synchronizing Processes   5-6 

5.4 Interprocess Communication  5—g 

5.5 Program Examples  5-6 

iv 



Chapter 6 Curses Screen Management Functions and Macros 

6.1 Curses Terminology   6-5 
6.1.1 User-Defined Windows   6-6 

6.2 Getting Started with Curses   6-9 

6.3 Predefined Variables and Constants   6-12 

6.4 Cursor Movement  6-14 

6.5 Program Examples  6-15 

Chapter 7 Math Functions 

Chapter 8 Memory Allocation Functions 

8.1 Program Example  8-3 

Chapter 9 System Functions 

Reference Section 

ABORT   REF-3 
ABS   R E F-4 
ACCESS   REF-5 
ACOS   REF-7 
[W]ADDCH   REF-8 
[W]ADDSTR   REF-10 
ALARM   REF-12 
ASCTIME  REF-14 
ASIN   REF-16 
ASSERT  REF-17 
ATAN  REF-19 
ATAN2  REF-20 
ATEXIT   REF-21 
ATOF  REF-23 
ATOI, ATOL   REF-24 

v 



Box  
BRK  
BSEARCH  
CABS  
CALLOC  
CEIL  
CFREE  
CHDIR 
CHMOD 
CHOWN 
[W]CLEAR  
CLEARERR  
CLEAROK  
CLOCK  
CLOSE  
[W]CLRATTR  
[W]CLRTOBOT  
[W]CLRTOEOL  
COS  
COSH  
CREAT 
[NO]CRMODE 
CTERMID 
CTIME 
CUSERID 
[W]DELCH  
DELETE 
[W]DELETELN  
DELWIN  
DIFFTIME 
DIV  
DUP, DUP2 
[NO] ECHO  
ECVT  
ENDWIN  
[W] E RAS E  
EXECL 
EXECLE 
EXECLP 
EXECV  
EXECVE  
EXECVP  
EXIT, _EXIT  
EXP  

vi 

REF-25 
REF-27 
REF-29 
REF-32 
REF-33 
REF-34 
REF-35 
REF-36 
REF-37 
REF-39 
REF-40 
R E F-41 
REF-42 
REF-43 
REF-44 
R E F-46 
REF-48 
REF-49 
REF-50 
REF-51 
REF-52 
REF-57 
REF-59 
REF-60 
REF-61 
REF-62 
REF-63 
REF-64 
REF-65 
REF-66 
REF-67 
REF-68 
REF-70 
REF-71 
REF-73 
REF-74 
REF-75 
REF-77 
REP-80 
REF-82 
REF-84 
REF-86 
REF-88. 
REF-89 



FABS  REF-90 
FCLOSE   REF-91 
FCVT  REF-92 
FDOPEN   REF-94 
FEOF   REF-96 
FERROR   REF-97 
FFLUSH  REF-98 
FGETC   REF-99 
FGETNAME   REF-100 
FGETPOS   REF-102 
FGETS   REF-104 
FILENO   REF-106 
FLOOR   REF-107 
FMOD   REF-108 
FOPEN   REF-109 
FPRINTF   REF-111 
FPUTC  REF-113 
FPUTS  REF-114 
FREAD   REF-115 
FREE   REF-117 
FREOPEN   REF-118 
FREXP   REF-120 
FSCANF  REF-122 
FSEEK  REF-124 
FSETPOS   REF-126 
FSTAT  REF-127 
FTELL   REF-130 
FTIME   REF-131 
FWRITE  REF-132 
GCVT   REF-134 
G ETC   REF-136 
[WJGETCH   REF-137 
GETCHAR   REF-138 
GETCWD  REF-139 
GETEGID  REF-141 
GETENV   REF-142 
GETEUID  REF-144 
GETGID  REF-145 
GETNAME   REF-146 
GETPID   REF-148 
GETPPID   REF-149 
GETS   REF-150 
[W]G ETSTR   REF-151 
GETUID  REF-152 

vii 



GETW  REF-153 
G STYX   REF-154 
GMTIME  REF-155 
GSIGNAL  REF-156 
HYPOT   REF-159 
[W]INCH  REF-160 
INITSCR    REF-161 
[W]INSCH  REF-162 
[W]INSERTLN  REF-163 
[1NJ INSSTR  REF-164 
ISALNUM  REF-165 
ISALPHA   REF-166 
ISAPIPE  REF-167 
ISASCI I   REF-168 
iSATTY   REF-169 
ISCNTRL   REF-170 
ISDIGIT   REF-171 
ISGRAPH  REF-172 
(SLOWER  REF-173 
iSPRINT  REF-174 
ISPUNCT  REF-175 
ISSPACE   REF-176 
(SUPPER  REF-177 
ISXDIGIT   REF-178 
KILL   REF-179 
LABS  REF-181 
LDEXP  REF-182 
LDIV   REF-183 
LEAVEOK  REF-184 
LOCALTIME   REF-185 
LOG, LOG 10  REF 187 
LONGJMP   REF-188 
LONGNAME  REF-190 
LSEEK  REF-191 
MALLOC   REF-193 
MEMCHR  REF-194 
MEMCMP  REF-195 
MEMCPY  REF-197 
MEMMOVE  REF-198 
MEMSET   REF-200 
MKDIR  REF-201 
MKTEMP   REF-203 
MODF   REF-204 
[WJMOVE  REF-205 

viii 



MVCUR   REF-207 
MVWIN   REF-209 
MV[W]ADDCH  REF-211 
MV[W]ADDSTR  REF-212 
MV[W]DELCH   REF-213 
MV[W]GETCH  REF-214 
MV[W]GETSTR  REF-215 
MV[W]INCH   REF-216 
MV[W]INSCH   REF-217 
MV[W]INSSTR   REF-218 
NEWWIN   REF-219 
NICE   REF-221 
[NO]NL   REF-222 
OPEN   REF-223 
OVERLAY _   REF-228 
OVERWRITE   REF-229 
PAUSE  REF-230 
PERROR   REF-231 
PIPE   REF-233 
POW  REF-238 
PRINTF   REF-240 
[W]PRINTW   REF-241 
PUTC   REF-243 
PUTCHAR   REF-244 
PUTS   REF-245 
PUTW   REF-246 
QSORT   REF-247 
RAISE   REF-249 
RAND   REF-252 
[NO] RAW  REF-253 
READ   REF-255 
REALLOC   REF-257 
[W]REFRESH  . REF-259 
REMOVE   REF-260 
RENAME   REF-261 
REWIND   REF-262 
SBRK   REF-263 
SCANF   REF-264 
[W]SCANW  REF-265 
SCROLL   REF-267 
SCROLLOK   REF-268 
[W]SETATTR  REF-269 
SETBUF  REF-271 
SETGID   REF-272 

ix 



SETJMP  REF-273 
SETUID   REF-275 
SETVBUF  REF-276 
SIGBLOCK  REF-278 
SIGNAL   REF-279 
SIGPAUSE  REF-281 
SIGSETMASK  REF-282 
SIGSTACK   REF-283 
SIGVEC  REF-285 
SIN   REF-287 
SINN   REF-288 
SLEEP  REF-289 
SPRINTF   REF-290 
SQRT   REF-292 
SRAND   REF-293 
SSCANF   REF-294 
SSIGNAL   REF-296 
[W]STANDEND   REF-298 
[WJSTANDOUT   REF-299 
STAT  REF-300 
STRCAT  REF-303 
STRCHR   REF-305 
STRCMP   REF-307 
STRCPY   REF-308 
STRCSPN   REF-309 
STRERROR   REF-310 
STRLEN  REF-312 
STRNCAT  REF-313 
STRNCMP   REF-314 
STRNCPY   REF-316 
STRPBRK   REF-318 
STRRCHR   REF-319 
STRSPN   REF-320 
STRSTR  REF-321 
STRTOD   REF-323 
STRTOK   REF-325 
STRTOL  REF-327 
STRTOU L  REF-329 
SUBWIN  REF-331 
SYSTEM   REF-333 
TAN  REF-335 
TANH  REF-336 
TIME   REF-337 
TIMES   REF-338 

x 



TMPFILE   REF-339 
TMPNAM   REF-340 
TOASCII  REF-341 
TOLOWER, _TOLOWER  REF-342 
TOUCHWIN   REF-343 
TOUPPER, _TOUPPER   REF-344 
TTYNAM E   REF-345 
UMASK   REF-346 
UNGETC   REF-347 
VAXC$CALLOC_OPT  REF-349 
VAXC$CFREE_OPT  REF-350 
VAXC$CRTL INIT   REF-351 
VAXC$ESTABLISH  REF-352 
VAXC$FREE_OPT  REF-354 
VAXC$MALLOC_OPT  REF-355 
VAXC$REALLOC_OPT  REF-357 
VA ARG  REF-359 
VA COUNT   REF-361 
VA END  REF-362 
VA_START, VA_START 1   REF-363 
VFORK   REF-365 
VFPRINTF   REF-367 
VPRINTF   REF-369 
VSPRINTF   REF-371 
WAIT  REF-372 
WRAPOK  REF-373 
WRITE  REF-374 

Appendix A VAX C RTL and RTLs of Other C Implementations 

Appendix B VAX CRun-Time Modules and Entry Points 

Appendix C VAX C Definition Modules 

xi 



Appendix D VAX C Socket Routine Reference 

D.1 Introduction   D-1 

D.2 Porting Considerations   D-1 
D.2.1 Calling an IPC Routine from an AST State  D-1 
D.2.2 Calling from KERNEL or EXEC Modes   D-2 
D.2.3 Standard I/O   D-2 
D.2.4 Event Flags   D-2 
D.2.5 Suppressing VAX C Compilation Warnings   D-2 
D.2.6 Header Files   D-3 

D.3 Linking an Internet Application Program   D-3 

D.4 VAX C Structures   D-3 
D.4.1 hostent Structure   D-3 
D.4.2 in addr Structure   D-4 
D.4.3 iovec Structure   D-5 
D.4.4 linger Structure   D-5 
D.4.5 msghdr Structure   D-5 
D.4.6 netent Structure  D-6 
D.4.7 sockaddr Structure   D-7 
D.4.8 sockaddr in Structure   D-7 
D.4.9 timeval Structure   D-8 

D.5 Internet Protocols  D-8 
D.5.1 Transmission Control Protocol   D-8 
D.5.2 User Datagram Protocol   D-9 

D.6 errno Values   D-9 

D.7 Basic Communication Routines  D-14 
ACCEPT   D-15 
BIND   D-17 
CLOSE   D-19 
CONNECT   D-20 
LISTEN   D-22 
READ   D-24 
RECV   D-26 
RECVFROM  D-28 
RECVMSG   D-31 
SELECT  D-34 
SEND   D-37 
SENDMSG  D-39 

xii 



S E N DTO   D-42 
SHUTDOWN  D-45 
SOCKET   D-47 
WRITE  D-51 

D.8 Auxiliary Communication Routines   D-53 
GETPEERNAME   D-54 
GETSOCKNAME  D-56 
GETSOCKOPT   D-58 
SETSOCKOPT   D-60 

D.9 Communication Support Routines   D-63 
GETHOSTBYADDR   D-65 
G ETHOSTBYNAM E  D-67 
GETHOSTENT   D-68 
GETHOSTNAME  D-69 
GETNETBYADDR   D-71 
G ETN ETBYNAM E   D-73 
G ETN ETENT   D-75 
HTON L   D-76 
HTONS   D-78 
INET ADDR   D-80 
INET LNAOF   D-82 
INET MAKEADDR  D-83 
INET N ETO F   D-84 
INET NETWORK  D-85 
INET NTOA   D-87 
NTOH L   D-89 
NTOHS   D-91 
VAXC$G ET S DC  D-93 

D.10 Programming Examples   D-94 

Index 



Examples 

2-1 Output of the Conversion Specifications  2-15 
2-2 Using the Standard I/O Functions   2-17 
2-3 I/O Using File Descriptors and Pointers   2-18 
3-1 Character Classification Macros   3-9 
3-2 Converting Double Values to an ASCII String   3-10 
3-3 Changing Characters to and from Uppercase Letters   3-11 
3-4 Concatenating Two Strings   3-13 
3-5 Four Arguments to the strespn Function   3-14 
3-6 The varargs Functions, Macros, and Definitions   3-15 
4-1 Suspending and Resuming Programs   4-7 
5-1 Creating the Child Process   5-7 
5-2 Passing Arguments to the Child Process   5-9 
5-3 Checking the Status of Child Processes   5-11 
5-4 Communicating Through a Pipe   5-13 
6-1 A Curses Program   6-10 
6-2 Manipulating Windows   6-11 
6-3 Refreshing the Terminal Screen   6-12 
6-4 Curses Predefined Variables   6-13 
6-5 The Cursor Movement Functions   6-14 
6-6 stdscr and Occluding Windows  6-15 
6-7 Subwindows   6-18 
7-1 Calculating and Verifying a Tangent Value   7-4 
8-1 Allocating and Deallocating Memory for Structures   8-3 
9-1 Accessing the User Name  9-4. 
9-2 A Second Way to Access the User Name   9-4 
9-3 Accessing Terminal Information   9-5 
9-4 Manipulating the Default Directory   9-5 
9-5 Printing the Date and Time   g-6 
D-1 TCP/IP Server  D-94 
D-2 TCP/IP Client   D-100 
D-3 UDP Server   D-105 
D-4 UDP Client   D-111 

xiv 



Figures 
1-1 I/O Interface from C Programs   1-11 
1-2 Mapping Standard I/O and UNIX I/O to RMS   1-13 
5-1 Communications Links Between Parent and Child Processes   5-3 
6-1 An Example of the stdscr Window   6-6 
6-2 Displaying Windows and Subwindows   6-8 
6-3 Updating the Terminal Screen   6-9 
6-~4 An Example of the getch Macro  6-17 
6-5 An Example of Overwriting Windows  6-19 
REF-1 Reading and Writing to a Pipe   REF-237 

Tables 
1-1 UNIX and VMS File Specification Delimiters   1-8 
1-2 Valid and Invalid Specifications  1-9 
2-1 I/O Functions and Macros   2-1 
2-2 Conversion Characters for Formatted Input   2-9 
2-3 Conversion Characters for Formatted Output   2-11 
2-,4 Allowable Characters Between the Percent Sign and Conversion 

Character   2-13 

3-1 Character, String, and Argument List Functions and Macros   3-1 

3 2 Character Classification Macros and their Return Values   3-5 

3-3 Character Classification Macro Return Values (ASCII Table)   3-5 

4-1 Error- and Signal-Handling Functions and Macros   4-1 

4-2 The Errno Symbolic Values   4-3 
4-3 VAX C Signals   4-6 

5-1 Subprocess Functions  5-2 

6-1 Curses Functions and Macros   6-2 

6-2 Curses Predefined Variables and #define Constants   6-12 

7-1 Math Functions   7-1 

8-1 Memory Allocation Functions   8-1 

9-1 System Functions   9-1 

REF-1 Interpretation of the mode Argument  REF-5 

REF-2 File Protection Values and their Meanings   REF-37 

REF-3 RMS Valid Keywords and Values   REF-53 

REF-4 SIGFPE Arithmetic Trap Signal Codes  REF-156 

xv 



REF-5 Member Names  REF-185 
REF-6 RMS Valid Keywords and Values   REF-225 
REF-7 SIGFPE Signal Codes   REF-249 
REF-8 The vfork and fork Functions   REF-365 
A-1 Relationship of VAX C RTL Functions and Macros to Other C RTL 

Functions and Macros   A-1 
B-1 VAX CRun-Time Modules  B-1 
B-2 VAX CRun-Time Entry Points   B-6 
B-3 Run-Time Library Procedures Called by VAX C  B-17 
C-1 VAX C Definition Modules   C-1 
D-1 errno Values   D-10 
D-2 Basic Communication Routines   D-14 
D-3 Auxiliary Communication Routines   D-53 
D-4 Supported Communication Routines   D-63 

xvi 



Preface 

This manual provides reference information on the VAX CRun-Time Library 
(RTL) functions and macros that provide input/output (UO) functional-
ity, character and string manipulation, mathematical functionality, error 
detection, subprocess creation, system access, and screen management 
capabilities. 

It also describes the VAX C Socket routines used for writing Internet appli-
cation programs for the VMS/ULTRIX Connection product. 

Intended Audience 

This manual is intended for experienced and novice programmers who need 
reference information on the functions and macros found in the VAX C RTL. 

Document Structure 

This manual describes the VAX C RTL. It provides information about 
portability concerns between operating systems and categorical descriptions 
of the functions and macros. This manual has nine chapters, a reference 
section, and five appendixes as follows: 

• Chapter 1 provides an overview of the VAX C RTL. 

• Chapter 2 discusses the Standard UO, Terminal UO, and UNIX UO 
functions and macros. 1

• Chapter 3 describes the character-, string-, and argument list-handling 
functions and macros. 

~'1 1 UNIX is a registered trademark of UNIX System Laboratories, Inc. 

xvii 



• Chapter 4 describes the error-, and signal-handling functions and 
macros. 

• Chapter 5 explains the functions used to create subprocesses. 
• Chapter 6 describes the Curses Screen Management functions and 

macros. 

• Chapter 7 discusses the math functions and macros. 

• Chapter 8 explains the memory allocation functions and macros. 
• Chapter 9 describes the functions and macros used to interact with the 

operating system. 

• The Reference Section describes all the functions and macros found in 
the VAX C RTL. 

• Appendix A provides a comparison of VAX C RTL functions and macros, 
and corresponding functions of other C implementations. 

• Appendix B provides a description of the VAX C modules and the VAX 
run-time modules used in this implementation. 

• Appendix C lists the VAX C definition modules. 

• Appendix D describes the VAX C Socket routines used for writing 
Internet application programs for the VMSlULTRIX Connection product. 

Associated Documents 

The following documents may be useful when programming in VAX C: 

• Guide to VAX C For programmers who need tutorial information on 
using VAX C. 

• VAX C Installation Guide For system programmers who install the 
VAX C software. 

• VMS Master Index For programmers who need to work with the VAX 
machine architecture or the VMS system services. 
This index lists manuals that cover the individual topics concerning 
access to the VMS operating system. 



Conventions Used in this Document 

Convention Meaning 

~RETURN~ 

CTRUX I 

float x; 

The symbol (RETURN ~ represents a single stroke of the 
RETURN key on a terminal. 

The symbol ~ cTRux , where letter X represents a 
terminal control character, is generated by holding 
down the CTRL key while pressing the key of the 
specified terminal character. 

A vertical ellipsis indicates that not all of the text 
of a program or program output is illustrated. Only 
relevant material is shown in the example. 

x = 5; 

option, . . . A horizontal ellipsis indicates that additional pa-
rameters, options, or values can be entered. A 
comma that precedes the ellipsis indicates that 
successive items must be separated by commas. 

[output-source, . . . ] Square brackets, in function synopses and a few 
other contexts, indicate that a syntactic element is 
optional. Square brackets are not optional, however, 
when used to delimit a directory name in a VMS file 
specification or when used to delimit the dimensions 
of a multidimensional array in VAX C source code. 

sc-specifier ::= In syntax definitions, items appearing on separate 
auto lines are mutually exclusive alternatives. 
static 
extern 
register 

[a I b] Brackets surrounding two or more items separated 
by a vertical bar ( I ) indicate a choice; you must 
choose one of the two syntactic elements. 

xix 



Convention Meaning 

d 

switch statement 
fprintf function 

A delta symbol is used in some contexts to indicate 
a single ASCII space character. 

Boldface type identifies language keywords and 
the names of VMS and VAX CRun-Time Library 
functions. 

argl Italics identifies variable names. 

xx 



Chapter 1 

VAX CRun-Time Library Information 

Before using the VAX CRun-Time Library (RTL) functions and macros, you 
must be familiar with the following topics: 

• The linking process 

• The macro substitution process 

• The difference between function definitions and function calls 

• The format of valid file specifications 

• The VMS-specific methods of input and output (I/O) 

• The VAX C extensions and nonstandard features 

These topics may seem unrelated, but a knowledge of all these issues 
is necessary to effectively use the VAX C RTL. This chapter shows the 
connections among these topics and the VAX C RTL. Read this chapter 
before any of the other chapters in this manual. 

The primary purpose of the VAX C RTL is to provide a means for C 
programs to perform I/O operations; the C language itself has no facilities 
for reading and writing information. In addition to I/O support, the VAX C 
RTL also provides a means to perform many other tasks. 

Chapters 2 through 7 describe the various tasks supported by the VAX 
C RTL. The Reference Section alphabetically lists and describes all the 
functions and macros available to perform these tasks. 

VAX CRun-Time Library Information 1-1 



1.1 Using the VAX CRun-Time Library 

When working with the VAX C RTL, you must be aware of some specifics of 
its implementation. 

First, if you plan to use VAX C RTL functions in your C programs, 
make sure that a function named main or a function that uses the main 
program option exists in your program. For more information, see the Guide 
to VAX C. 

Second, the VAX C RTL functions are executed at run time, but references 
to these functions are resolved at link time. When you link your program, 
the VMS Linker (linker) resolves all references to VAX C RTL functions by 
searching any object code libraries or shareable code libraries specified on 
the LINK command line. If the linker does not locate the function code, it 
translates the logical names LNK$LIBRARY n to the name of an object 
library and then searches that library for the code. 

1.1.1 Using the VAX C RTL Object Libraries 

If you decide to link using the VAX C RTL object libraries, define the logical 
names LNK$LIBRARY, LNK$LIBRA.RY 1, and LNK$LIBRARY 2 as one or 
more of the following libraries: 

• SYS$LIBRARY:VAXCCURSE.OLB 

• SYS$LIBRARY VAXCRTLG.OLB 

• SYS$LIBRARY VAXCRTL.OLB 

Depending on the needs of your program, you may have to access one, two, 
or all three of the libraries. The following list relates the needs of your 
program with the particular libraries that you must define: 

• If you do not need to use the Curses Screen Management (Curses) 
package of VAX C RTL functions and macros, and you do not use the 
/G_FLOAT qualifier on the CC command line, you must define the logical 
as follows: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL.OLB RETURN 

• If you plan to use the /G FLOAT qualifier with the CC command line, 
but do not plan on using Curses, you must define the logicals as follows: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTLG.OLB RETURN 
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB 

1-2 VAX CRun-Time Library Information 

RETURN j 



• If you plan to use the Curses Screen Management package, but do not 
plan to use the /G_FLOAT qualifier, you must define the logicals as 
follows: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB RETURN 
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTL.OLB~RETURNI 

• Finally, if you plan to use both Curses and the /G_FLOAT qualifier, you 
must define the three logicals as follows: 

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCCURSE.OLB 
$ DEFINE LNK$LIBRARY_1 SYS$LIBRARY:VAXCRTLG.OLB 
$ DEFINE LNK$LIBRARY_2 SYS$LIBRARY:VAXCRTL.OLB 

RETURN 
~RETURN~ 

RETURN 

The order of the specified libraries determines which versions of the VAX 
C RTL functions are found first by the linker. If the linker does not find 
the function code or if LNK$LIBRARY n is undefined, it assumes that the 
function is not a VAX C RTL function and checks other default libraries 
before assuming that the program is in error. If the linker locates the func-
tion code, it places a copy of the code in the program's local program section 
(psect). It may be helpful to place these definitions in your LOGIN.COM file 
or some other command procedure so that you do not have to retype these 
definitions each time you use the VAX C RTL object libraries. 

For more information about Curses, see Chapter 6. For more information 
about command procedures or the G floating representation of double 
variables, see the Guide to VAX C. 

1.1.2 Using the VAX C RTL as a Shareable Image 

You can use the VAX C RTL as a shareable image instead of using the 
object code of the VAX C RTL functions. when you use the VAX C RTL 
as a shareable image, you do not receive a copy of the object code in your 
program's local psect; control is passed, using pointers, from your program to 
libraries containing the RTL images where the designated function executes. 
After execution, control returns to your program. This process has a number 
of advantages. You reduce the size of a program's executable image, the 
program's image takes up less disk space, and the program swaps in and out 
of memory faster due to decreased size. 

If you do not use the /G_FLOAT qualifier on the CC command line, create an 
options file, OPTIONS_FILE.OPT, containing the following line: 

SYS$SHARE:VAXCRTL.EXE/SHARE 

VAX CRun-Time Library Information 1-3 



If you do use the /G FLOAT qualifier on the CC command line, create an 
options file containing the following line: 

SYS$SHARE:VAXCRTLG.EXE/SHARE 

You cannot include the libraries SYS$SHARE:VAXCRTL.EXE and 
SYS$SHARE:VAXCRTLG.EXE in the same options file. 

After you create the appropriate options file, named OPTIONS_FILE.OPT, 
you can compile and link the program with the following commands: 

$ CC PROGRAM.0 RETURN 

$ LINK PROGRAM.OBJ, OPTIONS_FILE/OPT RETURN 

1.1.3 Macros 

You may need to use macros as well as functions from the VAX C RTL. 
Macros are resolved at compile time instead of at link time. The compiler 
replaces the macro reference with text found in a definition file. This process 
is called macro expansion. Macros are not the only segments of source code 
found in the definition files; these files can contain code fragments and 
definitions that are needed for some of the RTL functions to work properly. 

Consequently, you need to learn about VAX C definition files to use the VAX 
C RTL wisely. 

To understand definition files, you should know how the Standard UO 
definitions are created. Definitions are composed of #define preprocessor 
directives. Traditionally in the C language, these #define directives 
are located in files with a .H file extension. If the VAX C software files 
are extracted during installation, you can locate them in the directory 
SYS$LIBRARY. For example, you can type the STDIO.H file (which contains 
Standard UO definitions and macros) at your terminal with the following 
command: 

$ TYPE SYS$LIBRARY:STDIO.H RETURN 

If you encounter an error, see your system manager about extracting the .H 
definition files from the text library. 

Since it is often more efficient to access these files from the text library 
provided with VAX C, this manual refers to the .H definition files as 
definition modules. For more information about text libraries and modules, 
see the Guide to VAX C. 

1--4 VAX CRun-Time Library Information 



The following (nonstandard) identifiers are defined in the stdio definition 
module: 

#define TRUE 1 
#define FALSE 0 
#define EOF (-1) 

You can use these definitions by including the proper definition module using 
the #include preprocessor directive in your source file. At compile time, the 
compiler replaces identifiers within the source code, with the defined token 
string. In the previous code example, all instances of the identifier TRUE 
are replaced with the number 1. 

To include the Standard UO definitions in your file, use the following 
preprocessor directive: 

#include stdio 

Some VAX C RTL "functions" are implemented as macros using the #define 
preprocessor directive. For example, to use the macro _toupper, use the 
following line in your source code program: 

#include ctype 

In the ctype definition module, you can find the following macro definition: 

#define _toupper (c) ((c) >_ ' a' && (c) <_ ' z' ? (c) & OxSF (c) ) 

In your program, you call the macro _toupper with the following source 
ine: 

a = • _toupper (a) • 

The compiler searches through the source code for calls to _toupper, re-
placing each occurrence with the token string found in the macro definition. 
In the previous example, the compiler places the argument specified in the 
macro call (the letter a) wherever the identifier c appears in the defined 
token string. The token string in the previous example is VAX C source code 
that translates a lowercase letter to an uppercase letter. If the specified 
character is an uppercase letter or if it is not a letter, the character is 
returned unaltered. 

VAX CRun-Time Library Information 1-5 



When calling VAX C RTL macros, use caution in specifying arguments that 
cause side effects, such as those that use the increment and decrement 
operators. For example, in the case of _toupper, even though you have 
access to the source code token string, you cannot determine the order in 
which the compiler evaluates each occurrence of (c) in the token string. The 
leftmost occurrence of (c) may not be evaluated first by the compiler. The 
Guide to VAX C discusses the passing of arguments to macros. 

The linker searches object libraries for the VAX C RTL function code, but the 
compiler searches text libraries or directories for the VAX C RTL macros. 
If you include definition modules in your source code, the compiler first 
searches the text libraries specified on the compilation command line for the 
definition module. If the compiler does not find the module, it translates the 
logical name C$LIBRARY; you can define C$LIBRARY to be auser-defined 
library. If the compiler cannot locate the module in the defined library or 
if there is no translation for C$LIBRARY, the compiler searches the text 
library SYS$LIBRARY:VAXCDEF.TLB; this library is shipped with the VAX 
C compiler and contains the .H definition files. If the compiler cannot find 
the specified module, it generates an error message. 

Depending on the form of the #include line, there are other places to look 
for definition files that may contain VAX C RTL macros. For complete 
information about include file searches, see the Guide to VAX C. 

The .H definition files are distributed with VAX C, but the run-time libraries 
are distributed with the VMS operating system. 

1.2 VAX C RTL Function and Macro Syntax 

After learning how to link object modules and include definition modules, 
you must learn how to reference VAX C functions and macros in your pro-
gram. The remaining chapters in this manual provide detailed descriptions 
of the VAX C RTL functions and macros. 

In all chapters, the syntax describing each function and macro follows the 
standard convention for defining a function. This syntax is called a function 
prototype (or prototype). It is a compact representation of the order of a 
function's or macro's arguments (if any), the types of the arguments, and the 
type of the value returned by a function or macro. 

If the return value of the function cannot be easily represented by a VAX 
C data-type keyword, look for a description of the return values in the 
explanatory text. The prototype descriptions provide insight into the 
functionality of the function or macro. These descriptions may not describe 
how to call the function or macro in your source code. 

1-6 VAX CRun-Time Library Information 



For example, consider the prototype for the feof function: 

#include stdio 
int feof(FILE *file~tr;) 

The description of feof states that it is implemented as a macro. The syntax 
shows the following information: 

• The macro is defined in a definition module. You must include the stdio 
module to use the feof macro. 

• The macro returns a value of data type int. Do not explicitly declare 
VAX C RTL macros yourself. This prototype merely indicates the 
arguments and the return value of feof. 

• There is one argument, file~ptr, that is of type pointer to FILE. FILE is 
defined in the stdio module. 

To use feof in a program, call the macro and precede the call at some point 
by the #include directive, as in the following example: 

#include stdio /* Include Standard I/O 

main ( ) 
{ 

FILE *infile; /* Define a file pointer 

while ( ! feof (infile) ) 
t 

} 
} 

*/ 

*/ 

/* Call the function feof */ 
/* Until EOF reached */ 
/* Perform file operations */ 

Since some library functions take varying numbers of arguments, syntax 
descriptions have additional conventions not used in other VAX C function 
definitions as follows: 

• Optional parameters are enclosed in square brackets ([ )}. 

• Use an ellipsis ( . . . ) to show that a given parameter may be repeated. 

• In cases where the type of a parameter may vary, its type is not shown 
in the syntax. 

Consider the printf syntax description: 

#include stdio 
int printf(char *format specification [,output source, . . . ]) 

VAX CRun-Time Library Information 1-7 



The syntax description for printf shows that the argument, output_source, 
is optional, may be repeated, and is not always of the same data type. The 
remaining information about the arguments of printf is in the description of 
the function following the syntax. 

1.2.1 UNIX-Style File Specifications 

The VAX C RTL functions and macros often manipulate files. One of the 
major portability problems is the different file specifications used on various 
systems. Since many C applications are ported to and from UNIX systems, 
it is convenient for all compilers to be able to read and understand UNIX 
system file specifications. 

NOTE 

• The VAX C RTL cannot translate UNIX file specifications with more 
than one period character (. ). 

• If the UNIX file specification contains a period, all slash characters (/ ) 
must precede that period. 

Please note the differences between the UNIX system and VMS file specifi-
cations, as well as the method used by the RTL to access files. For example, 
the RTL accepts a valid VMS specification and most valid UNIX file specifi-
cations, but the RTL cannot accept a combination of both. Table 1-1 shows 
the differences between UNIX system and VMS system file specification 
delimiters. 

Table 1-1: UNIX and VMS File Specification Delimiters 

Description VMS System UI~TIX System 

Node delimiter 

Device delimiter 

Directory path delimiter 

Subdirectory delimiter 

File extension delimiter 

File version delimiter 

t~ 

[) / 

[ . ] / 

Not applicable 

For example, the formats of two valid specifications and one invalid specifi-
cation are shown in Table 1-2. 

1-8 VAX CRun-Time Library Information 



Table 1-2: Valid and Invalid Specifications 

System File Specification Valid/Invalid 

VMS BEATLE::DBAO:[MCCARTNEY]SONGS.LIS Valid 

UNIX beatle!/dba0/mccartney/songs.lis Valid 

— BEATLE::DBAO:[MCCARTNEY.C] 
/songs.lis 

Invalid 

When VAX C translates file specifications, it looks for both VMS and UNIX 
system file specifications. Consequently, there may be differences between 
how VAX C translates UNIX system file specifications and how UNIX 
systems translate the same UNIX file specification. For example, if the two 
methods of file specification are combined, as in the previous list, VAX C can 
interpret [MCCARTNEY.C]/songs.lis as either [MCCARTNEY]songs.lis or 
[C]songs.lis. Therefore, when VAX C encounters a mixed file specification, 
an error occurs. 

UNIX systems use the same delimiter for the device name, the directory 
names, and the file name. Due to the ambiguity of UNIX file specifications, 
VAX C may not translate a valid UNIX system file specification according 
to your expectations. For instance, the VMS system equivalent of bin/today 
can be either [BIN]TODAY or [BIN.TODAY]. VAX C can make the correct 
interpretation only from the files present. If a file specification conforms to 
UNIX system file name syntax for a single file or directory, it is converted to 
the equivalent VMS file name if one of the following conditions is true: 

• If the specification corresponds to an existing VMS directory, it is 
converted to that directory name. For example, /dev/dir/sub is converted 
to DEV: [DIR. SUB] if DEV: [DIR. SUB] exists. 

• If the specification corresponds to an existing VMS file name, it is 
converted to that file name. For example, dev/dir/file is converted to 
DEV:[DIR]FILE if DEV:[DIR]FILE exists. 

• If the specification corresponds to a nonexistent VMS file name, but 
the given device and directory exist, it is converted to a file name. For 
example, dev/dir/file is converted to DEV: [DIR]FILE if DEV: [DIR] exists. 

VAX CRun-Time Library Information 1-9 



In the UNIX system environment, you reference files with a numeric file 
descriptor. Some file descriptors reference standard I/O devices; some de-
scriptors reference actual files. If the file descriptor belongs to an unopened 
file, the VAX C RTL opens the file. VAX C equates file descriptors with the 
following VMS logical names: 

File Descriptor VMS Logical Meaning 

0 SYS$INPUT Standard input 

1 SYS$OUTPUT Standard output 

2 SYS$ERROR Standard error 

3_9 SHELL$FILE_n File/Pipe opened by the Shell 

1.3 Input and Output on VMS Systems 

After you learn how to link with the VAX C RTL, how to specify text 
libraries, and how to call VAX C functions and macros, you can use the VAX 
C RTL for its primary purpose: I/O. 

Since every system has different methods of UO, familiarize yourself with 
the VMS-specific methods of file access. In this way, you will be equipped to 
predict functional differences when porting your source program from one 
operating system to another. 

Figure 1-1 shows the I/O methods available with VAX C. The VMS system 
services "talk" directly to the VMS operating system, so they are closest 
to the operating system. The VAX Record Management Services (RMS) 
functions use the system services, which manipulate the operating system. 
The VAX C Standard I/O and UNIX UO functions and macros use the 
VAX RMS functions, which use the system services that manipulate the 
operating system. Since the VAX C Standard and UNIX UO functions and 
macros must go through several layers of function calls before the system is 
manipulated, they are furthest from the operating system. 

1-1 
o VAX CRun-Time Library Information 



Figure 1-1: 1/O Interface from C Programs 

P 
r 
0 

g 
r 
a 
m 

Standard I/O 

uivlx I/o 

VAX RMS 

System Services 

ZK-0493-GE 

The C programming language was developed on the UNIX operating sys-
tem, and the Standard UO functions were designed to provide a convenient 
method of UO that would be "powerful" enough to be efficient for most ap-
plications, and also be portable so that the functions could be used on any 
system running C language compilers. VAX C adds functionality to this 
original specification. Since, as implemented in VAX C, the Standard UO 
functions easily recognize line terminators, the VAX C Standard UO func-
tions are particularly useful for text manipulation. VAX C also implements 
some of the Standard UO "functions" as preprocessor defined macros. 

In a similar manner, the UNIX UO functions originally were designed 
to provide a more direct access to the UNIX operating systems. These 
functions were meant to use a numeric file descriptor to represent a file. A 
UNIX system represents all peripheral devices as files to provide a uniform 
method of access. Once again, VAX C adds functionality to the original 
specification. The UNIX UO functions, as implemented in VAX C, are 
particularly useful for manipulating binary data. VAX C also implements 
some of the UNIX UO "functions" as preprocessor defined macros. 

The VAX C RTL includes the Standard UO functions that should exist on all 
C compilers, and also the UNIX UO functions to maintain compatibility with 
as many other implementations of C as possible. However, both Standard 
UO and UNIX UO use VAX RMS to access files. To understand how the 
Standard and UNIX I/O functions manipulate VAX RMS formatted files, 
learn the fundamentals of VAX RMS. See Section 1.3.1 for more information 
about Standard and UNIX UO in relationship to VAX RMS files. For an 
introduction to VAX RMS, see the Guide to VMS File Applications. 

VAX CRun-Time Library Information 1-11 



Before deciding which method is appropriate for you, first ask this question: 
Are you concerned with UNIX compatibility or with developing code that 
will run solely under the VMS operating system? If UNIX compatibility is 
important, you probably want to use the highest level of UO Standard UO 
and UNIX UO because that level is largely independent of the operating 
system. Also, the highest level is easier to learn quickly, an important 
consideration if you are a new programmer. 

If UNIX compatibility is not important to you or if you require the sophis-
ticated file processing that the Standard UO and UNIX I/O methods do not 
provide, you will find VAX RMS desirable. 

If you are writing system-level software, you may need to access the VMS 
operating system directly through calls to system services. For example, 
you may need to access auser-written device driver directly through Queue 
UO Request System Service ($QIO). To do this, use the VMS level of I/O; 
this level is recommended if you are an experienced VMS programmer. For 
examples of programs that call VMS system services, see the 
Guide to VAX C. 

You may never use the RMS or the VMS system services. The Standard 
UO and UNIX I/O functions are efficient enough for a large number of 
applications. Figure 1-2 shows the dependency of the Standard I/O and the 
UNIX UO functions on RMS, and the various methods of UO available to 
you. 

1-12 VAX CRun-Time Library Information 

~rl 



Figure 1-2: Mapping Standard I/O and UNIX I/O to RMS 

VAX C P RAG RAM 

1 
Standard I/O UNIX I/O 

i 

VAX RMS 

System Services 

ZK-0494-G E 

1.3.1 RMS Record and File Formats 

To understand the capabilities and the restrictions of the Standard UO 
and UNIX UO functions and macros, you need to understand VAX Record 
Management Services (RMS). 

VAX RMS supports the following file organizations: 

• Sequential 

• Relative 

• Indexed 

VAX CRun-Time Library Information 1-13 



Sequential files have consecutive records with no empty records in between; 
relative files have fixed-length cells that may or may not contain a record; 
and indexed files have records that contain data, carriage-control infor-
mation, and keys that permit various orders of access. The VAX C RTL 
functions can only access sequential files. If you wish to use the other file 
organizations, you must use the RMS functions. For more information about 
the RMS functions, see the Guide to VAX C. 

VAX RMS is not concerned with the contents of records, but it is concerned 
about the record format, which is the way a record physically appears on the 
recording surface of the storage medium. 

VAX RMS supports the following record formats: 

• Fixed length 

• Variable length 

• Variable with fixed-length control (VFC) 

• Stream 

You can specify afixed-length record format at the time of file creation. This 
means that all records occupy the same space in the file. You cannot change 
the record format once you create the file. 

The length of records in variable length, VFC, and stream file formats can 
vary up to a maximum size that must be specified when you create the file. 
With variable-length record or VFC format files, the size of the record is held 
in a header section at the beginning of the data record. With stream files, 
RMS terminates the records when it encounters a specific character, such as 
a carriage-control or line-feed character. Stream files are useful for storing 
text. 

RMS allows you to specify carriage-control attributes for records in a file. 
Such attributes include the implied carriage-return or the FORTI~;AN 
formatted records. RMS interprets these carriage controls when the file is 
output to a terminal, a line printer, or other device. The carriage-control 
information is not stored in the data records. 

Files created with VAX C programs have, by default, stream format with a 
line-feed record separator and implied carriage-return attributes. (In this 
manual, this type of file is referred to as a stream file.) Stream files can 
be easily manipulated using the Standard I/O and the UNIX UO functions 
of the VAX C RTL. When using these files, there is no restriction on the 
ability to seek to any random byte of the file using the fseek or the lseek 
functions. However, if the file has one of the other RMS record formats, 
such as variable-length record format, then these functions, due to RMS 
restrictions, can seek only to record boundaries. Use the default VAX stream 

1-14 VAX CRun-Time Library Information 



format unless you need to create or access files to be used with other VAX 
languages or utilities. 

1.3.2 Stream Access to RMS Record Files 

Stream access to record files is done with the record I/O facilities of RMS. 
The VAX C RTL emulates a byte stream by translating carriage-control 
characters during the process of reading and writing records. Random 
access is allowed to record files, but positioning (with fseek and lseek) must 
be on a record boundary, and writes followed by reads (or reads followed by 
writes) do not work as with stream files. Positioning a record file causes all 
buffered input to be discarded and buffered output to be written to the file. 

Stream input from RMS record files is emulated by the VAX C RTL in two 
steps. First, the VAX C RTL reads a logical record from the file. Second, the 
VAX C RTL expands the record to simulate a stream of bytes by translating 
the record's carriage-control information (if any). In RMS terms, the VAX C 
RTL translates the information using one of the following methods: 

• If the record attribute is implied carriage control (RAT = CR), then the 
VAX C RTL appends a newline to the record. 

• If the record attributes are print carriage control (RAT = PRN), then the 
VAX C RTL expands and concatenates the prefix and postfix carriage 
controls before and after the record. 

• If the record attributes are FORTRAN carriage control (RAT = FTN), 
then the VAX C RTL removes the initial control byte and appends the 
appropriate carriage-control characters. The following rules describe 
how the character in the first byte maps onto the prefix and postfix 
bytes that appear in the emulated stream. The identifier <record> 
denotes the bytes contained in the logical record exclusive of the first 
carriage-control byte; (\ n) denotes the newline character; (\ fj denotes 
the form-feed character; and (\ r} denotes the carriage-return character. 
Consider the following: 

NULL --~ <record> 

0 —~ \ n\ n<record>\ r 

1 --> \ f<record> \ r 

+ --~ <record> \ r 

$ --~ \ n<record> 

all others ~ \ n<record> \ r 

VAX CRun-Time Library Information 1-15 



• If the record attributes are null (RAT =NONE) and the input is coming 
from a terminal, then the VAX C RTL appends the terminating character 
to the record. If the terminator is a carriage return or CTRL/Z, then 
VAX C translates the character to a newline (\ n). 

If the input is coming from a nonterminal file, then the VAX C RTL 
passes the record unchanged to your program with no additional prefix 
or postfix characters. 

• If the record format is variable length with fixed control (RFM = VFC), 
and the record attributes are not print carriage control (RAT is not 
PRN), then the VAX C RTL concatenates the fixed-control area to the 
beginning of the record. 

As you read from the file, the VAX C RTL delivers a stream of bytes 
resulting from the translations. Information that is not read from an 
expanded record by one function call is delivered on the next input 
function call. 

The VAX C RTL performs stream output to RMS record files in two steps. 
First, the VAX C RTL forms a logical record from the bytes specified by the 
output function (write, for example) by translating any carriage-control 
bytes into RMS terms. Then, the VAX C RTL writes the logical record. 

The first part of the stream output emulation is the formation of a logical 
record. As you write bytes to a record file, the emulator examines the infor-
mation being written for record boundaries. The handling of information in 
the byte stream depends on the attributes of the destination file or device, 
as follows: 

• If the record attributes specify no carriage-control information (RAT = 
null), then the VAX C RTL assumes that the stream of bytes presented 
in an output-function call is a logical record. 

• If the destination file or device being written to has carriage-control 
information (RAT = CR, RAT = FTN, or RAT = PRN), then the emulator 
buffers output bytes while it searches for a newline character (\ n). 
The emulator can buffer as many output bytes as the number of bytes 
contained in the maximum record size of the file. If the VAX C RTL 
encounters more than the number of bytes in the maximum record size 
of the file before it encounters a newline, the VAX C RTL writes a record 
containing the data output so far and clears the buffer. If a newline is 
found, the VAX C RTL forms the logical record by appending the newline 
to the buffered bytes. 

1-16 VAX CRun-Time Library Information 



The second part of stream output emulation is to write the logical record 
formed during the first step. The VAX C RTL executes one of the following 
steps to form the output record: 

• If the output file record format is variable length with fixed control 
(RFM = VFC), and the record attributes do not include print carriage 
control (RAT is not PRN), then the VAX C RTL takes the beginning of 
the logical record to be the fixed-control header, and reduces the number 
of bytes written out by the length of the header. If there are too few 
bytes in the logical record, an error is signaled. 

• If the record attribute is carriage control (RAT = CR), and if the logical 
record ends with a newline character (\ n), the VAX C RTL drops the 
newline and writes the logical record with implied carriage control. 

• If the record attribute is print carriage control (RAT = PRN), then the 
VAX C RTL writes the record with print carriage control. If the logical 
record ends with a newline character (\ n}, the VAX C RTL drops the 
newline, precedes the output record with aline-feed character (\ n), and 
follows the record with a carriage return (\ r). This is the reverse of the 
translation for stream input files with print carriage-control attributes. 

• If the record attributes are FORTRAN carriage control (RAT = FTN), 
then the VAX C RTL removes the first byte of the record, and con-
catenates prefix and postfix characters to the record. The following 
rules describe how the character in the first byte maps onto the prefix 
and postfix bytes that appear in the emulated stream. The identifier 
<record> denotes the bytes contained in the logical record exclusive of 
the first carriage-control byte; (\ n) denotes the newline character; (\ fj 
denotes the form-feed character; and (\ r) denotes the carriage-return 
character. Consider the following: 

data NULL<data> 

data\ r +<data> 

\ n data\ r <space><data> 

\ f data \ r 1 <data> 

\ n data $<data> 

• If the record attribute is null (RAT =null), then the VAX C RTL 
performs a test to determine whether the logical record is to be written 
to a terminal device. If so, the VAX C RTL scans the record and replaces 
each newline character (\ n) that is encountered by acarriage-return 
/line-feed pair (\ r\ n). The VAX C RTL then writes out the record with 
no carriage control. 

VAX CRun-Time Library Information 1-17 



1.4 Specific Portability Concerns 

One of the last tasks in preparing to use the VAX C RTL, if you are going 
to port your source programs across systems, is to be aware of specific 
differences between the VAX C RTL and the run-time libraries of other 
implementations of the C language. This section describes some of the 
problems that you encounter when porting programs to and from VMS. 
Although portability is closely tied to the implementation of the VAX C RTL, 
this section also contains information on the portability of other VAX C 
constructs. 

It is not a goal of VAX C to duplicate all run-time functions that exist on 
every implementation of the language. VAX C implements a reasonable 
subset of existing C language functions and attempts to maintain complete 
portability in functionality whenever possible. Many of the Standard UO 
and UNIX I/O functions and macros contained in the VAX C RTL are 
functionally equivalent to those of other implementations. 

In some instances, functions provided by other implementations are not 
provided by VAX C because those functions conflict with the VMS operating 
system environment. In some cases, conflicting functions are replaced by an 
equivalent, more efficient VAX C function or macro. For example, the VAX 
C delete function replaces the unlink function found on implementations 
running on UNIX operating systems. 

In other cases, VAX C includes functions or macros that provide no 
functionality under the VMS environment but are necessary so that you may 
port programs to the VMS environment. For example, the nonl macro has 
no functionality in the VMS environment, but if you port a program from a 
UNIX system to a VMS system, the presence of nonl in the source code does 
not generate an error. 

The RTL function and macro descriptions elaborate on issues presented 
in this section and describe concerns not documented here. Appendixes 
A, B, and C provide information about porting C programs. Appendix A 
compares the functionality of VAX C RTL functions and macros with those 
of other implementations. Appendix B describes the run-time modules 
and entry points used by VAX C. Appendix C lists the .H definition files 
that are included in the compilation process to provide macro definitions 
and definitions used by some RTL functions. You may want to review the 
definitions contained within these files. 

The following list documents issues of concern if you wish to port C 
programs to the VMS environment: 

• VAX C does not implement the global symbols end, edata, and etext. 

1-18 VAX CRun-Time Library Information 



• Do not attempt to substitute your own code for functions that are 
supplied by VAX C. For example, the VAX C version of strcpy is 
expected to supply a legitimate return value. If you include a version 
of strcpy that does not return a value, the procedure will not perform 
correctly. For example: 

strcpy (p, q) 
char *p, *q; 
t 

while (*p++ _ *q++) ; 
} 

This definition of strcpy will not work because code inside the VAX C 
RTL expects, and makes use of, a return value. 

• There are differences in how VMS and UNIX systems lay out virtual 
memory. In UNIX systems, the address space between 0 and the break 
address is accessible to your program. In VMS systems, the first page of 
memory is not accessible. 

For example, if a program tries to reference location 0 on a VMS system, 
a hardware error (ACCVIO) is returned and the program terminates 
abnormally. VMS systems reserve the first page of address space to 
catch incorrect pointer references, such as a reference to a location 
pointed to by a null pointer. For this reason, some existing programs 
that run on UNIX systems may fail and you should modify them, as 
necessary. 

• Some C programmers code all external declarations in #include files. 
Then, specific declarations that require initialization are redeclared 
in the relevant module. This practice causes the VAX C compiler to 
issue a warning message about multiply declared variables in the same 
compilation. One way to avoid this warning is to make the redeclared 
symbols extern variables in the #include files. 

• The asm call is not supported by VAX C. See the Guide to VAX C for 
more information on built-in functions. 

• Some C programs call the counted string functions strcmpn and 
strcmpn. These names are not used by VAX C. Instead, you can 
define macros that expand the strcmpn and strcmpn names into the 
equivalent names strncmp and strncpy. 

• The VAX C compiler does not support the following initialization form: 

int foo 123; 

Programs using this form of initialization must be changed. 

• The fixed limit to the length of a string that VAX C accepts is 65,535 
characters, or bytes. Long strings must be divided, and programs that 
use string arrays may need to be changed. 

VAX CRun-Time Library Information 1-19 



• VAX C defines the compile-time constants vax, vms, vaxllc, vaxc, VAX, 
VMS, VAX11C, VAXC, CC$g float, and CC$parallel. These constants 
are useful for programs that must be compatible on other machines and 
operating systems. For more information, see the Guide to VAX C. 

• The C language does not guarantee any memory order for the variables 
in a declaration. For example: 

int a, b, c; 

• The VMS Linker (linker) usually places VAX C extern variables in 
program sections (psects) of the same name as the variable. The linker 
then alphabetically links the psects by name. If you are porting a C 
program from another operating system to a VMS system, you may find 
that the order of items in the program has been allocated differently in 
virtual memory. This causes existing programs with hidden bugs to fail. 

• The dollar sign ($) is a legal character in VAX C identifiers, and can be 
used as the first character. 

• The C language does not define any order for evaluating expressions in 
function parameter lists or for many kinds of expressions. The way in 
which different C compilers evaluate an expression is only important 
when the expression has side effects. Consider the following examples: 

x = func y () + func z () ; 

f (p++, p++ ) 

Neither VAX C nor any other C compiler can guarantee that such 
expressions evaluate in the same order on all C compilers. 

• The size of an int is 32 bits in VAX C. You will have to modify programs 
that are written for other machines and that assume a different size for 
a variable of type int. In addition, a variable of type long is the same 
size (32 bits) as a variable of type int. 

• The C language defines structure alignment to be dependent on the 
machine for which the compiler is designed. By default, VAX C aligns 
structure members on byte boundaries, unless #pragma member_ 
alignment is specified. Other implementations may align structure 
members differently. 

• References to structure members in VAX C cannot be vague. For more 
information, see the Guide to VAX C. 

1 20 VAX CRun-Time Library Information 



• Registers are allocated based upon how often a variable is used, but 
the keyword register gives the compiler a strong hint that you want 
to place a particular variable into a register. Whenever possible, the 
variable is placed into a register. You may allocate any scalar variable 
with the storage class auto or register to a register as long as the 
variable's address is not taken with the ampersand operator (&)and it 
is not a member of a structure or union. 

• When moving programs from one operating system to another, you must 
consider the operations of the different linkers. The VMS Linker does 
not load an object module from an object library unless the module 
contains a function definition, a globaldef definition, or a globalvalue 
definition that is needed to resolve a reference in another component of 
the program. When you refer to an extern variable from a program, 
the linker does not load the library module if the module contains only a 
compile-time initialization of the variable. This is a restriction that you 
can avoid in one of two ways. 

In the following example, the program PROG.0 contains an external 
declaration of a variable; the module LABDATA.0 initializes the 
variable: 

PROG.C: 

main ( ) 
{ 

extern float lab data[]; 

} 

T.ARDATA.C: 

float lab data = { 1, 2, 3, 4, 5, 6, 7, 8 } ; 

lab_data() 
{ 

} 

VAX CRun-Time Library Information 1-21 



To link the object code for the program and the module, either name the 
LABDATA object file in the LINK command, or explicitly extract the 
module from a library (here, it is part of the SIB library), as follows: 

$ LINK PROG,LABDATA,SYS$LIBRARY:VAXCRTL/LIB 

$ LINK PROG,MYLIB/LIB/INCLUDE = LABDATA,-
_$ SYS$LIBRARY:VAXCRTL/LIB RETURN 

RETURN 

RETURN 

You can also bundle the initialization in a module that will be loaded (for 
example, in a module that contains a function definition, a globaldef 
definition, or a globalvalue definition}. 

1-22 VAX CRun-Time Library Information 



Chapter 2 

Understanding Input and Output 

There are three types of input and output (UO) in the VAX C RTL: UNIX, 
Standard, and Terminal. Table 2-1 lists all the I/O functions and macros 
found in the VAX C RTL. For more detailed information on each function 
and macro, see the Reference Section. 

Table 2--1: I/O Functions and Macros 

Function or Macro Purpose 

ITNIX I/O—Opening and Closing Files 

close Closes the file associated with a file descriptor. 

treat Creates a new file. 

dup,dup2 Allocates a new descriptor that refers to a file specified 
by a file descriptor returned by open, treat, or pipe. 

open Positions the file at its beginning. 

UNIX I/~—R,eading from Files 

read Reads bytes from a file and places them in a buffer. 

UNIX UO—Writing to Files 

write Writes a specified number of bytes from a buffer to a file. 

(continued on next page ) 

Understanding Input and Output 2-1 



Table 2-1 (Cont.): I/O Functions and Macros 

Function or Macro Purpose 

i;TNIX IIO—Maneuvering in Files 

lseek Positions a file to an arbitrary byte position and returns 
the new position as an int. 

UNIX IIO—Additional Standard I/O Functions and Macros 

fileno 

fgetpos 

fsetpos 

fstat, stat 

getname 

isapipe 

isatty 

ttyname 

Returns an integer file descriptor that identifies the 
specified file. 

Stores the current value of the file position indicator for 
the stream. 

Sets the file position indicator for the stream according to 
the value of the object pointed to. 

Accesses information about the file descriptor or the file 
specification. 

Returns the file specification associated with a file 
descriptor. 

Returns 1 if the file descriptor is associated with a 
mailbox and 0 if it is not. 

Returns 1 if the specified file descriptor is associated with 
a terminal and 0 if it is not. 

Returns a pointer to the NUL-terminated name of the 
terminal device associated with file descriptor 0, the 
default input device. 

Standard I/O—Opening and Closing Files 

fclose Closes a function by flushing any buffers associated with 
the file control block, and freeing the file control block 
and buffers previously associated with the file pointer. 

fdopen Associates a file pointer with a file descriptor returned by 
an open, Great, dup, dup2, or pipe function. 

fopen Opens a file by returning the address of a FILE structure. 
freopen Substitutes the file, named by a file specification, for the 

open file addressed by a file pointer. 

(continued on next page) 

2-2 Understanding Input and Output 



Table 2-1 (Copt.): I/O Functions and Macros 

Function or Macro Purpose 

Standard I/O—Reading from Files 

fgetc Returns characters from a specified file. 

getc Returns characters from a specified file. 

getw Returns characters from a specified file. 

fgets Reads a line from a specified file and stores the string in 
an argument. 

fread Reads a specified number of items from a file. 

fscanf Performs formatted input from a specified file. 

sscanf Performs formatted input from a character string in 
memory. 

ungetc Pushes back a character into the input stream and leaves 
the stream positioned before the character. 

Standard I/O—Writing to Files 

fprintf Performs formatted output to a specified file. 

(puts Writes a character string to a file without copying the 
string's NUL terminator. 

fwrite Writes a specified number of items to a file. 

fputc Writes characters to a specified file. 

putc Writes characters to a specified file. 

putty Writes characters to a specified file. 

sprintf Performs formatted output to a string in memory. 

Standard I/O—Maneuvering in Files 

fflush Writes out any buffered information for the specified file. 

fseek Positions the file to the specified byte offset in the file. 

ftell Returns the current byte offset to the specified stream 
file. 

rewind Sets the file to its beginning. 

(continued on next page) 

Understanding Input and Output 2—~ 



Table 2-1 (Coot.): I/O Functions and Macros 

Function or Macro Purpose 

Standard I/0—Additional Standard I/O Functions and Macros 

access Checks a file to see whether a specified access mode is 
allowed. 

clearerr Resets the error and end-of--file indications for a file. 

feof Tests a file to see if the end-of--file has been reached. 

ferror Returns a nonzero integer if an error has occurred while 
reading or writing a file. 

fgetname Returns the file specification associated with a file 
pointer. 

mktemp Creates a unique file name from a template. 

remove, delete Causes a file to be deleted. 

rename Gives a new name to an existing file. 

setbuf Associates a buffer with an input or output file. 

setvbuf Associates a buffer with an input or output file. 

tmpfile Creates a temporary file that is opened for update. 

tmpnam Creates a character string that can be used in place of 
the file-name argument in other function calls. 

Terminal I/O—Reading from Files 

getchar Reads a single character from the standard input (stdin 

gets Reads a line from the standard input (stdin). 

scarf Performs formatted input from the standard input. 

Terminal I/O—Writing to Files 

printf 

putchar 

puts 

Performs formatted output from the standard output 
(stdout). 

Writes a single character to the standard output and 
returns the character. 

Writes a character string to the standard output followed 
by a newline. 

2-4 Understanding Input and Output 



n

2.1 UNIX I/O 

The UNIX UO functions and macros access files with a file descriptor. A file 
descriptor is an integer that identifies the file. A file descriptor is declared 
as follows: 

int file desc; 

In this case, the identifier file_desc is the name of the file descriptor. 

When you create a file using the UNIX I/O functions and macros, you can 
supply values for the following RMS file attributes: 

• Allocation quantity 

• Block size 

• Default file extension 

• Default file name 

• File access context options 

• File-processing options 

• File-sharing options 

• Multiblock count 

• Multibuffer count 

• Maximum record size 

• Record attributes 

• Record format 

• Record-processing options 

See the description of crest and open in the Reference Section for 
information on the values to supply. 

For more information about RMS, see the Guide to VAX C. 

UNIX UO functions such as treat associate the file descriptor with a file. 
Consider the following example: 

file desc = treat("INFILE.DAT", 0, "rat=cr", "rfm=var"); 

This statement creates the file, INFILE.DAT, with file access mode 0, 
carriage-return control, variable-length records, and it associates 

Understanding Input and Output 2-5 



the variable file desc with the file. When the file is accessed for other 
operations, such as reading or writing, the file descriptor is used to refer to 
the file. For example: 

write (file desc, buffer, sizeof (buffer)) ; 

This statement writes the contents of the buffer to INFILE.DAT. 

There may be circumstances when you should use UNIX I/O functions and 
macros instead of the Standard UO functions and macros. For a detailed 
discussion of both forms of I/O and how they manipulate the RMS file 
formats, see Chapter 1. 

2.2 Standard I/O 

In VAX C, and most other implementations of C, stream files and their 
associated functions form the Standard UO facilities. Stream files are files 
that are treated as streams of bytes. A series of bytes is read from or written 
to a stream file directly, with no record structure. (For more information 
about RMS file organization, see the Guide to VAX C. For more information 
about the VAX C RTL and RMS file organization, see Chapter 1. ) 

Stream files in VAX C correspond to RMS stream files with the line-feed 
terminator attribute. To perform stream access to stream files, the VAX C 
RTL uses the block UO facilities of RMS. A stream of bytes is either written 
to or read from a file with no translation. If you open the file for update, you 
can read (fread) and write (fwrite) at the current byte position in the file. 
File sharing is not supported for stream files. 

The Standard UO fopen function creates or opens existing stream files. You 
process stream files with conventional Standard UO functions such as fseek, 
ftell, fread, fwrite, and fprintf. An fread followed by an fwrite places 
bytes in the file after the last byte of the previous fread. An fwrite followed 
by an fread causes reading to begin after the last byte of the previous 
fwrite. 

You can position a stream file to an arbitrary byte at any time (fseek). If 
positioned beyond the end-of--file, the file is extended with NUL bytes. The 
file may be positioned relative to the beginning-of--file, relative to the current 
position, or relative to the end-of--file. The first byte in the file is byte 0; 
therefore, specifying 0 as the absolute position in an fseek call positions the 
file at its first byte. You can also determine the current byte position of a 
stream file by using the ftell function. 

2-6 Understanding Input and Output 



You must open a file for update if the file is going to be written randomly. 
For example: 

#include stdio 

main ( ) 
{ 

FILE *outfile; 
outfile = fopen("DISKFILE.DAT", nW.~„n) . 

} 

Here, the stream file DISKFILE.DAT is opened for "write update" access. 

The Standard UO functions access files by file pointer. A file pointer is 
defined in the include definition module stdio as follows: 

typedef struct _iobuf *FILE; 

You can find the definition of the _iobuf identifier in the stdio module. 

To declare a file pointer, use the following line: 

FILE *file~tr; 

NOTE 

This definition of a file pointer differs from that of other C 
language implementations. Accessing files using the functions and 
macros provided as part of the VAX C RTL allows you to port file 
pointers. 

2.3 Conversion Specifications 

Several of the Standard UO functions (including the Terminal UO functions) 
use conversion characters to specify data formats for I/O. Consider the 
following example: 

int x = 5.0; 
FILE *outfile; 

fprintf (outfile, "The answer is od. \n", x) ; 

The decimal value of the variable x replaces the conversion specification %d 
in the string to be written to the file associated with the identifier outfile. 

Understanding Input and Output 2-7 



Each conversion specification begins with a percent sign (% ). This sign is 
followed by an optional assignment-suppression character (~` ), an optional 
number giving the maximum field width, and a conversion character. 

2.3.1 Converting Input Information 

A conversion specification for the input of information can include three 
kinds of items as follows: 

• White-space characters (spaces, tabs, and newlines), which match 
optional white-space characters in -the input field. 

• Ordinary characters (not %), which must match the next nonwhite-space 
character in the input. 

• Conversion specifications, which govern the conversion of the characters 
in an input field and their assignment to an object indicated by a 
corresponding input pointer. 

Each input pointer is an address expression indicating an object whose 
type matches that of a corresponding conversion specification. Conversion 
specifications form part of the format specification. The indicated object 
is the target that receives the input value. There must be as many input 
pointers as there are conversion specifications, and the addressed objects 
must match the types of the conversion specifications. 

Table 2-2 describes the conversion characters for formatted input. 

2-8 Understanding Input and Output 



Table 2-2: Conversion Characters for Formatted Input 

Character Meaning 

d 

0 

x 

c 

s 

e, f 

ld, lo, lx 

le, if 

Expects a decimal integer in the input. The corresponding argument 
must point to an int. 

Expects an octal integer in the input (with or without a leading 0). 
The corresponding argument must point to an int. 

Expects a hexadecimal integer in the input (without a leading Ox). 
The corresponding argument must point to an int. 

Expects a character in the input. The corresponding argument must 
point to a char. The usual skipping of white-space characters can 
be disabled in this case, so that nwhite-space characters can be 
read with %nc. If a field width is given with c, the given number of 
characters is read and the corresponding argument should point to 
an array of char. 

Expects a string in the input. The corresponding argument must 
point to an array of characters that is large enough to contain the 
string plus the terminating NUL character (~ 0). The input field is 
terminated by a space, tab, or newline. 

Expects afloating-point number in the input. The corresponding 
argument must point to a float. The input format for floating-point 
numbers is [+ I --]nnn[.ddd]][(E I e}[+ I —]nn]. The n's and d's are 
decimal digits (as many as indicated by the field width minus the 
signs and the letter E). 

Expects an integer whose type is determined by the leading input 
characters. For example, a leading 0 is equated to octal. The form 
OX is equated to hexadecimal and all other forms are equated to 
decimal. Each corresponding argument must be an integer pointer. 

Same as d, o, and x, except that a long integer of the specified radix 
is expected. (These are retained for portability only, since long and 
int are the same in VAX C. ) 

Same as e, and f, except that the corresponding argument is a 
double instead of a float. The same effect can be achieved by using 
an uppercase E or F. 

(continued on next page) 

Understanding Input and Output 2-9 



Table 2-2 (Copt.): Conversion Characters for Formatted Input 

Character Meaning 

hd, ho, hx Same as d, o, and x, except that a short integer of the specified radix 
is expected. 

Expects a string that is not delimited by white-space characters. 
The brackets enclose a set of characters (not a string). This set (or 
"character class") is usually made up of the characters that comprise 
the string field. Any character not in the set terminates the field. 
However, if the first (leimost) character is an up-arrow, then the set 
shows the characters that terminate the field. The corresponding 
argument must point to an array of characters. 

Remarks 

• You can change the delimiters of the input field with the bracket ([ ] ) 
conversion specification. Otherwise, an input field is defined as a string 
of nonwhite-space characters. It extends either to the next white-space 
character or until the field width, if specified, is exhausted. The function 
reads across line and record boundaries, since the newline character is a 
white-space character. 

• A call to one of the input conversion functions resumes searching imme-
diately after the last character processed by a previous call. 

• If the assignment-suppression character (~`) appears in the .format 
specification, no assignment is made. The corresponding input field is 
interpreted and then skipped. 

• The arguments must be pointers or other address-valued expressions, 
since VAX C permits only calls by value. To read a number in decimal 
format and assign its value to n, you must use the following form: 

scanf (" od", &n) 

You cannot use the following form: 

scanf("od", n) 

• White space in a format specification matches optional white space in 
the input field. Consider the following format specification: 

field = ox 

2-10 Understanding Input and Output 



This format specification matches the following forms: 

field = 5218 
field=5218 
field= 5218 
field =5218 

These forms do not match the following example: 

fiel d=5218 

2.3.2 Converting Output Information 

The format specification string for the output of information may contain 
two kinds of items as follows: 

• Ordinary characters, which are copied to the output 

• Conversion specifications, each of which causes the conversion of a 
corresponding output source to a character string in a particular format 

Table 2-3 describes the conversion characters for formatted output. 

Table 2-3: Conversion Characters for Formatted Output 

Character Meaning 

d Converts to decimal format. 

o Converts to octal format. 

X, x Converts to unsigned hexadecimal format (without a leading Ox). 
An uppercase X causes the hexadecimal digits A to F to be printed 
in uppercase. A lowercase x causes those digits to be printed in 
lowercase. 

u Converts to unsigned decimal format (giving a number in the range 0 
to 4,294,967,295). 

c Outputs a single character (NUL characters are ignored). 

s Writes characters until a NUL is encountered or until the number of 
characters indicated by the precision specification is exhausted. If the 
precision specification is 0 or omitted, all characters up to a NUL are 
output. 

(continued on next page) 

Understanding Input and Output 2-11 



Table 2-3 (Cont.~: Conversion Characters for Formatted Output 

Character Meaning 

E, e Converts float or double to the format [—]m.nnnnnnE[+ I —]xx. The 
number of n's is specified by the precision (the default is 6). If the 
precision is explicitly 0, the decimal point appears but no n's appear. 
An E is printed if the conversion character is an uppercase E. An a is 
printed if the conversion character is a lowercase e. 

f Converts float or double to the format [-]m..m.nnnnnn. The number 
of n's is specified by the precision (the default is 6). The precision does 
not determine the number of significant digits printed. If the precision 
is explicitly 0, no decimal point and n's appear. 

G, g Converts float or double to d, e, or f format, whichever is shorter 
(suppress insignificant zeros). If E format is used, an E is printed if 
the conversion character is an uppercase G, and an a is printed if the 
conversion character is a lowercase g. 

% Writes out the percent symbol. No conversion is performed. 

p Is implementation defined. Requires an argument to be a pointer to 
void. 

n Requires an argument to be a pointer to void. Causes the number of 
characters output to be written to the designated integers. 

i Requires an integer argument. Converts the argument to a signed 
decimal. 

You can use the following characters between the percent sign (%)and the 
conversion character. They are optional, but if specified, they must occur in 
the order listed in Table 2-4. 

2-12 Understanding Input and Output 



Table 2-4: Allowable Characters Between the Percent Sign and Conversion 
Character 

Character Meaning 

- (hyphen) Left justify the converted output source in its field. 

width Use this integer constant as the minimum field width. If the 
converted output source is wider than this minimum, write it 
out anyway. If the converted output source is narrower than the 
minimum width, pad it to make up the field width. Pad with 
spaces or with zeros if the field width is specified with a leading 
0; this does not mean that the width is an octal number. Padding 
is normally on the left and on the right if a minus sign is used. 

. (period) Separates the field width from precision. 

precision Use this integer constant to designate the maximum number of 
characters to print with an s format, or the number of fractional 
digits with an a or f format. 

1 Indicates that a following d, o, x, or u specification corresponds 
to a long output source. In VAX C, all int values are long by 
default. 

~` (asterisk) Can be used to replace the field width specification or the preci-
sion specification. The corresponding width or precision is given 
in the output source. 

+ Requests that an explicit sign be present on a signed conversion. 

Requests an alternate form conversion. Depending on the conver-
sion specified, different actions will occur. For e, E, f, g, and G, 
the result contains a decimal point even at the end of an integer 
value. For g and G trailing zeros are not trimmed. For other 
conversions, the effect of # is undefined. 

2.4 Terminal )/O 

VAX C defines three file pointers that allow you to perform UO to and from 
the logical devices usually associated with your terminal (for interactive 
jobs) or a batch stream (for batch jobs). In the VMS environment, the three 
permanent process files SYS$INPUT, SYS$OUTPUT, and SYS$ERROR 
perform the same functions for both interactive and batch jobs. Terminal UO 
refers to both terminal and batch stream I/O. The file pointers stdin, stdout, 
and stderr are defined when you include the stdio definition module using 
the #include preprocessor directive. 

Understanding Input and Output 2-13 



The stdin file pointer is associated with the terminal to perform input. This 
file is equivalent to SYS$INPUT. The stdout file pointer is associated with 
the terminal t~ perform output. This file is equivalent to SYS$OUTPUT. 
The stderr file pointer is associated with the terminal to report run-time 
errors. This file is equivalent to SYS$ERROR. 

There are three file descriptors that refer to the terminal. The file descriptor 
0 is equivalent to SYS$INPUT, 1 is equivalent to SYS$OUTPUT, and 2 is 
equivalent to SYS$ERROR. 

When performing I/O at the terminal, you can use Standard UO functions 
and macros (specifying the pointers stdin, stdout, or stderr as arguments), 
you can use ITNIX I/O functions (giving the corresponding file descriptor 
as an argument), or you can use the Terminal I/O functions and macros. 
There is no functional advantage of using one type of UO over another; the 
Terminal I/O functions may save keystrokes since there are no arguments. 

The VAX C RTL opens channels to SYS$INPUT, SYS$OUTPUT, and 
SYS$ERROR on the first execution of any VAX C UO. If either of the process 
permanent files SYS$OUTPUT or SYS$ERROR is redirected to a file prior 
to this, a new, null version of the file is created when the I/O is executed. To 
avoid this problem, force the mapping to a process permanent file yourself. 
For example: 

$ OPEN/WRITE SYSERR ERROR.FILE 
$ ASSIGN SYSERR SYS$ERROR 
$ RUN MYAPPLICATION 
$ DEASSIGN SYS$ERROR 
$ CLOSE SYSERR 

This eliminates duplicate file generation. 

2.5 Program Examples 

Example 2-1 shows the printf function. 

2-14 Understanding Input and Output 



Example 2-1: Output of the Conversion Specifications 

/* This program uses the printf function to print the 
* various conversion specifications and their effect on the 
* output. */ 

/* Include the proper module 
* in case printf has to 
* return EOF. 

#include stdio 

main ( ) 

{ 

double val = 123.3456e+3; 
char c = ' C' ; 
int i = -1500000000; 
char *s = "thomasina"; 

/* Print the specification code, a colon, two tabs, and the 
* formatted output value delimited by the angle bracket 
* characters (<>) . 

printf (" %%9.4f : \t\t<%9.4f>\n", val) ; 
printf ("%%9f : \t\t<%9f>\n", val) ; 
printf (" %%9.Of : \t\t<%9.Of>\n", val) ; 
printf (" %%-9.Of : \t\t<%-9.Of>\n\n", val) ; 

printf (" %%11. 6e: \t\t<%11. 6e>\n", val) ; 
printf (" %%lle: \t\t<%lle>\n", val) ; 
printf("%%11.Oe:\t\t<%11.Oe>\n", val); 
printf("%%-11.Oe:\t\t<%-11.Oe>\n\n", val); 

printf("%%llg:\t\t<%llg>\n", val); 
printf("%%9g:\t\t<%9g>\n\n", val); 

printf (" %%d: \t\t<%d>\n", c) ; 
printf (" % %c: \t\t< %c>\n", c) ; 
printf (" % %o : \t\t< %o>\n", c) ; 
printf (" %%x: \t\t<%x>\n\n", c) ; 

printf ("%%d: \t\t<%d>\n", i) ; 
printf (" %%u: \t\t<%u>\n", i) ; 
printf("%%x:\t\t<%x>\n\n", i); 

printf ("%%s : \t\t<%s>\n", s) ; 
printf (" %%-9. 6s: \t\t<%-9.6s>\n", s) ; 
printf (" %%-* . *s : \t\t<%-* . *s>\n", 9, 5, s) ; 
printf (" %%6.Os: \t\t<%6.Os>\n\n", s) ; 

} 

Understanding Input and Output 2-15 



The sample output from Example 2-1 is as follows: 

$ RUN EXAMPLE 

o9.4f: 
%9f 
o9.Of: 
0-9.Of 

RETURN 

<123345.6000> 
<123345.600000> 
< 123346> 
<123346> 

%11.6e: <1.233456e+OS> 
olle: <1.233456e+05> 

ollg: < 123346> 
o9g: < 123346> 

od: <67> 
o c : <C> 
00 : <103> 
ox: <43> 

ou: <2794967296> 
ox: <a697d100> 

~s: <thomasina> 
o-9.6s: <thomas > 

o6.Os: < > 

Example 2-2 shows the use of the fopen, ftell, sprintf, (puts, fseek, fgets, 
and fclose functions. 

2-16 Understanding Input and Output 



Example 2-2: Using the Standard I/4 Functions 

/* This program establishes a file pointer, writes lines from 
* a buffer to the file, moves the file pointer to the second 
* record, copies the record to the buffer, and then prints 
* the buffer to the screen. */ 

#include stdio 

main ( ) 
{ 

char buffer[32]; 
int i, pos; 
FILE *fptr; 

fptr = fopen ("data. dat", 
i f (fpt r <= NULL ) 

{ 

/* Set file pointer 
n w+ n )  . 

*/ 

perror ("fopen") ; 
exit (); /* Exit if fopen error */ 

} 

for (i=1; i<5; i++) 
{ 

if (i == 2) /* Get position of record 2 */ 
pos = ftell (fptr) ; 

/* Print a line to the buffer */ 
sprintf (buffer, "test data line od\n" , i) ; 

/* Print buffer to the record */ 
fputs {buffer, fptr) ; 

} 

/* Go to record number 2 */ 
if (fseek (fptr, pos, 0) < 0) 

{ 

perror("fseek"); /* Exit on fseek error */ 
exit () ; 

} 

/* Put record 2 in the buffer */ 
if (fgets (buffer, 32, fptr) _= NULL). 

{ 

perror("fgets"); /* Exit on fgets error */ 
exit () ; 

} 

/* Print the buffer */ 
printf("Data in record 2 is: os", buffer); 
fclose(fptr); /* Close the file */ 

} 

The sample output, to the terminal, from Example 2-2 is as follows: 

$ RUN EXAMPLE RETURN 
Data in record 2 is: test data line 2 

Understanding Input and Output 2-17 



The sample output, to DATA.DAT, from Example 2-2 is as follows: 

test data line 1 
test data line 2 
test data line 3 
test data line 4 

Example 2-3 shows the use of both a file pointer and a file descriptor to 
access a single file. 

Example 2-3: I/O Using File Descriptors and Pointers 

/* The following example creates a file with variable-length 
* records (rfm =var) and the carriage-return attribute 
* (rat = cr) . 
* 

* The program uses Great to create and open the file, and 
* fdopen to associate the file descriptor with a file 
* pointer. After using the fdopen function, the file 
* must be referenced using the Standard I/O functions. 

#include stdio 
#include unixi~ 
#define ERROR 0 
#define ERRORl -1 
#define BUFFSIZE 132 

main ( ) 
{ 

char buffer [BUFFSIZE]; 
int fildes; 
FILE *fp; 

if ((fildes = Great ("data.dat", 0, "rat=cr", 
"rfm=var")) _= ERRORI ) 

{ 
perror ("FILE3: Great () failed\n") ; 
exit (2) ; 

} 

if ((fp = fdopen (fildes, "w")) _= NULL) 
{ 

perror ("FILE3: fdopen () failed\n") ; 
exit (2) ; 

} 
while (fgets (buffer, BUFFSIZE, stdin) ! = NULL) 

if (fwrite (buffer, strlen (buffer) , 1, fp) _= ERROR) 
{ 

perror ("FILE3: fwrite () failed\n") ; 
exit (2) ; 

} 

* 
* 
* 
* 

* 
*~ 

(continued on next page) 

2-18 Understanding Input and Output 



Example 2-3 (Cont.): I/O Using File Descriptors and Pointers 

if (fclose (fp) _= EOF) 
{ 

perror("FILE3: fclose() failed\n"); 
exit (2) ; 

} 

} 

Understanding Input and Output 2-19 





Chapter 3 

Character, String, and Argument List Functions 
and Macros 

This chapter discusses the character, string, and argument list functions 
and macros. Table 3-1 lists and describes all the character, string, and 
argument list functions and macros found in the VAX C RTL. For more 
detailed information on each function and macro, see the Reference Section. 

Table 3-1: Character, String, and Argument List Functions and Macros 

Function or Macro Purpose 

Character Classification 

isalnum Returns a nonzero integer if its argument is one of the 
alphanumeric ASCII characters. 

isalpha Returns a nonzero integer if its argument is one of the 
alphabetic ASCII characters. 

isascii Returns a nonzero integer if its argument is any ASCII 
character. 

iscntrl Returns a nonzero integer if its argument is an ASCII 
DEL character (177 octal) or any nonprinting ASCII 
character (code less than 40 octal). 

isdigit Returns a nonzero integer if its argument is a decimal 
digit character (0 to 9). 

isgraph Returns a nonzero integer if its argument is a graphic 
ASCII character. 

(continued on next page) 

Character, String, and Argument List Functions and Macros 3-1 



Table 3-1 (Cont.): Character, String, and Argument List Functions and 
Macros 

Function or Macro Purpose 

Character Classification 

islower Returns a nonzero integer if its argument is a lowercase 
alphabetic ASCII character. 

isprint Returns a nonzero integer if its argument is an ASCII 
printing character (ASCII codes from 40 octal to 176 
octal). 

ispunct Returns a nonzero integer if its argument is an ASCII 
punctuation character. 

isspace Returns a nonzero integer if its argument is white space; 
that is, if it is an ASCII space, tab (horizontal or vertical), 
carriage-return, form-feed, or newline character. 

isupper Returns a nonzero integer if its argument is an uppercase 
alphabetic ASCII character. 

isxdigit Returns a nonzero integer if its argument is a hexadeci-
mal digit (0 to 9, A to F, or a to ~. 

Character Conversion 

ecvt Converts its argument to aNUL-terminated string of 
ASCII digits and returns the address of the string. 

fcvt Converts its argument to aNUL-terminated string of 
ASCII digits and returns the address of the string. 

gcvt Converts its argument to aNUL-terminated string of 
ASCII digits and returns the address of the string. 

toascii Converts its argument, an 8-bit ASCII character, to a 
7-bit ASCII character. 

tolower, _tolower Convert their argument, an ASCII character, to lower-
case. 

toupper, toupper Convert their argument, an ASCII character, to upper-
case. 

(continued on next page) 

3-2 Character, String, and Argument List Functions and Macros 



Table 3-1 (Cont.): Character, String, and Argument List Functions and 
Macros 

Function or Macro Purpose 

String Manipulation 

atof Converts a given string to adouble-precision number. 

atoi Converts a given string of ASCII characters to the 
appropriate numeric values. 

atol Converts a given string of ASCII characters to the 
appropriate numeric values. 

strcat, strncat Concatenate the arguments of one string to the end of 
another string. 

strchr, strrchr Return, respectively, the address of the first or last 
occurrence of a given character in aNUL-terminated 
string. 

strcmp, strncmp Compare two ASCII character• strings and ~•eturn a 
negative, zero, or positive integer indicating that the 
ASCII values of the individual characters in the first 
string are less than, equal to, or greater than the values 
in the second string. 

strcpy, strncpy Copy all or part of one string into another. 

strespn Searches a string for a character in a specified set of 
characters . 

strlen Returns the length of a string of ASCII characters. The 
returned length does not include the terminating NUL 
character (\ 0 ). 

strpbrk Searches a string for the occurrence of one of a specified 
set of characters. 

strspn Searches a string for• the occurrence of a character that is 
not in a specified set of characters. 

strtol Converts a string of ASCII characters to the appropriate 
numeric values. 

strtod Converts a given string to adouble-precision number•. 

strtok Locates text tokens in a given string. 

strtoul Converts the initial portion of the string pointed to by 
the pointer to the character string to an unsigned long 
integer. 

(continued on next page) 

Character, String, and Argument List Functions and Macros 3-3 



Table 3-1 (Cont.): Character, String, and Argument List Functions and 
Macros 

Function or Macro Purpose 

String Handling—Accessing Binary Data 

memchr Locates the first occurrence of the specified byte within 
the initial length of the object to be searched. 

memcmp Compares two objects byte by byte. 

memcpy Copies a specified number of bytes from one object to 
another. 

memmove Copies a specified number of bytes from one object to 
another. 

memset Sets a specified number of bytes in a given object to a 
given value. 

Argument-List Handling—Accessing aVariable-Length Argument List 

va_arg Returns the next item in the argument list. 

va_count Returns the number of longwords in the argument list. 

va end Finishes the varargs session. 

va_start, va_start_1 Initialize a variable to the beginning of the argument 
list. 

vfprintf Prints formatted output based on an argument list. 

vprintf Prints formatted output based on an argument list. 

vsprintf Prints formatted output based on an argument list. 

3.1 Character Classification Macros 

VAX C implements all character classification "functions" as preprocessor 
defined macros. Do not pass arguments to those macros that may cause side 
effects, such as arguments with the increment and decrement operators. For 
more information about macros, see the Guide to VAX C. 

The character classification macros take a single argument on which they 
perform a logical operation. The argument can have any value; it does 
not have to be an ASCII character. However, the value of the argument is 
reduced to modulo 128 to give a 7-bit ASCII character. This value is used 
as the value of the argument. In the case of the isascii macro, the function 
determines if the argument is an ASCII character (0 through 177 octal). The 

3-4 Character, String, and Argument List Functions and Macros 



other macros determine whether the argument is a particular type of ASCII 
character, such as a graphic character or digit. 

For all macros, a positive return value indicates true. A return value of 0 
indicates false. 

Table 3-2 assigns a number to each of the character classification macros. 

Table 3-2: Character Classification Macros and their Return Values 

Macro 
Number Macro 

Macro 
Number Macro 

1 

2 

3 

4 

5 

6 

isalnum 7 islower 

isalpha 8 isprint 

isascii 9 ispunct 

iscntrl 10 isspace 

isdigit 11 isupper 

isgraph 12 iszdigit 

Table 3-3 lists the numbers of the macros (as assigned in the previous 
table) that return the value true for each of the given ASCII characters. The 
numeric code represents the octal value of each of the ASCII characters. 

Table 3-3: Character Classification Macro Return Values (ASCII Table) 

ASCII Macro ASCII Macro 
Values Numbers Values Numbers 

NUL 00 3,4 C~3 100 3,6,8,9 

SOH 01 3,4 A 101 1,2,3,6,8,11,12 

STX 02 3,4 B 102 1,2,3,6,8,11,12 

ETX 03 3,4 C 103 1,2,3,6,8,11,12 

EOT 04 3,4 D 104 1,2,3,6,8,11,12 

ENQ 05 3,4 E 105 1,2,3,6,8,11,12 

ACK 06 3,4 F 106 1,2,3,6,8,11,12 

BEL 07 3,4 G 107 1,2,3,6,8,11 

BS 10 3,4 H 110 1,2,3,6,8,11 

(continued on next page) 

Character, String, and Argument List Functions and Macros 3-5 



Table 3-3 (Cont.): Character Classification Macro Return Values (ASCII 
Table) 

ASCII Macro ASCII Macro 
Values Numbers Values Numbers 

HT 11 

LF 12 

VT 13 

FF 14 

CR 15 

SO 16 

SI 17 

DLE 20 

DC1 21 

DC2 22 

DC3 23 

DC4 24 

NAK 25 

SYN 26 

ETB 27 

CAN 30 

EM 31 

SUB 32 

ESC 33 

FS 34 

GS 35 

RS 36 

US 37 

3,4,10 

3,4,10 

3,4,10 

3,4,10 

3,4,10 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

3,4 

I 111 

J 112 

K 113 

L 114 

M 115 

N 116 

O 117 

P 120 

Q 121 

R 122 

S 123 

T 124 

U 125 

V 126 

W 127 

X 130 

Y 131 

Z 132 

[ 133 

\ 134 

] 135 

^ 136 

- 137 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

1,2,3,6,8,11 

3,6,8,9 

3,6,8,9 

3,6,8,9 

3,6,8,9 

3,6,8,9 

SP 40 3,8,10 ?' 140 3,6,8,9 

(continued on next page) 

3-6 Character, String, and Argument List Functions and Macros 



Table 3-3 (Cont.): Character Classification Macro Return Values (ASCII 
Table) 

ASCII Macro ASCII Macro 
Values Numbers Values Numbers 

! 41 3,6,8,9 a 141 1,2,3,6,7,8,12 

~~ 42 3,6,8,9 b 142 1,2,3,6,7,8,12 

# 43 3,6,8,9 c 143 1,2,3,6,7,8,12 

$ 44 3,6,8,9 d 144 1,2,3,6,7,8,12 

% 45 3,6,8,9 a 145 1,2,3,6,7,8,12 

& 46 3,6,8,9 f 146 1,2,3,6,7,8,12 

47 3,6,8,9 g 147 1,2,3,6,7,8 

( 50 3,6,8,9 h 150 1,2,3,6,7,8 

51 3,6,8,9 i 151 1,2,3,6,7,8 

52 3,6,8,9 j 152 1,2,3,6,7,8 

+ 53 3,6,8,9 k 153 1,2,3,6,7,8 

' 54 3,6,8,9 1 154 1,2,3,6,7,8 

- 55 3,6,8,9 m 155 1,2,3,6,7,8 

?. 56 3,6,8,9 n 156 1,2,3,6,7,8 

/ 57 3,6,8,9 0 157 1,2,3,6,7,8 

0 60 1,3,5,6,8,12 p 160 1,2,3,6,7,8 

1 61 1,3,5,6,8,12 q 161 1,2,3,6,7,8 

2 62 1,3,5,6,8,12 r 162 1,2,3,6,7,8 

3 63 1,3,5,6,8,12 s 163 1,2,3,6,7,8 

4 64 1,3,5,6,8,12 t 164 1,2,3,6,7,8 

5 65 1,3,5,6,8,12 u 165 1,2,3,6,7,8 

6 66 1,3,5,6,8,12 v 166 1,2,3,6,7,8 

7 67 1,3,5,6,8,12 w 167 1,2,3,6,7,8 

(continued on next page) 

Character, String, and Argument List Functions and Macros 3-7 



Table 3-3 (Cont.): Character Classification Macro Return Values (ASCII 
Table) 

ASCII Macro ASCII Macro 
Values Numbers Values Numbers 

8 70 1,3,5,6,8,12 x 170 1,2,3,5,6,8 

9 71 1,3,5,6,8,12 y 171 1,2,3,5,6,8 

72 3,6,8,9 z 172 1,2,3,5,6,8 

?3 3,6,8,9 { 173 3,6,8,9 

< 74 3,6,8,9 1 174 3,6,8,9 

= 75 3,6,8,9 } 175 3,6,8,9 

> 76 3,6,8,9 ?~ 176 3,6,8,9 

? 77 3,6,8,9 DEL 177 3,4 

Example 3--1 shows how the character classification macros are used. 

3-8 Character, String, and Argument List Functions and Macros 



Example 3—~ : Character Classification Macros 

/* The following program uses the isalpha, isdigit, and 
* isspace macros to count the number of occurrences of 
* letters, digits, and white-space characters entered through 
* the standard input (stdin). */ 

#include ctype 
#include stdio 
#include stdlib 

main ( ) 
{ 

char c; 
int i = 0, j = 0, k = 0; 
while ((c = getchar()) != EOF) 

{ 
if (isalpha (c) ) 

i++; 
if (isdigit(c)) 

j++; 
if (isspace (c) ) 

k++; 
} 

printf("Number of letters: $d\n", i); 
printf("Number of digits: %d\n", j); 
printf ("Number of spaces : od\n", k) ; 

} 

The sample input and output from Example 3-1 are as follows: 

$ RUN EXAMPLEI I RETURN 
I saw 35 men with mustaches on Christopher Street. RETURN 

CTRUZ 
Number of letters: 39 
Number of digits: 2 
Number of spaces: 9 

3.2 Character Conversion Functions and Macros 

The character conversion functions and macros convert one type of character 
to another type. These functions include ecvt, fcvt, gcvt, toascii, tolower, 
_tolower, toupper, and _toupper. For more information on each of these 
functions, see the Reference Section. 

Character, String, and Argument List Functions and Macros 3-9 



Example 3-2 shows how to use the ecvt function. 

Example 3-2: Converting Double Values to an ASCII String 

/* This program uses the ecvt function to convert a double 
* value to a string. The program then prints the string. 

#include stdio 
#include stdlib 

main ( ) 

{ 

double val; 

int sign, point; 

static char string[20]; 

val = -3.1297830e-10; 

/* Value to be converted 

/* Variables for sign and 
* decimal place 

/* Array for converted 
* string 

printf("original value: oe\n", val); 
strcpy (string, ecvt (val, 5, &point, &sign)) ; 
printf ("converted string: os\n", string) ; 
if (sign) 

printf("value is negative\n"); 
else printf("value is positive\n"); 
printf("decimal point at od\n", point); 

} 

The output from Example 3-2 is as follows: 

$ RUN EXAMPLE2 
original value: -3.129783e-10 
converted string: 31298 
value is negative 
decimal point at -9 

RETURN 

Example 3-3 shows how to use the toupper and tolower functions. 

3-10 Character, String, and Argument List Functions and Macros 



Example 3-3: Changing Characters to and from Uppercase Letters 

/* This program uses the functions toupper and tolower to 
* convert uppercase to lowercase and lowercase to uppercase 

* using input from the standard input (stdin). */ 

#include ctype 
#include stdio /* To use EOF identifier */ 

#include stdlib 

main ( ) 
{ 

char c, ch; 

while ((c = getchar ()) ! = EOF ) 
{ 

ch =tolower (c) ; 
else 

ch =toupper (c) ; 
putchar (ch) ; 

} 

} 

Sample input and output from Example 3-3 are as follows: 

$ RUN EXAMPLE3 
LET'S GO TO THE stonewall INN. 

let's go to the STQNEWALL inn. 

RETURN 

(CTRUZ 

3.3 String and Argument List-Handling Functions and Macros 

VAX C contains a group of functions that manipulate strings. Some of these 
functions concatenate strings; others search a string for specific characters 
or perform some other comparison, such as determining the equality of two 
strings. 

VAX C also contains a set of functions that allow you to copy buffers 
containing binary data. 

The set of functions and macros defined and declared in the varargs and 
the stdarg definition modules provide a portable method of accessing 
variable-length argument lists. For example, VAX C functions such as 
printf and execl use variable-length argument lists. User-defined functions 
with variable-length argument lists that do not use varargs or stdargs are 
not portable due to the different argument-passing conventions of various 
machines. 

Character, String, and Argument List Functions and Macros 3-11 



The argument va alist, the definition va_dcl, and the type va_list, are used 
to declare the argument list and the variable that is used to traverse the 
list. The identifier va alist is a parameter in the function definition; va_dcl 
declares the parameter va alist, a declaration that is not terminated with a 
semicolon (; ); and the type va_list is used in the declaration of the variable 
used to traverse the list. You must declare at least one variable of type 
va_list when using varargs. The syntax of these names and declarations is 
as follows: 

function_name(va alis~ 
va dcl 
{ 

va list ap; 

To use the varargs functions and macros, you must include the varargs 
definition module with the following preprocessor directive: 

#include varargs 

3.4 Program Examples 

Example 3-4 shows how to use the strcat and strncat functions. 

3-12 Character, String, and Argument List Functions and Macros 



Example 3-4: Concatenating Two Strings 

/* This example uses strcat and strncat to concatenate two 
* strings. */ 

#include stdio 

main ( ) 
{ 

static char stringl[] _ "Concatenates "; 
static char string2[] _ "two strings "; 
static char string3[] _ "up to a maximum number of \ 

characters."; 

static char string4[] _ "imum number of characters."; 
printf ("strcat: \t os\n", strcat (stringl, string2)) ; 
printf ("strncat (-1) : \t~s\n", strncat (stringl, string3, -1)) ; 
printf ("strncat (11) : \t$s\n", strncat (stringl, string3, 11)) ; 
printf ("strncat (40} : \t~s\n", strncat (stringl, string4, 40)) ; 

} 

The sample output from Example 3-4 is as follows: 

$ RUN EX:AMP LE 1 
strcat: Concatenates two strings 
strncat (-1): Concatenates two strings 
strncat (11}: Concatenates two strings up to a max 
strncat (40): Concatenates two strings up to a maximum number of characters.. 

RETURN

Example 3-5 shows how to use the strespn function. 

Character, String, and Argument List Functions and Macros 3-13 



Example 3-5: Four Arguments to the strespn Function 

/* The next example shows how strespn interprets four 
* different kinds 

#include stdio 

main ( ) 
{ 

} 

of arguments. 

FILE *outfile; 
outfile = fopen("strespn. out", 

fprintf (outfile, 

fprintf (outfile, 

fprintf (outfile, 

fprintf (outfile, 

nw~~) . 

"strespn with null charset: %d\n", 
strespn("abcdef", "")); 

"strespn with null string: %d\n", 
strespn ("", "abcdef")) ; 

"strespn(\"xabc\", \"abc\"): %d\n", 
strespn ("xabc", "abc")) ; 

"strespn (\ "abc\", \ "def\") : %d\n", 
strespn ("abc", "def")) ; 

The sample output, to the file strespn.out, in Example 3-5 is as follows: 

$ RUN EXAMPLE2 (RETURN]

strespn with null charset: 6 
strespn with null string: 0 
strespn (xabc, abc) : 1 
strespn (abc, def) : 3 

Example 3-6 shows how to use the varargs definition module. 

3-14 Character, String, and Argument List Functions and Macros 



Example 3-6: The varargs Functions, Macros, and Definitions 

/* This program uses the varargs functions, macros, and 
* definitions to implement the VAX C Run-Time Library 
* function execl. 

#include varargs /* 

execl(va_alist) /* 
va dcl /* 

/* 
{ 

va_list incrmtr; /* 
char *file; /* 
char *args[100]; /* 
int noargs = 0; /* 

va_start (incrmtr) ; /* 
file = va_arg (incrmtr, char*); /* 

/* 
while(args[noargs++] _ 

Include proper module 

Use the identifier 
Declare the parameter 
NOTE: No (;) with va dcl 

Declare list incrementor 
Declare a file 
Array to store arguments 
Define "last argument" 

*/ 
*/ 
*/ 
*/ 

Begin the session */ 
First arg placed in file */ 
Place args in array */ 

va_arg(incrmtr, char*)) /* User-provided argument 
list must terminate with 
a 0 */ 

va_end(incrmtr); 
return execv (file, args) ; 

} 

/* End varargs session 
/* Return proper values 

Character, String, and Argument List Functions and Macros 3-15 





Chapter 4 

Error- and Signal-Handling 

Table 4-1 lists and describes all the error- and signal-handling functions 
and macros found in the VAX C RTL. For more detailed information on each 
function and macro, see the Reference Section. 

Table 4-1: Error- and Signal-Handling Functions and Macros 

Error-Handling 
Functions and Macros 

abort Executes an illegal instruction that terminates the 
process. 

assert Puts diagnostics into programs. 

atexit Registers a function that will be called without argu-
ments at program termination. 

exit, exit Terminate the current process. 

perror Writes a short error message to stderr describing the 
last error encountered during a call to the VAX C RTL 
from a C program. 

strerror Maps the error number in errnum to an error message 
string. 

(continued on next page) 

Error- and Signal-Handling 4~1 



Table 4-1 (Cont.): Error- and Signal-Handling Functions and Macros 

Signal-Handling 
Functions and Macros 

alarm Sends the signal SIGA~LARM to the invoking process 
after the number of seconds indicated by its argument 
has elapsed. 

gsignal Generates a specified software signal. 

kill Sends a signal to the process specified by a process ID. 

long; jmp Provides a way to transfer control from a nested series of 
function invocations back to a predefined point without 
returning normally; this is not done by a series of return 
statements. 

pause Causes its calling process to stop until the process 
receives a signal. 

raise Generates a specified software signal. 

setjmp Provides a way to transfer control from a nested series of 
function invocations back to a predefined point without 
returning normally; this is not done by a series of return 
statements. 

sigblock Causes the signals in its argument to be added to the 
current set of signals being blocked from delivery. 

signal Allows you to either catch or ignore a signal. 

sigpause Assigns its argument to the current set of masked signals 
and then waits for a signal. 

sigsetmask Establishes the signals that are blocked from delivery. 

sigstack Defines an alternate stack on which to process signals. 

sigvec Assigns a handler for a specific signal. 

sleep Suspends the execution of the current process for at least 
the number of seconds indicated by its argument. 

ssignal Allows you to specify the action to be taken when a 
particular signal is raised. 

VAXC$ESTABLISH Establishes a special VAX C RTL exception handler that 
catches all RTL-related exceptions and passes on all 
others to your handler. 

4-2 Error- and Signal-Handling 



w  4.1 
f 7 

Error Handling 

When an error occurs during a call to any of the VAX C RTL functions, 
the function returns an unsuccessful status and sets the external variable, 
errno, to a value that indicates the reason for the failure. This makes the 
errno variable useful in determining the cause of a run-time error. 

The errno definition module declares the errno variable and symbolically 
defines the possible errno values. By including the errno definition module 
in your program, you can check for specific values after a function call. At 
program startup, the value of 

errno is 0. The value of errno can be set to 
a nonzero value by many VAX C RTL functions; it is not reset to zero by 
any VAX C RTL function. Table 4-2 lists the symbolic values that can be 
assigned to errno. 

Table 4-2: The Errno Symbolic Values 

Symbolic Constant Description 

EPERM Not owner 

ENOENT No such file or directory 

ESRCH No such process 

EINTR Interrupted system call 

EIO UO error 

ENXIO No such device or address 

E2BIG Argument list too long 

ENOEXEC Exec format error 

EBADF Bad file number 

ECHILD No child processes 

EAGAIN No more processes 

ENOMEM Not enough memory 

(continued on next page) 

Error- and Signal-Handling 4-3 



Table 4-2 (Cont.): The Errno Symbolic Values 

Symbolic Constant Description 

EACCES Permission denied 

EFAULT Bad address 

ENOTBLK Block device required 

EBUSY Mount devices busy 

EEXIST File exists 

EXDEV Cross-device link 

ENODEV No such device 

ENOTDIR Not a directory 

EISDIR Is a directory 

EINVAL Invalid argument 

ENFILE File table overflow 

EMFIL 7.bo many open files 

ENOTTY Not a typewriter 

ETXTBSY Text file busy 

EFBIG File too big 

ENOSPC No space left on device 

ESPIPE Illegal seek 

EROFS Read-only file system 

EMLINK Too many links 

EPIPE Broken pipe 

EDOM Math argument 

ERANGE Result too large 

EWOULDBLOCK File UO buffers are empty 

EVMSERR VMS-specific error code nontranslatable error 

You can translate the errno values to a message, similar to that found in 
UNIX systems, by using the perror function. If perror cannot translate 
the errno value, it prints the following message, followed by the VMS error 
message associated with the value: 

~s:nontranslatable vms error code: xxxxxx vms message: 

In the message, %s is the string you supply to perror; xxxxxx is the VMS 
message number. 

4-4 Error- and Signal-Handling 



The VMS error code is available in the vaxc$errno variable and can be 
examined in your programs. The vaxc$errno variable is declared in the 

errno 

definition module. 

4.2 Signal Handling 

Signals are raised by a variety of events, including any of the following 
events: 

• Typing CTRL/C at a terminal (which raises the signal SIGINT) 

• Certain programming errors 

• A gsignal call 

Signals are given the mnemonics (as in SIGINT) found in the signal 
definition module. Normally, all signals cause the termination of the 
receiving process. However, the signal function allows you to ignore most 
signals or to interrupt to a specific location for handling. 

The syntax for a signal handler is as follows: 

handler (sigint, code, scp); 
int sigint, code; 
struct sigcontext "scp; 

sigint 
Is the designated signal number. 

code 
Designates the type of signal if more than one exists. 

scp 
Is a pointer to the structure, sigcontext (defined in the signal definition 
module), which contains information used to restore the context of the 
process as it was before the signal occurred. Once a signal handler is 
installed for a signal, it remains in effect until the program calls sigvec 
again to handle that signal. 

The handler specified by the scp argument is established as the handler to 
be called when the signal specified by sigint is raised. 

Error- and Signal-Handling 4-5 



Table 4--3 shows the signals defined in the signal definition module, ways 
to generate the signals on the VMS operating system, and the attributes of 
the signals, such as whether or not the signal can be ignored. Unless noted, ~ ~~ _. 
each signal can be reset and it can be caught or ignored. 

Table 4-3: VAX C Signals 

Name Description Generated by 

SIGHUP 

SIGINT 

SIGQUIT 

Hang up 

Interrupt 

Quit 

SIGILLI Illegal 
instruction 

SIGTR,API Trace trap 

SIGIOT 

SIGEMT 

IOT instruction 

EMT instruction 

SIGFPE Floating-point 
exception 

SIGKILL2 Kill 

SIGBUS Bus error 

SIGSEGV Segment 
violation 

SIGSYS System call 
error 

SIGPIPE Broken pipe 

SIGALRM Alarm clock 

SIGTERM Software 
terminate 

Data set hang up 

VMS CTRL✓C interrupt 

CTRL/C if the action for SIGINT is SIG 
DFL (default) 

Illegal instruction, reserved operand, or 
reserved address mode 

TBIT trace trap or breakpoint fault 
instruction 

Not implemented 

Compatibility mode trap or op code 
reserved to customer 

Floating-point overflow/underflow 

External signal only 

Access violation or change mode user 

Length violation or change mode 
supervisor 

Bad argument to system call 

Not implemented 

Timer AST 

External si~mal only 

1 Cannot be reset when caught. 
2Cannot be caught or ignored. 

4-6 Error- and Signal-Handling 



4.3 Program Example 

Example 4-1 shows how the signal, alarm, and pause functions operate. 

Example 4-1: Suspending and Resuming Programs 

/* This program shows how to alternately suspend and resume 
* a program using the signal, alarm, and pause functions. 

#define SECONDS 5 

#include stdio 
#include signal 

int number of alarms 

main ( ) 
{ 

int alarm action(); 

= 5; 

signal(SIGALRM, alarm action); 

alarm (SECONDS) ; 

pause(); 
} 

alarm_action() 
{ 

} 

/* Set alarm counter 

/* Pass signal and 
* function to SIGNAL 

*/ 

/* Set alarm clock for 5 
* seconds */ 

/* Suspend the process 
* until the signal is 
* received 

/* Print the value of 
* the alarm counter 

printf("\t<%d\007>", number_of_alarms); 

/* Pass signal and the * 

signal(SIGALRM, alarm action); 

alarm(SECONDS); 

* 

/* 

function to SIGNAL 

Set the alarm clock 

*/ 

*/ 

if (--number_of_alarms) 
pause () ; 

/* Decrement alarm counter */ 

Error- and Signal-Handling 4-7 



The sample output from Example 4-1 is as follows: 

$ RUN EXAMPLE I RETURN , 
<5> <4> 

4-8 Error- and Signal-Handling 

<3> <2> <1> 



Chapter 5 

Subprocess Functions 

The VAX C RTL provides functions that allow you to create subprocesses 
from a VAX C program. The creating process is called the parent and the 
created subprocess is called the child. 

To create a child process within the parent process, use the exec functions 
(execl, execle, execv, execve, execlp, and execvp) and the vfork 
function. Other functions are available to allow the parent and child to read 
and write data across processes (pipe) and to allow for synchronization of 
the two processes (wait). This chapter describes how to implement and use 
these functions. 

The parent process can execute VAX C programs in its children, either 
synchronously or asynchronously. The number of children that can run 
simultaneously is determined by the /PRCLM user authorization quota 
established for each user on your system. Other quotas that may affect the 
use of subprocesses are /ENQLM (Queue Entry Limit), /ASTLM (AST Waits 
Limit), and /FILLM (Open File Limit). 

This chapter discusses the subprocess functions. Table 5-1 lists and 
describes all the subprocess functions found in the VAX C RTL. For more 
detailed information on each function and macro, see the Reference Section. 

Subprocess Functions 5-1 



Table 5-1: Subprocess Functions 

Function or Macro Purpose 

Implementation of Child Processes 

system Passes a given string to the host environment to be 
executed by a command processor. 

vfork Creates an independent child process. 

The exec Functions 

excel, egecle, execlp Pass the name of the image to be activated in a child 
execv, execve, execvp process. 

Synchronizing 
Processes 

wait Suspends the parent process until a value is returned 
from the child. 

Interprocess Communication 

pipe Implemented as an array of file descriptors associated 
with a mail box. 

5.1 Implementing Child Processes in VAX C 

Child processes are created by VAX C functions with the VMS LIB$SPAV~i~N 
RTL routine. (See the VMS Run-~me Library Routines Volume for 
information on LIB$SPAWN.) Using LIB$SPAWN allows you to create 
multiple levels of child processes; that is, the parent's children can also 
spawn children, and so on, up to the limits allowed by the user authorization 
quotas previously noted. 

Child processes are restricted in that they can execute only other VAX 
C programs. Other native-mode VMS languages do not share VAX C's 
ability to communicate between processes; if they do, they do not use the 
same mechanisms. In addition, the parent process must be run under 
a DIGITAL-supported command language interpreter (CLI), such as the 
DIGITAL Command Language (DCL). You may not run the parent as a 
detached process or under control of auser-supplied CLI. 

5-2 Subprocess Functions 



Parent and child processes communicate through a mailbox as shown in 
Figure 5-1. This mailbox transfers the context in which the child will run. 
The context mailbox, as it is called, passes information to the child that it 
inherits from the parent, such as the names and file descriptors of all the 
files opened by the parent and the current location within those files. The 
mailbox is deleted by the parent when the child image exits. 

Figure 5-1: Communications Links Between Parent and Child Processes 

Parent 
context 

Mailbox 
context 

Child 

ZK-4002—GE 

NOTE 

The mailbox created by the vfork and exec functions is temporary. 
The logical name of this mailbox is VAXC$EXECMBX and is 
reserved for use by the VAX C RTL. 

The mailbox is created with a maximum message size and a buffer quota of 
512 bytes each. You need the TMPMBX privilege to create a mailbox with 
these VAX C RTL functions. Since TMPMBX is the privilege required by 
the PRINT and SUBMIT DCL commands, most users on a system have this 
privilege. If you are not sure, type SHOW PROCESS/PRIVILEGES; it will 
show which system privileges you have. 

You cannot change the characteristics of these mailboxes. For more informa-
tion on mailboxes, see the VMS IlO User's Reference Volume. 

The VMS operating system does not permit two processes to use the same 
physical terminal for input, and the VAX C RTL does not support file 
sharing or the default C stream file type. If stdir is connected to a terminal 
or if stdout or stderr is connected to stream files, these standard streams are 
redirected to the NUL device NLAO:. 

Subprocess Functions 5-3 



5.2 The exec Functions 

There are six exec functions that you can call to execute a VAX C image in 
the child process. These functions expect that vfork has been called to set 
up a return address. The exec functions will call vfork if the parent process 
did not. 

When vfork is called by the parent, exec returns to the parent process. 
When vfork was called by an exec function, the exec returns to itself, waits 
for the child to exit, and then exits the parent process. The exec function 
does not return to the parent process unless the parent calls vfork to save 
the return address. 

Unlike UNIX-based systems, the exec functions in the VAX C RTL cannot 
determine if the specified program image exists. Therefore, the exec 
functions will appear to succeed even though the image does not exist. The 
status of the child process, returned to the parent process, will indicate that 
this error occurred. You can retrieve this error code by using the 
wait function. 

5.2.1 Exec Processing 

The exec functions use the LIB$SPAWN routine to create the subprocess 
and activate the child image within the subprocess. This child process 
inherits the parent's environment, including all defined logical names and 
command-line interpreter symbols. The exec functions use the logical name 
VAXC$EXECMBX to communicate between parent and child; this logical 
name must not exist outside the context of the parent image. 

The exec functions pass the following information to the child: 

• The parent's umask value, which specifies whether any access is to be 
disallowed when a new file is created. For more information about the 
umask function, see the Reference Section. 

• The file name string associated with each file descriptor and the current 
position within each file. The child opens the file and calls lseek to 
position the file to the same location as the parent. If the file is a 
record file, the child is positioned on a record boundary, regardless of 
the parent's position within the record. For more information about file 
descriptors, see Chapter 2. For more information on the lseek function, 
see the Reference Section. 

5--4 Subprocess Functions 



This information is sent to the child for all descriptors known to the 
parent including all descriptors for open files, null descriptors, and 
duplicate descriptors. 

File pointers are not transferred to the child. For files opened by a 
file pointer in the parent, only their corresponding file descriptors are 
passed to the child. The fdopen function must be called to associate 
a file pointer with the file descriptor if the child will access the file-by-
file pointer. For more information about the fdopen function, see the 
Reference Section. 

Process permanent input files are not inherited by the child process. 
They are replaced with the null device NLAO. See Section 5.1 for 
restrictions on the use of the parent's process permanent files by the 
child process. 

• The signal database. Only SIG IGN (ignore) actions are inherited. 
Actions specified as routines are changed to SIG_DFL (default) because 
the parent's signal-handling routines are inaccessible to the child. 

• The environment and argument vectors. 

When everything is transmitted to the child, exec processing is complete. 
Control in the parent process then returns to the address saved by vfork 
and the child's process ID is returned to the parent. 

5.2.2 Exec Error Conditions 

The exec functions will fail if LIB$SPAWN cannot create the subprocess. 
Conditions that can cause a failure include exceeding the subprocess quota 
or finding the communications by the context mailbox between the parent 
and child to be broken. Exceeding some quotas will not cause LIB$SPAWN 
to fail, but will put LIB$SPAWN into a wait state that can cause the parent 
process to hang. An example of such a quota is the Open File Limit quota. 

You will need an Open File Limit quota of at least 20 files, with an average 
of three times the number of concurrent processes that your program will 
run. If you use more than one open pipe at a time, or perform UO on several 
files at one time, this quota may need to be even higher. See your system 
manager if this quota needs to be increased. 

When an exec fails, a value of —1 is returned. After such a failure, the 
parent is expected to call either the exit or _exit function. Both functions 
then return to the parent's vfork call, which returns the child's process ID. 
In this case, the child process ID returned by exec is less than zero. For 
more information about the exit function, see the Reference Section. 

Subprocess Functions 5-5 



5.3 Synchronizing Processes 

A child process is terminated when the parent process terminates. 
Therefore, the parent process must check the status of its child processes 
before exiting. This is done using the VAX C RTL function wait. 

5.4 interprocess Communication 

You must use a mailbox to read and write data between the parent and 
child. A channel through which the processes communicate is called a pipe. 
Use the pipe function to create a temporary mailbox. 

5.5 Program Examples 

Example 5-1 shows the basic procedures for executing an image in a 
child process. Since the first program is crucial to understanding the 
implementation of subprocesses in VAX C, important lines of source code are 
explained in the list following the example. 

The child process in Example 5-1 prints a message 10 times. 

5-6 Subprocess Functions 



Example 5-1: Creating the Child Process 

0 

/* This example creates the child process. 
* functionality given to the child 
* print a message 10 times. 

* 

* PARENT: 

#include 
#include 
#include 
#include 

main ( ) 
{ 

climsgdef 
stdio 
perror 
processes 

int status, cstatus; 

The only 
is the ability to 

/* CLI status values 

if ( (status = vfork () ) ! = 0 ) 
{ 

if (status < 0) 
printf("Parent - Child process failed\n"); 

else 
{ 

printf("Parent - Waiting for Child\n"); 

if ((status = wait(&cstatus)) __ -1) 
perror("Parent - Wait failed"); 

else 
if (cstatus == CLI$_IMAGEFNF) 

printf("Parent - Child does not \ 

exist\n"); 

else 
printf("Parent - Child final \ 

status: ad\n", cstatus); 

} 

else 
{ 

} 

} 

} 

printf("Parent - Starting Child\n"); 
if ((status = execl("child", 0)) __ -1) 

{ 

} 

perror("Parent - Execl failed"); 
exit () ; 

(continued on next page) 

Subprocess Functions 5-7 



Example 5-1 (Cont.): Creating the Child Process 

/* This is a program separate from the parent process. 

* CHILD: 

main ( ) 
{ 

int i; 

for (i=0; i < 10; i++) 
printf("Child - executing\n"); 

} 

Key to Example 5-1: 

O The vfork function is called to set up the return address for the 
exec call. 

The vfork function is normally used in the expression of an if statement. 
This construct allows you to take advantage of the double return aspect 
of vfork, since one return value is 0 and the other is nonzero. 

© A 0 return value is returned the first time vfork is called and the parent 
executes the else clause associated with the vfork call, which calls 
execl. 

© A negative child process ID is returned when an exec function fails. The 
return value is checked for these conditions. 

~ The wait function is used to synchronize the parent and child processes. 

© Since the exec functions can indicate success up to this point even if the 
image to be activated in the child does not exist, the parent checks the 
child's return status for the predefined status, CLI$_IMAGEFNF (file 
not found). 

In Example 5-2, the parent passes arguments to the child process. 

5-8 Subprocess Functions 



Example 5-2: Passing Arguments to the Child Process 

/* 
* 

In this example, the arguments are placed in an array, 
gargv, but they can be passed to the child 

* 
* 

* explicitly as a zero-terminated series of character * 

* strings. The child program in this example writes * 

* to stdout the arguments that have been passed to it. * 
* * 

* PARENT: * 
* *` 

#include climsgdef 
#include stdio 
#include perror 
#include processes 

main ( ) 
{ 

int status, cstatus; 
char *gargv[] _ { "Child", "ARGC1", "ARGC2", "Parent", 0 }; 

if ( (status = vfork () ) ! = 0) 
{ 

if (status < -1) 
printf("Parent - Child process failed\n"); 

else 
{ 

printf("Parent - waiting for Child\n"); 
if ((status = wait(&cstatus)) __ -1) 

perror("Parent - Wait failed"); 
else 

if (cstatus == CLI$_IMAGEFNF) 
printf("Parent - Child does not exist\n"); 

else 
printf("Parent - Child final status: ~x\n", 

cstatus); 
} 

} 
else 

{ 
printf("Parent - Starting Child\n"); 
if ((status = execv("Child", gargv)) __ -1) 

{ 
perror("Parent - Exec failed"); 
exit () ; 

} 
} 

} 

(continued on next page) 

Subprocess Functions 5-9 



Example ~2 (Cont.): Passing Arguments to the Child Process 

/* This is a program separate from the parent process. 
* 

* CHILD: 
* 

main (argc, argv) 
int argc; 
char *argv [ ] ; 
{ 

int i; 

printf ("Program name: %s\n", argv [0]) ; 

for (i = 1; i < argc; i++) 
printf("Argument ~d: ~s\n", i, argv[i]); 

} 

Example 5-3 shows how to use the wait function to check the final status of 
multiple children being run simultaneously. 

5-10 Subprocess Functions 



Example 5-3: Checking the Status of Child Processes 

/* In this example, the wait function is placed in a separate 
* for loop so that it is called once for each child. If 
* wait were called within the first for loop, the parent 
* would wait for one child to terminate before executing the 
* next child. If there were only one wait request, any 
* child still running when the parent exits would terminate 
* prematurely. 
* * 

* PARENT: 
* *~ 

#include climsgdef 
#include stdio 
#include perror 
#include processes 

main ( ) 
{ 

int status, cstatus, i; 

for (i = 0; i < 5; i++) 
{ 

if ((status = vfork ()) _= 0 ) 
{ 

printf("Parent - Starting Child %d\n", i); 
if ((status = execl("child", 0)) __ -1) 

{ 

perror("Parent - Exec failed"); 
exit () ; 

} 
} 

else 
if (status < -1) 

printf("Parent - Child process failed\n"); 
} 

printf("Parent -Waiting for children\n"); 

for (i = 0; i < 5; i++) 
{ 

if ((status =wait (&cstatus)) __ -1) 
perror("Parent -Wait failed"); 

else 
if (cstatus == CLI$_IMAGEFNF) 

printf("Parent - Child does not exist\n"); 
else 

printf("Parent - Child oX final status: °sd\n", 
status, cstatus) ; 

} 
} 

(continued on next page) 

Subprocess Functions 5-11 



Example 5-3 (Cont.): Checking the Status of Child Processes 

/* This is a program separate from the parent process. 

* CHILD: 

main ( ) 
{ 

int pid, i; 

printf("Child oOX: working...\n", (pid = getpid())); 
sleep (5) ; 
printf ("Child o OX : Finished\n" ,pid) ; 

} 

Example 5-4 shows how to use the pipe and dup2 functions t~ communicate 
between a parent and child process through specific file descriptors. The 
#define preprocessor directive defines the preprocessor constants inpipe and 
outpipe as the names of file descriptors 11 and 12. 

Since there is only one child being executed from the parent, the status 
value of the exec call is tested in a switch statement. Case 0 is executed 
the first time vfork is called. Case —1 is executed if either the egecl call 
or the child process fails. A switch statement cannot be used where more 
than one child is being executed, since the process IDs for children that fail 
are assigned in decreasing order, beginning with —1. The default case is 
executed when the child is successfully executed and egecl has returned 
a normal child process ID. The default case checks for the file-not-found 
condition, because an exec call cannot detect this condition. 

5-12 Subprocess Functions 



Example 5-4: Communicating Through a Pipe 

/* In this example, the parent writes a string to the pipe 
* for the child to read. The child then writes the string 
* back to the pipe for the parent to read. The wait 
* function is called before the parent reads the string that 
* the child has passed back through the pipe. Otherwise, 
* the reads and writes will not be synchronized. 
* * 

* PARENT: 
* *~ 

#include perror 
#include climsgdef 
#include stdio 
#define inpipe 11 
#define outpipe 12 
#include processes 
#include unixio 

main ( ) 
{ 

int pipes[2]; 
int mode, status, cstatus, len; 
char *outbuf, *inbuf; 

if ((outbuf = malloc(512)) _= 0) 
{ 

printf("Parent - Outbuf allocation failed\n"); 
exit () ; 

} 

if ((inbuf = malloc(512)) _= 0) 
{ 

printf("Parent - Inbuf allocation failed\n"); 
exit () ; 

} 
if (pipe (pipes ) __ -1) 

{ 
printf("Parent - Pipe allocation failed\n"); 
exit () ; 

} 

dup2 (pipes [ 0 ] , inpipe) ; 
dup2(pipes[1], outpipe); 
strcpy(outbuf, "This is a test of two-way pipes.\n"); 

status = vfork () ; 

(continued on next page) 

Subprocess Functions 5-13 



Example 5~ (Cont.): Communicating Through a Pipe 

switch (status) 
{ 

case 0: 
printf("Parent - Starting child\n"); 

if ((status = execl("child", 0)) __ -1) 
{ 

printf ("Parent - Exec failed") ; 
exit () ; 

} 
break; 

case -1: 
printf("Parent - Child process failed\n"); 

break; 

default 
printf("Parent - Writing to child\n"); 

if (write(outpipe, outbuf, strlen(outbuf)+1) 

{ 
perror("Parent -Write failed"); 

exit () ; 
} 

else 
{ 

if ((status =wait (&cstatus)) __ -1) 
perror("Parent -Wait failed"}; 

if (cstatus == CLI$_IMAGEFNF) 
printf("Parent - Child does not exist\n"); 

else 
{ 

printf ("Parent -Reading from child\n") ; 
if ((len = read(inpipe, inbuf, 512)) 

<= 0 ) 
{ 

perror("Parent -Read failed"); 
exit (} ; 

} 
else 

{ 

(continued on next p ale ) 

5-14 Subprocess Functions 



Example 5-4 (Cont.): Communicating Through a Ptpe 

printf("Parent: os\n", inbuf); 
printf("Parent - Child final \ 

status: %d\n", cstatus); 
} 

} 
} 

break; 
} 

} 

/* This is a program separate from the parent process. 
* * 

* CHILD: 
* *~ 

#define inpipe 11 
#define outpipe 12 

main ( ) 
{ 

char *buffer; 
int len; 

if ((buffer = malloc (512)) _= 0) 
{ 

perror("Child - Buffer allocation failed\n"); 
exit () ; 

} 

printf("Child - Reading from parent\n"); 
i f ((len = read (inpipe, buffer, 512)) <=0 ) 

{ 
perror("Child - Read failed"); 
exit () ; 

} 
else 

{ 
printf ("Child: os\n", buffer) ; 
printf("Child -Writing to parent\n"); 
if (write (outpipe, buffer, strlen (buffer) +1) __ -1) 

{ 
perror("Child - Write failed"); 
exit () ; 

} 
} 

} 

Subprocess Functions 5--15 





Chapter 6 

Curses Screen Management Functions and 
Macros 

Curses, the VAX C Screen Management Package, is composed of VAX C RTL 
functions and macros that create and modify defined sections of the terminal 
screen and optimize cursor movement. Using the screen management 
package, you can develop a user interface that is both visually attractive 
and user-friendly. Curses is terminal-independent and provides simplified 
terminal screen formatting and efficient cursor movement. 

Most Curses functions and macros are listed in pairs where the first is 
a macro and the second is a function beginning with the prefix "w," for 
"window." These prefixes are delimited by brackets ([ ]). For example, 
[w]addstr designates the addstr macro and the waddstr function. The 
macros default to the window stdscr; the functions accept as an argument 
a specified window. When working with macros, take care in specifying 
arguments that may cause side effects, such as those that use the increment 
and decrement operators. For an explanation of passing arguments to 
macros, see the Guide to VAX C. 

To implement Curses, the terminal-independent Screen Management 
Software, which is part of the VMS RTL, is used. For portability purposes, 
most functions and macros are designed to perform in a manner similar 
to other C implementations. However, VAX C Curses depends upon 
the VMS system and its Screen Management Software, so performance 
of some functions and macros may differ slightly from those of other 
implementations. Some functions and macros available on other systems 
are not available with VAX C Curses. The functions and macros [w] clrattr, 
[w] insstr, mv[w] insstr, and [w] setattr are VAX C specific and are 
not portable. 

Curses Screen Management Functions and Macros 6-1 



Table 6-1 lists all of the Curses functions and macros found in the VAX C 
RTL. For more detailed information on each function and macro, see the 
Reference Section. 

Table 6-1: Curses Functions and Macros 

Function or Macro Purpose 

[w]addch Add the character ch to the window at the current 
position of the cursor. 

[w] addstr Add the string pointed to by an argument to the window 
at the current position of the cursor. 

bog Draws a box around the window. 

[w]clear Erase the contents of the specified window and reset the 
cursor to coordinates (0,0). 

clearok Sets the clear flag for the window. 

[w]clrattr Deactivate the video display attribute within the window. 

[w]clrtobot Erase the contents of the window from the current 
position of the cursor to the bottom of the window. 

[w] clrtoeol Erase the contents of the window from the current cursor 
position to the end of the line on the specified window. 

[no] crmode Set and unset the terminal from cbreak mode. 

[w] delch Delete the character on the specified window at the 
current position of the cursor. 

[w] deleteln Delete the line at the current position of the cursor. 

delwin Deletes the specified window from memory. 

[no] echo Set the terminal so that characters may or may not be 
echoed on the terminal screen. 

endwin Clears the terminal screen and frees any virtual memory 
allocated to Curses data structures. 

[w] erase Erase the window by painting it with blanks. 
[w] getch Get a character from the terminal screen and echo it on 

the specified window. 

[w]getstr Get a string from the terminal screen, store it in a 
character variable, and echo it on the specified window. 

getyg Puts the (yx) coordinates of the current cursor position 
on the window in the variables y and x. 

(continued on next page) 

6-2 Curses Screen Management Functions and Macros 



Table fr1 (Cont.): Curses Functions and Macros 

Function or Macro Purpose 

[w] inch Return the character at the current cursor position on 
the specified window without making changes to the 
window. 

initscr Initializes the terminal-type data and all screen 
functions. 

[w]insch Insert a character variable at the current cursor position 
in the specified window. 

[w]insertln Insert a line above the line containing the current cursor 
position. 

[w]insstr Insert a string at the current cursor position on the 
specified window. 

leaveok Signals Curses to leave the cursor at the current coordi-
nates after an update to the window. 

longname Assigns the full terminal name to a character name that 
must be large enough to hold the character string. 

[w]move Change the current cursor position on the specified 
window to the coordinates (yx). 

mv[w] addch Move the cursor to (x,y) and add the character variable 
to the specified window. 

mv[w] addstr Move the cursor to (x,y) and add the specified string to 
the specified window. 

mvcur Moves the terminal's cursor. 

mv[w] delch 

mv[w]getch 

mv[w]getstr 

mv[w]inch 

mv[w]insch 

Move the cursor to (x,y) and delete the character on the 
specified window. 

Move the cursor to (yx), get a character from the termi-
nal screen, and echo it on the specified window. 

Move the cursor (yx), get a string from the terminal 
screen, store it in a variable that must be large enough 
to contain the string, and echo it on the specified window. 

Move the cursor (yx) and return the character on the 
specified window without making changes to the window. 

Move the cursor (yx) and insert a character variable in 
the specified window. 

(continued on next page) 

Curses Screen Management Functions and Macros 6-3 



Table 6-1 (Cont.): Curses Functions and Macros 

Function or Macro Purpose 

mv[w]insstr Move the cursor (yx) and insert a string in the specified 
window. 

mvwin Moves the starting position of the window to the specified 
(yx) coordinates. 

newwin Creates a new window with lines and columns starting 
at the coordinates on the terminal screen. 

[no] nl Provided only for UNIX software compatibility and have 
no functionality in the VMS environment. 

overlay Writes the contents of one window that will fit over the 
contents of another window, beginning at the starting 
coordinates of both windows. 

overwrite Writes the contents of one window, insofar as it will fit, 
over the contents of another window beginning at the 
starting coordinates of both windows. 

[w]printw Perform a printf on the window starting at the current 
position of the cursor. 

[no] raw Provided only for UNIX so~ware compatibility and have 
no functionality in the VMS environment. 

[w]refresh Repaint the specified window on the terminal screen. 

[w]scanw Perform a scarf on the window. 

scroll Moves all the lines on the window up one line. 

scrollok Sets the scroll flag for the specified window. 

[w]setattr Activate the video display attribute within the window. 

subwin Creates a new subwindow with lines and columns 
starting at the coordinates on the terminal screen. 

[w]standend Deactivate the boldface attribute for the specified 
window. 

[w] standout Activate the boldface attribute of the specified window. 

touchwin Places the most recently edited version of the specified 
window on the terminal screen. 

wrapok Allows the wrapping of a word from the right border of 
the window to the beginning of the next line. 

6-4 Curses Screen Management Functions and Macros 



6.1 Curses Terminology 

This section explains some of the Curses terminology and shows you how 
Curses looks on the terminal screen. 

Consider a Curses application as being a series of overlapping windows. 
Window overlapping is called occlusion. To distinguish the boundaries of 
these occluding windows, you can outline the rectangular windows with 
specified characters, or you can turn on the reverse video option (make the 
window a light background with dark writing). 

Initially, there are two windows the size of the terminal screen that are 
predefined by Curses. These windows are called stdscr and curscr. The 
stdscr window is defined for your use. Many Curses macros default to this 
window. For example, if you draw a box around stdscr, move the cursor to 
the left-corner area of the screen, write a string to stdscr, and then display 
stdscr on the terminal screen, your display will look like that in Figure 6-1. 

Curses Screen Management Functions and Macros 6-5 



Figure 6-1: An Example of the stdscr Window 

ZK-5752-GE 

The second predefined window, curscr, is designed for internal Curses work; 
it is an image of what is currently displayed on the terminal screen. The 
only VAX C Curses function that will accept this window as an argument is 
clearok. Do not write to or read from curscr. Use stdscr and user-defined 
windows for all your Curses applications. 

6.1.1 User-Defined Windows 

You can occlude stdscr with your own windows. The size and location of each 
window is given in terms of the number of lines, the number of columns, 
and the starting position. The lines and columns of the terminal screen form 
a coordinate system, or grid, on which the windows are formed. You specify 
the starting position of a window with the (yx) coordinates on the terminal 
screen where the upper left corner of the window is located. The coordinates 
(0,0) on the terminal screen, for example, are the upper left corner of the 

6-6 Curses Screen Management Functions and Macros 



screen. The entire area of the window must be within the terminal screen 
borders, windows being as small as a single character or as large as the 
entire terminal screen. You may create as many windows as memory allows. 

When writing to or deleting from windows, changes do not appear on the 
terminal screen until the window is refreshed. When refreshing a window, 
you place the updated window onto the terminal screen, which leaves the 
rest of the screen unaltered. 

All user-defined windows, by default, occlude stdscr. You can create two or 
more windows that occlude each other as well as stdscr. When writing data 
to one occluding window, the data is not written to the underlying window. 

You can create overlapping windows (called subwindows). A declared 
window must contain the entire area of its subwindow. When writing 
data to a subwindow or to the portion of the window overlapped by the 
subwindow, both windows contain the new data. For instance, if you write 
data to a subwindow and then delete that subwindow, the data is still 
present on the underlying window. 

If you create a window that occludes stdscr and a subwindow of stdscr, your 
terminal screen will look like Figure 6-2. 

Curses Screen Management Functions and Macros 6-7 



Figure 6-2: Displaying Windows and Subwindows 

ZK-5754-GE 

If you delete both the user-defined window and the subwindow, and then 
update the terminal screen with the new image, your terminal screen will 
look like Figure 6-3. 

6-8 Curses Screen Management Functions and Macros 



Figure 6-3: Updating the Terminal Screen 

ZK-5753-GE 

The string written on the window is deleted, but the string written on the 
subwindow remains on stdscr. 

6.2 Getting Started with Curses 

There are commands that you must use to initialize and restore the terminal 
screen when using Curses Screen Management functions and macros. Also, 
there are predefined variables and constants on which Curses depends. 
Example 6-1 shows how to set up a program using Curses. 

Curses Screen Management Functions and Macros 6-9 



Example 6-1: A Curses Program 

#include curses 

© WINDOW *winl, *wing, *win3; 

main ( ) 
{ 

© initscr(); 

endwin () ; 
} 

Key to Example 6-1: 

D The preprocessor directive includes the 
curses definition module, which 

defines the data structures and variables used to implement Curses. 
The module curses includes the module stdio, so it is not necessary to 
duplicate this action by including stdio again in the program source code. 
You must include curses to use any of the Curses functions or macros. 

© In the example, WINDOW is a data structure defined in curses. 
You must declare each user-specified window in this manner. In 
Example 6-1, the three defined windows are winl , win2, and win3. 

© The initscr and endwin functions begin and end the window editing 
session. The initscr function clears the terminal screen and allocates 
space for the windows stdscr and curscr. The endwin function deletes 
all windows and clears the terminal screen. 

Most Curses users wish to define and modify windows. Example 6-2 shows 
you how to define and write to a single window 

6-10 Curses Screen Management Functions and Macros 



Example 6-2: Manipulating Windows 

#include curses 

WINDOW *winl, *wing, *win3; 

main ( ) 
{ 

initscr(); 

winl = newwin (24, 80, 0, 0) ; 

mvwaddstr (winl, 2, 2, "HELLO") ; 

endwin () ; 
} 

Key to Example 6-2: 

Q The newwin function defines a window 24 rows high and 80 columns 
wide with a starting position at coordinates (0,0), the upper left corner of 
the terminal screen. The program assigns these attributes to winl. The 
coordinates are specified as follows: (lines,columns) or (yx). 

© The mvwaddstr macro performs the same task as a call to the separate 
macros move and addstr. The mvwaddstr macro moves the cursor to 
the specified coordinates and writes a string onto stdscr. 

NOTE 

Most Curses macros update stdscr by default. Curses functions 
that update other windows have the same name as the macros but 
with the added prefix "w". For example, the addstr macro adds a 
given string to stdscr at the current cursor position. The waddstr 
function adds a given string to a specified window at the current 
cursor position. 

When updating a window, specify the cursor position relative to the origin of 
the window, not the origin of the terminal screen. For example, if a window 
has a starting position of (10,10) and you want to add a character to the 
window at its starting position, specify the coordinates (0,0), not (10,10). 

The string HELLO in Example 6-2 does not appear on the terminal screen 
until you refresh the screen. You accomplish this by using the wrefresh 
function. Example 6-3 shows how to display the contents of winl on the 
terminal screen. 

Curses Screen Management Functions and Macros 6-11 



Example 6-3: Refreshing the Terminal Screen 

#include curses 

WINDOW *winl, *wing, *win3; 

main ( ) 
{ 

initscr () ; 

winl = newwin (22, 60, 0, 0) ; 
mvwaddstr(winl, 2, 2, "HELLO"); 
wrefresh (winl) ; 

endwin () ; 
} 

The wrefresh function updates just the region of the specified window on 
the terminal screen. When the program is executed, the string HELLO 
appears on the terminal screen until the program executes the endwin 
function. The wrefresh function only refreshes the part of the window on 
the terminal screen that is not overlapped by another window. If winl was 
overlapped by another window and you want all of winl to be displayed on 
the terminal screen, call the touchwin function. 

6.3 Predefined Variables and Constants 

There is a group of variables, defined in the curses definition module, that 
is useful when you implement Curses. There is also a group of constants 
defined in 

curses, 

using the #define preprocessor directive, that are useful. 
Table 6-2 describes the variables and constants defined in the 

curses 

definition module. 

Table 6-2: Curses Predefined Variables and #define Constants 

Name Type Description 

curscr 

stdscr 

LINES 

WINDOW 

WINDOW 

int 

VAR: Window of current screen 

VAR: Default window 

VAR: Number of lines on the terminal screen 

(continued on next page) 

6-12 Curses Screen Management Functions and Macros 



Table 6-2 (Cont.): Curses Predefined Variables and #define Constants 

Name Type Description 

COLS 

ERR 

OK 

TRUE 

FALSE 

_BLINK 

BOLD 

_REVERSE 

_UNDERLINE 

int VAR,: Number of columns on the terminal screen 

CON: Flag (0) for failed routines 

CON: Flag (1) for successful routines 

CON: Boolean true flag (1) 

CON: Boolean false flag (0) 

CON: Parameter for setattr and clrattr 

CON: Parameter for setattr and clrattr 

CON: Parameter for setattr and clrattr 

CON: Parameter for setattr and clrattr 

For example, you can use the predefined variable ERR to test the success 
or failure of a Curses function. Example 6-4 shows how to perform such a 
test. 

Example 6-4: Curses Predefined Variables 

#include curses 

WINDOW *winl, *wing, *win3; 

main ( ) 
{ 

initscr(); 
winl = newwin (10, 10, 1, 5) ; 

if (mvwin(winl, 1, 10) _= ERR) 
addstr("The MVWIN function failed."); 

endwin () ; 
} 

In Example 6-4, if the mvwin function fails, the program adds a string to 
stdscr that explains the outcome. The Curses mvwin function moves the 
starting position of a window. 

Curses Screen Management Functions and Macros 6-13 



6.4 Cursor Movement 

In the UNIX system environment, you can use Curses functions to move 
the cursor across the terminal screen. With other implementations, you can 
either allow Curses to move the cursor using the move function, or you can 
specify the origin and the destination of the cursor to the mvcur function, 
which moves the cursor in a more efficient manner. 

In VAX C, the two functions are functionally equivalent and move the cursor 
with the same ef~'iciency. 

Example 6-5 shows how to use the move and mvcur functions. 

Example 6-5: The Cursor Movement Functions 

#include curses 

main ( ) 
{ 

initscr () ; 

0 

0 

clear () ; 

move (10, 10) ; 

move (LINES/2, COLS/2); 

mvcur (0, COLS-1, LINES-1, 0) ; 

endwin(); 
} 

Key to Example 6-5: 

O The clear macro erases stdscr and positions the cursor at coordinates 
(0,0). 

© The first occurrence of move moves the cursor to coordinates (10,10). 

The second occurrence of move uses the predefined variables LINES 
and COLS to calculate the center of the screen (by calculating the value 
of half the number of LINES and COLS on the screen). 

D The mvcur function forces absolute addressing. This function can 
address the lower left corner of the screen by claiming that the cursor 
is presently in the upper right corner. You may use this method if you 
are unsure of the current position of the cursor, but move works just as 
well. 

6-14 Curses Screen Management Functions and Macros 



6.5 Program Examples 

The following program examples show the effects of many of the Curses 
macros and functions. The wgetch and wgetstr functions appear through-
out the programs so that the terminal screen may be viewed while the 
program waits for input. You can find explanations of the individual lines of 
code, if not self-explanatory, in the comments to the right of the particular 
line. Detailed discussions of the functions follow the source code listing. 

Example 6-6 shows the definition and manipulation of one user-defined 
window and stdscr. 

Example 6-6: stdscr and Occluding Windows 

0 

Q 

/* 
* 
* 
* 
* 

The following program defines one window: WIN1. 
WIN1 is located towards the center of the default 
window stdscr. When writing to an occluding window 
(WIN1) that is later erased, the writing is 
erased as well. 

#include curses /* Include module 

WINDOW *winl; 

main ( ) 
{ 

/* Define windows 

char str[80]; 

initscr(); 
noecho(); 

/* Variable declaration 

/* Set up Curses 
/* Turn off echo 
/* Create window 

winl = newwin (10, 20, 10, 10) ; 

box (stdscr, ~ ' , ' -') ; /* Draw a box around STDSCR 
/* Draw a box around WIN1 

refresh () ; /* Display STDSCR on screen 
wrefresh (winl) ; /* Display WIN1 on screen 

getstr (str) ; /* Pause. Type a few words! 

mvaddstr (22, 1, str) ; 

getch () ; 
/* Add string to WIN1 

mvwaddstr (winl, 5, 5, "Hello") ; 
wrefresh(winl); /* Add WIN1 to terminal scr 
getch () ; /* Pause. Press RETURN 

delwin (winl) ; 

© touchwin (stdscr) ; 

/* Delete WIN1 

/* Refresh all of STDSCR 

(continued on next page) 

Curses Screen Management Functions and Macros 6-15 



Example 6-6 (Copt.): stdscr and Occluding Windows 

getch () ; 
endwin () ; 

} 

/* Pause. Press RETURN 

/* Ends session. 

Key to Example 6-6: 

Q The program waits for input. The echo was disabled using the noecho 
macro, so the words that you type do not appear on stdscr. However, 
the macro stores the words in the variable str for use elsewhere in the 
program. 

© The getch macro causes the program to pause. When you are finished 
viewing the screen, press the RETURN key so the program can resume. 
The getch macro refreshes stdscr on the terminal screen without calling 
refresh. The screen appears like Figure 6-4. 

© The touchwin function refreshes the screen so that all of stdscr is 
visible and the deleted occluding window no longer appears on the 
screen. 

6-16 Curses Screen Management Functions and Macros 



Figure 6-4: An Example of the getch Macro 

ti$
rm V.:?~. T:.54:: .Y.1r ,} ~.7}~ T•.~ :1R;iSTT{} ~tR~4fS}jT.S••4f~T?T~S;.•Fh f~•: ~.~7,~•:~•.T.~ 
:•.{:v..,fi~.;:••.•;,7}~;t :•~'{v '{{;~;.? • •:':?•',.• • }YYh'fi}f:;fx}ti•~•?:~i:~}•f;:}ftiS;.;:}'v.';.;:.f{{:}•h}C:;., fkk}~r~•'.i;~;ik 

Ck{}'n•'•f;~r,~r 1+•~:<{v{:ti }'r,}:::$:,},::},'tir,'.?•:;r~{~'{{~.•'.:f?i:.{}i-;}'}y:.ti:S{~?•: ti  •{ rti . {.{'vr4~:~>~.;.;},. ~}:.}~i.}:}:v` {}~' 
?::~t2•:{v:{:'2ti: "•:•7~:{{:{•}:•: ....:::{{:S:•.•r.•.}~{{r,'r,~:•:~{}{i•::~k'•.•:::'rf'f { }::{ti:'%?{}r:~'{w '{..} x }?} }:::i~~r,' 

ZK-5751-GE 

Curses Screen Management Functions and Macros 6-17 



Example 6-7 shows the overlay function. 

Example 6-7: Subwindows 

/* The following program creates subwindows --- WIN1 
* and WIN2 --- and shows the effects of OVERLAY. 

0 

#include curses /* Include module 

WINDOW *winl, *wing; /* Define windows 

main ( ) 
{ 

initscr(); 
noecho () ; 

winl = subwin(stdscr, 
wing = subwin (stdscr, 

10, 
10, 

box (stdscr, ~ ' , ' -') ; 

box (wing, ' ~ ' , ' -') ; 

mvwaddstr (winl, 5, 5, 

mvwaddstr (wing, 5, 5, "HE 

/* Set up Curses 
/* Turn off echo 

/* Create subwindows 
20, 10, 10); 
20, 10, 30) ; 

/* Draw a box round STDSCR 
/* Draw box round WIN1 
/* Draw a box round WIN2 

LL ") ; 

0") ; 

overlay(win2, winl); /* Lay WIN2 on WIN1 
wrefresh(win2); /* Display WIN2 on screen 

delwin (wing) ; 
refresh () ; 
wref resh (winl) ; 

getch () ; 

endwin () ; 
} 

/* Refresh STDSCR 
/* Refresh WIN1 

/* Ends session. 

Key to Example 6-7: 

O Strings are added to the two subwindows. Anything written to the 
subwindows is also written to stdscr. These strings are added to the two 
subwindows at the same coordinates, (5,5). 

The program pauses. When wing overlays winl , the word HELLO is 
formed. If wing were to overwrite winl , then the string HE O will 
appear instead of HELLO, with the blanks overwriting the letters. The 
screen appears like Figure 6-5. 

6-18 Curses Screen Management Functions and Macros 



Figure 6-5: An Example of Overwriting Windows 

ZK-5750-G E 

Curses Screen Management Functions and Macros 6-19 





Chapter 7 

Math Functions 

Table 7-1 lists and describes all the math functions and macros found in the 
VAX C RTL. For more detailed information on each function and macro, see 
the Reference Section. 

Table 7-1: Math Functions 

Function or Macro Purpose 

abs Returns the absolute value of an integer. 

acos Returns a value in the range 0 to ~r, which is the arc 
cosine of its radian argument. 

asin Returns a value in the range ~r/2 to ~r/2, which is the arc 
sine of its radian argument. 

atan Returns a value in the range -~r/2 to ~r/2, which is the arc 
tangent of its radian argument. 

atan2 Returns a value in the range -~r to ~r, which is the arc 
tangent of y/x where y and x are the two arguments. 

cabs Return: sgrt (x * x + y * y ). 
ceil Returns (as a double) the smallest integer that is 

greater than or equal to its argument. 

cos Returns the cosine of its radian argument. 

cosh Returns the hyperbolic cosine of its argument. 

ezp Returns the base a raised to the power of the argument. 

fabs Returns the absolute value of a floating-point value. 

(continued on next page) 

Math Functions 7-1 



Table 7-1 (Cont.): Math Functions 

Function or Macro Purpose 

floor Returns (as a double) the largest integer that is less 
than or equal to its argument. 

fmod Computes the floating-point remainder of the first 
argument to fmod divided by the second. 

frexp Returns the mantissa of a double value. 

hypot Returns the square root of the sum of the squares of two 
arguments. 

labs Returns the absolute value of an integer as a long int. 

ldexp Returns its first argument multiplied by 2 raised to the 
power of its second argument. 

ldiv, div Return the quotient and remainder after the division of 
their arguments. 

log, log 10 Return the logarithm of their arguments. 

modf Returns the positive fractional part of its first argument 
and assigns the integral part, expressed as a double, 
to the object whose address is specified by the second 
argument. 

pow Returns the first argument raised to the power of the 
second argument. 

rand, Brand Return pseudorandom numbers in the range 0 to 231 — 1. 

sin Returns the sine of its radian argument. 

Binh Returns the hyperbolic sine of its argument. 

sgrt Returns the square root of its argument. 

tan Returns a double value that is the tangent of its radian 
argument. 

tanh Returns a double value that is the hyperbolic tangent of 
its double argument. 

To help you detect run-time errors, the errno definition module defines the 
following two symbolic values that are returned by many (but not all) of the 
mathematical functions: 

• EDOM indicates that an argument is inappropriate; that is, the 
argument is not within the function's domain. 

• ERvANGE indicates that a result is out of range; that is, the argument is 
too large to be represented by the machine. 

7-2 Math Functions 



When using the math functions, you can check the external variable errno 
for either or both of these values and take the appropriate action if an error 
occurs. 

The following program example checks the variable errno for the value 
EDOM, which indicates that a negative number was specified as input to 
the function sgrt: 

#include errno 
#include math 
#include stdio 

main ( ) 
{ 

double input, square root; 

printf("Enter a number: "); 
scanf ("°sle", &input) ; 
errno = 0; 
square root = sgrt(input); 

if (errno == EDOM) 
perror("Input was negative"); 

else 
printf ("Square root of oe = oe\n", 

input, square root); 
} 

If you did not check errno for this symbolic value, the sgrt function returns 
0 when a negative number is entered. For more information about the errno 
definition module, see Chapter 4. 

Example 7-1 shows how the tan, sin, and cos functions operate. 

Math Functions 7-3 



Example 7-1: Calculating and Verifying a Tangent Value 

/* This example uses two functions --- mytan and main ---

* to calculate the tangent value of a number, and to check 

* the calculation using the sin and cos functions. 

#include math /* Include modules 

#include stdio 

/* This function is used to calculate the tangent using the 

* sin and cos functions. 

double mytan (x) 
double x; 
{ 

double y, yl, y2; 

yl = sin (x) ; 
y2 = cos (x) ; 

if (y2 == 0) 
y = 0; 

else 

Y = Y1 / Y2

return y; 
} 
main ( ) 
{ 

double x; 
/* Print values: compare */ 

for (x=0.0; x<1. 5; x += 0.1) 
printf ("tan of o4. if = ~6.2f\t o6.2f\n", x, mytan (x) , tan (x)) ; 

} 

The sample output from Example 7-1 is as follows: 

$ RUN EXAMPLE 
tan of 0.0 = 
tan of 0.1 = 
tan of 0.2 = 
tan of 0.3 = 
tan of 0.4 = 
tan of 0.5 = 
tan of 0.6 = 
tan of 0.7 = 
tan of 0.8 = 
tan of 0.9 = 
tan of 1.0 = 
tan of 1.1 = 
tan of 1.2 = 
tan of 1.3 = 
tan of 1.4 = 

7-4 Math Functions 

RETURN 
0.00 
0.10 
0.20 
0.31 
0.42 
0.55 
0.68 
0.84 
1.03 
1.26 
1.56 
1.96 
2.57 
3.60 
5.80 

0.00 
0.10 
0.20 
0.31 
0.42 
0.55 
0.68 
0.84 
1.03 
1.26 
1.56 
1.96 
2.57 
3.60 
5.80 



Chapter 8 

Memory Allocation Functions 

Table 8-1 lists and describes all the memory allocation functions and macros 
found in the VAX C RTL. For a more detailed description of each function 
and macro, see the Reference Section. 

Table 8-1: Memory Allocation Functions 

Function or Macro Purpose 

brk, sbrk 

calloc, malloc 

cfree, free 

realloc 

VAXC$CALLOC_OPT 

VAXC$CFREE OPT 

VAxC$FREE OPT 

VAXC$1~ZALLOC_OPT 

Determine the lowest virtual address that is not used 
with the program. 

Allocate an area of memory. 

Make available for reallocation the area allocated by a 
previous calloc, malloc, or realloc call. 

Changes the size of the area pointed to by the first 
argument to the number of bytes given by the second 
argument. 

Allocates an area of memory. 

Makes available for reallocation the area allo-
cated by a previous call to VAXC$CALLOC_OPT, 
VAXC$MALLOC_OPT, or VAXC$REALLOC OPT. 

Makes available for reallocation the area allo-
cated by a previous call to VAXC$CALLOC_OPT, 
VAXC$MALLOC OPT, or VAXC$REALLOC_OPT. 

Allocates an area of memory. 

(continued on next page) 

Memory Allocation Functions 8-1 



Table 8-1 (Copt.): Memory Allocation Functions 

Function or Macro Purpose 

VAXC$REALLOC_ Changes the size of the area pointed to by the first 
OPT argument to the number of bytes given by the second 

argument. 

All the VAX C RTL functions requiring additional storage from the heap 
get that storage using the VAX C memory allocation functions malloc, 
calloc, realloc, free, and cfree. These functions use the LIB$GET VM 
and LIB$FREE_VM routines to acquire the additional virtual memory. The 
routines LIB$GET_VM and LIB$FREE VM take some time to supply the 
virtual memory,. so the VAX C RTL tries to reduce the number of calls to 
these functions in the following manner. 

The VAX C RTL maintains a pointer to the memory block that was most 
recently freed by either free or cfree. The last freed block is not returned 
to the VMS system by LIB$FREE_VM. Instead, the VAX C RTL tries to 
satisfy the next request with this saved block. 

If the saved block is large enough to satisfy the request, it is used. Any 
unused portion of this block is retained for future allocation requests, 
provided that it is larger than the predefined minimum size. The size 
constraint prevents over-fragmentation of memory. If the saved block is 
too small to satisfy a request, it is retained and the requested memory is 
allocated by LIB$GET_VM. 

The freeing of a second block causes the saved block, if any, to be returned 
to the VMS system through LIB$FREE_VM. The new block is then saved to 
be used, if possible, for the next request. 

Since the VAX C RTL saves the last freed block of storage, there is not a 
one-to-one correspondence between calls to malloc or calloc and 
LIB$GET_VM, or between calls to free or cfree and LIB$FREE_VM. 
VAX C RTL functions use LIB$GET VM and LIB$FREE_VM to acquire and 
return dynamic memory. However, the address given to the VAX C RTL 
routines by LIB$GET_VM is not the same as the address given to you by 
the VAX C RTL routines. Therefore, any memory allocated by a VAX C 
RTL routine must be deallocated by a VAX C RTL routine. Similarly, any 
memory allocated by LIB$GET_VM must be deallocated by LIB$FREE_VM. 

The brk and sbrk functions assume that memory can be allocated 
contiguously from the top of your address space. However, the malloc 
function and RMS may allocate space from this same address space. You 

8-2 Memory Allocation Functions 



should not use the brk and sbrk functions in conjunction with RMS and 
VAX C RTL routines that use malloc. 

8.1 Program Example 

Example 8-1 shows the use of the malloc, calloc, free, and cfree 
functions. 

Example 8-1: Allocating and Deallocating Memory for Structures 

/* This example takes lines of input from the terminal until 
* it encounters a CTRL/Z, it places the strings into an 
* allocated buffer, copies the strings to memory allocated 
* for structures, prints the lines back to the screen, and 
* then deallocates all memory used for the structures. 

#include stdio 
#define MAX LINE LENGTH 80 

struct line rec /* Declare the structure 
{ 

struct line_rec *next; 
char *data; 

}; 

main ( ) 
{ 

char *buffer; 

/* Pointer to next line 
/* Aline from terminal 

* 

* 

* 

* 

*/ 

*/ 

/* Define pointers to 
* structure (input lines) */ 

struct line rec *first line = NULL, *next line, *last line = NULL; 

/* buffer points to memory 

buffer = malloc(MAX LINE LENGTH); 

if (buffer == 0 ) 
{ 

perror("malloc"); 
exit () ; 

} 

/* If error ... 

while (gets (buffer) != NULL) /* While not CTRL/Z .. . 
{ 

/* Allocate for input line 

next line = calloc(1, sizeof (struct line rec)); 

*/ 

*/ 

*/ 

*/ 

(continued on next page) 

Memory Allocation Functions 8-3 



Example 8-1 (Cont.): Allocating and Deallocating Memory for Structures 

if (next line == NULL) 
{ 

perror("calloc"); 
exit ( ) ; 

} 
/* Put line in data area 

next line-> data = buffer; 

if (last_line == NULL) /* Reset pointers 
first_line = next_line; 

else 
last line-> next = next line; 

last line = next line; 
/* Allocate space for the 
* next input line 

buffer = malloc(MAX LINE LENGTH); 

if (buffer == 0) 
{ 

perror("malloc"); 
exit () ; 

*/ 

*/ 

} 
} 

free buffer); /* Last buffer always unused */ 
next line = first line; /* Pointer to beginning */ 

while (next line != NULL); 
{ 

} 
} 

puts(next_line -> data); /* Write line to screen 
free(next_line -> data); /* Deallocate a line 
last_line = next_line; 
next_line = next line-> next; 
cfree(last line); 

The sample input and output for Example 8-1 are as follows: 

$ RUN EXAMPLE 
line one 
line two 
' CTRUZ 
EXIT 
line one 
line two 

~RETURN~ 

8-~4 Memory Allocation Functions 



Chapter 9 

System Functions 

The C programming language is a good choice if you wish to write operating 
systems. For example, much of the UNIX operating system is written in 
C. When writing system programs, it is sometimes necessary to retrieve 
or modify the environment in which the program is running. This chapter 
describes VAX C RTL functions that accomplish this task and other 
miscellaneous functions. 

Table 9-1 lists and describes all the system functions found in the VAX C 
RTL. For a more detailed description of each function and macro, see the 
Reference Section. 

Table 9-1: System Functions 

Function or Macro Purpose 

System Functions—Searching and Sorting Utilities 

bsearch 

gsort 

Performs a binary search on an array of sorted objects for 
a specified object. 

Sorts an array of objects in place by implementing the 
quick-sort algorithm. 

(continued on next page) 

System Functions 9-1 



Table 9-1 (Cont.): System Functions 

Function or Macro Purpose 

System Functions—Retrieving Process Information 

ctermid 

cuserid 

getcwd 

getegid, geteuid, 
getgid, getuid 

getenv 

getpid 

getppid 

Returns a character string giving the equivalence string 
of SYS$COMR~IAND, which is the name of the controlling 
terminal. 

Returns a pointer to a character string containing the 
name of the user who initiated the current process. 

Returns a pointer to the file specification for the current 
working directory. 

Return, in VMS terms, group and member numbers from 
the user identification code (UIC). 

Searches the environment array for the current pro-
cess and returns the value associated with a specified 
environment. 

Returns the process ID of the current process. 

Returns the parent process ID of the calling process. 

System Functions—Changing Process Information 

chdir Changes the default directory. 

chmod Changes the file protection of a file. 

Chown Changes the owner user identification code (UIC) of a 
file. 

mkdir Creates a directory. 

nice Increases or decreases the process priority to the process 
base priority by the amount of the argument. 

setgid, setuid Implemented for program portability and have no 
functionality. 

umask Creates a file protection mask that is used whenever a 
new file is created. It returns the old mask value. 

(continued on next page) 

9-2 System Functions 



Table 9-1 (Cont.): System Functions 

Function or Macro Purpose 

System Functions—Retrieving Time Information 

asctime Converts abroken-down time into a 26-character string. 

clock Determines the CPU time (in microseconds) used since 
the beginning of the program execution. 

ctime Converts a time, in seconds, to an ASCII string to the 
form generated by the asctime function. 

difftime Computes the difference, in seconds, between the two 
times specified by its arguments. 

ftime Returns the elapsed time since 00:00:00, January 1, 
1970, in the structure timeb. 

gmtime Converts a given calendar time into abroken-down time, 
expressed as Greenwich Mean Time (GMT). 

localtime Converts a time (expressed as the number of seconds 
elapsed since 00:00:00, January 1, 1970) into hours, 
minutes, seconds, and so on. 

time Returns the time elapsed since 00:00:00, January 1, 
1970, in seconds. 

times Returns the accumulated times of the current process 
and of its terminated child processes. 

System Functions—Miscellaneous 

VAXC$CRTL_I1vIT Allows a call from other languages by initializing the 
run-time environment and establishing an exit and 
condition handler. 

Example 9-1 and Example 9-2 show how the cuserid function is used. 

System Functions 9-3 



Example 9-1: Accessing the User Name 

/* Using cuserid, this program returns the user name. 

#include stdio 
#include perror 

main ( ) 

{ 
static char string[L_cuserid] _ ""• 
cuserid string); 
printf ("Initiating user: °ss\n", string) ; 

} 

* / 

If a user named TOLLIVER is running the program, the output to stdout is 
as follows: 

$ RUN EXAMPLEI RETURN 
Initiating user: TOLLIVER 

Example 9-2 produces the same output. 

Example 9-2: A Second Way to Access the User Name 

/* Using cuserid, this program returns the user name. 

#include stdio 

main ( ) 
{ 

/* Zero: a null argument. 
printf ("Initiating user: os\n", cuserid(0) ); 

} 

*/ 

*/ 

9—~4 System Functions 



Example 9-3 shows the getenv function. 

Example 9-3: Accessing Terminal Information 

cfunc ( ) 
{ 

printf("Terminal type: ~s\n", getenv("TERM")); 
} 

If the terminal in use is a DIGITAL VT100 in 132-column mode, the sample 
output from Example 9-3 is as follows: 

$ RUN EXAMPLE3 RETURN 
Terminal type: vt100-132 

Example 9--4 shows how to use getenv to find the user's default login 
directory and how to use chdir to change to that directory. 

Example 9-4: Manipulating the Default Directory 

/* This program performs the equivalent to the DCL command 
* SET DEFAULT SYS$LOGIN. Once the program exits, however, 
* the directory is reset to the directory from which the 
* program was run. 

#include stdio 

main ( ) 
{ 

} 

char *dir; 
int i; 

dir =getenv("HOME"); 
if ((i = chdir (dir)) != 0) 

{ 
perror("Cannot set directory"); 
exit () ; 

} 

printf("Current directory: ~s\n", dir); 

The sample output from Example 9-4 is as follows: 

$ RUN EXAMPLE4 
Current directory: dba0:[tolliver] 

RETURN j 

System Functions 9-5 



Example 9-5 shows how to use the time and localtime functions to print 
the correct date and time at the terminal. 

Example 9-5: Printing the Date and Time 

/* The time function returns the time in seconds; the 
* localtime function converts the time to hours, minutes, 
* and so on. */ 

#include time 

main ( ) 
{ 

struct tm *time structure; 
time t time_val; 
int i; 

static char *weekday[7] _ {"Sunday", "Monday", "Tuesday", 
"Wednesday", "Thursday", "Friday", 
"Saturday"}; 

static char *month[12] _ {"January","February","March", 
"April", "May", "June", "July", 
"August","September", 
"October","November","December"}; 

static char *hour[2] _ {"AM","PM"}; 

time (&time val) ; 
time structure = localtime(&time val); 

/* Print the date 
printf ("Today is os, os od, 19 od\n", 

weekday [time structure->tm wday], 
month[time_structure->tm mon], 
time structure->tm mday, 
time structure->tm year); 

/* Time conversion and print using 12-hour clock. 

if (time structure->tm hour > 12) 
{ 

} 

*/ 

*/ 

time_structure->tm hour = (time_structure->tm hour)-12; 
i = 1• 

} 

else 
i = 0; 

printf("The time is od:o02d %s\n", 
time_structure->tm hour, 
time structure->tm min, 
hour[i]); 

9-6 System Functions 



The sample output from Example 9-5 is as follows: 

$ RUN EXAMPLES 
Today is Thursday, February 7, 1985 
The time is 10:18 AM 

RETURN 

System Functions 9-7 





Reference Section 

This section alphabetically describes all the functions and macros contained 
in the VAX CRun-Time Library. 





abort 

abort 

The abort function executes an illegal instruction that terminates the 
process. 

Format 

#include stdlib 

void abort (void); 

VAX CRun-Time Library Functions and Macros REF--~ 



abs 

abs 

The abs function returns the absolute value of an integer. 

Format 

#include stdlib 

int abs (nt x); 

Arguments 

X 

Is an integer. 

REF-4 VAX CRun-Time Library Functions and Macros 



access 

access 

The access function checks a file to see whether a specified access mode is 
allowed. This function only checks UIC protection; ACLs are not checked. 

NOTE 

The access function does not accept network files as arguments. 

Format 

#include stdio 

int access (char *file spec, int mode); 

Arguments 

file spec 
Is a character string that gives a VMS or UNIX-style file specification. 
The usual defaults and logical name translations are applied to the file 
specification. 

mode 
Is interpreted as follows in Table REF-1. 

Table REF-1: Interpretation of the mode Argument 

Mode Argument Access Mode 

0 

1 

2 

4 

Tests to see if the file exists. 

Execute. 

Write (implies delete access). 

Read. 

Combinations of access modes are indicated by summing the values. For 
example, the integer 7 indicates RWED. 

VAX CRun-Time Library Functions and Macros REF-5 



access 

Return Values 

0 

EOF 

Indicates that the access is allowed. 

Indicates that the access is not allowed. 

Example 

#include stdio 
main ( ) 

{ 

i f (access ("cdtm$ : [ c .don ] dtm. com" , 0) ) 
perror("ACCESS - FAILED"), 
exit(2); 

} 

REF-6 VAX CRun-Time Library Functions and Macros 



acos 

acos 

The acos function returns a value in the range 0 to ~r, which is the arc 
cosine of its radian argument. 

Format 

#include math 

double acos (double x); 

Arguments 

x 
Is a radian expressed as a real value. 

Description 

When x is a real number greater than 1, the value of acos(x) is 0 and the 
acos function sets errno to EDOM. 

VAX CRun-Time Library Functions and Macros REF-7 



[w]addch 

[w]addch 

The addch macro and the waddch function add the character ch to the 
window at the current position of the cursor. 

Format 

#include curses 

#define boot int 

addch (ch); 

int waddch (WINDOW *win, char ch); 

Arguments 

win 

Is a pointer to the window. 

ch 
Is an object of type char. If the character is a newline (\ n), the addch 
macro and waddch function clear the line to the end, and move the current 
(yx) coordinates to the next line at the same x coordinate. A return (\ r) 
moves the character to the beginning of the line on the window. Tabs (\ t) 
expand into spaces in the normal tabstop positions of every eight characters. 

Description 

When the waddch function is used on a subwindow, it writes the character 
onto the underlying window as well. For more information, see the scrollok 
function in this section. 

The addch macro performs the same function as the waddch function but 
on the stdscr window. 

REF-8 VAX CRun-Time Library Functions and Macros 



[w]addch 

Return Values 

ERR Indicates that the function causes the screen to 
scroll illegally. 

1 Indicates success. 

VAX CRun-Time Library Functions and Macros REF~J 



[w]addstr 

[w]addstr 

The addstr macro and the waddstr function add the string pointed to by 
str to the window at the current position of the cursor. 

Format 

#include curses 

#define boot int 

addstr (str); 

int waddstr (WINDOW *win, char *str); 

Arguments 

win 
Is a pointer to the window. 

str 

Is a pointer to a character string. 

Description 

When the waddstr function is used on a subwindow, the string is written 
onto the underlying window as well. For more information, see the scrollok 
function in this section. 

The addstr macro performs the same function as the waddstr function but 
on the stdscr window. 

REF-10 VAX CRun-Time Library Functions and Macros 



[w]addsir 

Return Values 

ERR Indicates that the function causes the screen to 
scroll illegally, but it places as much of the string 
onto the window as possible. 

1 Indicates success. 

VAX CRun-Time Library Functions and Macros REF-11 



alarm 

alarm 

The alarm function sends the signal SIGALRM (defined in the signal 
definition module) to the invoking process after the number of seconds 
indicated by its argument has elapsed. 

Format 

#include signal 

int alarm (unsigned int seconds); 

Arguments 

seconds 
Has a maximum limit of 4,294,967,295 seconds. 

Description 

Calling the alarm function with a 0 argument cancels any pending alarms. 

Unless it is caught or ignored, the signal generated by alarm terminates the 
process. Successive alarm calls reinitialize the alarm clock. Alarms are not 
stacked. 

Because the clock has a 1-second resolution, the signal may occur up to 1 
second early. If the SIGALRM signal is caught, resumption of execution may 
be held up due to scheduling delays. 

When the SIGALRM signal is generated, a call to SYS$WAKE is generated 
whether or not the process is hibernating. The pending wake causes either 
the current pause() or a subsequent pause() to return immediately (after 
completing any function that catches the SIGALRM). 

REF-12 VAX CRun-Time Library Functions and Macros 



alarm 

Return Values 

n Indicates the number of seconds remaining from 
a previous alarm request. 

VAX CRun-Time Library Functions and Macros REF-13 



asctime 

asctime 
The asctime function converts abroken-down time (see the localtime 
function for more information) into a 26-character string in the following 
form: 

Sun Sep 16 01:03:52 1984\n\0 

All fields have a constant width. 

Format 

#include time 

char *asctime (const tm t *timeptr); 

Arguments 

t~meptr 
Is a pointer to a structure of type tm, which contains the broken-down time. 

Description 

The type tm_t is defined in the standard include module time. h, as follows: 

typedef struct tm 
{ 
.short tm sec, tm min, tm hour; 
short tm mday, tm mon, tm year; 
short tm wday, tm yday, tm isdst; 

}tm t; 

The asctime function converts the contents of tm into a 26-character string, 
as shown in the previous example, and returns a pointer to the string. 
Subsequent calls to asctime or ctime may point to the same static string, 
which is overwritten by each call. 

See the localtime function in this section for a list of the members in tm. 

REF-14 VAX CRun-Time Library Functions and Macros 



asctime 

Return Values 

x Indicates a pointer to the string. 

VAX CRun-Time Library Functions and Macros REF-15 



asin 

asin 

The asin function returns a value in the range -~r/2 to ~r/2, which is the arc 
sine of its radian argument. 

Format 

#include math 

double asin (double x) ; 

Arguments 

X 
Is a radian expressed as a real number. 

Description 

When x is a real number greater than 1, the value of asin(x) is 0 and the 
asin function sets errno to EDOM. 

REF-16 VAX CRun-Time Library Functions and Macros 



assert 

assert 

The assert function puts diagnostics into programs. 

Format 

#include assert 

void assert (nt expression); 

Arguments 

expression 
Is an expression that has an int type. 

Description 

When the assert macro is executed, if expression is false (that is, it 
evaluates to 0), the assert macro writes information about the particular 
call that failed (including the text of the argument, the name of the source 
file, and the source line number the latter are respectively the values of 
the preprocessing macros _ _FILE_ _ and _ _LINE_ _) on the standard error 
file in an implementation-defined format. Then, it calls the abort function. 

The assert macro writes a message in the following form: 

Assertion failed: expression, file aaa, line nnn 

If expression is true (that is, it evaluates to nonzero) or if the signal 
SIGABRT is being ignored, the assert macro returns no value. 

Compiling with the CC command qualifier /DEFINE=NDEBUG or with the 
preprocessor directive #define NDEBUG ahead of the #include assert 
statement causes the assert macro to have no effect. 

The assert function is implemented as a macro, not as a real function. If 
you use #undef to remove the macro definition and obtain access to a real 
function, the behavior is undefined. 

VAX CRun-Time Library Functions and Macros REF-17 



assert 

Example 

#include stdio 
#include assert 

main () { 

printf("Only this and the assert"); 

assert( 1==2 ); /* expression is FALSE */ 

/* abort should be called so the printf will not happen. 

printf("FAIL abort did not execute"); 

REF-18 VAX CRun-Time Library Functions and Macros 



atan 

atan 

The atan function returns a value in the range -~r/2 to ~r/2, which is the arc 
tangent of its radian argument. 

Format 

#include math 

double atan (double x); 

Arguments 

X 
Is a radian expressed as a real value. 

VAX CRun-Time Library Functions and Macros REF-19 



atan2 

atan2 

The atan2 function returns a value in the range -~r to ~r. The returned value 
is the arc tangent of y1x, where y and x are the two arguments. 

Format 

#include math 

double atan2 (double y, double x); 

Arguments 

y 
Is a real value. 

x 
Is a real value. 

REF-20 VAX CRun-Time Library Functions and Macros 



atexit 

atexit 

The atexit function registers a function that is called without arguments at 
program termination. 

Format 

#include stdlib 

int atexit (void (*func) (void)); 

Arguments 

func 
Is a pointer to the function to be registered. 

Description 

Up to 32 functions can be registered. However, you should not register a 
function more than once. 

Return Values 

zero Indicates that the registration has succeeded. 

nonzero Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-21 



atexit 

Example 
#include stdlib.h 
#include stdio.h 

static void hw (void) ; 

main ( ) 
{ 

atexit (hw) ; 
} 

static void hw ( ) 
{ 

puts("Hello, world~n"); 
} 

REF-22 VAX CRun-Time Library Functions and Macros 



atof 

atof 

The atof function converts a given string to adouble-precision number. 

This function recognizes an optional sequence of white-space characters 
(as defined by isspace in ctype), then an optional plus or minus sign, then 
a sequence of digits optionally containing a single decimal point, then an 
optional letter (e or E) followed by an optionally signed integer. The first 
unrecognized character ends the conversion. 

The string is interpreted by the same rules that are used to interpret 
floating constants. 

Format 

#include stdlib 

double atof (const char *nptr); 

Arguments 

nptr 

Is a pointer to the character string to be converted to adouble-precision 
number. 

Description 

For atof, overflows resulting from the conversion are not accounted for, 
strtod(str,(char **)0), arithmetic exceptions not withstanding. 

Return Values 

n Indicates the converted value. 

VAX CRun-Time Library Functions and Macros REF-23 



atoi, atol 

atoi, 

atol 

The atoi and atol functions convert strings of ASCII characters to the 
appropriate numeric values. 

Format 

#include stdlib 

int atoi (const char ''nptr); 

long int atol (const char 'nptr); 

Arguments 

nptr 
Is a pointer to the character string to be converted to a long. 

Description 

The atoi and atol functions recognize strings in various formats, depending 
on the value of the base. These functions are the same in VAX C. The 
atoi and atol functions do not account for overflows resulting from the 
conversion. Truncation from long to int can take place upon assignment or 
by an explicit cast (arithmetic exceptions not withstanding). The function 
call atol (str) is equal to strtol (str, (char**)0, 10). Similarly, the function 
call atoi (str) is equivalent to (int) strtol (str, (char**)0,10). 

Return Values 

n Indicates the converted value. 

REF-24 VAX CRun-Time Library Functions and Macros 



box 

box 

The box function draws a box around the window using the character vent 
as the character for drawing the vertical lines of the rectangle, and hor for 
drawing the horizontal lines of the rectangle. 

Format 

#include curses 

#define boot int 

int box (WINDQW *win, char vert, char hor); 

Arguments 

win 
Specifies the address of the window. 

vent 
Specifies the character for the vertical edges of the window. 

hor 
Specifies the character for the horizontal edges of the window. 

Description 

The box function copies boxes drawn on subwindows onto the underlying 
window. Use caution when using functions such as overlay and overwrite 
with boxed subwindows. Such functions copy the box onto the underlying 
window. 

VAX CRun-Time Library Functions and Macros REF-25 



box 

Return Values 

0 

1 

Indicates an error. 

Indicates success. 

REF-26 VAX CRun-Time Library Functions and Macros 



brk 

brk 

The brk function determines the lowest virtual address that is not used 
with the program. 

Format 

#include stdlib 

void *brk (unsigned long int addr); 

Arguments 

addr 
Specifies the lowest address to the brk function, which the function rounds 
up to the next 512-byte multiple. This rounded address is called the break 
address. 

Description 

An address that is greater than or equal to the break address and less than 
the stack pointer is considered to be outside the program's address space. 
Attempts to reference it will cause access violations. 

When a program is executed, the break address is set to the highest location 
defined by the program and data storage areas. Consequently, brk is needed 
only by programs that have growing data areas. 

VAX CRun-Time Library Functions and Macros REF-27 



brk 

Return Values 

n 

—1 

Indicates the break address (the address of an 
object of type char). 

Indicates that the program requests too much 
memory. 

REF-28 VAX CRun-Time Library Functions and Macros 



bsearch 

bsearch 

The bsearch function performs a binary search. It searches an array of 
sorted objects for a specified object. 

Format 

#include stdlib 

void *bsearch (const void *key, const void *base, size t 
nmemb, size t size, int (*compar) (const void ; 
const void *)); 

Arguments 

key 
Is a pointer to the object to be sought in the array. This pointer should be of 
type pointer-to-object and cast to type pointer-to-character. 

base 
Is a pointer to the initial member of the array. This pointer should be of 
type pointer-to-object and cast to type pointer-to-character. 

nmemb 
Is the number of objects in the array. 

size 
Is the size of an object, in bytes. 

compar 

Is a pointer to the comparison function. 

VAX CRun-Time Library Functions and Macros REF-29 



bsearch 

Description 

The array must first be sorted in increasing order according to the specified 
comparison function pointed to by compar. 

Two arguments are passed to the comparison function pointed to by compar. 
The two arguments point to the objects being compared. Depending on 
whether the first argument is less than, equal to, or greater than the second 
argument, the comparison function returns an integer less than, equal to, or 
greater than 0. 

It is not necessary for the comparison function (compar) to compare every 
byte in the array. Therefore, the objects in the array can contain arbitrary 
data in addition to the data being compared. 

Since it is declared as type pointer-to-void, the value returned must be cast 
or assigned into type pointer-to-object. 

Return Values 

x 

NULL 

Indicates a pointer to the matching member of 
the array or a null pointer if no match is found. 

Indicates that the key cannot be found in the 
array. 

Example 

#include stdio 
#include stdlib 

#define SSIZE 30 

extern int time(); 
int trand(); 
extern int compare(); 

int array [SSIZE] = 0; 
int stmp = 0; 
int lcnt = LOOPCOUNT; 

/* The array to sort *~ 

J* Number of times to go around *~ 

void *bsearch (const void *key, const void *base, int nmemb, int elt_size, 
int (*bscmp) () ) ; 

REF-30 VAX CRun-Time Library Functions and Macros 



bsearch 

main ( ) 
{ 

register int i; 

int success_count =0; 
volatile int j; 
int *rkey; 

/* sort array */ 
gsort(array, SSIZE, sizeof(array[0]), &compare); 

for (i=0; i<SSIZE-1; i++) 
{ 

rkey =bsearch( (array + i), array, SSIZE, sizeof(array[0]), &compare); 

if ( &array[i] != rkey) 
{ 

printf("Not in array, array element od\n",i); 

break; 
} 

else 
++found; 

} 

} 

/* compare routine 
compare (a, b ) 
int *a, *b; 

{ 

ccomp++; 
return (*a - *b) ; 

} 

* 

VAX CRun-Time Library Functions and Macros REF-31 



cabs 

cabs 

The cabs function computes the Euclidean distance between two points as 
the square root of their respective squares. The cabs return is as follows: 

sgrt(x*x + y*y) 

Format 

#include math 

double cabs (cabs t z); 

Description 

The type cabs_t is defined in the standard include module math. h as 
follows: 

typedef struct {double x, y;} cabs t; 

REF-32 VAX CRun-Time Library Functions and Macros 



calloc 

calloc 

The calloc function allocates an area of memory. 

Format 

#include stdlib 

void *calloc (size t number, size t size); 

Arguments 

number 
Specifies the number of items to be allocated. 

size 
Is the size of each item. 

Description 

The calloc function initializes the items to 0. 

See also malloc and realloc in this section. 

Return Values 

0 Indicates an inability to allocate the space. 

n Indicates the address of the first byte, which is 
aligned on an octaword boundary. 

VAX CRun-Time Library Functions and Macros REF-33 



ceil 

ceil 

The ceil function returns (as a double) the smallest integer that is greater 
than or equal to its argument. 

Format 

#include math 
double ceil (double x); 

Arguments 

X 

Is a real value. 

REF-34 VAX CRun-Time Library Functions and Macros 



cfree 

cfree 

The cfree function makes available for reallocation the area allocated by a 
previous calloc, malloc, or realloc call. 

Format 

#include stdlib 

void cfree (void ''ptr); 

Arguments 

ptr 
Is the address returned by a previous call to malloc, calloc, or realloc. 

Description 

The contents of the deallocated area are unchanged. 

In VAX C, the free and cfree functions have the same function. However, 
for compatibility with other C implementations, use free with malloc or 
realloc, and cfree with calloc. 

See also free in this section. 

VAX CRun-Time Library Functions and Macros REF-35 



chdir 

chdir 

The chdir function changes the default directory. 

Format 

#include stdlib 

int chdir (char *dir spec); 

Arguments 

dir spec 
Is a NUL-terminated character string naming a directory in either a VMS or 
UNIX-style specification. 

Description 

If you call the chdir function in USER mode, the default directory change is 
only temporary. On image exit, the default is set to whatever it was before 
the execution of the image. If you want the change to be effective across 
images, call chdir from SUPERVISOR, EXECUTIVE, or KERNEL mode. 

Return Values 

0 Indicates that the directory is successfully 
changed to the given name. 

—1 Indicates that the change attempt has failed. 

REF-36 VAX CRun-Time Library Functions and Macros 



chmod 

chmod 

The chmod function changes the file protection of a file. 

Format 

#include stdlib 

int chmod (char *file spec, unsigned int mode); 

Arguments 

file spec 
Is the name of a VMS or UNIX-style file specification. 

mode 
Is a file protection. Modes are constructed by performing a bitwise OR on 
any of the values shown in Table REF-2. 

Table REF-2: File Protection Values and their Meanings 

Value Privilege 

0400 OWNER:READ 

0200 OWNER:WRITE 

0100 OWNER:EXECUTE 

0040 GROUP:READ 

0020 GROUP:WRITE 

0010 GROUP:EXECUTE 

0004 WORLD:READ 

0002 WORLD:WRITE 

(continued on next page) 

VAX CRun-Time Library Functions and Macros REF-37 



chmod 

Table REF-2 (Cont.): File Protection Values and their Meanings 

Value Privilege 

0001 WORLD:EXECUTE 

When you supply a mode argument of 0, the chmod function gives the file 
the user's default file protection. 

The system is given the same privileges as the owner. A WRITE privilege 
also implies a DELETE privilege. 

Description 

You must have a WRITE privilege for the file specified to change the mode. 

Return Values 

0 Indicates that the mode is successfully changed. 

—1 Indicates that the change attempt has failed. 

REF-38 VAX CRun-Time Library Functions and Macros 



Chown 

Chown 

The shown function changes the owner User Identification Code (UIC) of 
the file. 

Format 

#include stdlib 

int Chown (char *file spec, 
unsigned int owner, unsigned int group); 

Arguments 

file spec 
Is the address of an ASCII file name. 

owner 

Is the owner name. 

group 
Is the group name. 

Return Values 

0 

—1 

Indicates failure. 

Indicates success. 

VAX CRun-Time Library Functions and Macros REF-39 



[w]clear 

[w]clear 

The clear macro and the wclear function erase the contents of the specified 
window and reset the cursor to coordinates (0,0). The clear macro acts on 
the stdscr window. 

Format 

#include curses 

clear( ) 

int wclear (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Return Values 

ERR Indicates an error. 

1 Indicates success. 

REF-40 VAX CRun-Time Library Functions and Macros 



clearerr 

clearerr 

The clearerr macro resets the error and end-of--file indications for a file (so 
that ferror and feof will not return a nonzero value). 

Format 

#include stdio 

void ciearerr (FILE ''file~ntr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

VAX C implements clearerr as a macro. 

VAX CRun-Time Library Functions and Macros REF-41 



clearok 

clearok 

The clearok macro sets the clear flag for the window. 

Format 

#include curses 

#define boot int 

clearok (WINDOW *win, boot boolf); 

Arguments 

win 
Is the entire size of the terminal screen. You can use the windows stdscr 
and curscr with clearok. 

boolf 
Is a Boolean value of TRUE or FALSE. If the argument is TRUE, this forces 
a clearscreen to be printed on the next call to refresh, or stops the screen 
from being cleared if boolf is FALSE. The constant boolf is defined in the 
curses definition module. 

Description 

Unlike the clear macro, the clearok macro does not alter the contents of 
the window. If the win argument is curscr, the next call to refresh causes a 
clearscreen, even if the window passed to refresh is not a window the size 
of the entire terminal screen. 

REF—~42 VAX CRun-Time Library Functions and Macros 



clock 

clock 

The clock function determines the CPU time (in lo-millisecond units) used 
since the beginning of the program execution. The time reported is the sum 
of the user and system times of the calling process and any terminated child 
processes for which the calling process has executed wait or system. 

Format 

#include time 

clock t clock (void); 

Description 

The value returned by the clock function must be divided by the value of 
the macro CLK TCK, as defined in the standard include module time. h, to 
obtain the time in seconds. 

Return Values 

n Indicates the processor time used. 

—1 Indicates that the processor time used is not 
available. 

VAX CRun-Time Library Functions and Macros REF-43 



close 

close 

The close function closes the file associated with a file descriptor. 

Format 

#include unixio 

int close (nt file desc); 

Arguments 

file desc 
Is a file descriptor. 

Description 

Upon image exit, all buffered data is written to the file if it was opened for 
writing or update, and the file is closed. 

Return Values 

0 Indicates that the file is properly closed. 

—1 Indicates that the file descriptor is undefined 
or an error occurred while the file was being 
closed (for example, if the buffered data cannot 
be written out). 

REF-44 VAX CRun-Time Library Functions and Macros 



CIOS@ 

Example 

#include stdio.h 
int fd; 

fd = open ("student.dat", 1); 

close (fd) ; 

VAX CRun-Time Library Functions and Macros REF-45 



[w]clrattr 

[w]clrattr 

The clrattr macro and the wclrattr function deactivate the video display 
attribute attr within the window. The clrattr macro acts on the stdscr 
window. 

Format 

#include curses 

clrattr (attr); 

int wclrattr (WINDOW *win, int attr); 

Arguments 

win 
Is a pointer to the window. 

attr 
Are video display attributes that can be blinking, boldface, reverse video, 
and underlining, and are represented by the defined constants _BLINK, 
_BOLD, _REVERSE, and _UNDERLINE. To clear multiple attributes, 
separate them with a bitwise OR operator ( I ) as follows: 

clrattr( BLINK ~ UNDERLINE); 

Description 

The clrattr macro and the wclrattr function are VAX C specific and are not 
portable. 

REF-46 VAX CRun-Time Library Functions and Macros 



[w]cirattr 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

VAX CRun-Time Library Functions and Macros REF—~47 



[w]clrtobot 

[w]clrtobot 

The cirtobot macro and the wclrtobot function erase the contents of the 
window from the current position of the cursor to the bottom of the window. 
The cirtobot macro acts on the stdscr window. 

Format 

#include curses 

cirtobot( ) 

int wclrtobot (WINDOW *win); 

Arguments 

win 
Is a pointer to the window. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

REF-48 VAX CRun-Time Library Functions and Macros 



[w]clrtoeol 

[w]cirtoeol 

The clrtoeol macro and the wcirtoeol function erase the contents of 
the window from the current cursor position to the end of the line on the 
specified window. The wcirtoeol macro acts on the stdscr window. 

Format 

#include curses 

clrtoeol( ) 

int wcirtoeol (WINDOW *win); 

Arguments 

~'1 win 
Is a painter to the window. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-49 



COS 

COS 

The cos function returns the cosine of its radian argument. 

Format 

#include math 

double cos (double x); 

Arguments 

X 

Is a radian expressed as a real value. 

Description 

If you use the math include module to declare cos, VAX C transforms the 
call into a direct call to MTH$DCOS_RT or MTH$GCOS_RT, depending on 
whether or not /G_FLOAT is specified on the CC command line. 

REF-50 VAX CRun-Time Library Functions and Macros 



cosh 

cosh 

The cosh function returns the hyperbolic cosine of its argument. 

Format 

#include math 

double cosh (double x); 

Arguments 

X 

Is a real value. 

VAX CRun-Time Library Functions and Macros REF-51 



crest 

crest 

The crest function creates a new file. 

Format 

#include unixio 

int Great (char *file spec, unsigned int mode, . . . ); 

Arguments 

file spec 
Is a NUL-terminated string containing any valid file specification. 

mode 
Is an unsigned value that specifies the file-protection mode. The compiler 
performs a bitwise AND operation on the mode and the complement of the 
current protection mode. 

You can construct modes by using the bitwise OR operator ( I ) to create 
mode combinations. The modes are as follows: 

0400 OWNER:READ 

0200 OWNER:WRITE 

0100 OWNER:EXECUTE 

0040 GROUP:READ 

0020 GROUP:WRITE 

0010 GROUP:EXECUTE 

0004 WORLD:READ 

0002 WORLD:WRITE 

0001 WORLD:EXECUTE 

When you supply a mode argument of 0, treat gives your default file 
protection. 

REF-52 VAX CRun-Time Library functions and Macros 



Great 

The system is given the same privileges as the owner. A WRITE privilege 
implies a DELETE privilege. 

.. 
Represents an optional argument list of character strings of the following 
form: 

"keyword =value", . . . ,"keyword =value" 

Keyword is an RMS field in the file access block (FAB) or record access block 
(RAB); value is valid for assignment to that field. Some fields permit you 
to specify more than one value. In these cases, the values are separated by 
commas. Table REF-3 describes RMS keywords and values. 

Table REF-3: RMS Valid Keywords and Values 

Keyword Value Description 

"alq = n" decimal Allocation quantity 

"bls = n" decimal Block size 

"ctx =bin" string No translation of '~ n' to the terminal 

"ctx = nocvt" decimal No conversion of FORTRAN carriage-control 
bytes 

"ctx = rec" string Force record mode access 

"ctx = stm" string Force stream mode access 

"deq = n" decimal Default extension quantity 

"dna = filespec" string Default file-name string 

"fop = val, val , . . . " File-processing options: 

(continued on next page) 

VAX CRun-Time Library Functions and Macros REF-53 



crest

Table REF-3 (Cont.): RMS Valid Keywords and Values 

Keyword Value Description 

ctg Contiguous 
cbt Contiguous-best-try 
dlt Delete file on close 
tef Truncate at end-of--file 
cif Create if nonexistent 
sup Supersede 
scf Submit as command file on close 
spl Spool to system printer on close 
tmd Temporary delete 
tmp Temporary (no file directory) 
nef Not end-of--file 
rck Read check compare operation 
wck Write check compare operation 
mxv Maximize version number 
rwo Rewind file on open 
pos Current position 
rwc Rewind file on close 

"fsz = n" decimal Fixed header size 

"mbc = n" decimal Multiblock count 

"mbf = n" decimal Multibuffer count 

"mrs = n" decimal Maximum record size 

"rat = val, val . . . " Record attributes: 

cr Carriage-return control 
blk Disallow records to span block boundaries 
ftn FORTRAN print control 
prn Print file format 

"rfm = val" Record format: 

(continued on next page) 

REF-54 VAX CRun-Time Library Functions and Macros 



crest 

Table REF-3 (Cont.): RMS Valid Keywords and Values 

Keyword Value Description 

"rop = val" 

"shr = val" 

"tmo = n" 

fix Fixed-length record format 
stm RMS stream record format 
stmlf Stream format with line-feed terminator 
stmcr Stream format with carriage-return termi-

nator 
var Variable-length record format 
vfc Variable-length record with fixed control 
udf Undefined 

Record-processing operations: 

asy Asynchronous I/O 
tmo ~imeout UO 
RAH Read ahead 
WBH Write behind 

File sharing options: 

del Allows users to delete 
get Allows users to read 
mse Allows mainstream access 
nil Prohibits file sharing 
put Allows users to write 
upd Allows users to update 
upi Allows one or more writers 

decimal UO timeout value 

NOTE 

You cannot share the default VAX C stream file UO. If you wish to 
share files, you must specify "ctx=rec" to force record access mode. 
You must also specify the appropriate "shr" options depending on 
the type of access you want. 

VAX CRun-Time Library Functions and Macros REF-55 



crest 

Description 

If the file exists, a version number one greater than any existing version is 
assigned to the newly created file. 

If the file did not previously exist, it is given the file protection that results 
from performing a bitwise AND on the mode argument and the complement 
of the current protection mask. The VAX C RTL opens the new file for 
reading and writing, and it returns the corresponding file descriptor. 

See also open, close, read, write, and lseek in this section. 

Return Values 

integer Indicates a file descriptor. 

—1 Indicates errors including protection viola-
tions, undefined directories, and conflicting file 
attributes. 

REF-56 VAX CRun-Time Library Functions and Macros 



[no]crmode 

[no]crmode 

In the UNIX system environment, the crmode and nocrmode macros set 
and upset the terminal from cbreak mode. This mode of single character 
input is only supported with the Curses input routine getch. It also applies 
to any of the UNIX I/O, Terminal UO, or Standard UO routines. 

Format 

#include curses 

crmode( ) 

nocrmode( ) 

Example 

/* Exercise cbreak 

# include curses 

main ( ) 
{ 

*, 

WINDOW *winl; 
char vert = ' .' , hor = ' .' , str [80] ; 

/* Initialize standard screen, turn echo off */ 

initscr (); 
noecho () ; 

/* Define a user window */ 

winl = newwin (22, 78, 1, 1); 

/* Turn on reverse video and draw a box on border 

setattr (_REVERSE); 
box (stdscr, vert, hor) ; 

mvwaddstr (winl, 2, 2, "Test cbreak input"); 
refresh () ; 

wrefresh (winl); 

/* Set cbreak do some input and output it */ 

*/ 

VAX CRun-Time Library Functions and Macros REF-57 



[no]crmode 

crmode ( ) ; 
getstr (str); 

nocrmode(); /* Now turn off cbreak */ 

mvwaddstr (winl, 5, 5, str) ; 
mvwaddstr (winl, 7, 7, "Type something to clear the screen"); 

wrefresh (winl); 

/* Get another character then delete the window 

getch ( ) ; 
wclear (winl) ; 

/* Redraw the standard window 
touchwin (stdscr); 

endwin (); 
} 

* 

REF-58 VAX C Run-Time Library Functions and Macros 

*/ 



ctermid 

ctermid 

The ctermid function returns a character string giving the equivalence 
string of SYS$COMMAND. This is the name of the controlling terminal. 

Format 

#include stdlib 

char *ctermid (char *str); 

Arguments 

str 

Must be a pointer to an array of characters. If this argument is NULL, the 
file name is stored internally and may be overwritten by the next ctermid 
call. Otherwise, the file name is stored beginning at the location indicated 
by the argument. The argument must point to a storage area of length 
L_ctermid (defined by the stdio definition module). 

Return Values 

pointer Points to a character string. 

VAX CRun-Time Library Functions and Macros REF-59 



ctime 

ctime 

The ctime function converts a time in seconds, since 00:00:00 January 1, 
1970, to an ASCII string in the form generated by the asctime function. 

Format 

#include time 

char *ctime (const time t *~bintim); 

Arguments 

bintim 
Is a pointer to the time value to be converted. 

Description 

Successive calls to the ctime or asctime function .overwrite any previous 
time values. The type time_t is defined in the standard include module 
time. h as follows: 

typedef long int time t 

Return Values 

pointer Points to the 26-character ASCII string. 

REF-60 VAX CRun-Time Library Functions and Macros 



cuserid 

cuserid 

The cuserid function returns a pointer to a character string containing the 
name of the user initiating the current process. 

Format 

#include stdio 

char *cuserid (char *str); 

Arguments 

str 

If this argument is NULL, the user name is stored internally. If the 
argument is not NULL, it points to a storage area of length L_cuserid 
(defined by the stdio definition module), and the name is written into that 
storage. If the user name is a null string, the function returns NULL. 

Return Values 

pointer Points to a string. 

VAX CRun-Time Library Functions and Macros REF-61 



[w]delch 

[w]delch 

The Belch macro and the wdelch function delete the character on the 
specified window at the current position of the cursor. 

Format 

#include curses 

Belch( ) 

int wdelch (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Description 

Each of the following characters on the same line shifts to the left, and 
Curses appends a blank character to the end of the line. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

REF-62 VAX CRun-Time Library Functions and Macros 



delete 

delete 

The delete function causes a file to be deleted. 

Format 

#include stdio 

int delete (const char *file spec); 

Arguments 

file spec 
Is a pointer to the string that is a VMS or UNIX-style file specification. 

Description 

If you specify a directory in the file name and it is a search list that contains 
an error, VAX C interprets it as a file error. 

The remove and delete functions are the same in the VAX C RTL. 

Return Values 

—1 Indicates that the operation has failed. 

0 Indicates success. 

VAX CRun-Time Library Functions and Macros REF-63 



[w]deleteln 

[w]deleteln 

The deleteln macro and the wdeleteln function delete the line at the 
current position of the cursor. The deleteln macro acts on the stdscr 
window. 

Format 

#include curses 

deleteln() 

int wdeleteln (WINDOW ''win); 

Arguments 

win 
Is a pointer to the window. 

Description 

Every line below the deleted line moves up, and the bottom line becomes 
blank. The current (yx) coordinates of the cursor remain unchanged. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

REF-64 VAX CRun-Time Library Functions and Macros 



delwin 

delwin 

The delwin function deletes the specified window from memory. 

Format 

#include curses 

#define boot int 

in# delwin (WINDOW *win); 

Arguments 

win 
Is a pointer to the window. 

Description 

If the window being deleted contains a subwindow, the subwindow is 
invalidated. Delete subwindows before deleting the underlying window. The 
delwin function refreshes all covered windows of the deleted window. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-65 



difftime 

difftime 

The difftime function computes the difference, in seconds, between the two 
times specified by the timel and time2 arguments. 

Format 

#include time 

double difftime (time t time2, time t times); 

Arguments 

time2 
Is of type time_t, which is defined in the standard include module time.h. 

timel 
Is of type time_t, which is defined in the standard include module time.h. 

Return Values 

n Indicates time2—time 1 in seconds expressed as 
a double. 

REF-66 VAX CRun-Time Library Functions and Macros 



div 

div 

The div function returns the quotient and the remainder after the division 
of its arguments. 

Format 

#include stdlib 

div_t div ant numer, int denom) ; 

Arguments 

numer 
Is a numerator of type int. 

denom 
Is a denominator of type int. 

Description 

The type div_t is defined in the standard include module stdlib as follows: 

struct DIV_T 
{ 

int quot 
int rem; 

}; 
typdef struct DIV_T div_t; 

VAX CRun-Time Library Functions and Macros REF-67 



dup,dup2 

dup,dup2 

The dup and dup2 functions allocate a new descriptor that refers to a file 
specified by a file descriptor returned by open, Great, or pipe. 

Format 

#include unixio 

int dup (nt file descl); 

int dup2 ant file descl, int file desc2); 

Arguments 

file_desc 1 
Is the file descriptor being duplicated. 

file desc2 
Is the new file descriptor to be assigned to the file designated by file_descl. 

Description 

The dup2 function causes its second argument to refer to the same file as 
its first argument. 

The argument file_descl is invalid if it does not describe an open file; file_ 
desc2 is invalid if the new file descriptor cannot be allocated. If file_desc2 is 
connected to an open file, that file is closed. 

REF-68 VAX CRun-Time Library Functions and Macros 



dup,dup2 

Return Values 

n 

—1 

Indicates the new file descriptor. 

Indicates that there are invalid arguments. 

VAX CRun-Time Library Functions and Macros REF-69 



[no]echo 

[no]echo 

The echo and noecho macros set the terminal so that characters may or 
may not be echoed on the terminal screen. This mode of single-character 
input is only supported with Curses. 

Format 

#include curses 

echo( ) 

noecho( ) 

Description 

The noecho macro may be helpful when accepting input from the terminal 
screen with wgetch and wgetstr; it prevents the input characters from 
being written onto the specified window. 

REF-70 VAX CRun-Time Library Functions and Macros 



ecvt 

ecvt 

The ecvt function converts its argument to a NUL-terminated string of 
ASCII digits and returns the address of the string. The strings are stored in 
a memory location created by the functions. 

Format 

#include unixlib 

char *ecvt (double value, int ndigit, int *decpt, int *sign); 

Arguments 

value 
Is an object of type double that is converted to a NUL-terminated string of 
ASCII digits. 

ndigit 
Is the number of ASCII digits to be used in the converted string. 

decpt 
Contains the position of the decimal point relative to the first character in 
the returned string. A negative int value means that the decimal point is 
decpt number of spaces to the left of the returned digits, (the spaces being 
filled with zeros). A 0 value means that the decimal point is immediately to 
the left of the first digit in the returned string. 

sign 
Contains an integer value that indicates whether the argument value is 
positive or negative. If the value is negative, the functions place a nonzero 
value at the address specified by argument sign. Otherwise, the functions 
assign 0 to the address specified by the argument sign. 

VAX CRun-Time Library Functions and Macros REF-71 



ecvt 

Description 

Repeated calls to the ecvt function overwrite any existing string. 

See also govt and fcvt in this section. 

Return Values 

x Is the value of the converted string. 

REF-72 VAX CRun-Time Library Functions and Macros 



endwin 

endwin 

The endwin function clears the terminal screen and frees any virtual 
memory allocated to Curses data structures. 

Format 

#include curses 

#define boot int 

void endwin (void); 

Description 

You must call the endwin function before exiting to restore the previous 
environment of the terminal screen. 

VAX CRun-Time Library Functions and Macros REF-73 



[w]erase 

[w]erase 

The erase macro and the werase function erase the window by "painting" 
it with blanks. The erase macro acts on the stdscr window. 

Format 

#include curses 

erase( ) 

int werase (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Description 

Both the erase macro and the werase function leave the cursor at the 
current position on the terminal screen after completion; they do not return 
the cursor to the home coordinates of (0,0). 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

REF-74 VAX CRun-Time Library Functions and Macros 



exec) 

exec) 

The execl function passes the name of an image to be activated in a child 
process. 

Format 

##include processes 

int exec) (char *file spec, char *argn, . . 

Arguments 

file spec 
Is the file specification (full) of a new image to be activated in the child 
process. 

argn 
Represents a sequence of pointers to NUL-terminated character strings. 
By convention, at least one argument must be present and must point to a 
string that is the same as the new process file name (or its last component). 

. . 
Represents a sequence of pointers to strings. At least one pointer must exist 
to terminate the list. This pointer may be the null pointer. 

Description 

To understand how the exec functions operate, consider how the VMS 
system calls any VAX C program, as shown in the following syntax: 

int main (int argc, char *argv~J, char *envpf~; 

The identifier argc is the argument, count; argv is an array of argument 
strings. The first member of the array (argv[o]) contains the name of the 
image. The arguments are placed in subsequent elements of the array. The 
last element of the array is always the null pointer. 

VAX CRun-Time Library Functions and Macros REF-75 



exec) 

An exec function calls a child process in the same way that the run-time 
system calls any other VAX C program. The exec functions pass the 
name of the image to be activated in the child; this value is placed in 
argv[o]. However, the functions differ in the way they pass arguments and 
environment information to the child as follows: 

• Arguments can be passed in separate character strings. 

• The environment can be explicitly taken from the parent's environment 
variable. 

See also execle, execlp, execv, execve, and execvp in this section. 

Return Values 

-1 Indicates failure. 

REF-76 VAX CRun-Time Library Functions and Macros 



execle 

execle 

The execle function passes the name of an image to be activated in a child 
process. 

Format 

#include processes 

int execle (char *file spec, char *argn, . . . ,char *envp]); 

Arguments 

file spec 
Is the full file specification of a new image to be activated in the child 
process. 

argn 
Represents a sequence of pointers to NUL-terminated character strings. 
By convention, at least one argument must be present and must point to a 
string that is the same as the new process file name (or its last component). 

envp 
Is an array of strings that specifies the program's environment. Each string 
in argument envp has the following form: 

name =value 

The name can be one of the following names and the value is a NUL-
terminated string to be associated with the name: 

• HOME Your login directory 

• TERM The type of terminal being used 

• PATH The default device and directory 

• USER The name of the user who initiated tl~e process 

The last element in envp must be the null pointer NULL. 

VAX CRun-Time Library Functions and Macros REF-77 



execle 

When the operating system executes the program, it places a copy of the 
current environment vector (envp) in the external variable environ. 

argv 
Is an array of pointers to NUL-terminated character strings. These strings 
constitute the argument list available to the new process. By convention, 
argv[o] must point to a string that is the same as the new process file name 
(or its last component). Argv is terminated by a null pointer. 

... 
Represents a sequence of pointers to strings. At least one pointer must exist 
to terminate the list. This pointer may be the null pointer. 

Description 

To understand how the exec functions operate, consider how the VMS 
system calls any VAX C program as shown in the following syntax: 

int main (int argc, char *argv~J, char *envp(J); 

The identifier argc is the argument count; argv is an array of argument 
strings. The first member of the array (argv[o]) contains the name of the 
image. The arguments are placed in subsequent elements of the array. The 
last element of the array is the null pointer. 

An exec function calls a child process in the same way that the run-time 
system calls any other VAX C program. The exec functions pass the name 
of the image to be activated in the child; this value is placed in argv[o]. 
However, the functions differ in how they pass arguments and environment 
information to the child as follows: 

• Arguments can be passed in separate character strings. 

• The environment can be explicitly passed in an array. 

See also execl, execle, execv, execve, and execvp in this section. 

REF-78 VAX CRun-Time Library Functions and Macros 



execle 

Return Values 

-1 Indicates failure. 

VAX CRun-Time Library Functions and Macros REF—?9 



execip 

execlp 

The execlp function passes the name of an image to be activated in a child 
process. 

Format 

#include processes 

int execlp (char *file name, char *argn, . . 

Arguments 

filename 
Is the file name of a new image to be activated in the child process. The 
device and directory specification for the file is obtained by searching the 
environment name VAXC$PATH. 

argn 

Represents a sequence of pointers to NUL-terminated character strings. 
By convention, at least one argument must be present and must point to a 
string that is the same as the new process file name (or its last component). 

. .. 
Represents a sequence of pointers to strings. At least one pointer must exist 
to terminate the list. This pointer may be the null pointer. 

REF-80 VAX CRun-Time Library Functions and Macros 



execlp 

Description 

To understand how the exec functions operate, consider how the VMS 
system calls any VAX C program as shown in the following syntax: 

int main (int argc, char *argvE], char *envp~ j~; 

The identifier argc is the argument count; argv is an array of argument 
strings. The first member of the array (argv[o]) contains the name of the 
image. The arguments are placed in subsequent elements of the array. The 
last element of the array is the null pointer. 

An exec function calls a child process in the same way that the run-time 
system calls any other VAX C program. The exec functions pass the name 
of the image to be activated in the child; this value is placed in argv[o]. 
However, the functions differ in how they pass arguments and environment 
information to the child as follows: 

• Arguments can be passed in separate character strings. 

• The environment can be explicitly passed in an array (execle and 
execve) or taken from the parent's environment variable (execl and 
execv). 

See also execle, execl, execv, execve, and execvp in this section. 

Return Values 

-1 Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-81 



execv 

execv 

The execv function passes the name of an image to be activated in a child 
process. 

Format 

#include processes 

int execv (char *file spec, char ''argv~]); 

Arguments 

file spec 
Is the full file specification of a new image to be activated in the child 
process. 

argv 
Is an array of pointers to NUL-terminated character strings. These strings 
constitute the argument list available to the new process. By convention, 
argv[o] must point to a string that is the same as the new process file name 
(or its last component). Argo is terminated by a null pointer. 

Description 

To understand how the exec functions operate, consider how the VMS 
operating system calls any VAX C program, as shown in the following 
syntax: 

int main (int argc, char 'argv] j, char *envp j~; 

The identifier argc is the argument count; argv is an array of argument 
strings. The first member of the array (argv[o]) contains the name of the 
image. The arguments are placed in subsequent elements of the array. The 
last element of the array is the null pointer. 

REF-82 VAX CRun-Time Library Functions and Macros 



execv 

An exec function calls a child process in the same way that the run-time 
system calls any other VAX C program. The exec functions pass the name 
of the image to be activated in the child; this value is placed in argv[o]. 
However, the functions differ in how they pass arguments and environment 
information to the child as follows: 

• Arguments can be passed in an array of character strings. 

• The environment can be explicitly taken from the parent's environment 
variable. 

See also execle, execl, execlp, execve, and execvp in this section. 

Return Values 

-1 Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-83 



execve 

execve 

The execve function passes the name of an image to be activated in a child 
process. 

Format 

#include processes 

int execve (char *file spec, char *argv~], char *envpj]); 

Arguments 

file spec 
Is -the full file specification of a new image to be activated in the child 
process. 

argv 
Is an array of pointers to NUL-terminated character strings. These strings 
constitute the argument list available to the new process. By convention, 
argv[o] must point to a string that is the same as the new process file name 
(or its last component). Argv is terminated by a null pointer. 

envp 
Is an array of strings that specifies the program's environment. Each string 
in argument envp has the following form: 

name =value 

The name can be one of the following names and the value is a NUL-
terminated string to be associated with the name: 

• HOME Your login directory 

• TERM The type of terminal being used 

• PATH The default device and directory 

• USER The name of the user who initiated the process 

The last element in envp must be the null pointer NULL. 

REF-84 VAX CRun-Time Library Functions and Macros 



execve 

When the operating system executes the program, it places a copy of the 
current environment vector (envp) in the external variable environ. 

Description 

To understand how the exec functions operate, consider how the VMS 
operating system calls any VAX C program, as shown in the following 
syntax: 

int main (int argc, char *argv~J, char ~envp[J); 

The identifier argc is the argument count; argv is an array of argument 
strings. The first member of the array (argv[o]) contains the name of the 
image. The arguments are placed in subsequent elements of the array. The 
last element of the array is the null pointer. 

An exec function calls a child process in the same way that the run-time 
system calls any VAX C program. The exec functions pass the name of 
the image to be activated in the child; this value is placed in argv[o]. 
However, the functions differ in how they pass arguments and environment 
information to the child as follows: 

• Arguments can be passed in an array of character strings. 

• The environment can be explicitly passed in an array. 

See also execle, execlp, execv, execl, and execvp in this section. 

Return Values 

-1 Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-85 



execvp 

execvp 

The execvp function passes the name of an image to be activated in a child 
process. 

Format 

#include processes 

int execvp (char *file name, char '`argv~]); 

Arguments 

file name 
Is the file name of a new image to be activated in the child process. The 
device and directory specification for the file is obtained by searching the 
environment name VAXC$PATH. 

argv 
Is an array of pointers to NUL-terminated character strings. These strings 
constitute the argument list available to the new process. By convention, 
argv[o] must point to a string that is the same as the new process file name 
(or its last component). Argv is terminated by a null pointer. 

Description 

To understand how the exec functions operate, consider how the VMS 
operating system calls any VAX C program, as shown in the following 
syntax: 

int main (int argc, char *argv~J, char *envp~~; 

The identifier argc is the argument count; argv is an array of argument 
strings. The first member of the array (argv[o]) contains the name of the 
image. The arguments are placed in subsequent elements of the array. The 
last element of the array is the null pointer. 

REF-86 VAX CRun-Time Library Functions and Macros 



execvp 

An exec function calls a child process in the same way that the run-time 
system calls any VAX C program. The exec functions pass the name of 
the image to be activated in the child; this value is placed in argv[o]. 
However, the functions differ in how they pass arguments and environment 
information to the child as follows: 

• Arguments can be passed in separate character strings (execl, execle, 
and execlp) or in an array of character strings (execv and execve). 

• The environment can be explicitly passed in an array (execle and 
execve) or taken from the parent's environment variable (execl and 
execv). 

See also execle, execlp, execv, execl, and execve in this section. 

Return Values 

-1 Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-87 



exit, _exit 

exit, _exit 

The exit and _exit functions terminate the process from which they are 
called. 

Format 

#include stdlib 

void exit (nt status); 

void _exit (nt status); 

Arguments 

status 
Corresponds with an errno value. The errno values are defined in the 

errno definition module. A status value of 0 is translated to the VMS SS$_ 
NORMAL status code to return the VMS success value. Any other status 
value is left the same. The status value is passed to the parent process. 

Description 

If the program is invoked by the DIGITAL Command Language (DCL), the 
status is interpreted by DCL and a message is displayed. The two functions 
are identical; the _exit function is retained for reasons of compatibility with 
previous versions of VAX C. 

REF-88 VAX CRun-Time Library Functions and Macros 



exp 

exp 

The exp function returns the base a raised to the power of the argument. 

Format 

#include math 

double exp (double x); 

Arguments 

X 

Is a real value. 

Description 

If an overflow occurs, the exp function returns the largest possible floating-
point value and sets errno to ERANGE. The constant HUGE VAL in the 
math definition file is defined to be the largest possible floating-point value. 

Return Values 

HUGE VAL Indicates that an overflow has occurred. 

VAX CRun-Time Library Functions and Macros REF-89 



fabs 

fabs 

The fabs function returns the absolute value of a floating-point value. 

Format 

#include math 

double fabs (double x); 

Arguments 

X 

Is a real value. 

REF-90 VAX CRun-Time Library Functions and Macros 



fclose 

fclose 

The fclose function closes a file by flushing any buffers associated with the 
file control block and freeing the file control block and buffers previously 
associated with the file pointer. 

Format 

##include stdio 

int fclose (FILE *file ptr); 

Arguments 

file~tr 
Is a pointer to the file to be closed. 

Description 

When a program terminates normally, the fclose function is automatically 
called for all open files. 

Return Values 

0 Indicates success. 

EOF Indicates that the buffered data cannot be writ-

ten to the file, or that the file control block is not 
associated with an open file. EOF is a prepro-
cessor constant defined in the #include module 
stdio. 

P'1 
VAX CRun-Time Library Functions and Macros REF-91 



fcvt 

fcvt 

The fcvt function converts its argument to aNUL-terminated string of 
ASCII digits and returns the address of the string. 

Format 

#include unixlib 

char *fcvt (double value, int ndigit, int *decpt, int *sign); 

Arguments 

value 
Is an object of type double that is converted to aNUL-terminated string of 
ASCII digits. 

ndigit 
Is the number of ASCII digits after the decimal point to be used in the 
converted string. 

decpt 
Contains the position of the decimal point relative to the first character in 
the returned string. The returned string does not contain the actual decimal 
point. A negative int value means that the decimal point is decpt number of 
spaces to the left of the returned digits (the spaces are filled with zeros). A 
0 value means that the decimal point is immediately to the left of the first 
digit in the returned string. 

sign 
Contains an integer value that indicates whether the argument value is 
positive or negative. If the value is negative, the fcvt function places a 
nonzero value at the address specified by the argument sign. Otherwise, the 
functions assign 0 to the address specified by the argument sign. 

REF-92 VAX CRun-Time Library Functions and Macros 



fcvt 

Description 

Repeated calls to the fcvt function overwrite any existing string. 

See also govt and ecvt in this section. 

Return Values 

x Is a pointer to the converted string. 

VAX CRun-Time Library Functions and Macros REF-93 



fdopen 

fdopen 

The fdopen function associates a file pointer with a file descriptor returned 
by an open, treat, dup, dup2, or pipe function. 

Format 

#include stdio 

FILE *fdopen 
ant file desc, char *a mode); 

Arguments 

file desc 
Is the file descriptor returned by open, treat, dup, dup2, or pipe. 

a mode 
Is one of the character strings "r", "w", "a", "r+", "w+", "rb", "r+b", "rb+", 
"wb", "w+b", "wb+", "ab", "a+b", "ab+", or "a+", for read, write, append, 
read update, write update, or append update, respectively. 

The access modes have the following effects: 

• "r" opens an existing file for reading. 

• "w" creates a new file, if necessary, and opens the file for writing. If the 
file exists, it creates a new file with the same name and a higher version 
number. 

• "a" opens the file for append access. An existing file is positioned at the 
end-of--file, and data is written there. If the file does not exist, the VAX 
C RTL creates it. 

REF-94 VAX CRun-Time Library Functions and Macros 



fdopen 

The update access modes allow a file to be opened for both reading and 
writing. When used with existing files, ~~ r+ ~~ and ~~ a+ ~~ differ only in the 
initial positioning within the file. The modes are as follows: 

• ~~ r+ ~~ opens an existing file for read update access. It is opened for 
reading, positioned first at the beginning-of--file, but writing is also 
allowed. 

• ~~ w+ ~~ opens a new file for write update access. 

• ~~ a+ ~~ opens a file for append update access. The file is first positioned at 
the end-of--file (writing). If the file does not exist, the VAX C RTL creates 
it. 

• ~~ b ~~ means binary access mode. In this case, no conversion of carriage-
control information is attempted. 

Description 

The fdopen function allows you to access a file, originally opened by one 
of the UNIX UO functions, with Standard UO functions. Ordinarily, a file 
can be accessed by either a file descriptor or by a file pointer, but not both, 
depending on the way you open it. For more information, see Chapter 1. 

Return Values 

pointer 

0 

Indicates that the operation has succeeded. 

Indicates that an error has occurred. 

VAX CRun-Time Library Functions and Macros REF-95 



feof 

feof 

The feof macro tests a file to see if the end-of--file has been reached. 

Format 

#include stdio 

int feof (FILE *file~vtr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

VAX C implements feof as a macro. 

Return Values 

nonzero integer Indicates that the end-of--file has been reached. 

0 Indicates that the end-of--file has not been 
reached. 

REF-96 VAX CRun-Time Library Functions and Macros 



ferror 

ferror 

The ferror macro returns a nonzero integer if an error occurred while 
reading or writing a file. 

Format 

#include stdio 

int ferror (FILE *file~tr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

A call to the ferror macro continues to return this indication until the file is 
closed or until clearerr is called. VAX C implements ferror as a macro. 

Return Values 

nonzero integer 

0 

Indicates that an error has occurred. 

Indicates success. 

VAX CRun-Time Library Functions and Macros REF-97 



fflush 

fflush 

The fflush function writes out any buffered information for the specified file. 

Format 

#include stdio 

int fflush (FILE *file~tr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

The output files are normally buffered only if they are not directed to a 
terminal, but stderr is not buffered by default. 

The fflush function flushes the C RTL buffers. However, RMS has its own 
buffers. The fflush function does not guarantee that the file will be written 
to disk. 

Return Values 

0 Indicates that the operation is successful. 

EOF Indicates that the buffered data cannot be writ-
ten to the file, or that the file control block is 
not associated with an output file (EOF is a pre-
processor constant defined in the stdio definition 
module). 

REF-98 VAX CRun-Time Library Functions and Macros 



fgetc 

fgetc 

The fgetc function returns characters from a specified file. 

Format 

#include stdio 

int fgetc (FILE *file~tr); 

Arguments 

file~tr 
Is a pointer to the file to be accessed. 

Description 

The fgetc function and the gets macro are the same functions. 

The file is left-positioned after the returned character, and the next getc 
call takes the character from that position. The value returned is a char 
converted to an int. 

See the getc macro in this section for more information. 

Return Values 

x 

EOF 

Next character from the specified file. 

Indicates the end-of--file or an error. 

VAX CRun-Time Library Functions and Macros REF-99 



fgetname 

fgetname 

The fgetname function returns the file specification associated with a file 
pointer. 

Format 

#include stdio 

char *fgetname (FILE *file ptr, char *buffer, . . 

Arguments 

file~tr 
Is a file pointer. 

buffer 
Is a pointer to a character string that is large enough to hold the file 
specification. 

.. 
Represents an optional additional argument that can be either 1 or 0. 
If you specify 1, the fgetname function returns the file specification in 
VMS format. If you specify 0, fgetname returns the file specification in 
UNIX-style. If you do not specify this argument, fgetname returns the file 
name according to your current command language interpreter. For more 
information about UNIX-style file specifications, see Section 1.2.1. 

Description 

The fgetname function places the file specification at the address given in 
the buffer. The buffer should be an array large enough to contain a fully 
qualified file specification (the maximum length is 256 characters). 

REF-100 VAX CRun-Time Library Functions and Macros 



fgetname 

Return Values 

n Indicates the address of the buffer. 

0 When an error occurs, fgetname returns 0. 

VAX CRun-Time Library Functions and Macros REF-101 



fgetpos 

fgetpos 

The fgetpos function stores the current value of the file position indicator 
for the stream pointed to by the stream into the object pointed to by pos. 

Format 

#include stdio 

int fgetpos {FILE *stream, fpos t *pos); 

Arguments 

stream 

Is a file pointer. 

pos 

Is a pointer to an implementation-defined structure. The fgetpos function 
fills this structure with information that can be used on subsequent calls to 
fgetpos. 

Example 

#include stdio 

main ( ) 
{ 

FILE *fp; 
int stat,i; 
int character; 
unsigned char ch, c_ptr [ 130 ] , d_ptr [ 130 ] ; 
fpos_t posit; 

/* Open a file for writing */ 

i f ((fp = fopen ("file . dat", "w+") ) _= NULL) 
{ 

perror ("open"); 
exit (1) ; 

} 

/* Get the beginning position in the file */ 

REF-102 VAX CRun-Time Library Functions and Macros 



fgetpos 

if (fgetpos (fp, &posit) ! = 0 ) 
perror ("fgetpos"); 

/* Write some data to the file */ 

i f (fprint f (fp, "this i s a test \n") ==0 ) 
{ 
perror ("fprintf"); 
exit (1) ; 

} 

/* Set the file position back to the beginning 

if (fgetpos (fp, &posit) != 0) 
perror ("fgetpos") ; 

*/ 

fgets (c~tr, 130, fp) ; 
puts(c~tr); /* Should be "this is a test" 

/* Close the file */ 

if (fclose (fp) ! = 0 ) 
{ 
perror ("close"); 
exit (1) ; 

} 

* 

VAX CRun-Time Library Functions and Macros REF-103 



(

gets

fgets 

The fgets function reads a line from a specified file, up to a specified max-
imum number of characters or up to and including the newline character, 
whichever comes first. The function stores the string in the str argument. 

Format 

#include stdio 

char *fgets (char *str, int maxchar, FILE *file ptr); 

Arguments 

str 
Is the address where the fetched string will be stored. 

maxchar 
Specifies the maximum number of characters to fetch. 

file ptr 
Is a file pointer. 

Description 

The fgets function terminates the line with a NUL (\ 0) character. Unlike 
gets, fgets places the newline that terminates the input line into the user 
buffer if it fits. 

REF-104 VAX CRun-Time Library Functions and Macros 



fgets 

Return Values 

x 

NULL 

Indicates the address of the first character in 
the line. 

Indicates the end-of--file or an error. NULL is 
defined in the stdio definition module to be the 
null pointer value. 

Example 

#include stdio 

main ( ) 
{ 

FILE *fp; 
int stat, i; 
int character; 
unsigned char ch, c ptr [ 130 ] , d ptr [ 130 ] ; 

/* open a file with some data -"THIS IS A TEST" 

if ((fp = fopen ("file . dat", "r+") ) _= NULL) 
{ 

perror ("open error") ,exit(1); 

fgets (c_ptr, 130, fp) ; 

puts (c ptr); /* display what fgets got. */ 

close (fp) ; 
} 

*/ 

VAX CRun-Time Library Functions and Macros REF-105 



fileno 

fileno 

The fileno macro returns an integer file descriptor that identifies the 
specified file. 

Format 

#include stdio 

int fileno (FILE *file~ntr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

VAX C implements fileno as a macro. 

REF-106 VAX CRun-Time Library Functions and Macros 



floor 

floor 

The floor function returns (as a double) the largest integer that is less than 
or equal to its argument. 

Format 

#include math 

double floor (double x); 

Arguments 

X 

Is a real value. 

VAX CRun-Time Library Functions and Macros REF-107 



fmod 

fmod 

The fmod function computes the floating-point remainder of the first argu-
ment to fmod divided by the second. If the quotient cannot be represented, 
the behavior is undefined. 

Format 

#include math 

double fmod (double x, double y); 

Arguments 

x 
Is a real value. 

Y 
Is a real value. 

Return Values 

0 Indicates that y is 0. 

x Indicates value f, which has the same sign as x, 
such that x == i * y + f for some integer i, where 
the magnitude of f is less than the magnitude 
of y. 

REF-108 VAX CRun-Time Library Functions and Macros 



fopen 

fopen 

The fopen function opens a file by returning the address of a FILE struc-
ture. 

Format 

#include stdio 

FILE *fopen (const char file spec, const char *a mode, . . 1, 

Arguments 

file spec 
Is a character string containing a valid file specification. 

a mode 
Is one of the character strings "r", ~~w~~, "a", ~~r+~~, "w+~~, ~~rb~~, "r+b", ~~rb+~~, 
~~ wb ~~ , ~~ w+b ~~ , ~~ wb+ ~~ , ~~ ab ~~ , ~~ a+b ~~ , ~~ ab+ ~~ , or ~~ a+ ~~ , for read, write, append, 
read update, write update, or append update, respectively. 

The access modes have the following effects: 

• ~~ r ~~ opens an existing file for reading. 

• "w" creates a new file, if necessary, and opens the file for writing. If the 
file exists, it creates a new file with the same name and a higher version 
number. 

• ~~ a ~~ opens the file for append access. An existing file is positioned at the 
end-of--file, and data is written there. If the file does not exist, the VAX 
C RTL creates it. 

The update access modes allow a file to be opened for both reading and 
writing. When used with existing files, ~~ r+ ~~ and ~~ a+ ~~ differ only in the 
initial positioning within the file. The modes are as follows: 

• "r+~~ opens an existing file for read update access. It is opened for 
reading, positioned first at the beginning-of-file, but writing is also 
allowed. 

VAX CRun-Time Library Functions and Macros RE~109 



fopen 

• ~~ w+ ~~ opens a new file for write update access. 

• ~~ a+ ~~ opens a file for append update access. The file is first positioned at 
the end-of--file (writing). If the file does not exist, the VAX C RTL creates 
it. 

• "b" means binary access mode. In this case, no conversion of carriage-
control information is attempted. 

.. 
Represents optional file attribute arguments. The file attribute arguments 
are the same as those used in the crest function. For more information, see 
the Great function. 

Description 

If you specify a directory in the file name and it is a search list that contains 
an error, VAX C interprets it as a file open error. 

The file control block may be freed with the fclose function, or by default on 
normal program termination. 

Return Values 

NULL Indicates an error. The constant NULL is de-
fined in the stdio definition module to be the null 
pointer value. The function returns NULL to 
signal the following errors: 

• File protection violations 
• Attempts to open a nonexistent file for read 

access 
• Failure to open the specified file 

REF-110 VAX CRun-Time Library Functions and Macros 



fprintf 

fprintf 

The fprintf function performs formatted output to a specified file. 

Format 

#include stdio 

int fprintf (FILE *file~tr, const char *format spec, . . . ), 

Arguments 

file~tr 
Is a pointer to the file that you direct output to. 

format spec 
Contains characters to be written literally to the output or converted as 
specified in the argument. For more information on conversion characters, 
see Chapter 2. 

... 
Are optional expressions whose resultant types correspond to conversion 
specifications given in the format specification. If no conversion specifica-
tions are given, the output sources may be omitted. Otherwise, the function 
calls must have exactly as many output sources as there are conversion 
specifications, and the conversion specifications must match the types of the 
output sources. Conversion specifications are matched to output sources in 
left-to-right order. 

VAX CRun-Time Library Functions and Macros REF-111 



fprintf 

Description 

An example of a conversion specification is as follows: 

main ( ) 
{ 

int temp = 4, tempt = 17; 

fprintf(stdout, "The answers are od, and ~d.", temp, tempt); 
} 

Sample output (to the stdout file) from the previous example is as follows: 

The answers are 4, and 17. 

For a complete description of the format specification and the output source, 
see Chapter 2. 

Return Values 

x Indicates the number of characters written. 

-1 Indicates that an error has occurred. 

REF-112 VAX CRun-Time Library Functions and Macros 



fputc 

fputc 

The fputc function writes characters to a specified file. 

Format 

#include stdio 

int fputc (nt character, FILE '`file~vtr); 

Arguments 

character 
I s an object of type int. 

file~tr 
I s a file pointer. 

Description 

The fputc function writes a single character to a file and returns the 
character. The file pointer is left-positioned after the character. In VAX C, 
fputc and putc perform the same function. 

Return Values 

EOF Indicates that an output error has occurred. 
EOF is defined in the stdio definition module. 

character Indicates success. 

VAX CRun-Time Library Functions and Macros REF-113 



fputs 

fputs 

The fputs function writes a character string to a file without copying the 
string's null terminator (\0). 

Format 

#include stdio 

int fputs (const char *str, FILE *file~tr); 

Arguments 

str 
Is a pointer to a character string. 

file ptr 
Is a file pointer. 

Return Values 

Nonnegative number 

EOF 

Indicates success. 

Indicates an error. 

REF-114 VAX CRun-Time Library Functions and Macros 



fread 

fread 

The fread function reads a specified number of items from the file. 

Format 

#include stdio 

size t fread (void *ptr, size t size of item, size t 
number items, FILE *file~tr); 

Arguments 

ptr 
Is a pointer to the location, within memory, where you place the information 
being read. You determine the type of the object pointed to by the type of 
the items being read. 

size of item 
Is the size of the items being read, in bytes. 

number_items 
Is the number of items to be read. 

file ptr 
Is a pointer that indicates the file from which the items are to be read. 

Description 

The type size_t is defined in the standard include module stdio. The 
reading begins at the current location in the file. The items read are placed 
in storage beginning at the location given by the first argument. You must 
also specify the size of an item, in bytes. 

If the file pointed to by file_ptr is a record file, fread will only read the 
number of items specified in number items. 

VAX CRun-Time Library Functions and Macros REF-115 



fread 

Return Values 

n Indicates the number of items read. 

0 Indicates the end-of--file or an error. 

REF-116 VAX CRun-Time Library Functions and Macros 



free 

free 

The free function makes available for reallocation the area allocated by a 
previous calloc, malloc, or realloc call. 

Format 

#include stdlib 

void free (void ''ptr); 

Arguments 

ptr 

Is the address returned by a previous call to malloc, calloc, or realloc. 

Description 

The contents of the deallocated area are unchanged. However, for compat-
ibility with other C implementations, you should use free with malloc or 
realloc, and cfree with calloc. 

VAX CRun-Time Library Functions and Macros REF-117 



freopen 

freopen 

The freopen function substitutes the file, named by a file specification, for 
the open file addressed by a file pointer. The latter file is closed. 

Format 

#include stdio 

FILE *freopen (const char *file spec, const char *a mode, 
FILE *file~tr, . . . ); 

Arguments 

file spec 
Is a pointer to a string that contains a valid VMS or UNIX-style file 
specification. After the function call, the given file pointer is associated with 
this file. 

a mode 
Is an access mode indicator. The fdopen function in this section describes 
a_mode. 

file~tr 
Is a file pointer. 

. . 
Represents optional file attribute arguments. The file attribute arguments 
are the same as those used in the Great function. 

Description 

Use freopen to associate one of the predefined names stdin, stdout, or 
stderr with a file. For more information about these predefined names, see 
Chapter 2. 

REF-118 VAX CRun-Time Library Functions and Macros 



freopen 

Return Values 

file_ptr The file pointer, if freopen is successful. 

NULL Indicates that an error has occurred. The con-
stant NULL is defined in the stdio definition 
module to be the null pointer value. 

VAX CRun-Time Library Functions and Macros REF-119 



frexp 

frexp 

The frexp function calculates the fractional and exponent parts of a double 
value. 

Format 

#include math 

double frexp (double value, int *eptr); 

Arguments 

value 
Is an object of type double. 

eptr 
Is a pointer to an int, to which frexp returns the exponent. 

Description 

The frexp function converts value to the following form: 

value =fraction * (2` xp) 

The fractional part is returned as the return value. The exponent is placed 
in the integer variable pointed to by eptr. 

REF-120 VAX CRun-Time Library Functions and Macros 



frexp 

Example 

main ( ) 
{ 

double val = 16.0, fraction; 
int exp; 

fraction = frexp (val, &exp) ; 
printf ("fraction = of\n",fraction) ; 

printf ("exp = od\n",exp) ; 

} 

In this example, frexp converts the value 16 to .5 * 25. The example produces 
the following output: 

fraction = 0.500000 
exp = 5 

Return Values 

x The fractional part of the double value. 

VAX CRun-Time Library Functions and Macros REF-121 



fscanf 

fscanf 

The fscanf function performs formatted input from a specified file. 

Format 

#include stdio 

int fscanf (FILE *file~tr, const char *format spec, . . ), 

Arguments 

file~tr 
Is a pointer to the file that provides input text. 

format spec 
Contains characters to be taken literally from the input or converted and 
placed in memory at the specified . . .argument. For more information on 
conversion characters, see Chapter 2. 

.. 
Are optional expressions whose results correspond to conversion specifica-
tions given in the format specification. If no conversion specifications are 
given, you can omit the input pointers. Otherwise, the function calls must 
have exactly as many input pointers as there are conversion specifications, 
and the conversion specifications must match the types of the input pointers. 
Conversion specifications are matched to input sources in left-to-right order. 

REF-122 VAX CRun-Time Library Functions and Macros 



fscanf 

Description 

An example of a conversion specification is as follows: 

main () 
{ 

int temp, tempt; 

fscanf (stdnn, " od od" , &temp, &tempt) ; 
printf("The answers are %d, and od.", temp, tempt); 

} 

Consider a file, designated by stdin, with the following contents: 

4 17 

Sample input from the previous example will then be as follows: 

$ RUN EXAMPLE RETURN I 
The answers are 4, and 17. 

For a complete description of the format specification and the input pointers, 
see Chapter 2. 

Return Values 

x 

EOF 

Indicates the number of successfully matched 
and assigned input items. 

Indicates that the end-of--file or the end of the 
string has been encountered. EOF is a prepro-
cessor constant defined in the stdio definition 
module. 

VAX CRun-Time Library Functions and Macros REF-123 



(seek 

fseek 

The fseek function positions the file to the specified byte offset in the file. 

Format 

#include stdio 

int fseek (FILE *file~tr, long int offset, int direction); 

Arguments 

file~tr 
Is a file pointer. 

offset 
Is the offset specified, in bytes. 

direction 
Is an integer indicating whether the offset is measured forward from the 
current read or write address (1), forward from the beginning of the file (0 ), 
or backwards from the end-of--file (2 ). 

Description 

Direct the fseek function to an absolute position returned by ftell. With 
stream files, the direction argument can be 0, 1, or 2. With record files, 
an fseek to a position that was not returned by (tell causes unpredictable 
behavior. 

REF-124 VAX CRun-Time Library Functions and Macros 



fseek 

Return Values 

p Indicates successful seeks. 

EOF Indicates improper seeks. EOF is a preprocessor 
constant defined in the stdio definition module. 

VAX CRun-Time Library Functions and Macros REF-125 



fsetpos 

fsetpos 

The fsetpos function sets the file position indicator for the stream according 
to the value of the object pointed to by pos. 

Format 

#include stdio 

int fsetpos (FILE stream, fpos t *pos); 

Arguments 

stream 

Is a file pointer. 

pos 

Is a pointer to an implementation-defined structure. 

Description 

Call the fgetpos function before using the fsetpos function. 

REF-126 VAX CRun-Time Library Functions and Macros 



fstat 

fstat 

The fstat function accesses information about the file descriptor or the 
file specification. 

Format 

#include stat 

i nt fstat ~ nt file desc, stat t *buffer); 

Arguments 

file_desc 
Is a file descriptor. 

buffer 
Is a pointer to a structure of type stat_t, which is defined in the stat 
definition module. The argument receives information about that particular 
file. The members of the structure pointed to by buffer are as follows: 

Member Type Definition 

st dev unsigned Pointer to a physical device name 

st_ino[3) unsigned short Three words to receive the file ID 

st mode unsigned short File "mode" (prot, dir, . . . ) 

st nlink int For UNIX system compatibility only 

st_uid unsigned Owner user ID 

staid unsigned short Group member: from st uid 

st rdev char* UNIX system compatibility—always 0 

st_size unsigned File size, in bytes 

st_atime unsigned File access time; always the same as 
st mtime 

VAX CRun-Time Library Functions and Macros REF-127 



fstat 

Member Type Definition 

st_mtime unsigned Last modification time 

st_ctime unsigned File creation time 

st_fab_rfm char Record format 

st_fab_rat char Record attributes 

st_fab_fsz char Fixed header size 

st fab_mrs unsigned Record size 

The st_mode, structure member, is the status information mode and is 
defined in the stat definition module. The st_mode bits are listed as follows: 

Bits Constant Definition 

0170000 S_IFMT Type of file 

0040000 S_IFDIR Directory 

0020000 S_IFCHR Character special 

0060000 S_IFBLK Block special 

0100000 S_IFREG Regular 

0030000 S_IFMPC Multiplexed char special 

0070000 S_IFMPB Multiplexed block special 

0004000 S_ISUID Set user ID on execution 

0002000 S ISGID Set group ID on execution 

0001000 S_IS~i'TX Save swapped text even after use 

0000400 S_IREAD Read permission, owner 

0000200 S_IWRITE Write permission, owner 

0000100 S_IEXEC Execute/search permission, owner 

Description 

The fstat function does not work on remote network files. 

REF-128 VAX CRun-Time Library Functions and Macros 



fstat 

Return Values 

0 Indicates successful completion. 

—1 Indicates that there are errors. 

—2 Indicates a protection violation. 

VAX CRun-Time Library Functions and Macros RE~129 



nen 

ftel 

The ftell function returns the current byte offset to the specified stream file. 

Format 

#include stdio 

long int ftell (FILE *file~vtr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

The ftell function measures the offset from the beginning of the file. With 
record files, ftell returns the starting position of the current record, not the 
current byte offset, which repositions the file to where it was when ftell 
was called. 

Return Values 

EOF Indicates that an error has occurred. 

REF-130 VAX CRun-Time Library Functions and Macros 



Rime 

ftime 

The ftime function returns the elapsed time since 00:00:00, January 1, 1970, 
in the structure pointed at by timeptr. 

Format 

#include time 

void ftime (timeb t *timeptr); 

Arguments 

timeptr 
Is a pointer to the structure timeb_t. 

Description 

The typedef timeb_t refers to a structure defined in the standard include 
module time.h as follows: 

typedef struct timeb 
{ 

time_t time; 
unsigned short millitm; 
short timezone; 
short dstflag; 

}; 

The member time t gives the time in seconds; the member millitm gives the 
fractional time in milliseconds; the members timezone and dstflag (daylight 
savings time flag) are always 0. 

VAX CRun-Time Library Functions and Macros REF—~ 31 



fwrite 

fwrite 

The fwrite function writes a specified number of items to the file. 

Format 

#include stdio 

size t fwrite (void *ptr, size t size of item, size t 
number items, FILE *file ptr); 

Arguments 

ptr 
Is a pointer to the memory location from which information is being written. 

size of item 
Is the size of the items being written, in bytes. 

number items 
Is the number of items being written. 

file~tr 
Is a file pointer that indicates the file to which the items are being written. 

Description 

The type size_t is defined in the standard include module stdio. 

If the file is a record-mode file, the fwrite function outputs at least number 
items records, each of length size_of item. 

REF-132 VAX CRun-Time Library Functions and Macros 



fwrite 

Return Values 

x Indicates the number of items written. The 
number of records written depends upon the 
maximum record size of the file. 

VAX CRun-Time Library Functions and Macros REF-133 



gcvt 

gcvt 

The gcvt function converts its argument to a NUL-terminated string of 
ASCII digits and returns the address of the string. The strings are stored in 
a memory location created by the functions. 

Format 

#include unixlib 

char *gcvt (double value, int ndigit, char *buffer); 

Arguments 

value 
Is an object of type double that is converted to a NUL-terminated string of 
ASCII digits. 

ndigit 
Is the number of ASCII digits to use in the converted string. If ndigit is less 
than 6, the value of 6 is used. 

buffer 
Is a storage location to hold the converted string. 

Description 

The gcvt function places the converted string in a buffer and returns the 
address of the buffer. If possible, gcvt produces ndigit significant digits 
in FORTRAN-F format, or if not possible, in E-format. You may suppress 
trailing zeros. 

Repeated calls to this function overwrite any existing string. 

See also fcvt and ecvt in this section. 

REF-134 VAX CRun-Time Library Functions and Macros 



gcvt 

Return Values 

x Indicates the address of the returned string. 

VAX CRun-Time Library Functions and Macros REF-135 



getc 

getc 

The getc macro returns characters from a specified file. 

Format 

#include stdio 

int getc (FILE '`fileJ vtr); 

Arguments 

file~tr 
Is a pointer to the file to be accessed. 

Description 

The compiler substitutes the following text for a call to the macro 
getc(file_ptr): 

fgetc (file~tr) 

Return Values 

x Indicates that the next character is an int from 
the specified file. 

EOF Indicates the end-of--file or an error. 

REF-136 VAX CRun-Time Library Functions and Macros 



[w]getch 

[w]getch 

The getch macro and the wgetch function get a character from the terminal 
screen and echo it on the specified window. 

Format 

#include curses 

getch( ) 

char wgetch (WINDOW ''win); 

Arguments 

win 
Is a pointer to the window. 

Description 

The getch macro and the wgetch function refresh the specified window 
before fetching a character. For more information, see the scrollok function 
in this section. 

Return Values 

x Specifies the returned character. 

ERR Indicates that the function makes the screen 
scroll illegally. 

VAX CRun-Time Library Functions and Macros REF-137 



getchar 

getchar 

The getchar macro reads a single character from the standard input (stdin). 

Format 

#include stdio 

int getchar (void); 

Description 

The getchar macro is identical to fgetc(stdin). 

Return Values 

X 

EOF 

Is the next character from stdin. 

Indicates the end-of--file or an error. 

REF-138 VAX CRun-Time Library Functions and Macros 



getcwd 

getcwd 

The getcwd function returns a pointer to the file specification for the 
current working directory. 

Format 

#include unixlib 

char *getcwd (char *buffer, unsigned int size, . . 

Arguments 

buffer 
Is a pointer to a character string that is large enough to hold the directory 
specification. 

If buffer is a null pointer, getcwd obtains size bytes of space using malloc. 
In this case, you can use the pointer returned by getcwd as the argument 
in a subsequent call to free. 

size 
Is the length of the directory specification to be returned. 

.. 
Is an optional argument that can be either 1 or 0. If you specify 1, the 
getcwd function returns the directory specification in VMS format. If you 
specify 0, getcwd returns the directory specification (path name) in UNIX-
style format. If you do not specify this argument, getcwd returns the file 
name according to your current command-language interpreter. For more 
information about UNIX-style directory specifications, see Section 1.2.1. 

VAX CRun-Time Library Functions and Macros REF-139 



getcwd 

Description 

If an error occurs, the getcwd function returns NULL with errno set to one 
of the following: 

• ER;ANGE if size is not large enough 

• EINVAL if size is 0 

• ENOMEM if space for the returned string is not available for allocation 

REF-140 VAX CRun-Time Library Functions and Macros 



r'1 
getegld 

getegid 

The getegid function returns, in VMS terms, the group number from the 
user identification code (UIC). For example, if the UIC is [313,031], 313 is 
the group number. 

Format 

#include unixlib 

unsigned int getgid (void); 

unsigned int getegid (void); 

Description 

In VAX C, getgid and getegid perform the same function. Both return the 
group number from the current UIC. 

Return Values 

x Indicates the group number from the UIC. 

VAX CRun-Time Library Functions and Macros REF-141 



getenv 

getenv 

The getenv function searches the environment array for the current process 
and returns the value associated with a specified environment name. 

Format 

#include unixlib 

char *getenv (const char *name); 

Arguments 

name 
Can be one of the following values: 

• HOME Your login directory 

• TERM The type of terminal being used 

• PATH The default device and directory 

• USER The name of the user who initiated the process 

Description 

In certain situations, the getenv function attempts to perform a logical 
name translation on the user-specified argument. If the argument to getenv 
does not match any of the environment strings present in your environment 
array, getenv attempts to translate your argument as a logical name. 
All four logical name tables are searched in the standard order. If no 
logical names exist, getenv attempts to translate the argument string as a 
command-language interpreter (CLI) symbol; if it succeeds, it returns the 
translated symbol text. If it fails, the return value is NULL. 

If your CLI is the DEC/Shell, the function does not attempt a logical name 
translation since Shell environment symbols are implemented as DCL 
symbols. 

REF-142 VAX CRun-Time Library Functions and Macros 



getenv 

Return Values 

x Pointer to an array containing the translated 
symbol. 

NULL Indicates that the translation failed. 

VAX CRun-Time Library Functions and Macros REF-143 



geteuid 

geteuid 

The geteuid function returns, in VMS terms, the member number from the 
user identification code (UIC). For example, if the UIC is [313,031], 031 is 
the member number. 

Format 

#include unixlib 

unsigned int geteuid (void); 

Description 

In VAX C, the getuid and geteuid functions both return the member 
number from the current UIC. 

See the geteuid or getgid functions in this section for the functions that 
return the group number. 

Return Values 

x Indicates the member number from the 
current UIC. 

REF-144 VAX CRun-Time Library Functions and Macros 



getgid 

getgid 

The getgid function returns, in VMS terms, the group number from the 
user identification code (UIC). For example, if the UIC is [313,031], 313 is 
the group number. 

Format 

#include unix/ib 

unsigned int getgid (void); 

Description 

In VAX C, getgid and getegid perform the same function. Both return the 
group number from the current UIC. Similarly, getuid and geteuid both 
return the member number from the current UIC. 

Return Values 

x Indicates the group number from the 
current UIC. 

VAX CRun-Time Library Functions and Macros REF-145 



getname 

getname 

The getname function returns the file specification associated with a 
file descriptor. 

Format 

#include unixio 

char *getname ant file desc, char *buffer, . . . ), 

Arguments 

file_desc 
Is a file descriptor. 

buffer 
Is a pointer to a character string that is large enough to hold the 
file specification. 

.. 
Represents an optional argument that can be either 1 or 0. If you specify 1, 
the getname function returns the file specification in VMS format. If you 
specify 0, the getname function returns the file specification in UNIX-style 
format. If you do not specify this argument, the getname function returns 
the file name according to your current command-language interpreter. For 
more information about UNIX-style file specifications, see Section 1.2.1. 

Description 

The getname function places the file specification in the area pointed to 
by buffer and returns that address. The area pointed to by buffer should 
be an array large enough to contain a fully qualified file specification (the 
maximum length is 256 characters). 

REF-146 VAX CRun-Time Library Functions and Macros 



getname 

Return Values 

x Is the address passed in the buffer argument. 
This indicates a successful completion. 

0 Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-147 



getpid 

getpid 

The getpid function returns the process ID of the current process. 

Format 

#include unixlib 

int getpid (void); 

REF-148 VAX CRun-Time Library Functions and Macros 



I'1 
getppid 

getppid 

The getppid function returns the parent process ID of the calling process. 

Format 

#include unixlib 

int getppid (`void); 

Return Values 

x Is the parent process ID. 

0 Indicates that the calling process does not have a 
parent process. 

VAX CRun-Time Library Functions and Macros REF-149 



gets 

gets 

The gets function reads a line from the standard input (stdin). 

Format 

#include stdio 

char *gets (char *str); 

Arguments 

str 

Is a pointer to a character string that is large enough to hold the information 
fetched from stdin. 

Description 

The newline character (\ n) that ends the line is replaced by the function 
with an ASCII null character (\ 0 ). The function returns its argument, 
which is a pointer to a character string containing the acquired line. 

Return Values 

x Is a pointer to the line read. 
NULL Indicates that an error has occurred or that the 

end-of--file was encountered before a newline 
was encountered. 

REF-150 VAX CRun-Time Library Functions and Macros 



[w]getstr 

[w]getstr 

The getstr macro and the wgetstr function get a string from the terminal 
screen, store it in the variable str, and echo it on the specified window. The 
getstr macro works on the stdscr window. 

Format 

#include curses 

getstr (str) 

int wgetstr (WINDOW '`win, char *str); 

Arguments 

win 

Is a pointer to the window. 

str 

Must be large enough to hold the character string fetched from the window. 

Description 

The getstr macro and the wgetstr function refresh the specified window 
before fetching a string. The newline terminator is stripped from the fetched 
string. For more information, see the scrollok macro in this section. 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally. 

VAX CRun-Time Library Functions and Macros REF-151 



getuid 

getuid 

The getuid function returns, in VMS terms, the member number from the 
user identification code (UIC). For example, if the UIC is [313,031], 031 is 
the member number. 

Format 

#include unixlib 

unsigned int getuid (void); 

Description 

In VAX C, getuid and geteuid perform the same function. Both return the 
member number from the current UIC. 

Return Values 

x Indicates the member number from the 
current UIC. 

REF-152 VAX CRun-Time Library Functions and Macros 



getw 

getw 

The getw function returns characters from a specified file. 

Format 

#include stdio 

int getw (FILE *file~ntr); 

Arguments 

file_ptr 
Is a pointer to the file to be accessed. 

Description 

The getw function returns the next four characters from the specified input 
file as an int. No conversion is performed. 

Return Values 

EOF Indicates that the end-of--file was encountered 
during the retrieval of any of the four characters 
and all four characters were lost. Since EOF 
is an acceptable integer, use feof and fervor to 
check its success. EOF is a preprocessor constant 
defined in the #include module stdio. 

VAX CRun-Time Library Functions and Macros REF-153 



getyx 

getyx 

The getyx macro puts the (yx) coordinates of the current cursor position on 
win in the variables y and x. 

Format 

#include curses 

getyx (VIII N D4W *win, i nt y, i nt x); 

Arguments 

win 

Must be a pointer to the window. 

Y 
Must be a valid VAX C lvalue. 

x 
Must be a valid VAX C lvalue. 

REF-154 VAX CRun-Time Library Functions and Macros 



gmtime 

gmtime 

The gmtime function converts a given calendar time into abroken-down 
time, expressed as Greenwich Mean Time (GMT). 

Format 

#include time 

struct tm *gmtime (const time t *timer); 

Arguments 

timer 
Is a pointer to an object of type time_t, which contains the calendar time. 

Description 

The gmtime function is provided to conform to the draft proposed ANSI 
standard for the C language. Since the VMS environment does not support 
GMT, this function returns a NULL. 

Return Values 

pointer Is a null pointer because GMT is not available 
under the VMS operating system. 

VAX CRun-Time Library Functions and Macros REF-155 



gsignal 

gsignal 

The gsignal function generates a specified software signal. Generating a 
signal causes the action established by the ssignal function to be taken. 

Format 

#include signal 

int gsignal ant sig, .. . ); 

Arguments 

sig 
Identifies the signal to be generated. 

.. 
Represents an optional signal type. For example, signal SIGFPE the 
arithmetic trap signal has 10 different codes, each representing a different 
type of arithmetic trap. Table REF-4 presents the various codes. 

Table REF-4: SIGFPE Arithmetic Trap Signal Codes 

Hardware Condition Signal Code 

Arithmetic Traps: 

Integer overflow SIGFPE FPE_INTOVF_TRAP 

Integer division by 0 SIGFPE FPE_INTDIV TRAP 

Floating overflow trap SIGFPE FPE_FLTOVF_TRAP 

Floating/decimal division by 0 SIGFPE FPE_FLTDIV TRAP 

Floating underflow trap SIGFPE FPE_FLTUND_TRAP 

Decimal overflow trap SIGFPE FPE_DECOVF_TRAP 

(continued on next page) 

REF-156 VAX CRun-Time Library Functions and Macros 



gsignal 

Table REF-4 (Cont.): SIGFPE Arithmetic Trap S(gnal Codes 

Hardware Condition Signal Code 

Subscript-range 

Floating overflow fault 

Floating divide by 0 fault 

Floating underflow fault 

Reserved instruction 

Reserved operand 

Reserved addressing 

Compatibility mode 

Length access control 

Chore 

Chms 

Chmu 

Trace pending 

Bpt instruction 

Protection violation 

Customer-reserved code 

SIGFPE 

SIGFPE 

SIGFPE 

SIGFPE 

SIGILL 

SIGILL 

SIGILL 

SIGILL 

SIGSEGV 

SIGSEGV 

SIGSEGV 

SIGSEGV 

SIGTRAP 

SIGTRAP 

SIGBUS 

SIGEMT 

FPE_SUBRNG_TRAP 

FPE_FLTOVF_FAULT 

FPE_FLTDIV FAULT 

FPE_FLTUND_FAULT 

ILL_PRIVIN_FAULT 

ILL_RESOP FAULT 

ILL_RESAD_FAULT 

Hardware supplied 

The signal codes can be represented by mnemonics or numbers. The 
arithmetic trap codes are represented by the numbers 1 to 10, but the 
SIGILL codes are represented by the numbers 0 to 2. The code Values are 
defined in the signal definition module. 

Description 

If ssignal establishes SIG DFL (default action) for the signal, then the 
functions do not return. The image is exited with the VMS error code 
corresponding to the signal. 

VAX CRun-Time Library Functions and Macros REF-157 



gsignal 

Return Values 

0 

sig 

x 

Indicates a sig argument that is outside the 
range defined in the signal definition module, 
and the variable errno is set to EINVAL. See 
Chapter 4 for more information. 

Indicates that SIG IGN (ignore signal) has been 
established as the action for the signal. 

Indicates that ssignal has established an action 
function for the signal. That function is called, 
and that function's return value is returned 
by gsignal. 

REF-158 VAX CRun-Time Library Functions and Macros 



hypot 

hypot 

The hypot function returns the square root of the sum of the squares of two 
arguments. For example: 

sgrt(x'x + y*y) 

Format 

#include mafh 

double hypot (double x, double y); 

Arguments 

X 

Is a real value. 

Y 
Is a real value. 

VAX CRun-Time Library Functions and Macros REF-159 



[wjinch 

[w]inch 

The inch macro and the winch function return the character at the current 
cursor position on the specified window without making changes to the 
window. The inch macro acts on the stdscr window. 

Format 

#include curses 

inch( 

char winch (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Return Values 

x 

ERR 

Specifies the returned character. 

Indicates an input error. 

REF-160 VAX CRun-Time Library Functions and Macros 



initscr 

initscr 

The initscr function initializes the terminal-type data and aII screen func-
tions. You must call initscr before using any of the screen functions 
or macros. 

Format 

#include curses 

void initscr (void); 

VAX CRun-Time Library Functions and Macros REF-161 



[w]insch 

[w]insch 

The insch macro and the winsch function insert the character ch at the 
current cursor position in the specified window. The insch macro acts on 
the stdscr window. 

Format 

#include curses 

insch (char ch); 

int winsch (WINDOW *win, char ch); 

Arguments 

win 
Is a pointer to the window. 

ch 
Is the character to be inserted. 

Description 

After inserting the character, each character on the line shifts to the right, 
and Curses deletes the last character in the line. For more information, see 
the scrollok macro in this section. 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally. 

REF-162 VAX CRun-Time Library Functions and Macros 



[w]insertln 

[w]insertln 

The insertln macro and the winsertln function insert a line above the 
line containing the current cursor position. The insertln macro acts on the 
stdscr window. 

Format 

#include curses 

insertln(); 

int winsertln (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Description 

Every line below the current line shifts down, and the bottom line disap-
pears. The inserted line is blank and the current (yx) coordinates remain 
the same. For more information, see the scrollok macro in this section. 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally. 

VAX CRun-Time Library Functions and Macros REF-163 



[w]insstr 

[w]insstr 

The insstr macro and the winsstr function insert a string at the current 
cursor position on the specified window. The insstr macro acts on the stdscr 
window. 

Format 

#include curses 

insstr (char *str); 

int winsstr (WINDOW *win, char *str); 

Arguments 

win 

Is a pointer to the window. 

str 
Is a pointer to the string to be inserted. 

Description 

Each character after the string shifts to the right, and. the last character 
disappears. For more information, see the scrollok macro in this section. 
The macro and function are VAX C specific and are not portable. 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally. 

REF-164 VAX CRun-Time Library Functions and Macros 



isalnum 

isalnum 

The isalnum macro returns a nonzero integer if its argument is one of the 
alphanumeric ASCII characters. Otherwise, it returns 0. 

Format 

#include ctype 

int isalnum (nt character); 

Arguments 

character 
Is an object of type int. 

n 

VAX CRun-Time Library Functions and Macros REF-165 



isalpha 

isalpha 

The isalpha macro returns a nonzero integer if its argument is an alpha-
betic ASCII character. Otherwise, it returns 0. 

Format 

#include ctype 

int isalpha (nt character); 

Arguments 

character 
Is an object of type int. 

REF-166 VAX CRun-Time Library Functions and Macros 



isapipe 

isapipe 

The isapipe function returns 1 if the specified file descriptor is associated 
with a mailbox, and 0 if it is not. For more information about mailboxes, see 
Chapter 5. 

Format 

#include unixio 

int isapipe (nt file desc); 

Arguments 

file desc 
Is a file descriptor. 

Return Values 

—1 

1 

0 

Indicates an error (for example, if the file de-
scriptor is not associated with an open file). 

Indicates an association with a mailbox. 

Indicates no association with a mailbox. 

VAX CRun-Time Library Functions and Macros REF-167 



isasci i 

isascii 

The isascii macro returns a nonzero integer if its argument is any ASCII 
character. Otherwise, it returns 0. 

Format 

#include ctype 

int isascii ant character); 

Arguments 

character 
Is an object of type char. 

REF-168 VAX CRun-Time Library Functions and Macros 



isatty 

isatty 

The isatty function returns 1 if the specified file descriptor is associated 
with a terminal, and 0 if it is not. 

Format 

#include unixio 

int isatty (nt file desc); 

Arguments 

file_desc 
Is a file descriptor. 

Return Values 

—1 Indicates an error (for example, if the file de-
scriptor is not associated with an open file). 

1 Indicates that the file descriptor is associated 
with a terminal. 

0 Indicates that the file descriptor is not associated 
with a terminal. 

VAX CRun-Time Library Functions and Macros REF-169 



iscntrl 

iscntrl 

The iscntrl macro returns a nonzero integer if its argument is an ASCII 
DEL character (177 octal) or any nonprinting ASCII character (a code less 
than 40 octal). Otherwise, it returns 0. 

Format 

#include ctype 

int iscntrl ant character); 

Arguments 

character 
Is an object of type int. 

REF-170 VAX CRun-Time Library Functions and Macros 



isdigit 

isdigit 

The isdigit macro returns a nonzero integer if its argument is a decimal 
digit character (0 to 9). Otherwise, it returns 0. 

Format 

#include ctype 

int isdigit ant character); 

Arguments 

character 
Is an object of type int. 

VAX CRun-Time Library Functions and Macros REF-171 



isgraph 

isgraph 

The isgraph macro returns a nonzero integer if its argument is a graphic 
ASCII character. Otherwise, it returns 0. 

Format 

#include ctype 

int isgraph (nt character); 

Arguments 

character 
Is an object of type int. 

Description 

Graphic ASCII characters have octal codes greater than or equal to 41 (! ) 
and less than or equal to 176 (?~). They make up the set of characters you 
can print minus the space. 

REF-172 VAX CRun-Time Library Functions and Macros 



islower 

islower 

The islower macro returns a nonzero integer if its argument is a lowercase 
alphabetic ASCII character. Otherwise, it returns 0. 

Format 

#include ctype 

int isiower (nt character); 

Arguments 

character 
Is an object of type int. 

VAX CRun-Time Library Functions and Macros REF-173 



isprint 

isprint 

The isprint macro returns a nonzero integer if its argument is any ASCII 
printing character (ASCII codes from 40 octal to 176 octal). Otherwise, it 
returns 0. 

Format 

#include ctype 

int isprint ant character); 

Arguments 

character 
Is an object of type int. 

REF-174 VAX CRun-Time Library Functions and Macros 



ispunct 

ispunct 

The ispunct macro returns a nonzero integer if its argument is an ASCII 
punctuation character; that is, if it is nonalphanumeric and greater than 40 
octal. Otherwise, it returns 0. 

Format 

#include ctype 

int ispunct 
ant character); 

Arguments 

character 
Is an object of type int. 

VAX CRun-Time Library Functions and Macros REF-175 



isspace 

isspace 

The isspace macro returns a nonzero integer if its argument is white space; 
that is, if it is an ASCII space, tab (horizontal or vertical), carriage-return, 
form-feed, or newline character. Otherwise, it returns 0. 

Format 

#include ctype 

int isspace (nt character); 

Arguments 

character 
Is an object of type int. 

REF-176 VAX CRun-Time Library Functions and Macros 



isupper 

isupper 

The isupper macro returns a nonzero integer if its argument is an upper-
case alphabetic ASCII character. Otherwise, it returns 0. 

Format 

#include ctype 

int isupper (nt character); 

Arguments 

character 
Is an object of type int. 

VAX CRun-Time Library Functions and Macros REF-177 



isxdigit 

isxdigit 

The isxdigit macro returns a nonzero integer if its argument is a hexadeci-
mal digit (0 to 9, A to F, or a to f). 

Format 

#include ctype 

int isxdigit (nt character); 

Arguments 

character 
Is an object of type int. 

REF-178 VAX CRun-Time Library Functions and Macros 



kill 

ki II 

The kill function sends a signal to the process specified by a process ID. 
This function does not support the same functionality supported by 
UNIX systems. 

Format 

#include signal 

int kill (nt pid, int sig); 

Arguments 

pid 
Is the process ID. 

sig 

Is the signal code. 

Description 

Unless you have system privileges, the sending and receiving processes must 
have the same User Identification Code (UIC). 

If pid is the process ID of the invoking process, then the kill function acts as 
if the raise function had been called. 

If kill is successful, the receiving process is terminated. The termination 
status of the receiving process is the VMS error code corresponding to the 
value of the signal that was sent. 

VAX CRun-Time Library Functions and Macros REF-179 



kill 

Return Values 

0 Indicates that kill was successfully queued. 

—1 Indicates errors. The receiving process may have 
a different UIC and you are not a system user, or 
the receiving process does not exist. 

REF-180 VAX CRun-Time Library Functions and Macros 



labs 

labs 

The labs function returns the absolute value of an integer as a long int. 

Format 

#include stdlib 

long int labs (long int j); 

Arguments 

1 
Is a value of type long int. 

VAX CRun-Time Library Functions and Macros REF-181 



Idexp 

Idexp 

The Idexp function returns its first argument multiplied by 2 raised to the 
power of its second argument; that is, x (2e ) . 

Format 

#include math 

double Idexp (double x, int e); 

Arguments 

X 

Is a base value, of type double, that is to be multiplied by 2e. 

e 

Is the integer exponent value to which 2 is raised. 

Description 

If the calculation causes an overflow, the Idexp function sets errno to 
ERANGE and returns the value HUGE VAL. The constant HUGE VAL is 
defined in the math definition module to be the largest possible value of the 
appropriate sign. 

Return Values 

0 Indicates that underflow has occurred. 

x Indicates that overflow has occurred, and returns 
the largest possible value of the appropriate sign. 

REF-182 VAX CRun-Time Library Functions and Macros 



Idiv 

Idiv 

The ldiv function returns the quotient and the remainder after the division 
of its arguments. 

Format 

#include stdlib 

Idiv t Idiv (long int numer, long int denom); 

Arguments 

numer 
Is a numerator of type long int. 

denom 
Is a denominator of type long int. 

Description 

The type ldiv_t is defined in the standard include module stdlib as follows: 

struct DIV_T 
{ 

int quot, rem; 
}; 

typedef struct DIV T div t; 

struct LDIV T 
{ 

long quot, rem; 
}; 

typedef struct LDIV_T ldiv_t; 

In VAX C, ldiv and div perform the same function. 

See also div in this section. 

VAX CRun-Time Library Functions and Macros REF-183 



leaveok 

leaveok 

The leaveok macro signals Curses to leave the cursor at the current coordi-
nates after an update to the window. 

Format 

#include curses 

leaveok (WINDOW *win, boot boolf); 

Arguments 

win 
Is a pointer to the window. 

boolf 
Is a Boolean TRUE or FALSE value. If boolf is TRUE, the cursor remains 
in place after the last update and the coordinate setting on win changes 
accordingly. If boolf is FALSE, the cursor moves to the currently specified 
(yx) coordinates of win. Values for boolf are defined in the curses 
definition module. 

Description 

The leaveok macro defaults to moving the cursor to the current coordinates 
of win. 

REF-184 VAX CRun-Time Library Functions and Macros 



localtime 

localtime 

The localtime function converts a time (expressed as the number of seconds 
elapsed since 00:00:00, January 1, 1970) into hours, minutes, seconds, and 
so on. 

Format 

#include time 

struct tm *localtime (const time t *bintim); 

Arguments 

bintim 
Is a pointer to the time in seconds relative to 00:00:00, January 1, 1970. You 
can generate this time by using the time function or you can supply a time. 

Description 

The converted time value is placed in a time structure defined in the time 
definition module with the tag tm. Table REF-5 describes the member 
names that are offsets into the structure. 

Table REF-5: Member Names 

tm_sec 

tm min 

tm_hour 

tm_mday 

Time in seconds 

Time in minutes 

Time in hours (24) 

Day of the month (1 to 31) 

(continued on next page) 

VAX CRun-Time Library Functions and Macros REF-185 



localtime 

Table REF-5 (Cont.): Member Names 

tm_mon Month (0 to 11) 

tm~ear Year (last two digits) 

tm_wday Day of the week (0 to 6) 

tm_yday Day of the year (0 to 365) 

tm_isdst Daylight savings time (always 0) 

The member names are integers. 

Successive calls to localtime overwrite the structure. 

Return Values 

pointer Indicates a pointer to the time structure. 

REF—~ 86 VAX CRun-Time Library Functions and Macros 



Iog,logl0 

log, Iog10 

The log and 1og10 functions return the logarithm of their arguments. 

Format 

#include math 

double log (double x); 

double Iog10 (tlouble x); 

Arguments 

X 

Is a real number. 

Return Values 

Natural (base e) logarithm of the 
argument, which must be of type 
double 

Base 10 logarithm of its double 
argument 

0 

The returned value is also double for log. 

The returned value is double for 1og10. 

Indicates that the argument is 0 or negative, and 
sets errno to EDOM. 

VAX CRun-Time Library Functions and Macros REF-18? 



longjmp 

longjmp 

The longjmp function provides a way to transfer control from a nested 
series of function invocations back to a predefined point without returning 
normally; that is, by not using a series of return statements. The longjmp 
function restores the context of the environment buffer. 

Format 

#include setjmp 

void longjmp ~mp_buf env, int value); 

Arguments 

env 
Represents the environment buffer and must be an array of integers long 
enough to hold the register context of the calling function. The type jmp_ 
buf is defined by a typedef found in the setjmp definition module. The 
contents of the general-purpose registers, including the program counter 
(PC), are stored in the buffer. 

value 
Is passed from longjmp to setjmp, and then becomes the subsequent return 
value of the setjmp call. If value is passed as 0, it is converted to 1. 

Description 

When setjmp is first called, it returns the value 0. If longjmp is then 
called, naming the same environment as the call to setjmp, control is 
returned to the setjmp call as if it had returned normally a second time. 
The return value of setjmp in this second return is the value you supply in 
the longjmp call. To preserve the true value of setjmp, the function calling 
setjmp must not be called again until the associated longjmp is called. 

REF-188 VAX CRun-Time Library Functions and Macros 



longjmp

The setjmp and longry'mp functions rely on the VMS condition-handling 
facility to effect a nonlocal goto with a signal handler. The long7mp function 
is implemented by generating a VAX C RTL specified signal and allowing 
the VMS system to unwind back to the desired destination. The VAX C 
RTL must be in control of signal handling for any VAX C image. For VAX 
C to be in control of signal handling, you must establish all exception 
handlers through a call to the VAXC$ESTABLISH function. See the 
VAXC$ESTABLISH function in this section for more information. 

CAUTION 

You cannot invoke the longjmp function from a VMS condition 
handler. However, you may invoke longjmp from a signal handler 
that has been established for any signal supported by the VAX C 
RTL, subject to the following nesting restrictions: 

• The longjmp function will not work if invoked from nested 
signal handlers. The result of the longjmp function, when 
invoked from a signal handler that has been entered as a 
result of an exception generated in another signal handler, is 
undefined. 

• Do not invoke the setjmp function from a signal handler 
unless the associated longjmp is to be issued before the 
handling of that signal is completed. 

VAX CRun-Time Library Functions and Macros REF-189 



longname 

longname 

The longname function assigns the full terminal name to name, which 
must be large enough to hold the character string. 

Format 

#include curses 

void longname (char *termbuf, char *name); 

Arguments 

termbuf 
Is a string containing the name of the terminal. 

name 
Is acharacter-string buffer with a minimum length of 64 characters. 

Description 

The terminal name is in a readable format so that you can double-check 
to be sure that Curses has correctly identified your terminal. The dummy 
argument termbuf is required for UNIX software compatibility and serves 
no function in the VMS environment. If portability is a concern, you must 
write a set of dummy routines to perform the functionality provided by the 
data base ~ermcap in the UNIX system environment. 

REF-190 VAX CRun-Time Library Functions and Macros 



(seek 

Iseek 

The lseek function positions a file to an arbitrary byte position and returns 
the new position as an int. 

Format 

#include unixio 

i nt (seek ~ nt file desc, i nt offset, i nt direction); 

Arguments 

file desc 
Is an integer returned by open, Great, dup, or dup2. 

offset 
Is measured in bytes. 

direction 
Tells the lseek function where to begin the offset. The new position is rel-
ative either to the beginning of the file (direction=SEEK SET), the current 
position (direction=SEEK CUR), or the end of the file (direction=SEEK 
END). 

Description 

The lseek function can position a stream file on any byte offset but can 
position a record file only on record boundaries. The available Standard 
I/O functions position a record file at its first byte, at the end-of--file, or on 
a record boundary. Therefore, the arguments given to lseek must specify 
either the beginning or end of the file, a 0 offset from the current position 
(an arbitrary record boundary), or the position returned by a previous, valid 
lseek call. 

VAX CRun-Time Library Functions and Macros REF-191 



Iseek 

The following call obtains the position of the current record in an RMS 
record file (which has the descriptor filel): 

/* RELATIVE TO CURRENT POSITION *~ 

pos = lseek (filel, 0, SEEK CUR) 

You can then use the return value pos later in the program (perhaps after 
repositioning the file with write or read) to return to this position, as in the 
following example: 

/* POSITION RELATIVE TO BEGINNING 

newpos = lseek(filel, pos, SEEK SET); 

CAUTION 

*~ 

If, while accessing a stream file, you seek beyond the end-of--file 
and then write to the file, the lseek function ~;reates a hole by 
filling the skipped bytes with zeros. 

In general, for record files, lseek should only be directed to an 
absolute position that was returned by a previous valid call to 
lseek or to the beginning or end of a file. If a call to lseek does 
not satisfy these conditions, the results are unpredictable. 

See also open, Great, dup, dup2, and fseek in this section. 

Return Values 

—1 Indicates that the file descriptor is undefined or 
a seek was attempted before the beginning of 
the file. 

REF-192 VAX CRun-Time Library Functions and Macros 



malloc 

malloc 

The malloc function allocates an area of memory. 

Format 

#include stdlib 

void *malloc (size t size); 

Arguments 

size 
Is the total number of bytes to be allocated. 

Description 

The malloc function allocates a contiguous area of memory whose size, in 
bytes, is supplied as an argument. The space is not initialized. 

Return Values 

0 

x 

Indicates that it is unable to allocate enough 
memory. 

The address of the first byte, which is aligned on 
an octaword boundary. 

VAS C Run-Time Library Functions and Macros REF-193 



memchr 

memchr 

The memchr function locates the first occurrence of the specified byte 
within the initial size bytes of a given object. 

Format 

#include string 

void *memchr (const void *s~, int c, size t size); 

Arguments 

sy 
Is a pointer to the object to be searched. 

c 
Is the byte value to be located. 

size 
Is the length of the object to be searched. 

Description 

Unlike strchr, the memchr function does not stop when it encounters a 
null character. 

Return Values 

pointer Is a pointer to the first occurrence of the char-
acter. If the character does not occur in the 
identified character string, the memchr function 
returns a null pointer. 

REF-194 VAX CRun-Time Library Functions and Macros 



memcmp 

memcmp 

The memcmp function compares two objects, byte by byte. The compare 
operation starts with the first byte in each object. 

Format 

#include string 

int memcmp (const void *s~, const void *s2, size t size); 

Arguments 

S~ 
Is a pointer to the first object. 

s2 
Is -a pointer to the second object. 

n size 
Is the length of the objects to be compared. 

Description 

The memcmp function uses native character comparison. The sign of the 
value returned is determined by the sign of the difference between the 
values of the first pair of unlike bytes in the objects being compared. Unlike 
the strcmp function, the memcmp function does not stop when a null 
character is encountered. 

See also strcmp in this section. 

VAX CRun-Time Library Functions and Macros REF-195 



memcmp 

Return Values 

x Is an integer less than, equal to, or greater than 
0, depending on whether the lexical value of the 
first object is less than, equal to, or greater than 
that of the second object. 

REF-196 VAX CRun-Time Library Functions and Macros 



memcpy 

memcpy 

The memcpy function copies a specified number of bytes from one object 
to another. 

Format 

#include string 

void *memcpy (void *s 1, const void *s2, size t size); 

Arguments 

sy 

Is a pointer to the first object. 

s2 
Is a pointer to the second object. 

size 

Is the length of the object to be copied. 

Description 

The memcpy function copies size bytes from object 2 to object 1; it does not 
check for the overflow of the receiving memory area (object 1). Unlike the 
strcpy function, the memcpy function does not stop when a null character 
is encountered. 

Return Values 

x Indicates the value of s 1, which is a pointer. 

VAX CRun-Time Library Functions and Macros REF-197 



memmove 

memmove 

The memmove function copies a specified number of bytes from one object 
to another. 

Format 

#include string 

void *memmove (void *s 1, const void *s2, size t size); 

Arguments 

Sy 
Is a pointer to the first object. 

s2 
Is a pointer to the second object. 

size 
Is the length of the object to be copied. 

Description 

In VAX C, memmove and memcpy perform the same function. Programs 
that require portability should use memmove if the area pointed at by s 1 
could overlap the area pointed at by s2. 

REF-198 VAX CRun-Time Library Functions and Macros 



memmove 

Example 

main () { 
char *pdest = "hello there"; 
char *psource = "you are there"; 

memmove ( pdest, psource, 7) ; 
printf (" os\n", pdest) ; 

} 

VAX CRun-Time Library Functions and Macros REF-199 



memset 

memset 

The memset function sets a specified number of bytes in a given object to a 
given value. 

Format 

#include string 

void *memset (void *s, int value, size t size); 

Arguments 

s 

Is an array pointer. 

value 
Is the value to be placed in s. 

size 

Is the number of bytes to be placed in s. 

Description 

The memset function returns s. It does not check for the overflow of the 
receiving memory area pointed to by s. 

REF-200 VAX CRun-Time Library Functions and Macros 



mkdir 

mkdir 

The mkdir function creates a directory. 

Format 

#include stdlib 

int mkdir (char *dir spec, unsigned mode, . . 

Arguments 

dir spec 
Is a valid VMS or UNIX-style directory specification that may contain a 
device name. For example: 

DBAO:[BAY.WIND~WS] /* VMS */ 

/dba0/bay/windows /* UNIX-style */ 

This specification cannot contain a node name, file name, file extension, file 
version, or a wildcard character. The same restriction applies to the UNIX-
style directory specifications. For more information about the restrictions on 
UNIX-style specifications, see Chapter 1. 

mode 
Is a file protection. See the chmod function in this section for information 
about the specific file protections. All parent-directory defaults are applied 
to the new directory unless you override them. 

... 
Represents the following optional arguments: 

uic 
Is the user identification code (UIC) that identifies the owner of the created 
directory. If this argument is 0, VAX C gives the created directory the UIC 
of the parent directory. This optional argument is VAX C specific and is not 
portable. 

VAX CRun-Time Library Functions and Macros REF-201 



mkdir 

max_ versions 
Is the maximum number of file versions to be retained in the created 
directory. The system automatically purges the directory keeping, at most, 
max versions number of every file. If this argument is 0, VAX C does 
not place a limit on the maximum number of file versions. This optional 
argument is VAX C specific and is not portable. 

r v_number 
Specifies on which volume device) to place the created directory if the device 
is part of a volume set. If this argument is 0, VAX C arbitrarily places the 
created directory within the volume set. This optional argument is VAX C 
specific and is not portable. 

Description 

If dir_spec specifies a path that includes directories, which do not exist, 
intermediate directories are also created. This differs from the behavior of 
the UNIX system where these intermediate directories must exist and will 
not be created. 

VAX C implements this function using the VMS RTL routine LIB$CREATE_ 
DIR. For more information, see the VMS Run-1~me Library Routines 
Volume. 

Return Values 

0 Indicates success. 

—1 Indicates failure. 

REF-202 VAX CRun-dime Library Functions and Macros 



mktemp 

mktemp 

The mktemp function creates a unique file name from a template. 

Format 

#include unixio 

char *mktemp (char *temp/ate~; 

Arguments 

template 
Is a pointer to auser-defined template. You supply the template in the 
form, nam_ .The six trailing Xs are replaced by a unique series of 
characters. You may supply the first three characters. 

Description 

The use of mktemp is not recommended for new applications. See the 
tmpnam function for the preferable alternative. 

Return Values 

x A pointer to the template, with the template 
modified to contain the created file name. If this 
value is a pointer to a null string, it indicates 
that a unique file name cannot be created. 

VAX CRun-Time Library Functions and Macros REF-203 



modf 

modf 

The modf function returns the positive fractional part of its first argument 
and assigns the integer part, expressed as an object of type double, to the 
object whose address is specified by the second argument. 

Format 

#include math 

double modf (double value, double *iptr); 

Arguments 

value 
Must be an object of type double. 

iptr 
Is a pointer to an object of type double. 

REF-204 VAX CRun-Time Library Functions and Macros 



[w]move 

[w]move 
The move macro and the wmove function change the current cursor 
position on the specified window to the coordinates (y,x). The move macro 
acts on the stdscr window. 

Format 

#include curses 

move (yx); 

int wmove (VIIIND~W *win, int y, int x); 

Arguments 

win 
Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

Description 

For more information, see the scrollok macro in this section. 

VAX CRun-Time Library Functions and Macros REF-205 



[w]move 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally. 

REF-206 VAX CRun-Time Library Functions and Macros 



mvcu r 

mvcur 

The mvcur function moves the terminal's cursor from (lasty,lastx) to 
(newy,newx). 

Format 

#include curses 

int mvcur ant /asty, int lastx, int newt', int newx); 

Arguments 

tasty 
Is the cursor position. 

Iastx 
Is the cursor position. 

newt' 
Is the resulting cursor position. 

newx 
Is the resulting cursor position. 

Description 

In VAX C, mvcur and move perform the same function. 

See also move in this section. 

VAX CRun-Time Library Functions and Macros REF-207 



mvcur 

Return Values 

ERR Indicates that moving the window put part or all 
of the window off the edge of the terminal screen. 
The terminal screen remains unaltered. 

REF-208 VAX CRun-Time Library Functions and Macros 



mvwin 

mvwin 

The mvwin function moves the starting position of the window to the 
specified (y,x) coordinates. 

Format 

#include curses 

mvwin (WINDOW *win, int y, int x}; 

Arguments 

win 

Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

Description 

When moving subwindows, the mvwin function does not rewrite the 
contents of the subwindow on the underlying window at the new position. 
If you write anything to the subwindow after the move, the function also 
writes to the underlying window. 

VAX CRun-Time Library Functions and Macros REF-209 



mvwi n 

Return Values 

ERR Indicates that moving the window put part or all 
of the window off the edge of the terminal screen. 
The terminal screen remains unaltered. 

REF-210 VAX CRun-Time Library Func#ions and Macros 



mv[w]addch 

mv[w]addch 

The mvaddch and mvwaddch macros move the cursor to coordinates (y,x) 
and add the character ch to the specified window. The mvaddch macro acts 
on the stdscr window. 

Format 

#include curses 

mvaddch ant y, int x, char ch); 

mvwaddch (WINDOW *win, int y, int x, char ch); 

Arguments 

win 
Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

ch 
If this argument is a newline (\ n), the mvaddch and mvwaddch macros 
clear the line to the end, and move the specified (yx) coordinates to the next 
line at the same x coordinate. A return (\ r) moves the character to the 
beginning of the specified line. Tabs (\ t) are expanded into spaces at the 
normal tabstop positions (every eight characters). 

VAX CRun-Time Library Functions and Macros REF-211 



mv[w]addstr 

mv[w]addstr 

The mvaddstr and mvwaddstr macros move the cursor to coordinates (y,x) 
and add the specified string, to which str points, to the specified window. 
The mvaddstr macro acts on the stdscr window. 

Format 

#include curses 

mvaddstr ant y, int x, char *str); 

mvwaddstr (WINDOW *win, int y, int x, char *str); 

Arguments 

win 

Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

str 

Is the string that is displayed. 

REF-212 VAX CRun-Time Library Functions and Macros 



mv[w]delch 

mv[w]delch 

The mvdelch and mvwdelch macros move the cursor to coordinates (y,x) 
and delete the character on the specified window. The mvdelch macro acts 
on the stdscr window. 

Format 

#include curses 

mvdelch ant y, int x); 

mvwdelch (WINDOW *win, int y, int x); 

Arguments 

win 

Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

Description 

Each of the following characters on the same line shifts to the left, and the 
last character becomes blank. 

VAX CRun-Time Library Functions and Macros REF-213 



mv[w]getch 

mv[w]getch 

The mvgetch and mvwgetch macros move the cursor to coordinates 
(y,x), get a character from the terminal screen, and echo it on the specified 
window. The mvgetch macro acts on the stdscr window. 

Format 

#include curses 

mvgetch ant y, int x); 

mvwgetch (WIND0IN *win, int y, int x); 

Arguments 

win 

Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

REF-214 VAX CRun-Time Library Functions and Macros 



mv[w]getstr 

mv[w]getstr 

The mvgetstr and mvwgetstr macros move the cursor to coordinates (y,x), 
get a string from the terminal screen, store it in the variable str which must 
be large enough to contain the string, and echo it on the specified window. 
The mvgetstr macro acts on the stdscr window. 

Format 

##include curses 

mvgetstr ant y, int x, char *str); 

mvwgetstr (WINDOW *win, int y, int x, char *str); 

Arguments 

win 

Is a pointer to the window. 

y 

Is a window coordinate. 

x 
Is a window coordinate. 

str 

Is the string that is displayed. 

Description 

The mvgetstr and mvwgetstr macros strip the newline terminator (\ n} 
from the string. 

VAX CRun-Time Library Functions and Macros REF-215 



mv[w]inch 

mv[w]inch 

The mvinch and mvwinch macros move the cursor to coordinates (y,x) and 
return the character on the specified window without making changes to the 
window. The mvinch macro acts on the stdscr window. 

Format 

#include curses 

mvinch ant y, int x); 

mvwinch (WINDOW *win, int y, int x); 

Arguments 

win 

Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

REF-216 VAX CRun-Time Library Functions and Macros 



mv[w]insch 

mv[w]insch 

The mvinsch and mvwinsch macros move the cursor to coordinates (y,x) 
and insert the character ch in the specified window. The mvinsch macro 
acts on the stdscr window. 

Format 

#include curses 

mvinsch (char ch, int y, int x); 

mvwinsch (WINDOW *win, int y, int x, char ch); 

Arguments 

win 

Is a pointer to the window. 

Y 
Is a window coordinate. 

x 
Is a window coordinate. 

ch 
Is the character to be inserted at the window's coordinates. 

Description 

After inserting the character, each character on the line shifts to the right, 
and the last character disappears. 

VAX CRun-Time Library Functions and Macros REF-217 



mv[w]insstr 

mv[w]insstr 

The mvinsstr and mvwinsstr macros move the cursor to coordinates (y,x) 
and insert a string in the specified window. The mvinsstr macro acts on the 
stdscr window. 

Format 

#include curses 

mvinsstr ant y, int x, char *str); 

mvwinsstr (WINDOW *win, int y, int x, char *str); 

Arguments 

win 

Is a pointer to the window. 

y 

Is a window coordinate. 

x 
Is a window coordinate. 

str 
Is the string that is displayed. 

Description 

Each character after the string shifts to the right, and the last character 
disappears. The mvinsstr and mvwinsstr macros are VAX C specific and 
are not portable. 

REF-218 VAX CRun-Time Library Functions and Macros 



newwi n 

newwin 

The newwin function creates a new window with numlines lines and num-
cols columns starting at the coordinates (begin~y,begin_x) on the terminal 
screen. 

Format 

#include curses 

WINDOW *newwin ~ nt numlines, i nt numcols, i nt begin~y, i nt 
begin x); 

Arguments 

numlines 
If it is 0, the newwin function sets that dimension to LINES (begin). To 
get a new window of dimensions LINES by COLS, use the following line: 

newwin (0, 0, 0, 0) 

numcols 
If it is 0, the newwin function sets that dimension to COLS (begin_x). 
Thus, to get a new window of dimensions LINES by COLS, use the following 
line 

newwin (0, 0, 0, 0 ) 

begin y 
Is a window coordinate. 

begin x 
Is a window coordinate. 

~'1 
VAX CRun-Time Library Functions and Macros REF-219 



newwi n 

Return Values 

x Indicates the address of the allocated window. 

0 Indicates an error. 

REF-220 VAX CRun-Time Library Functions and Macros 



nice 

nice 

The nice function increases or decreases process priority relative to the 
process base priority by the amount of the argument. 

Format 

#include stdlib 

int nice ant increment); 

Arguments 

increment 
As a positive argument decreases priority, and as a negative argument 
increases priority. The resulting priority cannot be less than 1 or greater 
than the process's base priority. 

Description 

When a process calls the vfork function, the resulting child inherits the 
parent's priority. 

See also vfork in this section. 

Return Values 

0 

—1 

Indicates success. 

Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-221 



[no]nl 

[no]nl 

The nl and nonl macros are provided only for UNIX software compatibility 
and have no function in the VMS environment. 

Format 

#include curses 

ni( ) 

nonl( ) 

REF-222 VAX CRun-Time Library Functions and Macros 



open 

open 

The open function opens a file for reading, writing, or editing. It positions 
the file at its beginning (byte 0). 

Format 

#include unixio 

#include file 

int open (char *file spec, int flags, unsigned int mode, . . 

Arguments 

file spec 
Is a NUL-terminated character string containing a valid file specification. 

flags 
Are values defined in the file definition module as follows: 

O_RDONLY 

O WRONLY 

O_RDWR 

O_NDELAY 

O_APPEND 

O_CREAT 

O_TRUNC 

O_EXCL 

Open for reading only 

Open for writing only 

Open for reading and writing 

Open for asynchronous input 

Append on each write 

Create a file if it does not exist 

Create a new version of this file 

Error if attempting to create existing file 

These flags are set using the bitwise OR operator ( I ) to separate specified 
flags. Opening a file with O APPEND causes each write on the file to be 
appended to the end. If O TRUNC is specified and the file exists, open 
creates a new file by incrementing the version number by 1, leaving the old 
version in existence. If O_CREAT is set and the named file does not exist, 
the VAX C RTL creates it with any attributes specified in the fourth and 

VAX CRun-Time Library Functions and Macros REF-223 



open

subsequent arguments ( . . . ). If O_EXCL is set with O_CREAT and the file 
exists, the attempted open returns an error. 

mode 
Sets the file protection. You can construct modes by using the bitwise OR 
operator ( I ) to separate specified modes. The modes are described as 
follows: 

0400 OWNER:READ 

0200 OWNER:WRITE 

0100 OWNER:EXECUTE 

0040 GROUP:READ 

0020 GROUP:WRITE 

0010 GROUP:EXECUTE 

0004 WORLD:READ 

0002 WORLD:WRITE 

0001 WORLD:EXECUTE 

When you supply a mode argument of 0, open gives the file your default file 
protection. 

The system is given the same access privileges as the owner. A WRITE 
privilege also implies a DELETE privilege. 

.. 
Represents an optional argument list of character strings of the following 
form: 

"keyword =value, . . . " 

The keyword is a Record Management Services (RMS) field in the file access 
block (FAB) or record access block (RAB), and value is valid for assignment 
to that field. Some fields permit you to specify more than one value. In 
these cases, the values are separated by commas. 

Table REF-6 lists the set of valid keywords and values. 

REF-224 VAX CRun-Time Library Functions and Macros 



open

Table REF-6: RMS Valid Keywords and Values 

Keyword Value Description 

"alq = n" decimal Allocation quantity 

"bls = n" decimal Block size 

"ctx =bin" string No translation of '\ n' to the terminal 

"ctx = nocvt" decimal No conversion of FORTRAN carriage-control bytes 

"ctx = rec" string Force record-mode access 

"ctx = stm" string Force stream-mode access 

"deq = n" decimal Default extension quantity 

"dna = filespec" string Default file-name string 

"fop = val, File-processing options: 
val " . . . 

ctg Contiguous 
cbt Contiguous-best-try 
dlt Delete file on close 
tef Truncate at end-of--file 
cif Create if nonexistent 
sup Supersede 
scf Submit as command file on close 
spl Spool to system printer on close 
tmd Temporary delete 
tmp Temporary (no file directory) 
nef Not end-of--file 
rck Read check compare operation 
wck Write check compare operation 
mxv Maximize version number 
rwo Rewind file on open 
pos Current position 
rwc Rewind file on close 

"fsz = n" decimal Fixed header size 

"mbc = n" decimal Multiblock count 

"mbf = n" decimal Multibuffer count 

(continued on next page) 

VAX CRun-Time Library Functions and Macros REF-225 



open

Table REF-6 (Cont.): RMS Valid Keywords and Values 

Keyword Value Description 

"mrs = n" decimal Maximum record size 

"rat = val, Record attributes 
val, " . . 

"rfm = val" 

cr Carriage-return control 
blk Disallow records to span block boundaries 
ftn FORTRAN print control 
prn Print file format 

Record format: 

fix Fixed-length record format 
stm RMS-11 stream record format 
stmlf Stream format with line-feed terminator 
stmcr Stream format with carriage-return terminator 

Variable-length record format 
var Variable-length record with fixed control 
vfc Undefined 
udf 

"rop = val" Record-processing operations: 

asy Asynchronous UO 
tmo Timeout UO 
RAH Read ahead 
WBH Write behind 

"shr = val" File-sharing options: 

del Allows users to delete 
get Allows users to read 
mse Allows mainstream access 
nil Prohibits file sharing 
put Allows users to write 
upd Allows users to update 
upi Allows one or more writers 

"tmo = n" decimal I/O timeout value 

REF-226 VAX CRun-Time Library Functions and Macros 



open 

Description 

If you specify a directory in the file name and it is a search list that contains 
an error, VAX C interprets it as a file open error. 

NOTE 

If you intend to do random writing to a file, the file must be 
opened for update by specifying a flags value of O_RDWR. 

See also Great, read, write, close, dup, dup2, and lseek in this section. 

Return Values 

—1 Indicates that the file does not exist, it is pro-
tected against reading or writing, or the file, for 
another reason, cannot be opened. 

x Indicates a nonnegative file descriptor number. 

Example 

#include unixio 
#include file 

main ( ) 
{ 

int file, stat; 

int flags; 

flags = O_RDWR /* open for read and write, 
* with user default file protection, 

* with a maximum fixed record size of 2048 bytes, 

* and a block size 2048 bytes 
*/ 

file = open ("file.dat",flags, 0, "rfm=fix", "mrs=2048", "b1s=2048") ; 

if (file =_ -1) 

perror ("OPEN error"), exit(1); 

close (file) ; 
} 

VAX CRun-Time Library Functions and Macros REF-227 



overlay 

overlay 

The overlay function nondestructively superimposes winl on wing. The 
function writes the contents of winl that will fit onto wing beginning at the 
starting coordinates of both windows. Blanks on winl leave the contents of 
the corresponding space on wing unaltered. The overlay function copies as 
much of a window's box as possible. 

Format 

#include curses 

i nt overlay (WINDOW *win ~, WINDOW *win2); 

Arguments 

win 1 
Is a pointer to the window. 

wing 
Is a pointer to the window. 

Return Values 

1 

0 

Indicates success. 

Indicates an error. 

REF-228 VAX CRun-Time Library Functions and Macros 



overwrite 

overwrite 

The overwrite function destructively writes the contents of winl on wing. 

Format 

#include curses 

i nt overwrite (WINDOW *win 1, WI N D4W *win2); 

Arguments 

win y 

Is a pointer to the window. 

wing 

Is a pointer to the window. 

Description 

The overwrite function writes the contents of winl that will fit onto wing 
beginning at the starting coordinates of both windows. Blanks on winl are 
written on wing as blanks. This function copies as much of a window's box 
as possible. 

Return Values 

1 

0 

Indicates success. 

Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-229 



pause 

pause 

The pause function causes its calling process to stop (hibernate) until the 
process receives a signal. 

Format 

#include signal 

int pause (void); 

Description 

Control is not returned to the process that called pause. You may reawaken 
the process by using kill or alarm. 

The pause function uses the $HIBER system service. Because of this, a call 
to the SYS$wAKF system service will also wake up a paused process. 

See also kill and alarm in this section. 

Return Values 

x Specifies the value of the VMS $HIBER system 
service routine. 

REF-230 VAX CRun-Time Library Functions and Macros 



perror 

perror 

The perror function writes a short error message to stderr describing the 
last error encountered during a call to the VAX C RTL from a C program. 

Format 

#include stdio 

void perror (const char *str); 

Arguments 

str 

Typically contains the name of the program that brought on the error. 

Description 

The perror function writes out its argument (a user-supplied prefix to the 
error message), followed by a colon, followed by the message itself, followed 
by a newline. See the description of 

errno 

in Chapter 4. 

Example 

main (argc, argv) 
int argc; 
char *argv [ ] ; 

{ 

FILE * fp; 
int status; 
int total recs = -1; 

VAX CRun-Time Library Functions and Macros REF-231 



perror

fp = fopen (argv [ 1) , "r") ; 
if (fp < 0) 

{ 

/* Open an input file */ 

/* 
* perror will print out a diagnostic explaining why 
* the open failed. 

* 

*/ 
perror("open"); 
exit () ; 

} 

/* etc. 
} 

*/ 

REF-232 VAX CRun-Time Library Functions and Macros 



pipe 

pipe 

The pipe function creates a temporary mailbox. You must use a mailbox to 
read and write data between the parent and child. The channels through 
which the processes communicate are called a pipe. 

Format 

#include processes 

int pipe ant array_fdscptr~2], . . . ) 

Arguments 

array_fdscptr 
Is an array of file descriptors. A pipe is implemented as an array of file 
descriptors associated with a mailbox. The file descriptors are allocated as 
follows: 

• The first available file descriptor is assigned to writing, and the next 
available file descriptor is assigned to reading. 

• The file descriptors are then placed in the array in reverse order; 
element ~ contains the file descriptor for reading, and element 1 
contains the file descriptor for writing. 

.. 
Represents two additional arguments, as follows: 

flags 
Is an optional argument that is identical to the same argument in the open 
function. The values for the argument are defined in the file definition 
module as follows: 

O_RDONLY 

O_WRONLY 

Open for reading only 

Open for writing only 

VAX CRun-Time Library Functions and Macros REF-233 



pipe 

O_RDWR 

O_NDELAY 

O_APPEND 

O_C REAT 

O_TRUNC 

O_EXCL 

Open for reading and writing 

Ignored; not supported by VAX C 

Append on each write 

Create a file if it does not exist 

Create a new version of this file 

Error if attempting to create an existing file 

These flags are set using the bitwise OR operator ( I ) to separate specified 
flags. Opening a file with O_APPEND causes each write on the file to be 
appended to the end. If O_TRUNC is specified and the file exists, open 
creates a new file by incrementing the version number by 1, leaving the old 
version in existence. If O_CREAT is set and the named file does not exist, 
the VAX C RTL creates it with any attributes specified in the fourth and 
subsequent arguments, file_attribute. If O_EXCL is set with O_CREAT and 
the file exists, the attempted open returns an error. 

Do not use O_CREAT, O_EXCL, and O TRUNC with pipes. O APPEND is 
ignored with pipes. 

bufsize 
Is optional and specifies the size of the mailbox, in bytes. If you do not 
specify this. argument, VAX C creates a mailbox with a default size of 
512 bytes. 

Description 

The mailbox used for the pipe is a temporary mailbox. The mailbox is not 
deleted until all processes that have open channels to that mailbox close 
those channels. Each process that closes a previously active channel to the 
mailbox writes a message to the mailbox, indicating the end-of--file. 

The mailbox is created by using the $CREMBX system service, specifying 
the following characteristics: 

• A maximum message length of 512 characters 

• A buffer quota of 512 characters 

• A protection mask granting all privileges to USER and GROUP and no 
privileges to SYSTEM or WORLD 

REF-234 VAX CRun-~`ime Library Functions and Macros 



pipe

The buffer quota of 512 characters implies that you cannot write more than 
512 characters to the mailbox before all or part of the mailbox is read. Since 
a mailbox record is slightly larger than the data part of the message that 
it contains, not all of the 512 characters can be used for message data. The 
size of the buffer can be increased by specifying an alternative size using the 
optional, third argument to the pipe function. A mailbox under the VMS 
system is arecord-oriented file with no carriage-control attributes. It is fully 
buffered by default in the VAX C RTL. 

The pipe is created by the parent process before vfork and exec are called. 
By calling pipe first, the child inherits the open file descriptors for the pipe. 
You can then use the getname function to return the name of the mailbox 
associated with the pipe, if this information is desired. The mailbox name 
returned by getname has the format _MBAnnnn:, where nnnn is a 
unique number. 

Both the parent and the child need to know in advance which file descriptors 
will be allocated for the pipe. This information cannot be retrieved at run 
time. Therefore, it is important to understand how file descriptors are used 
in any VAX C program. For more information about file descriptors, see 
Chapter 2. 

File descriptors 0, 1, and 2 are open in a VAX C program for stdin 
(SYS$INPUT), stdout (SYS$OUTPUT), and stderr (SYS$ERROR), re-
spectively. Therefore, if no other files are open when pipe is called, pipe 
assigns file descriptor 3 for writing and file descriptor 4 for reading. In the 
array returned by pipe, 4 is placed in element 0 and 3 is placed in 
element 1. 

If other files have been opened, pipe assigns the first available file 
descriptor for writing and the next available file descriptor for reading. 
In this case, the pipe does not necessarily use adjacent file descriptors. 
For example, assume that two files have been opened and assigned to file 
descriptors 3 and 4 and the first file is then closed. If pipe is called at 
this point, file descriptor 3 is assigned for writing and file descriptor 5 is 
assigned for reading. Element 0 of the array will contain 5 and element 1 
will contain 3. 

In large applications that do large amounts of UO, it gets more difficult to 
predict which file descriptors are going to be assigned to a pipe; and, unless 
the child knows which file descriptors are being used, it will not be able to 
read and write successfully from and to the pipe. 

VAX CRun-Time Library Functions and Macros REF-235 



pipe

One way to be sure that the correct file descriptors are being used is to use 
the following procedure: 

1. Choose two descriptor numbers that will be known to both the parent 
and the child. The numbers should be high enough to account for any 
I/O that may be done before the pipe is created. 

2. Call pipe in the parent at some point before calling exec. 

3. In the parent, use dup2 to assign the file descriptors returned by pipe 
to the file descriptors you chose. This now reserves those file descriptors 
for the pipe; any subsequent UO will not interfere with the pipe. 

You can read and write through the pipe using the UNIX UO functions read 
and write, specifying the appropriate file descriptors. As an alternative, you 
can issue fdopen calls to associate file pointers with these file descriptors so 
that you can use the Standard I/O functions (fread and fwrite). 

NOTE 

If you use the UNIX I/O function write to write to a mailbox, 
and the third argument specifies a length of 0, then an end-of--file 
message is written to the mailbox. 

Two separate file descriptors are used for reading from and writing to the 
pipe, but only one mailbox channel is used so some I/O synchronization is 
required. For example, assume that the parent writes a message to the pipe. 
If the parent is the first process to read from the pipe, then it will read its 
own message back as shown in Figure REF-1. 

REF-236 VAX CRun-Time Library Functions and Macros 



pipe

Figure REF-1: Reading and Writing to a Pipe 

0 

1 

Parent

read 

write 
Mailbox 

Child 

read 

write 

0 

1 

ZK-4003—G E 

Return 

Values 

0 

—1 

Indicates success. 

Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-237 



pow 

pow 

The pow function returns the first argument raised to the power of the 
second argument. 

Format 

#include math 

double pow (double base, double exp); 

Arguments 

base 
Is .a value of type double that is to be raised to a power. 

exp 
Is the exponent to which the power base is to be raised. 

Description 

Both arguments must be double and the returned value is double. If there 
is an overflow, the value HUGE VAL is returned. 

The constant HUGE is defined in the math definition module to be the 
largest possible value. 

REF-238 VAX CRun-Time Library Functions and Macros 



pow 

Return Values 

The largest possible floating- Indicates that the result overflowed. Errno is set 
point value to ERANGE. 

0 Indicates success and sets errno to EDOM under 
the following conditions: 

• If both arguments are 0 
• If exp is negative and not an integer 
• If base is negative and exp is not an integer 

Example 

#include stdio 
#include math 
main ( ) 

{ 

double x; 

errno=0; 

x =pow (-3.0, 2.0) ; 
printf("%d, %f\n", errno, x); 

} 

VAX CRun-Time Library Functions and Macros REF-239 



printf 

printf 

The printf function performs formatted output from the standard output 
(stdout). See Chapter 2 for information on format specifiers. 

Format 

#include stdio 

int printf (const char *format spec, . . 

Arguments 

format spec 
Contains characters to be written literally to the output or converted as 
specified in the . . .arguments. 

... 
Represents optional expressions whose resultant types correspond to 
conversion specifications given in the format specification. If no conversion 
specifications are given, you may omit the output sources. Otherwise, 
the function call must have exactly as many output sources as there are 
conversion specifications, and the conversion specifications must match the 
types of the output sources. Conversion specifications are matched to output 
sources in left-to-right order. 

Return Values 

x Indicates the number of characters written. 

-1 Indicates that an output error has occurred. 

REF-240 VAX CRun-Time Library Functions and Macros 



[wlprintw 

Lv~►lprintw 

The printw macro and wprintw function perform a printf (see printf} 
on the window starting at the current position of the cursor. The printw 
macro acts on the stdscr window. See Chapter 2 for information on format 
specifiers. 

Format 

#include curses 

printw (char *format spec, . . . ); 

i nt wpri ntw (WI N DQW *win, char *format spec, . . 

Arguments 

win 
Is a pointer to the window. 

format spec 
Is a pointer to the format specification string. 

.~. 
Represents optional expressions whose resultant types correspond to 
conversion specifications given in the format specification. If no conversion 
specifications are given, you may omit the output sources. Otherwise, 
the function call must have exactly as many output sources as there are 
conversion specifications, and the conversion specifications must match the 
types of the output sources. Conversion specifications are matched to output 
sources in left-to-right order. 

VAX CRun-Time Library Functions and Macros REF-241 



[Wlprintw 

Description 

The formatting specification (format_spec) and the other arguments are 
identical to those used with the printf function. 

The printw macro and the wprintw function format and then print 
the resultant string to the window using the addstr macro. For more 
information, see the printf function and the scrollok macro in this section. 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally. 

REF-242 VAX CRun-Time Library Functions and Macros 



putt 

putt 

The putt macro writes characters to a specified file. 

Format 

#include stdio 

i nt putt ~ nt character, FILE *file~tr); 

Arguments 

character 
Is an object of type int. 

file ptr 
Is a file pointer. 

Description 

The compiler substitutes the following text for a call to the macro 
putt(character, file_ptr): 

fputc(character, file ptr) 

See also fputc and putty in this section. 

Return Values 

EOF Indicates output errors. 

character Indicates success. 

VAX CRun-Time Library Functions and Macros REF-243 



putchar 

putchar 

The putchar function writes a single character to the standard output 
(stdout) and returns the character. 

Format 

#include stdio 

int putchar ant character); 

Arguments 

character 
Is an object of type int. 

Description 

The putchar function is identical to fputc(character, stdout). 

Return Values 

EOF Indicates output errors. 

character Indicates success. 

REF-244 VAX CRun-Time Library Functions and Macros 



puts 

puts 

The puts function writes a character string to the standard output (stdout) 
followed by a newline. 

Format 

#include stdio 

int puts (char *str); 

Arguments 

str 

Is a pointer to a character string to be written to stdout. 

Description 

The puts function does not copy the terminating null character to the 
output stream. 

Return Values 

Nonnegative value 

EOF 

Indicates success. 

Indicates output errors. 

VAX CRun-Time Library Functions and Macros REF-245 



putty 

putty 

The putty function writes characters to a specified file. 

Format 

#include stdio 

i nt putty ~ nt integer, FILE *file ptr); 

Arguments 

integer 
Is an object of type int or long. 

file ptr 
Is a file pointer. 

Description 

The putty function writes four characters to the output file as an int. No 
conversion is performed. 

Return Values 

EOF 

integer 

Indicates output errors. 

Indicates success. 

REF-246 VAX CRun-Time Library Functions and Macros 



gsort 

gsort 

The gsort function sorts an array of objects in place. It implements the 
quick-sort algorithm. 

Format 

#include stdlib 

void gsort (void *base, size t nmemb, size t size, int (*compar) 
(const void * const void *)); 

Arguments 

base 
Is a pointer to the first member of the array. The pointer should be of type 
pointer-to-element and cast to type pointer-to-character. 

nmemb 
Is the number of objects in the array. 

size 
Is the size of an object, in bytes. 

compar 
Is a pointer to the comparison function. 

Description 

Two arguments are passed to the comparison function pointed to by compar. 
The two arguments point to the objects being compared. Depending on 
whether the first argument is less than, equal to, or greater than the second 
argument, the comparison function returns an integer less then, equal to, or 
greater than 0. 

VAX CRun-Time Library Functions and Macros REF-247 



gsort

The comparison function compar need not compare every byte, so arbitrary 
data may be contained in the objects in addition to the values being 
compared. 

The order in the output of two objects that compare as equal is 
unpredictable. 

REF-248 VAX CRun-Time Library Functions and Macros 



raise

raise

The raise function generates a specified software signal. Generating a 
signal causes the action established by the ssignal function to be taken. 

Format 

#include signal 

int raise ant sig, . . . l; 

Arguments 

sig 
Identifies the signal to be generated. 

. . . 
Represents an optional signal type. For example, signal SIGFPE the 
arithmetic trap signal has 10 different codes, each representing a different 
type of arithmetic trap. Table REF-7 presents the various codes. 

Table REF-7: SIGFPE Signal Codes 

Hardware Condition Signal Code 

Arithmetic Traps: 

Integer overflow 

Integer division by 0 

Floating overflow trap 

Floating/decimal division by 0 

Floating underflow trap 

Decimal overflow trap 

SIGFPE 

SIGFPE 

SIGFPE 

SIGFPE 

SIGFPE 

SIGFPE 

FPE_INTOVF_TRAP 

FPE_INTDIV TRAP 

FPE_FLTOVF_TRAP 

FPE_FLTDIV TRAP 

FPE_FLTUND_TRAP 

FPE_DECOVF_TRAP 

(continued on next page) 

VAX CRun-Time Library Functions and Macros REF-249 



raise

Table REF-7 (Cont.): SIGFPE Signal Codes 

Hardware Condition Signal Code 

Subscript-range 

Floating overflow fault 

Floating divide by 0 fault 

Floating underflow fault 

Reserved instruction 

Reserved operand 

Reserved addressing 

Compatibility mode 

Length access control 

Chme 

Chms 

Chmu 

Trace pending 

Bpt instruction 

Protection violation 

Customer-reserved code 

SIGFPE 

SIGFPE 

SIGFPE 

SIGFPE 

SIGILL 

SIGILL 

SIGILL 

SIGILL 

SIGSEGV 

SIGSEGV 

SIGSEGV 

SIGSEGV 

SIGTRAP 

SIGTRAP 

SIGBUS 

SIGEMT 

FPE_SUBRNG_TR,AP 

FPE_FLTOVF_FAULT 

FPE_FLTDIV FAULT 

FPE_FLTUND_FAULT 

ILL_PRIVIN_FAULT 

ILL_RESOP_FAULT 

ILL_RESAD_FAULT 

Hardware supplied 

The signal codes can be represented by mnemonics or numbers. The 
arithmetic trap codes are represented by the numbers 1 to 10; the SIGILL 
codes are represented by the numbers 0 to 2. The code values are defined in 
the signal definition module. 

REF-250 VAX CRun-Time Library Functions and Macros 



raise

Description 

Calling the raise function has one of the following results: 

• If raise specifies a sig argument that is outside the range defined in the 
signal module, then the specified function returns 0, and the variable 
errno is set to EINVAL. See Chapter 4 for more information. 

• If ssignal establishes SIG DFL (default action) for the signal, then the 
functions do not return. The image is exited with the VMS error code 
corresponding to the signal. 

• If ssignal establishes SIG IGN (ignore signal) as the action for the 
signal, then raise returns its argument, sig. 

• ssignal must establish an action function for the signal. That function 
is called and its return value is returned by raise. 

See also ssignal in this section. 

VAX CRun-Time Library Functions and Macros REF-251 



rand 

rand 

The rand function returns pseudorandom numbers in the range 0 to 231 — 1. 

Format 

#include math 

int rand (void); 

Description 

The rand function uses a multiplicative congruential random number 
generator with a repeat factor (period) of 231. 

See also Brand in this section. 

REF-252 VAX CRun-Time Library Functions and Macros 



[no]raw 

[no]raw 

Like cbreak mode, raw mode only works with the Curses input routines 
[w]getch and [w]getstr. Raw mode is not supported with the VAX C RTL's 
emulation of UNIX UO, Terminal UO, or Standard UO. 

Format 

include curses 

raw( ) 

noraw( ) 

Description 

Raw mode reads are satisfied on one of two conditions: after a minimum 
number (5) of characters are input at the terminal or after waiting a fixed 
time (10 seconds) from receipt of any characters from the terminal. 

Example 

/* example of standard and raw input in curses package 

# include curses 

main ( ) 
{ 

WINDOW *winl; 
char vert = '.', hor str [80) ; 

/* Initialize standard screen, turn echo off */ 

initscr (); 
noecho (); 

/* Define a user window */ 

winl = newwin (22, 78, 1, 1); 
leaveok( winl, TRUE); 

leaveok (stdscr,TRUE); 

box (stdscr, vert, hor) ; 

*, 

VAX CRun-Time Library Functions and Macros REF-253 



[

no ] raw

/* Reset the video, refresh (redraw) both windows */ 

mvwaddstr (winl, 2, 2, "test line terminated input"); 
wrefresh (winl); 

/* Do some input and output it */ 
nocrmode () ; 

wgetstr (winl, str) ; 

mvwaddstr (winl, 5, 5, str) ; 
mvwaddstr (winl, 7, 7, "Type something to clear screen"); 

wrefresh (winl); 

/* Get another character then delete the window 

wgetch (winl) ; 
wclear (winl) ; 

mvwaddstr (winl, 2, 2, "test raw input"); 
wrefresh (winl) ; 

*/ 

/* Do some raw input 5 chars or timeout - and output it */ 
raw() ; 

getstr (str) ; 
noraw () ; 
mvwaddstr (winl, 5, S, str) ; 

mvwaddstr (winl, 7, 7, "Raw input completed"); 
wrefresh (winl) ; 

endwin (); 
} 

REF-254 VAX CRun-Time Library Functions and Macros 



read 

read 

The read function reads bytes from a file and places them in a buffer. 

Format 

include unixio 

int read ant file desc, void *buffer, int nbytes); 

Arguments 

file_desc 
Is a file descriptor. The specified file descriptor must refer to a file currently 
opened for reading. 

buffer 
Is the address of contiguous storage in which the input data is placed. 

nbytes 
Is the maximum number of bytes involved in the read operation. 

Description 

The read function returns the number of bytes read. The return value does 
not necessarily equal nbytes. For example, if the input is from a terminal, 
at most one line of characters is read. 

NOTE 

The read function does not span record boundaries in a record file 
and, therefore, reads only one record. A separate read must be 
done for each record. 

VAX CRun-Time Library Functions and Macros REF-255 



read 

Return Values 

0 Indicates that the end-of--file was encountered. 

—1 Indicates a read error, including physical input 
errors, illegal buffer addresses, protection viola-
tions, undefined file descriptors, and 
so forth. 

Example 

#include file 
#include unixio 

main ( ) 
{ 
int fd, i; 
char buf [ 10 ] ; 

if ( (fd=open ("test . txt", 0_RDWR, 0, "shr=upd")) <= 0 
{ 
perror ("open") ; 

exit () ; 
} 

/* read 2 characters into buf 

if ( (i=read (fd, buf, 2)) < 0 ) 
{ 

*/ 

perror("read"); 
exit () ; 

} 
else 

if ( i =_ -1) /* test for end of file 
exit (); 

/* print out what was read *~ 

if( i > 0) 
printf ("buf=' ococ' \n",buf [0] ,buf [1]) ; 

close (fd) ; 
} 

REF-256 VAX CRun-Time Library Functions and Macros 

*/ 



realloc 

realloc 

The realloc function changes the size of the area pointed to by the first 
argument to the number of bytes given by the second argument. 

Format 

#include stdlib 

void *realloc (void *ptr, size t size); 

Arguments 

ptr 
May point to an allocated area or, unless other allocations have been made, 
to the area most recently freed by free or cfree. 

size 
Specifies the new size of the allocated area. 

Description 

If ptr is the null pointer constant (NULL), the behavior of the realloc 
function is identical to the malloc function. 

The contents of the area are unchanged up to the lesser of the old and new 
sizes. New space in the reallocated area is initialized with 0. 

See also free, cfree, calloc, and malloc in this section. 

VAX CRun-Time Library Functions and Macros REF-257 



realloc 

Return Values 

X 

0 

Indicates the address of the area, since the 
area may have to be moved to a new address to 
reallocate enough space. If the area was moved, 
the space previously occupied is freed. 

Indicates that space cannot be reallocated (for 
example, if there is not enough room). 

REF-258 VAX CRun-Time Library Functions and Macros 



[w]refresh 

[w]refresh 

The refresh macro and the wrefresh function repaint the specified window 
on the terminal screen. The refresh macro acts on the stdscr window. 

Format 

#include curses 

refresh( ) 

int wrefresh (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Description 

The result of this process is that the portion of the window not occluded by 
subwindows or other windows appears on the terminal screen. To see the 
entire occluded window on the terminal screen, call the touchwin function 
instead of the refresh macro or wrefresh function. 

See also touchwin in this section. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-259 



remove 

remove 

The remove function causes a file to be deleted. 

Format 

#include stdio 

int remove (const char *file spec); 

Arguments 

file spec 
Is a pointer to the string that is a VMS or a UNIX-style file specification. 

Description 

If you specify a directory in the file name and it is a search list that contains 
an error, VAX C interprets it as a file error. 

The remove and delete functions are functionally equivalent in the 
VAX C RTL. 

See also delete in this section. 

Return Values 

0 

nonzero value 

Indicates success. 

Indicates failure. 

REF-260 VAX CRun-Time Library Functions and Macros 



rename 

rename 

The rename function gives a new name to an existing file. 

Format 

#include stdio 

int rename (const char *old file spec, const char 
*new file spec); 

Arguments 

old file spec 
Is a pointer to a string that is the existing name of the file to be renamed. 

new file spec 
Is a pointer to a string that is the new name to be given to the file. 

Description 

If you try to rename a file that is currently open, the behavior is undefined. 
You cannot rename a file from one physical device to another. Both the old 
and new file specifications must reside on the same device. 

Return Values 

0 

nonzero value 

Indicates success. 

Indicates failure. 

VAX CRun-Time Library Functions and Macros REF-261 



rewind 

rewind 

The rewind function sets the file to its beginning. 

Format 

#include stdio 

int rewind (FILE ''file~ntr); 

Arguments 

file~tr 
Is a file pointer. 

Description 

The rewind function is equivalent to fseek (file pointer, 0,0). You can use 
the rewind function with either record or stream files. 

See also fseek in this section. 

Return Values 

0 Indicates success. 

EOF Indicates failure. 

REF-262 VAX CRun-Time Library Functions and Macros 



sbrk 

sbrk 

The sbrk function determines the lowest virtual address that is not used 
with the program. 

Format 

#include stdlib 

void *sbrk (unsigned long int incr); 

Arguments 

incr 

Specifies, to the sbrk function, the number of bytes to add to the current 
break address. 

Description 

The sbrk function adds the number of bytes specified by its argument to the 
current break address and returns the old break address. 

When a program is executed, the break address is set to the highest location 
defined by the program and data storage areas. Consequently, sbrk is 
needed only by programs that have growing data areas. 

Return Values 

—1 Indicates that the program requests too 
much memory. 

x Indicates the old break address. 

VAX CRun-Time Library Functions and Macros REF-263 



scanf 

scanf 

The scanf function performs formatted input from the standard input 
(stdin). See Chapter 2 for information on format specifiers. 

Format 

#include stdio 

int scanf (const char *format spec, . . 

Arguments 

format spec 
Contains characters to be taken literally from the input or converted and 
placed in memory at the specified input_sources. For a list of conversion 
characters, see Chapter 2. 

. . 
Represents optional expressions that are pointers to objects whose resultant 
types correspond to conversion specifications given in the format specifica-
tion. If no conversion specifications are given, you may omit these input 
pointers. Otherwise, the function call must have exactly as many input 
pointers as there are conversion specifications, and the conversion specifica-
tions must match the types of the input_pointers. Conversion specifications 
are matched to input sources in left-to-right order. 

Return Values 

x 

EOF 

Indicates the number of successfully matched 
and assigned input items. 

Indicates that the end-of--file is encountered. 
EOF is a preprocessor constant defined in the 
stdio definition module. 

REF-264 VAX CRun-Time Library Functions and Macros 



[w]scanw 

[w]scanw 

The scanw and wscanw functions perform a scanf on the window. The 
scanw function acts on the stdscr window. 

Format 

#include curses 

int scanw (char *format spec, . . . ); 

int wscanw (WINDOW *win, char *format spec, . . 

Arguments 

win 
Is a pointer to the window. 

format spec 
Is a pointer to the format specification string. 

... 
Represents optional expressions that are pointers to objects whose resultant 
types correspond to conversion specifications given in the format specifica-
tion. If no conversion specifications are given, you may omit these input 
pointers. Otherwise, the function call must have exactly as many input 
pointers as there are conversion specifications, and the conversion specifica-
tions must match the types of the input_pointers. Conversion specifications 
are matched to input sources in left-to-right order. 

VAX CRun-Time Library Functions and Macros REF-265 



[w]scanw 

Description 

The formatting specification (format_spec) and the other arguments are 
identical to those used with the scanf function. 

The scanw and wscanw functions accept, format, and return a line of text 
from the terminal screen. For more information, see the scrollok macro 
and scanf function in this section. 

Return Values 

1 Indicates success. 

ERR Indicates that the function makes the screen 
scroll illegally or that the scan was unsuccessful. 

REF-266 VAX CRun-Time Library Functions and Macros 



scroll 

scroll 

The scroll function moves all the lines on the window up one line. The top 
line scrolls off the window and the bottom line becomes blank. 

Format 

#include curses 

int scroll (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Return Values 

1 

0 

Indicates success. 

Indicates an error. 

VAX CRun-Time Library Functions and Macros REF--267 



scrollok 

scrollok 

The scrollok macro sets the scroll flag for the specified window. 

Format 

#include curses 

#define boot int 

scrollok (WINDOW *win, boot boolf); 

Arguments 

win 
Is a pointer to the window. 

boolf 
Is a Boolean TRUE or FALSE value. If boolf is FALSE, scrolling is not 
allowed. This is the default setting. The boolf argument is defined in the 
curses definition module. 

REF-268 VAX CRun-Time Library Functions and Macros 



[w]setattr 

[w]setattr 

The setattr macro and the wsetattr function activate the video display 
attribute attr within the window. The setattr macro acts on the 
stdscr window. 

Format 

#include curses 

setattr (attr); 
int wsetattr (WINDOW ''win, int attr); 

Arguments 

win 
Is a pointer to the window. 

attr 
Is one of a set of video display attributes, which are blinking, boldface, 
reverse video, and underlining, and are represented by the defined constants 
_BLINK, _BOLD, _REVERSE, and _UNDERLINE, respectively. You can set 
multiple attributes by separating them with a bitwise OR operator ( I ) as 
follows: 

setattr( BLINK ~ UNDERLINE); 

Description 

The setattr macro and wsetattr function are VAX C specific and are not 
portable. 

VAX CRun-Time Library Functions and Macros REF-269 



[w]setattr 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

REF-270 VAX CRun-Time Library Functions and Macros 



setbuf 

setbuf 

The setbuf function associates a buffer with an input or output file. 

Format 

#include stdio 

void setbuf (FILE *file~tr, char *buffer); 

Arguments 

file~tr 
Is a pointer to a file. 

buffer 
Is a pointer to an array. I/O operations are done using the array pointed to 
by buffer. The buffer must be large enough to hold an entire input record. 

If buffer is a null pointer, UO operations will be completely unbuffered, and 
the pointer in buffer is ignored. Otherwise, UO operations are performed 
using the array pointed to by buffer. 

Description 

You can use the setbuf function after a file is opened but you must use it 
before any UO operations. 

A common error is allocating buffer space as an automatic variable in a code 
block, and then failing to close the file in the same block. 

A buffer is normally obtained by calling malloc. For more information, see 
the malloc function and setvbuf function in this section. 

VAX CRun-Time Library Functions and Macros REF-271 



setgid 

setgid 

The setgid function is implemented for program portability and serves no 
function. It returns 0 (to indicate success). 

Format 

#include unixlib 

int setgid (unsigned int group number); 

Arguments 

group number 
Is the group number. 

REF-272 VAX CRun-Time Library Functions and Macros 



<"1 
setjmp 

setjmp 

The setjmp function provides a way to transfer control from a nested 
series of function invocations back to a predefined point without returning 
normally. It does not use a series of return statements. The setjmp 
function saves the context of the calling function in an environment buffer. 

Format 

#include setjmp 

int setjmp (mp_buf env); 

Arguments 

env 

Represents the environment buffer and must be an array of integers long 
enough to hold the register context of the calling function. The type jmp_ 
buf is defined by a typedef found in the setjmp definition module. The 
contents of the general-purpose registers, including the program counter 
(PC), are stored in the buffer. 

Description 

When setjmp is first called, it returns the value 0. If longjmp is then 
called, naming the same environment as the call to setjmp, control is 
returned to the setjmp call as if it had returned normally a second time. 
The return value of setjmp in this second return is the value supplied by 
you in the longjmp call. To preserve the true value of setjmp, the function 
calling setjmp must not be called again until the associated long jmp 
is called. 

The setjmp and longjmp functions rely on the VMS condition-handling 
facility to effect a nonlocal goto with a signal handler. The longjmp function 
is implemented by generating a VAX C RTL specified signal that allows the 
VMS condition-handling facility to unwind back to the desired destination. 

VAX CRun-Time Library Functions and Macros REF-273 



setjmp 

The VAX C RTL must be in control of signal handling for any VAX C 
image. For VAX C to be in control of signal handling, you must establish all 
exception handlers through a call to the VAXC$ESTABLISH function. See 
the VAXC$ESTABLISH function in this section for more information. 

CAUTION 

You cannot invoke the long jmp function from a VMS condition 
handler. However, you may invoke longjmp from a signal handler 
that has been established for any signal supported by the VAX C 
RTL, subject to the following nesting restrictions: 

• The longjmp function will not work if you invoke it from 
nested signal handlers. The result of the longjmp function, 
when invoked from a signal handler that has been entered as 
a result of an exception generated in another signal handler, 
is undefined. 

• Do not invoke the setjmp function from a signal handler 
unless the associated long`jmp is to be issued before the 
handling of that signal is completed. 

Return Values 

See the Description section. 

REF-274 VAX CRun-Time Library Functions and Macros 



setuid 

setuid 

The setuid function is implemented for program portability and serves no 
function. It returns 0 (to indicate success). 

Format 

#include unixlib 

int setuid (unsigned int member number); 

Arguments 

member number 
Is the member number. 

VAX CRun-Time Library Functions and Macros REF-275 



setvbuf 

setvbuf 

The setvbuf function associates a buffer with an input or output file. 

Format 

#include stdio 

int setvbuf (FILE *file~tr, char *buffer, int type, size t size); 

Arguments 

file~tr 
Is a pointer to a file. 

buffer 
Is a pointer to an array. If either _IOFBF or _IOLBF is specified as a value 
for type, I/O operations are done using the array pointed to by buffer. The 
buffer must be large enough to hold an entire input record. 

If buffer is a null pointer, UO operations are done using the buffer auto-
matically allocated by the VAX C RTL. If _IONBF is specified by type, UO 
operations are completely unbuffered and the pointer in buffer is ignored. 

type 
Is a value that determines how the file will be buffered. 

The following values for type are defined in stdio: 

• _IOFBF causes I/O to be fully buffered if possible. 

• _IOLBF causes output to be line buffered if possible (the buffer will be 
flushed when a newline character is written, when the buffer is full, or 
when input is requested). 

• _IONBF causes I/O to be completely unbuffered if possible. _IONBF 
causes buffer and size to be ignored. 

REF-276 VAX CRun-Time Library Functions and Macros 



setvbuf 

size 

Is the number of bytes in the array pointed to by buffer. The constant 
BUFSIZ in stdio is recommended as a good buffer size. 

Description 

You can use the setvbuf function after a file is opened but you must use it 
before any UO operations. 

A common source of error is allocating buffer space as an automatic variable 
in a code block, and then failing to close the file in the same block. 

A buffer is normally obtained by calling malloc. For more information, see 
the malloc function and setbuf function in this section. 

Return Values 

0 

nonzero value 

Indicates success. 

Indicates that an invalid value is given for type 
or size. 

VAX CRun-Time Library Functions and Macros REF-277 



sigblock 

sigblock 

The sigblock function causes the signals in mask to be added to the current 
set of signals being blocked from delivery. 

Format 

#include signal 

int sigblock (nt mask); 

Arguments 

mask 
Contains the signals that will be blocked. 

Description 

Signal i is blocked if the i —1 bit in mask is a 1. For example, to add the 
protection-violation signal to the set of blocked signals, use the following 
line: 

sigblock (1 « (SIGBUS - 1)) ; 

You can express signals in mnemonics (such as SIGBUS for a protection 
violation) or numbers as defined in the signal definition module, and you can 
express combinations of signals by using the bitwise OR operator ( I ). 

Return Values 

x Indicates the previous set of masked signals. 

REF-278 VAX CRun-Time Library Functions and Macros 



signal 

signal 

The signal function allows you either to catch or to ignore a signal. 

Format 

#include signal 

void (signal (nt sig, void ('`func) (nt, . . . ))) (nt, . . 

Arguments 

sig 

Is the number or mnemonic associated with a signal. The sig argument is 
usually one of the mnemonics defined in the signal definition module. 

func 
Is either the action to take when the signal is raised, or the address of a 
function needed to handle the signal. 

If func is the constant SIG DFL, the action for the given signal is reset to 
the default action that is the termination of the receiving process. If the 
argument is SIG_IGN, the signal is ignored. Not all signals can be ignored. 

If func is neither SIG_DFL nor SIG_IGN, it specifies the address of a 
signal-handling function. When the signal is raised, the addressed function 
is called with sig as its argument. When the addressed function returns, the 
interrupted process continues at the point of interruption. (This is called 
catching a signal. Signals are reset to SIG DFL after they are caught, 
except as shown in Chapter 4. ) 

VAX CRun-Time Library Functions and Macros REF-279 



signal 

Description 

You must call the signal function each time you want to catch a signal. 

1b cause a VMS exception or signal to generate aUNIX-style signal, 
user condition handlers must return SS$_RESIGNAL upon receiving any 
exception that they do not want to handle. Returning SS$_NOR,MAL 
prevents the generation of a UNIX-style signal. UNIX signals are generated 
as if by an exception handler in the stack frame of the main C program. Not 
all VMS exceptions correspond to UNIX signals. 

Return Values 

x 

—1 

Indicates the address of the function previously 
(or initially) established to handle the signal. 

Indicates that the sig argument is out of range. 
The variable errno is set to EINVAL. 

REF-280 VAX CRun-Time Library Functions and Macros 



P1 
sigpause 

sigpause 

The sigpause function assigns mask to the current set of masked signals 
and then waits for a signal. 

Format 

#include signal 

int sigpause (nt mask); 

Arguments 

mask 
Contains the signals that will be blocked. 

Description 

See the sigblock function in this section for information about the argument 
mask. 

When control returns to sigpause, the function restores the previous set of 
masked signals and then returns EINTR, for interrupt. The value EINTR is 
defined in the errno definition module. 

A signal is usually blocked using sigblock, which examines variables 
modified on the occurrence of the signal, determining if there is further work 
to be done. The process pauses using sigpause with the mask returned by 
sigblock as its argument. 

Return Values 

EINTR Indicates an interrupt. 

VAX CRun-Time Library Functions and Macros REF-281 



sigsetmask 

sigsetmask 

The sigsetmask function establishes those signals that are blocked 
from delivery. 

Format 

#include signal 

int sigsetmask (nt mask); 

Arguments 

mask 
Contains the signals that will be blocked. 

Description 

See the sigblock function in this section for information about the 
argument mask. 

You can express signals in mnemonics (such as SIGBUS) for a protection 
violation) or numbers as defined in the signal definition module, and you can 
express combinations of signals by using the bitwise OR operator ( I ). 

Return Values 

x Indicates the previous set of masked signals. 

REF-282 VAX CRun-Time Library Functions and Macros 



sigstack 

sigstack 

The sigstack function defines an alternate stack on which to process signals. 
This allows the processing of signals in a separate environment from that of 
the current process. 

Format 

#include signal 

int sigstack (struct sigstack *ss, struct sigstack *oss); 

Arguments 

SS 
If the argument ss is nonzero, it specifies the address of a structure that 
holds a pointer to a designated section of memory as a signal stack on which 
to deliver signals. 

oss 

If the argument oss is nonzero, it specifies the address of a structure that 
will be stored to the current state of the signal stack. 

Description 

The sigstack structure is defined in the standard include module signal as 
follows: 

struct sigstack 
{ 

char *ss_sp; 
int ss onstack; 

}; 

VAX CRun-Time Library Functions and Macros REF-283 



sigstack 

If the sigvec function specifies that the signal handler execute on the signal 
stack, the system checks to see if the process is currently executing on 
that stack. If the process is not executing on the signal stack, the system 
arranges a switch to the signal stack for the duration of the signal handler's 
execution. If the argument oss is nonzero, the current state of the signal 
stack is returned. 

Signal stacks must be allocated an adequate amount of storage; they do not 
expand like the run-time stack. If the stack overflows, an error occurs. 

The sigstack struture is defined in the signal definition module. 

Return Values 

0 

—1 

Indicates success. 

Indicates failure. 

REF-284 VAX CRun-Time Library Functions and Macros 



sigvec 

sigvec 

The sigvec function assigns a handler for a specific signal. 

Format 

#include signal 

int sigvec ant sigint, struct sigvec *sv, struct sigvec *osv); 

Arguments 

sigint 
Is the signal identifier. 

sv 
If sv is nonzero, it specifies the address of a structure containing a pointer to 
a handler routine and mask to be used when delivering the specified signal, 
and a flag indicating whether the signal is to be delivered to an alternative 
stack. If the argument sv.onstack has a value of 1, the system delivers the 
signal to the process on a signal stack specified with sigstack. 

osv 
If osv is nonzero, the previous handling information for the signal is 
returned to you. 

Description 

The sigvec structure is defined in the standard include module signal as 
follows: 

struct sigvec 
{ 

int (*handler) () ; 
int mask; 
int onstack; 

}; 

VAX CRun-Time Library Functions and Macros REF-285 



sigvec 

Return Values 

0 Indicates that the call succeeded. 

—1 Indicates that an error occurred. Upon error, the 
variable errno contains the value explaining the 
error. See Chapter 4 for more information. 

REF-286 VAX CRun-Time Library Functions and Macros 



sin 

sin 

The sin function returns the sine of its radian argument. 

Format 

#include math 

double sin (double x); 

Arguments 

X 

Is a radian expressed as a real number. 

Description 

Both the argument and the returned sine value must be an object of 
type double. If you use the math include module to declare sin, VAX C 
transforms the call into a direct call to MTH$DSIN_RT or MTH$GSIN_RT, 
depending on whether or not /G_FLOAT is specified on the CC command 
line. 

VAX CRun-Time Library Functions and Macros REF-287 



sinh 

sinh 

The sinh function returns the hyperbolic sine of its argument. 

Format 

#include math 

double sinh (double x); 

Arguments 

X 

Is a real number. 

Description 

Both the argument and the returned hyperbolic sine value must be an object 
of type double. 

The value of sine, if it causes an overflow, is a double value with the largest 
possible magnitude and the appropriate sign. 

REF-288 VAX CRun-Time Library Functions and Macros 



sleep 

sleep 

The sleep function suspends the execution of the current process for at least 
the number of seconds indicated by its argument. 

Format 

#include signal 

int sleep (unsigned seconds); 

Arguments 

seconds 
Is the number of seconds. 

Return Values 

x Indicates the number of seconds that the 
process slept. 

—1 Indicates that an error occurred. 

VAX CRun-Time Library Functions and Macros REF-289 



sprintf 

sprintf 

The sprintf function performs formatted output to a string in memory. See 
Chapter 2 for information on format specifiers. 

Format 

#include stdio 

int sprintf (char *str, const char *format spec, . . . ), 

Arguments 

str 
Is the address of the string that will receive the formatted output. 

format spec 
Contains characters to be written literally to the output or converted as 
specified in the . . .argument. 

... 
Are optional expressions whose resultant types correspond to conversion 
specifications given in the format specification. If no conversion specifica-
tions are given, you may omit the output sources. Otherwise, the function 
calls must have exactly as many output sources as there are conversion 
specifications, and the conversion specifications must match the types of the 
output sources. Conversion specifications are matched to output sources in 
left-to-right order. 

REF-290 VAX CRun-Time Library Functions and Macros 



sprintf 

Description 

A null character is automatically appended to the end of the output string. 
An example of a conversion specification is as follows: 

main ( ) 
{ 

int temp = 4, tempt = 17; 
char sj80]; 

sprintf (s, "The answers are od, and od. ", temp, tempt) ; 
} 

The contents of character string s are as follows: 

The answers are 4, and 17. 

For a complete description of the format specification and the output source, 
see Chapter 2. 

Return Values 

x Are characters placed in the output string not 
including the final null character. 

VAX CRun-Time Library Functions and Macros REF-291 



sgrt 

sgrt 

The sgrt function returns the square root of its argument. 

Format 

#include math 

double sgrt (double x); 

Arguments 

X 

Is a real number. 

Description 

The argument and the returned value are both objects of type double. 

Return Values 

0 Indicates that x is negative. The function sets 
the errno to EDOM. 

REF-292 VAX CRun-Time Library Functions and Macros 



stand 

srand 

The srand function returns pseudorandom numbers in the range 
Oto231 —1. 

Format 

#include math 

int stand (nt seed); 

Arguments 

seed 
Is an integer. 

Description 

The random number generator is reinitialized by calling srand with the 
argument 1, or it can be set to a specific point by calling srand with any 
other number. 

VAX CRun-Time Library Functions and Macros REF-293 



sscanf 

sscanf 

The sscanf function performs formatted input from a character string in 
memory. See Chapter 2 for information on format specifiers. 

Format 

#include stdio 

int sscanf (char *str, const char *format spec, . . ), 

Arguments 

str 
Is the address of the character string that provides the input text to sscanf. 

format spec 
Contains characters to be taken literally from the input or converted and 
placed in memory at the specified . . .argument. 

.. 
Are optional expressions whose resultant types correspond to conversion 
specifications given in the format specification. If no conversion specifica-
tions are given, you can omit the input pointers. Otherwise, the function 
calls must have exactly as many input pointers as there are conversion 
specifications, and the conversion specifications must match the types of the 
input pointers. Conversion specifications are matched to input sources in 
left-to-right order. 

REF-294 VAX CRun-Time Library Functions and Macros 



sscanf 

Description 

An example of a conversion specification is as follows: 

main ( ) 
{ 

char str [ ] _ "4 17"; 
int temp, tempt; 

sscanf(str, "od od", &temp, &tempt); 
printf("The answers are od and od.", temp, tempt); 

} 

This example produces the following output: 

$ RUN EXAMPLE RETURN I 
The answers are 4 and 17. 

For a complete description of the format specification and the input pointers, 
see Chapter 2. 

Return Values 

x 

EOF 

Indicates the number of successfully matched 
and assigned input items. 

Indicates that the end-of--file (or the end of the 
string) was encountered. EOF is a preprocessor 
constant defined in the stdio definition module. 

VAX CRun-Time Library Functions and Macros REF-295 



ssignal 

ssignal 

The ssignal function allows you to specify the action to take when a partic-
ular signal is raised. 

Format 

#include signal 

void (~ssignal (nt sig, void (*func) ant, . . . ))) (nt, . . 

Arguments 

sig 
Is a number or mnemonic associated with a signal. The symbolic constants 
for signal values are defined in the signal definition module (see Chapter 4). 

func 
Represents the action to take when the signal is raised, or the address of a 
function that is executed when the signal is raised. 

Description 

The ssignal function calls the signal function with the same arguments; 
the only difference between the two is in their return value on detecting an 
error (usually an invalid signal argument). 

REF-296 VAX CRun-Time Library Functions and Macros 



ssignal 

Return Values 

x 

0 

Indicates the address of the function previously 
established as the action for the signal. The 
address may contain the value SIG_DFL (0) or 
SIG_IGN (1). 

Indicates errors. For this reason, there is no way 
to know whether a return status of 0 indicates 
failure, or whether it indicates that a previous 
action was SIG DFL (0 ). The signal function 
returns —1 on error. 

VAX CRun-Time Library Functions and Macros REF-297 



[w]standend 

[w]standend 

The standend macro and the wstandend function deactivate the boldface 
attribute for the specified window. 

Format 

#include curses 

standend( ) 

int wstandend (WINDOW ''win); 

Arguments 

win 

Is a pointer to the window. 

Description 

The standend macro and wstandend function are equivalent to clrattr 
and wclrattr called with the attribute _BOLD. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

REF-298 VAX CRun-Time Library Functions and Macros 



[w]standout 

[w]standout 

The standout macro and the wstandout function activate the boldface 
attribute of the specified window. The standout macro acts on the 
stdscr window. 

Format 

#include curses 

standout( ) 

int wstandout (WINDOW ''win); 

Arguments 

win 

Is a pointer to the window. 

Description 

The standout macro and wstandout function are equivalent to setattr and 
wsetattr called with the attribute _BOLD. 

Return Values 

1 Indicates success. 

ERR Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-299 



stat 

stat 

The stat function accesses information about the file descriptor or the 
file specification. 

Format 

#include stat 

int stat (char *file spec, stat t *buffer); 

Arguments 

file spec 
Is a valid VMS or UNIX-style file specification. Read, write, or execute 
permission of the named file is not required, but you must be able to reach 
all directories listed in the file specification leading to the file. For more 
information about UNIX-style file specifications, see Chapter 1. 

buffer 
Is a pointer to a structure of type stat_t that is defined in the stat definition 
module. The argument receives information about the particular file. The 
members of the structure pointed to by buffer are described as follows: 

Member Type Definition 

st_dev unsigned Pointer to the physical device name 

st_ino[3] unsigned short Three words to receive the file ID 

st_mode unsigned short File "mode" (prot, dir, . . . ) 

st_nlink int For UNIX system compatibility only 

st_uid unsigned Owner user ID 

staid unsigned short Group member: from st uid 

st_rdev char* UNIX system compatibility—always 0 

st_size unsigned File size, in bytes 

REF-300 VAX CRun-Time Library Functions and Macros 



stat 

Member Type Definition 

st_atime unsigned File access time; always the same as 
st mtime 

st_mtime unsigned Last modification time 

st_ctime unsigned File creation time 

st_fab_rfm char Record format 

st fab rat char Record attributes 

st fab_fsz char Fixed header size 

st fab_mrs unsigned Record size 

The st mode, structure member, is the status information mode defined in 
the stat definition module. The st_mode bits are described as follows: 

Bits Constant Definition 

0170000 S_IFMT Type of file 

0040000 S_IFDIR Directory 

0020000 S_IFCHR Character special 

0060000 S_IFBLK Block special 

0100000 S_IFREG Regular 

0030000 S_IFMPC Multiplexed char special 

0070000 S_IFMPB Multiplexed block special 

0004000 S ISUID Set user ID on execution 

0002000 S_ISGID Set group ID on execution 

0001000 S_IS~'TX Save swapped text even after use 

0000400 S_IREAD Read permission, owner 

0000200 S_IWRITE Write permission, owner 

0000100 S_IEXEC Execute/search permission, owner 

VAX CRun-Time Library Functions and Macros REF-301 



stat 

Description 

The stat function does not work on remote network files. 

Return Values 

0 Indicates success. 

—1 Indicates failure. 

—2 Indicates a protection violation. 

REF-302 VAX CRun-Time Library Functions and Macros 



strcat 

strcat 

The strcat function concatenates str 2 to the end of str 1. 

Format 

#include string 

char *strcat (char *str l , const char *str 2); 

Arguments 

str 1, str 2 
Must be NUL-terminated character strings. 

Description 

See also strncat in this section. 

Return Values 

x Indicates the address of the first argument, 
str 1, which is assumed to be large enough to 
hold the concatenated result. 

Example 

#include string 
/* This program tests the strcat string function */ 
#define SILENGTH 10 
#define S2LENGTH 8 
#define F I LL_CHAR ' a' 
#define TRUE 1 

VAX CRun-Time Library Functions and Macros REF-303 



strcat

main ( ) 
{ 

static char slbuf[SILENGTH+S2LENGTH] _ "abcmnexyz"; 

static char s2buf[] _ orthis"; 
static char null_buf[SILENGTH+1] _ ""; 
static char testl[] _ "abcmnexyz orthis"; 
static char test3_5[] _ "abcmnexyz"; 

int i, testnum; 
char temp; 
char *status; 

/* this test uses static buffer slbuf, 
* concatenates static buffer s2buf to it, 

* and compares the answer in slbuf with 
* the static answer in testl 
*/ 

testnum = 1; 
status = strcat(slbuf, s2buf); 

/* check for correct returned address */ 
if (status =_ &slbuf) 

{ 

for (i = 0; i <= SILENGTH+S2LENGTH-2; i++) 
{ 

/* check for correct returned string - test 1 
if (testl [i] != slbuf [i] ) 
printf("error in strcat"); 

} 

} 

else 
printf("error in strcat"); 

} 

REF-304 VAX C Run-Time Library Functions and Macros 

*/ 



strchr 

strch r 

The strchr function returns the address of the first occurrence of a given 
character in aNUL-terminated string. 

Format 

##include string 

char *strchr (const char *str, int character); 

Arguments 

str 
Is a pointer to aNUL-terminated character string. 

character 
Is an object of type int. 

Description 

See also strrchr in this section. 

Return Values 

x 

NULL 

Indicates the address of the first occurrence of 
the specified character. 

Indicates that the character does not occur in the 
string. 

VAX CRun-Time Library Functions and Macros REF-305 



strchr 

Example 
#include stdio 
#include string 

main ( ) 
{ 
static char slbuf[] 
static char s2buf[] 
static char s3buf[] 

int i, testnum; 
char *status; 

_ "abcdefghijkl lkjingfedcba"; 
_ {ra' rbr i Cr i i r\tr~~\ n i~i Z '~~\ n i~r\t~~r 

_ "mnopgrstuvwxyz0123456789A"; 

/* this test checks the STRCHR function by incrementally going 
* through a string that ascends to the middle and then 
* descends towards the end 
*~ 

testnum = 1; 
for (i = 0; slbuf [i] ! _ ' \0' && slbuf [i] ! _ ' ' ; i++) 
{ 
status = strchr(slbuf, slbuf[i]); 
/* check for pointer to leftmost character - test 1 
if (status !_ &slbuf[i]) 
printf("error in strchr"); 

} 

REF—~06 VAX C Run-Time Library Func#ions and Macros 

*~ 



strcmp 

strcmp 

The strcmp function compares two ASCII character strings and returns 
a negative, 0, or positive integer, indicating that the ASCII values of the 
individual characters in the first string are less than, equal to, or greater 
than the values in the second string. 

Format 

#include string 

int strcmp (const char *str 1, const char *str 2); 

Arguments 

str y, str 2 
Are pointers to character strings. 

Description 

The strings are compared until a null character is encountered or until the 
strings differ. 

Return Values 

<0 

=0 

>0 

Indicates that strl is less than str2. 

Indicates that strl equals str2. 

Indicates that strl is greater than str2. 

VAX CRun-Time Library Functions and Macros REF-307 



strcpy 

strcpy 

The strcpy function copies all of str 2 into str_1. 

Format 

#include string 

char *strcpy (char *str 1, const char *str 2); 

Arguments 

str 1, str 2 
Are pointers to character strings. 

Description 

The strcpy function copies str_2 into str_1, and stops after copying str_2's 
null character. 

The behavior of this function is undefined if the area pointed to by str 1 
overlaps the area pointed to by str 2. 

Return Values 

x Indicates the address of str 1. 

REF-308 VAX CRun-Time Library Functions and Macros 



strespn 

strespn 

The strespn function returns the length of the prefix of a string which 
consists entirely of characters that are not in a specified set of characters. 

Format 

#include string 

size t strespn (const char *str, const char *charset); 

Arguments 

str 
Is a pointer to a character string. If the argument string is a null string, 
0 is returned. 

charset 
Is a pointer to a character string containing the set of characters. 

Description 

The strespn function scans the characters in the string, stops when it 
encounters a character found in charset, and returns the length of the 
string's initial segment formed by characters not found in charset. 

If none of the characters match in the character strings pointed to by str 
and charset, strespn returns the length of string. 

Return Values 

x Indicates the length of the segment. 

VAX CRun-Time Library Functions and Macros REF—~09 



strerror 

strerror 

The strerror function maps the error number in error_code to an error 
message string. 

Format 

#include string 

char *strerror (nt error code (, int vms error code]); 

Arguments 

error code 
Is an error code. 

vms error code 
Is a VMS error code. 

Description 

If the first argument is the 
errno value EVMSERR and there is a second 

argument, the strerror function calls the $GETMSG system service to 
translate the error code into the VMS message text. Otherwise, the UNIX 
type message is returned. Use of the second argument is not portable. 

REF-310 VAX CRun-Time Library Functions and Macros 



strerror 

Return Values 

x 

NULL 

Indicates a pointer to a buffer containing the 
appropriate error message. Do not modify this 
buffer in your programs. Moreover, calls to the 
strerror function may overwrite this buffer with 
a new message. 

Indicates that the argument errnum does not 
correspond to a known RTL error code. 

VAX CRun-Time Library Functions and Macros REF-311 



strlen 

strlen 

The strlen function returns the length of a string of ASCII characters. The 
returned length does not include the terminating null character (~ 0). 

Format 

#include string 

size t strlen (const char ''str); 

Arguments 

str 
Is a pointer to the character string. 

Return Values 

x Indicates the length of the string. 

REF-312 VAX CRun-Time Library Functions and Macros 



strncat 

strncat 

The strncat function concatenates str_2 to the end of str_1. 

Format 

#include string 

char *strncat (char *str 1, const char *str 2, size t maxchar); 

Arguments 

str 1, str 2 
Must be NUL-terminated character strings. 

maxchar 
Specifies the number of characters to concatenate from str 2, unless the 
strncat first encounters a null terminator in str_2. If maxchar is 0 or 
negative, no characters are copied from str_2. 

Description 

If the strncat function reaches the specified maximum, it sets the next byte 
in str 1 to the NUL character. 

Return Values 

x Indicates the address of the first argument, 
str_l, which is assumed to be large enough to 
hold the concatenated result. 

VAX CRun-Time Library Functions and Macros REF-313 



strncmp 

strncmp 

The strncmp function compares two ASCII character strings and returns 
a negative, 0, or positive integer, indicating that the ASCII values of the 
individual characters in the first string are less than, equal to, or greater 
than the values in the second string. 

Format 

#include string 

int strncmp (const char *str 1, const char *str 2, size t 
maxchar); 

Arguments 

str 1, str 2 
Are pointers to character strings. 

maxchar 
Specifies a maximum number of characters (beginning with the first) to 
search in both str_1 and str 2. If maxchar is 0 or negative, no comparison is 
performed and 0 is returned (the strings are considered equal). 

Description 

The strings are compared until a null character is encountered, the strings 
differ, or maxchar is reached. The comparison is terminated when a NUL 
character is encountered in one of the strings. 

REF-314 VAX CRun-Time Library Functions and Macros 



strncmp 

Return Values 

<0 

=0 

>0 

Indicates that strl is less than str2. 

Indicates that strl equals str2. 

Indicates that strl is greater than str2. 

VAX CRun-Time Library Functions and Macros REF-315 



strncpy 

strncpy 

The strncpy function copies all or part of str_2 into str_l. 

Format 

#include string 

char *strncpy (char *str 1, const char *str 2, size t maxchar); 

Arguments 

str 1, str 2 
Are pointers to character strings. 

maxchar 
Specifies the maximum number of characters to copy from str_2 to str_1 up 
to but not including the null terminator of str 2. 

Description 

The strncpy function copies no more than maxchar characters from str 2 to 
str_l , up to but not including the null terminator of str_2. If str_2 contains 
less than maxchar characters, str_1 is padded with null characters. If str 2 
contains greater than or equal to maxchar characters, as many characters 
as possible are copied to str_l. 

NOTE 

The str_1 argument may not be terminated by a null character 
after a call to strncpy. 

REF-316 VAX CRun-Time Library Functions and Macros 



strncpy 

Return Values 

x Indicates the address of str_l. 

VAX CRun-Time Library Functions and Macros REF~17 



strpbrk 

strpbrk 

The strpbrk function searches a string for the occurrence of one of a speci-
fied set of characters. 

Format 

#include string 

char *strpbrk (const char *str, const char *charset); 

Arguments 

str 
Is a pointer to a character string. If the argument string is a null string, 
0 is returned. 

charset 
Is a pointer to a character string containing the set of characters for which 
the function will search. 

Description 

The strpbrk function scans the characters in the string, stops when it 
encounters a character found in charset, and returns the address of the first 
character in the string that appears in the character set. 

Return Values 

x Indicates the address of the first character in the 
string that is in the set. 

NULL Indicates that no character is in the set. 

REF-318 VAX CRun-Time Library Functions and Macros 



strrchr 

strrchr 

The strrchr function returns the address of the last occurrence of a given 
character in a NUL-terminated string. 

Format 

#include string 

char *strrchr (const char *str, int character); 

Arguments 

str 
Is a pointer to a NUL-terminated character string. 

character 
Is an object of type int. 

Description 

See also strchr in this section. 

Return Values 

x 

NULL 

Indicates the address of the last occurrence of 
the specified character. 

Indicates that the character does not occur in the 
string. 

VAX CRun-Time Library Functions and Macros REF—~19 



strspn 

strspn 

The strspn function returns the length of the prefix of a string that consists 
entirely of characters from a set of characters. 

Format 

#include string 

size t strspn (const char *str, const char *charset); 

Arguments 

str 

Is a pointer to a character string. If the argument string is a null string, 
0 is returned. 

charset 

Is a pointer to a character string containing the characters for which the 
function will search. 

Description 

The strspn function scans the characters in the string, stops when it 
encounters a character not found in charset, and returns the length of the 
string's initial segment formed by characters found in charset. 

Return Values 

x Indicates the length of the segment. 

REF-320 VAX CRun-Time Library Functions and Macros 



strstr 

strstr 

The strstr function locates the first occurrence in the string pointed to by sl 
of the sequence of characters in the string pointed to by s2. 

Format 

#include string 

char *strstr (const char *s 1, const char *s2); 

Arguments 

s1 
I s a string. 

s2 
Is a string. 

Return Values 

Pointer 

null pointer 

Is a pointer to the located string. 

Indicates that the string was not found. 

Example 
#include stdio 

char *strstr( char *sl, char *s2~; 

main 
{ 
static char lookin[]="that this is a test was at the end"; 

VAX CRun-Time Library Functions and Macros REF-321 



strstr

putchar (' \n') ; 
printf("String: %s\n", &lookin [0] ); 
putchar (' \n') ; 
printf("Addr: %s\n", &lookin [0] ); 
printf ("this : %s\n", strstr ( &lookin [0] , "this") ) • 
printf("that: %s\n", strstr( &lookin [0] "that" ) ); 
printf ("NULL: %s\n", strstr ( &lookin [0] "" ) ) • 
printf ("was : %s\n", strstr ( &lookin [ 0 ] , "was" ) ) ; 
printf ("at : %s\n", strstr ( &lookin [ 0 ] , "at" ) ) • 
printf("the end: %s\n", strstr( &lookin[0], "the end") ); 
putchar (' \n') ; 

exit () ; 
}; 

REF-322 VAX CRun-Time Library Functions and Macros 



strtod 

strtod 

The strtod function converts a given string to adouble-precision number. 

This function recognizes an optional sequence of white-space characters 
(as defined by isspace in ctype), then an optional plus or minus sign, then 
a sequence of digits optionally containing a single decimal point, then an 
optional letter (e or E) followed by an optionally signed integer. The first 
unrecognized character ends the conversion. 

The string is interpreted by the same rules used to interpret floating 
constants. 

Format 

#include stdlib 

double strtod (const char *nptr, char **endptr); 

Arguments 

nptr 
Is a pointer to the character string to be converted to adouble-precision 
number. 

endptr 
Is the address of an object where the function can store the address of the 
first unrecognized character that terminates the scan. If endptr is a null 
pointer, the address of the first unrecognized character is not retained. 

VAX CRun-Time Library Functions and Macros REF-323 



strtod 

Description 

The strtod function returns the converted value. For strtod, overflows are 
accounted for as follows: 

• If the correct value causes an overflow, HUGE VAL (with a plus or 
minus sign according to the sign of the value) is returned and int errno 
is set to ERANGE. 

• If the correct value causes an underflow, 0 is returned and errno is set to 
ERANGE. 

If the string starts with an unrecognized character, *endptr is set to nptr 
and a 0 value is returned. 

Return Values 

x Specifies the converted string. 

0 Indicates an error. 

REF-324 VAX CRun-Time Library Functions and Macros 



strtok 

strtok 

The strtok function locates text tokens in a given string. The text tokens 
are delimited by one or more characters from a separator string that you 
specify. This function keeps track of its position in the string between calls 
and, as successive calls are made, the function works through the string, 
identifying the text token following the one identified by the previous call. 

Format 

#include string 

char *strtok (char *s1, const char *s2); 

Arguments 

sy 
Is a pointer to a string containing 0 or more text tokens. 

s2 
Is a pointer to a separator string consisting of one or more characters. The 
separator string may differ from call to call. 

Description 

The first call to the strtok function returns a pointer to the first character in 
the first token and writes a null character into sl immediately following the 
returned token. Each subsequent call (with the value of the first argument 
remaining NULL) returns a pointer to a subsequent token in the string 
originally pointed to by s1. When no tokens remain in the string, the strtok 
function returns a null pointer. 

Tokens in sl are delimited by null characters inserted into sl by the strtok 
function. Therefore, s1 cannot be a const object. The strtok function is 
nonreentrant since you must use a static global variable to maintain the 
starting address within s1 of subsequent calls to strtok with a null 
first argument. 

VAX CRun-Time Library Functions and Macros REF-325 



strtok 

Return Values 

x Specifies a pointer to the first character of 
a token. 

NULL Indicates that no token was found. 

REF-326 VAX CRun-Time Library Functions and Macros 



strtol 

strtol 

The strtol function converts strings of ASCII characters to the appropriate 
numeric values. 

Format 

#include stdlib 

long int strtol (const char *nptr, char **endptr, int base); 

Arguments 

nptr 
Is a pointer to the character string to be converted to a long. 

endptr 
Is the address of an object where the function can store a pointer to a pointer 
to the first unrecognized character encountered in the conversion process 
(that is, the character that follows the last character in tr~e string being 
converted). If endptr is a null pointer, the address of the first unrecognized 
character is not retained. 

base 
Is the value, 2 through 36, to use as the base for the conversion. Leading 
zeros after the optional sign are ignored, and Ox or OX is ignored if the base 
is 16. 

If the base is 0, the sequence of characters is interpreted by the same rules 
used to interpret an integer constant: after the optional sign, a leading 
0 indicates octal conversion, a leading Ox or OX indicates hexadecimal 
conversion, and any other combination of leading characters indicates 
decimal conversion. 

VAX CRun-Time Library Functions and Macros REF~27 



strtol 

Description 

The strtol function recognizes strings in various formats, depending on 
the value of the base. This function ignores any leading white-space 
characters (as defined by isspace in ctype) in the given string. It recognizes 
an optional plus or minus sign, then a sequence of digits or letters that may 
represent an integer constant according to the value of the base. The first 
unrecognized character ends the conversion. 

Truncation from long to int can take place after assignment or by an 
explicit cast (arithmetic exceptions not withstanding). The function call atol 
(str) is equivalent to strtol (str, (char*~)0, 10). 

Return Values 

x Indicates the converted value. 

LONG_MAX or LONG_MIN 

0 

Indicate that the correct value will cause an 
overflow (according to the sign of the value). 
Errno is set to ERANGE. These values are 
defined in the limits standard include module. 

Indicates that the string starts with an unrecog-
nized character. *endptr is set to nptr. 

REF-328 VAX CRun-Time Library Functions and Macros 



Stl'tOUI 

strtoul 

The strtoul function converts the initial portion of the string pointed to by 
nptr to an unsigned long integer. 

Format 

#include stdlib 

unsigned long int strtoul (const char *nptr, char **endptr, int 
base); 

Arguments 

nptr 
Is a pointer to the character string to be converted to a long. 

endptr 
Is the address of an object where the function can store a pointer to a pointer 
to the first unrecognized character encountered in the conversion process 
(that is, the character that follows the last character in the string being 
converted). If endptr is a null pointer, the address of the first unrecognized 
character is not retained. 

base 
Is the value, 2 through 36, to use as the base for the conversion. Leading 
zeros after the optional sign are ignored, and Ox or OX is ignored if the base 
is 16. 

If the base is 0, the sequence of characters is interpreted by the same rules 
used to interpret an integer constant: after the optional sign, a leading 
0 indicates octal conversion, a leading Ox or OX indicates hexadecimal 
conversion, and any other combination of leading characters indicates 
decimal conversion. 

VAX CRun-Time Library Functions and Macros REF-329 



strtoul 

Return Values 

x Indicates the converted value. 

p Indicates that no conversion was performed. 

ULONG_MAX Indicates that an overflow occurred; errno is set 
to erange. ULONG AMAX is defined in the limits 
standard include module. 

REF-330 VAX CRun-Time Library Functions and Macros 



subwin 

subwin 

The subwin function creates a new subwindow with numlines lines and 
numcols columns starting at the coordinates (begin~,begin_x) on the termi-
nal screen. 

Format 

#include curses 

WINDOW *subwin (WINDOW '"win, int numlines, int numcols, int 
begin, i nt begin x); 

Arguments 

win 
Is a pointer to the window. 

numlines 
If it is 0, then the function sets that dimension to LINES (begin). To get a 
new window of dimensions LINES by COLS, use the following format: 

newwin (0, 0, 0, 0 ) 

numcols 
If it is 0, then the function sets that dimension to COLS (begin x). To get a 
new window of dimensions LINES by COLS, use the following format: 

newwin (0, 0, 0, 0 ) 

begin~r 
Is a window coordinate. 

begin x 
Is a window coordinate. 

VAX CRun-Time Library Functions and Macros REF-331 



subwin 

Description 

When creating the subwindow, begin, and begin_x are relative to the 
entire terminal screen. If either numlines or numcols is 0, then the subwin 
function sets that dimension to (LINES — begins) or (COLS —begin x), 
respectively. 

A declared window must contain the entire area of the subwindow. Any 
changes made to either window within the coordinates of the subwindow 
appear on both windows. 

Return Values 

x Specifies a pointer to an instance of the 
structure window. 

0 Indicates an error. 

REF-332 VAX CRun-Time Library Functions and Macros 



system 

system 

The system function passes a given string to the host environment to be 
executed by a command processor. 

Format 

#include processes 

int system (const char *string); 

Arguments 

string 
Is a pointer to the string to be executed. 

Description 

The system function spawns a subprocess and executes the command 
specified by string in that subprocess. The system function will wait for the 
subprocess to complete before returning the subprocess status as the return 
value of the function. 

Return Values 

nonzero value 

0 

If the string is a null pointer, then the system 
function is supported. 

If you get a 0 value, then the system function is 
not supported. 

VAX CRun-Time Library Functions and Macros REF-333 



system 

Example 

#include processes 

main ( ) 
{ 

int status, fd; 

fd = Great ("system. test", 0) ; 
write (fd, "this is an example of using system", 34) ; 
close (fd) ; 

status = system ("DIR/NOHEAD/NOTRAIL/SIZE SYSTEM. TEST"); 
printf ("system status = %d\n", status); 

} 

REF-334 VAX CRun-Time Library Functions and Macros 



tan 

tan 

The tan function returns a double value that is the tangent of its 
radian argument. 

Format 

#include math 

double tan (double x); 

Arguments 

X 
Is a radian expressed as a real number. 

Description 

The value of tan(x) at its singular points ( . . . —3~r/2,—~/2, ~r/2 . . . ) is the 
largest possible double value HUGE VAL, defined in the math include 
module; the value of errno is set to ER;A,NGE when x is a singular point. 

VAX CRun-Time Library Functions and Macros REF-335 



tanh 

tanh 

The tanh function returns a double value that is the hyperbolic tangent of 
its double argument. 

Format 

#include math 

double tanh (double x); 

Arguments 

X 

Is a real number. 

Description 

If you use the math include module to declare tank, VAX C transforms 
the call into a direct call to MTH$DTANH or MTH$GTANH, depending on 
whether or not /G_FLOAT is specified on the CC command line. 

REF-336 VAX CRun-Time Library Functions and Macros 



time 

time 

The time function returns the time elapsed since 00:00:00, January I, 1970, 
in seconds. 

Format 

#include time 

time t time (dime t *time location); 

Arguments 

time 

location 

Is either NULL or a pointer to the place where the returned time is 
also stored. 

Return Values 

x Specifies the time elapsed past epoch. 

0 Indicates an-error. 

VAX CRun-Time Library Functions and Macros REF-337 



times 

times 

The times function passes back the accumulated times of the current 
process and its terminated child processes. 

Format 

#include time 

void times (buffer t *buffer); 

Arguments 

buffer 
Is a pointer to the terminal buffer. 

Description 

The type tbuffer t is defined in the standard include module time. h 
as follows: 

struct tbuffer 
{ 

int proc_user_time; 
int pros_system time; 
int child_user_time; 
int child system time; 

}typedef struct tbuffer tbuffer_t; 

For both process and children times, the structure breaks down the time by 
user and system time. Since the VMS system does not differentiate between 
system and user time, all system times are returned as 0. Accumulated 
CPU times are returned in 10-millisecond units. 

REF-338 VAX CRun-Time Library Functions and Macros 



tmpfile 

f '1 
tmpfile 

The tmpfile function creates a temporary file that is opened for update. 

Format 

#include stdio 

FILE *tmpfile (void); 

Description 

The file exists only for the duration of the process and is preserved 
across vforks. 

Return Values 

x Indicates the address of a FILE pointer (defined 
in the stdio definition module). 

NULL Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-339 



tmpnam 

tmpnam 

The tmpnam function creates a character string that you can use in place 
of the file-name argument in other function calls. 

Format 

#include stdio 

char *tmpnam (char 
''name); 

Arguments 

name 

Is a character string containing a name to use in place of file-name 
arguments in other functions or macros. Successive calls to tmpnam with a 
null argument cause the function to overwrite the current name. 

Return Values 

X If the name argument is the null pointer value 
NULL, tmpnam returns the address of an 
internal storage area. If the name is not NULL, 
then it is considered the address of an area of 
length L_tmpnam (defined in the stdio definition 
module). In this case, tmpnam returns the 
name argument as the result. 

REF-340 VAX CRun-Time Library Functions and Macros 



toascii 

toascii 

The toascii macro converts its argument, an 8-bit ASCII character, to a 
7-bit ASCII character. 

Format 

#include ctype 

int toascii (char character); 

Arguments 

character 
Is an object of type char. 

Return Values 

x Specifies a 7-bit ASCII character. 

VAX CRun-Time Library Functions and Macros REF~41 



tolower, _tolower 

tolower, _tolower 

The tolower function and _tolower macro convert their argument, an 
ASCII character, to lowercase. If the argument is not an uppercase charac-
ter, it is returned unchanged. 

Format 

#include ctype 

int tolower (char character); 

int tolower (char character); 

Arguments 

character 
I s an object of type char. 

Description 

The _tolower macro should not be used with arguments that contain 
side-effect operations. For instance, the following example will not return 
the expected result: 

d = tolower (c++) ; 

REF-342 VAX CRun-Time Library Functions and Macros 



touchwin 

touchwin 

The touchwin function places the most recently edited version of the 
specified window on the terminal screen. 

Format 

#include curses 

int touchwin (WINDOW *win); 

Arguments 

win 

Is a pointer to the window. 

Description 

The touchwin function is normally used only to refresh overlapping 
windows. 

Return Values 

1 

0 

Indicates success. 

Indicates an error. 

VAX CRun-Time Library Functions and Macros REF-343 



toupper, toupper 

toupper, 

_toupper 

The toupper function and _toupper macro convert their argument, an 
ASCII character, to uppercase. If the argument is not a lowercase character, 
it is returned unchanged. 

Format 

#include ctype 

int toupper (char character); 

int toupper (char character); 

Arguments 

character 
Is an object of type char. 

Description 

You only have to include the ctype definition module if you are using the 
_toupper macro. 

The _toupper macro should not be used with arguments that contain 
side-effect operations. For instance, the following example will not return 
the expected result: 

d = _toupper (c++); 

REF-344 VAX CRun-Time Library Functions and Macros 



ttyname 

ttyname 

The ttyname function returns a pointer to the NUL-terminated name of the 
terminal device associated with file descriptor 0, the default input 
device (stdin). 

Format 

#include unixio 

char *ttyname (void); 

Description 

The ttyname function is provided only for UNIX compatibility and has 
limited use in the VMS environment. 

Return Values 

x Specifies a pointer to a NUL-terminated string. 

0 Indicates that SYS$INPUT is not a TTY device. 

VAX CRun-Time Library Functions and Macros REF-345 



umask 

umask 

The umask function creates a file protection mask that is used when a new 
file is created, and returns the previous mask value. 

Format 

#include stdlib 

int umask (unsigned int mode complement); 

Arguments 

mode complement 
Shows which bits to turn off when a new file is created. See the description 
of chmod to determine what the bits represent. 

Description 

Initially, the file protection mask is set from the current process's default 
file protection. This is done when the C main program starts up or when 
VAXC$CRTL_I1vIT is called. You can change this for all files created by 
your program by calling umask or you can use chmod to change the file 
protection on individual files. The file protection of a file created by open or 
treat is the bitwise AND of the open and treat mode argument with the 
complement of the value passed to umask on the previous call. 

Return Values 

x Indicates the old mask value. 

REF-346 VAX CRun-Time Library Functions and Macros 



ungetc 

ungetc 

The ungetc function pushes a character back into the input stream and 
leaves the stream positioned before the character. 

Format 

#include stdio 

int ungetc ant character, FILE *file ptr); 

Arguments 

character 
Is a value of type int. 

file ptr 
Is a file pointer. 

Description 

When using the ungetc function, the character is pushed back onto the file, 
since it is returned by the next getc call. 

One push-back is guaranteed, even if there has been no previous activity on 
the file. The fseek function erases all memory of pushed-back characters. 
The pushed-back character is not written to the underlying file. If the 
character to be pushed back is EOF, the operation fails, the input stream is 
left unchanged, and EOF is returned. 

See also the fseek and gets functions in this section. 

VAX CRun-Time Library Functions and Macros REF-347 



ungetc 

Return Values 

x 

EOF 

Indicates the push-back character. 

Indicates it cannot push the character back. 

REF-348 VAX CRun-Time Library Functions and Macros 



VAXC$CALLOC_OPT 

VAXC$CALLOC_OPT 

The VAXC$CALLOC_OPT function allocates an area of memory. 

Format 

#include stdlib 

void *VAXC$CALLOC_OPT (size t number, size t size); 

Arguments 

number 
Specifies the number of items to be allocated. 

size 
Is the size of each item. 

Description 

The VAXC$CALLOC OPT function initializes the items to 0. For more 
information, see the VAXC$MALLOC OPT function in this section. 

Return Values 

0 Indicates an inability to allocate the space. 

n Indicates the address of the first byte, which is 
aligned on an octaword boundary. 

VAX CRun-Time Library Functions and Macros REF-349 



VAXC$CFREE_OPT 

VAXC$CFREE OPT 

The VAXC$CFREE OPT function makes available for reallocation the area 
allocated by a previous VAXC$CALLOC OPT, VAXC$MALLOC_OPT, or 
VAXC$REALLOC OPT call. 

Format 

#include stdlib 

int VAXC$CFREE_OPT (void ''ptr); 

Arguments 

ptr 
Is the address returned by a previous call to VAXC$MALLOC_OPT, 
VAXC$CALLOC OPT, or VAXC$REALLOC_OPT. 

Description 

The contents of the deallocated area are unchanged. For more information, 
see the VAXC$MALLOC_OPT function in this section. 

Return Values 

0 Indicates that the area is successfully freed. 
1 Indicates an error. 

REF-350 VAX CRun-Time Library Functions and Macros 



VAXC$CRTL_INIT 

VAXC$CRTL_INIT 

The VAXC$CRTL_IrTIT function allows you to call the VAX C RTL from 
other languages or to use the VAX C RTL when your main function is not 
in C. It initializes the run-time environment and establishes both an e~tit 
and condition handler. 

Description 

The following example shows a Pascal program that calls the VAX C ftTL 
using the VAXC$CRTL I1VIT function: 

PROGRAM TESTC (input, output); 

PROCEDURE VAXC$CRTL_INIT; extern; 

BEGIN 

VAXC$CRTL INIT; 

END. 

It is not recommended that you make multiple calls to the VAXC$CRTL_ 
I1VIT function. A shareable image should only call this function if it contains 
a VAX C function for exception handling, environment variables, or a default 
file protection mask. 

VAX CRun-Time Library Functions and Macros REF-351 



VAXC$ESTABLISH 

VAXC$ESTABLISH 

The VAXC$ESTABLISH function establishes a special VAX C RTL excep-
tion handler that catches all RTL-related exceptions and passes on all others 
to your handler. This routine is necessary when using certain VAX C RTL 
UNIX emulation routines. 

Format 

#include signal 

void VAXC$ESTABLISH (nt (*exception handler)(void ''sigarr, 
void ''mecharr)); 

Arguments 

exception handler 
Is the name of the function to establish as a VMS condition handler. You 
pass the address of a function as an argument to VAXC$ESTABLISH. 

sigarr 
Is a pointer to the signal array. 

mecharr 
Is a pointer to the mechanism array. 

Description 

You can only invoke the VAXC$ESTABLISH function from a VAX C 
function, as it relies on the allocation of data space on the run-time 
stack by the VAX C compiler. Calling the VMS system library routine 
LIB$ESTABLISH directly from a VAX C function results in undefined 
results by the setjmp and long jmp functions. 

REF-352 VAX CRun-Time Library Functions and Macros 



VAXC$ESTABLISH 

VAXC$ESTABLISH must be used in place of LIB$ESTABLISH when 
programs use the VAX C RTL routines setjmp or longjmp. See the setjmp 
and longjmp functions in this section. 

To cause a VMS exception or signal to generate aUNIX-style signal, 
user condition handlers must return SS$_RESIGNAL upon receiving any 
exception that they do not want to handle. Returning SS$_NORMAL 
prevents the generation of a UNIX-style signal. UNIX signals are generated 
as if by an exception handler in the stack frame of the main C program. Not 
all VMS exceptions correspond to UNIX signals. 

VAX CRun-Time Library Functions and Macros REF-353 



VAXC$FREE OPT 

VAXC$FREE OPT 

The VAXC$FREE_OPT function makes available for reallocation the area 
allocated by a previous VAXC$CALLOC_OPT, VAXC$MALLOC_OPT, or 
VAXC$RALLOC_OPT call. 

Format 

#include stdlib 

int VAXC$FREE_OPT (void *ptr); 

Arguments 

ptr 
Is the address returned by a previous call to VAXC$MALLOC_OPT, 
VAXC$CALLOC_OPT, or VAXC$RALLOC_OPT. 

Description 

The contents of the deallocated area are unchanged. For more information, 
see the VAXC$MALLOC_OPT function in this section. 

Return Values 

0 Indicates that the area is successfully freed. 
—1 Indicates an error. 

REF-354 VAX CRun-Time Library Functions and Macros 



VAXC$MALLOC_OPT 

VAXC$MALLOC OPT 

The VAXC$MALLOC_OPT function allocates an area of memory. 

Format 

#include stdlib 

void *VAXC$MALLOC_OPT (size t size); 

Arguments 

size 

Is the total number of bytes to be allocated. 

Description 

The VAXC$MALLOC_OPT function allocates a contiguous area of memory 
whose size, in bytes, is supplied as an argument. This routine takes 
advantage of memory-management routines (LIB$GET_VM and LIB$FREE_ 
VM zone allocation) that are in the VMS RTL. The performance and function 
of these routines are an improvement to the previous functionality provided. 
The zone algorithm used is first fit with no boundary tag. Each allocation is 
zero filled and aligned on an octaword boundary. This implementation may 
change in a future release of VAX C. 

The malloc opt routine makes no attempt to support the previous behavior 
of malloc. An example of such behavior is to sequence a freeing of dynamic 
memory followed by an access of that memory. 

An easy way to use these routines without rewriting the function calls is to 
include the following macro definitions at the beginning of your program: 

#define malloc VAXC$MALLOC_OPT 
#define calloc VAXC$CALLOC_OPT 
#define free VAXC$FREE_OPT 
#define cfree VAXC$CFREE_OPT 
#define realloc VAXC$REALLOC OPT 

VAX CRun-Time Library Functions and Macros REF-355 



VAXC$MALLOC_OPT 

These functions are not interchangeable with malloc, calloc, free, cfree, 
and realloc. 

Return Values 

0 

x 

Indicates that it is unable to allocate enough 
memory. 

The address of the first byte, which is aligned on 
an octaword boundary. 

REF-356 VAX CRun-Time Library Functions and Macros 



VAXC$REALLOC_OPT 

VAXC$REALLOC_OPT 

The VAXC$REALLOC_OPT function changes the size of the area pointed 
to by the first argument to the number of bytes given by the 
second argument. 

Format 

#include stdlib 

void *VAXC$REALLOC_OPT (void *ptr, size t size); 

Arguments 

ptr 
May point to an allocated area only. 

size 

Specifies the new size of the allocated area. 

Description 

This function will not reallocate memory that has been previously freed by 
VAXC$FR,EE_OPT or by VAXC$CFREE OPT. 

See the VAXC$MALLOC_OPT function in this section for more 
information. 

VAX CRun-Time Library Functions and Macros REF-357 



VAXC$REALLOC_OPT 

Return Values 

X 

0 

Indicates the address of the area, since the area 
may have to be moved to a new address in order 
to reallocate enough space. If the area was 
moved, the space previously occupied is freed. 

Indicates that it is unable to reallocate the space 
(for example, if there is not enough room). 

REF-358 VAX CRun-Time Library Functions and Macros 



va_arg 

va_arg 

The va_arg macro is used to return the next item in the argument list. 

Format 

#include stdarg 

#include varargs 

type va_arg (va_list ap, type); 

Arguments 

ap 

Is a variable list containing the next argument to be obtained. 

type 

Is a data type that is used to determine the size of the next item in the 
list. An argument list can contain items of varying sizes, but the calling 
routine must determine what type of argument is expected since it cannot 
be determined at run time. 

Description 

The va_arg macro interprets the object at the address specified by the 
list-incrementor according to type. If there is no corresponding argument, 
the behavior is undefined. 

NOTE 

On VMS systems, all items in an argument list are aligned on the 
longword boundary. If you try to access an item in an argument 
list by using the sizeof operator, and that item is smaller than 
a longword (types short and char, for instance), you will be 
positioned in the middle of the longword increment and the return 
value will be incorrect. VAX C correctly aligns the argument 

VAX CRun-Time Library Functions and Macros REF-359 



va  

arg

pointer on the next longword before reading the next argument. 
This macro is responsible for proper incrementation involving 
elements of types short and char. 

Also, when accessing argument lists, especially those passed to a 
subroutine (written in VAX C) by a program written in another 
programming language, consider the implications of the VAX 
Calling Standard. For more information about the VAX Calling 
Standard, see the Guide to VAX C. 

REF-360 VAX CRun-Time Library Functions and Macros 



va count 

va count 

The va_count macro returns the number of longwords in the argument list. 

Format 

#include varargs 

void va_count ant count); 

Arguments 

count 
Is an integer variable name in which the number of longwords is returned. 

Description 

The va_count macro places the number of longwords in the argument list 
into count. The value returned in count is the number of longwords in the 
function argument block not counting the count field itself. 

If the argument list contains items whose storage requirements are a 
longword of memory or less, the number in the argument count is also the 
number of arguments. However, if the argument list contains items of type 
double or data structures, count must be interpreted to obtain the number 
of arguments in the list. 

This macro is VAX C specific and is not portable. 

VAX CRun-Time Library Functions and Macros REF-361 



va end 

va end 

The va_end macro finishes the varargs session. 

Format 

#include stdarg or 

#include varargs 

void va end (va_list ap); 

Arguments 

ap 

Is the object used to traverse the argument list length. You must declare 
and use the argument ap as shown in the format section. 

Description 

You can execute multiple traversals of the argument list, each delimited by 
va_start . . . va_end. This macro sets ap equal to NULL. 

REF-362 VAX CRun-Time Library Functions and Macros 



va_start, va_start_1 

va_start, 

va_start_1 

The va start and va start 1 functions are used to initialize a variable to 
the beginning of the argument list. 

Format 

#include varargs 

void va start (va_list ap); 

void va start 1 (va_list ap, int offset); 

Arguments 

ap 
Is an object pointer. You must declare and use the argument ap as shown in 
the format section. 

offset 
Represents the number of bytes that ap is to be incremented so that it 
points to a subsequent argument within the list (that is, not to the start of 
the argument list). Using a nonzero offset can initialize ap to the address of 
the first of the optional arguments that follow a number of fixed arguments. 

Description 

The va_start function is called to initialize the variable ap to the beginning 
of the argument list. 

The va_start_1 function is called to initialize ap to the address of an 
argument that is preceded by a known number of defined arguments. For 
example, a VAX C RTL function that contains aVariable-length argument 
list offset from the beginning of the entire argument list is printf. The 
variable-length argument list is offset by the address of the formatting 
string. 

VAX CRun-Time Library Functions and Macros REF-363 



va start, va_start_1 

Arguments of types char and short use a full longword of memory when 
they are present in argument lists; arguments of type float use two 
longwords because they are converted to type double. 

NOTE 

When accessing argument lists, especially those passed to a 
subroutine (written in VAx C) by a program written in another 
programming language, consider the implications of the VAx 
Calling Standard. For more information about the VAx Calling 
Standard, see the Guide to VAX C. 

The syntax descriptions of the va_start function using stdargs, as defined in 
the draft proposed ANSI standard, are as follows. 

Format 

#include stdargs 

void va_start (va_list ap, parmN); 

Arguments 

ap 
Is an object pointer. You must declare and use the argument ap as shown in 
the format section. 

parmN 
Is the name of the last of the known fixed arguments. 

Description 

The pointer ap is initialized to point to the first of the optional arguments 
that follow parmN in the argument list. Always use this version of va_start 
in conjunction with functions that are declared and defined with function 
prototypes. 

REF-364 VAX CRun-Time Library Functions and Macros 



vfork 

vfork 

The vfork function creates an independent child process. 

Format 

#include processes 

int vfork (void); 

Description 

The vfork function provided by VAX C differs from the fork function 
provided by other C implementations. The two major differences are shown 
in Table REFS. 

Table REF-8: The vfork and fork Functions 

The vfork Function The fork Function 

Used with the exec functions. 

Creates an independent child 
process that shares some of 
the parent's characteristics. 

Can be used without exec for asynchronous 
processing. 

Creates an exact duplicate of the parent 
process that branches at the point where 
vfork is called, as if the parent and the 
child are the same process at different 
stages of execution. 

VAX CRun-Time Library Functions and Macros REF-365 



vfork 

The vfork function provides the setup necessary for a subsequent call to 
an exec function. Although no process is created by vfork, it performs the 
following steps: 

• It saves the return address (the address of the vfork call) to be used 
later as the return address for the call to an exec function. 

• It duplicates the parent's stack frame. 

• It returns the integer 0 the first time it is called (before the call to an 
exec function is made). After the corresponding exec function call is 
made, the exec function returns control to the parent process, at the 
point of the vfork call, and it returns the process ID of the child as the 
return value. Unless the exec function fails, control appears to return 
twice from vfork even though one call was made to vfork and one call 
was made to the exec function. 

The behavior of the vfork function is similar to the behavior of the setjmp 
function. Both vfork and setjmp establish a return address for later use, 
both return the integer 0 when they are first called to set up this address, 
and both pass back the second return value as though it were returned by 
them rather than by their corresponding exec or longjmp function calls. 

Return Values 

0 

nonzero 

—1 

Indicates successful creation of context. 

Indicates the process ID (PID) of the child 
process. 

Indicates an error—failure to create the child 
process. 

REF-366 VAX CRun-Time Library Functions and Macros 



vfprintf 

vfprintf 

The vfprintf function prints formatted output based on an argument list. 

This function is the same as the fprintf function except that instead of being 
called with a variable number of arguments, it is called with an argument 
list that has been initialized by the macro va_start (and possibly subsequent 
va_arg calls). 

See Chapter 2 for information on format specifiers. 

Format 

#include stdio 

#include stdarg 

int vfprintf (FILE *file~tr, const char *format, va_list arg); 

Arguments 

file~tr 
Is a pointer to a file. 

format 
Is a pointer to a string containing the format specification. 

arg 
Is a list of expressions whose resultant types correspond to the conversion 
specifications given in the format specifications. 

Description 

See the vprintf and vfprintf functions in this section. 

VAX CRun-Time Library Functions and Macros REF-367 



vfprintf 

Return Values 

x 

EOF 

Indicates the number of characters transmitted. 

Indicates an output error. 

REF-368 VAX CRun-Time Library Functions and Macros 



vprintf 

vprintf 

The vprintf function prints formatted output based on an argument list. 

This function is the same as the printf function except that instead of being 
called with "a variable number of arguments, it is called with an argument 
list that has been initialized by the macro va_start (and possibly subsequent 
va_arg calls). 

See Chapter 2 for information on format specifiers. 

Format 

#include stdio 

#include stdarg 

int vprintf (const char *format, va_list arg); 

Arguments 

format 
Is a pointer to the string containing the format specification. 

arg 
Is a variable list of the items needed for output. 

Description 

See the vfprintf and vsprintf functions this section. 

VAX CRun-Time Library Functions and Macros REF-369 



vprintf 

Return Values 

x 

EOF 

Indicates the number of characters transmitted. 

Indicates an output error. 

REF-370 VAX CRun-Time Library Func#ions and Macros 



vsprintf 

vsprintf 

The vsprint,F function prints formatted output based on an argument list. 

This function is the same as the sprintf function except that instead of 
being called with a variable number of arguments, it is called with an 
argument list that has been initialized by the macro va_stax~t (and possibly 
subsequent va_arg calls). 

Format 

#include stdio 

#include stdarg 

int vsprintf (char *str, const char *format, va list arg); 

Arguments 

str 
Is a pointer to a string. 

format 
Is a format specification. 

arg 
Is a list of expressions whose resultant types correspond to the conversion 
specifications given in the format specifications. 

Return Values 

x 

EOF 

Indicates the number of characters transmitted. 

Indicates an output error. 

VAX CRun-Time Library Functions and Macros REF-371 



wait 

wait 

The wait function checks the status of the child process before exiting. A 
child process is terminated when the parent process terminates. 

Format 

#include processes 

int wait ant ''status); 

Arguments 

status 

Is the address of a location to receive the final status of the terminated 
child. The child can set the status with the exit function and the parent can 
retrieve this value by specifying status. 

Description 

The wait function suspends the parent process until a value is returned 
from the child. This value is the final status of the child. 

Return Values 

x Indicates the process ID (PID) of the termi-
nated child. If more than one child process was 
created, wait will return the PID of the ter-
minated child that was most recently created. 
Subsequent calls will return the PID of the next 
most recently created, but terminated, child. 

REF-372 VAX CRun-Time Library Functions and Macros 



wrapok 

wrapok 

The wrapok macro, in the UNIX system environment, allows the wrapping 
of a word from the right border of the window to the beginning of the next 
line. This macro is provided only for UNIX software compatibility and serves 
no function in the VMS environment. 

Format 

#include curses 

#define boot int 

wrapok (WINDOW *win, boot boolf); 

Arguments 

win 
Is a pointer to the window. 

boolf 
Is a Boolean TRUE or FALSE value. If boolf is FALSE, scrolling is not 
allowed. This is the default setting. The boolf argument is defined in the 
curses definition module. 

VAX CRun-Time Library Functions and Macros REF-373 



write 

write 

The write function writes a specified number of bytes from a buffer to a file. 

Format 

#include unixio 

int write ant file desc, void *buffer, int nbytes); 

Arguments 

file_desc 
Is a file descriptor. The specified file descriptor must refer to a file currently 
opened for writing or updating. 

buffer 
Is the address of contiguous storage from which the output data is taken. 

nbytes 
Is the maximum number of bytes involved in the write operation. 

Description 

If the write is to an RMS record file and the buffer contains embedded 
newline characters, more than one record may be written to the file. Even 
if there are no embedded newline characters, if nbytes is greater than the 
maximum record size for the file, more than one record will be written to the 
file. The write function always generates at least one record. 

If the write is to a mailbox and the third argument, nbytes, specifies a 
length of 0, an end-of--file message is written to the mailbox. For more 
information, see Chapter 5. 

REF-374 VAX CRun-Time Library Functions and Macros 



write 

Return Values 

x Indicates the number of bytes written. 

—1 Indicates errors, including undefined file descrip-
tors, illegal buffer addresses, and physical 
I/O errors . 

VAX CRun-Time Library Functions and Macros REF-375 





Appendix A 

VAX C RTL and RTLs of Other C 
Implementations 

Most implementations of the C programming language provide some form 
of the run-time functions and macros found in this appendix. Some of 
these functions are VAX C specific. Table A-1 describes possible differences 
between the VAX C RTL function or macro and other implementations of the 
functions or macros. 

Table A-1: Relationship of VAX C RTL Functions and Macros to Other C 
RTL Functions and Macros 

C Function VAX C Implementation 

abort Not equivalent. 

The VMS system does not generate a core dump. 

abs Equivalent functionality. 

access Equivalent functionality. 

acct Not provided. 

Not provided in the VAX C RTL. The DCL command SET can 
be used to turn accounting on and off; the VMS system service, 
SYS$SNDACC, can be used to send messages to an accounting file. 

acos Equivalent functionality. 

[w] addch Equivalent functionality. 

[w]addstr Equivalent functionality. 

alarm Equivalent functionality. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-1 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

asctime Equivalent functionality. 

asin Equivalent functionality. 

assert Equivalent functionality. 

atan Equivalent functionality. 

atan2 Equivalent functionality. 

atexit Defined in the Draft Proposed ANSI C Standard. 

atof Not equivalent. 

With VAX C, the string may contain any of the white-space charac-
ters (space, horizontal or vertical tab, carriage return, form feed, 
or newline). 

atoi See atof. 

atol See atof. 

boz Equivalent functionality. 

brk See sbrk. 

cabs Equivalent functionality. 

calloc Equivalent functionality. 

ceil Equivalent functionality. 

cfree Equivalent functionality. 

chdir Not equivalent. 

The VAX C version changes the default directory for your program 
only. You will still have the same default directory as before the 
call. On VMS systems, use the DCL SET DEFAULT command. 

chmod Not equivalent. 

VMS systems have no equivalent to the "set user ID", "set group 
ID", or "save text" file attributes. You can individually specify 
group and system read, write, and execute protection. Perform a 
chmod to 1000 ("save text") on VMS systems using the INSTALL 
utility. 

shown Equivalent functionality. 

circle Not provided. 

(continued on next page) 

A-2 VAX C RTL and RTLs of Other C Implementations 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

[w]clear 

clearerr 

clearok 

clock 

close 

closepl 

[w]clrattr 

[w]clrtobot 

[w]clrtoeol 

cont 

cos 

cosh 

creat 

[no] crmode 

crypt 

ctermid 

ctime 

cuserid 

dbm 

[w] delch 

delete 

[w] deleteln 

delwin 

difftime 

div 

dup 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Not provided. 

VAX C specific. 

Equivalent functionality. 

Equivalent functionality. 

Not provided. 

Equivalent functionality. 

Equivalent functionality. 

Not equivalent. 

VAX C adds optional file attributes that let you create files with 
RMS formats other than stream. 

Equivalent functionality. 

Not provided. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Not provided. 

Equivalent functionality. 

VAX C specific. 

Equivalent functionality. 

Equivalent functionality. 

Defined in the Draft Proposed ANSI C Standard. 

Equivalent functionality. 

Equivalent functionality. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-3 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

dup2 Equivalent functionality. 

[no] echo Equivalent functionality. 

ecvt Equivalent functionality. 

endfsent Not provided. 

endgrent Not provided. 

endpwent Not provided. 

endwin Equivalent functionality. 

[w]erase Equivalent functionality. 

exec See execve. 

execl See execve. 

execlp See execve. 

execle See execve. 

execv See execve. 

execve Not equivalent. 

The principle of process overlaying is not used in VMS systems. 
On VAX C, you can exec programs only. When specifying the 
environment array, use the DCL syntax. The functions execl and 
execle contain separate character strings; the functions execv and 
execve contain arrays of character strings. 

execvp See execve. 

exit . Not equivalent. 
If you invoke the process with the DCL command interpreter, 
the VMS system interprets the return value and prints a DCL 
message. 

exp Equivalent functionality. 

fabs Equivalent functionality. 

fclose Equivalent functionality. 

fcvt Equivalent functionality. 

fdopen Equivalent functionality. 

feof Equivalent functionality. 

(continued on next page) 

A-4 VAX C RTL and RTLs of Other C Implementations 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

ferror Equivalent functionality. 

fflush Equivalent functionality. 

fgetc Equivalent functionality. 

fgetname Not equivalent. 

VAX C returns either the VMS file specification or the DEC/Shell 
file specification. 

fgets Equivalent functionality. 

fileno Equivalent functionality. 

floor Equivalent functionality. 

fmod Equivalent functionality. 

fopen Not equivalent. 

VAX C adds optional file attributes that let you create files with 
RMS formats other than stream. 

fork Not provided (see vfork). 

fprintf Equivalent functionality. 

fputc Equivalent functionality. 

fputs Equivalent functionality. 

freed Equivalent functionality. 

free Equivalent functionality. 

freopen Not equivalent. 

VAX C adds optional file attributes that let you create files with 
RMS formats other than stream. 

fregp Equivalent functionality. 

fscanf Not equivalent. 

VAX C provides the following conversion characters: hd, ho, hx, ld, 
lo, lx, le, lf, i, n, and p. 

fseek Not equivalent. 

When using record files, input from ftell is required for VAX C. 

fstat Equivalent functionality. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-5 



Table A-1 (Copt.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

ftell Not equivalent. 

When using record files, VAX C returns the position of the 
current record. 

Rime Equivalent functionality. 

fwrite Equivalent functionality. 

gamma Not provided. 

govt Equivalent functionality. 

getc Equivalent functionality. 

[w]getch Equivalent functionality. 

getchar Equivalent functionality. 

getcwd Equivalent functionality. 

getegid See getuid. 

getenv Equivalent functionality. 

geteuid See getuid. 

getfsent Not provided. 

getfsfile Not provided. 

getfsspec Not provided. 

getgid See getuid. 

getgrent Not provided. 

getgrgid Not provided. _ 

getgrnam Not provided. 

getlogin Not provided. 

getname Not equivalent. 

VAX C returns either the VMS file specification or the DEC/Shell 
file specification. 

getpass Not provided. 

getpgrp Not provided. 

getpid Equivalent functionality. 

getppid Equivalent functionality. 

(continued on next page) 

A-6 VAX C RTL and RTLs of Other C Implementations 



Table A-1 (Copt.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

getpw Not provided. 

getpwent Not provided. 

getpwnam Not provided. 

getpwuid Not provided. 

getrgid Not provided. 

gets Equivalent functionality. 

[w] getstr Equivalent functionality. 

getuid Not equivalent. 

VAX C returns the group and member codes from the UIC; VMS 
systems do not distinguish between real and effective user IDs. 

getw Equivalent functionality. 

getyg Equivalent functionality. 

gmtime Provided with no functionality. 

gsignal VAX C specific. 

hypot Equivalent functionality. 

[w]inch Equivalent functionality. 

index Not provided. 

initscr Equivalent functionality. 

[w]insch Equivalent functionality. 

[w]insertln Equivalent functionality. 

[w]insstr VAX C specific. 

ioctl Not provided. 

isalnum Equivalent functionality. 

isalpha Equivalent functionality. 

isapipe Equivalent functionality. 

isascii Equivalent functionality. 

isatty Equivalent functionality. 

iscntrl Equivalent functionality. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-7 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

isdigit Equivalent functionality. 

isgraph Equivalent functionality. 

islower Equivalent functionality. 

isprint Equivalent functionality. 

ispunct Equivalent functionality. 

isspace Equivalent functionality. 

isupper Equivalent functionality. 

isxdigit Equivalent functionality. 

j0, jl, jn Not provided. 

kill Not equivalent. 

VMS systems require system privileges if the sending and receiving 
processes have different UICs. The receiving process always 
terminates. 

killpg Not provided. 

13to1 Not provided. 

label Not provided. 

ldexp Equivalent functionality. 

ldiv Equivalent functionality. 

leaveok Equivalent functionality. 

link Not provided. 

line Not provided. 

linemod Not provided. 

localtime Not equivalent. 

On VAX C, daylight savings time always equals 0. 

log,1og10 Equivalent functionality. 

lon~jmp Equivalent functionality. 

(continued on next page) 

A-8 VAX C RTL and RTLs of Other C implementations 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

longname 

lseek 

1to13 

malloc 

memchr 

memcmp 

memcpy 

memmove 

memset 

mkdir 

mknod 

mktemp 

modf 

monitor 

mount, 
umount 

[w]move 

mpx 

mv[w]addch 

mv[w] addstr 

mvcur 

Not equivalent. 

VAX C returns the terminal name, but to maintain portability, 
you must write a set of dummy routines to perform the same 
functionality as the database termcap . 

Not equivalent. 

The VAX C function positions on record boundaries for RMS 
record files. 

Not provided. 

Not equivalent. 

VAX C aligns the area returned on an octaword boundary. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Not equivalent. 

VAX C includes VMS-specific optional arguments to specify the 
UIC, the maximum file version number, and the relative volume 
number. 

Not provided. 

Equivalent functionality. 

Equivalent functionality. 

Not provided. 

Not provided. 

Equivalent functionality. 

Not provided. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent to the function move. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-9 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

mv[w] delch 

mv[w]getch 

mv[w] getstr 

mv[w]inch 

mv[w]insch 

mv[w]insstr 

mvwin 

newwin 

nice 

[no] nl 

mist 

open 

openpl 

overlay 

overwrite 

pause 

pclose 

perror 

pipe 

point 

popen 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

VAX C specific. 

Equivalent functionality. 

Equivalent functionality. 

Not equivalent. 

On VMS systems, the resulting priority cannot be greater than the 
process base priority. 

Provided without functionality. 

Not provided. 

You can obtain this information from the linker load map. 

Not equivalent. 

VAX C requires mode = 2 when randomly writing to files. 

Not provided. 

Equivalent functionality. 

Equivalent functionality. 

Not equivalent. 

~On VMS systems, processes can also be awakened with the 
SYS$WAKE system service. 

Not provided. 

Equivalent functionality. 

Not equivalent. 

VAX C specifies optional arguments for bu~'er size and asyn-
chronous read operations. 

Not provided. 

Not provided. 

(continued on neXt page) 

A-10 VAX C RTL and RTLs of Other C Implementations 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

pow Equivalent functionality. 

printf Equivalent functionality. 

[w]printw Equivalent functionality. 

profil Not provided. 

ptrace 

putt 

Not provided. 

Equivalent functionality. 

putchar Equivalent functionality. 

puts Equivalent functionality. 

putty Equivalent functionality. 

gsort Equivalent functionality. 

raise Defined in the Draft Proposed ANSI C Standard (equivalent to the 
gsignal function). 

rand Equivalent functionality. 

[no]raw Equivalent functionality. 

read Equivalent functionality. 

realloc Not equivalent. 

On VAX C, you can reallocate only the last freed area. For ex-
ample, if you make two calls to free, only the second area is 
reallocated. 

reboot Not provided. 

[w]refresh Equivalent functionality. 

remove Defined in the Draft Proposed ANSI C Standard (equivalent to the 
delete function). 

rename Equivalent functionality. 

rewind Equivalent functionality. 

re_comp Not provided. 

re_exec Not provided. 

rindex Not provided. 

tint Not provided. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A—~ 1 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

sbrk Not equivalent. 

The VAX C version rounds the break address to the next higher 
multiple of 512 bytes. 

scarf Not equivalent. 

VAX C provides the following conversion characters: hd, ho, hx, ld, 
lo, lx, le, lf, i, n, and p. 

[w]scanw Equivalent functionality. 

scroll Equivalent functionality. 

scrollok Equivalent functionality. 

[w]setattr VAX C specific. 

setbuf Defined by the Draft Proposed ANSI C Standard. 

setgid Provided without functionality. 

setgrent Not provided. 

setjmp Equivalent functionality. 

setpgrp Not provided. 

setpwent Not provided. 

setsfent Not provided. 

setuid Provided without functionality. 

setvbuf Not equivalent. 

sigblock Equivalent functionality. 

sighold Not provided. 

See the VAX C ssignal and gsignal functions. 

sigignore Not provided. 

See the VAX C ssignal and gsignal functions. 

signal Equivalent functionality. 

sigpause Equivalent functionality. 

sigsetmask Equivalent functionality. 

sigstack Equivalent functionality. 

sigvec Equivalent functionality. 

(continued on next page) 

A-12 VAX C RTL and RTLs of Other C Implementations 



Table A-1 (Copt.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

sigrelse 

signet 

sigsys 

sin 

Binh 

sleep 

space 

sprintf 

sgrt 

srand 

sscanf 

ssignal 

[w]standend 

[w]standout 

stat 

stime 

strcat 

strchr 

strcmp 

strcpy 

strespn 

strerror 

Not provided. 

See the VAX C ssignal and 

Not provided. 

See the VAX C ssignal and 

Not provided. 

See the VAX C ssignal and 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Not provided. 

Equivalent functionality. 

VAX C also provides the conversion characters n and p. See the 
fprintf and printf functions for more information. 

Equivalent functionality. 

Equivalent functionality. 

Not equivalent. 

VAX C provides the following conversion characters: h, ho, hx, ld, 
lo, lx, le, and lf. 

VAX C specific. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Not provided. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

Equivalent functionality. 

gsignal functions. 

gsignal functions. 

gsignal functions. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-13 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

strlen Equivalent functionality. 

strncat Equivalent functionality. 

strncmp Equivalent functionality. 

strncpy Equivalent functionality. 

strpbrk Equivalent functionality. 

strrchr Equivalent functionality. 

strspn Equivalent functionality. 

strstr Equivalent functionality. 

strtod Equivalent functionality. 

strtok Equivalent functionality. 

strtol Equivalent functionality. 

strtoul Equivalent functionality. 

subwin Equivalent functionality. 

swab Not provided. 

sync Not provided. 

syscall Not provided. 

system Equivalent functionality. 

tan Equivalent functionality. 

tank Equivalent functionality. 

tgetent Not provided. 

tgetflag Not provided. 

tgetnum Not provided. 

tgetstr Not provided. 

tgoto Not provided. 

time Not equivalent. 

VAX C does not return timezone or daylight fields. 

(continued on next page) 

A-14 VAX C RTL and RTLs of Other C Implementations 

~J 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

times Not equivalent. 

VMS systems do not distinguish between system and user times. 
VAX C returns the time in 10-millisecond units. 

timezone Not provided. 

tmpfile Equivalent functionality. 

tmpnam Equivalent functionality. 

toascii Equivalent functionality. 

tolower Equivalent functionality. 

touchwin Equivalent functionality. 

toupper Equivalent functionality. 

tputs Not provided. 

ttyname Not equivalent. 

VAX C returns a pointer to the null-terminated path name of the 
terminal device associated with file descriptor 0 (standard input, 
stdin). 

umask Not equivalent. 

The default values of the umask function are set from RMS default 
file protection. 

amount Not provided. 

ungetc Equivalent functionality. 

unlink Not provided. 

This functionality is not provided in the VMS environment. You 
can create temporary files using the RMS extensions to treat. (See 
the delete and remove functions.) 

vadvise Not provided. 

valloc Not provided. 

va_arg Equivalent functionality. 

va_count VAX C specific. 

va_end Equivalent functionality. 

va_start Equivalent functionality. 

(continued on next page) 

VAX C RTL and RTLs of Other C Implementations A-15 



Table A-1 (Cont.): Relationship of VAX C RTL Functions and Macros to 
Other C RTL Functions and Macros 

C Function VAX C Implementation 

va_start_1 VAX C specific. 

vfork VAX C specific. 

This function is equivalent to the fork function in other implemen-
tations of the C language. 

vfprintf Equivalent functionality. 

vhangup Not provided. 

vlimit Not provided. 

vprintf Equivalent functionality. 

vread Not provided. 

vsprintf Equivalent functionality. 

vswapon Not provided. 

vwrite Not provided. 

wait Equivalent functionality. 

wait3 Not provided. 

wrapok Provided without functionality. 

write Equivalent functionality. 

A-16 VAX C RTL and RTLs of Other C Implementations 



Appendix B 

VAX CRun-Time Modules and Entry Points 

This appendix summarizes the modules and entry points in the VAX C 
run-time system. Table B-1 lists the modules in the library and describes 
their function. For an additional method of reference, Table B-2 lists the 
entry points defined in each module and describes their function. Table B-3 
lists the procedures from the VMS Run-Time Procedure Library that are 
called by VAX Crun-time modules. 

Table B-1: VAX CRun-Time Modules 

Module Description 

C$$DOPRINT Character-string print and scan routines. 

C$$MAIN Main start-off routine for C programs. 

C$$MATH_HAND Math routine condition handler. 

C$$TR;ANSLATE Translate VMS codes to UNIX codes. 

C$ABORT Abort the current process. 

CABS Integer absolute value math function. 

C$ACOS Arc cosine math function. 

C$ADDSTR Curses add string function. 

C$ALARM Set alarm function. 

C$ASIN Arc sine math function. 

C$ASSERT Run-time assertion function. 

C$ATAN Arc tangent math function. 

C$ATAN2 Arc tangent math function. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-1 



Table B—y (Cont.): VAX CRun-Time Modules 

Module Description 

C$ATEXIT Declare exit handlers. 

C$ATOF ASCII to floating-point binary conversion. 

C$ATOL ASCII to integer binary conversion. 

C$BOX Curses create box function. 

C$BREAK Memory allocation routines. 

C$BSEARCH Binary chop search routine. 

C$CEIL Ceiling math function. 

C$COS Cosine math function. 

C$COSH Hyperbolic cosine math function. 

C$CTERMID Controlling terminal identification. 

C$CTYPE Character-type data definitions. 

C$CUSERID User-name identification. 

C$DATA Data definitions of standard file structures. 

C$DELWIN Curses delete window function. 

C$DIVIDE div and ldiv math functions. 

C$ECVT Double float to ASCII string conversion. 

C$ENDWIN Terminate Curses session. 

C$ERRNO Run-time library error message definitions. 

C$EXP Base a exponentiation math function. 

C$FABS Floating-point double absolute math function. 

C$FLOOR Floor math library function. 

C$FMOD Floating-point remainder math function. 

C$FREXP Extract fraction and exponent math function. 

C$FSTAT Curses file status function. 

C$GCVT Double value to ASCII string conversion. 

C$GETCWD Get current working directory. 

C$GETENV Get environment value. 

C$GETGID Get group identification. 

C$GETPID Get the process identification. 

(continued on next page) 

B-2 VAX CRun-Time Modules and Entry Points 



Table B-1 (Cont.): VAX CRun-Time Modules 

Module Description 

C$GETPPID 

C$GETSTR 

C$GETUID 

C$HYPOT 

C$INISIG 

C$INITSCR 

C$INSSTR 

C$KILL 

C$LDEXP 

CLOG 

C$LOG10 

C$LONGNAME 

C$MAIN 

C$MALLOC 

C$MEMFUNC 

C$MODF 

C$MVWIN 

C$NEWWIN 

C$NICE 

C$OVERLAY 

C$OVERWRITE 

C$PAUSE 

C$PERROR 

C$POW 

C$PRINTW 

C$QSORT 

C$RAND 

C$RMS_PROTOTYPES 

Get the parent process identification. 

Curses get string function. 

Get user identification. 

Euclidean distance math library function. 

Initialize C RTL signal handler. 

Begin Curses session. 

Curses insert string function. 

Terminate process. 

Power of 2 math library function. 

Logarithm base a math library function. 

Logarithm base 10 math library function. 

Retrieve terminal name. 

C main routines. 

Memory allocation and deallocation. 

memchr, memcmp, memcpy, memmove, and 
memset functions. 

Extract fraction and integer math function. 

Curses move window function. 

Curses create window function. 

Set process priority. 

Curses window overlay function. 

Curses window overwrite function. 

Suspend the process until a signal is received. 

Print an error message. 

Power math library function. 

Curses printf function for window 

Rapid sort function. 

Random-number generator. 

Definition of RMS data structures. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-3 



Table B-1 (Cont.): VAX CRun-Time Modules 

Module Description 

C$SCANW Curses scarf for window. 

C$SCROLL Curses scroll window function. 

C$SETGID Set group identification. 

C$SETJMP Nonlocal goto functions (setjmp and longjmp). 

C$SETUID Set user identification. 

C$SIGNAL Manipulate signal data base. 

C$SIGVEC Signal function. 

C$SIN Sine math function. 

C$SINH Hyperbolic sine math function. 

C$SLEEP Suspend the process for a number of seconds. 

C$SQRT Square root math function. 

C$STAT Get file status function. 

C$STRCHR Search for a character in a string. 

C$STRCMP Compare two strings. 

C$STRERROR Get RTL error message string. 

C$STRFUNC String manipulation functions. 

C$STRINGS Perform string manipulation. 

C$STRNCMP Compare two strings. 

C$STRTOD Convert string to a double. 

C$STRTOK Search for tokens in a string. 

C$STRTOL Convert string to a long or unsigned integer. 

C$STRRCHR Search for a character in a string. 

C$STRSTR Search for a string in a string. 

C$SUBWIN Curses create subwindow function. 

C$TAN Tangent math library function. 

C$TANH Hyperbolic tangent math function. 

C$TIME Get real-time values. 

C$TIMEF Manipulate or convert real-time values. 

C$TMPFILE Create a temporary file. 

(continued on next page) 

B-4 VAX CRun-Time Modules and Entry Points 



Table B-1 (Cont.): VAX CRun-Time Modules 

Module Description 

C$TMPNAM Generate a name for a temporary file. 

C$TOLOWER Uppercase to lowercase conversion. 

C$TOUCHWIN Curses refresh window function. 

C$TOUPPER Lowercase to uppercase conversion. 

C$T'TYNAME Get terminal name function. 

C$UNIX UNIX emulation routines. 

C$VAXCIO All UO-related functions. 

C$WADDCH Curses add character function. 

C$WADDSTR Curses add string function. 

C$WCLEAR Curses erase window function. 

C$WCLRATTR Curses stop attribute function. 

C$WCLRTOBOT Curses erase window to bottom function. 

C$WCLRTOEOL Curses erase window to the end-of--line function. 

C$WDELCH Curses delete character function. 

C$WDELETELN Curses delete line function. 

C$WERASE Curses erase window function. 

C$WGETCH Curses get character function. 

C$WGETSTR Curses get string function. 

C$WINCH Curses insert character function. 

C$WINSCH Curses insert character function. 

C$WINSERTLN Curses insert line function. 

C$WINSSTR Curses insert string function. 

C$WMOVE Curses move cursor function. 

C$WPRINTW Curses printf for window. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-5 



Table B-1 (Cont.): VAX CRun-Time Modules 

Module Description 

C$WREFRESH 

C$WSC~►NW 
C$WSETATTR 

C$WSTANDEND 

C$WSTANDOUT 

SHELL$CLINT 

SHELL$CLI_NAME 

SHELL$FIX TIME 

SHELL$FROM_VMS 

SHELL$TO VMS 

SHELL$MATCH_WILD 

VAXC$ESTABLISH 

VAXC$STACK SWITCH 

VAXC$VARARGS 

Curses refresh window function. 

Curses scanf function for window. 

Curses set attribute function. 

Curses end bold function. 

Curses start bold function. 

Interface shell argument lists. 

Determine user's CLI. 

UNIX system time formatting. 

DEC/Shell file translation. 

DEC/Shell file translation. 

Expand file-name wildcards. 

Establish condition-handler function. 

Switch to alternate signal stack. 

Variable argument list support. 

Table B-2: VAX CRun-Time Entry Points 

Entry Point Module Description 

abort 

abs 

access 

acos 

addstr 

alarm 

asctime 

asin 

assert 

C$ABORT 

CABS 

C$VAXCIO 

C$ACOS 

C$ADDSTR 

C$A,LARM 

C$TIMEF 

C$ASIN 

C$ASSERT 

Abort the current process. 

Integer absolute value math 
library function. 

Check the accessibility of a file. 

Arc cosine math library function. 

Add a string to stdcr. 

Set alarm library function. 

Convert broken-down time into a 
character string. 

Arc sine math library function. 

Provide diagnostic information. 

(continued on next page) 

B-6 VAX CRun-Time Modules and Entry Points 



Table B-2 (Copt.): VAX CRun-Time Entry Points 

Entry Point Module Description 

atan C$ATAN Arc tangent math library function. 

atan2 C$ATAN2 Arc tangent math library function. 

atexit C$ATEXIT Register functions) to be called 
without arguments at program 
termination. 

atof C$ATOF Convert ASCII to floating-point 
binary. 

atoi C$ATOL Convert ASCII to integer binary. 

atol C$ATOL Convert long ASCII to binary. 

box C$BOX Create a box surrounding a 
window 

brk C$BREAK Determine the low virtual address 
for program data area. 

bsearch C$BSEARCH Binary chop search routine. 

c$$cond_hand C$$MAIN Image condition handler. 

c$$ctrlc_hand C$$MAIN ControUC ast handler. 

c$$doprint C$$DOPRINT Internal output formatting 
routine. 

c$$doscan C$$DOSCAN Internal input formatting routine. 

c$$environ C$UNIX Establish vfork environment. 

c$$exhandler C$UNIX Emulator exit handler. 

c$$main C$$MAIN Main startup routine. 

c$$math_hand C$$MATH_HAND Math condition handler. 

c$$translate C$$TRANSLATE Translate VMS error codes to 
UNIX error codes. 

c$main C$MAIN Start up main program with no 
arguments. 

c$main_args C$MAIN Start up main program with 
arguments. 

cabs C$HYPOT Euclidean distance math library 
function. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-7 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

calloc 

cc$rms_fab 

cc$rms_nam 

cc$rms_rab 

cc$rms_xaball 

cc$rms_xabdat 

cc$rms_xabfhc 

cc$rms_xabkey 

cc$rms_xabpro 

cc$rms_xabrdt 

cc$rms_xabsum 

cc$rms_xabtrm 

ceil 

cfree 

chdir 

chmod 

Chown 

clock 

close 

cos 

cosh 

crest 

C$MALLOC 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$RMS_PROTOTYPES 

C$CEIL 

C$MALLOC 

C$VAXCIO 

C$VAXCIO 

C$VAXCIO 

C$UNIX 

C$VAXCIO 

C$COS 

C$COSH 

C$VAXCIO 

Allocate and clear storage. 

File access block prototype. 

Name block prototype. 

Record access block prototype. 

Allocation control extended at-
tribute block prototype. 

Date and time extended attribute 
block prototype. 

File header characteristics ex-
tended attribute block prototype. 

Indexed file key extended attribute 
block prototype. 

File protection extended attribute 
block. 

Revision date and time extended 
attribute block prototype. 

Summary extended attribute block 
prototype. 

Terminal characteristics of the 
extended attribute block. 

Ceiling math library function. 

Deallocate storage. 

Change the default directory. 

Change a file's access mode. 

Change a file's owner. 

Determine CPU time. 

Close a file. 

Cosine math library function. 

Hyperbolic cosine math library 
function. 

Create a file. 

(continued on next page) 

B-8 VAX CRun-Time Modules and Entry Points 



Table B-2 (Copt.): VAX CRun-Time Entry Points 

Entry Point Module Description 

ctermid C$TERMID Identify the controlling terminal. 

ctime C$TIMEF Convert time to an ASCII string. 

cuserid C$CUSERID Identify the user name. 

delete C$VAXCIO Delete a file by file name. 

delwin C$DELWIN Delete a window. 

difftime C$TIMEF Compute the difference between 
two times. 

div C$DIVIDE Compute quotient and remainder. 

dup C$VAXCIO Create a duplicate file descriptor. 

dup2 C$VAXCIO Create a duplicate file descriptor. 

ecvt C$ECVT Convert a double value to ASCII. 

endwin C$ENDWIN End Curses session. 

execl C$UNIX Execute a program image. 

execle C$UNIX Execute a program image. 

execlp C$UNIX Execute a program image. 

execv C$UNIX Execute a program image. 

execve C$UNIX Execute a program image. 

execvp C$UNIX Execute a program image. 

exit C$UNIX Close files and exit. 

exit C$UNIX Exit image. 

exp C$EXP Base a exponentiation math 
function. 

fabs C$FABS double absolute math function. 

fclose C$VAXCIO Close a file. 

fcvt C$ECVT Convert a double value to ASCII. 

fdopen C$VAXCIO Open a file by file descriptor. 

fflush C$VAXCIO Flush a file buffer. 

fgetc C$VAXCIO Get a character from a file. 

fgetname C$VAXCIO Get afile-name string. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-9 



Table B-2 (Cont.): VAX C Faun-Time Entry Points 

Entry Point Module Description 

fgets C$VAXCIO Get a string from a file. 

floor C$FLOOR Floor math library function. 

fmod C$FMOD Compute the floating-point 
remainder of X/Y. 

fopen C$VAXCIO Open a file by file pointer. 

fprintf C$VAXCIO Format a string to a file. 

fputc C$VAXCIO Write a character to a file. 

fputs C$VAXCIO Write a string to a file. 

fread C$VAXCIO Read from a file. 

free C$MALLOC Reallocate storage. 

freopen C$VAXCIO Close and reopen a file. 

frezp C$FREXP Extract fraction exponent math 
function. 

fscanf C$VAXCIO Scan input from a file. 

fseek C$VAXCIO Position to an offset in a file. 

fstat C$FSTAT Get file status function. 

ftell C$VAXCIO Return current offset in a file. 

ftime C$TIME Get the time. 

fwrite C$VAXCIO Write to a file. 

gcvt C$GCVT Convert a double value to ASCII. 

getchar C$VAXCIO Get a character from standard 
input. 

getcwd C$GETCWD Get the specification for the 
current working directory. 

getegid C$GETGID Get the effective group 
identification. 

getenv C$GETENV Get an environment value. 

geteuid C$GETUID Get the effective user 
identification. 

getgid C$GETGID Get the group identification. 

(continued on next page) 

B-10 VAX CRun-Time Modules and Entry Points 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

getname C$VAXCIO Get afile-name string. 

getpid C$GETPID Get the process identification. 

getppid C$GETPPID Get the parent process ID of the 
calling process. 

gets C$VAXCIO Get a string from standard input. 

getstr C$GETSTR Get a string from stdscr. 

getuid C$GETUID Get the user identification. 

getw C$VAXCIO Get a longword from an input file. 

gmtime C$TIMEF Convert calendar time into 
broken-down time. 

gsignal C$SIGNAL Generate a signal. 

hypot C$HYPOT Euclidean distance math library 
function. 

initscr C$INITSCR Begin Curses session. 

isapipe C$VAXCIO Check for a mailbox. 

isatty C$VAXCIO Check for a terminal file. 

insstr C$INSSTR Insert a string on stdscr. 

kill C$KILL Send a signal to a process. 

ldexp C$LDEXP Power of 2 math library function. 

ldiv C$DIVIDE Compute long integer quotient and 
remainder. 

localtime C$TIMEF Place time in a time structure. 

log CLOG Logarithm base a math library 
function. 

1og10 C$LOG10 Logarithm base 10 math library 
function. 

longjmp C$SETJMP Return to setjmp's entry point. 

longname C$LONGNAME Retrieve a terminal name. 

lseek C$VAXCIO Seek to a position in a file. 

malloc C$MALLOC Allocate memory. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-11 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

memchr C$MEMFUNC Locate first occurrence of a 
character. 

memcmp C$MEMFUNC Compare lexical values of two 
arrays. 

memcpy C$MEMFUNC Copy characters from one array to 
another. 

memmove C$MEMFUNC Copy characters from one array to 
another. 

memset C$MEMFUNC Put a given character in n bytes of 
an array. 

mkdir C$VAXCIO Create a new directory. 

mktemp C$TMPNAM Make a temporary file-name 
string. 

modf C$MODF Extract fraction and integer math 
function. 

mvwin C$MVWIN Move a window. 

newwin C$NEWWIN Define a new window. 

nice C$NICE Set process priority. 

open C$VAXCIO Open a file by file descriptor. 

overlay C$OVERLAY Place one window over another. 

overwrite C$OVERWRITE Write one window onto another. 

pause C$PAUSE Suspend the process. 

perror C$PERROR Print an error message. 

pipe C$UNIX Allow two processes to exchange 
data. 

pow C$POW Power math library function. 

printf C$VAXCIO Format a string to standard 
output. 

printw C$PRINTW A printf to stdscr. 

putchar C$VAXCIO Write a character to standard 
output. 

(continued on next page) 

B-12 VAX CRun-Time Modules and Entry Points 



Table B-2 (Copt.): VAX CRun-Time Entry Points 

Entry Point Module Description 

puts 

putty 

gsort 

raise 

rand 

read 

realloc 

remove 

rename 

rewind 

sbrk 

scarf 

scanty 

scroll 

setbuf 

setgid 

setjmp 

setuid 

setvbuf 

shell$cli_name 

shell$ time 

shell from vms 

shell$get_argv 

shell$is_shell 

C$VAXCIO 

C$VAXCIO 

C$QSORT 

C$SIGNAL 

C$RAND 

C$VAXCIO 

C$MALLOC 

C$VAXCIO 

C$VAXCIO 

C$VAXCIO 

C$BREAK 

C$VAXCIO 

C$SCA►NW 
C$SCROLL 

C$VAXCIO 

C$SETGID 

C$SETJMP 

C$SETUID 

C$VAXCIO 

SHELL$CLI_NAME 

SHELL$FIX TIME 

SHELL$FROM_VMS 

SHELL$CLINT 

SHELL$CLI_NAME 

Write a string to standard output. 

Write a longword to a file. 

Sort an array of data objects. 

Generate a signal. 

Compute a random number. 

Read a file. 

Change the size of an area of 
storage. 

Delete a file. 

Rename a file. 

Return to the beginning of the file. 

Add bytes to the program's low 
virtual address. 

Format input from the standard 
input. 

A scarf to stdscr. 

Scroll a window. 

Associate a buffer with a file. 

Set group identification. 

Set up a return site for longjmp. 

Set user identification. 

Establish UO buffering for a file. 

Determine user's command-
language interpreter. 

Translate time to a UNIX format. 

Translate VMS file specifications 
to DEC/Shell specifications. 

Interface to argument lists under 
the Shell. 

Determine CLI name. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-13 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

shell$match_wild 

shell$to_vms 

shell translate_ 
vms 

sigblock 

signal 

sigpause 

sigsetmask 

sigstack 

sigvec 

sin 

sinh 

sleep 

sprintf 

sgrt 

Brand 

sscanf 

ssignal 

stet 

strcat 

strchr 

strcmp 

strcpy 

strespn 

strerror 

SHELL$MATCH 
WILD 

SHELL$TO_VMS 

SHELL$TO_VMS 

C$SIGVEC 

C$SIGNAL 

C$SIGVEC 

C$SIGVEC 

C$SIGVEC 

C$SIGVEC 

C$SIN 

C$SINH 

C$SLEEP 

C$VAXCIO 

C$SQRT 

C$RAND 

C$VAXCIO 

C$SIGNAL 

C$STAT 

C$STRINGS 

C$STRCHR 

C$STRCMP 

C$STRINGS 

C$STRINGS 

C$PERROR 

Wildcard expansion to infinite 
names. 

Translate DEC/Shell file specifica-
tions to VMS specifications. 

Translate DEC/Shell file specifica-
tions to DEC/Shell specifications. 

Block signals from delivery. 

Set a signal. 

Pause and wait for a- signal. 

Block signals from delivery. 

Define alternate signal stack. 

Assign a handler function for a 
specific signal. 

Sine math library function. 

Hyperbolic sine math library 
function. 

Suspend the process. 

Format a string to a memory 
buffer. 

Square root math library function. 

Reinitialize the random-number 
generator. 

Format input from memory. 

Set a signal. 

Get file status function. 

Concatenate two strings. 

Search for a character in a string. 

Compare two strings. 

Copy a string to another string. 

Search a string for a character. 

Translate an error message code. 

(continued on next page) 

B—~ 4 VAX CRun-Time Modules and Entry Points 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

strlen C$STRINGS Determine the length of a string. 

strncat C$STRINGS Concatenate two strings. 

strncmp C$STRNCMP Compare two strings. 

strncpy C$STRINGS Copy from one string to another. 

strpbrk C$STRINGS Search a string for a character. 

strrchr C$STRRCHR Search a string for a character. 

strspn C$STRSPN Search a string for a character. 

strstr C$STRSTR Search a string in a string. 

strtod C$ATOF Convert a string to a double-
precision number. 

strtok C$STRTOK Locate text tokens in a given 
string. 

strtol C$STRTOL Convert a character string into a 
long integer value. 

strtoul C$STRTOL Convert a character string into an 
unsigned value. 

subwin C$SUBWIN Create a subwindow. 

system C$UNIX Pass a string to a command 
processor for execution. 

tan C$TAN Tangent math library function. 

tank C$TANH Hyperbolic tangent math library 
function. 

time C$TIME Get the epoch time. 

times C$UNIX Get the process and CPU times. 

tmpfile C$TMPFILE Create a temporary file. 

tmpnam C$TMPNAM Generate a temporary file name. 

tolower C$TOLOWER Convert uppercase to lowercase. 

touchwin C$TOUCHWIN View occluded window. 

toupper C$TOUPPER Convert lowercase to uppercase. 

ttyname C$TTXNAME Set a pointer to a device associated 
with a file. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-15 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

umask C$VAXCIO Set a file's protection mask. 

ungetc C$VAXCIO Push a character back into the 
stream. 

utime C$VAXCIO Set the access and modification 
times for a file. 

vaxc$crtl_init C$$MAIN Initialize VAX C RTL signal 
handlers for non-C programs. 

vaxc$establish VAXC$ESTABLISH Establish acondition-handler 
function. 

vaxc$stack switch VAXC$STACK Switch the stack for a sigstack 
SWITCH function. 

va_arg VAXC$VA.RARGS Return the next argument. 

va_count VAXC$VA►R,ARGS Count the number of arguments. 

va_end VAXC$VARARGS Terminate the processing of 
variable argument lists. 

va_start VAXC$VA►RARGS Initialize to the beginning of an 
argument list. 

va_start_l VAXC$VA►R~ARGS Initialize to the beginning of an 
argument list. 

vfork C$UNIX Spawn a process. 

vfprintf C$VAXCIO Print formatted output. 

vprintf C$VAXCIO Print formatted output. 
vsprintf C$VAXCIO Print formatted output. 
waddch C$WADDCH Add a character to a window. 
waddstr C$WADDSTR Add a string to a window. 
wait C$VAXCIO Suspend a process. 
wclear C$WCLEAR Erase a window. 
wclrattr C$WCLRATTR Turn ofI' a screen attribute. 
wclrtobot C$CLRTOBOT Erase a window to the bottom. 
wclrtoeol C$CWCLRTOEOL Erase a window to the end of the 

current line. 

(continued on next page) 

B-16 VAX CRun-Time Modules and Entry Points 



Table B-2 (Cont.): VAX CRun-Time Entry Points 

Entry Point Module Description 

wdelch C$WDELCH Delete a character from a window. 

wdeleteln C$DELETELN Delete a line from a window. 

werase C$WERASE Erase a window. 

wgetch C$WGETCH Get a character from standard 
input; echo it on a window. 

wgetstr C$WGETSTR Get a string from standard input; 
echo it on a window. 

winch C$WINCH Return the character from a 
window at the cursor position. 

winsch C$WINSCH Insert a character on a window. 

winsertln C$WINSERTLN Insert a blank line on a window. 

winsstr C$WINSSTR Insert a string on a window. 

wmove C$WMOVE Move the cursor position. 

wprintw C$WPRINTW Perform a printf on a specified 
window. 

wrefresh C$WREFRESH View edits made to a window. 

write C$VAXCIO Write a file. 

wscanw C$WSCANW Perform a scanf on a specified 
window. 

wsetattr C$WSETATTR Turn on a screen attribute. 

wstandend C$WSTANDEND Turn off boldface attribute. 

wstandout C$WSTANDOUT Turn on boldface attribute. 

Table B-3: Run-Time Library Procedures Called by VAX C 

Procedure Description 

lib$get_foreign Get DCL command line. 

lib$free_vm Virtual memory deallocation. 

lib$get_vm Virtual memory allocation. 

lib signal Condition signaling. 

(continued on next page) 

VAX CRun-Time Modules and Entry Points B-17 



Table B-3 (Cont.): Run-Time Library Procedures Called by VAX C 

Procedure Description 

lib$stop Stop condition signal. 

lib spawn Spawn a subprocess. 

lib establish Establish an error handler. 

lib$getsymbol ~anslate DCL symbol. 

The VAX C mathematical functions are performed by the VMS run-time 
procedures in the following list: 

mth$dacos_r7 mth$dasin_r7 mth$datan_r7 

mth$datan2 mth$dcos_r7 mth$dcosh 

mth$dexp_r6 mth$dsgrt_r5 mth$dlog r8 

mth$dlogl0_r8 mth$dsin_r7 mth$dsinh 

mth$dsgrt_r5 mth$dtan_r7 mth$dtanh 

mth$gacos_r7 mth$gasin_r7 mth$gatan_r7 

mth$gatan2 mth$gcos_r7 mth$gcosh 

mth$gexp_r6 mth$gsgrt_r5 mth$glog_r8 

mth$glogl 0_r8 mth$gsin_r7 mth$gsinh 

mth$gsgrt_r5 mth$gtan_r7 mth$gtanh 

VAX C also calls run-time library modules that perform data conversion. 
The following list presents these modules: 

ots$cvt_t~ 
ots$cvt_t_d 
ots$cvt ti_1 
ots$cvt_to_1 
OtS$CVt_tZ 1 
ots$$cvt_d t_r8 
ots$$cvt~ t_r8 
ots$powdd 
ots$powgg 

B-18 VAX CRun-Time Modules and Entry Points 



The following formatting routines are called by VAX C: 

for$cvt_d_tg 
for$cvt_d_te 
for$cvt_d_tf 
for$cvt~_tg 
for$cvt,~_te 
for$cvt~_tf 

VAX CRun-Time Modules and Entry Points 8-19 





Appendix C 

VAX C Definition Modules 

This appendix lists the library definition modules contained in the text 
library named SYS$LIBRARY VAXCDEF.TLB. 

You can examine the contents of these modules in the appropriate definition 
file. All definition files have the file extension .H and are contained in the 
directory SYS$LIBRARY. You can print or type individual files, or you can 
issue the following command to print all the files with their file names 
appearing at the top of each page: 

$ PRINT SYS$LIBRARY:*.H/HEADER 

Table C-1 describes each of the definition modules. 

Table C-1: VAX C Definition Modules 

Module Description 

accdef Accounting file record definitions. 

acedef Access control list entry structure definitions. 

acldef Access control list definitions. 

acrdef Accounting record definitions. 

argdef Argument descriptors definitions. 

armdef Access rights definitions. 

assert Assert macro definition. 

atrdef File attribute definitions. 

basdef Message definitions for BASIC. 

(continued on next page) 

VAX C Definition Modules G-1 



Table ~1 (Cont.): VAX C Definition Modules 

Module Description 

brkdef Breakthrough system service definitions. 

ch fdef Structure definitions for condition handlers. 

chkpntdef Flags for calls to create processes with check points. 

chpdef Definitions for the $CHKPRO (check protection) service. 

clidef Command-language interface definitions. 

climsgdef Command-language interpreter error code definitions. 

cliservde f CLI service request codes. 

cliverbdef CLI generic codes for verbs. 

clsde f Security classification mask block definitions. 

cobdef Message definitions for COBOL. 

cqualde f Qualifier definitions. 

crdef Card reader status bits definitions. 

crede f Create options table definitions. 

crfde f CRF$INSRTREF argument list definitions. 

crfmsg Return status codes for cross-reference program. 

ctype Character type and macro definitions for character classification 
functions. 

curses Curses Screen Management-related definitions. 

dcdef Device class and type code definitions. 

descrip Descriptor structure and constant definitions. 

devdef Device characteristics definitions. 

dibdef Device information block definitions. 

dmpde f Layout of the header block of the system dump file. 

dmtdef $DISMOU (dismount) system service definitions. 

dstde f Debug Symbol Table definitions. 

dtk~routines DECtalk routine definitions. 

dtkdef Definitions for RTL DECtalk Management. 

dtkmsg Message definitions for DECtalk. 

dvidef $GETDVI system service request code definitions. 

(continued on next page) 

C-2 VAX C Definition Modules 



Table C-1 (Cont.): VAX C Definition Modules 

Module Description 

envdef Define/reference environment definitions. 

eomdef End-of-module record (EOM) definition. 

eomwdef End-of-module record with word of psect (EOMW) definition. 

epmdef GSD entry -Entry point definition, normal symbols. 

epmmdef GSD entry -Entry point definition, version mask symbols. 

epmvdef GSD entry -Entry point definition, vectored symbols. 

epmwdef GSD entry -Entry point definition with word of psect value. 

eradef Erase type codes definitions. 

errno Error number definitions. 

errnodef VAX C error message constants. 

fab File access block definitions. 

faldef Message definitions for the FAL (DECnet File Access Listener). 

fchdef File characteristics definitions. 

fdldef FDL call interface definitions. 

fibdef File information block definitions. 

fiddef FID (File ID) structure definitions. 

file Symbol definitions for the open function. 

float Macro definitions that provide implementation-specific, floating-
point restrictions. 

fmlde f Formal arguments structure definitions. 

forde f Message definitions for FORTRAN. 

fscndef SYS$FILESCAN descriptor codes. 

gpsde f GSD entry - Psect definition. 

gsdef Global symbol definition record (GSD) definitions. 

gsydef GSD entry -Symbol definition. 

hlpdef Definitions for help processing. 

iacdef Image activation control flags definitions. 

idcdef Random entity ident consistency check definitions. 

iode f UO function code definitions. 

(continued on next page) 

VAX C Definition Modules C-3 



Table C-1 (Cont.): VAX C Definition Modules 

Module Description 

jbcrosgdef Message definitions for Job Controller. 

jpidef $GETJPI system service request code definitions. 

kgbde f Key Grant Block definitions for rights database. 

ladef LPA-11 characteristics definitions. 

latdef Message definitions for the LAT facility. 

lbrctltbl Library control table use by Librarian. 

lbrdef Librarian argument definitions. 

lckdef Lock manager definitions. 

lepmdef GSD entry -Module local entry point definition. 

lhidef Library header information array of~'sets. 

lib routines Library (LIB$) routine definitions. 

libclidef Definitions for LIB$ CLI callback procedures. 

libdcfdef Definitions for LIB$DECODE_FAULT. 

libdef Definitions of LIB$ return codes. 

libdtdef Interface definitions for LIB$DT (date/time) package. 

libvmdef Interface definitions for LIB$VM package. 

limits Macro definitions that provide implementation-specific 
constraints. 

lkidef Lock information data identifier information. 

lm fde f License Management Facility definitions. 

lnkdef Linker Options Record (LNK). 

lnmdef Logical name flag definitions. 

1pde f Line printer characteristics definitions. 

1prodef GSD entry -Module Local Procedure definition. 

lsd fde f Module-local Symbol definition. 

lsrfde f Module-local Symbol reference. 

lsydef LSY -Module-Local symbol definition. 

maildef Definitions needed for mail that can be called. 

math Math function definitions. 

(continued on next page) 

C--4 VAX C Definition Modules 



Table C-1 (Cont.): VAX C Definition Modules 

Module Description 

mhddef Object module header definitions. 

mhdef Module header record (MHD). 

mntdef Flag bits for the $MOUNT system service. 

msgdef System mailbox message type definitions. 

mt2def Extended magtape characteristics definitions. 

mtadef Magtape accessibility routine code definitions. 

mtde f Magtape status definitions. 

mthdef Message definitions for the math library. 

nam Name block definitions. 

ncs$routines Definitions for routines for working with national character sets. 

ncsdef Message definitions for the NCS facility. 

n fbde f DECnet file access definitions. 

nsarecdef Security Auditing record definitions. 

objrecdef Object file record definitions. 

opcdef OPCOM request code definitions. 

opde f Instruction opcode definitions. 

oprdef Operator communications message types and values. 

ots~routines Common object library routine definitions. 

otsdef Message definitions for common object library. 

pccdef Printer/terminal carriage-control specifiers. 

perror PERROR function-related definitions. 

plvdef Privileged library vector definition. 

ppl$def Definitions for RTL Parallel Processing Facility. 

ppl~routines Routine definitions for the Parallel Processing Facility. 

ppldef Message definitions for the Parallel Processing Facility. 

pgldef Process quota code definitions. 

prcdef Create process (SYS$CREPRC) system service status flags. 

prdef Processor register definitions. 

processes Prototype definitions for subprocess functions. 

(continued on next page) 

VAX C Definition Modules C-5 



Table C-1 (Cont.): VAX C Definition Modules 

Module Description 

prodef GSD entry -Procedure definition, normal symbols. 

promdef GSD entry -Procedure definition, version mask symbols. 

provdef GSD entry -Procedure definition, vectored symbols. 

prowdef GSD entry -Procedure definition with word of psect value. 

prtdef Protection field definitions. 

prvdef Privilege mask bit definitions. 

psldef Processor status longword definitions. 

psmmsgdef Message definitions for print symbiont. 

pswdef Processor Status Word definitions. 

quidef Get Queue Information Service ($GETQUI) definitions. 

rab Record access block definitions. 

rmede f RMS escape definitions. 

rms All RMS structures and return status value definitions. 

rmsdef RMS return status value definitions. 

sbkdef Statistics block definitions. 

scrdef Screen package request types. 

sdfdef Object symbol definitions. 

sdfmdef Object symbol definition for version mask symbols. 

sdfvdef Object symbol definition for vectored symbols. 

sdfwdef Object symbol definition with word of psect value. 

secde f Image section flag bit and match constant definitions. 

setjmp State buffer definition for the setjmp and longjmp functions. 
s fde f Stack call frame definitions . 

sgpsdef GSD entry - Psect definition in shareable image. 

shrdef Definition file for shared messages. 

signal Signal value definitions. 

sjcdef Send to Job Controller Service ($SNDJBC) definitions. 

smg$routines Screen Management Facility routine definitions. 

smgdef Curses Screen Management interface definitions. 

(continued on next page) 

G-6 VAX C Definition Modules 



Table C-1 (Cont.): VAX C Definition Modules 

Module Description 

smgmsg Message definitions for Screen Management Facility. 

smgtrmptr Terminal Capability Pointers for RTL SMG$ facility. 

smrdef Symbiont manager request codes definitions. 

sor$routines Sort~Merge routine definitions. 

sordef Message definitions for Sort/merge. 

srfdef Object symbol reference. 

srmdef Hardware symbol definitions. 

ssdef System service return status value definitions. 

starlet System routine definitions. 

stat STAT and FSTAT function-related definitions. 

stdarg Variable argument list access definitions. 

stddef Common useful definitions. 

stdio Standard I/O definitions. 

stdlib Definitions of miscellaneous C functions. 

str~routines Routine definitions for dealing with strings. 

strdef Message definitions for VMS string functions. 

string C string function definitions. 

stsdef System service status code format definitions. 

syidef Definitions for the Get System-Wide Information (SYS$GETSYI) 
system service. 

time Definitions for the localtime function. 

timeb Definitions for the ftime function. 

tirdef Object file text, information and relocation record (TIR). 

tpadef TPARSE control block definitions. 

trmdef Define symbols for the item list QIO format. 

tt2def Terminal definitions. 

ttdef Terminal definitions. 

types Type definitions. 

uaidef Get User Authorization Information Data Identifier definitions. 

(continued on next page) 

VAX C Definition Modules C-7 



Table ~1 (Cont.): VAX C Definition Modules 

Module Description 

uicdef Format of UIC (user identification code). 

unixio UNIX I/O functions. 

unixio UNIX I/O emulation functions. 

unixlib Miscellaneous UNIX emulation functions. 

unixlib UNIX emulation functions. 

usgde f Disk usage accounting file produced by ANALYZE/DISK 
STRUCTURE utility. 

usridef User image bit definitions. 

varargs Variable argument list access definitions. 

xab Extended attribute block definitions. 

xwdef System definitions for DECnet DDCMP. 

C-8 VAX C Definition Modules 



Appendix D 

VAX C Socket Routine Reference 

D.1 Introduction 

This appendix describes the aspects of the VAX C language that pertain 
to the writing of Internet application programs for the VMS/ULTRIX 
Connection product. For a description of Internet details, such as proto-
cols, protocol types, and sockets, refer to the VMS l ULTRIX Connection 
Programming Manual. For more information on how to write socket 
programs, refer to the ULTRIX Supplementary Documents, System Manager. 

D.2 Porting Considerations 

This section contains information that you should consider when writing 
Internet application programs for the VMS/ULTRIX Connection. These 
considerations will help to make your programs more portable. 

D.2.1 Calling an IPC Routine from an AST State 

Calls to various IPC routines use a static area within which they return 
information. The VMS environment allows an AST routine to interrupt an 
IPC routine during its execution. In addition, the ASTs of more privileged 
modes can interrupt ASTs of less privileged modes. Therefore, caution needs 
to be observed when calling an IPC routine from AST state , while a similar 
IPC routine is being called from non-AST state or a less privileged mode. 

The IPC routines that use a static area are: 

• GETHOSTBYADDR 

• GETHOSTBYNAME 

VAX C Socket Routine Reference D-1 



• GETNETBYADDR 

• GETNETBYNAME 

In VMS Version 5.2, sockets should not be created or destroyed within ASTs. 

D.2.2 Calling from KERNEL or EXEC Modes 

Several IPC routines access files in order to retrieve their information. 
These routines should not be called from either the KERNEL or EXEC 
modes when ASTs are disabled. These IPC routines are: 

• GETHOSTBYADDR 

• GETHOSTBYNAME 

• GETNETBYADDR 

• GETNETBYNAME 

D.2.3 Standard I/O 

You cannot use Standard UO with sockets; the fdopen function does not 
support sockets. 

D.2.4 Event Flags 

IPC routines may use event flags during their operation. The event flags are 
assigned by using the library routine LIB$GET_EF and are released when 
the routine no longer needs them. 

D.2.5 Suppressing VAX C Compilation Warnings 

Certain parameters to the IPC routines may require type casting to suppress 
VAX C compilation warnings. Type casting is required because of parameter 
prototyping, which the VAX C header (.h) files have in order to be ANSI 
compliant. These header files are unlike ULTRIX header files, whose IPC 
routines are not parameter prototyped. 

D-2 VAX C Socket Routine Reference 



D.2.6 Header Files 

It is acceptable to specify in header files on a VMS system without angle 
brackets (< >) or double quotes (~~ ~~ ). For example, #include types would 
be acceptable. This is possible on the VMS system because all the header 
files are located in a text library in SYS$LIBRARY. In contrast, on an 
ULTRIX system the header files must be specified with angle brackets 
(< >) or double quotes (~~ ~~) and any subdirectories that are needed to locate 
a header file. For example, to specify the header file types.h ,you would 
specify it by #include <sys/types.h>. 

D.3 Linking an Internet Application Program 

You link Internet application programs with the LINK command. For 
example: 

$ LINK/MAP/FULL MAIN, SYS$LIBRARY:UCX$IPC/LIB, SYS$INPUT/OPTIONS 
SYS$SHARE:VAXCRTL.EXE/SHARE 

Use the OPTIONS qualifier for executable images. UCX$IPC.OLD contains 
the transfer vectors used to resolve the socket routine references to the 
VAXCRTL. 

D.4 VAX C Structures 

This section describes the structures used in writing Internet applications 
for the VMS/ULTRIX Connection product. 

D.4.1 hostent Structure 

The hostent structure, defined in the netdb.h header file, is used to specify 
or obtain a host name, a list of aliases associated with the network, and 
the network's number as specified in an Internet address from the host 
database. An entry in the host database is created with the command 
UCX> SET HOST xxxx. See the System Manager's Guide to VMS /ULTRIX 
Connection for a description of the host database. 

VAX C Socket Routine Reference D-3 



struct hostent 

char 

char 

int 

int 

char 

#define h_addr 
}; 

{ 

* h_n ame ; 0 

* *h aliases; 

/* 

/* 

h_addrtype;© /* 

h_length;0 /* 

**h addr list;Q /* 

official name of host */ 

alias list */ 

host address type */ 

length of address */ 

list of addresses from name server */ 

h addr list[0]~ /* address, for backward compatibility */ 

The members of the hostent structure are: 

O h_name is a pointer to aNULL-terminated character string that is the 
official name of the host. 

Q h_aliases is aNULL-terminated array of alternate names for the host. 

© h_addrtype is the type of address being returned; currently alv~Tays 
AF INET. 

~ h length is the length, in bytes, of the address. 

© h_addr list is a pointer to a list of pointers to the network addresses for 
the host. Each host address is represented by a series of bytes in network 
order. They are not ASCII strings. 

Q h_addr is defined as the first address in the h_addr_list. This is used for 
backward compatibility. 

D.4.2 in addr Structure 

The in_addr structure, defined in the in.h header file, is used to specify 
or obtain an Internet address. The address format can be any of the sup-
ported Internet address notations. Refer to the VMS /ULTRIX Connection 
Programming Manual for information on the Internet address notations. 

struct in addr 
union { 

} S_un; 
#define s_addr 
#define s_host 
#define s_net 
#define s_imp 
#define s_impno 
#define s_lh 
}; 

{ 

struct { u_char s bl,s b2,s b3,s b4; } S_un_b; 
struct { u_short s_wl,s_w2; } S_un_w; 
u_long S_addr; 

S_un.S_addr /* can be used for most tcp & ip code 
S_un.S_un_b.s_b2 /* host on imp */ 
S_un.S_un_b.s_bl /* network */ 
S_un.S_un_w.s_w2 /* imp */ 
S_un.S_un_b.s_b4 /* imp # */ 
S_un.S_un_b.s_b3 /* logical host */ 

D-4 VAX C Socket Routine Reference 

*/ 



D.4.3 iovec Structure 

In ULTRIX, the iovec structure is defined in the UIO.H header file; in VMS 
it is defined in the socket.h header file. 

The iovec structure describes one scatter/gather buffer. Multiple 
scatter/gather buffer descriptors are stored as an array of iovec elements. 

struct iovec { 

char *iov base;0 

int iov lent 
} 

O iov_base field is a pointer to a buffer. 

Q iov_len field contains the size of the buffer to which iov_base points. 

D.4.4 linger Structure 

The linger structure, defined in the socket.h header file, specifies the setting 
or resetting of the socket opt for the time interval that the socket will 
linger for data. linger is supported only by STREAM type sockets. 

struct linger { 

int 1_onoff;0 /* option on/off */ 

int 1_linger;© /* linger time */ 
}; 

O 1_onoff is a value of 1 sets the linger, while a value of 0 resets the 
linger. 

©1_linger is the number of seconds to linger (default 120 seconds). 

D.4.5 msghdr Structure 

The msghdr structure, defined in the socket.h header file, is used to specify 
the buffer parameter of recvmsg and sendmsg. It allows specifying an 
array of scatter/gather buffers. recvmsg scatters the data to several user 
receive buffers. msghdr gathers data from several user transmit buffers 
before being transmitted. 

VAX C Socket Routine Reference D-5 



struct 

}; 

msghdr { 

char 

int 

struct 

int 

char 

int 

*msg name; 0 / 

msg_namelen;© /* 

iov *msg iov; © /* 

msg_iovlen;~ /* 

*msg_accrights;© /* 

msg_accrightslen;~ 

optional address */ 

size of address */ 

scatter/gather array */ 

# elements in msg_iov */ 

access rights sent/received */ 

The members of the msghdr structure are: 

~ msg name is the address of the destination socket if the socket is 
unconnected. If no address is required, this field may be set to NULL. 

© msg namelen is the length of the message name field. 

© msg iov is an array of I/O buffer pointers of the iovec structure form. 
See Section D.4.3 for a description of the iovec structure. 

Q msg iovlen is the number of buffers in the msg iov array. 

© msg accrights points to a buffer containing access rights sent with the 
message. 

O msg accrightslen is the length of the msg_accrights buffer. 

D.4.6 netent Structure 

The netent structure, defined in the netdb.h header file, is used to specify 
or obtain a network name, a list of aliases associated with the network, and 
the network's number specified as an Internet address from the network 
database. An entry in the network database is created with the command 

UCX> SET NETWORK xxxx. See the System Manager's Guide to VMS 
/ ULTRIX Connection for a description of the network database. 

struct netent { 

char *n name; 

char **n aliases;® 

int n_addrtype; 

long n_net;0 

/* official name of net 

/* alias list */ 

/* net address type */ 

/* net number */ 

*/ 

}; 

The members of the netent structure are: 

D n_name is the official name of the network. 

© n_aliases is aNULL-terminated list of pointers to alternate names for 
the network. 

D-6 VAX C Socket Routine Reference 



© n_addrtype is the type of the network number returned. Currently 
always AF_INET. 

Q n_net is the network number. It is returned in host byte order. 

D.4.7 sockaddr Structure 

The sockaddr structure, defined in the socket.h header file, specifies a 
general address family. 

struct sockaddr { 

u_short sa_family; Q /* address family */ 

char sa_data[14];© /* up to 14 bytes of direct address */ 
}; 

The members of this structure are: 

D sa_family is the address family or domain in which the socket was 
created. 

© sa_data is the data string of up to 14 bytes of direct address. 

D.4.8 sockaddr in Structure 

sockaddr_in structure, defined in the in.h header file, specifies an Internet 
address family. 

struct sockaddr_in { 

short sin family; 

u_short sin port;© 

struct in_addr sin addr;© 

char sin zero [ 8 ] ; 0 

/* address family */ 

/* port number */ 

/* Internet address */ 

/* 8-byte field of all zeroes 
}; 

The members of sockaddr in structure are: 

0 sin_family is the address family (Internet domain (AF_INET)). 

Q sin_port is the port number in network order. 

© sin_addr is the Internet address in network order. 

O sin_zero is an 8-byte field containing all zeroes. 

*/ 

VAX C Socket Routine Reference D-7 



D.4.9 timeval Structure 

The timeval structure, defined in the socket.h header file, is used to specify 
times. 

struct timeval { 

long tv_sec; Q 
long tv usec; Q 

}; 

O tv_sec field specifies the number of seconds to wait. 

© tv_usec specifies the number of microseconds to wait. 

D.5 Internet Protocols 

The Internet protocol family is a collection of protocols layered on the 
Internet Protocol (IP) transport layer, and using the Internet address 
format. This section describes the Transmission Control Protocol and User 
Datagram Protocol. 

D.5.1 Transmission Control Protocol 

The Transmission Control Protocol (TCP) provides a reliable, flow-controlled, 
two-way transmission of data. It is abyte-stream protocol used to support 
the SOCK STREAM abstraction. TCP uses the standard Internet address 
format and, in addition, provides a per host collection of port addresses. 
Thus, each address is composed of an Internet address specifying the host 
and network, with a specific TCP port on the host identifying the peer entity. 

Sockets utilizing the TCP protocol are either active or passive. Active 
sockets initiate connections to passive sockets. By default TCP sockets are 
created active; to create a passive socket the listen system call must be used 
after binding the socket with the bind system call. Only passive sockets 
may use the accept call to accept incoming connections. Only active sockets 
may use the connect call to initiate connections. 

Passive sockets may underspecify their location to match incoming con-
nection requests from multiple networks. This technique, called wildcard 
addressing, allows a single server to provide service to clients on multiple 
networks. To create a socket that listens to all hosts on any network, the 
Internet address INADDR ANY must be bound. The TCP port must be 
specified at this time. If the Internet address is not INADDR and the port 
is not specified, the system will assign a port. Once a connection has been 
established, the socket's address is fixed by the peer entity's location. The 

D-8 VAX C Socket Routine Reference 

V 

u 



address assigned to the socket is the address associated with the network in-
terface through which packets are being transmitted and received. Normally 
this address corresponds to the peer entity's network. 

TCP supports one socket option that is set with setsockopt and tested 
with getsockopt. Under most circumstances, TCP sends data when it 
is presented; when outstanding data has not yet been acknowledged, it 
gathers small amounts of output to be sent in a single packet once an 
acnowledgement is received. For a small number of clients, such as window 
systems that send a stream of mouse events that receive no replies, this 
packetization may cause significant delays. Therefore, TCP provides a 
Boolean option, TCP_NODELAY (from <netinet/tcp.h>), to defeat this 
algorithm. The option level for the setsockopt call is the protocol number 
for TCP, available from getprotobyname. 

D.5.2 User Datagram Protocol 

User Datagram Protocol (UDP) is a simple, unreliable datagram protocol 
used to support the SOCK DGFCAM abstraction for the Internet protocol 
family. UDP sockets are connectionless and are normally used with the 
sendto and recvfrom calls, though the connect call may also be used to fix 
the destination for future packets (in which case the recv or read or write 
system calls may be used). 

UDP address formats are identical to those used by TCP. In particular, UDP 
provides a port identifier in addition to the normal Internet address format. 
Note that the UDP port space is separate from the TCP port space (for 
example, a UDP port may not be connected to a TCP port). Also, broadcast 
packets may be sent (assuming the underlying network supports this) by 
using a reserved broadcast address; this address is network interface 
dependent. The SO_BROADCAST option must be set on the socket and 
the process must have the SYSPRV or BYPASS privilege for broadcasting to 
succeed. 

D.6 errno Values 

errno is an external variable whose value is set whenever an error occurs 
during a call to any of the VAX C RTL routines. This value can be used 
to obtain a more detailed description of the error. errno is not cleared on 
successful calls, so its value should be checked only when an error has been 
indicated. 

VAX C Socket Routine Reference D-9 



Most calls to the VAX C RTL routines have one or more returned values. 
Any error condition is indicated by an otherwise impossible return value. 
This is almost always -1; the individual routine descriptions specify the 
details. 

All return codes and values from routines are of type integer unless 
otherwise noted. An error number is also made available in the external 
variable errno, which is not cleared on successful calls. The errno values 
may be translated to a message, similar to that found in-UNIX systems, by 
using the perror function. vaxc$errno may also be returned as an error. 

NOTE 

The notation [...) is used in this manual to denote an errno error. 

Table D-1 lists the errno values. 

Table D-1: errno Values 

EINPROGRESS Operation now in progresss 

An operation that takes a long time to 
complete, such as connect, was attempted 
on anon-blocking object. 

EALREADY Operation already in progress 

An operation was attempted on a non-
blocking object that already had an 
operation in progress. 

ENOTSOCK Socket operation on non-socket 

EDESTADDRREQ Destination address required 

A required address was omitted from an 
operation on a socket. 

EMSGSIZE Message too long 

A message sent on a socket was larger than 
the internal message buffer. 

(continued on next page) 

D-10 VAX C Socket Routine Reference 



Table D-1 ~Cont.): errno Values 

EPROTOTYPE Protocol wrong type for socket 

A protocol was specified that does not 
support the semantics of the socket type 
requested. For example you cannot use 
the ARPA Internet UDP protocol with type 
SOCK_STREAM. 

ENOPROTOOPT Protocol not available 

EPROTONOSUPPORT 

ESOCKTNOSUPPORT 

EOPNOTSUPP 

A bad option was specified in a getsockopt 
or setsocketopt call. 

Protocol not supported 

The protocol has not been configured into 
the system or no implementation for it 
exists. 

Socket type not supported 

The support for the socket type has not 
been configured into the system or no 
implementation for it exists. 

Error-operation not supported 

For example, tyring to accept a connection 
on a datagram socket. 

EPFNOSUPPORT Protocol family not supported 

The protocol family has not been configured 
into the system or no implementation for it 
exists. 

EAFNOSUPPORT Address family not supported by protocol 
family 

An address incompatible with the requested 
protocol was used. 

EADDRINUSE Address already in use 

Each address can be used only once. 

EADDRNOTAVAIL Cannot assign requested address 

Normally, results from an attempt to 
create a socket with an address not on this 
machine. 

(continued on next page) 

VAX C Socket Routine Reference D-1'1 



Table D-1 (Cont.): errno Values 

ENETDOWN 

ENETUNREACH 

ENETRESET 

ECONNABORTED 

ECONNRESET 

ENOBUFS 

EISCONN 

ENTOTCONN 

Network is down 

A socket operation encountered a dead 
network. 

Network is unreachable 

A socket operation was attempted to an 
unreachable network. 

Network dropped connection on reset 

The host you were connected to crashed and 
rebooted. 

Software caused connection abort 

A connection abort was caused internal to 
your host machine. 

Connection reset by peer 

A connection was forcibly closed by a peer. 
This usually results from the peer executing 
a shutdown call. 

No buffer space available 

An operation on a socket or pipe was 
not performed because the system lacked 
sufficient buffer space. 

Socket is already connected 

A connect request was made on an already 
connected socket; or, a sendto or sendmsg 
request on a connected socket specified a 
destination other than the connected party. 

Socket is not connected 

Request to send or receive data was disal-
lowed because the socket is not connected. 

ESHUTDOWN Cannot send after socket shutdown 

A request to send data was disallowed 
because the socket had already been shut 
down with a previous shutdown call. 

ETOOMANYREFS Too many references: cannot splice 

tcontinued on next page) 

D-12 VAX C Socket Routine Reference 



Table D-1 (Cont.): errno Values 

ETIMEDOUT Connection timed out 

A connect request failed because the con-
nected party did not properly respond after 
a period of time. (The timeout period is 
dependent on the communication protocol. ) 
A connect request or remote file operation 
failed because the connected party did not 
properly respond after a period of time 
that is dependent on the communication 
protocol. 

ECONNREFUSED Connection refused 

No connection could be made because the 
target machine actively refused it. This 
usually results from trying to connect to a 
service that is inactive on the foreign host. 

ELOOP Too many levels of symbolic links 

A path name lookup involved more than 
eight symbolic links. 

ENAMETOOLONG File name too long 

A component of a path name exceeded 255 
characters, or an entire path name exceeded 
1023 characters. 

EHOSTDOWN Host is down 

A socket operation failed because the 
destination host was down. 

EHOSTUNREACH No route to host 

A socket operation was attempted to an 
unreachable host. 

EVMSERR VMS-specific error code that is non-
translatable 

VAX C Socket Routine Reference D-13 



D.7 Basic Communication Routines 

This section contains the basic communication routines that make up the 
building blocks of Internet programs. These calls are listed in Table D-2. 

Table D-2: Basic Communication Routines 

Routine Description 

Accept Accepts a connection on a socket. 

Bind Binds a name to a socket. 

Close Closes a connection and deletes a socket descriptor. 

Listen Set the maximum limit of outstanding connection re-
quests for a socket. 

Read Reads bytes from a file or socket and places them into a 
buffer. 

Ready Not implemented. 

Recv Receives bytes from a socket and places them into a 
buffer. 

Recvfrom Receives bytes for a socket from any source. 

Recvmsg Receives bytes from a socket and places them into 
scattered buffers. 

Select Allows the polling or checking of a group of sockets. 

Send Sends bytes through a socket to a connected peer. 

Sendmsg Sends gathered bytes through a socket to any other 
socket. 

Sendto Sends bytes through a socket to any other socket. 

Shutdown Shuts down all or part of a bidirectional socket. 

Socket Creates an endpoint for communication by returning a 
socket descriptor. 

Write Writes bytes from a buffer to a file or socket. 

Writev Not implemented. 

D-14 VAX C Socket Routine Reference 



accept 

accept 

Accepts a connection on a socket. 

Format 

#include types 

#include socket 

int accept (int s, struct sockaddr *addr, int *addrlen); 

Arguments 

S 
Is a socket descriptor that has been returned by socket, subsequently bound 
to an address with bind, and that is listening for connections after a listen. 

addr 
Is a result parameter that is filled in with the address of the connecting 
entity, as known to the communications layer. The exact format of the 
structure to which the address parameter points is determined by the 
domain in which the communication is occurring. This version of VAX C 
supports only the Internet domain (AF_INET). 

addrlen 
Is avalue-result parameter; it should initially contain the size of the 
structure pointed to by addr. On return it will contain the actual length (in 
bytes) of the structure that has been filled in by the communication layer. 
See Section D.4.7 for a description of the sockaddr structure. 

Socket Routines D-15 



accept 

Description 

The accept routine completes the first connection on the queue of pending 
connections, creates a new socket with the same properties as s and allocates 
and returns a new descriptor for the socket. If no pending connections are 
present on the queue, and the socket is not marked as nonblocking, accept 
blocks the caller until a connection request is present. If the socket is 
marked nonblocking by using a setsockopt call and no pending connections 
are present on the queue, accept returns an error. The accepted socket 
may not be used to accept connections. The original socket s remains 
open (listening) for other connection requests. This call is used with 
connection-based socket types, currently with SOCK STREAM. 

It is possible to select a socket for the purposes of performing an accept by 
selecting it for read. 

See also bind, connect, listen, select, and socket. 

Return Values 

-1 Indicates that the call failed and is further 
specified in the global errno. 

x A nonnegative integer that is a descriptor for the 
accepted socket. 

[EBADF] The socket descriptor is invalid. 
[ENOTSOCK] The socket descriptor references a file, not a 

socket. 

[EOPNOTSUPP] The reference socket is not of type SOCK_ 
STREAM. 

[EFAULT] The addr parameter is not in a writable part of 
the user address space. 

[EV~IOULDBLOCK] The socket is marked nonblocking and no con-
nections are present to be accepted. 

D-16 Socket Routines 



bind 

bind 

Binds a name to a socket. 

Format 

#include types 

#include socket 

i nt bind ~ nt s, struct sockaddr *name, i nt namelen); 

Arguments 

s 
Is a socket descriptor that has been created with socket. 

name 
Address of a structure used to assign a name to the socket in the format 
specific to the family (AF_INET) socket address. See Section D.4.7 for 
description of the sockaddr structure. 

name/en 
Is the size in bytes of the structure pointed to by name. 

Description 

The bind routine assigns a name to an unnamed socket. When a socket is 
created with socket it exists in a name space (address family) but has no 
name assigned. The bind routine requests that a name be assigned to the 
socket. 

See also connect, getsockname, listen, and socket 

Socket Routines D-17 



bind 

Return Values 

0 Indicates success. 
-1 Indicates an error and is further specified in the 

global errno. 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[EADDRNOTAVAIL] The specified address is not available from the 
local machine. 

[EADDRINUSE] The specified Internet address and ports are 
already in use. 

[EINVAL] The socket is already bound to an address. 
[EACCESS] The requested address is protected, and the 

current user has inadequate permission to access 
it. 

[EFAULT] The name parameter is not a valid part of the 
user address space. 

D-18 Socket Routines 



close 

close 

Closes a connection and deletes a socket descriptor. 

Format 

#include unixio 

int close (s); 

Argument 

s 

Is a socket descriptor. 

Description 

The close deletes a descriptor from the per-process object reference table. If 
this is the last reference to the underling object, then it will be deactivated. 

See also accept, socket, and write. 

Return Values 

0 

-1 

[EBADF] 

Indicates success. 

Indicates an error and is further specified in the 
global errno. 

The socket descriptor is invalid. 

Socket Routines D-19 



connect 

connect 

Initiates a connection on a socket. 

Format 

#include types 

#include socket 

int connect ant s, struct sockaddr *name, int namelen); 

Arguments 

s 

Is a socket descriptor that has been created with socket. 

name 

Is the address of a structure that specifies the name of the remote socket in 
the format specific to the address family (AF_INET). 

namelen 

Is the size in bytes of the structure pointed to by name. 

Description 

If s is a socket descriptor of type SOCK DGFCAM, then this call perma-
nently specifies the peer to which data is to be sent. If it is of type SOCK 
STREAM, then this call attempts to make a connection to another socket. 

Each communications space interprets the name parameter in its own way. 
This argument specifies the socket to which the socket specified in s is to be 
connected. 

See also accept, select, socket, getsockname, and shutdown. 

D-20 Socket Routines 



connect 

Return Values 

0 

-1 

[EBADF] 

[ENOTSOCK] 

[EADDRNOTAVAIL] 

[EAFNOSUPPORT] 

[EISCONN] 

[ETIMEOUT] 

[ECONNREFUSED] 

[ENETUNREACH] 

[EADDRINUSE] 

[EFAULT] 

[EWOULDBLOCK] 

Indicates success. 

Indicates that an error has occurred and is 
further specified in the global errno. 

The descriptor is invalid. 

The socket descriptor references a file, not a 
socket. 

The specified address is not available from the 
local machine. 

Address in the specified address family cannot be 
used with this socket. 

The socket is already connected. 

Connection establishment timed out without 
establishing a connection. 

The attempt to connect was forcefully rejected. 

The network is not reachable from this host. 

The specified Internet address and ports are 
already in use. 

The name parameter is not a valid part of the 
user address space. 

The socket is nonblocking and the connection 
cannot be completed immediately. It is possible 
to select the socket while it is connecting by 
selecting it for writing. 

Socket Routines D-21 



listen 

listen 

Sets the maximum limit of outstanding connection requests for a socket that 
is connection-oriented. 

Format 

int listen (nt s, int backlog); 

Arguments 

S 
Is a socket descriptor of type SOCK_STREAM that has been created using 
socket. 

backlog 
Specifies the maximum number of pending connections that may be queued 
on the socket at any given time. The maximum cannot exceed 5. 

Description 

This routine simply creates a queue for pending connection requests on 
socket s with a maximum size of backlog. Connections may then be 
accepted with accept. 

If a connection request arrives with the queue full (more than backlog 
connection requests pending), the client will receive an error with an errno 
indication of ECONNR,EFUSED. 

See also accept, connect, and socket 

D-22 Socket Routines 



listen 

Return Values 

Q Indicates success. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The socket descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[EOPNOTSUPP] The socket is not of a type that supports the 
operation listen. 

Socket Routines D-23 



read 

read 

Reads bytes from a socket or file and places them in a buffer. 

Format 

#include unixio 

i nt read ~ nt d, void *buffer, i nt nbytes); 

Arguments 

d 
Is a descriptor. The specified descriptor must refer to a socket or file 
currently opened for reading. 

buffer 
Is the address of contiguous storage in which the input data is placed. 

nbytes 
Is the maximum number of bytes involved in the read operation. 

Description 

If the end-of--file is not reached, the read routine returns nbytes. If the 
end-of--file occurs during the read routine, it returns the number of bytes 
read. 

Upon successful completion, read returns the number of bytes actually read 
and placed in the buffer. 

See also socket. 

D-24 Socket Routines 



read 

Return Values 

x Indicates end-of--file has been reached. 

-1 Indicates an error and is further specified in the 
global errno. 

[EBADF] The descriptor is invalid. 

[EFAULT] The buf points outside the allocated address 
space. 

[EINVAL] The nbytes argument is negative. 

[EWOULDBLOCK] The NBIO socket option (nonblocking) flag is set 
for the socket or file descriptor and the process 
would be delayed in the read operation. 

Socket Routines D-25 



recv 

recv 

Receives bytes from a connected socket and places them into a buffer. 

Format 

#include types 

#include socket 

int recv ant s, char *buf, int len, int flags); 

Arguments 

S 

Is a socket descriptor that was created as the result of a call to accept or 
connect. 

buf 
Is a pointer to a buffer into which received data will be placed. 

len 

Specifies the size of the buffer pointed to by buf. 

flags 
Is a bit mask that may contain one or more of: MSG_OOB and MSG_ 
PEEK. It is built by oring the appropriate values together. 

The MSG_OOB flag allows out-of--band data to be received. If out-of--band 
data is available, it will be read before any other data that is available. If 
no out-of--band data is available, the MSG OOB flag is ignored. Out-of-band 
data can be sent using send, sendmsg, and sendto. 

The MSG_PEEK flag allows you to peek at the data that is next in line to 
be received without actually removing it from the system's buffers. 

D--26 Socket Routines 



recv 

Description 

This routine receives data from a connected socket. To receive data on an 
unconnected socket, use the recvfirom or recvmsg routines. The received 
data is placed in the buffer buf. 

Data is sent by the socket's peer using the send, sendmsg, or sendto 
routines. 

The select call may be used to determine when more data arrives. 

If no data is available at the socket, the receive call waits for data to arrive, 
unless the socket is nonblocking in which case a -1 is returned with the 
external variable errno set to EWOULDBLOCK. 

See also read, send, sendmsg, sendto, and socket. 

Return Values 

x The number of bytes received and placed in buf. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The socket descriptor is invalid. 

[EINVAL] The nbytes argument is negative. 

[ENOTSOCK] The descriptor references a file, not a socket. 

[EPIPE] An attempt was made to write to a socket that is 
not open for reading by any process. 

[EWOULDBLOCK] The NBIO (non_blocking) flag is set for the 
socket descriptor and the process would be 
delayed in the write operation. 

[EFAULT] The data was specified to be received into non-
existent or protected part of the process address 
space. 

Socket Routines D-27 



recvfrom 

recvfrom 

Receives bytes from a socket from any source. 

Format 

#include types 

#include socket 

int recvfrom ant s, char *buf, int /en, int flags, struct sockaddr 
*from, i nt *fromlen) ; 

Arguments 

S 
Is a socket descriptor that has been created with socket and bound to a 
name using bind or as a result of accept. 

buf 
Is a pointer to a buffer into which received data will be placed. 

len 
Specifies the size of the buffer pointed to by buf. 

flags 
Is a bit mask that may contain one or more of: MSG_OOB and MSG_ 
PEEK. It is built by oring the appropriate values together. 

The MSG_OOB flag allows out of band data to be received. If out-of--band 
data is available, it will be read before any other data that is available. If 
no out-of--band data is available, the MSG OOB flag is ignored. Out-of--band 
data can be sent using send, sendmsg, and sendto. 

The MSG_PEEK flag allows you to peek at the data that is next in line to 
be received without actually removing it from the system's buffers. 

D--28 Socket Routines 



recvfrom 

from 
If from is nonzero, from is a buffer into which recvfrom places the address 
(structure) of the socket from which the data is received. If from was zero, 
the address will not be returned. 

froml~n 
Points to an integer containing the size of the buffer pointed to by from. 
On return, the integer is modified to contain the actual length of the socket 
address structure returned. 

Description 

This routine allows a named, unconnected socket to receive data. The data 
is placed in the buffer pointed to by buf, and the address of the sender of the 
data is placed in the buffer pointed to by from if from is non-NULL. The 
structure that from points to is assumed to be as large as the sockaddr 
structure. See Section D.4.7 for description of sockaddr structure. 

To receive bytes from any source, the sockets need not be connected to 
another socket. 

The select call may be used to determine if data is available. 

If no data is available at the socket, the receive call waits for data to arrive, 
unless the socket is nonblocking in which case a -1 is returned with the 
external variable errno set to EWOULDBLOCK. 

See also read, send, sendmsg, sendto, and socket. 

Return Values 

x Is the number of bytes of data received and 
placed in buf. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The socket descriptor is invalid. 

[ENOTSOCK] The descriptor references a file, not a socket. 

Socket Routines D-29 



recvfrom 

[EPIPE] An attempt was made to write to a socket that is 
not open for reading by any process. 

[EWOULDBLOCK] The NBIO (non_blocking) flag is set for the 
socket descriptor and the process would be 
delayed in the write operation. 

[EINVAL] The nbytes argument is negative. 

[EFAULT] The data was specified to be received into non-
existent or protected part of the process address 
space. 

D-30 Socket Routines 



recvmsg 

recvmsg 

Receives bytes on a socket and places them into scattered buffers.. 

Format 

#include types 

#include socket 

int recvmsg (nt s, struct msghdr msg~], int flags); 

Arguments 

S 
Is a socket descriptor that has been created with socket. 

msg 
Specifies a msghdr structure. See Section D.4.5 for a description of the 
msghdr structure. 

flags 
Is a bit mask that may contain one or more of: MSG_OOB and MSG_ 
PEEK. It is built by oring the appropriate values together. 

The MSG_OOB flag allows out-of--band data to be received. If out-of--band 
data is availiable, it will be read before any normal data that is available. If 
no out-of--band data is available, the MSG_OOB flag is ignored. Out-of--band 
data can be sent using send, sendmsg, and sendto. 

The MSG_PEEK flag allows you to peek at the data that is next in line to 
be received without actually removing it from the system's buffers. 

Socket Routines D-31 



recvmsg 

Description 

This routine may be used with any socket, whether it is in a connected state 
or not. It receives data sent by a call to sendmsg, send, or sendto. The 
message is scattered into several user buffers if such buffers are specified. 

To receive data, the socket need not be connected to another socket. 

When the iovec[iovcnt] array specifies more than one buffer, the input 
data is scattered into iovcnt buffers as specified by the members of the 
iovec array: iov[0], iov[1], ..., iov[iovcnt]. 

When a message is received, it is split among the buffers by filling the first 
buffer in the list, then the second, and so on, until either all of the buffers 
are full or there is no more data to be placed in the buffers. 

When a message is sent, the first buffer is copied to a system buffer and 
then the second buffer is copied, followed by the third buffer and so on, until 
all the buffers are copied. After the data is copied, the protocol will send 
the data to the remote host at the appropirate time, depending upon the 
protocol. 

The select call may be used to determine when more data arrives. 

See also read, send, and socket. 

Return Values 

x Number of bytes returned in the msg iov 
buffers. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF) The socket descriptor is invalid. 

[ENOTSOCK] The descriptor references a file, not a socket. 
[EPIPE] An attempt was made to write to a socket that is 

not open for reading by any process. 

D-32 Socket Routines 



recvmsg

[EWOULDBLOCK] The NBIO (non_blocking) flag is set for the 
socket descriptor and the process would be 
delayed in the write operation. 

[EINVAL] The nbytes argument is negative. 

[EINTR] The receive was interrupted by delivery of a 
signal before any data was available for the 
receive. 

[EFAULT] The data was specified to be received into non-
existent or protected part of the process address 
space. 

Socket Routines D-33 



select 

select 

Allows the user to poll or check a group of sockets for UO activity. It can 
check what sockets are ready to be read or written, or what sockets have a 
pending exception. 

Format 

#include time 

i nt select Ci nt nfds, i nt *readfds, i nt *writefds, i nt *execptfds, 
struct timeval *timeout); 

Arguments 

nfds 
Specifies the highest numbered socket descriptor to search for. That is, it 
specifies the highest numbered bit +1 in readfds, writefds, and exceptfds 
that should be examined. Descriptor s is represented by 1«s (1 shifted to 
the left s number of times). 

This argument is used only to improve efficiency. If you are unsure what the 
highest numbered socket descriptor is, nfds can safely be set to a number 
lower than 32. 

The VAX C select routine only examines the longwords referenced by the 
readfds, writefds, and exceptfds arguments. Note that this means that 
no program that uses the VAX C select routine may ever have more than 32 
files and sockets opened simultaneously. 

readfds 
Is a pointer to an array of bits, organized as integers (each integer describing 
32 descriptors), that should be examined for read readiness. If bit n of the 
longword is set, socket descriptor n will be checked to see if it is ready to be 
read. All bits set in the bit mask must correspond to the file descriptors of 
sockets. The select routine cannot be used on normal files. 

D-34 Socket Routines 



select 

On return, the longword to which readfds points contains a bit mask of 
the sockets that are ready for reading. Only bits that were set on entry to 
select could possibly be set on exit. 

writefds 
Is a pointer to a longword bit mask of the socket descriptors that should 
be examined for write readiness. If bit n of the longword is set, socket 
descriptor n will be checked to see if it is ready to be written to. All bits set 
in the bit mask must correspond to socket descriptors. 

On return, the longword that writefds points to contains a bit mask of the 
sockets that are ready for writing. Only bits that were set on entry to select 
will be set on exit. 

exceptfds 
Is a pointer to a longword bit mask of the socket descriptors that should be 
examined for exceptions. If bit n of the longword is set, socket descriptor n 
will be checked to see if it has any pending exceptions. All bits set in the bit 
mask must correspond to the file descriptors of sockets. 

On return, the longword exceptfds pointer contains a bit mask of the 
sockets that have exceptions pending. Only bits that were set on entry to 
select could possibly be set on exit. 

timeout 
Specifies how long select should examine the sockets before returning. If 
one of the sockets specified in the readfds, writefds, and exceptfds bit 
masks is ready for UO, select will return before the timeout period has 
expired. 

The timeout structure points to a timeval structure. See Section D.4.9 for 
a description of the timeval structure. 

Description 

This routine determines the UO status of the sockets specified in the various 
mask arguments. It returns either when a socket is ready to be read or 
written, or when the timeout period expires. If timeout is a nonzero 
integer, it specifies a maximum interval to wait for the selection to complete. 

Socket Routines D-35 



select 

If the timeout argument is NULL, select will block indefinitely. In order to 
effect a poll, timeout should be non-NULL, and should point to azero-valued 
structure. 

If a process is blocked on a select while waiting for input from a socket and 
the sending process closes the socket, the select notes this as an event and 
will unblock the process. The descriptors are always modified on return if 
select returns because of the timeout. 

NOTE 

When the socket option SO_OOBINLINE is set on the device_ 
socket, a select on both read and exception events returns the 
socket mask set on both the read and exception mask. Otherwise, 
only the exception mask is set. 

See also accept, connect, read, recv, recvfrom, recvmsg, send, 
sendmsg, sendto, and write. 

Return Values 

n 

0 

-1 

[EBADF] 

[EINVAL] 

D-36 Socket Routines 

The number of sockets that were ready for UO or 
that had pending exceptions. This value matches 
the number of returned bits that are set in all 
output masks. 

Indicates that select timed out before any socket 
became ready for UO. 

Indicates that an error has occurred and is 
further specified in the global errno. 

One of the bit masks specified an invalid descrip-
tor. 

The specified time limit is unacceptable. One of 
its components is negative or too large. 



send 

send 

Sends bytes though a socket to its connected peer. 

Format 

#include types 

#include socket 

int send ant s, char *msg, int len, int flags); 

Arguments 

s 
Is a socket descriptor that was created with socket, and that has been 
connected to another socket using accept or connect. 

msg 
Is a pointer to a buffer containing the data to be sent. 

len 
Specifies the length in bytes of the data pointed to by msg. 

flags 
May be either 0 or MSG_OOB. If it is equal to MSG_OOB, the data will 
be sent out-of-band. This means that the data can be received before 
other pending data on the receiving socket if the receiver also specifies a 
MSG_OOB in the flag parameter of the call. 

Socket Routines D-37 



send 

Description 

The send routine may only be used on connected sockets. To send data on 
an unconnected socket, use the sendmsg or sendto routines. The send 
routine simply passes data along to its connected peer, which may receive 
the data by using recv. 

If there is no space available to buffer the data being sent on the receiving 
end of the connection, send will normally block until buffer space becomes 
available. If the socket is defined as nonblocking, however, send will fail 
with an errno indication of EWOULDBLOCK. If the message is too large 
to be sent in one piece and the socket type requires that messages be sent 
atomically (SOCK DGFCAM), send will fail with an errno indication of 
EMSGSIZE. 

No indication of failure to deliver is implicit in a send. All errors (except 
EWOULDBLOCK) are detected locally. The select routine may be used to 
determine when it is possible to send more data. 

See also read, recv, recvmsg, recvfrom, getsocketopt, and socket. 

Return Values 

n The number of bytes sent. This value will 
normally equal len. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The socket descriptor is invalid. 

[ENOTSOCK] The descriptor references a file, not a socket. 

[EFAULT] An invalid user space address was specified for a 
parameter. 

[EMSGSIZE] The socket requires that message be sent atom-
ically, and the size of the message to be sent 
made this impossible. 

[EWOULDBLOCK] Blocks. if the system does not have enough space 
for buffering the user data. 

D-38 Socket Routines 



sendmsg 

sendmsg 

Sends gathered bytes through a socket to any other socket. 

Format 

#include types 

#include socket 

int sendmsg ant s, struct msghdr msg~J, int flags); 

Arguments 

s 
Is a socket descriptor that has been created with socket. 

msg 
Is a pointer to a msghdr structure containing the message to be sent. See 
Section D.4.5 for a description of the msghdr structure. 

The msg_iov field of the msghdr structure is used as a series of buffers 
from which data is read in order until msg iovlen bytes have been 
obtained. 

flags 
May be either 0 or MSG_OOB. If it is equal to MSG OOB, the data will be 
sent out-of-band. This means that the data can be received before other 
pending data on the receiving socket if the receiver also specifies a flag of 
MSG_OOB. 

Socket Routines D-39 



sendmsg 

Description 

The sendmsg routine may be used on any socket to send data to any 
named socket. The data in the msg_iovec field of the msg structure is 
sent to the socket whose address is specified in the msg_name field of the 
structure. The receiving socket gets the data using either read, recv, or 
recvfrom, recvmsg routine. When the iovec array specifies more than one 
buffer, the data is gathered from all specified buffers before being sent. See 
Section D.4.3 for a description of the iovec structure. 

If there is no space available to buffer the data being sent on the receiving 
end of the connection, sendmsg will normally block until buffer space 
becomes available. If the socket is defined as nonblocking, however, 
sendmsg will fail with an errno indication of EWOULDBLOCK. If the 
message is too large to be sent in one piece and the socket type requires that 
messages be sent atomically (SOCK DGRAM), sendmsg will fail with an 
errno indication of EMSGSIZE. 

If the address specified is a INADDR_BROADCAST address, the SO_ 
BROADCAST option must be set and the process must have SYSPRV or 
BYPASS privilege for the I/O operation to succeed. 

No indication of failure to deliver is implicit in a sendmsg. All errors 
(except EWOULDBLOCK) are detected locally. The select routine may be 
used to determine when it is possible to send more data. 

See also read, recv, recvfrom, recvmsg, getsockopt, and socket. 

Return Values 

n The number of bytes sent. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

D-44 Socket Routines 



sendmsg 

[EFAULT) An invalid user space address was specified for a 
parameter. 

[EMSGSIZE] The socket requires that message be sent atom-
ically, and the size of the message to be sent 
made this impossible. 

[EWOULDBLOCK] Blocks if the system does not have enough space 
for buffering the user data. 

Socket Routines D-,4'I 



sendto 

sendto 

Sends bytes through a socket to any other socket. 

Format 

#include types 

#include socket 

int sendto ant s, char *msg, int len, int flags, struct sockaddr 
*to, i nt tolen); 

Arguments 

s 

Is a socket descriptor that has been created with socket. 

msg 

Is a pointer to a buffer containing the data to be sent. 

len 

Specifies the length of the data pointed to by msg. 

flags 
May be either 0 or MSG_OOB. If it is equal to MSG_OOB, the data will 
be sent out-of-band. This means that the data can be received before 
other pending data on the receiving socket if the receiver also specifies a 
MSG_OOB in its flag parameter of the call. 

to 
Points to the address structure of the socket to which the data is to be sent. 

tolen 

Specifies the length of the address structure to points to. 

D-42 Socket Routines 



sendto 

Description 

The sendto routine may be used on any socket to send data to any 
named socket. The data in the msg buffer is sent to the socket whose 
address is specified in to, and the address of socket s is provided to the 
receiving socket. The receiving socket gets the data using either read, recv, 
recvfrom, or recvmsg routine. 

If there is no space available to buffer the data being sent on the receiving 
end of the connection, sendto will normally block until buffer space becomes 
available. If the socket is defined as nonblocking, however, sendto will fail 
with an errno indication of EWOULDBLOCK. If the message is too large 
to be sent in one piece and the socket type requires that messages be sent 
atomically (SOCK DGRAM), sendto will fail with an errno indication of 
EMSGSIZE. 

No indication of failure to deliver is implicit in a sendto. All errors (except 
EWOULDBLOCK) are detected locally. The select routine may be used to 
determine when it is possible to send more data. 

If the address specified is a INADDR BROADCAST address, SO_ 
BROADCAST option must be set and the process must have SYSPRV or 
BYPASS privilege for the UO operation to succeed. 

See also getsockopt, read, recv, recvfrom, recvmsg, and socket. 

Return Values 

n The number of bytes sent. This value will 
normally equal len. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[EFAULT] An invalid user space address was specified for a 
parameter. 

Socket Routines D-43 



sendto 

[EMSGSIZE] 

[EWOULDBLOCK] 

D-44 Socket Routines 

The socket requires that message be sent atom-
ically, and the size of the message to be sent 
made this impossible. 

Blocks if the system does not have enough space 
for buffering the user data. 



shutdown 

shutdown 

Shuts down all or part of a bidirectional connection on a socket. It can 
disallow further receives, further sends, or both. 

Format 

#include socket 

shutdown ant s, int how); 

Arguments 

s 
Is a socket descriptor that is in a connected state as a result of a previous 
call to either connect or accept. 

how 
Specifies how the socket is to be shut down. It may have any of the following 
values: 

0 

1 

2 

Further calls to recv on the socket are to be 
disallowed. 

Further calls to send on the socket are to be 
disallowed. 

Further calls to both send and recv are to be 
disallowed. 

Description 

This routine allows communications on a socket to be shut down one piece 
at a time rather than all at once. It can be used to create unidirectional 
connections rather than the normal bidirectional (full-duplex) connections. 

See also connect and socket. 

Socket Routines D-45 



shutdown 

Return Values 

0 Indicates success. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The socket descriptor is invalid. 

[ENOTSOCK] The descriptor references a file, not a socket. 

[ENOTCONN] The specified socket is not connected. 

D-46 Socket Routines 



socket 

socket 

Creates an endpoint for communication by returning a special kind of file 
descriptor called a socket descriptor, which is associated with a 
VMS/ULTRIX Connection socket device channel. 

Format 

#include types 

#include socket 

i nt socket (i nt af, i nt type, i nt protocol); 

Arguments 

of 

Specifies the address format to be used in later references to the socket. 
Addresses specified in subsequent operations using the socket are inter-
preted according to this format. Currently, only AF_INET (Internet style) 
addresses are supported. 

type 
Specifies the semantics of communication. The type may be SOCK 
STREAM, SOCK DGFCAM, or SOCK R.AW. 

SOCK STREAM type sockets provide sequenced, reliable, two-way connec-
tion based byte streams with an available out-of--band data transmission 
mechanism. 

SOCK DGTCAM sockets support datagrams (connectionless, unreliable data 
transmission mechanism). 

SOCK RAW sockets provide access to internal network interfaces, and are 
available only to users with SYSPRZT privilege. 

Socket Routines D-47 



socket 

protocol 

Specifies the protocol to be used with the socket. Normally only a single 
protocol exists to support a particular socket type using a given address 
format. However, it is possible that many protocols may exist, in which case 
a particular protocol must be specified with this argument. The protocol 
number to use is particular to the communication domain in which 
communication is to take place. 

Description 

This routine provides the primary mechanism for creating sockets. The type 
and protocol of the socket affect the way the socket behaves and how it can 
be used. 

The operation of sockets is controlled by socket-level options, defined in 
the file socket.h. The calls setsockoption and getsockoption are used 
to set and get options. Options other than SO_LINGER take an integer 
parameter that should be nonzero if the option is to be enabled, or zero if it 
is to be disabled. SO_LINGER uses a linger structure parameter defined 
in socket.h. This structure specifies the desired state of the option and the 
linger interval in the following manner: 

SO REUSEADDR allow local address reuse 
SO_KEEPALIVE keep connections alive 
SO_DONTROUTE do not apply routing on outgoing messages 
SO_LINGER linger on close if data present 
SO_BROADCAST permit sending of broadcast messages 

SO REUSEADDR indicates the rules used in validating addresses supplied 
in a bind call should allow reuse of local addresses. 

SO_KEEPALIVE enables the periodic transmission of messages on a 
connected socket. Should the connected party fail to respond to these 
messages, the connection is considered broken and processes using the 
socket are notified through the error code SS$_LINKDISCON. 

SO_DONTROUTE indicates that outgoing messages should bypass 
the standard routing facilities. Instead, messages are directed to the 
appropriate network interface according to the network portion of the 
destination address. 

D-48 Socket Routines 



socket 

SO_LINGER controls the actions taken when unsent messages are queued 
on the socket and a close is performed. When using the setsockopt to 
set the linger values, the option value for the SO_LINGER command is the 
address of a linger structure: 

struct linger { 
int l onoff; /* option on/off */ 

int 1 linger; /* linger time */ 
}; 

If the socket promises reliable delivery of data and 1_onoff is nonzero, the 
system will block the process on the attempt until it is able to transmit the 
data or until it decides it is unable to deliver the information. A timeout 
period, called the linger interval, is specified in 1_linger. If 1_onoff is set to 
zero and a close is issued, the system will process the close in a manner that 
allows the process to continue as quickly as possible. 

SO_BROADCAST is used to enable or disable broadcasting on the socket. 

See also accept, bind, connect, getsockname, getsockopt, listen, read, 
recv, recvfrom, recvmgs, select, send, sendmsg, sendto, shutdown, 
and write. 

Return Values 

x Is a file descriptor that refers to the socket 
descriptor. 

-1 Indicates an error and is further specified in the 
global errno. 

[EAFNOSUPPORT] The specified address family is not supported in 
this version of the system. 

[ESOCKTNOSUPPORT] The specified socket type is not supported in this 
address family. 

[EPROTONOSUPPORT] The specified protocol is not supported. 

Socket Routines D-49 



socket 

[EPROTOTYPE] Request for a type of socket for which there is no 
supporting protocol. 

[EMFILE] The per-process descriptor table is full. 

[ENOBUFS] No buffer space is available. The socket cannot 
be created. 

D-50 Socket Routines 



write 

write 

Writes a buffer of data to a socket or file. 

Format 

#include unixio 

int write ant d, void *buffer, int nbytes); 

Arguments 

d 
Is a descriptor. The specified descriptor must refer to a socket or file. 

buffer 
Is the address of contiguous storage from which the output data is taken. 

nbytes 
Is the maximum number of bytes involved in the write operation. 

Description 

The write call attempts to write a buffer of data to a socket or file. 

See also socket. 

Return Values 

x 

0 

-1 

Number of bytes written to the socket or file. 

Indicates an error. 

Indicates an error and is further specified in the 
global errno. 

Socket Routines D-51 



write

[EBADF] The d argument is not a valid descriptor open for 
writing. 

[EPIPE] An attempt was made to write to a socket that is 
not open for reading by any process. 

[EFAULT] Part of the array pointed to by iov or data to 
be written to the file points outside the process's 
allocated address space. 

[EWOULDBLOCK] The NBIO (non_blocking) flag is set for the 
socket descriptor and the process would be 
delayed in the write operation. 

[EINVAL] The nbytes argument is negative. 

D-52 Socket Routines 



D.8 Auxiliary Communication Routines 

This section describes auxiliary communication routines. These routines 
are used to provide information about a socket and to set the options on a 
socket. See Table D-3 for a description of these routines. 

Table D-3: Auxiliary Communication Routines 

Routine Description 

getpeername Returns the name of the connected peer. 

getsockname Returns the name associated with a socket. 

getsockopt Returns the options set on a socket. 

setsockopt Sets options on a socket. 

Socket Routines D-53 



getpeername 

getpeername 

Returns the name of the connected peer. 

Format 

#include types 

#include socket 

getpeername ant s, struct sockaddr *name, int *namelen); 

Arguments 

S 

Is a socket descriptor that has been created using socket. 

name 

Is a pointer to a buffer within which the peer name is to be returned. 

name/en 

Is an address of an integer that specifies the size of the name buffer. On 
return, it will be modified to reflect the actual length (in bytes) of the name 
returned. 

Description 

The getpeername routine returns the name of the peer connected to the 
socket descriptor specified. 

See also bind, getsockname, and socket. 

D-54 Socket Routines 



getpeername 

Return Values 

0 Indicates success. 

-1 Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[ENOTCONN] ~ The socket is not connected. 

[ENOBUFS] Resources were insufficient in the system to 
perform the operation. 

[EFAULT] The name parameter is not a valid part of the 
user address space. 

Socket Routines D-55 



getsockname 

getsockname 

Returns the name associated with a socket. 

Format 

#include types 

#include socket 

int getsockname (int s, struct sockaddr 
*name, 

int *rramelen); 

Arguments 

s 

Is a socket descriptor created with socket and bound to the socket name 
with bind. 

name 

Is a pointer to the buffer in which getsockname should return the socket 
name. 

namelen 

Is a pointer to an integer specifying the size of the buffer pointed to by 
name. On return, the integer contains the actual size of the name returned 
(in bytes). 

Description 

The getsockname routine returns the current name for the specified socket 
descriptor. The name is a format specific to the address family (AF_INET) 
assigned to the socket. 

Bind makes the association of the name to the socket, not getsockname. 

See also bind and socket. 

D-56 Socket Routines 



getsockname 

Return Values 

0 Indicates success. 

-1 Indicates that an error has occurred. 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[ENOBUFS] Resources were insufficient in the system to 
perform the operation. 

[EFAULT] The name parameter is not a valid part of the 
user address space. 

Socket Routines D-57 



getsockopt 

getsockopt 

Returns the options set on a socket. 

Format 

#include types 

#include socket 

int getsockopt ant s, int level, int optname, char *optval, int 
*optlen); 

Arguments 

s 
Is a socket descriptor ~ created by socket. 

level 
Specifies the protocol level for which the socket options are desired. It may 
have one of the following values: 

SOL_SOCKET Get the options at the socket level. 

P Any protocol number. Get the options for pro-
tocol level p. See the in.h file for the various 
IPPROTO values. 

optname 
Is interpreted by the protocol that is specified in the level. Options at each 
protocol level are documented with the protocol. See setsockopt for socket 
level options. 

optval 
Points to a buffer in which the value of the specified option should be placed 
by getsockopt. 

D-58 Socket Routines 



getsockopt 

optlen 
Points to an integer containing the size of the buffer pointed to by optval. 
On return, the integer will be modified to contain the actual size of the 
option value returned. 

Description 

This routine gets information on socket options. See the appropriate protocol 
for information on available options at each protocol level. 

Return Values 

0 Indicates success. 

-Z Indicates that an error has occurred and is 
further specified in the global errno. 

[EBADFI The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[ENOPROTOOPT] The option is unknown or the protocol is unsup-
ported. 

[EFAULT] The name parameter is not a valid part of the 
user address space. 

Socket Routines D-59 



setsockopt 

setsockopt 

Sets options on a socket. 

Format 

#include types 

#include socket 

int setsockopt (int s,int level, int optname,char *optval, int 
*opt/en); 

Arguments 

S 
Is a socket descriptor created by socket. 

level 
Specifies the protocol level for which the socket options are to be modified. 
It may have one of the following values: 

SOL_SOCKET 

p 

Set the options at the socket level. 

Any protocol number. Set the options for pro-
tocol level p. See the in.h file for the various 
IPPROTO values. 

optname 

Is interpreted by the protocol specified in level. Options at each protocol 
level are documented with the protocol. 

The options available at the socket level are: 

SO_REUSEADDR 

SO_KEEPALIVE 

SO_DONTROUTE 

D-60 Socket Routines 

Allow local address reuse. 

Keep connections alive (TCP/IP). 

Do not apply routing on outgoing messages. 



setsockopt 

SO_LINGER Linger on close if data present (TCP/IP). 

SO_BROADCAST Permit sending of broadcast messages. 

SO_REUSEADDR indicates the rules used in validating addresses supplied 
in a bind call should allow reuse of local addresses. 

SO_KEEPALIVE enables the periodic transmission of messages on a 
connected socket. Should the connected party fail to respond to these 
messages, the connection is considered broken and processes using the 
socket are notified through an EPIPE error. 

SO_DONTROUTE indicates that outgoing messages should bypass 
the standard routing facilities. Instead, messages are directed to the 
appropriate network interface according to the network portion of the 
destination address. 

SO LINGER delays the internal socket deletion portion of close until 
either the data has been transmitted, or the device times out (approximately 
eight minutes). 

SO_BROADCAST is used to enable or disable broadcasting on the socket. 

optval 
Points to a buffer containing the parameters of the specified option. 

All socket level options other than SO LINGER take an integer parameter 
that should be nonzero if the option is to be enabled, or zero if it is to be 
disabled. 

SO LINGER uses a linger structure parameter defined in the socket.h 
file. This structure specifies the desired state of the option and the linger 
interval. The option value for the SO LINGER command is the address of a 
linger structure. See Section D.4.4 for a description of the linger structure. 

If the socket promises reliable delivery of data and 1_onoff is nonzero, 
the system will block the process on the close attempt until it is able to 
transmit the data or until it decides it is unable to deliver the information. 
A timeout period, called the linger interval, is specified in 1 linger. 

If 1_onoff is set to zero and a close is issued, the system will process the 
close in a manner that allows the process to continue as quickly as possible. 

optlen 
Points to an integer containing the size of the buffer pointed to by optval. 

Socket Routines D-6~ 



setsockopt 

Description 

The setsockopt routine manipulates options associated with a socket. 
Options may exist at multiple protocol levels; they are always present at the 
uppermost socket level. 

When manipulating socket options, the level at which the option resides 
and the name of the option must be specified. To manipulate options at the 
socket level, level is specified as SOL_SOCKET. To manipulate options at 
any other level the protocol number of the appropriate protocol controlling 
the option must be supplied. For example, to indicate an option is to be 
interpreted by the TCP protocol, level should be set to the protocol number 
(IPPROTO_TCP) of TCP. See in.h file for the various IPPROTO values. 

Return Values 

0 Indicates success. 

-1 Indicates that an error has occurred. 

[EBADF] The descriptor is invalid. 

[ENOTSOCK] The socket descriptor references a file, not a 
socket. 

[ENOPROTOOPT) The option is unknown. 

[EFAULT] The name parameter is not a valid part of the 
user address space. 

D--62 Socket Routines 



D.9 Communication Support Routines 

The communication support routines perform operations, such as searching 
databases, converting byte order of network and host addresses, reading 
records, and returning Internet addresses. Refer to Table D-4 for a 
description of these routines. 

Table D-4: Supported Communication Routines 

Routine Description 

gethostbyaddr Searches the host database for a host record with a given 
address. 

gethostbyname Searches the host database for a host record with given 
name or alias. 

gethostent Reads the next record in the host database. 

gethostname Returns the name of the current host. 

getnetbyaddr Searches the network database for a network record with 
a given address. 

getnetbyname Searches the network database for a network record with 
a given name or alias. 

getnetent Reads the next record in the network database. 

htonl Converts longwords fi~om network to host byte order. 

htons Converts short integers from network to host byte order. 

ntohl Converts longwords fiom host to network byte order. 

ntohs Converts short integers from host to network byte order. 

inet addr Converts Internet addresses in text form into numeric 
Internet addresses. 

inet_lnaof Returns the local network address portion of an Internet 
address. 

inet_makeaddr Returns an Internet address given a network address 
and a local address on that network. 

inet_netof Returns the Internet network address portion of an 
Internet address. 

(continued on next page) 

Socket Routines D-63 



Table D-4 (Cont.): Supported Communication Routines 

Routine Description 

inet network 

inet ntoa 

vaxc$get_sdc 

Converts aNULL-terminated text string representing 
an Internet network address into a network address in 
network byte order. 

Converts an Internet address into an ASCIZ (NULL-
terminated) string. 

Returns the socket device's VA►~~/vMS I/O channel 
associated with a socket descriptor. 

D-64 Socket Routines 



gethostbyaddr 

gethostbyaddr 

Searches the host database sequentially from the beginning of the database 
for a host record with a given address. 

Format 

#include netdb 

struct hostent *gethostbyaddr (char *addr, int /en, int type); 

Arguments 

addr 
Specifies a pointer to a series of bytes in network order specifying the 
address of the host sought. This argument does not point to an ASCII 
string. 

len 
Specifies the number of bytes in the address pointed to by the addr 
argument. 

type 
Specifies the type of address format being sought. Currently, only AF_INET 
is supported. 

Description 

The gethostbyaddr routine finds the first host record in the host database 
with the given address. 

The gethostent, gethostbyaddr, and gethostbyname routines all use a 
common static area for their return values. This means that subsequent 
calls to any of these routines will overwrite any existing host entry. You 
must make a copy of the host entry if you wish to save it. 

Socket Routines D-65 



gethosibyaddr 

Return Values 

NULL 

x 

D-66 Socket Routines 

Indicates an error. 

A pointer to an object with the hostent struc-
ture. See Section D.4.1 for a description of the 
hostent structure. 



gethostbyname 

gethostbyname 

Searches the host database sequentially from the beginning of the database 
for a host record with a given name or alias. 

Format 

#include netdb 

struct hostent *gethostbyname (char *name); 

Arguments 

name 

Is a pointer to aNULL-terminated character string containing the name or 
an alias of the host sought. 

Description 

The gethostbyname routine finds the first host in the host database with 
the given name or alias. 

The gethostent, gethostbyaddr, and gethostbyname routines all use a 
common static area for their return values. This means that subsequent 
calls to any of these routines will overwrite any existing host entry. You 
must make a copy of the host entry if you wish to save it. 

Return Values 

NULL Indicates an error. 

x A pointer to an object with the hostent structure. 
See Section D.4.1 for a description of the hostent 
structure. 

Socket Routines D-67 



gethostent 

gethostent 

Reads the next record in the host database, opening the database if nec-
essary. This routine is not currently supported by the VMS/ULTRIX 
Connection product on a system running the VMS operating system, but 
it is supported by the ULTRIX operating system. 

Format 

#include netdb 

struct hostent *gethostent (); 

Description 

The gethostent routine allows the records in the host database to be read 
sequentially in the order in which they appear in the database. 

The gethostent, gethostbyaddr, and gethostbyname routines all use a 
common static area for their return values. This means that subsequent 
calls to any of these routines will overwrite any existing host entry. You 
must make a copy of the host entry if you wish to save it. 

Return Values 

NULL Indicates an error. 

x A pointer to an object with the hostent struc-
ture. See Section D.4.1 for a description of the 
hostent structure. 

D-68 Socket Routines 



gethostname 

gethostname 

Returns the name currently associated to the host. 

Format 

#include types 

#include socket 

gethostname (char *name, int name/en); 

Arguments 

name 

Specifies the address of a buffer into which the name should be written. The 
returned name is NULL-terminated unless sufficient space is not provided. 

namelen 

Specifies the size of the buffer pointed to by name. 

Description 

The gethostname routine returns the translation of the logical UCX$INET_ 
HOST when used with the VMS/ULTRIX Connection on a VMS system. 

Socket Routines D-69 



gethostname 

Return Values 

0 Indicates success. 

-1 

[EFAULT] 

D-70 Socket Routines 

Indicates that an error has occurred and is 
further specified in the global errno. 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



getnetbyaddr 

getnetbyaddr 

Searches the network database sequentially from the beginning of the 
database for a network record with a given address. 

Format 

#include netdb 

struct netent *getnetbyaddr (long net, int type); 

Arguments 

net 

Specifies the network number of the network database entry required. It 
should be specified in host byte order. 

type 

Specifies the type of network sought. Currently, only AF_INET is supported. 

Description 

The getnetbyaddr routine finds the first network record in the network 
database with the given address. 

The getnetent, getnetbyaddr, and getnetbyname routines all use a 
common static area for their return values. This means that subsequent 
calls to any of these routines will overwrite any existing network entry. You 
must make a copy of the network entry if you wish to save it. 

Socket Routines D-71 



getnetbyaddr 

Return Values 

NULL Indicates EOF or an error. 

x A pointer to an object with the netent structure. 
See Section D.4.6 for a description of the netent 
structure. 

[EFAULT] 

D-72 Socket Routines 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



getnetbyname 

getnetbyname 

Searches the network database sequentially from the beginning of the 
database for a network record with a given name or alias. 

Format 

#include netdb 

struct netent *getnetbyname (char *name); 

Argument 

name 

Is a pointer to aNULL-terminated character string of the name or an alias 
of the network sought. 

Description 

The getnetbyname routine finds the first host in the network database 
with the given name or alias. 

The getnetent, getnetbyaddr, and getnetbyname routines all use a 
common static area for their return values. This means that subsequent 
calls to any of these routines will overwrite any existing network entry. You 
must make a copy of the network entry if you wish to save it. 

Socket Routines D-73 



getnetbyname 

Return Values 

NULL Indicates EOF or an error. 

x 

[EFAULT] 

D-74 Socket Routines 

A pointer to an object with the netent structure. 
See Section D.4.6 for a description of the netent 
structure. 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



~"1 
getnetent 

getnetent 

Reads the next record in the network database, opening the database if 
necessary. This routine is not currently supported by the VMS/ULTRIX 
Connection product on a VMS operating system, but it is supported by the 
ULTRIX operating system. 

Format 

#include netdb 

struct netent *getnetent (); 

Description 

The getnetent routine allows the records in the network database to be 
read sequentially in the order in which they appear in the database. 

The getnetent, getnetbyaddr, and getnetbyname routines all use a 
common static area for their return values. This means that subsequent 
calls to any of these routines will overwrite any existing network entry. You 
must make a copy of the network entry if you wish to save it. 

Return Values 

NULL Indicates EOF or an error. 

x a pointer to an object with the netent structure. 
See Section D.4.6 for a description of the netent 
structure. 

Socket Routines D-75 



htonl 

htonl 

Converts longwords from host to network byte order. 

Format 

#include in 

unsigned long int htonl (unsigned long int hostlong); 

Argument 

hostlong 
Is a longword in host (VAX) byte order. All integers on the VAX system are 
in host byte order unless otherwise specified. 

Description 

This routine converts 32-bit unsigned integers from host byte order to 
network byte order. 

The network byte order is the format in which data bytes are supposed to 
be transmitted through a network. All hosts on a network must send data 
in network byte order. Not all hosts have an internal data representation 
format that is identical to the network byte order. The host byte order is the 
format in which bytes are ordered internally on a specific host. 

The host byte order on VAX systems differs from the network order. 

This routine is most often used with Internet addresses and ports as 
returned by gethostent and getservent, and when manipulating values 
in the structures. Network byte order places the byte with the most 
significant bits at lower addresses, whereas the VAX system places the most 
significant bits at the highest address. 

D-76 Socket Routines 



htonl 

Return Values 

x A longword in network byte order. 

Socket Routines D-77 



htons 

htons 

Converts short integers from host to network byte order. 

Format 

#include in 

unsigned short int htons (unsigned short int hostshort); 

Argument 

hostshort 
Is a short integer in host (VAX) byte order. All short integers on the VAX 
system are in host byte order unless otherwise specified. 

Description 

This routine converts 16-bit unsigned integers from host byte order to 
network byte order. 

The network byte order is the format in which data bytes are suppose to 
be transmitted through a network. All hosts on a network must send data 
in network byte order. Not all hosts have an internal data representation 
format that is identical to the network byte order. The host byte order is the 
format in which bytes are ordered internally on a specific host. 

The host byte order on VAX systems differs from the network order. 

This routine is most often used with Internet addresses and ports as 
returned by gethostent and getservent, and when manipulating values in 
the structures. Network byte order places the byte with the most significant 
bits at lower addresses, whereas the VAX system places the most significant 
bits at the highest address. 

D-78 Socket Routines 



htons 

Return Values 

x A short integer in network byte order. Integers 
in network byte order cannot be used for arith-
metic computation on the VAX system. 

Socket Routines D-79 



inet addr 

inet addr 

Converts Internet addresses in text form into numeric (binary) Internet 
addresses. 

Format 

#include in 

#include inet 

int inet_addr (char *cp); 

Argument 

cp 
Is a pointer to aNULL-terminated character string containing an Internet 
address in the standard Internet "." format. 

Description 

This routine returns an Internet address in network byte order when given 
as its argument an ASCIZ (NULL-terminated) string representing the 
address in the Internet standard ~~ . ~~ notation. 

Internet addresses specified using the ~~ . ~~ notation take one of the following 
forms: 

a.b.c.d 
a.b.c 
a.b 
a 

When four parts are specified, each is interpreted as a byte of data and 
assigned, from left to right, to the four bytes of an Internet address. Note 
that when an Internet address is viewed as a 32-bit integer quantity on the 
VAx system, the bytes referred to above appear in binary as "d.c.b.a". That 
is, VAx bytes are ordered from least significant to most significant. 

D-80 Socket Routines 



inet addr 

When only one part is given, the value is stored directly in the network 
address without any byte rearrangement. 

All numbers supplied as "parts" in a ~~ . ~~ address expression may be decimal, 
octal, or hexadecimal, as specified in the C language (that is, a leading Ox or 
OX implies hexadecimal; a leading 0 implies octal, otherwise, the number is 
interpreted as decimal). 

Return Values 

-1 Indicates that cp does not point to a proper 
Internet address. 

x Is an Internet address in network byte order. 

[EFAULT] The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 

Socket Routines D-81 



inet Inaof 

inet Inaof 

Returns the local network address portion of an Internet address. 

Format 

#include in 
#include inet 

int inet_Inaof (struct in_addr in); 

Argument 

in 

Is an Internet address. 

Description 

This routine returns the local network address (lna) portion of a full Internet 
address. 

Return Values 

x 

[EFAULT] 

D-82 Socket Routines 

The local network portion of an Internet address 
in byte order host. 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



inet makeaddr 

inet makeaddr 

Returns an Internet address given a network address and a local address on 
that network. 

Format 

#include in 

#include inet 

struct in addr inet makeaddr (nt net, int lna) ; 

Arguments 

net 
Is an Internet network address in host byte order. 

Ina 
Is a local network address on network net in host byte order. 

Description 

This routine combines the net and lna arguments into a single Internet 
address. 

Return Values 

x An Internet address in network byte order. 

[EFAULT] The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 

Socket Routines D-83 



inet netof 

inet netof 

Returns the Internet network address portion of an Internet address. 

Format 

#include in 

#include inet 

int inet netof (struct in addr in); 

Argument 

in 
Is an Internet address. 

Description 

This routine returns the Internet network address (net) portion of a full 
Internet address. 

Return Values 

x 

DEFAULT] 

D-84 Socket Routines 

The Internet network portion of an Internet 
address in host byte order. 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



inet network 

inet network 

Converts a text string representing an Internet network address in the 
standard Internet ~~ . ~~ notation into an Internet network address as machine-
format integer values. 

Format 

#include in 

#include inet 

int inet_network (char *cp); 

Argument 

cp 
Is a pointer to an ASCIZ (NULL-terminated) character string containing a 
network address in the standard Internet ~~ . ~~ format. 

Description 

This routine returns an Internet network address as machine-format integer 
values when given as its argument an ASCIZ string representing the 
address in the Internet standard ~~ . ~~ notation. 

Socket Routines D-85 



inet network 

Return Values 

-1 

x 

[EFAULT] 

D-86 Socket Routines 

Indicates that cp does not point to a proper 
Internet network address. 

Is an Internet network address as machine-
format integer values. 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



inet ntoa 

inet ntoa 

Converts an internet address into a text string representing the address in 
the standard Internet ~~ . ~~ notation. 

Format 

#include in 

#include inet 

char *inet ntoa (struct in_addr in); 

Argument 

in 
Is an Internet address in network byte order. 

Description 

This routine is used to convert an Internet address into an ASCIZ (NULL-
terminated) string representing that address in the standard Internet ~~ . ~~ 
notation. 

WARNING 

Arguments should not be passed as integers because of how the 
VAX C language handles struct arguments. 

Because the string is returned in a static buffer that will be overwritten by 
successive calls to inet_ntoa, it is recommended to copy the string to a safe 
place. 

Socket Routines D-87 



inet ntoa 

Return Values 

x 

[EFAULT] 

Q-88 Socket Routines 

A pointer to a string containing the Internet 
address in "." notation. 

The buffer described by name and namelen is 
not a valid, writeable part of the user address 
space. 



ntohl 

ntohl 

Converts longwords from network to host byte order. 

Format 

#include in 

unsigned long int ntohl (unsigned long int netlong) ; 

Argument 

netlong 
Is a longword in network byte order. Integers in network byte order cannot 
be used for arithmetic computation on the VAX system. 

Description 

This routine converts 32-bit unsigned integers from network byte order to 
host byte order. 

The network byte order is the format in which data bytes are supposed to 
be transmitted through a network. All hosts on a network must send data 
in network byte order. Not all hosts have an internal data representation 
format that is identical to the network byte order. The host byte order is the 
format in which bytes are ordered internally on a specific host. 

The host byte order on VAX systems differs from the network order. 

This routine is most often used with Internet addresses and ports as 
returned by gethostent and getservent, and when manipulating values 
in the structures. Network byte order places the byte with the most 
significant bits at lower addresses, whereas the VAX system places the most 
significant bits at the highest address. 

Socket Routines D-89 



ntohl 

Return Values 

x A longword in host byte order. 

D-90 Socket Routines 



ntohs 

ntohs 

Converts short integers from network to host byte order. 

Format 

#include in 

unsigned short int ntohs (unsigned short int netshort); 

Argument 

netshort 
Is a short integer in network byte order. Integers in network byte order 
cannot be used for arithmetic computation on the VAX system. 

Description 

This routine converts 16-bit unsigned integers from network byte order to 
host byte order. 

The network byte order is the format in which data bytes are suppose to 
be transmitted through a network. All hosts on a network must send data 
in network byte order. Not all hosts have an internal data representation 
format that is identical to the network byte order. The host byte order is the 
format in which bytes are ordered internally on a specific host. 

The host byte order on VAX systems differs from the network order. 

This routine is most often used with Internet addresses and ports as 
returned by gethostent and getservent, and when manipulating values 
in the structures. Network byte order places the byte with the most 
significant bits at lower addresses, whereas the VAX system places the most 
significant bits at the highest address. 

Socket Routines D-91 



ntohs 

Return Values 

x A short integer in host (VAX) byte order. 

D-92 Socket Routines 



vaxc$get sdc 

vaxc$get_sdc 

Returns the socket device channel associated with a socket descriptor for 
direct use with the VMS/ULTRIX Connection product. 

Format 

#include socket 

short int vaxc$get_sdc ant s); 

Argument 

S 
Is a socket descriptor. 

Description 

This routine returns the Socket Device Channel (SDC) associated with a 
socket. C socket descriptors are normally used either as file descriptors 
or with one of the routines that takes an explicit socket descriptor as its 
argument. C sockets are implemented using VMS/ULTRIX Connection 
Socket Device Channels. This routine returns the Socket Device Channel 
used by a given socket descriptor so that you can use the VMS/ULTftIX 
Connection's facilities directly by means of various UO system services 
($QIO). 

Return Values 

0 Indicates that s is not an open socket descriptor. 

x Is the Socket Device Channel number. 

Socket Routines D-93 



D.10 Programming Examples 

This section provides VAX C socket communications programming 
examples. 

Example D-1 shows aTCP/IP server using the IPC socket interface. 

Example D-1: TCP/IP Server 

/* 
* 

* Copyright (C) 1989 by 
* Digital Equipment Corporation, Maynard, Mass. 

* 

* This software is furnished under a license and may be used and copied 
* only in accordance with the terms of such license and with the 
* inclusion of the above copyright notice. This software or any other 
* copies thereof may not be provided or otherwise made available to any 
* other person. No title to and ownership of the software is hereby 
* transferred. 

* 

* The information in this software is subject to change without notice 
* and should not be construed as a commitment by Digital Equipment 
* Corporation. 

* 

* Digital assumes no responsibility for the use or reliability of its 
* software on equipment that is not supplied by Digital. 

* 

* 

* 

* FACILITY: 
* INSTALL 

* 

* 

* ABSTRACT: 
* This is an example of a TCP/IP server using the IPC 
* socket interface. 

* 

* 

* ENVIRONMENT: 
* UCX V1.2 or higher, VMS V5.2 or higher 

* 

* This example is portable to Ultrix. The include 
* files are conditionally defined for both systems, and 
* "perror" is used for error reporting. 

* 

* To link in VAXC/VMS you must have the following 
* entries in your .opt file: 
* sys$library:ucx$ipc.olb/lib 
* sys$share:vaxcrtl.exe/share 

(continued on next page) 

D-94 Socket Routines 



Example D-1 (Cont.): TCP/IP Server 

* 

* AUTHORS: 
* UCX Developer 

* 

* CREATION DATE: May 23, 1989 
* 

* MODIFICATION HISTORY: 
* 

*/ 

/* 
* 

* INCLUDE FILES 
* 

*/ 

#ifdef VAXC 
#include <errno.h> 

#include <types.h> 
#include <stdio.h> 
#include <socket.h> 

#include <in.h> 
#include <netdb.h> 
#include <inet.h> 
#include <ucx$inetdef.h> 

#else 
#include <errno.h> 
#include <sys/types.h> 
#include <stdio.h> 
#include <sys/socket.h> 

#include <netinet/in.h> 
#include <netdb.h> 
#include <arpa/inet.h> 
#include <sys/uio.h> 
#endif 

/* change hostent to comply with BSD 4.3 */ 

/* INET symbol definitions */ 

/* 
* Functional Description 

* 

* This example creates a socket of type SOCK_STREAM (TCP), 

* binds and listens on the socket, receives a message 

* and closes the connection. 
* Error messages are printed to the screen. 

(continued on next page) 

Socket Routines D-95 



Example D-1 (Cont.): TCP/IP Server 

* 

IPC calls used: 
accept 
bind 
close 
gethostbyname 
listen 
recv 
shutdown 
socket 

Parameters 
The server program expects one parameter: 
portnumber ... port number where it will listen 

* Routine Value 
* 

Status 

main (argc, argv) 
int argc; 
char **argv; 

{ 

int sock_2, sock_3; 
static char message[BUFSIZ]; 
static struct sockaddr_in sock2_name; 
static struct sockaddr_in retsock2_name; 

struct hostent hostentstruct; 
struct hostent *hostentptr; 

static char hostname[256]; 
int flag; 
int retval; 
int namelength; 

/* 
* Check input parameters. 
*/ 
if (argc != 2 ) 

{ 

printf("Usage: 
exit ( ) ; 

} 

/* sockets */ 

/* Address 
/* Address 
/* Storage 
/* Pointer 
/* Name of 

* 

struct for socket2.*/ 
struct for socket2.*/ 
for hostent data. */ 
to hostent data. */ 
local host. */ 

/* helpful for debugging */ 

server portnumber.\n"); 

(continued on next page) 

D-96 Socket Routines 



Example D-1 (Cont.): TCP/IP Server 

I'1 /* 
* Open socket 2: AF_INET, SOCK_STREAM. 
*~ 

if ((sock 2 = socket (AF INET, SOCK_STREAM, 0)) __ -1) 
{ 

perror( "socket"); 
exit () ; 
} 

/* 
* Get the host local name. 
*~ 

retval = gethostname(hostname,sizeof hostname); 
if (retval) 

{ 

perror ("gethostname"); 
cleanup (1, sock_2, 0>; 
} 

/* 
* Get pointer to network data structure for socket 2. 
*~ 

if ((hostentptr = gethostbyname (hostname)) _= NULL) 
{ 

perror( "gethostbyname"); 
cleanup (1, sock_2, 0 ) ; 
} 

/* 
* Copy hostent data to safe storage. 
*~ 

hostentstruct = *hostentptr; 

/* 
* Fill in the name & address structure for socket 2. 
*~ 

sock2_name.sin_family = hostentstruct.h_addrtype; 
sock2 name.sin~ort = htons(atoi(argv[1])); 
sock2 name.sin addr = * ((struct in addr *) hostentstruct.h addr); 

* 

* Bind name to socket 2. 
* 

retval = bind (sock 2, &sock2 name, sizeof sock2_name); 
i f ( retval ) 

{ 
perror("bind"); 
cleanup (1, sock_2, 0) ; 
} 

(continued on next page) 

Socket Routines D-97 



Example D-1 (Cont.): TCP/IP Server 

/* 
* Listen on socket 2 for connections. 
*/ 
retval = listen (sock 2, 5); 
if (retval) 

{ 

perror("listen"); 
cleanup (1, sock_2, 0) ; 

} 

/* 
* Accept connection from socket 2: 
* accepted connection will be on socket 3. 
*/ 

namelength = sizeof (sock2_name); 
sock_3 = accept (sock_2, &sock2_name, &namelength); 
if (sock 3 =_ -1) 

{ 

perror ("accept"); 
cleanup( 2, sock_2, sock_3); 

} 

/* 
* Receive message from socket 1. 
*/ 

flag = 0; /* maybe 0 or MSG_O0B or MSG_PEEK */ 

retval = recv(sock_3, message ,sizeof (message), flag); 
if (retval =_ -1) 

{ 

perror ("receive"); 
cleanup( 2, sock_2, sock_3); 

} 

else 
printf (" os\n", message); 

/* 
* Call cleanup to shutdown and close sockets. 
*/ 
cleanup (2, sock_2, sock_3) ; 

} /* end main */ 

(continued on next page) 

D-98 Socket Routines 



Example D-1 (Cont.): TCP/IP Server 

/* 

cleanup(how_many, sockl, sock2) 
int how many; 
int sockl, sock2; 

{ 

int retval; 

/* 
* Shutdown and close sockl completely. 
*/ 
retval = shutdown(sockl,2); 
if (retval =_ -1) 

perror ("shutdown"); 

retval = close (sockl); 
if (retval) 

perror ("close"); 

/* 
* If given, shutdown and close sock2. 
*/ 
if (how many == 2) 

{ 

retval = shutdown(sock2,2); 
if (retval =_ -1) 

perror ("shutdown"); 

retval = close (sock2); 
i f ( retval ) 

perror ("close"); 
} 

exit () ; 

} /* end cleanup*/ 

*/ 

Socket Routines D-99 



Example D--2 shows aTCP/IP client using the IPC socket interface. 

Example D-2: TCP/IP Client 

/* 
* 

* Copyright (C) 1989 by 
* Digital Equipment Corporation, Maynard, Mass. 

* 

* This software is furnished under a license and may be used and copied 
* only in accordance with the terms of such license and with the 
* inclusion of the above copyright notice. This software or any other 
* copies thereof may not be provided or otherwise made available to any 
* other person. No title to and ownership of the software is hereby 
* transferred. 

* 

* The information in this software is subject to change without notice 
* and should not be construed as a commitment by Digital Equipment 
* Corporation. 

* 

* Digital assumes no responsibility for the use or reliability of its 
* software on equipment that is not supplied by Digital. 

* 

* 

* 

* FACILITY: 
* INSTALL 

* 

* 

* ABSTRACT: 
* This is an example of a TCP/IP client using the IPC 
* socket interface. 

* 

* 

* ENVIRONMENT: 
* UCX V1.2 or higher, VMS V5.2 or higher 

* 

* This example is portable to Ultrix. The include 
* files are conditionally defined for both systems, and 
* "perror" is used for error reporting. 

* 

* To link in VAXC/VMS you must have the following 
* entries in your .opt file: 
* sys$library:ucx$ipc.olb/lib 
* sys$share:vaxcrtl.exe/share 

(continued on next page) 

D-100 Socket Routines 



Example D-2 (Cont.): TCP/IP Client 

* 

* AUTHORS: 
* UCX Developer 

* 

* CREATION DATE: May 23, 1989 
* 

* MODIFICATION HISTORY: 
* 

*/ 

/* 
* 

* INCLUDE FILES 
* */ 

f"1 

#ifdef VAXC 
#include <errno.h> 
#include <types.h> 
#include <stdio.h> 
#include <socket.h> 
#include <in.h> 
#include <netdb.h> 
#include <inet.h> 
#include <ucx$inetdef.h> 
#else 
#include <errno.h> 
#include <sys/types.h> 
#include <stdio.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <arpa/inet.h> 
#include <sys/uio.h> 
#endif 

/* 
* 

* MACRO DEFINITIONS 
* 

*/ 

#ifndef vms 
#define TRUE 1 
#define FALSE 0 
#endif 

/* change hostent to comply with BSD 4.3*/ 

/* INET symbol definitions */ 

(continued on next page) 

Socket Routines D-101 



Example D-2 (Cont.): TCP/IP Client 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* Routine Value 
* 

* 

*/ 

/* 

/* 
* Functional Description 

* 

* This example creates a socket 
initiates a connection to the 
a message to the remote host, 
Error messages are printed to 

IPC calls used: 
close 
connect 
gethostbyname 
send 
shutdown 
socket 

of type SOCK_STREAM (TCP), 
remote host, sends 
and closes the connection. 
the screen. 

Formal Parameters 
The client program expects two parameters: 
hostname ... name of remote host 
portnumber ... port where remote host server) is listening 

Status 

main (argc, argv) 
int argc; 
char **argv; 

{ 

static 
static 

int 
char 
struct 
struct 
struct 
static 
int 
int 
int 

sock_1; 
message[] = 
sockaddr in 
hostent + 
hostent 
char 
f 1 ag; 
retval; 
shut = FALSE; 

"Hi there."; 
sock2_name; 

hostentstruct; 
*hostentptr; 
hostname [256] ; 

/* socket */ 

* 

/* Address struct for socket2.*/ 
/* Storage for hostent data. 
/* Pointer to hostent data. 
/* Name of local host. 

/* helpful for debugging */ 
/* flag to cleanup */ 

*/ 
*/ 
*/ 

(continued on next page) 

D-102 Socket Routines 



Example D-2 (Cont.): TCP/IP Client 

~* 
* Check input parameters. 
*~ 

if (argc != 3 ) 
{ 

printf("Usage: client hostname portnumber.\n"); 
exit ( ) • 
} 

/* 
* Open socket 1: AF_INET, SOCK_STREAM. 
*~ 

if ((sock 1 = socket (AF INET, SOCK STREAM, 0)) __ -1) 
{ 

perror( "socket"); 
exit ( ) ; 
} 

/* 
*Get pointer to network data structure for socket 2 (remote host). 
*~ 

if ((hostentptr = gethostbyname (argv[1])) _= NULL) 
{ 

perror( "gethostbyname"); 
cleanup (shut, sock_1); 
} 

/* 
* Copy hostent data to safe storage. 
*~ 

hostentstruct = *hostentptr; 

/* 
* Fill in the name & address structure for socket 2. 
*~ 

sock2_name.sin_family = hostentstruct.h_addrtype; 
sock2 name.sin~port = htons(atoi(argv[2])); 
sock2 name.sin addr = * ((struct in addr *) hostentstruct.h addr); 

/* 
* Connect socket 1 to sock2 name. *~ —

retval = connect(sock_1, &sock2 name, sizeof (sock2 name)); 
if (retval) 

{ 

perror("connect"); 
cleanup (shut, sock_1) ; 
} 

(continued on next page) 

Socket Routines D-103 



Example D-2 (Cont.): TCP/IP Client 

/* 
* Send message to socket 2. 
*/ 

flag = 0; /* maybe 0 or MSG_O0B */ 
retval = send(sock_1, message ,sizeof (message), flag); 
i f ( retval < 0 ) 

{ 

perror ("send") ; 
shut = TRUE; 

} 

/* 
* Call cleanup to shutdown and close socket. 
*/ 
cleanup(shut, sock_1); 

} /* end main */ 

/* 

cleanup(shut, socket) 
int shut; 
int socket; 

{ 

int retval; 

* 

/* 
* Shutdown socket completely -- only if it was connected 
*/ 

if (shut) { 
retval = shutdown(socket,2); 
if (retval =_ -1) 

perror ("shutdown"); 
} 

/* 
* Close socket. 
*/ 
retval = close (socket); 
if (retval) 

perror ("close"); 

exit ( ) • 

} /* end main */ 

D-104 Socket Routines 



f~1 
Example D-3 shows a UDP/IP server using the IPC socket interface. 

Example D-3: UDP Server 

/* 
* 
* Copyright (C) 1989 by 
* Digital Equipment Corporation, Maynard, Mass. 
* 

* This software is furnished under a license and may be used and copied 
* only in accordance with the terms of such license and with the 
* inclusion of the above copyright notice. This software or any other 
* copies thereof may not be provided or otherwise made available to any 
* other person. No title to and ownership of the software is hereby 
* transferred. 
* 

* The information in this software is subject to change without notice 
* and should not be construed as a commitment by Digital Equipment 
* Corporation. 
* 

* Digital assumes no responsibility for the use or reliability of its 
* software on equipment that is not supplied by Digital. 
* 
* 
* 

* FACILITY: 
* INSTALL 
* 
* 

* ABSTRACT: 
* This is an example of a UDP/IP server using the IPC 
* socket interface. 
* 
* 

* ENVIRONMENT 
* UCX V1.2 or higher, VMS V5.2 or higher 
* 

* This example is portable to Ultrix. The include 
* files are conditionally defined for both systems, and 
* "perror" is used for error reporting. 
* 

* To link in VAXC/VMS you must have the following 
* entries in your .opt file: 
* sys$library:ucx$ipc.olb/lib 
* sys$share:vaxcrtl.exe/share 

(continued on next page) 

Socket Routines D-105 



Example D-3 (Cont.): UDP Server 

* 

* AUTHORS: 
* UCX Developer 

* 

* CREATION DATE: May 23, 1989 
* 

* MODIFICATION HISTORY: 
* 

*/ 

/* 
* 

* INCLUDE FILES 
* 

*/ 

#ifdef VAXC 
#include <errno.h> 
#include <types.h> 
#include <stdio.h> 
#include <socket.h> 
#include <in.h> 
#include <netdb.h> 
#include <inet.h> 
#include <ucx$inetdef.h> 
#else 
#include <errno.h> 
#include <sys/types.h> 
#include <stdio.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <arpa/inet.h> 
#include <sys/uio.h> 
#include <time.h> 
#endif 

/* timeval declared here */ 

/* change hostent to comply with BSD 4.3 */ 

/* INET symbol definitions */ 

/* timeval declared here */ 

(continued on next page) 

D-106 Socket Routines 



Example D-3 (Cont.): UDP Server 

f'1 /* 
* Functional Description 

* 

* 

* 

* 

* 

* 

* 

* 

This example creates a socket of type SOCK_DGRAM (UDP), binds 
it, and selects to receive a message on the socket. 
Error messages are printed to the screen. 

IPC calls used: 
bind 
close 
gethostbyname 
recvf rom 
select 
shutdown 
socket 

Formal Parameters 
The server program expects one parameter: 
portnumber ... port where it is listening 

* Routine Value 
* 

* Status 
*/ 

/* 
main (argc, argv) 
int argc; 
char **argv; 

{ 

static 
static 

unsigned long rmask,wmask,emask; 
int sock_2; 
int buflen,fromlen; 
char recvbuf[BUFSIZ]; 
struct sockaddr_in sockl_name; 
struct sockaddr_in sock2_name; 
int namelength; 
struct 
struct 
static 

/* Socket 2 descriptor. 

* 

*/ 

/* Address struct for socketl.*/ 
/* Address struct for socketl.*/ 

hostent hostentstruct; /* 
hostent *hostentptr; /* 
char hostname[256]; /* 

int retval; 
int flag; 
struct timeval timeout; 

Storage for hostent data. 
Pointer to hostent data. 
Name of local host. 

*/ 
*/ 
*/ 

(continued on next page) 

Socket Routines D-107 



Example D-3 (Cont.): UDP Server 

~* 
* Check input parameters 
*~ 

if (argc != 2 ) 
{ 
printf ("Usage: 
exit () ; 
} 

server portnumber.\n"); 

/* 
* Open socket 2: AF_INET, SOCK_DGRAM. 
*~ 

if ( (sock_2 = socket (AF_INET, SOCK_DGRAM, 0 ) ) __ -1) 
{ 
perror( "socket"); 
exit () ; 
} 

/* 
* Get the local host name. 
*~ 

retval = gethostname(hostname,sizeof hostname); 

if (retval) 
{ 
perror ("gethostname"); 
cleanup(sock_2); 
} 

/* 
* Get pointer to network data structure for local host. 
*~ 

if ((hostentptr = gethostbyname (hostname)) _= NULL) 
{ 
perror( "gethostbyname"); 
cleanup(sock_2); 
} 

/* 
* Copy hostent data to safe storage. 
*~ 

hostentstruct = *hostentptr; 

/* 
* Fill in the address structure for socket 2. 
*~ 

sock2_name.sin_family = hostentstruct.h_addrtype; 
sock2 name.sin~ort = htons(atoi(argv[1])); 
sock2 name.sin addr = * ((struct in addr *) hostentstruct.h addr); 

(continued on next page) 

D-108 Socket Routines 



Example D-3 (Cont.): UDP Server 

/* 
* Bind name to socket 2. 
*/ 

retval = bind (sock 2, &sock2 name, sizeof sock2_name); 
if (retval) 

{ 

perror ("bind") ; 
cleanup(sock~2); 
} 

/* 
* Select socket to receive message. 
*/ 

emask = wmask = 0; 
rmask = (1«sock 2); /* set read mask */ 
timeout.tv_sec = 30; 
timeout.ty usec = 0; 

retval = select(32,&rmask,&wmask,&emask, &timeout); 
switch (retval) 
{ 

case -1: 
{ 

perror("select"); 
cleanup(sock_2); 
} 

case 0: 
{ 

printf("Select timed out with status O.~n"); 
cleanup(sock_2); 
} 

default: 
if ( (rmask & (1«sock 2) ) _= 0) 

{ 
printf("Select not reading on sock_2.~n"); 
cleanup(sock_2); 
} 

} /*switch*/ 

(continued on next page) 

Socket Routines D-109 



Example D-3 (Cont.): UDP Server 

/* 
* Recvfrom buffer - from sockl on sock2. 
*/ 
buflen = sizeof(recvbuf); 
fromlen = sizeof (sockl name) ; 

flag = 0; /* flag may be MSG_OOB and/or MSG_PEEK */ 

retval = recvfrom(sock_2, recvbuf, buflen, flag, &sockl_name, &fromlen); 

if (retval =_ -1} 
perror ("recvf rom") ; 

else 
printf (" os\n", recvbuf); 

/* 
* Call cleanup to shutdown and close socket. 
*/ 
cleanup(sock_2); 

} /* end main */ 

/* 

cleanup (socket ) 
int socket; 

{ 

int retval; 

/* 
* Shutdown socket completely. 
*/ 
retval = shutdown(socket,2); 
if (retval =_ -1) 

perror ("shutdown"); 

/* 
* Close socket. 
*/ 
retval = close (socket); 
if (retval) 

perror ("close"); 

eXit () ; 

} /* end cleanup */ 

* 

D-110 Socket Routines 



Example D-4 shows a UDP/IP client using the IPC socket interface. 

Example D~4: UDP Client 

/* 
* 
* Copyright (C) 1989 by 
* Digital Equipment Corporation, Maynard, Mass. 
* 

* This software is furnished under a license and may be used and copied 
* only in accordance with the terms of such license and with the 
* inclusion of the above copyright notice. This software or any other 
* copies thereof may not be provided or otherwise made available to any 
* other person. No title to and ownership of the software is hereby 
* transferred. 
* 

* The information in this software is subject to change without notice 
* and should not be construed as a commitment by Digital Equipment 
* Corporation. 
* 

* Digital assumes no responsibility for the use or reliability of its 
* software on equipment that is not supplied by Digital. 
* 
* 
* 

* FACILITY: 
* INSTALL 
* 
* 

* ABSTRACT: 
* This is an example of a UDP/IP client using the IPC 
* socket interface. 
* 
* 

* ENVIRONMENT: 
* UCX V1.2 or higher, VMS V5.2 or higher 
* 

* This example is portable to Ultrix. The include 
* files are conditionally defined for both systems, and 
* "perror" is used for error reporting. 
* 

* To link in VAXC/VMS you must have the following 
* entries in your .opt file: 
* sys$library:ucx$ipc.olb/lib 
* sys$share:vaxcrtl.exe/share 

(continued on next page) 

Socket Routines D-111 



Example D-4 (Cont.): UDP Client 

* 

* AUTHORS: 
* UCX Developer 

* 

* CREATION DATE: May 23, 1989 
* 

* MODIFICATION HISTORY: 
* 

*/ 

/* 
* 

* INCLUDE FILES 
* 

*/ 

#ifdef VAXC 
#include <errno.h> 
#include <types.h> 
#include <stdio.h> 
#include <socket.h> 
#include <in.h> 
#include <netdb.h> 
#include <inet.h> 
#include <ucx$inetdef.h> 
#else 
#include <errno.h> 
#include <sys/types.h> 
#include <stdio.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <arpa/inet.h> 
#include <sys/uio.h> 
#endif 

/* change hostent to comply with BSD 4.3 */ 

/* INET symbol definitions */ 

/* 
* Functional Description 

* 

* This example creates a socket of type SOCK_DGRAM (UDP), 
* binds it, and sends a message to the given host and port number. 
* Error messages are printed to the screen. 

* 

* IPC calls used: 
* bind 
* close 
* gethostbyname 
* sendto 
* shutdown 
* socket 

(continued on next page) 

D-112 Socket Routines 



Example D~ (Cont.): UDP Client 

f~1 * 
* Formal Parameters 
* The client program expects two parameters: 
* hostname ... name of remote host 
* portnumber ... port where remote host (server) is listening 
* 
* 

* Routine Value 
* 

* Status 
*/ 

/* 
main (argc, argv) 
int argc; 
char **argv; 
{ 

int sock_1; 
int sendlen, tolen; 

static char sendbuf[] _ "Hi there."; 
static struct sockaddr_in sock2_name; 

int namelength; 
struct hostent hostentstruct; 
struct hostent *hostentptr; 
static char hostname [256]; 
int f lag; 
int retval; 

*/ 

/* Socket 1 descriptor. */ 

/* Address struct for socket2.*/ 

/* Storage for hostent data. 
/* Pointer to hostent data. 
/* Name of local host. 

/* 
* Check input parameters. 
*/ 

if (argc != 3 ) 
{ 
printf("Usage: client hostname portnumber.\n"); 
exit () ; 
} 

/* 
* Open socket 1: AF_INET, SOCK DGRAM. */ —

if ((sock l = socket (AF INET, SOCK_DGRAM, 0)) __ -1) 
{ 
perror( "socket"); 
exit () ; 
} 

*/ 
*/ 
*/ 

(continued on next page) 

Socket Routines D-113 



Example D-4 (Cont.): UDP Client 

/* 
*Get pointer to network data structure for given host. 
*/ 

if ( (hostentptr = gethostbyname (argv [ 1 J) ) _= NULL) 
{ 
perror( "gethostbyname"); 
cleanup (sock_1) ; 
} 

/* 
* Copy hostent data to safe storage. 
* 

hostentstruct = *hostentptr; 

/* 
* Fill in the address structure for socket 2 (to receive message). 
*/ 

sock2_name.sin_family = hostentstruct.h_addrtype; 
sock2_name . sin~ort = htons (atoi (argv [ 2 ])) ; 
sock2 name.sin addr = * ((struct in addr *) hostentstruct.h addr); 

/* 
* Initialize send block. 
*/ 

sendlen = sizeof sendbuf; 
tolen = sizeof sock2_name; 
flag = 0; /* flag may be MSG_OOB */ 

/* 
* Send message from socket 1 to socket 2. 
*/ 

retval = sendto(sock_1, sendbuf, sendlen, flag, &sock2_name,tolen); 
if (retval =_ -1) 

{ 
perror ( "sendto"); 
cleanup (sock_1) ; 
} 

/* 
* Call cleanup to shutdown and close socket. 
*/ 

cleanup (sock_1) ; 

} /* end main */ 

/* 

cleanup (socket) 
int socket; 

* 

(continued on next page) 

D-114 Socket Routines 



Example D~ (Cont.): UDP Client 

{ 
int retval; 

/* 
* Shutdown socket completely. 
*/ 

retval = shutdown(socket,2); 

if (retval =_ -1) 
perror ("shutdown"); 

/* 
* Close socket. 
*/ 

retval = close (socket); 
if (retval) 

perror ("close"); 

eXit () • 

} /* end cleanup */ 

Socket Routines D-115 





Index 

A C 
abort function, REF-3 
abs function, REF-4 
accept socket routine, D-15 
access function, REF-5 
ACCVIO 

hardware error, 1-19 
acos function, REF-7 
addch macro, REF-8 
addstr macro, REF-10 
alarm function, REF-12, REF-230 
Argument list-handling functions and macros, 3-11 to 

3-15 
Arguments 

variable-length lists, 3-11 
ASCII 

table of values, 3-5 
asctime function, REF-14 
asin function, REF-16 
asm cal I, 1-19 
assert function, REF-17 
assert macro, REF-17 
atan function, REF-19 
atan2 function, REF-20 
atexit function, REF-21 
atof function, REF-23 
atoi function, REF-24 
atol function, REF-24 

B 
bind socket routine, D-17 
box function, REF-25 
brk function, 8-2, REF-27 
bsearch function, REF-29 

r"1 

C$LIBRARY logical name, 1-6 
cabs function, REF-32 
calloc function, 8-2, REF-33, REF-35 
Carriage control 

FORTRAN, 1-15 
translation 

by VAX C, 1-15 to 1-17 
ceil function, REF-34 
cfree function, 8-2, REF-35 
Character classification functions 

isalnum, REF-165 
isalpha, REF-166 
isascii, REF-168 
iscntrl, REF-170 
isdigit, REF-171 
isgraph, REF-172 
islower, REF-173 
isprint, REF-174 
ispunct, REF-175 
isspace, REF-176 
isupper, REF-177 
isxdigit, REF-178 
program examples, 3-9 

Character classification macro return values, 3-5 
Character classification macros, 3-4 to 3-9 
Character conversion functions, 3-9 to 3-11 

scut, REF-71 
fcvt, REF-92 
govt, REF-134 
program examples, 3-9 
strtoul, REF-329 
toascii, REF-341 
tolower, REF-342 
tolower, REF-342 

Index-1 



Character conversion functions (Copt.) 
toupper, REF-344 
toupper, REF-344 

chdir function, REF-36 
Child process 

creating with vfork, REF-365 
executing image 

with exec functions, 5-4 
implementation of, 5-2 
introduction to, 5-1 
program examples, 5-6 
sharing data with pipe, 5-6, REF-233 
synchronization with wait, 5-G 

chmod function, REF-37 
Chown function, REF-39 
C language 

comparison of run-time libraries, A-1 to A-16 
I/O background, 1-11 

clear macro, REF-40 
clearerr macro, REF-41 
clear macro, REF-42 
clearok macro, REF-42 
clock function, REF-43 
close function, REF-44 
close socket routine, D-19 
clrattr macro, 6-1, REF-46 
clrtobot macro, REF-48 
clrtoeol macro, REF-49 
Command language interpreter 

UNIX, 1-8 
connect socket routine, D-20 
Conversion specifications 

for I/O functions, 2-7 to 2-13 
input 

table of characters, 2-9 
output 

table of characters, 2-11 
cos function, REF-50 
cosh function, REF-51 
treat function, REF-52, REF-68, REF-94 
crmode macro, REF-57 
ctermid function, REF-59 
ctime function, REF-14, REF-60 
ctype 

definition module, 1-5 
curscr window, 6-5 
Curses, 6-1 to 6-19 

cursor movement, 6-14 
getting started, 6-9 to 6-12 
introduction to, 6-1 
program examples, 6-15 

Index-2 

Curses (Cont.) 
terminology, 6-5 to 6-9 

curscr, 6-6 
stdscr, 6-5 
windows, 6-6 

using predefined variables and constants, 6-12 
Curses functions 

box, REF-25 
clearok, REF-42 
delwin, REF-65 
endwin, REF-73 
getyx, REF-154 
initscr, REF-161 
leaveok, REF-184 
longname, REF-190 
mvcur, REF-207 
mvwin, REF-209 
mv[w]addch, REF-211 
mv[w]addstr, REF-212 
mv[w]delch, REF-213 
mv[w]getch, REF-214 
mv[w]getstr, REF-215 
mv[w]inch, REF-216 
mv[w]insch, REF-217 
mv[w]insstr, REF-218 
newwin, REF-219 
[no]crmode, REF-57 
[no]echo, REF-70 
[no]nl, REF-222 
[no]raw, REF-253 
overlay, REF-228 
overwrite, REF-229 
scroll, REF-267 
scrollok, REF-268 
subwin, REF-331 
touchwin, REF-343 
wrapok, REF-373 
[w]addch, REF-8 
[w]addstr, REF-10 
[w]clear, REF-40 
[w]clrattr, REF-46 
[w]clrtobot, REF-48 
[w]clrtoeol, REF-49 
[w]delch, REF-62 
[w]deleteln, REF-64 
[w]erase, REF-74 
[w]getch, REF-137 
[w]getstr, REF-151 
[w]inch, REF-160 
[w]insch, REF-162 
[w]insertln, REF-163 



Curses functions (Copt.) 
[w]insstr, REF-164 
[w] move, REF-205 
[w]printw, REF-241 
[w]refresh, REF-259 
[w]scanw, REF-265 
[w]setattr, REF-269 
[w]standend, REF-298 
[w]standout, REF-299 

cuserid function, REF-61 

D 
#define 

preprocessor directive, 1-4 
Definition modules 

descriptions of, C-1 to C-8 
Definitions 

. H files, 1-6 
See also, Standard I/O functions 
See also, Substitution 

modules, 1--6 
Belch macro, REF-62 
delete function, 1-18, REF-63, REF-260 
deleteln macro, REF-64 
delwin function, REF-65 
difftime function, REF-66 
div function, REF-67 
dup2 function, REF-68, REF-94, REF-236 
dup function, REF-68, REF-94 

E 
echo macro, REF-70 
scut function, 3-9, REF-71 
edata global symbol, 1-18 
end global symbol, 1-18 
endwin function, REF-73 
Entry points 

to VAX CRun-Time Library, B-6 to B-19 
erase macro, REF-74 
errno 

definition module, 4-3 
external variable, 4-3 

errno variable, 7-3, D-9 
Error-handling functions 

abort, REF-3 
errno values, 4-3 
exit, REF-88 
_exit, REF-88 
perror, REF-231 

Error-handling functions (Cont.) 
strerror, REF-310 

ERR predefined variable, 6-13 
etext global symbol, 1-18 
exec function, REF-235 
exec functions, 5-4 

error conditions, 5-5 
processing, 5-4 

exec) function, REF-75 
execle function, REF-77 
execlp function, REF-80 
execv function, REF-82 
execve function, REF-84 
execvp function, REF-86 
exit function, 5-5, REF-88 

exit function, 5-5, REF-88 
exp function, REF-89 

F 
fabs function, REF-90 
FALSE identifier, 1-5 
fclose function, REF-91, REF-110 
fcvt function, 3-9, REF-92 
fdopen function, REF-94, REF-236 
feof macro, REF-96 
ferror macro, REF-97 
fflush function, REF-98 
fgetc function, REF-99 
fgetname function, REF-100 
fgetpos function, REF-102 
fgets function, REF-104 
FILE, 2-7 
File descriptor, 2-5, 2-14 

VAX C defaults 
for VMS logical names, 1-10 

fileno macro, REF-106 
File pointer, 2-7, 2-14 
File protection, REF-37, REF-346 
File sharing, 2-6 
floor function, REF-107 
fmod function, REF-108 
(open function, 2-6, REF-109 
fork function, REF-365 
fprintf function, 2-6, REF-111 
fputc function, REF-113 
fputs function, REF-114 
fread function, 2-6, REF-115 
free function, 8-2, REF-35, REF-117, REF-139 
freopen function, REF-118 
frexp function, REF-120 

Index-~ 



fscanf function, REF-122 
fseek function, 1-14, 2-6, REF-124, REF-130, 

REF-347 
fsetpos function, REF-126 
fstat function, REF-127 
ftell function, 2-6, REF-130 
Rime function, REF-131 
Function prototype, 1-6 
Functions 

argument list-handling, 3-11 
character classification, 3-4 
character conversion, 3-4, 3-9 
Curses, 6-1 to 6-4 
entry points of, B-6 to B-17 
error-handling, 4-3 to 4-5 
Standard I/O, 2-1 
string-handling, 3-11 
Terminal I/O, 2-13 
UNIX I/O, 2-5 
VAX C RTL compared to other RTLs, A-1 to A-16 

fwrite function, 2-6, REF-132 

G 
govt function, 3-9, REF-134 
gets function, REF-136 
getch macro, REF-137 
getchar macro, REF-138 
getcwd function, REF-139 
getegid function, REF-141 
getenv function, REF-142 
geteuid function, REF-144 
getgid function, REF-145 
gethostbyaddr socket routine, D-65 
gethostbyname socket routine, D-67 
gethostent socket routine, D-68 
gethostname socket routine, D-69 
getname function, REF-146, REF-235 
getnetbyaddr socket routine, D-71 
getnetbyname socket routine, D-73 
getnetent socket routine, D-75 
getpeername socket routine, D-54 
getpid function, REF-148 
getppid function, REF-149 
gets function, REF-104, REF-150 
getsockname socket routine, D-56 
getsockopt socket routine, D-58 
getstr macro, REF-151 
getuid function, REF-152 
getw function, REF-153 
getyx macro, REF-154 

Index-4 

gmtime function, REF-155 
gsignal function, REF-156 

H 
htonl socket routine, D-76 
htons socket routine, D-78 
HUGE_VAL constant, REF-182 
hypot function, REF-159 

i 

inch macro, REF-160 
#include 

preprocessor directive, 1-5 
inet_addr socket routine, D-80 
inet_Inaof socket routine, D-82 
inet makeaddr socket routine, D-83 
inet_netof socket routine, D-84 
inet_network socket routine, D-85 
inet_ntoa socket routine, D-87 
initscr function, REF-161 
Input and output (I/O), 1-10 to 1-17 

conversion specifications, 2-7 to 2-13 
Record Management Services (RMS), 1-10 
Standard, 1-10 
stream access 

i n VAX C, 1-15 
UNIX, 1-10 
VMS system services, 1-10 

insch macro, REF-162 
insertln macro, REF-163 
insstr macro, 6-1, REF-164 
Internet 

application programs, D-1 
protocols, D-8 

Interprocess communication, 5-2 
isalnum macro, REF-165 
isalpha macro, REF-166 
isapipe function, REF-167 
isascii macro, REF-168 
isatty function, REF-169 
iscntrl macro, REF-170 
isdigit macro, REF-171 
isgraph macro, REF-172 
islower macro, REF-173 
isprint macro, REF-174 
ispunct macro, REF-175 
isspace macro, REF-176 
isupper macro, REF-177 
isxdigit macro, REF-178 



K 
kill function, REF-179, REF-230 

L 
labs function, REF-181 
Idexp function, REF-182 
Idiv function, REF-183 
leaveok macro, REF-184 
LIB$ESTABLISH routine, REF-352 
Linker 

search libraries, 1-2 
Linking Internet programs, D-3 
listen socket routine, D-22 
List-handling functions 

va arg, REF-359 
va count, REF-361 
va end, REF-362 
va start, REF-363 
va start 1, REF-363 

LNK$LIBRARY logical name, 1-2 
localtime function, REF-185 
log function, REF-187 
log10 function, REF-187 
longjmp function, REF-188, REF-352, REF-366 
longname function, REF-190 
(seek function, REF-191 
(seek function, 1-14 

M 
Macro definitions, 1-4 
Main function, 1-2 

main~rogram option, 1-2 
malloc function, 8-2, REF-35, REF-193 
Math functions, 7-1 to 7-4 

abs, REF-4 
acos, REF-7 
assn, REF-16 
atan, REF-19 
atan2, REF-20 
cabs, REF-32 
ceil, REF-34 
cos, REF-50 
cosh, REF-51 
div, REF-67 
errno values, 7-1 
exp, REF-89 
fabs, REF-90 
floor, REF-107 

Math functions (Copt.) 
frexp, REF-120 
hypot, REF-159 
labs, REF-181 
Idexp, REF-182 
Idiv, REF-183 
log, REF-187 
Iog10, REF-187 
modf, REF-204 
pow, REF-238 
rand, REF-252 
sin, REF-287 
sinh, REF-288 
sgrt, REF-292 
srand, REF-293 
tan, REF-335 
tank, REF-336 

memchr function, REF-194 
memcmp function, REF-195 
memcpy function, REF-197 
memmove function, REF-198 
Memory allocation 

introduction to, 8-2 
program examples, 8-3 

Memory allocation functions 
brk, REF-27 
calloc, REF-33 
cfree, REF-35 
free, REF-117 
malloc, REF-193 
realloc, REF-257 
sbrk, REF-263 
VAXC$CALLOC OPT, REF-349 
VAXC$CFREE OPT, REF-350 
VAXC$FREE OPT, REF-354 
VAXC$MALLOC OPT, REF-355 
VAXC$REALLOC OPT, REF-357 

Memory reallocation, REF-117 
memset function, REF-200 
mkdir function, REF-201 
mktemp function, REF-203 
modf function, REF-204 
move macro, REF-205 
mvaddch macro, REF-211 
mvaddstr macro, REF-212 
mvcur function, REF-207 
mvdelch macro, REF 213 
mvgetch macro, REF-214 
mvgetstr macro, REF-215 
mvinch macro, REF-216 
mvinsch macro, REF-217 

Index-5 



mvinsstr macro, 6-1, REF-218 
mvwaddch macro, REF-211 
mvwaddstr macro, REF-212 
mvwdelch macro, REF-213 
mvwgetch macro, REF-214 
mvwgetstr macro, REF-215 
mvwin function, REF-209 
mvwinch macro, REF-216 
mvwinsch macro, REF-217 
mvwinsstr function, 6-1 
mvwinsstr macro, REF-218 

N 
newwin function, REF-219 
nice function, REF-221 
nl macro, REF-222 
nocrmode macro, REF-57 
noecho macro, REF-70 
nonl macro, 1-18, REF-222 
noraw macro, REF-253 
ntohl socket routine, D-89 
ntohs socket routine, D-91 

0 
Occlusion, 6-5 
open function, REF-68, REF-94, REF-223 
overlay function, REF-25, REF-228 
overwrite function, REF-25, REF-229 

P 
pause function, REF-230 
perror function, 4-4, REF-231 
pipe function, REF-68, REF-94, REF-233 
Portability concerns, 1-12 

arguments to mkdir, REF-201 
_exit function, REF-88 
gsignal function, REF-157 
longname function, REF-190 
memory deallocation, REF-35, REF-117 
mvcur function, 6-14 
mv[w]insstr macros, REF-218 
[no]nl macros, REF-222 
radix conversion characters, 2-9 
raise function, REF-251 
setgid function, REF-272 
setuid function, REF-275 
socket routines, D-1 

Index-6 

Portability concerns (Copt.) 
specific 

list of, 1-18 to 1-22 
ssignal function, REF-296 
ttyname function, REF-345 
UNIX file specifications, 1-8 

ambiguity of, 1-9 
variable-length argument lists, 3-11 
VAX C RTL compared to other RTLs, A-1 to A-16 
va start 1 function, REF-363 
vfork versus fork function, REF-365 
[w]clrattr macro and function, REF-46 
[w]insstr macro and function, REF-164 
[w]setattr macro and function, REF-269 

pow function, REF-238 
Predefined variable 

ERR, 6-13 
Predefined variables and constants, 6-12 
printf function, REF-240 
printw function, REF-241 
Process permanent files, 2-13 
Protocols 

Internet, D-8 
putt function, REF-243 
putchar function, REF-244 
puts function, REF-245 
putty function, REF-246 

Q 
gsort function, REF-247 
Quotas 

affecting RTL, 5-1, 5-3, 5-5 

R 
raise function, REF-179, REF-249 
rand function, REF-252 
raw macro, REF-253 
read function, REF-255 
read socket routine, D-24 
realloc function, 8-2, REF-257 
Record attributes 

RMS 
VAX C handling of, 1-15 

Record Management Services (RMS) 
file organization, 1-13 
in VAX C programs, 1-10 
overview of, 1-13 to 1-17 
record formats, 1-14 



Record Management Services (RMS) (Cont.) 
stream access 

in VAX C, 1-15 
recvfrom socket routine, D-28 
recvmsg socket routine, D-31 
recv socket routine, D-26 
refresh macro, REF-42, REF-259 
remove function, REF-63, REF-260 
rename function, REF-261 
rewind function, REF-262 

S 
sbrk function, 8-2, REF-263 
scanf function, REF-264 
scanty macro, REF-265 
Screen management 

Curses 
See Curses 

scroll function, REF-267 
scrollok macro, REF-268 
select socket routine, D-34 
sendmsg socket routine, D-39 
send socket routine, D-37 
sendto socket routine, D-42 
setattr macro, 6-1, REF-269 
setbuf function, REF-271 
setgid function, REF-272 
setjmp function, REF-188, REF-273, REF-352, 

REF-366 
setsockopt socket routine, D-60 
setuid, REF-275 
setvbuf function, REF-271, REF-276 
Shared Image 

VAX C RTL, 1-3 
shutdown socket routine, D-45 
sigblock function, REF-278, REF-281 
Signal definition module, 4-5 
signal function, REF-279, REF-296 
Signal handling, 4-5 
Signal-handling functions 

alarm, REF-12 
gsignal, REF-156 
kill, REF-179 
longjmp, REF-188 
pause, REF-230 
program examples, 4-7 
raise, REF-249 
setjmp, REF-273 
sigblock, REF-278 
signal, REF-279 

Signal-handling functions (Cont.) 
sigpause, REF-281 
sigsetmask, REF-282 
sigstack, REF-283 
sigvec, REF-285 
sleep, REF-289 
ssignal, REF-296 
VAXC$ESTABLISH, REF-352 

Signals, 4-6 
sigpause function, REF-281 
sigsetmask function, REF-282 
sigstack function, REF-283 
sigvec function, 4-5, REF-285 
sin function, REF-287 
sinh function, REF-288 
sleep function, REF-289 
Socket routines 

accept, D-15 
auxiliary communication routines, D-53 
basic communication routines, D-14 
bind, D-17 
close, D-19 
communication support routines, D-63 
connect, D-20 
gethostbyaddr, D-65 
gethostbyname, D-67 
gethostent, D-68 
gethostname, D-69 
getnetbyaddr, D-71 
getnetbyname, D-73 
getnetent, D-75 
getpeername, D-54 
getsockname, D-56 
getsockopt, D-58 
htonl, D-76 
htons, D-78 
inet addr, D-80 
inet Inaof, D-82 
inet makeaddr, D-83 
inet netof, D-84 
inet network, D-85 
inet ntoa, D-87 
introduction, D-1 
listen, D-22 
ntohl, D-89 
ntohs, D-91 
porting considerations, D-1 
programming examples, D-94 
read, D-24 
recv, D-26 
recvfrom, D-28 

Index-7 



Socket routines (Copt.) 
recvmsg, D-31 
select, D-34 
send, D-37 
sendmsg, D-39 
sendto, D-42 
setsockopt, D-60 
shutdown, D-45 
socket, D-47 
vaxc$get sdc, D-93 
VAX C structures, D-3 
write, D-51 

socket socket routine, D-47 
Specification delimiters 

VMS and UNIX, 1-8 
sprintf function, REF-290 
sgrt function, REF-292 
srand function, REF-293 
sscanf function, REF-294 
ssignal function, REF-156, REF-157, REF-249, 

REF-296 
Standard I/O, 1-10 

introduction to, 2-1 
program example, 2-16 

Standard I/O functions 
clearerr, REF-41 
delete, REF-63, REF-260 
fclose, REF-91 
fdopen, REF-94 
feof, REF-96 
ferror, REF-97 
fflush, REF-98 
fgetc, REF-99 
fgetname, REF-100 
fgets, REF-104 
fopen, REF-109 
fprintf, REF-111 
fputc, REF-113 
fputs, REF-114 
fread, REF-115 
freopen, REF-118 
fscanf, REF-122 
fseek, REF-124 
ftell, REF-130 
fwrite, REF-132 
getc, REF-136 
getw, REF-153 
mktemp, REF-203 
putc, REF-243 
putty, REF-246 
rewind, REF-262 

Index-8 

Standard I/O functions (Cont.) 
setbuf, REF-271 
sprintf, REF-290 
sscanf, REF-294 
tmpfile, REF-339 
tmpnam, REF-340 
ungetc, REF-347 

standend macro, REF-298 
standout macro, REF-299 
stat function, REF-300 
stderr, 2-14, REF-98, REF-118, REF-231, REF-235 
stdin, 2-14, REF-118, REF-235, REF-264 
stdio 

definition module, 1-5, 2-14 
stdout, 2-14, REF-118, REF-235, REF-240, 

REF-244, REF-245 
stdscr window, 6-5 
strcat function, REF-303 
strchr function, REF-194, REF-305 
strcmp function, REF-195, REF-307 
strcmpn function, 1-19 
strcpy function, REF-197, REF-308 
strcpyn function, 1-19 
strespn function, REF-309 
Stream 

access by VAX C, 1-15 
files, 2-1 
I/O 

VAX C handling of, 1-16 
Stream files 

sharing, 2-6 
strerror function, REF-310 
String-handling functions, 3-11 to 3-12 

atof, REF-23 
atoi, REF-24 
atol, REF-24 
memchr, REF-194 
memcmp, REF-195 
memcpy, REF-197 
memmove, REF-198 
memset, REF-200 
program examples, 3-12 
strcat, REF-303 
strchr, REF-305 
strcmp, REF-307 
strcpy, REF-308 
strespn, REF-309 
strlen, REF-312 
strncat, REF-313 
strncmp, REF-314 
strncpy, REF-316 



String-handling functions (Cont.) 
strpbrk, REF-318 
strrchr, REF-319 
strspn, REF-320 
strtok, REF-325 
strtol, REF-327 
strtoul, REF-329 

strlen function, REF-312 
strncat function, REF-313 
strncmp function, REF-314 
strncpy function, REF-316 
strpbrk function, REF-318 
strrchr function, REF-319 
strspn function, REF-320 
s#rstr function, REF-321 
strtod function, REF-23, REF-323 
strtok function, REF-325 
strtol function, REF-24, REF-327 
strtoul function, REF-329 
Structures 

use with Socket routines, D-3 
Subprocess, 5-1 to 5-15 

executing image 
with exec functions, 5-4 

implementation of, 5-2 
introduction to, 5-1 
program examples, 5-6 to 5-15 
sharing data with pipe, 5-6, REF-233 
synchronization with wait, 5-6 

Subprocess functions 
execl, REF-75 
execle, REF-77 
execlp, REF-80 
execv, REF-82 
execve, REF-84 
execvp, REF-86 
pipe, REF-233 
vfork, REF-365 
wait, REF-372 

Substitution 
macro, 1-4 

subwin function, REF-331 
Synchronizing processes, 5-6 
Syntax 

of VAX C RTL functions, 1-6 
SYS$ERROR, 2-14 
SYS$INPUT, 2-14 
SYS$OUTPUT, 2-14 
SYS$WAKE, REF-12, REF-230 
system function, REF-333. 
System functions, 9-1 to 9-7 

n

System functions (Copt.) 
asctime, REF-14 
assert, REF-17 
atexit, REF-21 
bsearch, REF-29 
chdir, REF-36 
chmod, REF-37 
Chown, REF-39 
clock, REF-43 
ctermid, REF-59 
ctime, REF-60 
cuserid, REF-61 
difftime, REF-66 
fmod, REF-108 
Rime, REF-131 
getcwd, REF-139 
getegid, REF-141 
getenv, REF-142 
geteuid, REF-144 
getgid, REF-145 
getpid, REF-148 
getppid, REF-149 
getuid, REF-152 
gmtime, REF-155 
introduction to, 9-3 
localtime, REF-185 
memset, REF-200 
mkdir, REF-201 
nice, REF-221 
program examples, 9-3 
gsort, REF-247 
remove, REF-63, REF-260 
rename, REF-261 
setgid, REF-272 
setuid function, REF-275 
setvbuf, REF-271, REF-276 
strtod, REF-323 
strtok, REF-325 
system, REF-333 
time, REF-337 
times, REF-338 
umask, REF-346 
vfprintf, REF-367 
vprintf, REF-369 
vsprintf, REF-371 

T 
tan function, REF-335 
tanh function, REF-336 

Index-9 



Terminal I/O 
program examples, 2-14 to 2-19 

Terminal I/O functions 
gets, REF-150 
printf, REF-240 
putchar, REF-244 
puts, REF-245 
scanf, REF-264 

Terminal I/O macros 
getchar, REF-138 

Text substitution, 1-4 
See also, Substitution 

time function, REF-337 
times function, REF-338 
tmpfile function, REF-339 
tmpnam function, REF-340 
toascii macro, 3-9, REF-341 
tolower macro, 3-9, REF-342 

tolower function, 3-9, REF-342 
touchwin function, REF-343 
toupper function, 3-9, REF-344 
toupper macro, 3-9, REF-344 

TRUE identifier, 1-5 
ttyname function, REF-345 

U 
umask function, REF-346 
umask value, 5-4 
ungetc function, REF-347 
UNIX 

file specifications of, 1-8 to 1-10 
compared to VMS, 1-8 

Run-Time Library, 1-8 
use with VAX C RTL, 1-8 to 1-10 

UNIX I/O, 1-10 
file descriptors, 2-5 
functions 

program example, 2-18 
UNIX I/O functions 

close, REF-44 
crest, REF-52 
dup, REF-68 
dup2, REF-68 
fileno, REF-106 
fstat, REF-127 
getname, REF-146 
isapipe, REF-167 
isatty, REF-169 
(seek, REF-191 
open, REF-223 

Index-10 

UNIX I/O functions (Cont.) 
read, REF-255 
stat, REF-300 
ttyname, REF-345 
write, REF-374 

unlink function, 1-18 

V 
varargs 

definition module, 3-11 
Variable-length argument lists, 3-11 
VAXC$CALLOC OPT function, REF-349 
VAXC$CFREE OPT function, REF-350 
VAXC$CRTL INIT function, REF-346, REF-351 
vaxc$errno variable, 4-5 
VAXC$ESTABLISH function, REF-189, REF-274, 

REF-352 
VAXC$EXECMBX, 5-4 
VAXC$FREE OPT function, REF-354 
vaxc$get sdc socket routine, D-93 
VAXC$MALLOC OPT function, REF-355 
VAXC$REALLOC OPT function, REF-357 
VAXCDEF.TLB system library, 1-6 
VAX CRun-Time Library (RTL) 

as shared images, 1-3 
compared to other RTLs, A-1 to A-16 
Curses functions and macros, 6-1 
definition modules, 1-7, C-1 
entry points, B-6 to B-17 
I/O, 1-10 to 1-17 

VAX C handling of, 1-15 to 1-17 
interpreting syntax, 1-6 
introduction to, 1-1 to 1-22 
main function, 1-2 
portability concerns, 1-12 
preprocessor directive, 1-7 
procedures called by VAX C, B-17 
run-time modules, B-1 to B-6 
specific portability concerns, 1-18 to 1-22 
stream I/O, 1-15 

va arg macro, REF-359 
va count macro, REF-361 
va end macro, REF-362 
va start function, REF-363 
va start 1 function, REF-363 
vfork function, REF-235, REF-365 
vfprintf function, REF-367 
VMS system services 

in VAX C programs, 1-10 
VMS/ULTRIX Connection product, D-1 



vprintf function, REF-369 
vsprintf function, REF-371 

W 
waddch function, REF-8 
waddstr function, REF-10 
wait function, REF-372 
wclear function, REF-40 
wclrattr function, 6-1, REF-46 
wclrtobot function, REF-48 
wclrtoeol function, REF-49 
wdelch function, REF-62 
wdeieteln function, REF-64 
werase function, REF-74 
wgetch function, REF-70, REF-137 

wgetstr function, REF-70, REF-151 
winch function, REF-160 
winsch function, REF-162 
winsertln function, REF-163 
winsstr function, 6-1, REF-164 
wmove function, REF-205 
wprintw function, REF-241 
wrapok macro, REF-373 
wrefresh function, REF-259 
write function, REF-236, REF-374 
write socket routine, D-51 
wscanw function, REF-265 
wsetattr function, 6-1, REF-269 
wstandend function, REF 298 
wstandout function, REF-299 

Index-11 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using 
a 1200- or 2400-baud modem. If you need assistance using the Electronic Store, 
call 800-DIGITAL (800-344-4825}. 

Telephone and Direct Mail Orders 

Your Location 

Continental USA, 
Alaska, or Hawaii 

Call 

800-DIGITAL 

Puerto Rico 809-?54-7575 

Canada 800-267-6215 

International 

Internals

Contact 

Digital Equipment Corporation 
P.O. Box CS2008 
Nashua, New Hampshire 03061 

Local Digital subsidiary 

Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

Local Digital subsidiary or 
approved distributor 

USASSB Order Processing - WMO/E 15 
or 
U.S. Area Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

sFor internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments VAX CRun-Time Library Reference Manual 
AA-,J P84D—TE 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ D ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information} ❑ ❑ ❑ ❑ 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version of the software this manual describes. 
Name/Title   Dept.  

Company   Date  

Mailing Address  

  Phone  



-- Do Not Tear -Fold Here and Tape 

d 
a9ao 

a 

TM 

- — Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
110 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 



Reader's Comments VAX CRun-Time Library Reference Manual 
AA—JP84D—TE 

Please use this postage-paid form to comment on this manual. If you require a written 
reply to a software problem and are eligible to receive one under Software Performance 
Report (SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) D ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 
Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version of the software this manual describes. 
Name/rl~tle   Dept.  

Company   Date  

Mailing Address  

  Phone  



i

I 

— — Do Not Tear -Fold Here and Tape 

a 9 ao 

a 

TM 

-- Do Not Tear -Fold Here 

No Postage 
Necessary 
if Mailed 

in the 
United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Publications Spit Brook 
ZK01-3/J35 
1 10 SPIT BROOK ROAD 
NASHUA, NH 03062-9987 

C
u

t 
A

lo
n

g
 D

o
tt
e
d
 L

in
e

 


