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Preface 

Intended Audience 
The Guide to Ehe VAXIab Laboratory Signal-Processing Routines is intended 
for use by scientists and engineers working in a laboratory environment. 
You can use this document initially as a training guide for learning the 
basic components of the Laboratory Signal-Processing (LSP) application 
software. Later, you can use it as a reference guide to look up specific 
information about the LSP application routines, such as how to use an 
optional parameter. 

This guide assumes a basic understanding of computer concepts and an 
extensive understanding of signal-processing concepts and techniques. 

Document Structure 
The Guide to VAXIab Laboratory Signal•Processing Routines describes how 
to use the signal-processing routines to perform Fourier transforms, 
correlation functions, filtering of data, and thermocouple conversion. 
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The document is divided into 8 chapters and 2 appendixes: 

Chapter Number Contents 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Appendix A 

Appendix B 

Presents an overview of the laboratory signal-processing 
routines, including information about data format trans-
lation, and binary, offset binary, and two's compliment 
number representation. 

Presents definitions of Fourier transform and correla-
tion functions, including mathematical definitions of 
discrete and continuous Fourier transform, and Fourier 
transform in two dimensions. 

Presents digital filtering, including information on 
polynomial filtering, and nonrecursive filtering 

Presents an overview of data filtering with spectral 
windows and the periodogram technique, including a 
brief description of the spectral windowing routines and 
the algorithms used to generate them. 

Presents an overview of thermocouple conversion 
including tables showing the accuracy of conversion and 
thermocouple temperature and voltage ranges. 

Provides detailed reference descriptions of the LSP 
routines, including routine call syntax, argument defini-
tions, and error message condition values. 

Explains the LSP error handling fa ' 'ty and provides 
a list of all LSP error messages and suggested recovery 
procedures. 

Describes the online LSP sample programs shipped with 
your VAXIab system. 

Describes the mathematics and statistics routines, 
including information about how to use the routines to 
perform mathematical and statistical analysis of data. 

Provides a summary of the PEAK-Processing (PEAK) 
Routine, including information on how to create a 
FQRTRAN program that calls the PEAK routine under 
the VMS operating system. 



Associated Documents 
In addition to this guide, the VAXIab documentation set includes the 
following Manuals: 

• The VAXIab Master Index provides index entries from all documents 
in the VAXIab V1.2 documentation set. 

• The VAXIab Installation Guide details how to install the VAXIab 
software. 

• Getting Started with VAXIab is your introduction to the VAXIab 
system and application software. This document describes the 
optional hardware you can configure in a VAXIab system, the 
VAXIab software, and the related software you need to use with your 
VAXIab system, such as VAX GKS and ahigh-level programming 
language. 

This document also describes MANAGER, an interactive, menu-
driven utility you can use to perform routine system management 
tasks. Lastly, this document presents guidelines for developing 
application programs with VAXIab and programming language-
specific considerations, such as array dimensioning and declaring 
variables and data types. 

• The Guide to the VAXIab Laboratory I/O Routines gives an overview of 
the LIO facility and describes how to initiate, control, process, and 
terminate I/O to and from VAXIab I/O devices. 

• The Guide to the VAXIab Interactive Data Acquisition Tool describes 
how to communicate with VAXIab through the Interactive Data 
Acquisition Tool (IDAT) to establish parameters for data acquisition 
and to initiate, control, obtain, analyze, and plot real-time data. 

• The Guide to the VAXIab Laboratory Graphics Package provides a 
comprehensive overview of the LGP facility, and explains how 
to specify plotting attributes and plot real-time data produced 
by calculations in two-dimensions, three-dimensions, and two-
dimensional contours from athree-dimensional view. 
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The following is a list of associated software documents to reference for 
additional information about programming concepts and techniques not 
covered in this guide. 

• The Laboratory Interfacing Handbook presents detailed descriptions of 
laboratory I/O concepts. If you are unfamiliar with laboratory data 
acquistion and control techniques, such as instruments, signals, and 
interfaces, or if you require additional information about computers, 
I/O hardware, or applications, read this handbook before you begin 
using the VAXIab system. 

• The VAX GKS Reference Manual, Volume I and Volume II provide de-
tailed information about advanced graphics programming concepts 
and techniques. 

• The VAX Realtirne Llser's Guide describes those features of VAX 
systems which pertain to real-time applications in scientific and 
industrial settings. 
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Conventions 
The Guide to VAXIab Laboratory Signal-Processing Routines uses the follow-
ing documentation conventions: 

Convention Meaning 

Italics Words, phrases, or characters appearing in 
italics indicates one of the following: 

• An associated document 

• A group of related LSP routines 

Bold A boldface word or phrase indicates one of the 
following: 

• Emphasis is on an important concept or 
word 

• A subroutine argument in text 

• A subsection within a routine or parame-
ter reference description 

RETURN 

CTRL/x 

Ellipses 

[Brackets] 

UPPERCASE letters 

LSP$THERMUC~UPLE x 

Press the key labeled Return on the terminal 
keyboard. 

Press the key labeled CTRL on the terminal 
keyboard while simultaneously pressing the 
"x" key. Here, "x" is C, Y, or Z. 

Vertical ellipses indicate that portions of 
a display or programming example were 
excluded for presentation purposes. 

Square brackets enclose optional parameters or 
arguments in routine lines. 

All VAXIab routine names, VAXIab utilities 
(1~~IANAGER and IDAT), and DCL com-
mands and command strings are presented in 
UPPERCASE letters. 

Here x designates the thermocouple type, and 
is either B, E, j, K, R, S, or T. See Chapter 5. 





Chapter 1 

Introduction to the VAXIab 
Signal-Processing Routines 

This chapter provides an overview of the VAXIab Laboratory Signal-
Processing Routines (LSP), as well as additional information about data 
format translation; binary, offset binary, and two's complement number 
representation; and languages that do not support COMPLEX * 8 data 
types. 

1.1 Overview of Signal-Processing Routines 

The VAXIab Laboratory Signal-Processing Routines (LSP) are a set of 
subroutines designed to perform a variety of standard tasks commonly 
encountered in the laboratory environment. Subroutines are provided 
to perform the following: 

• Data format translation 

The LSP$FORMAT_TRANSLATE_ADC routine translates raw 
numbers obtained from an analog-to-digital converter into floating-
point voltages. The LSP$FORMAT_TRANSLATE_DAC routine 
translates floating-point voltages into raw numbers appropriate for 
input to adigital-to-analog converter. 

• Fast Fourier transformation 

The routines LSP$FFT_COMPLEX, LSP$FFT_COMPLEX_2D, and 
LSP$FFT_REAL calculate the discrete Fourier transform of complex-
valued data in one and two dimensions and of real-valued data in 
one dimension. You can also perform inverse transformation using 
these routines. 
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• Power spectrum 

The LSP$POWER_SPECTRUM routine determines the power spec-
trum (the relationship between power and signal frequency) in a set 
of Fourier coefficients. 

• Phase angle 

The LSP$PHASE_ANGLE and LSP$PHASE_ANGLE_2D routines 
convert complex numbers to phase angles and amplitudes in one 
and two dimensions, respectively. 

• Digital filtering 

The following routines perform general-purpose nonrecursive 
filtering, filtering for smoothing, filtering with first, second, or third 
derivative output, respectively, and spectral window filtering: 

— LSP$FILTER_NONREC 

— LSP$FILTER_POLY 

— LSP$FILTER_ 1 ST_DERIV 

— LSP$FILTER_2ND_DERIV 

— LSP$FILTER_3RD_DERIV 

— LSP$SPECTRAL_WINDOWS 

— LSP$BUILD_WINDOW_TABLE 

— LSP$APPLY_WINDOW TABLE 

• Interval histogramming 

The LSP$HIST_I and LSP$HIST_F routines count the number of 
elements in a data stream that fall into one or more predefined 
categories. 

• Correlation function 

The LSP$CORRELATION routine provides a discrete method of 
calculating the correlation function. 

• Thermocouple conversion routines 

The LSP thermocouple conversion routines provide a method for 
converting thermocouple voltages to temperatures. 

Each routine is individually discussed and arranged alphabetically in 
Chapter 6, Signal-Processing Routine Call Reference Descriptions. 
Chapter 8, Overview of Online Sample Programs, summarizes the 
online sample programs that illustrate the appropriate use of each of the 
LSP routines. 
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1.2 Data Format Translation for ADCs and DACs 

Continuous quantities, such as voltages, can be represented in digital 
format. However, the discrete numbering systems used by analog-to-
digital converters (ADCs) and digital-to-analog converters (DACs) can be 
different from the usual 16- and 32-bit integer formats. Instead, ADCs 
and DACs use the following types of number representation: 

• Binary 

• Offset binary 

• Two's complement 

1.2.1 Binary Number Representation 

A common data format for ADCs and DACs is the binary format. This 
format uses a direct lineaz relationship between the ADC or the DAC 
and the data received from (ADC or sent to (DAC) the device. This 
data format is unipolar. Zero volts is the minimum. All integers are 
unsigned; no bit determines whether the signal is positive or negative. 

The following table gives an example of the binary number representa-
tion for both ADCs and DACs: 

iZ-BIT UNIPOLAR ADC AND iZ-BIT UNIPOLAR DAC rich 
BINARY CODING 

ADC DAC 

Full-scale Output Code 
input voltage (HEX) 

+9.9976 OFFF 

0.0 0000 

Full-scale 
output voltage 

+9.9978 

0.0 

Input Code 
(HEX) 

OFFF 

0000 
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x.2.2 Offset Binary Number Representation 

The offset binary format is similar to the binary format, except that 
offset binary is used with a bipolar converter. The scale is offset so 
that zero volts is represented by the mid point of the scale. Zero 
represents the lowest voltage, and all bits high represent the highest 
voltage possible. The highest voltage possible with binary number 
representation is higher than that obtainable with offset binary number 
representation. 

The following table gives an example of the offset binary number 
representation for both ADCs and DACs: 

1~-BIT BIPOLAR ADC AND i~-BIT BIPOLAR DAC with 
OFFSET BINARY CODING 

ADC DAC 

Input Voltage Output Code Output Voltage Input Cods 
(HEX) (HEX) 

+9.9961 OFFF +9.9961 OFFF 

0.0 0800 0.0 0800 

-10.0000 0000 -10.0000 0000 

1.2.3 Two's Complement Number Representation 

The two's complement format uses the most significant bit (MSB) with 
respect to the number of bits of resolution of the device to denote the 
sign (+ or -) of the converted voltage. If the MSB is high, then the 
voltage is negative. If the MSB is low, then the voltage is positive. 

Integer numbers are most commonly represented in two's complement 
format. The MSB is the sign bit. 
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The following table shows the two's complement number representation 
for both ADCs and DACs: 

1~-BIT BIPOLAR ADC AND iZ-BIT BIPOLAR DAC frith 
TYO' S COMPLE1yENT CODING 

ADC DAC 

Input Voltage Output Code Output Voltage Input .Cod• 
CxEx) CxEx) 

+9.9961 07FF +9.9961 07FF 

0.0 0000 0.0 0000 

-10.0000 F800 -10.0000 F800 

1.3 Languages That Do Not Support COMPLEX*8 Data 
Types 

Some high-level languages, such as Pascal, do not support the 
COMPLEX*8 data type used throughout the VAXIab signal-processing 
routines. If you are programming in a language that does not support 
the COMPLEX*8 data type, you can declare a REAL*4 array or variable 
as twice the length of a COMPLEX*8 array or variable. You need to 
distinguish between the real and imaginary components of the complex 
number. 

The foi~owing figure shows the storage format of COMPLEX*8 variables, 
and of REAL*4 variables with separation of the real and imaginary 
components. 

VARIABLES DEFINED AS COMPLEXxB VARIABLES DEFINED AS REAL*4 

ARRAY(1) 
which contains real 
and imaginary parts 

ARRAY(2) 
which contains real 
and imaginary parts 

REAL part of AR RAY(1) 

IMAGINARY part of ARRAY(1) 

REAL part of AR RAY(2) 

IMAGINARY part of ARRAY(2) 

1st longword 

2nd longword 

3rd longword 

4th Iongword 

MR-1351-G E 
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Alternatively, you can set up the complex array as atwo-dimensional 
(REAL*4) array so that you can access either the real or the imaginary 
components with the same index. The ordering of the array is de-
pendent upon the language in which you are programming. See the 
individual language manual for language-specific information about the 
ordering of two-dimensional arrays. 
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Chapter 2 

Performing FourierTransformsand 
Correlation Functions 

This chapter provides an introduction to Fourier transforms and cor-
relation functions, including mathematical definitions of discrete 
and continuous Fourier transforms and the Fourier transform in two 
dimensions. A reference section is also included. 

2.1 Definition of the Fourier Transform 

Fourier transformation decomposes a signal into component sine and 
cosine representation. LSP provides three routines that perform the fast 
Fourier transform (FF'1~. The FFT routines provide you with an efficient 
means of numerically approximating the analytical or continuous Fourier 
transform. 

The forward Fourier transform is a mathematical operation that converts 
numbers in the time domain to numbers in the frequency domain. 
Figure 2-1 shows the effects of the forward Fourier transform. 
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Figure 2-1: Forward Fourier Transform 
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where 

f(t), g(t), and h(t) are functions of time. 

F(f), G(f), and H(f) are the real components of the forward Fourier 
transforms of f(t), g(t), and h(t), respectively. 

jF(f), jG(f), and jH(f) are the imaginary components of the forward 
Fourier transforms of f(t), g(t), and h(t), respectively. 

You can also perform the inverse Fourier transform. The inverse 
Fourier transform converts a function in the frequency domain to an 
expression .in the time domain. Both forward and inverse transform 
operations are provided in the FFT routines LSP$FFT_COMPLEX, 
LSP$FFT_COMPLEX_2D, and LSP$FFT_REAL. See Chapter 6, Signal-
Processing Routine Call Reference Descriptions, for information about 
using these routines. 
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2.1.1 Mathematical Definition of Continuous Fourier Transform 

The analytical expression for the forward Fourier transform for continu-
ous functions is given as: 

00 

H~f) = f h(t)e~-,i2xft)dt 
_~ 

where 

H(~ is a function in the frequency (fl domain. 
h(t) is a function in the time (t) domain. 
j is the square root of -1. 

The inverse operation is given as: 

h~t) = f H~f)e~2~t}')df 
-oo 

Variations on the above definitions do exist. See the list of references in 
Section 2.4, Fourier Transform and Correlation Function References, for 
information about where to find the various definitions of the forward 
and inverse Fourier transforms. 

2. ~ .2 Mathematical Definition of Discrete Fourier Transform 

A digital computer cannot perform the integration indicated by the 
mathematical expressions for the continuous Fourier transform. A 
digital computer can only deal with discrete data points. Thus, the FFT 
routines must use a method known as the discrete Fourier transform to 
approximate the continuous Fourier transform at discrete frequencies. 

The discrete Fourier transform does not process a continuous function. 
Instead, it processes discrete points that give only an approximation of 
the continuous function. The mathematical expression of the discrete 
Fourier transform is: 

N-1 

n=0 
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The inverse operation is given as: 

N-1 

h~n~ — N ~ H~k~e~92~rnk)/N 

k=0 

Note that the n and the k used in these two equations are indices, and 
that h(n) and H(k) represent discrete functions of equispaced data in the 
time and frequency domains, respectively, with length N. 

Although the FFT routines use the discrete Fourier transform algorithm 
as a model, they also take advantage of certain computational shortcuts 
to reduce the time required to evaluate the resulting data. Because of 
this computational time reduction, the shortcut method used by the 
routines is known as fast Fourier transform. 

Using these discrete formulas does not present an efficiency problem 
when transforming small numbers of data points. However, when N 
is a large number, analysis shows that the number of computational 
steps required when using the discrete Fourier transform algorithm is 
proportional to N2. The fast techniques enable the calculation to be 
proportional to N In (N) computational steps. 

The LSP$FFT_COMPLEX and LSP$FFT_REAL routines transform N 
number of data points. A restriction inherent in these subroutines is 

that N be a power of 2; that is, N = 2M 

where 

M is between 1 and 15, inclusive. 

When this constraint is impractical, techniques such as zero-filling can 
be used. 

Because of the symmetry properties of a Fourier transform of real-
valued data, only half of the output data needs to be stored. When the 
Fourier transform of areal-valued data sequence is transformed, the 
following identity results from the symmetry equation: 

where 

h*(k) is the complex conjugate of h(k). 
k = 0, 1, 2, ... N12. 
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This means that the resulting output array is symmetric around the 
(N/2) + 1 transformed data point. There is no need to store data past the 
(N/2) + 1 point since the complex conjugate is easily computed in one 
simple loop. This method is referred to as reduced-symmetric storage. 

Consider the Fourier transform of areal-valued dataset of length 8. The 
resulting array of length 5 consists of complex numbers denoted as 
A,. through E,. (real) and At through Et (imaginary). The A= imaginary 
term and the E~ imaginary term are always equal to 0. Performing 
a Fourier transform produces array values 1-5, and the equation, 
H(N - k) = H* (1~), produces array values 6-8. Note that A,. is the 

term which is independent of frequency. Table 2-1 uses these array 
values. 

Table 2-1: Fourier Transform of aReal-Valued Dataset 
Array Location Term Term 

1 

2 

3 

4 

5 

6 

7 

8 

Ar

B r

Cr

D T

E*

D r

Cf

Br

At

B; 

C= 

D; 

Et 

-Dt 

- C: 

--Bt

See Section 2.4, Fourier Transform and Correlation Function 
References, for further information. 

2.2 Definition of Fourier Transform in Two Dimensions 

The one-dimensional discrete Fourier transform (DFT) results from 
interpreting afinite-duration sequence as one period of a periodic 
sequence and applying the discrete Fourier series. In a similar manner, 
you can apply the two-dimensional Fourier series to represent atwo-
dimensional sequence that is nonzero for only a finite area in the x, y 
plane. Such a sequence is referred to as a finite-area sequence, and 
is the two-dimensional counterpart to afinite-duration sequence. The 
resulting Fourier representation is referred to as the two-dimensional 
discrete Fourier transform. 
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Thus, with H(kl,k2) denoting the discrete Fourier transform of h(ni,n2}, 
the mathematical expressions for the discrete Fourier transform pair are: 

Nl-1N2-1 

~(~1~ ~2~ ~ ~ ~(nl~ 
n2)e( )2~rkln1)/N1e(-)2~rk2n2)/N2 

nl =0 n2 =0 

1 Nl -1 N2-1 
(j2~kini)/Ni (j2~rk2n2)/Nz h(~1~ n2~ — ~ ~ ~ H(k1~ ~2~e e 

Ni N2
kl =0 k2 =0 

The two-dimensional discrete Fourier transform can be rewritten as 
f~ilows: 

Nl -1 N2-1 

~(~1~ k2) — ~ ~ h(nl~ 
n2)e( )2~rkZn2)/N2~e(-j2xkin1)/Nl

nl =0 n2 =0 

The quantity in brackets, G(nl,k2), is atwo-dimensional sequence which 
allows H(kl ,k2) to be rewritten as follows: 

N2-1 

G(ni~ ~2~ — ~ htn1~ 
n2)e( )2~k2n2)/N2 

n2 = 0 

Nl -1 

H(~1~ ~2~ — ~ G(n1~ 
~2)e( )2~rnik2)/Nl 

n1= 0 

Each column of G is the one-dimensional discrete Fourier transform of 
the corresponding column of x. Each row of H is the one-dimensional 
discrete Fourier transform of the corresponding row of G. You can 
compute atwo-dimensional Fourier transform by first performing a 
one-dimensional tranform on the columns of h(ni,n2}, then on the row 
of the resultant G(nl,k2). You can also apply a similar method to the 
inverse discrete Fourier transform. 
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2.3 Definition of the Correlation function 

You use the correlation function to produce an estimate of the de-
gree of similarity between two functions when one of the functions 
is shifted either in time or by some other independent variable. You 
can also use the correlation function on one function; this is known as 
autocorrelation. 

Mathematically, the correlation function is: 

z(B) * y(B + t)dB 
_~ 

where 
R,~y (t) is the correlation function of the two functions x and y, and t is 
the time shift. 

B is a dummy variable of integration. 

Just as the continuous Fourier transform has a discrete analog, the 
correlation function also has a discrete analog, which is: 

1 N-i-t 

Rxv~t~ = N ~ ~~k)y~k + t) 
k=0 

where 
k is an index. 

N is the total number of data points. 

The discrete autocorrelation equation is: 

1 N-1-t 

Rxx(t) = N ~ ~(k)z(k + t) 
k=0 

For large records of data, it is impractical to calculate correlation or 
autocorrelation using the discrete analog equations above. Since the 
correlation calculation is closely related to the Fourier transform, com-
putation time can be substantially reduced by using the fast Fourier 
transform methods. 

See Section 2.4, Fourier Transform and Correlation Function 
References, for the further information about the correlation func-
tion. See the routine call reference description for information about 
the LSP$CORRELATION routine. 
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2.4 Fourier Transform and Correlation Function 
References 

Further information about the fast Fourier transform operation and 
the correlation and autocorrelation functions can be obtained in the 
following references: 

Blackman, R.B., and J.W. Tukey. The Measurement of Power Spectra. New 
York: Dover Publications, 1958. 

Bracewell, R.N. The Fourier Transform and Its Application. New York: 
McGraw-Hill Book Company, 1978. 

Brigham, E.O. The Fast Fourier Transform. Englewood: No Such Press, 
1980. 

Burrus, C.S., and T.W. Parks. DFT/FFT and Convolution Algorithms. New 
York: Wiley-Interscience, 1985. 

Elliot, D.F., and K.R. Rao. Fast Transforms: Algorithms, Analyses, 
Applications. Orlando: Academic Press, 1982. 
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Chapter 3 

Digital Filtering 

This chapter provides an overview of digital filtering, including inf orma-
tion on polynomial filtering and nonrecursive filtering. 

3.1 Definition of Digital Filtering 

You use the technique of digital filtering to eliminate certain frequency 
components from a signal that is corrupted by noise. The VAXIab 
signal-processing routines provide two types of digital filters: 

• Filters which are based on simple interpolating polynomials and 
which act as lowpass filters capable of producing derivative informa-
tion. 

• A nonrecursive (finite impulse response) filter which can be used as 
either a lowpass, highpass, bandpass, or bandstop (notch) filter. 

3.1.1 Polynomial Filtering 

You can achieve simple but effective filtering by the method of least-
squares. Using this method, a group of equispaced data is presented 
and the best (in aleast-squares sense) polynomial is fitted at neigh-
boring data values. This method weights the individual datum by its 
neighboring data to substantially reduce noise. 
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Assume you have a group of equispaced data of length N. Pick a win-
dow size k that is substantially less than N. The method of polynomial 
least-squares (in principle) is used to calculate the polynomial coeffi-
cients ap through a~, where j denotes the order of the interpolating basis 
function for a polynomial of form: 

y(x} = ap -~ alx -I- a2x2 -~- a~ x~ 

All k data points x = 1, 2, 3, ... k are used for this calculation. Note 
that k is an odd number. The y(x) is calculated for x = (k + 1)12 (the 
midpoint), and this ideal data point is used as the output value. The 
next k values used are x = 2, 3, 4, ... k + 1. The least-squares function 
(above) is repeated, and the ideal midpoint is used for the next output 
value. This procedure is repeated until all of the data is input. 

The derivative filters operate in the same manner, except that the 
derivative of the above equation is calculated by rearranging the 
equation to produce derivative output. The polynomial filters use 
the curve-fitting approach implemented in convolution weights, so 
they filter quickly. These filters are lowpass filters with good roll-off 
characteristics. However, you can obtain faster roll-off by using the 
nonrecursive filter (LSP$FILTER_NONREC). See Section 3.2, Digital 
Filtering References, for references containing further information about 
digital filtering. 

In all of the filters (both polynomial and nonrecursive), certain data 
points at the beginning and end of the dataset are not filtered. For 
the polynomial filters (LSP$FILTER_POLY), the first (k-1)/2 and the last 
(k-1)12 points are not filtered. 

For the derivative filters, the first (k-1)12 and the last (k-1)12 data points 
are included as zeros in the output array. See Chapter 6, Signal-
Processing Routine Call Reference Descriptions, for further information 
about filtering windows. 
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3.1.2 Nonrecursive Filtering 

Use the LSP$FILTER_NONREC routine to perform nonrecursive fil-
tering in either lowpass, highpass, bandpass, or bandstop (notch) 
mode. 

The transfer function of this digital filter is denoted as H(~. Putting a 
sinusoidal function of frequency f into the filter results in the output 
being the same as the sinusoid, except that its amplitude is multiplied 
by H(~. The transfer function H(~ can take on any of the forms shown 
in Figure 3-1. 

Figure 3-1: Digital Filter Transfer Function Forms 
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where 

fc refers to the Nyquist frequency: fc = 1/(2at). 
at is the time between data samples. 
fl, f2 refers to the frequency values where you apply filtering. 
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1r~ 
These ideal filters represent an infinitely sharp band; in practice, as 
is shown below, the vertical lines are skewed. Table 3-1 shows the 
flow and (high argument values you use in the LSP$FILTER_NONREC 
routine to control the type Of filtering. 

Table 3-1: Controlling Filtering Type 
For a filter type of: Set FLOW to: Set FHIGH to: 

No filtering 0 1 

Lowpass filter 0 0 < FHIGH < 1 

Highpass filter 0 < FLOW < 1 1 

Bandpass filter 0 < FLOW < FHIGH FLOW < FHIGH < 1 

Bandstop filter FHIGH < FLOW < 1 0 < FHIGH < FLOW 

The filtering discussed here pertains only to nonrecursive filters of the 
form: 

nterms 
11

k=1 

where 

y n is the dependent variable synthesized by the use of previous 
dependent values (x). 

Ak are the filter-dependent coefficients. 

nterms is the number of filter coefficients (Ap is not included). 

Figure 3-2 shows the transfer function of a lowpass nonrecursive filter 
where wiggles 50.0, flow = 0.0, and fhigh = 0.5 for nterms 5, 10, 
20, and 50. 
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Figure 3-2: Lowpass Nonrecursive Filter for Varying nterms 
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The nterms argument determines the sharpness of the filter. When 
nterms is increased, the filter cutoff is sharper. Though it seems that 
using the largest possible value for nterms results in a sharper filter, 
nterms *2 number of data points from the original set are not filtered. If 
the data set is large, the loss of data caused by the filtering process is in-
consequential. However, the loss of data can be detrimental to smaller 
data sets. In addition, the computational time increases proportionally 
to nterms. Try to make the value of nterms as large as possible without 
losing too many end points or making the computational time too long. 

Figure 3-3 shows -the transfer function of a lowpass nonrecursive filter 
where flow = 0.0, fhigh = 0.5, and nterms = 10 for wiggles = 0, 30, 
50, and 70. 
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Figure 3-3: Lowpass Nonrecursive Filter for Varying wiggles 
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The wiggles argument controls the smoothness of the filter. The wig-
gles, which are related to the size of Gibbs Phenomenon oscillations, are 
most prominent when the value of the wiggles argument is 0.0. As the 
value of wiggles is increased, the oscillations become less noticeable; 
however, the sharpness of the filter decreases. A good compromise is 
to set wiggles -= 50.0. 

The size of the oscillations (in -dB units) is related to the value of the 
wiggles argument: 

magnitude o f oscillations = 10~--w~~9te8/20.0) 

This nonrecursive filter is an adaptation of the Ip - sink filter originally 
proposed by Kaiser. See Digital Filters by R.W. Hamming for a complete 
mathematical description of this filter. 

Example 3-1 illustrates the use of the LSP$FILTER_NQNREC routine in 
lowpass mode and in highpass mode. 
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Example 3-1: Using the LSP$FILTER_NONREC Routine 

C LSP_FILT_NONAEC.FOR 
C 
C Thi• sample program demonstrates use of th• LSP=FILTER_HONREC routine in 
C lorpass mode and in highpass mode. 
C 

INCLUDE 'SYS=LIBRARY:LSPDEF.FOR' 
C 
C Define Variables: 
C 

REAL*4 PI,YAVECZ000),LOYOUT(2000),HIGHOUTCZ000),LO1tAVECZ000) 
REAL*4 HIyAVECZ000),BIGAMP,SNALAMP,CONO,XOCZ000) 
REAL*4 FLOY,FHIGH 
AEAL*4 YIGGLES 

INTEGER*4 I,N,N?ERMS,ISTAT,STATUS 
C 
C Great• a sine rave oT period ~ pi and superimpose on this raveiorm 
C a smaller amplitude sin• crave rhfch oscillates 40 times faster. 
C 
C Filter in lorpass mod• to get the primary sin• Yave and put 
C this oatpat fn the array LOYOUT; filter in highpass mode to 
C put the higher iregaency signal into the array HIGHOUT. 
C 

N=2000 Number of points in array 

PI=3.1416GZ664 ! The constant pi 

BIGAMP=Z0.0 

SMALANP=Z.O 

CONO=Z.0*PI/CFLOATCN-i)) 

DO 10 I=1,N 

XOCI)=CFLOATCI~i))*CONO 

L011AVE C I) =B IGAMP*S IN CXO C I) ) 

Peak-to-peak amplitude o? the 
for ~requsncy sin• rave 

Peak-to-peak amplitude of the 
high frequency sine rave 

A constant !or the primary 
sin• rave period 

Generate N values ?or PAVE 

Argument for for ~requencfes 

! Store for frequency component 

HIIIAVECI)=SNALAMP*SINCXO(I)*40.0) ! Store high frequency component 

11AVECI)=LOYAVECI)+HIrAVECI) ! Generate the rave as a sum of 
! high and for frequency terms 

10 CONTINUE 

Example 3-1 Cont'd. on next page 
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Example 3-1 (Cont.): Using the LSP$FILTER_NONREC Routine 

c 
C Nor lorpaes filter the array PAVE: 
C 

FLOlt=O.O ! Set for lorpaes filter 
FHIGH=0.006 ! rith roll-ofi at .006 f sub c 
YIGGLES=100.0 ! oscillations set 
NTERMS=60 ! rith 80 terms in the filter coeif icients 

ISTAT=LSP=FILTER_NONREC(PAVE,LOYOUT,N,FLOlt,FHIGH,YIGGLES,NTERMS,STATUS) 
IF (.NOT. ISTAT) CALL LIB~SIGNAL(XVALCISTAT)) 

C 
C Nor highpass filter the array PAVE: 
C 

FLO11=0.03 ! Set for highpass filter 
FHIGH=1.0 ! start roll-off at .OB f sub c 
1(IGGLES=100.0 ! oscillations set 
NTERMS=100 ! rith 100 terms in the filter cosf~icients 

ISTAT=LSP~FILTER_NONREC(YAVE,HIGHOUT,N,FLOI/,FHIGH,I/IGGLES,NTERMS,STATUS) 
IF (.NOT. ISTAT) CALL LIB=SIGNAL(XVAL(ISTAT)) 

C 
C Plot the original, lorpaes, and highpass filtered raveforms: 

XCONTROL(1) = 6.0 
XCONTROL(~) = 0.0 
XCONTROL(3) = 10.0 
XCONTROL(4) _ ~.0 

YCONTROL(1) = b.0 
YCONTROL(~) _ -40.0 
YCONTROL(3) = 80.0 
YCONTROL(4) _ X0.0 

Example 3-1 Cont'd. on next page 
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Example 3-1 (Copt.): Using the LSP$FILTER NONREC Routine 

CALL LGP=PLOTCI,'EXSY',XO,YAVE,N,'RELATIVE TIME','ANPLITUDE',,,, 
1 XCONTAOL,YCONTROL „ 'DATA CONTAINED IN ARRAY "PAVE"') 

CALL LIB=l/A IT (10.0) 
CALL LGP=TERNIINATE_PLOT (1,1) 

CALL LGP~PLOT(1,'EXSY',XO,L0110U?,N,'RELATIVE TIME','AMPLITUDE',,,, 
1 XCONTAOL,YCONTROL „ 'DATA CONTAINED IN ARRAY "L0110UT"') 

CALL LIB=YAIT (10.0) 
CALL LGP=TEAMINATE_PLOT (1,1) 

CALL LGPSPLO?C1,'EXSY',XO,HIGHOU?,N,'RELATIVE TIME','AMPLITUDE',,,, 
1 XCONTROL,YCONTROL „ 'DATA CONTAINED IN ARRAY "HIGHOUT"') 

CALL LIB=11AIT (10.0) 
CALL LGP=TERMINATE_PLOT (1,1) 
STOP 
END 
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V 
Example 3-1 produces the following graphical representation of the data 
contained in array VtiTAVE: 
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Example 3-1 produces the following graphical representation of the data 
contained in array LOWOUT: 
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Example 3-1 produces the following graphical representation of the data 
contained in array HIGHOUT: 
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3.2 Digital Filtering References 

You can obtain further information about digital filtering in the following 
references: 

Antoniou, A. Digital Filters: Analysis and Design. New York:McGraw-Hill, 
1979. 

Hamming, R.W. Digital Filters. Prentice Hall, 1977. 

Horlick, G. and K.R. Betty. Analytical Chemistry, 351, vol. 49, 1977. 

Madden, Hannibal H. Analytical Chemistry, 1383, vol. 50, 1978. 

Oppenheim, A.V. and R.W. Shafer. Digital Signal Processing. Prentice 
Hall, 1975. 

Savitsky A. and M.J.E. Golay. Analytical Chemistry, 1627, vo1. 36, 1964. 

Steinier J., Y. Termonia, and J. Deltour. Analytical Chemistry, 1906, vol. 
44, 1972. 
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Chapter 4 

Spectral Window Filtering 

This chapter presents concepts and illustrations of spectral window 
filtering and the periodogram technique. 

4.1 Overview of Spectral Window Filtering 

The fast Fourier transform (FFT) and power spectrum analysis of a 
discretely sampled data sequence results in spectrum spreading and 
leakage. Applying a spectral window filter to the data increases ac-
curacy in estimating the power spectrum and lessens leakage. The 
periodogram technique further improves the data analysis process by 
calculating the power spectrum more efficiently. The time savings is 
particularly evident when the data sequence is long. 

If results of an FFT and power spectrum analysis of a pure, single-
frequency signal display side lobes and spreading in addition to the 
main frequency component, spectrum spreading or leakage is present. 
Leakage results when discrete signal analysis techniques, such as FFT 
and power spectrum analysis, are applied to a signal. The resulting 
transform is a convolution of the spectrum of interest and the spectrum 
of a square window. Spectral window filtering attempts to compensate 
for the limitations of the discretely sampled portion of the signal you 
are analyzing. 

The Fourier transform of any large sample of data has a significantly 
high frequency makeup when it is calculated using a square window 
function. To compensate for the limitations of the discretely sampled 
portion of the signal, apply other window functions that change more 
gradually from zero to a maximum, and back to zero. Applying a. 
spectral window to the data results in greater accuracy in estimating the 
power spectrum and less leakage in data analysis. 
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To apply a spectral window, multiply the sampled data by an even 
function of the number of samples centered around the midpoint of the 
discrete sample. 

Each of the five spectral window types LSP supports reduces the main 
lobe peak width and the magnitude of the side lobes (leakage} to a 
slightly different degree. The compromise between these two factors 
depends on the window function you select. See Section 4.3, Spectral 
Window Routines and Algorithms, for algorithms of each of the window 
types. See Section 4.4, Spectral Window Filtering References, for 
further information. 

4.2 The Periodogram Technique 

The periodogram is a faster method of calculating the power spectrum 
of a sequence of data. The terms periodogram and power spectrum are 
often used interchangeably. In this application, the term periodogram 
refers to an average of individual Fourier space spectra. 

To calculate the power spectrum of a data sequence using the peri-
odogram technique, break a data sequence of length N into K segments, 
each of length M. Perf orm a Fourier transform on the M data for each 
of the K segments. Average the K arrays of data and square the result. 

The periodogram technique provides a considerable time savings when 
the original data sequence is long. Computation time using the FFT 
algorithm is: 

tFFT a N log N 

Compare the ratio of computation time between K number of M-length 
data, where M = N/K, and one N-length sequence of data (denote this 
ratio as Beta): 

tperiodogram  _ K([M log M~) _ log K 
Beta =

towers ectrum Nlo N 1 to P P g gN 
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Evaluate the expression for Beta with the following numbers. 

N K Beta 
256 1 1.0 

2 0.875 

4 0.750 

1024 1 1.0 

2 0.900 

4 0.800 

8 0.700 

10000 1 1.0 

2 0.925 

4 0.849 

10 0.750 

50000 1 1.0 

2 0.936 

5 0.851 

20 0.723 

The preceding table illustrates the time saved by calculating the power 
spectrum in multiple segments rather than in one segment. For exam-
ple, processing 10000 data in 10 segments takes 0.750 of the time it 
takes to process 10000 data in 1 segment. This represents a 25% time 
savings . 

An important aspect of the periodogram technique is that the frequency 
scaling changes. As is the case for any Fourier (frequency) domain axis, 
the frequency is measured as f = kl(n at), where k is a running index 
such that k = 0,1,2, ... n-1, and n is the total number of data points to 
be transformed. In the case of the periodogram, n is now M, so that 
f = K/(Mat). When you do not use the periodogram method, if N 
= 100, the range of the frequency domain with K = 1 is 0 to (99/100)f 
with a resolution of (1/100)f. If K = 10, the range is 0 to (9/10)f with a 
resolution of (1110)f. Note, when K is large, you lose resolution. 

Spectral Window Filtering 4-3 



4.3 Spectral Window Routines and Algorithms 

This section describes the three LSP spectral window routines, provides 
you with algorithms for each of the five. spectral window types, and 
includes a sample FORTRAN program illustrating spectral window 
filtering and the periodogram technique. 

LSP includes three spectral window filtering routines: 

• LSP$SPECTRAL_WINDOWS 

The LSP$SPECTRAL_WINDOWS routine dynamically allocates a 
coefficient table, applies the coefficients to the raw input data, and 
stores the resulting windowed output data in a table. 

• LSP$BUILD_WINDOW TABLE 

The LSP$BUILD_WINDOW_TABLE routine builds an array of 
window function coefficients. 

Building the coefficient array separately allows you to save set-up 
time in a real-time computing emnronment where you intend to use 
the same window type repeatedly. 

• LSP$APPLY_WINDOW TABLE 

The LSP$APPLY_WINDOW TABLE routine applies the coefficient 
array generated by the LSP$BUILD_WINDOW TABLE routine to 
the raw input data, and stores the resulting windowed output data 
in an array. 

NOTE 

For further information about the LSP spectral window 
filtering routines and their arguments, see the appropriate 
routine reference description section in Chapter 6, Signal-
Processing Routine Call Reference Descriptions. 
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The following is a list of the five spectral-window types and the algo-
rithms used to generate them. For each window type, n ~ the number 
of data points and j is the input data at points 0,1,2,...n-1. 

• Blackman Window (2 parts) 

x = 2~('~~ ~ 1 )

w(j~ = 0.42 ~- 0.5(cos(z~~ -~ 0.08 * (cos(2x~~ 

• Hamming Window 

w(j~ =0.54-{-0.46cos( 2~~'~ ~~~
n=1 

• Nanning Window 

• Triangle Window 

• Welch Window 

2~(j — ~ ) 
w{j~=0.5*cos( 

n-1 } 

Spectral Window Filtering 4-5 



Figure 4-1 illustrates the five spectral window types: 

figure 4-1: The Five Spectral-Window Types 
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Figure 4-2 and Figure 4-3 illustrate the difference between raw, un-
windowed output data and data windowed using the triangle window 
type. 

Figure 4-2: Raw, Unwindowed Data 
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Figure 4-3: Windowed Data 
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Example 4-1, Applying a Spectral Window, illustrates the use of the 
periodogram technique, the LSP$BUILD_WINDOW_TABLE routine, 
ar~d the LSP$APPLY_WINDOW_TABLE routine. 

Example 4-1: Applying a Spectral Window 

C LSP_YINDOY_1.FOA 

C 
C Ths folloring sample program demonstrates the use of the 
C LSP=BUILD_YINDOY_TABLE rontine, the LSP=APPLT_YINDOIt_TABLE 
C rontine, and the periodogram teehniqu•. 
C 

C 
C Inclnds the symbolic-vales definition files: 
C 

INCLUDE 'sys=Library:LIOSET.FOR' 
INCLUDE 'sys~Library:LSPDEF.FOR' 
INCLUDE 'sys=Library:LSPSET.FOA' 

C 
C Declare variables and data types: 
C 

REAL*4 PI,PAVE(2048),YIND01/(~048,6),FFT(Z048),POYER(Z048) 
REAL*4 RANGE(Z),YAVE~CZ048),ZCONTAOL(4),YCONTAOL(4) 
INTEGER*4 I,J,L,N,NOY,NTERAIS,Z,ISTAT,STATUS,CONTROL(3) 

INTEGER#Z BUFFEA(~048+~66) ! 048 cord buffer + 61~ byte overrun 
INTEGER AtoD_ID !A/D device ID variable 
INTEGER data_length !number of data bytes read 

C 
C Use LIO to acquire s rave! orm: 
C 

N X048 ! Number of points in array 

C 
C Attach to the A/D converter: 
C 
C Gets a device ID for the ADY and tulle LIO to use qI0 I/O . 
C 

status LIO~AT?ACH(AtoD_ID, 'AZAO', LIO=X_gI0) !attach to ADV 
IF(.NOT.(etatus)) CALL lib~eignal(xval(status)) 

Example 4-1 Cont'd. on next page 
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Example 4-1 (Cont.): Applying a Spectral Window 

c 
C Set up the A/D: 
C 
C Set synchronous I/O (LIO=READ/LIO~YRITE) 
C Set A/D channel zero 
C Set A/D gain of i 
C Set trigger mode = start on LIO=READ and fill buffer 
C as fast as possible 
C 

status = LIO'SET_I(AtoD_ID, LIO~K_SYNCH, 0) 
IF(.NOT.(etatus)) CALL lib=signal(Xval(status)) 

status = LIO=SET_I(AtoD_ID, LIO=K_AD_CHAN, i, 0) 
IF(.NOT.(status)) CALL lib~signal(xval(etatus)) 

status = LIO=SET_I(AtoD_ID, LIO=R_AD_GAIN, i, 1) 
IF(.NOT.Cstatus)) CALL lib~signal(xval(etatus)) 

status = LIO=SET_I(AtoD_ID, LIO=K_TRIG, 1, LIO~K_IMN_BUAST) 
IF(.NOT.(status)) CALL lib~signal(xval(status)) 

C 
C Set up the CONTROL and RANGE arrays for the 
C LSP=FORMAT_TRANSLATE_ADC routine: 
C 

CONTROL(i)=0 
CONTROL(2)=12 
CONTROL(3)=1 

RANGE(1)= -10.0 ! 
RANGE(Z)= 9.9961 ! 

~'s complement format 
number of bits in converter 
gain of i 

set up for voltage range 
set up high voltage range 

C 
C Build a coefficient array for each of the five spectral 
C rindor types: 
C 

ISTAT=LSP=BU ILD_1tIND011_ TABLE (YINDOY (i ,1) , N ,LSP=K_YELCH) 
ISTAT=LSP=BUILD_11INDOY_TABLE (YINDOI/(1,~),N,LSP=K_HAI~ING) 
ISTAT=LSP=BUILD_YINDOI/_TABLE(1/INDOY(1,3),N,LSP=K_HANNING) 
ISTAT=LSP=BUILD_YINDOY_TABLE(YIND011(1,4),N,LSP=K_TRIANGLE) 
ISTAT=LSP~BUILD_YIND011_TABLE(YINDOII(1,6),N,LSP~K_BLACKMAN) 

Example 4-1 Cont'd. on next page 
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Example 4-1 (Copt.): Applying a Spectral Window 

c 
C Read 2048 A/D values (40D6 bytes) into the buffer: 
C 
C Ths number of bytes tranef erred is returned in data_length. 
C The device specif is parameter is not need, eo it is defaulted. 
C 

status LIOSREAD(AtoD_ID, buffer, N, data_length, ) 
IF(.NOT.(status)) CALL lib~signal(xval(status)) 

C 
C Convert the A/D values to volts: 
C 

ISTAT LSP~FOAMA?_TRANSLATE_ADC (BUFFER,iIAVE,N,CONTAOL,AANCE) 
IF (.NOT.ISTAT) CALL LIB~SICNAL (xVAL(ISTAT)) 

C 
C Logically split the input data into 4 - 61Z rord buffers: 
C 
C The input data is split in order to calculate the porer 
C spectrum using the periodogram technique. 

NOY = 1 

DO 100 I=1,4 

C 
C Apply the Yelch rindor function coefficient array to the segmented 

C input data: 
C 
C Store the resulting array o~ rindored output data. Ton can apply any 
C of the five rindor function coefficient arrays to the input data by 

C modifying the rindor_table argument in the LSP~APPLT_YINDOII_TABLE 
C routine call. 
C 

ISTAT=LSP=APPLT_YINDOY_TABLE.(PAVE(NOY),YAVEZ,(N/4),YINDOIt(1,1)) 

NOY = NOY + 61Z 

C 
C Calculate the fast Fourier transform for each o~ the four data segments 
C in the table o~ rindored data: 
C 

ISTAT=LSP=FFT_AEAL(YAVEZ,FF?,(N/4),O,STATUS) 

Example 4-1 Cont'd. on next page 
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Example 4-1 (font.): Applying a Spectral Window 

c 
C Add the four FFT calculations together: 
C 

DO 76 J 1,CN/4) 
P011EA(J) = PO11EA(J) + FFT(J) 
76 CONTINUE 

100 CONTINUE 

C 
C Use the pariodogram technique to calculate the porer spectrum by 
C averaging th• enm of the four FFT calculations and squaring the 
C result: 
C 

POYEI~(I) = POl/EEA(I) /4.0 
POYEA(I) POYEA(I)**~ 

iZ6 CONTINUE 

C 
C Plot th• porer spectrum results: 
C 

CALL LCP~PLOT (i,'IXSY' „ POYEA,(N/4),'Frequency', 
'AMPLITUDE dB',,,,,,,'POYER SPEC') 

CALL LGP=TEAMINATE_PLOT (1,1) 

C 
C Detach th• A/D device: 
C 
C Aundorn is irrelevant. for synchronous I/0. 
C 

status = LIO~DETACH(AtoD_ID, ) 
IF(.NOT.(etatus)) CALL lib=signal(xvalCstatus)) 

sTOP 
END 
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Example 4-1 produces the following output: 

PCWE~ SPEC 
iQ000~.00 

X4444.44 

~aaaa, as 

~aoaoa. o0 

~a~o~.ao 

4,44 L J 

Frequencu 
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The spectral window function symbolic status values are defined in 
definition files for each of the following program languages: 

Table 4-1: Spectral Window Function Symbolic Status Definition 
Files 

Language Symbolic Status Definition File 

VAX Ada 

VAX BASIC 

VAX C 

VAX FORTRAN 

VAX MACRO 

VAX PASCAL 

SYS$LIBRARY: LSPSET.ADA 

SYS$LIBRARY: LSPSET. BAS 

SYS$LIBRARY: LSPSET. H 

SYS$LIBRARY: LSPSET. FOR 

SYS$LIBRARY: LSPSET. MAR 

SYS$LIBRARY: LSPSET.PAS 

4.4 Spectral Window Filtering References 

You can obtain further information about spectral window filtering from 
the following references: 

Elliot, Douglas F, and Rao, K. Ramamohan. Fast Transforms Algorithms, 
Analyses, Applications. Academic Press, Inc., 1982. 

Oppenheim, Alan V. and Shafer, Ronald W. Digital Signal Processing. 
Prentice Hall, Inc.,1975. 

Stanley, William D. Digital Signal Processing. Reston Publishing Co. Inc., 
1975. 
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Chapter 5 

Thermocouple Conversion 

5.1 Overview of Thermocouple Conversion 

The LSP$THERMOCOUPLE_X routines convert thermocouple voltages 
to temperatures. Table 5-1 shows the types of thermocouples that are 
supported. 

Table S-1: Thermocouples with Conversion Routines 
ANSI Symbol Material Trade Name 

B 

E 

J 

K 

R 

S 

T 

Platinum-6% Rhodium 
vs. 
Platinum-30% Rhodium 

Nickel-Chromium vs. 
Copper-Nickel 

Iron vs. Copper-Nickel 

Nickel-Chromium vs. 
Nickel-Aluminum 

Platinum vs. 
Platinum-13% Rhodium 

Platinum vs. 
Platinum-10% Rhodium 

Copper vs. Copper-Nickel 

Chromel-Constantan 

Iron-Constantan 

Chromel-Alumel 

Capper-Constantan 

Each thermocouple type has a unique routine associated with it. The 
X in the LSP$THERMOCOUPLE_X routine is a placeholder for the 
ANSI symbol that represents the thermocouple type. When you use the 
LSP$THERMOCOUPI.E_X routine, you substitute in place of the X the 
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ANSI symbol appropriate for the type of thermocouple. The following 
thermocouple conversion routines are provided: 

LSP$THERMOCOUPLE_B 
LSP$THERMOCOUPLE_E 
LSP$THERMOCOUPLE_J 
LSP$THERMOCOUPLE_K 
LSP$THERMOCOUPLE_R 
LSP$THERMOCOUPLE_S 
LSP$THERMOCOUPLE_T 

To use the thermocouple conversion routines, you set up your exper-
iment with two identical thermocouples connected in series. You use 
one thermocouple for the actual experiment. You immerse the other 
thermocouple in an ice bath maintained at a constant temperature of 0 
degrees Celsius as a reference. Alternatively, an electronic cold junction 
compensator can replace the reference thermocouple. 

Table 5-2 shows the temperature and voltage ranges for each of the 
supported thermocouples. 

Table 5-2: Thermocouple Temperature and Voltage Ranges 
Thermocouple Temp. Range (Celsius) Voltage Range (Microvolts) 
ANSI Symbol Min Max Min Max 

B 43 1820 0.21 13814.0 

E -270 1000 -9836.0 76358.0 

J -210 1200 -8096.0 69537.0 

K -200 1372 -5892.0 54875.0 

R -50 1762 -227.0 21108.17 

S -50 1768 -236.0 18698.16 

T -270 400 -6258.0 20870.0 

See the LSP$THERMOCOUPLE_X routine call reference section in 
Chapter 6, Signal-Processing Routine Reference Descriptions, for more 
information about the thermocouple conversion routines. 
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Chapter 6 

Signal-Processing Routine Call 
Reference Descriptions 

This chapter presents an overview and detailed reference descriptions 
of the Laboratory Signal-Processing routines used to perform Fourier 
transforms, correlation functions, filtering of data, and thermocouple 
conversion. 

6.1 Overview of the Laboratory .Signal-Processing 
Routine Format 

Each LSP routine is described using a structured format: 

• The Routine name appears at the top of the first page of each LSP 
routine reference description. 

• The Routine overview explains, usually in a sentence or two, what 
the routine does. 

• The Format section presents the routine entry point name, or 
routine name, and the routine argument list in the correct syntactical 
form. 

• The Returns section lists the information returned by the routine. 
• The Arguments section provides detailed information about each 

routine argument, such as what information the argument passes 
to the routine or what information the argument returns from the 
routine, and the data type, access, mechanism, and acceptable 
values of the argument. 
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• The Description section contains information about the specific 
actions taken by the routine. This includes interaction between 
routine arguments.; interactions or dependencies between the 
routine and other LSP routines; restrictions for use; and actions 
specific to the routine when used with certain devices. In some 
cases, information of this nature is also found in the description of a 
routine argument under the Arguments heading. 

• The Condition Values section contains a list of condition values a 
specific routine generates and a brief description of each condition 
value. See Section 7.3, Symbolic Status Values and Descriptions, for 
more detailed condition value information, including an explanation 
of symbolic status values generated by the routine and suggested 
user action. 

6.2 Signal-Processing Routine Call Summary and 
Descriptions 

Table 6-1 summarizes the signal-processing routines. 

Table 6-1: Signal-Processing Routine Call Summary 
Routine Call Function 

LSP$APPLY WINDOW TABLE 

LSP$BUILD_wINDOW TABLE 

LSP$CORRELATION 

LSP$FFT_COMPLEX 

LSP$FFT_COMPLEX_2D 

Applies the coefficient array created 
by the LSP$BUILD_WINDOW TABLE 
routine to the input data to create and 
store windowed output data 

Builds an array of window function 
coefficients 

Calculates the cross-correlation or 
autocorrelation function of equispaced 
data 

Calculates the fast forward or inverse 
Fourier transform of complex-valued 
data 

Calculates the fast forward or inverse 
Fourier transform of complex-valued 
data in two dimensions 
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Table 6-1 (Cont.): Signal-Processing Routine Call Summary 
Routine Call Function 

LSP$FFT_REAL 

LSP$FILTER_NONREC 

LSP$FILTER_POLY 

LSP$FILTER_POLY_1 ST_DERIV 

LSP$FILTER_POLY_2ND DERIV 

LSP$FILTER_POLY_3RD DERIV 

LSP$FORMAT_TRANSLATE_ADC 

LSP$FORMAT_TR.ANSLATE_DAC 

LSP$HIST_F 

LSP$HIST_I 

LSP$PHASE_ANGLE 

LSP$PHASE_ANGLE_2D 

LSP$POWER_SPECTRUM 

Calculates the fast forward or inverse 
Fourier transform of real-valued data 

General purpose, nonrecursive filter 

Polynomial filter for smoothing 

Polynomial filter with first-derivative 
output 

Polynomial filter with second-derivative 
output 

Polynomial filter with third-derivative 
output 

Translates raw numbers obtained from 
an analog-to-digital converter into 
floating-point voltages 

Translates floating-point voltages into 
raw numbers appropriate for input to a 
digital-to-analog converter 

Performs interval histogram analysis 
(multichannel analysis) with floating-
point input 

Performs interval histogram analysis 
(multichannel analysis) with integer 
input 

Calculates the phase angle and modulus 
spectrum for equispaced data in one 
dimension 

Calculates the phase angle and modulus 
spectrum for equispaced data in two 
dimensions 

Calculates the power spectrum of 
equispaced data 
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Table 6-1 (Copt.): Signal-Processing Routine Caii Summary 

Routine Call Function 

LSP$SPECTRAL WINDOWS 

LSP$THERMOCOUPLE_X 

Dynamically allocates a window func-
tion coefficient array, applies the 
coefficients to the input data, and 
stores the resulting windowed output 
data in an array 

Converts voltage to temperature for 
each thermocouple type 

The following reference section describes the signal-processing routines 
and their use. 
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LSP$APPLY WINDOW TABLE 

LSP$APPLY_WINDOW_TABLE 

The LSP$APPLY_WINDOW TABLE routine applies the window function 
coefficient array created by the LSP$BUILD_wINDOW TABLE routine 
to the input data to be windowed. 

Format LSP$APPLY WINDOW TABLE (in, out, n, 
window table, 
(status]) 

Returns 
VMS Usage: cond_vaCue 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: fioating_point 
type: F floating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data to be windowed. 

out 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the output data is returned. You can specify the 
same array for both the output array and the input array. 

Signal-Processing Routine Call Reference Descriptions 6-5 



LSP$APPLY WINDOW TABLE 

n 
VMS Usage: 
type: 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

An argument specifying the size of the data set to be windowed. The 
value of n must be greater than or equal to 1. 

window table 
VMS Usage: floating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array of coefficients produced by the LSP$BUILD_WINDOW_TABLE 
routine. 

StatUS 

VMS Usage: longword unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The LSP$APPLY_WINDOW_TABLE routine applies the window-
function coefficient array created by the LSP$BUILD_WINDOW_TABLE 
routine to the input data contained in the in array. The 
LSP$APPLY_WINDOW_TABLE routine then places the resulting win-
dowed output data into the out array. 

See the LSP$BUILD_WINDOW_TABLE routine reference section for 
information on building awindow-function coefficient array. Chapter 4, 
Spectral Window Filtering, provides further information about spectral 
windows. 
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LSP$APPLY_WINDOW_TABLE 

Condition Values 
Symbolic Status Description 

LSP$_ILL N_R.ANGE n is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$BUILD WINDOW TABLE 

LSP$BU ILD_WIN DOW_TABLE 

The LSP$BUILD_WINDOW_TABLE routine builds an array of spectral 
window-function coefficients. The spectral window-function coefficient 
array built by the LSP$BUILD_WINDOW TABLE routine is used by the 
LSP$APPLY_WINDOW TABLE routine. 

Format LSP$BUILD WINDOW TABLE (window_table, 
n, window_rype, 
(status]) 

Returns 
VMS Usage: cond value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
window table 
VMS Usage: floating_point 
type: F_floatin~j 
access: write only 
mechanism: by reference, array reference 

An array of size n containing the returned spectral window-function 
coefficients. 

n 
VMS Usage: longword signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument specifying the number of table entries contained in the 
spectral window-function coefficient table. 
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LSP$BUILD WINDOW_TABLE 

window type 
VMS Usage: longword signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument specifying the type of window function you want to use. 
The following is a list of possible window_type values. 

Value Window Type 

LSP$K BLACKMAN Blackman 

LSP$K_HAMMING Hamming 

LSP$K_HANNING Harming 

LSP$K_TRIANGLE Triangle 

LSP$K_WELCH Welch 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The LSP$BUILD_WINDOW_TABLE routine calculates then coeffi-
cients of the window function you select and places the results in the 
window table array. The LSP$APPLY_WINDOW TABLE routine ap-
plies the window function coefficient array to the input data. See the 
LSP$APPLY_WINDOW_TABLE routine reference section for informa-
tion on applying the window function coefficient array generated by the 
LSP$BUILD_WINDOW_TABLE routine to the data. 
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LSP$BUILD WINDOW_TABLE 

Building the window function coefficient array and applying this co-
efficient array to the input data separately reduces set-up time in a 
realtime environment where a window function is used repeatedly. If 
you do not intend to use a window function repeatedly, you can use 
the LSP$SPECTRAL_WINDOWS routine. For further information on 
the LSP$SPECTRAL_WINDOWS routine, see the routine call reference 
description for that routine. 

Chapter 4, Spectral Window Filtering, provides further information 
about spectral windows. 

Condition Values 
Symbolic Status Description 

LSP$_ILL N_RANGE 

LSP$_MAND_ARG 

LSP$_ILL WINDOW TYPE 

LSP$_SUCCESS 

n is out of range 

mandatory argument is missing 

invalid window type specified 

success 
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LSP$CORRELATION 

LSP$CORRELATION 

The LSP$CORRELATION routine calculates the cross-correlation or 
autocorrelation function of equispaced data. 

Format LSP$CORRELATION (inl, in2, out n, (statusJ) 

Returns 
VMS Usage: 
type: 
access: 
mechanism: 

cond value 
longword (unsigned) 
write only 
by value 

Arguments 
in1 
VMS Usage: complex_number 
type: F_floating complex 
access: read only 
mechanism: by reference, array reference 

An array containing the input data whose correlation function you want 
to estimate. The length of this array must be greater than or equal to 
(nl2) + 1. 

The values contained in this array are the output of the Fourier trans-
f orm routine LSP$FFT_REAL; all input arrays are given in the reduced-
symmetric form. See Section 2.1.2, Mathematical Definition of Discrete 
Fourier Transform, for a description of the reduced-symmetric form. 
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LSP$CORRELATION 

ln2 
VMS Usage: complex_number 
type: F floating complex 
access: read only 
mechanism: by reference, array reference 

An array containing the input data whose correlation function you want 
to estimate. The length of this array must be greater than or equal 
to (nl2) + 1. The data contained in in1 and in2 are the same when 
performing the autocorrelation function. 

The values contained in this array are the output of the Fourier trans-
form routine LSP$FFT_REAL; all input arrays are given in the reduced-
symmetric form. 

out 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the correlation function of the original time-based 
input data is returned. This array must be of length n + 2. 

n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the total number of data points to be placed in 
the out array. This number must be a power of 2 and must range be-
tween 2 and 32, 768, inclusive. Any number outside this range generates 
an error. 
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LSP$CORRELATION 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
You use the correlation function to produce an estimate of the de-
gree of similarity between two functions when one of the functions 
is shifted either in time or by some other independent variable. You 
can also use the correlation function on one function; this is known as 
autocorrelation. 

See Section 2.3, Definition of the Correlation Function, for further 
information about the correlation and autocorrelation functions. 

Condition Values 
Symbolic Status Description 

LSP$ ILL N_NOT_2 n is not a power of 2 

LSP$ ILL N_RANGE n is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$ SUCCESS success 
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LSP$FFT_COMPLEX 

LSP$FFT_COMPLEX 

The LSP$FFT_COMPLEX routine calculates the fast forward or inverse 
Fourier transform of complex-valued data. 

Format LSP$FFT COMPLEX (in, out, n, direction, ~stafusJ) 

Returns 
VMS Usage: cond value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: complex_number 
type: F_floating complex 
access: read only 
mechanism: by reference, array reference 

An array containing the input data. The array is of length n. 

out 
VMS Usage: complex_number 
type: F_floating complex 
access: write only 
mechanism: by reference, array reference 

An array into which the transform of the input data is returned. The 
array is of length n. 

The output array can be the same as the input array. In this case, the 
output array overwrites the input array. 
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LSP$FFT COMPLEX 

n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of data points to be transformed. 
The total number of data points as input is 2"z . The value of rn must 
be between 1 and 15, inclusive. The value of n must be between 2 and 
32,768, inclusive. 

direction 
VMS Usage: longword_signed 
type: ~ longword integer (signed) 
access: read only 
mechanism: by reference 

An argument that determines whether to perform the forward or inverse 
transform. If the value of direction is zero, forward transform is per-
formed. If the value of direction is nonzero, inverse transformation is 
performed. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The LSP$FFT_COMPLEX routine is used to compute the forward 
Fourier transformation of complex-valued data of length n = 2m, where 
m is between 1 and 15, inclusive. 

The time axis is considered to be equally spaced with time increment 
at. The resulting frequency axis from the forward transformation is 
in increments k/(n fit), where k = 0, 1, 2, 3, ... n-1 and n is the total 
number of points to be transformed. 
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LSP$FFT_COMPLEX 

Condition Values 
Symbolic Status Description 

LSP$_ILL N_NOT 2 n is not a power of 2 

LSP$_ILL_N_RANGE n is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FFT COMPLEX 2D 

LSP$FFT_COMPLEX_2D 

The LSP$FFT_CQMPLEX_2D routine calculates the fast forward or 
inverse Fourier transform of complex-valued data in two dimensions. 

Format LSP$FFT COMPLEX 2D (in, out, n1, n2, direction, 
(status) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
!n 
VMS Usage: complex_number 
type: F floating complex 
access: read only 
mechanism: by reference, array reference 

An array containing the data to be transformed. The array is dimen-
sioned nl x n2. 

out 
VMS Usage: complex_number 
type: F floating complex 
access: write only 
mechanism: by reference, array reference 

An array into which the result of the transformation is returned. The 
array is dimensioned n1 x n2. 
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LSP$FFT COMPLEX 2D 

n7 
VMS Usage: 
type: 
access: 
mechanism: 

longword_signed 
longword integer (signed) 
read only 
by reference 

An argument specifying the number of data points in each row. Input 
the number of data points as 2"z. The value of rn must be between 
1 and 15, inclusive. The value of n1 must be between 2 and 32,768, 
inclusive. 

n2 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument specifying the number of data points in each column. 
Input the number of data points as 2"z. The value of "z must be between 
1 and 15, inclusive. The value of n2 must be between 2 and 32,768, 
inclusive. 

direction 
VMS Usage: 
type• 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

An argument that determines whether to perform the forward or inverse 
transform. If ,the value of direction is 0, the forward transformation 
is performed. If the value of direction is not equal to 0, the inverse 
transformation is performed. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

6-18 Signal-Processing Routine Call Reference Descriptions 



LSP$F~ COMPLEX 2D 

Description 
Use the LSP$FFT_COMPLEX_2D routine to compute the two-
dimensional fast Fourier transform of complex-valued data. This routine 
calls LSP$FFT_COMPLEX to perform the calculations. The row (nl) and 
column (n2) sizes need not be the same size. 

Condition Values 
Symbolic Status Description 

LSP$_ILL_N_NOT_2 n1 or n2 is not a power of 2 

LSP$ ILL N_R.ANGE nl or n2 is out of range 

LSP$_1~~IAND ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FFT_REAL 

LSP$FFT_REAL 

The LSP$FFT_REAL routine calculates the fast forward or inverse 
Fourier transform of real-valued data. 

Format LSP$FFT_REAL (in, out n, direction, (status]) 

Returns 
VMS Usage: cond value 
type: longword (unsigned 
access: write only 
mechanism: by value 

Arguments 
in 

VMS Usage: floating_point or complex_number 
type: F floating or F floating complex 
access: read only 
mechanism: by reference, array reference 

For forward transform, where direction equals zero, a real array con-
taining the data to be transformed. This array is of length n. 

For the inverse transform, where direction is nonzero, a complex array 
containing the data to be transformed. This array is of length (n/2) + 1 
and contains the first half of the symmetric array in reduced-symmetric 
form. 
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out 
VMS Usage: floating_point or compiex_number 
type: F_floating or F floating complex 
access: write only 
mechanism: by reference, array reference 

For the forward transform, where direction equals zero, a complex array 
into which the transform of the input data is returned. This array is of 
length (n/Z) + 1 and contains the first half of the symmetric array. 

For inverse transform, where direction is nonzero, a real array into 
which the transformed data is returned. This array is of length n. 

n 
VMS Usage: 
type: 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

An argument containing the number of data points to be transformed. 
The total number of data points as input is 2~ . The value of rn must 
be between 1 and 15, inclusive. The value of n must be between 2 and 
32, 768, inclusive . 

For both the forward and inverse transform, the in and out arrays can 
be the same array. However, the array must be dimensioned to the 
larger of the two arrays. 

direction 
VMS Usage: 
type: 
access: 
mechanism: 

longword_signed 
longword integer (signed) 
read only 
by reference 

An argument that determines whether to perform forward or inverse 
transform. If the value of direction is zero, forward transform is per-
formed. If the value of direction is nonzero, inverse transform is 
performed. 
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status 
VMS Usage: longword_unsigned 
type: longword unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
Use the LSP$FFT_REAL routine to compute the fast Fourier transform of 
real-valued data of length ra = 2~, where rn is an integer between 1 and 
15, inclusive. Because the input data is known to contain no imaginary 
values, the transform is twice as fast as the LSP$FFT_COMPLEX routine. 
Approximately half as many operations are required to perform the fast 
Fourier transform. 

As is the case with all FFT methods, the time axis is considered to be 
equally spaced with time increment at. The resulting frequency axis 
from the forward transformation is in increments k/(n at) where k = 0, 
1, 2, 3, ... n/2 and n is the total number of points to be transformed. 

Condition Values 
Symbolic Status Descr~pt~on 

LSP$_ILL N_NOT_2 n is not a power of 2 

LSP$_ILL N_RANGE n is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FILTER_NONREC 

The LSP$FILTER_NONREC routine performs filtering in lowpass, 
highpass, bandpass, or bandstop (notch) mode. 

Format LSP$FILTER NONREC (in, out, n, flow, fhigh, 
wiggles, nterms, (status]) 

Returns 
VMS Usage: cond value 
type: longword unsigned) 
access: write only 
mechanism: by value 

Arguments 
!n 
VMS Us-age: fioating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data to be filtered. 

our 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array into which the filtered data is returned. The out array can be 
the same as the in array. 
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n 
VMS Usage: 
type: 
access: 
mechanism: 

longword_signed 
longword integer (signed) 
read only 
by reference 

An argument containing the number of data values to be filtered. This 
value must be greater than the value of nterms*2 + 1. Any number less 
than or equal to this value generates an error. 

flow 
VMS Usage: 
type • 
access: 
mechanism: 

floating_point 
F_floating 
read only 
by reference 

An argument representing the lower frequency of the filter. This num-
ber is given as a fraction of the Nyquist sampling frequency (11(2 
at)) and must be between 0.0 -and 1.0, inclusive. See Section 3.1.2, 
Nonrecursive Filtering, for more information on the flow argument. 

fhfgh 
VMS Usage: 
type: 
access: 
mechanism: 

floating_point 
F_floating 
read only 
by reference 

An argument representing the upper frequency of the filter. This 
number is given as a fraction of the . Nyquist sampling frequency (11(2 
fit)) and must be between 0.0 and 1.0, inclusive. See Section 3.1.2, 
Nonrecursive Filtering, for more information on the fhigh argument. 

wiggles 
VMS Usage: 
type: 
access: 
mechanism: 

floating_point 
F floating 
read only 
by reference 

A number in -dB units which is proportional to the oscillation from the 
Gibbs phenomenon. This number must be between 0.0 and 500.0, in-
clusive. See Section 3.1.2, Nonrecursive Filtering, for more information 
on the wiggles argument. 
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nterms 
VMS Usage: 
type: 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

A variable with a value between 2 and 500, inclusive. Any number 
outside this range generates an error. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
Use the LSP$FILTER_NONREC routine to perform nonrecursive fil-
tering in either lowpass, highpass, bandpass, or bandstop (notch) 
mode. 

See Section 3.1.2, Nonrecursive Filtering, for further information. 

Condition Values 
Symbolic Status Description 

LSP$_ILL F_RANGE 

LSP$_ILL_FLOW 

LSP$_ILL N_NONREC 

LSP$_ILL N_RANGE 

LSP$_ILL NTERMS 

LSP$_ILL WIGGLES 

LSP$_MAND_ARG 

LSP$_SUCCESS 

flow or fhigh is out of range 

flow is equal to fhigh 

n is less than 2*nterrns + 1 

n is out of range 

nterms is out of range 

wiggles is out of range 

mandatory argument is missing 

success 
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LSP$FILTER_POLY 

The LSP$FILTER_PQLY routine performs polynomial filtering for 
smoothing. 

Format LSP$FILTER POLY (in, out, n, filtyp, (status]) 

Returns 
VMS Usage: cond value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: floating_point 
type: F_fioating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data. 

out 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array into which the output data is returned. The out array can be 
the same as the in array; then, the output array replaces the input array. 

n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of data points to be filtered. 
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flltyp 
VMS Usage: 
type: 
access: 
mechanism: 

longword_signed 
longword integer (signed) 
read only 
by reference 

An argument containing one of the following codes: 

Code Description 

1 smoothing: 5-point window -- + 
2 smoothing: 7-point window 
3 smoothing: 9-point window 
4 smoothing: 11-point window 
5 smoothing: 13-point window QUADRATIC-CUBIC 
6 smoothing: 15-point window BASIS FUNCTION 
7 smoothing: 17-point window 
8 smoothing: 19-point window 
9 smoothing: 21-point window 

10 smoothing: 23-point window 
11 smoothing: 25-point window -- + 

12 smoothing: 7-point window -- + 
13 smoothing: 9-point window 
14 smoothing: 11-point window 
15 smoothing: 13-point window 
16 smoothing: 15-point window 
17 smoothing: 17-point window 
18 smoothing: 19-point window 
19 smoothing: 21-point window 
20 smoothing: 23-point window 
21 smoothing: 25-point window 

i 

QUARTIC-QUINTIC 
BASIS FUNCTION 

--+ 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 
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Description 
You use the technique of digital filtering to eliminate certain frequency 
components from a signal that is corrupted by noise. Polynomial filters 
are based on simple interpolating polynomials which act as lowpass 
filters. 

See Section 3.1.1, Polynomial Filtering, for further information. 

Condition Values 
Symbolic Status Description 

LSP$ ILL FILTYP filtyp is out of range 

LSP$_ILL N_FILTER too few data points per filter window 

LSP$ ILL N_R.ANGE n is out of range 

LSP$_M.AND ARG mandatory argument is missing 

LSP$ SUCCESS success 
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LSP$FILTER_POLY_i ST_DERIV 

The LSP$FILTER_POLY_1ST_DERIV routine performs polynomial 
filtering with first-derivative output. 

Format LSP$FILTER POLY 1ST DERIV (in, out, n, filtyp, 
(status]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: floating_point 
type: F floating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data. 

out 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the output data is returned. The out array can be 
the same as the in array; then, the output array replaces the input array. 
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n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of data points to be filtered. 

flltyp 
VMS Usage: 
type: 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

An argument containing one of the following codes: 

Code Description 

1 1st derivative: 
2 1st derivative: 
3 1st derivative: 
4 1st derivative: 
5 1st derivative 
6 1st derivative: 
7 1st derivative 
8 1st derivative: 
9 1st derivative 

10 1st derivative 
11 1st derivative 

12 1st derivative 
13 1st derivative: 
14 1st derivative 
15 1st derivative: 
16 1st derivative 
17 1st derivative 
18 1st derivative 
19 1st derivative: 
20 1st derivative: 
21 1st derivative: 
22 1st derivative: 

5-point window -- + 
7-point window 
9-point window 

11-point window 
13-point window 
15-point window 
17-point window 
19-point window 
21-point window 
23-point window 
25-point window 

i 

i 

i 

QUADRATIC 
BASIS FUNCTION 

5-point window -- + 
7-point window 
9-point window 

11-point window 
13-point window 
15-point window 
17-point window 
19-point window 
21-point window 
23-point window 
25-point window -- + 
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23 1st derivative: 7-point window --+ 
24 1st derivative: 9-point window ~ 
25 1st derivative: 11-point window ~ 
26 1st derivative: 13-point window ~ 
27 1st derivative: 15-point window QUINTIC-SEXIC 
28 1st derivative: 17-point window BASIS FUNCTION 
29 1st derivative: 19-point window ~ 
30 1st derivative: 21-point window ~ 
31 1st derivative: 23-point window ~ 
32 1st derivative: 25-point window --+ 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

Returns the status of the operation. If the status argument is omitted 
and an error occurs, the message is directed to both SYS$OUTPUT and 
SYS$ERROR. 

Description 
You use the technique of digital filtering to eliminate certain frequency 
components from a signal that is corrupted by noise. Polynomial filters 
are based on simple interpolating polynomials which act as lowpass 
filters capable of producing derivative information. 

See Section 3.1.1, Polynomial Filtering, for further information. 

Condition Values 
Symbolic Status Description 

LSP$_ILL FILTYP filtyp is out of range 

LSP$_ILL_N_FILTER too few data points per filter window 

LSP$_ILL N_RANGE n is out of range 

LSP$_r~IAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FILTER_POLY_2ND DERIV 

The LSP$FILTER_POLY_2ND; DERIV routine performs polynomial 
filtering with second-derivative output. 

Format LSP$FILTER POLY_2ND DERIV (in, out, n, filtyp, 
(status]) 

Returns 
VMS Usage: cond value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: floating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data. 

out 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the output data is returned. The out array can be 
the same as the in array; then, the output array replaces the input array. 

u 
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n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of data points to be filtered. 

flltyp 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing one of the following codes: 

Code Description 

1 2nd derivative 
2 2nd derivative: 
3 2nd derivative 
4 Znd derivative 
5 2nd derivative: 
6 2nd derivative: 
7 2nd derivative: 
8 2nd derivative: 
9 2nd derivative 

10 2nd derivative: 
11 2nd derivative: 

12 2nd derivative: 
13 2nd derivative 
14 2nd derivative: 
15 2nd derivative: 
16 2nd derivative: 
17 2nd derivative: 
18 2nd derivative: 
19 2nd derivative: 
20 2nd derivative: 
21 2nd derivative: 

5-point window 
7-point window 
9-point window 

11-point window 
13-point window 
15-point window 
17-point window 
19-point window 
21-point window 
23-point window 
25-point window 

--+ 

QUADRATIC-CUBIC 
BASIS FUNCTION 

--+ 

7-point window -- + 
9-point window 

11-point window 
13-point window 
15-point window 
17-point window 
19-point window 
21-point window 
23-point window 
25-point window -- + 

i 

i 

i 

QUARTIC-QUINTIC 
BASIS FUNCTION 
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status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
You use the technique of digital filtering to eliminate certain frequency 
components from a signal that is corrupted by noise. Polynomial filters 
are based on simple interpolating polynomials which act as lowpass 
filters capable of producing derivative information. 

See Section 3.1.1, Polynomial Filtering, for further information. 

Condition Values 
Symbolic Status Description 

LSP$_ILL FILTYP filtyp is out of range 

LSP$_ILL N_FILTER too few data points per filter window 

LSP$_ILL_N_RANGE n is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FI LTER_POLY_3RD_DERIV 

The LSP$FILTER_POLY_3RD_DERN routine performs polynomial 
filtering with third-derivative output. 

Format LSP$FILTER_POLY 3RD_DERIV (in, out, n, filtyp, 
(statusj) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: fioating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data. 

out 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array into which the output data is returned. The out array can be 
the same as the in array; then, the output array replaces the input array. 
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n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of data points to be filtered. 

fil typ 
VMS Usage: longword signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing one of the following codes: 

Code Description 

1 3rd derivative: 
2 3rd derivative: 
3 3rd derivative: 
4 3rd derivative: 
5 3rd derivative: 
6 3rd derivative: 
7 3rd derivative: 
8 3rd derivative: 
9 3rd derivative: 

10 3rd derivative: 
11 3rd derivative: 

12 3rd derivative: 
13 3rd derivative 
14 3rd derivative: 
15 3rd derivative: 
16 3rd derivative: 
17 3rd derivative: 
18 3rd derivative 
19 3rd derivative: 
20 3rd derivative: 
21 3rd derivative: 

5-point window 
7-point window 
9-point window 

11-point window 
13-point window 
15-point window 
17-point window 
19-point window 
21-point window 
23-point window 
25-point window -- + 

--+ 

CUBIC-QUARTIC 
BASIS FUNCTION 

7-point window -- + 
9-point window 

11-point window 
13-point window 
15-point window 
17-point window 
19-point window 
21-point window 
23-point window 
25-point window -- + 

6-36 Signal-Processing Routine Call Reference Descriptions 

i 

i 

i 

QUINTIGSEXIC 
BASIS FUNCTION 



LSP$FILTER_POLY 3RD DERIV 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
You use the technique of digital filtering to eliminate certain frequency 
components from a signal that is corrupted by noise. Polynomial filters 
are based on simple interpolating polynomials which act as lowpass 
filters capable of producing derivative information. 

See Section 3.1.1, Polynomial Filtering, for further information. 

Condition Values 
Symbolic Status Description 

LSP$_ILL FILTYP filtyp is out of range 

LSP$_ILL N_FILTER too few data points per filter window 

LSP$_ILL N_RANGE n is out of range 

LSP$ I~~IAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FORMAT_TRANSLATE_ADC 

The LSP$FORMAT_TRANSLATE_ADC routine translates raw numbers 
obtained from an analog-to-digital converter into floating-point voltages. 

Format LSP$FORMAT_TRANSLATE ADC (in, out, (nj, 
(control_i], 

(range], 

(status)) 

Returns 
VMS Usage: cond value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
►►► 
VMS Usage: word_unsigned 
type: word (unsigned] 
access: read only 
mechanism: by reference, array reference 

An array containing the data from an analog-to-digital converter. This 
array is of length n. 

out 
VMS Usage: fioating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the result of the translation in units of voltage is 
returned. The array is of length n. 
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n 
VMS Usage: longword_signed 
type: longword integer (signed} 
access: read only 
mechanism: by reference 

An argument specifying the number of data to be translated. The 
default is one datum. 

control f 
VMS Usage: longword_signed 
type: longword integer (signed} 
access: read only 
mechanism: by reference, array reference 

An array of length three specifying the type of number representation 
used by the converter, the number of bits, and the external gain: 

control_i(1) 

control_i(2) 

control_i(3) 

The number representation. You can designate binary or 
binary offset by specifying any nonzero integer. You can 
specify two's complement by specifying zero. 

The number of bits. Specify an integer between 6 and 
16, inclusive. Any number outside the range generates an 
error. Bits to be operated on are right-justified in the 16-bit 
word. Bits to the left of the data bits are ignored during 
this translation. 

The external gain. This value is helpful when using 
programmable-gain ADCs. The gain factor divides the 
voltage reading to reflect the actual voltage used. For ex-
ample, asignal of one volt is applied to an ADC with a 
gain of four. The output of the converter reads four volts. 
The converter reading must be divided by the gain factor to 
reflect the actual input voltage. 

Specify an integer between 1 and 20, 000, inclusive. Any 
number outside the range generates an error. 

The default values are two's complement, 12 bits, and a gain of one. 
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range 

VMS Usage: floating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing two values specifying the range of data expressed 
as volts. The first value specifies the lowest voltage; the second value 
specifies the highest voltage. The default is -10 to 9.9951 volts. 

If the two values are equal, an error occurs. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The LSP$FORMAT_TRANSLATE_ADC routine converts ADC 16-bit 
word input data to a floating-point quantity in units of voltage. 

See Section 1.2, Data Format Translation for ADCs and DACs, for 
further information. 

Condition Values 
Symbolic Status Description 

LSP$_ILL_CTROL 2_T 2nd control array entry is out of range 

LSP$_ILL_CTROL_3_T 3rd control array entry is out of range 

LSP$_ILL N_RANGE n is out of range 

LSP$_ILL RANGE both entries in the range array are equal 

LSP$ MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$FORMAT_TRANSLATE_DAC 

The LSP$FORMAT_TRANSLATE_DAC routine translates afloating-
point voltage into raw numbers appropriate for input to a digital-to-
analog converter. 

Format LSP$FORMAT TRANSLATE DAC (in, out, (n], 
(control i], 
(range], 
(status]) 

Returns 
VMS Usage: cond value 
type: longword unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: floating_point 
type: F_fioating 
access: read only 
mechanism: by reference, array reference 

An array containing the data for adigital-to-analog converter (DAC) in 
units of volts. This array is of length n. 

out 
VMS Usage: word unsigned 
type: word (unsigned] 
access:- write only 
mechanism: by reference, array reference 

An array into which the data to be passed to the DAC is returned. This 
array is of length n. 
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n 
VMS Usage: 
type: 
access: 
mechanism: 

longword_signed 
longword integer (signed) 
read only 
by reference 

An argument specifying the number of data to be translated. The 
default is one datum. 

control f 
VMS Usage: 
type: 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

An array of length three specifying the type of number representation 
used by the converter, the number of bits, and the external gain: 

control i(1) 

control_i(2) 

control_i(2) 

The number representation. You can designate binary or 
binary offset by specifying any nonzero integer. You can 
specify two's complement by specifying zero. 

The number of bits. Specify an integer between 6 and 
16, inclusive. Any number outside the range generates an 
error. Bits to be operated on are right-justified in the 16-bit 
word. Bits to the left of the data bits are filled with zeros 
in this translation. 

The external gain. This value is helpful when using pro-
grammable gain DACs. The gain factor divides into the 
voltage reading to reflect the actual voltage used. For exam-
ple, asignal of one volt is requested to DAC with a gain of 
four. The output of the DAC reads one volt. The voltage is 
divided by the gain factor to reflect the actual input voltage. 

Specify an integer between 1 and 20,000, inclusive. Any 
number outside the range generates an error. 

The default values are two's complement, 12 bits, and a gain of one. 
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range 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array containing two values specifying the range of data expressed 
as volts. The first value specifies the lowest voltage; the second value 
specifies the highest voltage. The default is -10 to 9.9951 volts. 

If the two values are equal, an error occurs. 

If you specify input data values greater than the maximum value or less 
than the minimum value of the range array, the out array contains the 
maximum or minimum values as set by the range array. For example, if 
you specify -20 volts but the range array specifies -10 as the minimum 
voltage, the out array contains the equivalent of -10. If you specify + 20 
volts but the range array specifies 9.9951 as the maximum voltage, the 
out array contains the equivalent of 9.9951 as the maximum voltage. 

status 
VMS Usage: 
type: 
access: 
mechanism: 

longword unsigned 
longword (unsigned) 
write only 
by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The LSP$FORMAT_TRANSLATE_DAC routine converts DAC floating-
point quantities in units of voltage to 16-bit word output format. 

See Section 1.2, Data Format Translation for ADCs and DACs, for 
further information. 
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Condition Values 
Symbolic Status Description 

LSP$ ILL CTROL 2_T 2nd control array entry is out of range 

LSP$_ILL CTROL 3_T 3rd control array entry is out of range 

LSP$_ILL N_RANGE n is out of range 

LSP$ ILL RANGE both entries in the range array are equal 

LSP$_1~~IAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$HIST_F 

The LSP$HIST_F routine performs interval histogram analysis with 
floating-point input. 

Format LSP$HIST_F (in, out, n, control, (info], (status]) 

Returns 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

Arguments 
!n 
VMS Usage: fioating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array of length n containing the values to be histogrammed. 

out 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the number of occurrences of the input data is 
returned. . The third entry in the control array determines the length of 
the out array. 

If the input and output arrays are the same, this generates an error. 
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n 

VMS Usage: longword_signed 
type: longword integer (signed} 
access: read only 
mechanism: by reference 

An argument specifying the number of data points used as input from 
the input array. This number must be greater than zero. 

control 

VMS Usage: floating_point 
type: F_fioating 
access: read only 
mechanism: by reference, array reference 

An array of length four specifying the following histogram analysis 
parameters: 

control(1) 

control(2) 

control(3) 

control(4) 

The first value specifies the lower limit of the first interval 
histogram element. This is the minimum range used for 
histogramming. If this value is equal to the second value in 
the array, an error occurs. 

The second value specifies the upper limit of the last 
interval histogram element. This is the maximum range 
used for histogramming. If this value is equal to the first 
value in the array, an error occurs. 

The third value specifies the total number of intervals. This 
number must be greater than zero. This value determines 
the length of the out array. 

The fourth value specifies the inclusion of the input data 
if the data is equal to the highest value (as specified in the 
second array entry) in the histogram: 

• The value 0.0 specifies omitting the input data from the 
histogram calculation. 

• Nonzero specifies including the input data in the 
histogram calculation. 

6-46 Signal-Processing Routine Call Reference Descriptions 



LSP$HIST F 

info 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference, array reference 

An array which produces two values specifying: 

1. The number of input data less than the minimum data value in-
cluded in the histogram calculation. 

2. The number of input data greater than the maximum data value 
included in the histogram calculation. The fourth entry in the 
control array determines this value. when the fourth entry is zero 
and the input data is equal to the second entry in the control array, 
then the data is considered out of range. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The LSP$HIST_F routine counts the number of floating-point data 
elements that fall into one or more predefined categories or limits. This 
routine can convert an array of data into a histogram representing the 
frequency of occurrence of the data in a window with defined limits. 

The LSP$HIST_F and LSP$HIST_I out array has the following format: 

control (2~ —control (1}
dx = 

control (3) 

where 

control(1), control(2}, and control(3) are the first, second, and third 
entries in the control array. 
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The out array has the following format: 

1st entry 

2nd entry 

kth entry 

The number of occurrences of input data greater than or 
equal to control(1), and less than ax plus control(1). 

The number of occurrences of input data greater than or 
equal to ax plus control(1), and less than (2 * ax) plus 
control(1). 

If k is not equal to control(3}, then the nurnber of occur-
rences of input data greater than or equal to ((k - 1) * ax) 
plus control(1), and less thank * d►x plus control(1). 

If control(4) is equal to 0 and k = control(3), then the 
number of occurrences of input data greater than or equal 
to ((k - 1) * ax) plus control(1), and less thank * ax plus 
control(1) is obtained. 

However, if control(4) is not equal to 0 and k = control(3), 
then the number of occurrences is determined by when the 
input data is greater than or equal to ((k - 1) * ax) plus 
control(1), and less than or equal to k * ax plus control(1). 

Condition Values 
Symbolic Status Description 

LSP$_ILL ARRAY input and output arrays cannot be the 
same 

LSP$ ILL_CTROL_1_H entries 1 and 2 in control array are equal 

LSP$_ILL_CTROL 3_H 3rd control array entry is less than 1 

LSP$_ILL N_RANGE n is out of range 

LSP$_I~~IAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$HIST_i 

The LSP$HIST_I routine performs interval histogram analysis with 
integer input. 

Format LSP$HIST_I (in, out, n, control i, (infoJ, ~statusJ) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
in 
VMS Usage: word_signed 
type: word signed) 
access: read only 
mechanism: by reference, array reference 

An array of length n containing the values to be histogrammed. 

out -
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference, array reference 

An array into which the number of occurrences of the input data is 
returned. The third entry in the control array determines the length of 
the out array. 

If the in and out arrays are the same, this generates an error. 
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n 
VMS Usage: 
type: 
access: 
mechanism: 

An argument 
the in array. 

control 1 
VMS Usage: 
type: 
access: 
mechanism: 

longword signed 
longword integer (signed) 
read only 
by reference 

specifying the number of data points used as input from 
This number must be greater than zero. 

longword signed 
longword integer (signed) 
read only 
by reference, array reference 

An array of to 
parameters 

control_i(1) 

control_i(2) 

control_i(3) 

control_i(4) 

ngth four specifying the following histogram analysis 

The first value specifies the lower limit of the first interval 
histogram element. This is the minimum range used for 
histogramrning. If this value is equal to the second value in 
the array, an error occurs. 

The second value specifies the upper limit of the last 
interval histogram element. This is the maximum range 
used for histogramming. If this value is equal to the first 
value in the array, an error occurs. 

The third value specifies the total number of intervals. This 
number must be greater than zero. This value determines 
the length of the out array. 

The fourth value specifies the inclusion of the input data if 
the data is equal to the highest value (as specified in value 
two) in the histogram: 

• The value 0 specifies omitting the input data from the 
histogram calculation. 

• Nonzero specifies including the input data in the 
histogram calculation. 
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info 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: write only 
mechanism: by reference, array reference 

An array containing two values specifying: 

1. The number of input data less than the minimum data value in-
cluded in the histogram calculation. 

2. The number of input data greater than the maximum data value 
included in the histogram calculation. The fourth entry in the 
control_i array determines this value. When the fourth entry is 
zero and the input data is equal to the second entry in the control_i 
array, then the data is considered out of range. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
See the Description section under the LSP$HIST F routine for details 
about the format of the LSP$HIST I routine out array. 
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Condition Values 
Symbolic Status Description 

LSP$_ILL_ARRAY input and output arrays cannot be the 
same 

LSP$ ILL CTROL_1_H entries 1 and 2 in control array are equal 

LSP$_ILL_CTROL 3_H 3rd control array entry is less than 1 

LSP$_ILL:  N_RA.NGE n is out of range 

LSP$_MAND_A.RG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$PHASE_ANGLE 

The LSP$PHASE_ANGLE routine calculates the phase angle and modu-
lus spectrum for data in one dimension. 

Format LSP$PHASE ANGLE (in, phaseout, modu/us_out, 
n, ~statusJ) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
!n 
VMS Usage: complex_number 
type: F_floating complex 
access: read only 
mechanism: by reference, array reference 

An array containing the complex output values from the FFT routine. 
This array is n entries long. 

phaseout 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array returning the phase angle of the input data. This array is n 
entries long and can be the same as the in array. 
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modulus out 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array returning the modulus of the input data. This array is n entries 
long and can be the same as the in array. 

The phaseout argument and the modulus_out argument can both be 
the same as the in argument. If both output arguments are the same as 
the input argument, the modulus appears in the array, and the phase 
angle information is lost. 

n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: 

ay reference 

An argument containing the number of complex input data points for 
which the phase angle and modulus are to be calculated. The value of 
n must be greater than or equal to 1. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 
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Description 
The LSP$PHASE ANGLE routine returns the phase angle and the vector 
resultant amplitude (modulus) of the signal whose Fourier transform h(t~ 
has been previously obtained. This routine performs the following 
calculations: 

pha~ f~) = arctan(Ii~R=) 

and 

where 

pha(fi) is the phase angle (in radians) of a signal with Fourier compo-
nents Ri and Il. 

Ri and Ii are the real and imaginary coefficients of the Fourier transform. 

r(fi)is the modulus of the signal. 

Note that i is an index in the above equation. 

Condition Values 
Symbolic Status Description 

LSP$_ILL ARRAY input and output arrays cannot be the 
same 

LSP$_ILL N_RANGE n is out of range 

LSP$_1~ZAND_ARG mandatory argument is missing 

LSP$ SUCCESS success 
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LSP$PHASE_ANGLE_2D 

The LSP$PHASE_ANGLE_2D routine computes the magnitude and 
phase of a complex, two-dimensional array for which the Fourier 
transform has been previously obtained. 

Format LSP$PHASE ANGLE 2D (in, outl, out2, nl, n2, 
(status]) 

Returns 
VMS _Usage: cond value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
In 
VMS Usage: complex_number 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing the data from which the phase angle and amplitude 
are calculated. This array is dimensioned n1 x n2. 

outl 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array into which the phase angle of the input data is returned. This 
array is dimensioned n1 x n2. 
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out2 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array into which the magnitude is returned. This array is dimen-
sioned nl x n2. 

n1 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of points in each row. This value 
must be greater than or equal to 1. 

n2 
VMS Usage: longword_signed 
type: longword integer (signed 
access: read only 
mechanism: by reference 

An argument containing the number of columns. This value must be 
greater than or equal to 1. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROI~. 
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Description 
The LSP$PHASE_ANGLE 2D routine returns the phase angle and 
the vector resultant amplitude (modulus) of the signal whose Fourier 
transform h(~ has been previously obtained. This routine performs the 
following calculations: 

pha{ fi ,j ) = arctan{I;,j ~R=,j 

and 

where 

pha(fi,j) is the phase angle (in radians) of a signal with Fourier compo-
nents Ri, ~ and Ii, ~ 
Ri,j and Ii,~ are the real and imaginary coefficients of the Fourier trans-
form 
r(fi,~) is the modulus of the signal 

Note that i and j are indices in the above equation. 

Condition Values 
Symbolic Status Descr~pt~on 

LSP$_ILL ARRAY input and output arrays cannot be the 
same 

LSP$_ILL N_RANGE n1 or n2 is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$POWER_SPECTRUM 

The LSP$PQWER_SPECTRUM routine calculates the power spectrum of 
equispaced data. 

Format LSP$POWER SPECTRUM (in, out, n, (status]) 

Returns. 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
in 
VMS Usage: compiex_number 
type: F_floating complex 
access: read only 
mechanism: by reference, array reference 

An array containing the complex output values from the FFT routine. 
This array is n entries long. 

out 
VMS Usage: floating_point 
type: F floating 
access: write only 
mechanism: by reference, array reference 

An array into which the power spectrum of the input data is returned. 
This array is n entries long and can be the same array as the in array. 

Signal-Processing Routine Call Reference Descriptions 6-59 



LSP$POWER SPECTRUM 

n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of complex input data points for 
which the power spectrum is to be calculated. The quantity n must be 
greater than or equal to 1. 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Description 
The power spectrum of a record of data can be estimated from a 
real-valued evenly-spaced sequence of data. The power spectrum is 
commonly defined as: 

P~f) = htf) * h* ~f) 

where 

h(f) is the Fourier transform of h(t). 
h*(f) is the complex conjugate of h(f). 

Separating the real and imaginary terms of both h(f) and h*(f) yields: 

~'( f =) _ {R= + j * ~_} * {R~ — j * fit) 

where 

Ri are the real components of the Fourier transform of h(ti}. 
Ii are the imaginary components of the Fourier transform of h(ti}. 
j is equal to the square root of -1. 

Note that i is an index in the above equation. 
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Multiplying the two terms on the right side of the equation yields: 

P~f~) _ ~Rt)2 + ~I+)2

The Fourier transform of areal-valued data record has a symmetry 
property whereby only half of the transform needs to be stored. When 
the nonstored portion of the forward real FFT is substituted into the 
equation, the same result is produced. Because of this symmetry, only 
the first (n/2) + 1 values need to be stored. 

As is the case with all FFT methods, the time axis is considered to be 
equally spaced with time increment at. The resulting frequency axis 
from the forward transformation is in increments kl(n at) 

where k = 0, 1, 2, 3, ... n-1, and n is the total number of points to be 
transformed. 

The routine LSP$POWER_SPECTRUM is called after performing a 
forward FFT on the input data. 

Condition Values 
Symbolic Status Description 

LSP$_ILL_N_RANGE n is out of range 

LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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LSP$SPECTRAL_WINDOWS 

The LSP$SPECTRAL_WINDOWS routine dynamically allocates a win-
dow function coefficient array, applies the coefficients to the input data, 
and stores the resulting windowed output data in an array. 

Format LSP$SPECTRAL_WINDOWS (in, out, n, 
window_type, 
(status]) 

Returns 
VMS Usage: 
type: 
access: 
mechanism: 

cond value 
longword (unsigned) 
write only 
by value 

Arguments 
In 
VMS Usage: floating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing the input data to be windowed. 

out 
VMS Usage: 
type: 
access: 
mechanism: 

floating_point 
F floating 
write only 
by reference, array reference 

An array into which the windowed output data is returned. The out 
array can be the same as the in array; then, the output array replaces 
the input array. 
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n 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument containing the number of data points to be windowed. 
The value of n must be greater than or equal to 1. 

window type 
VMS Usage: longword_signed 
type: longword integer (signed) 
access: read only 
mechanism: by reference 

An argument specifying the type of window to be used. The following 
is a list of possible window type values. 

Value W~ndow_Type 

LSP$K_BLACK:MAN Blackman 

LSP$K_HAMMING Hamming 

LSP$K_HANNING Harming 

LSP$K TRIANGLE Triangle 

LSP$K_WELCH Welch 

status 
VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 
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Description 
The LSP$SPECTRAL_WINDOWS routine automatically allocates a 
window function coefficient array, applies the coefficients to the input 
data contained in the in array, and stores the resulting windowed output 
data in the out array. See Chapter 4, Spectral Window Filtering, for 
more information about spectral windows. 

Condition Values 
Symbolic Status Description 

LSP$_ILL N_RANGE 

LSP$_MAND_ARG 

LSP$_ILL WINDOW TYPE 

LSP$_SUCCESS 

n is out of range 

mandatory argument is missing 

you specified an invalid window type 

success 
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LSP$THERMOCOUPLE_X 

The LSP$THERMOCOUPLE_X routine converts thermocouple voltages 
to temperatures. 

Format LSP$THERMOCOUPLE X (volts, tempc, (n], 
(status]) 

Returns 
VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Arguments 
volts 
VMS Usage: floating_point 
type: F_floating 
access: read only 
mechanism: by reference, array reference 

An array containing the voltages produced from the thermocouple 
device referenced to a cold junction. 

tempc 
VMS Usage: floating_point 
type: F_floating 
access: write only 
mechanism: by reference, array reference 

An array returning the temperatures in degrees Centigrade. 
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n 
VMS Usage: 
type: 
access: 
mechanism: 

longword_signed 
longword integer (signed) 
read only 
by reference 

An argument containing the number of data values to be converted. 
The default is 1. 

StBtUS 

VMS Usage: longword_unsigned 
type: longword (unsigned) 
access: write only 
mechanism: by reference 

An argument returning the status of the operation. If the status argu-
ment is omitted and an error occurs, the message is directed to both 
SYS$OUTPUT and SYS$ERROR. 

Descrip#ion 
Each thermocouple type has a unique routine associated with it. The 
X in the LSP$THERMOCOUPLE_X routine is a placeholder for the 
ANSI symbol that represents the thermocouple type. When you use 
the LSP$THERMOCOUPLE_X routine, substitute the ANSI symbol 
appropriate for the type of thermocouple for the X. The following 
thermocouple conversion routines are provided: 

LSP$THERMOCOUPLE_B 
LSP$THERMOCOUPLE_E 
LSP$THERMOCOUPLE_J 
LSP$THERMOCOUPLE_K 
LSP$THERMOCOUPLE_R 
LSP$THERMOCOUPLE_S 
LSP$THERMOCOUPLE_T 

See Chapter 5, Thermocouple Conversion, for information about 
converting thermocouple voltages to temperatures. 
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Condition Values 
Symbolic Status Description 

LSP$_ILL N_RANGE n is out of range 

LSP$_ILL_V RANGE a supplied voltage is out of range 
LSP$_MAND_ARG mandatory argument is missing 

LSP$_SUCCESS success 
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Chapter 7 

Laboratory Signal-Processing 
Error Handling 

This chapter describes the VAXIab Laboratory Signal-Processing (LSP) 
error-handling facility and explains the error messages and suggested 
recovery procedures. 

7.1 Overview 

The VAXIab software library provides an LSP error-message facility. 
When you execute an image that results in an error, the system option-
ally locates the error message associated with the error and directs it 
to the devices or files defined as SYS$ERROR and SYS$OUTPUT. The 
LSP routines use the same standards as the VMS Run-Time Library and 
System Services for passing back status information about routine calls. 

The VMS Run-Time Library and System Services return a status value 
which is passed back to the user program through a longword variable 
when the routine is called as a function. A successful operation returns 
an LSP success status code. An unsuccessful operation returns one of 
the LSP symbolic values with bit zero clear (false). 

In addition, you can use an optional argument in each routine call list to 
obtain the routine status. Again, a successful operation returns bit 0 set 
(true). 

If you call the routine as either a function or a subroutine, when an error 
condition exists and you do not include the optional status argument 
in the routine call, a message is directed to both SYS$OUTPUT and 
SYS$ERROR. 
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l~/ 
The symbolic status values are defined in definition files for each of the 
following program languages: 

Table 7-1: Error-Handling Symbolic Status Definition Files 
Language Symbolic Status Definition File 

VAX Ada 

VAX BASIC 

VAX C 

VAX FORTRAN 

VAX MACRO 

VAX PASCAL 

SYS$LIBRARY: LSPDEF.ADA 

SYS$LIBRARY :LSPDEF. BAS 

SYS$LIBRARY:LSPDEF. H 

SYS$LIBRARY: LSPDEF. FOR 

SYS $LIBRARY :LSPDEF .MAR 

SYS $LIBR.ARY :LSPDEF. PAS 

See Section 7.3, Symbolic Status Values and Descriptions, fora descrip-
tion of the symbolic status values. 

7.2 Checking Routine Call Status 

A user program can check the status of routine calls in the following 
three ways 

• By testing for status after each operation and, upon receipt of any 
condition other than success, signaling the condition value to the 
device or file defined as SYS$ERROR. 

C Do the inverse FFT on the complex data. Include the statue argument 
C in the routine call argument list: 

INTERGER*4 STATUS 
ISTAT = LSP~FFT_COMPLEX(AN_H_OF_K,CN_H_OF_T,8,1,STATUS) 
IF(.NOT. STATUS) CALL LIB~SIGNAL(XVAL(STATUS)) 

• By testing status after each operation for a specific condition value. 

INCLUDE 'SYS=LIBRARY:LSPDEF.FOR ! Get symbolic status definitions 
INTERGER*4 STATUS 

C Do the real FFT and replace the input array rith the output array. 
C The LSP routine returns the status. 

ISTAT = LSP~FFT_REAL(SIG,SIG,N,O,STATUS) 
IF(STATUS .NE. LSP=_SUCCESS) CALL LIB;SIGNAL(XVAL(STATUS)) 
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NOTE 

If your program is coded to check for specific condition 
values after one or more operations, you must include 
the symbolic status definition file appropriate for your 
programming language. The VAXIab-supplied symbolic 
status definition files are listed in Table 4-1, Error-
Handling Symbolic Status Definition Files. If you do 
not include the symbolic definition file, your program will 
not recognize these values. 

This program segment tests if status is not equal to success. If status 
is not equal to success, the routine signals the status. If status equals 
success, program execution continues. 

• By omitting the status argument. If you omit the status argument 
and an error occurs, the message is directed to both SYS$ERROR 
and SYS$OUTPUT. 

C Calculate the phase spectrum in the CA_PHASE array and the modulus in the 
C CA_MODULUS array. 

CALL LSP=PHASE_ANGLE(Y,CA_PHASE,CA_MODULUS,N,) 

7.3 Symbolic Status Values and Descriptions 

This section presents the LSP symbolic status values and error messages 
with an explanation of each value and the appropriate user action 
suggested to recover from each error condition. 

If LSP displays an error message: 

• Check the error message Explanation and User Action information 
listed in this section. 

• Check your program to make sure that all data is being passed 
correctly. 
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LSP$_ILL_ARRAY, Input and output arrays cannot be the same 

Explanation: You made an LSP call specifying the input array and the 
output array as the same array. The input and output arrays cannot be 
the same. 

User Action: Specify different input and output arrays. 

LSP$_ILL_CTROL_1_H, Entries 1 and 2 in control array are equal 

Explanation: You made a call to one of the LSP$HIST_x routines and 
specified equal values for the first and second entries of the control 
array argument. 

The first value specifies the lower limit of the first interval histogram 
element. The second value specifies the upper limit of the last interval 
histogram element. If the first value is equal to the second value, an 
error occurs. 

User Action: Specify different lower and upper limit values for the first 
and second entries of the control array argument. 

LSP$_ILL_CTROL_3_H, 3rd control array entry is less than 1 

Explanation: You made a call to one of the LSP$HIST_x routines and 
specified a value less than or equal to zero for the third entry of the 
control array argument. 

The third entry specifies the total number of histogram intervals. This 
number must be greater than zero. 

User Action: Replace the current entry for the third value of the control 
array argument with a value greater than zero. 

LSP$_ILL_CTROL_2_T, 2nd control array entry is out of range 

Explanation: You made a call to one of the LSP$FORMAT_TRANSLATE_x 
routines and specified a value that is out of range for the second entry 
of the control_i array argument. 

The second entry specifies the number of bits. This number must be 
between 6 and 16, inclusive. Any number outside this range generates 
an error. 

User Action: Replace the current entry for the second value of the 
control_i array argument with an integer between 6 and 16, inclusive. 
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LSP$_ILL_CTROL_3_T, 3rd control array entry is out of range 

Explanation: You made a call to one of the LSP$FORMAT_TRANSLATE_x 
routines and specified a value that is out of range for the third entry of 
the control_i array argument. 

The third entry specifies the external gain. This number must be an 
integer between 1 and 20,000, inclusive. Any number outside of the 
range generates an error. 

User Action; Replace the current entry for the third value of the 
control_i array argument with an integer between 1 and 20,000, inclu-
sive. 

LSP$_ILL_F_RANGE, Flow or fhigh is out of range 

Explanation: You made a call to the LSP$FILTER_NONREC routine and 
specified a value for the flow or the fhigh argument that is out of range. 

The flow argument represents the lower frequency of the filter and the 
(high argument represents the upper frequency of the filter. The value 
for either argument must be between 0.0 and 1.0, inclusive. 

User Action: Replace the current entry for the flow argument or the 
fhigh argument with a value between 0.0 and 1.0, inclusive. 

LSP$_ILL_FILTYP, filtyp is out of range 

Explanation; You made a call to one of the LSP$FILTER_POLY_x 
routines and specified a value for the filtyp argument that is outside of 
the range of supported values for this LSP function. 

User Action: Replace the current entry for the filtyp argument with 
a legal filtering type value. See the appropriate LSP$FILTER_POLY_x 
routine call reference description for a list of available filter types. 

LSP$_ILL_FLOW, flow is equal to fhigh 

Explanation: You made a call to the LSP$FILTER_NONREC routine and 
specified the flow argument equal to the fhigh argument. 

User Action; Provide different values for the flow argument and the 
fhigh argument so that flow is not equal to fhigh. 
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LSP$_ILL_N_FILTER, Too few data points per filter window 

Explanation: You made a call to one of the LSP$FILTER_P~LY_X 
routines and specifed an incorrect value for the n argument. 

User Action: Specify a number of data points for the n argument that 
is greater than the number of data points specified for the filter window 
you are using. 

LSP$_ILL_N_NONREC, n is less than 2*nterms + 1 

Explanation: You made a call to the LSP$FILTER_NONREC routine and 
specified the n argument less than or equal to the value of nterms*2 + 1. 

The n argument contains the number of data values to be filtered. This 
value must be greater than the value of nterms*2 + 1. Any number less 
than or equal to this value generates an error. 

User Action: Replace the current value of n with a value greater than 
the value of nterms*2 + 1, or make the value of nterms smaller. 

LSP$_ILL_N_NOT_2, n is not a power of 2 

Explanation: You made a call to one of the fast Fourier transform 
routines or the LSP$CORRELATION routine and specified an incorrect 
value for the the n argument, the nl argument, or the n2 argument. 

If you are using LSP$CORRELATION routine, LSP$FFT_COMPLEX 
routine, or LSP$FFT_REAL routine, you specified an incorrect value for 
the n argument. 

If you are using LSP$FFT_COMPLEX_2D routine, you specified an 
incorrect value for the nl argument or the n2 argument. 

For LSP$CORRELATION, LSP$FFT_COMPLEX, or LSP$FFT_REAL, the 
value of the n argument must be a power of 2 and range between 2 and 
32,768. In this case n = 2"z, where m is between 1 and 15, inclusive. 
The power of 2 restriction also applies to the LSP$FFT_COMPLEX_2D 
routine. 

User Action: Replace the current value of n, nl, or n2 with a power 
of 2 value between 2 and 32,768, inclusive. For more information on 
discrete Fourier transform and correlation functions, see Chapter 2, 
Performing Fourier Transforms and Correlation Functions. You can also 
refer to the routine call reference sections for each of the four routines. 
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LSP$_ILL_N_RANGE, n is out of range 

Explanation: You entered an incorrect value for the n argument. The 
value of n can not be less than or equal to zero. 

User Action: Check the routine call reference description for the 
allowed range of values for the n argument. 

LSP$_ILL_NTERMS, nterms is out of range 

Explanation: You made a call to the LSP$FILTER_NONREC routine 
and specified an incorrect value for the nterms argument. The value of 
nterms must be between 2 and 500, inclusive. Any number outside this 
range generates an error. 

User Action: Replace the current value of the nterms argument with a 
variable between 2 and 500, inclusive. 

LSP$_ILL_RANGE, Both entries in the range array are equal 

Explanation: You made a call to the LSP$FORMAT_TRANSLATE_ADC 
routine or the LSP$FORMAT_TRANSLATE_DAC routine and specified 
the same number for both the first and second values of the range 
argument. 

The first value specifies the lowest voltage; the second value specifies 
the highest voltage. The default range is -10 to 9.9951 volts. If the two 
values are equal, an error occurs. 

User Action: Adjust the first and second values of the range argument 
accordingly. See the appropriate routine call reference description for 
more information about the range argument. 

LSP$_ILL_V_RANGE, A supplied voltage is out of range 

Explanation: You made a call to one of the LSP$THERMOCOUPLE_X 
routines and specified an incorrect value for the volts argument. 

User Action: Replace the current value of the volts argument with a 
value from Table 5-2, Thermocouple Temperature and Voltage Ranges. 
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LSP$_ILL_WIGGLES, wiggles is out of range 

Explanation: You made a call to the LSP$FILTER_NONREC routine and 
specified an incorrect value for the wiggles argument. 

The wiggles argument is a number in -dB units which is proportional 
to the oscillation from the Gibbs Phenomenon. This number must be 
between 0.0 and 100.0, inclusive. 

User Action: Replace the current value of the wiggles argument 
with a number between 0.0 and 100.0, inclusive. See Section 3.1.2, 
Nonrecursive Filtering, for more information about the wiggles argu-
ment. 

LSP$_ILL_WINDOW_TYPE, invalid window type specified 

Explanation: You made a call to the LSP$SPECTRAL_WINDOWS 
routine or the LSP$BUILD_WINDOW_TABLE routine and specified an 
incorrect value for the window_type argument. 

User Action: Replace the current value of the window_type argu-
ment with one of the five window type values listed in the routine call 
reference description for that routine. 

LSP$_MAND_ARG, Mandatory argument is missing 

Explanation: You omitted a mandatory argument in an LSP routine call. 

User Action: Review your program for missing or defaulted arguments. 

LSP$_SUCCESS, Success 

Explanation: Your routine executed successfully. 

User Action: No action required. 
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Chapter 8 

Overview of Online Sample 
Programs 

This chapter provides an overview of sample programs showing how 
to use the Laboratory Signal-Processing routines. These programs are 
shipped with your VAXIab software kit and are placed on disk during 
the VAXIab software installation procedure. You can find the LSP 
sample programs in a directory with the logical name LSP$EXAMPLES. 
The logical name of this directory is defined in LSPSTARTUP.COM 
during installation. 

The LSP sample program file names include: 

• the facility code, LSP 

• a descriptive abbreviation for the LSP routine or task the sample 
program illustrates 

• a file extension indicating the programming language in which each 
sample program is coded 

For example, the sample program LSP_FFT_RAND_DAT.FOR uses the 
LSP$FFT_REAL routine, shows how to perform a fast Fourier transform 
of random data stored in an array, and is written in VAX FORTRAN. 

Table 8-1, LSP Online Sample Programs, lists the sample program 
names, the routines each sample program uses, and a brief description 
of what each sample program does. Review Table 8-1 to determine 
which of the sample programs will be helpful to you in learning how to 
use the LSP routines. 
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In order to print, edit, or read a sample program you must copy the 
program to your own directory. To copy a sample program, in this 
case LSP_FFT_RAND_DAT.FOR, to your directory, enter the following 
command line: 

=COPY LSPSEXAMPLES:LSP_FFT_AAND_DAT.FOA *.* RETURN 

Table 8-1: LSP Online Sample Programs 
Program Name Routines 

LSP_AUTOCOR_RAND_SEQ.FOR LSP$CORRELATION 
LSP$FFT_REAL 
LGP$TABLE_MODIFY 
LGP$PLOT 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_AUTOCOR_RAND_SEQ.FOR demonstrates 
the use of the LSP$CORRELATION routine by autocorrelating arandom 
sequence. 

LSP_CALC_COMP_PHA.SE_SPEC.FOR LSP$PHASE_ANGLE 

Description: Sample program LSP_CALC_COMP_PHASE_SPEC.FOR demon-
strates the use of the LSP$PHASE_ANGLE routine by generating a phase 
spectrum where the phase is known analytically. The program-generated phase 
spectrum is then compared to the analytical function. 

LSP_CALC_PHASE_SPEC.FOR LSP$PHASE_ANGLE 

Description: Sample program LSP_CALC_PHASE_SPEC.FQR demonstrates the 
use of the LSP$PHASE_ANGLE routine by computing the phase spectrum of a 
function whose phase and amplitude are known analytically. 

LSP_CROSSCOR_SINE_COSINE.FOR LSP$CORRELATION 
LSP$FFT_REAL 
LGP$TABLE_MODIFY 
LGP$PLOT 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_CROSSCOR_SINE_COSINE.FOR demon-
strates the use of the LSP$CORRELATION routine by cross-correlating a sine 
and cosine waveform. 

LSP_FFT_COMP_FORW.FQR LSP$FFT_COMPLEX 

Description: Sample program LSP_FFT_COMP_FORVV.FOR demonstrates the 
use of the LSP$FFT_COMPLEX routine by calculating the forward Fourier 
transform of a complex function. 
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Table 8-1 (Cont.): LSP Online Sample Programs 
Program Name Routines 

LSP_FFT_COMP_INVER.FOR LSP$COMPLEX 

Description: Sample program LSP_FFT_COMP_INVER.FOR demonstrates the 
use of the LSP$FFT_COMPLEX routine by calculating the inverse Fourier 
transform of a complex function . 

LSP_FFT_FUNC. FOR LSP$FFT_REAL 

Description: Sample program LSP_FFT_FUNC.FOR demonstrates the use of 
the LSP$FFT_REAL routine by calculating the fast Fourier transform of the 
function: h(t) = Q**t where Q = 0.9 and t = 0, 1, 2, ... N-1. 

LSP_FFT_RAND_DAT.FQR LSP$FFT_REAL 

Description: Sample program LSP_FFT_RAND_DAT.FQR demonstrates the use 
of the LSP$FFT_REAL routine by performing a fast Fourier transformation on 
eight points stored in an array. 

LSP_FILT_NONREC.FQR LSP$FILTER_NONREC 
LGP$PLOT 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_FILT_NONREC.FOR demonstrates the 
use of the LSP$FILTER_NONREC routine in lowpass and highpass mode by 
creating a sine wave of period 2 ~ and modulating this waveform with a smaller 
amplitude sine wave which oscillates 40 times faster. The program filters in 
lowpass mode to get the primary sine wave and outputs it to an array. The 
program filters in highpass mode to get the higher frequency signal and outputs 
it to another array. See Chapter 3, Digital Filtering, for a copy of this sample 
program and the graphical output it produces. The sample program is coded in 
VAX FORTRAN. 

LSP_FILT_NONREC.PAS LSP$FILTER_NONREC 
LGP$PLOT 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_FILT_NONREC.PAS demonstrates the 
use of the LSP$FILTER_NONREC routine in lowpass and highpass mode by 
creating a sine wave of period 2 ~ and modulating this waveform with a smaller 
amplitude sine wave which oscillates 40 times faster. The program filters in 
Iowpass mode to get the primary sine wave and outputs it to an array. The 
program filters in highpass mode to get the higher frequency signal and outputs 
it to another array. The sample program is coded in VAX Pascal. 
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Table 8-1 (Cont.): LSP Online Sample Programs 

Program Name Routines 

LSP_FILT_POLY.FOR LSP$FILTER_POLY 

Description: Sample program LSP_FILT_POLY.FOR demonstrates the use of the 
LSP$FILTER_POLY routine by using this routine to smooth program-generated 
data. 

LSP_FILT_POLY_1ST_DERIV.FOR LSP$FILTER_POLY_1ST_DERIV 

Description: Sample program LSP_FILT_POLY_1ST_DERIV,FOR demonstrates 
the use of the LSP$FILTER POLY_1ST_DERIV by creating a table of a function 
and its analytical first derivation. The program passes the function values 
through the first derivative filter and subsequently compares the results of the 
analytical first derivative to the program-generated first derivative. 

LSP_FORM_TRANS ADC.FOR LSP$FORMAT_TRA.NSLATE_ADC 

Description: Sample program LSP_FORM_TRANS_ADC.FQR demonstrates 
the use of the LSP$FORMAT_TRA.NSLATE_ADC routine by converting two's 
complement data in an input array to voltage data which is written to an 
output array. 

LSP_FORM_TRANS_DAC.FOR LSP$FORMAT_TRANSLATE_DAC 

Description: Sample program LSP_FORM_TRANS_DAC.FOR demonstrates the 
use of the LSP$FORMAT_TRANSLATE_DAC routine by converting data (in 
volts) in an input array to offset binary format data which is written to an 
output array. 

LSP_HIST_F. FOR LSP$HIST_F 
LGP$PLOT 
LGP$HIST 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_HIST_F.FOR demonstrates the use of 
LSP$HIST_F by performing interval histogram analysis with program-generated 
floating-point data. 

LSP_HIST_I. FOR LSP$HIST_I 
LGP$PLOT 
LGP$HIST 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_HIST_I.FOR demonstrates the use of the 
LSP$HIST_I routine by performing interval histogram analysis with a given set 
of integer data. 
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Table 8-1 (Copt.): LSP Online Sample Programs 

Program Name Routines 

LSP_PHASE_ANG.FOR LSP$FFT_COMPLEX_2D 
LSP$PHASE_ANGLE_2D 
LGP$3D SIMPLE 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_PHASE_ANG.FOR demonstrates the use of 
the LSP$FFT_COMPLEX_2D routine and the LSP$PHASE_ANGLE_2D routine 
by calculating the fast Fourier transform of a complex two-dimensional function 
and then computing the phase angle and magnitude. 

LSP_POW SPEC_SINE. C LSP$FFT_REAL 
LSP$POWER_SPECTRUM 

Description: Sample program LSP_POW SPEC_SINE. C demonstrates the use of 
the LSP$POWER_SPECTRUM routine by computing the power spectrum of a 
sine wave of one period. The sample program is coded in VAX C. 

LSP_POW SPEC_SINE.FOR LSP$FFT_REAL 
LSP$POwER_SPECTRUM 

Description: Sample program LSP_POW SPEC_SINE.FOR demonstrates the use 
of the LSP$POWER_SPECTRUM routine by computing the power spectrum of a 
sine wave of one period. The sample program is coded in VAX FORTRAN. 

LSP_THERMOC B.FOR LSP$THERMOCOUPLE_B 

Description: Sample program LSP_THERMOC_B.FOR demonstrates the use 
of the LSP$THERMOCOUPLE_B routine by converting voltage values to 
temperatures. 
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Table S-1 (Cont.): LSP Online Sample Programs 

Program Name Routines 

LSP_WINDOW 1.FOR LIO$ATTACH 
LIO$DETACH 
LIO$READ 
LIO$SET 
LIO$WRITE 
LSP$APPLY_WINDOW TABLE 
LSP$BUILD_WINDOW TABLE 
LSP$FFT_REAL 
LSP$FORMAT_TRANSLATE_ADC 
LGP$PLOT 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_WTNDOW 1.FOR demonstrates the use of 
the LSP$BUILD_WINDOW_TABLE routine, the LSP$APPLY_WINDOW_TABLE 
routine, and the periodogram technique of calculating the power spectrum. See 
Chapter 4, Spectral Window Filtering, for a copy of this sample program and 
the output it produces. 

LSP_WINDOW 2.FOR LIO$ATTACH 
LIO$DETACH 
LIO$READ 
LIO$SET 
LIO$WRITE 
LSP$SPECTRAL_WINDOWS 
LSP$FFT_REAL 
LSP$FORMAT_TRANSLATE_ADC 
LSP$POWER_SPECTRUM 
LGP$PLOT 
LGP$TERMINATE_PLOT 

Description: Sample program LSP_WINDOW 2.FOR illustrates the use of the 
LSP$SPECTR.AL_WINDOWS routine by collecting data with LIO; translating the 
data format from analog to digital; performing an FFT on the data; calculating 
the power spectrum of the data; running the data through aloes-pass filter 
and plotting the results; and running the data through ahigh-pass filter and 
plotting the results. See Chapter 4, Spectral Window Filtering, for a copy of 
this sample program and the output it produces 
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Appendix A 

Mathematics and Statistics 
Routines 

This chapter provides an overview and summary of the routines you use 
to perform mathematical and statistical analysis of real-time and static 
data. This chapter also provides information about how to print a hard 
copy of the document describing how to use these routines. 

NOTE 

Please note, the Scientific Subroutines Package (SSP) is 
included in the VAXIab Software Library at no cost to the 
purchaser. DIGITAL does not provide any support for SSP. 

A.1 Overview of Mathematics and Statistics Routines 

To perform mathematical and statistical analysis of real-time and 
static data, you use the routines provided in the Scientific Subroutines 
Package (SSP). The Scientific Subroutines Programmer's Reference Manual 
describes how to use the SSP routines. This document is shipped 
in machine-readable form (there is no hardcopy manual) and is 
put on-line during the VAXIab software installation procedure. You 
need to print a hard copy of this document to use the SSP routines. 
The Scientific Subroutines Programmer's Reference Manual is located in 
SYS$SYSROOT: [UNSUPPORTED. SSP]SSP_GUIDE.MEM. 

The following sections summarize the mathematics and statistics rou-
tines available to you. 
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A.2 Mathematics Routine Call Summary 

The following table summarizes the mathematics routines. 

Table A-1: VAXIab Mathematics Routine Call Summary 
Routine Function 

ARRAY Converts a data array from single to double dimension, or 
from double to single dimension. 

BESI Computes the I Bessel function for a given argument and order 
using series or asymptotic approximation. 

BESJ Computes the j Bessel function for a given argument and order 
using recurrence-relation technique. 

BESK Computes the K Bessel function for a given argument and 
order using series approximation and recurrence relations. 

BESY Computes the Y Bessel function for a given argument and order 
using recurrence relations and polynomial approximations. 

CADD Adds a column of one matrix to the column of another matrix. 

CCPY Copies a column of a matrix into a vector. 

CCUT Partitions a matrix between specified columns to form two 
resultant matrices. 

CEL1 Computes the complete elliptic integral of the first kind using 
Landens transformation. 

CEL2 Computes the generalized complete elliptic integral of the 
second kind. 

CINT Interchanges two columns of a matrix. 

CS Computes the Fresnel integrals using rational function approxi-
mations. 

CSRT Sorts columns of a matrix. 

CSUM Sums the elements of each column of a matrix to form a row 
vector. 

CTAB 

CTIE 

Adds the columns of one matrix into a new matrix in the 
columns specified by a floating-point number in the respective 
row of the input vector. 

Adjoins two matrices with the same row dimensions to form 
one resultant matrix. 

A~2 Mathematics and Statistics Routines 



Table A-1 (Cont.): VAXIab Mathematics Routine Call Summary 

Routine Function 

DCLA Sets each diagonal element of a matrix equal to a scalar. 

DCPY Copies the diagonal elements of a matrix into a vector. 

EIGEN Computes the eigenvalues and eigenvectors of a real symmetric 
matrix. 

EXPI Computes the exponential integral -EI(-X) using three different 
rational approximations. 

FORIF Computes the coefficient of the desired number of terms in the 
Fourier Series F(X) = A(0) + SUM(A(K)COS KX + B(K)SIN KX), 
where K = 1, 2, ... M, to approximate the computed values of 
a given function subprogram. 

FORIT Computes the coefficients of a specified number of terms in 
the Fourier Series to approximate a given set of periodically 
tabulated values of a function. 

GAMMA Computes the GAMMA function for a given argument using 
the recursion relation and polynomial approximation. 

GMADD Adds two general matrices to form a resultant matrix. 

GMPRD Multiplies two general matrices to form a resultant general 
matrix. 

GMSUB Subtracts one general matrix from another general matrix to 
form a resultant general matrix. 

GMTRA Transposes a general matrix. 

GTPRD Premultiplies a general matrix by the transpose of another 
general matrix. 

LEP Computes the values of the Legendre polynomials P(N, X) for 
argument value X and orders 0 to N. 

LOC Computes a vector subscript for an element in a matrix of 
specified storage mode. 

MADD Adds two matrices to form a resultant matrix. 

MATA Premultiplies a matrix by its transpose to form a symmetric 
matrix. 

MCPY Copies an entire matrix. 

MFUN Applies a function to each element of a matrix to form a 
resultant matrix. 

MINV Inverts a matrix and calculates its determinant. 
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Table A-1 (Cont.): VAXIab Mathematics Routine Call Summary 

Routine Function 

MPRD Multiples two matrices to form a resultant matrix. 

MSTR Changes the storage mode of a matrix. 

MSUB Subtracts one matrix from another matrix, element by element, 
to form a resultant matrix. 

MTRA Transposes a matrix. 

PADD Adds two polynomials. 

PADDM Multiples a polynomial by a constant and adds the result to 
another polynomial. 

PCLD Performs complete linear synthetic division (shift of origin), 

PDIV Divides one polynomial by another. 

PGCD Determines the greatest common divisor of two polynomials. 

PILD Evaluates a polynomial and its first derivative for a given 
argument. 

PINT Determines the integral of a polynomial with a constant of 
integration equal to zero. 

PMPY Multiples two polynomials. 

PN~RM Normalizes coefficient vector of a polynomial. 

PQSD Performs quadratic synthetic division of a polynomial. 

PSUB Subtracts one polynomial from another polynomial. 

PVAL Evaluates a polynomial for a given value of the variable. 

PVSUB Substitutes a polynomial for the variable of another polyno-
mial. 

PQLRT Determines the real and complex roots of a real polynomial 
using the Newton-Raphson iterative technique. 

QATR Uses Romberg's extrapolation method to approximate the 
integral of a given function by trapezoidal rule. 

QSF Computes the vector of integral values for a given equi-
distant table of function values. 

RADD Adds a row of one matric to the row of another matrix. 

RCPY Copies a row of a matrix into a vector. 

RCUT Partitions a matrix between specified rows to form two 
resultant matrices. 
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Table A-1 (Cont.j: VAXiab Mathematics Routine Catl Summary 
Routine Function 

RECP Calculates the reciprocal of an element. 

RINT Interchanges two rows of a matrix. 

RK1 Integrates afirst-order differential equation up to a specified 
final value. 

RK2 Integrates afirst-order differential equation by Runge-Kutta 
and produces a table of the integrated values. 

RKGS Solves a system of first-order ordinary differential equations 
with initial values by the Runge-Kutta method. 

RSRT Sorts the rows of a matrix. 

RSUM Sums the elements of each row of a matrix to form a column 
vector. 

RTAB Adds the rows of one matrix into a new matrix in the rows 
specified by a floating-point number in the respective row of 
the input vector. 

RTIE Adjoins two matrices with the same column dimension to form 
one resultant matrix. 

RTMI Solves the general nonlinear equation of the form FCT(X) = 0 
using Mueller's iteration method. 

RTNI Solves the general nonlinear equation of the form FCN(X) = 0 
using Newton's iteration method. 

RTWI Solves the general nonlinear equation of the form FCT(X) = 0 
using Wegstein's iteration method. 

SADD Adds a scalar to each element of a matrix to form a resultant 
matrix. 

SCLA Sets each element of a matrix equal to a given scalar. 

SCMA Multiplies a column of a matrix by a scalar and adds the 
product to another column of the same matrix. 

SDIV Divides each element of a matrix by a scalar to farm a resultant 
matrix. 

SICI Commutes the sine and cosine integrals, where 
SI(x) = integral(Sin(X) I X)-PI12, and 
CI(x) = integral(Cos(X)! X) . 

SIMQ Solves a set of simultaneous linear equations, AX = B. 
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Table A-1 (Cont.~: VAXIab Mathematics Routine Call Summary 
Routine Function 

SMPY Multiplies each elernent of a matrix by a scalar to form a 
resultant matrix. 

SRMA Multiplies a row of a matrix by a scalar and adds the product 
to another row of the same matrix. 

SSUB Subtracts a scalar from each element of a matrix to form a 
resultant matrix. 

TPRD Transposes and then postmultiplies a matrix by another matrix 
to form a resultant matrix. 

XCPY Copies a specified submatrix from a matrix. 
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A.3 Statistics Routine Call Summary 

The following table summarizes the statistics routines. 

Table A-2: VAXIab Statistics Routine Call Summary 

Routine Function 

ABSNT Tests for missing (or zero) values for each observation in a 
general matrix. 

AUTO Determines the autocovariances of a series A for lags 0 to 
L-1. 

AVCAL Performs the calculus of a factorial experiment using 
operator sigma and operator delta. The AVCAL routine 
is preceded by the AVDAT routine and succeeded by the 
MEANQ routine in analyzing variance for a complete 
factorial design. 

AVDAT Places data for variance analysis in properly distributed 
positions of storage. The AVDAT routine precedes the 
AVCAL and MEANQ routines when analyzing variance for 
a complete factorial design. 

BOUND Selects from a set (or subset) of observations, the number 
of observations under, between, and over two given bounds 
for each variable. 

CANOR Calculates the canonical correlations between two sets of 
variables. CANOR is normally preceded by a call to the 
CORRE routine. 

CHISQ Computes the chi-square from a contingency table. 

CORRE Computes means, standard deviations, sums of cross-
products of deviations, and correlation coefficients. This 
routine is normally used in a sequence of calls to the 
routines CORRE, EIGEN, TRACE, LOAD, and VARMX 
when performing a factor analysis. 

CROSS Determines the cross-covariances of a series A with a series 
B that leads and lags A. 

DISCR Computes a set of linear functions that are indices for 
classifying an individual into one of several groups. This 
routine is normally used when performing discriminant 
analysis. 
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Table A-2 (Cont.): VAXIab Statistics Routine Call Summary 
Routine Function 

DMATX Computes means of variables in each group and a pooled 
dispersion matrix for all the groups. This routine is nor-
mally used to perform discriminant analysis. 

EXSMO Determines the triple exponential smoothed series S of the 
given series X. 

GAUSS Computes a normally distributed random number with a 
given mean and standard deviation. 

GDATA Generates independent variables up to the Mth power (the 
highest degree polynomial specified) and computes means, 
standard deviations, and correlation coefficients. This 
routine normally precedes the ORDER, MINV, and MULTR 
routines when performing polynomial regression. 

KRANK Tests the correlation between two variables by the Kendall 
rank correlation coefficient. 

LOAD Computes a factor matrix (loading) from eigenvalues and 
associated eigenvectors. This routine is normally used in a 
sequence of calls to the routines CORRE, EIGEN, TRACE, 
LOAD, and VARMX when performing a factor analysis. 

MEANQ Computes sum of squares, degrees of freedom, and mean 
square using the mean square operator. This routine 
normally succeeds the AVDAT and AVCAL routines when 
analyzing variance for a complete factorial design. 

MOMEN Determines the first four moments for grouped data on 
equal class intervals. 

MULTR Performs a multiple linear regression analysis fora de-
pendent variable and a set of independent variables. 
This .routine is normally used to perform multiple and 
polynomial regression analyses. 

NROOT Computes the eigenvalues and eigenvectors of a real non-
symmetric matrix of the form B-inverse times A. This routine 
is normally called by the CANOR routine when performing 
a canonical correlation analysis. 

ORDER Constructs a subset matrix of intercorrelations among 
independent variables and a vector of intercorrelations 
of independent variables with a dependent variable from 
a larger matrix of correlation coefficients. This routine 
is normally used to perform multiple and polynomial 
regression analyses. 
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Table A-2 (Cont.): VAXIab Statistics Routine Call Summary 
Routine Function 

QTEST Tests whether three or more matched groups of dichoto-
mous data differ• significantly by the Cochran Q-test . 

RANK Ranks a vector of values. The RANK routine assigns tied 
values to the average rank. 

SMO Smooths or filters series A by weights W. 

SRANK Tests the correlation between two variables by the 
Spearman rank correlation coefficient . 

SUBMX Builds a subset matrix. Based on vector S derived from rou-
tine SUBST or ABSNT, SUBMX copies from a larger matrix 
of observation data a subset matrix of those observations 
which have satisfied a certain condition. 

SUBST Derives a subset vector indicating which observations in a 
set have satisfied certain. conditions on the variables. 

TAB1 Tabulates for one variable in an observation matrix (or 
a matrix subset) the frequency and percent over given 
class intervals. In addition, the TAB1 routine calculates 
for the same variable the total, mean, standard deviation, 
minimum, and maximum. 

TAB2 Performs atwo-way classification for two variables in an 
observation matrix (or matrix subset) of the frequency, 
percent frequency, and other statistics over given class 
intervals. 

TALLY Calculates the total, mean, standard deviation, minimum, 
and maximum for each variable in a set (or subset) of 
observations. 

TIE Calculates the correction factor resulting from rank ties. 

TRACE Computes the cumulative percentage of eigenvalues greater 
than or equal to a specified constant. This routine is 
normally used in a sequence of calls to the routines CORRE, 
EIGEN, TRACE, LOAD, and VARMX when performing a 
factor analysis. 

TTSTT Determines certain T-statistics on the means of populations. 

TWOAV Tests whether samples are from the same population by 
using the Friedman two-way analysis of variance test . 
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Table A-2 (Copt.): VAXIab Statistics Routine Call Summary 
Routine Function 

UTEST Determines whether two independent groups are from the 
same population by using the Mann-Whitney U-test. 

VARMX Performs orthogonal rotations of a factor matrix. This 
routine is normally used in a sequence of calls to the 
routines CORR~, EIGEN, TRACE, LOAD, and VARMX 
when performing a factor analysis. 

WTEST Tests the degree of association among a number of variables 
by using the Kendall coefficient of concordance. 
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Appendix B 

The Peak-Processing Routine 

The peak-processing routine detects significant fluctuations, called 
peaks, in data describing a waveform, and reports definitive characteris-
tics for each peak found. The process is known as peak analysis. 

This appendix explains how to build the peak-processing (PEAK) rou-
tine, provides an overview of its functionality and use, and details how 
to create a FORTRAN program that calls the PEAK routine under the 
VMS operating system. 

NOTE 

The Peak-Processing Package (PEAK) is included in the 
VAXIab Software Library at no cost to the purchaser. 
DIGTTAL does not provide support for the PEAK routine. 

B.1 Building the PEAK Routine 

The PEAK routine is installed on your system as part of the VAXIab 
installation procedure. However, before you can use the PEAK routine, 
you need to build it. During the build procedure, you can enable an 
option as characteristics of -the routine, or you can build the routine 
without the option. See Section B .1.1, Enabling Routine Options, of this 
appendix for information about the option available to you. 
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B.1.1 Enabling the No Filter Option 

This section explains the option you can use with the peak-processing 
routine. If you want to use this option, you must enable it when you 
build the routine from the source file using the interactive build proce-
dure. 

The NOFLT$ (No Filter) option disables the software digital filter that 
the routine normally uses. Enable this option if you want to average and 
process data points without filtering them, or if you want to apply your 
own filter to the raw data before calling the PEAK routine. 

Enabling the no filter option results in quicker processing of data points 
and decreases the size of the routine. 

Before you begin the build procedure, the following system require-
ments must be met: 

• The following files must be resident on the system device, in the 
SYS$PEAK directory. 

File Name Description 

FPAAK. MAR 

EXIFPE.FOR 

PEAKMAK. COM 

WRTBLD . COM 

WRTVER. COM 

MACRO source file for the peak-processing routine 

FORTRAN source file for the test routine 

Interactive build procedure 

Part of the build procedure 

Part of the build procedure 

• The VAX FORTRAN compiler is built and resides on the system 
device. 

PEAKMAK. COM, the interactive build procedure for the PEAK rou-
tine, lets you assemble the routine and optionally, place it in a li-
brary which you create by supplying a library name. When you run 
PEAKMAK. COM, it prompts you with questions. You enter directory 
specifications for input and output after the appropriate prompt. The in-
put directory is the directory in which the above routines were installed. 
The output directory should be your own directory. 
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You are then asked if you want to build a library. Enter Y (yes) to build 
an object library. Enter N (no) to create simply an object file. Then, 
answer "Yes" after the subsequent questions if you want to enable the 
specified option. Answer "No" if you do not. After you answer all the 
questions, PEAKMAK. COM creates three files in the output directory 
you specified as follows: 

File Name Description 

PEAKCND .MAR 

PEAKBLD. COM 

PEAKVER. COM 

This file sets the switches to enable the options you re-
quested. 

This indirect-command procedure builds the PEAK rou-
tine. Building consists of assembling the routine with 
the switches set to enable the options you chose. If 
you specified a library while running PEAKMAK. COM, 
PEAKBLD.COM creates that library and includes the PEAK 
routine in it . 

This indirect-command procedure verifies that the PEAK 
routine is in good working order. It does this by running 
an example program that tests the routine. 

B.2 Overview of the PEAK Routine 

The peak-processing routine detects significant fluctuations, called 
peaks, in data describing a waveform, and reports definitive characteris-
tics for each peak found. The process is know as peak analysis. 

Input to the routine is a series of discrete positive integers correspond-
ing to values of a waveform function at evenly spaced intervals. To 
eliminate distortion-producing components in the data, the input is 
linearly averaged and filtered before final processing. Figure B-1 shows 
the peak-processing algorithm. You can change specified algorithm 
parameters to enhance detectability of directional trends and baselines 
for a given set of data. 
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Figure B-1; Flow of the PEAK Routine 

PEAK-Processing Algorithm 

INPUT: 
Averaging 

Digital 
Filter 
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PEAK Subroutine 
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Output from the routine is in the form of size and position for each 
peak detected. Size is defined by area, height, and width; and position 
is expressed in terms of when a peak begins, crests, and ends. The 
routine further reports how each peak ends — on a baseline or at a 
valley. 

B.3 Definition of Basic Terms and Conventions 

It is important to understand how some of the terms and conventions 
describing the PEAK routine are used throughout this appendix. 

• The term data (input) stream describes all values presented to the 
routine for processing. Actual values processed by the algorithm 
are sometimes called heights, for example, crest height, leading 
minimum height. 

• The duration axis of the waveform is the time axis. Time is mea-
sured as the number of raw data points processed since the start of 
the input stream. Thus, the term crest time means that crest height 
was observed when a number of raw data points equal to crest time 
were processed. 

• "Noise" is a generic term for all distortion-producing components 
in the input data. 
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• Point-to-point changes are local changes, as contrasted with overall 
changes during the course of the waveform, which are called trends. 

• Changes are persistent in one direction if the number of changes in 
the direction exceeds the number in the opposite direction. 

B.4 The Peak-Processing Algorithm: Processing Raw 
Data 

The peak-processing algorithm detects increasing and decreasing trends 
in a set of data. Output from the PEAK routine is directly related to 
the points where we observe changes in these trends. When we see 
an increasing trend, the point where the increase begins is labelled the 
start of the peak, and its value the leading minimum height. The point 
where a subsequent decreasing trend begins is the crest, or crest height, 
of the peak. And the point where the decreasing trend stops — or a 
baseline is detected — is taken as the end of the peak, or its trailing 
minimum height. We can then use this information to calculate the area 
and width of the peak. Under ideal conditions, this sequence defines 
the total function of the algorithm. 

Actual conditions are seldom ideal, however. Environmental influences 
during data collection tend to distort the pure function being analyzed. 
To a great degree, the algorithm and any controls that you can exercise 
over the routine parameters are aimed at removing these distortions so 
that only the real (dominant) trends in the data are visible. 

B.4.1 Averaging of Input Data 

The peak-processing algorithm first takes a linear average of input 
data points; you can specify the number of points to be averaged by 
means of the first variable parameter, the Original Point Density (OPD). 
Thereafter, the routine deals only with averaged heights, which can 
represent several raw data points. Keep in mind, however, that the 
time associated with each averaged height is based upon the total 
number of raw data points averaged since input began. 
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This averaging process smooths any "rough edges" from the data. You 
should give serious thought to the value you assign to the OPD. If too 
many points are averaged, real information nay be lost. In an extreme 
case, you might miss an entire true peak, but a more common result is 
late detection of significant trend changes. By averaging too few points, 
on the other hand, you could detect false trend changes. 

In certain applications of the routine, you may find that peaks are 
"tall and thin" at the outset of the waveform, then tend to become 
"short and fat" as it progresses. The algorithm compensates for this 
tendency by increasing automatically the number of points averaged 
when it detects a peak width that exceeds a preset optimum.l Thus, 
the algorithm makes wide, short peaks more visible and increases the 
likelihood of detecting real data fluctuations that might otherwise appear 
insignificant. 

B.4.2 Use of the Digital Filter 

The averaged data points are not processed directly by the trend-
detecting portion of the algorithm, but are first filtered by means of 
a digital filter. The equation for this nonlinear center-weighted filter 
involves seven averaged-data points having coefficients of a modified 
least-squares fit. 

Yp = (—(Y_3 + Y+3) + 4(Y_2 + Y+2) + 11(Y_1 + Y+i) + 14Y0)/42 

The coefficients are tuned to prevent area distortion for small peaks in 
the vicinity of large ones. 

As each new averaged data point is calculated, it is placed in the filter 
as the last, or Y+3, point. The new center point is calculated; after 
which the points used in the filter are shifted down by one, that is, 
Y_1 = Yp. Prerequisite sites for this process are: 

• Seven averaged points, must be calculated before the digital filter 
may be applied. 

• The first point to be considered for directional-trend detection is the 
center point resulting from application of the digital filter to these 
original seven points. 

1 when the half-irvidth-at-half-height measurement of a peak exceeds 25, the algorithm doubles the 
number of points averaged. 
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• Each subsequent set of seven points used by the filter is chosen 
using a sliding "window," that is, each new averaged point (after 
the first six) is used seven times in successive applications of the 
filter. There is a slight twist to the sliding window in that once 
the filter has been applied three times, four of the points in the 
current application of the filter are the result of averaging raw data, 
while ̀ the other three (Y_3, Y_~, Y_1) are the result of previous 
applications of the filter. 

B.4.3 Trend Detection —Application of the Gate Factor 

Although averaged and filtered data have been smoothed in earlier 
processing, the resultant filtered data points may still exhibit slight 
point-to-point fluctuations unrelated to the dominant trend of the 
data. You may set two parameters —the gate factor and the minimum 
increase — so that the algorithm eliminates much of the effect of this 
fluctuation. 

The gate factor (GT) specifies a valid directional trend in terms of the 
number of changes in direction, either persistent or consecutive, over a 
series of filtered points. 

The minimum increase (I1Vl) is a standard used to test for a real increase 
in filtered data from point to point. 

At the outset of the input stream and at points where crests are de-
tected, neither an increasing nor a decreasing directional trend has yet 
been established. The next established trend is determined at these 
paints as the first direction in which the data changes "gate" times. 

At intermediate points a current trend is already established. Changes 
in directional trend at these paints may be established only if the 
number of consecutive local changes in the new direction is equal to the 
gating factor. 

A local change is defined in terms of the relation between a given data 
point and the local minimum or maximum. If the current height is less 
than the local minimum, the change is downward. Conversely, if the 
height is greater than the sum of the total maximum and the minimum 
increase value (IM), the change is upward. If the height is between the 
local minimum and maximum, no change is indicated (although the area 
is updated). 
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~Nhen processing is initialized, and at the crest of each peak, the local 
minimum is set to a very high value, and the maximum is set to a very 
low value. Between crests, the local minimum and maximum can be 
k~est described by the flow diagram. 

It should be stressed that the points of greatest interest on the waveform 
-- essentially the points that determine the peak —are found at the 
~~oints of trend change: the beginning of a peak, the peak crest, and 
~;ometimes the end of a peak. This test is the heart of the algorithm. 

B.4.4 Calculation of Area Under the Peak 

7~ wo peak characteristics that are not entirely dependent on points of 
dominant trend change are area and width. The .area under the peak, 
or integral, is calculated by taking the sum of the area increments 
corresponding to each filtered point and half the area increment at the 
first and last points of a peak. The area increment at each filtered point 
is the product of its height times the number of points currently being 
averaged. 

B.4.5 Algorithm Definition of the Width of a Peak 

(calculation of peak width must be explained in a little more detail. The 
~~eak-processing algorithm defines peak width as the difference between 
the time when the crest occurs and the time when a point is reached 
on the trailing side of the peak whose height is half the crest height as 
measured from the height of the leading minimum (Figure B-2). 
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Figure B-2: Calculation of True Peak Width 

Time b' c' 

a =Leading Minimum Hefght 
b =Crest Height 
c =Point Whose Value is 1/2(a + b) 

d = b-a 
e =Peak Width = Time c'-Time b' 
f=d/2 
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It is possible that the data may establish an increasing trend on the 
trailing side of a peak before the point is reached where width is 
normally calculated. An increasing trend on the back of a peak is seen 
as terminating the peak; the width calculation for the peak is then made 
at the point where the increasing trend begins. The value calculated is 
called the estimated peak width, which is half the difference between time 
of crest occurrence and time at which the increasing trend is observed 
(Figure B-3). 
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f=igure B-3: Calculation of Estimated Peak Width 
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B.4.6 Algorithmic Detection of the Baseline 

~~ final and important step in peak analysis is to determine whether 
clata reported for a peak have been affected by similar data observed 
for another peak. The algorithm checks to see whether recorded peak 
clata indicate a period of relative quiescence before a new peak begins, 
car whether a new peak begins with no intervening quiescent period. 
Much quiescence relative to the overall peak contour is interpreted as 
a~ baseline. When a basline does not occur, the peak has ended at a 
valley. The problem thus becomes one of detecting when, or if, the 
k~aseline is reached. 

1`Jormally, assume that when the algorithm is initiated, input starts 
from a quiescent state. Therefore, you can take the point at which an 
increasing trend is first observed to be the current baseline height as 
well as the leading minimum height of the first peak. Because baseline 
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detection thereafter involves a comparison of relative minimums, this 
first detected minimum has a profound effect on the entire process. 

Once a crest has been detected, any attempt to find a new baseline 
begins only after the width has been calculated. The time past crest 
detection when the baseline search begins is a function of the calculated 
width. Specifically, baseline detection begins at a time equal to crest 
time plus the product of the width and the baseline test factor (BTU, an 
input variable parameter. The interval between crest detection and the 
start of baseline detection reflects the duration of a normal peak as it 
decays to a relatively quiescent state. 

To detect an actual baseline height, calculate the slopes of successive 
tangent lines from the current baseline point to each new filtered point. 
If two successive increases in slope are observed before an increasing 
trend in the filtered data is established, the second of these points is 
taken as the termination of the peak, and the peak is seen as ending on 
a baseline. 

If an increasing trend is established before two successive increases in 
slope are observed, the peak is said to end at a valley, the new peak 
begins at the point where the increasing trend is first observed, and the 
baseline data remains unchanged. 

Note that even though two successive increases in slope indicate a 
baseline, the next peak does not begin until that point where another 
increasing trend is established. The leading minimum point for the next 
peak is interpreted as defining the height and time of the new baseline. 
The area between the trailing minimum of the last peak and the leading 
minimum of the new peak is ignored.1

B.4.7 Flow Charts for the PEAK Routine 

The series of flow charts presented as Figures B-4 through B-9 gives 
detailed logic for the PEAK routine. Supplementary information is 
presented in Tables B-1 through B-3. Table B-1 lists the combinations 
of switchlindicator settings that characterize significant events during 
peak detection. Table B-2 defines the symbols used in the flow charts 
and accompanying explanation. Figure B-10 and Table B-3 review and 
summarize the flow-charted events as they apply to three possible peak 
configurations: 

• A peak starting on the baseline and ending on a new baseline 

1 Data taken during this period indicates that there is no peals-producing activity. 
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• A peak starting on the baseline and ending at a valley 
• A peak starting at a valley and ending on either a baseline or a 

valley 

Table B-1: Switch Settings for Significant Events in Peak 
Definition 

Significant Current Trend Indicators: 
Event Switch Decreasing Increasing 
BS DI II 

What is Happening with 
Relation to Peak Processing 

0 0 0 N!A 

0 0 1 On front of peak that 
started on current baseline 

0 1 0 Detected a baseline value; 
looking for a new peak to 
begin (initial condition) 

0 1 1 Crest detected for peak 
that started on baseline 

1 0 0 NIA 

1 0 1 New peak begins before 
point is reached at which 
width is to be calculated 
(forced calculation of 
width) 

1 1 0 After crest, looking for 
point where width is to be 
calculated 

1 1 1 NIA 

2 0 0 N!A 

2 0 1 On front side of peak that 
started at a valley 

2 1 0 Testing for new baseline 
value after width has been 
calculated 

2 1 1 Crest detected for peak 
that started at a valley 
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Table B-2: Definition of Symbols 
Symbol Definition 

BH Current baseline height 

BHT Time of current baseline height 

BS Baseline switch 
0 Peak starts on baseline 
1 Looking for width 
2 Looking for end on baseline 

BT Baseline test factors

CH Height of last crest 

CHT Time of last crest2

DC Current number of persistent decreases in filtered data 

DI Switch that is set (=1) if signal is decreasing 

GT Number of persistent changes (gating factor) that defines an 
increasingldecreasing trends

IA Accumulated area as signal increases 

IC Current number of persistent increases in filtered data 

II Switch that is set (=1) if signal is increasing 

IM Minimum differential between filtered data points that the 
algorithm interprets as signifying a real increases

IPD Switch that indicates whether an increase is needed in the 
number of points averaged: 
IPD = PD if number of points is to be increased 
IPD = 0 if no increase is needed 

LMH Leading minimum height for peak2

LMT Time of leading minimum height2

MNH Current minimum height2,3

MNT Time of current minimum height~~3

MXH Current maximum height 

MXT Time of current maximum height 

s Value set by user . 

2Value reported by algorithm. 

3Value can change during peak detection; reported values are those that are current 
when the end of a peak is detected. 
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Table B-2 (Cont.): Definition of Symbols 

Symbol Definition 

OMH Old minirnurn height (before increasing trend is established) 

OMT Time of old minimum height 

OPD Original point densityl

OS Old slope 

PD Point density; number of raw data points currently needed to 
obtain next average point2,s

SC Slope increase counter; baseline test 

SL New or current slope 

TA Accumulated total area during peak formation2,s

TM Raw point counter (current time) 

WD Width of peak 

XL Large number used to reset small number 

Y Element of digital filter 

Yo Current filtered point, that is, center point of current window 

Type 0 Peak ends on valley 
1 Peak ends on baseline2

1 Value set by user . 

2Value reported by algorithm. 

3Value can change during peak detection; reported values are those that are current 
when the end of a peak is detected. 
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Figure B-4: Flow Chart for Peak Processing: Initialization, Data 
Averaging, and Application of Digital Filter 
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Figure B-4 (Cont.): Flow Chart for Peak Processing: Initialization, 
Data Averaging, and Application of Digital 
Filter 
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Figure B-5: Flow Chart for Peak Processing: Calculation of Peak 
Width and Search for Baseline 
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LJ 
Figure B-5 (Copt.): Flow Chart for Peak Processing: Calculation 

of Peak Width and Search for Baseline 
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Figure B-6: Flow Chart for Peak Processing: Area Calculation 
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Figure B-6 (Cont.): Flow Chart for Peak Processing: Area 
Calculation 
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Figure B-7: Flow Chart for Peak Processing: Determining the 
Baseline 
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Figure B-7 (Cont.): Flow Chart for Peak Processing: Determining 
the Baseline 
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Figure B-8: NEXTPT Routine —Peak Processing 
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Figure B-9: RITOUT Routine —Peak Processing 
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Figure B-10: Flow Chart of Peak Events 
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Table B-3: Definition of Peak Events 
Point/Section 
of Curve Description 

Flow Chart 
References(s) 

START OF PEAK 1 

a 

a-b 

b 

b-c 

c 

c-d 

d 

d-e 

e 

Input begins 

Decreasing trend in data after baseline 
detection 

Increasing trend established; leading 
minimum height/time of Peak 1 detected; 
"new" baseline data (height and time) 
defined 

Increasing trend in data; change in 
established trend will indicate crest 
detection 

Decreasing trend established; crest height 
and time detected and recorded; leading 
minimum data recorded; start looking 
for point where width is calculated 

Decreasing trend in data after crest 
detection and before width calculation 

Point where width is calculated; 

Decreasing trend in data after width is 
calculated and before baseline is detected 

Baseline detected; Peak 1 ends at this 
point, which is recorded as tra' 'ng 
minimum 

Flowchart begins 

BS=O,DI=I,II=O 
DC >GT, IC< GT 

OMH=b BH=b 
OMT = b► BHT = b~ 

BS=O,DI=o,I1=1 
DC < GT, IC > GT 

LMH=OMH CH=c 
LMT = OMT CHT = c~ 

BS=1, DI=1,II=0 
DC > GT, IC < GT 

wD = dr-c► 

BS=2,DI=1,II=0 
DC > GT, IC < GT 

MNH = e 
MNT=e~ 
Type =1 

END OF PEAK 1 

e-f Decreasing trend after baseline detection 
and before start of next peak; area under 
curve ignored 
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Table B-3 (Cont.): Definition of Peak Events 
Point l Section 
of Curve Description 

Flow Chart 
References(s) 

START OF PEAK 2 

f Increasing trend established; leading 
minimum (height and time) of Peak 2 
detected; baseline data (height and time) 
redefined 

g Height on Peak 2 (after crest detected) 
where width would be calculated if data 
were to decrease to this point before 
start of Peak 3; 
g = (h + f)12 = (CH2-OMH)/2 

f-h Increasing trend in data; change in 
established trend will indicate crest 
detection (see b-c) 

h Decreasing trend established; crest height 
and time detected and recorded; leading 
minimum data recorded; start looking 
for data value g 

h-i Decreasing trend in data after cr. est 
detection and before width calculation 
(see c-d) 

i Increasing trend established before width 
of Peak 2 calculated; forced estimation 
of width of Peak 2 as (i~-n~); Peak 2 ends 
at valley with i as trailing minimum 
for Peak 2; Peak 3 begins with i as lead 
ing minimum; baseline data remain 
unchanged 

OMH=f BH=f 
OMT = fi BHT = fi 

No corresponding point on flow 
chart 

BS=O,DI=O,II=1 
DC < GT, IC > GT 

LMH = OMH CH = h 
LMT = OMT CHT = h~ 

BS=1,DI=1,II=0 
DC > GT, IC < GT 

wD = (MNT-CHT)!2 
MNH = i BH = f OMH = i 
MNT = i~ BHT = f► OMT = i~ 
Type=O 
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Table B-3 (Cont.): Definition of Peak Events 
PointlSection 
of Curve Description 

Flow Chart 
References(s) 

END OF PEAK 2! START OF PEAK 3 

1 

Increasing trend in data; change in 
established trend will indicate crest 
detection (see b-c, f-h) 

Decreasing trend established; crest height 
and time detected and recorded; leading 
minirnum data recorded; start looking 
for point where width is to be calculated 

Decreasing trend in data after crest 
detection and before width calculation 
(see c-d) 

Point where width is calculated; 

Decreasing trend in data after width is 
calculated and before baseline is detected 
(see d-e) 

Increasing trend establish before baseline 
is detected; Peak 3 ends at valley with 1 
as trailing minimum; Peak 4 begins with 
1 as leading minimum; baseline data 
remain unchanged 

BS=2,DI=O,II=1 
DC < GT, IC > GT 

LMH = OMH CH = j 
LMT = OMT, CHT = j~ 

BS=1,DI=1,II=0 
DC >GT, IC< GT 

WD =1v-j~ 

BS=2,DI=1,II=0 
DC >GT, IC< GT 

MNH =1 BH = f OMH =1 
MNT =1i BHT = f► 
OMT =1~ 
Type = 0 

END OF PEAK 3/START OF PEAK 4 

Peak 4 not shown in illustration 

B.5 How to Call the Peak-Processing Routine 

The symbolic name for the peak-processing routine is PEAK, and the 
general format for the FORTRAN call is: 

CALL PEAK(ITABLE,INPUT,INLAST,INPTR,OUTPUT,IDIMO,NPEAKS) 

For reference, argument names in the call to PEAK have been assigned 
arbitrarily. You can supply your own argument names, but you must 
state all of the arguments explicitly. There are no default values for 
any of the arguments. If you omit an argument, or if you supply too 

B-28 The Peak-Processing Routine 



many arguments, a FORTRAN error message results, and no data is 
processed. The arguments are described in the following paragraphs. 

ITABLE is an integer array of length 79 used to store intermediate 
results and other information required by the algorithm. You must 
set the values of the following array elements to transmit variable 
parameters and other information to the routine. 

ITABLE(1) Number of raw input values to be averaged to determine a 
point for use by the digital filter. This variable parameter 
is called the original point density (OPD) in the description 
of the algorithm. In general, the OPD should be chosen so 
that the number of averaged data points on the first peak is 
about 100. 

ITABLE(2) The baseline test (BT) factor (Section B.4.6). On a peak 
whose width is WD, baseline detection begins at time 
WD-ITABLE(2) past crest time. In general, suggested values 
can range from 3 to 5. 

ITABLE(3) The number of either persistent or consecutive local changes 
in one direction needed to establish a new dominant 
directional trend. It is the gate parameter discussed in 
Section B.4.3. In general, suggested values can range from 
3 to 8. 

ITABLE(4) Minimum differential (IM) between filtered data points that 
the algorithm interprets as a real increase. This element, 
with ITABLE(3), determines real changes in dominant 
directional trends (Section B.4.3). In general, suggested 
values can range from 1 to 5. 

ITABLE(5) The data type of the output array: 

= 0 output type is INTEGER*4 
=1 output type is REAL*4 
_ -1 output type is REAL*8 
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ITABLE(6) 

ITABLE(7) 

Error indicator in the calling sequence or input parameters: 

= 0 Indicates no error 

= N Indicates ITABLE(N) is in error, for example: 

ITABLE(1)<0 
ITABLE(2)<0 

_ -N Indicates the Nth argument is in error, for ex-
ample, INPTR > INLAST (see the following discussion). 
_ -8 Indicates that the calculated area to this point 
has caused an overflow. That is, it exceeds 231 -1. 
When the overflow is detected, PEAK returns with 
INPTR and NPEAKS set as usual. However, QUTPUT 
(1, NPEAKS + 1) will contain the value of the area of 
the current peak, up to and including the point of 
overflow. You must take corrective action by saving 
this value and returning to the PEAK routine for 
further processing. PEAK calculates the remaining area 
and peak characteristics. when PEAK returns again, 
the peak area reported is the area of the peak from the 
last point of overflow. To determine the actual area 
of the peak, simply convert the overflowed value to a 
positive, double-precision, real number and add it to 
the remaining area of the peak. 

This element must be set to zero before the initial call is 
made to the routine for each new stream of data. When the 
routine processes a data stream in "parts" (Section B.6), it 
uses ITABLE(7) for reentry to process each subsequent part. 
Thus, this element should not be altered by a user until all 
parts have been processed. 
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ITABLE(8) This element specifies the data type of the input data as 
follows: 

0 Input data single-precision INTEGER*2 
=1 Input data double-precision INTEGER*4 

ITABLE(9) Elements used exclusively by the routine while the data 
stream is being processed. 

ITABLE(79) 

INPUT is a single- or double-precision array containing the raw data to 
be processed. 

INLAST is an INTEGER*4 variable having the value of the subscript of 
the last element of INPUT containing data. 

INPTR is an INTEGER*4 variable having the value of the subscript 
of the last element processed by PEAK. You can also think of it as 
having a value one less than the subscript of the next datum in INPUT 
to be processed. For example, if the first element of the array is to be 
processed, INPTR should be set to zero. You must set the value of 
INPTR before calling PEAK; however, PEAK changes the value before 
returning. 

OUTPUT is a double-subscripted array used to store the results of 
applying the peak-processing algorithm. The first dimension specifies 
the number of data elements to be output for each peak detected; there 
are always 10. The second dimension specifies the number of sets of 
peak data that can be stored by the algorithm while processing the input 
data. The second dimension is defined by IDIMO. 

The data type of the output array is optional and can be any of those 
specified by ITABLE(5). 

r"1 
The Peak-Processing Routine B-31 



The 10 data elements reported for each peak are: 

OUTPUT(1, N) 
OUTPUT(2, N) 

OUTPUT(3, N) 

OUTPUT(4,N) 

OUTPUT(5,N) 

OUTPUT(6, N) 

OUTPUT(7, N) 

OUTPUT(8, N) 

OUTPUT(9, N) 

Area of Nth peak 

Height of crest, Nth peak 

Time of crest, Nth peak 

Height of leading minimum for Nth peak 

Tirne of leading minimum for Nth peak 

Width of Nth peak 

Height of trailing minimum for Nth peak 

Time of trailing minimum for Nth peak 

Indicator of how peak ended: 

= 0 ended on valley 
=1 ended on baseline 

OUTPUT(10, N) Current number of input data points being averaged 

IDIMO is an INTEGER*4 variable that transmits to the routine the 
second dimension of the output array. It defines the number of peaks 
that can be reported before the output array is filled. 

NPEAKS is an INTEGER*4 variable giving the number of peak data sets 
stored in the output array. We can also think of it as having a value of 
one less than the second subscript for the next set of output data to be 
stored. For example, for the initial set of peak data to be stored, set 
NPEAKS to zero. 

You must set the value of this argument before calling the routine; 
however, the routine can change the value before returning. 
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NOTE 

PEAK returns (assuming there are no errors) after either of 
the following events: 

• A11 input data elements have been processed. 

• The output array is filled, and there is another set of peak 
data to report. 

The arguments INPTR and NPEAKS indicate which 
event caused the return and the current status of I1O 
processing: 

— If condition 1 occurred then, INPTR = -1 and 
NPEAKS<IDIMO, that is, the routine has set 
NPEAKS to the proper value for the next routine 
call. 

— If condition 2 occurred, NPEAKS = -1 and INPTR 
equals the proper subscript value for reentry —one 
less than the subscript of the next element to be 
processed. 

If the routine is called again with either INPTR or 
NPEAKS equal to -1, fihe routine ~ interprets the value 
as zero. 

B.6 Using the Peak-Processing Routine 

You can use several inherent features of the peak-processing routine to 
process data produced in real time. Thus, you may use PEAK in con-
junction with other routines that monitor and digitize real phenomena. 
The particular arguments that make possible this real-time application 
are INPTR, INLAST, and NPEAKS (see Section B.5). You can visualize 
the input and output arrays as a series of "pigeonholes," and INPTR 
and NPEAKS as pointers to the next available data element to be pro-
cessed and the next slot for outputting the data, respectively (Figure 
B-11). INLAST is a painter to the last INPUT element containing data. 
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Figure B-11: INPTR, INLAST, and NPEAKS Point to Slots 
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The routine returns when all data in the input buffer have been pro-
cessed, that is, INPTR =INLAST, or the output array is filled, whichever 
occurs first. If all data in the input buffer have been processed, INPTR 
will equal -1 and NPEAKS will point to the last slot (subscript) in the 
output array that was filled. If, conversely, all slots in the output array 
have been filled, NPEAKS = -1 and INPTR points to the last element 
(subscript) in the input array that was processed. Neither is an error 
condition, and neither is more advantageous outside the context of your 
specific application. 

These conditions give you great flexibility in handling routine input and 
output. When you have large quantities of data to process, you need 
not allocate space for all data at once because the routine is designed to 
process a given data set in sequential parts. In fact, all data need not be 
known before processing begins, as is true in real-time processing. Data 
can be asynchronously collected into one buffer at the same time that a 
previously collected buffer is processed. 

Handling of output is also flexible. It might, for example, be printed 
or stored after each return from the routine, or it might be further 
processed only when the output buffer was filled, that is, NPEAKS = 
-1. You can choose the procedure that is most convenient for you. 
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Further flexibility is introduced by the fact that all arguments in the 
calling statement expect ITABLE can be changed between successive 
calls to the routine to reflect the origin of the remaining input data and 
where the output is to be stored. ITABLE must not be tampered with 
during the intervals between calls for a given data stream because it 
contains the current information needed to resume processing at the 
point where processing was stopped on the previous call. 

The routine is position-independent and reentrant. Although these 
features are of interest mainly at the system level, they do result in 
additional advantages at the user level. Perhaps most significant is 
the possibility of processing several data streams simultaneously. 
All pertinent information concerning the history of a data stream is 
contained in the ITABLE array rather than in the code for the routine. 
Imaginative use of the arguments in the routine call should make the 
routine functionally compatible with any application that uses the 
peak-processing algorithm. 

B.7 Sample Program Using the PEAK Routine 

The sample program presented in this section processes awaveform —
the sum of four Gaussian curves —shown in Figure B-12. 

This sample program is idealized in several respects. Normally, you do 
not know that the input array is empty upon return from the routine, 
or .that the output array has sufficient room for all output data. You 
must therefore provide for these possibilities by checking INPTR and 
NPEAKS. Also, no provision is made for error checking because the 
input and output are known and the program has been debugged with 
respect to these types of errors. In practice, ITABLE(6) should always be 
checked. This program is used to illustrate the minimal requirements 
for implementation, and how the routine and its arguments affect a 
given set of data. 

The data are input as four 256-point parts; the routine processes each 
part as it is received, placing the results in the output array. In this 
case, the output array is large enough to contain the complete set of 
processed data. Upon return from the routine, the input array is always 
empty (INPTR = -1), and the output array is never filled (NPEAKS~-1). 
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Example B-1: Sample Program Using the PEAK Routine 

C Define array variables and their size 

DIMENSION INPUT(266),OUTPUT(10,3),EMU(4),SIGMA(4),SIZE(4) 
DIMENSION ITABLE(79),VTYPE(2,2) 

C VTYPE is used to print a cord describing hoY the peak ended (TYPE). 

DATA VTYPE/' VA','LLEY','BASE','LINE'/ 

C Arrays EMU, SIGMA, and SIZE are used to produce the raveform to 
C be processed, which is the sum of four Gaussian curves. 

DATA EMU/20.,70.,600.,1000./ 
DATA SIGMA/20.,10.,200.,100./ 
DATA SIZE/960.,400.,300.,200./ 

C Data statements initializing the variable input parameters to the 
C algorithm CITABLE) and the arguments for the call to PEAK. 

DATA ITABLE/1,2,3,1,1,63*0/ 
DATA INLAST,INPTR,IDIMO,NPEAKS/266,0,3,0/ 

C Section producing values that represent the ravef orm; as X increases, 
C the next 266 values are calculated and PEAK is called. Four raveform 
C segments are produced. 

X=O. 
DO 3 K=1,4 
DO 1 I=1,266 
A=O. 
X=X+i 

DO 2 J=1,4 
2 A=A+SIZE(J)*EXP(-.6*((X-EMU(J)/SIGMA(J))**2) 
1 INPUT (I) =A 

C Call to the PEAK routine: 

CALL PEAK (.ITABLE,INPUT,~NLAST,INPTR,OUTPUT,IDIMO,NPEAKS) 

C Loop for each of four sections of Yave~orm. All elements of INPUT 
C array are processed (INPTR equals -i) but OUTPUT array still has room 
C (NPEAKS less than or equal to IDIMO). 

3 CONTINUE 

Example B-1 Cont'd~. on next page 
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I"1 
Example B-1 (Cont.): Sample Program Using the PEAK Routine 

C This section displays the results on the terminal screen: 

TYPE 900 
900 FORMAT (iH1,T24,'PEAK Example 1'//) 

TYPE 1000 
1000 FORMAT ('PEAK N0.',8X,'AAEA',4X,'P HEIGHT',BX,'P TIME',4X, 

A 'L HEIGHT',BX,'L TIME',/,11X,'HALF YID?H',4X,'T HEIGHT',BX, 
B 'T TIME',8X,'TYPE',8X,'RATE',//) 

DO 4 L=1,NPEAKS 
KK=OUTPUT(9,L)+1 

4 TYPE 2000,(L,(OU?PUT(I,L),I=1,8),(VTYPE(K,KK),K=1,2),OUTPUT(10,L)) 
2000 FORMAT(19,6F12.0,/,9X,3F12.0,4X,2A4,F12.0) 

END 

This program produces the following terminal output with the digital 
filter enabled: 

PEAK Example 1 

PEAK N0. AREA P HEIGHT P TIME L HEIGHT L TIME 
HALF YIDTH T HEIGHT T TIME TYPE RATE 

1 36796. 961. 19. 892. 4. 
12. 346. 63. BASELINE 1. 

2 11803. 461. 88. 343. 64. 
7. 41. 93. BASELINE 1. 

3 134998. 299. 698. 13. 108. 
124. 200. 84b. VALLEY 1. 

This program produces the following terminal output with the No Filter 
(NOFLT$) option enabled: 

PEAK Example 1 

PEAK N0. AREA P HEIGHT P TIME L HEIGHT L TIME 
HALF YIDTH T HEIGHT T TIME TYPE RATE 

1 38147. 963. 19. 808. 1. 
14. 342. b4. BASELINE 1. 

~ 11836. 464. 88. 342. 64. 
7. 41. 93. BASELINE 1. 

3 132862. 300. 697. 14. 108. 
117. 201. 831. VALLEY 1. 
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Figure B-12; Actual Plot of the Input Data in Example C-1 
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