
VAX Text Processing Utility
Manual

Order Number: AA-LA14B-TE

June 1989

The VAX Text Processing Utility Manual describes the elements I of the VAX
Text Processing Utility (VAXTPU). It is intended as a reference manual for
experienced programmers. I

I

I

Revision/Update Information: This revised document super~edes the
VAX Text Processing Utility Manual for
VMS Version 5.0. !

Software Version:

digital equipment corporation
maynard, massachusetts

VMS Version 5.2

June 1989

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1989.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA
DDIF
DEC
DECnet
DECUS
DECwindows
DIGITAL
GIGI

LN03
MASSBUS
PrintServer 40
Q-bus
ReGIS
ULTRIX
UNIBUS
VAX

The following is a third-party trademark:

VAXcluster
VAX RMS
VAXstation
VMS
VT
XUI

Postscript is a registered trademark of Adobe Systems, Inc.

ZK4350

)

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers .can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

)

)

Contents

PREFACE xxm

VAXTPU TUTORIAL SECTION

.CHAPTER 1 OVERVIEW OF THE VAX TEXT PROCESSING UTILITY 1-1

1.1 WHAT IS VAXTPU? 1-1

1.2 WHAT IS DECWINDOWS VAXTPU? 1..:..2
1.2.1 DECwindows VAXTPU and DECwindows Features 1-2
1.2.2 DECwindows VAXTPU and the DECwindows User Interface u Language 1-4

1.3 WHAT IS EVE? 1-4

1.4 THE VAXTPU LANGUAGE 1-5
1.4.1 VAXTPU Data Types 1-5
1.4.2 VAXTPU Language Declarations 1-6 1··
1.4.3 VAXTPU Language Statements 1-7
1.4.4 VAXTPU Built-In Procedures 1-7
1.4.5 User-Written Procedures 1-7

1.5 TERMINALS SUPPORTED BY VAXTPU 1-8

1.6 INVOKING VAXTPU 1-9
1.6.1 Using EDIT!TPU Command Qualifiers 1-9
1.6.2 Using Startup Files 1-10

1.7 LEARNING MORE ABOUT VAXTPU 1-11

v

V

Contents

.~
/ ' . !

CHAPTER 2 VAXTPU DATA TYPES 2-1

2.1 ARRAY 2-2

2.2 BUFFER 2-3

2.3 INTEGER 2-5

2.4 KEYWORD 2-5)
2.5 LEARN 2-7

2.6 MARKER 2-8

2.7 PATTERN 2-11 0) 2.7.1 Pattern Built-In Procedures 2-12
2.7.2 Keywords That Can Be Used to Build Patterns 2-14
2.7.3 Pattern Operators 2-14
2.7.3.1 + (Pattern Concatenation Operator) • 2-15
2.7.3.2 & (Pattern Linking Operator) • 2-15
2.7.3.3 I (Pattern Alternation Operator) • 2-16
2.7.3.4 @ (Partial Pattern Assignment Operator) • 2-16
2.7.3.5 Relational Operators • 2-17

" 2.7.4 Pattern Compilation and Execution 2-17)
2.7.5 Searching 2-18
2.7.6 Anchoring a Search 2-18

2.8 PROCESS 2-19

2.9 PROGRAM 2-20

2.10 RANGE 2-20

2.11 STRING 2-22 ()~
~.J

vi

Contents
r·-.
u

2.12 UNSPECIFIED 2-23

2.13 WIDGET 2-23

2.14 WINDOW 2-24
2.14.1 Window Dimensions 2-24
2.14.2 Creating Windows 2-25
2.14.3 Window Values 2-26
2.14.4 Mapping Windows 2-26
2.14.5 Removing Windows 2-27
2.14.6 Screen Manager 2-27
2.14.7 Getting Information on Windows 2-28
2.14.8 Terminals That Do Not Support Windows 2-28

CHAPTER 3 LEXICAL ELEMENTS OF THE VAXTPU LANGUAGE 3-1-

t . u 3.1 OVERVIEW 3-1

3.2 CHARACTER SET 3-1
3.2.1 Entering Control Characters 3-2
3.2.2 VAXTPU Symbols 3-3

/" 3.3 IDENTIFIERS 3-4

3.4 VARIABLES 3-4

3.5 CONSTANTS 3-5

3.6 OPERATORS 3-6

3.7 EXPRESSIONS 3-8
3.7.1 Arithmetic Expressions 3-9
3.7.2 Relational Expressions 3-10
3.7.3 Pattern Expressions 3-10

u 3.7.4 Boolean Expressions 3-11

vu

Contents

3.8 RESERVED WORDS 3-12
3.8.1 Keywords 3-12
3.8.2 Built-In Procedure Names 3-12
3.8.3 Predefined Constants 3-12
3.8.4 Declarations and Statements 3-13
3.8.4.1 The Module Deciaration • 3-14
3.8.4.2 The Procedure Declaration • 3-15

3.8.4.2.1 Procedure Names • 3-16
3.8.4.2.2 Procedure Parameters • 3-16
3.8.4.2.3 Procedures That Return a Result • 3-18
3.8.4.2.4 Recursive Procedures • 3-19
3.8.4.2.5 Local Variables • 3-19) 3.8.4.2.6 Constants • 3-20
3.8.4.2.7 ON_ERROR Statements • 3-20

3.8.4.3 The Assignment Statement • 3-21
3.8.4.4 The Repetitive Statement • 3-21
3.8.4.5 The Conditional Statement • 3-22
3.8.4.6 The Case Statement • 3-23
3.8.4.7 Error Handling • 3-24

3.8.4.7.1 Procedural Error Handlers • 3-26
;~ 3.8.4.7.2 Case-Style Error Handlers • 3-28

3.8.4.7.3 CTRUC Handling • 3-31
3.8.4.8 The RETURN Statement • 3-31
3.8.4.9 The ABORT Statement • 3-33
3.8.4.10 Miscellaneous Declarations • 3-33

3.8.4.10.1 LOCAL• 3-33
3.8.4.10.2 CONSTANT • 3-34
3.8.4.10.3 VARIABLE • 3-34

)
CHAPTER 4 VAXTPU PROGRAM DEVELOPMENT 4-1

· 4.1 CREATING VAXTPU PROGRAMS 4-1
4.1.1 Simple Programs 4-2
4.1.2 Complex Programs 4-2
4.1.3 Program Syntax 4-3

4.2 PROGRAMMING IN DECWINDOWS VAXTPU 4-4
4.2.1 Widgets Supported by DECwindows VAXTPU 4-5
4.2.2 Input Focus Support in DECwindows VAXTPU 4-5
4.2.3 Global Selection Support in DECwindows VAXTPU 4-6

~ 4.2.3.1 Difference Between Global Selection and Clipboard • 4-6
4.2.3.2 Handling of Multiple Global Selections • 4-6
4.2.3.3 Relation of Global Selection to Input Focus in DECwindows

VAXTPU • 4-7

viii

Contents -u
4.2.3.4 DECwindows VAXTPU's Response to Requests for Information

About the Global Selection • 4-7
4.2.4 Using Callbacks in DECwindows VAXTPU 4-8
4.2.4.1 Background on DECwindows Callbacks • 4-8
4.2.4.2 Understanding the Difference Between VAXTPU's

Internally-Defined Callback Routines and a Layered Application's
Callback Routines • 4-8

4.2.4.3 Using Internally-Defined VAXTPU Callback Routines with
UIL • 4-9

4.2.4.4 Using Internally-Defined VAXTPU Callback Routines with Widgets
Not Defined by UIL • 4-9

4.2.4.5 Using Application-Level Callback Action Routines • 4-10
4.2.4.6 Callable Interface-Level Callback Routines • 4-10
4.2.5 Using Closures in DECwindows VAXTPU 4-10
4.2.6 Specifying Values for Widget Resources in DECwindows

VAXTPU 4-11
4.2.6.1 VAXTPU Data Types for Specifying Resource Values • 4-11
4.2.6.2 Specifying a List as a Resource·value • 4-12

4.3 WRITING CODE COMPATIBLE WITH DECWINDOWS EVE 4-14
4.3.1 Screen Objects in Applications Layered on DECwindows

VAXTPU 4-14
4.3.2 Select Ranges in DECwindows EVE 4-15
4.3.2.1 Dynamic Selection • 4-16
4.3.2.2 Static Selection • 4-16
4.3.2.3 Found Range Selection • 4-17
4.3.2.4 Relation of EVE Selection to DECwindows Global

/ Selection • 4-17

4.4 COMPILING VAXTPU PROGRAMS 4-17
4.4.1 Compiling on the EVE Command Line 4-18
4.4.2 Compiling in a VAXTPU Buffer 4-18

4.5 EXECUTING VAXTPU PROGRAMS 4-18
4.5.1 Interrupting Execution with CTRL/C 4-19
4.5.2 Procedure Execution 4-20

4.6 VAXTPU STARTUP FILES 4-20
4.6.1 Sequence in Which VAXTPU Processes Startup Files 4-21
4.6.2 Section Files 4-22

L 4.6.2.1 Creating and Processing a New Section File • 4-22
4.6.2.2 Extending an Existing Section File • 4-23
4.6.2.3 A Sample Section File • 4-24

Ix

Contents
(~\
.) j

4.6.2.4 Recommended Conventions for Section Files • 4-27
4.6.2.4.1 TPU$1NIT _PROCEDURE • 4-27
4.6.2.4.2 TPU$LOCAL_INIT • 4-28
4.6.2.4.3 Special Variables • 4-28

4.6.3 Command Files 4-28
4.6.4 EVE Initialization Files 4-30
4.6.4.1 Using an EVE Initialization File at Startup • 4-30
4.6.4.2 Using an EVE Initialization File During an Editing Session • 4-31
4.6.4.3 How an EVE Initialization File Affects Buffer Settings • 4-31

4.7 DEBUGGING VAXTPU PROGRAMS 4-32
4.7.1 Invoking the VAXTPU Debugger 4-32)
4.7.1.1 Section Files • 4-33
4.7.1.2 Command Files • 4-33
4.7.1.3 Other VAXTPU Source Code • 4-34
4.7.2 Getting Started with the VAXTPU Debugger 4-34
4.7.3 VAXTPU Debugger Commands 4-35

4.8 ERROR HANDLING 4-37 ~
CHAPTER 5 INVOKING VAXTPU 5-1

5.1 AVOIDING ERRORS RELATED TO VIRTUAL ADDRESS SPACE 5-1

5.2 INVOKING VAXTPU FROM A DCL COMMAND PROCEDURE 5-2 _)
5.2.1 Setting Up a Special Editing Environment 5-2
5.2.2 Creating a Noninteractlve Application 5-3

5.3 INVOKING VAXTPU FROM A BATCH JOB 5-5

5.4 QUALIFIERS TO THE DCL COMMAND EDIT/TPU 5-5
5.4.1 /COMMAND 5-6
5.4.2 /CREATE 5-7
5.4.3 /DEBUG 5-8
5.4.4 /DISPLAY 5-8
5.4.5 /INITIALIZATION 5-9
5.4.6 /JOURNAL 5-10 1 5.4.7 /MODIFY 5-11
5.4.8 /OUTPUT 5-12

·,

5.4.9 /READ_ONLY 5-13
5.4.10 /RECOVER 5-14

X

,/

u

5.4.11
5.4.12
5.4.13

5.5

5.6

CHAPTER 6

6.1

6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.2.5
6.1.2.6

6.1.2.7
6.1.2.8
6.1.2.9

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6

6.3

6.4

/SECTION
/START _POSITION
/WRITE

HOW EVE USES /MODIFY, /OUTPUT, /READ_ ONLY, AND /WRITE

SPECIFYING A PARAMETER TO EDIT/TPU

VAXTPU SCREEN MANAGEMENT

HOW THE SCREEN MANAGER HANDLES WINDOWS AND
BUFFERS
Buffer Changes
Wi~dow Changes

Making a Window Current • 6-2
Mapping a Window • 6-3
Shifting a Window • 6-3
Deleting a Window • 6-4
How VAXTPU Window Size Affects a Terminal Emulator • 6-4
How VAXTPU Window Size Affects the Display on a
Terminal • · 6-4
How a Window Displays Insertion of Records into a Buffer • 6-5
How a Window Displays Deletion of Records from a Buffer • 6-5
How a Window Displays Changes to a Record in a Buffer • 6-6

INVOKING THE SCREEN MANAGER
Enabling Screen Updates
Automatic Updates
Updating Windows
Updating the Whole Screen
The REFRESH Built-In
The SCROLL Built-In

CURSOR POSITION COMPARED TO EDITING POINT

BUILT-IN PADDING

Contents

5-15
5-16
5-16

5-17

5-18

6-1

6-1
6-1
6-2

6-6
6-6
6-7
6-8
6-9

6-10
6-10

6-10

6-11

xi

Contents

VAXTPU REFERENCE SECTION

CHAPTER 7 VAXTPU BUILT-IN PROCEDURES 7-1

7.1 BUILT-IN PROCEDURES GROUPED ACCORDING TO FUNCTION 7-1
7.1.1 Screen Layout 7-1
7 .. 1.2 Cursor Movement 7-2
7.1.3 Moving the Editing Position 7-2) 7.1.4 Text Manipulation 7-3
7.1.5 Pattern Matching 7-5
7.1.6 Status of the Editing Context 7-5
7.1.7 Defining Keys 7-7
7.1.8 Multiple Processing 7-9
7.1.9 Program Execution 7-9
7.1.10 DECwindows VAXTPU-Specific 7-9
7.1.11 Miscellaneous 7-12 '~)
7.2 DESCRIPTIONS OF THE BUILT-IN PROCEDURES 7-13

ABORT 7-15
ADD_KEY_MAP 7-16
ADJUST_ WINDOW 7-18
ANCHOR 7-23
ANY 7-25

) APPEND_LINE 7-27
ARB 7-29
ASCII 7-31
ATTACH 7-34
BEGINNING_OF 7-36
BREAK 7-38
CALL_USER 7-39
CHANGE_CASE 7-43
COMPILE 7-45
CONVERT 7-48
COPY_TEXT 7--51
CREATE_ARRAY 7-53
CREATE_BUFFER 7--56 n
CREATE_KEY _MAP 7-60 .)
CREATE_KEY_MAP _LIST 7-62
CREATE_PROCESS 7-64
CREATE_RANGE 7-66

xii

Contents
r,

(_;

CREATE_ WIDGET 7-68
CREATE_WINDOW 7-73
CURRENT _BUFFER 7-76
CURRENT_CHARACTER 7-77
CURRENT _COLUMN 7-79
CURRENT_DIRECTION 7-81
CURRENT _LINE 7-82
CURRENT _OFFSET 7-84
CURRENT_ROW 7-86
CURRENT _WINDOW 7-88

(CURSOR_HORIZONTAL 7-90
CURSOR_ VERTICAL 7-92
DEBUG_LINE 7-95
DEFINE_KEY 7-96
DEFINE_WIDGET_CLASS 7-101
DELETE 7-103
EDIT 7-107
END_OF 7-110 u ERASE 7-112
ERASE_CHARACTER 7-114
ERASE_LINE 7-116
ERROR 7-118
ERROR_LINE 7-120
ERROR_TEXT 7-122
EXECUTE 7-124

, ,- EXIT 7-128
EXPAND_NAME 7-129
FAO 7-132
FILE_PARSE 7-134
FILE_SEARCH 7-137
FILL 7-140
GET_CLIPBOARD 7-143
GET_DEFAULT "7-145
GET_GLOBAL_SELECT 7-147
GET_INFO 7-150

GET_INFO (ANY_KEYNAME) 7-156
GET _INFO (ANY _KEYWORD) 7-158
GET_INFO (ANY_VARIABLE) 7-159

u GET_INFO (ARRAY) 7-160
GET_INFO (ARRAY_VARIABLE) 7-161
GET _INFO (BUFFER) 7-163
GET _INFO (BUFFER_ VARIABLE) 7-164
GET_INFO (COMMAND_LINE) 7-169

xiii

Contents

GET_INFO (DEBUG) 7-172
GET _INFO (DEFINED _KEY) 7-174
GET _INFO (INTEGER_ VARIABLE) 7-175
GET _INFO (KEY _MAP) 7-176
GET _INFO (KEY _MAP _LIST) 1-1n
GET _INFO (MARKER_ VARIABLE) 7-178
GET _INFO (MOUSE_EVENT _KEYWORD) 7-180
GET _INFO (PROCEDURES) 7-182
GET _INFO (PROCESS) 7-183
GET_INFO (PROCESS_VARIABLE) 7-184
GET _INFO (RANGE_ VARIABLE) 7-185

) GET _INFO (SCREEN) 7-186
GET _INFO (STRING_ VARIABLE) 7-194
GET _INFO (SYSTEM) 7-195
GET _INFO (WIDGET) 7-198
GET_INFO (WIDGET_VARIABLE) 7-202
GET_INFO (WINDOW) 7-206
GET _INFO (WINDOW_ VARIABLE) 7-207

HELP_TEXT 7-216

~ INDEX 7-218
INT 7-220
JOURNAL_ CLOSE 7-222
JOURNAL_OPEN 7-223
KEY_NAME 7-225
LAST_KEY 7-229
LEARN_ABORT 7-230
LEARN_BEGIN AND LEARN_END 7-231) LENGTH 7-234
LINE_BEGIN 7-236
LINE_END 7-238
LOCATE_MOUSE · 7-239
LOOKUP_KEY 7-241
MANAGE_WIDGET 7-245
MAP 7-246
MARK 7-248
MATCH 7-251
MESSAGE 7-253
MESSAGE_ TEXT 7-257
MODIFY _RANGE 7-260 .~. MOVE_HORIZONTAL 7-265 _) MOVE_TEXT 7-267
MOVE_ VERTICAL 7-269
NOTANY 7-271

xiv

Contents
r-

V

PAGE_BREAK 7-273
POSITION 7-274
QUIT 7-278
READ_CHAR 7-280
READ_CLIPBOARD 7-282
READ_FILE 7-284
READ_GLOBAL_SELECT 7-286
READ_KEY 7-288
READ_LINE 7-290
REFRESH 7-293
REMAIN 7-295
REMOVE_KEY _MAP 7-296
RETURN 7-298
SAVE 7-299
SCAN 7-302
SCANL 7-304
SCROLL 7-306

(U
SEARCH 7-309
SEARCH_QUIETLY 7-314
SELECT 7-319
SELECT _RANGE 7-322
SEND 7-324
SEND_EOF 7-326
SET 7-327
SET (ACTIVE_AREA) 7-329 ,,.

(SET(AUTO_REPEAT) 7-332
,_ SET (BELL) 7-334

SET (COLUMN_MOVE_ VERTICAL) 7-336
SET (CROSS_WINDOW_BOUNDS) 7-338
SET (DEBUG) 7-339
SET (DRM_HIERARCHY) 7-343
SET (ENABLE_RESIZI;) 7-344

· SET (EOB_TEXT) 7-346
SET (FACILITY _NAME) 7-347
SET (FORWARD) 7-348
SET(GLOBAL_SELECT) 7-349
SET(GLOBAL_SELECT_GRAB) 7-351
SET (GLOBAL_SELECT_READ) 7-354 ,u SET (GLOBAL_SELECT_TIME) 7-356
SET(GLOBAL_SELECT_UNGRAB) 7-358
SET (ICON_NAME) 7-360
SET (INFORMATIONAL) 7-361

YV

Contents n
_,,-,l

'

SET (INPUT _FOCUS) 7-362
SET (INPUT_FOCUS_GRAB) 7-364
SET (INPUT_FOCUS_UNGRAB) 7-366
SET (INSERT) 7-368
SET (JOURNALING) 7-369
SET (KEY _MAP _L1sn 7-371
SET (LEFT _MARGIN) 7-373
SET (LEFT_MARGIN_ACTION) 7-375
SET (LINE_NUMBER) 7-377
SET (MARGINS) 7-379
SET (MAX_LINES) 7-381)
SET (MESSAGE_ACTION_LEVEL) 7-382
SET (MESSAGE_ACTION_ TYPE) 7-384
SET (MESSAGE_FLAGS) 7-385
SET (MODIFIABLE) 7-387
SET (MODIFIED) 7-389
SET (MOUSE) 7-390
SET (NO_WRITE) 7-392 ·n
SET (OUTPUT_FILE) 7-393)
SET (OVERSTRIKE) 7-394
SET (PAD) 7-395
SET(PAD_OVERSTRUCK_TABS) 7-397
SET (PERMANENn 7-399
SET(POST_KEY_PROCEDURE) 7-400
SET(PRE_KEY_PROCEDURE) 7-402
SET (PROMPT _AREA) 7-404 _) SET (RESIZE_ACTION) 7-406
SET (REVERSE) 7-408
SET (RIGHT _MARGIN) 7-409
SET (RIGHT _MARGIN_ACTION) 7-411
SET (SCREEN_LIMITS) 7-413
SET(SCREEN_UPDATE) 7-415
SET (SCROLL_BAR) 7-417
SET(SCROLL_BAR_AUTO_THUMB) 7-420
SET (SCROLLING) 7-422
SET (SELF _INSERn 7-425
SET (SHIFT _KEY) 7-427
SET (SPECIAL_ERROR_SYMBOL) 7-429 s SET (STATUS_LINE) 7-431
SET (SUCCESS) 7-434
SET (SYSTEM) 7-435
SET- (TAB_STOPS) 7-436

xvi

Contents ---
G

SET (TEXT) 7-438
SET (TIMER) 7-441
SET (TRACEBACK) 7-443
SET (UNDEFINED_KEY) 7-445
SET (VIDEO) 7-447
SET (WIDGET) 7-449
SET (WIDGET_CALL:BACK) 7-451
SET (WIDTH) . 7-453
SHIFT 7-455
SHOW 7-457

(SLEEP 7-460
SPAN 7-462
SPANL 7-464
SPAWN 7-467
SPLIT_LINE 7-470
STA 7-472
SUBSTR 7-476

(_)
TRANSLATE 7-478
UNANCHOR 7-481
UNDEFINE_KEY 7-483
UNMANAGE_WIDGET 7-485

UNMAP 7-487
UPDATE 7-489

WRITE_CLIPBOARD 7-491

WRITE_FILE 7-494
,,,-·-

WRITE_GLOBAL_SELECT 7-497 !

APPENDIX A SAMPLE VAXTPU PROCEDURES A-1

A.1 LINE-MODE EDITOR A-1

A.2 TRANSLATION OF CONTROL CHARACTERS A-2

A.3 RESTORING TERMINAL WIDTH BEFORE EXITING FROM
VAXTPU A-5

~) A.4 RUNNING VAXTPU FROM A SUBPROCESS A-5

xvii

Contents

APPENDIX 8 SAMPLE DECWINDOWS VAXTPU PROCEDURES B-1

B._1 USING DECWINDOWS VAXTPU BUILT-INS. B-1

B.2 DISPLAYING A DIALOG BOX B-1

8.3 CREATING A "MOUSE PAD" 8-4

8.4 IMPLEMENTING AN EDT-STYLE APPEND COMMAND B-11

8.5 ~ TESTING AND RETURNING A SELECT RANGE B-13

8.6 RESIZING WINDOWS B-16

8.7 UNMAPPING SAVED WINDOWS B-19

8.8 MAPPING SAVED WINDOWS 8-22

8.9 HANDLING CALLBACKS FROM A SCROLL BAR WIDGET B-25

8.10 IMPLEMENTING THE COPY SELECTION OPERATION B-28

8.11 REACTIVATING A SELECT RANGE B-30

B.12 COPYING SELECTED MATERIAL FROM EVE TO ANOTHER DECWINDOWS
APPLICATION

APPENDIX C VAXTPU TERMINAL SUPPORT

xviii

C.1
C.1.1
C.1.2

SCREEN-ORIENTED EDITING ON SUPPORTED TERMINALS
Terminal Settings That Affect VAXTPU
The DCL Command SET TERMINAL

B-32

C-1

C-1
C-1
C-3

\
,,/

~
_,)

)

Contents

C.2 LINE-MODE EDITING ON UNSUPPORTED TERMINALS C-3

C.3 TERMINAL WRAP C-4

APPENDIX D VAXTPU MESSAGES D-1

APPENDIX E DEC MULTINATIONAL CHARACTER SET E-1

APPENDIX F VAXTPU FILE SUPPORT F-1

APPENDIX G EVE$BUILD MODULE G-1

(_j G.1 HOW TO PREPARE CODE FOR USE WITH EVE$BUILD G-1
G.1.1 Module Identifiers G-2
G.1.2 Parsers G-3
G.1.3 Initialization G-4
G.1.4 Command Synonyms G-5
G.1.5 Status Line Fields G-7
G.1.6 Exit and Quit Handlers G-8
G.1.7 How to Invoke EVE$BUILD G-10 ,,...

I

G.2 WHAT HAPPENS WHEN YOU USE EVE$BUILD G-11

INDEX

EXAMPLES
1-1 Sample User-Written Procedure 1-8

2-1 Suppressing the Addition of Padding Blanks 2-10

3-1 Global and Local Variable Declarations 3-5

3-2 Global and Local Constant Declarations 3-6

u 3-3 A Procedure Using Relational Operators on Markers 3-11

3-4 Simple Procedure with Parameters 3-17

3-5 Complex Procedure with Optional Parameters 3-17

3-6 Procedure That Returns a Result 3-19

xix

Contents

3-7 Procedure Within Another Procedure 3-19
3-8 Recursive Procedure 3-20

3-9 Procedure Using the CASE Statement 3-24
3-10 Procedure Using th~ ON_ERROR Statement 3-26

3-11 Procedure With a Case-Style Error Handler 3-29
3-12 Procedure That Returns a Value 3-32
3-13 Procedure Returning a Status 3-32
3-14 Using RETURN in an ON_ERROR Section 3-33
3-15 Simple Error Handler 3-33
4-1 SHOW (SUMMARY) Display 4-2

) 4-2 Syntax of a VAXTPU Program 4-3
4-3 Sample VAXTPU Programs 4-4

4-4 Sample Program for a Section File 4-24
4-5 Source Code for Minimal Interface 4-26
4-6 Command File for Go to Text Marker 4-29
4-7 SHOW DEFAULTS BUFFER Display 4-32
5-1 DCL Command Procedure FILENAME.COM 5-2 1 5-2 DCL Command Procedure FORTRAN_TS.COM 5-3
5-3 DCL Command Procedure INVISIBLE_ TPU.COM 5-4

5-4 VAXTPU Command File GSR.TPU 5-4

7-1 Initialization Procedure Using Variants of the SET Built-In 7-353
B-1 EVE Procedure That Displays a Selection Dialog Box B-2
B-2 Procedure That Creates a "Mouse Pad" B-5
B-3 EVE Procedure That Implements a Variant of the EDT

) APPEND command B-12
B-4 EVE Procedure That Returns a Select Range B-14
B-5 Procedure That Resizes Windows B-17
B-6 EVE Procedure That Unmaps Saved Windows B-20
B-7 Procedure That Maps Saved Windows B-23
B-8 EVE Procedure That Handles Callbacks from a Scroll Bar

Widget B-27
8-9 EVE Procedure That Implements the COPY SELECTION

Operation B-29
B-10 EVE Procedure That Reactivates a Select Range B-31
8-11 EVE Procedure That Implements COPY SELECTION 8-32
C-1 DCL Command Procedure for SET TERM/NOWRAP C-4

1 .

xx

Contents

FIGURES
1-1 VAXTPU as a Base for EVE 1-2
1-2 VAXTPU as a Base for User-Written Interfaces 1-4

4-1 Nomenclature of DECwindows VAXTPU Screen Objects 4-14
7-1 Screen Layout Before Using ADJUST_WINDOW 7-20
7-2 Screen Layout After Using ADJUST_WINDOW 7-21

(
TABLES

1-1 Qualifiers to the DCL Command EDIT/TPU 1-9
2-1 Keywords Used for Key Names 2-6

3-1 VAXTPU Symbols 3-3

3-2 VAXTPU Operators 3-6

3-3 Operator Precedence 3-7 u 4-1 Correspondence Between VAXTPU Data Types and
DECwindows Argument Data Types 4-12

4-2 Special VAXTPU Variables Requiring a Value from a Layered
Application 4-28

5-1 Summary of How VAXTPU and the Application Layered on
VAXTPU Relate to the Qualifiers to EDIT/TPU 5-5

7-1 GET _INFO Built-In Procedures by First Parameter 7-152
7-2 VAXTPU Keywords Representing Mouse Events 7-180

/

7-3 Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length", "Right", ''Top", or
'Width" 7-209

7-4 Message Flag Values 7-254
7-5 Message Flag Values 7-257

7-6 VAXTPU Keywords Representing Mouse Events 7-330

7-7 Message Codes for $PUTMSG System Service 7-385

7-8 Message Flag Values 7-385

C-1 Terminal Behavior That Affects VAXTPU's Performance C-1

D-1 VAXTPU Messages and Their Severity Levels D-1

E-1 DEC Multinational Character Set E-1

F-1 VAXTPU Support of File Attributes F-1

.u

vvl

_)

Preface

Manual Objectives
The VAX Text Processing Utility Manual describes the VAX Text Processing
Utility (VAXTPU). This manual is intended to be used as a reference
document.

Intended Audience
This manual is intended for experienced programmers who know at least.
one computer language. Some features of VAXTPU, for example, the
callable interface and the built-in procedure FILE_PARSE, are intended
for system programmers who have a good understanding of VMS system
concepts. Relevant documents about the VMS operating system are listed
under Associated Documents.

Document Structure
This manual consists of six expository chapters, a reference section, and
seven appendixes. The six chapters discuss the following topics:

•· Chapter 1 contains an overview ofVAXTPU.

• Chapter 2 provides detailed information on VAXTPU data types.

• Chapter 3 discusses the lexical elements ofVAXTPU. These include
the character set, identifiers, variables, constants, and reserved words~
such as VAXTPU language statements.

• Chapter 4 describes VAXTPU program development.

• Chapter 5 describes how to invoke VAXTPU.

• Chapter 6 discusses the VAXTPU screen manager and screen
management issues.

The VAXTPU Reference Section provides detailed descriptions of the
VAXTPU built-in procedures.

The seven appendixes are organized as follows:

• Appendix A contains sample procedures written in VAXTPU.

• Appendix B contains sample procedures written in DECwindows
VAXTPU.

• Appendix C describes terminals supported by VAXTPU.

• Appendix D lists each VAXTPU message, its abbreviation, and its
severity level.

• Appendix E contains the DEC Multinational Character Set.

• Appendix F lists the file types that VAXTPU supports.

xxlli

Preface

• Appendix G discusses EVE$BUILD, a toql that enables-you to layer
applications onto EVE or build new VAXTPU applications.

Note that the Version 5.0 VAX Text Processing Utility Manual Extensible
VAX Editor section (Appendix F) is now a separate manual, the EVE
Reference Manual.

Associated Documents

xxiv

To learn how to use the Extensible VAX Editor (EVE), see the Guide to
VMS Text Processing. For reference information on EVE commands, see
EVE Reference Manual. (EVE Reference Manual previously was Appendix
F of this manual.)

The VMS Utility Routines Manual contains a chapter presenting the
VAXTPU callable interface. .

The VMS System Messages and Recovery Procedures Reference Volume
contains the VAXTPU messages, as well as an explanation and suggested
user action for each message. The messages are listed alphabetically by
the abbreviation for the message text.

The Overview of VMS Documentation briefly describes all VMS system
documentation, defining the intended audience for each manual and 0_ /\
providing a synopsis of each manual's contents. _ _J

The VMS DCL Dictionary describes the VMS DCL commands that help
you create, copy, and print files containing VAXTPU programs.

The VMS System Services Volume describes system services.

The Introduction to VMS System Routines and VMS Utility Routines
Manual describe utility routines.

The VMS Run-Time Library Routines Volume describes routines of the
run-time library.

The VMS Record Management Services Manual describes VMS RMS
services.

)

Conventions

(

u

u

Preface

The following conventions are used in this document:

Convention

CTRUC

$SHOW TIME
05-JUN-1988 11:55:22

$ TYPE MYFlLE.DAT

{ }

[]

[, ...]

[]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated) shown
within a box indicates that you press a key on the
keyboard; in text, a key name is not enclosed in a box. In
this example, the key is the RETURN key. (Note that the
RETURN key is not usually shown in syntax statements
or in all examples; however, assume that you must press
the RETURN key after entering a command or responding
to a prompt.) In Appendix F, the keys that are equivalent
to EVE commands are boxed for ease in viewing, even
though they are not shown in interactive examples.

A key combination, shown in uppercase with a slash
separating two key names, indicates that you hold down
the first key while you press the second key. For example,
the key combination CTRUC indicates that you hold down
the key labeled CTRL while you press the key labeled C.
In examples, a-key combination is enclosed in a box.

In examples, system output (what the system displays) is
shown in black. User inpu't° (what you enter) is shown in
red. For online versions, user input is shown in bold.

In examples, a vertical series of periods, or ellipsis, means
either that not all the data that the system would display in
response to a command is shown or that not all the data a
user would enter is shown.

Braces enclose a mandatory portion of the format of
a built-in procedure or lexical element. When braces
enclose a stacked list of items, you must choose one of

. { string } the items. For example: range

Double brackets in examples show an optional portion of
the format of a built-in procedure or lexical element. When
double brackets enclose an item or series of items, you

can select one of the items. For example: [
st

ring]
• range

Double brackets enclosing a comma and horizontal ellipsis
mean that you can repeat the preceding item one or more
times, separating two or more items with commas. For
example:

parameter ([, ...)]

Delimits a case label. Single brackets do not indicate
optional parameters in this manual.

The term quotation marks is used to refer to double
quotation marks ("). The term apostrophe (') is used to
refer to a single quotation mark.

XXV

Preface

xxvi

Convention

UPPERCASE letters
and special symbols

lowercase letters

user_

filespec

Meaning

Uppercase letters and special symbols in syntax
descriptions and sample procedures indicate VAXTPU
reserved words and predeclared identifiers, and other user
input that must be typed exactly as shown. For example:

PROCEDURE
UNDERLINE

String constants are shown in lowercase to emphasize
that they are strings. However, they, too, must be typed
exactly as shown.

Lowercase letters in syntax descriptions and sample
procedures represent elements that you must replace
according to the description in the text. For example,
when a data type, such as buffer, is used in a syntax
example, replace it with the variable name assigned
to the data item when it was created. In the following
assignment statement, my_buffer_variable is the variable
name assigned to the buffer you are creating:

my_buffer_variable :=
CREATE_BUFFER ('my_buf_name', 'my_file_name')

To specify a buffer as a parameter for a VAXTPU built-in
procedure, use the variable for the buffer. For example, to
erase the contents of the buffer created in the preceding
statement, enter the following:

ERASE (my_buffer_variable)

Many of the sample procedures in this manual have the
prefix user_ as a part of the procedure name. Digital
suggests that you replace the prefix user with your initials.
This or some other convention helps to ensure that the
variables and procedure names that you create do not
conflict with either VAXTPU built-in procedure names,
or the procedure names and variables of your editing
interface.

Mnemonic for file specification.

VAXTPU programs do not require special formatting such as indentation,
spacing, and so on. Programming examples in this manual use different
formatting styles to show several ways of writing VAXTPU programs.
Long statements in sample procedures are divided into several lines to
make them easy to read. Note that none of the indentation formats used
in this manual is mandatory.

)

u
VAXTPU Tutorial Section

u

)

. __,,I

G

(

l

u

1 Overview of the VAX Text Processing Utility

1.1

Chapter 1 presents an overview of the VAX Text Processing Utility
(VAXTPU). In particular, this chapter addresses the following questions:

• What is VAXTPU?

• What is DECwindows VAXTPU?

• What is EVE?

• What is the VAXTPU language?

• What hardware does VAXTPU support?

• How do I start using VAXTPU?

• How do I learn more about VAXTPU?

What Is VAXTPU?
VAXTPU is a high-performance, programmable, text processing utility.
It is designed as a tool to aid application and system programmers in
developing tools that manipulate text. Programmers, for example, can
use VAXTPU to design an editor for a specific environment. The utility
includes a high-level procedural language, a compiler, an interpreter, and
an editing interface written in VAXTPU.

VAXTPU provides the following special features:

• Multiple buffers

• Multiple windows

• Multiple subprocesses

• Text processing in batch mode

• Insert or overstrike text entry

• Free or bound cursor motion

• Learn sequences

• Pattern matching

• Key definition

• Procedural language

• Callable interface

The editor or other application that you layer on top of VAXTPU becomes
the interface between you and VAXTPU. You must either use the
Extensible VAX Editor (EVE) or create your own interface to access
VAXTPU.

1-1

Overview of the VAX Text Processing Utility
1.1 What Is VAXTPU?

You can think of VAXTPU as a base on which to layer text processing
applications. The Extensible VAX Editor (EVE) is a good example of an
application written in VAXTPU and layered on VAXTPU. See Figure 1-1.

Figure 1-1 VAXTPU as a Base for EVE

EVE
Editor

I
V-A X T p u

ZK-6545-GE

1.2 What is DECwindows VAXTPU?

1.2.1

VAXTPU can display text in two environments: A character cell terminal,
such as a VT320, or a bit-mapped workstation running the DECwindows n'\
windowing software.)

DECwindows VAXTPU provides additional built-in procedures to interact
with the DECwindows environment, including the ability to create and
manipulate widgets, global selection, input focus, and the clipboard. For
information about how to invoke the DECwindows version ofVAXTPU, see
Chapter 5. If you try to use the DECwindows features of VAXTPU on a
character-cell terminal, VAXTPU returns an error.

Nate that the windows referred to in the product name DECwindows
are not the same as VAXTPU windows, which have been supported in)
VAXTPU for several releases. For more information about the difference
between DECwindows windows and VAXTPU windows, see Section 4.3.1.

DECwindows VAXTPU and DJ=Cwindows Features

1-2

The DECwindows environment has a number of toolkits and libraries
containing routines for creating and manipulating DECwindows interfaces.
For example, DECwindows routines allow you to create and manipulate
clipboard entries, global selections, and widgets. For an overview of the
DECwindows libraries and toolkits, see VMS DECwindows Guide to
Application Programming.

DECwindows VAXTPU contains a number of built-in procedures that
provide access to the routines in the DECwindows libraries and toolkits.

Using these DECwindows VAXTPU built-in procedures, you can create n\
and manipulate various features of a DECwindows interface from within __ _)
a VAXTPU program. For a list of the kinds of widgets you can create and
manipulate using VAXTPU built-in procedures, see Section 4.2.1. In most

,'

U.

u

Overview of the VAX Text Processing Utility
1.2 What is DECwindows VAXTPU?

cases, you use VAXTPU DECwindows built-in procedures without needing
to know what DECwindows routine a given built-in procedure calls.

You cannot directly call DECwindows routines (such as XUI Toolkit or Xlib
Toolkit routines) from within a program written in the VAXTPU language.
To use a DECwindows routine in a VAXTPU program, you can use one or
more of the following techniques:

• Use a VAXTPU built-in procedure that calls a DECwindows routine.
Examples of sucli VAXTPU built-in procedures include the following:

CREATE_ WIDGET

DELETE (WIDGET)

MANAGE_ WIDGET

SET (DRM_HIERARCHY)

SET (WIDGET)

SET (WIDGET_CALLBACK)

UNMANAGE_WIDGET

For more information about how to use the DECwindows built-ins
in VAXTPU, see the individual built-in descriptions in the VAXTPU
Reference Section. For more information about the types of widget
resource values supported by VAXTPU, see Section 4.2.6.1.

• Using a compiled language that follows the VMS calling standard,
write a function calling the desired XUI Toolkit routine. You can then
use the built-in procedure CALL_USER in your VAXTPU program to
invoke the program written in the non-VAXTPU language. For more
information about using the built-in procedure CALL_USER, see the
VAXTPU Reference Section.

• Using a compiled language that follows the VMS calling standard,
write a program calling the desired XUI Toolkit routine. You can
then invoke VAXTPU from the program using the VAXTPU callable
interface. For more information about using the VAXTPU callable
interface see the VMS Utility Routines Manual.

The DECwindows version of VAXTPU does not provide access to all of
the features of DECwindows. For example, there are no VAXTPU built-in
procedures to handle pixmaps or floating-point numbers or to manipulate
entities such as lines, curves, and fonts.

However, the DECwindows version of VAXTPU allows you to create a
wide variety of widgets, to designate callback routines for those widgets,
to fetch and set geometry and text-related resources of the widgets, and
to perform other functions related to creating a DECwindows application.
For example, the DECwindows EVE editor is a text processing interface
created with DECwindows VAXTPU.

1-3

1.2.2

Overview of the VAX Text Processing Utility
1.2 What is DECwindows VAXTPU?

DECwindows VAXTPU and the DECwindows User Interface Language
You can use VAXTPU programs with DECwindows User Interface
Language (UIL) files just as you would use programs in any other
language with UIL files. For an example of a VAXTPU program and a
UIL file designed to be used together, see the description of the CREATE_
WIDGET built-in in the VAXTPU Reference Section. For more information
about using UIL files in conjunction with programs written in other
languages, see the VMS DECwindows Guide to Application Programming.

1.3 What Is EVE?

1-4

The Extensible VAX Editor (EVE) is the editor provided with VAXTPU.
EVE is easy to learn and to use. Many of EVE's editing functions are
accessed by pressing a single key on the EVE keypad. EVE is also a
powerful and efficient editor, which makes it attractive to experienced
users of text editors. The more advanced editing functions are accessible
by entering commands on the EVE command line. Many of the special
features of VAXTPU (such as multiple windows) are available with
EVE commands. Other VAXTPU features can be accessed by entering
VAXTPU statements from within EVE. EVE has both a character-cell and
a DECwindows interface. To use EVE's DECwindows interface, you must
be using a bit-mapped terminal or workstation.

EVE is a fully functional editor. However, it is designed to make
customization easy. You can use either VAXTPU statements or EVE
commands to tailor EVE to your editing style.

You can write extensions for EVE or you can write a completely separate
interface for VAXTPU. See Figure 1-2.

Figure 1-2 VAXTPU as a Base for User-Written Interfaces

User-Written
Extensions

to EVE

. I
User-Written EVE
Application Editor

I I
V A X T p u

ZK-6544-GE

Extensions to EVE can be implemented with a VAXTPU command file
(VAXTPU source code), with a VAXTPU section file (compiled VAXTPU
code in binary form), or with an initialization file (commands in a format

)

n
_)

1.4

1.4.1

Overview of the VAX Text Processing Utility
1.3 What Is EVE?

processed by the application layered on VAXTPU). Because a VAXTPU
section file is already compiled, startup time for your editor or application
is shorter using a section file than using a command file or an initialization
file. For more information on using startup files, see Section 1.6.2.

To implement an editor or application that is entirely user written, use
a section file. See Chapter 4 for information on VAXTPU command files,
section files, and initialization files. See Appendix G for information on
layering applications on VAXTPU.

For tutorial information on EVE, see the Guide to VMS Text Processing.
For reference information on EVE commands, see EVE Reference Manual.

The VAXTPU Language
VAXTPU is a high-level, procedural programming language that allows
you to perform text processing tasks. The VAXTPU language can be
viewed as the most basic component of VAXTPU. To access the features
of VAXTPU, write a program in the VAXTPU language and then use the
utility to compile and execute the program. A program written in VAXTPU
can be as simple as a single statement, or as complex as the section file
that implements EVE.

The V AXTPU language is block structured and is easy to learn and
use. VAXTPU language features include a large number of data types,
relational operators, error interception, looping and case statements,
and built-in procedures that simplify development or extension of an
editor or application. Comments are indicated with. a single comment
character (!), so that you can document your procedures easily. There are
also capabilities for debugging procedures with user-written debugging
programs.

VAXTPU Data Types
The VAXTPU language has an extensive set of data types. Data types are
used to interpret the meaning of the contents of a variable. Unlike many
languages, the VAXTPU language has no declarative statement to enforce
which data type must be assigned to a variable. A variable in VAXTPU
assumes a data type when it is used in an assignment statement. For
example, the following statement assigns a string data type to the variable
this_var:

this_var := 'This can be a string of your choice.';

The following statement assigns a window data type to the variable x. The
window occupies 15 lines on the screen, starting at line 1, and the status
line is off (not displayed).

x := CREATE_WINDOW (1, 15, OFF);

Many of the VAXTPU data types (for example, learn and pattern) are
different from the data types usually found in programming languages.
Following is a list of VAXTPU keywords used to specify data types:

• ARRAY - A structure for a collection of elements.

1-6

1.4.2

Overview of the VAX Text Processing Utility
1.4 The VAXTPU Language

• BUFFER - A collection of text records. You can think of a buffer as
an area in which to perform editing operations.

• INTEGER - An integer. The range of valid integer values in VAXTPU
is -2,147,483,648 to 2,147,483,647.

• KEYWORD - A reserved word that has special meaning to the
VAXTPU compiler.

• LEARN-A sequence ofVAXTPU keystrokes.

• MARKER - A character position within a buffer. You can think of a
marker as a placemark in a buffer.

• PATTERN - One or more sequences of characters. The pattern
operators and the pattern built-in procedures return this data type as ;
a result. Patterns are used with the built-in procedure SEARCH to -)
locate specific text within a buffer.

• PROCESS - A VMS subprocess.

• PROGRAM - The compiled form of a sequence of VAXTPU executable
statements.

• RANGE - All of the text that occurs between and including two
markers.

• STRING-A character string.

• UNSPECIFIED - The initial state of a global variable after the code
containing the variable declaration has been compiled.

• WINDOW - A subdivision of the screen. You can think of a window
as an area in which to view a portion of the text in a buffer.

• WIDGET - A widget is a structure used as an interaction mechanism
by which users give input to an application or receive messages from
an application.

See Chapter 2 of this manual for a discussion of VAXTPU data types.

VAXTPU Language Declarations

1-6

VAXTPU language declarations include the following:

• Module declaration (MODULE/IDENT/ENDMODULE)

• Procedure declaration (PROCEDURE/ENDPROCEDURE)

• Constant declaration (CONSTANT)

• Global variable declaration (VARIABLE)

• Local variable declaration (LOCAL)

See Chapter 3 of this manual for a discussion of VAXTPU language
declarations.

)

r-
U

1.4.3

(
1.4.4

G
1.4.5

f

_)

Overview of the VAX Text Processing Utility
1.4 The VAXTPU Language

VAXTPU Language Statements
VAXTPU language statements include the following:

• Assignment statement (:=)

• Repetitive statement (LOOP/EXITIF/ENDLOOP)

• Conditional statement (IFtrHEN/ELSE/ENDIF)

• Case statement (CASE/ENDCASE)

• Error statement (ON_ERROR/ENDON_ERROR)

See Chapter 3 of this manual for a discussion of VAXTPU language
statements.

VAXTPU Built-In Procedures
The VAXTPU language has many built-in procedures that perform
functions such as screen management, key definition, text manipulation,
and program execution.

You can use built-in procedures to create your own procedures. You
can also invoke built-in procedures from within EVE. See the VAXTPU
Reference Section for a description of each of the VAXTPU built-in
procedures.

User-Written Procedures
You can write your own procedures that combine VAXTPU language
statements and calls to VAXTPU built-in procedures. VAXTPU procedures
can return values and can be recursive. After you write a procedure and
compile it, you use the procedure name to invoke it.

When writing a procedure, follow these guidelines:

• Start each procedure with the word PROCEDURE, followed by the
procedure name of your choice.

• End each procedure with the word ENDPROCEDURE.

• Place a semicolon after each statement or built-in call if the statement
or call is followed by another statement or call.

Example 1-1 is a sample procedure that uses VAXTPU language
statements (PROCEDURE/ENDPROCEDURE) and built-in procedures
(POSITION, BEGINNING_OF, and CURRENT_BUFFER) to move the
current character position to the beginning of the current buffer. The
procedure displays a message with the MESSAGE built-in and obtains the
name of the current buffer with the GET_INFO built-in.

Once you have compiled- this procedure, you can invoke it with the name
user _top. For information about writing procedures, see Chapter 3 and
Chapter 4.

1-7

Overview of the VAX Text Processing Utility
1.5 Terminals Supported by VAXTPU

Example 1-1 Sample User-Written Procedure

! This procedure moves the editing
! position to the top of the buffer

PROCEDURE user_top

POSITION (BEGINNING OF (CURRENT BUFFER));
MESSAGE ("Now in buffer"+ GET_INFO (CURRENT_BUFFER, "name"));

END PROCEDURE

1.5 Terminals Supported by VAXTPU
VAXTPU runs on all VAX computers. On some systems, however, you may
have to adjust your system parameters or divide the files into smaller ··)·,
segments if you want to work with very large files. The reason for this is

1-8

that VAXTPU does all of its work in memory, rather than using a work
file.

Caution: When you use VAXTPU, bear in mind that it is possible to exceed a
process's virtual address space without warning during a VAXTPU
session.

VAXTPU manipulates data in a process's virtual memory space.
If the space required by the VAXTPU images, data structures,
and files in memory exceeds the virtual address space, VAXTPU
may abort with a fatal internal error. VAXTPU does not give any
warning that you are approaching the virtual address space limit
for your process. For more information on how to prevent such an
error, see Section 5.1.

VAXTPU supports screen-oriented editing on the Digital VT300-, VT200-,
and VTl00-series terminals, and on other video display terminals that
respond to the ANSI control functions.

One of the major goals in the design of VAXTPU .is fast performance for
screen-oriented editing. Optimum screen-oriented editing performance
occurs when you run VAXTPU from VT300-series, VT220-series, and
VTlO0-series terminals. Some video terminal hardware does not allow
optimum VAXTPU performance. See Appendix C for a list of hardware
characteristics that may adversely affect VAXTPU's performance.

Although you cannot use the screen-oriented features of VAXTPU on a
VT52 terminal, on hardcopy terminals, or on foreign terminals that do
not respond to ANSI control functions, you can run VAXTPU on these
terminals with a line mode style of editing. For information on how to
implement this style of editing, see the description of the /NODISPLAY
qualifier in Chapter 5 and the sample line mode editor in Appendix A.

)

1.6

(

1.6.1

(_j

Overview of the VAX Text Processing Utility
1.6 Invoking VAXTPU

Invoking VAXTPU
To invoke VAXTPU from DCL, type the command EDIT!l'PU, followed by
the name of your file. For example:

$ EDIT/TPU text_file.lis

This command opens TEXT_FILE.LIS for editing. Note that you can
specify only one input file on the command line. You can include additional
files from within VAXTPU later in your editing session with the built-in
procedure READ_F-ILE or the EVE command GET FILE.

Digital suggests that you create a symbol like the following one to simplify
invoking EVE:

$EVE== "EDIT/TPU"

When you invoke VAXTPU with the preceding command, you are normally
placed in EVE, the default editor. However, your system manager may
have overridden this default.

Using EDIT/TPU Command Qualifiers
You can use qualifiers with the EDIT!I'PU command. The qualifiers
control such items as recovery from an interrupted session and the
initialization files that set attributes of the application layered on
VAXTPU. Qualifiers for the EDIT!I'PU command are listed in Table 1-1.

Table 1-1 Qualifiers to the DCL Command EDITfTPU

Qualifier

/[NO] COMMAND[=filespec]

/[NO] CREATE

/[NO] DEBUG

/[NO] DISPLAY[=keyword]

/[NO] INITIALIZATION[=filespec]

/[NO] JOURNAL[=filespec]

/[NO] MODIFY

· /[NO] OUTPUT[=filespec]

/[NO] READ_ONLY

/[NO] RECOVER

/[NO] SECTION[=filespec]

/START _POSITION=(row, column)

/[NO]WRITE

Default

/COMMAND= TPU$COMMAND

/CREATE

/NODEBUG [= filespec]

/DISPLAY =CHARACTER_CELL

/NOINITIALIZATION

/JOURNAL=input_file.T JL

/MODIFY

/OUTPUT =input_file.type

/NOREAD_ONLY

/NORECOVER

/SECTION= TPU$SECTION

/START _POSITION=(1, 1)

For descriptions of the EDIT!I'PU command qualifiers, see Chapter 5. . .

1-9

1.6.2

Overview of the VAX Text Processing Utility
1.6 Invoking VAXTPU

Using Startup Files

1-10

Command files and section files can create or customize a VAXTPU editor
or application. Another kind of file, the initialization file, can customize
EVE or other layered applications, using EVE or ether application-specific
commands, settings, and key bindings.

A command file is a file containing VAXTPU source code. A command
file has the file type TPU. It is used with the VAXTPU qualifier
/COMMAND=filespec. VAXTPU tries to read a command file unless
you specify /NOCOMMAND. The default command file is the file called
TPU$COMMAND.TPU in your current directory, if such a file exists. You
can specify a different file by defining the logical name TPU$COMMAND.

A section file is the compiled form of VAXTPU source code. It is a
binary file that has the default file type TPU$SECTION. It is used
with the qualifier ISECTION=filespec. The default section file is
TPU$SECTION.TPU$SECTION in the area SYS$SHARE. VMS is
shipped with the systemwide logical name TPU$SECTION defined as
EVE$SECTION. This definition causes the EVE editor to be invoked by
default when you use the DCL command EDIT/TPU. You must specify
a different section file (for example, /SECTION= my_section_file) or
/NOSECTION if you do not want to use the EVE interface.

Note: When you invoke VAXTPU with the /NOSECTION qualifier,
VAXTPU does not use any binary file to provide an interface. Even
the RETURN and DELETE keys are not defined. Use /NOSEC,TION
when you are creating a new section file and do not want the
procedures, variables, and definitions from an existing section file
to be included. See Chapter 4 and Chapter 5 for more information
on /NOSECTION.

An initialization file contains commands for a VAXTPU-based application.
For example, an initialization file for EVE can contain commands defining
keys or setting margins. Initialization files are extremely easy to create,
but they cause VAXTPU to start up somewhat more slowly than section
and command files do. To invoke an initialization file, use the qualifier
/INITIALIZATION. For more information on using initialization files, see
the Guide to VMS Text Processing.

You can use either a command file or a section file, or both, to customize or
extend an existing interface. A command file is generally used for minor
customization of an interface. Because startup time is faster with a section
file, a section file is generally used when the customization is lengthy or
complex, or when you are creating an interface that is not layered on an
existing editor or application. You can use an initialization file only if your
application supports the use of such a file.

The source files for EVE are in SYS$EXAMPLES. To see a list of the EVE
source files, type the following at the DCL prompt:

$ DIRECTORY SYS$EXAMPLES:EVE$*.TPU

If you cannot find these files on your system, see your system manager.

Chapter 4 describes how to write and process command files and section
files.

)

j

1.7

·U

u

Overview of the VAX Text Processing Utility
1.7 Learning More About VAXTPU

Learning More About VAXTPU
This manual is a reference volume for experienced programmers who want
to program in VAXTPU. The manual assumes that you are familiar with
programming concepts and VMS system concepts. Even though VAXTPU
is a language that is easy to read and learn, you must study the language
to use it successfully.

The suggested path for learning to use VAXTPU is to read the
documentation describing EVE first if you are not familiar with that
editor. The chapter describing the EVE interface in the Guide to VMS Thxt
Processing contains tutorial material for new EVE users. It also contains
material for more experienced users of text editors and explains how to
use VAXTPU to extend the EVE interface.

When you are familiar with EVE, you may want to extend or customize
it. Study the source code to see which procedures, variables, and key
definitions the editor uses. Then write VAXTPU procedures to implement
your extensions. Make sure that the VAXTPU procedures you write to
customize or extend the editor do not conflict with procedures or variables
that EVE uses.

When you have successfully compiled and executed the VAXTPU
procedures shown in the Guide to VMS Text Processing, use this manual
to learn more about the VAXTPU language. In this manual, Chapter 2,
on VAXTPU data types; Chapter 3, on lexical elements of the VAXTPU
language; and the VAXTPU Reference Section, on VAXTPU built-in
procedures, describe the elements of the VAXTPU language. Chapter 4,
on VAXTPU program development, tells you how to use these elements to
develop programs. Chapter 5 tells you how to invoke VAXTPU with the
procedures and programs you have developed.

To help you learn about the VAXTPU language, this manual contains many
examples ofVAXTPU procedures and programs. Every built-in procedure
in the VAXTPU Reference Section has an example that is a simple,
one-line VAXTPU statement using the built-in procedure. Many of the
descriptions of the built-in procedures in the VAXTPU Reference Section
also have a short sample procedure that uses the built-in procedure in an
appropriate context. Appendix A contains longer sample procedures that
perform useful editing tasks. These procedures are merely samples; adapt
them for your own use. You must substitute an appropriate value for any
item in lowercase in sample procedures and syntax examples.

Some system programmers may not want to follow the suggested path of
learning about VAXTPU by studying and extending EVE. If yo~ want to
design your own VAXTPU-based editor or application rather than using
EVE, you can find the source code for a minimal interface in Chapter 4.
Experienced programmers can use this sample as a starting point for
writing their own VAXTPU interfaces. Although this manual does not
specifically tell you how to design an editor or application, you can examine
the source code used to create EVE. The source file is a good example of
how to use VAXTPU to create an editing interface.

1-11

)

(

u

u

2 VAXTPU Data Types

A data type is a group of elements that "belong together;" the elements
are all formed in the same way and are treated uniformly. The data type
of a variable dete~ines the operations that can be performed on it. The
VAXTPU data types are represented by the following keywords:

• ARRAY

• BUFFER

• INTEGER

• KEYWORD

• LEARN

• MARKER

• PATTERN

• PROCESS

• PROGRAM

• RANGE

• STRING

• UNSPECIFIED

• WIDGET

• WINDOW

Data types are used to interpret the contents of a variable. Unlike many
programming languages, VAXTPU permits any variable to have any type
of data as a value. VAXTPU has no declaration statement to restrict the
type of data that can be assigned to a variable. VAXTPU variables take on
a data type when they are placed on the left-hand side of an assignment
statement. · The right-hand side of the assignment statement determines
the data type of the variable.

Although you can construct variables freely, VAXTPU built-in procedures
require that their parameters be of specific data types. Each built-in
procedure can operate only on certain data types. Some built-in procedures
return a value ·of a certain data type when they are executed. The
following sections describe the VAXTPU data types.

2-1

VAXTPU Data Types
2.1 Array

2.1 Array

2-2

An array is a structure for storing and manipulating a group of elements.
These elements can be of any data type. You create arrays with the built
in procedure CREATE_ARRAY. For example, the following statement
creates the array new_array:

new_array := CREATE_ARRAY;

You can delete arrays with the built-in procedure DELETE.

When you create an array, you can optionally direct VAXTPU to allocate
a specified number of integer-indexed array elements. VAXTPU processes
this block of preallocated elements very quickly. You can direct VAXTPU
to create such a block of elements only at the time you create the array.)
The following statement creates the array int_array, directs VAXTPU to · . .-
allocate 10 sequential, integer-indexed elements to the array, and specifies
that the lowest index value should be 1:

int_array := CREATE_ARRAY (10, l);

Regardless of whether you specify a preallocated block of elements, you
can always add array elements dynamically. Dynamically added elements
can be of any data type except learn, pattern, program, or unspecified. You
can mix the data types of indexes in an array.

In the following code fragment, the array mix_array is created and the
integer 1 is stored in the array element indexed by the marker markl.

rnix_array := CREATE_ARRAY;
rnarkl := MARK (NONE);
mix array {rnarkl} := l;
rnix=array {"Kansas"} : = "Toto";

You can index dynamic elements with integers, even if this means that
the array ends up with more integer-indexed elements than you specified
when you created the array. Note, however, that VAXTPU does not process)
dynamically added integer-indexed elements as quickly as it processes -
preallocated elements.

To refer to an array element, use the name of an existing array variable
followed by the array index enclosed in braces { } or parentheses (). For
example, if you had created an array and stored it in the variable my_
array, the following would be valid element names:

rny_array{2}
rny_array ("fred")

To create an element dynamically for an existing array, simply use the
new element as the target of an assignment statement. For example, the
following statement creates the element "stringl" in the array my_array
and assigns to the element the string "Topeka":

rny_array{"stringl"} := "Topeka";

In the following example, the first statement creates an integer-indexed
array, int_array. The array has 10 elements; the first element starts at
index 1. The second statement stores a string in the first integer-indexed
element of the array. The third statement stores a buffer in the eighth

u

(.

2.2 Buffer

u

VAXTPU Data Types
2.1 Array

element of the array. The fourth statement adds an integer-indexed
element dynamically. This new element contains a string.

int_array := CREATE_ARRAY (10, 1);
int_array {1) := "Store a string in the first element";
int_array {8) := CURRENT BUFFER;
int_array {42) := "This is a dynamically created element.";

If you assign a value to an element that has not yet been created, then
that element is dynamically created and both the index and the value are
stored. Subsequent references to that element index return the· stored
value. ·

In most cases, if you reference an element that has not yet been created
and you do not assign a value to the nonexistent element, VAXTPU
does not create the element. VAXTPU simply returns the data type
unspecified. However, if you reference a nonexistent element by passing
the nonexistent element to a procedure, VAXTPU actually adds a new
element to the array, giving the element the index you pass to the
procedure. VAXTPU assigns to this new element the data type unspecified.

You can delete an element in the array by assigning the data type
unspecified to the element. For example, the following statement deletes
the element my_array {"fred''l:

my_array {"fred") := TPU$K_UNSPECIFIED;

The following code fragment shows how you can find all the indexes in an
array:

the index:= GET INFO (the_array, "FIRST");

LOOP
EXITIF the_index TPU$K_UNSPECIFIED;

the index := GET INFO (the_array, "NEXT");
ENDLOOP;

A buffer is a work space for manipulating text. A buffer can be empty or
it can contain text records. You can have multiple buffers. A value of the
buffer data type is returned by the built-in procedures CREATE_BUFFER,
CURRENT_BUFFER, and GET_INFO. CREATE_BUFFER is the only
built-in procedure that creates a new buffer. CURRENT_BUFFER and
GET_INFO return pointers to existing buffers.

The following statement makes the variable my _buf a variable of type
buffer:

my_buf := CREATE_BUFFER ("my_buffer");

When you use a buffer as a parameter for VAXTPU built-in procedures,
you must use as the parameter the variable to which you assigned the
buffer. For example, if you want to erase the contents of the buffer created
in the preceding statement, enter the following:

2-3

VAXTPU Data Types
2.2 Buffer

2-4

ERASE (rny_buf);

In this statement, my _buf is the identifier for the variable my _buf. The
string "my _buffer" is the name associated with the buffer. The distinction
between the name of the buffer variable and the name of the buffer ,can be
useful whan developing an application layered on VAXTPU. For example,
the application can manipulate a given buffer (such as the main buffer
in EVE) using an internal buffer name such as main_buffer. However,
the application can associate the name of the user's input file with the
buffer, malting it easier for the user to remember which buffer contains
the contents of a given file.

If you want to delete the buffer itself, use the built-in procedure DELETE
with the buffer variable as the parameter.

More than one buffer variable can represent the same buffer. The
following statement causes both my _buf and old_buf to point to the same
buffer:

old~buf := rny_buf;

A buffer remains in VAXTPU's internal list of buffers even when there are
no variables pointing to it. You can use the built-in procedure GET_INFO
to retrieve buffers from VAXTPU's internal list.

Creating a buffer does not cause the information contained in the buffer
to become visible on the screen. The buffer must be associated with a
window that is mapped to the screen for the buffer contents to be visible.
Editing can take place in a buffer even if the buffer is not mapped to a
window on the screen.

The current buffer contains the active editing point. The editing point
can be different from the cursor position, and often each is in a different
location. When the current buffer is associated with a visible window (one
that is mapped to the screen), the editing point and the cursor position are
usually the same.

A line in a buffer can contain up to 960 characters. This limit is subject
to change in future versions. If you try to create a line that is longer
than 960 characters, VAXTPU truncates the inserted text and inserts only
the amount that fills. the line to 960 characters. If you try to read a file
containing lines longer than 960 characters, VAXTPU truncates from such
lines all characters after the 960th character.

A single buffer can be associated with O to 255 windows for editing
purposes. It is often useful to have a buffer visible in two windows so
that you can look at two separate parts of the same file. For example, you
could display a set of declarations in one window and code that uses the
declarations in an9ther window. Edits made to a buffer show up in all
windows to which that buffer is mapped and in which the editing point is
visible.

)

2.3 Integer

(2.4 Keyword

/

I '
\._)

VAXTPU Data Types
2.3 Integer

VAXTPU uses the integer data type to represent numeric data. VAXTPU
performs only integer arithmetic. The type integer consists of the whole
number values ranging from-2,147,483,648 to 2,147,483,647. In VAXTPU,
an integer constant is a sequence of decimal digits; no commas or decimal
points are allowed.

The following example assigns a value of the integer data type to the
variable x:

X := 12345;

Keywords are reserved words in VAXTPU that have special meaning to
the compiler.

To see a list of all VAXTPU keywords, use the SHOW (KEYWORDS)
built-in.

Keywords are used in the following ways:

• AB parameters for VAXTPU built-in procedures (ALL, BLINK, PF2,
and so forth). The first parameter of the built-in procedure SET is
always a keyword (for instance, PAD, SCROLLING, STATUS_LINE).

• AB values returned by VAXTPU built-in procedures, such as
CURRENT_DIRECTION, KEY_NAME, LAST_KEY, READ_KEY, and
GET_INFO. For example, the call GET_INFO (window, "status_video")
has the following keywords as possible return values:

BLINK

BOLD

NONE

REVERSE

SPECIAL_GRAPHICS

UNDERLINE

• AB pattern directives. The following keywords fall into this category:

ANCHOR

LINE_BEGIN

LINE_END

PAGE_BREAK

REMAIN

UNANCHOR

These keywords are described in the VAXTPU Reference Section
because they behave like built-in procedures.

2-5

VAXTPU Data Types
2.4 Keyword

2-6

• To specify the VAXTPU data types (BUFFER, MARKER, LEARN, and
so forth).

• To report WARNING or ERROR status conditions •
(TPU$_BADMARGINS, TPU$_CREATEFAIL, TPU$_NOEOBSTR,
and so forth).

• To pass the names of keys to VAXTPU procedures. See Table 2-1 for
information on keywords used to refer to keys.

Table 2-1 shows the correspondence between keywords used as VAXTPU
key names and the keys on the VT300, VT200, and VTl00 series of
keyboards. Note that it is not necessarily advisable to define a key or
control sequence just because there is a VAXTPU keyword for the key
or sequence. Digital recommends that you avoid defining the following
control characters and function key:

• CTRIJC

• CTRIJO

• CTRIJQ

• CTRIJS

• CTR[/'!'

• CTRL/X

• CTRIJY

• F6

Table 2-1 Keywords Used for Key Names

VAXTPU Key Name

PF1

PF2

PF3

PF4

KP0, KP1, ..• , KP9

PERIOD

COMMA.

MINUS

ENTER

UP
DOWN

LEFT
RIGHT

VT300-Series, VT200-
Series Key

PF1

PF2

PF3

PF4

0, 1, ... , 9

ENTER

Up arrow

Down arrow

Left arrow

Right arrow

VT100 Key

PF1

PF2

PF3

PF4

0, 1, ... , 9

ENTER

Up arrow

Down arrow

Left arrow

Right arrow

(continued on next page)

)

!~

J

r-u

(

(L;

2.5 Learn

u

VAXTPU Data Types
2.4 Keyword

Table 2-1 (Cont.) Keywords Used for Key Names

VT300-Serles, VT200-
VAXTPU Key Name Serles Key VT100 Key

E1 Find/ E1

E2 Insert Here / E2

E3 Remove/ E3

E4 Select/ E4

E5 Prev Screen / E5

ES Next Screen / ES

HELP Help/ F15

DO Do I F1S

FS, F7, ... , F20 FS, F7, ... , F20

NUL_KEY CTRUSPACE CTRUSPACE

TAB_KEY Tab Tab

RET_KEY RETURN RETURN

DEL_KEY <Xl DELETE

LF_K_EY CTRUJ Line Feed

BS_KE:Y CTRUH Backspace

CTRL_A_KEY CTRUA1 CTRUA1

CTRL_B_KEY CTRUB CTRUB

CTRL_Z_KEY CTRUZ CTRUZ

1 CTRUA means pressing the CTRL key simultaneously with the A key. A and a produce the
same results.

A learn sequence is a collection of VAXTPU keystrokes. The built-in
procedure LEARN_BEGIN causes VAXTPU to start collecting keystrokes
and the built-in procedure LEARN_END stops the collection of keystrokes
and returns a value of the learn data type as a result. The following
example assigns a learn data type to the variable x:

LEARN BEGIN (EXACT);

x := LEARN_END;

All keystrokes that you enter between the built-in procedures LEARN_
BEGIN and LEARN_END are stored in the variable x. The keyword
EXACT specifies that, when the learn sequence is replayed, the input (if
any) for the built-in procedures READ_CHAR, READ_l{EY, and READ_
LINE (if used in the learn sequence) will be the same as the input entered

2-7

VAXTPU Data Types
2.5 Learn

when the learn sequence was created. If you specify NO_EXACT, a replay
of a learn sequence containing the built-in procedures READ_LINE,
READ_KEY, or READ_CHAR looks for new input. For information on
replaying a learn sequence,- see the descriptions of LEARN_BEGIN and
LEARN_END in the VAXTPU Reference Se_ction.

The execution of a learn sequence can be interrupted by the built-in
LEARN_ABORT. For information on using LEARN_ABORT, see the
description of LEARN_ABORT in the VAXTPU Reference Section. To
enable your user-written VAXTPU procedures to work successfully with
learn sequences, you must observe the following coding rules when you
write procedures that you or someone else can bind to a key:

• The procedure should return true and false as needed to indicate
whether execution of the procedure completed successfully. ·)

• The procedure should invoke the LEARN_ABORT built-in in case of ·

2.6 Marker

2-8

error.

These practices help prevent a learn sequence from finishing if the
learn sequence calls the user-written procedure and the procedure is
not executed successfully.

Note: Learn sequences do not include mouse input or characters
inserted in a widget.

A marker is a reference point in a buffer. You can think of a marker as a
"place mark." To create a marker, use the MARK built-in.

The following example assigns a value of the marker data type to the
variable x:

x := MARK (NONE);

After this statement is executed, the variable x contains the character
position where the editing point was located when the statement was
executed. The editing point is the point in a buffer at which most editing
operations are carried out. For more information on the editing point, see
Chapter 6.

You can cause a marker to be displayed with varying video attributes
(BLINK, BOLD, REVERSE, UNDERLINE). The keyword NONE in the
preceding example specifies that the marker does not have any video
attributes.

When you use the MARK built-in, VAXTPU puts the marker on the
buffer's editing point. The editing point is not necessarily the same as
the window's cursor position. See Chapter 6 for more information on the
difference between the buffer's editing point and the window's cursor
position.

)

G

(

VAXTPU Data Types
2.6 Marker

A marker can be either bound or free. Free markers are useful for
establishing place marks in locations that do not contain characters, such
as locations before the beginning of a line, after the end of a line, in the
white space created by a tab, or below the end of a buffer. By placing
a free marker in such a location, you make it possible to establish the
editing point at that location without inserting padding space characters
that could complicate later operations such as FILL.

A marker is bound if there is a character in the position marked by the
editing point at the time you create the marker. A bound marker is tied
to the character on· which it is created. If you move the character to which
a marker is bound, the marker moves with the character. If you delete
the character to which a marker is bound, VAXTPU binds the marker to
the nearest character or to the end of the line if that is closer than any
character.

To force the creation of a bound marker, use the MARK built-in with
any of its parameters except FREE_CURSOR. This operation creates a
bound marker even if the editing point is beyond the end of a line, before
the beginning of a line, in the middle of a tab, or beyond the end of a
buffer. To create a bound marker in a location where there is no character,
VAXTPU fills the space between the marker and the nearest character
with padding space characters.

A marker is usually free if all of the following conditions are true:

• You used MARK (FREE_CURSOR) to .create the marker.

• There was no character in the position marked by the editing point at
the time you created the marker.

• Nothing has happened to cause the marker to become bound.

The following paragraphs explain each of these conditions in more detail.

If you use the built-in MARK (FREE_CURSOR) and there is a character in
the position marked by the editing point, the marker is bound even though
.you specify otherwise. Once a marker becomes bound, it remains bound
throughout its existence. 'lb determine whether a marker is bound, use
the following GET_INFO call: .

GET_INFO (marker_variable, "bound");

VAXTPU keeps track of the location of a free marker by measuring the
distance between the marker and the character nearest to the marker.
If you move the character from which VAXTPU measures distance to
a free marker, the marker moves too. VAXTPU preserves a uniform
distance between the character and the marker. If you collapse white
space containing one or more free markers (for example, if you delete a tab
or use the APPEND_LINE built-in), VAXTPU preserves the markers and
binds them to the nearest character.

If you use the. POSITION built-in to establish the editing point at a free
marker, the marker remains free and the editing point is also said to
be free; that is, the editing point is not bound to a character. For more
information on characteristics of the editing point, see Section 6.3. Some
operations cause VAXTPU to fill the space between a free marker and the
nearest character with padding space characters, thereby converting the

2-9

VAXTPU Data Types
2.6 Marker

free marker to a bound marker. For example, if you type text into the
buffer when the editing point is detached, VAXTPU inserts padding space
characters between the nearest character and the editing point. Using any
of the following built-in procedures when the editing point is detached also
causes VAXTPU to perform padding:

• APPEND_LINE

• COPY_TEXT

• CURRENT_CHARACTER

• CURRENT_LINE

• CURRENT_OFFSET

• ERASE_CHARACTER

• ERASE_LINE

• MOVE_HORIZONTAL

• MOVE_ VERTICAL

• MOVE_TEXT

• SELECT

• SELECT_RANGE

• SPLIT _LINE

Example 2-1 shows how to suppress padding while using these built
ins. The example assumes that the editing point is free. The code in
this example assigns the string representation of the current line to the
variable foo without adding padding blanks to the buffer.

Example 2-1 Suppressing the Addition of Padding Blanks

x := MARK (FREE_CURSOR); Places a marker at the
detached editing point

POSITION (SEARCH_QUIETLY ("",FORWARD)); Moves the active editing
point to the nearest

foo := CURRENT_LINE;

POSITION (x);

2-10

"! text character

Assigns the string
representation of the
current line to foo without
adding padding blanks

Returns the active editing
point to the free marker

To remove a marker, use the built-in procedure DELETE with the marker
as a parameter. For example, the following statement deletes the marker
markl:

DELETE (markl) ;

_)

(j

2.7 Pattern

(

VAXTPU Data Types
2.6 Marker

You can also set all variables referring to the marker to 0. For example,
the following statement sets the variable markl to 0:

markl := 0;

The marker data type is returned by the built-in procedures MARK,
SELECT, BEGINNING_OF, END_OF, and GET_INFO.

A pattern is a structure that VAXTPU uses when it searches for text in a
buffer. You can think of a pattern as a template that VAXTPU compares
to the searched text, looking for a match between the pattern and the
searched text. You can use a variable whose data type is the pattern data
type when you specify the first parameter to the SEARCH and SEARCH_
QUIETLY built-ins.

To create a pattern, use VAXTPU pattern operators (+, &, I , @) to connect
any of the following:

• String constants

• String variables

• Pattern variables

• Calls to pattern built-in procedures

• The following keywords:

ANCHOR

LINE_BEGIN

LINE_END

PAGE_BREAK

REMAIN

UNANCHOR

• Parentheses (to enclose expressions)

Patterns can be simple or complex. A simple pattern can be composed of.
sets of strings connected by one of the pattern operators. The following
example indicates that patl matches either the string "abc" or the string
"def':

patl := "abc" I "def";

Note that if you connect two strings with the+ operator, the result is a
string rather than a pattern. For example, the following statement gives
patl the string data type:

patl :=·"abc" + "def";

The SEARCH and SEARCH_QUIETLY built-ins accept such a string as a
parameter.

.,

2.7.1

VAXTPU Data Types
2.7 Pattern

A more complex pattern uses pattern built-in procedures and existing
patterns to form a new pattern. The following example indicates that pat2
matches the string "abc" followed by the longest string that contains any
characters from the string "12345":

pat2 := "abc" + SPAN ("12345");

Pat2 matches the string "abc123" in the text string "xyzabc123def".

Following are additional examples of statements that create complex
patterns:

patl := any("abc");
pat2 := line_begin + remain;
pat3 := "abc" I "xes";
pat4 := patl + "12";
pats := "xes"@ varl;
pat6 := "abc" & "123";

You can assign a pattern to a variable and then use the variable as a
parameter for the built-in procedure SEARCH or SEARCH_QUIETLY.
SEARCH or SEARCH_QUIETLY looks for the character sequences
specified by the pattern that you use as a parameter. If SEARCH or
SEARCH_QUIETLY finds a match for the pattern, the built-in returns
a:.range containing the text that matches the pattern. The range can be
assigned to a variable.

The following example uses strings and pattern operators to create a
pattern that is stored in the variable my_pat. The variable is then used
with the built-in procedure SEARCH or SEARCH_QUIETLY in a forward
direction. If SEARCH or SEARCH_QUIETLY finds a match for my_pat,
the range of matching text is stored in the variable match_range. The
built-in procedure POSITION causes the editing point to move to the
beginning of match_range.

my_pat := ("abc 11
• I "def") + ": :";

match_range := SEARCH (my_pat, FORWARD);
POSITION (match_range);

Pattern Built-In Procedures

2-12

The following built-in procedures return values of the pattern data type:

• ANY - Matches one or more characters. You specify a set of
characters to be matched and an integer indicating how many of
them to match. For example, the following statement creates a pattern
that matches any two of the characters h, i,j, k, and l.

patl := ANY ("hijkl",2);

• ARB - Matches an arbitrary sequence of characters. You use ARB's
parameter to specify the number of characters to be matched. For
example, the following statement creates a pattern that matches the
next five characters starting at the editing point:

patl := ARB (5);

)

•

VAXTPU Data Types
2.7 Pattern

MATCH - Looks on the current line for the sequence of characters you
specify. If VAXTPU locates the sequence in the searched text, MATCH
returns a range starting at the editing point and ending at the last
character of the sequence. For example, the following statement stores
in pat1 a pattern that matches a string of characters starting with the
editing point up to and including the characters abc:

patl :: MATCH ("abc");

• NOTANY - Matches one or more characters; you specify how many
characters to ml3.tch and which characters must not appear in the
matched characters. For example, the following statement creates a
pattern that matches the first character that is not an X, a Y, or a Z:

(patl :: NOTANY ("XYZ");

C

• SCAN - Matches any characters that are not specified in the
parameter. SCAN matches as many characters as possible, and must
match at least one character. Matching stops at the the end of a line
or when SCAN finds one of the excluded characters. For example, the
following statement stores in pat1 a pattern that matches the longel:!t
string of characters that does not contain a, b, or c:

patl :: SCAN ("abc");

• SCANL - Same as above, except that SCANL does not stop at the end
of a line. For example, the following statement creates a pattern that
matches a sentence. It assumes that a sentence ends with a period
(.), exclamation point (!), or question mark (?), and that a sentence
starts with a capital letter. The matched text does not include the
punctuation mark ending the sentence.

sentence_pattern := any ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
+ scanl (". ! ?");

• SPAN - Matches as many characters as possible, all of which must
be present in the text you pass as an argument. SPAN must match
at least one character. SPAN stops matching when it reaches the end
of a line or finds a character that was not specified. For example, the
following statement creates a pattern that matches any sequence of
numbers:

patl := span ("0123456789");

• SPANL - Same as above, except that SPANL does not stop at the
end of a line. For example, the following statement stores a pattern
in pat1 that matches the longest sequence of numbers starting at the
editing point and continuing to a nonnumeric character, or the end of
the range or buffer:

pat2 := SPANL ("0123456789");

2-13

2.7.2

VAXTPU Data Types
2.7 Pattern

Keywords That Can Be Used to Build Patterns
The following keywords can be used as the first argument to the SEARCH
or SEARCH_QUIETLY built-ins. They can also be used to form patterns
in expressions using the pattern operators.

• ANCHOR- Directs SEARCH or SEARCH_QUIETLY to try to match
the next pattern element at the current search location. Normally,
when SEARCH or SEARCH_QUIETLY fails to find a match for a
pattern, the built-in retries the search, moving the starting position
one character forward or backward, depending upon the direction of
the search. If ANCHOR appears as the first element of a complex
pattern, the search does not move the starting position. If the pattern
does not match starting in the original position, the search fails.),
For more information on using ANCHOR, see the description in the
VAXTPU Reference Section.

• LINE_BEGIN - Matches the beginning of a line.

• LINE_END - Matches the end of a line.

• PAGE_BREAK - Matches the form feed or page break character.

• REMAIN - Matches the rest of the characters on the line.

• UNANCHOR - Allows the next pattern element to match anywhere ,r--:i ,
at or after the current search location. ./

Pattern Operators

2-14

The following are the VAXTPU pattern operators:

• Concatenation operator (+)

• Link operator (&)

• Alternation operator (I)

• Partial pattern assignment operator (@)

The pattern operators are equal in VAXTPU's precedence of operators. For
more information on· the precedence of VAXTPU operators, see Chapter 3.
Pattern operators associate from left to right. Thus, the following two
VAXTPU statements are identical:

patl :=a+ b & c I d@ a;
patl := (((a + b) & c) I d) @ a;

In addition to the pattern operators, two relational operators, equal (=)
and not equal (<>), can be used to compare patterns.

The following sections discuss the pattern operators.

2.7.3.1

(

2.7.3.2

C

+ (Pattern Concatenation Operator)

VAXTPU Data Types
2.7 Pattern

The concatenation operator tells SEARCH or SEARCH_QUIETLY that
text matching the right pattern element must immediately follow the text
matching the left pattern element in order for the complete pattern to
match. In other words, the concatenation operator specifies a search in
which the right pattern element is anchored to the left. For example, the
following pattern matches only if there is a line in the searched text that
ends with the string abc.

patl := "abc" + 1-ine_end;

If SEARCH or SEARCH_QUIETLY :finds such a line, the built-in returns a
range containing the text abc and the end of the line.

Digital recommends that you use the concatenation operator rather than
the link operator unless you specifically require the link operator.

& (Pattern Linking Operator)
The link operator (&) is very similar to the concatenation operator (+).
Unlike the concatenation operator, the link operator does not necessarily
cause an anchored search. If you define a pattern by specifying .any
pattern element, an ampersand, and a pattern variable, a search for each·
subpattern is not an anchored search. To specify an anchored search
when the right-hand subpattern is a pattern variable, use the ANCHOR
keyword at the beginning of the definition of the right-hand subpattem.

If you link elements other than pattern variables, the search is an
anchored search unless you specify otherwise. Strings, constants, and
the results of built-in procedures are not pattern variables.

For example, suppose two subpattem variables are defined as follows:

pl := "a" & ANY("012345678");
p2 := "c" & ARB (1);

Suppose you then define the following pattern variable:

pat_var := pl & p2

Given this sequence of definitions, a search for pat_var succeeds if
VAXTPU encounters the following string:

aSxcd

Because two pattern variables are linked, VAXTPU searches first for the
text that matches pl, then unanchors the search, and then searches for
the text that matches p2.

To specify an anchored search when the right-hand subpattern is a pattern
variable, use the ANCHOR keyword, as in the following example:

pl := "a" & "b";
p2 := ANCHOR & "c" & "d";
pat_var := pl & p2;

Notice that the ANCHOR keyword must appear at the beginning of the
definition of the right-hand subpattern. You would not get an anchored
search with the following VAXTPU statement:

pat_var := pl & ANCHOR & p2;

2..,.15

VAXTPU Data Types
2.7 Pattern

2.7.3.3

2.7.3.4

2-16

I (Pattern Alternation Operator)
The alternation operator (I) tells SEARCH or SEARCH_QUIETLY
to match a sequence of characters if those characters match either of
the pattern elements separated by the alternation operator. Thus, the
following pattern matches either the string abc or the string xes:

patl := "abe" I "xes";

If the text being searched contains text that matches both alternatives,
SEARCH or SEARCH_QUIETLY matches the earliest occurring match. If
two matches start at the same character, SEARCH or SEARCH_QUIETLY
matches the left element. For example, suppose you had the search text
abed and the following pattern definitions:

patl := "abc 11 "bed";
pat2 := "bed" "abe";
pat3 := "be" "bed";
pat4 := "bed" "be";

Given these definitions and search text, a search for the patterns patl
and pat2 would return a range containing the text abc. A search for the
pattern pat3 would return a range containing the text be. Finally, a search
for the pattern pat4 would return a range containing the text bed.

@ (Partial Pattern Assignment Operator)

The partial pattern assignment operator (@) tells SEARCH or SEARCH_
QUIETLY to create a range that contains the text matching the pattern
element to the left of the partial pattern assignment operator. When ·
the search is completed, the variable to the right of the partial pattern
assignment operator references the created range. If SEARCH or
SEARCH_QUIETLY is given the search text abcdefg and the following
pattern, it returns a range containing the text abedefg.

patl := "abe" + (arb(2) @ varl) + remain;

SEARCH or SEARCH_QUIETLY also assigns to varl a range containing
the text de.

If you assign to a variable a partial pattern that matches a position,
rather than a character, the partial pattern variable is a range containing
the character or line-end at the point in the file where the partial pattern
was matched. For example, in any of the following patterns containing
partial pattern assignments, the variable partial_pattern_variable contains
the character or line-end at the point in the file where the partial pattern
was matched:

• "" @ partial_pattern_ variable

• ANCHOR @ partial_pattern_ variable

• UNANCHOR @ partial_pattern_ variable

Note that if you use one of the preceding patterns when the cursor is free
(that is, in an area that does not contain text, such as the area after the
end of a line) the variable partial_pattern_variable contains the line-end or
character nearest to the cursor.

)

2.7.4

2.7.3.5

VAXTPU Data Types
2.7 Pattern

SEARCH or SEARCH_QUIETLY does partial pattern assignment only if
the complete pattern matches. If the complete pattern matches, it makes
assignments only to those variables paired with pattern elements that
are used in the complete match. If a partial pattern assignment variable
appears more than once in a pattern in places where it is legal for a partial
pattern assignment to occur, the last occurrence in the pattern determines
what range SEARCH assigns to the variable. For example, with the
search text abcdefg and the following pattern, SEARCH or SEARCH_
QUIETLY returns a range containing the text abcde and assigns a range
containing the text d to the variable var 1.

patl := "a" + ("b" @ varl) + "c" + ("d" @ varl)
+ ("e" I ("x" @ varl));

Relational Operators .
The two relational operators, equal (=) and not equal (<>), can be used to
compare patterns. Two patterns are equal if they are the same pattern, as
patl and pat2 are in the following example:

patl := notany("abc", 2) + span("123");
pat2 := patl;

Two patterns are also equal if they have the same internal representation.
Patterns have the same internal representation only if they are built in
exactly the same way. The order of the characters in the arguments to
ANY, NOTANY, SCAN, SCANL, SPAN, and SPANL does not matter when
you are comparing patterns returned by any of these built-ins. Other than
this, almost any difference in the building of two patterns makes those
patterns unequal. For example, suppose you defined 'the variable this_pat
as follows:

this_pat := ANY ("abc");

Given this definition, the following patterns match the same text but are
not equal:

patl := LINE BEGIN+ ANY ("abc");
pat2 := LINE=BEGIN + this_pat;

Pattern Compilation and Execution
When you execute a VAXTPU statement that contains a pattern
expression, VAXTPU builds an internal representation of the pattern.
VAXTPU uses the current contents of any buffers or ranges used as
arguments to pattern built-ins in the pattern expression to build the
internal representation. Later changes to those buffers and ranges do
not affect the in~ernal representation for the pattern. VAXTPU also uses
the current values of any variables used in the pattern expression. Later
changes to these variables do not affect the internal representation of the
pattern. For example, suppose you wrote the following code fragment:

2-17

2.7.5

2.7.6

VAXTPU Data Types
2.7 Pattern

Searching

pl := "abc";
p2 := "123";
pat := pl & p2;
pl := "xyz";
SEARCH (pat, FORWARD);

Given this code fragment, the search matches the string "abc123" because
the variable pat is evaluated as it is built from pl and p2 during the
assignment statement.

The SEARCH and SEARCH_QUIETLY built-ins use the following
algorithm to find a match for a pattern.

1 Put the internal marker that marks the search position at the starting
position for the search. The starting position is determined as follows:

• If the user does not specify where to search, search the current
buffer, starting at the editing point.

• If the user specifies a buffer or range where the search is to
take place, start at the beginning or end of the buffer or range
depending on the direction of the search.

2 Check whether the pattern matches text, starting at the current
search position and extending toward the end of the searched buffer or
range. If a range is being searched, the matched text cannot ex.tend
beyond the end of that range. If the pattern matches, return a range
containing the matching text and stop searching ..

3 If the previous step fails, move the search position one character
forward or backward, depending upon the direction of the search.
If this is impossible because the search position is at the end or
beginning of the searched buffer or range, stop searching. If this step
succeeds, repeat the previous step.

Anchoring a Search

2-18

Anchoring a pattern forces SEARCH or SEARCH_QUIETLY to match the
anchored part of the pattern to text starting at the current search position.
If the anchored part of a pattern fails to match that text, SEARCH or
SEARCH_QUIETLY stops searching.

Normally, all pattern elements other than the first pattern element of a
pattern are anchored. This means that a pattern can match text starting
at any point in the searched text but that once it starts matching, each
pattern element must- match the text immediately following the text that
matched the previous pattern element.

To direct VAXTPU to stop searching if the characters starting at the
editing_ point do not match the pattern, use the keyword ANCHOR as the n
first pattern element. For example, the following pattern matches only if · J.,
the string abc occurs at the editing point: · ·

patl : = ANCHOR + "abc";

0

(

CU

2.8 Process

VAXTPU Data Types
2.7 Pattern

There are two ways to unanchor pattern elements in the midst of a
pattern. The easiest is to concatenate or link the UNANCHOR keyword
before the pattern element you want to unanchor. Thus, in the following
pattern the pattern element xyz is unanchored:

patl := "abc" + UNANCHOR + "xyz";

This means that the pattern patl matches any text beginning with the
characters abc and ending with the characters xyz. It does not matter
what or how many c~aracters or line breaks appear between the two
sets of characters. Of course, since SEARCH or SEARCH_QUIETLY
matches the first xyz it finds, the text between the two sets of characters
by definition does not contain the string xyz.

The second way to unanchor a pattern element is to use the special
properties of the link operator (&). While the concatenation operator
always anchors the right pattern element to the left, the link operator
does so only if the right pattern element is not a pattern variable. If
the link operator's right pattern element is a pattern variable, the link
operator unanchors that pattern element. Thus, the pattern pat2 defined
by the following assignments matches any sequence of text beginning with
.the letter a and ending with a digit ..

patl : = ANY ("0123456789") ;
pat2 := "a" & patl;

Any amount of text can occur between the a and the digit. Pat2 matches
the same text as the following pattern:

pat3 := "a" + UNANCHOR + ANY ("0123456789") ;

The link operator unanchors a pattern variable regardless of what the left
pattern element is. In particular, the following two patterns match the
same text:

pat2 := "a" & patl;
pat3 := "a" & ANCHOR & patl;

If you are using pattern variables to form patterns and you wish
those variables to be anchored, you have two choices: you can use the
concatenation operator, or you can use the keyword ANCHOR as the first
element of any pattern the pattern variables reference.

In VAXTPU, a process is a VMS subprocess. The built-in procedure
CREATE_PROCESS returns a value of the process data type.

VAXTPU processes have the same restrictions that VMS subprocesses
have. Following are.some of the restrictions:

• You cannot create more VAXTPU processes than your account
subprocess quota allows.

• You cannot spawn a subprocess in an account that has the CAPTIVE
flag set.

2-19

2.9

2.10

VAXTPU Data Types
2.8 Process

Program

Range

2-20

• Only VMS utilities that can perform I/0 to a mailbox and that do
simple reads and writes (for example, MAIL) can run in a VAXTPU
process. Programs like FMS, EDT, PHONE, or any other program that
takes full control of the screen do not work properly in a VAXTPU
process. See the built-in procedure SPAWN for information on running
these types of programs from VAXTPU.

• You do not see any prompts from the utility you are using. For
example, in MAIL, you have to be aware of the sequence of prompts
for sending a mail message because you do not see the prompts.

Tlie following example assigns a value of the process data type to the
variable x:

x := CREATE_PROCESS (rnain_buffer, "MAIL");

The first parameter specifies that the output from the subprocess is to be
stored in MAIN_BUFFER. The string "MAIL" is the first command sent to
the subprocess.

To pass subsequent commands to a subprocess, use the built-in procedure
SEND, as follows:

SEND ("MAIL", x);

To pass the READ command to the Mail Utility, enter the following
VAXTPU statement:

SEND ("READ", x);

The output from the READ command is stored in the buffer associated
with the subprocess x. If the buffer associated with a subprocess is deleted,
the subprocess is deleted as well.

A program is the compiled form of a sequence of VAXTPU procedures and
executable statements. The built-in procedures COMPILE and LOOKUP_
KEY can optionally return a value of the program data type as a result.
The following example assigns a value of the program data type to the
variable x: ·

x := COMPILE (rnain_buffer);

MAIN_BUFFER must contain only VAXTPU declarations and executable
statements. All declarations must come before any executable statements
that are not included in the declarations. The declarations and statements
are compiled and the resulting program is stored in the variable x.

A range contains all the text between (and including) two markers. You
can form a range with the built-in procedure CREATE_RANGE. A range
is associated with characters within a buffer. If the characters within
a range move, the range moves with them. If characters are added or
deleted between two markers that delimit a range, the size of the range

(

VAXTPU Data Types
2.10 Range

changes. If all the characters in a range are deleted, the range moves to
the nearest character.

VAXTPU does not support ranges of zero length unless the range begins
and ends at the end of a buffer. All other ranges contain at least one
character (which could be a space character) or a line-end (if the range is
created at the end of a line).

If you create a range by specifying a free marker as a parameter to the
CREATE_RANGE built-in, VAXTPU creates a new marker and binds the
marker to the text nearest to the free· marker position. VAXTPU uses the
new bound marker as the range delimiter. This operation does not cause
insertion of padding spaces.

Deleting the markers used to create a range does not affect the range.

To convert the contents of a range to a string, use either the STR or the
SUBSTR built-in.

To remove a range, use the built-in procedure DELETE with the range
as a parameter. For example, the following statement deletes the range
rangel:

DELETE (rangel);

You can also set all variables referring to the range to 0. For example, the
following statement sets the variable rangel to 0:

rangel := 0;

Deleting a range does not remove the characters of the range from
the buffer; it merely removes the range data structure. 'lb remove the
characters of a range, use the built-in procedure ERASE with the range as
a parameter. For example, ERASE (my_range) removes all the characters
in myyange, but it does not remove the range structure. Using the
statement DELETE (range_variable) removes the range data structure,
but does not affect the characters in the range.

The built-in procedures CREATE_RANGE, GET_INFO, SEARCH,
SEARCH_QUIETLY, and SELECT_RANGE and the partial pattern
assignment operator all return values of the range data type. For
example, the following example assigns a value of the range data type
to the variable x:

x :-= CREATE_RANGE (markl, mark2, UNDERLINE);

You can specify the video attribute with which VAXTPU should display
a range. The possible attributes are BLINK, BOLD, REVERSE, and
UNDERLINE. The keyword UNDERLINE in the preceding example
specifies that the characters in the range will be underlined when they
appear on the screen. You cannot give more than one video attribute
to a range. However, to apply multiple video attributes to a given set
of characters, you can define more than one range containing those
characters and give one video attribute to each range.

VAXTPU Data Types
2.11 String

2.11 String
VAXTPU uses the string data type to represent character data. A value
of the string data type can contain any of the elements of the DEC
Multinational Character Set. To specify a stririg constant, enclose the ·
value in quotation marks. In VAXTPU, you can use either the quotation
mark (") or the apostrophe (') as the delimiter for a string. The following
statements assign a value of the string data type to the variable x:

x := "abed";
x := "abed";

To specify the quote character itself within a string, type the character
twice if you are using the same quote character as the delimiter for the
string. The following statements show how to quote an apostrophe and a . -:--)
quotation mark, respectively:

2-22

X := , , , , ;

X := """" i
! The value assigned to xis'.
! The value assigned to xis".

If you use the alternate quote character as the delimiter for the string
within which you want to specify a quote character, you do not have to
type the character twice. The following statements show how to quote an
apostrophe and a quotation mark, respectively, when the alternate quote
character is used to delimit the string:

X := "' n;
X := , Ill i

! The value assigned to xis'.
! The value assigned to xis".

A null string is a string of length zero. You can assign a null string to the
variable x in the following way:

X ·= , , . . ,

To create a string from the contents of a range, use the STR or the
SUBSTR built-in. To create a string from the contents of a buffer, use
the STR built-in.

The maximum length for a string is 65,535 characters. A restriction of
the VAXTPU compiler is that a string constant (an open quotation mark,
some characters, and a close quotation mark) must have both its opening
and closing quotation marks on the same line. Note that while a string
can be up to 65,535 characters long, a line in a VAXTPU buffer can only
be 960 characters long. If you try to create a line that is longer than 960
characters, VAXTPU truncates the inserted text to the amount that fills
the line to 960 characters.

Many VAXTPU built-in procedures return a value of the string data type.
The built-in procedure ASCII, for example, returns a string for the ordinal
value that you use as a parameter. The following statement returns the
string "K" in the variable my _char:

my~ehar := ASCII (75);

To replicate a string, specify the string to be reproduced, then the
multiplication operator (*), and then the number of times you want
the string to be replicated. For example, the following VAXTPU statement
inserts 10 underscores into the current buffer at the editing point:

COPY TEXT ("_" * 10)

-__,,1

,,,.---

U

(

2.12 Unspecified

l)

2.13 Widget

u

VAXTPU Data Types
2.11 String

Note that the string to be replicated must be on the left-hand side of the
operator. For example, the following VAXTPU statement produces an
error:

COPY_TEXT (10 * "_")

To reduce a string, specify the string to be modified, then the subtraction
operator(-), and then the substring to be removed. For example, the
following table shows the effects of two string-reduction operations:

VAXTPU Statement .

COPY_ TEXT ("FILENAME.MEM"-"FILE")

COPY_ TEXT ("woolly"-"wool")

Result

Inserts the string "NAME.MEM"
into the current buffer at the
editing point.

Inserts the string "ly" into the
current buffer at the editing
point.

An unspecified value is the initial value of a variable after it has been
compiled (added to the VAXTPU symbol table). In the following example,
the built-in procedure COMPILE creates the variable x and initially gives
it the data type unspecified unless x has previously been declared as a
global variable:

COMPILE ("x := l");

An assignment statement that creates a variable must be executed before
a data type is assigned to the variable. In the following example, when
you use the built-in procedure EXECUTE to run the program that is
stored in the variable prog, the variable xis assigned an integer value:

prog := COMPILE ("x := l");
EXECUTE (prog);

To give a variable the data type unspecified, assign the predefined constant
TPU$K_UNSPECIFIED to the variable.

prog := TPU$K_UNSPECIFIED;

The DECwindows version of VAXTPU provides the widget data type to
support DECwindows widgets. The non-DECwindows version of VAXTPU
does not support this data type.

A widget is an interaction mechanism by which users give input to an
application or receive messages from an application. For more information
about what a widget is, see the VMS DECwindows Guide to Application
Programming.

2-23

2.14

VAXTPU Data Types
2.13 Widget

Window

You can use the equal operator(=) or the not-equa_l operator(<>)
on widgets to determine whether they are equal (that is, whether
they are the same widget instance), but you cannot use any other
relational or arithmetic operators on them. For information about the
difference between a class of widgets and a widget instance, see the VMS
DECwindows Guide to Application Programming.

Once you have created a widget instance, VAXTPU does not delete the
widget instance, even if there are no variables referencing it. To delete a
widget, use the DELETE built-in.

DECwindows VAXTPU provides the same support for DECwindows
gadgets that it provides for widgets. A gadget is a structure similar
to a widget, but it is not associated with its own unique DECwindows
window. Gadgets do not require as much memory to implement as widgets
do. In most cases, you can use the same DECwindows VAXTPU built-ins
on gadgets that you use on widgets. For more information about gadgets,
see the VMS DECwindows Guide to Application Programming.

A window is a portion of the screen used to display as much of the text
in a buffer as will fit in the screen area. In EVE, the screen contains
three windows by default: a large window for viewing the text in the
user's editing buffer, and two one-line windows, for displaying commands
and messages. In EVE or in a user-written interface, the screen can be
subdivided to create more windows.

A variable of the window data type "contains" a window. The built-in
procedures CREATE_WINDOW, CURRENT_WINDOW, and GET_INFO
return a value of the window data type. CREATE_ WINDOW is the only
built-in procedure that creates a new window. The following example
assigns a value of the window data type to the variable x:

x := CREATE_WINDOW (1, 12, OFF);

The first parameter specifies that the window starts at screen line number
1. The second parameter specifies that the window is 12 lines in length.
The keyword OFF specifies that a status line is not to be displayed when
the window is mapped to the screen.

2.14.1 Window Dimensions

2-24

Windows are defined in lines and columns. In EVE, all windows extend
the full width of the screen or terminal emulator. In VAXTPU, you can set
the window width to be narrower than the width of the screen or terminal
emulator.

The allowable dimensions of a window often depend on whether the
window has a status line, a horizontal scroll bar, or both. A status line
occupies the last line of a window. By default, a status line contains
information about the buffer and the file associated with the window. You
can turn a status line on or off with the built-in SET (STATUS_LINE).
A h011zontal scroll bar is a one-line widget at the bottom of a window

(

2.14.2

VAXTPU Data Types
2.14 Window

that the user can use to shift the window to the right or left, controlling
what text in the buffer can be seen through the window. You can turn
a horizontal scroll ·bar on or off with the built-in SET (SCROLL_BAR).
Lines on the screen are counted from one to the number of lines on the
screen; lines in a window are counted from one to the number of lines in
the window. Columns on the screen are counted from one to the physical
width of the screen; columns in a window are counted from one to the
number of columns in the window. The minimum length for a window is
one line if you do not include a status line or horizontal scroll bar, two
lines if you includ~ either a status line or a horizontal scroll bar, and three
lines if you include both a status line and scroll bar.

The maximum length of a window is the number of lines on your screen.
For example, if your screen is 24 lines long, the maximum size for a single
window is 24 lines. On the same size screen, you can have a maximum of
24 visible windows if you do not use status lines or horizontal scroll bars.
If you use a status line and a horizontal scroll bar for each window, the
maximum number of visible windows is eight.

Creating Windows
When you use a device that supports windows (see Appendix C for
information on terminals that VAXTPU supports), you or the section
file that initializes your application must create and map windows. In
most instances, it is also advisable to map a buffer to the window. To
map a buffer to a window, use the MAP built-in. If you do not associate a
buffer with a window and map the window to the screen, the only items
displayed on the screen are messages that are written to the screen at the
cursor position.

The built-in procedure CREATE_ WINDOW defines the size and location of
a window and specifies whether a status line is to be displayed. CREATE_
WINDOW also adds the window to VAXTPU's internal list of windows
available for mapping. At creation, a window is marked as being not
visible and not mapped and the following values for the window are
calculated and stored:

• Original_top - Screen line number of the top of the window when it
was created.

• Original_bottom - Screen line number of the bottom of the window
when it was created (not including the status line).

• Original_length.-Number of lines in the window (including the status
line).

Later calls to ADJUST_ WINDOW may change these values.

2-25

VAXTPU Data Types
2.14 Window

2.14.3 Window Values
When yqu create a window with the CREATE_ WINDOW built-in
procedure,VAXTPU saves the numbers of the screen lines that delimit
the window in original_top and original_bottom. When you map a window
to the screen with the built-in procedure MAP, the window becomes visible
on the screen. If it is the only window on the screen, its visible_top and
visible_bottom values are the same as its original_top and original_bottom
values. You can display the original and the visible values with SHOW
(WINDOWS) or retrieve them using the built-in procedure GET_INFO.

However, if there is already a window on the screen, and you map another
window over it, the values for the previous window's visible_top, visible_
bottom, and visible_length are modified. The value for visible_length of the
previous window is different from its original_length until the new window
is removed from the screen. AJ3 long as the new window is on the screen
and does not have another window mapped over it, its original top and
bottom are the same as its visible top and bottom.

2.14.4 Mapping Windows

2-26

When you want a window and its associated buffer to be visible on the
screen, use the built-in procedure MAP. Mapping a window to the screen
has the following effects:

• The mapped window becomes the current window and the cursor is
moved to the editing point in the buffer associated with the window.

• The buffer associated with the window becomes the current buffer.

• The window is marked as visible and mapped.

• The visible_top, visible_bottom, and visible_le,igth of the window are
calculated and stored. Initially, these values are the same as the
original values that were calculated when the window was created.
(See the last item in the following list.)

Mapping a window to the screen may have the following side effects:

• The newly mapped window may occlude other windows. This
happens when the original_top or origi,nal_bottom line of the newly
mapped window overlaps the boundaries of existing visible windows.
Overlapping can cause some windows to be totally occluded or not
visible. Note that occluded windows are still marked mapped; when
the window that is covering them is unmapped, they may reappear on
the screen without being explicitly remapped.

• If the newly mapped window divides a window into two parts, only the
top part of the segmented window continues to be updated. The lower
part of the segmented window is erased at the next window update.

• The visible_top, visible_bottom, and visible_length values of a window
that is occluded change from their original values.

i
J _:.-..,

)

VAXTPU Data Types
2.14 Window

When a newly mapped window becomes the current window (the built-
in procedures MAP, POSITION, and ADJUST_ WINDOW cause this to
happen), the cursor is placed in the current window. In addition to the
active cursor position in the current window, there is a marker designating
a cursor position in all other windows. The cursor position in a window
other than the current window is the last location of the cursor when
it was in the window. By maintaining a cursor position in all windows,
VAXTPU allows you to edit in multiple locations of a single buffer if that
buffer is associated with more than one window. For more information on
the cursor position 4n a window, see Chapter 6 and the description of the
POSITION built-in in the VAXTPU Reference Section.

(2.14.5 Removing Windows

(..

2.14.6 Screen Manager

To remove a window from the screen, you can use either the built-in
procedure UNMAP or the built-in procedure DELETE. UNMAP removes
a window from the screen. However, the window is still in VAXTPU's
internal list of windows. It is available to be remapped to the screen
without being recreated. DELETE removes a window from the screen
and also removes it from VAXTPU's list of windows. It is then no longer
available for future mapping to the screen.

Unmapping or deleting a window has the following effects:

• The unmapped window is marked as not visible and not mapped.

• Another window becomes the current window and the cursor is moved
to the last cursor position in that window.

• If other windows were occluded by the window you removed from the
screen, text from the occluded windows reappears on the screen. The
visible_top, visible_bottom, and visible_length values of the previously
occluded windows are modified according to the lines that are returned
to them when the occluding window is unmapped. When an occluding
window is removed, the window or windows it occluded become visible
again.

The screen manager is the part of VAXTPU that controls the display of
data on the screen. You can manipulate data without having it appear on
a terminal screen (see the qualifier /NODISPLAY in Chapter 4). However,
if you use VAXTPl:J's window capability to make your edits visible, the
screen manager controls the screen.

In the main control loop of VAXTPU, the screen manager is not called
to perform its duties until all commands bound to the last key pressed
have finished executing and all input in the type-ahead buffer has been
processed. Upon completion of all the commands, the screen manager
updates every window to reflect the current state of the part of the buffer
that is visible in the window. If you want to make the screen reflect
changes to the buffer prior to the end of a procedure, use the built-in
procedure UPDATE to force the updating of the window. Using UPDATE
is recommended with built-in procedures such as CURRENT_COLUMN

2-27

VAXTPU Data Types
2.14 Window

that query VAXTPU for the current cursor position. To ensure that the
cursor position returned is the correct location (up to the point of the
most recently issued command), use UPDATE before using CURRENT_
COLUMN or CURRENT_ROW.

2.14.7 Getting Information on Windows
There are two VAXTPU built-in procedures that return information about
windows: GET_INFO and SHOW (WINDOW).

GET_INFO returns information that you can store in a variable. You
can get information about the visible and original values of windows,
as well as about other attributes that you have set up for your window

(\
/ i

environment. See the description of GET_INFO in the VAXTPU Reference i
Section. __ /

SHOW (WINDOW) or SHOW (WINDOWS) puts information about
windows in the SHOW_BUFFER. If you use an editor that has an INFO_
WINDOW, you can display the SHOW_BUFFER information in the INFO_
WINDOW.

2.14.8 Terminals That Do Not Support Windows

2-28

VAXTPU supports windows only for ANSI CRTs. (See Appendix C if you /
need more information about VAXTPU terminal support.) If the logical
name SYS$INPUT points to an unsupported device, windows cannot be
used. When you are working on an unsupported device, you must specify
/NODISPLAY when you invoke VAXTPU, or the utility exits with an
error condition. The qualifier /NODISPLAY informs VAXTPU that you
do not expect the device from which you are issuing VAXTPU commands
to support screen-oriented editing. VAXTPU displays messages on an
unsupported device at the current location. When you use the qualifier
/NODISPLAY, any statements that try to manipulate the window data type)
return an error status. See Chapter 4 and Chapter 5 for more information
on the /NODISPLAY qualifier.

cw
3

3.1

(

3.2

(

.lJ

Lexical Elements of the VAXTPU Language

Overview

Character Set

A VAXTPU program is composed of lexical elements. A lexical element
may be an individual character, such as an arithmetic operator, or it may
be a group of characters, such as an identifier. The basic unit of a lexical
element is a character from the DEC Multinational Character Set. (See
Appendix E for a complete list of the DEC multinational characters.) This

· chapter describes the following VAXTPU lexical elements:

• Character set (Section 3.2)

• Identifiers (Section 3.3)

• Variables (Section 3.4)

• Constants (Section 3.5)

• Operators (Section 3.6)

• Expressions (Section 3. 7)

• Reserved words (Section 3.8)

The DEC Multinational Character Set is an 8-bit character set with
256 characters. Each character is assigned a decimal equivalent number
ranging from Oto 255. The first 128 characters in the set correspond to the
American Standard Code for Information Interchange (ASCII) character
set. The characters from 128 to 255 are extended control characters and
supplemental multinational characters. The characters can be grouped
into the following categories:

0-31 Nonprinting characters such as tab, line feed, carriage return, and bell

32 Space

33-64 Special characters such as the ampersand (&), question mark (?), equal
sign (=), and the numbers O through 9

65-122 The uppercase and lowercase letters A through Zand a through z

123-126 Special characters such as the left brace ({) and the tilde (~)

127 Delete

128-159 Extended control characters

160 Reserved

3-1

3.2.1

Lexical Elements of the VAXTPU Language
3.2 Character Set 0>

161-191 Supplemental special graphics characters such as the copyright sign(©)
and the degree sign (0)

192-254 The supplemental multinational uppercase and lowercase letters such as
the Spanish N and ri

255 Reserved

The VAXTPU compiler does not distinguish between uppercase and
lowercase characters except when they appear as part of a quoted string.
For example, the word EDITOR has the same meaning when written in
any of the following ways:

EDITOR
EDitOR
editor

The following, however, are quoted strings, and therefore represent
different values:

"XYZ"
"xyz"

)

Entering Control Characters

3-2

There are two ways to enter control characters in VAXTPU:

1 Use the built-in procedure ASCII with the decimal value of the control
character that you want to enter. For example, the following statement
causes the escape character to be entered in the current buffer:

COPY_TEXT (ASCII (27));

2 Use the special functions provided by EVE to enter control characters:

• EVE provides a QUOTE command that is bound to CTRI/V to
insert control characters in a buffer. For example, to use the quote · \
command to insert an escape character in a buffer, follow these J
steps:

a. Press CTRL/Y.

b. Press the·ESCAPE key (on VTl00-series terminals) or
CTRU[.

The following example shows the previous steps:

(CTRL/V(~

• EVE's EDT-like keypad setting provides a SPECINS key sequence
to insert control characters in a buffer. For example, take the
following steps to enter a control character using the SPECINS
key:

a. Press the GOLD key.

b. Enter the ASCII value of the special character that you want
to insert in the buffer; in this case 27 (the escape character).
(Use the keys on the keyboard, not the ones on the keypad.)

c. Press the GOLD key again.

3.2.2

(

u

G

Lexical Elements of the VAXTPU Language
3.2 Character Set

d. Press the SPECINS key on the EDT keypad.

The following example shows the previous steps:

)GOLDI 27 lGOLDI l SPECINS I

VAXTPU Symbols
Certain symbols have special meanings in VAXTPU. They can be used as
statement delimiters, operators, or other syntactic elements. The VAXTPU
symbols are listed in Table 3-1.

Ta!)le 3-1 VAXTPU Symbols

Name

Apostrophe

Assignment operator

At sign

Left brace

Close parenthesis

Comma

Exclamation point

Dollar sign

Right brace

Equal sign

Greater than sign

Greater than or equal
to sign

Slash

Asterisk

Left bracket

Less than sign

Less than or equal to
sign

Minus sign

Not equal sign

Vertical bar

Open parenthesis

;A.mpersand

Symbol VAXTPU Function

Delimits a string

:= Assigns a value to a variable

@ Partial pattern assignment operator

Opens an array element index expression

Ends parameter list, expression, procedure call,
argument list, or array element index

Separates parameters

Begins comment

$ Indicates a variable, constant, keyword, or
procedure name that is reserved to Digital

Closes array element index expression

= Relational operator

> Relational operator

>= Relational operator

/ Integer division operator

* Integer multiplication operator

Begins case label

< Relational operator

<= Relational operator

Subtraction operator

<> Relational operator

I Pattern alternation operator

(Begins parameter list, expression, argument list, or
array element index

& Pattern linkage operator

(continued on next page}

3-3

3.3

3.4

Lexical Elements of the VAXTPU Language
3.2 Character Set

Identifiers

Variables

3-4

Table 3-1 (Cont.) VAXTPU Symbols

Name Symbol VAXTPU Function

Plus sign

Quotation mark

Right bracket

Semicolon

Underscore

+

II

String concatenation operator, pattern
concatenation operator, integer addition operator

Delimits string

Ends case label

Separates language statements

Separates words in identifiers

In VAXTPU, identifiers are used to name programs, procedures, keywords,
and variables. An identifier is a combination of alphabetic characters,
digits, dollar signs, and underscores, and it must conform to the following
restrictions:

• An identifier cannot contain any spaces or symbols except the dollar
sign and the underscore.

• Identifiers cannot be more than 132 characters long.

VAXTPU identifiers for built-in procedures, constants, keywords, and
global variables are reserved words.

You can create your own identifiers to name programs, procedures,
constants, and variables. Note that any symbol that is neither declared
nor used as the target of an assignment statement is assumed to be an
undefined procedure.

Variables are names given to VAXTPU storage locations that hold values.
A variable name can be any valid VAXTPU identifier that is not a VAXTPU
reserved word or the name of a user-defined procedure. You assign a
value to a variable by using a valid identifier as the left-hand side of an
assignment statement. Following is an example of a variable assignment:

new_buffer := CREATE_BUFFER ("new_bu:f;fer_narne");

Digital suggests that you establish some convention for naming variables,
so that you can distinguish your variables from the variables in the section
file that you are using.

VAXTPU allows two kinds of variables: global and local. Global variables
are in effect throughout a VAXTPU environment. Local variables are
evaluated only within the procedure in which they are declared. A variable
is implicitly global unless you use the LOCAL declaration. You can also
declare global variables with the VARIABLE declaration.

)

(

(J

3.5

Lexical Elements of the VAXTPU Language
3.4 Variables

Example 3-1 Global and Local Variable Declarations

VARIABLE user_tab_char;

! Tab key procedure. Always inserts a tab, even if current mode
! is overstrike.

PROCEDURE user_tab

LOCAL this_mode; ! Local v~riable for current mode

this mode := GET INFO (CURRENT BUFFER, "mode"); ! Save current mode
SET (INSERT, CURRENT_BUFFER); - Set mode to insert
user_tab_char := ASCII (9); Define the tab char
COPY TEXT (user tab char); Insert tab
SET (this_mode,-CURRENT_BUFFER); Reset original mode

ENDPROCEDURE .

Constants

Example 3-1 shows a global variable declaration and a procedure that
contains a local variable declaration:

The global variable user _tab_char is assigned a value when the procedure
user _tab is executing. Since the variable is a global variable, it could have
been assigned a value outside the procedure user _tab.

The local variable this_mode has the value established in the procedure
user _tab only when this procedure is executing. You can use this same
variable in another procedure and assign a different local value to it.
However, using this_mode as a global variable when you are also using it
as a local variable is likely to confuse people who read your code.

VAXTPU has three types of constants: integers, strings, and keywords.

Integer constants can be any integer value that is valid in VAXTPU. See
Chapter 2 for more information on the integer data type.

String constants can be one character or a combination of characters
delimited by apostrophes or quotation marks. See Chapter 2 for a complete
description of how to quote strings in VAXTPU.

Keywords are reserved words t~at have special meaning to the VAXTPU
compiler. See Chapter 2 for a complete description of keywords.

With the CONSTANT declaration you can associate a name with a
constant expression. User-defined constants can be locally or globally
defined.

A local constant is a constant declared within a procedure declaration. The
scope of the constant is limited to the procedure in which it is defined.

A global constant is a constant declared outside a procedure. Once a global
constant has been defined, it is set for the life of the VAXTPU session. You
can reassign to a constant the same value it was assigned previously, but
you cannot redefine a constant during a VAXTPU session.

See Section 3.8.4.10.2 for a complete description of the CONSTANT
declaration.

3-5

Lexical Elements of the VAXTPU Language
3.5 Constants

3.6 Operators

3-6

Example 3-2 shows a global constant declaration and a procedure that
contains a local constant declaration:

Example 3-2 Global and Local Constant Declarations

! Define some global constants.
CONSTANT

user_bell := BELL,
user hello := "Hello",
user:ten := 10;

Hello world procedure.

PROCEDURE user hello world - -CONSTANT
world:= "world";

MESSAGE (user_hello +" "+ world);

END PROCEDURE

Display "Hello world"
in message area

VAXTPU uses symbols and characters as language operators. There are
four types of operators:

• Arithmetic

• Relational

• Pattern

• Logical

Table 3-2 lists the symbols and language elements that VAXTPU uses as
operators:

Table 3-2 VAXTPU Operators

Type Symbol Description

Arithmetic + Addition, unary plus

Subtraction, unary- minus

* Multiplication

I Division

String + String concatenation

String reduction
* String replication

(continued on next page)

)

~--.

G

/

(

/

(_;

u

Lexical Elements of the VAXTPU Language
3.6 Operators

Table 3-2 (Cont.) VAXTPU Operators

Type Symbol Description

Relational <> Not equal to

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Pattern Pattern alternation

@ Partial pattern assignment

+ Pattern concatenation

& Pattern linkage

Logical AND Boolean AND

NOT Boolean NOT

OR Boolean OR

XOR Boolean exclusive OR

Note that you can use the + operator to concatenate strings. You can also
use the relational operators to compare a string with a string, a marker
with a marker, or a range with a range.

The precedence of the operators in an expression determines the order in
which the operands are evaluated. Table 3-3 lists the order of precedence
for VAXTPU operators. Operators of equal precedence are listed on the
same line.

Table 3-3 Operator Precedence

Operator

unary +, unary -

NOT

*, I, AND

@, &, +, -, I, OR, XOR

=, <>,<, <=,>,>=

Precedence

Highest

Lowest

Expressions enclosed in parentheses are evaluated first. You must
use parentheses for correct evaluation of an expression that combines
relational operators.

3-7

Lexical Elements of the VAXTPU Language
3.6 Operators

You can use parentheses in an expression to force a particular order for
combining operands. For example: ·

Expression

8 * 5 / 2 - 4
8 * 5 / (2 - 4)

Result

16
-20

3. 7 Expressions

3-8

An expression can be a constant, a variable, a procedure, or a combination
of these separated by operators. Expressions can be used in a VAXTPU
procedure where an identifier or constant is required. Expressions are
frequently used within VAXTPU conditional language statements.

The data types of all elements of a VAXTPU expression must be the same.
There are exceptions to this rule. You can mix keywords, strings, and
pattern variables in expressions used to create patterns. You can mix data
types when using the not equal (<>) and equal (=) relational operators.
Except for these cases, however, VAXTPU does not perform implicit type
conversions to allow for the mixing of data types within an expression. If
you mix data types, VAXTPU issues an error message.

In the following example, the elements (J > 4) and (my _string = "this is
my string") each evaluate to an integer type (odd integers are true; even
integers are false) so that they can be used following the VAXTPU IF
statement:

IF (J > 4) AND (my_string = "this is my string")
THEN

With the exception of patterns and the relational operators, the result of
an expression is the same data type as the elements that make up the
expression. The following example shows a pattern expression that uses
a string data type on the right-hand side of the expression. The pattern
keywords LINE_BEGIN and REMAIN are used with the string constant
"the" to create a pattern data type that is stored in the variable patl:

patl := LINE_BEGIN +"the"+ RE~IN;

Whenever possible, the VAXTPU compiler evaluates constant expressions
at compile time. VAXTPU built-in procedures that can return a constant
value given constant input are evaluated at compile time.

In the example below, the variable fubar has a single string assigned to it:

fubar := ASCII (27) + "[Om";

Caution: Do not assume that the VAXTPU compiler automatically evaluates
an expression in left-to-right· order. In future releases, the
compiler may evaluate expressions of equal precedence in any
order.

0

f
\

((_)

3.7.1

Lexical Elements of the VAXTPU Language
3. 7 Expressions

To avoid the need to rewrite code, you should write as if this compiler
optimization were already implemented. If you need the compiler to
evaluate an expression in a particular order, you should force the compiler
to evaluate each operand in order before using the expression. To do
so, use each operand in an assignment statement before using it in an
expression. For example, suppose you want to use ROUTINE_! and
ROUTINE_2 in an expression. Suppose, too, that ROUTINE_! must be
evaluated first because it prompts for user input. To get this result, you
could use the following code:

PARTIAL_l := ROUTINE_l;
PARTIAL_2 := ROUTINE_2;

You could then use a statement in which the order of evaluation was
important, such as the following:

IF PARTIAL 1 OR PARTIAL 2

There are four types ofVAXTPU expressions:

• Arithmetic

• Relational

• Pattern

• Boolean

The following sections discuss each of these expression types.

Arithmetic Expressions
You can use any of the arithmetic operators(+,-,*,/) with integer data
types to form arithmetic expressions. VAXTPU performs only integer
arithmetic. The following are examples of valid VAXTPU expressions:

12 + 4 ! adds two integers

"abc" + "def" ! .concatenates two strings

The following is not a valid VAXTPU expression because it mixes data
types:

"abc" + 12 ! you cannot mix data types

When performing integer division, VAXTPU truncates the remainder;
it does not round. The following examples show the results of division
operations:

Expression

39 / 10
-39 I 10

Result

3
-3

3-9

3.7.2

3.7.3

Lexical Elements of the VAXTPU Language
3.7 Expressions

Relational Expressions
A relational expression tests the relationship between items of the same
data type and returns an integer result. If the relationship is true, the
result is integer 1; if the relationship is false, the result is integer 0.

Use the following relational operators with any of the VAXTPU data types:

• Not equal operator (<>)

• Equal operator (=)

For example, the following code fragment tests whether stringl starts with
a letter that occurs later in the alphabet than the starting letter of string2:

stringl := "gastropod";
string2 := "arachnid";
IF stringl > string2
THEN

MESSAGE ("Out of alphabetical order");
ENDIF;

Use the following relational operators for comparisons of integers, strings,
or markers:

• Greater than operator (>)

• Less than operator (<)

• Greater than or equal to operator(>=)

• Less than or equal to operator (<=)

When used with markers, these operators test whether one marker is
closer to (or farther from) the top of the buffer than another marker.
For example, the procedure in Example 3-3 uses relational operators to
determine which half of the buffer the cursor is located in.

Pattern Expressions

3-10

A pattern expression consists of the pattern operators (+, &, I , @)

combined with string constants, string variables, pattern variables,
pattern procedures, pattern keywords, or parentheses. The following
are valid pattern expressions:

patl := LINE BEGIN+ SPAN ("0123456789") + ANY ("abc");

pat2 := LINE END+ ("end"J"begin");

pat3 :=SCAN(';"!')+ (NOTANY ("'") & LINE_END);

See Chapter 2 for more information on pattern expressions.

)

0

(
\

(U

3.7.4

u

Lexical Elements of the VAXTPU Language
3. 7 Expressions

Example 3-3 A Procedure Using Relational Operators on Markers

PROCEDURE which half

LOCAL number_lines,
saved_rnark;

saved_rnark := MARK (FREE_CURSOR);
POSITION (BEGINNING OF (CURRENT BUFFER));
number lines := GET-INFO (current buffer, "record_count");
IF nurnber_lines =· 0- -
THEN

MESSAGE ("The current buffer is empty");
ELSE

MOVE_VERTICAL (number_lines/2);
IF MARK (FREE_CURSOR) = saved_mark
THEN .

MESSAGE ("You are at the middle of the buffer");
ELSE

IF MARK (FREE_CURSOR) < saved_rnark
THEN

MESSAGE ("You are in the second half of the buffer");
ELSE

MESSAGE ("You are in the first half of the buffer");
ENDIF.;

ENDIF;
ENDIF;

ENDPROCEDURE

Boolean Expressions
VAXTPU performs bitwise logical operations on Boolean expressions. This
means that the logical operation is performed on the individual bits of
the operands to produce the individual bits of the result. In the example
below, the value of user _variable is set to 3.

user_variable := 3 AND 7;

A true valu.e in VAXTPU is any odd integer; a false value is any even
integer. Use the logical operators (AND, NOT, OR, XOR) to combine one
or more expressions. VAXTPU evaluates Boolean expressions enclosed
in parentheses before other elements. The following example shows the
use of parentheses to ensure that the Boolean expression is evaluated
correctly:

IF (x = 12) AND (y <> 40)
THEN

ENDIF;

3-11

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8 Reserved Words

3.8.1

3.8.2

3.8.3

Keywords

Reserved words are words that are defined by VAXTPU and that have a
special meaning for the compiler.

VAXTPU reserved words can be divided into the following categories:

• Keywords

• Built-in procedure names

• Predefined constants

• Language elements

The following sections describe the categories of reserved words.

Keywords are a VAXTPU data type. They are reserved words that have
special meaning to the compiler. VAXTPU keywords can be redefined
by the user only in local declarations (local constants, local variables, and
parameters in a parameter list). If you give a local constant, local variable,
or parameter the same name as that of a keyword, the compiler issues a
message notifying you that the local declaration or parameter temporarily
supersedes the keyword. In such a circumstance, the keyword is said to be
occluded. See Chapter 2 for more information on keywords.

Built-In Procedure Names
The VAXTPU language has many built-in procedures that perform
functions such as screen management, key definition, text manipulation,
and program execution. VAXTPU built-in procedures are reserved words
that can be redefined by the user only in local declarations (local constants, · ,,
local variables, and parameters in a parameter list). If you give a local)
constant, local variable, or parameter the same name as that of a built-
in procedure, the compiler issues a message notifying you that the local
declaration or parameter temporarily supersedes the built-in. In such
a circumstance, the built-in is said to be occluded. See the VAXTPU
Reference Section for a complete description of the VAXTPU built-in
procedures.

Predefined Constants

3-12

The following is a list of predefined global constants that VAXTPU sets up.
These constants cannot be redefined by the user.

• FALSE

• TPU$K_ALT_MODIFIED

• TPU$K_CTRL_MODIFIED

• TPU$K_HELP _MODIFIED

• TPU$K_MESSAGE_FACILITY

(
3.8.4

(

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

• TPU$K_MESSAGE_ID

• TPU$K_MESSAGE_SEVERITY

• TPU$K_MESSAGE_TEXT

• TPU$K_SEARCH_CASE

• TPU$K_SEARCH_DIACRITICAL

• · TPU$K_SHIFT_MODIFIED

• TPU$K_ UNSPECIFIED

• TRUE

Declarations and Statements
A VAXTPU program can consist of a sequence of declarations and
statements. These declarations and statements control the action
performed in a procedure or a program. The following reserved words
are the language elements that when combined properly make up the
declarations and statements of VAXTPU.

• Module declaration

MODULE

!DENT

ENDMODULE

• Procedure declaration

PROCEDURE

END PROCEDURE

• Repetitive statement

LOOP

EXITIF

ENDLOOP

• Conditional statement

IF

THEN

ELSE

ENDIF

• Case statement

CASE

FROM

TO

INRANGE

'L-1-.i

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.1

3-14

OUTRANGE

ENDCASE

• Error statement

ON_ERROR

ENDON_ERROR

• RETURN statement

• ABORT statement

• Miscellaneous declarations

LOCAL

CONSTANT

VARIABLE

GLOBAL, UNIVERSAL, BEGIN, and END are words reserved for future
expansion of the VAXTPU language.

The VAXTPU declarations and statements are reserved words that cannot
be redefined by the user. Any attempt to redefine these words results in a
compilation error.

The Module Declaration
The MODULE/ENDMODULE declaration allows you to group a series of
global CONSTANT declarations, VARIABLE declarations, PROCEDURE
declarations, and executable statements as one entity. After you compile a
moduie, the compiler will generate two procedures for you. One procedure
returns the identification for the module and the other contains all the
executable statements for the module. The procedure names generated
by the compiler are module-name_MODULE_IDENT and module-name_
MODULE_INIT, respectively.

Syntax

MODULE module-name IDENT string-literal
[declarations]
[ON_ERROR ... ENDON_ERROR]
statement_ 1 ; ·

statement_n;
ENDMODULE

The declarations part of a module can include any number of global
VARIABLE, CONSTANT, and PROCEDURE declarations.

The body of a module can include any VAXTPU language statements
except ON_ERROR statements. Statements that make up the body of a
module must be separated with semicolons.

3.8.4.2

(

(

I u

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

In the following example, the two procedures that are created by the
compiler are user _mod_module_ident and user _mod_module_init. User_
mod_module_ident returns the string "vl.0". User _mod_module_init calls
the routine user _hello.

MODULE user_rnod IDENT "vl.0"

PROCEDURE user_hello
MESSAGE ("Hello");

ENDPROCEDURE;

user_hello;
ENDMODULE

The Procedure Declaration
The PROCEDURE/ENDPROCEDURE declaration delimits a series
of VAXTPU statements so they can be called as a unit. The
PROCEDURE/ENDPROCEDURE combination allows you to declare a
procedure with a name so that you can call it from another procedure or
from the command line of a VAXTPU editing interface. Once you have
compiled a procedure, you can enter the procedure name as a statement
in another procedure, or enter the procedure name after the VAXTPU
Statement: prompt on the command line of EVE.

Syntax

PROCEDURE procedure-name [(parameter-list)]
[local-declarations]
[ON_ERROR ... ENDON_ERROR]
statement_ 1 ;
statement_2;

statement_n;
ENDPROCEDURE

The local declarations part of a procedure can include any number of
LOCAL and CONSTANT declarations.

The ON_ERROR/ENDON_ERROR block, if used, must appear after the
declarations and before the VAXTPU statements that make up the body of
the procedure. For more information on error handlers, see Section 3.8.4.7.

After the ON_ERROR/ENDON_ERROR block, you can use any kind of
VAXTPU language statements in the body of a procedure except another
ON_ERROR/ENDON_ERROR block. Statements that make up the body of
a procedure must be separated with semicolons.

Example

PROCEDURE version

MESSAGE ("This is Version 1-020");

END PROCEDURE

This procedure writes the text "This is Version 1-020" in the message area.

3-15

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.2.1

3.8.4.2.2

Procedure Names
A procedure name can be any valid identifier that is not a VAXTPU
reserved word. Digital suggests that you use a convention when naming
your procedures. For instance, you might prefix procedure names with
your initials. In this way, you can easily distinguish procedures that you
write from other procedures such as the VAXTPU built-in procedures. For
example, if John Smith writes a procedure that creates two windows, he
might name his procedurejs_two_windows. This helps ensure that his
procedure name is a unique name. Most of the sample procedures in this
manual have the prefix user_ with procedure names. Digital suggests that
you replace the prefix user with your initials.

Procedure Parameters
Using parameters with procedures is optional. If you use parameters, they j

3-16

can be input parameters, output parameters, or both. For example:

PROCEDURE user_input_output (a, b)

a :=a+ 5;
b := a;

ENDPROCEDURE

In ·the preceding procedure, a is an input parameter. It is also an output
parameter because it is modified by the procedure input_output. In the
same procedure, b is an output parameter.

The scope of procedure parameters is limited to the procedure in which
they are defined. The maximum number of parameters in a parameter
list is 127. A procedure can declare its parameters as required or
optional. Required parameters and optional parameters are separated
by a semicolon. Parameters before the semicolon are required parameters;
those after the semicolon are optional. If no semicolon is specified, then
the parameters are required.

Syntax

PROCEDURE proc-name [([req-param [...]] [;opt-param [...]])]

END PROCEDURE

A procedure parameter is a place holder or dummy identifier that is
replaced by an actual value in the program that calls the procedure. The
value that replaces a parameter is called an argument. Arguments can be
expressions. There does not have to be any correlation between the names
used for parameters and the values used for arguments. All arguments
are passed by reference. Example 3-4 shows a simple procedure with
parameters.

,_/

(

,U
I

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-4 Simple Procedure with Parameters

!This procedure adds two integers. The parameters, intl and int2,
!are replaced by the actual values that the user supplies.
!The result of the addition is written to the message area.

PROCEDURE ADD (intl, int2)

MESSAGE (STR (intl + int2));

END PROCEDURE

For example, call the procedure ADD and specify the values 5 and 6 as
arguments, as follows:

ADD (5, 6);

The string "11" is written to the message buffer.

Any caller of a procedure must call it using all required parameters. The
caller can also use optional parameters. If the required parameters are not
present or the procedure is called with too many parameters (more than
the sum of the required and optional parameters), then VAXTPU issues an
error.

If a procedure is called with the required number of parameters, but
with less than the maximum number of parameters, then the remaining
parameters up to the maximum automatically become "null parameters."
A null parameter is a modifiable parameter of data type unspecified.. A
null parameter can be assigned a value and will become the value it is
assigned, but the parameter's value is discarded when the procedure exits.

Null parameters can also be explicitly passed to a procedure. This is done
by omitting a parameter when calling the procedure.

Example 3-5 shows a more complex procedure that uses optional ·
parameters.

Example 3-5 Complex Procedure with Optional Parameters

CONSTANT
user_warning := o, Warning severity code
user success ·= 1, Success ·severity code -user error := 2, Error severity -user informational :==- 3, Informational -user fatal := 4; Fatal severity

Output a message with fatal/error/warning flash.

PROCEDURE user_message (the_text; the_severity)

LOCAL flash_it;

! Only flash warning, error, or fatal messages.

code
severity

code
code

CASE the severity FROM user warning TO user fatal
[user_warning, user_error, user_fatal) : flash_it := TRUE;

(continued on next page)

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3-18

Example 3-5 (Cont.) Complex Procedure with Optional Parameters

[user_success, user_informational)

[OUTRANGE]

ENDCASE;

flash it := FALSE;

flash it := FALSE;

! Output the message - flash it, if appropriate.
!
MESSAGE (the text);
IF flash it -
THEN

SLEEP ("0 00:00:00.3");
MESSAGE (1111

) ;

SLEEP ("0 00:00:00.3");
MESSAGE (the_text);

ENDIF;

END PROCEDURE

Caution: Do not assume that the VAXTPU compiler automatically evaluates
parameters in the order in which you place them. In future
releases of VAXTPU, the compiler may evaluate parameters in
any order.

3.8.4.2.3

To avoid the need to rewrite code, you should write as if this compiler
optimization were already implemented. If you need the compiler to
evaluate parameters in a particular order, you should force the compiler
to evaluate each parameter in order before calling the procedure. To do
so, use each parameter in an assignment statement before calling the
procedure. For example, suppose you want to call a procedure whose
parameter list includes PARAM_l and PARAM_2. Suppose, too, that
PARAM_l must be evaluated first. To get this result, you could use the
following code:

partial 1 := param l;
partial-2 := param-2;
my_procedure (partial_l, partia1_2);

Procedures That Return a Result
Procedures that return a result are called function procedures.
Example 3-6 shows a procedure that returns a true (1) or false (0)
value.

)

(J

(

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-6 Procedure That Returns a Result

PROCEDURE user_on_end_of_line !test if at eol, return true or false

IF CURRENT_OFFSET = LENGTH (CURRENT_LINE)
THEN

user_on_end_of_line := 1
ELSE

user on end of line := O
ENDIF~ - - - -

END PROCEDURE

we are on eol

return true

return false

Another way of assigning a value of 1 or O to a procedure is to use
the VAXTPU language statement RETURN followed by a value. See
Example 3-13.

You can use a procedure that returns a result as a part of a conditional
statement to test for certain conditions. Example 3-7 shows the procedure
in Example 3-6 within another procedure.

Example 3-7 Procedure Within Another Procedure

PROCEDURE user_nested_procedure

IF user on end of line= 1 ! at the eol mark - - - -THEN
MESSAGE ("Cursor is at the end of the line")

ELSE
MESSAGE ("Cursor is not at the end of the line")

ENDIF;

ENDPROCEDURE;

3.8.4.2.4

3.8.4.2.5

Recursive Procedures
Procedures that call themselves are called recursive procedures.
Example 3-8 shows a procedure named user _reverse that displays a list of
responses to the built-in procedure READ_LINE in reverse order. Notice
that there is a call to the procedure user _reverse within the procedure
body.

Local Variables
The use of local variables in procedures is optional. If you use local
variables, they hold the values that you assign thein only in the procedure
in which you declare them. The maximum number of local variables that
you can use is 255. Local variables are initialized to 0.

",l_ .. tli

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.2.6

3.8.4.2.7

3-20

Example 3-8 Recursive Procedure

PROCEDURE user reverse
LOCAL temp_string;

temp_string := READ_,LINF: ("input>");

IF temp_string <>

THEN
user reverse

ELSE
RETURN

ENDIF;

II II

MESSAGE (temp_string);

ENDPROCEDURE

Syntax

LOCAL variable-name [, ...];

Read a response

Quit if nothing entered
but t~e RETURN key.

Call user_reverse recursively

All done, go to display lines

Display lines typed in reverse order
in the message window

Note that if you declare a local variable in a procedure and, in the same
procedure, use the EXECUTE built-in to assign a value to a variable with
the same name as the local variable, the result of the EXECUTE built-in

. has no effect on the local variable. For example, consider the following
code fragment:

PROCEDURE test
LOCAL x;
EXECUTE ("x := 3");
MOVE_VERTICAL (x);

ENDPROCEDURE;

In this fragment, when the compiler evaluates the string "x := 3", the
compiler assumes xis a global variable. The compiler creates a global
variable x (if none exists) and assigns the value 3 to the variable. When
the built-in MOVE_ VERTICAL uses the local variable x, the local variable
has the value O and the MOVE_ VERTICAL built-in has no effect.

Constants
The use of constants in procedures is optional. The scope of a constant
declared within a procedure is limited to the procedure in which it is
defined. See Section 3.8.4.10.2 for more information on the CONSTANT
declaration.

Syntax

CONSTANT constant-name := compile-time-constant-expression [, ...];

ON_ERROR Statements
The use of ON_ERROR statements in procedures is optional. If you use
an ON_ERROR statement, you must place it at the top of the procedure
just after any LOCAL and CONSTANT declarations. The ON_ERROR
statement specifies the action or actions to be taken if an ERROR or
WARNING status is returned. See Section 3.8.4.7 for more information on
ON_ERROR statements.

3.8.4.3

3.8.4.4

(

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

The Assignment Statement
The assignment statement assigns a value to a variable. In so doing, it
associates the variable with the appropriate data type.

Syntax

identifier := expression;

Note that the assignment operator is a combination of two characters, a
colon and an equal sign(:=). Do not confuse this operator with the equal
sign (=),which is a·relational operator that checks for equality.

VAXTPU does not do any type checking on the data type being stored. Any
data type may be stored in any variable.

Example

x := "abc";

This assignment statement stores the string "abc" in variable x.

The Repetitive Statement
The LOOP/ENDLOOP statements specify the repetitive execution of a
statement or statements until the condition specified by EXITIF is met.

Syntax

LOOP
statement_ 1 ;
statement_2;

EXITIF expression;
statement_n;

ENDLOOP

The EXITIF statement is the mechanism for exiting from a loop. You
can place the EXITIF statement anywhere inside a LOOP/ENDLOOP
combination. You can also use the EXITIF statement as many times as
you like. When the EXITIF statement is true, it causes a branch to the
statement f!)llowing th.e ENDLOOP statement.

The syntax of the EXITIF statement is as follows:

EXITIF expression;

Any VAXTPU language statement except an ON_ERROR statement can
appear inside a.LOOP/ENDLOOP combination.

Example

LOOP
EXITIF CURRENT_OFFSET = 0;
temp string := CURRENT CHARACTER;
EXITIF (temp string<>-" ") AND

(temp=string <> ASCII(9));
MOVE_HORIZONTAL (-1);
temp_length := temp_length + l;

ENDLOOP

'2 .,..

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3-22

3.8.4.5

This procedure uses the EXITIF statement twice. Each expression
following an EXITIF statement defines a condition that causes an exit
from the loop. The statements in the loop are repeated until one of the
EXITIF conditions is met.

The Conditional Statement
The IF/I'HEN statement causes the execution of a statement or group
of statements, depending on the value of a Boolean expression. If the
expression is true, the statement is executed. Otherwise, program control
passes to the statement following the IFtTHEN statement.

The optional ELSE clause provides an alternative group of statements for
execution. The ELSE clause is executed if the test condition specified by
IFtTHEN is false.

The ENDIF statement specifies the end of a conditional statement.

Syntax

IF expression
THEN

statement_ 1 ;

statement_n

[ELSE
alternate-statement_ 1 ;

alternate-statement_n;]
ENDIF;

You can use any VAXTPU language statements except ON_ERROR
statements in a THEN or ELSE clause.

Example

PROCEDURE set direct

MESSAGE ("Press PF3 or PF4 to indicate direction");
temp char:= READ KEY;
IF ternp_char = KPS
THEN

SET (REVERSE, CURRENT_BUFFER);
ELSE

IF ternp_char = KP4
THEN

SET (FORWARD, CURRENT_BUFFER);
ENDIF;

ENDIF;

ENDPROCEDURE;

In this example, nested IFtTHEN/ELSE statements test whether a buffer
direction should be forward or reverse.

Caution: Do not assume that the VAXTPU compiler automatically evaluates
all parts of an IF statement. In future releases, the compiler may

/

(

(U
3.8.4.6

(

rU

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

evaluate only as much of an IF statement as needed to determine
if the statement is true or false. For example, if two clauses of an
IF statement are joined with an AND operator and one clause is
false, the compiler in future releases may not evaluate the other
clause because the condition will be false in any case. Similarly, if
two clauses of an IF statement are joined with an OR operator and
the one clause is true, the compiler may not evaluate the other
clause.

To avoid the need to rewrite code, you should write as if this compiler
optimization were aiready implemented. If you need the compiler to
evaluate all clauses of a conditional statement, you should force the
compiler to evaluate each clause before using the conditional statement.
To do so, use each clause in an assignment statement before using it in
a conditional statement. For example, suppose you want the compiler to
evaluate both CLAUSE_! and CLAUSE_2 in a conditional statement. To
get this result, you could use the following code:

relation_l := clause_l;
relation 2 := clause 2;
IF relation 1 AND relation 2 - -
THEN

ENDIF;

The Case Statement
The CASE statement is a selection control structure that allows you to
list several alternate actions and choose one of them to be executed at run
time. In a CASE statement constant values, or case labels, are associated
with the possible executable statements or actions to be performed. The
CASE statement then executes the statement or statements labeled with a
value that matches the value of the case selector.

Syntax

CASE case-selector [FROM lower-constant-expr] [TO upper-constant-exprJ
[constant-expr_ 1 [, ...]] : statement [, ...];
[constant-expr_2 [, ...]] : statement [, ...];

[constant-expr_n [, ...]] : statement [, ...];

[[INRANGE] : statement [, ...] ;]

[[OUTRANGE] : statement [, ...] ;]
ENDCASE

Note that the single brackets are not optional for case constants.
Example 3-9 shows how to use the CASE statement in a procedure.

CASE constant expressions must evaluate at compile time to either
a keyword, a string constant, or an integer constant. All constant
expressions in the CASE statement must be of the same data type. There
are two special case constants in VAXTPU: INRANGE and OUTRANGE.

3-23

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.7

3-24

INRANGE matches anything that falls within the case range that does not
have a case label associated with it. OUTRANGE matches anything that
falls outside the case range. These special case constants are optional.

FROM and TO clauses of a CASE statement are not required. Note that
if FROM and TO clauses are not specified, INRANGE and OUTRANGE
labels refer to data between the minimum and maximum specified labels.

Example 3-9 shows a sample procedure that uses the CASE statement.

Example 3-9 Procedure Using the CASE Statement

PROCEDURE grades

answers := READ LINE ("Enter number of correct answers:",5);
answers := INT (answers);

CASE answers FROM 0 TO
[10]

[9]
(8]
(7]
(6]

(0, 1, 2, 3, 4, 5]
[OUTRANGE]

ENDCASE;

MESSAGE (score);

END PROCEDURE

10
score := "A+";
score : = "A";
score := "B";
score := "C";
score := "D";
score := "F";
score := "Invalid entry. II• ,

This CASE statement compares the value of the constant selector answers
to the case labels (the numbers O through 10). If the value of answers
is any of the numbers from O through 10, the statement to the right of
that number is executed. If the value of answers is outside the range of 0
through 10, the statement to the right of [OUTRANGE] is executed. The
value of score is written in the message area after the execution of the
CASE statement.

Error Handling
A block of code starting with ON_ERROR and ending with E1'1"'DON_
ERROR defines the actions that are to be taken when a procedure fails
to execute successfully. Such a block of code is called an error handler.
An error handler is an optional part of a VAXTPU procedure or program.
An error handler traps WARNING and ERROR status values. (See SET
(INFORMATIONAL) and SET (SUCCESS) in the VAXTPU Reference
Section for information on handling informational and success status
values.)

It is good programming practice to put an error handler in all but the
simplest procedures. However, if you omit the error handler, VAXTPU's
default error handling behavior is as follows:

• If the user presses CTRUC, VAXTPU places an error message in the
message buffer, exits normally from all currently active procedures (in
their reverse calling order), and returns to the "wait for next key" loop.

)

u

(

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

• If an error or warning is generated during a CALL_USER routine,
ERROR is set to the keyword representing the failure status of the
routine, ERROR_LINE is set to the line number of the error, and
ERROR_TEXT is set to the message associated with the error or
warning. VAXTPU places the message in the message buffer, then

· resumes execution at the statement after the statement that generated
the error or warning.

• For other errors and warnings, ERROR is set to the keyword
representing th~ error or warning, ERROR_LINE is set to the
line number of the error, and ERROR_TEXT is set to the message
associated with the error or warning. VAXTPU places the message in
the message buffer, then resumes execution at the statement after the
statement that generated the error or warning.

In a procedure, the error handler must be placed at the beginning of a
procedure; after the procedure parameter list, the LOCAL or CONSTANT
declarations, if present, and before the body of the procedure. In a
program, the ON_ERROR language statements must be placed after
all the global declarations (PROCEDURE, CONSTANT, and VARIABLE)
and before any executable statements. Error statements can contain any
VAXTPU language statements except other ON_ERROR statements.

There are three VAXTPU lexical elements that are useful in an error
handler: ERROR, ERROR_LINE, and ERROR_TEXT.

ERROR returns a keyword for the error or warning. The VAXTPU
Reference Section includes information on the possible error and
warning keywords that can be returned by each built-in procedure. (See
Appendix D for an alphabetized list of all the possible return statuses
for VAXTPU and their severity levels. The VMS System Messages and
Recovery Procedures Reference Volume includes all the possible return
statuses for VAXTPU as well as the appropriate explanations and
suggested user actions.)

ERROR_LINE returns the line number at which the error or warning
occurs. If a procedure was compiled from a buffer or range, ERROR_LINE
returns the line number within the buffer. (This may be different from the
line number within the procedure.) If the procedure was compiled from a
string, ERROR_LINE returns 1.

ERROR_TEXT returns the text of the error or warning, exactly as
VAXTPU would display it in the message buffer, with all parameters
filled in.

After the execution of an error statement, you can choose where to resume
execution of a program. The options are the following:

• ABORT - This language statement causes an exit from the
interpreter.

• RETURN - This language statement stops the execution of the
procedure in which the error occurred, but continues execution of the
rest of the program.

If you do not specify ABORT or RETURN, the default is to continue
executing the program from the point at which the error occurred.

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.7.1

3-26

VAXTPU provides two forms of error handler, procedural and case style.

Procedural Error Handlers
If a WARNING status is trapped by an ON_ERROR statement, the
warning message is suppressed. However, if an ERROR status is
trapped, the message is displayed. The ON_ERROR trap allows you to
do additional error handling after the VAXTPU message is displayed.

Syntax

ON_ERROR
statement_ 1 ;
statement_2;

statement_n;
ENDON_ERROR;

Example 3-10 shows error statements at the beginning of a procedure.
These statements return control to the caller if the input on the command
line of an interface is not correct. Any warning or error status returned by
a statement in the body of the procedure causes the error statements to be
executed.

Example 3-10 Procedure Using the ON_ERROR Statement

Gold 7 emulation (command line processing)

PROCEDURE command line

LOCAL
line_read, x;

ON ERROR
MESSAGE ("Unrecognized command: "+ line_read);
RETURN;

ENDON_ERROR;

! Get the command(s) to execute
!
line_read := READ.LINE ("VAXTPU Statement: ");

! compile them

get line from user

(continued on next page)

_.I

)

u

(

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-10 (Cont.) Procedure Using the ON_ERROR Statement

IF line read<>""
THEN

x := COMPILE (line_read);
ELSE

RETURN
ENDIF;

! execute

IF X <> 0
THEN

EXECUTE (x);
ENDIF;

ENDPROCEDURE;

The effects of a procedural error handler are as follows:

• If the user presses CTRL/C, VAXTPU places an error message in the
message buffer, exits normally from all currently active procedures (in
their reverse calling order), and returns to the "wait for next key" loop.

• If an error or warning is generated during a CALL_USER routine,
ERROR is set to a keyword representing the failure status of the
routine, ERROR_LINE is set to the line number of the error, and
ERROR_TEXT is set to a warning or error message that is placed in
the message buffer. Finally, VAXTPU runs the error handler code. If
the error is trapped, the appropriate statement is executed. Otherwise,
the error handler terminates and VAXTPU resumes execution at the
next statement after the CALL_USER routine.

• For other warnings and errors, ERROR is set to a keyword
representing the error or warning, ERROR_LINE is set to the line
number of the error, and ERROR_TEXT is set to the error or warning
message associated with the keyword. VAXTPU places error messages
in the message buffer but suppresses the display of warning messages.
Finally, VAXTPU runs the error handler code. If the error is trapped,
the appropriate statement is executed. Otherwise, the error handler
terminates and VAXTPU resumes execution at the next statement
after the statement that generated the error or warning.

If an error or warning is generated during execution of a procedural error
handler, VAXTPU behaves as follows:

• If the user presses CTRL/C during the error handler, VAXTPU puts an
error message in the message buffer, exits normally from all currently
active procedures (in their reverse calling order), and returns to the
"wait for next key" loop. VAXTPU puts the error or warning message
in the message buffer and resumes execution at the next statement
after the CALL_USER routine.

3-27

Lexical Elements of the VAXTPU Language
3.8 Reserved Words (),

,, :

3.8.4.7.2

3-28.

• For other errors and warnings, the appropriate error or warning
message is written to the message buffer. VAXTPU resumes execution
at the next statement after the statement that generated the error.

Case-Style Error Handlers
Case-style error handlers provide a number of advantages over procedural
error handlers .. Case-style error handlers allow you to do the following:

• Suppress the automatic display of both WARNING and ERROR status
messages

• Trap the TPU$_CONTROLC status

• Write clearer code

Syntax

ON_ERROR
[condition_ 1]: statement_ 1;
[condition_2]: statement_2;

[condition_n]: statement_n;
ENDON_ERROR;

You can use the [OTHERWISE] selector alone in an error handler as a
shortcut. For example, the following two error handlers have the same
effect:

! This error handler uses [OTHERWISE) alone as a shortcut.

ON ERROR
[OTHERWISE) : ;
ENDON ERROR

t This error handler has the same effect as using
! [OTHERWISE] alone.

ON ERROR
[OTHERWISE)

LEARN_ABORT;
RETURN (FALSE) ;

. ENDON_ERROR;

Example 3-11 from the EVE editor shows a procedure with a case-style
error handler:

(

(
\

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-11 Procedure With a Case-Style Error Handler

PROCEDURE eve$learn_abort

ON ERROR
[TPU$_CONTROLC]:

MESSAGE (ERROR_TEXT);
RETURN (LEARN_ABORT);

ENDON_ERROR;

IF LEARN ABORT
THEN

ELSE

eve$message (EVE$_LEARNABORT);
RETURN (TRUE) ;

RETURN (FALSE);
ENDIF;

ENDPROCEDURE;

If a program or procedure has a case-style error handler, VAXTPU handles
errors and warnings as follows:

• If the user presses CTRUC, VAXTPU determines whether the error
handler contains a selector labeled TPU$_CONTROLC. If so, VAXTPU
sets ERROR to TPU$_CONTROLC, ERROR_LINE to the line that
VAXTPU was executing when CTRUC was pressed, and ERROR_
TEXT to the message associated with TPU$_CONTROLC. VAXTPU
then executes the statements associated with the selector. If there is
no TPU$_CONTROLC selector, VAXTPU exits from the error handler
and looks for a TPU$_CONTROLC selector in the procedures or
program (if any) in which the current procedure is nested. lfno TPU$_
CONTROLC selector is found in the containing procedures or program,
VAXTPU places the message associated with TPU$_CONTROLC in
the message buff er.

• If an error or warning is generated during a CALL_USER routine,
ERROR is set to a keyword representing the failure status of the
routine, ERROR_LINE is set to the line number of the error, and
ERROR_TEXT is set to the warning or error message associated with
the keyword. VAXTPU then processes the error handler that trapped
the CALL_USER error in the same way that VAXTPU processes
normal case-style error handlers as described below.

• For other warnings and errors, ERROR is set to a keyword
representing the error or warning, ERROR_LINE is set to the line
number of the error, and ERROR_TEXT is set to the error or warning
message associated with the keyword.

The way a case-style error handler processes an error or warning
depends on how the error handler traps the error. There are three
possible ways, as follows: ·

- The error handler can trap the error using a selector that
matches the.error exactly (that is, using a selector other than
OTHERWISE).

- The error handler can trap the error using the OTHERWISE
selector.

3-29

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3-30

- The error handler can completely fail to trap the error.

The following discussion explains how a case-style error handler
processes an error or warning in each of these circumstances.

If the err9r or warning is trapped by a s·elector other than
OTHERWISE, VAXTPU does not place the error or warning message
in the message buffer unless the error handler code instructs it to do
so. In this case, after setting ERROR, ERROR_LINE, and ERROR_
TEXT, VAXTPU executes the code associated with the selector. If the
code does not return to the calling procedure or program, VAXTPU
checks whether one of the selectors associated with the code just
executed is TPU$_CONTROLC or OTHERWISE. If so, VAXTPU
performs the equivalent of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If not, the error handler terminates and VAXTPU resumes execution
at the next statement after the statement that generated the error or
warning.

For more information on the special error symbol in VAXTPU, see the
description of the built-in SET. (SPECIAL_ERROR_SYMBOL) in the
VAXTPU Reference Section.

If the error or warning is trapped by the OTHERWISE selector,
VAXTPU writes the associated error or warning message in the
message buffer. Next, VAXTPU .executes the code associated with
the OTHERWISE selector. If the code does not return to the calling
procedure or program, VAXTPU performs the equivalent of the
following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If the error or warning is not trapped by any selector, VAXTPU writes
the associated error or warning message in the message buffer. Next,
VAXTPU performs the equivalent of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If an error or warning is generated during execution of a case-style error
handler, VAXTPU behaves as follows:

• If the user presses CTRIJC during the error handler, VAXTPU sets
ERROR to TPU$_CONTROLC, ERROR_LINE to the line being
executed when CTRIJC was pressed, and ERROR_TEXT to the
message associated with TPU$_CONTROLC.

If one of the case selectors in the error handler is TPU$_CONTROLC,
VAXTPU executes the code associated with the selector. If the code
does not return to the calling procedure or program, VAXTPU performs
the equivalent of the following sequence:

0

(

3.8.4.7.3

3.8.4.8

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

special_error_symbol := 0;
LEAR~_ABORT;
RETURN (FALSE);

If none of the selectors is TPU$_CONTROLC, then VAXTPU exits
from the error handler and looks for a TPU$_CONTROLC selector
in the procedures or program (if any) in which the current procedure
is nested. If VAXTPU does not find a TPU$_CONTROLC selector in
the containing procedures or program, VAXTPU places the message
associated with TPU$_CONTROLC in the message buffer . .

• If the error is not due to the user pressing CTRI/C, the error message
is written to the message buffer and VAXTPU performs the equivalent
of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

In a procedure with a case-style error handler, an ABORT statement
produces the same effect as the sequence CTRIJC, with one exception. An
ABORT statement in the TPU$_CONTROLC clause of a case-style error
handler does not reinvoke the TPU$_CONTROLC clause, as is the case
when CTRUC is pressed while TPU$_CONTROLC is executing. Instead,
an ABORT statement causes VAXTPU to exit from the error handler and
look for a TPU$_CONTROLC selector in the procedures or program (if
any) in which the current procedure is nested. If VAXTPU does not find
a TPU$_CONTROLC selector in the containing procedures or program,
VAXTPU places the message associated with TPU$_CONTROLC in the
message buffer.

CTRUC Handling
The ability to trap a CTRI/C in your VAXTPU program is both powerful
and dangerous. When a user presses CTRUC, the user usually wants the
application that is running to prompt for a new command. The ability
to trap the CTRUC is intended to allow a procedure to clean up and exit
gracefully, not to thwart the user.

The RETURN Statement
. This statement causes a return to the procedure that called the current .
procedure or program. The return is to the statement following the
statement that called the current procedure or program. You can
specify an expression after the RETURN statement and the value of
this expression is passed to the calling proce~ure.

Syntax

RETURN expression;

Example 3-12 shows a sample procedure in which a value is returned to
the calling procedure.

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-12 Procedure That Returns a Value

PROCEDURE user_get_shift_key

LOCAL key_to_shift; ! Keyword for key pressed after shift key

SET (SHIFT KEY, LAST KEY);
key_to_shift := KEY_NAME (READ_KEY, SHIFT_KEY);
RETURN key_to_shift;

ENDPROCEDURE;

In addition to using RETURN to pass a value, you can use a 1 (true) or a 0
(false) with the RETURN statement to indicate the status of a procedure.
Example 3-13 shows this usage of the RETURN statement.

Example 3-13 Procedure Returning a Status

PROCEDURE user_at_end_of_line

This procedure returns a 1 (true) if user is at the end of a
! line, or a O (false) if the current character is not at the
! end of a line

ON ERROR
! Suppress warning message
·· RETURN (1);

ENDON_ERROR;

IF CURRENT_OFFSET LENGTH (CURRENT_LINE)
THEN

RETURN (1);
ELSE

RETURN (0);
ENDIF;

ENDPROCEDURE;

. '
' i

/

The RETURN statement is often used in the ON_ERROR section of a \
procedure to specify a return to the calling procedure if an error occurs in j

3-32

the current procedure. Example 3-14 uses the RETURN statement in an
ON_ERROR section.

3.8.4.9

(U

3.8.4.10

3.8.4.10.1

(u

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-14 Using RETURN in an ON_ERROR Section

Attach to the parent process. Used when EVE is spawned
from DCL and run in a subprocess ("kept VAXTPU"). The
ATTACH command can be used for more flexible process control.

PROCEDURE eve attach

ON ERROR
- IF ERROR= TPU$_NOPARENT

THEN
MESSAGE (J'Not running VAXTPU in a subprocess");
RETURN;

ENDIF;
ENDON_ERROR;

ATTACH;

ENDPROCEDURE;

The ABORT Statement
The ABORT statement stops any executing procedures and causes
VAXTPU to wait for the next keystroke. ABORT is commonly used in ·
error handlers. For additional information on using ABORT in error
handlers, see Section 3.8.4. 7.

Syntax

ABORT

Example 3-15 shows a simple error handler containing an ABORT
statement.

Example 3-15 Simple Error Handler

ON_ERROR
MESSAGE ("Aborting procedure because of error.");
ABORT;

ENDON_ERROR;

Miscellaneous Declarations
This section describes the VAXTPU language declarations LOCAL,
CONSTANT, and VARIABLE.

LOCAL
This declaration is used to identify certain variables as local variables
rather than global variables. All variables are considered to be global
variables unless you explicitly use the LOCAL statement to identify them
as local variables. · The LOCAL declaration in a procedure is optional. It
must be specified after the PROCEDURE statement and before any ON_
ERROR statement. LOCAL declarations and CONSTANT declarations can
be intermixed.

The maximum number of local variables you can declare in a procedure is
255. Local variables are initialized to 0.

3-33

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.10.2

Syntax

LOCAL
variable-name [, ...];

CONSTANT
This declaration is used to associate a name with certain constant
expressions. The constant expression must evaluate at compile time to
a keyword, a string, an integer, or an unspecified constant value. The
maximum length of a string constant allowed in a constant declaration is
about 4000 characters in length. VAXTPU sets up some predefined global
constants. See Section 3.8.3 for a list of predefined constants.

Constants can either be globally or locally defined. Global constants are
constants declared outside procedure declarations. Once a global constant · -)
has been defined, it is set for the life of the VAXTPU session. An attempt

3.8.4.10.3

3-34

to redefine a constant will succeed, as long as the constant value is the
same.

Local constants are constants declared within a procedure. A local
CONSTANT declaration must be specified after the PROCEDURE
statement and before any ON_ERROR statement. LOCAL statements
and CONSTANT statements can be intermixed.

Syntax

CONSTANT
constant-name := compile-time-constant-expression_ [, ...];

VARIABLE
This declaration is used to identify certain variables as global variables.
Any symbols that are neither declared nor used as the target of an
assignment statement are assumed to be undefined procedures. The
VARIABLE declaration must be used outside a procedure declaration.
Global variables are initialized to unspecified.

Syntax

VARIABLE
variable-name [, ...];

J

(

4 VAXTPU Program Development

Previous sections have described the lexical elements of the VAXTPU
language, such as data types, language statements, expressions, built
in procedures, and so on. This section describes how to combine these
elements in VAXTPU programs. VAXTPU programs can be used to
perform editing tasks, to customize or extend an existing application,
or to implement your own application layered on VAXTPU.

For information on calling VAXTPU from a program written in another
programming language, see the VMS Utility Routines Manual.

Before you start writing programs to customize or extend an existing
application, be very familiar with the VAXTPU source code that creates
the editor or application that you want to change. For example, if you use
the Extensible VAX Editor (EVE) and you want to change the size of the
main window, you must know and use the procedure name that EVE uses
for that window. (If you were changing the main window, you would use
the procedure name eve$main_window. Many of the EVE variables aµd
procedure names begin with eve$.)

The sample procedures and syntax examples in this book use uppercase
letters for items that you can enter exactly as shown. VAXTPU reserved
words, such as built-in procedures, keywords, and language statements,
are shown in uppercase. Lowercase items in a syntax example or sample
procedure indicate that you must provide an appropriate substitute for
that item.

This section discusses the following topics:

• Creating VAXTPU programs

• Creating DECwindows VAXTPU programs

• Writing code compatible with DECwindows EVE

• Compiling VAXTPU programs

• Executing VAXTPU programs

• Using VAXTPU startup files

• Debugging VAXTPU programs

4.1 Creating VAXTPU Programs
When you write a VAXTPU program, keep the following pointers in mind:

• You can use EVE or some other editor to enter or change the source
code of a program in the VAXTPU language.

• A program can be a single executable statement or a collection of
executable statements.

A_1

4.1.1

4.1.2

VAXTPU Program Development
4.1 Creating VAXTPU Programs

• You can use executable statements either within procedures or outside
procedures. You must place all procedure declarations before any
executable statements that are not in procedures.

• You can enter VAXTPU statements from within EVE by using the EVE
command TPU. For more information on using this command, see the
command description in the EVE Reference Manual or see the Guide to
VMS Text Processing.

Simple Programs
The following statement is an example of a simple program:

SHOW (SUMMARY);

The preceding statement, entered after the appropriate prompt from your
editor, causes VAXTPU to execute the program associated with the SHOW
(SUMMARY) statement. If you use EVE with a user-written command
file, your screen may display text similar to Example 4-1:

Example 4-1 SHOW (SUMMARY) Display

VAXTPU X2.0 1987-06-03 03:31

Journal file: LCLD$: [DOC.SRC]GET INFO.TJL;l
Section file: TPU$SECTION -
Section file was image activated
Timer Message: working

20 System buffers and 7 User buffers
3768 calls to LIB$GET_VM, 360 calls to LIB$FREE_VM, 831528 bytes still allocated

Complex Programs

4-2

When writing complex VAXTPU programs, avoid the following practices:

• Creating very large procedures

• Including large numbers of executable statements that are not within
procedures

Both practices, if carried to extremes, can cause the parser stack to
overflow.

The VAXTPU parser currently allows a maximum stack depth of 1000
syntax tree nodes. When the parser first encounters a VAXTPU statement,
the parser assigns each token in the statement to a syntax tree node.
For example, the statement "a:= 1" contains three tokens, each of which
occupies a syntax tree node. After the parser parses this statement, only
the assignment statement remains on the stack of nodes. The a and the 1
are subtrees to the assignment syntax tree node.

The most common cause of stack overflow, which is signaled by the status
TPU$_STACKOVER, is creating one or more large procedures whose
statements occupy too many syntax tree nodes. To make your program
manageable by the parser, break the large procedures into smaller ones.

(

4.1.3 Program Syntax

(

u

VAXTPU Program Development
4.1 Creating VAXTPU Programs

Other possible reasons for a TPU$_STACKOVER condition are that you
have too many small procedures (in which case you must consolidate
them somewhat), or that you have too many statements that are not in
procedures at all.

To see an example of a complex VAXTPU program, you can examine the
source files that implement EVE. The EVE source code files, located in
SYS$EXAMPLES:EVE$*.*, contain many procedure declarations and
executable statements specifying EVE's screen layout and display. These
files also contain k~y definitions specifying which editing operations are
performed when you press certain keys on the keyboard. You can examine
these files to learn the programming techniques that were used to create
EVE.

See Section 4.6 for information on using a command file or section file to
create or customize an application layered on VAXTPU. See Appendix G
for information on using the EVE$BUILD module to layer applications on
top of EVE.

The rules for writing VAXTPU programs are very simple. You must use a
semicolon to separate each executable statement from other statements. In
a program, you must place all procedure declarations before any executable
statements that are not part of a procedure declaration. For information
on VAXTPU data types, see Chapter 2. For information on VAXTPU
language elements, see Chapter 3. Example 4-2 shows the correct syntax
for a VAXTPU program.

Example 4-2 Syntax of a VAXTPU Program

PROCEDURE

END PROCEDURE

PROCEDURE;

ENDPROCEDURE;

PROCEDURE

ENDPROCEDURE;

(continued on next page)

4.2

VAXTPU Program Development
4.1 Creating VAXTPU Programs

Example 4-2 (Cont.) Syntax of a VAXTPU Program

statement l;
statement 2;

statement n;

A variety of syntactically correct VAXTPU programs is shown in
Example 4-3.

Example 4-3 Sample VAXTPU Programs

Program 1
This program consists of a single VAXTPU built-in procedure.

SHOW (KEYWORDS);

Program 2
This program consists of an assignment statement that
gives a value to the variable video_attribute

video_attribute := UNDERLINE;

Program 3
This program consists of the VAXTPU LOOP statement (with
a condition for exiting) and the VAXTPU built-in procedure ERASE LINE.

x := 0; LOOP x :=x+l; EXITIF x > 100; ERASE_LINE; ENDLOOP;

Program 4
This program consists of a single procedure that makes
VAXTPU quit the editing session.

PROCEDURE user_quit
QUIT; ! do VAXTPU quit operation

ENDPROCEDURE;

Program 5
This program is a collection of procedures that
makes VAXTPU accept "e", "ex", or "exi" as
the command for a VAXTPU exit operation.

PROCEDURE e
EXIT;

ENDPROCEDURE;

·PROCEDURE ex
EXIT;

ENDPROCEDURE;

PROCEDURE exi
EXIT;

ENDPROCEDURE;

! do VAXTPU exit op~ration

Programming in DECwindows VAXTPU

4-4

This section provides information about programming with DECwindows
VAXTPU.

)

4.2.1

(

4.2.2

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

Widgets Supported by DECwindows VAXTPU
DECwindows VAXTPU enables you to create widgets from within VAXTPU
programs by using the CREATE_ WIDGET built-in. For information about
how to use widgets to create a DECwindows text processing interface, see
the XUI Style Guide and the VMS DECwindows Guide to Application
Programming. For information about the characteristics of specific
widgets, see the VMS DECwindows Toolkit Routines Reference Manual.

Using the CREAT~_ WIDGET built-in, you can create the following
widgets in VAXTPU:

• Caution_box

• Dialog_box

• File_selection

• Label

• List_box

• Main_ window

• Menu_bar

• Popup_attached_db

• Popup_dialog_box

• Popup_menu

• Pulldown_entry

• Pulldown_menu

• Push_button

• Scroll_bar (vertical and horizontal)

• Separator

• Simple_text

• Toggle_button

Input Focus Support in DECwindows VAXTPU
In VMS DECwindows, at most one of the applications on the screen can
have the .input focus; that is, can accept user input from the keyboard.
For more information about the input focus, see the XUI Style Guide.

DECwindows VAXTPU automatically grabs the input focus whenever the
user causes an unmodified MlDOWN event (that is, an event not modified
by SHIFT, CTRL, or other modifying key) while the pointer cursor is in_
either of the following locations:

• VAXTPU's main window widget

• VAXTPU's title bar

A II!!!

4.2.3

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

When DECwindows VAXTPU grabs input focus or when an application
layered on VAXTPU requests input focus, DECwindows assigns the input
focus to VAXTPU only if and when it is possible to do so. Therefore, your
application should use the GET_INFO (SCREEN, "input_focus") built-in
to test whether it actually has the input focus before performing any
operation that requires the input focus.

Digital recommends that you not use a non-DECwindows section
file with DECwindows VAXTPU. However, if you do not follow this
recommendation, VAXTPU's automatic grabbing of the input focus allows
your layered application to interact with other DECwindows applications.

Global Selection Support in DECwindows VAXTPU

4.2.3.1

4.2.3.2

4-6

Global selection in VMS DECwindows is a means of preserving
information selected by the user so the user's selection, or data about
the user's selection, can be passed between DECwindows applications.
Each DECwindows application can own one or more global selections.

Difference Between Global Selection and Clipboard
A global selection differs from the clipboard in that the global selection
changes dynamically as the user changes the select range, while the
contents of the clipboard remain unchanged until the user uses a command
(such as EVE's STORE TEXT command) that sends new information to
the clipboard. Note that by default EVE does not use the clipboard.

Handling of Multiple Global Selections
At any particular time, a global selection is owned by at most one
DECwindows application; a global selection can also be unowned. A
DECwindows application can own more than one global selection at the
same time. For example, an application layered on VAXTPU can own both
the primary and secondary global selection properties. The DECwindows
server determines which application currently owns which global selection.
Information about a global selection property may be stored in different
formats, but the format of a particular property must be the same for all
DECwindows applications. VAXTPU directly accepts information that is
stored in integer or string format. VAXTPU handles information in other
formats by describing the information in an array. For more information
about this array, see the descriptions of the built-ins GET_GLOBAL_
SELECT and WRITE_GLOBAL_SELECT in the VAXTPU Reference
Section.

Global selections are identified in VAXTPU either as strings or keywords.
While DECwindows provides for many global selections, applications
conforming to the XUI Style Guide are concerned with only two selections,
the primary and secondary selections. VAXTPU provides a pair of
keywords (PRIMARY and SECONDARY) to refer to these selections.
VAXTPU also provides built-in procedures that allow layered applications
to manipulate global selection information.

)

4.2.3.3

(

u 4.2.3.4

u

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

You can refer to other global selections by specifying a string instead of the
keywords PRIMARY and SECONDARY. For example, if your application
has a global selection whose name is auxiliary, specify the selection using
the string "auxiliary". Note that selection names are case sensitive; the
string "auxiliary" does not refer to the same global selection as the string
''AUXILIARY".

Relation of Global Selection to Input Focus in DECwindows VAXTPU
An application that conforms to the XUI Style Guide requests ownership of
the primary global -selection in its input focus grab procedure. Regardless
of whether the application conforms, when VAXTPU obtains the input
focus, it automatically grabs the primary global selection ifit is not already
the owner. An application cannot prevent VAXTPU from attempting to
assert ownership of the primary global selection when VAXTPU receives
the input focus. If you are writing an application that conforms to the XUI
Style Guide and you find that VAXTPU has had to grab ownership of the
primary selection itself and execute the global select grab routine, your
application may have a design problem.

If VAXTPU obtains the primary selection by grabbing ownership itself,
VAXTPU automatically executes the application's global selection grab
routine if one is present.

DECwindows VAXTPU's Response to Requests for Information About
the Global Selection
VAXTPU provides a three-level hierarchy for responding to requests
from another application for information about the -current selection.
Applications layered on VAXTPU may specify a routine that responds
to requests for information about global· selections either for the entire
application or for one or more buffers in the application. When VAXTPU
receives a request for information, it checks whether there is a routine for
the current buffer that responds to information about global selections. If
no buffer-specific routine is available, VAXTPU checks for an application
wide routine. If no application-wide routine is available, VAXTPU
attempts to respond to the request itself, but it can only respond to a
limited number of requests. It provides information about the primary
selection and provides information about the file name, font, line number,
and text. VAXTPU responds to all other requests with a message that
no information is available. Note that VAXTPU itself does not send
requests for information about the global selection to other DECwindows
applications. VAXTPU applications may do so using the various built-ins.

VAXTPU's responses to requests for information about the primary
selection are as follows:

"FILE_NAME"

"FONT"

"LINE_NUMBER"

VAXTPU responds with the string returned by the built-in
procedure GET_INFO (CURRENT_BUFFER, "file_name").

VAXTPU responds with the string returned by the built-in
procedure GET _INFO (SYSTEM, "default_font").

VAXTPU responds with the value of type span co'ntaining the
record number where the select range starts and the record
number where the select range ends.

4-7

4.2.4

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

"TEXT" or "STRING" VAXTPU responds with the text of the select range as a
string, with each line break represented by a line feed.

Digital recommends that you not use a non-DECwindows section
file with DECwindows VAXTPU. However, if you do not follow this
recommendation, VAXTPU's automatic grabbing of the primary
global selection allows your layered application to interact with other
DECwindows applications. If an application requests information about
the primary global selection while VAXTPU owns the selection, VAXTPU
attempts to respond to the request if the application cannot do so. If
VAXTPU responds to the request by sending the text of a buffer or range,
VAXTPU converts the buffer or range to a string, converts line breaks to
line feeds, and inserts padding blanks before text to fill any unoccupied
space between the margins. If neither the application nor VAXTPU can
respond to the request, VAXTPU informs DECwindows that the requested
information is not available.

VAXTPU does not automatically grab the secondary selection. Layered
applications are responsible for handling this selection.

Using Callbacks in DECwindows VAXTPU

4.2.4.1

4.2.4.2

4-8

This section presents background information on the DECwindows concept
of callbacks and explains how DECwindows VAXTPU implements this
concept.

Background on DECwindows Callbacks
A callback is a mechanism used by a DECwindows widget to notify an
application that the widget has been modified in some way. DECwindows
applications have one or more callback routines, which are portions
of the routine that define what the application does in response to the
callback.

For more information about the use of callbacks and callback routines in
DECwindows programs, see the VMS DECwindows Guide to Application
Programming.

Callbacks can pass values known as closures, which are strings or
integers whose function depends on the application you are writing. Note
that closures are referred to as tags in DECwindows documentation.
For more information about what closures are and how to use them, see
Section 4.2.5.

Understanding the Difference Between VAXTPU's Internally-Defined
Callback Routines and a Layered Application's Callback Routines
VAXTPU implements the DECwindows concept of callback routines by
providing internally-defined routines that deliver the information obtained
from a widget's callback to a layered application. These routines are .
referred to as "internally-defined VAXTPU callback routines."

Note that when a widget calls back to VAXTPU, VAXTPU packages the
callback information, adds the information to its input list, and returns
to the widget. VAXTPU may not process the callback packet on its input
queue until some time later. As a result, the information about the widget

)

\
J

1)·"\
,.J

G

(

/
I
_

u

4.2.4.3

4.2.4.4

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

that VAXTPU gets from the callback may not match the information
returned by the built-in GET_INFO (widget_variable, "widget_info").

When VAXTPU processes the callback packet, it executes the program or
learn sequence that was associated with the widget, using the CREATE_
WIDGET built-in or the SET (WIDGET_CALLBACK) built-in. This
program or learn sequence controls what the application does in response
to the callback information passed by the VAX.TPU callback routines. An
application's callback routines are referred to as "application-level callback
action routines."

The following subsections present information on internally-defined
VAX.TPU callback routines first, and then present information on
application-level callback action routines.

Using Internally-Defined VAXTPU Callback Routines with UIL
VAX.TPU declares the internally-defined callback routines to the X
Resources Manager {XRM) to handle incoming callbacks and dispatch
them to the layered application:

• TPU$WIDGET_INTEGER_CALLBACK- Use this routine as the
callback routine for all callbacks that have an integer closure.

• TPU$WIDGET_STRING_CALLBACK- Use this routine as the
callback routine for all callbacks that have a string closure.

Note that although DECwindows allows you to specify a different callback
routine for each reason that a widget can call back, DECwindows VAX.TPU
does not support this capability. Instead, it provides only the two callback
routines mentioned.

Use these callback routines only if you are specifying a widget's callback
resources in a User Interface Language (VIL) file. When a widget is part
of a X Resource Manager hierarchy, do not include callback resource names
or values in the array you pass to SET (WIDGET). Instead, specify one of
the two internally defined callback routines in the VIL file.

Using Internally-Defined VAXTPU Callback Routines with Widgets Not
Defined by UIL
Although the SET (WIDGET) built-in allows you to specify values for
various resources of a widget, there are restrictions on specifying values
for callback resources of widgets. When a widget is not part of an XVI
Resource Manager hierarchy, use the names of the callback resources in
the array you pass to SET (WIDGET), and specify O as the value of each
such callback resource. VAX.TPU automatically substitutes its common
callback entry point for the O value. Note that a widget calls back only for
those reasons specified in the widget's argument list. If a reason is omitted
from the list, the corresponding event does not cause a callback.

4-9

4.2.5

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.4.5

4.2.4.6

Using Application-Level Callback Action Routines·
When VAXTPU receives a widget callback, it identifies and executes the
layered application procedure or learn sequence that has been designated
as the callback action routine. You can designate a procedure or learn
sequence as a callback action routine either when the widget is created,
using the built-in CREATE_ WIDGET, or at some later time, using the
built-in SET (WIDGET_CALLBACK). Note that when you specify an
application-level callback program or learn sequence with CREATE_
WIDGET or SET (WIDGET_CALLBACK), all widgets in the same X
Resource Manager hierarchy have the same callback program or learn
sequence. Therefore, the callback program or learn sequence must have a
mechanism for handling all possible callback reasons.

Callable Interface-Level Callback Routines
If you are layering an application on VAXTPU or on EVE, you specify
callable interface-level callback routines only if you are specifying a
widget's callback resources in a User Interface Language (UIL) file.

Callbacks can pass values known as closures, which are strings or
integers whose function depends on the application you are writing.
Note that DECwindows documentation refers to closures as tags. For
more information about what closures are and how to use them, see
Section 4.2.5.

You use the VAXTPU callable interface routine TPU$WIDGET_INTEGER_
CALLBACK as the callback routine for all callbacks that have an integer
closure and the VAXTPU routine TPU$WIDGET_STRING_CALLBACK for
all callbacks that have a string closure.

Although the SET (WIDGET) built-in.allows you to specify values for
various resources of a widget, there are restrictions on specifying values
for callback resources of widgets. When a widget is part of a XUI Resource
Manager hierarchy, do not include callback resource names or values in
the array you pass to SET (WIDGET). Instead, specify the callback routine
in the UIL file. When a widget is not part of an X Resource Manager
hierarchy, use the names of the callback resources in the array you pass to
SET (WIDGET), and specify O as the value of each such callback resource.
VAXTPU automaticalJy substitutes its common callback entry point for
the O value. Note that a widget calls back only for those reasons specified
in the widget's argument list. If a reason is omitted from the list, the
corresponding event does not cause a callback.

Using Closures in DECwindows VAXTPU

4-10

DECwindows allows you to specify a closure value for a widget. Note that
DECwindows documentation refers to closures as tags. DECwindows
does not define what a closure value is; a closure is simply a value that
DECwindows understands how to recognize and manipulate so that a
DECwindows application programmer can use the value if needed in the
application. For general information about using closures in DECwindows,
see the VMS DECwindows Guide to Application Programming.

)

(

I'
I

_

4.2.6

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

When a widget calls back to the DECwindows application, the callback
parameters include the closure value assigned to the widget. DECwindows
allows the application to define the significance and possible values of the
closure.

VAXTPU supports closure values of type string and integer. Closure
values are optional for widgets used by applications layered on VAXTPU.
If you do not specify a closure value, the built-in GET_INFO (WIDGET,
"callback_parameterf, array) returns unspecified in the "closure" array
element. If you cr~ate a widget without using a UIL file, the built-in
GET_INFO (WIDGET, "callback_parameters", array) returns the closure
you specified as a parameter to CREATE_ WIDGET. If you create a widget
using a UIL file, the built-in GET_INFO (WIDGET, "callback_parameters",
array) returns the closure value (if any) defined in the XUI Resource
Manager. If none is defined, the built-in returns unspecified.

VAXTPU leaves it to the layered application to use the closure in any
way the application programmer wishes. VAXTPU passes through to the
application any closure value received as part of a callback.

DECwindows EVE provides an example of how an application can use
closure values. DECwindows EVE assigns a unique closure value to every
widget instance that can be created during an EVE editing session. Each
closure value corresponds to something that EVE must do in response to
the activation of that particular widget. When an event causes VAXTPU to
execute EVE's main callback program, the built-in GET_INFO (WIDGET,
"callback_parameters", array) returns the widget activated, the reason
code (the reason the widget is calling back), and the closure associated
with the particular widget instance. EVE's main callback program
contains an array that is indexed with values identical to the widget
closure values. Each array element contains a pointer to the EVE code
to be executed in response to the corresponding widget's callback. EVE's
callback program uses the closure value to locate the appropriate array
index so the correct EVE routine can be executed in response to the
callback.

If your layered application does not use EVE's callback program, then
its callback program or learn sequence must have a mechanism for
determining which widget is calling back and which application code
should be executed as a result.

Specifying Values for Widget Resources in DECwindows VAXTPU

4.2.6.1

This section discusses techniques for specifying values for widget
resources.

VAXTPU Data Types for Specifying Resource Values
VAXTPU supports the following data types with which to specify values
for widget resources:

• String

• Array of strings

• Integer

4-11

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.6.2

4-12

VAXTPU converts the value you specify into the data type appropriate
for the widget resource you are setting. The following table shows
the relationship between VAXTPU data types for widget resources and
DECwindows data types for widget resources:

Table 4-1 Correspondence Between VAXTPU Data Types and
DECwindows Argument Data Types

DECwindows Argument Data Type

Array of strings

Boolean
Callback

Compound string
Compound string table

Dimension
Integer

Position

Short

String

Unsigned character

VAXTPU Data Type

. Array of strings

Integer
Integer (0)

String

Array of strings

Integer

Integer

Integer

Integer

String

Integer

VAXTPU does not support setting values for resources (such as pixmap,
color map, font, icon, and so on) whose data types are not listed in this
table.

When you pass an array specifying values for a widget's resources using
CREATE_ WIDGET or SET (WIDGET), VAXTPU verifies that each array
index is a string corresponding to a valid resource name for the specified
widget. VAXTPU also verifies that the data type ·of the value you specify
is valid for the specified resource.

Specifying a List as a Resource Value
List box and file selection widgets manipulate lists. For example, the file
selection widget manipulates a list of files. The widget resource that stores
such a list is specified to VAXTPU using an array.

To handle an array that passes a list to a widget, DECwindows must
know how many elements the array contains. For example, if you, the
application programmer, set the value of the "items" resource of a list box
widget to point to a given array, DECwindows does not handle the array
successfully unless the list box widget's "itemsCount" resource contains the
number of elements in the array.

However, you do not necessarily know how many elements the array has
at a given moment. To help you pass arrays, VAXTPU has a convention
for referring to widget resources. If you follow the convention, VAXTPU
will handle the resource that stores the number of array elements. The
following paragraphs discuss the naming convention in more detail.

_)

G

(U

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

When you use the VAXTPU built-in procedure SET (WIDGET) to pass
a list to a widget, specify both the list name and the list count resource
in the same array index, separated by a line feed (ASCII (10)). The
array element should be the array that is to be passed. For example, to
specify the "items" resource to the list box widget, use code similar to the
following:

line feed:= ASCII (10);
resource_array {"items"+ line feed+ "itemsCount"}:=list_array;

The line-feed character, ASCII (10), is a delimiter separating two resource
names.

VAXTPU automatically generates two resource entries. The first is the
array of strings specifying the data to the list box for the "items" resource.
The second is the count of elements in the array for the "itemsCount"
resource.

To get resource values from a widget, use the following statement:

GET_INFO (widget, "WIDGET_INFO", array)

The indices of the array parameter are strings or string constants naming
the resources whose values you want. (The initial values in the array are
unimportant.) The GET_INFO statement directs VAXTPU to fetch the
specified resource values of the specified widget and put the values in the
array.

For list box widgets or file selection widgets, one element of the array
receives another array containing the list manipulated by the widget. The
indices of this array are of type integer. The lowest index has the value 0,
and each subsequent index is incremented by 1. The contents of the array
elements are of type string.

When you create the index of the element that receives the widget's list,
you must observe the naming convention so that VAXTPU can handle both
the list itself and the resource value specifying the length of the list. Give
the index the following format:

items<line-feed>items count

For example, if you used GET_INFO (widget, "WIDGET_INFO", array) to
get resource values from a list box widget, you could specify the index for
the element storing the widget's list as follows:

"items" + A'.SCII (10) + "itemsCount"

Note that the element for the widget's list does not actbally contain an
array until after execution of the GET_INFO statement. When VAXTPU
encounters the GET_INFO statement, it parses the indices of the specified
array. When VAXTPU parses the index of the element for the widget's list,
it fetches both the list itself and the length of the list. Using the resource
specifying the length, VAXTPU creates an array of the correct size to hold
the widget's list.

See Section B.1 for sample uses of DECwindows VAXTPU built-ins.

4-13

"

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

•

4.3 Writing Code Compatible with DECwindows EVE

4.3.1

This section pro\-ides information useful for programmers who extend
DECwindows EVE or layer applications on DECwindows EVE. . . .

Screen Objects in Applications Layered on DECwindows VAXTPU
Figure 4-1 and its accompanying text show the nomenclature for the
screen objects· used in EVE and, optionally, in other applications layered
on VAXTPU.

Figure 4-1 Nomenclature of DECwlndows VAXTPU Screen Objects

4-14

•

• l<i i:>I
l=M@►iViiW•iti -■4flMMleh§llli·i•Wii·■ ••

ZK-0239A-GE

(

C

4.3.2

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

Key to Figure 4-1

1 Display-In VAXTPU, the term display refers to the physical display device on
which screen objects are visible.

2 Main window widget-This widget is created by VAXTPU, not by the layered
application. Although the main window widget is not visible as a separate entity,
it is the ancestor of all of EVE's visible widgets. The VAXTPU SCREEN keyword.
when used as a parameter to a widget-related built-in, refers to the main window
widget.

VAXTPU's main"window widget is associated with a DECwindows window. Both
DECwindows and VAXTPU have objects called "windows." VAXTPU windows
have much the same function as DECwindows windows, but VAXTPU windows
operate within a more limited scope.

A DECwindows window is a viewport enabling a DECwindows application to
make visible some text and graphics. For example, a DECwindows window can
be used as a viewport onto a widget. A DECwindows window is mapped to an
area on a physical display device. For more information about DECwindows
windows, see the VMS DECwindows Guide to Application Programming.

A VAXTPU window is a viewport onto a VAXTPU buffer. EVE windows always
have the same width as the VAXTPU screen. For more information about the
VAXTPU screen, see item 3 in this key. You can map a VAXTPU window only

· within an area of the physical display device occupied by a VAXTPU screen. For
more information about mapping VAXTPU windows, see Chapter 6.

3 VAXTPU screen-This widget is created by VAXTPU, not by the layered
application. When you use the SCREEN keyword as a parameter to a built-
in unrelated to widgets, the keyword refers to the VAXTPU screen. In non
DECwindows VAXTPU, the phrase "VAXTPU screen" means all the area visible
on the physical terminal screen.

4 litle bar-The title bar for EVE (or any other application layered on VAXTPU) is
created by DECwindows, not by VAXTPU or the layered application.

5 Menu bar-The EVE menu bar widget is created by EVE, not by VAXTPU. You
can optionally create a menu bar widget in any application layered on VAXTPU.
If you do so, make the menu bar widget a child of the VAXTPU main window
widget.

6 EVE user window-This window is created by EVE and is mapped to a buffer.
It is a VAXTPU window, not a widget. Other applications layered on VAXTPU
should create one or more user windows in which to display the results of the
user's actions.

7 EVE command window-This window is created by EVE. It is a VAXTPU window,
not a widget. Other applications layered on VAXTPU can optionally create a
command window.

8 EVE message window-This window is created by EVE. It is a VAXTPU window,
not a widget. Other applications layered on VAXTPU can optionally create a
message window.

Select Ranges in DECwindows EVE
This section is intended for programmers extending EVE or layering an
application on EVE.

4-15

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

4.3.2.1

4.3.2.2

4-16

EVE can use only one type of selection at a time. There are four possible
types of selection: dynamic selection, static selection, found range
selection, and DECwindows primary global selection. The ways in which
these selections differ are explained in the following sections.

·EVE has a routine called EVE$SELECTION that returns the current
se,lection, regardless of whether the selection is dynamic, static, or
formed from a found range. It is possible to use the VAXTPU built-
in SELECT_RANGE to obtain the current selection if the selection
is a dynamic selection. However, Digital recommends that you use
EVE$SELECTION to obtain the current selection, because this routine
returns the current selection regardless of how it was created. To see how
the EVE$SELECTION routine works and what parameters it takes, you
can find the code for this routine in SYS$EXAMPLES:EVE$CORE.TPU.

Dynamic Selection
When you press the Select key or invoke the EVE command SELECT, EVE
creates a dynamic selection. A dynamic selection expands and contracts
as you move the text cursor. Moving the text cursor away from the text
already selected does not cancel the selection. If you use the mouse to
start a selection while a dynamic selection is active, the dynamic selection
is canceled.

If EVE's current selection is a dynamic selection, the routine
EVE$SELECTION returns the selected range and terminates the
selection. If, for some reason, you want to use a statement that returns
the current dynamic selection but does not terminate it, you can use a
statement whose format is similar to the following:

rl := EVE$SELECTION (TRUE, TRUE, TRUE, TRUE, FALSE)

The last parameter directs EVE$SELECTION not to terminate the
selection. For more information on how to use these parameters, see
the EVE$SELECTION routine in SYS$EXAMPLES:EVE$CORE.TPU.

Static Selection
EVE creates a static selection if you do any of the following:

• Click the MBl mouse button two or more times to select a word, line,
- paragraph, or buffer

• Use the EVE command SELECT ALL

• Press the MBl mouse button, drag the mouse across text, and then
release the mouse button

• Use the MBl mouse button with the SHIFT key to extend a selection

EVE implements a static selection by creating a range upen which you can
perform EVE commands such as STORE TEXT or REMOVE. However,
EVE does not start this range using the VAXTPU built-in SELECT. Thus,
if you use the SELECT_RANGE built-in while a static selection is active,
VAXTPU returns the message "No select active."

If you move the text cursor off the text in the static selection, the selection
is canceled.

_)

u

(

4.4

(

4.3.2.3

4.3.2.4

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

Found Range Selection
When EVE positions to the beginning of a range as the result of the FIND
command, WILDCARD FIND command, or pressing the FIND key, EVE
creates a found range containing the text EVE found as a match for your
search string. If no dynamic selection is active, EVE treats the found
range as the current selection.

EVE implements a found range selection by creating a range upon which
you can perform EVE commands such as STORE TEXT or REMOVE.
However, EVE does not start this range using the VAXTPU built-in
SELECT. Thus, if you use the SELECT_RANGE built-in while a found
range selection is active, VAXTPU returns the message "No select active."

If you move the text cursor off the text in the found range selection, the
selection is canceled.

Relation of EVE Selection to DECwindows Global Selection
If EVE has a dynamic selection or a static selection active, that selection
is automatically designated as the primary global selection. A found range
selection is not designated as the primary global selection.

You can use the routine EVE$SELECTION to obtain the text of the
primary global selection when an application other than VAXTPU owns
the selection. To do so, the call to EVE$SELECTION must be in code
bound to a mouse button other than MBl. The value returned is a string

. containing the text of the primary global selection.

Compiling VAXTPU Programs
Before compiling programs in VAXTPU, you shoul<f enable the display
of informational messages to help you locate errors. EVE automatically
enables the display of informational messages for you when you use
the EVE command EXTEND EVE. For more information on displaying
messages, see the description of the SET (INFORMATIONAL) built-in in
the VAXTPU Reference Section.

The VAXTPU compiler numbers the lines of code it compiles. The
line numbers begin with 1. For a string, all VAXTPU statements are
considered to be on line 1. For a range, line 1 is the first line of the range,
regardless of where in the buffer the range begins. Buffers are numbered
starting at the first line. When a compilation error occurs, VAXTPU tells
you the approximate line number where the error occurred. To move to the
line at which the error occurred, position to the top of the buffer containing
the program, and then enter the following VAXTPU statement after the
appropriate prompt:

MOVE_VERTICAL (error_line_number -1)

·In EVE, instead of entering the preceding VAXTPU statement, you can
use the LINE command. For example, the command LINE 42 moves the
editing point and the cursor to line 42.

To see VAXTPU messages while in EVE, use the EVE command BUFFER
MESSAGES. To return to the original buffer or another buffer of your
choice, use the EVE command BUFFER name_of_buffer.

4-17

4.4.1

4.4.2

VAXTPU Program Development
4.4 Compiling VAXTPU Programs

There are two ways to compile a program in VAXTPU: on the command
line of EVE or in a VAXTPU buffer. ·

Compiling on the EVE Command Line -
You can compile a simple VAXTPU program merely by entering it on the
EVE command line. For example, if you use the EVE command TPU and
then enter the statement SHOW (SUMMARY), VAXTPU compiles and
executes the program associated with the SHOW (SUMMARY) statement.

Compiling in a VAXTPU Buffer
VAXTPU programs are usually compiled by entering VAXTPU procedures
and statements in a buffer and then compiling the buffer. If you are
using EVE, you can enter the statement SHOW (VARIABLES) in a buffer
and compile the buffer by using EVE's command TPU and entering the
following statement after the prompt:

VAXTPU Statement: COMPILE (CURRENT_BUFFER);

The program associated with SHOW (VARIABLES) is not executed until
you enter the following statement:

VAXTPU Statement: EXECUTE (CURRENT_BUFFER);

Note that if you use a buffer, a range, or a string as the parameter for the
built-in procedure EXECUTE, VAXTPU first compiles and then executes
the buffer, range, or string. See the description of EXECUTE in the
VAXTPU Reference Section.

The built-in procedure COMPILE optionally returns a program data
type. If you want to use the program that you are compiling later in your
session, you can assign the program that is returned to a variable. The ')
following example shows how to make this assignment: ,

new_program := COMPILE (CURRENT_BUFFER);

If no error messages are issued while you compile the current buffer, you
can then execute the·program new_program with the following statement:

EXECUTE (new_program);

You can use the built-in procedure COMPILE to compile certain parts of
a buffer rather than a whole buffer. To do so, create a range that includes
the statements within the buffer that you want compiled, and then specify
the range as the parameter for COMPILE.

4.5 Executing VAXTPU Programs
You can use programs that are already compiled as parameters for the r-') .. _
built-in procedure EXECUTE. In addition, you can use buffers, ranges,
or strings that contain executable VAXTPU statements as parameters for · J
the built-in procedure EXECUTE. VAXTPU compiles the contents of the

4-18

(

4.5.1

(
I

u

VAXTPU Program Development
4.5 Executing VAXTPU Programs

buffer, range, or string if necessary; then VAXTPU executes the compiled
buffer, range, or string.

Suppose you created a program called new_program by using the following
statement after using the EVE command TPU:

VAXTPU Statement: new_program := COMPILE (CURRENT_BUFFER);

You could then execute new _program by using the following statement
after using the EVE command TPU:

VAXTPU Statement:·EXECUTE (new_program);

Note, however, that you could also compile and execute the statements in
the current buffer by using the following VAXTPU statement after using
the EVE command TPU:

VAXTPU Statement: EXECUTE (CURRENT_BUFFER);

Small VAXTPU programs can be entered, compiled, and executed on the
command line of EVE. The following example shows a small program that
you can enter after the prompt VAXTPU Statement:

VAXTPU Statement: SET (TIMER, ON, "Executing");

The preceding command executes the program associated with the
VAXTPU built-in procedure SET (TIMER) and causes the string
"Executing" to be displayed at 1-second intervals when a long procedure is
executing. The string is displayed in the last 15 spaces of the prompt area
at 1-second intervals.

Interrupting Execution with CTRL/C
Pressing CTRUC causes VAXTPU to stop the execution of a user-written
program. You can also stop the execution of the following VAXTPU built-in
procedures with CTRUC:

• LEARN_BEGIN ... LEARN_END (Execution of a learn sequence)

• READ_FILE

• SEARCH

• WRITE_FILE

Caution: Because VAXTPU does not journal CTRUC, using CTRUC.may
affect the accuracy of your journal file. In addition, CTRUC
prevents completion of some built-in procedures, such as ERASE_
RANGE, MOVE_TEXT, and FILL. VAXTPU's behavior after such an
interruption is unpredictable. Digital recommends that you exit
from the editor after pressing CTRUC to ensure that you do not
lose any work because of an inaccurate journal file.

For more information on the effects of pressing CTRUC, see Section 3.8.4. 7
and Section 3.8.4.7.2.

4-19

4.5.2

4.6

VAXTPU Program Development
4.5 Executing VAXTPU Programs

Procedure Execution
If you include procedure declarations as part of a program, the procedure
is compiled and the procedure name is added to the VAXTPU list of
procedures when you execute the program. Invoke the procedure in one of
the following ways:

• Enter the name of the compiled procedure after the
VAXTPU Statement: prompt from EVE.

• Call the procedure from within a program or another procedure.

VAXTPU Startup Files

4-20

This section discusses VAXTPU startup files. Startup files are files that ✓-
VAXTPU reads, compiles, and executes during its initialization sequence.

There are three types of VAXTPU startup files:

• Section files

• Command files

• Initialization files

Section Files

A section file is the compiled, binary form of a file containing VAXTPU
source code. To direct VAXTPU to execute a section file, either use the
/SECTION qualifier to the EDIT/TPU command or allow VAXTPU to
execute the default section file. For more information on the /SECTION
qualifier, see Chapter 5.

The default section file is TPU$SECTION. When VAXTPU tries to locate
the section file, VAXTPU supplies a default directory of SYS$SHARE and
a default file type of TPU$SECTION. VMS defines the systemwide logical
name TPU$SECTION as EVE$SECTION, so the default section file is the /
file implementing the EVE editor. To override the VMS default, redefine
TPU$SECTION.

Command Files

A command file contains a series of VAXTPU procedures, followed by
a sequence of VAXTPU statements. To direct VAXTPU to compile and
execute a command file, either use the /CO:M:MAND qualifier to the
EDIT/TPU command or allow VAXTPU to compile and execute the default
command file. For more information on the /CO:M:MAND qualifier, see
Chapter 5.

The default command file is TPU$CO:M:MAND. When VAXTPU tries to
locate the command file, it supplies a default file type of TPU. To direct
VAXTPU to compile and execute a particular command file, define the
logical name TPU$COMMAND to be the file you want VAXTPU to use. n,

(U
4.6.1

(

Initialization Files

VAXTPU Program Development
4.6 VAXTPU Startup Files

An initialization file contains commands to be executed by an application
layered on VAXTPU. To specify an initialization file to be executed, use
the /INITIALIZATION qualifier to the EDITtrPU command. For more
information on the /INITIALIZATION qualifier, see Chapter 5.

VAXTPU does not determine the default handling of an initialization file.
Likewise, VAXTPU does not directly load or execute the commands in an
initialization.file. The application layered on VAXTPU must determine the
defaults and must handle the loading and execution of an initialization
file. For example, EVE reads an initialization file (if one is present) and
interprets the initialization commands when it processes the procedure
TPU$INIT_POSTPROCEDURE. Any key definitions in an initialization
file override corresponding key definitions saved in a section file and key
definitions in a command file.

Typically, you use EVE initialization files to set values that are not usually
saved in a section file, such as margins, tab stops, and bound or free
cursor. For a list of the EVE default values that you might want to modify
by using an EVE initialization file, see the EVE Reference Manual.

Sequence in Which VAXTPU Processes Startup Files
When you invoke VAXTPU, by default VAXTPU reads, compiles, and
executes several files. The sequence in which VAXTPU performs these
tasks is as follows:

1 VAXTPU loads into memory the specified or default section file unless
the user specified /NOSECTION on the DCL command line.

2 VAXTPU reads the specified or default command file into a buffer
named $LOCAL$INI$ unless the user specified /NOCOMJv.IAND on the
DCL command line.

3 If the user specified /DEBUG on the DCL command line, VAXTPU
reads the specified or default debugger :file into a buffer named
$DEBUG$INI$. A debugger file contains VAXTPU procedures and
statements to help debug VAXTPU code. For more information on the
default VAXTPU debugger, see Section 4.7.

4 If the buffer named $DEBUG$INI$ containing debugger code is
present, VAXTPU compiles the buffer and executes the resulting
program.

5 VAXTPU calls and executes the procedure named
TPU$INIT_PROCEDURE if the procedure is present in the section
file.

6 If the command file was read into the buffer named $LOCAL$INI$,
VAXTPU compiles that buffer and executes the resulting program.

7 VAXTPU calls and executes the procedure named
TPU$INIT_POSTPROCEDURE if the layered application has defined
this procedure in the section file.

4.6.2

VAXTPU Program Development
4.6 VAXTPU Startup Files

Section Files

4.6.2.1

4-22

If a layered application makes use of an initialization file, it is the
responsibility of the application to define when the initialization
file is processed. EVE processes initialization files during the
TPU$INIT_POSTPROCEDURE phase.

A section file is the binary form of a program implementing a VAXTPU
based editor or application. It is a collection of compiled VAXTPU
procedure definitions, variable definitions, and key bindings. The
advantage of using a binary file is that the source code does not have
to be compiled each time you invoke the editor or application, so startup
performance is improved.

Creating and Processing a New Section File
To create a section file, begin by writing a program in the VAXTPU
language. The program must adhere to all the programming conventions
discussed throughout this manual. For examples of programs used to
create a section file, see the files in the directory SYS$EXAMPLES .. This
directory contains the sources used to create the EVE section file. To see a
list of the EVE source files, type the following at the DCL prompt:

$ DIR SYS$EXAMPLES:EVE$*.TPU

If you cannot find these files on your system, see your system manager.

When writing the VAXTPU program implementing your application,
place your initializing statements in a procedure named
TPU$INIT_PROCEDURE. Such statements might create buffers, create
windows, associate windows with buffers, set up screen attributes,
initialize variables, define how the journal facility works, and so on.
You can put the procedure TPU$INIT_PROCEDURE anywhere in the
procedure declaration portion of your program. VAXTPU executes
TPU$INIT_PROCEDURE before loading and executing the command
file (if there is one). For more information on VAXTPU's initialization
sequence, see Section 4.6.1.

Place any statements implementing or handling initialization files in a
procedure named TPU$INIT_POSTPROCEDURE. VAXTPU executes this
procedure after both the TPU$INIT_PROCEDURE and the command
file have been executed. This allows commands or definitions in the
initialization file to modify commands or definitions in the command
file. EVE defines both TPU$INIT_PROCEDURE and TPU$INIT_
POSTPROCEDURE procedures. For more information on EVE's
implementation of initialization files, see Section 4.6.4.

After you put the desired VAXTPU procedures and statements into the
program implementing your application, end your program with the
following statements:

• A statement containing the built-in procedure SAVE. SAVE is the
mechanism by which you store all currently de~ed procedures,
variables, and bound keys in binary form. For more information on
SAVE, see the description of this built-in in the VAXTPU Reference
Section.

)

(

(U 4.6.2.2

(

VAXTPU Program Development
4.6 VAXTPU Startup Files

• The built-in procedure QUIT. QUIT ends the VAXTPU session. For
more information on QUIT, see the description of this built-in in the
VAXTPU Reference Section. -

For examples of files using these statements, see Example 4-4 and
Example 4-5.

To compile your program into a section file, invoke VAXTPU but do
not supply as a parameter the name of a file to be edited. Use the
/NOSECTION qualifier to indicate that no existing section file should
be loaded. Use the 1COMMAND qualifier to specify the file containing
your program. For example, to create a section file from a program in a
file called MY_APPLICATION.TPU, you would enter the following at the
DCL prompt:

$ EDIT/TPU/NOSECTION/COMMAND=my_apprication.TPU

This command causes VAXTPU to write the binary form of the file MY_
APPLICATION.TPU to the file you specified as the parameter to the
SAVE statement in your program. To use the section file, invoke VAXTPU
specifying your section file.

For more information on invoking VAXTPU and using the qualifiers to the
EDIT!TPU command, see Chapter 5.

Extending an Existing Section File
To extend an existing section file, begin by writing a program in the
VAXTPU language.

If you m-e extending the EVE section file, put your initializing
statements in an initialization procedure called TPU$LOCAL_INIT.
TPU$LOCAL_INIT is an empty procedure in the EVE section file. When
you add your VAXTPU statements and procedures to the EVE section
file, your procedure named TPU$LOCAL_INIT supersedes EVE's original
empty value of TPU$LOCAL_INIT. TPU$LOCAL_INIT is called at the
end of the procedure TPU$INIT_PROCEDURE during the initialization
sequence. For more information on the initialization sequence, see
Section 4.6.1.

If you are extending a non-EVE section file, you must determine
whether that section file has implement~d the convention of including
a TPU$LOCAL_INIT procedure.

After adding VAXTPU procedures and statements implementing your
application, end your program with the following statements:

• A statement containing the built~in procedure SAVE. SAVE is the
mechanism by which you store all currently defined procedures,
variables, and bound keys in binary form. For more information on
SAVE, see the description of this built-in in the VAXTPU Reference
Section.

• The built-in procedure QUIT. QUIT ends t..he VAXTPU session. For
more information on QUIT, see the description of this built-in in the
VAXTPU Reference Section.

4-23

VAXTPU Program Development
4.6 VAXTPU Startup Files

4.6.2.3

4-24

For examples of files using these statements, see Example 4-4 and
Example 4-5.

Example 4-4 shows the syntax of a program that could be used to create a
section file:

Example 4-4 Sample Program for a Section File

PROCEDURE tpu$local_init

ENDPROCEDURE;

PROCEDURE vtl00_keys_

ENDPROCEDURE;

vtl00_keys; !Call the procedure that defines the keys

SAVE ("sys$login:vtl00ini");

QUIT;

To add your program to an existing secti9n file, invoke VAXTPU but do not
supply as a parameter the name of a file to be edited. Use the /SECTION
qualifier to specify the section file to which you want to add your program.
Use the /COMMAND qualifier to specify the file containing your program.
For example, to add a program called MY_CUSTOMIZATIONS.TPU to the
EVE section file, you would enter the following at the DCL p'rompt:

$ EDIT/TPU/SECTION=EVE$SECTION/COMMAND=my_customizations.TPU

This command causes VAXTPU to load the EVE section file and then read,
compile, and execute the command file you specify. A new section file is
created. The new file includes both the EVE section file and the binary
form of your program. The section file is written to the file you specified as
the parameter to the SAVE statement in your program. To use the section
file, invoke VAXTPU specifying your section file.

For more information on invoking VAXTPU and using the qualifiers to the
EDIT/TPU command, see Chapter 5.

For more information on extending the EVE section file, see the Guide to
VMS Text Processing.

A Sample Section File
If you choose to design an application layered on VAXTPU and not layered
on EVE, you must provide certain basic structures and key definitions to
be able to use the VAXTPU compiler and interpreter. Example 4-5 is a
sample of the source code that creates a minimal interface. It provides the
following basic structures:

• A buffer and a window for VAXTPU messages

• A buffer and a window for information from the built-in procedure
SHOW

• A buffer and a window in which to enter VAXTPU programs or text

VAXTPU Program Development
4.6 VAXTPU Startup Flies

• A prompt area in which to enter VAXTPU commands

Because VAXTPU does not have any keys defined when invoked without a
section file, the sample program also contains the following key definitions:

• The RETURN key

• The DELETE key

• Key for exiting from VAXTPU

• Key for entering VAXTPU statements. Example 4-5 uses the Tab key.

By default, VAXTPU looks for TPU$INIT_PROCEDURE, so the
statements that create the structures for a minimal interface are contained
in TPU$INIT_PROCEDURE. Individual statements that define keys come
after any procedures in the file.

If you entered the text from Example 4-5 into a file named MINI.TPU
and you wanted to compile that file into a section file, you would enter the
following command at the DCL level:

$ ED~T/TPU/NOSECTION/COMMAND=mini.TPU

When you enter this command, the qualifier /NOSECTION specifies that
no section file is to be read. (This ensures that none of the procedures
or variables from an existing section file are loaded into the internal
VAXTPU tables.) The qualifier /CO:MMAND specifies that the command
file MINI.TPU is to be compiled by VAXTPU. The built-in procedure
SAVE at the end of the command file specifies that all of the procedures,
variables, and key definitions in the file are to be saved in binary form in
the file SYS$LOGIN:MINI.TPU$SECTION. The built-in procedure QUIT
then causes you to leave VAXTPU.

If you created the section file SYS$LOGIN:MINI.TPU$SECTION, you
could use the procedures and definitions in that file as an interface to
VAXTPU. 'lb invoke VAXTPU with the MINI section file, you would type
the following command at the DCL prompt. This command specifies the
file YOUR_TEXT.FIL as the file to be edited:

$ EDIT/TPU/SECTION=sys$login:mini your_text.fil

Rather than enter this long command each time you invoke VAXTPU,
define the logical name TPU$SECTION to point to your section file. By
default, VAXTPU looks for a file that TPU$SECTION points to, and reads
that file as the default section file.

Whenever you want to add new procedures, variables, learn sequences,
or key definitions to a section file, edit the command file to include the
new items, and then recompile the command file to produce a section file
with the new items. For example, if you want to add key definitions for
the arrow keys, you could edit the file MINI.TPU and add the following
statements after any procedures in the file:

4-25

VAXTPU Program Development
4.6 VAXTPU Startup Files ,~

4-26

Example 4-5 Source Code for Minimal Interface

! mini.TPU - minimal VAXTPU interface

PROCEDURE tpu$init_procedure

Create a buffer and window for messages

message_buffer := CREATE_BUFFER {"Message Buffer");
SET {NO_WRITE, message_buffer);
SET (SYSTEM, message_buffer);
SET (EOB TEXT, message buffer, "");
message window := CREATE WINDOW (21, 4, OFF);
MAP (message_window, message_buffer);

Create a buffer and window for SHOW

show_buffer := CREATE_BUFFER{"Show Buffer");
SET {NO_WRITE, show_buffer);
SET {SYSTEM, show buffer);
info window:= CREATE WINDOW (1, 20, ON);

Create a buffer and window for editing

main buffer := CREATE BUFFER {"Main Buffer");
main-window := CREATE-WINDOW (1, 20, ON);
MAP (main_window, miin_buffer);

Create an area on the screen for prompts

SET (PROMPT_AREA, 21, 1, NONE);

!Put ~he editing point in the main buffer

POSITION {main_buffer);
- tpu$local_init;

ENDPROCEDURE;

PROCEDURE tpu$local init

ENDPROCEDURE;

!Procedure to allow end users
!to add private extensions

Define the minimal editing keys:

DEFINE KEY ("SPLIT_LINE", RET KEY);
DEFINE KEY ("ERASE_CHARACTER(-1)", DEL_KEY);
DEFINE KEY {"EXECUTE(READ_LINE('VAXTPU Statement: '))", TAB_KEY);
DEFINE KEY ("EXIT", CTRL_Z_KEY);

Create a section file and then quit

SAVE ("sys$login:mini");
QUIT;

! End of mini.TPU

DEFINE KEY
DEFINE KEY
DEFINE KEY
DEFINE KEY

("MOVE_VERTICAL (-1)", UP);
("MOVE_VERTICAL (l)", DOWN);
{"MOVE_HORIZONTAL (1) ", RIGHT);
("MOVE_HORIZONTAL (-1) ", LEFT);

Then you would recompile the command :file with the following command:

$ EDIT/TPU/NOSECTION/COMMAND=mini.TPU

After completing these steps, when you invoke VAXTPU with the section
file MINI.TPU$SECTION the new key definitions would be included.

4.6.2.4

4.6.2.4.1

i(_;

VAXTPu· Program Development
4.6 VAXTPU Startup Files

An alternate way ~f adding these key definitions to your section file is to
enter the definitions as text in the current buffer. You could then press the
Tab key (the command prompt key for the minimal interface) and enter
the following command after the prompt:

VAXTPU Statement: EXECUTE (CURRENT_BUFFER);

This causes the new key definitions to be added to your current editing
context. To add the definitions to the section file so you can use them in
future sessions, enter the following statement after the command prompt:

Command: SAVE ("sys$login:mini");

If you want to save the VAXTPU source code for the key definitions, write
out the current buffer or use the built-in procedure EXIT to leave the
VAXTPU session so that the contents of the buffer are written to a file.

Recommended Conventions for Section Files
A section file implementing a layered application should include the
following procedures:

• TPU$INIT_PROCEDURE

• TPU$LOCAL_INIT .

If your application is to support initialization files, the section file
implementing the application should also include a procedure called
TPU$INIT_POSTPROCEDURE. This procedure should contain the
VAXTPU statements implementing or handling the initialization files.

For information on EVE's implementation of initialization files, see
Section 4.6.4.

A section file implementing a layered application should assign values to
the following special variables:

• TPU$X_MESSAGE_BUFFER or MESSAGE_BUFFER

• TPU$X_SHOW _BUFFER or SHOW _BUFFER

• TPU$X_SHOW_WINDOW or INFO_WINDOW

If you write a section file extending the EVE section file, EVE provides
the procedures and variables mentioned above. If you choose to write
your own application, your application must contain these structures and
procedures.

These procedures and variables are discussed in more detail in the
following subsections.

TPU$1NIT _PROCEDURE
This procedure should perform the following operations:

• Initialize all global variables to their startup values.

• Create all required work spaces for the editor (see the list of special
purpose buffers and windows in the following section).

You can add other functions to TPU$INIT_PROCEDURE, but it should
perform at least these two operations.

4.6.3

VAXTPU Program Development
4.6 VAXTPU Startup Files

4.6.2.4.2

4.6.2.4.3

TPU$LOCAL_INIT
If your application allows the end user to customize the application using
a command file, you may want to make available to the user a procedure
called TPU$LOCAL_INIT. (Although this name is not required, it is
commonly used by VAXTPU programmers.)

In EVE, the code implementing the initialization sequence calls
TPU$LOCAL_INIT as the last step of the sequence. EVE defines this
procedure but leaves it empty. The user can use this procedure in
a command file to contain VAXTPU statements implementing private
initializations.

The code implementing TPU$LOCAL_INIT in EVE can be found in
SYS$EXAMPLES:EVE$CORE.TPU.

Special Variables
VAXTPU creates six variables (three pairs of synonyms) to be used by
layered applications. Although VAXTPU automatically declares the
variables, the application must assign a value to one of the synonyms
in each pair.

Table 4-2 shows the names and uses of these variables.

Table 4-2 Special VAXTPU Variables Requiring a Value from a Layered Application

Recommended Name

Synonym Provided
For Backward
Com pati bllity

Structure to
Assign to the
Variable How VAXTPU Uses the Variable

TPU$X_MESSAGE_BUFFER MESSAGE_BUFFER Buffer VAXTPU writes messages in this
buffer. if the MESSAGE_BUFFER
is associated with a window

TPU$X_SHOW_BUFFER

TPU$X_SHOW_WiNDOW

Command Files

4-28

SHOW_BUFFER

INFO_WiNDOW .

Buffer

Window

that is mapped to the screen,
VAXTPU updates the window. if
the application does not assign a
buffer to this variable, VAXTPU
writes messages to the screen.

VAXTPU writes information stored
by the SHOW built-in in this buffer.

VAXTPU displays information
stored by the SHOW built-in and
information from the HELP_ TEXT
built-in in this window.

If you want to use the built-in procedure SHOW in your application, you
must create these special variables that VAXTPU uses for SHOW.

This section provides an overview of how to use command files. For more
detailed information on the relationship between EVE command files and
section files, see the Guide to VMS 'lext Processing.

u

VAXTPU Program Development
4.6 VAXTPU Startup Files

A command file is a VAXTPU source file that can contain procedures, key
definitions, and other VAXTPU executable statements. You can have any
number of command files in your directory. You might want to write one
command file that customizes your editor for programming in PASCAL,
another command file that customizes your editor for text editing, and so
on. If you have several command files, give them names that remind you
of their contents. If you have one command file that you use most of the
time, name it TPU$COMMAND.TPU.

The syntax to invoMl VAXTPU with a command file at the DCL command
level is as follows:

$ EDIT/TPU/COMMAND [= filespec]

If you name your command file TPU$COMMAND.TPU and it is in
your default directory, VAXTPU reads the file by default, without your
having to use /COMMAND. If you name your file something other than
TPU$COMMAND.TPU, or if you put it in a directory other than your
default directory, you must use the qualifier /COMMAND explicitly and
provide a full file specification after the qualifier.

VAXTPU reads a command file, compiles it, and execut~s any commands
that do not contain syntax errors. If there are errors, VAXTPU writes an
error message to the message area. The command file can customize or
extend the application implemented by the section file with which you
invoked VAXTPU.

Example 4-6 is a sample VAXTPU command file defining a procedure that
moves the editing point to the beginning of a segment of text delimited by
the characters %(I* at the beginning and *I)% at the end.

Example 4-6 Command File for Go to Text Marker

PROCEDURE goto_text_marker

LOCAL text_marker_pattern,
text_marker_range;

text_marker_pattern := '%(/*' + MATCH ('*/)%');
text marker range := SEARCH QUIETLY (text marker pattern,

- - GET_INFO (CURRENT_BUFFER, "direction"));
IF text_marker_range <> 0
THEN

POSITION (text_marker_range);
ELSE

MESSAGE ("Text_marker not found");
ENDIF;

RETURN text_marker_range;

ENDPROCEDURE;

If you name the file that contains this procedure TEXT_MARKERS.TPU,
you can invoke VAXTPU with EVE and your command file in the following
way:

$ EDIT/TPU/COMMAND=device: (user)text_rnarkers.tpu

4.6.4

VAXTPU Program Development
4.6 VAXTPU Startup Files

If you add procedures or statements to the command file TEXT_
MARKERS.TPU, place all procedures before any individual statements
that are not listed within a procedure (for example, key definitions to move
to the next text marker).

Remember to name your variables and procedures so they do not
conflict with VAXTPU reserved words and predefined identifiers. Digital
recommends that you prefix your variable and procedure names with three
let~ers (your initials, for example) followed by an underscore (_).

EVE Initialization Files
Any application layered on VAXTPU can support initialization files.)
This section describes EVE's implementation of initialization files. For _

4.6.4.1

4-30

more information on EVE initialization files, see the Guide to VMS Text
Processing.

EVE initialization files enable you to do the following:

• Use EVE commands in a startup file to customize editing sessions

• Set formats for individual buffers

EVE initialization files contain EVE commands that are executed either
when you invoke the editor or when you issue the EVE@ (at sign)
command.

To create an EVE initialization file, put in the file the EVE commands
you want to use to customize the editor. Use one command on each line
and one line for each command. Do not separate the commands with
semicolons. If a command in an EVE initialization file is incomplete,
EVE prompts you for more information, the same as if you were typing
the command during an editing session. Comments in EVE initialization
files must be on lines separate from commands and must begin with an
exclamation point (I). You cannot nest EVE initialization files. Do not use
the DO command in an EVE initialization file.

The following sample initialization file sets left and right margins,
establishes overstrike mode, binds the QUIT command to the GOLD/Q
key sequence, and enables an EDT-like keypad:

SET LEFT MARGIN 5
SET RIGHT MARGIN 60
OVERSTRIKE MODE
DEFINE KEY=gold/q QUIT
SET KEYPAD EDT

Using an EVE Initialization File at Startup _
You can cause an initialization file to be executed in any of the following
ways when you invoke EVE:

• Name the file EVE$INIT.EVE. This is the default file name for EVE
initialization files.

• Specify the name of the initialization file as a qualifier to EDITII'PU.

• Define a logical name, EVE$INIT, to point to your initialization file.

)

i
\

4.6.4.2

4.6.4.3

VAXTPU Program Development
4.6 VAXTPU Startup Files

The first method and third method are appropriate if you intend to use
one initialization file most of the time to customize your editing sessions.
If you name the file EVE$INIT.EVE and do not specify another EVE
initialization file on the command line, EVE automatically executes
EVE$INIT.EVE when you issue the EDITtrPU command.

Use the second method to control which initialization file EVE executes
to customize the editing session. For example, if you have an EVE$INIT
file but want to use another initialization file, specify the other file using
the /INITIALIZATION qualifier to EDITtrPU. To specify an initialization
file called MY_INIT.EVE, enter the following command string at the DCL
prompt:

$ EDIT/TPU/INITIALIZATION=my_init.eve

EVE always executes the initialization file specified on the command line,
if such a file is present. If no file is specified on the command line, EVE
searches for EVE$INIT.EVE first in the current directory and then in
SYS$LOGIN. If it finds EVE$INIT.EVE, the editor executes that file. If
the file is not found, the editor checks whether the logical name EVE$INIT
has been defined.

If you plan to create several initialization files and to use them equally,
you may not want to name one of the files EVE$INIT. For example, if you
want one initialization file to set narrow margins and another to set wide
margins, create both files and specify the file you want when you invoke
EVE.

Using an EVE Initialization File During an Editing Session
To execute an EVE initialization file during a editing session, use the @ (at
sign) command and specify the file. For example, the following command
executes an initialization file called MYEVE.EVE in your current (default)
directory.

Command: @my eve

Commands for buffer settings apply to the current buffer. This is
effectively the same as typing the commands that the file contains. You
may want to create initialization files to execute two or more related
commands, such as resetting both margins.

How an EVE Initialization File Affects Buffer Settings
Commands in an EVE initialization file that set buffer characteristics
(such as margins and tab stops) affect a system buffer named
$DEFAULTS$. Buffers created during the editing session have the same
settings as $DEFAULTS$. For example, if your initialization file contains
the command SET RIGHT MARGIN 65, the value 65 is used as the right
margin setting for the main buffer and for any buffers yo1,1 create during
the session with GET FILE or BUFFER commands.

To see. the settings for the $DEFAULTS$ buffer, use the EVE command
SHOW DEFAULTS BUFFER. For example, if you wanted to know what
the tab settings were for the $DEFAULTS$ buffer, you would type the
following command:

VAXTPU Program Development
4.6 VAXTPU Startup Files

Command: ·sHOW DEFAULTS BUFFER

This command causes EVE to show buffer information in a format similar
to the format in Example 4-7 (using values that apply to your editing
session):

Example 4-7 SHOW DEFAULTS BUFFER Display

Information about buffer $DEFAULTS$

Not modified
Mode: Insert
Direction: Forward
Max lines: No limit

Tab Stops set every 8 columns

Non-default right margin action

Left margin set to: 1
Right margin set to: 79

To change the characteristics of the $DEFAULTS$ buffer during an
editing session, use the command BUFFER $DEFAULTS$ to put the
defaults buffer in a window. This buffer is empty and you cannot add
text to it. However, when you change the settings of the $DEFAULTS$
buffer, the changes are saved and used to set the characteristics of any
user buffers you create. Use commands such as SET RIGHT MARGIN,
SET LEFT MARGIN, SET TABS, FORWARD, REVERSE, INSERT, or
OVERSTRIKE to change the characteristics of the $DEFAULTS$ buffer.
The new characteristics are applied to new buffers but not to existing ones.
To leave the $DEFAULTS$ buffer and put a different buffer in the window,
use the BUFFER command.

4.7 Debugging VAXTPU Programs

4.7.1

To debug VAXTPU programs, you can either write your own debugger in \
theTV.Pl-\XU$TDPEUBUlaGnguTPaUge Ror youdlcan ufse thhe V.dl-\Xb TPU debugger provided _)
in . . egar ess o w at e ugger you use, you may
also find it helpful to enable the display of error line numbers using
SET (LINE_NUMBER, ON) and to enable the display of procedures called
when an error occurs.using SET (TRACEBACK, ON).

If you write your own debugger, you can invoke it by using the /DEBUG
qualifier to the EDIT/I'PU command. For example, if you wanted to use
your own debugger, called MY_DEBUGGER.TPU, on a file called MIGHT_
BE_BUGGY.TPU, you would type the following at the DCL prompt:

$ EDIT/TPU/DEBUG=my_debugger.tpu might_be_buggy.tpu

Invoking the VAXTPU Debugger

4-32

You invoke the VAXTPU debugger to debug one of the following kinds of
files:

• Section files

• Command files

4.7.1.1

(

4.7.1.2

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

• Files containing VAXTPU programs that are not startup programs

The following subsections contain more information on debugging each
kind of file.

Section Files
To invoke the debugger for a section file, type the following at the DCL
prompt:

$ EDIT/TPU/DEBUG

The /DEBUG qualifier causes the VAXTPU initialization routine to execute·
the debugger file before the procedure TPU$INIT_PROCEDURE is run.

The debugger initially creates a window filling most of the screen. The
window consists of the following three areas:

• Source area - Displays your code when it has been placed in the
debugger source buffer.

• Output area - Displays one-line messages or one-line results of an
EXAMINE command.

• Debug command line - Displays the Debug: prompt.

When VAXTPU displays the debug window, you can set breakpoints in
the section file using the SET BREAKPOINT command. For example, if
you wanted to debug a procedure called USER_FUM, you would type the
following on the debugger command line:

Debug: SET BREAKPOINT user_furn

After setting breakpoints, use the GO command to switch control of
execution from the debugger to VAXTPU. After you have used this
command, the screen displays the code you specified.

Command Files
To invoke the debugger for use on a command file, invoke VAXTPU using
the /DEBUG, /COMMAND, and /NOSECTION qualifiers. For example, if
you wanted to debug a command :file called MY_COMMANDS.TPU, you
would type the following at the DCL prompt:

$ EDIT/TPU/NOSECTION/COMMAND=rny_cornrnands.tpu/DEBUG

VAXTPU compiles and executes the debugger and places the debug window
on the screen before compiling the command file. As a result, you must set
breakpoints in the command file before it has been compiled. When you
set breakpoints, VAXTPU notifies· you that you have specified breakpoints
at nonexistent procedures.

To continue with the debugging session, use the GO command. GO causes
VAXTPU to compile the contents of the command file. Recompiling a
procedure does not remove any breakpoints set in that procedure.

You cannot use the VAXTPU debugger on a file that does not contain
VAXTPU procedures. If your command file does not contain any
procedures, you must find a different method of debugging it.

4-33

4.7.2

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

4.7.1.3 Other VAXTPU Source Code
To debug a VAXTPU program that is not a section file or a command file,
use the /DEBUG qualifier when you invoke VAXTPU. For example, if you
want to debug procedures in a file called USER_APPLICATION.TPU, you
invoke the debugger as follows:

$ EDIT/TPU/DEBUG user_application.tpu

The debugger creates a window filling the screen as described in
Section 4.7.1.1.

Getting Started with the VAXTPU Debugger

4-34

This section describes using the default VAXTPU debugger with EVE.

If you know which parts of the code you want to debug, use the SET
BREAKPOINT command to set breakpoints. If you need to look at the
code before setting breakpoints, use the GO command as soon as the
debugger window appears. This places on the screen the code in the :file
you specified on the DCL command line. At this point, EVE commands are
available so you can manipulate the text. To return to the debugger so you
can set breakpoints, enter the command DEBUG at the EVE command
line. You can also gain access to the debugger with the VAXTPU procedure
called DEBUGON. To invoke this procedure from within EVE, type the
following at the EVE command prompt:

Command: TPU DEBUGON

When you use either DEBUG or DEBUGON, the screen displays the
debugger window and command line. After setting breakpoints, use the
GO command to return control of execution to VAXTPU.

To compile all code in the buffer, use the EVE command EXTEND ALL or
use the'VAXTPU statement COMPILE (CURRENT_BUFFER). To execute
a procedure after compilation, use the EVE command TPU. For example,
if you wanted to execute the compiled procedure USER_FUM, you would
type the following at the EVE command prompt:

Command: TPU user_fum

When VAXTPU encounters a breakpoint (or when you use the STEP
command described below), VAXTPU invokes the debugger program. As
the debugger assumes control, it receives from VAXTPU the name of the
procedure whose execution has been suspended. The debugger searches its
source buffer for that procedure.

When VAXTPU encounters the first breakpoint in the session, the code
you are debugging has not yet been placed in the debugger's source buffer.
The debugger prompts for the name of the file containing your code. Using
your response, the debugger places your code in its source buffer.

You cannot use the EVE command TPU followed by the VAXTPU built-in
MESSAGE to examine the contents of a local variable while debugging.
To examine a local variable using the MESSAGE built-in, you must write
the MESSAGE built-in into the procedure you are debugging. After
the statement containing MESSAGE is executed, you can examine the
message buffer to see the results. Alternatively, you can use the debugger

\
/

4.7.3

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

command EXAMINE to examine local variables and the formal parameters
of the suspended procedure.

VAXTPU Debugger Commands
Once you have set breakpoints, compiled code, and started execution, you
can use the following commands for debugging:

ATTACH process
.

Suspends the current editing session and transfers control to another
active process or subprocess. DCL process names are case sensitive.

CANCEL BREAKPOINT procedure-name

Cancels a breakpoint set with the SET BREAKPOINT command.

DEPOSIT variable := expression

Enables you to set the values of global variables, local variables, and
formal parameters.

DISPLAY SOURCE

Clears text from the screen after use of the HELP or SHOW
BREAKPOINTS command. Causes the source display area to display
your code. You can enter this command by pressing the key sequence
CTRLJZ when you are in the HELP or SHOW display.

EXAMINE variable

Displays the current contents of global and local variables, global
constants, formal parameters of the procedure that has been interrupted,
and variables local to that procedure. Local constants cannot be examined.

GO

Causes the debugger to relinquish control of execution until it is invoked
again by a breakpoint, by the DEBUG command, or by the DEBUGON
procedure. When VAXTPU takes over control of execution, VAXTPU
compiles and begins executing the contents of the file being debugged.

HELP

Lists available debugger commands and keypad bindings.

QUIT

Stops executi~n of the current procedure. Uses the ABORT statement to
return to the main loop of VAXTPU. This command is useful when you
have located a problem in a procedure and are ready to get out of the
procedure.

4-35

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

SCROLL [-] number-of-lines

Scrolls text in the source display area by the specified number of lines. To
scroll backward through the code in the display area, specify a negative
number of lines.

1'o scroll forward by one line less than the number of lines in the display
window, press the Next Screen key or the sequence GOLD/!. To scroll
backward in the same way, press the Prev Screen key or the sequence
GOLD/j.

SET BREAKPOINT procedure-name

Invokes the debugger when the specified procedure is entered.

SET WINDOW top, length

Places the top of the debugger window at the line number specified by the
top parameter. Extends the window down by the number of lines specified
by the length parameter. The default length is 7 lines. The minimum
valid length is 3 lines. The SET WINDOW command only changes the
size of the source display area. The output area and command line always
occupy exactly one line.

SHIFT[-] number-of-columns

Moves the source display window left or right across the source code to
display text wider than the screen.

To move left, you can press the key sequence GOLD/-, then enter
the number of columns to move. To move right, you can press the key
sequence GOLD/-+, then enter the number of columns to move.

SHOW BREAKPOINTS

List the current breakpoints in the debugger source window. To redisplay
code in the source window, use the DISPLAY SOURCE command. \

4-36

SPAWN subprocess

Suspends the current editing session and creates a subprocess.

STEP

Executes one line ofVAXTPU code, then returns control to the debugger.
If you have several VAXTPU statements on one line, all statements are
executed before control returns to the debugger.

TPU statement

Executes the VAXTPU statement you specify. You can enter more than one
statement using the TPU command just once.

_ _)

4.8 Error Handling

VAXTPU Program Development
4.8 Error Handling

Each VAXTPU built-in procedure returns one or more status codes telling
you what happened when the built-in was executed. A VAXTPU status
code can have one of the following severity levels:

• SUCCESS

• INFORMATIONAL

• WARNING

• ERROR

• FATAL

You can enable or disable the display of informational or success messages
with the built-ins SET (INFORMATIONAL) and SET (SUCCESS).

See Chapter 3 for a description of how to use the ON_ERROR language
statement to trap error and warning messages.

In addition to messages that are generated by VAXTPU, a built-in
procedure may return system messages. Appendix C contains an
alphabetized list of all the possible return codes for VAXTPU and their
severity levels. The VMS System Messages and Recovery Procedures
Reference Volume includes all the possible return codes for VAXTPU as
well as the appropriate explanations and suggested user actions. In
addition, each built-in procedure that can return a warning or error
message has the possible messages it can return listed in a section called
SIGNALED ERRORS in the individual built-in procedure description.

All built-in procedures can return the following messages:

• TPU$_SUCCESS-SUCCESS - The built-in executed successfully.

• TPU$_ARGMISMATCH-ERROR - Data type of argument is not
supported by built-in that is being called.

• TPU$_TOOFEW-ERROR-Not enough arguments were passed in
the built-in call.

• TPU$_TOOMANY-ERROR - Too many arguments were passed in
the built-in call.

4-37

,)

\) ' J '--~/

())
\ .. j

(

I

5 Invoking VAXTPU

5.1

The basic DCL command for invoking VAXTPU with EVE (the default
editor) is as follows:

$ EDIT/TPU

This chapter covers the more advanced uses of the EDITf.rPU command,
including the following:

• Understanding how to avoid fatal VAXTPU internal errors before using
EDIT/I'PU. See Section 5.1.

• Invoking VAXTPU from a DCL command procedure. See Section 5.2.

• Invoking VAXTPU from a batch job. See Section 5.3.

• Specifying qualifiers to the EDIT/I'PU command. See Section 5.4.

• Understanding how EVE uses the qualifiers that are not processed by
VAXTPU. See Section 5.5.

• Specifying a parameter to the EDITf.rPU command. See Section 5.6.

Avoiding Errors Related to Virtual Address Space
VAXTPU manipulates data in a process's virtual memory space. If the
space required by the VAXTPU images, data structures and files in
memory exceeds the virtual address space, VAXTPU may abort with a
fatal internal error. VAXTPU does not give any warning that you are
approaching the virtual address space limit for your process.

You can avoid this fatal internal error by increasing the virtual address
space available to a process. The virtual address space is controlled by the
following two factors:

• The SYSGEN parameter VIRTUALPAGECNT

• The page file quota of the account you are using

The VIRTUALPAGECNT parameter controls the number of virtual
pages that can be mapped for a process. For more information on
VIRTUALPAGECNT, see the description of this parameter in the VMS
System Generation Utility Manual.

The page file quota controls the number of pages in the system paging file
that can be allocated to your process. For more information on the page
file quota, see the description of the /PGFLQUOTA qualifier in the VMS
Authorize Utility Manual.

You may need to modify both the VIRTUALPAGECNT parameter and the
page file quota to enlarge the virtual address space.

Invoking VAXTPU
5.1 Avoiding Errors Related to Virtual Address Space

If VAXTPU exceeds the address space and generates the fatal error, you
can increase the virtual address space and then recover your work by
replaying the journal file.

5.2 Invoking VAXTPU from a DCL Command Procedure

5.2.1

There are two reasons that you might want to invoke VAXTPU from a
command procedure:

• To set up a special environment for interactive editing

• To execute a noninteractive, VAXTPU-based application

Setting Up a Special Editing Environment

5-2

You can run VAXTPU with a special editing environment by writing a
DCL command procedure that first establishes the environment that you
want, and then invokes VAXTPU. In such a command procedure, you must
define SYS$INPUT to have the same value as SYS$COMMAND, because
V AXTPU signals an error if SYS$INPUT is not defined as the terminal.
To prevent such an error, place the following statement in the command
procedure setting up the environment:

$ DEFINE/USER SYS$INPUT SYS$COMMAND

Example 5-1 shows a DCL command procedure that "remembers" the last
file that you were editing and uses it as the input file for VAXTPU. When
you edit a file, the file name you specify is saved in the DCL symbol last_
file_edited. If you do not specify a file name when you invoke the editor
the next time, the file name from the previous session is used.

Example 5-1 DCL Command Procedure FILENAME.COM

$ IF Pl .NES. "" THEN last_file_edited == Pl
$ WRITE SYS$0UTPUT "*** ''last file edited' ***"
$ DEFINE/USER SYS$INPUT SYS$COMMAND-
$ EDIT/TPU/COMMAND=DISK$: [USER]TPUINI.TPU 'last_file_edited

Example 5-2 establishes an environment that specifies tab stop settings
for FORTRAN programs.

-)

j

(
5.2.2

Invoking VAXTPU
5.2 Invoking VAXTPU from a DCL Command Procedure

Example 5-2 DCL Command Procedure FORTRAN_TS.COM

$ IF Pl .EQS. 1111 THEN GOTO REGULAR INVOKE
$ last file edited== Pl -
$ FTN_TEST;; F$FILE_ATTRIBUTES (last_file_edited,"RAT 11

)

$ IF FTN_TEST .NES. 11 FTN 11 THEN GOTO REGULAR_INVOKE
$ FTN INVOKE:
$ -DEFINE/USER SYS$INPUT SYS$COMMAND
$ EDIT/TPU/COMMAND=FTNTABS 'last_file_edited
$ GOTO TPU DONE
$ REGULAR INVOKE:
$ DEFINE/USER SYS$INPUT SYS$COMMAND
$ EDIT/TPU/ 'last_file_edited
$ TPU DONE:

Creating a Noninteractive Application
In some situations, you may want to put all of your editing commands in a
file and have them read from the file rather than entering the commands
interactively. You may also want VAXTPU to perform the edits without
displaying them on the screen. You can do this type of editing from a
batch job; or, if you want to see the results of the editing session displayed
on your screen, you can do this type of editing from a DCL command
procedure. Even though the edits are not displayed on your screen as they
are being made, your terminal is not free while the command procedure is
executing.

Example 5-3 shows a DCL command procedure named
INVISIBLE_TPU.COM containing a single command line that invokes
VAXTPU using the following qualifiers:

• /NOSECTION -This qualifier prevents VAXTPU from using a section
file. All procedures and key definitions must be specified in a command
file.

• /COMMAND=gsr.tpu - This qualifier specifies a command file
containing the code to be executed (GSR.TPU).

• /NODISPLAY -This qualifier suppresses screen display. No screen
management features (windows, cursor, and so on) are activated.

5-3

Invoking VAXTPU
5.2 Invoking VAXTPU from a DCL Command Procedure

Example 5-3 DCL Command Procedure INVISIBLE_ TPU.COM

This command procedure invokes VAXTPU without an editor.
The file GSR.TPU contains the edits to be made.
Specify the file to which you want the edits made as pl.

$ EDIT/TPU/NOSECTION/COMMAND=gsr.tpu/NODISPLAY 'pl'

The VAXTPU command file GSR.TPU, which is used as the file
specification for the qualifier /COMMAND, performs a search through
the current buffer and replaces a string or a pattern with a string.
Example 5-4 shows the file GSR.TPU. Note that GSR.TPU does not
create or manipulate any windows. When the /NODISPLAY qualifier is
used, performing such operations causes errors.

Example 5-4 VAXTPU Command File GSR.TPU

PROCEDURE global_search_replace (str_or_pat, str2)

! This procedure performs a search through the current
! buffer and replaces a string or a pattern with a new string

LOCAL src_range, replacement_count;

! Return to caller if string not found
ON ERROR

msg_text := FAO ('Completed !UL replacement!%S', replacement_count);
MESSAGE (msg_text);
RETURN;

ENDON_ERROR;

replacement_count := 0;

LOOP
src_range := SEARCH (str_or_pat, FORWARD);
ERASE (src_range); .
POSITION (END_OF (src_range));
COPY_TEXT (str2);
replacement_count := replacement_count + l;

ENDLOOP;
ENDPROCEDURE l global_search_replace

! Executable statements

Search returns a range if found
Remove first string
Move to right place
Replace with second string

input file := GET INFO (COMMAND LINE, "file name");
rnain_buffer:= CREATE_BUFFER ("main", input_file);
POSITION (BEGINNING OF (main buffer));
global search replace ("xyz$-", "user$ II) ;
patl:=-"" & LINE_BEGIN & "t"; -
POSITION (BEGINNING OF (main buffer));
global_search_replace (patl,-"T");
WRITE FILE (main_buffer, "newfile.dat");
QUIT;

5-4

To use the DCL command procedure INVISIBLE_TPU.COM interactively,
invoke it with the DCL command @ (at sign). For example, to use
INVISIBLE_TPU.COM interactively on a file called MY_FILE.TXT, you
would type the following at the DCL prompt:

$ @invisible_tpu rny_file.txt

(

Invoking VAXTPU
5.2 Invoking VAXTPU from a DCL Command Procedure

If you leave the editor with the built-in procedures QUIT or EXIT,
you must explicitly write out any modified buffers. (This is shown in
Example 5-4.) If you do not write out such buffers, VAXTPU quits without
saving the modifications.

5.3 Invoking VAXTPU from a Batch Job

5.4

If you want your edits to be made in batch rather than at the terminal,
you can use the DCL command SUBMIT to send your job to a batch queue.

For example, if you wanted to use the file GSR.TPU (shown in
Example 5-4) to make edits in batch mode to a file called MY_FILE.TXT,
you would enter the following command:

$ SUBMIT invisible_tpu.COM/LOG=invisible_tpu.LOG/parameter=my_file.txt

This job is then entered in the default batch queue for your system. The
results are sent to the LOG file that the batch job creates.

The restrictions that apply to the batch-like command procedure also
apply to a batch job. For information on using the qualifier /NODISPLAY
and the built-in procedures EXIT or QUIT in the file that contains your
edits, see Section 5.2.2.

Qualifiers to the DCL Command EDIT/TPU
The DCL command EDIT/TPU has 13 qualifiers for setting attributes of
VAXTPU or an application layered on VAXTPU. The qualifiers fall into the
following two categories:

• Qualifiers handled by VAXTPU. Qualifiers in this category have their
defaults set by VAXTPU.

• Qualifiers handled by the application layered on VAXTPU. Some
qualifiers in this category have their defaults set entirely by VAXTPU;
some have their defaults set entirely by the layered application, and
some have their defaults set partly by each.

Table 5-1 shows, for each quallfier, which program sets the default and
which program is responsible for handling the qualifier.

Table 5-1 Summary of How VAXTPU and the Application Layered on VAXTPU Relate to the
Qualifiers to EDIT/TPU

Qualifier

/[NO]COMMAND[=filespec]

/[NO]CREATE

/[NO]DEBUG[=filespec]

/[NO]DISPLAY[=keyword]

Program That Sets the Qualifier's
Default

VAXTPU

Both VAXTPU and the application
layered on VAXTPU

VAXTPU

VAXTPU

Program Responsible for
Handling the Qualifier

VAXTPU

The application layered on
VAXTPU

VAXTPU

VAXTPU

(continued on next page)

5-5

5.4.1

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

Table 5-1 (Cont.) Summary of How VAXTPU and the Application Layered on VAXTPU Relate to
the Qualifiers to EDIT/TPU

Program That Sets the Qualifier's Program Responsible for
Qualifier Default Handling the Qualifier

/[NO]INITIALIZATION [=filespec] Both VAXTPU and the application The application layered on
layered on VAXTPU VAXTPU

/[NO]JOURNAL[=filespec] Both VAXTPU and the application The application layered on
layered on VAXTPU VAXTPU

/[NO]MODIFY The application layered on VAXTPU The application layered on
VAXTPU

/[NO]OUTPUT[=filespec] Both VAXTPU and the application The application layered on
layered on VAXTPU VAXTPU

/[NO]READ_ONLY Both VAXTPU and the application The application layered on
layered on VAXTPU VAXTPU

/[NO]RECOVER VAXTPU VAXTPU
/[NO]SECTION[=filespec] VAXTPU VAXTPU
/START _POSITION[=(line.column)] VAXTPU The application layered on

/[NO]WRITE

VAXTPU

BOTH VAXTPU and the application The application layered on
layered on VAXTPU VAXTPU

The following subsections present the qualifiers in alphabetical order,
giving a more detailed description of each qualifier. The examples in
the following sections show the qualifiers directly after the EDIT!TPU
command and before the input file specification. You can place the
qualifiers anywhere on the command line after EDIT!TPU. These
subsections show the defaults that are set if you use EVE. The subsections
explain how EVE handles each qualifier that can be processed by a layered

j

application. Applications not based on EVE may handle such qualifiers '\
differently.)

/COMMAND

5-6

/COMMAND[=filespec]
/NOCOMMAND
/COMMAND=TPU$COMMAND (default)

Determines whether VAXTPU compiles and executes a command file (a file
of VAXTPU procedures and statements) at startup time. Command files
extend or modify a VAXTPU-based application or create a new application.
The default file type for VAXTPU command files is TPU. You cannot use
wildcards in the file specification.

By default, VAXTPU tries to read a command file called.
TPU$COMMAND.TPU in your default directory. You can use a full file
specification.after the qualifier /COMMAND or define the logical name
TPU$COMMAND to point to a command file other than the default one.

(

5.4.2 /CREATE

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

To determine whether the user specified /COMJ.\1AND on the DCL
command line, use the following call in the application:

x := GET_INFO (COMMAND_LINE, "command");

The preceding call returns 1 if /COMMAND was specified, 0 otherwise. 'lb
fetch the name of the command file specified on the command line, use the
following call:

x := GET_INFO (COMMAND_LINE, "command_file");

For more informatton on GET_INFO, see the VAXTPU Reference Section.

The following command causes VAXTPU to read a command file named
SYS$LOGIN:MY_TPU$COMMAND.TPU and uses LETTER.RNO as the
input file for an editing session:

$ EDIT/TPU/COMMAND=sys$login:my_tpu$command.tpu letter.rno

To prevent VAXTPU from processing a command file, use the qualifier
/NOCOMMAND. If you usually invoke VAXTPU without a command file,
define a symbol similar to the following:

$EVE== "EDIT/TPU/NOCOMMAND"

Using /NOCOMMAND when you do not want to use a command file
decreases startup time by eliminating the search for a command file.

If you specify a command file that does not exist, VAXTPU terminates the
editing session and returns you to DCL.

For more information on writing and using command files, see
Section 4.6.3. For more information on exactly when command files are
compiled and executed in VAXTPU'S startup sequence, see Section 4.6.1.

/CREATE (default)
/NOCREATE

Controls whether a VAXTPU-based application creates a new file when the
specified input file is not found. If the user specifies neither /CREATE nor
/NOCREATE on the command line, VAXTPU sets the default to /CREATE
but does not specify a default name for the file to be created.

The application layered on VAXTPU is responsible for handling this
qualifier.

To determine if the user specified /CREATE on the DCL command line,
include the following call in the application:

x := GET_INFO (COMMAND_LINE, "create");

The preceding call returns 1 if /CREATE was specified, 0 otherwise. For
more information on GET_INFO, see the VAXTPU Reference Section.

5-7

5.4.3

5.4.4

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

/DEBUG

/DISPLAY

5-8

By default, EVE creates a new file if the specified input file does not exist.
If you use /NOCREATE and specify an input file that does not exist, EVE
aborts the editing session and returns you to the DCL command level.
For example, if your default device and directory are DISK$:[USERJ and
you specify a nonexistent file, NEWFILE.DAT, your command and EVE's
response would be as follows:

$ EDIT/TPU/NOCREATE newfile.dat
Input file does not exist: DISK$: [USER]NEWFILE.DAT;

$

/DEBUG[=debug_source_filename]
/NODEBUG (default)

Determines whether VAXTPU loads, compiles, and executes a file
implementing a VAXTPU debugger. If /DEBUG is specified, VAXTPU
reads, compiles, and executes the contents of a debugger file before
executing the procedure TPU$INIT _PROCEDURE and before executing
the command file. For more information on VAXTPU's initialization
sequence, see Section 4.6.1.

By default, VAXTPU does not load a debugger. If you specify that a
debugger is to be loaded but do not supply a file specification, VAXTPU
loads the file SYS$SHARE:TPU$DEBUG.TPU. For more information on
how to use the default VAXTPU debugger, see Section 4.7.

To use a debugger file other than the default, use the /DEBUG qualifier
and specify the device, directory, and file name of the debugger to be
used. If you specify only the file name, VAXTPU searches SYS$SHARE
for the file. You can define the logical name TPU$DEBUG to specify a file
containing a debugger program. Once you define this logical name, using
/DEBUG without specifying a file calls the file specified by TPU$DEBUG.

/DISPLAY [= CHARACTER_CELL (default)]
= DECWINDOWS

/NODISPLAY

To choose the DECwindows or the non-DECwindows version of VAXTPU,
use the command qualifier /DISPLAY on the DCL command line when you
invoke VAXTPU.

The /DISPLAY command qualifier is optional. By default, VAXTPU uses
/DISPLAY=CHARACTER_CELL, regardless of whether you are running
VAXTPU on a workstation or a terminal.

If you specify /DISPLAY = CHARACTER_CELL, VAXTPU uses its
character-cell screen manager, which implements the non-DECwindows
version of VAXTPU by running in a DECterm (or VWS) terminal emulator
or on a physical terminal.

,J

/

. , . ../

(

5.4.5 /INITIALIZATION

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

If you specify /DISPLAY=DECWINDOWS, and if the DECwindows
environment is available, VAXTPU uses the DECwindows screen manager,
which creates a DECwindows window in which to run VAXTPU.

If you specify /DISPLAY =DECWINDOWS and the DECwindows
environment is not available, VAXTPU uses its character-cell screen
manager to implement the non-DECwindows version ofVAXTPU.

For more information about the difference between a DECwindows window
and a VAXTPU window, see Section 4.3.1.

The qualifier /NODISPLAY causes VAXTPU to run without using the
screen display and the keyboard functions of a terminal. Use the qualifier
/NODISPLAY in the following cases:

• When running VAXTPU procedures in a batch job

• When using VAXTPU on an unsupported terminal

If you use /NODISPLAY, VAXTPU window or screen manipulation
commands cause errors. Command files or section files that contain screen
manipulation built-ins (ADJUST_ WINDOW, CREATE_ WINDOW, MAP)
and key definitions can usually run successfully when the /NODISPLAY
feature is active. However, the commands are meaningless and may even
return error messages in the batch log file or on your screen. Use a special
startup file (either a section file or a command file) for sessions in which
you use the qualifier /NODISPLAY. This file should not include screen
manipulation commands except for READ_LINE, MESSAGE, and LAST_
KEY, which work with some restrictions. (See the descriptions of READ_
LINE and LAST_KEY in the VAXTPU Reference Section for a list of the
restrictions.) In particular, avoid using READ_KEY or READ_CHAR when
the /NODISPLAY feature is active. Using these built-ins causes VAXTPU
to abort. The startup file should be a complete VAXTPU session and
should end with either the command EXIT or the command QUIT.

The following command causes VAXTPU to edit the file
MY_BATCH_FILE.RNO without using terminal functions such as screen
display: ·

$ EDIT/TPU/NODISPLAY my_batch_file.rno

/INITIALIZATION[=filespec] (default)
/NO INITIALIZATION

Determines whether the VAXTPU-based application being run executes
a file of initialization commands. The application layered on VAXTPU is
responsible for processing this qualifier.

To determine whether the user specified /INITIALIZATION on the DCL
command line, use the following call in the application:

x := GET INFO (COMMAND_LINE, "initialization");

5-9

5.4.6

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

/JOURNAL

5-10

The preceding call returns 1 if /INITIALIZATION was specified, 0
otherwise. To fetch the name of the initialization file specified on the
command line, use the following call:

x := GET_INFO (COMMAND_LINE, "initialization_file");

For more information on GET_INFO, see the VAXTPU Reference Section.

If the user does not specify any form of /INITIALIZATION on the
DCL command line, VAXTPU specifies /INITIALIZATION but does
not supply a default file specification. The default file specification
for /INITIALIZATION is set by the application. Digital recommends
that a user-written application define the default file specification of an
initialization file using the following format:

facility$init.facility

For example, the default initialization file for the EVE editor is
EVE$INIT.EVE.

In EVE, if the user does not specify a device or directory, EVE first checks
the current directory. If the specified (or default) initialization file is not
there, EVE checks SYS$LOGIN. If EVE finds the specified (or default)
initialization file, EVE executes the commands in the file.

For more information on using initialization files with EVE, see Chapter 4 ir""""\... -..
of this manual and the Guide to VMS Text Processing. sh .)

/JOURNAL[=input_file.TJL] (default)
/NOJOURNAL

Determines whether VAXTPU keeps a journal file of an editing session so
the session can be recovered if it is unexpectedly interrupted. '\

The application layered on VAXTPU is responsible for processing this)
qualifier.

To determine whether the user specified /JOURNAL on the DCL command
line, use the following call in the application:

x := GET_INFO (COMMAND_LINE, "journal");

The preceding call returns 1 if /JOURNAL was specified, 0 otherwise. To
fetch the name of the journal file specified on the command line, use the
following call:

x := GET_INFO (COMMAND_LINE, "journal_file");

For more information on GET_INFO, see the VAXTPU Reference Section.

If the user does not specify any form of /JOURNAL on the DCL command
line, VAXTPU specifies /JOURNAL but does not supply a default file·
specification. ·

(

(

5.4.7 /MODIFY

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

In EVE, if the user does not specify any form of /JOURNAL or specifies
/JOURNAL but not a journal file, EVE maintains a journal file that
has the same name as the input file and the file type TJL. If the user
invokes EVE without specifying the name of a file to be edited, EVE gives
the journal file the name TPU.TJL. To specify a name other than the
default for the journal file, use a full file specification with the qualifier
/JOURNAL.

If you edit a file from a directory other than the default directory and
you want EVE to put the journal file in that directory, you must use
/JOURNAL with a file specification that includes the directory name.
Otherwise, EVE creates the journal file in the default directory.

To prevent EVE from keeping a journal file for an editing session, use the
qualifier /NOJOURNAL. For example, the following command causes EVE
to turn off journaling when you edit the input file MEMO.TXT:

$ EDIT/TPU/NOJOURNAL memo.txt

If you are developing an application layered on VAXTPU, you can direct
VAXTPU to create a journal file for an editing session by using the built-in
JOURNAL_OPEN. Using JOURNAL_OPEN causes VAXTPU to provide -
a 500-byte buff er in which to journal keystrokes. By default, VAXTPU
writes the contents of the buffer to the journal file when the buffer is full.
You can use the built-in procedure SET (JOURNALING) to adjust the
journaling frequency. For more information on JOURNAL_OPEN and SET
(JOURNALING), see the descriptions of these built-ins in the VAXTPU
Reference Section.

Once a journal file is created, use the qualifier /RECOVER to direct
VAXTPU to process the commands in the journal file. For example, the
following command causes VAXTPU to recover a previous editing session
on an input file named MEMO.TXT. Since the journal file has a name
different from the input file name, both /JOURNAL and /RECOVER are
used. The name of the journal file is MEMO.SAV:

$ EDIT/TPU/RECOVER/JOURNAL-=memo.sav memo.txt

For more information on how to recover from an interrupted EVE editing
session, see the Guide to VMS '!ext Processing.

/MODIFY (default)
/NOMODIFY

Determines whether the first user buffer in an editing session is
modifiable. The application layered on VAXTPU is responsible for
processing /MODIFY.

To determine what form of the /MODIFY qualifier was used on the DCL
command line, use the following calls:

X := GET INFO (COMMAND_LINE, "modify");
X := GET INFO (COMMAND_LINE, "nomodify");

5.4.8

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

/OUTPUT

5-12

The first statement returns 1 if /MODIFY was explicitly specified on
the command line, 0 otherwise. The second statement returns 1 if
/NOMODIFY was explicitly specified on the command line, 0 otherwise. If
both statements return 0, then the application is expected to determine the
default behavior. For more information on GET_INFO, ·see the VAXTPU
Reference Section.

If you invoke EVE and do not specify /MODIFY, /NOMODIFY, /READ_
ONLY, or /NOWRITE, EVE makes the first user buffer of the editing
session modifiable. If you specify /NOMODIFY, EVE makes the first user
buffer unmodifiable. Regardless of what qualifiers you use on the DCL
command line, EVE makes all user buffers after the first buffer modifiable.

If you do not specify either form of the /MODIFY qualifier, EVE checks
whether you have used any form of the /READ_ONLY or /WRITE
qualifiers. By default, a read~only buffer is unmodifiable and a write
buffer is modifiable. However, if you specify /READ_ONLY and /MODIFY
or /NOWRITE and /MODIFY, the buffer is modifiable. Similarly, if you
specify /WRITE and /NOMODIFY or /NOREAD_ONLY and /NOMODIFY,
the buff er is unmodifiable.

/OUTPUT=input_file.type (default)
/NOOUTPUT

Determines whether the output of your VAXTPU session is written to a
file. The application layered on VAXTPU is responsible for processing this
qualifier.

To determine whether the user specified /OUTPUT on the DCL command
line, use the following call in the application:

x : = GET_ INFO (COMMAND_ LINE, 11 out put 11
) ;

The preceding call returns 1 if /OUTPUT was specified, 0 otherwise. To
fetch the name of the output file specified on the command line, use the
following call:

x := GET_INFO (COMMAND_LINE, "output_file");

For more information on GET_INFO, see the VAXTPU Reference Section.

If you do not specify any form of /OUTPUT on the DCL command
line, VAXTPU specifies /OUTPUT but does not supply a default file
specification.

In EVE, using /OUTPUT allows you to name the file created from the main
buffer when you exit from VAXTPU. For example, the following command
causes VAXTPU to read in a file called LETTER.RNO and to write the
contents of the main buffer to the file NEWLET.RNO upon exiting from
VAXTPU:

$ EDIT/TPU/OUTPUT=newlet.rno letter.rno

__ ,

(_)

5.4.9 /READ_ONLY

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

By default, the output file has the same name as the input file, and the
version number is one higher than the highest existing version of the input
file. You can specify a different name for the output file by using the file
specification argument for the qualifier /OUTPUT.

In EVE, specifying /NOOUTPUT causes EVE to suppress creation of an
output file for the first buffer of the editing session. Using /NOOUTPUT
does not suppress creation of a journal file.

Using /NOOUTPUT, you can develop an application letting the user control
the output of a file." For example, an application could be coded so that if
the user specifies /NOOUTPUT on the DCL command line, VAXTPU would
set the NO_ WRITE attribute for the main buffer and suppress creation of
an output file for that buffer.

/READ_ONLY
/NOREAD_ONLY (default)

Determines whether the application layered on VAXTPU ·creates an output
file from the contents of the main buffer if the contents are modified.

The processing of the /READ_ONLY qualifier is interrelated with the
processing of the /WRITE qualifier. /READ_ONLY is equivalent to
/NOWRITE; /NOREAD_ONLY is equivalent to /WRITE.

VAXTPU signals an error and returns control to DCL if VAXTPU
encounters either of the following combinations of qualifiers on the DCL
command line:

• /READ_ONLY and /WRITE

• /NOREAD_ONLY and /NO_ WRITE

The application layered on VAXTPU is responsible for processing this
qualifier.

To determine whether either the /READ_ONLY or /NOWRITE qualifier
was used on the DCL command line, use the following call in an
application:

x := GET_INFO (COMMAND_LINE, "read_only");

This statement returns 1 if /READ_ONLY or /NOWRITE was explicitly
specified on the command line.

To determine whether either /NOREAD_ONLY or /WRITE was used on the
DCL command line, use the following call in an application:

x := GET_INFO (COMMAND_LINE, "write");

This statement returns 1 if /NOREAD_ONLY or /WRITE was explicitly
specified on the command line.

If both GET_INFO calls return false, the application is expected to
determine the default behavior. For more information on GET_INFO,
see the VAXTPU Reference Section.

.. ...

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

5.4.10 /RECOVER

5-14

In EVE, using the qualifier /READ_ONLY is equivalent to using the
qualifiers /NOJOURNAL, /NOMODIFY, and /NOOUTPUT. If you specify
/READ_ONLY, VAXTPU does not maintain a journal file for your editing
session, and the NO_WRITE and NO_MODIFY attributes are set for the
main buffer. When a buffer is set to NO_WRITE, the contents of the
buffer are not written out upon exit, regardless of whether the session
is terminated with the EXIT built-in or the QUIT built-in. For example,
if you want to edit a file called MEETING.MEM but not write out the
contents when exiting or quitting, you would use the following command:

$ EDIT/TPU/READ_ONLY meeting.mem

In response to /NOREAD_ONLY, EVE writes out the main buffer (if the
buffer has been modified) when an EXIT command is issued. This is the
default behavior.

/RECOVER
/NORECOVER (default)

)

Determines whether VAXTPU reads a journal file at the start of an editing ~,_
session to recover edits made during a prior interrupted editing session.)
For example, the following command causes VAXTPU to recover the ./
previous EVE editing session on the file NOTES.TXT:

$ EDIT/TPU/RECOVER notes.txt

To determine whether the user specified /RECOVER on the DCL command
line, use the following call:

x := GET_INFO (COMMAND_LINE, "recover");

The preceding call returns 1 if /RECOVER was specified, 0 otherwise. For
more information on GET_INFO, see the VAXTPU Reference Section.

If VAXTPU encounters and executes the built-in procedure JOURNAL_
OPEN while running a layered application, by default VAXTPU opens
the journal file for output only. If the user specifies /RECOVER when
invoking VAXTPU with a layered application, then when the built-in
procedure JOURNAL_OPEN is executed the journal file is opened for
input and output. VAXTPU opens the input file to restore whatever
commands it contains. Then VAXTPU continues to journal keystrokes for
the rest of the editing session or until a statement containing the built-in
JOURNAL_CLOSE is executed.

When you recover an editing session, every file used during the session
must be in the same· state as it was at the start of the session being
recovered. Each terminal characteristic must also be in the same state
as it was at the start of the editing session being recovered. If you have
changed the width or page length of the terminal, you must change the
attribute back to the value it had at the start of the editing session you
want to recover. Check especially the following values:

• Device type

• Edit mode

(.

_)

(

5.4.11 /SECTION

• Eight bit

• Page length

• Width

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

If the journal file has a different name from the input file, you must
include both /JOURNAL and /RECOVER with the EDIT/TPU command.
For example, if you wanted to recover the edits you had made to a file
called LETTER.DAT using the journal file SAVE.TJL, you would enter the
following command ·on the DCL command line:

$ EDIT/TPU/RECOVER/JOURNAL=save.TJL letter.dat

For more information on recovering EVE editing sessions, see the Guide to
VMS Text Processing.

/SECTION[=filespec]
/NOSECTION
/SECTION=TPU$SECTION (default)

Determines whether VAXTPU loads a section file. A section file is a
startup file containing key definitions and compiled procedures in binary
form.

The default section file is TPU$SECTION. When VAXTPU tries to locate
the section file, VAXTPU supplies a default directory of SYS$SHARE and
a default file type of TPU$SECTION. VMS defines the systemwide logical
name TPU$SECTION as EVE$SECTION, so the default section file is the
file implementing the EVE editor. To override the VMS default, redefine
TPU$SECTION.

You can specify a different section file. The preferred method is to define
the logical name TPU$SECTION to point to a section file other than the
default file. You can also supply a full file specification for the qualifier
/SECTION. For example, if your device is called DISK$USER and your
directory is called [SMITH], the following command causes VAXTPU to
read a section file called VT100INI.TPU$SECTION:

$ EDIT/TPU/SECTION=disk$user:[smith)vtl00ini

If you omit the device and directory in the file specification, VAXTPU
assumes the file is in SYS$SHARE. The section file must be located on the
same node on which you are running VAXTPU.

To determine whether /SECTION was specified on the DCL command line,
use the following call in the application:

X := GET_INFO (COMMAND_LINE, "section");

The preceding call returns 1 if /SECTION was specified, 0 otherwise. To.
fetch the name of the section file specified on the command line, use the
following call:

x := GET INFO (COMMAND_LINE, "section_file");

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

For more information on GET_INFO, see the VAXTPU Reference Section.

The file used as the value for the /SECTION qualifier must be compiled
by running the source code version of the file through VAXTPU and then
using the built-in procedure SAVE. This process converts the file to the
proper binary form. For more information on creating and using section
files, see Chapter 4 and the Guide to VMS Text Processing.

If you specify /NOSECTION, VAXTPU does not load a section file. Unless
you use the qualifier /COMMAND with /NOSECTION, VAXTPU has no
user interface and no keys are defined. In this state, the only way to exit
from VAXTPU is to press CTRUY. Typically, you use /NOSECTION when
creating your own layered VAXTPU. application without using EVE as a
base.

5.4.12 /START _POSITION

5.4.13 /WRITE

5-16

/START_POSITION =Oine,column)
/START_POSITION=(l,1) (default)

Determines where the application layered on VAXTPU positions the cursor
when the user invokes the application.

The application layered on VAXTPU is responsible for processing this
qualifier.

To determine the row and column that the user has specified on the DCL
command line using /START_POSITION, use the following calls in the
application: ·

start line := GET INFO (COMMAND LINE, "start record");
start=char := GET=INFO (COMMAND=LINE, "start=character");

For more information on GET_INFO, see the VAXTPU Reference Section.

VAXTPU sets the starting row and starting column to 1 if the user does
not use /START_POSITION on the DCL command line.

EVE uses this qualifier to determine the row and column in the main
buffer where the cursor first appears. By default, the start position is
row 1, column 1 (the upper left corner) of the buffer. Typically, you use
/START_POSITION when you want to begin editing at a particular line or
column, such as when you want to skip over a standard heading in a file.

/WRITE (default)
/NOWRITE

Determines whether the application layered on VAXTPU creates an output
file from the contents of the main buffer if the contents are modified.

The processing of the /WRITE qualifier is interrelated with the processing
of the /READ_ONLY qualifier. /WRITE is equivalent to /NOREAD_ONLY;
/NOWRITE is equivalent to /READ_ONLY.

)

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

VAXTPU signals an error and returns control to DCL if VAXTPU
encounters either of the following combinations of qualifiers on the DCL
command line:

• /READ_ONLY and /WRITE

• /NOREAD_ONLY and /NO_ WRITE

The application layered on VAXTPU is responsible for processing this
qualifier.

To determine whether the /WRITE·or the /NOREAD_ONLY qualifier was
used on the DCL command line, use the following call in the application:

x := GET_INFO (COMMAND_LINE, "write");

This statement returns 1 if /NOREAD_ONLY or /WRITE was explicitly
specified on the command line.

To determine whether the /NOWRITE or /READ_ONLY qualifier was used
on the DCL command line, use the following call in the application:

x := GET_INFO (COMMAND_LINE, "read_only");

This statement returns 1 if /READ_ONLY or /NOWRITE was explicitly
specified on the command line.

If both GET_INFO calls return false, the application is expected to
determine the default behavior. For more information on GET_INFO,
see the VAXTPU Reference Section.

In EVE, using the qualifier /NOWRITE is equivalent 'to using the qualifiers
/NOJOURNAL, /NOMODIFY, and /NOOUTPUT. If you specify /NOWRITE,
VAXTPU does not maintain a journal file for your editing session, and the
NO_ WRITE and NO_MODIFY attributes are set for the main buffer.
When a buffer is set to NO_WRITE, the contents of the buffer are not
written out upon exit, regardless of whether the session is terminated with
the EXIT built-in or the QUIT built-in. For example, if you want to edit a
file called MEETING.MEM but not write out the contents when exiting or
quitting, you use the following command:

$ EDIT/TPU/READ_ONLY meeting.mem

5.5 How EVE Uses /MODIFY, /OUTPUT, /READ_ ONLY, and /WRITE
EVE uses the qualifiers /MODIFY, /OUTPUT, /READ_ONLY, and /WRITE
to determine whether to make the first user buffer of an EVE editing
session modifiable and whether to write the contents of the buffer, if
modified, to a file when the user exits. (By default, all EVE user buffers
created after the first buffer in an editing session start out modifiable and,
if modified, are written to a file when the user exits.)

Because these qualifiers are interrelated, this section covers the order in
which EVE processes the qualifiers. Note that if you layer an application
on top of EVE, then EVE handles these qualifiers for your application
unless you explicitly override EVE's actions.

5-17

Invoking VAXTPU
5.5 How EVE Uses /MODIFY, /OUTPUT, /READ_ ONLY, and /WRITE

To process these four interrelated qualifiers, EVE performs the following
steps in the order shown:

1 EVE makes the first user buffer modifiable and makes it a write buffer.

2 EVE checks whether /NOOUTPUT was specified on the DCL command
line. If so, the call GET_INFO (COMMAND_LINE, "output") returns
the value false and the callable interface bit TPU$V _OUTPUT is set
to 0. EVE prevents the buffer from being written out by specifying the
ON parameter with the built-in SET (N,O_ WRITE).

3 EVE checks whether /READ_ONLY was specified on the DCL
command line. If so, the call GET_INFO (COMMAf:,lD_LINE, "read_
only") returns the value true and the callable interface bit TPU$V _
READ is set to 1. EVE prevents the buffer from being written out by
specifying the ON parameter with the built-in SET (NO_ WRITE). EVE
also prevents the buffer from being modified by specifying the OFF
parameter with the built-in SET (MODIFIABLE).

4 EVE checks whether /WRITE was specified on the DCL command line.
If so, the call GET_INFO (COMMAND_LINE, "write") returns the
value true and the callable interface bit TPU$V _ WRITE is set to 1.
EVE makes the buffer writable by specifying the OFF parameter with
the built-in SET (NO_ WRITE). EVE also makes the buffer modifiable
by specifying the ON parameter with the built-in SET (MODIFIABLE).

5 EVE checks whether /MODIFY was specified on the DCL command
line. If so, the call GET_INFO (COMMAND_LINE, "modify") returns
the value true and the callable interface bit TPU$V _MODIFY is set to
1. EVE makes the buffer modifiable by specifying the ON parameter
with the built-in SET (MODIFIABLE).

6 EVE checks whether /NOMODIFY was specified on the DCL
command line. If so, the call GET_INFO (COMMAND_LINE,
"nomodify") returns the value true and the callable interface bit
TPU$V _NOMODIFY is set to 1. EVE prevents the buffer from being
modified by specifying the OFF parameter with the built-in SET
(MODIFIABLE).

7 EVE checks whether the user has both specified /NOWRITE and
specified /OUTPUT with a file specification. If so, EVE signals an
error and terminates the editing session.

5.6 Specifying a Parameter to EDIT!TPU
You can use a VMS file specification as a parameter to the command
EDIT/I'PU. The syntax for invoking VAXTPU with a parameter is as
follows:

$.EDIT/TPU [[/qualifier, ...]] ([filespec]]

/

The parameter is the name of the file you want to create or edit using n
VAXTPU. For example, the following command invokes VAXTPU with
the section file EVE$SECTION and specifies as a parameter a file named ._.,
HISTORY.TXT:

$ EDIT/TPU/SECTION=sys$library:eve$section history.txt

5-18

G·

(
\.

(U

;l.)

Invoking VAXTPU
5.6 Specifying a Parameter to EDIT/TPU

When you invoke VAXTPU without a section file, VAXTPU does not
require the parameter. However, most applications use the parameter to
the EDIT!l'PU command to specify the file that is to be processed. For
example, EVE accepts a file specification as an optional parameter. You
can start an EVE editing session without specifying an input file, but if
you enter any data into a buffer, EVE prompts you for a file name when
you exit.

A file specification can be a full file specification or just the file name.
For example, if your device is called DISK$USER and your directory is
called [SMITHJ, th~ following command invokes VAXTPU with the file
LETTER.DAT:

$ EDIT/TPU disk$user: [smith)letter.dat

To determine what file has been specified as a parameter, use the following
call in an application:

x := GET_INFO (COMMAND_LINE, "file_name");

The application layered on VAXTPU determines whether VAXTPU
recognizes wildcard characters in the input file specification. For example,
EVE handles wildcard characters if there is one unique file that matches
the wildcard specification. Otherwise, EVE does not read a file. Other
applications can handle wildcard characters differently.

You do not have to include the version number as part of the file
specification. If you do not specify a version number, VAXTPU opens
the file that has the highest version number. To edit an earlier version,
include the version number in the file specification.

The handling of the specified file at exit time depends on the application
layered on VAXTPU. For example, EVE uses the input file name as the
name of the output file unless the user specifies the name of an output
file using the qualifier /OUTPUT. EVE leaves the original version of the
input file, unaltered, in its directory unless the system manager has set a
version limit. When you exit from EVE, a new file is created in the input
file's directory (unless the user has specified a different directory). The file
has the same name as the input file but has a version number that is one
higher than the input file.

5-19

..... \

t'~
C

' \
.r \ c)

C
6

6.1

6.1.1

VAXTPU Screen Manag_ement

The VAXTPU screen manager handles the display of windows and the
buffers mapped to those windows. This chapter discusses how to invoke
the screen manager, -what you can expect it to do, and how the screen
manager handles various display situations.

To disable the screen manager, use the /NODISPLAY qualifier when you
invoke VAXTPU. By default, the screen manager is enabled, causing the
screen to display all VAXTPU operations.

How the Screen Manager Handles Windows and Buffers

Buffer Changes

A window is an area of the terminal screen used to display the contents of
a buffer. There are two ways to modify the way information is displayed
on the screen:

• Modify the size, attributes, or location of the display area

• Modify the information that is presented

The screen manager automatically updates the window when VAXTPU
finishes processing a keystroke or series of keystrokes. When input is
entered, VAXTPU queues the keystrokes for processing. As the input is
processed, either by inserting characters into the buffer or by executing
the procedures bound to the keys, the input is taken off the queue. When
the queue is completely empty, the screen manager is called to reflect the
changes. For more information on what happens during an update, see
Section 6.2.1, Section 6.2.2, and Section 6.2.3.

Buffers can be modified in the following ways:

• Records can be inserted

• Records can be deleted

• Characters in a record can be modified

• Video attributes associated with characters can be modified

To make the screen display modifications to a buffer, use the UPDATE
built-in. Note, however, that a screen update does not reflect any
modifications to portions of a buffer that are not visible in the window
mapped to the buffer. VAXTPU has a restriction on the screen display of
modifications to a buffer. If two or more windows are mapped to the same
portion of the same buffer and a select range is created in the current
window, the other windows do not display the select range unless the user
or subsequent code invokes the REFRESH built-in or the EVE REFRESH
command.

6-1

6.1.2

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

Window Changes

6.1.2.1

6-2

Changes to windows occur at the following times:

• When a window is mapped to a buffer

• When a window is deleted

• When a window becomes the current window

• When a window is shifted

• When a window changes size or location

Creating a window causes no visible effects. To become visible, a window
must be mapped to a buffer. For more information, see the descriptions
of the MAP, DELETE, POSITION, SHIFT, ADJUST_ WINDOW, and /
CREATE_ WINDOW built-ins in the VAXTPU Reference Section.

When you create a window, you specify the following:

• The screen line where the top of the window is to be located

• The number of rows in the window

• Whether a status line is associated with the window

Making a Window Current
There are three ways to make a window the current window:

• Map the window to a buffer

• Position to the window

• Adjust the size or location of the window

For more information, see the descriptions of the MAP, POSITION, and
ADJUST_ WINDOW built-ins in the VAXTPU Reference Section.

The screen manager makes the current window fully visible. If the current
window overlaps any other windows, the overlapped portions of the other
windows are not visible. A window that is partly hidden in such a fashion
is said to be partially occluded; a window that is completely hidden is said
to be fully occluded. •

A fully occluded window is not visible on the screen. The window data
structures are not modified in any way, but screen updates ignore the fully
occluded window.

A partially occluded window is displayed as if it were a smaller window.
For example, if a window's status line is occluded by another window, the
next screen update makes the window smaller by one line. This creates
space to redisplay the window's status line. The screen manager always
displays the current record in the shrunken window.

Making a window the current window may cut another underlying window
into two discontiguous pieces. If this occurs, only the top portion of the
occluded window is displayed. The remaining lines of that window are
blank either until the occluding window is removed from view or .until
another window is mapped to those remaining lines.

6.1.2.2

I

(U

6.1.2.3

u

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

For example: window A is created from lines 1 through 24 of the screen,
and window B is created from lines 5 through 10. Each window has its
own status line. The buffer mapped to window A is visible in lines 1
through 3; the status line for window A is in line 4. The buffer mapped
to window B is visible in lines 5 through 9; the status line for window
B is in line 10. Because window B occludes window A - cutting it into
two discontiguous pieces - lines 11 through 24 are blank until one of the
following occurs:

• Window B is deleted (so that window A is no longer occluded)

• A new window ls created in lines 11 through 24 (to display those lines
of the buffer)

• Window A becomes the current window (which, in this example, would
fully occlude window B)

Mapping a Window
To become visible, a window must be mapped to a buffer. Mapping a
window to a buffer makes that window the current window and makes
that buffer the current buffer.

You can map more than one window to a buffer. For example, you could
display the text at the top of a buffer in one window and the text at the
bottom of the same buff er in another window. However, you can map only
one _buffer to a window.

If a window is already mapped to a buffer, mapping the window to the
same buffer makes that window the current window and makes that
buffer the current buffer. Doing this has no other screen effects and does
not alter the cursor position of the window.

For more information, see the descriptions of the MAP and CREATE_
WINDOW built-ins in the VAXTPU Reference Section.

Shifting a Window
Windows are normally displayed with the first character on a line of
text in the leftmost column of the window, Shifting a window causes the
leftmost column of a window to display a different character on the current
line.

Once you shift a window, that window displays the shifted view of any
buffer to which the shifted window is mapped.

When a window is shifted, all the lines displayed in the window are
updated.

For more information, see the description of the SHIFT built-in in the
VAXTPU Reference Section. •

6-3

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

6.1.2.4

6.1.2.5

6.1.2.6

6-4

Deleting a Window
When you delete a window, its screen lines are returned to any windows
it was occluding. Any lines from the deleted window that did not occlude
another window bec!ome blank and remain so until you map them to a
different window.

If you delete the current window, VAXTPU makes another window the
current window. VAXTPU tries to determine which other window, if any,
was most recently the current window, and automatically makes that
window current. The new current window may occlude other windows on
the screen.

An update refreshes the display of any occluded windows that became
unoccluded before the update. ·

For more information, see the description of the DELETE built-in in the
VAXTPU Reference Section.

How VAXTPU Window Size Affects a Terminal Emulator
If you are using VAXTPU on a VAXstation or other machine running VWS
or DECwindows and you increase or decrease the width of a window, the
terminal emulator resizes itself to match the width of the widest visible
window. This resizing causes a refresh operation, which clears the screen
and redisplays all visible windows.

When you use VAXTPU in a VWS or DECwindows environment, you
should not use the mouse to resize the terminal emulator window
while you are in VAXTPU. VAXTPU does not record the fact that the
terminal emulator window has been resized. As a result, VAXTPU may
unexpectedly truncate text at the edges of the terminal emulator window.

You should not create a window wider or taller than the widest or tallest ·
possible setting of the terminal. If you do, VAXTPU may unexpectedly
truncate text at the edges of the window.

For more information, see the description of the ADJUST_ WINDOW
built-in in the VAXTPU Reference Section.

How VAXTPU Window Size Affects the Display on a Terminal
If you are using VAXTPU on a VT300-, VT200-, or VTl00-series terminal,
there are only two possible modes for displaying text on the screen:
SO-column mode and 132-column mode. You can specify any window width
between 1 and 255 using the SET (WIDTH) command. However, the
new window width does not necessarily cause any visible change to the
terminal display unless you change the width to 132 or to 80 columns. In
these two cases, VAXTPU sends the DECCOLM escape sequence to the
terminal. This sequence changes the display mode.

You should not create a window wider or taller than the widest or tallest
possible setting of the terminal. If you do, VAXTPU may unexpectedly
truncate text at the edges of the window.

For more information, see the description of the ADJUST_ WINDOW
built-in in the VAXTPU Reference Section.

n

6.1.2.7

(6.1.2.8

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

How a Window Displays Insertion of Records Into a Buffer
If scrolling is disabled and the screen manager finds records that have
been inserted since the last update, the inserted records and all records
following the inserted records are repainted over whatever was previously
on the screen. The repainting stops when the window is completely
repainted or the last record in the buffer has been displayed.

If scrolling is enabled, the effect of updating depends upon whether the
inserted lines are followed by deleted lines, as follows:

• If the inserted tecords are followed by deleted records, the screen
manager puts the new records in the space vacated by the deleted
records.

• If there are too many new records to fit in the space vacated by the
deleted records, the screen manager scrolls currently displayed records
out of the window to mlllCe room for the rest of the new records.

• If there are fewer inserted records than deleted records, the screen
manager scrolls records into the screen to fill in the lines vacated by
the excess deleted lines.

• If an inserted record or a series of inserted records is not followed by a
deleted record or series of deleted records, the screen manager scrolls
the screen to make room for the new records. The screen manager
tries to scroll lines off the bottom of the screen whenever possible.

• If there are not enough lines in the buffer below the bottom of the
window to fill the entire window, the screen manager scrolls lines in
from the top. If there are still not enough lines to fill the window, the
screen manager scrolls the end-of-buffer text up from the bottom line
of the window. If the end-of-buffer text has been scrolled up, all lines
below the end-of-buffer text are cleared.

How a Window Displays Deletion of Records from a Buffer
The treatment of deleted records is similar to the treatment of inserted
records.

Inserted records are used to replace deleted records. If there are more
deleted records than inserted records, the extra deleted records are
replaced using the following algorithm:

If scrolling is disabled:

• When records are deleted, the screen manager takes records from
below the deleted records and paints the records into the vacated area.

• If there are not enough lines in the buffer to fill the entire window,
lines below the end-of-buffer text are cleared.

If scrolling is enabled:

• The screen manager tries to minimize scrolling by using inserted lines
below the deleted lines to fill in the deleted area.

• If there are no inserted lines following the area, the screen manager
scrolls lines in from the bottom of the window to cover the deleted
area.

6-5

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

6.1.2.9

• If there are not enough lines below the bottom line of the window to
fill the deleted area, the screen manager scrolls lines in from above the
top of the window.

• If there 11re still not enough lines to fill the deleted area, the screen
manager moves the bottom of the buffer up and clears the screen lines
below the end-of-buffer text.

If there are more inserted records than deleted records, the screen
manager scrolls lines off the bottom of the window and paints the new
records in the cleared area.

How a Window Displays Changes to a Record in a Buffer
When characters are inserted or deleted or when the video attributes
of characters are changed, the screen manager is informed of the first
changed character, the last changed character, and the nature of the
change to the characters.

If the window is set to NO_TRANSLATE mode, then each time a line is
modified the screen manager redisplays the line. The screen manager
truncates any of the line's text that lies to the left of the window's left
edge. The screen manager then sends the rest of the line to the terminal.

If the window is not set to NO_TRANSLATE, then the screen manager
updates a changed line by positioning to the first changed character and
repainting the rest of the characters in the line. If the change makes the
line too long for the window, a diamond character appears in the rightmost
column of the window to indicate that there is more text on the line.

If the line being updated has a left margin greater than 1 (that is, not at
the extreme left edge of the screen), the screen manager ensures that the
area left of the left margin is cleared or, if SET (PAD) is on, padded with
blank spaces.

After the characters on the line are painted, if SET (PAD) is on, the screen \
manager appends blank spaces. Otherwise, the screen manager erases the j
remainder of the line if there are leftover characters on the line.

6.2 Invoking the Screen Manager

6.2.1

When you write V.AXTPU procedures, you can prevent updates or cause
immediate updates by using the UPDATE, REFRESH, or SET (SCREEN_
UPDATE) built-in. The SCROLL built-in causes an immediate update.

Enabling Screen Updates

6-6

To suppress screen updates, or to reenable updates after they have been
disabled, use the SET (SCREEN_UPDATE) built-in. When screen updates
are turned off, the screen is frozen in its current state.

While screen updating is off, built-ins that normally update the screen
(such as SCROLL, REFRESH, and UPDATE) have no effect or return an
error status.

6.2.2

(

(

VAXTPU Screen Management
6.2 Invoking the Screen Manager

Turning on screen updating causes an immediate update. If a refresh
was requested while screen updating was off, the screen is immediately
refreshed and repainted.

Updates can be turned on or off only on a global basis. That is, you cannot
prevent updating of one window while causing it in other windows.

Automatic Updates
When input is entered, VAXTPU queues the keystrokes for processing. As
the input is processed, either by inserting characters into the buffer or
by executing procedures bound to keys, the input is taken off the queue.
When the queue is empty, the screen manager updates the screen to reflect
the changes that have occurred.

Note that a stream of input arriving as fast as VAXTPU can process it
prevents the screen manager from running. For example, if you bind a
large, relatively slow procedure to an autorepeating key, a user holding
down that key may see no screen updates until the key is released. This is
because new input has arrived while the screen manager was handling the
first keystroke. After the key is released, the screen manager updates the
screen, rolling all the previous user input into one update.

Windows are updated from the top to bottom of the screen, except that
multiple windows mapped to the same buffer are updated one after
another. For example, given the following mapping of windows to
buffers, VAXTPU updates windows in the order shown in the four-step
list following:

Window A mapped to buffer 1
Window B mapped to buffer 2
Window C mapped to buffer 1
Window D mapped to buffer 3

1 Window A is updated first, because it is the top window on the screen.

2 Window C is updated next because it is also mapped to buffer 1.

3 Window Bis then updated, because it is the next window in the
screen's top-to-bottom order after window A.

4 Because no other window is mapped to buffer 2, the update proceeds to
the next window down - window C. However, since this window has
already been updated, the screen manager skips it and updates the
last window, window D.

When an automatic update occurs, the screen manager performs the
following operations:

1 Returns immediately if VAXTPU is running with /NO DISPLAY or if
screen updating is off

2 Clears the prompt window if that window contains output and is not
occluded by another window

3 Clears any lines that no longer have windows mapped to them

6-7

. 6.2.3

VAXTPU Screen Management
6.2 Invoking the Screen Manager

4 Makes sure that the width of the screen (on a VAXstation) is set
correctly for the width of the widest window

5 _If no windows are mapped, exits without taking further action

6 If mapped windows are present and a refresh request is still pending,
refreshes the screen

7 Updates each visible window (including the status line) from -the top to
the bottom

8 Updates the status line if there is a status line and it has changed

9 Updates the cursor position in the current window after updating all
windows

Updating Windows

6-8

You can update a specific window by using the UPDATE built-in with
the appropriate window variable as the parameter. The update occurs
immediately. When updating a specific window, the screen manager
performs the following operations:

1 Returns a success status if VAXTPU is running with /NO DISPLAY or
if screen updating is off

2 Returns the error TPU$_WINDOWNOTMAPPED if the window is not
mapped to a buffer

3 Marks the cursor position as unknown if the window is not visible
(repaints the window the next time it becomes visible)

4 If a window needs to be completely repainted (for example, because a
new buffer is mapped to the window), determines the new first, last,
and current records in the window, and repaints all lines from the top
to the bottom

5 Updates the status line if there is a status line and it has changed

6 Determines the cursor position for this window

7 Updates any other windows mapped to the same buffer

8 Repositions the cursor to the active cursor position in the current
window

9 Enables the timer message (if it was disabled)

If a partial update is being done:

1 The screen manager determines which record contains the window's
cursor position. This record is the curr~nt record.

2 If the window being updated is the current window, and if there is a
select range active, the scre~n manager determines whether any of the
lines needs to have its video attributes updated.

(.

(U

6.2.4

3

VAXTPU Screen Management
6.2 Invoking the Screen Manager

The screen manager places the appropriate record at the top of the
window. If the cursor is on a record between the window's scroll
margins, the screen manager places the same record at the top of the
updated window as it placed at the top of the old window. ff the cursor
is on a record that is not between the window's scroll margins, then
the screen manager places the record containing the cursor at the top
of the updated window. Usually the screen manager accomplishes this
by scrolling text. However, if this would mean scrolling more than
one window's worth of text, the screen manager repaints the window
instead. After placing the appropriate record at the top of the window,
the screen manager determines the video attributes to be applied to
the beginning of that record.

4 The screen manager disables the timer message.

5 The screen manager updates each line currently on the screen, from
the top to the bottom. If no records have been inserted or deleted in
the buffer, the screen manager paints in any video or text modifications
that have occurred.

6 If there are deleted records that were visible, the screen manager
checks whether there are any newly inserted records following and
paints the new records over the deleted records. If there are no newly
inserted records following, the screen manager scrolls lines in to fill
the vacated area.

7 If scrolling is turned off for. the window, the screen manager repaints
the window. If the end-of-buffer text is on the screen and there are
records above the first line of the window, the screen manager scrolls
lines down from above the top of the window. Otherwise, the screen
manager scrolls lines up to replace the deleted records.

8 If there are newly inserted records and there are more inserted records
than will fit on the screen, the screen manager repaints the window.
Otherwise, the screen manager checks whether the inserted records
are followed by records that were visible but are now deleted. ff so,
the new records are painted over the deleted records. Otherwise, the
screen manager scrolls lines down to make room for the new records.

9 If scrolling is turned on for the window, the screen manager makes
room for the inserted lines and paints them in. If scrolling is turned
off for the window, or if the inserted records reach the bottom of
the window, the screen manager repaints the rest of the lines in the
window without checking for deleted records.

Updating the Whole Screen
To update all the windows visible on the screen, use the UPDATE (ALL)
built-in. If there is a refresh request, this causes a refresh to take place.
Otherwise, UPDATE (ALL) forces an automatic update, just as if all
procedures have finished execution and there is no user input waiting to
be processed. The screen is updated immediately in either case.

If screen updating has been turned off, UPDATE (ALL) has no effect.

6.2.5

6.2.6

VAXTPU Screen Management
6.2 Invoking the Screen Manager

The REFRESH Built-In
REFRESH clears the screen, reinitializes terminal settings such as
autorepeat, and repaints the windows from the top to the bottom of
the screen. Use REFRESH when line noise, power failure, or other events
external to VAXTPU cause the screen to be disrupted.

If screen updating has been turned off, REFRESH does nothing
immediately. However, the next update refreshes the screen.

The SCROLL Built-In
SCROLL requires that the screen be up to date. If there are modifications
to the buffers or to the sizes of windows since the last update, SCROLL
updates the screen before starting the scrolling operation. The scrolling
operation occurs immediately after the update.

You cannot use SCROLL when screen updating is off.

Although SCROLL updates the text on the screen, it does not update
changed video attributes. Thus, if you use SCROLL operations while a
select range is active, the video attributes of the screen may not be correct
until the next automatic update-unless you explicitly use the UPDATE or
REFRESH built-in in your procedure.

6.3 C1.,.1rsor Position Compared to Editing Point

6-10

Cursor position is the location of the cursor in a window. Each window
has an independent cursor position-the location of the cursor when that
window becomes the current window. ·

The cursor position must be within the bounds of the visible window.
To move the cursor position, use the CURSOR_HORIZONTAL or
CURSOR_ VERTICAL built-in. The cursor position is not necessarily
bound to text.

VAXTPU keeps the cursor position as close as possible to the editing point,
which is the point in the buffer where text operations occur. However, the
cursor position is not" always exactly the same as the editing point. The
editing point may be at a location in a buffer that is not visible in the
current window, or the current buffer may not be mapped to a window
at all. In either of these situations, text operations take place at a point
different from the cursor position. In this situation, the editing point is
said to be detached. Being detached is not the same as being free. The
editing point is free when it is in a location not occupied by a character.
The editing point is detached when its location is not visible on the screen.
Whenever possible, keep the cursor position synchronized with the editing
point so that text operations are visible.

To move the editing point, use the MOVE_HORIZONTAL, MOVE_
VERTICAL, or POSITION built-in.

The editing point is free if it is located before the beginning of a line, after
the end of a line, in the middle of a tab, or beyond the end of a buffer.

/

(~--.) '

_)

G

(

(G

6.4 Built-In Padding

VAXTPU Screen Management
6.3 Cursor Position Compared to Ed_iting Point

Each buffer has its own editing point, which becomes active when that
buff er becomes the current buffer.

Whenever the screen is updated, the cursor position in a window moves to
the editing point of the buffer mapped to that window.

To move the editing point of a buffer to the cursor position of a window,
use the POSITION built-in with a window variable as the parameter. The
MAP and ADJUST_ WINDOW built-ins position to the window implicitly
and thus also move the editing point to the cursor position.

It is possible to move the editing point without moving the cursor position
and the reverse. However, to avoid confusion, the cursor position and
the editing point should be synchronized when an operation manipulates
the contents of a buffer. That is, both the cursor position and the editing
point should point to the same place, or as close as possible. For example,
using POSITION (buffer _variable) or POSITION (marker _variable) may
reposition to another buffer without changing the current window. In this
state, if the user adds self-inserting characters to a buffer, the cursor may
not be visible in a window mapped to the buffer where the characters are
inserted. Moreover, if the current buffer is not mapped to a visible window,
there is no visual feedback of the inp~t at all.

There are various ways to avoid this discrepancy between the cursor
position and the editing point, depending on where a given text operation
is to be carried out. If you use POSITION (buffer _variable) or POSITION
(marker _variable) to implement user operations in a given buffer, either
map the buffer to a visible window or position to a window to which the
buffer is already mapped and then update the window. Remember that
simply exiting from your procedure may allow -the screen manager to
update the window automatically.

If you position to a buffer or marker to perform some housekeeping
operation and then want to restore the cursor position to its previous
location, you should position to the current window (the window in which
the visible cursor is located). This makes the buffer mapped to the current
window the current buffer, and moves the editing point to the cursor
position. Updating the screen at this point has no effect, because the
positions are already synchronized.

The cursor position is not necessarily bound to text. The cursor position
can be moved to locations where there is no underlying text, such as left
of the left margin, right of the end-of-line, in the middle of a tab, or on or
below the end-of-buffer text:

However, some built-ins require an accurate offset into the current line. If
you use such a built-in when the cursor position points U> an area where
there is no text, the screen manager inserts padding records and spaces to
bind the current cursor position to a text offset.

6-11

VAXTPU Screen Management
6.4 Built-In Padding

6-12

The following built-ins cause this padding effect:

APPEND_LINE MOVE_HORIZONTAL

ATTACH MOVE_ TEXT

COPY_TEXT

CURRENT_CHARACTER

CURRENT _LINE

CURRENT _OFFSET

ERASE_CHARACTER

ERASE_LINE

MARK

MOVE_ VERTICAL

READ_FILE

SELECT

SELECT _RANGE

SPAWN

SPLIT_LINE

The insertion of self-inserting characters also causes padding if the cursor
is free.

To determine whether padding will occur if you use one of the built-ins
listed above, use the following call:

GET_INFO (window_variable, "bound");

If the cursor is to the left of the left margin, the margin is moved to the
cursor position and spaces are inserted to fill the line from the cursor to
where the text begins. If the cursor is to the left of the left margin on a
blank line, the margin is moved to the cursor position and no spaces are
inserted.

To find out if the cursor position is before the beginning of a line in a
particular window, use the following call:

GET_INFO (window_variable,"before_bol");

If the cursor is to the right of the end-of-line, spaces are inserted from the
end of the line to the cursor position. To find out if the cursor is to the
right of the end of a line in a particular window, use the following call: · -\

GET_INFO (window_variable,"beyond_eol"); ./

If the cursor is in the middle of a tab, spaces are inserted from the
tab character to the current cursor position. The tab character is not
destroyed; it is simply moved to the left. To find out if the cursor is in the
middle of a tab in a particular window, use the following call:

GET_INFO (window_variable, "middle_of_tab");

If the cursor is below the bottom of the buffer, blank lines are added from
the end-of-buffer text to the line the cursor is on. These blank lines are
inserted using the left margin set for the buffer. If necessary, the line the
cursor is on is then padded, depending on whether the cursor is to the left
or right of the left margin. To find out if the cursor is below the bottom of
the buffer, use the following call:

GET INFO (window_variable, "beyond_eol");

(

VAXTPU Reference Section
This section contains detailed descriptions of the built-in procedures provided
by the VAX Text Processing Utility.

I
_/

7

(

7.1.1

(

VAXTPU Built-In Procedures

This chapter describes each of the V.AXTPU built-in procedures. The
chapter is divided into two sections.

In Section 7.1, the built-in procedures are grouped according to the
functions that they perform so you can see at a glance which built-in
is related to what task. In Section 7.2, the built-in procedures are listed
alphabetically. Each built-in is described in detail.

Some built-in procedures do not return useful values. The descriptions of
these built-ins do not show a return value in the format section. However,
these built-ins return O when used on the right-hand side of an assignment
statement.

Some entries in this chapter describe language elements or keywords that
are not built-in procedures. These elements and keywords are included in
this chapter because they are used in the same way built-ins are used.

Built-In Procedures Grouped According to Function

Screen Layout

When you want to perform editing tasks, use the following lists to help
you identify which built-in procedures are related to a particular task. For
more information about a built-in procedure, see its individual description
in Section 7 .2.

• ADJUST_ WINDOW (window, integerl, integer2)

• CREATE_ WINDOW (integer 1, integer2, { : g~F })

• MAP (window, buffer)

• REFRESH

• SET (PAD, window { : g~F })

. {: ~gr~ }
• SET (PROMPT_AREA, integerl, integer2 , BLINK .)

, REVERSE
, UNDERLINE

• SET (SCREEN_UPDATE {: g~F })

• SET (SCROLLING, window {: g~F } integerl, integer2,

integer3)

7-1

7.1.2

7.1.3

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

,NONE
,BOLD

• SET (STATUS_LINE, window , BLINK
, REVERSE

, string)

, SPECIAL_GRAPHICS
, UNDERLINE

{

widget, string }

{
BLANK TABS }

• SET (TEXT, window, GRAPHIC_TABS)
NO_TRANSLATE

{

, NONE } -,\
,BOLD j

• SET (VIDEO, window ., BLINK)
, REVERSE
, UNDERLINE

• SET (WIDTH, window, integer)

• SHIFT (window, integerl)

• UNMAP(window)

• UPDATE ({ ~L })
wmdow

Cursor Movement

• CURSOR_HORIZONTAL (integerl)

• CURSOR_ VERTICAL (integerl)

• · SCROLL (window [,integerl])

• SET (COLUMN_MOVE_VERTICAL {: g;F })

• SET (CROSS_~NDOW_BOUNDS {: g;F })

Moving the Editing Position

7-2

• MOVE_HORIZONTAL (integer)

• MOVE_VERTICAL (integer)

buffer

• POSITION (

integer
LINE_BEGIN
LINE_END
marker
MOUSE
range
window

)

\
_J

7.1.4

(

~

(

.L
I

Text Manipulation

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• APPEND_LINE

• BEGINNING OF ({ buffer })
- range

• CHANGE_CASE ({ ~:::: } { : t=: })
. string , UPPER

• COPY_TEXT ({ ~:;::1 })
stnng

• CREATE_BUFFER (stringl [, string2 [, bufferl]])

• CREATE_RANGE (start_mark, end_mark
[, video_attribute])

• EDIT (string [, COLLAPSE] [, COMPRESS] [, TRIM]

[, TRIM_LEADING] [, TRIM_TRAILING] [: ~~:]

[, INVERT] [: g~F])

• END OF ({ buffer })
- range

• ERASE ({ buffer })
range

• ERASE_ CHARACTER (integer)

• ERASE_LINE

• FILE_PARSE (filespec [,stringl [,string2
[, NODE] [, DEVICE] [, DIRECTORY] [, NAME]
[,TYPE][, VERSION]]])

• FILE_SEARCH (filespec [, stringl [, string2
[, NODE] [, DEVICE] [, DIRECTORY] [, NAME]
[, TYPE] [, VERSION]]])

• FILL ({ buffer } [, string[, integerl [, integer2 [, integer3]]]])
range .

BLINK
BOLD
NONE

• MARK (FREE_CURSOR)
REVERSE
UNDERLINE

• MESSAGE_TEXT ({ kintegerdl } [, integer2 [,FAO-parameter]])
eywor· •

• MODIFY_RANGE (range, [markl, mark2]
[, video_attribute])

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

7-4

· { buffer }
• MOVE_TEXT (rangel)

string

• READ_FILE (stringl)

ANCHOR
LINE_BEGIN
LINE_END

• SEARCH (PAGE_BREAK
pattern {

, FORWARD }
, REVERSE

REMAIN
string
UNANCHOR

[{ : ~iiAcT } [{ , buffer }]])
, integer ' rangel

ANCHOR
LINE_BEGIN
LINE_END

• SEARCH_QUIETLY (PAGE_BREAK {, FORWARD }
pattern , REVERSE
REMAIN
string
UNANCHOR

{

, EXACT
[, NO..,.EXACT

, integer }
[{ , buffer }]])

, rangel

• SELECT ({ Ir~ })
REVERSE
UNDERLINE

• SELECT_RANGE

• SET (MODIFIAB_LE, buffer { : g;F })
• SET (MODIFIED, buffer, { g~F })

• SPLIT_LINE.

• TRANSLATE ({ ;::;: } , string2, string3)
stringl

• WRITE_FILE ({ buffer }, stringl)
range

7.1.5

(

(

7.1.6

Pattern Matching

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• ANCHOR

{

buffer
• ANY (range

string
} • integerl)

• ARB (integer)

• LINE_BEGIN

• LINE_END

{

buffer }
• MATCH (ra~ge)

stnng

{

buffer
• NOTANY (ra~ge

stnng
}• integerl)

• PAGE_BREAK

• REMAIN

{

buffer }
• SCAN (range)

string

• SCANL ({ ;~;: })
stnng

{

buffer }
• SPAN (ra~ge)

stnng

{

buffer }
• SPANL (range)

string

• UNANCHOR

Status of the Editing Context

• CURRENT_BUFFER

• CURRENT_CHARACTER

• CURRENT_COLUMN

• CURRENT_DIRECTION

• CURRENT_LINE

• CURRENT_OFFSET

• CURRENT_ROW

• CURRENT_ WINDOW

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

7-6

• DEBUG_LINE

• ERROR

• ERROR_LINE

• ERROR_TEXT

• GET_INFO (parameterl, parameter2 [, ...])

• LOCATE_MOUSE (window, x_integer, y_integer)

• SET (AUTO_REPEAT {: g~F })

• SET (BELL { : ~~ADCAST } { : g~F })

[
, ON]

• SET (DEBUG , OFF
,PROGRAM

• SET (FACILITY_NAME, string)

• SET (FORWARD, buffer)

[

,ALL
, buffer
, program
, range
, string

• SET (INFORMATIONAL { ' ON })
,OFF

• SET (INSERT, buffer)

• SET (JOURNALING, integer)

• SET (LEFT_MARGIN, buffer, integer)

] [,value])

[

: t~r!equence]
• SET (LEFT_MARGIN_ACTION, bufferl , program)

, range
· , string

• SET (LINE_NlJ¥BER { : g~F })

• SET (MARGINS, buffer, integerl, integer2)

• SET (MAX_LINES, buffer, integer)

• SET (MESSAGE_ACTION_LEVEL, { :~~;d })

{
NONE }

• SET (MESSAGE_ACTION_TYPE, BELL)
REVERSE

• SET (MESSAGE_FLAGS, integer)

• SET (MOUSE, { g~F })

• SET (NO_ WR.ITE, buffer [: g~F])

• SET (OUTPUT_FILE, buffer, string)

..........

_J

(
\

0

· 7.1.7 Defining Keys

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SET (OVERSTRIKE, buffer)

• SET (PAD_OVERSTRUCK_TABS {: g;F })

• SET (PERMANENT, buffer) .
• SET (REVERSE, buffer)

• SET (RIGHT_MARGIN, buffer, integer)

· [: !::r!equence]
• SET (RIGHT_MARGIN_ACTION, bufferl , program)

, range
, string

• SET (SPECIAL_ERROR_SYMBOL, string)

• SET (SUCCESS { : g;F })

• SET (SYSTEM, buffer)

• SET (TAB STOPS buffer { 'int~ger })
- ' , stnng

• .. SET (TIMER { : g~F } [, string])

• SET (TRACEBACK { : g;F })

BUFFER[SJ
KEY_MAP_LIST[S]
KEY_MAP[S]
KEYWORDS
PROCEDURES

• SHOW (SCREEN)
SUMMARY
VARIABLES
WINDOW[S]
buffer
string
window

{
"first" } • ADD_KEY_MAP (key-map-list-name : "last" ,

key-map-name [, ...])

• CREATE_KEY _MAP (string!)

• CREATE_KEY_MAP _LIST (string!, string2 [, ...])

7-7

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

7-8

{

buffer
learn sequence

• DEFINE_KEY (program
range
stringl

[,string3]])

• KEY_NAME ({-~:~!e:rne }
stnng

} • key-name [, string2

{

: ~~i~-~1IFIED }
[, ALT_MODIFIED [, .. .]]

, CTRL_MODifIED
, HELP _MODIFIED

[
, FUNCTION])

· , KEYPAD

• LAST_KEY

{

, COMMENT }
• LOOKUP _KEY (key-name , KEY_MAP

,PROGRAM

[
, st~gl])
, stnng2

• REMOVE_KEY_MAP (stringl, string2 [, ALL])

• SET (KEY_MAP _LIST, string[, buffer, window])

[

: !:::sequence
• SET (POST_KEY_PROCEDURE, stringl , program

· ,range
. , string2 .

[

: !~:sequence
• SET (PRE_KEY_PROCEDURE, stringl , program

, range
· , string2

• SET (SELF _INSERT, string, { : g~F })

• SET (SHIFT_KEY, keyword [,string])

[

: ~~=sequence]
• SET (UNDEFINED_KEY, stringl , program)

, range
, string2

• UNDEFINE KEY (ke ord [' key-map-liSt -name])
- yw , key-map-name

)

7.1.8

(

7.1.9

7.1.10

VAXTPU B.uilt-ln Procedures
7.1 Built-In Procedures Grouped According to Function

Multiple Processing

• ATTACH [({ int~ger })]
stnng

• CREATE_PROCESS (buffer [, string])

• SEND ({ ~:;;: }• process)
stnng

• SEND_EOF (process)

• SPAWN [(string [: g~F])]

Program Execution

• ABORT

• BREAK

· { buffer }
• COMPILE (range)

string

buffer
k [, key-map-list-name]

ey-name , key-map-name
• EXECUTE (learn_sequence ·)

program
range
string

• RETURN

• SAVE (stringl [,"NO_DEBUG_NAMES"]
[,"NO_PROCEDURE_NAMES"]
[,"!DENT", sj;ring2])

DECwindows VAXTPU-Specific

• CRE T G 'd 1 'd { parent widget } .N. E_WID ET (wi get_c ass, wi get_name, SCREEN

{

fe'!_r sequence }
[, program [, closure

range
string

[, widget_args...]]])

• CREATE_WIPGET (resource_manager_name, hierarchy_id,

{
parent_ widget }
SCREEN

7-9

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

{

fe':!:sequence }
[, program

range
string

[, closure
[, widget_args...]]])

• DEFINE.,.. WIDGET_CLASS (class_name
[, creation_routine_name

[, creation_routine_image_name]])

7-10

• DELETE (widget)

• GET_CLIPBOARD

• GET_DEFAULT (string!, string2)

{
PRIMARY }

• GET_GLOBAL_SELECT (SECONDARY ,
selection_name

selection_property _name)

• MANAGE_ WIDGET (widget [, widget ...])

• READ_CLIPBOARD

{
PRIMARY }

• READ_GLOBAL_SELECT (SECONDARY ,
selection name

selection_property _name) -

• SET (ACTIVE_AREA, win~ow, column, row [, width, height])

• SET (DRM_HIERARCHY, filespec [, :filespec. ..])

• SET (ENABLE_RESIZE, { g~F })
{ PRIMARY }) • SET (GLOBAL_SELECT, SCREEN, SECONDARY

selection_name

• SET(GLOBAL_SELECT_GRAB,SCREEN
buffer
learn_s·equence

[, program])
range
string
NONE

• SET (GLOBAL SELECT READ { buffer! } - - ' SCREEN
, buffer2
, learn_sequence

[, program])
, range
, string
,NONE

• SET (GLOBAL SELECT TIME, SCREEN, { ~t~ger }) - - s nng

,,

r; __
,..,,,._,,,.

(

/

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

• SET (GLOBAL_SELECT_UNGRAB, SCREEN
., buffer

[

, learn_sequence
, program
, range
, string
,NONE

• SET (ICON_NAME, string)

])

• SET (INPUT FOCUS [' S?REEN])
- , widget

• SET (INPUT_FOCUS_GRAB [, SCREEN
, buffer

[

, learn_sequence
, program
, range
, string
,NONE

]])

• SET (INPUT_FOCUS_UNGRAB [, SCREEN
, buffer

[

, learn_sequence
, program
, range
, string
,NONE

• SET (RESIZE_ACTION

]])

, buffer
, leam_sequence
, program
, range
, string
,NONE

• SET (SCREEN_LIMITS, array)

. { HORIZONTAL, } { ON } • SET (SCROLL_BAR, window, VERTICAL, OFF)

• SET (SCROLL_BAR_AUTO_THUMB, window, { ~:~g~AL },.
{ g~F })

• SET (WIDGET, widget,
{ widget_args [, widget_args...] }~

• SET (WIDGET_CALLBACK, widget,

{

~e::_r,sequence, }
program, closure)
range,
string, .

• UNMANAGE_ WIDGET (widget [, widget ...])

7-11

VAXTPU Built-In Procedures
7.1 Built-In Procedures Grouped According to Function

7 .1.11 Miscellaneous

7-12

{

buffer }
• WRITE_CLIPBOARD (clipboard_label, range)

string

• WRITE_GLOBAL_SELECT (! E l)
integer

· NONE

{

integer! }
• ASCII (keyword)

string!

• CALL_USER (integer, string!)

{

DECW ROOT WINDOW
• CONVERT (SCREEN

window
from_x_integer, from_y _integer,

} {
CHARACTERS, }

' COORDINATES,

{
DECW_ROOT_WINDOW } { CHARACTERS, }

. SCREEN · ' COORDINATES
. . '

wmdow
to_x_integer, to_y _integer)

• CREATE_ARRAY [(integer! [, integer2])]
array
buffer
integer
keyword
learn_sequence
marker

• DELETE (pattern)
process
pi:ogram
range
string
unspecified
window

• EXIT

• EXPAND_NAME (string! { : ~~i?~s })
, VARIABLES

• FAO (string! [, { intt~ge
3
rl } [, ... { intt~ger_n }]])

s nng s nng_n

J

(

7.2

VAXTPU Built-In Procedures
7 .1 Built-In Procedures Grouped According to Function

• HELP _TEXT (library-file, topic { : g;F }, buffer)

• INDEX (string, substring)

• INT ({ ~:~~~~ }>
stnng

• JOURNAL_CLOSE

• JOURNAL_OPEN (file-name)

• LEARN_ABORT

{
EXACT } • LEARN_BEGIN (NO_EXACT)

• LEARN_END

• LENGTH ({ ra~ge }>
string

• MESSAGE (range [, integerl])

• MESSAGE ({ ~:~~~! } [, integer3 [, FAO-parameter]])
stnng

• . QUIT [({ g~F }[,severity])]

• READ_CHAR

• READ_KEY

• READ_LINE [(stringl [, integer])]

• SET (EOB_TEXT, buffer, string)

• SLEEP ({ int~ger }>
stnng

• STR (integer)

• STR ({ buffer }[,string2])
range

• STR ({ { ~:r;: } [, string2] [: g~F] })
stringl

• SUBSTR ({ :::;1 } , integer 1, integer2)

Descriptions of the Built-In Procedures
The discussion of each built-in procedure in this section is divided, as
applicable, into the following parts:

• A short functional definition

• Format

• Parameters

7-13

VAXTPU Built-In Procedures
7.2 Descriptions of the Built-In Procedures

• Description

• Signaled Errors listing the warnings and errors signaled, if applicable

• Examples

The built-in procedures are presented in alphabetical order.

···--....,_
\

,/

7-14

(

ABORT

VAXTPU Built-In Procedures
ABORT

Stops any executing procedures and causes VAXTPU to wait for the next key
press.

FORMAT ABORT

PARAMETERS None.

DESCRIPTION ABORT returns control to VAXTPU'S main control loop. It causes an
immediate exit from all invoked procedures.

SIGNALED
ERRORS
EXAMPLE
ON_ERROR

Although ABORT behaves much like a built-in, it is actually a VAXTPU
language element.

ABORT is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

ABORT is a language element and has no completion codes.

MESSAGE ("Aborting command because of error.");
ABORT;

ENDON_ERROR;

This error handler does not try to recover from an error. Rather, it stops
execution of the current procedure and returns to VAXTPU'S main loop.

VAXTPU Built-In Procedures
ADD_KEY_MAP

ADD KEV MAP

Adds one or more key maps to a key map list.

FORMAT . { "first", } ADD_KEY_MAP (key-map-hst-name, "last", key-map-name II, ...]/}

PARAMETERS key-map-list-name
A string that specifies the name of the key map list.

"first"
A string directing VAXTPU to add the key map to the beginning of the key
map list. In cases where a key is defined in multiple key maps, the first
definition found for that key in any of the key maps in a key map list is
used.

"last"
A string directing VAXTPU to add the key map to the end of the key
map list. In cases where a key is defined in multiple key maps, the first
definition found for that key in any of the key maps in a key map list is
used.

key-map-name
A string that specifies the name of the key map to be added to the key
map list. You can specify more than one key map. Key maps are added to
the key map list in the order specified. The order of a key map in a key
map list determines precedence among any conflicting key definitions.

DESCRIPTION The built-in procedure ADD_KEY_MAP adds key maps to key map lists.

7-16

Key maps are added, in the order specified, to either the top or the bottom
of the key map list. Key map precedence in a key map list is used to
resolve any conflicts between key definitions. The key definition in a
preceding key map ·overrides any conflicting key definitions in key maps

· that follow in the key map list.

See the descriptions of the built-in procedures DEFINE_KEY, CREATE_
KEY_MAP, and CREATE_KEY_MAP _LIST for more information on
key definitions, key maps, and key map lists, respectively. Also see the
description of the built-in procedure REMOVE_KEY_MAP for information
on removing key maps from a key map list.

\
)

(

0

SIGNALED
ERRORS TPU$_NOKEYMAP

TPU$_KEYMAPNTFND

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_NOKEYMAPLIST

TPU$_1NVPARAM

TPU$_1LLREOUEST

TPU$_BADREQUEST

EXAMPLES

VAXTPU Built-In Procedures
ADD_KEY_MAP

WARNING Third argument is not a defined
key map.

WARNING The key map listed in the third
argument is not found.

ERROR Too few arguments passed to the
ADD_KEY_MAP built-in.

ERROR Too many arguments passed to
the ADD_KEY_MAP built-in.

WARNING Attempt to access an undefined
key map list.

ERROR Wrong type of data sent to the
ADD_KEY_MAP built-in.

WARNING The position string must be either
"first" or "last".

WARNING The position string must be either
"first" or "last".

D ADD KEY MAP ("TPU$KEY_MAP_LIST", "TPU$KEY_MAP", "last");

This statement adds the default-key map TPU$KEY_MAP to the default
key map list, TPU$KEY_MAP _LIST. Normally (except in the EVE editor)
TPU$KEY_MAP is a member of the default key map list.

il help_keys := CREATE_KEY_MAP ("help_keys");
ADD KEY MAP ("TPU$KEY_MAP_LIST", "first", help_keys);

These statements create a key map called HELP _KEYS and add it to
the beginning of the default key map list, TPU$KEY_MAP _LIST. Key
definitions in the new key map are invoked over definitions in the key
maps already in the list.

7-17

VAXTPU Built-In Procedures
ADJUST_WINDOW

ADJUST WINDOW

FORMAT

Changes the size and/or screen location of a window and makes the window
that you specify the current window.

ADJUST WINDOW (window, integer1, integer2) -,..

PARAMETERS window
The window whose size or location you want to change. The window that ---...
you specify becomes the current window, and the buffer mapped to that \
window becomes the current buffer. ../

integer1
The signed integer value that you add to the screen line number at the top
of the window.

integer2
The signed integer value that you add to the screen line number at the
bottom of the window.

DESCRIPTION If you want to check the visible size and/or location of a window before
making an adjustment to it, use any of the following statements:

7-18

SHOW (WINDOW);

SHOW (WINDOWS);

top := GET _INFO (window, "top", VISIBLE_WINDOW);
MESSAGE (STR (top));

bottom := GET_INFO (window, "bottom", VISIBLE_WINDOW);
MESSAGE (STR (bottom));

There are screen line numbers at both the top and the bottom of the
visible window. Adjust the size of a visible window by changing either or
both of these screen line numbers. Make these changes by adding to or
subtracting from the current screen line number, not by specifying the
screen line number itself.

You can enlarge a window by decreasing the screen line number at the
top of the window. (Specify a negative value for integer 1.) You can also
enlarge a window by increasing the screen line number at the bottom of
the window. (Specify a positive value for integer2.) The following example
adds four lines to the current window, provided that the values fall within
the screen boundaries:

ADJUST WINDOW (CURRENT_WINDOW, -2, +2)

([j

(

(U

L

VAXTPU Built-In Procedures
ADJUST_ WINDOW

If you specify integers that attempt to set the screen line number beyond
the screen boundaries, VAXTPU issues a warning messag~. VAXTPU then
sets the window boundary at the edge (top or bottom, as appropriate) of
the screen.

You can reduce a window by increasing the screen line number at the top
of the window. (Specify a positive value for integerl.) You can also reduce
a window by decreasing the screen line number at the bottom of the
window. (Specify a negative value for integer2.) If you attempt to make
the size of the window smaller than one·line (two lines if the window has
a status line, three-lines if the window has a status line and a horizontal
scroll bar), VAXTPU issues an error message and no adjustment occurs.
The following example reduces the current window by four lines:

ADJUST_WINDOW (CURRENT_WINDOW, +2, -2)

You can also use ADJUST_ WINDOW to change the position of the window
on the screen without changing the size of the window. The following
command simply moves the current window two lines higher on the
screen, provided that the values fall within the screen boundaries:

ADJUST_WINDOW (CURRENT_WINDOW, -2, -2)

Figure 7-1 shows a screen layout when you invoke VAXTPU with EVE
and a user-written command file. In this case, the user-written command
file divides the screen into two windows. The top window has 15 text
lines (including the end-of-buffer message) and a status line. The bottom
window has five text lines and a status line. The two bottom lines of the
screen are the command window and message window, each consisting of
one line. ·

7-19

VAXTPU Built-In Procedures
ADJUST_ WINDOW

7-20

Figure 7-1 Screen Layout Before Using ADJUST_WINDOW

lirst line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line
Eleventh line
Twelfth line
Thirteenth line
Fourteenth line
[End of File]

First line
Second line
Third line
Fourth line
Fifth line
2uffer SECOND BUFFER I INSERT i FOFb,\1,u

ZK-4047-GE

The user-written command file uses the variable second_window to identify
the bottom window. Figure 7-2 shows the screen layout after the user
enters ADJUST_WINDOW (second_window, -5, 0) after the appropriate
prompt from EVE. Both the top and bottom windows now contain 10 lines J
of text and a status line. Note that the cursor is now located in the bottom
window. The command and message windows still contain one line each.

ADJUST_WINDOW-adds (+/-) integerl to the "visible_top" and(+/-)
integer2 to the "visible_bottom" of a window. The mapping of the window
to its buffer is not changed. The new values for the screen line numbers
become the values for the original top and original bottom. (See Chapter 2
for more information on window dimensions and window values.)

(

VAXTPU Built-In Procedures
ADJUST_WINDOW

Figure 7-2 Screen Layout After Using ADJUST_WINDOW

First line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line ·
Eighth line
Ninth line
Tenth line

irst line
Second line
Third line
Fourth line
Fifth line
Sixth line
Seventh line
Eighth line
Ninth line
Tenth line

Buffer SECOND BUFFER

ZK-4048-GE

Using ADJUST_WINDOW on a window makes it the current window; that
is, VAXTPU puts the cursor in that window if the cursor was not already
there, and VAXTPU marks that window as current in VAXTPU's internal
tracking system. VAXTPU may scroll or adjust the text in the window to
keep the current position visible after the adjustment occurs.

Note that both ADJUST_ WINDOW and MAP may split or occlude other
windows.

If you execute ADJUST_WINDOW within a procedure, the screen is not
immediately updated to reflect the adjustment. The adjustment is made
after the entire procedure is finished executing and control returns to
the screen manager. If you want the screen to reflect the adjustment to
the window before the entire procedure is executed, you can force the
immediate update of a window by adding an UPDATE statement to the
procedure. See the built-in procedure UPDATE for more information.

If you have defined a top or bottom scroll margin, and the window is
adjusted so that the scroll margins no longer fit, TPU$_ADJSCROLLREG
is signaled and the scroll margins shrink proportionally. For example, if
you have a ten-line window, with an eight-line top scroll margin, shrinking
the window to a five-line window also reduces the top scroll margin to four
lines.

7-21

VAXTPU Built-In Procedures
ADJUST _WINDOW

SIGNALED
ERRORS

EXAMPLES

D · ADJUST WINDOW

TPU$_ADJSCROLLREG INFO The window's scrolling region
has been adjusted to fit the new
window.

TPU$_BOTLINETRUNC INFO Bottom line cannot exceed bottom
of screen.

TPU$_ TOPLINETRU~C INFO Top line cannot exceed top of
screen.

TPU$_WINDNOTMAPPED WARNING Cannot adjust a window that is
not mapped.

TPU$_BADWINDADJUST WARNING Cannot adjust window to less than
the minimum number of lines.

TPU$_WINDNOTVIS WARNING No adjustment if window is not
visible.

TPU$_ TOO FEW ERROR You specified less than three
parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

(CURRENT_ WINDOW, +5, 0)

This statement reduces the current window by removing five lines from the
top of the window. If the top line of the window is screen line number 11,
this statement changes the top line of the window to screen line number
16. (If the bottom line of the window is less than screen line number 16,
VAXTPU signals an error.) ,

7-22

PROCEDURE user_display_help
top_of_window := GET_INFO (CURRENT_WINDOW, "VISIBLE_TOP");

!
! Remove the top five lines from the current window
! and replace them with a help window

ADJUST WINDOW (CURRENT WINDOW, +5, 0);
example_window := CREATE_WINDOW (top_of_window, 5, ON);
example_buffer := CREATE_BUFFER ("EXAMPLE",

"sys$login:template.txt");
MAP (example_window, example_buffer);

ENDPROCEDURE

This procedure removes five lines from the top of a window and puts a
help window in their place ..

,J

(

(

ANCHOR

VAXTPU Built-In Procedures
ANCHOR

Forces the next pattern element either to match immediately or else to fail.

FORMAT ANCHOR

PARAMETERS None.

DESCRIPTION Normally, when SEARCH fails to find a match for a pattern, It retries the
search. To try again, the SEARCH built-in moves the starting position
one character forward or backward, depending upon the direction of the
search. SEARCH continues this operation until it either finds a match

SIGNALED
ERRORS

EXAMPLES

for the pattern or reaches the end or beginning of the buffer or range
being searched. If ANCHOR appears as the first element of a complex
pattern, the search does not move the starting position. Instead, the
search examines the next (or previous) character to determine ifit matches
the next character or element in the complex pattern. If the pattern does
not match starting in the original position, the search fails. SEARCH does
not move the starting position and retry the search.

When you build complex patterns using the + operator rather than the &
operator, ANCHOR is useful only as the first element of a complex pattern.
It is legal elsewhere in a pattern but has no effect.

Although ANCHOR behaves much like a built-in, it is actually a keyword.

For more information on patterns or modes of pattern searching, see
Chapter 2.

ANCHOR is a keyword and has no completion codes.

D patl := ANCHOR + "al23";

This assignment statement creates a pattern that matches the stringaJ23.
Because ANCHOR appears as the first element of the pattern, SEARCH
will find a123 only if the string appears at the starting position for the
search.

7-23

n

u

u

u

VAXTPU Built-In Procedures
ANCHOR

I PROCEDURE user remove comments
LOCAL patl,

7-24

number_removed,
end_mark;

patl := ANCHOR + "! ";
number removed:= 0;
end_mark := END_OF (CURRENT_BUFFER);

POSITION (BEGINNING_OF (~URRENT_BUFFER));
LOOP

EXITIF MARK (NONE) = end_mark;
rl := SEARCH_QUIETLY (patl, FORWARD);
IF rl <> 0

THEN ! comment found so erase it
ERASE_LINE;
number removed := number_removed + l;

ENDIF;
MOVE_VERTICAL (l); ! move to the next line

ENDLOOP;
MESSAGE (FAO ("!ZL comment!%S removed.", nurnber_removed));

ENDPROCEDURE

This procedure starts at the beginning of a buffer and searches forward,
removing all comments that begin in column 1. The keyword ANCHOR
in this example ties the search to the first character of a line (the current
character). This prevents the search function from finding and removing
exclamation points in the middle of a line (for example, in the FAO
directive, !AS).

(

/
I

ANY

FORMAT

VAXTPU Built-In Procedures
ANY

Returns a pattern that matches one or more characters from the set specified.

{

buffer }
pattern := ANY (: ra~ge l, integer1])

strmg

PARAMETERS buffer

return value

An expression that evaluates to a buffer. ANY matches any of the
characters in the resulting buffer.

range
An expression which evaluates to a range. ANY matches any of the
characters in the resulting range.

string
An expression that evaluates to a string. ANY matches any of the
characters in the resulting string.

integer1
This integer value indicates how many contiguous characters ANY
matches. The default value for this integer is 1.

A pattern matching one or more characters that appear in the string,
buff er, or range passed as the first parameter to ANY.

DESCRIPTION ANY is used to construct patterns.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

ANY must appear in the right-hand
side of an assignment statement.

ANY requires at least one
argument.

ANY accepts no more than two
arguments.

The argument you passed to the
ANY built-in was of the wrong
type.

VAXTPU Built-In Procedures
ANY

TPU$_1NVPARAM

TPU$_MINVALUE

TPU$_CONTROLC

ERROR The argument you passed to the
ANY built-in was of the wrong
type.

WARNING The argument you passed to the
ANY built-in was less than the
minimum accepted value.

ERROR You pressed CTRUC during the
execution of the ANY built-in.

EXAMPLES

D patl := ANY ("hijkl")

This assignment statement creates a pattern that matches any one of the
characters h, i, j, k, and l.

!:) patl := any ("xy", 2);

i1

7-26

This assignment statement creates a pattern that matches any of the
following two-letter combinations: xx, xy, yx, and yy.

a_buf := CREATE_BUFFER ("new buffer");
POSITION (a_buf);
COPY_TEXT ("xy");
SPLIT_LINE;
COPY_ TEXT ('.' abc") ;
patl := ANY (a_buf);

These statements create a pattern that matches any one of the characters
a, b, c, x, and y.

PROCEDURE user_find_endprocedure
LOCAL endprocedure_pattern,

search_range;
endprocedure_pattern := (LINE_BEGIN + "ENDPROCEDURE") +

(LINE END I ANY ("; ! " + ASCII (9)));
search range := SEARCH QUIETLY (endprocedure pattern, FORWARO);
IF search_range = 0 - -

THEN
MESSAGE ("Endprocedure sta'i:ement not found") ;

ELSE
POSITION (END_OF (search_range));

ENDIF;
END PROCEDURE

This procedure finds an ENDPROCEDURE statement that starts in
column 1 and moves the editing point to the end of the statement.

. .../

\
j

u

(

VAXTPU Built-In Procedures
APPEND_LINE

APPEND LINE

Places the current line at the end of the previous line.

FORMAT APPEND_LINE

PARAMETERS None.

DESCRIPTION You can use APPEND_LINE to delete line terminators.

SIGNALED
ERRORS

EXAMPLES
D APPEND LINE

The editing point in the line that was the current line before APPEND_
LINE was executed becomes the editing point.

Using APPEND_LINE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. APPEND_LINE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

TPU$_NOCURRENTBUF

TPU$_NOCACHE

TPU$_ TOO MANY

TPU$_NOTMODIFIABLE

TPU$_LINETOOLONG

WARNING You are not positioned in a buffer.

ERROR There is not enough memory to
allocate a new cache.

ERROR APPEND_LINE does not accept
arguments.

WARNING You cannot modify an unmodifiable
buffer-.

WARNING VAXTPU cannot append the line
because the length of the resulting
line would exceed VAXTPU's
maximum line length.

.. U This statement adds the current line to the end of the previous line.
I

_

VAXTPU Built-In Procedures
APPEND_LINE

7-28

The following procedure deletes the character
to the left of the cursor. If the cursor is at the
beginning of a line, it appends the current line
to the end of the previous line.

PROCEDURE user_delete_char
IF CURRENT OFFSET= 0

THEN
APPEND_LINE;

ELSE
ERASE CHARACTER (-1);

ENDIF;
ENDPROCEDURE

This procedure deletes the character to the left of the cursor. If you are at
the beginning of a line, the procedure appends the current line to the end
of the previous line. The procedure works correctly even if the window is
shifted.

You can bind this procedure to the DELETE key with the following
statement:

DEFINE KEY ("user_delete_char", DEL_KEY);

/

C

ARB

FORMAT

PARAMETER

VAXTPU Built-In Procedures
ARB

Returns a pattern that matches an arbitrary sequence of characters starting at
the editing point and extending for the length you specify.

pattern == ARB (integer)

integer
The number of characters in the pattern. This integer must be positive.

return value A pattern that matches an arbitrary sequence of characters starting at the
editing point and extending for the length you specify.

DESCRIPTION ARB can be used for wildcard matches of fixed length.

SIGNALED
ERRORS

EXAMPLES
D patl := ARB (5)

For more information on patterns, see Chapter 2.

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_MINVALUE

ERROR ARB must appear in the right-hand
side of an assignment statement.

ERROR ARB requires at least one
argument.

ERROR ARB accepts no more than one
argument.

ERROR The argument to ARB must be an
integer.

WARNING The argument to ARB must be
positive.

This assignment statement creates a pattern that matches the next five
characters starting at the editing point. The characters themselves are
arbitrary; it is the number of characters that is important for a pattern
created with ARB.

!rd pat2 := "J" & ARB (2)

This assignment statement creates a pattern that matches a string
beginning with a J and followed by any two other characters. Names
such as "Jim," "Jan," and "Joe" matchpat2.

7-29

VAXTPU Built-In Procedures
ARB

i PROCEDURE user_replace_prefix
LOCAL cur_mode,

7-30

here,
patl,

found_range;

patl := (LINE_BEGIN NOTANY ("ABCDEFGHIJKLMNOPQRSTUVWXYZ_$"))
+ ((ARB (3) + "_") @ found_range);

here := MARK (NONE);
cur mode := GET_INFO (current_buffer, "mode");

POSITION (BEGINNING_OF (CURRENT_BUFFER));
LOOP

found_range := 0;
SEARCH QUIETLY (patl, FORWARD);
EXITIF-found_range = 0;
ERASE (found_range);
POSITION (END_OF (found_range));
COPY_TEXT ("user_");

ENDLOOP;
POSITION (here);
SET (cur_mode, current_buffer);

ENDPROCEDURE

This procedure replaces a prefix of any three characters followed by an
underscore (xxx_) in the current buffer with the string "user_". It does not
change the current position.

)

(

(U

ASCII

FORMAT

VAXTPU Built-In Procedures
ASCII

Returns the ASCII value of a character or the character that has the specified
ASCII value.

{
integer2 } . { integert }
string2 == ASCII (ke>;word)

strmg1

PARAMETERS integer1

return value

The decimal value of a character in the DEC Multinational Character Set.

keyword
This keyword must be a key name. If the key name is the name of a
key that produces a printing character, ASCII returns that character.
Otherwise it returns the character whose ASCII value is 0.

string1
The character whose ASCII value you want. If the string has a length
greater than 1, the ASCII built-in returns the ASCII value of the first
character in the string.

The character with the specified ASCII value (if you specify an integer or
keyword parameter).

The ASCII value of the string you specify (if you specify a string
parameter).

DESCRIPTION The result of this built-in depends upon its argument. If the argument is
an integer then it returns a string of length 1 that represents the character
of the DEC Multinational Character Set corresponding to the integer you
specify. If the argument is a string then it takes the first character of the
string and returns the integer corresponding to the ASCII value of that
character.

If the argument to ASCII is a keyword, that keyword must be a key name.
The VAXTPU built-in KEY_NAME produces key names. In addition, there
are several predefined keywords that are key names. See Table 2-1 for a
list of these keywords. If the keyword is a key name and the key produces
a printing character, ASCII returns that character; otherwise, it returns
the character whose ASCII value is 0.

7-31

VAXTPU Built-In Procedures
ASCII

SIGNALED
TPU$_NEEDTOASSIGN ERROR ASCII must be on the right-hand

ERRORS side of an assignment statement.

TPU$_ TOOFEW ERROR ASCII requires one argument.

TPU$_ TOOMANY ERROR ASCII accepts only one argument.

TPU$_ARGMISMATCH ERROR The parameter you passed to
ASCII is of the wrong type.

TPU$_NULLSTRING WARNING You passed a string of length O to
ASCII.

EXAMPLES

D my_character := ASCII(l2)

This assignment statement assigns a string of length 1 to the variable
my _character. This string contains the form feed character because that
character has the ASCII value 12.

!i MESSAGE (ASCII (80))

This statement combines two built-in procedures and prints the ASCII
character numbered 80 (whose value is P) in the message area. In this
case, uppercase P is displayed.

I ! This procedure puts a tab character in your text

PROCEDURE user tab

!I

7-32

COPY_TEXT (ASCII (9));
END PROCEDURE

This procedure includes a tab character in the current buffer.

ascii value := ASCII ("a");

This assignment statement assigns the integer value 97 to the variable
ascii_value. Note that a is specified in quotation marks because it is a
parameter of type string. For more information on specifying strings, see
Chapter 2. -

lfl

(

u

PROCEDURE user_test_key
LOCAL key_struck,

key_value;

MESSAGE ("Press a key") ;
key struck := READ KEY;
key=value := ASCII-(key_struck);

IF key_value = ASCII (0)
THEN

MESSAGE ("That is not a typing key");
ELSE

VAXTPU Built-In Procedures
ASCII

MESSAGE (FAO ("That key produces the letter "!AS".", key_value));
ENDIF;

END PROCEDURE

This procedure prompts the user to press a key. When the user does
so, the procedure reads the key. If the key is associated with a printing
character, ASCII tells the user what character is produced. If the key is
not associated with a printable character, ASCII informs the user of this..

VAXTPU Built-In Procedures
ATTACH

ATTACH

FORMAT

Enables you to switch control from your current process to another process
that you have previously created.

ATTACH /[({ int~ger }; JJ
stnng

PARAMETERS integer

·· DESCRIPTION

7-34

This integer is the process identification (PID) of the process to which
terminal control is to be switched. You must use decimal numbers to
specify the PID to VAXTPU.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string that VAXTPU interprets as a process
name.

To use the built-in procedure ATTACH, you must have previously created
a subprocess. If the process you specify is not part of the current job or
does not exist, an error message is displayed. For information on creating
subprocesses, see the description of SPAWN in this section.

ATTACH suspends the current VAXTPU process and switches context to
the process you use as a parameter. If you do not specify a parameter
for ATTACH, VAXTPU switches control to the parent or owner process.
A subsequent use of the DCL command ATTACH (or a logout from any
process except the parent process) resumes the execution of the suspended
VAXTPU process.

In all cases, VAXTPU first deassigns the terminal. If a VAXTPU process
is resumed following a SPAWN or ATTACH command, VAXTPU reassigns
the terminal and refreshes the screen.

If the current buffer is mapped to a visible window, the ATTACH built-in
causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the file.

ATTACH is not a valid built-in in DECwindows VAXTPU. However, if
you are running non-DECwindows VAXTPU in a DECwindows terminal
emulator, ATTACH works as described in this section.

/

r

\

SIGNALED
ERRORS

TPU$_NOPARENT

TPU$_ TOOMANY

TPU$_S)"SERROR

TPU$_ARGMISMATCH

TPU$_CREATEFAIL

TPU$_REOUIRESTERM

EXAMPLES

D ATTACH

VAXTPU Built-In Procedures
ATTACH

WARNING There is no parent process to
which you can attach - your
current process is the top-level
process.

ERROR Too many arguments passed to
the ATTACH built-in.

ERROR Error requesting information about
the process being attached to.

ERROR Wrong type of data sent to the
ATTACH built-in. Only process
name strings and process IDs are
allowed.

WARNING Unable to attach to the process.

ERROR Feature requires a terminal.

This statement causes VAXTPU to attach to the parent process.

i ATTACH (97899)

This statement causes VAXTPU to attach to the sub_process with the PID
97899.

&] ATTACH ("JONES_2")

This statement switches the terminal's control to the process JONES_2.

VAXTPU Built-In Procedures
BEGINNING_OF

BEGINNING OF

Returns a marker that points to the first position of a buffer or a range.

FORMAT marker :: BEGINNING_OF ({ ~::;; })

PARAMETERS buffer

return value

The buffer whose beginning you want to mark.

range
The range whose beginning you want to mark.

A marker pointing to the first character position of the specified buffer or
range.

DESCRIPTION If you use the marker returned by this built-in procedure as a parameter
for the built-in procedure POSITION, the editing point moves to the
marker.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN ERROR BEGINNING_OF must appear
in the right-hand side of an
assignment statement.

TPU$_ TOOFEW ERROR BEGINNING_OF requires one
argument.

TPU$_ TOOMANY ERROR BEGINNING_OF accepts only one
argument.

TPU$_ARGMISMA']:'CH ERROR You passed something other
than a range or a buffer to
BEGINNING_OF.

EXAMPLES

D beg_main := BEGINNING OF (main_buffer)

This assignment statement stores the marker that points to the beginning
of the main buffer in the variable beg_main.

POSITION (BEGINNING_OF (my_range))

\
J

This statement uses two built-in procedures to move your current :,,1
character position to the beginning of my_range. If my_range is in a
visible buffer in which the cursor is located, the cursor position is also
moved to the beginning of my_range.

7-36

i]

I

PROCEDURE user_top

VAXTPU Built-In Procedures
BEGINNING_OF

IF MARK (NONE) = BEGINNING~OF (CURRENT_BUFFER)
THEN

MESSAGE ("Already at top");
ELSE

POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDIF;

ENDPROCEDURE

This procedure places the cursor at the beginning of the current buffer. If
you are already at.the beginning of the buffer, the message "Already at
top" is displayed in the message area.

PROCEDURE user include file - -
Create scratch buffer
bl := CREATE_BUFFER ("Scratch Buffer");

Map scratch buffer to main window
MAP (main_window, bl);

Read in file name given
READ_FILE (READ_LINE ("File to Include:"));

Go to top of file
POSITION (BEGINNING_OF (bl));

END PROCEDURE

This procedure creates a new buffer, associates the buffer with the main
window, and maps the main window to the screen. It positions to the top
of the buffer, prompts the user for the name of a file to include, and reads
the file into the buffer.

VAXTPU Built-In Procedures
BREAK

BREAK
Activates the dt=>bugger if VAXTPU was invoked with the /DEBUG qualifier.

FORMAT BREAK

PARAMETERS None.

DESCRIPTION IfVAXTPU was invoked with the /DEBUG qualifier, then execution of the
BREAK statement activates the debugger. If there is no debugger, BREAK
causes the following message to be displayed in the message window:

SIGNALED
ERROR
EXAMPLE

Breakpoint at line xxx

It has no other effect. Although BREAK behaves much like a built-in, it is
actually a VAXTPU language element.

BREAK is evaluated for correct syntax at compile time. In contrast,'
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

BREAK is a language element and has no completion codes.

PROCEDURE user_not_quite_working

BREAK;

END PROCEDURE

7-38

This procedure contains a break statement. If the statement is executed,
VAXTPU'S debugger is activated, allowing the user to debug that section
of the code.

. ,I

(

C.J

CALL USER

FORMAT

VAXTPU Built-In Procedures
CALL_USER

Calls a program written in another language from within VAXTPU. The CALL_
USER parameters are passed to the external routine exactly as you enter
them; VAXTPU does not process the parameters in any way. The integer is
passed by reference, and string1 is passed by descriptor. String2 is the value
returned by the external program.

string2 := CALL_USER (integer, string1}

PARAMETERS integer
The integer that is passed to the user-written program by reference.

string1
The string that is passed to the user-written program by descriptor.

return value The value returned by the called program.

DESCRIPTION In addition to returning the value string2 to CALL_USER, the external
program returns a status code that tells whether the program executed
successfully. You can trap this status code in an ON_ERROR statement.
An even-numbered status code (low bit in RO clear) causes the ON_ERROR
statement to be executed. The ERROR lexical element returns the status
value from the program in the form of a keyword.

To use the built-in procedure CALL_USER, follow these steps:

• Write a program in whatever language you choose. The program must
be a global routine called TPU$CALLUSER.

• Compile the program.

• Link the program with an options file to create a shareable image.

• Define the logical name TPU$CALLUSER to point to the file
containing your routine.

• Invoke VAXTPU.

• From within a VAXTPU session, call your external program to perform
its function by specifying the built-in procedure CALL_USER with the
appropriate parameters. If you link your program properly, and if you
define the logical name TPU$CALLUSER to point to your program,
the built-in procedure CALL_USER passes the parameters you give it
to the proper routine.

VAXTPU Built-In Procedures
CALL_USER

SIGNALED
ERRORS

EXAMPLES

The CALL_USER parameters are input parameters for the external
program you are calling. VAXTPU does not process the parameters in
any way but passes them to the external procedure exactly as you enter
them. You must supply both parameters even if the routine you are calling
cfoes .aot require that information be passed to it. Enter the following null
parameters to indicate that you are not passing any actual values:

CALL_USER (0,"")

For information on the VAXTPU callable interface, see the VMS Utility
Routines Manual.

TPU$_BADUSERDESC ERROR User-written routine incorrectly
filled in the return descriptor.

TPU$_NOCALLUSER ERROR Could not find a routine to invoke.

TPU$_TOOFEW ERROR Too few arguments passed to
CALL_USER.

TPU$_ TOOMANY ERROR Too many arguments passed to
CALL_USER.

TPU$_NEEDTOASSIGN ERROR The call to CALL_USER must
be on the right-hand side of the
assignment statement.

TPU$_1NVPARAM ERROR Wrong type of data sent to CALL_
USER.

TPU$_ARGMISMATCH ERROR Parameter is of the wrong data
type.

TPU$_CALLUSERFAIL WARNING CALL_USER routine failed with
status %X'status'. The value
returned by ERROR after this type
of error will be the status value
reported by this message.

D ret_value ·= CALL_USER (6, "ABC")

7-40

This statement calls a program that the user wrote. Before invoking
VAXTPU,the user created a logical name, TPU$CALLUSER, that points
to the file containing the program the user wants called by CALL_USER.
VAXTPU passes the first parameter (6) by reference, and the second
parameter ("ABC") by descriptor. If, for example, the user program uses
an integer and a string as input values, the program processes the integer
"6" and the string "ABC." If the program is designed to return a result, the
result is returned in the variable ret_value.

il Step-by-Step Example of Using CALL_USER

VAXTPU Built-In Procedures
CALL_USER

The following example shows the steps required to use the built-in
procedure CALL_USER. The routine that is called to do :floating-point
arithmetic is written in BASIC.

1 Write a program in BASIC that does ~oating-point arithmetic on the
values passed to it.

Filename:FLOATARITH.BAS

1 sub TPU$CALLUSER (some_integer%, input_string$, return_string$

10 don't check some integer% because this function only does
floating-point arithmetic

20 parse the input string
find and extract the operation

comma_location = pos (input_string$, ",", 1%)
if comma_location = 0 then go to all_done
end if

operation$= seg$(input_string$, 1%, comma_location - 1%)

! find and extract the 1st operand
operandl location= pos (input string$, ",", comma location +l)
if operandl location= 0 then go to all done
end if - · -

operandl$ = seg$(input string$, comma location+ 1%, &
operandl_location -1-)

! find and extract the 2nd operand
operand2 location= pos (input string$, ",", operandl_location +l)
if operand2 location= 0 then -

operand2_location = len(input_string$) + 1
end if

operand2$ = seg$(input string$, operandl location+ 1%, &
operand2_location -1) -

select operation$! do the operation
case "+"

result$ sum$(operandl$, operand2$

case "-"
result$ = dif$(operandl$, operand2$)

case "*"
result$ numl$(Val(operandl$ * Val(operand2$

case fl/"
result$ num1$(Val(operandl$) / Val(operand2$))

case else
result$ "unknown operation."

end select

return_string$ = result$

·999 all done: end sub

2 Compile the program with the following statement: u $ BASIC/LIST floatarith

7-41

VAXTPU Built-In Procedures
CALL_USER

1
ry'

!+

!-

3 Create an options file to be used by the linker when you link the
BASIC program.

File: FLOATARITH.OPT

Options file to link floatarith BASIC program with VAXTPU

floatarith.obj
UNIVERSAL=TPU$CALLUSER

4 Link the program (using the options file) to create a shareable image.

$ LINK floatarith/SHARE/OPT/MAP/FULL

5 Define the logical name TPU$CALLUSER to point to the executable ---,.,
image of the BASIC program. /

$ DEFINE TPU$CALLUSER device: [directory)floatarith.EXE

6 Invoke VAXTPU.

7 Write and compile the following VAXTPU procedure:

PROCEDURE my_call_user

test the built-in procedure call user

LOCAL output,
input;

input := READ LINE ("Call user>");
output := CALL_USER (0, input);
MESSAGE (output);

END PROCEDURE

Provide a parameter for routine
Value this routine returns

8 When you call the procedure my _call_user, you are prompted for
parameters to pass to the BASIC routine. The order of the parameters
is operator, number, number. For example, if you enter"+, 3.33, 4.44"
after the prompt, the result 7.77 is displayed in the message area .

. 7-42

lJ

(

VAXTPU Built-In Procedures
CHANGE_CASE

CHANGE CASE

FORMAT

Modifies the case of all the alphabetic characters in the specified unit of text
according to the keyword that you supply.

CHANGE_CASE (· { ~:;:: }• { ~rv;::; })
strmg UPPER

PARAMETERS buffer
The buffer in which you want to change the case of all the characters.

range
The range in which you want to change the case of all the characters.

string .
The string in which you want to change the case of all the characters.
While this can be any expression that evaluates to a string, this should be
a string variable. Changing the case of a string constant has no effect.

INVERT
A keyword directing VAXTPU to change the specified characters from their
current case to the opposite case. If the characters are uppercase, they are
changed to lowercase; if the characters are lowercase, they are changed to
uppercase.

LOWER
A keyword directing VAXTPU to change the specified characters to
lowercase.

UPPER
A keyword directing VAXTPU to change the specified characters to
uppercase.

DESCRIPTION CHANGE_CASE does not return a result. It changes the case of the
characters you specify in place.

SIGNALED
ERRORS

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

CHANGE_CASE requires two
parameters.

CHANGE_CASE accepts only two
parameters.

One of the parameters to
CHANGE_CASE is of the wrong
data type.

7-43

VAXTPU Built-In Procedures
CHANGE_CASE

TPU$_1NVPARAM ERROR One of the parameters to
CHANGE_CASE is of the wrong
data type.

TPU$_BADKEY WARNING 'l'ou gave the wrong keyword to
CHANGE_CASE.

TPU$_NOTMODIFIABLE WARNING You cannot change the case of
text in an unmodifiable buffer.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of CHANGE_CASE.

EXAMPLES

D CHANGE CASE (CURRENT_BUFFER, UPPER)

This statement makes all the characters in the current buffer uppercase.
If you enter this statement on the command line of your interface, you see
the effects immediately. If you use this statement within a procedure, you
see the effect of the statement at the next screen update.

!i CHANGE CASE (my_range, LOWER)

i]

This statement makes all the characters in my _range lowercase. If my_
range is part of a buffer that is mapped to a window, you see the command
take effect immediately.

PROCEDURE user lowercase line
LOCAL this_line; -

this line := ERASE LINE;
CHANGE_CASE (this_line, LOWER);
SPLIT_LINE;
MOVE_VERTICAL (-1);
COPY_TEXT (this_line);

END PROCEDURE

This procedure changes the current line to lowercase.

m PROCEDURE user_upcase_item
ON ERROR

7-44

! In case no string is found during search
MESSAGE ("No current item.");
RETURN;

· ENDON_ERROR;

delimiters
current item
item_range
CHANGE CASE

END PROCEDURE

:=" "+ ASCII(9);
:= ANCHOR & SCAN (delimiters);
:= SEARCH (current item, FORWARD,

(item_range, UPPER);
NO_EXACT);

This procedure puts the current text object in uppercase.

j

"' i)

(

(u

COMPILE

FORMAT

VAXTPU Built-In Procedures
COMPILE

Converts VAXTPU procedures and statements into an internal, compiled
format. Valid items for compilation can be represented by a string, a range, or
a buffer. COMPILE optionally returns a program.

[program:=] COMPILE ({ ~:;:; })
strmg

PARAMETERS buffer
A buffer that contains only valid VAXTPU declarations and statements.

range
A range that contains only valid VAXTPU declarations and statements.

string
A string that contains only valid VAXTPU declarations and statements.

return value The program created by compiling the declarations and statements in the
string, range, or buffer.

DESCRIPTION The program that COMPILE optionally returns is the compiled form
of valid VAXTPU procedures, statements, or both. You can assign
the compiled version of VAXTPU code to a variable name. VAXTPU
statements, as well as procedure definitions, can be stored in the program
returned by COMPILE. Later in your editing session, you can execute the
VAXTPU code that you compiled by using the program as a parameter
for the built-in procedure EXECUTE. You can also use the program as
a parameter for the built-in procedure DEFINE_KEY to define a key to
execute the program. Then you can execute the program by pressing that
key.

COMPILE returns a program variable only if the compilation generates
executable statements. COMPILE does not return a program variable if
you compile any of the following:

• Null strings or buffers

• Procedure definitions that do not have any executable statements
following them

• Programs with syntax errors

VAXTPU cannot compile a string, range, or line of text in a buffer longer
than 256 characters. If VAXTPU encounters a longer string, range, or line,
VAXTPU truncates characters after the 256th character and attempts to
compile the truncated string, buffer, or range.

VAXTPU Built-In Procedures
COMPILE

SIGNALED
ERRORS

EXAMPLES

If necessary, use the built-in procedure SET (INFORMATIONAL, ON)
before compiling a procedure interactively to see the compiler messages.

To check the results of a compilation to determine whether execution is
possible, U:se the following statement in a program:

x := COMPILE (my_range);
!if the program is nonz~ro, continue
IF x <> 0
THEN

ENDIF;

If x = 0, no program was generated because of compilation errors or
because there were no executable statements. The statement "IF x <>
0 THEN" allows your program to continue as long as a program was
generated.

You can also use an ON_ERROR statement to check the result of a
compilation. This statement tells you whether the compilation completed
successfully; it does not tell you whether execution is possible. You can use
an ON_ERROR statement when compiling code consisting of procedure
definitions without following executable statements. For more information
on using ON_ERROR statements, see Section 3.8.4.7.

TPU$_COMPILEFAIL

TPU$_ARGMISMATCH

TPU$_ TOO FEW
TPU$_ TOOMANY

ERROR

ERROR

ERROR
ERROR

Compilation aborted because of
syntax errors.
The data type of a parameter
passed to the COMPILE built-in is
unsupported.
Too few arguments.
Too many arguments.

D dwn := COMPILE ("MOVE_VERTICAL (1) ")

7-46

This assignment statement associates the MOVE_ VERTICAL (1) function
with the variable dwn. You can use the variable dwn with the built-in
procedure EXECUTE to move the editing point down one line.

. ..__
\

I

/

_)

G
I user_program .- COMPILE (main_buffer)

VAXTPU Built-In Procedures
COMPILE

This assignment statement compiles the contents of the main buffer. If
the buffer contains executable statements, VAXTPU returns a program
that stores these executable commands. If the buffer contains procedure
definitions, VAXTPU compiles the procedures and lists them in the
procedure definition table so that you can call them in one of the following
ways:

• Enter the name of the procedure after the appropriate prompt from
the interface you are using.

• Call the procedure from within other procedures.

7-47

VAXTPU Built-In Procedures
CONVERT

CONVERT

FORMAT

Given the coordinates of a point in one coordinate system, returns the
corresponding coordinates for the point in the coordinate system you specify.

{
DECW_ROOT_ WINDOW } { CHARACTERS, }

CONVERT (SC?REEN , COORDINATES
wmdow '

from_x_integer, from_y_integer,

{
DECW_ROOT_ WINDOW } { CHARACTERS, }
SCREEN ' COORDINATES
wmdow '

to_x_integer, to_y_integer)

PARAMETERS DECW ROOT WINDOW

7-48

Specifies the coordinate system to be that used by the root window of the
screen on which VAXTPU is running.

SCREEN
Specifies the coordinate system to be that used by the DECwindows
window associated with VAXTPU's top-level widget.

window
Specifies the coordinate system to be that used by the VAXTPU window.

CHARACTERS
Specifies a system that measures screen distances in rows and columns, as
a character-cell terminal does. In a character-cell-based system, the cell in
the top row and the leftmost column has the coordinates (1,1). _.1

COORDINATES
Specifies a DECwindows coordinate system in which coordinate units
correspond to pixels. The pixel in the upper left corner has the coordinates
(0, 0).

from_x_integer
from_y_integer
Integer values representing a point in the original coordinate system and
units.

to_x_integer
to _y _integer
Variables of type integer representing a point in the specified coordinate
system and units. Note that the previous contents of the parameters are
deleted when VAXTPU places the resulting values in them. You must
specify VAXTPU variables for the parameters to_x_integer and to_y_
integer. Passing a constant integer, string or keyword value causes an

(

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
CONVERT

error. (This requirement does not apply to the parameters from_x_integer
and from_y_integer.)

The converted coordinates are returned using the to_x_integer and to_y_
integer parameters. Note that coordinate systems are distinguished both
by units employed and where each places its origin.

TPU$_ARGMISM'ATCH ERROR The data type of the indicated
parameter is not supported by
CONVERT.

TPU$_BADDELETE ERROR You are attempting to modify
an integer, keyword, or string
constant.

TPU$_1NVPARAM ERROR One of the parameters was
specified with dat.a of the wrong
type.

TPU$_ TOOFEW ERROR Too few arguments passed to
CONVERT.

TPU$_ TOOMANY ERROR Too many arguments passed to
CONVERT.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_WINDNOTVIS WARNING CONVERT cannot operate on an
invisible window.

PROCEDURE user convert

LOCAL source_x,
source_y,
dest_x,
dest_y;

source_x :-= l;
source_y :-= l;
dest_x :-= 0;
dest_y :-= O;

. CONVERT (CURRENT_WINDOW, COORDINATES, source_x, source_y,
SCREEN, COORDINATES, dest_x, dest_y);

ENDPROCEDURE;

.

This example converts a point's location from the current window's
coordinate system (with the origin in the upper left-hand corner of the
window) to the VAXTPU screen's coordinate system (with the origin in
the upper left-hand corner of the VAXTPU screen). For more .information
about the difference between a VAXTPU window and the VAXTPU screen,

7-49

VAXTPU Built-In Procedures
CONVERT

7-50

see Section 4.3. If the current window is not the top window, CONVERT
changes the value of the y-coordinate to reflect the difference in the
VAXTPU screen's coordinate system. For another example of a procedure
using the CONVERT built-in, see Example B-1.

_..,/

\

CG

.(

u

VAXTPU Built-In Procedures
COPY_TEXT

COPY TEXT

Makes a copy of the text you specify and places it in the current buffer.

FORMAT
(range2 == J °COPY_TEXT ({ ~:;::1 })

strmg

PARAMETERS buffer

return value

The buffer containing the text you want to copy.

range1
The range containing the text you want to copy.

string
A string, a variable name representing a string constant, or an expression
that evaluates to a string, representing the text you want to copy.

The range where the copied text has been placed.

DESCRIPTION If the current buffer is in insert mode, the text you· specify is inserted
before the current position in the current buffer. If the current buffer is in
overstrike mode, the text you specify replaces text starting at the current
position and continuing for the length of the string, range, or buffer.

Note: You cannot add a buffer or a range to itself. If you try to add
a buffer to itself, VAXTPU issues an error message. If you try
to insert a range into itself, part of the range is copied before
VAXTPU signals an error. If you try to overstrike a range into
itself, VAXTPU may or may not signal an error.

Using COPY_TEXT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. COPY_TEXT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the. beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

7-51

VAXTPU Built-In Procedures
COPY_TEXT

SIGNALED
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

ERRORS
TPU$_NOCOPYBUF WARNING Trying to copy a buffer to itself is

not allowed.

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_OVERLAPRANGE ERROR You tried to put the contents of a
range into that same range instead
of into another structure.

TPU$_ TOOFEW ERROR COPY_ TEXT requires one
argument.

TPU$_ TOOMANY ERROR COPY_ TEXT accepts only one
argument.

TPU$_ARGMISMATCH ERROR The argument to COPY_ TEXT
must be a string, range, or buffer.

TPU$_NOTMODIFIABLE ERROR You cannot copy text into an
unmodifiable buffer.

TPU$_LINETOOLONG WARNING The line exceeds VAXTPU's
maximum line length.

TPU$_TRUNCATE WARNING Characters have been truncated
because you tried to add text that
would exceed the maximum line
length.

EXAMPLES
D COPY TEXT ("Perseus is near Andromeda")

When the buffer is set to insert mode, this statement causes the string
"Perseus is near Andromeda" to be placed just before the current position ,'\
in the current buffer. j

i COPY TEXT (ASCII (10))

When the buffer is set to overstrike mode, this statement causes the
ASCII character for line feed to replace the current character in the
current buffer.

§ PROCEDURE user_simple_insert

7-52

IF BEGINNING_OF (paste_buffer) = END OF (paste_buffer)
THEN

MESSAGE ("Nothing to INSERT");
ELSE

COPY TEXT (paste_buffer);
ENDIF;

END PROCEDURE

This procedure implements a simple INSERT HERE function. It assumes
that there is a paste buffer and that this buffer contains the most recently
deleted text. The procedure copies the text from that buffer into the
current buffer.

(
'

VAXTPU Built-In Procedures
CREATE_ARRAY

CREATE ARRAY

Creates an array.

FORMAT I array:= I
CREATE_ARRAY f (integer1 [, integer2]J) J

PARAMETERS integer1

return value

DESCRIPTION

The number of integer-indexed elements to be created when the array
is created. VAXTPU processes elements specified by this parameter
more quickly than elements created dynamically. You can add integer
indexed elements dynamically, but they are not processed as quickly as
predeclared, integer-indexed elements.

integer2
The first predeclared integer index of the array. The predeclared integer
indexes of the array extend from this integer through to integer2 + integer 1
- 1. This parameter defaults to 1.

The variable that is to contain the newly created array.

This built-in creates an array.

In VAXTPU, an array is a one-dimensional collection of data values that
can be considered or manipulated as a unit.

To create an array variable called foo, use the CREATE_.ARRAY built-in as
follows:

foo := CREATE_ARRAY;

VAXTPU arrays can have a static portion, a dynamic portion, or both. A
static array or portion of an array contains predeclared, integer-indexed
elements. These elements are allocated contiguous memory locations to
support quick processing. To create an array with a static portion, specify
the number of contiguous, integer-indexed elements when you create the
array. You also have the option of specifying a beginning index number
other than 1. For example, the following statement creates an array with
100 predeclared integer-indexed elements starting at 15:

foo := CREATE_ARRAY (100, 15);

All static elements of a newly created array are initialized to the data type
unspecified.

A dynamic portion of an array contains elements indexed with expressions
evaluating to any VAXTPU data type except unspecified, learn, pattern, or
program. Dynamic array elements are dynamically created and deleted as
needed. To create a dynamic array element, assign a value to an element
of an existing array. For example, the following statement creates a

7-53

VAXTPU Built-In Procedures
CREATE_ARRAY

7-54

dynamic element in the array foo indexed by the string "bar" and assigns
the integer value 10 to the element:

foo{"bar") := 10;

To create an array with both static and dynamic elements, first create
the static portion of the array. Then use assignment statements to create
as many dynamic elements as you wish. For example, the following code
fragment creates an array stored in the variable small_array. The array
has 15 static elements and one dynamic element. The first static element
is given the value 10. The dynamic element is indexed by the string "fred"
and contains the value 100.

small_array := CREATE_ARRAY (15);
small_array{l} := 10;
small_array{ "fred"} := 100;

To delete a dynamic array element, assign to it the constant TPU$K_
UNSPECIFIED, which is of type unspecified.

One array can contain elements indexed with several data types. For
example, you can create an array containing elements indexed with
integers, buffers, windows, markers, and strings. An array element can be
of any data type. All array elements of a newly created array are of type
unspecified.

If the same array has been assigned to more than one variable, VAXTPU
does not create multiple copies of the array. Instead, each variable points
to the array that has been assigned to it. VAXTPU arrays are reference
counted, meaning that each array has a counter keeping track of how
many variables point to it. VAXTPU arrays are autodelete data types,
meaning that when no variables point to an array, the array is deleted
automatically. You can also delete an array explicitly using the DELETE
built-in. For example, the following statement deletes the array foo:

DELETE (foo);

If you delete an array that still has variables "pointing to it, the variables
receive the data type unspecified after the deletion.

If you modify an array pointed to by more than one variable, modifications
made using one vari~ble show up when another variable references the
modified element. To duplicate an array, you must write a procedure
creating a new array and copying the old array's elements to the new
array.

To refer to an array element, use the array variable name followed by an
index expression enclosed in braces or parentheses. For example, if bar
were a variable of type marker, the following statement would assign the
integer value 10 to the element indexed by bar:

foo{bar} := 10;

You can perform the same operations on array elements that you can on
other VAXTPU variables, with one exception-you cannot make partial
pattern assignments to array elements.

See Chapter 2 for additional information about arrays.

G
SIGNALED
ERRORS TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_1NVPARAM

TPU$_MINVALUE.

TPU$_MAXVALUE

TPU$_GETMEM

EXAMPLES

VAXTPU Built-In Procedures
CREATE_ARRAY

ERROR CREATE_ARRAY accepts no
more than two arguments.

ERROR CREATE_ARRAY must appear
on the right-hand side of an
assignment statement.

ERROR The arguments to CREATE_
ARRAY must be integers.

WARNING The first argument to CREATE_
ARRAY must be 1 or greater.

WARNING The first argument to CREATE_
ARRAY must be no greater than
65,535.

ERROR VAXTPU could not create the
array because VAXTPU <;lid not
have enough memory.

D arrayl := CREATE_ARRAY;

I

iJ

This assignment statement above creates an array and assigns it to the
variable array 1.

array2 := CREATE_ARRAY(10);

This assignment statement also creates an array. This array has ten
predeclared integer-indexed elements that can be processed quickly by
VAXTPU. It can also be indexed by any other VAXTPU data type except
pattern, program, learn, and unspecified.

array3 := CREATE_ARRAY(11, -5);

This assignment statement creates an array that can be indexed by the
integers -5 through 5. It can also be indexed by any other VAXTPU data
type other than patterns and learn sequences.

7-55

VAXTPU Built-In Procedures
CREATE_BUFFER

CREATE BUFFER

FORMAT

Defines a new work space for editing text. You can create an empty buffer
or you can associate an input file name with the buffer. CREATE_BUFFER
optionally returns a buffer.

(buffer2 :: J CREATE_BUFFER (string1 /[,string2 f,buffer1]J]J)

PARAMETERS string1
A string representing the name of the buffer you want to create.

string2
A string representing the file specification of an input file that is read into
the buffer.

buffer1
The buffer that you want to use as a template for tlie buffer to be created.
The information copied from the template buffer includes the following:

• End-of-buffer text ,r-')-

7-56

• Direction (FORWARD/REVERSE) ,.,,,

• Text entry mode (INSERT/OVERSTRIKE)

• Margins (right and left)

• Margin action routines

• Maximum number of lines

• Write-on-exit status (NO_ WRITE)

• Modifiable status

• Tab stops

• Key map list

VAXTPU does not copy the following attributes of the template buffer to
the new buffer:

• Buffer contents

• Marks or ranges

• Input file name

• Mapping to windows

• Cursor position

• Editing point

• Associated subprocesses

• Buffer name

• Permanent status, if that is an attribute of the template buffer

_ _I

(

return value

VAXTPU Built-In Procedures
CREATE_BUFFER

• System status, if that is an attribute of the template buffer

The buffer created by CREATE_BUFFER.

DESCRIPTION Although you do not have to assign the buffer that you create to a variable,
you need to make a variable assignment if you want to refer to the buffer
for future use. The buffer variable on the left-hand side of an assignment
statement is the item that you must use when you specify a buffer as a
parameter for other VAXTPU built-in procedures. For example, to move to
a buffer for editing, enter the buffer variable after the built-in procedure
POSITION:

my_buffer_variable := CREATE_BUFFER ("my_buffer_name", "my_file_name");

POSITION (my_buffer_variable);

The buffer name that you specify as the first parameter for the built-in
procedure CREATE_BUFFER (for example, "my_buffer_name" is used by
VAXTPU to identify the buffer on the status line). You can change the
status line with the built-in procedure SET (STATUS_LINE).

You can create multiple buffers. Buffers can be empty or they can contain
text. The current buffer is the buffer in which any VAXTPU commands
that you execute take effect (unless you specify another buffer). Only one
buffer can be the current buffer. See the built-in procedure CURRENT_
BUFFER for more information.

A buffer is visible when it is associated with a window that is mapped to
the screen. A buffer can be associated with multiple windows, in which
case any edits that you make to the buffer are reflected in all of the
windows in which the buffer is visible. To get a list of all the buffers in
your editing context, use the built-in procedure SHOW (BUFFERS).

The following keywords used with the built-in procedure SET allow you
to establish attributes for buffers. The text describes the default for the
attributes:

• SET (EOB_TEXT, buffer, string) -The default end-of-buffer text is
[EOBJ.

• SET (FORWARD, buffer)-The default direction is forward.

• SET (INSERT, buffer) --:-- The default mode of text entry is insert.

• SET (LEFT_MARGIN, buffer, integer) -The default left margin is 1
(that is, the left margin is set in column 1).

• SET (LEFT_MARGIN_ACTION, buffer, program_source)- By default.
buffers do not have left margin action routines.

• SET (MARGINS, buffer, integerl, integer2) - The default left margin
is 1 and the default right margin is 80.

• SET (MAX_LINES, buffer, integer) -The default maximum number
of lines is O (in other words, this feature is turned off).

• SET (MODIFIABLE, buffer, { g~F }) - By default, a buffer can be

modified. Using the OFF keyword makes a buffer unmodifiable.

VAXTPU Built-In Procedures
CREATE_BUFFER

SIGNALED
ERRORS

7-58

• SET (MODIFIED, buffer, { g~F }) - Turns on or turns off the bit

indicating that the specified buffer has been modified.

• SET (NO_ WRITE, buffer [,keyword]) - By default, when you exit
from VAXTPU, the buffer is written if it has been modified.

• SET (OUTPUT_FILE, buffer, string) - The default output file is the
input file specification with the highest existing version number for
that file plus 1.

• SET (OVERSTRIKE, buffer) - The default mode of text entry is
insert.

• SET (PERMANENT, buffer) - By default, the buffer can be deleted.

• SET (REVERSE, buffer) _,. The default direction is forward.

• SET (RIGHT_MARGIN, buffer, integer) - The default right margin is
80.

• SET (RIGHT_MARGIN_ACTION, buffer, program_source) - By
default, buffers do not have right margin action routines.

• SET (SYSTEM, buffer) - By default, the buffer is a user buffer.

• SET (TAB STOPS, buffer, { ~tnnt· g }> -The default tab stops are - m eger
set every eight character positions.

See the built-in procedure SET for more information on these keywords.

TPU$_DUPBUFNAME WARNING First argument to the CREATE_
BUFFER built-in must be a unique
string.

TPU$_ TOOMANY ERROR The CREATE_BUFFER built-
,in takes a maximum of two
arguments.

TPU$_ TOO FEW ERROR The CREATE_BUFFER built-in
requires at least one argument.

TPU$_1NVPARAM ERROR The CREATE_BUFFER built-in
accepts parameters of type string
or buffer only.

TPU$_GETMEM ERROR VAXTPU ran out of virtual memory
trying to create the buffer.

TPU$_0PENIN ERROR CREATE_BUFFER did not open
the specified input file.

' '\

/

n~
·.,..,,_;

(

EXAMPLES

VAXTPU Built-In Procedures
CREATE_BUFFER

D nb := CREATE BUFFER ("new_buffer", "login.corn")

This statement creates a buffer called NEW _BUFFER and stores a pointer
to the buffer in the variable nb. Use the variable nb when you want to
specify this buffer as a parameter for VAXTPU built-in procedures. The
file specification "LOGIN.COM" is the input file for NEW _BUFFER.

default_buffer := CREATE_BUFFER (•'defaults");
SET (REVERSE, default_buffer);
b := CREATE_BUFFER ("buffer", 1111

, default_buffer);

The first statement in thi_s example creates a buffer called DEFAULTS
and stores a pointer to the buffer in the variable default_buffer. The
second statement sets the direction of default_buffer to reverse. The third
statement creates a buffer called BUFFER and stores a pointer to the
buffer in the variable b. This statement takes default information from
default_buffer. Note that buffer b does not receive any text, marks, or
ranges from the buffer default_buffer.

PROCEDURE user_help_buffer
help_buf := CREATE_BUFFER("help_buf");
SET (EOB_TEXT, help_buf, "(End of HELP)");
SET (NO_WRITE, help_buf);
SET (SYSTEM, help_buf);

ENDPROCEDURE

This procedure creates the help buffer.

VAXTPU Built-In Procedures
CREATE_KEY _MAP

CREATE KEV MAP

FORMAT

PARAMETER

return value

Creates and names a key map. CREATE_KEY _MAP optic;mally returns a
string that is the name of the key map created.

(string2 :: J CREATE_KEY _MAP (string1)

string1
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map you create.

A string that is the name of the key map created.

DESCRIPTION A key map is a set of key definitions. Key maps allow you to manipulate
key definitions as a group. Key maps and their key definitions are saved
in section files. The default key map for VAXTPU is TPU$KEY_MAP,
contained in the default key map list TPU$KEY_MAP _LIST. See the
description of~~ key map lists.

SIGNALED
ERRORS

7-60

The EVE editor does not use the default key map, TPU$KEY_MAP.
In EVE, the name of a key map is not the same as the variable that
contains the key map. For example, the EVE variable EVE$X_USER_
KEYS contains the key map named EVE$USER_KEYS, which stores the
user's key definitions. EVE stores all its key maps in the default key map
list, TPU$KEY_MAP _LIST. However, the default key map, TPU$KEY_
MAP, is removed from the default key map list by the standard EVE
section file.

When you create a key map, its keys are undefined. Each key map can
hold definitions for all characters in the DEC Multinational Character Set,
and all the keypad keys and the function keys, in both their shifted and
unshifted forms. Each key map has its own name (a string). This name
cannot be the same as that of either another key map or a key map list.

TPU$_DUPKEYMAP WARNING A key map with this name already
exists.

TPU$_ TOO FEW ERROR Too few arguments passed to the
CREATE_KEY _MAP built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the CREATE_KEY _MAP built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
CREATE_::KEY _MAP built-in.

j

~
·,,_,I

C

EXAMPLE

VAXTPU Built-In Procedures
CREATE_KEV _MAP

PROCEDURE init_sample_key_map

sample_key_map := CREATE_KEY_MAP ("sample_key_map");

DEFINE KEY ("EXIT", CTRL Z KEY, "Exit application", sample key map);
DEFINE=KEY ("COPY_TEXT ('XYZZY')", CTRL_B_KEY, "Magic Word", sample_key_map);

·ENDPROCEDURE

This procedure creates a key map and defines two keys in the key map.
The name of the key map is stored in the variable sample_key _map.

., ,,,, ..

VAXTPU Built-In Procedures
CREATE_KEY _MAP _LIST

CREATE, KEY MAP LIST

FORMAT

Creates and names a key map list, and also specifies the initial key maps
in the key map list it creates. CREATE_KEY _MAP _LIST optionally returns a
string that is the name of the key map list created.

(string3 == J
CREATE_KEY_MAP _LIST (string1, string2 /[, .. .})

PARAMETERS string1

return value

A quoted string, or a variable name representing a string constant, that
specifies the name of the key map list that you create.

string2
Strings that specify the names of the initial key maps within the key map
list you create.

A string that is the name of the key map list created.

DESCRIPTION A key map list is an ordered set of key maps. Key map lists allow you to
change the procedures bound to your keys. To find the definition of a given
key, VAXTPU searches through the key maps in the specified or default
key map list until VAXTPU either finds a definition for the key or reaches
the end of the last key map in the list.

7-62

VAXTPU provides the default key map list, TPU$KEY_MAP _LIST,
containing the default key map, TPU$KEY_MAP. (See the description
of the built-in procedure CREATE_KEY_MAP for more inf9rmation on key
maps.)

The built-in procedure CREATE_KEY_MAP _LIST creates a new key map
list, names the key map list, and specifies the initial key maps contained
in the list.

Key map lists store directions on what VAXTPU is to do when the user
presses an undefined key associated with a printable character. By
default, a key map list directs VAXTPU to insert undefined printable
characters into the current buffer. To change the default, use the built-in
procedure SET (SELF _INSERT).

A newly created key map list is not bound to any buffer. To bind a key
map list to a buffer, use the built-in procedure SET (KEY_MAP _LIST).
When you use the POSITION built-in to select a current buffer, the key
map list that is bound to the buffer is automatically activated.

A newly created key map list has no procedure defined to be called when
an undefined key is referenced. You can define such a procedure with the
built-in procedure SET (UNDEFINED_KEY). The default is to display the
message "key has no definition."

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
CREATE_KEY _MAP _LIST

Key map lists are saved in section files, along with any undefined key
procedures and the SELF _INSERT settings.

TPU$_DUPKEYMAP WARNING The string argument is already
defined as a key map.

TPU$_DUPKEYMAPLIST WARNING The string argument is already
defined as a key map list.

TPU$_NOKEYMAP WARNING The string argument is not a
defined key map.

TPU$_ TOO FEW ERROR Too few arguments passed to the
CREATE_KEY _MAP _LIST built-in.

TPU$_ TOOMANY ERROR· Too many arguments passed to
the CREATE_KEY _MAP _LIST
built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
CREATE_KEY _MAP _LIST built-in.

PROCEDURE init_help_key_map_list

help_user_keys := CREATE_KEY_MAP ("help_user_keys");
help keys := CREATE KEY MAP ("help keys");
help=key_list := CREATE=KEY_MAP_LIST ("help_key_list", help_user_keys,

help_keys);
END PROCEDURE

This procedure creates two key maps and groups them into a key map list.

VAXTPU Built-In Procedures
CREATE_PROCESS

CREATE PROCESS

FORMAT

Starts a subprocess and associates a buffer with it. You. can optionally specify
an initial command to send to the subprocess. CREATE_PROCESS returns a
process.

process == CREATE_PROCESS (buffer [,string})

PARAMETERS buffer
The buffer in which VAXTPU stores output from the subprocess.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that represents the first command
that you want to send to the subprocess. If you do not want to include the
first command when you use the built-in procedure CREATE_PROCESS,
see the built-in procedure SEND for a description of how to send the first
or subsequent commands to a subprocess.

return value The process created.

DESCRIPTION You can create multiple subprocesses. When you exit from VAXTPU, any
subprocesses you have created with CREATE_PROCESS are deleted. If
you want to remove a subprocess before exiting, use the built-in procedure
DELETE with the process as a parameter (DELETE (pl)), or set the
variable to integer zero as follow·s:

SIGNALED
ERRORS

7-64

procl := 0

CREATE_PROCESS creates a subprocess of a VAXTPU session and all of
the output from the subprocess goes into a VAXTPU buffer. You cannot
run a program or utility that takes over control of the screen from a
process created with this built-in procedure. (See Chapter 2 for a list
of subprocess restrictions.) You can, however, use the built-in procedure
SPAWN to create a subprocess that suspends your VAXTPU process and
places you directly at DCL level. You can then run programs such as FMS
or PHONE that control the whole screen.

TPU$_DUPBUFNAME WARNING First argument must be a unique
string.

TPU$_CREATEFAIL WARNING Unable to activate the subprocess.

TPU$_ TOOFEW ERROR Too few arguments passed to the
CREATE_PROCESS built-in.

1J,,
. '

·,__/

I

\

(U

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_1NVPARAM

TPU$_CAPTIVE

TPU$_NOTMODIFIABLE

TPU$_NOPROCESS

TPU$_SENDFAIL

TPU$_DELETEFAIL

VAXTPU Built-In Procedures
CREATE_PROCESS

ERROR Too many arguments passed to
the CREATE_PROCESS built-in.

ERROR The CREATE_PROCESS built-in
call must be on the right-hand side
of an assignment statement.

ERROR Wrong type of data sent to the
CREATE_PROCESS built-in.

WARNING Unable to create a subprocess in
a captive account.

WARNING Attempt to change unmodifiable
buffer. You can only write the
output of the subprocess to a
modifiable buffer.

WARNING No subprocess to interact with.
The process was deleted between
the time that it was created and
when VAXTPU attempted to send
information to it.

WARNING Unable to send data to the
subprocess.

WARNING Unable to terminate the
subprocess.

EXAMPLES

D my_mail_process := CREATE_PROCESS (second_buffer, "mail")

This assignment statement creates a subprocess and specifies SECOND_
BUFFER as the buffer in which the output from the subprocess is
stored. It also sends the DCL MAIL command as the first command to
be executed.

! Create a buffer to hold the output from the DCL commands·
! "SET NOON" and "DIRECTORY".

PROCEDURE user_dcl_process
dcl_buffer := CREATE_BUFFER ("dcl_buffer");
MAP (main_window, dcl_buffer);
my_dcl_process := CREATE_PROCESS (dcl_buffer, "SET NOON");
MESSAGE ("Creating DCL subprocess ... ");
SEND ("DIRECTORY", my_dcl_process);

END PROCEDURE

This procedure creates a buffer to hold the output from the DCL
commands executed by the subprocess.

7-65

VAXTPU Built-In Procedures
CREATE_RANGE

CREATE RANGE

FORMAT

Returns a range that includes two markers and all the characters between
them. You can specify how the characters in the range are to be displayed
when they are visible on the screen (no special video, reverse video, bolded,
blinking, or underlined). The default is no special video.

range :: CREATE_RANGE (start_mark, end_mark

/[, video_attribute JI)

PARAMETERS start mark

return value

DESCRIPTION

7-66

The starting mark for the range.

end mark
The ending mark for the range.

video attribute
A keyword designating the new video attribute for the range. The
attribute can be NONE, REVERSE, UNDERLINE, BLINK, or BOLD.
If you do not specify the parameter, the default is NONE.

The range created by CREATE_RANGE.

CREATE_RANGE establishes a range that is delimited by the markers
you specify. You can create multiple ranges in a buffer. When you apply
video attributes to a range, you can see the range if it is in a visible buffer.
A range may overlap another range. ·

If you clear the contents of a range with the built-in procedure ERASE,
the range structure still exists. The range and its video attributes, if any,
move to the next character or position beyond where the range ended
before the range was erased.

To remove the range structure, use the built-in procedure DELETE or set
the variable to which the range is assigned to zero (rl := 0).

In portions of a range that either are associated with nonprintable
characters or are not associated with characters at all, VAXTPU does
not display. any of the video attributes of the range. However, if you insert
new characters into portions of a range where the video attributes have
not been displayed, the new characters do display the video attributes that
apply to the range.

CREATE_RANGE checks whether the markers you specify as parameters
are free markers. A free marker is a marker not bound to a character.
For more information on free markers, see the description of the MARK
built-in in this chapter and the discussion of markers in Chapter 2. If
you create a range by specifying a free marker as a parameter to the

\
' /

G

(
'---

,{ j
,\,_I
\

VAXTPU Built-In Procedures
CREATE_RANGE

CREATE_RANGE built-in, VAXTPU creates a new marker and binds it to
the text nearest to the free marker position. VAXTPU uses the new bound
marker as the range delimiter.

SIGNALED
ERRORS

TPU$_NOTSAMEBUF WARNING . First and second marker are in
different buffers.

TPU$_ TOOFEW ERROR CREATE_RANGE requires three
parameters.

TPU$_ TOOMANY ERROR CREATE_RANGE accepts no
more than three parameters.

TPU$_NEEDTOASSIGN ERROR CREATE_RANGE must appear
on the right-hand side of an
assignment statement.

TPU$_1NVPARAM ERROR One of your arguments to
CREATE_RANGE is of the wrong
type.

TPU$_BADKEY WARNING You specified an illegal keyword.

EXAMPLES
D my_range := CREATE_RANGE (start_mark, end_mark, BOLD)

I

This assignment statement creates a range starting. at start_mark and
ending at end_mark. When this range is visible on the screen, the
characters in the range are bolded.

PROCEDURE user erase to eob

LOCAL start_of_range,
here_to_eob;

start_of_range := MARK (NONE);
here to EOB := CREATE RANGE (start_of_range,

END_OF (CURRENT_BUFFER),
NONE);

ERASE (here_to_eob);
END PROCEDURE

This procedure erases the text in the current buffer, starting at the editing
point, and erasing text until the end of the buffer is reached.

VAXTPU Built-In Procedures
CREATE_ WIDGET

CREATE WIDGET

FORMAT

Creates a widget instance. The CREATE_WIDGET built-in has two variants
with separate syntaxes. One variant creates and returns a widget using the
intrinsics or a XUI Toolkit low-level creation routine. The other variant creates
an entire hierarchy of widgets (as defined in an XUI Resource Manager
database) and returns the topmost widget.

widget:= CREATE_WIDGET (widget_c/ass, widget_name,

{
parent_ widget }
SCREEN

{

!~~~~sequence }
ff, program

range
string

ff, closure

fl, widget_args ... J II II)

DESCRIPTION Creates the widget instance you specify, using the intrinsics or an XUI
Toolkit low-level creation routine. Although it has been created, the
returned widget is not managed and therefore not visible. The application
must call the MANAGE_ WIDGET built-in to make the widget visible.

FORMAT widget== CREATE_WIDGET (resource_manager_name, hierarchy_id,

{
parent_ widget }
SCREEN

{

!~~~~sequence }
ff, program

range
stri[lg

ff, closure

ff, widget_args ... J II II)

DESCRIPTION Creates and returns an entire hierarchy of widgets (as defined in an XUI
Resource Manager database) and returns the topmost widget. All children
of the returned widget are also created and managed. The topmost widget
is not managed; so none of the widgets created is visible.

7-68

If you specify one or more callback arguments in your User Interface
Language (UIL) file, specify either the routine TPU$WIDGET_INTEGER_
CALLBACK or the routine TPU$WIDGET_STRING_CALLBACK For
more information about specifying callbacks, see Section 4.2.4. For
more information about UIL files, see the VMS DECwindows Guide to
Application Programming.

VAXTPU Built-In Procedures
CREATE_WIDGET

When you use CREATE_ WIDGET to create a widget or hierarchy of
widgets organized by the XUI Resource Manager, CREATE_ WIDGET uses
the XUI Toolkit routine FETCH WIDGET.

PARAMETERS widget_class
The integer returned by DEFINE_ WIDGET_CLASS that specifies the
class of widget to be created.

widget_name.
A string that is the name to be given to the widget.

parent_ widget
The widget that is to be the parent of the newly created widget.

SCREEN
A keyword indicating that the newly created widget is to be the child of
VAXTPU's main window widget.

buffer
The buffer containing the interface callback routine. This code is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

learn_sequence
The learn sequence that is the interface callback routine. This is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

program
The program that is the interface callback routine. This is executed when
the widget performs a callback to VAXTPU; all widgets created with a
single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

range
The range containing the interface callback routine. This is executed when
the widget performs a callback to VAXTPU; all widgets created with a
single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

string
The string containing the interface callback routine. This is executed
when the widget performs a callback to VAXTPU; all widgets created with
a single CREATE_ WIDGET call use the same callback code. If you do not
specify this parameter, VAXTPU does not execute any callback code when
the widget performs a callback to VAXTPU.

7-69

VAXTPU Built-In Procedures
CREATE_WIDGET

return value

DESCRIPTION

7-70

closure
A string or integer. VAXTPU passes the value to the application when the
widget performs a callback to VAXTPU. For more information about using
closures, see Section 4.2.5.

If you do not specify this parameter, VAXTPU passes the closure value (if
any) given to the widget in the UIL.file defining the widget. If you specify
the closure value with CREATE_ WIDGET instead of in the UIL file, all
widgets created with "the same CREATE_ WIDGET call have the same
closure value.

widget_args
One or more pairs of resource names and resource values. You can
specify a pair in an array or as a pair of separate parameters. If you ·-,
use an array, you index the array with a string that is the name of the
resource you want to set. Note that resource names are case-sensitive.
The corresponding array element contains the value you want to assign to
that resource. The array can contain any number of elements. If you use
a pair of separate parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index
and its corresponding element value, or each string and its corresponding
value, must be valid widget arguments for the class of widget you are
creating.

resource_ manager_name
A case-sensitive string that is the name assigned to the widget in the UIL
file defining the widget.

hierarchy_id
The hierarchy identifier returned by the SET (DRM_HIERARCHY) built
in. This identifier is passed to the XUI Resource Manager, which uses the
identifier to find the resource name in the database. - \

The newly created widget instance.

The case of a widget's name in the User Interface Definition (UID) file
must match the case of the widget's name that you specify as a parameter
to CREATE_ WIDGET. If you specify case sensitive widget names in
your UIL file, you must use the same widget name case with CREATE_
WIDGET as you used in the UIL file. If you specify case insensitive widget
names in your UIL file, the UIL compiler translates all widget names to
uppercase, so in this instance you must use uppercase widget names with
CREATE_WIDGET. The example in the following subsection specifies case
insensitive widget names in the UIL file and specifies an uppercase name
for the widget with the CREATE_ WIDGET built-in.

(

SIGNALED
ERRORS

TPU$_BADKEY

TPU$_UNDWIDCLA

TPU$_1NVPARAM

TPU$_NEEDTOASSIGN

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_WIDMISMATCH

EXAMPLES

D PROCEDURE eve_display_example

LOCAL example widget,
example=widget_name,

VAXTPU Built-In Procedures
CREATE_WIDGET

WARNING You specified an invalid keyword
as a parameter.

WARNING You have specified a widget
class integer that is not known to
VAXTPU.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR CREATE_WIDGET must return a
value.

ERROR You can use CREATE_WIDGET
only if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed to
CREATE_WIDGET.

ERROR Too many arguments passed to
CREATE_WIDGET.

ERROR You have specified a widget whose
class is not supported.

Variable assigned to the created widget.
The name of the widget assigned
to this variable must be uppercase
if you specified case insensitive
widget names in the UIL file.

(_ example_hierarchy; XUI Resource Manager
hierarchy for this example.

ON ERROR
[OTHERWISE] : Traps errors.

ENDON_ERROR;

! Set the widget hierarchy. The default file spec is "SYS$LIBRARY: .UID"

example_hierarchy := SET (DRM_HIERARCHY, "mynode$dua0: [smith]example");

! The VAXTPU CREATE WIDGET built-in needs the name of the widget
! defined in the UIL file.

example_widget_name := "EXAMPLE_BOX"; The widget EXAMPLE_BOX is
defined in the file EXAMPLE.UIL.

! Create the widget if it has not already been created.

IF GET_INFO (example_widget, "type") <> WIDGET
THEN

example ·widget := CREATE WIDGET (example widget name, example hierarchy,
- - SCREEN~ eve$kt_caliback_routine);

! EVE defines eve$callback dispatch to be EVE's callback routine.
! You do not need to define it ·again if you are extending EVE.

ENDIF;

VAXTPU Built-In Procedures
CREATE_WIDGET

Map "example_widget" to the screen using MANAGE WIDGET.

MANAGE_WIDGET (example~widget);

RETURN (TRUE);

ENDPROCEDURE;

This procedure, eve_display_example, creates a modal dialog box widget
and maps the widget to the VAXTPU screen.

The procedure shows how to use the variant of CREATE_ WIDGET that
returns an entire widget hierarchy. To create a widget or widget hierarchy
using this variant, you must have available the compiled form of.a User
Interface Language (UIL) file specifying the characteristics of the widgets
you want to create. Digital recommends that you use one or more UIL files ··--.,
and the corresponding variant of CREATE_ WIDGET whenever possible,
because UIL is more efficient and because UIL files make it easier to
translate your application into other languages. For more information
about compiling and using UIL files, see the VMS DECwindows Guide to
Application Programming.

fi MODULE example

7-72

VERSION 'V00-000'

! This is a sample UIL file that creates a message box containing
! the message "Hello World".

NAMES case insensitive

VALUE

OBJECT

example_message 'Hello World' ;

example_box : message_box

arguments {
default_position = true; puts box in center work area

} ;
} ;

ok_label = example_button_label;
label_label = example_message;

END MODULE;

This example shows a sample UIL file describing the modal dialog box
called example_box. The UIL file specifies where the widget appears on
the screen, what label appears on the box's button, and what message the
widget displays.

For an example showing how to use the variant of CREATE_ WIDGET that
calls the XUI Toolkit low-level creation routine, see Example B-2.

\
'

VAXTPU Built-In Procedures
CREATE_WINDOW

CREATE WINDOW

FORMAT

Defines a screen area called a window. You must specify the screen line
number at which the window starts, the length of the window, and whether the
status line is to be displayed. CREATE_WINDOW optionally returns the newly
created window.

(window:= J
CREATE_WINDOW (integer1, integer2,

{ g~F }J

PARAMETERS integer1

return value

DESCRIPTION

The screen line number at which the window starts.

integer2
The number of rows in the window.

ON
A keyword directing VAX.TPU to display a status line in the new window.
The status line occupies the last row of a window. By default, the status
line is displayed in reverse video and contains the following information
about the buffer that is currently mapped to the window:

• The name of the buffer that is associated with the window

• The name of the file that is associated with the buffer, if one exists

See SET (STATUS_LINE) for information on changing the video attributes
of the status line and/or the information displayed on the status line.

OFF
Suppresses the display of the status line.

The window created by CREATE_ WINDOW.

CREATE_ WINDOW optionally returns the new window. If you want to
use the window that you create as a parameter for any other built-in
procedure, then you should specify a variable into which the window is
returned. ·

You can create multiple windows on the screen, but only one window can
be the current window. The cursor is positioned in the current window.
· The current window and the current buffer are not necessarily the same.

To make a window visible, you must associate a buffer with the window
and map the window to the screen. The following command maps main_
window to the screen:

MAP (rnain_window, rnain_buffer)

7-73

VAXTPU Built-In Procedures
CREATE_WINDOW

SIGNALED
ERRORS

7-74

See the built-in procedure MAP for further information.

The following keywords used with the built-in procedure SET allow you
to establish attributes for windows. This list shows the defaults for the
attributes:

• SET (PAD, window, keyword) - By default, there is no blank padding
on the right.

• SET (SCROLL_BAR) - By default, VAXTPU does not create
vertical and horizontal scroll bars for a window in the DECwindows
environment.

• SET (SCROLL_BAR_AUTO_THUMB)-By default, VAXTPU controls
the slider in any scroll bars in a window.

• SET (SCROLLING, window, keyword, integerl, integer2, integer3) -
The default cursor limit for scrolling at the top of the screen is the first
_line of the window; the default cursor limit for scrolling at the bottom
of the screen is the bottom line of the window. If the terminal type
you are using does not allow you to set scrolling regions, the window is
repainted.

• SET (STATUS_LINE, window, keyword, string) - The status line
may be ON or OFF according to the keyword specified for the built-in
procedure CREATE_ WINDOW. See the preceding description of the
keyword ON for information about the default attributes of a status
line.

• SET (TEXT, window1 keyword) - By default, the text is. set to
BLANK_TABS (tabs are displayed as blank spaces).

• SET (VIDEO, window, keyword) - There are no video attributes by
default.

• SET (WIDTH, window, integer) - By default, the width is the same as
the physical width of the terminal screen when the window is created.

See the built-in procedure SET for more information on these keywords.

Using the SHIFT built-in, you can display text that lies to the right of the
window's right edge in an unshifted window. For information on using
SHIFT, see the description of the built-in in this chapter.

TPU$_TOOFEW

TPU$_ TOOMANY

TPU$_BADKEY

ERROR

ERROR

ERROR

The CREATE_WINDOW built-in
requires exactly three parameters.

The CREATE_WINDOW built-in
accepts exactly three parameters.

The keyword must be either ON or
OFF.

C '

I

EXAMPLES

TPU$_1NVPARAM

TPU$_BADWINDLEN

TPU$_BADFIRSTLINE

VAXTPU Built-In Procedures
CREATE_WINDOW

ERROR One or more of the specified
parameters have the wrong type.

WARNING Invalid window length.

WARNING Invalid first line for window.

D new window := CREATE_WINDOW (11, l_0, ON)

This assignment statement creates a window that starts at screen line 11
and is 10 rows long, and assigns it to the variable new_window. A status
line is displayed as the last line of the window. To make this window
visible, you must associate an existing buffer with it and map the window
to the screen with the following command:

MAP (new_window, buffer_variable)

PROCEDURE user make window - -
new_window := CREATE_WINDOW(l, 21, OFF);
SET (TEXT, new_window, GRAPHIC_TABS);
new_buffer := CREATE_BUFFER ("user_buffer_name");
SET (NO_WRITE, new_buffer);
MAP (new_window, new_buffer);

ENDPROCEDURE

This procedure creates a window called new_window that starts at screen
line 1 and is 21 lines long. No status line is displayed. Tabs are displayed
as special graphic characters. The buffer new_buffer,' which is set to NO_
WRITE, is associated with the window and the window is mapped to the
screen.

7-75

VAXTPU Built-In Procedures
CURRENT _BUFFER

CURRENT BUFFER

Returns the buffer in which you are currently positioned.

FORMAT buffer== CURRENT_BUFFER

PARAMETERS None.

return value The buffer in which you are currently positioned.

DESCRIPTION The current buffer is the work space in which any VAXTPU statements
you execute take effect. The editing point is in the current buffer. Note
that the editing point is not necessarily the same as the cursor position.

SIGNALED
ERRORS

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

EXAMPLES

D rny_cur_buf := CURRENT BUFFER

ERROR

ERROR

WARNING

CURRENT_BUFFER takes no
parameters.

The CURRENT_BUFFER built-in
must be on the right-hand side of

· an assignment statement.

You are not positioned in a buffer.

This assignment statement stores a pointer to the current buffer in the
variable my _cur _buf

I SHOW (CURRENT_BUFFER)

This statement returns the buffer in which you are currently positioned
and uses that buffer as the parameter for the built-in procedure SHOW.

i PROCEDURE user_toggle_direction

7-76

IF CURRENT DIRECTION= FORWARD
THEN

SET (REVERSE, CURRENT_BUFFER);
ELSE

SET (FORWARD, CURRENT_BUFFER);
ENDIF;

ENDPROCEDURE

This procedure reverses the direction of the current buffer.

(
\

VAXTPU Built-In Procedures
CURRENT_CHARACTER

CURRENT CHARACTER
Returns the character at the editing point in the current buffer.

FORMAT string== CURRENT_CHARACTER

PARAMETERS None.

return value A string consisting of the character at the editing point in the current
buffer.

DESCRIPTION The editing point is the character position in the current buffer at which
most editing operations are carried out. Each buffer maintains its own
editing point, but only the editing point in the current buffer is the active
editing point. An editing point, which always refers to a character position
in a buffer, is not necessarily the same as the cursor position, which always
refers to a location in a window. For more information on the distinction
between the editing point and the cursor position, see Chapter 6.

SIGNALED
ERRORS

If the editing point is at the end of a line, CURRENT_CHARACTER
returns a null string. If the editing point is at the end of a buffer,
CURRENT_CHARACTER returns a null string and also signals a
warning.

Using CURRENT_CHARACTER may cause VAXTPU to insert padding
spaces or blank lines in the buffer. CURRENT_CHARACTER causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

TPU$_NOEOBSTR

ERROR CURRENT_CHARACTER takes
no parameters.

ERROR The CURRENT _CHARACTER
built-in must be on the right-hand
side of an assignment statement.

WARNING You are not positioned in a buffer.

WARNING You are positioned at the EOB
(end-of-buffer) mark.

1-n

VAXTPU Built-In Procedures
CURRENT_CHARACTER

EXAMPLES
D my_cur_char := CURRENT CHARACTER

This assignment statement stores the string that represents the editing
point in the variable my_cur _char. •

f:l MESSAGE (CURRENT_CHARACTER)

This statement returns the string that represents the editing point and
uses this string as the parameter for the built-in procedure MESSAGE.

m PROCEDURE user_display_current_character

7-78

This procedure returns the ASCII character in the editing point.

ascii char := CURRENT_CHARACTER;
IF as~ii char<>""

THEN
MESSAGE ("The current character is ' " + ascii char + "' ") ;

ELSE
MESSAGE ("There is no current character.");

ENDIF;
END PROCEDURE

This procedure writes the character that is at the current character
position into the message area.

(

l

VAXTPU Built-In Procedures
CURRENT_COLUMN

CURRENT COLUMN

Returns an integer that is the current column number of the cursor position on
the screen.

FORMAT integer== CURRENT_COLUMN

PARAMETERS None.

return value

DESCRIPTION

An integer that is the column number of the current cursor position on the
screen.

The current column is the column at which the cursor is positioned on
the screen. The column numbers range from 1 on the extreme left of the
screen to the maximum value allowed for the terminal type you are using
on the extreme right of the screen.

The value returned by the built-in procedure CURRENT_COLUMN
and the value returned by GET_INFO (SCREEN, "current_column") are
equivalent.

When used in a procedure, CURRENT_COLUMN does not necessarily
return the position where the cursor has been placed by other statements
in the procedure. VAXTPU generally does not update the screen until all
statements in a procedure are executed. If you want the cursor position
to reflect the actual editing location, put an UPDATE statement in your
procedure immediately before any statements containing CURRENT_
COLUMN, as follows:

UPDATE (CURRENT_WINDOW);

If you do not want to update a window to get the current value for
CURRENT_COLUMN, you can use the built-in GET_INFO (buffer_
variable, "offset_column"). This built-in returns the column number that
the current offset in the buffer would have if it were mapped to a window,
and if you were to force a screen update. Note, however, that this built-in
returns an accurate value only if both of the following conditions are true:

• You are using bound cursor movement (MOVE_ VERTICAL,
MOVE_HORIZONTAL) or other built-in procedures that cause cursor
movement because of character movement within a buffer.

• The window is not shifted.

The built-in GET_INFO (window_variable, "cu.rrent_column") does not
necessarily return the column number that the cursor would occupy if you
caused an explicit screen update.

7-79

VAXTPU Built-In Procedures
CURRENT COLUMN

If a window is shifted, CURRENT_COLUMN still returns the current
column number of the cursor on the screen. However, the value returned
by x := GET_INFO (buffer, "offset_column") includes the number of
columns by which the window is shifted-. For example, if a window is
shifted to the left by 8 columns, CURRENT_COLUMN returns the value
1, while x := GET_INFO (buffer, "offset_coh:mn") returns the value 9.

SIGNALED
TPU$_ TOOMANY ERROR CURRENT_COLUMN takes no

parameters. ERRORS
TPU$_NEEDTOASSIGN ERROR

TPU$_NOCURRENTBUF WARNING

The CURRENT_COLUMN built-in
must be on the right-hand side of
an assignment statement.

You are not positioned in a buffer.

EXAMPLES

D

7-80

my_cur_col := CURRENT COLUMN

This assignment statement stores the column position of the cursor in the
variable my _cur _col.

MESSAGE (STR (CURRENT_COLUMN))

This statement combines three VAXTPU built-in procedures. CURRENT_
COLUMN returns the integer that is the current column position, STR
converts the integer to a string, and MESSAGE writes this string to the
message buffer.

PROCEDURE user split line
LOCAL old_position, new_position;

SPLIT_LINE;
IF (CURRENT_ ROW = 1) AND (CURRENT_ COLUMN 1)
THEN

old_position := MARK (NONE);
SCROLL (CURRENT_WINDOW, -1);
new position := MARK (NONE);
!Make sure we scrolled before doing CURSOR VERTICAL

IF new_position <> old_position
THEN

CURSOR VERTICAL (l);
ENDIF;

ENDIF;
END PROCEDURE

This procedure splits a line at the editing point. If the editing point is row
1, column 1, the procedure causes the screen to scroll.

VAXTPU Built-In Procedures
CURRENT _DIRECTION

CURRENT DIRECTION

FORMAT

Returns a keyword (FORWARD or REVERSE) that indicates the current
direction of the current buffer. See also the descriptions of the built-in
procedures SET (FORWARD) and SET (REVERSE).

keyword:: CURRENT_DIRECTION

PARAMETERS None.

return value A keyword (FORWARD or REVERSE) indicating the current direction of
the current buffer.

DESCRIPTION If the keyword FORWARD is returned, the current direction is toward
the end of the buffer. If the keyword REVERSE is returned, the current
direction is toward the beginning of the ~uffer.

SIGNALED
ERRORS

EXAMPLES

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

II my_cur_dir := CURRENT DIRECTION

ERROR CURRENT _DIRECTION takes no
parameters.

ERROR The CURRENT _DIRECTION built
in must be on the right-hand side
of an assignment statement.

WARNING You are not positioned in a buffer.

This assignment statement stores in the variable my _cur _dir the keyword
that indicates whether the current direction setting for the buffer is
FORWARD or REVERSE.

i PROCEDURE user_show_direction

IF CURRENT_DIRECTION = FORWARD
THEN

my_messagel := MESSAGE ("Forward");
ELSE

my_message2 := MESSAGE ("Reverse");
ENDIF;

END PROCEDURE

This procedure writes to the message buffer a message indicating the
current direction of character movement in the buffer.

7-81

VAXTPU Built-In Procedures
CURRENT _LINE

CURRENT LINE

Returns a string that represents the current line. The current line is the line
that contains the editing point.

FORMAT string== CURRENT_LINE

PARAMETERS None.

return value A string representing the current line.

DESCRIPTION If you are positioned on a line that has a length of 0, CURRENT_LINE
returns a null string. If you are positioned at the end of the buffer,
CURRENT_LINE returns a null string and also signals a warning.

SIGNALED
ERRORS

EXAMPLES

Using CURRENT_LINE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. CURRENT_LINE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the aistinction ·
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before t]J.e
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_NOCURRENTBUF

TPU$_NOEOBSTR

ERROR

ERROR

CURRENT _LINE takes no
parameters.

The CURRENT_LINE built-in must
be on the right-hand side of an
assignment statement.

WARNING You are not positioned in a buffer.

WARNING You are positioned at or beyond
the EOB (end-of-buffer) mark.

D rny_cur_lin := CURRENT LINE .

7-82

This assignment statement stores in the variable my _cur _Zin the string
that represents the current line. The current line is the line in the current
buffer that contains the editing point.

G

(

(_

VAXTPU Built-In Procedures
CURRENT_LINE

PROCEDURE user runoff line - -
IF LENGTH (CURRENT_LINE) < 2
THEN

user_runoff_line := O;
ELSE

IF CURRENT CHARACTER<>""
THEN

user_runoff_line := 0;
ELSE

MOVE HORIZONTAL (1);
IF INDEX .

("abcdefghijklmnopqrstuv~xyzABCDEFGHIJKLMNOPQRSTUVWXYZ!;",
CURRENT_CHARACTER) = 0

THEN
user runoff line := O;

ELSE
user_runoff_line := 1;

ENDIF;
MOVE HORIZONTAL (-1);

ENDIF;
ENDIF;
ENDPROCEDURE

This procedure returns true if the current line has the format of a DSR
command (starts with a period followed by an alphabetic character, a
semicolon, or an exclamation point). If not, the procedure returns false.
The procedure assumes that the cursor was at the beginning of the line,
and moves it back to the beginning of the line when done.

7-83

VAXTPU Built-In Procedures
CURRENT_ OFFSET

CURRENT OFFSET

Returns an integer for the offset of the editing point within the current line.

FORMAT integer := CURRENT_OFFSET

PARAMETERS None.

return value An integer that is the offset of the editing point within the current line.

DESCRIPTION The current offset is the number of positions a character is located from
the first character position in the current line (offset 0). In VAXTPU, the
leftmost character position is offset 0, and this offset is increased by 1
for each character position (including the TAB character) to the right.
VAXTPU numbers columns starting with the leftmost position on the
screen where a character could be placed, regardless of where the margin
is. This leftmost position is numbered 1.

7-84

Note: The current offset value is not the same as the position of the
cursor on. the screen. See the CURRENT_COLUMN built-in if you
want to determine where the cursor is. For ·example, if you have
a line with a left margin of 10 and if the cursor is on the first ·
character in that line, then CURRENT_OFFSET returns O, while
CURRENT_COLUMN returns 10.

Using CURRENT_OFFSET may cause VAXTPU to insert padding
spaces or blank li_nes in the buffer. CURRENT_OFFSET causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

If you are using an interface with free cursor motion, when you move
beyond the end of a line CURRENT_OFFSET makes the current cursor
position the new end-of-line.

If the current offset equals the length of the current line, you are
positioned at the end of the line.

./

n
)\

(

VAXTPU Built-In Procedures
CURRENT_OFFSET

SIGNALED
ERRORS

TPU$_ TOOMANY ERROR CURR.ENT _OFFSET takes no
parameters.

TPU$_NEEDTOASSIGN ERROR

TPU$_NOCURRENTBUF WARNING

The CURRENT_OFFSET built-in
must be on the right-hand side of
an assignment statement.

You are not positioned in a buffer.

EXAMPLES

D my_cur.;....off := CURRENT OFFSET

This assignment statement stores the integer that is the offset position of
the current character in the variable my_cur _off.

PROCEDURE user delete

IF CURRENT OFFSET= 0
THEN

APPEND_LINE;
ELSE

ERASE_CHARACTER (-1);
ENDIF;

END PROCEDURE

This procedure uses the built-in procedure CURRENT_OFFSET to
determine whether the editing position is at the beginning of a line. (For
mote information on the difference between the editing position and the
current cursor position, see Chapter 6.) If the position is at the beginning,
the procedure appends the current line to the previous line; otherwise, it
deletes the previous character. Compare this procedure with the procedure
used as an example for the built-in procedure APPEND_LINE.

VAXTPU Built-In Procedures
CURRENT _ROW

CURRENT ROW

Returns an integer that is the screen line on which the cursor is. located.

FORMAT integer== CURRENT_ROW

PARAMETERS None.

return value An integer representing the screen line on which the cursor is located.

DESCRIPTION The current row is the screen line on which the cursor is located. The
screen lines are numbered from 1 at the top of the screen to the maximum
number of lines available on the terminal. You can get the value of

SIGNALED
ERRORS

EXAMPLES

the current row by using the built-in procedure GET_INFO (SCREEN,
"current_row'').

When used in a procedure, CURRENT_ROW does not necessarily return
the position where the cursor has been placed by other statements in
the procedure. The reason that the value returned by CURRENT_ROW
may not be the current value is that VAXTPU generally does not update
the screen until all statements in a procedure are executed. If you want
the cursor position to reflect the actual editing location, put an UPDATE
statement in your procedure immediately before any statements containing
CURRENT_ROW, as follows:

UPDATE (CURRENT_WINDOW);

TPU$_NEEDTOASSIGN

TPU$_ TOOMANY

ERROR

ERROR

The CURRENT_ROW built-in
must be on the right-hand side of
an assignment statement.

CURRENT_ROW takes no
parameters.

D my_cur_row :; CURRENT ROW

This assignment statement stores in the variable my _cur _row the integer

j

that is the screen line number on which the cursor is located. ~ i)
Y\

7-86

(

u

VAXTPU Built-In Procedures
CURRENT_ROW

I PROCEDURE user_go_up

i]

IF CURRENT_ROW = GET_INFO (CURRENT_WINDOW, "visible_top")
THEN

SCROLL (CURRENT_WINDOW, -1);
ELSE

CURSOR VERTICAL (-1);
ENDIF;

ENDPROCEDURE

PROCEDURE user_go_down
IF CURRENT_ROW = GET_INFO (CURRENT_WINDOW, "visible_bottom")
THEN

SCROLL (CURRENT_WINDOW, l);
ELSE

CURSOR VERTICAL (1);
ENDIF;

END PROCEDURE

These procedures cause the cursor to move up or down the screen. Because
CURSOR_ VERTICAL crosses window boundaries, you must use the built
in procedure SCROLL to keep the cursor motion within a single window
if you are usip.g free cursor motion. (See CURSOR_HORIZONTAL and
CURSOR_ VERTICAL.) If the movement of the cursor would take it
outside the window, the preceding procedures scroll text into the window
to keep the cursor visible. You can bind these procedures to a key so that
the cursor motion can be accomplished with a single keystroke.

..

VAXTPU Built-In Procedures
CURRENT_ WINDOW

CURRENT WINDOW

Returns the window in which the cursor is visible.

FORMAT window== CURRENT_WINDOW

PARAMETERS None.

return value The window in which the cursor is visible.

DESCRIPTION The current window is the window on which you have most recently
performed on of the following operations:

SIGNALED
ERRORS

EXAMPLES

• Selection using the POSITION built-in

• Mapping to the screen using the MAP built-in

• Adjustment using the ADJUST_ WINDOW built-in

The current window contains the cursor at the screen coordinates current_
row and current_column. The current buffer is not necessarily associated
with the current window.

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

TPU$_WINDNOTMAPPED

ERROR CURRENT_WINDOW takes no
parameters.

ERROR The CURRENT_WINDOW built-in
must be on the right-hand side of
an assignment statement.

WARNING No windows are mapped to the
screen.

D my_cur_win := CURRENT WINDOW

7-88

This assignment statement stores the window that holds the cursor in the
variable my _cur _win.

j

!
_/

(

L

PROCEDURE user_next_screen

LOCAL how_much_scroll;

VAXTPU Built-In Procedures
CURRENT_WINDOW

how_much_scroll := GET_INFO (CURRENT_WINDOW, "visible_length");

SCROLL (CURRENT_WINDOW, how_much_scroll);
END PROCEDURE

This procedure determines the length of the current window and then uses
that value as a parameter for the built-in procedure SCROLL.

7-89

VAXTPU Built-In Procedures
CURSOR_HORIZONTAL

CURSOR HORIZONTAL

FORMAT

Moves the cursor position across the screen and optionally returns the cursor
movement status.

(integer2 :=J CURSOR_HORIZONTAL (integer1)

PARAMETER integer1
The signed plus or minus integer value that specifies the number of screen
columns to move the cursor position. A positive value directs VAXTPU to
move the cursor to the right; a negative value directs VAXTPU to move
the cursor to the left. The value O causes VAXTPU merely to synchronize
the active editing point with the cursor position.

return value An integer representing the number of columns the cursor moved. If
VAXTPU cannot move the cursor as many columns as specified by integer 1,
VAXTPU moves the cursor as many columns as possible. VAXTPU allows
the return value to be negative. This notation is reserved for future
versions of VAXTPU. A negative return value does not denote that the
cursor moved to the left. Rather, the integer shows the number of spaces
that the cursor moved right or left. If the cursor did not move, integer2
has the value 0. If the CURSOR_HORIZONTAL built-in produces an
error, the value of integer2 is indeterminate.

DESCRIPTION The CURSOR_HORIZONTAL built-in procedure can be used to provide
free cursor movement in a horizontal direction. Free cursor movement
means that the cursor is not tied to text, but can move across all available
columns in a screen line.

7-90

If you move before the beginning of a line, after the end of a line, in the
middle of a tab, or beyond the end-of-file mark, other built-ins may cause
padding lines or spaces to be added to the buffer.

If you use the CURSOR_HORIZONTAL built-in within a procedure, screen
updating occurs as follows:

• When you execute a built-in that modifies the buffer or the editing
point before you issue the call to CURSOR_HORIZONTAL, the screen
is updated before CURSOR_HORIZONTAL is executed. This action
ensures that the horizontal movement of the cursor starts at the
correct character position.

• Otherwise, the screen manager does not update the screen until the
procedure has finished executing and control is returned to the screen
manager.

CURSOR_HORIZONTAL does not move the cursor beyond the left or right
edge of the window in which it is located. You cannot move the cursor
outside the bounds of a window.

(

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
CURSOR_HORIZONTAL

CURSOR_HORIZONTAL has no effect if you use any input device other
than a video terminal supported by VAXTPU.

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAtvl

ERROR

ERROR

ERROR

CURSOR_HORIZONTAL requires
one parameter.

CURSOR_HORIZONTAL accepts
only one parameter.

One or more of the specified
parameters have the wrong type.

D int x : = CURSOR HORIZONTAL (1)

This statement moves the cursor position one screen column to the right.

i PROCEDURE user_free_cursor_right

il

move_right := CURSOR HORIZONTAL (l);
ENDPROCEDURE

PROCEDURE user free cursor left - - -
move left := CURSOR HORIZONTAL (-1);

ENDPROCEDURE

These procedures provide for free cursor motion to the right and to the
left. These procedures can be bound to keys (for example, the arrow keys)
so that the movement can be accomplished with a single keystroke.

7-91

VAXTPU Built-In Procedures
CURSOR_ VERTICAL

CURSOR VERTICAL

FORMAT

PARAMETER

return value

DESCRIPTION

7-92

Moves the cursor position up or down the screen and optionally returns the
cursor movement status.

(integer2 :=) CURSOR_ VERTICAL (integer1).

integer1 .
The signed integer value that specifies how many screen lines to move the
cursor position. A positive value for integer 1 moves the cursor position
down. A negative integer moves the cursor position up.

An integer representing the number of rows that the cursor moved up or
down. If VAXTPU could not move the cursor as many rows as specified by
integer 1, VAXTPU moves the cursor as many rows as possible.

If CROSS_ WINDOW _BOUNDS is set to ON, CURSOR_ VERTICAL may
position the cursor to another window. In this case, CURSOR_ VERTICAL 0,
returns the negative of the number of rows the cursor moved. A negative 1 ;J
return value does not denote that the cursor moved upward. _,,,

If the cursor did not move, integer2 has the value 0. If the CURSOR_
VERTICAL built-in produced an error, the value of integer2 is
indeterminate.

CURSOR_ VERTICAL can be used to provide free cursor movement in a
vertical direction. Free cursor movement means that the cursor is not tied
to text, but that it can move up and down to all lines on the screen that
can be edited, whether or not there is text at that column in the new line.

The cursor does not move beyond the top or the bottom edges of the screen.
However, CURSOR_ VERTICAL can cross window boundaries, depending
upon the current setting of the CROSS_ WINDOW _BOUNDS flag. See
SET (CROSS_ WINDOW _BOUNDS) for information on how to set this flag.
(Use the POSITION built-in to move the cursor to a different window on
the screen.)

When CROSS_ WINDOW _BOUNDS is set to ON, CURSOR_ VERTICAL
can move the cursor position to a new window. The new window in which
the cursor is positioned becomes the current window. The column position
of the cursor remains unchanged unless vertical movement would position
the cursor outside the bounds of a window narrower than the previous
window. In this instance, the cursor moves to the left until it is positioned
within the right boundary of the narrower window.

When CROSS_ WINDOW _BOUNDS is set to OFF, CURSOR_ VERTICAL
does not move the cursor outside the current window. If the SET
(SCROLLING) built-in has been used to set scrolling margins, CURSOR_
VERTICAL also attempts to keep the cursor within the scroll margins.

(

VAXTPU Built-In Procedures
CURSOR_ VERTICAL

CURSOR_ VERTICAL positions the cursor only in screen areas in which
editing can occur. For example, CURSOR_ VERTICAL does not position
the cursor on the status line of a window, in the prompt area, or in an
area of the screen that is not part of a window. The blank portion of a
segmented window is not considered part of a window for this purpose.

If you use CURSOR_ VERTICAL within a procedure, screen updating
occurs as follows:

• When you execute a built-in that modifies the buffer or the current
character position before you issue the call to CURSOR_ VERTICAL,
the screen is updated before CURSOR_ VERTICAL is executed. This
action ensures that the vertical movement of the cursor starts at the
correct character position.

• Otherwise, the screen manager does not update the screen until the
procedure has finished executing and control is returned to the screen
manager.

CURSOR_ VERTICAL has no effect if you use an input device other than a
video terminal supported by VAXTPU.

SIGNALED
ERRORS

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

CURSOR_ VERTICAL requires at
least one parameter.

EXAMPLES

D int_y := CURSOR VERTICAL (5)

CURSOR_ VERTICAL ·accepts at
most one parameter.
Y.ou did not specify an integer as
the parameter.

This statement moves the cursor position five lines toward the bottom of
the screen.

I ! Free cursor motion procedures

PROCEDURE user_free_cursor_up

IF GET INFO (CURRENT WINDOW, "CURRENT ROW") =
- GET_INFO- (CURRENT_WINDOW, -"VISIBLE_TOP")

THEN
SCROLL (CURRENT_WINDOW, -1);

ELSE
left_y := CURSOR_VERTICAL (-1);

ENDIF;
END PROCEDURE

7-93

VAXTPU Built-In Procedures
CURSOR_ VERTICAL

! PROCEDURE user_free_cursor_down

7-94

IF GET INFO (CURRENT WINDOW, "CURRENT ROW") =
- GET_INFO-(CURRENT_WINDOW,-"VISIBLE_BOTTOM")

THEN
SCROLL (CURRENT_WINDOW, l);

ELSE
right_x := CURSOR VERTICAL (l);

ENDIF;
END PROCEDURE

These procedures provide for free cursor motion up and down the screen.
These procedures can be bound to keys (for example, the arrow keys) so
that the movement can. be accomplished with a single keystroke.

These examples work regardless of the setting of CROSS_ WINDOW_
BOUNDS, because the built-in procedure SCROLL keeps the cursor
motion within a single window.

'/~
' J/

)

(

VAXTPU Built-In Procedures
DEBUG_LINE

DEBUG LINE

Returns the line number of the current breakpoint.

FORMAT integer == DEBUG_LINE

PARAMETERS None.

return value An integer representing the line number of the current breakpoint.

DESCRIPTION The DEBUG_LINE built-in procedure returns the line number of the
current breakpoint. Use DEBUG_LINE when writing your own VAXTPU
debugger.

SIGNALED
ERROR

EXAMPLE

Digital recommends that you use the debugger provided in
SYS$SHARE:TPU$DEBUG.TPU.

TPU$_NEEDTOASSIGN ERROR The DEBUG_LINE built-in must
appear c;>n the right-hand side of
an assignment statement.

the line := GET INFO (DEBUG, "line_number");
IF the line= 0-

THEN the line := DEBUG_LINE;
ENDIF;

This code fragment first uses GET_INFO to request the line number of
the breakpoint in the current procedure. If the line number is 0, meaning
that the breakpoint is not in a procedure, the code uses DEBUG_LINE to
determine the breakpoint's line number relative to the buffer.

7-95

VAXTPU Built-In Procedures
DEFINE_KEY

DEFINE KEY

FORMAT

Associates executable VAXTPU code with a key or a combination of keys.

DEFINE_KEY ({ ::;:m } , key-name
range
string1

II ,string2 II ,string3J B)

PARAMETERS buffer

7-96

A buffer that contains the VAXTPU statements to be associated with a
key.

learn
A learn sequence that specifies the executable code associated with a key.

program
A program that contains the executable code to be associated with a key.

range
A range that contains the VAXTPU statements to be associated with a key.

string1
A string that specifies the VAXTPU statements to be associated with a key.

key-name
A VAXTPU key name for a key or a combination of keys. See Table 2-1 for
a list of the VAXTPU key names for the VT300, VT200, and VTlO0 series
of keyboards. You can also display all the VAXTPU keywords with the
built-in procedure SHOW (KEYWORDS).

See the Description section of this built-in procedure for information on
keys that you cannot ·define.

To define a key for which there is no VAXTPU key name, use the built-in
procedure KEY_NAME to create your own key name for the key .. For
example, KEY_NAME ("A", SHIFT_KEY) creates a key name for the
combination of PFl, the default shift key for VAXTPU, and the keyboard
character A. For more information, see the description of the built-in
procedure KEY_NAME.

string2 _
An optional string associated with a key that you define. The string is
treated as a comment that can be retrieved with the built-in procedure
LOOKUP _KEY. You might want to use the comment if you are creating a
help procedure for keys that you have defined.

../

DESCRIPTION

(

VAXTPU Built-In Procedures
DEFINE_KEY

string3 .
A key map or a key map list in which the key is to be defined. If a key
map list is specified, the key is defined in the first key map in the key map
list. If neither a key map nor a key map list is specified, the key is defined
in the first key map in the key map list bound to the current buffer. See
the descriptions of the built-in procedures CREATE_KEY_MAP, CREATE_
KEY_MAP _LIST, and SET (KEY_MAP _LIST) for more information on key
maps and key map lists. ·

The built-in procedure DEFINE_KEY compiles the first parameter if it is
a string, buff er, or range.

If you use DEFINE_KEY to change the definition of a key that was
previously defined, VAXTPU does not save the previous definition.

You can define all the keys on the VT300, VT200, and VTl00 keyboards
and keypads with the following exceptions:

• The COMPOSE CHARACTER key on VT300 and VT200 keyboards

• The SHIFT keys

There are some keys that you can define but that Digital strongly
recommends you avoid defining. VAXTPU does not signal an error
when you use them as keyword parameters. However, in some cases
the definitions you assign to these key combinations are not executed
unless you set your terminal in special ways at the DCL level:

• CTRLJC, CTRLJO, CTRL'X, and F6 - To execute programs that
you bind to these keys, you must first enter the DCL command SET
TERMINAL'PASTHRU.

• CTRLJT, CTRL/Y - To execute programs that you bind to these keys,
you must first enter the DCL command SET TERMINAL'PASTHRU
and/or the DCL command SET NOCONTROL.

• CTRLJS, CTRLJQ - To execute programs that you bind to these keys,
you must first enter the DCL command SET TERMINAI/NOTrSYNC.

• The PFl key - This is the default shift key for the editor. You cannot
define PFl unless you use the built-in procedure SET (SHIFT_KEY,
keyword) to define a different key as the shift key for the editor.

• The ESCAPE key

• The keys Fl through F5

Digital recommends that you do not use the special terminal settings
mentioned above. The settings may cause unpredictable results if you do
not understand all the implications of changing the default settings.

Whenever you extend EVE by writing a procedure that can be bound ~
a key, the procedure must return true and false as needed to indicate
whether execution of the procedure completed successfully. EVE's
REPEAT command relies on this return value to determine whether to
halt repetition of a command, a procedure bound to a key, or a learn
sequence.

VAXTPU Built-In Procedures
DEFINE_KEY

SIGNALED
TPU$_NOTDEFINABLE

ERRORS

TPU$_RECURLEARN

TPU$_NOKEYMAP

TPU$_NOKEYMAPLIST

TPU$_KEYMAPNTFND

TPU$_EMPTYKMLIST

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_COMPILEFAIL

TPU$_UNKKEYWORD

TPU$_BADKEY

TPU$_KEYSUPERSEDED

EXAMPLES

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

WARNING

ERROR

ERROR

INFORMATIONAL

D DEFINE KEY ("POSITION (rnain_window) ", CTRL_B_KEY)

Second argument is not
a valid reference to a
key.

This key definition was
used as a part of a learn
sequence. You cannot
use it in this context

Fourth argument is not
a defined key map.

Fourth argument is not
a defined key map list.

The key map listed in
the fourth argument is
not found.

The key map list
specified in the fourth
argument contains no
key maps.

Too few arguments
passed to the DEFINE_
KEY built-in.

Too many arguments
passed to the DEFINE_
KEY built-in.

Wrong type of data sent
to the DEFINE_KEY
built-in.

Compilation aborted.

An unknown keyword
has been used as an
argument.

An unknown keyword
has been used as an
argument.

Key definition
superseded.

This statement associates the VAXTPU statement POSITION (main_
window) with the key combination CTRIJB. Note that you must use
quotation marks around the VAXTPU statement.

7-98

r}.
./

' \
' .,,

n,

il

(

El

VAXTPU Built-In Procedures
DEFINE_KEY

DEFINE KEY (main_buffer, KEY_NAME (PF4, SHIFT_KEY), "mainbuf")

This statement causes VAXTPU to compile the main buffer (containing
VAXTPU statements). If there are no errors in the compilation, VAXTPU
binds the executable code to the combination of the editor's shift key (PFl
by default) and PF4 on the keypad. The final string in the statement
"mainbuf' is a comment that is associated with the key combination.

DEFINE KEY ('COPY_TEXT ("Extendable")', KEY_NAME ("z", SHIFT_KEY))

This statement causes VAXTPU to make a copy of the word "Extendable"
at the current character location in the current buffer when you press
the key combination PFl (VAXTPU's default shift key) and z. Notice that
the inner set of quotation marks must be of a different kind from the
outer set in the first parameter. Also notice that you must place quotation
marks around the keyboard character that you use in combination with
the editor's shift key.

PROCEDURE user_define_key

def := READ_LINE ("Definition: ");
key := READ_LINE ("Press key to define.",l);

IF LENGTH (key) > 0
THEN

key:= KEY NAME (key)
ELSE

key := LAST_KEY;
ENDIF;

DEFINE KEY (def,key);
END PROCEDURE

This procedure prompts the user for the VAXTPU statements to be bound
to the key that the user specifies.

PROCEDURE user_change_mode

Toggle mode between insert and overstrike

IF GET_INFO (CURRENT_BUFFER, "mode") = OVERSTRIKE
THEN

SET (INSERT, CURRENT_BUFFER);
ELSE

SET (OVERSTRIKE, CURRENT_BUFFER);
ENDIF;

END PROCEDURE

The following statement binds this procedure to the
key combination CTRL/A. This emulates the VMS key binding
that toggles between insert and overstrike for text entry
in command line editing.

DEFINE KEY ("user_change_mode", CTRL_A_KEY);

This procedure changes the mode of text entry from insert to overstrike, or
from overstrike to insert.

DEFINE KEY ('MESSAGE ("Hello VAXTPU user")', CTRL_A_KEY, "Greeting", "TPU$KEY_MAP");

This example defines a key in a key map. The DEFINE_KEY statement
defines CTRUA in the key map TPU$KEY_MAP such that VAXTPU
displays the message "Hello VAXTPU user" when CTRUA is pressed.

VAXTPU Built-In Procedures
DEFINE_KEY

ii DEFINE KEY ("POSITION (MESSAGE_WINDOW) ", F20, "", "movement_map")

7-100

This example uses a key map ("movement_map") but does not include a
comment in the optional third parameter. Note the null string after the
keyword F20 in the second parameter.

~

,,,,,.-..

l_)

(

u

\.

VAXTPU Built-In Procedures
DEFINE_WIDGET_CLASS

DEFINE WIDGET CLASS

FORMAT

Defines a widget class for later use in creating widgets of that class using the
DECwindows intrinsics or the XUI Toolkit low-level creation routines.

integer :: DEFINE~WIDGET_CLASS (class_name

/[, creation_routine_name

/[, creation_routine_image_name]J]J)

PARAMETERS class name
A stringthat is the name of a universal symbol pointing to the desired
widget class record. A universal symbol is a symbol in a sharable image
that can be referred to in an image other than the one in which the symbol
is defined.

creation routine name
A string that is the name of the low-level widget creation routine for this
widget class. Specify the case of the string correctly. To determine the
correct case of the string, consult the documentation for the widget whose
class you are defining. The current version of VAXTPU, which is bundled
with the VMS operating system, ignores the case of the string. However,
future versions of VAXTPU may treat the string as case sensitive.

If you do not specify this parameter, VAXTPU uses the X Toolkit CREATE
WIDGET routine to create the widget instead of using a low-level widget
creation routine. The routine must have the same calling sequence as the
XUI Toolkit low-level widget creation routines.

In the current version of VAXTPU, you must specify the VMS binding of
the creation routine name.

creauon_rouune_image_name
A string that is the name of the shareable image in which the class
record can be found. If you specify a low-level creation routine, DEFINE_
WIDGET_CLASS also looks for the routine in the program image. If
you do not specify an image, VAXTPU assumes the widget is defined in
SYS$LIBRARY:DECW$DWTLIBSHR.EXE.

return value An integer used by the CREATE_ WIDGET built-in to iaentify the class of
widget to be created.

DESCRIPTION Each call returns a different class integer, which you use to specify the
class of a widget when you create it.

7-101

VAXTPU Built-In Procedures
DEFINE_ WIDGET_ CLASS

SIGNALED
TPU$_ARGMISMATCH

ERRORS

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOO MANY

TPU$_REQSDECW

ERROR

ERROR

ERROR

ERROR

ERROR

The data type of the indicated
parameter is not supported by
DEFINE_WIDGET_CLASS.

Dt:FINE_WIDGET_CLASS must
retum a value.

Too few arguments passed to
DEFINE_WIDGET_CLASS.

Too many arguments passed to
DEFINE_WIDGET_CLASS.

You can use DEFINE_WIDGET_
CLASS only if you are using
DECwindows VAXTPU.

EXAMPLE For a sample procedure using the DEFINE_ WIDGET_CLASS built-in, see
Example B-2.

7-102

'~,
\
:

./

(

u

DELETE

FORMAT

VAXTPU Built-In Procedures
DELETE

Removes VAXTPU structures from your editing context. When you delete a
structure (for example, a range) all variables that refer to that structure are
reset to unspecified. If the deleted structure had any associated resources,
these resources are returned to the editor.

DELETE (

array
buffer
integer
keyword
learn
marker
pattern
process
program
range
string
unspecified
widget
window

)

PARAMETERS array
The array you want to delete. The memory used by the array is freed for
later use. If some other data structure, such as a pattern, is referenced
only in the array, then that data structure is deleted when the array is
deleted.

buffer
The buffer you want to delete. Any ranges or markers that point to this
buffer, any subprocess that is associated with this buffer, the memory for
the buffer control structure, the pages for storing text, and the memory
for ranges and markers associated with the buffer are deleted also. If
the buffer is associated with a window that is mapped to the screen, the
window is unmapped.

integer
The integer to delete. Integers use no internal structures or resources so
deleting a variable of type integer simply changes that variable to type
unspecified.

keyword
The keyword to delete. Keywords use no internal structures or resources
so deleting a variable of type keyword simply assigns to that variable the
type unspecified.

learn
The learn sequence you wish to delete. The memory used by the learn
sequence is freed for later use.

VAXTPU Built-In Procedures
DELETE

marker
The marker you want to delete. The memory for the marker control
structure is deleted also.

pattern
The pattern you wish to delete. The memory used by the pattern is freed
for later use. If the pattern includes a reference to another pattern and
there are no other references to that pattern, then that pattern is deleted
as well.

process
The process you want to delete. The memory for the process control
structure and the subprocess is deleted also.

program
The program you want to delete. The memory for the program control
structure and the memory for the program code are deleted also.

range
The range that you want to delete. The memory for the range control
structure is deleted also. The text in a range does not belong to the range.
Rather, it belongs to the buffer in which it is located. A range is merely
a way of manipulating sections of text within a buffer. When you delete
a range, the text delimited by the range is not deleted. See the built-in
procedure ERASE for a description of how to remove the text in a range.

string
The string you wish to delete. The memory used by the string is freed for
later use.

unspecified
Deleting a variable of type unspecified is allowed but does nothing.

widget
The widget to be deleted. When you use the DELETE (widget) built
in, all variables and array elements that refer to the widget are set to
unspecified. If an array element is indexed by the deleted widget, the
array element is deleted as well.

window
The window you want to delete. Along with the window, the memory for
the window control structure and the record history associated with the
window are deleted. If you delete a window that is mapped to the screen,
VAXTPU unmaps the window before deleting it. The screen appears just
as it does when you use the built-in procedure UNMAP.

DESCRIPTION Depending upon how many variables are referencing an entity, or how
many other entities are associated with the entity you are deleting,
processing the built-in procedure DELETE can be time consuming.
DELETE cannot be terminated by a CTRL/C.

7-104

Any variables that reference the deleted entity are set to unspecified
and all other entities that are associated with the deleted entity are also
deleted. Use the built-in procedure DELETE with caution.

)

VAXTPU Built-In Procedures
DELETE

SIGNALED
ERRORS TPU$_ TOO FEW ERROR DELETE requires one argument

TPU$_ TOOMANY ERROR DELETE accepts only one
argument.

TPU$_BADDELETE ERROR You attempted to delete a
constant.

TPU$_DELETEFAIL WARNING DELETE could not delete the
process.

TPU$ INVBUFDElETE WARNING You cannot delete a permanent
buffer.

EXAMPLES
D DELETE (main_buffer)

Ii

I]

This statement deletes the main buffer and any associated resources that
VAXTPU allocated for the main buffer. As a result of this command, the
SHOW (BUFFERS) command does not list MAIN_BUFFER as one of the
buffers in your editing context.

PROCEDURE user delete extra - -
WRITE FILE (extra buf);
DELETE (extra_window);
DELETE (extra_buf);

Return the 11 lines from extra window to the main window
ADJUST WINDOW (main_window, -11, 0);

END PROCEDURE

This procedure writes the contents of EXTRA_BUF to a file (because you
do not specify a file name, the associated file for the buffer is used) and
then removes the extra window and buffer from your editing context. You
must have previously created these structures and added them to your
editing context in order for this procedure to execute successfully.

PROCEDURE sample_create_and_delete

LOCAL example widget,
example=widget_name,
example_hierarchy;

example_hierarchy := SET (DRM_HIERARCHY, "mynode$dua0: [smith]example.uid");
example widget name := "EXAMPLE BOX";
example-widget-:= CREATE WIDGET-(example widget name,

- - example-hierarchy, SCREEN,
"user_callback_dispatch_routine");

DELETE (example_widget);

ENDPROCEDURE;

VAXTPU Built-In Procedures
DELETE

7-106

This code fragment creates a modal dialog box widget and later deletes
it. For purposes of this example, the procedure user _callback_dispatch_
routine is assumed to be a user-written procedure that handles widget
callbacks. For a sample DECwindows User Interface Language (UIL) file
to be used with VAX.TPV' code creating a modal dialog box widget, see the
example in the description of the CREATE_WIDGET built-in.

G

EDIT

FORMAT

VAXTPU Built-In Procedures
EDIT

Modifies a string according to the keywords you specify. EDIT is similar
although not identical to the DCL lexical function F$EDIT. Differences between
the built-in procedure and the lexical function are noted in the description
section.

EDIT (string f, COLLAPSE JI[, COMPRESS JI ff, TRIM JI
{, TRIM_LEADING JI{, TRIM_ TRAILING}

[
, LOWER] /[, INVERT JI [, ON])
, UPPER ' , OFF

PARAMETERS string
The string you want EDIT to modify. Always use a string variable for this
parameter.

COLLAPSE
A keyword directing VAXTPU to remove all spaces and tabs.

COMPRESS
A keyword directing VAXTPU to replace multiple spaces and tabs with a
single space. ·

TRIM
A keyword directing VAXTPU to remove leading and trailing spaces and
tabs.

TRIM LEADING
A keyword directing VAXTPU to remove leading spaces and tabs.

TRIM_ TRAILING
A keyword directing VAXTPU to remove trailing spaces and tabs.

LOWER
A keyword directing VAXTPU to convert all uppercase characters to
lowercase.

UPPER
A keyword directing VAXTPU to convert all lowercase characters to
uppercase.

INVERT
A keyword directing VAXTPU to change the current case of the specified
characters; uppercase characters become lowercase, and lowercase
characters become uppercase.

ON
A keyword directing VAXTPU to tum on the recognition of quotation
marks or apostrophes as VAXTPU quote characters (this is the default).

VAXTPU Built-In Procedures
EDIT

DESCRIPTION

SIGNALED
ERRORS

7-108

OFF
A keyword directing VAXTPU to turn off the recognition of quotation
marks or apostrophes as VAXTPU quote characters.

VAXTPU modifies the first parameter of the EDIT built-in in place. EDIT
does not return a result. EDIT does not modify a literal string.

By default, EDIT does not .modify quoted text that occurs within a string.
For example, the following code does not change the case of WELL:

string to change := 'HE SANG "WELL"';
edit (string_to_change, LOWER);

The variable string_to_change has the value he sang "WELL".

If you specify more than one of the TRIM keywords (TRIM, TRIM:_
LEADING, TRIM:_TRAILING), all of the TRIM operations you specify
are performed.

If you specify more than one of the case conversion keywords (UPPER,
LOWER, INVERT), the last keyword that you specify determines how the
characters in the string are modified.

If you specify both of the ·quote recognition keywords (ON, OFF), the last
keyword you specify determines whether or not EDIT modifies quoted text.

If you specify no keywords, EDIT does nothing to the passed string.

You can disable the recognition of quotation marks and apostrophes as
VAXTPU quote characters by using the keyword OFF as a parameter for
EDIT. When you use the keyword OFF, VAXTPU preserves any quotation
marks and apostrophes in the edited text and performs the editing tasks
you specify on the text within the quotation marks and apostrophes.
OFF may appear anywhere in the keyword list. It need not be the final
parameter.

If the string you specify has opening quotation marks but not closing·
quotation marks, the status TPU$_MISSINGQUOTE is returned. All text
starting at the unclosed opening quotation mark and continuing to the
end of the string is considered to be part of the quoted string and is not
modified. ·

EDIT is similar to the DCL lexical function F$EDIT. However, you should
note the following differences:

• EDIT modifies the characters in place while F$EDIT returns a result.

• EDIT takes keywords as parameters while F$EDIT requires that the
edit commands be specified by a string.

TPU$_MISSINGQUOTE

TPU$_ TOOFEW

ERROR

ERROR

Character string is missing
terminating quotation marks.

EDIT requires at least one
parameter.

_)

G
TPU$_ TOOMANY

TPU$_ARGMISMATCH

TPU$_1NVPARAM

TPU$_BADKEY

VAXTPU Built-In Procedures
EDIT

ERROR You supplied keywords that are
duplicative or contradictory.

ERROR One of the parameters to EDIT is
of the wrong data type.

ERROR One of the parameters to EDIT is
of the wrong data type.

WARNING You gave the wrong keyword to
EDIT.

EXAMPLES

D pn : = "PRODUCT NAME";
EDIT (pn, LOWER);
MESSAGE (pn);

These statements edit the string "PRODUCT NAME" by changing it to
lowercase, and display the edited string in the message window.

i PROCEDURE user_edit_string (input_string)

is := input_string;

EDIT (is, LOWER);
MESSAGE (is);

ENDPROCEDURE

This procedure shows a generalized way of changing any input string to
lowercase.

After compiling the preceding procedure, you can direct VAXTPU to print
the lowercase word "zephyr" in the message area by entering the following
command:

user_edit_string ("ZEPHYR")

7-109

VAXTPU Built-In Procedures
END_OF

END OF

FORMAT

PARAMETERS

return value

Returns a marker that points to the last character position in a buffer or a
range. ..

marker== END_OF ({ buffer }J
range

buffer
The buffer whose last character position you want to mark.

range
The range whose last character position you want to mark.

A marker pointing to the last character position in a buffer or range.

DESCRIPTION If you use the marker returned by the END_OF built-in as a parameter for n-,
the built-in procedure POSITION, the editing point moves to this marker. /

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN ERROR END_OF must appear in the
right-hand side of an assignment
statement.

TPU$_ TOOFEW ERROR END_OF requires one argument.

TPU$_ TOOMANY ERROR END_OF accepts only one
argument.

TPU$_ARGMISMATCH ERROR You passed something other than
a range or a buffer to END_OF.

EXAMPLES
D the end:= END OF (CURRENT_BUFFER)

This assignment statement stores the last position in the current buffer in
the variable the_end.

I POSITION (END_OF (delete_range))

7-110

This statement uses two built-in procedures to move your current
character position to the end of delete_range. If delete_range is in a visible
buffer in which the cursor is located, the cursor position also moves to the
end of delete_range.

~\

i
/

(U

iJ

(

C

PROCEDURE user_paste

LOCAL paste_text;

VAXTPU Built-In Procedures
END_OF

IF (BEGINNING_OF (paste_buffer) <> END OF (paste_buffer))
THEN

COPY_TEXT (paste_buffer);
ENDIF;

END PROCEDURE

This procedure implements a simple INSERT HERE function. The
variable paste_buffer. points to a buffer that holds previously cut text.

VAXTPU Built-In Procedures
ERASE

ERASE

FORMAT

Removes the contents of the range or buffer that you specify.

ERASE ({ buffer })
range

PARAMETERS buffer
The buffer whose contents you want to remove.

range
The range whose contents you want to remove.

DESCRIPTION When you erase a buffer, the contents of the buffer are removed. However,
the buffer structure still remains a part of your editing context and the
editing point remains in the buffer even if you remove the contents of

.. ,I

the buffer. The space that was occupied by the contents of the buffer is ~
returned to the system and is available for reuse. Only the end-of-buffer

SIGNALED
ERRORS

7-112

line remains. ,.,,,,

When you erase a range, the contents of the range are removed from the
buff er. The range structure is still a part of your editing context. You can
use the range structure later in your editing session to delimit an area of
text within a buffer.

Note that text does not belong to a range; it belongs to a buffer. Ranges
are merely a way of manipulating portions of text within a buffer. For
more information on ranges, see Chapter 2.

TPU$_ TOO FEW .
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_NOTMODIFIABLE

ERROR

ERROR

ERROR

ERASE requires one argument.

ERASE accepts only one
argument.

The argument to ERASE is of the
wrong type.

WARNING You cannot erase text in an
unmodifiable buffer.

__/

(_

l

VAXTPU Built-In Procedures
ERASE

EXAMPLES

D ERASE (main_buffer)

This statement erases all the text in the buffer referenced by main_buffer.
Since the buffer still exists, you can select the buffer using the POSITION
built-in or map the buffer to a window. The procedure simply removes all
text from the buffer. All markers in the buffer now mark the end of the
buffer. ·

f:l PROCEDURE user_remove_crlfs

LOCAL crlf,
here,
cr_range;

crlf := ASCII (13) + ASCII (10);
here := MARK (NONE);
POSITION (BEGINNING_OF (CURRENT_BUFFER));

LOOP
cr_range := SEARCH_QUIETLY (crlf, FORWARD, EXACT);
EXITIF cr_range = 0;
ERASE (cr_range);
POSITION (cr_range);

ENDLOOP;

POSITION (here);
ENDPROCEDURE

This procedure gets rid of embedded carriage-return/line-feed pairs.

7-113

VAXTPU Built-In Procedures
ERASE_CHARACTER

ERASE CHARACTER

FORMAT

PARAMETER

return value

Deletes the number of characters you specify and optionally returns a string
that represents the characters you deleted.·

(string:: J ERASE_CHARACTER (integer)

integer
An expression that evaluates to an integer, which may be signed. The
value indicates which characters, and how many of them, are to be erased.

A string representing the characters deleted by ERASE_ CHARACTER.

DESCRIPTION ERASE_CHARACTER deletes up to the specified number of characters
from the current line. If the argument to ERASE_CHARACTER is a
positive integer, ERASE_CHARACTER deletes that many characters,
starting at the current position and continuing toward the end of the line.
If the argument is negative, ERASE_CHARACTER deletes characters

SIGNALED
ERRORS

7-114

to the left of the current character. It uses the absolute value of the
parameter to determine the number of characters to delete. ERASE_
CHARACTER stops deleting characters if it reaches the beginning or the
end of the line before deleting the specified number of characters.

Using ERASE_CHARACTER may cause VAXTPU to insert padding
spaces or blank lines in the buffer. ERASE_CHARACTER causes the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

ERASE_CHARACTER optionally returns a string containing the
characters that it deleted.

TPU$_ TOOFEW

TPU$_TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

ERASE_CHARACTER requires
one argument.

ERASE_CHARACTER accepts
only one argument.

The argument to ERASE_
CHARACTER must be an integer. I

".....,/

(

TPU$_NOCURRENTBUF

TPU$_NOTMODIFIABLE

VAXTPU Built-In Procedures
ERASE_CHARACTER

WARNING There is no current buffer to erase
characters from.

WARNING· You cannot modify an unmodifiable
buffer.

EXAMPLES

D take out chars := ERASE_CHARACTER (10)
.

This assignment statement removes the current character and the nine
characters following it and copies them in the string variable take_out_
chars. If there are only five characters following the current character,
then this statement deletes only the current character and the :five
following it. It does not delete characters on the next line as well.

I prev_chars ·= ERASE_CHARACTER (-5)

il

This assignment statement removes the five characters preceding the
current character and copies them in the string variable prev_chars.

This procedure deletes the character to the
left of the current character. If at the
beginning of a line, it appends the current
line to the previous line.

PROCEDURE user_delete_key

LOCAL deleted_char;

deleted char := ERASE CHARACTER (-1);

IF deleted_char
THEN

APPEND_LINE;
ENDIF;

ENDPROCEDURE

. -
"" ! nothing deleted

This procedure deletes the character to the left of the editing point. If
the editing point is at the beginning of a line, the procedure appends the
current line to the previous line.

7-115

VAXTPU Built-In Procedures
ERASE_LINE

ERASE LINE

Removes the current line from the current buffer.

ERASE_LINE optionally returns a string containing the text of the deleted line.

FORMAT [string== J ERASE_LINE

PARAMETERS None.

return value A string containing the text of the deleted line.

DESCRIPTION ERASE_LINE deletes the current line, optionally storing the deleted
text in a string before doing so. The current position moves to the first
character of the line following the deleted line.

SIGNALED
ERRORS

7-116

Using ERASE_LINE may cause VAXTPU to insert padding spaces or blank
lines in the buffer. ERASE_LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

If the screen manager inserts padding spaces, ERASE_LINE deletes these
spaces when it deletes the line. The spaces appear in the returned string.
If the screen manager inserts padding lines into the buffer, ERASE_LINE
deletes only the last of these lines.

TPU$_ TOOMANY

TPU$_NOTMODIFIABLE

TPU$_NOCURRENTBUF

ERROR ERASE_LINE accepts no
arguments.

WARNING You cannot erase a line in an
unmodifiable buffer.

ERROR You must select a buffer before
erasing a line.

/

(

EXAMPLES
D ERASE LINE

VAXTPU Built-In Procedures
ERASE_LINE

This statement removes the current line from the current buffer.

i take out line : = ERASE LINE

This statement removes the current line from the current buffer and stores
the string of characters representing that line in the variable take_out_
line. · ·

7-117

VAXTPU Built-In Procedures
ERROR

ERROR

Returns a keyword for the latest error.

FORMAT keyword == ERROR .

PARAMETERS None.

return value

DESCRIPTION

SIGNALED
ERROR
EXAMPLE

A keyword representing the most recent error.

The possible error and warning codes for each built-in procedure are
included in the description of each built-in procedure. Appendix C contains
an alphabetized list of all the possible completion codes and severity levels
in VAXTPU. The VMS System Messages and Recovery Procedures Reference
Volume includes all the possible completion codes for VAXTPU as well as
the appropriate explanations and suggested user actions.

The value returned by ERROR is only meaningful inside an error handler,
after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR behaves much like a built-in, it is actually a VAXTPU
language element.

ERROR is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

ERROR is a language element and has no completion codes.

PROCEDURE strip_blanks

Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank_range;

ON ERROR
IF ERROR= TPU$_STRNOTFOUND
THEN

ELSE
RETURN;

MESSAGE (ERROR_TEXT);
ABORT;

ENDIF;
ENDON ERROR;

7-118

u

(

VAXTPU Built-In Procedures
ERROR

blank_chars := ASCII (32) + ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (BEGINNING_OF (blank_range));
ERASE (blank_range);

ENDLOOP;
ENDPROCEDURE

This procedure uses the ERROR language element to determine the error
that invoked the error handler. If the error was that SEARCH could
not find the specified string, then the procedure returns normally. (For
more information on error handlers, see Chapter 3 and the descriptions of
ABORT and RETURN in this chapter.) If the error was something else,
then the text of the error message is written to the MESSAGES buffer and
any executing procedures are terminated.

7-119

VAXTPU Built-In Procedures
ERROR_LINE

ERROR LINE

Returns the line number for the latest error.

FORMAT integer:= ERROR_LINE

PARAMETERS None.

return value

DESCRIPTION

SIGNALED
ERROR
EXAMPLE

An integer representing the line number of the most recent error.

ERROR_LINE returns the line number at which the error or warning
occurs. If a procedure was compiled from a buffer or range, ERROR_LINE
returns the line number within the buffer. This may be different from the
line number within the procedure. If the procedure was compiled from a
string, ERROR_LINE returns 1.

The value returned by ERROR_LINE is only meaningful inside an error
handler, after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR_LINE behaves much like a built-in, it is actually a
VAXTPU language element.

ERROR_LINE is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution.

ERROR is a language element and has no completion codes.

PROCEDURE strip_blanks

Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank_range;

ON ERROR
MESSAGE (ERROR_TEXT);
MESSAGE ("Error on line"+ STR (ERROR_LINE));
RETURN;

ENDON_ERROR;

blank_chars := ASCII (32) + ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

7-120

)

CG

i

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (blank_range);
ERASE (blank_range);

ENDLOOP;
END PROCEDURE

VAXTPU Built-In Procedures
ERROR_LINE

This procedure uses the ERROR_LINE built-in procedure to report the
line in which the error occurred.

VAXTPU Built-In Procedures
ERROR_TEXT

ERROR TEXT

Returns the text of the latest error message.

FORMAT string== ERROR_TEXT

PARAMETERS None.

return value

DESCRIPTION

SIGNALED
ERROR
EXAMPLE

A string containing the text of the most recent error message.

ERROR_TEXT returns the text for the most recent error or warning.

The possible error and warning codes for each built-in procedure are
included in the description of each built-in procedure. Appendix C contains
an alphabetized list of all the possible completion codes and severity levels
in VAXTPU. The VMS System Messages and Recovery Procedures Reference
Volume includes all the possible completion codes for VAXTPU as well as
the appropriate explanations and suggested user actions.

The value returned by ERROR_TEXT is meaningful only inside an error
handler, after an error has occurred. The value outside an error handler is
indeterminate.

Although ERROR_TEXT behaves much like a built-in, it is actually a
VAXTPU language element.

ERROR_TEXT is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution. ./

ERROR_TEXT is a language element and has no completion codes.

PROCEDURE strip_blanks

Remove trailing blanks from all the lines in a buffer

LOCAL blank_chars,
blank_pattern,
blank_range·;

ON ERROR
MESSAGE ·(ERROR_TEXT);
MESSAGE ("Error on line"+ STR (ERROR_LINE));
RETURN;

ENDON ERROR;

blank_chars := ASCII (32) + ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

7-122

LOOP
SEARCH (blank_pattern, FORWARD);
POSITION (BEGINNING_OF (blank_range));
ERASE (blank_range);

ENDLOOP;
ENDPROCEDURE

VAXTPU Built-In Procedures
ERROR_TEXT

This procedure uses the built-in procedure ERROR_TEXT to report what
happened and where.

VAXTPU Built-In Procedures
EXECUTE

EXECUTE

FORMAT

Does one of the following:

• Executes programs that you have previously compiled

• Compiles and then executes any executable statements in a buffer, a
range, or a string

• Replays a learn sequence

• Executes a program bound to a key

buffer

key-name [: z:;:::~:~:;;:me]
EXECUTE (learn)

program
range
string

PARAMETERS buffer

7-124

The buffer that you want to execute.

key-name
The VAXTPU key name for a key or a combination of keys. VAXTPU
locates and executes the definition bound to the key.

key-map-list-name .
The name of the key map list in which the key is defined. This optional '\
parameter is only valid when the first parameter is a key name. If you)
specify a key map list as the second parameter, VAXTPU uses the first
definition of the key specified by key _name found in any of the key maps
specified by the key map list. If you do not specify any value for the second
parameter, VAXTPU -uses the first definition of the key specified by key_
name found in the key map list bound to the current buffer.

key-map-name
The name of the key map in which the key is defined. This optional
parameter is valid only when the first parameter is a key name. Use this
parameter only if the key specified by the first parameter is defined in
the key map specified as the second parameter. If you do not specify any
value for the second parameter, VAXTPU uses the first definition of the
key specified by key _name found in the key map list bound to the current
buffer.

learn
The learn sequence that you want to replay.

program
The program that you want to execute.

0

(

DESCRIPTION

SIGNALED
ERRORS

range

VAXTPU Built-In Procedures
EXECUTE

The range that you want to execute.

string
The string that you want to execute.

EXECUTE performs different actions depending upon the data type of the
parameter.

If the parameter is a string or the contents of a buffer or range, it must
contain only valid VAXTPU statements. Otherwise, you get an error
message and no action is taken. See the description of the built-in
procedure COMPILE for restrictions and other information on compiling
strings or the contents of a buffer or range. When you pass a string to
EXECUTE, the string cannot be longer than 132 characters.

Procedures are usually executed by entering the name of a compiled
procedure at the appropriate prompt from your editing interface, or by
calling the procedure from within another procedure. However, it is
possible to execute procedures with the built-in procedure EXECUTE if
the procedure returns a data type that is a valid parameter.

In the following example, the procedure test returns a program data type.
If you execute a buffer or range that contains the following code, VAXTPU
compiles and executes the procedure test, a program data type is returned,
the program is then used as the parameter for the built-in procedure
EXECUTE, and the string "abc" is written to the message area.

PROCEDURE test

After compiling the string 'MESSAGE ("abc")',
VAXTPU returns a program that is the compiled
form of the string.

RETURN COMPILE ('MESSAGE ("abc") ');
END PROCEDURE

! The built-in procedure EXECUTE executes the
! program returned by the procedure "test."

EXECUTE (test);

TPU$_NODEFINITION

TPU$_REPLAYWARNING

TPU$_REPLAYFAIL

TPU$_RECURLEARN

WARNING There is no definition for this key.

WARNING Inconsistency during the execution
of a learn sequence ... sequence
is proceeding.

WARNING Inconsistency during the execution
of a learn sequence . . . execution
stopped.

ERROR You cannot execute learn
sequences recursively.

VAXTPU Built-In Procedures
EXECUTE

EXAMPLES

TPU$_CONTROLC

TPU$_EXECUTEFAIL

TPU$_COMPILEFAIL

TPU$_ARGMISMATCH

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_NOTDEFINABLE

TPU$_NOCURRENTBUF

TPU$_NOKEYMAP

TPU$_NOTMODIFIABLE

TPU$_NODEFINITION

ERROR The execution of the command
terminated because you pressed
CTRUC.

WARNING Execution of the indicated item
has halted because it contains an
error.

WARNING

ERROR

ERROR

ERROR

WARNING

·wARN!NG

Compilation aborted because of
syntax errors.

A parameter's data type is
unsupported.

Too few arguments.

Too many arguments.

Key cannot be defined.

Key map or key map list not
specified, and there is no current
buffer.

WARNING Key map or key map list not
defined.

WARNING You cannot copy text into an
unmodifiable buffer.

WARNING Key not defined.

D EXECUTE (user_program)

This statement executes the executable statements in the program named
user _program.

~. EXECUTE (main_buffer)

This statement first compiles the contents of main_buffer and then
executes any executable statements. If you have any text in the main
buffer other than VAXTPU statements, you get an error message. If there
are procedure definitions in main_buffer, they are compiled, but they are
not executed until you run the procedure (either by entering the procedure
name after the appropriate prompt from your interface or by calling the
procedure from within another procedure).

8J EXECUTE (RET_KEY, "TPU$KEY_MAP_LIST");

This statement first finds the program bound to the return key in the
default VAXTPU key map list, and then executes the code or learn
sequence found.

PROCEDURE user do

command string:= READ LINE ("Enter VAXTPU command to execute: ");
EXECUTE-(command_string);

ENDPROCEDURE

7-126

This procedure prompts the user for a VAXTPU command to execute and
then executes the command.

(

(_

PROCEDURE user_tpu (TPU_COMMAND)

SET (INFORMATIONAL, ON);
EXECUTE (TPU_COMMAND);
SET (INFORMATIONAL, OFF);

ENDPROCEDURE

VAXTPU Built-In Procedures
EXECUTE

This procedure executes a command with informational messages turned
on, and then turns the informational messages off after the command is
executed. You must replace the parameter TPU _COMMAND with the
desired VAXTPU statement.

7-127

VAXTPU Built-In Procedures
EXIT

EXIT

FORMAT

Terminates the editing session arid writes out any modified buffers that have
associated files. VAXTPU queries you for a file name for any buffer that you
have modified that does not already have an associated file.

Buffers that have the NO_WRITE attribute are not written out. See SET (NO_
WRITE, buffer).

EXIT

PARAMETERS None.

DESCRIPTION If you do not modify a buffer, VAXTPU does not write out the next version
of the file associated with the buffer when you use the built-in procedure
EXIT to exit from VAXTPU.

SIGNALED
ERRORS

EXAMPLE
EXIT

7-128

If you modify a buffer that does not have an associated file name, (because
you did not specify a file name for the second parameter of
CREATE_BUFFER), VAXTPU asks you to specify a file name if you want
to write the buffer. If you press the RETURN key rather than entering a
file name, the modified buffer is discarded. VAXTPU queries you about all
modified buffers that do not have associated file names. The order of the
query is the order in which the buffers were created.

If an error occurs while you are trying to exit, the exit halts and control
returns to the editor.

TPU$_EXITFAIL

TPU$_ TOO MANY

WARNING The EXIT did not complete
successfully because of problems
writing modified buffers.

ERROR EXIT takes no arguments.

This ends the editing session and writes out any modified buffers that
have associated file names. If you have modified a buffer that does not
have an associated file name, VAXTPU queries you with the following
prompt:

Enter a file name to write buffer "buffer_name"; else press RETURN:

Enter a file name such as TEXT_FILE.11S if you want the contents of the
buffer written to a file. Press the RETURN key if you do not want to write
the contents of the buffer to a file.

.(

VAXTPU Built-In Procedures
EXPAND_NAME

EXPAND NAME

FORMAT

Returns a string that contains the names of any VAXTPU global variables,
keywords, or procedures {built-in or user-written) -that begin with the string
that you specify. VAXTPU searches its internal symbol tables to find a mate~
using your input string as the directive for the match. ·

string2 := EXPAND_NAME
{

, ALL }
. , KEYWORDS

(Sfrmgt , PROCEDURES)
, VARIABLES

PARAMETERS string1

DESCRIPTION

An expression that evaluates to a string. If the string contains one or
more asterisks (*) or percent signs (%), then the string is a wildcard
specification of the VAXTPU names to match. An asterisk matches zero or
more characters and a percent sign matches exactly one character. If the
string does not contain any asterisks or percent signs, then the string is
the initial substring of a VAXTPU name:

ALL
A keyword specifying that you want VAXTPU to match all names.

KEYWORDS
A keyword specifying that you want VAXTPU to match only keyword
names.

PROCEDURES
A keyword specifying that you want VAXTPU to match only procedure
names.

VARIABLES
A keyword specifying that you want VAXTPU to match only global variable
names. EXPAND_NAME does not expand the names of local variables.

If there are no matches for the substring you specify, a null string is
returned and a warning (TPU$_NONAMES) is signaled. If only one

· VAXTPU name matches the substring you specify, the name is returned
with no trailing space. If more than one VAXTPU name matches your
substring, all of the matching names are returned. The matching names
are returned as a concatenated string with words separated by a single
space. Multiple names signal a warning (TPU$_MULTIPLENAMES).

Use EXPAND_NAME in procedures that perform command completion or
that interpret abbreviated names.

EXPAND_NAME does not expand the names oflocal variables.

.,

VAXTPU Built-In Procedures
EXPAND_NAME

SIGNALED
TPU$_NONAMES

ERRORS
TPU$_MULTIPLENAMES

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

EXAMPLES

D full_name : = EXPAND _NAME ("MOVE", ALL)

WARNING No names were found matching
the one requested.

WARNING More than one name matching the
one requested was found.

ERROR EXPAND_NAME must appear
on the right-hand side of an
assignment statefTlent.

ERROR EXPAND_NAME requires two
arguments.

ERROR EXPAND_NAME accepts no more
than two arguments.

ERROR One of the arguments you passed
to EXPAND_NAME has the wrong
data type.

WARNING You specified an invalid keyword
as the second argument.

This assignment statement returns the following VAXTPU names in tlie
string full_name:

MOVE HORIZONTAL MOVE VERTICAL MOVE TEXT

i full name := EXPAND_NAME ("*EXACT", KEYWORDS)

This assignment statement returns the following VAXTPU keyword names
in the string full_name:

EXACT NO EXACT

ii full name : = EXPAND _NAME ("% % ", KEYWORDS)

This assignment statement returns the following VAXTPU keyword names
in the string {ull_name:

ON UP DO ES F6 E4 F7 E6 El E3 E2 F8 F9

These are all the keywords whose names are two characters long.

E PROCEDURE user_quick_parse (abbreviated_name)

ON_ERROR

7-130

IF ERROR= TPU$_NONAMES
THEN

MESSAGE ("No such procedure.");
ELSE

IF ERROR= TPU$_MULTIPLENAMES
THEN

MESSAGE ("Ambiguous abbreviation.");
ENDIF;

ENDIF;
RETURN;

ENDON_ERROR;

-.._

/

\

(

,U

VAXTPU Built-In Procedures
EXPAND_NAME

expanded_name := EXPAND NAME (abbreviated_name, PROCEDURES);
MESSAGE ("The procedure is"+ expanded_name + ".");

ENDPROCEDURE

This procedure uses the string that you enter as the parameter, and puts
the expanded form of a valid VAXTPU procedure name that matches
the string in the message area. If the initial string matches multiple
procedure names, or if it is not a valid VAXTPU procedure name, an
explanatory message is written to the message area.

VAXTPU Built-In Procedures
FAO

FAO

FORMAT

PARAMETERS

7-132

Invokes the Formatted ASCII Output ($FAQ) system service to convert a
control string to a formatted ASCII output string. By specifying arguments for
FAQ directives in the control string, you can control the processing performed
by the $FAQ system service. The built-in procedure FAQ returns a string that
contains the formatted ASCII output.

For complete information on the $FAQ system service, see the VMS System
Services Reference Manual.

. . { integert } { integer n }
strmg2 == FAQ (strmgt /[, string3 /[, ... string_n JI)

string1
A string, a variable name representing a string constant, or an expression
that evaluates to a string, that consists of the fixed text of the output
string and FAQ directives.

Some FAQ directives that you can use as part of the string are the
following:

!AS Inserts a string as is

!OL Converts a longword to octal notation

!XL Converts a longword to hexadecimal notation

!ZL Converts a longword to decimal notation

!UL Converts a longword to decimal notation without adjusting for negative
number

!SL

!/

Converts a longword to decimal notation with negative numbers
converted properly

Inserts a new line (carriage return/line feed)

!_ Inserts a tab

!} Inserts a form feed

!! Inserts an exclamation mark

!%S Inserts an s if the most recently converted number is not 1

!% T Inserts the current time if you enter O as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

!%D Inserts the current date and time if you enter O as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

integer1 ... integer_n
An expression that evaluates to an integer. $FAQ uses these integers as
arguments to the FAQ directives in string2 to form stringl.

string3 ... string_n
An expression that evaluates to a string. $FAQ uses these strings as
arguments to the FAQ directives in string2 to form stringl.

/

G

(

return value

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
FAO

A string containing the output you specify in ASCII format.

FAO returns a formatted string, constructed according to the rules of the
$FAO system service. The control string directs the formatting process,
and the optional arguments are values to be substituted into the control
string.

To ensure that you _get meaningful results, you should use the !AS directive
for strings and the !OL, !XL, !ZL, !UL, or !SL directive for integers.

TPU$_1NVFAOPARAM

TPU$_NEEDTOASSIGN

TPU$_1NVPARAM

TPU$_ TOOFEW

WARNING Argument was not a string or an
integer.

ERROR FAQ must appear on the right
hand side of an assignment
statement.

ERROR The first argument to FAQ must be
a string.

ERROR FAO requires at least one
parameter.

II date and time := FAO ("!%D",0)

This assignment statement stores the current date and time in the
variable date_and_time.

I PROCEDURE user_fao_conversion (count)

report := FAO ("number of forms= !SL", count);
MESSAGE (report);

END PROCEDURE

This procedure uses the FAO directive !SL in a control string to convert
the number equated to the variabl~ count to a string. The converted string
is stored in the variable report and then written to the message area.

I PROCEDURE user_error_message (strng, line, col)

error count := error count+ l;
MESSAGE (FAO ("!AS at line !UL column !UL", strng, line, col));

END PROCEDURE

This procedure formats the message that is being written to the message
area. The message tells the user the line and column at which an error
occurred.

7-133

VAXTPU Built-In Procedures
FILE_PARSE

FILE PARSE

FORMAT

Performs the equivalent of the DCL F$PARSE lexical function. That is, it calls
the RMS service $PARSE to parse a file specification and to return either an
expanded file specification or the file specification field that you request.

FILE_PARSE returns a string that contains the expanded file specification or
the field you specify. If you do not provide a complete file specification,· FILE_
PARSE supplies defaults in the return string, as described in the Description
section.

If an error occurs during the parse, FILE_PARSE returns a null string.

string3 := FILE_PARSE (filespec [, string1

[, string2 fl, NODE JI

fl, DEVICE J
fl, DIRECTORY JI
[, NAME JI fl, TYPE JI
fl, VERSION JI]/]/}

PARAMETERS filespec

7-134

The file specification to be parsed.

string1
A default file specification. Any field of the file specification that you
provide with this parameter is substituted in the output string if that field
is missing in the files pee.

string2
A related file specification. Some of the fields in the related file
specification are substituted in the output string if a field is missing
from both the filespec and the stringl parameters.

NODE
Keyword specifying that FILE_PARSE should return a file specification
including the node. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DEVICE
Keyword specifying that FILE_PARSE should return a file specification
including the device. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

DIRECTORY
Keyword specifying that FILE_PARSE should return a file specification
including the directory. For more information on using the optional
keyword parameters to FILE_PARSE, see the Description section.

(
return value

DESCRIPTION

u

NAME

VAXTPU Built-In Procedures
FILE_PARSE

Keyword specifying that FILE_PARSE should return a file specification
including the name. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

TYPE
Keyword specifying that FILE_PARSE should return a file specification
including the type. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

VERSION
Keyword specifying that FILE_PARSE should return a file specification
including the version. For more information on using the optional keyword
parameters to FILE_PARSE, see the Description section.

A string containing an expanded file specification or the file specification
field you specify.

The built-in procedure FILE_PARSE allows you to parse file specifications
using the RMS service $PARSE. For more information on the $PARSE
service, see the VMS Record Management Services Manual.

If you do not supply any of the optional parameters, FILE_PARSE returns
the device, directory, file name, and type of the fl.le specified in filespec.

Specify the first three parameters as strings. The remaining parameters
are keywords. Logical names and device names must terminate with a
colon. If you omit optional parameters to the left of a given parameter, you
must include null strings as place holders for the missing parameters.

You can specify as many of the keywords for field names as you wish. If
one or more of these keywords are present, FILE_PARSE returns a string
containing only those fields requested. The fields are returned in normal
file spe,cifi.cation order. The normal delimiters are included, but there are
no other characters separating the fields. For example, suppose you direct
VAXTPU to execute the following statements:

result:= FILE_PARSE ("junk.txt","","",NODE, DEVICE, TYPE);
MESSAGE (result);

Suppose, too, that the node is WORK and the device is DISKl. When the
statements execute, VAXTPU displays the following string:

work::diskl: .txt

If you omit the file name, type, or version number, FILE_PARSE supplies
defaults, first from string 1 and then from string2. If you do not provide
these parameters, FILE_PARSE returns a null specification for these
fields.

The FILE_PARSE built-in procedure does .not check that the file exists. It
merely parses the file specification provided, and returns the portions of
the resultant file specification requested.

You can use wildcard directives in supplying file specifications.

VAXTPU Built-In Procedures
FILE PARSE

SIGNALED
TPU$_PARSEFAIL

ERRORS
TPU$_NEEDTOASSIGN

TPU$_ TOO FEW

TPU$_1NVPARAM

TPU$_BADKEY

EXAMPLES

WARNING

ERROR

ERROR

ERROR

ERROR

D spec := FILE_PARSE ("program.pass", "[abbott) ")

RMS detected an error while
parsing the file specification.

FILE_PARSE must appear on the
right-hand side of an assignment
statement.

FILE_PARSE requires at least one
argument.

One of the parameters to FILE_
PARSE has the wrong data type.

You specified an invalid keyword
to FILE_PARSE.

This assignment statement calls RMS to parse and return a full file
specification for the file PROGRAM.PAS. The second parameter provides
the name of the directory in which the file can be found.

PROCEDURE user_start_journal

Default journal name
Auxiliary journal name derived from file name

LOCAL default journal name,
aux_jou~nal_name;

IF (GET_INFO (COMMAND_LINE, "journal") = 1)
AND

(GET_INFO (COMMAND_LINE, "read_only") <> 1)
THEN

aux journal name := GET INFO (CURRENT BUFFER, "file_name");
IF aux_journal_name =-.... -
THEN

aux_journal_name :=
ENDIF;

GET INFO (CURRENT_BUFFER, "output_file");

IF aux_journal_name = 0
THEN

aux_journal_name :=
ENDIF;
IF aux_journal_name = ""
THEN

"". I

default_journal_name := "user.TJL";
ELSE

default_journal_name :=
ENDIF;

".TJL";

journal file
journal=file

:= GET_INFO (COMMAND LINE, "journal file");
:= FILE PARSE (journal file, default journal name,

- aux journal name); - -
JOURNAL OPEN

ENDIF;
ENDPROCEDURE

(journal_file) ; - -

7-136

This procedure starts journaling. It is called from the TPU$INIT_
PROCEDURE after a file is read into the current buffer. FILE_PARSE
is used to return the full file specification for the journal file.

(:'\\ Ji

---..
\

I
./

)

C

11 . u

VAXTPU Built-In Procedures
FILE_SEARCH

FILE SEARCH

FORMAT

Calls the RMS service $SEARCH to search a directory and return the partial
or full file specification for the file that you specify.

FILE_SEARCH returns a string containing the resulting file specification or a
null string if no file is found.

string3 :: FILE_SEARCH (filespec

/[, string1

/[, string2

/[, NODE J
/[, DEVICE]/

/[, DIRECTORY]/

/[, NAME]/ If, TYPE J
/[, VERSION]/]/J)

PARAMETERS filespec
The fife specification you want to find. If you omit the device or directory
names, FILE_SEARCH supplies defaults from the optional parameters
or from your current default device and directory if you do not supply
optional parameters.

string1
A default file specification. If you fail to specify a field in filespec and that
field is present in the default file specification, VAXTPU uses the field from
string 1 when searching for the file.

string2
A related file specification. If you fail to specify a field in filespec and
stringl and that field is present in the related file specification, VAXTPU
uses the field from string2 when searching for the file.

NODE
Keyword specifying that FILE_SEARCH should return a file specification
including the node. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DEVICE
Keyword specifying that FILE_SEARCH should return a file specification
including the device. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

DIRECTORY
Keyword specifying that FILE_SEARCH should return a file specification
including the directory. For more information on using the optional
keyword parameters to FILE_SEARCH, see the Description section.

7-137

VAXTPU Built-In Procedures
FtLE_SEARCH

NAME
Keyword specifying that FILE_SEARCH should return a file specification
including the name. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

TYPE
Keyword specifying that FILE_SEARCH should return a file specification
including the type. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section.

VERSION
Keyword specifying that FILE_SEARCH should return a file specification
including the version. For more information on using the optional keyword
parameters to FILE_SEARCH, see the Description section. ~

return value

DESCRIPTION

7-138

A string containing the partial or full file specification you request from
$SEARCH.

The built-in procedure FILE_SEARCH allows you to search for files
in a directory using the $SEARCH routine. You must use this built-
in procedure multiple times with the same parameter to get all of the
occurrences of a file name in a directory. See the VMS Record Management
Services Manual for more information on $SEARCH.

Specify the first three parameters as strings. The remaining parameters
are keywords. Logical names and device names must terminate with a
colon. If you omit optional parameters to the left of a given parameter, you
must include null strings as place holders for the missing parameters.

You can specify as many of the keyword parameters (such as NODE or
DEVICE) as you wish. If one or more of these keywords are present, .
FILE_SEARCH returns only those fields requested in the keyword list, not
the full file specification. The fields appear in the same order as they do in
a full file specification. There is no separator between fields.

If you omit all the optional parameters, FILE_SEARCH returns the device,
directory, file name, _type, and version.

Unlike the FILE_PARSE built-in, FILE_SEARCH verifies that the file you
specify exists.

If FILE_SEARCH does not find a matching file, or if the built-in finds one
or more matches but is invoked again and does not find another match,
FILE SEARCH returns a null string but not an error status. Thus, the
null string can act as an "end of matching files" indicator. When FILE_

. SEARCH returns the status TPU$_SEARCHFAIL, look in the message
buffer to see why the search was unsuccessful.

_.,,,

(

VAXTPU Built-In Procedures
FILE_SEARCH

SIGNALED
ERRORS

TPU$_SEARCHFAIL WARNING RMS detected an error while
searching for the file.

TPU$_ TOOFEW ERROR FILE_SEARCH requires at least
one parameter.

TPU$_NEEDTOASSIGN ERROR FILE_SEARCH must be on the
right-hand side of an assignment
statement.

TPU$_1NVPARAM_ ERROR One of the arguments you passed
to FILE_SEARCH has the wrong
type.

TPU$_BADKEY WARNING One of the keyword arguments
you specified is not one of those
FILE_SEARCH accepts.

EXAMPLES

D fil := FILE - SEARCH ("SYS$SYSTEM:*.EXE")

Each time this assignment statement is executed, It returns a string
containing the resulting file specification of an EXE file in SYS$SYSTEM.
Because no version number is specified, only the latest version is returned.
When you get a null string, it means there are no more EXE files in the
directory. ..

PROCEDURE user collect rnos - -
LOCAL filename;

filename := FILE SEARCH ('"');

LOOP
filename := FILE_SEARCH ("*.RNO", "",
EXITIF filespec = "";
CREATE_BUFFER (filename, filename);

ENDLOOP;
END PROCEDURE

"" I NAME, TYPE) ;

This procedure is similar to the previous procedure. It makes use of the
fact that you are looking for files in the current directory and that FILE_
SEARCH can return parts of the file specification to eliminate the call to
FILE_PARSE.

7-139

VAXTPU Built-In Procedures
FILL

FILL

FORMAT

.
Reformats the text in the specified buffer or range so that the lines of text are
approximately the same length. ··

FILL ({ ~:::; }n: string ff, integer1 ff, integer2

[, integer3 111 II)

PARAMETERS buffer

DESCRIPTION

7-140

The buffer whose text you want to fill.

range
The range whose text you want to fill.

string
The list of additional word separators. The space character is always a
word separator.

integer1
The value for the left margin. The left margin value must be at least 1
and must be less than the right margin value. Defaults to the buffer's left
margin.

integer2
The value for the right margin. This value defaults to the same value as
the buffer's right margin. Integer2 must be greater than the left margin
and cannot exceed the maximum record size for the buffer.

integer3
The value for the first line indent. This value modifies the left margin of
the first filled line. It may be positive or negative. The result of adding
the first line indent to the left margin must be greater than 1 and less
than the right margin. Defaults to 0.

FILL recognizes two classes of characters, text characters and word
separators. Any character may be a word separator and any character
other than the space character may be a text character. The space
character is always a word separator, even if it is not present in the
second parameter passed to FILL.

A word is a contiguous sequence of text characters, all of which are
included on the s~e line, immediately preceded by a word separator or
a line break, and immediately followed by a word separator or line break. ~
If the first or last character in the specified range is a text character, · . F'\
that character marks the beginning or end of a word, regardless of any · ... _,)
characters outside the range. Filling a range that starts or ends in the
middle of a word may result in the insertion of a line break between that

SIGNALED
ERRORS

VAXTPU Built-In Procedures
FILL

part of the word inside the filled range and that part of the word outside
the range.

When filling a range or buffer, FILL does the following to each line:

• Removes any spaces at the beginning of the line

• Sets the left margin of the line

• Moves text up to the previous line if it fits

• Deletes the line if it contains no text

• Splits the line if it is too long

FILL sets the line's left margin to the fill left margin unless that line is
the first line of the· buffer or range being filled. In this case, FILL sets the
line's left margin to the fill left~rgin plus the first line indent. However,
if you are filling a range and t'tterange does not start at the beginning of a
line, FILL does not change the left margin of that line.

FILL moves a word up to the previous line if the previous line is in
the range to be filled and if the word fits on the previous line without
extending beyond the fill right margin. Before moving the word up, FILL
appends a space to the end of the previous line if that line ends in a space
or a text character. It does not append a space if the previous line ends in
a word separator other than the space character.

When moving a word up, FILL also moves up any word separators that
follow the word, even if these word separators extend beyond the fill right
margin. Fill does not move up any word separator that would cause the
length of the previous line to exceed the buffer's maximum record size. If
the previous line now ends in a space, FILL deletes that space. FILL does
not delete more than one such space.

FILL moves any word separators at the beginning of a line up to the
previous line. It does this even if the word separators will extend beyond
the fill right margin.

FILL splits a line into two lines whenever the line contains two or
more words and one of the words extends beyond the fill right margin.
FILL splits the line at the :first character of the first word that contains
characters to the right of the fill right margin, unless that word starts at
the beginning of the line. In this case, FILL does not split the line.

When operating on a range that does not begin at the first character of a
line but does begin left of the fill left margin, FILL splits the line at the
first character of the range.

FILL places the cursor at the end of the filled text after completing the
tasks described above.

TPU$_1NVRANGE WARNING You specified an invalid range
enclosure.

7-141

VAXTPU Built-In Procedures
FILL

TPU$_ TOO FEW ERROR FILL requires at least one
argument.

TPU$_ TOOMANY ERROR FILL accepts no more than five
arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to FILL is
of the wrong type.

TPU$_BADMARGINS WARNING You specified one of the fill
margins incorrectly.

TPU$_1NVPARAM ERROR One of the parameters to FILL is
of the wrong type.

TPU$_NOTMODIFIABLE WARNING You cannot fill text in an
unmodifiable buffer.

TPU$_NOCACHE ERROR FILL could not create a new line
because there was no memory
allocated for it.

TPU$_CONTROLC ERROR FILL terminated because you
pressed CTRUC.

EXAMPLES

II .FILL (current_buffer)

This statement fills the current buffer. It uses the buffer's left and right
margins for the fill left and right margins. The space character is the only
word separator. Upon completion, the current buffer contains no blank
lines. All lines begin with a word. Unless the buffer contains a word
too long to fit between the left and right margins, all text is between the
buffer's left and right margins. Spaces may appear beyond the buffer's
right margin.

FILL (paragraph_range, "-", 5, 65, 5)

If paragraph_range references a range that contains a paragraph, this
statement fills a paragraph. FILL uses a left margin of 5 and a right
margin of 65. It indents the first line of the paragraph an additional
five characters. The space character and the hyphen are the two word
separators. If the paragraph contains a hyphenated word, FILL breaks
the word after the hyphen if necessary.

I] FILL (paragraph_range, "-", 10, 65, -3)

7-142

This example is like the previous one except that FILL unindents the
first line of the paragraph by three characters. This is useful for filling
numbered paragraphs.

·f"""'i\-...
I ,V \

(

u !

(
'

VAXTPU Built-In Procedures
GET_CLIPBOARD

GET CLIPBOARD

FORMAT

return value

DESCRIPTION

SIGNALED
ERRORS

Reads STRING format data from the clipboard and returns a string containing
this data.

string:: GET_CLIPBOARD

A string consisting of the data read from the clipboard. Line breaks are
indicated by a line-feed character (ASCII (10)).

DECwindows provides a clipboard that allows you to move data between
applications. Applications can write to the clipboard to replace previous
data, and can read from the clipboard to get a copy of existing data. The
data in the clipboard may be in multiple formats, but all the information
in the clipboard must be written at the same time.

VAXTPU provides no clipboard support for applications not written for
DECwindows.

TPU$_NEEDTOASSIGN ERROR

TPU$_ TOO MANY ERROR

TPU$_CLIPBOARDFAIL WARNING

. TPU$_CLIPBOARDLOCKED WARNING

TPU$_CLIPBOARDNODATA WARNING

TPU$_ TRUNCATE WARNING

TPU$_STRTOOLARGE ERROR

TPU$_REQSDECW ERROR

GET_CLIPBOARD must return a
value.

Too many arguments passed to
GET _CLIPBOARD.

The clipboard has not returned
any data.

VAXTPU cannot read from the
clipboard because some other

· application has locked it.

There is no string format data in
the clipboard.

Characters have been truncated
because you tried to add text that
would exceed the maximum line
length.

The amount of data in the
clipboard exceeds 65,535
characters.

You can use GET_CLIPBOARD
only if you are using DECwindows
VAXTPU.

7-143

VAXTPU Built-In Procedures
GET_CLIPBOARD

EXAMPLE
new_string := GET_CLIPBOARD.;

7-144

This statement reads what is currently in the clipboard and assigns it to
new _string.

(
\

VAXTPU Built-In Procedures
GET_DEFAULT

GET DEFAULT

FORMAT

Returns the value of an X resource from the X resources database.

{
stringa } := GET_DEFAULT (string1, string2)
integer

PARAMETERS string1

return value

The name of the resource whose value you want GET_DEFAULT to fetch.
Note that resource names are case sensitive.

string2
The class of the resource. Note that resource class names are case
sensitive.

The string equivalent of the resource value or O if the specified resource
is not defined. Note that, if necessary, the application must convert the
string to the data type appropriate to the resource.

DESCRIPTION GET_DEFAULT is useful for initializing a layered application that uses
an X defaults file. You can use GET_DEFAULT only in the DECwindows
environment.

SIGNALED
TPU$_1NVPARAM

ERRORS
ERROR One of the parameters was

specified with data of the wrong
type.

TPU$_ TOOFEW ERROR Too few arguments passed to
GET_DEFAULT.

TPU$_ TOOMANY ERROR Too many arguments passed to
GET_DEFAULT.

TPU$_NEEDTOASSIGN ERROR GET_DEFAULT must return a
value.

TPU$_REQSDECW ERROR You can use GET_DEFAULT only
if you are using DECwindows
VAXTPU.

7-145

VAXTPU Built-In Procedures
GET_DEFAULT

EXAMPLE
PROCEDURE application_module_init

LOCAL
keypad_name;

keypad_name := GET DEFAULT ("user.keypad", "User.Keypad");

EDIT (keypad_narne, UPPER); ! Convert the returned string to uppercase.

IF keypad_narne <> '0'
THEN

CASE keypad_narne

eve_set_keypad_edt ();
eve_set_keypad_noedt ();
eve_set_keypad_wps ();

"EDT"
"NOEDT"
"WPS"
"NOWPS"
"NUMERIC"
"VT100"
[INRANGE,

eve set keypad nowps ();
eve=set=keypad=nurneric ();
eve set keypad vtl00 ();

OUTRANGE] - eve_set_keypad_nurneric; If user has

ENDCASE;

ENDIF;

ENDPROCEDURE;

User.Keypad EDT

7-146

used invalid value,
set the keypad to
NUMERIC setting.

This code fragment shows the portion of a module_init procedure directing
VAXTPU to fetch the value of a resource from the X resources database.
For more information on module_init procedures, see Appendix G.

If you want to create an extension of EVE that enables use of an X defaults
file to choose a keypad setting, you can use a GET_DEFAULT statement
in a module_init procedure.
To provide a value for the GET_DEFAULT statement to fetch, an X
defaults file would contain an entry similar to the following:

j

u

(

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

GET GLOBAL SELECT

Supplies information about a global selection.

FORMAT

{

un~pecified }
string ._
integer :-
array

{

PRIMARY }
GET_GLOBAL_SELECT (SECONDARY ,

selection_name

selection _property _name)

PARAMETERS PRIMARY

return value

A keyword indicating that the layered application is requesting
information about a property of the primary global selection.

SECONDARY
A keyword indicating that the layered application is requesting
information about a property of the secondary global selection.

selection_name
A string identifying the global selection whose property is the subject of
the layered application's information request. Specify the selection name
as a string if the layered application needs information about a selection
other than the primary or secondary global selection:

selection_property_name
A string specifying the property whose value the layered· application is
requesting.

unspecified

string

integer

array

A data type indicating that the information requested by the
layered application was not available.

The value of the specified global selection property. The
return value is of type string if the value of the specified
global selection property is of type string.

The value of the specified global selection property. The
return value is of type integer if the value of the specified
global selection property is of type integer.

An array passing information about a ·global selection
whose contents describe information that is not of a data
type supported by VAXTPU.

VAXTPU does not use or alter the information in the array;
the application layered on VAXTPU is responsible for
determining how the information is used, if at all. Since the
array is used to receive information from other DECwindows
applications, all applications that exchange information
whose data type is not supported by VAXTPU must adopt a .
convention on how the information is to be used.

7-147

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

DESCRIPTION

SIGNALED
ERRORS

7-148

The element array {OJ contains a string naming the data
type of the information being passed. For example, if the
information being passed is a span, the element contains
the string "SPAN". The element array {1J contains either
the integer 8, indicating that the Information is passed as
a series of bytes, or the integer 32, indicating that the
information is passed as a series of longwords. If array (1)
contains the value 8, the element array {2J contains a
string and there are no array elements after array {2J. The
string does not name anything, but rather is a series of
bytes of information. As mentioned, the meaning and use
of the information is agreed upon by convention among
the DECwindows applications. To interpret this string,
the application can use the SUBSTR built-in to obtain
substrings one at a time, and the ASCII built-in to convert
the data to integer format if necessary. For more information
about using these VAXTPU elements, see the VAX Text
Processing Utility Manual.

If array (1 J contains the value 32, the element array (2) and
any subsequent elements contain integers. The number of
integers in the array is determined by the application which
responded to the request for information about !he global
selection. The interpretation of the data is a convention
that must be agreed upon by the cooperating application.
To determine how many longwords are being passed,
an application can determine the length of the array and
subtract 2 _to allow for elements array {OJ and array {1J.

If an owner for the global selection exists, and if the owner provides the
information requested in a format that VAXTPU can recognize, GET_
GLOBAL_SELECT returns the information.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to
GLOBAL_SELECT.

TPU$_NEEDTOASSIGN ERROR GLOBAL_SELECT must return a
value.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REQSDECW ERROR You can use GLOBAL_SELECT
only if you are using DECwindows
VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to
GLOBAL_SELECT.

TPU$_ TOOMANY ERROR Too many ·arguments passed to
GLOBAL_SELECT.

TPU$_GBLSELOWNER WARNING VAXTPU owns the global
selection.

I

0"'\
--,...,_,/

EXAMPLE
string_to_paste ·=

u

TPU$_BADKEY

TPU$_1NVGBLSELDATA

TPU$_NOGBLSELDATA

TPU$_NOGBLSE~OWNER

TPU$_ TIMEOUT

VAXTPU Built-In Procedures
GET_GLOBAL_SELECT

WARNING You specified an invalid keyword
as a parameter.

WARNING The global selection owner
provided data that VAXTPU cannot
process.

WARNING The global selection owner has
indicated that it cannot provide the
information requested.

WARNING You have requested information
about an unowned global
selection.

WARNING The global selection owner did not
respond before the timeout period
expired.

GET_GLOBAL_SELECT (PRIMARY, "STRING");

This statement fetches the text in the primary global selection and assigns
it to the variable string_to_paste.

For another example of how to use the GET_GLOBAL_SELECT built-in,
see Example B-4.

7-149

VAXTPU Built-In Procedures
GET_INFO

GET INFO

Returns information about the current status of the editor.

For information on how to get a screen display of the status of your editor, see
the description of the built-in procedure SHOW.

DESCRIPTION This description provides general information on the GET_INFO built
ins. In this part, you can also find descriptions of individual GET_INFO
built-ins. The individual GET_INFO built-ins are grouped according to
the value of their first parameter. For a list of'the groups of GET_INFO
built-ins, see Table 7-1.

7-150

All GET_INFO built-in procedures have the following two characteristics
in common:

• They return a value that is the piece of information you have
requested.

• They consist of the GET_INFO statement followed by at least two
parameters, as follows:

The first parameter specifies the general topic about which you
want information. If you want the GET_INFO built-in to return
information on a given variable, use that variable as the first
parameter. For example, if you want to know what row contains
the cursor in a window stored in the variable·command_window,
you would specify the variable command_window as the first
parameter. Thus, you would use use the following statement:

the_row := GET_INFO (command_window, "current_row");

Otherwise, the first parameter is a keyword specifying the general
subject about which GET_INFO is to return information. The valid ;
keywords for the first parameter are as follows:

ARRAY
BUFFER
COMMAND_LINE
DEBUG
DEFINED_KEY
KEY_MAP
KEY_MAP _LIST
mouse_event_keyword
PROCEDURES
PROCESS
SCREEN
SYSTEM
WINDOW
WIDGET

For a list of valid mouse event keywords, see Table 7-2.

.u

(

VAXTPU Built-In Procedures
GET_INFO

Do not confuse a GET_INFO built-in whose first parameter is
a keyword (such as ARRAY) with a GET_INFO built-in whose
first parameter is a variable of a given data type, such as array_
variable. For example, the built-in GET_INFO (array_variable)
shows what string constants can be used when the first parameter
is an array variable, while the built-in GET_INFO (ARRAY) shows
what can be used when the first parameter is the keyword ARRAY.

The second parameter (a VAXTPU string) specifies the exact piece
of informa~ion you want.

The third and subsequent parameters, if necessary, provide
additional information that VAXTPU uses to identify and return
the requested value or structure.

Each GET_INFO built-in in this section shows the possible return
values for a given combination of the first and second parameters. For
example, the built-in GET_INFO (any_variable) shows that when you use
any variable as the first parameter and the string "type" as the second
parameter, GET _INFO returns a keyword for the data type of the variable.

Depending upon the kind of information requested, GET_INFO returns
any one of the following:

• An array

• A buffer

• An integer

• A keyword

• A marker

• A process

• A range

• A string

• A window

VAXTPU maintains internal lists of the following items:

• Arrays

• Array elements

• Breakpoints

• Buffers

• Defined keys

• Key maps

• Key map lists

• Processes

• Windows

7-151

VAXTPU Built-In Procedures
GET_INFO

You can step through an internally-maintained list by using "first'', "next",
''previous", or "last" as the second parameter to GET_INFO. Note that
the order in which VAXTPU maintains these lists is private and may
change in a future version. Do not write code that depends on a list
being maintained in .a particular order. When you write code to search a
list, remember that VAXTPU keeps only one pointer for each list. If you
create nested loops that attempt to search the same list, the results are
unpredictable. For example, suppose that a program intended to search
two key map lists (or common key maps sets up a loop within a loop. The
outer loop might contain the following statement:

GET_INFO (KEY_MAP, "previous", name_of_second_key_map)

The inner loop might contain the following statement:

GET_INFO (KEY_MAP, "next", name_of_first_key_map)

In VAXTPU, the behavior of such a nested loop is unpredictable.

Unless documented otherwise, the order of the internal list is not defined.

The syntax of GET_INFO depends on the kind of information you are
trying to get. For more information on specific GE~_INFO built-ins, see
the descriptions in this section, GET_INFO built-ins whose first parameter
is a keyword are grouped separately from GET_INFO built-ins whose first
parameter is a variable.

Table 7-1 GET_INFO Built-in Procedures by First Parameter

Variable

GET_INFO (any_variable)

GET_INFO (array_variable)

GET _INFO (buffer_variable)

GET_INFO (integer_variable)

GET _INFO (marker_variable)

GET _INFO (process_variable)

GET_INFO (range_variable)

GET_INFO (string_variable)

GET_INFO (widget_variable)

GET_INFO (window_variable)

7-152

Keyword

GET_INFO (ARRAY)

GET _INFO (BUFFER)

GET_INFO (COMMAND_LINE)

GET_INFO (DEBUG)

GET_INFO (DEFINED_KEY)

GET_INFO (KEY_MAP)

GET_INFO (KEY_MAP _LIST)

GET_INFO ('!I0USe_event_keyword)

GET_INFO (PROCEDURES)

GET _INFO (PROCESS)

GET _INFO (SCREEN)

GET _INFO (SYSTEM)

GET_INFO (WIDGET)

GET _INFO (WINDOW)

Any Keyword or Key Name

GET_INFO (any_keyname)

GET_INFO (any_keyword)

0

"L) I

_

SIGNALED
ERRORS

TPU$_BADREQUEST

TPU$_BADKEY

TPU$_NOCURRENTBUF

TPU$_NOKEYMAP

TPU$_NOKEYMAPLIST

TPU$_1NVPARAM

TPU$_NEEDTOASSIGN

TPU$_NOBREAKPOINT

· TPU$_NONAMES

TPU$_TOOFEW

TPU$_ TOOMANY

TPU$_UNKKEYWORD

EXAMPLES

VAXTPU Built-In Procedures
GET_INFO

WARNING Request represented by second
argument is not understood for
data type of first argument.

WARNING Bad keyword value or
unrecognized data type is passed
as the first argument.

WARNING Current buffer is not defined.

WARNING Key map is not defined.

WARNING Key map list is not defined.

ERROR One or more of the specified
parameters have the wrong data
type.

ERROR The GET _INFO built-in can only
be used on the right-hand side of
an assignment statement.

WARNING This string constant is valid only
after a breakpoint.

WARNING There are no names matching the
one requested.

ERROR Too few arguments passed to the
GET_INFO built-in.

ERROR Too many arguments passed to
the GET_INFO built-in.

ERROR An unknown keyword has been
used as an argument.

D my_buffer .:= GET_INFO (BUFFERS, "current");

This assignment statemen_t stores the pointer to the current buffer in the
variable my_buffer.

my_string := GET_INFO (my_buffer, "file_name");

This assignment statement stores the name of the input file for my _buffer
in the variable my_string.

I] my_buffer := GET_INFO (BUFFERS, "current");

This assignment statement stores a reference to the current buffer in the
variable my_buffer.

VAXTPU Built-In Procedures
GET_INFO

Ii my_string := GET_INFO (CURRENT_BUFFER, "file_name");

This statement calls the CURRENT_BUFFER built-in, which returns the
current buffer. The GET_INFO built-in determines the name of the input
file associated with the current buffer. The input filename is assigned to
the variable my_string.

[ii is buf mod := GET_INFO (CURRENT_BUFFER, "modified");

This assignment statement stores the integer 1 or O in the variable is_buf_
mod. A value of 1 means the current buffer has been modified. A value of
0 means the current buffer has not been modified.

my window:= GET INFO (WINDOWS, "current");
length_integer :-: GET_INFO (my_window, "length", visible_window);
width_integer := GET_INFO (my_window, "width");

These assignment statements store the size of the current window in the
variables length_integer and width_integer.

i PROCEDURE user_getinfo

top_of_window := GET_INFO (CURRENT_WINDOW, "top", visible_window);

! Remove the top five lines from the main window
ADJUST_WINDOW (CURRENT_WINDOW, +5, 0);

! Replace removed lines with an example window
example window := CREATE WINDOW (top of window, 5, ON);
example-buffer := CREATE-BUFFER ("EXAMPLE",

- - "sys$login:template.txt");
MAP (example_window, example_buffer);

ENDPROCEDURE

This procedure uses GET_INFO to find the top of the current window.
It then removes the top five lines and replaces them with an example
window.

PROCEDURE user_display_key_map_list

current key map list := GET INFO (CURRENT_BUFFER,
- - - "key map list");

MESSAGE (current_key_map_list); -
ENDPROCEDURE

This procedure retrieves and displays the name of the key map list in the
current buffer.

i PROCEDURE show_key_map_lists

LOCAL key_map_list_name;

key_map_list_name := GET_INFO (KEY_MAP_LIST, "first");
LOOP

EXITIF key_map_list_name = 0;
SPLIT_LINE;
COPY_TEXT (key_map_list_name);
key_map_list_name := GET_INFO (KEY_MAP LIST, "next");

ENDLOOP;
END PROCEDURE

This procedure displays all the key map lists.

7-154

... ./

\
J

G
m

VAXTPU Built-In Procedures
GET_INFO

PROCEDURE show self insert - -
LOCAL key_map_list_name;

key_map_list_name := GET_INFO (CURRENT BUFFER, "key_map_list");

IF GET_INFO (key_map_list_name, "self_insert")
THEN

MESSAGE ("Undefined printable characters will be inserted");
ELSE

MESSAGE ("Undefined printable characters will cause an error");
ENDIF;

ENDPROCEDURE

This procedure shows whether the key map list associated with the current
buffer inserts undefined printable characters.

Ill PROCEDURE s~ow_key_maps_in_list (key~map_list_name)

LOCAL key_map_name;

key_map_name := GET_INFO (KEY_MAP, "first", key_map_list_name);
LOOP

EXITIF key_map_name = O;
SPLIT_LINE;
COPY_TEXT (key_map_name);
key_map_name := GET_INFO (KEY_MAP, "next", key_map_list_name);

ENDLOOP;
ENDPROCEDURE

This procedure displays the key maps in the key map list
key _map _list_name.

7-155

GET _INFO Built-Ins Grouped by First Parameter

GET_INFO (any_keyname)

FORMAT

Returns a keyword describing the type of key named by _any_keyname.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ keyword } :: GET INFO
integer - {

"key_ modifiers" }
(any_keyname, "key=type")

PARAMETERS "key_modifiers"

7-156

Returns a bit-encoded integer indicating what key modifier or modifiers
were used to create the· VAXTPU key name specified by the parameter
any_keyname. For more information about the meaning and possible
values of key modifiers, see the description of the KEY_NAME built-in.

V AXTPU defines four constants to be used when referring to or testing
the numerical value of key modifiers. The correspondence between key
modifiers, defined constants, and bit-encoded integers is as follows:

Key Modifier · · Constant Bit-Encoded Integer

SHIFT _MODIFIED TPU$K_SHIFT _MODIFIED 1

CTRL_MODIFIED TPU$K_CTRL_MODIFIED 2

HELP _MODIFIED TPU$K_HELP _MODIFIED 4

ALT_MODIFIED TPU$K_ALT _MODIFIED 8

Note that the keyword SHIFT_KEY may have been used to create a
VAXTPU key name. SHIFT_KEY is not a modifier, it is a prefix. The_
SHIFT key, also called the GOLD key by the EVE editor, is pressed and
released before any other key is pressed. In DECwindows, modifying keys
such as the CTRL key are pressed and held down while the modified key
is pressed.

Note, too, that if more than one key modifier was used with the KEY_
NAME built-in, the value of the returned integer is the sum of the integer
representations of the key modifiers. For example, if you create a key
name using the modifiers HELP _MODIFIED and ALT_MODIFIED, the
built-in GET_INFO (key_name, "key_modifiers") returns the integer 12.

"key_ type"
Returns a keyword describing the type of key named by any_keyname. The
keywords that can be returned are PRINTING, KEYPAD, FUNCTION,
SHIFT_KEY, KEYPAD, SHIFT_FUNCTION, and SHIFT_CONTROL.
Returns O if parameter 1 is not a valid key name. Note that there are
cases in which GET_INFO (any_keyname, "name") returns the keyword
PRINTING but the key described by the keyname is not associated with
a printable character. For example, if you use the KEY_NAME built-in
to define a key name as the combination of the character A and the ALT
modifier, and if you then use GET_INFO (any_keyname, "name") to find
out how VAXTPU classifies the key, the GET_INFO built-in returns the

(
\

i
\

EXAMPLE

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (any_keyname)

keyword PRINTING. However, if you use the ASCII built-in to obtain the
string representation of the key, the ASCII built-in returns a null string
because ALT/A is not printable.

new key := KEY NAME (KP4, SHIFT MODIFIED, CTRL MODIFIED);
modifier value-:= GET INFO (new-key, "key modifiers");
MESSAGE (STR (modifie~_value));- -
IF GET_INFO (new_key, "key_modifiers")
THEN

the_name := GET_INFO (new_key, "name")
MESSAGE (STR (the_name));

ENDIF;

The first statement in the preceding code creates a VAXTPU key name
for the key sequence produced by pressing the CTRL key, the SHIFT
key, and the 4 key on the keypad all at once. The new key name is
assigned to the variable new_key. The second statement fetches the
integer equivalent of this combination of key modifiers. The third
statement displays the integer 3 in the message buffer. The IF clause
of the fourth statement shows how to test whether a key name was
created using a modifier. (Note, however, that this statement does not
detect whether a key name was created using the keyword SHIFT_

· KEY.) The THEN clause shows how to fetch the key modifier keyword
or keywords used to create a key name. The final statement displays the
string KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED) in the
message buffer.

7-157

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (any_keyword)

GET _INFO (any _keyword)

FORMAT

Returns the string representation of the keyword specified in the first
parameter to GET _INFO.

For general information about using all forms of GET _INFO built-ins, see the
description of GET_INFO. See also the description of GET_INFO (integer_
variable}.

string == GET _INFO (keyword, "name")

PARAMETERS keyword

7-158

Returns a VAXTPU keyword whose string equivalent you want GET_INFO
to return.

You can use GET_INFO (keyword, "name") to obtain the string equivalent
of a key name. This is useful for displaying screen messages about keys.
For example, to obtain the string equivalent of the key name PFl, you
could use the following statement:

the_string := GET_INFO (PFl, "name");

If a key name is created using several key modifiers, the built-in returns
the string representations of all the keywords used to create the key name.
For more information on creating key names, see the description of the
KEY_NAME built-in.

The following code fragment shows one possible use of GET_INFO
(keyword_variable, "name"):

new_key := KEY NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);
!

IF GET_INFO (new_key, "key_modifiers") <> 0
THEN

the name := GE?_INFO (new_key, "name")
ENDIF;
MESSAGE (STR (the_name));

The first statement creates a VAXTPU key name for the key sequence
produced by pressing the CTRL key, the SHIFT key, and the 4 key on
the keypad all at once. The new key name is assigned to the variable
key_name. The IF clause of the statement shows how to test whether
a key name was created using one or more key modifier keywords.
(Note, however, that this statement does not detect whether a key
name was created using the keyword SHIFT_KEY. The built-in GET_
INFO (key_name, "key_modifiers") returns O even if the key name was
created using SHIFT_KEY.) The THEN clause shows how to fetch the
key modifier keyword or keywords used to create a key name. The final
statement displays the string KEY_NAME (KP4, SHIFT_MODIFIED,
ALT_MODIFIED) in the message buffer.

"name"
Returns the string equivalent of the specified keyword.

/

(

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (any_varlable)

GET_INFO (any_variable)

FORMAT

Returns a keyword specifying the data type of the variable.

For general information about using all forms of GET_INFO built-ins, see the
description of GET _INFO.

keyword:= GET_INFO (any_variable, "type'')

PARAMETERS "type"
Returns a keyword that is the data type of the variable specified in any_
variable.

EXAMPLE
IF . GET_INFO (select_popup, "type") <> WIDGET

THEN
MESSAGE ("Select_popup widget not created.")

ENDIF;

The preceding code tests whether the variable select_popup has been
assigned a widget instance. If not, the code causes a message to be
displayed on the screen. ·

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (ARRAY)

GET_INFO (ARRAY}

FORMAT

Returns an array in VAXTPU's internal list of arrays.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

· { "cuffent" }
"first"

array:: GET_INFO (ARRAY, "last")
"next"
''previous"

PARAMETERS "current"

7-160

Returns the current array in VAXTPU's internal list of arrays. You must
use either GET_INFO (ARRAY, "first") or GET_INFO (ARRAY, "last")
before you can use GET_INFO (ARRAY, "current"). If you use these built
ins in the wrong order or if no arrays have been created, GET_INFO
(ARRAY, "current") returns 0.

"first"
Returns the first array in VAXTPU's internal list of arrays. Returns O if
no arrays are defined.

"last"
Returns the last array in VAXTPU's internal list of arrays. Returns O if no
arrays are defined.

"next"
Returns the next array in VAXTPU's internal list of arrays: You must
use GET_INFO (ARRAY, "first") before you can use GET_INFO (ARRAY,
"next"). Returns O if no arrays are defined.

''previous" .
Returns the previous array in VAXTPU's internal list of arrays. You must
use either GET_INFO (ARRAY, "current") or GET_INFO (ARRAY, "last")
before you can use GET_INFO (ARRAY, "previous"). If you use these
built-ins in the wrong order or if no arrays have been created, GET_INFO
(ARRAY, "previous") returns 0.

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO {array_varlable)

GET_INFO (array_variable)

FORMAT

Returns information about a specified array.

For general information about using all forms of GET _INFO built-ins, see the
description of GET_INFO.

array
buffer
integer
keyword
marker
process
range
string
widget
window
unspecified

"current"
"first"
"high_index"

== GET_INFO (array_variable, "last")
"low_index"
"next"
"previous"

PARAMETERS "current"
Returns the index value of the current element of the specified array,
whether the index is of type integer or some other type. Returns any type
except program, pattern, or learn. Returns the type unspecified if there is
no current element.

You must use either GET_INFO (array_variable, "first") or GET_INFO
(array_variable, "last") before you can use GET_INFO (array_variable,
"current").

"first"
Returns the index value of the first element of.the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no first
element.

"high_index"
Returns an integer that is the highest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high
index lower than the low index, the array has no static portion.

"last"
Returns the index value of the last element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no last
element.

"low index"
Returns an integer that is the lowest valid integer index for the static
predeclared portion of the array. If the GET_INFO call returns a high
index lower than the low index, the array has no static portion.

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (array_variable)

7-162

"next"
Returns the index value of the next element of the specified array, whether
the index is of type integer or some other type. Returns any type except
program, pattern, or learn. Returns the type unspecified if there is no next
element. ·

You must use GET_INFO (array_variable, "first") before you can use GET_
INFO (array_variable, "next").

''previous"
Returns the index value of the previous element of the specified array,
whether the index is of type integer or some other type. Returns any type
except program, pattern, or learn. Returns the type unspecified if there is
no previous element.

You must use either GET_INFO (array_variable, "current") or GET_INFO
(array_variable, "last") before you can use GET_INFO (array_variable,
"previous"). ·

)

(

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (BUFFER)

GET_INFO (BUFFER)

FORMAT

PARAMETERS

Returns a buffer in VAXTPU's internal list of buffers.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

buffer:= GET_INFO (BUFFER/[S]J

"current"

"current"
"find_buffer", buffer_name
"first"
"last"
"next"
''previous"

)

Returns the current buffer in VAXTPU's internal list of buffers. Returns 0
if there is no current buffer.

GET_INFO (BUFFER[S], "current") always returns the current
buffer, regardless of whether or you have first used GET_INFO
(BUFFER[S], "first") or GET_INFO (BUFFER[S], "last"). Thus, GET_
INFO (BUFFER[S], "current") is equivalent to the built-in CURRENT_
BUFFER.

"find buffer"
Return-;-the buffer whose name you specify (as a string) as the third
parameter. Returns O if no buffer with the name you specify is found.

"first"
Returns the first buffer in VAXTPU's internal list of buffers. Returns O if
there is none.

"last"
Returns the last buffer in VAXTPU's internal list of buffers. Returns O if
there is none.

"next"
The next buffer in VAXTPU's internal list of buffers. Returns O if there
are no more.

"previous"
Returns the preceding buffer in VAXTPU's internal list of buffers. Returns
0 if there is none.

7-163

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (buffer_ variable)

GET_INFO (buffer_variable)

FORMAT

7-164

Returns information about a specified buffer.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

integer
keyword
learn_sequence
marker
program

:: GET_INFO (buffer_variable,

range
string

"before_bol"
"beyond_eob"
"beyond_eol"
"bound"
"character"
"direction"
"eob_text"
"file_name"
"first_ marker"
"first_range"
"key _map_list"
"left_margin"
"left_margin_action"
"line"
"map_count"
"max_lines"
"middle_ of_ tab"
"mode"
"modifiable"
"modified"
"name"
"next_marker"
"next_range"
"no_write"
"offset"
"offset_column"
"output_file"
"permanent"
"read_routine", GLOBAL_SELECT
"record_count"
"record_size"
"right_margin"
"right_margin_action"
"system"
"tab_stops"

PARAMETERS

(

u

GET _IN_FO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

"before bot"
Returns aninteger (1 or 0) that indicates whether the editing point is
located before the beginning of a line.

"beyond_ eob"
Returns an integer (1 or 0) that indicates whether the editing point is
located beyond the end of a buffer.

"beyond_ eol"
Returns an integer (1 or 0) tliat indicates whether the editing point is
located beyond the end of a line.

"bound"
Returns an integer (1 or 0) that indicates whether or not the marker
that is the specified buffer's editing point is bound to text. For more
information about bound markers, see Chapter 2.

"character"
Returns a string that is the character at the editing point for the buffer.

"direction"
Returns the keyword FORWARD or REVERSE. This parameter is
established or changed with the built-in procedures SET (FORWARD)
and SET (REVERSE).

"eob_text"
Returns a string representing the end-of-buffer text. This parameter is
established or changed with the built-in procedure SET (EOB_TEXT).

"file name"
Returns a string that is the name of a file given as the second parameter
to CREATE_BUFFER; null if none was specified.

"first marker"
Returns the first marker in VAXTPU's internal list of markers for the
buffer. Returns O if there is none. You must use GET_INFO (buffer_
variable, "first_marker") before the first use of GET_INFO (buffer_variable,
"next_marker"). If you do not follow this rule, GET_INFO (buffer_variable,
"next_marker") returns 0.

Note that there is no corresponding "last_marker" or ''prev_marker"
parameter.

Do not write code that relies on VAXTPU storing markers in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"first_ range"
Returns the first range in VAXTPU's internal list of ranges for the buffer.
Returns O if there are none. You must use GET_INFO (buffer_variable,
"first_range") before you use GET_INFO (buffer_variable, "next_range") or
the "next_range" built-in returns 0. · ·

Note that there is no corresponding "last_range" or ''prev_range"
parameter.

n

u

u

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

7-166

Do not write code that relies on VAXTPU storing ranges in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"key_map_list"
Returns a string that is the key map list bound to the -buffer. This
parameter is established or chang~d with the built-in procedure SET.

"left_margin"·
Returns an integer that is the current left margin setting. This parameter
is established or changed with the built-in procedure SET (LEFT_
MARGIN).

"left_margin_action"
Returns a program or learn sequence specifying what VAXTPU should
do if the user tries to insert text to the left of the left margin. Returns
UNSPECIFIED if no left margin action routine has been set. This
parameter is established or changed with the built-in procedure SET
(LEFT_MARGIN_ACTION).

"line"
Returns a string that is the line of text at the editing point for the buffer.

"map_ count"
Returns an integer that is the number of windows associated with the
buffer.

"max_lines"
Returns an integer that is the maximum number of records (lines) in
the buffer. This parameter is established or changed with the built-in
procedure SET.

"middle_ of_ tab"
Returns an integer (1 or O) that indicates whether the editing point is
located in the white space within a tab.

"mode"
Returns the keyword INSERT or OVERSTRIKE. This parameter is
established or changed with the built-in procedures SET (INSERT) and
SET (OVERSTRIKE}.

"modifiable"
Returns an integer (1 or 0) that indicates whether the buffer is modifiable.

"modified"
Returns an integer (1 or 0) that indicates whether the buffer has been
modified.

"name"
Returns a string that is the name given to the buffer when it was created.

"next marker"
Returnsthe next marker in VAXTPU's internal list of markers for the
buffer. Returns O if there are no more. You must use GET_INFO (buffer_
variable, "fi.rst_marker") before you use GET_INFO (buffer_variable,
"next_marker") or the "next_marker" built-in returns 0.

u
GET _INFO Built-Ins Grouped by First Parameter

GET_INFO (buffer_variable)

Note that there is no corresponding "last_marker" or ''prev_marker"
parameter.

Do not write code that relies on VAXTPU storing markers in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"next_range"
Returns the next range in VAXTPU's internal list of ranges for the buffer.
Returns O if there are no more. You must use GET_INFO (buffer_variable,
"first_range") before·you use GET_INFO (buffer_variable, "next_range") or
the "next_range" built-in returns 0.

Note that there is no corresponding "last_range" or ''prev_range"
parameter.

Do not write code that relies on VAXTPU storing ranges in one particular
order. Creating markers or ranges may alter the internal order. In
addition, the internal ordering may change in future releases.

"no_ write"
Returns an integer (1 or 0) that indicates whether the buffer should be
written to a file at exit time. Note that VAXTPU writes the buffer to a
file only if the buffer has been modified during the editing session. This
parameter is established or changed with the built-in procedure SET (NO_
WRITE).

"offset"
Returns an integer that is the number of characters . between the left
margin and the editing point. The left margin is counted as character
0. A tab is counted as one character, regardless of width. Window shifts
have no effect on the value returned when you use "offset". The value
returned has no relation to the visible screen column in which a character
is displayed.

"offset column"
Returns an integer that is the screen column in which VAXTPU displays
the character at the editing point. When calculating this value, VAXTPU
does not take window shifts into account; VAXTPU assumes that any
window mapped to the current buffer is not shifted. The value returned
when you use "offset_column" reflects the location of the left margin and
the width of tabs preceding the editing point. In contrast, the value
returned when you use "offset" is-not affected by the location of the left
margin or the width of tabs.

"output_file"
Returns a string that is the name of the file used with the built-in
procedure SET (OUTPUT_FILE). Returns O if there is no output file
associated with the specified buffer. This parameter is established or
changed with the built-in procedure SET (OUTPUT_FILE).

''permanent"
Returns an integer (1 or 0) that indicates whether the buffer is permanent
or can be deleted. This parameter is established or changed with the
built-in procedure SET (PERMANENT).

"read routine"
This parameter is used with DECwindows only.

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (buffer_variable)

Returns the program or learn sequence that VAXTPU executes when it
owns a global selection and another application has requested information
about that selection. If the application has not specified a global selection
read routine, 0 is returned.

GLOBAL_SELECT is a keyword indicating that the built-in is· to return
the global selection read routine. When you use "read_routine" as the
second parameter to this built-in, you must use the keyword GLOBAL_
SELECT as the third parameter, as follows:

GET_INFO (buffer_variable, "read_routine", GLOBAL_SELECT)

"record_ count"
Returns an integer that is the number of records (lines) in the buffer.
Note that GET_INFO (buffer, "record_count") does not count the end-of- -~
buffer text as a record, but GET_INFO (marker, "record_number") does .,

7-168

if the specified marker is on the end-of-buffer text. Thus, the maximum
value returned by GET_INFO (buffer, "record_count") is one less than the
maximum value returned by GET_INFO (marker, "record_number") if the
specified marker is on the end-of-buffer text.

"record_size"
Returns an integer that is the maximum length for records (lines) in the
buffer.

"right_margin"
Returns an integer that is the current right margin setting. This
parameter is established or changed with the built-in procedure SET
(RIGHT_MARGIN).

"right_margin_action"
Returns a program or learn sequence specifying what VAXTPU should do
if the user tries to insert text to the right of the right margin. Returns
TPU$K_UNSPECIFIED if the buffer does not have a right margin action.

This parameter is established or changed with the built-in procedure SET
(RIGHT_MARGIN_ACTION).

. "system"
Returns an integer (1 or 0) that indicates whether the buffer is a system
buffer. This parameter is established or changed with the built-in
procedure SET (SYSTEM).

"tab_ stops"
Returns either an integer or a string. Use the built-in SET (TAB_STOPS)
to determine the data type of the return value. If you specify a return
value of type string, the built-in GET_INFO (buffer_ variable, "tab_stops")
returns a string representation of all the column numbers where tab stops
are set. The column numbers are separated by spaces. If you specify a
return value of type integer, the return value is the number of columns
between tab stops.

.,I

0

(

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (COMMAND_LINE)

GET_INFO (COMMAND_LINE)

FORMAT

Returns information about the command line used to invoke VAXTPU.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ integer }:= G~_INFO (COMMAND_LINE,
string

"character"
"command"
"command_file"
"create"
"display"
"file_name"
"initialization"
"init_file"
"initialization _file"
'Journal"
"journaLfile"
"line")
"modify"
"nomodify"
"output"
"output_ file"
"read_only"
"recover"
"start_character"
"start_record"
"section"
"section_file"
"write"

PARAMETERS "character"
Returns an integer that is the column number of the character position
specified by the /START_POSITION command qualifier. This parameter is
useful in a procedure to determine where VAXTPU should place the cursor
at startup time. The default is 1 if the /START_POSITION qualifier is i;,.ot
specified. This parameter is the same as the "start_character" parameter.

"command"
Returns an integer (1 or 0) that indicates whether /COMMAND was
specified when you invoked VAXTPU.

"command_file"
Returns a string that is the command file specification.

7-169

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (COMMAND_LINE)

7-170

"create"
Returns an integer (1 or 0) that indicates whether /CREATE is active
(either by default or because /CREATE was specified when VAXTPU was
invoked). ·

"display"
Returns an integer (1 or 0) that indicates whether /DISPLAY is active
(either by default or because /DISPLAY was specified when VAXTPU was
invoked).

"file name"
Returns a string that is a file specification used as a parameter when the
user invokes VAXTPU.

"initialization"
Returns an integer (1 or 0) that indicates whether /INITIALIZATION is
active (either by default or because /INITIALIZATION was specified when
VAXTPU was invoked).

"init_file"
Returns a string that is a file specification for /INITIALIZATION. This is a
synonym for GET_INFO (COMMAND_LINE, "initialization_file").

"initialization file"
Returns a string that is the initialization file specification for
/INITIALIZATION.

'1ournal" .
Returns an integer (1 or 0) that indicates whether /JOURNAL is active
(either by default or because /JOURNAL was specified when VAXTPU was
invoked).

'1ournal_file"
Returns a string that is the journal file specification for /JOURNAL.

"line"
Returns an integer that is the record number of the line specified by the
/START_POSITION command qualifier. This parameter is useful in a
procedure to determ_ine where VAXTPU should place the cursor at startup
time. The default is 1 if the /START_POSITION qualifier is not specified.
This parameter is the same as the "start_record" parameter.

"modi'fy"
Returns an integer (1 or 0) that indicates whether the qualifier /MODIFY
was specified when VAXTPU was invoked by the user or by another
program.

"nomodi'fy"
Returns an integer (1 or 0) that indicates whether the qualifier
/NOMODIFY was specified when VAXTPU was invoked by the user or
by another program.

"output"
Returns an integer (1 or 0) that indicates whether /OUTPUT is active
(either by default or because /OUTPUT was specified when VAXTPU was
invoked).

_/

0
GET _INFO Built-Ins Grouped by First Parameter

GET _INl=o {COMMAND _LINE)

"output_ file"
Returns a string that is the output file specification for /OUTPUT.

"read_ only"
Returns an integer (1 or 0) that indicates whether /READ_ONLY was
specified when VAXTPU was invoked. For more information on this call,
see Chapter 5. ·

"recover"
Returns an integer .(1 or 0) that indicates whether /RECOVER was
specified when VAXTPU was invoked.

"start_ character"
Returns an integer that is the column number of the character position
specified by the /START_POSITION command qualifier. This parameter is
useful in a procedure to determine where VAXTPU should place the cursor
at startup time. The default is 1 if the /START_POSITION qualifier is not
specified.

This parameter is a synonym for "character".

"start record"
Returns an integer that is the record number of the line specified by the
/START_POSITION command qualifier. This parameter is useful in a
procedure to determine where VAXTPU should place the cursor at startup
time. The default is 1 if the /START_POSITION qualifier is not specified.
This parameter is a synonym for "line".

"section"
Returns an integer (1 or 0) that indicates whether /SECTION is active
(either by default or because /SECTION was specified when VAXTPU was
invoked).

"section file"
Returns a string that is the section file specification for /SECTION.

"write"
Returns an integer (1 or 0) that indicates whethi~r /WRITE was specified
when VAXTPU was invoked. For more information on this statement, see
Chapter 5.

/

GET_INFO Built-Ins Grouped by First Parameter
GET _INFO (DEBUG)

GET_INFO (DEBUG)

FORMAT

Returns information about the status of a debugging session using the
VAXTPU Debugger.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

string
contents
integer
parameter
string
variable

:: GET _INFO (DEBUG,

"breakpoint"
"examine", variable_name
"line_number"
"local"
"next"
"parameter"
"previous"
"procedure"

PARAMETERS "breakpoint" ..
Returns a string that is the name of the first breakpoint. This establishes
a breakpoint context for the "next" and ''previous" parameters. TPU$_
NONAMES is returned if there are no breakpoints.

7-172

"examine"
Returns the contents of the specified variable. TPU$_NONAMES is
returned if the specified variable cannot be found.

You must specify a string containing the name of the variable as the third
parameter to GET_INFO (DEBUG, "examine").

"line number"
Returns an integer that is the line number of the breakpoint within the
procedure. If the procedure is unnamed, 0 is returned.

"local"
Returns the first local variable in the procedure. This establishes a context
for the "next" and "previous" parameters. TPU$_NONAMES is returned if
there are no local variables.

)

. ./

/

. GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (DEBUG)

"next"
Returns the next parameter, local variable, or breakpoint. Before using
GET_INFO (DEBUG, "next"), you must first use one of the following
built-ins:

• GET_INFO (DEBUG, "local")

• GET _INFO (DEBUG, "breakpoint")

• GET_INFO (DEBUG, "parameter")

TPU$_NONAMES ts returned if there are no more.

"parameter"
Returns the first parameter of the procedure. GET_INFO (DEBUG,
"parameter") causes the VAXTPU Debugger to construct a list of all the
formal parameters of the procedure you are debugging. Once this list is
constructed, you can use GET_INFO (DEBUG, "next") and GET_INFO
(DEBUG, "previous"). VAXTPU signals TPU$_NONAMES if the procedure
you are debugging does not have any parameters.

"previous"
Returns the previous parameter, local variable, or breakpoint. TPU$_
NO NAMES is returned if there are no more.

''procedure"
Returns a string that is the name of the procedure containing the
breakpoint. The null string is returned if the procedure has no name.

7-173

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (DEFINED _KEY)

GET_INFO (DEFINED_KEY)

FORMAT

Returns a keyword that is the key name of a specified key. GET _INFO
(DEFINED_KEY) takes a string as a third parameter. The string specifies the
name of either the key map or key map list to be searched.

Note that "current" is not valid when the first parameter is DEFINED_KEY or
KEY _MAP, although it is valid when the first parameter is KEY _MAP _LIST.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

keyword :: GET _INFO
{

"first" }
· "last"

(DEFINED_KEY, "next" , name_string)

"previous"

PARAMETERS "first"

7-174

Returns a keyword that is the key name of the :first key in the specified
key map or key map list.

"last"
Returns a keyword that is the key name of the last key in the specified ·
key map or key map list.

"next"
Returns a keyword that is the key name of the next key in the specified
key map or key map list. Returns O if last. Use string constant "first"
before using "next."

"previous"
Returns a keyword that is the key name of the previous key in the
specified key map or key map list. Returns O if first. Use "last" before
using "previous."

r· u
GET _INFO Built-Ins Grouped by First Para·meter

GET_INFO (integer_varlable)

GET _INFO (integer_variable)

FORMAT

Returns the string representation of any integer that is an equivalent of a
keyword.

For general information about using all forms of GET _INFO built-ins, see
the description of GET_INFO. See also the description of GET_INFO {any_
keyword).

string := GET_INFO (integer, "name'')

PARAMETERS integer
Returns an integer that is the equivalent of a VAXTPU keyword. When
you use GET_INFO (integer, "name"), the built-in returns the string
representation of the keyword that is equivalent to the specified integer.

For example, the following statement assigns the string object to the
variable equiv_string:

equiv_string := GET_INFO (10, "name");

(The value 14 is the integer equivalent of the keyword PROCESS.)

Note that you should not use the integer equivalents of keywords in
VAXTPU code. Digital does not guarantee that the existing equivalences
between integers and keywords will always remain the same.

"name"
Returns the string equivalent of the specified integer or keyword.

7-175

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (KEY _MAP)

GET _INFO (KEY _MAP)

FORMAT

Returns information about a key map in a specified key map list. GET _INFO
(KEY _MAP) takes a string as a third parameter. The string specifies the name
of the key map list to be searched.

Note that "current" is not valid when the first parameter is DEFINEb_KEY or
KEY _MAP, although it is valid when the first parameter is KEY _MAP _LIST.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{
~tring } :: GET INFO
integer - {

"first" }
"last"

(KEY_MAP, "next" , name_string)

''previous"

PARAMETERS "first"

7-176

Returns a string that is the name of the first key map in the key map list. ,,~,
Returns O if there is none. .. y ,

"last" j

Returns a string that is the name of the last key map in the key map list.
Returns O if there is none.

"next"
Returns a string that is the name of the next key map in the key map list.
Returns O if there is none. Use string constant "first" before using "next."

''previous"
Returns a string that is the name of the previous key map in the key map
list. Returns O if there is none. Use "last" before using "previous."

(

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (KEY_MAP _LIST)

GET_INFO (KEY_MAP _LIST)

FORMAT

Returns information about a key map list.

Note that "current" is not valid when the first parameter is DEFINED_KEY or
KEY _MAP, although it is valid when the first parameter is KEY _MAP _LIST.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ~tring } :: GET INFO
integer -

{

"current" }
"first"

(KEY_MAP_L/ST, "last")
"next"
"previous"

PARAMETERS "current"
Returns a string that is the name of the current key map list. Returns O if
there is none.

"first"
Returns a string that is the name of the first key map list. Returns O if
there is none. ·

"last"
Returns a string that is the name of the last key map list. Returns O if
there is none.

"next"
Returns a string that is the name of the next key map list. Returns O if
there is none. Use string constants "current" or "first" before using "next."

"previous"
Returns a string that is the name of the previous key map list. Returns 0
if there is none. Use "current" or "last" before using "previous."

7-177

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

GET_INFO {marker_variable)

FORMAT

Returns info~mation about a specified marker.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ ~~=:;r } :: GET _INFO
keyword

"before_bol"
"beyond_eob"
"beyond_eo/"
"bound"
"buffer"
"left_margin"
"middle_of_tab"
"offset"

(marker_ variable,

"offset_ column"
"record_number"
"right_margin"
"video"
"within_range", range

PARAMETERS "before bol"

7-178

Returns 1 if the specified marker is located before the beginning of a line;
returns O if it is not.

"beyond_eob"
Returns 1 if the specified marker is located beyond the end of a buffer;
returns O if it is not.

"beyond_eol" _
Returns 1 · if the specified marker is located beyond the end of a line;
J.'.eturns O if it is not.

"bound"
Returns 1 if the specified marker is attached to a character; returns O if
the marker is free. For more information on bound and free markers, see
Section 2.6.

"buffer"
Returns the buffer in which the marker is located.

"lett_margin"
Returns an integer that is the current left margin setting of the line
containing the marker.

(

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (marker_variable)

"middle_of_tab"
Returns an integer (1 or 0) that indicates whether the marker is located in
the white space created by a tab.

"offset"
Returns an integer that is the number of characters between the left
margin and the marker. The left margin is counted as character 0. A tab
is counted as one character, regardless of width. Window shifts have no
effect on the value returned when you use "offset." The value returned has
no relation to the vi.,sible screen column in which the character bound to
the marker is displayed.

"offset column"
Returns an integer that is the screen column in which VAXTPU displays
the character to which the marker is bound. When calculating this value,
VAXTPU does not take window shifts into account; VAXTPU assumes
that any window mapped to the current buffer is not shifted. The value
returned when you use "offset_column" does reflect the location of the left
margin and the width of tabs preceding the editing point. In contrast, the
value returned when you use "offset" is not affected by the location of the
left margin or the width ·of tabs.

"record_number"
Returns an integer that is the number associated with the record (line)
containing the specified marker.

A record number indicates the location of a record in a buffer. Record
numbers are dynamic; as you add or delete records, VAXTPU changes
the number associated with a particular record, as appropriate. VAXTPU
counts each record in a buffer, regardless of whether the line is visible
in a window or whether the record contains text. Note that GET_INFO
(marker, "record_number") counts the end-of-buffer text as a record if
the specified marker is on the end-of-buffer text, but GET_INFO (buffer,
"record_count") never counts the end-of-buffer text as a record. Thus, it
is possible for the value returned by GET_INFO (buffer, "record_count")
to be one less than the maximum value returned by GET_INFO (marker,
"record_number").

"right_margin"
Returns an integer that is the current right margin setting of the line
containing the marker.

"video"
Returns a keyword that is the video attribute of the marker. Returns O if
the marker is a free marker.

"within_range"
Returns an integer (1 or 0) that indicates whether the marker is in the
range specified by the third parameter.

7-179

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (mouse_event_keyword)

GET _INFO (mouse_event_keyword)

FORMAT

PARAMETERS

7-180

Returns information about a mouse event. .A mouse_event_keyword is a
keyword representing a single click, multiple click, upstroke, downstroke, or
drag of a mouse button. For a list of the valid mouse event keywords that you
can use for the first parameter, see Table 7-2.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ Integer }== GET_INFO (mouse_event_keyword,
window

"mouse button"

{
"mouse_button" }J
"window"

Returns an integer that is the number of the mouse button specified with
a mouse event keyword.

Table 7-2 lists the valid keywords for the first parameter when you use
"mouse_button" as the second parameter.

Table 7-2 VAXTPU Keywords Representing Mouse Events

M1UP M2UP M3UP M4UP MSUP

M1DOWN M2DOWN M3DOWN M4DOWN MSDOWN

M1DRAG M2DRAG M3DRAG M4DRAG MSDRAG

M1CLICK M2CLICK M3CLICK M4CLICK MSCLICK

M1CLICK2 M2CLICK2 M3CLICK2 M4CLICK2 MSCLICK2

M1CLICK3 M2CLICK3 M3CLICK3 M4CLICK3 MSCLICK3

M1CLICK4 M2CLICK4 M3CLICK4 M4CLICK4 MSCLICK4

M1CLICK5 M2CI.ICK5 M3CLICK5 M4CLICK5 MSCLICKS

"window"
Returns the window in which the down stroke occurred that started the
current drag operation. Returns O if no drag operation is in progress for
the specified mouse button when the built-in is executed.

The valid keywords for the first parameter when you use "window" as the
second parameter are MlDOWN, M2DOWN, M3DOWN, M4DOWN, and
M5DOWN.

~
__,/

\
J

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (mouse_event_keyword)

EXAMPLES

D x := GET INFO (M3CLICK2, "mouse_button");

This statement causes VAXTPU to assign the value 3 to the variable x.

I the_key := READ_KEY;

i]

IF GET_INFO (the_key, "mouse_button") = 3
THEN

MESSAGE ("MB3 has no effect in this context.");

These statements test whether you have pressed MB3 and, if so, display a
message in the message window.

PROCEDURE sample_ml_drag

LOCAL the window,
new=window,
column,
row,
temp;

the window := GET INFO (MlDOWN, "window");
IF the window= 0
THEN

RETURN (FALSE)
ENDIF;

LOCATE_MOUSE (new_window, column, row);

IF the window<> new window - -THEN
MESSAGE ("Invalid drag of pointer across window boundaries.");

ENDIF;
ENDPROCEDURE;

This procedure, when bound to MlDRAG, responds to a drag event by
checking whether you have dragged the mouse across window boundaries.
If you have, the procedure displays a message. If not, the procedure
creates a select range.

7-181

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (PROCEDURES)

GET_INFO (PROCEDURES)

FORMAT

Returns information about a specified procedure. GET _INFO
(PROCEDURES) takes a string as a third parameter. The string specifies
the name of the procedure about which you are requesting information.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{

"defined" }
integer:= GET_INFO (PROCEDURES, "minimum_parameters" ,

"maximum_parameters"
string) ·

PARAMETERS "defined"
Returns an integer (1 or 0) that indicates whether the specified procedure
is user defined.

"minimum_parameters" 1
~ .. Y.')

Returns an integer that is the minimum number of p~ameters required J

7-182

for the specified user-defined procedure. ·

"maximum_parameters"
Returns an integer that is the maximum number of parameters required
for the specified user-defined procedure.

string
A string that is the name of the procedure about which you want
information.)

(

u

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO {PROCESS)

GET_INFO (PROCESS)

FORMAT

Returns a specified process in VAXTPU's internal list of processes.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{

"current" }
"first"

process:: GET_INFO {PROCESS, "last")
"next"
"previous"

PARAMETERS "current"
Returns the current process in VAXTPU's internal list of processes. You
can only use GET_INFO (PROCESS, "current") after you have used GET_
INFO (PROCESS, "first") or GET_INFO (PROCESS, "last"). The built-in
returns O if you do not use these GET_INFO built-ins in the correct order.

"first"
Returns the first process in VAXTPU's internal list of processes. Returns 0
if there is none.

"last"
Returns the last process in VAXTPU's internal list of processes. Returns 0
if there is none.

"next"
Returns the next process in VAXTPU's internal list of processes. Returns
0 ifthere are no more processes. Use "first" before using "next".

"previous"
Returns the preceding process in VAXTPU's internal list of processes.
Returns O if there is no previous process. Use "last" before using
"previous".

GET_INFO Built-Ins Grouped by First Parameter
GET_INFO (process_variable)

GET _INFO (process_variable)

.Returns information about a specified process.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

FORMAT
{ ~uffer } :: GET INFO

integer - {
"buffer" }

(process_ variable, "pid")

PARAMETERS "buffer"
Returns the buffer associated with the process.

''pid"
Returns an integer that is the process identification number.

7-184

0
GET _INFO Built-Ins Grouped by First Parameter

GET_INFO (range_varlable}

GET _INFO (range_v-ariable)

FORMAT

Returns information about a specified range.

For general information about using all_ forms of GET _INFO built-ins, see the
description of GET _INFO.

{
buffer } :: .GET_INFO
keyword {

"buffer" } (range variable, ,, 'd ,,) - v, eo

PARAMETERS "buffer"
Returns the buffer in which the range is located.

"video"
Returns a keyword that is the video attribute of the range.

7-185

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN)

GET_INFO (SCREEN)

FORMAT

7-186

Returns information about the screen.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

array
integer
keyword
learn_sequence
PRIMARY :: GET_INFO (SCREEN,
program
SECONDARY
selection_name
string

'
_,I

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN)

"active_area"
"ansi_crt"
"auto_ repeat"
"avo"
"cross_window_bounds"
"current_ column"
"current_row"
"dec_crt"
"dec_crt2"
"decwindows"
"edit_mode"
"eightbit"
"event", GLOBAL_SELECT

{

PRIMARY }
"globaLselect", SE

I
CCJ_NDARY _

se ectIon_name

''grab routine" { GLOBAL_SELECT }
- ' INPUT_FOCUS

"icon_name"
"input_ focus"
"length"
"line_editing"
"mouse"
"new_length"
"new_width"
"old_length"
"old_width"
"originaUength"
"originaL width"
"prompt_/ength"
''prompt_row"
"read_routine", GLOBAL_SELECT
"screen_limits"
"screen_update"
"scroll"
"time", GLOBAL SELECT

"ungrab routine-: { GLOBAL_SELECT }
- ' JNPUT_FOCUS

"visible_length"
"vk100"
"vt100"
"vt200"
"vt300"
"width"

PARAMETERS "active area"

)

Returns an array containing information on the location and dimensions
of the application's active area. Returns the integer O if there is no active
area. The active area is the region in a window in which VAXTPU ignores
movements of the pointer cursor for purposes of distinguishing clicks
from drags. When you press down a mouse button, VAXTPU interprets
the event as a click if the upstroke occurs in the active area with the

7-187

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN)

7-188

downstroke. If the upstroke occurs outside the active area, VAX.TPU
interprets the event as a drag operation.

A VAX.TPU layered application can have only one active area at a time,
even if the application has more than one window visible on the screen.
An active area is only valid if you are pressing a mouse button. The
default active area occupies one character cell. By default, the active area
is located on the character cell pointed to by the pointer cursor.

For information on mouse button clicks, which are related to the concept
of an active area, see the XUI Style Guide. · ..

GET_INFO (SCREEN, "active_area") returns five pieces of information
about the active area in integer-indexed elements of the returned array.
You need not use the CREATE_ARRAY built-in before using GET_INFO
(SCREEN, "active_area"); VAX.TPU assigns a properly structured array to
the return variable you specify. The structure of the array is as follows:

Array Element

array {1}

array {2}

array {3}

array {4}

array {5}

"ansi crt"

Contents

The window containing the active area

The column forming the leftmost edge of the active area

The row forming the top edge of the active area

The width of the active area, expressed in columns

The height of the active area, expressed in rows

Return;-an integer (1 or 0) that indicates whether the terminal is an
ANSI_CRT.

"auto_ repeat"
Returns an integer (1 or 0). that indicates whether the terminal's
autorepeat feature is on.

"avo"
Returns an integer (1 or 0) that indicates whether the ADVANCED_
VIDEO attribute has been set for the terminal.

"cross window bounds"
Returns an integer (lor 0) that indicates whether the CURSOR_
VERTICAL built-in causes the cursor to cross a window boundary if
the cursor is at the top or bottom of the window.

"current_ column"
Returns an integer that is the number of the current column.

"current_row"
Returns an integer that is the number of the current row.

"dec_crt"
Returns an integer (1 or 0) that indicates whether the terminal is a DEC_
CRT. For more information on this terminal characteristic, see the SET
TERMINAL command in the VMS DCL Dictionary.

_/

u

(

GET _INFO Built-Ins Grouped by First Parameter
GET _INfO (SCREEN)

"dec_crt2"
Returns an integer (1 or 0) that indicates whether the terminal is a DEC_
CRT2. For more information on this terminal characteristic, see the SET
TERMINAL command in the VMS DCL Dictionary.

"decwindows"
Returns 1 if your system is running the DECwindows version ofVAXTPU,
otherwise returns 0. For more information about the DECwindows and
non-DECwindows versions of VAXTPU, see Chapter 1.

"edit_mode" ·
Returns an integer (1 or 0) that indicates whether the terminal is set to
edit mode.

"eightbit"
Returns an integer (1 or 0) that indicates whether the terminal uses 8-bit
characters.

"event"
This parameter is used with DECwindows only.

When you use "event" as the seco:p.d parameter, you must specify the
keyword GLOBAL_SELECT as the third parameter. GLOBAL_SELECT
indicates that GET_INFO is to supply information about a global selection.

If called from within a global selection grab or ungrab routine, GET_INFO
(SCREEN, "event", GLOBAL_SELECT) identifies the global selection that
was grabbed or lost. GET_INFO (SCREEN, "event", GLOBAL_SELECT)
returns a keyword if the global selection was the primary or secondary
selection. The built-in returns a string nan).ing the global selection if
the grab or ungrab involves a global selection other than the primary or
secondary selection.

If called from within a routine that responds to requests for information
about a global selection, GET_INFO (SCREEN, "event", GLOBAL_
SELECT) returns an array. The array contains the information an
application needs to respond to the selection event. The array contains
the following information:

array {1} The keyword PRIMARY, the keyword SECONDARY, or a string. This
element identifies which global selection was read.

array {2} A string. This element identifies the global selection property about
which information has been requested.

The GET_INFO (SCREEN, "event") built-in returns O if the built-in is not
responding to a grab, an ungrab, or a selection information request.

For more information about grabbing and ungrabbing a global selection,
see the VMS DECwindows Guide to Application Programming.

"global select"
This parameter is used with DECwindows only.

Returns the integer 1 if VAXTPU currently owns the specified global
selection; 0 if it does not.

7-189

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN)

You must specify one of the following parameters as a third parameter to
GET_INFO (SCREEN, "global_select"):

PRIMARY

SECONDARY

A keyword directing VAXTPU to get information on the
primary global selection.

· A keyword directing VAXTPU to get information on the
secondary global selection.

selection_name A string identifying the global selection about which
VAXTPU is to get information.

For more information about grabbing and ungrabbing a global selection,
see the VMS DECwindows Guide to Application Programming.

"grab_ routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence designated as the application's
global selection or input focus ·grab routine. Returns the integer O if the
requested grab routine is not present.

You must specify one of the following keywords as a third parameter to
GET_INFO (SCREEN, "grab_routine"):

GLOBAL_SELECT

INPUT_FOCUS

"icon name"

A keyword indicating that GET_INFO is to return the global
selection grab routine.

A keyword indicating that GET _INFO is to return the input
focus grab routine.

This parameter is used with DECwindows only.

Returns the string used as the layered application's name in the
DECwindows icon box.

"input_ focus"

I
./

This parameter is used with DECwindows only. '\

7-190

Returns an integer (1 or 0) indicating whether VAXTPU currently owns /
the input focus. Input focus is the ability to process user input from the
keyboard.

"length"
Returns an integer that is the current length of the screen (in rows).

"line_editing"
Returns an integer (1 or 0) indicating whether the line-editing terminal
attribute is turned on. On a character-cell terminal, returns 1 if the
line-editing terminal attribute is turned on, otherwise returns 0. In
DECwindows VAXTPU, this parameter always returns 0.

"mouse"
Returns an integer (1 or 0) that indicates whether VAXTPU's mouse
support capability is turned on. •

"new_length"
This parameter is used with DECwindows only.

Returns an-integer that is the length (in rows) of the screen after the
resize action routine is executed.

(

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN}

Resize action routines should use the length returned by GET_INFO
(SCREEN, "new_length") to determine the length of their windows. If it is
used outside a resize action routine, this length is the same as the current
length of the screen.

"new_ width"
This parameter is used with DECwindows only.

Returns an integer that is the width (in columns) of the screen after the
resize action routine is executed.

Resize action routines should use the length returned by GET_INFO ·
(SCREEN, "new_width") to determine the width of their windows. If it is
used outside a resize action routine, this width is the same as the current
width of the screen.

"old_length"
This parameter is used with DECwindows only.

Returns an integer that is the length (in rows) of the screen before the
most recent resize event.

The "old_length" value is initially set to the length of the screen at startup.
This value is reset after VAXTPU processes a resize event and before
VAXTPU executes the resize action routine.

"old_ width"
This parameter is used with DECwindows only.

Returns the width (in columns) of the screen before the most recent resize
event.

The "old_width" value is initially set to the width of the screen at startup.
This value is reset after VAXTPU processes a resize event and before
VAXTPU executes the resize action routine.

"origina/_length"
Returns an integer that is the number of lines the screen had when
VAXTPU was invoked.

"original_ width"
Returns an integer that is the width of the screen when VAXTPU was
invoked.

''prompt_length" .
Returns an integer that is the number of lines in the prompt area.

''prompt_row"
Returns an integer that is the screen line number at which the prompt
area begins.

"read routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
owns a global selection and another application has requested information
about that selection. If the application has not specified a global selection
read routine, 0 is returned.

7-191

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN)

7-192

You must specify the keyword GLOBAL_SELECT as the third par_ameter
to GET_INFO (SCREEN, "read_routine"). GLOBAL_SELECT indicates
that GET_INFO is to return the global selection read routine.

"screen limits"
Returns an integer-indexed array specifying the minimum and maximum
screen length and width.

An integer-indexed array uses four elements to specify the minimum and
maximum screen width and length. The array indices and the contents of
their corresponding elements are as follows:

Array
Element

array {1}

array {2}

array {3}

array {4}

Contents

The minimum screen width, in columns. This value must be at least
0 and less than or equal to the maximum screen width. The default
value is 0.

The minimum screen length, in lines. This value must be at least 0
and less than or equal to the maximum screen length. The default
value is 0.

The maximum screen width, in columns. This value must be greater
than or equal to the minimum screen width and less than or equal to
255. The default value is 255.

The maximum screen length, in lines. This value must be greater
than or equal to the minimum screen length and less than or equal
to 255. The default value is 255.

"screen_ update"
Returns an integer (1 or 0) that indicates whether screen updating is
turned on.

"scroll"
Returns an integer (1 or 0) that indicates whether the terminal has
scrolling regions. For more information on scrolling regions, see the
description of the built-in SET (SCROLLING).

"time" .
This parameter is used with DECwindows only.

Returns a string in VMS delta time format indicating the amount of time
after requesting global selection information that VAXTPU waits for a
reply. When the time has expired, VAXTPU assumes the request will not
be answered.

You must specify the keyword GLOBAL_SELECT as the third parameter
to GET_INFO (SCREEN, "time").

"ungrab_routine"
This parameter is used with DECwindows only.

Returns the program or learn sequence that VAXTPU executes when it
loses ownership of a global selection or of the input focus. Returns O if the
requested ungrab routine is not present.

\
)

G

/

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SCREEN)

You must specify one of the following keywords as a third parameter to
GET_INFO (SCREEN, "ungrab_routine"): .

GLOBAL_SELECT

INPUT_FOCUS

A keyword indicating that GET _INFO is to retum the global
selection ungrab routine

A keyword indicating that GET_INFO is to retum the input
focus ungrab routine

"visible_ length"
Returns an integer that is the page length of the terminal.

"vk100"
Returns an integer (1 or 0) that indicates whether the terminal is a
GIGI.TM

"vt100"
Returns an integer (1 or 0) that indicates whether the terminal is in the
VTlO0 series.

"vt200"
Returns an integer (1 or 0) that indicates whether the terminal is in the
VT200 series.

"vt300"
Returns an integer (1 or 0) that indicates whether the terminal is in the
VT300 series.

"width"
Returns an integer that is the current physical width of the screen.

7-193

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (string_ variable)

GET _INFO (string_variable)

FORMAT

Returns information about the specified string. The string must be the name
of a keymap or keymap list.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{

integer }
keyword :: GET _INFO
program

(string_ variable,

{

"pre_key_procedure" })
"posLkey_procedure"
"self_insert"
"shift_key"
"undefined_key"

PARAMETERS ''pre_key_procedure" r\.
Returns the program, stored in the specified keymap or keymap list, that ' Y'

7-194

is called before execution of code bound to keys. Returns O if no procedure _,,
was defined by SET (PRE_KEY_PROCEDURE).

"post_key _procedure"
Returns the program, stored in the specified keymap or keymap list, that
is called before execution of code bound to keys. Returns O if no procedure
was defined by SET (POST_KEY_PROCEDURE).

"self _insert"
Returns an integer (1 or 0) that indicates whether printable characters are
to be inserted into the buffer if they are not defined. This parameter is
established or changed with the built-in procedure SET (SELF _INSERT).

"shift_key"
Returns a keyword that is the key name for the key currently-used as
the shift key. This parameter is established or changed with the built-in
procedure SET (SHIFT_KEY).

"undefined_key"
Returns the program that is called when an undefined character is
entered. Returns O if the program issues the default message. This
parameter is established or changed with the built-in procedure SET
(UNDEFINED_KEY).

_./

(

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM)

GET _INFO (SYSTEM)

FORMAT

PARAMETERS

Returns information about the system.

For general information about using all forms of GET _INFO built-ins, see the
description of GET_INFO .

.

{

integer
keyword
learn_sequence
program

} := GET _INFO

string

(SYSTEM,

"bell"

"bell"
"column_move_ vertical"
"display"
"enable_resize"
"facility_name"
"informational"
'Journaling_frequency"
'Journa/_file"
"line_number"
"message_action_Jevel"
"message_action_type")
"message_flags"
''pad_overstruck_tabs"
"resize_action"
"section_file"
"shift_key"
"success"
"timed_message"
"timer"
"traceback"
"update"
"version"

Returns the keyword ALL if the bell is on for all messages. Returns
the keyword BROADCAST if the bell is on for broadcast messages only.
Returns O if the SET (BELL) feature is off. This parameter is established
or changed with the built-in procedure SET.

"column move vertical"
Returns 1 if the MOVE_ VERTICAL built-in is set to keep the cursor in
the same column as the cursor moves from line to line. Returns O if the
MOVE_ VERTICAL built-in preserves the offset, rather than the column
position, from line to line. This parameter is established or changed with
the built-in procedure SET (COLUMN_MOVE_ VERTICAL).

7-195

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (SYSTEM)

7-196

"display"
Returns 1 if the /DISPLAY qualifier has been specified by the user or by
default; otherwise, returns 0.

"enable resize"
Returns 1 if resize operations are enabled, otherwise returns 0. By default,
resize operations are not enabled. You can turn resizing on or off with the
built-in SET (ENABLE_RESIZE).

"facility_ name"
Returns a string that is the current facility name. This parameter is
established or changed with the built-in procedure SET (FACILITY_
NAME).

"informational"
Returns an integer (1 or 0) that indicates whether informational messages
are displayed. This parameter is established or changed with the built-in
procedure SET (INFORMATIONAL).

''lournaling_frequency"
Returns an integer that indicates how frequently records are written to
the journal file. This parameter is established or changed with the built-in
procedure SET (JOURNALING).

''lournal_file"
Returns a string that is the name of the journal file.

"line_number"
Returns an integer (1 or 0) that indicates whether VAXTPU displays the
line number at which an error occurred. This parameter is established or
changed with the built-in procedure SET (LINE_NUMBER).

"message_ action_level"
Returns an integer that is the completion status severity level at which
VAXTPU performs the message action you specify. The valid values, in
ascending order of severity, are as follows: 1 (success), 3 (informational),
0 (warning), and 2 (error). This parameter is established or changed with
the built-in procedure SET (MESSAGE_ACTION_LEVEL).

"message_action_ type"
Returns a keyword describing the action to be taken when VAXTPU
signals an error, warning, or message whose severity level is greater than
or equal to th~ level set with SET (MESSAGE_ACTION_LEVEL). The
possible keywords are NONE, BELL, and REVERSE. This parameter
is established or changed with the built-in procedure SET (MESSAGE_
ACTION_TYPE).

"message_flags" .
Returns an integer that is the current value of the message flag setting.
This parameter is established or changed with the built-in procedure SET
(MESSAGE_FLAGS).

''pad_ overstruck_ tabs"
Returns an integer (1 or 0) that indicates whether VAXTPU preserves the
white space created by a tab character. This parameter is established or
changed with the built-in procedure SET (PAD_OVERSTRUCK_TABS).

../

./

,.
' ' \

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (SYSTEM)

"resize action"
Returns the program or learn sequence designated as the application's
resize action routine. Returns O if the requested resize action routine
is not present. You can designate a resize action routine using the SET
(RESIZE_ACTION) built-in.

"section file"
Returns a string that is the name of the section file used when the user
invoked VAXTPU.

"shift_key"
Returns a keyword that is the value of the current shift key set with SET
(SHIFT_KEY) for the current buffer.

"success"
Returns an integer (1 or 0) that indicates whether success messages are
displayed. This parameter is established or changed with the built-in
procedure SET (SUCCESS).

"timed_message"
Returns a string of text that VAXTPU displays at 1-second intervals in the
prompt area if the SET (TIMER) feature is on.

"timer"
Returns the integer 1 if SET (TIMER) has been enabled, otherwise returns
0.

"traceback"
Returns an integer (1 or 0) that indicates whether VAXTPU displays the
call stack for VAXTPU procedures when an error occurs. This parameter
is established or changed with the built-in procedure SET (TRACEBACK).

"update"
Returns an integer that is the update number of this version ofVAXTPU.

"version"
Returns an integer that is the version number of VAXTPU.

7-197

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (WIDGET)

GET _INFO (WIDGET)

FORMAT

Returns information about VAXTPU widgets in general or about a specific
widget whose name you do not know at the time you use the built-in.

The GET_INFO (WIDGET) built-in is used with DECwindows only.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ in~eger }:= GET INFO (WIDGET.
widget - '

{

"callback_parameters", array

"wid t id" { parent_ widget
ge - ' SCREEN, widget_name

PARAMETERS "callback_parameters"
Returns the widget instance performing the callback, the closure value fl\

7-198

associated with the widget instance, and the reason for the callback. Note , y'
that in DECwindows documentation, the closure is called the tag. ../

a"ay _
An array used to return values for the callback, the. closure, and the
reason. The array has the following indices of type string: "widget",
"closure", and "reason_code". GET_INFO (WIDGET, "callback_
parameters") places the corresponding values in the array elements.
VAXTPU automatically creates the array in which the return values are
placed.

To use this parameter, specify a variable that has been declared or
initialized before you use it. The initial type and value of the variable
are unimportant. When GET_INFO (WIDGET, "callback_parameters")
places the return values in the array, the initial values are lost.

Note that the integer on the left side of the assignment operator indicates
whether GET_INFO was used correctly.

GET_INFO (WIDGET, "callback_parameters") should be used in a widget
callback procedure. If you use this built-in outside a widget callback
procedure, the value returned is indeterminate. If you use the built-in
inside a widget callback procedure and callback information is available,
the built-in returns 1.

For more information about callbacks and closure values in DECwindows
VAXTPU, see Chapter 4. For general information about using callbacks
and closure values, see the VMS DECwindows Guide to Application
Programming.

EXAMPLES

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (WIDGET)

"widget_id"
Returns the widget instance whose name matches the specified widget
name. The remaining parameters are as follows:

parent_ widget

SCREEN

widget_name

The widget that is an ancestor of the widget instance
returned by the GET_INFO (WIDGET) built-in.

A keyword indicating that VAXTPU's main window widget
is the ancestor of the widget instance that you want the
GET_INFO (WIDGET) built-in to return.

A string that is the fully qualified name of the widget
you want the built-in to return. To specify this parameter
correctly, start the string with the name of the widget's
parent. Use the same name you used to specify the parent_
widget parameter. If you used the SCREEN parameter
instead of the.parent_widget parameter, start the string with
the widget name tpu$mainwindow.

Next, specify the names of the ancestors, if any; that occur
in the widget hierarchy between the parent and the widget
itself. Start with the ancestor just below the parent and
progressively specify more immediate ancestors. Finally,
specify the name of the widget you want the GET_INFO
(WIDGET) built-in to return. Separate all widget names with
periods.

The fully qualified widget name is case sensitive.

GET_INFO (WIDGET, "widget_id") calls the X Toolkit routine NAME TO
WIDGET.

For more information on DECwindows concepts such·as parent widgets,
ancestor widgets, and the distinction between widget classes and widget
instances, see the VMS DECwindows Guide to Application Programming.

D PROCEDURE eve$callback_dispatch

LOCAL the_program,
status,
temp_array;

ON ERROR
[TPU$ CONTROLC]:

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_key;
eve$learn_abort;
ABORT;

[OTHERWISE):
eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_key;

ENDON ERROR

IF NOT eve$x_decwindows_active
THEN

RETURN (FALSE);
ENDIF;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_menu;

7-199

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (WIDGET)

status :=
GET INFO (WIDGET, "callback_parameters", temp_array); This statement using

GET_INFO (WIDGET)
returns the calling
widget, the closure,
and the reason code.

! The following statements make the contents of "temp array"
! available to all the eve$$widget_xxx procedures -

eve$x_widget : = temp array {"widget"};
! This array element contains the widget
! that called back.

eve$x widget tag := temp array {"closure"};
- - ! This array element contains the widget tag

! that is assigned to the widget in the UIL file.
eve$x widget reason := temp array {"reason code"};

- - ! This array element contains callback reason code.

! The next line gets the callback routine from the array indexed
! by closure values.

the_program := eve$$x_widget_array {eve$x_widget_tag};

IF the_program <> 0
THEN

EXECUTE (the_program);
ENDIF;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_key;
RETURN;

ENDPROCEDURE;

7-200

This procedure shows one possible way that a layered application can use
GET_INFO (WIDGET, "callback_parameters", array). The procedure is a
simplified version of the EVE procedure EVE$CALLBACK_DISPATCH.
You can find the original version in SYS$EXAMPLES:EVE$MENUS.TPU.
(For more information about using the files in SYS$EXAMPLES as
examples, see Section B.1.)

This version of EVE$CALLBACK_DISPATCH
handles callbacks from EVE widgets. The statement
GET_INFO (WIDGET, "callback_parameters", temp_array) copies the
following three items into elements of the array temp _array:

• The widget that is calling back

• The widget's integer closure

• The reason why the widget is calling back

The array eve$$x_widget_array contains pointers to all of EVE's callback
routines in elements indexed by the appropriate integer closure values.
This procedure locates the correct index in the array and executes the
corresponding callback routine.

Warning: This simplified version of EVE$CALLBACK_DISPATCH does
not completely replace the version in existing EVE code.
Furthermore, Digital does not guarantee that this example will
work successfully with future versions of EVE. This example
is presented solely to illustrate how EVE uses the built-in

j

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (WIDGET)

GET_INFO (WIDGET, "callback_parameters", array) in a callback
handling procedure.

Ii! the_text_widget := GET_INFO (WIDGET, "widget_id", new_dialog,
"NEW_DIALOG.NEW_TEXT");

This statement assigns to the variable the_text_widget the widget instance
named by the string NEW _DIALOG.NEW _TElIT. The widget instance is
the child of the widget instance assigned to the variable new_dialog .

.,

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (widget_ variable)

GET_INFO (widget_variable)

FORMAT

PARAMETERS

7-202

Returns information about a specified widget variable.

The GET_INFO (widget_variable) built-in is used with DECwindows only.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{ :~!~~:~eque~ce } := GET INFO (widget_ variable,
program -
string .

{

"callback_routine" }
"name"
"text")
,, •,,,1 t . ~ ,, { array }
Wtuge _m,o ' arg__pair f, arg__pair... J

"callback routine"
Returns the program or learn sequence designated as the application's
callback routine for the specified widget. This is the program or learn
sequence that VAXTPU should execute when a widget callback occurs for
the specified widget instance. For more information about callbacks, see
Section 4.3.

"name"
Returns a string that is the name of the specified widget instance.

"text"
Returns a string that is the value of the specified simple text widget. (The
value of a text widget is the text entered into the text widget by the user
in response to a prompt in a dialog box.) GET_INFO (widget_variable,
"text") is equivalent to the XUI Toolkit routine dwt$s_text_get_string.

If the specified widget is not of class SText, VAXTPU signals the status
TPU$_ WIDMISMATCH.

"widget_info"
Returns the current values for one or more resources of the specified
widget.

Note that the values are returned in the array or series of argument pairs
that is passed as the third parameter. The integer on the left side of the
assignment operator indicates whether the built-in executed successfully.

_/

\

,J

G

(
\

u

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (widget_ variable)

The third parameter is either an array or a series of paired arguments,
specified as follows:

array

arg_pair

Each array index must be a string naming a valid resource
for the specified widget. Note that resource names are case
sensitive. The corresponding array element contains the
value of the resource. The array can contain any number of
elements.

A string naming a valid resource· for the widget followed by
a variable to store the value of the resource. Separate the
resource name string from the variable with a comma and a
space, as follows:

resource_name_string, resource_value

You can fetch as many resources as you want by using
multiple pairs of arguments.

GET_INFO (widget_variable, "widget_info", array, arg_pair) is functionally
equivalent to the X Toolkit routine GET VALUES.

If you specify the name of a resource that the widget does not support,
VAXTPU signals the error TPU$_ARGMISMATCH.

For more information about specifying resources, see Section 4.2.6.2.

EXAMPLES

D EXECUTE (GET_INFO (eve$x replace dialog,
"callback_routine"));

This statement executes the callback routine for the widget eve$x_replace_
dialog. Note that this statement is valid only after the Replace dialog box
has been used at least once, because EVE does not create any dialog box
until you have invoked it.

PROCEDURE sarnple_return_narne

LOCAL status;

status := GET_INFO (eve$x_replace_dialog,
"name");

MESSAGE ("The data type of status is: ");
MESSAGE (STR (GET INFO(status, "type")));
MESSAGE ("The val;e of status is: ");
MESSAGE (STR (status));

ENDPROCEDURE;

This procedure displays the name of the widget instance specified by the
variable eve$x_replace_dialog. To confirm that the widget has been created
as expected, the procedure also displays a message identifying the data
type of the variable's contents. Note that the procedure is valid only after
the Replace dialog box has been used at least once, because EVE does not
create any dialog box until you have invoked it.

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (widget_ variable)

11

A statement containing the built-in GET_INFO (widget, "name") can
be useful in code implementing a debugging command that evaluates
VAXTPU statements, expressions, and variables.

eve$x_needfilename_dialog := CREATE WIDGET ("NEEDFILENAME DIAL.CG",
eve$k_widget=hierarchy,
SCREEN,
eve$kt_callback_routine);

the_value := "Type filename for writing buffer"+
get_info (the_buffer, "name");

child_of_box := get_info (WIDGET, "widget_id",
eve$x_needfilename_dialog,
"NEEDFILENAME_DIALOG.NEEDFILENAME_LABEL");

status := set (WIDGET, child_of_box, evedwtc_nlabel, the_value);

This code fragment creates an EVE file name dialog box widget and
assigns the widget to the variable eve$x_needfilename_dialog. Next, the
fragment assigns to the variable the_value a string prompting you for
the name of a file to which the buffer's contents should be written. The
fragment uses the built-in GET_INFO (WIDGET, "widget_id") to assign
the dialog box's label widget to the variable child_of_box. Finally, the
fragment assigns to the label widget's evedwtc_nlabel resource the
string contained in the_value.

PROCEDURE user_widget_replace_all

CONSTANT
user_k_widget_name := "REPLACE_DIALOG.REPLACE_ALL";

LOCAL the value,
parent_widget,
replace_all_button;

parent_widget := eve$x_replace_dialog;

replace_all_button := GET INFO (WIDGET, "widget id",
parent widget, -
user_k:widget_name);

GET_INFO (replace all button,
"widget -info", evedwtc· nvalue,

This statement uses

the_value); -
GET INFO (widget, "widget info")
to fetch the value of the
dwt$c~nvalue resource.

IF the_value
THEN

MESSAGE ("All instances will be replaced.");
ELSE

MESSAGE ("Not all instances will be replaced.");
ENDIF;

ENDPROCEDURE;

This procedure, user _widget_replace_all, shows one possible way
that a layered application can use GET_INFO (widget, "widget_
info"). The procedure is a modified version of the EVE procedure
EVE$$WIDGET_REPLACE_ALL. You can find the original version in
SYS$EXAMPLES:EVE$MENUS.TPU. (For more information about using
the files in SYS$EXAMPLES as examples, see Section B.1.)

7-204

G

(

U
,,

t

\

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (widget_variable)

Procedure user _widget_replace_all determines what user message to
display in response to the EVE command REPLACE. The procedure uses
GET_INFO (widget, "widget_info") to fetch the value of the resource
dwt$c_nvalue. A value of O means the Replace AU toggle button appears
unshaded while a value of 1 means the toggle button appears solid.

7-205

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO {WINDOW)

GET_INFO {WINDOW)

FORMAT

Returns a window from VAXTPU's internal list of windows or the current
window on the screen.

For general information about using all forms of GET _INFO built-ins, see the
description of GET _INFO.

{

"current" }
"first"

window:: GET_INFO (WINDOW/[SJ, "last")
"next"

• ''previous"

PARAMETERS "current"

,
__ .,,.'

Returns the current window on the screen. Returns O if there is none.
GET_INFO (WINDOW[S], "current") always returns the current window,
regardless of whether or you have first used GET_INFO (WINDOW[S],
"first") or GET_INFO (WINDOW[S], "last"). 1~"'-

y

7-206

"first"
Returns the first window in VAXTPU's internal list of windows. Returns 0
if there is none.

"last"
Returns the last window in VAXTPU's internal list of windows. Returns 0
if there is none.

"next"
Returns the next window in VAXTPU's internal list of windows. Returns 0
if there are no more windows in the list. Use string constants "current" or
"first" before using "next".

"previous"
Returns the preceding window in VAXTPU's internal list of windows.
Returns O if there are no previous windows in the list. Use string
constants "current" or "last" before using ''previous".

I .,

(

GET _INFO Built-Ins Grouped by First Parameter
GET _INFO (window_ variable)

GET_INFO (window_variable)

FORMAT

Returns information about a specified window.

For general information about using all forms of GET_INFO built-ins, see the
description of GET _INFO.

integer
buffer
keyword
string
window
widget

== GET_INFO (window_variable,

"before_bol"
"beyond_eob"
"beyond_eol"
"blink_status"
"blink_ video"
"bold_status"
"bold_ video"
"bound"

"'b H n , TEXT
[

, WINDOW]

ouom , VIS/BL£_ WINDOW
, VISIBLE_ TEXT .

"buffer"
"current_column"
"current_row"
"key_ map_list"

[

, WINDOW]
"t ft" , TEXT
e , VISIBLE_ WINDOW

, VISIBLE_ TEXT

"t gth" , TEXT
[

, WINDOW]

en , VISIBLE_ WINDOW
, VISIBLE TEXT

. "middle_ot_tab" -
"next"
"no_video"
"no_video_status"
"originaLbottom"
"originaUength"
"originaUop"

7-207

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

"pad"
"previous"
"reverse_status"
"reverse video"

". ht" I TEXT
[

-, WINDOW]

ng , VISIBLE_ WINDOW
I VISIBLE_ TEXT

"scroll"
"scroll amount"
"scroll bar" { HORIZONTAL }

- I VERTICAL
"scroll bar auto thumb" { HORIZONTAL }

- - - I VERTICAL
"scrolLbottom"
"scrolLtop"
"shift_amount"
"speciaLgraphics_status"
"status_line"
"status_ video"
"text"

[

, WINDOW]
"t ,, I TEXT
op , VISIBLE_ WINDOW

I VISIBLE_ TEXT
"underline_status"
"underline_ video"
"video"
"visible"
"visible_bottom"
"visible_length"
"visible_top"

[

, WINDOW]
,, 'dth" , TEXT
WI I VISIBLE_ WINDOW

I VISIBLE_ TEXT

PARAMETERS "before bol"
Returns an-integer (1 or 0) that indicates whether the cursor is to the
left of the current line's left margin. The return value has no meaning if
"beyond_eob" is true. This call returns 0 if the window you specified is not
mapped.

"beyond_ eob"
Returns an integer (1 or 0) that indicates whether the cursor is below the
bottom of the buffer. This call returns 0 if the window you specified is not
mapped.

\
)

"beyond_eol" (7>"
Returns an integer (1 or 0) that indicates whether the cursor is beyond the ·-._,,,/
end of the current line. The return value has no meaning if "beyond_eob"is
true. This call returns 0 if the window you specified is not mapped.

7-208

G

(

(
\

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_varlable)

"blink status"
Returns an integer (1 or 0) that indicates whether BLINK is one of the
video attributes of the window's status line. This parameter is established
or changed with the built-in procedure SET (STATUS_LINE).

"blink_ video"
Returns an integer (1 or 0) that indicates whether BLINK is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"bold_ status!'
Returns an integer (1 or 0) that indicates whether BOLD is one of the
video attributes of the window's status line. This parameter is established
or changed with the built-in procedure SET (STATUS). ·

"bold video"
Returns an integer (1 or 0) that indicates whether BOLD is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

"bound"
Returns an integer (1 or 0) that indicates whether the cursor is located on
a character. ·

"bottom"
Returns an integer that is the number of the last row or last visible row
of the specified window, or the specified window's text area. The window
row whose number is returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are as follows:

Table 7-3 Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length", "Right", ''Top", or
"Width"

Keyword

TEXT

VISIBLE_ TEXT

Definition

A keyword directing the built-in to return the specified (left,
right, top, or bottom) window row or column or the number
of window rows or columns on which text can be displayed.
By specifying TEXT instead of VISIBLE_ TEXT, you obtain
information about a window's rows and columns even if they
are invisible because the window is occluded. If the window
is not occluded, the value returned is the same as the value
returned with VISIBLE_ TEXT.

A keyword directing the built-in to return the specified (left,
right, top, or bottom) visible window row or column or the
number of visible window rows or columns on which text
can be displayed. When VAXTPU determines a window's
last visible text row, VAXTPU does not consider the status
line or the bottom scroll bar to be a text row.

(continued on next page)

7-209

GET _INFO Built .. lns Grouped by First Parameter
GET_INFO (window_variable)

7-210

Table 7-3 (Cont.) Valid Keywords for the Third Parameter When the
Second Parameter is "Bottom", "Left", "Length",
"Right", "Top", or "Width"

Keyword

VISIBLE_WINDOW

WINDOW

Definition

A keyword directing the built-in to return the specified (left,
right, top, or bottom) visible window row or column or the
number of visible window rows or columns in the window.

A keyword directing the built-in to return the specified (left,
right, top, or bottom) window row or column or the number
of window rows or columns in the window. By specifying
WINDOW instead of TEXT, you obtain the window's last
row or column, even if it cannot contain text because it
contains a scroll bar or status line. By specifying WINDOW
instead of VISIBLE_WINDOW, you obtain information about
a window's rows and columns even if they are invisible
because the window is occluded. If the window is not
occluded, the value returned is the same as the value
returned with VISIBLE_WINDOW.

GET_INFO (window_variable, "bottom", TEXT) is a synonym for GET_
INFO (window_variable, "original_bottom"). The call GET_INFO (window_
variable, "bottom", VISIBLE_TEXT) is a synonym for GET_JNFO
(window_ variable, "visible_bottom ").

"buffer"
Returns the buffer that is associated with the window. Returns O if there
is none.

"current_ column"
Returns an integer that is the column in which the cursor was most
recently located.

"current_row"
Returns an integer that is the row in which the cursor was most recently
located.

"key_map_list'.'
Returns the string that is the name of the key map list associated with the
window you specify.

"left" ·
Returns an integer that is the number of the leftmost column or leftmost
visible column of the specified window, or the specified window's text
area. The column whose number is returned depends on the keyword you
specify as the third parameter. If you do not specify a keyword, the default
is TEXT. Valid keywords are shown in Table 7-3.

"length"
Returns an integer that is the number of rows or visible rows in the
specified window or the specified window's text area. The number of rows
returned depends on the keyword you specify as the third parameter. If
you do not specify a keyword, the default is TEXT. Valid keywords are
shown in Table 7-3.

' \

.J

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

"middle_of_tab"
Returns an integer (1 or 0) that indicates whether the cursor is in the
middle of a tab. The return value has no meaning if "beyond_eob" is true.
This call returns O if the window you specified is not mapped.

"next"
Returns the next window in VAXTPU's internal list of windows. Returns 0
if there are no more windows in the list.

"no_ video"
Returns an integer (1 or 0) that indicates whether the video attribute of
the window is NONE. This parameter is established or changed with the
b~lt-in procedure SET (VIDEO).

"no_ video_ status"
Returns an integer (1 or 0) that indicates whether the video attribute
of the window's status line is NONE. This parameter is established or
changed with the built-in procedure SET (STATUS).

"original_ bottom"
Returns an integer that is the screen line number of the bottom of the
window when it was created or last adjusted (does not include status line
or scroll bar). Digital recommends that you retrieve this information using
GET_INFO (window, "bottom", text).

"originaLlength"
Returns an integer that is the number of lines in the window when it was
created. The value returned includes the status line.

Digital recommends that you retrieve this information using GET_INFO
(window, "length", window).

"original_ top"
Returns an integer that is the screen line number of the top of the window
when it was created.

''pad"
Returns an integer (1 or 0) that indicates whether padding blanks have
been displayed from column 1 to the left margin (if the left margin is
greater than 1) and from the ends of lines to the right margin. This
parameter is established or changed with the built-in procedure SET
(PAD).

''previous"
Returns the previous window in VAXTPU's internal list of windows.
Returns O if there are no previous windows in the list.

"reverse status"
Returns an ipteger (1 or 0) that indicates whether REVERSE is one of the
video attributes of the window's status line. This parameter is established
or changed with the built-in procedure SET (STATUS).

"reverse video"
Returns an integer (1 or 0) that indicates whether REVERSE is one of the
video attributes of the window. This parameter is established or changed
with the built-in procedure SET (VIDEO).

7-211

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

"right"
Returns an integer that is the number of the last column or last visible
column of the specified window or the specified window's text area. The
window column whose number is returned depends on the keyword you
specify as the third parameter. If you do not specify a keyword, the default
is TEXT. Valid keywords are shown in Table 7-3.

"scroll"
Returns an integer (1 or 0) that indicates whether scrolling is enabled for
the window. This parameter is established or changed with the built-in
procedure SET (SCROLLING).

"scroll amount"
Returns an integer that is the number of lines to scroll. This parameter is
established or changed with the built-in procedure SET.

"scrol/_bar"
This parameter is used with DECwindows only.

Returns the specified scroll bar widget instance implementing the scroll
bar associated with a window if it exists, otherwise returns 0.

You must specify the keyword HORIZONTAL or VERTICAL as the third
parameter to GET_INFO (window_variable, "scroll_bar"). HORIZONTAL
directs VAXTPU to return the window's horizontal scroll bar; VERTICAL ,~
directs VAXTPU to return the window's vertical scroll bar. · JI ·

7-212

"scroll bar auto thumb"
This parruiieter is used with DECwindows only.

Returns an integer (1 or 0) indicating whether automatic adjustment of the
specified scroll bar slider is enabled. Returns 1 if automatic adjustment is
enabled, 0 if it is disabled.

You must specify the keyword HORIZONTAL or VERTICAL as the third
parameter to GET_INFO (window_variable, "scroll_bar_auto_thumb").
HORIZONTAL directs VAXTPU to return information about the window's
horizontal scroll bar; VERTICAL directs VAXTPU to return information
about the window's vertical scroll bar.

"scroll bottom"
Returns an integer that is the bottom of the scrolling area, an offset from
the bottom screen line. This parameter is established or changed with the
built-in procedure SET (SCROLLING).

"scroll_ top"
Returns an integer that is the top of the scrolling area, an offset from the
top screen line. This parameter is established or changed with the built-in
procedure SET (SCROLLING).

"shift amount"
Returns an integer that is the number of columns the window is shifted to
the left.

"specia/_graphics_ status"
Returns an integer (1 or 0) that indicates whether SPECIAL_GRAPIDCS
is one of the video attributes of the window's status line. This parameter is
established or changed with the built-in procedure SET (STATUS_LINE).

\

,J

(j

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

"status line"
Returns a -;tring that is the text of the status line. Returns O if there is
none. This parameter is established or changed with the built-in procedure
SET (STATUS_LINE).

"status video"
If there is no video attribute or only one video attribute for the window's
status line, the appropriate video keyword (NONE, BLINK, BOLD,
REVERSE, UNDERLINE or SPECIAL_GRAPHICS) is returned. If there
are multiple video attributes for the window's status line, the integer
1 is returned. If there is no· status line for the window, the integer 0
is returned. This parameter is established or changed with the built-in
procedure SET (STATUS_LINE).

"text"
Returns a keyword that indicates which keyword was used with SET
(TEXT). SET (TEXT) contr-ols text display in a window. SET (TEXT)
returns any of the following keywords: BLANK_TABS, GRAPHIC_TABS,
or NO_TRANSLATE.

"top"
Returns an integer that is the number of the first row or first visible row
of the specified window or the specified window's text area. The window
row whose number is returned depends on the keyword you specify as the
third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 7-3.

"underline status"
Returns an integer (1 or 0) that indicates whether UNDERLINE is one
of the video attributes of the window's status line. This parameter is
established or changed with the built-in procedure SET (STATUS_LINE).

"underline video"
Returns an integer (1 or 0) that indicates whether UNDERLINE is one
of the video attributes of the window. This parameter is established or
changed with the built-in procedure SET (VIDEO).

"video"
If there is no video attribute or only one video attribute for the window,
the appropriate video keyword (NONE, BLINK, BOLD, REVERSE, or
UNDERLINE) is returned. If there are multiple video attributes for the
window, the integer 1 is returned. If you get the return value 1 and you
want to know more about the window's video attributes, use the specific
parameters such as "underline_video" and "reverse_video".

This parameter is established or changed with the built-in procedure SET
(VIDEO).

"visible"
Returns an integer (1 or 0) that indicates whether or not the window is
mapped to the screen and whether it is occluded.

"visible bottom"
Returns an integer that is the screen line number of the visible bottom
of the window (does not include status line). This value can be changed
using the ADJUST_WINDOW built-in, by creating other windows, or by
mapping a window.

7-213

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_variable)

Digital recommends that you retrieve th.is information using GET _INFO
(window, "bottom", visible:_text).

"visible _length"
Returns an integer that is the visible length of the window (includes status
line). This value differs from the value returned by GET_INFO (window_
variable, "original_length") in that the value returned by "visible_length"
is the original length minus the number of window lines (if any) hidden
by occluding windows. This value can be changed using the ADJUST_
WINDOW built-in, by creating other windows, or by mapping a window.

Digital recommends that you retrieve this information using GET_INFO
(window, "length", visible_ window).

"visible_ top" --"
Returns an integer that is the screen line number of the visible top of the J

EXAMPLES

window. This value can be changed using the ADJUST_ WINDOW built-in,
by creating other windows, or by mapping a window on top of the current
window.

Digital recommends that you retrieve this information using GET_INFO
(window, "top", visible_window).

"width"
Returns an integer that is the number of columns or the number of visible
columns in the specified window or the specified window's text area. The
number of columns returned depends on the keyword you specify as the

· third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 7-3.

This parameter is established or changed with the built-in procedure SET.

D last line := GET_INFO (bottom_window, "bottom", WINDOW);

This statement returns the last line of the window bottom_window.
The value returned is the line containing the status line or scroll bar,
whichever comes last, if the window has a status line or scroll bar. For
another example of cede using GET_INFO (window_variable, "bottom",
WINDOW) see Example B-5.

6 current_list := GET_INFO (CURRENT_WINDOW, "key_map_list");

This statement returns the key map list associated with the current
window. For an example of code using GET_INFO (window_variable,
"key_map_list", WINDOW) see Example B-6.

iJ first column := GET_INFO (CURRENT_WIND?W, "left", TEXT);

7-214

This statement returns the leftmost column where text can. be displayed
-in the current. window. Note that changing the left margin setting has no
effect on the value returned.

)

;
I

' \

c,

El

GET _INFO Built-Ins Grouped by First Parameter
GET_INFO (window_varlable)

the_length := the_length + GET_INFO (the_window, "length", WINDOW);

This statement adds the length of the window (the value in the_window)
to the value in the_length. Note that the length of the window includes
the length added by the scroll bar and status line, if the window has them.
For another example of code using GET_INFO (window_variable, "length",
WINDOW) see Example B-5.

last_column := GET_INFO (CURRENT_WINDOW, "right", WINDOW);

This statement retl.U'Ils the number of the rightmost column in the current
window. Note that the column whose number is returned can be occupied
by a vertical scroll bar if one is present. Note, too, that the returned value
changes if you widen the window, but not if you move the window without
widening it.

[fl first row := GET_INFO (CURRENT_WINDOW, "top", WINDOW);

This statement returns the number of the first row in the current wind~
Note that the row number returned is relative to the top of the VAXTPU
screen. Thus, if the current window is not the top window on the VAXTPU
screen, the row number returned is not 1. For another example of code
using GET_INFO (window_variable, "top", WINDOW) see Example B-5.

the width := GET_INFO (CURRENT_WINDOW, "width", WINDOW);

This statement returns the number of columns in the current window;
For an example of code using GET_INFO (window_variable, "width",
WINDOW) see Example B-6.

Ii] the bar := GET_INFO (CURRENT_WINDOW, "scroll_bar", VERTICAL);

This statement returns the vertical scroll bar widget associated with the
current window. For another example of code using GET_INFO (window_
variable, "scroll_bar") see Example B-6.

status := GET INFO (CURRENT WINDOW,
- "scroll_bar_auto_thumb", VERTICAL);

This statement returns an integer indicating whether automatic
adjustment is enabled for the vertical scroll bar slider associated with
the current window. For another example of code using GET_INFO
(window_variable, "scroll_bar_a-g.to_thumb", WINDOW) see Example B-6~

7-215

VAXTPU Built-In Procedures
HELP_TEXT

HELP TEXT

FORMAT

Invokes the VMS Help Utility. You must specify the help library to be used
for help information, the initial library topic, the prompting mode for the Help
Utility, and the buff er to which the help information is to be written.

HELP _TEXT (library-file, topic, { g~F } ,buffer)

PARAMETERS library-file
A string that is the file specification of the help library.

topic
A string that is the initial library topic. If this string is empty, the top
level of help is displayed.

ON
A keyword specifying that the Help Utility should prompt the user for
input.

OFF
Specifies that the prompting mode of the Help Utility should be turned off.

buffer
The buffer to which the help information is written.

DESCRIPTION You can enter a complete file specification for the help library as the
first parameter. However, if you enter only a file name, the Help Utility
provides a default device (SYS$HELP) and default file type (HLB).

7-216

If you do not specify an initial topic as the second parameter, you must
-enter a null string as a place holder. The Help Utility then displays the
top level of help available in the specified library.

When the prompting mode is ON for the built-in procedure HELP _TEXT,
the following prompt appears if the help text contains more than one
window of information:

Press RETURN to continue ...

Before VAXTPU invokes the Help Utility, VAXTPU erases the buffer
specified as the help buffer. (In EVE the buffer to which the help
information is written is represented by the variable help_buffer.) If
the help buffer is associated with a window that is mapped to the screen,
the window is updated each time VAXTPU prompts the user for input. If
you set the prompting mode to OFF, then the window is not updated by
the built-in procedure HELP _TEXT.

If help_buffer is not associated with a window that is mapped to the
screen, the information from the Help Utility is not visible.

)

(

. ' ·c.,.

SIGNALED
TPU$_ TOOFEW ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_NOTMODIFIABLE

TPU$_SYSERROR

TPU$_OPENIN

EXAMPLES

VAXTPU Built-In Procedures
HELP_TEXT

ERROR The HELP_ TEXT built-in requires
four parameters.

ERROR You specified more than four
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR Only ON and OFF are allowed.

WARNING The output buffer is currently
unmodifiable.

ERROR Error activating the help librarian.

ERROR Error opening help library.

D HELP TEXT ("tpuhelp", "", OFF ,help_buffer)

This statement causes the top level of help information from the
SYS$HELP:TPUHELP.HLB library to be written to the help buffer. The
Help Utility prompting mode is not turned on.

HELP TEXT ("tpuhelp", (READ_LINE ("Topic: ")), OFF, second_buffer)

This statement prompts the user to provide the topic for the Help Utility.
The information on that topic that is in the VAXTPU help library is
written to second_buffer.

&] ! Interactive HELP

PROCEDURE user_help

SET (STATUS LINE, info window, UNDERLINE,
"Press CTRL/Z to leave prompts then CTRL/F to resume editing");

MAP (info window, help buffer);
HELP_TEXT- ("USERHELP", -READ_LINE ("Topic: "), ON, help_buffer);

END PROCEDURE

This procedure displays information about getting out of help mode on
the status line, prompts the user for input, and maps help_buffer to the
screen.

7-217

VAXTPU Built-In Procedures
INDEX

INDEX

FORMAT

Locates a character or a substring within a string and returns its location
within the string.

integer == INDEX (string, substring)

PARAMETERS string

return value

The string within which you want to find a character or a substring.

substring
A character or a substring whose leftmost character location you want to
find within string 1.

An integer showing the character position within a string of the substring
you specify.

!
/

;17')'
V

DESCRIPTION The built-in procedure INDEX finds the leftmost occurrence of substring ../
within string. It returns an integer that indicates the character position
in string at which substring was found. If string is not found, VAXTPU
returns a 0. The character positions within string start at the left with 1.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN ERROR INDEX must be on the right-hand
side of an assignment statement.

TPU$_TOOFEW ERROR INDEX requires two arguments.

TPU$_ TOOMANY ERROR INDEX accepts only two
arguments.

TPU$_1NVPARAM ERROR The arguments to INDEX must be
strings.

EXAMPLES

D loc := INDEX ("1234567", "67")

7-218

This assignment statement stores an integer value of 6 in the variable loc,
because the substring "67'' is found starting at character position 6 within
the string "1234567".

\

j

(_

I
\

VAXTPU Built-In Procedures
INDEX

PROCEDURE user_is_character {c)

LOCAL symbol_characters;

symbol_characters :=
"abcdefghijklrnnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

RETURN INDEX{ symbol_characters, c) > 0;

ENDPROCEDURE

This procedure uses the built-in procedure INDEX to return true if a given
item is an alphanumeric character; otherwise, it returns false. (The list of
characters in this example does not include characters that are not in the
ASCII range of the DEC Multinational Character Set. However, you can
write a procedure using such characters, because VAXTPU supports the
DEC Multinational Character Set.) The parameter that is passed to this
procedure is assumed to be a single character.

7-219

VAXTPU Built-In Procedures
INT

INT

FORMAT

Converts keyword or a string that consists of numeric characters into an
integer.

integer3 == INT ({ ~!;!e;,~ }J
string l, integer2 J

PARAMETERS integer1
Any integer value. INT accepts a parameter of type integer so you need
not check the type of the parameter you supply.

return value

keyword
A keyword whose internal value you want.

string
A string that consists of numeric characters.

integer2
An integer specifying the radix (base) of the string being converted. The
-default radix is 10. The other allowable values are 8 and 16.

The integer equivalent of the parameter you specify.

DESCRIPTION You can use INT to store an integer value for a keyword or a string of ·· \
numeric characters in a variable. You can then use the variable name in)
operations that require integer data types.

INT signals a warning and returns O if the string is not a number.

SIGNALED
ERRORS TPU$_NEEDTOASSIGN ERROR INT returns a value that must be

used.

TPU$_TOOFEW ERROR INT requires one parameter.

TPU$_ TOOMANY ERROR INT accepts only one parameter.

TPU$_ARGMISMATCH ERROR The parameter to INT was not a
keyword or string.

TPU$_1NVNUMSTR WARNING The string you passed to INT was
not a number.

TPU$_NULLSTRING WARNING You passed a string of length o to (~--
I \

INT. ··,J

7-220

(

VAXTPU Built-In Procedures
INT

TPU$_BADVALUE ERROR You specified a value other than 8,
· 10, or 16 for the radix parameter.

EXAMPLES

D user int := INT ("12345")

This assignment statement converts the string "12345" into an integer
value and stores it in the variable user _int.

I Parameters:

new number
prornpt;_string
no_value_message

New integer value - output
Text of prompt - input
Message printed if user presses the
RETURN key to get out of the command - input

PROCEDURE user_prornpt_number (new_number, prornpt_string,

LOCAL read_line_string;

ON ERROR

no_value_message)

IF ERROR= TPU$_NULLSTRING
THEN

MESSAGE (no_value_message);
ELSE

IF ERROR= TPU$_INVNUMSTR
THEN

MESSAGE (FAO ("Don't understand !AS",
read_line_string));

ELSE
MESSAGE (ERROR_TEXT);

ENDIF;
ENDIF;
user_prornpt_number := 0;

ENDON_ERROR;

user_prompt_number := l;
read_line_string := READ_LINE (prompt_string);

EDIT (read_line_string, TRIM);
TRANSLATE (read_line_string, "l", "l"); .

new number := INT (read_line_string);
END PROCEDURE

This procedure is used by commands that prompt for integers. The
procedure returns true if prompting worked or was not needed; it returns
false otherwise. The number that is returned is returned in the output
parameter.

7-221

VAXTPU Built-In Procedures
JOURNAL_CLOSE

JOURNAL CLOSE

Closes an open journal file (if one exists for your session) and saves the
journal file .

. FORMAT JOURNAL_CLOSE

PARAMETERS None.

DESCRIPTION Once you specify JOURNAL_CLOSE, VAXTPU does not keep a journal
of your work until you specify JOURNAL_OPEN. Calling the built-in
procedure JOURNAL_OPEN causes VAXTPU to open a new journal file
for your session.

SIGNALED
ERROR

EXAMPLE
JOURNAL CLOSE

7-222

TPU$_ TOOMANY ERROR JOURNAL_CLOSE accepts no
arguments.

This statement causes VAX.TPU to close the journal file, if one exists for
your editing session.

(

VAXTPU Built-In Procedures
JOURNAL_OPEN

JOURNAL OPEN

FORMAT

PARAMETER

return value

Opens a journal file and starts making a copy of your editing session by
recording every keystroke you make. If you invoked VAXTPU with the
/RECOVER qualifier, then VAXTPU recovers the previous aborted section
before recording new keystrokes. JOURNAL_OPEN optionally returns a string
containing the file specification of the file journaled.

(string :=) JOURNAL_OPEN (file-name)

file-name
A string that is the name of the journal file created for your editing
session.

The file specification of the file journaled.

DESCRIPTION VAXTPU saves the keystrokes of your editing session by storing them in
a buffer. VAXTPU writes the contents of this buffer to the file that you
specify as a journal file. If for some reason VAXTPU should be aborted
unexpectedly, you can recover your editing session by using this journal
file. To do this, invoke VAXTPU with the /RECOVER qualifier. See
Chapter 5 for information on recovering files.

SIGNALED
ERRORS

By default, VAXTPU writes keystrokes to the journal file whenever the
journal buffer contains 500 bytes of data. VAXTPU also tries to write
keystrokes to the journal file when it aborts. You can raise or lower the
frequency with which VAXTPU writes keystrokes to the journal file by
using the SET (JOURNALING) built-in.

When you recover a VAXTPU session, your terminal characteristics should
be same as they were when the journal file was created. If they are
not the same, VAXTPU informs you what characteristics are different
and asks whether you want to continue recovering. If you answer yes,
VAXTPU tries to recover; however, the different terminal settings may
cause differences between the recovered session and the original session.

JOURNAL_OPEN succeeds if used in batch mode (NODISPLAY) but
nothing is journaled as there are no keystrokes in batch mode.

TPU$_BADJOUF1LE

TPU$_ TOOFEW

ERROR

ERROR

JOURNAL_OPEN could not open
the journal file.

JOURNAL_OPEN requires one
argument.

7-223

VAXTPU Built-In Procedures
JOURNAL_OPEN

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_ASYNCACTIVE

ERROR

ERROR.

WARNING

JOURNAL_OPEN accepts only
one argument.

The parameter to JOURNAL_
OPEN must be a string.

You cannot journal with
asynchronous handlers declared.

EXAMPLES
D JOURNAL_OPEN ("test.fil")

This statement causes VAXTPU to open a file named TEST.FIL as the
journal file for your editing session. VAXTPU uses your current default
device and directory to complete the file specification.

I PROCEDURE user_start_journal

Default journal name
Auxiliary journal name derived from file name

LOCAL default_journal_name,
aux_journal_name;

IF (GET_INFO (COMMAND_LINE, "journal") = 1)
AND

(GET_INFO (COMMAND_LINE, "read_only") <> 1)
THEN

aux_journal_name := GET INFO (CURRENT_BUFFER, "file_name");

IF aux_journal_name = 1111

"THEN
aux_journal_name := GET INFO (CURRENT_BUFFER,

ENDIF;

IF aux_journal_name = 0
THEN

aux_journal_name := "";
ENDIF;

IF aux_journal_name = 1111

THEN
default_journal_name := "user.TJL";

ELSE
default_jotirnal_name := ".TJL";

ENDIF;

"output_file");

journal file
journal=file

:= GET INFO (COMMAND LINE, "journal file");
:= FILE PARSE (journal file, default journal name,

JOURNAL OPEN
ENDIF;

- aux journal name); - -
(journal_file); - -

END PROCEDURE

7-224

This procedure starts journaling. It is called from the TPU$INIT_
PROCEDURE after a file is read into the current buffer.

G
KEY NAME

FORMAT

VAXTPU Built-In Procedures
KEY_NAME

Returns a VAXTPU keyword for a key or a combination of keys, or creates a
keyword used as a key name by VAXTPU.

keyword2 :: KEY _N'AME
{

integer }
(ke>;_name

strmg

{

SHIFT_KEY
SHIFT MODIFIED

/[, AL T_MODIFIED
CTRL_MODIFIED
HELP_MODIFIED

[
, FUNCTION])
I KEYPAD

} [, ... JJ,

PARAMETERS integer
An integer that is either the integer representation of a keyword for a key,
or is a value between O and 255 that VAXTPU interprets as the value of a
character in the DEC Multinational Character Set.

key_name
A keyword that is the VAXTPU name for a key.

string
A string that is the value of a key from the main keyboard.

SHIFT KEY
A keyword specifying that the key name created includes one or more
shift keys. The keyword SHIFT_KEY specifies the VAXTPU shift key, not
the key on the keyboard marked SHIFT. The shift key is also referred to
as the GOLD key in EVE. (See the description of the SET (SHIFT_KEY)
built-in in the VAX Thxt Processing Utility Manual.)

SHIFT_MODIFIED
A keyword specifying that the key name created by the built-in includes
the key marked SHIFT on the keyboard. The keyword SHIFT_MODIFIED
specifies the key that toggles between uppercase and lowercase, not the
key known as the GOLD key.

SHIFT_MODIFIED only modifies function keys and keypad keys.

Digital recomments that you avoid using this keyword in the non
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

ALT MODIFIED
A keyword specifying that the key name created by the built-in includes
the ALT key. Note that on most Digital keyboards the ALT key is labeled
Compose Character.

7-225

VAXTPU Built-In Procedures
KEY_NAME

ALT_MODIFIED only modifies function keys and keypad keys.

Digital recomments that you avoid using this keyword in the non
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

CTRL MODIFIED
A keyword specifying that the key name created by the built-in includes
the CTRL key.

CTRL_MODIFIED only modifies function keys and keypad keys.

Digital recomments that you avoid using this keyword in the non
DECwindows version ofVAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

HELP_MODIFIED
A keyword specifying that the key name created by the built-in includes
the HELP key.

HELP _MODIFIED only modifies function keys and keypad keys.

Digital recomments that you avoid using this keyword in the non
DECwindows version of VAXTPU. In non-DECwindows VAXTPU, when
you create a key name with this keyword, the keyboard cannot generate a
corresponding key.

FUNCTION
A parameter that specifies that the resulting key name is to be that of a
function key.

KEYPAD
A parameter that specifies that the resulting key name is to be that of a
keypad key.

return value A VAXTPU keyword to be used as the name of a key.

DESCRIPTION Using the KEY_NAME built-in, you can create key names that are

7-226

. modified by more than one key. For example, it is possible to create a
name for a key sequence consisting of the GOLD key, the CTRL key, and
an alphanumeric or keypad key.

The built-in GET_INFO (key_name, "key_modifiers") returns a bit-encoded
integer whose value represents the key modifier or combination of key
modifiers used to create a given key name. For more information about
interpreting the integer returned, see the description of GET_INFO (key_
name, "key_modifiers").

The built-in GET_INFO (keyword, "name") has been extended to return a
string including all the key modifier keywords used to create a key name.
For more information about fetching the string equivalent of a key name,
see the description of GET_INFO (keyword, "name").

./

.✓

/

u

u

VAXTPU Built-In Procedures
KEY_NAME

SIGNALED
ERRORS TPU$_1NCKWDCOM WARNING Inconsistent keyword combination.

TPU$_MUSTBEONE WARNING String must be one character long.

TPU$_NOTDEFINABLE WARNING Second argument is not a valid
reference to a key.

TPU$_NEEDTOASSIGN ERROR KEY _NAME call must be on the
right-hand side of an assignment
statement.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
KEY _NAME built-in.

TPU$_BADKEY ERROR KEY_NAME accepts SHIFT_KEY,
FUNCTION, or KEYPAD as a
keyword argument.

TPU$_ TOOFEW ERROR Too few arguments passed to the
KEY _NAME built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the KEY _NAME built-in.

EXAMPLES

D new_key := KEY NAME (KP4, CTRL MODIFIED, SHIFT KEY);
DEFINE KEY ("eve_fill", new_key); -

These statements create a name for the key sequence GOLD/CTRL/KP4
and bind the EVE command FILL to the resulting key sequence.

i keyl := KEY_NAME ("Z")

il

This assignment statement creates the key name keyl for the keyboard
key Z.

key2 := KEY_NAME (KPS, SHIFT_KEY)

This example uses KEY_NAME ·to create a key name for a combination of
keys.

El key3 := KEY_NAME (ASCII (10))

This assignment statement creates the key name key3 for the line-feed
character.

I ! Procedure to define keys to emulate EDT

PROCEDURE user_define_edtkey

Bind the EDT Fndnxt function to PF3

DEFINE_KEY ("edt$search_next", PF3);

Bind the EDT Find function to SHIFT PF3

DEFINE KEY ("edt$search", KEY_NAME (PF3, SHIFT_KEY));
END PROCEDURE

This example shows a portion of a command file that defines the keys for
an editing interface that emulates EDT.

7-227

VAXTPU Built-In Procedures
KEY_NAME

~ key4 := KEY_NAME (90)

This assignment statement creates the key name key4 for the keyboard
key Z. The key name is identical to keyl in the first example, because 90 is
the ASCII code for Z.

Ii keyS := KEY_NAME ("A", KEYPAD)

This assignment statement creates the key name key5 for the keypad key
that is terminated by an A in the code that represents key names. This
is identical to the key name UP, which VAXTPU uses to refer to the up
arrow key.

VAXTPU defines a keypad key as a control sequence consisting of the code
S83 followed by a character. The control sequence S83 can be represented
as follows:

Esco

For more information on the representation of keys, see the manual for
your terminal.

li] key6 := KEY_NAME (29, FUNCTION)

7-228

This assignment statement creates the key name key6 for the function
key whose representation contains the number 29. This is identical to the
VAXTPU keyword DO, which VAXTPU uses to identify the Do key.

VAXTPU defines a function key as a control sequence with the following
format:

CSI decimal-number ~

The element CSI can be represented as follows:

ESC [

In this representation, the decimal number must be in the range O to 255. \
For more information on the representation of keys, see the manual for __ ./
your terminal:

C

(

LAST KEV

VAXTPU Built-In Procedures
LAST_KEY

Returns a VAXTPU keyword tor the last key that was entered, read, or
executed.

FORMAT keyword := LAST_KEV

PARAMETERS None.

DESCRIPTION When VAXTPU is replaying a learn sequence or executing the program
bound to a key, LAST_KEY returns the last key replayed or processed
so far, not the last key that was pressed to invoke the learn sequence or
program.

When you invoke VAXTPU with the /NODISPLAY qualifier, the value 0
is returned for LAST _KEY, except in the following case. If you precede
the LAST_KEY statement with a READ_LINE statement, LAST_KEY
can return a key name ·representing the last key read by READ_LINE,
CTRIJZ, or the RETURN key. See the description of READ_LINE for
more information on the values that LAST_KEY can return when you use
LAST_KEY while running VAXTPU in /NO_DISPLAY mode.

SIGNALED
ERROR

EXAMPLE

TPU$_ TOOMANY

PROCEDURE user_define_key

def := READ LINE ("Definition: ");
key := READ=LINE ("Press key to define.",1);
IF LENGTH (key) > 0
THEN

key:= KEY_NAME (key)
ELSE

key:= LAST_KEY;
ENDIF;
DEFINE KEY (def, key);

END PROCEDURE

ERROR Too many arguments passed to
the LAST _KEY built-in.

This procedure prompts the user for input for key definitions.

VAXTPU Built-In Procedures
LEARN_ABORT

LEARN ABORT

Causes a learn sequence being replayed to be terminated whether or not the
learn sequence has completed.

FORMAT (integer == J LEARN_ABORT

PARAMETERS None.

return value An integer indicating whether a learn sequence was actually replaying at
the time the LEARN_ABORT statement was encountered. The value 1 is
returned if a learn sequence was being replayed, 0, otherwise.

DESCRIPTION LEARN_ABORT aborts a learn sequence that is being replayed. Only the
currently executing learn sequence is aborted.

SIGNALED
ERROR

EXAMPLE

Whenever you write a procedure that can be bound to a key, the procedure
should invoke the LEARN_ABORT built-in in case of error. Using
LEARN_ABORT prevents a learn sequence from finishing if the learn
sequence calls the user-written procedure and the procedure is not
executed successfully.

TPU$_ TOO MANY ERROR The LEARN_ABORT built-in takes
no parameters.

ON_ERROR
MESSAGE ("Aborting command because ~f error.");
LEARN_ABORT;
ABORT;

ENDON_ERROR

7-230

In this error handler, if an error occurs any executing learn sequence is
aborted.

I

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

LEARN_BEGIN and LEARN END

FORMAT

Saves all keystrokes typed between LEARN BEGIN and LEARN END.
LEARN_BEGIN starts saving all keystrokes that you type. LEARN~END stops
the "learn mode" of VAXTPU and returns a learn sequence consisting of all
the keystrok~s that you entered.

learn == LEARN_END

PARAMETERS · EXACT

return value

DESCRIPTION

Causes VAXTPU to use the input that was entered for each READ_LINE,
READ_KEY, or READ_CHAR built-in procedure when the learn sequence
was created as the input for these built-in procedures when the learn
sequence is replayed.

NO_EXACT .
Causes VAXTPU to prompt for new input each time a READ_LINE,
READ_KEY, or READ_CHAR built-in procedure is replayed within a learn
sequence.

A variable of type learn storing the keystrokes you specify.

You can use the variable name that you assign to a learn sequence as
the parameter for the built-in procedure EXECUTE to replay a learn
sequence. You can also use the variable name with the built-in procedure
DEFINE_KEY to bind the sequence to a key so that the learn sequence is
executed when you press a key.

Learn sequences are different from other VAXTPU programs in that
they are created with keystrokes rather than with VAXTPU statements.
You create the learn sequence as you are entering text and executing
VAXTPU commands. Because learn sequences make it easy to collect
and execute a sequence of VAXTPU commands, they are convenient for
creating temporary "programs." You can replay these learn sequences
during the editing session in which you create them.

Learn sequences, created by collecting keystrokes, are not flexible enough
to use for writing general programs. Learn sequences are best suited to
saving a series of editing actions that you perform many times during a
single editing session.

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

SIGNALED
ERRORS

7-232

It is possible to save learn sequences from session to session so that you
can replay them in an editing session other than the one in which you
created them. To save a learn sequence, bind it to a key; before ending
your editing session, use the built-in procedure SAVE to "do an incremental
save to the section file you are using. Using the built-in procedure SAVE
causes the new definitions from the current session to be added to the
section file with which you invoked VAXTPU. For more information, see
the built-in procedure SAVE.

VAXTPU key definitions may change in future versions. You may lose
learn sequences that you have saved when you run a new version of
VAXTPU.

Note: You should not use built-in procedures that can return WARNING
or ERROR messages as a part of a learn sequence because learn
sequences do not stop on error conditions. Because the learn
sequence continues executing after an error or warning condition,
the editing actions that are executed after an error or a warning
may not take effect at the character position you desire.

If, for example, a built-in procedure SEARCH that you use as a
part of a learn sequence fails to find the string you specify and
issues a warning, the learn sequence does not stop executing. This
can cause the rest of the learn sequence to take inappropriate
editing actions.

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, V AXTPU executes the prekey procedure of that key
if a prekey procedure has been set.

2 For each key in the learn sequence, VAXTPU executes procedures or
programs in the following order:

a. VAXTPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAXTPU exe~tes the code bound to the key itself.

c. VAXTPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

TPU$_NOTLEARNING

TPU$_ONELEARN

WARNING LEARN_BEGIN was not used
since the last call to LEARN_END.

WARNING A learn sequence is already in
progress.

\

G

EXAMPLE
LEARN BEGIN (EXACT)

TPU$_ T~OFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

VAXTPU Built-In Procedures
LEARN_BEGIN and LEARN_END

ERROR

ERROR

ERROR

LEARN_BEGIN requires one
argument.

LEARN_BEGIN accepts only one
argument.

The specified parameter has the
wrong type.

This represents a typical editing session,
in which you perform commands that are
bound to keys.

do_again := LEARN END

This example shows how to combine LEARN_BEGIN and LEARN_END
so that all of the keystrokes that you enter between them are saved. The
keyword (EXACT) specifies that if you use READ_LINE, READ_CHAR,
or READ_KEY within the learn sequence, any input that you enter for
these built-in procedures is repeated exactly when you replay the learn
sequence.

7-233

VAXTPU Built-In Procedures
LENGTH

LENGTH

FORMAT

PARAMETERS

SIGNALED
ERRORS

EXAMPLES

Returns an integer that is the number of character positions in a string or a
range.

. { range }
integer := LENGTH (string)

range ·
The range whose length you want to determine. If you specify a range,
line terminators are not counted as character positions.

string
The string whose length you want to determine.

TPU$_NEEDTOASSIGN ERROR LENGTH must be on the right-
hand side of an assignment
statement.

TPU$_ TOO FEW ERROR LENGTH requires one argument.

TPU$_ TOOMANY ERROR LENGTH accepts only one
argument.

TPU$_ARGMISMATCH ERROR The argument to LENGTH must
be a string.or a range.

TPU$_CONTROLC ERROR You pressed CTRUC while
LENGTH was executing.

D str_len := LENGTH ("Don Quixote")

This assignment statement stores the number of characters in the string
"Don Quixote" in the variable str _Zen. In this example, the integer value is
11.

fi user_how_long := LENGTH (my_range)

7-234

This assignment statement stores the number of character positions
(excluding line terminators) in my_range in the variable user _how_long.

(n",
j/ /

n,
. ../

'
/

i]

VAXTPU Built-In Procedures
LENGTH

Parameters:

mark_parameter is user-supplied string.,
which is used as a mark name

PROCEDURE user_mark_ (mark_parameter)

Local copy of mark_parameter

LOCAL rnark_narne;

ON_ERROR
MESSAGE (FAO ("Cannot use !AS as a mark name", rnark_name));
RETURN;

ENDON_ERROR;

132 - length ("user_mark_")

IF LENGTH (mark_parameter) > 122
THEN

mark name := SUBSTR (mark_name, 1, 122);
ELSE -

mark name := mark_parameter;
ENDIF;

EXECUTE ("user mark"+ mark name+":= MARK (NONE)");
MESSAGE (FAO ("Current position marked as !AS", mark_name));

ENDPROCEDURE

This procedure puts a marker without any video attributes at the current
position. The marker is assigned to a variable that begins with user-·
mark_ and ends with the string you pass as a parameter. The procedure
writes a message to the message area verifying the mark name that comes
from the input parameter.

7-235

VAXTPU Built-In Procedures
LINE BEGIN

LINE BEGIN

Matches the beginning of a line.

·FORMAT LINE_BEGIN

PARAMETERS None.

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
LINE_BEGIN matches the start of a line.

Although LINE_BEGIN behaves much like a built-in, it is actually a
keyword.

LINE_BEGIN lets you search for complex strings by creating patterns that
match certain conditions. For example, if you want to find all occurrences
of the exclamation point (!) when it is the first character in the line, use
LINE_BEGIN to create the following pattern:

pat1 := LINE_BEGIN + "!";

For more information on patterns, see Chapter 2.

SIGNALED
ERROR

LINE_END is a keyword and has no completion codes.

EXAMPLES
D patl : = LINE BEGIN

This assignment statement stores the beginning-of-line condition in the
variable patl.

i POSITION (SEARCH (LINE_BEGIN, REVERSE));

il

This VAXTPU statement positions you at the beginning of the current line.

PROCEDURE user remove dsrlines

LOCAL sl,
patl;

- -

patl := LINE_BEGIN + ".";

LOOP
sl := SEARCH_QUIETLY (patl, FORWARD);
EXITIF sl = 0;
POSITION (sl);
ERASE_LINE;

ENDLOOP;
END PROCEDURE

7-236

\

/

(

\

VAXTPU Built-In Procedures
LINE_BEGIN

This procedure removes all DSR commands from a file by searching for a
pattern that has a period (.) at the beginning of a line and then removing
the lines that match this condition.

7-237

VAXTPU Built-In Procedures
LINE_END

LINE END

Matches the end of a line.

FORMAT LINE_END

PARAMETERS None.

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
LINE_END matches the end of a line.

SIGNALED
ERROR

EXAMPLES
D patl := LINE_END

Although LINE_END behaves much like a built-in, it is actually a
keyword.

The end-of-line condition is one character position to the right of the last
character on a line.

For more information on patterns, see Chapter 2.

LINE_END is a keyword and has no completion codes.

This assignment statement stores the keyword LINE_END in the variable
patl. Patl can be used as an argument to the SEARCH built-in or as part \
of a complex pattern. j

i PROCEDURE user end of line

LOCAL eol_range;

eol_range := SEARCH_QUIETLY (LINE_END, FORWARD);

IF eol_range <> 0
THEN

POSITION (eol_range);
ENDIF;

END PROCEDURE

7-238

If you are not already at the end of the current line, the preceding
procedure moves the editing point to the end of the line.

VAXTPU Built-In Procedures
LOCATE_MOUSE

LOCATE_MOUSE

FORMAT

Locates the window position of the pointer at the time LOCATE_MOUSE is
invoked. LOCATE_MOUSE returns the window name and the window position
of the pointer and optionally returns a status indicating whether the pointer
was found in a window.

I integer ==) LOCATE_MOUSE (window, x_integer, y_integer)

PARAMETERS window

return value

DESCRIPTION

Returns the window in which the pointer is located. You can pass any data
type except a constant in this parameter. If the pointer is not found, ·an
unspecified data type is returned.

x_integer
Returns the column position of the pointer. You can pass any data
type except a constant in this parameter. If the pointer is not found,
an unspecified data type is returned.

y_integer
Returns the row position of the pointer. You can pass any data type except
a constant in this parameter. If the pointer is not found, an unspecified
data type is returned. This parameter returns O if the pointer is in the
status line for a window. ·

An integer indicating whether the pointer was found in a window. The
value is 1 ifVAXTPU finds a window position, 0, otherwise.

When the user presses a mouse button, VAXTPU determines the location
of the mouse pointer and makes that information available while the code
bound to the mouse button is being processed. Mouse pointer location
information is not available at any other time.

In DECwindows VAXTPU, you can use the built-in LOCATE_MOUSE
anytime after the first keyboard or mouse-button event. The built-in
returns the location occupied by the pointer cursor at the time of the most
recent keyboard or mouse bu~n event.

If there is no mouse information available (because no mouse button has
been pressed or if the mouse has been disabled using SET (MOUSE)),
LOCATE_MOUSE signals the status TPU$_MOUSEINv.

7-239

VAXTPU Built-In Procedures
LOCATE_MOUSE

SIGNALED
ERRORS

TPU$_MOUSEINV

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_BADDELETE

WARNING The mouse position is not currently
valid.

ERROR

ERROR

ERROR

LOCATE_MOUSE requires three
parameters.

LOCATE_MOUSE accepts at mpst
three parameters.

You have specified a constant as
one or more of the parameters.

EXAMPLES

D LOCATE MOUSE (abc_window, x_l, Yl);

The example returns the window and coordinate position of the pointer.

PROCEDURE user move to mouse - - -
LOCAL my_window,

x_l,
yl;

my_window := 0;
x_l := 0;
yl : = 0;

IF (LOCATE_MOUSE (my_window, x_l, Yl) <> 0)
THEN

IF (CURRENT_WINDOW <> my_window)
THEN

POSITION (my window);
UPDATE (my_window);

ENDIF;
CURSOR VERTICAL (yl - (CURRENT ROW - GET INFO

- (my window, "visible top") + 1));
CURSOR_HORIZONTAL (CURRENT_COLUMN --x_l);

ENDIF; ·
END PROCEDURE

Binding the user _move_to_mouse procedure to a mouse button moves
the cursor to the mouse location. The user _move_to_mouse procedure is
essentially equivalent to POSITION (MOUSE).

Note that CURRENT_ROW and CURRENT_COLUMN return screen
relative location information, while LOCATE_MOUSE returns window
relative location information.

! status := LOCATE_MOUSE (new_window, x_value, y_value);

7-240

The previous statement returns an integer in the variable status indicating
whether the pointer cursor was found in a window, the window in the
parameter new _window where the mouse was found, an integer in the
parameter x_value specifying the pointer cursor's location in the horizontal
dimension, and an integer in the parameter y _value specifying the pointer
cursor's location in the vertical dimension.

/

l
_J

((.·
u

VAXTPU Built-In Procedures
LOOKUP_KEY

LOOKUP KEY

FORMAT

PARAMETERS

Returns the executable code or the comment that is associated with the key
you specify. The code can be returned as a program or as a learn sequence .

. The comment is returned as a string.

{

integer . }
learn_sequence ·= LOOKUP KEV
program · -
string3

{
COMMENT } [.

(key-name, KEY MAP { 'Sfr~ngt
PROGRAM 'Sfrmg2

key-name
A VAXTPU key name for a key or a combination of keys. See Table 2-1 for
a list of the VAXTPU key names for the VT300-series, VT200-series, and
VTlOO-series keyboards.

COMMENT
A keyword specifying that the LOOKUP _KEY built-in is to return the
comment supplied when the key was defined. If no comment was supplied,
the LOOKUP _KEY built-in returns the integer zero.

KEY_MAP
A keyword specifying that the LOOKUP _KEY built-in is to return the key
map in which the key's definition is stored. If you specify a key that is not
defined in any key map, LOOKUP _KEY returns a null string.

PROGRAM
A keyword specifying that the LOOKUP _KEY built-in is to return the
program or learn sequence bound to the key specified. If the key is not
defined, the LOOKUP _KEY built-in returns the integer 0.

string1 .
The name of the key map from which the LOOKUP _KEY built-in is to
obtain the key definition. Use this optional· parameter if the key is defined
in more than one key map. If you do not specify a key map or a key map
list for the third parameter, the first definition found for the specified key
in the key map list bound to the current buffer is returned.

string2
The name of the key map list from which the LOOKUP _KEY built-in is to
obtain the key definition. Use this optional parameter if the key-is defined
in more than one key map list. If you do not specify a key map or a key
map list for the third parameter, the first definition found for the specified
key in the key map list bound to the current buffer is returned.

7-241

VAXTPU Built-In Procedures
LOOKUP_KEY

return value
• integer - The integer 0. This value is returned if the key specified as

a parameter has no definition.

• learn_sequence -The learn sequence bound to.the key specified as
a parameter.

• program - The program bound to the key specified as a parameter.

• string3 - If you specified COMMENT as the second parameter,
string3 is the comment bound to the key specified as the first
parameter. If you specified KEY_MAP as the second parameter,
string3 is the string naming the key map in which the key definition
was found.

DESCRIPTION The LOOKUP _KEY built-in procedure can return a program, a learn
sequence, a string, or the integer O (0 means that the key has no
definition).

SIGNALED
ERRORS

7-242

LOOKUP _KEY is useful when you are defining keys temporarily during
an editing session and you want to check the existing definitions of a key.

TPU$_NOTDEFINABLE WARNING Argument is not a valid reference
to a key.

TPU$_NOKEYMAP WARNING Argument is not a defined key
map.

TPU$_NOKEYMAPLIST WARNING Argument is not a defined key map
list.

TPU$_KEYMAPNTFND WARNING The specified key map. is not
found.

TPU$_EMPTYKMLIST WARNING The specified key map list contains
no key maps.

TPU$_ TOO FEW ERROR Too few arguments passed to the
LOOKUP _KEY built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the LOOKUP _KEY built-in.

TPU$_NEEDTOASSIGN ERROR LOOKUP _KEY must be on the
right-hand side of an assignment
statement.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
LOOKUP _KEY built-in.

TPU$_BADKEY ERROR An unknown keyword has been
used as an argument. Only
PROGRAM, COMMENT, and
KEY _MAP are valid keywords.

_)

(j

(

!
\

VAXTPU Built-In Procedures
LOOKUP_KEV

EXAMPLES
D programx := LOOKUP_KEY (keyl, PROGRAM)

This assignment statement returns the executable code that is associated
with keyl. The second keyword, PROGRAM, indicates that the result is
returned to a variable of type program or learn.

I PROCEDURE user_what_is_comment

i]

MESSAGE (LOOKUP_KEY (LAST_KEY1 COMMENT));
ENDPROCEDURE

This procedure displays in the message area the comment that you
included with your key definition for the last key that you typed.

PROCEDURE user get key info
LOCAL key to interpiet,

key=info;

MESSAGE ("Press the key you want information on: ");

key_to_interpret := READ_KEY;
key_info := LOOKUP_KEY (key_to_interpret, COMMENT);

IF key_info <> 1111

THEN
MESSAGE ("Comment: " + key_info);

ELSE
MESSAGE ("No comment is associated with that key.");

ENDIF;
ENDPROCEDURE

This procedure returns the comment associated with a particular key.

I) key_map_name := LOOKUP_KEY (RET KEY, KEY MAP, "tpu$key_map_list");
IF LENGTH (key_map_name) = 0
THEN

MESSAGE ("RET_KEY is undefined");
ELSE

MESSAGE ("RET_KEY is defined in key map"+ key_map_name);
ENDIF;

This procedure returns the key map within the key map list TPU$KEY_
MAP _LIST in which the RETURN key is defined.

I PROCEDURE shift_key_handler (key_map_list_name);

LOCAL bound_program;

bound_program := LOOKUP KEY (READ_KEY, PROGRAM, "key_map_list_narne");

IF bound_program <> 0
THEN

EXECUTE (bound_program);
ELSE

MESSAGE ("Attempt to execute undefined key");
ENDIF;

ENDPROCEDURE

7-243

VAXTPU Built-In Procedures
LOOKUP_KEY

red_keys := CREATE_KEY_MAP ("red_keys");

red_key_rnap_list := CREATE_KEY_MAP_LIST ("red_key_rnap_list",
red keys);

DEFINE KEY ("shift key handler (red key map list)", PF3,
"RED shift key"); - - -

This procedure implements multiple shift keys.

7-244

/

(

VAXTPU Built-In Procedures
MANAGE_ WIDGET

MANAGE WIDGET

FORMAT

Makes the specified widget instances visible, provided that the specified
widgets' parent is also visible.

MANAGE_WIDGET (widget/[, widget ... J)

PARAMETERS widget

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

The widget instance to be managed.

This built-in performs the same functions as the X Toolkit MANAGE
CHILD and MANAGE CHILDREN routines.

If you have multiple children of a single widget that you want to manage,
include them in a single call to MANAGE_ WIDGET. Managing several
widgets at once is more efficient than managing one widget at a ·time.

All widgets passed in the same MANAGE_ WIDGET operation must have
the same parent. ·

TPU$_1NVPARAM ERROR· You specified a parameter of the
wrong type.

TPU$_ TOOFEW ERROR Too few arguments passed to the
MANAGE_WIDGET bulit-in.

TPU$_NORETURNVALUE ERROR MANAGE_WIDGET cannot return
a value.

TPU$_REQSDECW ERROR You can use the MANAGE_
WIDGET built-in only if you are
using DECwindows VAXTPU.

TPU$_WIDMISMATCH ERROR You have specified a widget whose
class is not supported.

For a sample procedure using the MANAGE_ WIDGET built-in, see
Example B-2.

7-245

VAXTPU Built-In Procedures
MAP

MAP

FORMAT

Associates a buffer with a window and causes the window to become visible
on the screen. Before using MAP you must already have created the buffer
and the window that you specify as parameters. See CREATE_BUFFER and
CREATE_WINDOW.

MAP (window, buffer)

PARAMETERS window
The window you want to map to the screen.

buffer
The buffer you want to associate with the window.

DESCRIPTION The window and buffer that you use as parameters become the current
window and the current buffer, respectively. The map operation
synchronizes the cursor position with the editing point in the buffer.

SIGNALED
ERRORS

7-246

If the window is not already mapped to the buffer when you use MAP,
VAXTPU puts the cursor back in the last position the cursor occupied the
last time the window was the current window.

MAP may cause other windows that are mapped to the screen to be
partially or completely occluded. If MAP causes the new window to
segment another window into two pieces, only the upper part of the
segmented window remains visible and continues to be updated. The
lower part of the segmented window is erased on the next screen update.
If you remove the window that is segmenting another window, VAXTPU
repaints the screen so that the window that was segmented regains its
original size and position on the screen.

Note that if you execute MAP within a procedure, the screen is not
updated to reflect such operations as window repainting, line erasure,
or new mapping until the procedure has finished executing and control
has returned to the screen manager. If you want the screen to reflect
the changes before the entire program is executed, you can force the
immediate update of a window by including the following statement in the
procedure before any statements containing the MAP built-in:

UPDATE (WINDOW) ;

TPU$_ TOO FEW

TPU$_ TOOMANY

ERROR

ERROR

MAP requires at least two
parameters.

You specified more than two
parameters.

j

(

(
\

TPU$_1NVPARAM

TPU$_MAXMAPPEDBUF

VAXTPU Built-In Procedures
MAP

ERROR One or more of the specified
parameters have the wrong type.

WARNING The buffer is already mapped to
the maximum number of windows
allowed by VAXTPU.

EXAMPLES

D MAP (main_window, main_buffer)

This statement associates the main buffer with the main window and
maps the main window to the screen. You must have established the
main buffer and the main window with CREATE_BUFFER and CREATE_
WINDOW before you can use them as parameters for MAP.

PROCEDURE user_message_window

message_buffer := CREATE_BUFFER ("message");
SET (EOB_TEXT, message_buffer, "");
SET (NO_WRITE, message_buffer);
SET (SYSTEM, message_buffer);

message_window := CREATE_WINDOW (23, 2, OFF);
SET (VIDEO, message window, NONE);
MAP (message_window; message_buffer);

ENDPROCEDURE

This procedure creates a message buffer and a message window. It then
associates the message buffer with the message window and maps the
message window to the screen.

7-247

VAXTPU Built-In Procedures
MARK

MARK

FORMAT

Returns a marker for the editing point in the current buffer. You must specify
how the marker is to be displayed on the screen (no special video, reverse
video, bolded, blinking, or underlined).

marker :: MARK (

BLINK
BOLD
FREE_CURSOR
NONE
REVERSE
UNDERLINE

)

PARAMETERS BLINK
A keyword directing VAXTPU to display the marker in blinking rendition.

BOLD
A keyword directing VAXTPU to display the marker in bold rendition.

FREE CURSOR
A keyword directing VAXTPU to create a free marker (that is, a marker
not bound to a character). Specifying the parameter FREE_CURSOR does
not create a free marker unless the editing point is before the beginning of
a line, after the end of a line, in the middle of a tab, or below the bottom of
a buffer when the statement MARK (FREE_CURSOR) is executed. If the
editing point is on a character when the statement is executed, the marker
is bound. A free marker has no video attribute.

NONE
A keyword directing VAXTPU to apply no video attributes to the marker.

REVERSE
A keyword directing YAXTPU to display the marker in reverse video.

UNDERLINE
A keyword directing VAXTPU to underline the marker.

DESCRIPTION This built-in procedure can be used to establish place holders, or
"bookmarks."

7-248

A marker can be either bound or free. For more information on how
these markers differ, see Chapter 2.

To create a bound marker, use the MARK built-in with any of its
parameters except FREE_CURSOR. This operation creates a bound
marker even if the editing point is beyond the end of a line, before the
beginning of a line, in the middle of a tab, or beyond the end of a buffer. To
create a bound cursor in a location where there is no character, VAXTPU
fills the space between the marker and the nearest character with padding
space characters.

G

(

(_

SIGNALED
ERRORS

VAXTPU Built-In Procedures
MARK

A bound marker is tied to the character at which it is created. If the
character tied to the marker moves, the marker moves also. If the
character tied to the marker is deleted, the marker moves to the nearest
character position. The nearest character position is determined in the
following way:

1 If there is a character position on the same line and to the right, the
marker moves to this position, even if the position is at the end of the
line.

2 If the line on which the marker is located is deleted, the marker moves
to the first position on the following line.

· You can move one column past the last character in a line and place a
marker there. However, the video attribute for the marker is not visible
unless a subsequent operation puts a character under the marker.

If you use a marker at the end of a line as part of a range, it is included in
the range even though the marker is not positioned on a character.

A marker is free if the following conditions are true:

• . You used the statement marker _variable := MARK(FREE_CURSOR) to
create the marker.

• There was no character in the position marked by the editing point at
the time you created the marker.

VAXTPU keeps track of the location of a free marker by measuring the
distance between the marker and the character nearest to the marker .
. If you move the character from which VAXTPU measures distance to
a free marker, the marker moves too. VAXTPU preserves a uniform
distance between the character and the marker. If you collapse white
space containing one or more free markers (for example, if you delete a tab
or use the APPEND_LINE built-in), VAXTPU preserves the markers and
binds them to the nearest character.

If the current buffer is mapped to a visible window, the MARK built-in
causes the screen manager to synchronize the editing point, which is
a buffer location, with the cursor position, which is a window location.
Unless you specify the parameter FREE_CURSOR, using the MARK built
in may result in the insertion of padding spaces or lines into the buffer if
the cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in tp.e buffer.

TPU$_ TOOFEW

TPU$_:rooMANY

TPU$_NEEDTOASSIGN

ERROR

ERROR

ERROR

MARK requires one parameter.

MARK accepts only one
parameter.

The MARK built-in must be on the
right-hand side of an assignment
statement.

7-249

VAXTPU Built-In Procedures
MARK

TPU$_NOCURRENTBUF WARNING You must be positioned in a buffer
to set a marker.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be NONE,
BOLD, BLINK, REVERSE,
UNDERLINE, or FREE_CURSOR.

TPU$_UNKKEYWORD ERROR You have specified an unknown
keyword.

TPU$_1NSVIRMEM FATAL There is not enough memory to
create the marker.

EXAMPLES
D user mark := MARK (NONE)

This assignment statement places a marker at the editing point. There
are no video attributes applied to the marker.

I user_mark_under := MARK (UNDERLINE)

This assignment statement places a marker at the row and column
position that corresponds to the editing point. The character tied to
the marker is underlined.

! my_markl := MARK (UNDERLINE);

El

my_mark2 := MARK (BLINK);

These assignment statements place a marker at the row and column
position that corresponds to the editing point. The character tied to the
marker is underlined and blinks.

PROCEDURE user_paste

temp_pos := MARK (NONE);

POSITION (END_OF (paste_buffer));
MOVE_HORIZONTAL (-2);

paste_text := CREATE_RANGE (BEGINNING_OF (paste_buffer),
MARK (NONE), NONE);

POSITION (temp_pos);
COPY_TEXT (paste_text);

END PROCEDURE

This procedure marks a temporary position at the current character
position, and then goes to the paste buffer and creates a range of the
contents of the paste buffer. VAXTPU then goes to temp_pos and. copies
the text from the paste buffer at the temporary position.

7-250

)

G

(

u

C

MATCH

FORMAT

VAXTPU Built-In Procedures
MATCH

MATCH returns a pattern that matches from the editing point up to and
including the sequence of characters specified in the parameter.

{

buffer }
pattern := MATCH· (ra~ge)

stnng

PARAMETERS buffer

return value

An expression that evaluates to a buffer. MATCH forms a string from
the contents of the buffer and stops matching when it finds the resulting
string.

range
An expression that evaluates to a range. MATCH forms a string from
the contents of the range and stops matching when it finds the resulting
string.

string
An expression that evaluates to a string. MATCH stops matching when it
finds this string.

A variable of type pattern that matches text from the editing point up to
and including the characters specified in the parameter.

DESCRIPTION MATCH returns a pattern that matches any string ending in the
specified sequence of characters. The matched string does not contain
line terminators.

SIGNALED
TPU$_NEEDTOASSIGN ERROR MATCH must appear in the right-

ERRORS hand side of an assignment
statement.

TPU$_ TOOFEW ERROR MATCH requires at least one
argument.

TPU$_ TOOMANY ERROR MATCH requires no more than
one argument.

TPU$_ARGMISMATCH ERROR Argument to MATCH has the
wrong type.

TPU$_CONTROLC ERROR You pressed .CTRUC during the
execution of MATCH.

7-251

VAXTPU Built-In Procedures
MATCH

EXAMPLES
D patl := MATCH ("abc")

This assignment statement stores in patl a pattern that matches a string
of characters starting with the editing point up to and including the
characters "abc".

i PROCEDURE user_double_parens

paren_text
found_range

: = " ((, + MATCH (,)) II) ;
:= SEARCH_QUIETLY (paren_text, FORWARD, NO_EXACT);

IF found_range = O
THEN

! No match

MESSAGE ("No match found.");
ELSE

POSITION (found_range);
ENDIF;

ENDPROCEDURE

7-252

This procedure finds text within double parentheses. It moves the editing
point to the beginning of the parenthesized text, if it is found.

MESSAGE

FORMATS

PARAMETERS

VAXTPU Built-In Procedures
MESSAGE

Depending on the format you choose, either puts the characters that you
specify into the message buffer, or else fetches text associated with a
message code, formats the text using FAQ directives, and puts it in the
message buffer. ·

If you use the first format shown below, MESSAGE inserts the characters
in the string or range that you specify into the message buffer, if one exists.
(By default, VAXTPU looks for a buffer variable that is named MESSAGE_
BUFFER.) If there is no message buffer, VAXTPU displays the message at
the current location on the device pointed to by SYS$QUTPUT (usually your
terminal).

If you use the second format shown below, MESSAGE fetches the text
associated with a message code, formats the text using FAQ directives, and
displays the formatted message in the message buffer.

MESSAGE {range[, integert J)

MESSAGE { { :~;~: } f, integer3
strmg

ff, FAD-parameter l, FAD-parameters ... J J J)

range
The range containing the text that you want to include in the message
buffer.

integer1
An integer indicating the severity of the message placed in the message
buffer. If you do not specify this parameter, no severity code is associated
with the message. The allowable integer values and their meanings are as
follows:

Integer Meaning

0 Warning

1 Success

2 Error

3 Informational

integer2 · ·
The integer representing the message code associated with the text to be
fetched.

7-253

VAXTPU Built-In Procedures
MESSAGE

keyword
The VAXTPU keyword representing the message code associated with the
text to be fetched. VAXTPU provides keywords for all of the message codes
used by VAXTPU and EVE.

string
Either a quoted string or a variable representing the text you want to
include in the message buffer.

integer3
A bit-encoded integer that specifies what fields of the message text
associated with the message code from the first parameter are to be
fetched. If the message flags are not specified or the value is zero, then
the message flags set by the SET (MESSAGE_FLAGS) built-in procedure ·)
are used. _

Table 7-4 shows the message flags:

Table 7-4 Message Flag Values

Bit Constant

0

1

2

3

TPU$K_MESSAGE_TEXT

TPU$K_MESSAGE_ID

TPU$K_MESSAGE_SEVERITY

TPU$K_MESSAGE_FACILITY

FAD-parameter

Meaning

Include text of message.

Include message identifier.

Include severity level indicator.

Include facility name.

One or more expressions that evaluate to an integer or string. The
MESSAGE_TEXT built-in procedure uses these integers and strings as
arguments to the $FAQ system service, substituting the values into the
text associated with the message code to form the resultant string.

The FAO directives are listed in the description of $FAQ in the VMS
System Services Reference Manual.

DESCRIPTION If you use the first fonµat shown above, the MESSAGE built-in provides
the user who is writing an editing interface with a method of displaying
messages in a way that is consistent with the VAXTPU language.

7-254

If you have associated a message buff er with a message window, and if the
message window is mapped to the screen, the range you specify appears
immediately in the message window on the screen.

If you have not associated a message buffer with a message window,
messages are written to the buffer,-but do not appear on the screen.

If you use the second format shown above, the MESSAGE built-in places a
formatted string in the message buffer. The difference between MESSAGE
and MESSAGE_TEXT is that MESSAGE_TEXT simply returns the
resulting string while MESSAGE places the resulting string in the
message buffer. The string is specified by the message code passed as
the first parameter and constructed according to the rules of the $FAQ
system service. The control string associated with the message code

SIGNALED
f

ERRORS \,

tu

VAXTPU Built-In Procedures
MESSAGE

directs the formatting process, and the optional arguments are values to
be substituted into the control string.

MESSAGE capitalizes the first character of the string placed in the
message buffer. The MESSAGE_TEXT built-in, on the other hand, does
not capitalize the first character of the returned string.

Some FAO directives you can include as part of the message text are the
following:

!AS

!OL

!XL

!ZL

!UL

!SL

.
Inserts a string as is

Converts an integer to octal notation

Converts an integer to hexadecimal notation

Converts an integer to decimal notation

Converts an integer to decimal notation without adjusting for negative
number

Converts an integer to decimal notation with negative numbers converted
properly

!/ Inserts a new line character (carriage return/line feed)

!_ Inserts a tab

!} Inserts a form feed

!! Inserts an exclamation point

!%S Inserts an s if the most recently converted number is not 1

!% T Inserts the current time if you enter O as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

!%D Inserts the current date and time if you enter' O as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

TPU$_ TOOFEW ERROR MESSAGE requires at least
one argument.

TPU$_ TOOMANY ERROR MESSAGE cannot accept
as many arguments .as you
have specified.

TPU$_ARGMISMATCH ERROR You have specified an
argument of the wrong type.

TPU$_1NVFAOPARAM WARNING Argument was n~t a string
or integer.

TPU$_1NVPARAM ERROR You have specified .an
argument of the wrong type.

TPU$_FLAGTRUNC INFORMATIONAL · Message flag truncated to 4
bits.

TPU$_SYSERROR ERROR Error fetching the message
text.

7-255

VAXTPU Built-In Procedures
MESSAGE

EXAMPLES
D MESSAGE ("Hello")

J·

This statement writes the text "Hello" in the message area.

ii PROCEDURE user on eol

i]

test if at eol, return true or false

MOVE_HORIZONTAL {l);
IF CURRENT_OFFSET = 0
THEN

user_on_end_of_line
MESSAGE ("Cursor at

ELSE
user_on_end_of_line
MESSAGE ("Cursor is

ENDIF;
MOVE HORIZONTAL (-1);

ENDPROCEDURE

:=
end

:=
not

l;
of

0;
at

! then we are on

return true
line");

! return false
the end of line");

! move back

eol

This procedure determines whether the cursor is at the end of the line. It
sen.ds a text message to the message area on the screen about the position
of the cursor.

MESSAGE (TPU$_OPENIN, TPU$K MESSAGE_TEXT, "foe.bar");

The code fragment above fetches the text associated with the message code
TPU$_OPENIN and substitutes the string "FOO.BAR" into the message.
All of the text of the message is fetched. The following· string is displayed
in the message buffer:

Error opening FOO.BAR as input

7-256

(
\

(
\

VAXTPU Built-In Procedures
MESSAGE_TEXT

MESSAGE TEXT

FORMAT

The MESSAGE_ TEXT built-in procedure lets you do the following:

• Fetch the text associated with a message code

• Use FAQ directives to specify how strings and integers should be
substituted into the text

For complete information on the $FAQ and $GETMSG system services, see
the VMS System Services Reference Manual.

string:: MESSAGE_TEXT ({ ti~:~ } ff, integer2 ff, FAD-parameter

/[, FAD-parameters... 11 J)

PARAMETERS integer1
The integer for the message code associated with the text that is to be
fetched.

keyword
The keyword for the message code associated with the text that is to be
fetched. VAXTPU provides keywords for all of the message codes used by
VAXTPU and the EVE editor.

integer2
A bit-encoded integer that specifies what fields of the message text
associated with the message code from the first parameter are to be
fetched. If the message flags are not specified or the value is 0, then the
message flags set by the SET (MESSAGE_FLAGS) built-in procedure are
used.

Table 7-5 shows the message flags:

Table 7-5 Message Flag Values

Bit Constant

0 TPU$K_MESSAGE_TEXT

1 TPU$K_MESSAGE_ID

2 TPU$K_MESSAGE_SEVERITY

3 TPU$K_MESSAGE_FACILITY

Meaning

.Include text of message.

Include message identifier.

l!lclude severity level indicator.

Include facility name.

FAD-parameter
One or more expressions that evaluate to an integer or string. The
MESSAGE_TEXT built-in procedure uses these integers and strings as
arguments to the $FAQ system service, and substitutes the resultant
values into the text associated with the message code to form the returned
string.

7-257

VAXTPU Built-In Procedures
MESSAGE_ TEXT

return value

DESCRIPTION

SIGNALED
ERRORS

7-258

The text associated with a message code that is fetched and formatted by
MESSAGE_TEXT.

MESSAGE_TEXT returns a formatted string, specified by the message
code passed as the first parameter, and constructed according to the
rules of the $FAQ system service. The control string associated with the
message code directs the formatting process, and the optional arguments
are values to be substituted into the control string.

MESSAGE_TEXT does not capitalize the first character of the returned
string. The MESSAGE built-in, on the other hand, does capitalize the first
character.

Some FAO directives you can include as part of the message text are the
following:

!AS Inserts a string as is

!OL Converts an integer to octal notation

IXL Converts an integer to hexadecimal notation

!ZL Converts an integer to decimal notation

!UL Converts an integer to decimal notation without adjusting for negative
number

!SL Converts an integer to decimal notation with negative numbers converted
properly

!/ Inserts a new line character (carriage return/line feed)

!_ Inserts a tab

!} Inserts a form feed

!! · Inserts an exclamation point

!¾S Inserts an s if the most recently converted number is not 1

!0/~T Inserts the current time if you enter O as the parameter (you cannot pass
a specific time because VAXTPU does not use quadwords)

!%D Inserts the current date and time if you enter O as the parameter (you
cannot pass a specific date because VAXTPU does not use quadwords)

TPU$_1NVFAOPARAM WARNING Argument was not a string or
integer.

TPU$_ ERROR MESSAGE_ TEXT must
NEEDTOASSIGN appear on the right-hand side

of an assignment statement.

TPU$_1NVPARAM ERROR You have specified an
argument of the wrong type.

TPU$_ TOOFEW ERROR MESSAGE_ TEXT requires at
least one parameter.

TPU$_ TOO MANY ERROR MESSAGE_ TEXT accepts up
to 20 FAO directives.

~---'. ll ,
' y

.f)· ·,
'_,/

EXAMPLE

TPU$_FLAGTRUNC

TPU$_SYSERROR

VAXTPU Built-In Procedures
MESSAGE_ TEXT

INFORMATIONAL

ERROR

Message flag truncated to 4
bits.

Error fetching the message
text.

all_message_flags := TPU$K_MESSAGE_TEXT OR
TPU$K_MESSAGE_ID O'R
TPU$K_MESSAGE_SEVERITY OR
TPU$K_MESSAGE_FACILITY;

openin_text := MESSAGE_TEXT (TPU$_OPENIN, all_message_flags,
"foe.bar");

This code fragment fetches the text associated with the message code
TPU$_OPENIN and substitutes the string "FOO.BAR" into the message.
All of the text of the message is fetched. The following string is stored in
the variable openin_text:

%TPU-E-OPENIN, error opening FOO.BAR as input

7-259

VAXTPU Built-In Procedures
MODIFY _RANGE

MODIFY _RANGE

FORMAT

PARAMETERS

Supports dynamic alteration of a range.

MODIFY _RANGE (range, { ~arkt ,mark2 } f, video_attribute J)

range
The range that is to be modified.

mark1
A marker delimiting one end of the range. If you do not specify the
starting mark, you must use a comma as a placeholder.

mark2
A marker delimiting the other end of the range. If you do not specify the
ending mark, you must use a comma as a placeholder.

video attribute
A keyword designating the new video attribute for the range. The
attribute can be NONE, REVERSE, UNDERLINE, BLINK, or BOLD.
If not specified, the video attribute for the range remains the same.

DESCRIPTION You can use MODIFY_RANGE to specify a new starting mark and ending
mark for an existing range.

MODIFY_RANGE can also change the characteristics of the range without
deleting, re-creating, and repainting all the characters in the range. Using

I

MODIFY_RANGE, you can direct VAXTPU to apply or remove the range's J

SIGNALED
ERRORS

7-260

video attribute to or from characters as you select and unselect text.

Ranges are limited to one video attribute at a time. Specifying a video
attribute different f:rom the present attribute causes VAXTPU to apply the
new attribute to the entire visible portion of the range.

If the video attribute stays the same and only the markers move, the only
characters that are refreshed are those visible characters newly added to
the range and those visible characters that are no longer part of the range.

TPU$_NOTSAMEBUF

TPU$_ARGMISMATCH

TPU$_8ADKEY

WARNING

ERROR

WARNING

The first and second marker are in
different buffers.

The data type of the indicated
parameter is not supported by the
MODIFY _RANGE built-in.

You specified an illegal keyword.

(('
\._j

i

\

,L,

TPU$_1NVPARAM

TPU$_MODRANGEMARKS

TPU$_ TOO FEW

TPU$_ TOO MANY

TPU$_NORETURNVALUE

EXAMPLES

D begin_ mark : = MARK (BOLD) ;
POSITION (MOUSE);
finish_mark := MARK (BOLD);

VAXTPU Built-In Procedures
MODIFY _RANGE

ERROR You specified a parameter of the
wrong type.

ERROR MODIFY _RANGE requires either
two marker parameters or none.

ERROR Too few arguments passed to the
MODIFY _RANGE built-in.

ERROR Too many arguments passed to
the MODIFY _RANGE built-in.

ERROR MODIFY _RANGE cannot return a
value.

this_range := CREATE_RANGE (begin_mark, finish_mark, BOLD);
!

(User may have moved mouse)

POSITION (MOUSE);
new mark := MARK (BOLD);
IF new mark<> finish mark - -THEN

MODIFY_RANGE (this_range, begin_mark, new_mark, BOLD);
ENDIF;

This code fragment creates a range between the editing point and the
pointer cursor location. At a point in the program after you might have
moved the pointer cursor, the code fragment modifies the range to reflect
the new pointer cursor location.

f:l MODIFY RANGE (this_range, , , BLINK);

This statement sets the video attribute of the range this_range to BLINK.

E PROCEDURE rnove_rnark (place_to_start, direction);

POSITION (place_to_start);

IF direction .= 1
THEN

MOVE HORIZONTAL (l);
ELSE

MOVE HORIZONTAL (-1);
ENDIF;

RETURN MARK (NONE) ;

ENDPROCEDURE;

PROCEDURE ·user_shrink_and_enlarge_range

LOCAL start_rnark,
end mark,
direction,
dynarnic_range,
rendition,
rernernbered_range;

7-261

VAXTPU Built-In Procedures
MODIFY _RANGE

POSITION (LINE_BEGIN);
start_mark := MARK (NONE);
POSITION (LINE_END);
end mark:= MARK (NONE);
rendition := REVERSE;

The following lines
create a range that
shrinks and grows and
a range that defines
the limits of the dynamic
range.

remernbered_range := CREATE RANGE (start mark, end mark, NONE);
dynamic_range := CREATE_RANGE (start_mark, end_mark, rendition);

direction := l;

LOOP
UPDATE (CURRENT_WINDOW);

The following lines
shrink and enlarge
the dynamic range.

start mark := move mark (BEGINNING OF (dynamic range), direction);
end_mark := move_mark (END_OF (dynamic_range),-1 - direction);

MODIFY_RANGE (dynamic_range, start_mark, end_mark);

IF start mark> end mark
THEN

EXITIF READ_KEY = CTRL_Z_KEY;
direction:= 0;
IF rendition= REVERSE
THEN

rendition := BOLD;
ELSE

rendition := REVERSE;
ENDIF;
MODIFY RANGE (dynamic_range,

ENDIF;

, , rendition);

IF (start_mark = BEGINNING_OF (remernbered_range)) OR
(end_mark = END_OF (remernbered_range))

THEN
direction := l;

ENDIF;
ENDLOOP;

ENDPROCEDURE;

7-262

These procedures cause the range dynamic_range to shrink to one
character, then grow until it becomes as large as the range remembered_
range.

)

\
./

C ' I

El

(_·

VAXTPU Built-In Procedures
MODIFY _RANGE

PROCEDURE line_up_characters (text_range, lined_chars_pat)

LOCAL
range_start,
range_end,
temp_range,
max_cols;

range_end := END OF (te~t_range);

range_start := BEGINNING OF (text_range);

max cols := 0;
LOOP

These statements store
the ends of the range
containing the text operated on.

The following statements
locate the portions of
text that match the pattern
and determine which is
furthest to the right.

temp_range := SEARCH_QUIETLY (lined_chars_pat, REVERSE, EXACT, text_range);
EXITIF temp_range = 0;
POSITION (temp_range);
IF GET_INFO (MARK (NONE), "offset_column") > max_cols
THEN

max cols := GET INFO (MARK (NONE), "offset_column");
ENDIF;
MOVE HORIZONTAL (-1);
MODIFY RANGE (text_range, BEGINNING OF (text_range), MARK (NONE));

ENDLOOP;

text_range := CREATE_RANGE (range_start, range_end);

The following lines
locate matches to the
pattern and align them
with the rightmost
piece of matching text.

LOOP
temp_range := SEARCH_QUIETLY (lined_chars_pat, FORWARD, EXACT, text_range);
EXITIF temp_range = 0;
POSITION (temp_range);
IF GET_INFO (MARK (NONE), "offset_column") < max_cols
THEN

COPY_TEXT (" "* (max_cols - GET INFO (MARK (NONE), "offset_column")));
ENDIF;
MOVE_HORIZONTAL (1);
MODIFY_RANGE (text_range, END OF (text_range), MARK (NONE));

ENDLOOP;

! Restore the range to its original state, plus a reverse attribute.

text_range := CREATE RANGE (range_start, range_end, REVERSE);

ENDPROCEDURE;

This line
restores the
range to its
original state
and displays
the contents
in reverse video.

7-263

VAXTPU Built-In Procedures
MODIFY _RANGE

7-264

This procedure aligns text that conforms to the pattern specified in the
second parameter. For example, if you want to align all comments in a
piece of VAX.TPU code, you would pass as the second parameter a pattern
defined as an exclamation 1>oint followed by an arbitrary amount of text or
whitespace and terminated by a line end.

The procedure is passed a range of text. As the procedure searches the
range to identify the rightmost piece of text that matches the pattern,
the procedure modifies the range to exclude any matching text. Next, the
procedure searches the original range again and inserts padding spaces
in front of each instance of matching text, making the text align with the
rightmost instance of matching text. ,

.I

r u
VAXTPU Built-In Procedures

MOVE_HORIZONTAL

MOVE HORIZONTAL

FORMAT

Changes the editing point in the current buffer by the number of characters
you specify.

MOVE_HORIZONTA~ (integer)

PARAMETERS integer
The signed integer value that indicates the number of characters the
editing point should be moved. A positive integer specifies movement
toward the end of the buffer. A negative integer specifies movement
toward the beginning of the buffer.

VAXTPU does not count the column where the editing point is located
when determining where to establish the new editing point. VAXTPU does
count the end-of-line (the column after the last text character on the line)
when determining where to establish the nl:!w editing point.

DESCRIPTION The horizontal adjustment of the editing point is tied to text. MOVE_
HORIZONTAL crosses line boundaries to adjust the current character
position.

SIGNALED
ERRORS

You cannot see the adjustment caused by MOVE_HORIZONTAL unless
the current buffer is mapped to a visible window. If it is, VAXTPU scrolls
text in the window, if necessary, so that the editing point you establish
with MOVE_HORIZONTAL is within the scrolling limits set for the
window.

If you try to move past the beginning or the end of a buffer, VAXTPU
displays a warning message.

Using MOVE_HORIZONTAL may cause VAXTPU to insert padding
spaces or blank lines in the buffer. MOVE_HORIZONTAL causes-the
screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. (For more information on
the distinction between the cursor position and the editing point, see
Chapter 6.) If the cursor is not located on a character (that is, if the cursor
is before the beginning of a line, beyond the end of a line, in the middle of
a tab, or below the end of the buffer), VAXTPU inserts padding spaces or
blank lines into the buffer to fill the space between the cursor position and
the nearest text.

TPU$_ TOO FEW

TPU$_ TOOMANY

ERROR

ERROR

MOVE_HORIZONTAL requires
one parameter.

You specified more than one
parameter.

7-265

VAXTPU Built-In Procedures
MOVE_HORIZONTAL

EXAMPLES
0 MOVE_HORIZONTAL (+5)

TPU$_1NVPARAM

TPU$_NOCURRENTBUF

TPU$_ENDOFBUF

TPU$_BEGOFBUF

ERROR The specified parameter has the
wrong type.

WARNING You are not positioned in a buffer.

'. WARNING You are trying to move forward
past the last character of the
buffer.

WARNING You are trying to move in reverse
past the first character of the
buffer.

This statement moves the editing point five characters toward the end of
the current buffer.

I PROCEDURE user_rnove_by_lines

IF CURRENT DIRECTION= FORWARD
THEN

MOVE_VERTICAL (8)
ELSE

MOVE_VERTICAL(- 8)
ENDIF;
MOVE HORIZONTAL (-CURRENT_OFFSET);

END PROCEDURE

7-266

This procedure moves the editing point by sections that are eight lines
long, and uses MOVE_HORIZONTAL to put the editing point at the
beginning of the line.

u

MOVE TEXT

FORMAT

VAXTPU Built-In Procedures
MOVE_TEXT

Depending on the mode of the current buffer, moves the text you specify and
inserts or overwrites it in the current buffer. When you move text with range
and buffer parameters, you remove it from its original location. For information
on how to copy text instead of removing it, see the description of the COPY_
TEXT built-in.

{

buffer }
[range2 :=)MOVE_ TEXT (ra~ge 1)

strmg

PARAMETERS buffer

return value

The buffer from which text is moved.

range1
The range from which text is moved.

string
A string representing the text you want to move. Text is not removed from
its original location with this argument.

The range where the copied text has been placed.

DESCRIPTION If the current buffer is in insert mode, the text you specify is inserted
before the editing point in the current buffer. If the current buffer is in
overstrike mode, the text you specify replaces text starting at the current
position and continuing for the length of the string, range, or buffer.

Markers and ranges are not moved with the text. If the text of a marker
or a range is moved, the marker or range structure and any video attribute
that you specified for the marker or range are moved to the next closest
character, which is always the character following the marker or range. 'lb
remove the marker or range structure, use the built-in procedure DELETE
or set the variable to which the range is assigned to 0.

MOVE_TEXT is similar to COPY_TEXT. However, MOVE_TEXT erases
the text from its original string, range, or buffer, while COPY_TEXT just
makes a copy of the text and places the copy at the new location.

You cannot add a buffer or a range to itself. If you try to do so, VAXTPU
issues an error message. If you try to insert a range into itself, part of the
range is copied before VAXTPU signals an error. If you try to overstrike a
range into itself, VAXTPU may or may not signal an error.

VAXTPU Built-In Procedures
MOVE_TEXT

Using MOVE_TEXT may cause VAXTPU to insert-padding spaces or blank
lines in the buffer. MOVE_TEXT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

SIGNALED
TPU$_NOCACHE There is not enough memory to

ERRORS
ERROR

allocate a new cache.

TPU$_ TOO FEW ERROR MOVE_ TEXT requires one
argument.

TPU$_TOOMANY ERROR MOVE_ TEXT accepts only one
argument.

TPU$_ARGMISMATCH ERROR The argument to MOVE_ TEXT
must be a buffer, range, or string.

TPU$_NOTMODIFIABLE ERROR· You cannot copy text into an
unmodifiable buffer.

TPU$_MOVETOCOPY WARNING MOVE_ TEXT was able to copy
the text into the current buffer but
could not delete it from the soiace
buffer because the source buffer is
unmodifiable.

EXAMPLES

D MOVE_TEXT (main_buffer)

If you are using insert mode for text entry, this statement causes the
text from main_buffer to be placed in front of the current position in the
current buffer. The text is removed from main_buffer.

I PROCEDURE user_move_text

LOCAL this_mode;

Save mode of current buffer in this mode
this_mode := GET_INFO (CURRENT_BUFFER, "mode");

Set current buffer to insert mode
SET (INSERT, CURRENT_BUFFER);

Move the scratch buffer text to the current buffer
MOVE_TEXT (scratch_buffer);

Reset current buffer to original mode
SET (this_mode,. CURRENT_BUFFER); -

END PROCEDURE

7-268

This procedure puts the text from the scratch buffer before the editing
point in the main buffer. The text in the scratch buffer is removed; no
copy of it is left there.

_)

u

MOVE VERTICAL

VAXTPU Built-In Procedures
MOVE_ VERTICAL

Modifies the editing point in the current buffer by the number of lines you
specify.

FORMAT MOVE_VERTICAL (integer)

PARAMETERS integer
The signed integer value that indicates the number of lines that the
editing point should be moved. A positive integer specifies movement
toward the end of the buffer. A negative integer specifies movement
toward the beginning of the buffer.

DESCRIPTION The adjustment that MOVE_VERTICAL makes is tied to text. VAXTPU
tries to retain the same character offset relative to the beginning of the
line when ·moving vertically. However, if there are tabs in the lines, or the
lines have different margins, the editing point does not necessarily retain
the same column position on the screen.

By default, VAXTPU keeps the cursor at the same offset on each line.
However, since VAXTPU counts a tab as one character regardless of how
wide the tab is, the cursor's column position may vary greatly even though
the offset is the same.

To keep the cursor in approximately the same column on each line, use the
following statement:

SET (COLUMN_MOVE_VERTICAL, ON)

This statement directs VAXTPU to keep the cursor in the same column
unless a tab character makes this impossible. If a tab occupies the column
position, VAXTPU moves the cursor to the beginning of the tab.

You cannot see the adjustment caused by MOVE_ VERTICAL unless the
current buffer is mapped to a visible window. If it is, VAXTPU scrolls text
in the window, if necessary, so that the editing point you establish with
MOVE_ VERTICAL is within the scrolling limits set for the window.

Using MOVE_VERTICAL may cause VAXTPU to insert padding spaces or
blank lines in the buffer. MOVE_ VERTICAL causes the screen manager
to place the editing point at the cursor position if th:e current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank
lines into the buffer to fill the space between the cursor position and the
nearest text.

If you try to move past the beginning or end of a buffer, VAXTPU displays
a warning message.

7-269

VAXTPU Built-In Procedures
MOVE_ VERTICAL

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BEGOFBUF

TPU$_ENDOFBUF

TPU$_NOCURRENTBUF

EXAMPLES

0 MOVE VERTICAL (+5)

ERROR MOVE_ VERTICAL requires at
least one parameter.

ERROR You specified more than one
parameter.

ERROR One or more of the specified
parameters have the wrong type.

WARNING You are trying to move backward
past the first character of the
buffer.

WARNING You are trying to move forward
past the last character of the
buffer.

WARNING You are not positioned in a buffer.

This statement moves the editing point in the current buffer down five
lines toward the end of the buffer.

I PROCEDURE user_move_8_lines

IF CURRENT DIRECTION= FORWARD
THEN

MOVE VERTICAL (8);
ELSE

MOVE VERTICAL (- 8);
ENDIF;
MOVE_HORIZONTAL(- CURRENT_OFFSET);

END PROCEDURE

7-270

This procedure moves the editing point by sections that are eight lines
long.

n

)

)

C

(

u

NOTANV

FORMAT

VAXTPU Built-In Procedures
NOTANY

Returns a pattern that matches a specific number of characters not in the
string, buffer, or range that is used as a parameter.

{

buffer }
pattern :: NOTANY · (ra~ge [, integer1 J)

strmg

PARAMETERS buffer
An expression that evaluates to a buffer. NOTANY matches any character
not in the resulting buffer.

range
An expression that evaluates to a range. NOTANY matches any character
not in the resulting range.

string
An expression that evaluates to a string. NOTANY matches any character
not in the resulting string.

integer1
This integer value indicates how many contiguous characters NOTANY
matches. The default value for this integer is 1.

return value A pattern that matches characters not in the string, buffer, or range used
as a parameter.

DESCRIPTION NOTANY returns a pattern that matches one or more contiguous
characters. NOTANY only matches characters that do not appear in the
string, range, or buffer used as the first parameter. The second parameter
determines the number of characters NOTANY must match. NOTANY
does not match across line breaks.

SIGNALED
ERRORS

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_TOOMANY

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

NOTANY must appear in the
right-hand side of an assignment
statement.

NOTANY requires at least one
argument.

NOTANY accepts no more than
two arguments.

NOTANY was given an argument
of the wrong type.

7-271

VAXTPU Built-In Procedures
NOTANY

TPU$_1NVPARAM

TPU$_MINVALUE

TPU$_CONTROLC

ERROR

WARNING

ERROR

NOTANY was given an argument
of the wrong type. ·

NOTANY was given an argument
less than the minimum value. ·

You pressed CTRUC during the
execution of NOTANY.

EXAMPLES
D patl := NOTANY ("XYZ")

il

m

This assignment statement creates a pattern that matches the first
character that is not an X, a Y, or a Z. The match fails if no character
other than X, Y, or Z is found.

patl := notany ("ABC", 2)

This assignment statement creates a pattern that matches two characters,
neither of which can be an A, a B, or a C.

a buf := CREATE BUFFER ("new buffer");
POSITION (a_buf);
COPY_TEXT ("xy");
SPLIT_LINE;
COPY_TEXT ("abc");
patl := NOTANY (a_buf);

These VAXTPU statements create a pattern that matches any single·
character other than one of the characters a, b, c, x, and y.

The following procedure returns a marker pointing to
the next nonalphabetic character or the integer zero
if there are no more nonalphabetic characters. You
call the procedure in the following way:

non_alpha_marker := user_search_for_nonalpha;

PROCEDURE user_search_for_nonalpha

LOCAL pat,
first_non_alpha;

pat := NOTANY ("abcdefghijklmnopqrstuvwxyz");

first_non_alpha := SEARCH_QUIETLY (pat, FORWARD, NO_EXACT);

IF first_non_alpha <> 0
THEN

first_non_alpha := BEGINNING_OF (first_non_alpha);
ENDIF;

RETURN first_non_alpha;
ENDPROCEDURE

This procedure starts at the current location and looks for· the first
nonalphabetic, nonlowercase character. The variable non_alpha_range
stores the character that matches these conditions.

7-272

(

VAXTPU Built-In Procedures
PAGE_BREAK

PAGE BREAK

Specifies the form-feed character, ASCll(12), as a portion of a pattern to be
matched.

FORMAT PAGE_BREAK

PARAMETERS None. ·

DESCRIPTION PAGE_BREAK matches the next form-feed character. This character has
an ASCII value of 12.

SIGNALED
ERROR

EXAMPLE

Although PAGE_BREAK behaves much like a built-in, it is actually a
keyword.

If the form-feed character is the only character on a line, PAGE_BREAK
matches the whole line. If the form-feed character is not the only character
on a line, PAGE_BREAK matches only the form-feed character.

PAGE_BREAK is a keyword and has no completion codes.

PROCEDURE user_next_page

LOCAL next_page;

next_page := SEARCH_QUIETLY (PAGE_BREAK, FORWARD);
IF next_page <> 0
THEN

POSITION (next_page);
ELSE

POSITION (end_of (ourrent_buffer));
ENDIF;

ENDPROCEDORE

This procedure places the cursor on the next page in the current buffer. If
you are already on the last page of a document, it places the cursor at the
end of that document.

7-273

VAXTPU Built-In Procedures
POSITION

POSITION

FORMAT

PARAMETERS

7-274

lies the editing point to a specific character in a specific buffer, and moves
the editing point to a specified record in the current buffer. The character
and buffer in which POSITION establishes the editing point depend on which
parameter you pass to POSITION.

buffer
integer
LINE_BEGIN
L/NE_END

POSITION (marker)
MOUSE
range
TEXT
window

buffer
The buffer in which you want to establish the editing point.

VAXTPU maintains an editing point in each buffer even when the buffer
is not the current buffer. When you position to a buffer, the editing point
that VAXTPU maintains-becomes the active editing point. The locat_ion at
which POSITION establishes the editing point is the last character that
the cursor was on when the buffer was most recently current.

integer
The number of the record where you want VAXTPU to position the editing
point.

A record number indicates 'the location of a record in a buffer. Record
numbers are dynamic; as you add or delete records, VAXTPU changes
the number associated with a particular record, as appropriate. VAXTPU
counts each record in a buffer, regardless of whether the line is visible in a
window, or whether the record contains text.

To position the editing. point to a given record, specify the record number.
The number can be in the range from 1 to the number of records in the
buffer plus 1. For example, the following statement positions the editing
point to record number 8 in the current buffer:

POSITION (8);

VAXTPU places the editing point on the first character of the record.

Specifying a value of O has no effect. Specifying a negative number or a
number greater than the number of records in the buffer plus 1 causes
VAXTPU to signal an error.

LINE_BEGIN
A keyword directing VAXTPU to establish the editing point at the
beginning of the current line.

(

LINE END

VAXTPU Built-In Procedures
POSITION

A keyword directing VAXTPU to establish the editing point at the end of
the current line.

marker
The marker to which you want to tie the editing point. You can position
either to a bound marker or a free marker. (For more information on the
distinction between bound and free markers, see Chapter 2.) Positioning
to a free marker does not cause VAXTPU to insert padding blanks between
the nearest text and the free marker; such positioning establishes the ·
editing point as free. (For more information on the distinction between
free and detached editing points, see Chapter 6.)

MOUSE
A keyword directing VAXTPU to associate the editing point with the
location of the pointer cursor.

In DECwindows VAXTPU, you can use the statement POSITION
(MOUSE) at any point after the first keyboard or mouse button event.
The statement positions the editing point to the location occupied by the
pointer cursor at the time of the most recent keyboard or mouse-button
event.

If the pointer cursor is on a window's status line when POSITION
(MOUSE) is executed, VAXTPU positions the editing point at the line
just above the status line.

If the pointer cursor is not located in a VAXTPU window at the time of
the most recent keyboard or mouse-button event, POSITION (MOUSE)
returns the status TPU$_NOWINDOW.

In non-DECwindows VAXTPU, POSITION (MOUSE) is only valid during
a procedure that is executed as the result of a mouse click. At all other
times, the mouse position is not updated.

The statement POSITION (MOUSE) makes the window in which the
pointer cursor is located the current window, and the buffer in which the
pointer cursor is located the current buffer.

range
The range in which you want to place the editing point. The editing point
is established at the beginning of the range. 'lb establish the editing point
at the end of the range, use the statement POSITION (END_OF (range)).

TEXT
A keyword indicating that if the editing point is at a free-cursor location
(a portion of the screen where there is no text), the POSITION built-in
is to establish the editing point at the nearest location that has a text
character in it. The character may be a space or an end of line. If you use
POSITION (TEXT) when the editing point is already bound to a character,
the built-in has no effect.

window
· The window in which you want to establish the editing point. The window
must be mapped to the screen.

7-275

VAXTPU Built-In Procedures
POSITION

The location at which POSITION establishes the editing point is the last
character that the cursor was on when the window was most recently
current. If that character has been deleted, the editing point is the
character closest to the last character that the cursor was on when the
window was current.

Positioning to a window causes the buffer associated with the window
to become the current buffer. This is true whether you directly position
to a window, or a new window is mapped as the result of a POSITION
(MOUSE) statement.

DESCRIPTION The editing point is the location in the current buffer where most editing
operations are carried out. VAXTPU maintains a marker pointing to an
editing point in each buffer, but only the editing point in the current buffer ,

SIGNALED
ERRORS

7-276

is active. An editing point, whose location is always tied to a character /
in a buffer, is not necessarily the same as the cursor position, whose
location is always tied to a position in a window. For more information
on the distinction between the editing point and the cursor position, see
Chapter 6.

The POSITION built-in synchronizes the editing point and the cursor
position if the current buffer is mapped to a visible window. POSITION
also moves the editing point to the the specified record in the current
buffer.

When you pass the keyword MOUSE to POSITION, the built-in
establishes the mouse pointer's location as the cursor position. POSITION
also establishes the window in which the mouse pointer is located as the
current window, and establishes the buffer mapped to that window as the
current buffer.

Positioning to a buffer, a marker, or a range does not necessarily move
the cursor. VAXTPU does not change the cursor position unless the cursor
is in a window that is mapped to the buffer specified or implied by the
POSITION parameter. For example, if you use POSITION to establish
the editing point in a buffer that is not mapped to a window, the cursor is
unaffected by the POSITION operation. If you want to do visible editing,
you should position to a window rather than a buffer.

If you try to position ·to an invisible window, VAXTPU issues a warning
message.

For more information on the relationship between the editing point and
the cursor position, see Chapter 6.

TPU$_ TOOFEW

TPU$_ TOO MANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

POSITION requires one
parameter.

You specified more than one
parameter.

One or more of the specified
parameters have the wrong type.

0

/

0

(
\

(_U

TPU$_ARGMISMATCH

TPU$_8ADKEY

TPU$_UNKKEYWORD

TPU$_8ADVALUE

.
TPU$_MOUSEINV

TPU$_NOWINDOW

TPU$_WINDNOTMAPPED

TPU$_WINDNOTVIS

VAXTPU Built-In Procedures
POSITION

ERROR

WARNING

ERROR

ERROR

WARNING

WARNING

Wrong type of data sent to the
built-in.

You have specified an invalid
keyword.

You specified an unknown
keyword.

You specified a record number
less than O or greater than the
length of the buffer plus 1 .

The mouse position is not currently
valid.

The pointer cursor was not located
in a VAXTPU window at the time
of the most recent keyboard or
mouse-button event.

WARNING Window is not mapped to the
screen.

WARNING Window is totally occluded.

EXAMPLES

B POSITION (message_window)

This statement establishes the editing point in the message window. Your
position in the window is the same character position you occupied when
you were last positioned in the window.

user mark:= MARK(NONE);
POSITION (user_mark)

These statements establish the editing point at the marker associated with
the variable user _mark.

PROCEDURE user_change_windows

IF CURRENT_WINDOW = main_window
THEN

POSITION (extra_window);
ELSE

POSITION (main_window);
ENDIF;

END PROCEDURE

This procedure toggles the· active editing point between two windows.

1-2n

VAXTPU Built-In Procedures
QUIT

QUIT

Leaves the editor without writing to a file.

FORMAT QUIT [({ g~F } /, severity]/)]/

PARAMETERS ON
A keyword indicating that VAXTPU should prompt to find out if the user -·,
really wants to quit with modified buffers. This is the default value.)

OFF
A keyword indicating that VAXTPU should quit without asking the user
whether to quit with modified buffers.

severity
If present, the least significant two bits of this integer are used as the
severity of the status VAXTPU returns to whatever invoked it.

Value Severity

0 Warning

1 Success

2 Error

3 Informational

It is not possible to force VAXTPU to return a fatal severity status.

DESCRIPTION If you modify any buffers that are not set to NO_ WRITE and you do
not specify OFF as the first parameter to the QUIT built-in procedure,
VAXTPU tells you that you have modified buffers and asks whether you
want to quit. Enter Y (Yes) if you want to quit without writing out any
modified buffers. Enter N (No) if you want to retain the modifications
you have made and return to the editor. If you specify OFF as the first
parameter to QUIT, VAXTPU quits without informing you that you have
modified buffers. All modifications are lost because VAXTPU does not
write out buffers when quitting.

7-278

Use the EXIT built-in procedure when you have made changes and want
to save them when you leave the editor. (For more information, see the
description of EXIT.)

Normally, when VAXTPU quits it returns a status ofTPU$_QUITTING to
whatever invoked it. This is a success status.

This feature is useful if you are using.VAXTPU to create an application
in which quitting, especially before the end of a series of statements
executing in batch mode, is an error.

I
\

VAXTPU Built-In Procedures
QUIT

A special use of the built-in procedure QUIT is at the end of your section
file when you are compiling it for the first time. See Chapter 4° for
information on creating section files.

SIGNALED
ERRORS

TPU$_CANCELQUIT WARNING "NO" response was received
from" . . . continue quitting?"
prompt.

TPU$_TOOMANY

TPU$_1NVPARAM

TPU$_8ADKEY

ERROR QUIT accepts no more than two
arguments.

ERROR One of the arguments to QUIT has
the wrong data type.

WARNING QUIT accepts only the keywords
ON and OFF.

EXAMPLES

D QUIT;

This returns control of execution from an editor layered on VAXTPU to
the program, application, or operating system that called VAXTPU. If you
have modified any buffers, you see the following prompt:

Buffer modifications will not be saved, continue quitting (Y or N)?

QUIT (OFF)

Enter Yes if you want to quit and not save the modifications. Enter No if
you want to return to the editor.

This returns control of execution from an editor layered on VAXTPU to the
program, application, or operating system that called VAXTPU. VAXTPU
does not alert you if you have modified buffers. All modifications since the
last time you wrote out the buffer are discarded.

PROCEDURE user_quit

SET (SUCCESS, OFF);
QUIT;

Turn message back on in case user answers "No" to the
prompt "Buffer modifications will not be saved, continue
quitting (Y or N)?"

SET° (SUCCESS, ON);
END PROCEDURE

This procedure turns off the display of the success message, "Editor
successfully quitting'', when you use the built-in procedure QUir to leave
an editing interface.

VAXTPU Built-In Procedures
READ_CHAR

READ CHAR

Stores the next character entered frcm ~he keyboard in a string variable.

FORMAT string== READ_CHAR

PARAMETERS None.

return value A variable of type string containing a character entered from the keyboard.

DESCRIPTION The character read by READ_CHAR is not echoed on the screen; therefore,
the cursor position does not move.

SIGNALED
ERRORS

EXAMPLES

READ_CHAR does not process escape sequences. If a VAXTPU procedure
uses READ_CHAR for an escape sequence, only part of the escape
sequence is read. The remaining part of the escape sequence is treated
as text characters. If control then returns to VAXTPU, or a READ_
KEY or READ_LINE built-in procedure is executed, the results may be
unpredictable.

If you invoke VAXTPU with the /NODISPLAY qualifier, do not use READ_
CHAR during the session. READ_CHAR causes VAXTPU to abort when
VAXTPU is running in NODISPLAY mode.

TPU$_NOCHARREAD

TPU$_NEEDTOASSIGN

TPU$_ TOOMANY •

WARNING READ_CHAR did not read a
character.

ERROR READ_CHAR must be on the
right-hand side of an assignment
statement.

ERROR READ_CHAR takes no arguments.

0 new char : = READ CHAR

7-280

This assignment statement stores the next character that is entered on
the keyboard in the string new_char.

·)

(

, I •

((J_)

VAXTPU Built-In Procedures
READ_CHAR

PROCEDURE user_quote
COPY_TEXT (READ_CHAR);

ENDPROCEDURE

This procedure enters the next character that is entered from the keyboard
in the current buffer. If a key that sends an escape sequence is pressed,
the first character of the escape sequence is copied into the buffer.
Subsequent keystrokes are interpreted as self-inserting characters, defined
keys, or undefined keys, as appropriate.

7-281

VAXTPU Built-In Procedures
READ_ CLIPBOARD

READ CLIPBOARD

FORMAT

Reads string format data from the clipboard and copies it into the current
buffer, at the editing point, using the buffer's current text mode (insert or
overstrike).

[
range]
UNSPECIFIED :: REA0_CLIPBOARD

return value A range containing the text copied into the current buffer, or an
unspecified data type indicating that no data was obtained from the
clipboard. ·

DESCRIPTION If VAXTPU finds a line-feed character in the data, it removes the line feed
and any adjacent carriage returns and puts the data after the line feed on
the next line of the buffer. If VAXTPU must truncate the data from the
clipboard, VAXTPU copies the truncated text into the current buffer.

SIGNALED
ERRORS

7-282

All text read from the clipboard is copied into the buffer starting at the
editing point. If VAXTPU must start a new line to fit all the text into the
buffer, the new line starts at column 1, even if the current left margin is
not set at column 1.

TPU$_CLIPBOARDLOCKED WARNING VAXTPU cannot read from the
clipboard because some other
application has locked it.

TPU$_CLIPBOARDNODATA WARNING. There is no string format data in
the clipboard.

TPU$_CLIPBOARDFAIL WARNING The clipboard has not returned
any data.

TPU$_REOSDECW ERROR You can use the READ_
CLIPBOARD built-in only if you
are using DECwindows TPU.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65,535
characters.

TPU$_ TOOMANY ERROR Too many arguments passed to
the READ_CLIPBOARD built-in.

)

·1
J

,ry\
J

(
\.

, I -~-, \
' I

EXAMPLE
PROCEDURE eve$$insert_clipboard

ON ERROR
[TPU$_CLIPBOARDNODATA):

eve$message (EVE$ NOINSUSESEL);
eve$learn_abort; -
RETURN (FALSE);

[TPU$ CLIPBOARDLOCKED):
eve$message (EVE$ CLIPBDREADLOCK);
eve$learn_abort; -
RETURN (FALSE);

[TPU$_TRUNCATE):
[OTHERWISE) :

eve$learn_abort;
ENDON_ERROR;

IF eve$test_if~modifiable (CURRENT_BUFFER)
THEN

READ_CLIPBOARD;

RETURN (TRUE);
ENDIF;

eve$learn_abort;
RETURN (FALSE) ;

ENDPROCEDURE;

VAXTPU Built-In Procedures
READ_CLIPBOARD

This statement using
READ CLIPBOARD reads
data-from the clipboard
and copies it into the
current buffer.

This procedure shows one possible way that an application can use the
READ_CLIPBOARD built-in. This procedure is a modified version of the
EVE procedure EVE$$INSERT_CLIPBOARD. You can find the original
version in SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

Procedure EVE$$INSERT_CLIPBOARD fetches the contents of the
clipboard and places them in the current buffer.

VAXTPU Built-In Procedures
READ_FILE

READ FILE

FORMAT

PARAMETER

return value

DESCRIPTION

SIGNALED
ERRORS

7-284

Reads a file and inserts the contents of the file immediately before the current
line in the current buffer. READ_FILE optionally returns a string containing the
file specification of the file read.

(string2 :=) READ_FILE (string1)

string1
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the name of the file you want
to read and include in the current buffer.

A string that is the specification of the file read.

If the current buffer is mapped to a visible window, the READ_FILE built
in causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the buffer.

VAXTPU writes a message indicating how many records (lines) were read.

If you try to read a file containing lines longer than 960 characters,
VAXTPU truncates the line to the :first 960 characters and issues a
warning.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

TPU$_CONTROLC· ERROR The execution of the read
terminated because you pressed
CTRUC.

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_ TOOFEW ERROR READ_FILE requires at least one
parameter.

TPU$_ TOOMANY ERROR READ_FILE accepts no more than
one parameter.

TPU$_1NVPARAM ERROR The parameter to READ_FILE
must be a string.

TPU$_ TRUNCATE WARNING One of the lines in the file was too
long to fit in a VAXTPU buffer.

'
./

n .. ~
··,.a/

(

EXAMPLES

VAXTPU Built-In Procedures
READ_FILE

The following errors, warnings, and messages can be signaled by
VAXTPU's file 1/0 routine. You can provide your own file 1/0 routine
by using VAXTPU's callable interface. If you do so, READ_FILE's
signaled errors, warnings, and messages depend upon what status you
signaled in your file 1/0 routine.

TPU$_OPENIN

TPU$_READERR

TPU$_CLOSEIN

ERROR

ERROR

ERROR

READ_FILE could not open the
file you specified.

READ_FILE did not finish reading
the file because it encountered a
file system error.

READ_FILE did not finish closing
the file because it encountered a
file system error.

D READ FILE ("login. com")

This statement reads the file LOGIN.COM and adds it to your current
buffer.

PROCEDURE user two windows

w := CREATE WINDOW (1, 10, ON);
b := CREATE-BUFFER ("buf2");

MAP (w, b);

READ FILE (READ_LINE ("Enter file name for 2nd window "));

POSITION (BEGINNING_OF (b));

DEFINE KEY ("POSITION (w)", KEY_NAME ("W", SHIFT_KEY));
ENDPROCEDURE

This procedure creates a second window and a second buffer and maps
the window to the screen. The procedure also prompts the user for a file
name to include in the buffer and defines the key sequence SHIFT/W as
the sequence with which to move to the second window. (The default shift
key is PFl.) .

7-285

VAXTPU Built-In Procedures
READ_GLOBAL_SELECT

READ GLOBAL SELECT

FORMAT

Requests information about the specified global selection from the owner of
the global selection. If the owner provides the information, READ_GLOBAL_
SELECT reads it and copies it into the current buffer at the editing point, using
the buffer's current text mode (insert or overstrike). The READ_GLOBAL_
SELECT built-in also puts line breaks in the text copied into the buffer.

-1 { unspecified } == I
range {

PRIMARY }
READ_GLOBAL_SELECT{ SECONDARY ,

selection_name
selection_property_name)

PARAMETERS PRIMARY

return value

A keyword indicating that the application is requesting information about
a property of the primary global selection.

SECONDARY
A keyword indicating that the application is requesting information about
a property of the secondary global selection.

selection name
A string identifying the global selection whose property is the subject of
the application's information request. Specify the selection name as a
string if the layered application needs information about a selection other
than the primary or secondary global selection.

selection_property_name
A string specifying the property whose value the application is requesting.

unspecified A data type indicating that the information requested by the
• application was not available.

range A range containing the text copied into the current buffer.

DESCRIPTION Use READ_GLOBAL_SELECT to ask the application that owns the
specified global selection for information about a property of the global
selection. For example, you can ask about the global selection's font, the
number of lines it contains, or the string-formatted data it contains, if any.

7-286

All text read from the global selection is copied into the current buffer
starting at the editing point. If VAXTPU must start a new line to fit all
the text into the buffer, the new line starts at column 1, even if the current
left margin is not set at column 1.

J
. ./

cO
. .
I

SIGNALED
ERRORS

QJ

EXAMPLE
READ GLOBAL SELECTION - -

VAXTPU Built-In Procedures
READ_GLOBAL_SELECT

If the global selection information requested is an integer, the built-in
converts the integer into a string before copying it into the current buffer.
If the information requested is a string, the built-in copies the string into
the buffer, replacing any line feeds with line breaks. Carriage returns
adjacent to line feeds are not copied into the buffer.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_GBLSELOWNER WARNING VAXTPU owns the global
selection.

TPU$_1NVGBLSELDATA WARNING The global selection owner
provided data that VAXTPU cannot
process.

TPU$_NOGBLSELDATA WARNING The global selection owner has
indicated that it cannot provide the
information requested.

TPU$_NOGBLSELOWNER WARNING You have requested information
about an unowned global
selection.

TPU$_ TIMEOUT WARNING The global selection owner did not
respond before the timeout period
expired.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
READ_GLOBAL_SELECT built-in.

TPU$_REQSDECW ERROR You can use the READ_GLOBAL_
SELECT built-in only if you are
using DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
READ_ GLOBAL_SELECT built-in.

TPU$_ TOO MANY ERROR Too many arguments passed to
the READ_GLOBAi.._SELECT
built-in.

(PRIMARY, "STRING") ;

This statement reads the string-formatted contents of the primary global
selection and copies it into the current buffer at the current location.

For another example of code using the READ_GLOBAL_SELECT built-in,
see Example B-9.

VAXTPU Built-In Procedures
READ_KEY

READ KEY
Waits for you to press a key and then returns the key name for that key.

FORMAT keyword== READ_KEY

PARAMETERS None.

return value A key name for the key just pressed.

DESCRIPTION The READ_KEY built-in procedure should be used rather than READ_
CHAR when you are entering escape sequences, control characters, or
any characters other than text characters. READ_KEY processes escape
sequences and VAXTPU's shift key (PFl by default).

SIGNALED
ERRORS

EXAMPLES

The key that is read by READ_KEY is not echoed on the terminal screen.

If you invoke VAXTPU with the /NODISPLAY qualifier, do not use READ_
KEY during the session. READ_KEY causes VAXTPU to abort when
VAXTPU is running in NODISPLAY mode.

TPU$_NEEDTOASSIGN ERROR READ_KEY must be on the
right-hand side of an assignment
statement.

-
TPU$_ TOOMANY ERROR READ_KEY accepts no

arguments.

TPU$_CONTROLC ERROR You pressed CTRUC during the
execution of READ_KEY.

TPU$_REQUIREST~RM ERROR You cannot use READ_KEY when
VAXTPU is in NODISPLAY mode.

D my_key := READ_KEY

7-288

This assignment statement reads the next key that is entered and stores
the keyword for that key"in the variable my_key.

)

([j

(_

/ i I

.,\,JJ
\

VAXTPU Built-In Procedures
READ_KEY

PROCEDURE user_help_on_key

LOCAL key_pressed;
key_comrnent;

MESSAGE ("Press the key you want help on.");

key_pressed := READ_KEY;
key_comrnent := LOOKUP KEY (key_pressed, COMMENT);

IF key_comrnent = 0
THEN

MESSAGE ("That key is not Gefined.");
ELSE

IF key_comrnent = ""
THEN

MESSAGE ("There is no comment for that key.");
EL.SE

MESSAGE (key_comrnent);
ENDIF;

ENDIF;
END PROCEDURE

This procedure looks in the current key map list for the next key pressed.
If the key is found, any comment associated with that key is put into the
message buffer.

7-289

VAXTPU Built-In Procedures
READ_LINE

READ LINE

FORMAT

Displays the text that you specify as a prompt for input and reads the
information entered in response to the prompt. You can optionally specify
the maximum number of characters to be read. READ_LINE returns a string
that holds the data that is entered in response to the prompt.

string2 == READ_LINE f (string1 [,integer J) J

PARAMETERS string1

return value

A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the text used as a prompt for
input. This parameter is optional.

integer
The integer value that indicates how many characters to read from the
input entered in response to the prompt. The maximum number is 132.
This parameter is optional. If not present, control of execution passes from
READ_LINE to VAXTPU's main loop when the user presses RETURN,
CTRL/Z, or the one hundred thirty-second character.

A string storing the user's response to a prompt.

DESCRIPTION The terminators for READ_LINE are the standard VMS terminators
such as CTRUZ and RETURN. READ_LINE is not affected by VAXTPU
key definitions; the built-in takes literally all keys except standard VMS
terminators.

7-290

By default, the text you specify as a prompt is written in the prompt area
on the screen. The prompt area is established with the built-in procedure
SET (PROMPT_AREA). See SET (PROMPT_AREA) for more information.
If no prompt area is defined, the text specified as a prompt is displayed at
the current location on the device pointed to by SYS$0UTPUT (usually
your terminal).

If READ_LINE terminates because it reaches the limit of characters
specified as the second parameter, the last character read becomes the
last key. Example 2 is a procedure that tests for the last key entered in a
prompt string.

When you invoke VAXTPU with the /NODISPLAY qualifier, terminal
functions such as screen display and key definitions are not used. The
built-in procedure READ_LINE calls the LIB$GET_INPUT routine to
issue a prompt to SYS$INPUT and accept input from the user. A read
done this way does not terminate when the number of keys you specified
as the second parameter (integer) are entered. However, string2 contains
the number of characters specified by the integer parameter and LAST_
KEY contains the value of the key that corresponds to the integer specified
as the last key to be read, except in the following cases. If the read is

\

.J

VAXTPU Built-In Procedures
READ_LINE

terminated by CTRIJZ, LAST_KEY has the value CTRIJZ. If the read
is terminated by a carriage return before the specified integer limit is
reached, LAST_KEY has the value of the RETURN key.

SIGNALED
ERRORS

EXAMPLES

TPU$_NEEDTOASSIGN

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

D my_prompt := READ_LINE ("Enter key definition:", 1)

READ_LINE must appear on the
right-hand side of an assignment
s~atement.

READ_LINE accepts no more than
two arguments.

One of the arguments to READ_
LINE has the wrong data type.

This assignment statement displays the text "Enter key definition:" in the
prompt area, and stores the first character of the user's response in the
variable my _prompt.

PROCEDURE user_test_lastkey

LOCAL my_key,
k;

my_input := READ_LINE ("Enter 3 characters:", 3);

Press the keys "ABC"

my_key := LAST_KEY;
IF my_key = KEY_NAME ("C")
THEN

MESSAGE (" C key ");
ELSE

MESSAGE (" Error ") ;
ENDIF;

END PROCEDURE

This procedure prompts for three characters and stores them in the
variable my _input. It then tests for the last key entered.

S Parameters:

old number
new number
prompt_string
no_value_message

Old integer value - input
New integer value - output
Text of prompt - input
Message printed if user hits RETURN to
get out of the command - input

PROCEDURE user_prompt_number (old number, new number,
prompt_string, no_value_message)

String read after prompt

LOCAL read_line_string;

VAXTPU Built-In Procedures
READ_LINE

new number := old_number;
IF old number< 0

THEN
read line string := READ LINE (prompt string);
EDIT-(read line string, TRIM); -
IF read_line_string = II

THEN

ELSE

MESSAGE (no_value_message);
new_number := 0;
RETURN (0);

Change lowercase 1 to #1
TRANSLATE (read line string, "l", "l");
new number := INT (read line string);

IF (new_number = 0) and (read_line_string <> "0")
THEN

ENDIF;
ELSE

MESSAGE (FAO ("Don't understand !AS",
read_line_string));

RETURN (0);
ELSE

RETURN (l);
ENDIF;

RETURN (l);
ENDIF;

END PROCEDURE

7-292

This procedure is used by commands that prompt for integers. The
procedure returns true if prompting worked or was not needed; it
returns false otherwise. The returned value is passed back as an output
parameter.

REFRESH

FORMAT

VAXTPU Built-In Procedures
REFRESH

Repaints the whole screen. REFRESH erases any extraneous characters,
such as those caused by noise on a communication line, and repositions the
text so that the screen represents the last known state of the editing context.

REFRESH

PARAMETERS None.

DESCRIPTION REFRESH causes a redrawing of every line of every window that is
mapped to the screen. The prompt area is erased. This built-in procedure
causes the screen to change immediately. Even if REFRESH is issued from
within a procedure, the action takes place immediately; VAXTPU does not
wait until the entire procedure is completed to execute REFRESH.

SIGNALED
ERROR

If screen updating is disabled when VAXTPU executes the REFRESH
command, VAXTPU performs the refresh operation when updating is
enabled again.

VAXTPU reissues escape sequences as appropriate to do any of the
following:

• To set the width of the terminal

• To set the scrolling region

• To set the keypad to applications mode

• To set the video attributes to a known state

• To clear the screen of a DIGITAL-supported terminal

• To reset the nonalphanumeric character sets

REFRESH repaints the whole screen. See UPDATE for a description of
how to update a single window to make it reflect the current state of its
associated buffer. If you want to update every visible window without
erasing the screen, use the UPDATE (ALL) built-in.

See Chapter 6 for an explanation of how the screen is updated under
various circumstances.

TPU$_ TOOMANY ERROR REFRESH takes no parameters.

VAXTPU Built-In Procedures
REFRESH

EXAMPLES
D REFRESH

This statement causes the screen manager to repaint the whole screen so
that it reflects the current internal state of the editor.

jg PROCEDURE user_repaint
ERASE (message_buffer);
REFRESH;

END PROCEDURE

7-294

This procedure removes the contents of the message buffer and then
repaints the whole screen.

)

0

.u

REMAIN

VAXTPU Built-In Procedures
REMAIN

Specifies that all characters from the current position to the end of the line
should be included in a pattern.

FORMAT REMAIN

PARAMETERS None.

DESCRIPTION When used as part of a complex pattern or as an argument to SEARCH,
REMAIN matches the rest of the characters on a line. REMAIN matches
successfully everi if there are no more characters on the line.

SIGNALED
ERROR

EXAMPLES

Although REMAIN behaves much like a built-in, it is actually a keyword.

REMAIN is a keyword and has no completion codes.

II patl := LINE BEGIN + "!" + REMAIN

This assignment statement stores in the variable patl a pattern that
matches all lines that have an exclamation point at the beginning of the
line.

PROCEDURE remove comments

LOCAL patl,
here,
comment_range;

here := MARK (NONE); ! Remember our location
patl := "!" + REMAIN;

POSITION (BEGINNING_OF (CURRENT_BUFFER));
LOOP

comment range := SEARCH QUIETLY (patl, FORWARD);
EXITIF comment_range = 0;
ERASE (comment_range);
POSITION (comment_range);

ENDLOOP;

POSITION (here);
ENDPROCEDURE

This procedure removes all comments from the current buffer. It does not
correctly handle quoted strings containing exclamation points.

VAXTPU Built-In Procedures
REMOVE_KEY _MAP

REMOVE KEV MAP

Removes key maps from key map lists.

FORMAT REMOVE_KEV_MAP (string1, string2 l, ALL J)

PARAMETERS string1
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map list containing the key map to be
removed.

string2
A quoted string, or a variable name representing a string constant, that
specifies the name of the key map to be removed from the key map list.

ALL
This keyword is an optional argument. It specifies that all the key maps
with the name specified by string2 in the key map list are to be removed.

DESCRIPTION This built-in procedure removes one or more key maps from a key map
list. If the optional keyword ALL is specified, all of the key maps with the
specified name in the key map list are removed from the list. Otherwise,
only the first entry with the specified name is removed.

SIGNALED
TPU$_NOKEYMAP You specified an argument that is

ERRO~S
WARNING

not a defined key map.

TPU$_NOKEYMAPLIST WARNING You specified an argument that is
not a defined key map list.

TPU$_KEYMAPNOTFND WARNING The key map you specified is not
found.

TPU$_EMPTYKMLIST WARNING The key map list you specified
contains no key maps.

TPU$_ TOOFEW ERROR Too few arguments passed to the
REMOVE_KEY _MAP built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the REMOVE_KEY _MAP built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
REMOVE_KEY _MAP built-in.

7-296

\

) ..

!)
' \

'-c_,/

TPU$_UNKKEYWORD

TPU$_BADKEY

EXAMPLE

VAXTPU Built-In Procedures
REMOVE_KEY _MAP

ERROR

ERROR

An unknown keyword has been
used as an argument. Only the
keyword ALL is allowed.

An unknown keyword has been
used as an argument. Only the
keyword ALL is allowed.

user$keyrnap_l := CREATE KEY MAP ("keyrnap_l");

user$keyrnap_2 := CREATE KEY MAP ("keyrnap_2");

user$keymap_list := CREATE KEY MAP LIST ("keymap list", user$keymap 1,
- - - user$keymap_2); -

ADD KEY MAP (user$keymap_list, "last", user$keymap_l);

SHOW (KEY_MAP_LISTS);

REMOVE_KEY_MAP (user$keymap_list, user$keyrnap_l, ALL);

SHOW (KEY_MAP_LISTS);

In this example, a key map list named KEYMAP _:_usT is created. The call
to SHOW (KEY_MAP _LISTS) shows that the key map list contains three
key maps: KEYMAP _l, KEYMAP _2, and KEYMAP _l again. After the call
to REMOVE_KEY_MAP, the call to SHOW (KEY_MAP_LISTS) shows that
the key map list contains only KEYMAP _2.

VAXTPU Built-In Procedures
RETURN

RETURN

FORMAT

A VAXTPU language element. It returns control from the current pro~edure to
its caller,· optionally specifying the value the current procedure returns to the
caller.

RETURN /[expression J
RETURN is a VAXTPU language element. It does not take parameters.
However, it is optionally followed by a VAXTPU expression.

PARAMETERS expression

DESCRIPTION

SIGNALED
ERROR
EXAMPLES

This expression may be any VAXTPU expression, variable, or built-in. It
specifies what the current procedure should return to its caller.

The RETURN statement returns control from the current procedure to its
caller. It also provides a value for the current routine~

RETURN is evaluated for correct syntax at compile time. In contrast,
VAXTPU procedures are usually evaluated for a correct parameter count
and parameter types at execution time.

RETURN is a language element and signals no errors or warnings.

D PROCEDURE user_erase_message_buffer
IF CURRENT_BUFFER = message_buffer
THEN

RETURN;
ENDIF;

ERASE (message_buffer);
END PROCEDURE

This procedure erases the message buffer. If the current buffer is the
message buffer, it returns without erasing it.

S PROCEDURE user_find_string (look_for)
ON_ERROR

RETURN "String not found";
ENDON_ERROR;

RETURN SEARCH (look_for, FORWARD);
END PROCEDURE

7-298

This procedure searches for a string. If it does not find the string, it
returns the string String not found. 0$erwise, it returns the range
containing the found string.

(

C

SAVE

FORMAT

VAXTPU Built-In Procedures
SAVE

Writes the binary forms of all currently defined procedures, variables, key
definitions, key maps, and key map lists to the section file you specify.

SAVE (string1 ff, "NO_DEBUG_NAMES"JJ

ff, "NO_PROCEDURE_NAMES"JJ

II, "/DENT'', string2JI)

PARAMETERS string1

DESCRIPTION

A string that is a valid VMS file specification. If you supply only a file
name, VAXTPU uses the current device and directory, not necessarily the
SYS$LOGIN device and directory, in the file specification.

"NO_DEBUG_NAMES"
A string that prevents VAXTPU from writing debugging information to
the section file. When you use "NO_DEBUG_NAMES", VAXTPU does not
write procedure parameter names or local variable names. You can reduce
the size of the section file by specifying this string. Do not specify this
string if you intend to use the VAXTPU debugger on the section file.

"NO_PROCEDURE_NAMES"
A string, or a variable or constant name representing this string, that
prevents VAXTPU from writing procedure names to the section file. You
can reduce the size of the section file by specifying this string. However,
the procedure names are required to display a meaningful traceback when
an error occurs. Therefore, do not specify this string if you want to use
the application created by the section file with the TRACEBACK or LINE_
NUMBER function set to ON.

"/DENT"
A string specifying that you want to assign an identifying string, such as a
version number, to the section file.

string2
The string (usually a version number) that you want to assign to the
section file.

SAVE is used to create VAXTPU section files. If you are adding to an
existing section file, the new section file contains all of the items from the
original section file and the new items from the current editing session.
Section files enable VAXTPU interfaces to start up quickly because they
contain the following items in binary form:

• All compiled PROCEDURE ... ENDPROCEDURE statements

• Every variable created (only the variable's name is saved, not its
contents)

7-299

VAXTPU Built-In Procedures
SAVE

SIGNALED
ERRORS

7-300

• Every key definition that binds a statement, procedure, program, or
learn sequence to a key, including the comments that you add to key
definitions

• Every key map and key map list created

• All defined constants

When you use the built-in procedure SAVE during an editing session to
add items to an existing section file, SAVE does not keep items that were
established interactively with the built-in procedure SET (for example,
margin settings for buffers, or setting the editor's shift key to something
other than the PFl key).

If you do not specify a device and directory in the string parameter,
VAXTPU uses your current device and directory.

The default file type is TPU$SECTION.

When you use the built-in procedure SAVE, informational messages are
generated for any undefined procedures or ambiguous symbols as they are
written to the section file. If the display of informational messages has
been disabled, these messages are not displayed.

TPU$_SAVEERROR

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_SECTUNDEFPROC

TPU$_BADSYMTAB

TPU$_SAVEUNDEFPROC

TPU$_SAVEAMBIGSYM

ERROR

ERROR

ERROR

ERROR

WARNING

ERROR

INFORMATIONAL

INFORMATIONAL

The section cannot be
created because of
errors in the pontext
being saved.

Too few arguments
passed to the SAVE
built-in.

Too many arguments
passed to the SAVE
built-in.

Wrong type of data sent
to the SAVE built-in.

Undefined procedures
or ambiguous symbols
were foun9 while the
section file was being
written.

VAXTPU's symbol
tables are inconsistent.

An undefined procedure
is being written to the
section file.

An ambiguous symbol
is being written to the
section file.

. ./

EXAMPLES

VAXTPU Built-In Procedures
SAVE

D SAVE ("SYS$LOGIN:mysection.TPU$SECTION")

This statement, issued just before exiting from the editor, adds all of the
procedure definitions, key definitions, and variables from your current
editing session to the section file with which you invoked VAXTPU. The
new file that you specify, SYS$LOGIN:mysection.TPU$SECTION, contains
initialization items from the original section file and from your editing
session.

To invoke VAXTPU with the new section file, enter the following command
at the DCL level:

$ EDIT/TPU/SECTION=sys$login:mysection

PROCEDURE eve_next_paragraph

LOCAL patl,
the_range;

patl := LINE_BEGIN + LINE_BEGIN + ARB (1);
the_range := SEARCH_QUIETLY (patl, FORWARD, EXACT);

IF the_range <> 0
THEN

POSITION (END_OF (the_range));
ENDIF;

ENDPROCEDURE;

PROCEDURE tpu$local init
SET (SHIFT_KEY, KPO);
DEFINE_KEY ("eve_next_paragraph", PERIOD, "Next Para");

END PROCEDURE

SAVE ("my_section", "ident", "Vl.5");
QUIT;

These procedures and statements show how SAVE can be used in a
command file to extend an application. The first procedure moves the
cursor to the beginning of the next paragraph. The second procedure
defines a shift key and binds the procedure eve_next...J)aragraph to the
period key on the keypad. The SAVE statement directs VAXTPU to
write the binary form of eve_next...J)aragraph and the key definition to a
section file called MY_SECTION.TPU$SECTION. The second and third
parameters to the SAVE statement direct VAXTPU to assign the string
"Vl.5" to the section file. The QUIT statement terminates the VAXTPU
session.

7-301

VAXTPU Built-In Procedures
SCAN

SCAN

FORMAT

Returns a pattern that matches only characters that do not appear in the
string, buffer, or range used as its parameter. SCAN matches as many
characters as possible.

{

buffer }
pattern := SCAN (ra~ge)

stnng

PARAMETERS buffer

return value

An expression that evaluates to a buffer. SCAN does not match any of the
characters that appear in the buffer.

range
An expression that evaluates to a range. SCAN does not match any of the
characters that appear in the range.

string
An expression that evaluates to a string. SCAN does not match any of the
characters that appear in the string. ·

A pattern matching only characters that do not appear in the buffer,
range, or string used as the parameter.

DESCRIPTION SCAN matches one or more characters, none of which appear in the

SIGNALED
ERRORS

7-302

string, buffer, or range passed as its parameter. SCAN matches as many '\
characters as possible, stopping only if it finds a character that is present)
in its parameter or if it reaches the end of a line. If SCAN is part of a
larger pattern, SCAN does not match a character if doing so prevents the
rest of the pattern ~om matching.

SCAN does not cross line boundaries. To match a string of characters that
may cross one or more line boundaries, use SCANL.

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TO,OMANY

ERROR

ERROR

ERROR

SCAN must appear in the right
hand side of an assignment
statement.
SCAN requires at least one
argument.
SCAN accepts no more than one
argument.

EXAMPLES
II patl := SCAN ("abc")

TPU$_ARGMISMATCH

TPU$_CONTROLC

VAXTPU Built-In Procedures
SCAN

ERROR

ERROR

SCAN was given an argument of
the wrong type.

You pressed CTRUC during the
execution of SCAN.

This assignment statement stores a pattern that matches the longest
string of characters that does not contain a, b, or c inpatl.

PROCEDURE user_find_parens

paren_text
found_range

: = ANY (II (,) + SCAN (')II) ;

:= SEARCH (paren_text, FORWARD, NO_EXACT);

IF found_range = 0 ! No parentheses.
THEN

MESSAGE ("No parentheses found.");
ELSE

POSITION (found_range);
ENDIF;

END PROCEDURE

This procedure identifies parenthesized text within a single line. It moves
the editing point to the beginning of the parenthesized text, if it is found.

PROCEDURE user_rernove odd_characters
LOCAL patl,

odd_text;

patl := SCAN ("abcdefghijklrnnopqrstuvwxyz 0123456789");
POSITION (BEGINNING_OF (CURRENT_BUFFER));
LOOP

odd text := SEARCH QUIETLY (patl, FORWARD);
EXITIF odd_text = O;
ERASE (odd_text);
POSITION (odd_text);

ENDLOOP;
POSITION (END_OF (CURRENT_BUFFER));

END PROCEDURE

This procedure goes through the current file, deleting all characters that
are not numbers, letters, or spaces.

7-303

VAXTPU Built-In Procedures
SCANL

- SCANL

FORMAT

Returns a pattern matching a string of characters, including line breaks, none
of which appear in the buffer, range, or string used as its parameter. The
returned pattern contains as many characters and line breaks as possible.

{

buffer }
pattern.== SCANL (ra~ge)

stnng

PARAMETERS buffer

return value

An expression that evaluates to a buffer. SCANL does not match any of
the characters that appear in the buffer.

range
An expression that evaluates to a range. SCANL does not match any of
the characters that appear in the range.

string
An expression that evaluates to a string. SCANL does not match any of
the characters that appear in the string.

A pattern that may contain line breaks and that matches only characters
that do not appear in the buff er, range, or string used as the parameter.

DESCRIPTION SCANL is similar to SCAN in that it matches one or more characters that

\
__ _)

j

do not appear in the string, buffer, or range used as its parameter. Unlike \

SIGNALED
ERRORS

7-304

SCAN, however, SCANL does not stop matching when it reaches the end)
of a line. Rather, it successfully matches the line end and continues trying
to match characters on the next line. If SCANL is part of a larger pattern,
it does not match a character or line boundary if doing so prevents the rest
of the pattern from· matching.

SCANL must match at least one character.

TPU$_NEEDTOASSIGN ERROR SCANL must appear in the right
hand side of an assignment
statement.

SCANL requires at least one
argument.

TPU$_ TOOFEW

TPU$_ TOOMANY

ERROR

ERROR SCANL requires no more than one ,fT'h
·,_, 1 __ .J y. argument.

0

(
'

TPU$_ARGMISMATCH

TPU$_CONTROLC

VAXTPU Built-In Procedures
SCANL

ERROR

ERROR

Argument to SCANL has the
wrong type.

You pressed CTRUC during the
execution of SCANL.

EXAMPLES

D sentence_pattern := any ("ABCDEFGHIJKLMNOPQRSTUVWXYZ") + scanl (".!?);

This assignment statement creates a pattern that matches a sentence. It
assumes that a sentence ends in one of the following characters: a period
(.), an exclamation point (!), or a question mark (?). The matched text
does not include the punctuation mark ending the sentence.

PROCEDURE user_remove_non_numbers
LOCAL patl,

non_number_region;

patl := SCANL ("0123456789");

POSITION (BEGINNING_OF (CURRENT_BUFFER));

LOOP
non number region := SEARCH QUIETLY (patl, FORWARD);
EXITIF non=number_region = O;
ERASE (non number region);
POSITION (non_nurnber_region);

ENDLOOP;

POSITION (BEGINNING_OF (CURRENT~BUFFER));
END PROCEDURE

This procedure goes through the current buffer erasing anything that is
not a number. The only line breaks it leaves in the file are those between
a line ending with a number and one beginning with a number.

7-305

VAXTPU Built-In Procedures
SCROLL

SCROLL

FORMAT

Moves the lines of text in the buffer up or down on the screen by the number
of lines you specify.

(integer2 :=)SCROLL (window /[,integer1 JI)

PARAMETERS window

return value

DESCRIPTION

7-306

The window associated with the buffer whose text you want to scroll.

integer1
The signed integer value that indicates how many lines you want the text
to scroll. If you supply a negative value for the second parameter, the
lines of text scroll off the top of the screen, leaving the cursor closer to
the beginning of the buffer. If you supply a positive value for the second
parameter, the lines of text scroll off the bottom of the screen, leaving· the
cursor closer to the end of the buffer. If you specify O as the integer value,
no scrolling occurs.

This parameter is optional. If you omit the second parameter, the text
scrolls continuously until it reaches a buffer boundary or until you press
a key. If the current direction of the buffer is forward, the text scrolls
to the end of the buff er. If the current direction of the buffer is reverse,
the text scrolls to the beginning of the buffer. If you press a key that
has commands bound to it, the scrolling stops and VAXTPU executes the
commands bound to the key.

An integer indicating the number and direction of lines actually scrolled
as a result of using SCROLL.

You can scroll text only in a visible window. If the window is not currently
visible on the screen, VAXTPU issues an error message.

During scrolling, the cursor does not move but stays positioned at the
same relative screen location. The current editing point is different from
the editing point that was current before you issued the SCROLL built-in.

SCROLL optionally returns an integer that indicates the number and
direction of lines actually scrolled. If you supply a negative value for the
second parameter, the lines of text scroll off the bottom of the screen,
leaving the cursor closer to the beginning of the buffer. If you supply a
positive value for the second parameter, the lines of text scroll off the top
of the screen, leaving the cursor closer to the end of the buffer. The value
of integer2 may differ from what was specified in integer 1.

Note that SCROLL causes the screen to scroll immediately. It does not
wait to take effect for the completion of a procedure.

If the buffer has been modified or the window display has altered since the
last update, the window is updated before the scrolling operation begins.

j

\

0

(

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
SCROLL

SCROLL does not work in the following cases:

• If you have turned off the screen update flag with SET (SCREEN_
UPDATE, OFF)

• If you used the /NODISPLAY qualifier when invoking VAXTPU on an
unsupported device

• If the window that you specify is not visible on the screen

When the scrolling is complete, the editing point (record and offset) is set
to match the cursor position (screen line and column position).

After the scrolling stops, the cursor may be located to the right of the
last character in the new current record, to the left of the left margin, or
in the middle of a tab. In this instance, any VAXTPU built-in procedure
that requires a record offset (for example, CURRENT_OFFSET, MOVE_
HORIZONTAL, MOVE_ VERTICAL, MARK, and so on) causes the record
to be blank-padded to the cursor location.

If the screen you are using does not have hardware scrolling regions,
the window being scrolled is repainted for each scroll that would have
occurred. For instance, the statement SCROLL (my_window,3) repaints
the window three times.

If you use SCROLL while positioned after the end of the buffer, SCROLL
completes successfully and returns O as the amount scrolled.

TPU$_CONTROLC ERROR You pressed CTRUC to stop
scrolling.

TPU$_WINDNOTMAPPED WARNING You are trying to scroll an
unmapped window.

TPU$_ TOOFEW ERROR SCROLL requires at least one
parameter.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

D SCROLL (main_window, +10)

This statement causes the text of the buffer that is mapped to the main
window to scroll forward 10 lines.

SCROLL (my_window)

This statement causes the text in the buffer that is mapped to my_window
to scroll in the direction that the buffer is set to until it reaches a buffer
boundary or the user presses any key.

VAXTPU Built-In Procedures
SCROLL

i PROCEDURE user_scroll_buffer

LOCAL scrolled_lines;

MESSAGE ("Press any key to stop scrolling ... ");
scrolled_lines := SCROLL (main_window);
dummy_key := READ_KEY;
RETURN scrolled_lines;

ENDPROCEDURE

7-308

This procedure scrolls the main buffer until the user presses a key. The
procedure returns the number of lines scrolled.

. ...
\

j

'~.' I I Ji

SEARCH

FORMAT

VAXTPU Built-In Procedures
SEARCH

Looks for a particular arrangement of characters in a buffer or range and
returns a range that contains those characters.

ANCHOR
LINE_BEGIN
LINE_END

[range2 ==)SEARCH (PAGE_BREAK
pattern
REMAIN
string
UNANCHOR

{ FORWARD } ,, { ~2,A~~CT } r { buffer }l 111
' REVERSE a, . - 1t, range1 JJI

integer

PARAMETERS ANCHOR
A keyword directing SEARCH to start a search at the current character
position. Use this keyword as part of a complex pattern.

LINE_BEGIN
A keyword used to match the beginning of a line.

LINE END
A keyword used to match the end of a line.

PAGE BREAK
A keyword used to match a form-feed character.

pattern
The pattern that you want to match.

REMAIN
A keyword specifying a match starting at the current character and
continuing to the end of the current line.

string
The string that you want to match.

UNANCHOR
A keyword specifying that the next pattern element can match anywhere
after the previous pattern element. Use this keyword as part of a complex
pattern.

For more information on these keywords, refer to the individual
descriptions of them in this chapter.

FORWARD
Indicates a search in the forward direction.

VAXTPU Built-In Procedures
SEARCH

return value

REVERSE
Indicates a search in the reverse direction.

EXACT
Indicates that the characters SEARCH is trying to match must be the
same case and have the same diacritical markings as those in the string
or pattern used as the first parameter to SEARCH.

NO EXACT
Indi~tes that the characters SEARCH is trying to match need not be the
same case nor have the same diacritical markings as those in the string or
pattern used as the first parameter to SEARCH. NO_EXACT is the default
value for the optional third parameter.

integer
Specifies how SEARCH should handle case and diacritical information
if you want to match one attribute and ignore the other. DIGITAL
recommends that you use the defined constants available for specifying
this integer. The defined constants are as follows:

• TPU$K_SEARCH_CASE - Equivalent to the integer 1. This specifies
that the search should match the case of the first parameter but be
insensitive to the diacritical markings of the first parameter.

• TPU$K_SEARCH_DIACRITICAL - Equivalent to the integer 2. This
specifies that the search should match the diacritical markings of the
first parameter but be insensitive to the case of the first parameter.

buffer
The buffer in which to search. SEARCH starts at the beginning of the
buffer when doing a forward search and at the end of the buffer when
doing a reverse search.

range1
The range in which to search. SEARCH starts at the beginning of the
range when doing a forward search and at the end of the range when
doing a reverse search.

To search a range for all occurrences of a pattern, you must define the
range dynamically after each successful match. Otherwise, SEARCH
positions to -the beginning of the range and finds the same occurrence over
and over. See the example section for a procedure that searches for all
occurrences of a pattern in a range.

The range containing characters that match the pattern or string specified
as a parameter.

j

\
• I

J

DESCRIPTION SEARCH looks for text that matches the string, pattern, or keyword
specified as its first parameter. If it finds such text, it creates a range ,m_
containing this text and returns it. If SEARCH does not find a match, .,
SEARCH returns O and signals the error TPU$_STRNOTFOUND. To .:..)
perform a search that does not signal an error when there is no match, use
the SEARCH_QUIETLY built-in.

7-310

(

11 l ·
~i
\.

SIGNALED
ERRORS

VAXTPU Built-In Procedures
SEARCH

The starting position for the search depends on the optional fourth
parameter and the search direction. If you do not specify the fourth
parameter, the search starts at the editing point.

If you specify a range for the fourth parameter, the search starts at the
beginning of the range for a forward search, or the end of the range for
a reverse search. When searching a range, SEARCH matches only text
inside the range. It does not look at text outside the range.

If you specify a buffer for the fourth parameter, the search starts at the
beginning of the buffer for a forward search, or the end of the buffer for a
reverse search.

To determine whether the searched text contains a match, SEARCH
examines the character at the starting position and attempts to match the
character against the pattern, text, or keyword specified. By default, the
search is unanchored. This allows SEARCH to move one character in the
direction of the search if the character at the start position does not match.
SEARCH continues in this manner until it finds a match or reaches the
bounds of the buffer or range.

To prevent SEARCH from moving the starting position in the direction of
the ·search, use the ANCHOR keyword when you define the pattern to be
matched.

SEARCH does not change the current buffer or the editing point in that
buffer.

For more information about searching, see Chapter _2.

TPU$_STRNOTFOUND WARNING Search for a string or pattern was
unsuccessful.

TPU$_ TOOFEW ERROR SEARCH requires at least two
arguments.

TPU$_ TOOMANY ERROR SEARCH accepts no more than
four arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to
SEARCH is of the wrong type.

TPU$_1NVPARAM ERROR One of the parameters to
SEARCH is of the wrong type.

TPU$_BADKEY WARNING You specified an incorrect keyword
to SEARCH.

TPU$_MINVALUE WARNING The integer parameter to SEARCH
must be greater than or equal to
-1.

TPU$_MAXVALUE WARNING The integer parameter to SEARCH
must be less than or equal to 3.

VAXTPU Built-In Procedures
SEARCH

TPU$_NOCURRENTBUF

TPU$_CONTROLC

TPU$_1LLPATAS

ERROR

ERROR

ERROR

If you do not specify a buffer or
range to search, you must position
to a buffer before searching.

You pressed CTRUC while
SEARCH was executing.

The pattern to SEARCH contained
a partial pattern assignment to a
variable not defined in the current
context.

EXAMPLES

D user_range := SEARCH ("Reflections of MONET", FORWARD, NO_EXACT)

If you search a buffer in which the string "Reflections of Monet" appears,
this assignment statement stores the characters "Reflections of Monet" in
the range user _range. The search finds a successful match even though
the characters in the word "Monet" do not match in case, because you
specified NO_EXACT.

PROCEDURE user find_chap
LOCAL chap,

found_range;
ON ERROR

IF ERROR= TPU$ STRNOTFOUND
THEN

MESSAGE ("CHAPTER not found.");
ELSE

MESSAGE (MESSAGE_TEXT (ERROR));
ENDIF;

ENDON_ERROR;

chap := LINE_BEGIN + "CHAPTER";
found_range := SEARCH (chap, FORWARD, NO_EXACT);

IF found_range <> 0 ! No match found.
THEN

POSITION (found_range);
ENDIF;

END PROCEDURE

This procedure searches for the word "CHAPTER" appearing at the
beginning of a line. If SEARCH finds the word, the built-in positions
to the beginning of the string. If SEARCH does not find the word, the
built-in writes an appropriate message in the message buffer.

7-312

0
iJ

u
\

PROCEDURE user_search_range

LOCAL found_count;

ON ERROR
[TPU$_STRNOTFOUND, TPU$ CONTROLC):

VAXTPU Built-In Procedures
SEARCH

MESSAGE (FAO ("Found !SL occurrences.", found_count));
RETURN;

[OTHERWISE) :ABORT;
ENDON_ERROR;

found_count := Oi
the_pattern := "blue skies"; •
the_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),

END_OF (CURRENT_BUFFER),
NONE);

found_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),
BEGINNING OF (CURRENT_BUFFER),
NONE);

LOOP
the_range := CREATE_RANGE (END_OF (found_range),

END_OF (the_range), NONE);
found_range := SEARCH (the_pattern, FORWARD, NO_EXACT,

the_range);

found count := found count+ l;
ENDLOOP;

ENDPROCEDURE

This procedure searches the range the_range for all occurrences of
the pattern ''blue skies". If SEARCH finds the pattern, the procedure
redefines the_range to begin after the end of the pattern just found. If
the procedure did not redefine the range, SEARCH would keep finding
the first occurrence over and over. The procedure reports the number of
occurrences of the pattern.

VAXTPU Built-In Procedures
SEARCH_QUIETLY

SEARCH QUIETLY

FORMAT

Looks for a particular arrangement of characters in a buffer or range and
returns a range that contains those characters. Unlike the SEARCH built-in,
SEARCH_QUIETLY does not signal TPU$_STRNOTFOUND when it fails to
find a string.

(range2 :: D SEARCH_QUIETLY (

{
FORWARD { EXACT

I REVERSE } /[, t:JO_EXACT
mteger

ANCHOR
LINE_BEGIN
L/NE_END
PAGE_BREAK
pattern
REMAIN
string
UNANCHOR

} f, { i::::::1 }11)

PARAMETERS ANCHOR

7-314

A keyword directing SEARCH_QUIETLY to start a search at the current
character position.

LINE BEGIN
A keyword used to match the beginning of a line.

LINE END
A keyword used to match the end of a line.

PAGE BREAK
A keyword used to match a form-feed character.

pattern
The pattern that you want to match.

REMAIN
A keyword specifying a match starting at the current character and
continuing to the end of the current line.

string
The string that you want to match.

UNANCHOR
A keyword specifying that the next pattern element can match anywhere
after the previous pattern element. Use this keyword as part of a complex
pattern.

For more information on these keywords, refer to the individual
descriptions of them in this chapter.

)

i
\,__

return value

FORWARD

VAXTPU Built-In Procedures
SEARCH_QUIETLY

Indicates a search in the forward direction ..

REVERSE
Indicates a search in the reverse direction.

EXACT
Indicates that the characters SEARCH_QUIETLY is trying to match must
be the same case and have the same diacritical markings as those in the
string or pattern used as the first parameter to SEARCH_QUIETLY.

NO EXACT
Indicates that the characters SEARCH_QUIETLY is trying to match need
not be the same case nor have the same diacritical markings .as those in
the string or pattern used as the first parameter to SEARCH_QUIETLY.
NO_EXACT is the default value for the optional third parameter.

integer
Specifies how SEARCH_QUIETLY should handle case and diacritical
information if you want to match one attribute and ignore the other.
DIGITAL recommends that you use the defined constants available for
specifying this integer. The defined constants are as follows:

• TPU$K_SEARCH_CASE - Equivalent to the integer 1. This specifies
that the search should match the case of the first parameter but be
insensitive to the diacritical markings of the first parameter.

• TPU$K_SEARCH_DIACRITICAL- Equivalent to the integer 2. This
specifies that the search should match the diacritical markings of the
first parameter but be insensitive to the case of the first parameter.

buffer
The buffer in which to search. SEARCH_QUIETLY starts at the beginning
of the buffer when doing a forward search and at the end of the buffer
when doing a reverse search.

range1
The range in which to search. SEARCH_QUIETLY starts at the beginning
of the range when doing a forward search and at the end of the range
when doing a reverse search.

To search a range for all occurrences of a pattern, you must define the
range dynamically after each successful match. Otherwise, SEARCH_
QUIETLY positions to the beginning of the range and finds the same
occurrence over and over. See the example section for a procedure that
searches for all occurrences of a pattern in a range.

The range containing characters that match the pattern or string specified
as a parameter.

VAXTPU Built-In Procedures
SEARCH_QUIETLY

DESCRIPTION SEARCH_QUIETLY looks for text that matches the string, pattern, or
keyword specified as its first parameter. If it finds such text, it creates a
range containing this text and returns it. If SEARCH_QUIETLY does not
find a match, the built-in returns 0.

SIGNALED
ERRORS

7-316

The starting position for the search depends on the optional fourth
parameter and the search direction. If you do not specify the fourth
parameter, the search starts at the editing point.

If you specify a range for the fourth parameter, the search starts at the
beginning of the range for a forward search, or the end of the range for
a reverse search. When searching a range, SEARCH_QUIETLY matches
only text inside the range. It does not look at text outside the range.

If you specify a buffer for the fourth parameter, the search starts at the
beginning of the buffer for a forward search, or the end of the buffer for a
reverse search.

To determine whether the searched text contains a match, SEARCH_
QUIETLY examines the character at the starting position and attempts
to match the character against the pattern, text, or keyword specified.
By default, the search is unanchored. This allows SEARCH_QUIETLY
to move one character in the direction of the search if the character at
the start position does not match. SEARCH_QUIETLY continues in this
manner until it finds a match or reaches the bounds of the buffer or range.

To prevent SEARCH_QUIETLY from moving the starting position in the
direction of the search, use the ANCHOR keyword when you define the
pattern to be matched.

SEARCH_QUIETLY does not change the current buffer or the editing
point in that buffer.

For more information about searching, see Chapter 2.

TPU$_ TOO FEW ERROR SEARCH_QUIETLY requires at
least two arguments.

TPU$_TOOMANY ERROR SEARCH_QUIETLY accepts no
more than four arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to
SEARCH_QUIETLY is of the
wrong type.

TPU$_1NVPARAM ERROR One of the parameters to
SEARCH_QUIETLY is of the
wrong type.

TPU$_BADKEY WARNING You specified an incorrect keyword
to SEARCH_QUIETLY.

TPU$_MINVALUE WARNING The integer parameter to
SEARCH_QUIETLY must be
greater than or equal to -1.

\

j

I~\

.J

0
TPU$_MAXVALUE

TPU$_NOCURRENTBUF

TPU$_CONTROLC

TPU$_1LLPATAS"

EXAMPLES

VAXTPU Built-In Procedures
SEARCH_QUIETLY

WARNING The integer parameter to
SEARCH_QUIETLY must be
less than or equal to 3.

ERROR If you do not specify a buffer or
range to search, you must position
to a buffer before searching.

ERROR You pressed CTRUC while
SEARCH_QUIETLY was
executing.

ERROR The pattern to SEARCH_QUIETLY
contained a partial pattern
assignment to a variable not
defined in the current context.

D user_range := SEARCH_QUIETLY ("Reflections of MONET", FORWARD, NO_EXACT)

If you are searching a buffer in which the string "Reflections of Monet"
appears, this assignment statement stores the characters "Reflections of
Monet" in the range user _range. The search finds a successful match even
though the characters in the word "Monet" do not match in case, because
you specified NO_EXACT.

If the string "Reflections of Monet" does not appear in the buffer,
SEARCH_QUIETLY assigns the value O to the variable user _range. It
does not signal the TPU$_STRNOTFOUND error.

fi PROCEDURE user_find_chap

LOCAL chap,
found_range;

chap := LINE BEGIN+ "CHAPTER";
found_range ~= SEARCH_QUIETLY (chap, FORWARD, NO_EXACT);

IF found_range·= 0
THEN

MESSAGE ("Chapter not found.");
ELSE

POSITION (found_range);
ENDIF;

END PROCEDURE

This procedure searches for the word "CHAPTER" appearing at the
beginning of a line. If the procedure finds the word, the procedure
positions to the beginning of the string. If the procedure does not find
the word, the procedure writes an appropriate message in the message
buffer. Compare this example procedure to the corresponding procedure in
the description of SEARCH.

7-317

VAXTPU Built-In Procedures
SEARCH_ QUIETLY

§ PROCEDURE user_search_range
LOCAL found_count;

ON ERROR
[TPU$_CONTROLC]:

MESSAGE (FAO ("Found !SL occurrences.", found_count));
RETURN;

[OTHERWISE] :
ABORT;

ENDON_ERROR;

found count := 0;
the_pattern := "blue skies";
the_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),

END_OF (CURRENT_BUFFER), NONE);

found_range := CREATE RANGE (BEGINNING_OF (CURRENT_BUFFER),
BEGINNING_OF (CURRENT_BUFFER), NONE);

LOOP
the_range := CREATE_RANGE (END_OF (found_range),

END_OF (the_range), NONE);

found_range := SEARCH_QUIETLY (the_pattern, FORWARD,
NO_EXACT, the_range);

found count := found_count + l;
ENDLOOP;

END PROCEDURE

7-318

This procedure searches the range the_range for all occurrences of
the pattern "blue skies". If SEARCH_QUIETLY finds the pattern, the
procedure redefines the_range to begin after the end of the pattern just
found. If the procedure did not redefine the range, SEARCH_ QUIETLY
would keep finding the first occurrence over and over. The procedure
reports the number of occurrences of the pattern. Notice that a procedure
using SEARCH_QUIETLY does not trap the TPU$_STRNOTFOUND error,
because SEARCH_QUIETLY does not signal this· error.

.,.,,

j

SELECT

FORMAT

PARAMETERS

return value

DESCRIPTION

VAXTPU Built-In Procedures
SELECT

Returns a marker for the editing point in the current buffer. You must specify
how the marker is to be displayed on the screen (no special video, reverse
video, bolded, blinking, or underlined).

The marker returned by SELECT indicates the first character position in a
select range. The video attribute that you specify for the marker applies to all
the characters in a select range. For information on creating a select range,
see SELECT _RANGE.

BOLD

{

BLINK }
marker := SELECT (NONE)

BLINK

REVERSE
UNDERLINE

Specifies that the selected characters are to blink.

BOLD
Specifies that the selected characters are to be bolded.

NONE
Applies no video attributes to selected characters.

REVERSE
Specifies that the selected characters are to be displayed in reverse video.

UNDERLINE
Specifies that the selected characters are to be underlined.

A marker for the editing point in the current buffer.

SELECT returns a special marker that establishes the beginning of a
select range. The marker is positioned at the character position that is
the editing point when the built-in procedure SELECT is executed. (The
marker is actually positioned between character positions, rather than on
a character position.) A select range includes all the characters between
the select marker and the current position, but not the character at the
current position.

Using SELECT may cause VAXTPU to insert padding spaces or blank
lines in the buffer. SELECT causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a

7-319

VAXTPU Built-In Procedures
SELECT

SIGNALED
ERRORS

7-320

line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

Only one select marker for a buffer can be active at any one time. If a
buffer is associated with more than one visible window, the select range is
displayed in only one window (the current or most recent window).

If the buffer in which you are selecting text is associated with the current
window, as you move from the select marker to another character position
in the same buffer, all the characters over which you move the cursor are
included in the select range, and the yideo attribute that you specify for
the select marker is applied to the characters in the range. The video
attribute of a selected character is not visible when you are positioned on
the character, but once you move beyond the character, the character is
displayed with the attribute you specify.

If two or more windows are mapped to the same buffer and one of the
windows is the current window, only the current window displays the
select area. If two or more windows are mapped to different buffers, it
is possible to have more than one visible select area on the screen at the
same time. If none of the windows on the screen is the current window,
the visible window that was most recently current displays the select area.

If the current character is deleted, the marker moves to the nearest
character position. The nearest character position is determined in the
following way:

1 If there is a· character position on the same line to the right, the
marker moves to this position, even if the position is at the end of the
line.

2 If the line on which the marker is located is deleted, the marker moves
to the first position on the following line.

If you are positioned at the select marker and you insert text, the select ·,
marker moves to the first character of the inserted text. You can move _)
one column past the last character in a line. (With free cursor motion, you ·
can move even further beyond the last character of a line.) However, if
you establish a select marker beyond the last character in a line, no video
attribute is visible for· the marker.

TPU$_ONESELECT

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_NEEDTOASSIGN

WARNING

ERROR

ERROR

ERROR

SELECT is already active in the
current buffer.

SELECT requires one argument.

SELECT accepts only one
argument.

SELECT must be on the right
hand side of an assignment
statement.

(

(

EXAMPLES

TPU$_NOCURRENTBUF

TPU$_BADKEY

TPU$_1NVPARAM

VAXTPU Built-In Procedures
SELECT

ERROR You must position to a buffer
· before using SELECT.

WARNING You specified the wrong keyword
to SELECT.

ERROR SELECrs parameter is not a
keyword.

D select mark := SELECT iNONE)

This assignment statement places a marker at the editing point. Because
NONE is specified, no video attributes are applied to a select range that
has this marker as its beginning.

select_rnark_under := SELECT (UNDERLINE)

This assignment statement places a marker at the editing point. Any
characters included in a select range that has this marker as its beginning
are underlined.

I Bold selected text

PROCEDURE user_start_select

user_v_beginning_of_select := SELECT (BOLD);

END PROCEDURE

This procedure creates a bold marker that is used as the beginning of a
select region. As you move the cursor, the characters that you select are
bolded. To turn off the selection of characters, set the variable user _v _
beginning_of_select to 0.

7-321

VAXTPU Built-In Procedures
SELECT _RANGE

SELECT RANGE

FORMAT

Returns a range that contains all the characters between the marker
established with the built-in procedure SELECT and the editing point.
SELECT _RANGE does not include the current character.

range:: SELECT_RANGE

PARAMETERS None.

return value A range containing all the characters between the marker established with
SELECT and the editing point.

DESCRIPTION If you select text in a forward direction, the select range includes the
marked character and all characters up to but not including the current
character. If you select text in a reverse direction from the marker, the
select range includes the current character and all characters up to but
not including the marked character.

7-322

SELECT_RANGE is used in conjunction with SELECT to allow the user
to mark a section of text for treatment as an entity.

The procedure for selecting a section of text is the following:

1 Use the built-in procedure SELECT to place a marker at the beginning
of the section you want to select. The following example illustrates:

ml := SELECT (NONE); ,

2 Mark the characters that you want in the select region by moving from _,,.
character to character with the cursor.

3 When all of the text is selected, create a range that contains the
selected text. Th~ following example illustrates:

rl := SELECT_RANGE;

4 Stop the selection of characters by setting the marker that marks the
beginning of the range to 0. The following example illustrates:

ml := 0;

Using SELECT_RANGE may cause VAXTPU to insert padding spaces or
blank lines in the buffer. SELECT_RANGE causes the screen manager
to place the editing point at the cursor position if the current buffer is
mapped to a visible window. (For more information on the distinction
between the cursor position and the editing point, see Chapter 6.) If the
cursor is not located on a character (that is, if the cursor is before the
beginning of a line, beyond the end of a line, in the middle of a tab, or
below the end of the buffer), VAXTPU inserts padding spaces or blank

0

(

VAXTPU Built-In Procedures
.SELECT _RANGE

lines into the buffer to fill the space between the cursor position and the
nearest text.

SIGNALED
ERRORS

TPU$_NOSELECT WARNING There is no active select range in
the current buffer.

TPU$_SELRANGEZERO WARNING The select range contains no
selected characters.

TPU$_NEEDTOASSIGN ERROR SELECT_RANGE must be on the
right-hand side of an assignment
statement.

TPU$_ TOQMANY ERROR SELECT_RANGE takes no
arguments.

TPU$_NOCURRENTBUF WARNING There is no current buffer.

EXAMPLES

D select 1 := SELECT RANGE

This assignment statement puts the range for the currently selected
characters in the variable select_l.

PROCEDURE user select

Start a select region

user select position := SELECT (REVERSE).;
MESSAGE ("Selection started.");

Move 5 lines and create a select region

MOVE_VERTICAL (5);
SRl := SELECT_RANGE;

Move 5 lines and create another select region

MOVE_VERTICAL (5);
SR2 := SELECT_RANGE;

Stop the selection by setting the select marker to 0.

user_select_position ·= 0;

END PROCEDURE

This procedure shows the use of SELECT_RANGE multiple times in the
same procedure.

7-323

VAXTPU Built-In Procedures
SEND

SEND

Passes data to a subprocess.

FORMAT
{

buffer }
SEND (ra~ge , process)

stnng

PARAMETERS buffer
The buffer whose contents you want to send to the subprocess.

range
The range whose contents you want to send to the subprocess.

string
The string that you want to send·to the subprocess.

process
The process to which you want to send data.

DESCRIPTION All output from the process is stored in the buffer that was associated with
the process when you created it. See the CREATE_PROCESS built-in.
Your editing stops until the process responds to what is sent.

SIGNALED
ERRORS

7-324

If you specify a buffer or a range as the data to pass to a process, the lines
of the buffer or range are sent as separate records.

TPU$_NOPROCESS WARNING Subprocess that you tried to send
to has already terminated.

TPU$_SENDFAIL WARNING Unable to send input to a
subprocess.

TPU$_ TOO FEW ERROR Too few arguments passed to the
SEND built-in.

TPU$_ TOO MANY ERROR Too many arguments passed to
the SEND built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
SEND built-in.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable
buffer. The buffer to which a
subprocess writes output must be
modifiable.

/

\

.)

n_
' \

·-,J

w

EXAMPLES

TPU$_DELETEFAIL

TPU$_NOSENDBUF

TPU$_CONTROLC

D SEND ("directory", user_process)

VAXTPU Built-In Procedures
SEND

WARNING Unable to terminate the
subprocess.

WARNING Input buffer is the same as the
output buffer.

ERROR The execution of the command
you sent terminated because you
pressed CTRUC.

This statement sends the DCL command DIRECTORY to the process
named user _process. The process must already be created with the built-in
procedure CREATE_PROCESS so that the output can be stored in the
buffer associated with the process.

PROCEDURE mail_subp

Create a buffer and a window that a subprocess can run in

v mail buffer := CREATE BUFFER ("main buffer");
v=mail=window := CREATE=WINDOW (1, 22~ ON);

Map the mail window to the screen

UNMAP (MAIN WINDOW);
MAP (v_mail=window, v_mail_buffer);

Create a subprocess and send "mail" as the first command

pl := CREATE_PROCESS (v_mail_buffer, "MAIL");

Position to the subprocess and use read_line for next command

POSITION (v_mail_window);
sl := READ LINE ("mail_subp> ", 20);
SEND (sl, pl);

ENDPROCEDURE

This procedure uses the built-in procedure SEND to pass a command to a
process in which the Mail Utility is running. The command to be sent to
the process is obtained with the built-in procedure READ_LINE.

7-325

VAXTPU Built-In Procedures
SEND_EOF

SEND EOF

FORMAT

PARAMETERS

Uses features of the VMS mailbox driver to send an end-of-file message
(10$_WRITEOF) to a process.

SEND_EOF (process)

process
The process to which the end-of-file message is being sent.

DESCRIPTION The end-of-file message causes a pending read from a subprocess to be
completed with an SS$_ENDOFFILE status. See the VMS I IO User's
Reference Volume for more information on the Write End-of-File message.

SIGNALED
ERRORS

TPU$_SENDFAIL WARNING Unable to send input to a
subprocess.

TPU$_NOPROCESS WARNING No subprocess to send to.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SEND_EOF built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SEND_EOF built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
SEND_EOF built-in.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable
buffer. The buffer to which a
subprocess writes output must be
modifiable.

TPU$_DELETEFAIL WARNING Unable to terminate the
subprocess.

EXAMPLE
SEND EOF (sub_procl)

This statement sends an end-of-file to sub_procl.

7-326

)

u
C_

u

SET

FORMAT

VAXTPU Built-In Procedures
SET

Lets you establish or change certain features of a VAXTPU session. SET
requires a keyword as its first parameter. The keyword indicates which feature
of the editor is being set. You can set the mode for entering text, the t~xt that
is to be displayed on certain parts of the screen, the direction of a buffer, the
status of a buffer, and so on.

SET (keyword, parameter/[, ... })

PARAMETERS keyword
The keyword used as the first parameter specifies which feature is being
established or changed. Following are the valid keywords for SET:

ACTIVE_AREA AUTO_REPEAT

BELL

CROSS_WINDOW_BOUNDS

DRM_HIERARCHY

EOB_TEXT

FORWARD

GLOBAL_SELECT_GRAB

GLOBAL_SELECT _ TIME

ICON_NAME

INPUT_FOCUS

INPUT_FOCUS_UNGRAB

JOURNALING

LEFT _MARGIN_ACTION

KEY _MAP _LIST

MAX_LINES

ME$SAGE_ACTION_ TYPE

MODIFIABLE

NO_WRITE

OVERSTRIKE

PAD_OVERSTRUCK_TABS

POST_KEY_PROCEDURE

PROMPT_AREA

REVERSE

RIGHT _MARGIN_ACTION

SCREEN_UPDATE

COLUMN_MOVE_ VERTICAL

DEBUG

ENABLE_RESIZE

FACILITY _NAME

GLOBAL_SELECT

GLOBAL_SELECT_READ

GLOBAL_SELECT_UNGRAB

INFORMATIONAL

INPUT _FOCUS_GRAB

INSERT

LEFT_MARGIN

LINE_NUMBER

MARGINS

MESSAGE_ACTION_LEVEL

MESSAGE_FLAGS

MOUSE

OUTPUT _FILE

PAD

PERMANENT

PRE_KEY_PROCEDURE

RESIZE_ACTION

RIGHT_MARGIN

. SCREEN_LIMITS

SCROLL_BAR

SCROLL_BAR_AUTO_ THUMB SCROLLING

VAXTPU Built-In Procedures
SET

SELF _INSERT

SPECIAL_ERROR_SYMBOL

SUCCESS

TAB_STOPS

TIMER

UNDEFINED_KEY

WIDGET.

WIDTH

SHIFT_KEY

STATUS_LINE

SYSTEM
TEXT.

TRACEBACK

VIDEO

WIDGET_CALLBACK

These keywords and the parameters that follow them are described on
the following pages. The descriptions of the keywords are organized
alphabetically.

parameter l, ... 1
The number of parameters following the :first parameter varies according
to the keyword you use. The parameters are listed in the format section of
the applicable keyword description.

DESCRIPTION The built-in procedure SET can be used by both the programmer creating
an editing interface and the person using the interface. The programmer
can establish certain default behavior and screen displays for an editing
interface. The user can change the default behavior and do some simple
customizing of an existing VAXTPU interface with the built-in procedure
SET.

7-328

,I

n

(
\

VAXTPU Built-In Procedures
SET {ACTIVE_AREA)

SET (ACTIVE_AREA)

FORMAT

Designates the specified area as the active area in a VAXTPU window. An
active area is an area within which VAXTPU ignores movements of the pointer
cursor.

SET (ACTIVE_AREA, window, column, row/[, width, height J)

PARAMETERS ACTIVE AREA

DESCRIPTION

A keyword directing VAXTPU to set an attribute of the active area.

window
The window in which you want to define the active region.

column
An integer specifying the leftmost column of the active region.

row
An integer specifying the topmost row of the active region. If you use 0,
the active row is the status line.

width
An integer specifying the width in columns of the active region. Defaults
to 1.

height
An integer specifying the height in rows of the active region. Defaults
to 1.

The active area is the region in a window in which VAXTPU ignores
movements of the pointer cursor for purposes of distinguishing clicks
from drags. When you press down a mouse button, VAXTPU interprets
the event as a elicit if the upstroke occurs in the active area with the
downstroke. If the upstroke occurs outside the active area, VAXTPU
interprets the event as a drag operation.

A VAXTPU layered application can have only one active area at a time,
even if the application has more than one window visible on the screen.
An active area is only valid if you are pressing a mouse button. The
default active area occupies one character cell. By default, the active area
is located on the character cell pointed to by the pointer cursor.

For information on mouse button clicks, see the XUI Style Guide.

Table 7-6 lists the keywords for referring to elicit and drag operations.

VAXTPU Built-In Procedures
SET (ACTIVE_AREA)

Table 7-6 VAXTPU Keywords Representing Mouse Events

SIGNALED
ERRORS

EXAMPLE
PROCEDURE eve$$mldown

LOCAL the window,
the=column,
the row,
the=width;

ON ERROR
- [OTHERWISE):

ENDON_ERROR;

M1UP M2UP

M1DOWN M2DOWN

M1DRAG M2DRAG

M1CLICK M2CLICK

M1CLICK2 M2CLICK2

M1CLICK3 M2CLICK3

M1CLICK4 M2CLICK4

M1CLICK5 M2CLICK5

TPU$_BADVALUE

TPU$_EXTRANEOUSARGS

TPU$_INVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOO FEW

TPU$_ TOOMANY

eve$$x_pre_mbl_mark := MARK (FREE_CURSOR);

7-330

M3UP

M3DOWN

M3DRAG

M3CLICK

M3CLICK2

M3CLICK3

M3CLICK4

M3CLICK5

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

M4UP MSUP

M4DOWN MSDOWN

M4DRAG MSDRAG

M4CLICK MSCLICK

M4CLICK2 M5CLICK2

M4CLICK3 M5CLICK3

M4PLICK4 M5CLICK4

M4CLICK5 M5CLICK5

An integer parameter was
specified with a value outside
the valid range.

One or more extraneous
arguments has been specified
for a DECwindows built-in.

One of the parameters was
specified with data of the wrong
type.

SET (ACTIVE_AREA) cannot .
return a value.

You can use the SET (ACTIVE_
AREA) built-in only if you are using
DECwindows VAXTPU.

Too few arguments passed to the
SET (ACTIVE_AREA) built-in.

Too many arguments passed to
the SET (ACTIVE_AREA) built-in.

-)

VAXTPU Built-In Procedures
SET (ACTIVE_AREA)

IF LOCATE MOUSE (the window, the_column, the_row)
THEN - -

eve$x mbl in progress := l;
IF the ro; =-0
THEN

ELSE

IF eve$current indicator (the window,

THEN

the -column,
the=width) <> 0

IF eve$x_decwindows_active
THEN

SET (ACTIVE AREA,

ENDIF;
ELSE

the window, the column,
0, the_width, l);

RETURN (FALSE);
ENDIF;

IF the_window = eve$choice_window
THEN

This statement sets
the active area.

IF eve$$current_choice (the_column, eve$$x_chosen_range)
THEN

else

IF eve$x_decwindows_active
THEN

SET (ACTIVE AREA, the window, the column, the_row,
eve$$x=choices_column_width,-l);

ENDIF;
ENDIF;

POSITION (MOUSE);
eve$$x_mbl_down_free := MARK (FREE_CURSOR);
POSITION (TEXT);
eve$clear_select_position;
eve$clear message;
eve$$x mbl down bound := MARK (NONE);
POSITION (eve$$x_mbl_down_free);

ENDIF;
ENDIF;
RETURN (TRUE) ;

ELSE
RETURN (FALSE);

ENDIF;

ENDPROCEDURE;

This procedure shows one possible way that an application can use
SET (ACTIVE_AREA). The procedure is a modified version of the
EVE procedure EVE$$M1DOWN. You can find tb.e original version in
SYS$EXAMPLES:EVE$MOUSE.TPU.

Procedure EVE$$M1DOWN, when bound to MlDOWN, sets an active area
when you press MBl.

VAXTPU Built-In Procedures
SET (AUTO _REPEAT)

SET(AUTO_REPEAT)

FORMAT SET (AUTO_REPEAT, { g~F })

PARAMETERS AUTO REPEAT
A keyword indicating that SET is to control whether VAXTPU repeats
keystrokes as long as you hold down a key.

By default, AUTO_REPEAT is set ON.

ON
Specifies that a key press should continue to generate characters until the
key is released.

OFF
Requires a separate keystroke for each character generated.

DESCRIPTION VAXTPU sends an escape sequence to the terminal to set AUTO_REPEAT
on or off.

7-332

The autorepeat feature affects all keyboard keys on the VTlO0 series of
terminals except the following:

• The SET-UP key

• The ESC key

• The NO-SCROLL key

• The TAB key

• The RETURN key

• The CTRL key and another key

The autorepeat feature affects all keyboard keys on the VT300 series and
VT200 series of terminals except the following:

• The keys Fl, F2, F3, F4, F5

• The RETURN key

If you want to slow down the movement of the cursor, you can use SET
(AUTO_REPEAT) within a procedure that causes cursor motion. Because
of the time the terminal requires to process the escape sequence that
VAXTPU sends, if you turn autorepeat off before moving the cursor and
on after the movement, you slow down the cursor movement. You may
find it useful to slow the cursor motion at the top or bottom of a window.
The sample procedure in the Example section shows how to do this. See
Example 2.

SET (AUTO_REPEAT) has no effect if you use it in DECwindows
VAXTPU.

0
• I /\

)

0
SIGNALED
ERRORS

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

EXAMPLES
D SET {AUTO_REPEAT, OFF)

VAXTPU Built-In Procedures
SET(AUTO_REPEAT)

ERROR SET (AUTO_REPEAT) requires
two parameters.

ERROR You specified more than two
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR The keyword must be either ON or
OFF.

ERROR You specified an unknown
keyword.

This statement turns autorepeat off.

Two procedures that slow the scrolling action

PROCEDURE user_slow_up_arrow
SET {AUTO_:,REPEAT, OFF);
MOVE_VERTICAL {·-1);
SET {AUTO_REPEAT, ON);

END PROCEDURE

PROCEDURE user_slow_down_arrow
SET {AUTO_REPEAT, OFF);
MOVE_VERTICAL {1);
SET {AUTO_REPEAT, ON);

END PROCEDURE

These procedures show how to turn AUTO_REPEAT off and on to slow the
cursor movement.

.. ftftft

VAXTPU Built-In Procedures
SET (BELL)

SET (BELL)

FORMAT SET (BELL, { ~~~ADCAST }, { g~F }J

PARAMETERS BELL
The terminal bell.

ALL
Indicates that the second parameter (ON or OFF) applies to all messages.

BROADCAST
Indicates that the second parameter applies to broadcast messages only.

ON
Causes the terminal bell to ring when a message is written to the message
window.

OFF
Turns off the audible signal of the terminal bell.

DESCRIPTION When the bell is on, the terminal bell rings to signal the fact that

7-334

a message is being written to the message window. When you use
ALL, internal VAXTPU messages as well as broadcast messages cause
the terminal bell to ring. To cause VAXTPU messages of success and
informational severity level to be written to the message buffer, you must
have used the built-in procedure SET ({INFORMATIONAL I SUCCESS},
ON). When you use BROADCAST, only broadcast messages such as mail)
notifications and REPLY messages cause the bell to ring. j
SET (BELL, ALL, {ON I OFF}) affects the setting of SET (BELL,
BROADCAST, {ON I OFF}). If you want the behavior of broadcast
messages to be different from other messages, use the built-in procedure
SET (BELL, BROADCAST, {ON I OFF}) after using SET (BELL, ALL,
{ON I OFF}).

Note that VAXTPU causes the bell to ring as a signal that a message is
being written to the message window, not as an interpretation of a bell
character in the message text. Bell characters in the message text are not
interpreted, they are displayed. Positioning to the message window and
moving the cursor to a bell character in the message text do not cause the
terminal bell to ring.

You can also use DCL commands to affect the display of
broadcast messages within VAXTPU. If you use the command SET m,,
TERMINA.UNOBROADCAST at the DCL level, no broadcast messages i
are sent to your terminal. The DCL command SET BROADCAST allows •/
you to enable or disable certain classifications of broadcast messages.

The bell is off by default.

('

V

\

VAXTPU Built-In Procedures
SET (BELL)

SIGNALED
ERRORS

TPU$_ TOOFEW ERROR SET (BELL) requires three
parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

EXAMPLES

D SET (BELL, BROADCAST, ON)

This statement causes the terminal bell to ring when a broadcast message
is written to the message window.

i PROCEDURE user_ring_bell (msg_string)

SET (BELL, ALL, ON);
MESSAGE (msg string);
SET (BELL, ALL: OFF);
SET (BELL, BROADCAST,ON);

ENDPROCEDURE

Turn bell on
Write message text to message buffer
Turn bell off
Turn bell on for broadcast messages

This procedure uses SET (BELL, ALL, ON) to cause the bell to ring for the
message that is being sent in the second statement. After the message is
written, the bell is turned off. SET (BELL, BROADCAST, ON) is used to
cause broadcast messages to ring the terminal bell.

..

VAXTPU Built-In Procedures
SET (COLUMN_MOVE_ VERTICAL)

SET (COLUMN_MOVE_ VERTICAL)

FORMAT SET (COLUMN_MOVE_ VERTICAL, { g~F })

PARAMETERS COLUMN MOVE VERTICAL
Specifies thatyou wantto use SET to control how the MOVE_VERTICAL
built-in moves the cursor.

ON
Directs the MOVE_ VERTICAL built-in to place the cursor in the same
column on each new line unless doing so would put the cursor in the
middle of a tab. If the cursor would be placed in a tab, MOVE_ VERTICAL
places the cursor at the beginning of the tab.

OFF
Directs the MOVE_ VERTICAL built-in to place the cursor at the same
offset in each new record to which the cursor moves. This behavior is the
default for SET (COLUMN_MOVE_ VERTICAL). Since VAXTPU counts
a tab as one character when determining the offset, the cursor's column
location can change dramatically after you use MOVE_ VERTICAL.

DESCRIPTION When SET (COLlJMN_MOVE_ VERTICAL) is set to ON, you can get

J _.,

a different result from using MOVE_ VERTICAL (n) than from using
MOVE_VERTICAL (1) n times. When you use MOVE_VERTICAL (3), for
example, the built-in tries to keep the cursor in the column the cursor
occupied just before execution of MOVE_ VERTICAL (3). When you use
MOVE_ VERTICAL (1) three times, the built-in resets the column where
VAXTPU is trying to keep the cursor. Thus, if the first MOVE_ VERTICAL)
(1) moves the cursor leftward to the beginning of a tab, the second MOVE_
VERTICAL (1) does not move the cursor rightward again.

7-336

When SET (COLUMN_MOVE_ VERTICAL) is set to OFF, MOVE_
VERTICAL (n) produces the same results as MOVE_ VERTICAL (1) n
times. ·

To determine whether COLUMN_MOVE_ VERTICAL is set to ON or OFF,
use the following statement:

boolean:= GET_INFO (SYSTEM, "COLUMN_MOVE_VERTICAL")

This GET_INFO call returns 1 if COLUMN_MOVE_ VERTICAL is set to
ON, O if it is set to OFF.

If you have previously written extensions to EVE and want to layer the
extensions on EVE, you may have to rewrite some procedures because EVE (I'\
sets COLUMN_MOVE_ VERTICAL to ON. For instance, if your extension ' I)
contains the following code and if the first line has a left margin further to .)
the right than the second line, the code may not work as intended: -·-

MOVE HORIZONTAL (-CURRENT OFFSET); ! Go to beginning of line
MOVE=VERTICAL (l); - ! Move down a line

SIGNALED
ERRORS

\

EXAMPLES

VAXTPU Built-In Procedures
SET (COLUMN_MOVE_ VERTICAL)

To compensate for the fact that EVE sets COLUMN_MOVE_ VERTICAL to
ON1 you can substitute the following code for the code shown above:

POSITION (LINE_END);
MOVE_HORIZONTAL (1);

Go to end of existing line
Advance to start of next line

TPU$_ TOO FEW ERROR SET (COLUMN_MOVE_
VERTICAL) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be either ON or
OFF.

In the following example, the symbol">" represents a tab character. The
underscore shows the cursor location.

Suppose you have the following two lines of text in a buffer, with the
cursor on the "c" in the first line:

ab_£defg

a> bcdefg

If you use the following code, the cursor ends up pointing to the "b" on the
second line:

SET (COLUMN_MOVE_VERTICAL, OFF);
MOVE_VERTICAL (1);

After the MOVE_ VERTICAL (1) statement, the cursor location is as
follows:

abcdefg

a> _ecdefg

On the other hand, suppose you have the same text, as follows;

ab_£defg

a> bcdefg

If you use the following code, the cursor ends up pointing to the beginning
of the tab on the second line:

SET (COLUMN_MOVE_VERTICAL, ON);
MOVE_VERTICAL (1);

After the MOVE_ VERTICAL (1) statement, the cursor location is as
follows:

abcdefg

a~ bcdefg

VAXTPU Built-In Procedures
SET (CROSS_WINDOW_BOUNDS)

SET (CROSS_WINDOW_BOUNDS)

FORMAT SET (CROSS_ WINDOW:._BOUNDS, { g~F })

PARAMETERS CROSS WINDOW BOUNDS

SIGNALED
ERRORS

EXAMPLE

A keywordspecifying thatSET is to control the way the CURSOR_
VERTICAL built-in procedure behaves at a window boundary.

The default setting for CROSS_ WINDOW _BOUNDS is ON (preserving the
behavior from previous versions ofVAXTPU).

ON
Causes the CURSOR_ VERTICAL built-in procedure to cross window
boundaries and to ignore scrolling regions. However, even when crossing
of window bounds is enabled, the CURSOR_ VERTICAL built-in procedure
still obeys screen boundaries. That is, if CURSOR_ VERTICAL brings the
cursor to the edge of the screen, VAXTPU scrolls text into the window
rather than making the cursor invisible.

OFF
Prevents the CURSOR_ VERTICAL built-in procedure from crossing
window boundaries and causes CURSOR_ VERTICAL to obey scrolling
regions.

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

ERROR

ERROR

ERROR

ERROR

SET (CROSS_WINDOW_
BOUNDS) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

SET (CROSS_WINDOW_BOUNDS, OFF)

This statement prevents subsequent invocations of the CURSOR_
VERTICAL built-in procedure from crossing window boundaries and
causes the screen to scroll if the cursor moves into a scrolling region. This
is the setting that the EVE editor now uses. 0

)

-~)

7-338

(

VAXTPU Built-In Procedures
SET (DEBUG)

SET (DEBUG)

FORMAT

Controls various attributes of a debugging program that helps locate VAXTPU
programming errors.

Note that this built-in has five valid syntax permutations. You cannot use any
combinations of parameters not shown in this description.

SET
{

buffer }
(DEBUG PROGRAM program)

' ' range
string1

PARAMETERS DEBUG
A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

PROGRAM
A keyword indicating that VAXTPU is to use a user-written debugger.

buffer
An expression evaluating to a buffer that contains a. procedure or program.

The statement SET (DEBUG, PROGRAM, buffer) directs VAXTPU to use
the user-written debugger contained in the specified buffer during the
current debugging session.

program
A variable of type program.

The statement SET (DEBUG, PROGRAM, program) directs VAXTPU to
use the user-written debugger contained in the specified program during
the current debugging session.

range
An expression evaluating to a range that contains a procedure or program.

The statement SET (DEBUG, PROGRAM, range) directs VAXTPU to use
the user-written debugger contained in the specified range during the
current debugging session.

string1
A string containing executable VAXTPU statements.

The statement SET (DEBUG, PROGRAM, stringl) directs VAXTPU to
use the VAXTPU statements in the specified string during the current
debugging session.

VAXTPU Built-In Procedures
SET (DEBUG)

FORMAT SET (DEBUG, { g~F }J

PARAMETERS DEBUG

FORMAT

A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

ON
A keyword that enables single-stepping.

The statement SET (DEBUG, ON) directs VAXTPU to execute just one
line of code and then return control to the debugger.

OFF
A keyword that disables single-stepping.

The statement SET (DEBUG, OFF) disables single-step execution. Since
single-stepping is off by default, this format is useful only to turn off
single-stepping after single-stepping has been turned on.

SET (DEBUG, { g~F } , string2)

PARAMETERS DEBUG

7-340

A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

ON·
A keyword that sets a breakpoint.

The statement SET (DEBUG, ON, string2) directs VAXTPU to set a
breakpoint at the procedure named by string2.

OFF
A keyword that cancels one or more breakpoints.

The statement SET (DEBUG, OFF, string2) cancels a breakpoint
previously set at the procedure named by string2.

string2
The name of a procedure.

The format SET (DEBUG, ON, string2) or SET (DEBUG, OFF, string2)
sets or cancels a breakpoint at the procedure specified by string2.

1

VAXTPU Built-In Procedures
V SET (DEBUG)

(

u

FORMAT SET (DEBUG, OFF, ALL)

PARAMETERS DEBUG

FORMAT

A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

OFF
A keyword that cancels breakpoints.

The statement SET (DEBUG, OFF, ALL) cancels all breakpoints set during
the debugging session.

ALL
A keyword indicating that all breakpoints are to be canceled.

The statement SET (DEBUG, OFF, ALL) clears all breakpoints.

SET (DEBUG, string3, value)

PARAMETERS DEBUG

DESCRIPTION

A keyword indicating that SET is to control various attributes of a
debugging program that helps locate VAXTPU programming errors.

string3
The name of a global variable, local variable, or parameter. When you
use string3 to specify a local variable or a parameter, the variable or
parameter must be in the procedure you are currently debugging.

The statement SET (DEBUG, string3, value) deposits the specified value
in the variable or parameter specified by string3.

value
A value of any data type in VAXTPU.

The statement SET (DEBUG, string, value) deposits the specified value in
the global variable, local variable, or parameter named by the string.

You use the SET (DEBUG) built-in when you are writing or using user
written debuggers. You cannot freely mix parameters when using SET
(DEBUG). The only valid usages are those shown in the format sections of
this description.

VAXTPU Built-In Procedures
SET (DEBUG)

SIGNALED
ERRORS

EXAMPLES

TPU$_NOCURRENTBUF

TPU$_NONAMES

TPU$_BADKEY

TPU$_ARGMISMATCH

WARNING

· WARNING

ERROR

ERROR

There is no current buffer.

No names match the one
requested.

An unknown keyword has been
used as an argument.

You have specified an
unsupported data type.

D SET (DEBUG, ON, "user_remove")

This statement causes the debugger to be invoked each time the procedure
"user_remove" is called.

fa SET (DEBUG, PROGRAM, "user_debugger")

il

This statement causes the user.:written program "user_debugger" to be
called as the program to help locate programming errors.

PROCEDURE debugon

SET (DEBUG, PROGRAM, "tpu$$debug");
BREAK;
END PROCEDURE

debugon;

This procedure and statement from the V.AXTPU debugger are compiled
and executed when the user specifies /DEBUG on the DCL command line.
The BREAK statement suspends execution of the debugger program and
directs the debugger to wait for a debugging command from the user.

I) SET (DEBUG, "user_x_count", 42);

This statement sets the value of the variable user _x_count to 42.

7-342

I ,•

,I

u

VAXTPU Built-In Procedures
SET (DRM_HIERARCHY)

SET (DRM_HIERARCHY)

Sets the User Interface Definition (UID) file or files to be used with VAXTPU.

FORMAT integer :: SET (DRM_HIERARCHY, filespec

/[, filespec... JI)

PARAMETERS filespec
A string specifying the UID file to be used. VAXTPU applies the VMS
default file specification "SYS$LIBRARY: . UID" to the string you pass to
SET (DRM_HIERARCHY). You must specify at least one file name.

return value An integer that is the identification number for the XUI Resource Manager
hierarchy.

DESCRIPTION Using UID files to specify hierarchies makes it easy to translate the
product into other languages and to modify an application's interface
without recompiling all .the code implementing the application.

SIGNALED
ERRORS

EXAMPLE

For more information about UID files, see the VMS DECwindows Guide to
Application Programming. ·

TPU$_ARGMISMATCH

TPU$_ TOO FEW

TPU$_ TOOMANY

ERROR

ERROR

ERROR

The data type of the indicated
parameter is not supported by the
SET (DRM_HIERARCHY) built-in.

Too few arguments passed to the
SET (DRM_HIERARCHY) built-in.

Too many arguments passed to
the SET (DRM_HIERARCHY)
built-in.

The following statement designates the User Interface Definition (UID)
file MYNODE$DUA0:[SMITH]EXAMPLE.UID as a file to be used with
VAXTPU to create widgets needed by the layered application:

example_hierarchy := SET (DRM_HIERARCHY, "mynode$dua0: [smith)example.uid");

For examples of how the SET (DRM_HIERARCHY) built-in is used in
procedures, see Example B-1 and Example B-2.

..

VAXTPU Built-In Procedures
SET (ENABLE_RESIZE)

SET (ENABLE_RESIZE)

Enables or di~ables resizing of the VAXTPU screen.

FORMAT SET (ENABLE_RESIZE, { g~F })

PARAMETERS ENABLE RESIZE
A keyword directing VAXTPU to enable or disable screen resizing.

ON
A keyword enabling screen resizing.

OFF
A keyword disabling screen resizing.

DESCRIPTION Ifyou"specify the ON keyword, VAXTPU gives the DECwindows window
manager hints (parameters that the window manager is free to use or
ignore) on the allowable maximum and minimum sizes for the VAXTPU
screen. The hints are set by the SET (SCREEN_LIMITS, array) built-in.
If you specify the OFF keyword, VAXTPU uses the screen's current width
and length as the maximum and minimum size.

SIGNALED
ERRORS

7-344

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

WARNING

ERROR

ERROR

ERROR

ERROR

ERROR

You specified an invalid keyword
as a parameter.

One of the parameters was
specified with data of the wrong
type.

SET {ENABLE_RESIZE) cannot
return a value.

You can use the SET {ENABLE_
RESIZE) built-in only if you are
using DECwindows VAXTPU.

Too few arguments passed to the
SET (ENABLE_RESIZE) built-in.

Too many arguments passed
to the SET (ENABLE_RESIZE)
built-in.

\

./

0
·, _ _,1

(U

. U

EXAMPLE

VAXTPU Built-In Procedures
SET (ENABLE_RESIZE)

SET (ENABLE_RESIZE, ON);

This statement enables screen resizing. To see this statement used in
an initializing procedure, see the example in the description of the SET
(SCREEN_LIMITS) built-in .

VAXTPU Built-In Procedures
SET (EOB_TEXT)

SET (EOB_TEXT)

FORMAT SET (EOB_TEXT, buffer, string)

PARAMETERS EOB TEXT

SIGNALED
ERRORS

EXAMPLE

A keyword indicating that SET is to determine the text displayed at the
end of a buffer. This text is merely a visual marker in a buffer and does
not become part of the file that is written when a buffer is saved.

The default end-of-buffer text is "[EOB]."

buffer
The buffer in which the text for the end-of-buffer is being set.

string
The text that is displayed to indicate the end-of-buffer.

TPU$_ TOO FEW ERROR This SET built-in requires three.
parameters.

TPU$_ TOO MANY ERROR You specified more than three
parameters ..

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_FAILURE FATAL VAXTPU could not create the
record for the EOB text.

SET (EOB_TEXT, main_buffer, "[END OF MAIN EDITING BUFFER]")

7-346

This statement causes [END OF MAIN EDITING BUFFER] to be
displayed as the end-of-buffer text for the main buffer.

I~ ,,
_ _.,I

0

u
~-

VAXTPU Built-In Procedures
SET (FACILITY _NAME)

SET (FACILITV_NAME)

FORMAT

PARAMETERS

SIGNALED
ERRORS

l
I

EXAMPLE
SET (FACILITY_NAME,

SET (FACIL/TY_NAME, string)

FACILITY NAME
The facility name that is_the first item in a message generated by
VAXTPU.

string
The string that you specify as the facility name for messages. The
maximum length of this name is 10 characters.

TPU$_FACTOOLONG WARNING Name specified is longer than
maximum allowed.

TPU$_MINVALUE WARNING Argument specified is less than
the minimum allowed.

TPU$_ARGMISMATCH ERROR The second parameter must be a
string.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

"new_editor")

This statement causes "new_editor" to be used as the facility name in
messages.

7-347

VAXTPU Built-In Procedures
SET (FORWARD)

SET (FORWARD)

FORMAT SET (FORWARD, buffer)

PARAMETERS FORWARD
A keyword specifying the direction of the buffer. FORWARD means to go
toward the end of the buffer.

The default direction for a buffer is forward.

buffer
The buffer whose direction you want to set.

DESCRIPTION The editor uses this feature to keep track of direction for searching or
movement.

SIGNALED
ERRORS

EXAMPLE

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

ERROR

ERROR

ERROR

ERROR

SET (FORWARD) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

SET (FORWARD, my_buffer)

7-348

This statement causes the direction of the buffer to be toward the end of
the buffer.

(_;

u
\

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT}

SET (GLOBAL_SELECT) ·

Requests ownership of the specified global selection property.

FORMAT
{

PRIMARY }
I integer:: I SET (GLOBAL_SELECT, SCREEN, SECONDARY)

• selection_name

PARAMETERS GLOBAL SELECT
A keyword indicating that the subject of the information request is a
global selection.

SCREEN
A keyword used to preserve compatibility with future versions ofVAXTPU.

PRIMARY
A keyword directing VAXTPU to request ownership of the primary global
selection.

SECONDARY
A keyword directing VAXTPU to request ownership of the secondary global
selection.

selection_name
A string naming the global selection whose ownership VAXTPU is to
request.

return value The value 1 if the global selection ownership request was granted; 0
otherwise.

DESCRIPTION SET (GLOBAL_SELECT) returns the integer 1 if the request for
ownership of a global selection was granted; otherwise 0.

The last parameter identifies the global selection of which VAXTPU is to
·grab ownership. ·

VAXTPU is notified immedia,tely if its request is granted. Therefore,
VAXTPU does not automatically execute the global selection grab routine
when it encounters SET (GLOBAL_SELECT). VAXTPU executes the
routine only when it automatically grabs the primary selection after it
receives input focus.

For more information. about the concept of global selection, see the XU[
Style Guide.

7-349

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT)

SIGNALED
ERRORS

EXAMPLE
SET (GLOBAL_SELECT,

7-350

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REQSDECW ERROR You can use the SET (GLOBAL_
SELECT) built-in only if you are
using DECwindows VAXTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the
SET (GLOBAL_SELECT) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (GLOBAL_SELECT)
built-in.

SCREEN, PRIMARY);

This statement requests ownership of the primary global selection. For
another example of code using the SET (GLOBAL_SELECT) built-in, see
Example B-10.

_)

u

u

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_GRAB)

SET (GLOBAL_SELECT_GRAB)

FORMAT

PARAMETERS

DESCRIPTION

Specifies the program or learn sequence VAXTPU should execute whenever it
automatically grabs ownership of the primary selection.

SET (GLOBAL_SELECT_GRAB,SCREEN
buffer .
learn_sequence

l program ~
range
string
NONE

GLOBAL SELECT GRAB
A keyword indicating thafthe subject of the information request is a
global select grab routine.

SCREEN
A keyword used to preserve compatibility with future versions ofVAXTPU.

buffer
The buffer that contains the grab routine.

Jearn_sequence
The learn sequence specifying the grab routine.

program•
The program specifying the grab routine.

range
The range that contains the grab routine.

string
The string that contains the grab routine.

NONE
A keyword directing VAXTPU to delete the current global selection
grab routine. This is the default if you do not specify the optional third
parameter.

For more information about VAXTPU's global selection support, see
Section 4.2.3.

If the optional parameter is not specified, NONE is the default. When
NONE is specified or used by default, VAXTPU deletes the current global
selection grab routine. When no global selection grab routine is defined,
your application is not informed when VAXTPU grabs the primary global
selection.

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT _GRAB)

SIGNALED
ERRORS

EXAMPLE

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOO MANY

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (GLOBAL_SELECT_GRAB)
cannot return a value.

ERROR

ERROR

ERROR

You can use the SET (GLOBAL_
SELECT_GRAB) built-in only
if you are using DECwindows
VAXTPU.

Too few arguments passed to the
SET (GLOBAL_SELECT_GRAB)
built-in.

Too many arguments passed to
the SET (GLOBAL_SELECT_
GRAB) built-in.

SET (GLOBAL_SELECT_GRAB, SCREEN, "user_grab_global");

7-352

This statement designates the•procedure user _grab_global as a global
selection read routine.

For another example of code using the SET (GLOBAL_SELECT_GRAB)
built-in, see Example 7-1.

Sample Code Setting Various Global Selection and Input Focus Routines

Example 7-1 shows possible ways that a layered application can use)
statements setting global selection and input focus routines. The example
contains portions of the procedure eve$mouse_module_init. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

The statements in Example 7-1 designate EVE's global selection read
routine, global selection grab routine, global selection ungrab routine,
input focus grab routine, and input focus u.ngrab routine.

VAXTPU Built-In Procedures
W SET (GLOBAL_SELECT_GRAB)

u

Example 7-1 Initialization Procedure Using Variants of the SET Built-In

PROCEDURE eve$rnouse_rnodule_init

IF GET_INFO (SCREEN, "decwindows")
THEN

SET (GLOBAL SELECT READ, SCREEN, "eve$write global select");
SET (GLOBAL-SELECT-UNGRAB, SCREEN, "eve$global select ungrab");
SET (GLOBAL-SELECT-GRAB, SCREEN, "eve$global select g°rab");
SET (INPUT FOCUS GRAB, SCREEN, "eve·$input focus grab");
SET (INPUT=FOCUS=UNGRAB, SCREEN, "eve$input_focus_ungrab");

ENDIF;

ENDPROCEDURE;

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT _READ)

SET(GLOBAL_SELECT_READ)

FORMAT

Specifies the program or learn sequence VAXTPU should execute whenever it
receives a selection request event on a global selection it owns.

{
buffer1 } SET (GLOBAL_SELECT_READ, SCREEN

buffer2
Jearn_sequence

ff, program J)
range
string
NONE

PARAMETERS GLOBAL SELECT READ

7-354

A keyword indicating thafthe subject of the information request is a
global select read routine.

buffer1
The buffer with which the global selection read routine is to be associated.

SCREEN
A keyword indicating that the specified routine is to be the application's
default global selection read routine.

buffer2
The buffer that contains the global selection read routine.

l~arn_sequence
The learn sequence that specifies the global selection read routine.

program
The program that specifies the global selection read routine.

range
The range that contains the global selection read routine.

string
The string that contains the global selection read routine.

NONE
A keyword indicating that the global selection read routine should be
deleted.

If you do not specify the optional third parameter, NONE is the default.

VAXTPU Built-In Procedures
(

1
SET (GLOBAL_SELECT_READ)

~/

(

~

/
\

DESCRIPTION To specify a buffer-specific global selection read routine, use the bufferl
parameter. To specify a global selection read routine for the entire
application, use the SCREEN keyword.

SIGNALED
ERRORS

EXAMPLE

When VAXTPU receives a request for information about a global selection
it owns, it checks to see if the current buffer has a global selection read
routine. If so, it executes that routine. If not, it checks to see if there is
an application-wide global selection read routine. If so, it executes that
routine. If not, it tries to respond to the request itself.

If the optional parameter is not specified, NONE is the default. When
NONE is specified or used by default, VAXTPU deletes the current global
selection read routine.

TPU$_BADKEY. WARNING

TPU$_1NVPARAM ERROR

TPU$_NORETURNVALUE ERROR

TPU$_REQSDECW ERROR

TPU$_ TOOFEW ERROR

TPU$_ TOOMANY ERROR

You specified an invalid keyword
as a parameter.

One of the parameters was
specified with data of the wrong
type.

SET(GLOBAL_SELECT_READ)
cannot return a value.

You can use the SET (GLOBAL_
SELECT _READ) built-in only
if you are using DECwindows
VAXTPU-.

Too few arguments passed to the
SET(GLOBAL_SELECT_READ)
built-in.

Too many arguments passed to
the SET (GLOBAL_SELECT_
READ) built-in.

SET (GLOBAL_SELECT_READ, SCREEN, "user_read_global");

The following statement designates the procedure user _read_global as a
global selection read routine. For another example of code using the SET
(GLOBAL_SELECT_READ) built-in, see Example 7-1.

7-355

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_TIME)

SET (GLOBAL_SELECT_TIME)

FORMAT

Specifies how long VAXTPU should wait befor~ it assum~s that a request for
information about a global selection will not be satisfied.

SET (GLOBAL SELECT TIME, SCREEN, { intt~ger })
- - srmg

PARAMETERS GLOBAL SELECT TIME
A keyword directing VAXTPU to set the expiration time for a global
selection information request.

SCREEN
A keyword used to maintain compatibility with future versions of
VAXTPU.

integer
The number of seconds that VAXTPU should wait.

string
A string in VMS delta time format indicating how long VAXTPU should
wait.

DESCRIPTION The default waiting time is set by DECwindows. The maximum waiting
time you can set is 24 days, 20 hours.

SIGNALED
ERRORS TPU$_BADKEY WARNING You specified an invalid keyword

as a parameter.

TPU$_1NVTIME WARNING You specified an invalid time
interval.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR The SET (GLOBAL_SELECT_
TIME) built-in cannot return a
value.

TPU$_REQSDECW ERROR You can use the SET (GLOBAL_
SELECT_ TIME) built-in only if you
are using DECwindows VAXTPU.

TPU$_ TOO FEW ERROR Too few arguments passed to the
SET (GLOBAL_SELECT _ TIME)
built-in.

7-356

u

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_TIME)

ERROR Too many arguments passed to
the SET (GLOBAL_SELECT_
TIME) built-in.

SET (GLOBAL_SELECT_TIME, SCREEN, 3);

This statement sets the waiting time for a global selection response to 3
seconds.

.. ---

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT _UNGRAB}

SET (GLOBAL_SELECT_UNGRAB}

FORMAT

Specifies the program or learn sequence VAXTPU should execute whenever it
loses ownership of a selection.

SET (GLOBAL_SELECT_UNGRAB,SCREEN
buffer
learn_sequence

!, program ~
range
string
NONE

PARAMETERS GLOBAL SELECT UNGRAB
A keyword indicating thafthe subject of the information request is a
global select ungrab routine.

SCREEN
A keyword used to preserve compatibility with future versions ofVAXTPU.

buffer
The buffer that contains the global selection ungrab routine.

learn_sequence
The learn sequence that specifies the global selection ungrab routine.

program
The program that specifies the global selection ungrab routine.

range
The range that contains the global selection ungrab routine.

string
The string that contains the global selection ungrab routine.

NONE
A keyword directing VAXTPU to delete the current global selection
ungrab routine. This is the default if you do not specify the optional
third parameter.

DESCRIPTION For more information about VAXTPU's global selection support, see
Section 4.2.3.

7-358

If the optional parameter is not specified, NONE is the default. When
NONE is specified or used by default, VAXTPU deletes the current global
selection ungrab routine. When no global selection ungrab routine is
defined, your application is not informed when VAXTPU loses ownership
of the primary global selection.

j

(
'-,

u

SIGNALED
ERRORS TPU$_BADKEY

TPU$_1NVPARAM

TpU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
SET (GLOBAL_SELECT_UNGRAB)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET(GLOBAL_SELECT_
UNGRAB) cannot return a value.

ERROR You can use the SET (GLOBAL_
SELECT_UNGRAB) built-in only
if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed to
the SET (GLOBAL_SELECT~
UNGRAB) built-in.

ERROR Too many arguments passed to
the SET (GLOBAL_SELECT_
UNGRAB) built-in.

SET (GLOBAL_SELECT_UNGRAB, SCREEN, "user_ungrab_global");

This statement designates the procedure user _ungrab _global as a global
selection ungrab routine. For another example of code using the SET
(GLOBAL_SELECT_UNGRAB) built-in, see Example 7-1, following the
description of the SET (GLOBAL_SELECT_GRAB) built-in.

.. l'll!!lft

VAXTPU Built-In Procedures
SET (ICON_NAME)

SET (ICON_NAME)

Designates the string used as the layered application's name in the
DECwindows icon box. ·

FORMAT SET (ICON_NAME, string)

PARAMETERS ICON NAME
A keyword instructing VAXTPU to set the text of an icon.

string
The text you want to appear in the icon.

SIGNALED
ERRORS

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET (ICON_NAME) cannot return
a value.

TPU$_REQSDECW ERROR You can use the SET (ICON_
NAME) built-in only if you are
using DECwindows VAXTPU.

TPU$_ TOO FEW ERROR Too few arguments passed to the
SET (ICON_NAME) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (ICON_NAME) built-in.

EXAMPLE
SET (ICON_NAME, "WordMonger");

-
This statement sets the text naming the layered application to be the
string WordMonger.

7-360

n /'
j

\
J

/

\

l

.l)
\

VAXTPU Built-In Procedures
SET (INFORMATIONAL)

SET (INFORMATIONAL)

FORMAT SET (INFORMATIONAL, { g~F }J

PARAMETERS INFORMATIONAL
Informational messages that VAXTPU writes.

ON
Causes the informational messages to be displayed.

OFF
Suppresses the display of informational messages.

DESCRIPTION If you specify a section file when invoking VAXTPU (either by default, or
by using the qualifier /SECTION), VAXTPU may not display informational
messages. You can cause informational messages to be written by using
SET (INFORMATIONAL, ON).

SIGNALED
ERRORS

EXAMPLE

If you use the qualifier /NOSECTION when invoking VAXTPU,
informational messages are written by default.

When you are developing VAXTPU programs, the informational messages
help you find errors in your program, so it is a good idea to use the built-in
procedure SET (INFORMATIONAL) to cause the messages to be displayed.

See Appendix D for a list of the VAXTPU informational messages.

TPU$_ TOOFEW ERROR SET (INFORMATIONAL) requires
two parameters. .

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (INFORMATIONAL, OFF)

This statement causes the display of informational messages to be turned
off.

VAXTPU Built-In Procedures
SET (INPUT _FOCUS)

SET (INPUT_FOCUS)

FORMAT

Reqt:Jests ownership of the input focus. Ownership of the input focus
determines which application or widget processes user input from the
keyboard.

SET (INPUT FOCUS [' S<?REEN] J
· - , widget

PARAMETERS INPUT FOCUS
A keyword directing VAXTPU to assign the input focus.

SCREEN
An optional keyword indicating that the top-level widget associated with
VAXTPU's screen is to receive the input focus. This keyword is the default.

widget
The widget that is to receive the input focus. Note that if you specify a
widget for this parameter, the VAXTPU key bindings are not available to
process keyboard input into the specified widget.

DESCRIPTION This built-in requests that input focus be given to VAXTPU or to a widget
that is part of an application layered on VAXTPU. It does not guarantee
that VAXTPU or the widget gets the input focus. If VAXTPU or the widget
receives the input focus, it gets a focus-in event. When VAXTPU gets this
event, it calls the input focus grab routine. For more information about
the role of events in DECwindows applications, see the VMS DECwindows
Guide to Application. Programming.

SIGNALED
ERRORS

When the top-level widget for VAXTPU's screen has the input focus,
VAXTPU processes keystrokes normally. That is, undefined printable keys
insert characters in -the current buffer, and defined keys execute the code
bound to them.

If a child widget in the widget hierarchy has the input focus, keystrokes
are processed by that widget. For example, when a text widget in EVE's
replace dialog box has the input focus, keystrokes are processed by the
text widget, not by VAXTPU. No VAXTPU key bindings are in effect.

TPU$_BADKEY

TPU$_1NVPARAM

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

r
I
\

VAXTPU Built-In Procedures
SET (INPUT _FOCUS)

TPU$_NORETURNVALUE ERROR SET (INPUT_FOCUS) cannot
- return a value.

TPU$_REQSDECW

TPU$_ TOO FEW

TPU$_ TOOMANY

EXAMPLE
PROCEDURE eve$$widget_replace_ok

LOCAL new string,
old=string,
old_str_text_widget,
new_str_text_widget;

ERROR

ERROR

ERROR

SET (INPUT_FOCUS}; This statement grabs input focus
so CTRL/C events will be detected.

You can use the SET (INPUT_
FOCUS) built-in only if you are
using DECwindows VAXTPU.

Too few arguments passed to the
SET (INPUT_FOCUS) built-in.

Too many arguments passed to
the SET (INPUT_FOCUS) built-in.

! Get the replace strings from the eve$$k_replace_new_(old]text widgets.

old_str_text_widget := GET_INFO (WIDGET, "widget_id", eve$x_replace_dialog,
"REPLACE_DIALOG.REPLACE_OLD_TEXT")

old_string := GET_~NFO (old_str_text_widget, "text");

! Test only the old string.
IF old_string = ""
THEN

eve$message (EVE$_NOREPLSTR);
RETURN;

ENDIF;

new_str_text_widget := GET_INFO (WIDGET, "widget_id", eve$x_replace_dialog,
"REPLACE_DIALOG.REPLACE_NEW_TEXT")

new_string := GET INFO (new_str_text_widget, "text");

IF new_string = ""
THEN

eve$$replacel (old_string, new_string, 1);
ELSE

eve$$replacel (old_string, new_string);
ENDIF;

ENDPROCEDURE;

This procedure shows one possible way that a layered application can use
the SET (INPUT_FOCUS) built-in. The procedure is a modified version
of the EVE procedure EVE$$WIDGET_REPLACE_OKAY. You can find
the original version in SYS$EXAMPLES:EVE$MENUS.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

Procedure EVE$$WIDGET_REPLACE_OK fetches and tests the user's
responses to prompts for old and new replace strings.

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_GRAB)

SET (INPUT_FOCUS_GRAB)

FORMAT

Specifies the program or learn sequence that VAXTPU should execute
whenever it processes a focus-in event.

SET (INPUT_FOCUS_GRAB, SCREEN l,

buffer
learn_sequence
program
range
string
NONE

1)

PARAMETERS INPUT FOCUS GRAB

DESCRIPTION

7-364

A keyword directing VAXTPU to set an attribute related to an input focus
grab routine.

SCREEN
An keyword used for compatibility with future versions ofVAXTPU.

buffer
The buffer that specifies the actions that VAXTPU should take whenever
it processes a focus-in event.

learn_sequence
The learn sequence that specifies the actions that VAXTPU should take
whenever it processes a focus-in event.

program
The program that specifies the actions that VAXTPU should take whenever
it processes a focus-in event.

range
The range that specifies the actions that VAXTPU should take whenever it
processes a focus-in event.

string
The string that specifies the actions that VAXTPU should take whenever
it processes a focus-in event.

NONE
A keyword directing VAXTPU to delete the input focus grab routine. If you
specify this keyword or do not specify the parameter at all, the application
is not notified when input focus is received.

For more information about VAXTPU's input focus support, see
Section 4.2.2.

·.\

SIGNALED
ERRORS

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOO FEW

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_GRAB)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (INPUT_FOCUS_GRAB)
cannot return a value.

ERROR You can use the SET (INPUT_
FOCUS_GRAB) built-in only if you
are using DECwindows VAXTPU.

ERROR Too few arguments passed to
the SET (INPUT_FOCUS_GRAB)
built-in.

ERROR Too many arguments passed to
the SET (INPUT_FOCUS_GRAB)
built-in.

SET (INPUT_FOCUS_GRAB, SCREEN, "user_grab_focus");

This statement designates the procedure user _grabJocus as an input
focus grab routine. For another example of code using the SET (INPUT_
FOCUS_GRAB) built-in, see Example 7-1.

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_UNGRAB)

SET (INPUT _FOCUS_ UNG RAB)

FORMAT

Specifies the program or learn sequence that VAXTPU should execute
whenever it processes a focus-out event.

SET (INPUT_FOCUS_UNGRAB, SCREEN[,

buffer
learn_sequence
program
range
string
NONE

1)

PARAMETERS INPUT FOCUS UNGRAB
A keyword directing VAXTPU to set am attribute related to an input focus
ungrab routine.

SCREEN
A keyword used for compatibility with future versions ofVAXTPU.

buffer
The buffer that specifies the actions that VAXTPU should take whenever
it processes a focus-out event.

learn_sequence
The learn sequence that specifies the actions that VAXTPU should take
whenever it processes a focus-out event.

program
The program that specifies the actions that VAXTPU should take whenever
it processes a focus-out event.

range
The range that specifies the actions that VAXTPU should take whenever it
processes a focus-out event.

string
The string that specifies the actions that VAXTPU should take whenever
it processes a focus-out event.

NONE
A keyword directing VAXTPU to delete the input focus ungrab routine.
If you specify this keyword or do not specify the parameter at all, the
application is not notified when input focus is lost.

DESCRIPTION For more information about VAXTPU's input focus support, see
Section 4.2.2.

7-366

_ _,,

j

(

u
\
'---

SIGNALED
ERRORS

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOO MANY

EXAMPLE

VAXTPU Built-In Procedures
SET (INPUT_FOCUS_UNGRAB)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (INPUT _FOCUS_UNGRAB)
cannot return a value.

ERROR You can use the SET (INPUT_
FOCUS_UNGRAB) built-in only
if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed to the
SET (INPUT_FOCUS_UNGRAB) .
built-in.

ERROR Too many arguments passed
to the SET (INPUT_FOCUS_
UNGRAB) built-in.

SET (INPUT_FOCUS_UNGRAB, SCREEN, "user_ungrab_focus");

This statement designates the procedure user _ungrabJocus as an input
focus ungrab routine. For another example of code using the SET (INPUT_
FOCUS_UNGRAB) built-in, see Example 7-1.

VAXTPU Built-In Procedures
SET (INSERT)

SET (INSERT)

FORMAT SET (INSERT, buffer)

PARAMETERS INSERT

SIGNALED
ERRORS

EXAMPLE

A keyword specifying the mode of entering text. INSERT means that·
characters are added to the buffer immediately before the editing point.
See also the description of the built-in procedure SET (OVERSTRIKE).

The default mode for text entry is insert.

buffer
The buffer whose mode of text entry you want to set.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

SET (INSERT) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type_

SET (INSERT, my_buffer)

7-368

This statement causes the characters that you add to the buffer to be
added immediately before the editing point.

_,/

)

u

u

VAXTPU Built-In Procedures
SET {JOURNALING)

SET (JOURNALING)

FORMAT SET (JOURNALING, integer)

PARAMETERS JOURNALING
The journal file thijt enables you to recover your editing session if it is
term~nated abnormally.

integer
The integer that you specify that determines how frequently records are
written to the journal file. The value of this integer must be between 1
and 10.

DESCRIPTION VAXTPU provides a 500-byte buffer for journaling keystrokes. If
journaling is enabled, a write to the journal file occurs when the buffer

SIGNALED
ERRORS

is full. This built-in procedure allows you to _determine the frequency with
which records are written to the journal file; the lower the integer you
specify, the more often journal records are written to disk.

A value of 1 causes a record to be written for approximately every 10 keys
pressed. A value of 10 causes a record to be written for approximately
every 125 keys. If you are entering only text (rather than procedures
that are bound to keys), the number of keystrokes included in a record is
greater: for a value of 1, a record is written for approximately every 30
to 35 keystrokes; for a value of 10, a record is written for approximately
every 400 keystrokes.

TPU$_MINVALUE WARNING Argument is less than minimum
allowed.

TPU$_MAXVALUE WARNING Argument is greater than
maximum allowed.

TPU$_ TOO MANY ERROR SET (JOURNALING) accepts only
two parameters.

TPU$_ TOO FEW ERROR SET (JOURNALING) requires two
parameters.

TPU$_1NVPARAM ERROR You specified a parameter with the
wrong data type.

TPU$_BADKEY ERROR You specified an invalid keyword.

VAXTPU Built-In Procedures
SET (JOURNALING)

EXAMPLE
SET (JOURNALING, 1)

7-370

This statement causes a record to be written from the buffer to the journal
file at intervals of approximately 10 user keystrokes. If all or most of the
keys pressed have procedures bound to them, VAXTPU may write out
the contents of the buffer after fewer than 10 keystrokes. The journaling
interval shown in this statement is the shortest that you can specify.

_ _)

VAXTPU Built-In Procedures
SET {KEY_MAP _LIST)

SET (KEY _MAP _LIST)

FORMAT

PARAMETERS

DESCRIPTION

SIGNALED
ERRORS

SET 'KEY MAP LIST. string { J[, ~utter lJ }) 1
• - - ' , wmdow

KEY MAP L1ST
The key map list that you bind to a buffer or window.

The default key map list is TPU$KEY_MAP _LIST.

string
A quoted string, or a variable name representing a string constant, that
specifies the key map list that you bind to a buffer or window.

buffer
Buffer to which you bind the specified key map list. The default is the
buffer to which you are positioned.

window
The window with which you want to associate the key map list.

The key map list manipulated by SET (KEY_MAP _LIST) is used only to
process mouse events in the specified window. Keystrokes are processed
using the key map list associated with the buffer. ·

The SET (KEY_MAP _LIST) built-in procedure binds a specified key map
list to a buffer or window. If the buff er or window is not specified, the
default is to bind the key map list to the current buffer. A buffer or
window can be associated with only one key map list at a time. A key map
list can be associated with many buffers or windows simultaneously.

TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined
key map list.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (KEY _MAP _LIST) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET (KEY _MAP _LIST) built-in.

TPU$_NOCURRENTBUF ERROR You are not positioned in a buffer.

TPU$_1NVPARAM ERROR Wr~ng type of data sent to the
SET (KEY _MAP _LIST) built-in.

VAXTPU Built-In Procedures
SET (KEY_MAP _LIST)

EXAMPLE
SET (KEY_MAP_LIST, "tpu$_key_map_list")

This statement binds the key map list called TPU$_KEY_MAP _LIST to
the current buffer.

PROCEDURE user_scratch_window

LOCAL scratch_window,
scratch_buffer,
scratch map,
scratch=list;

scratch window := CREATE_WINDOW (20, 3, ON);
scratch_buffer := CREATE_BUFFER ("test"·, "junk.txt");
scratch map:= CREATE KEY MAP ("user scratch map");
DEFINE KEY (eve$$kt return+ "sample-Ml DRAG", MlDRAG, "mouse_button_l",

- "user scratch map"); - -
scratch list := CREATE KEY MAP LIST ("user scratch list", "user_scratch_map",

- - - - eve$;; mouse keys) ;
SET (KEY MAP LIST, "user scratch list", scratch window) ;
MAP (scratch=window, scratch_buffer); -

ENDPROCEDURE;

7-372

This procedure creates a small "scratch pad" window and maps it to
a scratch buffer calledjunkl.txt. The procedure defines a key map
list consisting of a user-defined key map redefining MlDRAG plus the
standard EVE mouse key map. By setting the scratch window's key map
list to be· user _scratch_list, the procedure invokes sample_ml_drag when
the user drags the mouse in the scratch window.

)

u

u

VAXTPU Built-In Procedures
SET (LEFT _MARGIN)

SET (LEFT _MARGIN)

FORMAT SET (LEFT_MARGIN, buffer, integer)

PARAMETERS LEFT MARGIN

DESCRIPTION

SIGNALED
ERRORS

The leftmargin of J3. buffer.

buffer
The buff er in which the left margin is being set.

integer
The column at which the left margin is set.

The SET (LEFT_MARGIN) built-in procedure allows you to change only
the left margin of a buffer.

Newly created buffers receive a left margin of 1 (that is, the margin is
set in column 1) if a template buffer is not specified in the call to the
CREATE_BUFFER built-in procedure. If a template buffer is used, that
buffer sets the left margin for all newly created buffers.

Use SET (LEFT_MARGIN) to override the default left margin.

The buffer margin settings are independent of the terminal width or
window width settings.

The built-in procedure FILL uses these margin settings when it fills the
text of a buffer.

When VAXTPU creates a new line, the line obtains its left margin value
from the left margin of the current buffer setting. However, changing the
left margin setting for the buffer does not change the left margin for any
existing lines.

The value of the left margin must be at least 1 and less than the right
margin value.

If you want to use the margin settings of an existing buffer in a user
written procedure, GET_INFO (buffer, "left_margin") and GET_INFO
(buffer, "right_margin") return the values of the margin settings in the
specified buffer.

TPU$_ TOO FEW

TPU$_TOOMANY

ERROR

ERROR

The SET (LEFT _MARGIN) built-in
requires three parameters.

You specified more than three
parameters.

VAXTPU Built-In Procedures
SET (LEFT _MARGIN)

EXAMPLES

TPU$_1NVPARAM

TPU$_BADMARGINS

D SET (LEFT_MARGIN, rny_buffer, 1)

•

ERROR One or more of the specified
parameters have the wrong type.

WARNING The left margin setting must be
less than the right; both must be
greater than zero.

This statement causes the left margin of the buffer represented by the
variable my_buffer to be changed. The left margin of the buffer is set to 1. .·.-_)
The right margin is unchanged. _

i SET (LEFT_MARGIN, CURRENT_BUFFER, 10)

7-374

This statement causes the left margin of the current buffer to be changed
to 10. As above, the right margin is unchanged.

)

n
\

,.J

VAXTPU Built-In Procedures
SET (LEFT _MARGIN_ACTION)

SET (LEFT ~MARGIN_ACTION)

FORMAT

{

: :~~~equence } ·
SET (LEFT_MARG/N_ACT/ON, buffert , program)

, range
, string

PARAMETERS LEFT MARGIN ACTION
Refers to the action taken when the user presses a self-inserting key while
the cursor is to the left of a line's left margin. A self-inserting key is one
that is associated with a printable character.

buffer1
The buffer in which the left margin action routine is being set.

buffer2
A buffer containing the VAXTPU statements to be executed when the user
presses a self-inserting key while the cursor is to the left of a buffer's left
margin.

learn_sequence .
A learn sequence that is to be replayed when the user presses a self
inserting key while the cursor is to the left of a buffer's left margin.

program
A program that is to be executed when the user presses a self-inserting
key while the cursor is to the left of a buffer's left margin.

range
A range that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the left of a
buffer's left margin.

·· string
A string that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor. is to the left of a
buffer's left margin.

DESCRIPTION The SET (LEFT_MARGIN_ACTION) built-in procedure allows you to
specify an action to be taken when the user attempts to insert text to the
left of the left margin of a line. If the third parameter is not specified, the
left margin action routine is deleted. If no left margin action r-0utine has
been specified, the text is simply inserted at the current position before
any necessary padding spaces, and the left margin of the line becomes the
current position.

VAXTPU Built-In Procedures
SET (LEFT _MARGIN_ACTION)

SIGNALED
ERRORS

EXAMPLES

Newly created buffers do not receive a left margin action routine if a
template buffer is not specified on the call to the CREATE_BUFFER
built-in procedure. If a template buffer is specified, the left margin action
routine of the template buffer is used.

. .

The left margin action routine only affects text entered from the keyboard
or a learn sequence. Inserting text into a buffer to the left of the left
margin using the COPY_TEXT or MOVE_TEXT built-in procedure does
not trigger the left margin action routine.

TPU$_ TOOFEW ERROR The SET (LEFT _MARGIN_
ACTION) built-in requires at least
two parameters.

TPU$_ TOO MANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_COMPILEFAIL ERROR Compilation aborted because of
syntax errors.

II SET (LEFT_MARGIN_ACTION, CURRENT_BUFFER, "push_to_left_margin")

This statement causes the procedure PUSH_TO_LEFT_MARGIN to be
executed when the user attempts to type a character to the left of the left
margin of the current line. A typical left margin action routine moves
the editing point to the left margin and inserts an appropriate number of
spaces starting at the left margin.

SET (LEFT_MARGIN_ACTION, CURRENT_BUFFER)

7-376

This statement deletes any left margin action routine that may be defined
for the current buffer. When there is no user-defined left margin action
routine, if the user types a character to the left of the current line's left
margin, the text is inserted with spaces padding the text to the old left
margin. The leftmost character on the line establishes the line's new left
margin.

)

c-\ .

u

(
'

u

VAXTPU Built-In Procedures
SET (LINE_NUMBER)

SET (LINE_NUMBER)

FORMAT

PARAMETERS

SET (LINE_NUMBER, { g~F })

LINE NUMBER
Refers to the VAXTPU display of the procedure and line number at which
an error occurred.

ON
Turns on display of the line number and procedure at which an error
occurred.

OFF
Turns off display of the line number and procedure at which an error
occurred.

DESCRIPTION Line numbers are useful for programmers debugging VAXTPU programs,
but they do not have much meaning to users who do not have the source
code available to them.

After a compilation, the line numbers displayed for procedures are relative
to the beginning of the procedure. For VAXTPU statements compiled
outside a procedure, the line numbers displayed are relative to the
beginning of the buffer, range, or string being compiled. If there are no
procedure declarations before the executable statements, line numbering
starts at the beginning of the buffer or range that is being compiled. For
strings, the line number is always 1.

Line numbers may be changed when you use the SAVE built-in to write a
section file. If you specify the parameter NO_PROCEDURE_NAMES, the
line numbers displayed are relative to the beginning of the buffer or range
that was compiled, not relative to the beginning of a procedure.

The default setting for LINE_NUMBER depends on whether a section file
was loaded by VAXTPU. If a section file was loaded, the default is OFF. If
a section file was not loaded, the default is ON.

Note that SET (LINE_NUMBER) is related to SET (TRACEBACK). SET
(TRACEBACK, ON) turns on both traceback and line numbers. SET
(LINE_NUMBER, OFF) turns off both traceback and line numbers. It is
also possible to set traceback off and line numbers on.

VAXTPU Built-In Procedures
SET (LINE_NUMBER)

SIGNALED
ERRORS

EXAMPLE

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

PROCEDURE line_number_example
SET (LINE_NUMBER, ON);
SET (LINE_NUMBER, BELL);

ENDPROCEDURE

ERROR

ERROR

ERROR

ERROR

The SET (LINE_NUMBER) built-in
requires two parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

Only the keywords ON and OFF
are allowed.

This procedure displays the line number at which the error occurred.
Executing this procedure displays the following in the message buffer:

7-378

BELL is an invalid keyword
At line 4

o·
VAXTPU Built-In Procedures

SET (MARGINS)

SET (MARGINS)

FORMAT SET (MARGINS, buffer, integer1, integer2)

PARAMETERS MARGINS
A keyword indicating that SET is to determine the left and right margins
of a buffer.

The default left margin is 1 and the default right margin is 80.

buffer
The buffer in which the margins are being set.

integer1
The column at which the left margin is set.

integer2
The column at which the right margin is set.

DESCRIPTION The SET (MARGINS) built-in procedure allows you to change the left and
right margins of a buffer. The default margins for a buffer are set to 1 for
the left margin and 80 for the right margin when you use the CREATE_
BUFFER built-in. The built-in procedure FILL uses these margin settings
when it fills the text of a buffer.

SIGNALED
ERRORS

This built-in procedure controls the buffer margin settings even if the
terminal width or window width is set to something else.

The value of the left margin must be at least 1 and less than the right
margin value. The value of the right margin must be less than the
maximum record size for the buffer. You can use the built-in procedure
GET_INFO (buffer, "record_size") to find out the maximum record size of a
buffer.

If you want to use the margin settings of an existing buffer in a user
written procedure, the statements GET_INFO (buffer, "left_margin")
and GET_INFO (buffer, "right_margin") return the values of the margin
settings.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

The SET (MARGINS) built-in
requires five parameters.

You specified more than four
parameters.

One or more of the specified
parameters have the wrong type.

7-379

VAXTPU Built-In Procedures
SET (MARGINS)

TPU$_BADMARGINS

EXAMPLES

WARNING Left margin must be smaller than
right; both must be greater than
zero.

D SET (MARGINS, my_buffer, 1, 132)

This statement causes the margins of the buffer represented by the
variable my _buffer to be changed. The left margin of the buffer is set to 1
and the right margin is set to 132.

i SET (MARGINS, CURRENT_BUFFER, 10, 70)

7-380

This statement causes the margins of the current buffer to be changed to
left margin 10 and right margin 70.

\
,J

\

. ./

n.\
'.c..../

u

;U
\
'-

VAXTPU Built-In Procedures
SET (MAX_LINES)

SET (MAX_LINES)

FORMAT SET (MAX_LINES, buffer, integer)

PARAMETERS MAX LINES
The maximum nupiber of lines a buffer can contain.

buffer
The buffer for which you are setting the maximum number of lines.

integer
The maximum number of lines for the buffer. The valid values are 0, 2, or
an integer greater than 2. The maximum value depends· on the memory
capacity of your system.

The default maximum number of lines is O (in other words, this feature is
turned ofl).

DESCRIPTION If you exceed the maximum number of lines for a buffer, VAXTPU deletes
lines from the beginning of the buffer to make room for any lines that
exceed the maximum.

SIGNALED
ERRORS

EXAMPLE
SET (MAX_LINES,

Note that SET (MAX_LINES) does not consider the end-of-buffer text to
be a record. For example, if you set the maximum number of lines to be
1000, the buffer can contain 1000 records plus the end-of-buffer text.

If you specify a value of O for integer, this feature is turned off and
VAXTPU does not check for the maximum number of lines.

TPU$_MINVALUE WARNING Argument less than minimum
allowed.

TPU$_MAXVALUE WARNING Argument greater than maximum
allowed.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_ TOOMANY ERROR SET (MAX_LINES) accepts only
three parameters.

TPU$_ TOOFEW ERROR SET (MAX_LINES) requires three
parameters.

rnessage_buffer, 20)

This statement causes the maximum number of lines for the message
buffer to be 20. Only the most recent lines of messages are kept.

7-381

VAXTPU Built-In Procedures
SET (MESSAGE_ACTION_LEVEL)

SET (MESSAGE_ACTION_LEVEL)

FORMAT

PARAMETERS

SET 'MESSAGE ACTION LEVEL { integer })
1• - - ' keyword

MESSAGE ACTION LEVEL
A keyword indicating that SET is to determine the severity level at which
VAXTPU sounds the terminal bell or highlights a message.

integer
A value between O and 3 specifying the severity level at which VAXTPU
is to take the action you designate. The default value is 2. The severity
levels and corresponding values, in ascending order of severity, are as
follows:

1 Success

3 Informational

0 Warning

2 Error

VAXTPU performs the action you specify on all completion messages at
the severity level you designate and on all messages of greater severity.

keyword
The keyword associated with a VAXTPU completion message. VAXTPU
uses the keyword to determine the severity level of the associated
completion message and performs the action you specify on all completion
messages of that severity level or greater.

DESCRIPTION To set the action that is taken when VAXTPU returns a completion status
of the specified severity, use the SET (MESSAGE_ACTION_TYPE) built-in.

SIGNALED
ERRORS

7-382

The action you specify using SET (MESSAGE_ACTION_TYPE) is taken
for all completion messages of the specified severity or greater severity.

TPU$_TOOFEW ERROR SET (MESSAGE_ACTION_
LEVEL) requires two parameters.

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

TPU$_1LLSEVERITY WARNING Illegal severity specified; VAXTPU
used the severity "error."

/

·~---• I

n.
' ·-\

..... _./

L

EXAMPLES

VAXTPU Built-In Procedures
SET (MESSAGE_ACTION_LEVEL}

D SET (MESSAGE_ACTION_TYPE, REVERSE);
SET (MESSAGE_ACTION_LEVEL, 3);

These statements direct VAXTPU to display informational, warning, and
error messages in reverse video for 1/2 second, then in ordinary video.

SET (MESSAGE_ACTION_TYPE, BELL);
SET (MESSAGE_ACTION_LEVEL, TPU$_S.UCCESS);

These statements direct VAXTPU to ring the terminal's bell whenever
a completion status occurs with a severity equal to or greater than the
severity of TPU$_SUCCESS. ·

VAXTPU Built-In Procedures
SET (MESSAGE_ACTION_ TYPE)

SET (MESSAGE_ACTION_TYPE)

FORMAT . { NONE }
SET (MESSAGE_ACTJON_ TYPE, BELL)

· REVERSE

PARAMETERS MESSAGE ACTION TYPE
A keyword indicating the action to be taken when VAXTPU generates a
completion status of the severity you specify.

NONE
A keyword directing VAXTPU to take no action. This is the default.

BELL
A keyword directing VAXTPU to ring the terminal's bell when a completion
status of the specified severity is returned.

REVERSE
A keyword directing VAXTPU to display the completion status in reverse
video for 1/2 second, then display the status in ordinary video.

DESCRIPTION To set the severity at which the action is taken, use the SET (MESSAGE_
ACTION_LEVEL) built-in. The action you specify using SET (MESSAGE_
ACTION_TYPE) is taken for all completion messages of the specified
severity or greater severity.

SIGNALED
ERRORS

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

EXAMPLE
SET (MESSAGE_ACTION_TYPE, REVERSE);
SET (MESSAGE_ACTION_LEVEL, 3);

ERROR SET (MESSAGE_ACTION_ TYPE)
requires two parameters.

ERROR You specified more than two
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an invalid keyword.

These statements direct VAXTPU to display informational, warning, and
error messages in reverse video for 1/2 second, then in ordinary video.

7-384

·,
\

j

(_)

i

I \

_)
\

'--

VAXTPU Built-In Procedures
SET (MESSAGE_FLAGS)

SET (MESSAGE_FLAGS)

FORMAT SET (MESSAGE_FLAGS, integer)

PARAMETERS MESSAGE FLAGS
The message flags in the $PUTMSG system service.

integer
The value specified for the $PUTMSG message codes. Table 7-7 lists the
message codes.

DESCRIPTION The following table shows the message codes for $PUTMSG:

Table 7-7 Message Codes for $PUTMSG System Service

Bit Value Meaning

0 1 Include text of message.
0 Do not include text of message.

1 1 Include message identifier.
0 Do not include message identifier.

2 1 Include severity level indicator.
0 Do not include severity level indicator.

3 1 Include facility name.
0 Do not include facility name.

If you do not set a value for the message flags, the default message flags
for your process are used. Setting the message flags to O does not turn
off the message text; it causes VAX.TPU to use the default message flags
for your process. In addition to setting the message flags from within
VAX.TPU, you can set them at the DCL level with the command SET
MESSAGE. The DCL command SET MESSAGE is the only way you can
turn off all message text. See the VMS DCL Dictionary for ixµormation on
the DCL command SET MESSAGE.

Table 7-8 shows the predefined constants available for use with SET
(MESSAGE_FLAGS).

Table 7-8 Message Flag Values

Bit Constant Meaning

0 TPU$K_MESSAGE_TEXT Include text of message.

1 TPU$K_MESSAGE_ID Include message identifier.

2 TPU$K_MESSAGE_SEVERITY Include severity level indicator.

3 TPU$K_MESSAGE_FACILITY Include facility name.

VAXTPU Built-In Procedures
SET (MESSAGE_FLAGS)

SIGNALED
ERRORS

EXAMPLES

TPU$_FLAGTRUNC

TPU$_1NVPARAM

TPU$_ TOOFEW

TPU$_ TOOMANY

WARNING Message flag values must be less
than or equal to 15.

ERROR·

ERROR

ERROR

One or more of the specified
parameters have the wrong type.
SET (MESSAGE_FLAGS) requires
at least two parameters.
SET (MESSAGE_FLAGS) accepts
no more than two parameters.

D SET (MESSAGE_FLAGS, 2)

This statement causes the message identifier to be the only item included
in VAXTPU messages. The integer 2 sets bit 1.

Ii SET (MESSAGE_FLAGS, 5)

This statement causes the message text and the severity level indicator to
be included in VAXTPU messages. The integer 5 is a bit-encoded integer
setting both bit 2 and bit O to 1.

i SET (MESSAGE_FLAGS, TPU$K_MESSAGE_SEVERITY);
MESSAGE (TPU$_TOOFEW);

El

In this code fragment, the SET (MESSAGE_FLAGS) statement directs
VAXTPU to include only the message severity level in messages identified
by keywords or integers. Since TPU$_TOOFEW is an error-level message,
the MESSAGE statement above causes VAXTPU to display "%E" in the
message buffer. VAXTPU does not display the text associated with the
keyword TPU$_TOOFEW because the statement does not contain an
integer or constant directing VAXTPU to display the text. For more
information on using constants to specify message format, see the
description of the MESSAGE_TEXT built-in.

SET (MESSAGE FLAGS, TPU$K MESSAGE ID+ TPU$K_MESSAGE_TEXT);
MESSAGE (TPU$_TOOFEW); - -

In this code fragment, the integer parameter to SET (MESSAGE_
FLAGS) is specified as two constants representing encoded bits. This
message flag setting turns on the display of both message identifier
and message text. Therefore, when the MESSAGE statement in this
code fragment is compiled and executed, VAXTPU displays the words
"%TOOFEW, Too few arguments" in the message buffer.

7-386

,/

\

j

G
VAXTPU Built-In Procedures

SET (MODIFIABLE}

SET (MODIFIABLE)

FORMAT SET (MODIFIABLE, buffer, { g~F })

PARAMETERS MODIFIABLE.
The ability to modify a buffer.

buffer
The buffer that will either be unmodifiable or able to be edited.

ON
Makes the buffer modifiable.

OFF
Makes the buffer unmodifiable, allowing only deletion of th~ buffer and
setting of marks and ranges. Any attempt to change the buffer will result
in a warning message.

DESCRIPTION When a buffer is not modifiable, any attempt to insert, delete, or otherwise
modify the contents of the buffer results in a warning message. This only
affects the text within the buffer. The buffer can still be deleted, and
marks and ranges can still be created or deleted in the text within the
buffer.

SIGNALED
ERRORS

Newly created buffers are modifiable by default if a template buffer was
not used on the call to the CREATE_BUFFER procedure. The modifiability
status is taken from the template buffer if one was specified.

You cannot make the messages buffer unmodifiable.

TPU$_ TOO FEW ERROR The SET (MODIFIABLE) built-in
requires three parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_MSGBUFSET ERROR You cannot force the message
buffer to be nonmodifiable.

TPU$_BADKEY ERROR Only the ON and OFF keywords
are valid.

7-387

VAXTPU Built-In Procedures
SET (MODIFIABLE)

EXAMPLE
SET (MODIFIABLE, CURRENT_BUFFER, OFF)

7-388

This statement makes the cur.ent buffer unmodifiable. Any attempt to
change the buffer fails with a warning message.

)

(U

u

u
'-..

VAXTPU Built-In Procedures
SET {MODIFIED)

SET {MODIFIED)

FORMAT

PARAMETERS

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

Turns on or turns off the flag indicating that the specified buffer has been
modified.

SET (MODIFIED, b_uffer, { g~F })

MODIFIED
A keyword directing VAXTPU t9 tum on or tum off the indicator
designating a buffer as modified.

buffer
The buff er whose indicator you want to control.

ON
A keyword directing VAXTPU to mark a buffer as modified.

OFF
A keyword directing VAXTPU to mark a buffer as unmodified.

Use SET (MODIFIED) with caution. ,When you tum off the flag indicating
that the buffer is modified, it is possible to exit from an application layered
on VAXTPU without writing out the contents of a modified buffer. Be sure
your extension or layered application handles this possibility.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET {MODIFIED) cannot return a
value.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET {MODIFIED) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
the SET {MODIFIED) built-in.

SET (MODIFIED, CURRENT_BUFFER, ON);

This statement marks the current buffer as modified.

VAXTPU Built-In Procedures
SET (MOUSE)

SET (MOUSE)

FORMAT

PARAMETERS

{ ON } . { ON } I OFF .: J SET (MOUSE, OFF)

MOUSE
Indicates that you are using SET to enable or disable VAXTPU's mouse
support.

The default mouse setting depends on the terminal you are using. If the \.
VAXTPU statement GET_INFO (SCREEN, "dec_crt2") returns true on)
your terminal, mouse support is turned on by default. Otherwise, mouse
support is turned off by default.

ON
Causes VAXTPU to recognize mouse buttons when they are pressed, and
allows you to bind programs or procedures to mouse buttons. Enables the
LOCATE_MOUSE and POSITION (MOUSE) built-ins.

OFF
Disables VAXTPU mouse support. Pressing a mouse button when the
mouse is set to OFF has no effect.

DESCRIPTION Since VAXTPU mouse support disables the terminal emulator's cut and
paste feature in non-DECwindows VAXTPU, you must turn off VAXTPU
mouse support to use the non-VAXTPU cut and paste capability while
VAXTPU is running.

The optional return value specifies whether VAXTPU mouse support was)
enabled or disabled before the current SET (MOUSE) statement was
executed. This allows you to enable or disable mouse support and then
reset the support to its previous ·setting without having to make a separate
call.

SIGNALED
ERRORS

TPU$_BADKEY WARNING The keyword must be either ON or
OFF.

TPU$_MOUSEINV WARNING You have tried to enable mouse
support on an incompatible
terminal.

TPU$_ TOOFEW ERROR SET (MOUSE) requires two
parameters.

TPU$_ TOO MANY ERROR You specified more th.an two ()
parameters. . ' •,,.

\
TPU$_1NVPARAM ERROR One or more of the specified

parameters have the wrong type.
·J

7-390

EXAMPLE
SET (MOUSE, OFF)

(

VAXTPU Built-In Procedures
SET (MOUSE)

This statement turns off mouse support.

7-391

VAXTPU Built-In Procedures
SET (NO_ WRITE)

SET (NO_WRITE)

FORMAT
SET (NO_WRITE, buffer [{: g~F }];

PARAMETERS NO WRITE

SIGNALED
ERRORS

EXAMPLES

D SET (NO_WRITE,

Specifies that VAXTPU should not create an output file from the contents
of a buffer after execution of a QUIT or EXIT statement even if the
contents of the buffer have been modified.

By default, a buffer is written out if it has been modified.

buffer
The buffer whose contents you do not want written out.

ON
Causes the buffer you name not to be written out.

OFF
Lets you change a buffer from the no-write state to the default state. By
default, any modified buffers are written out after execution of a QUIT or
EXIT statement.

TPU$_ TOO FEW ERROR SET (NO_WRITE) requires three
parameters.

TPU$_TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

my_buffer)

This statement causes my _buffer not to be saved in a file after execution of
a QUIT or EXIT statement.

I SET (NO_WRITE, my_buffer, OFF)

7-392

This statement turns off the no-write state of my_buffer. The contents of
the buffer are written out after· execution of a QUIT or EXIT statement if
the buffer has been modified.

\
)

(

(u

VAXTPU Built-In Procedures
SET (OUTPUT_FILE)

SET {OUTPUT_FILE)

FORMAT SET (OUTPUT_FILE, buffer, string)

PARAMETERS OUTPUT FILE
A keyword indicatin'.g that SET is to control creation of an output file for
the contents of a buffer after execution of a QUIT or EXIT statement.

buffer
The buffer whose contents are written to the specified file.

string
The file specification for the file being written out.

The default output file. is the input file name and the highest existing
version number for that file plus 1.

DESCRIPTION VAXTPU does not write out the contents of a buffer after execution of a
QUIT or EXIT statement if the buffer has not been modified.

SIGNALED
ERRORS

EXAMPLE

If a buffer is set to NO_ WRITE, a file is not written out after execution of
a QUIT or EXIT statement even though you specified a file specification
for the contents of the buffer with the built-in procedure SET (OUTPUT_
FILE).

TPU$_ TOOFEW ERROR SET (OUTPUT _FILE) requires
three parameters.

TPU$_ TOOMANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (OUTPUT_FILE, paste_buffer, "newfile.txt")

This statement causes the output file for paste_buffer to be
NEWFILE.TXT.

VAXTPU Built-In Procedures
SET (OVERSTRIKE)

SET (OVERSTRIKE)

FORMAT SET (OVERSTRIKE, buffer)

PARAMETERS OVERSTRIKE

SIGNALED
ERRORS

EXAMPLE

A keyword specifying that SET is to control the mode of text entry.
OVERSTRIKE means that the characters that you add to the buffer
replace the characters in the buffer starting at the editing point and
continuing for the length of the text that you enter.

The default mode of text entry is INSERT.

See also the description of the built-in procedure SET (INSERT). For
information on how to control overstrike behavior in tabs, see SET (PAD_
OVERSTRUCK_TABS).

buffer
The buffer whose mode of text entry you want to set.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

ERROR

ERROR

ERROR

ERROR

SET (OVERSTRIKE) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

SET (OVERSTRIKE, my_buffer)

7-394

This statement sets· the mode for text entry in my_buffer to overstrike.
Characters that you enter replace characters already in the buffer, starting
at the editing point and continuing for the length of the text that you
enter.

)

)

(

(_)
__

SET (PAD)

FORMAT

PARAMETERS

SET (PAD, window, { g~F })

PAD

VAXTPU Built-In Procedures
SET (PAD)

A keyword indicating that SET is to control whether screen lines are
padded with blanks. This keyword determines whether SET pads out
the left and right ends of lines, beyond the text on the line. When video
attributes are applied to a padded window, the window has an even or
"boxed" appearance.

window
The window in which lines are padded.

ON
Causes VAXTPU to display blanks after the last character of a record so
that the screen line extends to the right side of the window. If there are
not enough lines in a buffer to fill an entire window, VAXTPU displays
blank lines (according to the video setting of the window) from the end-of
buffer line to the end of the window.

OFF
Causes the display of lines on the screen to stop at the last character of a
record. When video attributes are applied to the window, the window has
a ragged appearance on the sides.

DESCRIPTION By default, VAXTPU ends a line on the screen at the end of a record,
without adding padding blanks. The default behavior of not padding the
screen gives maximum editing performance. You can change the default
with SET (PAD) for special visual effects. The records in the buffer are not
padded; only the display lines have the padding.

SIGNALED
ERRORS

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

ERROR

ERROR

ERROR

ERROR

ERROR

SET (PAD) requires three
parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

The keyword must be ON or OFF.

You specified an unknown
keyword. ·

VAXTPU Built-In Procedures
SET (PAD}

EXAMPLE
SET (PAD, second_window, ON);
SET (VIDEO, second_window, REVERSE);

7-396

The first statement causes second_window to be blank padded. The second
statement causes second_window to be displayed in reverse video. The
window has an even right and left margin when displayed.

\

u

VAXTPU Built-In Procedures
SET (PAD_OVERSTRUCK_TABS)

SET{PAD_OVERSTRUCK_TABS)

FORMAT

PARAMETERS

SET (PAD_OVERSTRUG_K_ TABS, { g~F })

PAD OVERSTRUCK TABS
How tabs are handled in overstrike mode.

ON
Causes the insertion of one or more characters on top of a tab in overstrike
mode, as if the text insertion mode were INSERT instead of OVERSTRIKE
for the width of the tab.

OFF
Causes overstruck tabs to be replaced by the first character that is
inserted in the buffer in overstrike mode on top of a tab. This is the
default setting.

DESCRIPTION PAD_OVERSTRUCK_TABS controls how VAXTPU handles tabs in
overstrike mode. When earlier versions of VAXTPU overstruck a tab,
VAXTPU inserted spaces if necessary to preserve the cursor position
within the tab, and then replaced the tab with the character that was
being entered. This behavior is preserved when PAD_OVERSTRUCK_
TABS is set OFF.

SIGNALED
ERRORS

When PAD_OVERSTRUCK_TABS is set ON, VAXTPU inserts spaces
as necessary to preserve the cursor position within the tab of the first
character of the text, and then inserts the text. The tab is only replaced
when it occupies a single column.

TPU$_ TOO FEW ERROR The SET (PAD_OVERSTRUCK_
TABS) built-in requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY WARNING Only ON and OFF are allowed.

VAXTPU Built-In Procedures
SET (PAD_ OVERSTRUCK,... TABS)

EXAMPLES

7-398

The following examples show what happens when PAD_OVERSTRUCK_
TABS is set to OFF. In these examples, the character">" represents
the tab, the character 11

•

11 represents one column of white space, and an
underscore (_) represents the cursor.

Suppose a buffer contains the following text, with the cursor in the middle
of white space created by a tab:

abc> def .

Suppose the user inserts the character 11*" while PAD_OVERSTRUCK_
TABS is set to OFF. The white space to the left of the * is preserved.
The tab character is removed, and the white space to the right of the * is
not preserved. The text to the right of the collapsed white space moves · -,'\
leftward. The result is as follows: .)

abc .. *def

Note that the cursor is on the "d" character. Suppose, given the same
initial text, the user types the string "xyzzy11 while PAD_OVERSTRUCK_
TABS is set to OFF. The tab is removed. The text to the right of the tab
moves leftward. The user's new string, "xyzzy11

, is written over the old"
text. The result is as follows:

abc .. xyzzy

When PAD_OVERSTRUCK_TABS is set to ON, the text to the right of the
tab does not move to the left when text is inserted within the tab. Instead
of removing the tab, VAXTPU places the tab to the right of the inserted
text if the inserted text is shorter than the length of the tab. The newly
placed tab creates only enough white space to preserve the original column
position of the text to the right of the tab.

The following examples show what happens when PAD_OVERSTRUCK_
TABS is set to ON. In these examples, the character 11>" represents the tab,
the character ". 11 represents one colunin of white space, and the underscore
(_) represents the cursor.

Suppose a buffer contains the following text, with the cursor in the middle
of white space created by a tab:

abc> def

Suppose the user inserts the character"*" while PAD_OVERSTRUCK_
TABS is set to ON. The white space to the left of the* is preserved. The
tab is inserted after the * character. The result is as follows:

abc .. *>.def

Suppose, given the sam~ initial text, the user inserts the string "xyzzy"
while PAD_OVERSTRUCK_TABS is set to ON. To preserve the original
position of the text to the right of the tab, VAXTPU fills the white space
created by the tab with characters from the new string. When the white
space is filled, VAXTPU writes the new characters over the old characters.
Thus, the old text does not move left or right, but rather is overwritten by
the new text. The result is as follows:

abc .. xyzzyf

)

(

~I

VAXTPU Built-In Procedures
SET (PERMANENT)

SET (PERMANENT)

FORMAT SET (PERMANENT, buffer)

PARAMETERS PERMANENT

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

Specifies that a buff~r cannot be deleted. By default, buffers can be
deleted; they are not permanent.

buffer
The buffer that is not to be deleted.

Once you use SET (PERMANENT, buffer) to make a buffer permanent,
you cannot reset the buff er so that it can be deleted.

TPU$_ TOOFEW ERROR SET (PERMANENT) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (PERMANENT, master_buffer)

This statement causes master _buffer to become a permanent buffer.

7-399

VAXTPU Built-In Procedures
SET (POST _KEY _PROCEDURE)

SET .(POST _KEY _PROCEDURE)

FORMAT

I { ,' !~~~~sequence } I
SET (POST_KEY_PROCEDURE, stringt , program)

, range
, string2

PARAMETERS POST KEY PROCEDURE

7-400

The action taken after the code or learn sequence bound to a key is
executed.

string1
A quoted string, or a variable name representing a string constant, that
specifies the key map list for which this procedure is called.

buffer
The buffer containing VAXTPU statements specifying the action to be
taken after the code or learn sequence bound to a key is executed. SET
(POST_KEY_PROCEDURE) compiles the statements in the buffer and
stores the resulting program in the specified key map list.

learn_sequence
The learn sequence specifying the action to be taken after the code or
learn sequence bound to a key is executed. The contents of a variable of
type learn do not require compilation. SET (POST_KEY_PROCEDURE)
stores the learn sequence in the specified key map list.

program
The program specifying the action to be taken after the code or learn
sequence bound to a key is executed. The contents of a variable of type
program do not require compilation. SET (POST_KEY_PROCEDURE)
stores the program in the specified key map list.

range
The range containing VAXTPU statements specifying the action to be
taken after the code or learn sequence bound to a key is executed. SET
(POST_KEY_PROCEDURE) compiles the statements in the range and
stores the resulting program in the specified key map list.

string2
The string containing VAXTPU statements specifying the action to be
taken after the code or learn sequence bound to a key is executed. SET
(POST_KEY_PROCEDURE) compiles the statements in the string and
stores the resulting program in the specified key map list.

I ,,

VAXTPU Built-In Procedures
(_j SET (POST_KEY_PROCEDURE)

u

DESCRIPTION Postkey procedures allow an editor to perform some specified action before
and after execution of code bound to a key. If you do not specify the third
parameter, the postkey procedure for the specified key map list is deleted.

SIGNALED
ERRORS

EXAMPLE

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, VAXTPU executes the prekey procedure of that key
if a prekey proc_edure has been set.

2 For each key in the learn sequence, VAXTPU executes procedures or
programs in the following order:

a. VAXTPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAXTPU executes the code bound to the key itself.

c. VAXTPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

The pre- and postkey procedures bound to a key map list can be found by
using the following calls to the GET_INFO built-in procedure:

GET INFO (key map list name, "pre key procedure")
GET=INFO (key=map=list=name, "post_key_procedure")

By default, newly created key map lists do not have postkey procedures.

TPU$_ TOO FEW ERROR The SET (POST_KEY_
PROCEDURE) built-in requires
at least two parameters.

TPU$_ TOO MANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or. more of the specified
parameters have the wrong type.

TPU$_COMPILEFAIL ERROR Compilation aborted because of
syntax errors.

TP-Ll$_NOKEYMAPLIST WARNING Attempt to access an undefined
.key map list.

SET (POST_KEY_PROCEDURE, "tpu$key_map_list",
'MESSAGE ("Key"+ GET_INFO (LAST_KEY, "name")+" Executed")');

This code displays a message after the code bound to a key is executed.

7-401

VAXTPU Built-In Procedures
SET(PRE_KEY_PROCEDURE)

SET(PRE_KEY_PROCEDURE)

FORMAT

I { ; !~;i~sequence } I
SET (PRE_KEY_PROCEDURE, string1 , program)

, range
, string2

PARAMETERS PRE KEY PROCEDURE

7-402

The action taken before the code or learn sequence bound to a key is
executed.

string1
A quoted string, or a variable name representing a string constant, that
specifies the key map list for which this procedure is called.

buffer
The buffer containing VAXTPU statements specifying the action to be
taken before the code or learn sequence bound to a key is executed. SET
(PRE_KEY_PROCEDURE) compiles the statements in the buffer and
stores the resulting program in th~ .specified key map list.

learn_sequence
The learn sequence specifying the action to be taken before the code or
learn sequence bound to a key is executed. The contents of a variable of
type learn do not require compilation. SET (PRE_KEY_PROCEDURE)
stores the learn sequence in the specified key map list.

program
·The program specifying the action to be taken before the code or learn
sequence bound to a key is executed. The contents of a variable of type
program do not require compilation. SET (PRE_KEY_PROCEDURE)
stores the program in the specified key map list.

range
The range containing VAXTPU statements specifying the action to be
taken before the code or learn sequence bound to a key is executed. SET
(PRE_KEY_PROCEDURE) compiles the statements in the range and
stores the resulting program in the specified key map list.

string2
The string containing VAXTPU statements specifying the action to be
taken before the code or learn sequence bound to a key is executed. SET
(PRE_KEY_PROCEDURE) compiles the statements in the string and
stores the resulting program in the specified key map list.

\
j

VAXTPU Built-In Procedures
(C_; SET (PRE_KEY _PROCEDURE)

DESCRIPTION Prekey procedure allows an editor to perform some specified action before
the execution of code bound to a key. If you do not specify the third
parameter, the prekey procedure for the specified key map list is deleted.

SIGNALED
ERRORS

EXAMPLE

Pre- and postkey procedures interact with learn sequences in the following
order:

1 When the user presses the key or key sequence to which the learn
sequence is bound, VAXTPU executes the prekey procedure of that key
if a prekey pro_cedure has been set.

2 For each key in the learn sequence, VAXTPU executes procedures or
programs in the following order:

a. VAXTPU executes the prekey procedure of that key if a prekey
procedure has been set.

b. VAXTPU executes the code bound to the key itself.

c. VAXTPU executes the postkey procedure of that key if a postkey
procedure has been set.

3 When all keys in the learn sequence have been processed, VAXTPU
executes the postkey procedure, if one has been set, for the key to
which the entire learn sequence was bound.

The prekey procedure or postkey procedure bound to a key map list can be
found by using the following calls to the GET_INFO built-in procedure:

GET INFO (key map list name, "pre key procedure");
GET=INFO (key=map=list=name, "post_key_procedure");

By default, newly created key map lists do not have prekey procedures.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_COMPILEFAIL

TPU$_NOKEYMAPLIST

ERROR The SET (PRE_KEY _
PROCEDURE) built-in requires
at least two parameters.

ERROR You specified more than three
parameters. ·

ERROR One or more of the specified
parameters have the wrong type.

ERROR Compilation aborted because of
syntax errors.

WARNING Attempt to access an undefined
key map list.

SET (PRE KEY PROCEDURE, "tpu$key map list",
-'MESSAGE ("Working ... ")-;-); -

This code displays a message before the code bound to a: key is executed.

7-403

VAXTPU Built-In Procedures
SET (PROMPT _AREA)

SET (PROMPT _AREA)

FORMAT

{

NONE } BOLD
SET (PROMPT_AREA, integer1, integer2, BLINK)

REVERSE
UNDERLINE

PARAMETERS PROMPT AREA
An area on the screen in which the prompts generated by the built-in
procedure READ_LINE are displayed.

By default, there is no prompt area.

integer1
The screen line number at which the prompt area starts.

integer2
The number ~f screen lines in the prompt area.

NONE
Applies no video attributes to the characters in the prompt area.

BOLD
Causes the characters in the prompt area to be bolded.

BLINK
Causes the characters in the prompt area to blink.

REVERSE
Causes the characters in the prompt area to be displayed in reverse video.

UNDERLINE
Causes the characters in the prompt area to be underlined.

DESCRIPTION If the prompt area overlaps a line of a window that is visible on the screen,
the line is erased when the built-in procedure READ_LINE is executed.
When the execution of READ_LINE is completed, the line is restored. If
the prompt area does not overlap any windows, the prompt area continues
to display the READ_LINE prompt and your input until new information
is sent to the prompt area.

•

)

)

If you have a multiple-line prompt area and your terminal has hardware
scrolling capabilities, the first prompt appears on the last line of the
prompt area and as subsequent prompts are issued, the previous prompts (j
scroll up to make room for new ones. If there are more prompts than there '
are prompt-area lines, the extra prompts are scrolled out of the window. . _ __,,/

7-404

0

SIGNALED
ERRORS

(

u
EXAMPLE
SET (PROMPT_AREA,

VAXTPU Built-In Procedures
SET (PROMPT _AREA)

If your terminal does not have hardware scrolling capabilities, prompts are
displayed starting at the first line in the prompt area. When the prompt
area is filled, display starts again at the first line in the prompt area.

TPU$_ TOOFEW ERROR SET (PROMPT_AREA) requires
four parameters.

TPU$_ TOOMANY ERROR You specified more than four
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be NONE,
BOLD, BLINK, REVERSE, or
UNDERLINE.

TPU$_UNKKEYWORD ERROR You have specified an unknown
keyword.

TPU$_BADFIRSTLINE WARNING Prompt area must not start off
screen, or be less than one line
long.

TPU$_BADPROMPTLEN WARNING Prompt area must not extend off
screen.

24, 1, REVERSE)

This statement causes the prompt area to be screen line number 24. It is
one line and is displayed in reverse video.

7-405

VAXTPU Built-In Procedures
SET (RESIZE_ACTION)

SET (RESIZE_ACTION)

FORMAT

Specifies code to be executed when a resize event has occurred. Specifying
a resize action routine overrides any previous resize action routines that have
been defined.

SET (RESIZE_ACTION

, buffer
, learn_sequence
, program
, range
, string
,NONE

)

PARAMETERS RESIZE ACTION

7-406

A keyword directing VAXTPU to set an attribute related to a resize action
routine.

buffer
The buffer that specifies the actions that VAXTPU should take whenever
it is notified of a resize event.

learn_sequence
The learn sequence that specifies the actions that VAXTPU should take
whenever it is notified of a resize event.

program
The program that specifies the actions that VAXTPU should take whenever
it is notified of a resize event. ·

range
The range that specifies the actions that VAXTPU should take whenever it
is notified of a resize event.

string
The string that specifies the actions that VAXTPU should take whenever
it is notified of a resize event.

NONE
A keyword directing VAXTPU to delete the resize action routine. If you
specify this keyword or do not specify the parameter at all, the application
is not notified when a resize event occurs.

·)

n r .

. ___ ,)

SIGNALED
ERRORS

(

\.

EXAMPLE
SET (RESIZE_ACTION,

u

TPU$_1NVPARAM

TPU$_NORETURNVALUE

. TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

"eve$$resize_action");

VAXTPU Built-In Procedures
SET (RESIZE_ACTION}

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (RESIZE_ACTION} cannot
return a value .

ERROR You can use the SET (RESIZE_
ACTION} built-in only if you are
using DECwindows VAXTPU.

ERROR Too few arguments passed to the
SET (RESIZE_ACTION} built-in.

ERROR Too many arguments passed
to the SET (RESIZE_ACTl(?N}
built-in.

This statement specifies the procedure EVE$$RESIZE_ACTION as the
resize routine. To see this statement used in an initializing procedure, see
the example in the description of the SET (SCREEN_LIMITS) built-in.

VAXTPU Built-In Procedures
SET (REVERSE)

SET (REVERSE)

FORMAT SET (REVERSE, buffer)

PARAMETERS REVERSE . ..
The direction of the buffer. REVERSE means to go toward the beginning
of the buffer.

The default direction for a buffer is fo_rward.

buffer
The buffer whose direction you want to set.

DESCRIPTION Interfaces use this feature to keep track of direction for searching or
movement.

SIGNALED
ERRORS

EXAMPLE

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

ERROR

ERROR

ERROR

ERROR

SET (REVERSE) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

You specified an invalid keyword.

SET (REVERSE, my_buffer)

7-408

This statement causes the direction of the buffer to be toward the
beginning of the buffer.

G

(

(_)

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN)

SET (RIGHT_MARGIN)

FORMAT SET (RIGHT_MARGIN, buffer, integer)

PARAMETERS RIGHT MARGIN

DESCRIPTION

SIGNALED
ERRORS

The right-margin of a buffer.

buffer
The buffer in which the right margin is being set.

integer
The column at which the right margin is set.

The SET (RIGHT_MARGIN) built-in procedure allows you to change only
the right margin ·of a buffer.

Newly created buffers receive a right margin of 80 if a template buffer is
not specified on the call to the CREATE_BUFFER built-in procedure. H
a template buffer is specified, the right margin of the template buffer is
used.

Use SET (RIGHT_MARGIN) to override the default right margin.

The buffer margin settings are independent of the terminal width or
window width settings.

The built-in procedure FILL uses these margin settings when it fills the
text of a buffer.

The SET (RIGHT_MARGIN) built-in procedure controls the buffer margin
setting even if the terminal width or window width is set to something
else.

The value of the right margin must be less than the maxim.um record
size for the buffer, and greater than the left margin value. You can use
the built-in procedure GET_INFO (buffer, "record_size") to find out the
maxim.um record size of a buffer.

If you want to use the margin settings of an existing buffer in a user
written procedure, the statements GET_INFO (buffer, "left_margin")
and GET_INFO (buffer, "right_margin") return the values of the margin
settings in the specified buffer.

TPU$_ TOOFEW

TPU$_ TOOMANY

ERROR

ERROR

The SET (RIGHT_MARGIN)'
built-in requires three parameters.

You· specified more than three
parameters.

'7...Ana

VAXTPU Built-In Procedures
SET (RIGHT _MARGIN)

EXAMPLES

TPU$_1NVPARAM

TPU$_BADMARGINS

ERROR One or more of the specified
parameters have the wrong type.

WARNING Right must be greater than left;
both must be greater than zero.

D SET (RIGHT_MARGIN, my_buffer, 132)

This statement causes the right margin of the buffer represented by the
vari"able my _buffer to be changed. The right margin of the buffer is set to
132. The left margin is unchanged.

SET (RIGHT_MARGIN, CURRENT_BUFFER, 70)

7-410

This statement causes the right margin of the current buffer to be changed
to 70. As above, the left margin is unchanged.

~

---· -u

L '
i

\:_

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN_ACTION)

SET (RIGHT_MARGIN_ACTION)

FORMAT

{

: !~~i:!equence } I
SET (RIGHT_MARGJN_ACTION, bufter1 , program)

, range
, string

PARAMETERS RIGHT MARGIN ACTION .
Refers to the action taken when the user presses a self-inserting key while
the cursor is to the right of a buffer's right margin. A self-inserting key is
one that is associated with a printable character.

buffer1
The buffer in which the right margin action routine is being set.

buffer2
A buffer containing the VAXTPU statements to be executed when the user
presses a self-inserting key while the cursor is to the right of a buffer's
right margin.

learn_sequence
A learn sequence that is to be replayed when the user presses a self
inserting key while the cursor is to the right of a buffer's right margin.

program
A program that is to be executed when the user presses a self-inserting
key while the cursor is to the right of a buffer's right margin.

range
A range that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the right of a
buffer's right margin.

string
A string that contains VAXTPU statements that are to be executed when
the user presses a self-inserting key while the cursor is to the right of a
buffer's right margin.

DESCRIPTION The SET (RIGHT_MARGIN_ACTION) built-in procedure allows you to
specify an action to be taken when the user attempts to insert text to
the right of the right margin of a line. If the third parameter is not
specified, the right margin action routine is deleted. If no right margin
action routine has been specified, the text is simply inserted at the current
position after any necessary padding spaces.

Newly created buffers do not receive a right margin action routine if a
template buffer is not specified on the call to the CREATE_BUFFER built
in procedure. If a template buffer is specified, the right margin action
routine of the template buffer is used.

VAXTPU Built-In Procedures
SET (RIGHT_MARGIN_ACTION)

SIGNALED
ERRORS

EXAMPLES

The right margin action routine only affects text entered from the
keyboard or a learn sequence. Inserting text into a buffer to the right
of the right margin using the COPY_TEXT or MOVE_TEXT built-in
procedures does not trigger the right margin action routine.

TPU$_TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_COMPILEFAIL

ERROR

ERROR

ERROR

ERROR

The SET (RIGHT_MARGIN_
ACTION) built-in requires at least
two parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

Compilation aborted because of
syntax errors.

D SET (RIGHT_MARGIN_ACTION, CURRENT_BUFFER, "fill_current_line")

This statement causes the procedure FILL_CURRENT_LINE to be
executed when the user attempts to type a character to the right of
the right margin of the current line. A typical right margin action routine
.invokes the FILL built-in to fill the current line and force text to the right
of the right margin to a new line.

i SET (RIGHT_MARGIN_ACTION, CURRENT_BUFFER)

7-412

This statement deletes any right margin action routine that may be
defined for the current buffer. If the user attempts to type a character to
the right of the right margin of the current line, the text is inserted with J\
spaces padding the text from the end of the line.

,,,,,_,,

(j

(

VAXTPU Built-In Procedures
SET (SCREEN_LIMITS)

SET (SCREEN_LIMITS)

FORMAT

Specifies the minimum and maximum allowable sizes for the VAXTPU screen
during resize operations. VAXTPU passes these limits to the DECwindows
window manager, which is free to use or ignore the limits.

SET (SCREEN_t/MITS, array)

PARAMETERS SCREEN LIMITS

SIGNALED
ERRORS

A keyword directing VAXTPU to pass hints to the DECwindows window
manager about screen size.

array
An integer-indexed array using four elements to specify hints for the
minimum and maximum screen width and length. The array indices and
their corresponding elements are as follows:

1 The minimum screen width, in columns. This value must be at least
0 and less than or equal to the maximum screen width. The default
value is 0.

2 The minimum screen length, in lines. This value must be at least
0 and less than or equal to the maximum screen length.The default
value is 0.

3 The maximum screen width, in columns. This value must be greater
than or equal to the minimum screen width and less than or equal to
255. The default value is 255.

4 The maximum screen length, in lines. This value must be greater than
or equal to the minimum screen length and less than or equal to 255.
The default value is 255.

TPU$_BADVALUE WARNING An integer parameter was
specified with a value outside
the valid range.

TPU$_MAXVALUE WARNING You specified a value higher than
the maximum allowable value.

TPU$_MINVALUE WARNING You specified a value lower than
the minimum allowable value.

TPU$_EXTRANEOUSARGS ERROR One or more extraneous
arguments have been specified
for a DECwindows built-in.

TPU$_1NVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

VAXTPU Built-In Procedures
SET (SCREEN_LIMITS)

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_TOOFEW

TPU$_ TOOMANY

TPU$_REOARGSMISSING

EXAMPLE

ERROR

ERROR

ERROR

ERROR

ERROR

PROCEDURE eve$$decwindows_init Module Initialization

LOCAL temp_array;

eve$x_decwindows active := GET INFO (SCREEN, "decwindows");

IF NOT eve$x_decwindows_active
THEN

RETORN (FALSE)
ENDIF;

SET (SCREEN_LIMITS) cannot
return a value.

You can use the SET (SCREEN.,.
LIMITS) built-in only if you are
using DECwindows VAXTPU.

Too few arguments passed to the
SET (SCREEN_LIMITS) built-in.

Too many arguments passed
to the SET (SCREEN_LIMITS)
built-in.

One or more required arguments
are missing.

! The following statements set the package up to handle resize actions.

temp_array := CREATE ARRAY (4);
temp_array {1) := 20; Minimum width.
temp_array {2} := 6; Minimum height.
temp_array {3) := 250; ! Maximum width.
temp_array (4) := 100; ! Maximum height.

SET (SCREEN_LIMITS, temp_array);
SET (RESIZE_ACTION, "eve$$resize_action");.
SET (ENABLE_RESIZE, ON);

ENDPROCEDURE;

7-414

These statements show one possible way that a layered application can
use the SET (SCREEN_LIMITS) built-in. The statements are a portion of
the EVE procedure EVE$$DECWINDOWS_INIT. You can find the original
version in SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

The procedure EVE$$DECWINDOWS_INIT is the module initialization
procedure for the package EVE$DECWINDOWS.

-)
/

)

0
VAXTPU Built-In Procedures

SET(SCREEN_UPDATE)

SET (SCREEN_U·PDATE)

FORMAT

Turns on or turns off support for screen updating. For more information on
screen updating, see Section 6.2.

{ ON } . { ON } I OFF .: J SE;T (SCREEN_UPDATE, OFF)

PARAMETERS SCREEN UPDATE
A keyword directing VAXTPU to set an attribute of screen updating.

ON
A keyword indicating that screen updating is enabled.

OFF
A keyword indicating that screen updating is disabled.

return value A variable containing the keyword value ON or OFF. The keyword specifies
whether VAXTPU screen updating support was enabled or disabled before
the current SET (SCREEN_UPDATE) statement was executed. Using the
returned variable, you can enable or disable screen updating and then
reset the support to its previous setting without having to make a separate
call to fetch the previous setting.

DESCRIPTION When you set SCREEN_UPDATE on, the screen manager is immediately
called to update the screen. The extent of the update depends on the
built-ins that have been used since the last screen update. The update
may range from a complete screen refresh to an updating of the existing
text on the screen.

For more information on screen updating, see Section 6.2.

SIGNALED
TPU$_BADKEY WARNING The keyword must be ON or OFF.

ERRORS
TPU$_1NVPARAM ERROR One or more of the specified

parameters have the wrong type.

TPU$_ TOO FEW ERROR SET (SCREEN_UPDATE) requires
two parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_UNKKEYWORD ERROR You have specified an unknown
keyword.

7--41!;

VAXTPU Built-In Procedures
SET (SCREEN_UPDATE}

EXAMPLE
SET (SCREEN_UPDATE, OFF)

7-416

This statement causes screen updating to be turned off. When you design
an editing interface, you may want to use this statement to prevent some
intermediate processing steps from appearing on the screen.

_)

VAXTPU Built-In Procedures
SET (SCROLL_BAR)

SET (SCROLL_BAR)

FORMAT

Enables a horizontal or vertical scroll bar for the specified window.

1 { integer } == J_SET
widget (SCROLL BAR window. { HORIZONTAL }

- I I VERTICAL I

{ g~F })

PARAMETERS SCROLL BAR

return value

DESCRIPTION

A keyword directing VAXTPU to enable or disable a scroll bar in a
VAXTPU window.

window
The window in which the scroll bar does or does not appear.

HORIZONTAL
A keyword directing VAXTPU to enable or disable a horizontal scroll bar.

VERTICAL
A keyword directing V AXTPU to enable or disable a vertical scroll bar.

ON
A keyword indicating that the scroll bar is to be visible in the specified
window.

OFF
A keyword indicating that the scroll bar is not to be visible in the specified
window.

integer

widget

The value O if an error prevents VAXTPU from associating a
widget with the window.

The widget instance implementing the vertical or horizontal
scroll bar associated with a window.

Scroll bars represent the location of the editing point in the buffer. By
dragging the scroll bar's slider, the user can reposition the editing point in
the buffer mapped to the window. Scroll bars are unique among VAXTPU
widgets in the following respects:

• Each scroll bar widget is associated with a specific VAXTPU window.

• Instead of handling scroll widgets at the application level, you can
direct VAXTPU to handle resizing and repositioning of the scroll bar
slider. VAXTPU always handles sizing and positioning of the scroll bar
itself.

"7-.A1"7

VAXTPU Built-In Procedures
SET (SCROLL_BAR)

SIGNALED
ERRORS

7-418

Note that windows having fewer than four lines of text cannot display a
vertical scroll bar. Similarly, a window less than four columns wide cannot
display a horizontal scroll bar.

SET (SCROLL_BAR) returns the scroll bar widget, or O if an error
prevents VAXTPU from associating a widget with the window.

By default, VAXTPU creates its windows without any scroll bars; using
SET (SCROLL_BAR) with the keyword ON overrides the default. To make
a scroll bar invisible after it has been placed in a window (for example,
to allow the user of a layered application to tum off scroll bars), use SET
(SCROLL_BAR) with the keyword OFF.

When the size of a VAXTP(! window changes, VAXTPU automatically
adjusts the scroll bar to fit the new window size. If a window becomes too ·)
small to support a scroll bar, VAXTPU turns off the scroll bar. However, .
if the window subsequently becomes larger, VAXTPU automatically turns
the scroll bar back on.

The height of a vertical scroll bar represents the total number of lines in
the buffer mapped to the window.

The width of a horizontal scroll bar represents the greater of the following:

• The width of the widest line in the set of µ.nes visible in the window.
"Width" means the distance from the first character on the line to the
last character, regardless of whether all characters on the line are
visible.

• In a case where none of the lines in the set of lines visible in the
window has text extending all" the way to the rightmost window
column, the width of the widest line from the first character on the
line to the rightmost window column.

Note that the horizontal scroll bar represents only the lines that are

_,I

visible in the window, no~ all the lines in the buffer mapped to the window.)

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_1NVPARAM. ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REOSDECW ERROR You can use the SET (SCROLL_
BAR) built-in only if you are using
DECwindows VAXTPU.

TPU$_ TOO FEW ERROR Too few arguments passed to the
SET (SCROLL_BAR) built-in.

TPU$_ TOOMANY ERROR Too many arguments passed to
i~ the SET (SCROLL_BAR) built-in.

, '
\

", .. J

(

EXAMPLE

VAXTPU Built-In Procedures
SET (SCROLL_BAR)

vertical bar := SET (SCROLL_BAR, CURRENT_WINDOW, VERTICAL, ON);

This statement turns on a vertical scroll bar in the current window.

For sample code using the SET (SCROLL_BAR) built-in, see Example B-7.

.........

VAXTPU Built-In Procedures
SET (SCROLL_BAR_AUTO_THUMB)

SET(SCROLL_BAR_AUTO_THUMB)
Enables or disables automatic adjustment of the scroll bar slider.

FORMAT SET 'SCROLL BAR AUTO THUMB window. { HORIZONTAL } 1' - - - ' ' VERTICAL '

{ g~F }J

PARAMETERS SCROLL BAR AUTO THUMB
A keyword directing VAXTPU to enable or disable automatic adjustment
of the scroll bar slider in a VAXTPU window.

window
The window whose scroll bar slider you want VAXTPU to adjust.

HORIZONTAL
A keyword directing VAXTPU to set the slider on a horizontal scroll bar.

VERTICAL
A keyword directing VAXTPU to set the slider on a vertical scroll bar.

ON
A keyword directing VAXTPU to enable automatic adjustment of the scroll
bar slider.

OFF
A keyword directing VAXTPU to disable automatic adjustment of the scroll
bar slider.

DESCRIPTION By default, SET (SCROLL_BAR_AUTO_THUMB) is set to ON and
VAXTPU automatically manages a window's scroll bar slider in the
following ways:

• Adjusts the size of the slider as the user adds, deletes, or moves text,
so that the slider size represents the amount of visible text in relation
to the total amount of text

• Adjusts the size of the slider whenever the size of the window and
the size of the scroll bar change, so that the slider size remains
proportional to the scroll bar size

• Adjusts the position of the slider as the user adds, deletes, or moves
text, so that the slider shows whether the current buffer or line (_~ ··-
contains text not visible on the screen and, if so, where the invisible ·,)
text is in relation to the visible text

· /

7-420

(

SIGNALED
ERRORS

EXAMPLE

VAXTPU Built-In Procedures
SET(SCROLL_BAR_AUTO_THUMB)

When the scroll bar slider is adjusted automatically, the width of the slider
in a horizontal scroll bar represents the width of the window. For example,
the size of the slider changes when the window width is changed from 80
to 132 columns or the reverse. The position of the slider changes when the
window is shifted left or right. The height of the slider in a vertical scroll
bar represents the height of the window.

If you do not want VAXTPU to adjust the scroll bar slider automatically
or if you want to change the size or position of the slider, specify the OFF
keyword. For mor~ information about calculating the size and position of
the slider, see the description of the SET (SCROLL_BAR) built-in.

Note that you cannot disable VAXTPU's automatic adjustment of the scroll
bar itself. VAXTPU always adjusts the scroll bar to the size of the window.

TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOO FEW

TPU$_ TOOMANY

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (SCROLL_BAR_AUTO_
THUMB) cannot return a value.

ERROR You can use the SET (SCROLL_
BAR_AUTO_THUMB) built-in only
if you are using DECwindows
VAXTPU.

ERROR

ERROR

Too few arguments passed to
the SET (SCROLL_BAR_AUTO_
THUMB) built-in.

Too many arguments passed to
the SET (SCROLL_BAR_AUTO_
THUMB) built-in.

vertical bar:= SET (SCROLL_BAR_AUTO_THUMB, CURRENT_WINDOW, VERTICAL, ON);

This statement turns on automatic adjustment of the vertical scroll bar's
slider in the current window.

For sample code using the SET (SCR_OLL_BAR_AUTO_THUMB) built-in,
see Example B-7.

VAXTPU Built-In Procedures
SET (SCROLLING)

SET (SCROLLING)

FORMAT SET (SCROLLING, window, { g~F }, integer1, integer2, integer3)

PARAMETERS SCROLLING

7-422

This keyword refers to the upward or downward movement of existing
lines in a window to make room for new lines at the bottom or top of the
·window. When a window is scrolled, the cursor position remains in the ·)
same column, but the screen line that the cursor is on may change. , __

window
The window in which the scrolling limits are being set.

ON
Causes scrolling of the text in a window to be turned on. This is the
default value for the third parameter if the terminal supports scrolling.

OFF
Causes scrolling of the text in a window to be turned off. The screen is
completely repainted each time a scroll would otherwise take place. This is
the default value for the third parameter if the terminal does not support
scrolling.

integer1
The offset from the top screen line of a window. The offset identifies the
top limit of an area in which the cursor can move as it tracks the editing
point. If the cursor is forced to move above this screen line to track the
editing point, lines in the window move downward so that the cursor stays
within the limits of the scroll margins. If you reach the beginning of the
buff er, the text is no longer scrolled.

The value you specify for this parameter must be greater than or equal to
zero and less than or equal to the number of lines in the window.

integer2
The offset from the bottom screen line of a window. The offset identifies
the bottom limit of an area in which the cursor can move as it tracks the
editing point. If the cursor is forced to move below this screen line to track
the editing point, lines in the window move upward so that the cursor
stays within the limits of the scroll margins. If you reach the end of the
buffer, the text is no longer scrolled.

The value you specify for this parameter must be greater than or equal to
zero and less than or equal to the number of lines in the window.

integer3
The number indicating how many lines from the top or the bottom scroll
margin the cursor should be positioned after a window is scrolled. For
example, if the bottom scroll margin is screen line 14 and integer3 has a
value of 0, the cursor is positioned on screen line 14 after text is scrolled
upward. However, if integer3 has a value of 3, the cursor is positioned on
screen line 11.

)

(_)
-._

(

L. ',
'

I

\ --

VAXTPU Built-In Procedures
SET (SCROLLING)

The value you specify for this parameter must be greater than or equal to
zero and less than or equal to the number of lines in the window.

You cannot specify a value that would position the cursor outside the
window. That is, integer 1 + integer3 or integer2 + integer3 must be less
than the height of the window. For example, if the window is 10 lines
long and integerl is set at 3, you cannot specify a value of 7 or more for
integer3. Such a specification would place the cursor outside the window.

Note that if you use the SET (SCROLLING) built-in from within EVE- by
way of the TPU con:tmand, EVE may override the value you specify for this
parameter.

DESCRIPTION This built-in procedure is used to modify the scrolling action of a window.

If the terminal on which you are running VAXTPU supports scrolling, you
can use the SET (SCROLLING) built-in to turn scrolling on or off. If the
terminal does not support scrolling, scrolling will always be off. If scrolling
is off, the window is repainted every time a scroll would otherwise occur.

The SET (SCROLLING) built-in also defines scroll margins using integerl
and integer2. If the cursor is moved above the top scroll margin or
below the bottom scroll margin using CURSOR_ VERTICAL, MOVE_
HORIZONTAL, MOVE_VERTICAL, POSITION, or a text manipulation
built-in, then SET (SCROLLING) moves the cursor by the number of lines
specified in integer3.

You must provide values for integerl and integer2 that leave at least one
line in the window unaffected by either scroll margin. That is, integer 1 +
integer2 must be less than the height of the window. For example, if you
have a window that is ten lines tall, you cannot specify a value of 5 for
the top scroll margin and a value of 5 for the bottom scroll margin. Such
a specification leaves no area of the window that is not within a scroll
margin.

You can move the cursor above or below a scroll margin under certain
circumstances. If CROSS_ WINDOW _BOUNDS is set to off, CURSOR_
VERTICAL does not cause scrolling when the cursor reaches a scroll
margin. If you are moving backward through the file and the top line of

__ the buffer is already visible on the screen, the top scroll ~argin is ignored.
If you are moving forward through the file and the bottom line of the
buffer is already visible on the screen, the bottom scroll margin is ignored.

If using the ADJUST_ WINDOW built-in makes the window so much
smaller that the scroll margins overlap, VAXTPU automatically reduces
th~ scroll margins proportionally to fit the new window. If you use
ADJUST_ WINDOW to make a window larger, VAXTPU does not adjust
the scroll margins.

VAXTPU Built-In Procedures
SET (SCROLLING)

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_UNKKEYWORD

TPU$_BADKEY

TPU$_BADMARGINS

TPU$_BADVALUE

EXAMPLES

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

SET (SCROLLING) requires at
least six parameters.

You specified more than six
parameters.

One or more of the specified
parameters has the wrong type.

You have specified an unknown
keyword.

Keyword must be either ON or
OFF.

You have specified values for the
top margin, bottom margin, and
cursor movement that exceed the
dimensions of the window.

Integer values must be from O to
255.

D SET (SCROLLING, new_window, ON, 0, 0, 2)

This statement turns on scrolling in the window new_window. The
statement sets the top and bottom scroll margins to 0. This means that
the cursor can be moved all the way to the top or bottom of the window
before new text is scrolled into the window. Finally, the statement causes
VAXTPU to place the cursor two lines down from the top or up from the
bottom of the window when scrolling is completed.

I SET (SCROLLING, new_window, ON, 0, 0, 20)

This statement demonstrates how to set scrolling if you want VAXTPU)
to present an entire window of new text each time a scroll occurs. If the
variable new_window is 21 lines long, this statement causes VAXTPU to
scroll all the text in the window off the top or bottom of the screen when
you move the cursor to the top or bottom of the screen. This statement
scrolls 20 new lines of text into the window.

Note that this statement does not produce a new window of text if you
issue the statement from within EVE using the TPU command and move
the cursor using the up arrow key or the down arrow key.

.J

u
\,,_

VAXTPU Built-In Procedures
SET (SELF _INSERT)

SET (SELF _INSERT)

FORMAT

PARAMETERS

DESCRIPTION

SET (SELF_INSERT, string, { g~F })

SELF INSERT-
A keyword specifying whether a character is inserted into the buffer when
the user presses a key with the following characteristics:

• Associated with a printable character

• Not bound to a procedure or program

string
A string specifying the key map list in which the behavior of undefined
keys associated with printing characters is to be set.

ON
Causes the printable characters to be inserted when no procedures are
bound to them, while the specified key map list is active. This is the
default.

OFF
Causes the UNDEFINED_KEY procedure to be called when these
characters are entered. If an undefined key procedure has not been
specified, VAXTPU merely displays a warning message when the user
presses an undefined, printable key. You can specify an undefined key
procedure using the SET (UNDEFINED_KEY) built-in.

SET (SELF _INSERT) lets you control what happens when the user presses
an undefined key associated with a printable character. If SELF _INSERT
is set ON and the user presses an undefined key associated with a
printable character, the character is inserted into the current buffer at
the current cursor position. If SELF _INSERT is turned off, printable
characters whose keys are not defined in any key maps in the key map
list bound to the current buffer are considered undefined. These undefined
keys cause either the message "key has no definition" to be displayed, or
some user-defined action to occur.

The default result for pressing an undefined key associated with a
printable character procedure is that the character is inserted. The
default condition for SET (SELF _INSERT) is ON. The default behavior, if
SET (SELF _INSERT) is OFF, is to call the UNDEFINED_KEY procedure.
See the description of the built-in procedure SET (UNDEFINED_KEY).

For more information on how to define what happens when SET (SELF_
INSERT) is turned off, see the description of the built-in procedure SET
(UNDEFINED_KEY) in this chapter.

VAXTPU Built-In Procedures
SET (SELF _INSERT)

SIGNALED
TPU$_NOKEYMAPLIST

ERRORS
TPU$_ TOOFEW

TPU$_TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

EXAMPLE

PROCEDURE toggle_self_insert

LOCAL current_key_map_list;

WARNING You attempted to access an
undefined key map list.

ERROR SET (SELF _INSERT) requires
three parameters.

ERROR You specified more than three
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an invalid keyword.

current_key_map_list := GET_INFO (CURRENT_BUFFER,

IF GET_INFO (current_key_map_list, "self_insert")
THEN

"key_map_list");

SET (SELF_INSERT, current_key_map_list, OFF)
ELSE

SET (SELF_INSERT, current_key_map_list, ON)
ENDIF;

END PROCEDURE

This procedure toggles the ON and OFF setting of SELF _INSERT for the
key map list bound to the current buffer.

...

\
)

VAXTPU Built-In Procedures
SET (SHIFT _KEV)

SET (SHIFT _KEV)

FORMAT

PARAMETERS

SET (SHIFT_KEY, keyword ff, string If)

SHIFT KEY
This keyword referis to VAXTPU's shift key (by default PFl), not the key
marked SHIFT on the keyboard.

keyword
A VAXTPU key name for a key.

string
A string that is a key map list name. This optional argument specifies
the key map list in which the shift key is used. If the key map list is not
specified, the key map list associated with the current buffer is used.

DESCRIPTION The VAXTPU shift key is similar to the GOLD key in the EDT editor. This
shift key allows you to assign two commands to one key: one is used when
the key is pressed by itself, and the other is used when the key is pressed
after the defined shift key,

Only one VAXTPU shift key can be active at a time. The VAXTPU shift
key can be any key other than the following: ·

• The SHIFT key

• The ESCAPE key

• The SCROLL key on the VTl00 keyboard

• The Fl, F2, F3, F4, and F5 keys on the VT300 or VT200 keyboard

• The Compose Character key on the VT300 or VT200 keyboard

By default, PFl is the VAXTPU shift key.

You cannot make VAXTPU execute a procedure or learn sequence bound
to the shift key. However, designating a defined key as the shift key does
not undefine the key; it merely disables the definition so long as the key
is designated as the shift key. If you define another key as the shift key,
VAXTPU reenables the first key's definition.

If you want to use PFl for another purpose, use SET (SHIFT_KEY) to
define a key other than PFl as VAXTPU's shift key.

If you use SET (SHIFT_KEY) to define a GOLD key in EVE, EVE does
not undefine the GOLD key correctly. When you use the EVE command
SET NOGOLD or SET NOSHIFT, EVE returns the error message "There
is no user GOLD key currently set." Although this message appears to
say that the GOLD key has successfully been undefined, what it really
means is that EVE does not recognize that a GOLD key was ever defined.
To redefine a GOLD key in these circumstances, you can use either of the
following approaches:

VAXTPU Built-In Procedures
SET (SHIFT _KEY)

SIGNALED
ERRORS

EXAMPLES

• Use the EVE command SET GOLD KEY or SET SHIFT KEY.

• Undefine the GOLD key using the VAXTPU statement
SET (SHIFT_KEY, KEY_NAME (PFl, SHIFT_KEY)). Then set the
GOLD key using the SET GOLD KEY or SET SHIFT KEY command.

TPU$_ TOO FEW ERROR SET (SHIFT_KEY) requires at
least two parameters.

TPU$_ TOO MANY ERROR You specified more than three
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

TPU$_NOKEYMAPLIST WARNING You specified an undefined key
map list.

D SET (SHIFT_KEY, PF4, "tpu$key_map_list")

This statement causes the keypad key PF4 to be defined as the shift
key for the editor. The definition is stored in the default key map list,
TPU$KEY_MAP _LIST. PF4 operates as the shift key only in buffers to
which TPU$KEY_MAP _LIST is bound.

fa SET (SHIFT_KEY, KEY_NAME (PFl, SHIFT_KEY))

7-4?A

This statement disables the shift key by making the shift key itself a
shifted key. Note that you can substitute the key name of whatever key
is the SHIFT key. This technique works regardless of what key is defined
as the SHIFT key. You might want to use such a statement if you are
creating an editor that does not support user-defined shift key sequences.

.\
!

/

n

' \
j

n

(

\

.u

u

VAXTPU Built-In Procedures
SET (SPECIAL_ERROR_ SYMBOL)

SET (SPECIAL_ERROR_SVMBOL)

FORMAT

PARAMETERS

DESCRIPTION

SIGNALED
ERRORS

SET (SPEC/AL_ERROR_SYMBOL, string)

SPECIAL ERROR SYMBOL
A keyword specifying that you want to use SET to designate a global
variable to be set to O when a case-style error handler does not return
from a CTRIJC or other error.

string
The name of the global variable that you want VAXTPU to set to 0.

Once you designate the variable that is to be the special error symbol,
VAXTPU sets the variable to O if any of the following events occurs:

• VAXTPU executes the TPU$_CONTROLC selector in a case-style error
handler and does not encounter a RETURN statement

• VAXTPU executes the OTHERWISE clause in a case-style error
handler and does not encounter a RETURN statement

• VAXTPU generates an error that is not handled by any clause in a
case-style error handler

You can only use SET (SPECIAL_ERROR_SYMBOL) once in a program.
This built-in is usually used during initialization. You must declare or
create the variable before you use it in the SET statement. VAXTPU does
not clear the variable in response to non-case-style error handlers.

The variable specified by SET (SPECIAL_ERROR_SYMBOL) can be used
to determin~ whether VAXTPU has exited from current procedures and
returned to the main loop to wait for a new keystroke.

TPU$_ERRSYMACTIVE

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

ERROR

A special error symbol has already
been declared.

SET (SPECIAL_ERROR_
SYMBOL) requires two
parameters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

VAXTPU Built-In Procedures
SET (SPECIAL_ERROR_SYMBOL)

EXAMPLE
SET (ePECIAL_ERROR_SYMBOL "back..:..to_main")

This statement destgnates the global variable back_to_main as the
variable to be cleared if a procedure or program with a case-style error
handler fails to handle a CTRUC error or other error.

. ___ ./

)

n

i
\

u

_U
I
\ , __

VAXTPU Built-In Procedures
SET (STATUS_LINE)

SET (STATUS_LINE)

FORMAT

SET (STATUS_LINE, window,

NONE
BOLD
BLINK
REVERSE
SPECIAL_GRAPHICS
UNDERLINE

, string)

PARAMETERS STATUS LINE

DESCRIPTION

The last linein a window. You can use the status line to display regular
text or you can use it to display status information about the window.

window
The window whose status line you want to modify.

NONE
Applies no video attributes to the characters on the status line.

BOLD
Causes the characters on the status line to be bolded.

BLINK
Causes the characters on the status line to blink.

REVERSE
Causes the characters on the status line to be displayed in reverse video.

SPECIAL_ GRAPHICS
Causes the characters on the status line to display graphic characters,
such as a solid line. These characters are from the DEC Special Graphics
Set (also known as the VTlOO Line Drawing Character Set). For more
information on the SP.ecial graphics that are available, see the appropriate
programming manual for your video terminal.

UNDERLINE
Causes the characters on the status line -to be underlined.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is the text to be displayed on
the status line. To remove a status line, use a null string ("") for this
parameter.

To have _a status line, a window must be at least two lines high. You can
establish a status line for a window when you create a window. CREATE_
WINDOW requires you to specify whether the status line is ON (used for
status information) or OFF (used as a regular text line). When you specify
ON, the default status line is displayed in reverse video.

VAXTPU Built-In Procedures
SET (STATUS_LINE)

SIGNALED
ERRORS

The algorithm for determining whether a window is tall enough to be
given a status line depends on whether the window is visible or invisible.

If the window to which you want to add a status line is visible, VAXTPU
checks the length of the visible portion of thd window. A visible window
can have an invisible portion if the window is partially occluded by another
window. The visible portion of the visible window must have at least one
text line; that is, at least one line not occupied by a scroll bar.

If the window is invisible, VAXTPU checks the full length of the window.
The window must have at least one text line.

If the window that you use as a parameter for SET (STATUS_LINE)
already has a status line, either because you specified ON for the status
line parameter in the built-in procedure CREATE_ WINDOW, or because
you used a previous SET (STATUS_LINE) for the window, the video
attribute that you specify is added to the video attribute of the existing
status line unless you specify NONE. NONE overrides the other video
keywords and specifies that there are to be no video attributes for the
status line. The string you specify as the last parameter replaces the text
of an existing status line. Adding a status line to a window that already
has a status line does not cause an error.

If there is no status line for a window, the built-in procedure SET
(STATUS_LINE) establishes a status line on the last visible screen line
of the window. The status line has the video attribute and the text you
specify. Adding a status line reduces the number of screen lines available'
for text by one line.

To remove a status line, use a null string ("") as the last parameter. The
status line is removed even if the window is not two lines high at that
time.

The default setting for the status line (ON or OFF) is determined by the
built-in procedure CREATE_ WINDOW.

If a window has a status line, by default the status line contains the
name of the buffer associated with the window and the name of the file
associated with the buffer, if there is one.

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

ERROR

ERROR

ERROR

ERROR

ERROR

SET (STATUS_LINE) requires four
parameters.

You specified more than four
parameters.

One or more of the specified
parameters have the wrong type.

The keyword must be NONE,
BOLD, BLINK, REVERSE,
UNDERLINE, or SPECIAL_
GRAPHICS.

You specified an unknown
keyword.

\
)

(
'

u

TPU$_STATOOLONG

TPU$_BADWINDLEN

VAXTPU Built-In Procedures
SET (STATUS_LINE)

INFO

ERROR

The status line is truncated to the
screen width.

The window must be at least two
lines long.

EXAMPLES

D SET (STATUS_LINE, my_window, REVE~SE, "MAIN BUFFER, newfile.txt");

il

This statement displays the status line in my _window in reverse video
with the buffer specified as MAIN BUFFER and the file specified as
NEWFILE.TXT.

SET (STATUS_LINE, my_window, NONE, "");

This statement removes the status line in my_window by setting the final
parameter to a null string.

line_text := "qqq" +
"qqqqqqqqqqqqqqqqqqqqq";

line_window := CREATE_WINDOW (1, 20, OFF);
MAP (line window, current buffer);
SET (STATUS_LINE, line_window, SPECIAL_GRAPHICS, line_text);

This code fragment creates a window with a status line displayed
in special graphics rendition. Since the glyph (member of the DEC
Multinational Character Set occupying one column width) having the
same value as the character "q" is a full-width line, the status line appears
as a solid line across the screen.

VAXTPU Built-In Procedures
SET (SUCCESS)

SET (SUCCESS)

FORMAT SET (SUCCESS, { g~F }>

PARAMETERS SUCCESS
Controls whether VAXTPU writes success messages to the message buffer.

ON
Causes the success messages to be written.

OFF
Suppresses the display of success messages.

DESCRIPTION By default, VAXTPU writes success messages to the message buffer. If you
want to suppress the display of these messages, you can use this built-in
procedure.

SIGNALED
ERRORS

EXAMPLE
SET (SUCCESS, OFF)

7-434

See Appendix D for a table of the VAXTPU messages and their severity
levels.

TPU$_TOOFEW ERROR SET (SUCCESS) requires two
parameters.

TPU$_ TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

This statement turns off the display of success messages.

)

0

(

. u

VAXTPU Built-In Procedures
SET (SYSTEM)

SET(SYSTEM)

FORMAT SET (SYSTEM, buffer)

PARAMETERS SYSTEM

DESCRIPTION

SIGNALED
ERRORS

EXAMPLE

The status of a buffer. SYSTEM means that it is a system buffer rather
than a user buffer.

By default, newly created buffers are user buffers.

buffer
The buff er that is being set as a system buffer.

Once you make a buffer a system buffer, you cannot reset the buffer to be
a user buffer.

The SET (SYSTEM) built-in procedure allows programmers who are
building an editing interface to distinguish their system buffers from
buffers that the user creates. VAXTPU does not handle system buffers
differently from user buffers. Any distinction between the two kinds of
buffers must be implemented by the application programmer.

TPU$_TOOFEW ERROR SET (SYSTEM) requires two
parameters.

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_1NVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

SET (SYSTEM, message_buffer)

This statement makes the message buffer a system buffer .

VAXTPU Built-In Procedures
SET (TAB_STOPS)

SET (TAB_STOPS)

FORMAT

PARAMETERS

SET (TAB STOPS b ff, r. { int~ger } J - ' u e' strmg

TAB STOPS
A keyword indicating that SET is to control placement of tab stops in a
buffer.

buffer
The buffer in which the tab stops are being set.

integer .
An integer specifying the interval between tab stops, measured in column
widths. The minimum value for the integer is 1. The maximum value is
65,535.

string
A string of numbers that specifies the tab stops. The string represents
column numbers at which the tab stops are placed. The minimum value
for a tab stop is 1. The maximum value is 65,535. The maximum number
of tab stops that you can include in the string is 100. The quoted string
must list tab stops in ascending order, separating values with a single
space: ("3 6 9 12. ")

DESCRIPTION When a buffer is created, the tabs are set at every eight columns, unless,
when the buffer is created, a template buffer with different tab settings is
specified.

7-436

The SET (TAB_STOPS) built-in enables you to set the tab stops at
positions you specify or to establish equal intervals other than the default
eight.

Tab stops are not saved when you write a file. When you create a buffer,
the tabs are set to the default, unless, when you create the buffer, you
specify a template buffer with different tab settings.

SET (TAB_STOPS) does not affect the hardware tab settings of your
terminal. On any terminals or printers that have tab settings different
from those you specify with this built-in, the file does not appear the
same as it does when viewed using V.AXTPU. In addition, if you invoke
V.AXTPU with the /NODISPLAY qualifier, any values you enter for SET
(TAB_STOPS) are ignored, and a SHOW (BUFFER) command will return
tabs every O columns.

(

SIGNALED
ERRORS

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_UNKKEYWORD

TPU$_ARGMISMATCH

TPU$_1NVTABSPEC

EXAMPLES

VAXTPU Built-In Procedures
SET (TAB_STOPS)

ERROR SET (TAB_STOPS) requires at
least three parameters.

ERROR You specified more than three
parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an unknown
keyword.

ERROR The third parameter must be a
string or an integer.

WARNING You specified a bad third
argument. .

0 SET (TAB_STOPS, CURRENT_BUFFER, 4);

This statement causes the tab stops in the current buffer to be set at
intervals of 4 columns.

fd SET (TAB_STOPS, CURRENT_BUFFER, "4 8 12 16");

This statement causes the tab stops in the current buffer to be set at 4, 8,
12, and 16 columns.

VAXTPU Built-In Procedures
SET (TEXT)

SET (TEXT)

FORMAT
SET

. { widget, string
BLANK TABS

(TEXT, window, { GRAPHIC_ TABS
. . NO_ TRANSLATE

PARAMETERS TEXT
A keyword indicating that SET is to control the way text is displayed in a ')·,
window or to determine the text that is to appear in a widget. .

widget
The widget instance whose text you want to set. SET (TEXT, widget,
string) is equivalent to the XU! Toolkit routine S TEXT SET STRING.

You can only use widget as the second parameter if you are using
DECwindows VAXTPU.

string
The text you want to assign to the simple text widget.

window
The window in which the mode of display is being set.

BLANK_TABS
Displays tabs as blank spaces. This is the default keyword.

GRAPHIC TABS

j

Displays tabs as special graphic characters so that the width of each tab is
visible. _)

NO_ TRANSLATE
Sends every keystroke from the keyboard to the terminal without any
translation. In this mode, the terminal settings, not VAXTPU, determine
the effect of characters typed from the keyboard.

Digital recommends that you use this mode for sending directives to
the terminal but not for editing. VAXTPU does not manage margins or
window shifts while NO_TRANSLATE mode is enabled. Furthermore,
VAXTPU does not necessarily update lines of text in the order in which
they appear while NO_TRANSLATE mode is enabled.

To send escape sequences from within a VAXTPU procedure, you can use
SET (TEXT) with the NO_TRANSLATE keyword followed by statements
using the MESSAGE and UPDATE built-ins. See the example in this
built-in description for more information on this technique. ()

For more information on the effect of using various characters and -
sequences in NO_TRANSLATE mode, see your terminal manual. ,.,,J

\

(U

SIGNALED
ERRORS TPU$_BADKEY

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_WIDMISMATCH

·TPU$_UNKKEYWORD

EXAMPLES

VAXTPU Built-In Procedures
SET (TEXT)

WARNING You specified an invalid keyword
as a parameter.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR SET (TEXT) cannot return a value.

ERROR You have specified widget as the
second parameter to SET (TEXT)
while using non-DECwindows
VAXTPU.

ERROR Too few arguments passed to the
SET (TEXT) built-in.

ERROR Too many arguments passed to
the SET (TEXT) built-in.

ERROR The specified widget is not of class
SText.

ERROR You specified an unknown
keyword.

D SET (TEXT, user_text_widget, "No default string available.");

Assuming that the variable user _text_widget has been assigned a text
widget instance, this statement causes the widget to display the text No
default string available.

wildcard dialog box:= GET INFO (WIDGET, "widget id",
- - eve$x wildcard find dialog,

"WILDCARD _FIND =DIALOG. WILDCARD_FIND _TEXT") ;

status := SET (TEXT, wildcard_dialog_box, eve$x_target);

These statements show one possible way that a layered application can
use the SET (TEXT) widget. The variable eve$i_target stores the string
(if one exists) that the user specified as the wildcard search string the
last time the user invoked the wildcard find dialog box. The SET (TEXT)
statement directs EVE's wildcard find dialog box widget to display the
string assigned to eve$x_target.

! SET (TEXT, CURRENT_WIND0W, GRAPHIC_TABS)

This statement causes the text in the main window to be displayed with
special characters indicating tab characters.

'7_A'::lft

VAXTPU Built-In Procedures
SET (TEXT)

E If your terminal has a printer hooked up to the printer port,
the following procedure allows you to perform a PRINT SCREEN
function.

PROCEDURE user_print

Set window to NO TRANSLATE to allow the escape sequence
to pass to the printer. Note that this procedure does not send
a form ·feed.

SET (TEXT, message window, NO TRANSLATE);
MESSAGE (ASCII (27) + "[i"); -
UPDATE (message_window);

Put back the window the way it was.

SET (TEXT, message window, BLANK_TABS);
ERASE (message_buffer);

ENDPROCEDURE

7-440

This procedure uses the NO_TRANSLATE keyword. Notice that the
window is set to this state temporarily, and that the default setting for
the window is reset as soon as the function for which NO_TRANSLATE is
used is finished executing.

/
\

,u

(_

SET (TIMER)

FORMAT

PARAMETERS

VAXTPU Built-In Procedures
SET {TIMER)

SET (TIMER, { g~F } f, string J)

TIMER
Controls attributes of messages displayed in the prompt area.

ON
Causes the message that you specify to be written to the prompt area and
displayed at 1:.second intervals. By default, the timed message is turned
on.

OFF
Turns off the display of timed messages in the prompt area.

string
A quoted string, a variable name representing a string constant, or an
expression that evaluates to a string, that is displayed in the prompt area.
The maximum length of the message is 15 characters. If you specify a
string longer than 15 characters, VAXTPU truncates the string but does
not signal an error. The message is displayed in the last 15 character
positions of the prompt area. If ON is specified and a string was never
specified for the last argument, the timer puts out the message "working".
If ON is specified and a string was specified previously, the saved string is
used as the default.

DESCRIPTION When SET (TIMER) is set to ON, the timer puts out messages at 1-second
intervals while you are executing procedures or editing actions that are
bound to a key. The message is written out to the prompt area and then
erased to clear the prompt area for the next message.

SIGNALED
ERRORS TPU$_TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

ERROR

ERROR

ERROR

ERROR

ERROR

SET (TIMER) requires at least two
parameters.

You specified more than three
parameters.

One or more of the specified
parameters have the wrong type.

The keyword must be ON or OFF.

You specified an unknown
keyword.

7-441

VAXTPU Built-In Procedures
SET (TIMER)

EXAMPLE
SET (TIMER, ON, "Executing")

7-442

This statement causes the message "Executing" to be written to the
prompt area at 1-second intervals while you are executing a VAXTPU
procedure.

)

(

VAXTPU Built-In Procedures
SET (TRACEBACK)

SET {TRACEBACK)

FORMAT

PARAMETERS

SET (TRACEBACK, { g~F })

TRACEBACK
Whether VAXTPU displays the sequence of procedures called after an
error occurs.

ON
Causes VAXTPU to display the procedure calling sequence after an error
occurs.

OFF
Prevents VAXTPU from displaying the procedure calling sequence after an
error occurs.

DESCRIPTION Traceback information provides the context in which an error occurs.

SIGNALED
ERRORS

Turning on the traceback setting can be helpful to a programmer
debugging a VAXTPU program. The traceback setting is usually turned off
during normal editing, because end users of editors do not usually use the
traceback information.

The default setting for TRACEBACK depends on whether a section file
was loaded by VAXTPU. If a section file was loaded, the default is OFF. If
a section file was not loaded, the default is ON.

Note that SET (TRACEBACK) is related to SET (LINE_NUMBER). SET
(TRACEBACK, ON) turns on both traceback and line numbers because
both are needed for debugging. SET (LINE_NUMBER, OFF) turns off
both traceback and line numbers because one feature is not useful without
the other.

Allowable settings are as follows:

• Both off

• Both on

• Traceback off

• Line number on

TPU$_ TOOFEW

TPU$_ TOOMANY

ERROR

ERROR

The SET (TRACEBACK) built-in
requires two parameters.

You specified more than two
parameters.

VAXTPU Built-In Procedures
SET (TRACEBACK)

EXAMPLES

TPU$_1NVPARAM

TPU$_BADKEY

ERROR One or more of the specified
parameters have the wrong type.

WARNING Only ON and OFF are allowed.

0 SET (TRACEBACK, OFF)

This statement prevents VAXTPU from displaying the procedure calling
sequence after an error occurs.

PROCEDURE traceback_example
SET (TRACEBACK, ON);
SET (TRACEBACK, BELL);
RETURN 5;

END PROCEDURE

PROCEDURE call_example
traceback_example;

ENDPROCEDURE

7-444

This procedure results in a traceback display when the procedure is
executed and traceback is enabled.

Invoking the procedure CALL_EXAMPLE results in the following
traceback:

BELL is an invalid keyword
Occurred in builtin SET
At line 2
Called from builtin EXECUTE
Called from line 22 of procedure EVE TPU
Called from line 1
Called from builtin EXECUTE
Called from line 96 of procedure EVE$PROCESS COMMAND
Called from line 3 of procedure EVE$PARSER DISPATCH
Called from line 97 of procedure EVE$$EXIT-COMMAND WINDOW
Called from line 2 - -

0)

)

u

(

u

VAXTPU Built-In Procedures
SET (UNDEFINED_KEV)

SET (UNDEFINED_KEY)

FORMAT

I { !~~~~sequence } I
SET (UNDEFINED_KEY, string1, program)

range
string2

PARAMETERS UNDEFINED KEY
A keyword specifying that SET is to determine the action taken when an
undefined key is input.

string1
A string specifying the key map list for which this procedure is called.

buffer
The buffer containing VAXTPU statements specifying the action to be

· taken if the user presses an undefined key. SET (UNDEFINED_KEY)
compiles the statements in the buffer and stores the resulting program in
the specified key map list.

learn_sequence .
The learn sequence specifying the action to be taken if the user presses
an undefined key. The contents of a variable of type learn do not require
compilation. SET (UNDEFINED_KEY) stores the learn sequence in the
specified key map list.

program
The program specifying the action to be taken if the user presses an
undefined key. The contents of a variable of type program do not require
compilation. SET (UNDEFINED_KEY) stores the program in the specified
key map list.

range
The range containing VAXTPU statements specifying the action to be
taken if the user presses an undefined key. SET (UNDEFINED_KEY)
compiles the statements in the range and stores the resulting program in
the specified key map list

string2
The string containing VAXTPU statements specifying the action to be
taken if the user presses an undefined key. SET (UNDEFINED_KEY)
compiles the statements in the string and stores the resulting program in
the specified key map list.

DESCRIPTION SET (UNDEFINED_KEY) determines the action taken when an undefined
key is pressed.

If the third parameter is not specified, VAXTPU displays the message "key
has no definition" when the user presses an undefined key.

VAXTPU Built-In Procedures
SET (UNDEFINED _KEY)

SIGNALED
ERRORS

EXAMPLE

TPU$_NOKEYMAPLIST

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_ARGMISMATCH

WARNING

ERROR

ERROR

ERROR

ERROR

IF GET_INFO ("tpu$key_map_list", "undefined_key") <> 0
THEN

SET (UNDEFINED_KEY, "tpu$key_map_list");
ENDIF;

You attempted to access an
undefined key map list.

SET (UNDEFINED_KEY) requires
at least two parameters.

SET (UNDEFINED_KEY) accepts
no more than three parameters.

One or more of the specified
parameters have the wrong type.

The second parameter must be a
string.

This code causes the default undefined key message to be displayed when
an undefined key is entered.

7-446

-")
,/

)

,'
(

SET (VIDEO)

FORMAT

VAXTPU Built-In Procedures
SET (VIDEO)

SET (VIDEO, window, { it~ })
REVERSE
UNDERLINE

PARAMETERS VIDEO
The video attributes of a window.

window
The window in which a video attribute is being set.

NONE
Applies no video attributes to the characters in the window. This is the
default.

BOLD
Causes the characters in the window to be bolded.

BLINK
Causes the characters in the window to blink.

REVERSE
Causes the characters in the window to be displayed in reverse video.

UNDERLINE
Causes the characters in the window to be underlined.

DESCRIPTION Video attributes for a window are cumulative. The window assumes the
video attribute of each video keyword that you use with SET (VIDEO)
during an editing session. If you want to change the video attribute of a
window, and you do not want the cumulative effect of previous attributes,
use SET (VIDEO, window, NONE) before specifying the new attribute.
SET (VIDEO, window, NONE) turns off all video attributes for a window.

The video attribute is applied during the next screen update. The screen
manager repaints the window to apply the video attributes, even if the
cumulative effect of your changes has been to leave the video attributes
the same.

Note that the built-in procedure SET (VIDEO) does not affect the status
line of a window. You can specify a video attribute for a status line
either with CREATE_ WINDOW or with the built-in procedure SET
(STATUS_LINE). When the window and the status line have different
video attributes, the status line can be used to separate multiple windows
on the screen, or to highlight status information.

7-447

VAXTPU Built-In Procedures
SET (VIDEO)

SIGNALED
TPU$_ TOOFEW

ERRORS
TPU$_ TOOMANY

TPU$_1NVPARAM

TPU$_BADKEY

TPU$_UNKKEYWORD

EXAMPLE
SET (VIDEO, CURRENT_WINDOW, REVERSE);
SET (VIDEO, CURRENT_WINDOW, UNDERLINE);

ERROR SET (VIDEO) requires three
parameters.

ERROR SET (VIDEO) accepts no more
than three parameters.

ERROR One or more of the specified
parameters have the wrong type.

ERROR You specified an invalid keyword.

ERROR You specified an unknown
keyword.

These statements cause the current window to be displayed in reverse
video and with underlining.

7-448

)

n
_J

i
\

VAXTPU Built-In Procedures
SET (WIDGET)

SET (WIDGET)

FORMAT

PARAMETERS

Allows you to assign values to various resources of a widget.

SET (WIDGET, widget,

{ widgeLargs, /[, widgeLargs ... J })

WIDGET
A keyword directing VAXTPU to set an attribute of a widget.

widget
The widget instance whose values you want to set.

widget_args
One or more pairs of resource names and resource values. You can
specify a pair in an array or as a pair of separate parameters. If you
use an array; you index the array with a string that is the name of the
resource you want to set. Note that resource names are case sensitive.
The corresponding array element contains the value you want to assign to
that resource. The array can contain any number of elements. If you use
a pair of separate parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index
and its corresponding element value, or each string and its corresponding
value, must be valid widget arguments for the class of widget whose
resources you are setting.

DESCRIPTION This built-in is functionally equivalent to the X Toolkit routine SET
VALUES.

SIGNALED
ERRORS

If you specify the name of a resource that the widget does not support,
VAXTPU signals the error TPU$_ARGMISMATCH.

For more information about specifying resources, see Section 4.3.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_ARGMISMATCH ERROR You specified a value whose data
type is not supported.

TPU$_NONAMES WARNING You specified an invalid widget
resource name.

TPU$_NORETURNVALUE ERROR SET (WIDGET) cannot return a
value.

7-449

VAXTPU Built-In Procedures
SET (WIDGET)

TPU$_REQSDECW ERROR You can use the SET (WIDGET)
built-in only if you are using
DECwindows VAXTPU.

TPU$_ TOOFEW ERROR Too few arguments passed to the
SET (WIDGET) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the SET (WIDGET) built-in.

TPU$_WIDMISMATCH ERROR You have specified a widget whose
class is not supported.

EXAMPLE
scroll bar widget := SET (SCROLL BAR, CURRENT WINDOW, VERTICAL, ON);
SET (WIDGET, scroll_bar_widget, evedwtc_nvalue, 100);

7-450

These statements set the Nvalue resource of the current window's scroll
bar widget to 100. This causes the scroll bar slider to be displayed as far
toward the bottom of the scroll bar widget as possible.

For an example of a procedure using the SET (WIDGET) built-in, see
Example B-8.

)

\

u
\.

u

VAXTPU Built-In Procedures
SET (WIDGET_CALLBACK)

SET (WIDGET_CALLBACK)

FORMAT

Specifies the VAXTPU program or learn sequence to be called by VAXTPU
when a widget callback occurs for the widget instance.

{

buffer } · learn_sequence
SET (WIDGET_CALLBACK, widget, program , closure)

range
string

PARAMETERS WIDGET CALLBACK
A keyword directing VAXTPU to set the application-level widget callback.

widget
The widget instance whose callback you want to set.

buffer
The buffer that contains the application-level callback routine. This code
is executed when the widget performs a callback to VAXTPU.

Jearn_sequence
The learn sequence that specifies the application-level callback routine.
This code is executed when the widget performs a callback to VAXTPU.

program
The program that specifies the application-level callback routine. This
code is executed when the widget performs a callback to VAXTPU.

range
The range that contains the application-level callback routine. This code
is executed when the widget performs a callback to VAXTPU.

string
The string that contains the application-level callback routine. This code
is executed when the widget performs a callback to VAXTPU.

closure .
A string or integer. VAXTPU passes the value to the application when
the widget performs a callback to VAXTPU. Note that DECwindows
documentation refers to closures as tags. For more information about
using closures, see Section 4.3.

VAXTPU Built-In Procedures
SET (WIDGET_ CALLBACK)

SIGNALED
ERRORS

EXAMPLE

TPU$_ARGMISMATCH

TPU$_BADDELETE

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_COMPILEFAIL

TPU$_REQSDECW

ERROR

ERROR

ERROR

ERROR

The data type of the indicated
par;imeter is not supported by
the SET (WIDGET __ CAL~BACK)
built-in.

You are attempting to modify an
integer, a keyword, or a string
constant.

Too few arguments passed to
the SET (WIDGET_CALLBACK)
built-in.

Too many arguments passed to
the SET (WIDGET_CALLBACK)
built-in.

WARNING Program compilation has been
terminated because of a syntax

ERROR

error.

You can use SET (WIDGET_
CALLBACK) only if you are using
DECwindows VAXTPU.

SET (WIDGET_CALLBACK, scroll_bar_widget, "eve$scroll_dispatch", 'h');

7-452

This statement designates the EVE procedure EVE$SCROLL_DISPATCH
as the callback routine for the widget scroll_bar _widget and assigns to the
callback the closure value 'h'.

For a procedure using this statement to map windows see Example B-7.

)

.-u
\

/

SET (WIDTH)

VAXTPU Built-In Procedures
SET (WIDTH)

FORMAT SET (WIDTH, window, integer)

PARAMETERS WIDTH
Sets the width of a window.

window
The window in which the width is being set.

integer
The value that specifies the width of the window.

By default, the width of a window is the same as the physical width of the
terminal when the window is created.

DESCRIPTION When you call SET (WIDTH), VAXTPU determines the width of the widest
visible window. If this width has changed, the effect of SET (WIDTH)
depends on your terminal.

SIGNALED
ERRORS

If you are using VAXTPU with a VWS terminal emulator, the terminal
emulator is resized to match the width of the widest visible window. You
can specify any width between 1 column and 255 columns.

If you are using VAXTPU on a VT300-series, VT200-series, or VTlOO-series
terminal, setting the width of a window only causes a change if the widest
visible window is 80 or 132 columns wide. When the new width is one of
these numbers, VAXTPU causes the terminal to switch from SO-column
mode to 132-column mode, or the reverse.

If the width of the widest visible window has changed, VAXTPU redisplays
all windows.

By default, the width of a window is the same as the number of columns
on the screen of the terminal on which you are running VAXTPU. If you
exceed the value set for the width of the window when entering text,
VAXTPU displays a diamond symbol in the rightmost column of the screen
to indicate that there is text beyond the diamond symbol that is not visible
on the screen. You cannot force VAXTPU to use multiple lines to display a
line that is longer than the width of a window.

TPU$_ TOO FEW

TPU$_ TOOMANY

ERROR

ERROR

SET (WIDTH) requires three
parameters.

You specified more than three
parameters.

7-45!!

VAXTPU Built-In Procedures
SET (WIDTH)

EXAMPLE

TPU$_1NVPARAM

TPU$_BADVALUE

SET (WIDTH, CURRENT_WINDOW, 132)

ERROR

ERROR

One or more of the specified
parameters have the wrong type.

Arguments are out of minimum or
maximurrJ bounds.

This statement causes the current window to be 132 columns wide.

7-454

)

n
.)

u
C

SHIFT

FORMAT

PARAMETERS

return value

VAXTPU Built-In Procedures
SHIFT

For a buffer whose lines are too long to be displayed all at once, moves the
window so the unseen parts of the lines can be viewed. SHIFT can move the
window right to display text past the right edge of the window, or left (for a
previously shifted window). SHIFT optionally returns an integer specifying the
number of columns in the buffer lying_ to the left of the left edge of the shifted
window.

[lnteger2 := J SHIFT (window, integer1)

window
The window that is shifted.

integer1
The signed integer that specifies how many columns to shift the window.
A positive integer causes the window to shift to the right so that you can
see text that was previously beyond the right edge of the window.

A negative integer causes the window to shift to the left so that you can
see text that was previously beyond the left edge of the window. If the first
character in the line of text is already in column 1, then using a negative
integer has no effect.

If you specify O as the value, no shift takes place. Furthermore, 0 as the
value does not cause the window to be repainted.

By default, windows are not shifted.

An integer representing the amount by which the window has been shifted
to the right.

DESCRIPTION Use the built-in procedure SHIFr when one or more lines of text in a
buffer are too long to fit in the window (indicated by the diamond symbol
in the rightmost column). By shifting the window from left to right, you
can view text that was beyond the right edge of the window.

Because SHIFT commands are cumulative during an editing session, this
built-in procedure optionally returns a value in integer2. This positive
integer represents the absolute shift value.

The shift applies to any buffer associated with the window that you
specify. For example, if you shift a window and then map another buffer
to that window, you see the text of the newly mapped buffer in the shifted
position. You must specify another shift to return the window to its
unshifted position.

VAXTPU Built-In Procedures
SHIFT

SIGNALED
ERRORS

EXAMPLES

· If you specify an integer value of 0, the window is not left-shifted.
Furthermore, when you attempt to left-shift, the window is not repainted.
Otherwise, SHIFT causes the entire window to be repainted. If you
execute the built-in procedure SHIFT within a procedure, the screen is
not updated to reflect the shift uritil the procedure has finished executing
and control has returned to the screen manager. If you want the screen
to reflect changes before the entire program is executed, you can force the
immediate update of a window by adding an UPDATE statement to the
procedure.

TPU$_ TOO FEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

SHIFT requires two paranieters.

You specified more than two
parameters.

One or more of the specified
parameters have the wrong type.

D SHIFT (user_window, +5)

)

This statement shifts the window user _window five columns to the right. ,;

f:l SHIFT (CURRENT_WINDOW, -5)

This statement shifts the current window five columns to the left. (If the
window was not previously shifted, this statement has no effect.)

j SHIFT (CURRENT_WINDOW, -SHIFT (CURRENT_WINDOW, 0))

This statement always returns the current window to an unshifted state.

7-456

I

\

u

I
u

SHOW

FORMAT

VAXTPU Built-In Procedures
SHOW

Displays information about VAXTPU data types and the current settings of
attributes that can be applied to certain data types. See also the description
of the built-in procedure GET _INFO .

SHOW (

.
BUFFER[S]
KEY_MAP _L/ST[S]
KEY_MAP[SJ
KEYWORDS
PROCEDURES
SCREEN
SUMMARY
VARIABLES
WINDOW[S]
buffer
string
window

)

PARAMETERS BUFFER[SJ
Displays information about all buffers available to the editor. BUFFER is
a synonym for BUFFERS.

KEY_MAP_L/ST[S J
Displays the names of all defined key map lists, their key maps, and the
number of keys defined in each key map. KEY_MAP _LIST is a synonym
for KEY_MAP _LISTS.

KEY_MAP[SJ
Displays the names of all defined key maps. KEY_MAP is a synonym for
KEY_MAPS.

KEYWORDS
Displays the contents of the internal keyword table.

PROCEDURES
Displays the names of all defined procedures.

SCREEN
Displays information about the terminal.

SUMMARY
Displays statistics about VAXTPU, including the current version number.

VARIABLES
Displays the names of all defined variables.

WINDOW[SJ
Displays information about all windows available to the editor. WINDOW
is a synonym for WINDOWS.

VAXTPU Built-In Procedures
SHOW

buffer
Shows information about the buffer variable you specify.

string
Shows information about the string variable you specify.

window
Shows information about the window variable you specify.

DESCRIPTION VAXTPU looks for the variable show_buffer and checks to see if it refers
to a buffer. VAXTPU also looks for the variable info_window and checks
to see if it refers to a window. If these two items exist when you call the -\
built-in procedure SHOW, VAXTPU writes information to show_buffer and)

SIGNALED
ERRORS

EXAMPLES

displays the information on the screen in the window called info_window .

. You, or the interface you are using, must create the buffer variable
show _buffer when you initialize the interface to ensure that the built-in
procedure SHOW works as expected.

If you create a window called info_window, VAXTPU associates show_
buffer with info_window and maps this window to the screen when there
is information to be displayed. You can optionally create a different
window in which to display the information from show _buffer. In this
case, you must associate show _buffer with the window that you create and
map the window to the screen when there is information to be displayed.

Because this built-in procedure maps INFO_ WINDOW to the screen, any
interfaces layered on VAXTPU should provide a mechanism for unmapping
INFO_WINDOW and returning the user to the editing position that was
current before the built-in procedure SHOW was invoked.

VAXTPU always deletes the current text in the show buffer before
inserting the new inform8:tion.

TPU$_NOSHOWBUF

TPU$_ TOOMANY

TPU$_1NVPARAM

WARNING The requested information cannot
be stored because the buffer
variable show_buffer does not
exist.

ERROR SHOW accepts only one
parameter.

ERROR One or more of the specified
parameters have the wrong type.

D SHOW (PROCEDURES)

This statement displays on the screen a list of all the VAXTPU built-in
procedures and the user-written procedures that are available to your
editing interface.

)

u

\

SHOW (KEY_MAP_LISTS)

VAXTPU Built-In Procedures
SHOW

This statement displays the names of all defined key map lists, their key
maps, and the number of keys defined in each key map. When you use the
default interface, EVE, the VAXTPU command SHOW (KEY_MAP _LISTS)
displays information similar to the following:

Defined key map lists:
TPU$KEY_MAP_LIST contains the

EVE$U'SER_KEYS
EVE$VT200_KEYS
EVE$STANDARD KEYS

Total of 1 key map list defined

following key maps:
(0 keys defined)
(14 keys defined)
(29 keys defined)

VAXTPU Built-In Procedures
SLEEP

SLEEP

FORMAT

Causes VAXTPU to pause for the amount of time you specify or until input is
available.

SLEEP ({ int~ger };
string

PARAMETERS integer
The number of seconds to sleep.

string
An absolute or a delta time string indicating how long to sleep. See the
documentation on the system service $BINTIM for the format of this
string.

DESCRIPTION This built-in suspends VAXTPU for the specified amount of time. This
built-in is useful if you wish to display something for only a short period
of time. SLEEP ends immediately when input becomes available from the
terminal.

SIGNALED
ERRORS

EXAMPLES
0 SLEEP (2);

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_ARGMISMATCH

TPU$_1NVTIME

ERROR

ERROR

ERROR

ERROR

SLEEP requires one argument.

SLEEP accepts only one
argument.

The argument to SLEEP must be
an integer or string.

The argument to SLEEP was an
invalid sleep time.

This statement suspends VAXTPU for two seconds.

i SLEEP ("0 0:0:1.50");

This statement suspends VAXTPU for one and one-half seconds.

7-460

\
)

u

(

VAXTPU Built-In Procedures
SLEEP

I PROCEDURE user_emphasize_message (user_message)
LOCAL here,

start_mark,
the_range;

here := MARK (NONE);

POSITION (END OF (message buffer));
COPY_TEXT (user_message);
MOVE_HORIZONTAL (-CURRENT_OFFSET);
start_mark := MARK (NONE);
MOVE_VERTICAL (1);
MOVE_HORIZONTAL (-1);

the_range := CREATE_RANGE (start_mark, MARK (NONE), REVERSE);
UPDATE (message_window);
SLEEP ("0 00:00:00.33");
the_range := 0;
UPDATE (message_window);

POSITION (here);
END PROCEDURE

This procedure takes a string and puts it into the message buffer. The
procedure displays the string in reverse video rendition for a third of a
second. After a third of a second, the reverse video rendition is canceled
and the string is displayed in ordinary rendition.

VAXTPU Built-In Procedures
SPAN

SPAN

FORMAT

Returns a pattern that matches a string of characters, each of which appears
in the buffer, range, or string used as its parameter. SPAN matches as many
characters as possible.

{

buffer }
pattern := SPAN (ra~ge)

strmg

PARAMETERS buffer

return value

An expression that evaluates to a buffer. SPAN matches only those
characters that appear in the buffer.

range
An expression that evaluates to a range. SPAN matches only those
characters that appear in the range.

string
An expression that evaluates to a string. SPAN matches only those
characters that appear in the string.

A pattern that matches a sequence of characters, each of which appears in
the buffer, range, or string used in the parameter to SPAN.

DESCRIPTION SPAN matches one or more characters, each of which must appear in the
string, buffer, or range passed as its parameter. SPAN matches as many
characters as possible, stopping only if it finds a character not present in
its parameter or if it reaches the end of a line. If SPAN is part of a larger
pattern, SPAN does not match a character if doing so prevents the rest of
the pattern from matching .

SIGNALED
ERRORS

7-462

.
SPAN does not cross line boundaries. To match a string of characters that
may cross one or more line boundaries, use SPANL.

TPU$_NEEDTOASSIGN

TPU$_ TOO FEW

TPU$_ TOOMANY

ERROR

ERROR

ERROR

SPAN must appear in the right
hand side of an assignment
statement.

SPAN requires at least one
argument.

SPAN accepts no more than one
argument.

V

i
\.

TPU$_ARGMISMATCH

TPU$_CONTROLC

VAXTPU Built-In Procedures
SPAN

ERROR

ERROR

Argument passed to SPAN is of
the wrong type.

You pressed CTRIJC during the
execution of SPAN.

EXAMPLES
D patl := SPAN ("0123456789")

il

This assignment statement creates a pattern that matches any sequence
of numbers.

patl := span ("abcdefghijklmnopqrstuvwxyz") + "s";

This assignment statement creates a pattern that matches any word of
two or more letters ending in the letters. Given the word dogs, the SPAN
part of the pattern matches dog. It does not match the s as well as this
would prevent the rest of the pattern from matching.

PROCEDURE user_remove_xyz
LOCAL patl,

xyz_line;

patl := LINE BEGIN+ SPAN ("xyz") + LINE_END;

LOOP
xyz line := SEARCH QUIETLY (patl, FORWARD);
EXITIF xyz line= 0;
POSITION (xyz_line);
ERASE_LINE;

ENDLOOP;
END PROCEDURE

This procedure removes all lines that contain only the letters x, y, and z.

VAXTPU Built-In Procedures
SPANL

SPANL

FORMAT

PARAMETER

return value

Returns a pattern that matches a string of characters and line breaks, each
of which appears in the buffer, range, or string used as its parameter. The
pattern matches as many characters and line breaks as possible.

{

buffer }
pattern == SPANL (ra~ge)

stnng

buffer
An expression that evaluates to a buffer. SPANL matches only those
characters that appear in the buffer.

range
An expression that evaluates to a range. SPANL matches only those
characters that appear in the range.

string
An expression that evaluates to a string. SPANL matches only those
characters that appear in the string.

A pattern matching a sequence of characters and line breaks.

DESCRIPTION SPANL is similar to SPAN in that it matches one or more characters, each
of which must appear in the string, buffer, or range used as a parameter. _)
However, unlike SPAN, SPANL does not stop matching when it reaches

SIGNALED
ERRORS .

7-464

the end of a line. It successfully matches the end of the line and continues
trying to match characters on the next line. If SPANL is part of a larger
pattern, it does not match a character or line boundary if doing so prevents
the rest of the pattern. from matching.

Normally, SPANL must match at least one character. However, if the
argument to SPANL contains no characters, then SPANL matches one or
more line breaks.

TPU$_NEEDTOASSIGN

TPU$_ TOO FEW

TPU$_ TOOMANY

ERROR

ERROR

ERROR

SPANL must appear in the right
hand side of an assignment
statement.

SPANL requires at least one
argument.

SPANL accepts no more than one
arguments.

\
· __ _)

TPU$_ARGMISMATCH

TPU$_CONTROLC

VAXTPU Built-In Procedures
SPANL

ERROR

ERROR

Argument passed to SPANL is of
the wrong type.

You pressed CTRUC during the
execution of SPANL.

EXAMPLES
D patl := SPANL (" ")

This assignment statement stores a pattern in patl that matches the
longest sequence of blank characters starting at the editing point and
continuing until the search encounters a nonmatching character or the
end of the buffer, range, or string.

is pat2 := SPANL ("0123456789")

This assignment statement stores in pat2 a pattern that matches the
longest sequence of digits starting at the editing point and continuing
until the search encounters a nonmatching _ character or the beginning or
end of the buffer, range, or string.

!il pat3 := SPANL ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

ll

This assignment statement stores in pat3 a pattern that matches the
longest sequence of the alphabetic characters listed in the parameter. If
you use this pattern with the built-in procedure SEARCH, the search
starts at the current character position and continues to an end-of
search condition. If you specify an EXACT search, the characters must
be uppercase for a successful match.

PROCEDURE user_remove_numbers
LOCAL patl,

number_region;

patl := SPANL ("0123456789");

POSITION (BEGINNING_OF (CURRENT_BUFFER));

LOOP
number region := SEARCH QUIETLY (patl, FORWARD);
EXITIF-number region= 0;
ERASE (number-region);
POSITION (nurnber_region);

ENDLOOP;
POSITION (BEGINNING_OF (CURRENT_BUFFER));

END PROCEDURE

This procedure removes all parts of a document that contain only numbers.

7-465

VAXTPU Built-In Procedures
SPANL

~ PROCEDURE user_remove_blank_lines
LOCAL patl,

~

blank_lines;

patl := LINE_END + (SPANL ('If') @ blank_lines)
+ LINE_BEGIN;

POSITION (BEGINNING_OF (CURRENT_BUFFER));

LOOP
blank_lines := 0;
SEARCH QUIETLY (patl, FORWARD);
EXITIF-blank_lines = 0;
ERASE (blank lines);
POSITION (blank_lines);

ENDLOOP;
POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDPROCEDURE

This procedure removes all empty lines from the current buffer. A line
that contains only spaces or tabs is not empty.

PROCEDURE user find mark twain - - -
LOCAL patl,

mark_twain;

patl := "Mark" + (SPANL (" " + ASCII (9)) I SPANL (""))
+ "Twain";

mark twain := SEARCH QUIETLY (patl, FORWARD, NOEXACT);
IF mark twain= 0
THEN

MESSAGE ("String not found");
ELSE

POSITION (mark_twain);
ENDIF;

END PROCEDURE

This procedure positions you to the next occurrence of the text Mark)
Twain, where Mark and Twain may be separated by any number of spaces,
tabs, or line breaks.

7-466

n
j

SPAWN

FORMAT

VAXTPU Built-In Procedures
SPAWN

Creates a subprocess running the command line interpreter.

SPAWN ff (string, [g~F])J

PARAMETERS string

DESCRIPTION

The command string that you want to be executed in the context of the
subprocess that is created with SPAWN.

ON
A keyword indicating that control is to be returned to VAXTPU after the
command has been executed. This is the default unless the value specified
for the first parameter is the null string.

OFF
A keyword indicating that the user is to be prompted for additional
operating system commands after the specified command has been
executed. If the value specified for the first parameter is the null string,
the default value for the second parameter is OFF.

SPAWN suspends your VAXTPU process and spawns a VMS subprocess.
This built-in procedure is especially useful for running programs and
utilities that take control of the screen (these programs cannot be run in a
subprocess created with the built-in procedure CREATE_PROCESS). See
Chapter 2 for a list of restrictions for subprocesses.

If you are using DCL, you can return to your VAXTPU session after
finishing in a subprocess by using either the DCL command A'ITACH or
the DCL command LOGOUT. If you use the DCL command A'ITACH,
the subprocess is available for future use. If you use the DCL command
LOGOUT, the subprocess is deleted. When you return to the VAXTPU
session, the screen is repainted.

If you specify a DCL command as the parameter for SPAWN, the command
is executed after the subprocess is created. When the command completes,
the subprocess terminates, and control is returned to the VAXTPU process.
If you want to remain in DCL, add the keyword OFF as the second
parameter.

SPAWN was designed to allow you to leave a VAXTPU session, do other
work in a VMS subprocess, and return to the VAXTPU session that you
interrupted. Subprocesses created with SPAWN give you direct access to
the command line interpreter. 'J,'hese subprocesses are different from the
subprocesses created with the built-in procedure CREATE_PROCESS.
CREATE_PROCESS creates a subprocess within a VAXTPU session, and
all of the output from the subprocess goes into a buffer.

7-467

VAXTPU Built-In Procedures
SPAWN

SIGNALED
ERRORS

EXAMPLES

D SPAWN

SPAWN is not a valid built-in in DECwindows VAXTPU. However, if
you are running non-DECwindows VAXTPU in a DECwindows terminal
emulator, SPAWN works as described in this section.

See the description of the built-in procedure ATTACH in this section for
information on moving control from one subprocess to another. See the
VMS DCL Dictionary for more information on the characteristics of a
spawned subprocess.

If the current buffer is mapped to a visible window, the SPAWN built-in
causes the screen manager to synchronize the editing point, which is a
buffer location, with the cursor position, which is a window location. This
may result in the insertion of padding spaces or lines into the buffer if the
cursor position is before the beginning of a line, in the middle of a tab,
beyond the end of a line, or after the last line in the buffer.

TPU$_ TOO MANY ERROR Too many arguments passed to
the SPAWN built-in.

TPU$_1NVPARAM ERROR Wrong type of data sent to the
SPAWN built-in.

TPU$_REQUIRESTERM ERROR SPAWN is not a valid built-in in
DECwindows VAXTPU.

TPU$_UNKKEYWORD ERROR An unknown keyword has been
used as an argument. Only ON or
OFF is allowed.

TPU$_BADKEY ERROR An unknown keyword has been
used as an argument. Only ON or
OFF is allowed.

TPU$_CAPTIVE WARNING Unable to create a subprocess in
a captive account.

TPU$_CREATEFAIL WARNING Unable to activate the subprocess.

This spawns a VMS subprocess and suspends VAXTPU process. After
completing work in the subprocess, you can return to your VAXTPU
session by using the DCL command ATTACH or the DCL command
LOGOUT.

i SPAWN ("DIRECTORY")

7-468

This spawns a VMS subprocess and executes the DCL command
DIRECTORY. When the command completes, you are returned to your
VAXTPU session. ·

)

il SPAWN ("SHOW LOGICAL SYS$LOGIN", OFF)

VAXTPU Built-In Procedures
SPAWN

This spawns a VMS subprocess and puts your VAXTPU process on hold.
The DCL command is executed in the subprocess to show the translation
of the logical name SYS$LOGIN, and you are left at the DCL prompt.
After completing work in the subprocess, you can return to your VAXTPU
session by using the DCL command ATTACH or the DCL command
LOGOUT.

VAXTPU Built-In Procedures
SPLIT_LINE

SPLIT LINE

Breaks the current line before the editing point and creates two lines.

FORMAT SPLIT_LINE

PARAMETERS None.

DESCRIPTION

7-470

SPLIT_LINE breaks the current line into two lines. The relative screen
position of the line you are splltting may change as a result of this
procedure. The first line contains any characters to the left of the editing
point. The second line contains the rest of the characters. The new line
that is created is inserted directly after the former current line.

When you use SPLIT_LINE, the editing point remains on the same
character, but that character is now the first character on the newly
created line.

If the editing point is not the first character in the line being split, the left
margin of the old line is not changed. The new line, which contains the
editing point and the characters to the right of the editing point, takes the
buffer's left margin as its own left margin.

If the editing point is the first character of a line, SPLIT_LINE creates a
blank line where the original line was. The left margin of this blank line
is the buffer's left margin. SPLIT_LINE moves the original line, including
the editing point, to the line below the blank line. If the original line haµ
a left margin different from the buffer's current left margin, SPLIT_LINE
preserves the original line's left margin when it moves the line down.

If the editing point is on a blank line, SPLIT_LINE creates a new blank
line below the existing line. The editing point moves to the new blank line.
The new blank line receives the buffer's left margin value. If the original
blank line had a left margin different from the buffer's current left margin,
the original blank line retains its margin.

Using SPLIT_LINE may cause VAXTPU to insert padding spaces or blank
lines in the buffer. SPLIT_LINE causes the screen manager to place the
editing point at the cursor position if the current buffer is mapped to a
visible window. (For more information on the distinction between the
cursor position and the editing point, see Chapter 6.) If the cursor is not
located on a character (that is, if the cursor is before the beginning of a
line, beyond the end of a line, in the middle of a tab, or below the end of
the buffer), VAXTPU inserts padding spaces or blank lines into the buffer
to fill the space between the cursor position and the nearest text.

\

_)

G
VAXTPU Built-In Procedures

SPLIT_LINE

SIGNALED
ERRORS

TPU$_NOCURRENTBUF

TPU$_NOCACHE

WARNING

ERROR

You are not positioned in a buffer.

There is not enough memory to
allocate a new cache.

TPU$_NOTMODIFIABLE

TPU$_ TOO MANY

WARNING

ERROR

You cannot modify an unmodifiable
buffer. ·

SPLIT_LINE takes no arguments.

EXAMPLES

D

!il

SPLIT LINE

This statement breaks the current line at the editing point and creates a
new line.

PROCEDURE user_split_line

LOCAL old_position,
new_position;

-SPLIT_LINE;
IF (CURRENT_ROW = 1) AND (CURRENT_COLUMN 1)
THEN

old_position := MARK (NONE);
SCROLL (CURRENT_WINDOW, -1);
new_position := MARK (NONE);
!Make sure we scrolled before doing CURSOR VERTICAL

IF new_position <> old_position

ENDIF;

THEN
CURSOR VERTICAL (1);

ENDIF;

ENDPROCEDURE

This procedure splits a line at the editing point. If the editing point is row
1, column 1, the procedure causes the screen to scroll.

'7...A'71

VAXTPU Built-In Procedures
STA

STR

FORMAT

FORMAT

Returns a string equivalent for an integer, a keyword, a string, or the contents
of a range or buffer.

string3 == STA ({ integer1 I ,integer2 I })
keyword

string3 == STA

PARAMETERS integer1
The integer you want converted to a string.

7-472

integer2
The radix (base) you want VAXTPU to -use when converting the first
integer parameter to a string. The default radix is 10. The other allowable
values are 8 and 16.

keyword
The keyword whose string representation you want.

buffer
The buffer whose contents you want returned as a string.

range
The range whose contents you want returned as a string.

string1
Any string. STR now accepts a parameter of type string, so you· need not
check the type of the parameter you supply to the built-in.

string2
A string specifying how you want line ends represented. The default is the
null string. You can only use string2 if you specify a range or buffer as the
first parameter. If you want to specify the keyword ON or OFF but do not
want to specify string2, you must use a comma before the keyword as a
placeholder, as follows:

new_string := STR (old_buffer, , ON);

)

)

\.

return value

DESCRIPTION

SIGNALED
ERRORS

ON

VAXTPU Built-In Procedures
STR

A keyword directing VAXTPU to insert spaces preserving the white space
created by the left margin of each record in the specified buffer or range.
Specifically, if you specify a buffer or range with a left margin greater than
1, the keyword ON directs VAXTPU to insert a corresponding number of
spaces after the line ends in the resulting string. For example, if the left
margin of the specified lines is 10 and you use the keyword ON, VAXTPU
inserts 9 spaces after each line end in the resulting string. VAXTPU does
not insert any spaces after line beginnings of lines that do not contain
characters. If the first line of a buffer or range starts at the left margin,
VAXTPU inserts spaces before the text in the first line.

Note that you can only use this keyword if you specify a buffer or range as
a parameter.

OFF
A keyword directing VAXTPU to ignore the left margin setting of the
records in the specified buffer or range. This is the default. For example,
if the left margin of the specified lines is 10 and you use the keyword OFF,
VAXTPU does not insert any spaces after the line ends in the resulting
string.

Note that you can only use this keyword if you specify a buffer or range as
a parameter.

string3 The string equivalent of the parameter you specify.

If you use the first format shown above, STR returns a string
representation of an integer or a keyword. You can then use the variable
containing the returned string in operations that require string data types.
For another method of generating a string representation of an integer,
see the description of the built-in procedure FAO.

If you use the second format shown above, STR returns a string equivalent
for any string or for the contents of a range or buffer.

TPU$_ TRUNCATE

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOOMANY

WARNING You specified a buffer or range
so large that converting it would
exceed the maximum length for
a string. VAXTPU has truncated
characters from the returned
string.

ERROR STA must appear on the right
hand side of an assignment
statement.

ERRO.R STA requires at least one
argument.

ERROR STA accepts only two arguments.

VAXTPU Built-In Procedures
STA

TPU$_1NVPARAM

TPU$_BADVALUE

ERROR

ERROR

The argument to STR must be an
integer, buffer, string, or range.

You specified a value other than 8,
10, or 16 for the radix parameter,

EXAMPLES
D return_string := STR (SELECT_RANGE, "<CRLF>", ON);

This statement creates a string using the text in the select range. Line
breaks are marked with the string CRLF. The white space created by the
margin is preserved by inserting spaces after the line· breaks.

still_a_string := STR ("confetti");

This statement assigns the string confetti to the variable still_a_string.

iJ new numbers := STR (123)

El

This assignment statement stores the string "123" in the variable new_
numbers.

the_string ·= STR (32, 16)

This assignment statement assigns the string "00000020" to the variable
the_string.

i the_string := STR (32, 10)

This assignment statement assigns the string "32" to the variable the_
string.

m PROCEDURE user_display_position

vl := GET_INFO (second_window, "current_column");
MESSAGE ("Column: " + STR (vl));

v2 := GET INFO (second_window, "current_row");
MESSAGE ("Row: " + STR (v2)) ;

END PROCEDURE

This procedure uses the built-in procedure STR to convert the integer
variables vl and v2 to strings so that your row and column position can be
displayed in the message area.

ii this_string := STR (this_range, "EOL")

7-474

This statement forms a string using the text in the range "this_range." In
the string, each end-of-line is represented by the letters EOL. For example,
suppose the text in "this_range" is as follows:

Sufficient unto the day
are the cares thereof

Given this text in "this_range", "this_string" contains the following:

Sufficient unto the dayEOLare the cares thereof

)

j

)

(_

VAXTPU Built-In Procedures
STR

If "this_range" extends to the character after the "f' in "thereof', "this_
string" contains the following:

Sufficient unto the dayEOLare the cares thereofEOL

VAXTPU Built-In Procedures
SUBSTR

SUBSTR

Returns a string that represents a substring of a string or a ra'lge.

FORMAT strlng2 := SUBSTR ({ ;~ii;1 }, integer1, integer2)

PARAMETERS range
The range that contains the substring.

string1
The string that contains the substring.

integer1
The character position at which the substring starts. The first character
position is 1.

integer2
The number of characters to include in the substring.

return value A string representing a substring of a string or range.

DESCRIPTION You must specify both the character position at which to start the
substring and the length of the substring. If you specify a larger number
of characters for integer2 than are present in the substring, only the
characters present are returned in string2. No error is signaled.

SIGNALED
ERRORS

·7-476

TPU$_NEEDTOASSIGN

TPU$_ TOOFEW

TPU$_ TOO MANY

TPU$_1NVPARAM

TPU$_ARGMISMATCH

ERROR

ERROR

ERROR

ERROR

ERROR

SUBSTR must appear on the
right-hand side of an assignment
statement.

SUBSTR requires three
arguments.

SUBSTR accepts only three
arguments.

One of the arguments to SUBSTR
is of the wrong type.

One of the arguments to SUBSTR
is of the wrong type.

)

CU

(

TPU$_ TRUNCATE

VAXTPU Built-In Procedures
SUBSTR

WARNING You specified a buffer or range so
large that returning the requested
substring would exceed the
maximum length for a string.
VAXTPU has truncated characters
from the returned string.

EXAMPLES·
D file_type := SUBSTR ("login.com", 7, 3)

f:l

This assignment statement returns the string "com" in the variable file_
type. The substring starts at the seventh character position ("c") and
contains three characters ("com"). If you use a larger number for integer2,
for example, 7, the variable file_type still contains "com" and no error is
signaled.

! Capitalize the first letter in a string.

PROCEDURE user_initial_cap (my_string)

LOCAL
first_part~of_string,
rest_of_string,
first_letter,
cur_loc;

cur_loc := 1;
first part of string :=
rest_of_string := "";

"".

LOOP

I

first letter := SUBSTR (my string, cur loc, 1);
EXITIF first letter=""; - -
EXITIF (first letter >= "a") AND (first letter <= "z");
EXITIF (first-letter>= "A") AND (first=letter <= "Z");
cur loc := cur loc + 1;

ENDLOOP;

CHANGE CASE (first letter, UPPER);
first_part_of_string := SUBSTR (my_string, 1, cur loc - 1);
rest of string:= SUBSTR (my string, cur loc + 1,

- - LENGTH (my_string) - cur_loc);

my_string := first part of string+ first_letter
+ rest_of_string;

END PROCEDURE

This procedure capitalizes the first character in a string. It do.es not affect
any other characters in the string. It makes use of the fact that SUBSTR
returns a null string if the second parameter points past the end of the
string.

-, A-,.,

VAXTPU Built;.ln Procedures
TRANSLATE

TRANSLATE

FORMAT

Substitutes one set of specified characters ,for another set. TRANSLATE
is based on the Run-Time Library (RTL) routine STR$TRANSLATE. For
complete information on STR$TRANSLATE, see the VMS RTL String
Manipulation (STA$) Manual.

{

buffer }
TRANSLATE (range . , string2 , string3)

string1

PARAMETERS buffer
The range in which you want VAXTPU to perform translation.

range
The range in which you want VAXTPU to perform translation.

string1
The string in which you want VAXTPU to perform translation. VAXTPU
does not translate string constants. If you specify a string constant for this.
parameter, VAXTPU does nothing.

string2 .
The string of replacement characters.

string3
The string of characters to be translated.

DESCRIPTION The TRANSLATE built-in searches the text specified by the :first
parameter for the characters contained in the third parameter. When
VAXTPU :finds the sequence specified by string3, VAXTPU substitutes the
:first character in string2 for the :first character in string3, and so forth.

SIGNALED
ERRORS

7-478

If the translate string, string2, is shorter than the match string, string3,
and the number of matched character positions is greater than the number
of character positions in the translate string, the translation character is a
space.

TPU$_ TOOFEW

TPU$_TOOMANY

ERROR

ERROR

TRANSLATE requires three
arguments.

TRANSLATE accepts no more
than three arguments.

n
.)

\

u

VAXTPU Built-In Procedures
TRANSLATE

TPU$_ARGMISMATCH ERROR One of your arguments to
TRANSLATE is of the wrong
data type.

TPU$_1NVPARAM ERROR One of your arguments to
TRANSLATE is of the wrong
data type.

TPU$_NOTMODIFIABLE WARNING You cannot translate text in an
unmodifiable buffer.

TPU$_CONTROL:C ERROR You pressed CTRUC during the
execution of TRANSLATE.

EXAMPLES

D TRANSLATE (second_buffer, "I", "i")

This statement replaces any lowercase "i" in second_buffer with an
uppercase "I".

! Procedure to translate characters to decipher scrambled text.
! Characters are shifted 13 places for encryption.

PROCEDURE user_trans_text (text_to_translate)

TRANSLATE (text to translate,
"NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklrn",
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklrnnopqrstuvwxyz");

ENDPROCEDURE

This procedure translates the text you specify as "text_to_translate"
according to the following pattern: any "A" is converted to an "N"; any "B"
is converted to an "O"; and so on.

PROCEDURE user_strip_eighth

LOCAL i,
seven,
eight;

Loop counter
! ASCII (0) through ASCII (127)
! ASCII (128) through ASCII (2~5)

Build translate strings

seven :=
eight :=
i := 0;
LOOP

seven
eight

It";

"". I

:=seven+ ASCII {i);
:=eight+ ASCII (i + 128);

i := i + 1;
EXITIF i = 128;

ENDLOOP;

TRANSLATE (CURRENT_BUFFER, seven, eight);

ENDPROCEDURE

This procedure strips the eighth bit from all characters in the current
buffer. A procedure like this is useful for reading files from systems

VAXTPU Built-In Procedures
TRANSLATE

7-480

like TOPS-20 on which the eighth bit is set without using the DEC
Multinational Character Set.

)

0

UNANCHOR

VAXTPU Built-In Procedures
UNANCHOR

Specifies that the next pattern element may match anywhere after the
previous pattern element.

FORMAT UNANCHOR

PARAMETERS None.

DESCRIPTION Normally, when a pattern contains several concatenated or linked pattern
elements, the pattern matches only when the text that matches one
particular pattern element immediately follows the text that matches the
previous pattern element. If UNANCHOR appears between two pattern
elements, the text that matches the second pattern element may appear
anywhere after the text that matches the first pattern element.

SIGNALED
ERRORS

Although UNANCHOR behaves much like a built-in, it is actually a
keyword.

For more information on patterns or pattern searching, see Chapter 2.

UNANCHOR is a keyword and has no completion codes.

EXAMPLES

D patl := "a" + UNANCHOR + "123"

This assignment statement creates a pattern that matches any text
beginning with the letter a and ending with the digits 123. Any amount of
text may.appear between the a and the 123.

I patl := UNANCHOR + "al23";

This assignment statement creates a pattern that matches from the search
start position (the current position if searching the current buffer) through
to and including the first occurrence of the string a123.

i PROCEDURE user_rernove_paren_text (paren_buffer)

LOCAL patl,
paren text,
searched_text;

'7..4A1

VAXTPU Built-In Procedures
UNANCHOR

patl : = 11
(

11 + UNANCHOR + ") 11
;

searched text := paren_buffer;
LOOP

paren_text := SEARCH_QUIETLY (patl, FORWARD, EXACT,
searched_text);

EXITIF paren_text = 0;
ERASE (paren_text);
searched text ·= CREATE RANGE (END OF (paren text),

- - END_OF (paren_buffer), NONE);
ENDLOOP;

ENDPROCEDURE

7-482

This procedure removes all parenthesized text from a buff er. The text may
span several lines. It does not handle multiple levels of parentheses.

C

(U
'-

VAXTPU Built-In Procedures
UNDEFINE KEY

UNDEFINE KEY

FORMAT

· PARAMETERS

Removes the current binding from the key that you specify.

UNDEFINE_KEY 1ke ord [{ 'key-map-liSl-name }])
1~ yw , key-map-name

keyword
The name of a key or key combination that VAXTPU allows you to define.
See Table 2-1 for a list of the valid VAXTPU key names.

key-map-list-name
Specifies a key map list in which the key is defined. The first definition
of the key in the key maps that make up the key map list is deleted. If
neither a key map nor a key map list is specified, the key map list bound
to the current buffer is used.

key-map-name .
Specifies a key map in which the key is defined. The first definition of the
key in the key map is deleted. If neither a key map nor a key map list is
specified, the key map list bound to·the current buffer is used.

DESCRIPTION After you use UNDEFINE_KEY, the key you specify is no longer defined.

SIGNALED
ERRORS

VAXTPU does not save any previous definitions that you may have
associated with the key. However, any definitions of the specified key
in key maps or key map lists other than the ones you specified are not
removed.

VAXTPU writes a message to the message buffer telling you that the key
is undefined if you try to use it after you have undefined it.

TPU$_NODEFINITION WARNING There is no definition for this key.

TPU$_NOTDEFINABLE WARNING First argument is not a valid
reference to a key.

TPU$_NOKEYMAP WARNING Second argument is not a defined
key map.

TPU$_NOKEYMAPLIST WARNING Second argument is not a defined
key map list.

TPU$_KEYMAPNTFND WARNING The key map listed in the second
argument is not found.

TPU$_EMPTYKMLIST WARNING The key map list specified in the
second argument contains no key
maps.

VAXTPU Built-In Procedures
UNDEFINE_KEY

TPU$_ TOOFEW

TPU$_ TOOMANY

TPU$_1NVPARAM

ERROR

ERROR

ERROR

Too few arguments passed to the
UNDEFINE_KEY built-in.

Too many arguments passed to
the UNDEFINE_KEY built-in.

Wrong type of data sent to the
UNDEFINE_KEY built-in.

EXAMPLES
D UNDEFINE KEY (CTRL_Z_KEY)

This statement removes the association between the key combination
CTRIJZ and the code that it previously executed.

i Parameters:

i]

Name Function

which_key Keyword for key to clear

PROCEDURE user_clear_key (which_key)

IF (LOOKUP_KEY (which_key, PROGRAM) <> 0)
THEN

UNDEFINE_KEY (which_key);
ELSE

MESSAGE ("Key not defined");
ENDIF;

END PROCEDURE

Input or Output?

input

This procedure undefines a key. A procedure like this can be used by
keypad initialization procedures.

PROCEDURE delete all definitions

LOCAL key;

LOOP
key := GET_INFO (DEFINED_KEY, "first", "tpu$key_map");
EXITIF key= 0;
UNDEFINE KEY (key, "tpu$key_map");

ENDLOOP;
ENDPROCEDURE

This procedure deletes all of the key definitions in the key map TPU$KEY_
MAP.

7-484

)

.,I

)

<U
VAXTPU Built-In Procedures

UNMANAGE_WIDGET

UNMANAGE WIDGET

Makes the specified widget and all of its children invisible.

For more information about managing widgets, see the VMS DECwindows
Toolkit Routines Reference Manual.

FORMAT UNMANAGE_WIDGET (widget f, widget ... J)

PARAMETERS widget
The widget instance to be unmanaged.

DESCRIPTION If you want to unmanage several widgets that are children of the same
parent, but you do not want to unmanage the parent, include all the
children in a single call to UNMANAGE_ WIDGET. Unmanaging several
widgets at once is more efficient than unmanaging one widget at a time.

The UNMANAGE_ WIDGET built-in is equivalent to the X Toolkit
UNMANAGE CHILD and UNMANAGE CHILDREN routines.

SIGNALED
ERRORS

TPU$_1NVPARAM

TPU$_ TOOFEW

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_WIDMISMATCH

EXAMPLE

PROCEDURE eve$$replace_clean_up

ON ERROR
[TPU$ CONTROLC):

eve$learn_abort;
abort;

[OTHERWISE) :
eve$$replace_error_handler;

ENDON_ERROR;

ERROR

ERROR

ERROR

ERROR

ERROR

IF NOT eve$$x_replace_array {eve$$k_replace_asking}

THEN If all occurrences were replaced, the editing
! point is positioned to the last saved mark.

You specified a parameter of the
wrong type.

Too few arguments passed to the
UNMANAGE_WIDGET built-in.

UNMANAGE_WIDGET cannot
return a value.

You can use the UNMANAGE_
WIDGET built-in only if you are
using DECwindows VAXTPU.

You have specified a widget whose
class is not supported.

.. Jlft ..

VAXTPU Built-In Procedures
UNMANAGE_WIDGET

POSITION (eve$$x_replace_array {eve$$k_replace_saved_mark});
ENDIF;

! Restore the buffer's origi~al direction and mode.

SET (eve$$x replace array {eve$$k replace saved direction},
eve$$J~-replace-array {eve$$k-replace-this buffer});

SET (eve$$x=replace=array {eve$$k-replace-saved mode},
eve$$x_replace_array {eve$$k=replace=this_buffer});

SET (SCREEN UPDATE, ON);
eve$message - (EVE$_REPLCOUNT, o·, ..

eve$$x_replace_array {eve$Sk_replace_occurrences});

IF (eve$$x state array {eve$$k command line flag}= eve$k_invoked_by_menu)
AND (eve$$x_state_array {eve$$k_dia~og_box})

THEN
IF eve$x_decwindows_active
THEN

IF GET_INFO (eve$x_replace_each_dialog, "type") = WIDGET
THEN

UNMANAGE WIDGET (eve$x_replace_each_dialog); This statement
unmanages the
replace dialog
box.

ENDIF;
ENDIF;

ENDIF;

ENDPROCEDURE;

7-486

This procedure shows one possible way that a layered application can use
the UNMANAGE_ WIDGET built-in. The procedure is a modified version
of the EVE procedure EVE$$REPLACE_CLEAN_UP. You can find the
original version in SYS$EXAMPLES:EVE$EDIT.TPU.

The procedure performs screen cleanup operations after the user has used
the EVE command REPLACE. It restores the direction and mode to which
the buffer was set before the replace operation began, then tests whether
the replace dialog box is present and, if so, makes it invisible.)

0

(

UNMAP

FORMAT

PARAMETERS

DESCRIPTION

SIGNALED
ERRORS

EXAMPLES

VAXTPU Built-In Procedures
UNMAP

Disassociates a window from its buffer and removes the window from the
screen.

UNMAP (window).

window
The window you want to remove from the screen.

If you unmap the current window, VAXTPU tries to move the cursor
position to the window that was most recently the current window. The
window in which VAXTPU positions the cursor becomes the current
window, and the buffer that is associated with this window becomes the
current buffer.

The screen area of the window you unmap is either erased or returned to
any windows that were occluded by the window you unmapped. VAXTPU
returns lines to adjacent windows if the size of the windows requires the
lines that were used for the window you unmap. The· size of a window is
determined by the values you specified for the built-in procedure CREATE_
WINDOW when you created the window, or by the values you specified for
the built-in procedure ADJUST_ WINDOW if you changed the size of the
window. If adjacent windows do not require the lines that were used by
the window you unmap, the lines that the window occupied on the screen
remain blank.

The window that you unmap is not deleted from the list of available
windows. You can cause the window to appear on the screen again with
MAP. UNMAP does not have any effect on the buffer that was associated
with the window being unmapped.

TPU$_TOOFEW

TPU$_ TOO MANY

TPU$_1NVPARAM

TPU$_WINDNOTMAPPED

ERROR

ERROR

UNMAP requires one parameter.

UNMAP accepts only one
parameter.

ERROR One or more of the specified
parameters have the wrong type.

WARNING Window is not mapped to a buffer.

II UNMAP (main_window)

This statement removes the main window from the screen and
disassociates from the main window the buffer that was mapped to it.

VAXTPU Built-In Procedures
UNMAP

I PROCEDURE user_one_window to two

LOCAL wind_length,
wind_half,
first line,

last_line;

cur wind := CURRENT_WINDOW;

If it exists
IF (cur_wind <> 0)
THEN

first line := GET INFO (cur wind, "visible top");
last line := GET INFO (cur wind, "visible bottom");

·wind=buf := GET_INFO (cur_wind, "buffer");
UNMAP (cur_wind);

ELSE
If there is no current window then create an empty buffer

first line := l;
last_line := GET_INFO (SCREEN, "visible_length");
wind_buf := CREATE_BUFFER ("Empty Buffer");

ENDIF;

wind length := (last line - first line) + l;
wind-half:= wind length/2; -
new_window_l := CREATE_WINDOW (first_line, wind_half, OFF);

SET (VIDEO, new window 1, UNDERLINE);
new window 2 :=-CREATE-WINDOW (wind half+l,

- - last_line-wind_half~ OFF);

Associate the same buffer with both windows
and map the windows to the screen

MAP (new_window_l, wind buf);
MAP (new_window_2, wind=buf);

ENDPROCEDURE

)

This procedure unmaps the current window and puts two new windows in
its place. (Note that if the window that you are replacing has a status line,)
this line is not included in the screen area used by the two new windows.
This is because GET_INFO (window, "visible_bottom") does not take the
status line into account.)

7-488

UPDATE

VAXTPU Built-In Procedures
UPDATE

Causes the screen manager to make .a window reflect the current internal
state of the buffer that is associated with the window. One important task that
UPDATE performs is to move the cursor to the editing point if they are not
synchronized when the UPDATE built-in is executed.

FORMAT UPDATE ({ A~L }J
wmdow

PARAMETERS ALL
A keyword directing VAXTPU to make all visible windows reflect the
current state of the buffers mapped to them.

window
The-window that you want updated. The window must be mapped to the
screen for the update to occur.

DESCRIPTION The screen manager updates windows after each keystroke. However, if a
key has a procedure bound to it, VAXTPU may execute many statements
when that key is pressed. By default, UPDATE does not reflect the result
of any statement in a procedure bound to a key until all the statements in
the procedure have been executed. As a result, the screen may not reflect
the current state of the buffer during execution of a procedure bound to a
key. If you want the screen to reflect changes before the entire procedure
is executed, you can force an immediate update by adding an UPDATE
statement to the procedure.

UPDATE (window) affects a single window that is visible on the screen. If
the buffer associated with the window you use as a parameter is associated
with other windows that are mapped to the screen, all of these windows
may be updated.

UPDATE (ALL) updates all visible windows. The difference between the
UPDATE (ALL) built-in and the REFRESH built-in is that UPDATE
(ALL) makes whatever changes are necessary on a window-by-window
basis. REFRESH clears the screen and repaints everything from scratch,
as well as reinitializing scrolling regions and other terminal-dependent
settings. ·

For more information on the results of the REFRESH built-in, see the
description of REFRESH in this chapter. For more information on how
the VAXTPU screen manager uses the UPDATE built-in in various
circumstances, see Chapter 6.

'7_ADft

VAXTPU Built-In Procedures
UPDATE

SIGNALED
ERRORS

TPU$_ TOOFEW

TPU$_ TOOMANY

ERROR UPDATE requires one parameter.

ERROR You specified more than one
parameter.

TPU$_1NVPCARAM ERROR The specified parameter has the
wrong type.

TPU$_BADKEY ERROR The keyword must be ALL.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

TPU$_ WINDNOTMAPPED WARNING You cannot update a window that
is not on the screen.

EXAMPLES
D UPDATE (new_window)

This statement causes the screen manager to make new_window reflect
the current internal state of the buffer associated with new_window.

PROCEDURE user show first line - -
LOCAL old_position, Marker of position before scroll

new_position; Marker of position after scroll

UPDATE (CURRENT_WINDOW);
IF (GET_INFO (CURRENT_WINDOW, "current_row")

GET_INFO (CURRENT_WINDOW, "visible_top"))
AND

THEN
(CURRENT_COLUMN = 1)

old_position := MARK (NONE);
SCROLL (CURRENT WINDOW, -1);
new_position :=-MARK (NONE);

Make sure we scrolled before doing the CURSOR VERTICAL

IF new_position <> old_position
THEN

CURSOR VERTICAL (l);
ENDIF;

ENDIF;
ENDPROCEDURE

7-490

This procedure updates the screen to display the new line of text that you
are inserting before the top line of the window. (When you insert text in
front of the top of a window, the included text is not visible on the screen
unless you use a procedure such as this one to ensure that the text is
displayed.)

\

VAXTPU Built-In Procedures
WRITE_CLIPBOARD

WRITE CLIPBOARD

FORMAT

Writes string format data to the clipboard.

WRITE_CLIPBOARD (clipboard_/abel, { ~:;:: })
strmg

PARAMl;TERS clipboard_/abel

DESCRIPTION

SIGNALED
ERRORS

The label for multiple entries in the clipboard. Since the clipboard does
not currently support multiple labels, use any string, including the null
string, to specify this parameter.

buffer
The buffer containing text to be written to the clipboard. VAXTPU
represents line breaks by a line-feed character (ASCII (10)). If you specify
a buffer, VAXTPU converts the buffer to a string, replacing line breaks
with line feeds, and replacing the white space before the left margin with
padding blanks.

The buffer must contain at least one character or line break. If it does not,
VAXTPU signals TPU$_CLIPBOARDZERO.

range
The range containing text to be written to the clipboard. VAXTPU
represents line breaks by a line-feed character (ASCII (10)). If you specify
a range, VAXTPU converts the rangt:: to a string, replacing line breaks
with line feeds, and replacing the white space before the left margin with
padding blanks.

The range must contain at least one character or line break. If it does not,
VAXTPU signals TPU$_CLIPBOARDZERO.

string
The string containing text to be written to the clipboard. The string must
contain at least one character. If it does not, VAXTPU signals TPU$_
CLIPBOARDZERO.

The clipboard_label parameter provides support for multiple entries on
the clipboard; at present, however, the clipboard does not support multiple
entries.

TPU$_CLIPBOARDLOCKED WARNING The clipboard is locked by another
process.

VAXTPU Built-In Procedures
WRITE_CLIPBOARD

EXAMPLES

TPU$_CLIPBOARDZERO

TPU$_ TRUNCATE

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

II WRITE_CLIPBOARD ("", this_range);

WARNING The data to be written to the
clipboard have zero length.

WARNING VAXTPU has. truncated characters
from the data written because
you specified a buffer or range
containing more than 65,535
characters.

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR WRITE_CLIPBOARD cannot
return a value.

ERROR

ERROR

ERROR

You can use the WRITE_
CLIPBOARD built-in only if you
are using DECwindows VAXTPU.

Too few arguments passed to the
WRITE_CLIPBOARD built-in.

Too many arguments passed to
the WRITE_CLIPBOARD built-in.

This statement writes the contents of the range this_range to the
clipboard.

I PROCEDURE eve$$cut_copy (delete_range)

LOCAL remove_range, Local copy of the currently
selected ·range.

done_message; Success message.

ON ERROR
[TPU$_CLIPBOARDLOCKED]:

eve$message (EVE$_CLIPBDWRITLOCK);
eve$learn_abort;
RETURN (FALSE);

[OTHERWISE] :
eve$learn_abort;

ENDON_ERROR;

remove_range := eve$selection (TRUE);
IF remove_range <> 0
THEN

7-492

WRITE CLIPBOARD ("", remove_range);

IF delete_range
THEN

done_message := EVE$_REMCOMPL;
ERASE (remove_range);

This statement writes a copy
of the selected range to the
clipboard.

)

)

\

(

ELSE

VAXTPU Built-In Procedures
WRITE_CLIPBOARD

done_message := EVE$_COPYCOMPL;
ENDIF;
remove_range := 0;
eve$message (done_message);
RETURN (TRUE);

ENDIF;

eve$learn_abort;
RETURN (FALSE);

ENDPROCEDURE;

This procedure shows one possible way that a layered application can
use the WRITE_CLIPBOARD built-in. This procedure is a copy of
the EVE procedure EVE$$CUT_COPY. You can find this procedure in
SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

The procedure checks whether a selection is active and, if so, writes the
contents of the selected range to the clipboard. If the user has directed
EVE to cut the selected text, the procedure erases the selected range.

VAXTPU Built-In Procedures
WRITE FILE

WRITE FILE

FORMAT

Writes data to the file that you specify. WRITE_FILE optionally returns a string
that is the file specification of the file created.

(string2 := D WRITE FILE ({ buffer } /[,stringt JI)
- range

PARAMETERS buffer
The buffer whose contents you want to write to a file.

range
The range whose contents you want to write to a file.

If you use WRITE_FILE on a range that does not start at the left margin
of a line, VAXTPU does the following: ·

• Determines the left margin of the line in which the range starts

• Writes the range to the output file starting at the same left margin as
the margin of the line where the range starts

For example, if you write a range that starts in column 30 of a line whose
left margin is 10, WRITE_FILE writes the range in the output file starting
at column 10.

string1
A string specifying the file to which the contents of the buffer are to be
written. If you do not specify a full file specification, VAXTPU determines
the .output file specification using the current device and directory as
defaults. _)

This parameter is optional. If you omit it, VAXTPU uses the associated
output file name for the buffer. If there is no associated file name,
VAXTPU prompts you for one. If you do not give a file name at the
prompt, VAXTPU does not write to a file. In that case, the optional string2
that is returned is a null string.

return value A string representing the file specification of the file created.

DESCRIPTION If you specify a result, WRITE_FILE returns a string that is the file
specification of the file to which the data was written.

7-494

VAXTPU uses a flag to mark a buffer as modified or not modified. When
you write data from a buffer to an external file, VAXTPU clears the
modified flag for that buffer. If you do not make any further modifications
to that buffer, VAXTPU does not consider-the buffer as being modified and
does not write out the :file by default when you exit. If an error occurs
while VAXTPU is writing a :file, VAXTPU does not clear the modified flag.

,_)
\.

(

VAXTPU Built-In Procedures
WRITE_FILE

See Appendix F for a list of the file types that VAXTPU supports.

SIGNALED
ERRORS

TPU$_CONTROLC ERROR The execution of the write
operation terminated because
you pressed CTRUC.

TPU$_ TOOFEW ERROR WRITE_FILE requires at least one
parameter.

TPU$_ TOOMANY · ERROR WRITE_FILE accepts no more
than two parameters.

TPU$_ARGMISMATCH ERROR One of the parameters to WRITE_
FILE is of the wrong type.

TPU$_1NVPARAM ERROR One of the parameters to WRITE_
FILE is of the wrong type.

The following completion codes can be signaled by VAXTPU's file
I/0 routine. You can provide your own file I/0 routine by using the
VAXTPU callable interface. If you do so, WRITE_FILE's completion
status depends upon what status you signaled in your file I/0 routine.

TPU$_0PENOUT ERROR WRITE_FILE could not create ttie
output file.

TPU$_NOFILEACCESS ERROR WRITE_FILE could not connect to
the n_~wly created output file.

TPU$_WRITEERR ERROR WRITE_FILE could not write
the text to· the file because it
encountered a file system error
during the operation.

TPU$_CLOSEOUT ERROR WRITE_FILE encountered a file
system error closing the file.

EXAMPLES

D WRITE_FILE (paste_buffer, "rnyfile. txt")

This statement writes the contents of the paste buffer to the file named
MYFILE.TXT.

Ii rny_file := WRITE_FILE (select_range, "rnyfile.txt")

This assignment statement puts the file name to which the select_range is
written in the string my _file.

PROCEDURE user write file - -
WRITE FILE (extra buf);
DELETE (extra_window);
DELETE (extra_buf);

Return the lines from extra window to the main window

ADJUST_WINDOW (main_window, -11, 0);

END PROCEDURE

97 Aft~

VAXTPU Built-In Procedures
WRITE_FILE

7-496

This procedure writes the contents of a buffer called extra_buf to a file
(because you do not specify a file name, the associated file for the buffer is
used). The procedure then removes the extra window and buffer from your
editing context.

)

((_)

\

u C

VAXTPU Built-In Procedures
WRITE_GLOBAL_SELECT

WRITE_ GLOBAL_SELECT

FORMAT

Sends requested information about a global selection from the VAXTPU
layered application to the application that issued the information request.

WRITE_GLOBAL_SELECT (

array
buffer
range
string
integer
NONE

)

PARAMETERS array
An array that passes information about a global selection whose contents
describe information that is not of a data type supported by VAXTPU. For
example, the array could pass information about a pixmap, an icon, or a
span. ·

VAXTPU does not use or alter the information in the array; the application
layered on VAXTPU is responsible for determining how the information
is used, if at all. Since the array is used to pass information to and from
other DECwindows applications, all applications that send or receive
information whose data type is not supported by VAXTPU must agree on
how the information is to be sent and used.

The application sending the information is responsible for creating the
array and giving it the proper structure. The array's structure is as
follows:

• The element array {OJ contains a string naming the data type of
the information being passed. For example, if the information being
passed is a span, the element contains the string "SPAN".

• The element array {lJ contains either the integer 8, indicating that the
information is passed as a series of bytes, or the integer 32, indicating
that the information is passed as a series of longwords.

• If array {lJ contains the value 8, the element array {2J contains a
string and there are no array elements after array {2J. The string
does not name anything, but rather is a series of bytes. As mentioned,
the meaning and use of the information is agreed upon by convention
among the DECwindows applications.

• If array {lJ contains the value 32, the remaining elements of the
array contain integer data. In this case, the array can have any
number of elements after an:ay {2J. These elements must be numbered
sequentially, starting at array {3J. All the elements contain integers.
Each integer represents a longword of data. To determine how many
longwords are being passed, an application can determine the length of
the array and subtract 2 to allow for elements array {OJ and array {lJ.

VAXTPU Built-In Procedures
WRITE_ GLOBAL_SELECT

buffer
The buff er containing the information to be sent to the requesting
application as the response to the global selection information request.
If you specify a buffer, VAXTPU converts the buffer to a string, converts
line breaks to line feeds, and inserts padding blanks before text to fill any
unoccupied space before the left margin.

range
The range containing the information to be sent to the requesting
application as the response to the global selection information request.
If you specify a range, VAXTPU converts the buffer to a string, converts
line breaks to line feeds, and inserts padding blanks before and after text
to fill any unoccupied space before the left margin.

string
The string containing the information to be sent to the requesting
application as the response to the global selection information request.
VAXTPU sends the information in string format.

integer
An integer whose value is to be sent to the requesting application as the
response to the global selection information request. VAXTPU sends the
information in integer format.

NONE
A keyword indicating that no information about the global selection is
available.

DESCRIPTION WRITE_GLOBAL_SELECT is valid only inside a routine that responds to
requests for information about a global selection.

SIGNALED
ERRORS

7-498

The parameter specifies the data to supply to the requesting application.
If you specify NONE, VAXTPU informs the requesting application that __ ..)
no information is available. Note, however, that for any case in which a
routine omits a WRITE_GLOBAL_SELECT statement, by default VAXTPU
informs the requesting application that no information is available.

Call WRITE_GLOBAL_SELECT no more than once during the execution
of a global selection ·read routine. VAXTPU signals TPU$_INVBUILTIN if
you attempt to call this routine more than once.

TPU$_BUILTININV

TPU$_ TRUNCATE

WARNING WRITE_GLOBAL_SELECT has
been used more than once in the
same routine.

WARNING VAXTPU has truncated characters
from the data written because
you specified a buffer or range
containing more than 65,535
characters.

(\ ,v
\.

(_

TPU$_1NVPARAM

TPU$_NORETURNVALUE

TPU$_REQSDECW

TPU$_ TOOFEW

TPU$_ TOOMANY

EXAMPLE

VAXTPU Built-In Procedures
WRITE_ GLOBAL_SELECT

ERROR One of the parameters was
specified with data of the wrong
type.

ERROR WRITE_GLOBAL_SELECT cannot
return a value.

ERROR You can use the WRITE_
GLOBAL_SELECT built-in only
if you are using DECwindows
VAXTPU.

ERROR Too few arguments passed tq
the WRITE_GLOBAL_SELECT
built-in.

ERROR Too many arguments passed to
the WRITE_GLOBAL_SELECT
built-in.

WRITE_GLOBAL_SELECT (this_range);

This statement sends the contents of the range this_range to the
requesting application.

For an example of a procedure using the WRITE_GLOBAL_SELECT
built-in, see Example B-11.

)

A Sample VAXTPU Procedures

A.1

The following VAXTPU procedures are included as samples of how to use
VAXTPU to perform certain tasks. These procedures merely show one way
of using VAXTPU; there may be other, more efficient ways to perform the
same task. Make changes to these procedures to accommodate your style
of editing.

For these procedures to compile and execute correctly, you must make
sure that there are no conflicts between these sample procedures and
your interface. The following types of procedures are contained in this
appendix:

1 Line-mode editor

2 Translation of control characters

3 Restoring terminal width before exiting from VAXTPU

4 DCL command procedure to run VAXTPU from a subprocess

Line-Mode Editor
The following example shows a portion of an editing interface that uses
line mode rather than screen displays for editing tasks. This mode of
editing can be used for batch jobs, or for running VAXTPU on terminals
that do not support screen-oriented editing.

Portion of a line mode editor for VAXTPU
Invoked from DCL with: EDIT/TPU/NODISPLAY/NOSECTION/COM=linemode.tpu file

input file := GET INFO (COMMAND LINE, "file name");
main buffer := CREATE BUFFER ("MAIN", input-file);
POSITION (BEGINNING_OF (main_buffer)); -

LOOP ! Continuously loop until QUIT
C!11d : = READ, LINE (II* II) ;

IF cmd = ""
THEN

cmd char : = "N";
ELSE

Set up main
buffer from input
file

cmd char := SUBSTR (cmd, 1, l); CHANGE_CASE (cmd_char, UPPER);
ENDIF; ..
CASE cmd char FROM "I" TO "T" ! Only accepting I,L,N,Q,T

Sample VAXTPU Procedures
A.1 Line-Mode Editor

!Top of buffer command
["T"]:

POSITION (BEGINNING_OF (CURRENT_BUFFER));
MESSAGE (CURRENT_LINE);

!Next line command
["N"]:

MOVE_HORIZONTAL (-CURRENT_OFFSET);
MOVE_VERTICAL (l);
MESSAGE (CURRENT_LINE);

!Insert text command
["I")·:

SPLIT_LINE;
COPY_TEXT (SUBSTR (cmd, 2, 999));
MESSAGE (CURRENT LINE);

!List from here to end of file command
["L"):

!QUIT
["Q"]:

.. ENDCASE;
ENDLOOP;

ml := MARK (NONE);
LOOP
MESSAGE (CURRENT_LINE);
MOVE_VERTICAL (l);
EXITIF MARK (NONE) END OF (CURRENT_BUFFER);
ENDLOOP;
POSITION (ml);

QUIT;
[INRANGE,OUTRANGE]:

MESSAGE ("Unrecognized command - enter I,L,N,Q or T");

A.2 Translation of Control Characters

~

The following procedures are examples of how to display control characters
in a meaningful way. This is accomplished by translating the buffer to a
different visual format and mapping this new form to a window. On the
VT300 series and VT200 series of terminals, control characters are shown ·)·
as reverse question marks. On the·VTlO0 series of terminals, they are _
shown as rectangles.

! This procedure performs the substitution of meaningful characters
! for the escape or control charicters:

PROCEDURE translate controls (char_range)

LOCAL
replace_text;

! If the translation array is not yet set up, then do it now. The elements
that we do not initialize will contain the value TPUK_UNSPECIFIED. They are
characters that TPU will display meaningfully.

A-2

IF translate_array
THEN

TPU$K_UNSPECIFIED

' \

Sample VAXTPU Procedures
A.2 Translation of Control Characters

translate _array := CREATE ARRAY (32, 0) ;
translate _array { 1} := '<SOH>';
translate _array { 2} := '<STX>';
translate _array { 3} := '<ETX>';
translate _array { 4} := I <EOT>';
translate _array { 5} := I <ENQ>';
translate _array { 6) := '<ACK>';
translate _array { 7} := '<BEL>';
translate _array { 8) := '<BS>';
translate _array {14) ·= '<SO>';
translate _array { 15} := '<SI>';
translate _array {16) ·= '<DLE:>';
translate _array { 17} ·= '<DCl>';
translate _array (18) := '<DC2>';
translate _array {19) ·= '<DC3>';
translate _array (20) ·= '<DC4>';
translate _array { 21} := '<NAK>';
translate _array {22) ·= '<SYN>';
translate _array {23) := '<ETB>';
translate _array {24} := '<CAN>';
translate _array { 25} ·= '';
translate array (26} ·= '<SUB>'; -
translate _array (27) ·= '<ESC>';
translate_array {28} := '<FS>';
translate _array {29) ·= '<GS>';
translate _array {30) := '<RS>';
translate _array { 31} ·= '<US>';

ENDIF;

The range *must* be a single character long

IF LENGTH (char_range) <> 1
THEN

RETURN 0;
ENDIF;

Find the character

replace_text := translate_array {ASCII (STR (char_range)) };

If we got back a value of TPU$K_UNSPECIFIED, TPU will display the character
meaningfully

IF replace_text
THEN

RETURN 0;
ENDIF;

TPU$K_UNSPECIFIED

Erase the range and insert the new text

ERASE (char_range);
COPY_TEXT (replace_text);

RETURN l;

ENDPROCEDURE;

This procedure controls the outer loop search for the special
control characters that we want to view.

PROCEDURE view controls (source_buffer)

...

Sample VAXTPU Procedures
A.2 Translation of Control Characters

CONSTANT
ctrl char str :=

ASCII (0) + ASCII (1) + ASCII (2) + ASCII
ASCII (4) + ASCII (5) + ASCII (6) + ASCII
ASCII (8) + ASCII (9) + ASCII (10) + ASCII
ASCII (12) + ASCII (13) + ASCII (14) + ASCII
ASCII (16) + ASCII (17) + ASCII (18) + ASCII
ASCII (20) + ASCII (21) + ASCII (22) + ASCII
ASCII (24) + ASCII (25) + ASCII (26) + ASCII
ASCII (28) + ASCII (29) + ASCII (30) + ASCII

LOCAL
ctrl_char_pattern,
ctrl_char_range;

Create the translation buffer and window, if necessary

IF translate_buffer = TPU$K_UNSPECIFIED
THEN

translate buffer := CREATE BUFFER ("translation");
SET (NO_WRITE, translate_buffer);

ENDIF;

IF translate_window = TPU$K_UNSPECIFIED
THEN

translate window:= CREATE WINDOW (1, 10, ON);
ENDIF;

Make a copy of the buffer we are translating

ERASE (translate_buffer);
POSITION (translate_buffer);
COPY_TEXT (source_buffer);

(3) +
(7) +

(11) +
(15) +
(19) +
(23) +
(27) +
(31) ;

Search for any control characters and translate them. If a control character
is not found, SEARCH_QUIETLY will return a 0.

ctrl_char_pattern := ANY (ctrl_char_str); ·
POSITION (BEGINNING_OF (translate_buffer)); _)

LOOP
ctrl __ char_range : = SEARCH_QUIETLY (ctrl_char pattern, FORWARD);
EXITIF ctrl_char_range = 0;
POSITION (ctrl_char_range);
!
! If we did not translate the character, move past it

IF NOT translate controls (ctrl_char_range)
THEN

MOVE HORIZONTAL (l);
ENDIF;

ENDLOOP;

Now display what we have done

POSITION (BEGINNING OF (translate buffer));
MAP (translate_window, translate_buffer);

ENDPROCEDURE;

A-4

\

A.3

Sample VAXTPU Procedures
A.3 Restoring Terminal Width Before Exiting from VAXTPU

Restoring Terminal Width Before Exiting from VAXTPU
The following procedure compares the current width of the screen with
the original width. If the current width differs from the original width,
the procedure restores each window to its original width. The screen is
refreshed so that information is visible on the screen after yqu exit from
VAXTPU. When all of the window widths are the same, the physical screen
width is changed.

PROCEDURE user rsstore screen

LOCAL
original_screen_width,
ternp_w;

original_screen_width := GET_INFO (SCREEN, "original_width");

IF original_screen_width <> GET_INFO (SCREEN, "width")
THEN

ternp_w := get_info(windows,"first");

LOOP
EXITIF ternp_w = 0;

SET (WIDTH, ternp_w, original_screen_width);

ternp_w ·= GET INFO (WINDOWS, "next");
ENDLOOP;

REFRESH;
ENDIF;

ENDPROCEDURE

Define the key combination CTRL/E to do an exit which
restores the screen to its original width, repaints
the screen, and then exits.

DEFINE KEY ("user_restore_screen;EXIT", CTRL_E_KEY);

A.4 Running VAXTPU from a Subprocess
The following DCL command procedure shows one way of running
VAXTPU from a subprocess. It also shows how to move to or from the
subprocess.

!DCL command procedure to run VAXTPU from subprocess

!Put$ e = "@keptedit" .
!in your login.corn. This spawns the editor the first time
!and attaches to it after that. I have defined a key to be
!"attach" so it always goes back to the parent.

Sample VAXTPU Procedures
A.4 Running VAXTPU from a Subprocess

$ tt = f$getdvi("sys$comrnand","devnam") - "_" - " "
$ edit name "Edit"+ tt
$ priv -list = f$setprv ("NOWORLD, NOGROUP")
$ pid ~ 0
10:
$ proc = f$get jpi (f$pid (pid), "PRCNAM")
$ if proc .eqs. edit_name then goto attach
$ if pid .ne. 0 then goto 10$
$spawn:
$ priv list= f$setprv(priv list)
$ writ; sys$error "[Spawnin~ a new Kept Editor)"
$ define/Qolog sys$input sys$comrnand:

It.,,

$ tl = f$edit(pl +" "+ p2 +" "+ p3 +" "+ p4 + 11
"

+ pS + 11 11 + p6 + 11 11 + p7 +" "+ p8,"COLLAPSE")
$ spawn/process="''edit_name'" /nolog edit/tpu 'tl'

$ write sys$error "[Attached to DCL in directory ''f$env("DEFAULT")')"
$ exit
$attach:
$ priv list= f$setprv(priv list)
$ writ; sys$error "[Attaching to Kept Edited II

$ define/nolog sys$input sys$comrnand:
$ attach "''edit name'"
$ write sys$error "[Attached to DCL in directory ''f$env("DEFAULT")'l"
$ exit

A-6

.)

)

B

B.1

u

l

B.2

Sample DECwindows VAXTPU Procedures

Using DECwindows VAXTPU Built-ins
You can use the DECwindows VAXTPU built-in procedures in many ways.
However, you may find it useful to look at sample procedures showing
how other programmers have used some of the DECwindows VAXTPU
built-ins. Therefore, this appendix presents a number of procedures using
DECwindows built-ins.

The following example procedures are contained in this appendix:

1 Displaying a Dialog Box

2

3

4

5

6

7

8

9

10

Creating a "Mouse Pad"

Implementing an EDT-Style APPEND Command

Testing and Returning a Select Range

Resizing Windows

Unmapping Saved Windows

Mapping Saved Windows

Handling Callbacks from a Scroll Bar Widget

Implementing the COPY SELECTION Operation

Reactivating a Select Range

11 Implementing the DECwindows COPY SELECTION Operation from
EVE to Another Application

Most of the procedures are drawn from the code implementing the
Extensible VAX Editor (EVE). Some have been modified to make them
easier to understand.

You can see all the code used to implement EVE by looking at the files in
the directory pointed to by the logical name SYS$EXAMPLES. To see a
directory of the files available, type the following command from the DCL
command line:

$ DIR SYS$EXAMPLES:EVE$*.*

These files contain procedures using many of the VAXTPU built-ins.

Displaying a Dialog Box
Example B-1 illustrates one of the ways a layered application can use
the CONVERT built-in. This procedure is a modified version of the
EVE procedure eve$$mb2_dispatch. You can find the original version
in SYS$EXAMPLES:EVE$MOUSE.TPU. For more information about
using the files in SYS$EXAMPLES as examples, see Section B.1.

B-1

Sample DECwindows VAXTPU Procedures
8.2 Displaying a Dialog Box

The procedure displays EVE's selection pop-up menu on the screen if the
procedure is called while a select range or found range is active.

This example uses the following global variables and procedures:

• EVE$CALLBACK_DISPATCH - The procedure that EVE uses to
dispatch all widget callbacks.

• EVE$X_FOUND_RANGE - A global variable that holds the range for
the last text found. If there is not currently a found range, it is set to
zero.

• EVE$:x_SELECT_POPUP - A global variable that holds the pop-up
menu widget used when a selection is present.

• EVE$X_SELECT_POPUP _HEIGHT - A global variable that holds)
the height of the selection pop-up menu.

• EVE$:x_SELECT_POPUP _ WIDTH - A global variable that holds the
width of the selection pop-up menu.

• EVE$:x_SELECT_POSITION -A global variable that holds the start
marker for the select range. If there is not currently a selection, it is
set to zero.

Example B-1 EVE Procedure That Displays a Selection Dialog Box

PROCEDURE eve$$mb2_dispatch

local status,
the_window,
temp_array,
the_widget,
x_l,
X2,
widget_hierarchy,
y_l,
y_2;

Orr (LOCATE_MOUSE (the_window, x_l, y_l) <> 0)
THEN

8 CONVERT (the_window, CHARACTERS, x_l, y_l,
DECW ROOT WINDOW, COORDINATES,
X2, y_2); -

IF (eve$x select position<> 0) OR
(eve$x=found_range <> 0)

THEN

A selection exists
A found range exists

IF GET_INFO (eve$x_select_popup, "type") <> WIDGET

THEN
widget_hierarchy := SET (DRM_HIERARCHY, "EVE$WIDGETS");

B-2

(continued on next page)

)

u

(

Sample DECwindows VAXTPU Procedures
B.2 Displaying a Dialog Box

Example B-1 {Cont.) EVE Procedure That Displays a Selection Dialog Box

eve$x_select_popup := CREATE WIDGET ("SELECT_POPUP",
widget_hierarchy,
SCREEN,
"eve$callback_dispatch");

ENDIF;

! Get width and height of this pop-up menu if needed

0 temp_array := CREATE_ARRAY;
temp array {evedwtc width) := O;
temp=array {evedwtc=height) := 0;
status := GET INFO (eve$x select popup, "WIDGET INFO", temp array);
eve$x select popup width:= temp-array {evedwtc width); -
eve$x=select=popup=height := temp_array {evedwtc_height);

Calculate position for upper left corner of
dialog box and set the appropriate resources of the widget

temp_array := CREATE_ARRAY;
temp_array {evedwtc_nx) := X2 - (eve$x_select_popup_width/2);
IF temp_array {evedwtc_nx) < 1
THEN

temp_array {evedwtc_nx} := 1;
ENDIF;
temp array {evedwtc ny} := y 2 - (eve$x_select_popup_height/2);
IF temp_array {evedwtc_ny} <-1
THEN

temp_array {evedwtc_ny} := 1;
ENDIF;

C3 SET (WIDGET, eve$x_select_popup, temp_array);
0 MANAGE_WIDGET (eve$x_select_popup);

ENDIF;
ENDIF;
RETURN (TRUE);

ENDPROCEDURE;

0 The return value from the LOCATE_MOUSE built-in procedure
indicates whether the pointer cursor is in the window. LOCATE_
~OUSE also returns the row, column and window where the pointer
cursor is located. The coordinates returned refer to a system whose
origin is in the upper left corner of the VAXTU window.

9 This clause converts the pointer cursor location from a system whose
origin is at the upper left corner of the VAXTPU window to a system
whose origin is at the upper left corner of the DECwindows root
window. For more information about the difference between VAXTPU
windows and DECwindows windows, see Section 4.3.

8 SET (DRM_IIlERARCHY, file_spec) allows you to tell VAXTPU which
XUI Resource Manager hierarchy to use. An XUI Resource Manager
hierarchy is a set of widgets implementing a user interface. For
example, EVE's menu bar and menu widgets compose an XUI Resource
Manager hierarchy.

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.2 Displaying a Dialog Box

Example B-1 (Cont.) EVE Procedure That Displays a Selection Dialog Box

EVE uses the XU! Resource Manager hierarchy stored in the file
EVE$WIDGETS.UID. If you are extending EVE, you need not set the
hierarchy again.

VAXTPU allows you to use multiple XU! Resource Manager
hierarchies. If you want to use a second hierarchy (defined in a file
other than EVE$WIDGETS.UID), use the SET (DRM_HIERARCHY)
statement before using the CREATE_ WIDGET statement.

8 GET_INFO (widget, "widget_info", array) allows you to fetch
information about a widget. The index of each element of the array
must be a string naming the resource whose value you want to fetch.
For more information about what resources a given widget supports,
see the VMS DECwindows Toolkit Routines Reference Manual.

0 SET (WIDGET, widget, array) allows you to set a widget's resource
values. The index of each element of the array must be a string
naming the resource whose values you want to set. For more
information about what resources a given widget supports, see the
VMS DECwindows Toolkit Routines Reference Manual.

0 MANAGE_ WIDGET realizes the widget and makes it visible on the
screen.

8.3 Creating a "Mouse Pad"

B-4

Example B-2 shows how to use the variant of CREATE_ WIDGET
that calls the XU! Toolkit low-level creation routine. The module in
Example B-2 creates a screen representation of a keypad. Instead of
pressing a keypad key, a user can click on the widget representing the
key.

Sample DECwindows VAXTPU Procedures
(.' 8.3 Creating a "Mouse Pad" u

Example B-2 Procedure That Creates a "Mouse Pad"

! SAMPLE.TPU

!++

Procedure name

Table of Contents

SAMPLE. TPU

Description

Ident.
Initializes the module.

sample sample module ident
sample=sample=module=init
eve_mouse_pad
sample_key_def

Implements the user command DISPLAY MOUSE PAD.
Creates a mouse pad "key" push button.

!--

sample key dispatch
sample-row-to pix
sample-col-to-pix
sample=key=height
sample_key_width

Handles push button widget callbacks.
Converts a row number to pixels.
Converts a column number to pixels.
Converts y dimension from rows to pixels.
Converts x dimension from columns to pixels.

This module layers a "mouse pad" on top of VAXTPU. The mouse pad
is implemented by creating a dialog box widget that is the parent of a group
of push button widgets depicting keypad keys. The resulting
"mouse pad" is a screen representation of a keypad. The user can
click on a push button to execute the same function that would be
executed by pressing the corresponding keypad key. The module uses
the key map list mapped to the current buffer to determine what
code to execute when the user clicks on a given push button. To
use a different key map, substitute a string naming the desired
key map for the null string assigned to "sample k keymap".
This module can be used with the EVE section file-
or with a non-EVE section file.

This module uses the variant of CREATE WIDGET that calls the XUI
Toolkit low-level creation routine.

PROCEDURE sample sample module ident
RETURN "VOl-001"; - -
ENDPROCEDURE;

PROCEDURE sample_sample_module_init
ENDPROCEDURE;

This procedure returns
the Ident.

Module initialization.

VAXTPU Declarations for XUI Toolkit constants

CONSTANT

Use these constants as arg~ments to the DEFINE WIDGET built-in.
The strings are the symbols that evaluate to the
widget class records for the DECwindows widqets.

sample k labelwidgetclass := "labelwidgetclassrec",
sample-k-dialogwidgetclass := "dialogwidgetclassrec",
sample=k=pushbuttonwidgetclass := "pushbuttonwidgetclassrec";

(continued on next page)

B-5

Sample DECwindows VAXTPU Procedures
8.3 Creating a "Mouse Pad"

Example 8-2 (Cont.) Procedure That Creates a "Mouse Pad"

Use these constants, which are XUI Toolkit
resource name strings, as callback reasons, resource vaiues, or
arguments to the CREATE_WIDGET built-in.

CONSTANT
sample k cstyle := "style",
sample-k-modeless := 2,
sampie-k-nunits := "units",
sample=k=pixelunits := 1,
sample_k_ntitle := "title",
sample_k_nx := "x",
sample k ny : = "y",
sample-k-nheight := "height",
sample_k_nwidth := "width",
sample-k-nlabel := "label",
sample-kt nactivate callback := "activateCallback",
sample=kt=nborderwidth := "borderWidth",
sample_kt_nconformToText := "conformToText",
sample_k_cractivate := 10;

These constants are intended for use only in this sample module
because their values are specific to the mouse pad application.

CONSTANT
sample_k_x_pos := 500,
sample_k_x_pos := 500,

Screen position for mouse pad.

sample k keypad border:= 5,
sample-k-key height := 30,
sample=k=key=width := 60,
sample_k_button_border_frac := 3,

Width of border between keys and edge.
Key dimensions.

Determines spacing between keys.

sample_k_overall_height := (sample_k_key_height * 5)
+ ((sample k key height

/ sample=k_button_border_frac) * 5)
+ sample_k_keypad_border,

sample_k_overall_width :=

sample_k_keymap := ''

(sample k key width* 4)
+ ((sample k-key width

/ sample=k_button_border_frac)
+ sample_k_keypad_border,

* 4)

If this constant has a null string
as it~ value, the program uses the
current key map list to determine what
code to execute when the user
clicks on a given push button.

sample_k_pad_title := "Sample mouse pad",
sample_k_closure := '';

Title of the mouse pad.
Not currently used.

PROCEDURE eve_mouse_pad
ON ERROR

[TPU$_CONTROLC]:
eve$learn_abort;
ABORT;

Implements a user-created command MOUSE PAD
that the user can invoke from within EVE.

ENDON ERROR

(continued on next page)

8-6

/

)

n
.. J •.

Sample DECwindows VAXTPU Procedures
IT \ B.3 Creating a "Mouse Pad" \U

0

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

Checks whether the dialog box widget class has already been defined.
If not, defines the dialog box widget class and creates a widget
instance to be used as the "container" for the mouse pad.

IF GET_INFO (sample_x_dialog_class, 'type') <> INTEGER
THEN

sample_x_dialog_class
:= DEFINE_WIDGET_CLASS (sample_k_dialogwidgetclass,

ENDIF;
"dwt$~ialog_:box_popup_create");

8 sample_x_keypad := CREATE WIDGET (sample x dialog class, "Keypad", SCREEN,
"MESSAGE(' CALLBACK activated')",
"sample_k_closure ",
sample k cstyle, sample k modeless,
sample-k-nunits, sample-k-pixelunits,
sample=k=ntitle, sample=kyad_title,
sample k nheight, sample k overall height,
sample=k=nwidth, sample_k_overall_width,
sample_k_nx, sample_k_x_pos,
sample_k_ny, sample_k_y~pos);

! Checks whether the push button widget class has already been defined
! and, if not, defines the class.

IF GET_INFO (sample_x_pushbutton_class, 'type') <> INTEGER
THEN

sample_x_pushbutton_class

ENDIF;

:= DEFINE WIDGET CLASS (sample_k_pushbuttonwidgetclass,
"dwt$push_button_create");

This statement
using the built_in
DEFINE WIDGET CLASS
defines the -
class of the

! Initializes the array that the program passes repea~edly
! to the procedure "sample_key_def".

sample x attributes := CREATE ARRAY;
sample-x-attributes {sample k-nactivate callback} := 0;
sample=x=attributes {sample=k=nborderwidth} := 2;
sample_x_pad_program := COMPILE ("sample_key_dispatch");

push button
widgets.

Creates and manages all the "keys" in the mouse pad. The procedure
"sample key def" returns a variable of type widget, so you can use the
returned value as an argument to the built-in MANAGE_WIDGET.

(continued on next page)

B-7

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

8 MANAGE_ WIDGET (sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def
sample_key_def

sample_key_def
sample_key_def

("PFl", 0, 0, 1, 1, sample_x_pad~program),
("PF2", 1, 0, 1, 1, sample_x_pad_program),
("PF3", 2, 0, 1, 1, sample_x_pad_program),
("PF4", 3, 0, 1, 1, sample_x_pad_program),
("KP7", 0, 1, 1, 1, sample_x_pad_program),
("KP8", 1, 1, 1, 1; sample x pad program),
("KP9", 2, 1, 1, 1, sample-x -pad-program),
("-", 3, 1, 1, 1, sample x-pad program, "minus"),
("KP4", 0, 2, 1, 1, sample-x pad program),
("KPS", 1, 2, 1, 1, sample=xyad=program),
("KP6", 2, 2, 1,. 1, sample_x_pad_program),
(", ", 3, 2, 1, 1, sample_x_pad_program, "comma"),
("KPl", 0, 3, 1, 1, sample_x_pad_program),
("KP2", 1, 3, 1, 1, sample x pad program),
("KP3", 2, 3, 1, 1, sample-x-pad-program),
("Enter", 3, 3, 2, 1, sample=x_pad_program,
"enter"),

("KPO", 0, 4, 1, 2, sample x pad program),
(".", 2, 4, 1, 1, sample x-pad program,
"period")); - - -

sample_x_shift_was_last := FALSE; The program starts out assuming that
no GOLD key has been pressed.

8 MANAGE_WIDGET (sample_x_keypad); This statement displays the
resulting mouse pad.

RETURN (TRUE);
ENDPROCEDURE ! End of procedure eve_mouse_pad.

PROCEDURE sample_key_def

(the_ legend,

the row, the_col,

the_width, the_height,

the_pgm;

the_string);

Creates a mouse pad "key" push button
widget.

What characters to show on the push button label.

Location of the key in relation to the parent
widget's upper left corner.

Dimensions of the key.

Program to use as the callback routine; used
as a parameter to the CREATE WIDGET built-in.

The string representation of the name
of a key if the key name is not going
to be the same as the legend (as in
the case of the comma). Specify the null
string if the key name and the legend are
the same.

IF GET_INFO (the_string, 'type')
THEN

UNSPECIFIED

the_string := the_legend;

ENDIF;

B-8

Determines whether the optional parameter
the_string is provided.

(continued on next page)

)

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

RETURN CREATE WIDGET (sample_k_pushbutton_class, "Key", sample_x_keypad,
the_pgm,
(sample_k_keymap +' ' + the_string),
sample_x_attributes,
sample_kt_nconformToText, 0,
sample k nlabel, the legend,
sample-k-nheight, saiple key height (the width),
sample=k=nwidth, sample_key_;idth (the_height),
sample_k_nx, sample_col_to_pix (the_row),
sample_k_nx, sample_row_to_pix (the_col));

END PROCEDURE End of the procedure "sample_key_def".

PROCEDURE sample_key_dispatch Handles push button widget callbac~s.

LOCAL status, Variable to contain the return value from
GET INFO (WIDGET, "callback_parameters",).

blank_index,

temp_array,

a_shift_key,

the_key,

gold_key;

Position of the blank space in the tag string.

Holds callback parameters.

The SHIFT key in the current key map list.

A string naming a key.

Name of the GOLD key.

ON ERROR
[TPU$ CONTROLC):

eve$learn_abort;
ABORT;

ENDON ERROR

0 status := GET_INFO (widget, "callback_parameters", temp_array);
$widget := temp array {'widget');
$widget tag := temp array {'closure');
$widget=reason := temp_array {'reason_code');

@ the key : = EXECUTE ("RETURN (KEY NAME (" + $widget tag + ")) ") ;
gold_key := GET_INFO (eve$current_key_map_list, "shift_key");
IF the_key = gold_key
THEN

ELSE

sample_shift_was_last := TRUE;

IF sample_shift_was_last
THEN

User pressed Gold Key

the_key := KEY_NAME (the_key, SHIFT_KEY);

ENDIF;
CASE $widget reason

[sample_kt_cractivate):
EXECUTE (the_key);

[OTHERWISE] :
eve_show_key (the_key)

ENDCASE;
sample_shift_was_last := FALSE;

ENDIF;
RETURN;
ENDPROCEDURE End of the procedure "sample_key_dispatch".

(continued on next page)

B-9

Sample DECwindows VAXTPU Procedures
B.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

! These procedures implement position and
! size calculations for the push.button widgets.

PROCEDURE sample_row_to_pix (row) Converts a row number to the
! pixel-based measuring system.

RETURN sample k keypad border+
(row* (sample_k_key_height + (sample k key height

/ sample k button border frac)));
ENDPROCEDURE ! End of the procedure "sample_row_to_pix". -

PROCEDURE sample_col_to_pix (col) Converts a column number to the
pixel-based measuring system.

RETURN sample k keypad border+
(col* ((sample_kt=key_width + sample kt key width)

/ sample_kt_button_border_frac));

ENDPROCEDURE ! End of the procedure "sample_col_to_pix".

PROCEDURE sample_key_height (given~height)

IF given_height = 1
THEN

RETURN sample_k_key_height;
ELSE

Converts they dimension
from rows to pixels.

RETURN ((sample k key height * given height)
+ (sample-k key height/ sample_k_button_border_frac)
* (given_height-- l));

ENDIF;
ENDPROCEDURE ! End of the procedure "sample_key_height".

PROCEDURE sample_key_width (given_width)

IF given_width = 1

Converts the x dimension
from rows to pixels.

THEN
RETURN sample_k_key_width;

ELSE
RETURN ((sample_k_key_width * given width)

+ (sample k key width/ sample_k_button_border_frac)
* (given_width = l));

ENDIF;
ENDPROCEDURE ! End of the procedure "sample_key_width".

B-10

0 When you create widgets directly in VAXTPU (that is, without using
the XUI Resource Manager to manipulate widgets defined in a UIL
file) you must define each class of widget. For example, a widget can
belong to the push button, dialog box, menu, or another similar class
of widget. The DEFINE_ WIDGET_CLASS built-in procedure tells
VAXTPU the widget class name and creation entry point for the class
of widget. DEFINE_ WIDGET_CLASS also returns a widget ID for ·
that widget class. Define a widget class for each widget only once in a
VAXTPU session. -

{continued on next page)

)

(.)

8.4

C

Sample DECwindows VAXTPU Procedures
8.3 Creating a "Mouse Pad"

Example B-2 (Cont.) Procedure That Creates a "Mouse Pad"

@ The CREATE_ WIDGET built-in allows you to create an instance of a
widget for which you have a widget ID. An instance is one occurrence
of a widget of a given class. For example, EVE has many menu
widgets, each of which is an instance of a menu widget.

This example creates a dialog box widget to contain the mouse pad.

8 Each of the key.s of the mouse pad is managed. However, they do not
become visible until their parent, the dialog box widget in variable
SAMPLE_X_KEYPAD, is managed.

8 Managing a widget whose parent is visible causes that widget and all
its managed children to become visible.

0 GET_INFO (WIDGET, "callback_parameters", array) returns the
callback information in the array parameter. For more information
about using this built-in, see the built-in's description in the VAXTPU
Reference Section.

Ci) When each key widget of the mouse pad is created, the closure value
for the widget is set to the string corresponding to the name of the
key that the widget represents. This statement uses the EXECUTE
built-in to translate the string into a key name.

Implementing an EDT-Style APPEND Command
Example B-3 shows one of the ways an application can use the GET_
CLIPBOARD built-in. This procedure is a modified version of the EVE
procedure EVE$EDT _APPEND. You can find the original version in
SYS$EXAMPLES:EVE$EDT.TPU. For more information about using the
files in SYS$EXAMPLES as examples, see Section B.l.

The procedure EVE$ED·T_APPEND appends the currently selected text
to the contents of the clipboard if the user has activated the clipboard;
otherwise, the procedure appends the current selection to the contents of
the Insert Here buffer.

This example uses the following global variables and procedures from
EVE:

• EVE$MESSAGE - A procedure that translates the specified message
code into text and displays the text in the Messages buffer.

• EVE$$RESTORE_POSITION - A procedure that repositions the
editing point to the location indicated by the specified window and
marker. This procedure is for EVE internal use only. Do not call this
procedure in a user-written procedure.

• EVE$LEARN_ABORT - A procedure that aborts a learn sequence .

...

Sample DECwindows VAXTPU Procedures
B.4 Implementing an EDT-Style APPEND Command

• EVE$SELECTION - A procedure that returns a range containing the
current selection. This can be the select range, the found range, or the
text of the global selection.

• EVE$$TEST_IF _MODIFIABLE - A procedure that checks whether
a buffer can be modified. This procedure is for EVE internal use only.
Do not call this procedure in a user-written procedure.

• EVE$X_DECWINDOWS_ACTIVE - A Boolean global variable that
is true if VAXTPU is using DECwindows. If VAXTPU is not using
DECwindows, the DECwindows features are not available.

• EVE$$X_STATE_ARRAY - A global variable of type array describing
various EVE flags and data. This variable is private to EVE and)
should not be used by user routines.

• EVE$$EDT_APPEND_PASTE - Procedure that appends text to the
Insert Here buffer. This procedure is for EVE internal use only. Do
not call this procedure in a user-written procedure.

Example B-3 EVE Procedure That Implements a Variant of the EDT APPEND command

PROCEDURE ev,e$edt_append

LOCAL saved_mark,

Implements EVE's version of
the EDT APPEND command.

Marks the editing point at the
beginning of the procedure.

Stores the currently selected text. remove_range,

old_string,

new_string,

Stores the text that was in the clipboard.

Stores the old contents of the clipboard
plus the currently selected text.

remove_status;

ON ERROR

Indicates whether the selected text
should be removed.

[TPU$_CLIPBOARDNODATA]:
eve$message (EVE$ NOINSUSESEL);
eve$$restore position (saved mark);
eve$learn_abort; - .
RETURN (FALSE);

[TPU$ CLIPBOARDLOCKED]:
eve$message (EVE$ CLIPBDREADLOCK);
eve$$restore_position (saved_mark);
eve$learn_abort;
RETURN (FALSE);

[TPU$_CONTROLC]:
eve$$restore_position (saved_mark);
eve$learn_abort;
ABORT;

[OTHERWISE]: eve$$restore_position (saved_mark);
eve$learn_abort;

ENDON_ERROR;

B-12

(continued on next page)

n
··.,,.)

u
I

8.5

0

8

Sample DECwindows VAXTPU Procedures
B.4 Implementing an EDT-Style APPEND Command

Example B-3 (Cont.) EVE Procedure That Implement~ a Variant of the EDT APPEND command

remove_range := eve$selection (TRUE);
IF remove_range <> 0
THEN

saved_mark := MARK (NONE);
remove status := eve$test if modifiable (GET INFO (saved_mark, "buffer"));
IF eve$x_decwindows_active -
THEN

IF eve$$x_state_array {eve$$k_clipboard}
THEN

old_string := GET_CLIPBOARD;
string_range := old_string + str (remove_range);
WRITE_CLIPBOARD (1111

, new_string};

IF remove status
THEN

ERASE (remove_range};
eve$message (EVE$_REMCLIPBOARD};

ENDIF;
ELSE

eve$$edt append paste (remove range, remove_status};
ENDIF; - - -

ELSE
eve$$edt_append_paste (remove_range, remove_status);

ENDIF;

POSITION (saved_mark};
remove_range := 0;

.RETURN (TRUE);
ENDIF;

eve$learn_abort;
RETURN (FALSE);

ENDPROCEDURE;

0 The GET_CLIPBOARD built-in procedure returns a copy of the text
stored in the clipboard. Only data of type string can be retrieved from
the clipboard. Any other data type causes VAXTPU to signal an error.

8 The WRITE_CLIPBOARD built-in procedure stores data in the
clipboard. The first parameter allows you to specify the label for
this data. However, the clipboard currently supports only one entry at
a time, so you can use any string for the first parameter.

Testing and Returning a Select Range
The code fragment in Example B-4 shows how a layered application
can use GET_GLOBAL_SELECT. This code fragment is a portion of the
EVE procedure EVE$SELECTION. You can find the original version in
SYS$EXAMPLES:EVE$CORE.TPU. For more information about using the
files in SYS$EXAMPLES as examples, see Section B.1.

......

Sample DECwindows VAXTPU Procedures
8.5 Testing and Returning a Select Range

The procedure EVE$SELECTION returns a select range, found range, or
global selection for use with EVE commands that operate on the select
range.

This example uses the following global variables and procedures from
EVE:

• EVE$MESSAGE - A procedure that translates the specified message
code into text and displays the text in the message buffer.

• EVE$LEARN_ABORT - A procedure that aborts a learn sequence.

• EVE$X_DECWINDOWS_ACTIVE - A Boolean global variable that
is true if VAXTPU is using DECwindows. If VAXTPU is not using
DECwindows, the DECwindows features are not available.

Example B-4 EVE Procedure That Returns a Select Range

PROCEDURE eve$selection
do_messages;
found_range_arg,
global_arg,
null_range_arg,
cancel_arg)

Display error messages?
Use found range? (D=TRUE).
Use global select? (D=FALSE).
Extend null ranges? (D=TRUE).
Cancel selection? (D=TRUE).

Return Values: range
0
NONE

string

LOCAL possible selection,
use_found_range,
use_global,
extend_null_range,
cancel_range;

ON ERROR
[TPU$_SELRANGEZERO]:
(TPU$_GBLSELOWNER]:

eve$message (EVE$ NOSELECT);
eve$learn_abort; -
RETURN (FALSE);

[OTHERWISE] :
ENDON_ERROR;

The selected range.
There was no select range.
There was~ null range and

null_range_arg is FALSE.
Text of the global selection
if "global_arg" is TRUE.

The procedure first tests whether it
has received a parameter directing
it to return a found range or global
selection if no select range has been
created by the user.

IF GET_INFO (found_range_arg, "type") = INTEGER
THEN

use_found_range := found_range_arg;
ELSE

use_found_range := TRUE;
ENDIF;

B-14

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.5 Testing and Returning a Select Range

Example B-4 (Cont.) EVE Procedure That Returns a Select Range

IF GET_INFO (global_arg, "type") = INTEGER
THEN

use_global := global_arg;
ELSE

use_global := FALSE;
ENDIF;

In the code omitted from this example,
eve$selection returns the appropriate
range if the calling procedure has

\ requested the user's select range
or a found range.

(_

If there is no found range or select
range, the procedure returns
the primary global selection
if it exists.

IF use global and eve$x decwindows active
THEN - - -

8 possible_selection := GET_GLOBAL_SELECT (PRIMARY,
"STRING");

IF GET_INFO (possible_selection, "type") = STRING
THEN

RETURN (possible_selection);
ENDIF;

ENDIF;

RETURN (0);

ENDPROCEDURE;

Indicates failure.

8 DECwindows allows you to designate more than one global selection.
The two most common global selections are the primary and secondary
selections. A global selection can be owned by only one DECwindows
application at a time.

The GET_GLOBAL_SELECT built-in returns the data for the
requested selection in the requested format. If the requested selection
is not currently owned by any application, or if the owner cannot
return it in the requested format, then GET_GLOBAL_SELECT
returns unspecified.

(continued on next page)

Sample DECwindows VAXTPU Procedures
8.5 Testing and Returning a Select Range

Example 8-4 (Cont.) EVE Procedure That Returns a Select Range

If the selected information contains multiple records, the records are
separated by the line-feed character (ASCII (10)).

8.6 Resizing Windows

8-16

Example B-5 shows the procedure SAMPLE_NEW _SCREEN_SIZE, which
manipulates visible windows when the user makes the screen smaller.
It removes visible VAXTPU windows from the screen, starting at the
bottom of the VAXTPU screen, until the combined length of the remaining
windows is less than or equal to the new smaller screen size or until
there is only one window left. (For more information about the difference
between VAXTPU windows and DECwindows windows, see Section 4.3.)
If only one window remains, the procedure adjusts the window to fit the
screen. If two or more windows remain, the procedure adjusts the current
window and the bottom window.

The procedure uses the following variants of the built-in GET_INFO
(window_ variable):

• GET_INFO (window_variable, "bottom")

• GET_INFO (window_variable, "length")

• GET_INFO (window_variable, "top")

This example uses the following global variables and procedure from EVE:

• EVE$GET_ WINDOW - A procedure that returns the window
associated with a number. The windows are numbered sequentially,
from top to bottom.

• EVE$X_NUMBER_OF _ WINDOWS - A global variable that holds the)
count of the visible windows ..

• EVE$$GET_ WINDOW _NUMBER - A procedure that returns a
number for the ~rrent window. EVE associates a value with each
window so EVE can save information about specific windows. This
procedure is for EVE internal use only. Do not call this procedure in a
user-written procedure.

• EVE$$REMOVE_ WINDOW - A procedure that removes a window
from the screen. This procedure is for EVE internal use only. Do not
call this procedure in a user-written procedure.

Sample DECwindows VAXTPU Procedures
(_) B.6 Resizing Windows _

Example B-5 Procedure Tt,at Resizes Windows

PROCEDURE sample_new_screen_size

LOCAL overhead,
new_screen_length,
number,
the_count,
total_length,
some_window,
a_window,
new_top,
a_length,
top_adjust,
bottom_window,

\ bottom_adjust;

overhead := 2; This provides lines for the command window and message
window, assuming each window has a length of 1.

0 new_screen_length := get_info (SCREEN, "new_length");

number ·= eve$$get_window_number; This sets "number" to be
the number of the current window.

the count := eve$x_number_of_windows; This sets "the count" to
be the total number of
visible windows.

The following lines determine the combined lengths of all
user-created windows visible on the screen, plus the lengths of.the
command window and message window.

total_length := overhead;
the count := eve$x_number_of windows;
LOOP

EXITIF the count< l;
some_windo; := eve$get_window (the_count);

! "Some window" is the bottommost window not yet measured.

total_length := total_length +
GET INFO (some_window, "length", WINDOW);

the count := the count - l;

ENDLOOP;

The following statements delete windows from the screen, starting
with the bottommost window, until the sum of the lengths
of all remaining windows is less than or equal to the new screen
length.

the count := eve$x_number_of_windows;
LOOP

EXITIF the_count <= ~;
a window := eve$get_window (the_count); This statement sets "a_window" to

be the bottommost
window not yet examined
in this loop.

(continued on next page)

Sample DECwindows VAXTPU Procedures
B.6 Resizing Windows

Example B-5 (Cont.) Procedure That Resizes Windows

6) IF number> the count

•

0

THEN
new_top := GET INFO (a_window, "top", WINDOW);

ENDIF;

IF number<> the count If the current window is still
above the window to which you're
comparing it

THEN
a_length := GET INFO (a_window, "length", WINDOW);

The following clause prevents the loop from deleting
the bottom window if the new screen length
is greater than or equal to the old screen length.

IF new_screen_length > total_length

THEN

The following statement decreases "total_length" by the length
of the window being examined.

total_length := total_length - a_length;

! The following statement removes the window
! being examined.

eve$$remove_window (the_count);

ENDIF;

EXITIF total_length <= new_screen_length;

ENDIF;

the count := the count - l; Next time through the loop, the window
being examined will be the window
just above the window examined this time.

ENDLOOP;

IF eve$x_number_of_windows = 1
THEN

adjust_window (CURRENT WINDOW,
1 - get=info (CURRENT_WINDOW, "top", WINDOW),
new_screen_length - overhead

ELSE

B-18

-get_info (CURRENT_WINDOW, "bottom", WINDOW));

The following statements adjust the top of the current
window and the bottom of the bottom window, if needed,
to occupy the space left by deleting windows.

(continued on next page)

_)

(U
'··

. U
"---.

l

,u
I

Sample DECwindows VAXTPU Procedures
8.6 Resizing Windows

Example B-5 (Cont.) Procedure That Resizes Windows

IF new_top <> 0
THEN

top_adjust := new_top - GET_INFO (CURRENT_WINDOW,
"top", WINDOW);

ADJUST_WINDOW (CURRENT_WINDOW, top_adjust, 0);
ENDIF;

bottom window
bottom=adjust

:= eve$get window (eve$x number of windows);
:= new_screen_length.- - - -

overhead -
GET INFO (bottom_window,

"bottom", WINDOW) ;
This statement using
GET_INFO (window, "bottom")
calculates the amount
by which to adjust the
bottom of the bottom
window.

ADJUST WINDOW (bottom_window, 0, bottom_adjust);
ENDIF;

ENDPROCEDURE;

8

@

•
e

0

GET_INFO (SCREEN "new_length") returns the size of the screen
after a resize occurs .

GET_INFO (window, "length", WINDOW) returns the length of the
window.

Number is greater than the_count only when the current window is
below the window to which you are comparing it.

GET_INFO (window, "top", WINDOW) returns the top line of the
window.

GET_INFO (window, "bottom", WINDOW) returns the line number of
the last line in the window.

8.7 Unmapping Saved Windows
Example B-6 shows the procedure SAMPLE_SAVE_ WINDOW _INFO_
AND_UNMAP, which saves information about all visible VAXTPU windows
in the array window_array and then unmaps all visible VAXTPU windows.
The windows can be reconstructed later using· the information in window_
array.

The procedure uses the following variants of the built-in GET_INFO
(window_ variable):

• GET_INFO (window_variable, "width")

• GET_INFO (window_variable, "key_map_list")

Sample DECwindows VAXTPU Procedures
B. 7 Unmapping Saved Windows

• GET_INFO (window_variable, "scroll_bar", VERTICAL)

• GET_INFO (window_variable, "scroll_bar_auto_thumb", VERTICAL)

Warning: Digital does not guarantee that this example will work successfully
with future versions.

Example 8-6 EVE Procedure That Unmaps Saved Windows

PROCEDURE sample_save_window_info_and_unrnap {; window_array)

LOCAL the_count,
the_window,
saved_buffer,
the_row,
temp;

ON ERROR
[TPU$_CONTROLC]:

IF GET_INFO {saved_buffer, "type") = BUFFER
THEN

eve$rnessage {EVE$_REBLDWINDOWS);
eve$setup windows {saved buffer);
eve$rnessage {EVE$_WINDOWSREBLT);
UPDATE {ALL) ;

ENDIF;
eve$learn_abort;
ABORT;

[OTHERWISE]:
ENDON_ERROR;

the_count := 0;
the window := GET_INFO {WINDOWS, "first");
LOOP

EXITIF the_window = 0;
IF GET_INFO {the_window, "buffer") <> 0
THEN

the count := the_count + l;
ENDIF;
the window := GET_INFO {WINDOWS, "next");

ENDLOOP;
window array := CREATE ARRAY {the count+ 1, 0);
window-array {0} := eve$x number of windows;
the window:= eve$rnain window; - -
IF GET_INFO {the_windo;, "type") = WINDOW
THEN

saved buffer := GET INFO {the_window, "buffer");
ENDIF;

8-20

(continued on next page)

)

n
.,.)

Sample DECwindows VAXTPU Procedures
(J 8.7 Unmapping Saved Windows

,..

l

Example B-6 (Cont.) EVE Procedure That Unmaps Saved Windows

LOOP
EXITIF the_count = 0;
the_window := CURRENT_WINDOW;
EXITIF the_window = 0;
temp:= CREATE_ARRAY (29);
temp {1} := the window;
temp {2} := GET-INFO (the window, "buffer");
temp {3} := GET-INFO (the-window, "top", WINDOW);
temp {4} := GET-INFO (the-window, •"length", WINDOW);
temp {8) := get=info (the=window, "status_line");
IF temp {8) <> 0
THEN

temp {5} := ON;
ELSE

temp {5} := OFF;
ENDIF;
POSITION (the_window);
temp {6} := MARK (FREE CURSOR);
the row:= GET_INFO (the_window, "current_row");
IF the row= 0
THEN

the row:= temp {3);
ENDIF;
temp {7} := the row+ 1 - temp {3};
temp {9} := GET INFO (the_window, "width"); This statement uses

GET_INFO (window, "width").

temp {10) := GET INFO (the_window, "scroll _top");
temp { 11} := GET INFO (the_window, "scroll_bottom");
temp {12) := GET INFO (the_window, "scroll -amount");
temp {13) := GET INFO (the_window, "text");
temp {14) := GET INFO (the_window, "blink_video");
temp {15) := GET INFO (the_window, "blink status");
temp {16) := GET INFO (the window, "bold video");
temp { 17} := GET INFO (the - window, "bold-status");
temp {18) := GET INFO (the=window, "reverse_video"); -temp {19) : = GET INFO (the window, "reverse status");
temp {20) := GET INFO (the=window, "underline video");
temp {21) := GET INFO (the_window, "underline-status")· - ' - ,

{22) := GET INFO temp (the_window, "special_graphics_status");
IF GET INFO (the=window, "pad") -THEN

temp {23)
ELSE

temp {23)
ENDIF;
temp {24) :=

temp {25) :=

:= ON;

:= OFF;

GET INFO -
GET INFO

(the window,
"shift amount");

(the_window,
"key_map_list");

! This statement uses
t GET INFO (window, "key_map_list").

(continued on next page)

1Cl_l)1

Sample DECwindows VAXTPU Procedures
B. 7 Unmapping Saved Windows

Example 8-6 (Cont.) EVE Procedure That Unmaps Saved Windows

IF GET_INFO (SCREEN, "decwindows")
THEN

ELSE

temp (26} := (GET_INFO (the_window, ! This statement uses
"scroll_bar", ! GET_INFO (window, "scroll_bar").
VERTICAL) <> 0);

IF temp (26)
THEN

temp (27) := GET INFO (the_window,

ELSE
temp (27) := FALSE;

ENDIF;

"scroll bar_auto_thumb",
VERTICAL);

If the vertical
scroll bar is
on, save the
information.

This statement uses
the GET INFO
("scroll bar auto thumb)
built-in~ - -

temp (28} := (GET_INFO (the_window, "scroll_bar", HORIZONTAL) <> 0);
IF temp (28}
THEN

ELSE

temp (29) := GET INFO (the_window, •iscroll_bar_auto_thumb",
HORIZONTAL);

temp (29} := FALSE;
ENDIF;

temp (26} := FALSE;
temp (27} := FALSE;
temp (28} := FALSE;
temp (29} := FALSE;

ENDIF;
window_array {the_count} ·= temp;
UNMAP (the_window);
the count := the count - l;

ENDLOOP;
eve$x_number_of_windows := 0;

ENDPROCEDURE;

8.8 Mapping Saved Windows

B-22

Example B-7 shows the procedure SAMPLE_MAP_SAVED_WINDOWS,
which maps windows whose descriptions have been saved previously.
SAMPLE_MAP_SAVED_WINDOWS is passed the array window_array
containing information about windows that have previously been saved
and then unmapped. You can see an example of how such an array is
created in Example B-6. The procedure maps the windows to buffers,
giving the windows the same characteristics they had before they were
unmapped.

The procedure includes the following built-ins:

• SET (SCROLL_BAR)

./

n . .J·
'.

Sample DECwindows VAXTPU Procedures
B.8 Mapping Saved Windows

•
•
•

SET (SCROLL_BAR_AUTO_THUMB)

SET (WIDGET)

SET (WIDGET_CALLBACK)

Warning: Digital does not guarantee that this example will work successfully
with future versions.

Example B-7 Procedure That Maps Savec;I Windows

PROCEDURE sample_map_saved_windows (window_array)

LOCAL temp,
the length,
length_remaining,
the_top,
the count,
scroll_bar_widget,
screen_length;

ON ERROR
[TPU$ CONTROLC):

eve$message (EVE$ RESETUPWINDOWS);
eve$setup_windows-(window_array);
UPDATE (ALL);
eve$learn_abort;
ABORT;

[OTHERWISE) :
endon_error;

screen_length := eve$get_screen_height;

eve$$unmap_all_windows;

eve$x number_of_windows ·= window_array {O};
the_count := l;
LOOP

EXITIF the count> GET INFO (window array, "high index");
temp:= window array {the count}; - -
eve$$map windo; (temp {1}; temp {2}, temp {3}, temp {4}, temp {5},

- temp {6}, temp {7});
IF temp {5) = ON
THEN

SET (STATUS_LINE, temp {1), NONE, temp {8));
IF temp {15}
THEN

SET (STATUS_LINE, temp {1}, BLINK, temp {8});
ENDIF;
IF temp {17}
THEN

SET (STATUS_LINE, temp {l}, BOLD, temp {8});
ENDIF;
IF temp {19)
THEN

SET (STATUS_LINE, temp (1}, REVERSE, temp {8));
ENDIF;
IF temp {21}
THEN

(continued on next page)

8-23

Sample DECwindows VAXTPU Procedures
B.8 Mapping Saved Windows

Example B-7 (Cont.) Procedure That Maps Saved Windows.

B-24

SET (STATUS_LINE, temp {l}, UNDERLINE, temp {8});
ENDIF;
IF temp (22)
THEN

SET (STATUS_LINE, temp {l}, SPECIAL_GRAPHICS, temp {8});
ENDIF;

ENDIF;
SET (WIDTH, temp {l}, temp (9));
SET (TEXT, temp {1}, temp (13));
IF temp {14)
THEN

SET (VIDEO, temp {1}, BLINK);
ENDIF;
IF temp { 16}
THEN

SET (VIDEO, temp {1}, BOLD);
ENDIF;
IF temp { 18}
THEN

SET (VIDEO, temp {1}, REVERSE);
ENDIF;
IF temp (20)
THEN

SET (VIDEO, temp (1), UNDERLINE);
ENDIF;
SET (PAD, temp (1), temp (23));
SHIFT (temp (1), temp {24));
the_count := the_count + l;

ENDLOOP;
IF GET_INFO (temp (25), "type") STRING
THEN

SET (KEY_MAP_LIST, temp (25), temp {l});
ENDIF;
IF GET INFO (SCREEN, "decwindows")
THEN

IF temp (26)
THEN

scroll_bar_widget ·= SET (SCROLL_BAR,
temp (1),
VERTICAL, ON) ;

This statement .
uses the
SET (SCROLL_BAR)
built-in.

SET (WIDGET_CALLBACK,
scroll_bar_widget,
"eve$scroll_dispatch",
, v');

SET (WIDGET,
scroll_bar_widget,
eve$$scroll_bar_callbacks);

This statement uses the
SET (WIDGET CALLBACKS)
built-in. -

This statement uses
the SET (WIDGET)
built-in.

eve$$scroll_bar_window (scroll_bar_widget) := temp {1);
IF temp (27}

THEN

(continued on next page)

)

8.9

Sample DECwindows VAXTPU Procedures
B.8 Mapping Saved Windows

Example B-7 (Cont.) Procedure That Maps Saved Windows

SET (SCROLL_BAR_AUTO_THUMB,
temp {l}, VERTICAL, ON);

This statement uses the
SET (SCROLL BAR AUTO THUMB)
built-in. - - -

ENDIF;

ENDIF;
IF temp {28)
THEN

scroll_bar_widget := SET (SCROLL_BAR, temp {l}, HORIZONTAL,
ON);

SET (WIDGET_CALLBACK, scroll_bar_widget, "eve$scroll_dispatch",
, h');

SET (WIDGET, scroll bar widget, eve$$scroll bar callbacks);
eve$$scroll_bar_window (scroll_bar_widget) 7= temp {l};
IF temp {29)
THEN

SET (SCROLL_BAR_AUTO_THUMB, temp {l}, HORIZONTAL, ON);
ENDIF;

ENDIF;
ENDIF;
UPDATE (ALL);
the_count := l;
LOOP

EXITIF the count> GET INFO (window array, "high index");
temp:= window_array {the_count}; - -
SET (SCROLLING, temp {l}, ON, temp {10), temp {11), temp {12));
the_count := the_count + l;

ENDLOOP;
SET (PROMPT_AREA, screen_length - 1, 1, REVERSE);

ENDPROCEDURE;

Handling Callbacks from a Scroll Bar Widget
Example B-8 shows one of the ways an application can use the statements
POSITION (integer) and SET (WIDGET). The procedure is a portion of the
EVE procedure eve$scroll_dispatch. You can find the original version in
SYS$EXAMPLES:EVE$DECWINDOWS.TPU. For more information about
using the files in SYS$EXAMPLES as examples, see Section B.1.

The procedure eve$scroll_dispatch is the callback routine handling
callbacks from scroll bar widgets. The portion of the procedure shown
here determines where to position the editing point based on how the user
has changed the scroll bar slider. The procedure fetches the position of
the slider with the built-in GET_INFO (widget_variable, "widget_info")
and positions the editing point to the line in the buffer equivalent to
the slider's position in the scroll bar. Finally, the procedure updates the
scroll bar's resource values. For more information about the resource
names used with the scroll bar widget, see the VMS DECwindows Toolkit
Routines Reference Manual.

Sample DECwindows VAXTPU Procedures
B.9 Handling Callbacks from a Scroll Bar Widget

8-26

EVE uses the following constants in this procedure:

• EVEDWTC_NINC -A constant for the string "inc". This is the
resource name for the amount that the scroll bar slider position is to
be incremented or decremented when a scroll bar button is pressed.

• EVEDWTC_NPAGE_INC -A constant for the string "pageinc".
This is the resource name for the amount that the scroll bar slider
position is to be incremented or decremented when a click occurs
within the scroll bar above or below the slider.

• EVEDWTC_NMAX_VALUE-A constant for the string "maxValue".
This is the resource name for the maximum value of the scroll bar
slider position.

• EVEDWTC_NMIN_VALUE -A constant for the string "minValue".
This is the resource name for the minimum value of the scroll bar
slider position.

• EVEDWTC_NVALUE -A constant for the string "value". This is
the resource name for the top of the scroll bar slider position.

• EVEDWTC_NSHOWN - A constant for the string "shown". This is
the resource name for the size of the slider.

• EVEDWTC_CRVALUE_CHANGE_CALLBACK - A constant for the
callback reason code DWT$C_CR_ VALUE_CHANGED. This reason
code indicates that the user changed the value of the scroll bar slider.

• EVE$K_CLOSURE - A constant for the string "closure", used as
an index for the array returned by GET_INFO (WIDGET, "callback_
parameters", array).

• EVE$K_REASON_CODE -A constant for the string "reason_code",
used as an index for the array returned by GET_INFO (WIDGET,
"callback_parameters", array). ·

• EVE$K_WIDGET- A constant for the string "widget", used as an
index for the array returned by GET_INFO (WIDGET, "callback_
parameters", array).

j

)

n
..]

Sample DECwindows VAXTPU Procedures
~ 8.9 Handling Callbacks from a Scroll Bar Widget

u

(

Example B-8 EVE Procedure That Handles Callbacks from a Scroll Bar Widget

PROCEDURE eve$scroll_dispatch
LOCAL status,

widget called,
widget=tag,
widget_reason,
s9roll_bar_values,
linenum,
temp_array,

ON ERROR
[TPU$ CONTROLC]:

eve$learn_abort;
ABORT;

ENDON ERROR

8 status := GET_INFO (WIDGET, "callback_parameters", temp_array);

widget_called := temp_array {eve$k_widget};
widget tag := temp array {eve$k closure};
widget=reason := temp_array {eve$k_reason_code};

POSITION (eve$$scroll_bar_window {widget_called});

scroll bar values
scroll bar values
scroll-bar-values
scroll bar values
scroll bar values
scroll-bar-values
scroll=bar=values

:= CREATE ARRAY;
{evedwtc nine} := 0;
{evedwtc=npage_inc} := 0;
{evedwtc_nmax_value} := O;
{evedwtc nmin value} := O;
{evedwtc-nvalue} := O;
{evedwtc=nshown} := O;

@status := GET_INFO (widget_called, l!widget_info", scroll_bar_values);

The deleted statements scroll the window as dictated
by the callback reason.

CASE widget_reason

[evedwtc_crvalue_change_callback]:

IF (scroll bar values {evedwtc nvalue}
scroll=bar=values {evedwtc=nmin_value})

THEN
POSITION (beginning_of (current_buffer));

ELSE
POSITION (scroll_bar_values {evedwtc_nvalue});

(continued on next page)

8.10

Sample DECwindows VAXTPU Procedures
8.9 Handling Callbacks from a Scroll Bar Widget

Example B-8 (Cont.) EVE Procedure That Handles Callbacks from a Scroll Bar Widget

ENDIF;

scroll bar values {evedwtc nine) := l;
scroll bar values {evedwtc=npage_inc) :=scrollbar values {evedwtc_nshown}

- l;

8sET (WIDGET, widget_called, scr;il_bar_values);

ENDPROCEDURE;

0 GET_INFO (WIDGET, "callback_parameters", array) returns an array
containing the values for the current callback. The array elements
are indexed by the strings "widget", "closure", and "reason_code" that
reference the widget that is calling back, the widget's closure value,
and the reason code for the callback.

8 GET_INFO (WIDGET, "widget_info", array) allows you to fetch
information from a widget. The array parameter is indexed by
the resource names associated with the specified widget. Note that
resource names are case sensitive. Note, too, that the set of supported
resources varies from one widget type to another. When you use GET_
INFO (widget, "widget_info", array), VAXTPU queries the widget for
the requested information and puts the returned informaion in the
array elements. Any previous values in the array are lost.

6) POSITION (integer) allows you to move the editing point to the record
specified by the parameter integer. VAXTPU interprets this parameter
as a record number.

j

8 SET (WIDGET, widget_variable, array) allows you to set resource)
values for the specified widget. The array parameter is indexed by
the resource names associated with the specified widget. Note that
resource names are case sensitive. Note, too, that the set of supported
resources varies from one widget type to another.

Implementing the COPY SELECTION Operation

B-28

Example B-9 shows one of the ways an application can use the READ_
GLOBAL_SELECT built-in. The procedure is a modified version of the
EVE procedure· EVE$STUFF _GLOBAL_SELECTION. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.l.

The procedure performs the following tasks:

• Saves the location of the editing point and the buffer's current mode.

•

•

•

Sample DECwindows VAXTPU Procedures
B.10 Implementing the COPY SELECTION Operation

Checks that DECwindows EVE is enabled and that EVE does not have
input focus.

Obtains the location of the pointer cursor and positions the editing
point at that location.

Sets the text mode to insert .

• Reads the string-formatted contents of the primary global selection.
(In this context, the parameter "STRING" means that the calling
application is a&king the application that owns the global selection for
the string-formatted information in the specified global selection.)

• Restores the editing point location and text mode to their previous
values.

EVE binds this procedure to the MB3 key. Thus, using MB3, the user
can direct EVE to copy selected material from a non-EVE DECwindows
application to a DECwindows EVE buffer. In DECwindows documentation,
this operation is called COPY SELECTION.

Example B-9 EVE Procedure That Implements the COPY SELECTION Operation

PROCEDURE eve$stuff_global_selection

LOCAL saved_position,
saved mode,
this_buffer,
the_window,
the_column,
the_row;

ON ERROR
- [TPU$_CONTROLC):

IF saved_mode = OVERSTRIKE
THEN

SET (saved_mode, this_buffer);
ENDIF;
eve$$restore_position {saved_position);
eve$learn_abort;
ABORT;

[OTHERWISE] :
IF saved mode= OVERSTRIKE
THEN

SET (saved mode, this buffer);
ENDIF; - -
eve$$restore_position (saved_position);

ENDON_ERROR;

this buffer:= current_buffer;
saved_position := MARK (FREE_CURSOR);
saved_mode := GET_INFO (this_buffer, "mode");

U (continued on next page)

C:_.

..

8.11

Sample DECwindows VAXTPU Procedures
8.10 Implementing the COPY SELECTION Operation

Example B-9 (Cont.) EVE Procedure That Implements the COPY SELECTION Operation

IF eve$x_decwindows active
THEN

IF not- GET_INFO (SCREEN, "input_focus")
THEN

IF ~OCATE MOUSE (the window, This statement uses
- the=colurnn, the_row) the LOCATE MOUSE built-in.

THEN
IF the row<> 0

IF the window<> eve$choice_window
THEN

POSITION (MOUSE);
SET (INSERT, this_buffer);

READ_GLOBAL_SELECT (PRIMARY, "STRING");

eve$$restore_position (saved_position);
SET (saved_mode, this_buffer);
UPDATE (CURRENT_WINDOW);
RETURN (TRUE);

ENDIF;
ENDIF;

ENDIF;

This statement
using READ GLOBAL SELECT
reads the string-
formatted contents
of the primary
global selection.

ENDIF;
ENDIF;

RETURN (FALSE);

ENDPROCEDURE;

Reactivating a Select Range

B-30

Example B-10 shows one of the ways an application can use the SET
(GLOBAL_SELECT) built-in. The procedure is a modified version of the
EVE procedure EVE$RESTORE_PRIMARY_SELECTION. You can find
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

The procedure eve$restore_primary_selection reactivates EVE's select range
when EVE regains input focus.

Sample DECwindows VAXTPU Procedures
V 8.11 Reactivating a Select Range

(

Example B-10 EVE Procedure That Reactivates a Select Range

PROCEDURE eve$restore_primary_selection

LOCAL saved_position;

ON_ERROR
[TPU$ CONTROLCJ:

eve$$restore_position (saved_position);
eve$learn_abort;
ABORT;

[OTHERWISE) :
eve$$restore_position (saved_position);

ENDON_ERROR;

IF NOT eve$x_decwindows active
THEN

RETURN (FALSE);
ENDIF;

saved_position := MARK (FREE_CURSOR);

IF GET_INFO (eve$$x_save_select_array, "type")
THEN

CASE eve$$x save select array {"type"}
[RANGEJ7 - -

ARRAY

(eve$$x save select array {"start"},
eve$$x-save-select-array {"end"});

{eve$$k-select all active} :=

eve$select_a_range

eve$$x_state_array
- - - eve$$x save select array

{"select_all"};
POSITION (eve$$x save select array {"current"});
eve$start_pending_delete; -

[MARKER):
POSITION (eve$$x save select array {"start"});
eve$x_select_position-:= select (eve$x_highlighting);
POSITION (eve$$x save select array {"end"});
eve$start_pending_delete; -

[OTHERWISE) :
RETURN (FALSE) ;

ENDCASE;

eve$$restore_position (saved_position);
eve$$found_post_filter; ! This is necessary if the

! cursor is outside the selection.

eve$$x_save_select_array {"type"} := 0;
UPDATE (current window);
IF eve$x_decwindows_active
THEN

SET (GLOBAL_SELECT, SCREEN, PRIMARY);

ENDIF;
RETURN (TRUE) ;

ENDIF;

This statement using
SET (GLOBAL SELECT)
requests ownership of
the primary global selection.

(continued on next page)

8.12

Sample DECwindows VAXTPU Procedures
8.11 Reactivating a Select Range

Example B-10 (Cont.) EVE Procedure That Reactivates a Select Range

RETURN (FALSE);

ENDPROCEDURE;

Copying Selected Material from EVE to Another DECwindows
Application

Example B-11 shows one of the ways a layered application can use the
WRITE_GLOBAL_SELECT built-in. The procedure is a modified version
of the EVE procedure EVE$WRITE_GLOBAL_SELECT. You can find · \
the original version in SYS$EXAMPLES:EVE$MOUSE.TPU. For more)
information about using the files in SYS$EXAMPLES as examples, see
Section B.1.

The procedure implements the operation of copying selected material from
DECwindows EVE to another DECwindows application. in DECwindows
documentation, this operation is called COPY SELECTION.

The procedure determines what property of the primary global selection
is being requested, obtains the value of the appropriate property using a
GET_INFO statement or an EVE procedure, and sends the information to
the requesting application.

Example B-11 EVE Procedure That Implements COPY SELECTION

PROCEDURE eve$write_global_select

LOCAL saved_position,
the_data,
temp_array,
total_lines,
the_line,
status,
eob:...flag,
percent;

ON ERROR
[OTHERWISE] :

EVE uses this procedure
to respond to requests
for information about
selections.

eve$$restore_position (saved_position);
ENDON_ERROR;

saved_position := MARK (FREE_CURSOR);

IF NOT eve$x_decwindows_active

THEN
RETURN (FALSE) ;

ENDIF;

B-32

(continued on next page)

./'

n
,j

(_

Sample DECwindows VAXTPU Procedures
B.12 Copying Selected Material from EVE to Another DECwindows Application

Example B-11 (Cont.) EVE Procedure That Implements COPY SELECTION

the_data := "";
temp_array := GET_INFO (SCREEN, "event", GLOBAL_SELECT);

Finds out which global selection and which property
of the global selection are the subject of the
information request.

CASE temp_array (2) Determines the property requested by the other application.

["STRING", "TEXT"]:. If one of these strings is requested, the
procedure sends the text in the global
selection to the requesting application.

CASE temp_array (1) ! Checks which global selection was specified.
[PRIMARY):

IF eve$x_select_position <> 0
THEN

POSITION (GET_INFO (eve$x_select_position, "buffer"));

IF GET_INFO (eve$x_select_position, "type") = RANGE
THEN

the data:= STR (eve$x_select_position);
ELSE

IF GET INFO (eve$x_select_position, "type") = MARKER
THEN

ELSE

the data := STR (eve$select_a_range (eve$x_select_position,
MARK (FREE_CURSOR)));

the data := NONE;
ENDIF;

ENDIF;
eve$$restore_position (saved_position);

ENDIF;
[OTHERWISE) :

the data := NONE;
ENDCASE;

[OTHERWISE):
the data:= NONE;

ENDCASE;

WRITE GLOBAL SELECT (the_data);

ENDPROCEDURE;

The
the
for
the

procedure does not send data if
requesting application has asked
something other than the text,
file name, or the line number.

This statement sends the
requested information to
the requesting application.

_)

)

(

u
C

C VAXTPU Terminal Support

This appendix lists the terminals that support screen-oriented editing
and describes how differences among these terminals affect the way
VAXTPU performs. This appendix also describes how VAXTPU can be
run on terminals that do not support screen-oriented editing. Finally, this
appendix tells you how VAXTPU manages wrapping and how you can
modify that.

C.1 Screen-Oriented Editing on Supported Terminals

C.1.1

VAXTPU supports screen-oriented editing only on terminals that
respond to ANSI control functions and that operate in ANSI mode. By
default, your VAXTPU session runs with the screen management file
TPU$CCTSHR.EXE. To check your terminal setting, enter the command
SHOW TERMINAL at the DCL level.

VAXTPU screen-oriented editing is designed to optimize the features
available with the Digital VT300 and VT200 families of terminals and
the Digital VTl00 family of terminals. VAXTPU does not support screen
oriented editing on Digital VT52-compatible terminals. Optimum VAXTPU
performance is achieved on the VT300-series, VT200-series, and VTlO0-
series terminals. Some of the high-performance characteristtcs of VAXTPU
may not be apparent on the terminals listed in Table C-1 for the reasons
stated.

Table C-1

Terminal

VT102

VT240

GIGI

Terminal Behavior That Affects VAXTPU's Performance

Characteristic

Slow autorepeat rate
Slow autorepeat rate
Slower scrolling region setup time than the VT220.

One form of scrolling region (VAXTPU repaints screen, rather than use
this scrolling mechanism)
Variable autorepeat rate (cursor keys pick up speed when used
repeatedly)

Terminal Settings That Affect VAXTPU
The following settings may affect the behavior of VAXTPU, depending on
the terminal that you use:

VAXTPU Terminal Support
C.1 Screen-Oriented Editing on Supported Terminals

C-2

132-Column Mode

Only terminals that set the DEC_CRT mode bit and the advanced video
mode bit can alter their physical width from 80 columns to 132 and back.
All other terminals keep the physical width that is set when you enter the
editor.

For the VAXTPU screen manager to behave predictably on GIGI terminals,
you should report the terminal width as 84 to VMS. Use the DCL
command SET TERMINAL'DEVICE=VKl00 to set the proper terminal
width.

Autorepeat ON/OFF and Auxiliary Keypad Enabling

To take advantage of the built-in procedure SET (AUTO_REPEAT) or \
to enable the auxiliary keypad for applications mode, the terminal must j
be set to DEC_CRT3, DEC_CRT2, DEC_CRT, or VKlO0. Use the DCL
command SET TERMINAIJDEVICE=characteristic to set the terminal.

Control Sequence Introducer

A feature of VAXTPU is that it can use one 8-bit control sequence
introducer (CSI) to introduce a terminal control sequence. (Normally,
the 2-character combination of the ESCAPE key and the left bracket ([)

1
~

is used.) To take advantage of this feature, set your terminal to DEC_ ·) !
CRT2 mode. The Digital VT300-series and VT220 and VT240 terminals
currently support this feature.

Cursor Positioning

If your terminal sets the DEC_CRT mode bit, VAXTPU assumes that when
control sequences that position the cursor to row 1 or column 1 are sent
to the terminal, the 1 can be omitted. If your terminal does not behave
correctly when it receives these control sequences, you must turn off the
DEC_CRT mode bit. Some foreign terminals may not be fully compatible
with VAXTPU and may exhibit this behavior. _)

Edit Mode

Terminals that are operating in edit mode allow the editor to take
advantage of special ·edit-mode control sequences during deletion and
insertion of text for optimization purposes. Some current Digital terminals
that support edit mode include the VT102, the VT220, the VT240, the
VT241, and VT300-series terminals.

8-Bit Characters

ANSI terminals operating in 8-bit mode have the ability to use the
supplemental characters and control sequences in the DEC Multinational
Character Set. The Digital VT300 series and the VT220 and VT240
terminals currently support 8-bit character mode. If you have the 8-
bit mode bit set, VAXTPU designates the DEC Multinational Character ()
Set into G2 and invokes it into GR. For more information on how your J'
terminal interacts with the DEC Multinational Character Set, refer to the .
programming manual for your specific terminal.

I

'

C.1.2

C.2

VAXTPU Terminal Support
C.1 Screen-Oriented Editing on Supported Terminals

Scrolling

Scrolling regions are only used for terminals that have the DEC_CRT
mode bit set. On other terminals, VAXTPU repaints the window when
a scroll would have been used (for example, when a line is deleted or
inserted).

Video Attributes

When you set the video attributes of windows, markers, or ranges, only·
those attributes supported by your terminal type give predictable results.
Most ANSI CRTs support reverse video. However, only terminals that
support DEC_CRT mode with the advanced video option (AVO) have the
full range of video attributes (reverse, bold, blink, underline) that VAXTPU
supports.

The DCL Command SET TERMINAL
When you use the DCL command SET TERMINAL to specify
characteristics for your terminal, make sure to set only those
characteristics that are supported by your terminal. If you set
characteristics that the terminal does not support, the screen-oriente.d
functions of VAXTPU may behave unpredictably. For example, if you run
VAXTPU on a VTl00 terminal and you set the DEC_CRT2 characteristic
that VTl00s do not support, VAXTPU tries tQ. use 8-bit CSI controls.
This could cause ";7m" to appear on the screen where the reverse video
attribute should be set.

Most users do not knowingly set characteristics that are not supported
by their terminals. However, if you temporarily move to a different type
of terminal, your LOGIN.COM file may have characteristics set for your
usual terminal that do not apply to the current terminal. This problem
may also occur if, before running VAXTPU, you run a program th.at
modifies your terminal characteristics without your knowledge.

If you see unexpected video attributes or extraneous characters on the
screen, exit from VAXTPU and check your terminal characteristics with
the DCL command SHOW TERMINAL.

Recover your files using the same terminal characteristics with which
your files were created. Otherwise, a journal file inconsistency may occur,
depending on how your interface is written.

Line-Mode Editing on Unsupported Terminals
If you want to run VAXTPU from an unsupported terminal, you must
inform VAXTPU that you do not want to use screen capabilities. 'lb invoke
VAXTPU on an unsupported terminal, use the qualifier /NODISPLAY
after the command EDIT/I'PU. See Chapter 5 for more information on
this qualifier. While in no-display mode, VAXTPU uses the RTL generic
LIB$PUT_OUTPUT routine to display prompts and messages at the
current location in SYS$OUTPUT. By using a combination of the built-in
procedures READ_LINE and MESSAGE, you can devise your own line
mode editing functions or perform editing tasks from a batch job. See the
sample line-mode editor in Appendix A.

VAXTPU Terminal Support
C.3 Terminal Wrap

C.3 Terminal Wrap
If you have enabled an automatic wrap setting on your terminal, VAXTPU
disables this setting in order to manage the screen more efficiently. When
you exit from VAXTPU, VAXTPU restores all terminal characteristics
to the setting of the DCL command SET TERMINAL before invoking
VAXTPU. If the DCL command SET TERM/NOWRAP is active, VAXTPU
leaves the hardware wrap off. However, if the DCL command SET
TERM/WRAP is active, VAXTPU assumes that you want hardware wrap
on, so it turns it on when you exit from VAXTPU.

If you do not want this behavior of VAXTPU, you can prevent VAXTPU
from turning on hardware wrap by specifying SET TERM/NOWRAP before
invoking VAXTPU. You can enter the command interactively, or you can ~
write a DCL command procedure that makes this setting part of your • /

C-4

VAXTPU environment. Example C-1 shows a DCL command procedure·
that is used to control this terminal setting before and after a VAXTPU
session.

Example C-1 DCL Command Procedure for SET TERM/NOWRAP

$ SET TERM/NOWRAP
$ ASSIGN/USER SYS$COMMAND·· SYS$INPUT
$ EDIT/TPU/SECTION = EDTSECINI
$ SET TERM/WRAP . _,I

\
)

G

D VAXTPU Messages

This appendix presents the messages produced by VAXTPU. The messages
are listed alphabetically by their abbreviations in Tab.le D-1. The text of
the message and its severity level appears with each abbreviation. For
an explanation of the severity levels for messages, see the VMS System
Messages and Recovery Procedures Reference Volume.

The VMS System Messages and Recovery Procedures Reference Volume also
contains the VAXTPU messages, including the appropriate explanations of
the messages and the suggested actions to recover from the errors which
provoke the messages.

Table D-1 VAXTPU Messages and Their Severity Levels

Abbreviation

ACCVIO

ADJSCROLLREG

AMBIGNAME

AMBIGSYMUSED

ARGMISMATCH

ASYNCACTIVE

ATLINE

ATPROCLINE

BADARGS

BADASSIGN

BADBUFWRITE

BADCASE

BADCASELIMIT

BADCASERANGE

BADCHAR

BAD DELETE

BADEXITIF

BADFIRSTLINE

BADIF

Message

ACCESS violation, reason mask=' xx', virtual
address='xxxxxxxx',
PC=' XXXXXXXX'' PSL=' XXXXXXXX'

SCROLLING parameters altered to top: 'top', bottom:
'bottom' , amount: 'amount'

VARIABLE 'name' cannot be a procedure

AMBIGUOUS symbol 'name' used as procedure
parameter

Data type of parameter number is not supported

Journal file prohibited with asynchronous handlers declared

At line 'integer'

At line 'integer' of procedure 'name'

Unrecognized argument to procedure

Target of the assignment cannot be a function/keyword

Error occurred writing buffer ' buffer name'

Unrecognized CASE constant

CASE constant outside CASE limits

Invalid CASE range

Unrecognized character in input

Cannot modify constant integer, keyword, or string

EXITIF occurs outside a LOOP

First line = 'integer' , must be between ' integer' and
'integer'

IF statement contains an assignment statement

Severity Level

FATAL

INFORMATIONAL

ERROR

INFORMATIONAL

ERROR

WARNING

INFORMATIONAL

INFORMATIONAL

FATAL

ERROR

WARNING

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

WARNING

ERROR

(continued on next page}

VAXTPU Messages

Table D-1 {Cont.} VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

BADJOUCHAR Expected character in journal file WARNING

BADJOUCOM Journaled command file was ' string' , recovering with ERROR
'string'

BADJOUCPOS Journaled starting character was ' integer' , recovering with ERROR
'integer'

BADJOUEDIT Journaled edit mode was 'string' , recovering with 'string' ERROR

BADJOUEIGHT Journaled eightbit was ' string' , recovering with ' string' ERROR

BADJOUFILE Recovery terminated due to error in journal file access ERROR

) BADJOUINIT Journaled init file was 'string', recovering with , string' ERROR

BADJOUINPUT Journaled input file was 'string', recovering with 'string' ERROR

BADJOUKEY Expected key in journal file WARNING

BADJOULINE Journaled line editing was 'string', recovering with ERROR
'string'

BADJOUPAGE Journaled page length was ' integer' , recovering with ERROR
'integer'

BADJOULPOS Journaled starting line was ' integer' , recovering with ERROR 0 'integer'

BADJOUSEC Journaled section file was ' string' , recovering with ERROR j

'string'

BADJOUSTR Expected string in journal file WARNING

BADJOUTERM Journaled terminal type was 'string', recovering with ERROR
'string'

BADJOUWIDTH Journaled width was 'integer', recovering with 'integer' ERROR

BADKEY ' Keyword' is an invalid keyword WARNING

BADLQGIC Internal logic error detected FATAL)
BADMARG!NS Margins specified incorrectly WARNING

BADPROCNAME Variable used as a procedure ERROR

BADPROG Procedure definitions must precede statements in a ERROR
program

BADPROGDELETE Cannot delete current program ERROR

BADREAD Read next or read prev with current record of 0, dscb: FATAL
'address'

BAD REQUEST Request"' name'" of 'name' is not understood WARNING
BAD RETURN RETURN with expression outside procedure ERROR

BADSECTION Bad section file ERROR

BADSTATUS Return status ' xxxxxxxx' different from last signal FATAL
I XXXXXXXX'

BADSTRCNT Invalid string count found in journal file WARNING !)
BADSYMTAB Bad symbol table ERROR j

(continued on next page)

D-2

0

(_

VAXTPU Messages

Table D-1 {Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

BADUSERDESC

BADVALUE

BADWINDADJUST

BADWINDCOORD

BADWINDLEN

BEGOFBUF

BINARYOPER

BOTLINETRUNC

CALLOVER

CALLUSERFAIL

CANCELQUIT

CAPTIVE

CASETOOLARGE

CLOSEIN

CLOSEOUT

COMPILED

COMPILEFAIL

CONSTRTOOLARGE

CONTRADEF

CONTROLC

CREATED

CREATEFAIL

CTRLCEXIT

CTRLCJOU

DDIFIN

DDIFOUT

DEBUG

DELETE FAIL

DIVBY2ERO

DUPBUFNAME

DUPKEYMAP

DUPKEYMAPLIST

Message

Descriptor from user routine invalid or memory inaccessible

Integer value ' integer' is outside specified limits

Attempt to make window less than 1 line long, no
adjustment

Windows must have a nonzero height and width

Window length = ' integer' , must be between 'integer;
and ' integer'

Attempt to move past the beginning of buffer 'buffer
name'

Operand combination 'type' 'oper' 'type' unsupported

Calculated new last line 'integer', changed to 'integer'

Stack overflow

CALL_USER routine failed with status ¾X' status'

QUIT canceled by request

Unable to create a subprocess in a captive account

CASE limits distance too large

Error closing input file 'filespec'

Error closing output file 'filespec'

Compilation completed without errors

Compilation aborted

Constant string too large

Contradictory definition for variable or constant 'name'

Operation aborted by CTRUC

'Filespec' created

Unable to activate subprocess

Exit now to avoid journal file inconsistency

CTRUC may have invalidated the journal file

'Count' line(s), 'count' frame(s) read from file 'name'

'Count' line(s), 'count' frame(s) written to file 'name'

Bre~kpoint at line 'integer'

Unable to terminate subprocess

Divide' by zero

Buffer 'name' already exists

Attempt to define a duplicate key map 'key-map-name'

Attempt to define a duplicate key map list ' key-map-list
name'

Severity Level

ERROR

ERROR

WARNING

WARNING

WARNING

WARNING

WARNING

INFORMATIONAL

ERROR

WARNING

WARNING

WARNING

ERROR

ERROR

ERROR

SUCCESS
WARNING

ERROR

ERROR

ERROR

SUCCESS
WARNING

SUCCESS
WARNING

SUCCESS
SUCCESS
SUCCESS
WARNING

ERROR

WARNING

WARNING

WARNING

(continued on next page)

D-3

VAXTPU Messages

~
Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

EMPTYKMLIST Key map list 'key-map-list-name' does not contain any WARNING
key maps

ENDOFBUF Attempt to move past the end of buffer ' buffer name' WARNING

EN DOFF I LE End-of-file on read to terminal or file FATAL

ENDOFLINE Returning a range of text with an end-of-line SUCCESS

ERRSYMACTIVE Special error symbol already active WARNING

EXECUTEFAIL Execution aborted WARNING

EXITFAIL Attempt to EXIT was unsuccessful WARNING

) EXITING Editor exiting SUCCESS

EXPCOMPLEX Expression too complex ERROR

EXPECTED One of the following symbols was expected: INFORMATIONAL

EXTNOTFOUND Extension 'name' not found ERROR

FACTOOLONG Facility name, 'name', exceeds maximum length WARNING
'integer'

FAILURE Internal VAXTPU failure detected at PC 'number' FATAL

FILECONVERTED File format is being converted to a supported type ERROR 1 FILEIN 'Count' line(s) read from file 'name' SUCCESS

FILEOUT 'Count' line(s) written to file 'name' SUCCESS
FLAGTRUNC Value of message flags exceeds maximum value 15, WARNING

truncated

FREEMEM Memory deallocation failure FATAL

FROMBUILTIN Called from built-in 'name' INFORMATIONAL

FROMLINE Called from line 'integer' INFORMATIONAL

FROMPROCLINE Called from line 'integer' of procedure 'name' INFORMATIONAL)
GETMEM Memory allocation failure (Insufficient virtual memory) ERROR

HIDDEN Global variable ' name' hidden by declaration INFORMATIONAL

IDMISMATCH Section NOT restored, section file must be rebuilt FATAL
ILLEGALTYPE Illegal data type ERROR

ILLPATAS Pattern assignment target only valid in procedure ' name' ERROR
ILLREQUEST Request•, name'" is invalid WARNING

ILLSEVERITY Illegal severity of 'value' specified, error severity used WARNING

INBUILTIN Occurred in built-in ' name' INFORMATIONAL

INCKWDCOM Inconsistent keyword combination WARNING

INDEXTYPE Array index data type 'type', unsupported WARNING
INPUT _CANCELED Input request canceled WARNING
INSVIRMEM Insufficient virtual memory FATAL

~ INVACCESS Invalid file access specified FATAL

J (continued on next page)

D-4

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

INVBUFDELETE Cannot delete a permanent buffer WARNING

INVFAOPARAM FAO parameter ' integer' must be string or integer WARNING

INVFCBDESC Descriptor in $FCB for ' address' improperly initialized · FATAL

INVIOCODE Invalid operation code passed to an 1/0 operation ERROR

INVITEMCODE Invalid item code specified in list FATAL

INVNUMSTR Invalid numeric string WARNING

INVOPCODE Opcode in delayed work queue is invalid FATAL

INVPARAM Data type of parameter number is illegal; expected the data ERROR
type type

INVRANGE Invalid range enclosure specified WARNING

INVTABSPEC Tabs specification incorrect, not changed WARNING

INVTIME Invalid SLEEP time WARNING

JNLACTIVE Asynchronous actions prohibited when journal file open WARNING

JNLNOTOPEN Journal file not open, recovery aborted ERROR

u JOURNALBEG Journal of edit session started INFORMATIONAL

JOURNALCLOSE Journal file successfully closed, journaling stopped SUCCESS

JOURNALEOF End of journal file found unexpectedly WARNING

KEYMAPNOTFND Key map ' key-map-name' not found in key map WARNING
list ' key-map-list-name'

KEYSUPERSEDED Definition of key 'name' superseded INFORMATIONAL

KEYWORDPARAM Keyword ' name' used as procedure/variable/constant ERROR

LINETOOLONG Line is maximum length, cannot add text to it WARNING

(
MAXMAPPEDBUF A single buffer can be mapped to at most 'count' WARNING

window(s)

MAXVALUE Maximum value is 'integer' WARNING

MINVALUE Minimum value is ' integer' WARNING

MISSINGQUOTE Missing quote ERROR

MISSY.MTAB Missing symbol table ERROR

MIXEDTYPES Operator with mixed or unsupported data types ERROR

MOUSEINV Mouse location information is invalid WARNING

MOVETOCOPY Move from unmodifiable buffer ' string' changed to copy WARNING

MSGBUFSET Attempt to change modifiable setting of message buffer WARNING .
MSGNOTFND Message was not found; the default message has been WARNING

returned

MULTIDEF Parameter/local/constant 'name' multiply defined · ERROR

rG
MULTIPLENAMES There is mo.re than one name matching, all are returned WARNING

MULTISELECT Multiple identical CASE selectors ERROR·

\. (continued on next page)

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

MUSTBECONST Expression must be a compile-tlme constant ERROR

MUSTBEONE String must be 1 character long WARNING

NEED FILENAME Type file name or just RETURN to delete buffer 'buffer- SUCCESS
name':

NEEDTERMS You must specify some word terminators for FILL ERROR

NEEDTOASSIGN Built-in must return a value ERROR

NESTERROR Nesting level exceeded ERROR

NO NO INFORMATIONAL) NOASSIGNMENT Expression without assignment ERROR

NOBREAKPOINT No breakpoint is active WARNING

NOCACHE Insufficient virtual memory to allocate a new cache ERROR

NOCALLUSER Could not find a routine for CALL_USER to invoke ERROR

NOCOPYBUF Cannot COPY a buffer to itself WARNING

NOCURRENTBUF No buffer has been selected as default WARNING

NODEFINITION Key 'key name' currently has no definition WARNING (-:\
NOENDOFLINE Returning a range of text with no end-of-line SUCCESS

NOEOBSTR Cannot return a string at end of buffer WARNING
.✓)

NOFILEACCESS Unable to access file 'name' ERROR

NOFILEROUTINE No routine specified to perform file 1/0 FATAL

NOJOURNAL Editing session is not being journaled WARNING

NOKEYMAP Attempt to access an undefined key map ' key-map-name' WARNING

NOKEYMAPLIST Attempt to access an undefined key map list 'key-map-list- WARNING
name'

) NONAMES There are no names matching the one r.equested WARNING.

NONANSICRT SYS$1NPUT must be supported CRT ERROR

NONEXISTBUF Buffer ' name' does not exist WARNING

NOPARENT There is no parent proc~ss to attach to WARNING

NOPROCESS No subprocess to interact with WARNING
NOREDEFINE Built-in procedure 'name' cannot be redefined ERROR

NORETURNVALUE Built-in does not return a value ERROR

NOSELECT No select active WARNING

NOSENDBUF Cannot send a buffer to a process using the buffer WARNING

NOSHOWBUF Variable SHOW_BUFFER does not exist or is not a buffer WARNING

NOSTRMEM String allocation failure FATAL

NOTARRAY Indexed variable is not an array WARNING
NOTDEFINABLE That key is not definable WARNING [~

NOTDELETED Purging a record not marked as deleted FATAL
\

_)
(continued on next page)

D-6

(

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation

NOTERRORKEYWORD

NOTIMPOPCODE

NOTLEARNING

NOTMODIFIABLE

NOTONSCREEN

NOTSAMEBUF

NOTYET

NOWINDOW

NULLSTRING

OCCLUDED

ONDELRECLIST

ONELEARN

ONES ELECT

OPENIN

OPENOUT

OVERLAP RANGE

PARSEFAIL

PARSEOVER

PATOVER

PREMATUREEOF

PRESSRET

PROCESSBEG

PROCESS END

PROCSUPERSEDED

PROGLOST

QUITTING

READERR

READOUEHEADER

READZERO

REALLYQUIT

REALLYRECOVER

RECISDEL

RECOVERABORT

RECOVERBEG

Message

Error handler selector is not an error keyword

Opcode in delayed work queue not implemented

You have not begun a learn sequence

Attempt to change unmodifiable buffer 'string'

Text cannot be scrolled unless window is on screen

The markers are not in the same buffer

Not yet implemented

Attempt to position the cursor outside all of the mapped
windows

Null string used

Built-in/keyword ' name' occluded by declaration

Attempt to access a record on the deleted list

Cannot start a learn sequence while one is active

Select already active, maximum 1 per buffer

Error opening ' input-file' as input

Error opening ' output-file' as output

Overlapping ranges, result is unpredictable

Error parsing 'filespec'

Parser stack overflow

Pattern stack overflow

Premature end-of-file detected

Press RETURN to continue ...

Subprocess activated

Subprocess terminated

Definition of procedure ' name' superseded

Program lost - Sorry

Editor quitting

Error reading ' input-filespec'

Attempt to read queue header.of dscb: 'address'

Read of record ID 0, dscb: 'address'

Buffer modifications will not be saved, continue quitting
(Y or N)?

Continue recovering (Y or N)?

Deleting a record already marked as deleted

Severity Level

ERROR

FATAL

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

WARNING

INFORMATIONAL

FATAL

WARNING

WARNING

ERROR

ERROR

WARNING

WARNING

ERROR

ERROR

ERROR

SUCCESS
SUCCESS
SUCCESS
INFORMATIONAL

FATAL

SUCCESS
ERROR

FATAL

FATAL

SUCCESS

SUCCESS
FATAL

Recovery aborted by journal file inconsistency, journal file WARNING
closed

Recovery started SUCCESS

(continued on next page)

VAXTPU Messages

Table D-1 (Cont.} VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

RECOVER END Recovery corrplete SUCCESS .
RECOVERFAIL Recovery terminated abnormally, journal file inconsistency ERROR

RECUR LEARN Learn sequence replay halted due to recursion WARNING

REFRESH_NEEDED Screen refresh needed WARNING

REPLAYFAIL An inconsistency has been discovered, halting execution WARNING

REPLAYWARNING An inconsistency has been discovered, continuing WARNING
execution

REQSDECW Feature requires use of DECwindows VAXTPU ERROR -)
REQSTERM Feature requires use of non-DECwindows VAXTPU ERROR

RESTOREFAIL Error during RESTORE operation ERROR

RETURNING Editor now returning to caller SUCCESS

REVERSECASE CASE limits were reversed INFORMATIONAL

RMSERROR RMS service error ERROR

SAVEAMBIGSYM Saving ambiguous symbol ' name' INFORMATIONAL

SAVEERROR Error during SAVE operation ERROR ~
SAVEUNDEFPROC Saving undefined procedure 'name' INFORMATIONAL i"\

SCANADVANCE **"' Scanner advanced to"' name'"*** ERROR _/

SEARCH FAIL Error searching for 'filespec' WARNING

SECTRESTORED 'Count' procedure(s), 'count' variable(s), 'count' key(s) INFORMATIONAL
restored

SECTSAVED 'Count' procedure(s}, 'count' variable(s}, 'count' key(s) SUCCESS
saved

SECTUNDEFPROC Saved 'count' undefined procedure(s}, 'count' WARNING
ambiguous symbol(s)

) SELRANGEZERO Select range has O length WARNING
SENDFAIL Unable to send to subprocess WARNING

SOURCELINE At source line 'integer' INFORMATIONAL
STACKOVER Stack overflow during compilation ERROR

STATOOLONG Truncating status line to 'count' characters INFORMATIONAL
STRNOTFOUND String not found WARNING
STRTOOLARGE String greater than 65,535 characters ERROR

SUCCESS Successful completion SUCCESS

SYMDELETE *** Error symbol deleted *** ERROR

SYMINSERT ***"'Name'" inserted before error symbol*'** ERROR

SYMREPLACE *** Error symbol replaced by "' name' " *** ERROR

SYNTAXERROR Syntax error ERROR r)
SYSERROR System service error ERROR ,,

,J (continued on next page)

D-8

VAXTPU Messages

Table D-1 (Cont.) VAXTPU Messages and Their Severity Levels

Abbreviation Message Severity Level

SYSGENPARAM SYSGEN parameter 'name' too low; it should be at least WARNING
'value'

SYSUAFPARAM SYSUAF parameter ' name' too low; it should be at least WARNING
'value'

TABNOTVALID Tab character not valid in this context WARNING

TEXT 'Message' INFORMATIONAL

TOOFEW Too few arguments ERROR

TOOMANY Too many arguments ERROR

TOOMANYPARAM Too many formal parameters/local variables ERROR

TOPLINETRUNC Calculated new first line ' integer' , changed to 1 INFORMATIONAL

TRUNCATE Line truncated to 'count' characters WARNING

UISSETTING UIS setting 'name' too low; it should be at least 'value' WARNING

UNKFACILITY Unknown facility code specified WARNING

UNARYOPER Operand combination 'oper' 'type' unsupported WARNING

UNDEFINEDPROC Undefined procedure call 'name' ERROR
. (\) UNINITVAR Uninitialized variable ERROR

' -.../
_ - UNKESCAPE Unknown escape sequence read WARNING

UNKKEYWORD An unknown keyword has been used as an argument ERROR

UNKNFAIL Internal VAXTPU failure, unknown reason FATAL

UNKOPCODE Unknown opcode 'value' ERROR

UNKTYPE Unknown data type 'value' ERROR

UNKWNDESC Unknown descriptor type ERROR

UNREACHABLE Unreachable code INFORMATIONAL

WINDNOTMAPPED The window is not mapped to a buffer WARNING

WINDNOTVIS Built-in cannot operate on an invisible window WARNING

WRITEERR Error writing 'output-filespec' ERROR

WRITEFILEPROMPT Type file name for buffer ' name' (press RETURN to not SUCCESS
write it):

WRONGDATASET Records could not be found in the data set FATAL

YES YES INFORMATIONAL

E DEC Multinational Character Set

This appendix presents the DEC multinational character set. In Table E-1
the control characters are shown as reverse question marks, which is how
they appear on the VT300 series and VT200 series of terminals. On the
VTlO0 series of terminals, control characters appear as rectangles.

Table E-1 DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

? 0 NUL null character
? 1 SOH start of heading
? 2 STX start of text
? 3 ETX end of text
? 4 EQT end of transmission

I
I

,-\..__) ? 5 ENO enquiry

~ ? 6 ACK acknowledge
? 7 BEL bell
? 8 BS backspace

rt 9 HT horizontal tabulation

1= 10 LF line feed

~ 11 VT vertical tabulation

FF 12 FF form teed

(_ ~ 13 CR carriage return

? 14 so shift out

? 15 SI shift in

? 16 DLE data link escape

? 17 DC1 device control 1
? 18 DC2 device control 2

? 19 DC3 device control 3

? 20 DC4 device control 4
? 21 NAK negative acknowledge

? 22 SYN synchronous idle

? 23 ETB end of transmission block

? 24 CAN cancel

u ? 25 EM end of medium

? 26 SUB substitute

(continued on next page)

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

? 27 ESC escape

? 28 FS file separator

? 29 GS group separator

? 30 RS record separator

? 31 us unit separator

? 32 SP space

33 exclamation point

) II 34 II quotation marks (double quote)

35 # number sign

$ 36 $ dollar sign

% 37 % percent sign

& 38 & ampersand

39 apostrophe (single quote)

(40 opening parenthesis ()
) 41 closing parenthesis :) * 42 * asterisk

+ 43 + plus

44 comma

45 hyphen or minus

46 period or decimal point

I 47 I slash

0 48 0 zero

1 49 one)
2 50 2 two

3 51 3 three

4 52 4 four

5 53 5 five

6 54 6 six

7 55 7 seven

8 56 8 eight

9 57 9 nine

58 colon

59 semicolon

< 60 < less than n 61 = equals

(continued on next page) J

E-2

DEC Multinational Character Set

~)

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

> 62 > greater than

? 63 ? question mark

@ 64 @ commercial at

A 65 A uppercase A

B 66 B uppercase B

C 67 C uppercase C

D 68" D uppercase D

\ E 69 E uppercase E

F 70 F uppercase F

G 71 G uppercase G

H 72 H uppercase H

I 73 uppercase I

J 74 J uppercase J

K 75 K uppercase K
.(_) L 76 L uppercase L
_ M 77 M uppercase M

N 78 N uppercase N

0 79 0 uppercase 0
p 80 p uppercase P

Q 81 Q uppercase Q

R 82 R uppercase R

s 83 s uppercase S

T 84 T uppercase T
' u 85 u uppercase U

V - 86 V uppercase V

w 87 w uppercase W

X 88 X uppercase X
y 89 y uppercase Y

z 90 z uppercase Z

[91 [opening bracket

\ 92 \ back slash

l 93 l closing bracket
I\ 94 I\ circumflex

95 underline (underscore)

L/ 96 grave accent
r
\ .. _ (continued on next page)

DEC Multinationr.l Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

a 97 a lowercase a

b 98 b lowercase b

C 99 C lowercase c

d 100 d lowercased

e 101 e lowercase e

f 102 lowercase f

g 103 g lowercase g

~) h 104 h lowercase h

105 lowercase i

106 lowercase j

k 107 k lowercase k

108 lowercase I

m 109 m lowercase m

n 110 n lowercase n ,r')~
0 111 0 lowercase o

p 112 p lowercase p . ../

q 113 q lowercase q

r 114 r lowercase r

s 115 s lowercases

116 lowercase t

u 117 u lowercase u

V 118 V lowercase v

119 lowercase w
\ w w)

X 120 X lowercase x

y 121 y lowercase y
z 122 . z lowercase z

{ 123 { opening brace

I 124 I vertical line

} 125 } closing brace

126 tilde

DEL 127 DEL delete, rubout

? 128 [reserved]

? 129 [reserved]

? 130 [reserved] n ? 131 [reserved]

(continued on next page) _)

E-4

DEC Multinational Character Set

0 ~ .

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

? 132 IND index

? 133 NEL next line

? 134 SSA start of selected area

? 135 ESA end of selected area

? 136 HTS horizontal tab set

? 137 HTJ horizontal tab set with justification

? 138 VTS vertical tab set

? 139 PLD partial line down

? 140 PLU partial line up

? 141 RI reverse index

? 142 SS2 single shift 2

? 143 S83 single shift 3

? 144 DCS device control string

? 145 PU1 private use 1

u ? 146 PU2 private use 2

C ? 147 STS set transmit state

? 148 CCH cancel character

? 149 MW message waiting

? 150 SPA start of protected area

? 151 EPA end of protected area

? 152 [reserved]

? 153 [reserved]

(_ ? 154 [reserved]

? 155 CSI control sequence introducer

? 156 ST string terminator

? 157 osc operating system command

? 158 PM privacy message

? 159 APC application program command

? 160 [reserved]

161 inverted exclamation mark

¢ 162 ¢ cent sign

£ 163 £ pound sign

? 164 [reserved]

¥ 165 ¥ yen sign

u ? 166 [reserved]

I (continued on next page)
\._

DEC Multinational Character Set

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

§ 167 § section sign
Cl 168 Cl general currency sign

© · 169 © copyright sign
a 170 a feminine ordinal indicator
((171 ((angle quotation mark left

? 172 [reserved]

? 173 [reserved]

) ? 174 [reserved]

? 175 [reserved]
0 176 0 degree sign

± 177 ± plus/minus sign
2 178 2 superscript 2
3 179 3 superscript 3

? 180 [reserved] ()
µ 181 µ micro sign f,

~ 182 ~ paragraph sign, pilcrow ./

183 middle dot

? 184 [reserved]

185 superscript 1
2 186 2 masculine ordinal indicator
» 187 » angle quotation mark right

¼ 188 ¼ fraction one quarter

½ 189 ½ fraction one half

? 190 [reserved]

l 191 l inverted question mark

A 192 A uppercase A with grave accent

A 193 A uppercase A with acute accent

A 194 A uppercase A with circumflex

A 195 A uppercase A with tilde

A 196 A uppercase A with umlaut, (diaeresis)

A 197 A uppercase A with ring

A: 198 A: uppercase AE ~iphthong

9 199 9 uppercase C with cedilla

E 200 E uppercase E with grave accent

!) E 201 E uppercase E with acute accent

(continued on next page) · ..)

E-6

DEC Multinational Character Set

(U

Table E-1 (Cont.) DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

E 202 E uppercase E with circumflex

~ 203 ~ uppercase E with umlaut, (diaeresis)

1 204 1 uppercase I with grave accent

I 205 r uppercase I with acute accent

206 i uppercase I with circumflex

T 207 T uppercase I with umlaut, (diaeresis)

? 208 [reserved]

N 209 N uppercase N with tilde

6 210 6 uppercase O with grave accent

6 211 6 uppercase O with acute accent

0 212 0 uppercase O with circumflex

6 213 6 uppercase O with tilde

6 214 6 uppercase O with umlaut! (diaeresis)

CE 215 CE uppercase OE ligature

,Ci 0 216 0 uppercase O with slash

0 217 0 uppercase U with grave accent

u 218 u uppercase U with acute accent

0 219 0 uppercase U with circumflex

0 220 0 uppercase U with umlaut, (diaeresis)
)' 221)' uppercase Y with umlaut, (diaeresis)

? 222 [reserved]

(
B 223 B German lowercase sharp s

a 224 a lowercase a with grave accent

a 225 a lowercase a. with acute accent

a 226 a lowercase a with circumflex

a 227 a lowercase a with tilde

a 228 a lowercase a with umlaut, (diaeresis)

a 229 a lowercase a with ring

83 230 83 lowercase ae diphthong

9 231 9 lowercase c with cedilla

e 232 e lowercase e with grave accent

e 233 e lowercase e with acute accent

e 234 e lowercase e with circumflex

e 235 e lowercase e with umlaut, (diaeresis)

u 236 lowercase i with grave accent

((continued on next page)
' '

DEC Multinational Character Set

Table E-1 (Cont.} DEC Multinational Character Set

Decimal
Graphic Value Abbreviation Description

237 lowercase i with acute accent

T 238 lowercase i with circumflex

r 239 "j lowercase i with umlaut, (diaeresis)

? 240 [reserved]

ii 241 · ii lowercase n with tilde

0 242 0 lowercase o with grave accent

6 243 6 lowercase o with acute accent

) 6 244 6 lowercase o with circumflex

6 245 6 lowercase o with tilde

0 246 0 lowercase o with umlaut, (diaeresis)

re 247 re lowercase oe ligature

121 248 121 lowercase o with slash

u 249 u lowercase u with grave accent

LI 250 LI lowercase u with acute accent ,0i
0 251 0 lowercase u with circumflex)
0 252 0 lowercase u with umlaut, (diaeresis)

y 253 y lowercase y with umlaut, (diaeresis)

? 254 [reserved]

? 255 [reserved]

E-8

F VAXTPU File Support

When you edit with VAXTPU, some file attributes may be changed.
VAXTPU supports some file attributes in that it preserves the particular
file attribute. VAXTPU does not support other file attributes; it converts
the file attributes to VAXTPU's default attribute. For more ipformation
on file attributes, see the VMS Record Management Services Manual.
Table F-1 shows the file attributes that VAXTPU supports. It also lists
the default file attributes for VAXTPU.

Table F-1 VAXTPU Support of File Attributes

File Organization

Index

Relative

Sequential

Record Format

Fixed length

Stream

Stream-CR

Stream-LF

Undefined

Variable length

VFC

Record Attribute

Block

Carriage return

FORTRAN

None

Print

Status as Supported or Unsupported

Unsupported

Unsupported

Supported (default)

Unsupported

Supported

Supported

Supported

Supported

Supported (default)

Unsupported

Supported

Supported (default)

Unsupported

Supported

Unsupported

~ ..

)

)

C

C

G EVE$BUILD Module

G.1

VAXTPU includes a module, EVE$BUILD, for building applications on
EVE.

EVE$BUILD is a tool for modifying EVE or layering other products on
EVE. EVE$BUILD compiles VAXTPU code with an existing EVE section
file to produce a new section file. This new file can define either a new
version of EVE or a new product. Both customers and Digital developers
can use EVE$BUILD.

In using these instructions, type uppercase strings exactly as they appear
here. Replace lowercase strings with appropriate values. For example,
in the expression product_MASTER.FILE, the string "product" indicates
that you should substitute the product name of your choice. The string
"MASTER.FILE" must be appended to the product name exactly as it
appears in these· comments.

These instructions cover the following:

• How to prepare code for use with EVE$BUILD

• How to invoke EVE$BUILD

• What happens when you use EVE$BUILD

How to Prepare Code for Use with EVE$BUILD
For purposes of this section, it is assumed you have VAXTPU code that
modifies EVE or layers another product on EVE. To turn this code into a
section file using EVE$BUILD, follow the guidelines in this section.

There are seven areas· in which you must observe special coding
conventions:

• Module identifiers

• Parsers

• Initialization

• Command synonyms

• Status line fields

• Exit handlers

• Quit handlers

G.1.1

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Module Identifiers

G-2

Organize the VAXTPU code into one or more modules. (This section
defines "module" in more detail below.) Once you set up one or more
modules, EVE$BUILD provides an audit trail showing what version, of
each module was used to build each new section file. Digital recommends
that you put into one or more modules all the code to be used with
EVE$BUILD.

To define a module, create a file containing one or more VAXTPU
procedures and (if appropriate) one or more executable statements. All
procedures and statements in a module should be related to the same
task or subject. Then insert a new procedure at the beginning of the
module. This procedure will return an "ident," or module identifier, which
EVE$BUILD tracks during the build process. Use the following format for
this procedure:

PROCEDURE facility_MODULE_IDENT

RETURN "version-number";

ENDPROCEDURE;

In place of "facility," use a unique module identifier of up to 15 characters.
If the VAXTPU code in the module is part of a Digital product, begin the
identifier with the registered product facility code such as EVE or NOTES,
followed by a dollar sign and the specific module name. For example, the
facility used in the major EVE module is EVE$CORE. As a result, the
module containing EVE$CORE has the identifier EVE$CORE_MODULE_
IDENT.

If the code is not part of a Digital product, do not use a dollar sign in the
module identifier.

In place of "version-number," use any string of up to 15 characters
identifying the version number of the module.

EVE$BUILD keeps a list showing the ident of each module it uses in a
build. The list is kept in a file referred to as the .LIST file. This file is
discussed in Section G.2. In EVE, the format used for the version number
string is Vnn-mmm. ·The characters "nn" represent the major version
number of EVE to which the module belongs. The characters "mmm"
represent the edit number.

The following code is the _MODULE_IDENT procedure used by the
module EVE$CORE.TPU:

PROCEDURE eve$core_module_ident

RETURN "V02-242";

ENDPROCEDURE;

G.1.2 Parsers

_

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

EVE$BUILD can accommodate one or more user-written parsing routines
in addition to the parser included in EVE. If you choose to include a parser
in your product, the parser can either supplement or replace EVE's parser.

If you include one or more parsers in your product, the inodule containing
the parser should define a variable of the following form:

EVE$X_ENABLE_PARSER_facility

Replace the term "facility" with the name of the module in which the
parsing routine appears. For example, if the parser occurs in the module
SCHEDULER, the variable is as follows:

EVE$X_ENABLE_PARSER_SCHEDULER

Next, name the procedure implementing the parser. If the product is not a
Digital product, use the following format:

facility_PROCESS_COMMAND

Replace the term "facility" with the name of the module in which the
parsing routine appears. For example, if the parser occurs in the module
with the ident SCHEDULER_MODULE_IDENT, the procedure has the
following name:

SCHEDULER_PROCESS_COMMAND

If the product is a Digital product, name the procedure using the following
format:

facility$PROCESS_COMMAND

EVE has a procedure named EVE$PARSER_DISPATCH that defaults to
the following code:

PROCEDURE EVE$PARSER_DISPATCH (the_command)

EVE$PROCESS_COMMAND (the_command);

ENDPROCEDURE;

If you do not define a parser-related variable, then the default
EVE$PARSER_DISPATCH is put into the .INIT file.

If you do define one or more parser-related variables, EVE$BUILD verifies
that a corresponding facility_PROCESS_COMMAND procedure· exists
for each variable. If not, the build fails. If the corresponding procedure
does exist, EVE$BUILD then adds the following code to EVE$PARSER_
DISPATCH just before the call to EVE$PROCESS_COMMAND:

IF EVE$X_ENABLE_PARSER_facility
THEN

IF (facility_PROCESS_COMMAND (THE_COMMAND))
THEN

RETURN;
ENDIF;

ENDIF;

G.1.3

EVE$8UILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Initialization

G-4

If you want a particular module's parser to supersede EVE's parser, your
parser should return a true status whether or not it can parse a command.
If you want your parser to supplement EVE's parser, your parser should
return a false status if it cannot parse a command. The false status allows
the parsers in other modules, and finally EVE's parser, to try to parse the
command. The parsers are called in the order in which they appear in the
master file. (The master file is discussed in Section G.2.)

EVE$BUILD allows module-specific initialization. To perform
initialization in a module, put an initializing procedure in the module
and name the procedure using the following format:

facility_MODULE_INIT

Replace the term "facility'' with the name of the module in which the
procedure appears. For example, if it occurs in the module SCHEDULER_
MODULE_IDENT, the procedure is named as follows:

SCHEDULER MODULE INIT - -
The EVE module EVE$CORE.TPU contains a null procedure called
EVE$1NIT_MODULES. EVE$BUILD replaces EVE$INIT_MODULES
with a procedure that calls each procedure whose name ends with
_MODULE_INIT. The initialization procedures are called in the order in
which they are found in the master file. (The master file is discussed in
Section G.2.)

EVE performs initialization in the following order:

1 Processing of the procedure TPU$INIT_PROCEDURE

VAXTPU executes the procedure TPU$INIT_PROCEDURE
immediately after processing the /DEBUG qualifier. TPU$INIT_
PROCEDURE performs the following tasks:

• Initialization of EVE's variables and settings

• Package preinitialization

• Initialization· of EVE's buffers, windows, and files

• Initialization of user-written modules

• Call to the end user's initialization file, TPU$LOCAL_INIT

2 Processing of the /COl\fMAND qualifier if it is present on the DCL
command line

3 Processing of the procedure TPU$INIT_POSTPROCEDURE

_)

VAXTPU executes the procedure TPU$INIT_POSTPROCEDURE after
prorficessinghtheti 1

1
c
1
O~k qualifi~r. TPU$INIT_POS'tPROCEDURE 0 pe orms t e o owing tas s: z_

• Execution of EVE commands in the initialization file .. J

0

\

(
G.1.4

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

• Creation and initialization of the $DEFAULTS$ buffer. This buffer
is a template for all buffers created during an editing session. New
buffers obtain settings from the $DEFAULTS$ buffer for attributes
such as margin settings, direction, mode, and so on.

During the "preinitialization" phase, you can redefine EVE's variables and
settings to be compatible with your product.

Do not redefine any EVE variable or setting unless you are sure you
under_stand all the possible side effects on EVE and on your product. Use
of this option is recommended only for experienced EVE programmers.

To use preinitialization, put an initializing procedure in a module and
name the procedure using the following format:

facility_MODULE_PRE_INIT

Replace the term "facility'' with the name of the module in which the
initializing procedure appears. For example, if it occurs in the module
SCHEDULER_MODULE_IDENT, the procedure is named as follows:

SCHEDULER MODULE PRE INIT - - -
The EVE module EVE$CORE.TPU contains a null procedure called
EVE$PRE_INIT_MODULES. EVE$BUILD replaces EVE$PRE_INIT_
MODULES with a procedure that calls each procedure whose name ends
with _MODULE_PRE_INIT. The initialization procedures are called in
the order in which they are found in the master file. (The master file is
discussed in Section G.2.)

Most programmers who are layering a product onto EVE should initialize
modules by using procedures of the type facility_MODULE_INIT. Use of
TPU$LOCAL_INIT should be reserved for the end user. Use of procedures
of the type facility_MODULE_PRE_INIT should be reserved for very

· experienced EVE programmers.

Command Synonyms
A command synonym is a string that produces exactly the same effect as
an EVE command or phrase. Command synonyms are useful for creating
foreign-language versions of EVE or a product layered onto EVE. For
example, you could designate the Swedish string "naasta_bild" to have the
same effect as the EVE command NEXT SCREEN.

EVE$BUILD allows you to create synonyms both for EVE commands
and for user-written commands. This discussion assumes that when
you create a command synonym, you first choose a root command (the
EVE command or user-written command for which you want to create a
synonym), and then equate to the root command a synonym (the string
that is to produce the same effect as the root command does).

You can create synonyms in each module of your product. To create
synonyms in a module, you perform two steps:

1 Create an initializing procedure

2 Place synonym declaration statements in the initializing procedure

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

G-6

Name the initializing procedure using the following format:

facility_DECLARE_SYNONYM

Replace the term "facility" with the name of the module in which the
procedure appears. For example, if you cr,3ate the procedure in the module
SCHEDULER, you would name the procedure as follows:

SCHEDULER DECLARE SYNONYM - -
To declare a synonym, use the EVE$BUILD_SYNONYM statement
in the DECLARE_SYNONYM procedure. This command enters the
root command and the synonym into EVE'S data structure associating
synonyms with root commands. Use one EVE$BUILD_SYNONYM
statement for each synonym you want to declare. The statement has
the following format:

EVE$BUILD_SYNONYM ("root_command", "synonym", integer)

The parameters are as follows:

root-command - A quoted string naming the command for which
you want to declare a synonym. The string must not contain spaces.
If the command contains more than one word, place an underscore
between the words.
synonym - A quoted string naming the synonym you want to ··
associate with the root command. The string must not contain
spaces. .If the command usually contains more than one word, place an.
underscore between the words.
integer - Either 0, 1, or 2.

The value O tells EVE$BUILD that the programmer, not EVE$BUILD,
will create the procedure and parameters implementing the synonym.
This value instructs EVE$BUILD simply to verify that the root
command exists and to associate the root command with the synonym.

The value 1 causes EVE$BUILD to perform the following tasks:

• Verify that the root command exists.

• Associate the root command with the synonym.

• Create a new procedure giving the synonym the same effect as the
root command.

• Declare how many parameters are expected by the procedure
implementing the synonym. (That is, if the procedure
implementing the root command requires two parameters, then
the procedure implementing the synonym also requires two
parameters.)

• Initialize the parameters of the synonym procedure so they equal
the parameters of the corresponding root procedure.

The value 2 causes EVE$BUILD simply to associate the root with the
synonym. Use this value if you are creating a synonym for a phrase
rather than a command synonym.

)

G.1.5

L

Example

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

The following statement creates a Spanish synonym for the ONE
WINDOW command and instructs EVE$BUILD to create the necessary
structures for the synonym:

EVE$BUILD_SYNONYM ("one_window", "una_ventana", 1)

You can declare a synonym to be a terminator. A terminator is a command
that, if bound to a key and executed with a keystroke, tells an EVE
prompt to stop prompting. For example, when the DO command is bound
to the DO key, pressing the DO key terminates the prompts resulting from
several commands, including DEFINE KEY and FIND.

To make a synonym a terminator, use a EVE$MAKE_SYNONYM_A_
TERMINATOR statement in the facility_MODULE_INIT procedure. For
example, if you wanted to make the string "Haga" a synonym for "DO" and
to declare "Haga" as a terminator, you would place the following statement
in the facility _MODULE_INIT procedure for the module:

EVE$MAKE_SYNONYM_A_TERMINATOR ("DO", "Haga");

Status Line Fields
Using EVE$BUILD, you can create new areas for displaying information
in the status line that EVE displays under each window. These areas are
called "fields." By default, the EVE status line contains fields to display
the following information:

• The buffer mapped to the window

• The text entry mode

• The direction of the buffer

A field can display more than one message. For example, the direction
field in the default EVE status line can display either the string "Forward"
or the string "Reverse."

To add a field to the status line, write a procedure creating the field and
include the procedure in the appropriate module. The following sample
procedure creates a field indicating whether a buffer is a read-only buffer:

! Procedure to put up the "Read-Only" indicator on NO WRITE buffers

PROCEDURE eve$nowrite_status_field (the_length, ! Status line indicator
the_forrnat)

ON ERROR
[OTHERWISE]:

ENDON_ERROR;

IF GET_INFO (CURRENT_BUFFER, "no_write")
THEN

RETURN FAO (the_forrnat, eve$x_read_only);
ELSE

RETURN "";
ENDIF;

ENDPROCEDURE;

G-7

G.1.6

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

You will find it helpful to observe the following conventions:

• Use the following format for the procedure name:

field name STATUS FIELD - -
For example, if you are adding a field to display the current line
number and if your facility is called SCHEDULER, the first line of the
procedure appears as follows:

PROCEDURE SCHEDULER LINE NUMBER STATUS FIELD - - - -
• Give the procedure the following input parameters:

max_size - The number of unused column spaces in the status
line before the new field is added to the line. Use this parameter -_)
to ensure that all messages fit on the status line. _

the_format - The FAO directive to be used to format the field.

The module EVE$CORE.TPU contains a procedure called EVE$GET_
STATUS_FIELDS that simply returns the null string. EVE$BUILD
replaces EVE$GET_STATUS_FIELDS with the followi~g procedure:

PROCEDURE EVE$GET_STATUS_FIELDS (the_length, the_format)

LOCAL remaining,
the_fields,
the_field;

the fields := "";
remaining := the_length;_

RETURN the_fields

ENDPROCEDURE;

For each _STATUS_FIELD procedure you put in a module, EVE$BUILD
inserts the following code just before the "RETURN the_fields" statement:

the field:= field name STATUS FIELD (remaining, the_format);
IF LENGTH (the_field) <~ remaining
THEN

the fields := the field+ the fields;
remaining := remaining - LENGTH (the_field);

ENDIF;

Exit and Quit Handlers

G-8

When you create a new or layered product, you can provide one or more
user-written exit handlers, one or more user-written quit handlers,
or one or more of both. Depending on how you write the handlers,
EVE$BUILD uses your exit or quit handlers either in addition to or
instead of those provided by EVE. This section contains pointers on
writing both supplementary and replacement handlers.

When you write an exit handling procedure, name the procedure using the
following format for a non-Digital product:

facility_EXIT_HANDLER

__,/

)

0

' '

C

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

Use the following format for a non-Digital quit handler:

facility_QUIT_HANDLER

Replace the term "facility" with the name of the module in which the
handler appears. For example, if the handler occurs in the module with
the ident SCHEDULER_MODULE_IDENT, you name an exit handling
procedure as follows:

SCHEDULER EXIT HANDLER - -
You would name a quit handling procedure as follows:

SCHEDULER_QUIT_HANDLER

If the product is a Digital product, name the procedure using the following
format for an exit handler:

facility$EXIT_HANDLER

V se the following format for a quit handler:

facility$QUIT_HANDLER

EVE has procedures named EVE$EXIT_DISPATCH and EVE$QUIT_
DISPATCH. By default, EVE$EXIT_DISPATCH contains the following
code:

PROCEDURE EVE$EXIT_DISPATCH (the_command)

EVE$EXIT;

ENDPROCEDURE;

By default, EVE$QUIT_DISPATCH contains the following code:

PROCEDURE EVE$QUIT_DISPATCH (the_command)

EVE$QUIT;

ENDPROCEDURE;

If you do not create an exit or quit handling procedure, EVE$BUILD
puts the default versions of EVE$EXIT_DISPATCH and EVE$QUIT_
DISPATCH into the .INIT file. If you create an exit handling procedure,
EVE$BUILD adds the following code to EVE$EXIT_DISPATCH just before
the call to EVE$EXIT:

IF facility_EXIT_HANDLER
THEN

RETURN;
ENDIF;

If you create a quit handling procedure, EVE$BUILD adds the following
code to EVE$QUIT_DISPATCH just before the call to EVE$QUIT:

IF facility_QUIT_HANDLER
THEN

RETURN;
ENDIF;

G-9

G.1.7

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

If you want a particular module's exit or quit handler to supersede EVE's
handler, your handler should return a true status. If you want your
handler to supplement EVE's handler, your handler should return a false
status. The false status allows EVE$BUILD to call the handlers in other
modules and in EVE.

How to Invoke EVE$BUILD

G-10

To prepare to use EVE$BUILD, define the following foreign command:

$BUILD== "EDIT/TPU/NODISPLAY/SECTION=EVE$SECTION-
_$ /COMMAND=device: [dir]EVE$BUILD/NOINITIALIZATION

If you specify /SECTION=EVE$SECTION, EVE$BUILD builds your
product on top of the standard EVE section file. To build your product
with a different version of EVE, specify a different section file with the
/SECTION qualifier.

In most circumstances, you specify either the standard EVE section file
or your own enhanced EVE section file. No matter which section file you
specify, you must use the /NO DISPLAY qualifier if you use the /SECTION
qualifier.

If for some reason you want to rebuild EVE from scratch, you build it
/NOSECTION and use the EVE$MASTER.FILE that comes with the EVE
sources.

After defining the foreign command, create a master file. This file tells
EVE$BUIL:0 what modules to compile. If your product is not a Digital
product, name your master file using the following format:

facility_MASTER.FILE

For example, a valid name for a non-Digital product's master file might be
as follows:

SCHEDULER_MASTER.FILE

If your product is a Digital product, name your master file using the
following format:

facility$MASTER.FILE

Replace "facility" with the name of your product. For example, a valid
name for a Digital product's master file might be as follows:

NOTES$MASTER.FILE

When you have created and named the master file, type into it the name of
each file whose contents you want to compile. Usually this means you type
in the name of each file containing a module that is part of your product.
If the files containing the modules are not in the same directory as the
master file, then you must specify the directory name of each module file.

If one or more of your modules declare synonyms, enter the names of those :).
modules at the end of the file. This ensures that all root commands have .· _J
been created before synonyms for root commands are declared.

0

(
G.2

EVE$BUILD Module
G.1 How to Prepare Code for Use with EVE$BUILD

EVE$BUILD processes the modules in the order in which they appear in
the master file. For example, EVE$BUILD calls exit and quit handlers in
the same order that they occur in the master file.

Once you have completed the master file, create a version file in the same
directory that contains the master file. If your product is not a Digital
product, name the version file as follows:

facility_VERSION.DAT

If your product is a Digital product, name the version file using the
following format: ·

facility$VERSION.DAT

The version file is a text file containing only the version number for the
product. This version number is built into the section file as part of the
value of the procedure EVE$VERSION.

When you have a foreign command, a master file, and a version file, you
can invoke EVE$BUILD with the following command:

$ BUILD facility

For example, if the name of your product was SCHEDULER, you would
build it by typing the following:

$ BUILD SCHEDULER

You can use the /OUTPUT qualifier to specify the name of the section file
to create. If you do not use the qualifier, EVE$BUILD prompts for a file
name. If you respond with a null file name, EVE$BUILD gives the output
file the same name as the product.

EVE$BUILD does not produce a log file if /NODISPLAY is used on the
DCL command line. In addition, EVE$BUILD does not produce a log file
if /DISPLAY is used on the DCL command line and the build produces
errors.

What Happens When You Use EVE$BUILD
Each file specified in the master file is read in and compiled. If there are
any executable statements after the procedure definitions, the statements
are compiled and executed. Any SAVE or QUIT statements or calls to
DEBUGON (this procedure is defined in TPU$DEBUG.TPU) are removed
before execution.

EVE$BUILD creates the following three output files:

• The new section file:with a file type of .TPU$SECTION

• A file preserving the dynamically generated code, with a file type of
.INIT

• A file tracking what happened during the build, with a file type of
.LIST

All three files have the same device, directory, and file name.

G-11

EVE$BUILD Module
G.2 What Happens When You Use EVE$BUILD

G-12

The .INIT file contains the following:

• EVE$DYNAMIC_MODULE_IDENT

• EVE$PARSER_DISPATCH

• EVE$MODULE_PRE_INIT

• EVE$MODULE_INIT

• EVE$GET_HELP _LIBRARY_TOPIC

• EVE$VERSION

The .LIST file contains the following:

• The date and time of the build

• The version of EVE used

• The full file specifications of the master file, section file, version file,
and .INIT file

• A synopsis on each source module, including the module ident, the
number of lines in the module, and the full file specification of the file
containing the module

• A list of all global variables used in the build

• A list of all procedures used in the build

)

)

(

Index

A
@command• 4-31
Abort

resulting from exceeding virtual address space •
1-8, 5-1

ABORT statement• 3-25, 3-33, 7-15
Active area• 7-329

determining location of• 7-188
Active editing point• 2-4
ADD_KEY _MAP built-in procedure• 7-16 to 7-17
ADJUST_WINDOW built-in procedure• 7-18 to

7-22
ALL keyword

with EXPAND_NAME • 7-129
with REMOVE_KEY_MAP • 7-296
with SET (BELL) • 7-334
with SET (DEBUG) • 7-341
with UPDATE• 7-489

Alternation
pattern (I) • 2-16

Anchored search• 7-23
ANCHOR keyword • 7-23 to 7-24

with SEARCH• 7-309
with SEARCH_QUIETLY • 7-314

AND operator• 3-7
"Ansi_crt" string constant parameter to GET_INFO •

7-188
ANY built-in procedure• 7-25 to 7-26
APPEND_LINE built-in procedure• 7-27 to 7-28
Application

use of DECwindows VAXTPU built-in procedures
in • B-1 to 8-33

ARB built-in procedure• 7-29 to 7-30
Arithmetic expression • 3-9
ARRAY data type• 2-2 to 2-3

See also CREATE_ARRAY built-in procedure
ASCII built-in procedure• 7-31 to 7-33
Assignment statement • 3-21
ATTACH built-in procedure• 7-34 to 7-35
Attribute

buffer• 7-57
window• 7-74

AUTO_REPEAT keyword• 7-332
"Auto_repeat" string constant parameter to GET_

INFO• 7-188

B
Batch job • 5-5
Batch-like editing • 5-3
BEGINNING_OF built-in procedure• 7-36 to 7-37
BELL keyword• 7-334

with SET (MESSAGE_ACTION_ TYPE)• 7-384
"Bell" string constant parameter to GET_INFO •

7-195
"Beyond_eob" string constant parameter to GET_

INFO• 7-178
"Beyond_eol" string constant parameter to GET_

INFO• 7-178, 7-208
BLANK_TABS keyword• 7-438
BLINK keyword

with MARK• 7-248
with SELECT• 7-319
with SET (PROMPT_AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO) • 7-447

"Blink_status" string constant parameter to GET_
INFO• 7-209

"Blink_video" string constant parameter to GET_
INFO• 7-209

BOLD keyword
with MARK• 7-248
with SELECT• 7-319
with SET (PROMPT_AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO) • 7-447

"Bold_status" string constant parameter to GET_
INFO• 7-209

"Bold_video" string constant parameter to GET_
INFO• 7-209

Boolean expression• 3-11
Bound marker• 2-9 to 2-10
"Bound" string constant parameter to GET_INFO•

7-165, 7-178, 7-209
BREAK built-in procedure• 7-38
"Breakpoint" string constant parameter to GET_

INFO• 7-172
BROADCAST keyword

with SET (BELL) • 7-334·
Buffer

attributes• 7-57
controlling modification indicator• 7-389

lndex-1

Index

Buffer (cont'd.)

converting contents of to string format using STR •
7-472

current • 7-57
deleting• 7-103
direction

current• 7-81
setting• 7-348

erasing• 2-4, 7-112
margin action settings• 7-375, 7-411
margin settings• 7-373, 7-379, 7-409
multiple • 7-57
tab stops• 7-436
variables • 2-4
visible • 7-57

Buffer, multiple • 2-4
BUFFER command

for message buffer • 4-17
BUFFER data type• 2-3 to 2-4
Buffer names • 2-4
"Buffer" string constant parameter to GET _INFO•

7-178, 7-185, 7-210
Building applications on EVE• G-1 to G-12
Built-in procedure

descriptions• 7-13 to 7-499
functions listed• 7-1 to 7-13
name of as reserved word• 3-12
occluded• 3-12

C
Callable interface • 4-1, 7-40
Callback routines

levels of • 4-9
Callbacks • 4-8 to 4-10

handling in EVE• 4-11
CALL_USER built-in procedure• 7-39 to 7-42
Case sensitivity

of widget names• 7-70
CASE statement • 3-23 to 3-24
Case-style error handler• 3-28 to 3-31
CHANGE_CASE built-in procedure• 7-43 to 7-44
Character-cell measuring system

converting to coordinate system • 7-48
Character set • 3-1
"Character" string constant parameter to GET_INFO •

7-165
Character_cell display• 5-8
Clipboard

fetching data from• 7-143

lndex-2

Clipboard (cont'd.)

overview of • 7-143
reading data from• 7-282
writing data to • 7-491

Closures • 4-10 to 4-11
COLLAPSE keyword

with EDIT• 7-107
COLUMN_MOVE_VERTICAL keyword• 7-336
"Column_move_vertical" string constant parameter to

GET_INFO• 7-195
Command files • 4-28 to 4-30

debugging • 4-33
default • 4-20
definition• 1-10
sample • 4-29

Command line
fetching values from• 7-169, 7-170

Command parameter

See EDIT/TPU command parameter
/COMMAND qualifier• 4-24, 5-2 to 5-4, 5-6 to

5-7
Command qualifiers

See EDIT/TPU command qualifiers
"Command" string constant parameter to GET_

INFO• 7-169
Command synonyms• G-5 to G-7
Command window

in EVE• 4-15
"Command_file" string constant parameter to GET_

INFO• 7-169
Comment character• 1-5
COMMENT keyword

with LOOK_UP _KEY• 7-241
COMPILE built-in procedure• 4-18, 7-45 to 7-47
Compiler limits • 7-45
Compiling

in a VAXTPU buffer• 4-18
in EVE• 4-18
programs• 4-17 to 4-18
to create section file • 4-23

COMPRESS keyword
with EDIT• 7-107

Concatenation
pattern (+) • 2-15
string• 3-4

Conditional statements • 3-22 to 3-23
CONSTANT declaration• 3-34
Constants • 3-5 to 3-6

local• 3-20
predefined • 3-12

(

(

Control character

entering • 3-2
translation

example • A-2
Control code

function key• 7-228
Control sequence

function key• 7-228
CONVERT built-in procedure• 7--48

example of use• B-1 to B-4
Coordinate measuring system

converting to character-cell system• 7--48
COPY_TEXT built-in procedure• 7-51 to 7-52
/CREATE qualifier• 5-7
"Create" string constant parameter to GET_INFO •

7-170
CREATE_ARRAY built-in procedure• 7~53 to 7-55
CREATE_BUFFER built-in procedure• 7-56 to

7-59
CREATE_KEY _MAP built-in procedure• 7-60 to

7-61
CREATE_KEY _MAP _LIST built-in procedure • 7-62

to 7-63
CREATE_PROCESS built-in procedure • 7-64 to

7-65
CREATE_RANGE built-in procedure• 7-66 to 7-67
CREATE_WIDGET built-in procedure• 7-68

example of use• 8--4 to B-11
using to specify callback routine • 4-9
using to specify resource values• 4-12

CREATE_WINDOW built-in procedure• 2-25, 7-73
to 7-75

CROSS_WINDOW_BOUNDS keyword• 7-338
"Cross_window_bounds" string constant parameter

to GET_INFO• 7-188
CTRUC• 4-19

with case-style error handler • 3-29, 3-30
with procedural error handler • 3-27

Current buffer• 7-57
active editing point • 2--4
definition • 7-76

Current buffer direction • 7-81
Current date• 7-132, 7-255, 7-258
Current pointer position • 7-239
"Current" string constant parameter to GET _INFO•

7-160, 7-161, 7-163, 7-177, 7-183, 7-206
Current time• 7-132, 7-255, 7-258
Current window• 2-26, 7-73
CURRENT_BUFFER built-in procedure• 7-76
CURRENT_CHARACTER built-in procedure• 7-77

to 7-78

Index

CURRENT_COLUMN built-in procedure• 7-79 to
7-80

"Current_column" string constant parameter to GET_
INFO• 7-188, 7-210

CURRENT_DIRECTION built-in procedure• 7-81
CURRENT_LINE built-in procedure• 7-82 to 7-83
CURRENT_OFFSET built-in procedure• 7-84 to

7-85
CURRENT_ROW built-in procedure• 7-86 to 7-87
"Current_row" string constant parameter to GET_

INFO• 7-188, 7-210
CURRENT_WINDOW built-in procedure• 7-88 to

7-89
Cursor movement• 7-90, 7-92

free• 7-91
Cursor position

compared to editing point• 6-10
effect of scrolling on• 7-306
padding effects• 6-11 to 6-12

CURSOR_HORIZONTAL built-in procedure• 7-90
CURSOR_VERTICAL built-in procedure• 7-92 to

7-94

D
Data type

checking• 4-11, 4-12, 7-390
definition• 2-1
keywords

ARRAY• 2-2 to 2-3
BUFFER • 2-3 to 2--4
INTEGER • 2-5
KEYWORD• 2-5 to 2-7
LEARN • 2-7 to 2-8
MARK • 2-8 to 2-11
PATTERN• 2-11 to 2-19
PROCESS• 2-19 to 2-20
PROGRAM• 2-20
RANGE • 2-20 to 2-21
STRING • 2-22 to 2-23
UNSPECIFIED • 2-23
WIDGET• 2-23 to 2-24
WINDOW• 2-24 to 2-28

Data types • 1-5 to 1-6
Date

inserting with FAO• 7-132
inserting with MESSAGE• 7-255
inserting with MESSAGE_ TEXT• 7-258

DCL command procedure
example • A-5

lndex-3

Index

$DEBUG$1NI$ buffer• 4-21
DEBUG command • 4-34
Debugger

invoking • 4-32
Qebugging • 4-32 to 4-36

ATTACH command • 4-35
CANCEL BREAKPOINT command• 4-35
command files • 4-33
DEPOSIT command • 4-35
DISPLAY SOURCE command • 4-35
EXAMINE command• 4-35
GO command • 4-33, 4-35
HELP command • 4-35
program • 4-34
QUIT command • 4-35
SCROLL command • 4-36
section files • 4-33
SET BREAK POINT command • 4-33, 4-36
SET WINDOW command • 4-36
SHIFT command• 4-36
SHOW BREAKPOINTS command • 4-36
source code • 4-34
SPAWN command • 4-36
STEP command • 4-34, 4-36
to examine contents of local variable • 4-35
TPU command • 4-36

DEBUG keyword• 7-339, 7-340, 7-341
DEBUGON procedure • 4-34
/DEBUG qualifier_• 4-32, 5-8
DEBUG_LINE built-in procedure• 7-95
DEC Multinational Character Set• 3-1 to 3-2, E-1

to E-8
DECwindows

version of VAXTPU
determining if present• 7-189
sample uses of built-ins• B-1 to 8-33

DECwindows display • 5-8
DECwindows VAXTPU

invoking with /DISPLAY• 5-8
DEC_CRT2 mode• C-3
"Dec_crt2" string constant parameter to GET _INFO•

7-189
DEC_CRT mode• C-2
"Dec_crt" string constant parameter to GET_INFO •

7-188
$DEFAULTS$ buffer• 4-31
"Defined" string constant parameter to GET_INFO •

7-182
DEFINE_KEY built-in procedure• 7-96 to 7-100
DEFINE_WIDGET_CLASS built-in procedure• 7-101

example of use • B-4 to 8-11

lndex-4

DELETE built-in procedure• 7-103 to 7-106
Deleting records • 6-5
Deletion

buffer• 2-4
line terminator• 7-27
marker• 2-10
range• 2-21, 7-66
subprocess• 7-64
VAXTPU structure• 7-104
window • 2-27

DEVICE keyword
with FILE_PARSE • 7-134
with FILE_SEARCH • 7-137

Direction
of buffer• 7-81

setting• 7-348
"Direction" string constant parameter to GET _INFO•

7-165
DIRECTORY keyword

with FILE_PARSE • 7-134
with FILE_SEARCH • 7-137

Display
definition of in VAXTPU • 4-15

Displaying version number• 4-2
/DISPLAY qualifier• 5-8

See also /NODISPLAY
"Display" string constant parameter to GET_INFO •

7-170, 7-196
Drag operation

determining where started• 7-180
Dynamic selection

in EVE• 4-15 to 4-16

E
EDIT/TPU command• 1-9, 5-1 to 5-19

parameter • 5-18
qualifiers • 5-5 to 5-19

/COMMAND • 5-6 to 5-7
/CREATE• 5-7
/DEBUG • 4-32, 5-8
/DISPLAY• 5-8
/INITIALIZATION• 5-9 to 5-10
/JOURNAL• 5-10
/MODIFY• 5-11
/OUTPUT• 5-12
/READ_ONLY • 5-13
/RECOVER• 5-14
/SECTION • 5-15

)

)

n
.J

(G

(

EDIT/TPU command
qualifiers (cont'd.)

/START_POSITION • 5-16
/WRITE• 5-16

EDIT/TPU command qualifiers• 1-9
EDIT built-in procedure• 7-107 to 7-109
Editing context status

built-in procedures
CURRENT_BUFFER • 7-76
CURRENT_CHARACTER • 7-77
CURRENT_COLUMN • 7-79
CURRENT_DIRECTION • 7-81
CURRENT_LINE • 7-82
CURRENT_OFFSET • 7-84
CURRENT_ROW • 7-86
CURRENT_WINDOW • 7-88
DEBUG_LINE • 7-95
ERROR• 7-118
ERROR_LINE • 7-120
ERROR_TEXT • 7-122

built-in procedures for defining
SET• 7-327
SHOW• 7--457

Editing interface

See EVE
Editing point

built-in procedures for moving
MARK• 7-248
MOVE_HORIZONTAL • 7-265
MOVE_ VERTICAL• 7-269
POSITION• 7-274

compared to cursor position• 6-10
effect of scrolling on• 7-306

"Edit_mode" string constant parameter to GET_
INFO• 7-189

"Eightbit" string constant parameter to GET_INFO •
7-189

ELSE clause• 3-22
ENDIF statement• 3-22 to 3-23
ENDLOOP statement• 3-21 to 3-22
ENDMODULE statement• 3-14 to 3-15
ENDON_ERROR statement• 3-24 to 3-31
ENDPROCEDURE statement• 3-15 to 3-20
END_OF built-in procedure• 7-110 to 7-111
Entering control characters • 3-2
EOB_ TEXT keyword • 7-346
"Eob_text" string constant parameter to GET_INFO •

7-165
ERASE built-in procedure• 7-112 to 7-113
ERASE_CHARACTER built-in procedure• 7-114 to

7-115
ERASE_LINE built-in procedure• 7-116 to 7-117

Index

Error
resulting from exceeding virtual address space•

1-8, 5-1
Error handler

case-style • 3-28 to 3-31
procedural • 3-26 to 3-28

Error handling• 3-24 to 3-31, 4-37
ERROR lexical element• 3-25
ERROR statement• 7-118 to 7-119
ERROR_LINE lexical element• 3-25
ERROR_LINE statement• 7-120 to 7-121
ERROR_ TEXT lexical element• 3-25
ERROR_TEXT statement• 7-122 to 7-123
EVE

building applications on• G-1 to G-12
command window• 4-15
$DEFAULTS$ buffer• 4-31
initialization files • 4-30 to 4-32

during a session• 4-31
effects on buffer settings• 4-31

Initialization files• 5-10
input files • 5-19
journal file • 5-11
message buffer • 4-17
message window• 4-15
order of initialization • G--4
output file• 5-12, 5-19
restriction on defining GOLD key• 7--427
sample procedures• 8-1 to 8-33
source files • 4-3
status line • G-7
use of EDIT/TPU command qualifiers• 5-17
user window• 4-15
wildcard characters in file specifications• 5-19
wildcards in file names• 5-19

EVE$8UILD • G-1 to G-12
exit and quit handlers • G-8
initialization modules • G--4 to G-5
invoking• G-10 to G-11
output• G-11 to G-12
status line field• G-7 to G-8
synonym creation• G-5 to G-7
using parsing routines with • G-3 to G--4

EVE$GET_STATUS_FIELDS procedure• G-8
EVE$1NIT logical name• 4-30
EVE$PARSER_DISPATCH procedure• G-3
EVE$SELECTION procedure

using to obtain EVE's current selection• 4-16
EVE default settings• 4-31 to 4-32
EVE source files• 1-10

1..,-1..._v_,:

Index

EXACT keyword
with LEARN_BEGIN • 7-231
with SEARCH • 7-310
with SEARCH_QUIETLY • 7-315

"Examine" string constant parameter to GET_INFO •
7-172

Examples of DECwindows VAXTPU built-in
procedures • B-1 to B-33

Examples of VAXTPU procedures
ADJUST_HELP • 7-22
ANCHOR• 7-24
ANY• 7-26
APPEND_LINE • 7-28
ARB• 7-30
ASCII • 7-32, 7-33
BEGINNING_OF • 7-37
BREAK• 7-38
CALL_USER • 7-41
CHANGE_CASE • 7-44
COPY _TEXT• 7-52
CREATE BUFFER • 7-59
CREATE_KEY _MAP • 7-61
CREATE_KEY _MAP _LIST• 7-63
CREATE_PROCESS • 7-65
CREATE_RANGE • 7-67
CREATE_WINDOW • 7-75
CURRENT _BUFFER • 7-76
CURRENT_CHARCTER • 7-78
CURRENT_COLUMN • 7-80
CURRENT_DIRECTION • 7-81
CURRENT _LINE• 7-83
CURRENT_OFFSET• 7-85
CURRENT....,.ROW • 7-87
CURRENT_WINDOW • 7-89
CURRSOR_HORIZONTAL • 7-91
CURSOR_VERTICAL • 7-94
DEFINE_KEY • 7.;...99
DELETE• 7-105
EDIT• 7-109
END_OF • 7-111
ERASE• 7-113
ERASE_CHARACTER • 7,--115
ERROR• 7-119
ERROR_LINE • 7-121
ERROR_TEXT • 7-123
EXECUTE• 7-126, 7-127
EXPAND_NAME • 7-131
FAO• 7-133
FILE_PARSE • 7-136
FILE_SEARCH • 7-139
GET_INFO • 7-154 to 7-155
HELP_ TEXT• 7-217

lndex-6

Examples of VAXTPU procedures (cont'd.)

INDEX• 7-219
INT• 7-221
KEY _NAME• 7-227
LENGTH • 7-235.
LINE_BEGIN • 7-237
LINE_END • 7-238
LOCATE_MOUSE • 7-240
LOOKUP _KEY• 7-243 to 7-244
MAP• 7-247
MARK• 7-250
MATCH • 7-252
MESSAGE• 7-256
MOVE_HORIZONTAL • 7-266
MOVE_TEXT • 7-268
MOVE_ VERTICAL• 7-270
NOTANY • 7-272
PAGE_BREAK • 7-273
POSITION• 7-277
QUIT• 7-279
READ_CHAR • 7-281
READ_FILE • 7-285
READ_KEY • 7-289
REFRESH • 7-294
REMAIN • 7-295
RETURN• 7-298
SAVE• 7-301
SCAN• 7-303
SCANL • 7-305
SCROLL • 7-308
SEARCH• 7-312 to 7-313
SEARCH_QUIETLY • 7-317 to 7-318
SELECT• 7-321
SELECT_RANGE • 7-323
SEND• 7-325
SET (AUTO_REPEAT) •. 7-333
SET (BELL)• 7-335
SET (DEBUG) • 7-342
SET (LINE_NUMBER) • 7-378
SET (SELF _INSERT) • 7-426
SET (TEXT)• 7-440
SET (TRACEBACK) • 7-444
SLEEP • 7-461
SPANL • 7-465 to 7-466
SPLIT_LINE • 7-471
STR • 7-474
SUBSTR • 7-477
TRANSLATE• 7-479
UNANCHOR • 7-482
UNDEFINE_KEY • 7-484
UNMAP • 7-488
UPDATE• 7-490

Examples of VAXTPU procedures (cont'd.)

WRITE_FILE • 7-496
EXECUTE built-in procedure• 4-18
EXIT built-in procedure• 7-128
EXITIF statement• 3-21 to 3-22
EXPAND_NAME built-in procedure• 7-129 to

7-131
Expressions• 3-8 to 3-11

arithmetic • 3-9
Boolean• 3-11
evaluation by compiler • 3-8
pattern • 3-1 o
relational• 3-10
types of • 3-9

Extensible VAX Editor
See EVE

F
FACILITY _NAME keyword• 7-347
"Facility_name" string constant parameter to GET

INFO• 7-196 -
FAO built-in procedure• 7-132 to 7-133
FAO directives

with MESSAGE• 7-254
with MESSAGE_ TEXT• 7-257

Fatal internal error
resulting from exceeding virtual address space •

1-8, 5-1
File organization• F-1
"File_name" string constant parameter to GET

INFO• 7-165, 7-170 -
FILE_PARSE built-in procedure• 7-~34 to 7-136
FILE_SEARCH built-in procedure• 7-137 to 7-139
FILL built-in procedure• 7-140 to 7-142
"Find_buffer" string constant parameter to GET

INFO• 7-163 -
"first" string parameter to ADD_KEY _MAP • 7-16
"First" string constant parameter to GET INFO•

7-160, 7-161, 7-163, 7-174, 7-176~7-1n,
7-183, 7-206

"First_marker" string constant parameter to GET
INFO• 7-165 -

"First_range" string constant parameter to GET
INFO• 7-166 -

FORWARD keyword • 7-81, 7-348
with SEARCH • 7-309
with SEARCH_QUIETLY • 7-315

Found range selection
in EVE• 4-17

Free cursor movement• 7-91, 7-92
Free marker • 2-9 to 2-1 o
Free markers• 7-67
FREE_CURSOR keyword

with MARK• 7-248
Function key

control code• 7-228
control sequence• 7-228

Function procedures• 3-18

G
Gadget • 2-24

Index

GET_CLIPBOARD built-in procedure• 7-143
example of use • B-11 to B-13

GET_DEFAULT built-in procedure• 7-145
GET_GLOBAL_SELECT built-in procedure• 7-147

example of use• B-13 to B-16
GET_INFO built-in procedure• 7-150 to 7-155

buffer variable parameter
"read_routine" • 7-168, 7-192

COMMAND_LINE keyword parameter
"line"• 7-169, 7-170

key_name parameter
"key_modifiers" • 7~156

marker_variable parameter
"record_number" • 7-179

mouse_event_keyword parameter
"mouse_button" • 7-180
"window"• 7-180

SCREEN keyword parameter
"active_area" • 7-188
"decwindows" • 7-189
"event"• 7-189
"global_select" • 7-190
"grab_routine" • 7-190
"icon_name" • 7-190
"input_focus"• 7-190
"length"• 7-190
"new_length" • 7-191
"new_width" • 7-191
"old_length" • 7-191
"old_width" • 7-191
"original_length" • 7-191
"read_routine" • 7-192
"screen_limits" ~ 7-192
"time"• 7-192
"ungrab_routine" • 7-193

lndex-7

Index

GET_INFO built-in procedure (cont'd.)
string constant parameter

"active_area" • 7-188
"Ansi_crt" • 7-188
"autd_repeat" • 7-188
"bell"• 7-195
"beyond_eob"• 7-178
"beyond_eol" • 7-178, 7-208
"blink_status" • 7-209
"blink_video" • 7-209
"bold_status" • 7-209
"bold_video" • 7-209
"bottom" • 7-21 O
"bound"• 7-165, 7-178, 7-209
"breakpoint"• 7-172
"buffer"• 7-178, 7-185, 7-210
"callback_parameters" • 7-198
"callback_routine" • 7-202
"character"• 7-165
"column_move_vertical" • 7-195
"command"• 7-169
"command_file" • 7-169
"create"• 7-170
"cross_window_bounds" • 7-188
"current"• 7-160, 7-161, 7-163, 7-177,

7-183, 7-206
"current_column" • 7-188, 7-21 o
"current_row" • 7-188, 7-210
"decwindows" • 7-189
"dec_crt2"• 7-189
"dec_crt"• 7-188
"defined"• 7-182
"direction"• 7-165
"display"• 7-170, 7-196
"edit_mode" • 7-189
"eightbit" • 7-189
"enable_resize" • 7-196
"eob_text" • 7-165
"event"• 7-189
"examine"• 7-172
"facility_name" • 7-196
"file_name" • 7-165, 7-170
''find_buffer" • 7-163
''first"• 7-160, 7-161, 7-163, 7-174, 7-176,

1-1n, 7-183, 7-206
"first_marker" • 7-165
"first_range" • 7-166
"global_select" • 7-190
"grab_routine" • 7-190
"high_index" • 7-161
"icon_name" • 7-190
"informational"• 7-196

lndex-8

GET_INFO built-in procedure
string constant parameter (cont'd.)

"initialization"• 7-170
"initialization_file" • 7-170
"init_file" • 7-170
"input_focus" • 7-190
"joumaling_frequency" • 7-196
"journal"• 7-170
"journal_file" • 7-170, 7-196
"key_map_list" • 7-210
"key_map_list" • 7-166
"key_modifiers" • 7-156
"key_type" • 7-156
"last"• 7-160, 7-161, 7-163, 7-174, 7-176,

7-177, 7-183, 7-206
"left"• 7-210
"left_margin" • 7-166, 7-178
"left_margin_action" • 7-166
"length"• 7-190, 7-210
"line"• 7-169, 7-170
"line"• 7-166
"line_editing" • 7-190
"line_number" • 7-172, 7-196
"local"• 7-172
"map_count" • 7-166
"maximum_parameters" • 7-182
"max_lines" • 7-166
"message_action_level" • 7-196
"message_action_type" • 7-196
"message_flags" • 7-196
"middle_ot_tab" • 7-211
"minimum_parameters" • 7-182
"mode"• 7-166
"modifiable"• 7-166
"modified"• 7-166
"modify"• 7-170
"mouse"• 7-190
"mouse_l:1utton" • 7-180
"name"• 7-202
"name"• 7-158, 7-166, 7-175
"new_length" • 7-191
"new_width" • 7-191
"next"• 7-160, 7-162, 7-163, 7-173, 7-174,

7-176, 1-1n, 7-183, 1-206, 1-211
"next_marker" • 7-167
"next_range" • 7-167
"nomodify" • 7-170
"no_video" • 7-211
"no_video_status" • 7-211
"no_write" • 7-167
"offset"• 7-167, 7-179
"offset_column" • 7-167, 7-179

)

(_

GET_INFO built-in procedure
string constant parameter (cont'd.)

"old_length"• 7-191
"old_width" • 7-191
"original_bottom" • 7-211
"original_length" • 7-191
"original_length" • 7-211
"original_top" • 7-211
"original_width" • 7-191
"output"• 7-170
"output_file" • 7-167, 7-171
"pad"• 7-211
"pad_overstruck_tabs" • 7-196
"parameter"• 7-173
"permanent"• 7-167
"pid" • 7-184
"post_key_procedure" • 7-194
"previous"• 7-160, 7-162, 7-163, 7-173,

7-174, 7-176, 7-177, 7-183, 7-206,
7-211

"pre_key_procedure" • 7-194
"procedure"• 7-173
"prompt_length" • 7-191
"prompt_row" • 7-191
"read_only" • 7-171
"read_routine" • 7-168, 7-192
"record_count" • 7-168
"record_number" • 7-179
"record_size" • 7-168
"recover"• 7-171
"resize_action" • 7-197
"reverse_status" • 7-211
"reverse_video" • 7-211
"right" • 7-212
"right_margin" • 7-168, 7-179
"right_margin_action" • 7-168
"screen_limits" • 7-192
"screen_update" • 7-192
"scroll"• 7-192, 7-212
"scroll_amount" • 7-212
"scroll_bar" • 7-212
"scroll_bar_auto_thumb" • 7-212
"scroll_bottom" • 7-212
"scroll_top" • 7-212
"section"• 7-171
"section_file" • 7-171, 7-197
"self_insert" • 7-194
"shift_amount" • 7-212
"shift_key" • 7-194, 7-197
"special_graphics_status" • 7-212
"start_character" • 7-171
"start_record" • 7-171

GET_INFO built-in procedure
string constant parameter (cont'd.)

"status_line" • 7-213
"status __ video" • 7-213
"success"• 7-197
"system"• 7-168
"tab_stops" • 7-168
"text"• 7-202
"text"• 7-213
"time"• 7-192
''timed_message" • 7-197
''timer" • 7-197
"top"• 7-213
"traceback"• 7-197
''type"• 7-159
"undefined_key"• 7-194
"underline_status" • 7-213
"underline_video" • 7-213
"ungrab_routine" • 7-193
"update"• 7-197
"version"• 7-197
"video"• 7-179, 7-185, 7-213
"visible"• 7-213
"visible_bottom" • 7-214
"visible_length" • 7-193, 7-214
"visible_top" • 7-214
"vk100" • 7-193
"vt100" • 7-193
''vt200" • 7-193
''vt300" • 7-193
"widget_id" • 7-198
"widget_info" • 7-203
"width"• 7-214
"width"• 7-193
"window"• 7-180
"within_range" • 7-179
"write"• 7-171

SYSTEM keyword parameter
"enable_resize" • 7-196
"resize_action" • 7-197
"timer''• 7-197

WIDGET keyword parameter·
"callback_parameters" • 4-11, 7-198
"widget_id" • 7-198

widget variable parameter
"name"• 7-202
"text"• 7-202
"widget_info" • 7-203

widget_variable parameter
"callback_routine" • 7-202

window variable parameter
"left"• 7-210

Index

lndex-9

Index

GET_INFO built-in procedure
window variable parameter (cont'd.)

"length"• 7-210
"right"• 7-'-212
"scroll_bar" • 7-212
"scroll_bar_auto_thumb" • 7-212
"top"• 7-213
"width"• 7-214

window_variable parameter
"bottom"• 7-21 o
example of use• B-16 to B-19, B-19 to

B-22
"key..:_map_list" • 7-210

Global selection
determining ownership of• 7-190
fetching grab routine for• 7-190
fetching information about• 7-147
fetching read request for • 7-189
fetching read routine for• 7-168, 7-192
fetching ungrab routine for • 7-193
fetching wait time for• 7-192
obtaining data from • 7-287
reading information about• 7-286
requesting ownership of• 7-349
sending information about to an application •

7-497
specifying expiration period for• 7-356
specifying grab routine for• 7-351
specifying read routine for• 7-354
specifying ungrab routine for• 7-358
support for • 4-6 to 4-8

Global variable • 3-4
GOLD key

restriction on defining in EVE• 7-427
Grab routine

fetching event in• 7-189
global selection

fetching• 7-190
specifying• 7-351

input focus• 7-362
fetching• 7-190
specifying• 7-364

GRAPHIC_ TABS keyword • 7-438

H
HELP _TEXT built-in procedure• 7-216 to 7-217
"High_index" string constant parameter to GET

INFO• 7-161 -

lndex-10

I
Icon

fetching text of• 7-190
specifying text for• 7-360

Identifier • 3-4
ldent produced by EVE$BUILD • G-2
ID ENT statement • 3-14 to 3-15
IF statement• 3-22 to 3-23
INDEX built-in procedure• 7-218 to 7-219
INFORMATIONAL keyword• 7-361
"Informational" string constant parameter to GET_

INFO• 7-196
INFO_WINDOW identifier• 7-458
INFO_WINDOW variable• 4-28
Initialization files

default handling • 4-21
definition• 1-10
during a session• 4-31
effects on buffer settings• 4-31
EVE • 4-30 to 4-32

/INITIALIZATION qualifier• 5-9 to 5-10
"Initialization" string constant parameter to GET_

INFO• 7-170
"lnitialization_file" string constant parameter to GET

INFO• 7-170 -
Initializing variables • 2-23
"lnit_file" string constant parameter to GET_INFO •

7-170
Input files• 1-9, 5-18
Input focus

determining ownership of• 7-190
fetching grab routine for• 7-190
fetching ungrab routine for• 7-193
requesting• 7-362
specifying grab routine for• 7-364
specifying ungrab routine for• 7-366
support for • 4-5 to 4-6

INRANGE case constant• 3-24
Inserted records • 6-5
Inserting date• 7-132, 7-255, 7-258
Inserting time• 7-132, 7-255, 7-258
INSERT keyword• 7-368
Insert mode

COPY_TEXT• 7-51
MOVE_TEXT• 7-267

INT built-in procedure • 7-220 to 7-221
Integer constants • 3-5
INTEGER data type • 2-5
Interruption of program • 4-19

_)

3

0 ', __

INVERT keyword
with CHANGE_CASE • 7-43
with EDIT• 7-107

Invoking• 1-9
Invoking VAXTPU • 5-1

from a batch job • 5-5

J

from DCL command procedure • 5-2
interactively• 5-1
restriction to consider before• 1-8, 5-1

Journaling• 5-11
frequency of• 7-369

JOURNALING keyword• 7-369
"Journaling_frequency" string constant parameter to

GET_INFO • 7-196
/JOU ANAL qualifier • 5-10
"Journal" s"tring constant parameter to GET INFO•

7-170 -
JOURNAL_CLOSE built-in procedure• 7-222
"Journal_file" GET_INFO request_string • 7-170
"Journal_file" string constant parameter to GET

INFO• 7-196 -
JOURNAL_OPEN built-in procedure• 5-11, 7-223

to 7-224

K
Key

See also Key map
built-in procedures for defining

DEFINE_KEY • 7-96
LAST_KEY • 7-229
LOOKUP _KEY• 7-241
SET (POST_KEY_PROCEDURE) • 7-400
SET (PRE_KEY _PROCEDURE) • 7-402
SET (SELF _INSERT) • 7-425
SET (UNDEFINED_KEY) • 7-445
UNDEFINE_KEY • 7-483

creating a name for• 7-225
Key map

built-in procedures
ADD_KEY_MAP• 7-16
CREATE_KEY _MAP• 7-60
REMOVE_KEY _MAP • 7-296
SHOW (KEY _MAP) • 7-457
SHOW (KEY_MAPS) • 7-457

Key map list

See also Key
built-in procedures

CREATE_KEY _MAP _LIST• 7-62
SET (KEY _MAP _LIST) • 7-371
SHOW (KEY _MAP _LIST) • 7-457
SHOW (KEY _MAP _LISTS)• 7-457

example of fetching• B-19 to B-22
Key name

table• 2-6
Keyword • 3-12

ALL
with EXPAND_NAME • 7-129
with REMOVE_KEY _MAP • 7-296
with SET (BELL) • 7-334
with SET (DEBUG) • 7-341
with UPDATE• 7-489

ANCHOR • 7-23 to 7-24
with SEARCH • 7-309
with SEARCH_QUIETLY • 7-314

BELL• 7-334

Index

with SET (MESSAGE_ACTION_ TYPE) •
7-384

BLANK_ TABS • 7-438
BLINK

with SELECT• 7-319
with SET (PROMPT ~AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO) • 7-447

BOLD
with SELECT• 7-319
with SET (PROMPi_AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO) • 7-447

BROADCAST
with SET (BELL) • 7-334

COLLAPSE
with EDIT• 7-107

COMMENT
with LOOK_UP_KEY• 7-241

COMPRESS
with EDIT• 7-107

CROSS_WINDOW_BOUNDS • 7-338
DEBUG• 7-339, 7-340, 7-341
DEVICE

with FILE_PARSE • 7-134
with FILE_SEARCH • 7-137

DIRECTORY
with FILE_PARSE • 7-134
with FILE_SEARCH • 7-137

EOB_TEXT• 7-346

lndex-11

Index

Keyword (cont'd.)

EXACT
with LEARN_BEGIN • 7-231
with SEARCH• 7-310
with SEARCH_QUIETLY • 7-315

FACILITY _NAME• 7-347
FORWARD• 7-81, 7-348

with SEARCH • 7-309
with SEARCH_QUIETLY • 7-315

GRAPHIC_ TABS • 7-438
INFORMATIONAL• 7-361
INSERT• 7-368
INVERT

with CHANGE_CASE • 7-43
with EDIT• 7-107

JOURNALING• 7-369
key name • 2-6
KEYWORDS

with EXPAND_NAME • 7-129
KEY_MAP

with LOOK_UP _KEY• 7-241
KEY _MAP _LIST• 7-371
LEFT_MARGIN • 7-373
LEFT_MARG_IN_ACTION • 7-375
LINE_BEGIN • 7-236 to 7-237

with POSITION• 7-274
with SEARCH• 7-309
with SEARCH_QUIETLY • 7-314

LINE_END • 7-238
with POSITION • 7-275
with SEARCH • 7-309
with SEARCH_QUIETLY • 7-314

LINE_NUMBER • 7-377
LOWER

with CHANGE_CASE • 7-43
with EDIT• 7-107

MARGINS• 7-379
MAX_LINES • 7-381
MESSAGE_FLAGS • 7-385
MODIFIABLE• 7-387
MOUSE

with POSITION• 7-275, 7-276
NAME

with FILE_PARSE • 7-135
with FILE_SEARCH • 7-i38

NODE
with FILE_PARSE • 7-134
with FILE_SEARCH • 7-137

NONE
with SELECT• 7-319
with SET (MESSAGE_ACTION_ TYPE) •

7-384

lndex-12

Keyword
NONE (cont'd.)

with SET (PROMPT_AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO)• 7-447

NO_EXACT
with LEARN:..BEGIN • 7-231
with SEARCH• 7-310
with SEARCH_QUIETLY • 7-315

NO_TRANSLATE • 7-438
NO_WRITE • 7-392
occluded• 3-12
OFF

ON

with CREATE_WINDOW • 7-73
with EDIT• 7-108
with HELP _TEXT• 7-216
with QUIT• 7-278
with SET (AUTO_REPEAT) • 7-332
with SET (BELL) • 7-334
with SET (COLUMN_MOVE_ VERTICAL) •

7-336
with SET (CROSS_WINDOW_BOUNDS) •

7-338
with SET (DEBUG) • 7-340, 7-341
with SET (INFORMATIONAL)• 7-361
with SET (LINE_NUMBER) • 7-377
with SET (MODIFIABLE)• 7-387
with SET (MOUSE)• 7-390
with SET (NO_WRITE) • 7-392
with SET (PAD) • 7-395
with SET (PAD_OVERSTRUCK_ TABS)•

7-397
with SET (SCREEN_UPDATE) • 7-415
with SET (SCROLLING)• 7-422
with SET (SELF _INSERT) • 7-425
with SET (SUCCESS) • 7-434
with SET (TIMER) • 7-441
with SET (TRACEBACK)• 7-443
with SPAWN • 7-467

with CREATE WINDOW• 7-73
with CREATE_WINDOW • 7-73
with EDIT• 7-107
with HELP_ TEXT• 7-216
with QUIT• 7-278
with SET (AUTO_REPEAT) • 7-332
with SET (BELL)• 7-334
with SET (COLUMN_MOVE_ VERTICAL) •

7-336
with SET (CROSS_WINDOW_BOUNDS) •

7-338
with SET (DEBUG) • 7-340

)

C

(

Keyword .
ON (cont'd.)

with SET (INFORMATIONAL)• 7-361
with SET (LINE_NUMBER) • 7-377
with SET (MODIFIABLE)• 7-387
with SET (MOUSE) • 7-390
with SET (NO_WRITE) • 7-392
with SET (PAD)• 7-395
with SET (PAD_OVERSTRUCK_TABS) •

7-397
with SET (SCREEN_UPDATE) • 7-415
with SET (SCROLLING) • 7-422
with SET (SELF _INSERT)• 7-425
with SET (SUCCESS)• 7-434
with SET (TIMER) • 7-441
with SET (TRACEBACK) • 7-443
with SPAWN • 7-467

OUTPUT _FILE • 7-393
OVERSTRIKE • 7-394
PAD• 7-395
PAD_OVERSTRUCK_ TABS• 7-397
PAGE BREAK• 7-273
PAGE_BREAK

with SEARCH • 7-309
with SEARCH_QUIETLY• 7-314

PERMANENT• 7-399
POST _KEY _PROCEDURE • 7-400
PROCEDURES

with EXPAND_NAME • 7-129
PROGRAM• 7-339

with LOOK_UP _KEY• 7-241
PROMPT _AREA• 7-404
REMAIN • 7-295

with SEARCH • 7-309
with SEARCH_QUIETLY• 7-314

returned by CURRENT_DIRECTION • 7-81
returned by READ_KEY • 7-288
REVERSE • 7-81, 7-408

with SEARCH • 7-310
with SEARCH_QUIETLY• 7-315
with SELECT• 7-319
with SET (MESSAGE_ACTION_TYPE) •

7-384
with SET (PROMPT _AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO)• 7-447

RIGHT _MARGIN • 7-409
RIGHT_MARGIN_ACTION • 7-411
SCREEN_UPDATE • 7-415
SCROLLING • 7-422
SELF _INSERT• 7-425
SHIFT_KEY • 7-427

Keyword (cont'd.)
SPECIAL_GRAPHICS

with SET (STATUS_LINE) • 7-431
STATUS_LINE • 7-431
SUCCESS• 7-434
SYSTEM• 7-435
TEXT• 7-438
TIMER• 7-441
TRACEBACK• 7-443
TRIM

with EDIT• 7-107
TRIM_LEADING

with EDIT• 7-107
TRIM_ TRAILING

with EDIT• 7-107
TYPE

with FILE_PARSE • 7-135
with FILE_SEARCH • 7-138

UNANCHOR • 7-481 to 7-482
with SEARCH_QUIETLY • 7-314

UNDEFINED_KEY • 7-445
UNDERLINE

with SELECT• 7-319
with SET (PROMPT _AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO)• 7-447

UPPER
with CHANGE_CASE • 7-43
with EDIT• 7-107

VARIABLES
with EXPAND_NAME • 7-129

VERSION
with FILE_PARSE • 7-135
with FILE_SEARCH • 7-138

VIDEO• 7-447
WIDTH • 7-453
with SET• 7-327 to 7-328
with SHOW• 7-457 to 7-458

Keyword constants • 3-5
KEYWORD data type• 2-5 to 2-7
KEYWORDS keyword

with EXPAND_NAME • 7-129
KEY _MAP keyword

with LOOK_UP _KEY• 7-241
KEY _MAP _LIST keyword• 7-371

Index

"Key_map_list" string constant parameter to GET_
INFO• 7-166

KEY NAME built-in procedure• 7-225 to 7-228
"Key-=_type" string constant parameter to GET _INFO•

7-156

• _ _. ___ ,. .. ft

Index

L
"last" string parameter to ADD_KEY_MAP • 7-16
"Last" string constant parameter to GET INFO•

7-160, 7-161, 7-163, 7-174, 7-176: 7-177,
7-183, 7-206

LAST_KEY built-in procedure• 7-229
LEARN data type• 2-7 to 2-8
LEARN_ABORT built-in procedure • 7-230
LEARN_BEGIN built-in procedure• 7-231 to 7-233
LEARN_END built-in procedure• 7-231 to 7-233
LEFT_MARGIN keyword• 7-373
"Left_margin" string constant parameter to GET

INFO• 7-166, 7-178 -
LEFT_MARGIN_ACTION keyword• 7-375
"Left_margin_action" string constant parameter to

GET_INFO • 7-166
LENGTH built-in procedure• 7-234 to 7-235
Lexical element• 3-1
Line break

in data from global selection• 7-287
LINE command• 4-17
Line mode editing • C-3
Line-mode editor

example • A-1
Line numbers

in programs• 4-17
"Line" string constant parameter to GET INFO•

7-166 -
Line terminator

deleting• 7-27
LINE_BEGIN keyword• 7-236 to 7-237

with POSITION• 7-274
with SEARCH • 7-309
with SEARCH_QUIETLY • 7-314

"Line_editing" string constant parameter to GET
INFO• 7-190 -

LINE_END keyword• 7-238
· with POSITION• 7-275

with SEARCH • 7-309
with SEARCH_QUIETLY • 7-314

LINE_NUMBER keyword• 7-377
"Line_number" string constant parameter to GET

INFO• 7-172, 7-196 . -
List

specifying as a resource value• 4-12
$LOCAL$INI$ buffer• 4-21
LOCAL declaration • 3-33 to 3-34
"Local" string constant parameter to GET INFO.

·7-172 -

lndex-14

Local variable• ~. 3-19
LOCATE_MOUSE built-in procedure• 7-239 to

7-240
Logical names

EVE$INIT • 4-30
TPU$COMMAND • 5-6
TPU$DEBUG • 5-8
TPU$SECTION • 5-15

Logical operators
AND operator• 3-7
NOT operator• 3-7
OR operator• 3-7
XOR operator• 3-7

Longword
to convert with FAO • 7-132
to convert with MESSAGE• 7-255
to convert with MESSAGE_ TEXT• 7-258

LOOKUP _KEY built-in procedure• 7-241 to 7-244
LOOP statement• 3-21 to 3-22
LOWER keyword

with CHANGE_CASE • 7--43
with EDIT• 7-107

"Low_index" string constant parameter to GET
INFO• 7-161 -

M
Main window widget• 4-15
MANAGE CHILDREN routine

See MANAGE_WIDGET built-in procedure
MANAGE CHILD routine

See MANAGE_WIDGET builhin procedure
MANAGE_WIDGET built-in procedure• 7-245

example of use• B--4 to B-11
MAP built-in procedure• 7-246 to 7-247
"Map_count" string constant parameter to GET

INFO• 7-166 -
Margin

default• 7-373, 7-379, 7--409
setting • 7-373, 7-379, 7--409

margin action
setting • 7-375

Margin action
default• 7-375

Margin Action
default• 7--411
setting• 7--411

MARGINS keyword• 7-379
MARK built-in procedure • 7-248 to 7-250
MARK data type • 2-8 to 2-11

\

C

Marker
deleting• 2-10, 7-104
padding effects• 2-1 O
video attributes• 2-8, 7-248

MATCH built-in procedure• 7-251 to 7-252
"Maximum_parameters" string constant parameter to

GET_INFO • 7-182
MAX_LINES keyword• 7-381
"Max_lines" string constant parameter to GET

INFO• 7-166 -
Measurement

converting units of• 7-48
Memory

error resulting from exceeding• 1-8, 5-1
Menu bar widget • 4-15
Message buffer • 4-17
MESSAGE built-in procedure• 7-253 to 7-256
Messages • D-1 to D-9
Message window

in EVE• 4-15
MESSAGE_ACTION_LEVEL keyword• 7-382
"Message_action_level" string constant parameter to

GET_INFO• 7-196
MESSAGE_ACTION_ TYPE keyword• 7-384
MESSAGE_BUFFER identifier• 7-253
MESSAGE_BUFFER variable• 4-28
MESSAGE_FLAGS keyword • 7-385
"Message_flags" string constant parameter to GET

INFO• 7-196 -
MESSAGE_ TEXT built-in procedure• 7-257 to

7-259
"Middle_ot_tab" string constant parameter to GET

INFO• 7-211 -
Minimal interface example • 4-25
"Minimum_parameters" string constant parameter to

GET_INFO• 7-182
"Mode" string constant parameter to GET INFO•

7-166 -
MODIFIABLE keyword• 7-387
"Modifiable" string constant parameter to GET

INFO• 7-166 -
"Modified" string constant parameter to GET_INFO •

7-166
/MODIFYqualifier• 5-11
"Modify" string constant parameter to GET INFO•

7-170 -
MODIFY _RANGE built-in procedure • 7-260
Module declaration

syntax • 3-14
MODULE statement• 3-14 to 3-15
Modules used with EVE$BUILD • G-2

Index

Mouse

determining support for• 7-390
determining where drag operation originated •

7-180
Mouse button

fetching information about• 7-180
MOUSE keyword• 7-390

with POSITION• 7-275, 7-276
Mouse pad

implementing • 8-4
"Mouse" string constant parameter to GET tNFO •

7-190 . -

MOVE_HORIZONTAL built-in procedure• 7-265 to
7-266

MOVE_ TEXT built-in procedure• 7-267 to· 7-268
MOVE_ VERTICAL built-in procedure • 7-269 to

7-270
Multinational Character Set

See DEC Multinational Character Set
Multiple buffers• 7-57

N
Name

widget
case sensitivity of• 7-70

NAME keyword
with FILE_PARSE • 7-135
with FILE_SEARCH • 7-138

Names for procedures• 3-16
"Name" string constant parameter to GET INFO•

7-158, 7-166, 7-175 -
"Next" string constant parameter to GET INFO•

7-160, 7-162, 7-163, 7-173, 7-174~7-176,
1-1n, 7-183, 7-206, 1-211

"Next_marker" string constant parameter to GET_
INFO• 7-167

"Next_range" string constant parameter to GET
INFO• 7-167 -

NODE keyword
with FILE_PARSE • 7-134
with FILE_SEARCH • 7-137

/NODISPLAY qualifier
effect on LAST_KEY • 7-229
restrictions • 5-9
to disable screen manager • 6-1
with EVE$BUILD • G-10

"Nomodify" string constant parameter to GET_INFO •
7-170

NONE keyword
with MARK• 7-248

Index

NONE keyword (cont'd.)

with SELECT• 7-319
with SET (MESSAGE_ACTION_ TYPE) • 7-384
with SET (PROMPT_AREA) • 7-404
with SET {STATUS_LINE) • 7-431
with SET {VIDEO)• 7-447

NOTANY built-in procedure• 7-271 to 7-272
NOT operator• 3-7
NO_EXACT keyword

with LEARN_BEGIN • 7-231
with SEARCH• 7-310
with SEARCH_QUIETLY • 7-315

NO TRANSLATE keyword• 7-438
"No-=_video" string constant parameter to GET_INFO •

7-211
"No_video_status" string constant parameter to

GET_INFO • 7-211
"No_write" GET_INFO request_string • 7-167
NO_WRITE keyword• 7-392
Null parameters• 3-17

0
OFF keyword

with CREATE_WINDOW • 7-73
with EDIT• 7-108
with HELP _TEXT• 7-216
with QUIT• 7-278
with SET {AUTO_REPEAT) • 7-332
with SET (BELL) • 7-334
with SET (COLUMN_MOVE_ VERTICAL) • 7-336
with SET {CROSS_WINDOW_BOUNDS) • 7-338
with SET {DEBUG)• 7-340, 7-341
with SET {INFORMATIONAL)• 7-361
with SET {LINE_NUMBER) • 7-377
with SET {MODIFIABLE)• 7-387
with SET (MOUSE) • 7-390
with SET (NO_WRITE) • 7-392
with SET (PAD) • 7-395
with SET (PAD_OVERSTRUCK_TABS) • 7-397
with SET (SCREEN_UPDATE) • 7-415
with SET (SCROLLING) • 7-422
with SET (SELF _INSERT)• 7-425
with SET (SUCCESS) • 7-434
with SET (TIMER) • 7-441
with SET (TRACEBACK) • 7-443
with SPAWN • 7-467

"Offset" string constant parameter to GET_INFO •
7-167, 7-179

lndex-16

"Offset_column" string constant parameter to GET_
INFO• 7-167, 7-179

ON keyword
with CREATE_WINDOW • 7-73
with EDIT• 7-107
withHELP_TEXT• 7-216
with QUIT• 7-278
with SET (AUTO_REPEAT) • 7-332
with SET (BELL) • 7-334
with SET (COLUMN_MOVE_ VERTICAL) • 7-336
with SET (CROSS_WINDOW_BOUNDS) • 7-338
with SET (DEBUG) • 7-340
with SET (INFORMATIONAL)• 7-361
with SET (LINE_NUMBER) • 7-377
with SET {MODIFIABLE) • 7-387
with SET (MOUSE) • 7-390
with SET (NO_WRITE) • 7-392
with SET (PAD)• 7-395
with SET (PAD_OVERSTRUCK_ TABS) • 7-397
with SET (SCREEN_UPDATE) • 7-415
with SET (SCROLLING) • 7-422

·· with SET (SELF _INSERT) • 7-425
with SET (SUCCESS)• 7-434
with SET (TIMER) • 7-441
with SET (TRACEBACK) • 7-443
with SPAWN• 7-467-

ON_ERROR statement• 3-24 to 3-31
location • 3-24

ON_ERROR Statement • 3-20
Operator

partial pattern assgignment (@) • 2-16
pattern alternation (I) • 2-16
pattern concatenation (+) • 2-15
pattern linking {&) • 2-15
relational• 2-17

Operators • 3-6 to 3-8
precedence • 3-7

"Original_bottom" string constant parameter to GET_
INFO• 7-211

"Original_length" string constant parameter to GET_
INFO• 7-211

"Original_top" string constant parameter to GET_
INFO• 7-211

"Original_width" string constant parameter to GET_
INFO• 7-191

OR operator • 3-7
Output file • 5-12
/OUTPUT qualifier • 5-12
"Output" string constant parameter to GET_INFO •

7-170
OUTPUT _FILE keyword • 7-393

/

')

(

"Output_file" string constant parameter to GET_
INFO• 7-167, 7-171

OUTRANGE case constant• 3-24
OVERSTRIKE keyword • 7-394
Overstrike mode

COPY_TEXT• 7-51
MOVE_TEXT • 7-267

Ownership
global selection

determining• 7-190
losing• 7-193
requesting• 7-349

input focus .
determining• 7-190
losing• 7-193
requesting• 7-362

p
Padding effects• 6-11 to 6-12

version differences• 7-397
with APPEND_LINE • 7-27
with ATTACH • 7-34
with COPY_ TEXT• 7-51
with CURRENT_CHARACTER • 7-77
with CURRENT_LINE • 7-82
with CURRENT_OFFSET• 7-84
with ERASE_CHARACTER • 7-114
with ERASE_LINE • 7-116
with MARK• 7-249
with MOVE_HORIZONTAL • 7-265
with MOVE_ TEXT• 7-268
with MOVE_ VERTICAL• 7-269
with READ_FILE • 7-284
with SELECT• 7-320
with SELECT_RANGE • 7-323
with SET (PAD) • 7-395
with SPAWN • 7-468
with SPLIT_LINE • 7-470

PAD keyword• 7-395
"Pad" string constant parameter to GET_INFO •

7-211
PAD_OVERSTRUCK_ TABS keyword• 7-397
"Pad_overstruck_tabs" string constant parameter to

GET_INFO • 7-196
. PAGE_BREAK keyword • 7-273

with SEARCH• 7-309
with SEARCH_OUIETLY • 7-314

Parameters
for procedures• 3-16 to 3-18

Index

"Parameter" string constant parameter to GET_
INFO• 7-173

Parentheses
in expressions• 3-7

Parser
maximum stack depth of• 4-2

Parsers with EVE$BUILD • G-3 to G-4
Partial pattern assignment ~@) • 2-16
Pattern

alternation (I) • 2-16
anchoring• 7-23
built-in procedures• 2-12
compilation • 2-17
concatenation (+) • 2-15
execution• 2-17
expression• 3-10
linking(&)• 2-15
operators• 2-14
searching• 2-11

Pattern assignment
partial (@) • 2-16

PATTERN data type• 2-11 to 2-19
Pattern matching

built-in procedures
ANCHOR • 7-23
ANY• 7-25
ARB• 7-29
LINE_BEGIN • 7-236
LINE_END • 7-238
MATCH• 7-251
NOTANY • 7-271
PAGE_BREAK • 7-273
REMAIN • 7-295
SCAN• 7-302
SCANL • 7-304
SPAN• 7-462
SPANL • 7-464
UNANCHOR • 7-481

PERMANENT keyword• 7-399
"Permanent" string constant parameter to GET_

INFO• 7-167
"Pid" string constant parameter to GET_INFO •

7-184
Pointer position• 7-239
POSITION built-in procedure• 7-274 to 7-277
· example of use • B-25 to 8-28
POST _KEY _PROCEDURE keyword • 7-400
"Post_key_procedure" string constant parameter to

GET_INFO • 7-194
Predefined constants

names• 3-12

lndex-17

Index

"Previous" string constant parameter to GET_INFO •
7-160, 7-162, 7-163, 7-173, 7-174, 7-176,
7-177, 7-183, 7-206, 7-211

PRE_KEY _PROCEDURE keyword • 7-402
"Pre_key__procedure" string constant parameter to

GET_INFO • 7-194
Procedural error handler• 3-26 to 3-28
Procedure

executing • 4-20
name• 3-16
parameter• 3-16 to 3-18
recommended naming conventions • 4-30
recommended size for • 4-2
recursive• 3-19
returning result• 2-8, 3-18, 7-97
using LEARN_ABORT in• 7-230

Procedures
samples using EVE• B-1 to 8-33

PROCEDURES keyword
with EXPAND_NAME • 7-129

PROCEDURE statement• 3-15 to 3-20
"Procedure" string constant parameter to GET_

INFO• 7-173
Process

deleting• 7-104
multiple

built-in procedures
ATTACH • 7-34
CREATE_PROCESS • 7-64
SEND• 7-324
SEND_EOF • 7-326
SPAWN • 7-467

PROCESS data type• 2-19 to 2-20
Program

add to section file • 4-24
calling VAXTPU from• 4-1, 7-40
compiling• 4-17 to 4-18
complex • 4-2
debugging • 4-32 to 4-36
deleting• 7-104
executing• 4-18 to 4-20
interrupting • 4-19
order• 4-3
simple• 4-2
syntax• 4-3

example • 4-4
writing• 4-1 to 4-13

PROGRAM data type • 2-20
Program execution

built-in procedures
COMPILE• 7-45
SAVE• 7-299

lndex-18

PROGRAM keyword• 7-339
with LOOK_UP _KEY• 7-241

PROMPT_AREA
video attributes• 7-404

PROMPT_AREA keyword• 7-404
"Prompt_length" string constant parameter to GET_

INFO• 7-191
"Prompt_row" string constant parameter to GET_

INFO• 7-191

Q
Qualifier, command

See EDIT/TPU command qualifiers
QUIT built-in procedure• 7-278 to 7-279

R
Range

converting contents of to string format using STR •
7-472

deleting• 2-21, 7-66, 7-104
erasing• 2-21, 7-66, 7-112
moving delimiters of• 7-260
video attributes • 2-21, 7-66

RANGE data type • 2-20 to 2-21
Read request

fetching• 7-189
Read routine

fetching• 7-168, 7-192
specifying• 7-354

READ_CHAR built-in procedure• 7-280 to 7-281
incompatibility with /NODISPLAY qualifier• 5-9

READ_CLIPBOARD built-in procedure• 7-282
READ_FILE built-in procedure• 7-284 to 7-285
READ_GLOBAL_SELECT built-in procedure• 7-286

example of use • B-28 to 8-30, 8-a-30 to B-32
READ_KEY built-in procedure• 7-288 to 7-289

incompatibility with /NODISPLAY qualifier• 5-9
READ_LINE built-in procedure• 7-290 to 7-292
/READ_ONLY qualifier• 5-13
"Read_only" string constant parameter to GET_

INFO• 7-171
Record attribute • F-1
Record deleting • 6-5
Record format • F-1
Record insertion • 6-5

(_

"Record_count" string constant parameter to GET_
INFO• 7-168

"Record_size" string constant parameter to GET_
INFO• 7-168

"Recover" GET _INFO request_string • 7-171
/RECOVER qualifier• 5-11, 5-14
Recursive procedure• 3-19
REFRESH built-in procedure• 6-10, 7-293 to

7-294
compared with UPDATE (ALL) • 7-489

Relational expression • 3-1 O
Relational operators • 2-17
REMAIN keyword• 7-295

with SEARCH• 7-309
with SEARCH_QUIETLY • 7-314

Removal of key map
built-in procedures

REMOVE_KEY _MAP • 7-296
Removal of window• 2-27
REMOVE_KEY _MAP built-in procedure• 7-296 to

7-297
Repetitive statements • 3-21 to 3-22
Reserved word

built-in procedures• 3-12
keywords • 3-12
language elements• 3-13 to 3-14
predefined constants • 3-12

Resource
supported data types for • 4-12

Restoring terminal width
example• A-5

Restriction
VAXTPU

virtual address space• 1-8, 5-1
Restrictions

for subprocess• 2-19
RETURN statement• 3-25, 3-31 to 3-33, 7-298
REVERSE keyword• 7-81, 7-408

with MARK• 7-248
with SEARCH • 7-310
with SEARCH_QUIETLY • 7-315
with SELECT• 7-319
with SET (MESSAGE_ACTION_ TYPE) • 7-384
with SET (PROMPT_AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO)• 7-447

"Reverse_status" string constant parameter to GET_
INFO• 7-211

"Reverse_video" string constant parameter to GET_
INFO• 7-211

RIGHT _MARGIN keyword• 7-409

Index

"Right_margin" string constant parameter to GET_
INFO• 7-168, 7-179

RIGHT_MARGIN_ACTION keyword• 7-411
"Right_margin_action" string constant parameter to

GET_INFO • 7-168
Running VAXTPU from subprocess

example • A-5

s
Sample procedures using DECwindows VAXTPU

built-in procedures• B-1 to B-33
Sample VAXTPU procedures

debugon• 7-342
delete_all_definitions • 7-484
init_help_key_map_list • 7-63
init_sample_key_map • 7-61
line_number_example • 7-378
mail_sub • 7-325
my_call_user • 7-42
remove_comments • 7-295
SAVE• 7-301
shift_key_handler • 7-244
show_key_maps_in_list • 7-155
show_key_map_lists • 7..:154
show_self_insert • 7-155
strip_blanks • 7-119, 7-121, 7-123
strip_eight • 7-479
toggle_self_insert • 7-426
traceback_example • 7-444
user_change_mode • 7-99
user_change_windows • 7-2n
user_clear_key • 7-484
user_collect_rnos • 7-139
user_dcl_process • 7-65
user_define_edtkey • 7-227
user_define_key • 7-99

· user_delete • 7-85
user_delete_char • 7-28
user_delete_extra • 7-105
user_delete_key • 7-115
user_display_current_character • 7-78
user_display_help • 7-22
user_display_key_map_list • 7-154
user_display_position • 7-474
user_do • 7-126
user_double_parens • 7-252
user_edit_string • 7-109
user_emphasize_message • 7-461
user_end_ot_line • 7-238

lndex-19

Index

Sample VAXTPU procedures (cont'd.)

user_erase_message_buffer • 7-298
user_erase_to_eob • 7-67
user_error_messsage • 7-133
user_fao_conversion •. 7-133
user)ind_chap • 7-312, 7-317
user __ find_mark_twain • 7-466
user_find_parens • 7-303
user_find__procedure • 7-26
user_find_string • 7-298
user_free-cursor_up • 7-94
user_free_cursor_down • 7-94
user_free_cursor_left • 7-91
user_free_cursor_right • 7-91
user_get_info • 7-154
user_get_key_info • 7-243
user_go_down • 7-87
user_go_up • 7-87
user_help • 7-217
user_help_buffer • 7-59
user_help_on_key • 7-289
user_include_file • 7-37
user_initial_cap • 7-477
user_is_character• 7-219
user_lowercase_line • 7-44
user_make_window • 7-75
user_mark • 7~~35
user:....message_window • 7-247
user_move_8_Iines • 7-270
user_move_by_lines • 7-266
user_move_text • 7-268
user_move_to_mouse • 7-240
user_next__page • 7-273
user_next_screen • 7-89
user_not_quite_working • 7-38
user_one_window_to_two • 7-488
user_on_eol • 7-256
user__paste • 7-111, 7-250
user__print • 7-440
user__prompt_number • 7-221, 7-292
user_quick__parse • 7-131
user_quit • 7-279
user_quote • 7-281
user_remove_blank_lines • 7-466
user_remove_comments • 7-24
user_remove_crlfs • 7-113
user_remove_dsrlines • 7-237
user_remove_non_numbers • 7-305
user_remove_numbers • 7-465
user_remove_odd_characters • 7-303
user_remove__paren_text • 7-482

lndex-20

Sample VAXTPU procedures (cont'd.)

user_repaint • 7-294
user_replace__prefix • 7-30
user_ring_bell • 7-335
user_runoff_line • 7-83
user_scroll_buffer • 7-308
user_search_for_nonalpha • 7-272
user_search_range • 7-313, 7-318
user_select • 7-323
user_show_direction • 7-81
user_show_first_line • 7-490
user_simple,_insert • 7-52
user_slow_down_arrow • 7-333
user_slow_up_arrow • 7-333
user_split_line • 7-80, 7-471
user_startjournal • 7-136
user_start_select • 7-321
user_tab • 7-32
user_test_key • 7-33
user_toggle_direction • 7-76
user_top • 7-37
user_tpu • 7-127
user_trans_text • 7-479
user_two_window • 7-285
user_upcase_item • 7-44
user_what_is_comment • 7-243
user_write_file • 7-496

SAVE built-in procedure• 7-299 to 7-301
SCAN built-in procedure • 7-302 to 7-303
SCANL built-in procedure• 7-304 to 7-305
Screen

enabling resizing of• 7-344
specifying size of• 7-413
updating

controlling support for• 7-415
SCREEN keyword

using with widget-related built-in procedures •
4-15

Screen layout
built-in procedures

ADJUST_WINDOW • 7-18
CREATE_WINDOW • 7-73
MAP• 7-246
REFRESH • 7-293
SHIFT• 7-455
UNMAP • 7-487
UPDATE • 7-489

Screen manager• 2-27, 6-1 to 6-12
automatic update• 6-7
line changes • 6-6
partial update • 6-8

°'

_)

0

u

Screen manager (cont'd.)

specific window update • 6-8
suppressing updates • 6-6
update all windows • 6-9
update order• 6-7
updates • 6-6
update with ADJUST_WINDOW • 7-21
update with CURSOR_HORIZONTAL • 7-90
update with CURSOR_VERTICAL • 7-93

Screen object
in VAXTPU • 4-14

Screen update

See Screen manager
SCREEN_UPDATE keyword• 7-415
"Screen_update" string constant parameter to GET_

INFO• 7-192
Scroll bar

disabling• 7-417
enabling• 7-417

Scroll bar slider
adjusting automatically• 7-212

Scroll bar widget
example of fetching• B-19 to B-22

SCROLL built-in procedure• 6-10, 7-306 to 7-308
Scrolling

effect of on cursor position • 7-306
effect of on editing point• 7-306
with records deleted • 6-5
with records inserted • 6-5

SCROLLING keyword • 7-422
"Scroll" string constant parameter to GET_INFO •

7-192, 7-212
"Scroll_amount" string constant parameter to GET_

INFO• 7-212
"Scroll_bottom" string constant parameter to GET_

INFO• 7-212
"Scroll_top" string constant parameter to GET_

·· INFO• 7...:212
Search

anchored• 7-23
anchoring a pattern• 2-18
for pattern • 2-11
unaL1choring pattern elements• 2-19

SEARCH built-in procedure• 7-309 to 7-313
SEARCH_QUIETLY built-in procedure• 7-314 to

7-318
Section files• 5-15

created with EVE$BUILD • G-10 to G-11
creating • 4-22
debugging • 4-33
default • 4-20
definition• 1-10

Section files (cor,t'd.)

extending • 4-23
processing • 4-23, 4-24
recommended conventions • 4-27

/SECTION qualifier• 4-24, ~15

Index

"Section" string constant parameter to GET_INFO•
7-171 '

"Section_file" string constant parameter to GET_
INFO• 7-171, 7-197 ·

SELECT built-in procedure • '7-319 to 7-321
Selection• 4-15

dynamic • 4-16
found range • 4-17
static • 4-16
using MODIFY _RANGE built-in to alter• 7-260

Select range
in EVE• 4-15

SELECT_RANGE built-in procedure• 7-322 to
7-323

SELF INSERT keyword• 7-425
"Self insert" string constant parameter to GET_

INFO• 7-194
SEND built-in procedure• 7-324 to 7-325
SEND EOF built-in procedure• 7-326
SET (ACTIVE_AREA) built-in procedure• 7-329
SET (AUTO_REPEAT) built-in ·procedure• 7-332 to

7-333
SET (BELL) built-in procedure• .7-334 to 7-335
SET (COLUMN_MOVE_ VERTICAL) built-in

procedure• 7-336 to 7-337
SET (CROSS_WINDOW_BOUNDS) built-in

procedure • 7-338
SET (DEBUG) built-in procedure• 7-339 to 7-342
SET (DRM_HIERARCHY) built-in procedure• 7-343
SET (ENABLE_RESIZE) built-in procedure• 7-344
SET (EOB_ TEXT) built-in procedure• 7-346
SET (FACILITY _NAME) built-in procedure• 7-347
SET (FORWARD) built-in procedure• 7-348
SET (GLOBAL_SELE(?T) built-in procedure• 7-349
SET (GLOBAL_SELECT_GRAB) built-in procedure•

7.:....351
SET (GLOBAL_SELECT_READ) built-in procedure•

7-354
SET (GLOBAL_SELECT_TIME) built-in procedure•

7-356
SET (GLOBAL_SELECT_UNGRAB) built-in

· procedure • 7-358
SET (ICON_NAME) built-in procedure• 7-360
SET (INFORMATIONAL) built-in procedure• 7-361
SET (INPUT _FOCUS) built-in procedure• 7-362
SET (INPUT_FOCUS_GRAB) built-in procedure•

t-364

lndex-21

Index

SET (INPUT_FOCUS_UI\IGRAB) built-in procedure•
7-366

SET (INSERD built-in procedure • 7-368
SET (JOURNALING) bujlt-in procedure• 7-369 to

7-370 .• .
SET (KEY _MAP _LIST) built-i.n procedure • 7-371 to

7-372
SET (LEFT_MARGIN) built-in procedure• 7-373 to

7-374
SET (LEFT_MARGIN_ACTION) built-in procedure•

7-375 to 7-376
SET (LINE_NUMBER) built-in procedure• 7-377 to

·7-378
SET (MARGINS) built~in procedure • 7-379 to

7-380
SET (MAX_LINES) built-in procedure• 7-381
SET (MESSAGE_ACTION_LEVEL) built-in procedure

• 7-382 to 7-383
SET (MESSAGE_ACTION __ TYPE) built-in procedure•

7-384
SET (MESSAGE_FLAGS) built-in procedure • 7-385

to 7-386 ·
SET (MODIFIABLE) built-in procedure• 7-387 to

7-388
SET (MODIFIED) built-in procedure• 7-389
SET (MOUSE) built-in procedure• 7-390 to 7-391
SET (NO_WRITE) built-in procedure• 7-392
SET (OUTPUT_FILE) built-in .procedure• 7-393
SET (OVERSTRIKE) built-in procedure• 7-394
SET (PAD) built-in procedure• 7-395 to 7-396
SET (PAD_OVEASTRUCK_TABS) built-in procedure

• 7-397 to 7-398
SET (PERMANENT) built-in procedure• 7-399
SET (POST _KEY _PROCEDURE) built-in procedure•

7-400 to 7-401
SET (PRE_KEY_PROCEDURE) built-in procedure•

7-402 to 7-403
SET (PROMPT_AREA) built-in procedure• 7-404 to

7-405
SET (RESIZE_ACTION) built-in procedure• 7-406
SET (REVERSE) built-in procedure• 7-408
SET (RIGHT_MARGIN) built-in procedure• 7-409

to 7-410
SET (RIGHT_MARGIN_ACTION) built-in procedure•

7-411 to 7-412
SET (SCREEN_LIMITS) built-in procedure• 7-413
SET (SCREEN_UPDATE) built-in procedure• 7-415

to 7-416
SET (SCROLLING) built-in procedure• 7-422 to

7-424. .
SET (SCROLL_BAR) built-in procedure• 7-417

example of;use • B-22 to 8-25

lndex-22

SET (SCROLL_BAR_AUTO_THUMB) built-in
procedure• 7-420

example of use • B-22 to 8-25
SET (SELF _INSERT) built-in procedure• 7-425 to

7-426
SET (SHIFT_KEY) built-in procedure• 7-427 to

7-428
SET (SPECIAL_ERROR_SYMBOL) .built-in

procedure• 7-429 to 7-430
SET (STATUS_LINE) built-in procedure• 7-431 to

7-433
SET (SUCCESS) built-in procedure• 7-434
SET (SYSTEM) built-in procedure• 7-435
SET (TAB_STOPS) built-in procedure• 7-436 to

7-437
SET (TEXT) built-in procedure• 7-438 to 7-440
SET (TIMER) built-in procedure • 7-441 to 7-442
SET (TRACEBACK) built-in procedure• 7-443 to

7-444
SET (UNDEFINED_KEY) built-in procedure• 7--445

to 7-446
SET (VIDEO) built-in procedure• 7-447 to 7-448
SET (WIDGET) built-in procedure• 7-449

example of use • B-22 to 8-25, B-25 to B-28
using to specify resource values• 4-12

SET (WIDGET_CALLBACK) built-in procedure•
7-451

example of use • B-22 to 8-25
using to specify callback routine • 4-9

SET (WIDTH) built-in procedure• 7-453 to 7-454
SET built-in procedure • 7-327 to 7-328

WIDGET• 4-10
SHIFT built-in procedure• 7-455 to 7-456
SHIFT key

restriction on defining in EVE• 7-427
"Shift_amount" string constant parameter to GET_

INFO• 7-212
SHIFT_KEY keyword• 7-427
"Shift_key" string constant parameter to GET _INFO •

7-194, 7-197
SHOW (KEYWORDS) built-in procedure • 2-5
SHOW built~in procedure• 7-457 to 7-459
SHOW DEFAULTS BUFFER command• 4-31
Showing version number • 4-2
SHOW_BUFFER identifier~ 7-458
SHOW_BUFFER variable• 4-28
SLEEP built-in procedure• 7-460 to 7-461
Slider• 7-212

example of fetching• B-19 to B-22
Source files for EVE• 1-10
SPAN built-in procedure• 7-462 to 7-463
SPANL built-in procedure• 7-464 to 7-466

_ _)

r~ ..
_)

SPAWN built-in procedure• 7-467 to 7-469
SPECIAL_GRAPHICS keyword

with SET (STATUS_LINE) • 7-431
"Special_graphics_status" string constant parameter

to GET_INFO• 7-212
SPLIT_LINE built-in procedure• 7-470 to 7-471
Startup files• 1-10, 4-20 to 4-32

command file• 1-10
definition• 1-10
initialization file• 1-1 O
order of execution • 4-21
section file• 1-10

"Start_character" string constant parameter to GET
INFO• 7-171 -

/START_POSITION qualifier• 5-16
"Start_record" string constant parameter to GET_

INFO• 7-171
Statement

separator for • 4-3
Static selection • 4-16
Status line

default information • 7-73
fields added with EVE$BUILD • G-7 to G-8
video attributes• 7-431

STATUS_LINE keyword• 7-431
"Status_line" string constant parameter to GET

INFO• 7-213 -
"Status_video" string constant parameter to GET_

INFO• 7-213
STR built-in procedure• 7-472 to 7-475
String

concatenating • 3-4
converting contents of buffer to using STR •

7-472
converting contents of range to using STR •

7-472
to insert with FAO • 7-132
to insert with MESSAGE• 7-255
to insert with MESSAGE_TEXT • 7-258

String constants • 3-5
STRING data type • 2-22 to 2-23
Subprocess

at DCL level• 7-64
built-in procedures

ATTACH • 7-34
CREATE_PROCESS • 7-64
SEND • 7-324
SEND_EOF • 7-326

built-in procedures for defining
SPAWN • 7-467

deleting• 7-64
restrictions • 2-19

Subprocess (cont'd.)

running VAXTPU fr6m ~ · A-5 ·.
within VAXTPU • 7-64 ·' · . · .

Index

SUBSTR built-in procedure• t-476 to 7-477
SUCCESS keyword • 7--434
"Success" str!ng constant pararnet~r to GET_INFO •

7--197 · :· '' ', ',. ,.,

Supported terminals• 1-8 :. c, :· ·

Symbols • 3-3 to 3-4'
Synonyms for commands• 'G-5 to ~7
Syntax • 4-3 ·
SYSTEM keyword• 7-435
"System" string constant pa:r°arrieter to GET_INFO•

7-168 .

T
TAB_STOPS keyword

used with SET• 7-43.6
"Tab_stops" string constant pa~ameter to GET

INFO• 7-168 . -
Terminal

behavior• ~1
DEC_CRT2 • ~~ ,

• restoring width • A::._5 __ , , . 1
setting• .~1 to. C.-:3 .

AUTO_REPEAT • ~2 ..
auxiliary keypad • ~2 .•
132 columns • C-2 .
control sequence introducer• ~2
CSI• ~2
cursor• ~2 .
DEC_CRT• ~2
edit mode • ~2 , :.: :-
eightbit characters • ~2
scrolling • ~3 , ::
video attributes • C-3 . ·
wrap• C-4 ·· - ·

support• ~1 ;·
width

restoring • A-5
Termi,nal emulator• 6-4 ··.
Terminal support• 1-8 ,
TEXT keyword• 7-438 ' :, :
Text manipulation

built-in procedures 1i'

APPEND_LINE • 7-2f?'; . ~' ·:.
BEGINNING OF• 7::.35 .. '·,·
CHANGE_CASE• 743:,
COPY_ TEXT•· 7L51

lndex-23

Index

Text manipulation
built-in procedures (cont'd.)

CREATE __ BUFFER • 7-56
CREATE_RANGE • 7-66
EDIT• 7-107
END_OF • 7-110
EHASE • 7-112
ERASE_CHARACTER• 7-114
ERASE ___ LINE • 7-116
FILE_PARSE • 7-134 ..
FILE_SEARCH • 7-137
FILL• 7-140 0

i·1· 1 ·.

MOVE_TEXT • 7-267
READ_FILE • 7-284
SEARCH• 7-309
SEARCH_OUIETLY • 7-314
SELECT• 7-319
SELECT _RANGE • 7-322
SPLIT_LINE • 7-470

: TRANSLATE• 7-478
WRITE_FILE • 7-494

"Text'1; string conHtant parameter to GEr:_1NFO •
7-213

lime.
inserting with FAQ• 7-132
inserting with MESSAGE_• 7-255_.
inserting with MESSAGE_ TEXT• 7-258

"Timed_message" string constant parameter to GET_
INFO• 7-197

TIMER k~yword • 7-441
Title bar widget • 4-15
TPU$COMMAND logical name• 4-20, 5-6
TPU$DEBUG logical name• 5-8
TPU$1NIT_PROCEDURE procedure• 4-21, 4-27
TPU$LOCAL_INIT procedure• 4-28
TPU$LOCAL_INIT_PROCEDURE procedure• 4-22
TPU$SECTION logical name• 4-20, 4-25, 5-15
TPU$STACKOVER status

correcting • 4-2
TPU$WIDGET_INTEGER_CALLBACK callback

routine• 4-9, 4-1 o
TPU$WIDGET_STRING_CALLBACK callback routine

• 4-9, 4-10
TPU$X_MESSAGE..:_8UFFER variable• 4-28
TPU$X_SHOW_BUFFER variable• 4-28
TPU$X_SHOW_WINDOW variable• 4-28
TPU ccmni'and • 4-18 · : ·
TPU debugger• 4-32 to 4-36"

ATTACH command• 4-35
CANCEL BREAKPOINT conii"nand • 4-35
DEBUGON procedure • 4-34
DEPOSIT command• 4-35

lndex-24

TPU debugger (cont'd.)

DISPLAY SOURCE command• 4-35
EXAMINE command• 4-35
GO command • 4-33, 4-35
HELP command• 4-35
invoking • 4-32
QUIT command• 4-35
SCROLL command • 4-36
SET BREAKPOINT command• 4-33, 4-36
SET WINDOW command • 4-36
Sl-UFT command• 4-36
SHOW BREAKPOINTS command• 4-36
SPAWN command • 4-36
STEP command • 4-34, 4-36
TPU command• 4-36

TRACEBACK keyword • 7-443
"Traceback" string constant parameter to GET_

INFO• 7-197
TRANSLATE built-in procedure• 7-478 to 7-480
TRIM keyword

with EDIT• 7-107
TRIM_LEADING keyword

with EDIT• 7-107
TRIM_ TRAILING keyword

with EDIT• 7-107
"Type" GET_INFO request_string • 7-159
TYPE keyword

with FILE_PARSE • 7-135
with FILE_SEARCH • 7-138

u
UNANCHOR keyword• 7-481 to 7-482

with SEARCH_QUIETLY • 7-314
UNDEFINED_KEY keyword• 7-445
"Undefined_key" string constant parameter to GET_

INFO• 7-194
UNDEFINE_KEY built-in procedure• 7-483 to

7-484
UNDERLINE keyword

with MARK • 7-248
with SELECT• 7-319
with SET (PROMPT_AREA) • 7-404
with SET (STATUS_LINE) • 7-431
with SET (VIDEO)• 7-447

"Underline_status" string constant parameter to
GET _INFO • 7-213

"Underline_video" string constant parameter to GET_
INFO• 7-213

)

(

(

,U
I .

Ungrab routine

global selection
fetching• 7-193
specifying • 7-358

input focus
fetching• 7-193
specifying • 7-366

UNMANAGE_WIDGET built-in procedure• 7-485
UNMAP built-in procedure• 7-487 to 7-488
UNSPECIFIED data type• 2-23
Unsupported terminals • 2-28
UPDATE built-in procedure• 6-9, 7-489 to 7-490

compared with REFRESH• 7-489
"Update" string constant parameter to GET_INFO •

7-197
Updating windows • 2-28
UPPER keyword• 7-107

with CHANGE_CASE • 7-43
User window

in EVE• 4-15
Utility routines

forming the VAXTPU callable interface• 4-1,
7-40

V
Value(s)

assigning to widget resources• 4-9, 4-10, 7--449
Variable

buffer• 2-4
global • 3-4
initializing • 2-23
local • 3-4, 3-19

VARIABLE declaration• 3-34
Variables

recommended naming conventions • 4-30
VARIABLES keyword

with EXPAND_NAME • 7-129
VAXTPU

built-in procedures• 1-2
DECwindows • 1-2
relationship with DECwindows features• 1-2
used with UIL • 1-4

VERSION keyword• 7-135
with FILE_SEARCH • 7-138

Version number• 4-2
"Version" string constant parameter to GET_INFO •

7-197
Video attribute

marker• 2-8, 7-248

Video attribute (cont'd.) ,,

PROMPT_AREA • 7~04
range• 2-21, 7-66 _
SET (VIDEO) built-in ·procedure• 7--447
with STATUS_LINE • 7-431

VIDEO keyword• 7--447 _

Index

"Video" string constant parameter to GET _INFO•
7-179, 7-185, 7-213

Virtual address space ,.
VAXTPU. restriction concerning• 1-8, 5-1

"Visible" string constant parameter to GET_INFO •
7-213

"Visible_bottom" string constant parameter to GET_
INFO• 7-214

"Visible_length" string constant parameter to GET_
INFO• 7-193, 7-214

"Visible_top" string constant parameter to GET_
INFO• 7-214

"Vk100" string constant parameter to GET _INFO•
7-193

"Vt100" string coristant parameter to GET _INFO•
7-193

"Vt200" string constant parameter to GET _INFO•
7-193

"Vt300" string constant parameter to GET_INFO •
7-193

w.
Widget

callback__parameters • 7-198
case sensitivity of name• 7-70
creating• 7-68
defining a class of• 7-101
deleting • . 7-1 04
fetching callback routine for, 7-202 · ·
fetching name of• 7-202 ,,
getting information about• 1~203.
listing of• 4-5 .
main window • +-15
managing• 7-245. . , , ••• -,·, ·
menu bar

in VAXTPU~ .4-15 <,•,,, '\'·
scroll bar• 7-212, 7-4_17· ,
scroll bar slider~.- 7-212 .,..,.i_ ,, -:f.: ·· ';.:

setting resource values of_, •. 7-449· ·
title bar• 4-15 · ,· -.~1c';',:

unrnanaging • 7-485 , , <, i-:: ··:ii , .\
wi~get__iq •, 7:198 ·.. ,_:/ >•i•:;

lndex-25

Index

Widget children

managing • 7-245
unmanaging • 7-485

WIDGET data type• 2-23 to 2-24
Widget resources

data types of • 4-11 to 4-12·
specifying • 4-11

WIDTH keyword• 7-453
"Width" string constant parameter to GET _INFO•

7-193 .
Wildcard characters

in file names• 5-19
Window

adjusting size• 7-18
attributes• 7-74
bottom

example of fetching• B-16 to 8-19
changing position• 7-19
command

in EVE• 4-15
creating • 2-25
current• 2-26, 7-73
definition • 2-24
deleting• 6-4, 7-104
determining bottom of• 7-210
determining boundaries and size of• 7-21 0
determining last column of• 7-212
determining leftmost column of• 7-21 O
determining length of• 7-21 o
determining top of• 7-213
determining widtt-1 of • 7-214
dimensions • 2-24
enlarging• 7-18
function of

in VAXTPU compared with DECwindows •
4-15

getting information • 2-28
key map list

example of fetching • B-19 to B-22
length • 2-25

example of fetching• B-16 to B-19
making current • 6-2
mapping • 2~26, 6-3
message

in EVE• 4-15
reducing~ 7-19
removing • 2-27
scre1enmanagement • 6-2 to 6-4
screen updates• 6-7
scroll bar in• 7-212, 7-417
scroll bar slider in • 7-212

lndex-26·

Window (cont'd.)
size

with terminal display • 6-4
with terminal emulator • 6-4

top
example of fetching • B-16 to B-19

unmapping • 2-27
unsupported terminals • 2-28
updating • 2-28
user

in EVE• 4-15
values • 2-26
width• 2-25

example of fetching • B-19 to B-22
window width • 6-4

WINDOW data type• 2-24 to 2-28.
"Within_range" string constant parameter to GET_

INFO• 7-179
Word separators • 7-140
/WRITE qualifier • 5-16
"Write" string constant parameter to GET_INFO •

7-171
WRITE_CLIPBOARD built-in procedure• 7-491

example of use • B-11 to B-13
WRITE_FILE built-in procedure• 7~94 to 7-496
WRITE_GLOBAL_SELECT built-in procedure•

7-497
example of use • B-32 to B-33

X
XOR operator • 3-7
X resource

fetching value of• 7-145

;-,:,
t ' \ \

:.,, ..

)

