
VMS Version 5.5 New Features
Manual
Order Number: AA—LA97D—TE

November 1991

This manual describes the new features of the VMS Version 5.5
operating system. It also describes new features from past VMS
releases that have not been documented in other printed manuals.

Revision/Update Information: This manual supersedes the VMS
Version 5.4 New Features Manual.

Software Version: VMS Version 5.5

Digital Equipment Corporation
Maynard, Massachusetts

November 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital .Equipment Corporation 1991.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: BI, CDA, CI, DBMS, DDIF,
DECdtm, DECnet, DECwindows, Digital, DSSI, DBMS, HSC, LAT, MASSBUS, MicroVAX, MSCP,
Q-22 bus, RA, Rdb/VMS, TMSCP, UETP, UNIBUS, VAX, VAX Ada, VAXBI, VAXcluster, VAX
DOCUMENT, VAX FORTRAN, VAX MACRO, VAXstation, VAX Volume Shadowing, VMS, and the
DIGITAL logo.

The following are third-party trademarks:

PostScript is a registered trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

ZK5719

This document was prepared using VAX DOCUMENT, Version 1.2

Contents

Preface xvii

Part I Summary of New Features

1 Summary of New VMS Version 5.5 Features

1.1 New Software Features 1-1
1.2 Announcing the New VMS Dependability Handbook 1-4
1.3 Announcing the New BACKUP Utility Guide 1-4

Part II General User Features

2 DCL Commands and Lexical Functions

2.1 DCL Command Enhancements 2-2
INITIALIZE/SIZE 2-3
SET VOLUME/R,EBUILD[=FORCE] 2-4
SET MAGTAPE/R,ETENSION 2-5
CONVERT/DOCUMENT/MESSAGE_FILE=filespec 2-6

2.2 F$MESSAGE Lexical Function 2-7

3 Batch and Print Queuing System

3.1 Changes to SHOW ENTRY 3-1
3.1.1 Change in Format of SHOW ENTRY Display 3-1
3.1.2 SHOW ENTRY Command Accepts Job Names 3-1
3.1.3 New Stalled Job State 3-2
3.2 Change in Format of SHOW QUEUE Display 3-2
3.3 User-Specified Job Retention 3-3
3.3.1 Uses for User-Specified Job Retention 3-3
3.3.2 Job Retention Command Syntax 3-3
3.3.3 How Job Retention Is Determined 3-4
3.3.4 Timed Retention 3-5
3.4 Batch Log Time-Stamps 3-5
3.4.1 New DCL Command: SET PREFIX 3-6
3.4.2 New Item for F$ENVIRONMENT Lexical Function 3-7
3.5 /NOTE Qualifier for SUBMIT Command 3-8
3.6 Changes to F$GETQUI Lexical Function 3-8

iii

4 VMS System Messages

Part III System Management Features

5 VMS Batch and Print Queuing System

5.1 Clusterwide Queue Manager 5-1
5.2 New Queue Database Design 5-2
5.2.1 Moving Queue Database Files from Their Default Location 5-4
5.2.1.1 Moving the Master File 5-4
5.2.1.2 Moving the Queue and Journal Files 5-4
5.3 Starting and Stopping the Queue Manager 5-5
5.3.1 Starting the Queue Manager 5-5
5.3.1.1 Customizing Queue Manager Failover 5-6
5.3.1.2 Automatic Queue Manager Restart 5-6
5.3.1.3 If the Queue Manager Is Already Started 5-6
5.3.1.4 Obsolete Qualifiers 5-7
5.3.2 Stopping the Queue Manager 5-7
5.3.3 Stopping Queues on a Node 5-7
5.4 The Autostart Feature 5-7
5.4.1 Designating a Queue as an Autostart Queue 5-8
5.4.1.1 Setting Up Autostart Queues for Automatic Failover 5-8
5.4.2 Enabling Autostart on a Node 5-9
5.4.3 Starting Autostart Queues 5-9
5.4.4 Preventing Autostart Queues from Starting 5-9
5.4.5 Disabling Autostart on a Node 5-10

6 LADCP Utility

7 Clusterwide Tape Serving

7.1 Loading the Magnetic Tape Server 7-1
7.1.1 TMSCP LOAD Parameter 7-1
7.1.2 TAPE ALLOCLASS Parameter 7-3

8 VMS Volume Shadowing Phase II Enhancements
8.1 Specifying the Shadow Set Member Recovery Timeout Period 8-1
8.2 Volume Shadowing Phase II Supports Digital SCSI Devices 8-2

9 LAT New Features
9.1 Starting Up the LAT Protocol Software 9-1
9.2 Site-Specific LAT Command Procedure (LAT$SYSTARTUP.COM) 9-3
9.2.1 Creating a VMS Service 9-4
9.2.2 Setting Up Ports 9-4
9.2.3 Enabling Outgoing LAT Connections 9-5
9.3 Connecting to a LAT Network 9-5
9.3.1 Function of the LAT Protocol Software 9-5
9.3.2 Advantages of the LAT Protocol Software 9-6

iv

9.3.3 The LAT Network 9-6
9.3.3.1 VMS Service Nodes 9-7
9.3.3.2 Terminal Server Nodes 9-8
9.3.3.3 VMS Nodes Allowing Incoming and Outgoing Connections 9-9
9.3.3.4 Using the SET HOST/LAT Command 9-9
9.3.3.5 A Sample LAT Configuration 9-11
9.3.3.6 LAT Relationship to VMS Clusters and DECnet 9-12
9.3.4 Summary of LAT System Management Tasks 9-12
9.3.4.1 Starting Up the LAT Protocol Software 9-13
9.3.4.2 Customizing LAT Characteristics 9-13
9.3.4.3 Using LATCP to Control the LAT Protocol Software 9-13
9.3.4.4 Managing the LATACP Database Size 9-14

10 VMS License Management Facility
10.1 Moving and Copying Licenses 10-1
10.2 Deleting Licenses 10-1
10.3 Automating License Registration 10-1
10.4 Creating License Reservation Lists 10-1
10.5 Support for PAKs with the RESERVE_UNITS Option 10-2
10.6 Ease-of--Use Features 10-2
10.7 Revised SYS$UPDATE:VMSLICENSE.COM 10-2

11 Movefile Command Qualifiers
11.1 SET FILE Command Qualifiers 11-1

SET FILE/NOMOVE [/MOVE] 11-2
11.2 DIRECTORY/FULL, DUMP/HEADER, and DUMP/FILE_HEADER

Commands 11-3
11.3 Critical System Files 11-4

Part IV Programming Features

12 System Service Support for the VMS Batch and Print Queuing
System
12.1 $GETQUI and $SNDJBC System Services 12-1
12.1.1 $GETQUI Service 12-1
12.1.2 $SNDJBC Service 12-2

13 Run-Time Library Routines
13.1 LIB$GETQUI Run-Time Library Routine 13-1
13.2 Fast-Vector Math Routines 13-1
13.2.1 Exception Handling 13-2
13.2.2 Special Restrictions on Input Arguments 13-2
13.2.3 Accuracy 13-3
13.2.4 Performance 13-3
13.3 Parallel Processing Routines 13-3
13.3.1 Enhancements for Unique Naming 13-3
13.3.2 Spin/Wait Options for Blocking Synchronization 13-4

14 VMS Debugger: Tasking and Multithread Support
14.1 Command Interface: Enhanced Commands and Qualifiers 14-1
14.2 DECwindows Interface: Enhancements 14-1

15 DECthreads
15.1 Overview 15-1

16 DECdtm System Services: New and Changed Features
16.1 Abort Reason Codes 16-1
16.2 Transaction Timeouts 16-2
16.3 New and Modified System Dump Analyzer Commands 16-2

17 LAT $QIO Functions
17.1 LAT SETMODE $QIO Function 17-1
17.2 LAT SENSEMODE $QIO Function 17-7

18 Asynchronous Printer Support
SET TERMINAL/COMMSYNC/NOCOMMSYNC 18-2

19 Support for Case Sensitivity
19.1 Linker Support for Case-Sensitive Languages 19-1
19.2 VAX MACRO Support for Case Sensitivity 19-2
19.2.1 MACRO Programs That Reference Other MACRO Modules 19-3
19.2.2 MACRO Programs That Reference the Same MACRO Module 19-4
19.2.3 Uppercase Languages to MACRO Programs 19-4
19.2.4 Lowercase Languages to MACRO Programs 19-4
19.2.4.1 MACRO Command /NAMES Qualifier 19-5

MACRO/NAMES 19-6

20 System Dump Analyzer
20.1 TMSCP Symbol 20-1
20.2 Support for Transaction Processing 20-1

SHOW LOGS 20-2
SHOW PROCESS/PARTICIPANTS 20-3
SHOW PROCESS/TRANSACTIONS 20-4
SHOW TRANSACTIONS 20-6

21 Mailbox Driver
21.1 Unidirectional Mailboxes 21-1
21.2 Mailbox Driver Functions and Modifiers 21-1
21.2.1 Wait for Writer/Reader Function 21-1
21.2.2 IO$M_WRITERCHECK Function Modifier 21-2
21.2.3 IO$M_READERCHECK Function Modifier 21-2
21.2.4 IO$M_STREAM Function Modifier 21-2

vi

22 $QIO Support for Moving Disk Files
22.1 Calling the Movefile Subfunction 22-1
22.1.1 Input Parameters 22-1
22.1.2 Operation 22-3

A VMS Version 5.4-3 Features
A.1 Summary of New VMS Version 5.4-3 Software Features A-1
A.2 VMS Version 5.4-3 System Management Features A-2
A.2.1 Backup Utility A-2
A.2.1.1 /R,ELEASE_TAPE Qualifier A-2
A.2.1.2 ACCESSIBILITY Keyword A-3
A.2.1.3 Backup Label Processing Options A-3
A.2.2 Disk and Tape Class Drivers Enhanced Error Reporting A-3
A.2.3 New NCP Line Counters for FDDI Communications A-4
A.2.4 FDDI/Ethernet Startup Error Code A-5
A.2.5 Proactive Reclamation of Memory from Idle Processes A-5
A.2.5.1 How Is This Policy Enabled? A-6
A.2.5.2 Reclaiming Memory from Long-Waiting Processes A-6
A.2.5.3 Reclaiming Memory from Periodically Waking Processes A-7
A.2.5.3.1 Setting the FREEGOAL Parameter A-7
A.2.5.3.2 Sizing Page and Swap Files A-7
A.2.6 Tape Support A—g
A.2.7 VIVISINSTAL Callback RUN_IMAGE: New Parameter A-8
A.3 VMS Version 5.4-3 Programming Features A-8
A.3.1 Open-Bus Driver Support Features A-8
A.3.1.1 VMS Device Support for V1VIEbus Devices A-8
A.3.1.1.1 Hardware Environment A-9
A.3.1.1.2 Associated Documents A-9
A.3.1.1.3 Selecting VMEbus Protocol Parameters A-10
A.3.1.1.4 Considering Byte-Order Transfer Differences A-10
A.3.1.1.5 Handling Interrupts A-11
A.3.1.1.6 DMA Operations A-12
A.3.1.1.7 Programmed I/O Operations and I/O Mapping A-13
A.3.1.1.8 Coding a V1VIEbus Device Driver A-15
A.3.1.1.9 Assembling and Linking a VMEbus Driver A-17
A.3.1.1.10 Loading a VME Device Driver A-17
A.3.1.1.11 VMS Macros Invoked by VME Drivers A-18

SWAPLONG A-19
SWAPWORD A-20

A.3.1.2 VME Driver Operating System Routines A-21
IOC$ALOVMEMAP_DMA, IOC$ALOVMEMAP_DMAN A-22
IOC$LOADVMEMAP_DMA, IOC$LOADVMEMAP_DMAN A-24
IOC$RELVMEMAP_DMA, IOC$RELVMEMAP_DMAN A-26
IOC$ALOVMEMAP_PIO A-28
IOC$LOADVMEMAP_PIO A-29
IOC$RELVMEMAP_PIO A-31
IOC$VME_BYTE_SWAP_LONG A-33
IOC$VME_BYTE_SWAP_WORD A-34

A.3.1.3 Sample Driver for a VMEbus DR11—W A-35

vii

A.3.2 SCSI Device Support for the NCR 53C94 Controller A-51
A.3.2.1 SCSI Device Driver Data Structures A-51
A.3.2.2 Using the SPI$CONNECT Macro and Maximum Byte Counts . . A-51
A.3.3 FDDI and Ethernet VMS Support A-52
A.3.3.1 Overview of FDDI A-52
A.3.3.2 New FDDI Device DEMFA A-52
A.3.3.3 Programming Interface A-52
A.3.3.4 Parameters A-54
A.3.3.4.1 NMA$C_PCLI_MED (Medium) A-54
A.3.3.4.2 NMA$C_PCLI_RFC (Receive Frame Control) A-54
A.3.3.4.3 NMA$C_PCLI_XFC (Transmit Frame Control) A-55
A.3.3.4.4 NMA$C_PCLI_BUS (Maximum Receive Buffer Size) A-55
A.3.3.4.5 NMA$C_PCLI_MBS (Maximum Packet Length) A-55
A.3.3.4.6 NMA$C_PCLI_CCA (Can Change Address) A-55
A.3.3.5 Frame and Packet Formats A-56
A.3.3.5.1 FDDI Frames A-56
A.3.3.5.2 CSMA/CD Frames A-57
A.3.3.5.3 Packet Formats A-58
A.3.4 Preferred Access Path Programming Examples A-60
A.3.5 VAX Ada Run-Time Library A-60
A.3.6 DECwindows X11 Display Server Color Name File A-62
A.3.7 Changes to SDA SHOW PORTS Command A-62

B VMS Version 5.4 Features

B.1 Summary of New VMS Version 5.4 Software Features B-1
B.2 Introduction to Vector Processing B-4
B.2.1 Overview of the Vector Processing Environment B-5
B.2.1.1 VAX Vector Processing Systems B-5
B.2.1.2 Vectorized Programs B-7
B.2.1.3 VMS Support for Vector Processing B-8
B.2.1.3.1 Life of a Vector Consumer B-8
B.2.1.3.2 VAX Vector Instruction Emulation Facility (WIFE) B-10
B.2.2 Managing the Vector Processing Environment B-10
B.2.2.1 Loading the VMS Vector Processing Support Code B-11
B.2.2.2 Configuring a VMS Vector Processing System B-11
B.2.2.3 Managing Vector Processes B-12
8.2.2.3.1 Adjusting System Resources and Process Quotas B-12
B.2.2.3.2 Distributing Scalar and Vector Resources Among Processes B-13
B.2.2.4 Restricting Access to the Vector Processor by Using ACLs B-13
B.2.2.5 Obtaining Information About a Vector Processing System B-14
B.2.2.5.1 DCL Lexical Functions F$GETJPI and F$GETSYI B-14
B.2.2.5.2 SHOW CPU Command B-15
B.2.2.5.3 SHOW PROCESS and LOGOUT/FULL Commands B-15
B.2.2.5.4 Vector Processing Support Within the VMS Accounting Utility

(ACCOUNTING) B-15
B.2.2.5.5 Vector Support Within the Error Log Utility (ERROR

LOG) B-16
B.2.2.5.6 Vector Support Within the VMS Monitor .Utility

(MONITOR) B-16
B.2.2.6 Loading the VAX Vector Instruction Emulation Facility

(WIFE) B-16
B.2.2.7 System Messages Related to Vector Processing Activities B-17

viii

B.2.3 Programming in a Vector Processing Environment B-21
B.2.3.1 Vector Routines in the MTH$ Run-Time Library B-23
B.2.3.2 Obtaining Information About a Vector Processing System B-24
B.2.3.3 Releasing the Vector Processor B-24
B.2.3.4 Preserving and Restoring a Routine's Vector State B-25
B.2.3.5 Debugging a Vectorized Program B-26
B.2.3.5.1 Vector Processing Support Within the VMS Debugger B-26
B.2.3.5.2 Vector Processing Support Within the VMS System Dump

Analyzer (SDA) B-27
B.2.3.5.3 Vector Processing Support Within the VMS Delta/XDelta

Utility B-27
B.2.3.5.4 Vector Processing Support Within the VMS Patch Utility B-28
B.2.3.6 Servicing Vector Exceptions B-28
B.2.3.7 Requirements of the VAX Procedure Calling and Condition

Handling Standard B-31
B.2.3.7.1 Vector Register Usage B-32
B.2.3.7.2 Vector and Scalar Processor Synchronization B-32
B.2.3.7.3 Memory Synchronization B-32
B.2.3.7.4 Exception Synchronization B-32
B.2.3.7.5 Synchronization Summary B-33
B.2.3.7.6 Condition Handler Parameters and Invocation B-33
B.2.3.8 VMS Accounting Utility (ACCOUNTING) Resource Packet

Format B-33
B.2.3.9 VMS Monitor Utility (MONITOR) VECTOR Class Record B-33
B.3 Introduction to DECdtm Services B-34
B.3.1 Characteristics of Distributed Transactions B-34
B.3.2 Transaction Processing System Model B-36
B.3.2.1 Resource Manager B-36
B.3.2.2 Transaction Manager B-36
B.3.2.3 Log Manager B-38
B.3.3 Overview of Two-Phase Commit Protocol B-39
B.3.4 Managing DECdtm Services Using VMS Utilities B-40
B.3.5 New TRANSACTION_ID Data Type for Programming Routines B-40
B.4 VMS Version 5.4 General User Features B-40
B.4.1 DCL Commands B-41

BACKUP/MEDIA_FORMAT=[NO]COMPACTION B-42

MOUNT/MEDIA_FORMAT=[NO)COMPACTION B-43
B.4.2 System Messages B-44
B.4.2.1 System Messages Available from Online Help B-44
B.4.3 DECwindows User and Desktop Applications B-45
B.4.3.1 Session Manager B-45
B.4.3.2 Setting Another Session Language B-45
B.4.3.3 Changing Your Target Screen B-45
B.4.3.4 CDA Viewer B-46
B.4.3.5 Viewing a PostScript File B-46
B.4.3.6 New Processing Options for Viewing PostScript Files B-47
B . 4.4 Calculator B-48
B.4.5 Clock B-48
B.4.6 Mail: Displaying PostScript Files B-48
B.5 VMS Version 5.4 System Management Features B-49
B.6 AUTOGEN Command Procedure B-49
B.6.1 Parameter Name Validation B-49
B.6.2 AGEN$FEEDBACK.REPORT Replaced by New File B-50
B.6.3 MODPARAMS.DAT Includes External Parameter Files B-50

ix

6.6.4 MIN_, MAX ,and ADD_ Values Allowed for Page and Swap Files . . B-51
6.6.5. New Feedback Parameters B-52
6.6.6 Logical Names Defined by AUTOGEN B-52
6.6.7 New Technique for Running AUTOGEN in Batch Mode B-52
6.6.8 Using MAIL to Send AGEN$PARAMS.REPORT B-54
B.7 VAXcluster Management B-55
6.7.1 CI Architecture Extensions B-55
6.7.2 MSCP Server Load Sharing B-55
6.7.3 Preferred Path Support for DSA disks B-55
B.8 System Generation Utility (SYSGEN) B-56
6.8.1 SCSI_NOAUTO Parameter B-56
6.8.2 LOAD_PWD_POLICY Parameter B-57
6.8.3 LOAD_SYS_IMAGES Parameter B-57
6.8.4 Supported Device Names for VAXft 3000 Systems B-57
6.8.5 New SYSGEN Commands B-58

SHOW/BI=BIindex B-59
SHOW/BUS=busId B-60
SHOW/:~MI=BIindex B-61

B.9 Error Log Utility (ERROR LOG) B-62
6.9.1 Supported Device Types for V~~Xft 3000 Systems 6-62
6.9.2 New Keywords for /EXCLUDE and /INCLUDE Qualifiers B-62
B . 9.3 New Qualifier: !NODE B-62

ERROR LOG/NODE B-63
6.10 System Security g-64
6.10.1 Site-Defined Password Policy B-64
6.10.1.1 Screening New Passwords B-64
6.10.1.1.1 Password History List B-64
8.10.1.1.2 Site-Specific Filter B-65
6.10.1.2 Specifying a Password Algorithm 6-65
6.11 Log Manager Control Program Utility (LMCP) B-66
6.11.1 Managing Transaction Log Files B-66
6.11.1.1 Defining SYS$JOURNAL B-67
6.11.1.2 Placing a Transaction Log File B-67
B .11.1.3 VAXcluster Failover g-68
6.11.1.4 Determining Transaction Log File Size B-69
6.11.1.5 Creating Transaction Log Files B-69
6.11.1.6 Example of Creating a Transaction Log File B-70
6.11.1.7 Resizing and Moving Transaction Log Files B-72
6.11.2 Format of Transaction Log Files B-73

LMCP Usage Summary B-75
LMCP Commands B-76

CONVERT g_77
CREATE g_78
DUMP g_80
HELP g_84
REPAIR B-85

ABORT g_87
COMMIT g_gg
EXIT g_gg
FORGET B-90
HELP g_g 1

x

NEXT B-92
SHOW B-93

B.12 Monitor Utility (MONITOR) B-95
B.12.1 MONITOR TRANSACTION Command B-95

MONITOR TRANSACTION B-96
B.12.2 TRANSACTION Class Record B-99
B.12.3 MONITOR VECTOR Command B-100

MONITOR VECTOR B-102
B.12.4 VECTOR Class Record B-104
B.13 Network Control Program Utility (NCP) B-105
B.13.1 Line and Circuit Name Support for VAXf't 3000 Systems B-105
B.13.2 Line and Circuit Names for New Ethernet/820 Controllers B-105
B.14 VMS Volume Shadowing Phase II B-106
B.15 VMS Version 5.4 Programming Features B-107
B.16 Larger Page Size Capability with Linker Utility B-107

/BPAGE B-108
B.17 VMS Record Management Services B-110
B.17.1 VMS RMS Asynchronous Support for Process-Permanent Files B-110
B.17.2 Local Buffer Maximum Increased B-110
B.17.3 Access-Mode Protection for VMS RMS B-111
B.17.3.1 Access-Mode Protected Services B-111
B.17.3.2 Access-Mode Protected Memory B-111
B.17.4 Expired-Date Suppression B-112
B.17.4.1 The Role of ~;AB$_NORECORD ~;ABITM B-112
B.17.4.2 Applications for XAB$_NORECORD ~;.ABITM B-112
B.18 System Dump Analyzer Utility (SDA) B-113
B.18.1 New SHOW PROCESS Qualifier: /IMAGES B-113
B.18.2 New SHOW PROCESS Qualifier: /VECTOR_REGISTERS B-113
B.19 VMS RMS Journaling: Support for DECdtm Services B-114
B.19.1 Support for DECdtm Transactions B-114
B.19.2 RUF Services Emulated B-114
B.19.3 Network Support B-114
B.19.4 Record Stream Association B-115
B.19.4.1 How Streams Become Associated with a Transaction B-115
B.19.4.2 Stream Association Using RUF and DECdtm Services B-116
B.19.5 Detached Recovery B-116
B.19.5.1 Synchronous and Asynchronous Recovery B-116
B.19.5.2 Partial Recovery B-117
B.19.6 Placement of Recovery Unit Journals B-117
B.19.7 Multiple Long-Term Journals Allowed B-118
B.19.8 Mixed-Version Clusters B-118

C VMS Version 5.3 Features
C.1 VMS Version 5.3 System Management Features C-1
C.1.1 Extension of Lock Manager Limit C-1
C.1.2 NCP Executor Command Changes C-1
C.1.3 Parameter for SET/DEFINE EXECUTOR C-1
C.1.4 SHOW EXECUTOR CHARACTERISTICS Command C-2
C.2 VMS Version 5.3 Support for the VMS Distributed Name Service C-3
C.2.1 Introduction to the Distributed Name Service C-3

xi

C.2.2 The DNS Namespace C-4
C.2.2.1 Planning Namespace Objects C-4
C.2.2.2 Restrictions C-4
C.2.2.3 Using the Namespace C-4
C.2.2.4 Object Names C-5
C.2.2.5 Object Attributes C-5
C.2.3 Structure of a Namespace C-5
C.2.3.1 Naming Syntax C-6
C.2.3.2 Logical Names C-7
C.2.3.3 Valid Characters for DNS Names ~ C-8
C.2.4 Creating Objects C-9
C.2.5 Modifying Objects C-11
C.2.6 Distributing the Namespace C-13
C.2.6.1 Replicating Directories C-14
C.2.6.2 Types of Directories C-14
C.2.6.3 Setting Confidence C-15
C.2.6.4 Maintaining Consistency in Data C-16
C.2.7 Requesting Information from DNS C-16
C.2.7.1 Reading Objects C-17
C.2.7.2 Listing Information C-20
C.2.7.3 How the Clerk Locates Data C-23
C.2.8 DNS System Services C-23

$DNS C-25

$DNSW C-48
C.2.9 DNS Run-Time Routines C-49

DNS$APPEND_SIMPLENAME_TO_RIGHT C-50
DNS$COMPARE_FULLNAME C-52
DNS$COMPARE_SIMPLENAME C-53
DNS$CONCATENATE_NAME C-54
DNS$COUNT_SIMPLENAMES C-56
DNS$CVT_DNSADDRESS_TO_BINARY C-57
DNS$CVT_DNSADDRESS_TO_NODENAME C-58
DNS$CVT_NODENAME_TO_DNSADDRESS C-60
DNS$CVT_TO_USERNAME_STRING C-62
DNS$PARSE_USERNAME_STRING C-64
DNS$REMOVE_FIRST_SET_VALUE C-67
DNS$REMOVE_LEFT_SIMPLENAME C-69
DNS$REMOVE_RIGHT_SIMPLENAME C-71

C.2.10 Starting the DNS Clerk C-73
C.2.11 DECnet Event Messages C-73

D VMS Version 5.2 Features
D.1 VMS Version 5.2 System Management Features D-1
D.1.1 System Generation Utility (SYSGEN) D-1
D.1.1.1 DEINSTALL Command Description D-1
D.1.1.2 ERLBUFFERPAGES Parameter D-2
D.1.2 NETCONFIG.COM Security Enhancements D-2
D.1.2.1 Default Access Options D-2
D.1.2.2 Security Benefits D-3
D.1.2.3 Questions Posed by NETCONFIG.COM D-4

xii

D.1.3 New NETCONFIG_UPDATE.COM for Existing Networks D-4
D.1.3.1 Benefits of NETCONFIG_UPDATE.COM D-4
D.1.3.2 Using NETCONFIG_UPDATE.COM in a VAXcluster D-4
D.1.4 Backup Utility (BACKUP) D-5
D.1.4.1 Performance Enhancements D-5
D.1.4.2 Setting Up the BACKUP Account D-5
D.1.4.3 Setting System Generation Utility (SYSGEN) Parameters D-7
D.1.4.4 Understanding Why the Output Device Seems Idle D-7
D.1.4.5 /BUFFER_COUNT Command Qualifier Is Now Obsolete D-7
D.1.4.6 Cyclic Redundancy Checking Emulation Improvements D-8
D.1.4.7 Pressing CtrUT to Obtain Information About BACKUP

Operations D-8

E VMS Version 5.1 Features
E.1 VMS Version 5.1 Support for Compound Documents E-1
E.1.1 VMS Commands and Utilities E-1
E.1.1.1 Displaying RMS File Tags E-2
E.1.1.1.1 DIRECTORY/FULL E-2
E .1.1.1.2 ANALYZE/RMS_FILE E-3
E.1.1.2 Creating RMS File Tags E-3
E.1.1.3 Preserving RMS File Tags and DDIF Semantics E-4
E.1.1.3.1 COPY Command E-4
E.1.1.3.2 VMS Mail Utility E-5
E.1.1.4 APPEND Command E-5
E.1.2 ~ DDIF Support in a Heterogeneous Environment E-5
E.1.2.1 EXCHANGE/NETWORK Command E-5
E.1.2.2 COPY Command E-6
E.1.2.3 VMS Mail Utility E-6
E.1.2.4 DDIF File Access Within aMixed-Version Cluster E-7
E.1.3 VMS RMS Interface Changes E-7
E .1.3.1 Programming Interface for File Tagging E-7
E.1.3.2 Accessing a Tagged File E-9
E.1.3.2.1 File Accesses That Do Not Sense Tags E-10
E.1.3.2.2 File Accesses That Sense Tags E-10
E.1.3.3 Preserving Tags E-12
E.1.4 Distributed File System Support for DDIF Tagged Files E-12
E.1.5 VMS RMS Errors E-13
E.2 EXCHANGE/NETWORK Command E-13

Index

Examples

8-1 Showing Device Characteristics Using the SDA SHOW DEVICE
Command 8-2

19-1 Using the CASE_SENSITIVE= Option 19-2
B-1 Sample AUTOGEN Command Procedure B-53
B-2 Sample Transaction Log File B-74
E-1 Tagging a File E-8
E-2 Accessing a Tagged File E-11

Figures

5-1 VMS Version 5.0 Queue Manager 5-2

5-2 VMS Version 5.5 Queue Manager 5-3

9-1 A LAT Network Configuration 9-12

16-1 IOSB Structure 16-2

17-1 Example of SETMODE Item List 17-2
A-1 System Based on XMI,/VMEbus A-9
A-2 Little-Endian Versus Big-Endian Byte Alignment A-11

A-3 VMEbus DMA to and from VAX Host A-12
A-4 VMEbus Map .Register A-13
A-5 Mapping of Programmed I/O Access from User Space A-14

A-6 VME Map Register Descriptor (VME_MD) A-23
A-7 FDDI Frame Format A-56

A-8 Ethernet Frame Format A-57

A-9 Ethernet Frame Format with PAD Option A-57

A-10 IEEE 802.3 Frame Format A-58
A-11 FDDI Frame with Mapped Ethernet Packet Format A-58
A-12 FDDI Frame with Mapped Ethernet with PAD Option Packet

Format A-59

A-13 FDDI Frame with 802 Packet Format A-59
A-14 CSMA/CD Frame with 802 Packet Format A-59

A-15 FDDI Frame with 802E Packet Format A-60

A-16 CSMA/CD Frames, 802E, 802.1 SNAP, and 802.1 PID Packet
Format A-60

B-1 VAX 6000-400 Series Vector-Present Processor Configuration B-6
B-2 VAX 9000 Series Vector-Present Processor Configuration B-7

B-3 Life of a Vector Consumer B-9
B-4 Sample Debit/Credit Transaction Execution B-35
B-5 Participants in a Distributed Transaction Example B-38
B-6 DECwindows Screen Number Dialog Box B-45
B-7 DECwindows Customize Screen Number Dialog Box B-46
B-8 SCSI_NOAUTO System Parameter B-56
B-9 Sample Transaction Log File Configuration on Two-Node

VAXcluster B-71
B-10 TRANSACTION Class Record Format B-99
B-11 VECTOR Class Record Format B-104
C-1 DNS Namespace C-6
C-2 Valid Character Codes for DNS Simple Names C-8
C-3 Additional Character Codes Allowed in Quoted Simple Names C-9
C-4 Partitioned Namespace C-14
C-5 Namespace with Replicated Directories C-15

xiv

Tables

1-1 Summary of VMS Version 5.5 Software Features 1-1
2-1 Other VMS Version 5.5 DCL Commands and Qualifiers 2-1
2-2 F$MESSAGE Keywords 2-7
3-1 F$GETQUI Items 3—g
13-1 Fast-Vector Math Routines 13-1
13-2 Input Argument Restrictions 13-2
16-1 DECdtm System Services Changes 16-1
16-2 SDA Utility Changes 16-2
17-1 LAT$C_ENT_NODE Setmode Item Codes 17-3
17-2 LAT$C_ENT_SERVICE Setmode Item Codes 17-5
17-3 LAT$C_ENT_LINK Setmode Item Codes 17-6
17-4 LAT$C_ENT_PORT Setmode Item Codes 17-6
17-5 LAT$C_ENT_NODE Sensemode Item Codes 17-8
17-6 Node Service Subblock Item Codes 17-10
17-7 Node Counters Item Codes 17-11
17-8 Protocol Error Item Codes 17-13
17-9 LAT$C_ENT_SERVICE Sensemode Item Codes 17-13
17-10 Service Node Subblock Item Codes 17-14
17-11 Service Counters Subblock Item Codes 17-14
17-12 LAT$C_ENT_LINK Sensemode Item Codes 17-15
17-13 Link Counters Item Codes 17-16
17-14 LAT$C_ENT_PORT Sensemode Item Codes 17-16
22-1 FIB Fields (Movefile) 22-1
A-1 Summary of VMS Version 5.4-3 Software Features A-1
A-2 Mapped Defaults for x:MI and VME Interrupt Request Levels A-12
A-3 Driver Entry Point Routines A-15
A-4 Driver Notions Porting from UNIX to VMS A-16
A-5 DR11—W VME Driver Code Contents A-35
A-6 Required Size for P5 Diagnostics Buffer on FDDI Devices A-54
B-1 Summary of VMS Version 5.4 Software Features B-1
B-2 Settings of VECTOR_PROC System Parameter B-11
B-3 System Messages Relating to Vector Processing B-17
B-4 Summary of Exception Conditions B-29
B-5 Summary of New and Enhanced DCL Commands B-41
B-6 Arguments to the /ALGORITHM Qualifier B-66
B-7 Descriptions of TRANSACTION Class Record Fields B-100
B-8 Descriptions of VECTOR Class Record Fields B-104
B-9 Descriptions of Additions to System Record Fields B-104
C-1 DNS Item-Code Arguments C-41
D-1 UAF Process Quotas for the BACKUP Account D-6
D-2 Suggested Values for UAF Process Quotas D-7
E-1 Tag Support Item Codes E-7

Preface

Intended Audience
This book is intended for general users, system managers, and programmers who
use the VMS operating system.

Document Structure
This manual is organized as follows:

• Part I, Summary of New Features, contains a summary of the new VMS
Version 5.5 software features.

Note

It is important that you read Part I first for a complete overview of the
VMS Version 5.5 new features.

• Part II, General User Features, describes new features primarily of interest
to general users of the VMS operating system. The chapters within provide
information about new DCL commands and qualifiers that have general
applications, changes introduced by the new batch and print queuing system
and new VMS system messages.

• Part III, System Management Features, describes new features that are
applicable to the tasks performed by system managers. These features relate
specifically to the following VMS components:

— Batch and Print Queuing System

— LADCP

— Cluserwide Tape Sharing

— VMS Volume Shadowing Phase II

— LAT

— License Management Facility

— Movefile Operations

• Part IV, Programming Features, describes new features that support
programming tasks. The chapters within provide information about the
following components of the VMS operating system:

— System Services Support for the Batch and Print Queuing System

— Run-Time Library Routines

— VMS Debugger

xvii

— DECthreads

— VMS Data Transaction Processing (DECdtm)

— LAT I/O Functions (LAT $QIO)

— Asynchronous Printer Support

— Support for Case Sensitivity

— System Dump Analyzer Utility

— Mailbox Driver Interface

— QIO-ACP Support for Moving Disk Files

This document includes five appendixes. The appendixes describe features that
were new to previous VMS versions but are not yet documented in other printed
manuals.

Associated Documents
Refer to the following documents for more detailed information about the VMS
Version 5.5 software features described in this manual. For more information
about these documents, see the Overview o f VMS Documentation or contact your
Digital representative.

• VAX RMS Journaling Manual

• VAX Text Processing Utility Manual

• VMS Developer's Guide to VMSINSTAL

• VMS Accounting Utility Manual

• VMS Authorize Utility Manual

• VMS Backup Utility Manual

• VMS DCL Dictionary

• VMS DCL Concepts Manual

• VMS Debugger Manual

• VMS DECwindows User's Guide

• VMS Delta lXDelta Utility Manual

• VMS Device Support Manual

• VMS Device Support Reference Manual

• Overview of VMS Documentation

• VMS File Definition Language Facility Manual

• Guide to VMS Files and Devices

• VMS I l O User's Reference Manual: Part I

• VMS I l O User's Reference Manual: Part II

• VMS LAD Control Program (LADCP) Manual

• VMS LAT Control Program (LATCP) Manual

• VMS Librarian Utility Manual

• VMS RTL Library (LIB) Manual

xviii

• VAX MACRO and Instruction Set Reference Manual

• VMS System Messages and Recovery Procedures Reference Manual

• VMS Monitor Utility Manual

• VMS RTL Mathematics (MTH~~ Manual

• Introduction to VMS System Routines

• VMS Record Management Services Manual

• VMS System Dump Analyzer Utility Manual

• Guide to VMS System Security

• VMS System Generation Utility Manual

• Introduction to VMS System Management

• Guide to Maintaining a VMS System

• Guide to Setting Up a VMS System

• VMS SYSMAN Utility Manual

• Introduction to VMS System Services

• VMS System Services Reference Manual

• VMS User's Manual

• VMS Utility Routines Manual

• VMS VAXcluster Manual

• VAX Volume Shadowing Manual

• VMS Volume Shadowing Manual

• X and Motif Quick Reference Guide

• VMS Version 5.5 Upgrade and Installation Manual

• VMS Version 5.5 Release Notes

Conventions
The following conventions are used in this manual:

CtrUx

PF 1 x

Return

A sequence such as CtrUx indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

A sequence such as PFl x indicates that you must first press
and release the key labeled PF1, then press and release
another key or a pointing device button.

In examples, a key name is shown enclosed in a box to indicate
that you press a key on the keyboard. (In text, a key name is
not enclosed in a box.)

xix

In examples, a horizontal ellipsis indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

[] In format descriptions, brackets indicate that whatever is
enclosed within the brackets is optional; you can select none,
one, or all of the choices. (Brackets are not, however, optional
in the syntax of a directory name in a file specification or
in the syntax of a substring specification in an assignment
statement.)

{ } In format descriptions, braces surround a required choice of
options; you must choose one of the options listed.

red ink Red ink indicates information that you must enter from the
keyboard or a screen object that you must choose or click on.

For online versions of the book, user input is shown in bold.

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Boldface text is also used to show user input in online versions
of the book.

italic text

UPPERCASE TEXT

numbers

Italic text represents information that can vary in system
messages (for example, Internal error number).

Uppercase letters indicate that you must enter a command (for
example, enter OPEN/READ), or they indicate the name of a
routine, the name of a file, the name of a file protection code,
or the abbreviation for a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that follows.

Unless otherwise noted, all numbers in the text are assumed
to be decimal. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xx

Part
Summary of New Features

This part contains a summary of the new features supported by Version 5.5 of the
VMS operating system.

1
Summary of New VMS Version 5.5 Features

This chapter provides a summary of the new software features supported by VMS
Version 5.5 and a brief overview of new books. For information about new and
enhanced hardware, see the VMS Version 5.5 Release Notes.

1.1 New Software Features
Table 1-1 provides a summary of new features supported by VMS Version 5.5.

Table 1-1 Summary of VMS Version 5.5 Software Features

VMS Version 5.5 General User Features

DCL Commands and Lexical Functions New and enhanced DCL commands that provide the
following capabilities:

• Specify the size of DECram virtual disks

• Optionally force an improperly dismounted disk
volume to be rebuilt to obtain the correct free block
count

• Maintain the integrity of TZK10 tape cartridges by
retensioning the tape during rewinding or unloading

• Create a file to log messages during CDA conversion
operations

Lexical Functions The F$MESSAGE lexical function has been modified to
let you specify the system message component for which
information is to be returned.

For the new batch and print queuing system, the
F$ENVIRONMENT lexical function has a new item,
VERIFY PREFIX, which returns the prefix control string
for verified command lines as part of the enhanced VMS
Batch and Print Queuing System.

For the new batch and print queuing system, the
F$GETQI lexical function returns information about
the AUTOSTART feature and about user-specified job
retention.

(continued on next page)

Summary of New VMS Version 5.5 Features
1.1 New Software Features

Table 1-1 (Cont.) Summary of VMS Version 5.5 Software Features

VMS Version 5.5 General User Features

Batch and Print Queuing System The batch and print queuing system provides the following
improvements:

• Improved reliability and availability of batch and
print queues

• Improved performance in large configurations

• Greater emphasis on clusterwide operations

System Messages New, updated, or previously undocumented system
messages are included for a number of VMS facilities.
The messages chapter also incorporates messages that
were published in the VMS Version 5.4 Release Notes.

VMS Version 5.5 System Management Features

Batch and Print Queuing System Version 5.5 supports clusterwide queue management,
a new queue database, and an autostart feature that
simplifies queue startup and ensures high availability of
queues.

LADCP Utility Allows you to configure and control the local area disk
(LAD) protocol on VMS host systems.

clusterwide Tape Serving Through the implementation of a tape mass storage
control protocol (TMSCP), allows users on a node in
a cluster to access magnetic tape devices physically
connected to any other node in the cluster.

Volume Shadowing Phase II Phase II supports a new SYSGEN parameter, SHADOW_
MBR_TMO, that lets you specify the timeout period for
recovering a shadow set member before it is removed from
a shadow set. Phase II also provides support for SCSI
(Small Computer System Interface) devices.

LAT You can now use the SET HOST/LAT command to
establish outbound (forward) LAT connections. New
LATCP commands permit you to display information
about various LAT entities, and there is a new startup
procedure for LAT software.

License Management Facility LMF has been enhanced to allow the transfer of licenses
between databases and the registration of a license in
another license database. System managers or privileged
users can now attach a list of names to product licenses
and software vendors can issue PAKs with the RESERVE_
UNITS option. Another enhancement allows license
managers to perform operations on groups of licenses.

(continued on next page)

Summary of New VMS Version 5.5 Features
1.1 New Software Features

Table 1-1 (Cont.) Summary of VMS Version 5.5 Software Features

VMS Version 5.5 General User Features

DCL Support for Movefile Operations Three DCL commands, SET FILE, DIRECTORY/FULL
and DUMP/HEADER, have been enhanced to support
movefile operations that permit you to move the contents
of a file, or part of the contents of a file, to a new disk
location.

VMS Version 5.5 Programming Features

System Services Support for New Features Various system services have been modified to support
the batch and print queuing system, to provide additional
support for the LIB$GETQUI run-time library routine and
to support new DECdtm features.

RTL Routines The fast-vector math routines provide alternative math
functions that offer significantly higher performance.

LIB$GETQUI has been enhanced to support the new
batch and print queuing system.

The PPL$ run-time library provides enhanced unique
naming functionality and spin/wait options for several
blocking synchronization routines.

VMS Debugger Provides enhanced support for programs that have
multiple threads of execution within a VMS process,
including any program that uses DECthreads or POSIX
1003.4a services.

VMS DECthreads This version of VMS supports Digital's Multithreading
Run-Time Library, a library of portable routines used for
creating and controlling multiple threads of execution
within the address space provided by a single process.

DECdtm Version 1.1 of the DECdtm services provides reason codes
on transaction abort and transaction timeouts.

LAT $QIO The LAT function SET MODE provides the capability for
creating and deleting LAT entities such as nodes, services,
ports, and links, and to modify parameters of those LAT
entities.

UO Drivers

Case-Sensitive Language Support

System Dump Analyzer (SDA) Utility

The terminal driver interface supports connection of an
asynchronous printer to a terminal port using modem
signals for flow control.

The mailbox driver now waits until a channel with the
requested access direction is assigned to the mailbox.

The linker and MACRO now support case-sensitive
programming languages. The linker preserves the mixture
of upper and lowercase characters used in character-string
arguments and MACRO now enables programmers to
specify the case sensitivity of global symbol definitions.

The utility has been modified to provide support for
transaction processing and a new symbol, TMSCP, for the
tape mass storage control protocol server.

(continued on next page)

Summary of New VMS Version 5.5 Features
1.1 New Software Features

Table 1-1 (Cont.) Summary of VMS Version 5.5 Software Features

VMS Version 5.5 Programming Features

DOCUMENT/CONVERT Command

QIO Support for Moving Disk Files

You can now specify a single message file for messages
generated by the input and output converters during the
CDA conversion process. Digital CDA Base Services
components, other than the command line interface
to view and convert documents, are installed with
DECwindows Motif Version 1.0.

The movefile feature permits you to move all or part of
the contents of a file to a new disk location. Typically,
this might be used as part of a disk defragmentation
application.

1.2 Announcing the New VMS Dependability Handbook
The VMS Version 5.5 documentation set includes a new handbook entitled
Building Dependable Systems: The VMS Approach. A dependable computing
system is one that can be counted on to always provide services to its users when
those services are needed. The new handbook addresses the building blocks that
make up a dependable system and explains basic dependability principles. It
also provides practical techniques for utilizing the dependability features of VAX
systems with those of the VMS operating system and layered software products
to help you form a dependable computing system. Building Dependable Systems:
The VMS Approach is included with the VMS Version 5.5 Base Documentation
Set; it can also be ordered separately. See the Overview of VMS Documentation
for ordering information.

1.3 Announcing the New BACKUP Utility Guide
A new manual, Using VMS BACKUP, is available to help users complete common
tasks with the VMS Backup Utility (BACKUP). Intended as a companion to the
VMS Backup Utility Manual, Using VMS BACKUP includes information about
disk and tape operations; backing up and restoring files, directories, and disks;
troubleshooting; and creating your own BACKUP command procedures.

Using VMS BACKUP is available on your VMS system disk
(SYS$EXAMPLES:USING_BACKIJP.*) in DECW$BOOK, LINE, and PS format.

1-4

Part II
General User Features

This part contains the following chapters:

• Chapter 2, DCL Commands and Lexical Functions

• Chapter 3, Batch and Print Queuing System

• Chapter 4, VMS System Messages

2
DCL Commands and Lexical Functions

This chapter includes information about new qualifiers for various DCL
commands and about a new lexical function:

• The /SIZE qualifier for the INITIALIZE command that supports DECram
disks.

• The /REBUILD[=FORCE] qualifier for the SET VOLUME command that
forces the building of a new disk volume, thereby updating the free block
count in the disk volume's lock value block.

• The /R,ETENSION qualifier for the SET MAGTAPE command that defines
the default characteristics associated with a specific magnetic tape device for
subsequent file operations.

• The /MESSAGE_FILE qualifier for the CO1~~TERT/DOCUMENT command.
The qualifier creates a message file to which messages are logged during the
conversion of your document. To use this qualifier, you must install the DEC
CDA Base Services shipping with VMS DECwindows Motif Version 1.0 or
later.

• An enhancement to the F$MESSAGE lexical function that permits you
to specify the system message component for which information is to be
returned.

Table 2-1 lists other DCL commands and qualifiers that support specific
Version 5.5 new features described in other chapters of this manual.

Table 2-1 Other VMS Version 5.5 DCL Commands and Qualifiers

DCL Command/Qualifier Location

DISABLE AUTOSTART

ENABLE AUTOSTART

INITIALIZE/QUEUE/AUTOSTART_ON=(node-list)

LICENSE COPY

LICENSE ISSUE/PROCEDURE

LICENSE MODIFY/RESERVE

LICENSE MOVE

LICENSE subcommand/ALL

MAC RO/NAME S

PRINT/R,ETAIN

SET ENTRY/R,ETAIN

Chapter 5

Chapter 5

Chapter 5

Chapter 10

Chapter 10

Chapter 10

Chapter 10

Chapter 10

Chapter 19

Chapter 3

Chapter 3

(continued on next page)

DCL Commands and Lexical Functions

Table 2-1 (Cont.) Other VMS Version 5.5 DCL Commands and Glualifiers

DCL Command/Qualifier Location

SET FILE/NOMOVE Chapter 11

SET HOST/LAT Chapter 9

SET PREFIX Chapter 3

SET TERMINAL/COMMSYNC Chapter 18

SHOW ENTRY Chapter 3

SHOW QUEUE Chapter 3

START/QUEUE/AUTOSTART_ON=(node-list) Chapter 5

START/QUEUE/MANAGER Chapter 5

STOP/QUEUE/MANAGER/CLUSTER Chapter 5

STOP/QUEUE/NEXT Chapter 5

STOP/QUEUE/R,ESET Chapter 5

STOP/QUEUES/ON_NODE Chapter 5

SUBMIT/NOTE Chapter 3

SUBMIT/RETAIN Chapter 3

2.1 DCL Command Enhancements
This section describes the enhanced DCL commands supported by VMS Version
5.5.

INITIALIZE/SIZE

INITIALIZE/SIZE

The INITIALIZE/SIZE=n command specifies the size of the DECram virtual disk
to be allocated from available memory. DECram is a layered product that is used
to create virtual disks in system memory. See DECram documentation for more
information about DECram.

Format

Description

INITIALIZE/SIZE=n device-name[:] volume-label

The INITIALIZE command now accepts the /SIZE=n qualifier in support of
DECram virtual disks (device type DT$_RAM_DISK). The /SIZE=n qualifier
specifies the size of the virtual disk to be allocated from available memory. This
allows you to define the size of the DECram device at initialization time. Note
that n cannot exceed 524,280 blocks. A DECram virtual disk requires one page of
system space per block of virtual disk space allocated.

To deallocate space for a DECram virtual disk, specify /SIZE=O with the
INITIALIZE command. All resources specifically allocated to the DECram
virtual disk will be returned to the system.

See the VMS DCL Dictionary for more information about the INITIALIZE
command.

SET VOLUME/REBUILD[=FORCE]

Forces a disk volume to be rebuilt, causing the free block count value to be
updated.

Requires write (W) access to the index file on the volume. If you are
not the owner of the volume, requires either a system user identification
code (UIC) or SYSPRV (system privilege) privilege.

Format

Description

SET VOLUME/REBUILD[=[NO]FORCE] device-name[:][,...]

The SET VOLUME/REBUILD command is used to recover the caching that was
in effect at the time when a disk volume was dismounted improperly (such as
during a system failure or a cluster transition). The FORCE option forces the
disk volume to be rebuilt unconditionally, which updates the free block count in
the disk volume's lock value block. The default is NOFORCE.

During a cluster transition, the free block count that is maintained on a lost
primary node might not be made available to the new primary node. As a result,
the free block count on the new primary node might be incorrect. Because of this
free block count discrepancy, the number of free blocks available for use on a disk
might be higher or lower than the actual free block count. Attempts to use the
free blocks might result in allocation failures.

The SET VOLUME/R,EBUILD=FORCE command should be issued as soon as
the free blocks discrepancy is discovered, especially if a new primary node is
identified for a mounted disk volume following a cluster state transition.

See the VMS DCL Dictionary for more information about the SET VOLUME
command.

2-4

SET MAGTAPE/RETENSION

Defines the default characteristics associated with a specific magnetic tape device
for subsequent file operations. The /R,ETENSION qualifier moves a TZK10 tape
cartridge to the end of the tape and then back to the beginning of the tape.

Format
SET MAGTAPE/RETENSION device-name[:]

Description

The SET MAGTAPE command uses the /R,ETENSION qualifier to move a TZK10
tape cartridge to the end of the tape and then back to the beginning of the tape.
Using the /RETENSION qualifier on a regular basis helps maintain the integrity
of TZK10 tape cartridges.

You must use the /R,ETENSION qualifier with either the /REWIND or /UNLOAD
qualifier. The /RETENSION qualifier completes its action before /REWIND or
/UNLOAD. Use /R,ETENSION/REWIND when you want the tape cartridge to
remain loaded in the drive. Use /RETENSION/UNLOAD when you want to
unload the tape cartridge after the retension operation.

This qualifier affects TZK10 tape cartridge drives only, and causes the following
error message on other SCSI tape cartridge drives:
oSET-I-FUNCNOTSUP, 'device-name' does not support /RETENSION; qualifier ignored.

The lRETENSION qualifier has no effect on non-SCSI tape drives.

See the VMS DCL Dictionary for more information about the SET MAGTAPE
command.

CONVERT/DOCUMENT/MESSAGE_FILE=filespec

Allows you to specify a file for logging messages during conversion.

 Note

The DEC CDA Base Services for VMS DECwindows Motif Version 1.0 or
later must be installed in order to use the /MESSAGE_FILE qualifier and
new versions of the DEC CDA Base Services converters.

Format

Description

Example

CONVERT/DOCUMENT/MESSAGE_FILE= input-filespec output-filespec

The CONVERT/DOCUMENT command converts documents from one format to
another for the purpose of sharing information among different applications. The
default input and output file format is DDIF (Digital Document Interchange
Format), a standard format for the storage and interchange of compound
documents, which can include text, graphics, and images.

The lMESSAGE_FILE qualifier creates a file to which informational and error
messages are logged during the conversion.

$ CONVER2~/DOCUMENT%OPi''IONS=MY_OPi'IONS.CD~$OPTIONS -
_$ ~7Y_I~~PU~I' .DTIF/FORI~7AT=DTIF MY_OUTPU'T~ . DDIFi FORMAT=DDIF
$ i ~~2ESSAGE~'ILE=I~~~Y_T~iSGS . ~~~~SG

This command converts an input file named MY_INPUT.DTIF, which has the
DTIF format, to an output file named MY_OUTPUT.DDIF, which has the DDIF
format. The specified options file is named MY_OPTIONS.CDA$OPTIONS, and
the message file is named MY_MSGS.MSG.

DCL Commands and Lexical Functions
2.2 F$MESSAGE Lexical Function

2.2 F$MESSAGE Lexical Function
The message-component-list argument for the F$MESSAGE lexical function
allows you to specify the system message component for which information is to
be returned.

F$MESSAGE(status-code [,message-component-list]}

Argument
message-component-I ist
The system message component or components to be returned. If this parameter
is null or unspecified, then all system message components are returned.

Table 2-2 describes the valid system message component keywords.

Table 2-2 F$MESSAGE Keywords

Component Keyword Information Returned

FACILITY Facility name

SEVERITY Severity level indicator

IDENT Abbreviation of message text

TEXT Explanation of message

Note that when the FACILITY, SEVERITY, and IDENT code keywords are
specified (individually or in combination), the resulting message code is preceded
by the percent sign (%)character. The individual parts of the message code are
separated by hyphens when multiple code keywords are specified.

When only the TEXT keyword is specified, the resulting text is not preceded
by any character. When the TEXT keyword is specified with the FACILITY,
SEVERITY, or IDENT code keyword, the message code is separated from the text
by a comma and a space (,).

Examples

1. $ ERROR_~iv ~ 0 = r $~'~LSS=1G~ !'Xi0 , ~~ !'J~1 " ~
$ SHO~~n' S Y BOL LRROR_ ~ i~: r 0
ERROR_INFO = "EXCEEDED QUOTA"

This example shows the system message component that is returned by using
the keyword TEXT.

DCL Commands and Lexical Functions
2.2 F$MESSAGE Lexical Function

2. $ SUBMIT IMPORTANT.COM
$ SYNCHRONIZE /entry='$ENTRY'
$ IF $STATUS THEN EXIT
$'•
$ JOB_STATUS = $STATUS

$~
$ IF "%JOBDELETE" .EQS. F$MESSAGE (JOB_STATUS, "IDENT")
$ THEN

$ ELSE
$ IF "%JOBABORT" .EQS. F$MESSAGE (JOB_STATUS, "IDENT")
$ THEN

$ ELSE

$ ENDIF
$ ENDIF

This command procedure submits a batch job and waits for it to complete.
Upon successful completion, the procedure exits. If the job completes
unsuccessfully, more processing is done based on the termination status
of the batch job.

The first command submits the command procedure IMPORTANT. C OM. The
second command, SYNCHRONIZE, tells the procedure to wait for the job to
finish. The third command determines if the job completed successfully and,
if so, the procedure exits. The next command saves the status in a symbol.

The first IF statement uses F$MESSAGE to determine whether the job was
deleted before execution. If so, it does some processing, possibly to resubmit
the job or to inform a user via MAIL.

The next IF statement uses F$MESSAGE to determine whether the job was
deleted during execution. As a result, some cleanup or human intervention
may be required, which would be done in the THEN block.

If neither IF statement was true, then some other unsuccessful status was
returned. Other processing, which would be done in the block following the
ELSE statement, might be required.

3
Batch and Print Queuing System

This chapter contains information about the new batch and print queuing system
that is of interest to general users.

3.1 Changes to SHOW ENTRY
This section describes changes to the SHOW ENTRY display and command.

3.1.1 Change in Format of SHOW ENTRY Display
In the previous batch and print queuing system, the SHOW ENTRY command
returned a display similar to the following:

Jobname Username Entry Blocks Status

MYJOB HERSHEY 6 Retained on completion
On generic batch queue CLUSTER_BATCH

In the new batch and print queuing system, the format for the SHOW ENTRY
display is changed and appears similar to the following:

Entry Jobname Username Blocks Status

6 MYJOB HERSHEY Retained on completion
On stopped generic batch queue CLUSTER_BATCH
Completed 28-MAR-1991 17:52 on queue NODE_BATCH

The new display makes it easier for a user to locate a job's entry number. This is
important because the entry number is needed for the SET ENTRY and DELETE
/ENTRY commands. The new display also includes the state of the queue in
which the job is currently located.

3.1.2 SHOW ENTRY Command Accepts Job Names
In VMS Version 5.0, the SHOW ENTRY command was added to let users display
information about their batch and print jobs without having to view other queue
information. The SHOW ENTRY command accepted any of the following values
for its parameter:

• No value, to display all of a user's jobs

• A single entry number or a list of entry numbers, to display only those jobs
specified

• The $ENTRY symbol, to display the job most recently added by that process
(this feature was added with VMS Version 5.2)

Batch and Print Queuing System
3.1 Changes to SHOW ENTRY

In the new batch and print queuing system, the SHOW ENTRY command also
accepts a job name as a legal value for its parameter. The command SHOW
ENTRY job_name displays all of the user's jobs having the specified job name, as
shown in the following example:

$ SHOr~~ ENTRY CHECKNODE

Entry Jobname Username Blocks Status

38 CHECKNODE HERSHEY Holding
On stopped batch queue NODEA_BATCH

167 CHECKNODE HERSHEY 2 Pending
On stopped printer queue NODEB_PRINT

605 CHECKNODE HERSHEY Pending
On stopped batch queue NODEC_BATCH

Wildcards are allowed. You can also specify lists using any combination of valid
parameters. For example, the following command displays entry 605 and all
entries with job names starting with "W":

$ SHOW ENTRY 605, W*

By specifying a job name with the SHOW ENTRY command, users can view
information about their entries without having to remember the entry numbers
assigned to the jobs. This is helpful for users with many jobs in the system.

For more information about the SHOW ENTRY command, see the VMS DCL
Dictionary.

3.1.3 New Stalled Job State
Previously, when a queue physically stalled, the SHOW ENTRY command output
for the executing job would display the status of the job as "Executing" even
though the job was stalled. For example, if queue NODEA PRINT were stalled, a
SHOW ENTRY command would display the following:

Jobname Username Entry Blocks Status

MYJOB HERSHEY 6 238 Executing
On printer queue NODEA_PRINT

Thus, the user might incorrectly believe that the job was processing.

In the new batch and print queuing system, when the physical device to which a
queue is assigned is stalled, the job's status now appears as "Stalled", as shown
in the following example:

Entry Jobname Username Blocks Status

6 MYJOB HERSHEY 238 Stalled
On stalled printer queue NODEA_PRINT

The new display also includes the state of the queue in which the job is located.

3.2 Change in Format of SHOW QUEUE Display
In the previous batch and print queuing system, the SHOW QUEUE command
returned a display similar to the following:

Batch and Print Queuing System
3.2 Change in Format of SHOW QUEUE Display

Batch queue NODE_BATCH, on NODE22::

Jobname Username Entry Status

SET HERSHEY 6 Executing

In the new batch and print queuing system, the display for the SHOW QUEUE
command is changed to appear similar to the following:

Batch queue NODE_BATCH, busy, on NODE22::

Entry Jobname

6 SET

Username Status

HERSHEY Executing

The new display makes it easier for you to locate a job's entry number.

3.3 User-Specified Job Retention
In the previous batch and print queuing system, system managers could use
the /RETAIN qualifier with the INITIALIZE/QUEUE, START/QUEUE, or SET
QUEUE command to establish job retention policy for a particular queue.

In the new batch and print queuing system, users can also use the /R,ETAIN
qualifier with the PRINT, SUBMIT, or SET ENTRY command to specify the
circumstances under which they want their jobs to be retained in a queue.

3.3.1 Uses for User-Specified Job Retention
Specifying job retention can be useful for the following reasons:

• Changes to the SHOW ENTRY and SHOW QUEUE displays include the
date and time at which a retained job completed and the queue on which it
executed. This information can help you determine which printer a print job's
output was sent.

• As with previous versions, the SHOW ENTRY and SHOW QUEUE displays
for jobs retained on error also include the unsuccessful status message. This
message can help you determine why a job did not complete sucessfully.

Without job retention, no record of a j ob is left in a queue after a j ob completes.
However, when a job is retained in the queue, you can issue the SHOW QUEUE
command after the job completes to see the status of the job. For example:
$ SHOvv Q;EU~ DOCSLN03

Server queue DOC$LN03, stopped, on NEWTON:: mounted form DEFAULT

Entry Jobname Username Blocks Status

436 DOCPLAN HERSHEY 8 Retained on error
oJBC-F-JOBABORT, job aborted during execution
Completed 4-APR-1991 20:15 on queue DOC$LN03

3.3.2 Job Retention Command Syntax
To specify that you want your job to be retained, use the /RETAIN qualifier with
the PRINT, SUBMIT, or SET ENTRY commands as shown in the following syntax
example:

PRINT/RETAIN=option filespec[,...]

Batch and Print Queuing System
3.3 User-Specified Job Retention

where option can be one of the following:

• ALWAYS Holds the job in the queue regardless of the job's completion
status.

• DEFAULT Holds the job in the queue as specified by the queue's retention
policy.

• ERROR Holds the job in the queue only if the job completes unsuccessfully.

• UNTIL=time-value Holds the job in the queue for the specified length of
time, regardless of the job's completion status.

Note

You cannot specify the /NORETAIN qualifier with the commands PRINT,
SUBMIT, and SET ENTRY (as system managers can with the commands
INITIALIZE/QUEUE, START/QUEUE, and SET QUEUE); however, you
can specify /R,ETAIN=DEFAULT with those commands. The default
option holds the job in the queue as specified by the queue's retention
policy. If the system manager has not specified retention for the queue,
the job is not retained.

3.3.3 How Job Retention Is Determined
Although you can now specify job retention options for your own jobs, the job
retention option you specify may be overridden by the job retention option of the
queue on which your job executed. If you submit or print a j ob to a generic queue,
the generic queue's job retention setting may also override the job retention
option you specify. This section describes how job retention is determined.

An execution queue's job retention setting takes precedence over a generic queue's
job retention setting. However, if the job's completion status does not match the
job retention setting (if any) on the execution queue, then the generic queue's job
retention setting attempts to control job retention. If the job's completion status
does not match the job retention setting (if any) on the generic queue, then the
user-specified job retention setting is used. Jobs submitted directly to execution
queues are not affected by job retention settings on generic queues.

If the execution queue's retention setting applies, the job is retained on the
execution queue. Likewise, if the generic queue's retention setting applies, the
job is retained on the generic queue. If the user-specified setting applies, the job
is retained in the queue to which it was submitted.

The following example illustrates how the queue manager determines how and
where to retain a job.

Suppose you submit a job to a generic queue and specify /RETAIN=ALWAYS, and
the job completes successfully.

First, the queue manager compares the job's completion status to the execution
queue's retention setting. If the queue is set with /RETAIN=ERROR (retains only
jobs that complete unsuccessfully), the job is not retained in the execution queue
because the error condition was not met.

The queue manager then compares the job's completion status to the generic
queue's retention setting. If the generic queue has no retention setting, the queue
manager's comparison again fails to retain the job.

3-4

Batch and Print Queuing System
3.3 User-Specified Job Retention

Finally, the queue manager compares the job's completion status to the retention
setting you specified for the job. This comparison reveals that the job should be
retained. Because the user-specified setting leads the queue manager to retain
the job, the job is held in the queue to which the job was submitted in this case,
the generic queue.

For more information about types of queues, see the INITIALIZE/QUEUE
command in the VMS DCL Dictionary. For more information about setting
retention options for queues, see the INITIALIZE/QUEUE, START/QUEUE, or
SET QUEUE command in the VMS DCL Dictionary.

3.3.4 Timed Retention
Timed retention, which you specify using the UNTIL=time-value option, allows
you to retain a job in the queue only as long as you need it. This eliminates the
need to delete the job from the queue later.

For example, the following command retains the print job MYFILE in the queue
until 7:31 on April 19, when the job will automatically be deleted from the queue.

$ PRINT/RETAIN=UNTIL=19-APR-1991:07:31:0.0 MYFILE.DAT

However, depending on the queue's job retention policy, the job might be retained
indefinitely. The job retention policy set on the queue takes precedence over the
user-specified job retention setting. Because system managers cannot specify
timed job retention for a queue, any jobs retained as a result of a queue's setting
are retained indefinitely.

If you specify the /R,ETAIN=UNTIL=time-Value option, you must supply a
time value. The time value is first interpreted as a delta time, then as a
combination time, and finally as an absolute time. If you specify a delta time,
the delta begins when the job completes. For example, if you specify PRINT
/R,ETAIN=UNTIL="+3:00", the job will be retained for three hours after the job
completes. For information about specifying time values, see the VMS User's
Manual.

3.4 Batch Log Time-Stamps
Batch time-stamps are being introduced with the new batch and print queuing
system. The ability to time-stamp your log files lets you use a full date and time
prefix to identify batch runs and to verify that a batch job ran at the expected
time.

This feature lets users set a prefix, commonly called atime-stamp, for verified
DCL command lines. The enhancement uses the $FAO (formatted ASCII output)
system service to provide some flexibility in formatting the prefix. The FAO
control string is limited to:

• Constants

• Special formatting directives (such as "!/", "!_", "!^", "!!", and "!n*c")

• Date/time directives ("!%D" and "i%T")

• Repeat counts ("!n(DD)")

• Output-field-length specifications ("!lengthDD")

Time-stamping occurs once for a verified command; continuation lines are padded
with blanks. Image input and output lines are not prefixed or padded.

Batch and Print Queuing System
3.4 Batch Log Time-Stamps

To use time-stamping, users must set a prefix control string with the new SET
PREFIX command. Prefixing occurs any time that command verification is
turned on with the SET VERIFY command or the F$VERIFY lexical function. To
determine the current prefix control string, use the F$ENVIRONMENT lexical
function with the new VERIFY PREFIX item.

See Section 3.4.1 for more information about the new SET PREFIX command.
See the VMS DCL Dictionary for more information about the SET VERIFY
command or the F$VERIFY lexical funtion. See Section 3.4.2 for more
information about the new VERIFY PREFIX item.

3.4.1 New DCL Command: SET PREFIX
The SET PREFIX command replaces the current verification prefix control string
with a specified string. This allows you to prefix verified command lines with a
custom string. This string is a limited FAO control string that specifies date and
time information as well as information about constants and formatting controls
(that is, tabs, form feeds, and so on). See the description of the F$FAO lexical
function in the VMS DCL Dictionary for more information about FAO control
strings.

The first line of a verified command is prefixed with the result of the control
string. Any continuation lines are prefixed with a blank string to make them
flush with the first line of the command. Command input and output are not
prefixed.

SET [NO]PREFIX string

Parameter
string
Specifies the new FAO control string to be used in generating a prefix to a verified
command line. The following rules apply:

• No more than 64 characters are allowed in the control string.

• The resulting string can be no longer than 64 characters.

• Basic formatting FAO directives can be used ("!/", "!_", "!^", "!!", and "!n*c").

• Time and date FAO directives can be used ("!%T" and "!%D").

• Repeat counts can be used ("!n(DD)").

• Output-field-length specifications can be used ("!lengthDD").

• Combination of repeat count and output field length can be used

For more information about building an FAO control string, see the description of
the F$FAO lexical function in the VMS DCL Dictionary.

3-6

Batch and Print Queuing System
3.4 Batch Log Time-Stamps

Example

$ SET VERIFY
$ @TEST
$ SET DEFAULT SYS$LOGIN
$ SHOW DEFAULT
USER$:[SMYTHE]

$ SET PREFIX " (! 5 oT) "
$ @TEST
(17:52) $ SET DEFAULT SYS$LOGIN
(17:52) $ SHOW DEFAULT

USER$:[SMYTHE]

This example demonstrates the difference between having no prefix for
verification and having one. The first command turns on verification. (Verification
must be on to see the prefix.) The second command invokes a test procedure to
show what the output looks like without a prefix. The third and fourth lines
reflect the contents of the test procedure invoked in the preceding command.
The third command sets the prefix to an FAO control string so that the first
five characters of the standard time will be shown for each command. The last
command invokes the test procedure again to demonstrate what the output looks
like with a prefix.

3.4.2 New Item for F$ENVIR~NMENT Lexical Function
A new item, VERIFY PREFIX, has been added to the F$ENVIRONMENT lexical
function. The VERIFY_PREFIX item returns the prefix control string for verified
command lines. Use the SET PREFIX command to set the control string. If
procedure verification is in effect, then the control string will generate a prefix to
which the verified line is appended. The return value for the VERIFY PREFIX
item is a character string.

Example

$ PROC_VER = F$ENVIRONMENT("VERIFY_PROCEDURE")
$ IMAGE_VER = F$ENVIRONMENT("VERIFY_IMAGE")
$ HOLD_PREFIX = F$ENVIRONMENT("VERIFY_PREFIX")
$ SET PREFIX " (! oT) "
$ SET VERIFY

$ TEMP = F$VERIFY(PROC_VER, IMAGE_VER)
$ SET PREFIX " " HOLD_PREFIX "'

This command procedure uses the F$ENVIRONMENT lexical function to save
the current procedure and image verification settings, as well as the current
verification prefix string. The SET PREFIX command sets the verification prefix
to be used in the current command procedure. It uses an FAO control string
to produce the time each command is read by the command interpreter (DCL),
surrounded by parentheses. Then the SET VERIFY command turns on both
procedure and image verification. Subsequently, the F$VERIFY lexical function
is used to restore the original verification settings. The SET PREFIX command
returns the verification prefix to its previous setting. Note how the symbol
HOLD_PREFIX is used in the SET PREFIX command. This preserves casing and
special characters in the stored string.

Batch and Print Queuing System
3.5 /NOTE Qualifier for SUBMIT Command

3.5 /NOTE Qualifier for SUBMIT Command
In the new batch and print queuing system, the SUBMIT command accepts the
/NOTE qualifier. The /NOTE qualifier is used to specify a message string of up to
255 characters. This message string appears as part of the display on a SHOW
QUEUE/FULL command and can thus be used to convey information concerning
the job, as in the following example:

$ SUBMIT /HOLD MYJOB -
_$ iNOTE="ATTN OPERATOR: Mount tape ABCD before releasing job"
$ SHOW QUEUE/FULL SYS$BATCri
Generic batch queue SYS$BATCH

/GENERIC=(DEANNA_BATCH,TROI_BATCH,EMPATH_BATCH) /OWNER=[SYSTEM]
/PROTECTION=(S:E,O:D,G:R,W:W)

Entry Jobname Username Status

38 MYJOB HERSHEY Holding
Submitted 12-NOV-1991 17:56
/NOTE="ATTN OPERATOR: Tape ABCD must be mounted before

release of job" /PRIORITY=100
File: _1DUA24:[HERSHEY]MYJOB.COM;2

The message specified with the /NOTE qualifier is also printed on the flag page
of the log file and can be used to convey post-printing information, as in the
following example:

$ SUBMIT /LOG_FILE /PRINTER=MYPRIi~`~'QliEUE MYJOB -
_$ /NOTE="Please send log file to second floor mailbox"

3.6 Changes to F$GETQUI Lexical Function
In the new batch and print queuing system, the F$GETQUI lexical function
is enhanced to return information about the new AUTOSTART feature as it
pertains to a queue. For more information about using F$GETQUI, see the VMS
DCL Dictionary. The AUTOSTART feature is described in detail in Section 5.4.

The F$GETQUI lexical function is also enhanced to return information about
user-specified job retention. See Section 3.3 for more information about user-
specified job retention. In addition, the object-id argument to the DISPLAY
ENTRY function code now accepts a job name. For more information about the
job name argument, see Section 3.1.2.

The item argument specifies the kind of information you want returned about
a particular queue, job, file, form, or characteristic. Table 3-1 lists the new or
enhanced item codes in the new batch and print queuing system.

Table 3-1 F$GETQUI Items

Item Return Type Information Returned

AUTOSTART_ON String A list of node or node device pairs on
which the autostart queue may be run. For
information about autostart queues, see
Section 5.4.

(continued on next page)

Batch and Print Queuing System
3.6 Changes to F$GETQUI Lexical Function

Table 3-1 (Cont.) F$GETQUI Items

Item Return Type Information Returned

QUEUE_AUTOSTART

QUEUE AUTOSTART_
INACTIVE

QUEUE AVAILABLE String

String FALSE. TRUE if the specified queue has
been designated as an autostart queue. For
information about autostart queues, see
Section 5.4.

String FALSE. TRUE if the queue is an autostart
queue that will not be automatically
started. If TRUE, aSTART/QUEUE or
INIT/QUEUE/START command must
be issued to restart the queue. For
information about autostart queues, see
Section 5.4.

FALSE. TRUE if queue is processing work
but is capable of processing additional
work.

FALSE. TRUE if queue cannot process
additional jobs because of work in progress.

FALSE. TRUE if queue will be stopped
when work currently in progress has
completed.

FALSE. TRUE if the user requested that
the specified job be held in the queue if it
completes unsuccessfully.

String FALSE. TRUE if the user requested that
the specified job be held in the queue upon
completion.

String FALSE. TRUE if the specified job is stalled
because the physical device on which it was
printing is stalled.

Shows the user-specified system time until
which the specified job will be retained in
the queue.

Shows the time at which the execution of
the specified job completed.

JOB_COMPLETION_ String Shows the name of the queue on which the
QUEUE specified job executed.

QUEUE_BUSY String

QUEUE_STOP_PENDING String

JOB_ERROR_RETENTION String

JOB_RETENTION

JOB_STALLED

JOB_RETENTION_TIME String

JOB_COMPLETION_TIME String

The object-id argument specifies either a name or a number of one or more
objects about which F$GETQUI is to return information.

In the new batch and print queuing system, the object-id argument is enhanced
to accept a 1- to 39-character string when specified with the DISPLAY ENTRY
function. F$GETQUI uses this string to restrict its search for a job or jobs.
F$GETQUI searches for job names that match the object-id input value for the
given user name.

To direct F$GETQUI to perform a wildcard search, specify the wildcard keyword
as a flags argument. Wildcard characters (* and %) are allowed as part of the
character-string value specified as the object-id argument.

Batch and Print Queuing System
3.6 Changes to F$GETQUI Lexical Function

Example

$ this_node = f$edit(f$getsyi("scsnode"),"collapse")
$ temp = f$getqui("cancel_operation")
$ set noon
$loop:
$ queue = f$getqui("display_queue","queue name","*","wildcard")
$ if queue .eqs. "" then goto endloop
$ if this node .eqs. f$getqui("display_queue","scsnode_name","*","wildcard,freeze_context")
$ then
$ if .not. f$getqui("display_queue","queue_autostart","*","wildcard,freeze_context")

then start/queue 'queue'
$ endi f
$ goto loop
$endloop:
$ set on

This command procedure looks at all queues associated with the local cluster
node and starts any queue that is not marked as autostart.

The procedure starts by obtaining the node name of the local system and
clearing the F$GETQUI context. In addition, error handling is turned off for
the subroutine so that if a queue had been started before, the resulting error from
the START QUEUE command will not abort the command procedure.

Inside the subroutine, the F$GETQUI function gets the next queue name in the
queue list. If the result is empty, then it has reached the end of the list and exits
the subroutine.

The next IF statement checks to see if the queue runs on the local node. If it
does, the next statement checks if the queue is marked as an autostart queue.
If the queue is marked as an autostart queue, it is started with the START
command and the subroutine executes again.

The final command of the procedure restores DCL error handling to the previous
setting.

4
VMS System Messages

This chapter alphabetically lists and describes system messages that have been
added or revised since Version 5.4 of the VMS System Messages and Recovery
Procedures Reference Manual. The following pages include new, updated, or
previously undocumented system messages for the following VMS facilities:

• ANALDISK, Analyze/Disk_Structure Utility

• AUTHORIZE, Authorize Utility

• BACKUP, Backup Utility

• BUGCHECK, System Bugcheck

• CLI, Command Language Interpreter (DCL)

• CMA, DECthreads (Multithreading Run-Time Library)

• DISMOUNT, DISMOUNT Command

• DDTM, DECdtm Services

• INIT, INITIALIZE Command

• JBC, Job Controller

• LAVC, Local Area VAXcluster

• LAT, LAT Facility

• LMCP, Log Manager Control Program

• LOGIN, Login Processor

• MAIL, Mail Utility

• MOUNT, Mount Utility

• NCP, Network Control Program

• OPCOM, Operator Communication Process

• QMAN, Queue Manager

• SDA, System Dump Analyzer

• STDRV, System Startup Driver

• SYSBOOT, System Bootstrap Facility

• SYSGEN, System Generation Utility

• SYSTEM, VMS System Services

This chapter includes messages that were published in the VMS Version 5.4
Release Notes.

VMS System Messages

See Section B.4.2.1 for information on how to install and access an online help
version of the VMS System Messages and Recovery Procedures Reference Manual.

ABORT, abort

Facility: SYSTEM, VMS System Services

Explanation: This message is returned under either of the following
conditions:

• It is returned by $START_TR'ANS if the DECdtm services are disabled on
the local node or if the node does not have a transaction log.

• It is returned by $END_TR'ANS if the transaction was aborted during
processing.

User Action: On returns from $START_TR',ANS, make sure the local node
has a transaction log and the DECdtm transaction services are enabled. On
returns from $END_TRANS, check the abort reason code in the UO status
block to find out why the transaction aborted.

ABORTED, application aborted transaction via $ABORT_TRANS service

Facility: DDTM, DECdtm Services

Explanation: The user program has aborted the transaction using the
$ABORT_TRANS service.

User Action: None.

ACCWAIT, waiting to access files in ~ directory

Facility: QMAN, Queue Manager

Explanation: When a node is booting, the queue manager can start
up before the disk that contains queue and journal files is mounted. In
such cases, all queuing-related requests wait and this message displays
periodically to alert the system manager of the situation. An accompanying
message describes the disk-related error.

User Action: Make sure the disk is mounted. Consult the accompanying
message to diagnose any problems.

ACCWAITDONE, no longer waiting to access files in ~ directory

Facility: QMAN, Queue Manager

Explanation: When a node is booting, the queue manager can start up
before the disk that contains queue and journal files is mounted. This
message indicates that the queue manager is no longer waiting because the
disk has been mounted or startup has completed.
User Action: None.

ACPINIT, LATACP initialized

Facility: LAT, LAT Facility

Explanation: The LATACP has been initialized.
User Action: None.

VMS System Messages

ACPNOCTL, insufficient resources -ACP CTL/P1 space limit reached

Facility: LAT, LAT Facility

Explanation: A request to add more information to the LATACP's database
has been rejected because LATACP has insufficient resources to service the
request.

User Action: Increase the value of SYSGEN parameter CTLPAGES or refer
to the VMS LAT Control Program (LATCP) Manual for information on how to
set a node limit to decrease LATACP's consumption of P1 space.

ACPNOKSTK, insufficient resources -ACP kernel stack limit reached
Facility: LAT, LAT Facility

Explanation: A request to add more information to the LATACP's database
has been rejected because LATACP has insufficient resources to service the
request.

User Action: Refer to the VMS LAT Control Program (LATCP) Manual for
information on how to set a node limit to decrease LATACP's consumption of
the kernel stack.

ACPNOVIRT, insufficient resources -ACP PO space limit reached
Facility: LAT, LAT Facility

Explanation: A request to add more information to the LATACP's database
has been rejected because LATACP has insufficient resources to service the
request.

User Action: Refer to the VMS LAT Control Program (LATCP) Manual for
information on how to set a node limit to decrease LATACP's consumption of
PO space, or determine the cause of the resource exhaustion and attempt to
correct it by tuning the LATACP process.

ALERTED, thread execution has been canceled

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A thread has been requested to terminate by either the
cma_thread_alert or pthread_cancel routine. DECthreads uses an alert to
request that a thread terminate after first performing cleanup and shutdown
operations.

User Action: If you do not want threads to terminate at the point where
this alert is being delivered, you can use several routines (cma_alert_
disable_general, cma_alert_disable_asynch, cma_alert_restore,
pthread_setcancel, and pthread_setasynccancel) to specify points in the
thread process where alerts cannot be delivered to the thread.

ALERT_NESTING, improper nesting of alert scope

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: An attempt was made to restore an inner scope after an
enclosing outer scope had already been restored.

User Action: Examine the code to determine where the incorrect alert state
variable was passed to the cma_alert_restore routine.

VMS System Messages

ALLOCMEM, error allocating virtual memory

Facility: JBC, Job Controller and QMAN, Queue Manager

Explanation: The job controller or queue manager encountered an error
while allocating virtual memory. An accompanying message provides
additional information.

User Action: Take action based on the accompanying message. You
might need to run AUTOGEN to ,increase the SYSGEN parameter
VIRTUALPAGECNT. If the accompanying message does not require you to
keep the process dump, you can delete it.

ALRCURTID, a default transaction is currently defined

Facility: SYSTEM, VMS System Services

Explanation: An attempt was made to start a default transaction when the
process already had a default transaction.

User Action: Either terminate the default transaction already in progress
before starting a new one or start a new transaction as a nondefault
transaction.

ARBTOOBIG, access rights block too big

Facility: SYSTEM, VMS System Services

Explanation: The access rights block (ARB) for the current process is too
large to package and send to another subsystem.

User Action: Have your system manager use the Authorize Utility to remove
unnecessary rights identifiers from the process and reenter the command.

ASUSPECT, customer defined text

Facility: LAVC, Local Area VAXcluster

Explanation: The local area VAXcluster network failure analysis has located
a network problem and reported this network component as suspect.

User Action: Several PEDRIVER channels that were using this network
component have failed. The analysis indicates that this component or
something connected to it is likely to have caused the network problems.
Have the system manager or network manager look into the network
problem.

AUTONOTSTART, queue is autostart active, but not started

Facility: JBC, Job Controller

Explanation: You tried to start an autostart queue when none of its
available nodes has autostart enabled.

User Action: Enter an ENABLE AUTOSTART[/QUEUES] command on the
nodes in the queue's autostart node list.

BADCHECKSUM, message checksum failure

Facility: SYSTEM, VMS System Services

Explanation: A VAXcluster node has received a service request that
contains user or object security profile information with questionable data
integrity. The request cannot be serviced without potentially compromising
system security.

User Action: Contact Digital Services or file a Software Performance Report
(SPR).

4-4

VMS System Messages

BADFORMAT, format version mismatch in file ~ filespec

Facility: Shared by several facilities

Explanation: The specified file is not formatted as expected.
User Action: Verify that you specified the correct file.

BADGETJPI, unable to read process information

Facility: LAT, LAT Facility

Explanation: LATCP was unable to read process information before doing a
SPA`'VN command.

User Action: Take appropriate action based on information in the
accompanying message.

BADITMPROC, failed to process item code ~ hex-number ~ correctly

Facility: QMAN, Queue Manager

Explanation: The queue manager encountered an internal error. When this
error message occurs, a user request terminates with an INVITMCOD error.
User Action: Submit a Software Performance Report (SPR) and include the
item code number cited in the message.

BADLOGVER, transaction log file format version is unsupported

Facility: SYSTEM, VMS System Services

Explanation: The format of the transaction log file is not supported.
User Action: Use the LMCP facility to create a new transaction log file.

BAD_NAME, unable to repair log with invalid name format

Facility: LMCP, Log Manager Control Program

Explanation: A log repair could not be performed on the specified log file
either because the file does not exist in the SYS$JOURNAL directory or
because the file is not named using the convention SYSTEM node-name.

User Action: Refer to Section B.11.1.1 and Section B.11.1.2 for information
about naming and placing log files.

BADPARAM, parameter to DECthreads operation is invalid

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A parameter passed to a DECthreads routine is improper; for
example, the value is of the wrong type or is out of range.

User Action: Determine which routine raised the exception. Then consult
the documentation to determine the correct parameters and value ranges.
Update your code accordingly and retry the operation.

BAD_SIZE, log file size invalid -permitted minimum is 100 blocks

Facility: LMCP, Log Manager Control Program

Explanation: You attempted to create a log file that is too small to use.

User Action: Recreate a log file specifying a file size of 100 blocks or more.

VMS System Messages

BUFTOOSMALL, request could not be completely satisfied due to limited buffer
size

Facility: JBC, Job Controller

Explanation: Your $GETQUI or $SNDJBC request was not fully satisfied
because the amount of information retrieved in response to the query exceeds
the amount of data the queue manager can return in response to a single
request.

User Action: Replace your large request with several smaller requests.

BUGCHECK, internal error detected in DECthreads

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: The DECthreads run-time program has discovered an internal
inconsistency.

User Action: Run the program with the debugger. Use the SET OUTPUT
LOG command so that the debugger outputs the results to a file. Type GO to
run the program. When the bugcheck occurs, type SHOW CALLS. Submit a
Software Performance Report (SPR) with the file produced by the debugger.

CANTATTACH, unable to ATTACH to target process

Facility: LAT, LAT Facility

Explanation: LATCP was unable to attach to the process specified by the
ATTACH command for the reason described in an accompanying message.
User Action: Correct the situation based on the information in the
accompanying message.

CANTCOPYSTR, unable to copy character string

Facility: LAT, LAT Facility

Explanation: An internal LATCP error occurred.

User Action: Take appropriate action based on information in the
accompanying message.

CANTSPAWN, unable to SPAWN due to captive account

Facility: LAT, LAT Facility

Explanation: You cannot spawn out of LATCP using the SPAWN command
when LATCP is being run from a captive account.
User Action: None.

CHANINTLK, channel usage interlocked
Facility: SYSTEM, VMS System Services

Explanation: An application attempted to perform a terminal I/O request to
a pseudoterminal that has a virtual terminal linked to it.
User Action: Do not use the channel for terminal I/O until the virtual
terminal is no longer linked.

CLOSEERR, error closing ~ filespec

Facility: Shared by several facilities

Explanation: The specified file cannot be closed. Usually an accompanying
RMS message indicates why the file cannot be closed.
User Action: Take corrective action based on the accompanying message.

4-6

VMS System Messages

CMDERROR, error reported by command executor

Facility: LAT, LAT Facility

Explanation: The command executor module for LATCP cannot execute the
command for the reason given in the accompanying message.

User Action: Correct the situation based on the information in the
accompanying message.

CMDOBS, command obsolete -ignored

Facility: LAT, LAT Facility

Explanation: The specified LATCP command is obsolete; the command is
ignored.

User Action: Discontinue use of this command.

CNTRSOBS, counters command qualifier obsolete -command ignored

Facility: LAT, LAT Facility

Explanation: The LATCP command SHOW COUNTERS is obsolete; the
command is ignored.

User Action: Discontinue use of the SHOW COUNTERS command.

COMMERROR, unexpected error # ~ number ~ in communicating with node CSID
number

Facility: QMAN, Queue Manager

Explanation: The queue manager encountered an internal error. The
accompanying message provides more information about the cause of the
error.

User Action: Submit a Software Performance Report (SPR) and include
the message text. Create a copy of all *.QMAN$JOURNAL* files using the
BACKUP/IGNORE=INTERLOCK command as soon as possible and include
the copy with the SPR, along with any SYS$SYSTEM:QMAN$QUEUE_
MANAGER.DMP files. Also provide a copy of any messages written to the
console or operator log file with the QUEUE_l~2ANAGE or JOB_CONTROL
username.

COMM_FAIL, DECdtm transaction manager communications failure prior to
voting

Facility: DDTM, DECdtm Services

Explanation: The transaction aborted because of a communications failure
between two DECdtm transaction managers involved in the transaction.

User Action: Check the network links between the nodes involved in the
transaction.

CONATMPT, continuing attempts to connect to ~ service-name

Facility: LAT, LAT Facility

Explanation: A SET HOST/LAT connection failed and is being retried.
This informational message is seen only if the /AUTOCONNECT qualifier is
specified on SET HOST/LAT.

User Action: You can enter CtrUY to cancel the retry.

VMS System Messages

CONFAIL, connection to ~ service-name ~ not established

Facility: LAT, LAT Facility

Explanation: A SET HOST/LAT connection attempt was not successful.

User Action: Take appropriate action based on information in the
accompanying message.

CONFQUAVAL, values for /DISCONNECT and BREAK must be different

Facility: LAT, LAT Facility

Explanation: The SET HOST/LAT command specified the same character
for both the /DISCONNECT and BREAK qualifiers.

User Action: Specify different characters for the /DISCONNECT and
BREAK qualifiers.

CONLOST, connection to ~ service-name ~ terminated

Facility: LAT, LAT Facility

Explanation: After a SET HOST/LAT connection was established, an error
condition occured that caused the connection to be abnormally terminated.

User Action: Determine the availability of the node that had the connection
broken.

CONNECTED, session to ~ service-name ~ on node ~ node-name ~ established

Facility: LAT, LAT Facility

Explanation: The SET HOST/LAT session has been established to the
specified service and node. No node name is specified in the message when
the node is the same as the service.

User Action: None.

CONTIMEOUT, connection timed out, server not available, or incorrect server
name

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt on a LAT device (LTAxxx:) failed
when the connection request timed out. Either the remote node was
not available or the LTA device describing the destination to receive the
connection was set up incorrectly.

User Action: Check the mapping for the LTA device from which the
connection was attempted or check to see whether the remote node described
by the LTA device is available on the network.

CONTROLC, operation completed under CTRL/C

Facility: LAT, LAT Facility

Explanation: The LATCP command completed after you entered CtrUC.
User Action: None.

CREPRCSTOP, failed to create a batch process; queue ~ queue-name ~ will be
stopped

Facility: QMAN, Queue Manager

Explanation: The queue manager could not create a process to execute
a batch job. To avoid errors when trying to execute other batch jobs in
the queue, the specified queue will be stopped upon completion of any jobs

VMS System Messages

currently executing in that queue. An accompanying message provides
additional information.

User Action: Take action based on the accompanying message. Possibly
there are too few process slots on the node. Correct the problem and try to
restart the queue.

DATALOST, data lost

Facility: SYSTEM, VMS System Services

Explanation: Data was lost on a PTD$WRITE operation because the
terminal driver's type-ahead buffer is full.

User Action: Wait until the driver is ready for input and try entering the
data again. For information on how to program the pseudoterminal, refer to
the VMS I l O User's Reference Manual: Part I.

DATAOVERUN, data overun

Facility: SYSTEM, VMS System Services

Explanation: This message can occur under the following conditions:

• More data has been read into the user buffer than the user buffer can
hold.

• More data has been written into the user buffer than the user buffer can
hold.

• Card reader data has been written into the controller data buffer before
the driver has been able to receive previously sent data.

• Continued attempts to use PTD$WRITE have resulted in data loss
because the terminal driver's type-ahead buffer is full.

If this message is associated with a status code returned by a request to a
magnetic tape driver, the data block read is longer than the assigned buffer.
On a read reverse operation, the first data read and stored in the buffer is the
data that was nearest the end-of--tape marker when the operation began.

User Action: There are several possible user actions:

• If there is too much data for the existing buffer, specify a larger buffer.

• If the problem occurred on a card reader operation, resubmit the cards to
the reader.

• Turn on the alternate type-ahead buffer by using the DCL command
SET TERMINAL/ALTYPEAHD. Then increase the type-ahead buffer size
or the alternate type-ahead buffer size, or both, by modifying the TTY
SYSGEN parameters.

• Wait until the driver is ready to receive input before you resume
writing data. For information on how to handle flow control and the
pseudoterminal, refer to the VMS I l O User's Reference Manual: Part I.

VMS System Messages

DEFER_Q_FULL, no space is currently available to process an AST request

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A call to a DECthreads service from an AST routine cannot be
served immediately because there are too many outstanding requests.

User Action: AST routines using DECthreads are occurring too quickly.
Reduce the number of requests or slow the rate of their arrival.

If you continue to have problems, submit a Software Performance Report
(SPR) including a small test program that reproduces the problem.

DEFINEKEY, defined key ~ key-name

Facility: LAT, LAT Facility

Explanation: The specified key has been defined by LATCP.

User Action: None.

DELLINK, deleted link ~ link-name

Facility: LAT, LAT Facility

Explanation: The specified link has been deleted by LATCP.

User Action: None.

DELPORT, deleted port ~ port-name

Facility: LAT, LAT Facility

Explanation: The specified port has been deleted by LATCP.

User Action: None.

DELSERUICE, deleted service ~ service-name

Facility: LAT, LAT Facility

Explanation: The specified service has been deleted by LATCP.

User Action: None.

DISCONNECTED, session disconnected from ~ service-name

Facility: LAT, LAT Facility

Explanation: The SET HOST/LAT session has been disconnected.

User Action: None.

virtual-unit: ~ does not contain the member named to VMB. System may not
reboot.

Facility: OPCOM, Operator Communication Process

Explanation: Either of the following conditions can cause this message:

• The boot device is dismounted or failed out of the system disk shadow set.

• Shadowing finds the boot device missing from the system disk shadow set
membership during any dismount operations on the system disk.

User Action: Mount the boot device back into the shadow set as soon as
possible. If you cannot mount the boot device back into the shadow set,
change the device name in VMB so the system can reboot.

VMS System Messages

DRIVERNOTSHUT, LATACP not initialized because driver not completely shut
down

Facility: LAT, LAT Facility

Explanation: An attempt was made to run the LATACP process before the
previous driver shutdown request had completed.

User Action: Wait until driver shutdown tasks have completed before
attempting to start LATACP or determine whether some condition is
preventing LAT driver shutdown from completing.

DUPCHARNAME, duplicate characteristic name

Facility: JBC, Job Controller

Explanation: ADEFINE/CHARACTERISTIC command specified a
characteristic name that is already defined. Each characteristic must have a
unique name.

User Action: Choose a name that is not yet defined or delete the old
definition and redefine it.

DUPCHARNUM, duplicate characteristic number

Facility: JBC, Job Controller

Explanation: ADEFINE/CHARACTERISTIC command specified a
characteristic number that is already defined. Each characteristic must have
a unique number.

User Action: Choose a number that is not yet defined or delete the old
definition and redefine it.

DUPFORMNAME, duplicate form name

Facility: JBC, Job Controller

Explanation: ADEFINE/FORM command specified a form name that is
already defined. Each form must have a unique name.

User Action: Choose a name that is not yet defined or delete the old
definition and redefine it.

END, control returned to node ~ node-name

Facility: LAT, LAT Facility

Explanation: The SET HOST/LAT session has ended.

User Action: None.

ENTNOTFOU, node/service entity not found

Facility: LAT, LAT Facility

Explanation: An attempt to locate information about a specified node or
service ended with the local node finding no such information.

User Action: Check the network to ascertain that the specified node or
nodes offering the specified service are available. Also, check that the group
codes offered by the specified node or service coincide with the local node's
user groups.

VMS System Messages

ERRCREKBD, unable to create virtual input device

Facility: LAT, LAT Facility

Explanation: LATCP cannot create a virtual input device for keyboard
commands. An accompanying message explains why the virtual input device
cannot be created.

User Action: Correct the situation based on the information in the
accompanying message.

ERRVIRDPY, unable to create virtual output device

Facility: LAT, LAT Facility

Explanation: LATCP cannot create a virtual output device to display data.
An accompanying mesage explains why the virtual output device cannot be
created.

User Action: Correct the situation based on the information in the
accompanying message.

EXCCOP, exception raised; VMS condition code follows

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: An exception has been raised by the EXC_HANDLING.H
package, which provides portable exceptions for the C language. The
accompanying VMS condition code identifies the error.

User Action: See the documentation for the software that your program is
calling to determine the reason for this exception. Correct the problem or use
the EXC_HANDLING.H package to provide an exception handler.

EXCEPTION, exception raised; address of exception object: ~ object-address
Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: An exception has been raised by the EXC_HANDLING.H
package, which provides portable exceptions for the C language.

User Action: See the documentation for the software that your program is
calling to determine the reason for this exception. Correct the problem or use
the EXC_HANDLING.H package to provide an exception handler.

EXISTENCE, object referenced does not currently exist

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A DECthreads routine has been requested to operate on an
object that does not exist.

User Action: Consult the documentation for the DECthreads routine that
issued this message to determine the conditions that caused it. Also check
the program where the call is issued to determine which object or objects
being passed as parameters do not currently exist.

EXIT_THREAD, current thread has been requested to exit
Facility: CMA, DECthreads (Multithreading Run-Time Library)
Explanation: The cma_exit_thread routine has been called to force the
thread to shut down in an orderly fashion. This message notifies all active
exception handlers to perform any necessary cleanup activities.
User Action: None.

VMS System Messages

FAILOVER, attempting failover

Facility: LAT, LAT Facility

Explanation: A SET HOST/LAT connection to a service has been abnormally
lost. SET/HOST LAT is attempting to connect to another node offering the
same service.

User Action: None.

FATALERR, fatal error reading startup database

Facility: STDRV, System Startup Driver

Explanation: The startup driver encountered a fatal error while trying to
read the startup database files. The startup operation is aborted. If this
message occurs during a system reboot, VMS may not have been properly
started.

User Action: Verify that the startup databases, defined by the logical
names STARTUP$STARTUP_VMS, STARTUP$STARTUP_LAYERED, and
STARTUP$PHASES, are all available and can be accessed.

FREEDISK, free up ~ number ~ blocks on disk ~ disk-name

Facility: QMAN, Queue Manager

Explanation: The specified amount of disk space is needed on the named
disk.

User Action: Purge and delete files to make more space on the disk.

ILLPERNAM, ~ string ~ is an illegal personal name

Facility: MAIL, Mail Utility

Explanation: You specified a string containing an illegal combination
of characters, such as, for example, multiple consecutive spaces, special
characters that MAIL cannot process, or unbalanced quotation marks.

User Action: Specify a personal name that avoids the problem.

INCDISABLED, incoming connections are currently disabled

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt failed because the driver is not
accepting incoming LAT connections.

User Action: Enable incoming LAT connections (refer to the VMS LAT
Control Program (LATCP) Manual for instructions) and retry the connection.

INCSHAMEM, system disk membership inconsistency

Facility: INIT, INITIALIZE Command

Explanation: The boot device is not currently a source member of the
shadow set. One or more of the shadow set members named in the storage
control block (SCB) of the boot device is inaccessible.

User Action: None.

4-13

VMS System Messages

INIALRPRO, DECthreads initialization is already in progress

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A call was made to the DECthreads initialization routine
cma_init while DECthreads was still trying to initialize itself on a prior call.
DECthreads initialization must complete before any DECthreads routines are
used. Once DECthreads is fully initialized, all calls to cma_init complete
successfully.

User Action: Remove the offending concurrent call to the cma_init routine
or delay it until the first call to cma_init has completed.

INITFAIL, job controller initialization failure

Facility: JBC, Job Controller

Explanation: This message typically indicates that the system is improperly
configured. The accompanying message provides more information.

User Action: Use AUTOGEN to reconfigure the system. If the problem
does not seem to be associated with the system's configuration, submit a
Software Performance Report (SPR) and include SYS$SYSTEM:JBC$JOB_
CONTROL.DMP plus any messages written to the console or operator log file
with the QUEUE_MANAGE or JOB_CONTROL username.

INSRES, insufficient resources to complete operation

Facility: LAT, LAT Facility

Explanation: The system does not have enough resources to service the user
request.

User Action: Contact the system manager to determine which system
resource is inadequate.

INTERNALERROR, internal error caused loss of process status
Facility: JBC, Job Controller

Explanation: A system error prevented the queue manager from obtaining
the completion status of a process.

User Action: Ask your system manager to consult the operator log for
messages associated with the process.

IN_USE, object referenced is already in use

Facility: CMA, DECthreads (Multithreading Run-Time Library)
Explanation: The DECthreads operation cannot be performed on the
specified object because it is already in use; for example, the routine is
attempting to delete a mutex that is locked.
User Action: Determine which routine caused the error and make sure the
object is in an appropriate state before attempting the operation.

INVBUSNAM, invalid Local Area VAXcluster BUS name
Facility: SYSTEM, VMS System Services
Explanation: An invalid BUS name was specified when calling the
SYS$LAVC_START_BUS or SYS$LAVC_STOP_BUS routine.
User Action: Check the BUS name to make sure it contains at least three
ASCII characters to specify the LAN device to be used. For example, XQA is
a valid BUS name for the device name _XQAO:. The full device name _XQAO:
is also a valid BUS name.

VMS System Messages

INVCMD, invalid command

Facility: LAT, LAT Facility

Explanation: The specified LATCP command was invalid for the reason
given in an accompanying message.

User Action: Correct the situation based on the information in the
accompanying message.

INVCOMPID, invalid component ID

Facility: SYSTEM, VMS System Services

Explanation: An invalid component identification (ID) value was specified in
the network path description. SYS$LAVC_DEFINE_NET_PATH returns the
invalid component ID value in the buffer provided for BAD_COMPONENT_
ID.

User Action: A coding error occurred in the user program that passed the
component ID value. Review how the component ID value was obtained and
why it was placed into the network component list. Component IDs are valid
only on the local system and are not valid across system boots or after calling
SYS$LAVC_DISABLE_ANALYSIS.

INVCOMPLIST, invalid component list

Facility: SYSTEM, VMS System Services

Explanation: The network component list used when calling SYS$LAVC_
DEFINE_NET_PATH was built incorrectly.

User Action: Check the network component list to make sure it contains
the component identification (ID) values for two NODE components and
two ADAPTER components. The first and last component ID values should
correspond to NODE components.

INVCOMPTYPE, invalid component type

Facility: SYSTEM, VMS System Services

Explanation: An invalid component type value was passed to SYS$LAVC_
DEFINE_NET_C OMPONENT.

User Action: Use one of the component type values defined by the macro
$PEMCOMPDEF: COMP$C_NODE, COMP$C_ADAPTER, COMP$C_
COMPONENT, or COMP$C_CLOUD.

INVJOUDATA, invalid data found in job journal file

Facility: QMAN, Queue Manager

Explanation: The queue manager could not identify a piece of data in the
job journal file.

User Action: Submit a Software Performance Report (SPR). Create a copy
of all *.QMAN$JOURNAL~` files using the BACKUP/IGNORE=INTERLOCK
command as soon as possible and include the copy with the SPR. Also provide
a copy of any messages written to the console or operator log file with the
QUEUE_MANAGE or JOB_CONTROL username.

4-15

VMS System Messages

INVPREFIX, invalid prefix format string -check FAO directives

Facility: CLI, Command Language Interpreter (DCL)

Explanation: The prefix format string specified with SET PREFIX is invalid
for one of the following reasons: it is too long; it has invalid FAO directives;
or it has FAO directives that are not supported with this command.

User Action: Check the SET PREFIX description in Section 3.4.1 for
restrictions on the format string contents and resulting length. Modify the
string accordingly and retry the command.

INVQMANMSG, queue manager received an improper message

Facility: QMAN, Queue Manager

Explanation: The queue manager encountered an internal error.

User Action: Submit a Software Performance Report (SPR). Create a copy
of all ~.QMAN$JOURNAL~` files using the BACKUP/IGNORE=INTERLOCK
command as soon as possible and include the copy with the SPR, along with
any SYS$SYSTEM:QMAN$QUEUE_MANAGER.DMP files. Also provide
a copy of any messages written to the console or operator log file with the
QUEUE_MANAGE or JOB_CONTROL username.

INVR,EF, invalid object reference

Facility: QMAN, Queue Manager

Explanation: The queue manager encountered an internal error.

User Action: Submit a Software Performance Report (SPR). Create a copy
of all *.QMAN$JOURNAL* files using the BACKUP/IGNORE=INTERLOCK
command as soon as possible and include the copy with the SPR, along with
any SYS$SYSTEM:QMAN$QUEUE_MANAGER.DMP files. Also provide
a copy of any messages written to the console or operator log file with the
QUEUE_MANAGE or JOB_CONTROL username.

INVSECDOMAIN, request originated outside of local security domain

Facility: SYSTEM, VMS System Services

Explanation: A VAXcluster node has received a service request containing
user or object security profile information that originates outside the security
domain of the receiving node. The request cannot be serviced without
potentially compromising system security.

User Action: Make sure that all VAXcluster nodes refer to the same rights
database file (SYS$SYSTEM:RIGHTSLIST.DAT).

ITMREMOVED, meaningless items were removed from request

Facility: JBC, Job Controller

Explanation: You specified one or more item codes or qualifiers that are not
meaningful in this command. The command is processed and the meaningless
items are ignored.

User Action: Determine which item codes and qualifiers are meaningless in
this command and discontinue using them in this context.

VMS System Messages

JOBDELFO, job ~ job-name ~ (entry ~ number ~ for user ~ username ~) deleted
during queue manager failover

Facility: QMAN, Queue Manager

Explanation: The queue manager detected corruption in the specified job
and deleted the job.

User Action: Notify the user that the specified job was deleted. The user
might want to resubmit the job.

Submit a Software Performance Report (SPR). Create a copy of all
.QMAN$JOURNAL files using the BACKUP/IGNORE=INTERLOCK
command as soon as possible and include the copy with the SPR. Also provide
a copy of any messages written to the console or operator log file with the
QUEUE_MANAGE or JOB_CONTROL username.

JOBNOTEXEC, specified job is not executing

Facility: JBC, Job Controller

Explanation: You used STOP/ENTRY or STOP/ABORT to try to abort a job
that was not being processed at the time.

User Action: Use DELETE/ENTRY to eliminate the job.

LATSTOPPING, LAT shutdown in progress

Facility: LAT, LAT Facility

Explanation: The LAT software has been stopped on the local node

User Action: None.

LISTTOOSHORT, itemlist too short

Facility: LAT, LAT Facility

Explanation: A LAT SETMODE $QIO request cannot be fulfilled because
the specified item list is not large enough.

User Action: Increase the size of the item list specified in the $QIO request.

LOG_IN_USE, unable to locate current end of file -dump aborted

Facility: LMCP, Log Manager Control Program

Explanation: The attempted log file dump aborted when LMCP was unable
to locate the end of the log file because the system was too busy (transaction
start rate was too high).

User Action: Try the dump again when the system is less active.

LOSTINFO, information for ~ name ~ was lost due to database corruption

Facility: QMAN, Queue Manager

Explanation: The queue manager detected corruption in the definition of the
specified queue, form, or characteristic. The corrupt information was deleted.

User Action: Review the full definition of the affected object and correct the
definition to include the deleted information.

Submit a Software Performance Report (SPR). Create a copy of all
~.QMAN$JOURNAL* files using the BACKUP/IGNORE=INTERLOCK
command as soon as possible and include the copy with the SPR. Also provide
a copy of any messages written to the console or operator log file with the
QUEUE_MANAGE or JOB_CONTROL username.

4-17

VMS System Messages

LOSTMSG, broadcast message was lost

Facility: LAT, LAT Facility

Explanation: LATCP encountered an error while trying to display a
broadcast message.

User Action: None.

LOWDISKSPACE, disk space is low on ~ disk-name

Facility: QMAN, Queue Manager

Explanation: The queue manager is still progressing through its work, but
a lack of disk space has been detected. This message indicates a potential
problem if preventive action is not taken. The accompanying FREEDISK
message provides details.

User Action: Purge and delete files to make more space on the disk.

LOWMEMORY, the queue manager process may require more virtual memory
than is currently available

Facility: QMAN, Queue Manager

Explanation: The queue manager is still progressing through its work, but a
lack of virtual memory has been detected. This message indicates a potential
problem if preventive action is not taken.

User Action: You might need to run AUTOGEN to increase the SYSGEN
parameter VIRTUALPAGE CNT.

LRJACCESSDENIED, access denied

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because access was denied.

User Action: Check group codes of the local node against group codes of the
object node.

LRJACCESSREJECT, immediate access is rejected

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because immediate access was rejected.

User Action: Retry the connection later.

LRJCORRUPT, corrupted request

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because of a corrupted network message.

User Action: Retry the connection. Contact the network manager if
problems persist.

LRJDELETED, queue entry deleted by server

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the connection request was deleted from the
local queue at the object node.

User Action: Retry the connection later.

VMS System Messages

LRJDISABLE, service is disabled

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the object service is disabled.
User Action: Enable the object service and retry the connection.

LRJILLEGAL, illegal request parameters

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the object node detected illegal request
parameters or an inconsistency in a LAT command message received from the
local node.

User Action: Submit a Software Performance Report (SPR).

LRJINUSE, port or service in use

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the object port or object service is in use.
User Action: Retry the connection when the object service or object port
becomes available.

LRJIVPASSWORD, invalid service password

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the object service password is invalid.

User Action: Retry the connection using the correct service password.

LRJNAMEUNKNOWN, port name is unknown

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the name of the object port you are trying to
connect to is unknown.

User Action: Verify the object port name and retry the connection.

LRJNOSERVICE, no such service

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the specified object service does not exist.

User Action: Verify that the object service name is correct and retry the
connection.

LRJNOSTART, session cannot be started

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the session cannot be started.

User Action: Try the connection again later.

4-19

VMS System Messages

LRJNOTOFFERED, service is not offered on the requested port

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the object service is not offered on the
requested port.

User Action: Specify a port that offers the desired service.

LRJNOTSUPPORT, requested function is not supported

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because the object node has detected an unsupported
command operation message code in a LAT command message received from
the local node.

User Action: Submit a Software Performance Report (SPR).

LRJRESOURCE, insufficient resources at server

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because of insufficient resources on the object node.

User Action: Retry the connection later.

LRJSHUTDOWN, system shutdown in progress

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established because a system shutdown of the object node is in
progress.

User Action: None.

LRJUNI~:NOWN, unknown

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the connection
cannot be established for an unknown reason.

User Action: None.

LRJUSERDIS, user requested disconnect

Facility: LAT, LAT Facility

Explanation: This LAT rejection message indicates that the session was
normally disconnected from the object node. .
User Action: None.

MA►XLINKS, maximum links already defined
Facility: LAT, LAT Facility
Explanation: The link cannot be created because the maximum number of
allowable links is already defined.
User Action: None.

VMS System Messages

MAXSERV, maximum number of services exceeded

Facility: LAT, LAT Facility

Explanation: You attempted to create more than 255 services on the local
node.

User Action: You must delete a service in order to add one.

MODLINK, modified link ~ link-name

Facility: LAT, LAT Facility

Explanation: The specified link has been modified by LATCP.

User Action: None.

MODNODE, modified characteristics) of local node

Facility: LAT, LAT Facility

Explanation: Characteristics of the local node have been modified by
LATCP.

User Action: None.

MODPORT, modified port ~ port-name

Facility: LAT, LAT Facility

Explanation: The specified port has been modified by LATCP.

User Action: None.

MODSERVICE, modified service ~ service-name

Facility: LAT, LAT Facility

Explanation: The specified service has been modified by LATCP.

User Action: None.

MSNGENDS, missing or misspelled ENDSUBROUTINE statement detected
while scanning for label

Facility: CLI, Command Language Interpreter (DCL)

Explanation: A SUBROUTINE command with no ending
ENDSUBROUTINE command or with a misspelled ENDSUBROUTINE
command was detected while executing a CALL command. This condition can
prevent the CALL command from locating an existing destination label.

User Action: Check the command procedure for one or more missing or
misspelled ENDSUBROUTINE commands; correct as necessary.

NAMETOOLONG, link name is too long

Facility: LAT, LAT Facility

Explanation: You attempted to create or set a link with a name longer than
16 characters.

User Action: Use link names of 16 or fewer characters.

NEWLINK, created link ~ link-name

Facility: LAT, LAT Facility

Explanation: The specified link has been created by LATCP.

User Action: None.

4-21

VMS System Messages

NEWLOGNAME, created logical name ~ logical-name ~ in table ~ table-name

Facility: LAT, LAT Facility

Explanation: The specified logical name has been created by LATCP in the
specified table.

User Action: None.

NEWPORT, created port ~ port-name

Facility: LAT, LAT Facility

Explanation: The specified port has been created by LATCP.

User Action: None.

NEWSERVICE, created service ~ service-name

Facility: LAT, LAT Facility

Explanation: The specified service has been created by LATCP.

User Action: None.

NOACP, no LATACP to process request

Facility: LAT, LAT Facility

Explanation: You requested information from the local LAT software but
LATACP is not currently running on the local node.

User Action: Check to see whether LAT startup has executed correctly or if
LAT shutdown has been performed on the local node.

NOALOCLASS, allocation class not allowed with shadowing phase II virtual
unit name

Facility: MOUNT, Mount Utility

Explanation: An allocation class was specified in the name of the virtual
unit. Allocation classes are not allowed in virtual unit names with volume
shadowing phase II (VMS Volume Shadowing).

User Action: Reenter the command without specifying an allocation class
on the virtual unit. The virtual unit must be specified in the form DSA or
DSAnnnn, where nnnn represents a unique number from 0 to 9999.

NOAUTOSTART, node does not have the autostart feature enabled

Facility: JBC, Job Controller

Explanation: You entered a DISABLE AUTOSTART [/QUEUES] command
for a node on which the autostart feature is not currently enabled.

User Action: None.

NOCOMPLSTS, no component lists are defined

Facility: SYSTEM, VMS System Services

Explanation: No component lists were defined using calls to SYS$LAVC_
DEFINE_NET_PATH before calling SYS$LAVC_ENABLE_ANALYSIS. As
a result, no data is available to perform the local area VAXcluster network
failure analysis.

User Action: Perform the following steps to properly define the network
description before calling SYS$LAVC_ENABLE_ANALYSIS:

1. Call SYS$LAVC_DEFINE_NET_COMPONENT for each network
component.

VMS System Messages

2. Describe each network path used by building a list from the
component identifications (IDs) returned by SYS$LAVC_DEFINE_
NET_COMPONENT.

3. Call SYS$LAVC_DEFINE_NET_PATH to define the network component
lists.

4. After all the network paths are defined, call SYS$LAVC_ENABLE_
ANALYSIS to enable the local area VAXcluster network failure analysis.

NOCURTID, no process default transaction currently defined

Facility: SYSTEM, VMS System Services

Explanation: The user program attempted to terminate a default
transaction when none was defined.

User Action: Correct the program so that it specifies a transaction identifier
(TID).

NODECNTRSONLY, only counter information is available for this node

Facility: LAT, LAT Facility

Explanation: The specified node offers no services known to the local node.
However, there is a connection from the node and counter information is
maintained.

User Action: None.

NODESHUT, node shutdown in progress

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt on an application port or dedicated
port was rejected because the node state is Shut.

User Action: Wait until the node is in the On state to make new
connections. Refer to the VMS LAT Control Program (LATCP) Manual for a
full description of the node states.

NODEVINFO, unable to retrieve device information on ~ disk-name

Facility: QMAN, Queue Manager

Explanation: The queue manager received a bad return value from a
call to the $GETDVI system service. The accompanying message provides
information about why the operation failed.

User Action: Take corrective action based on the accompanying message.

NODISKSPACE, disk space not available for queue manager to continue

Facility: QMAN, Queue Manager

Explanation: The queue manager cannot process any queuing requests
because of a lack of disk space. The accompanying FREEDISK message
provides details.

User Action: Purge and delete files to make more space on the disk.

NODUNAV, node ~ node-name ~ not currently reachable

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt to a specified service and node
failed because the specified node is not currently reachable.

User Action: Retry the connection or determine why the remote node is not
currently reachable.

4-23

VMS System Messages

NOIDBAVAIL, unable to allocate an IDB

Facility: LAT, LAT Facility

Explanation: LATCP cannot allocate enough virtual memory for an internal
data structure needed to execute a command. An accompanying message
explains why the virtual memory cannot be allocated.

User Action: Correct the situation based on information in the
accompanying message.

NOINFO, no information in database

Facility: NCP, Network Control Program

Explanation: An NCP command (usually a SET command) was executed
when there was no data to act upon in the database. This error commonly
occurs during system startup when a SET KNOWN component ALL command
is executed and there is no data to be copied into the volatile database from
the permanent database. If the error occurs during system operation, a
command has attempted to manipulate data that does not exist; for example,
a command specifies a nonexistent component.

User Action: Ignore this error if it occurs during system startup. If you
receive this error during system operation, reissue the command specifying
an existing system component.

NOITMLST, unable to allocate virtual memory for command itemlist

Facility: LAT, LAT Facility

Explanation: LATCP cannot allocate enough virtual memory for a LAT item
list needed to execute a command. An accompanying message explains why
the virtual memory cannot be allocated.

User Action: Correct the situation based on information in the
accompanying message.

NOMEANING, qualifiers ~ qualifier-names ~ are no longer meaningful for the
command-name ~ command

Facility: Shared by several facilities

Explanation: The command contains one or more DCL qualifiers that have
been phased out in a new release of VMS.

User Action: Check release notes or new documentation for updated
information about the specified command.

NOMORENODS, no more nodes in database

Facility: LAT, LAT Facility

Explanation: This informational message is returned when a wildcard
search of nodes in the database reaches the last node.

User Action: None.

NOMORESVCS, no more services in database

Facility: LAT, LAT Facility

Explanation: This informational message is returned when a wildcard
search of services in the database reaches the last service.

User Action: None.

VMS System Messages

NONODE, node name has not been initialized

Facility: LAT, LAT Facility

Explanation: The local LAT node has not been initialized.
User Action: Use the LATCP command SET NODE to initialize the local
LAT node.

NOPROCTPS, no transaction structures for this process

Facility: SDA, System Dump Analyzer

Explanation: The selected process is not a participant in any active
transactions.

User Action: None.

NOREADER, no read channel is assigned to the device

Facility: SYSTEM, VMS System Services

Explanation: This message can be returned under either of the following
conditions:

• A sensemode readercheck $QIO request or a write readercheck $QIO
request was issued to a mailbox that has no reader assigned to it.

• A write readercheck $QIO request was issued to a mailbox when no read
channels were assigned to the mailbox.

User Action: The mailbox driver allows channels to be assigned to the
mailbox as read-only, write-only, or read/write (the default). Applications
using read-only or write-only channels should anticipate this error and count
on it for synchronization. If necessary, recode your application to expect
this error or consider using the older mailbox driver features; that is, use
read/write channels and do not use readercheck on a write request. Refer to
the VMS I l O User's Reference Manual: Part I for more information about the
mailbox driver.

NOREMBROAD, no VAXcluster terminals were notified because OPCOM is not
available

Facility: OPCOM, Operator Communication Process

Explanation: A REPLY command attempting to send a message to
terminals on other nodes within a VAXcluster has failed because OPCOM is
not available to satisfy the request. The message is sent only to terminals on
the local node.

User Action: Restart OPCOM with the following command:

$ @SYS$SYSTEM:STARTUP OPCOI~i

NOREMWAIT, /WAIT requested, therefore no VAXcluster terminals notified

Facility: OPCOM, Operator Communication Process

Explanation: A REPLY command attempted to send a message to terminals
on other nodes within a VAXcluster, but the /WAIT qualifier was specified,
which requests that the message be sent synchronously.

User Action: If the message must be delivered to terminals on other
VAXcluster nodes, reissue the command without the /WAIT qualifier.

4-25

VMS System Messages

NOSELF, connecting to the local node is not allowed

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt to a service offered by the local
node was targeted to the local node.

User Action: Retry the connection and specify another node that offers the
service.

NOSRVC, service ~ service-name ~ not known

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt was issued for a specified service
that is unknown to the local node.

User Action: Retry the connection until the service becomes known or see if
there is something wrong with a node offering the specified service. Possibly
the service group codes on the local node do not intersect with the group
codes for the specified service.

NOSTACKMEM, no space is currently available to create a new stack

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A call to cma_create_thread or another DECthreads routine
requires a new stack to be created, but there is insufficient space to create it.

User Action: Reduce the value of the stack size attribute so that it does not
exceed the stack cluster size.

NOSUCHID, no ,such identifier

Facility: SYSTEM, VMS System Services or AUTHORIZE, Authorize Utility

Explanation: Either the translation failed or the rights database has no
record of the identifier. You must add an identifier to the rights database
before you can use the VMS Authorize Utility or you must add an identifier
to one of the security system services to grant the identifier to or revoke it
from a user. The message occurs if the identifier or the user to whom you are
granting the identifier does not exist.

User Action: Check the spelling of the identifier. Use the AUTHORIZE
command SHOW/IDENTIFIER to determine whether the identifiers
exist. Add any missing identifier using the AUTHORIZE command ADD
/IDENTIFIER.

NOSUCHNODE, node ~ node-name ~ not known

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt to a specified service and node
failed because the target node name is unknown.

User Action: Retry the connection until the specified node is known or see if
a problem with the specified node is preventing its network visibility. Possibly
the local node's service group codes do not intersect with the specified remote
node's group codes.

NOSYSCLF, no common logging structures

Facility: SDA, System Dump Analyzer

Explanation: There are no transaction logs currently open on this node.
User Action: None.

VMS System Messages

NOSYSIPC, no IPC structures

Facility: SDA, System Dump Analyzer

Explanation: There is no IPC activity currently on this node.

User Action: None.

NOSYSTPS, no transaction structures

Facility: SDA, System Dump Analyzer

Explanation: There are no active transactions currently on this node.

User Action: None.

NOTALLREQUE, all jobs in source queue could not be requeued to target queue

Facility: JBC, Job Controller

Explanation: Some of the jobs specified in an ASSIGN/MERGE command
were not suitable for execution on the specified target queue.

User Action: Enter a SET ENTRYIREQUEUE=queue-name command to
requeue the jobs remaining in the source queue to a queue that has the
necessary settings to execute those jobs.

NOTATERM, command device is not a terminal

Facility: LAT, LAT Facility

Explanation: You attempted to use SET HOST/LAT from a device that is
not a terminal.

User Action: Use SET HOST/LAT from a terminal device only.

NOTCMASTACK, the current stack was not allocated by DECthreads

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: The program attempted to call a DECthreads routine while
the thread stack pointer register held an address in a stack that was not
allocated by DECthreads. Because DECthreads uses the value in the thread
stack pointer register to determine which thread is currently running, all
calls to DECthreads routines must be performed on a stack that was allocated
by DECthreads.

User Action: Modify the program so that it does not switch stacks, or call
DECthreads to create an additional stack and assign it to the thread.

NOTDISM, unable to dismount ~ device-id

Facility: BACKUP, Backup Utility

Explanation: The Backup Utility cannot dismount a tape drive specified by
the command line qualifier lRELEASE_TAPE.

User Action: An accompanying message indicates the type of user action
required, if any.

NOTEXIST, folder ~ folder-name ~ does not exist

Facility: MAIL, Mail Utility

Explanation: The command cannot be executed because it specifies a folder
that does not exist.

User Action: Use the MAIL command DIRECTORY/FOLDER to display
a list of existing folders. Then retry the command using an existing folder
name.

4-27

VMS System Messages

NOTLOADED, LAT terminal port driver (LTDRIVER) is not loaded

Facility: LAT, LAT Facility

Explanation: You attempted to execute LATACP when LTDRIVER was not
loaded.

User Action: Check to see whether the LAT software is properly configured.

NOTMEANINGFUL, specified item code is no longer meaningful

Facility: JBC, Job Controller

Explanation: The specified item code once affected the results of the
command, but it no longer does so.

User Action: Discontinue using this item code with this command.

NOTMODEM, V S host system modem not wired correctly -contact your
system manager

Facility: LOGIN, Login Processor

Explanation: The terminal line is set to ~1VIODEM and TTDRIVER did not
detect all the necessary modem signals within 30 seconds of a login attempt.

User Action: For information on how the TTDRIVER identifies a valid
modem line, refer to the section on modem control of terminal drivers in the
VMS I l O User's Reference Manual: Part I. Make sure that the following
conditions are met:

• The modem cable connecting the modem provides the correct signal.

• The terminal port supports modem use.

• The modem provides the correct signals in the correct order.

NOTOFFERED, service not offered by requested node

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt to a specified service for a specified
node failed because the node does not offer the selected service.
User Action: Retry the connection and specify a node that offers the desired
service.

NOTPSHARE, shareable image for DECdtm Services SDA support unavailable

Facility: SDA, System Dump Analyzer

Explanation: The shareable image for DECdtm services is not installed on
this node.

User Action: Ensure that shareable image
SYS$SHARE:SDATP$SHARE.EXE is installed before executing any
SDA commands.

NOTSUPPORTED, specified item code or function code is not supported
Facility: JBC, Job Controller

Explanation: You attempted to use a new feature on a node that has not
been upgraded.

User Action: Upgrade the node before attempting to specify the new item
code or function code.

VMS System Messages

NOTWITHCONN, parameter cannot be modified with connections active or
pending

Facility: LAT, LAT Facility

Explanation: An attempt to modify a LAT parameter failed because that
parameter cannot be modified while active connections exist or while a
connection request is pending. For a list of parameters that cannot be
changed with connections active or pending, refer to the VMS LAT Control
Program (LATCP) Manual.

User Action: Wait until there are no outstanding connection requests before
modifying the parameter.

NOWRITER, no write channel is assigned to the device

Facility: SYSTEM, VMS System Services

Explanation: This message can be returned under either of the following
conditions:

• A sensemode writercheck $QIO request or a read writercheck $QIO
request was issued to a mailbox that has no writer assigned to it.

• A read writercheck $QIO request was issued to a mailbox when no write
channels were assigned to the mailbox.

User Action: The mailbox driver allows channels to be assigned to the
mailbox as read-only, write-only, or read/write (the default). Applications
using read-only or write-only channels should anticipate this error and count
on it for synchronization. If necessary, recode your application to expect
this error or consider using the older mailbox driver features; that is, use
read/write channels and do not use writercheck on a read request. Refer to
the VMS I l ~ User's Reference Manual: Part I for more information about the
mailbox driver.

OPENERR, error opening ~ filespec

Facility: Shared by several facilities

Explanation: The specified file cannot be opened. Usually an accompanying
RMS message indicates why the file cannot be opened.

User Action: Take corrective action based on the accompanying message.

OPENFAIL, failure opening component file ~ file-number ~ , ~ file-name

Facility: STDRV, System Startup Driver

Explanation: The startup driver failed to open one of the system files that
describes the tasks that need to be performed at startup time. The startup
operation attempts to continue, but may not properly perform all startup
tasks.

User Action: Make sure that the named file is available and can be read.

OPINPROG, previously requested operation is incomplete

Facility: SYSTEM, VMS System Services

Explanation: A request could not be completed because of outstanding
requests on the service.

User Action: Submit a Software Performance Report (SPR) that describes
the conditions leading to the error. Include a BACKUP save set containing
the output of both the LMCP DUMP command and the DCL DUMP command
for the log file.

4-29

VMS System Messages

ORBTOOBIG, object rights block too big

Facility: SYSTEM, VMS System Services

Explanation: The object rights block (ORB) for the specified object is too
large to package and send to another subsystem.

User Action: Have your system manager use the ACL editor to remove
unnecessary access control lists (ACLs) from the object or reorganize the
ACLs. See the Guide to VMS System Security for more information about
ACLs.

OUTOFRANGE, value specified is not within the legal range for this qualifier

Facility: LAT, LAT Facility

Explanation: You specified a value that is out of range for a LATCP
qualifier.

User Action: Specify a value within the legal range (see the VMS LAT
Control Program (LATCP) Manual).

PRIOSMALL, scheduling priority has smaller value than requested

Facility: JBC, Job Controller

Explanation: A user without ALTPRI or OPER privilege specified a
value for a j ob's priority that exceeded the queue's maximum priority for
nonprivileged users. The job is entered in the queue, but its scheduling
priority is lower than the value requested by the user.
User Action: Use SHOW ENTRY/FULL to see the priority assigned to the
job. If you must specify a higher scheduling priority, acquire the necessary
privileges and use the DCL command SET ENTRY/PRIORITY to modify the
job's priority, or see your system manager.

PSUSPECT, customer defined text

Facility: LAVC, Local Area VAXcluster

Explanation: The local area VAXcluster network failure analysis has located
a network problem and reported this network component as the primary
suspect.

User Action: Several PEDRIVER channels that were using this network
component have failed. The analysis indicates that this component or
something connected to it is the most likely cause of the network problems.
Have the system manager or network manager look into the network
problem.

QMANCREPRC, queue manager process could not be created
Facility: JBC, Job Controller

Explanation: The job controller could not create a queue manager process.
An accompanying message gives information about why the process could not
be created. One possible cause is too few process slots on the node.
User Action: Correct the problem described in the accompanying message
and try to restart the queue manager.

VMS System Messages

QMANDEL, unexpected queue manager process termination

Facility: JBC, Job Controller

Explanation: A queue manager process exited without being requested to
do so. An accompanying message gives information about why the process
terminated.

User Action: Take action based on the accompanying message.

QMANNOTSTARTED, queue manager could not be started

Facility: JBC, Job Controller

Explanation: ASTART/QUEUE/MANAGER request failed to complete
successfully.

User Action: Check the console or operator log file for messages from the
JOB_CONTROL or QUEUE_MANAGE username explaining why the queue
manager could not be started. If you included the directory specification
with the START/QUEUE/MANAGER command, verify that you specified the
correct directory.

QUALOBS, qualifier obsolete - ~ /qualifier ~ ignored

Facility: LAT, LAT Facility

Explanation: The specified LATCP command qualifier is obsolete and has
no effect. The rest of the command is executed.

User Action: Do not specify this qualifier in future commands.

QUEAUTOOFF, queue ~ queue-name ~ is now autostart inactive

Facility: QMAN, Queue Manager

Explanation: The specified autostart queue has been stopped without a user
request. The queue manager will not restart the queue until a user enters
the START/QUEUE command for the queue.

User Action: An accompanying message explains why the queue stopped.
Correct the problem and try to restart the queue.

QUEDISABLED, disabled queue cannot be modified, nor can jobs be submitted
to it

Facility: JBC, Job Controller

Explanation: The queue manager disabled the queue upon detection of
database corruption.

User Action: Ask the system manager to delete and recreate the queue to
which your command was directed.

QUENOTMOD, modifications not made to running queue

Facility: JBC, Job Controller

Explanation: You tried to change a feature of the queue that can be changed
only when the queue is in the stopped state.

User Action: Enter aSTOP/QUEUE/R,ESET or STOP/QUEUE/NEXT
command, then reenter your original command when the queue is in the
stopped state.

VMS System Messages

QUENOTSTART, queue ~ queue-name ~ could not be started on node ~ node-
name

Facility: QMAN, Queue Manager

Explanation: An error occurred while trying to start the specified autostart
queue on the specified node.

User Action: An accompanying message explains why the operation failed.
Correct the problem and try to start the queue again.

QUOTAFNF, quota file not found on volume

Facility: MOUNT, Mount Utility

Explanation: The MOUNT command specified /QUOTA or
/CACHE=QUOTA, but there is no quota file on the volume.

User Action: Create a quota file on the volume using the DISKQUOTA or
the SYSMAN utility.

REFERENCED, existing references prevent deletion

Facility: JBC, Job Controller

Explanation: Existing references to the specified form, characteristic, or
queue by other queues or jobs prevent the specified item from being deleted.

User Action: Use the SHOW QUEUE/FULL/ALL command to locate all such
references. Remove the existing references and retry the delete operation.

REINITERR, error attempting reinitialization

Facility: LAT, LAT Facility

Explanation: LATCP cannot reinitialize in order to accept another
command. An accompanying message explains why the program cannot
reinitialize.

User Action: Correct the situation based on the information in the
accompanying message.

RMALRDCL, resource manager name has already been declared

Facility: SYSTEM, VMS System Services

Explanation: This message indicates an error in the resource manager.

User Action: Submit a Software Performance Report (SPR) that describes
the conditions leading to the error. Include a BACKUP ,save set containing
the output for both the LMCP DUMP command and the DCL DUMP
command for the log file.

RMTPATH, description of path between two remote nodes
Facility: SYSTEM, VMS System Services

Explanation: The described network path represents a network path
between two remote nodes instead of a path used by the local node. This
network path is not necessary for the local area VAXcluster network failure
analysis performed by the local node.
User Action: Removing this network path definition will prevent this
informational message from occurring. However, this action is optional.

VMS System Messages

SCRATCH_HEADER, scratch header used by XQP Movefile operation

Facility: ANALDISK, Analyze/Disk_Structure Utility

Explanation: The Analyze/Disk_Structure Utility found a scratch file header
(a temporary file header used by Movefile). This condition can be reported
while an ANALYZE/DISK STRUCTURE operation is being performed.

During a Movefile operation, blocks can be temporarily allocated to more
than one file header. In such cases, this message can be accompanied by one
or more MULTALLOC messages. These messages cease when the scratch
header is released.

User Action: If the message occurs while you are performing an ANALYZE
/DISK_STRUCTURE/NOREPAIR operation on a disk that is in use, no action
is required.

If the message occurs while you are analyzing a disk after a system crash,
release any scratch file headers on the disk by performing an ANALYZE
/DISK STRUCTURE/REPAIR or SET VOLUME/R,EBUILD operation on the
disk.

SEG_FAIL, process failed prior to voting

Facility: DDTM, DECdtm Services

Explanation: The transaction was aborted because a process or image
within the transaction failed.

User Action: Retry the transaction after the problem with the process or
image has been corrected.

SERUNAV, service ~ service-name ~ not currently available

Facility: LAT, LAT Facility

Explanation: A LAT connection was attempted to a service that is known by
the local node but that is not currently available.

User Action: Determine the availability problem with the remote node
offering the specified service. Possibly the specified service has disabled
connection requests.

SERVEXISTS, service name already exists

Facility: LAT, LAT Facility

Explanation: You attempted to create a service using the name of a service
that already exists on the local node.

User Action: Create a service using a different name.

SESLIM, session limit reached

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt failed because the current LAT
session limit has already been reached.

User Action: Use the LATCP command SET NODE/SESSION_
LIMIT=OUTGOING to increase the session limit or wait for a session

slot to become available. Refer to the VMS LAT Control Program (LATCP)

Manual for more information.

4-33

VMS System Messages

SHADBOOTFAIL, shadowing failed to boot from system disk shadow set

Facility: BUGCHECK, System Bugcheck

Explanation: Any of the following conditions can cause this error:

• A failure to allocate memory.

• One or more critical devices is inaccessible.

• The boot device is the target of a full copy operation.

• The boot device is not a source member of the existing shadow set.

User Action: Try one or more of these user actions:

• If the boot device is the target of a full copy operation or is not a source
member of the existing shadow set, change the device name in VMB to be
a source member and reboot the node.

• If the boot device is a source member of the existing shadow set, check
the booting device's connections to all other shadow set members.

• If all device and system connections are fine, check the SYSGEN
parameter settings for inappropriate memory configurations.

SHADDETINCON, SHADOWING detects inconsistent state

Facility: BUGCHECK, System Bugcheck

Explanation: The volume shadowing software reached an unrecoverable or
inconsistent situation because the software failed an internal inconsistency
check.

User Action: Submit a Software Performance Report (SPR) that describes
the conditions leading to the error. If the system is configured to produce a
memory dump, include the dump file with the SPR.

SHASINGMBR, single member system shadow set formed

Facility: INIT, INITIALIZE Command

Explanation: The shadow set membership is changing to form a
single-member shadow set consisting of only the boot device.

User Action: None.

SIGNAL_Q_FULL, unable to process condition variable signal

Facility: CMA, DECthreads (Multithreading Run-Time Library)
Explanation: A call to the pthread_cond_signal_int_np or
cma_cond_signal_int routine cannot be performed because there are
too many outstanding requests.
User Action: Calls to the cma_cond_signal_interrupt routine are
occurring too frequently. Reduce the number of calls or slow the rate of their
arrival.

SRCMEM, only source member of shadow set cannot be dismounted
Facility: DISMOUNT, DISMOUNT Command
Explanation: An attempt was made to dismount a shadow set member that
was the only valid source member of the set.
User Action: If there is only one shadow set member, it cannot be
dismounted. To dissolve the shadow set, dismount the virtual unit. If there is
more than one member, remove a full member and wait for copy operations to
complete before dismounting a member.

4-34

VMS System Messages

SRVCNODE, service ~ service-name ~ not offered by node ~ node-name

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt to a specified service and node
failed because the node does not offer the specified service.

User Action: Retry the connection request and specify a node that offers the
desired service.

SRVDIS, outgoing connections are disabled

Facility: LAT, LAT Facility

Explanation: An outbound LAT connection was attempted when outbound
connections are disabled.

User Action: Enable connections using the LATCP command SET
NODE. Refer to the VMS LAT Control Program (LATCP) Manual for more
information.

STACKOVF, attempted stack overflow was detected

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A thread overflowed its stack.

User Action: Create the erring thread with a larger stack or redesign the
code to require less stack space; for example, nest your calls less deeply or
allocate less storage on the stack.

STARTUP, VMS startup begun at ~ dd-mmm-yyyy hh:mm:ss.ss

Facility: STDRV, System Startup Driver

Explanation: VMS has begun executing the system startup driver, which is
used to start up individual VMS system processes and to start VMS after a
reboot.

User Action: None. This is an informational message.

STI~;NOTCHANGE, the stock associated with a form cannot be changed

Facility: JBC, Job Controller

Explanation: ADEFINE/FORM command for an existing form specified
/STOCK with a new stock value while references to the form are still
outstanding.

User Action: Use the SHOW QUEUE/FULL command to locate existing
references. Remove any outstanding references and reenter the DEFINE
/FORM/STOCK request.

STRTOOLNG, string argument is too long -shorten

Facility: CLI, Command Language Interpreter (DCL)

Explanation: The specified string argument is too long.

User Action: Check the description of the command in the VMS DCL
Dictionary for restrictions on the argument length. The VMS DCL Concepts
Manual also describes the maximum allowable length of an argument for any
command. Modify the string accordingly and retry the command.

VMS System Messages

SYMDEL, unexpected symbiont process termination

Facility: JBC, Job Controller and QMAN, Queue Manager

Explanation: A symbiont process exited without being requested to do so.
The accompanying message provides additional information.

User Action: Take action based on the accompanying message. A process
dump might have been created. This message can result from an unplanned
node or cluster shutdown.

SYSBOOT I-GBLPAGES have been trimmed

Facility: SYSBOOT, System Bootstrap Facility

Explanation: The combined size of the system and global page tables
exceeds the VMS architectural maximum (4,194,303 pages). SYSBOOT
has reduced the size of the global page table by decreasing the SYSGEN
parameter GBLPAGES.

User Action: Review the ACTIVE value of the GBLPAGES parameter to
make sure it is large enough to support normal system operation in your
environment. Using SYSMAN, reevaluate the values of the parameters that
determine the size of the system and global page tables, especially if the
value computed by AUTOGEN has been overridden in MODPARAMS.DAT.
(Refer to the VMS SYSMAIV Utility Manual.)

SYSFAIL, system failed during execution

Facility: JBC, Job Controller

Explanation: The system crashed during execution of a batch or symbiont
process.

User Action: Resubmit the batch job or restart the output queues previously
associated with the affected symbiont process.

TIMED_OUT, timed condition wait expired

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: On a cma_cond_timed_wait routine, the timer expired
before the condition was signaled or broadcast.

User Action: Take appropriate action based on program dependencies for
the specific condition variable wait that timed out.

TIMEOUT, no response within timeout period

Facility: LAT, LAT Facility

Explanation: A LAT connection was lost because the remote node did not
respond within the timeout period.
User Action: Check the network availability of the remote node. If this
error persists, you may need to increase the retransmit limit on the local
node.

TIMEOUT, transaction exceeded execution time limit from $START_TRANS
service

Facility: DDTM, DECdtm Services
Explanation: The transaction aborted because the time specified in the
timout argument when calling $START_TR',ANS has been exceeded.
User Action: None.

VMS System Messages

TMSCPLDERR, TMSCP server must be loaded using SYSGEN parameter
TMSCP_LOAD

Facility: SYSGEN, System Generation Utility

Explanation: You attempted to load the TMSCP server using the TMSCP
command within SYSGEN.

User Action: The proper way to load the TMSCP server is to set the
SYSGEN parameter TMSCP_LOAD to 1. This action loads the server, which
services all locally connected MSCP-type tape drives during SYSBOOT.

TODISCON, type ^ ~ character ~ to disconnect the session

Facility: LAT, LAT Facility

Explanation: Use the specified control character to disconnect the SET
HOST/LAT session.

User Action: Enter the specified control character.

TOOMANYSUB, SPAWN failed due to too many subprocesses; DIRECT mode
used

Facility: STDRV, System Startup Driver

Explanation: The startup database directed the startup driver to run too
many spawned subprocesses. STDRV ran one or more of the processes in
the main startup procedure using DIRECT mode. System startup should
complete normally.

User Action: You can use the SYSl~2AN utility's STARTUP commands to
display and modify the startup database to spawn fewer subprocesses.

TOOMUCHINFO, size of data in request exceeds system constraints

Facility: JBC, Job Controller

Explanation: The amount of data specified for a record within the queue
manager's database is too large.

User Action: Submit a Software Performance Report (SPR) to notify VMS
Engineering that current constraints do not meet your needs.

TPSFAOERR, could not format display line

Facility: SDA, System Dump Analyzer

Explanation: The structure displayed contains data that could not be
formatted properly.

User Action: If further analysis is required, use the SDA FORMAT
command to examine the structure.

TPSINVBLK, invalid block type in specified block

Facility: SDA, System Dump Analyzer

Explanation: An attempt was made to copy an unrecognized structure.

User Action: For an active system, retry the command. For a system ~ crash
dump, submit a Software Performance Report (SPR) that describes the
conditions leading to the error; include a BACKUP save set containing the
output of the SDA command.

4-37

VMS System Messages

TPSTERM, TP Services structure display terminated prematurely

Facility: SDA, System Dump Analyzer

Explanation: The selected SDA command was unable to complete. The
Transaction Processing (TP) structures displayed by this command are
corrupt.

User Action: None.

TPSUTCERR, no valid timestamp

Facility: SDA, System Dump Analyzer

Explanation: The displayed structure can contain an optional timestamp.
The structure displayed currently does not have a timestamp.

User Action: None. This is an informational message.

TSRVALLOAD, the TMSCP server is already loaded

Facility: SYSGEN, System Generation Utility

Explanation: You attempted to load the TMSCP server using the TMSCP
command within SYSGEN. The TMSCP server has already been loaded in
the recommended way.

User Action: The proper way to load the TMSCP server is to set the
SYSGEN parameter TMSCP_LOAD to 1. This action loads the server, which
services all locally connected MSCP-type tape drives during SYSBOOT.

UNDEFLINK, undefined link

Facility: LAT, LAT Facility

Explanation: You specified a link that does not exist on the local node.

User Action: Use the LATCP command SHOW LINK to see which links
exist on the local node.

UNIMP, the specified DECthreads feature is not implemented

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: You attempted to use a feature that is not implemented in
the version of DECthreads that you are running. This error can occur when
a program developed on a system running a new version of DECthreads is
executed on a system that is running an old version of DECthreads.

User Action: Use a later version of DECthreads that supports the feature or
do not attempt to use the feature with an old version of DECthreads.

UNINITEXC, uninitialized exception raised

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: The EXC_~iANDLING.H package, which provides portable
exceptions for the C language, has attempted to raise an exception that has
not been initialized.

User Action: Study the error messages to determine the program location
where the uninitialized exception is being raised. Use the exception_init
macro defined in the EXC_HANDLING.H package to initialize the exception.

VMS System Messages

UNREACHABLE, node ~ node-name ~ not reachable

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt to a specified node and service
failed because the node offering the service is unreachable.

User Action: Locate the node and determine what is preventing connections
from occuring.

USE_ERROR, requested operation is inappropriate for the specified object

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: The state or type of an object is inappropriate for the
operation; for example, the operation attempts to unlock a mutex that is not
locked.

User Action: Determine which routine caused the error and consult the
documentation to learn which object states are appropriate for the routine.

VA_IN_USE, virtual address already in use

Facility: SYSTEM, VMS System Services

Explanation: A PTD$CREATE request specified a buffer address that is
already being used by another PTD$CREATE request or by another system
memory management facility such as SYS$CRMPSC.

This message can occur when the main image or a sharable image is based.
An image is based if a linker options file is used to specify a base virtual
address at which the image should be loaded or if certain language constructs
are used that produce nonrelocatable code.

User Action: Allocate a new region of virtual memory to be used for UO
buffers, then reissue the PTD$CREATE request specifying the new region.

VCLIM, LAT circuit limit reached

Facility: LAT, LAT Facility

Explanation: The maximum number of allowable LAT circuits has been
reached.

User Action: Retry the operation when a circuit becomes available.

VCSESLIM, session limit for LAT circuit reached

Facility: LAT, LAT Facility

Explanation: A LAT connection attempt failed because the connection
between the local node and the destination node already has the maximum
number of sessions allowed.

User Action: Attempt a connection to another node offering the same service
or wait until a session becomes available.

VETOED, participant vetoed commitment

Facility: DDTM, DECdtm Services

Explanation: The transaction aborted because a resource manager could not
commit the transaction.

User Action: Determine why the resource manager could not commit the
transaction and correct the error.

4-39

VMS System Messages

WORKING, customer defined text

Facility: LAVC, Local Area VAXcluster

Explanation: The local area VAXcluster network failure analysis has
determined that this network component is working.

User Action: If the network component is indeed working, no user action is
required.

However, if this message displays when the network component is not
working, have the system manager or network manager look into the
network problem. In such a case, the network description does not accurately
represent the physical network. Review the defined network components
by calling SYS$LAVC_DEFINE_NET_COMPONENT. Review the defined
network path descriptions by calling SYS$LAVC_DEFINE_NET_PATH.
Correct any problems as necessary.

WRONGMUTEX, wrong mutex specified in condition wait

Facility: CMA, DECthreads (Multithreading Run-Time Library)

Explanation: A thread attempted to wait for a condition variable that
already has at least one thread waiting, and that thread has specified a
different mutex. DECthreads requires that all threads concurrently waiting
for a condition variable specify the same mutex.

User Action: Design your code so that each condition variable represents a
particular state of shared data that is protected by a given mutex.

WRONGSTATE, invalid transaction state for requested event

Facility: SYSTEM, VMS System Services

Explanation: The transaction is in the wrong state for the attempted
operation.

User Action: If this message is returned by the $ABORT_TRANS or
$END_TRANS service, correct the error in the program. Otherwise, submit
a Software Performance Report (SPR) that describes the conditions leading
to the error. Include a BACKUP save set containing the output of the LMCP
DUMP command for the local transaction log file and the output of the DCL
DUMP command for the same log file.

ZEROLINK, zeroed counters for link ~ link-name

Facility: LAT, LAT Facility

Explanation: LATCP has reset the counters for the specified link to zero.

User Action: None.

ZERONODE, zeroed counters for node ~ node-name

Facility: LAT, LAT Facility

Explanation: LATCP has reset the counters for the specified node to zero.

User Action: None.

ZEROSERVICE, zeroed counters for service ~ service-name

Facility: LAT, LAT Facility

Explanation: LATCP has reset the counters for the specified service to zero.
User Action: None.

Partlll
System Management Features

This part contains the following chapters:

• Chapter 5, VMS Batch and Print Queuing System

• Chapter 6, LADCP Utility

• Chapter 7, Clusterwide Tape Serving

• Chapter 8, VMS Volume Shadowing Phase II Enhancements

• Chapter 9, LAT New Features

• Chapter 10, VMS License Management Facility

• Chapter 11, Movefile Command Qualifiers

5
VMS Batch and Print Queuing System

This chapter contains system management information about the new VMS batch
and print queuing system. For information about setting up and managing a
queuing system, see the Guide to Maintaining a VMS System.

 Note

Digital recommends that you take advantage of the new features in
the batch and print queuing system. However, if you cannot do so
at this time, your queuing system will continue to work with VMS
Version 5.4 queue commands, with the following exception: If no queue
database exists, you must specify the /NEW VERSION qualifier with the
START/QUEUEIMANAGER command to create a queue database.

5.1 clusterwide Queue Manager
In the previous batch and print queuing system, a queue manager ran on each
node in a cluster, as part of the node's job controller process. Each node's job
controller/queue manager accessed a distributed queue database to control
queuing operations. User processes, symbionts, and batch jobs communicated
with the queue manager through their local job controller. Figure 5-1 illustrates
the queue manager's role in the previous batch and print queuing system.

With the new VMS batch and print queuing system, queue manager and job
controller functions are separate. A single queue manager process acts as a
clusterwide server, accessing the queue database for all processes in a cluster.
Job controllers, user processes, and symbionts on each node communicate
directly with the centralized queue manager through a shared interprocess
communications (IPC) interface link. An IPC is an internal VMS communications
mechanism. Figure 5-2 illustrates the role of the new clusterwide queue
manager.

The new centralized design reduces disk activity associated with the distributed
design. It also enables the queue manager to fail over to another node if the node
on which it is running leaves the cluster.

With the new queuing system, the queue manager handles all queuing requests.
The job controller performs all other activities, including:

• Creating and monitoring batch, symbiont, and queue manager processes

• Processing the DCL command START/QUEUE/MANAGER

5-1

VMS Batch and Print Queuing System
5.1 Clusterwide Queue Manager

Figure 5-1 VMS Version 5.0 Queue Manager

Node A

User

Application

 via mailbox

Job Controller/
Queue Manager

Node B

Job Controller/
Queue Manager

Queue Database

Node D (Symbiont Node)

Job Controller/
Queue Manager

Node C

User

via mailbox

Job Controller/
 ~ Queue Manager

. ..

ZK-3522A

• Handling queue manager failover

The changes to the queue manager affect those commands used to start and stop
the queue manager. For more information, see Section 5.3.

5.2 New Queue Database Design
The new VMS batch and print queuing system includes a new queue database.
The file previously used as the queue database, JBCSYSQUE.DAT, is no longer
used.

The new queue database consists of the following new files:

QMAN$MASTER.DAT, the master file

VMS Batch and Print Queuing System
5.2 New Queue Database Design

Figure 5-2 VMS Version 5.5 Queue Manager

Node A

User

Application

Job Controller

 Shared
IPC Link

Queue Database

Node D (Symbiont Node)

Job Controller

Symbiont

Node B

Batch Job

User

Job Controller

 Shared
IPC Link

Node C (Queue Manager Node)

Shared
IPC Link

Queue Manager

t Shared
IPC Link

Job Controller

' i t

ZK-3521 A -GE

SYS$QUEUE_MANAGER.QMAN$QUEUES, the queue file
SYS$QUEUE_MANAGER.QMAN$JOURNAL, the journal file

SYS$COMMON:[SYSEXE) is the default location for all three queue database
files. However, you can move the files to another location. For more information,
see Section 5.2.1.

The master file contains the following information:

• .The location of the queue and journal files

• Definitions of forms and characteristics

• A list of queue names

VMS Batch and Print Queuing System
5.2 New Queue Database Design

• A list of nodes allowed to run the queue manager

The queue file contains the queue definitions you create when you enter
INITIALIZE/QUEUE, START/QUEUE, and SET QUEUE commands. The journal
file contains information allowing the queue manager to return to the last
known state should a standalone machine be stopped unexpectedly or should a
VAXcluster member running the queue manager leave the cluster. The journal
file also contains job and file record definitions.

 Note

The disk or disks holding the three queue database files
should be mounted by the startup command procedure
SYS$MANAGER:SYLOGICALS.COM. It is important that the disk
or disks are mounted early, so the queue database is available before the
job controller starts the queue manager.

5.2.1 Moving Queue Database Files from Their Default Location
The upgrade procedure for the VMS batch and print queuing system gives you
the opportunity to move the queue database files from their default locations
during the upgrade. If you need to move the master file, see Section 5.2.1.1. If
you need to move the queue and journal files, see Section 5.2.1.2.

5.2.1.1 Moving the Master File
The master file contains the location of the queue and journal files. To move the
master file, perform the following steps:

1. Shut down the queue manager by entering the DCL command STOP/QUEUE
/MANAGER/CLUSTER.

2. Copy the file QMAN$MASTER.DAT to a new location.

3. Edit the file SYS$COMMON:[SYSMGR]SYLOGICALS.COM to add the
following line defining the logical name QMAN$MASTER:

$ DEFINE/SYSTEM/EXECUTIVE_MODE QMAN$MASTER directory-name

where directory-name is the directory specification for the directory where the
file is located. If the directory is on a disk other than the default, you must
also specify the disk name.

In a VAXcluster environment, QMAN$MASTER must be identically defined
on all nodes in the cluster.

4. Restart the queue manager with the DCL command START/QUEUE
/MANAGER.

5.2.1.2 Moving the Queue and Journal Files
The queue and journal files are not required to reside in the same directory as
the master file; however, if you move the queue and journal files, they must reside
together in the same directory. The master file contains the location of these files.

To move the queue file (SYS$QUEUE_MANAGER.QMAN$QUEUES) and the
journal file (SYS$QUEUE_MANAGER.QMAN$JOURNAL) to a new location,
perform the following steps:

1. Shut down the queue manager by entering the DCL command
STOP/QUEUE/MANAGER/CLUSTER.

5-4

VMS Batch and Print Queuing System
5.2 New Queue Database Design

2. Copy the queue and journal files to their new location. They must reside
together in the same directory.

3. Restart the queue manager by entering the following DCL command:

$ STriR i QUEUEiMAN~GER SYSi~fal', $DISK. [MY_QUE_JO.T_D~R'

where SYSMAN$DISK: [MY_QUE_JOU_DIR] is the specification for the
directory containing the queue and journal files.

Note

In a VAXcluster environment, if the string substituted for directory-name
in the START/QUEUE/MANAGER command is a concealed logical name,
it must be identically defined on all nodes in the cluster.

Once you enter the START/QUEUE/M.ANAGER command, the directory location
you enter is stored in the queue database. If you need to restart the queue
manager, you do not need to respecify the directory location.

5.3 Starting and Stopping the Queue Manager
Changes in the new VMS batch and print queuing system affect the commands
used to start and stop the queue manager. The following sections describe these
changes.

5.3.1 Starting the Queue Manager
In the previous queuing system, the START/QUEUE/MANAGER command
started a queue manager process that provided queuing services only for the node
on which the command was entered. A queue manager process ran on each node
from which the START/QUEUE/MANAGER command was entered.

With the new VMS batch and print queuing system, START/QUEUE/MANAGER
is a clusterwide command. It starts up a single queue manager process that
provides queuing services for all nodes in a VAXcluster system.

To start the clusterwide queue manager, enter the following command:

$ STS RT;!QUEUE;~I~A~~1~GEp`

If no queue database exists, specify the /NEW_VERSION qualifier to create the
queue database.

 Caution

If you specify the /NEW_VERSION qualifier and you already have a
queue database, the START/QUEUE/MANAGER command deletes certain
information from the existing database. Do not use the /NEW_VERSION
qualifier with the START/QUEUE/MANAGER command unless no
database exists, or you no longer need the existing database.

If you want to place your queue and journal files in a location other than the
default location of SYS$COMMON:[SYSEXE], you must specify the location with
the START/QUEUEIMANAGER command when you start the queue manager.
For instructions on moving queue and database files, see Section 5.2.1.2.

VMS Batch and Print Queuing System
5.3 Starting and Stopping the Queue Manager

5.3.1.1 Customizing Queue Manager Failover
In a VAXcluster environment, the new queue manager will automatically fail over
to another node if the node on which it is running leaves the cluster. However,
you can use the /ON qualifier to specify the order in which the nodes claim the
queue manager during failover and, if desired, you can use the /ON qualifier to
limit the nodes that run the queue manager. Use the following command syntax:

START/QU E U E/MANAG E R/ON=(node-list)

Digital recommends that you specify the asterisk wildcard (*) as the last node in
the node list to indicate that any remaining unlisted node can claim the queue
manager, with no preferred order. If you want to exclude certain nodes from being
eligible to run the queue manager, you also cannot use the asterisk wildcard. You
cannot specify the asterisk wildcard as part of a node name.

In the following example, the queue manager will be started on node ALPHA (if
ALPHA is available):

$ START/QUEUE/~MANAGERi ON= (~LPi~±~, BE ~~, GAMMA, *)

If node ALPHA exits the cluster, node BETA will start up the queue manager
process (if BETA is available). During the transition from ALPHA to BETA,
queues on BETA and GAMMA are not stopped. All requests to the queuing
system for example, PRINT, SUBMIT, and SHOW ENTRY requests will
complete as expected. If ALPHA, BETA, and GAMMA are not available, any
remaining node can claim the queue manager.

To change a list of nodes on which the queue manager can run, reenter the
START/QUEUE/MANAGER command with the new node list. The new command
is stored in the queue database, and the queue manager is stopped and restarted
with the new node list. For more information, see Section 5.3.1.3.

5.3.1.2 Automatic Queue Manager Restart
When you enter the START/QUEUE/MANAGER command, it is stored in the
queue database. Thereafter, the job controller automatically restarts the queue
manager during reboot unless aSTOP/QUEUE/MANAGER/CLUSTER command
has been entered.

You do not need to include the START/QUEUE/MANAGER command in your
site-specific startup procedure. The START/QUEUEIMANAGER command is no
longer included in the startup procedure template SYSTARTUP_V5.TEMPLATE.

5.3.1.3 If the Queue Manager Is Already Started
If the queue manager is already running and you enter the START/QUEUE
/MANAGER command with qualifier values different from those used to start the
queue manager initially, the queue manager will be changed to reflect the new
qualifier values.

If the queue manager is running and this command is entered with no new
qualifier values, the job controller will check to see if one or more preferred
queue manager nodes is stored in the queue database.- See Section 5.3.1.1 for
information on how to specify preferred queue manager nodes using the /ON
qualifier with the START/QUEUE/MANAGER command.

If you specify one or more preferred nodes, and the queue manager is running on
a node other than the first available specified node, the job controller attempts
to restart the queue manager on the first available preferred node. Despite the
transition, queues on running nodes are not stopped and all requests to the
queuing system will complete as expected.

VMS Batch and Print Queuing System
5.3 Starting and Stopping the Queue Manager

5.3.1.4 Obsolete Qualifiers
The /EXTEND, /BUFFER_COUNT, and /RESTART qualifiers to the DCL
command START/QUEUE/MANAGER are obsolete with the new batch and
print queuing system.

5.3.2 Stopping the Queue Manager
To stop the clusterwide queue manager, enter the following command:

$ STOP/QUEUE/MANhGER; CLUS'~~ER

This command stops the queue manager process. The process remains stopped
until the DCL command START/QUEUE/MANAGER is entered. Cluster
transitions will not change the state of the queue manager. Newly available
nodes will not attempt to start the queue manager (unless the START/QUEUE
/MANAGER command is executed).

5.3.3 Stopping Queues on a Node
To stop all queues on a node, enter the following command:

$ STOP/QUEUES/ON_NODE

By default, this command stops all queues on the node from which the command
is entered. To stop queues on another node, specify the node name with the
/ON_NODE qualifier as follows:

$ STOP/QUEUES/ON_NODE=BETti

This command implicitly disables the autostart feature on the node on which the
command takes effect. As a result, queues started with an autostart list fail over
to the next available node in that list that has autostart enabled. For information
about the autostart feature, see Section 5.4.

The STOP/QUEUES/ON_NODE command replaces the DCL command STOP
/QUEUE/~NiANAGER. In previous versions, STOP/QUEUE/MANAGER stopped
the queue manager on a single node in a cluster. Because the queue manager is
now clusterwide and not node specific, the STOP/QUEUE/MANAGER command
is obsolete. If you enter the command STOP/QUEUE/MANAGER, it will perform
the same function as the new DCL command STOP/QUEUES/ON_NODE.

5.4 The Autostart Feature
The autostart feature simplifies startup and ensures high availability of execution
queues in a cluster. An autostart queue is a special type of execution queue
that makes use of the autostart feature. The autostart feature lets you do the
following:

• Start all autostart queues on a node with a single command

• Specify a list of nodes (within a VAXcluster environment) to which a queue
can automatically fail over if a node is removed from the cluster

For these reasons, Digital recommends that you use autostart queues whenever
possible.

The following DCL commands are new or changed to support the autostart
feature

• INITIALIZE/QUEUE/AUTOSTART_ON=(node::[device] [,...])

• ENABLE AUTOSTART[/QUEUES][/ON_NODE=node-name]

VMS Batch and Print Queuing System
5.4 The Autostart Feature

• START/QUEUE/AUTOSTART_ON=(node::[device] [,...])

• DISABLE AUTOSTART[/QUEUES][/ON_NODE=node-name]

The following sections discuss these commands in more detail.

5.4.1 Designating a Queue as an Autostart Queue
To designate a queue as an autostart queue, specify one of the following DCL
commands:

• INITIALIZE/QUEUE/AUTOSTART_ON=node::[device]

• START/QUEUE/AUTOSTART_ON=node::[device]

Both node and device must be specified for output queues, for example,
GOOD::MYPRINTER. For batch queues, only node is required, for example,
GOOD::.

You cannot specify the /AUTOSTART_ON=node::[device] qualifier with the
/GENERIC qualifier or the /ON=node::[device] qualifier.

 Caution

The node name you specify as node is not checked to determine if it is an
existing node name. Be sure to specify a correct node name.

5.4.1.1 Setting Up Autostart Queues for Automatic Failover
To increase the availability of execution queues in a cluster, you can set up an
autostart queue to execute on one of several nodes in a list. If the node on which
an autostart queue is running leaves the cluster, the queue will automatically fail
over to the next available node in the list on which autostart is enabled.

To specify the list of nodes to which an autostart queue can fail over, include the
list with the /AUTOSTAR,T_ON qualifier for the INITIALIZE/QUEUE or START
/QUEUE command as follows:

INITIALIZE/QUEUE/AUTOSTART_ON=(node::[device] [,...)) queue
START/QUEUE/AUTOSTART_ON=(node::[device] [,...]) queue

 Caution

The node name you specify as node is not checked to determine if it is an
existing node name. Be sure to specify a correct node name.

For example:
- _ -, ' _ ' ,. ,-. - - ' _ -- - — -,, r ,

\
1

1 p~,71
,

,
~

I I
T Tay; - •--~ - - r

~~~~:~1 Q~J~;~i~ ~~'iYT JJL~-

In this example, the output queue named MYQUEUE will start on the first node 
in the list for which the ENABLE AUTOSTART command is entered. If the node 
on which MYQUEUE is executing is taken out of the cluster, the queue will be 
stopped on that node and will fail over to the first available node in the list on 
which autostart has been enabled. The queue manager will automatically restart 
the queue on the new node. 



VMS Batch and Print Queuing System 
5.4 The Autostart Feature 

As long as one of the three nodes is running with autostart enabled, this queue 
will be started and available to execute print jobs. If all three nodes in the 
example have been shut down, the queue will remain stopped until one of the 
three nodes joins the cluster and executes the ENABLE AUTOSTART command. 

5.4.2 Enabling Autostart on a Node 
The command ENABLE AUTOSTART/QUEUES notifies the queue manager to 
automatically restart all active autostart queues on a system. It also notifies the 
queue manager to automatically start any active autostart queue that fails over 
to the system. An autostart queue is active if it has been started initially and 
has not been stopped with the STOP/QUEUE/NEXT or STOP/QUEUE/RESET 
command. By default, the command affects the node from which it is entered. 
However, you can specify the /ON_NODE=nodename qualifier to enable autostart 
on a different node. For example: 

$ EN~BT E n~'~'OST~R~T ~Q~ ~'~ ~~ ~ J'-_'~C~~= ~O~E 

The /QUEUES qualifier is optional. 

When a node reboots, autostart is disabled until you enter the ENABLE 
AUTOSTART/QUEUES command. Add this command to your system startup 
procedures following the commands that configure printer devices and mount 
important disks. The ENABLE AUTOSTART/QUEUES command is included in 
the template startup procedure SYSTARTUP_VS.TEMPLATE provided with VMS 
Version 5.5. Use this command in your startup procedure instead of separate 
START/QUEUE commands to restart each autostart execution queue. 

Non-autostart execution queues (those created or started with the 
/ON=node::[device] qualifier) will not be automatically restarted when a node 
reboots and therefore must be restarted with the START/QUEUE command. 

5.4.3 Starting Autostart Queues 
You must start an autostart queue initially, in one of the following ways: 

• Specify the /START qualifier in the INITIALIZE/QUEUE command used to 
create the queue. 

• Enter aSTART/QUEUE command after you create the queue. 

Autostart must be enabled on the node as explained in Section 5.4.2 for the 
queue to begin executing jobs. Once autostart is enabled and the queue is started 
initially, the queue will remain started until either of the following occurs: 

• Autostart is disabled on the node with the DISABLE AUTOSTART or STOP 
/QUEUES/ON_NODE command or if the node leaves the cluster. 

• The queue is stopped with aSTOP/QUEUE/NEXT or STOP/QUEUE/R,ESET 
command. 

5.4.4 Preventing Autostart Queues from Starting 
With autostart queues, the STOP/QUEUE/NEXT or STOP/QUEUE/R,ESET 
command stops a queue and marks it inactive for autostart until the START 
/QUEUE command is entered. The STOP/QUEUE/NEXT or STOP/QUEUE 
/RESET command prevents an autostart queue from being automatically 
restarted. 

You might use this feature to prevent an autostart output queue from accidentally 
restarting when a printer is being serviced. 



VMS Batch and Print Queuing System 
5.4 The Autostart Feature 

5.4.5 Disabling Autostart on a Node 
The DISABLE AUTOSTART/QUEUES command notifies the queue manager to 
perform the following tasks on the affected node: 

• Prevent autostart queues from failing over to the node. 

• Mark all autostart queues on the node as "stop pending" in preparation for a 
planned shutdown. This lets jobs currently executing on the queues complete. 

• Upon completion of any jobs currently executing on one of the node's autostart 
queues, force the queue to fail over to the next available node in the queue's 
failover list on which autostart is enabled. (An autostart queue can fail 
over only if you have set it up to run on more than one node, as specified in 
Section 5.4.1.1. ) 

By default, the command affects the node from which it is entered. However, you 
can specify the /ON_NODE=node qualifier to disable autostart on another node. 
The /QUEUES qualifier is optional. 

The DISABLE AUTOSTART/QUEUES command has been added to the shutdown 
command procedure SHUTDO~'VN.COM and will be automatically executed when 
you shut down a node using SHUTDO~'VN.COM. If you shut down a node without 
using SHUTDOWN.COM and the node is running autostart queues, you might 
want to enter the DISABLE AUTOSTART command before shutting down the 
node. 

The DISABLE AUTOSTART command affects autostart queues only. You must 
still stop all non-autostart queues executing on the node by entering one of the 
following commands: 

STOP/QUEUE/RESET 
STOP/QUEUE/NEXT 
STOP/QUEUES/ON_NODE 

In addition to the changes described in this section, the following VMS 
components have been changed to support the autostart feature: 

• F$GETQUI lexical function (see Section 3.6) 

• SYS$SNDJBC and SYS$GETQUI system services (see VMS System Services 
Reference Manual ) 

• LIB$GETQUI run-time library routine (see Section 13.1) 



6 
LADCP Utility 

The LAD control program (LADCP) is the utility program that you use to 
configure and control the local area disk (LAD) protocol on VMS host systems. 
VMS systems that use LAD services are called LAD client nodes. 

You can use LADCP to do the following: 

• Establish bindings to LAD services, which creates a new DADn: virtual disk 
unit on the local VAX system 

• Remove bindings to LAD services 

You can control service access by using a service access password. You can also 
write-protect LAD services. In this case, local VMS users of the DADn: device 
unit receive an error if they attempt a write operation to the unit. 

The LAD protocol allows you to access disk media that reside on a Digital 
InfoServer system as though they were locally connected to your VAX system. 
This allows several VMS client nodes to share the same disk media, eliminating 
the need for duplicate disk drives and media. 

For more information about the LADCP utility, refer to VMS LAD Control 
Program (LADCP) Manual. 





7 
Clusterwide Tape Serving 

Included in VMS Version 5.5 is the VMS tape mass storage control protocol 
(TMSCP) server. The tape server allows the system manager to make locally 
connected tape drives cluster-accessible tapes. Acluster-accessible tape is a tape 
that every node in the cluster can recognize and access. 

The tape server allows nodes without a locally connected tape drive to gain direct 
access to a tape drive connected to another node. 

Once the server has been loaded and tape devices have been set as served, the 
devices can be accessed from any node in the VAXcluster using DCL commands. 
INITIALIZE, MOUNT, and BACKUP operations can be done on remote tape 
devices in the same way as they are currently done using locally connected 
devices. 

  Note  

Tape drives are not shared devices. Only one user can access a tape at a 
time. With the tape server, served tape drives are accessible to all nodes 
in a cluster, but can be allocated and accessed by only one process at a 
time. 

See the VMS VAXcluster Manual for details about implementing the TMSCP 
server. 

7.1 Loading the Magnetic Tape Server 
By default, VMS does not load the tape server software. To implement the server, 
the system manager must modify the SYSGEN parameter TMSCP_LOAD and, 
optionally, the TAPE_ALLOCLASS parameter. 

7.1.1 TMSCP LOAD Parameter 
A new SYSGEN parameter, TMSCP_LOAD, has been created to allow for the 
loading of the TMSCP server software. The TMSCP_LOAD parameter also sets 
locally connected tapes as served. 

When TMSCP_LOAD is set to zero, it inhibits the loading of the tape server and 
the serving of local tapes. When TMSCP is set to 1, it loads the tape server into 
memory at the time the system is booted and makes all directly connected tape 
drives available clusterwide. The following table describes the two states of the 
TMSCP_LOAD parameter: 



Clusterwide Tape Serving 
7.1 Loading the Magnetic Tape Server 

State Function 

0 Do not load the TMSCP tape server. Do not serve any local tape devices 
Clusterwide. 

1 Load the TMSCP tape server. Serve all local TMSCP tape devices Clusterwide. 

The parameter has the following restriction for VMS Version 5.5: 

• The TMSCP tape server will serve TMSCP tape drives only. 

DSSI tapes (for example, the TF85) are TMSCP tape devices. Tape devices 
connected to an HSC are also TMSCP devices. SCSI tapes such as the TL and TZ 
tape devices (which are displayed as MKen} are not TMSCP devices. 

Some tapes can be TMSCP devices depending on their configuration. A TK50 
in a MicroVAX system or being used as the console media fora VAX 6000-series 
computer is a TMSCP device. A TK50 on a VAXstation 2000 computer is not a 
TMSCP tape device. 

TMSCP devices include the TA79, TA81, TA90, TA90E, TA91, TF70, TF85, TF737, 
TF857, TK50, TK70, TU81, TU81+, RV20, and RV60. 

You can use the SHOW DEVICE command to identify TMSCP tape devices. Use 
the SHOW DEVICE M command to obtain a list of tape (and mailbox) devices. 
MU and MI tape devices are TMSCP tapes, so if SHOW DEVICE M displays a 
TU81 tape device as MUAO, the device is a TMSCP device. 

  Note  

In VMS Version 5.5, the DCL command SHOW DEVICE/SERVED does 
not display the names of served tapes. 

SDA (the System Dump Analyzer Utility) can also be used to determine if a 
tape device is a TMSCP tape. To invoke SDA, enter ANALYZE/SYSTEM from 
a privileged account at the DCL prompt. Then use the SDA command SHOW 
DEVICE MUcn, where cis the controller letter and n is the device unit number. 
The display will be similar to the following: 

SAMPL$MUB6 

Device status: 
Characteristics: 

00000010 
OC444038 
000022A1 

Owner UIC [000000,000000] 
PID 

Alloc. lock ID 
Alloc. class 
Class/Type 
Def. buf. size 
DEVDEPEND 
DEVDEPND2 
FLCK index 
DLCK address 

00000000 
00000000 

102 
02/OF 
2048 

000004C0 
00000008 

34 
00000000 

TK70 UCB address: 8000OBBO 

online 
dir,sdi,sgd,fod,avl,elg,idv,odv 
clu,mscp,srv,nnm,loc 

Operation count 
Error count 
Reference count 
BOFF 
Byte count 
SVAPTE 
DEVSTS 
RWAITCNT 
Object count 

0 
0 
0 

0000 
0000 

00000000 
0000 
0000 

0 

ORB address 8000OCDO 
DDB address 81C17600 
DDT address 80B6D904 
CRB address 81C17580 
PDT address 80B6CFA0 
CDDB address 80B71930 
I/O wait queue empty 

In the second line listing the characteristics, the symbol "mscp" indicates that the 
device, a TK70, is a TMSCP device and the symbol "srv" indicates that this device 
is currently served to all the VAXcluster nodes. 



Clusterwide Tape Serving 
7.1 Loading the Magnetic Tape Server 

7.1.2 TAPE_ALLOCLASS Parameter 
To serve tapes, the SYSGEN parameter TMSCP_LOAD must be set to 1. 
Additionally, the SYSGEN tape allocation class parameter, TAPE_ALLOCLASS, 
must follow the same rules as the SYSGEN parameter ALLOCLASS does for 
serving disks. These rules are 

• VAX or HSC nodes connected to a dual-path tape must have the same nonzero 
tape allocation class value. 

• All cluster-accessible tapes on nodes with a nonzero allocation class value 
must have unique names. For example, if two VAX nodes in a VAXcluster 
have the same tape allocation class value, it is invalid for both nodes to have 
a tape named MUAO. This restriction also applies to HSCs. 

• Single-ported tapes with an allocation class value of zero can have the same 
unit number on different cluster nodes. 

Note that zero is the default tape allocation class value. In amixed-interconnect 
cluster, all of the following must have a nonzero tape allocation class value: 

• HSCs 

• Systems serving HSC tapes 

• Systems connected to dual-path tapes 





8 
VMS Volume Shadowing Phase II 

Enhancements 

VMS Volume Shadowing Phase II supports a new SYSGEN parameter, 
SHADOW_MBR_TMO, which lets you specify the timeout period for recovering a 
shadow set member before it is removed from a shadow set. Previously, you used 
the SYSGEN parameter VMSD3 to specify the number of seconds before timing 
out. 

Volume Shadowing Phase II now also provides support for SCSI devices. 

Sections 8.1 and 8.2 describe these new features in more detail. Note that VAX 
Volume Shadowing (Phase I) does not include support for either of these features. 

8.1 Specifying the Shadow Set Member Recovery Timeout Period 
You can set the SHADOW_MBR_TMO parameter to specify the number of 
seconds (from 1 to 65,535 decimal) during which recovery of a repairable shadow 
set is attempted. If you do not specify a number, VMS uses the default value of 
20 seconds. 

The following example shows how to set the value of SHADOW_MBR_TMO to 10 
seconds: 

$ RU?~~ SYS $ S'Y'S'T' ~ I~~ . S SGET~1 
SYSGEN> USA CUR.~_~;T~T 
SYSGEN> S ~T S u, ~~0~~~'~~ _'~i~~ 

; ,F

SYSGEN> ;~HO'~~ SHnDO~^~ , B

Parameter Name Current Default Min. Max. Unit Dynamic 

SHADOW MBR TMO 

T r - --, --, -- ~ -, ~ .. Y > ;~^jR1 ~''E u~ ~;~ ~'~ y 

SYSGEN> EXIT 

10 20 0 65538 SECS D 

i ''I ~i i _ 

Because SHADOW_MBR_TMO is a dynamic parameter, you should use the 
SYSGEN command WRITE CURRENT to change its value permanently. To 
change temporarily the value of SHADOW_MBR_TMO on a running system, use 

the SYSGEN command WRITE ACTIVE. 

  Note  

If there is currently a value in VMSD3 relevant to VMS Volume 
Shadowing Phase II, you can clear the value. 

The SHADOW_MBR_TMO parameter is valid only for use with VMS Volume 

Shadowing (Phase II). You cannot set this parameter for use with VAX Volume 

Shadowing (Phase I). 

8-1 



VMS Volume Shadowing Phase II Enhancements 
8.2 Volume Shadowing Phase II Supports Digital SCSI Devices 

8.2 Volume Shadowing Phase II Supports Digital SCSI Devices 
VMS Volume Shadowing (Phase II) now provides full support for all Digital 
Small Computer System Interface (SCSI) devices and for some other-vendor 
SCSI devices. VMS Volume Shadowing can support other-vendor devices that 
implement readUwritel commands because phase II shadowing software makes 
use of the optional SCSI readl (read long) and writel (write long) commands. 
Because VMS Volume Shadowing Phase II requires compatibility among the 
physical units in a shadow set, any supported SCSI device can be included in a 
phase II shadow set as long as its physical geometry is identical to the other SCSI 
devices in the shadow set. SCSI shadow set members can be located anywhere in 
a VAXcluster system. 

Example 8-1 illustrates how you can use the SDA command SHOW DEVICE 
to determine whether or not a disk has readUwritel support. If the NOFE (No 
Forced Error) flag is set, the disk device does not have readUwritel commands 
implemented. In Example 8-1, the NOFE flag is shown at the end of the line 
following the line that begins with the word Characteristics. This flag indicates 
that the DKA200 device does not have forced error capability. 

Example 8-1 Showing Device Characteristics Using the SDA SHOW DEVICE Command 
SDA> SHOti^1 DEV D~A200 
BUBLA$DKA200 RZ23 UCB address: 803385B0 

Device status: 00000010 
Characteristics: 1C454008 

05000221 

Owner UIC [000000,000000 
PID 00000000 

Alloc. lock ID 00000000 
Alloc. class 5 
Class/Type 01/31 
Def. buf. size 512 
DEVDEPEND 03080821 
DEVDEPND2 00000000 
FLCK index 34 
DLCK address 00000000 

online 
dir,fod,shr,avl,elg,idv,odv,rnd 
clu,mscp,nnm,scsi,nofe 

Operation count 
Error count 
Reference count 
Online count 
BOFF 
Byte count 
SVAPTE 
DEVSTS 
RWAITCNT 

231 
0 
0 
0 

0000 
0000 

00000000 
0004 
0000 

ORB address 803386E0 
DDB address 805655E0 
DDT address 8037B978 
CRB address 80527F70 
PDT address 8030C1A0 
CDDB address 80338740 
I/O wait queue empty 

If you attempt to mount a SCSI device that does not have forced error capability 
into a shadow set, the MOUNT command fails and returns an informational 
status message. The following example shows the error message that results 
when you attempt to mount the DI~►A200 disk device: 

$ 1~~~0UNTiSYS DSA101/SHAD=$5$DKA200: YELLOW 

oMOUNT-I-DEVNOFE, device does not support FORCED ERROR handling. 

You can mount SCSI devices that do not have forced error capability into phase 
II shadow sets using the /OVERRIDE=NO_FORCED_ERROR qualifier. This 
qualifier inhibits the protection checks performed by the MOUNT command. The 
following example shows how you use the /OVERRIDE=NO_FORCED_ERROR 
qualifier to mount the DI~~A200 disk device in a shadow set: 

$ MOUNT/SYS/Oti'ERRDE=NO_FORCED_ERROR DSAlC1iS~A~=$5$DKA200: YE~LOtiti' 
oMOUNT-I-MOUNTED, YELLOW mounted on _DSA101: 
%MOUNT-I-SHDWMEMSUCC, _$5$DKA200: (BUBLA) is now a valid member of the shadow set 



VMS Volume Shadowing Phase II Enhancements 
8.2 Volume Shadowing Phase II Supports Digital SCSI Devices 

Note that a SCSI device mounted with the /OVERRIDE=NO FORCED ERROR 
qualifier will be dropped from the shadow set during a full copy operation if the 
device is the target of the operation and a bad block is encountered on the source 
device . 

VAX Volume Shadowing (Phase I) does not include support for either Digital SCSI 
devices or other vendor's SCSI devices. 

8-3 





9 
LAT New Features 

The LAT software included in the VMS Version 5.5 operating system has been 
significantly enhanced. These changes affect the following operations: 

• Starting up the LAT protocol software 

• Using the site-specific LAT startup command procedure to customize LAT 
characteristics 

• Using the new SET HOST/LAT command to establish outbound connections 

• Using new commands and qualifiers with the LAT Control Program (LATCP) 

  Note  

You can enter LATCP commands either at the LATCP> prompt or as a 
DCL command (interactively or in a program). If you choose the latter 
method, you must first define LCP and then precede each DCL command 
with that symbol, as shown in the following example: 

$ .__ ~- LCP ~~ATCP 
$ LCP S~ T LODE /STATE=ON 

• Using the new LAT ancillary control process (LATACP) to manage the 
services database 

• Using the enhancements made to the QIO interface (described in Chapter 17) 

This chapter includes complete information about starting, customizing, and 
managing the new LAT software. For additional information, see Chapter 17, the 
revised VMS LAT Control Program (LATCP) Manual, and the VMS Version 5.5 
Release Notes. 

9.1 Starting Up the LAT Protocol Software 
To set up your node as a LAT service node and start the LAT protocol software 
on your system each time the system boots, edit SYS$MANAGER:SYSTAR,TUP_ 
V5.COM to add the following line: 

—~cc~~:~~ T~ .~~. 

When SYSTARTUP_V5.COM executes this command, it invokes 
LAT$STARTUP.COM, which in turn invokes the LAT$CONFIG and 
LAT$SYSTARTUP command procedures. 

You can append any of the following arguments to the command line that 
invokes LAT$STARTUP to specify unique LAT characteristics for your node. The 
procedure will pass these arguments to LAT$SYSTARTUP.COM to define the 
LAT characteristics you specify. 

@ SYS$STARTU P: LAT$STARTU P "P 1 " "P2" "P3" "P4" "P5" 



LAT New Features 
9.1 Starting Up the LAT Protocol Software 

Digital recommends that you modify LAT$SYSTARTUP.COM directly instead 
of appending these arguments to the @SYS$STARTUP:LAT$STARTUP 
command. However, should you choose to specify these arguments with the 
@SYS$STARTUP:LAT$STARTUP command, note that arguments P1 through P5 
are defined as follows: 

Format Meaning 

P1 Argument 

Service name Name of the VMS service. For clustered VMS service 
nodes, use the cluster alias as the service name. For 
independent VMS service nodes, use the DECnet node 
name. SYS$STARTUP:LAT$SYSTARTUP.COM uses the 
argument P1 to assign a service name to the node (with 
the LATCP CREATE SERVICE command). 

P2 Through P4 Arguments' 

/IDENTIFICATION="string" 

/GROUPS=(ENABLE =group-
list) 

/GROUPS=(DISABLE=group-
list) 

Description of the node and its services that is advertised 
over the Ethernet. The default is the string defined 
by the logical name SYS$ANNOUNCE. Make sure 
you include five sets of quotation marks around the 
identification string, as in the following example: 
/IDENTIFICATION="""""Official system center""""". 

Terminal server groups qualified to establish connections 
with the VMS service node. By default, group 0 is 
enabled. 

Removes previously enabled terminal server groups. 
If you are specifying the preceding qualifier to enable 
groups, you can combine the qualifiers into one, as shown 
in the example that follows this table. 

P5 Argument2

Any qualifiers valid with 
the CREATE SERVICE 
command. 

SYS$STARTUP:LAT$SYSTARTUP.COM uses this 
argument to assign service characteristics with the 
LATCP CREATE SERVICE command. You can specify 
the /IDENTIFICATION, /LOG, and /STATIC_RATING 
qualifiers. Specify several qualifiers as shown in the 
following example: "/IDENTIFICATION="""""Official 
system node"""""/STATIC_RATING=250". 

lAny of these qualifiers can be specified. SYS$STARTUP:LAT$SYSTARTUP.COM uses the arguments 
to assign LAT node characteristics (with the LATCP SET NODE command). 

2P5 is used only if P1 is specified. 

For example, the following command creates the service OFFICE on the VMS 
service node MOE: 

$ @SVS$S~TARTUP:LAT$Sl'~RTU~ Ors I E -
_$ -GROUPS= (El`~~ABL~= (y, _-y) , DIS~B~~=u 

In addition, if you want to do any of the following LAT network tasks, you must 
edit LAT$SYSTARTUP.COM, as described in Section 9.2: 

• Set up LAT printers 

• Create special application services 



LAT New Features 
9.1 Starting Up the LAT Protocol Software 

• Set up the node to allow outgoing connections (to support the SET HOST/LAT 
command) 

For more information about the LAT protocol software, see Section 9.3. For a 
full description of all LATCP commands and qualifiers, see the VMS LAT Control 
Program (LATCP) Manual. 

9.2 Site-Specific LAT Command Procedure (LAT$SYSTARTUP.COM) 
The command procedure SYS$MANAGER:LAT$SYSTARTUP.COM. contains 
LATCP commands that define LAT characteristics. LAT$SYSTAR,TUP.COM is 
invoked when you execute the LAT$STAR.TUP command procedure. As explained 
in Section 9.1, you typically execute LAT$STAR,TUP.COM from SYSTAR,TUP_ 
V5.COM. 

You do not need to edit LAT$SYSTARTUP.COM if you want your VMS 
node to be a LAT service node that only supports incoming connections 
from interactive terminals. You can assign a service name and other 
characteristics by specifying parameters when you invoke the command procedure 
SYS$STARTUP:LAT$STARTUP, as described in Section 9.1. 

However, you can edit LAT$SYSTARTUP.COM to add LATCP commands to 
customize LAT characteristics for your VMS node; for example: 

• To create more than one service (see Section 9.2.1) 

• To create logical ports for printers (see Section 9.2.2) 

• To create logical ports for special application services (see Section 9.2.2) 

• To enable outgoing LAT connections to support the SET HOST/LAT command 
(see Section 9.2.3) 

• To tailor VMS node characteristics; for example, to assign special service 
announcements or Ethernet links (see the VMS LAT Control Program 
(LATCP) Manual) 

Note  

Do not modify the command procedures LAT$STAR.TUP.COM 
and LAT$CONFIG.COM. These procedures perform functions 
necessary for the LAT protocol software to run correctly. Modify only 
LAT$SYSTAR,TUP.COM to customize LAT characteristics for specific 
sites. 

If you edit LAT$SYSTARTUP.COM, you should add only LATCP commands. 
In addition, you should conform to the order of commands in the template file 
SYS$MANAGER:LAT$SYSTARTUP.TEMPLATE. The VMS LAT Control Program 
(LATCP) Manual provides a sample edited LAT$SYSTARTUP procedure and a 
full description of the commands you can include in LAT$SYSTARTUP.COM. 

9-3 



LAT New Features 
9.2 Site-Specific LAT Command Procedure (LAT$SYSTARTUP.COM) 

9.2.1 Creating a VMS Service 
The LAT$SYSTARTUP.COM procedure provided by Digital creates one service. A 
service can be either a primary service, through which users can access all the 
resources of the computer system, or it can be a special application service, such 
as a data entry program or an online news service. The procedure creates the 
service with the same name as that of your VMS node unless you specify a unique 
service name as an argument to the @SYS$STARTUP:LAT$STARTUP.COM 
command, as explained in Section 9.1. 

You can add CREATE SERVICE commands to LAT$SYSTARTUP.COM to create 
additional services. 

If you create an application service, Digital recommends that you assign the 
name of the application program. For example, adding the following command 
to LAT$SYSTARTUP.COM creates an application service called NEWS on the 
local node. The /IDENTIFICATION qualifier ensures that this service will be 
indentified in service announcements and in the display generated by the LATCP 
SHOW NODE command. 

$ MCP CRCrCE SER_`.7IC~ T,,~~>~~S _C~~ _ 1C ~C___ ~Ol~~ ~pp~TC~CIOT~1 

For more information about the LATCP command CREATE SERVICE, see the 
VMS LAT Control Program (LATCP) Manual. 

9.2.2 Setting Up Ports 
The LAT$SYSTARTUP.COM procedure provided by Digital includes sample 
commands to create logical ports on the VMS service node and to associate them 
with physical ports or services on the terminal server node. These ports can 
be used for application services and remote printers. Enable these commands 
by removing the exclamation points (!)that precede them or by adding similar 
CREATE PORT and SET PORT commands to meet your needs. For information 
about the LATCP commands CREATE PORT and SET PORT, see the VMS LAT 
Control Program (LATCP) Manual. 

  Note  

Digital strongly recommends that you create application and dedicated 
ports after the LATCP command SET NODE/STATE=ON is executed. 
This minimizes nonpaged pool memory usage and eliminates the 
possibility of creating duplicate ports. For more information, see the 
descriptions of the /DEVICE_SEED and /STATE qualifiers in the SET 
NODE reference section of the VMS LAT Control Program (LATCP) 
Manual. 

Setting Up Printers 
If you set up a port for a printer, you must also perform the following tasks: 

1. Create a spooled output queue for the printer. 

2. Add a command to start the queue to the startup command procedure that 
starts your queues or to SYSTARTUP_V5. C OM. 

These tasks are described in the Guide to Setting Up a VMS System. For more 
information about LAT printer queues, see the chapter on batch and print 
operations in the Guide to Maintaining a VMS System. 

9-4 



LAT New Features 
9.2 Site-Specific LAT Command Procedure (LAT$SYSTARTUP.COM) 

Setting Up Special Application Services 
To establish a special application service, include the /DEDICATED qualifier 
when defining a LAT port. The application program to which the service 
connects must define the same dedicated port. For example, inserting and then 
executing the following commands in LAT$SYSTARTUP.COM sets up ports for an 
application service called NEWS: 

$ LCP CREATE PORT LTA333: /DEDICATED 
$ LCP SET PORT LTA333: /SERVICE=NEWS 

Before application services can be available to user terminals on the LAT 
network, you must start the application program. You usually add commands 
to do this in SYLOGIN.COM. 

9.2.3 Enabling Outgoing LAT Connections 
By default, outgoing LAT connections are disabled on a node. If you want to allow 
users to use the SET HOST/LAT connection to establish LAT connections from 
the node, you must edit LAT$SYSTARTUP.COM to enable outgoing connections. 
For more details on using the SET HOST/LAT command for outgoing LAT 
connections, see Section 9.3.3.4. 

Commands to enable outgoing connections are included in the 
LAT$SYSTARTUP.COM procedure provided by Digital. Enable the command 
of your choice by removing the exclamation point (!)that precedes it or add a 
similar command to meet your needs. For more information, see the descriptions 
of the /CONNECTIONS and /USER_GROUPS qualifiers in the SET NODE 
reference section of the VMS LAT Control Program (LATCP) Manual. 

To attain optimal SET HOST/LAT performance and forward port performance, set 
the SYSGEN parameter TTY_ALTYPAHD to 1500 and reboot. 

9.3 Connecting to a LAT Network 
The VMS operating system uses the LAT communications protocol software 
to communicate with terminal servers and other systems within a local area 
network. 

Terminal servers are communication devices dedicated for connecting terminals, 
modems, or printers to an Ethernet network. Terminal servers provide acost-
effective method of connecting many user terminals to a computer. Terminal 
servers save on cable requirements and they maximize the number of devices 
that can access a computer. 

With the LAT protocol software, the VMS operating system can offer resources 
(services) that terminal servers can access. A system that offers LAT services 
is called a service node. In addition, VMS nodes can access LAT services by 
enabling outgoing connections (using LATCP) and using the SET HOST/LAT 
command. (In the remainder of this chapter, "servers" refers both to dedicated 
terminal servers and VMS nodes that allow access to other LAT services. ) 

9.3.1 Function of the LAT Protocol Software 
The LAT protocol is the software that allows terminal server devices and 
computers to communicate within a local area network (LAN). The LAT 
protocol software is concerned with matching terminals and other devices to 
the computing resources (services) of a LAN. Because LAT terminals no longer 
connect directly to the computer (service node) they are accessing, the local server 
must listen for service requests from its terminals and be able to match the 
terminals with computers that provide the desired services. 

9-5 



LAT New Features 
9.3 Connecting to a LAT Network 

Using the LAT protocol software, a VMS operating system announces its available 
services over the Ethernet. Servers listen to the Ethernet announcements and 
build a database of service information so that they can locate an appropriate 
VMS system when a user terminal requests computing services. For example, a 
user terminal might request general processing service or a data entry program 
on a VMS operating system. A server uses the LAT protocol software to establish 
and maintain a connection between the requesting terminal and the VMS 
operating system. 

Sometimes a VMS operating system can request services from a terminal server. 
The LAT protocol software allows VMS systems to ask for connections to printers 
or other devices attached to a terminal server. 

9.3.2 Advantages of the LAT Protocol Software 
The LAT protocol software allows you to make the resources of any computer on a 
local area network available to any user in that network. 

In addition to general processing resources, you can set up terminals, printers, 
and modems so that they are available from multiple systems in the local area 
network. This allows you to efficiently use these resources, and to keep them 
available even if one of the systems in the network must be shut down. 

You can also set up application programs, such as data entry programs or news 
services, as resources. When a user requests a connection to the resource, the 
LAT protocol software sets up a connection directly to the application program. 
No login procedure is necessary. 

The LAT protocol software provides load balancing features and recovery 
mechanisms so that users get the best, most consistent service possible. In 
their broadcast messages, VMS systems rate the availability of their services 
so that servers can establish connections to computing resources on the least 
busy node. If a node becomes unavailable for any reason, the servers attempt to 
provide services on alternate service nodes. 

In addition, users can establish multiple computing sessions on their terminals, 
connecting to several different computers and switching easily from one 
computing session to another. After switching from one session to another, 
users can return to the previous session and pick up where they left off. This 
saves users the time normally required to close out and reopen files or accounts 
and to return to the same point in a session. 

Finally, the LAT protocol software can provide improved system performance. 
Because the servers bundle messages onto a single Ethernet interface, a server 
interface decreases the network traffic and reduces the number of computer 
interrupts encountered in systems where terminals, modems, and printers each 
have a physical connection to the computer. 

9.3.3 The LAT Network 
A LAT network is any local area network where terminal servers and operating 
systems use the LAT protocol software. A LAT network can coexist on the same 
Ethernet with other protocols. The LAT protocol software, which operates on both 
terminal servers and the VMS operating system, is designed to ensure the safe 
transmission of data over the Ethernet. 

The LAT network consists of the following entities: 

• VMS service nodes 

• Terminal server nodes 



LAT New Features 
9.3 Connecting to a LAT Network 

• VMS nodes allowing outgoing connections 

• Ethernet coaxial cable 

VMS service nodes supply computing resources for the local network, while 
terminal server nodes (or VMS nodes allowing outgoing connections) port their 
terminals, modems, or printers to those resources upon request from a user 
terminal or an application program. 

You can use the LAT Control Program (LATCP) Utility to configure the LAT 
characteristics for a VMS system. LATCP allows you to set up a VMS system to 
support: 

• Incoming access only 

• Outgoing access only 

• Both incoming and outgoing access 

The VMS systems that support incoming LAT connections are service nodes. 
(You can also set up a VMS system so that it supports neither incoming nor 
outgoing access.) See the VMS LAT Control Program (LATCP) Manual for more 
information. 

9.3.3.1 VMS Service Nodes 
A VMS service node is one type of node in a LAT network. (Nodes that are not 
using VMS can also be used along with VMS nodes in a LAT network.) A service 
node is an individual computer in a LAN that offers its resources to users and 
devices. Because the VMS operating system contains the LAT protocol software, 
any VMS system can be configured as a service node within a LAT network. 

Types of Services 
Each VMS node offers its resources as a service. Often, a node offers a general 
processing service, but it can offer special application services as well. Any or all 
of the services can be specialized applications. 

For example, a VMS service node might offer three services: one service for 
general processing, another for data entry, and a third for stock quotations. 
The general processing service would allow the use of the general computing 
environment. The data entry and stock services, on the other hand, would be 
restricted environments, with connections to the application service but to no 
other part of the service node. 

Each service is distinguished by the name the system manager assigns to it. In 
a VMS cluster, Digital recommends that the service name be the same as the 
cluster name. In a standalone system, Digital recommends that the service name 
be the same as the node name. With special service applications, the service 
holds the name of the application. 

Service Announcements 
A VMS service node announces its services over the LAN at regular intervals so 
that terminal servers (and VMS systems that allow outgoing connections) know 
about the availability of these network resources. The service announcement 
provides the physical node name, the service names, a description of services, and 
a rating of service availability. Servers listen to the Ethernet announcements and 
record information in a database. On VMS nodes allowing outgoing connections, 
this database is maintained by the LAT ancillary control process (LATACP). 

Whenever a user terminal or application program requests a service, the server 
node connects to the appropriate VMS service node. 

9-7 



LAT New Features 
9.3 Connecting to a LAT Network 

Print Requests 
In some cases, VMS service nodes can request services from terminal servers. 
The most common situation is when the VMS system wants to use a printer that 
is ported to a terminal server. VMS submits the print request to the terminal 
server print queue that is set up and initialized in the VMS startup procedure. 
Then the LAT symbiont (the process that transfers data to or from mass storage 
devices) requests the LAT port driver to create and terminate connections to the 
remote printer. 

For information on setting up queues for printers connected to LAT ports, see 
the chapter on batch and print operations in the Guide to Maintaining a VMS 
System . 

9.3.3.2 Terminal Server Nodes 
A terminal server node is the second type of node in a LAT network. A terminal 
server node is usually located near the terminals and printers it supports. The 
terminals and printers are physically connected to the terminal server; the 
terminal server is physically connected to the Ethernet. 

Locating VMS Service Nodes 
Terminal servers build and maintain a directory of services from announcements 
advertised over the network. Then, when terminal servers receive requests for 
servers from terminal users, they can scan their service database and locate the 
computer that offers the requested service. 

Terminal servers not only look for the VMS node that provides the requested 
service, they can also evaluate the service rating of that node. If a requested 
service is offered by more than one node, then the service rating is _used to select 
the node that is least busy. A server establishes a logical connection between the 
user terminal and the VMS service node. 

Setting Up Connections 
One logical connection carries all the data directed from one terminal server node 
to a VMS service node. That is, the server combines data from all terminals 
communicating with the same VMS node onto one connection. A terminal 
server establishes a logical connection with a VMS service node only if a logical 
connection does not already exist. 

If a connection fails for any reason, a terminal server attempts to find another 
node offering the same service and "rolls over" the connection so users can 
continue their computing sessions. 

Even though terminal connections are bundled together, each terminal can be 
uniquely identified by its name. A terminal name consists of two parts. The first 
part is the name of the port on the terminal server that the terminal line plugs 
into. The second part is the name of the terminal server node. 

Servicing VMS Nodes 
Although terminal servers are usually the requesting nodes in a LAT network, 
sometimes VMS service nodes request service from terminal servers. Most 
commonly, a VMS service node queues print requests to remote printers connected 
to terminal servers. 



LAT New Features 
9.3 Connecting to a LAT Network 

9.3.3.3 VMS Nodes Allowing Incoming and Outgoing Connections 
VMS nodes can be set up to allow incoming connections, outgoing connections, 
or both. These VMS nodes locate service nodes and set up connections as do 
terminal server nodes. The database of information about available nodes and 
services is maintained by the LAT ancillary control process (LATACP). 

On a VMS node that is set up to allow outgoing LAT connections, a user can 
connect to another node in the LAT network by entering the SET HOST/LAT 
command. The following section describes how to use this new command. 

9.3.3.4 Using the SET HOST/LAT Command 
The SET HOST/LAT command allows you to connect your terminal to a specified 
service, establishing one LAT session for communication between your terminal 
and that service. 

The service node that provides the service must be on a remote node, must be 
on the same extended LAN, and must be running at least Version 5.0 of the LAT 
protocol software. (Note that you cannot use SET HOST/LAT to connect to the 
local node. ) 

Some services are protected with passwords. You are prompted for a password 
unless you specify the password with the !PASSWORD qualifier. 

Once the connection to the service is made, you can interact with the service as 
if your terminal were connected directly to it. Some services will prompt you. 
For example, if the service is a VMS system, it prompts you for a user name and 
password. You must have an account on the service node in order to log in. 

Press the disconnect character to end the LAT session and return to DCL 
command level on your local system. With some services, such as general 
timesharing services like VMS, you can end the LAT session by logging out of 
the service. The default disconnect character is CtrU\ . Use the /DISCONNECT 
qualifier to change the default disconnect character. 

The format for entering this command is as follows: 

SET HOST/LAT service-name 

Note that service-name specifies the name of the service to which you want your 
terminal connected. If several service nodes offer the same service and you do 
not specify the /NODE=node-name qualifier, your terminal connects to the service 
node that is least busy. 

To display a list of services on your LAN, use the LAT Control Program (LATCP) 
SHOW SERVICES command, as described in the the VMS LA.T Control Program 
(LATCP) Manual. 

The qualifiers you can specify for the SET HOST/LAT command are as follows: 

• /[NO]AUTOCONNECT 

Specifies whether connection attempts should be retried automatically when 
a connection fails because a service is unknown or unavailable or because a 
node is unknown or unreachable. Also specifies that reconnecting should be 
attempted automatically if a service has disconnected abnormally. The default 
is /NOAUTOCONNECT. 



LAT New Features 
9.3 Connecting to a LAT Network 

• BREAK=break-character 

Defines a character that generates a break on lines that expect a break rather 
than a carriage return. To generate a break, press CtrUbreak-character. You 
can select any ASCII character from @through Z, except C, M, Q, S, Y, and 
the left bracket ([ ). You cannot select a character that is already defined as 
the disconnect character. 

• /DESTINATION_PORT=port-name 

Specifies the port on a node to which you want to connect. The /NODE 
qualifier is required when you specify the /DESTINATION_PORT qualifier. 
The port must be available and must offer the service you specify. VMS and 
certain other LAT service node systems ignore the /DESTINATION_PORT 
qualifier. 

• /DISCONNECT=disconnect-character 

Defines the character that you can use to disconnect from a remote session. 
The default disconnect character is CtrU\ . To generate a disconnect, press 
CtrUdisconnect-character. You can select any ASCII character from @through 
Z, except C, M, Q, S, Y, and the left bracket ([ ). For example, if you specify 
/DISCONNECT=A, CtrUA will be the disconnect character. You cannot select 
a character that is already defined as the break character. 

• /LOG[=log-file] 

Logs all data that is delivered during the LAT session. If you do not specify a 
name for the log file, the data is stored in the file SETHOST_LAT.LOG. 

• /NODE=node-name 

Specifies the node that offers the service to which you want to connect. The 
node you specify must be a remote node. Failover is not performed if the 
connection fails. 

• /PASSWORD=password 

Specifies the password required by a service that is protected with a 
password. If you do not specify the /PASSWORD qualifier when requesting a 
connection to such a service, you are prompted for the password. 

The following examples illustrate how to use the SET HOST/LAT command: 

Examples 

1. $ SET HOST/LAT SORTER 
oLAT-S-CONNECTED, session to SORTER established 
oLAT-I-TODISCON, type ~\ to disconnect the session 
Username: SMITH 
Password: 

$ LOGOUT 
SMITH logged out at 9-JUL-1991 11:04:51.45 
oLAT-I-DISCONNECTED, session disconnected from SORTER 
-LAT-I-END, control returned to node HOME 

This SET HOST/LAT command connects the user to the service SORTER, 
which is a computer system. The first message confirms that the user has 
been connected to that service. The second message informs the user how to 
disconnect the session. (The user can also disconnect the session by logging 



LAT New Features 
9.3 Connecting to a LAT Network 

out from SORTER.) SORTER then prompts for the user name and password. 
Use the normal login procedure to log in to the computer system. When the 
user logs out of the service SORTER, the terminal displays the DCL command 
prompt of the user's local system (HOME). 

2. $ SET HOST/LAT/DESTINATION PORT=BOSTON%NODE=STAT'E'DISCONNECT=r BUDGET 

This command connects the user's terminal to the service BUDGET that is 
offered on port BOSTON on service node STATE. The user can disconnect the 
session by typing CtrUF. 

3. $ SET HOST/LAT PURSE 
Password: 

This command attempts to connect the user's terminal to the service PURSE. 
The service PURSE is protected, so the user is prompted for a password. The 
user could have specified the password within the SET HOST/LAT command, 
as shown in the next example. 

4. $ SET HOST/LAT/PASSTw'ORD=BEOR. PURSE 

This command connects the user's terminal to the service PURSE. The 
password is BEOR. 

9.3.3.5 A Sample LAT Configuration 
Figure 9-1 illustrates the components of a LAT network. The network consists of 
an Ethernet cable connecting VMS service nodes and terminal server nodes. 

The three VMS service nodes in Figure 9—1, named MOE, LARRY, and ALEXIS, 
each offer services to terminal server nodes on the network. 

Two of the VMS service nodes, MOE and LARRY, belong to the OFFICE cluster. 
(The cluster is distinguished by its computer interconnect (CI) and star coupler.) 
Because MOE and LARRY are clustered, their service names are the same as 
their cluster name. Because both VMS service nodes offer an OFFICE service, 
terminal server nodes can assess the work load on both OFFICE nodes and 
establish a connection to a node that offers the service that is least busy. 

The third VMS service node, ALEXIS, is an independent node in the LAT 
network, so its service name is the same as its node name. 

In addition to its primary OFFICE service, node MOE offers an application 
service called NEWS. With this specialized service, user terminals can connect 
directly to the online news program, without any login procedure but also without 
general access to the general computer resources of the node. 

The node FINANCE, shown in Figure 9-1, is a terminal server node. The node 
PROCESSING is a VMS node allowing outgoing connections. Node FINANCE 
supports a number of interactive terminals as well as a modem and a printer. 
This node can accept print requests from any of the three VMS service nodes, 
provided each of the service nodes has set up print queues to support remote 
printers on the terminal server. 

Node PROCESSING is a VMS server and service node that offers the COMPUTE 
service. 



LAT New Features 
9.3 Connecting to a LAT Network 

Figure 9-1 A LAT Network Configuration 

T T T P P T M T 

T  I I I I I I I I  T 

\ Terrninal / 
Server 

Node: FINANCE 

T T T T T T T 

VMS Server and 
Service Node 

Node: PROCESSING 

Service: COMPUTE 

VMS Service Node 

Node: MOE 
Cluster: OFFICE 
Services: OFFICE, 

NEWS 

VMS Service Node 

Node: LARRY 
Cluster: OFFICE 
Services: OFFICE, 

DATA_ENTRY 

Star Coupler 

M =Modem 
P =Printer 
T =Terminal 

Ethernet 

VMS Service Node 

Node: ALEXIS 

Service: ALEXIS 

Computer Interconnect (CI) 

ZK-1110A-GE 

9.3.3.6 LAT Relationship to VMS Clusters and DECnet 
Although the LAT protocol software works independently of VMS VAXcluster 
software, Digital recommends that you configure a VMS service node to 
complement the cluster concept. You achieve this by creating a service on each 
node in a cluster and assigning the cluster name to this service. A terminal 
server assesses the availability of cluster services and establishes a connection 
to the node that is least busy. Thus, the LAT protocol software helps balance the 
cluster load. If one node in the cluster fails, the terminal server can transfer the 
failed connections to another service node within the cluster. 

LAT does not use DECnet as a message transport facility, but instead uses its 
own virtual circuit layer to implement a transport mechanism. Essentially, 
LAT and DECnet work independently in a common Ethernet environment. For 
compatibility, if a VMS service node is also a DECnet node, the VMS service node 
name should be the same as the DECnet node name. 

9.3.4 Summary of LAT System Management Tasks 
The following sections summarize tasks you perform to manage the new LAT 
protocol software. Before performing these tasks, however, review the VMS 
Version 5.5 Release Notes for additional LAT information. 



LAT New Features 
9.3 Connecting to a LAT Network 

9.3.4.1 Starting Up the LAT Protocol Software 
As system manager, you start up the LAT protocol software and configure 
your node as a VMS service node by executing the command procedure 
SYS$STARTUP:LAT$STARTUP. This procedure executes the following 
procedures: 

• LAT$CONFIG.COM, to load the LAT terminal driver LTDRIVER and create 
the LATACP process 

• LAT$SYSTARTUP.COM, to execute LATCP commands that define LAT 
characteristics 

To make sure the LAT protocol software is started each time the system boots, 
add a command to execute this procedure in the site-specific command procedure 
SYSTARTUP_V5.COM. For instructions, see Section 9.1. 

9.3.4.2 Customizing LAT Characteristics 
To define special LAT characteristics for your node, edit the site-specific command 
procedure SYS$MANAGER:LAT$SYSTARTUP.COM, as described in Section 9.2. 

If you only want to set up your node as a service node with incoming connections 
enabled, you do not need to edit LAT$SYSTARTUP.COM. However, you might 
edit LAT$SYSTARTUP.COM to do one or more of the following tasks: 

• Create more than one service on a node 

• Create special application services 

• Set up LAT printers 

• Enable outgoing LAT connections (to allow a VMS node to act as a terminal 
server node) 

• Tailor VMS node characteristics; for example, to assign special service 
announcements or LEAN links (connections to Ethernet or FDDI1 devices, 
for example ) 

Caution  

Do not edit the LAT$STARTUP.COM or LAT$CONFIG.COM procedures. 

9.3.4.3 Using LATCP to Control the LAT Protocol Software 
The LAT Control Program Utility (LATCP) serves as a command interface to the 
LAT software running on the VMS node. LATCP commands allow you to stop and 
start the LAT driver (LTDRIVER) and to modify and display LAT characteristics 
of the VMS node. 

For detailed information about all LATCP commands and qualifiers, see the VMS 
LAT Control Program (LATCP) Manual. See the VMS Version 5.5 Release Notes 
for information about LATCP commands and qualifiers that are now obsolete. 

1 Fiber distributed data interface 

9-13 



LAT New Features 
9.3 Connecting to a LAT Network 

9.3.4.4 Managing the LATACP Database Size 
On VMS nodes, the LATACP process maintains a database of available nodes and 
services. The nodes and services may be those that are multicast (announced on 
the LAN) from remote LAT nodes, or they could consist of the local node and one 
or more local services that you create on your own system. The maximum size of 
this database is dependent on the SYSGEN parameter CTLPAGES. 

After you enter a LATCP command, you might get the following response: 

oLAT-W-CMDERROR, error reported by command executor 
-LAT-F-ACPNOCTL, insufficient resources - ACP CTL/P1 space limit reached 

If so, this signifies that the database size has reached the CTLPAGES limit. You 
can correct the situation in one of the following ways: 

• Reduce the size of the database by reducing the node limit. Use the LATCP 
command SHOW NODE to display the node limit; use the command SET 
NODE/NODE_LIMIT to change it. For more information, see the VMS LAT 
Control Program (LATCP) Manual. 

• Reduce the size of the database by reducing the user group codes that 
are enabled on the node. Use the LATCP command SHOW NODE to 
display the enabled user group codes; use the command SET NODE/USER_ 
GROUPS=DISABLE to disable some of them. For more information, see the 
VMS LAT Control Program (LATCP) Manual. 

If you choose this option, you must also edit your startup procedures to 
change the user groups that are enabled each time the system reboots. For 
more information, see Section 9.2. 

• Extend the size of the database by increasing the size of CTLPAGES using 
SYSGEN (and then rebooting the system). As a general rule, note that every 
unit of CTLPAGES that you increase is roughly equivalent to six additional 
nodes or services that will be stored in the database. 



10 
VMS License Management Facility 

The VMS License Management Facility (LMF) has been enhanced to include 
a number of new features. This section briefly describes most of these 
enhancements, but the reader should consult the VMS License Management 
Utility Manual for complete, detailed information. 

10.1 Moving and Copying Licenses 
The new LICENSE COPY and LICENSE MOVE commands allow the transfer of 
licenses between databases. 

The LICENSE MOVE command creates a new license registration in the target 
license database and then deletes the license record and its history records from 
the source database. 

The LICENSE COPY command creates a new license registration in the target 
license database, disables the license record in the source database, and retains 
the history records in the source database. 

Note that the LICENSE MOVE and LICENSE COPY commands do not transfer 
to the target database any user-supplied data such as reservation lists, modified 
termination dates, modified units, include or exclude node lists, or comments. 

10.2 Deleting Licenses 
The new LICENSE DELETE command allows you to delete a license and its 
history records from a license database. 

10.3 Automating License Registration 
The LICENSE ISSUE command now accepts the /PROCEDURE qualifier. This 
qualifier causes the LICENSE ISSUE command to produce output formatted 
such that it can be invoked as a DCL command procedure to register a license in 
another license database. 

10.4 Creating License Reservation Lists 
The LICENSE MODIFY command now accepts the /R,ESERVE qualifier, which 
allows system managers or privileged users to attach a list of names to a product 
license. This list of names, called a reservation list, restricts use of the product to 
the names in the list. 

You can add a reservation list to any Product Authorization Key (PAK). 

The following example shows how to add a reservation list to a product license 
using the MODIFYlRESERVE command: 

$ LICENSE MODIFY FORTRAN/RESERVE=(DOE, SMITH,JOT~TES) 
$ LICENSE UNLOAD FORTRAN 
$ LICENSE LOAD FORTRAN 



VMS License Management Facility 
10.4 Creating License Reservation Lists 

This command example restricts the use of VAX FORTRAN to the users named 
Doe, Smith, and Jones. 

10.5 Support for PAKs with the RESERVE_UNITS Option 
LMF now allows software vendors to issue PAKs with the RESERVE UNITS 
option. This option may be used by license issuers whose terms and conditions 
require that use of the product be restricted to a specified number of named 
users. 

When registering a PAK that makes use of the RESERVE_UNITS option, a 
customer must specify a reservation list. The number of names in this list 
must be no larger than that allowed by the product license. Use the LICENSE 
MODIFYlR,ESERVE command to associate this reservation list with the product 
license. 

  Note  

At this time, PAKs making use of this option can be registered and 
used only on systems that are running VMS Version 5.5 or are running 
VMS Versions 5.2 to 5.4-3, inclusive, but have separately installed LMF 
Version 1.1. 

10.6 Ease-of-Use Features 
To ease license management, license managers can now perform operations on 
groups of licenses. For example, to disable five different FORTRAN licenses on 
a single machine, you can now issue a single command instead of five separate 
commands. 

The ability to operate on groups of licenses is provided by support for the 
following: 

• Standard VMS wildcard characters (* and %), which may be used with most 
parameters and qualifiers (see the VMS License Management Utility Manual 
for details) 

• Lists of product names in the product-name parameter of most commands 

• Anew /ALL qualifier that expands the command operation to affect all 
licenses that match the specification provided 

10.7 Revised SYS$UPDATE:VMSLICENSE.COM 
The command procedure SYS$UPDATE:VMSLICENSE.COM has been 
significantly expanded to include support for most of the new features available. 
Information about the new features is included at the beginning of the command 
procedure and is available to you when you issue the following command: 

$ ~S'r"S$liPDATE:VNISL10EtiSE 

For additional information about support for the new features, see the VMS 
License Management Utility Manual. 

10-2 



11 
Movefile Command Qualifiers 

This chapter describes the SET FILE command qualifiers and the enhancements 
to the DCL commands DIRECTORY/FULL, DUMP/HEADER, and DUMP/FILE_ 
HEADER that support movefile operations. It also lists the system files for which 
movefile operations are automatically disabled. 

Programming support for movefile operations is presented in Chapter 22. 

11.1 SET FILE Command Qualifiers 
This section details the SET FILE command qualifiers that support movefile 
operations. The information is presented in the format used for documenting 
DCL commands. 



SET FILE/NOMOVE [/MOVE] 

SET FILE/NOMOVE [/MOVE] 

Format 

Description 

Example 

The new SET FILE qualifiers, lNOMOVE and /MOVE, allow you to alternately 
disable and reenable movefile operations on a specific file or files. 

SET FILE/NOMOVE[MOVE] file-spec[,...] 

The new SET FILE qualifiers, /NOMOVE and /MOVE, control whether movefile 
operations can be performed on the specified file or files. 

Movefile is a new ACP subfunction that programs can use to move the contents of 
a file, or part of the contents of a file, to a new disk location. 

When you create a file, movefile operations are enabled on that file. To disable 
movefile operations on a file, use the /NOMOVE qualifier. You should disable 
movefile operations on specialized files that are accessed other than through the 
XQP (such as files accessed through logical I/O to the disk). 

To reenable movefile operations on a file, use the /MOVE qualifier. 

  Note  

Movefile operations are automatically disabled on critical system files (see 
Section 11.6). Do not enable movefile operations on these files. 

For more information about the movefile subfunction, refer to Chapter 22. 

$ SET FILE/NOMOVE lEST.FDL 
$ DIRECTORY/FULL TEST.FDL 

Directory SYS$SYSDEVICE:[SMITH) 

TEST.FDL;1 File ID: (10,8,0) 

File attributes: Allocation: s, Extend: 0, Global buffer count: 0 
No version limit, MoveFile disabled 

In this example, movefile operations are disabled on the file TEST.FDL. A 
DIRECTORY/FULL command on TEST.FDL affirms that the file attribute 
MoveFile is disabled. 



Movefile Command Qualifiers 
11.2 DIRECTORY/FULL, DUMP/HEADER, and DUMP/FILE_HEADER Commands 

11.2 DIRECTORY/FULL, DUMP/HEADER, and DUMP/FILE_HEADER 
Commands 

This section describes the enhancements made to the DCL commands 
DIRECTORY/FULL, DUMP/HEADER, and DUMP/FILE_HEADER to support 
movefile operations. Specifically, these commands now indicate when movefile 
operations are disabled on a file. Movefile operations are disabled on specialized 
files that are accessed other than through the XQP (such as files accessed through 
logical I/O to the disk). 

A DIRECTORY/FULL command on a file for which movefile operations are 
disabled displays the following information: 

$ DyRE~TORY; F~~;L VEST . FDT 

Directory SYS$SYSDEVICE:[SMITH] 

TEST.FDL;1 File ID: (10,8,0) 

File attributes: Allocation: s, Extend: 0, Global buffer count: 0 
No version limit, MoveFile disabled 

Similarly, aDUMP/HEADER command on the same file displays the following 
information: 

$ DUI~~P !HEADER i ~'ST . FDL 

Dump of file SYS$SYSDEVICE:[SMITH]TEST.FDL;1 
File IOD (8,10,0) End of file block 2 /Allocated 3 

File Header 

Header area 

File characteristics: MoveFile disabled 

The DUMP/FILE_HEADER command dumps each data block that is a valid 
Files-11 header in the same format as the DUMP/HEADER command. . 

For more information about the DIRECTORY/FULL, DUMP/HEADER, and the 
DUMP/FILE_HEADER commands, see the VMS DCL Dictionary. 



Movefile Command Qualifiers 
11.3 Critical System Files 

11.3 Critical System Files 
This section lists the system files for which movefile operations are automatically 
disabled. The list applies to all system disks. 

• [000000]QUORUM.DAT 

• [SYS*...SYS$LDR]CPULOA.EXE 

• [SYS*...SYS$LDR)DDIF$RMS_EXTENSION.EXE 

• [SYS*...SYS$LDR)ERRORLOG.EXE 

• [SYS*...SYS$LDR]EVENT_FLAGS_AND_ASTS.EXE 

• [SYS*...SYS$LDR)EXCEPTION.EXE 

• [SYS*...SYS$LDR]EXEC_INIT.EXE 

• [SYS*...SYS$LDR]FPEMUL.EXE 

• [SYS*...SYS$LDR]IMAGE_MANAGEMENT.EXE 

• [SYS*...SYS$LDR]IO_ROUTINES.EXE 

• [SYS*...SYS$LDR]LMF$GROUP_TABLE.EXE 

• [SYS*...SYS$LDR)LOCKING.EXE 

• [SYS*...SYS$LDR]LOGICAL_NAMES.EXE 

• [SYS*...SYS$LDR]MESSAGE_ROUTINES.EXE 

• [SYS*...SYS$LDR)PAGE_MANAGEMENT.EXE 

• [SYS*...SYS$LDR]PRIMITIVE_IO.EXE 

• [SYS*...SYS$LDR]PROCESS_MANAGEMENT.EXE 

• [SYS*...SYS$LDR)RECOVERY_UNIT_SERVICES.EXE 

• [SYS*...SYS$LDR]RMS.EXE 

• [SYS*...SYS$LDR]SECURITY.EXE 

• [SYS*...SYS$LDR]SYS.EXE 

• [SYS*...SYS$LDR]SYS$CLUSTER.EXE 

• [SYS*...SYS$LDR)SYS$NAME_SERVICES.EXE 

• [SYS*...SYS$LDR)SYS$NETWORK SERVICES.EXE 

• [SYS*...SYS$LDR]SYS$SCS.EXE 

• [SYS*...SYS$LDR]SYS$TRANSACTION_SERVICES.EXE 

• [SYS*...SYS$LDR)SYSDEVICE.EXE 

• [SYS*...SYS$LDR]SYSGETSYI.EXE 

• [SYS*...SYS$LDR)SYSLDR_DYN.EXE 

• [SYS*...SYS$LDR]SYSLICENSE.EXE 

• [SYS*...SYS$LDR)SYSLOA*.EXE 

• [SYS*...SYS$LDR]SYSTEM_DEBUG.EXE 

• [SYS*...SYS$LDR]SYSTEM_PRIMITIVES.EXE 

• [SYS*...SYS$LDR)SYSTEM_SYNCHRONIZATION.EXE 

11-4 



Movefile Command Qualifiers 
11.3 Critical System Files 

• [SYS*...SYS$LDR]SYSTEM_SYNCHRONIZATION_MIN.EXE 

• [SYS*...SYS$LDR]SYSTEM_SYNCHRONIZATION_UNI.EXE 

• [SYS*...SYS$LDR]VA►XEMUL.EXE 

• [SYS*...SYS$LDR]VECTOR_PROCESSING.EXE 

• [SYS*...SYS$LDR]VMS$SYSTEM_IMAGES.DATA 

• [SYS*...SYS$LDR]WORKING_SET_MANAGEMENT.EXE 

• [SYS*...SYS$LDR]CWDRIVER.EXE 

• [SYS*...SYS$LDR]DBDRIVER.EXE 

• [SYS*...SYS$LDR]DDDRIVER.EXE 

• [SYS*...SYS$LDR]DLDRIVER.EXE 

• [SYS*...SYS$LDR]DMDRIVER.EXE 

• [SYS*...SYS$LDR]DRDRIVER.EXE 

• [SYS*...SYS$LDR]DSDRIVER.EXE 

• [SYS*...SYS$LDR]DUDRIVER.EXE 

• [SYS*...SYS$LDR]DXDRIVER.EXE 

• [SYS*...SYS$LDR]EFDRIVER.EXE 

• [SYS*...SYS$LDR]EPDRIVER.EXE 

• [SYS*...SYS$LDR]GDDRIVER.EXE 

• [SYS*...SYS$LDR]P*DRIVER.EXE 

• [SYS*...SYS$LDR]SHDRIVER.EXE 

• [SYS*...SYS$LDR]TTDRIVER.EXE 

• [SYS*...SYS$LDR]UNKDRIVER.EXE 

• [SYS*...SYS$LDR]X*DRIVER.EXE 

• [SYS*...SYSEXE]CLUSTER_AUTHORIZE.DAT 

• [SYS*...SYSEXE]F1IBXQP.EXE 

• [SYS*...SYSEXE]LOGINOUT.EXE 

• [SYS*...SYSEXE]PAGEFILE.SYS 

• [SYS*...SYSEXE]STABACKUP.EXE 

• [SYS*...SYSEXE]STACONFIG.EXE 

• [SYS*...SYSEXE]SWAPFILE.SYS 

• [SYS*...SYSEXE]SYS$INCARNATION.DAT 

• [SYS*...SYSEXE]SYSBOOT.EXE 

• [SYS*...SYSEXE]SYSBOOT_XDELTA.EXE 

• [SYS*...SYSEXE]SYSDUMP.DMP 

• [SYS*...SYSEXE]*.PAR 

• [SYS*...SYSEXE]VMB.EXE 



Movefile Command Qualifiers 
11.3 Critical System Files 

• [SYS*...SYSMAINT)DIAGBOOT.EXE 

• [SYS~...SYSMSG]SYSMSG.EXE 



Part IV 
Programming Features 

This part provides information about new programming features introduced with 
VMS Version 5.5. The following chapters contain the programming information: 

• Chapter 12, System Service Support for the VMS Batch and Print Queuing 
System 

• Chapter 13, Run-Time Library Routines 

• Chapter 14, VMS Debugger: Tasking and Multithread Support 

• Chapter 15, DECthreads 

• Chapter 16, DECdtm System Services: New and Changed Features 

• Chapter 17, LAT $QIO Functions 

• Chapter 18, Asynchronous Printer Support 

• Chapter 19, Support for Case Sensitivity 

• Chapter 20, System Dump Analyzer 

• Chapter 21, Mailbox Driver 

• Chapter 22, $QIO Support for Moving Disk Files 





12 
System Service Support for the VMS Batch 

and Print Queuing System 

This chapter provides a summary of system service changes that support the 
VMS batch and print queuing system introduced in VMS Version 5.5. 

12.1 $GETQUI and $SNDJBC System Services 
The system services $GETQUI and $SNDJBC have been enhanced to support 
new features introduced with the new batch and print queuing system. For 
detailed information about new system service features, see the VMS System 
Services Reference Manual. The following sections list the system service changes 
that support the batch and print queuing system. Where applicable, the listed 
system service changes include a parenthetical reference to related information in 
other sections of this manual. 

12.1.1 $GETQUI Service 
Changes to the $GETQUI system service include the following: 

Five new item codes: 

QUI$_AUTOSTART_ON (autostart feature Section 5.4) 
QUI$_JOB_RETENTION_TIME (user-specified job retention Section 3.3) 
QUI$_JOB_COMPLETION_TIME (change to SHOW ENTRY display 
Section 3.1.1) 
QUI$_JOB_COMPLETION_QUEUE (change to SHOW ENTRY display 
Section 3.1.1) 
QUI$_SEARCH_JOB_NAME (new job name parameter for SHOW ENTRY 
command Section 3.1.2) 

Eight new bit codes: 

QUI$V_JOB_RETENTION (user-specified job retention Section 3.3) 
QUI$V_JOB_ERROR_RETENTION (user-specified job retention 
Section 3.3) 
QUI$V_QUEUE_AVAILABLE 
QUI$V_QUEUE_BUSY 
QUI$V_QUEUE_STOP_PENDING 
QUI$V_JOB_STALLED (new stalled job state Section 3.1.3) 
QUI$V_QUEUE_AUTOSTART (autostart feature Section 5.4) 
QUI$V_QUEUE_AUTOSTART_INACTIVE (autostart feature Section 5.4) 

Designation of nine previously existing QUI$_QUEUE_STATUS bits as state bits: 

QUI$V_QUEUE_IDLE 
QUI$V_QUEUE_DISABLED 
QUI$V_QUEUE_PAUSED 
QUI$V_QUEUE_PAUSING 
QUI$V_QUEUE_RE SLIMING 

12-1 



System Service Support for the VMS Batch and Print Queuing System 
12.1 $GETQUI and $SNDJBC System Services 

QUI$V_QUEUE_STALLED 
QUI$V_QUEUE_STAR.TING 
QUI$V_QUEUE_STOPPED 
QUI$V_QUEUE_STOPPING 

12.1.2 $SNDJBC Service 
Changes to the $SNDJBC system service include the following: 

Three new function codes: 

SJC$_STOP_ALL_QUEUES_ON_NODE (new queue manager 
Section 5.3.3 ) 
SJC$_ENABLE_AUTOSTART (autostart feature Section 5.4) 
SJC$_DISABLE_AUTOSTART (autostart feature Section 5.4) 

Seven new item codes: 

SJC$_QUEUE_MANAGER_NODES (new queue manager —Section 5.3) 
SJC$_QUEUE_DIRECTORY (new queue database —Section 5.2) 
SJC$_AUTOSTART_ON (autostart feature —Section 5.4) 
SJC$_JOB_RETAIN (user-specified job retention —Section 3.3) 
SJC$_JOB_ERROR_RETAIN (user-specified job retention —Section 3.3) 
SJC$_JOB_DEFAULT_RETAIN (user-specified job retention —Section 3.3) 
SJC$_JOB_RETAIN_TIME (user-specified job retention —Section 3.3) 

Extended use of one item code: 

SJC$_SCSNODE_NAME 



13 
Run-Time Library Routines 

This chapter describes new features of the Run-~me Library (RTL). Section 13.1 
discusses enhancements to the LIB$GETQUI library routine. Section 13.2 
discusses enhancements to the MTH$ library and Section 13.3 discusses 
enhancements to the PPL$ library. 

13.1 LIB$GETQUI Run-Time Library Routine 
New features for the $GETQUI system service affect the LIB$GETQUI run-time 
library routine. For information about the $GETQUI new features, see the 
section on $GETQUI in the VMS System Services Reference Manual. 

13.2 Fast-Vector Math Routines 
This section describes the fast-vector math routines, which offer significantly 
higher performance at the cost of slightly reduced accuracy when compared with 
corresponding standard-vector math routines. Note too, that some fast-vector 
math routines have restricted argument domains. 

When you specify the compile command qualifiers /VECTOR and !]MATH_ 
LIBRARY=FAST, VAX FORTRAN-HPO Version 1.2 selects the appropriate fast-
vector math routine, if one exists. The default is /MATH_LIBI~',ARY=ACCURATE. 
You must specify the /G_FLOATING compile qualifier with the /MATH_ 
LIBRARY=FAST and /VECTOR qualifiers to access the G_floating versions 
from VAX FORTRAN-HPO. See the VAX FORTRAN-HPO Version 1.2 Release 
Notes for more information. 

You can call these routines from VAX MACRO using the standard calling method. 
The math function names, together with corresponding entry points of the 
fast-vector math routines, are listed in Table 13-1. 

Table 13-1 Fast-Vector Math Routines 

Function Name Data Type Entry Point 

ATAN F_floating MTH$VYATAN_RO V3 

ATAN D_floating MTH$VYDATAN_RO V5 

ATAN G_floating MTH$VYGATAN_RO V5 

ATAN2 F_floating MTH$VVYATAN2_RO_V5 

ATAN2 D_floating MTH$VVYDATAN2_RO_V5 

ATAN2 G_floating MTH$VVYGATAN2_RO_V5 

COS F_floating MTH$VYCOS_RO_V3 

(continued on next page) 



Run-Time Library Routines 
13.2 Fast-Vector Math Routines 

Table 13-1 (Cont.) Fast-Vector Math Routines 

Function Name Data Type Entry Point 

COS D_floating MTH$VYDCOS_RO_V3 

COS G_floating MTH$VYGCOS_RO_V3 

EXP F_floating MTH$VYEXP_RO_V4 

EXP D_floating MTH$VYDEXP_RO_V6 

EXP G_floating MTH$VYGEXP_RO_V6 

LOG F_floating MTH$VYALOG_RO_V5 

LOG D_floating MTH$VYDLOG_RO_V5 

LOG G_floating MTH$VYGLOG_RO_V5 

LOG10 F_floating MTH$VYALOGIO_RO_V5 

LOG10 D_floating MTH$VYDLOGIO_RO_V5 

LOG10 G_floating MTH$VYGLOGIO_RO_V5 

SIN F_floating MTH$VYSIN_RO_V3 

SIN D_floating MTH$VYDSIN_RO_V3 

SIN G_floating MTH$VYGSIN_RO_V3 

SQRT F_floating MTH$VYSQRT_RO V4 

SQRT D_floating MTH$VYDSQRT_RO_V4 

SQRT G_floating MTH$VYGSQRT_RO_V4 

TAN F_floating MTH$VYTAN_RO_V3 

TAN D_floating MTH$VYDTAN_RO_V3 

TAN G_floating MTH$VYGTAN_RO_V3 

Power (X**Y) F_floating OTS$VYPOWRR_R1_V4 

Power (X**Y) D_floating OTS$VYPOWDD_R1_V8 

Power (X*~Y) G_floating OTS$VYPOWGG_R1_V9 

13.2.1 Exception Handling 
The fast-vector math routines signal all errors except "floating underflow." No 
intermediate calculations result in exceptions. To optimize performance, the 
following message signals all errors: 

%SYSTEM-F-VARITH, vector arithmetic fault 

13.2.2 Special Restrictions on Input Arguments 
The special restrictions listed in Table 13-2 apply only to the fast-vector routines 
SIN, COS, and TAN. The standard-vector routines handle the full range of VAX 
floating-point numbers. 

Table 13-2 Input Argument Restrictions 
Function Name Input Argument Domain (in radians) 

SIN ~ —6746518783.0, 6746518783.0 

(continued on next page) 



Run-Time Library Routines 
13.2 Fast-Vector Math Routines 

Table 13-2 (Cont.) Input Argument Restrictions 

Function Name Input Argument Domain (in radians) 

COS 

TAN 

—6746518783.0, 6746518783.0 

—3373259391.5, 3373259391.5 

If the application program uses arguments outside of the listed domain, the 
routine returns the following error message: 

%SYSTEM-F-VARITH, vector arithmetic fault 

If the application requires argument values beyond the listed limits, use the 
corresponding standard-vector math routine. 

13.2.3 Accuracy 
The fast-vector math routines do not guarantee the same results as those 
obtained with the corresponding standard-vector math routines. Calls to the 
fast-vector routines generally yield results that are different from the scalar and 
the original vector MTH$ library routines. The typical maximum error is a 2-LSB 
(least significant bit) error for the F_floating routines, and a 4-LSB error for the 
D_floating and G_floating routines. This generally corresponds to a difference in 
the sixth significant decimal digit for the F_floating routines, the fifteenth digit 
for D_floating, and the fourteenth digit for G_floating. 

13.2.4 Performance 
The fast-vector math routines generally provide performance improvements 
over the standard-vector routines ranging from 15% to 300%, depending on the 
routines called and input arguments to the routines. The overall performance 
improvement using fast-vector math routines in a typical user application will 
increase but not at the same level as the routines themselves. you should do 
performance and correctness testing of your application using both the fast-vector 
and the standard-vector math routines before deciding on which to use for your 
application. 

13.3 Parallel Processing Routines 
This section describes new features of the Parallel Processing (PPL$) run-time 
library. 

Changes to the PPL$ library consist of enhanced unique naming functionality 
and spin/wait options for several of the blocking synchronization routines. 

13.3.1 Enhancements for Unique Naming 
PPL$UNIQUE_NAME now allows a greater degree of unique naming within and 
among PPL$ applications. 

The default action for PPL$UNIQUE_NAME has been to take a string and return 
a new string unique to the application. By calling PPL$UNIQUE_NAME with 
the same input string from any process in an application, the user can get the 
same "application-unique" name returned. Calling the function from another 
application, with the same input string, results in a string that differs from the 
string returned to the previous application. 



Run-Time Library Routines 
13.3 Parallel Processing Routines 

It is also now possible to request that PPL$UNIQUE_NAME return a string 
unique to a process. By specifying the new PPL$M_PROC_UNIQUE flag, the 
user will receive a "process-unique" name. That is, each time the user supplies 
the same string to PPL$UNIQUE_NAME within a process, the same unique 
string will be returned. If the user specifies the same input string in another 
process, a different string will be returned, one which is unique to the other 
process. 

In addition to "process-unique" names, the user may now request that a name 
be made "call-unique." When you specify the PPL$M_CALL_UNIQUE flag, 
PPL$UNIQUE_NAME produces a different return string each time it is called, 
regardless of the process or the application from which it is called. 

13.3.2 Spin/VI/ait Options for Blocking Synchronization 
PPL$WAIT_AT_BARRIER, PPL$DECREMENT_SEMAPHORE, and 
PPL$REMOVE_ WORK ITEM all now have spin/wait options. A user may 
request to have a process spin instead of hibernating while it is blocked on the 
synchronization object. In addition, the user may specify the maximum number 
of spins to be performed before hibernating. 

Two new flags have been added to the PPL$ library for these options: 

• PPL$M_SPIN_WAIT 

Causes the process to spin as long as it is blocked on the synchronization 
object (never hibernate). 

• PPL$M_SPIN_COUNTED 

Causes the process to spin the specifed number of times and then hibernate. 

13-4 



14 
VMS Debugger: Tasking and Multithread 

Support 

For VMS Version 5.5, the VMS Debugger provides enhanced support for tasking 
programs. Tasking programs (also called multithread programs) have multiple 
threads of execution within a VMS process. 

Ada programs have built-in tasking services, and debugger support for VAX Ada 
tasking programs has been available since VMS Version 4.2 (since VAX Ada 
Version 1.0). 

Starting with VMS Version 5.5, debugger tasking support has been extended to 
include any program that uses DECthreads or POSIX 1003.4a services. These 
services are provided for languages that do not have built-in tasking services. 

Debugger tasking support enables you to perform functions such as the following: 

• Display task information 

• Modify task characteristics to control task execution, priority, state 
transitions, and so on 

• Monitor task-specific events and state transitions 

14.1 Command Interface: Enhanced Commands and Qualifiers 
There are no new commands or qualifiers. However, the following commands, 
which are task related, have been enhanced to provide the new support: 

• SET TASK, SHOW TASK 

• SET EVENT_FACILITY (you can now specify THREADS, in addition to ADA 
and SCAN, as a command parameter) 

• SHOW EVENT FACILITY 

• SET BRE~~I~/EVENT, SET TRACE/EVENT (THREADS events are now 
defined in addition to ADA and SCAN events) 

See the VMS Debugger Manual for complete information about these commands 
and qualifiers. 

14.2 DECwindows Interface: Enhancements 
There are no visible changes to the debugger's DECwindows interface. However, 
the tasking features that are available by choosing Tasks... from the Data menu 
in the main window have been enhanced to provide the new support. 

See the VMS Debugger Manual and online help that is available from the 
debugger's DECwindows interface for complete information about these features. 

14-1 





15 
DECthreads 

DECthreads, Digital's multithreading run-time library, contains portable routines 
used for creating and controlling multiple threads of execution within the address 
space provided by a single process. 

DECthreads is documented in the Guide to DECthreads. 

15.1 Overview 
Threads are used to improve the performance (throughput, computational speed, 
responsiveness—or some combination) of a program. Multiple threads improve 
program performance on single-processor systems by permitting the overlap of 
input and output or other slow operations with computational operations. 

Threads are especially advantageous in a network client/server environment. 
A server receives requests, processes them (often involving a waiting step, for 
example waiting for a disk read), and sends replies. By creating a thread for each 
request, the server can improve network throughput and response time. 

There are two interfaces to DECthreads. Routines prefixed with cma (for 
example, cma_thread_create) are part of the Concert Multithread Architecture, 
a stable, upwardly compatible interface to DECthreads. Routines prefixed with 
pthread (for example, pthread_create) comply with the POSIX 1003.4a draft 
standard for multithreading. 





16 
DECdtm System Services: New and Changed 

Features 

The new features introduced in the DECdtm system services include: 

• Support for reason codes on transaction abort 

• Support for transaction timeouts 

• New and modified System Dump Analyzer (SDA) Utility commands 

Table 16-1 summarizes the DECdtm system services. For a detailed description 
of each system service, refer to the VMS System Services Reference Manual. 

Table 16-1 DECdtm System Services Changes 

System Service Description Comment 

$ABORT_TRANS 

$ABORT_TRANSW 

$END_TRANS 

$END_TRANSW 

$START_TRANS 

Abort Transaction 

Abort Transaction and Wait 

End Transaction 

End Transaction and Wait 

Start Transaction 

$START_TRANSW Start Transaction and Wait 

Supports new reason 
parameter and returns 
abort reason code in the UO 
status block 

Supports new reason 
parameter and returns 
abort reason code in the UO 
status block 

Returns abort reason code 
in the UO status block if the 
transaction is aborted 

Returns abort reason code 
in the UO status block if the 
transaction is aborted 

Supports new timout and 
acmode parameters 

Supports new timout and 
acmode parameters 

16.1 Abort Reason Codes 
In order to better differentiate the causes of transaction failures, DECdtm 
services allow an abort reason code to be supplied when an application 
or resource manager aborts a transaction. When an application calls the 
$ABORT_TRANS(W) system service to abort a transaction, it can supply an abort 
reason code in the reason parameter to specify why the transaction is to be 
aborted. Similarly, a resource manager that casts a "veto" vote may specify an 
abort reason code. 



DECdtm System Services: New and Changed Features 
16.1 Abort Reason Codes 

The abort reason code is returned in the I/O status block (IOSB) for $ABORT_ 
TR',ANS(W) and $END_TR',ANS(W). If multiple reasons are supplied by the 
application and resource managers, the DECdtm services will make an arbitrary 
decision about which abort reason code is returned in the IOSB. Figure 16-1 
shows the structure of this IOSB. 

Figure 16-1 IOSB Structure 

31 15 0 

Reserved by Digital Condition Value 

Abort Reason Code 

ZK-3667A-G E 

The abort reason codes are defined in the $DDTMMSGDEF module. Refer to the 
description of $ABORT_TRANS for the abort reason codes that can be used with 
or returned by the DECdtm system services. 

16.2 Transaction Ti meouts 
With DECdtm services, it is possible to set a time limit for a given transaction. 
This value limits the amount of time the transaction may take to reach a commit 
decision. If this time limit is exceeded without the transaction being committed, 
the transaction is aborted. Applications may establish a timeout when calling the 
$START_TRANS system service by using the timout parameter. 

16.3 New and Modified System Dump Analyzer Commands 
The System Dump Analyzer (SDA) Utility has been modified to provide 
information about transactions and transaction log files. Table 16-2 summarizes 
the enhancements to the SDA commands. For complete reference information 
about these new and modified commands, see Chapter 20. 

Table 16-2 SDA Utility Changes 

SDA Command Comment 

New Commands 

SHOW LOGS Displays information about transaction log files on the 
node 

SHOW TRANSACTIONS Displays information about transactions on the node 

Modified Command 

SHOW PROCESS New /TRANSACTIONS and /PARTICIPANTS 
qualifiers 



17 
LAT $QIO Functions 

This chapter describes the new LAT $QIO functions SETMODE (IO$_TTY_ 
PORT!IO$M_LT_SETMODE) and SENSEMODE (IO$_TTY_PORT!IO$M_LT_ 
SENSEMODE). 

17.1 LAT SETMODE $QIO Function 
The LAT SETMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SETMODE) is 
used to create, delete, and modify LAT nodes, services, ports, and links. 

The LAT SETMODE $QIO function accepts four arguments: P1, P2, P3, and P4. 
Pl is the address of an item list; P2 is the length of this item list. 

P3 specifies the type of entity to which the SETMODE operation applies. The 
entity type can be one of four types: 

• LAT$C_ENT_NODE Node. Only the local node name may be specified, with 
the exception of a SETMODE item list containing no item codes other than 
LAT$_ITM_COUNTERS. 

• LAT$C_ENT_SERVICE Service. Only local service names may be specified, 
with the exception of a SETMODE item list containing no item codes other 
than LAT$_ITM_COUNTERS. 

• LAT$C_ENT_LINK Link (the data link associated with Ethernet). 

• LAT$C_ENT_PORT Port. 

The value for the entity type occupies the low-order 16 bits (bits 0-15) of the P3 
parameter. For all four of the entity types, bits 16-19 are used as a status field 
to indicate the expected current status of the entity. These bits are used to decide 
whether the entity needs to be created before its characteristics are set. The 
possible values for this field are: 

• LAT$C_ENTS_OLD The entity must already exist. An SS$_NOSUCHDEV 
error is returned if the entity does not exist. 

• LAT$C_ENTS_NEW The entity must be created. An SS$_DUPLNAM error 
is returned if the entity already exists. 

• LAT$C_ENTS_UNK If the entity does not exist, it is created. If it does 
exist, its characteristics are modified. 

• LAT$C_ENTS_DEL—If the entity exists, delete it. Otherwise, an SS$_ 
NOSUCHDEV error is returned and the item list is not used. 

Creation, deletion, or modification of any entity requires the OPER privilege. 

P4 may contain the address of an entity name string descriptor. If this parameter 
is omitted (contains a zero or the address of a descriptor that points to an empty 
buffer), a default may be used in some cases. The defaults for each entity type 
are as follows: 

17-1 



LAT $QIO Functions 
17.1 LAT SETMODE $QIO Function 

• LAT$C_ENT_NODE The local node. 

• LAT$C_ENT_SERVICE No default; you must specify the service name. 

• LAT$C_ENT_LINK The string "LAT$LINK". 

• LAT$C_ENT_PORT The device name associated with the currently assigned 
channel (the CHAN parameter of a $QIO function). 

Figure 17-1 shows an example of a SETMODE item list. 

Figure 17-1 Example of SETMODE Item List 

31 16 15 0 
LAT$C_ON LAT$ ITM_STATE 

LAT$_ITM_KEE PALIVE_TI M ER 

40 

' L ' 11 LAT$ ITM_IDENTIFICATION 

'C' ~ ~ 'C' 'T' 
~ T , , S , , U , , L , 

LAT$ ITM_CIRCUIT TIMER ' R ' ' E ' 

160 

LAT$C_ENABLED LAT$_ITM_SERVER_MODE 

LAT$_ I T M_ U S E R_G R O U P S 

13 0 4 5 

LAT$_OUTGOING_SES_LIMIT 9 1 

5 

ZK-3798A 

This SETMODE item list is the P1 paramter fora $QIO SETMODE function on 
the local node. P4 is omitted, and P3 is #LAT$C_ENT_NODE!<LAT$C_ENTS_ 
OLD@16>. P2 is the length of the item list (52). A $QIO SETMODE function for 
this item list would perform the following operations: 

1. Set the state of the node to ON. 

2. Set the LAT keepalive timer to 40 seconds. 

3. Set the node identification to LTC CLUSTER. 

4. Set the LAT circuit timer to 160 milliseconds. 

5. Enable LAT outbound connections. 

6. Turn on user groups 2, 8, 10, 11, 12, 16, and 19. 

7. Set the outgoing session limit to 5 sessions. 

SETMODE can return the following status codes: 

• SS$_NOPRIV No privilege to complete the desired operation. 

• SS$_ACCVIO Part of the argument list or item list is not addressable. 



LAT $QIO Functions 
17.1 LAT SETMODE $QIO Function 

• SS$_BADPARAM One of the parameters in the item list is in error. If this 
value is returned, the second longword of the IOSB contains the item code of 
the parameter in error. 

SETMODE Item Codes 
Each item in the item list consists of a 1-word (16-bit) item code, followed by a 
value associated with the item. 

Item codes i~ which the bit named LAT$V_STRING is 0 take a longword value. 
The associated value is contained in the longword immediately following the item 
code in the item list. Item codes in which this bit is 1 take a counted string for 
their value. The byte immediately following the item code contains a byte count, 
which describes the length of the string that immediately follows it. 

If you set bit LAT$V_CLEAR in the item code to 1, the current value associated 
with the item code is cleared or set to its default value. In this case, the actual 
value specified in the item list is ignored, although the byte count field skips to 
the next item in the item list. 

For each entity type, only a subset of item codes may be set. Table 17-1 lists the 
item codes that may be set for the LAT$C_ENT_NODE entity type. 

Table 17-1 LAT$C_ENT_NODE Setmode Item Codes 

Item Code Meaning 

LAT$_ITM_STATE Operating state of the LAT protocol. The following values are allowed: 

LAT$_ITM_CIRCUIT_TIMER 

LAT$_ITM_CPU_RATING 

LAT$_ITM_DEVICE_SEED 

LAT$_ITM_KEEPALIVE_ 
TIMER 

LAT$_ITM_MULTICAST_ 
TIMER 

LAT$_ITM_NODE_LIMIT 

LAT$_ITM_RETR',ANSMIT_ 
LIMIT 

LAT$C_OFF Turn off LAT protocol processing. No new 
connections allowed in either direction. 
Existing connections are immediately 
terminated. This is the default. 

LAT$C_SHUT Disallow new LAT connections in either 
direction. Existing connections are allowed to 
remain active. 

LAT$C_ON Turn on LAT protocol processing. 

Circuit timer value in milliseconds. Valid values are 10 to 1000 
milliseconds. The default is 80 milliseconds. 

CPU rating. ,Valid values are 0 to 100. If this value is 0, then the CPU 
rating value is not used in the rating calculation. See the VMS LAT 
Control Program (LATCP) Manual for a complete description of this 
feature. 

Overrides the defeault lower boundary for new LTA devices. Valid values 
are 0 to 9999; the default is 0. See the VMS LAT Control Program 
(LATCP) Manual for a complete description of this feature. 

Keepalive timer value in seconds. Valid values are 10 to 255 seconds. 
The default is 20 seconds. 

Multicast timer value in seconds. Valid values are 10 to 180 seconds. The 
default is 60 seconds. 

Maximum number of nodes in LAT database. The default is 0, where the 
maximum is determined by system resources. 

LAT retransmit limit. Valid values are 4 to 120 retransmissions. The 
default is 8 retransmissions. 

(continued on next page) 



LAT $QIO Functions 
17.1 LAT SETMODE $QIO Function 

Table 17-1 (Cont.) LAT$C_ENT_NODE Setmode Item Codes 
Item Code Meaning 

LAT$_ITM_SERVER_MODE 

LAT$_ITM_SERVICE_ 
RESPONDER 

LAT$_ITM_OUTGOING_SE S_ 
LIMIT 

LAT$_ITM_INC OMING_SE S_ 
LIMIT 

LAT$_ITM_C ONNE C TI ONS 

LAT$_ITM_NODE_NAME 

LAT$_ITM_IDENTIFICATI ON 

LAT$_ITM_SERVICE_ 
GROUPS 

Controls whether the node allows the use of the MASTER side of the LAT 
protocol for outbound connections. Possible values are: 

LAT$C_DISABLED 

LAT$C_ENABLED 

Server mode disabled (this is the default) 

Server mode enabled 

Indicates whether the node is to respond to service inquiries originating 
from a remote system. These inquiries are not necessarily directed at 
services being offered by the node. See the VMS LAT Control Program 
(LATCP) Manual for a complete description of this feature. Possible 
values are: 

LAT$C_DISABLED 

LAT$C_ENABLED 

Service inquiry response disabled (this is 
the default) 

Service inquiry response enabled 

Maximum number of outgoing LAT sessions. A value of zero, which is 
the default, indicates that the limit is determined by system resources. 

Maximum number of interactive LAT sessions. A value of zero, which is 
the default, indicates that the limit is determined by system resources. 

Controls whether inbound connections can be accepted. Possible values 
are 

LAT$C_DISABLED Inbound connections disabled 

LAT$C_ENABLED Inbound connections enabled (this is the 
default) 

Causes the node LAT node name to be set to the given name. This item 
code may be specified only if the entity status field of the P3 parameter is 
LAT$C_ENTS_NEW; otherwise, a LAT$_ENTNOTFOU error results. 

Node identification string. The default is the translation of 
SYS$ANNOUNCE. 

Specifies a default service group code bit mask. This mask is used when 
creating new local services. The default is group code 0 enabled and all 
others disabled when the LAT software is initialized. 

  Note  

The use of the LAT$V CLEAR bit is an 
exception for this parameter code. If you 
clear bit LAT$V CLEAR, group codes 
corresponding to the group code mask, 
as specified in the item list, are set. 
Alternatively, if you set LAT$V CLEAR, 
group codes corresponding to the group 
code mask, as specified in the item list, will 
be cleared. 

(continued on next page) 



LAT $QIO Functions 
17.1 LAT SETMODE $QIO Function 

Table 17-1 (Cont.) LAT$C_ENT_NODE Setmode Item Codes 

Item Code Meaning 

LAT$_ITM_USER_GROUPS 

LAT$_ITM_COUNTERS 

LAT$_ITM_MAXIMUM_ 
UNITS 

LAT group codes to be used when attempting outbound connections using 
the MASTER side of the LAT protocol. The default is all group codes 
disabled when the LAT software is initialized. 

  Note  

The use of the LAT$V_CLEAR bit is an 
exception for this parameter code. If you 
clear bit LAT$V_CLEAR, group codes 
corresponding to the group code mask, 
as specified in the item list, will be set. 
Alternatively, if you set LAT$V_CLEAR, 
group codes corresponding to the group 
code mask, as specified in the item list, are 
cleared. 

Node counters block. Allows for zeroing of all node counters. This item 
code may be specified only if the entity status field of the P3 parameter is 
LAT$C_ENTS_OLD and the LAT$V_CLEAR bit is set. Violating either of 
these two rules results in a returned status of SS$_BADPARAM. 

Maximum unit number. Sets the highest value for a LTA unit number. 
Must be between 1 and 9999; defaults to 9999. 

Table 17-2 lists the item codes that may be set for the LAT$C_ENT_SERVICE 
entity type. 

Table 17-2 LAT$C_ENT_SERVICE Setmode Item Codes 

Item Code Meaning 

LAT$_ITM_RATING Static LAT service rating. The default is the dynamic rating calculation. Static 
ratings can be between 0 and 255. 

LAT$_ITM_ Service identification string. The default is the translation of 
IDENTIFICATION SYS$ANNOUNCE. 

LAT$_ITM_SERVICE_ Password string for locally offered service. The default is no password. 
PASSWORD 

LAT$_ITM_SERVICE_ Defines the type of service. Possible values are: 
TYPE LAT$C_ST_GENERAL Creates a general timesharing service. 

LAT$C_ST_APPLICATION Creates a special application service which 
must then be associated with ports dedicated to 
accepting connections to this service (dedicated 
ports) 

LAT$_ITM_COUNTERS Service counters block. Allows for zeroing of all service counters. This item 
code may be specified only if the entity status field is LAT$C_ENTS_OLD and 
the LAT$V_CLEAR bit is set. Violating either of these two rules results in a 
returned status of SS$_BADPARAM. 



LAT $QIO Functions 
17.1 LAT SETMODE $QIO Function 

Table 17-3 lists the item codes that may be set for the LAT$C_ENT_LINK entity 
type. 

Table 17-3 LAT$C_ENT_LINK Setmode Item Codes 

Item Code Meaning 

LAT$_ITM_STATE 

LAT$_ITM_DEVICE_NAME 

LAT$_ITM_DECNET_ 
ADDRESS 

LAT$_ITM_COUNTERS 

Operating state of the LAT protocol. Allowable values are: 

LAT$C_OFF Turn off LAT protocol processing. No new 
connections allowed in either direction. 
Existing connections are immediately 
terminated. 

LAT$C_SHUT 

LAT$C_ON 

Disallow new LAT connections in either 
direction. Existing connections are allowed to 
remain active. 

Turn on LAT protocol processing. This is the 
default. 

The name of the Ethernet device to be used for this link. The default is 
hardware dependent. 

Specifies whether to use the DECnet address when starting the LAT 
protocol on the Ethernet controller associated with this link. Possible 
values are: 

LAT$C_DISABLED DECnet address use disabled 

LAT$C_ENABLED DECnet address use enabled (this is the 
default) 

Link counters block. Allows for zeroing of all link counters. This item 
code may be specified only if the entity status field is LAT$C_ENTS_OLD 
and the LAT$V CLEAR bit is set. Violating either of these two rules 
results in a returned status of SS$_BADPARAM. 

Table 17-4 lists the item codes that may be set for the LAT$C_ENT_PORT entity 
type. 

Table 17-4 LAT$C_ENT_PORT Setmode Item Codes 

Item Code Meaning 

LAT$_ITM_PORT_ 
TYPE 

LAT$_ITM_QUEUED 

Type of port. Allowed values are: 

LAT$C_PT_APPLICATION Application port for solicited connections. 

LAT$C_PT_DEDICATED Dedicated port associated with a local 
application service. 

Controls whether the solicited connection requests queued or nonqueued access. 
Possible values are: 

LAT$C_DISABLED Queued access disabled 

LAT$C_ENABLED Queued access enabled (this is the default) 

(continued on next page) 



LAT $QIO Functions 
17.1 LAT SETMODE $QIO Function 

Table 17-4 (Cont.) LAT$C_ENT_PORT Setmode Item Codes 

Item Code Meaning 

LAT$_ITM_SERVICE_ 
CLASS 

LAT$_ITM_DISPLAY 
NUMBER 

LAT$_ITM_TARGET_ 
NODE_NAME 

LAT$_ITM_TARGET_ 
SERVICE_NAME 

LAT$_ITM_TARGET_ 
PORT_NAME 

Controls the class driver that the LAT driver communicates with when a 
connection is established. This item code can be used only with an entity 
status of NEW. Therefore, the service class must be specified when the device 
is created. An attempt to change the service class of an existing device returns 
SS$_BADPARAM. Legal values are: 

LAT$C_SERVCLASS_ Service class 1, TTDRIVER (this is the default) 
INTERACTIVE 

LAT$C_SERVCLASS_ Service class 2, TEST SERVICE 
TESTSERVICE 

LAT$C_SERVCLASS_ Service class 3, X Protocol 
XTRANSPORT 

LAT$C_SERVCLASS_FONT Service class 4, X fonts 

For Xdevices, -this is the binary value of the display number, which may need to 
be transmitted in some LAT messages. Values range from 0-255, with a default 
of 0. This item code has meaning only when used with service classes 3 and 4 
(LAT$C_SERVCLASS_XTRANSPORT AND LAT$C_SERVCLASS_FONT). 

Target node name for connection. This parameter must be specified for 
application ports and may optionally be specified for forward ports. 

Target service name for connection. This parameter must be specified for 
forward ports and may optionally be specified for application ports. For 
dedicated ports, this parameter specifies the local application service to which 
the port should be associated. 

Target port name for connection. This parameter may optionally be specified for 
application ports or forward ports; it is ignored for all other kinds of ports. 

LAT$_ITM_SERVICE_ Password string for remote service on forward ports. This parameter must be 
PASSWORD specified to access services that are protected with a password. This parameter 

is ignored if it is specified for a service that is not protected with a password. 

17.2 LAT SENSEMODE $QIO Function 
The LAT SENSEMODE $QIO function (IO$_TTY_PORT!IO$M_LT_ 
SENSEMODE) is used to obtain information about LAT entities, including 
nodes, services, ports, and links. 

The LAT SENSEMODE $QIO function accepts four arguments: P1, P2, P3, and 
P4. P1 is the address of a buffer into which information about the desired entity 
is returned. The information is returned in the form of an item list. Unlike 
system services such as $GETDVI or $GETJPI, you do not select which items 
of information are returned. Information is returned in a fashion similar to the 
Ethernet device drivers' SENSEMODE operations. P2 is the length of the buffer 
specified in P1, in bytes. The number of bytes of information returned in the P1 
buffer is returned in IOSB+2. 

P3 specifies the type of entity to which the SENSEMODE operation applies. The 
entity type can be one of four types: 

• LAT$C_ENT_NODE Node, including the local node 

• LAT$C_ENT_SERVICE Service, including local services 

• LAT$C_ENT_LINK Link (the data link associated with Ethernet) 

• LAT$C_ENT_PORT Port 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

The value for the entity type occupies the low-order 16 bits (bits 0-15) of the P3 
parameter. Bits 16-23 are used as a flag field. Two bits are currently defined 
within this field: LAT$V_SENSE_NEXT and LAT$V_SENSE_FULL. If the 
LAT$V SENSE_NEXT bit is 0, information about the current entity described 
by the P3 and P4 parameters is returned to the user; if this bit is 1, information 
about the next entity that logically follows the one described by P4 is returned. 
If LAT$V_SENSE_FULL is 0, only those item codes marked SUMMARY in the 
following tables are returned; if this bit is 1, all item codes that describe the 
entity specified by the P3 and P4 parameters are returned. 

P4 may contain the address of an entity name string descriptor. If this parameter 
is omitted (contains a zero or the address of a descriptor that points to an empty 
string) and the LAT$V SENSE_NEXT bit is set, information about the first entity 
that matches the entity type supplied by P3 is returned. 

If P4 is omitted and the LAT$V_SENSE_NEXT bit is 0, a default entity name 
may be used in some cases. The defaults for each entity type are as follows: 

• LAT$C_ENT_NODE The local node. 

• LAT$C_ENT_SERVICE No default; you must specify the service name. 

• LAT$C_ENT_LINK The string "LAT$LINK". 

• LAT$C_ENT_PORT The device name associated with the currently assigned 
channel. 

SENSEMODE can return the following failure return codes: 

• SS$_NOPRIV No privilege to complete the desired operation. 

• SS$_ACCVIO Part of the argument list or item list is not addressable. 

SENSEMODE Item Codes 
Each item in the item list starts with a 1-word (16-bit) item code that describes 
the type of information contained in the item. The item code is followed by a 
value associated with the item. 

Item codes in which the bit named LAT$V_STRING is 0 take a longword value. 
The associated value is contained in the longword immediately following the item 
code in the item list. Item codes in which this bit is 1 take a counted string for 
their value. The byte immediately following the item code contains a byte count, 
which describes the length of the string that immediately follows it. 

Table 17-5 lists the item codes that are returned for the LAT$C_ENT_NODE 
entity type. Item codes noted as LOCAL are returned only if the information 
being returned is for the local node. Item codes noted as REMOTE are returned 
only if the information being returned is for a remote node. Item codes noted as 
BOTH are returned for both types of nodes. 

Table 17-5 LAT$C_ENT_NODE Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_NODE_NAME LAT node name for the node. 
(BOTH, SUMMARY) 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-5 (Cont.) LAT$C_ENT_NODE Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_IDENTIFICATION 
(BOTH, SUMMARY) 

LAT$_ITM_NODE_TYPE 
(BOTH, SUMMARY) 

LAT$_ITM_STATE 
(LOCAL,SUMMARY) 

LAT$_ITM_NODE_STATUS 
(REMOTE, SUMMARY) 

LAT$_ITM_CONNECTED_ 
COUNT (REMOTE, 
SUMMARY) 

LAT$_ITM_SERVICE_ 
GROUPS (BOTH) 

LAT$_ITM_PROTOCOL_ 
VERSION (BOTH) 

LAT$_ITM_DATALINK 
ADDRESS (REMOTE) 

LAT$_ITM_NODE_LIMIT 

LAT$_ITM_RE TRAN SM IT_ 
LIMIT 

LAT$_ITM_MAXIMUM_ 
UNITS (LOCAL) 

LAT$_ITM_SERVER_MODE 
(LOCAL) 

Node identification string. 

Type of node. Possible values are: 

LAT$C_NT_LOCAL Node is local node. 

LAT$C_NT_ Node is remote node. 
REMOTE 

Operating state of the LAT protocol. Possible values are: 

LAT$C_ON 

LAT$C_OFF 

LAT$C_SHUT 

New connections are allowed and the 
LAT protocol is running. 

New connections are not allowed. The 
LAT protocol is not running. 

No new connections are allowed. 
Currently active connections are still 
maintained. The LAT protocol remains 
running only until the last active session 
is disconnected, at which time the node 
is placed in the OFF state. 

Current status of remote node. This item code is present only if a LAT 
virtual circuit does not currently exist between the local node and this 
remote node. Possible values are: 

LAT$C_REACHABLE 

LAT$C_UNREACHABLE 

LAT$C_UNKNOWN 

Remote node is reachable. 

Remote node is unreachable. 

Remote node status is unknown. 

Number of LAT sessions from the local node to this remote node. This 
item code replaces the LAT$_ITM_NODE_STATUS item code for remote 
nodes to which a LAT virtual circuit currently exists. 

Bit mask of LAT group codes that are serviced by the node. 

LAT protocol version string. 

Ethernet address that is used by the (remote) node. 

Maximum number of nodes in LAT database. The default is zero; the 
maximum is determined by system resources. 

LAT retransmit limit. Valid values are 1 to 255 retransmissions. The 
default is 20 retransmissions. 

Maximum LTA unit number. 

Controls whether the node allows the use of the MASTER side of the LAT 
protocol for outbound connections. Possible values are: 

LAT$C_DISABLED 

LAT$C_ENABLED 

Server mode disabled (this is the default) 

Server mode enabled 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-5 (Copt.) LAT$C_ENT_NODE Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_SERVICE_ 
RESPONDER (LOCAL) 

LAT$_ITM_OUTGOING_SE S_ 
LIMIT (LOCAL) 

LAT$_ITM_INC OMING_SE S_ 
LIMIT (LOCAL) 

LAT$_ITM_USER_GROUPS 
(LOCAL) 

LAT$_ITM_CIRCUIT_TIMER 
(BOTH) 

LAT$_ITM_CPU_RATING 
(LOCAL) 

LAT$_ITM_KEEPALIVE_ 
TIMER (LOCAL) 

LAT$_ITM_MULTICAST_ 
TIMER (BOTH) 

LAT$_ITM_C ONNE CTIONS 
(BOTH) 

Indicates whether the node is to respond to service inquiries originating 
from a remote system. These inquiries are not necessarily directed at 
services being offered by the node. See the VMS LAT Control Program 
(LATCP) Manual for a complete description of this feature. Possible 
values are: 

LAT$C_DISABLED 

LAT$C_ENABLED 

Service inquiry response disabled (this is 
the default) 

Service inquiry response enabled 

Maximum number of outgoing LAT sessions. A value of zero indicates 
no limit. The default is zero; the maximum is determined by system 
resources. 

Maximum number of interactive LAT sessions. A value of zero indicates 
no limit. The default is zero; the maximum is determined by system 
resources. 

Bit mask of LAT group codes to be used when attempting outbound 
connections using the MASTER side of the LAT protocol. 

Circuit timer value in milliseconds. The default is zero. 

CPU rating. 

Keepalive timer in seconds. The default is 20. 

Multicast timer value in seconds. The default is 20. 

Indicates whether inbound connections (interactive sessions) can be 
accepted. Possible values are: 

LAT$C_DISABLED 

LAT$C_ENABLED 

Service inquiry response disabled 

Service inquiry response enabled (this is 
the default) 

Node service information is presented as a list of node service subblocks, with 
each subblock containing information about one particular service offered by the 
node. The subblock item code LAT$_ITM_NODE_SVC_BLOCK has the LAT$V 
STRING bit set to 1, and the string length byte actually contains the length of 
the entire subblock. Each subblock itself is an item list and consists of the item 
codes listed in Table 17-6. 

Table 17-6 Node Service Subblock Item Codes 

LAT$_ITM_SERVICE_NAME Name of a LAT service offered by the node. 
(BOTH) 

LAT$_ITM_SERVICE_ Status of the service. Possible values are LAT$C_AVAILABLE and LAT$C_ 
STATUS (BOTH) UNAVAILABLE. 

LAT$_ITM_SERVICE_TYPE 
(LOCAL) 

Type of service. Possible values are LAT$C_ST_GENERAL (general 
timesharing service) and LAT$C_ST_APPLICATION (special application 
service associated with ports dedicated to accepting connections to this 
service). 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-6 (Cont.) Node Service Subblock Item Codes 

LAT$_ITM_RATING (BOTH) LAT service rating associated with the service. 

LAT$_ITM_RATING_TYPE Type of LAT rating calculation being done by this node. Possible values are 
(LOCAL) LAT$C_STATIC and LAT$C_DYNAMIC. 

LAT$_ITM_ Identification string associated with the service. 
IDENTIFICATION (BOTH) 

Node counters information is presented as a counters subblock. The subblock 
item code LAT$_ITM_COUNTERS has the LAT$V_STRING bit set to 1, and 
the string length byte actually contains the length of the entire subblock. The 
subblock itself is an item list and consists of the item codes listed in Table 17-7. 

Table 17-7 Node Counters Item Codes 

LAT$_ITM_CTNOD_SSZ Seconds since zeroed 
(BOTH) 

LAT$_ITM_CTNOD_MSGR Messages received 
(BOTH) 

LAT$_ITM_CTNOD_MSGT Messages transmitted 
(BOTH) 

LAT$_ITM_CTNOD_SLTR Slots received 
(BOTH) 

LAT$_ITM_CTNOD_SLTT Slots transmitted 
(BOTH) 

LAT$_ITM_CTNOD_BYTR Bytes received 
(BOTH) 

LAT$_ITM_CTNOD_BYTT Bytes transmitted 
(BOTH) 

LAT$_ITM_CTNOD_MNA Multiple node addresses 
(BOTH) 

LAT$_ITM_CTNOD_DUP Duplicates received 
(BOTH) 

LAT$_ITM_CTNOD_MRT Messages retransmitted 
(BOTH) 

LAT$_ITM_CTNOD_ILM Illegal messages received 
(BOTH) 

LAT$_ITM_CTNOD_ILS Illegal slots received 
(BOTH) 

LAT$_ITM_CTNOD_SLCA Solicitations accepted 
(BOTH) 

LAT$_ITM_CTNOD_SLCR Solicitations rejected 
(BOTH) 

LAT$_ITM_CTNOD_TER Transmit errors 
(LOCAL) 

LAT$_ITM_CTNOD_RES Resource errors 
(LOCAL) 

LAT$_ITM_CTNOD_NTB No transmit buffer 
(LOCAL) 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-7 (Cont.) Node Counters Item Codes 

LAT$_ITM_CTNOD_TMO Virtual circuit timeout 
(LOCAL) 

LAT$_ITM_CTNOD_DOB Discarded output bytes 
(LOCAL) 

LAT$_ITM_CTNOD_LSTER Last transmit error 
(LOCAL) 

LAT$_ITM_CTNOD_ Number of multicast bytes transmitted 
MCBXMT (LOCAL) 

LAT$_ITM_CTNOD_ Number of multicast bytes received 
MCBRCV (LOCAL) 

LAT$_ITM_CTNOD_ Number of multicast messages transmitted 
MCMXMT (LOCAL) 

LAT$_ITM_CTNOD_ Number of multicast messages received 
MCMRCV (LOCAL) 

LAT$_ITM_CTNOD_ Number of solicitation failures 
SOLFAIL (LOCAL) 

LAT$_ITM_CTNOD_ATLOS Number of times attention slot data was lost 
(LOCAL) 

LAT$_ITM_CTNOD_ Number of times user data was lost 
DATLOS (LOCAL) 

LAT$_ITM_CTNOD_NOREJ Number of time a rej ect slot could not be sent 
(LOCAL) 

LAT$_ITM_CTNOD_LOSCT Number of times remote node counters were lost 
(LOCAL) 

LAT$_ITM_CTNOD_ Number of service announcement messages lost 
LOSSAM (LOCAL) 

LAT$_ITM_CTNOD_NOSAM Number of times a service announcement message could 
(LOCAL) not be sent 

LAT$_ITM_CTNOD_NOSTS Number of times node status was lost 
(LOCAL) 

LAT$_ITM_CTNOD_NOXMT Number of times no link was available for a transmit 
(LOCAL) 

LAT$_ITM_CTNOD_ Number of controller errors 
CTLERR(LOCAL) 

LAT$_ITM_CTNOD_ Lost controller error 
CERRCOD(LOCAL) 

LAT$_ITM_CTNOD_ Number of incoming solicitations accepted 
ISOLA(LOCAL) 

LAT$_ITM_CTNOD_ Number of incoming solicitations rejected 
ISOLR(LOCAL) 

LAT$_ITM_CTNOD_PROTO Protocol error count 
(LOCAL) 

Several protocol errors are also included in a seperate subblock. The protocol 
errors item code is LAT$_ITM_PROTOCOL_ERRORS and has LAT$V STRING 
set (the size of the subblock is contained in the first byte following the item code). 
The item codes and the events they represent are listed in Table 17-8. 



Service name. 

LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-8 Protocol Error Item Codes 

Item Codes Meaning 

LAT$_ITM_CTPRO_IVM Invalid message type received 
(LOCAL) 

LAT$_ITM_CTPRO_ISM Invalid start message received 
(LOCAL) 

LAT$_ITM_CTPRO_NS Invalid sequence number received 
(LOCAL) 

LAT$_ITM_CTPRO_NIZ Zero-node index received 
(LOCAL) 

LAT$_ITM_CTPRO_ICI Node circuit index out of range 
(LOCAL) 

LAT$_ITM_CTPRO_CSI Node circuit sequence invalid 
(LOCAL) 

LAT$_ITM_CTPRO_NLV Node circuit index no longer valid 
(LOCAL) 

LAT$_ITM_CTPRO_HALT Circuit was forced to halt 
(LOCAL) 

LAT$_ITM_CTPRO_MIZ Invalid master slot index 
(LOCAL) 

LAT$_ITM_CTPRO_SIZ Invalid slave slot index 
(LOCAL) 

LAT$_ITM_CTPRO_CRED Invalid credit field 
(LOCAL) 

LAT$_ITM_CTPRO_RCSM Repeat creation of slot by master 
(LOCAL) 

LAT$_ITM_CTPRO_RDSM Repeat disconnection of slot by master 
(LOCAL) 

Table 17-9 lists the item codes that are returned for the LAT$C_ENT_SERVICE 
entity type. As in Table 17-5, item codes noted as LOCAL are returned only if 
the information being returned is for a locally offered service. Item codes noted 
as REMOTE are returned only if the information being returned is for a service 
offered by a remote node. Item codes noted as BOTH are returned for both types 
of services. 

Table 17-9 LAT$C_ENT_SERVICE Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_SERVIC E_NAME 
(BOTH, SUMMARY) 

LAT$_ITM_SERVICE_STATUS Status of the specified service. Possible values are LAT$C AVAILABLE 
(BOTH, SUMMARY) and LAT$C_UNAVAILABLE. 

LAT$_ITM_SERVICE_TYPE Type of service. Possible values are LAT$C_ST_GENERAL (general 
(LOCAL,SUMMARY) timesharing service) and LAT$C_ST_APPLICATION (special application 

service associated with ports dedicated to accepting connections to this 
service). 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-9 (Cont.) LAT$C_ENT_SERVICE Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_IDENTIFICATION Service identification string, as advertised by the highest rated node that 
(BOTH, SUMMARY) currently offers the service. 

Service node information is presented as a list of service node subblocks, with 
each subblock containing information about one particular node that offers the 
service. The subblock item code LAT$_ITM_SVC_NODE_BLOCK has the LAT$V_ 
STRING bit set to 1, and the string length byte actually contains the length of 
the entire subblock. Each subblock itself is an item list and consists of the item 
codes listed in Table 17-10. 

Table 17-10 Service Node Subblock Item Codes 

LAT$_ITM_NODE_NAME 
(BOTH) 

LAT$_ITM_STATE (LOCAL) 

LAT$_ITM_NODE_STATUS 
(REMOTE) 

LAT$_ITM_CONNECTED_ 
COUNT (REMOTE) 

LAT$_ITM_RATING (BOTH) 

LAT$_ITM_RATING_TYPE 
(LOCAL) 

LAT$_ITM_ 
IDENTIFICATION (BOTH) 

Name of a LAT node that offers the selected service. 

Current state of the LAT protocol on the local node. Possible values are: 

LAT$C_ON—New connections are allowed, and the LAT protocol is 
running. 

LAT$C_OFF—New connections are not allowed, and any current 
connections are abnormally terminated. The LAT protocol is not running. 

LAT$C_SHUT—No new connections are allowed. Currently active 
connections are still maintained. The LAT protocol remains running 
only until the last active session is disconnected, at which time the node is 
placed in the OFF state. 

Current status of the remote node. This item code is present only if a 
LAT virtual circuit does not currently exist to the remote node. Possible 
values are LAT$C_REACHABLE, LAT$C_UNREACHABLE, and LAT$C_ 
UNKNOWN. 

Number of LAT sessions from the local node to this remote node. This item 
code replaces the LAT$_ITM_NODE_STATUS item code for remote nodes 
to which a LAT virtual circuit currently exists. 

LAT service rating associated with the service. 

Type of LAT rating calculation being done by this node. Possible values are 
LAT$C_STATIC and LAT$C_DYNAMIC. 

Identification string associated with the service. 

Service counters information is presented as a counters subblock. The subblock 
item code LAT$_ITM_COUNTERS has the LAT$V STRING bit set, and the 
string length byte actually contains the length of the entire subblock. Each 
subblock itself is an item list and consists of the item codes listed in Table 17-11. 

Table 17-11 Service Counters Subblock Item Codes 

LAT$_ITM_CTSRU SSZ Seconds since zeroed. 
(BOTH) 

LAT$_ITM_CTSRV_MCNA Outgoing connections attempted (the number of times the local node has 
(BOTH) attempted to connect to the service offered on a remote node). 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-11 (Cont.) Service Counters Subblock Item Codes 

LAT$_ITM_CTSRV_MCNC 
(BOTH) 

LAT$_ITM_CTSRV_SCNA 
(BOTH) 

LAT$_ITM_CTSRV_SCNR 
(BOTH) 

LAT$_ITM_DED_PORT_ 
BLOCK (LOCAL) 

Outgoing connections completed (the number of times the local node 
successfully connected to the service offered on a remote node). 

Incoming connections accepted (the number of times the local node has 
accepted a connection request from a remote node to the locally offered 
service). 

Incoming connections rejected (the number of times the local node rejected 
a connection request from a remote node to the locally offered service). 

If the selected service is an application service offered by the local node, 
a list of one or more port subblocks is included in the item list. These 
subblocks describe the dedicated port or ports associated with this 
application service, with each subblock describing one particular port. 
The subblock item code LAT$_ITM_DED_PORT_BLOCK has the LAT$V_ 
STRING bit set, and the string length byte actually contains the length 
of the entire subblock. Each subblock itself is an item list and currently 
consists only of the following item code: 

LAT$_ITM_PORT_NAME Name of the dedicated port 
(LOCAL) 

Table 17-12 lists the item codes that are returned for the LAT$C_ENT_LINK 
entity type. 

Table 17-12 LAT$C_ENT_LINK Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_LINK 
NAME (SUMMARY) 

LAT$_ITM_STATE 
SUMMARY 

LAT$_ITM_DEVICE_ 
NAME SUMMARY 

LAT$_ITM_DATALINK 
ADDRESS 

LAT$_ITM_DECNET_ 
ADDRESS 

Link name (such as LAT$LINK). 

State of the link. Possible values are: 

LAT$C_ON 

LAT$C_OFF 

LAT$C_SHUT 

New connections are allowed, and the LAT 
protocol is running. 

New connections are not allowed, and any 
current connections are abnormally terminated. 
The LAT protocol is not running. 

No new connections are allowed. Currently 
active connections are still maintained. The 
LAT protocol remains running only until the 
last active session is disconnected, at which 
time the node is placed in the OFF state. 

The name of the Ethernet device used for the link. 

The Ethernet device's current physical address for the link. 

Indicates whether the link attempts to use the default DECnet Ethernet address 
when starting the data link controller (enabling the LAT protocol). Possible 
values are: 

LAT$C_DISABLED 

LAT$C_ENABLED 

DECnet Ethernet address use disabled 

DECnet Ethernet address use enabled (this is 
the default) 

Link counters information is presented as a counters subblock. The subblock 
item code LAT$_ITM_COUNTERS has the LAT$V STRING bit set, and the 
string length byte actually contains the length of the entire subblock. Because 
the link counters are independent of the protocol type, they include not only LAT 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

messages and events, but also all other protocol messages and events (that is, 
DECnet) associated with the same Ethernet device. The counters are actually 
maintained by the Ethernet device driver and are identified within the subblock 
by the non-protocol-specific item codes listed in Table 17-13. 

Table 17-13 Link Counters Item Codes 

NMA$C_CTLIN_ZER 

NMA$C_CTLIN_DBR 

NMA$C_CTLIN_DBS 

NMA$C_CTLIN_MBL 

NMA$C_CTLIN_MBS 

NMA$C_CTLIN_BRC 

NMA$C_CTLIN_BSN 

NMA$C_CTLIN_MBY 

NMA$C_CTLIN_MSN 

NMA$C_CTLIN_RFL 

NMA$C_CTLIN_SFL 

NMA$C_CTLIN_OVR 

NMA$C_CTLIN_UBU 

NMA$C_CTLIN_SBU 

NMA$C_CTLIN_LBE 

NMA$C_CTLIN_BS1 

NMA$C_CTLIN_BSM 

NMA$C_CTLIN_BID 

NMA$C_CTLIN_CDC 

Seconds since zeroed 

Messages received 

Messages transmitted 

Multicast messages received 

Multicast messages transmitted 

Bytes received 

Bytes transmitted 

Multicast bytes received 

Multicast bytes transmitted 

Receive errors 

Transmit errors 

Data overrun 

User buffer unavailable 

System buffer unavailable 

Local buffer errors 

Messages sent, single collisions 

Messages sent, multiple collisions 

Messages sent, initially deferred 

Transmit collision detection check failure 

Table 17-14 lists the item codes that are returned for the LAT$C_ENT_PORT 
entity type. 

Table 17-14 LAT$C_ENT_PORT Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_PORT_NAME 
SUMMARY 

LAT$_ITM_PORT_TYPE 
SUMMARY 

Name of the port (such as _LTA15:). 

Type of port. Possible values are: 

LAT$C_PT_FORWARD 

LAT$C_PT_INTERACTIVE 

LAT$C_PT_APPLICATION 

LAT$C_PT_DEDICATED 

Forward port used for outgoing LAT 
connections or for management functions 

Interactive port created as the result of 
an incoming LAT connection request 

Application port for solicited connections 

Dedicated port associated with a local 
service 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-14 (Cont.) LAT$C_ENT_PORT Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_QUEUED 

LAT$_ITM_SERVICE_CLASS 

LAT$_ITM_DISPLAY_ 
NUMBER 

LAT$_ITM_DISCONNECT_ 
REASON 

Controls whether the solicited connection requests queued or nonqueued 
access. Possible values are: 

LAT$C_DISABLED Queued access disabled 

LAT$C_ENABLED Queued access enabled (this is the 
default) 

Controls the class driver that the LAT driver communicates with when a 
connection is established. This item code can be used only with an entity 
status of NEW. Therefore, the service class must be specified when the 
device is created. An attempt to change the service class of an existing 
device returns SS$_BADPARAM. Legal values are: 

LAT$C_SERVCLASS_ 
INTERACTIVE 

LAT$C_SERVCLASS_ 
TESTSERVICE 

Service class 1, TTDRIVER (this is the 
default) 

Service class 2, TEST SERVICE 

LAT$C_SERVCLASS_ Service class 3, X Protocol 
XTRANSPORT 

LAT$C_SERVCLASS_FONT Service class 4, X fonts 

Display number value for the device. This field has meaning for service 
classes 3 and 4 only. It returns a value of zero for all other service 
classes. 

Reason (if any) for the last disconnect on the port. 

  Note  

The following four item codes are returned only when the LTA port has an 
active LAT connection. 

LAT$_ITM_CONNECTED_ 
SERVICE_NAME 

LAT$_ITM_CONNECTED_ 
NODE_NAME 

LAT$_ITM_CONNECTED_ 
PORT_NAME 

LAT$_ITM_CONNECTED_ 
LINK NAME 

Name of service to which this port is connected. For forward and 
application ports, this is the name of the remote service to which the 
port is connected (if any). For interactive and dedicated ports, this is the 
name of the local service that accepted the remote-initiated connection. 

Name of remote node to which this port is connected. 

Name of remote port to which this port is connected. 

Name of the link that the LAT connection exists on. 

  Note  

The following three items show information about how the port is set up. 
These items may be returned even if there is no current LAT connection. 

(continued on next page) 



LAT $QIO Functions 
17.2 LAT SENSEMODE $QIO Function 

Table 17-14 (Cont.) LAT$C_ENT_PORT Sensemode Item Codes 

Item Codes Meaning 

LAT$_ITM_TARGET_ 
SERVICE_NAME 

LAT$_ITM_TARGET_NODE_ 
NAME 

LAT$_ITM_TARGET_PORT_ 
NAME 

Target service name for connection of forward or application ports. For 
dedicated ports, this item code specifies the local service with which the 
port is associated. 

Target node name for connection of forward or application ports. 

Target port name for connection of forward or application ports. 



18 
Asynchronous Printer Support 

A new TT$M_COMMS~NC terminal characteristic has been added to the 
terminal driver interface and anew /COMMSYNC qualifier has been added to 
the DCL command SET TERMINAI ~. Both enable an asynchronous printer to be 
connected to a terminal port, with standard EIA modem control signals used for 
flow control. 

A description of the SET TERMINAL/COMMSYNC command follows. 



SET TERMINAL/COMMSYNC/NOCOMMSYNC 

SET TERMINAL/COMMSYNC/NOCOMMSYNC 

Allows asynchronous printers and other devices to be connected to terminal ports. 

Format 
/COMMSYNC 
/NOCOMMSYNC (default) 

Description 

The /COMMSYNC qualifier allows asynchronous printers and other devices to 
be connected to terminal ports. When you specify /COMMSYNC, flow control is 
handled by standard EIA modem signals instead of by XON/XOFF. 

Specifying /COMMSYNC activates the data terminal ready (DTR) and request to 
send (RTS) signals. Data is sent once the data set ready (DSR) and clear to send 
(CTS) signals are also present. If either of these signals is not present, printing 
stops. When both signals are present again, printing resumes. 

Do not set the /COMMSYNC qualifier on a line with a modem hooked up 
on it that is intended for interactive use. The qualifier disables the modem 
terminal characteristic that disconnects a user process from the terminal line in 
case of a modem phone line failure. With the /COMMSYNC qualifier enabled, 
the next call on the terminal line could be attached to the previous user's 
process. /COMMSYNC should also not be used in combination with XON/XOFF 
(this can result in a hung state, even though nothing appears wrong) or in 
combination with /TTYSYNC or lHOSTSYNC (this complicates troubleshooting). 
The /COMMSYNC and /MODEM qualifiers are mutually exclusive. 

Security administrators should be aware that /COMMSYNC should not be used 
on interactive terminal ports or on a port connected to a LAT line. 

Third-party drivers that are used in conjunction with the VMS terminal driver 
(TTDRIVER) must be recompiled and relinked in order to use SET TERMINAL 
/COMMSYNC. 

Example 

$ Sr'~' TEF?~a_.~7AI~/CO%~ir'~iS`.~'T~TC 

In this example, the SET TERMINAL command enables an asynchronous printer 
to be connected to the current terminal port. 

18-2 



19 
Support for Case Sensitivity 

The VMS linker and the MACRO assembler now support case sensitivity. Case 
sensitivity is the capability to sense and act upon alphabetic input with regard to 
its being uppercase or lowercase. 

19.1 Linker Support for Case-Sensitive Languages 
The VMS Linker Utility, with VMS Version 5.5, implements a new linker option, 
CASE_SENSITIVE=, that allows you to preserve the mixture of uppercase and 
lowercase characters used in character-string arguments to linker options. When 
this option is enabled, the linker interprets the symbols MySymbol and mysymbol 
as two distinct character strings. Once case sensitivity has been enabled, the 
linker preserves the case of all succeeding character-string arguments to linker 
options until you explicitly disable it. When the CASE_SENSITIVE= option 
is disabled (which is the default), the linker changes all the characters in a 
character string to uppercase before processing the string. 

Note that the CASE_SENSITIVE= option only affects how the linker processes 
arguments to linker options. When it searches object files and shareable image 
files for symbols that need to be resolved, the linker preserves the case used in 
the symbol names (created by the language compilers). Also, the names of the 
linker options (all the characters preceding the equal sign [_], as in the NAME= 
option) are unaffected by the case-sensitivity option. The linker changes all the 
characters in option names to uppercase characters before processing the option, 
even if case sensitivity has been enabled. 

To enable case sensitivity, specify the CASE_SENSITIVE= option with the value 
YES on a line in the options file. (You can specify only one option per line 
in a linker option file.) You can use any mixture of uppercase and lowercase 
characters in YES. 

To disable case sensitivity, specify the CASE_SENSITIVE= option with the value 
NO as its argument. Note that, because case sensitivity is enabled, you must use 
uppercase characters when specifying NO. 

Example 19-1 illustrates how to use this linker option. 



Support for Case Sensitivity 
19.1 Linker Support for Case-Sensitive Languages 

Example 19-1 Using the CASE_SENSITIVE- Option 

$ link/share/map/full ~est, sys$input:/opt Q 
case_sensitive=YES 

name=ImageName 
symbol=OneSymbol,l 
case_sensitive=NO 

universal=myroutine 
Ctrl/z 

The following list explains how the CASE_SENSITIVE= option is used in 
Example 19-1: 

O By specifying the logical name SYS$INPUT: as the linker option file, you can 
specify linker options at the command line. 

© Specifying the CASE_SENSITIVE= option with YES enables case sensitivity 
in the linker options file. 

© Because case sensitivity has been enabled, the linker preserves the mix of 
uppercase and lowercase characters used in character-string arguments to all 
succeeding linker options. In the example, this includes the character string 
ImagelVame passed to the NAME= option and the character string OneSymbol 
passed to the SYMBOL= option. 

Q Specifying the CASE_SENSITIVE= option with NO turns. off case sensitivity. 
Note that you must use uppercase characters when specifying NO. 

© Because case sensitivity has been disabled, the linker changes all the 
characters in the universal symbol, myroutine, to uppercase. The following 
excerpt from the map file produced by this link command illustrates how 
these identifiers were stored by the linker: 

ImageName 
OneSymbol 
MYROUTINE 

Carefully delimit the section of a linker options file in which you use case 
sensitivity to avoid unintentional side effects. For example, if you include options 
in the case-sensitive region that accept values such as YES, NO, EXE, and SHR, 
make sure the values are specified using uppercase characters. Because these 
values appear after the equal sign (_ ), they are affected by case sensitivity. 
Similarly, character-string arguments used to name a psect, cluster, or image are 
also affected by case sensitivity. 

19.2 VAX MACRO Support for Case Sensitivity 
VAX MACRO now enables programmers to specify the case sensitivity of global 
symbol definitions. This is accomplished using the new MACRO command line 
qualifier, /NAMES. 

{ UPPER } 
{ DEFINITIONS:LOWER } 

MACRO/NAMES = { DEFINITIONS:UPPER } 
{ DEFINITIONS:BOTH } 

! Symbol definitions in uppercase (default) 
! Symbol definitions in lowercase 
! Symbol definitions in uppercase 
! Symbol definitions in both 
! uppercase and lowercase 

The !NAMES qualifier enables you to observe case sensitivity when referencing 
MACRO routines in languages that generate references in lowercase. 



Support for Case Sensitivity 
19.2 VAX MACRO Support for Case Sensitivity 

/NAMES=UPPER specifies that all global symbol definitions are converted and 
generated in all lowercase characters. This is the default case and is consistent 
with the behavior of the current product. 

If you specify /NAMES=DEFINITIONS:LOWER, then all global symbol 
definitions are converted and generated in all lowercase characters. If you specify 
/NAMES=DEFINITIONS:UPPER, then all global symbol definitions are converted 
and generated in all uppercase characters. There is no mixed casing or the ability 
to select which symbols within a module are generated in uppercase and which 
are generated in lowercase. 

The /NAMES=DEFINITIONS:BOTH option generates the symbol definitions in 
both uppercase and lowercase. 

.This is a positional qualifier; therefore, you can specify which modules are 
affected by the qualifier. 

Only the global symbol definitions are generated in the specified case sensitivity. 
The generation of requests, that is, calls or jumps to subroutines (JSBs), remain 
unchanged (uppercase). 

Examples 

1. $MACRO/NAMES=DEFINITIONS:UPPER TEST.MAR 

In this example, global symbol definitions from TEST.MAR are produced in 
the resulting object file (TEST.OBJ) in uppercase. 

2. $MACRO TEST.MAR;'NAMES=UPPER, TEST2.MAR/NAMES=DEFINITIONS:L0~,~7ER 

In this example, global symbol definitions from TEST.MAR are produced 
in the resulting object file (TEST.OBJ) in uppercase and global symbol 
definitions from TE ST2. MAR are produced in the resulting object file 
(TEST2.OBJ) in lowercase. 

Sections 19.2.1 through 19.2.4 describe how the /NAMES qualifier functions in 
different environments. 

19.2.1 MACRO Programs That Reference Other MACRO Modules 
A MACRO program can reference global symbols only in other MACRO modules 
that have been assembled using either the UPPER or BOTH case-sensitivity 
value. This also implies that modules that define transfer vectors and are 
referenced by separate MACRO modules follow this rule. 

In the following table, the transfer vector module consists of transfer vector 
definitions only. The caller modules are assembled using the UPPER case-
sensitivity value. 

Called Routine 
Caller (In Separate Module) 

MACRO MACROS

MACRO Transfer Vectors

sModules must be assembled using either the UPPER or BOTH case-sensitivity value. 



Support for Case Sensitivity 
19.2 VAX MACRO Support for Case Sensitivity 

19.2.2 MACRO Programs That Reference the Same MACRO Module 
MACRO routines that reference global symbols that are defined in the same 
module, but cross program sections, must be assembled using either the UPPER 
or BOTH case-sensitivity value. This means that a module consisting of both 
transfer vector definitions and code in independent PSECTs follow the same rule. 

In the following table, the MACRO module contains both the caller and called 
routine, but they reside in separate PSECTs. These modules must be assembled 
using either the UPPER or BOTH case-sensitivity value. 

Called Routine 
Caller (In Same Module) 

MACRO 

Transfer Vector 

MACRO1

MACRO1

1Modules must be assembled using either the UPPER or BOTH case-sensitivity value. 

19.2.3 Uppercase Languages to MACRO Programs 
MACRO modules that define transfer vectors must be assembled using either 
the UPPER or BOTH case-sensitivity value when used by MACRO or any other 
uppercase language. This imposes the same case sensitivity on the called routine. 

Caller Transfer Module Called Routine 

MACRO or any MACRO/UPPER MACRO/UPPER or BOTH 
other uppercase 
language 

MACROBOTH MACROBOTH (required) 

MACRO/UPPER Any mixed-case language, for example, 
C. Routine name must be in uppercase. 

19.2.4 Lowercase Languages to MACRO Programs 
Languages other then MACRO can use MACRO transfer vectors by means of a 
LOWER request (as long as they support generating lowercase requests). This 
requires that the MACRO module that contains the transfer directive definitions 
must be assembled using the BOTH case-sensitivity value. If the routine is 
in MACRO, then this module must also be assembled using the BOTH case-
sensitivity value. Other languages that are referenced by the transfer vector 
must generate the symbol definition in both uppercase and lowercase. This is 
necessary to allow the linker the ability to resolve the symbolic references. 

Caller Transfer Module Called Routine 

Lowercase call MACROBOTH MACROBOTH 

MACROBOTH Any mixed-case language, for example, 
C. Symbol definition name must be 
generated in uppercase and lowercase. 



Support for Case Sensitivity 

19.2.4.1 MACRO Command /NAMES Qualifier 
This section describes the /NAMES qualifier for the MACRO command. 



MACRO/NAMES 

MACRO/NAMES 

Allows you to specify the case sensitivity of global symbol definitions. 

Format 

MACRO filespec[,...] 

Description 

Starting with VMS Version 5.5, the DCL command MACRO accepts a new 
qualifier, /NAMES. The /NAMES qualifier enables you to observe case sensitivity 
when referencing MACRO routines in languages that generate references in 
lowercase. 

/NAMES=UPPER specifies that all global symbol definitions are converted and 
generated in all lowercase characters. This is the default case and is consistent 
with the behavior of the current product. 

If you specify /NAMES=DEFINITIONS:LOWER, then all global symbol 
definitions are converted and generated in all lowercase characters. If you 
specify /NAMES=DEFINITIONS:UPPER, then all global symbol definitions are 
converted and generated in all uppercase characters. There is no mixed casing or 
the ability to select which symbols within a module are generated in uppercase 
and which are generated in lowercase. 

The /NAMES=DEFINITIONS:BOTH option generates the symbol definitions in 
both uppercase and lowercase. 

This is a positional qualifier; therefore, you can specify which modules are 
affected by the qualifier. 

Only the global symbol definitions are generated in the specified case sensitivity. 
The generation of requests, that is, calls or jumps to subroutines (JSBs), remain 
unchanged (uppercase). 

Examples 

1. $MACRO/NAMES=DEFIl~1ITI0NS : TJPPER i'EST .MAR 

In this example, global symbol definitions from TEST.MAR are produced in 
the resulting object file (TEST.OBJ) in uppercase. 

2. $MACRO TEST .MAR/NAMES=DEFIT~ITIO~~~~S :UPPER, TEST2 . MAR; NAMES=DEFINITIONS : LOL~IER 

In this example, global symbol definitions from TEST.MAR are produced 
in the resulting object file (TEST.OBJ) in uppercase and global symbol 
definitions from TEST2.MAR are produced in the resulting object file 
(TEST2.OBJ) in lowercase. 



20 
System Dump Analyzer 

This chapter describes new System Dump Analyzer (SDA} features. 

20.1 TMSCP Symbol 
The SDA symbol table now includes the symbol TMSCP. TMSCP (tape mass 
storage control protocol) represents the address of loadable TMSCP server code, 
as shown in the following example: 

SDA> SHO~w' SYMBOL TMSCP 
TMSCP = 80A35D60 000036F0 

For general information about SDA symbols, see the VMS System Dump Analyzer 
Utility Manual. 

20.2 Support for Transaction Processing 
The System Dump Analyzer Utility has been modified to provide support for 
transaction processing. This support is provided by two new SDA commands and 
by two new qualifiers for the SHOW PROCESS command. 

The following SDA commands have been added: 

• SHOW LOGS—Displays information about transaction log files currently 
open for the node. 

• SHOW TRANSACTIONS—Displays information about all transactions on the 
node or about a specific transaction. 

In addition, the /PAR,TICIPANTS and /TRANSACTIONS qualifiers have been 
added to the SHOW PROCESS command. 

The rest of this section describes these SDA commands in more detail. 

2a~ 



SHOW LOGS 

SHOW LOGS 

Displays information about transaction log files currently open for the node. 

Format 
SHOW LOGS[/qualifier[,...]] 

Qualifiers 
/DISPLAY-(item [,...]) 
Specifies the type of information to be displayed. The argument to /DISPLAY can 
be either a single item or a list. You can specify the following items: 

Item Description 

ALL All transaction log control structure information. 
This is the default behavior. 

OPENS Transaction log open requests. 

READS Transaction log read requests. 

WRITES Transaction log write requests. 

Example 

SDA> SHOW LOGS/DISPLAY= (OPENS, `~r~~P.ITES j 

The SHOW LOGS command displays the log open request and log write request 
information for all open transaction logs for the node. 

20-2 



SHOW PROCESS/PARTICIPANTS 

SHOW PROCESS/PARTICIPANTS 

Displays information about all transactions for the process. 

Format 

SHOW PROCESS/PARTICIPANTS[=DISPLAY=(item [,...])] 

Description 

The /PARTICIPANTS qualifier specifies the type of information to be displayed. 
The argument to DISPLAY can be either a single item or a list. You can specify 
the following items: 

Item Description 

ALL All transaction control structures for the 
transactions. This is the default behavior. 

BRANCHES Control structures for branches of the 
transactions. 

PARTICIPANTS Control structures for resource managers 
participating in the transactions. 

THREADS Control structures for threads of the 
transactions. 

TRANSACTIONS Transaction control structures for the 
transactions. 

Example 

SDA> SHOW PROCESS/PARTICIP~TvTS=DISPLAY=PNRlICIPANTS 

The SHOW PROCESS command displays the control structures for resource 
managers participating in all transactions in the current process. 



SHOW PROCESS/TRANSACTIONS 

SHOW PROCESS/TRANSACTIONS 

Displays information about all transactions, or a specific transaction, for the 
process. 

Format 

Description 

SHOW PROCESS/TRANSACTIONS=(option [,...]) 

The /TRANSACTIONS qualifier displays information about all transactions, or 
a specific transaction, for the process. You can specify the following two options 
either together or separately. 

• DISPLAY=(item [, ... ] ) 

Specifies the type of information to be displayed. The argument to DISPLAY 
can be either a single item or a list. You can specify the following items: 

Item Description 

ALL All transaction control structures for the 
specified transaction. This is the default 
behavior. 

BRANCHES Control structures for branches of the 
specified transaction. 

PARTICIPANTS Control structures for resource managers 
participating in the specified transaction. 

THREADS Control structures for threads of the specified 
transaction. 

TRANSACTIONS Transaction control structures for the 
specified transaction. 

• TID=tid 

Specifies the transaction for which information is to be displayed. If you omit 
the TID option, the SHOW PROCESS/TRANSACTIONS command displays 
information about all transactions for the process. 

If you omit these options, the SHOW PROCESS/TRANSACTIONS command 
displays all information about all transactions for the process. 

Note that the SHOW PROCESS/TRANSACTIONS and SHOW PROCESS 
/PARTICIPANTS commands are similar. They display the same information 
about transactions, but the SHOW PROCESS/TRANSACTIONS command 
displays information about a transaction queue and the SHOW PROCESS 
/PARTICIPANTS command displays information about a resource manager 
queue. 



SHOW PROCESS/TRANSACTIONS 

Examples 
SDA> SHO~~~~ PROCESS,/TRANSACTIONS=TID=FAC21DE2-BA88-0092-8FA6-COOOOOOOB24B 

The SHOW PROCESS command displays all transaction control structures for 

the specified transaction in the current process. 

SDA> SHOW PROCESS/TRANSACTIONS=(DISPLAY=PARTICIPANT'S,TID=FAC21DE2-BA88-0092-8FA6-B24B) 

The SHOW PROCESS command displays the control structures for resource 
managers participating in the specified transaction in the current process. 

20-5 



SHOW TRANSACTIONS 

SHOW TRANSACTIONS 

Displays information about all transactions on the node or about a specific 
transaction. 

Format 

Qualifiers 

Examples 

SHOW TRANSACTIONS[/qualifier[,...]] 

/DISPLAY-(item [,...]) 
Specifies the type of information to be displayed. The argument to /DISPLAY can 
be either a single item or a list. You can specify the following items: 

Item Description 

ALL All transaction control structures for the specified 
transaction. This is the default behavior. 

BRANCHES Control structures for branches of the specified 
transaction. 

PARTICIPANTS Control structures for resource managers 
participating in the specified transaction. 

THREADS Control structures for threads of the specified 
transaction. 

TRANSACTIONS Transaction control structures for the specified 
transaction. 

/SUMMARY 
Displays statistics for transactions on the node. The /SUMMARY qualifier cannot 
be used with the /TID or /DISPLAY qualifiers. 

/TID-tid 
Specifies the transaction for which information is to be displayed. If you omit the 
/TID qualifier, the SHOW TRANSACTIONS command displays information about 
all transactions on the node. 

SDA> ~l 0~~,~ ~'RA?~TSAC`~IONS'T~~=F~=~,C~~~'~-~A~~-0092-8~A6-OOGO~OOOB24B 

The SHOW TRANSACTIONS command displays all the transaction control 
structure information for the transaction identified by the transaction identifier 
(TID). 

The SHOW TRANSACTIONS command displays the transaction branch and 
resource manager information for all transactions on the node. 



21 
Mailbox Driver 

This chapter describes new features of the mailbox driver. A mailbox driver is a 
set of routines that VMS uses to facilitate communication among processes. 

21.1 Unidirectional Mailboxes 
Prior to this release of VMS, channels assigned to mailboxes have always been 
bidirectional (read/write) channels. This means that both read requests and 
write requests can be issued to the channel. Channels can now be assigned to 
mailboxes as unidirectional, either read only or write only. This allows for greater 
synchronization between users of the mailbox. 

To specify a unidirectional channel to the mailbox, flags parameters have been 
added to the $CREMBX and $ASSIGN system services. If the flags parameter is 
not specified, or is zero, then the channel assigned to the mailbox is bidirectional 
(read/write). 

See the VMS System Services Reference Manual for a syntax description of the 
$CREMBX and $ASSIGN system services. 

21.2 Mailbox Driver Functions and Modifiers 
The following sections describe the new mailbox driver wait for writer and reader 
functions and the new IO$M_WRITERCHECK, IO$M_READERCHECK, and 
IO$M_STREAM function modifiers. 

21.2.1 Wait for Writer/Reader Function 
The wait for writer or wait for reader mailbox driver functions wait until a 
channel is assigned to the mailbox with the requested access direction. The 
function returns immediately if a channel is already assigned to the mailbox with 
the proper access direction. The function always returns immediately if issued on 
a bidirectional (read/write) mailbox channel (any channel assigned bidirectionally 
to the mailbox satisfies both wait for writer and wait for reader requests). 

The wait for writer/reader functions require the same synchronization techniques 
as all other $QIO and $QIOW functions. The wait for writer/reader functions 
behave identically with either the $QIO or $QIOW function. 

The following function codes and modifiers are provided: 

• IO$_SETMODE!IO$M_READERWAIT Wait for a read channel to be 
assigned to the mailbox. 

• IO$_SETMODE!IO$M_WRITERWAIT Wait for a write channel to be 
assigned to the mailbox. 

These function codes have no arguments. Once they are enabled and the $QIO 
operation has completed, they must be explicitly reenabled. 



Mailbox Driver 
21.2 Mailbox Driver Functions and Modifiers 

21.2.2 10$M_WRITERCHECK Function Modifier 
The IO$M_WRITERCHECK function modifier for the read mailbox function 
completes the I/O operation, with SS$_NOWRITER status, if the mailbox is 
empty and no write channels are assigned to the mailbox. If no writer is assigned 
to the mailbox when the $QIO is issued and no data is in the mailbox, the 
$QIO completes immediately. If no data is in the mailbox, but there is a writer 
assigned, the $QIO operation completes when either a message is written or 
all writers deassign their channel to the mailbox. IO$M_WRITERCHECK is a 
meaningless function if the channel on which it is issued is read/write because 
there is always a writer assigned. 

21.2.3 10$M_READERCHECK Function Modifier 
The IO$M_READERCHECK function modifier for the write and write end-of-
file message mailbox function completes the I/O operation immediately, with 
SS$_NOREADER status, if no read channels are assigned to the mailbox. If a 
$QIO write request with IO$M_READERCHECK is issued and is outstanding, 
and all read channels assigned to the mailbox are then deassigned, the $QIO 
completes with SS$_NOREADER status. IO$M_READERCHECK is meaningless 
if the channel on which it is issued is read/write because there is always a reader 
assigned. If SS$_NOREADER is returned for a write request, the $QIO write 
operation does not place any data in the mailbox. If SS$_NOREADER is returned 
for a write end-of--file message request, the $QIO write operation does not place 
the end-of--file marker in the mailbox. 

21.2.4 10$M_STREAM Function Modifier 
The IO$M_STREAM function modifier for the read mailbox function ignores QIO 
record boundaries. The read operation transfers message data to the user's buffer 
until either the number of bytes specified by the P2 argument are transferred 
(P2 represents the maximum allowed buffer size, in bytes), all message data 
currently in the mailbox is transferred, or an end-of--file message is encountered. 
If a WRITEOF message is within the records required to be read in order to 
fulfill the request for P2 bytes, the read request terminates successfully with 
the bytes it was able to read before finding the WRITEOF message, and the 
end-of--file message becomes the next message to be read. The next read request 
for greater than zero bytes processes the end-of--file message. $QIO read stream 
can return fewer than P2 bytes with a return value of SS$_NORMAL if the 
mailbox is emptied by the $QIO read stream request or a WRITEOF message is 
encountered. 

A READ IO$M_STREAM request (without IO$M_NOW specified) on an empty 
mailbox waits until some data has been written to the mailbox. It terminates 
with 

• Zero bytes read if the next data written is an end-of--file message. 

• Fewer than P2 bytes read if the next data written is less than P2 bytes but 
greater than zero bytes. (READ IO$M_STREAM ignores write requests of 
zero bytes. ) 

• P2 bytes read if the next data written is greater than or equal to P2 bytes. 

If a $QIO read stream request is fulfilled by multiple $QIO write requests, the 
sender PID returned in the IOSB of $QIO read stream reflects the first write 
request. $QIO read stream is then charged the buffer quota for the request. 
This buffer quota is released when the read request is met. A $QIO read stream 



Mailbox Driver 
21.2 Mailbox Driver Functions and Modifiers 

request that would cause the buffer quota to be exceeded for the mailbox when 
the mailbox has no write requests pending returns an SS$_EXQUOTA error. 

A $QIO read stream request that would cause the buffer quota to be exceeded 
still executes if the buffer quota is occupied by write requests. This is because 
allowing the mailbox to temporarily exceed the buffer quota frees the buffer 
quota. Similarly, a $QIO write request that would cause the buffer quota to be 
exceeded still executes if the buffer quota is occupied by read stream requests. 

Read requests of zero bytes are handled differently depending on which functional 
modifiers are specified. If IO$M_STREAM is specified, then the $QIO returns 
SS$_NORMAL with zero bytes read. The contents of the mailbox remain exactly 
as they were before the $QIO was issued. A $QIO read stream request of zero 
bytes does not remove azero-byte record, nor does it remove an end-of--file 
marker. However, if IO$M_STREAM is not specified, then $QIO can return either 
SS$_NORMAL (if zero bytes were written with the corresponding $QIO write 
request), SS$_BUFFEROVF (if the corresponding $QIO write request wrote more 
than zero bytes), or SS$_ENDOFFILE (if a WRITEOF function was perfomed 
as the corresponding $QIO write function). For azero-byte, nonstreaming read 
request, a record is actually removed from the mailbox in order to meet the $QIO 
read request. Note that even though a record is removed, the corresponding $QIO 
write request should still be performed. 





22 
$QIO Support for Moving Disk Files 

VMS Version 5.5 provides a new ACP-QIO subfunction called movefile that 
permits you to move the contents of a file, or part of the contents of a file, to a 
new disk location. This subfunction could, for example, form the basis of a disk 
defragmentation application. 

You can disable movefile operations on specific user files by specifying the 
/NOMOVE qualifier on the SET FILE command. The DIRECTORY/FULL and 
the DUMP/HEADER commands have been modified to inform you if movefile 
operations are disabled on a file. See Chapter 11 for more information about the 
DCL commands that have been enhanced to support movefile operations. 

22.1 Calling the Movefile Subfunction 
A program can invoke a movefile subfunction by issuing a QIO request using the 
function code IO$_MODIFY and the function modifier IO$M_MOVEFILE. This 
section describes the input parameters that control the processing of movefile 
operations and also how the movefile subfunction works. 

22.1.1 Input Parameters 
Table 22-1 lists the FIB (file identification block) fields that control the processing 
of a movefile subfunction. (See the VMS IlO User's Reference Manual: Part I for 
a description of the FIB. ) 

Table 22-1 FIB Fields (Movefile) 

Field Field Values Meaning 

FIB$L_ACCTL FIB$V_NOVERIFY 

FIB$W_FID 

FIB$W_EXCTL 

FIB$M_ALCON 

This movefile flag inhibits comparison of the moved 
blocks. If this flag is clear, the movefile operation 
verifies that the operation was carried out correctly 
by comparing the moved blocks to the original 
blocks. 

Specifies the file identification of the file to be 
moved. 

Movefile control flags. The following flags apply to 
the movefile operation. All other FIB$W_EXCTL 
flags must be clear. 

Specifies that the movefile operation must allocate 
contiguous disk space to the moved blocks. If the 
necessary contiguous space is not available, the 
movefile operation fails. 

The movefile operation sets this flag if the file was 
previously marked contiguous. 

(continued on next page) 



$QIO Support for Moving Disk Files 
22.1 Calling the Movefile Subfunction 

Table 22-1 (Cont.) FIB Fields (Movefile) 

Field Field Values Meaning 

FIB$B_ALOPTS 

FIB$B_ALALIGN 

FIB$W_ALLOC 

FIB$M_ALCONB 

FIB$M_FILCON 

FIB$V_NOPLACE 

FIB$M_EXACT 

FIB$C_LBN 

FIB$B_LOC_RVN 

FIB$L_LOC_ADDR 

Specifies that the movefile operation should do its 
best to allocate contiguous disk space to the moved 
blocks. That is, if the movefile operation cannot 
allocate contigous space to all the moved blocks, it 
allocates contiguous space to as many of the blocks 
as possible. 

The movefile operation sets this flag if the file was 
previously marked contiguous best try. 

Specifies that the entire file must be made 
contiguous. Do not set this flag without also setting 
the FIB$M ALCON flag. 

If the FIB$M_FILCON flag is set, and either the 
FIB$M_ALCON flag is clear or the file would not 
be made contiguous by moving the specified virtual 
blocks, the movefile operation fails. 

The movefile operation sets this flag if the file was 
previously marked contiguous. 

Specifies that placement information will not be 
recorded in the file header. 

If this flag is clear, and you specify exact placement 
for the moved blocks, placement information for 
those blocks will be recorded in the file header. If 
this flag is set, the placement information will not 
be recorded. 

You specify exact placement through 
the FIB$M_EXACT, FIB$C_LBN, and 
FIB$L_LOC_ADDR fields. 

Flags that control the placement of the allocated 
blocks. Currently, only the FIB$M_EXACT flag 
applies to the movefile operation. All other FIB$B_ 
ALOPTS flags must be clear. 

Set to require exact placement. If this flag is set and 
the specified blocks are not available, the movefile 
operation fails. 

Contains the interpretation mode of the allocation 
field (FIB$W_ALLOC). You can specify a field value 
of zero or you can specify the symbolic value FIB$C_ 
LBN. If you specify zero, the allocation field is 
ignored. 

If the FIB$M_EXACT flag is also set, indicates 
that the FIB$L_LOC_ADDR subfield contains the 
starting logical address to which the blocks are 
moved. 

Contains the desired location of the blocks being 
allocated. Interpretation of the field is controlled by 
the FIB$B_ALALIGN field. 

Placement relative volume number (RVN). 

If the FIB$C_LBN and FIB$M_EXACT flags are set, 
specifies the starting logical address to which the 
blocks are moved. 

(continued on next page) 



$QIO Support for Moving Disk Files 
22.1 Calling the Movefile Subfunction 

Table 22-1 (Cont.) FIB Fields (Movefile) 

Field Field Values Meaning 

FIB$L_MOV_SVBN 

FIB$L_MOV_VBNCNT 

Specifies the virtual block number (VBN) of the first 
block to be moved. 

The starting virtual block number must correspond 
to the first block of a disk cluster. The value must 
be greater than zero and it must not exceed the 
number of virtual blocks allocated to the file. If you 
specify an invalid value, the movefile operation fails. 

Specifies the number of consecutive virtual blocks to 
be moved. 

This value must be a multiple of the disk cluster 
size and it must not exceed the difference between 
the greatest VBN (virtual block number) allocated 
to the file and the FIB$L_MOV_SVBN value. If you 
specify a value of zero, the movefile operation moves 
all the virtual blocks between the FIB$L_MOV_ 
SVBN value and the greatest VBN. 

If you specify an invalid value, the movefile 
operation fails. 

22.1.2 Operation 
A program can perform a movefile operation on a file if the following conditions 
are met: 

• The program has write and control access to the file. 

• The file is closed. 

• Movefile operations are not disabled on the file. 

Movefile operations are automatically disabled on critical system files. 
You can disable movefile operations on specific user files by specifying the 
/NOMOVE qualifier on the SET FILE command. See Chapter 11. 

• The operation is not interrupted. 

If the movefile operation is interrupted by any other operation, the movefile 
operation aborts and the file remains in its original position. 

• The source and target locations are on the same disk. 

You cannot transfer blocks from one volume to another and you cannot move 
blocks spanning more than one volume. 

The movefile operation moves a specified number of consecutive virtual blocks to 
new logical blocks on the disk, beginning with the virtual block specified in the 
FIB$L_SVBN field. 

The number of blocks moved is specified in the FIB$L_VBNCNT field. To move 
an entire file, specify FIB$L_VBNCNT as 0 and FIB$L_SVBN as 1. 

To specify a starting logical block number for the moved blocks, write the logical 
block address in the FIB$L_LOC_ADDR subfield and set the FIB$C_LBN and the 
FIB$M_EXACT flags. 



$QIO Support for Moving Disk Files 
22.1 Calling the Movefile Subfunction 

If the file was previously marked contiguous, the movefile operation sets the 
FIB$M_ALCON and FIB$M_FILCON flags. This ensures that a contiguous file 
is not fragmented by a movefile operation. Similarly, if the file was previously 
marked contiguous best try, the movefile operation sets the FIB$M_ALCONB 
flag. 

For virtual ~ blocks beyond the file's highwater mark, the movefile operation 
allocates new logical blocks but does not copy the contents. The position of the 
file's highwater mark remains unchanged. 



A 
VMS Version 5.4-3 Features 

This appendix describes features introduced with VMS Version 5.4-3 but not yet 
documented in other printed manuals. 

A.1 Summary of New VMS Version 5.4-3 Software Features 
Table A-1 provides a summary of the VMS Version 5.4-3 software features. 
For information about new and enhanced hardware, see the VMS Version 5.4-3 
Release Notes. 

Table A-1 Summary of VMS Version 5.4-3 Software Features 

VMS Version 5.4-3 Systemwide Features 

Backup Utility 

Fiber Distributed Data Interface (FDDI) 

VMSINSTAL 

Proactive Memory Reclamation from Idle 
Processes 

With this version of VMS, you can make the backup 
tape drive available for other operations before the 
backup procedure completes and you can now mount 
a tape that is protected by avolume-accessibility 
character or a tape created by HSC backup. VMS 
Version 5.4-3 also gives you several label-processing 
options for non-ANSI tapes and improved error 
reporting from disk and tape drivers. 

Changes to the VMS programming interface for local 
area networks (LANs) provide support for FDDI, 
Digital's next generation of local area networking. 
FDDI can accommodate a data rate 10 times that of 
Ethernet and has a significantly larger LAN diameter, 
frame size, and message size than Ethernet. Only 
minimal changes need to be made to existing Ethernet 
applications for them to run on FDDI. 

The Network Control Program (NCP) supports FDDI 
by providing a set of counters for monitoring FDDI line 
errors and line performance. 

The RUN-IMAGE callback now lets you defer running 
the image. 

VMS now supports proactive memory reclamation, a 
memory management policy that allows the operating 
system to reclaim memory from long-waiting processes 
and periodically waking processes. Memory is 
reclaimed proactively from an inactive process when a 
deficit is first detected but before the memory resource 
is depleted. Prior versions of the VMS operating 
system trimmed processes with first- and second-level 
working-set trimming before resorting to swapping. 

(continued on next page) 



VMS Version 5.4-3 Features 
A.1 Summary of New VMS Version 5.4-3 Software Features 

Table A-1 (Cont.) Summary of VMS Version 5.4-3 Software Features 

VMS Version 5.4-3 Systemwide Features 

Open-Bus Driver Support 

VMS Local Area VAXcluster Software 

VAX Ada RTL 

System Dump Analyzer 

VMS provides new open-bus driver support features 
for VMEbus and SCSI bus device driver programming 
needs. The support for VMEbus device connections to 
various XMI-based VAX processors permits the writing 
of third-party VMEbus device drivers. 

For SCSI device drivers, the support specifically 
includes programming for the NCR 53C94 Controller. 

VMS provides support for up to four local area network 
(LAN) adapters on each local area VAXcluster node, 
including Ethernet adapters and FDDI adapters. 

New sample programs and related subroutine packages 
are provided in SYS$EXAIVIPLES to start and stop the 
local area VAXcluster protocol on a LAN adapter and to 
enable local area VAXcluster network failure analysis. 
See the VMS VAXcluster Manual for information about 
these features. 

Additional precision has been provided for delay 
statements and an additional delete capability has 
been provided for Ada UO packages. 

Changes to the SDA command SHOW PORTS now 
allow you to view the data structures that the 
multiadapter local area cluster uses. 

A.2 VMS Version 5.4-3 System Management Features 
This section contains information about new features for the VMS Version 5.4-3 
operating system that is of interest to system managers. 

A.2.1 Backup Utility 
This section describes new features and options for the VMS Backup Utility 
(BACKUP) for VMS Version 5.4-3. 

A.2.1.1 /RELEASE TAPE Qualifier 
The lRELEASE_TAPE qualifier is new for the DCL command BACKUP. 
/RELEASE_TAPE dismounts and unloads a tape after a backup save operation 
writes a save set to the tape. 

By using the /RELEASE_TAPE qualifier with either the /DELETE or /RECORD 
qualifier, you can make the tape drive available for other operations before the 
backup procedure completes. For example, you could use the following command 
to back up a disk: 

$ BACKUP %IMAGE% RECORD% RE~EASE_TAPE D ~Ay . I'~~~~~`,0 : BACK . BCK 

By using the /R,ELEASE_TAPE and /R,ECORD qualifiers, the Backup Utility 
dismounts and unloads the tape before it performs the action of the /RECORD 
qualifier. 

In the following example, the /RELEASE_TAPE qualifier dismounts and unloads 
the tape before the /DELETE qualifier performs its action: 



VMS Version 5.4-3 Features 
A.2 VMS Version 5.4-3 System Management Features 

$ ALLOCATE MUAO: TAPE 
$ BACKUP/DELETE%RELEASE_TAPE%LOG DUAI: ~MAIN...] MUAG:MAIN.BCK 

$ REALLOCATE TAPE 

The tape drive remains allocated until you enter the REALLOCATE command. 

Note that you cannot use the /RECORD and /DELETE qualifiers in the same 
BACKUP command. 

A.2.1.2 ACCESSIBILITY Keyword 
The BACKUP command qualifier /IGNORE now accepts a new keyword, 
ACCESSIBILITY. This keyword allows the Backup Utility to mount a tape that 
is protected by avolume-accessibility character or a tape created by hierarchical 
storage controller (HSC) backup. The keyword applies only to tapes. It affects 
the first tape mounted and all subsequent tapes in the save set. 

The following example shows how to use the ACCESSIBILITY keyword: 

$ INITIALIZE/LABEL=VOLUME_ACCESSIBILITY:"K" MUA1: 29JUN 
$ BACKUP/IGNORE=(ACCESSIBILITY) DLTAO: ~BOOKS...] MUAI:BACKUP.SAViLABEL=~9JUN 

In this example, the tape is initialized with an accessibility character (K) and a 
volume label (BACKUP). The BACKUP command mounts the tape, regardless of 
the accessibility, and performs the backup operation. For more information about 
tape protection, refer to the Guide to VMS Files and Devices. 

A.2.1.3 Backup Label Processing Options 
In previous VMS versions, the VMS Backup Utility automatically overwrote a 
non-ANSI-labeled tape during a backup save operation. 

With VMS Version 5.4-3, the Backup Utility now provides you with several 
options when it encounters a tape that has an ANSI label: 

oMOUNT-I-MOUNTED, DKAO mounted on _SODAK$MUAO: 
BBACKUP-W-MOUNTERR, volume 1 on _SODAK$MUAO was not mounted because 
its label does not match the one requested 
Specify option (QUIT, NEW tape or OVERWRITE tape) 
BACKUP> 

Depending on the option you specify, you can quit the backup (QUIT), dismount 
the old tape and mount a new one (NEW), or overwrite the data on the tape 
(OVERWRITE). 

If you use scratch tapes, which you intend to overwrite, use the 
/IGNORE=LABEL_PROCESSING qualifier. This suppresses the previous Backup 
Utility message, which normally occurs if the Backup Utility encounters a tape 
that does have an ANSI label. 

A.2.2 Disk and Tape Class Drivers—Enhanced Error Reporting 
In concert with Digital fault management strategy, the disk and tape class drivers 
have been modified to analyze error messages and to determine whether or not to 
make an error log entry and to increment the device error count. 

The device-specific error counts now accurately reflect the number of errors and 
are not indicative of the number of error-related messages received. 



VMS Version 5.4-3 Features 
A.2 VMS Version 5.4-3 System Management Features 

A.2.3 New NCP Line Counters for FDDI Communications 
The fiber data distributed interface (FDDI) is Digital's next generation of local 
area networking to follow Ethernet. The first VMS device or network adapter for 
FDDI is the DEC FDDIcontroller 400, called DEMFA, for VAX systems based on 
x:MI (6000/9000 class). The DEMFA and FDDI are supported by DECnet—VAX 
Phase IV and DECnet—VAX Extensions. 

VMS Version 5.4-3 uses new NCP line counters for FDDI communications. You 
can use these counters to display error and performance statistics about your 
FDDI line. The following command shows how to display information about an 
FDDI line: 

NCP> SHOW LINE MFA-n COUNTERS 

where n=0,1,2,.... 

For more information about FDDI, see A Primer to FDDI: Fiber Distributed Data 
Interface and Fiber Distributed Data Interface System Level Description. 

The new NCP line counters are described as follows: 

Connections completed 
Indicates the number of times the PHY Port entered the In Use state, after 
having completed the initialization process. 

Directed beacons received 
Indicates the number of times the link received a unique directed beacon. A 
unique directed beacon is the assertion of Other_Beacon and receipt of particular 
beacon data. 

Duplicate address test failures 
Indicates the number of times the duplicate address test failed. That is, how 
many times it detected that the link address was a duplicate. 

Duplicate tokens detected 
Indicates the number of times the media access control (MAC) detected a 
duplicate token either by means of the duplicate token-detection algorithm or 
by the receipt of a token while already holding one. 

Elasticity buffer errors 
Indicates the number of times the Elasticity Buffer function in the PHY Port had 
an overflow or underflow. This indicates a transmit clock error somewhere in the 
network. 

FCI strip errors 
Indicates the number of times the receipt of a token terminated a Frame Content 
Independent Strip. 

LCT rejects 
Indicates the number of times a connection on this PHY Port was rejected because 
the Link Confidence Test (LCT) at either end of the physical connection failed. 
The LCT rejects counter only counts rejections that cause the link to enter into 
the Watch State. The counter, therefore, indicates the number of distinct link 
quality problems rather than the total length of time such problems persisted. 

LEM rejects 
Indicates the number of times an active connection on this PHY Port was 
disconnected because the Link Error Monitor (LEM) at this end of the physical 
connection rejected the connection or because the Noise timer (TNE) expired. 

A-4 



VMS Version 5.4-3 Features 
A.2 VMS Version 5.4-3 System Management Features 

Link errors 
Indicates the total number of "raw" Link Error input events detected by the Link 
Error Monitor (LEM). 

MAC error count 
Indicates the total number of times the media access control (MAC) changed the 
error indicator in a frame from reset to set. This tells you the number of times 
the local FDDI adapter detected an error in a frame. 

MAC frame count 
Indicates the total number of frames on the FDDI media, other than tokens. 

MAC lost count 
Indicates the total number of times a frame (other than a token) was improperly 
terminated. 

Ring beacons initiated 
Indicates the number of times this station initiated the ring beacon process. 

Ring initializations initiated 
Indicates the number of times this station initiated a ring reinitialization. 

Ring initializations received 
Indicates the number of times another station initiated ring reinitialization. 

Ring purge errors 
Indicates the number of times the ring purger received a token while still in the 
ring purge state. 

Traces initiated 
Indicates the number of times this link initiated the PC-trace process. 

Traces received 
Indicates the number of times another link initiated the PC-trace process. 

A.2.4 FDDI/Ethernet Startup Error Code 
In VMS Version 5.4-3, a new error code, SS$_IVADDR, can be returned from 
a SETMODE!STARTUP QIO request to the FDDI/Ethernet drivers. The driver 
returns the code when the requested Ethernet physical address already exists on 
the extended LAN to which your device is attached. 

The following error message is associated with the error code: 

oSYSTEM-F-IVADDR, invalid media address 

A.2.5 Proactive Reclamation of Memory from Idle Processes 
VMS Version 5.4-3 introduces a memory management policy that is designed 
to reclaim memory proactively from inactive processes when a deficit is first 
detected but before the memory resource is depleted. The policy allows the 
operating system to reclaim memory from the following types of idle processes: 
(1)long-waiting processes and (2) periodically waking processes. Proactive 
reclamation of memory typically maintains a sufficiently large cache of free 
pages so that active, demanding processes do not have to wait for reclamation 
to take place. Therefore, perceived response times are noticeably improved in 
memory-constrained environments. 



VMS Version 5.4-3 Features 
A.2 VMS Version 5.4-3 System Management Features 

In previous versions of VMS, while inactive processes continued to hoard large 
amounts of memory, active processes sometimes were not allowed to grow when 
memory was constrained. Very little free memory was available on these systems, 
so when performing memory-intensive activities, users typically experienced 
perceptible delays while the system attempted to reclaim memory by trimming 
and swapping. 

Past versions of VMS attempted to trim processes with first- and second-level 
working-set trimming before resorting to swapping. The conventional wisdom was 
that swapping resulted in sluggish system performance and poor user response 
times. By the time the system worked its way to swapping out processes, 
performance was significantly degraded. All processes, regardless of their activity 
levels, had been trimmed to either their working-set quota or to SWPOUTPGCNT 
and the free page list typically hovered near FREELIM. If a process needed to 
be swapped in, the free page list was frequently too small to satisfy the demand, 
potentially triggering more swapping. This behavior continued until users 
became frustrated and logged out of the system. And yet, even with this sluggish 
behavior, certain inactive processes might still be hoarding relatively large 
amounts of memory for long periods of time. Clearly, these inactive processes are 
prime candidates for memory reclamation before memory is exhausted. You can 
expect overall system performance to improve as the system makes this memory 
available to active processes. 

A.2.5.1 How Is This Policy Enabled? 
VMS Version 5.4-3 enables proactive memory reclamation by default. However, 
using the system parameter MMG_CTLFLAGS, you can enable or disable 
proactive memory reclamation from periodically waking processes or long-waiting 
processes or both. The system parameter MMG_CTLFLAGS is bit encoded. Bit 
<0> enables memory reclamation by trimming periodically waking processes. 
Bit <1> enables memory reclamation by swapping out long-waiting processes. 
Therefore, choose a value for MMG_CTLFLAGS from 0 to 3 that sets or clears the 
low-order bits <0> and <1> to enable or disable, respectively, the policy for either 
periodically waking processes or long-waiting processes or both. 

A.2.5.2 Reclaiming Memory from Long-Waiting Processes 
In this instance, the proactive memory reclamation policy involves the swapping 
out of long-waiting processes when the size of the free page list drops below the 
value of FREEGOAL. An example of a candidate for this memory management 
policy is a process that has been in the LEF or HIB state for longer than the 
number of seconds in the system parameter LONGWAIT. 

In VMS Version 5.4-3, with this default policy, when you use such commands as 
SHOW SYSTEM in memory-constrained environments, the resulting display most 
likely shows more processes swapped out than it did in previous versions of VMS. 
This is the expected and desired behavior for this release. (See Section A.2.5.1 for 
information about enabling the memory reclamation mechanisms.) Swapping out 
long-waiting processes is triggered when the free list is at or below the value of 
the system parameter FREEGOAL. 

  Note  

When this policy is active, AUTOGEN sets the system parameter 
FREEGOAL to a value considerably greater than in previous VMS 
releases. 



VMS Version 5.4-3 Features 
A.2 VMS Version 5.4-3 System Management Features 

By setting FREEGOAL to a larger size, memory reclamation from idle processes 
is proactively triggered before a memory deficit becomes crucial and thus results 
in a larger pool of free pages available to active processes. When a process that 
has been swapped out in this way must be swapped in, it can frequently satisfy 
its need for pages from the large free page list. For all but the largest consumers 
of memory, swapping in does not result in perceptible delays. 

This mechanism of swapping out long-waiting processes includes a significant 
change. When shrinking the working set to the value of the SWPOUTPGCNT 
system parameter, the memory management policy removes pages from the 
working set but leaves the working-set size (the limit to which pages may be 
added to the working set) at its current value, rather than reducing it to the 
value of SWPOUTPGCNT. In this way, when a process is swapped in, it can 
readily fault the pages it needs without having to rejustify its size through 
successive adjustments to the working set. This change contributes significantly 
to the lack of perceptible delays when the process is swapped in. 

A.2.5.3 Reclaiming Memory from Periodically Waking Processes 
The proactive memory reclamation policy also targets processes that wake 
periodically, do minimal work, and then return to a sleep state. An example 
of such a process is a watchdog process. Because it has a periodically waking 
behavior, a watchdog process is not a candidate for being swapped out but may 
be a good candidate for memory reclamation. For this kind of process, VMS 
Version 5.4-3 memory management tracks the relative wait-to-execution time. 
When the size of the free page list drops below twice the value of FREEGOAL, 
the system initiates memory reclamation (trimming) of processes that wake 
periodically. Waiting until the size of the free page list drops below twice the 
value of FREEGOAL gives this memory reclamation mechanism an opportunity 
to trim from periodically waking processes before the more agressive form of 
swapping begins. If a periodically waking process is idle over 99% of the time 
and has accumulated 30 seconds of idle time, the proactive memory reclamation 
policy trims a percentage of the pages in the process's working set as the process 
reenters a wait state. The working-set size remains unchanged. 

A.2.5.3.1 Setting the FREEGOAL Parameter The system parameter 
FREEGOAL plays the central role in controlling how much memory is reclaimed 
from idle processes. Setting FREEGOAL to a larger value reclaims more memory; 
setting FREEGOAL to a smaller value reclaims less. VMS Version 5.4-3 makes 
FREEGOAL a dynamic parameter so that it can be adjusted in the active 
parameter set without rebooting. 

For information about setting SYSGEN parameters, refer to the VMS System 
Generation Utility Manual. For a discussion of AUTOGEN, refer to the Guide to 
Setting Up a VMS System. 

A.2.5.3.2 Sizing Page and Swap Files Because it reclaims memory from idle 
processes by trimming and swapping, the new memory reclamation policy can 
potentially increase page and swap file use. On systems running VMS Version 
5.4-3, you should make sure your page and swap files are appropriately sized 
for the potential increase. Refer to the Guide to Setting Up a VMS System for 
information about sizing page and swap files. 



VMS Version 5.4-3 Features 
A.2 VMS Version 5.4-3 System Management Features 

A.2.6 Tape Support 
With this release of VMS, support is provided for the following tape devices: 

• TA91 cartridge tape device with loader 

• TF85 cartridge tape device 

• TF857 cartridge tape device with loader 

• TF837 cartridge tape device with loader 

A.2.7 VMSINSTAL Callback RUN IMAGE: New Parameter 
The VMSINSTAL callback RUN_IMAGE has a new parameter (P4), the Option 
parameter. This parameter indicates whether the image is to be run immediately 
or run deferred. Valid values for this parameter are: 

• D Image is run deferred when in safety mode 

• I Image is run immediately, regardless of mode 

The following command line uses the new parameter RUN_IMAGE: 

$ VMI$CALLBACK RUN_IMAGE NAME.EXB "" D 

A.3 VMS Version 5.4-3 Programming Features 
This section contains information about VMS Version 5.4-3 new features that are 
of interest to programmers. 

A.3.1 Open-Bus Driver Support Features 
This section describes enhancements that support the use of open-bus drivers 
developed by third-party users. 

Section A.3.1.1 begins with a description of the VMS device support for 
VMEbus devices. This is followed by a presentation on VME driver routines 
in Section A.3.12 and a sample VME driver program in Section A.3.1.3. 

Section A.32 describes SCSI device support for the NCR 53C94 controller. 

A.3.1.1 VMS Device Support for VMEbus Devices 
VMS now supports VMEbus device connections for certain XMI-based VAX 
processors. The VMS programming support for such connections permits the 
writing of third-party VMEbus device drivers and provides the required VME 
device driver UO routines and optional macro routines. 

1~vo types of UO operations are supported: direct memory access (DMA) and 
programmed UO (PIO) that are VMS resources for VMEbus device data transfers. 
VMS operating system routines that are specific to VME map VME address space 
for both DMA and PIO operations and support the setup and delivery of device 
interrupts. Also included are byte-swapping routines for different hardware 
needs. The VMS architecture of the VME interface is similar to and conforms 
to the standards of I/O subsystems such as the UNIBUS and Q-22 bus models 
described in the VMS Device Support Manual and the VMS Device Support 
Reference Manual. 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

A.3.1.1.1 Hardware Environment The VMEbus device support option is now 
offered on the VAX 6000 series systems. The VAX 6000 CPU and memory employ 
an ~;MI bus to interconnect with UO adapters. The option incorporates an x1VII-
to-VMEbus (DWMVA) adapter and a 6U (double-height) VME controller module. 
The DWMVA adapter supports 32 bits of both address and data buses and 
conforms to ANSUIEEE STD 1014. The block diagram in Figure A-1 shows the 
system based on the XMI/'VMEbus with a VAX 6000 CPU and memory. 

Figure A-1 System Based on XMINMEbus 

n 
VAX 6000 

CPU 

CPU 

Array Bus Memory 
Controller 

Array Bus Memory 
Controller 

C 

C 

C 

C 

XMI-VME 
Bus Adapter 

DWMVA 

DWMVA C 

XMI Bus 

VMEbus 

Device Device 

ZK-3728A-GE 

A.3.1.1.2 Associated Documents In addition to the material in this section, 
you should have an understanding of the information in the following documents: 

• VMS Device Support Manual, which describes the components of a VMS 
device driver and the basic rules to which device drivers supplied by vendors 
other than Digital must adhere. 

• VMS Device Support Reference Manual, which describes VMS data structures, 
macros, routines, and driver entry points. 

• DWMVA VME Adapter Technical Manual (EK-DWMVA-TM-001), which 
describes the DWMVA adapter and Digital's ~:1VII-to-VMEbus implementation. 
Information concerning specific driver requirements to implement the 
hardware/software adapter options is also provided. 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

• An American National Standard IEEE Standard for a Versatile Backplane 
Bus: VMEbus (ANSI/IEEE Std 1014), ISBN 0-471-61601-X 

You may need to refer to material in the following manuals for help in certain 
aspects of application and driver programming: 

• VMS System Services Reference Manual for a description of the high-level 
language interface to the UO subsystem of the VMS operating system 

• VMS System Dump Analyzer Utility Manual for assistance in investigating 
system failures 

A.3.1.1.3 Selecting VMEbus Protocol Parameters The VMEbus has selectable 
protocol parameters that determine how the bus operates. Though a DWMVA bus 
adapter can support the various selectable functions, the following fixed set of 
VMS initialization parameters has been selected: 

VMEbus Arbitration 
The VMEbus can operate under four different types of bus arbitration schemes: 
single, prioritized, round-robin, or prioritized round-robin. VMS currently 
initializes to the round-robin VMEbus arbitration mode. 

VMEbus Request Level 
Various VMEbus request levels can be set for bus arbitration. VMS initializes the 
VMEbus request level to BR3 for the DWMVA adapter. 

VMEbus Timeout 
Various VMEbus access timeouts can be set. VMS initializes the VMEbus 
transaction timeout parameter to be the same value (3.28 milliseconds) for all 
drivers. 

A.3.1.1.4 Considering Byte-Order Transfer Differences In data transfers 
between VAX processors and the VMEbus and VME devices, a driver writer 
must consider the different byte order (most-significant-byte first/last or right 
/left) of a given word or longword between buses of various devices of different 
manufacturers. The byte-order patterns of the different manufactured devices 
fall into two opposing groups, defined as: "big-endian" devices and "little-endian" 
devices. As shown in Figure A-2, byte 3 of alittle-endian longword aligns with 
byte 0 of abig-endian longword and byte 2 aligns with byte 1. For a word 
transfer, byte 1 of alittle-endian word aligns with byte 0 of abig-endian word. 

When a VAX VMS driver (which employs alittle-endian, byte-aligned bus) 
performs write transfers of data to a VME device's register or memory location 
(which is big-endian, byte aligned), the writer must swap the bytes to account for 
the VME byte lanes. For example, for CSR loading of a VME big-endian device, 
all data transferred must be byte swapped, performing byte-swap operations 
on both the write transfers and the read transfers. For the specific DMA and 
PIO byte-alignment requirements, refer to both the device and adapter technical 
manuals. 

The SWAPWORD and SWAPLONG macros use a register as input and swap the 
little-endian data to big-endian data so that the big-endian device will receive the 
correctly ordered data in its register or memory location. In addition, byte-swap 
routines for words and longwords are provided and described in Section A.3.1.2. 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

Figure A-2 Little-Endian Versus Big-Endian Byte Alignment 

Little-Endian 
Byte Alignment 

Longword 

1 

Word 

3 2 0 

1 0 

Big-Endian 
Byte Alignment 

Longword 

0 1 2 3 

Word 

0 1 

ZK-3729A-G E 

A.3.1.1.5 Handling Interrupts VAX peripheral devices request interrupts at 
IPLs 20 to 23 because device interrupts need to preempt most user and VMS 
software functions. For the VME subsystem, the VAX 6000 power-up default 
sets four VME interrupt request levels to four x;MI priority levels with read-
acknowledge signal mode enabled. In the reinitialization section established by 
the DPT_STORE macro, the driver prologue table holds the address of one or 
more interrupt service routines. Each interrupt service routine corresponds to an 
interrupt vector on an UO bus. For further information about interrupt service 
routines, refer to the VMS Device Support Manual. 

The VAX 6000 employs direct-vector intErrupt dispatching (see the VMS Device 
Support Manual). Vector addresses are established during system generation 
with the CONNECT command (see Section A.3.1.1.10). 

When an .interrupt occurs, a VME interrupt vector on the bus from a specific 
VME device is read by the CPU. The CPU then calls the appropriate driver 
interrupt service routine by using the VME interrupt vector address. The VME 
architecture permits either single or multiple interrupt handlers on a single 
VMEbus. The multiple handler is referred to as a distributed handler system. 

Note that the single-handler mode of VMEbus interrupts is configured by default 
because the DWMVA adapter is typically the only handler on the VMEbus. The 
adapter translates four VMEbus interrupt request levels (IRQ7 IRQ4) to X:MI 
bus requests (BR7 BR4), as shown in Table A-2. The four VME request levels 
are mapped to the four ~:MI levels on a one-to-one basis at system powerup or 
reset. Note that they can be mapped in a mixed pattern. For more information, 
refer to the adapter technical manual. 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

Table A-2 Mapped Defaults for XMI and VME Interrupt Request Levels 

VME Interrupt XMI Bus 
Request Level Requests VAX Interrupt Priority Level 

IRQ7 BR7 IPL 23 

IRQ6 BR6 IPL 22 

IRQ5 BR5 IPL 21 

IRQ4 BR4 IPL 20 

A.3.1.1.6 DMA Operations The direct memory access (DMA) I/O operation 
of a VAX host system permits devices and device drivers to exchange large 
amounts of data. DMA operations for VMEbus devices are similar to the Q-22 
bus DMA operations described in the VMS Device Support Manual. As shown in 
Figure A-3, the VMEbus adapter sends DMA data through the direct-DMA path 
between the VAX host and the VME device. The direct data path (DDP) allows 
VME transfers to randomly ordered physical addresses. The direct data path 
maps each VME UO transfer to a backplane interconnect cycle. The VME address 
space varies according to the specific VME device and is identified as A16, A24, 
or A32 space. A32 is the largest, allowing up to 4 gigabytes of space using 32-
bit addresses. A24 space is addressable with 24-bit addresses and A16 space is 
addressable with 16-bit addresses. Note that DMA operation is not permitted 
with A16 devices. 

Figure A-3 VMEbus DMA to and from VAX Host 

VAX User 
PO Space 

VMEbus 
Adaptor 

Map 

Mapping 
Registers 

4GB 

VME Address Space 

A32 I/O Space 

~s. 

A32 DMA Space 

A24 I/O Space 

A24 DMA Space 

A16 Space 

k' 

VME Device 

.qt+~/~~~h~?~ .G 

l ':. 

ZK-3752A-GE 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

A DMA transaction initiated by the VME device to locations in VAX-x;MI memory 
can consist of 1-, 2-, 3-, or 4-byte single-access transfer cycles or 1-, 2-, or 4-byte 
read and write cycles in block mode. Up to 256 bytes (per block) of VME data 
can be transferred to the adapter toward VAX memory. Because VAX-~:MI DMA 
supports quadword, octaword, and hexword data transfers, the adapter buffers 
the VMEbus blocks into octawords for contiguous locations in VAX memory. 

There are three operating system routines provided for VME DMA operations: 

• IOC$ALOVMEMAP_DMA or IOC$ALOVMEMAP_DMAN 

• IOC$LOADVMEMAP_DMA or IOC$LOADVMEMAP_DMAN 

• IOC$RELVMEMAP_DMA or IOC$RELVMEMAP_DMAN 

A driver that performs direct DMA transfers to and from VAX memory must 
allocate a set of map registers (IOC$ALOVMEMAP_DMA routine). As shown in 
Figure A-4, a field in each map register identifies the VAX page-frame number 
corresponding to the VME space address that the map register represents. 
When a DMA map register is loaded (IOC$LOADVMEMAP_DMA routine), one 
VAX page (512 bytes) of VME space is mapped into the VMS address space. 
Once mapped, VME devices are then free to access this VMS memory with 
DMA read and write cycles. For more information about the DMA routines, see 
Section A.3.1.2. 

Figure A-4 VMEbus Map Register 

31 29 24 9 8 

Page Frame Number VME Address Bits 

PFN Valid Bits ZK-3730A-GE 

Note that a DWMVA adapter contains 64K map registers, each of which maps 
only 512 bytes (one VAX page each). Therefore, only the lower 32MB of VME 
space can be mapped to VMS address space if VME DMA to VAX is required. 
However, this does not limit DMA space between VME devices contained on the 
same VMEbus. 

When certain flags are set by the loading routine (IOC$LOADVMEMAP_DMA or 
IOC$LOADVMEMAP_Dl~~IAN), the map registers can also specify byte swapping 
of words or longwords on incoming and outgoing VMS data and/or provide read-
modify-write access on a per page basis. 

A.3.1.1.7 Programmed 1/O Operations and I/O Mapping VMS programs can 
interface with a VME UO subsystem by mapping to VAX UO address space. The 
VAX CPU accesses the VMEbus address space by loading a set of programmed UO 
(PIO) map registers that contain the VMEbus PFN and access information (see 
the adapter technical manual). The VMS program calls the $CRMPSC system 
service to map the PIO map register section in VAX UO space. The PIO map 
registers are assigned permanent VAX UO space locations, so when the CPU 
reads or writes an I/O space location, it will access the mapped VMEbus address, 
as shown in Figure A-5. 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

Figure A-5 Mapping of Programmed I/O Access from User Space 

VAX User Program 
(PO) Space 

MOVL #100,R0 
MOVL #1234,(RO) 

100 

VAX I/O Space 

Adapter 
PIO Map 
Registers 

VME Device 
Address Space 

ZK-3731 A-GE 

As shown previously in Figure A-3, depending on the device, VME memory space 
or address ranges vary. There are three modes of PIO access to a VME device's 
address space from a VMS program: 

• Short supervisor access 

• Standard supervisor access 

• Extended supervisor access 

The short supervisor access identifies to a VME address space of 64K bytes that 
requires 16-bit addresses (A16). Standard supervisor access identifies to a 24-bit 
address (A24) with space of 16M bytes and Extended supervisor access identifies 
to a 32-bit address (A32) for access with large space beyond 16M bytes. Refer to 
the device's specific manual for memory requirements. 

One PIO map register is allocated to the system when the system is booted 
mapping the lower 64K bytes of VME short space into VMS system space. 
The VME memory access is set up in short space with word-access (A16) mode 
enabled. Refer to the adapter technical manual for the physical starting address 
of the I/O adapter space. The CSR offset value (specified when loading the driver) 
is limited to a word so that the maximum range would be from 0 to 64K. If 
the CSR for a device is located in the lower 64K and requires word access, the 
proper VMS system address will be passed to the driver by established Q-bus 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

driver methods (such as IDB$L_CSR and R4 of the unit/controller initialization 
routines). All other CSR accesses must be handled by the driver as a special 
event. 

There are three operating system routines provided for programmed UO VMEbus 
support: 

• IOC$ALOVMEMAP_PIO 

• IOC$LOADVMEMAP_PIO 

• IOC$RELVMEMAP_PIO 

The routines supplied for PIO map registers are similiar to the ones supplied for 
DMA. These routines simplify the driver coding that allocates, loads, and releases 
the map registers. For more information, see Section A.3.1.2. 

A.3.1.1.8 Coding a VMEbus Device Driver Write the device driver in one or 
more source files coding to the requirements of the VMS Device Support Manual. 
A sample VME driver in Section A.3.1.3 provides a code example of a DR11 
VME driver with a DMA interface. In addition to the DR11 driver, other VME 
driver samples are provided in SYS$ExAMPLES. Table A-3 lists standard driver 
routines that you might need to provide entry points for VMS in your program. 
The routines are described in more detail in the VMS Device Support Reference 
Manual. 

Table A-3 Driver Entry Point Routines 

Routine Description 

Alternate Start UO 

Cancel I/O 

Controller Initialization 

Driver Unloading 

FDT ($QIO Handling) 

Interrupt Service 

Register Dumping 

Start UO 

Timeout Handling 

Unit Delivery 

Unit Initialization 

Initiates activity on a device that can support multiple, 
concurrent UO operations and synchronizes access to its 
UCB. 

Prevents further device-specific processing of the UO 
request currently being processed on a device. 

Prepares a controller for operation. 

Prepares a driver for unloading or reloading. 

Performs any device-dependent activities needed to prepare 
the UO database to process an I/O request. 

Processes interrupts generated by a device. 

Copies the contents of a device's registers to an error 
message buffer or a diagnostic buffer. 

Activates a device to process a requested UO function. 

Takes whatever action is necessary when a device has not 
yet responded to a request for device activity and the time 
allowed for a response has expired. 

For controllers that can control a variable number of device 
units, determines which specific devices are present and 
available for inclusion in the system's configuration. 

Prepares a device for operation and, in the case of a device 
on a dedicated controller, initializes the controller. 

The VME support routines described in Section A.3.1.2 are supplied in a separate 
object library to which the driver must link. Place the PSECT (program 
section) containing the VME support routines ($$$112_VME_SUPPORT_ 
ROUTINES) after the prologue PSECT and just ahead of the main driver code. 
For information about other PSECTs, see the VMS Device Support Manual. 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

Porting from Drivers Based on the UNIX System 
For the task of porting drivers based on the UNIX system to VMS, Table A-4 
provides a list of associated notions in a driver translation from UNIX to VMS. 
Note in some cases, these notions are loosely connected and may not provide a 
pure relationship. 

Table A-4 Driver Notions Porting from UNIX to VMS 
UNIX Name UNIX Description VMS Name VMS Description 

u 

iobuf 

buf 

xx device 

clist 

cblocks 

dev init 

bdevsw 

cdevsw 

dev_addr 

uba driver 

uba_ctrl 

vbadata 

swap_lw_ 
bytes 

swap_word_ 
bytes 

probe 

attach 

read 

write 

physio 

start 

open 

close 

User current process structure PCB 

Device table (block device control UCB 
block xxxxtab.xxxx) 

Block UO descriptor IRP 

Device data structure (CSRs and UCB Extension 
data registers) 

Character driver temporary storage SILO buffer 
(line accumulator) 

24-byte packets 

Device initialization table in conf.c 

Device switch tables in conf.c for 
block driver 

Device switch tables in conf.c for 
character driver 

Device address table in conf.c for 
interrupt handler vectors 

Byte swap kernel routine 

Byte swap kernel routine 

Finds and checks status of device 
system 

Establishes communication with 
device 

Reads data from a device 

Writes data to a device 

Perform UO to/from user space 
kernel-support routine 

Entry point start routine 

Entry point open routine 

Entry point close routine 

DPT 

DDT 

DDT 

CRB-VEC 

ADP 

ADP 

ADP 

IOC$VME_ 
BYTE_SWAP_ 
LONG 

IOC$VME_ 
BYTE_SWAP_ 
WORD 

in Controller 
Initialization 

Unit 
Initialization 

IO$_READBLK 

IO$_ 
WRITEBLK 

$QIO 

STARTIO 

$ASSIGN 

$DASSGN 

Process control block 

Unit control block 

UO request packet 

Service in logical order buffer for 
the channel 

Data input packets in serial 
channel 

Device prologue table 

Driver dispatch table 

Driver dispatch table 

Channel request block—interrupt 
transfer vector block 

Adapter control block 

ADP Extension 

ADP Extension, bus specific 

Swaps bytes of longword 

Swaps bytes of a word 

Prepares a device for operation 

Queue UO request system 
service 

Start UO routine 

System service routine 

System service routine 

(continued on next page) 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

Table A-4 (Cont.) Driver Notions Porting from UNIX to VMS 

UNIX Name UNIX Description VMS Name VMS Description 

intr 

strategy 

config 

SYSNAME 

Entry point interrupt routine 

Entry point strategy routine 

INTERRUPT 

FDT 

System Configuration Utility SYSGEN 

System configuration file 

Interrupt service routine 

Function decision table QIO 
handling routine 

System Generation Utility 

SYSGEN device table, ACF, and 
DDB 

A.3.1.1.9 Assembling and Linking a VMEbus Driver Assemble the source 
files with the system's macro library (SYS$LIBR,ARY:LIB.MLB) and include 
VMESUPPORT. For example: 

$ MACRO QVDRIVER.I~~'L~R+SYS$LIBRARY:LIB.MLB;LiBRARY -
_$ +SYS$LIBRARY:VMESUPPORT/LIBRARY 

Link the driver object file with the VMS global symbol table and the 
VME routines object library. The global symbol table is located in 
SYS$SYSTEM and called SYS.STB and the VME routines are located in 
SYS$SHARE:VME$LIBRARY.OLB. If the driver consists of several source files, 
you must specify the file that contains the driver prologue table as the first file in 
the list. The linker options file must contain a BASE statement specifying a zero 
base for the executable image. 

The following is an example of a LINK command used to link a VME device 
driver with the VME support routines: 

$ CREATE QVDRIVER.OPT 
BASE=O 

Ctrl/Z 

$ LINK /NOSYSSHR%NOTRACEBACK/NODEBUGiCONTIGUOUS QVDRIVER.OBJ,-
_$ ~SYS$SHARE:~TME$LiBRARY%LIBRARY/SELECT,-
_$ QVDRIVER.OP'~!OPTIOi~iS, -
_$ SYS $SYS 1 EM :SYS . Si'B ! SELECTI ̀~1E SEARCH 

The resulting image must consist of a single image section. The linker will report 
that the image has no transfer address; this report should be ignored. 

Once you have linked or relinked a driver, copy its image file to the 
SYS$LOADABLE_IMAGES directory. By default, the SYSGEN commands LOAD 
and CONNECT search for a driver in the SYS$LOADABLE_IMAGES directory. 

A.3.1.1.10 Loading a VME Device Driver You can load a VME device driver 
during the bootstrap program (for example, in SYSTARTUP.COM) or anytime 
after the system is booted. Note that you cannot autoconfigure VME devices. 

To load the driver into system virtual memory, run the System Generation 
Utility (SYSGEN) from the system manager's account or from an account having 
CMKRNL privilege. SYSGEN loads a VME device driver and creates the device's 
I/O data structures. For more details on loading a driver with SYSGEN, refer to 
the VMS Device Support Manual. 

Invoke SYSGEN by entering the following command: 

$ RUN SYS$SYSTEM:SYSGE?~~ 

SYSGEN responds with the following prompt and waits for further input: 

SYSGEN> 



VMS Version 5.4-3 Features 
A.3 VMS Version 5.4-3 Programming Features 

Use the CONNECT command (of SYSGEN) to load the driver and create the 
device's I/O database. You must specify the device name, the nexus number or 
decimal number of the VMEbus adapter, the VME address space CSR offset, and 
the interrupt vector offset. 

The CSR offset is a full word. The offset allows a CSR to fall anywhere in the 
first 64K of VME address space. The interrupt vector is a byte offset with offsets 
up to 256 bytes. These vector offsets must be longword aligned. 

You can obtain the adapter nexus number for the X:MI-to-VME adapter by issuing 
the following SHOW/ADAPTER command: 

SYSGEi1> SHOW/ADAPTER 

CPU Type: VAX 6000-530 

Nexus (decimal) 
0010 16 
0020 32 
0040 64 
0070 112 
OOAO 160 
OOCO 192 
OODO 208 

Generic Name or Description 
XMI - 6000-500 processor 
XMI - 6000-500 processor 
XMI - memory module 
XMI - memory module 
XMI - Disk/Tape Adapter (KDM70) 
XMI - VME adapter 
XMI - NI Adapter (DEMNA) 

The SHOWlBUS command can also be used to list nexus numbers: 

SYSGEN> SHOW/BUS 

Cpu Type: VAX 6000-530 Cpu Connection: XMI 
Bus Node Generic Name Nexus hex) Connection Address 

XMI 00 01 XMI - 6000-500 processor 0010 
XMI 00 02 XMI - 6000-500 processor 0020 
XMI 00 04 XMI - memory module 0040 
XMI 00 07 XMI - memory module 0070 
XMI 00 OA XMI - Disk/Tape Adapter KDM70 OOAO 
XMI 00 OC XMI - VME adapter OOCO 
XMI 00 OD XMI - NI adapter (DEMNA) OODO 

The following example illustrates how the CONNECT command is used: 

SYSGEN> CONNECT QVAO/ADAPTER=192/CSR=°X9000 -
SYSGEN> /DRIVER=QVDRIVER/VECTOR=oXBO 

This command loads the driver QVDRIVER, if it is not already loaded, and 
creates the data structures (DDB, CRB, IDB, and UCB) needed to describe 
Q~lAO. It also causes the driver's controller and unit initialization routines to be 
executed. QVAO is the device name and number (QV=customer VME, AO=device 
#0). Note that Digital reserves driver names begining with the letters J and Q to 
its customers. 

The previous example specifies a driver that has its CSRs beginning at address 
900016 of VME A16 word-access space. The example also shows an interrupt 
vector of B016. Upon a VME interrupt, VME devices generate a status byte that 
can contain a vector value between 0016 to FC 16 

A.3.1.1.11 VMS Macros Invoked by VME Drivers This section describes the 
VMS macros used by VME device drivers. 

The VME macros are defined in SYS$LIBI~;,ARY:VMESUPPORT.MLB. General 
information about the structure of macros and their arguments appears in the 
VAX MACRO and Instruction Set Reference Manual. 



VMS Macros Invoked by VME Drivers 
SWAPLONG 

SWAPLONG 

Format 

Parameters 

Description 

Swaps the bytes within each longword supplied. 

SWAPLONG longword 

longword 
The address of the longword data that requires the bytes to be swapped. 

When passing a data word between a host CPU and a device with a differing 
byte-order pattern (big-endian and little-endian devices), the byte positions 
must be swapped. The SWAPLONG macro reads the location of the 4-byte data 
supplied in the longword argument and modifies the byte positions to a mirrored 
order. 



VMS Macros Invoked by VME Drivers 
SWAPWORD 

SWAPWORD 

Format 

Parameters 

Description 

Swaps the bytes within each word supplied. 

SWAPWORD word 

word 
The address of the data (2 bytes) that requires the bytes to be swapped. 

When passing a data word between a host CPU and a device with a differing 
byte-order pattern (big-endian and little-endian devices), the byte positions 
must be swapped. The SWAPWORD macro reads the location of the 2-byte data 
supplied in the word argument and swaps the byte positions. 



VMS Version 5.4-3 Features 
VME Driver Operating System Routines 

A.3.1.2 VME Driver Operating System Routines 

This section describes the VMS operating system routines that are used by VME 
device drivers supporting the ~1VII-to-VME bus connection (DWMVA adapter). 
The routines provide DMA mapping, PIO mapping, and byte-swap manipulation 
for big- and little-endian support. 



VME Driver Operating System Routines 
IOC$ALOVMEMAP_DMA, IOC$ALOVMEMAP_DMAN 

IOC$ALOVMEMAP_DMA,IOC$ALOVMEMAP_DMAN 

Allocates a set of VME DMA map registers. 

Module 

Input 

Output 

[DRIVER)VMEDMA_XMI 

Location 

UCB$W_CRB 
CRB$L_INTD+VEC$L_ADP 

ADP$W_MRNREGARY, 
ADP$W_MRFREGAR.Y, 
ADP$L_MRACTMDRS 

For IOC$ALOVMEMAP_DMA only 

R5 Address of UCB 
UCB$W_BCNT The transfer byte count 
UCB$W_BOFF Byte offset to start of transfer in first page 

For IOC$ALOVMEMAP_DMAN only 

Contents 

Address of CRB 

Address of ADP 

Map register descriptor arrays 

R1 Address of the map register descriptor (VME_ 
MD) 

R2 Address of ADP 
R3 Number of map registers to be allocated 

Location 

RO 

R2 

ADP$W_MRNREGARY, 
ADP$W_MRFREGARY, 
ADP$L_MRACTMDRS 

For IOC$ALOVIVIEMAP_DMA only 

Contents 
SS$_NORMAL or SS$_INSFMAPREG 
Address of ADP 
Updated 

R1 Destroyed 

CRB$L_INTD+VEC$B_ Number of map registers allocated 
NUMRE G 

CRB$L_INTD+VEC$W_ Starting map register number 
MAPREG 

For IOC$ALOVMEMAP_D1~~IAN only 

R1 Address of the map register descriptor (VME_ 
MD) 



VME Driver Operating System Routines 
IOC$ALOVMEMAP_DMA, IOC$ALOVMEMAP_DMAN 

Synchronization 
The caller of IOC$ALOVMEMAP_DMA or IOC$ALOVMEMAP_DMAN must be 
executing at fork IPL or above and must hold the corresponding fork lock in a 
VMS multiprocessor environment. Either routine returns control to its caller and 
the caller's IPL. The caller retains any spin locks it held at the time of the call. 

Description 
IOC$ALOVMEMAP_DMA and IOC$ALOVMEMAP_DMAN allocate a contiguous 
set of VME DMA map registers. IOC$ALOVMEMAP_DMA records the allocation 
in the ADP and CRB (or in a map register descriptor using IOC$ALOVMEMAP_ 
DMAN). Figure A-6 shows the structure of the map register descriptor used by 
IOC$ALOVMEMAP_DMAN. 

Figure A-6 VME Map Register Descriptor (VME_MD) 

31 0 

VME_MD$W_NUMREG VME_MD$W_MAPREG 

ZK-3732A-G E 

These routines differ in the way in which they determine the number of map 
registers they allocate: 

• IOC$ALOVMEMAP_DMA calculates the number of needed map registers 
using the values contained in UCB$W_BCNT and UCB$W_BOFF. 

• IOC$ALOVMEMAP_DMAN uses the value in R3 as the number of required 
registers. 

If there are not enough contiguous map registers available, the routine returns 
an error status of SS$_INSFMAPREG to its caller. 

The caller of IOC$ALOVMEMAP_DMAN must keep track of the map registers 
allocated because they eventually must be released. Care should be exercised in 
the consumption and management of map register resources. 

Note that (when using the IOC$ALOVMEMAP_DMA routine) if there are not 
enough map registers available, your driver has the option to put a fork block 
onto the map register allocation wait queue in the ADP. When registers are 
released, the release routine checks for waiting fork threads. If any are waiting, 
it will attempt to complete the allocation at that time. 



VME Driver Operating System Routines 
IOC$LOADVMEMAP_DMA, IOC$LOADVMEMAP_DMAN 

IOC$LOADVMEMAP_DMA,IOC$LOADVMEMAP_DMAN 

Loads a set of VME map registers for DMA. 

Module 

Input 

[DRIVER]VMEDMA x;MI 

Location 

RO 

Contents 

VMEbus control flags: 

VME $V 
RMVVMODE 

VME$V_ 
SWAPWORD 

VME$V 
SWAPLONG 

CRB$L_INTD+VEC$L_ADP Address of ADP 

For IOC$LOADVMEMAP_DMA only 

R5 

UCB$W_BCNT 

UCB$W_BOFF 

UCB$L_SVAPTE 

UCB$L_CRB 

CRB$L_INTD+VEC$B_ 
NUMREG 

CRB$L_INTD+VEC$W_ 
MAPREG 

UCB$L_SVAPTE 

Translate VME read-
modify-write into x1VII 
interlocked accesses 

See the adapter technical 
manual for details 

See the adapter technical 
manual for details 

Address of the UCB 

Number of bytes in transfer 

Byte offset to start of transfer in first page 

System Virtual address of PTE for first page of 
transfer 

Address of CRB 

Number of map registers allocated 

Number of first map register allocated 

System virtual address of PTE for the first page 
of the transfer 

For IOC$LOAD`~IVIEMAP_D1~ZAN 

R1 

R2 

R3 

R4 

R5 

only 

Address of the map register descriptor (VME_ 
MD shown in Figure A-6 ) 

Address of ADP 

System virtual address (SVAPTE) of first page 
to transfer 

Byte count of the transfer 

Byte offset to start of transfer in first page 



VME Driver Operating System Routines 
IOC$LOADVMEMAP_DMA, IOC$LOADVMEMAP_DMAN 

Output 

Location Contents 
R0, Rl, R2 Destroyed 

Synchronization 
A driver fork process calls IOC$LOADVMEMAP_DMA or IOC$LOADVMEMAP_ 
DMAN at fork IPL, holding the corresponding fork lock in a VMS multiprocessor 
environment. Either routine returns control to its caller at the caller's IPL. The 
caller retains any spin locks it held at the time of the call. 

Description 
A driver fork process calls IOC$LOADVMEMAP_DMA or IOC$LOADVMEMAP_ 
DMAN to load a previously allocated set of DMA map registers with page-frame 
numbers (PFNs). This enables a device to perform DMA transfer to or from 
the buffer indicated by the contents of UCB$L_SVAPTE, UCB$W_BCNT, and 
UCB$W_BOFF (or contents of R3, R4, and R5 when using IOC$LOADVMEMAP_ 
DMAN). 

Either IOC$LOADVMEMAP_DMA or IOC$LOADVMEMAP_DMAN confirms 
that sufficient map registers were previously allocated. If not, it issues a 
UBMAPEXCED bugcheck. Otherwise, it loads the appropriate PFN into each 
map register. 

IOC$LOADVMEMAP_DMA and IOC$LOADVMEMAP_DMAN check the VMEbus 
control-flags register and set the appropriate bits in each map register. 

The IOC$ALOVMEMAP_DMA routine loads and sets the mapping register valid 
for the number of mapping registers needed for the length of the DMA request. 
The routine sets the byte swapping requested and the type of access for the VME 
bus. Access type is whether VME read-modify-write operations are translated 
into XMI interlocked accesses or not. 



VME Driver Operating System Routines 
IOC$RELVMEMAP_DMA, IOC$RELVMEMAP_DMAN 

IOC$RELVMEMAP_DMA, IOC$RELVMEMAP_DMAN 

Releases a set of VME DMA map registers. 

Module 
[DRIVER]VMEDMA_x:MI 

Input 

Output 

Location 

ADP$L_MRQFL 

ADP$W_MRNREGARY, 
ADP$W_MRFREGARY, 
ADP$L_MRACTMDRS 

Contents 

Head of queue of UCBs waiting for map 
registers 

Map register descriptor arrays 

For IOC$RELVMEMAP_DMA only 

R5 

UCB$L_CRB 
CRB$L_INTD+VEC$L_ADP 

CRB$L_INTD+VEC$B_ 
NUMREG 

For IOC$RELVMEMAP_DMAN only 

R1 

R2 

Location 

RO 

R1, R2 

ADP$W_MRNREGARY, 
ADP$W_MRFREGARY, 
ADP$L_MRACTMDRS 

Address of UCB 

Address of CRB 

Address of ADP 

Number of allocated map registers 

Address of map register descriptor (VME_MD 
shown in Figure A-6 ) 

Address of ADP 

Contents 

SS$_NORII~IAL or SS$_SSFAIL 

Destroyed 

Updated 

Synchronization_ 
A driver fork process calls IOC$RELVMEII~IAP_DMA or IOC$RELVMEMAP_ 
DMAN at fork IPL, holding the corresponding fork lock in a VMS multiprocessor 
environment. 



VME Driver Operating System Routines 
IOC$RELVMEMAP_DMA, IOC$RELVMEMAP_DMAN 

Description 
A driver fork process calls IOC$RELVMEII/IAP_DMA or IOC$RELVMEMAP_ 
DMAN to release a previously allocated set of VME DMA map registers. 

IOC$RELVMEMAP_DMA obtains the location and number of the allocated map 
registers from CRB$L_INTED+VEC$W_MAPREG and CRB$L_INTED+VEC$B_ 
NUMREG, respectively. 

After adjusting the map register descriptor arrays, IOC$RELVMEMAP_DMA 
examines the VME DMA-map-register wait queue. If the queue is empty, 
IOC$RELVMEMAP_DMA returns successfully to its caller. If the queue contains 
waiting fork processes, IOC$RELVMEMAP_DMA dequeues the first process and 
calls IOC$ALOVMEMAP_DMA to attempt to allocate the set of map registers it 
requires. 

When using the IOC$ALOVMEMAP_DMA routine, if there are sufficient map 
registers, IOC$RELVMEMAP_DMA restores R3 through R5 to the process and 
reactivates it. When this fork process returns control to IOC$RELVMEMAP_ 
DMA, IOC$RELVMEMAP_DMA attempts to allocate map registers to the 
next waiting fork process. IOC$RELVMEMAP_DMA continues to allocate map 
registers in this manner until the map-register wait queue is empty or it cannot 
satisfy the requirements of the process at the head of the queue. In the latter 
event, IOC$RELVMEMAP_DMA reinserts the fork process's UCB in the queue 
and returns successfully to its caller. 



VME Driver Operating System Routines 
IOC$ALOVMEMAP_PIO 

IOC$ALOVMEMAP_PIO 

Allocates a set of VME PIO map registers. 

Module 

Input 

Output 

[DRIVER]VMEPIO_~;MI 

Location 

R3 

UCB$L_CRB 

CRB$L_INTD+VEC$L ADP 

ADP$W_MR2NREGAR, 
ADP$W_MR2FREGAR, 
ADP$L_MR2ACTMDR 

Location 

RO 

R1 

R2 

CRB$L_INTD+VEC$B_ 
NUMALT 

ADP$W_MR2NREGAR., Updated 
ADP$W_MR2FREGAR,, 
ADP$L_MR2ACTMDR 

Contents 

Number of map registers to allocate 

Address of CRB 

Address of ADP 

Map register descriptor arrays 

Contents 

SS$_NORMAL or SS$_INSFMAPREG 

Destroyed 

Address of ADP 

Number of map registers allocated 

Synchronization 
The caller of IOC$ALOVMEMAP_PIO must be executing at fork IPL or above 
and must hold the corresponding fork lock in a VMS multiprocessor environment. 
IOC$ALOVMEMAP_PIO returns control to its caller at the caller's IPL. The 
caller retains any spin locks it held at the time of the call. 

Description 
IOC$ALOVMEMAP_PIO allocates a contiguous set of VME PIO map registers 
and records the allocation in the VMEbus adapter ADP and CRB. 

IOC$ALOVMEMAP_PIO searches the map register descriptor arrays for the 
required number of map registers. If there are not enough contiguous map 
registers available, the routine returns an error status of zero to its caller. 



VME Driver Operating System Routines 
IOC$LOADVMEMAP_PIO 

IOC$LOADVMEMAP_PIO 

Loads a set of VME PIO map registers. 

Module 

Input 

Output 

[DRIVER]VMEPIO x:MI 

Location 

RO 

R1 

R3 

R5 

UCB$L_CRB 

CRB$L_INTD+VEC$W_ 
NUMALT 

CRB$L_INTD+VEC$W_ 
MAPALT 

CRB$L_INTD+VEC$L_ADP 

ADP$L_MR2ADDR 

Location 

RO 

Rl, R2 

Contents 
VME page-frame numbers (PFNs) 
VMEbus access flags: 
VME$V_A16 

VME$V_A24 

VME$V_A32 

VME$V_BYTE 

VME$V_WORD 

VME$V LONG 

VME access in short 
address-space mode 
VME access in standard 
address-space mode 
VME access in extended 
address-space mode 
VME byte accesses 
VME word accesses 
VME longword accesses 

Number of registers to load 
Address of UCB 

Address of CRB 
Number of PIO map registers allocated 

Number of first PIO map register allocated 

Address of ADP 

Address of first VME PIO map register 

Contents 

SS$_NORMAL, SS$_INSFMAPREG, or SS$_ 
FAIL 

Destroyed 

Synchronization 
A driver fork process calls IOC$LOADVMEMAP_PIO at fork IPL, holding 
the corresponding fork lock in a VMS multiprocessor environment. 
IOC$LOADVMEMAP_PIO returns control to its caller at the caller's IPL. 
The caller retains any spin locks it held at the time of the call. 



VME Driver Operating System Routines 
IOC$LOADVMEMAP_PIO 

Description 
A driver fork process calls IOC$LOADVMEMAP_PIO to load a previously 
allocated set of map registers with VME PFNs. For the DWMVA adapter, a 
VME PFN for programmed UO access contains bits A31:A20. The low-order bits 
A19:A0 are taken from the x;MI UO address offset that corresponds to the map 
register in question. For more details, see the adapter technical manual. 

The VME address type, access length, and access mode are all controlled by 
setting or clearing the appropriate flags in the access flags register. 

IOC$LOADVMEMAP_PIO confirms that sufficient VME PIO map registers 
have been previously allocated. If not, it issues a UBMAPEXCED bugcheck. 
Otherwise, it loads the appropriate PFN into each map register and sets the map 
register valid bit. 



VME Driver Operating System Routines 
IOC$RELVMEMAP_PIO 

IOC$RELVMEMAP_PIO 

Releases a set of VME PIO map registers. 

Module 

Input 

Output 

[DRIVER]VMEPIO_XMI 

Location Contents 

R5 Address of UCB 

UCB$L_CRB Address of CRB 

CRB$L_INTD+VEC$L_ADP Address of ADP 

CRB$L_INTD+VEC$B_ Number of allocated PIO map registers 
NUMALT 

ADP$L_MR2QFL 

ADP$W_MR2NREGAR,, 
ADP$W_MR2FREGAR,, 
ADP$L_MR2ACTMDR 

Head of queue of UCBs waiting for PIO map 
registers 

PIO map register descriptor arrays 

Location Contents 

RO SS$_NORMAL or SS$_SSFAIL 

R1, R2 Destroyed 

ADP$W_MR2NREGAR,, Updated 
ADP$W_MR2FREGAR, 
ADP$L_MR2ACTMDR 

Synchronization 
A driver fork process calls IOC$RELVMEMAP_PIO at fork IPL, holding the 
corresponding fork lock in a VMS multiprocessor environment. 

Description 
A driver fork process calls IOC$RELVMEMAP_PIO to release a previously 
allocated set of VME PIO map registers in the ADP. 

IOC$RELVMEMAP_PIO obtains the location and number of the allocated map 
registers from CRB$L_INTED+VEC$W_MAPALT and CRB$L_INTED+VEC$W_ 
NUMALT, respectively. 

After adjusting the PIO map register descriptor arrays, IOC$RELVMEMAP_ 
PIO examines the VME PIO-map-register wait queue. If the queue is empty, 
IOC$RELVMEI~/IAP_PIO returns successfully to its caller. If the queue contains 
waiting fork processes, IOC$RELVMEMAP_PIO dequeues the first process and 
calls IOC$ALOVMEMAP_PIO to attempt to allocate the set of map registers it 
requires. 

A-31 



VME Driver Operating System Routines 
IOC$RELVMEMAP_PIO 

If there are sufficient alternate map registers, IOC$RELVMEMAP_PIO restores 
R3 through R5 to the process and reactivates it. When this fork process returns 
control to IOC$RELVMEMAP_PIO, IOC$RELVMEMAP_PIO attempts to 
allocate map registers to the next waiting fork process. IOC$RELVMEMAP_ 
PIO continues to allocate map registers in this manner until the VMEPIO-map-
register wait queue is empty or it cannot satisfy the requirements of the process 
at the head of the queue. In the latter event, IOC$RELVMEMAP_PIO reinserts 
the fork process's UCB in the queue and returns successfully to its caller. 



VME Driver Operating System Routines 
IOC$VME_BYTE_SWAP_LONG 

IOC$VME_BYTE_SWAP_LONG 

Swaps the bytes within each longword in a given data transfer buffer. 

Module 

Input 

Output 

[DRIVER]VME_SUPPORT 

Location Contents 
RO Length of the data transfer buffer in bytes. 

This number should fall on a longword 
boundary. 

R1 Address of the data transfer buffer. 

Location Contents 

R0, R1 Destroyed 

(All other registers preserved) 

Synchronization 
A driver calls IOC$VME_BYTE_SWAP_LONG in kernel mode at or above IPL 2. 

Description 
IOC$VME_BYTE_SWAP_LONG swaps the bytes within each longword of a 
given data transfer. The data is read from an input system buffer, then the byte 
positions of each longword are modified to a mirrored order, as shown in the 
following figure: 

Original Format: 

MSB LSB 

A B C D 

Swapped Format: 

MSB LSB 

D C B A 

ZK-3733A-GE 

Note that if the byte length of the buffer is not an exact number of longwords, the 
bytes in the last incomplete longword are unaffected. 



VME Driver Operating System Routines 
IOC$VME_BYTE_SWAP_WORD 

OC$ V M E_BYTE_S WAP_ W O R D 

Swaps the bytes within each word in a given data transfer buffer. 

Module 

Input 

Output 

[DRIVER]VME_SUPPORT 

Location Contents 

RO Length of the data transfer buffer in bytes. 
This number should fall on a word boundary. 

R1 Address of the data transfer buffer. 

Location Contents 

R0, R1 Destroyed 

(All other registers preserved) 

Synchronization 
A driver calls IOC$VME_BYTE_SWAP_WORD in kernel mode at or above IPL 2. 

Description 
IOC$VME_BYTE_SWAP_WORD swaps the bytes within each word of a given 
data transfer. The data is read from an input system buffer, then the byte 
positions of each word are modified to a mirrored order, as shown in the following 
figure: 

Original Format: 

MSB LSB 

A B 

Swapped Format: 

MSB LSB 

B A 

ZK-3734A-GE 

Note that if the buffer contains an odd number of bytes, the last byte in the 
incomplete word at the end of the buffer is unaffected. 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

A.3.1.3 Sample Driver for a VMEbus DR11-W 

The following sample driver controls the Ikon DRll—W Emulator featuring a 
DMA interface for a VMEbus device. Table A-5 outlines the driver code by 
listing the sections and routines in order of their occurrence. You can obtain a 
machine-readable copy of this driver from SYS$EXAMPLES:QKDRIVER.MAR,. 

Table A-5 DR11—W VME Driver Code Contents 

Driver Code Points Function 

Q External symbols 

© Local symbols 

© Argument list (AP) 

Q Constants 

© Device-specific UCB fields 

O Device-register offsets from CSR 

O Bit positions of CSR 

Driver prologue table (DPT) 

~ Driver dispatch table (DDT) 

m Function decision table (FDT) 

m QK CONTROL_INIT routine 

® Byte swap macro (SWAPWORD) 

® QK READ_WRITE FDT routine 

m QK START routine 

® QK TIME_OUT routine 

m QK INTERRUPT routine 

® QK REGISTER routine 

QK CANCEL routine 

m QK DEV_RESET routine 

Defined 

Defined 

Defined for device-dependent QIO 
parameters 

Defined 

Defined 

Defined 

Defined 

Initialized with DPT_STORE 

Initialized with DDTAB 

Loaded with FUNCTAB 

For controller initialization 

Called 

For data transfers servicing READLBLK, 
READVBLK, READPBLK, WRITELBLK, 
WRITEVBLK, and WRITEPBLK 

Starting an UO transfer 

Handling a DR11—W device timeout 

Handling interrupts generated by the 
DR11—W 

Handling DR 11—W CSR transfers 

Canceling an I/O operation 

Performing a device reset 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

.TITLE QKDRIVER - VAX/VMS VMEbus QKon DR11-W Emulator DRIVER 

.IDENT 'X-01' 

**************************************************************************** 

* COPYRIGHT (c) 1990 BY 
* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS. 
* ALL RIGHTS RESERVED. 

* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED 
* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE 
* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 
* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY 
* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY 
* TRANSFERRED. 

* 

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE 
* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT 
* CORPORATION. 

* 

* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS 
* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL. 

* 

* 

* 

* 

* 

* 

* 

* 

* 

**************************************************************************** 

++ 

FACILITY: 

VAX/VMS Executive, I/O Drivers 

ABSTRACT: 

This module contains the driver for the VMEbus Ikon DR11-W Emulator 
( XMI) . 

ENVIRONMENT: 

Kernel Mode, Non-paged 

AUTHOR: 

.SBTTL External and local symbol definitions 

0 
External symbols 

A-36 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

$ACBDEF 
$ADPDEF 
$CRBDEF 
$DCDEF 
$DDBDEF 
$DEVDEF 
$DPTDEF 
$DYNDEF 
$EMBDEF 
$IDBDEF 
$IODEF 
$IPLDEF 
$IRPDEF 
$PRDEF 
$PRIDEF 
$SSDEF 
$UCBDEF 
$VECDEF 
$XADEF 
$XVIBDEF 

AST control block 
Adapter control block 
Channel request block 
Device types 
Device data block 
Device characteristics 
Driver prolog table 
Dynamic data structure types 
EMB offsets 
Interrupt data block 
I/O function codes 
Hardware IPL definitions 
I/O request packet 
Internal processor registers 
Scheduler priority increments 
System status codes 
Unit control block 
Interrupt vector block 
Define device specific characteristics 
VME definitions 

Local symbols 

• (Your local symbols here) 

Argument list (AP) offsets for device-dependent QIO parameters 

P1 = 0 
P2 = 4 
P3 = 8 
P4 = 12 
P5 = 16 
P6 = 20 

; Other constants 

First QIO parameter 
Second QIO parameter 
Third QIO parameter 
Fourth QIO parameter 
Fifth QIO parameter 
Sixth QIO parameter 

QK_DMA_DEF_TIMEOUT = 10 10 second DMA default timeout 
QK_READ_SYNCH_TIMEOUT = 10 10 second Time out to synchronize 

with a READ request. 
QK_DEF_BUFSIZ = 65535 Default buffer size 
QK_RESET_DELAY = «2+9>/10> Delay N microseconds after RESET 

• (rounded up to 10 microsec intervals) 

QK_ADDR_MOD_10089 = ^XD00 Select 32 bit addressing on the VME. 
Which is OD. This value is in the 
high byte of the Register. 

QK_ADDR_MOD_10099 = ^X8B00 Block Mode. 

; DR11-W definitions that follow the standard UCB fields 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

$DEF 
$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEF 

$DEFINI UCB 

UCB$L_MAPREG_DESC 
UCB$W_START_MAPREG 

.BLKW 1 
UCB$W_NUMBER_MAPREG 

.BLKW 1 
UCB$W_QK_UNEXPECTED 

.BLKW 1 
UCB$W_QK_CSRTMP 

.BLKW 1 
UCB$W_QK_BARTMPLOW 

.BLKW 1 
UCB$W_QK_BARTMPHIGH 

.BLKW 1 
UCB$W_QK_WCRTMPLOW 

.BLKW 1 
UCB$W_QK_WCRTMPHIGH 

.BLKW 1 
UCB$W_QK_PULSE 

.BLKW 1 
UCB$W_QK_VECTOR 

.BLKW 1 
UCB$W_QK_CSR 

.BLKW 1 
UCB$W_QK_BARLOW 

.BLKW 1 
UCB$W_QK_BARHIGH 

.BLKW 1 
UCB$W_QK_WCRLOW 

.BLKW 1 
UCB$W_QK_WCRHIGH 

.BLKW 1 

$DEF UCB$W_QK_ERROR 
.BLKW 1 

Bit positions for device-dependent 

The Mapping Register Descriptor. 
The Starting Map Register. 

The number of Map Registers. 

Counter for # of unexpected interrupts. 

Temporary 

Temporary 

Temporary 

Temporary 

Temporory 

storage 

storage 

storage 

storage 

storage 

of Control Reg image 

of BAR Reg LOW image 

of BAR Reg HIGH image 

of WCR Reg LOW image 

of WCR Reg HIGH image. 

Storage for the Pulse command register. 

Storage for the Vector and Address 
Modifier Register. 
Saved STATUS Reg on interrupt 

Saved BAR register LOW on interrupt 

Saved BAR register HIGH on interrupt 

Saved WCR register LOW on interrupt 

Saved WCR register HIGH on interrupt 

Saved Error return. 

status field in UCB 

$VIELD UCB,0,<- UCB device specific bit definitions 
<READ_READY „ M>,- The READ partner QIO is ready. 
<WAITING_FOR_READ „ M>,- The Waiting for READ partner interrupt. 

UCB$K_SIZE=. 
$DEFEND UCB 

0 
Device register offsets from CSR address 

$DEF 
$DEF 

$DEFINI QK 
QK_CONTROL 
QK_STATUS 

.BLKW 1 

$DEF QK_DATA_OUT 
$DEF QK_DATA_IN 

.BLKW 1 

$DEF QK_MODIFIER_VECTOR 
.BLKW 1 

$DEF 

$DEF 

QK_PULSE_COMMAND 
.BLKW 1 
.BLKW 5 

QK_BAR_LOW_WRITE 
.BLKW 1 

Start of Ikon DR11-W definitions 
Control Register 
Status Register 

Data Out Register 
Data In Register 

Address Modifier and Vector Register. 

Pulse Command Register 

Empty space in register area. 

DMA address Low 16 bits. WRITE 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

$DEF QK_WCR_LOW DMA Word Count Low 16 bits register. 
.BLKW 1 

$DEF QK_BAR_LOW_READ DMA address Low 16 bits. READ 
.BLKW 1 
.BLKW 1 Empty space in register area. 

$DEF QK_BAR_HIGH_WRITE DMA address High 16 bits. Write 
.BLKW 1 

$DEF QK_WCR_HIGH DMA Word Count High 16 bits register. 
.BLKW 1 

$DEF QK_BAR_HIGH_READ DMA address High 16 bits. READ 
.BLKW 1 

Bit positions for device control/status register 

$EQULST QK$K_ „ 0,1,<- Define CSR FNCT bit values 
<FNCT1,2>-
<FNCT2,4>-
<FNCT3,8>-
<STATUSA,2048>- Define CSR STATUS bit values 
<STATUSB,1024>-
<STATUSC,512>-

$YIELD QK_CONTROL,O,<-
<GO „ M> , -
<FNCT,3,M>,-
<SDIR, , M>, - 

<IE, , M>, - 

<UNUSED2,3,M>,-
<MCLR, , M>, - 

$YIELD QK_STATUS,O,<- 

<FNCT,3,M>,-
<SDIR, 1, M>, -
<BERR,1, M> , -
<IE„ M>, - 

<STATUS,3,M>,-
<PERR, , M>, -
<ATTN, , M>, - 

Control register 
Start device 
CSR FNCT bits 
Software direction 
Unused bit 
Enable interrupts 
Terminate active DMA. 
Starts slave transmit 
UNUSED bits 
Master Clear. 
Reset Parity Error Flag. 
Reset Attention flag and its interrupt. 
Reset DMA Done flag and its interrupt. 

Status register 
Device Flag 
FNCT bits 
State of SDIR latch 
Bus error flag 
Enable interrupts 
DMA Ready. 
UNUSED bit 
Status bits 
Parity error flag. 
State of Attention H input. 
Attention interrupt. 
DMA Done interrupt. 

$DEFEND QK End of DR11-W definition 

.SBTTL Device Driver Tables 

Driver prologue table 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

DPTAB 
END=QK_END,-
ADAPTER=VME,-
FLAGS=DPT$M_SVP,-
UCBSIZE=UCB$K_SIZE,-
NAME=QKDRIVER 

DPT_STORE INIT 

DPT_STORE UCB,UCB$B_FLCK,B,SPL$C_IOLOCK8 
DPT_STORE UCB,UCB$B_DIPL,B,22 
DPT_STORE UCB,UCB$L_DEVCHAR,L,<-

DEV$M_AVL!-
DEV$M_RTM!-
DEV$M_ELG!-
DEV$M_IDV!-
DEV$M_ODV> 

DPT_STORE UCB,UCB$B_DEVCLASS,B,DC$_REALTIME ; 
DPT_STORE UCB,UCB$B_DEVTYPE,B,DT$_XVIB Device Type 
DPT_STORE UCB,UCB$W_DEVBUFSIZ,W,- Default buffer 

QK_DEF_BUFSIZ 
DPT_STORE REINIT 

DPT_STORE DDB,DDB$L_DDT,D,QK$DDT 
DPT_STORE CRB,CRB$L_INTD+4,D,-

QK_INTERRUPT 
DPT_STORE CRB,CRB$L_INTD+VEC$L_INITIAL,-

D,QK_CONTROL_INIT 
DPT_STORE END 

0 
Driver dispatch table 

DDTAB -
DEVNAM=QK,-
START=QK_START,-
FUNCTB=QK_FUNCTABLE,-
CANCEL=QK_CANCEL 

DPT-creation macro 
End of driver label 
Adapter type 
Allocate system page 
UCB size 
Driver name 
Start of load 
initialization table 
Device fork IPL 

Device interrupt IPL 
Device characteristics 
Available 
Real Time device 
Error Logging enabled 
input device 
output device 

Device class 

size 

table 

Start of reload 
initialization table 
Address of DDT 
Address of interrupt 
service routine 
Address of controller 
initialization routine 
End of initialization 
tables 

DDT-creation macro 
Name of device 
Start I/O routine 
FDT address 
Cancel I/O routine 

m 

Function dispatch table 

QK_FUNCTABLE: FDT for driver 
FUNCTAB ,- Valid I/O functions 

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK> 
FUNCTAB No buffered functions 
FUNCTAB QK_READ_WRITE,- Device-specific FDT 

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK> 
FUNCTAB +EXE$QIODRVPKT,-

<READPBLK,READLBLK,READVBLK,WRITEPBLK,WRITELBLK,WRITEVBLK> 

.SBTTL QK_CONTROL_INIT, Controller initialization 

A-40 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11 ~W 

++ 
QK_CONTROL_INIT, Called when driver is loaded, system is booted, or 
power failure recovery. 

Functional Description: 

1) Allocates the direct data path permanently 
2) Assigns the controller data channel permanently 
3) Clears the Control and Status Register 
4) If power recovery, requests device time-out 

Inputs: 

R4 = address of CSR 
R5 = address of IDB 
R6 = address of DDB 
R8 = address of CRB 

Outputs: 

QK_CONTROL_INIT: 

JSB 

MOVL 
MOVL 
BISW 

G~INI$BRK 

IDB$L_UCBLST(R5),RO Address of UCB 
RO,IDB$L_OWNER(R5) Make permanent controller owner 
#UCB$M_ONLINE,UCB$W_STS(RO) 

Set device status "on-line" 

CLRW UCB$W_QK_UNEXPECTED(RO) 

10$: PUSHR #~M<R3,R5> 
MOVZBL IDB$B_VECTOR(R5),R1 
ROIL #2,R1,R1 
MOVZWL QK_STATUS(R4),R2 

SWAPWORD R2 
MOVL #QK_ADDR_MOD_10089,R3 
BBC #QK_STATUS$V_DFLG,R2,50$ 
MOVL #QK_ADDR_MOD_10099,R3 

50$: ADDL2 R3,R1 
MOVW R1,UCB$W_QK_VECTOR(RO) 
SWAPWORD R1 
MOVW R1,QK_MODIFIER_VECTOR(R4 

MOVL 
BSBW 
POPR 
RSB 

RO , R5 
QK_DEV_HWRESET 
#~M<R3,R5> 

Init Unexpected Interrupt counter. 

Save R5 
Get the vector address. 
Normalize the vector 
Read the CSR. 

Swap the bytes. 
Set R3 to the Address Modifier value. 
Branch if this is the 10089 revision. 
Set R2 to the Address Modifier value. 

Add in the Address Modifier. 
Save the Vector and Address Mod value. 
Swap the bytes. 

Set the vector ID. 

Copy UCB address to R5 

Restore R5 
Done 

.SBTTL QK_READ_WRITE, FDT for device data transfers 

A-41 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

++ 
QK_READ_WRITE, FDT for READLBLK,READVBLK,READPBLK,WRITELBLK,WRITEVBLK, 

WRITEPBLK 

Functional description: 

1) Rejects QUEUE I/O's with odd transfer count 

Inputs: 

R3 = Address 
R4 = Address 
R5 = Address 
R6 = Address 
R8 = Address 
AP = Address 

P1 = 
P2 = 
P3 = 
P4 = 

Outputs: 

of IRP 
of PCB 
o f UCB 
of CCB 
of FDT routine 
of P1 
Buffer Address 
Buffer size in bytes 
DMA Time Out Time in seconds 
VMEbus control flags. 

RO = Error status if odd transfer count 

QK_READ_WRITE: 

BLBS P1(AP),2$ 

BLBC P2 (AP) , 2 0 $ 
2$: MOVZWL #SS$_BADPARAM,RO ; 
5$: JMP G~EXE$ABORTIO ; 

2 0 $ : TSTL P2 (AP ) ; 
BEQL 2$ 

MOVL P3(AP),IRP$L_MEDIA(R3) ; 
BNEQ 30$ 
MOVL #QK_DMA_DEF_TIMEOUT,- ; 

IRP$L_MEDIA(R3) 

30$: MOVL P4(AP),IRP$L_MEDIA+4(R3); 

MOVL P1 (AP) , RO 
MOVL P2 (AP) , R1 
JSB G~EXE$MODIFYLOCKR 
BLBC R0,5$ 

The Buffer address must not be on 
a byte boundary. 
Branch if transfer count even 
Set error status code 
Abort request 

Error if no transfer count. 

Save the Time Out time. 
Branch if there is a time out time. 
Set Time Out time to the default. 

Save the VMEbus control flags. 

Get the buffer address. 
Get the byte count. 
Check buffer for access and lock down 

RSB the buffer. 

A-42 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

m 

++ 
QK_START - Start a data transfer, set characteristics, enable ATTN AST. 

Functional Description: 

This routine has two major functions: 

.SBTTL QK_START, Start I/O routines 

1) Start an I/O transfer. This transfer can be in either word 
or block mode. The FNCTN bits in the DR11-W CSR are set. If 
the transfer count is zero, the STATUS bits in the DR11-W CSR 
are read and the request completed. 

Inputs: 

R3 = Address of the I/O request packet 
R5 = Address of the UCB 

Outputs: 

RO = final status and number of bytes transferred 
R1 = value of CSR STATUS bits and value of input data buffer register 
Device errors are logged 
Diagnostic buffer is filled 

.ENABL LSB 

QK_START: 

ASSUME 
MOVL 
MOVL 

MOVAL 
MOVL 
MOVL 

PUSHL 
MOVL 
MOVZWL 
MOVAB 
ASHL 

BSBW 
POPL 
BLBS 

MOVZWL 
CLRL 
JMP 

50$: MOVL 
MOVAL 
PUSHR 
MOVL 
MOVZWL 
MOVL 
BSBW 
POPR 

IDB$L_CSR EQ 0 
UCB$L_CRB(R5),R4 Address of CRB 
@CRB$L_INTD+VEC$L_IDB(R4),R4 Get the CSR address. 

UCB$L_MAPREG_DESC(R5),R1 Set R1 to the address of mapreg desc. 
UCB$L_CRB(R5),R2 Get CRB address. 
CRB$L_INTD+VEC$L_ADP(R2),R2 Get address of ADP. 

R3 Save R3. 
IRP$L_BCNT(R3),RO Get the byte count. 
IRP$W_BOFF(R3),R3 
^X3 FF (RO) [ R3 ] , R3 
#-9, R3, R3 

IOC$ALOVMEMAP_DMAN of VME map regs. 
R3 
R0,50$ 

#SS$_INSFMAPREG,RO Set to error and end QIO. 
R1 
QIO_DONE 

IRP$L_MEDIA+4(R3),RO 
UCB$L_MAPREG_DESC(R5),R1 

IRP$L_BCNT(R3),R4 
IRP$W_BOFF(R3),R5 
IRP$L_SVAPTE(R3),R3 
IOC$LOADVMEMAP_DMAN 
#~M<R3,R4,R5> 

Allocate a set 
Restore R3 

Get the VMEbus control flags. 
Set the Mapreg desc address. 
Save R3-R5. 
Set R4 to the byte count. 
Set R5 to the byte offset into 1st page. 
Set R3 to the SVAPTE of first page. 
Load the VME mapping registers. 
Restore R3-R5. 

Calculate highest relative byte and round 
Calculate number of map registers required 

A-43 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

Build the BAR registers. 

MOVZWL IRP$W_BOFF(R3),R1 Byte offset in first page of xfer 
INSV UCB$W_START_MAPREG(R5),#9,#16,R1 

Insert the Starting Map Register number 
R1 contains the BAR value. 

ASHL #-1,R1,R1 The DR11-W wants the data shifted 
one place to the right. 

MOVW R1,UCB$W_QK_BARTMPLOW(R5) Save the BAR Low Register value. 

ASHL #-16,R1,R2 Set R1 to BAR High value. 
MOVW R2,UCB$W_QK_BARTMPHIGH(R5) Save the BAR High Register value. 

Store the Word Count register contents. 

MOVL IRP$L_BCNT(R3),RO Fetch byte count 
ASHL #-1,RO,R1 Make byte count into word count 
DELL R1 The Ikon DR11-2 wants # of words 

Minus 1 for the Word Count. 
ASHL #-16,R1,R0 R1 Word has WC Low value. 

RO Word has WC High value. 
MOVW R1,UCB$W_QK_WCRTMPLOW(R5) Set the WC Low Register value. 
MOVW RO,UCB$W_QK_WCRTMPHIGH(R5) Set the WC High Register value. 

Initialize the CSR contents for a Read. Enable interrupts and set the Go 
Bit. Set the 1st function bit to set direction 
Use the Pulse command Function 2 to interrupt the Transmitter partner. 

MOVW #<QK_CONTROL$M_IE!QK_CONTROL$M_GO!QK$K_FNCT1>,-
UCB$W_QK_CSRTMP(R5) 

MOVW #QK$K_FNCT2,UCB$W_QK_PULSE(R5) 

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- Lock device access 
SAVIPL=-(SP),- Save current IPL 
PRESERVE=NO DON'T Preserve RO 

Branch if a Read request. 

CMPW #IO$_READPBLK,IRP$W_FUNC(R3) 
BEQL 1000$ 

Write Request. Make sure that the Read Partner is ready. 

CLRW UCB$W_QK_PULSE(R5) 

BBS #UCB$V_READ_READY,UCB$W_DEVSTS(R5),500$ 

BISW #UCB$M_WAITING_FOR_READ,-
UCB$W_DEVSTS(R5) Set the flag that we are waiting for 

the READ partner to be ready. 

WFIKPCH QK_TIME_OUT,#QK_READ_SYNCH_TIMEOUT Wait for Read ATTN interrupt 
indicating the READ partner 
is Ready. 

IOFORK 

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- Lock device access 
SAVIPL=-(SP),- Save current IPL 
PRESERVE=NO DON'T Preserve RO 

MOVL UCB$L_IRP(R5),R3 Get the IRP. 

A-44 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

500$: BICW #<UCB$M_READ_READY!UCB$M_WAITING_FOR_READ>,-
UCB$W_DEVSTS(R5) Clear the READ Ready Flag and Waiting 

For Read flag . 

Initialize the CSR contents for a WRITE. Enable interrupts, set the Go, and 
; Cycle Bits. 

MOVW #<QK_CONTROL$M_IE!QK_CONTROL$M_GO!QK_CONTROL$M_CYCLE>,-
UCB$W_QK_CSRTMP(R5) 

1000$: 

SETIPL #31,- Raise to IPL POWER 
ENVIRON=UNIPROCESSOR 

MOVW UCB$W_QK_WCRTMPLOW(R5),RO Get the WC low register. 
SWAPWORD RO Swap the bytes. 
MOVW RO,QK_WCR_LOW(R4) Set the WC Low Reg. 

MOVW UCB$W_QK_WCRTMPHIGH(R5),RO Get the WC High register. 
SWAPWORD RO Swap the bytes. 
MOVW RO,QK_WCR_HIGH(R4) Set the WC High Reg. 

MOVW UCB$W_QK_BARTMPLOW(R5),RO Set the Buffer Address Registers. 
SWAPWORD RO 
MOVW RO,QK_BAR_LOW_WRITE(R4) 
MOVW UCB$W_QK_BARTMPHIGH(R5),RO 
SWAPWORD RO 
MOVW RO,QK_BAR_HIGH_WRITE(R4) 

CMPW #IO$_READPBLK,IRP$W_FUNC(R3) 
BNEQ 1010$ 
MOVW UCB$W_QK_PULSE(R5),RO Set the pulse command to set ATTN 
SWAPWORD RO for Reads. 
MOVW RO,QK_PULSE_COMMAND(R4) 

1010$: MOVW UCB$W_QK_CSRTMP(R5),RO Move all bits to CSR 
SWAPWORD RO 
MOVW RO,QK_CONTROL(R4) 

Wait for transfer complete interrupt, powerfail, or device time-out 

WFIKPCH QK_TIME_OUT,IRP$L_MEDIA(R3) Wait for interrupt 

Device has interrupted, FORK 

IOFORK FORK to lower IPL 

Handle request completion, release VME resources, check for errors 

MOVZWL 
MOVAL 
MOVL 
MOVL 
BSBw 

#SS$_NORMAL,-(SP) Assume success, store code on stack 
UCB$L_MAPREG_DESC(R5),R1; Get address of mapreg desc. 
UCB$L_CRB(R5),R2 Get CRB address. 
CRB$L_INTD+VEC$L_ADP(R2),R2 ; Get address of ADP. 
IOC$RELVMEMAP_DMAN Release the mapping registers. 

Check for errors and return status 

CMPW 
BNEQ 
CMPW 
BEQL 

1080$: MOVZWL 
BICW 

UCB$W_QK_WCRHIGH(R5),#~XFFFF 
1080$ NO 
UCB$W_QK_WCRLOW(R5),#~XFFFF 
1100$ Yes 

All words transferred? 

All words transferred? 

#SS$_OPINCOMPL,(SP) No, flag operation not complete 
#<UCB$M_READ_READY!-
UCB$M_WAITING_FOR_READ>,-
UCB$W_DEVSTS(R5) Clear the read ready flags. 

A-45 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11-W 

1100$: BBC 
1105$: MOVZWL 

BSBW 
BRB 

1110$: BBS 

1200$: MOVL 
MOVZWL 
ASHL 
MOVW 

#QK_STATUS$V_PERR,UCB$W QK_CSR(R5),1110$ Branch on CSR error bit 
UCB$W_QK_ERROR(R5),(SP) Flag for controller/drive error status 
QK_DEV_RESET Reset DR11-W 
1200$ 
#QK_STATUS$V_BERR,UCB$W_QK_CSR(R5),1105$ 

(SP) +, RO 
UCB$W_QK_WCRLOW(R5),R1 Return Word Count. 
#16, R1, R1 
UCB$W_QK_CSR(R5),R1 Return CSR in IOSB 

Get final device status 

QIO_DONE: 
REQCOM Finish request in exec 

.PAGE 

.SBTTL DR11-W DEVICE TIME-OUT 
++ 
DR11-W device TIME-OUT 
If a DMA transfer was in progress, release UBA resources. 
For DMA or WORD mode, deliver ATTN AST's, log a device timeout error, 
and do a hard reset on the controller. 

Clear DR11-W CSR 
Return error status 

Power failure will appear as a device time-out 
--

.ENABL LSB 
QK_TIME_OUT: 

IOFORK 
MOVAL 
MOVL 
MOVL 
BSBW 

BsBw 
BSBW 
MOVZWL 
CLRL 
BBC 

MOVZWL 
20$: BBC 

INCL 

25$: INSV 
MOVZWL 
ASHL 
MOVW 

BICW 

Time-out for DMA transfer 

Fork to complete request 
UCB$L_MAPREG_DESC(R5),R1; Get address of mapreg desc. 
UCB$L_CRB(R5),R2 Get CRB address. 
CRB$L_INTD+VEC$L_ADP(R2),R2 Get address of ADP. 
IOC$RELVMEMAP_DMAN Release the mapping registers. 

QK_REGISTER 
QK_DEV_RESET 
#SS$_TIMEOUT,RO 
R1 
#UCB$V_CANCEL,-
UCB$W_STS(R5),20$ 
#SS$_CANCEL,RO 
#UCB$V_WAITING_FOR_READ, 
UCB$W_DEVSTS(R5),25$ 
R1 

R1,#16,#16,R0 
UCB$W_QK_WCRLOW(R5),R1 
#16, R1, R1 
UCB$W_QK_CSR(R5),R1 

Read DR11-W registers 
Reset controller 
Assume error status 

Branch if not cancel 
Set status 

Branch if waiting for Read. 
Set R1 to a 1 to indicate Waiting for 
Read. 
Clear unwanted flags. 
Insert the Time out type. 

Store the CSR and word count low. 

#<UCB$M_READ_READY!-
UCB$M_WAITING_FOR_READ>,-
UCB$W_DEVSTS(R5) Clear the read ready flags. 

BICW #<UCB$M_TIM!UCB$M_INT!UCB$M_TIMOUT!UCB$M_CANCEL!UCB$M_POWER>,-
UCB$W_STS(R5) Clear unit status flags 

REQCOM Complete I/O in exec 
.DSABL LSB 
.PAGE 

A-46 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

.SBTTL QK_INTERRUPT, Interrupt service routine for DR11-W 
++ 
; QK_INTERRUPT, Handles interrupts generated by DR11-W 

Functional description: 

This routine is entered whenever an interrupt is generated 
by the DR11-W. It checks that an interrupt was expected. 
If not, it sets the unexpected (unsolicited) interrupt flag. 
All device registers are read and stored into the UCB. 
If an interrupt was expected, it calls the driver back at its Wait 
For Interrupt point. 
Deliver ATTN AST's if unexpected interrupt. 

Inputs: 

00(SP) Pointer to address of the device IDB 
04 (SP) saved RO 
08(SP) saved R1 
12 (SP ) saved R2 
16(SP) saved R3 
20(SP) saved R4 
24 (SP) saved R5 
28 (SP) saved PSL 
32 (SP) saved PC 

Outputs: 

The driver is called at its Wait For Interrupt point if an 
interrupt was expected. 
The current value of the DR11-W CSR's are stored in the UCB. 

--

QK_INTERRUPT: 

MOVQ (R4),R4 

Interrupt service for DR11-W 
Address of IDB and pop SP 
CSR and UCB address from IDB 

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- Lock device access 
CONDITION=NOSETIPL,- already at DIPL 
PRESERVE=NO Don't preserve RO 

Check to see if device transfer request active or not 
If so, call driver back at Wait for Interrupt point and 
Clear unexpected interrupt flag. 

BBCC #UCB$V_INT,UCB$W STS(R5),24$ 
If clear, no interrupt expected 

Read the DR11-W device registers (WCR, BAR, CSR) and store into UCB. 

BSBW QK_REGISTER Read device registers 

MOVL UCB$L_FR3(R5),R3 Restore drivers R3 
JSB @UCB$L_FPC(R5) Call driver back 
BRB 25$ 

24$: BSBW QK_REGISTER Read device registers 
INCW UCB$W_QK_UNEXPECTED(R5) Increment Unexpected Interrupt count. 

25$: DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- Unlock device access 
PRESERVE=NO 

POPR #"M<RO,R1,R2,R3,R4,R5> Restore registers 
REI Return from interrupt 

A-47 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

.PAGE 

.SBTTL QK_REGISTER - Handle DR11-W CSR transfers 
++ 
QK_REGISTER - Routine to handle DR11-W register transfers 

INPUTS: 

R4 - DR11-W CSR address 
R5 - UCB address of unit 

OUTPUTS: 

CSR, WCR, BAR, and status are read and stored into UCB. 
The DR11-W is placed in its initial state with interrupts enabled. 
RO - .true. if no hard error 

.false. if hard error (cannot clear ATTN) 

If the CSR ERROR bit is set and the associated condition can be cleared, then 
the error is transient and recoverable. The status returned is SS$_DRVERR. 
If the CSR ERROR bit is set and cannot be cleared by clearing the CSR, then 
this is a hard error and cannot be recovered. The returned status is 
SS$_CTRLERR. 

RO,R1 - destroyed, all other registers preserved. 

QK_REGISTER: 

MOVZWL QK_STATUS(R4),R1 Read STATUS. 
SWAPWORD R1 
MOVW R1,UCB$W QK_CSR(R5) Save STATUS reg in UCB 

MOVW #<QK_CONTROL$M_RPER!QK_CONTROL$M_RATN!QK_CONTROL$M_RDMA>,RO 
SWAPWORD RO 
MOVW RO,QK_CONTROL(R4) Clear all reset conditions in CSR. 

BBC #QK_STATUS$V_ATTF,R1,50$ Branch if not ATTN interrupt. 
BISW #UCB$M_READ_READY,- Indicate that the Read is Ready. 

UCB$W_DEVSTS(R5) 

50$: MOVZWL #SS$_NORMAL,RO Assume success 
BBC #QK_STATUS$V_PERR,R1,55$ Branch if no PARITY error 
MOVZWL #SS$_DRVERR,RO Assume "drive" error 
BRB 60$ 

55$: BBC #QK_STATUS$V_BERR,R1,60$ Branch if no VMEbus error. 
MOVZWL #SS$_CTRLERR,RO Assume "Controller" error. 

60$: MOVZWL QK_BAR_LOW_READ(R4),R1 Save the BAR LOW register in UCB. 
SWAPWORD R1 
MOVW R1,UCB$W_QK_BARLOW(R5) 

MOVZWL QK_BAR_HIGH_READ(R4),R1 Save the BAR HIGH register in UCB. 
SWAPWORD R1 
MOVW R1,UCB$W_QK_BARHIGH(R5) 

MOVZWL QK_WCR_LOW(R4),R1 Save the WCR LOW register in UCB 
SWAPWORD R1 
MOVW R1,UCB$W_QK_WCRLOW(R5) 

MOVZWL QK_WCR_HIGH(R4),R1 Save the WCR HIGH register in UCB. 
SWAPWORD R1 
MOVW R1,UCB$W_QK_WCRHIGH(R5) 

MOVW #QK_CONTROL$M_IE,R1 Enable interrupts. 
SWAPWORD R1 
MOVW R1,QK_CONTROL(R4) 

A-48 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

100$: MOVW RO,UCB$W_QK_ERROR(R5) Save error in UCB. 
RSB 

.SBTTL QK_CANCEL, Cancel I/O routine 
++ 
QK_CANCEL, Cancels an I/O operation in progress 

Functional description: 

Flushes Attention AST queue for the user. 
If transfer in progress, do a device reset to DR11-W and finish the 
request. 
Clear interrupt expected flag. 

Inputs: 

R2 = negated value of channel index 
R3 = address of current IRP 
R4 = address of the PCB requesting the cancel 
R5 = address of the device's UCB 

Outputs: 

QK_CANCEL: Cancel I/O 

DEVICELOCK -
LOCKADDR=UCB$L_DLCK(R5),- Lock device access 
SAVIPL=-(SP),- Save current IPL 
PRESERVE=NO Don't preserve RO 

Check to see if a data transfer request is in progress 
for this process on this channel 

20$: BBC #UCB$V_INT,-
UCB$w sTs(R5),3o$ 

JSB G"IOC$CANCELIO 
BBC #UCB$V_CANCEL,-

UCB$W STS(R5),30$ 

Force timeout 

30$: 

br if I/O not in progress 

Check i f transfer going 

Branch if not for this guy 

CLRL UCB$L_DUETIM(R5) clear timer 
BISW #UCB$M_TIM,UCB$W_STS(R5) set timed 
BICW #UCB$M_TIMOUT,-

UCB$W STS(R5) Clear timed out 

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5),- Unlock device access 
NEWIPL=(SP)+,- Enable interrupts 
PRESERVE=NO 

RSB Return 

A-49 



VMS Version 5.4-3 Features 
Sample Driver for a VMEbus DR11—W 

.PAGE 

.SBTTL QK_DEV_RESET - Device reset DR11-W 
++ 
QK_DEV_RESET - DR11-W Device reset routine 

This routine raises IPL to device IPL, performs a device reset to 
the required controller, and re-enables device interrupts. 

Must be called at or below device IPL to prevent a confict in 
aquiring the device_spinlock. 

Inputs: 

R4 - Address of Control and Status Register 
R5 - Address of UCB 

Outputs: 

Controller is reset, controller interrupts are enabled 

QK_DEV_RESET: 

PUSHR #"M<RO,R1,R2> 
DEVICELOCK -

LOCKADDR=UCB$L_DLCK(R5) 
SAVIPL=-(SP),-
PRESERVE=NO 

BSBB QK_DEV_HWRESET 

DEVICEUNLOCK -
LOCKADDR=UCB$L_DLCK(R5) 

PRESERVE=NO 
POPR #"M<RO,R1,R2> 

Save some registers 

Lock device access 
Save current IPL 
Don't preserve RO 

Unlock device access 
Enable interrupts 

Restore registers 

RSB 

QK_DEV_HWRESET: 

MOVW #QK_CONTROL$M_MCLR,RO Issue a Master Clear to the device. 
SWAPWORD RO 
MOVW RO,QK_CONTROL(R4) 

• *** Must delay here depending on reset interval 

TIMEDWAIT TIME=#QK_RESET_DELAY No. of 10 micro-sec intervals to wait 

MOVW #QK_CONTROL$M_IE,RO Enable device interrupts 
SWAPWORD RO 
MOVW RO,QK_CONTROL(R4) 
RSB 

QK_END: End of driver label 
.END 



VMS Version 5.4-3 Features 
SCSI Device Support for the NCR 53C94 Controller 

A.3.2 SCSI Device Support for the NCR 53C94 Controller 

The VAXstation 4000 series systems now support one port (Port A) of an NCR 
53C94 SCSI (Small Computer System Interface) controller module. The 53C94 
controller supports both synchronous and asynchronous direct memory access 
(DMA) transfers that are controlled by the VAXstation 4000 UO subsystem 
memory map registers. The existing SCSI data structures are described in the 
VMS Device Support Reference Manual. 

The following sections describe the data structure changes needed to support the 
NCR 53C94 controller. 

A.3.2.1 SCSI Device Driver Data Structures 

Status bit 7 (SPDT$V FIFOLCK) is added to longword SPDT$L_STS in the SCSI 
Port Descriptor Table (SPDT). When the FIFO buffer is in use, the port driver 
sets SPDT$V_FIFOLCK. 

Longword SPDT$L_PORT_FLAGS now contains the byte count divisor in bits 
<31:25>. This provides the class driver with a suggested data transfer byte count 
for the port. 

Flag bit 4 (SCDRP$V_MREG_DONE) is added to longword SCDRP$L_SCSI_ 
FLAGS in the SCSI Class Driver Request Packet (SCDRP) descriptor. The port 
driver sets SCDRP$V_MREG_DONE when the map registers are loaded to 
control the data transfer. 

A.3.2.2 Using the SPI$CONNECT Macro and Maximum Byte Counts 

As described in the VMS Device Support Manual, the SCSI port supports 
a maximum data transfer byte count value. The port driver returns this 
value (SPDT$L_MAxBYTECNT) in Rl when the class driver invokes the 
SPI$COi~TNECT macro. Some devices, typically tape drives, need to use the full 
value of SPDT$L_MA►XBYTECNT. Most devices, such as disk drives, can better 
utilize resources with a smaller (suggested) byte count for each DMA transfer. 
The class driver can derive the suggested byte count by utilizing a divisor value 
in bits <31:25> of the port capability mask (SPDT$L_PORT_FLAGS longword) 
returned by SPI$CONNECT in R3. For example, if the maximum byte count is 
64K and the divisor is 4, then the class driver calculates the suggested byte count 
as 16K. A sample code sequence (that follows the execution of SPI$CONNECT) 
for the class driver to calculate the suggested byte count is: 

After SPI$CONNECT execution, R3 contains divisor value in 
<31:25> and R1 contains MAXBYTECNT 

ASHL #-24,R3,R3 
DIVL3 R3 , R1, RO 

;Shift divisor value to low-order byte of R3 
;Divide MAXBYTECNT (R1) by divisor (R3) and 
;and place suggested byte count in RO 



VMS Version 5.4-3 Features 
FDDI and Ethernet—VMS Support 

A.3.3 FDDI and Ethernet—VMS Support 

This section details changes and additions made to the VMS programming 
interface for fiber distributed data interface (FDDI) and Ethernet, described 
in the VMS I / O User's Reference Manual: Part II. This section includes a 
brief discussion of FDDI, a comparison between FDDI and Ethernet, and 
some background on the changes and additions that have been made to the 
programming interface. A complete reference of the various frame and packet 
formats VMS supports is also included. 

A.3.3.1 Overview of FDDI 

FDDI is Digital's next generation of the local area network (LAN). FDDI has 
advantages over Ethernet that include 10 times the data rate and significant 
increases in LAN diameter. The first VMS device or network adapter for FDDI is 
the DEC FDDIcontroller 400 (DEMFA) for VAX systems based on ~:MI (6000 and 
9000 class). 

The one change required to an existing VMS Ethernet application is that it must 
be able to find the new device (FXAO:). Other changes can be made to VMS 
Ethernet applications to take advantage of the larger frame and message size 
that FDDI can carry. 

A.3.3.2 New FDDI Device DEMFA 

The DEMFA device and FDDI are supported by both DECnet—VAX Phase IV and 
DECnet—VAX Extensions. The new NCP line/circuit name takes the form MFA-x 
(x=0,1,... ). FDDI/DEMFA is also supported by the LAT software. You can specify 
the new FDDI device name (FXAO:) when defining the LAT$LINK; see the VMS 
LAT Control Program (LATCP) Manual for more details. 

The DEMFA and FXDRIVER can support only one multicast user at a time. Also, 
the maximum number of channels that can be assigned to a single DEMFA device 
is 29 (DECnet, LAT, and clusters each count as one channel). Digital may change 
or remove these restrictions on DEMFA support in the future. 

A.3.3.3 Programming Interface 

Existing Ethernet applications must be able to locate the new FDDI device 
(FXcu:). Applications that currently translate logical names to locate the valid 
Ethernet device can operate on FDDI. All that needs to change is the logical 
name definition, which must have FXcu defined as a valid translation. 

VMS currently supports the following LAN devices (CMSA/CD stands for carrier 
sense, multiple access with collision detect): 



VMS Version 5.4-3 Features 
Programming Interface 

VMS Device Name Device LAN Type 

FXcn: DEMFA FDDI 
XEcn: DELUAJDEUNA CSMA/CD 
XQcn: DEQNA/DEQTA/DELQA CSMA/CD 
ETcn: DEBNA/DEBNI CSMA/CD 
EXcn: DEMNA CSMA/CD 
EZcn: SGEC CSMA/CD 
EScn: LANCE CSMA/CD 

  Note  

The c in the VMS device name indicates the controller letter. The n in the 
VMS device name indicates the unit number. 

Even though FDDI is a new type of LAN, there are no new packet formats 
defined for the programming interface. The only packet formats supported by 
VMS for FDDI are the three existing packet formats NMA$C_LINFM_ETH, 
NMA$C_LINFM_802, and NMA$C_LINFM_802E (refer to Section A.3.3.5). 

At the option of the application programmer, changes can be made to take 
advantage of the larger frame and message size of FDDI. To do that, the 
application cannot treat FDDI and Ethernet identically. The application must 
use new and additional features of the programming interface to determine 
and monitor the capabilities of the device, the LAN, and the remote device and 
application's ability to communicate using large frames. 

An application can determine if a device is an FDDI device if an NMA$C_PCLI_ 
MED request returns a value of NMA$C_LINMD_FDDI; see Section A.3.3.4.1. 

The application can determine and monitor the capability of the LAN and 
the remote computer and application to exchange the larger FDDI frames 
by examining the priority bits of the Frame Control (FC) field for FDDI frames 
received. For more information about the Frame Control field, see Section A.3.3.5. 
By specifying the new NMA$C_PCLI_RFC parameter, applications can receive 
a copy of the FC (one byte) field of the FDDI frames received. VMS puts the 
received FC in the P5/P6 buffer associated with the $QIO Read operation. The 
required size of the P5/P6 buffer is increased by one when NMA$C_PCLI_RFC is 
specified. The priority bits are the three low-order bits of the FC. If these bits are 
zero, it indicates that small buffers must be used. If the value is nonzero, larger 
messages may be exchanged. A brief discussion of this property of the priority 
bits of the FC is included in Section A.3.3.5. The application must also post larger 
buffers for the receive operation and specify a larger value for NMA$C_PCLI_ 
BUS. It is necessary to continually monitor the value of the priority bits in the FC 
of received frames in order to properly communicate using large buffers. Failure 
to do so can result in a change in network topology, such that two computers that 
were connected by only FDDI links now have an Ethernet segment in the path. 
The application gets no indication that small buffers must be used, except for the 
changes in the value of the received FC priority bits. 



VMS Version 5.4-3 Features 
Programming Interface 

By default, the VMS device drivers on transmit insert zero into the priority field 
of the FC. In this way, Ethernet applications that have not yet been modified send 
the correct FC to indicate that they do not support large frames. For applications 
that want to support large frames, NMA$C_PCLI XFC must be specified to get 
a nonzero value for the priority bits in the transmit FC. This is so that remote 
nodes and applications will see a nonzero value in the priority bits of the FC 
they receive remotely, indicating support for large frames at the local node and 
application. 

A.3.3.4 Parameters 

Effective with VMS Version 5.4-3, the P2 extended characteristics buffer 
parameters NMA$C_PCLI_BSZ and NMA$C_PCLI_DCH are obsolete. Both 
the application and VMS ignore these parameters if they are specified. 

Descriptions of new and changed parameters for FDDI follow. 

A.3.3.4.1 NMA$C_PCLI_MED (Medium) This read-only parameter is new. It 
is a byte-type parameter and returns the type of medium to which the device is 
attached to. Current media supported are NMA$C_LINMD_FDDI (FDDI) and 
NMA$C_LINMD_CSMACD (Ethernet and IEEE 802.3). 

A.3.3.4.2 NMA$C_PCLI_RFC (Receive Frame Control) NMA$C_PCLI_RFC is a 
new optional parameter for FDDI devices only (specifying NMA$C_PCLI_RFC for 
an Ethernet device causes the application to receive an SS$_BADPARAM error). 
It is a byte type with the following values: 

• NMA$C_STATE_ON—Application gets a copy of the FC for each FDDI frame 
received. 

• NMA$C_STATE_OFF Application does not get a copy of the FC for received 
FDDI frames (this is the default). 

For $QIO Read operations, the FC is passed to the application in the P5 
diagnostics buffer. Table A-6 lists the size required for the P5 diagnostics 
buffer for various packet formats and settings of NMA$C_PCLI_RFC. 

Table A-6 Required Size for P5 Diagnostics Buffer on FDDI Devices 

Packet Format NMA$C_STATE_OFF NMA$C_PCLt_ON 

Ethernet (NMA$C_LINFM_ 14 15 
ETH) 

802 (NMA$C_LINFM_802E) 16 17 
802E (NMA$C_LINKFM_802E) 20 21 

Receiving the FC requires one additional byte of space in the P5 buffer. The FC 
is the first byte in the P5 buffer, immediately preceding the 6-byte Destination 
Address. You may notice that the size of the P5 buffer required does not change 
from Ethernet if NMA$C_PCLI_RFC is NMA$C_STATE_OFF. 



VMS Version 5.4-3 Features 
Parameters 

A.3.3.4.3 NMA$C_PCLI_XFC (Transmit Frame Control) NMA$C_PCLI_XFC 
enables applications to control the setting of the priority bits in the FC for frames 
being transmitted in a $QIO Write operation. It is a byte parameter that has 
many valid settings. If specified with a value of zero, the application supplies an 
FC value on each $QIO Write operation. The FC value to be used in this case 
is supplied in the P5 buffer for the $QIO Write operation. If the parameter is 
specified with a nonzero value, then that value is inserted into the FC field of 
every transmission by the VMS device drivers. No FC is present in the P5 buffer 
for the $QIO Write operation in this case. If this parameter is not specified, the 
default setting (zero) of the priority bits is used. 

Regardless of how the FC is supplied, the value specified must be valid. The 
allowable values for FC are between FC_LLC_MIN and FC_LLC_MAX. If 
NMA$C_PCLI_XFC is specified with a nonzero value outside the valid range, the 
application receives a SS$_BADP error. FC_LLC_MIN is 80 (50 hex), and 
because the priority bits are the three low-order bits, FC_LLC_MAX is 87 (57 
hex). An application that needs to support large buffers should use a value for 
NMA$C_PCLI_XFC that is at least one greater than FC_LLC_MIN, because the 
priority bits are zero (50 hex has all three low-order bits zeroed) and this would 
not indicate correctly that large buffers are supported. 

A.3.3.4.4 NMA$C_PCLI_BUS (Maximum Receive Buffer Size) NMA$C_PCLI_ 
BUS is a word-type parameter that enables applications to specify the maximum 
size of their receive buffers. This parameter can now have a maximum value of 
4478, reflecting the maximum data size that can be carried by an FDDI frame. 
If a value greater than 4478 is specified, the application receives no frames nor 
any indication of loss of frames that could not be delivered because they were too 
large. 

A.3.3.4.5 NMA$C_PCLI_MBS (Maximum Packet Length) NMA$C_PCLI_MBS 
is a word-type, read-only parameter. The value returned reflects the largest data 
packet that the application can receive for its packet format and type of LAN, 
measured in bytes. The values are: 

Packet Format CSMAJCD FDDI 

Ethernet 1500 4470 
Ethernet w/PAD 1498 4468 
802 1497 4475 
802E 1492 4470 

A.3.3.4.6 NMA$C_PCLI_CCA (Can Change Address) This new parameter 
enables applications that want to start before DECnet on a VMS system, but do 
not know the DECnet address, to start without affecting the ability of DECnet 
to start. DECnet attempts to set the physical address of the Ethernet controller 
when it starts. Ethernet devices support only one physical address, so all 
applications that are using the same Ethernet device must also use the same 
physical address. If another application that does not use the DECnet address 
starts before DECnet, DECnet will not be able to start on that Ethernet controller 
unless other applications that have already started have all specified NMA$C_ 
PCLI_CCA. 



VMS Version 5.4-3 Features 
Parameters 

This parameter is not applicable to FDDI, because FDDI devices can run with 
more than one physical address. However, no error is returned if this parameter 
is supplied for FDDI devices. 

The application receives no indication that the physical address has changed. 

A.3.3.5 Frame and Packet Formats 

This section illustrates the various frame and packet formats that are supported 
by VMS. 

A.3.3.5.1 FDDI Frames Figure A--7 illustrates the format of FDDI frames. 

Figure A-7 FDDI Frame Format 

FC DA SA DATA CRC 

1 6 6 0=>4478 4 

- Minimum length -- 17 bytes (no data) 
- Maximum length -- 4495 bytes 

FC: Frame Control contains a "priority" field which 
can be used to determine if the frame originated 
on the FDDI, or on the Ethernet. 

DA: Destination Address 

SA: Source Address 

CRC: Cyclic Redundancy Check 
ZK-3742A-G E 



VMS Version 5.4-3 Features 
Frame and Packet Formats 

A.3.3.5.2 CSMA/CD Frames There are three formats for CSMA/CD frames: 

• Ethernet format 

• Ethernet format with PAD option 

• IEEE 802.3 format 

Figure A-8 illustrates the Ethernet format. 

Figure A-8 Ethernet Frame Format 

DA SA PTY DATA CRC 

6 6 2 46=>1500 4 

Minimum total length — 64 bytes 
Maximum total length —1518 bytes 

DA: Destination Address 

SA: Source Address 

PTY: Ethernet Protocol Type 

DATA: User's data (can include 2—byte length field) 

CRC: Cyclic Redundancy Check 

ZK-3743A-GE 

Ethernet frames must be a minimum of 64 bytes in length, which means that 
the minimum data length is 46 bytes. Applications select Ethernet format by 
specifying NMA$C_LINFM_ETH as the value for NMA$C_PCLI_FMT in their P2 
characteristics buffer. 

If the amount of data to be transmitted is less than 46 bytes, the VMS CSMA/CD 
drivers transmit extra bytes of zero after the application data. VMS has provided 
the Ethernet format with PAD option to alleviate this problem. Figure A-9 
illustrates the Ethernet format with the PAD option. 

Figure A-9 Ethernet Frame Format with PAD Option 

DA SA PTY PAD DATA CRC 

6 6 2 2 46=>1500 4 

PAD: The actual length of the requested transmission data 

ZK-3744A-GE 

The Ethernet with PAD format differs from the standard Ethernet format because 
two bytes from the data portion are used to provide a PAD field that contains the 
length of the transferred data. Extra zeros added to meet the 64-byte minimum 
length requirement are not included in the length of the received data reported 
to an application using the PAD option. The VMS LAN drivers (CSMA/CD and 
FDDI) insert and remove the PAD values transparently. A receving application 

A-57 



VMS Version 5.4-3 Features 
Frame and Packet Formats 

does not see the PAD field in its data buffer and a transmitting application need 
not specify the PAD value because the VMS LAN drivers manage the PAD field. 

Applications select the PAD option by adding the optional NMA$C_PCLI_PAD 
with a value of NMA$C_STATE_ON in their P2 characteristics buffer, along with 
selecting NMA$C_LINFM_ETH for the NMA$C_PCLI_FMT parameter. 

Figure A-10 illustrates the IEEE 802.3 format. 

Figure A-10 IEEE 802.3 Frame Format 

DA SA LEN DATA CRC 

6 6 2 46=>1500 

DA: Destination Address 

SA: Source Address 

4 

LEN: The length of data portion only. It can 
be less than 46 if user supplied small 
data, but the frame is then padded to 
meet minimum length requirements. 

DATA: Users data (may include z-byte length field) 

CRC: Cyclic Redundancy Check 

ZK-3745A-GE 

The IEEE 802.3 format is similar to the Ethernet format, except the PTY field is 
replaced by the LEN field. The LEN field performs the same function as the PAD 
field in the Ethernet with PAD format. 

A.3.3.5.3 Packet Formats The Ethernet packet format for CSMA/CD frames is 
identical to the Ethernet frame format shown in Figure A-8. The data portion of 
the Ethernet packet is the application data. 

Figure A-11 shows the mapped Ethernet packet format for FDDI Frames. 

Figure A-11 FDDI Frame with Mapped Ethernet Packet Format 

FC DA SA SNAP SAP SNAP PID P1Y DATA FCS 

1 6 6 3 

SNAP SAP = AA-AA-03 (hex) 
SNAP PID = 00-00-00 
PTY =Ethernet PTY 
DATA length 0 <=X <= 4470 
I f P A D 0<=X <= 4468 

3 2 X 4 

ZK-3746A-GE 

This is the structure of an FDDI frame that is produced by applications using 
Ethernet packet formatting (NMA$C_LINFM_ETH) on the FDDI. 



VMS Version 5.4-3 Features 
Frame and Packet Formats 

Figure A-12 shows the mapped Ethernet with PAD option packet format for 
FDDI frames. 

Figure A-12 FDDI Frame with Mapped Ethernet with PAD Option Packet Format 

FC DA SA SNAP SAP SNAP PID PTY PAD DATA FCS 

1 6 6 3 

SNAP SAP = AA-AA-03 (hex) 
SNAP PID = 00-00-00 
PTY =Ethernet PTY 
DATA length 0 <= X <= 4470 

3 2 2 X 4 

ZK-3747A-GE 

This is the structure of an FDDI frame that is produced by applications using 
Ethernet packet formatting with the PAD option on VMS FDDI devices. The 
meaning and function of the PAD field are the same for both FDDI and Ethernet 
(see Figure A-9). As is true with Ethernet, there is a corresponding 2-byte 
decrease in the maximum data length when using the PAD option with FDDI. 

Figure A-13 shows an FDDI frame with 802 packet format. 

Figure A-13 FDDI Frame with 802 Packet Format 

FC DA SA DSAP SSAP CTL DATA FCS 

1 6 6 1 1 

DATA length 0 <= Z <= 4475 (1 byte CTL) 
<= Z <= 4474 (2 byte CTL) 

1-2 Z 4 

ZK-3748A-G E 

Figure A-14 shows a CSMA/CD frame with 802 packet format. 

Figure A-14 CSMA/CD Frame with 802 Packet Format 

DA SA LEN DSAP SSAP CTL DATA CRC 

6 6 2 1 1 

DSAP =Destination Service Access Point 
SSAP =Source Service Access Point 
CTL =Control Field 
DATA length 0 <= N <= 1497 (1 byte CTL) 

<= N <= 1496 (2 byte CTL) 

1-2 N 4 

ZK-3749A-GE 



VMS Version 5.4-3 Features 
Frame and Packet Formats 

Figure A-15 shows an FDDI frame with 802E packet format. 

Figure A-15 FDDI Frame with 802E Packet Format 

FC DA SA SNAP SAP PID DATA FCS 

1 6 6 3 

PID =User's Protocol Identifier 
DATA length 0 <= Y <= 4470 

5 Y 4 

ZK-3750A-GE 

Figure A-16 shows the 802E, 802.1 SNAP, and 802.1 PID packet formats for 
CSMA/CD frames. 

Figure A-16 CSMA/CD Frames, 802E, 802.1 SNAP, and 802.1 PID Packet 
Format 

DA SA LEN SNAP SAP PID DATA CRC 

6 6 2 3 

PID =User's Protocol Identifier 
DATA length 0 <= M <=1492 

5 M 4 

ZK-3751 A-G E 

A.3.4 Preferred Access Path Programming Examples 

In VMS Version 5.4, a new disk class driver QIO function was added to enable a 
user program to specify a preferred access path (IO$_SETPRFPTH). This feature 
is described in the VMS Version 5.4 New Features Manual and the VMS I l O 
User's Reference Manual: Part I. 

In response to customer requests, two sample programs for this feature have been 
added to the VMS Version 5.4-3 software distribution kit. Written in BLISS-32 
and VAX MACRO languages, they can be found in SYS$EXAMPLES:PREFER.*. 

A.3.5 VAX Ada Run-Time Library 

The following new features have been added to the VMS Version 5.4-3 VAX Ada 
Run-Time Library (ADARTL. EXE) 

• The precision of delay statements has been improved. Previously, one clock 
tick was added to all delay values; this no longer occurs. 

• The implementation of the DELETE procedures provided by the Ada input-
output packages has changed. There are now four possible results when 



VMS Version 5.4-3 Features 
VAX Ada Run-Time Library 

you attempt to delete a file (prior to this release, only the first three results 
occurred): 

— The DELETE procedure succeeds: the file is closed and deleted. 

— The file was already closed; the exception STATUS_ERROR is raised. 

— An error occurs: an exception such as USE_ERROR is raised, but the file 
is left open. 

— An error occurs: an exception such as USE_ERROR is raised; the file is 
closed but not deleted. 

In the cases where an error occurs, you can determine if the file has been 
left open or closed by first handling the exception and then calling the Ada 
input-output function IS_OPEN. 

• The exception USE_ERROR is no longer raised for correct FORM parameter 
values in the procedure INDEXED_IO.OPEN. 

• Certain VFC formatted text files are treated as files with lines of indefinite 
length. 

Starting with VAX Ada Version 2.2, the implementation of the package TEXT_ 
IO supports use of the form string to create external text files with lines of 
indefinite length. (Previously, the length of text-file lines was determined by 
the maximum length of a VMS RMS record. ) 

VAX Ada recognizes files with the following characteristics as files of 
indefinite line length: 

• The print form of carriage control 

• A 2-byte header size (will apply to all records in the external file) 

• Variable-length with fixed-length control field (VFC) record format 

• A maximum record size of zero 

Lines are written to files with indefinite line length as one or more VMS RMS 
records. The characters in the 2-byte header of each record keep track of 
which records comprise the beginning, middle, and end of a line. For more 
information about files with indefinite line length, see the release notes for 
VAX Ada V2.2. 

Note that in some cases you may want to open a text file that has the 
characteristics of an indefinite-line-length file (for example, a file created 
by some other VMS-related software). If you do not want the file to be 
treated as one with indefinite line length, then open the file with the TEXT_ 
IO.OPEN procedure and specify a nonzero record length in the form string. 
For example: 

TEXT_IO.OPEN( 
FILE _> FIXED_LINE_LENGTH_FILE, 
FORM => "RECORD;" 

"SIZE 1;";) 

Regardless of its value, the only effect of the nonzero record length in this 
case is to prevent the file from being treated as one with indefinite line 
length. 

A-61 



VMS Version 5.4-3 Features 
DECwindows X11 Display Server—Color Name File 

A.3.6 DECwindows X11 Display Server—Color Name File 

The file DECW$RGB.COM now contains all of the color names and values that 
were distributed with MIT X Window System Version 11 Release 4 (MIT X11 
Release 4). The colors are listed in DECW$RGB.COM in alphabetical order so 
that they can be easily compared with the table of common color names published 
in the X and Motif Quick Reference Guide. 

Following the list of MIT X11 Release 4 common color names in the file 
DECW$RGB.COM is a list of a set of the Digital-specific color names and their 
values. These names include DECWBIue and a set of color names for the default 
DECwindows system colors. 

The color value for DECWBIue has been changed to better reflect the Digital 
corporate standard for Digital Blue. 

The following color names are the default DECwindows system colors: 

• Screen background 

• Border topshadow 

• Border background 

• Border bottomshadow 

• Window topshadow 

• Window background 

• Window bottomshadow 

These color names are also specified without spaces in the names (for example, 
ScreenBackground), as are all of the MIT X11 Release 4 common color names. 

Following the Digital-specific color names in DECW$RGB.COM are four 
additional color names and values that were included in previous releases of 
the DECwindows systems but that are not part of the MIT X11 Release 4 colors. 
These colors are: 

• Medium forest green 

• MediumForestGreen 

• Medium goldenrod 

• MediumGoldenrod 

A.3.7 Changes to SDA SNOW PORTS Command 

VMS Version 5.4-3 includes changes to the System Dump Analyzer (SDA) 
command SHOW PORTS that allow you to view the data structures that the 
multiadapter local area cluster uses. For more information about multiadapter 
local area clusters, see the VMS VAXcluster Manual. 

In VMS Version 5.4-3, the SHOW PORTS command has the following additional 
qualifiers: 

• BUS[=bus-address]: Displays BUS (LAN device) structure data 

• /CHANNEL[=channel-address]: Displays channel (CH) data 

A-62 



VMS Version 5.4-3 Features 
Changes to SDA SHOW PORTS Command 

• /DEVICE: Displays the network path description for a channel 

• /MESSAGE: Displays the message data associated with a virtual circuit (VC) 

• /VC[=vc-address]: Displays the virtual circuit (VC) data 

In VMS Version 5.4-3, the SHOW PORTS command also defines symbols based 
on the cluster configuration. These symbols include the following information: 

• Virtual circuit (VC) control blocks for each of the remote systems 

• BUS data structure for each of the local LAN adapters 

• Some of the data structures used by both PEDRIVER and the LAN driver 

The following symbols are defined automatically: 

• VC_nodename: Example: VC_NODE 1, address of the local node's virtual 
circuit to node NODE 1. 

• CH_nodename: The preferred channel for the virtual circuit. For example, 
CH_NODE 1, address of the local node's preferred channel to node NODE 1. 

• BUS_busname: Example: BUS_ETA, address of the local node's BUS 
structure associated with BUS ETA. 

• PE_PDT: Address of PEDRIVER's port descriptor table. 

• MGMT_VCRP_busname: Example: MGMT_VCRP_ETA, address of the 
management VCRP for BUS ETA. 

• HELLO VCRP_busname: Example: HELLO_VCRP_ETA, address of the 
HELLO message VCRP for BUS ETA. 

• VCIB_busname: Example: VCIB_ETA, address of the VCIB for BUS ETA. 

• UCB_LAVC_busname: Example: UCB_LAVC_ETA, address of the LAN 
device's UCB used for the local area VAXcluster protocol. 

• UCBO_LAVC_busname: Example: UCBO_LAVC_ETA, address of the LAN 
device's template UCB. 

• LDC_LAVC_busname: Example: LDC_LAVC_ETA, address of the LDC 
structure associated with LAN device ETA. 

• LSB_LAVC_busname: Example: LSB_LAVC_ETA, address of the LSB 
structure associated with LAN device ETA. 

These symbols equate to system addresses for the corresponding data structures. 
You can use these symbols, or an address, after the equal sign (_) in the following 
commands: 

• SHOW PORTS BUS=bus-address: Displays the data for the specified BUS 
structure. The last event time is at the top of the lower right-hand column. If 
an error was counted, the last error time is displayed under x:mt Errors. The 
normal status is RUN, ONLINE, and RESTART. 



Remote System Name: BREE 
Local System ID: 222 (DE) 
  Transmit  
Msg Xmt 

Unsequence 
Sequence 
ReXmt 
Lone ACK 

Bytes Xmt 
  Receive 
Msg Rcv 

Unsequence 
Sequence 
ReRcv 
Lone ACK 
Cache 
Ill ACK 

Bytes Rcv 

216686 
3 

149643 
545 

66495 
33309074 

194492 
1 

178905 
30 

15531 
26 
0 

52086897 

VMS Version 5.4-3 Features 
Changes to SDA SHOW PORTS Command 

SDA> SHOW POR1S /BUS=BUS_ESA 
VAXcluster data structures 

--- BUS: 80B08090 (ESA) Device: ES_LANCE LAN Address: AA-00-04-00-33-FD---
LAN Hardware Address: 08-00-2B-12-AE-A1 

Status: OOOOOA03 run,online,xmt_chaining_disabled,restart 
  Transmit     Receive   ---- Structure Addresses ---
Msg Xmt 434107 Msg Rcv 1170090 PORT Address 80B091B 
Mcast Msgs 103939 Mcast Msgs 859601 VCIB Addr 80B08248 
Mcast Bytes 13304192 Mcast Bytes 96272072 HELLO Message Addr 80B082D8 

Bytes Xmt 59789962 Bytes Rcv 146674695 BYE Message Addr 80B08468 
Outstand I/Os 0 Buffer Size 1424 Delete BUS Rtn Adr 8079E424 
Xmt Errors 
Last Xmt Error 
--- Receive Er 
TR Mcast Rcv 
Rcv Bad SCSID 
Rcv Short Msg 
Fail CH Alloc 
Fail VC Alloc 
Wrong PORT 

75 
00000334 
rors ----

0 
0 
0 
0 
0 
0 

Rcv Ring Size 8 
Time of Last Xmt 

  BUS Timer  
Handshake TMO 8079FA50 
Listen TMO 8079FA54 
HELLO timer 1 
HELLO Xmt err 38 

Error 25-MAR-1991 23:39:28.27 
  Datalink Events  
Last 22-MAR-1991 18:25:25.12 
Last Event 
Port Usable 
Port Unusable 
Address Change 
Port Restart Fail 

00001202 
1 
0 
1 
0 

• SHOW PORTS /VC=vc-address: Displays the virtual circuit data for the 
specified remote node and a channel summary. In the following example, the 
upper center of the the display contains the virtual circuit status. The lower 
right-hand corner contains the virtual circuit open and close times. 

SDA> SHOTf~ PORTSiVC=VC_BREE 
VAXcluster data structures 

Virtual Circuit (VC) 806CD6E0 ---
(O:VAX) Remote SCSSYSTEMID: 64856 

Status: 0005 open,path 
  VC Closures ---- ---- Congestion Control ----

SegMsg TMO 
CC DFQ Empty 
Topology Change 
NPAGEDYN Low 

:Messages Discarded: 
No Xmt Chan 
Rcv Short Msg 
Illegal Seq Msg 
Bad Checksum 
TR DFQ Empty 
TR MFQ Empty 
CC MFQ Empty 
Cache Miss 

Press RETURN for more. 
VAXcluster data structures 

0 UnAcked Msgs 1 
0 Pipe Quota Reached 33 
0 CMD Queue Len 0 
0 Max CMD Queue Len 5 

RSVP Threshold 15 
Pipe Quota 31 

  Channel Selection ----
0 
0 
0 
0 
0 
0 
0 
0 

Preferred Channel 
Delay Time 
Buffer Size 
Channel Count 
Channel Selections 
Protocol 

80704320 
FB7E6F80 

1424 
6 

3920 
1.3.0 

Open 1-JAN-1991 00:00:07.03 
Cls 17-NOV-1858 00:00:00.00 

Channel Summary for Virtual Circuit (BREE ) 806CD6E0 --

Address Type Xmt Time Size Preferred Best 

80704320 Preferred FB7E6F80 1424 
807043E0 Active FB7E735E 1424 
807050D0 Active FB7E7FED 1424 
806CD820 Active FB7E728E 1424 
80705010 Active FB7E7043 1424 
806CD8E0 Active FB7E7BB5 1424 

Last State Change 

812 617 22-MAR-1991 18:14:07.01 
95 4 25-MAR-1991 20:01:15.18 

431 0 25-MAR-1991 20:01:15.18 
868 1470 25-MAR-1991 20:01:15.18 
738 9 25-MAR-1991 20:00:58.17 
976 1744 25-MAR-1991 20:00:31.17 



  Transmit 
Lcl CH Seq # 
Msg Xmt 
Ctrl Msgs 
Ctrl Bytes 

Bytes Xmt 
Rmt Ring Size 

Handshake TMO 
Listen TMO 
Bad Authorize 
Bad ECO 
Bad Multicast 
Topology Change 

VMS Version 5.4-3 Features 
Changes to SDA SHOW PORTS Command 

SDA> 

• SHOW PORTS /C~iANNEL=channel-address: Displays the data for the 
specified channel. The normal state is OPEN, with a status of PATH, OPEN, 
and RMT_HWA_VALID. 

In the following example, the top of the display shows the remote device 
name, remote device type, and the channel open and close times. 

SHOW PORTS/CHANNEL=CH BREE 

VAXcluster data structures 

PEDRIVER Channel (CH:80704320) for Virtual Circuit (VC:806CD6E0) BREE 
State: 0004 open Status: OB path,open,rmt_hwa_valid 
BUS: 80B008B0 (XQA) Lcl Device: XQ_DELQA Lcl LAN Address: 08-00-2B-OA-6A-6B 
Rmt Name: XQB Rmt Device: XQ_DEQTA Rmt LAN Address: 08-00-2B-13-70-88 
Rmt Seq #: 0002 Open:22-MAR-1991 18:14:07.01 Closed:l7-NOV-1858 00:00:00.00 

Receive     Channel Selection ----
0001 Msg Rcv 

66707 Mcast Msgs 
1 Mcast Bytes 
98 Ctrl Msgs 

9130385 Ctrl Bytes 
31 Bytes Rcv 

Channel Errors  

139205 
103906 

10182788 
2 

196 
22654333 

0 Short CC Msgs 
0 Incompat Chan 
0 No MSCP Srvr 
0 Disk Not Srvd 
0 Old TR Msgs 
0 

0 
0 
0 
0 
0 

Average Xmt Time FB879740 
Remote Buffer Size 1424 
Max Buffer Size 
Best Channel 
Preferred Channel 
Retransmit Penalty 
Xmt Error Penalty 
  Channel Time 
Timer Entry Flink 

Blink 
Last Ring Index 
Protocol 
Supported Services 

1424 
615 
810 
2 
12 

r  
8079FA3C 
80705010 

08 
1.3.0 

00000000 

• SHOW PORTS /CHANNEL /VC=vc-address: Displays the following 
information: 

— Virtual circuit data for the specified remote node 

— Channel data associated with each of the channels to the remote node 

• SHOW PORTS /DEVICE /CHANNEL /VC=vc-address: Displays the following 
information: 

— Virtual circuit data for the specified remote node 

— Channel data and network path description for each channel to the 
remote node 

VAXcluster data structures 

Network Component List (CLST:80D36440) for Channel (CH:806DC420) --

COMP adr COMP Type Description 

80D30010 NODE 
80CC9300 ADAPTER 
80D3CDB0 COMPONENT 
80D40380 COMPONENT 
80D36AD0 COMPONENT 
80D2D4C0 P COMPONENT 
80CC2BE0 S ADAPTER 
80D323F0 NODE 

SGRPOP:VAXstation 3300; ZK03-4/U10 
ESA; SGRPOP:VAXstation 3300; ZK03-4/U10 (08-00-2B-12-AE-A1) 
ZK34C4, I-Cluster Segment DEMPR 
ZK34C4, I-Cluster Segment DELNI 
I-Cluster Segment 
ZK03-4 Lab, LIVER: I-Cluster Segment DELNI 
XQA; DELLNM:rack mounted MicroVAX II; ZK03-4 Lab (08-00-2B-OC-C4-1D) 
DELLNM:rack mounted MicroVAX II; ZK03-4 Lab 

This display is useful after the local area VAXcluster network failure analysis 
data has been loaded. After a network failure analysis, this display indicates 
primary and secondary failed component suspects in the following ways: 

— P: Primary suspect 

— S: Secondary suspect 

A-65 



VMS Version 5.4-3 Features 
Changes to SDA SHOW PORTS Command 

— ?: Component that cannot be proved to be working 

• SHOW PORTS /MESSAGE lVC=vc-address: Displays the virtual circuit data 
for the specified remote node, followed by the message data for the remote 
node. The virtual circuit message display shows the counters for the following 
items: 

— Sequenced message delivery 

— Any messages in the process of being transmitted or in the receive cache 

The following is an example of a display resulting from the 
SHOW PORTS (MESSAGE /VC=vc-address command: 

VAXcluster data structures 

--- Sequenced Message Counters Virtual Circuit (VC) 806CD6E0 ---

NSU: 4457 HAA: 4456 LAR: 4455 HSR: B3AA Cache Mask: 00000000 

Messages Waiting for ACKs 

VCRP adr Len Flgs Seq Ack Message Data 

806CD2E0 137 OB 4456 B3AA 02 7D 00 04 00 OA 00 00 00 09 00 D 75 05 00 67 

• SHOW PORTS /ADDRESS=PE_PDT: Displays the following information: 

— Port descriptor table (PDT) structure 

— Some of the fields in the port structure 

— BUS summary 

— Virtual circuit summary 

The following is an example of a display resulting from the 
SHOW PORTS /ADDRESS=PE PDT command: 

SDA> SHOW PORTS /ADDRESS=PE_PDT 
VAXcluster data structures 

--- Port Descriptor Table (PDT) 806C37A0 ---

Type: 03 pe 
Characteristics: 0000 

Msg Header Size 32 Connect 
Max Xfer Bcnt FFFFFFFF Dealloc_Dg_Buf 
DG Header Size 288 Disconnect 
Poller Sweep 31 Unmap 
Fork Block W.Q. empty Map 
UCB Address 806COE50 Map_Bypass 
ADP Address 00000000 Map_Irp 
Accept 80799FEC Map_Irp_Bypass 
Alloc_Dg_Buf 8079AFC6 Queue_Dg_Buf 
Alloc_Msg_Buf 8079AD05 Queue_Mult_Dgs 
Dealloc_Msg_Buf 8079ADE3 Recycl_Msg_Buf 
Dealloc_Msg_Buf_Reg 8079ADF6 Reject 

Press RETURN for more. 
VAXcluster data structures 

--- Port Block 80B091B0 ---

Status: 0001 authorize 
VC Count: 5 
Secs Since Last Zeroed: 311728 

80799F94 
8079AFDA 
8079A06B 
8079B510 
8079B111 
8079BOF8 
8079B101 
8079BOF0 
8079AFE0 
8079AFE8 
8079AD94 
8079A036 

Recyclh_Msg_Buf 
Request_Data 
Send_Data 
Send_Dg_Buf 
Send_Msg_Buf 
Send_Cnt_Msg_Buf 
Read_Count 
Rls_Read_Count 
Mreset 
Mstart 
Stop_Vcs 
Send_Dg_Reg 

8079AD8A 
8079B1CC 
8079B215 
8079B03E 
8079AEA8 
8079AEAF 
80796D59 
80796DD3 
80799C94 
80799C9E 
8079BEDD 
8079B031 



VMS Version 5.4-3 Features 
Changes to SDA SHOW PORTS Command 

SBUF Size 436 LBUF Size 1788 
SBUF Count 12 LBUF Count 1 
SBUF Max 768 LBUF Max 384 
SBUF Quo 13 LBUF Quo 1 
SBUF Miss 18 LBUF Miss 12235 
SBUF Allots 499579 LBUF Allots 16824 
SBUFs In Use 0 LBUFs In Use 0 
Peak SBUF In Use 14 Peak LBUF In Use 34 
SBUF Queue Empty 0 LBUF Queue Empty 0 
TR SBUF Queue Empty 0 
No SBUF for ACK 0 

Bus Addr Bus LAN Address Error Count Last Error Time of Last Error 

80B08920 LCL 00 00 00 00 00 00 
80B08090 ESA AA 00 04 00 33 FD 
80B008B0 XQA 08-00-2B-OA-6A-6B 
80AF6E90 XQB 08-00-2B-08-CB-B8 

Press RETURN for more. 
VAXcluster data structures 

0 
75 00000334 25-MAR-1991 23:39:28.27 
12 0000002C 23-MAR-1991 12:43:59.07 
0 

--- Virtual Circuit (VC) Summary ---

VC Addr Node SCS ID Lcl ID Status Summary Last Event Time 

806CD1A0 NODE12 64819 223/DF open path 
806CD6E0 NODE13 64856 222/DE open path 
806CD9A0 NODE14 64587 221/DD open path 
8070D530 NODE15 64555 220/DC open path 
8074AB60 NODE16 64841 219/DB open path 

1-JAN-1991 00:00:00.03 
1-JAN-1991 00:00:07. 

22-MAR-1991 18:34:10.18 
22-MAR-1991 18:57:33. 
25-MAR-1991 20:42:38.20 

SHOVE PORTS /ADDRESS=PE_PDT /NODE=nodename: Displays the VC 
data for the specified remote node. This display is identical to that of the 
SHOW PORTS/VC=VC nodename command. 

A-67 





B 
VMS Version 5.4 Features 

This appendix describes features introduced with VMS Version 5.4 but not yet 
documented in other printed manuals. 

B.1 Summary of New VMS Version 5.4 Software Features 
This section provides a summary (in Table B-1) of the VMS Version 5.4 software 
features. For information about new and enhanced hardware, see the VMS 
Version 5.4 Release Notes. 

Table B-1 Summary of VMS Version 5.4 Software Features 

VMS Version 5.4 Systemwide Features 

Vector Processing 

DECdtm Services 

Systemwide support for vector processing on VAX 9000 
series and VAX 6000-400 series computers includes the 
VAX Vector Instruction Emulation Facility (VVIEF), specific 
DCL commands and lexical functions, and the Accounting, 
Error Log, Monitor, SDA, Debugger, Patch, and RTL MTH$ 
facilities. See Section B.2 for a complete description of vector 
processing support. 

Systemwide support for DECdtm services includes the Log 
Manager Control Program Utility (LMCP), MONITOR 
TRANSACTION command, new TRANSACTION_ID data 
type, and enhanced VMS RMS Journaling support. See 
Section B.3 for a complete description of DECdtm services. 

VMS Version 5.4 General User Features 

DCL Commands 

System Messages 

DECwindows User 

New and enhanced DCL commands let you control data 
compaction on tape drives that support data compaction, 
convert procedures written in PostScript to callable routines, 
compile fonts for the DECwindows server, and control and 
monitor specific processors and VAXft 3000 systems. 

Information about installing and accessing online help. 

You can now set another session language or change the 
target screen on the Session Manager; view PostScript files 
with the CDA Viewer; change to hexadecimal or octal mode 
in Calculator; use new File, Customize, and Help menus for 
interacting with Clock; and use DECwindows Mail to display 
PostScript files. 

(continued on next page) 



VMS Version 5.4 Features 
B.1 Summary of New VMS Version 5.4 Software Features 

Table B-1 (Copt.) Summary of VMS Version 5.4 Software Features 

VMS Version 5.4 System Management Features 

AUTOGEN 

UETP 

SYSMAN Utility 

VAXcluster Software 

SYSGEN Utility 

Error Log Utility 

System Security 

LMCP Utility 

Monitor Utility 

This command procedure now includes support for parameter 
name validation, SYS$SYSTEM:AGEN$PARAMS.REPORT 
(a new file that replaces AGEN$FEEDBACK.REPORT), 
reading external parameter files, controlling the size 
of page and swap files, new feedback parameters, new 
defined process logical names, a new technique for running 
AUTOGEN in batch mode, and the ability to use MAIL to 
send AGEN$PARAMS.REPORT. 

Enhancements to the User Environment Test Package 
include loading and testing of all installed and enabled vector 
processors, testing of the VAX Vector Instruction Emulation 
Facility (VVIEF), and support for the RRD40 compact disc 
drive, including Small Computer System Interface (SCSI) 
disk configurations. 

Enhancements let you run a SYSMAN command procedure, 
define keys, spawn a subprocess, use DCL verification, and 
use loadable image commands. 

Enhancements include CI architecture extensions that allow 
multiple CI interfaces per CPU and multiple star couplers per 
VAXcluster system; MSCP server load sharing; and preferred 
path support for DSA disks (including RA-series disks and 
disks accessed through the MSCP server). 

Enhancements include a new parameter for MicroVAX and 
VAXstation configurations that include third-party Small 
Computer System Interface (SCSI) devices, new parameters 
that support site-specific password policies, and new SHOW 
commands that display information such as bus identification 
statistics, device addresses mapped in the UO space for the 
VAXBI bus, and device addresses mapped in the UO space for 
the XMI bus. 

Enhancements include support for VAXft 3000 device types, 
new device-class and entry-type keywords (to support vector 
processing and VAX 9000 systems) used with the /EXCLUDE 
and /INCLUDE qualifiers, and support for the new /NODE 
qualifier, which lets you produce a report of error log entries 
for specific nodes in a VAXcluster. 

System security enhancements enable you to implement a 
site-defined password policy by screening new passwords 
and specifying password algorithms. This support includes 
enhancements to DCL commands, the SYSGEN Utility, the 
SYSMAN Utility, and system services. See Section B.10 for 
more information. 

The new Log Manager Control Program Utility (LMCP) lets 
the system manager create and manage transaction log files 
in a DECdtm services environment. See Section B.11 for a 
complete description of this new utility. 

Enhancements include support for vector processing with 
the new MONITOR VECTOR command and VECTOR class 
and support for DECdtm services with the new MONITOR 
TRANSACTION command and TRANSACTION class. 

(continued on next page) 



VMS Version 5.4 Features 
B.1 Summary of New VMS Version 5.4 Software Features 

Table B-1 (Cont.) Summary of VMS Version 5.4 Software Features 

VMS Version 5.4 System Management Features 

NCP Utility 

VMS Volume Shadowing 

The Network Control Program Utility now includes support 
for a new line and circuit name specific to the VAXft 3000 
system. 

VMS Volume Shadowing phase II includes support for 
distributed, clusterwide shadowing of all MSCP-compliant 
DSA disks (with the same number of logical blocks) and 
shadowing of all DSA devices. 

VMS Version 5.4 Programming Features 

VMS Debugger 

Linker Utility 

Mail Utility Routines 

System Services 

Run-Time Library 

RMS 

UO Drivers 

Enhancements to the debugger's command and DECwindows 
interfaces let you debug programs containing VAX vector 
instructions. 

A new command line qualifier, BPAGE, lets you specify larger 
page sizes. 

New callable mail routines let you create applications 
that can perform a variety of Mail Utility functions and 
communicate with users on remote nodes connected to the 
system with DECnet--VAX. 

New and enhanced system services support DECdtm services, 
system security enhancements, vector processing, volume 
shadowing, volume initialization, and the procedure for 
creating site-specific loadable images. 

New parallel processing (PPL$) routines let you inform 
the PPL$ facility when a new caller is forming or joining a 
parallel application, implement work queues, delete a PPL$ 
application or object, set and adjust a semaphore maximum, 
disable event notification, or read aspin-lock state. 

New and enhanced mathematics routines (MTH$) let you 
manipulate and perform operations on vectors. 

Enhancements provide asynchronous support for process-
permanent files, an increase in the local buffer maximum, 
access-mode protection for RMS services and for specific 
data structures and their associated UO buffers, and the 
ability for all applications to selectively suppress updates 
to the Expiration Date and Time, using XAB$_NORECORD 
XABITM. 

Enhancements include support for the pseudoterminal driver 
(FTDRIVER) and shadow set virtual driver (SHDRIVER), 
modifications to the item-list read function of the UO status 
block (IOSB) and to the item-list terminal driver read verify 
operations for the TRIM$_MODIFIERS item code, and the 
addition of three new ACP-QIO functions. 

(continued on next page) 



VMS Version 5.4 Features 
B.1 Summary of New VMS Version 5.4 Software Features 

Table B-1 (Copt.) Summary of VMS Version 5.4 Software Features 

VMS Version 5.4 Programming Features 

System Dump Analyzer New qualifiers to the SHOW PROCESS command let you 
display statistics about an image (/IMAGE) or about the 
values of the registers from the process's vector context area 
(/VECTOR_REGISTERS). 

Device Support Enhanced support includes VAX 9000 and VAX 6000 series 
systems. Programmers can write and debug driver software 
for non-Digital-supplied devices attached to a VAX 9000 
system. 

VAXTPU Enhancements include work file support, a qualifier you can 
use to specify either character-cell or DECwindows interface, 
and new built-in procedures, including GET_INFO, that 
support journal recovery, pop-up menus, column context 
values for a buffer, markers within a buffer, and scrolling. 

RMS Journaling Enhancements support DECdtm services as well as existing 
applications and affect the Recovery Unit Facility (RUF), 
network support of remote files, RMS record streams, the 
RMS Detached Recovery server, placement of recovery unit 
journals, and access of files in amixed-version cluster. 

VMSINSTAL Anew data-file parameter (P4) in the Software Product 
Kit Building Procedure (SPKITBLD.COM) lets you specify 
the name of a data file. New callbacks affect messages 
displayed—and booting procedures required—during product 
installations and how you obtain asystem-generated or 
installer-specified password. 

DECwindows Programming Enhancements include new programming examples in 
the DECW$EXAMPLES directory, new support for the 
XUI Toolkit color mixing widget (both the Hue Lightness 
Saturation and Red, Green, Blue color models), support for 
the Display PostScript system (which provides text and image 
display capability for bitmapped workstations), and CDA 
Viewer support for PostScript files, Adobe Font metrics, and 
DECmath fonts. 

B.2 Introduction to Vector Processing 
The VMS Version 5.4 operating system supports vector processing on VAX 9000 
series and VAX 6000-400 series computers. This section describes how vector 
processing works, how to manage resources, and how to write programs within 
a vector processing environment. The following sources in this appendix and 
in other documents also describe aspects of VMS Version 5.4 vector processing 
support: 

• VMS Version 5.4 Upgrade and Installation Manual describe modifications to 
UE TP. 

• Section B.4.1 and the VMS DCL Dictionary describe new and modified DCL 
commands, qualifiers, and lexical functions. 

• Section B.2.3.5 and the VMS Debugger Manual describe how to debug 
vectorized programs. 

• Sections B.2.3.2, B.2.3.3, and B.2.3.4 describe new and modified system 
services. 

B-4 



VMS Version 5.4 Features 
B.2 Introduction to Vector Processing 

• The VMS RTL Mathematics (MTH$) Manual describes new and modified RTL 
mathematics routines. 

B.2.1 Overview of the Vector Processing Environment 
A single data item having one value is known as a scalar. A group of related 
scalar values, or elements, all of the same data type is known as a vector. 

Traditional scalar computers operate only on scalar values and must process 
vector elements sequentially. Vector computers, on the other hand, recognize 
vectors as native data structures and can operate on an entire vector with a 
single vector instruction. 

A vector processor can routinely process a vector four to five times faster than 
a traditional computer using only scalar instructions. Vector processors gain 
this speed advantage over scalar processors by their use of special hardware 
techniques designed for the fast processing of streams of data. These techniques 
include data pipelining, chaining, and other forms of hardware parallelism in 
memory and in arithmetic and logical functional units. Pipelined functional units 
allow the vector processor to overlap the execution of successive computations 
with previous computations. Chaining allows the results of one instruction to be 
forwarded to another before the first instruction has been completely processed. 

B.2.1.1 VAX Vector Processing Systems 
An extension to the VAX architecture defines an optional design for integrated 
vector processing that has been adopted by several VAX processing systems. 
The VAX vector architecture includes 16 64-bit vector registers (VO through 
V15), each containing 64 elements; vector control registers, including the vector 
count register (VCR), vector length register (VLR), and vector mask register 
(VMR); vector functional units; and a set of vector instructions. VAX vector 
instructions transfer data between the vector registers and memory, perform 
integer and floating-point arithmetic, and execute processor control functions. A 
more detailed description of the VAX vector architecture, vector registers, and 
vector instructions appears in the VAX MACRO and Instruction Set Reference 
Manual. 

Those VAX systems that comply with the VAX vector architecture are known as 
vector-capable systems. 

A VAX vector processing system configuration includes one or more integrated 
scalar-vector processor pairs, or vector-present processors. Such a 
configuration can either be symmetric, including a vector coprocessor for each 
scalar, or asymmetric, incorporating additional scalar-only processors. Depending 
on the model of the VAX vector processing system, the scalar and vector CPUs 
of vector-present processors can be either a single, integral physical module or 
separate, physically independent modules. In either case the scalar and vector 
CPUs are logically integrated, sharing the same memory and transferring data 
over a dedicated, high-speed internal path. Because the CPUs are thus tightly 
coupled, use of the vector CPU foregoes the expense of I/O operations. 

The scalar and vector CPUs operate asynchronously with respect to each other. 
The scalar CPU fetches and decodes all instructions issued by the current image 
and executes all scalar instructions. When it encounters a vector instruction, the 
scalar CPU passes it to the vector CPU. While the vector CPU is executing this 
instruction, the scalar CPU continues to fetch and decode instructions, executing 
any scalar instruction it encounters and sending any vector instructions it 
encounters to the vector CPU. The vector processor maintains a queue of pending 
instructions in which it places instructions it receives while it is busy. The VMS 

B-5 



VMS Version 5.4 Features 
VAX Vector Processing Systems 

operating system and its vectorizing compilers help ensure that the activities of 
both scalar and vector CPUs are synchronized. (Section B.2.3.7 describes those 
situations in which vectorized VAX MACRO programs must enforce scalar and 
vector CPU synchronization. ) 

Certain VAX system models offer a vector processing option. In VAX 6000-400 
series systems, the vector CPU occupies a slot on the memory interconnect; the 
scalar-vector interconnect joins it to the scalar CPU, which resides in an adjacent 
slot (see Figure B-1). In VAX 9000 series systems, the vector processor is an 
integral part of the CPU, as shown in Figure B-2. 

Figure B-1 VAX 6000^400 Series Vector-Present Processor Configuration 

XMI 

Scalar-Vector 
Interconnect 

Scalar 
CPU 

Scalar 
CPU 

Scalar 
CPU 

C 

C 

C 
Vector 
CPU C 

VAXBI Bus 
Adapter 

VAXBI Bus 
Adapter VAXBI 

Memory  ' 
Controller Array Bus 

,, 

Memory 
Controller Array Bus 

ZK-1945A-G E 

Like VAX scalar processing systems, a VAX vector processing system can 
participate as a member of a VAXcluster or as a node in a network or it can 
be run as a standalone system. 

B-6 



VMS Version 5.4 Features 
Vectorized Programs 

Figure B-2 VAX 9000 Series Vector-Present Processor Configuration 

Scalar . 

CPU 

•~• Vector 

Scalar . 

CPU 
.• 

•~ Vector 

CPU CPU Memory 

v v v v vv 

n n 

v v 

System Control Unit 

I/O Control Unit 

ZK-1944A-G E 

B.2.1.2 Vectorized Programs 
The benefits of vectorization depend, to a large degree, on the specific techniques 
and algorithms of an application. CPU-intensive applications involving repeated 
operations on groups of simple elements are well-suited to vectorization. VAX 
vector processing systems are particularly beneficial in the fields of seismic 
analysis, weather forecasting, molecular modeling, computational fluid dynamics, 
signal processing, financial modeling, and finite element analysis. 

There are several methods you can use to produce a vectorized program in a VMS 
system. 

Most applications that benefit from vector processing can be developed as scalar 
programs in a high-level language and then submitted to a vectorizing compiler 
for that language. A vectorizing compiler, such as the VAX FORTRAN High 
Performance Option (HPO), can recognize sections of code within a program, 
usually inside formal loops, that can be vectorized. It analyzes data dependences, 
identifies other inhibitors to vector processing, and restructures code sequences to 
allow the compiler to generate optimized VAX vector instruction sequences. 

Additionally, applications can be vectorized by a call to the vectorized routines in 
the VMS Run-Time Library mathematics facility (RTL MTH$) or to the vectorized 
routines within the optional DIGITAL Extended Math Library (Dx;ML): 

• The vectorized RTL MTH$ routines that can be called by a high-level 
language application include the Level 1 Basic Linear Algebra Subroutines 
(BLAS) and First-Order Linear Recurrence (FOLR) routines. In addition, VAX 
vectorizing compilers (and programs written in VAX MACRO) can generate 
calls to vectorized versions of the standard scalar RTL MTH$ routines. (The 



VMS Version 5.4 Features 
Vectorized Programs 

vectorized RTL MTH$ routines are introduced in Section B.2.3.1 and fully 
discussed in the VMS RTL Mathematics (MTH~) Manual.) 

• The DIGITAL Extended Math Library (D~;ML) is an optional software product 
that provides additional vectorized mathematics routines such as BLAS Level 
1-extended, 2, and 3, plus signal processing routines. 

Finally, those programs that require strict control over the VAX vector hardware 
can be written in VAX MACRO and use the VAX vector instructions directly. 

The terms vectorized program, vectorized application, and vectorized 
image all refer to programs produced by a vectorizing compiler, programs that 
call one or more vectorized routines, and programs written in VAX MACRO that 
issue VAX vector instructions. A vectorized image from any of these categories 
eventually results in the execution of one or more vector instructions that 
transform its process into a vector consumer. 

See Section B.2.3 for an overview of the VMS vector processing programming 
environment. 

B.2.1.3 VMS Support for Vector Processing 
The VMS operating system provides fully shared, multiprogramming support for 
VAX vector processing systems. By default, VMS loads vector processing support 
code when initializing a VAX system that includes vector-present processors but 
does not load it when initializing vector-absent systems. (A system manager 
can control this behavior by using the SYSGEN parameter VECTOR_PROC, as 
described in Section B.2.2.1.) The presence of vector support code in a system has 
little effect on processes running in a scalar-only system or on scalar processes 
running in avector-present system. If many processes must simultaneously 
compete for vector processor resources in a system, the system manager can 
maintain good performance by adjusting system resources and process quotas as 
indicated in Section B.2.2.3.1. 

The VMS operating system makes the services of the vector processor available to 
system users by means of a software abstract known as a capability. A system 
manager can restrict the use of the vector processor to users holding a particular 
identifier by associating an access control list (ACL) with the vector capability 
object. See Section B.2.2.4 for additional information. 

B.2.1.3.1 Life of a Vector Consumer As shown in Figure B-3, a process begins 
execution as a scalar consumer, partaking of the resources of a scalar processor 
or the scalar component of avector-present processor. 

When the image executing within the process's context issues its first vector 
instruction, VMS marks the process as requiring the system's vector capability. It 
also allocates sufficient system nonpaged dynamic memory in which to store this 
process's vector context. The vector context of a process consists of the contents 
of the vector registers VO through V15, the contents of the vector control registers 
(VCR, VLR, and VMR), the vector processor status, and the vector exception 
state. 

A process requiring the vector capability and having a vector context is known as 
a vector consumer. VMS must schedule a vector consumer on avector-present 
processor. As long as it remains a vector consumer, a process is effectively 
prohibited from executing on any scalar processor in the system. 



VMS Version 5.4 Features 
VMS Support for Vector Processing 

Figure B-3 Life of a Vector Consumer 

can be scheduled on 
scalar processor or 
scalar/vector processor pair 

image activation 

issues vector 
instruction  

SCALAR : vectorized 
CONSUMER : image exits 

requires system vector 
capability, must be scheduled 
on scalar/vector processor pair 

vectorized 
image exits 

MARGINAL 
VECTOR 

CONSUMER 

issues vector 
instruction 

VECTOR 
CONSUMER 

issues no vector 
instruction for 

VECTOR MARG I 
quanta 

ZK-1943A-GE 

However, over the course of its execution, a typical vectorized image issues 
sequences of scalar instructions intermixed with sequences of vector instructions. 
For those periods in which it performs scalar operations exclusively, a process 
can relinquish its need for the vector capability and become eligible for execution 
on any processor in the system. VMS preserves the vector context of any such 
marginal vector consumer in the expectation that it will eventually issue 
another vector instruction and again become a vector consumer. 

In a system in which many vector consumers are competing for the vector 
processor, the dynamic transition of vector consumers to marginal vector 
consumers (and back again) allows VMS to more efficiently distribute vector 
processor resources and enhances the performance of vectorized applications. 
Note that a system manager can control the transition of a vector consumer to a 
marginal vector consumer by setting the SYSGEN parameter VECTOR_MAR,GIN 
(as discussed in Section B.2.2.3.2). 

Ultimately, a vector consumer or marginal vector consumer reverts to being a 
scalar consumer when the vectorized image it is executing exits. 

In the course of system activity, another process could preempt the execution 
of a vector consumer on avector-present processor. When this occurs, VMS 
immediately saves the vector consumer's scalar context, as it does for traditional 
scalar processes. However, VMS allows its vector context to remain intact in the 
vector CPU. Depending upon the nature of the intervening processes scheduled 
on that processor, VMS, in most cases, tries to reschedule a vector consumer on 
the vector-present processor on which it was last scheduled. 



VMS Version 5.4 Features 
VMS Support for Vector Processing 

Because scalar consumers and marginal vector consumers do not use the vector 
CPU, they do not disturb the vector context of the latest vector consumer on the 
vector-present processor on which they are scheduled. If only processes of these 
types were scheduled on the vector-present processor since the vector consumer 
last ran, the vector consumer can resume execution on that processor without the 
overhead associated with a restoration of its vector context from memory. This is 
known as a "fast" vector context switch. 

Other vector consumers, however, do use the vector CPU. When placing a vector 
consumer into execution on avector-present processor, VMS stores in memory the 
vector context of the processor's latest vector consumer. When it later reschedules 
this vector consumer, VMS can place it into execution on any vector-present 
processor in the system, but it must restore its vector context from memory. This 
is known as a "slow" vector context switch. 

Slow vector processing context switches are most likely when there are more 
vector consumers than vector-present processors in the systems. A system 
manager can adjust system parameters (including the VECTOR_NZARGIN 
parameter) and system resources to help reduce the number of slow vector 
context switches as described in Section B.2.2. 

B.2.1.3.2 VAX Vector Instruction Emulation Facility (VVIEF) The VAX Vector 
Instruction Emulation Facility (VVIEF) is a standard feature of the VMS 
operating system that allows vectorized applications to be written and debugged 
on a VAX system in which vector processors are not available. VVIEF emulates 
the VAX vector processing environment, including the nonprivileged VAX vector 
instructions and the VMS vector system services (described in Sections B.2.3.2, 
B.2.3.3, and B.2.3.4). Use of VVIEF is restricted to user-mode code. 

VVIEF is strictly a program development tool and not arun-time replacement for 
vector hardware. There is no performance benefit from vectorizing applications to 
run under VVIEF; vectorized applications running under VVIEF typically execute 
five times slower than their scalar counterparts. 

VMS supplies the VVIEF bootstrap code as an executive loadable 
image. The system manager invokes the command procedure 
SYS$UPDATE:VVIEF$INSTAL.COM to cause VMS to load VVIEF at the next 

system boot and each successive system boot. Note that, in the presence of 
VMS vector support code, VVIEF remains inactive. Although it is possible to 
prevent the loading of VMS vector support code in avector-present system 
(see Section B.2.2.1) and activate VVIEF, there are few benefits. Should the 
only scalar-vector processor pair in the system fail, the execution of preempted 
vectorized applications will not be resumed under the emulator. 

See Section B.2.2.6 for additional information on loading and unloading VVIEF. 

B.2.2 Managing the Vector Processing Environment 
Managing a VAX vector processing system includes the following tasks: 

• Loading the VMS vector processing support code 

• Configuring a vector processing system 

• Managing processes requiring the system's vector processing resources 

• Obtaining information about the status and use of the system's vector 
processing resources 



VMS Version 5.4 Features 
Managing the Vector Processing Environment 

• Loading the VAX Vector Instruction Emulation Facility (VVIEF) bootstrap 
code 

This section describes the features VMS has introduced or enhanced to facilitate 
the accomplishment of these tasks. It concludes with a list of messages VMS uses 
to report information about the condition of the vector processing system. 

B.2.2.1 Loading the VMS Vector Processing Support Code 
By default, in a VAX vector processing system, VMS automatically loads the 
vector processing support code at boot time. You can override the default 
behavior by setting the static system parameter VECTOR_PROC as described 
in Table B-2. 

Table B-2 Settings of VECTOR_PROC System Parameter 

Value Result 

0 

1 

2 

Do not load the vector processing support code, regardless of the system 
configuration. 

Load the vector processing support code if there is at least one vector-present 
processor. This is the default value. 

Load the vector processing support code if the system is vector capable. This 
setting is most useful for a system in which processors have separate power 
supplies. With this setting, you can reconfigure a vector processor into the 
system without rebooting the VMS operating system. 

B.2.2.2 Configuring a VMS Vector Processing System 
You can add or remove avector-present processor to or from a VMS 
multiprocessing configuration at boot time by using the SYSGEN parameter 
SMP_CPUS or at run time by using the DCL commands START/CPU and 
STOP/CPU. Note that VMS treats the scalar and vector CPU components of 
a vector-present processor as a single processor, starting them and stopping them 
together. 

At boot time, the setting of the SYSGEN parameter SMP_CPUS identifies which 
secondary processors in a VMS multiprocessing system are to be configured, 
including those processors that are vector present. (VMS always configures the 
primary processor.) The default value of —1 boots all available processors, scalar 
and vector-present alike, into the configuration. (See the VMS System Generation 
Utility Manual for additional information about this parameter.) Note that, prior 
to starting avector-present processor, you should make sure that the vector 
processing support code (see Section B.2.2.1) is loaded at boot time. Otherwise, 
processes will only be able to use the scalar CPU component of the vector-present 
processor. 

To bring secondary processors into a running VMS multiprocessing system, you 
use the DCL command START/CPU. To remove secondary processors from the 
system, use the STOP/CPU commands. Again, you must make sure that the 
vector processing support code has been loaded at boot time for the vector CPU 
component of vector-present processors started in this way to be utilized. 

However, note that if you enter aSTOP/CPU command that would cause the 
removal of avector-present processor that is the sole provider of the vector 
capability for currently active vector consumers, the command fails and generates 
a message. In extreme cases, such as the removal of a processor for repair, you 
can override this behavior by entering the command STOP/CPU/OVERRIDE. 
This command stops the processor, despite stranding processes. 

B-11 



VMS Version 5.4 Features 
Configuring a VMS Vector Processing System 

When aSTOP/CPU/OZTERRIDE command is entered for avector-present 
processor, or when avector-present processor fails, VMS puts all stranded vector 
consumers into aCPU-capability-wait (RSN$_CPUCAP) state until avector-
present processor is returned to the configuration. To any other process that 
subsequently issues a vector instruction (including a marginal vector consumer), 
VMS returns a "requested CPU not active" message (CPUNOTACT). 

See the VMS DCL Dictionary for additional information about the START/CPU 
and STOP/CPU commands. 

B.2.2.3 Managing Vector Processes 
As described in Section B.2.1.3, VMS scheduling algorithms automatically 
distribute vector and scalar processing resources among vector consumers, 
marginal vector consumers, and scalar consumers. However, VAX vector 
processing configurations vary in two important ways: 

• The amount of vector processing activity the configuration must accommodate 

• The number of vector-present processors available in the configuration to 
service vector processing needs 

In a configuration in which there are more vector consumers in a system than 
there are scalar-vector processor pairs to service them, vector consumers share 
vector-present processors according to process priority. At a given priority, 
VMS schedules vector consumers on avector-present processor in a round-
robin fashion. Each time VMS must schedule a new vector consumer on a 
vector-present processor, it must save the vector context of the current vector 
consumer in memory and restore the vector context of the new vector consumer 
from memory. When such "slow" vector context switches occur too frequently, 
a significant portion of the processing time is spent on vector context switches 
relative to actual computation. 

Systems that have heavy vector processing needs should be adequately configured 
to accommodate those needs. There are, however, some mechanisms a system 
manager can use to tune the performance of an existing configuration. 

B.2.2.3.1 Adjusting System Resources and Process Quotas Systems in which 
several vector consumers are active simultaneously might experience increased 
paging activity as processes share the available memory. To reduce process 
paging, you might need to use the Authorize Utility to adjust the working-set 
limits and quotas of the processes running vectorized applications. An increase 
of the process maximum working-set size (SYSGEN parameter WSMAX) might 
also be necessary. Additionally, a vectorized application can use the Lock Pages 
in Working Set system service (SYS$LKWSET) to enhance its own performance. 

VMS allots to each vector consumer 8 kilobytes of system nonpaged dynamic 
memory in which VMS stores vector context information. Depending on how 
many vector consumers are active in the system simultaneously, you might need 
to adjust the SYSGEN parameter NPAGEDYN. To determine the current usage 
of nonpaged pool, use the DCL command SHOW MEMORYlPOOL/FULL, which 
displays the current size of nonpaged pool in bytes. 

See the VMS System Generation Utility Manual and the VMS Authorize Utility 
Manual for additional information about these mechanisms. 



VMS Version 5.4 Features 
Managing Vector Processes 

To obtain optimal performance of a VAX vector processing system, you should 
take some care to set up generic batch queues that avoid saturating the system's 
vector resources. If a queue contains more active vectorized batch jobs than there 
are vector-present processors in the system, a significant portion of the processing 
time will be spent on vector context switches. 

The recommended means for dispatching vectorized batch jobs to a VAX vector 
processing system is to set up a separate queue (for instance, VECTOR_BATCH) 
with a job limit equal to the number of vector-present processors in the system. 
When submitting vectorized batch jobs, users should be encouraged to submit 
them to this generic vector processing batch queue. 

B.2.2.3.2 Distributing Scalar and Vector Resources Among Processes As a 
vector consumer, a process must be scheduled only on avector-present processor. 
If the image the process is executing issues only scalar instructions for a period of 
time and must share the scalar-vector processor pair with other vector consumers, 
its inability to run on an available scalar processor could hamper its performance 
and the overall performance of the system. 

By default, VMS assumes that, if a vector consumer has not issued a vector 
instruction for a certain period of time, it is unlikely that it will issue a vector 
instruction in the near future. VMS relinquishes this process's need for the vector 
capability, classifying it as a marginal vector consumer. 

In an asymmetric vector processing configuration, detection of marginal vector 
consumers achieves the following desirable effects: 

• Because a marginal vector consumer is eligible to run on a larger set of 
processors, its response time will improve. 

• The scheduling of marginal vector consumers on scalar processors reduces the 
contention for vector-present processors. 

• _Because vector consumers issuing vector instructions are more likely to be 
scheduled on vector-present processors, the vector CPU is more efficiently 
used. 

A system manager uses the SYSGEN parameter VECTOR_NZAR,GIN to establish 
the interval of time at which VMS checks the status of all vector consumers. 
The VECTOR_MARGIN parameter accepts an integer value between 1 and —1 
(FFFFFFFF16). This value represents a number of consecutive process quanta 
(as determined by the SYSGEN parameter QUANTUM). If the process has not 
issued any vector instructions in the specified number of quanta, VMS declares it 
a marginal vector consumer. A value of —1 disables the checking mechanism. 

The default value of the VECTOR_MARGIN parameter is 10010. 

B.2.2.4 Restricting Access to the Vector Processor by Using ACLs 
Using the SET ACL and SHOW ACL commands, a system manager can restrict 
the use of the vector processor to users holding a particular identifier. By 
associating an access control list (ACL) with the vector capability, a university 
might limit use of the vector processor to faculty and students in an image 
processing course, or a service bureau might charge users for access to the vector 
capability, time spent on the vector processor, or both. 

When using either the SET ACL or SHOW ACL command with Version 5.4 of 
the VMS operating system, the system manager can specify a new object type, 
CAPABILITY, as the argument to the /OBJECT_TYPE qualifier. This object type 
is a system capability, such as the ability to process VAX vector instructions. 
Currently, the only defined object name for the CAPABILITY object type is 

B-13 



VMS Version 5.4 Features 
Restricting Access to the Vector Processor by Using ACLs 

VECTOR. Therefore, when using the SHOW ACL or SET ACL command, the 
system manager must supply the capability name (VECTOR) as the argument to 
the object type, as in the following examples. (For additional information about 
the SET ACL and SHOW ACL commands, see the VMS DCL Dictionary.) 

Use the following DCL command format to establish one or more access control 
entries (ACES) on the vector capability: 

SET ACUOBJECT=CAPABILITY VECTOR/ACL[=(ace[,...])] 

Note that you must be in the SYSTEM user category (as described in VMS DCL 
Concepts Manual) to set an ACL on the vector capability. 

The following DCL command displays the ACL on the vector capability: 

$ SHOW ACL/OBJECT=CAPABILITY VECTOR 

Note that the ACL is on the vector capability, not on the use of any or all vector-
present processors in the system. For this reason, VMS can still schedule 
processes without permission to use the vector capability on avector-present 
processor. However, these processes can use only the scalar CPU component 
of the processor and cannot execute vector instructions. Likewise, because the 
ACL is on the vector capability and not on avector-present processor, you cannot 
establish an ACL to force long-running jobs to a specific processor. 

The Change ACL ($CHANGE_ACL) and Check Access ($CHECK ACCESS) 
system services provide means for setting and removing ACLs on the VECTOR 
capability and for checking a process's ability to use vector processing resources. 

B.2.2.5 Obtaining Information About a Vector Processing System 
You can obtain information about the status of the vector processing system and 
the use of the system by individual processes through various means, including: 

• The DCL lexical functions F$GETJPI and F$GETSYI 

• The DCL command SHOW CPU 

• The DCL commands SHOW PROCESS and LOGOUT/FULL 

• The Accounting Utility (ACCOUNTING) 

• The Error Log Utility (ERROR LOG) 

• The Monitor Utility (MONITOR) 

B.2.2.5.1 DCL Lexical Functions F$GETJPI and F$GETSYI The DCL lexical 
function F$GETJPI accepts the following items and returns the corresponding 
information regarding the vector status of a specified process: 

Item 
Return 
Type Information Returned 

FAST_VP_SWITCH Integer Number of times this process has issued a vector instruction 
that resulted in an inactive vector processor being enabled 
without the expense of a vector context switch 

SLOW_VP_SWITCH Integer Number of times this process has issued a vector instruction 
that resulted in an inactive vector processor being enabled 
with a full vector context switch 

VP_CONSUMER Boolean Flag indicating whether the process is a vector consumer 



VMS Version 5.4 Features 
Obtaining Information About a Vector Processing System 

Item 
Return 
Type Information Returned 

VP_CPUTIM Integer Total amount of time the process has accumulated as a 
vector consumer 

The DCL lexical function F$GETSYI accepts the following items and returns the 
corresponding information regarding the status of the vector processing system: 

Item 
Return 
Type Information Returned 

VP_NUMBER Integer Number of vector processors in the system 

VP_MASK Integer Mask indicating which processors in the system have vector 
coprocessors 

VECTOR_EMULATOR Integer Flag indicating the presence of the VAX Vector Instruction 
Emulation Facility (VVIEF) in the system 

See the VMS DCL Dictionary for additional information about the DCL lexicals 
F$GETJPI and F$GETSYI. 

B.2.2.5.2 SHOW CPU Command The SHOW CPU/FULL command lists the 
capabilities of the specified CPU. The manager of a VAX vector processing system 
can issue this command to determine the presence of the vector capability in the 
system prior to executing aSTOP/CPU command. 

See the VMS DCL Dictionary for additional information about the SHOW CPU 
command. 

B.2.2.5.3 SHOW PROCESS and LOGOUT/FULL Commands If the target 
process has accrued any time as a vector consumer scheduled on avector-present 
processor, the DCL commands SHOW PROCESS and LOGOUT/FULL display the 
elapsed vector CPU time and the charged vector CPU time, respectively. 

To accumulate vector CPU time, a process must be a vector consumer (that 
is, require the system vector capability) and be scheduled on avector-present 
processor. VMS still charges the vector consumer vector CPU time, even if, when 
scheduled on the vector-present processor, it does not actually use the vector 
CPU. Note that, because scalar consumers and marginal vector consumers do not 
use the vector CPU, they do not accrue vector CPU time, even when scheduled on 
a vector-present processor. 

See the VMS DCL Dictionary for additional information about the SHOW 
PROCESS and LOGOUT commands. 

B.2.2.5.4 Vector Processing Support Within the VMS Accounting Utility 
(ACCOUNTING) In its full listing format, the VMS Accounting Utility displays 
the vector CPU time accumulated by a process or an image during its life span. 

A process accumulates vector CPU time while it is a vector consumer (that is, 
requiring the system vector capability) and it is scheduled on avector-present 
processor. VMS still charges the vector consumer vector CPU time, even if, when 
scheduled on the vector-present processor, it does not actually use the vector 
CPU. Note that, because scalar consumers and marginal vector consumers do not 
use the vector CPU, they do not accrue vector CPU time, even when scheduled on 
a vector-present processor. 



VMS Version 5.4 Features 
Obtaining Information About a Vector Processing System 

An image accrues vector CPU time while it is executing within the context 
of a vector consumer on avector-present processor. Because VMS marks all 
processes, including vector consumers, as scalar consumers at image rundown, 
it is impossible for an image that issues only scalar instructions to accumulate 
vector CPU time. 

The /SORT qualifier to the ACCOUNTING command accepts the VECTOR_ 
PROCESSOR keyword and sorts the accounting records according to ascending or 
descending vector CPU time. The /REPORT qualifier also accepts the VECTOR_ 
PROCESSOR keyword and produces a summary report of vector CPU usage. 

See Section B.2.3.8 for a description of the vector CPU time field in the 
ACCOUNTING resource packet. The VMS Accounting Utility Manual provides a 
complete description of the VMS Accounting Utility. 

B.2.2.5.5 Vector Support Within the Error Log Utility (ERROR LOG) With 
Version 5.4 of the Error Log Utility, the /INCLUDE qualifier to the ANALYZE 
/ERROR_LOG command accepts the device-class keyword VECTOR, which 
produces an error log report that includes vector processing errors. (Specifying 
the VECTOR keyword with the !EXCLUDE qualifier excludes vector processing 
errors from the error log report. ) 

B.2.2.5.6 Vector Support Within the VMS Monitor Utility (MONITOR) With 
Version 5.4 of the VMS Monitor Utility, the new MONITOR VECTOR command 
initiates monitoring of the VECTOR class and displays the number of 10-
millisecond clock ticks per second in which one or more vector consumers have 
been scheduled on each currently configured vector processor. 

See Section B.12.3 for a complete description of the MONITOR VECTOR 
command and the VECTOR class. See Section B.2.3.9 and Section B.12.4 for 
related information about the VECTOR class record and format. Refer to the 
VMS Monitor Utility Manual if you need additional information about the VMS 
Monitor Utility. 

B.2.2.6 Loading the VAX Vector Instruction Emulation Facility (VVIEF) 
The VAX Vector Instruction Emulation Facility (WIEF) is a standard feature 
of the VMS operating system that allows vectorized applications to be written 
and debugged on a VAX system in which vector processors are not available. 
WIEF is intended strictly as aerogram-development tool and not as a run-
time replacement for vector hardware. There is no performance benefit from 
vectorizing applications to run under WIEF; vectorized applications running 
under WIEF typically execute five times slower than their scalar counterparts. 

VMS supplies the WIEF bootstrap code as an executive loadable image. To cause 
VMS to load WIEF at the next system boot and at each subsequent system boot, 
invoke the command procedure SYS$UPDATE:WIEF$INSTAL.COM. To unload 
WIEF, invoke the command procedure SYS$UPDATE:WIEF$DEINSTAL.COM 
and reboot the system. You can determine the presence or absence of WIEF on a 
system by issuing the following DCL commands: 

$ X = F$GETSYI("VECTOR_EMULATOR" j 
$ SHOW SYMBOL X 
X = 1 Hex = 00000001 Octal = 0000000001 

A return value of 1 indicates the presence of WIEF; a value of 0 indicates its 
absence. 



VMS Version 5.4 Features 
Loading the VAX Vector Instruction Emulation Facility (VVIEF) 

Note that, although WIEF might be loaded into the system, in the presence of 
VMS vector support code, it remains inactive. Although it is possible to prevent 
the loading of VMS vector processing support code in avector-present system 
(see Section B.2.2.1) and. activate VVIEF, there are few benefits. Should the only 
vector-present processor in the system fail, the execution of preempted vectorized 
applications will not resume under the emulator. 

B.2.2.7 System Messages Related to Vector Processing Activities 
Table B-3 lists the system messages that might result from vector activity in 
a VAX vector processing system. It describes the conditions that might have 
resulted in the message and suggests how you can repair the condition causing 
the error. 

For information about how VMS reports exception conditions to condition 
handlers, see Section B.2.3.6. 

Table B-3 System Messages Relating to Vector Processing 

Message Message Text Description and Recovery 

ACCVIO access violation, reason mask = See the VMS System Messages and Recovery 
xx, virtual address =location, Procedures Reference Manual for a description of 
PC =location, PSL = xxxxxxx the ACCVIO message. The lowest three bits of the 

reason mask indicate that an instruction has caused 
a length violation (bit 0), referenced the process 
page table (bit 1), and attempted a read or modify 
operation (bit 2). VMS defines two additional bits 
to reflect vector processing memory management 
exceptions: avector operation on an improperly 
aligned vector element in memory (bit 3) and vector 
instruction reference to an UO space address (bit 4). 

BADCONTEXT invalid or corrupted context The vector state of a mainline routine as saved in 
encountered process Pl space has been corrupted and cannot be 

restored. A call to the Restore Vector State system 
service (SYS$RESTORE_VP_STATE) can result in 
this error, if some coding error has overwritten the 
saved vector state. (See the VMS System Services 
Reference Manual for more informaton about this 
system service. ) 

CPUNOTACT requested CPU not active The current process requires system capabilities 
that are not available or no longer available among 
the active processors in the system. If this message 
is associated with a vector disabled (VECDIS) status 
code, avector-present processor within the system is 
not available, has failed, or has been removed from 
the system. 

See Section B.2.2.2. 

EXQUOTA exceeded quota If this message is associated with a vector disabled 
(VECDIS) status code, the process's paging file 
quota prohibits the allocation of sufficient process 
memory for storing its mainline vector state. (See 
Section B.2.2.3.1.) 

(continued on next page) 



VMS Version 5.4 Features 
System Messages Related to Vector Processing Activities 

Table B-3 (Cont.) System Messages Relating to Vector Processing 

Message Message -Text Description and Recovery 

ILLVECOP illegal vector opcode fault, An operation code designated as an illegal 
opcode='xx', PC='location', vector opcode by the VAX architecture has been 
PSL='xxxxxxxx' encountered during the execution of an image. 

See Section B.2.3.6 and the VAX MACRO and 
Instruction Set Reference Manual for additional 
information about this exception. 

IMGVEXC image exiting with pending An exception has resulted due to the execution of a 
vector exceptions vector instruction issued by an image, but the image 

has exited before the exception could be delivered. 

See Section B.2.3.7.4. 

INSFMEM insufficient dynamic memory If this message is associated with a vector disabled 
(VECDIS) status code, the current process has 
issued a vector instruction, but insufficient 
system nonpaged dynamic memory exists to 
establish the process as a vector consumer. (See 
Section B.2.2.3.1.) 

INSFWSL insufficient working-set limit If this message is associated with a vector disabled 
(VECDIS) status code, the process's current 
working-set list limit does not allow its mainline 
vector state to be resident in memory. (See 
Section B .2.2.3.1. ) 

NOPRIV no privilege for attempted If this message is associated with a vector disabled 
operation (VECDIS) status code, an ACL on the system's 

vector capability has prevented the process from 
executing vector instructions. (See Section B.2.2.4.) 

NOSAVPEXC no saved vector exception for the A call was made to the Restore Vector Processing 
exception-id State system service (SYS$RESTORE_VP_ 

EXCEPTION) that specified a value for an exception 
ID that does not correspond to that of any saved 
vector exception state. (See the VMS System 
Services Reference Manual for more information 
about this system service. ) 

(continued on next page) 



VMS Version 5.4 Features 
System Messages Related to Vector Processing Activities 

Table B-3 (Cont.) System Messages Relating to Vector Processing 

Message Message Text Description and Recovery 

VARITH vector arithmetic fault, 
summary=xx, mask=xx, 
PC=location, PSL=xxxxxxxx 

A vector operate instruction, executing within 
the current context, has resulted in a vector 
arithmetic trap. (See Section B.2.3.6 for assistance 
in interpreting the exception summary mask, vector 
register mask, PC, and PSL.) 

Because arithmetic operations are performed in 
a substantially different manner on vectors than 
on scalars, the resolution of vector arithmetic 
exceptions requires some special techniques. 
(See Section B.2.3.6 for information about the 
mechanisms by which exceptions are reported 
and identified.) One or a combination of several 
debugging strategies can help you determine which 
calculations resulted in the reported error or errors: 

• Recompile the source with the /DEBUG, 
/NOVECTOR, /CHECK=BOUNDS qualifiers; 
relink using the /DEBUG and /MAP qualifiers; 
and run the resulting scalar image with the 
/DEBUG qualifier. A scalar arithmetic exception 
should occur at the calculation that caused the 
original vector arithmetic exception. 

• Recompile the source using the /DEBUG, 
/LIST, and /VECTOR qualifiers; relink using 
the /DEBUG and /MAP qualifiers; and 
run the resulting image with the /DEBUG 
qualifier. (If the /ASSUME=NOACCURACY_ 
SENSITIVE qualifier was used in the original 
compilation, specify /ASSUME=ACCURACY 
SENSITIVE.) Use the SET VECTOR_MODE 
SYNCHRONIZED or the SYNCHRONIZE 
VECTOR_MODE debugger command to 
guarantee that all exceptions resulting from 
vector operations be delivered before the 
execution of the next scalar instruction. Step 
through the program, inspecting the contents of 
those vector registers that are involved in each 
vector operation. 

(continued on next page) 



VMS Version 5.4 Features 
System Messages Related to Vector Processing Activities 

Table B-3 (Cont.) System Messages Relating to Vector Processing 

Message Message Text Description and Recovery 

When a vector operate instruction causes a 
floating-point exception in a vector element, 
the exception result is encoded into the 
corresponding element of the destination 
register. When the destination vector register 
is the target of an E~:AIVIINE/FLOAT debugger 
command, the debugger displays the decoded 
exception message in the associated vector 
element. 

When a vector operate instruction causes an 
integer overflow in a vector element, the 
corresponding element of the destination 
register contains a value that is larger than 
32 bits, but of a different sign than the 
instruction's operands. When the destination 
vector register is the target of an E~;.AMINE 
debugger command, you must inspect each 
element for such results. 

VASFUL virtual address space is full If this message is associated with a vector 
disabled (VECDIS) status code, insufficient process 
virtual address space exists to allow the current 
process's mainline vector state to be saved. (See 
Section B.2.2.3.1.) 

VECALIGN access violation, reason mask = The current process has issued a VAX vector 
xx, virtual address =location, memory access instruction that has attempted an 
PC =location, PSL = xxxxxxx operation on an improperly aligned vector element. 

The VAX architecture requires that vector operands 
to vector memory access instructions be naturally 
aligned in memory. Longwords must be aligned on 
longword boundaries; quadwords must be aligned on 
quadword boundaries. See Section B.2.3.6 and the 
VAX MACRO and Instruction Set Reference Manual 
for additional information. 

(continued on next page) 



VMS Version 5.4 Features 
System Messages Related to Vector Processing Activities 

Table B-3 (Cont.) System Messages Relating to Vector Processing 

Message Message Text Description and Recovery 

VECDIS vector disabled fault, code=xx, The current process has issued a vector instruction 
PC =location, PSL = xxxxxxx that requires that a vector processor become active. 

Under normal circumstances, this event is not 
reported to a system user. However, if the vector 
processor was unavailable due to some previously 
unreported condition, the VECDIS message is issued 
in association with one of the following messages. 

• BADCONTEXT 

• CPUNOTACT 

• EXQUOTA 

• INSFMEM 

• INSFWSL 

• MCHECK 

• NOPRIV 

• VASFUL 

See the description of the associated message in 
this table and the VMS System Messages and 
Recovery Procedures Reference Manual for additional 
information about any specific error. 

B.2.3 Programming in a Vector Processing Environment 
Most applications that benefit from vector processing can be developed as scalar 
programs in a high-level language and then submitted to a vectorizing compiler 
for that language. 

Additionally, applications can be vectorized by a call to the vectorized routines in 
the VMS Run-Time Library mathematics facility (RTL MTH$) or to the vectorized 
routines within the optional DIGITAL Extended Math Library (Dx:ML): 

• The vectorized RTL MTH$ routines that can be called by a high-level 
language application include the Level 1 Basic Linear Algebra Subroutines 
(BLAS) and First-Order Linear Recurrence (FOLR) routines. In addition, VAX 
vectorizing compilers (and programs written in VAX MACRO) can generate 
calls to vectorized versions of the standard scalar RTL MTH$ routines. (The 
vectorized RTL MTH$ routines are introduced in Section B.2.3.1 and fully 
discussed in the VMS RTL Mathematics (MTH) Manual.) 

• The DIGITAL Extended Math Library (Dx;ML) is an optional software 
product that provides additional vectorized mathematics routines such as 
BLAS Level 1-extended, 2, and 3, plus signal processing routines. 

Finally, those programs that require strict control over the VAX vector hardware 
can be written in VAX MACRO and use the VAX vector instructions directly. 

Use of high-level interfaces to VAX vector processing systems, such as the VAX 
FORTRAN HPO vectorizing compiler and the vectorized RTL MTH$ routines, 
provide a mechanism for quickly developing a vectorized program that conforms 

to the requirements of the VAX Procedure Calling and Condition Handling 
Standard and the VAX vector architecture. For instance, VAX vectorizing 



VMS Version 5.4 Features 
Programming in a Vector Processing Environment 

compilers and vectorized library routines automatically handle the complexities 
of properly handling scalar-vector synchronization, vector memory alignment, 
and the preservation of vector state across procedure calls. Additionally, the 
VAX FORTRAN HPO vectorizing compiler can recognize sections of code within 
a program, usually inside formal loops, that can be vectorized. It analyzes data 
dependences, identifies inhibitors to vector processing, and restructures code 
sequences to allow the compiler to generate optimized VAX vector instruction 
sequences. 

By contrast, VAX MACRO programmers must themselves ensure that vector code 
conforms to the rules stated in the VAX MACRO and Instruction Set Reference 
Manual and Section B.2.3.7. 

If you must write a vectorized program in VAX MACRO, you should be aware of 
the following: 

• You must specifically enable the processing of vector instructions by the 
VAX MACRO assembler by assembling with the /ENABLE or /NODISABLE 
qualifier to the MACRO command and supplying the keyword VECTOR. You 
can also explicitly enable the assembly of vector instructions by using the 
.ENABLE VECTOR directive. 

• The VAX MACRO assembler parses the assembler notation form of vector 
instructions and produces binary code in the instruction stream form 
prescribed by the VAX vector architecture. The UAX MACRO and Instruction 
Set Reference Manual describes both vector instruction forms and presents 
the assembler notation form in its instruction pages. 

• VAX MACRO programs must synchronize the vector CPU's memory references 
across procedure calls, as well as guarantee that pending vector exceptions 
are raised before crossing procedure boundaries. VAX MACRO programs 
must also ensure that the vector CPU's memory references are synchronized 
with the scalar CPU's memory references. Section B.2.3.7 and the VAX 
MACRO and Instruction Set Reference Manual describe the mechanisms by 
which VAX MACRO code can comply with these requirements. 

• The UAX MACRO and Instruction Set Reference Manual lists several 
additional restrictions, including the following: 

— VAX MACRO programs must naturally align vector operands to vector 
memory access instructions. Longwords must be aligned on longword 
boundaries; quadwords must be aligned on quadword boundaries. 

— VAX MACRO instructions cannot reference addresses in UO space. 

— Vector instructions cannot be issued at elevated interrupt priority levels 
(IPLs), specifically at or above IPL$_RESCHED. The vector disabled 
handler will force a system crash with the VPIPLHIGH bugcheck code 
("IPL too high to use the Vector Facility") when a user vector instruction 
is issued at or above IPL$_RESCHED. 

The remainder of this section discusses the following topics: 

• Vector routines in the MTH$ Run-Time Library 

• Obtaining information about a vector processing system 

• Releasing the vector processor 

• Preserving and restoring a routine's vector state 

• Issuing vector instructions at high IPLs 



VMS Version 5.4 Features 
Programming in a Vector Processing Environment 

• Debugging a vector application 

• Servicing vector processing exceptions 

• Utilizing vector information contained within the informational packets 
generated by the VMS Accounting Utility and VMS Monitor Utility 

B.2.3.1 Vector Routines in the MTH$ Run-Time Library 
The RTL MTH$ facility provides three sets of routines that allow manipulation of 
vectors and perform operations on vectors: 

• The Basic Linear Algebra Subroutines (BLAS) Level 1 copy vectors swap the 
elements of two vectors, scale vector elements, perform reduction operations 
on vectors, and effect a Givens plane rotation. Scalar and vector versions of 
the BLAS Level 1 are provided- in the new BLAS 1$ and VBLAS 1$ facilities, 
respectively. BLAS Level 1 forms an integral part of many standard libraries 
such as LINPACK and EISPACK. The version of the subroutines in the RTL 
VBLAS 1$ facility have been tuned to the VAX architecture to take advantage 
of vectorization. 

• The First Order Linear Recurrence (FOLR) routines provide a vectorized 
algorithm for the linear recurrence relation. (The traditional algorithm 
generally inhibits vectorization by using the result of a previous pass through 
a loop as an operand in subsequent passes through the loop. ) 

The FOLK routines in the RTL MTH$ facility perform addition, 
multiplication, or both addition and multiplication, on recursion elements, 
saving the result of each iteration in an array or saving only the last result 
in a variable. The RTL MTH$ facility supplies these routines in four groups, 
each accepting any of four data types: longword integer, F-floating, D-floating, 
or G-floating. 

• Certain key MTH$ routines have been vectorized to support Digital's 
vectorizing compilers, such as the VAX FORTRAN HPO. Vectorized versions 
of key F-floating, D-floating, and G-floating scalar routines employ vector 
hardware to the fullest, while maintaining results that are identical to those 
of their scalar counterparts. 

Vectorized MTH$ routines are never called directly from ahigh-level language 
program. At a call to a scalar version of one of these routines, a vectorizing 
compiler automatically determines whether an operation should be performed 
by the vector or scalar version of a routine. VAX MACRO programs, however, 
can call the vectorized MTH$ routines directly. 

See the VMS RTL Mathematics (MTH) Manual for complete information about 
these routines. 

Note that the VAX FORTRAN HPO detects usage of the vectorizable constructs 
within source code and automatically issues a call to the appropriate RTL 
MTH$ routines. See the description of the /BLAS qualifier in the compiler 
documentation. 



VMS Version 5.4 Features 
Obtaining Information About a Vector Processing System 

B.2.3.2 Obtaining Information About a Vector Processing System 
The Get Job/Process Information system service (SYS$GETJPI) accepts the 
following item codes and returns the indicated information about the vector 
status of one or more processes in the system: 

Item Code Return Value 

JPI$_FAST_VP_SWITCH Unsigned longword containing the number of times 
this process has issued a vector instruction that 
resulted in an inactive vector processor being enabled 
without the expense of a vector context switch. This 
count reflects those instances in which the process has 
reenabled a vector processor on which the process's 
vector context has remained intact. 

JPI$_SLOW_VP_SWITCH Unsigned longword containing the number of times 
this process has issued a vector instruction that 
resulted in an inactive vector processor being enabled 
with a full vector context switch. This vector context 
switch involves the saving of the vector context of the 
process that last used the vector processor and the 
restoration of the vector context of the current process. 

JPI$_VP_CONSUMER Byte, the low-order bit of which, when set, indicates 
that the process is a vector consumer. 

JPI$_VP_CPUTIM Unsigned longword that contains the total amount 
of time the process has accumulated as a vector 
consumer. 

The Get Systemwide Information system service (SYS$GETJPI) accepts the 
following item codes and returns the indicated information about the vector 
status of the system: 

Item Code Return Value 

SYI$_VP_NUMBER 

SYI$_VP_MASK 

SYI$_VE CTOR_EMULATOR 

Unsigned longword containing the number of vector 
processors in the system. 

Longword mask, the bits of which, when set, 
indicate which processors in the system have vector 
coprocessors. 

Byte, the low-order bit of which, when set, indicates 
the presence of the VAX Vector Instruction Emulation 
Facility (WIEF) in the system. 

See the VMS System Services Reference Manual for additional information about 
the $GETJPI and $GETSYI system services. 

B.2.3.3 Releasing the Vector Processor 
The Release Vector Processor system service (SYS$RELEASE_VP) terminates the 
current process's status as a vector consumer. Because $RELEASE_VP declares 
that the process no longer needs the system's vector capability, VMS is no longer 
restricted to scheduling it on avector-present processor. As a result, the process 
can be placed into execution on other CPUs in the system. 

See the VMS System Services Reference Manual for a full description of the 
invocation format and functions of this service. 



VMS Version 5.4 Features 
Preserving and Restoring a Routine's Vector State 

B.2.3.4 Preserving and Restoring a Routine's Vector State 
The vector context of a process consists of the contents of the vector registers VO 
through V15, the contents of the vector control registers (VLR, VCR, and VMR), 
the vector processor status, and the vector exception state. When a vectorized 
application involves calls among two or more routines, each of which issues vector 
instructions, two components of a process's vector context must be considered: 

• The vector registers that are shared across procedure calls 

• The vector exception state that exists just prior to a procedure call or return 

The VAX Procedure Calling and Condition Handling Standard (see 
Section B.2.3.7.1) requires that calling and called procedures agree as to the 
conventions by which they preserve and manipulate vector registers. For 
languages such as VAX MACRO, which allows direct access of registers, either 
the calling procedure or called procedure can save or restore vector registers 
shared between routines. 

The standard also requires that, if a procedure executes a vector instruction 
that might possibly raise an exception, the procedure must ensure that this 
exception is reported before it calls another procedure, returns to its caller, or 
exits. If a vector exception were pending at the time a procedure transferred 
control, it would be reported in the context of a procedure that did not incur the 
exception. VAX vectorizing compilers ensure that compiled code properly follows 
this requirement; calls to vector routines in the RTL MTH$ facility (as described 
in Section B.2.3.1) also comply with this prescription. However, vectorized code 
written in VAX MACRO must adhere to the rules discussed in Section B.2.3.7.4. 

For those routines that can run asynchronously with respect to the mainline 
routine such as asynchronous system trap (AST) routines, condition handlers, 
and exit handlers VMS automatically handles the saving and restoring of vector 
context. VMS supports. vector usage in these asynchronous routines by providing 
each routine that is active asynchronously within a process with its own vector 
state. 

The vector state of a routine reflects the vector context of the process at the time 
of the routine's execution or preemption, as the case may be, when an AST is 
delivered to the process or a condition handler is triggered. A process can have 
several vector states; for instance, one for its mainline routine and one for an AST 
routine that has interrupted the mainline. However, a process has only a single 
vector context, reflecting its current vector state. 

VMS automatically preserves the vector state of a routine as follows: 

• When auser-mode AST routine issues a vector instruction, VMS saves the 
vector state of the mainline routine. It restores the mainline vector state 
when the AST routine exits. 

• When auser-mode condition handler issues a vector instruction, VMS saves 
the vector state of the mainline routine. It restores the mainline vector state 
on continuing from the exception and on stack unwind. 

• When calling an exit handler, VMS clears the vector exception state. 

By default, when an asynchronous routine interrupts the execution of a mainline 
routine, VMS creates a new vector state when the routine issues its first vector 
instruction. At this point, the vector state of the mainline routine is inaccessible 
to the asynchronous routine. 



VMS Version 5.4 Features 
Preserving and Restoring a Routine's Vector State 

In certain cases, however, an AST routine or condition handler might need to read 
or modify the saved exception state of the mainline routine. To do so, the routine 
must call the Restore Vector State system service (SYS$RESTORE VP_STATE). 
$RESTORE VP_STATE restores the vector state of the process's mainline routine. 

In very rare cases, a procedure might need to preserve and restore the current 
vector exception state across individual contexts that it creates and maintains. 
For instance, a task manager could set up several discrete tasks, each of which 
has its own vector state. To implement such a system, the routine saves the 
contents of the appropriate vector registers and calls the Save Vector Exception 
State (SYS$SAVE_VP_EXCEPTION) and Restore Vector Exception State 
(SYS$RESTORE_VP_EXCEPTION) system services. 

The Save Vector Exception State service saves in memory any pending vector 
exception state and clears the vector processor's current exception state. The 
Restore Vector Exception State service restores from memory the vector state 
saved by a prior call to $SAVE_VP_EXCEPTION. After a routine invokes this 
service, the next vector instruction issued within the process causes the restored 
vector exception to be reported. 

See the VMS System Services Reference Manual for a full description of the 
syntax and use of the $SAVE_VP_EXCEPTION, $RESTORE_VP_EXCEPTION, 
and $RESTORE_VP_STATE system services. 

B.2.3.5 Debugging a Vectorized Program 
Version 5.4 of the VMS operating system supports the debugging of vector 
applications by adding new capabilities to the VMS Debugger, the VMS System 
Dump Analyzer (SDA), the debuggers of the VMS DeltalXDelta Utility (DELTA 
/XDELTA), and the Patch Utility. Additionally, the VMS exception detecting and 
reporting mechanism collects information regarding the nature and context of 
vector processing errors. Section B.2.3.6 describes the information VMS provides 
when reporting a vector processing exception. 

B.2.3.5.1 Vector Processing Support Within the VMS Debugger Through 
enhancements and additions to its existing command set, the VMS Debugger 
allows you to correct and tune vectorized applications. VMS Debugger commands 
enable you to perform the following tasks: 

• Control and monitor the execution of vector instructions with breakpoints, 
watchpoints, and other mechanisms 

• Examine and deposit into the vector control registers (VCR, VLR, and VMR) 
and the vector registers (VO through V15) 

• Examine and deposit vector instructions 

• Perform masked operations on vector registers to display only certain register 
elements or override the masking associated with a vector instruction 

• Control synchronization between the scalar and vector processors 

• Save and restore the current vector state when using the CALL command to 
execute a routine that might affect the vector state 

• Display vector register data using ascreen-mode display 

• Display the decoded results of vector arithmetic exceptions 

See the VMS Debugger Manual for complete information about these and other 
functions of the VMS Debugger. 



VMS Version 5.4 Features 
Debugging a Vectorized Program 

B.2.3.5.2 Vector Processing Support Within the VMS System Dump Analyzer 
(SDA) The System Dump Analyzer (SDA) provides several mechanisms for 
examining vector instructions and vector context from a system dump file or in a 
running system. They include the following: 

• You can decode and display vector instructions using the E~'.AMINE 
/INSTRUCTION command. This command displays the vector opcodes, 
switches, and operands in the form and order defined by the VAX MACRO 
assembler notation. Note that, when you use SDA to display the contents of 
memory locations, vector instructions appear in the instruction stream format 
defined by the VAX architecture; that is, an opcode followed by the vector 
control word in immediate addressing mode. (See the UAX MACRO and 
Instruction Set Reference Manual for descriptions of the assembler notation 
and instruction stream formats of vector instructions.) 

• You can examine the values of a process's vector registers and vector control 
registers by entering the SHOW PROCESS/VECTOR_REGISTERS command. 
This command obtains the values of the registers from the process's vector 
context area. Note that the names of these registers (VO through V15, VCR, 
VLR, and VMR) are not defined in the SDA symbol table. You cannot 
display the current contents of any of these registers using the E~;AMINE 
or EVALUATE command. 

• You can format the contents of a memory location as a process's vector context 
block. The symbol table SYS$SYSTEM:SYSDEF.STB contains a definition of 
this structure. You must use the READ command to load the symbols defined 
within this file into the SDA symbol table. 

• You can determine the presence and location of the VMS vector processing 
support code (VECTOR_PROCESSING.EXE) and the VAX Vector Instruction 
Emulation Facility (VVIEF) bootstrap code (VVIEF$BOOTSTRAP.EXE) by 
entering the SDA command SHOW EXECUTIVE. Both are executive loadable 
images. You can also use the SDA command READ/EXECUTIVE to load 
definitions of locations within these images into the SDA symbol table. 

B.2.3.5.3 Vector Processing Support Within the VMS Delta/XDelta Utility The 
VMS Delta~XDelta Utility (DELTA►/XDELTA) provides mechanisms for stepping 
through vector code, examining and decoding vector instructions, and setting 
breakpoints at vector instructions. You can use the following commands to debug 
a vectorized application: 

• The Open Location and Display Instruction in Instruction Mode command 
(!)displays the vector opcodes, switches, and operands in the form and 
order defined by the VAX MACRO assembler notation. Note that, when 
you use DELTAJXDELTA to display the contents of memory locations, 
vector instructions appear in the instruction stream format defined by the 
VAX architecture; that is, an opcode followed by the vector control word 
in immediate addressing mode. (See the VAX MACRO and Instruction Set 
Reference Manual for descriptions of the assembler notation and instruction 
stream formats of vector instructions. ) 

• The Step Instruction command (S) enables you to single-step through vector 
instructions. 

• The List Names and Locations of Loaded Executive Images command 
(;L) enables you to determine the presence and location of the VMS 
vector processing support code (VECTOR_PROCESSING.EXE) and 



VMS Version 5.4 Features 
Debugging a Vectorized Program 

the VAX Vector Instruction Emulation Facility (WIEF) bootstrap code 
(WIEF$BOOTSTRAP.EXE ). 

• The Breakpoint (;B) and Proceed from Breakpoint (;P) commands allow you to 
set and proceed from breakpoints at a vector instruction. 

Note that, because the names of the vector registers (VO through V15) and vector 
control registers (VCR, VLR, and VMR) are not defined in the DELT~►/XDELTA 
symbol table, you cannot display their values using DELTA/XDELTA. 

B.2.3.5.4 Vector Processing Support Within the VMS Patch Utility 
Enhancements to the VMS Patch Utility allow it to interpret and display vector 
instructions that are replaced or deposited in a VAX MACRO program image file. 

When issuing aREPLACE/INSTRUCTION instruction, you must supply the 
vector opcode, switches, and operands in the form and order defined by the 
VAX MACRO assembler notation. When displaying the contents of an image in 
instruction format, the Patch Utility produces vector instructions in this format. 
However, its hexadecimal listings present vector instructions in the instruction 
stream format defined by the VAX architecture; that is, an opcode followed by the 
vector control word in immediate addressing mode. (See the VAX MACRO and 
Instruction Set Reference Manual for descriptions of the assembler notation and 
instruction stream formats of vector instructions. ) 

B.2.3.6 Servicing Vector Exceptions 
During the execution of an image, the image can incur a fatal error known as an 
exception condition. If the image has not declared a condition handler, the system 
forces the image to exit and displays a message indicating the reason for the 
exception. If the image has declared a condition handler, VMS transfers control 
to the handler to manage the exception. (See the Introduction to VMS System 
Services for a description of how to write and declare a condition handler.) 

There are two major classes of vector processing exceptions: 

• Memory management exceptions, including access violations, vector 
alignment faults, and vector instruction references to I/O space 

• Vector arithmetic exceptions 

VMS reports exceptions in the first category (memory management exceptions) as 
forms of access violation, using the signals SS$_ACCVIO and SS$_VECALIGN 
(see Table B-4). The exception argument list VMS supplies when signaling vector 
memory management exceptions is identical to the one it supplies with scalar 
access violations, except that VMS defines two additional bits in the reason mask 
to indicate the nature of the vector exception: a vector operation on an improperly 
aligned vector element in memory (bit 3) and vector instruction reference to an 
I/O space address (bit 4). 

VMS reports exceptions in the second category (vector arithmetic exceptions) 
using the signal SS$_VARITH (see Table B-4). As defined by the VAX vector 
architecture (see the VAX MACRO and Instruction Set Reference Manual), vector 
operate instructions always execute to completion. If an exception occurs, the 
default result is written as follows: 

• The low-order 32 bits of the true result for integer overflow. 

• Zero for floating underflow if exceptions are disabled. 



VMS Version 5.4 Features 
Servicing Vector Exceptions 

• An encoded reserved operand for floating divide by zero, floating overflow, 
reserved operand, and enabled floating underflow. For vector convert 
instructions that convert floating-point data to integer data, where the source 
element is a reserved operand, the value written to the destination element is 
UNPREDICTABLE. 

Table B-4 provides a summary of the means by which VMS signals vector 
processing exceptions and the arguments it provides for condition handlers. 
For information about how these exception conditions are reported by the VMS 
message facility, see Section B.2.2.7. 

Table B-4 Summary of Exception Conditions 

Exception Type Description Arguments 

SS$ ACCVIO Fault Access violation Two, as follows: 

1. Reason for access violation. This is a mask with the 
following format: 

Bit Description 

0 Type of access violation: 

Clear if page table entry protection code did 
not permit intended access 

Set if POLR, P1LR, or SLR length violation 

1 Page table entry reference: 

Clear if specified virtual address is not 
accessible 

Set if associated page table entry is not 
accessible 

2 Intended access: 

Clear if read 

Set if modify 

3 Vector alignment exception: 

Set if vector element is not properly aligned 
in memory1

4 Vector instruction reference of UO space 

Set if vector instruction referred to an UO 
space address 

2. Virtual address to which access was attempted 
or, on some processors, virtual address within the 
page to which access was attempted. For access 
violations that occur due to a vector alignment 
exception or a vector instruction reference to UO 
space, this virtual address is always an address 
within the page to which access was attempted. 

1 Note that the VMS operating system reports this exception with an SS$_VECALIGN fault. 

(continued on next page) 



VMS Version 5.4 Features 
Servicing Vector Exceptions 

Table B-4 (Cont.) Summary of Exception Conditions 

Exception Type Description Arguments 

SS$_ILLVECOP Fault Illegal vector 
opcode.2

Four, as follows: 

1. Signal name, SS$_ILLVECOP 

2. Illegal opcode that caused the exception 

3 . Program counter (PC) of the vector instruction that 
caused the exception to be reported. (Note that this 
instruction is not always the one that caused the 
exception. ) 

4. Processor status longword (PSL) at the time the 
exception is reported. 

SS$_VARITH Trap Vector arithmetic Five, as follows: 
trap 

SS$_ 
VECALIGN 

1. Signal name, SS$ VARITH. 

2. Exception summary. This is a mask, the bits of 
which, when set, signify the following: 

Bit Meaning 

0 Floating underflow 

1 Floating divide by zero 

2 Floating reserved operand 

3 Floating overflow 

5 Integer overflow 

3. Vector register mask, the bits of which (0 through 
15) correspond to the VAX vector registers (VO 
through V15). When set, a bit indicates that 
an element of the associated vector register was 
involved in an operation that caused one or more 
of the vector arithmetic exceptions reported in the 
exception summary argument. 

4. Program counter (PC) of the vector instruction that 
caused the exception to be reported. (Note that this 
instruction is not always the one that caused the 
exception. ) 

5. Processor status longword (PSL) at the time the 
exception is reported. 

Fault Vector alignment Identical to the argument list for SS$_ACCVIO 
exception 

2 Note that some processors report illegal vector opcodes with the SS$_OPCDEC exception. 

(continued on next page) 

B-30 



VMS Version 5.4 Features 
Servicing Vector Exceptions 

Table B-4 (Cont.) Summary of Exception Conditions 

Exception Type Description Arguments 

SS$_VECDIS Fault Vector processor Three, as follows: 
disabled 

1. Reason for vector disabled exception. The reason 
argument can have any of the following values: 

SS$_NOPRIV—An ACL on the vector capability has 
denied auser-mode program access to the vector 
processor. 

SS$_MCHECK—The vector processor has been 
disabled due to the detection of a hardware error. 

SS$_INSFMEM—Insufficient nonpaged dynamic 
memory exists to turn the current process into a 
vector consumer. 

SS$_CPUNOTACT—The VAX system contains no 
vector-present processor on which to schedule the 
current process. 

SS$_BADCONTEXT—The vector state of the 
mainline routine is corrupt and cannot be restored. 

SS$_EXQUOTA—The VMS operating system 
cannot allocate sufficient space to save the vector 
state of the mainline routine because the process in 
which the routine is executing has exceeded process 
paging file quota. 

SS$_INSFWSL—The VMS operating system cannot 
allocate sufficient space to save the vector state of 
the mainline routine because the working-set limit 
of the process in which the routine is executing is 
too low. 

SS$_VASFUL—Thy VMS operating system cannot 
allocate sufficient space to save the vector state 
of the mainline routine because the address space 
(PO space) of the process in which the routine is 
executing is full. 

2. Program counter (PC) of the vector instruction that 
caused the exception to be reported. (Note that this 
instruction is not always the one that caused the 
exception. ) 

3. Processor status longword (PSL) at the time the 
exception is reported. 

B.2.3.7 Requirements of the VAX Procedure Calling and Condition Handling Standard 
This section contains excerpts from the VAX Procedure Calling Standard that 
describe the requirements that procedures must follow when using the system's 
vector processing resources. 

Code generated by VAX vectorizing compilers adheres to the rules described in 
this section. VAX MACRO code containing vector instructions must be written to 
comply with these requirements. 



VMS Version 5.4 Features 
Requirements of the VAX Procedure Calling and Condition Handling Standard 

B.2.3.7.1 Vector Register Usage The VAX Calling Standard specifies no 
conventions for preserved vector registers, vector argument registers, or vector 
function value return registers. All such conventions are by agreement between 
the calling and called procedures. In the absence of such an agreement, all vector 
registers, including VO through V15, VLR, VCR, and VMR are scratch registers. 
Among cooperating procedures, a procedure that does preserve or otherwise 
manipulate the vector registers by agreement with its callers must provide an 
exception handler to restore them during an unwind. 

B.2.3.7.2 Vector and Scalar Processor Synchronization There are two 
kinds of synchronization between a scalar and vector processor pair: memory 
synchronization and exception synchronization. Sections B.2.3.7.3 and B.2.3.7.4 
describe these types of synchronization. 

B.2.3.7.3 Memory Synchronization Every procedure is responsible for 
synchronization of memory operations with the calling procedure and with 
procedures it calls. If a procedure executes vector loads or stores, the following 
must occur: 

• An MSYNC instruction (a form of the MFVP instruction) must be executed 
before the first vector load/store to synchronize with memory operations 
issued by the caller. While an MSYNC instruction might typically occur in 
the entry code sequence of a procedure, exact placement can also depend on a 
variety of optimization considerations. 

• An MSYNC instruction must be executed after the last vector load/store to 
synchronize with memory operations issued after return. while an MSYNC 
instruction might typically occur in the return code sequence of a procedure, 
exact placement can also depend on a variety of optimization considerations. 

• An MSYNC must be executed between each vector load/store and each 
standard call to other procedures to synchronize with memory operations 
issued by those procedures. 

That is, any procedure that executes vect~ ~ ~ loads or stores is responsible for 
synchronizing with potentially conflicting memory operations in any other 
procedure. However, execution of an MSYNC to ensure scalar/vector memory 
synchronization can be omitted when it can be determined for the current 
procedure that all possibly incomplete vector load/stores operate only on memory 
that is not accessed by other procedures. 

B.2.3.7.4 Exception Synchronization Every procedure is responsible for 
ensuring that no exception can be raised after the current frame is changed (as 
a result of either a CALL or RET). If a procedure executes any vector instruction 
that might possibly raise an exception, then a SYNC instruction (a form of the 
MFVP instruction) must be executed prior to any subsequent CALL or RET. 

However, if it can be determined that the only possible exceptions that can occur 
are ensured to be reported by an MSYNC instruction that is otherwise needed for 
memory synchronization, then the SYNC is redundant and can be omitted as an 
optimization. 

Moreover, if it can be determined that the only possible exceptions that can occur 
are ensured to be reported by one or more MFVP instructions that read the 
vector control registers, then the SYNC is redundant and can be omitted as an 
optimization. 



VMS Version 5.4 Features 
Requirements of the VAX Procedure Calling and Condition Handling Standard 

B.2.3.7.5 Synchronization Summary Memory synchronization with the caller 
of a procedure that uses the vector processor is required because there might be 
scalar machine writes (to main memory) still pending at the time of entry to the 
called procedure. The various forms of write-cache strategies allowed by the VAX 
architecture combined with the possibly independent scalar and vector memory 
access paths imply that a scalar store followed by a CALL followed by a vector 
load is not safe without an intervening MSYNC. 

Within a procedure that uses the vector processor, proper memory and exception 
synchronization might require use of an MSYNC instruction or a SYNC 
instruction, or both, prior to calling another procedure or upon being called 
by another procedure. Further, for calls to other procedures, the requirements 
may vary from call to call depending on details of actual vector usage. 

An MSYNC instruction (without SYNC) at procedure entry, procedure exit, and 
prior to a call, should provide proper synchronization in most cases. A SYNC 
instruction (without an MSYNC prior to a CALL or RET) will sometimes be 
appropriate. The remaining two cases, where both or neither MSYNC and SYNC 
are needed, are probably rare. 

Refer to the VAX MACRO and Instruction Set Reference Manual for the specific 
rules on what exceptions are ensured to be reported by MSYNC and other MFVP 
instructions. 

B.2.3.7.6 Condition Handler Parameters and Invocation If the VAX vector 
hardware or emulator option is in use, then, for hardware-detected exceptions, 
the vector state is implicitly saved before any condition handler is entered and 
restored after the condition handler returns. (No save/restore is required for 
exceptions that are initiated by calls to LIB$SIGNAL or LIB$STOP because there 
can be no useful vector state at the time of such calls in accordance with the rules 
given for vector register usage in Section B.2.3.7.1.) A condition handler can thus 
make use of the system vector facilities in the same manner as mainline code. 

The saved vector state is not directly available to a condition handler. A condition 
handler that needs to manipulate the vector state to carry out agreements with 
its callers can call the $RESTORE_VP_STATE service. This service restores the 
saved state to the vector registers (whether hardware or emulated) and cancels 
any subsequent restore. The vector state can then be manipulated directly in 
the normal manner by means of vector instructions. (This service is normally of 
interest only during processing for an unwind condition. ) 

B.2.3.8 VMS Accounting Utility (ACCOUNTING) Resource Packet Format 
The VMS Accounting Utility uses the longword field ACR$L_VP_CPUTIME in the 
resource packet (ACR$K RESOURCE) to record the vector CPU time (measured 
in 10-millisecond clock ticks) accrued by a process or image. 

See the VMS Accounting Utility Manual for a complete description of the format 
and contents of ACCOUNTING records. 

B.2.3.9 VMS Monitor Utility (MONITOR) VECTOR Class Record 
As discussed in VMS Monitor Utility Manual, the VMS Monitor Utility 
(MONITOR) writes binary performance data to a VMS RMS sequential file 
known as the MONITOR recording file. Once per recording interval, MONITOR 
writes to this file a record containing data pertinent to each currently selected 
class. Version 5.4 of the VMS Monitor Utility includes the VECTOR class record, 
which contains data describing the time during which vector consumers have 
been scheduled on avector-present processor. 



VMS Version 5.4 Features 
VMS Monitor Utility (MONITOR) VECTOR Class Record 

See Section B.12.3 for a complete description of the MONITOR VECTOR 
command and the VECTOR class. See Section B.12.4 for specific information 
about the VECTOR class record and format. 

B.3 Introduction to DECdtm Services 
The VMS Version 5.4 operating system includes DECdtm services, which provide 
system services that demarcate and coordinate distributed transactions. By 
using the two-phase commit protocol, these services ensure consistent execution 
of distributed transaction on the VMS operating system. In turn, these system 
services make use of underlying logging and communication primitives necessary 
to enable distributed transaction commitment. 

This section describes how the DECdtm services coordinate distributed 
transaction processing. The following sources in this manual also describe 
aspects of VMS Version 5.4 support for DECdtm services: 

• Section B.11 (Log Manager Control Program Utility (LMCP)) 

• Section B.12.1 (MONITOR TRANSACTION command and TRANSACTION 
class) 

• Section B.19 (of this manual) and the VAX RMS Journaling Manual (RMS 
Journaling support) 

• VMS Version 5.4 Release Notes 

  Note  

By default, processes for DECdtm services are started when a full VMS 
boot is executed. Before any transactions can be started, however, you 
must first use the Log Manager Control Program Utility (LMCP) to create 
a transaction log file (as described in Section B.11). 

If you do not want to run DECdtm software, you can prevent .the 
startup of DECdtm processes by defining the systemwide logical name 
SYS$DECDTM_INHIBIT in the SYS$MANAGER:SYLOGICALS.COM 
command procedure. You can define SYS$DECDTM_INHIBIT to be any 
string. For example: 

$ DEFINE/SYSTEM/EXEC SYS$DECDTM_INHIBIT "yes" 

See the Guide to Setting Up a VMS System for more information about 
the SYLOGICALS.COM command procedure. 

B.3.1 Characteristics of Distributed Transactions 
In business terminology, a transaction is a discrete unit of work. One example 
of a transaction is the purchasing of tickets from an airline reservation system. 
Another example is the transferring of funds between customer accounts using 
an automated teller machine (ATM). In both examples, the processing of the 
transaction involves interaction with databases. 

Characteristically, transaction processing incorporates large, corporate-level 
applications that support many users for critical business functions. In 
transaction processing applications, there are usually many users simultaneously 
performing predefined functions (query and update) to a collection of shared data, 
generally a database. Results are usually expected immediately. 



VMS Version 5.4 Features 
Characteristics of Distributed Transactions 

Another characteristic of transaction processing is that it is usually distributed. 
Transaction execution typically involves communication between a client 
program and one or more databases that can be locally or remotely located. 
This communication between client and server might typically take place through 
a network of systems distributed at various geographic locations; hence, the 
operation can be called distributed transaction processing. In the example of 
funds transfers at an ATM, the central system or database acts as a server, 
providing services to the customer—or client at the ATM. 

A single transaction represents the execution of a set of procedures. A client 
and the server must communicate using read and write operations to enable the 
client program to perform the desired task; for example, to perform adebit/credit 
operation to transfer funds in customer accounts. 

Figure B-4 shows the execution flow of a simple debit/credit application. A user 
at the ATM requests a financial operation, such as a transfer of funds from one 
account to another. A client program on Node A receives this request from the 
ATM. The client program forwards the request to a debit/credit program on Node 
B, and the debit/credit program updates the customer accounts database. The 
transaction shown in this figure is distributed because the cooperating programs 
are located on different computer systems. 

Figure B-4 Sample Debit/Credit Transaction Execution 

Client 

Node B Node C 

~ Server 
~ Debit/Credit Program 

,~ Begin Transaction 
Processing 

Node A 

ATM 

 r
Send Request 

Print Transaction 
Receipt 

Process 
Request 

End Transaction 
Processing 

Send 
Result 

 ► Account 
Database 

ZK-1221 A-GE 

For transaction processing to be reliable, every required operation involved in the 
execution of the transaction must be completed before the transaction is made 
permanent; otherwise, none of the operations are completed. A transaction that 
has this characteristic, known as atomicity, is considered an atomic transaction. 

An atomic transaction must execute in its entirety or must have no effect at all. A 
transaction that executes in its entirety is called committed. One that terminates 
prematurely (and therefore has no effect) is called aborted. 



VMS Version 5.4 Features 
Characteristics of Distributed Transactions 

The DECdtm services implement a commit protocol to guarantee atomic 
transaction processing. This protocol, known as the two-phase commit protocol, 
ensures atomicity by sequencing the commit process in such a way as to ensure 
that all resources (for example, databases) will be committed. 

In the funds transfer example, it is vital that each of the customer's accounts is 
properly debited or credited and the account files updated only after it has been 
acknowledged that the transfer has occurred. If a system failure occurs while the 
transaction is processing, all of the previous operations of the transaction must be 
nullified. This arrangement keeps the database consistent; no operation is ever 
partially applied to the database. 

B.3.2 Transaction Processing System Model 
In Digital's model for transaction processing, several components work together 
to execute atomic transactions. 

At the end-user level, user-written application programs define the task to be 
accomplished, such as query, update, and debit/credit. Application programs also 
specify how transactions are to be executed. The application programs initiate 
transaction execution using calls to VMS system services. 

At the system level, the execution of the transaction depends on the interaction of 
the three main transaction processing components: 

• Resource managers 

• Transaction managers 

• Log managers 

The following sections provide detailed descriptions of these managers. 

B.3.2.1 Resource Manager 
A resource manager controls shared access to a set of recoverable resources on 
behalf of application programs. A resource is usually a database. The term 
recoverable means that all updates to the resources on behalf of the transaction 
can be made permanent or can be undone. 

A resource manager participates in the two-phase commit protocol to commit or 
abort a transaction. 

Resource managers provide recovery mechanisms that work together with the 
DECdtm services and perform any necessary logging and recovery operations. 
The most common type of resource manager is a database system. Several 
Digital products can act as resource managers, including VMS RMS Journaling, 
Rdb/'VMS, and VAX DBMS. 

The execution of a transaction can span several nodes. The root application 
program can use the services of one or more resource managers on its home node. 
An application can also communicate with applications on other nodes, and these 
remote applications can also use other resource managers. 

B.3.2.2 Transaction Manager 
A transaction manager supports the services issued from application programs to 
start, end, and abort transactions. A transaction manager coordinates the action 
of a distributed transaction by sending instructions to resource managers about 
how to complete the transaction. 



VMS Version 5.4 Features 
Transaction Manager 

In a distributed network of transaction processing systems, each VMS node 
normally contains one DECdtm object. This object contains the transaction 
manager for transactions initiated from that node. The transaction manager 
maintains a list of participants in a transaction. In the execution of a transaction, 
participants may include: 

• Resource managers on a local node, spanning one more or processes 

• Transaction managers on other nodes within a network, which may also have 
associated resource manager and transaction manager participants 

In this way, a hierarchy, or "tree," of resource managers and transaction managers 
can be established within the execution of a single transaction. The node on 
which a transaction is created is the "root" of the transaction. This is the 
coordinating or home node. Nodes containing the participating transaction 
managers and resource managers branch off from the root node. On each node, 
a transaction manager communicates only with its local resource managers, the 
transaction managers that are its immediate subordinates, and the transaction 
manager that is its superior. A subordinate node is also referred to as a child 
node. A superior transaction manager is also referred to as a parent transaction 
manager. 

In Figure B-5, Node A is the coordinating node. It contains the parent 
transaction manager (TM) and the local resource manager (RM). The parent 
transaction manager coordinates the transaction started by the application 
program (AP) on Node A with participating transaction managers and resource 
managers on other nodes. Nodes B, C, and D are all subordinates of Node A. 



VMS Version 5.4 Features 
Transaction Manager 

Figure B-5 Participants in a Distributed Transaction Example 

Coordinator 

Database 

Node D 

Database 

 ~ ~ 

1 

Node C 

Database 

ZK-1870A-GE 

B.3.2.3 Log Manager 
A log manager provides the mechanism for storing a permanent record of the 
execution of distributed transactions in log files. Each recoverable resource 
manager implements its own log manager component, which consists of a set 
of logging services. Logging services are also provided by the DECdtm services. 
During normal operation, resource managers and transaction managers write log 
files containing records of transaction state information. After recovering from 
a failure, a resource manager or transaction manager can read the log file to 
determine the state of a transaction at the time of failure. 



VMS Version 5.4 Features 
Overview of Two-Phase Commit Protocol 

B.3.3 Overview of Two-Phase Commit Protocol 
Specific transaction management system services called from application 
programs mark the start and end of a transaction. The DECdtm system services 
include 

• Start Transaction ($START_TRANS) 

• Start Transaction and Wait ($START_TRANSW) 

• End Transaction ($END_TR;,ANS) 

• End Transaction and Wait ($END_TF~4NSW) 

• Abort Transaction ($ABORT_TRANS) 

• Abort Transaction and Wait ($ABORT_TR'ANSW) 

The transaction manager component of the DECdtm services coordinates the 
execution of these system services. See the VMS System Services Reference 
Manual for more detailed descriptions of the DECdtm system services new for 
Version 5.4 of the VMS operating system. 

The processing of a distributed transaction begins when an application calls the 
$START_TRANS or $START_TRANSW service. In response, the transaction 
manager generates a unique transaction identifier (TID) for the transaction so 
that it can keep track of the transaction. The transaction manager uses the TID 
to identify all actions performed by resource managers and transaction managers 
on behalf of the transaction. 

Each resource manager is responsible for providing recovery capabilities for its 
own resources by performing transaction logging. The transaction manager is 
responsible for notifying all resource managers involved in a transaction of all 
relevant transaction-state transitions. The transaction manager keeps track 
of the state of each transaction in case a system or process fails before the 
transaction completes. 

The transaction manager maintains a list of resource managers and transaction 
managers that participate in a transaction's execution. The transaction manager 
uses this list of participants to execute the two-phase commit protocol. During 
the execution of this protocol, each participating transaction manager writes 
transaction information to a log file. A log file contains a permanent record of 
transaction states. By having access to a log file, a transaction manager can 
resume the execution of the two-phase commit protocol after recovering from a 
system failure. 

For a complete description of transaction log files, see Section B.11. 

Each participating resource manager supports atomic transactions on its 
resources. To do this, the resource manager notifies the transaction manager 
as soon as that resource manager is first accessed by the application. A resource 
manager logs enough information to allow it to undo or redo operations it 
performed on behalf of a transaction. Similar to a transaction manager, a 
resource manager logs transaction state changes to a log file. 

The processing of a transaction completes when one of the following calls is made: 

• Commit Using $END_TRANS or $END_TR'ANSW 

• Planned abort Using $ABORT_TRANS or $ABORT_TR'ANSW 



VMS Version 5.4 Features 
Overview of Two-Phase. Commit Protocol 

(See the VMS System Services Reference Manual for more detailed descriptions 
of the DECdtm system services introduced in Version 5.4 of the VMS operating 
system. ) 

Upon receiving an End Transaction call, the DECdtm services implement the 
two-phase commit protocol to inform all participants how to proceed with the 
execution of the transaction. 

The first phase of the two-phase commit protocol is the prepare phase. During 
this phase, the transaction manager uses a polling mechanism to determine 
if the participants can complete all the steps involved in a given transaction 
and can therefore commit the transaction. A participant that has successfully 
prepared casts a "yes" vote. If an error occurs during the polling that prevents 
a participant from responding for example, if a resource manager fails or if a 
network link goes down a "no" vote is assumed. 

A "yes" vote indicates that the participating resource manager can either commit 
or abort the operations performed within this transaction, even if a failure occurs. 

If all of the participants declare that they can commit by voting "yes," the 
transaction manager makes a decision to commit and proceeds to the second 
phase, known as the commit phase. 

The transaction manager now orders the participants to commit the transaction. 
At this point all participants complete their transaction operations. 

If any of the participants fails to prepare successfully, the transaction is 
aborted. The transaction manager orders all remaining participants to abort 
the transaction and roll back their transaction processing work. Thus, none of 
the actions of the distributed transaction are made permanent. 

B.3.4 Managing DECdtm Services Using VMS Utilities 
The VMS operating system provides the following utilities to manage the 
information provided by the DECdtm services: 

• The Log Manager Control Program Utility (LMCP) is used to create and 
manage log files that are used by transaction managers. See Section B.11 for 
a complete description. 

• The VMS Monitor Utility can be used to monitor the status of transactions 
executing on the system. See Section B.12 for more information. 

B.3.5 New TRANSACTION_ID Data Type for Programming Routines 
To support DECdtm programming routines, there is a new VMS data type, or 
structure, for low- and high-level languages. The transaction_id data type is an 
octaword that stores a unique transaction identifier. 

B.4 VMS Version 5.4 General User Features 
This section describes enhancements to the following components of the VMS 
operating system: 

• DCL Commands 

• System Messages 

• DECwindows User and Desktop Applications 

B-40 



VMS Version 5.4 Features 
DCL Commands 

B.4.1 DCL Commands 
Table B-5 contains a summary of DCL commands that are new or enhanced but 
are not being printed for VMS Version 5.4. 

See the command section following the table for details of the BACKUP/MEDIA 
FORMAT qualifier and the MOUNT/MEDIA_FORMAT qualifier. Refer to the 
revised VMS DCL Dictionary for complete descriptions of the remaining new and 
enhanced VMS Version 5.4 DCL commands and lexical functions. 

Table B-5 Summary of New and Enhanced DCL Commands 

Command Enhancements 

BACKUP Now includes new /MEDIA FORMAT qualifier, which controls data 
compaction on tape drives that support data compaction. 

FONT New command that compiles fonts for use by the DECwindows server 
and converts an ASCII bitmap distribution format (BDF) into binary 
server natural form (SNF). 

MOUNT Now includes new /MEDIA FORMAT qualifier, which controls data 
compaction on tape drives that support data compaction. 

PSWRAP New command that invokes the PSWRAP translator, which converts 
procedures written in PostScript to callable routines. 

SHOW ZONE New command that displays the current state of a VAXft 3000 system. 

START/ZONE New command that adds a zone to a running VAXft 3000 system. 

STOP/ZONE New command that removes a zone from a running VAXft 3000 system. 

VIEW Now accepts new PS input format, which lets you use the CDA Viewer 
to view PostScript files (which use the file extension .PS). 

B-41 



VMS Version 5.4 Features 
BACKUP/MEDIA_FORMAT=[NO]COMPACTION 

BACKUP/ME DIA_FORMAT=[NO]COM PACTION 

Output Save-Set Qualifier 

Controls whether data records are automatically compacted and blocked together. 
Data compaction and record blocking increase the amount of data that can be 
stored on tape drives that support data compaction. 

The compaction ratio depends on the data and the tape drive you use. For more 
information, see the documentation supplied with your tape drive. 

Format 

Description 

Example 

input-specifier output-save-set-spec /MEDIA_FORMAT=[NO]COMPACTION 

The /MEDIA FORMAT qualifier can be used only with tape drives that support 
data compaction. 

Once data compaction has been selected for a tape cartridge, compaction is 
used for the entire cartridge until you initialize the cartridge with the /MEDIA 
FORMAT=NOCOMPACTION qualifier. 

$ BACKUP WORK$ : [TESTFILES . . . ] * . * ; * MU%=y0 : TEST . SAV -
_$ /MEDIA_FORMAT=COMPACTION % RE~w'I~1D 

This command saves all files in the directory [TESTFILES] and its subdirectories 
in a save set named TEST.SAV. The /MEDIA FORMAT=COMPACTION qualifier 
specifies that the tape drive automatically compacts and blocks together data 
records on the tape. 



VMS Version 5.4 Features 
MOUNT/MEDIA_FORMAT=[NO]COMPACTION 

MOUNT/M EDIA_FORMAT=[NO]COMPACTION 

Enables and controls data compaction and record blocking on tape drives that 
support data compaction. 

Format 

/MEDIA_FORMAT=[NO]COMPACTION device-name 

Description 

The /MEDIA FORMAT qualifier allows you to mount a tape cartridge and enable 
data compaction and record blocking on tape drives that support data compaction. 
Data compaction and record blocking increase the amount of data that can be 
stored on a single tape cartridge. 

Records can either be compacted and blocked, or they can be recorded in the 
same way that they would be recorded by a noncompaction drive. Note that for 
compacting tape drives, once data compaction or noncompaction has been selected 
for a given cartridge, that status applies to the entire cartridge. 

Additionally, when you enable data compaction, caching is automatically enabled. 

Example 

$ MOUNTS`MEDIA_FORMAT=COMPACTION MuAO: BOOKS 

In this example, a tape device labeled BOOKS is mounted with data compaction 
and record blocking enabled. 

B-43 



VMS Version 5.4 Features 
System Messages 

B.4.2 System Messages 
This section provides information about installing and accessing an online help 
version of the VMS System Messages and Recovery Procedures Reference Manual. 

B.4.2.1 System Messages Available from Online Help 
With Version 5.4 of the VMS operating system, you can now install and access 
an optional online help version of the VMS System Messages and Recovery 
Procedures Reference Manual. Because this is a large file, it is not included as 
part of the default root library, SYS$HELP:HELPLIB.HLB. You can access the 
file, named SYS$HELP:SYSMSGHELP.HLB, as follows: 

• Use the /LIBRARY qualifier with the HELP command. For example: 

$ HELP/LIBRARY=SYS$HELP:S`~~ST'~ISGHELP.HLB ERRORS ACCVIO 

• Define a logical name that instructs the help system to search the new help 
library when it it does not find the specified topic in the VMS root help library. 
For example: 

$ DEFINE HLP$LIBRARY DISKS2: ~QLTAIL]SYSMSGHELP 
$ HELP ERRORS DISMAL 

In this example, the DEFINE statement creates a logical name for the help 
library that the help system is to search after it has searched the root library, 
SYS$HELP:HELPLIB.HLB. 

The help system first searches the root library for ERRORS. When it does not 
find an error,1 it then searches the library defined by HLP$LIBRARY until 
it finds ERRORS and displays the appropriate information. For information 
about defining logical names and search patterns for the help system, see the 
HELP COMMAND in the VMS DCL Dictionary. 

• Using the VMS Librarian Utility, you can extract the ERRORS module 
from SYSMSGHELP.HLB and insert it into the default root help library, 
HELPLIB.HLB. This allows direct access without using extra HELP qualifiers 
or logical names. For more information, see the VMS Librarian Utility 
Manual. 

The system messages help library is in compressed format. Decompressing the 
library gives you faster access to it but requires an additional 1600 blocks of disk 
space. To decompress the library, enter a command similar to the following: 
$ LIBRARY/DATA=EXPAND;OUTPUl'=SYSSSYSR00~': ]SYSHLP]SYSMSGHELP.HLB -
_$ SYS$SYSROOT:[SYSHLP]SYSMSGHELP.~~B 

In this example, SYS$SYSROOT is the name of the device where the file is 
located and [SYSHLP] is the name of the directory. 

  Note  

The system messages help library is not decompressed when you execute 
the LIBDECOMP.COM procedure described in the VMS Version 5.4 
Upgrade and Installation Manual. 

You can use the VMS tailoring utility (VMSTAILOR) to add or delete the system 
messages help library. Deleting this library does not affect the other help 
libraries. 

1 Previous versions of HELPLIB.HLB provided information about the format of system 
messages under the name ERROR. This information is now named FORMAT OF 
ERROR. 

B-44 



VMS Version 5.4 Features 
DECwindows User and Desktop Applications 

B.4.3 DECwindows User and Desktop Applications 
This section describes new features of interest to DECwindows users. These 
features include enhancements to the Session Manager, the CDA Viewer, 
Calculator, Clock, and Mail. 

B.4.3.1 Session Manager 
Enhancements to the Session Manager include the addition of new languages to 
the Customize Language dialog box and the ability to change your target screen, 
as described in Section B.4.3.2 and Section B.4.3.3 respectively. 

B.4.3.2 Setting Another Session Language 
The following languages have been added to the Customize Language dialog box 
in the Session Manager: 

• Australian 

• Austrian 

• Belgian Dutch 

• Belgian French 

• Danish 
.. 

• 1~ 1 

• Finnish 

• Hebrew 

• New Zealand 

• Papua New Guinea 

• Portuguese 

For more information about setting another session language, see the Version 5.3 
edition of the VMS DECwindows User's Guide. 

B.4.3.3 Changing Your Target Screen 
When you run an application or choose Print Screen on a workstation that 
supports more than one screen display, by default DECwindows displays a dialog 
box asking you which screen you want to use (see Figure B-6). 

Figure B-6 DECwindows Screen Number Dialog Box 

Use Screen Number: 

OOo O~ 

OK Cancel Operation 

ZK~1959A-GE 

If you want to use the same screen every time you run an application or use 
PrintScreen, you can disable the screen number prompt and choose your target 
screen. To disable the screen number prompt or change your target screen, choose 
Screen Number... from the Session Manager's Customize menu. The Session 
Manager displays the Customize Screen Number dialog box (see Figure B-7). 

B-45 



VMS Version 5.4 Features 
Changing Your Target Screen 

Figure B-7 DECwindows Customize Screen Number Dialog Box 

Customize Screen Number 

Application Display 

Prompt For Screen Number 

Display On Screen: 

QO Q 1 

Print Screen 

Prompt For Screen Number 

Use Screen Number: 

QO Q 1 

■• .J a 

OK 

Cancel 

ZK-1958A-GE 

When you choose your target screen in the Customize Screen Number dialog box, 
DECwindows will run applications (or PrintScreen) on the screen you designated. 
If you click on the Prompt For Screen buttons, DECwindows will not display the 
screen number dialog box. 

B.4.3.4 CDA Viewer 
The DECwindows CDA Viewer now lets you view PostScript files. Section B.4.3.5 
describes how to view a PostScript file and Section B.4.3.6 describes the new 
processing options available. 

B.4.3.5 Viewing a PostScript File 
To view a PostScript file, select the CDA Viewer menu item from the FileView 
Applications menu. In the Open window, click on PS in the File Format box and 
then select the PostScript file you want to view. 

From a DCL window, enter the VIEW command in the following format to open a 
PostScript document for viewing: 

VIEW filename.PS /FORMAT=PS /INTERFACE=DECWINDOWS 

When you invoke the CDA Viewer from the DCL prompt, you do not need to 
specify processing options for the PostScript files. 

PostScript file viewing is supported only in the DECwindows CDA Viewer and 
only when running to displays with servers containing the Display PostScript 
Extension. The CDA Viewer does not provide support for PostScript files on 
character-cell terminals. 

When viewing a PostScript file, after you select or turn to a particular page, you 
can click on the CDA Viewer Cancel button if you decide not to view the page 
while it is being processed. The CDA Viewer immediately stops processing that 
page. 

B-46 



VMS Version 5.4 Features 
New Processing Options for Viewing PostScript Files 

B.4.3.6 New Processing Options for Viewing PostScript Files 
In addition to the Default Paper Size option, new processing options specific to 
viewing PostScript files are available in the Paper Size dialog box. The additional 
PostScript options are highlighted, unless you already chose PS as the file format 
to display. 

These options are valid only for viewing PostScript files and are ignored for all 
other file formats: 

• Orientation radio box 

The Orientation radio box lets you select the orientation for displaying 
PostScript files. By default, the CDA Viewer displays files in the same 
portrait or landscape mode in which they were created. You can use the 
Orientation radio box to select different orientations to view files in reverse 
landscape mode or upside down. 

• Scale Factor option 

The Scale Factor option lets you scale the page display size of your PostScript 
file. The number you select indicates whether the CDA Viewer will shrink or 
enlarge the page display. If the scale factor is less than 1.0, the page display 
will shrink. If the number is greater than 1.0, the page display will expand. 
You can specify a scale factor in the range of 0.1 to 4.0 times the size of the 
original page display. By default, a typical page display has a scale factor of 
1.0. 

• Use Comments toggle button 

The Use Comments option specifies that the CDA Viewer should interpret 
file-structure comments that often appear in PostScript files. This enables 
the CDA Viewer to detect the location of page breaks in a PostScript file, for 
example. 

The Use Comments option is enabled by default. This is indicated by the 
highlighted Use Comments toggle button. 

You can disable the Use Comments option by clicking on it before opening 
your PostScript file. This is recommended in instances where the PostScript 
file contains comments that are not correct, causing the CDA Viewer to either 
display the PostScript file incorrectly or generate an error message. In most 
cases, disabling the Use Comments option and reopening the file corrects the 
problem. 

• Use Bitmap Widths toggle button 

The Use Bitmap Widths option adjusts the display of your PostScript file for 
improved viewing on the screen. By default, a printed PostScript file has a 
finer resolution, or more dots per inch, than a PostScript file displayed on a 
screen. If you try to view the printed format of a PostScript file on line, the 
page layout will be the same, but the text may be dense and difficult to read. 

To clarify your PostScript file for online viewing, you can specify the Use 
Bitmap Widths option so that the CDA Viewer will use spacing formulas 
designed for bitmaps (screen images) instead of those designed for print. 

The Use Bitmap Widths option is disabled by default. If you select the Use 
Bitmap Widths option, the next time you open a PostScript file, the CDA 
Viewer will use bitmap widths to display your file. Text characters will 
appear well spaced and easy to read. However, the file may look slightly 
different on screen than it would when printed. Columns may not be aligned 



VMS Version 5.4 Features 
New Processing Options for Viewing PostScript Files 

precisely or a paragraph formatted for right justification may appear instead 
with a ragged right margin. 

• Use Fake Trays toggle button 

The Use Fake Trays option lets you view a PostScript file that contains tray 
size directives. Tray size directives are instructions that tell the printer 
what paper tray size to use. These directives, however, are specific to certain 
printers (such as the LPS40) and are not part of the Display PostScript 
language. 

By default, the CDA Viewer ignores tray size directives if you try to display a 
PostScript file that contains them. To override that default behavior and view 
tray size directives in a PostScript file (to identify occurrences of nonstandard 
PostScript, for example), click on the Use Fake Trays option and reopen the 
file. 

• Watch Progress toggle button 

The Watch Progress option lets you view a PostScript file while it is being 
processed for display in the CDA Viewer window. You can view a page as it is 
being processed, rather than waiting to view the entire page after it has been 
processed. 

B.4.4 Calculator 
Calculator now has two additional modes: hexadecimal and octal. When you 
first start the Calculator, it is in decimal mode. Anew Mode menu contains 
Hexadecimal and Octal menu entries for changing modes. The keyboard display 
and functions change according to the mode. 

B.4.5 Clock 
Clock now has a menu bar with File, Customize, and Help menus for interacting 
with Clock. The menu bar provides an alternative to the previous method of 
pressing MB2 while pointing to the Clock display. 

The only menu item under File is Quit. Choose Quit to exit from Clock. 

The Customize menu lets you change the Clock display. The Customize menu has 
three menu items. The menu items correspond to the Settings..., Save Settings, 
and Use System Settings previously available on a pop-up menu. Choosing the 
Settings... menu item displays the Clock Settings dialog box. The only change 
to the dialog box is the addition of a toggle button for Menu Bar. By default, the 
Menu Bar button is shaded and the menu bar is displayed. If you do not want 
the menu bar displayed, click on the Menu Bar button. 

Help is now available directly as a menu on the menu bar, rather than from a 
pop-up dialog box. 

B.4.6 Mail: Displaying PostScript Files 
Mail can now display PostScript files, provided the files you send or receive 
contain only PostScript language. A PostScript file always begins with 

a percent 
sign and an exclamation point (%! ). If any other text precedes the %!, Mail cannot 
display the file. For example, when mail is forwarded, additional text (in the form 
of extra mail headers) is often inserted at the beginning of the file. Because this 
additional text precedes the %!, Mail cannot display the PostScript file correctly. 
To avoid this problem, use an editor to remove all headers before you forward 
a mail message in PostScript format. Similarly, if you receive a PostScript file 
that does not display properly, use an editor to remove all headers (or any other 

B-48 



VMS Version 5.4 Features 
Mail: Displaying PostScript Files 

text that precedes the %!) and forward the file to yourself. The file should then 
display properly. 

B.5 VMS Version 5.4 System Management Features 
This section describes enhancements to the following components of the VMS 
operating system: 

• Autogen Command Procedure 

• VAXcluster Management 

• Error Log Utility (ERROR LOG) 

• System Security 

• Log Manager Control Program Utility (LMCP) 

• Monitor Utility (MONITOR) 

• Network Control Program Utility (NCP) 

• VMS Volume Shadowing Phase II 

B.6 AUTOGEN Command Procedure 
This section describes changes to the AUTOGEN command procedure in Version 
5.4 of the VMS operating system. 

B.6.1 Parameter Name Validation 
When AUTOGEN reads a parameter file such as MODPARAMS.DAT, it 
now checks to determine if the parameter names specified in the file are 
valid. If a parameter name is invalid, a warning message is written to 
AGEN$PARAMS.REPORT (a new file described further in Section B.6.2). The 
following is an example of this warning message: 

** WARNING ** - Invalid parameter name: LPRCOUNT 
The following record is suspect: 

LPRCOUNT = 34 

AUTOGEN checks only the parameter name. It does not check the validity of the 
value specified for the parameter. 

If a parameter name is invalid, the line is not ignored. AUTOGEN attempts to 
use the specified value. 

A parameter name is not checked if it is specified in a line that contains a DCL 
expression other than the symbol assignment (_). For example, AUTOGEN 
does not check the validity of a parameter name specified in a line with 
a DCL IF statement. Instead, AUTOGEN writes a warning message to 
AGEN$PARAMS.REPORT. The following is an example of this message: 

** WARNING ** - DCL command detected 
Parameter validation turned off for: 

IF WINDOW SYSTEM = 1 THEN NPAGEDYN = 250000 

B-49 



VMS Version 5.4 Features 
AGEN$FEEDBACK.REPORT Replaced by New File 

B.6.2 AGEN$FEEDBACK.REPORT Replaced by New File 
The file SYS$SYSTEM:AGEN$FEEDBACK.REPORT has been replaced by a new 
file called SYS$SYSTEM:AGEN$PARAMS.REPORT. This new file includes all of 
the information previously contained in AGEN$FEEDBACK.REPORT, as well as 
information about the non-feedback parameters and additional messages. Many 
of the warning and informational messages that AUTOGEN previously displayed 
on the screen are now written to AGEN$PARAMS.REPORT. 

For example, when AUTOGEN finds multiple MIN_, MAX , or ADD_ 
values for a single parameter, AUTOGEN writes a warning message to 
AGEN$PARAMS.REPORT. The warning message includes the parameter name, 
the value being used for the MIN_, MAX , or ADD_ value, and the value being 
superseded. The following are examples of this type of message: 

** WARNING ** -Multiple ADD records for ADD_LRPCOUNT found. 
VMS value (300) combining with MODPARAMS value (400) 
Value used is 700 

** WARNING ** -Multiple MIN values found for MIN_LRPCOUNTv. 
Using VMS value (1000) which is superseding MODPARAMS value (800) 

** WARNING ** -Multiple MAX values found for MAX_SWAPFILE2_SIZE. 
Using MODPARAMS value (1000) which is superseding VMS value (1200) 

When AUTOGEN uses feedback information to calculate the value for a new 
parameter, this information is written to AGEN$P S.REPORT. The 
following is an example of this type of message: 

MAXPROCESSCNT parameter information: 
Feedback information. 

Old value was 41. New value is 50 
Maximum Observed Processes: 35 

When an AUTOGEN calculation is overridden by a value specified in a parameter 
file, AUTOGEN writes a message to AGEN$PARAMS.REPORT. This message 
includes the new parameter value and the reason why the parameter was 
overridden. AUTOGEN will write this message for any parameter value that 
overrides AUTOGEN's calculations, whether the value is supplied by the system 
manager or by Digital. The following is an example of this type of message: 

LONGWAIT parameter information: 
Override Information -parameter calculation has been overridden. 

The calculated value was 30. The new value is 10. 
LONGWAIT has been disabled by a hard-coded value of 10. 

B.6.3 MODPARAMS.DAT Includes External Parameter Files 
To aid in cluster management, AUTOGEN can now read external parameter files 
specified within MODPARAMS.DAT. This feature allows system managers to 
maintain both clusterwide and system-specific versions of AUTOGEN parameters. 

To include a parameter file, place the following command in MODPARAMS.DAT 
or in any subsequent parameter file: 

AGEN$INCLUDE_PARAMS full-directory-specification filename 

  Note  

If an include statement is the first line in MODPARAMS.DAT, AUTOGEN 
attempts to resolve all subsequent parameter settings. For example, if 
AUTOGEN finds two MIN_ statements for the same parameter, it uses 



VMS Version 5.4 Features 
MODPARAMS.DAT Includes External Parameter Files 

the higher value. If the statements cannot be resolved, AUTOGEN uses 
the parameter setting specified after the include file. 

The following is an example of a MODPARAMS.DAT that includes an external 
parameter file: 

! include system wide parameter settings 

AGEN$INCLUDE_PARAMS SYS$COMMON:[SYSMGR]COMMON_CI_NODE_MODPARAMS.DAT 

MIN LRPCOUNT = 45 
DUMPSTYLE = 0 

This example reads the parameter file named 
SYS$C OMMON: [SYSMGR] C OMMON_C I_NODE_MODPARAMS. DAT 
before reading the parameters specified after the include statement in 
MODPAR,AMS.DAT. If the included file in this example specified the parameter 
setting DUMPSTYLE = 1, AUTOGEN would override this setting with the 
statement DUMPSTYLE = 0, which is specified after the include statement in 
MODPARAMS.DAT. 

The format of all included parameter files should be the same as 
MODPARAMS.DAT. For information about MODPARAMS.DAT, see the 
description of AUTOGEN in the Guide to Setting ZJp a VMS System. 

B.6.4 MIN_, MAX_, and ADD_ Values Allowed for Page and Swap Files 
You can now control the size of page and swap files by specifying MIN_, MAX , 
and ADD_ values in a parameter file. The syntax for specifying MIN_, MAX , 
and ADD_ values is identical to that used with other parameters. 

For example, you can control the size of general page and swap files by including 
one or more of the following lines in a parameter file: 

PAGEFILE = 20000 
ADD_PAGEFILE = 5000 
MIN SWAPFILE = 1500 
MAX SWAPFILE = 4000 

You can also specify the sizes of individual page and swap files (including 
secondary files) by including one or more of the following lines in a parameter 
file: 

SWAPFILEI_SIZE = 2000 
ADD_PAGEFILEI SIZE = 2000 
MIN_PAGEFILE2_SIZE = 3000 
MAX SWAPFILE3 SIZE = 3000 

  Note  

You cannot specify a MIN_, MAX , or ADD_ value for both a general page 
or swap file and a specific page or swap file. 



VMS Version 5.4 Features 
New Feedback Parameters 

B.6.5 New Feedback Parameters 
The existing parameters LRPCOUNT and LNMSHASHTBL are now feedback 
parameters. This means that AUTOGEN can set these parameters using data 
collected in AUTOGEN feedback mode. You should remove any values for 
LRPCOUNT and LNMSHASHTBL that are specified in MODPARAMS.DAT, 
including MIN_, MAX and ADD_ values, so that AUTOGEN can set these 
parameters using feedback information. 

B.6.6 Logical Names Defined by AUTOGEN 
To aid in system management, AUTOGEN defines three process logical names 
to indicate how AUTOGEN was last run. These logical names are assigned a 
character string value each time AUTOGEN is run on a system. The following 
table lists and describes the logical names: 

Logical Name Description 

AGEN$P1 The starting phase of AUTOGEN, for example, SAVPARAMS. 

AGEN$P2 The end phase of AUTOGEN, for example, TESTFILES. If an error 
occurred that caused AUTOGEN to abort, then "_E" is appended to the 
phase name, for example, GENPARAMS_E. 

AGEN$P3 The mode of execution, that is, either FEEDBACK or NOFEEDBACK. 

B.6.7 New Technique for Running AUTOGEN in Batch Mode 
As of Version 5.2-1 of the VMS operating system, Digital recommends a new 
technique for running AUTOGEN. This technique automates AUTOGEN 
feedback, allowing the system manager to receive reports from multiple systems 
on a regular basis. To use this technique, create abatch-oriented procedure 
that runs AUTOGEN in two stages. A sample command procedure is shown in 
Example B-1. 

The first stage of the command procedure runs AUTOGEN at peak times to 
collect data on realistic system loads. The following command accomplishes this 
task: 

$ @SYS$UPDATE:AUTOGEN SAVPARAMS SAVPARAMS FEEDBACK 

Executing this command does not affect the performance of the system. 

The second stage of the command procedure runs AUTOGEN again during 
off-peak hours to interpret the data collected in the first stage. The following 
command accomplishes this task: 

$ C~SYS$UPDATE:AUTOGEN GETDATA TESTFILES FEEDBACK 

The procedure sends the resulting report, contained in the file 
AGEN$PARAMS.REPORT, to the SYSTEM account using the following MAIL 
command: 

$ MAIL/SUBJECT="AUTOGEN FEEDBACK REPORT FOR system-name" -
SYS$SYSTEM:AGEN$PARAMS.REPORT SYSTEM 

Review this report on a regular basis to see whether the load on a system has 
changed. If AUTOGEN's calculations are different from the current values, 
correct the tuning by executing AUTOGEN with one of two commands: 

• If the system can be shut down and rebooted immediately, execute the 
following command: 

$ u ~, S ~ ~ S ~:, J~ATE : ~=-,LT~'OGEN GETDATA REBOOT FEEDBACK 



VMS Version 5.4 Features 
New Technique for Running AUTOGEN in Batch Mode 

• If the system cannot be shut down and rebooted immediately, execute the 
following command to reset the system parameters: 

$ @SYS$UPDATE:AUTOGEN GEiDATA SETPARAMS FEEDBACK 

The new parameters will take effect the next time the system boots. 

The sample command procedure shown in Example B-1 will run AUTOGEN in 
the new technique described. Use this procedure only as an example; create a 
similar command procedure as necessary to meet your requirements. 

Example B-1 Sample AUTOGEN Command Procedure 
$ BEGIN$: 

$! 
$! 
$! 
$! 

$! 

$! 
$! 
$! 
$ 1AM$: 

! ++++++++++ AGEN_BATCH.COM ++++++++++ 
on warning then goto error$ 
on error then goto error$ 
on severe error then goto error$ 
on control~r then goto error$ 

Setup process 

Set process information 
set process/priv=all/name="AUTOGEN Batch" 
Keep log files to a reasonable amount 
purge/keep=5 AGEN_Batch.log 
time = f$time() ! Fetch current time 
hour = f$integer(f$cvtime(time „ "hour")) ! Get hour 
today = f$cvtime(time „ "WEEKDAY") ! Get Day of the week 
if f$integer(f$cvtime(time „ "minute")) .ge. 30 then hour hour + 1 

Start of working day... 

$ if hour .le. 2 
$ then 
$ next time = "today+0-14" 
$ gosub submit$ ! Resubmit yourself 
$ set noon 
$! 
$! Run AUTOGEN to setparams using the parameter values collected earlier 
$! in the day (i.e., yesterday at 2:OOpm) 
$ if today .eqs. "Tuesday" .OR. today .eqs. "Thursday" .OR. 

today .eqs. "Saturday" 
$ then 
$ @sys$update:autogen getdata testfiles feedback 
$ mail/sub="Autogen Feedback Report for system-name" 

sys$system:agen$params.report system 
$! Clean 

$! 

up 
purge/keep=7 
purge/keep=7 
purge/keep=7 
purge/keep=7 
purge/keep=7 
purge/keep=7 
purge/keep=7 

endif 
goto end$ 
endif 

sys$system:agen$feedback.report 
sys$system:agen$feedback.dat 
sys$system:params.dat 
sys$system:autogen.par 
sys$system:setparams.dat 
sys$system:agen$addhistory.tmp 
sys$system:agen$addhistory.dat 

(continued on next page) 



VMS Version 5.4 Features 
New Technique for Running AUTOGEN in Batch Mode 

Example B-1 (Cont.) Sample AUTOGEN Command Procedure 
$ 2PM$: 
$ if hour .le. 15 
$ then 
$ next time = "today+0-17" 
$ gosub submit$ 
$ if today .eqs. "Monday" .OR. today .eqs. "Wednesday" .OR. -
today .eqs. "Friday" 

$ then 
$ C~sys$update:autogen savparams savparams feedback 
$ endi f 
$ goto end$ 
$ endif 
$! 
$ 5PM$: 
$ if hour .le. 18 
$ then 
$ next time = "tomorrow+0-1" 
$ gosub submit$ 
$ endif 
$! 
$! End of working day... 
$! 
$ END$:   BATCH.COM  
$ exit 
$!++ 
$! Subroutines 
$~__ 

$! 
$ SUBMIT$: 
$ submit/name="AGEN_Batch"/restart/noprint -

/log=AGEN_batch.log -
/queue=sys$batch/after=" " next time "' sys$system:AGEN_batch.com 

$ return 
$!++ 
$! Error handler 
$~--
$ ERROR$: 
$ mail/sub="AGEN_BATCH.COM - Procedure failed." _nl: system 
$ goto end$ 

B.6.8 Using MAIL to Send AGEN$PARAMS.REPORT 
After closing the AGEN$PAR,AIVIS.REPORT file, AUTOGEN now checks for the 
existence of a file named SYS$UPDATE:AGEN$MAIL.COM. If this file exists, 
it is executed from within AUTOGEN. (Note, however, that AUTOGEN does 
not execute AGEN$MAIL.COM during VMS upgrades or installations or after 
minimum system boots. ) 

You can use AGEN$MAIL.COM alone or with the batch-oriented procedure 
described in Section B.6.7 to send AGEN$PARAMS.REPORT to the SYSTEM 
account or to an account of your choice. To do so, create a command procedure 
named SYS$UPDATE:AGEN$MAIL.COM that includes the following command: 

$ MAIL/SUBJECT="AUTOGEN FEEDBACK REPORT FOR system-name" -
SYS$SYSTEM:AGEN$PARAMS.REPORT SYSTEM 

If you use the AGEN$MAIL.COM procedure along with the batch-oriented 
procedure described in Section B.6.7, AGEN$MAIL.COM replaces the MAIL 
command line in the batch-oriented command procedure. 



VMS Version 5.4 Features 
B.7 VAXcluster Management 

B.7 VAXcluster Management 
This chapter describes enhancements to the following VAXcluster components: 

• Computer interconnect (CI) architecture extensions 

• Mass storage control protocol (MSCP) server load sharing 

• Preferred path support for Digital Storage Architecture (DSA) disks 

See the revised VMS VAXcluster Manual for more information. 

B.7.1 CI Architecture Extensions 
Extensions to the computer interconnect (CI) architecture allow the application 
of multiple CI interfaces per CPU and multiple star couplers per VAXcluster 
system. These extensions make possible VAXcluster systems with many times 
the data-throughput capacity of current VAXcluster systems with a single star 
coupler. 

6.7.2 MSCP Server Load Sharing 
Beginning with Version 5.4 of the VMS operating system, mass storage control 
protocol (MSCP) servers monitor their UO traffic and periodically calculate a Load 
Available rating to indicate available capacity for UO requests. 

Load Available is calculated by counting the read and write requests sent to the 
server and periodically converting this to requests per second and subtracting 
this calculated value from the server's Load Capacity (also specified in requests 
per second). 

This information is communicated to the VMS Version 5.4 MSCP class drivers 
(DUDRIVER and DSDRIVER). When a disk is mounted or a failover occurs, the 
class driver selects the server with the highest Load Available rating to access 
the disk. 

Load Balancing is enabled and controlled by the SYSGEN parameters MSCP_ 
LOAD and MSCP_SERVE ALL. In most cases, the values established by 
CLUSTER_CONFIG.COM are appropriate. 

MSCP_SERVE_ALL determines whether the server participates in load 
balancing. If it is set to 2 (serve only local disks), the server does not monitor 
its UO traffic and does not participate in load balancing. Other valid settings 
for MSCP_SERVE_ALL (0, 1) result in the server monitoring UO traffic and 
communicating Load Available information to the class drivers. 

MSCP_LOAD is used to communicate Load Capacity to the server, in addition to 
its existing function of controlling the loading of the -MSCP server. If it is set to 1, 
the MSCP server is loaded and its Load Capacity is set to a default value based 
upon CPU type. If MSCP_LOAD is set to a value greater than 1, the server is 
loaded and its Load Capacity set to that value. 

As before, setting MSCP_LOAD to zero disables loading of the MSCP server. 

B.7.3 Preferred Path Support for DSA disks 
The VMS Version 5.4 operating system lets you specify a preferred path for 
Digital Storage Architecture (DSA) disks. This includes RA series disks and disks 
accessed through the MSCP server. 

If a preferred path is specified for a disk, the MSCP disk class drivers 
(DUDRIVER and DSDRIVER) use the path as their first attempt to locate 
the disk and bring it on line as a result of a DCL MOUNT command or failover of 
an already mounted disk. 



VMS Version 5.4 Features 
Preferred Path Support for DSA disks 

~1 

In addition, it is possible to initiate failover of a mounted disk to force the disk 
to the preferred path or to use load balancing information for disks accessed via 
MSCP servers. 

The preferred path is specified by a $QIO function, IO$_SETPRFPTH, with the 
P1 parameter containing the address of a counted ASCII string (.ASCIC). This 
string is the node name of the HSC or VMS system that is to be the preferred 
path. The node name must match an existing node known to the local node 
and, if it is a VMS system, it must be running the MSCP server. This function 
does not move the disk to the preferred path. For more information about the 
IO$_SETPRFPTH function, refer to the VMS I l O User's Reference Manual: Part 
I. 

B.8 System Generation Utility (SYSGEN) 
This section describes enhancements to the VMS System Generation Utility 
(SYSGEN) that are new for Version 5.4 of the VMS operating system. 

B.8.1 SCSI NOAUTO Parameter 
The VMS Version 5.4 operating system defines the special SYSGEN parameter 
SCSI_NOAUTO for use with MicroVAX or VAXstation configurations that include 
third-party Small Computer System Interface (SCSI) devices. (See the VMS 
Device Support Manual for more information about SCSI devices.) The SYSGEN 
parameter SCSI_NOAUTO replaces the SYSGEN parameter VMSD1. 

SYSGEN's autoconfiguration facility automatically loads the VMS SCSI disk or 
tape class driver for a device on the SCSI bus that identifies itself as either a 
random-access or sequential-access device. If this SCSI device is to be supported 
instead by the VMS generic SCSI class driver or a third-party SCSI class driver, 
the automatic loading of a VMS SCSI class driver for the device must be disabled. 

The SCSI_NOAUTO parameter, as shown in Figure B-8, allows a configuration 
including a SCSI third-party device to prevent the loading of a VMS disk or tape 
SCSI class driver for any given device ID. 

Figure B-8 SCSI_NOAUTO System Parameter 

7 0 7 0 7 0 7 0 ~- SCSI Device ID 

D C B A ~- SCSI Port ID 

ZK-1371 A-GE 

The SCSI_NOAUTO system parameter stores a bit mask of 32 bits, where 
the low-order byte corresponds to the first SCSI bus (PKAO), the second byte 
corresponds to the second SCSI bus (PKBO), and so on. For each SCSI bus, 
setting the low-order bit inhibits automatic configuration of the device with SCSI 
device ID 0; setting the second low-order bit inhibits automatic configuration 
of the device with SCSI device ID 1, and so forth. For instance, the value 
0000200016 would prevent the device with SCSI ID 5 on the bus identified by 



VMS Version 5.4 Features 
SCSI_NOAUTO Parameter 

SCSI port ID B from being configured. By default, all of the bits in the mask are 
cleared, allowing all devices to be configured. 

B.8.2 LOAD PWD POLICY Parameter 
The SYSGEN parameter LOAD_PWD_POLICY works in conjunction with the 
Set Password Utility and with LOGINOUT (if you are forced to change your 
password at login). This parameter controls whether or not the Set Password 
Utility or LOGINOUT attempts to use site-specific password policy routines, 
which are contained in the shareable image SYS$LIBRARY:VMS$PASSWORD_ 
POLICY.EXE. The default is 0. 

Installing and enabling asite-specific password policy image requires both 
SYSPRV and CMKRNL privileges. To set the LOAD_PWD_POLICY parameter, 
enter the following commands: 

$ RUN SYS $SYSTEM : S`~SGE~~ 
SYSGEN> USE ACTIVE 
00000000000000 
SYSGEN> SET LOAD PTr~'D POLICY 1 
SYSGEN> WRITE ACTIVE 
SYSGEN> WRITE CURRENT 

To make the changes permanent, modify the system parameter file, 
MODPARAMS.DAT, so the parameter LOAD_PWD_POLICY is set to 1. 

For descriptions of site-defined password filters for the VMS Version 5.4 operating 
system, see Section B.10 and the VMS System Services Reference Manual. 

B.8.3 LOAD SYS IMAGES Parameter 
The LOAD_SYS_IMAGES parameter controls the loading of system images 
described in the system image data file, VMS$SYSTEM_IMAGES.DATA. 
Currently, you can replace three system services with services specific to your 
site: 

• $ERAPAT Generates a security erase pattern 

• $MTACCESS Controls magnetic tape access 

• $HASH_PASSWORD Applies a hash algorithm to an ASCII password 

The VMS System Services Reference Manual describes how to create a system 
service image and how to copy the image into the SYS$LOADABLE_IMAGES 
directory and add an entry for it in the VMS system images file using the 
SYSMAN utility. After generating a new system image data file, you reboot the 
system to load in your service. 

If you have difficulty booting with the site-specific system services and therefore 
do not want the site-specific system services loaded, you can set the parameter of 
LOAD_SYS_IMAGES to 0 during SYSBOOT. The default is 1. 

B.8.4 Supported Device Names for VAXft 3000 Systems 
With Version 5.4 of the VMS operating system, the System Generation Utility 
(SYSGEN) supports the following device types in VAXft 3000 systems: 

Code Name Device Type 

CM 

GD 

Environmental control monitor 

DMA driver 



VMS Version 5.4 Features 
Supported Device Names for VAXft 3000 Systems 

Code Name Device Type 

EF Logical Ethernet driver 

EP Physical Ethernet driver 

PW DSSI disk driver 

SF Logical DSF driver 

SM Physical DSF driver 

B.8.5 New SYSGEN Commands 
This section describes the following new SYSGEN commands: 

• SHOWBI=BIindex 

• SHOWBUS=busId 

• SHOW/:KMI=BIindex 



VMS Version 5.4 Features 
SHOW/B1=Blindex 

SHOW/BI=Blindex 

The SHOW/BI=BIindex command displays device addresses that are currently 
mapped in the UO space for the VA►XBI bus. It also displays node and nexus 
numbers and generic names of UNIBUS and MASSBUS adapters, VA►XBI 
adapters, memory controllers, and interconnection devices such as the DR32 
and CI. 

Use of the SHOW/BI=BIindex command requires the CMEXEC privilege. 

Format 

Example 

SHOW/B1=BIindex 

SYSGEN> SHOW/BI 

(CPU Type: VAX 8800 

** 

Address 
Address 
Address 

** 

Address 
Address 
Address 

Bus map for BI 00 on 28-FEB-1990 
20000000 (node 00) responds with 
20004000 (node 02) responds with 
2000E000 (node 07) responds with 
Bus map for BI 01 on 28-FEB-1990 
22000000 (node 00) responds with 
22004000 (node 02) responds with 
2200E000 (node 07) responds with 

Cpu Connection: NMI 

14:13:02.95 ** 
value 0108 CI 
value 0106 BI - NMI Adapter (NBIB) 
value 0109 BI Combo Board (DMB32) 
14:13:03.00 ** 
value 0102 UB 
value 0106 BI - NMI Adapter (NBIB) 
value 410E BI - NI Adapter (DEBNA)) 

The command in this example displays device addresses that are currently 
mapped in the UO space for the BI bus and additional information about the BI 
bus adapters. 



VMS Version 5.4 Features 
SHOW/BUS=busld 

SHOW/BUS=busld 

The SHOW/BUS=busld command displays the buses and any subsequent 
attached buses and all attached device node numbers, generic names of 
processors, memory modules, adapters, VAXBI adapters, memory controllers, 
and interconnection devices such as the NI. 

Use of the SHOW/BUS command requires the CMEXEC privilege. 

Format 

Example 

SHOW/BUS=busld 

SYSGEN> SHOWi BUS 

Cpu Type: VAX 8800 Cpu Connection: NMI 

Bus Node Generic Name Nexus (hex) Connection Address 

BI 00 00 CI 0000 
BI 00 02 BI -NMI Adapter (NBIB) 0002 
BI 0 07 BI Combo Board (DMB32) 0007 

BI 01 00 UB 0010 
BI 01 02 BI -NMI Adapter (NBIB) 0012 
BI 01 07 BI - NI Adapter (DEBNA) 0017 

The command in this example displays information about all the adapters on the 
system buses. 

B-60 



VMS Version 5.4 Features 
SHOW/XMI-Blindex 

SHOW/XMI=Blindex 

The SHOW/:~1VII=BIindex command displays device addresses that are currently 
mapped in the I/O space for the ~1VII bus. It also displays node and nexus 
numbers and generic names of processors, adapters, VA►XBI adapters, memory 
controllers, and interconnection devices such as the NI. 

Format 

Example 

Use of the SHOW/:~1VII=BIindex command requires the CMEXEC privilege. 

SHOW/XMI=BIindex 

SYSGEN> SHO%1/Xi~~I 

** Bus map for XMI 00 on 28-FEB-1990 14:14:50.48 ** 
Address 21880000 (node 01) responds with value 8082 XMI - 6000-400 processor 
Address 21900000 (node 02) responds with value 8082 XMI 6000-400 processor 
Address 21980000 (node 03) responds with value 8082 XMI - 6000-400 processor 
Address 21A00000 (node 04) responds with value 8082 XMI - 6000-400 processor 
Address 21A80000 (node 05) responds with value 8082 XMI - 6000-400 processor 
Address 21B00000 (node 06) responds with value 4001 XMI -memory module 
Address 21B80000 (node 07) responds with value 4001 XMI -memory module 
Address 21C00000 (node 08) responds with value 4001 XMI -memory module 
Address 21C80000 (node 09) responds with value 4001 XMI -memory module 
Address 21D00000 (node OA) responds with value 4001 XMI -memory module 
Address 21D80000 (node OB) responds with value 4001 XMI -memory module 
Address 21E00000 (node OC) responds with value 00O3 XMI - NI adapter (DEMNA) 
Address 21E80000 (node OD) responds with value 2001 XMI - BI Adapter (DWMBA/A) 
Address 21F00000 (node OE) responds with value 2001 XMI - BI Adapter (DWMBA/A) 

The command in this example displays device addresses that are currently 
mapped in the I/O space for the XMI bus and additional information about the 
x;1VII bus adapters. 



VMS Version 5.4 Features 
B.9 Error Log Utility (ERROR LOG) 

B.9 Error Log Utility (ERROR LOG) 
This section describes enhancements to the VMS Error Log Utility (ERROR LOG) 
that are new for Version 5.4 of the VMS operating system. 

B.9.1 Supported Device Types for VAXft 3000 Systems 
With Version 5.4 of the VMS operating system, the Error Log Utility supports the 
following device types in VAXft 3000 systems: 

Code Name Device Type 

CM 

DSF32 

GD 

EF 

EP 

PW 

RF31 

SF 

SM 

TF70 

Environmental control monitor 

Synchronous communications adapter 

DMA driver 

Logical Ethernet driver 

Physical Ethernet driver 

DSSI disk driver 

DSSI fixed hard disk 

Logical DSF driver 

Physical DSF driver 

DSSI magnetic tape drive 

B.9.2 New Keywords for /EXCLUDE and /INCLUDE Qualifiers 
The /EXCLUDE and /INCLUDE qualifiers accept new device-class and entry-type 
keywords, described in the following table: 

Device-Class Keyword Function 

ADAPTER 

CACHE 

INFORMATIONAL 

VECTOR 

Includes or excludes entries for adapter errors 

Includes or excludes entries for memory caching errors 

Includes or excludes error log entries such as media 
quality reports from magnetic tape devices 

Includes or excludes entries for vector processing 
errors 

Entry-Type Keyword Function 

CONFIGURATION 

SYNDROME 

Includes or excludes entries that describe system 
configuration 

Includes or excludes VAX 9000 console-generated 
entries that provide encoded syndrome values used by 
Customer Services 

B.9.3 New Qualifier: /NODE 
The Error Log Utility now accepts the /NODE qualifier. See the following 
command description for more information. 



VMS Version 5.4 Features 
ERROR LOG/NODE 

ERROR LOG/NODE 

This qualifier enables you to generate a report consisting of error log entries for 
specific nodes in a VAXcluster system. 

Format 

/NODE =(node-name[,...]) 

Parameter 

node-name 
Specifies the names of one or more VAXcluster members. Names cannot exceed 
six characters. If more than one node name is entered, you must specify a 
comma-separated list of node names enclosed in parentheses. 

Example 

$ a1`1rLYZE;'ERROR_LOG/NODE= (OR~NGE,NASSAU) ERR~,OG.OLD; 72 

In this example, a VAXcluster includes members ORANGE, PUTNAM, and 
NASSAU. However, the output consists of only those entries that were logged for 
VAXcluster members ORANGE and NASSAU. 

B-63 



VMS Version 5.4 Features 
B.10 System Security 

B.10 System Security 
This section describes new features of the VMS Version 5.4 operating system 
that system managers can use to enhance the security of their systems by 
implementing various password features. 

B.10.1 Site-Defined Password Policy 
Starting with the VMS Version 5.4 operating system, passwords selected by 
users can be screened for acceptability. The VMS system automatically compares 
new passwords against a system dictionary to ensure that a password is not a 
native-language word. It also maintains a history list of a user's passwords and 
compares each new. password against this list to guarantee that an old password 
is not reused. Sites can screen passwords further by developing and installing 
an image that filters passwords for words that are particularly sensitive to the 
installation. 

In addition, a site with contractual obligations to use special algorithms for 
encrypting passwords will be able to use them. 

This section describes these security enhancements. 

B.10.1.1 Screening New Passwords 
Sites that choose to let users select their own passwords rather than use the 
password generator can now screen user-selected passwords. As of Version 
5.4, the VMS system automatically compares new passwords against a system 
dictionary, which is stored in SYS$LIBRARY, to ensure that a password is not a 
native-language word. The VMS system also maintains a list of all the passwords 
a user has had during the year and compares each new password against this 
history list to guarantee that an old password is not reused. 

Both the dictionary and the history search can be disabled through the Authorize 
Utility. You disable the dictionary search with the DISPWDDIC option to the 
/FLAGS qualifier; you disable the history search with the DISPWDHIS option to 
the /FLAGS qualifier. 

B.10.1.1.1 Password History List VMS keeps a year's worth of data in the 
password history list. If the password limit is exceeded, the system forces a 
user to accept generated passwords. By default, the list stores 60 passwords. A 
security administrator can change the defaults for the length of time passwords 
are retained and the maximum number of passwords per user. 

Using the DCL command DEFINE, you can change the defaults for the capacity 
and lifetime of the password history list. For example, to increase the capacity of 
the history list from 60 passwords to 100, you would add the following line to the 
command procedure SYLOGICALS.COM, which is located in SYS$MANAGER: 

$ DEFINE/SYSTEM/EXEC SYS$PASSWORD_HISTORY_LIMIT 100 

There is a correspondence between the lifetime of a password history list and 
the number of passwords allowed on the list. For example, if you increase the 
password history lifetime to four years and your passwords expire every two 
weeks, you would need to increase the password history limit to at least 104 (4 
years times 26 passwords a year). The password history lifetime and limit can 
be changed dynamically, but they should be consistent across all nodes on the 
cluster. 

Sites using secondary passwords might need to double the password limit to 
account for the secondary password storage. 



VMS Version 5.4 Features 
Screening New Passwords 

The password history list is located in SYS$SYSTEM. The list can be redirected 
off the system disk using the logical name VMS$PASSWORD_HISTORY. This 
logical name should also be defined using /SYSTEM/EXEC and placed in 
SYS$MANAGER: SYLOGICALS. C OM. 

6.10.1.1.2 Site-Specific Filter Security administrators can develop asite-
specific password filter to ensure that passwords are not words readily associated 
with their site, for example, product names or personnel names. A filter can also 
check for particular character variations. 

To create a list of site-specific words, you write the source code, create a shareable 
image, install the image, and, finally, enable the policy by setting a SYSGEN 
parameter. See the VMS System Services .Reference Manual for step-by-step 
instructions. Installing and enabling asite-specific password filter requires 
both SYSPRV and CMKR,NL privileges. In addition, if INSTALL and SYSPRV 
file-access auditing are enabled, multiple security alarms are generated when 
the password filter image is installed and the required change to the SYSGEN 
parameter is noted on the operator console. 

The shareable image contains two global routines that are called by the VMS Set 
Password Utility whenever a user changes a password. 

  Warning  

The two global routines allow a security administrator to obtain both the 
proposed plaintext password and its equivalent quadword hash value. 
All security administrators should be aware of this feature because its 
subversion by a malicious privileged user will compromise your system's 
security. 

Digital recommends that you place security alarm ACES on the password 
filter image and its parent directory. See the VMS System Services 
Reference Manual for instructions. 

6.10.1.2 Specifying a Password Algorithm 
The VMS operating system protects passwords from disclosure through 
encryption. VMS algorithms transform passwords from plaintext strings into 
cipher text, which is then stored in the user authorization file (UAF). Whenever 
a password check is done, the check is based on the encrypted password, not the 
plaintext password. The system password is always encrypted with an algorithm 
known to the VMS system. 

The /ALGORITHM qualifier in the Authorize Utility allows you to define which 
algorithm the VMS system should use to encrypt a user's password, both primary 
and secondary. Your choices are the current VMS algorithm or asite-specific 
algorithm. The syntax is as follows: 

/ALGORITHM=keyword=type [=value] 

Table B-6 lists all the keywords and types you can specify with the /ALGORITHM 
qualifier. 

To assign the VMS password encryption algorithm for a user, you would enter the 
following command: 

UAF> MODIFY HOBBIi'i ALGORITHM=PRIi~T-CRY=`JMS 

6-65 



VMS Version 5.4 Features 
Specifying a Password Algorithm 

If asite-specific algorithm is selected, you must give a value to identify the 
algorithm: 

UAF> T~10DIFY HOBBIT/ALGORITHM=CruRF«~~~T~=CUSTOMER=128 

The VMS System Services Reference Manual provides directions for using a 
customer algorithm. You must create asite-specific $HASH_PASSWORD in 
which you define an algorithm number. This number has to correspond with the 
number used in the AUTHORIZE command MODIFY/ALGORITHM. 

Whenever a user is assigned asite-specific algorithm, the Authorize Utility 
reports this information in the display provided by the SHOW command. 

Table B-6 Arguments to the /ALGORITHM Qualifier 

Keyword Function 

BOTH Set the algorithm for primary and secondary passwords. 

CURRENT Set the algorithm for the primary, secondary, both, or no passwords 
depending on account status. Current is the default value. 

PRIMARY Set the algorithm for the primary password only. 

SECONDARY Set the algorithm for the secondary password only. 

Type Definition 

VMS 

CUSTOMER 

The algorithm used in the version of VMS that is running on your 
system. 

A numeric value in the range 128-255 identifies a customer 
algorithm. 

B.11 Log Manager Control Program Utility (LMCP) 
The Log Manager Control Program Utility (LMCP) is a component of DECdtm 
services residing within the VMS Version 5.4 operating system. The log manager 
ensures that, as each transaction is processed, a record of each transaction state 
is recorded in a log file on disk. 

The DECdtm transaction manager invokes the log manager to write these 
transaction records as necessary, ensuring that a consistent transaction outcome 
is achieved even in the event of a system failure. Writing log records is necessary 
for the consistent recovery of the transaction-specific data. 

This section describes how a system manager can use the Log Manager Control 
Program Utility (LMCP) to create and manage transaction log files, and it 
provides a complete description of all the LMCP commands. 

See Section B.3 for a complete overview of DECdtm services. 

B.11.1 Managing Transaction Log Files 
To optimize the execution of distributed transactions on your system, you 
need to consider a number of factors relating to transaction log files. This 
section discusses these factors, providing recommendations and guidelines in the 
following areas: 

• Using the SYS$JOURNAL logical name 

• Where to place a transaction log file 

• How VAXcluster failover works 



VMS Version 5.4 Features 
Managing Transaction Log Files 

• Determining the initial size required for a transaction log file 

• Creating a transaction log file 

• Resizing a transaction log file 

  Note  

To use LMCP commands, you must have SYSPRV privilege. To use 
the LMCP command CONVERT, you must have CMKRNL privilege. 
It is assumed throughout this section that system managers or other 
individuals who have these privileges will be implementing the procedures 
described herein. 

B.11.1.1 Defining SYS$JOURNAL 
The logical name SYS$JOURNAL defines the directory location where DECdtm 
services expect to find log files. SYS$JOURNAL is asystem-table, executive-
mode logical name, normally defined in the SYS$STARTUP:SYLOGICALS.COM 
command procedure. 

If SYS$JOURNAL is not defined in SYS$STARTUP:SYLOGICALS.COM, then a 
default logical name value is defined as SYS$COMMON:[SYSEXE]. 

You can define SYS$JOURNAL using the following command format: 

DEFINE/SYSTEM/EXEC SYS$JOURNAL device:[directory] 

The logical name SYS$JOURNAL can be defined as a search list. For example, 
the following command defines a search list consisting of two directories. 

DSO SNE%SYS~SN1;%~EX~~~. ~`' $SOJRN~~-~L 
S~SI~z~ 

~~OG~ S~SSI , DSSK~ I LOGFS~~S 

This example shows DISK1:[LOGFILES] to be the primary, or local, directory 
that DECdtm services always search first. DISK2:[LOGFILES] is the 
secondary directory; DECdtm services search this directory after the directory 
DISK1:[LOGFILES] is searched. If you create a transaction log file using the 
LMCP CREATE command, then the log file is placed in the first directory, 
DISK1:[LOGFILES]. 

If a transaction log file is created on a different node using DISK2:[LOGFILES] 
as the primary—or local directory and DISKl:[LOGFILES] as the secondary 
directory, then the search list should specify the local log file directory first. Thus, 
the following command defines a search list consisting of two directories, where 
DISK2:[LOGFILES] is the local directory and the first to be searched by DECdtm 
services: 

T'1 T T T - t y  r~ l  ~ '--~ ri ~ r r T n .-~-.~ ~ ~~ 

~ 

^~ ~ • " ?'1 '"~ '~~ 
~ ~ 

r 

T ~. 

:. 

~E~ y~v~ - SST ~ ~ ~x ~ YS ~., I ~ T ~~ ~ ~~ ~ LOGF S ~~~ ~T ~u ~ ~ OG ~~ T 

If you create a transaction log file using the LMCP CREATE command, then the 
log file is placed in the first directory, DISK2:[LOGFILES]. 

B.11.1.2 Placing a Transaction Log File 
Transactions cannot be started until you have created a transaction log file, using 
the LMCP CREATE command. But before you create a transaction log file, you 
should consider where to locate it for best performance on your system. 

A log file can be placed on any file-structured device that is available to the 
processor. The following list includes possible alternate locations for log files, in 
the recommended order: 

1. Shadowed nonsystem disk 

B-67 



VMS Version 5.4 Features 
Placing a Transaction Log File 

2. Nonsystem disk 

3. Shadowed system disk 

4. System disk 

For increased performance, follow the general guidelines for installing a 
secondary page/swap file. Use ahigh-performance, HSC-based disk that has 
little activity. 

You should also take into account the following considerations when locating a log 
file: 

• Shadowed versus nonshadowed disk 

Because a transaction log file is almost exclusively write-only during normal 
processing, a shadowed disk may be slower than a nonshadowed disk. 
However, a shadowed disk provides increased data availability in the event of 
media failure. 

• Local versus cluster disk 

Although a disk on a local node can provide higher performance, particularly 
in an NI-based VAXcluster system, if that VAXcluster member node fails, 
other nodes in the VAXcluster will not be able to access the failed nodes disk. 
(See Section B.11.1.3.) Therefore, it is better if disks are mounted across the 
VAXcluster and correctly defined using the logical name SYS$JOURNAL. 
That way, if a node fails, other nodes can still access the failed node's disk. 

In a VAXcluster, log files should be placed on disks accessible to all members of 
the VAXcluster. This practice facilitates VAXcluster failover by making the log 
files on each VAXcluster member node available to other VAXcluster members. 

B.11.1.3 VAXcluster Failover 
VAXcluster failover is a mechanism that DECdtm services provide to enable 
VAXcluster nodes to perform recovery for a member node that has failed. 

To make VAXcluster failover work, you need to correctly define SYS$JOURNAL 
(as described in Section B.11.1.1) so that DECdtm services can locate all 
transaction log files in use in the VAXcluster. 

VAXcluster failover occurs only within a VAXcluster environment and is 
completely automatic and transparent to applications and resource managers 
using DECdtm services. VAXcluster failover starts when a VAXcluster member 
node fails and holds information that surviving VAXcluster member nodes need 
to process their transactions. 

When VAXcluster failover is initiated, recovery proceeds while the failed node is 
rebooting. This allows other nodes that need information from the failed node 
to resolve transactions. It also allows resource managers to release locks on 
database records without waiting for the failed node to reboot. 

Normally, each VAXcluster member node is primarily responsible for accessing 
its own transaction log file. Any node that requires information from a log file it 
does not have open must send a request for that information to the VAXcluster 
node member that currently has the log file open the node normally responsible 
for that log file. 

During VAXcluster failover, the first requesting node that requires information 
from a failed node opens the failed node's transaction log file to perform recovery. 
This action lets recovery on the failed node's log file begin while the failed node 
is rebooting. Normally, transaction recovery on the log file completes before the 

B-68 



VMS Version 5.4 Features 
VAXcluster Failover 

failed node has rebooted. Therefore, nodes that had their transactions blocked 
by the failure of the VAXcluster node have their transactions resolved before the 
failed node reboots. The surviving VAXcluster members proceed as if the failed 
node had already rebooted. 

Once a VAXcluster member node has opened the log file of a failed node, all 
further requests from other VAXcluster member nodes are directed to the node 
that has opened the log file. Only one VAXcluster member node can access 
a failed node's log file at any one time. When the failed node has rebooted, 
it reacquires access to its log file and requests are passed to that rebooted 
VAXcluster node member once again. 

B.11.1.4 Determining Transaction Log File Size 
Use the LMCP CREATE command to create transaction log files. The /SIZE 
qualifier of this command specifies the size of the log file in blocks. By default, 
the file size is 4000 blocks. However, since performance of transaction processing 
applications depend on transaction logging, Digital recommends that you plan 
ahead when creating log files. 

A number of factors must be considered when estimating transaction log file 
requirements. These factors include the rate of transactions executed per second 
and the duration of the transactions. As a quick way to estimate log file size, 
Digital recommends the following algorithm: 

Transaction start rate *Transaction duration * 40 =log f fi le size in dis1~ blocl~s 

You can use the MONITOR TRANSACTION command of the Monitor Utility 
to determine the start rate and duration for transactions already executing on 
your system. (See Section B.12.1 for more information about the MONITOR 
TRANSACTION command.) 

For example, if the start rate is 5 transactions per second and the duration is 10 
seconds, the calculation is: 

5 * 10 * 40 = 2000 blocl~s 

The recommended file size for a log file in this example is 2000 blocks. 

Due to a number of factors, file size requirements can vary widely from one 
system to the next. Therefore, the guidelines listed here for determining log file 
size can provide only very rough estimates. When planning for log files, it is 
recommended that you overestimate, rather than underestimate, the file size. 

B.11.1.5 Creating Transaction Log Files 
Transactions cannot be started until a transaction log file exists. By default, 
processes for DECdtm services are started when a full VMS boot is executed.l 
The DECdtm process TP_SERVER then checks for the existence of a transaction 
log file on the system and continues checking every 15 seconds for the existence 
of a transaction log file on the system so that recovery can occur automatically, 
even if a log file's disk is not available when the system first boots. 

To create a log file, use the LMCP CREATE command. Before creating a log file, 
you should understand the recommendations for placing and sizing log files, as 
described in Section B.11.1.2 and Section B.11.1.4. 

1 If you do not want to run DECdtm software, you can prevent the startup of DECdtm 
processes by defining the systemwide logical name SYS$DECDTM_INHIBIT. See the 
note at the beginning of Section B.3 for more information. 

B-69 



VMS Version 5.4 Features 
Creating Transaction Log Files 

A log file must be named with the file name SYSTEM node-name, where 
node-name is the name of the node on which the log file will be used. For 
example, a log file created on node ORANGE should be given the file name 
SYSTEM$ORANGE. The default file type is LM$JOURNAL. 

The default file specification for the log file is: 

SYS$JOURNAL:.LM$JOURNAL 

B.11.1.6 Example of Creating a Transaction Log File 
This section summarizes the steps involved in creating transaction log files for a 
sample VAXcluster system. 

  Note  

To use LMCP commands, you must have SYSPRV privilege. To use 
the LMCP command COT~TVERT, you must have CMKRNL privilege. 
It is assumed throughout this section that system managers or other 
individuals who have these privileges will be implementing the procedures 
described herein. 

In this example, the conditions are as follows: 

• The sample VAXcluster consists of two nodes, RED and BLUE, with shared 
access to the devices named DISK1 and DISK2. 

• The system manager wants to set up an initial configuration of transaction 
log files that allows DECdtm services to perform VAXcluster failover. 

• The system manager needs to create two log files, one for each node. 

• The system manager has determined that the initial log file size will be 1000 
blocks on node RED and 2000 blocks on node BLUE. Figure B-9 shows the 
desired configuration. 



VMS Version 5.4 Features 
Example of Creating a Transaction Log File 

Figure B-9 Sample Transaction Log File Configuration on Two-Node VAXcluster 

VAX 
RED 

VAX 
BLUE 

[LOGFILES]SYSTEM$RED.LM$JOURNAL [LOGFILES]SYSTEM$BLUE.LM$JOURNAL 
(1,000 Blocks) (2,000 Blocks) 

ZK-1894A-GE 

Based on the conditions established for this example, the system manager would 
follow these steps to configure the VAXcluster: 

1. On node RED, the system manager would establish a search list for log files 
by adding the following line to the SYS$STARTUP:SYLOGICALS command 
procedure: 

$ DEFINE/SYSTEM/EXEC SYS$JOURNAL DISK1:[LOGFILES], DISK2:[LOGFILES] 



VMS Version 5.4 Features 
Example of Creating a Transaction Log File 

2. On node BLUE, the system manager would define a similar search 
list for transaction log files by adding the following line to the 
SYS$STARTUP:SYLOGICALS command procedure. Because the CREATE 
command creates a log file in the first directory pointed to by SYS$JOURNAL, 
this search list will specify the local node log file directory first. 

$ DEFINE/SYSTEM/EXEC SYS$JOURNAL DISK2:[LOGFILES), DISK1:[LOGFILES] 

3. Assuming that SYS$JOURNAL is defined, the system manager would then 
create the log files for each node using the LMCP CREATE command. On 
node RED, for example, the system manager would enter the following LMCP 
command to create the log file SYSTEM$RED.LM$JOURNAL with the 
desired file size: 

LMCP> CREATE LOGFILE/SIZE=1000 SYSTEM$RED 

4. If SYS$JOURNAL has not been defined, all transactions will abort until the 
DECdtm services locate the transaction log file. Therefore, in this case, the 
system manager would also need to specify the device and directory when 
creating the log file. For example: 

LMCP> CREATE LOGFILE/SIZE= 000 DISK~y: ~~,OGFILES]SYSTEM$RED 

5. The system manager would then repeat a similar procedure on node BLUE 
by entering the following LMCP command to create the transaction log file 
SYSTEM$BLUE.LM$JOURNAL with the desired log file size: 

LMCP> CREATE LOGFILE,%SI%~=20~~00 SYSTEi~I$L~JE 

B.11.1.7 Resizing and Moving Transaction Log Files 
If transaction processing performance degrades on your system (indicated by the 
rate of transaction stalls), you might need to use the LMCP CONVERT command 
to increase the size of the transaction log file or you might need to move the log 
file to a higher performance disk. 

To check for the rate of transaction stalls, use the LMCP command SHOW LOG 
/CURRENT, which displays information about the currently active transaction log 
file. This display shows the number of checkpoints and stalls that have occurred 
since DECdtm services were started and indicates whether a checkpoint or stall 
is currently in progress. 

Checkpoints are normal, regular, log manager events that are used to maintain 
the log file during transaction execution; they do not indicate degradation in log 
file performance. 

The log manager stalls transactions when insufficient space is available in the 
log file for correct and successful transaction execution. A high rate of stalls or 
a permanent stall condition indicates that the log file size should be increased. 
In such a case, use the LMCP command CONVERT to increase the size of the 
log file. Occasional stall events might be caused by transitory system activities 
such as VAXcluster transition events and do not necessarily indicate a permanent 
shortage of space in the log file. 

You can also use the Monitor Utility to check for transaction processing 
degradation. 

The necessary capacity for a log file depends on the number of simultaneous 
transactions and other factors. Because these factors are variable, Digital cannot 
recommend the amount of increased size for a transaction log file. You should 
estimate the percentage of increased transaction workload that caused the log to 
stall. 



VMS Version 5.4 Features 
Resizing and Moving Transaction Log Files 

Prior to moving or resizing a log file, the system manager must do the following: 

1. Disable the transaction log file. 

The log file should be disabled before the system is rebooted so that 
DECdtm services will not reopen the log file after the reboot. The 
recommended method of disabling a log file is to rename it so that 
it cannot be found by DECdtm services. Rename the log file with 
the file type LM$OLD. For example, if the original log file is called 
SYS$JOURNAL:SYSTEM$ORANGE.LM$JOURNAL, it should be renamed 
SYS$JOURNAL: SYSTEM$ORANGE . LM$OLD. 

2. Reboot the system. 

A reboot is necessary because DECdtm services are an integral part of the 
VMS executive and cannot be started or stopped independently of the VMS 
operating system. Because of this requirement, serious considerations should 
be given to the initial configuration of log files. 

After these steps have been completed successfully, the system manager must 
perform the following conversion procedure to change the size of the transaction 
log file 

1. Use the LMCP command CONVERT to move the transaction records- from 
the old log file to the new log file and increase its size. Name the new file 
SYSTEM node-name.LM$JOURNAL. 

2. If the conversion is successful, delete the old log file. 

The system manager can move the log file to an alternate location by following 
these steps: 

1. Edit SYS$STARTUP:SYLOGICALS.COM on all nodes in the VAXcluster to 
include a new definition for the logical name SYS$JOURNAL, as follows: 

$ DEFINE/SYSTEM/EXEC SYS$JOURNAL device:[directory] 

2. Reboot the system. 

3. Copy the log file to the new location, using the following command format: 

COPY DEVICE:[DIRECTORY]SYSTEM$node-name.LM$OLD-
_SYS$JOU RNAL:SYSTEM$node-name. LM$JOU RNAL 

4. If the copy is successful, delete the old log file. 

B.11.2 Format of Transaction Log Files 
A transaction log file consists of a file header, section headers, and transaction 
records. 

A log file header contains information about the log file, such as its version 
number, size, unique identifier, and checkpoints. Checkpoints are mechanisms 
that bound the search for active transaction records. Therefore, in the event of 
a system failure, the log manager can efficiently locate the active transaction 
records needed for system recovery. (An active transaction is one that has not 
completed. ) 

A log file is organized into sections and each section has a section header 
containing information about its own characteristics. This information is used by 
the log manager to find and read transaction records efficiently. 



VMS Version 5.4 Features 
Format of Transaction Log Files 

The transaction record header identifies the record number and information 
about the transaction, such as the transaction's state and its unique transaction 
identifier (TID). A transaction can be in any of three states: 

• PREPARED The transaction is in a state where it can be either committed 
or rolled back. 

• COMMITTED The transaction manager has enough information to complete 
the transaction even though the participants in the transaction have not 
finished all their operations. 

• FORGOTTEN The participants have enough information to complete 
processing the transaction and will no longer ask about the transaction. 
Therefore, the transaction can be forgotten. 

The transaction record data gives information about the DECdtm version number, 
the log identifier, and the name and type of resource manager the transaction is 
involved with. 

Example B-2 shows a portion of a sample transaction log file. 

Example B-2 Sample Transaction Log File 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$BLUE.LM$JOURNAL;1 
End of file block 4000 /Allocated 4000 
Log Version 1.0 0 
Log File UID: 9D519DC0-698E-0092-DF95-OOOOOOOOB20D (21-JUN-1989 09:19:44.54) 
Penultimate Checkpoint: 00000012C45E 005E 
Last Checkpoint: 000000133E39 0039 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$BLUE.LM$JOURNAL;1 
Present Length: 166 (OOOOOOA6) Last Length: 512 (00000200) 
VBN Offset: 2503 (000009C7) Virtual Block: 2505 (000009C9) 
Section: 4 (00000004) 

Record number 3 (00000003)©, 77 (004D) bytes Q 
Transaction state (1): PREPARED 
Transaction ID: 2B065A40-6E88-0092-EC42-OOOOOOOOB208 Q (27-JUN-1989 17:16:11.62) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM = Log ID:00000000-0000-0000-0000-000000000000 ~ 
Name (6): "SERVER" (5245 56524553) 
Type (4): PARENT NODE ~ Log ID:6900BC00-6B4F-0092-C8BD-OOOOOOOOB208 m 
Name (10): "SYSTEM$RED" ~ (4445 52244D45 54535953) 

Log header Contains information about the log's characteristics. 

Section header The section header of multiple transaction records. 

Record number A unique record number in decimal and hexadecimal. 

Record size The record size in decimal and hexadecimal. 

Transaction state The three states a transaction can be in are PREPARED, 
COMMITTED, and FORGOTTEN. 

Q Transaction ID (TID) Each transaction has its own unique transaction 
identifier assigned by the transaction manager. 



VMS Version 5.4 Features 
Format of Transaction Log Files 

~ DECdtm services version number The software version number of DECdtm 
services. 

Participant type The types of participant in the transaction. 

Participant types include: 

• CHILD NODE A subordinate transaction manager 

• PARENT NODE The immediate parent transaction manager 

• LOCAL RM The recoverable resource manager on the local node 

Q Participant name The name of the participant in the transaction, also given 
in hexadecimal. 

m Log ID A unique hexadecimal log identifier the participant uses to write its 
own recovery records. 

In Example B-2, the fields labeled 0 comprise the log header, ©comprise the 
section header, ©through ~ comprise the record header, and ~ through m 
comprise the record data. 

LMCP Usage Summary 

The Log Manager Control Program is a VMS utility that lets you create and 
maintain log files of transaction records. 

Format 
$ RUN SYS$SYSTEM:LMCP 

Usage Summary 
To invoke LMCP, enter the following DCL command: 

$ R.uTv~ SYS $ SYST H ~~ :~~~1C v 

LMCP returns the following prompt: 

LMCP> 

At the LMCP> prompt, you can enter LMCP commands. To exit LMCP, enter 
EXIT at the LMCP> prompt, or press CtrUZ. 

You can also execute a single LMCP command by using a DCL string assignment 
statement, as shown in the following example: 

$ ~;l~Cp . __ $fir"C_ ~ ,,; u 

it ~ i~_ N ___; V 
.~ 

V 

In this example, LMCP executes the SHOW command and returns control to 
DCL. 

To use LMCP commands, you must have SYSPRV privilege. To use the LMCP 
command CONVERT, you must have CMKR,NL privilege. 



VMS Version 5.4 Features 

LMCP Commands 
This section describes the following LMCP commands and provides examples of 
how to use them: 

• CONVERT 

• CREATE 

• DUMP 

• HELP 

• REPAIR, including the following REPAIR subcommands: 

ABORT 
COMMIT 
EXIT 
FORGET 
HELP 
NEXT 

• SHOW 

  Note  

To use LMCP commands, you must have SYSPRV privilege. To use 
the LMCP command CONVERT, you must have CMKR,NL privilege. 
It is assumed throughout this section that system managers or other 
individuals who have these privileges will be implementing the procedures 
described herein. 

You can abbreviate any command, parameter, or qualifier as long as the 
abbreviation is unique. 



LMCP 
CONVERT 

CONVERT 

Converts a log file on a given node by transferring the active transaction records 
from the specified source log file to the specified destination log file. To use the 
CONVERT command, you need CMKR,NL privilege. 

Format 

CONVERT LOGFILE source_filespec 
destination_filespec 
[qualifier...] 

Parameter 

source_filespec 
Specifies the file specification of the log file from which active transaction records 
are to be copied. 

destination_filespec 
Specifies the file specification of the log file where active transaction records are 
to be written. 

Qualifiers 

/OWNER-owner id 
Associates an owner or user identification code (UIC) with the log file to be 
created. You specify the UIC using the standard UIC format as described in the 
VMS DCL Concepts Manual. The default UIC is one of the following: 

• The owner UIC of an existing version of the file if the file creator has extended 
privileges 

• The owner UIC of the parent directory if the file creator has extended 
privileges 

• The owner UIC of the creator 

/SIZE-file size 
Specifies the size of the log file in blocks. The minimum log file size is 100 blocks. 

Description 
Use the CONVERT command to resize a log file. For example, if transaction 
processing performance degrades on your system, then you may need to increase 
the log file size. See Section B.11.1.7 for more information about resizing and 
moving log files. 

Example 

LMCP> CONT~;TERT LOGFIT E S`~~ ST~,T~~1$RLD. ~~~$0~.D SYSTET~~~$RED;'SIZE=8000 

This command transfers all active transaction records from the log file 
SYSTEM$RED.LM$OLD to SYSTEM$RED and specifies a log file size of 8000 
blocks. 



LMCP 
CREATE 

CREATE 

Creates a log file for a specific node. 

Format 

CREATE LOGFILE filespec [qualifier...] 

Parameter 

filespec 
Specifies the file specification of the log file to be created. DECdtm services expect 
the file name to be in the format SYSTEM node-name, where node-name is the 
name of the node that will use the log file. 

Qualifiers 
/NEW_VERSION 
Creates a new version of a log file if a log file with an identical specification 
already exists. The new log file is created with the same name and type but with 
a version number one higher than the highest existing version. Note that, once 
the new version of the transaction log file is created, then any transaction records 
in the previous log cannot be accessed. 

If the /NEW VERSION qualifier is specified for a log file that does not exist, no 
new file will be created. Instead, an error will be returned. 

/OWNER-owner id 
Associates an owner or user identification code (UIC) with the log file to be 
created. Specify the UIC using the standard UIC format as described in the VMS 
DCL Concepts Manual. The default UIC will be one of the following: 

• The owner UIC of an existing version of the file if the file creator has extended 
privileges 

• The owner UIC of the parent directory if the file creator has extended 
privileges 

• The owner UIC of the creator 

(SIZE-file size 
Specifies the size of the log file in blocks. The minimum log file size is 100 blocks, 
and the default log file size is 4000 blocks. 

Description 

By default, log files are created in the directory specified by SYS$JOURNAL, with 
a file type of LM$JOURNAL and a size of 4000 blocks. To identify the name of 
the node that will use the log file, the file name must be in the following format: 

SYSTEM node-name 



LMCP 
CREATE 

Examples 

1. LMCP> CREnTE DOGH ~T E S`~'STEi~~S~~~~ 0~-vNER=GO~vZ~~;ES'SIZE=44~C~ 

This command creates a log file called SYSTEM$BLUE.LM$JOURNAL, 
associates it with user GONZALES, and specifies a file size of 4400 blocks. 

2. LMCP> CREaiE ~OGRi~,E SYSTEI~~$YE~~G~'~' 'G~^~NER= ]USER, FRED] , S1ZE=4000 

This command creates a log file called SYSTEM$YELLOW.LM$JOURNAL, 
associates it with the UIC group USER, member FRED, and specifies a log 
file size of 4000 blocks. 

3. LMCP> m r ~, ,~ .,~m~~T,~ ~. ,~1~r, T r 7 r1~ T T -, ~ , CREME LOGF' ~~ ~~ ~. yc~~r~~, ~~~vti~ ~~ERS~ON/O~ti~~ ER=GO~v~~,L~S S' 'E=~~00 

This command creates a new log file that supersedes the current highest 
version of SYSTEM$BLUE.LM$JOURNAL and is given a version number 
one higher. Also, the new log file is associated with user GONZALES and 
specifies a file size of 4400 blocks. 



LMCP 
DUMP 

DUMP 

Displays (or "dumps") the contents of a specified log file. 

Format 
DUMP filespec [qualifier...] 

Parameter 

filespec 
Specifies the file specification of the log file. 

Qualifiers 
/ACTIVE 
Specifies that only records relating to active transactions within the log file are to 
be displayed. 

/FORMAT default) 
/NOFORMAT 
Displays the contents of the log file as formatted records. If the /NOFORMAT 
qualifier is specified, only the log file header is displayed. 

/HEX 
Specifies that the contents of the log file dump are displayed as ASCII characters 
and hexadecimal longwords. Use both the /NOFORMAT and /HEX qualifiers to 
format a DUMP operation in hexadecimal only. 

/LOG I D=log_identif ier 
Specifies the log identifier, in hexadecimal format, associated with a specific 
resource manager. The /LOGID qualifier can be used only in conjunction with the 
/RM qualifier. 

/OUTPUT[~filespec] 
Specifies that the output is written to the file specified. By default, the DUMP 
command writes the output to SYS$OUTPUT. If you enter /OUTPUT with no file 
specification, LMCP_DUMP is the default file name and LIS is the default type. 

/RM=rm identifier 
Selects the transactions to be displayed according to the resource manager 
participating in the transaction. The argument supplied for the rm_identifier 
can be either the ASCII character string for the resource manager name or its 
hexadecimal equivalent. When specifying a hexadecimal string, you must prefix 
the characters %X to the hexadecimal string. 

If a partial resource manager name is supplied as the argument for the rm_ 
identifier, LMCP selects all resource managers having names that begin with 
the supplied string. 

/STATE=transaction state 
Selects the transactions to be displayed according to their transaction states. A 
value of either PREPARED or COMMITTED can be supplied as an argument 
to the /STATE qualifier. If the /STATE qualifier is not supplied, all transactions 
records are selected. 



LMCP 
DUMP 

/TID-transaction id 
Selects the transactions to be displayed according to the transaction identifier. 
The argument supplied for the transaction_id must be a hexadecimal character 
string. 

Description 

If you entered the DUMP command, the contents of the log file you specified are 
displayed. By default the log file records are displayed as formatted records. 

Examples 

1. LMCP> DUMP SYSTEM$BLUE;%HEX/NOFORMAT 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$BLUE.LM$JOURNAL;2 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 9D519DC0-698E-0092-DF95-OOOOOOOOB20D (21-JUN-1989 09:19:44.54) 
Penultimate Checkpoint: 00000012C45E 005E 
Last Checkpoint: 000000133E39 0039 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$BLUE.LM$JOURNAL;2 
Present Length: 68 (00000044) Last Length: 512 (00000200) 
VBN Offset: 2504 (000009C8) Virtual Block: 2506 (000009CA) 
Section: 3 (00000003) 

Record number 1 (00000001), 48 (0030) bytes 
Transaction state (2): COMMITTED 
Transaction ID: 2B065A40-6E88-0092-EC42-OOOOOOOOB208 (27-JUN-1989 17:16:11.62) 
01000000 OOB20842 EC00926E 882B065A 40020030 0..@Z.+.n..iB.2   0000 
00060000 00000000 00000000 00000000 00000300   0014 

00305245 56524553 SERVERO. 0028 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$BLUE.LM$JOURNAL;2 
Present Length: 166 (OOOOOOA6) Last Length: 512 (00000200) 
VBN Offset: 2503 (000009C7) Virtual Block: 2505 (000009C9) 
Section: 4 (00000004) 

Record number 3 (00000003), 77 (004D) bytes 
Transaction state (1): PREPARED 
Transaction ID: 2B065A40-6E88-0092-EC42-OOOOOOOOB208 (27-JUN-1989 17:16:11.62) 
01000000 OOB20842 EC00926E 882B065A 4001004D M..@Z.+.n..iB.2   0000 
00060000 00000000 00000000 00000000 00000300   0014 
OOB208BD C800926B 4F6900BC 00045245 56524553 SERVER..%.iOk..E%.2   0028 

00 4D444552 244D4554 53595300 OA000000  SYSTEM$REDM. 003C 

Record number 2 (00000002), 21 (0015) bytes 
Transaction state (0): FORGOTTEN 
Transaction ID: 2A6DC3C0-6E88-0092-EC42-OOOOOOOOB208 (27-JUN-1989 17:16:10.62) 
15000000 OOB20842 EC00926E 882A6DC3 C0000015 ...AAm*.n..iB.2   0000 

00 0014 

Record number 1 (00000001), 48 (0030) bytes 
Transaction state (2): COMMITTED 
Transaction ID: 2A6DC3C0-6E88-0092-EC42-OOOOOOOOB208 (27-JUN-1989 17:16:10.62) 
01000000 OOB20842 EC00926E 882A6DC3 C0020030 O..AAm*.n..iB.2   0000 
00060000 00000000 00000000 00000000 00000300   0014 

00305245 56524553 SERVERO. 0028 

This command produces a dump in hexadecimal format of the specified log file. 

B-81 



LMCP 
DUMP 

2. LMCP> DUT~~P SYSTEM$BLUE/HEX%OUTPUT=E~~; ''~~PLE 

This command writes a dump in hexadecimal format of the specified log file to 
the file E~;AMPLE.LIS. 

3. LMCP> D~~~'P SYSTEM$PURPLE%ACTIVE 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$PURPLE.LM$JOURNAL;1 

End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 2F99A820-BAB2-0092-9310-OOOOOOOOBIFE ( 2-OCT-1989 15:28:26.53) 
Penultimate Checkpoint: 000000000000 0000 
Last Checkpoint: 000000010BD9 01D9 

Transaction state (2): COMMITTED 
Transaction ID: 84C67760-BAB2-0092-8243-OOOOOOOOBIFE ( 2-OCT-1989 15:30:49.43) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (11): "THREAD_5.29" (39322E 355F4441 45524854) 
Type (2): CHILD NODE Log ID: 748FF000-B52A-0092-9011-OOOOOOOOB204 
Name (13): "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 

Transaction state (2): COMMITTED 
Transaction ID: 84C1E380-BAB2-0092-8243-OOOOOOOOBIFE ( 2-OCT-1989 15:30:49.40) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (11): "THREAD_4.29" (39322E 345F4441 45524854) 
Type (2): CHILD NODE Log ID: 748FF000-B52A-0092-9011-OOOOOOOOB204 
Name (13): "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 

Total of 2 transactions active, 0 prepared and 2 committed. 

This command displays a dump of all active transactions of the specified log file. 

4. LMCP> DUMP SYSTEM$GREEN/STATE=PREPARED 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$GREEN.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 748FF000-B52A-0092-9011-OOOOOOOOB204 (25-SEP-1989 14:34:14.86) 
Penultimate Checkpoint: 00000002DDB7 01B7 
Last Checkpoint: 00000002FC41 0241 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$GREEN.LM$JOURNAL;1 
Present Length: 169 (OOOOOOA9) Last Length: 512 (00000200) 
VBN Offset: 380 (0000017C) Virtual Block: 382 (0000017E) 
Section: 2 (00000002) 

Record number 3 (00000003), 80 (0050) bytes 
Transaction state (1): PREPARED 
Transaction ID: F30CAF60-BA84-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:04:37.59) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (6): "SERVER" (5245 56524553) 
Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-OOOOOOOOB24B 
Name (13): "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$GREEN.LM$JOURNAL;1 
Present Length: 100 (00000064) Last Length: 512 (00000200) 
VBN Offset: 379 (0000017B) Virtual Block: 381 (0000017D) 
Section: 3 (00000003) 



LMCP 
DUMP 

Record number 1 (00000001), 80 (0050) bytes 
Transaction state (1): PREPARED 
Transaction ID: F2F8D940-BA84-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:04:37.46) 
DECdtm Services Log Format V1.0 
Type (3}: LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (6): "SERVER" (5245 56524553) 
Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-OOOOOOOOB24B 
Name (13}: "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$GREEN.LM$JOURNAL;1 
Present Length: 100 (00000064} Last Length: 0 (00000000) 
VBN Offset: 0 (00000000) Virtual Block: 2 (00000002) 
Section: 376 (00000178} 

Record number 1 (00000001), 80 (0050) bytes 
Transaction state (1): PREPARED 
Transaction ID: 809D5600-BA84-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:01:25.60) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (6): "SERVER" (5245 56524553) 
Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-OOOOOOOOB24B 
Name (13): "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 

This command displays a dump of all prepared records of the specified log file. 

5. LMCP> DUMP SYSTEM$GREEN/TID=FAC21DE2-BA88-0092-8FA6-OOOOCOOCB24B/ACTIVE 

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEM$GREEN.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 68165820-BA84-0092-FC95-OOOOOOOOB24B ( 2-OCT-1989 10:00:44.45) 
Penultimate Checkpoint: 0000000711D3 13D3 
Last Checkpoint: 000000072742 1542 

Transaction state (2): COMMITTED 
Transaction ID: FAC21DE2-BA88-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:33:28.51) 
DECdtm Services Log Format V1.0 
Type (3}: LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (11): "THREAD_13.4" (342E33 315F4441 45524854} 

Total of 2 transactions active, 0 prepared and 2 committed. 

This command displays a dump of the record for the specified active transaction. 
(If the transaction is not active, only the active transaction count number is 
displayed. ) 



LMCP 
HELP 

HELP 

Provides information about LMCP commands and parameters. 

Format 

HELP [help-topic [help-subtopic]] 

Parameter 

help-topic 
Specifies the command to be explained. 

help-subtopic 
Specifies the qualifier to be explained. 

Examples 

1. LMCP> HELP 

Information available: 

CONVERT CREATE 
REPAIR SHOW 

Description DUMP EXIT HELP 

This command invokes help and displays all commands for which further 
information exists. 

2. LMCP> HELP CRETE 

CREATE 

Creates a log file. 

Format: 

CREATE LOGFILE filespec [qualifier...] 

Additional information available: 

filespec qualifiers 
/OWNER /SIZE 
Example 

This command provides a description of the CREATE command. 



LMCP 
REPAIR 

REPAIR 

Selects records within a log file so that transactions can be repaired by having 
their transaction states changed. Once the transaction records have been 
selected, REPAIR subcommands can be used to change the transaction states. 

  Note  

Because the REPAIR command lets you change transaction states locally 
without regard to the global state, you must use this command with 
caution. If you do not change all necessary characteristics of a transaction 
record, the transaction could be placed in an inconsistent state, resulting 
in potential data loss. 

Format 
REPAIR filespec [qualifier...] 

Parameter 
filespec 
Specifies the file specification of the log file containing the transaction records to 
be repaired. 

Qualifiers 

/LOG I D-log identifier 
Specifies the log identifier, in hexadecimal format, associated with a specific 
resource manager. The /LOGID qualifier can be used only in conjunction with the 
/RM qualifier. 

/RM-rm identifier 
Selects the transactions to be repaired according to the resource manager 
participating in the transaction. The argument supplied for the rm_identifier 
can be either the ASCII character string for the resource manager name or its 
hexadecimal equivalent. When specifying a hexadecimal string, you must prefix 
the characters %X to the hexadecimal string. 

If a partial resource manager name is supplied as the argument for the rm_ 
identifier, LMCP selects all resource managers having names that begin with 
the supplied string. 

/STATE-transaction state 
Selects the transactions to be repaired according to their transaction states. A 
value of either PREPARED or COMMITTED can be supplied as an argument 
to the /STATE qualifier. If the /STATE qualifier is not supplied, all active 
transactions (both PREPARED and COMMITTED) are selected. 

/TID-transaction id 
Selects the transactions to be repaired according to the transaction identifier. 
The argument supplied for the transaction_id must be a hexadecimal character 
string. 



LMCP 
REPAIR 

Description 
The REPAIR command allows you to manually modify active transaction records 
in a log file. 

When you enter the REPAIR command, LMCP enters the REPAIR command 
mode and produces a listing of the log file's contents, as selected by the specified 
REPAIR command qualifier. Each transaction record is displayed sequentially 
so that you can modify its characteristics. After each record in the filtered log 
file is displayed, the REPAIR> prompt returns. You can then enter REPAIR 
subcommands to change the transaction states of specific records. The REPAIR 
subcommands are as follows: 

ABORT 
COMMIT 
EXIT 
FORGET 
HELP 
NEXT 

Once you finish modifying a transaction record, you can use the REPAIR 
subcommand NEXT to advance to the next sequential record in the file. 

To return to the LMCP> prompt, you must exit the REPAIR command mode by 
entering the EXIT subcommand or by pressing CtrUZ. 

The sections that follow the REPAIR command examples describe each of the 
REPAIR subcommands. 

Examples 

1. LMCP> REPAIR SVSTEM$ORANGE ~~ ST~'1~TE=PREP~.RED%' RM=LOGE 

This command selects all PREPARED transaction records in the log file 
SYSTEM$ORANGE. It specifies that only records from participating resource 
managers having names beginning with LOGE are to be selected. 

2. LMCP> REPAIR SYSTEM$ORANGE;%R?~I=~OGLOA~ -
LMCP> ,,/LOGID=68165820-BA84-0092-rC9~-OOOOOOOOB24B 

This command selects all active transaction records in the log file 
SYSTEM$ORANGE. It specifies that only records with a participating 
resource manager called LOGLOAD and associated log identifier of 68165820-
BA84-0092-FC95-OOOOOOOOB24B are to be selected. 

3. LMCP> REPAIR SYS'~'Ei~~l$ORr_~~iCE; R~•i= ~~;~~~~~~~h~~5 

This command selects all active transaction records in the log file 
SYSTEM$ORANGE. It specifies that only records from a participating 
resource manager with a hexadecimal name 534552564552 are to be selected. 

4. LMCP> REPAIR S`~'STE~~~SOR ~T-r~ -
LMCP> ;TID=8C~89?~C~~-~A~~-0092-8FA6-OOOOOCu0B24B 

This command selects the active transaction record in the log file 
SYSTEM$ORANGE. It specifies that only the record for the transaction 
with a hexadecimal TID 8C689380-BA84-0092-8FA6-OOOOOOOOB24B is to be 
selected. 



REPAIR 
ABORT 

ABORT 

Changes the state of a transaction from PREPARED to ABORTED. 

Format 

Example 

ABORT 

LMCP> REPAIR SYST~I~~1$RED 

Dump of log file DISK$MASTER:[MASTER.JOURNALS]SYSTEM$RED.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 748FF000-B52A-0092-9011-OOOOOOOOB204 (25-SEP-1989 14:34:14.86) 
Penultimate Checkpoint: 000000073E2D 042D 
Last Checkpoint: 000000077D7C 037C 

Transaction state (1): PREPARED 
Transaction ID: FACFD981-BA88-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:33:28.60) 
DECdtm services V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (6): "SERVER" (5245 56524553) 
Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-OOOOOOOOB24B 
Name (13): "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 
REPAIR> ABORT 
REPAIR> EXiT 
LMCP> 

The initial REPAIR command selects all active transaction records in the log file 
SYSTEM$RED. The ABORT subcommand changes the state of the presented 
transaction from PREPARED to ABORTED. The EXIT subcommand exits the 
REPAIR command mode. 



REPAIR 
COMMIT 

COMMIT 

Format 

Example 

Changes the state of a transaction from PREPARED to COMMITTED. 

COMMIT 

LMCP> REPAIR SYSTEM$RED 

Dump of log file DISK$MASTER:[MASTER.JOURNALS]SYSTEM$RED.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 748FF000-B52A-0092-9011-OOOOOOOOB204 (25-SEP-1989 14:34:14.86) 
Penultimate Checkpoint: 000000073E2D 042D 
Last Checkpoint: 000000077D7C 037C 

Transaction state (1): PREPARED 
Transaction ID: FACFD981-BA88-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:33:28.60) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (6): "SERVER" (5245 56524553) 
Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-OOOOOOOOB24B 
Name (13): "SYSTEM$ORANGE" (45 474E4152 4F244D45 54535953) 
REPAIR> COMMIT 
REPAIR> EXIT 
LMCP> 

The initial REPAIR command selects all active transaction records in the log file 
SYSTEM$RED. The COMMIT subcommand changes the state of the transaction 
from PREPARED to COMMITTED. The EXIT subcommand exits the REPAIR 
command mode. 



REPAIR 
EXIT 

EXIT 

Exits the REPAIR command mode and returns the LMCP> prompt. 

Format 

EXIT 



REPAIR 
FORGET 

FORGET 

Specifies that a transaction with a state of COMMITTED can be forgotten, which 
means the committed transaction record can be removed from the log file. 

Format 

Example 

FORGET 

LMCP> REPAIR SYSTL'i~2$RED 

Dump of log file DISK$MASTER:[MASTER.JOURNALS]SYSTEM$RED.LM$JOURNAL;1 
End of file block 4000 /Allocated 4000 
Log Version 1.0 
Log File UID: 748FF000-B52A-0092-9011-OOOOOOOOB204 (25-SEP-1989 14:34:14.86) 
Penultimate Checkpoint: 000000073E2D 042D 
Last Checkpoint: 000000077D7C 037C 

Transaction state (2): COMMITTED 
Transaction ID: F2F8D940-BA84-0092-8FA6-OOOOOOOOB24B ( 2-OCT-1989 10:04:37.46) 
DECdtm Services Log Format V1.0 
Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000 
Name (10): "THREAD_6.4" (342E 365F4441 45524854) 
REPAIR> FORGET 

REPAIR> NEXT 

The initial REPAIR command selects all active transaction records in the log file 
SYSTEM$RED. The FORGET subcommand specifies that the transaction can be 
forgotten. The NEXT subcommand advances to the next record. 



REPAIR 
HELP 

HELP 

Provides information about REPAIR subcommands and parameters. 

Format 
HELP [help-topic [help-subtopic]] 

Parameter 
help-topic 
Specifies the subcommand to be explained. 

help-subtopic 
Specifies the qualifier to be explained. 

Examples 

1, REPAIR> HELP 

REPAIR 

SUBCOMMANDS 

Entering the REPAIR command produces a listing of the log file`s 
contents, as selected by the optional REPAIR command qualifiers. Each 
transaction record is displayed sequentially, so that a user can modify 

its characteristics. 

After each record in the filtered log file is displayed, 
the REPAIR> prompt is returned. A user can then issue REPAIR 

subcommands to change the transaction states of specific records. 
A user must issue a NEXT subcommand to advance to the next sequential 

record in the file. 

To return to the LMCP> prompt, a user must exit the REPAIR command 

mode by entering the EXIT subcommand or by pressing Ctrl/Z. 

Additional information available: 

ABORT COMMIT EXIT FORGET NEXT 

This command invokes help and displays all subcommands for which further 
information exists. 

2, REPAIR> HELP hBORi' 

REPAIR 

SUBCOMMANDS 

ABORT 

Changes the state of a transaction from PREPARED to ABORTED. 

Format: 

ABORT 

This command provides a description of the ABORT subcommand. 

B-91 



REPAIR 
NEXT 

NEXT 

Advances to the next record in a transaction log. 

Format 

NEXT 



VMS Version 5.4-3 Features 
SHOW 

SHOW 

Lists information about transaction log files. 

Format 
SHOW LOGFILE filespec [qualifier...] 

Parameter 
filespec 
Specifies one or more log files to be listed. The syntax of the file specification 
determines which files will be listed, as follows: 

• If you enter a file name or a file name containing a wildcard character, the 
SHOW command lists each file matching the name specified. 

• If you do not enter a file specification, the SHOW command lists all log files 
in the directory SYS$JOURNAL. 

QUALIFIER 
/CURRENT 
Specifies that information about the currently active log file is shown. This 
information includes the number of checkpoints and stalls that have occurred 
since DECdtm services were started up and indicates whether a checkpoint or 
stall is currently in progress. 

Note that no file specification is necessary when the /CURRENT qualifier is used. 

/FULL 
Lists all log file attributes. 

/OUTPUT[-filespec] 
Specifies that the output be written to the file specified. By default, the SHOW 
command writes the output to SYS$OUTPUT. If you enter /OUTPUT with no file 
specification, then LMCP_SHOW is the default file name and LIS is the default 
type. 

Description 
The SHOW command produces a list of existing log files matching the selection 
criteria specified. The asterisk and percent sign wildcard characters can be 
passed to the SHOW command to represent file names. 

Examples 

1. LMCP 
,~ T T ~ ry~,ryT .~,~ ~ ~~ 

Directory of DISK$MASTER:[MASTER.JOURNALS) 

DISK$MASTER:[MASTER.JOURNALS]SYSTEM$BLUE.LM$JOURNAL;1 
End of file block 4000 /Allocated 4000 
Log Version 1.0 
Log File UID: 275300C0-7A71-0092-D3A8-OOOOOOOOB232 (12-JUL-1989 21:01:40.94) 
Penultimate Checkpoint: OOOOCE644AF2 02F2 
Last Checkpoint: OOOOCE6457F2 03F2 



VMS Version 5.4-3 Features 
SHOW 

DISK$MASTER:[MASTER.JOURNALS]SYSTEM$BLACK.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 9D519DC0-698E-0092-DF95-OOOOOOOOB20D (21-JUN-1989 09:19:44.54) 
Penultimate Checkpoint: 00000012C45E 005E 
Last Checkpoint: 000000133E39 0039 

DISK$MASTER:[MASTER.JOURNALS]SYSTEM$BRONZE.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: 21847980-5F78-0092-3F5D-OOOOOOOOBIFF ( 8-JUN-1989 13:13:36.28) 
Penultimate Checkpoint: OOOOOOECADE5 41E5 
Last Checkpoint: OOOOOOF105FC 41FC 

DISK$MASTER:[MASTER.JOURNALS]SYSTEM$BROWN.LM$JOURNAL;1 
End of file block 4000 / Allocated 4000 
Log Version 1.0 
Log File UID: A6173DC0-3DE2-0092-0000-OOOOOOOOBIFF (26-APR-1989 19:30:25.82) 
Penultimate Checkpoint: OOOOOC8B4819 2019 
Last Checkpoint: OOOOOC8BC15B 335B 

Total of 4 files. 

This command lists all log files with file names beginning with SYSTEM$B. 

2. LMCP> UHO~r~1 T~OGr ILE 
Directory of DISK1:[MASTER.LOGFILES] 

SYSTEM$BLACK.LM$JOURNAL;1 
SYSTEM$BLUE.LM$JOURNAL;1 

Total of 2 files. 

Directory of DISK1:[MASTER.NAMES] 

SYSTEM$GREEN.LM$JOURNAL;1 
SYSTEM$ORANGE.LM$JOURNAL;1 
SYSTEM$RED.LM$JOURNAL;1 

Total of 3 files. 

Grand total of 2 directories 5 files. 

This command lists all directories equivalent to SYS$JOURNAL and their log 
files. 

3. LMCP> SHOT~~ LOGFILE SYSTEM$RED/FULL/OUTPUT=EXANIPLF 

This command lists all percentage information for the specified log file and writes 
it to the file EXAMPLE.LIS. 

4. LMCP> ~~0~~ ~OG~ I~~%CURRENT 

Checkpoints started/ended 14/123 
Stalls started/ended 1/1 
Log status: checkpoint in progress, no stall in progress 

This command shows status information about the currently active log file. 



VMS Version 5.4 Features 
B.12 Monitor Utility (MONITOR) 

B.12 Monitor Utility (MONITOR) 
The VMS Monitor Utility (MONITOR) is a system management tool that you 
can use to obtain information about operating system performance. This section 
describes the following enhancements to Version 5.4 of the VMS Monitor Utility: 

• New MONITOR TRANSACTION command and TRANSACTION class (for 
use within a DECdtm services environment) 

• New MONITOR VECTOR command and VECTOR class (for use within a 
vector processing environment) 

See the VMS Monitor Utility Manual for information about other classes and 
commands. 

B.12.1 MONITOR TRANSACTION Command 
The MONITOR TRANSACTION command initiates monitoring of the 
TRANSACTION class, which shows information about transactions coordinated 
by the DECdtm services. (For a complete description of DECdtm services, see 
Section B.3.) 

Use this command as follows: 

1. Invoke the Monitor Utility by entering the DCL command MONITOR. The 
utility then displays the following prompt: 

MONITOR> 

2. At the MONITOR> prompt, enter the MONITOR TRANSACTION command. 
The format, description, and examples of how to use this command follow. 



VMS Version 5.4 Features 
MONITOR TRANSACTION 

MONITOR TRANSACTION 

Format 
MONITOR TRANSACTION 

Qualifiers 
/qualifier[,...] 
One or more qualifiers, described as follows: 

Class-name qualifiers 
/ALL 
Specifies that a table of all available statistics (current, average, minimum, and 
maximum) is to be included in the display and summary output. For summary 
output, this qualifier is the default for all classes; otherwise, it is the default for 
all classes except CLUSTER, MODES, PROCESSES, STATES, SYSTEM, and 
VECTOR. 

/AVERAGE 
Selects average statistics to be displayed in a bar graph for display and summary 
output. 

/CURRENT 
Selects current statistics to be displayed in a bar graph for display and summary 
output. The /CURRENT qualifier is the default for the CLUSTER, MODES, 
STATES, SYSTEM, and VECTOR classes. 

/MAXIMUM 
Selects maximum statistics to be displayed in a bar graph for display and 
summary output. 

/MINIMUM 
Selects minimum statistics to be displayed in a bar graph for display and 
summary output. 

Description 
The TRANSACTION class consists of the following data items: 

• Start Rate The rate at which transactions are started. 

• Prepare Rate The rate at which transactions are placed in the prepare state 
by DECdtm services. 

• One-Phase Commit Rate The rate that one-phase commit transactions 
complete using the one-phase commit operation. This operation, which 
consumes significantly fewer system resources, is used when there is only a 
single resource manager participating in the transaction. 

• Total Commit Rate The rate at which transactions are committed. This 
value is the combined total of one-phase and two-phase commit transactions. 

• Abort Rate The rate at which transactions are aborted. 

• End Rate The rate at which transactions are ended. 



VMS Version 5.4 Features 
MONITOR TRANSACTION 

• Remote Start Rate The rate at which transactions are started by a 
transaction manager on a remote node. 

• Remote Add Rate The rate of remote add branch operations. 

• Completion Rate The rate of completed transactions, indexed by their 
duration time in seconds. Following is a list of the completion rate categories: 

Examples 

The number of transactions completed in 0-1 
second (1 second or less) 

The number of transactions completed in 1-2 
seconds 

The number of transactions completed in 2-3 
seconds 

The number of transactions completed in 3-4 
seconds 

The number of transactions completed in 4-5 
seconds 

The number of transactions that took more 
than 5 seconds to complete 

A transaction completed in 0.5 second is included in the count displayed for 
the Completion Rate 0-1 category, which indicates the number of transactions 
completed in the last time interval that took 0-1 second to execute. See the 
example displays that follow. 

Completion Rate 0-1 

Completion Rate 1-2 

Completion Rate 2-3 

Completion Rate 3-4 

Completion Rate 4-5 

Completion Rate 5+ 

1. MONITOR> MONITOR TRANS~CTIOl~Ti~LL 

VAX/VMS Monitor Utility 
DISTRIBUTED TRANSACTION STATISTICS 

on node SAMPLE 
16-JAN-1990 14:52:34 

CUR AVE MIN MAX 

Start Rate 34.76 34.76 34.76 34.76 
Prepare Rate 33.77 33.77 33.77 33.77 
One Phase Commit Rate 0.00 0.00 0.00 0.00 
Total Commit Rate 35.09 35.09 35.09 35.09 
Abort Rate 0.00 0.00 0.00 0.00 
End Rate 35.09 35.09 35.09 35.09 
Remote Start Rate 31.12 31.12 31.12 31.12 
Remote Add Rate 31.45 31.45 31.45 31.45 

Completion Rate 0-1 35.09 35.09 35.09 35.09 
by Duration 1-2 0.00 0.00 0.00 0.00 
in Seconds 2-3 0.00 0.00 0.00 0.00 

3-4 0.00 0.00 0.00 0.00 
4-5 0.00 0.00 0.00 0.00 
5+ 0.00 0.00 0.00 0.00 

This example shows the status of all transactions on node SAMPLE. 



VMS Version 5.4 Features 
MONITOR TRANSACTION 

2. MONITOR> 1~20N I TUR TRA~~SAC~T I OI~l;' l~7AX II~~~Ul~1 

VAX/VMS Monitor Utility 
+ + DISTRIBUTED TRANSACTION STATISTICS 

MAX I on node SAMPLE 
+ + 16-JAN-1990 14:51:04 

0 25 50 75 100 

Start Rate 35 
Prepare Rate 37 
One Phase Commit Rate 
Total Commit Rate 35 
Abort Rate 
End Rate 35 
Remote Start Rate 33 
Remote Add Rate 32 

Completion Rate 
by Duration 
in Seconds 

0-1 
1-2 
2-3 
3-4 
4-5 
5+ 

35 

************** 
************** 

************** 

************** 
************* 
************ 

************** 

This example shows the maximum statistics of all transactions on node SAMPLE. 



VMS Version 5.4 Features 
TRANSACTION Class Record 

B.12.2 TRANSACTION Class Record 
The TRANSACTION class record contains data describing the operations of the 
DECdtm transaction manager. The TRANSACTION class has a record type of 22 
and a size of 69 bytes. Figure B-10 illustrates the format of a TRANSACTION 
class record; Table B-7 describes the contents of each of its fields. 

Figure B-10 TRANSACTION Class Record Format 

Class Header 
(14 Bytes) 

Starts 

Prepares 

One Phase Commits 

Commits 

Aborts 

Ends 

Branches 

Adds 

0-1 Transactions 

1-2 Transactions 

2-3 Transactions 

3-4 Transactions 

4-5 Transactions 

5+ Transactions 

MNR TRA$L STARTS 

MNR TRA$L PREPARES 

MNR_TRA$L ONE_PHASE 

MNR TRA$L COMMITS 

MNR TRA$L ABORTS 

MNR TRA$L ENDS 

MNR TRA$L_BRANCHS 

MNR TRA$L ADDS 

MNR TRA$L_BUCKETSI 

MNR TRA$L_BUCKETS2 

MNR TRA$L BUCKETS3 

MNR TRA$L BUCKETS4 

MNR TRA$L BUCKETS5 

MNR TRA$L BUCKETS6 

ZK-2023A-GE 



VMS Version 5.4 Features 
TRANSACTION Class Record 

Table B-7 Descriptions of TRANSACTION Class Record Fields 

Field Symbolic Offset Contents 

Starts 

Prepares 

One Phase Commits 

Commits 

Aborts 

Ends 

Branches 

Adds 

0-1 Transactions 

1-2 Transactions 

2-3 Transactions 

3-4 Transactions 

4-5 Transactions 

5+ Transactions 

MNR_TRA$L_STARTS 

MNR_TRA$L_PREPARES 

MNR_TRA$L_ONE_PHASE 

MNR_TRA$L_COMMITS 

MNR_TRA$L_ABORTS 

MNR_TRA$L_ENDS 

MNR_TRA$L_BRANCHS 

MNR_TRA$L_ADDS 

MNR_TRA$L_BUCKETS 1 

MNR_TRA$L_BUCKETS2 

MNR_TRA$L_BUCKETS3 

MNR_TRA$L_BUCKETS4 

MNR_TRA$L_BUCKETS5 

MNR_TRA$L_BUCKETS6 

Count of transaction operations 
started. The number of times the 
system service $START_TRANS has 
been successfully completed (longword, 
C). 

Count of transactions that have been 
prepared (longword, C). 

Count of one-phase commit events 
initiated (longword, C). 

Count of transactions committed. This 
is the combined total of one-phase and 
two-phase commits (longword, C). 

Count of transactions aborted. 
Combined total of planned and 
unplanned aborts (longword, C). 

Count of transactions ended. The 
number of times $END_TRANS has 
successfully completed (longword, C). 

Count of start remote (to a remote 
parent) branch operations (longword, 
C). 

Count of add remote (to a remote 
subordinate parent) branch operations 
(longword, C). 

Count of transactions with a duration 
of less than 1 second (longword, C). 

Count of transactions with a duration 
of 1 to 2 (1.99) seconds (longword, C). 

Count of transactions with a duration 
of 2 to 3 seconds (longword, C). 

Count of transactions with a duration 
of 3 to 4 seconds (longword, C). 

Count of transactions with a duration 
of 4 to 5 seconds (longword, C). 

Count of transactions with a duration 
greater than 5 seconds (longword, C). 

B.12.3 MONITOR VECTOR Command 
The MONITOR VECTOR command displays the number of 10-millisecond clock 
ticks per second in which one or more vector consumers have been scheduled 
on each currently configured vector processor in the system. Because the VMS 
operating system schedules vector consumers only on those processors identified 
as "vector present," the VECTOR class output never displays vector CPU time for 
those processors that are "vector absent." 

Note that, because vector consumers can use either or both the vector CPU and 
scalar CPU components of avector-present processor, the vector CPU time in 
the VECTOR class display is not a strict measure of the actual usage of the 
processor's vector CPU component. Rather, it indicates the time during which 
a scheduled vector consumer has reserved both vector CPU and scalar CPU 

B-100 



VMS Version 5.4 Features 
MONITOR VECTOR Command 

components of the vector-present processor for its own exclusive use. (For a more 
complete description of the vector processing environment, see Section B.2. ) 

Use this command as follows: 

1. Invoke the Monitor Utility by entering the DCL command MONITOR. The 
utility then displays the following prompt: 

MONITOR> 

2. At the MONITOR> prompt, enter the MONITOR VECTOR command. The 
format, description, and an example of this command follow. 



VMS Version 5.4 Features 
MONITOR VECTOR 

MONITOR VECTOR 

Format 
MONITOR VECTOR 

Qualifiers 
/qualifier[,...] 
One or more qualifiers, described as follows: 

Class-name qualifiers 

/ALL 
Specifies that a table of all available statistics (current, average, minimum, and 
maximum) is to be included in the display and summary output. For summary 
output, this qualifier is the default for all classes; otherwise, it is the default for 
all classes except CLUSTER, MODES, PROCESSES, STATES, SYSTEM, and 
VECTOR. 

/AVERAGE 
Selects average statistics to be displayed in a bar graph for display and summary 
output. 

/CURRENT 
Selects current statistics to be displayed in a bar graph for display and summary 
output. The /CURRENT qualifier is the default for the CLUSTER, MODES, 
STATES, SYSTEM, and VECTOR classes. 

/MAXIMUM 
Selects maximum statistics to be displayed in a bar graph for display and 
summary output. 

/MINIMUM 
Selects minimum statistics to be displayed in a bar graph for display and 
summary output. 

Description 

The VECTOR class consists of the data item Vector Scheduled Rate, which is 
represented by a display of statistics that show the rates of 10-millisecond clock 
ticks per second during which vector consumers have been scheduled on each 
vector-present CPU. 



VMS Version 5.4 Features 
MONITOR VECTOR 

Example 

MONITOR> MONITOR VEC!~OR 

VAX/VMS Monitor Utility 
VECTOR PROCESSOR STATISTICS 

+ + on node SAMPLE 
i CUR I 12-JUN-1991 22:52:42 
+ + 

Vector Consumers Scheduled 0 25 50 75 100 

Vector Present CPU ID 0 
Vector Absent CPU ID 1 
Vector Absent CPU ID 2 
Vector Present CPU ID 4 

13 ***** 

58 ********************** 

+  + 

This example shows the VECTOR class display fora multiprocessing system 
containing two vector-present processors, CPU 0 and CPU 4. Displayed statistics 
represent rates of 10-millisecond clock ticks per second. For an average of 
13 ticks per second over the last collection interval, vector consumers have been 
scheduled on CPU 0. For an average of 58 ticks per second over the last collection 
interval, vector consumers have been scheduled on CPU 4. 



VMS Version 5.4 Features 
VECTOR Class Record 

B.12.4 VECTOR Class Record 

The VECTOR class record contains data describing the time during which vector 
consumers have been scheduled on avector-present processor. Its record type 
number is 23. A VECTOR class record is of variable length and depends on the 
number of active processors in the system. Assuming all processors are active, 
MONITOR calculates its size by adding the size of the class header and the data 
block, as follows: 

13 + (5 * MNR_SYI$B_VPCPUS) 

Figure B-11 illustrates the format of a VECTOR class record; Table B-8 describes 
the contents of each of its fields. 

Figure B-11 VECTOR Class Record Format 

Class Header 
(13 Bytes) 

CPU I D 

Ticks 

Table B-8 Descriptions of VECTOR Class Record Fields 

MNR_VEC$B_CPUID 

MNR_VEC$L_TICKS 

~i'
ZK-1942A-GE 

Field Symbolic Offset Contents 

CPU ID MNR_VEC$B_CPUID Identification of the processor from which the data 
has been collected (1 byte). 

Ticks MNR VEC$L_TICKS Number of 10-millisecond clock ticks in which 
a vector consumer has been scheduled on this 
processor (1 longword). 

To support the VECTOR class, MONITOR appends the records in Table B-9 to 
the system information record. 

Table B-9 Descriptions of Additions to System Record Fields 

Field Symbolic Offset Contents 

VPCPUs MNR_SYI$B_VPCPUS Number of vector-present processors in the current 

VP Conf MNR_SYI$L_VPCONF 

system (1 byte). 

Bit mask identifying those processors in the 
configuration that are vector-present processors 
(1 longword). 



VMS Version 5.4 Features 
B.13 Network Control Program Utility (NCP) 

B.13 Network Control Program Utility (NCP) 
This section describes new NCP line and circuit name support for VAXft 3000 
systems and for two new Ethernet/820 controllers. See the VMS Version 5.4 
Release Notes for more information about these and other hardware components 
that are new or enhanced for Version 5.4 of the VMS operating system. 

B.13.1 Line and Circuit Name Support for VAXft 3000 Systems 
The VMS Network Control Program Utility (NCP) supports the following new 
line and circuit name for VAXft 3000 systems (the controller number can be 0 or 
a positive number): 

KFE-<controller number> 

When you enter NCP commands from a VAXft 3000 system connected to your 
DECnet—VAX network, the KFE-n line and circuit name is displayed, as follows: 

$ RUN SYS$SYSTEM:NCP 
NCP> SHOW KNOW LINE 

Line Volatile Summary as of 31-AUG-1990 12:50:03 

Line State 

KFE-0 on 

$ RUN SYS$SYSTEM:NCP 
NCP> SHOW KNOW LINE 

Circuit Volatile Summary as of 31-AUG-1990 12:52:03 

Loopback Adjacent 
Circuit State Name Routing Node 

KFE-0 on 8.999 (DUPE) 

B.13.2 Line and Circuit Names for New Ethernet/820 Controllers 
The VMS Network Control Program Utility (NCP) now supports new line and 
circuit names for the following Ethernet/820 controllers. (See the VMS Version 
5.4 Release Notes for a complete description of each new controller.) 

• DEMNA controller The NCP line and circuit name for the DEMNA 
controller is as follows: 

MNA-<controller number> 

For example: 

MNA-0 (for EXAn) 
MNA-1 (for EXBn) 

• Second Generation Ethernet Controller (SGEC) The NCP line and circuit 
name for the SGEC is as follows: 

ISA-<controller number> 

For example: 

ISA-0 (for EZAn) 
ISA-1 (for EZBn} 



VMS Version 5.4 Features 
B.14 VMS Volume Shadowing Phase II 

B.14 VMS Volume Shadowing Phase II 
Volume shadowing is the process of maintaining multiple copies of the same 
data on two or more disk volumes. This duplication of data provides greater 
data availability and faster data accessibility. Volume shadowing provides high 
availability by ensuring against data loss resulting from media deterioration or 
through controller or device failure. When data is recorded on more than one disk 
volume, you have access to critical data even when one volume is unavailable. 
Disk input/output operations continue with the remaining members of the shadow 
set. 

The system can also find data more quickly because it can search more than one 
disk. Because a shadow set is made up of multiple disks containing the same 
data, the shadow set can use the additional read heads to respond to multiple 
read requests at the same time. In addition, when normal media deterioration 
renders sections of a volume unreadable, systems with volume shadowing can 
read the duplicate data and copy it to the failing volume to repair data. 

Before Version 5.4, the VMS operating system supported only phase I volume 
shadowing (see the VAX Volume Shadowing Manual). This type of shadowing 
provides centralized shadowing using HSC controllers with compatible DSA 
disks. Phase I shadowing is limited to CI configurations on a single system or a 
VAXcluster. 

VMS Volume Shadowing phase II supports the following: 

• Clusterwide shadowing of all MSCP-compliant DSA disks having the same 
physical geometry (having the same number of logical blocks) on a single 
system or located anywhere in a VAXcluster system. 

Volume shadowing phase II supports Clusterwide shadowing of all DSA 
devices. Phase II is not limited to HSC-controlled disks but extends volume 
shadowing capabilities to all DSA disks including local adapters, all DSSI 
(RF-series) disk devices on any VAX computer, all interfaces (including but 
not limited to the KFQSA interface), and across MSCP servers. 

• Distributed, not centralized, shadowing 

Volume shadowing phase II creates and maintains virtual units in a 
distributed fashion on each node in the cluster. Phase II supports shadowing 
on a single system or in a VAXcluster system where interprocessor 
communication is carried out over a computer interconnect (CI), Digital 
small systems interconnect (DSSI), mixed-interconnect configuration, or the 
Ethernet. Thus, volume shadowing provides fault tolerance resulting from 
disk media errors across the full range of VAX processors and configurations. 

• Shadowing of the system disk and Files-11 On-Disk Structure Level 2 (ODS2) 
data disks. 

• Shadowing capabilities across different controllers. 

Shadow set member units can be located on different controllers and VMS 
MSCP servers. 

• Shadowing capabilities with mixed phases. 

It is possible to use both phase I and phase II shadowing on the same node 
at the same time. You can also mix phase I and phase II shadowing in a 
VAXcluster system. 

See the new VMS Volume Shadowing Manual for complete information about 
phase II volume shadowing. 

B-106 



VMS Version 5.4 Features 
B.15 VMS Version 5.4 Programming Features 

B.15 VMS Version 5.4 Programming Features 
The following sections contain information about the VMS Version 5.4 
programming features. 

B.16 Larger Page Size Capability with Linker Utility 
With Version 5.4 of the VMS operating system, you can now specify larger page 
sizes by using the new BPAGE qualifier with the LINK command. Note that 
the BPAGE qualifier affects only the construction of the image (shareable or 
executable), not the linker itself or any page-size dependencies in the linked 
program. 



/BPAGE 

/BPAGE 

Specifies the page size the linker should use when it creates the image sections 
that make up an image. 

Format 

/BPAGE [=page-size-indicator] 

qualifier values 

page-size-indicator 
Specify any of the values listed in the following table: 

Description 

Value Page Size Defaults 

9 512 bytes Default value when the BPAGE qualifier is not 
specified. 

13 8 KB Default value when the BPAGE qualifier is specified 
without a value. 

14 16 KB 

15 32 KB 

16 64 KB 

With Version 5.4 of the VMS operating system, you can specify which page size 
the linker uses to create an image by using the new BPAGE qualifier with the 
LINK command. 

The images the linker creates are made up of image sections that the linker 
allocates on page boundaries. When you specify a larger page size, the origin of 
image sections increases to the next multiple of that size. 

The BPAGE qualifier can be used with or without a value indicating the page 
size. When specified without a value, the linker creates image sections on 8KB 
page boundaries. To select another page size, assign the appropriate value from 
the table above. (The values represent the power of 2 that produce the page size 
desired. For example, to get an 8KB page size, specify the value 13 because 2** 13 
equals 8K.) When the LINK command is used without the BPAGE qualifier, the 
linker uses a page size of 512 bytes by default. 

An image linked to a larger page size generally runs correctly on a current VMS 
system, but it might consume more virtual address space. In addition, linking 
a shareable image to a larger page size can cause the value of transfer vector 
offsets to change if they were not allocated in page 0 of the image. Do not link 
against a shareable image that was created with a different page size. (You 
cannot determine the page size used in the creation of a VAX image from the 
image. ) 



/BPAGE 

Example 

$ LINK%BPAGE ALPHA.OBJ 

When the BPAGE qualifier is specified without a value, the linker creates image 
sections on 8KB page boundaries. 

$ LINK ALPHA.OBJ 

When /BPAGE is not specified, the linker uses 512-byte pages, by default. 

$ LINK/BPAGE=16 ALPHA.OBJ 

Including the value 16 with the /BPAGE qualifier causes the linker to create 
image sections on 64KB page boundaries. 



VMS Version 5.4 Features 
B.17 VMS Record Management Services 

B.17 VMS Record Management Services 
This section describes the following enhancements to the VMS Record 
Management Services for Version 5.4 of the VMS operating system: 

• Asynchronous support for process-permanent files 

• Increase in local buffer limit 

• Access-mode protection 

• Expired-date suppression 

B.17.1 VMS RMS Asynchronous Support for Process-Permanent Files 
Prior to Version 5.4 of the VMS operating system, VMS RMS ignored the 
asynchronous option for process-permanent files. VMS RMS now supports this 
option, which affects the performance options within the following two RMS 
control blocks: 

RMS Control Block Field Performance Option 

File Access Block (FAB) 

Record Access Block (RAB) 

FAB$L_FOP 

R,AB$L_ROP 

FAB$V_ASY 

RAB$V_AST 

B.17.2 Local Buffer Maximum Increased 
With Version 5.4 of the VMS operating system, the maximum number of local 
buffers is increased to 32,767. Prior to Version 5.4, you were limited to specifying 
no more than 127 local buffers for a record stream from the VMS RMS interface 
using the RAB multibuffer count field (RAB$B_MBF). You obtain the additional 
local buffering capability by using the multibuffer count ~;ABITM. The 
multibuffer count XABITM is used as an input to the Connect service only. It is 
not used as an output by any service. 

The maximum number of local buffers established by the DCL command SET 
RMS_DEFAULT for a process has also increased from 127 to 255. However, 
the maximum number of local buffers established by the DCL command SET 
RMS_DEFAULT for the system remains 127. 

The xAB$_MULTIBUFFER_COUNT ~;.ABITM requires a 4-byte buffer to store 
the value that specifies the number of local buffers. To specify the number of local 
buffers, set up the ~:AB$_MULTIBUFFER_COUNT ~;ABITM with the number of 
local buffers desired. Then, link the x;ABITM into the ~;AB chain for the record 
stream prior to invoking the Connect service. When you use the multibuffer count 
XABITM, the value specified overrides any value that resides in the RAB$_MBF 
for the related record stream. See the VMS Record Management Services Manual 
for details about using a ~;ABITM. 

Before you increase the size of the local buffer pool, you should consider current 
memory management parameters because excessively large buffer pools introduce 
additional paging that can reduce I/O performance. 



VMS Version 5.4 Features 
Access-Mode Protection for VMS RMS 

B.17.3 Access-Mode Protection for VMS RMS 
VMS RMS now provides access-mode protection for its services and associated 
memory. This feature is analogous to the protection provided by the system 
services $ASSIGN and $SETPRT. 

No code changes are required for RMS calls involving a single access mode. A 
code change might be required for RMS calls that initiate operations from an 
inner access mode and allow subsequent RMS operations from an outer access 
mode. 

If an inner-mode caller initiates an RMS operation without overriding the access 
mode, subsequent outer-mode calls fail with an RMS$_PRV error. The arguments 
in the following code example are used to override the caller's access mode. These 
arguments, together with related topics, are described in the Introduction to VMS 
System Services. 

FAB$V_CHAN_MODE = PSL$C_<USER,SUPER,EXEC,KERNEL> ! Select one 

VMS uses the maximized value of the caller's access mode and the FAB$V 
CHAN_MODE argument (RMS access-mode argument) to establish the access 
mode. 

B.17.3.1 Access-Mode Protected Services 
The following services initiate operations on files. These services establish the 
access mode that VMS RMS uses to validate the access modes of subsequent 
accessing services. 

$CREATE $OPEN $PARSE $SEARCH 

The following services access open files to perform various VMS RMS operations. 
The access modes for each service trying to access an open file must be validated 
before RMS operations are allowed. 

$CLOSE $CONNECT $DELETE $DISCONNECT 

$DISPLAY $EXTEND $FIND $FREE 

$FLUSH $GET $NXTVOL $PUT 

$READ $RELEASE $REWIND $SPACE 

$TRUNCATE $UPDATE $WAIT $WRITE 

VMS RMS does not validate the access mode for the following services because 
access-mode comparison is not relevant to them: 

$ENTER $ERASE $REMOVE $RENAME 

B.17.3.2 Access-Mode Protected Memory 
VMS RMS now protects the following data structures and their associated 
I/O buffers at EW (executive read/write). Previously, the data structures were 
protected at DREW (user read, executive write). 

• RMS-controlled data structures 

• Process-permanent data structures 

• Image-activated data structures 

The following memory protection exceptions apply to user-mode accessors of RMS 
and are protected at DREW: 

• Internal RMS I/O buffers to facilitate RAB$V_LOC mode 

• RMS buffers containing collated tables used for indexed files 



VMS Version 5.4 Features 
Expired-Date Suppression 

B.17.4 Expired-Date Suppression 
The file system, in conjunction with parameters established using the DCL 
interface (see the description of the SET VOLUME command in the VMS DCL 
Dictionary), gives users a facility for determining whether a data file has expired 
and is eligible to be transferred to another storage medium. Expiration of a file 
is determined by the Expiration Date and Time, which should not be updated 
for maintenance functions or for any function where the data is not really being 
modified. 

Prior to VMS Version 5.4, the ability to suppress the expiration update was 
available only to applications that interface directly with the file system through 
the $QIO system service. (See the VMS IlO User's Reference Manual: Part I.) 
Now the ability to selectively suppress the update of the Expiration Date and 
Time is available to all applications through the RMS interface. 

B.17.4.1 The Role of XAB$_NORECORD XABITM 
The XAB$_NORECORD ~;.ABITM suppresses the update of the Expiration Date 
and Time on the $CLOSE service. The Expiration Date and Time is used by 
VMS to determine if the data in a disk file has been accessed recently. Normally, 
when data has been read or written to a disk file, the $CLOSE service updates 
the Expiration Date and Time to the current date and time. This moves back 
the date and time when the file is considered expired. Specifying the ~;.AB$_ 
NORECORD ~;ABITM suppresses the update of the Expiration Date and Time. 

The XAB$_NORECORD ~:ABITM uses a 4-byte buffer to set the NORECORD 
flag to logic 1 using the symbol X:AB$_ENABLE. Any other value in this XABITM 
buffer returns an RMS$_x;.AB error. An application cannot disable this option 
because the Files-11 On-Disk Structure Level 2 ACP does not support disabling 
this function once it has been selected for an $OPEN or $CREATE service. 

B.17.4.2 Applications for XAB$_NORECORD XABITM 
Typically, the x:AB$_NORECORD x:ABITM is used by directory or maintenance 
routines that do not manipulate the data and, therefore, do not change the 
expiration status of a disk file. For example, the DCL command DIRECTORY 
/FULL uses the XAB$_NORECORD ~;ABITM as it opens files to access prolog 
data containing key information. In this case, DIRECTORY displays prolog 
information but does not display or modify user data in the disk file and should 
not modify the Expiration Date and Time. Maintenance utilities should consider 
using this x;ABITM. For example, a disk defragmentation utility should not 
modify the expiration status of a disk file. 

Digital recommends using the ~:AB$_NORECORD ~;ABITM on the $OPEN 
service instead of on the $CLOSE service because the suppression of the 
Expiration Date and Time update is guaranteed should the file deaccess or 
should a close occur because of process deletion or RMS rundown. 

XAB$_NORECORD can be enabled on input to the $CLOSE, $OPEN, and 
$CREATE services. If the $CREATE service opens an existing file through 
the Create-if option and the Expiration Date and Time is not to be modified, the 
~;AB$_NORECORD x:ABITM can be specified. When the x:AB$_NORECORD 
~;ABITM is used on a $CREATE service that creates a file, it disables the update 
on the subsequent $CLOSE service but does not prevent initialization of the 
Expiration Date and Time on the file creation in the ACP. 



VMS Version 5.4 Features 
Applications for XAB$_NORECORD XABITM 

The XAB$_NORECORD x:ABITM can be sensed on output from RMS for the 
$OPEN, $CREATE, $DISPLAY, and $CLOSE services. An application typically 
senses the XAB$_NORECORD ~:ABITM to determine if the ~:ABITM was 
specified on a previous $OPEN or $CREATE option or if it is specified by the 
current RMS operation. 

B.18 System Dump Analyzer Utility (SDA) 
This section describes two new qualifiers to the SHOW PROCESS command now 
available with Version 5.4 of the VMS System Dump Analyzer Utility (SDA). 

6.18.1 New SHOW PROCESS Qualifier: /IMAGES 
The /IMAGES qualifier to the SDA command SHOW PROCESS displays the 
address of the Image Control Block, the starting and end addresses of the image, 
the activation code, the protected and shareable flags, the image name, and the 
major and minor ID of the image. 

The following is an example of output displayed by the SHOW PROCESS 
/IMAGES command: 

Process activated images 

ICB Start End Type Image Name Major ID, Minor ID 

7FF83878 00000200 OOOOODFF MAIN SHOW_PROC_IMAGES 0,0 
7FF84100 0003AC00 0003FBFF GLOBAL PRT SHR DECW$TRANSPORT_COMMON 12,12 
7FF84400 00036200 0003ABFF GLOBAL CONVSHR 1,0 
7FF84470 0002E400 000361FF GLOBAL FDLSHR 1,0 
7FF84560 00021A00 0002E3FF GLOBAL SORTSHR 2,28 
7FF845D0 OOOOOE00 000089FF GLOBAL LIBRTL2 1,12 
7FF835F8 00008A00 000219FF GLOBAL SHR LIBRTL 1,14 
7FF84800 00060000 000767FF MERGED SHR ADARTL 0,0 
7FF84720 00076800 OOOA03FF GLOBAL SHR MTHRTL 129,32781 

Total images = 9 Pages allocated = 1017 

The following are possible values for the activation code: 

• MAIN Image is the object of a RUN command 

• MERGED Image is an additional mapped image 

• GLOBAL—Image is a global image section 

The protected flag (PRT) indicates that the image is installed protected. The 
shareable flag (SHR) indicates that the image is installed shareable. 

For more information about the SDA command SHOW PROCESS, see the VMS 
System Dump Analyzer Utility Manual. 

B.18.2 New SHOW PROCESS Qualifier: NECTOR REGISTERS 
The System Dump Analyzer lets you examine vector instructions and vector 
context from a system dump file or in a running system. One way to accomplish 
this is by specifying the new /VECTOR_REGISTERS qualifier to the SHOW 
PROCESS command, which obtains the values of the registers from the process's 
vector context area. See Section B.2.3.5.2 for a complete description of SDA 
support for vector processing. 



VMS Version 5.4 Features 
B.19 VMS RMS Journaling: Support for DECdtm Services 

B.19 VMS RMS Journaling: Support for DECdtm Services 
This section describes VMS RMS Journaling enhancements that support DECdtm 
services for Version 5.4 of the VMS operating system. (See Section B.3 for a 
complete description of DECdtm services.) VMS RMS Journaling continues 
to support existing applications developed on previous versions of VMS RMS 
Journaling. 

8.19.1 Support for DECdtm Transactions 
The DECdtm transaction has superseded the Recovery Unit Facility (RUF) 
recovery unit. In VMS RMS Journaling Version 5.4, an RMS recovery unit is 
the recoverable work performed by a single process within a DECdtm transaction. 

The RUF recovery unit services have been superseded by corresponding DECdtm 
transaction services, as follows: 

RUF Recovery Unit Service DECdtm Transaction Service 

$START_RU 

$END_RU 

$ABORT_RU 

$STAR,T_TRANS(W) 

$END_TRANS(W) 

$ABORT_TRANS(W) 

In addition, a single DECdtm transaction service, $END_TRANS(W), has 
replaced two other RUF services, $PREPARE_RU and $COMMIT_RU, which 
together were equivalent to the $END_RU service. 

B.19.2 RUF Services Emulated 
Recovery Unit Facility (RUF) services are still supported. They are emulated 
transparently using DECdtm transaction services. 

You do not have to recompile or relink your applications to run them under VMS 
RMS Journaling Version 5.4. 

You can convert an application that uses only one active transaction at a time 
to use the DECdtm services by replacing calls to RUF services with calls to the 
corresponding DECdtm transaction services. 

However, combining DECdtm transaction services and RUF recovery unit services 
in a single image requires care. You should avoid having transactions that were 
started using the DECdtm services active at the same time as transactions that 
were started using the RUF services. 

B.19.3 Network Support 
Remote RMS files marked for recovery unit journaling can be modified within 
a transaction. They will be included in the atomic unit of work defined by the 
transaction. A remote file is a file accessed by a client RMS process through the 
DAP/FAL protocol to a "server" system. 

The following conditions apply to remote files: 

• Remote files can be marked for any combination of RU (recovery unit), AI 
(after-image), or BI (before-image) journaling. 

• All journaling takes place locally with respect to each file. 

• All recovery takes place locally with respect to each file. 

• Both client and server nodes must support DECdtm (that is, must be running 
VMS Version 5.4 or later). 



VMS Version 5.4 Features 
Network Support 

• The server node must be licensed for RMS Journaling. 

• The DIRECTORY/FULL and ANALYZE/RMS commands have been enhanced 
to display the type of journaling enabled but not the names of any AI or BI 
journals. 

• The SET FILE/AI JOURNALBI JOURNAL/R,U JOURNAL command can be 
applied to a locally accessed file only. 

The following examples compare transactions using local or remote access: 

Local Access Remote Access 

$OPEN filel 
$CONNECT streaml to filel 
$OPEN filet 
$CONNECT streaml to filet 

$START_TRANSW 

$GET from streaml 
$UPDATE to streaml 
$PUT to streaml 

$OPEN filel 
$CONNECT streaml to filel 
$OPEN n2::file2 
$CONNECT streaml to filet 

$START_TRANSW 

$GET from streaml 
$UPDATE to streaml 
$PUT to streaml 

$END_TRANSW $END_TRANSW 

The only difference between the two code examples is that, in the remote 
example, the second file specification includes a node name. As a result, RMS 
transparently manages two recovery units within the transaction. 

The following table summarizes the differences between using recovery unit 
journaling locally and remotely: 

Local Access Remote Access 

One transaction 

One recovery unit 

One RU journal 

One transaction 

1~vo recovery units 

~vo RU journals 

B.19.4 Record Stream Association 
In applications that use the DECdtm transaction services, an RMS record stream 
is associated with a transaction as a result of an RMS record operation. The 
application can use either the DECdtn'i default transaction or the new ~:ABITM 
item list entry x:AB$_TID to determine which transaction the record stream 
should join. 

B.19.4.1 How Streams Become Associated with a Transaction 
Under RMS Journaling Version 5.4, record streams are associated with 
transactions as follows: 

• If the DECdtm services are being used, then eligible streams associate with 
a transaction at the time of a record operation, not when the transaction is 
started or the stream is established (as was the case using RUF services). 

• A record operation can cause stream association if its action is recoverable. 
The $PUT, $UPDATE, $DELETE, $FIND, $FREE, $GET, $RELEASE, 
and $REWIND services might cause an eligible stream to associate with 
a transaction. 



VMS Version 5.4 Features 
How Streams Become Associated with a Transaction 

• A record operation must result in stream association if it affects record data 
in the file. The $PUT, $UPDATE, and $DELETE services must cause an 
eligible stream to be associated with a transaction. 

B.19.4.2 Stream Association Using RUF and DECdtm Services 
The following example compares the way streams are associated with 
transactions under DECdtm and RUF: 

Using DECdtm 

$START_TRANSW 
$GET from <parameter>(streaml) 
$UPDATE to <parameter>(streaml) 

Using RUF 

$START_RU 
$GET from <parameter>(streaml) 
$UPDATE to <parameter>(streaml) 

• Using Version 5.4 of RMS Journaling (DECdtm services), the stream 
associates on the $GET service. 

• Using RUF services with versions of RMS Journaling prior to 5.4 and 
emulation on Version 5.4, the stream associates on the $START_RU. 

• In most cases, this difference does not matter and a RUF application can be 
converted to the direct use of DECdtm services by simple substitution. 

• In the cases where it does matter, the association at record operation time is 
more flexible than association at transaction start (using RUF). 

B.19.5 Detached Recovery 
The following sections describe modifications that have been made in the 
operation of detached recovery specifically to the performance of synchronous, 
asynchronous, and partial recoveries. 

B.19.5.1 Synchronous and Asynchronous Recovery 
The RMS Detached Recovery server (new image 
SYS$SYSTEM:RMSREC$SERVER.EXE) can perform both synchronous and 
asynchronous recovery. Asynchronous recovery is the default mode; it proceeds as 
follows: 

1. Detached recovery "adopts" orphaned transactions by acquiring the record 
locks for all records modified within a recovery unit. The detached recovery 
server is multithreaded and performs asynchronous system service calls 
(including RMS operations ). 

2. The detached recovery server indicates completion as soon as the record locks 
have been reacquired. Thus, access to records and files is reenabled sooner. 

3. Actual recovery proceeds asynchronously with respect to the original request. 
This is in contrast to the synchronous recovery that was performed in versions 
of VMS RMS Journaling prior to Version 5.4. 

Synchronous recovery is used in the following circumstances: 

• Partial recovery One or more secondary files are unavailable, so detached 
recovery cannot acquire all the record locks from an orphaned transaction. 
See Section B.19.5.2 for a detailed description of partial recovery. 

• Limited resources The detached recovery server does not have enough 
resources to acquire all the record locks on the file to be recovered (for 
example, a very large database with many active transactions). 



VMS Version 5.4 Features 
Synchronous and Asynchronous Recovery 

• Exclusive access The process that initiates detached recovery has tried to 
access the file such that it either has exclusive access to the file or it is the 
only process that can modify the file. (It may or may not allow shared read 
access.) In this case, the accessor will not look for record locks from other 
processes, and the locks owned by detached recovery can create difficulties for 
the accessor. 

B.19.5.2 Partial Recovery 
When detached recovery receives a request to recover a file, it tries to recover 
all the effects of all orphaned transactions that involve the file. The specific 
file for which RMS requests recovery is called the primary file. In addition to 
the changes made to the primary file, each of the orphaned transactions can 
also include changes to a number of other files. These additional files are called 
secondary files. 

Recovery of secondary files is not required to allow access to the primary file. If 
detached recovery cannot access a secondary file referenced in a recovery unit 
journal for one of the orphaned transactions, then detached recovery cannot 
adopt that transaction. In such a case, detached recovery recovers that particular 
recovery unit journal in synchronous mode and omits all operations that involve 
the inaccessible secondary file. Omitting a secondary file is permissible, since it 
is necessary only to recover the primary file to satisfy the client's request. All 
the information necessary to recover the secondary file is left in the recovery unit 
journal for eventual use in recovering that file. 

B.19.6 Placement of Recovery Unit Journals 
In RMS Journaling Version 5.4, the location of a recovery unit journal is 
determined as follows: 

• The first local stream that associates with the transaction selects the location 
for the RUJ file. 

• By default, the recovery unit journal is on the same volume as the file. 

• The SET FILE/R,U_JOURNAL=(LABEL=volnam) command can specify a 
different volume for all accessory of the file. 

• Each accessor can redirect the recovery unit journal by defining a different 
equivalence name for the logical DISK$volnam. 

• The x;.AB$_RUJVOLNAM item-list entry on a ~;.ABITM block connected to the 
RAB can be used to override all the preceding factors. 

• Recovery unit journals can be reused. When the transaction is completed, the 
recovery unit journal becomes idle. 

• If the process does not have an idle recovery unit journal on the selected 
volume, then a new one is created. 

The following example compares the placement of a recovery unit journal under 
DECdtm and RUF: 

Using DECdtm 

$START_TRANSW 
$GET from parameter(streaml) 
$UPDATE to parameter(streaml) 

Using RUF 

$START_RU 
$GET fromparameter(streaml) 
$UPDATE toparameter(streaml) 

• Using VMS RMS Journaling Version 5.4 (DECdtm services), the recovery unit 
journal is created when the $GET service is called. 



VMS Version 5.4 Features 
Placement of Recovery Unit Journals 

• Using a version of VMS RMS Journaling prior to Version 5.4 (that is, RUF 
services), the recovery unit journal is created when the $UPDATE service is 
called. 

• Using RUF emulation on Version 5.4, the recovery unit journal is created 
when the $START_RU service is called. 

• With the VMS Version 5.4 operating system, even read-only transactions 
require a recovery unit journal, but it will not be written to. 

B.19.7 Multiple Long-Term Journals Allowed 
The files involved in a single transaction are no longer restricted to a single 
after-image journal and a single before-image journal. 

B.19.8 Mixed-Version Clusters 
Nodes using versions of VMS RMS Journaling prior to Version 5.4 of the VMS 
operating system can run together in a VAXcluster with nodes using Version 5.4. 
Shared access to files marked for journaling is supported in such amixed-version 
cluster with one exception: you cannot use a node running an earlier version to 
recover a file that participated in a transaction that required atwo-phase commit. 
VMS RMS Journaling Version 5.4 includes certain records ("prepare" records) in 
the journal that earlier versions do not understand. 

The following examples show responses to three ways of trying to access the 
file [FINANCE]PAYROLL.DAT, which has a prepare record in its recovery unit 
journal, using a version of VMS RMS Journaling prior to Version 5.4: 

• If your application tries to access the file directly, RMS returns the following 
error messages to your application: 

$ T r PE PhYROL~, . DAT 
%TYPE-W-OPENIN, error opening WORK1:[FINANCE]PAYROLL.DAT;1 as input 
-RMS-E-RRF, recovery unit recovery failed 
-RMSREC-F-INVJNLFIL, invalid journal file 

In addition, detached recovery sends the following messages to OPCOM: 

°° OPCOM 30-MAY-1990 09:16:20.84 %%%%%%%%%%% 00000000000 

Message from user BEETHOVEN on EROICA 
%RMSREC-F-OPRHDRDET, error occurred during detached recovery unit recovery; init 
fated by process ID (PID) 4A2004A0 

%°°°°°° OPCOM 30-MAY-1990 09.16.20 91 °%°°°%%°°%Q 00000000000 ooO00000~oo 

Message from user BEETHOVEN on EROICA 
%RMSREC-F-INVJNLFIL, invalid journal file 

°° OPCOM 30-MAY-1990 09:16:20.92 %%%%%%%%%%% 00000000000 

Message from user BEETHOVEN on EROICA 
-RMSREC-F-JNLFILE, journal file DISK$WORK1:[SYSJNL)RMS$0000001E.RMS$JOURNAL;24 

°° OPCOM 30-MAY-1990 09.16.20 93 0000°°o°°o° %%%%%%%%%%% 
Message from user BEETHOVEN on EROICA 
-RMSREC-F-INVJNLIDX, invalid journal index number 

• If you try to use the Recover Utility (RECOVER) on the file, RECOVER 
responds with the following messages: 

%RMSREC-F-NOTCOMREC, file was not completely recovered as requested 
%RMSREC-F-LSTVALTIM, time of last valid record: 28-MAY-1990 13:18:06.27 
%RMSREC-F-INVJNLFIL, invalid journal file 
-RMSREC-F-JNLFILE, journal file DISK$WORK1:[FINANCE]PAYROLL.AIJ1;1 
-RMSREC-F-CURNOTSUPP, journal entry: 12 currently not supported 



VMS Version 5.4 Features 
Mixed-Version Clusters 

• If the file is being accessed by a process on a node running a version of the 
VMS operating system prior to Version 5.4 and by a process on a Version 5.4 
node and the Version 5.4 node fails, the surviving accessor on the other node 
attempts to perform detached recovery. Detached recovery fails, deletes the 
surviving process, and sends the following messages to OPCOM: 

%%%% OPCOM 30-MAY-1990 09:16:20.84 00000000000 00000000000 

Message from user BEETHOVEN on EROICA 
RRMSREC-F-OPRHDRDET, error occurred during detached recovery unit recovery; init 
fated by process ID (PID) 4A2004A0 

%% OPCOM 30-MAY-1990 09.16:20 91 %%%%%%%%%%% 00000000000 00000000000 

Message from user BEETHOVEN on EROICA 
%RMSREC-F-INVJNLFIL, invalid journal file 

%% OPCOM 30-MAY-1990 09:16:20.92 %00%%000%%o 0000a000000 
Message from user BEETHOVEN on EROICA 
-RMSREC-F-JNLFILE, journal file DISK$WORK1:[SYSJNL]RMS$0000001E.RMS$JOURNAL;24 

%% OPCOM 30-MAY-1990 09.16.20 93 %%%%%%%%%%% 00000000000 00000000000 

Message from user BEETHOVEN on EROICA 
-RMSREC-F-INVJNLIDX, invalid journal index number 

To recover the file, you must perform recovery on, or access the file from, a node 
running VMS RMS Journaling Version 5.4, or you must upgrade the remaining 
nodes in your VAXcluster to Version 5.4 of the VMS operating system. 





C 
VMS Version 5.3 Features 

This appendix describes features that were new to Version 5.3 of the VMS 
operating system but are not yet documented in other printed manuals. 

C.1 VMS Version 5.3 System Management Features 
This section describes enhancements to the following components of the VMS 
operating system: 

• Lock Manager 

• NCP Executor Commands 

C.1.1 Extension of Lock Manager Limit 
The Lock ID space for the Lock Manager is now extended from 65,535 to 262,144 
locks. The SYSGEN parameters listed in the following table are increased to the 
values indicated: 

SYSGEN Parameter New Maximum Value 

LOCKIDTBL 262,144 

LOCKIDTBL_MAX 262,144 

SRPCOUNT 270,336 

SRPCOUNTV 270,336 

IRPCOUNT 135,168 

IRPCOUNTV 135,168 

C.1.2 NCP Executor Command Changes 
The NCP executor commands now include the following: 

• Anew parameter to SET/DEFINE EXECUTOR command 

• New display characteristics for SHOW EXECUTOR CHARACTERISTICS 
command 

C.1.3 Parameter for SET/DEFINE EXECUTOR 
The network ancillary control process (NETACP) manages an index into a 
properly synchronized table in nonpaged-pool memory. System managers can 
modify the size of the table using the NCP command SET/DEFINE EXECUTOR 
with the new parameter MAXIMUM DECLARED OBJECTS. 



VMS Version 5.3 Features 
Parameter for SET/DEFINE EXECUTOR 

Parameter Description 

MAXIMUM DECLARED OBJECTS Specifies the number of objects that processes can declare. 
To determine the current number of declared objects on your 
system, use the NCP SHOW KNOWN OBJECTS command. 
Each of the objects with a process identification (PID) listed 
is one declared object. A single process can declare more 
than one object. Failure to provide a sufficient number of 
objects can result in the failure of network servers to be 
initialized. The default of 31 objects is sufficient for most 
configurations. The valid range is 8 to 16383. Note that 
dynamically setting the number lower has no effect. 

C.1.4 SHOW EXECUTOR CHARACTERISTICS Command 
The SHOW EXECUTOR CHARACTERISTICS command now displays 
information as shown in the following example. Note that a new entry, Maximum 
Declared Objects, is displayed and the Pipeline quota now shows 10000. 

NCP> SHOW EXECUTOR CHAP CT'H ~.-5 l TCS 

Node Volatile Characteristics as of 16-JUN-1990 10:48:27 

Executor node = 2.11 (BOSTON) 

Identification DECnet-VAX V5.3, VMS V5.3 
Management version V4.0.0 
Incoming timer 45 
Outgoing timer 45 
Incoming Proxy Enabled 
Outgoing Proxy Enabled 
NSP version V4.1.0 
Maximum links 128 
Delay factor 80 
Delay weight 5 
Inactivity timer 60 
Retransmit factor 10 
Routing version V2.0.0 
Type = routing IV 
Routing timer = 600 
Broadcast routing timer = 40 
Maximum address = 1023 
Maximum circuits = 16 
Maximum cost = 1022 
Maximum hops = 15 
Maximum visits = 63 
Maximum area = 63 
Max broadcast nonrouters = 64 
Max broadcast routers = 32 
Maximum path splits = 1 
Area maximum cost = 1022 
Area maximum hops = 30 
Maximum buffers = 100 
Buffer size = 576 
Default access = incoming and outgoing 
Pipeline quota 10000 
Alias incoming Enabled 
Alias maximum links 32 
Alias node 2.10 (CLUSTR) 
Path split policy Normal 
Maximum Declared Objects 31 



VMS Version 5.3 Features 
C.2 VMS Version 5.3 Support for the VMS Distributed Name Service 

C.2 VMS Version 5.3 Support for the VMS Distributed Name Service 
The Distributed Name Service (DNS) is a facility for storing the names of 
resources in your network such as files, disks, nodes, queues, and mailboxes. The 
Distributed Name Service clerk is the VMS programming interface to DNS that 
allows an application to register a resource in the name service and then access 
the resource from any point in the network by a single name. DNS is a layered 
product and must be installed in your network before you can start the DNS clerk 
or utilize the name service. 

Applications that need the Distributed Name Service must use the $DNS clerk 
system service and the DNS run-time routines to register, modify, and locate 
information in the DNS database. A DNS clerk, which is resident on every VMS 
Version 5.3 or later system, receives application requests through the $DNS 
system service. The clerk locates a DNS server that can process the request. 
Once the request is satisfied, the clerk returns the requested information to the 
client application. 

The information in this section is intended for VMS programmers who are writing 
applications that call the Distributed Name Service. It includes the following: 

• ~ Conceptual information on DNS 

• DNS clerk system services, $DNS and $DNSW 

• DNS run-time routines 

• Startup information for the DNS clerk 

• DECnet event messages from the DNS clerk 

See the VMS System Messages and Recovery Procedures Reference Manual for 
information about system error messages generated by the DNS clerk. 

C.2.1 Introduction to the Distributed Name Service 
The VAX Distributed Name Service (DNS) provides a means of assigning unique 
names to network resources so that a network application or network user 
can find resources within the network. (Resources are such things as disks, 
systems, applications, and so on.) Once an application has named a resource 
using DNS, the name is available for all users of the application. Multiple 
users located throughout a network can refer to a common resource by the same 
name. Resources can be moved within the network. No additional preparation is 
required, and it is not necessary to learn a new naming convention. 

You should consider using DNS applications that need to access such remote 
resources as printers, files, disks, and nodes. In addition, application databases 
or servers are good candidates for naming. All of these resources would be 
commonly named and their locations identified within DNS. With DNS, the 
resource could be moved without users being aware of the change. 

Although it is desirable to name application databases, you should ordinarily use 
DNS to store only the location of the database, not the database itself. (Most 
database applications require higher levels of consistency than DNS provides.) If 
the database is relocated, then only the DNS information has to be modified. 



VMS Version 5.3 Features 
The DNS Namespace 

C.2.2 The DNS Namespace 
The collection of names in the Distributed Name Service database is called a 
namespace. A namespace is located on VMS nodes where the DNS server 
software is installed. The collection of databases stored on each server makes up 
the namespace itself. 

DNS refers to the named resources in a namespace as objects. Each object name 
refers to a specific entity. The object name is important because applications use 
the object name in all DNS operations. 

Associated with every object is a set of attributes describing properties of an 
object. An application reads object attributes for information such as an address, 
class, or version. 

Most applications use the address attribute of an object, which allows you to find 
the node on which a resource resides. When a network resource is relocated, an 
application has DNS update the object's address attribute. All requests for the 
object receive the new address. Since the object has the same DNS name, the 
application user can be unaware that the resource has moved. 

C.2.2.1 Planning Namespace Objects 
When writing applications that use DNS, it is important to determine ahead of 
time what resources an application needs and how an application will use each 
resource. Then you can determine what objects an application needs to create and 
the kind of information each object needs to store. Once the object is designed, 
you can decide which object attributes to assign and what their values will be. 

C.2.2.2 Restrictions 
Because of the high cost of keeping copies of DNS names synchronized, you should 
use DNS applications that store information that does not change frequently. 
Frequent updates add traffic to the network, which can degrade overall network 
performance. Because resources such as files, disks, nodes, queues, and mailboxes 
remain on one node for a long time, a good example of information to store with 
DNS is a network address. 

Not only should the information stored in DNS be relatively static, it should also 
be verifiable. When DNS updates its database, it attempts to send the update 
to all copies of the name within 24 hours. This means that your application can 
request data from a copy of a name that has not been updated. An application 
must be able to recognize when data is invalid. For this reason, a network 
address is a good example of data that can be validated. If you use an address 
and the resource is not there, the data is obviously outdated. 

C.2.2.3 Using the Namespace 
An application choosing to use the namespace performs four basic operations: 

• Object creation An application needs to create an object to represent each 
network resource it requires. 

• Object modification Once an object is created to represent a resource, an 
application modifies the object to contain the attributes and values the 
application requires. 

• Object deletion When a resource is no longer useful, an application should 
delete the object. 

• Information retrieval The most common operation an application performs 
is requesting the DNS clerk to obtain the values of an attribute so that, for 
example, the application can locate the resource in the network. 

C-4 



VMS Version 5.3 Features 
Object Names 

C.2.2.4 Object Names 
The name DNS assigns to an object is one that the user supplies. The client 
application translates the name it receives through the user interface from string 
format into opaque format before passing it to the DNS clerk. DNS works only 
with opaque format because it is guaranteed to be unique, whereas string format 
often contains logical names that easily change. 

The $DNS system service supplies functions for conversion between string 
and opaque format. If an application maintains its own databases, then the 
application must store DNS names in opaque format. 

C.2.2.5 Object Attributes 
Client applications store information about a resource as object attributes. When 
creating an object, an application needs to assign a class name and a version 
to a new object. The class name reflects the purpose of the object within an 
application. The purpose can be specific to an application or it can be shared 
among a group of applications. For example, a group of user names might be 
shared. An application uses the class name to search for its objects or list its 
objects. The class version helps to pair a version of an object with a software 
version. 

To store additional information with an object, an application must modify the 
object. 

DNS always assigns certain attributes to an object during creation. It assigns a 
unique identifier (UID) and an update time-stamping (UTS) indicating when an 
object was last edited. DNS also assigns a third attribute that specifies access . 
control for the new object. Initially, the owner of the object has read, write, 
delete, control, and test access. The namespace administrator can modify this 
access according to site requirements. 

An attribute name is limited to 31 characters and its value cannot exceed 4000 
bytes. The name service assigns a prefix of DNS$ to the name of each attribute 
it assigns. An application creates a prefix to assign to attributes it creates. For 
example, DECnet uses the prefix DNA$ and the Distributed File Service uses the 
prefix DFS$. Names assigned by Digital all contain the dollar sign ($ ). User-
supplied names should use an underscore (_ ). To ensure uniqueness, you should 
register your facility name through Digital's product registration program. 

C.2.3 Structure of a Namespace 
A DNS namespace is a hierarchical set of directories, as depicted in Figure C-1. 
At the top of the hierarchy is the root directory, which is symbolized by a 
period (. ). Below the root directory are levels of subdirectories. The namespace 
administrator establishes the directory structure of the namespace and, in some 
cases, assigns names to directories. While the organization of the namespace 
directories is similar to the VMS directory structure, namespace directories are 
completely separate from the VMS directory structure. 



VMS Version 5.3 Features 
Structure of a Namespace 

Figure C-1 DNS Namespace 

C.2.3.1 

NEW_YORK 

~/ 
Root 

SALES 

ATLANTA 

MARKETING 

COMMUNICATIONS 

ENGINEERING 

~ ~ 
RESEARCH DEVELOPMENT 

dev_disk -
tools_disk - Objects 

node client - 

ZK-0959A-GE 

Directories in a namespace can contain three types of entries: 

• Objects 

• Directory pointers 

• Soft links 

An object represents a network resource. It consists of a name that is unique 
within the namespace and its associated attributes. 

Directory pointers are used internally by DNS to link one level of directories 
to the next. DNS refers to the hierarchical relationship of directories in terms of 
child directories and parent directories. 

A soft link provides an alternate name for an object, directory, or soft link. For 
example, a namespace structured with both an organizational and a geographical 
dimension might access a single object through multiple soft links. A soft link 
can also be useful in renaming an object. The soft link would point to the original 
object name so that users could successfully use an outdated name. This kind 
of soft link would be deleted after sufficient time has passed for applications 
and users to become aware of the new object name. You create and delete links 
through the DNS management program. 

Although an application requests the creation of an object in order to register 
a resource, it does not position the object in the namespace. The system 
administrator determines which directory DNS stores the object in. The structure 
of a namespace differs for each network, so you should not hard-code names into 
applications. 

Naming Syntax 
The DNS name of an object, directory, or soft link in the namespace is a complete 
path specification from the root directory to the entity in the directory of interest. 
For example, the DNS name .ENGINEERING.DEVELOPMENT.TOOLS_DISK 
identifies an object named TOOLS_DISK in the namespace directory called 
.ENGINEERING.DEVELOPMENT. The ENGINEERING directory is in the 
root directory, and DEVELOPMENT is a child directory of the ENGINEERING 
directory. 



VMS Version 5.3 Features 
Naming Syntax 

While the full name is a complete path name from the root directory, each element 
in a full name is called a simple name. The last simple name in a full name 
designates an object, a child directory, or a soft link. In the previous example, 
TOOLS_DISK is a simple name assigned to a disk object. The maximum length 
of a simple name is 255 bytes. 

You can represent a full name in three ways: 

namespacename:.simplename.simplename 

or 

.simplename.simplename 

or 

simplename.simplename 

If the full name does not start with a namespace name or a period, DNS attempts 
to translate the first simple name as a logical name. Any equivalence name 
found is added to the name string in place of the matched simple name. This 
process is repeated until the first term does not match a logical name or the clerk 
encounters either a namespace name or a leading period. (A namespace name, 
assigned during DNS server installation, defaults to node-name_NS. ) 

The following example shows what happens with the name 
RESEARCH.PROJECT DISK: 

1. Look up RESEARCH as a logical name. 

RESEARCH translates to ENG.RESEARCH, so the name string expands to 
ENG.RESEARCH.PROJECT_DISK. 

2. Look up ENG as a logical name. 

ENG translates to .ENGINEERING, so the name string becomes 
.ENGINEERING.RESEARCH.PROJECT DISK. Because the new name 
has a leading period, translation stops. 

3. The namespace name, INMAX NS, is added to the front of .ENGINEERING 
because it is not explicitly specified. (A namespace administrator establishes 
the namespace name during installation.) The name becomes INMAX 
NS:.ENGINEERING.RESEARCH.PROJECT DISK. 

C.2.3.2 Logical Names 
When the DNS clerk is started on a VMS operating system (see Section C.2.10), 
the VMS system creates a unique logical name table for DNS to use in translating 
full names. This logical name table, called DNS$SYSTEM, prevents unintended 
interaction with other system logical names. The DNS use of logical names in 
parsing full names is described in Section C.2.3.1. 

To define systemwide logical names for DNS objects, use the DCL command 
DEFINE. For example, to create the logical RESEARCH.PROJECT_DISK shown 
in the previous section, you would enter the following DCL command: 

$ DEFINEi TABLE=Di`~S$SYSTEM RESEARCH "El~~G. R~S~ ARCH" 

When parsing a name, the $DNS service specifies the logical name 
DNS$LOGICAL as the table it uses to translate a simple name into a full 
name. This name ordinarily translates to DNS$SYSTEM in order to access 
the systemwide DNS logical name table. 



VMS Version 5.3 Features 
Logical Names 

To define process or job logical names for $DNS, you must create a process or job 

table and redefine DNS$LOGICAL as a search list, as in the following example 
(note that elevated privileges are required to create a job table): 

$ CREATE /NAME_TABLE DNS_PROCESS_TABLE 

$ DEFINE /TABLE=LN~T$PROCESS_DIRECi'ORY DNS$LOGICAL -

_$ DNS_PROCE'SS_TABLE ,DNS $ S`Y'STEM 

Once you have created the process or job -table and redefined DNS$LOGICAL, you 
can create job-specific logical names for DNS using the DCL command DEFINE, 
as follows: 

$ DEFINE /TABLE=DNS_PROCESS_TABLE RESEARCH "ENG.RESEARCH.MYGROUP" 

For information about logical names, see the Introduction to VMS System 
Services. 

C.2.3.3 Valid Characters for DNS Names 

DNS namespace names, full names, or simple names can contain letters, 
numbers, and certain punctuation marks from the ISO Latin 1 character set, as 
shown in Figure C-2. Additional characters and punctuation marks can appear 
as long as the name is enclosed in quotation marks, for example, "project%". See 
Figure C-3. 

Figure C-2 Valid Character Codes for DNS Simple Names 

Code Range 
(Decimal) Character 

036 
045 
048-057 
065-077 
078-090 
095 
097-109 
110-122 
192-207 
208-214 
216-223 
224-239 
240-246 
248-255 

0 1 2 3 4 5 6 7 8 9 
A B C D E F G H I J KLM 
N O P Q R S T U VWX Y Z 

a b c d e f g h i j k l m 
n o p q r s t u vw x y z 
A AAAAA~E~EEEE I i i 'i 
fl N 0 0 0 0 0 
Q~ lJ lJ U lJ Y a f3 o 
a a a a a aae~eeee ~ i i i 
~ n o 0 0 0 0 
o u u u u y p y 

ZK-0961 A-GE 

  Note  

All simple names containing the dollar sign ($)are reserved for use by 
Digital. 



VMS Version 5.3 Features 
Valid Characters for DNS Names 

Figure C-3 Additional Character Codes Allowed in Quoted Simple Names 

Code Range 
(Decimal) Character 

032-033 
035 
037-044 
046-047 

{space} ! 

& () * 

. / 
+ , 

058-064 < _ > ? ~ 
091-094 ~ ~ 
096 

123-126 { I } 
160-167 { no-break space} i ~ £ o ~ § 
168-174 .. © ~ 

175-187 - ~ t 2 3 0 

188-191 ~~4 ~~2 3~4 (r 
215 X 
247 

ZK-0962A-GE 

DNS maintains the case of an entity when it registers an object, but it is case 
insensitive in lookups. For example, the name eng.research would match the 
name ENG.RESEARCH. 

DNS also supports binary simple names. A binary name consists of the leading 
character pair %x or %X, followed by pairs of hexadecimal digits. A binary simple 
name does not match any regular or quoted simple name, even if a given name 
has the same binary value. 

DNS makes use of wildcards for identifying groups of objects during search 
operations. Wildcards consist of the following: 

Symbol Name Meaning 

Question mark 

Asterisk 

Match one character. 

Match any number of characters. 

C.2.4 Creating Objects 
Each application that uses DNS must register its resources in the namespace 
using either the $DNS or the $DNSW system service. Registration involves 
creating an object in the namespace to represent the resource. You create an 
object to represent each resource in the network that your application needs to 
find. At the same time, you should define attributes the object needs and assign 
their values. 

A DNS object consists of a name and its associated attributes. You create the 
object first, along with some key attributes. Later, you can modify the object to 
hold additional attributes that are relevant to the application. 

To create an object with $DNS: 

1. Prompt for a name from the user interface. 

The name that an application assigns to an object should come from a user 
interface, a configuration file, a system logical, or some other source. The 
application never assigns an object's name because the namespace structure 
is uncertain. The name the application receives from the user interface is in 
string format. 



VMS Version 5.3 Features 
Creating objects 

2. Use the $DNS parse function to convert the full name string into the opaque 
format of DNS. 

3. Optionally, reserve an event flag so you can check for completion of the 
service. 

4. Build an item list containing the following elements: 

• The opaque name for the object (resulting from the translation in step 2) 

• The class name given by the application, which should contain the facility 
code 

• The class version assigned by the application 

• An optional timeout value, specifying when the call expires 

5. Optionally, provide the address of the DNS status block to receive status 
information from the name service. 

6. Optionally, provide the address of the asynchronous system trap (AST) service 
routine. AST routines allow a program to continue execution while waiting 
for parts of the program to complete. 

7. Optionally, supply a parameter to pass to the AST routine. 

8. Call the create object function, providing all the parameters supplied in steps 
1 through 7. 

If a clerk call is not complete when timeout occurs, then the call completes with 
an error. The error is returned in the DNS status block. 

An application should check errors returned; it is not enough to check the return 
of the $DNS call itself. You need to check the DNS status block to be sure there 
are no errors at the DNS server. 

The following C program shows how to create an object in the namespace with 
the synchronous service $DNSW. The routine demonstrates how to construct an 
item list. 

#include <dnsdef.h> 
#include <dnsmsg.h> 
/* 
* Parameters: 

* 

* 

* 

* 

* 

* 

*/ 

class name = address of the opaque simple name of the class 
to assign to the object 

class_len =length (in bytes) of the class opaque simple name 
object name= address of opaque full name of the object 

to create in the namespace. 
object_len = length (in bytes) of the opaque full name of the 

object to create 

create_object(class_name, class_len, object name, object_len) 
unsigned char *class name; 
unsigned short class_len; 
unsigned char *object name; 
unsigned short object_len; 

{ 

struct $dnsitmdef createitem[4]; /* Item list used by system service */ 
struct $dnscversdef version; ./* Version assigned to the object */ 
struct $dnsb iosb; /* Used to determine DNS server status */ 
int status; /* Status return from system service */ 



VMS Version 5.3 Features 
Creating Objects 

~* 
* Construct the item list that creates the object: 
*~ 

createitem[0] 
createitem[0] 
createitem[0] 

createitem[1] 
createitem[1] 
createitem[1] 

version.dns$b 

.dns$w_itm_size = class_len; Q 

.dns$w_itm_code = dns$_class; 

.dns$a_itm_address = class name; 

.dns$w_itm_size = object_len; 

.dns$w_itm_code = dns$_objectname; 

.dns$a_itm_address = object name; 

_c_maj or = 1; 
version.dns$b_c_minor = 0; 

createitem[2].dns$w_itm_size = sizeof(struct $dnscversdef); ~ 
createitem[2].dns$w_itm_code = dns$_version; 
createitem[2].dns$a_itm_address = &version; 

*((int *)&createitem[3]) = 0; 

status = sys$dnsw(0, dns$_create_object, &createitem, &iosb, 0, 0); ~ 

if (status == SS$_NORMAL) 
{ 

status = iosb.dns$1_dnsb_status; Q 
} 

return(status); 
} 

The following list explains how the C program constructs an item list: 

Q The first entry in the item list is the address of the opaque simple name 
representing the class of the object. 

© The second entry in the item list is the address of the opaque full name for 
the object. 

© The next step is to build a version structure, which will indicate the version 
of the object. In this case, the object is version 1.0. 

Q The third entry in the item list is the address of the version structure that 
was just built. 

© Zero terminates an item list. 

Q Call the system service to create the object. 

Q Check to see that both the system service and DNS were able to perform the 
operation without error. 

C.2.5 Modifying Objects 
After applications use DNS to create objects that identify resources, they add 
attributes to the newly created objects that describe properties of the object. 

You modify an object whenever you need to add an attribute, change an attribute 
value, or delete an attribute. You can add as many attributes as you like. If you 
add the same attribute to an object twice, the time-stamping on the attribute is 
updated. 

DNS attributes can have a single value or they can have a set of values. For 
example, an attribute holding the class version number of a resource would have 
a single value, while an attribute holding the location of a service in the network 
could have a set of values. The set would hold the addresses of all nodes in the 
network that offer the service. Depending on the attribute type, DNS performs 
a slightly different action. DNS adds or deletes a value when there is only one. 

C-11 



VMS Version 5.3 Features 
Modifying Objects 

When there is a set of values, DNS adds or deletes a value from an existing group 
of values. 

To modify an object with $DNS: 

1. Build an item list containing the following elements: 

• The opaque name of the object you are modifying 

• The type of entry, as described in Section C.2.3 

• The operation to perform 

• The type of attribute you are adding a single value or a set of values 

• The attribute name 

• The value being added to the attribute 

2. Supply any of the optional parameters described in Section C.2.4. 

3. Call the modify attribute function, supplying the parameters established in 
steps 1 and 2. 

The following C program shows how to add an attribute and its value to an object: 

#include <dnsdef.h> 
#include <dnsmsg.h> 
/* 
* Parameters: 
* obj_name = address of opaque full name of object 
* obj_len =length of opaque full name of object 
* att_name = address of opaque simple name of attribute to create 
* att_len =length of opaque simple name of attribute 
* att_value= value to associate with the attribute 
* val_len =length of added value (in bytes) 
*/ 

add_attribute(obj_name, obj_len, att_name, att_len, att_value, val_len) 
unsigned char *obj_name; 
unsigned short obj_len; 
unsigned char *att_name; 
unsigned short att_len; 
unsigned char *att_value; 
unsigned short val_len; 
{ 

struct $dnsitmdef moditem[7]; /* Item list for $DNSW */ 
unsigned char objtype = dns$k_object; /* Using object entries */ 
unsigned char opertype = dns$k~resent; /* Adding an object */ 
unsigned char attype = dns$k_set; /* Attribute will be type set */ 
struct $dnsb iosb; /* Used to determine DNS status */ 
int status; /* Status of system service */ 

* 

* Construct the item list to add an attribute to an object. 
* 

moditem[0].dns$w_itm_size = obj_len; 
moditem[0].dns$w_itm_code = drls$_entry; 
moditem[0].dns$a_itm_address = obj_name; ~ 

moditem[1].dns$w_itm_size = sizeof(char); 
moditem[1].dns$w_itm_code = dns$_lookingfor; 
moditem[1].dns$a_itm_address = &objtype; 

moditem[2].dns$w_itm_size = sizeof(char); 
moditem[2].dns$w_itm_code = dns$_modoperation; 
moditem[2].dns$a_itm_address = &opertype; 



VMS Version 5.3 Features 
Modifying Objects 

moditem[3].dns$w_itm_size = sizeof(char); 
moditem[3].dns$w_itm_code = dns$_attributetype; 
moditem[3].dns$a_itm_address = &attype; ~ 

moditem[4].dns$w_itm_size = att_len; 
moditem[4].dns$w_itm_code = dns$_attributename; 
moditem[4].dns$a_itm_address = att_name; 

moditem[5].dns$w_itm_size = val_len; 
moditem[5].dns$w_itm_code = dns$_modvalue; 
moditem[5].dns$a_itm_address = att_value; ~ 

*((int *)&moditem[6]) = 0; ~ 

* 

* Call $DNSW to add the attribute to the object. 
* 

status = sys$dnsw(0, dns$_modify_attribute, &moditem, &iosb, 0, 0); 

if (status == SS$_NORMAL) 
{ 

status = iosb.dns$1_dnsb_status; 
} 

return(status); 
} 

The following list explains how the C program adds an attribute and its value to 
an object: 

Q The first entry in the item list is the address of the opaque full name of the 
object. 

Q The second entry in the item list shows that the entry is an object not a soft 
link or directory pointer. 

© The third entry in the item list is the operation to perform. The program 
adds an attribute with its value to the object. 

~ The fourth entry in the item list is the attribute type. The attribute has a set 
of values rather than a single value. 

© The fifth entry in the item list is the opaque simple name of the attribute 
being added. 

Q The sixth entry in the item list is the value associated with the attribute. 

~ Check to see that both the system service and DNS performed the operation 
without error. 

C.2.6 Distributing the Namespace 
A VMS node running DNS server software can contain the entire namespace. 
However, performance and reliability are enhanced when several VMS nodes act 
as DNS servers. 

DNS supports the partitioning of the namespace across several DNS servers. In 
this situation, no DNS server contains the entire namespace, but each contains 
a portion of the namespace, usually the directories frequently accessed by local 
client applications. Directory pointers connect parts of the database that are 
distributed among two or more servers. 

Figure C-4 depicts a namespace with three DNS servers. The DESIGN node 
contains most of the namespace the root directory plus the research and 
development directories. The applications directory resides on the APPLY node, 
while the hardware directory resides on the SHOP node. 



VMS Version 5.3 Features 
Distributing the Namespace 

DNS refers to a collection of directories on a server as a clearinghouse. 

Figure C-4 Partitioned Namespace 

C.2.6.1 

SHOP Node DESIGN Node APPLY Node 

Root 

~ ~ 
RESEARCH DEVELOPMENT 

HARDWARE SYSTEMS APPLICATIONS 

ZK-0960A-G E 

Replicating Directories 
In large networks, many applications rely on DNS and names must be available 
for the application to work. To ensure availability, DNS allows the duplication of 
data and provides a mechanism to keep all copies of names synchronized. Then, if 
one server becomes disabled, applications can still access the namespace through 
another server. Whenever data is duplicated, DNS copies one or more directories 
with all their contents. 

The namespace administrator determines how many copies of each directory 
should exist and where they should be located. For example, Figure C-5 shows 
the same namespace as Figure C-4. However, in Figure C-5 the root directory is 
duplicated so that it exists on all three DNS servers. 

C.2.6.2 Types of Directories 
Once you duplicate parts of a namespace, you generate different types of 
directories. Some are writable, while others are read-only. In a replicated 
namespace, there are three types of directories: 

• Master 

• Secondary 

• Read-only 

For example, in Figure C-5 there are three copies of the root directory. The 
master copy resides on node DESIGN. Read-only copies reside on the other two 
nodes. 



VMS Version 5.3 Features 
Types of Directories 

Figure C-5 Namespace with Replicated Directories 

SHOP Node 

Root 

HARDWARE 

DESIGN Node APPLY Node 

Root 

i 
RESEARCH DEVELOPMENT 

Root 

SYSTEMS APPLICATIONS 

* Read-Only Directories ZK-0958A-GE 

In a master directory, an application can create or modify all types of entries: 
objects, directory pointers, and soft links. In a secondary directory, an application 
can create or modify objects and soft links but not directory pointers. An 
application can retrieve namespace data from any type of directory. 

When an application attempts to create a new object or update an existing one, 
the DNS clerk sends the request to a DNS server that has a secondary or master 
directory. The request to create an object succeeds as long as no other entry with 
the same name exists; the request to modify an object succeeds as long as the 
object is found in the directory. 

C.2.6.3 Setting Confidence 
~1n application can use the confidence argument in a $DNS call to stipulate the 
type of directory that the DNS clerk should use to service the call. For example, 
when an application wants to create an object, it can force the DNS clerk to 
create the object in the master directory by stipulating a high confidence level. 
Otherwise, DNS creates the object either in the master directory or in a secondary 
directory. 

In a create or modify call, confidence has the following meaning: 

• High confidence Use the master directory. 

• Medium confidence Use the master directory or a secondary directory. There 
can be multiple copies of secondary directories. 

An application's expression of confidence has a slightly different meaning in a 
request to find data. In this operation, there are three levels of confidence: 

• High confidence Use the master directory. 

• Medium confidence Use cached information to find the location of a DNS 
server but get the information from a DNS server. 

• Low confidence Use cached information. 



VMS Version 5.3 Features 
Maintaining Consistency in Data 

C.2.6.4 Maintaining Consistency in Data 
Whenever a directory is modified, the name service attempts to send the updated 
information to all directory replicas as long as the convergence attribute of the 
directory is set to high. Sometimes it is impossible to deliver the updates to all 
directory replicas, however, because a network link may be down or a node may 
be unreachable. 

DNS does have a method of ensuring data consistency it is called a skulk. In 
a skulk, DNS checks to see if data is consistent. If not, it gathers all updates 
made to a directory since the last skulk and propagates the updates to all replicas 
of the directory. If there is any discrepancy between information in a master 
and a secondary directory during a skulk, then the entry with the most recent 
time-stamping is used. Once the skulk is completed, DNS informs all directories 
of the time-stamping of the latest universal update. 

When the convergence attribute is high, DNS skulks the namespace every 12 
hours. When the convergence is low, the skulk occurs every 24 hours. 

Directory replicas can lose their consistency between skulks. Two objects of the 
same name could be created simultaneously in different directory replicas or 
updates to the namespace might not be seen by all copies immediately. When 
DNS detects a conflict in replicas, it preserves the object with the most recent 
update time-stamping and deletes the older object. There is a chance that 
an application may get information from the namespace that DNS has not 
synchronized. In this case, an application has to have a mechanism to deal with 
the inconsistency. 

C.2.7 Requesting Information from DNS 
Once an application adds its objects to the namespace and modifies the objects to 
contain any necessary attributes, the application is ready to use the namespace. 
An application can request that the DNS clerk read information stored with an 
object or list all the application's objects that are stored in a particular directory. 
An application might also need to resolve all soft links in a name in order to 
identify a target entry. 

For example, the VAX Distributed File Service (DFS) is a layered product that 
provides VMS users with the ability to use remote VMS disks as if they were 
attached to their local VMS system. The DFS application registers VMS directory 
structures (a directory and all of its subdirectories) with DNS. Each DFS object 
registered in the namespace names a particular file-access point. DFS creates 
each object with a class attribute of DFS$ACCESSPOINT and modifies the 
address attribute (DNS$ADDRESS) of each object to hold the DECnet node 
address where the directory structures reside. As a final step in registering its 
resources, DFS creates a database to map DNS names to the appropriate VMS 
directory structures. 

Whenever the DFS application receives the following mount request, DFS sends a 
request for information to the DNS clerk: 

MOUNT ACCESS_POINT dns-name vms-logical-name 

To read the address attribute of the access point object, the DFS application 
performs the following procedures: 

1. Translates the DNS name that is supplied through the user interface to 
opaque format using the $DNS parse function 

2. Reads the class attribute of the object with the $DNS read attribute function, 
indicating that there will be a second call to read other attributes of the object 



VMS Version 5.3 Features 
Requesting Information from DNS 

3. Makes a second call to the $DNS service to read the address attribute of the 
object 

4. Sends the DNS name to the DFS server, which looks up the disk where the 
access point is located 

5. Verifies that the DNS name is valid on the DFS server 

Then, the DFS client and DFS server communicate to complete the mount 
function. 

C.2.7.1 Reading Objects 
When requesting information from DNS, an application always takes an object 
name from the user interface, translates the name into opaque format, and passes 
it in an item list to the DNS clerk. 

The following C program shows how an application reads an object attribute. The 
$DNSW service uses an item list to return a set of objects. Then, the application 
calls a run-time routine to read each value in the set. 

#include <dnsdef.h> 
#include <dnsmsg.h> 
/* 
* Parameters: 

* 

* 

* 

* 

* 

* 

*/ 

opaque_objname 

obj_len 
opaque_attname 

attname_len 

= address of opaque full name for the object 
containing the attribute to be read 

= length of opaque full name of the object 
= address of the opaque simple name of the 
attribute to be read 

= length of opaque simple name of attribute 

read_attribute(opaque_objname, obj_len, opaque_attname, attname_len) 
unsigned char *opaque_objname; 
unsigned short obj_len; 
unsigned char *opaque_attname; 
unsigned short attname_len; 

{ 

struct $dnsb iosb; 
char objtype = dns$k_object; 

struct $dnsitmdef readitem[6]; 
struct dsc$descriptor set_dsc, 

/* Used to determine DNS status */ 
/* Using object entries */ 

/* Item list for system service */ 
value_dsc, newset_dsc, uid_dsc; 

unsigned char attvalbuf[dns$k_maxattribute]; /* To hold the attribute 
/* values returned from extraction routine. 

unsigned char attsetbuf[dns$k_maxattribute]; /* To hold the set 
/* attribute values after the return from 

unsigned char uidbuf[20]; /* Needed for context of multiple 

*/ 
*/ 

of */ 
$DNsw. */ 
reads */ 

int read_status; /* Status of read attribute routine */ 
int set_status; /* Status of remove value routine */ 
int xx; /* General variable used by print routine */ 

unsigned short setlen; /* Contains current length of set structure */ 
unsigned short val_len; /* Contains length of value extracted from set */ 
unsigned short uid_len; /* Contains length of UID extracted from set */ 

/* Construct an item list to read values of the attribute. */ 0 
readitem[0].dns$w_itm_code = dns$_entry; 
readitem[0].dns$w_itm_size = obj_len; 
readitem[0].dns$a_itm_address = opaque_objname; 

readitem[1].dns$w_itm_code = dns$_lookingfor; 
readitem[1].dns$w_itm_size = sizeof(char); 
readitem[1].dns$a_itm_address = &objtype; 



V~IIS Version 5.3 Features 
Reading Objects 

readitem[2].dns$w_itm_code = dns$_attributename; 
readitem[2].dns$a_itm_address = opaque_attname; 
readitem [2].dns$w_itm_size = attname_len; 

readitem[3].dns$w_itm_code = dns$_outvalset; 
readitem[3].dns$a_itm_ret_length = &setlen; 
readitem[3].dns$w_itm_size = dns$k_maxattribute; 
readitem[3].dns$a_itm_address = attsetbuf; 

* ( (int * ) &readitem [ 4 ] ) = 0; 

do 
{ 

read_status = sys$dnsw(0, dns$_read_attribute, &readitem, &iosb, 0, 0); 

if(read_status == SS$_NORMAL) 
{ 

read_status = iosb.dns$1_dnsb_status; 
} 

if((read_status == SS$_NORMAL) I I (read_status == DNS$_MOREDATA)) 
{ 

do 
{ 

set_dsc.dsc$w_length = setlen; 
set_dsc.dsc$a_pointer = &attsetbuf[0]; /* Address of set */ 

value_dsc.dsc$w_length = dns$k_simplenamemax; 
value_dsc.dsc$a_pointer = attvalbuf; /* Buffer to hold */ 

/* attribute value */ 

uid_dsc.dsc$w_length = 20; 
uid_dsc.dsc$a_pointer = uidbuf; /* Buffer to hold value's UID*/ 

newset_dsc.dsc$w_length = dns$k_maxattribute; 
newset_dsc.dsc$a_pointer = &attsetbuf[0]; /* Same buffer for */ 

/* each call */ 

set status = dns$remove_first_set_value(&set_dsc, &value_dsc, 
~ &val_len, &uid_dsc, 

&uid_len, &newset_dsc, 
&setlen); 

if(set_status == SS$_NORMAL) 

{ Q 

readitem[4].dns$w_itm_code = dns$_contextvartime; 
readitem[4].dns$w_itm_size = uid_len; 
readitem[4].dns$a_itm_address = uidbuf; 

* ( (int * ) &readitem [ 5 ] ) = 0 ; 



VMS Version 5.3 Features 
Reading Objects 

printf("\tValue: "); ~ 
for(xx = 0; xx < val_len; xx++) 

printf (" ox ", attvalbuf [xx] ) ; 
printf("\n"); 

} 
else if (set status != 0) 
{ 

printf("Error od returned when removing value from set\n", 
set status); 

exit(set_status); 
} 

} while(set_status == SS$_NORMAL); 
} 

else 
{ 

printf("Error reading attribute = od\n", read status); 
exit(read_status); 

} 
} while(read_status == DNS$_MOREDATA); 

The following list explains how the C program reads an object attribute: 

O The item list contains five entries: 

• The opaque full name of the object with the attribute the program wants 
to read 

• The type of namespace entry to access 

• The opaque simple name of the attribute to read 

• The address of the buffer containing the set of values returned by the 
read operation 

• A zero to terminate the item list 

© The loop repeatedly calls the $DNSW service to read the values of the 
attribute because the first call might not return all the values. The loop 
executes until $DNSW returns something other than DNS$_MOREDATA. 

This loop extracts all values from the set returned by $DNSW, one value 
at a time. This routine sets up descriptors for buffers that are used by the 
DNS$REMOVE_FIRST_SET_VALUE routine to extract values from the set. 
The loop executes until all values are extracted from the set or it encounters 
an error. 

~ The DNS$REMOVE_FIRST_SET_VALUE routine extracts a value from the 
set. 

© This attribute name might be the context the routine uses to read additional 
attributes. The attribute's UID, not its value, provides the context. 

~ Finally, display the value in hexadecimal format. (You could also take the 
attribute name and convert it to a printable format before displaying the 
result. ) 



VMS Version 5.3 Features 
Listing Information 

C.2.7.2 Listing Information 
The list functions of $DNS allow applications to list the objects, subdirectories, 
or soft links in a specific directory. Either the asterisk (*) or question mark 
( ?) wildcard, described in Section C.2.3.3, allows an application to search the 
directory on the basis of its facility name. 

The values DNS returns from read or enumerate functions are in different 
structures. For example, an enumeration of objects returns different structures 
than an enumeration of directories. 

The following C program shows how an application can read the objects in a 
directory with the $DNS system service. It demonstrates how you parse any set 
that the enumerate-objects function returns with a run-time routine in order 
to remove the first entry from the set. The example also demonstrates how the 
program takes each value from the set. 

#include <dnsdef.h> 
#include <dnsmsg.h> 
/* 
* Parameters: 
* fname_p opaque full name of the directory to enumerate 
* fname_len length of full name of the directory 
*/ 

struct $dnsitmdef enumitem[4]; 
unsigned char setbuf [100]; 
struct $dnsb enum_iosb; 
int synch event; 
unsigned short setlen; 

/* Item list for enumeration */ 
/* Values from enumeration */ 

/* DNS status information */ 
/* Used for synchronous AST threads */ 
/* Length of output in setbuf */ 

enumerate_objects(fname_p, fname_len) 
unsigned char *fname_p; 
unsigned short fname_len; 

{ 

int enumerate_objects_ast(); 

int status; /* General routine status */ 
int enum_status; /* Status of enumeration routine */ 

/* Set up item list */ 

enumitem[0].dns$w_itm_code = dns$_directory; /* Opaque directory name 
enumitem[0].dns$w_itm_size = fname_len; 
enumitem[0].dns$a_itm_address = fname_p; 

enumitem[1].dns$w_itm_code = dns$_outobjects; /* output buffer */ 
enumitem[1].dns$a_itm_ret_length = &setlen; 
enumitem[1].dns$w_itm_size = 100; 
enumitem[1].dns$a_itm_address = setbuf; 

*((int *)&enumitem[2]) = 0; /* Zero terminate item list */ 

status = lib$get_ef(&synch event); Q 
if (status != SS$_NORMAL) 

{ 

printf("Could not get event flag to synch AST threads\n") 
exit status); 

} 

enum_status = sys$dns(0, dns$_enumerate_objects, &enumitem, 
© &enum_iosb, enumerate_objects_ast, setbuf); 

*/ 



VMS Version 5.3 Features 
Listing Information 

if(enum_status != SS$_NORMAL) 
{ 

printf("Error enumerating objects = od\n", enum_status); 
exit(enum_status); 

} 
status = sys$synch(synch_event, &enum_iosb); Q 

if (status != SS$_NORMAL) 
{ 

printf("Synchronization with AST threads failed\n"); 
exit status); 

} 
} 

/* AST routine parameter: */ 
/* outbuf address of buffer that contains enumerated names. */ 

unsigned char objnamebuf [dns$k_simplenamemax]; /* Opaque object name */ 

enumerate_objects_ast(outbuf) 
unsigned char *outbuf; 
{ 

struct $dnsitmdef cvtitem[3]; /* Item list for class name 
struct $dnsb iosb; /* Used for name service status information 
struct dsc$descriptor set_dsc, value_dsc, newset_dsc; 

unsigned char simplebuf[dns$k_simplestrmax]; /* Object name string 

int enum_status; /* The status of the enumeration itself */ 
int status; /* Used for checking immediate status returns 
int set status; /* Status of remove value routine */ 

unsigned short val_len; /* Length of set value */ 
unsigned short sname_len; /* Length of object name */ 

enum_status = enum_iosb.dns$1_dnsb_status; /* Check status */ 
if((enum_status != SS$_NORMAL) && (enum_status != DNS$_MOREDATA)) 
{ 

} 

do 
{ 

printf("Error enumerating objects %d\n", enum_status); 
sys$setef(synch_event); 
exit(enum_status); 

/* 
* Extract object names from output buffer one 
* value at a time. Set up descriptors for the extraction. 
*/ 

set_dsc.dsc$w_length = setlen; /* Contains address of */ 
set_dsc.dsc$a_pointer = setbuf; /* the set whose values */ 

/* are to be extracted */ 

value_dsc.dsc$w_length = dns$k_simplenamemax; 
value_dsc.dsc$a~ointer = objnamebuf; /* To contain the */ 

/* name of an object */ 
/* after the extraction 

newset_dsc.dsc$w_length = 100; /* To contain a new */ 
newset_dsc.dsc$a_pointer = setbuf; /* set structure after */ 

/* the extraction. */ 

*/ 

*/ 

*/ 
*/ 

*/ 

/* Call RTL routine to extract the value from the set */ 
set status = dns$remove_first_set_value(&set_dsc, &value_dsc, &val_len, 

0, 0, &newset_dsc, &setlen); 



VMS Version 5.3 Features 
Listing Information 

if(set_status == SS$_NORMAL) 
{ 0 

cvtitem[0].dns$w_itm_code = dns$_fromsimplename; 
cvtitem[0].dns$w_itm_size = val_len; 
cvtitem[0].dns$a_itm_address = objnamebuf; 

cvtitem[1].dns$w_itm_code = dns$_tostringname; 
cvtitem[1].dns$w_itm_size = dns$k_simplestrmax; 
cvtitem[1].dns$a_itm_address = simplebuf; 
cvtitem[1].dns$a_itm_ret_length = &sname_len; 

*((int *)&cvtitem[2]) = 0; 

status = sys$dnsw(0, dns$_simple_opaque_to_string, &cvtitem, 
&iosb, 0, 0); 

if (status == SS$_NORMAL) 
status = iosb.dns$1_dnsb_status; /* Check for errors */ 

if (status != SS$_NORMAL) /* If error, terminate processing */ 
{ 

} 

else 
{ 

printf("Converting object name to string returned od\n", 
status); 

exit(status); 

simplebuf[sname_len] = 0; /* Null terminate for printing 
printf("os\n", simplebuf); 

} 

enumitem[2].dns$w_itm_code = dns$_contextvarname; Q 
enumitem[2].dns$w_itm_size = val_len; 
enumitem[2].dns$a_itm_address = objnamebuf; 

* ((int *) &enumitem[3] ) 0 
} 

else if (set_status != 0) 
{ 

printf("Error od returned when removing value from set\n" 
set_status); 

exit(set_status); 
} 

} while(set_status == SS$_NORMAL); 

if(enum_status == DNS$_MOREDATA) 
{ 0 

enum_status = sys$dns(0, dns$_enumerate_objects, &enumitem, 
&enum_iosb, enumerate_objects_ast, setbuf); 

if(enum_status != SS$_NORMAL) /* Check status of $DNS */ 
{ 

printf("Error enumerating objects = od\n", enum_status); 
sys$setef(synch_event); 

} 

sys$setef(synch_event); 

*/ 

The following list explains how the C program reads objects in a directory: 

D Get an event flag to synchronize the execution of AST threads. 

© Use the system service to enumerate the object names. 

© Check the status of the system service before waiting for threads. 



VMS Version 5.3 Features 
Listing Information 

O Use the $SYNCH call to make sure the DNS clerk has completed and that all 
threads have finished executing. 

© After enumerating objects, $DNS calls an AST routine. The routine shows 
how DNS$REMOVE_FIRST_SET_VALUE extracts object names from the set 
returned by the DNS$_ENUMERATE_OBJECTS function. 

~ Use an item list to convert the opaque simple name to a string name so you 
can display it to the user. The item list contains the following entries: 

• The address of the opaque simple name to be converted 

• The address of the buffer that will hold the string name 

• A zero to terminate the item list 

Q This object name could provide the context for continuing the enumeration. 
Append the context variable to the item list so the enumeration can continue 
from this name if there is more data. 

= Use the system service to enumerate the object names as long as there is 
more data. 

Q Set the event flag to indicate that all AST threads have completed and the 
program can terminate. 

C.2.7.3 How the Clerk Locates Data 
When the DNS clerk receives an application's call for service, it tries to find a 
DNS server that can process the request. 

Often, the DNS clerk does not know which DNS server holds the object 
information. To find an unknown server, the clerk looks in its own cache first. 
The clerk cache holds namespace information gathered from servicing earlier 
application requests. If the clerk cache does not list the needed server, then the 
DNS clerk requests information from a local DNS server in its cache. (A clerk 
always knows about at least one DNS server because this information is loaded 
at system startup. ) 

The clerk's last recourse is to trace directory pointers through the namespace. 
Any DNS server is capable of telling the clerk about another DNS server holding 
other directories in the namespace hierarchy. The clerk follows directory pointers 
until it finds a DNS server holding the specified directory. If the clerk cannot find 
the specified directory, then it follows directory pointers up to the root directory. 
Once the root directory is found, the clerk traces directory pointers away from 
the root, until it finds a DNS server that has the directory holding the requested 
object. 

Once the clerk finds a directory that holds the required information, it delivers 
the request to the DNS server. As soon as the clerk receives a response, it 
transmits the result to the application. 

C.2.8 DNS System Services 
The Distributed Name Service Clerk system services are the programming 
interface to the Distributed Name Service facility. The DNS Clerk system 
services allow an application to register a resource in a distributed database and 
then access the resource from any point in the network by a single name. There 
are two system service calls to the clerk that are described in this section. 

• $DNS (Distributed Name Service Clerk) 

• $DNSW (Distributed Name Service Clerk and Wait) 



VMS Version 5.~ ~eeturee 
DNS Syetem Services 

The $DNS system service is the asynchronous client interface for applications 
using the Distributed Name Service. The $DNSW system service is the 
synchronous client interface. 



DNS Clerk System Service Calls 
$DNS 

$DNS 
Distributed Name Service Clerk 

The Distributed Name Service Clerk service registers a resource in a distributed 
database. The $DNS service completes asynchronously; that is, it returns to 
the client immediately after making a name service call. The status returned to 
the client call indicates whether a request was successfully queued to the name 
service. 

Note that the Distributed Name Service Clerk and Wait ($DNSW) call is the 
synchronous equivalent of $DNS. $DNSW is identical to $DNS in every way 
except that $DNSW returns to the caller after the operation completes. 

Format 

Returns 

Arguments 

SYS$DNS [efn] ,func ,itmist ,[dnsb] ,[astadr] ,[astprm] 

VMS Usage: cond_value 
type: longword (unsigned) 
access: write only 
mechanism: by value 

Longword condition value. All system services return by immediate value a 
condition value in Ro. Condition values returned by this call are listed in the 
section Condition Values Returned. Errors returned here are from the DNS clerk. 
Refer to the dnsb argument for errors returned by the name service. 

efn 
VMS Usage: of number 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Number of the event flag to be set when $DNS completes. The efn argument is a 
longword containing this number. The efn argument is optional; if not specified, 
event flag 0 is set. 

When $DNS begins execution, it clears the event flag. Even if the service 
encounters an error and completes without queuing a name service request, the 
specified event flag is set. 

func 
VMS Usage: function code 
type: longword (unsigned) 
access: read only 
mechanism: by value 

Function code specifying the action that $DNS is to perform. The func argument 
is a longword containing this function code. 



DNS Clerk System Service Calls 
$DNS 

A single call to $DNS can specify one function code. Most function codes require 
or allow for additional information to be passed in the call with the itmist 
argument. 

$DNS Function Codes 
DNS$_CREATE_OBJECT 
This request creates an object in the namespace. Initially, the entry has 
the attributes of DNS$UID, DNS$UTS, DNS$CLASS, DNS$ACS, and 
DNS$CLASSVERSION. The name service creates the DNS$UID, DNS$UTS, 
and DNS$ACS attributes. The client application supplies the DNS$CLASS and 
DNS$CLASSVERSION attributes. You can add additional attributes using the 
DNS$_MODIFY_ATTRIBUTE function. 

The DNS clerk cannot guarantee that an object has been created. Another 
DNS$_CREATE_OBJECT request could supersede the object created by your 
call. To verify an object creation, wait until the directory is skulked and then 
check to see if the requested object entry is present. If the value of the directory's 
DNS$ALLUPTO attribute is greater than the UID of the object entry, your object 
entry has been successfully created. 

Creating an object in the namespace requires write access to the directory in 
which the object will reside. 

If specified, DNS$_OUTUID holds the UID of the created object. 

You must specify the following item codes: 

DNS$_CLASS (Class_Name) 
DNS$_OBJECTNAME (Opaque_Full_Name) 
DNS$_VERSION (Class_Version) 

You can specify the following input item codes: 

DNS$_CONF 
DNS$_WAIT 

You can specify the following output item code: 

DNS$OUTUID (UID) 

$DNS returns the following: 

SS$_NORMAL 
DNS$_ENTRYEXISTS 
DNS$_INVALID_OBJECTNAME 
DNS$_INVALID_CLASSNAME 
Any condition listed in the section Condition Values Returned. 

$DNS returns the following qualifying status: 

DNS $V_DNSB_OUTLINKE D 

DNS$_DELETE_OBJECT 
This request removes the specified object from the namespace. The function 
requires delete access to the object in question. 

You must specify the following input item code: 

DNS$_OBJECTNAME (Opaque_Full_Name) 

You can specify the following input item codes: 

DNS$_CONF 



DNS Clerk System Service Calis 
$DNS 

DNS$_WAIT 

$DNS returns the following: 

SS$_NORMAL 
DNS$_INVALID_OBJECTNAME 
Any condition listed in the section Condition Values Returned. 

$DNS returns the following qualifying status: 

DNS$V DNSB_OUTLINKED 

DNS$_ENUMERATE_ATTRIBUTES 
This request returns a set of attributes in DNS$_OUTATTRIBUTESET 
that is associated with the entry. The entry type is specified in the DNS$_ 
LOOKINGFOR entry. 

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_ 
SET_VALUE run-time routine. The values returned are the Enum_Att_Name 
structure, which is described in Table C-1. 

You must have read access to the entry to enumerate its attributes. 

The DNS clerk enumerates attributes in alphabetical order. A return status 
of DNS$_MOREDATA implies that not all attributes have been enumerated. 
You should make further calls, setting DNS$_CONTEXTVARNAME to the last 
attribute in the set returned, until the procedure returns SS$_NORMAL. 

You must specify the following input item codes: 

DNS$_ENTRY (Opaque_Full_Name) 
DNS$_LOOKINGFOR (Entry_Type) 

You must specify the following output item code: 

DNS$_OUTATTRIBUTESET (set of Enum_Att_Name) 

You can specify any of the following input item codes: 

DNS$_CONF 
DNS$_CONTEXTVARNAME (Opaque_Simple_Name) 
DNS$_WAIT 

$DNS can return the following: 

SS$_NORMAL 
DNS$_MOREDATA 
DNS$_INVALID_ENTRYN.AME 
DNS$_INVALID_CONTEXTNAME 
Any condition listed in the section Condition Values Returned. 

$DNS returns the following qualifying status: 

DNS$V_DNSB_OUTLINKED 

DNS$_ENUMERATE_CHILDREN 
This request takes as input a directory name with an optional simple name that 
uses a wildcard. The DNS clerk matches the input against child directory entries 
in the specified directory. 

The DNS clerk returns a set of simple names of child directories in the target 
directory that match the name with the wildcard. A null set is returned when 
there is no match or when the directory has no children. 



DNS Clerk System Service Calls 
$DNS 

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_ 
SET_VALUE run-time routine. The value returned is a simple name. 

The function requires read access to the parent directory. 

The child directories are enumerated in alphabetical order. If the call returns 
DNS$_MOREDATA, not all children have been enumerated and the client should 
make further calls, setting DNS$_CONTEXTVARNAME to the last child directory 
in the set returned, until the procedure returns SS$_NORMA,L. Subsequent 
calls return the child directories, starting with the directory specified in DNS$_ 
C ONTEXTVARNAME and continuing in alphabetical order. 

You must specify the following input item code: 

DNS$_DIRECTORY (Opaque_Full_Name) 

You must specify the following output item code: 

DNS$_OUTCHILDREN (set of Opaque_Simple_Name) 

You can specify the following input item codes: 

DNS$_CONF 
DNS$_CONTEXTVARNAME (Opaque_Simple_Name) 
DNS$_WAIT 
DNS$_WILDCARD (Opaque_Simple_Name) 

$DNS returns the following: 

SS$_NORMAL 
DNS$_MOREDATA 
DNS$_INVALID_DIRECTORYNAME 
DNS $_INVALID_C ONTEXTNAME 
DNS$_INVALID_WILDCARDNAME 

You might receive the following qualifying status: 

DNS$V DNSB_OUTLINKED 

DNS$_ENUMERATE_OBJECTS 
This request takes as input the directory name, a simple name that uses a 
wildcard, and a class name that uses a wildcard. The DNS clerk matches these 
against objects in the directory. If a wildcard and class filter are not specified, 
then all objects in the directory are returned. 

The function returns (in DNS$_OUTOBJECTS) aset of simple names of objects 
in the directory that match the name with the wildcard. If no objects match the 
wildcard or the directory contains no obj ects, a null set is returned. The DNS 
clerk returns DNS$V_DNSB_OUTLINKED qualifying status if it encounters one 
or more soft links in resolving the names of object entries to be enumerated. 

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_ 
SET_VALUE run-time routine. The value returned is a simple name structure. 

This function requires read access to the parent directory. 

The objects are enumerated in alphabetical order. If the call returns DNS$_ 
MOREDATA, not all objects have been enumerated and the client should make 
further calls, setting DNS$_CONTEXTVARNAME to the last object in the 
set returned, until the procedure returns SS$_NORMAL. If the class filter is 
specified, only those objects of the specified classes are returned. 



DNS Clerk System Service Calls 
$DNS 

You must specify the following input item code: 

DNS$_DIRECTORY (Opaque_Full_Name) 

You must specify the following output item code: 

DNS$_OUTOBJECTS (set of Opaque_Simple_Names) 

You can specify any of the following input item codes: 

DNS$_WILDCAR,D (Opaque_Simple_Name) 
DNS$_CLASSFILTER (Opaque_Simple_Name) 
DNS$_CONTEXTVARNAME (Opaque_Simple_Name) 
DNS$_CONF 
DNS$_WAIT 

$DNS returns the following: 

SS$_NORMAL 
DNS$_MOREDATA 
DNS$_INVALID_DIRECTORYNAME 
DNS$_INVALID_CONTEXTNAME 
DNS$_INVALID_WILDCAR.DNAME 
DNS$_INVALID_CLASSNAME 

You might receive the following qualifying status: 

DNS$V_DNSB_OUTLINKED 

DNS$_ENUMERATE_SOFTLINKS 
This request takes as input the name of a directory and a simple name that 
includes a wildcard. The DNS clerk matches these against soft links in the 
directory. It returns (in DNS$_OUTSOFTLINKS) aset consisting of simple 
names of soft links in the directory that match the specified simple name. If 
no soft link entries match the simple name that contains the wildcard or the 
directory contains no soft links, a null set is returned. 

If no wildcard is specified, then all soft links in the directory are returned. 

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_ 
SET_VALUE run-time routine. The value returned is a simple name. 

This function requires read access to the parent directory. 

The soft links are enumerated in alphabetical order. If the call returns DNS$_ 
MOREDATA, not all matching soft links have been enumerated and the client 
should make further calls, setting DNS$_CONTEXTVARNAME to the last soft 
link in the set returned, until the procedure returns SS$_NORMAL. 

You must specify the following input item code: 

DNS$_DIRECTORY (Opaque_Full_Name) 

You must specify the following output item code: 

DNS$_OUTSOFTLINKS (set of Opaque_Simple_Name) 

You can specify the following input item codes: 

DNS$_WILDCARD (Opaque_Simple_Name) " 
DNS$_CONTEXTVARNAME (Opaque_Simple_Name) 
DNS$_CONF 
DNS$_WAIT 



DNS Clerk System Service Calls 
$DNS 

$DNS returns the following: 

SS$_NORMAL 
DNS$_INVALID_DIRECTORYN.AME 
DNS$_INVALID_C ONTEXTNAME 
DNS$_INVALID_wILDCARDNAME 

You might receive the following qualifying status: 

DNS$V_DNSB_OUTLINKED 

DNS$_FULL_OPAQUE_TO_STRING 
This request converts a full name in opaque format to its equivalent in string 
format, as described in Section C.2.2.4. Setting the byte referred to by DNS$_ 
SUPPRESS_NSNAME to 1 prevents the namespace name from being included in 
the string name. 

You must specify the following item codes: 

DNS$_FROMFULLNAME (Opaque_Full_Name) 
DNS$_TOSTRINGNAME (Full_Name_Str) 

You can specify the following input item code: 

DNS$_SUPPRESS_NSNAME (byte) 

$DNS returns the following: 

SS$_NORMAL 
DNS$_INVALIDNAME 

You do not receive qualifying status. 

DNS$_MODI FY_ATTRI BUTE 
This request applies one update to the specified entry in the namespace. You 
can add or remove an attribute; you can add or remove a value from either a 
single-value attribute or aset-valued attribute. 

This operation requires write or delete access to the entry whose attribute 
is being modified, depending on whether the operation adds or removes the 
attribute. 

When adding a value to a single-value attribute, include a value in DNS$_ 
MODVALUE or you will receive the error DNS$_INVALIDUPDATE. The item 
code DNS$_MODVALUE is not required when writing to an attribute set because 
the name service creates the attribute if no value is provided. 

In a delete operation, include the DNS$_MODVALUE item code to remove a 
certain value from an attribute set. Unless you specify the item code, the name 
service removes the attribute and all its values from the entry. 

You must specify the following item codes: 

DNS$_ENTRY (Opaque_Full_Name) 
DNS$_LOOKINGFOR (Entry_Type) 
DNS$_MODOPERATION (DNS$K PRESENT or DNS$K ABSENT) 
DNS$_ATTRIBUTETYPE (DNS$K SET or DNS$K SINGLE) 
DNS$_ATTRIBUTENAME (Opaque_Simple_Name) 

You can specify the following input item codes: 

DNS$_CONF 
DNS$_MODVALUE 



DNS Clerk System Service Calls 
$DNS 

DNS$_WAIT 

$DNS returns the following: 

SS$_NORMAL 
DNS$_WRONGATTRIBUTETYPE 
DNS$_INVALIDUPDATE 
DNS$_INVALID_ENTRYNAME 
DNS$_INVALID_ATTRIBUTENAME 

You might receive the following qualifying status: 

DNS$V_DNSB_OUTLINKE D 

DNS$_PARSE_FU LLNAM E_STRI NG 
This request takes a full name in string format and converts it to its equivalent 
in opaque format. If DNS$_NEXTCHAR_PTR is used, the longword referenced by 
this entry contains the address of the character immediately following the DNS 
name given in DNS$_FROMSTRINGNAME. 

You must specify the following item codes: 

DNS$_FROMSTRINGNAME (Full_Name_Str) 
DNS$_TOFULLNAME (Opaque_Full_Name) 

You can specify the following input item code: 

DNS$_NEXTCHAR_PTR 

$DNS can return the following: 

SS$_NORMAL 
DNS$_INVALIDNAME 

You do not receive qualifying status. 

DNS$_PARSE_SIMPLENAME_STRING 
This request takes a simple name in string format and converts it to its 
equivalent in opaque format. If DNS$_NEXTCHAR_PTR is used, the longword 
referenced by this entry contains the address of the character immediately 
following the DNS name given in DNS$_FROMSTRINGNAME. 

You must specify the following item codes: 

DNS$_FROMSTRINGNAME (Simple_Name_Str) 
DNS$_TOFULLNAME (Opaque_Simple_Name) 

You can specify the following input item code: 

DNS$_NEXTCHAR_PTR 

$DNS can return the following: 

SS$_NORMAL 
DNS$_INVALIDNAME 

You do not receive qualifying status. 

DNS$_READ_ATTRIBUTE 
This request returns (in DNS$_OUTVALSET) aset whose members are the 
values of the specified attribute. When the request completes successfully, the 
qualifying status indicates whether soft links were followed in resolving the 
name. 



DNS Clerk System Service Cails 
$DNS 

This function requires read access to the object whose attribute is to be read. 

To manipulate the values returned by this call, use the DNS$REMOVE_FIRST_ 
SET_VALUE run-time routine. The contents of DNS$_OUTVALSET are passed 
to DNS$REMOVE_FIRST_SET_VALUE, and the routine returns the value of the 
attribute . 

The attribute values are returned in the order they were received. If the call 
returns DNS$_MOREDATA, not all values have been returned. The client 
application can make further calls, setting DNS$_CONTEXTVARTIME to the 
time-stamping of the last attribute in the set returned, until the procedure 
returns SS$_NORMAL. If the client sets the DNS$_MAYBEMORE argument to 
1, the name service attempts to make subsequent DNS$_READ_ATTRIBUTE 
calls for the same entry more efficient. The client may set this argument to true 
on any call, but performance improves only if the client accesses no other entry 
before making a read attribute call for the previous entry. 

You must include the following input item codes: 

DNS$_ENTRY (Opaque_Full_Name) 
DNS$_LOOKINGFOR (Entry_Type) 
DNS$_ATTRIBUTENAME (Opaque_Simple_Name) 

You must include the following output item code: 

DNS$_OUTVALSET (set of values) 

You can include the following input item codes: 

DNS$_MAYBEMORE (Boolean) 
DNS$_CONTEXTVARTIME (UID) 
DNS$_CONF 
DNS$_WAIT 

$DNS returns the following: 

SS$_NORMAL 
DNS$_MOREDATA 
DNS $_INVALID_ENTRYNAME 
DNS$_INVALID_ATTRIBUTENAME 

You might receive the following qualifying status: 

DNS$V_DNSB_OUTLINKED 

DNS$_RESOLVE_NAME 
This request follows a chain of soft links to its destination, returning the full 
name of that entry so that future calls by the client application can use the entry 
name without incurring the overhead of following the link. 

This function requires read access to each of the soft links in the chain. 

Applications that maintain their own databases of opaque DNS names should use 
DNS$_RESOLVE_NAME any time they receive the qualifying status DNS$V 
DNSB_OUTLINKED. This status indicates a need to update the current name, 
using the soft link facility of DNS. Use the original name with DNS$_RESOLVE_ 
NAME and store the result in the application database. 

If the application provides a name that does not contain any soft links, DNS$_ 
NOTLINKED status is returned. If the target of any of the chain of soft links 
followed does not exist, the DNS$_DANGLINGLINK status is returned. To obtain 
the target of any particular soft link, use the DNS$_READ_ATTRIBUTE function 



DNS Clerk System Service Calls 
$DNS 

with DNS$_LOOKINGFOR set to DNS$K SOFTLINK and request the attribute 
DNS$LINKTARGET. This can be useful in discovering which link in a chain is 
"broken." If the DNS clerk detects a loop, it returns DNS$_POSSIBLECYCLE 
status. 

You must specify the following input item code: 

DNS$_LINKNAME (Opaque_Full_Name) 

You must specify the following output item code: 

DNS$_OUTNAME (Opaque_Full_Name) 

You can specify the following input item codes: 

DNS$_CONF 
DNS$_WAIT 

$DNS returns the following: 

SS$_NORMAL 
DNS$_INVALID_LINKNAME 
DNS$_NOTLINKED 

You might receive the following qualifying status 

DNS$V_DNSB_OUTLINKED 

DNS$_SIMPLE_OPAQUE_TO_STRING 
This request takes a simple name in opaque format and converts it to its 
equivalent in string format, as described in Section C.2.2.4. 

You must specify the following item codes: 

DNS$_FROMSIMPLENAME (Opaque_Simple_Name) 
DNS$_TOSTRINGNAME (Simple_Name_Str) 

$DNS returns the following: 

SS$_NORMAL 
DNS$_INVALIDNAME 

You do not receive qualifying status. 

DNS$_TEST_ATTRIBUTE 
This request returns DNS$_TRUE if the specified attribute has one of the 
following characteristics: 

• It is a single-value attribute and its value matches the client-specified value. 

• It is aset-valued attribute and the attribute contains the client-specified 
value as one of its members. 

On successful completion of the function, DNS$V DNSB_OUTLINKED indicates 
whether soft links were followed in resolving the name. 

This function requires test or read access to the entry whose attribute is to be 
tested. 

If the attribute is not present in the entry or if the requested attribute does not 
exist, the function returns DNS$_FALSE. 

You must specify the following item codes: 

DNS$_ENTRY (Opaque_Full_Name) 
DNS$_LOOKINGFOR (Entry_Type) 

C-33 



DNS Clerk System Service Calls 
$DNS 

DNS$_ATTRIBUTENAME (Opaque_Simple_Name) 
DNS$ VALUE (value) 

You can specify the following input item codes: 

DNS$_CONF 
DNS$_WAIT 

$DNS returns the following when the call is successful: 

DNS$_TRUE 
DNS$_FALSE 

$DNS returns the following when the call is unsuccessful: 

DNS$_INVALID_ENTRYNAME 
DNS$_INVALID_ATTRIBUTENAME 

You might receive the following qualifying status: 

DNS$V_DNSB_OUTLINKED 

DNS$_TEST_GROUP 
This request tests for group membership. It returns DNS$_TRUE if the specified 
member is a member of the specified group (or a subgroup thereof) and DNS$_ 
FALSE otherwise. If a recursive search is required and one or more of the 
subgroups is unavailable, the status encountered in trying to access that group is 
returned. 

The DNS$_INOUTDIRECT argument, on input, controls the scope of the search. 
If set to true, the only group considered is the top-level group specified by the 
group argument. If set to false, recursive evaluation is performed. On output, the 
DNS$_INOUTDIRECT argument is set to 1 if the member was found in the top 
level group; otherwise, it is set to 0. 

You must specify the following item codes: 

DNS$_GROUP (Opaque_Full_Name) 
DNS$_MEMBER (Opaque_Full_Name) 

You can specify the following input item codes: 

DNS$_CONF 
DNS$_INOUTDIRECT (Boolean) 
DNS$_WAIT 

$DNS returns the following: 

SS$_NORMAL 
DNS$_NOTAGROUP 
DNS$_INVALID_GROUPNAME 
DNS$_INVALID_MEMBERNAME 

You might receive the following qualifying status: 

DNS$V_DNSB_INOUTDIRECT 

itmist 
VMS Usage: 
type: 
access: 
mechanism: 

item list 3 
longword (unsigned) 
read only 
by reference 



DNS Clerk System Service Calls 
$DNS 

Item list supplying information to be used in performing the function specified 
by the funs argument. The itmist argument is the address of the item list. 
The item list consists of one or more item descriptors, each of which is three 
longwords. The descriptors can be in any order in the item list. Each item 
descriptor specifies an item code. Each item code either describes the specific 
information to be returned by $DNS or otherwise affects the action designated by 
the function code. The item list is terminated by a longword of zero. 

The item list is in standard vMS format. The following figure depicts the general 
structure of an item descriptor: 

31 15 0 
Item Code Buffer Length 

Buffer Address 

Return Length Address 

ZK-1705-GE 

$DNS Item Descriptor Fields 
item code 
A word containing a symbolic code describing the nature of the information 
currently in the buffer or to be returned in the buffer. The location of the buffer 
is pointed to by the buffer address field. Each item code has a symbolic name; 
these symbolic names are defined by the $DNS macro and have the format 
DNS$_code. 

buffer length 
A word specifying the length of the buffer; the buffer either supplies information 
to be used by $DNS or receives information from $DNS. The required length of 
the buffer varies depending on the item code specified; each item code description 
specifies the required length. 

buffer address 
A longword containing the address of the buffer that specifies or receives the 
information. 

return length address 
A longword containing the address of a word specifying the actual length in 
bytes of the information returned by $DNS. The information resides in a buffer 
identified by the buffer address field. The field applies to output item-list entries 
only and must be zero for input entries. If the return-length address is 0, it is 
ignored. 

$DNS Item Codes 
DNS$_ATTRIBUTETYPE 
The DNS$_ATTRIBUTETYPE item code specifies whether an attribute is set 
valued (DNS$K SET) with a value of 3 or single valued (DNS$K SINGLE) with 
a value of 2. 

DNS$_ATTRIBUTENAME 
The DNS$ ATTRIBUTENAME item code specifies the opaque simple name of an 
attribute. An attribute name cannot be longer than 31 characters. 



DNS Clerk System Service Calls 
$DNS 

DNS$_CLASS 
The DNS$_CLASS item code specifies the class of an object for the $DNS function 
DNS$_CREATE_OBJECT. DNS$_CLASS is an opaque simple name. 

DNS$_CLASSFILTER 
DNS$_CLASSFILTER is used by the $DNS function DNS$_ENUMERATE_ 
OBJECTS to limit the scope of the enumeration to those objects belonging 

to a certain class (or, if a wildcard name is used, a group of classes). DNS$_ 
CLASSFILTER is an opaque simple name, which can use a wildcard. 

DNS$_CLASSFILTER is optional. A wildcard simple name of ~ is used by default, 
meaning that objects of all classes will be enumerated. 

DNS$_CONF 
DNS$_CONF specifies for $DNS the level of importance in returning up-to-date 
information. DNS$_CONF is 1 byte long and can take one of the following values: 

Confidence Level Value Meaning 

DNS$K_LOW 1 Service the DNS clerk request at the lowest 
cost, usually from cached information. 

DNS$K MEDIUM 2 Bypass any cached information and obtain 
the data directly from a name server. 

DNS$K HIGH 3 Service the request from a master directory. 

The entry is optional; if it is not specified, the DNS clerk assumes a value of 
DNS$K LOW. 

DNS$_CONTEXTVARNAME 
DNS$_CONTEXTVARNAME is used by the enumeration functions of $DNS to 
specify a context from which the enumeration is to begin. The item is an opaque 
simple name. 

DNS$_CONTEXTVARNAME is optional. If not given, the enumeration begins 
with the first element. 

DNS$_DIRECTORY 
DNS$_DIRECTORY is used by most of the enumeration functions of $DNS to 
specify the namespace directory in which the elements of the enumeration are to 
be found. DNS$_DIRECTORY is an opaque full name. 

DNS$_ENTRY 
DNS$_ENTRY specifies for $DNS the opaque full name of a namespace entry 
(object, soft link, directory, clearinghouse). 

DNS$_FROMFULLNAME 
DNS$_FROMFULLNAME specifies for the DNS$_FULL_OPAQUE_TO_STRING 
function the opaque full name that is to be converted into string format. 

DNS$_FROMSIMPLENAME 
DNS$_FROMSIMPLENAME specifies for the DNS$_SIMPLE_OPAQUE_TO_ 
STRING function the opaque simple name that is to be converted into string 
format. 



DNS Clerk System Service Calls 
$DNS 

DNS$_FROMSTRINGNAME 
DNS$_FROMSTRINGNAME specifies a name in string format for the 
parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_ 
SIMPLENAME_STRING that is to be converted to opaque format. 

DNS$_GROUP 
DNS$_GROUP specifies for the DNS$_TEST_GROUP function the opaque full 
name of the group that is to be tested. DNS$_GROUP must be the name of a 
group object. 

DNS$_INOUTDIRECT 
DNS$_INOUTDIRECT is a Boolean value that serves two different purposes for 
the DNS$_TEST_GROUP function. On input, DNS$_INOUTDIRECT controls the 
scope of the search for the test, as follows: 

Value Definition 

1 The only group to be tested is the top-level group specified by the 
DNS$_GROUP item. 

0 All subgroups of the group named in DNS$_GROUP are tested for 
inclusion. A subgroup is any member that is a group in itself. 

On output, DNS$_INOUTDIRECT is set to indicate whether the members were 
found in the top-level group or were found as members of one of the subgroups, 
as follows: 

Value Definition 

1 The member was found in the top-level group. 
0 The member was found in one of the subgroups of the top-level group. 

DNS$_INOUTDIRECT is a single-byte value. 

DNS$_LINKNAME 
DNS$_LINKNAME specifies the opaque full name of a soft link. 

DNS$_LOOKINGFOR 
DNS$_LOOKINGFOR specifies the type of entry on which the call is to operate. 
DNS$_LOOKINGFOR, which is encoded as a byte, can take one of the following 
values: 

Type of Entry Value 

DNS$K DIRECTORY 

DNS$K OBJECT 

DNS$K CHILDDIRECTORY 

DNS$K_SOFTLINK 

DNS$K_CLEARINGHOUSE 

1 

2 

3 

4 

5 

DNS$_MAYBEMORE 
DNS$_MAYBEMORE is used with the DNS$_READ_ATTRIBUTE function 
to indicate that the results of the read operation are to be cached. This is a 
single-byte item. 



DNS Clerk System Service Calls 
$DNS 

When this item is set to 1, the name service returns as much information about 

the attributes for the entry as it is able to fit in the return buffer. All of this 
information is cached to make later lookups of attribute information for the entry 
quicker and more efficient. 

If this item is not supplied, then only the requested information for the entry is 
returned. 

DNS$_MEMBER 
DNS$_MEMBER specifies for the DNS$_TEST_GROUP function of $DNS the 
opaque full name of a member that is to be tested for inclusion within a given 
group. 

DNS$_MODOPERATION 
DNS$_MODOPERATION specifies for the DNS$_MODIFY_ATTRIBUTE function 
the type of operation that is to take place. There are two types of modifications: 
adding an attribute (DNS$K PRESENT), which has a value of 1, or deleting an 
attribute (DNS$K ABSENT), which has a value of 0. 

The name service adds an attribute in the following way: 

• For an existing attribute where an attribute value is given, the value is added 
to aset-valued attribute and all other values for the set are unaffected. The 
value replaces any previous value in a single-value attribute. 

• For an existing attribute where an attribute value is not given, all previous 
values for the attribute are unaffected. 

• For a new attribute 

— Where an attribute is given, the attribute is created and given the 
attribute type of DNS$K SET or DNS$K SINGLE as supplied with the 
DNS$K ATTRIBUTETYPE item. The value is assigned to the attribute. 

— Where an attribute value is not given, aset-valued attribute is created 
without a value assignment, but asingle-value attribute is not created. 

The name service deletes an attribute in the following way: 

• If the attribute exists and an attribute value is given, the attribute value is 
removed from aset-valued attribute. All other values are unaffected. For a 
single-value attribute, the attribute (along with its value) is removed from the 
entry. 

• If an attribute value is not given, then the attribute and all values of the 
attribute are removed. This is true for both set-valued attributes and single-
value attributes . 

DNS$_MODVALUE 
DNS$_MODVALUE specifies for the DNS$_MODIFY ATTRIBUTE function the 
value that is to be added to or deleted from an attribute. The structure of this 
value is dependent on the application. 

DNS$_MODVALUE is an optional argument that affects the overall operation of 
the DNS$_MODIFY ATTRIBUTE function. (See the DNS$_MODOPERATION 
item code description for more information.) 



DNS Clerk System Service Calls 
$DNS 

DNS$_NEXTCHAR_PTR 
DNS$_NEXTCHAR_PTR is an optional item code that can be used with the 
parse functions DNS$_PARSE_FULLNAME_STRING and DNS$_PARSE_ 
SIMPLENAME_STRING to return the address of the character that immediately 
follows a valid DNS name. This option is most useful when applications are 
parsing command line strings. 

Without this item code, the parse functions return an error if any portion of the 
name string is invalid. 

DNS$_OBJECTNAME 
DNS$_OBJECTNAME specifies the opaque full name of an object. 

DNS$_OUTATTRIBUTESET 
DNS$_OUTATTRIBUTESET specifies to the DNS$_ENUMERATE ATTRIBUTES 
function the address of a buffer that is to contain the set of enumerated attribute 
names. 

The names returned in this set can be extracted from the buffer with the 
DNS$REMOVE_FIRST_SET_VALUE routine. The resulting values are contained 
in the $DNSATTRSPECDEF structure, a byte indicating whether an attribute is 
set valued or single valued and followed by an opaque simple name. 

DNS$_OUTNAME 
DNS$_OUTNAME specifies for the DNS$_RESOLVE_NAME function the address 
of a buffer that is to contain the opaque full name of the namespace entry that is 
pointed to by a soft link. 

DNS$_OUTOBJECTS 
DNS$_OUTOBJECTS specifies for the DNS$_ENUMERATE_OBJECTS function 
the address of a buffer that is to contain the set of opaque simple names returned 
by the enumeration. 

The values resulting from the enumeration can be extracted using the 
DNS$REMOVE_FIRST_SET_VALUE routine. The resulting values are the 
opaque simple names of the objects found in the directory. 

DNS$_OUTCHILDREN 
DNS$_OUTCHILDREN specifies for the DNS$_ENUMERATE_CHILDREN 
function the address of a buffer that is to contain the set of opaque simple names 
returned by the enumeration. 

The values resulting from the enumeration can be extracted using the 
DNS$REMOVE_FIRST_SET_VALUE routine. These values are the opaque 
simple names of the child directories found in the parent directory. 

DNS$_OUTSOFTLINKS 
DNS$_OUTSOFTLINKS specifies for the DNS$_ENUMERATE_SOFTLINKS 
function the address of a buffer that is to contain the set of opaque simple names 
returned by the enumeration. 

The values resulting from the enumeration can be extracted using the 
DNS$REMOVE_FIRST_SET_VALUE routine. The resulting values are the 
opaque simple names of the soft links found in the directory. 

DNS$_OUTVALSET 
DNS$_OUTVALSET specifies for the DNS$_READ_ATTRIBUTE function the 
address of a buffer that is to contain the set of values for the given attribute. 

C-39 



DNS Clerk System Service Calls 
$DNS 

The values of the set placed in this buffer can be extracted using the 
DNS$REMOVE_FIRST_SET_VALUE routine. The extracted values are the 
values of the attribute. 

DNS$_OUTUID 
DNS$_OUTUID is an optional item code that contains the address of a buffer 
used by the create functions of $DNS to return the unique identifier (UID). The 
UID is the time-stamping the entry received at creation. 

DNS$_SUPPRESS_NSNAME 
DNS$_SUPPRESS_NSNAME is an optional item for the DNS$_FULL_OPAQUE_ 
TO_STRING function that is used to indicate that the leading namespace name 
should not be returned in the converted full name string. This is a single-byte 
value. 

A value of 1 suppresses the leading namespace name in the resulting full name 
string. 

DNS$_TOFULLNAME 
DNS$_TOFULLNAME specifies for the DNS$_PARSE_FULLNAME_STRING 
function the address of a buffer that will contain the resulting opaque full name. 

DNS$_TOSIMPLENAME 
DNS$_TOSIMPLENAME specifies for the DNS$_PARSE_SIMPLENAME_ 
STRING function the address of a buffer that will contain the resulting opaque 
simple name. 

DNS$_TOSTRINGNAME 
DNS$_TOSTRINGNAME specifies the address of a buffer that is to contain 
the string name resulting from one of the conversion functions: DNS$_FULL_ 
OPAQUE_TO_STRING or DNS$_SIMPLE_OPAQUE_TO_STRING. 

DNS$_VALUE 
DNS$_VALUE specifies for the DNS$_TEST_ATTRIBUTE function the value that 
is to be tested. This item contains the address of a buffer holding the value. 

DNS$_VERSION 
DNS$_VERSION specifies for the DNS$_CREATE_OBJECT function the version 
associated with an object. This item contains the address of a $DNSCVERSDEF 
(CLASSVERSION) structure. This is a 2-byte structure: the first byte contains 
the major version number; the second contains the minor version number. 

DNS$_WAIT 
DNS$_WAIT enables the client to specify a timeout value to wait for a 
call to complete. If the timeout expires, the call returns either DNS$K 
TIMEOUTNOTDONE or DNS$K TIMEOUTMAYBEDONE, depending on 
whether the namespace was updated by the incomplete operation. 

The $BINTIM service converts an ASCII string time value to the quadword time 
value required by $DNS. 

The parameter is optional; if it is not specified, asystem-defined default timeout 
value of 10 minutes is assumed. 

C-40 



DNS Clerk System Service Calls 
$DNS 

DNS$_WILDCARD 
DNS$_WILDCARD is an optional item code that specifies to the enumeration 
functions of $DNS the opaque simple name used to limit the scope of the 
enumeration. (The simple name does not have to use a wildcard.) Only those 
simple names that match the wildcard are returned by the enumeration. 

Item Code Identifiers 
The identifiers shown in Table C-1 are data structures that are used in item-code 
arguments. Each data structure defines the encoding of an item-list element. 

Table C-1 DNS Item-Code Arguments 

Item-Code Identifier Description 

Attribute Name 

Attribute Name Str 

Boolean 

Class_Name 

Class_Name_Str 

Class Version 

Confidence 

Entry_Type 

Enum_Att_Name 

Full_Name_String 

The structure of an opaque simple name, 
limited to 31 ISO Latin 1 characters. 

An attribute name string with the structure 
of a simple name string but limited to 31 ISO 
Latin 1 characters. 

A 1-byte field with the value 0 if false and 1 if 
true. 

An opaque simple name, limited to 31 ISO 
Latin 1 characters. 

A simple name string, limited to 31 ISO 
Latin 1 characters. 

A 2-byte field specifying major and minor 
version numbers associated with the object 
class. 

A 1-byte field with the value: DNS$K LOW, 
DNS$K MEDIUM, or DNS$K HIGH. 

A 1-byte field with the value DNS$K 
OBJECT, DNS$K SOFTLINK, DNS$K 
DIRECTORY, or DNS$K CLEARINGHOUSE. 

A structure consisting of a single byte, 
indicating whether the attribute is a set 
(DNSK$_SET) or a single value (DNS$K 
SINGLE), followed by an opaque simple 
name. 

A full name string with the following 
structure: 

[NS_name:] [.] namestring [.namestring] 

(continued on next page) 

C-41 



DNS Clerk System Service Calls 
$DNS 

Table C-1 (Cont.) DNS Item-Code Arguments 

Item-Code Identifier Description 

Group_Member 

Opaque_Full_Name 

Opaque_Simple_Name 

Simple_Name_Str 

NS_name:, if present, is a local system 
representation of the NSUID, the unique 
identifier of the name server. The DNS clerk 
supplies a namespace name (node-name_NS) 
if the value is omitted. 
Namestring represents a simple name 
component. Multiple simple names are 
separated by periods. You can include the 
asterisk wildcard (*)and simple name strings 
within quotation marks. 

A structure consisting of a single byte, 
indicating whether the entry is a principal 
(DNS$K GRPMEM_NOT_GROUP) or another 
group (DNS$K GRPMEM_IS_GROUP), 
followed by the opaque full name of the 
member. 

The internal format of the complete name 
identifier for an object. The maximum output 
of DNS$PARSE_FULLNAME_STRING is 402 
bytes . 

A simple name specifies the internal format 
of one component of an Opaque_Full_Name. 
The Opaque_Simple_Name is the output of 
the DNS$PARSE_SIMPLENAME_STRING 
routine. It can be no longer than 257 bytes. 

One term consisting of a string of ASCII 
characters with its length stored separately in 
an item list. 

dnsb 
VMS Usage: 
type: 
access: 
mechanism: 

dns_status_block 
quadword (unsigned) 
write only 
by reference 

Status block to receive the final completion status of the $DNS operation. The 
dnsb argument is the address of the quadword $DNS status block. 

The following figure depicts the structure of a $DNS status block: 

31 0 

return status 

reserved outlinked inoutdirect 

qualifying status 
ZK-1080A-G E 

C-42 



DNS Clerk System Service Calis 
$DNS 

Status Block Fields 
return status 
Set on completion of a DNS clerk request to indicate the success or failure of the 
operation. Check the qualifying status word for additional information about a 
request marked as successful. Wherever possible, each function code description 
includes return status values. 

qualifying status 
This field consists of a set of flags that provide additional information about 
a successful name service operation. Wherever possible, each function code 
description includes qualifying status values. 

The qualifying status values are defined as follows: 

• DNS$V_DNSB_INOUTDIRECT If true, indicates only the top-level group 
was Beached for a member. 

• DNS$V_DNSB_OUTLINKED If set, indicates that one or more soft links 
were encountered while resolving the object of the call. 

Description 

astadr 
VMS Usage: 
type: 
access: 
mechanism: 

ast_procedure 
procedure entry mask 
call without stack unwinding 
by reference 

Asynchronous system trap (AST) routine to be executed when UO completes. The 
astadr argument, which is the address of a longword value, is the entry mask to 
the AST routine. 

The AST routine executes in the access mode of the caller of $DNS. 

astprm 
VMS Usage: 
type: 
access: 
mechanism: 

user_arg 
longword (unsigned) 
read only 
by value 

Asynchronous system trap (AST) parameter passed to the AST service routine. 
The astprm argument is a longword value containing the AST parameter. 

The VMS Distributed Name Service Clerk system service provides aloes-level 
interface between an application (client) and the Distributed Name Service 
facility. The DNS clerk interface is used to create, delete, modify, and retrieve 
objects or soft links in a namespace. 

A single system service call supports the DNS clerk. It has two main parameters: 

• A function code identifying the particular service to perform 

• An item list specifying all the parameters for the required function 

The use of this item list is similar to that of other system services that use a 
single item list for both input and output operations. 

C-43 



DNS Clerk System Service Calls 
$DNS 

Item-list entries must be specified in opaque format. You can convert any one of 
the name strings to opaque format with a conversion function. If applications 
need to store names, they must store them in opaque format. The opaque format 
guarantees the uniqueness of a name over time, whereas a string format does 
not. 

Many of the functions return results as a set. In some cases, the specified output 
buffer might not be large enough to contain the complete set. In this case, the 
return status indicates this condition with the success status $DNS_MOREDATA. 
To obtain the remaining data from the set, the client should make repeated calls, 
each time specifying the last attribute received in the context-variable item until 
the call returns SS$_NORMAL. 

The context-variable item can take one of two forms depending on the function: 

• DNS$CONTEXTVARNAME If the returned data is a set of names, then the 
item is a simple name. 

• DNS$CONTEXTVARTIME If the returned data is a set of values, then the 
item is atime-stamping. 

If the context-variable item is not specified or is null, then the results are 
returned from the beginning of the set. 

All functions return the SS$_NORMAL status for success except DNS$_TEST_ 
ATTRIBUTE, which returns DNS$_TRUE or DNS$_FALSE. The functions return 
linked information in the $DNS status block. The DNS$V_DNSB_OUTLINKED 
bit in the status block indicates whether any soft links are encountered in an 
information search. 

Condition Values Returned 

SS$_BADPARAM 

SS$_NORMAL 

DNS$_ACCESSDENIED 

DNS$_BADCLOCK 

DNS$_BADEPOCH 

DNS$_BADITEMBUFFER 

DNS$_CACHELOCKED 

DNS$_CLEARINGHOUSEDOWN 

DNS$_CLERKBUG 

Bad parameter value. 

Normal completion of the request. 

Caller does not have required access 
to the entry in question. This error is 
returned only if the client has some 
access to the entry. Otherwise, the 
unknown entry status is returned. 

The clock at the name server has a 
value outside the permissible range. 
Copies of directories are not 
synchronized. 

Invalid output item buffer detected. 
(This normally indicates that the 
buffer has been modified during the 
call. ) 

Global client cache locked. 

Clearinghouse is not available. 
Internal clerk error detected. 

C-44 



DNS Clerk System Service Calls 
$DNS 

DNS$_CONFLICTINGARGUMENTS 

DNS$_DANGLINGLINK 

DNS$_DATACORRUPTION 

DNS$_ENTRYEXISTS 

DNS$_FALSE 

DNS$_INVALIDARGUMENT 

DNS$_INVALID_ATTRIBUTENAME 

DNS$_INVALID_CLASSNAME 

DNS$_INVALID_ 
CLEAR.INGHOUSENAME 

DNS$_INVALID_CONTEXTNAME 

DNS$_INVALID_DIRECTORYNAME 

DNS$_INVALID_ENTRYNAME 

DNS$_INVALIDFUNCTION 

DNS$_INVALID_GROUPNAME 

DNS$_INVALIDITEM 

DNS$_INVALID_LINKNAME 

DNS$_INVALID_MEMBERNAME 

DNS$_INVALIDNAME 

DNS$_INVALID_NSNAME 

DNS$_INVALID_OBJECTNAME 

DNS$_INVALID_TARGETNAME 

DNS$_INVALIDUPDATE 

DNS$_INVALID_WILDCARDNAME 

Two or more optional arguments 
conflict; they cannot be specified in the 
same function call. 

Soft link points to nonexistent entry. 

An error occurred in accessing the 
data stored at a clearinghouse. The 
clearinghouse may be corrupted. 

An entry with the same full name 
already exists in the namespace. 

Unsuccessful test operation. 

A syntactically incorrect, out of range, 
or otherwise inappropriate argument 
was specified in the call. 

The name given for function is not a 
valid DNS attribute name. 

The name given for function is not a 
valid DNS class name. 

The name given for function is not a 
valid DNS clearinghouse name. 

The name given for function 
valid DNS name. 

The name given for function 
valid DNS directory name. 

The name given for function 
valid DNS entry name. 

Invalid function specified. 

isnota 

is not a 

is not a 

The name given for function is not a 
valid DNS group name. 

Invalid item list entry specified. 

The name given for function is not a 
valid DNS -link name. 

The name given for function is not a 
valid DNS name. 

A badly formed name was supplied to 
the call. 

Namespace name given in name string 
is not a valid DNS name. 

The name_ given for function is not a 
valid DNS object name. 

The name given for function is not a 
valid DNS name. 

An update was attempted to an 
attribute that cannot be directly 
modified by the client. 

The name given for function is not a 
valid DNS name. 



DNS Clerk System Service Calls 
$DNS 

DNS$_LOGICAL_ERROR 

DNS$_MISSINGITEM 

DNS$_MOREDATA 

DNS$_NAMESERVERBUG 

DNS$_NOCACHE 

DNS$_NOCOMMUNICATION 

DNS$_NONSRESOURCES 

DNS$_NONSNAME 

DNS$_NOTAGROUP 

DNS$_NOTIMPLEMENTED 

DNS$_NOTLINKED 

DNS$_NOTNAMESERVER 

DNS$_NOTSUPPORTED 

DNS$_POSSIBLECYCLE 

DNS$_RESOURCEERROR 

DNS$_TIMEOUTNOTDONE 

DNS$_TIMEOUTMAYBEDONE 

DNS$_TRUE 

DNS$_UNKNOV~i~NC LEARINGHOUSE 

DNS$_UNKNOWNENTRY 

DNS$_UNTRUSTEDCH 

Error translating logical name in given 
string. 

Required item-list entry is missing. 

More output data to be returned. 

A name server encountered an 
implementation bug. Please submit an 
SPR. 

Client cache file not initialized. 

No communication was possible with 
any name server capable of processing 
the request. Check NCP event 353.5 
for the DECnet error. 

The call could not be performed due 
to lack of memory or communication 
resources at the local node to process 
the request. 

Unknown namespace name specified. 

The full name given is not the name of 
a group. 

This function is defined by the 
architecture as optional and is not 
available in this implementation. 

A link is not contained in the name. 

The node contacted by the clerk does 
not have a DNS server running. This 
can happen when the application 
supplies the clerk with inaccurate 
replica information. 

This version of the architecture does 
not support the requested function. 

Loop detected in link or group entry. 

Failure to obtain system resource. 

The operation did not complete in the 
time allotted. No modifications have 
been performed even if the operation 
requested them. 

The operation did not complete in 
the time allotted. Modifications may 
or may not have been made to the 
namespace. 

Successful test operation. 

The clearinghouse does not exist. 

Either the requested entry does not 
exist or the client does not have access 
to the entry. 

A DNS server is not included in the 
object's access control set. 

C-46 



DNS Clerk System Service Calls 
$DNS 

DNS$_WRONGATTRIBUTETYPE The caller specified an attribute type 
that did not match the actual type of 
the attribute. 

C-47 



DNS Clerk System Service Calis 
$DNSW 

$DNSW 
Distributed Name Service Clerk and Wait 

The Distributed Name Service Clerk and Wait service registers a resource in a 
distributed database; same as $DNS. However, the $DNSW service completes 
synchronously; that is, it returns to the caller after the operation completes. 

For asynchronous completion, use the $DNS service, which returns to the caller 
immediately after making a name service call. The return status to the client call 
indicates whether a request was successfully queued to the name service. 

In all other respects, $DNSW is identical to $DNS. Refer to the $DNS description 
for complete information about the $DNSW service. 

Format 

SYS$DNSW [efn] ,func ,itmist ,[dnsb] ,[astadr] ,[astprm] 

C-48 



VMS Version 5.3 Features 
DNS Run-Time Routines 

C.2.9 DNS Run-Time Routines 
All applications designed to take advantage of the Distributed Name Service 
(DNS) facility use the DNS Clerk system services and the DNS run-time routines 
to register a resource in the DNS namespace and to modify and find information 
within the namespace. This section describes the run-time routines. 

C-49 



DNS$ Run-Time Routines 
DNS$APPEND_SIMPLENAME_TO_RIGHT 

DNS$APPEND_SIMPLENAME_TO_RIGHT 
Append a 

Simple Name to the End of a Full Name 

The Append a Simple Name to the End of a Full Name routine adds an opaque 
simple name to the end of an opaque full name to create a new full name. 

Format 

DNS$APPEND_SIMPLENAME_TO_RIGHT 

fullname ,simplename ,resulting-fullname ,resulting-length 

Returns 

Arguments 

VMS Usage: 
type 
access: 
mechanism: 

fullname 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char_string 
character string 
read only 
by descriptor 

The opaque full name gaining a new simple name. The fullname argument 
is the address of a descriptor pointing to the opaque full name that is to be 
extended. 

simplename 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
read only 
by descriptor 

The opaque simple name that is appended. The simplename argument is the 
address of a descriptor pointing to an opaque simple name that is to be appended 
to the full name, thus creating a new full name. 

resulting-fullname 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

The new full name. The resulting-fullname argument is the address of a 
descriptor that points to the buffer that receives the new full name. This buffer 
can be the same as the buffer referred to by the fullname argument; however, 
the descriptors must be separate. 



DNS$ Run-Time Routines 
DNS$APPEND_SIMPLENAME_TO_RIGHT 

resulting-length 
VMS Usage: word_unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

The length of the new full name. The resulting-length argument is the address 
of a word that receives the length of the new full name found in resulting-
fullname. 

Description 

DNS$APPEND_SIMPLENAME_TO_RIGHT adds an opaque simple name to the 
end of an opaque full name to create a new full name. 

Condition Values Returned 

SS$_NORMAL Normal successful completion. 

DNS$_INVALIDNAME The name to be converted is not a valid DNS 
name. 

0 Error appending name. 



DNS$ Run-Time Routines 
DNS$COMPARE_FULLNAME 

DNS$COMPARE_FULLNAME 
Compare Full Names 

The Compare Full Names routine compares two opaque full names and returns 
the result. 

Format 

Returns 

Arguments 

Description 

DNS$COMPARE_FULLNAME fullnamel ,fullname2 

VMS Usage: 
type: 
access: 
mechanism: 

fullnamel 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

One opaque full name. The fullnamel argument is the address of a descriptor 
pointing to an opaque full name. 

fullname2 
VMS Usage: 
type 
access: 
mechanism: 

char_string 
character string 
read only 
by descriptor 

One opaque full name. The fullname2 argument is the address of a descriptor 
pointing to an opaque full name. 

DNS$COMPARE_FULLNAME compares two opaque full names and returns the 
result. First, the procedure checks the namespace UIDs of the full names as 
numbers. If they are unequal, the routine returns the result. If they are equal, 
it compares each simple name in the full name until it finds an inequality or 
determines that both names are the same. 

Condition Values Returned 

—1 

0 

1 

fullnamel is less than fullname2. 

fullnamel equals fullname2. 

fullnamel is greater than fullname2. 



DNS$ Run-Time Routines 
DNS$COMPARE_SIMPLENAME 

DNS$COMPARE_SIMPLENAME 
Compare Two 

Simple Names 

The Compare Two Simple Names routine compares two simple names, without 
considering case. 

Format 

Returns 

Arguments 

Description 

DNS$COMPARE_SIMPLENAME simplenamel ,simplename2 

VMS Usage: 
type: 
access: 
mechanism: 

simplenamel 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

An opaque simple name. The simplenamel argument is the address of a 
descriptor pointing to the first simple name. 

simplename2 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
read only 
by descriptor 

An opaque simple name. The simplename2 argument is the address of a 
descriptor pointing to the second simple name. 

DNS$COMPAR,E_SIMPLENAME compares two simple names, without 
considering case. The routine determines the relationship between two opaque 
simple names to see if they are equal. 

Condition Values Returned 

SS$_NORMAL 

—1 

0 

1 

Normal successful completion. 

simplenamel is less than simplename2. 

simplenamel equals simplename2. 

simplenamel is greater than simplename2. 



DNS$ Run-Time Routines 
DNS$CONCATENATE_NAM E 

DNS$CONCATENATE_NAME 
Join Two Names 

The Join Two Names routine joins two opaque full names to form a new full 
name. 

Format 
DNS$CONCATENATE_NAM E 

fullnamel ,fullname2 ,resulting-fullname ,resulting-length 

Returns 

Arguments 

VMS Usage: 
type 
access: 
mechanism: 

fullnamel 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

The opaque full name to be joined. The fullnamel argument is the address of a 
descriptor pointing to the opaque full name. 

fullname2 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
read only 
by descriptor 

The opaque full name appended to fullname 1. The fullname2 argument is the 
address of a descriptor pointing to the full name to be appended. 

resulting-fullname 
VMS Usage: 
type 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

The buffer where the new full name will be written. The resulting-fullname 
argument is the address of a descriptor pointing to the buffer. This buffer can 
be the same as the buffer referred to by the fullnamel argument; however, the 
descriptors must be separate. 



DNS$ Run-Time Routines 
DNS$CONCATENATE_NAME 

resulting-length 
VMS Usage: word unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

The length of the new full name. The resulting-length argument is the address 
of a word that receives the length of the new full name found in resulting-
fullname. 

Description 

DNS$CONCATENATE_NAME joins two opaque full names to form a new 
opaque full name, which is placed in the buffer named by the resulting-
fullname argument. The new full name receives the namespace name of the 
first opaque full name. For example, appending the full name TEST:.POP.DIRl 
(fullname2) to DEC:.ENG.NAC (fullnamel) results in a full name of 
DEC:.ENG.NAC.POP.DIR1. 

Condition Values Returned 

SS$_NORMAL Normal successful completion. 
DNS$_INVALIDNAME The name to be converted is not a valid DNS 

name. 

0 Error performing concatenation. 



DNS$ Run-Time Routines 
DNS$COUNT_SIMPLENAMES 

DNS$COUNT_SIMPLENAMES 
Count the Simple Names in a Full Name 

The Count the Simple Names in a Full Name routine counts the number of 
simple names contained in an opaque full name. 

Format 

Returns 

Arguments 

Description 

DNS$COUNT_SIMPLENAMES fullname ,count 

VMS Usage: 
type: 
access: 
mechanism: 

fullname 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

The full name to be counted. The fullname argument is the address of a 
descriptor pointing to the full name that is to be examined for the simple names 
it contains. 

count 
VMS Usage: 
type: 
access: 
mechanism: 

word unsigned 
word (unsigned) 
write only 
by reference 

The number of simple names found in the full name. The count argument is the 
address of a word that receives the number of simple names. 

DNS$COUNT_SIMPLENAMES counts the number of simple names but not 
the namespace name found in an opaque full name. The number of simple 
names counted is returned in the word referenced by the count argument. The 
routine is meant to be used with DNS$REMOVE_RIGHT_SIMPLENAME and 
DNS$REMOVE_LEFT_SIMPLENAME . 

Condition Values Returned 

SS$_NORMAL 

DNS$_INVALIDNAME 

Normal successful completion. 

The name to be converted is not a valid DNS 
name. 



DNS$ Run-Time Routines 
DNS$CVT_DNSADDRESS_TO_BINARY 

DNS$CVT_DNSADDRESS_TO_BINARY 
Convert a DNS Address to a Phase IV Binary Address 

The Convert a DNS Address to a Phase IV Binary Address routine takes a DNS 
address and returns the DECnet Phase IV node address. 

Format 

Returns 

Arguments 

Description 

DNS$CVT_DNSADDRESS_TO_BINARY dnsaddress ,binary 

VMS Usage: 
type: 
access: 
mechanism: 

dnsaddress 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

The DNS address. The dnsaddress argument is the address of a descriptor 
pointing to the DNS address. 

binary 
VMS Usage: 
type: 
access: 
mechanism: 

word_unsigned 
word (unsigned) 
write only 
by reference 

The DECnet Phase IV address found in the DNS address structure. The binary 
argument is the address of a word containing the 16-bit Phase IV address of the 
node. 

DNS$CVT_DNSADDRESS_TO_BINARY takes a DNS address and returns the 
DECnet Phase IV node address. The Phase IV address is returned in a word. If 
no Phase IV address is found in the DNS address, then the value 0 is returned as 
an error. 

Condition Values Returned 

SS$_NORMAL 

0 

Normal successful completion. 

No DECnet Phase IV address found. 



DNS$ Run-Time Routines 
DNS$CVT_DNSADDRESS_TO_NODENAME 

DNS$CVT_DNSADDRESS_TO_NODENAME 
Convert a DNS Address to a Node Name 

The Convert a DNS Address to a Node Name routine takes a DNS address and 
returns a DECnet Phase IV node name. 

Format 
DNS$CVT_DNSADDRESS_TO_NODENAME 

dnsaddress ,nodename ,resulting-length 

Returns 

Arguments 

VMS Usage: 
type: 
access: 
mechanism: 

dnsaddress 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char_string 
character string 
read only 
by descriptor 

The DNS address. The dnsaddress argument is the address of a descriptor 
pointing to the DNS address. 

nodename 
VMS Usage: 
type: 
access: 
mechanism: 

char string 
character string 
write only 
by descriptor 

The DECnet Phase IV node name. The nodename argument is the address of a 
descriptor pointing to the Phase IV node name. The memory buffer referenced by 
the DSC$A POINTER portion of this descriptor must be large enough to contain 
the entire Phase IV node name string, which can be up to six bytes long. 

resulting-length 
VMS Usage: 
type: 
access: 
mechanism: 

word_unsigned 
word (unsigned) 
write only 
by reference 

The length of the node name (in bytes) after conversion. The resulting-length 
argument is a word containing the length of the node name (in bytes) after 
conversion. 



DNS$ Run-Time Routines 
DNS$CVT_DNSADDRESS_TO_NODENAME 

Description 
DNS$CVT_DNSADDRESS_TO_NODENAME takes a DNS address and returns a 
DECnet Phase IV node name. If no Phase IV address is found, then the value 0 
is returned. 

Because DNS$CVT_DNSADDRESS_TO_NODENAME calls both $ASSIGN and 
$QIOW, it can return condition values from either of these system services. The 
routine also returns errors detected through NETACP. 

Condition Values Returned 

SS$_NORMAL 

0 

Normal successful completion. 

No DECnet Phase IV address found. 



DNS$ Run-Time Routines 
DNS$CVT_NODENAME_TO_DNSADDRESS 

DNS$CVT_NODENAME_TO_DNSADDRESS 
Convert a Node Name to an Address 

The Convert a Node Name to a DNS Address routine takes a DECnet Phase IV 
node name and returns a DNS address. 

Format 
DNS$CVT_NODENAME_TO_DNSADDRESS 

nodename ,dnsaddress ,resulting-length 

Returns 
VMS Usage: 
type: 
access: 
mechanism: 

Arguments 
nodename 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char_string 
character string 
read only 
by descriptor 

The DECnet Phase IV node name. The nodename argument is the address 
of a descriptor pointing to the node name. This routine creates a DNS address 
containing the node address of the given Phase IV node name. 

dnsaddress 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

The address of a buffer containing the DNS address. The dnsaddress argument 
is the address of a descriptor pointing to the buffer address. 

resulting-length 
VMS Usage: 
type: 
access: 
mechanism: 

word_unsigned 
word (unsigned) 
write only 
by reference 

The length of the DNS address after conversion. The resulting-length argument 
is a word containing the length of the address. 

C-60 



DNS$ Run-Time Routines 
DNS$CVT_NODENAME_TO_DNSADDRESS 

Description 
DNS$CVT_NODENAME_TO_DNSADDRESS takes a DECnet Phase IV node 
name and returns a DNS address. The routine creates the DNS address for a 
given Phase IV node name. 

DNS$CVT_NODENAME_TO_DNSADDRESS calls $ASSIGN and $QIOW so it 
can return condition values from either of these system services. The routine also 
returns errors detected through NETACP. 

Condition Values Returned 

SS$_NORMAL Normal successful completion. 



DNS$ Run-Time Routines 
DNS$CVT_TO_USERNAME_STRING 

DNS$CVT_TO_USERNAME_STRING 
Convert an Opaque User Name to a String 

The Convert an Opaque User Name to a String routine converts an opaque 
DECnet Phase IV user name into a username string. 

Format 
DNS$CVT_TO_USERNAME_STRI NG 

fullname ,username ,resulting-length 

Returns 
VMS Usage: 
type: 
access: 
mechanism: 

Arguments 
fullname 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char_string 
character string 
read only 
by descriptor 

The opaque full name for the DECnet Phase IV user name. The fullname 
argument is the address of a descriptor pointing to the name. 

username 
VMS Usage: 
type: 
access: 
mechanism: 

char string 
character string 
write only 
by descriptor 

The name converted to DECnet Phase IV format (node::user). The username 
argument is the address of a descriptor pointing to a buffer containing the 
converted name. 

resulting-length 
VMS Usage: 
type: 
access: 
mechanism: 

word_unsigned 
word (unsigned) 
write only 
by reference 

The length of the converted user name. The resulting-length argument is the 
address of a word containing the length. 

C-62 



DNS$ Run-Time Routines 
DNS$CVT_TO_USERNAME_STRING 

Description 

DNS$CVT_TO_USERNAME_STRING converts a DNS representation of a Phase 
IV user name into a Phase IV username string. 

If any full name other than a DNS representation of a Phase IV user name is 
given, the routine returns a DNS$_INVALIDNAME error. 

Condition Values Returned 

SS$_NORMAL 

DNS$_ACCESSVIOLATION 
DNS$_CACHELOCKED 

DNS$_INVALIDARGUMENT 

DNS$_INVALIDNAME 

DNS$_NOCACHE 

DNS$_RESOURCEERROR 

Procedure successfully completed. 
Memory or other resource access violation. 
Global client cache locked by another process. 
One of the arguments was incorrect, out of range, 
or otherwise inappropriate. 
The name to be converted is not a valid DNS 
name. 

Client cache file not initialized. 
Insufficient resources on local system to process 
request. 



DNS$ Run-Time Routines 
DNS$PARSE_USERNAME_STRING 

DNS$PARSE_USERNAME_STRING 
Convert a User Name from String to Opaque 

The Convert a User Name from String to Opaque routine converts a DECnet 
Phase IV user name to an opaque full name. 

Format 
DNS$PARSE_USERNAME_STRING 

user-string ,phase4-name ,resulting-length [,next-character-pointer] 

Returns 

Arguments 

VMS Usage: 
type 
access: 
mechanism: 

user-string 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char_string 
character string 
read only 
by descriptor 

The name string to convert. The user-string argument is the address of a 
descriptor pointing to the DECnet Phase IV username string, which is in the 
format node:: user. 

phase4-name 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

The opaque full name resulting from the conversion. The phase4-name 
argument is the address of a descriptor pointing to the buffer that is to contain 
an opaque full name representing a user name on a Phase IV node. 

resulting-length 
VMS Usage: 
type: 
access: 
mechanism: 

word unsigned 
word (unsigned) 
write only 
by reference 

The length of the opaque full name. The resulting-length argument is the 
address of a word holding the length of the name returned in phase4-name. 



DNS$ Run-Time Routines 
DNS$PARSE_USERNAME_STRING 

next-character-pointer 
VMS Usage: address 
type: address 
access: write only 
mechanism: by reference 

The character following the DNS name extracted from user-string. The next-
character-pointer argument is the address of the character following the 
DNS name. When you use this argument, DNS$PARSE_USERNAME_STRING 
returns DNS$_INVALIDNAME when it encounters an invalid name. In such a 
case, next-character-pointer points to the first character in the name that is 
invalid. 

Description 
DNS$PARSE_USERNAME_STRING converts a DECnet Phase IV user name to 
an opaque full name that represents the user name. 

The next-character-pointer argument affects how the routine parses the string: 

• When next-character-pointer is zero or absent, the full name string 
given in user-string must contain valid DNS characters with DNS naming 
syntax. If any part of the string violates this rule, the routine returns DNS$_ 
INVALIDNAME and the output should not be used. 

• When the next-character-pointer argument has a nonzero value, the 
parsing begins at the first character referenced by user-string and parsing 
continues until one of the following occurs: 

— An invalid DNS character is found. 

— An exception to DNS syntax rules occurs. 

— All characters have been parsed. 

Then the address given by next-character-pointer is set to the address 
of the character or group of characters that is invalid. It returns DNS$_ 
INVALIDNAME if the colons (::)separating the node name from the user 
name of the Phase IV name are missing. 

If any part of the node portion of the DECnet Phase IV username string is not a 
proper DNS name, the routine returns DNS$_INVALIDNAME regardless of the 
value and whether or not the next-character-pointer argument is supplied. 

Error conditions can result from the parse routine. You can test for error 
conditions in any of the following ways 

• When all parts of the name are invalid, test whether next-character-
pointer contains the same address as user-string. Alternatively, test 
whether the resulting length is zero. 

• When user-string contains a valid DNS name, test whether next-character-
pointer contains the address immediately following the given buffer. 
Alternatively, test whether the address in next-character-pointer minus 
the address of user-string is equal to or larger than the size of the given 
buffer. 



DNS$ Run-Time Routines 
DNS$PARSE_USERNAME_STRING 

• When parsing a user name that has been extracted from a command line, test 
whether the character given at the address of next-character-pointer is a 
valid separator for the command line; for example, a space. If you find an 
invalid character, then part of the DNS name is invalid. 

Condition Values Returned 

SS$_NORMAL 

DNS$_ACCESSVIOLATION 

DNS$_CACHELOCKED 

DNS$_INVALIDARGUMENT 

DNS$_INVALIDNAME 

DNS$_NOCACHE 

DNS$_RESOURCEERROR 

0 

Normal successful completion. 

Memory or other resource access violation. 

Global client cache locked by another process. 

One of the arguments was incorrect, out of range, 
or otherwise inappropriate. 

The name to be converted is not a valid DNS 
name. 

Client cache file not initialized. 

Insufficient resources on local system to process 
request. 

Error creating opaque name. 

U 

U 



DNS$ Run-Time Routines 
DNS$REMOVE_FIRST_SET_VALUE 

DNS$REMOVE_FIRST_SET_VALUE 
Remove a Value from a Set 

The Remove a Value from a Set routine extracts the first value from a set and 
returns the value with its creation time-stamping UID. 

Format 
DNS$REMOVE_FIRST_SET_VALUE 

set [,value] [,value-length] [,uid] [,uid-length] [,newset] [,newset-length] 

Returns 

Arguments 

VMS Usage: 
type: 
access: 
mechanism: 

set 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
lon unsigned) 
write only 
by value 

char_string 
character string 
read only 
by descriptor 

The set from which the value is extracted. The set argument is the address of a 
descriptor pointing to the set. 

value 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

The value extracted from the set. The value argument is the address of a 
descriptor pointing to a buffer containing the value. 

value-length 
VMS Usage: 
type: 
access: 
mechanism: 

word_unsigned 
word (unsigned) 
write only 
by reference 

The length of the value. The value-length argument is the address of a word 
holding the length of the value placed in value. 

uid 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 



DNS$ Run-Time Routines 
DNS$REMOVE_FIRST_SET_VALUE 

The buffer holding the creation time-stamping UID of the extracted value. The 
uid argument is the address of a descriptor pointing to the buffer. 

Description 

uid-length 
VMS Usage: 
type: 
access: 
mechanism: 

word_unsigned 
word (unsigned) 
write only 
by reference 

The length of the UID placed in uid. The uid-length argument is the address of 
a word holding the length. 

newset 
VMS Usage: 
type: 
access: 
mechanism: 

char string 
character string 
write only 
by descriptor 

The opaque set without the first value. The newset argument is the address of a 
descriptor pointing to a buffer containing that set. The buffer can be the same as 
the one given in the set argument. 

newset-length 
VMS Usage: 
type: 
access: 
mechanism: 

word unsigned 
word (unsigned) 
write only 
by reference 

The length of the new set copied to the newset buffer. The newset-length 
argument is the address of a word that receives the length. 

DNS$REMOVE_FIRST_SET_VALUE extracts a value from a set and returns the 
value with its creation time-stamping UID. Use the routine to extract values from 
the sets returned by $DNS and $DNSW. 

A set can contain any number of values that are relevant to a given call. The 
routine extracts values one at a time from the opaque set for use by a program. 
In order to extract all values from the set, you must use an execution loop. 

Condition Values Returned 

SS$_NORMAL Normal successful completion. 
DNS$_INVALIDARGUMENT The set argument was incorrect, out of range, or 

otherwise inappropriate. 
0 Set buffer is empty. 
—1 Length of value, uid, or newset buffers too 

small. 

C-68 



DNS$ Run-Time Routines 
DNS$REMOVE_LEFT_SIMPLENAME 

DNS$REMOVE_LEFT_SIMPLENAME 
Strip the Simple Name on the Left from the Full Name 

The Remove the Simple Name on the Left from the Full Name routine removes 
the leftmost simple name from an opaque full name. It returns both the simple 
name stripped and the new full name that results from the operation. 

Format 
DNS$REMOVE_LEFT_SIMPLENAME 

fullname [,resulting-fullname] [,resulting-fullname-length] [,resulting-simplename] 
[, resulting-simplename-length] 

Returns 

Arguments 

VMS Usage: 
type: 
access: 
mechanism: 

fullname 
VMS Usage: 
type: 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

The opaque full name to strip. The fullname argument is the address of a 
descriptor pointing to the opaque full name to strip. If the full name does not 
contain any simple names, the routine returns a value of 0 in cond_value. 

resulting-fullname 
VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

The opaque full name resulting from the operation. The resulting-fullname 
argument is the address of a descriptor pointing to the buffer containing the 
resulting opaque full name. This buffer can be the same as the buffer referred to 
by the fullname argument; however, the descriptors must be separate. 

resulting-fullname-length 
VMS Usage: 
type: 
access: 
mechanism: 

word unsigned 
word (unsigned) 
write only 
by reference 

The length of the full name that is returned. The resulting-fullname-length 
argument is the address of a word receiving the length of the full name returned 
in resulting-fiillname. 



DNS$ Run-Time Routines 
DNS$REMOVE_LEFT_SIMPLENAME 

resulting-simplename 
VMS Usage: char string 
type: character string 
access: write only 
mechanism: by descriptor 

The simple name stripped from fullname. The resulting-simplename 
argument is the address of a descriptor pointing to the buffer containing the 
opaque simple name that was stripped. 

resulting-simplename-length 
VMS Usage: word_unsigned 
type: word (unsigned) 
access: write only 
mechanism: by reference 

The length of the simple name. The resulting-simplename-length argument 
is the address of a word that receives the length of the simple name returned in 
resulting-simplename. 

Description 
DNS$REMOVE_LEFT_SIMPLENAME removes the leftmost simple name from 
an opaque full name. When resulting-fullname is nonzero, the full name 
resulting from the removal of the leftmost simple name is returned in that buffer. 
When resulting-simplename is nonzero, the simple name that was stripped 
from fullname is returned in that buffer. The namespace name is not stripped 
from the full name; only simple names are affected. 

Condition Values Returned 

SS$_NORMAL Normal successful completion. 
DNS$_INVALIDNAME 

—1 

The name to be converted is not a valid DNS 
name. 

Error stripping name. 
0 No simple name. 



DNS$ Run-Time Routines 
DNS$REMOVE_RIGHT_SIMPLENAME 

DNS$R EMOV E_RIG HT_SIM PLENAM E 
Strip the Simple Name on the Right from the Full Name 

The Remove the Simple Name on the Right from the Full Name routine removes 
the rightmost simple name from an opaque full name. It returns both the simple 
name stripped and the new full name that results from the operation. 

Format 

DNS$REMOVE_RIGHT_SIMPLENAME 

fullname [,resulting-fullname] [,resulting-fullname-length] [,resulting-simplename] 
[,resu Iti ng-si mplename-length] 

Returns 

Arguments 

VMS Usage: 
type: 
access: 
mechanism: 

fullname 
VMS Usage: 
type 
access: 
mechanism: 

cond_value 
longword (unsigned) 
write only 
by value 

char string 
character string 
read only 
by descriptor 

The opaque full name to strip. The fullname argument is the address of a 
descriptor pointing to the opaque full name to strip. When the opaque full name 
does not contain any simple names, the routine returns a value of 0 in cond_ 
value. 

resulting-fullname 
VMS Usage: 
type: 
access: 
mechanism: 

char string 
character string 
write only 
by descriptor 

The opaque full name resulting from the operation. The resulting-fullname 
argument is the address of a descriptor pointing to a buffer containing the 
resulting opaque full name. This buffer can be the same as the buffer referred to 
by the fullname argument; however, the descriptors must be separate. 

resu Iti ng-fu I Iname-length 
VMS Usage: 
type: 
access: 
mechanism: 

word unsigned 
word (unsigned) 
write only 
by reference 



DNS$ Run-Time Routines 
DNS$REMOVE_RIGHT_SIMPLENAME 

The length of the full name returned in resulting-fullname. The resulting-
fullname-length argument is the address of a word that receives the length of 
the full name returned in resulting-fullname. 

resulting-simplename 

Description 

VMS Usage: 
type: 
access: 
mechanism: 

char_string 
character string 
write only 
by descriptor 

A buffer containing the opaque simple name stripped from fullname. The 
resulting-simplename argument is the address of a descriptor pointing to the 
buffer. 

resulting-simplename-length 
VMS Usage: 
type: 
access: 
mechanism: 

word unsigned 
word (unsigned) 
write only 
by reference 

The length of the simple name. The resulting-simplename-length argument 
is the address of a word receiving the length of the simple name returned in 
resulting-simplename. 

DNS$REMOVE_RIGHT_SIMPLENAME removes the rightmost simple name 
from an opaque full name. When resulting-fullname is nonzero, the full name 
resulting from the removal of the rightmost simple name is returned in that 
buffer. When resulting-simplename is nonzero, the simple name that was 
stripped from fullname is returned in that buffer. The namespace name is not 
stripped from the full name; only simple names are affected. 

Condition Values Returned 

SS$_NORMAL Normal successful completion. 

DNS$_INVALIDNAME The name to be converted is not a valid DNS 
name. 

—1 Error stripping name. 



VMS Version 5.3 Features 
Starting the DNS Clerk 

C.2.10 Starting the DNS Clerk 
The Distributed Name Service (DNS) facility is a product consisting of two 
modules: a clerk and a server. The DNS clerk is an integral part of the VMS 
operating system. The server is a layered product. As long as a DNS server is 
installed in your network, you can start the DNS clerk on your local VMS system. 
Then, applications can take advantage of the DNS name service. 

You start the DNS clerk once DECnet is running. The DNS startup procedure 
defines the default DNS server, installs necessary libraries, and creates an 
advertiser process. Startup involves two steps: 

1. Obtain the name of the default DNS server from your network administrator. 

2. Execute the command procedure DNS$CHANGE_DEF_FILE. It runs the 
command procedure DNS$CLERK STARTUP, which installs the shareable 
libraries and creates the advertiser process DNS$ADVER. 

To run the command procedure, enter the following command: 

$ @SYS$ST~~~~~''~p : DI~S$CHANGE_DEF_r ~~,~ . COM 

When executed, SYS$STARTUP:DNS$CHANGE_DEF_FILE.COM prompts 
for the name of the node where the DNS server is located. 

Name of DNS server node? 

Enter a node name, identifying the node that has the DNS server installed. 

Once you have run DNS$CHANGE_DEF_FILE.COM, you do not need to run 
it again unless you want to change the default DNS server or the default 
namespace. DNS$CHANGE_DEF_FILE.COM copies a configuration file to 
SYS$SYSTEM that is called DNS$DEFAULT_FILE.DAT. It lists the name of the 
namespace currently being used as a default. 

You must add the following line to SYS$MANAGER:SYSTARTUP.COM after 
the line that starts DECNET: @SYS$STARTUP:DNS$CLERK STARTUP.COM. 
When the system boots, this line installs the DNS clerk images and starts the 
advertiser. 

C.2.11 DECnet Event Messages 
The following are DECnet event messages sent by the Distributed Name Service 
clerk. For a complete list of DECnet event messages, see the VMS Network 
Control Program Manual. 

353.5 DNS Clerk Unable to Communicate with Server 
The DNS clerk was unable to communicate with a DNS server. This message 
displays the name of the clearinghouse where the communication failed, the node 
on which the DNS server servicing the clearinghouse exists, and the reason why 
the communication failed, which might be any of the following: 

• Unknown clearinghouse 

The requested clearinghouse is not serviced by the DNS server that was 
contacted. This can happen when the cache maintained by the local DNS 
clerk contains outdated information for a directory. 

• Clearinghouse down 

A DNS server is unable to service a request because the clearinghouse is not 
operational (stopped state). 



VMS Version 5.3 Features 
DECnet Event Messages 

• Wrong state 

A DNS server is unable to service a request because the clearinghouse is 
currently starting up or shutting down. 

• Data corruption 

A DNS server is unable to service the request because the clearinghouse file 
has been corrupted. 

• No communication 

A network error occurred on the local system or on the system containing the 
DNS server. The local VMS error is displayed as a part of this message. 

353.20 Local DNS Advertiser Error 
This event communicates errors that are local to the DNS Advertiser 
(DNS$ADVER). All these errors have the prefix ADV and are generated when 
the DNS Advertiser encounters an error that prevents proper operation of the 
process. Exact errors are listed in the VMS System Messages and Recovery 
Procedures Reference Manual. 



D 
VMS Version 5.2 Features 

This appendix describes features that were new to Version 5.2 of the VMS 
operating system but are not yet documented in other printed manuals. 

D.1 VMS Version 5.2 System Management Features 
The following sections describe enhancements to these components of the VMS 
operating system: 

• System Generation Utility (SYSGEN) 

• NETCONFIG.COM 

• Backup Utility (BACKUP) 

D.1.1 System Generation Utility (SYSGEN) 
The VMS Version 5.2 System Generation Utility (SYSGEN) contains the following 
new command and parameter: 

• DEINSTALL command 

• ERLBUFFERPAGES parameter 

D.1.1.1 DEINSTALL Command Description 
DEINSTALL removes or "deinstalls" system page files and system swap files. 
Any file that is installed with the INSTALL command can be removed with the 
DEINSTALL command. 

Use of the DEINSTALL command requires the CMKRNL privilege. 

Format 

DEINSTALL filespec 

Parameter 
filespec 
Specifies the name of the page or swap file. The default file type is SYS. 

Qualifiers 
/ALL 
Deinstalls all page and swap files currently installed on the system. This 
command is most useful during an orderly system shutdown procedure where 
all disk volumes are being dismounted. 

/INDEX.n 
Deinstalls a page or swap file specified by the page file index. The page file 
index is presented in the SHOW MEMORY/FILES/FULL display as "Paging File 
Number." 

/PAGEFILE 
Specifies that the file to be deinstalled is a page file. 



VMS Version 5.2 Features 
DEINSTALL Command Description 

/SWAPFILE 
Specifies that the file to be deinstalled is a swap file. 

Example 
SYSGEN> D E INSTAL SYS $ SYS ~ :~= : ~ _GEF ILE . SYS,% Pr~G~ ~ I LE 

The command in this example deinstalls the system page file. 

D.1.1.2 ERLBUFFERPAGES Parameter 

The ERLBUFFERPAGES parameter specifies the number of pages of memory to 
allocate for each buffer requested by the ERRORLOGBUFFERS parameter. The 
ERLBUFFERPAGES parameter has a default value of 2 pages and a maximum 
value of 32 pages. The default value of 2 pages consists of one page for each 
buffer greater than the previous buffer size. 

D.1.2 NETCONFIG.COM Security Enhancements 
In VMS Version 5.2, the DECnet network configuration command procedure 
NETCONFIG.COM has been enhanced to provide several options for restricting 
default access. Anew command procedure for existing networked systems, 
NETCONFIG_UPDATE.COM, described in Section D.1.3, has been created for 
the same purpose. 

You can plan the appropriate level of default access for your system 
and implement that plan by responding to a few questions posed by 
NETCONFIG.COM. NETCONFIG.COM then automatically records your choices 
in the UAF (user authorization file) and in the network configuration database. 

Previously, NETCONFIG.COM created one default account named DECNET. 
That account provided default access to all network objects and applications that 
were not restricted by other forms of access control (for example, proxy accounts 
and access control lists). If you chose to limit default access, it was necessary to 
manually enter all the appropriate commands in the UAF, using the Authorize 
Utility, and in the network configuration database, using NCP commands. 

D.1.2.1 Default Access Options 
NETCONFIG.COM provides two different ways to limit default access. The most 
restrictive form is to not create the default DECnet account but to grant default 
access for certain system objects by creating a default account for each one that 
you want to use. Using NETCONFIG.COM, you can create an account for one or 
more of the following network objects: 

• MAIL 

• File access listener (FAL) 

• PHONE 

• Network management listener (NML) 

• Loopback mirror (MIRROR) 

• VMS Performance Monitor (VPM) 

The second, less restrictive form of default access is to create a default DECnet 
account but to disable default access to user-written programs and procedures 
(also known as TASK objects). Default access for system objects is still enabled. 

You can still create an unrestricted default DECnet account that includes default 
access to TASK objects. This type of access is suitable for systems with low 
security requirements. To do so, you must override the defaults provided by 
NETCONFIG.COM. 



VMS Version 5.2 Features 
Default Access Options 

  Note  

If you do not create the default DECnet account, you must create a default 
account for MAIL and VPM, if you want to use them. The same is true 
for the MIRROR object if you want to use the User Environment Test 
Package (UETP) to test the network connection. 

FAL, if enabled by the default DECnet account or a separate default account, 
makes a system vulnerable to unauthorized access. Digital advises against 
creating a default account for FAL. Note, however, that when you do not use 
FAL with a default account, remote file requests must include explicit file access 
control information or the local system manager must set up proxy access for 
remote users. Consider an example with a local node (ETHQKE) and a remote 
node (MISHA) with no default account. Entering the command $DIR MISHA:: 
from node ETHQKE produces the following messages: 

oDIRECT-E-OPENIN, error opening MISHA::*.*;* as input 
-RMS-E-FND, ACP file or directory lookup failed 
-SYSTEM-F-INVLOGIN, login information invalid at remote node 

However, you can access node MISHA by entering the command $DIR 
MISHA"Username Password":: from node ETHQKE. 

The system manager could also, by using AUTHORIZE, enable proxy access 
for node ETHQKE by adding REMOTE_USER_FOO, as shown in the following 
example: 

$ SET DEF SYS $ SYSTE~~2 
$ RUN tiUTHORIZE 
UAF> ADD; PROXY%DEr~ULT ETHQKE::REi~10TE_USER_~'00 LOC~L_USER_ 
UAF> EXIT 

Entering the command $DIR MISHA:: from node ETHQKE would then give 
user ETHQKE::REMOTE_USER_FOO access to remote node MISHA by proxy; 
MISHA then associates this account with the account LOCAL USER on node 
MISHA. 

The MIRROR object is used for loopback testing. To test your network connection 
with VAx UETP, you must create a default account for the MIRROR object, if you 
did not create the default DECnet account. 

The VPM object is used by the Monitor Utility in VAXcluster configurations to 
obtain performance information about VAXcluster members. If your system is 
a member of a VAXcluster and the cluster manager wants to use the Monitor 
Utility to collect such information, you must create a default account for the VPM 
object, if you did not create the default DECnet account. 

D.1.2.2 Security Benefits 
The DECnet account provides default access for all incoming links (unless this 
access is overridden by other forms of access control). However, default accounts 
for any of the system objects named in the NETCONFIG.COM procedure limit 
access to these objects. Default accounts for selected objects, when used with 
other system security facilities, enable a system or network manager to monitor 
these accounts and to detect unauthorized access. 

For each default account that you create, NETCONFIG.COM generates a 
password and registers it in your network configuration database. Such system-
generated passwords are more secure than the passwords that users typically 
create. 



VMS Version 5.2 Features 
Questions Posed by NETCONFIG.COM 

D.1.2.3 Questions Posed by NETCONFIG.COM 
NETCONFIG.COM poses the following questions (the responses in brackets are 
the default values): 

Do you want a default DECnet account? [NO]: 

(The following question is asked only if you said YES to a default DECnet 
account. ) 

Do you want default access to the TASK object disabled? [YES]: 

(The following questions are asked regardless of whether you said YES or NO to 
a default DECnet account.) 

Do you want a default account for the MAIL object? [YES]: 

Do you want a default account for the FAL object? [NO]: 

Do you want a default account for the PHONE object? [YES]: 

Do you want a default account for the NML object? [YES]: 

(The following questions are asked only if you said NO to a default DECnet 
account.) 

Do you want a default account for the MIRROR object? [YES]: 

Do you want a default account for the VPM object? [YES]: 

D.1.3 New NETCONFIG_UPDATE.COM for Existing Networks 
NETCONFIG_UPDATE.COM is a new command procedure for existing networks 
that provides the same security enhancements for default access that are provided 
by NETCONFIG.COM (see Section D.1.2). It also provides a secondary procedure 
for modifying members of a VAXcluster. Both procedures are described in the 
following sections. 

D.1.3.1 Benefits of NETCONFIG UPDATE.COM 
NETCONFIG_UPDATE.COM, unlike NETCONFIG.COM, configures default 
access only. It performs no other network configuration. Therefore, when you use 
NETCONFIG_UPDATE.COM to specify changes to default access, everything else 
in the configuration database remains unchanged. 

NETCONFIG_UPDATE.COM, like NETCONFIG.COM, generates passwords 
for each account that you create for default access and for any existing 
default accounts that you decide to keep in your configuration database. For 
example, if you currently have a default account for MAIL and decide to keep it, 
NETCONFIG.COM_UPDATE generates a new password for it and replaces the 
existing password with the new one. 

D.1.3.2 Using NETCONFIG_UPDATE.COM in a VAXcluster 
NETCONFIG_UPDATE.COM provides a secondary procedure that 
updates the default access of VAXcluster members. After you run 
NETC ONFIG_UPDATE . COM on one member of a VAXcluster, the 
procedure detects that it is a VAXcluster member and instructs you to run 
SYS$COMMON:[SYSMGR]UPDATE_CLUSTER_MEMBERS.COM on the other 
VAXcluster members. This secondary procedure will modify the default access of 
each VAXcluster member exactly as you modified that of the first member. 

With the SYSMAN Utility (see the VMS SYSMAN Utility Manual), you can 
use the SET ENVIRONMENT/CLUSTER command to execute this secondary 
procedure only once. The default access of all the remaining VAXcluster members 
will be updated automatically. 

D-4 



VMS Version 5.2 Features 
Backup Utility (BACKUP) 

D.1.4 Backup Utility (BACKUP) 
This section describes the following new Backup Utility (BACKUP) features: 

• Performance enhancements that cause BACKUP save and copy operations to 
complete more quickly on systems that are configured correctly 

• Faster cyclic redundancy checking (CRC) emulation for processors that 
emulate CRC in software, resulting in a significant performance enhancement 
for BACKUP on these processors 

• Support for the control character CtrUT, which returns information about the 
online or standalone BACKUP operation in progress 

D.1.4.1 Performance Enhancements 
Version 5.2 of the Backup Utility includes a new method of scanning files 
on the input disk. This new file scanning method results in faster save and 
copy operations on systems that are configured correctly. (It does not improve 
BACKUP's performance during restore, compare, verify, or list operations, 
however.) Prior to Version 5.2, disk head movement on the input disk constrained 
the speed at which BACKUP could save or copy files. 

To take full advantage of the new BACKUP file scanning method, you must 
change the values of certain user authorization file (UAF) and System Generation 
Utility (SYSGEN) parameters. Sections D.1.4.2 and D.1.4.3 specify which 
parameters you need to change. 

D.1.4.2 Setting Up the BACKUP Account 
BACKUP's new file-scanning method depends on the values of some user 
authorization file (UAF) parameters of the account from which you perform 
BACKUP operations. For example, if you perform BACKUP operations from the 
SYSTEM account, the UAF parameters for the SYSTEM account affect the way 
BACKUP performs. These UAF parameters define process quotas, which are 
the amounts of system resources available to a process created by the account. 
Digital recommends that you change the values of these UAF parameters for the 
account you use to perform BACKUP operations. See the VMS Authorize ~Itility 
Manual for more information about modifying the values of UAF parameters. 

Table D-1 describes the UAF parameters that should be modified and supplies 
values that provide the maximum amount of resources to BACKUP. These values 
may not provide the best performance in all cases, however. They are intended to 
be general guidelines. 

  Note  

BACKUP bases its memory consumption on the WSQUOTA value, not 
WSEXTENT. 



VMS Version 5.2 Features 
Setting Up the BACKUP Account 

Table D-1 UAF Process Quotas for the BACKUP Account 

UAF 
Parameter Meaning Recommended Value 

WSQUOTA 

WSEXTENT 

PGFLQUO 

FILLM 

DIOLM 

ASTLM 

BIOLM 

BYTLM 

ENQLM 

The number of pages of memory the 
working set of the process can consume. 

The absolute limit of physical memory 
allowed to the process. 

The number of pages of memory your 
process is allowed in the page file. 

The number of files that can be open 
simultaneously. BACKUP scans this 
number of files at one time. 

The number of direct UO operations 
(usually disk operations) that can be 
outstanding simultaneously. 

The number of asynchronous system 
traps that can be queued to the process 
simultaneously. 

The maximum number of buffered UO 
operations that can be outstanding 
simultaneously. 

The total number of bytes of memory 
that can be outstanding for buffered UO 
operations. 

The maximum number of locks that can 
be queued simultaneously. 

Equal to SYSGEN parameter WSMAX 

Equal to WSQUOTA 

Greater than or equal to WSEXTENT 

Equal to the SYSGEN parameter 
CHANNELCNT 

Maximum of either (3 x FILLM) or 4096 

Maximum of either (3 x FILLM) or 4096 

Less than or equal to FILLM 

Greater than or equal to the following value: 
(256 x FILLM) + (6 x DIOLM) 

Greater than FILLM 

Table D-2 lists a set of UAF parameter values that may be useful for your 
configuration. You can choose to set the values for WSQUOTA and FILLM lower 
than these values under the following circumstances: 

• If your disks are highly fragmented, lower values prevent BACKUP from 
becoming highly CPU-intensive. 

• If you use BACKUP during periods of heavy system use, lower values prevent 
BACKUP from consuming too many system resources. 

Note 

If you decrease the values of UAF parameters other than WSQUOTA and 
FILLM, use the ratios in Table D-1 to determine appropriate values. 

Alternatively, you can choose to set the values higher than these suggested 
values if files are stored contiguously on your disks and if you perform BACKUP 
operations during periods of light system use. 



VMS Version 5.2 Features 
Setting Up the BACKUP Account 

Table D-2 Suggested Values for UAF Process Quotas 

UAF Parameter Value 

WSQUOTA 16,384 

WSEXTENT Greater than or equal to WSQUOTA 

PGFLQUO 32,768 

FILLM 128 

DIOLM 4096 

ASTLM 4096 

BIOLM 128 

BYTLM 65,536 

ENQLM 256 

After changing UAF parameters, log out of the BACKUP account and log back in, 
allowing the new values of the UAF parameters to be used. 

D.1.4.3 Setting System Generation Utility (SYSGEN) Parameters 
For the new BACKUP file-scanning method to work efficiently, the System 
Generation Utility (SYSGEN) parameters CHANNELCNT and WSMAX must 
be set to appropriate values. If the account you use to perform BACKUP 
operations has a FILLM value greater than the value of the SYSGEN parameter 
CHANNELCNT, CHANNELCNT constrains the number of files that can be 
opened at any one time. If the WSQUOTA value of the account is greater than 
the value of the SYSGEN parameter WSMAX, WSMAX constrains the number 
of pages of memory that the working set of the process can consume. See the 
VMS System Generation Utility Manual for more information about changing the 
values of SYSGEN parameters. 

After changing SYSGEN parameters, shut down and reboot the system, allowing 
the new values of the parameters to be used. 

D.1.4.4 Understanding Why the Output Device Seems Idle 
Because BACKUP can scan many files at a time, it is possible that no data will 
be sent to the output device for up to several minutes after the save or copy 
operation begins. This does not indicate that BACKUP is performing slowly or 
that your output device is not working correctly. Depending on the values of the 
UAF parameters and the SYSGEN parameters, BACKUP's new file-scanning 
method requires a certain amount of time to become established. When the 
file scanning is completed, BACKUP sends the data to the output device more 
efficiently than it did before VMS Version 5.2. 

D.1.4.5 /BUFFER COUNT Command Qualifier Is Now Obsolete 
The new file-scanning method used by BACKUP makes the command qualifier 
/BUFFER_COUNT obsolete. Previously, this command qualifier specified the 
number of buffers used in a save, compare, or restore operation to or from a tape. 
BACKUP now determines how many buffers to use, depending on the amount 
of memory available to the account performing the BACKUP operation and the 
number of files that account can open simultaneously. 

You can still specify the /BUFFER_COUNT qualifier, however, although it has no 
effect. This ensures that command procedures written before VMS Version 5.2 
will still operate correctly. Digital recommends that you remove the BUFFER_ 
COUNT qualifier from command procedures. 



VMS Version 5.2 Features 
Cyclic Redundancy Checking Emulation Improvements 

D.1.4.6 Cyclic Redundancy Checking Emulation Improvements 

The method for performing cyclic redundancy checking (CRC) emulation is now 
approximately 40% faster than the method used before VMS Version 5.2. This is 
not aBACKUP-specific improvement, but it does improve BACKUP performance 
on processors that emulate CRC in software. BACKUP operations that use 
cyclic redundancy checking (CRC is applied by default) now require significantly 
less time to complete on the following processors, all of which emulate CRC in 
software: 

• MicroVAX II/VAXstation II 

• MicroVAX 2000/VAXstation 2000 

• MicroVAX 3200/VAXstation 3200 

• MicroVAX 3500/VAXstation 3500 

• MicroVAX 3600 

• VAX 6200 

D.1.4.7 Pressing Ctrl/T to Obtain Information About BACKUP Operations 
Version 5.2 of the VMS operating system supplies an additional two lines of 
information when you press CtrUT during an online or standalone BACKUP 
operation. CtrUT interrupts execution of the BACKUP command and displays 
three lines of information. The first line displays information about the current 
process (node name, process name, system time, currently running image, elapsed 
CPU time, page faults, direct and buffered I/O operations, and pages in physical 
memory). The second line displays information about BACKUP input. The third 
line displays information about BACKUP output. For example, if you press CtrUT 
during a save operation, the second line displays the name of the last file scanned 
by BACKUP and the third line displays the save-set volume number, save-set 
block number, and the number of bytes in a block. 

In order to use CtrUT, the command SET CONTROL=T must appear either in the 
system login command procedure or in your personal login command procedure. 
You can also enable CtrUT interactively by entering the DCL command SET 
CONTROL=T. 

The following example shows what happens when you press CtrUT during a 
BACKUP save operation: 

$ BACKUP/LOG DUAO : [MISHA] * . C01~~1; * ~~IUAO : CO1~~PROCS . BCK/REWIND/LABEL=COMP 
BACKUP-S-COPIED, copied DUAO:[MISHA]A.COM;32 
BACKUP-S-COPIED, copied DUAO:[MISHA]B.COM;30 
BACKUP-S-COPIED, copied DUAO:[MISHA]C.COM;16 
Ctrl/T 

SQUASH: :MISHA 14:02:12 BACKUP CPU=00:00.18.44 PF=2101 IO=827 MEM=534 
Last file scanned: DUAO:[NATASHA]D.DAT 
Saveset volume: 1, saveset block: 35, (32256 byte blocks) 
BACKUP-S-COPIED, copied DUAO:[MISHA]D.COM;2 
BACKUP-S-COPIED, copied DUAO:[MISHAJE.COM;22 



E 
VMS Version 5.1 Features 

This appendix describes features that were new to Version 5.1 of the VMS 
operating system but are not yet documented in other printed manuals. 

E.1 VMS Version 5.1 Support for Compound Documents 
The term compound documents refers to files that can contain a number 
of integrated components including text, graphics, and scanned images. This 
appendix specifically describes VMS support for using the text from DECwindows 
compound documents that are structured according to the Digital Document 
Interchange Format (DDIF) specification. 

VMS commands and utilities, as well as existing application programs that accept 
text input, can now use the text content of DECwindows compound documents. 

To support the use of DDIF text, VMS RMS has implemented a new RMS file 
attribute, stored semantics, and aDDIF-to-text RMS extension. The value of 
the stored semantics attribute is called the file tag and it specifies how file data 
is to be interpreted. When file data is to be interpreted in accordance with the 
DDIF specification, the appropriate file tag is DDIF. The use of file tags is limited 
to disk files on VMS Version 5.1 and later systems. 

The DDIF-to-text RMS extension transparently extracts text from DDIF files 
as variable-length text records that can be accessed through the VMS RMS 
interface. 

The enhancements made to support the reading of text from DDIF files are 
transparent to the user and to the application programmer. This support requires 
that all DDIF files in a VMS Version 5.1 environment be tagged with the DDIF 
file tag. DDIF files created by VMS and VMS layered products are tagged 
appropriately. 

Section E.1.1 describes various VMS_file management commands and utilities 
that display, create, and preserve file tags where appropriate. Section E.1.1 
also describes the way various VMS commands and utilities respond to DDIF 
file input. Section E.1.2 describes VMS support for DDIF files in heterogeneous 
computing environments. Section E.1.3 describes the changes made to the VMS 
RMS program interface to support the stored semantics attribute and to control 
access to the content of DDIF files. 

E.1.1 VMS Commands and Utilities 
This section describes the VMS commands and utilities that support tag 
maintenance by displaying, creating, and preserving the RMS file tags used 
with DDIF files. It also provides additional information that is relevant to the 
way selected VMS commands and utilities respond to DDIF file input. 



VMS Version 5.1 Features 
VMS Commands and Utilities 

The following table lists the VMS commands and utilities that support tag 
maintenance: 

Command/Utility Tag Maintenance Function 

DIRECTORY/FULL Displays file tag 

ANALYZE/RMS_FILE Displays file tag 

SET FILE/SEMANTICS Creates file tag 

VMS MAIL Preserves file tags' 

COPY Preserves file tags' 

BACKUP Preserves file tag 

`See text for exceptions. 

Tags are made up of binary values that can be up to 64 bytes long and can be 
expressed using hexadecimal notation. The hexadecimal value of the DDIF tag, 
for example, is 2BOC8773010301. VMS permits you to assign mnemonics to tag 
values so that DCL commands, such as DIRECTORY/FULL, and VMS utilities, 
such as FDL and ANALYZE/RMS_FILE, display a mnemonic for the DDIF tag 
instead of the hexadecimal value. The following DCL commands have been 
included in the system startup command file to assign the mnemonic DDIF to the 
hexadecimal value for a DDIF tag: 

$ DEFINE/TABLE=RMS$SEMANTIC_TAGS DDIF 2BOC8773010301 
$ DEFINE/TABLE=RMS$SEMANTIC_OBJECTS 2BOC8773010301 DDIF 

Using the appropriate DEFINE commands, you can assign mnemonics for other 
tags, including tags used with international program applications. 

E.1.1.1 Displaying RMS File Tags 
The DIRECTORY/FULL command and the Analyze/RMS_File Utility now display 
the RMS file tag for DDIF files. 

E.1.1.1.1 DIRECTORY/FULL Where applicable, the DIRECTORY/F'ULL 
command now provides the value of the stored semantics tag as part of the file 
information returned to the user. This is the recommended method for quickly 
determining whether or not a file is tagged. The following display illustrates how 
the DIRECTORY/FULL command returns the RMS attributes for a DDIF file 
named X.DDIF: 

X.DDIF;1 File ID: (767,20658,0) 

RMS attributes: Stored semantics: DDIF 



VMS Version 5.1 Features 
Displaying RMS File Tags 

E.1.1.1.2 ANALYZE/RMS_FILE When you use the ANALYZE/RMS_FILE 
command to analyze a DDIF file, the utility returns the file tag as an RMS 
file attribute. 

FILE HEADER 
File Spec: USERD$:[TEST]X.DDIF;1 

Stored semantics: DDIF 

One ANALYZE/R,MS_FILE command option is to create an output FDL file that 
reflects the results of the analysis, using the following format: 

ANALYZE/RMS_FI LE/FDL filespec 

When you use this option for analyzing a tagged file, the output FDL file includes 
the file tag as a secondary attribute to the FILE primary attribute. This is 
illlustrated in the following FDL file excerpt: 

IDENT 9-JUN-1989 13:27:30 VAX/VMS ANALYZE/RMS_FILE Utility" 

SYSTEM 
SOURCE VMS 

FILE 
ALLOCATION 3 

STORED SEMANTICS oX'2BOC8773010301' ! DDIF 

E.1.1.2 Creating RMS File Tags 
The CDA$CREATE_FILE routine in the Compound Document Architecture 
toolkit creates and tags DDIF files. However, you might encounter a DDIF file 
that was created without a file tag or a DDIF file whose file tag was not preserved 
during file processing. 

The DCL command SET FILE provides aqualifier, /[NO]SEMANTICS, that 
permits you to tag a DDIF file through the DCL interface for VMS Version 5.1 or 
later systems. You can also use the qualifier to change a tag or to remove a tag 
from a file. 

The following command line tags the file X.DDIF as a DDIF file by assigning the 
appropriate value to the /SEMANTICS qualifier: 

See Section E.1.1 for information about how to use logical name tables to assign a 
mnemonic to a tag. 

A subsequent DIRECTORY/FULL command displays the following line as part of 
the file header: 



VMS Version 5.1 Features 
Creating RMS File Tags 

RMS attributes: Stored semantics: DDIF 

The next example illustrates how to use the SET FILE command to delete an 
RMS file tag: 

$ SET FILE X.DDIF/NOSEMANTICS 

E.1.1.3 Preserving RMS File Tags and DDIF Semantics 
The COPY command and the VMS Mail Utility preserve RMS file tags and DDIF 
semantics when you copy or mail a DDIF file on a VMS Version 5.1 or later 
system, except for conditions described in Sections E.1.2.2, E.1.2.3, and E.1.2.4. 

The Backup Utility always preserves file tags and semantics when you back up a 
DDIF file to magnetic tape. 

E.1.1.3.1 COPY Command This section describes the results of using the COPY 
command with DDIF files for various operations. 

When you use the COPY command to copy a DDIF file to a disk on a VMS Version 
5.1 or later system, VMS RMS preserves the DDIF tag and the DDIF semantics 
of the input file in the output file. 

When you use the COPY command to copy a DDIF file to a nondisk device on a 
VMS Version 5.1 or later system, VMS RMS does not preserve the DDIF tag or 
the DDIF semantics of the input file in the output file. Instead, VMS RMS writes 
the text from the input file to the output file as variable-length records. 

When you copy two or more DDIF and text files in any combination to a single 
output file, the output file takes the characteristics of the first input file, as shown 
in the following examples: 

1. In this example, the first input file is a text file, so the output file (FOO.TXT) 
contains variable-length text records from X.TXT, Y.DDIF, and Z.TXT but does 
not include the DDIF tag from Y.DDIF. 

$ COPY X.TXT,Y.DDIF,Z.TXT FOO.TXT 

2. In this example, the first input file (A.DDIF) is a DDIF file, so the output 
file (FOO.DDIF) includes the DDIF tag as well as the DDIF semantics from 
A.DDIF. The attempt to copy the text input file (Z.TXT) fails because there 
is no text-to-DDIF RMS extension, but the contents of B.DDIF and C.DDIF 
are copied to the output file. However, the output file has no practical use 
because, as a result of the way DDIF files are structured, only the data from 
the first input file (A.DDIF) is accessible in the output file. 

$ COPY A . DDIF, B .DDIF , Z . T'XT~ , C .DDIF FOO .DDIF 

3. In this example, the first input file (A.DDIF) is a DDIF file, so the output 
file (FOO.DDIF) includes the DDIF tag as well as the contents of A.DDIF. 
FOO.DDIF also includes the contents of B.DDIF and C.DDIF. Again, however, 
the output file has no practical use because, as a result of the way DDIF files 
are structured, only the data from the first input file (A.DDIF) is accessible in 
the output file. 

$ COPY A. DDIF,B.DDIF,C.DDIF FOO.DDIF 



VMS Version 5.1 Features 
Preserving RMS File Tags and DDIF Semantics 

E.1.1.3.2 VMS Mail Utility The VMS Mail Utility preserves the DDIF file tag 
when DDIF files are mailed between VMS Version 5.1 or later systems. The VMS 
Mail Utility also preserves the DDIF file tag when you create an output file on a 
VMS Version 5.1 or later system using the EXTRACT command. 

When you read a mail message that is a DDIF file, the VMS Mail Utility outputs 
only the text portion of the file. Similarly, if you edit a DDIF mail file, you can 
access only the file text; the output file is a text file that can no longer be used as 
a DDIF file. However, if you forward a message that consists of a DDIF file, the 
VMS Mail Utility sends the entire DDIF file, including DDIF semantics and the 
DDIF tag, to the addressee. 

E.1.1.4 APPEND Command 
This section describes what happens when you attempt to use the APPEND 
command with DDIF and text files. 

In the first example, the APPEND command appends a DDIF file to a text file: 

$ APPEND X.DDIF Y.TX~' 

The output file, Y.TXT, contains its original text records as well as text from the 
input file, X.DDIF, reformatted as variable-length text records. 

In the next example, the APPEND command appends a DDIF file to another 
DDIF file: 

$ APPEND X.DDIF Y.DDIF 

The output file, Y.DDIF, contains the DDIF tag, the original contents of Y.DDIF, 
and the contents of X.DDIF. However, the portion of the file that contains X.DDIF 
is not accessible because of the way DDIF files are structured. 

In the final example, the APPEND command attempts to append a text file to a 
DDIF file: 

$ APPEND X.TXT Y.DDIF 

This append operation fails because there is no text-to-DDIF RMS extension. 

E.1.2 DDIF Support in a Heterogeneous Environment 
This section describes the implementation of DDIF support in two heterogeneous 
environments. The first heterogeneous environment includes VMS Version 5.1 
or later systems and non-VMS systems. The second heterogeneous environment 
includes VMS Version 5.1 or earlier systems. 

E.1.2.1 EXCHANGE/NETWORK Command 
A new DCL command, EXCHANGE/NETWORK, has been created to support the 
transfer of files between VMS systems and non-VMS systems that do not support 
VMS file types. The EXCHANGE/NETWORK command transfers files in either 
record mode or block mode but can be used only when both systems support 
DECnet file transfers. 

To interactively tag a DDIF file and transfer the file between anon-VMS 
operating system and a VMS Version 5.1 or later system, do the following: 

1. Create the following file, assigning it the name DDIF.FDL: 

FILE 
ORGANIZATION sequential 
STORED SEMANTICS DDIF 



VMS Version 5.1 Features 
EXCHANGE/NETWORK Command 

RECORD 
CARRIAGE_CONTROL none 
FORMAT fixed 
SIZE 512 

2. To transfer the desired file, enter the EXCHANGE/NETWORK command, 
using the following format: 

EXCHANGE/NETWORK/FDL=DDIF.FDL input_filespec output_filespec 

See Section E.2 for more information about the EXCHANGE/NETWORK 
command. 

E.1.2.2 COPY Command 
If you use the COPY command to copy tagged DDIF files to systems other than 
VMS Version 5.1 systems from a VMS Version 5.1 system, the results will vary 
depending on the target system: 

• If the target system is a non-VMS system, the file is copied, but the DDIF tag 
is not preserved. 

• If the target system is a VMS Version 5.1 or earlier system, the copy operation 
fails with the VMS RMS error message RMS$_SUPPORT, network operation 
not supported, and a secondary error message of RMS$_SEMANTICS, 
inconsistent usage of RMS Semantics. Error messages similiar to the 
following will appear: 

oCOPY-E-OPENOUT, error opening PWEDGE::[]TRY.DDIF;1 as output 
-RMS-F-SUPPORT, network operation not supported 
-RMS-E-SEMANTICS, inconsistent usage of RMS Semantics 
oCOPY-W-NOTCOPIED, ABCD4:[DAVIDS]TRY.DDIF;1 not copied 

• If the target system is a cluster alias for amixed-version cluster containing 
Version 5.1 or earlier systems, the result of the copy operation depends on 
whether the cluster node that actually handles the request is a Version 5.1 or 
earlier system. 

• If you use the COPY command to copy tagged DDIF files from Version 5.1 
or later systems to earlier systems while on an earlier system, the copy 
operation will fail with the error message RMS$_NET, network operation 
failed at remote node, and with a DAP status code of 16F, inconsistent usage 
of RMS Semantics. Error messages similiar to the following will appear: 

%COPY-E-OPENIN, error opening ARC"davids password"::ABCD4:[DAVIDS]TRY.DDIF;1 as 
input 
-RMS-F-NET, network operation failed at remote node; DAP code = 01F7516F 
oCOPY-W-NOTCOPIED, ARC"davids password"::ABCD4:[DAVIDS]TRY.DDIF;1 not copied 
PWEDGE$ 

E.1.2.3 VMS Mail Utility 
If you try to send mail messages containing DDIF files to non-VMS systems that 
do not support tagged files, the VMS Mail Utility returns the NOACCEPTMSG 
error message, indicating that the remote node cannot accept the message format. 

Similarly, the VMS Mail Utility _does not support the mailing of DDIF files to 
systems earlier than Version 5.1. As with non-VMS systems, the VMS Mail 
Utility returns the NOACCEPTMSG error message for systems earlier than 
Version 5.1, indicating that the remote node cannot accept the message format. 



VMS Version 5.1 Features 
DDIF File Access Within aMixed-Version Cluster 

E.1.2.4 DDIF File Access Within aMixed-Version Cluster 
In a cluster that contains both Version 5.1 or earlier systems, operations on 
DDIF files from systems earlier than Version 5.1 will cause inconsistent behavior. 
Records read from DDIF files on systems earlier than Version 5.1 will be fixed-
length 512-byte records, which contain DDIF control information in addition to 
the text context. Thus, typing a DDIF file on a system earlier than Version 5.1 
does not produce readable text. 

Copying a DDIF file using a system earlier than Version 5.1 will not preserve the 
DDIF tag on the output file, which will cause problems in later access to the new 
file from a Version 5.1 or later system. 

However, using the Backup Utility from systems earlier than Version 5.1 will 
create a correct backup of DDIF files and will properly restore DDIF files from 
BACKUP save sets. 

E.1.3 VMS RMS Interface Changes 
This section provides details about the changes made to the VMS RMS interface 
that support access to text in VMS DECwindows DDIF files. It includes 
information related to tagging files and accessing tagged files through the 
VMS RMS interface. The section also describes how tags are preserved at the 
VMS RMS interface. 

E.1.3.1 Programming Interface for File Tagging 
This section focuses on the use of the DDIF tag for supporting VMS DECwindows 
files, although VMS RMS also supports file tagging for other compound document 
data formats. 

You can tag a file from the VMS RMS interface by using the $CREATE service 
in conjunction with a new extended attribute block (~:AB) called the item X;AB 
($~:ABITM). The $~;.ABITM macro is ageneral-purpose macro that was added to 
the RMS interface to support several Version 5.0 features. Tagged file support 
involves the use of the two item codes shown in Table E-1. 

Table E-1 Tag Support Item Codes 

Item Buffer Size Function 

XAB$_STORED_SEMANTICS 64 bytes maximum 

XAB$_ACCESS_SEMANTICS 64 bytes maximum 

Defines the file semantics 
established when the file is 
created 

Defines the file semantics 
desired by the accessing 
program 

The entries ~;AB$_STORED_SEMANTICS and ~;.AB$_ACCESS_SEMANTICS in 
the item list can represent either a control (set) function or a monitor (sense) 
function that can be passed to VMS RMS from the application program by way of 
the RMS interface. 

The symbolic value ~;AB$K SEMANTICS_MAX LEN represents the tag length. 
This value can be used to allocate buffer space for sensing and setting stored 
semantics for the DDIF file. 

Within any one $XABITM, you can activate either the set function or the sense 
function for the x;AB$_STORED_SEMANTICS and X;AB$ ACCESS_SEMANTICS 
items, because a common field (~:AB$B_MODE) determines which function is 
active. If you want to activate both the set function and the sense function for 



VMS Version 5.1 Features 
Programming Interface for File Tagging 

either or both items, you must use two $~:ABITM control blocks, one for setting 
the functions and one for sensing the functions. 

Each entry in the item list addressed by the $~;ABITM is made up of three 
longwords and a longword of zero terminates the list. You can locate the item 
list anywhere within the readable address space fora process, but any buffers 
required by the related function must be located in read/write memory. If the 
item list is invalid, RMS returns a status of RMS$_~;AB in the RAB$L_STS field 
and the address of the ~:AB in RAB$L_STV. 

See the VMS Record Management Services Manual fora detailed description of 
the $XABITM macro. 

Example E-1 illustrates a BLISS-32 program that tags a file through the RMS 
interface. The tag value shown is a 6-byte hexadecimal number representing 
the code for the DDIF tag. The VMS RMS program interface accepts only 
hexadecimal tag values. 

To write to a tagged file without using an RMS extension, the application program 
must specify access semantics that match the file's stored semantics. As shown 
in the example, $CREATE tags the file and $CONNECT specifies the appropriate 
access semantics. 

Example E-1 Tagging a File 
MODULE TYPE$MAIN 

IDENT = 'X-1', 
MAIN = MAIN, 
ADDRESSING_MODE (EXTERNAL=GENERAL) 

BEGIN 

FORWARD ROUTINE 
MAIN NOVALUE; 

! INCLUDE FILES: 

! Main routine 

LIBRARY 'SYS$LIBRARY:LIB'; 
OWN 

NAM $NAM(), 
RETLEN, 
DDIF_TAG BLOCK[ 7, BYTE] 

INITIAL ( BYTE (%X' 2B' , oX' OC' , oX' 87' , oX' 73' , oX' 01' , %X ` 03' , oX' 01' ) ) , 
FAB_XABITM 

RAB_XABITM 

$xabitm 
( itemlist= 

$ITMLST_UPLIT 

( 
(ITMCOD=XAB$_STORED_SEMANTICS, 
BUFADR=DDIF_TAG, 
BUFSIZ=oALLOCATION(DDIF_TAG)) 

), 
mode = SETMODE), 

$xabitm 
( itemlist= 

$ITMLST_UPLIT 

( 
(ITMCOD=XAB$_ACCESS_SEMANTICS, 
BUFADR=DDIF_TAG, 

(continued on next page) 



VMS Version 5.1 Features 
Programming Interface for File Tagging 

Example E-1 (Copt.) Tagging a File 
BUFSIZ=%ALLOCATION(DDIF_TAG)) 

), 
mode = SETMODE), 

FAB $FAB( fnm = 'TAGGED-FILE.TEST', 
nam = NAM, 
mrs = 512, 
rfm = FIX, 
fac = <GET,PUT,UPD>, 
xab = FAB_XABITM), 

REC BLOCK[512,BYTE], 
STATUS, 
RAB $RAB( xab = RAB_XABITM, 

fab = FAB, 
rsz = 512, 
rbf = REC, 
usz = 512, 
ubf = REC), 

DESC BLOCK[8,BYTE] INITIAL(0); 
ROUTINE MAIN NOVALUE _ 
BEGIN 
STATUS = $CREATE( FAB = FAB ); 
IF NOT .STATUS 
THEN 

SIGNAL (.STATUS); 
STATUS = $CONNECT( RAB = RAB ); 
IF NOT .STATUS 
THEN 

SIGNAL (.STATUS); 
STATUS = $CLOSE( FAB = FAB ); 
IF NOT .STATUS 
THEN 

SIGNAL (.STATUS); 
END; 
END 
ELUDOM 

E.1.3.2 Accessing a Tagged File 
This section provides details of how VMS RMS handles access to tagged files 
at the program level. When a program accesses a tagged file, VMS RMS must 
determine whether and when to associate an RMS extension with the access. 
This is important to the programmer because an RMS extension can change the 
attributes of the accessed file. 

For example, a DDIF file is stored as a sequentially organized file having 512-
byte,fixed-length records. If the DDIF-to-text RMS extension is used to extract 
text from a DDIF file, the accessed file appears as a sequentially organized file 
having variable-length records with a maximum record size of 2048 bytes and an 
implicit carriage return. 

One consideration in determining whether an access requires the RMS extension 
is the type of access (FAB$B_FAC). When an application program opens a file 
through the VMS RMS program interface, it must specify if it will be doing 
record I/O (default), block I/O (BIO), or mixed UO (BRO), where the program has 
the option of using either block I/O or record I/O for each access. For example, 
if block I/O operations are specified, VMS RMS does not associate the RMS 
extension with the file access. 



VMS Version 5.1 Features 
Accessing a Tagged File 

Another consideration is whether the program senses the tag when it opens a file. 
If the program does not sense the tag when it opens a DDIF file for record access, 
VMS RMS associates the RMS extension during the $OPEN and returns the file 
attributes that have been modified by the extension. 

The final consideration is the access semantics the program specifies and the 
file's stored semantics (tag). If the program specifies block I/O (FAB$V BIO) 
operations, RMS does not associate the RMS extension and the $OPEN service 
returns the file's stored attributes to the accessing program regardless of whether 
the program senses tags. 

E.1.3.2.1 File Accesses That Do Not Sense Tags This section describes what 
happens when a program does not use the XABITM to sense a tag when it opens 
a file. 

When a program opens a DDIF file for record operations and does not sense the 
tag, VMS RMS assumes that the program wants to access text in the file. In this 
case, VMS RMS associates the RMS extension, which provides file attributes that 
correspond to record-mode access. 

When a program opens a DDIF file with the FAB$V BRO option and does not 
sense the tag, any subsequent attempt to use block I/O fails. If the program 
specifies block I/O (FAB$V_BIO) when it invokes the $CONNECT service, the 
operation fails because the file attributes returned at $OPEN permit record 
access only. Similarly, if the program specifies the FAB$V_BRO option when it 
opens the file, and then specifies mixed-mode (block/record) operations by not 
specifying RAB$V_BIO at $CONNECT time, block operations such as READ and 
WRITE are disallowed. 

E.1.3.2.2 File Accesses That Sense Tags VMS RMS does not associate the 
RMS extension as part of the $OPEN service if a program opens a DDIF file and 
senses the stored semantics. This allows the program to specify access semantics 
with the $CONNECT service. VMS RMS returns the file attributes, including 
the stored semantics attribute (tag value), to the program as part of the $OPEN 
service. 

When the program subsequently invokes the $CONNECT service, VMS RMS uses 
the specified operations mode to determine its response. If the program specified 
FAB$V BRO with the $OPEN service and then specifies block I/O (RAB$V_BIO) 
when it invokes the $CONNECT service, VMS RMS does not associate the RMS 
extension. 

But if the program specifies record access or FAB$V BRO when it opens the 
file and then decides to use record I/O when it invokes the $CONNECT service, 
VMS RMS compares the access semantics with the file's stored semantics to 
determine whether to associate the RMS extension. If the access semantics 
match the stored semantics, VMS RMS does not associate the RMS extension. If 
the access semantics do not match the stored semantics, VMS RMS associates 
the access with the RMS extension. In this case, the program must use the 
$DISPLAY service to obtain the modified file attributes. If VMS RMS cannot find 
the appropriate RMS extension, the operation fails and the $CONNECT service 
returns the EXTNOTFOU error message. 

If the application program senses the file's stored semantics, VMS RMS allows 
mixed-mode operations. In this case, mixed block and record operations are 
permitted because the application gets record mode file attributes and data from 
the RMS extension and block mode file attributes and data from the file. 



VMS Version 5.1 Features 
Accessing a Tagged File 

Example E-2 illustrates a BLISS-32 program that accesses a tagged file from an 
application program that does not use an RMS extension. 

Example E-2 Accessing a Tagged File 
MODULE TYPE$MAIN 

IDENT = 'X-1', 
MAIN = MAIN, 
ADDRESSING_MODE (EXTERNAL=GENERAL) 

BEGIN 

FORWARD ROUTINE 
MAIN NOVALUE; ! Main routine 

! INCLUDE FILES: 

LIBRARY 'SYS$LIBRARY:STARLET'; 
OWN 

NAM $NAM () , 
ITEM_BUFF BLOCK[ XAB$K_SEMANTICS_MAX_LEN,BYTE ], 
RETLEN, 
FAB_XABITM 

$xabitm 
( itemlist= 

$ITMLST_UPLIT 
((ITMCOD=XAB$_STORED_SEMANTICS, 

BUFADR=ITEM_BUFF, 
BUFSIZ=XAB$K_SEMANTICS_MAX_LEN, 
RETLEN=RETLEN)), 

mode = SENSEMODE), 
RAB_ITEMLIST BLOCK[ ITM$S_ITEM + 4, BYTE ], 
RAB_XABITM $XABITM 

( itemlist=RAB_ITEMLIST, 
mode=SETMODE ), 

FAB $FAB( fnm = 'TAGGED-FILE.TEST' 
nam = NAM, 
fac = <GET,PUT,UPD>, 
xab = FAB_XABITM), 

REC BLOCK[512,BYTE], 
STATUS, 
RAB $RAB( xab = RAB_XABITM, 

fab = FAB, 
rsz = 512, 
rbf = REC, 
usz = 512, 
ubf = REC), 

DESC BLOCK[8,BYTE] INITIAL(0); 
ROUTINE MAIN NOVALUE _ 
BEGIN 
STATUS = $OPEN( FAB = FAB ); 
IF NOT .STATUS 
THEN 

SIGNAL (.STATUS); 
RAB_ITEMLIST[ ITM$W_BUFSIZ ] _ .RETLEN; 
RAB_ITEMLIST[ ITM$L_BUFADR ] = ITEM_BUFF; 
RAB_ITEMLIST[ ITM$W_ITMCOD ] = XAB$_ACCESS_SEMANTICS; 
STATUS = $CONNECT( RAB = RAB ); 
IF NOT .STATUS 
THEN 

SIGNAL (.STATUS); 
STATUS = $CLOSE( FAB = FAB ) ; 

(continued on next page) 



VMS Version 5.1 Features 
Accessing a Tagged File 

Example E-2 (Cont.) Accessing a Tagged File 
IF NOT .STATUS 
THEN 

SIGNAL (.STATUS); 
END; 
END 
ELUDOM 

E.1.3.3 Preserving Tags 
To preserve the integrity of a tagged file that is being copied or transmitted, 
the tag must be preserved in the destination (output) file. The most efficient 
way to use the RMS interface for propagating tags is to open the source file 
(input) and sense the tag using a $X;.ABITM with the item code ~:AB$_STORED_ 
SEMANTICS: 

ITEMLIST[ ITM$W_BUFSIZ ] = XAB$K_SEMANTICS_MAX_LEN; 
ITEMLIST[ ITM$L_BUFADR ] = ITEM_BUFF; 
ITEMLIST[ ITM$L_RETLEN ] = RETLEN; 
ITEMLIST[ ITM$W_ITMCOD ] = XAB$_STORED_SEMANTICS; 

XABITM[ XAB$B_MODE ] = XAB$K_SENSEMODE; 
STATUS = $OPEN( FAB = FAB ); 

Then create the destination (output) file and set the tag using a $~;ABITM with 
the item code XAB$_STORED_SEMANTICS: 

IF .RETLEN GTR 0 
THEN 

BEGIN 
ITEMLIST[ ITM$W_ITMCOD ] = XAB$_STORED_SEMANTICS; 
ITEMLIST[ ITM$L_SIZE ] _ .RETLEN; 
XABITM[ XAB$B_MODE ] = XAB$K_SETMODE; 
END ; 

STATUS = $CREATE( FAB = FAB ); 

END ; 
END 
ELUDOM 

E.1.4 Distributed File System Support for DDIF Tagged Files 
Version 1.1 of the Distributed File System (DFS) includes limited support for 
DDIF tagged files. You can create and read DDIF files on a DFS device when the 
DFS client node is running VMS Version 5.1 or later versions. You can also use 
the DIRECTORY/FULL command to determine whether a DDIF file on a DFS 
device is tagged. 



VMS Version 5.1 Features 
Distributed File System Support for DDIF Tagged Files 

You cannot use the SET FILE/[NO]SEMANTICS command to either tag DDIF 
files or remove the tags from DDIF files on a DFS device. Furthermore, the 
Backup Utility does not preserve the DDIF tag or the DDIF stored semantics for 
data files on a DFS device. 

E.1.5 VMS RMS Errors 
Four VMS RMS error messages signal the user when the corresponding error 
condition exists: 

• RMS$_EXTNOTFOU 

• RMS$_SEMANTICS 

• RMS$_EXT_ERR 

• RMS$_OPNOTSUP 

The RMS$_EXTNOTFOU error message indicates that VMS RMS has not found 
the specified RMS extension. Verify that the file is correctly tagged, using the 
DIRECTORY/FULL command, and that the application program is specifying the 
appropriate access semantics. 

VMS RMS returns the RMS$_SEMANTICS error message when you try to create 
a tagged file on a remote system earlier than VMS Version 5.1 from a Version 5.1 
or later system. 

VMS RMS returns the RMS$_EXT_ERR error when the DDIF RMS extension 
detects an inconsistency. 

VMS RMS returns the RMS$_OPNOTSUP error when the RMS DDIF extension 
is invoked by an RMS operation. For example, if the extension does not support 
write access to a DDIF file, verify that the application program is not performing 
record operations that modify the file. 

E.2 EXCHANGE/NETWORK Command 

The EXCHANGE/NETWORK command allows the VMS operating system 
to transfer files to or from operating systems that do not support VMS file 
organizations. The transfer occurs over a DECnet network communications link 
that connects VMS and non-VMS operating system nodes. 

Using DECnet services, the EXCHANGE/NETWORK command can perform the 
following operations: 

• Transfer files between a VMS node and anon-VMS system node 

• Transfer a group of input files to a group of output files 

• Transfer files between two non-VMS nodes, provided those nodes share 
DECnet connections with the VMS node that issues the EXCHANGE 
/NETWORK command 

The EXCHANGElNETWORK command imposes the following restrictions: 

• Transfers of files can occur only between disk devices. (If a disk device is not 
the desired permanent residence for the file, you must either move the file to 
a disk before issuing the command or retrieve the file from a disk after the 
command completes. ) 

• The remote system must have a block size of 512 bytes, where a byte is 8 bits 
long. 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

• The nodes transferring files must support the DECnet Data Access Protocol 
(DAP). 

The VMS Record Management Services (RMS) facility provides VMS access 
to records in VMS RMS files. To transfer VMS RMS files between two nodes 
where both nodes are VMS nodes, use one of the other DCL commands (such 
as COPY, APPEND, or CONVERT), as appropriate. These commands recognize 
RMS file organizations and are designed to ensure that RMS record structures 
are preserved as your files are moved. 

Use the EXCHANGE/NETWORK command to transfer files between VMS 
nodes and non-VMS nodes when the differences in the file organizations would 
otherwise prevent the transfer or could lead to undesirable results. While 
COPY ensures that both the contents and the attributes of a replicated file are 
preserved, EXCHANGE/NETWORK is more flexible. EXCHANGE/NETWORK 
offers you explicit control of your record attributes during file transfers, with the 
opportunity to make a file usable on several different operating systems. 

Format 

EXCHANGE/NETWORK input-file-spec[,...] output-file-spec 

Parameters 
input-fi le-spec[,...] 
Specifies the name of an existing file to be transferred. Wildcard characters are 
allowed. Use a comma (,) to indicate multiple file specifications. 

output-file-spec 
Specifies the name of the output file into which the input is transferred. 

You must specify at least one field in the output file specification. If you omit 
the device or directory, your current default device and directory are used. 
The EXCHANGE/NETWORK command replaces any other missing fields (file 
name, file type, version number) with the corresponding field of the input file 
specification. 

EXCHANGE/NETWORK creates a new output file for every input file that you 
specify. 

You can use the asterisk Wildcard character in place of the following: file name, 
file type, or version number. The EXCHANGE/NETWORK command uses the 
corresponding field in the related input file to name the output file. You can also 
use the Wildcard character in the output file specification to direct EXCHANGE 
/NETWORK to create more than one output file. For example: 

This EXCHANGE/NETWORK command creates the files A.0 and B.0 at the 
non-VMS target node MYPC. 

A more complete explanation of Wildcard characters and version numbers follows 
in the Description section. 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

Description 

The EXCHANGE/NETWORK command transfers files between VMS nodes and 
non-VMS nodes connected to the same DECnet network. If the non-VMS system 
does not support VMS file organizations, EXCHANGE/NETWORK can modify 
or discard file and record attributes during the transfer. However, if the target 
system is a VMS node, you have the option of applying new file and record 
attributes to the output file by supplying a File Definition Language (FDL) file, 
as described later in this section. EXCHANGE/NETWORK provides a number of 
defaults to handle the majority of transfers properly. However, in some situations, 
you need to know your file or record format requirements at both nodes. 

VMS File and Record Attributes 
All RMS files in the VMS environment include stored information, known as 
the file and record attributes, to describe the file and record characteristics. 
File attributes consist of items such as file organization, file protection, and 
file allocation information. Record attributes consist of items such as the 
record format, record size, key definitions for indexed files, and carriage control 
information. These attributes define the data format and access methods for the 
VMS RMS facility. 

Non-VMS operating systems that do not support VMS file organizations have 
no means of storing file and record attributes with their files. Transferring a 
VMS file to a non-VMS system that is unable to store and handle file and record 
attributes can result in most of this information being discarded. Removing these 
attributes from a file can render it useless if it must be returned to the VMS 
system. 

Transferring Files to VMS Nodes 
When you transfer files to a VMS system from anon-VMS system, the files 
typically assume default file and record attributes. However, you can specify the 
attributes that you want the file to acquire in a File Definition Language (FDL) 
file. If you specify an FDL file with the /FDL qualifier, the FDL file determines 
the characteristics of the output file. This feature is useful in establishing 
compatible file and record attributes when you transfer a file from anon-VMS 
system to a VMS system. However, when you use an FDL file, you also assume 
responsibility for determining the required characteristics. 

See the VMS File Definition Language Facility Manual for more information 
about FDL files. 

Transferring Files to Non-VMS Nodes 
EXCHANGE/NETWORK discards file and record attributes associated with a 
VMS file during a transfer to a non-VMS system that does not support VMS file 
organizations. Be aware that the loss of file and record attributes in the transfer 
can render the output file useless for many applications. 

Selecting Transfer Modes 
The EXCHANGE/NETWORK command has four transfer mode options: 
AUTOMATIC, BLOCK, RECORD, and CONVERT. For most file transfers, 
AUTOMATIC is sufficient. The AUTOMATIC transfer mode option allows 
EXCHANGE/NETWORK to transfer files using either block or record I/O. The 
selection is based on the input file organization and the operating systems 
involved. 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

Selecting the BLOCK transfer mode option forces EXCHANGE/NETWORK to 
open both the input and output files for block I/O access. The input file is then 
transferred to the output file block by block. Use this transfer mode when you 
transfer executable images. It is also useful when you must preserve a file's 
content exactly, which is a common requirement when you store files temporarily 
on another system or when cooperating applications exist on the systems. 

Selecting the RECORD transfer mode option forces EXCHANGE /NETWORK 
to open both the input file and output file for record I/O access. The input file 
is then transferred to the output file record by record. This transfer mode is 
primarily used for transferring text files. 

Selecting the CONVERT transfer mode option forces EXCHANGE /NETWORK 
to open the input file for RECORD access and the output file for BLOCK access. 
Records are then read in from the input file, packed into blocks, and written to 
the output file. This transfer mode is primarily used for transferring files with 
no implied carriage control. For example, to transfer a file created with Digital 
Standard Runoff (DSR) to a DECNET DOS system, you must use the CONVERT 
transfer mode option. To transfer the resultant output file back to a VMS node, 
use the AUTOMATIC transfer mode option. 

Wildcard Characters 
Wildcard characters are permitted in the file specifications and follow the 
behavior typical of other VMS commands with respect to the VMS node. 

When more than one input file is specified but wildcards are not specified in the 
output file specification, the first input file is copied to the output file, and each 
subsequent input file is transferred and given a higher version number of the 
same output file name. Note that the files are not concatenated into a single 
output file. Also note that when you transfer files to foreign systems that do not 
support version numbers, only one output file results, and it is the last input file. 

To create multiple output files, specify multiple input files and use at least one of 
the following: 

• An asterisk wldcard character in the output file name, file type, or version 
number field 

• Only a node name, a device name, or a directory specification as the output 
file specification 

When you create multiple output files, EXCHANGElNETWORK uses the 
corresponding field from each input file in the output file name. 

Use the /LOG qualifier when you specify multiple input and output files to verify 
that the files were copied as you intended. 

Version Numbers 
The following guidelines apply when the target node file formats accept version 
numbers. 

If no version numbers are specified for input and output files, the EXCHANGE 
/NETWORK command (by default) assigns a version number to the output files 
that is either of the following: 

• The version number of the input file 

• Aversion number one greater than the highest version number of an existing 
file with the same file name and file type 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

When the output file version number is specified by an asterisk wildcard 
character, the EXCHANGE/NETWORK command uses the version numbers 
of the associated input files as the version numbers of the output files. 

If the output file specification has an explicit version number, the EXCHANGE 
/NETWORK command normally uses that number for the output file specification. 
However, if an equal or higher version of the output file already exists, no 
warning message is issued, the file is copied, and the version number is set 
to a value one greater than the highest version number already existing. 

File Protection and Creation/Revision Dates 
The EXCHANGE/NETWORK command treats an output file as a new file when 
any portion of the output file name is explicitly specified. When the output node 
is a VMS system, the creation date for a new file is set to the current time and 
date. However, if the output file specification consists only of wildcard characters, 
the output file no longer qualifies as a new file and, therefore, the creation date 
of the input file is used. That is, if the output file specification is one of the 
following, the creation date becomes that of the input file: *, *.*, or ~`.*;*. 

The revision date of the output file is always set to the current time and date; 
the backup date is set to zero. The output file is assigned a new expiration date. 
(Expiration dates are set by the file system if retention is enabled; otherwise, they 
are set to zero. ) 

When the target node is a VMS node, the protection and access control list (ACL) 
of the output file is determined by the following parameters, in the following 
order: 

1. Protection of previously existing versions of the output file 

2. Default protection and ACL of the output directory 

3. Process default file protection 

For an introduction to access control lists, see the VMS DCL Concepts Manual. 

On VMS systems, the owner of the output file usually is the same as the creator 
of the output file. However, if a user with extended privileges creates the output 
file, the owner is either the owner of the parent directory or the owner of a 
previous version of the output file, if one exists. 

Extended privileges include any of the following: 

• SYSPRV or BYPASS 

• System UIC 

• GRPPRV if the owner of the parent directory (or previous version of the 
output file) is in the same group as the creator of the new output file 

• An identifier (with the resource attribute) representing the owner of the 
parent directory (or previous version of the output file) 

Qualifiers 
(BACKUP 
Modifies the time value specified with the BEFORE or /SINCE qualifier. 
BACKUP selects files according to the dates of their most recent backup. This 
time qualifier is incompatible with the other time qualifiers that also allow you to 
select files according to time attributes: /CREATED, /EXPIRED, and /MODIFIED. 
If you do not specify any of these four time qualifiers, the default is /CREATED. 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

/BEFORE[=time] 
Selects only those files dated prior to the specified time. You can specify time as 
an absolute time, as a combination of absolute and delta times, or as one of the 
following keywords: TODAY (default), TOMORROW, or YESTERDAY. Specify one 
of the following time qualifiers with BEFORE to indicate the time attribute to 
be used as the basis for selection: BACKUP, /CREATED (default), /EXPIRED, or 
/MODIFIED. 

See the VMS DCL Concepts Manual for complete information about specifying 
time values . 

/BY_OWNER[=uic] 
Selects only those files whose owner user identification code (UIC) matches the 
specified owner UIC. The default UIC is that of the current process. 

Specify the UIC using standard UIC format as described in the VMS DCL 
Concepts Manual. 

/CONFIRM 
/NOCONFIRM (default) 
Controls whether a request is issued before each file transfer operation to confirm 
that the operation should be performed on that file. The following responses are 
valid: 

YES NO QUIT 

TRUE FALSE CtrUZ 

1 0 ALL 

Return 

You can use any combination of uppercase and lowercase letters for word 
responses. Word responses can be abbreviated to one or more letters (for example, 
T, TR, or TRU for TRUE), but these abbreviations must be unique. Affirmative 
answers are YES, TRUE, and 1. Negative answers are NO, FALSE, 0, and 
the Return key. QUIT or CtrUZ indicates that you want to stop processing the 
command at that point. When you respond with ALL, the command continues to 
process, but no further prompts are given. If you type a response other than one 
of those in the list, DCL displays an error message and redisplays the prompt. 

/CREATED (default) 
Modifies the time value specified with the BEFORE or /SINCE qualifier. The 
/CREATED qualifier selects files based on their date of creation. This time 
qualifier is incompatible with the other time qualifiers that also allow you to 
select files according to time attributes: BACKUP, /EXPIRED, and /MODIFIED. 
If you do not specify any of these four time qualifiers, the default is /CREATED. 

/EXCLU DE=(fi le-spec[,...]) 
Excludes the specified files from the file transfer operation. You can include a 
directory but not a device in the file specification. Wildcard characters are allowed 
in the file specification. However, you cannot use relative version numbers to 
exclude a specific version. If you provide only one file specification, you can omit 
the parentheses. 

/EXPIRED 
Modifies the time value specified with the BEFORE or /SINCE qualifiers. 
/EXPIRED selects files according to their expiration date. (The expiration date 
is set with the SET FILE/EXPIRATION_DATE command.) This time qualifier 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

is incompatible with the other time qualifiers that also allow you to select files 
according to time attributes: BACKUP, /CREATED, and !MODIFIED. If you do 
not specify any of these four time qualifiers, the default is /CREATED. 

/FDL=fdl-file-spec 
Specifies that the output file characteristics are described in the File Definition 
Language (FDL) file. Use this qualifier when you require special output file 
characteristics. See the VMS File Definition Language Facility Manual for more 
information about FDL files. 

Use of the /FDL qualifier implies that the transfer mode is block by block. 
However, the transfer mode you specify with the /TRANSFER_MODE qualifier 
prevails. 

/LOG 
/NOLOG (default) 
Controls whether the EXCHANGE/NETWORK command displays the file 
specifications of each file copied. 

When you use the /LOG qualifier, the EXCHANGE/NETWORK command displays 
the following for each copy operation: (1) the file specifications of the input and 
output files, and (2) the number of blocks or the number of records copied 
(depending on whether the file is copied on a block-by-block or record-by-record 
basis). 

/MODIFIED 
Modifies the time value specified with the BEFORE or /SINCE qualifier. The 
/MODIFIED qualifier selects files according to the date on which they were last 
modified. This time qualifier is incompatible with the other time qualifiers that 
also allow you to select files according to time attributes: BACKUP, /CREATED, 
and /EXPIRED. If you do not specify any of these four time qualifiers, the default 
is /CREATED. 

/SINCE[=time] 
Selects only those files dated after the specified time. You can specify time as 
an absolute time, a combination of absolute and delta times, or as one of the 
following keywords: TODAY (default), TOMORROW, or YESTERDAY. Specify one 
of the following time qualifiers with /SINCE to indicate the time attribute to be 
used as the basis for selection: BACKUP, /CREATED (default), /EXPIRED, or 
/MODIFIED. 

See the VMS DCL Concepts Manual for complete information about specifying 
time values. 

/TRANSFER_MODE=option 
Specifies the I/O method to be used in the transfer. This qualifier is useful for all 
file formats. You can specify any one of the following options: 

Option Function 

AUTOMATIC Allows EXCHANGEINETWORK to determine the 
appropriate transfer mode. 

BLOCK Transfers block by block. 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

Option Function 

CONVERT[=option[,...)] Reads records from the input file, packs them 
into blocks, and writes to the output file in block 
mode. The options determine what additional 
information is inserted during the transfer. 

RECORD Transfers record by record. 

The AUTOMATIC transfer mode option allows EXCHANGE/NETWORK to 
determine the appropriate transfer mode. The default is the AUTOMATIC 
transfer mode. 

If you explicitly select the BLOCK transfer mode option, EXCHANGE 
/NETWORK opens both the input and output files for block UO. EXCHANGE 
!NETWORK then transfers the files block by block. 

If you explicitly select the RECORD transfer mode option, EXCHANGE 
/NETWORK opens both the input and output files for record UO. The target 
system must support record operations, and the input file must be record 
oriented. 

If you select the CONVERT transfer mode option, EXCHANGE/NETWORK reads 
records in from the input file, packs them into blocks, and writes them to the 
output file in block mode. There are four options available with the CONVERT 
transfer mode to control the insertion of special characters in the records, as 
explained in .the following paragraphs: 

• CARRIAGE CONTROL 

• COUNTED 

• FIXED CONTROL 

• RECORD_SEPARATOR=separator 

If you specify CARRIAGE_CONTROL, any carriage control information in the 
input file is interpreted, expanded into actual characters, and included with each 
record. 

If you specify COUNTED, the length of each record in bytes is included at 
the beginning of each record. The length includes all FIXED_CONTROL, 
CARRIAGE_CONTROL, and RECORD_SEPARATOR information in each record. 

If you specify FIXED_CONTROL, all variable length with fixed control record 
(VFC) information is written to the output file as part of the data. This 
information follows the record length information if the COUNTED option was 
specified. 

If you specify RECORD_SEPARATOR, a 1- or 2-byte record separator is inserted 
between each record. Record separator characters are the last characters in the 
record. The three choices for separator characters are CR for carriage return only, 
LF for line feed only, or CRLF for carriage return and line feed. 



VMS Version 5.1 Features 
E.2 EXCHANGE/NETWORK Command 

Examples 

1. $ EXCHANGE/NETWORK VMS FiLE.DAT FOO::FOR.EIGi~~ SYS.DAT 

In this example, the EXC~iANGE/NETWORK command transfers the file 
VMS_FILE.DAT located in the current default device and directory to the file 
FOREIGN_SYS.DAT on the non-VMS node FOO. Because the /TRANSFER_ 
MODE qualifier was not explicitly specified, EXCI~[ANGE/NETWORK 
automatically determines whether the transfer method should be block or 
record I/O. 

2. $ EXCHANGE/NETWORK/TRANSFER MODE=BLOCK -
_$ FOO::FOREIGN SYS.DAT `~rMS FILE.DAT 

In this example, the EXCHANGE/NETWORK command transfers the file 
FOREIGN_SYS.DAT from the non-VMS node FOO to the file VMS FILE.DAT 
in the current default device and directory. Block I/O is specified for the 
transfer mode. 

3. $ EXCHANGE/NETWORK/FDL=VMS FILE DEFINITION. FDL -
_$ FOO::REMOTE FILE.TXT VMS FILE.DAT 

In this example, the EXCHANGE/NETWORK command transfers the file 
REMOTE_FILE.TXT on node FOO to the file VMS_FILE.DAT. The file 
attributes for the output file VMS_FILE.DAT are obtained from the File 
Definition Language (FDL) source file VMS_FILE_DEFINITION.FDL. For 
more information about creating FDL files, see the VMS File Definition 
Language Facility Manual. Because the /FDL qualifier is specified and the 
/TR',ANSFER_MODE qualifier is omitted, the transfer mode uses block UO, by 
default. 

4. $ EXCHANGE/NETUti~ORK -
_$ /TRANSFER_MODE=CONVERT=(CARRIAGE_CONTROL,COUI~ITED, -
_$ RECORD_SEPARATOR=CRLF,FIXED_CONiROL) -
_$ PRINT FILE.TXT F00::* 

In this example, the EXCHANGE/NETWORK command transfers the file 
PRINT_FILE.TXT from the current default device and directory to the file 
PRINT FILE.TXT on the non-VMS node FOO. The use of the CONVERT 
option with the /TRANSFER_MODE qualifier forces the input file to be read 
in record by record, modified as specified by the convert options described 
below, and written to the output file block by block. As many records as will 
fit are packed into the output blocks. 

The CONVERT option CARRIAGE_CONTROL specifies that carriage control 
information be converted to ASCII characters and inserted before the data 
or appended to the record, depending on whether prefix control or postfix 
control, or both, are used. The CONVERT option FIXED_CONTROL specifies 
that any fixed control information be translated to ASCII characters and 
inserted at the beginning of the record. The CONVERT option RECORD_ 
SEPARATOR=CRLF appends the two specified characters, carriage return 
and line feed, to the end of the record. The CONVERT option COUNTED 
specifies that the total length of the record must be counted (once the impact 
of all the previous convert options have been added), and the result is to be 
inserted at the beginning of the record, in the first two bytes. 





Index 

A 
Aborting a transaction, B-36, B-40 
Abort reason codes, 16-1 
ABORT subcommand 

with LMCP REPAIR command, B-87 
Access control list 

See ACL 
ACCESSIBILITY keyword 

BACKUP/IGNORE, A-3 
Accounting Utility (ACCOUNTING) 

vector processing support, B-15 
ACL (access control list) 

on vector capability object, B-13 to B-14 
ACP-QIO interface 

movefile subfunction, 22-1 
Adapter 

bus, B-59, B-60, B-61 
showing information, B-59, B-60, B-61 

ADAPTER keyword 
Error Log Utility (ERROR LOG), B-62 

Address 
converting to node address, C-57 
converting to node name, C-58 

AGEN$MAIL.COM, B-54 
AGEN$Pl logical name, B-52 
AGEN$P2 logical name, B-52 
AGEN$P3 logical name, B-52 
AGEN$PARAMS.REPORT, B-50 

using MAIL to send, B-54 
Arithmetic exception 

debugging vector, B-19, B-28 
AST (asynchronous system trap) 

vector processing synchronization issues, B-25 
Asymmetric vector processing configuration, B-5 
Asynchronous option 

VMS RMS support, B-110 
Asynchronous system trap 

See AST 
Atomic transaction 

defined, B-35 
Attribute for DNS 

assigning, C-5 
enumerating, C-2 7 
modifying, C-30 
reading, C-31 
returning value, C-67 

Attribute for DNS (font.) 
testing for one, C-33 
types of, C-12 

Attribute_Name identifier, C-41 
Attribute_Name_Str identifier, C-41 
AUTOGEN 

AGEN$PARAMS.REPORT, B-50 
command procedure for automating, B-52 
controlling size of page and swap files, B-51 
including files in MODPARAMS.DAT, B-50 
LNMSHASHTBL parameter, B-52 
logical names defined by, B-52 
LRPCOUNT parameter, B-52 
new feedback parameters, B-52 
using MAIL to send reports, B-54 
validation of parameter names, B-49 

Automatic start 
See Autostart 

Autostart, 5-7 
designating queues, 5-8 
disabling on a node, 5-10 
enabling on a node, 5-9 
of queue manager, 5-6 
related commands, 5-7 

Autostart queues 
preventing from starting, 5-9 
restriction, 5-8 
starting, 5-7, 5-9 

Availability 
of queue manager, 5-1 
of queues, 5-7, 5-8 

Availability of data 
with volume shadowing, B-106 

B 
BACKUP command 

/MEDIA_FORMAT qualifier, B-41 
BACKUP qualifier 

EXCHANGEINETWORK command, E-17 
Backup Utility (BACKUP), A-2, A-3, D-5 to D-8 

/BUFFER_COUNT command qualifier, D-7 
cyclic redundancy checking, D-8 
/DELETE qualifier, A-2 
documentation, 1-4 
/IGNORE=LABEL_PROCESSING qualifier, 

A-3 
/IGNORE qualifier, A-3 

Index-1 



Backup Utility (BACKUP) (font.) 

label processing, A-3 
/MEDIA_FORMAT qualifier, B-41 
new tape capabilities, A-1 
performance enhancements, D-5 
pressing CtrUT during BACKUP, D-8 
/RECORD qualifier, A-2 
/RELEASE_TAPE qualifier, A-2 
setting SYSGEN parameters to enhance 

performance of, D-7 
setting up BACKUP account, D-5 
summary of VMS Version 5.2 new features, 

D-5 
UAF parameters for BACKUP account, D-6 

Basic Linear Algebra Subroutines 

See BLAS 
Batch log time-stamps, 3-5 

to set prefix, 3-5 
to verify prefix control string, 3-5 

BEFORE qualifier 
EXCHANGE/NETWORK command, E-18 

Big-endian 
byte handling, A-19, A-20, A-33, A-34 
VMEbus, A-10 

BLAS (Basic Linear Algebra Subroutines), B-7, 
B-21, B-23 

Boolean identifier, C-41 
BPAGE qualifier 

in Linker Utility, B-107, B-108 
Bugcheck 

UBMAPEXCED, A-25, A-30 
Building dependable VMS systems, 1-4 
Byte order pattern, A-10 

swapping, A-19, A-20 
Byte swap longword 

for VME support, A-33 
Byte swap routine 

for VME support, A-33, A-34 
Byte swap word 

for VME support, A-34 
BY_OWNER qualifier 

EXCHANGElNETWORK command, E-18 

C 
CACHE keyword 

Error Log Utility (ERROR LOG), B-62 
Calculator 

hexadecimal mode, B-48 
octal mode, B-48 

Capability 
See also Vector capability 
defined, B-8 

Case sensitivity 
MACRO global symbol definitions, 19-2 
specifying, 19-2, 19-6 

CASE_SENSITIVE option 
in linker option file, 19-1 

CDA Viewer 
in DECwindows, B-46 
new processing options 

orientation radio box, B-47 
Scale Factor, B-47 
Use Bitmap Widths toggle button, B-47 
Use Comments toggle button, B-47 
Use Fake Trays toggle button, B-48 
Watch Progress toggle button, B-48 

PostScript file support, B-46 
Character string 

as arguments to linker options 
case-sensitivity, 19-1 

Child directory 
DNS, C-6 

CI (computer interconnect) 
using multiple CI interfaces, B-55 
using multiple STAR couplers, B-55 

Circuit 
devices 

controllers, B-105 
DEMNA controller, B-105 
Second Generation Ethernet Controller 

(SGEC), B-105 
Class_Name identifer, C-41 
Class_Name_Str identifier, C-41 
Class_Version identifer, C-41 
Clearinghouse, C-13 
Clock 

menu bar, B-48 
Cluster-accessible tape, 7-1 
Clusterwide queue manager, 5-1 
Color name file, A-61 
COMMIT subcommand 

with LMCP REPAIR command, B-88 
Committing a transaction, B-36, B-40 
/COMMSYNC qualifier 

in SET TERMINAL DCL command, 18-2 
Compaction of data 

See Data record compaction 
Compiler 

vectorizing, B-7, B-21 
Compiling fonts 

for DECwindows server, B-41 
Compound document 

See also DDIF 
defined, E-1 

Computer interconnect 
See CI 

Condition value, C-44 to C-47 
Confidence identifier, C-41 
Confidence level, C-15 
Configuration 

for volume shadowing, B-106 
CONFIGURATION keyword 

Error Log Utility (ERROR LOG), B-62 
/CONFIRM qualifier 

Index-2 



/CONFIRM qualifier (font.) 
EXCHANGE/NETWORK command, E-18 

Controlling data compaction, B-41 
CONVERT command 

LMCP Utility, B-77 
CREATE command 

LMCP Utility, B-78 
/CREATED qualifier 

EXCHANGE/NETWORK command, E-18 
Creating a transaction log file, B-69 
Cyclic redundancy checking, D-8 

D 
Data 

availability with volume shadowing, B-106 
ensuring against loss, B-106 

Data compaction 
controlling, B-41 
volume mount, B-43 

Data record compaction, B-42 
Data structure 

DECdtm programming routines, B-40 
DCL command 

CONVERT/DOCUMENT 
/MESSAGE_FILE qualifer, 2-6 

SET FILE 
/MOVE qualifer, 11-2 
/NOMOVE qualifier, 11-2 

SET TERMINAL 
/COMMSYNC qualifer, 18-2 
/NOCOMMSYNC qualifer, 18-2 

summary of new and enhanced, B-41 
DDIF (Digital Document Interchange Format) 

VMS RMS support of, E-1 
DDIF-to-text RMS extension, E-1 
Debugger, 14-1 

support for DECthreads, 14-1 
support for vectorized programs, B-26 

DECdtm programming routines 
data type, B-40 

DECdtm services, 16-1 to 16-2, B-34 to B-40 
See also Log Manager Control Program Utility 
aborting a transaction, B-36, B-40 
atomic transaction, B-35 
committing a transaction, B-36, B-40 
customizing, B-34, B-69 
data type, B-40 
disabling, B-34, B-69 
log manager, B-38, B-66 
Log Manager Control Program Utility (LMCP), 

B-40, B-66 
exiting, B-7 5 
invoking, B-75 

Monitor Utility (MONITOR) support, B-40, 
B-95 to B-100 

participant in a transaction, B-36, B-39, B-74 
resource manager, B-36 

DECdtm services (font.) 
RMS Journaling support, B-114 to B-119 
system services, B-39 
transaction identifier (TID), B-39, B-74 
transaction log file, B-38, B-66 

creating, B-69 
determining location, B-67 
dumping, B-80 
estimating file size, B-69 
format, B-73 
placing in alternate location, B-73 
repairing, B-85 
resizing, B-72 
sample display, B-74 
showing, B-93 

transaction manager, B-36 
transaction processing, B-34 
transaction states, B-39, B-74 
TRANSACTION_ID data type, B-40 
two-phase commit protocol, B-35, B-39 

DECnet account 
limiting default access, D-2 

DECnet event messages, C-73 
Decompressing the system messages help library, 

B-44 
DECram disk 

specifying size, 2-3 
DECthreads 

debugger support, 14-1 
DECwindows 

Calculator 
hexadecimal mode, B-48 
octal mode, B-48 

Clock 
menu bar, B-48 

Mail 
displaying PostScript files, B-48 

DECwindows CDA Viewer 
See CDA Viewer 

DECwindows screen 
multiscreen support, B-45 

DECwindows X11 Display Server, A-61 
REINSTALL command, D-1 
Delta/XDelta Utility (DELTA/XDELTA) 

support for vectorized programs, B-27 
DEMFA controller, A-52 
DEMNA controller 

circuit name, B-105 
line name, B-105 

Dependability 
building into VMS systems, 1-4 

Device driver 
VME coding conventions, A-15 

Device names 
for VAXft 3000 system, B-57 

Digital Document Interchange Format 
See DDIF 

DIGITAL Extended Math Library 

Index-3 



DIGITAL Extended Math Library (font.) 

See DXML 
Direct memory access 

VMEbus devices, A-12 
VMEbus mapping, A-13 
VMEbus map register, A-13 

Directory 
DNS types, C-6, C-14 
enumerating in DNS, C-27 

DISABLE AUTOSTART command, 5-8, 5-10 
.DISABLE directive, B-22 
Disabling autostart on a node, 5-10 
Disabling the TP_SERVER process, B-34, B-69 
Disk 

repairing faulty, B-106 
shadowing, B-106 

Disk activity 
reduced with new queue manager, 5-1 

Disk space 
amount needed to decompress help library, 

B-44 
Distributed Name Service 

See DNS 
DMA 

See Direct memory access 
DMA interface 

for VMEbus device, A-35 
DMA map registers 

for VME, A-22, A-24, A-26 
DMA routines 

for VMEbus devices, A-13 
DNS$APPEND_SIMPLENAME_TO_RIGHT 

routine, C-50 
DNS$COMPARE_FULLNAME routine, C-52 
DNS$COMPARE_SIMPLENAME routine, C-53 
DNS$CONCATENATE_NAME routine, C-54 
DNS$CONTEXTVARNAME item, C-43 
DNS$CONTEXTVARTIME item, C-43 
DNS$COUNT_SIMPLENAMES routine, C-56 
DNS$CVT_DNSADDRESS_TO_BINARY routine, 

C-5 7 
DNS$CVT_DNSADDRE SS_TO_NODENAME 

routine, C-58 
DNS$CVT_NODENAME_TO_DNSADDRESS 

routine, C-60 
DNS$CVT_TO_USERNAME_STRING routine, 

C-62 
DNS$PARSE_USERNAME_STRING routine, 

C-64 
DNS$REMOVE_FIRST_SET_VALUE routine, 

C-67 
DNS$REMOVE_LEFT_SIMPLENAME routine, 

C-69 
DNS$REMOVE_RIGHT_SIMPLENAME routine, 

C-71 
DNS (Distributed Name Service), C-3 

child directory, C-6 
clearinghouse, C-13 

DNS (Distributed Name Service) (font.) 
event messages, C-73 
restrictions, C-4 
root directory, C-5 
system error messages, C-3 
wildcards, C-9, C-20 

DNS call 
timeout in, C-10 

DNS clerk 
locating data in namespace, C-23 
starting, C-73 

$DNS function code, C-26 to C-34 
converting from opaque, C-30 
converting opaque name, C-33 
converting string name, C-31 
creating an object, C-26 
deleting an object, C-26 
enumerating attributes, C-27 
enumerating child directories, C-27 
enumerating objects, C-28 
enumerating soft links, C-29 
modifying attributes, C-30 
reading attribute, C-31 
resolving soft link, C-32 
testing a group, C-34 
testing for attribute, C-33 

$DNS item code, C-35 to C-41 
arguments, C-41 to C-42 
attribute address, C-39 
attribute name, C-35 
attribute type, C-35 
attribute value address, C-39 
Boolean values, C-37 
caching results, C-38 
confidence level, C-36 
converting names, C-36, C-37, C-38, C-40 
entry type, C-36, C-37 
enumerating directories, C-36 
enumerating functions, C-36 
enumerating objects, C-36 
member name, C-38 
modifying attributes, C-38 
object class, C-36 
object name, C-39 
simple name address, C-39 
soft link name, C-37 
specifying groups, C-37 
suppressing namespace name, C-40 
target name address, C-39 
testing attribute value, C-40 
timeout value, C-40 
UID address, C-40 
version of object, C-40 
wildcard, C-41 

DNS name 
case sensitivity, C-9 
comparing, C-53 
converting, C-30, C-31, C-33 

Index-4 



DNS name (Copt.) 
converting full name, C-30 
defining logicals, C-8 
format of, C-5 
source of, C-5 

DNS naming conventions 
binary names, C-9 
format, C-5 
logical names, C-8 
quoted names, C-9 
syntax, C-6 
valid characters, C-8 
wildcards, C-9 

DNS object, C-6 
creating, C-9 to C-11, C-26 
deleting, C-26 
enumerating, C-28 
modifying, C-11 to C-13 
reading attributes of, C-17 

DNS string name 
converting to opaque, C-31 
format, C-5 

$DNS system service, C-25 
arguments, C-25 to C-43 
building item list, C-34 
description, C-43 to C-44 
format, C-25, C-43 
function codes, C-25 
item code identifiers, C-41 
qualifying status, C-43 
returns, C-25 
status block, C-25 

$DNSW system service, C-48 
Documentation 

new, 1-4 
DSA disk 

specifying preferred path, B-55 
DUMP command 

LMCP Utility, B-80 
DWMVA adapter, A-9 

parameter selection, A-10 
DXML (DIGITAL Extended Math Library), B-8, 

B-21 

E 
ENABLE AUTOSTART command, 5-7 
.ENABLE directive, B-22 
Enabling autostart on a node, 5-9 
Entry_Type identifier, C-41 
Enumerate call 

attributes, C-27 
directories, C-27 
objects, C-28 
soft links, C-29 

Enum Att_Name identifier, C-41 
ERLBUFFERPAGES parameter 

description, D-2 

Error Log Utility (ERROR LOG) 
qualifiers 

/EXCLUDE 
device class keywords, B-62 
entry type keywords, B-62 

/INCLUDE 
device class keywords, B-62 
entry type keywords, B-62 

/NODE, B-62 to B-64 
supported device types for VAXft 3000 systems, 

B-62 
vector processing support, B-16 

Error messages, 4-2 
Ethernet, A-52 
Ethernet/820 controllers 

circuit name, B-105 
line name, B-105 

Event flag 
$DNS system service, C-25 

Event messages 
DNS, C-73 

Exception 
servicing vector, B-28 to B-31 

EXCHANGE/NETWORK command, E-13 to 
E-21 

creating files, E-17 
protecting files, E-17 
qualifiers, E-17 
selecting transfer modes, E-15 
transferring files, E-15 
wildcard characters, E-16 

/EXCLUDE qualifier 
Error Log Utility (ERROR LOG) 

device class keywords, B-62 
entry type keywords, B-62 

EXCHANGE/NETWORK command, E-18 
Exiting 

LMCP, B-75 
LMCP REPAIR command mode, B-89 

EXIT subcommand 
with LMCP REPAIR command, B-89 

Expired-Date Suppression, B-112 
/EXPIRED qualifier 

EXCHANGE/NETWORK command, E-18 

F 
F$ENVIRONMENT lexical function, 3-7 
F$GETJPI lexical function, B-14 to B-15 
F$GETQUI lexical function, 3-8 to 3-10 
F$GETSYI lexical function, B-14 to B-15 
F$MESSAGE lexical function, 2-7 to 2-8 
FAB$V_ASY 

documentation change, B-110 
Failover 

of queue manager, 5-1 
of queues, 5-7, 5-8 
using shadowed disks, B-106 

Index-5 



FAL (file access listener) 
creating a default account, D-3 
default access, D-2 

Fault tolerance 
through volume shadowing, B-106 

FDDI 
See Fiber distributed data interface (FDDI) 

/FDL qualifier 
EXCHANGE/NETWORK command, E-19 

Fiber distributed data interface (FDDI), A-1 
and Ethernet, A-52 
error code, A-5 
NCP Line Counters for, A-4 
new and changed parameters, A-54 
new type of LAN, A-53 
overview of, A-52 
programming interface, A-52 

File 
copying, E-13 
creating, E-13 
transferring, E-13, E-15 

File access listener 
See FAL 

File Expiration Date and Time 
evaluation criteria, B-112 
usage, B-112 

File protection 
EXCHANGE/NETWORK command, E-17 

Files-11 On-Disk Structure Level 2 ACP, B-112 
File tag 

creating, E-1 
DDIF, E-1 
disposition by COPY command, E-4 
requirement for, E-1 
stored semantics file attribute, E-1 
using, E-1 

First-Order Linear Recurrence subroutines 
See FOLR subroutines 

FOLR (First-Order Linear Recurrence) 
subroutines, B-7, B-21, B-23 

FONT command, B-41 
FORCE option 

SET VOLUME command, 2-4 
FORGET subcommand 

with LMCP REPAIR command, B-90 
Full name 

converting to opaque, C-31 
converting to string, C-30 

Full_Name_String identifer, C-42 

G 
Generic queues 

restriction, 5-8 
Global symbol definitions 

specifying case sensitivity, 19-2, 19-6 
Group_Member identifier, C-42 

H 
Help 

setting up and decompressing, B-44 
HELP command 

in LMCP Utility, B-84 
Help library 

decompressing system messages, B-44 
HELP subcommand 

with LMCP REPAIR command, B-91 
HLP$LIBRARY logical name, B-44 

i 

/INCLUDE qualifier 
Error Log Utility (ERROR LOG) 

device class keywords, B-62 
entry type keywords, B-62 

INFORMATIONAL keyword 
Error Log Utility (ERROR LOG), B-62 

INITIALIZE command 
/SIZE qualifier, 2-3 

INITIALIZE/QUEUE command 
/AUTOSTART_ON qualifier, 5-7, 5-8 

Interrupt 
request level, A-11 
with VME devices, A-11 

IO$_SETPRFPTH function 
specifying preferred path for DSA disks, B-56 

IOC$ALOVMEMAP_DMAN routine, A-22 
IOC$ALOVMEMAP_DMA routine, A-22 
IOC$ALOVMEMA.P_PIO routine, A-28 
IOC$LOADVMEMAP_DMAN routine, A-24 
IOC$LOADVMEMAP_DMA routine, A-24 
IOC$LOADVMEMAP_PIO routine, A-29 
IOC$RELVMEMAP_DMA routine, A-26 
IOC$RELVMEMAP_PIO routine, A-31 
IOC$VME_BYTE_SWAP_LONG routine, A-33 
IOC$VME_BYTE_SWAP_WORD routine, A-34 

J 
JBCSYSQUE.DAT file, 5-2 
Job controller 

function, 5-1 
separation from queue manager, 5-1 
starting queue manager, 5-1, 5-4 

Job retention 
user-specified, 3-3 

Job state 
stalled, 3-2 

Journal file, 5-2 
changing location after upgrade, 5-4 
location, 5-4 

Index-6 



L 
LAD service 

bindings, 6-1 
password protection, 6-1 
write protection, 6-1 

LAT 
advantages and uses, 9-6 
application programs, 9-6 
creating a VMS service, 9-4 
customizing, 9-13 
enabling outgoing connections, 9-5 
load balancing, 9-6 
managing the database size, 9-14 
modems, 9-6 
printers, 9-6 
setting up logical ports, 9-4 
terminals, 9-6 

LAT$CONFIG command procedure, 9-13 
LAT$STARTUP command procedure, 9—1, 9-13 
LAT$SYSTARTUP.COM command procedure, 9-3 
LAT$SYSTARTUP command procedure, 9—1, 9-13 
LATACP process, 9-14 
LAT connections 

outgoing, 9-5, 9-7 
LAT Control Program (LATCP) Utility, 9-7, 9-13 
LATCP 

See LAT Control Program (LATCP) Utility 
LAT database 

managing size, 9-14 
LAT network 

starting in SYSTARTUP_V5.COM, 9-1 
LAT node 

customizing, 9-3 
LAT protocol software 

starting with LAT$STARTUP.COM, 9-1, 9-13 
LAT SENSEMODE $QIO function, 17-7 
LAT service 

defined, 9-5 
LAT SETMODE $QIO function, 17-1 
Lexical functions 

F$ENVIRONMENT, 3-7 
F$GETQUI, 3-8 
F$MESSAGE, 2-7 
vector processing support, B-14 

LIB$GETQUI run-time library routine, 13-1 
Librarian Utility (LIBRARIAN) 

using to set up online help, B-44 
License 

command procedure, 10-2 
copying of a, 10-1 
moving of a, 10-1 
PAKs with reservation lists, 10-2 
registration, 10-1 
reservation list, 10-1 

Line 
devices 

Line 
devices (font.) 

controllers, B-105 
DEMNA controller, B-105 
Second Generation Ethernet Controller 

(SGEC), B-105 
Linker options file 

case sensitivity of keyword arguments, 19-2 
CASE_SENSITIVE= option, 19-1 

Linker Utility (LINK) 
/BPAGE qualifier, B-107, B-108 
CASE_SENSITIVE= option, 19-1 

Little-endian 
VMEbus, A-10 

LMCP 
See Log Manager Control Program Utility 

LNMSHASHTBL parameter 
use with AUTOGEN feedback, B-52 

Load balancing, B-55 
LAT, 9-6 
using SYSGEN parameters, B-55 

LOAD_PWD_POLICY system parameter, B-57 
LOAD_PWS_POLICY parameter 

in System Generation Utility (SYSGEN), B-57 
LOAD_SYS_IMAGES parameter 

in System Generation Utility (SYSGEN), B-57 
Local area VAXclusters, A-2 
Local buffer pool 

effect on UO performance, B-110 
Local buffers 

increase in limit, B-110 
specifying number with multibuffer count 

XABITM, B-110 
Lock manager limit, C-1 
Log file 

See Transaction log file 
Logical name, C-8 

process logical names defined by AUTOGEN, 
B-52 

QMAN$MASTER, 5-4 
requirement in a VAXcluster, 5-5 

Log manager, B-38, B-66 
Log Manager Control Program Utility (LMCP), 

B-40, B-66 
command descriptions, B-76 to B-94 
CONVERT command, B-77 
CREATE command, B-78 
DUMP command, B-80 
exiting, B-75 
HELP command, B-84 
invoking, B-75 
privileges, B-75 
REPAIR command, B-85 

subcommands, B-86 to B-93 
SHOW command, B-93 

LOGOUT command 
vector processing support, B-15 

/LOG qualifier 

Index-7 



/LOG qualifier (font.) 
EXCHANGElNETWORK command, E-19 

Loopback mirror 
See MIRROR 

LRPCOUNT parameter 
use with AUTOGEN feedback, B-52 

M 
MACRO DCL command 

/NAMES qualifier, 19-2, 19-6 
Macros 

VMEbus devices, A-18 
Magnetic tape 

retensioning, 2-5 
Magnetic tape devices 

serving within a cluster, 7-1 
MAIL 

default access, D-3 
Mail (DECwindows) 

displaying PostScript files, B-48 
Mailbox 

driver, 21-1 
function modifiers 

IO$M_READERCHECK, 21-2 
IO$M_STREAM, 21-2 
IO$M_WRITERCHECK, 21-2 

wait for writer/reader function, 21-1 
Manager, queue 

See Queue manager 
Managing the LAT database size, 9-14 
Map register 

allocating for VME DMA, A-13 
for VME PIO, A-13 
loading for VME DMA, A-13 

Marginal vector consumer, B-9 
detection of, B-13 

Master file, 5-2 
changing location after upgrade, 5-4 

/MEDIA_FORMAT=[NO]COMPACTION qualifier, 
B-43 

/MEDIA FORMAT qualifier, B-42 
in Backup Utility (BACKUP), B-42 
with BACKUP command, B-41 
with MOUNT command, B-41 

Memory management, A-5 
Messages 

facilities with new or modified system messages, 
4-1 

new system messages, 4-2 
online help for, B-44 
reported in a vector processing system, B-17 

to B-21 
/MESSAGE_FILE qualifier 

in CONVERT/DOCUMENT DCL command, 
2-6 

MIRROR 
default access for loopback testing, D-2 

Modes 
of transferring files, E-15 

!MODIFIED qualifier 
EXCHANGE/NETWORK command, E-19 

Monitor Utility (MONITOR), B-95 
cluster performance, D-3 
DECdtm services support, B-95 to B-100 
MONITOR TRANSACTION command, B-95 
MONITOR VECTOR command, B-100 
support for DECdtm services, B-40 
TRANSACTION class, B-95 
TRANSACTION class record, B-99 
VECTOR class, B-100 
VECTOR class record, B-104 
vector processing support, B-16 

MONITOR VECTOR command, B-100 
MOUNT command 

/MEDIA_FORMAT qualifier, B-41 
Mounting of queue file disk, 5-4 
Movefile subfunction 

calling, 22-1 
description, 22-1 

/MOVE qualifier 
in SET FILE DCL command, 11-2 

Moving queue files 
after queuing system upgrade, 5-4 
master file, 5-4 
queue and journal files, 5-4 

MSCP server 
load balancing, B-55 

MSCP_LOAD parameter 
using to control load balancing, B-55 

MSCP_SERVE ALL parameter 
using to control load balancing, B-55 

Multibuffer count XABITM 
for increased local buffering, B-110 
precedence over RAB$B_MBF field, B-110 

Multiscreen support, B-45 
Multithread program 

debugger support, 14-1 

N 
Name 

DNS 
See DNS name 

Name service 
See DNS (Distributed Name Service) 

Namespace, C-4 
changing default, C-73 
clearinghouses in, C-13 
distributing, C-13 
listing information, C-20 to C-23 
name of, C-7, C-42 
structure of, C-5 
ways of using, C-4 

!NAMES qualifier 
for MACRO DCL command, 19-2 

Index-8 



NCP executor, C-1 
SET/DEFINE EXECUTOR command, C-1 
SHOW EXECUTOR CHARACTERISTICS 

command, C-2 
NCR 53C94 controller 

programming support, A-51 
NETCONFIG.COM command procedure 

security enhancements, D-2 
NETCONFIG_UPDATE.COM, D-4 
Network Control Program (NCP) 

line and circuit support for new Ethernet/820 
controllers, B-105 

line and circuit support for VAXft 3000, B-105 
Network default access 

controlling access to your system, D-2 
for existing systems, D-4 
for VAXcluster members, D-4 

/NEW_VERSION qualifier 
to START/QUEUE/1VIANAGER command, 5-5 

NEXT subcommand 
with LMCP REPAIR command, B-92 

/NOCOMMSYNC qualifier 
in SET TERMINAL DCL command, 18-2 

/NOCONFIRM qualifier 
EXCHANGElNETWORK command, E-18 

Node name 
converting to address, C-60 

/NODE qualifier 
Error Log Utility (ERROR LOG), B-62 to 

B-64 
/NOLOG qualifier 

EXCHANGE/NETWORK command, E-19 
/NOMOVE qualifier 

in SET FILE DCL command, 11-2 

0 
Object 

See DNS object 
Obsolete command, 5-7 
Obsolete qualifiers, 5-7 
Obsolete queue file, 5-2 
Online help 

for system messages, B-44 
Opaque name 

concatenating, C-50, C-54 
converting to string, C-30, C-33, C-62 
converting user name, C-64 
counting components, C-56 
format of, C-5 
returning simple name, C-69, C-71 

Open-bus device support 
SCSI controller, A-51 

Open-bus driver support, A-1, A-8 
Operating system routines 

for VME drivers, A-21 
Orientation radio box processing option, B-47 
Outgoing connections 

Outgoing connections (font.) 
enabling in LAT, 9-5, 9-7 

P 
Page file 

controlling size in AUTOGEN, B-51 
deinstalling, D-1 

Page size 
specifying in link operation, B-108 

Participant in a transaction, B-36, B-39, B-74 
/PARTICPANTS qualifier 

in SHOW PROCESS SDA command, 20-3 
Password 

screening, B-64 
password history list, B-64 
site-specific filter, B-65 

specifying an encryption algorithm, B-65 
Patch Utility (PATCH) 

support for vectorized programs, B-28 
PEDRIVER data structures, A-62 

BUS, A-62 
channel (CH), A-62 
PORT, A-62 
port descriptor table (PDT), A-62 
virtual circuit (VC), A-62 

Phone Utility (PHONE) 
default access, D-2 

PIO 
See Programmed UO 

PIO map registers 
for VME, A-28, A-29, A-31 

Porting 
VME device drivers, A-16 

PostScript files 
CDA Viewer support, B-46 
VIEW command support, B-46 

Preferred access path 
programming examples for, A-60 

Preventing autostart queues from starting, 5-9 
Privileges 

for LMCP commands, B-75 
Proactive memory reclamation, A-1, A-5 
Processing options 

CDA Viewer 
orientation radio box, B-47 
Scale Factor, B-47 
Use Bitmap Widths toggle button, B-47 
Use Comments toggle button, B-47 
Use Fake Trays toggle button, B-48 
Watch Progress toggle button, B-48 

Process-permanent files 
VMS RMS asynchronous support, B-110 

Programmed UO 
VMEbus device, A-13 

Programming 
NCR 53C94 controller, A-51 
VMEbus device driver, A-8 

Index-9 



PSWRAP command, B-41 

Q 
QMAN$MASTER.DAT, 5-2 

changing location after upgrade, 5-4 
QMAN$MASTER logical name, 5-4 

defining in a VAXcluster environment, 5-4 
Qualifiers 

obsolete, 5-7 
Queue database 

See also Queue files 
new design, 5-2 

Queue failover, 5-7 
Queue files, 5-2 

changing location after upgrade, 5-4 
location, 5-4 
mounting of disk holding, 5-4 
moving after upgrade, 5-4 
new, 5-2 
obsolete, 5-2 

Queue manager 
autostart, 5-6 
availability, 5-1 
clusterwide, 5-1 
failover, 5-1 
function, 5-1 
restarting after moving queue files, 5-4, 5-5 
separation from job controller, 5-1 
starting, 5-1 
starting new, 5-5 
stopping, 5-7 
stopping before moving queue files, 5-4 

Queues 
availability, 5-7, 5-8 
designating autostart, 5-8 
failover, 5-8 
starting autostart, 5-9 
stopping on a node, 5-7 

R 
RAB$B_MBF field 

limitation, B-110 
Record blocking 

volume mount, B-43 
REPAIR command 

in LMCP Utility, B-85 
ABORT subcommand, B-87 
COMMIT subcommand, B-88 
EXIT subcommand, B-89 
FORGET subcommand, B-90 
HELP subcommand, B-91 
NEXT subcommand, B-92 

Requirements 
defining logical name in a VAXcluster 

environment, 5-5 
location of queue and journal file, 5-4 

Resource manager, B-36 
Restarting queue manager 

after moving queue files, 5-4, 5-5 
RMS$_x:AB error, B-112 
RMS Journaling 

support for DECdtm services, B-114 to B-119 
RMS services 

using XAB$_NORECORD x;ABITM, B-112 
RTL (Run-Time Library) 

DNS$ routines, C-49 to C-73 
LIB$GETQUI, 13-1 
MTH$ routines, B-7, B-21, B-23 
Parallel Processing, 13-3 
PPL$, 13-3 
PPL$DECREMENT_SEMAPHORE, 13-4 
PPL$REMOVE_WORK ITEM, 13-4 
PPL$UNIQUE_NAME, 13-3 
PPL$WAIT_AT_BARRIER, 13-4 
vectorized MTH$ routines, B-7, B-21, B-23 

S 
Scalar 

defined, B-5 
processor synchronization, B-32 

Scalar consumer, B-8 
Scale Factor processing option, B-47 
Screen 

supporting more than one, B-45 
SCSI data structures 

changes, A-51 
SCSI device support 

NCR 53C94 controller, A-51 
SCSI disk class driver 

disabling the loading of, B-56 
SCSI macro 

changes, A-51 
SCSI tape class driver 

disabling the loading of, B-56 
SCSI_NOAUTO system parameter, B-56 
Second Generation Ethernet Controller (SGEC) 

circuit name, B-105 
line name, B-105 

Security 
enhancements to NETCONFIG.COM 

for existing systems, D-4 
for new systems, D-2 

screening new passwords, B-64 
password history list, B-64 
site-specific filter, B-65 

site-defined password policy, B-64 to B-66 
specifying an encryption algorithm, B-65 

Separation of job controller and queue manager, 
5-1 

Service 
defined, 9-5 

Service announcements, 9-7 
Service node, 9-7 

Index-10 



Service node (font. ) 
defined, 9-5, 9-7 

Session language 
new languages, B-45 
setting another, B-45 

SET ACL command, B-14 
SET/DEFINE EXECUTOR command, C-1 
SET FILE/MOVE[NOMOVE] command, 11-2 
SET HOST/LAT command, 9-5 
SET MAGTAPE/R,ETENSION command, 2-5 
SET PREFIX command, 3-6 to 3-7 
SET TERMINAL command 

/COMMSYNC qualifier, 18-2 
SET VOLUME command 

/R,EBUILD=FORCE option, 2-4 
Shadowing 

See Volume shadowing 
SHADOW_MBR_TMO parameter, 8-1 
SHOW ACL command, B-14 
SHOW/BI=BIindex command 

in System Generation Utility (SYSGEN), B-59 
SHOW/BUS=busId command 

in System Generation Utility (SYSGEN), B-60 
SHOW command 

LMCP Utility, B-93 
SHOW CPU command 

vector processing support, B-15 
SHOW ENTRY command, 3-1 

change in format of, 3-1 
executing, 3-2 
jobnames parameter, 3-1 
job state, 3-2 

SHOW EXECUTOR CHARACTERISTICS 
command, C-2 

SHOW LOGS SDA command, 20-2 
SHOW PROCESS command 

vector processing support, B-15 
SHOW PROCESS/IMAGES 

SDA (System Dump Analyzer), B-113 
SHOW PROCESS/PARTICIPANTS 

SDA (System Dump Analyzer), 20-3 
SHOW PROCESS/VECTOR_REGISTERS 

SDA (System Dump Analyzer), B-113 
SHOW QUEUE command, 3-2 

change in display, 3-2 
SHOW TRANSACTIONS SDA command, 20-6 
SHOW/:~1VII=BIindex command 

in System Generation Utility (SYSGEN), B-61 
SHOW ZONE command, B-41 
Shutting down queue manager 

before moving queue files, 5-4 
Simple name 

converting to opaque, C-31 
Simple_Name_Str identifier, C-42 
/SINCE qualifier 

EXCHANGE/NETWORK command, E-19 
Skulk, C-16 
SMP_CPUS parameter, B-11 

Soft link 
DNS, C-6 
enumerating, C-29 
locating target entry, C-32 

SPI$CONNECT macro 
using byte count, A-51 

SS$_ACCVIO, B-28, B-29 
SS$_BADCONTEXT, B-31 
SS$_CPUNOTACT, B-31 
SS$_EXQUOTA, B-31 
SS$_ILLVECOP, B-29 
SS$_INSFMEM, B-31 
SS$_INSFWSL, B-31 
SS$_IVADDR, A-5 
SS$_MCHECK, B-31 
SS$_NOPRN, B-31 
SS$_VARITH, B-28, B-30 
SS$_VASFUL, B-31 
SS$_VECALIGN, B-28, B-30 
SS$_VECDIS, B-30 
Stalled job state, 3-2 
START/CPU command, B-11 
Starting autostart queues, 5-7, 5-9 
Starting the LAT protocol software 

with LAT$STARTUP.COM, 9—1, 9-13 
Starting the new queue manager, 5-5 
START/QUEUE command 

/AUTOSTART_ON qualifier, 5-8 
START/QUEUE/MANAGER command, 5-1 

caution about /NEW_VERSION qualifier, 5-5 
obsolete qualifiers, 5-7 
storage of, 5-6 

Startup 
mounting of queue file disk, 5-4 

START/ZONE command, B-41 
Status 

job, 3-2 
STOP/CPU command, B-11 
Stopping queue manager 

before moving queue files, 5-4 
Stopping queues on a node, 5-7 
Stopping the queue manager, 5-7 
STOP/QUEUE command 

/ON_NODE qualifier, 5-7 
STOP/QUEUElMANAGER command 

/CLUSTER command, 5-7 
STOP/QUEUE/NEXT command 

with autostart queues, 5-9 
STOP/QUEUEIR,ESET command 

with autostart queues, 5-9 
STOP/ZONE command, B-41 
Stored semantics file attribute 

See File tag 
SUBMIT command 

/NOTE qualifier, 3-8 
Swap file 

controlling size in AUTOGEN, B-51 
deinstalling, D-1 

Index-11 



SWAPLONG macro, A-19 
Swapping 

long-waiting processes, A-6 
Swapping bytes, A-19, A-20 
SWAPWORD macro, A-20 
SYLOGICALS.COM 

mounting queue file disk, 5-4 
Symmetric vector processing configuration, B-5 
Synchronization 

exception, B-32 
memory, B-32 

SYNDROME keyword 
Error Log Utility (ERROR LOG), B-62 

SYS$DECDTM_INHIBIT logical name, B-34, 
B-69 

SYS$DNS system service 
See $DNS system service 

SYS$GETJPI, B-24 
SYS$GETQUI, 12-1 
SYS$GETSYI, B-24 
SYS$JOURNAL logical name, B-67, B-73 

defining as a search list, B-67 
SYS$QUEUE_MANAGER. QMAN$JOURNAL, 

5-2 
changing location after upgrade, 5-4 

SYS$QUEUE_MANAGER.QMAN$QUEUES, 5-2 
changing location after upgrade, 5-4 

SYS$RELEASE_VP, B-24 
SYS$RESTORE_VP_EXCEPTION, B-26 
SYS$RESTORE_VP_STATE, B-26 
SYS$SAVE_VP_EXCEPTION, B-26 
SYS$SNDJBC, 12-1 
System disk 

shadowing the, B-106 
System Dump Analyzer (SDA) commands, 20-1 

SHOW LOGS, 20-2 
SHOW PROCESS 

/PARTICIPANTS qualifer, 20-3 
/TRANSACTIONS qualifer, 20-4 

SHOW TRANSACTIONS, 20-6 
System Dump Analyzer (SDA) Utility, A-2 

modifications for DECdtm services, 16-2 
PEDRIVER data structures, A-62 
SHOW PORTS command, A-62 
support for vectorized programs, B-27 
vector processing support, B-113 

System Generation Utility (SYSGEN), B-11, 
B-13, D-1 to D-2 

commands 
SHOWlBI=BIindex, B-59 
SHOW/BUS=busId, B-60 
SHOW/:~1VII=BIindex, B-61 

REINSTALL command, D-1 
ERLBUFFERPAGES parameter, D-2 
increase in lock manager limit values, C-1 
parameters 

LOAD_PWD_POLICY, B-57 
LOAD_SYS_IMAGE S, B-5 7 

System Generation Utility (SYSGEN) 
parameters (font.) 

SHADOW_MBR_TMO, 8-1 
TAPE_ALLOCLASS, 7-3 
TMSCP_LOAD, 7-1 

using parameters to control load balancing, 
B-55 

System messages, 4-2 
accessing with online help, B-44 
decompressing help library, B-44 
facilities with new or modified messages, 4-1 

System object 
default access for, D-2 

System parameters 
description, D-2 
displaying 

bus adapter, B-59, B-60, B-61 
System service, C-23 

transaction management services, B-39 
System services 

SYS$GETQUI and SYS$SNDJBC, 12-1 
System startup 

mounting of queue file disk, 5-4 
System tuning 

automated technique for running AUTOGEN, 
B-5 2 

T 
Tape 

cluster-accessible, 7-1 
Tape mass storage control protocol (TMSCP) 

server, 7-1 
Tape server, 20-1 
Tape support 

new, A-8 
TAPE_ALLOCLASS parameter, 7-1, 7-3 
Tasking (multithread) program 

debugger support, 14-1 
TASK object 

restricting default access, D-2 
Terminal server, 9-8 

defined, 9-5 
Thread 

debugger support, 14-1 
Timeout, shadow set member (SHADOW_MBR_ 

TMO), 8-1 
Time-stamps, 3-5 
TMSCP SDA symbol, 20-1 
TMSCP server, 7-1 
TMSCP server code 

base address, 20-1 
TMSCP_LOAD parameter, 7-1 
TP_SERVER process 

disabling, B-34, B-69 
Transaction 

aborting, B-36, B-40 
abort reason codes, 16-1 

Index-12 



Transaction (font.) 
atomic, B-35 
committing, B-36, B-40 
examples, B-34 
forgetting, B-90 
monitoring, B-95, B-100 
participants, B-36, B-39, B-74 
states, B-39, B-74 
timeouts, 16-2 

Transaction identifier (TID), B-39, B-74 
Transaction log file, B-38, B-66 

creating, B-69, B-77, B-78 
determining location, B-67 
dumping, B-80 
estimating file size, B-69 
format 

description, B-73 
sample display, B-74 

placing in alternate location, B-73 
repairing, B-85 
resizing, B-72 
showing, B-93 

Transaction manager, B-36 
Transaction processing, B-34 
/TRANSACTIONS qualifier 

in SHOW PROCESS SDA command, 20-4 
Transaction states, B-86 
TRANSACTION_ID data type, B-40 
Transfer modes 

EXCHANGElNETWORK command, E-15 
/TRANSFER_MODE qualifier 

EXCHANGElNETWORK command, E-19 
Trimming, A-7 
Two-phase commit protocol, B-35, B-39 
TZK10 tape cartridge drive, 2-5 

u 

UBMAPEXCED bugcheck, A-25, A-30 
UETP (User Environment Test Package) 

testing the DECnet connection, D-2 
Use Bitmap Widths toggle button, B-47 
Use Comments toggle button, B-47 
Use Fake Trays Toggle button, B-48 
User Environment Test Package 

See UETP 
User-specified job retention 

PRINT/R,ETAIN command, 3-3 
SET ENTRY/RETAIN command, 3-3 
SUBMIT/R,ETAIN command, 3-3 

User-written programs and procedures 
default access for, D-2 

V 
VAX Ada Run-Time Library, A-2, A-60 
VAXcluster 

MSCP server load balancing, B-55 
using multiple CI interfaces, B-55 
using multiple STAR couplers, B-55 
volume shadowing in, B-106 

VAXcluster environment 
defining QNJ[AN$MASTER in, 5-4 
queue manager in, 5-1 

VAXcluster failover, B-67, B-68 
VAXft 3000 computer 

adding a zone to a running system, B-41 
device names, B-57 
device types supported by Error Log Utility, 

B-62 
displaying current state of system, B-41 
line and circuit support within NCP, B-105 
removing a zone from a running system, B-41 
SHOW ZONE command, B-41 
START/ZONE command, B-41 
STOP/ZONE command, B-41 

VAX Procedure Calling Standard 
requirements for vectorized programs, B-31 to 

B-33 
VAX Vector Instruction Emulation Facility 

See VVIEF 
Vector 

defined, B-5 
Vector arithmetic exception 

debugging, B-19, B-28 
Vector capability, B-8 

determining availability within a system, B-15 
placing an ACL on, B-13 to B-14 

Vector-capable system, B-5 
Vector consumer, B-8 

determining the identity of, B-14, B-24 
managing, B-12 to B-14 
marginal, B-9, B-13 
obtaining information about, B-14 to B-16, 

B-24 
Vector context, B-8 

preserving, B-25, B-32 
Vector context switch 

fast, B-10 
obtaining information about, B-14, B-24 
slow, B-10 

Vector count register, B-5 
Vector CPU time 

definition, B-15 
obtaining information 

about image, B-15 
about process, B-14, B-15, B-24 
about processor, B-16 
about system, B-16 

Vector exception 

Index-13 



Vector exception (font.) 
arithmetic, B-19, B-28 
memory management, B-28 
servicing, B-28 to B-31 

Vector exception state 
preserving across procedure boundaries, B-25 

to B-26, B-32 
Vectorized program 

debugging, B-26 to B-31 
definition, B-7 to B-8 
requirements when written in VAX MACRO, 

B-22 
writing, B-7, B-21 to B-33 

Vectorizing compiler, B-7, B-21 
VECTOR keyword 

Error Log Utility (ERROR LOG), B-16, B-62 
Vector length register, B-5 
Vector mask register, B-5 
Vector-present processor, B-5 

adding to system, B-11 to B-12 
identifying, B-15, B-24 
removing from system, B-11 to B-12 
when unavailable, B-12 

Vector processing, B-4 to B-34 
benefits of, B-7 
establishing batch queues for, B-13 
integrated model, B-5 
management considerations, B-10 to B-21 
resource requirements, B-12 
support within Error Log Utility, B-16 
support within Monitor Utility, B-100 to 

B-104 
support within Patch Utility, B-28 
system descriptions, B-5 to B-6 
system messages, B-17 to B-21 

Vector processing support code 
loading, B-8, B-11 

Vector processing system 
configuring, B-11 to B-12 
obtaining information about, B-14 to B-16, 

B-24 
obtaining number of vector processors in, 

B-15, B-24 
performance, B-5 
tuning, B-12 to B-13 

Vector processor 
releasing, B-24 

Vector register, B-5 
Vector state 

definition, B-25 
VECTOR_MARGIN parameter, B-13 
VECTOR_PROC parameter, B-11 
Version number 

assigning, E-16 
VIEW command 

PostScript file support, B-46 
PS input format, B-41 
viewing PostScript files, B-41 

VMEbus 
arbitration, A-10 
hardware environment, A-9 
interrupts, A-11 
parameter selection, A-10 
programming, A-8 
protocol, A-10 
request level, A-10 
timeout, A-10 

VMEbus device support, A-8 
VME code example 

DMA interface, A-35 
VME device driver 

assembling, A-17 
coding, A-15 
coding concepts, A-16 
direct memory access, A-12 
documentation, A-9 
interrupt handling, A-11 
linking, A-17 
loading, A-17 
macros, A-18 
porting, A-16 
programmed UO, A-13 
programming, A-8 
routines, A-21 
sample for a DR11—W Emulator, A-35 

VME routines, A-21 
VMSINSTAL 

deferred running of image, A-1 
VMSINSTAL callback RUN_IMAGE, A-8 
VMS Performance Monitor 

See VPM 
VMS service node, 9-7 
VMS Volume Shadowing 

See Volume shadowing, B-106 
Volume shadowing 

configurations, B-106 
disk repair and recovery, B-106 
fault tolerance, B-106 
in a VAXcluster, B-106 
mixing phase I and phase II, B-106 
overview, B-106 
phase II support, B-106 
the system disk, B-106 
types, B-106 

VPM (VMS Performance Monitor), D-3 
default access for, D-2 

VVIEF$DINSTAL.COM, B-16 
VVIEF$INSTAL.COM, B-16 
VVIEF (VAX Vector Instruction Emulation 

Facility) 
determining presence of, B-15, B-16, B-24 
loading, B-16 
overview, B-10 
unloading, B—lfi 

Index-14 



W X 
Watch Progress toggle button, B-48 
Wildcard character 

DNS, C-9, C-20 
EXCHANGE/NETWORK command, E-16 

XAB$_ENABLE symbol, B-112 
XAB$_MULTIBUFFER_COUNT XABITM 

implementation of, B-110 
supporting data structure requirement, B-110 

XAB$_NORECORD XABITM, B-112 
buffer requirement, B-112 
typical usage, B-112 

XMI-to-VME routines, A-21 

Index-15 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing 
your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud 
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location Call Contact 

Continental USA, 800-DIGITAL Digital Equipment Corporation 
Alaska, or Hawaii P.O. Box CS2008 

Nashua, New Hampshire 03061 

Puerto Rico 809-754-7575 Local Digital subsidiary 

Canada 800-267-6215 Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

International Local Digital subsidiary or 
approved distributor 

Internals USASSB Order Processing - W1VI0/E 15 
or 
U.S. Area Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

sFor internal orders, you must submit an Internal Software Order Form (EN-01740-07}. 





Reader's Comments VMS Version 5.5 New Features 
Manual 

AA—LA97 D—T E 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: 

Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

I would like to see more/less 

Excellent Good Fair Poor 

❑ 

❑ ❑ ❑ 

❑ 

❑ 

❑ ❑ 

❑ ❑ 

❑ ❑ 

❑ 

❑ 

❑ ❑ 

❑ 

❑ ❑ 

❑ 

❑ 

❑ 

❑ 

❑ 

❑ 

❑ 

❑ ❑ 

❑ 

❑ ❑ 

❑ 

What I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version  of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

  Phone  



- — — Do Not Tear -Fold Here and Tape  

d agao a 
TM 

No Postage 
Necessary 

if Mailed 
in the 

United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Information Products 
ZK01-3/J35 
110 SPIT BROOK RD 
NASHUA, NH 03062-9987 

- — — Do Not Tear -Fold Here 

III~~~~~II~II~~~~II~~~~I~II~i~~l~l~~l~~l~l~~~l~ll~~l 



Reader's Comments VMS Version 5.5 New Features 
Manual 

AA--LA97D—TE 

Please use this postage-paid form to comment on this manual. If you require a written reply to a software 
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your 
comments on an SPR form. 

Thank you for your assistance. 

I rate this manual's: Excellent Good Fair Poor 

Accuracy (software works as manual says) ❑ ❑ ❑ ❑ 

Completeness (enough information) ❑ ❑ ❑ ❑ 

Clarity (easy to understand) ❑ ❑ ❑ ❑ 

Organization (structure of subject matter) ❑ ❑ ❑ ❑ 

Figures (useful) ❑ ❑ ❑ ❑ 

Examples (useful) ❑ ❑ ❑ ❑ 

Index (ability to find topic) ❑ ❑ ❑ ❑ 

Page layout (easy to find information) ❑ ❑ ❑ ❑ 

I would like to see more/less 

what I like best about this manual is 

What I like least about this manual is 

I found the following errors in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

I am using Version  of the software this manual describes. 

Name/Title   Dept.  

Company   Date  

Mailing Address  

Phone  



- — — Do Not Tear -Fold Here and Tape  

d a 
TM 

No Postage 
Necessary 

if Mailed 
in the 

United States 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIGITAL EQUIPMENT CORPORATION 
Corporate User Information Products 
ZK01-3/J35 
110 SPIT BROOK RD 
NASHUA, NH 03062-9987 

— Do Not Tear -Fold Here 

Ill~~~~~ll~ll~~~~ll~~~~l~ll~l~~l~i~~l~~i~l~~~l~ll~~l 


