VMS DCL Dictionary :
Part|

Order Number: AA-PBK5A-TE

June 1990

This manual provides detailed reference information and examples for all VMS
DCL commands and lexical functions.

Revision/Update Information: This manual supersedes the VMS DCL
Dictionary, Version 5.3.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’'s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX vT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX -
DECwriter MASSBUS VAXcluster dlilolilta]1]

The following are third-party trademarks:

Adobe, Display PostScript, and PostScript are registered trademarks of Adobe
Systems Incorporated.

ZK9996

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LNO3 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

Contents

PARTI

PREFACE

= (ASSIGNMENT STATEMENT)
:= (STRING ASSIGNMENT)
@ (EXECUTE PROCEDURE)

ACCOUNTING
ALLOCATE
ANALYZE/AUDIT

ANALYZE/CRASH_DUMP
ANALYZE/DISK_STRUCTURE

ANALYZE/ERROR_LOG
ANALYZE/IMAGE
ANALYZE/MEDIA
ANALYZE/OBJECT

ANALYZE/PROCESS_DUMP

ANALYZE/RMS_FILE
ANALYZE/SYSTEM
APPEND

ASSIGN
ASSIGN/MERGE
ASSIGN/QUEUE
ATTACH

BACKUP

CALL

CANCEL

CLOSE

CONNECT
CONTINUE
CONVERT
CONVERT/DOCUMENT
CONVERT/RECLAIM
CcoPY

CREATE
CREATE/DIRECTORY
CREATE/FDL
CREATE/NAME_TABLE

DCL1-1

DCL1-5

DCL1-9
DCL1-14
DCL1-15
DCL1-18
DCL1-19
DCL1-20
DCL1-21
DCL1-22
DCL1-25
DCL1-26
DCL1-30
DCL1-32
DCL1-33
DCL1-34
DCL1-39
DCL1-46
DCL1-47
DCL1-49
DCL1-51
DCL1-52
DCL1-56
DCL1-58
DCL1-60
DCL1-63
DCL1-65
DCL1-66
DCL1-73
DCL1-74
DCL1-84
DCL1-89
DCL1-92
DCL1-93

xiii

Contents

vi

CREATE/TERMINAL
DEALLOCATE
DEASSIGN
DEASSIGN/QUEUE
DEBUG

DECK

DEFINE
DEFINE/CHARACTERISTIC
DEFINE/FORM
DEFINE/KEY
DELETE
DELETE/CHARACTERISTIC
DELETE/ENTRY
DELETE/FORM
DELETE/INTRUSION_RECORD
DELETE/KEY
DELETE/QUEUE
DELETE/SYMBOL
DEPOSIT
DIFFERENCES
DIRECTORY
DISCONNECT
DISMOUNT

DUMP

EDIT/ACL

EDIT/EDT

EDIT/FDL
EDIT/SUM
EDIT/TECO
EDIT/TPU
ENDSUBROUTINE
EOD

EOJ

EXAMINE
EXCHANGE
EXCHANGE/NETWORK
EXIT

FONT

GOSuUB

GOTO

HELP

IF

DCL1-97
DCL1-103
DCL1-104
DCL1-109
DCL1-110
DCL1-111
DCL1-114
DCL1-120
DCL1-122
DCL1-126
DCL1-131
DCL1-135
DCL1-136
DCL1-139
DCL1-140
DCL1-141
DCL1-143
DCL1-145
DCL1-147
DCL1-151
DCL1-159
DCL1-168
DCL1-170
DCL1-174
DCL1-179
DCL1-180
DCL1-184
DCL1-185
DCL1-186
DCL1-189
DCL1-205
DCL1-206
DCL1-208
DCL1-209
DCL1-212
DCL1-213
DCL1-222
DCL1-226
DCL1-227
DCL1-229
DCL1-231
DCL1-237

INITIALIZE

INITIALIZE/QUEUE

INQUIRE

INSTALL

JOB

LEXICAL FUNCTIONS
F$SCONTEXT
F$CSID
F$CVSI
F$CVTIME
F$CVUI
F$DEVICE
F$DIRECTORY
F$EDIT
FSELEMENT
FSENVIRONMENT
FSEXTRACT
F$FAO
F$FILE_ATTRIBUTES
FSGETDVI
F$GETJPI
F$GETQUI
F$GETSYI
FSIDENTIFIER
F$INTEGER
FSLENGTH
F$LOCATE
FSMESSAGE
F$MODE
F$PARSE
F$PID
F$PRIVILEGE
F$PROCESS
F$SEARCH
F$SETPRV
F$STRING
F$TIME
F$TRNLNM
F$TYPE
F$USER
F$VERIFY

LIBRARY

DCL1-240
DCL1-249
DCL1-262
DCL1-265
DCL1-266
DCL1-272
DCL1-275
DCL1-280
DCL1-282
DCL1-284
DCL1-286
DCL1-287
DCL1-289
DCL1-290
DCL1-292
DCL1-294
DCL1-297
DCL1-299
DCL1-306
DCL1-309
DCL1-322
DCL1-328
DCL1-344
DCL1-349
DCL1-351
DCL1-352
DCL1-353
DCL1-355
DCL1-356
DCL1-358
DCL1-361
DCL1-363
DCL1-364
DCL1-365
DCL1-368
DCL1-372
DCL1-373
DCL1-374
DCL1-378
DCL1-380
DCL1-381
DCL1-383

Contents

vii

Contents

LICENSE DCL1-384
LINK DCL1-385
LOGIN PROCEDURE DCL1-392
LOGOUT DCL1-396
MACRO DCL1-398
MAIL DCL1-404
MERGE DCL1-405
MESSAGE DCL1-406
MONITOR DCL1-407
MOUNT DCL1-408
INDEX
PARTII
PREFACE xiii
NCS DCL2-1
ON DCL2-2
OPEN DCL2-5
PASSWORD DCL2-9
PATCH DCL2-11
PHONE DCL2-12
PRINT DCL2-13
PSWRAP DCL2-23
PURGE DCL2-24
READ DCL2-28
RECALL DCL2-32
RENAME DCL2-34
REPLY DCL2-38
REQUEST DCL2-47
RETURN DCL2-49
RUN (IMAGE) DCL2-51
RUN (PROCESS) DCL2-53
RUNOFF DCL2-63
RUNOFF/CONTENTS DCL2-73
RUNOFF/INDEX DCL2-77
SEARCH DCL2-81
SET DCL2-88
SET ACCOUNTING DCL2-91

viii

SET ACL
SET AUDIT

SET BROADCAST

SET CARD_READER

SET CLUSTER/EXPECTED_VOTES
SET COMMAND

SET CONTROL

SET DAY

SET DEFAULT

SET DEVICE

SET DEVICE/SERVED
SET DIRECTORY
SET DISPLAY

SET ENTRY
SET FILE
SET HOST

SET HOST/DTE
CLEAR

EXIT
QuUIT
SAVE

SEND BREAK
SET DTE
SHOW DTE
SPAWN
SET HOST/DUP
SET HOST/HSC

SET KEY

SET LOGINS
SET MAGTAPE
SET MESSAGE

SET ON

SET OUTPUT_RATE

SET PASSWORD

SET PRINTER

SET PROCESS

SET PROMPT

SET PROTECTION

SET PROTECTION/DEFAULT
SET PROTECTION/DEVICE
SET QUEUE

SET RESTART_VALUE
SET RIGHTS_LIST

DCL2-93
DCL2-100
DCL2-112
DCL2-114
DCL2-115
DCL2-117
DCL2-118
DCL2-120
DCL2-121
DCL2-123
DCL2-125
DCL2-126
DCL2-129
DCL2-136
DCL2-144
DCL2-149
DCL2-152
DCL2-158
DCL2-159
DCL2-160
DCL2-161
DCL2-162
DCL2-163
DCL2-168
DCL2-169
DCL2-171
DCL2-173
DCL2-175
DCL2-176
DCL2-177
DCL2-179
DCL2-182
DCL2-183
DCL2-184
DCL2-187
DCL2-191
DCL2-195
DCL2-196
DCL2-199
DCL2-200
DCL2-203
DCL2-210
DCL2-212

Contents

Contents

SET RMS_DEFAULT
SET SYMBOL

SET TERMINAL

SET TIME

SET UIC

SET VERIFY

SET VOLUME

SET WORKING_SET
SHOW

SHOW ACCOUNTING
SHOW ACL

SHOW AUDIT
SHOW BROADCAST
SHOW CLUSTER
SHOW CPU

SHOW DEFAULT
SHOW DEVICES
SHOW DEVICES/SERVED
SHOW DISPLAY
SHOW ENTRY
SHOW ERROR
SHOW INTRUSION
SHOW KEY

SHOW LICENSE
SHOW LOGICAL
SHOW MEMORY
SHOW PRINTER
SHOW PROCESS
SHOW PROTECTION
SHOW QUEUE

SHOW QUEUE/CHARACTERISTICS

SHOW QUEUE/FORM
SHOW QUOTA

SHOW RMS_DEFAULT
SHOW STATUS

SHOW SYMBOL
SHOW SYSTEM
SHOW TERMINAL
SHOW TIME

SHOW TRANSLATION
SHOW USERS

SHOW WORKING_SET

DCL2-214
DCL2-218
DCL2-221
DCL2-234
DCL2-236
DCL2-237
DCL2-240
DCL2-244
DCL2-246
DCL2-248
DCL2-250
DCL2-251
DCL2-255
DCL2-257
DCL2-258
DCL2-262
DCL2-264
DCL2-269
DCL2-272
DCL2-275
DCL2-279
DCL2-280
DCL2-283
DCL2-285
DCL2-288
DCL2-292
DCL2-300
DCL2-302
DCL2-308
DCL2-309
DCL2-313
DCL2-315
DCL2-317
DCL2-318
DCL2-319
DCL2-320
DCL2-322
DCL2-326
DCL2-328
DCL2-329
DCL2-331
DCL2-335

Contents

SHOW ZONE DCL2-336
SORT DCL2-337
SPAWN DCL2-338
START/CPU DCL2-343
START/QUEUE DCL2-345
START/QUEUE/MANAGER DCL2-355
START/ZONE DCL2-357
STOP DCL2-358
STOP/CPU DCL2-361
STOP/QUEUE DCL2-363
STOP/QUEUE/ABORT DCL2-365
STOP/QUEUE/ENTRY DCL2-367
STOP/QUEUE/MANAGER DCL2-369
STOP/QUEUE/NEXT DCL2-370
STOP/QUEUE/REQUEUE DCL2-371
STOP/QUEUE/RESET DCL2-374
STOP/ZONE DCL2-375
SUBMIT DCL2-376
SUBROUTINE DCL2-386
SYNCHRONIZE DCL2-387
TYPE DCL2-389
UNLOCK DCL2-395
VIEW DCL2-396
WAIT DCL2-397
WRITE DCL2-399
INDEX
|
FIGURES
DCL2-1 Running Remote and Local Applications DCL2-130
DCL2-2 Default Characteristics for Terminals DCL2-222

50—

TABLES
DCL1-1
DCL1-2
DCL1-3
DCL1-4
DCL1-5

F$FILE_ATTRIBUTES Items

CPU Time Limit Specifications and Actions
Working Set Default, Extent, and Quota Decision
Summary of Lexical Functions
Summary of FAO Directives

DCL1-254
DCL1-261
DCL1-272
DCL1-301
DCL1-306

xi

Contents

Xii

DCL1-6
DCL1-7
DCL1-8
DCL1-9
DCL1-10
DCL1-11
DCL1-12

DCL1-13
DCL2-1
DCL2-2
DCL2-3
DCL2-4
DCL2-5
DCL2-6

F$GETDVI ltems

Values Returned by the DEVCLASS Item

Values Returned by the DEVTYPE ltem

F$GETJPI Items

F$GETQUI ltems
F$GETSY!I Items for the Local Node Only

F$GETSY!I Iltems for the Local Node or for Other Nodes in the
VAXCluster

Context Symbol Types

SET Command Options

SET ACCOUNTING Keywords for Event Types

SET ACCOUNTING Keywords for Process Types
Working Set Default, Extent, and Quota Decision
SHOW Command Options

Working Set Default, Extent, and Quota Decision

DCL1-310
DCL1-316
DCL1-317
DCL1-323
DCL1-331
DCL1-345

DCL1-346
DCL1-378
DCL2-88
DCL2-91
DCL2-92
DCL2-209
DCL2-246
DCL2-354

Preface

Intended Audience

This manual is intended for all users of the VMS operating system. It
includes descriptions of all Digital Command Language (DCL) commands
and lexical functions. If a command has any restrictions or requires
special privileges, they are noted in reference information for that
command.

Readers of this manual should be familiar with the material covered in
the VMS DCL Concepts Manual. Furthermore, while familiarity with the
Guide to Using VMS Command Procedures is not a requirement for using
this manual, it does help clarify some of the examples involving command
procedures.

Document Structure

This manual contains detailed descriptions of each command and
lexical function. The commands are listed in alphabetical order, with
the command name appearing at the top of every page. The lexical
functions are grouped under the heading “Lexical Functions” (after the
JOB command description) and are listed alphabetically within that
grouping; the lexical function name appears at the top of each page.

The VMS DCL Dictionary is a two-part manual. Part I contains commands
beginning with the letters A to M (including the lexical functions); Part II
contains commands beginning with the letters N to Z. The Table of
Contents and Index are comprehensive: they include both parts.

The commands that invoke language compilers and other VAX optional
software products are not included in this manual; they are included in
the documentation provided with those products.

Associated Documents

This manual is Part I of a two-part manual; it contains DCL commands
beginning with the letters A to M, as well as the lexical functions. For the
remaining commands, see Part II.

For an introduction to the VMS operating system and for information

on using DCL, see the Introduction to VMS. This manual is especially
recommended for novice users or users lacking experience with interactive
computer systems.

The VMS DCL Concepts Manual provides an overview of DCL command
language concepts.

The Guide to Using VMS Command Procedures defines and illustrates
good practices in constructing command procedures with DCL commands
and lexical functions.

xiii

Preface

The various VMS utilities reference manuals document major VMS
utilities. These manuals describe the DCL commands that invoke the
various utilities, describe any commands that you can enter while running
a utility, and provide reference information. For all utilities documented in
these volumes, the VMS DCL Dictionary provides only a brief description
and format information.

The VMS System Messages and Recovery Procedures Reference Manual
explains what the messages mean and, where applicable, suggests actions
for you to take.

The Overview of VMS Documentation describes the new organization of
the VMS document set. This manual shows how the individual manuals
fit together and relate to each other.

Conventions

xiv

The following conventions are used in this manual:

mouse The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.
MB1, MB2, MB3 MB1 indicates the left mouse button, MB2 indicates

the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

Ctrl/x A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

A key name is shown enclosed to indicate that you
press a key on the keyboard.

In examples, a horizontal ellipsis indicates one of the
following possibilities:

« Additional optional arguments in a statement
have been omitted.

* The preceding item or items can be repeated one
or more times.

« Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

() In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

(1l

{}

red ink

boldface text

italic text

UPPERCASE TEXT

UPPERCASE TEXT

numbers

Preface

In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or
all of the choices.

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on. For online versions, user input is shown in
bold.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

ltalic text represents information that can vary
in system messages (for example, Internal error
number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ).

Uppercase letters indicate the name of a routine, the
name of a file, the name of a file protection code, or
the abbreviation for a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal—are explicitly indicated.

Xv

= (Assignment Statement)

= (Assignment Statement)

Defines a symbolic name for a character string or integer value.

FORMAT symbol-name =[=] expression
symbol-namel[bit-position, size] =[=]
replacement-expression

PARAMETERS symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name
can contain any alphanumeric characters from the DEC Multinational
Character Set, the underscore (_), and the dollar sign ($). However,

the name must begin only with an alphabetic character (uppercase and
lowercase characters are equivalent), an underscore, or a dollar sign.
Using one equal sign (=) places the symbol name in the local symbol table
for the current command level. Using two equal signs (==) places the
symbol name in the global symbol table.

expression

Names the value on the right-hand side of an assignment statement. This
parameter can consist of a character string, an integer, a symbol name,

a lexical function, or a combination of these entities. The components of
the expression are evaluated, and the result is assigned to the symbol.
All literal character strings must be enclosed in quotation marks (»). If
the expression contains a symbol, the expression is evaluated using the
symbol’s value.

The result of expression evaluation is either a character string or a signed
integer value. If the expression is evaluated as a string, the symbol is
assigned a string value. If the expression is evaluated as an integer, the
symbol is assigned an integer value. If the integer value exceeds the
capacity of the 4-byte buffer that holds it, no error message is issued.

For a summary of operators used in expressions, details on how to specify
expressions, and details on how expressions are evaluated, see the VMS
DCL Concepts Manual.

DCL uses a buffer that is 1024 bytes long to hold an assignment statement
and to evaluate the expression. The length of the symbol name, the
expression, and the expression’s calculations cannot exceed

1024 bytes.

[bit-position,size]

States that a binary overlay is to be inserted in the current 32-bit value of
a symbol name. The current value of the symbol name is evaluated. Then,
the specified number of bits is replaced by the result of the replacement
expression. The bit position is the location relative to bit 0 at which the
overlay is to occur. If the symbol you are overlaying is an integer, then the
bit position must be less than 32. The sum of the bit position and the size
must be less than or equal to 32.

DCL1-1

= (Assignment Statement)

If the symbol you are overlaying is a string, then the bit position must be
less than 6152. Because each character is represented using 8 bits, you
can begin an overlay at any character through the 768th character. (The
768th character starts in bit position 6144.) The sum of the bit position
and the size must be less than or equal to 6152.

The size is the number of bits to be overlaid. If you specify a size that is
greater than 32, DCL reduces the size to 32.

The brackets are required notation; no spaces are allowed between the
symbol name and the left bracket. Specify values for the bit position and
size as integers.

replacement-expression
Specifies the value that is used to overlay the symbol you are modifying.
Specify the replacement expression as an integer.

If the symbol you are modifying is an integer, the replacement expression
defines a bit pattern that is overlaid on the value assigned to the symbol.
If the symbol you are modifying is a character string, the result of the
replacement expression defines a bit pattern that is overlaid on the
specified bits of the character string. If the symbol you are modifying

is undefined, the result of the replacement expression is overlaid on a null
string.

DESCRIPTION Symbols defined using assignment statements allow you to extend the
command language. At the interactive command level, you can use
symbols to define synonyms for commands or command lines. In command
procedure files, you can use symbols to provide for conditional execution
and substitution of variables.

The maximum number of symbols that can be defined at any time depends
on the following:

¢ The amount of space available to the command interpreter to contain
symbol tables and labels for the current process. The amount of
space is determined for each process by the SYSGEN parameter
CLISYMTBL.

¢ The size of the symbol names and their values. The command
interpreter allocates space for a symbol name and its value. In
addition, a few bytes of overhead are allocated for each symbol.

EXAMPLES

$ LIST == "DIRECTORY"

The assignment statement in this example assigns the user-defined
synonym LIST as a global symbol definition for the DCL command
DIRECTORY.

DCL1-2

= (Assignment Statement)

$ COUNT = 0

$ LOOP:

$ COUNT = COUNT + 1

$ IF P/COUNT’ .EQS. "" THEN EXIT
$ APPEND/NEW &P’COUNT’ SAVE.ALL
$ DELETE &P’ COUNT' ; *

$ IF COUNT .LT. 8 THEN GOTO LOOP
$ EXIT

This command procedure, COPYDEL.COM, appends files (specified as
parameters) to a file called SAVE.ALL. After a file has been appended, the
command procedure deletes the file. Up to eight file names can be passed
to the command procedure. The file names are assigned to the symbols P1,
P2, and so on.

The command procedure uses a counter to refer to parameters that

are passed to it. Each time through the loop, the procedure uses an IF
command to check whether the value of the current parameter is a null
string. When the IF command is scanned, the current value of the symbol
COUNT is concatenated with the letter P. The first time through the loop,
the IF command tests P1; the second time through the loop it tests P2,
and so on. After the expression P COUNT" is evaluated, the substitution
of the file names that correspond to P1, P2, and so on is automatic within
the context of the IF command.

The APPEND and DELETE commands do not perform any substitution
automatically, because they expect and require file specifications as input
parameters. The ampersand (&) precedes the P COUNT" expression for
these commands to force the appropriate symbol substitution. When these
commands are initially scanned each time through the loop, COUNT is
substituted with its current value. Then, when the commands execute,
the ampersand causes another substitution: the first file specification is
substituted for P1, the second file specification is substituted for P2, and
S0 on.

To invoke this procedure, use the following command:

$ @COPYDEL ALPHA.TXT BETA.DOC

The files ALPHA.TXT and BETA.DOC are each appended to the file
SAVE.ALL and are then deleted.

$ A =25

$ CODE = 4 + FSINTEGER("6") - A
$ SHOW SYMBOL CODE
CODE = -15 HEX = FFFFFFF1 Octal = 1777761

This example contains two assignment statements. The first assignment
statement assigns the value 25 to the symbol A. The second assignment
statement evaluates an expression containing an integer (4), a lexical
function (F$INTEGER(“6”)), and the symbol A. The result of the
expression, —15, is assigned to the symbol CODE.

DCL1-3

= (Assignment Statement)

«“nnn

FILENAME = "JOBSEARCH" - "JOB"
FILETYPE = ".0BJ"

FILESPEC = FILENAME + FILETYPE
TYPE 'FILESPEC’

$ BELL(0,32]
$ SHOW SYMBOL BELL
BELL = ""

DCL1-4

The first command in this example assigns the symbol FILENAME the
value “SEARCH”. Notice that the string "SEARCH" is the result of the
string reduction operation performed by the expression. The second
command assigns the symbol FILETYPE the character string ".OBJ".
The symbols FILENAME and FILETYPE are then added together in

an expression assigned to the symbol FILESPEC. Because the values of
the symbols FILENAME and FILETYPE are concatenated, the resultant
value assigned to FILESPEC is the character string “SEARCH.OBJ”. The
symbol FILESPEC is then used as a parameter for the TYPE command.
The single quotation marks (’’) request the command interpreter to
replace the symbol FILESPEC with its value SEARCH.OBJ. Thus, the
TYPE command types the file named SEARCH.OBJ.

%X07

In this example, the symbol BELL is created with an arithmetic overlay
assignment statement. Because the symbol BELL is previously undefined,
the hexadecimal value 7 is inserted over a null character string and is
interpreted as the ASCII code for the bell character on a terminal. When
you issue the command SHOW SYMBOL BELL, the terminal beeps.

If the symbol BELL had been previously defined with an integer value, the
result of displaying BELL would have been to show its new integer value.

:= (String Assignment)

:= (String Assignment)

Defines a symbolic name for a character string value.

FORMAT symbol-name :=[=] string
symbol-namefoffset,size] :=[=] replacement-string
PARAMETERS symbol-name

Specifies a string of 1 to 255 characters for the symbol name. The name
can contain any alphanumeric characters from the DEC Multinational
Character Set, the underscore (_), and the dollar sign ($). However, the
name must begin only with an alphabetic character, an underscore, or a
dollar sign. Using one equal sign (:=) places the symbol name in the local
symbol table for the current command level. Using two equal signs (:==
places the symbol name in the global symbol table.

str ng

Names the character string value to be equated to the symbol. The string
can contain any alphanumeric or special characters. DCL uses a buffer
that is 1024 bytes long to hold a string assignment statement. Therefore,
the length of the symbol name, the string, and any symbol substitution
within the string cannot exceed 1024 characters.

With the string assignment statement (:=), you do not need to enclose
a string literal in quotation marks ("). String values are converted
to uppercase automatically. Also, any leading and trailing spaces and
tabs are removed, and multiple spaces and tabs between characters are
compressed to a single space.

It is easier to use the assignment statement (=) to create symbols with
string values because the assignment statement does not automatically
convert letters to uppercase and remove extra spaces. Also, the
assignment statement allows you to perform string operations in
expressions.

To prohibit uppercase conversion and to retain required space and tab

characters in a string, place quotation marks around the string. To use
quotation marks in a string, enclose the entire string within quotation

marks and use a double set of quotation marks within the string. For

example:

$ TEST := "this is a ""test"" string"
$ SHOW SYMBOL TEST
TEST = "this is a "test" string"

In this example, the spaces, lowercase letters, and quotation marks are
preserved in the symbol definition.

To continue a symbol assignment on more than one line, use the
hyphen (-) as a continuation character. For example:

$ LONG_STRING := THIS_IS A VERY LONG-
_$ _SYMBOL_STRING

DCL1-5

:= (String Assignment)

DCL1-6

To assign a null string to a symbol by using the string assignment
statement, do not specify a string. For example:

$ NULL :=

Specify the string as a string literal, or as a symbol or lexical function that
evaluates to a string literal. If you use symbols or lexical functions, place
single quotation marks (’’) around them to request symbol substitution.
See the VMS DCL Concepts Manual for more information on symbol
substitution.

You can also use the string assignment statement to define a foreign
command. See the VMS DCL Concepts Manual for more information
about foreign commands.

[offsetl,size]

Specifies that a portion of a symbol value is to be overlaid with a
replacement string. This form of the string assignment statement
evaluates the value assigned to a symbol and then replaces the portion

of the value (defined by the offset and size) with the replacement string.
The brackets are required notation, and no spaces are allowed between the
symbol name and the left bracket.

The offset specifies the character position relative to the beginning of the
symbol name’s string value at which replacement is to begin. Offset values
start at 0.

If the offset is greater than the offset of the last character in the string
you are modifying, spaces are inserted between the end of the string and
the offset where the replacement string is added. The maximum offset
value you can specify is 768.

The size specifies the number of characters to replace. Size values start
at 1.

Specify the offset and size as integer expressions. See the VMS DCL
Concepts Manual for more information on integer expressions. The value
of the size plus the offset must not exceed 769.

replacement-string

Specifies the string that is used to overwrite the string you are modifying.
If the replacement string is shorter than the size argument, the
replacement string is filled with blanks on the right until it equals the
specified size. Then the replacement string overwrites the string assigned
to the symbol name. If the replacement string is longer than the size
argument, then the replacement string is truncated on the right to the
specified size.

You can specify the replacement string as a string literal, or as a symbol
or lexical function that evaluates to a string literal. If you use symbols or
lexical functions, place single quotation marks (’’) around them to request
symbol substitution. For more information on symbol substitution, see the
VMS DCL Concepts Manual.

:= (String Assignment)

“

EXAMPLES
$ TIME := SHOW TIME
$ TIME

19-APR-1990 11:55:44

In this example, the symbol TIME is equated to the command string
SHOW TIME. Because the symbol name appears as the first word in a
command string, the command interpreter automatically substitutes it
with its string value and executes the command SHOW TIME.

$ STAT := $DBAl: [CRAMER]STAT
$ STAT

This example shows how to define STAT as a foreign command. The
symbol STAT is equated to a string that begins with a dollar sign followed
by a file specification. The command interpreter assumes that the file
specification is that of an executable image, that is, a file with a file type
of EXE. The symbol STAT in this example becomes a synonym for the
following command:

$ RUN DBAl: [CRAMER]STAT.EXE

When you subsequently type STAT, the command interpreter executes the

image.
$ A = "this is a big space."
$ SHOW SYMBOL A
A = "this is a big space."
$ B := 'A’

$ SHOW SYMBOL B
B = "THIS IS A BIG SPACE."

This example compares the assignment and the string assignment
statements. The symbol A is defined using the assignment statement,
so lowercase letters and multiple spaces are retained. The symbol B

is defined using the string assignment statement. Note that the single
quotation marks (’’) are required; otherwise, the symbol name B would
have been equated to the literal string A. However, when symbol A’s
value is assigned to symbol B, the letters are converted to uppercase and
multiple spaces are compressed.

$ FILE NAME := MYFILE

$ FILE_NAME[O,2]:= OL

$ SHOW SYMBOL FILE_ NAME
FILE_NAME = "OLFILE"

In this example, the substring expression in the assignment statement
overlays the first 2 characters of the string assigned to the symbol FILE_
NAME with the letters OL. The offset of 0 requests that the overlay
begin with the first character in the string, and the size specification of 2
indicates the number of characters to overlay.

DCL1-7

:= (String Assignment)

$ FILE NAME := MYFILE
$ FILE TYPE := .TST
$ FILE NAME [FSLENGTH(FILE_NAME), 4] := 'FILE_TYPE'
$ SHOW SYMBOL FILE_NAME
FILE_NAME = "MYFILE.TST"

In this example, the symbol name FILE_NAME is equated to the string
MYFILE and the symbol name FILE_TYPE is equated to the string .TST.
The third assignment statement uses the lexical function FSLENGTH to
define the offset value where the overlay is to begin. The symbol name
FILE_TYPE is used to refer to the replacement string (.TST). Note that
you must use single quotation marks (’’) to request symbol substitution.

The F$LENGTH lexical function returns the length of the string equated
to the symbol FILE_NAME; this length is used as the offset. The
expression requests that 4 characters of the string currently equated

to the symbol FILE_TYPE be placed at the end of the string currently
equated to FILE_NAME. The resultant value of the symbol FILE_NAME
is MYFILE.TST.

DCL1-8

@ (Execute Procedure)

@ (Execute Procedure)

Executes a command procedure or requests the command interpreter to read
subsequent command input from a specific file or device.

FORMAT

@ filespec [parameter],...]]

PARAMETERS

filespec

Specifies either the input device or the file for the preceding command,
or the command procedure to be executed. The default file type is COM.
Wildcard characters are not allowed in the file specification.

parameter],...]

Specifies from one to eight optional parameters to pass to the command
procedure. The symbols (P1, P2, ... P8) are assigned character string
values in the order of entry. The symbols are local to the specified
command procedure. Separate each parameter with one or more blanks.
Use two consecutive quotation marks ("") to specify a null parameter.
You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

¢ The command interpreter converts alphabetic characters to uppercase
and uses blanks to delimit each parameter. To pass a parameter
that contains embedded blanks or literal lowercase letters, place the
parameter in quotation marks.

¢ If the first parameter begins with a slash (/), you must enclose the
parameter in quotation marks (" ").

* To pass a parameter that contains literal quotation marks and spaces,
enclose the entire string in quotation marks and use two consecutive
quotation marks within the string. For example, the command
procedure TEST.COM contains the following line:

$ WRITE SYS$OUTPUT P1
Enter the following at the DCL prompt ($):
$ @TEST "Never say ""quit"""

When the procedure TEST.COM executes, the parameter P1 is equated
to the following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example, enter the following
at the DCL prompt:

$ QTEST abc"def"ghi

DCL1-9

@ (Execute Procedure)

When the procedure TEST.COM executes, the parameter P1 is equated
to the following string:

ABC"def"GHI

To use a symbol as a parameter, enclose the symbol in single quotation
marks (’ /) to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ Q@INFO ’NAME’

The single quotation marks cause the value “JOHNSON?” to be substituted
for the symbol NAME. Therefore, the parameter “JOHNSON?” is passed as
P1 to INFO.COM.

DESCRIPTION

DCL1-10

Use the @ command to execute a command procedure that contains the
following:

¢ DCL command lines or data, or both

¢ Qualifiers or parameters, or both, for a specific command line

To execute a command procedure containing commands or data, or both,
place the @ command at the beginning of a command line and then specify
the name of the command procedure file. The command procedure can
contain DCL commands and input data for a command or program that

is currently executing. All DCL commands in a command procedure must
begin with a dollar sign ($). If a command is continued with a hyphen (-),
the subsequent lines must not begin with a dollar sign.

Any line in a command procedure that does not contain a dollar sign in

the first character position (and is not a continuation line) is treated as

input data for the command or program that is currently executing. The
DECK command allows you to specify that data contains dollar signs in

record position one.

A command procedure can also contain the @ command to execute another
command procedure. The maximum command level you can achieve by
nesting command procedures is 16, including the top-level command
procedure. Command procedures can also be queued for processing as
batch jobs, either by using the SUBMIT command or by placing a deck of
cards containing the command procedure in the system card reader.

To execute a command procedure that contains qualifiers or parameters,
or both, for a specific command line, place the @ command where the
qualifiers or parameters normally would be in the command line. Then
specify the name of the command procedure file containing the qualifiers
or parameters.

If the command procedure file begins with parameters for the command,
the @ command must be preceded by a space. For example:

$ CREATE TEST.COM

TIME

[CEzl/Z]

$ SHOW @TEST
19-APR-1990 17:20:26

@ (Execute Procedure)

If the file begins with qualifiers for the command, do not precede the @
command with a space. For example:

$ CREATE TEST 2.COM
/SIZE

$ DIRQTEST 2

Directory WORKS$: [SCHEDULE]

JANUARY.TXT; 8 19-APR-1990 15:47:45.57
FEBRUARY.TXT; 7 19-APR-1990 15:43:16.20
MARCH.TXT; 6 19-APR-1990 11:11:45.74

Total of 3 files.

If the file contains parameters or qualifiers, or both, do not begin the lines
in the file with dollar signs. Any additional data on the command line
following @filespec is treated as parameters for the procedure.

QUALIFIER /OUTPUT=filespec

Specifies the name of the file to which the command procedure output is
written. By default, the output is written to the current SYS$OUTPUT
device. The default output file type is LIS. Wildcard characters are not
allowed in the output file specification. System responses and error
messages are written to SYS§COMMAND as well as to the specified file.
The /OUTPUT qualifier must immediately follow the file specification
of the command procedure; otherwise, the qualifier is interpreted as a
parameter to pass to the command procedure.

You can also redefine SYS$OUTPUT to redirect the output from a
command procedure. If you place the following command as the first line
in a command procedure, output will be directed to the file you specify:

$ DEFINE SYS$SOUTPUT filespec

When the procedure exits, SYSSOUTPUT will be restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

EXAMPLES
1] $ CREATE DOFOR.COM
$ ON WARNING THEN EXIT
$ IF P1.EQS."" THEN INQUIRE Pl FILE
$ FORTRAN/LIST ’‘P1l’
$ LINK 'P1’
$ RUN ’P1‘
$ PRINT ’P1l’
$ @DOFOR AVERAGE

This example shows a command procedure, named DOFOR.COM, that
executes the FORTRAN, LINK, and RUN commands to compile, link, and
execute a program. The ON command requests that the procedure not
continue if any of the commands result in warnings or errors.

DCL1-11

@ (Execute Procedure)

When you execute DOFOR.COM, you can pass the file specification of the
FORTRAN program as the parameter P1. If you do not specify a value
for P1 when you execute the procedure, the INQUIRE command issues a
prompting message to the terminal and equates what you enter with the
symbol P1. In this example, the file name AVERAGE is assigned to P1.
The file type is not included because the commands FORTRAN, LINK,
RUN, and PRINT provide default file types.

$ QMASTER/OUTPUT=MASTER.LOG

This command executes a procedure named MASTER.COM,; all output is
written to the file MASTER.LOG.

$ CREATE FILES.COM
* FOR, *.0BJ

$ DIRECTORY QFILES

This example shows a command procedure, FILES.COM, that contains
parameters for a DCL command line. You can execute this procedure after
the DIRECTORY command to get a listing of all FORTRAN source and

object files in your current default directory.

$ CREATE QUALIFIERS.COM
/DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS_REFERENCE

$ LINK SYNAPSE@QUALIFIERS

This example shows a command procedure, QUALIFIERS.COM, that
contains qualifiers for the LINK command. When you enter the LINK
command, specify the command procedure immediately after the file
specification of the file you are linking. Do not type a space between the
file specification and the @ command.

$ CREATE SUBPROCES.COM
$ RUN ’'P1l’ -

/BUFFER LIMIT=1024 -

/FILE_LIMIT=4 -

/PAGE_FILES=256 -

/QUEUE_LIMIT=2 -

/SUBPROCESS_LIMIT=2 -

'p2’ 'P3’ 'P4’ 'P5’ 'PG’ 'P7' P8’

@SUBPROCES LIBRA /PROCESS_NAME=LIBRA

This example shows a command procedure named SUBPROCES.COM.
This procedure issues the RUN command to create a subprocess to execute
an image and also contains qualifiers defining quotas for subprocess
creation. The name of the image to be run is passed as the parameter P1.
Parameters P2 to P8 can be used to specify additional qualifiers.

In this example, the file name LIBRA is equated to P1; it is the name
of an image to execute in the subprocess. The qualifier /PROCESS_
NAME-=LIBRA is equated to P2; it is an additional qualifier for the RUN
command.

DCL1-12

@ (Execute Procedure)

$ CREATE EDOC.COM
$ ASSIGN SYSS$SCOMMAND: SYSS$SINPUT

$ NEXT:

S INQUIRE NAME "File name"
$ IF NAME.EQS."" THEN EXIT
$ EDIT/EDT ’NAME’ .DOC

$ GOTO NEXT

$ QEDOC

This procedure, named EDOC.COM, invokes the EDT editor. When an edit
session is terminated, the procedure loops to the label NEXT. Each time
through the loop, the procedure requests another file name for the editor
and supplies the default file type of DOC. When a null line is entered in
response to the INQUIRE command, the procedure terminates with the
EXIT command.

The ASSIGN command changes the equivalence name of SYS$INPUT for
the duration of the procedure. This change allows the EDT editor to read
input data from the terminal, rather than from the command procedure
file (the default input data stream if SYS$INPUT had not been changed).
When the command procedure exits, SYS$INPUT is reassigned to its
original value.

DCL1-13

ACCOUNTING

ACCOUNTING

Invokes the Accounting Utility, which reports accounting data. For a complete
description of the Accounting Utility, see the VMS Accounting Utility Manual.

FORMAT ACCOUNTING [filespec],...]]

DCL1-14

ALLOCATE

ALLOCATE

Provides your process with exclusive access to a device until you deallocate
the device or terminate your process. Optionally associates a logical name
with the device.

FORMAT

ALLOCATE device-namel][,...] [logical-name[:]]

PARAMETERS

device-name[:][....]

Specifies the name of a physical device or a logical name that translates
to the name of a physical device. The device name can be generic: if no
controller or unit number is specified, any device that satisfies the specified
part of the name is allocated. If more than one device is specified, the first
available device is allocated.

logical-name[:]

Specifies a string of 1 to 255 alphanumeric characters. Enclose the string
in single quotation marks (’ ‘) if it contains blanks. Trailing colons (:)
are not used. The name becomes a process logical name with the device
name as the equivalence name. The logical name remains defined until it
is explicitly deleted or your process terminates.

QUALIFIERS

/GENERIC
/NOGENERIC (default)

Indicates that the first parameter is a device ¢ype rather than a device
name. Example device types are: RX50, RD52, TK50, RC25, RCF25, and
RLO02. The first free, nonallocated device of the specified name and type is
allocated.

The [INOIGENERIC qualifier is placed before the device-name parameter
in the ALLOCATE command line. For example, you can allocate an RK07
device by entering the following command at the DCL prompt ($):

$ ALLOCATE/GENERIC RKO7 DISK

The following table shows some device types that you can specify with the
/GENERIC qualifier:

Disk Devices Tape Devices
RA60/70/80/81/90 TA78/79/81
RC25/RCF25 TK50/70

RKO06/7 TS11

RLO1/2 TU16
RMO03/05/80 TU58

RP04/5/6/7 TU77/78/79/80/81

DCL1-15

ALLOCATE

Disk Devices Tape Devices

RX01/2/4/33
RZ55

/LOG (default)
/NOLOG

Displays a message indicating the name of the device allocated. If the
operation specifies a logical name that is currently assigned to another
device, then the superseded value is displayed.

EXAMPLES

$ ALLOCATE DMB2:
$DCL-I-ALLOC, _DMB2: allocated

The ALLOCATE command in this example requests the allocation of a
specific RK06/RK07 disk drive, that is, unit 2 on controller B. The system
response indicates that the device was allocated successfully.

$ ALLOCATE MT,MF: TAPE:
$DCL-I-ALLOC, _MTB2: allocated

$ SHOW LOGICAL TAPE:

TAPE: = _MTB2: (process)
$ DEALLOCATE TAPE:

$ DEASSIGN TAPE:

The ALLOCATE command in this example requests the allocation of

a tape device whose name begins with MT or MF and assigns it the
logical name TAPE. The ALLOCATE command locates an available tape
device whose name begins with MT, and responds with the name of the
device allocated. (If no tape device beginning with MT had been found,
the ALLOCATE command would have searched for a device beginning
with MF.) Subsequent references to the device TAPE in user programs or
command strings are translated to the device name MTB2.

When the tape device is no longer needed, the DEALLOCATE command
deallocates it and the DEASSIGN command deletes the logical name. Note
that the logical name TAPE was specified with a colon on the ALLOCATE
command, but that the logical name table entry does not have a colon.

$ ALLOCATE/GENERIC RL02 WORK
%DCL-I-ALLOC, _DLAl: allocated
$DCL-I-SUPERSEDE, previous value of WORK has been superseded

The ALLOCATE command in this example requests the allocation of any
RLO2 disk device and assigns the logical name WORK to the device. The
completion message identifies the allocated device and indicates that the
assignment of the logical name WORK supersedes a previous assignment
of that name.

DCL1-16

ALLOCATE

$ ALLOCATE S$STAPEl
%DCL-I-ALLOC, _MUAO: allocated

The ALLOCATE command in this example allocates the tape device
MUADO, which is associated with the logical name $TAPE1.

$ ALLOCATE /GENERIC RX50 ACCOUNTS

The ALLOCATE command in this example allocates the first free floppy
disk drive and makes its name equivalent to the process logical name
ACCOUNTS.

DCL1-17

ANALYZE/AUDIT

ANALYZE/AUDIT

Invokes the Audit Analysis Utility, which selectively extracts and displays
information from security audit log files or security archive files. For a
complete description of the Audit Analysis Utility, see the VMS Audit Analysis
Utility Manual.

FORMAT ANALYZE/AUDIT [filespec]

DCL1-18

ANALYZE/CRASH_DUMP

Invokes the System Dump Analyzer Utility, which analyzes a system dump
file. The /CRASH_DUMP qualifier is required. For a complete description of
the System Dump Analyzer Utility, see the VMS System Dump Analyzer Utility
Manual.

ANALYZE/CRASH_DUMP

FORMAT ANALYZE/CRASH_DUMP filespec
1
|
\
|
|
l

DCL1-19

ANALYZE/DISK_STRUCTURE

ANALYZE/DISK_STRUCTURE

Invokes the Analyze/Disk_Structure Utility, which does the following:

* Checks the readability and validity of Files—11 On-Disk Structure Level 1
and Files—11 On-Disk Structure Level 2 disk volumes.

* Reports errors and inconsistencies.
The /DISK_STRUCTURE qualifier is required. For a complete description of

the Analyze/Disk_Structure Utility, see the VMS Analyze/Disk_Structure Utility
Manual.

FORMAT ANALYZE/DISK_STRUCTURE device-name[:]

DCL1-20

W)

ANALYZE/ERROR_LOG

ANALYZE/ERROR_LOG

Invokes the Errorlog Report Formatter, which reports selectively the contents
of an error log file. The /ERROR_LOG qualifier is required. For a complete
description of the Error Log Utility, see the VMS Error Log Utility Manual.

FORMAT ANALYZE/ERROR_LOG ([filespec],...]]

DCL1-21

ANALYZE/IMAGE

ANALYZE/IMAGE

Analyzes the contents of an executable image file or a shareable image
file and checks for obvious errors in the image file. The /IMAGE qualifier
is required. For general information about image files, see the description
of the linker in the VMS Linker Utility Manual. (Use the ANALYZE/OBJECT
command to analyze the contents of an object file.)

FORMAT

ANALYZE/IMAGE filespec],...]

PARAMETER

filespec],...]

Specifies the name of one or more image files that you want analyzed.
You must specify at least one file name. If you specify more than one file,
separate the file specifications with either commas (,) or plus signs (+).
The default file type is EXE.

Wildcard characters (* and %) are allowed in the file specification.

DESCRIPTION

DCL1-22

The ANALYZE/IMAGE command provides a description of the components
of an executable image file or shareable image file. It also verifies that
the structure of the major parts of the image file is correct. However, the
ANALYZE/IMAGE command cannot ensure that program execution is
error free.

If errors are found, the first error of the worst severity is returned. For
example, if a warning (A) and two errors (B and C) are found, the first
error (B) is returned as the image exit status. The image exit status is
placed in the DCL symbol $STATUS at image exit.

The ANALYZE/IMAGE command provides the following information:
* Image type—Identifies whether the image is executable or shareable.

* Image transfer addresses—Identify the addresses to which control is
passed at image execution time.

* Image version—Identifies the revision level of the image.

* Patch information—Indicates whether the image has been patched
(changed without having been recompiled or reassembled and
relinked). If a patch is present, the actual patch code can be displayed.

* Location of the debugger symbol table (DST)—Identifies the location
of the DST in the image file. DST information is present only in
executable images that have been linked with the /DEBUG or the
/TRACEBACK command qualifier.

* Location of the global symbol table (GST)—Identifies the location of the
GST in the image file. GST information is present only in shareable
image files.

ANALYZE/IMAGE

¢ Image section descriptors (ISD)—Identify portions of the image binary
contents that are grouped in clusters according to their attributes.
An ISD contains information that the image activator needs when
it initializes the address space for an image. For example, an ISD
tells whether the ISD is shareable, whether it is readable or writable,
whether it is based or position independent, and how much memory
should be allocated.

* Fixup vectors—Contain information that the image activator needs to
ensure the position independence of shareable image references.

* System version categories—For an image that is linked against the
system symbol table, displays both the values of the system version
categories for which the image was linked originally and the values
for the system that is currently running. You can use these values to
identify changes in the system since the image was linked last.

The ANALYZE/IMAGE command has command qualifiers and positional
qualifiers. By default, if you do not specify any positional qualifiers (for
example, /GST or /HEADER), the entire image is analyzed. If you do
specify a positional qualifier, the analysis excludes all other positional
qualifiers except the /HEADER qualifier (which is always enabled) and
any qualifier that you request explicitly.

QUALIFIERS

/FIXUP_SECTION

Positional qualifier.

Specifies that the analysis should include all information in the fixup
section of the image.

If you specify the /FIXUP_SECTION qualifier after the ANALYZE/IMAGE
command, the fixup section of each image file in the parameter list is
analyzed.

If you specify the /FIXUP_SECTION qualifier after a file specification, only
the information in the fixup section of that image file is analyzed.

/GST
Positional qualifier.

Specifies that the analysis should include all global symbol table records.
This qualifier is valid only for shareable images.

If you specify the /GST qualifier after the ANALYZE/IMAGE command,
the global symbol table records of each image file in the parameter list are
analyzed.

If you specify the /GST qualifier after a file specification, only the global
symbol table records of that file are analyzed.

/HEADER
Positional qualifier.

Specifies that the analysis should include all header items and image
section descriptions. The image header items are analyzed always.

DCL1-23

ANALYZE/IMAGE

/INTERACTIVE
/NOINTERACTIVE (default)

Specifies whether the analysis is interactive. In interactive mode, as each
item is analyzed, the results are displayed on the screen and you are asked
whether you want to continue.

/OUTPUT=filespec

Identifies the output file for storing the results of the image analysis. No
wildcard characters are allowed in the file specification. If you specify a
file type and omit the file name, the default file name ANALYZE is used.
The default file type is ANL. If you omit the qualifier, the results are
output to the current SYS$OUTPUT device.

/PATCH_TEXT

Positional qualifier.

Specifies that the analysis include all patch text records. If you specify the
/PATCH_TEXT qualifier after the ANALYZE/IMAGE command, the patch
text records of each image file in the parameter list are analyzed.

If you specify the /PATCH_TEXT qualifier after a file specification, only
the patch text records of that file are analyzed.

EXAMPLES

ﬂ $ ANALYZE/IMAGE LINEDT

The ANALYZE/IMAGE command in this example produces a description
and an error analysis of the image LINEDT.EXE. Output is sent to the
current SYS$OUTPUT device. By default, the entire image is analyzed.

E $ ANALYZE/IMAGE/OUTPUT=LIALPHEX/FIXUP_SECTION/PATCH_TEXT LINEDT, ALPHA

The ANALYZE/IMAGE command in this example produces a description
and an error analysis of the fixup sections and patch text records of
LINEDT.EXE and ALPHA EXE in file LIALPHEX ANL. Output is sent to
the file LIALPHEX.ANL.

DCL1-24

ANALYZE/MEDIA

ANALYZE/MEDIA

Invokes the Bad Block Locator Utility, which analyzes block-addressable
devices and records the location of blocks that cannot reliably store data.
For a complete description of the Bad Block Locator Utility, see the VMS Bad
Block Locator Utility Manual.

FORMAT ANALYZE/MEDIA device

DCL1-25

ANALYZE/OBJECT

ANALYZE/OBJECT

Analyzes the contents of an object file and checks for any obvious errors.
The /OBJECT qualifier is required. (Use the ANALYZE/IMAGE command to
analyze the contents of an image file.)

FORMAT ANALYZE/OBJECT filespec],...]

PARAMETER filespec],...]
Specifies the object files or object module libraries you want analyzed (the ‘)

default file type is OBJ). Use commas (,) or plus signs (+) to separate
file specifications. Wildcard characters (* and %) are allowed in the file
specification.

DESCRIPTION The ANALYZE/OBJECT command describes the contents of one or more
object modules contained in one or more files. It also performs a partial
error analysis. This analysis determines whether the records in an object
module conform in content, format, and sequence to the specifications of

the VMS Object Language. V

ANALYZE/OBJECT is intended primarily for programmers of compilers,
debuggers, or other software involving VMS object modules. It checks
that the object language records generated by the object modules are
acceptable to the VMS Linker, and it identifies certain errors in the file. It
also provides a description of the records in the object file or object module
library. For more information on the VMS linker and on the VMS Object
Language, refer to the VMS Linker Utility Manual.

The ANALYZE/OBJECT command analyzes the object modules in order, '
record by record, from the first to the last record in the object module. U
Fields in each record are analyzed in order from the first to the last field

in the record. After the object module is analyzed, you should compare

the content and format of each type of record to the required content and

format of that record as described by the VMS Object Language. This

comparison is particularly important if the analysis output contains a

diagnostic message.

Linking an object module differs from analyzing an object module. Object
language commands are not executed in an analysis, but they are executed
in a linking operation. As a result, even if the analysis is error free, the
linking operation may not be. In particular, the analysis does not check
the following:

¢ That data arguments in TIR commands are in the correct format.
¢ That “Store Data” TIR commands are storing within legal address
limits. \ J

Therefore, as a final check, you should still link an object module whose
analysis is error free.

DCL1-26

Note:

ANALYZE/OBJECT

If an error is found, however, the first error of the worst severity that is
discovered is returned. For example, if a warning (A) and two errors (B
and C) are signaled, then the first error (B) is returned as the image exit
status, which is placed in the DCL symbol $STATUS at image exit.

ANALYZE/OBJECT uses positional qualifiers; that is, qualifiers whose
function depends on their position in the command line. When a positional
qualifier precedes all of the input files in a command line, it affects all
input files. For example, the following command line requests that the
analysis include the global symbol directory records in files A, B, and C:

$ ANALYZE/OBJECT/GSD A,B,C

Conversely, when a positional qualifier is associated with only one file in
the parameter list, only that file is affected. For example, the following
command line requests that the analysis include the global symbol
directory records in file B only:

$ ANALYZE/OBJECT A,B/GSD,C

Typically, all records in an object module are analyzed. However, when the
/DBG, /EOM, /GSD, /LNK, /MHD, /TBT, or /TIR qualifier is specified, only
the record types indicated by the qualifiers are analyzed. All other record
types are ignored.

By default, the analysis includes all record types unless you explicitly
request a limited analysis using appropriate qualifiers.

End-of-module (EOM) records and module header (MHD) records
are always analyzed, no matter which qualifiers you specify.

QUALIFIERS

Note:

/DBG
Positional qualifier.

Specifies that the analysis should include all debugger information records.
If you want the analysis to include debugger information for all files

in the parameter list, insert the /DBG qualifier immediately following

the /OBJECT qualifier. If you want the analysis to include debugger
information selectively, insert the /DBG qualifier immediately following
each of the selected file specifications.

/EOM
Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM
records, and records explicitly specified by the command. If you want
this to apply to all files in the parameter list, insert the /EOM qualifier
immediately following the /OBJECT qualifier.

To make the /EOM qualifier applicable selectively, insert it immediately
following each of the selected file specifications.

End-of-module records can be EOM or EOMW records. See the
VMS Linker-Utility Manual for more information.

DCL1-27

ANALYZE/OBJECT

DCL1-28

/GSD

Positional qualifier.

Specifies that the analysis should include all global symbol directory (GSD)
records.

If you want the analysis to include GSD records for each file in the
parameter list, specify the /GSD qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include GSD records selectively, insert
the /GSD qualifier immediately following each of the selected file
specifications.

/INCLUDE[=(module],...])]

When the specified file is an object module library, use this qualifier to list
selected object modules within the library for analysis. If you omit the list
or specify an asterisk (*), all modules are analyzed. If you specify only
one module, you can omit the parentheses.

/INTERACTIVE
/NOINTERACTIVE (default)

Controls whether the analysis occurs interactively. In interactive mode, as
each record is analyzed, the results are displayed on the screen, and you
are asked whether you want to continue.

/LNK

Positional qualifier.

Specifies that the analysis should include all link option specification
(LNK) records.

If you want the analysis to include LNK records for each file in the
parameter list, specify the /LNK qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include LNK records selectively, insert
the /LNK qualifier immediately following each of the selected file
specifications.

/MHD

Positional qualifier.

Specifies that the analysis should be limited to MHD records, EOM
records, and records explicitly specified by the command. If you want
this analysis to apply to all files in the parameter list, insert the /MHD
qualifier immediately following the /OBJECT qualifier.

To make the /MHD qualifier applicable selectively, insert immediately
following each of the selected file specifications.

/OUTPUT[=filespec]

Directs the output of the object analysis (the default is SYS$OUTPUT).
If you specify a file type and omit the file name, the default file name
ANALYZE is used. The default file type is ANL.

No wildcard characters are allowed in the file specification.

ANALYZE/OBJECT

/TBT
Positional qualifier.

Specifies that the analysis should include all module traceback (TBT)
records.

If you want the analysis to include TBT records for each file in the
parameter list, specify the /TBT qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include TBT records selectively, insert the /TBT
qualifier immediately following each of the selected file specifications.

/TIR
Positional qualifier.

Specifies that the analysis should include all text information and
relocation (TIR) records.

If you want the analysis to include TIR records for each file in the
parameter list, specify the /TIR qualifier immediately following the
/OBJECT qualifier.

If you want the analysis to include TIR records selectively, insert the /TIR
qualifier immediately following the selected file specifications.

EXAMPLES

$ ANALYZE/OBJECT/INTERACTIVE LINEDT

In this example, the ANALYZE/OBJECT command produces a description
and a partial error analysis of the object file LINEDT.OBJ. By default,
all types of records are analyzed. Output is to the terminal, because the
/INTERACTIVE qualifier has been used. As each item is analyzed, the
utility displays the results on the screen and asks if you want to continue.

$ ANALYZE/OBJECT/OUTPUT=LIOBJ/DBG LINEDT

In this example, the ANALYZE/OBJECT command analyzes only the
debugger information records of the file LINEDT.OBJ. Output is to the file
LIOBJ.ANL.

DCL1-29

ANALYZE/PROCESS_DUMP

ANALYZE/PROCESS_DUMP

Invokes the VMS Debugger to analyze a process dump file that was created
when an image failed during execution. (Use the /DUMP qualifier with the
RUN or the SET PROCESS command to generate a dump file.) For a
complete description of the debugger (including information about the DEBUG
command), see the VMS Debugger Manual.

Requires read (R) access to the dump file.

ANALYZE/PROCESS_DUMP dump-file

PARAMETER

dump-file
Specifies the dump file to be analyzed with the debugger.

DESCRIPTION

_ __
The ANALYZE/PROCESS_DUMP command examines the dump file of
an image that failed during execution. The VMS Debugger is invoked
automatically. To cause a dump file to be created for a process, you
must use the /DUMP qualifier with the RUN command when invoking
the image, or you must use the SET PROCESS/DUMP command before
invoking the image.

FORMAT
QUALIFIERS

DCL1-30

/FULL

Displays all known information about the failing process.

/IMAGE=image-name
/NOIMAGE

Specifies the image whose symbols are to be used in analyzing the dump.

If you use the /INOIMAGE qualifier, no symbols are taken from any image.
By default, symbols are taken from the image with the same name as the
image that was running at the time of the dump.

/INTERACTIVE
/NOINTERACTIVE (default)

Causes the display of information to pause when your terminal screen is
filled. Press the Return key to display additional information. By default,
the display is continuous.

/MISCELLANEOUS

Displays all the miscellaneous information in the dump.

/OUTPUT=filespec

Writes the information to the specified file. By default, the information is
written to the current SYS$OUTPUT device. No wildcard characters are
allowed in the file specification.

ANALYZE/PROCESS_DUMP

/RELOCATION

Displays the addresses to which data structures saved in the dump are
mapped in PO space. (Examples of such data structures are the stacks.)
The data structures in the dump must be mapped into PO space so that
the debugger can use those data structures in P1 space.

EXAMPLE

$ ANALYZE/PROCESS/FULL ZIPLIST

RO 00018292 R1
R4 8013DE20 RS

8013DE20 R2 = 7FFEG6A40 R3 = 7FFE6A98
00000000 R6 = 7FFE7B9A R7 = 0000F000
R8 = 00000000 RO 00000000 RI10 00000000 R11 = 00000000
SP = TFFAEF44 AP TFFAEF48 FP TFFAEF84

FREE_PO_VA 00001600 FREE_P1 VA TFFAC600

Active ASTs 00 ~ Enabled ASTs OF

Current Privileges FFFFFF80 1010C100

Event Flags 00000000 EO0000000

Buffered I/0 count/limit 6/6

Direct I/O count/limit 6/6

File count/limit 27/30

Process count/limit 0/0

Timer queue count/limit 10/10

AST count/limit 6/6

Enqueue count/limit 30/30

Buffered I/0 total 7 Direct I/O total 18

Link Date 27-DEC-1990 15:02:00.48 Patch Date 17-NOV-1990 00:01:53.71
ECO Level 0030008C 00540040 00000000 34303230

Kernel stack 00000000 pages at 00000000 moved to 00000000

Exec stack 00000000 pages at 00000000 moved to 00000000

Vector page 00000001 page at 7FFEFE0O moved to 00001600

PIO (RMS) area 00000005 pages at 7FFE1200 moved to 00001800

Image activator context 00000001 page at 7FFE3400 moved to 00002200
User writable context 0000000A pages at 7FFE1C00 moved to 00002400
Creating a subprocess

VAX DEBUG Version 5.4

DBG>

This example shows the output of the ANALYZE/PROCESS command
when used with the /FULL qualifier. The file specified, ZIPLIST, contains
the dump of a process that encountered a fatal error. The DBG> prompt
indicates that the debugger is ready to accept commands.

DCL1-31

ANALYZE/RMS_FILE

ANALYZE/RMS_FILE

Invokes the Analyze/RMS_File Utility, which is used to inspect and analyze
the internal structure of a VMS RMS file. The /RMS_FILE qualifier is required.
For a complete description of the Analyze/RMS_File Utility, see the VMS
Analyze/RMS_File Utility Manual.

FORMAT ANALYZE/RMS_FILE filespec],...]

DCL1-32

ANALYZE/SYSTEM

ANALYZE/SYSTEM

Invokes the System Dump Analyzer Utility, which analyzes a running system.
The /SYSTEM qualifier is required. For a complete description of the System
Dump Analyzer Utility, see the VMS System Dump Analyzer Utility Manual.

FORMAT ANALYZE/SYSTEM

DCL1-33

APPEND

APPEND

FORMAT

Adds the contents of one or more specified input files to the end of the
specified output file.

APPEND input-filespec],...] output-filespec

PARAMETERS

input-filespec],...]

Specifies the names of one or more input files to be appended. Multiple
input files are appended to the output file in the order specified. If you
specify more than one input file, separate the file specifications with either
commas (,) or plus signs (+).

Wildcard characters (* and %) are allowed in the input file specifications.

output-filespec
Specifies the name of the file to which the input files will be appended.

You must specify at least one field in the output file specification. If you
do not specify a device or directory, the APPEND command uses the
current default device and directory. Other unspecified fields default to the
corresponding fields of the first input file specification.

If you use the asterisk (*) wildcard character in any fields of the output
file specification, the APPEND command uses the corresponding field of
the input file specification. If you are appending more than one input file,
the APPEND command uses the corresponding fields from the first input
file.

DESCRIPTION

The APPEND command is similar in syntax and function to the COPY
command. Normally, the APPEND command adds the contents of one or
more files to the end of an existing file without incrementing the version
number. The /NEW_VERSION qualifier causes the APPEND command to
create a new output file if no file with that name exists.

Note that there are special considerations for using the APPEND
command with DECwindows compound documents. For more information,
see the Guide to VMS File Applications.

QUALIFIERS

DCL1-34

/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number
of 512-byte blocks. If you do not specify the /ALLOCATION qualifier,
or if you specify it without the number-of-blocks parameter, the initial
allocation of the output file is determined by the size of the input file.

The allocation size is applied only if a new file is actually created by using
the /NEW_VERSION qualifier.

APPEND

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates

of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

/BEFORE][=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,

or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/BY_OWNER/=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each append operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES NO QUIT
TRUE FALSE Ctri/iZ
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters

(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

/CONTIGUOUS
/NOCONTIGUOUS

Specifies that the output file must occupy physically contiguous disk
blocks. By default, the APPEND command creates an output file in the
same format as the corresponding input file and does not report an error
if not enough space exists for a contiguous allocation. This qualifier is
relevant only with the / NEW_VERSION qualifier.

DCL1-35

APPEND

DCL1-36

If an input file is contiguous, the APPEND command attempts to create a
contiguous output file, but does not report an error if there is not enough
space. If you append multiple input files of different formats, the output
file may or may not be contiguous. Use the /CONTIGUOUS qualifier to
ensure that the output file is contiguous.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according

to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/EXCLUDE=(filespec],...])

Excludes the specified files from the append operation. You can include
a directory but not a device in the file specification. Wildcard characters
(* and %) are allowed in the file specification. However, you cannot use
relative version numbers to exclude a specific version. If you specify only
one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

/EXTENSION=number-of-blocks

Specifies the number of blocks to be added to the output file each time the
file is extended. When you specify the /EXTENSION qualifier, the /NEW_
VERSION qualifier is assumed and need not be typed on the command
line. This qualifier is relevant only with the /NEW_VERSION qualifier.

The extension value is applied only if a new file is actually created.

/LOG
/NOLOG (default)

Controls whether the APPEND command displays the file specifications
of each file appended. If the /LOG qualifier is specified, the command
displays the file specifications of the input and output files as well as the
number of blocks or records appended after each append operation.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

v,

U/

U/

APPEND

/NEW_VERSION
/NONEW_VERSION (default)

Controls whether the APPEND command creates a new output file if the
specified output file does not exist. (By default, the specified output file
already exists.) If the specified output file does not already exist, use the
/NEW_VERSION qualifier to create a new output file. If the output file
does exist, the /NEW_VERSION qualifier is ignored and the input file is
appended to the output file.

/PROTECTION=(ownership[:access][,...])

Specifies protection for the output file. Specify ownership as system (S),
owner (0), group (G), or world (W) and access as read (R), write (W),
execute (E), or delete (D). The default protection, including any protection
attributes not specified, is that of the existing output file. If no output file
exists, the current default protection applies. This qualifier is relevant
only with the /NEW_VERSION qualifier.

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

/READ_CHECK
/NOREAD CHECK (default)

Reads each record in the input files twice to verify that it has been read
correctly.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,
or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/WRITE_CHECK
/NOWRITE_CHECK (default)

Reads each record in the output file after the record is written to
verify that it was appended successfully and that the output file can
subsequently be read without error.

EXAMPLES

$ APPEND TEST3.

DAT TESTALL.DAT

The APPEND command appends the contents of the file TEST3.DAT from
the default disk and directory to the file TESTALL.DAT, also located on
the default disk and directory.

DCL1-37

O

APPEND

$ APPEND /NEW_VERS ION/LOG *.TXT MEM. SUM
$APPEND-I-CREATED, USES$:[MAL]MEM.SUM;1 created
$APPEND-S-COPIED, USE$:[MAL]A.TXT;2 copied to USES$:[MAL]MEM.SUM;1 (1 block)
$APPEND-S-APPENDED, USES$:[MAL]B.TXT;3 appended to USE$: [MAL]MEM.SUM;1 (3 records)
%APPEND-S-APPENDED, USES$:[MAL]G.TXT;7 appended to USES$:[MAL]MEM.SUM;1 (51 records)

The APPEND command appends all files with file types of TXT to a

file named MEM.SUM. The /LOG qualifier requests a display of the

specifications of each input file appended. If the file MEM.SUM does not

exist, the APPEND command creates it, as the output shows. The number
| of blocks or records shown in the output refers to the source file and not to

the target file total.

E $ APPEND/LOG A.DAT, B.MEM Cc.*

%APPEND-S—-APPENDED, USE$: [MAL]A.DAT;4 appended to USES$:[MAL]C.DAT;4 (2 records)
$APPEND-S-APPENDED, USES$:[MAL]B.MEM;5 appended to USE$:[MAL]C.DAT;4 (29 records)

The APPEND command appends the files A.DAT and B.MEM to the file u
C.DAT, which must already exist.

$ APPEND/LOG A.* B.*

$APPEND-S-APPENDED, USE$:[MAL]A.DAT;5 appended to USE$:[MAL]B.DAT;1l (5 records)
$APPEND-S-APPENDED, USES$:[MAL]A.DOC;2 appended to USE$:[MAL]B.DAT;1 (1 record)

Both the input and output file specifications contain wildcard characters

in the file type field. The APPEND command appends each file with a file

name of A to an existing file with B as its file name. The file type of the

first input file located determines the output file type. U

$ APPEND BOSTON"JOHN_ SMITH YANKEE"::DEMOO1l.DAT, DEMO2.DAT
S To: DALLAS::DISK1l: [MODEL.TEST]TEST.DAT

This APPEND command adds the contents of the files DEMO1.DAT and
DEMO2.DAT at remote node BOSTON to the end of the file TEST.DAT at
remote node DALLAS.

DCL1-38

ASSIGN

ASSIGN

Creates a logical name and assigns an equivalence string, or a list of strings,
to the specified logical name. If you specify an existing logical name, the new
equivalence name replaces the existing equivalence name.

FORMAT

ASSIGN equivalence-name],...] logical-namef:]

PARAMETERS

equivalence-name],...]

Specifies a character string of 1 to 255 characters. Defines the equivalence
name, usually a file specification, device name, or other logical name, to
be associated with the logical name in the specified logical name table. If
the string contains other than uppercase alphanumeric, dollar sign ($),
or underscore (_) characters, enclose it in quotation marks ("). Use
two consecutive quotation marks (") to denote an actual quotation mark
within the string. Specifying more than one equivalence name for a logical
name creates a search list.

When you specify an equivalence name that will be used as a file
specification, you must include the punctuation marks (colons [:], brackets
[[1], and periods [.]) that would be required if the equivalence name were
used directly as a file specification. Therefore, if you specify a device name
as an equivalence name, terminate the device name with a colon.

The ASSIGN command allows you to assign the same logical name to more
than one equivalence name. When you specify more than one equivalence
name for a logical name, you create a search list. For more information on
search lists, see the VMS DCL Concepts Manual.

logical-name[:]

Specifies the logical name string, which is a character string containing up
to 255 characters. You choose a logical name to represent the equivalence
name in the specified logical name table.

If the string contains other than uppercase alphanumeric, dollar sign, or
underscore characters, enclose it in quotation marks. Use two consecutive
quotation marks to denote an actual quotation mark. If you terminate the
logical-name parameter with a colon, the system removes the colon before
placing the name in a logical name table. (This differs from the DEFINE
command, which saves the colon.) If the logical name is to be entered into
the process directory (LNM$PROCESS_DIRECTORY) or system directory
(LNM$SYSTEM_DIRECTORY) logical name tables, then the name may
only have from 1 to 31 alphanumeric characters (including the dollar sign
and underscore). By default, the logical name is placed in the process
logical name table.

If the logical name contains any characters other than alphanumeric
characters, the dollar sign, or the underscore, enclose the name in
quotation marks. If the logical name contains quotation marks, enclose
the name in quotation marks and use two consecutive quotation marks in
the places where you want one set of quotation marks to occur. Note that
if you enclose a name in quotation marks, the case of alphabetic characters
is preserved.

DCL1-39

ASSIGN

DESCRIPTION

Note:

The ASSIGN command creates an entry in a logical name table by defining
a logical name to stand for one or more equivalence names. An equivalence
name can be a device name, another logical name, a file specification, or
any other string.

To specify the logical name table where you want to enter a logical
name, use the /PROCESS, /JOB, /GROUP, /SYSTEM, or /TABLE
qualifier. If you enter more than one of these qualifiers, only the last
one entered is accepted. If you do not specify a table, the default is
/TABLE=LNM$PROCESS (or /PROCESS).

To specify the access mode of the logical name you are creating, use the
/USER_MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE
qualifier. If you enter more than one of these qualifiers, only the last

one entered is accepted. If you do not specify an access mode, then a
supervisor-mode name is created. You can create a logical name in the
same mode as the table in which you are placing the name or in an outer
mode. (User mode is the outermost mode; executive mode is the innermost
mode.)

You can enter more than one logical name with the same name in the
same logical name table, as long as each name has a different access
mode. (However, if an existing logical name within a table has the NO_
ALIAS attribute, you cannot use the same name to create a logical name
in an outer mode in this table.)

If you create a logical name with the same name, in the same table, and
in the same mode as an existing name, the new logical name assignment
replaces the existing assignment.

You can also use the DEFINE command to create logical names. To delete
a logical name from a table, use the DEASSIGN command.

Avoid assigning a logical name that matches the file name of
an executable image in SYS$SYSTEM:. Such an assignment will
prohibit you from invoking that image.

For additional information on how to create and use logical names, see the
VMS DCL Concepts Manual.

QUALIFIERS

DCL1-40

/EXECUTIVE _MODE
Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name. If you specify executive mode,
but do not have SYSNAM privilege, a supervisor-mode logical name is
created. The mode of the logical name must be the same as or external to
(less privileged than) the mode of the table in which you are placing the
name.

ASSIGN

/GROUP
Requires SYSPRYV (system privilege) or GRPNAM (group logical
name) privilege.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

/JOB

Places the logical name in the jobwide logical name table. All processes
within the same job tree as the process creating the logical name can
access the logical name. The /JOB qualifier is synonymous with the
/TABLE=LNM$JOB qualifier.

/LOG (default)
/NOLOG

Displays a message when a new logical name supersedes an existing
name.

/NAME_ATTRIBUTES[=(keyword],...])]

Specifies the attributes for a logical name. By default, no attributes are
set. You can specify the following keywords for attributes:

CONFINE Does not copy the logical name into a spawned subprocess; this
keyword is relevant only for logical names in a private table.

NO_ALIAS Prohibits creation of logical names with the same name in an outer
(less privileged) access mode within the specified table. If another
logical name with the same name and an outer access mode already
exists in this table, the name is deleted.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

/PROCESS (default)

Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name in the specified table.

/SYSTEM
Requires SYSNAM (system logical name) or SYSPRV (system
privilege) privilege.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with
the /TABLE=LNM$SYSTEM qualifier.

DCL1-41

ASSIGN

/TABLE=name
Requires write (W) access to the table if the table is shareable.

Specifies the logical name table in which the logical name is to be entered.
You can use the /TABLE qualifier to specify a user-defined logical name
table (created with the CREATE/NAME_TABLE command); to specify the
process, job, group, or system logical name tables; or to specify the process
or system logical name directory tables.

If you specify the table name using a logical name that has more
than one translation, the logical name is placed in the first table
found. For example, if you specify ASSIGN/TABLE=LNM$FILE_DEV
and LNM$FILE_DEV is equated to LNM$PROCESS, LNM$JOB,
LNM$GROUP, and LNM$SYSTEM, then the logical name is placed in
LNM$PROCESS.

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

/TRANSLATION_ATTRIBUTES|[=(keywordl],...])]

Equivalence-name qualifier.

Specifies attributes of the equivalence-name parameter. Possible keywords
are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device.

When a concealed device name is defined, the system displays the
logical name, rather than the equivalence string, in messages that
refer to the device. If you specified the CONCEALED attribute, then
the equivalence string must be a physical device name.

TERMINAL Indicates that the equivalence string should not be translated
iteratively; logical name translation should terminate with the current
equivalence string.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of the same logical name can have
different translation attributes specified.

JUSER_MODE

Creates a user-mode logical name in the specified table.

If you specify a user-mode logical name in the process logical name table,
that logical name is used for the execution of a single image only; user-
mode entries are deleted from the logical name table when any image
executing in the process exits; that is, after any DCL command that
executes an image or user program completes execution.

DCL1-42

ASSIGN

EXAMPLES

1] $ ASSIGN S$DISKl:[ACCOUNTS.MEMOS] MEMOSD

The ASSIGN command in this example equates the partial file

specification $DISK1:]ACCOUNTS.MEMOS] to the logical name
MEMOSD.

B $ ASSIGN/USER_MODE $DISK1: [ACCOUNTS.MEMOS]WATER.TXT TM1

The ASSIGN command in this example equates the logical name TM1 to a
file specification. After the next image runs, the logical name is deassigned
automatically.

E $ ASSIGN XXX1:[CHARLES] CHARLIE
$ PRINT CHARLIE:TEST.DAT
Job 274 entered on queue SYSS$PRINT

The ASSIGN command in this example associates the logical name
CHARLIE with the directory name [CHARLES] on the disk XXX1.
Subsequent references to the logical name CHARLIE result in the
correspondence between the logical name CHARLIE and the disk and
directory specified. The PRINT command queues a copy of the file
XXX1:[CHARLES]TEST.DAT to the system printer.

$ ASSIGN YYY2: TEMP:
$ SHOW LOGICAL TEMP
"TEMP" = "YYY2:" (LNMSPROCESS TABLE)
$ DEASSIGN TEMP

The ASSIGN command in this example equates the logical name TEMP
to the device YYY2. TEMP is created in supervisor mode and placed in
the process logical name table. The SHOW LOGICAL command verifies
that the logical name assignment was made. Note that the logical name
TEMP was terminated with a colon in the ASSIGN command, but that
the command interpreter deleted the colon before placing the name in
the logical name table. Thus, you can specify TEMP without a colon in
the subsequent DEASSIGN command. You should omit the colon in the
SHOW LOGICAL command (for example, SHOW LOGICAL TEMP).

$ MOUNT TTT1l: MASTER TAPE
$ ASSIGN TAPE:NAMES.DAT PAYROLL
$ RUN PAYROLL

The MOUNT command in this example establishes the logical name TAPE
for the device TTT1, which has the volume labeled MASTER mounted

on it. The ASSIGN command equates the logical name PAYROLL with
the file named NAMES.DAT on the logical device TAPE. Thus, an OPEN
request in a program referring to the logical name PAYROLL results

in the correspondence between the logical name PAYROLL and the file
NAMES.DAT on the tape whose volume label is MASTER.

DCL1-43

ASSIGN

B $ CREATE/NAME TABLE TABLEl
$ ASSIGN/TABLE=LNM$PROCESS DIRECTORY TABLEL, -
$ LNM$PROCESS, LNM$SJOB, LNMSGROUP, LNM$SYSTEM LNM$FILE DEV
S ASSIGN/TABLE=TABLEl -
_$ /TRANSLATION_ATTRIBUTES=CONCEALED DBAl: WORK_DISK

The CREATE/NAME_TABLE command in this example creates the process
private logical name table TABLE1.

The first ASSIGN command ensures that TABLEL1 is searched first in any
logical name translation of a file specification or device name (because
TABLEL is the first item in the equivalence string for the logical name
LNMS$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second ASSIGN command assigns the logical name WORK_DISK to
the physical device DBA1, and places the name in TABLE1. The logical
name has the concealed attribute. Therefore, the logical name WORK_
DISK will be displayed in system messages.

17| $ ASSIGN/TABLE=LNM$PROCESS/TABLE=LNM$GROUP DBAO: SYSFILES

$ SHOW LOGICAL

SYSFILES

"SYSFILES" = "DBAO:" (LNM$GROUP_000240)

The ASSIGN command in this example contains conflicting qualifiers.
When you specify conflicting qualifiers, the ASSIGN command uses the
last qualifier specified. The response from the SHOW LOGICAL command
indicates that the name was placed in the group logical name table.

E $ ASSIGN/TABLE=LNM$GROUP ’‘FS$STRNLNM("SYSS$SCOMMAND")’ TERMINAL
$DCL-I-SUPERSEDE, previous value of TERMINAL has been superseded

B $ ASSIGN DALLAS:

DCL1-44

The ASSIGN command in this example uses the lexical function
F$TRNLNM to translate the logical name SYS§COMMAND and use

the result as the equivalence name for the logical name TERMINAL. The
message from the ASSIGN command indicates that an entry for the logical
name TERMINAL already existed in the group logical name table, and
that the new entry has replaced the previous one.

If this command is used in a LOGIN.COM file, the entry for TERMINAL
will be redefined at the beginning of each terminal session. The current
process and any subprocesses it creates can execute images that use the
logical name TERMINAL to write messages to the current terminal device.

:DMAl: DATA

The ASSIGN command in this example associates the logical name DATA

with the device specification DMA1 on remote node DALLAS. Subsequent

references to the logical name DATA result in references to the disk on the
remote node.

ASSIGN

$ CREATE AVERAGE.COM

$ ASSIGN/USER_MODE SYS$COMMAND: SYSSINPUT
$ EDIT/EDT AVERAGE.FOR

$ FORTRAN AVERAGE

$ LINK AVERAGE

$ RUN AVERAGE

87

80

90

9999

$ EXIT

$ @AVERAGE.COM

The CREATE command in this example creates the command procedure
AVERAGE.COM. Then the command procedure is executed.

The command procedure uses the ASSIGN command with the /USER_
MODE qualifier to change temporarily the value of SYS$INPUT. When the
EDT editor is invoked, it accepts input from the terminal. This allows you
to create or modify the program AVERAGE.FOR interactively.

When you exit from EDT, SYS$INPUT is reassigned to its original value
(the input stream provided by the command procedure). Thus, when the
program AVERAGE.FOR is ready to accept input, it looks for that input in
the command procedure.

DCL1-45

ASSIGN/MERGE

ASSIGN/MERGE

Removes all jobs from one queue and merges them into another existing
queue. This command does not affect jobs that are executing.

Requires OPER (operator) privilege or execute (E) access to both
queues.

FORMAT

ASSIGN/MERGE target-queuel;] source-queuel:]

PARAMETERS

target-zueue[:]

Specifies the name of the queue into which the jobs are being merged.

source-queuel:]
Specifies the name of the queue from which the jobs are being removed.

DESCRIPTION

N I
The ASSIGN/MERGE command removes the pending jobs in one queue
and places them in another queue. This command does not affect any
executing jobs in either the target queue or the source queue. Jobs
currently running in the source queue complete in that queue. This
command is generally used with printer queues, although it can be used
with batch queues.

The ASSIGN/MERGE command is particularly useful when a line printer
malfunctions. By entering the ASSIGN/MERGE command, you can
reroute existing jobs to a different printing device. To perform the merge
operation without losing or disrupting any jobs, stop the source queue
with the STOP/QUEUE/NEXT command. Then enter the STOP/QUEUE
/REQUEUE command to ensure that the current job on the source queue
is requeued for processing on the target queue. (If the STOP/QUEUE
/REQUEUE command fails to requeue the job, use the STOP/QUEUE
/RESET command to regain control of the queue.) Once you enter the
STOP commands, enter the ASSIGN/MERGE command.

EXAMPLE

$ STOP/QUEUE/NEXT LPRBO
$ STOP/QUEUE/REQUEUE=LPA0 LPBO
$ ASSIGN/MERGE LPAO LPBO

DCL1-46

In this example, the STOP/QUEUE/NEXT command prevents another job
from executing on queue LPB0. The STOP/QUEUE/REQUEUE command
requeues the current job running on LPBO to the target queue LPAO. The
ASSIGN/MERGE command removes the remaining jobs from the LPBO
printer queue and places them in the LPAO printer queue.

\/

\/

ASSIGN/QUEUE

ASSIGN/QUEUE

Assigns, or redirects, a logical queue to a single execution queue. The
ASSIGN/QUEUE command can be used only with printer or terminal queues.

Requires OPER (operator) privilege or execute (E) access to both
queues.

FORMAT

ASSIGN/QUEUE queue-name[]
logical-queue-name]:]

PARAMETERS

R
queue-namel:]
Specifies the name of the execution queue. The queue cannot be a logical
queue, a generic queue, or a batch queue.

logical-queue-name]:]
Specifies the name of the logical queue.

DESCRIPTION

The ASSIGN/QUEUE command sets up a one-to-one correspondence
between a logical queue and an execution queue. Jobs submitted to the
logical queue are always queued to the specified execution queue for
eventual printing.

When you enter the ASSIGN/QUEUE command, the logical queue cannot
be running.

Once you initialize a logical queue, use the ASSIGN/QUEUE command to
associate the logical queue with an existing execution queue. You must
perform the following tasks to set up a logical queue:

1 Initialize the logical queue with the INITIALIZE/QUEUE command.
(Do not use the /START qualifier.)

2 Assign the logical queue name to an existing execution queue.
3 Start the logical queue with the START/QUEUE command.

After you enter the START/QUEUE command for the logical queue, jobs
can be sent to the logical queue for processing.

EXAMPLES

INITIALIZE/QUEUE/DEFAULT=FLAG=ONE/START LPAO

INITIALIZE/QUEUE TEST_ QUEUE

$
$
$ ASSIGN/QUEUE LPAO TEST QUEUE
$

START/QUEUE TEST_ QUEUE

This example first initializes and starts the printer queue LPAO. The
LPAO queue is set to have a flag page precede each job. The second
INITIALIZE/QUEUE command creates the logical queue TEST_QUEUE.

DCL1-47

ASSIGN/QUEUE

The ASSIGN/QUEUE command assigns the logical queue TEST_QUEUE
to the printer queue LPAQ. The START/QUEUE command starts the
logical queue.

$ INITIALIZE/QUEUE/START LPBO

The ASSIGN/QUEUE command is not needed in this example because a
logical queue is not being initialized. A printer queue is being initialized;
LPBO is the name of a line printer. After you enter the INITIALIZE
/QUEUE/START command, jobs can be queued to LPBO for printing.

DCL1-48

ATTACH

ATTACH

Transfers control from your current process (which then hibernates) to the
specified process.

The ATTACH and SPAWN commands cannot be used if your terminal has
an associated mailbox.

FORMAT

ATTACH [process-name]

PARAMETER

process-name

Specifies the name of a parent process or spawned subprocess to which
control passes. The process must already exist, be part of your current job,
and share the same input stream as your current process. However, the

process cannot be your current process or a subprocess created with the
/NOWAIT qualifier.

Process names can contain from 1 to 15 alphanumeric characters. If a
connection to the specified process cannot be made, an error message is
displayed.

The process-name parameter is incompatible with the [IDENTIFICATION
qualifier.

DESCRIPTION

The ATTACH command allows you to connect your input stream to another
process. You can use the ATTACH command to change control from one
subprocess to another subprocess or to the parent process.

When you enter the ATTACH command, the parent or “source” process is
put into hibernation, and your input stream is connected to the specified
destination process. You can use the ATTACH command to connect to a
subprocess that is part of a current job left hibernating as a result of the
SPAWN/WAIT command or another ATTACH command as long as the
connection is valid. (No connection can be made to the current process,
to a process that is not part of the current job, or to a process that does
not exist. If any of these connections are attempted, an error message is
displayed.)

You can also use the ATTACH command in conjunction with the SPAWN
/WAIT command to return to a parent process without terminating the
created subprocess. See the description of the SPAWN command for more
details.

QUALIFIER

/IDENTIFICATION=pid

Specifies the process identification (PID) of the process to which
terminal control will be transferred. Leading zeros can be omitted.
The /IDENTIFICATION qualifier is incompatible with the process-name
parameter.

DCL1-49

ATTACH

If you omit the /[IDENTIFICATION qualifier, you must specify a process
name.

EXAMPLES

$ ATTACH JONES_2

The ATTACH command transfers the terminal’s control to the subprocess
JONES_2.

$ ATTACH/IDENTIFICATION=30019

The ATTACH command switches control from the current process

to a process having the PID 30019. Notice that because the
/IDENTIFICATION qualifier is specified, the process-name parameter U
is omitted.

DCL1-50

BACKUP

BACKUP

Invokes the Backup Utility (BACKUP) to perform one of the following BACKUP
operations:

* Make copies of disk files.

« Save disk files as data in a file created by BACKUP on disk or magnetic
tape. (Files created by BACKUP are called save sets.)

» Restore disk files from a BACKUP save set.
» Compare disk files or files in a BACKUP save set with other disk files.

+ List information about files in a BACKUP save set to an output device or
file.

Note that standalone BACKUP cannot be invoked this way, but must be
bootstrapped in order to run. For a complete description of BACKUP and
information on standalone BACKUP, see the VMS Backup Utility Manual.

FORMAT

BACKUP input-specifier output-specifier

DCL1-51

CALL

CALL

Transfers control to a labeled subroutine within a command procedure.

FORMAT

CALL /abel [parameter],...]]

PARAMETERS

DCL1-52

label

Specifies a label of 1 to 255 alphanumeric characters that appears as the
first item on a command line. A label cannot contain embedded blanks.
When the CALL command is executed, control passes to the command
following the specified label.

The label can precede or follow the CALL statement in the current
command procedure. A label in a command procedure must be terminated
with a colon (:). Labels for subroutines must be unique.

Labels declared in inner procedure levels are inaccessible from outer
levels, as in the following example:

SCALL B
$SUBROUTINE A

$ B: SUBROUTINE
$ ENDSUBROUTINE
SENDSUBROUTINE

In this example, the label B in subroutine A is inaccessible from the outer
procedure level.

parameter],...]

Specifies from one to eight optional parameters to pass to the command
procedure. Use two consecutive quotation marks (") to specify a null
parameter. The parameters assign character string values to the symbols
named P1, P2, and so on in the order of entry, to a maximum of eight.
The symbols are local to the specified command procedure. Separate each
parameter with one or more blanks.

You can specify a parameter with a character string value containing
alphanumeric or special characters, with the following restrictions:

¢ The command interpreter converts alphabetic characters to uppercase
and uses blanks to delimit each parameter. To pass a parameter that
contains embedded blanks or lowercase letters, enclose the parameter
in quotation marks (").

¢ If the first parameter begins with a slash (/), you must enclose the
parameter in quotation marks.

¢ To pass a parameter that contains quotation marks and spaces, enclose
the entire string in quotation marks and use two consecutive quotation
marks within the string. For example:

$ CALL SUBl "Never say ""quit"""

CALL

When control transfers to SUB1, the parameter P1 is equated to the
following string:

Never say "quit"

If a string contains quotation marks and does not contain spaces, the
quotation marks are preserved in the string and the letters within the
quotation marks remain in lowercase. For example:

$ CALL SUB2 abc"def"ghi

When control transfers to SUBZ2, the parameter P1 is equated to the
string:

ABCdefGHI
To use a symbol as a parameter, enclose the symbol in single quotation
marks (’’) to force symbol substitution. For example:

$ NAME = "JOHNSON"
$ CALL INFO ’NAME’

The single quotation marks cause the value “JOHNSON?” to be substituted
for the symbol “NAME”. Therefore, the parameter “JOHNSON?” is passed
as P1 to the subroutine INFO.

DESCRIPTION

The CALL command transfers control to a labeled subroutine within a
command procedure. The CALL command is similar to the @ (execute
procedure) command in that it creates a new procedure level. The
advantage of the CALL command is that it does not require files to be
opened and closed to process the procedure. Using the CALL command
also makes managing a set of procedures easier because they can all exist
in one file rather than in several files.

When you use the CALL command to transfer control to a subroutine,

a new procedure level is created and the symbols P1 to P8 are assigned
the values of the supplied arguments. Execution then proceeds until an
EXIT command is encountered. At this point, control is transferred to the
command line following the CALL command.

Procedures can be nested to a maximum of 32 levels, which includes any
combination of command procedure and subroutine calls. Local symbols
and labels defined within a nested subroutine structure are treated the
same way as if the routines had been invoked with the @ command; that
is, labels are valid only for the subroutine level in which they are defined.

Local symbols defined in an outer subroutine level are available to any
subroutine levels at an inner nesting level; that is, the local symbols can
be read, but they cannot be written to. If you assign a value to a symbol
that is local to an outer subroutine level, a new symbol is created at the
current subroutine level. However, the symbol in the outer procedure level
is not modified.

The SUBROUTINE and ENDSUBROUTINE commands define the
beginning and end of a subroutine. The label defining the entry point to
the subroutine must appear either immediately before the SUBROUTINE
command or on the same command line.

DCL1-53

CALL

Note:

A subroutine can have only one entry point. The subroutine must begin
with the SUBROUTINE command as the first executable statement. If an
EXIT command is not specified in the procedure, the ENDSUBROUTINE
command functions as an EXIT command.

The SUBROUTINE command performs two different functions depending
on the context in which it is executed. If executed as the result of a
CALL command, it initiates a new procedure level, defines the parameters
P1 to P8 as specified in the CALL statement, and begins execution of the
subroutine. If the SUBROUTINE verb is encountered in the execution
flow of the procedure without having been invoked by a CALL command,
all the commands following the SUBROUTINE command are skipped until
the corresponding ENDSUBROUTINE command is encountered.

The SUBROUTINE and ENDSUBROUTINE commands cannot be
abbreviated to fewer than 4 characters.

QUALIFIER

DCL1-54

/OUTPUT=filespec

Writes all output to the file or device specified. By default, the output

is written to the current SYS$OUTPUT device and the output file

type is LIS. System responses and error messages are written to
SYS$COMMAND as well as to the specified file. If you specify /OUTPUT,
the qualifier must immediately follow the CALL command. No wildcard
characters are allowed in the output file specification.

You can also redefine SYS§OUTPUT to redirect the output from a
command procedure. If you place the following command as the first line
in a command procedure, output will be directed to the file you specify:

$ DEFINE SYS$OUTPUT filespec

When the procedure exits, SYS$OUTPUT is restored to its original
equivalence string. This produces the same result as using the /OUTPUT
qualifier when you execute the command procedure.

B B
EXAMPLE
S
$! CALL.COM
$
$! Define subroutine SUB1l
S!

$ SUBl: SUBROUTINE

$ CALL SUB2 !Invoke SUB2 from within SUB1

$ QFILE !Invoke another procedure command file

$ EXIT

$ ENDSUBROUTINE !End of SUBl definition
$!

$! Define subroutine SUB2

$!

$ SUB2: SUBROUTINE

$ EXIT
$ ENDSUBROUTINE !End of SUB2 definition
$!

$! Start of main routine. At this point, both SUBl and SUB2
$! have been defined but none of the previous commands have

$! been executed.

$!

$ START:

$ CALL/OUTPUT=NAMES.LOG SUB1l "THIS IS P1"

$ CALL SUB2 "THIS IS P1" "THIS IS P2"

$ EXIT !Exit this command procedure file

CALL

The command procedure in this example shows how to use the CALL
command to transfer control to labeled subroutines. The example also
shows that you can call a subroutine or another command file from
within a subroutine. The CALL command invokes the subroutine SUBI,
directing output to the file NAMES.LOG and allowing other users write
(W) access to the file. The subroutine SUB2 is called from within SUB1.
The procedure executes SUB2 and then uses the @ (execute procedure)
command to invoke the command procedure FILE.COM. When all the
commands in SUB1 have executed, the CALL command in the main
procedure calls SUB2 a second time. The procedure continues until SUB2

has executed.

DCL1-55

CANCEL

CANCEL

Cancels wakeup requests for a specified process, including wakeup requests
scheduled with either the RUN command or the $SCHDWK system service.

Requires one of the following:
« Ownership of the process.

+ GROUP privilege to cancel scheduled wakeup requests for
processes in the same group but not owned by you.

+ WORLD privilege to cancel scheduled wakeup requests for any
process in the system.

FORMAT CANCEL [[node-name::]Jprocess-name]

PARAMETERS node-name::

The name of the node on which the specified process is running. The node
name can have as many as six alphanumeric characters. The two colons
(::) count for two additional characters, for a total of eight.

You cannot specify a node name on a different VAXcluster from the current U
process.

process-name

The name of the process for which wakeup requests are to be canceled.
The process name can have up to 15 alphanumeric characters.

The specified process must be in the same group as the current process.

DESCRIPTION The CANCEL command cancels scheduled wakeup requests for the v
specified process.

The CANCEL command does not delete the specified process. If the
process is executing an image when the CANCEL command is issued for
it, the process hibernates instead of exiting after the image completes
execution.

To delete a hibernating process for which wakeup requests have been
canceled, use the STOP command. You can determine whether a
subprocess has been deleted by entering the SHOW PROCESS command
with the /SUBPROCESSES qualifier.

A local process name can look like a remote process name. Therefore,
if you specify ATHENS::SMITH, the system checks for a process named
ATHENS::SMITH on the local node before checking node ATHENS for a
process named SMITH.

DCL1-56

CANCEL

You also can use the /[IDENTIFICATION=pid qualifier to specify a process
name. If you use the /[IDENTIFICATION qualifier and the process-name
parameter together, the qualifier overrides the parameter. If you do not
specify either the process-name parameter or the /[IDENTIFICATION
qualifier, the CANCEL command cancels scheduled wakeup requests for
the current (that is, the issuing) process.

QUALIFIER /IDENTIFICATION=pid
Identifies the process by its process identification (PID). You can omit
leading zeros when you specify the PID.

EXAMPLES

$ CANCEL CALENDAR

The CANCEL command in this example cancels a wakeup request for
a process named CALENDAR (which continues to hibernate until it is
deleted with the STOP command).

$ RUN/SCHEDULE=14:00 STATUS
$RUN-S-PROC_ID, identification of created process is 0013012A

$ CANCEL/IDENTIFICATION=13012A

The RUN command in this example creates a process to execute the image
STATUS. The process hibernates and is scheduled to be awakened at
14:00. Before the process is awakened, the CANCEL command cancels the
wakeup request.

a $ RUN/PROCESS_NAME=LIBRA/INTERVAL=1:00 LIBRA
$RUN-S-PROC_ID, identification of created process is 00130027

$ CANCEL LIBRA

$

STOP LIBRA

The RUN command in this example creates a subprocess named LIBRA to
execute the image LIBRA.EXE at hourly intervals.

Subsequently, the CANCEL command cancels the wakeup request. The
process continues to exist, but in a state of hibernation, until the STOP
command deletes it.

DCL1-57

CLOSE

CLOSE

Closes a file opened with the OPEN command and deassigns the associated
logical name.

FORMAT

CLOSE /ogical-name[:]

PARAMETER

logical-name[:]
Specifies the logical name assigned to the file when it was opened with the
OPEN command.

DESCRIPTION

Files that are opened for reading or writing at the command level
remain open until closed with the CLOSE command, or until the process
terminates. If a command procedure that opens a file terminates without
closing the open file, the file remains open; the command interpreter does
not automatically close it.

QUALIFIERS

DCL1-58

/ERROR=label

Specifies a label in the command procedure to receive control if the close
operation results in an error. Overrides any ON condition action specified.
If an error occurs and the target label is successfully given control, the
global symbol $STATUS retains the code for the error that caused the
error path to be taken.

/LOG (default)
/NOLOG

Generates a warning message when you attempt to close a file that was
not opened by DCL. If you specify the /ERROR qualifier, the /LOG qualifier
has no effect. If the file has not been opened by DCL, the error branch is
taken and no message is displayed.

CLOSE

EXAMPLES

OPEN/READ INPUT_FILE TEST.DAT

$
$ READ_LOOP:
$

READ/END_OF_FILE=NO_MORE INPUT_FILE DATA LINE

NO_MORE:

O

$ @READFILE

$ sTOP

GOTO READ_LOOP

CLOSE INPUT_FILE

The OPEN command in this example opens the file TEST.DAT and assigns
it the logical name of INPUT_FILE. The /END_OF_FILE qualifier on the
READ command requests that, when the end-of-file (EOF) is reached,

the command interpreter should transfer control to the line at the label
NO_MORE. The CLOSE command closes the input file.

$ SHOW LOGICAL/PROCESS

"INFILE" = "_DB1"
"OUTFILE" = "_DB1"

$ CLOSE INFILE
$ CLOSE OUTFILE

In this example, pressing Ctrl/Y interrupts the execution of the command
procedure READFILE.COM. Then, the STOP command stops the
procedure. The SHOW LOGICAL/PROCESS command displays the names
that currently exist in the process logical name table. Among the names
listed are the logical names INFILE and OUTFILE, assigned by OPEN
commands in the procedure READFILE.COM.

The CLOSE commands close these files and deassign the logical names.

DCL1-59

CONNECT

CONNECT

Connects your physical terminal to a virtual terminal that is connected to
another process.

You must connect to a virtual terminal that is connected to a process
with your user identification code (UIC). No other physical terminals may
be connected to the virtual terminal.

FORMAT

CONNECT virtual-terminal-name

PARAMETER

virtual-terminal-name

Specifies the name of the virtual terminal to which you are connecting. A
virtual terminal name always begins with the letters VTA. To determine
the name of the virtual terminal that is connected to a process, enter the
SHOW USERS command.

DESCRIPTION

DCL1-60

The CONNECT command connects you to a separate process, as opposed
to the SPAWN and ATTACH commands, which create and attach
subprocesses.

The CONNECT command is useful when you are logged in to the system
using telecommunications lines. If there is noise over the line and you
lose the carrier signal, your process does not terminate. After you log in
again, you can reconnect to the original process and log out of your second
process.

To use the CONNECT command, the virtual terminal feature must be
enabled for your system with the System Generation Utility (SYSGEN). If
virtual terminals are allowed on your system, then the SET TERMINAL
/DISCONNECT/PERMANENT command is used to enable the virtual
terminal characteristic for a particular physical terminal. When this
characteristic is enabled, a virtual terminal will be created when a user
logs in to the physical terminal. The physical terminal is connected to the
virtual terminal, which is in turn connected to the process.

When the connection between the physical terminal and the virtual
terminal is broken, you are logged out of your current process (and
any images that the process is executing stop running) unless you have
specified the /NOLOGOUT qualifier.

If you have specified the /NOLOGOUT qualifier, the process remains
connected to the virtual terminal. If the process is executing an image, it
continues until the process needs terminal input or attempts to write to
the terminal. At that point, the process waits until the physical terminal
is reconnected to the virtual terminal.

CONNECT

You can connect to a virtual terminal even if you are not currently using a
virtual terminal. However, to log out of your current process you must use
the CONNECT command with the /[LOGOUT qualifier. If you connect to a
virtual terminal from another virtual terminal, you can save your current
process by using the /NOLOGOUT qualifier.

QUALIFIERS /CONTINUE

/NOCONTINUE (default)

Controls whether the CONTINUE command is executed in the current
process just before connecting to another process. This qualifier allows
an interrupted image to continue processing after you connect to another
process.

The /CONTINUE qualifier is incompatible with the /[LOGOUT qualifier.

/LOGOUT (default)
/NOLOGOUT

Logs out your current process when you connect to another process using
a virtual terminal.

When you enter the CONNECT command from a process that is not
connected to a virtual terminal, you must specify the /LOGOUT qualifier.
Otherwise, DCL displays an error message.

The /[LOGOUT qualifier is incompatible with the /CONTINUE qualifier.

EXAMPLES
$ RUN AVERAGE

$ CONNECT/CONTINUE VTA72

In this example, you use the RUN command to execute the image
AVERAGE.EXE. You enter this command from a terminal that is
connected to a virtual terminal. Next, you press Ctrl/Y to interrupt

the image. After you interrupt the image, enter the CONNECT command
with the /CONTINUE qualifier. This operation issues the CONTINUE
command, so the image continues to run and connects you to another
virtual terminal. You can reconnect to the process later.

DCL1-61

CONNECT

$ SHOW USERS
VMS Interactive Users
19-APR-1990 15:25:30.75
Total number of interactive users = 5

Username Process Name PID Terminal
REICH Steve 2040055C VTA267: TXC13:
GLASS Phil 20400560 VTA270: LTA102:
ADAMS ADAMS 20400551 VTA261: TTC7:
DUFAY DUFAY 2040056D VTA272: Disconnected
DUFAY _VTA273: 2040056E VTA273: TTBS:
$ CONNECT VTA273
DUFAY logged out at 19-APR-1990 15:26:56.53
$

This example shows how to reconnect to your original process after you
have lost the carrier signal. First, you must log in again and create a
new process. After you log in, enter the SHOW USERS command to
determine the virtual terminal name for your initial process. Then enter
the CONNECT command to connect to the virtual terminal associated with
your original process. The process from which you enter the CONNECT
command is logged out because you have not specified any qualifiers.

When you reconnect to the original process, you continue running the
image that you were running when you lost the carrier signal. In this
example, the user DUFAY was at interactive level when the connection
was broken.

DCL1-62

CONTINUE

CONTINUE

Resumes execution of a DCL command, a program, or a command procedure
that was interrupted by pressing Ctrl/Y or Ctrl/C. You cannot resume execution
of the image if you have entered a command that executes another image or
if you have invoked a command procedure.

FORMAT

CONTINUE

PARAMETERS

None.

DESCRIPTION

The CONTINUE command enables you to resume processing an image or
a command procedure that was interrupted by pressing Ctrl/Y or Ctrl/C.
You cannot resume execution of the image if you have entered a command
that executes another image or if you have invoked a command procedure.
However, you can use CONTINUE after commands that do not execute
separate images; for a list of these commands, see the VMS DCL Concepts
Manual.

You can abbreviate the CONTINUE command to a single letter, C.

The CONTINUE command serves as the target command of an IF or ON
command in a command procedure. The CONTINUE command is also

a target command when it follows a label that is the target of a GOTO
command. In addition, you can use the CONTINUE command to resume
processing of a program that has executed either a VAX FORTRAN PAUSE
statement or a VAX COBOL-74 STOP literal statement.

EXAMPLES

$ RUN MYPROGRAM A

$ SHOW TIME

19-APR-1990 13:40:12

$ CONTINUE

In this example, the RUN command executes the program
MYPROGRAM_A. While the program is running, pressing Ctrl/Y
interrupts the image. The SHOW TIME command requests a display
of the current date and time. The CONTINUE command resumes the
image.

DCL1-63

CONTINUE

$ ON SEVERE_ERROR THEN CONTINUE

DCL1-64

In this example, the command procedure statement requests the command
interpreter to continue executing the procedure if any warning, error, or
severe error status value is returned from the execution of a command or
program. This ON statement overrides the default action, which is to exit
from a procedure following errors or severe errors.

CONVERT

Invokes the Convert Utility, which copies records from one file to another and
changes the organization and format of the input file to those of the output
file. For a complete description of the Convert Utility, see the VMS Convert
and Convert/Reclaim Utility Manual.

FORMAT CONVERT input-filespec],...] output-filespec

DCL1-65

CONVERT/DOCUMENT

CONVERT/DOCUMENT

Converts a revisable format file to another revisable or final form file.

You can use this command only if you have VMS DECwindows installed
on your system.

FORMAT CONVERT/DOCUMENT input-filespec output-filespec

DESCRIPTION The CONVERT/DOCUMENT command invokes the CDA Converter to
convert a revisable format file to another revisable or final form file. u

PARAMETERS input-filespec
Specifies the file to be converted. The default file type is DDIF.

output-filespec
Specifies the name of the converted file. The default file type is DDIF.

QUALIFIERS /FORMAT=format-name U

Specifies the encoding format of the input or output file. The default
format is DDIF for both input and output.

Input formats bundled with the VMS operating system and their default
file extensions are as follows:

Input Format File Extension

DDIF .DDIF ‘ ‘)
DTIF .DTIF

TEXT TIXT

Output formats bundled with the VMS operating system and their default
file extensions are as follows:

Output Format File Extension

DDIF .DDIF

DTIF .DTIF

TEXT TXT

PS .PS

ANALYSIS .CDASANALYSIS

Digital's CDA Converter Library is a layered product that provides u

additional input and output formats. Independent software vendors
who write DDIF- and DTIF-conforming applications and front and back
ends also provide input and output formats that are layered on the VMS

DCL1-66

CONVERT/DOCUMENT

operating system. Contact your system manager for a complete list of
input and output formats available on your system.

/OPTIONS=options-filename

Specifies a file that contains processing options for both input and output.
The default file extension for a VMS options file is .CDA$OPTIONS.

Creating the Options File

You can create an options file that contains all the input and output
processing options to be applied during the conversion of the input file
to the output file. These processing options affect how your input file is
processed and how your output file is created or displayed.

Each line of the options file specifies a format keyword (for example, PS
for PostScript) that can be followed optionally by _INPUT or _OUTPUT

to restrict the option to the front or back end. The second keyword is a
valid processing option preceded by one or more spaces, tabs, or a slash
(/) and can contain upper- and lowercase alphabetic characters (alphabetic
case is not significant), digits (0-9), dollar signs ($), and underscores (_).
If an option requires you to specify a value, the option keyword can be
separated from the value by one or more spaces or tabs, or by an equal
sign (=). Each line can be preceded optionally by spaces and tabs.

The following example is a typical entry in an options file:
PS PAPER HEIGHT 10

In this example, the extension _OUTPUT is not required for the format
keyword, since PostScript is available only as an output format. The value
specified for PAPER_HEIGHT is in inches by default.

To specify several options for the same input or output format, you must
specify each option on a separate line. The CDA Converter checks the
input format and the output format you specified on the command line
and, if the processing options in your options file are valid for the input or
output format, the options are applied during the conversion of your file.
If you specify an invalid option for an input or output format or an invalid
value for an option, the CDA Converter returns an error message. Each
input and output format that supports processing options specifies any
restrictions or special formats required when specifying processing options.

Processing options available for several of the file formats that are bundled
with VMS are listed in the following sections.

Text Back-End Processing Options
The text back-end converter supports the following options:
e ASCII FALLBACK [ON,OFF]

Causes the text back-end converter to output text in 7-bit ASCII. The
fallback representation of the characters is described in the ASCII
standard. If this option is not specified, the default is OFF; if this
option is specified without a value, the default is ON.

¢ CONTENT_MESSAGES [ON,OFF]

Causes the text back-end converter to put a message in the output file
each time a nontext element is encountered in the in-memory CDA
structures. If this option is not specified, the default is OFF; if this
option is specified without a value, the default is ON.

DCL1-67

CONVERT/DOCUMENT

DCL1-68

HEIGHT value

Specifies the maximum number of lines per page in your text output
file. If you specify zero, the number of lines per page will correspond
to the height specified in your document. If you additionally specify
OVERRIDE_FORMAT, or if the document has no inherent page size,
the document is formatted to the height value specified by this option.
The default height is 66 lines.

OVERRIDE FORMAT [ON,OFF]

Causes the text back-end converter to ignore the document formatting
information included in your document, so that the text is formatted in
a single large galley per page that corresponds to the size of the page
as specified by the HEIGHT and WIDTH processing options. If this
option is not specified, the default is OFF; if this option is specified
without a value, the default is ON.

SOFT_DIRECTIVES [ON,OFF]

Causes the text back-end converter to obey the soft directives
contained in the document when creating your text output file. If this
option is not specified, the default is OFF; if this option is specified
without a value, the default is ON.

WIDTH value

Specifies the maximum number of columns of characters per page in
your text output file. If you specify zero, the number of columns per
page will correspond to the width specified in your document. If you
additionally specify OVERRIDE_FORMAT, or if the document has no
inherent page size, the document is formatted to the value specified by
this processing option. If any lines of text exceed this width value, the
additional columns are truncated. The default width is 80 characters.

PostScript Back-End Processing Options

The PostScript back-end converter supports the following processing
options:

PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. Valid values for the size argument are as
follows:

Keyword Size

A0 841 x 1189 millimeters (33.13 x 46.85 inches)
A1l 594 x 841 millimeters (23.40 x 33.13 inches)
A2 420 x 594 millimeters (16.55 x 23.40 inches)
A3 297 x 420 millimeters (11.70 x 16.55 inches)
A4 210 x 297 millimeters (8.27 x 11.70 inches)

A 8.5 x 11 inches

B 11 x 17 inches

C 17 x 22 inches

\/

CONVERT/DOCUMENT

Keyword Size

D 22 x 34 inches
E 34 x 44 inches
LEDGER 11 x 17 inches
LEGAL 8.5 x 14 inches
LETTER 8.5 x 11 inches
LP 13.7 x 11 inches
VT 8 x 5 inches

The A paper size (8.5 x 11 inches) is the default.
PAPER _HEIGHT height

Specifies a paper size other than one of the predefined values provided.
The default paper height is 11 inches.

PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided.
The default paper width is 8.5 inches.

PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The
default value is 0.25 inch.

PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page.
The default value is 0.25 inch.

PAPER_LEFT MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the
page. The default value is 0.25 inch.

PAPER_RIGHT MARGIN right-margin

Specifies the width of the margin provided on the right-hand side of
the page. The default value is 0.25 inch.

PAPER_ORIENTATION orientation

Specifies the paper orientation to be used in the output PostScript file.
The valid values for the orientation argument are as follows:

Keyword Meaning

PORTRAIT The page is oriented so that the larger dimension is
parallel to the vertical axis.

LANDSCAPE The page is oriented so that the larger dimension is

parallel to the horizontal axis.

The default is PORTRAIT.
EIGHT BIT_OUTPUT [ON,OFF]

Specifies whether the PostScript back-end converter should use 8-bit
output. The default value is ON.

DCL1-69

CONVERT/DOCUMENT

DCL1-70

e LAYOUT [ON,OFF]

Specifies whether the PostScript back-end converter processes the
layout specified in the DDIF document. The default value is ON.

* OUTPUT_BUFFER_SIZE output-buffer-size

Specifies the size of the output buffer. The value you specify must be
within the range 64 to 256. The default value is 132.

* PAGE_WRAP [ON,OFF]

Specifies whether the PostScript back-end converter performs page
wrapping of any text that would exceed the bottom margin. The
default value is ON.

* SOFT_DIRECTIVES [ON,OFF]

Specifies whether the PostScript back-end converter processes soft
directives in the DDIF file in order to format output. (Soft directives
specify such formatting commands as new line, new page, and tab.) If
the PostScript back-end converter processes soft directives, the output
file will look more like you intended. The default value is ON.

e WORD_WRAP [ON,OFF]

Specifies whether the PostScript back-end converter performs word
wrapping of any text that would exceed the right margin. The default
value is ON. If you specify OFF, the PostScript back-end converter

allows text to exceed the right margin.

Analysis Back-End Processing Option

The analysis back-end converter produces an analysis of the CDA in-
memory structure in the form of text output showing the named objects
and values stored in the document. This is useful for debugging DDIF
application programs.

The analysis back-end converter supports an INHERITANCE processing
option, which specifies that the analysis is shown with attribute
inheritance enabled. Inherited attributes are marked by “[default]” in
the output.

Domain Conversion Processing Options

When you are converting any table format to any document format, you
can specify the following processing options using a format name of DTIF_
TO_DDIF:

¢ COLUMN_TITLE

Displays the column titles as contained in the column attributes
centered at the top of the column.

* CURRENT_DATE

Displays the current date and time in the bottom left corner of the
page. The value is formatted according to the document’s specification
for a default date and time.

U/

CONVERT/DOCUMENT

DOCUMENT_DATE

Displays the document date and time as contained in the document
header in the top left corner of the page. The value is formatted
according to the document’s specification for a default date and time.

DOCUMENT_TITLE

Displays the document title or titles as contained in the document
header centered at the top of the page, one string per line.

PAGE_NUMBER
Displays the current page number in the top right corner of the page.

PAPER_SIZE size

Specifies the size of the paper to be used when formatting the resulting
PostScript output file. The values are the same as those for the
PostScript back-end converter.

PAPER _HEIGHT height

Specifies a paper size other than one of the predefined values provided.
The default paper height is 11 inches.

PAPER_WIDTH width

Specifies a paper size other than one of the predefined sizes provided.
The default paper width is 8.5 inches.

PAPER_TOP_MARGIN top-margin

Specifies the width of the margin provided at the top of the page. The
default value is 0.25 inch.

PAPER_BOTTOM_MARGIN bottom-margin

Specifies the width of the margin provided at the bottom of the page.
The default value is 0.25 inch.

PAPER_LEFT_MARGIN left-margin

Specifies the width of the margin provided on the left-hand side of the
page. The default value is 0.25 inch. \

PAPER_RIGHT_MARGIN right-margin !

Specifies the width of the margin provided on the right-hand side of
the page. The default value is 0.25 inch. |

PAPER_ORIENTATION orientation !

Specifies the paper orientation to be used in the output file. The values
are the same as those for the PostScript back-end converter. i

DCL1-71

CONVERT/DOCUMENT

EXAMPLE

$ CONVERT/DOCUMENT -

_$ /OPTIONS=OPTIONS.CDASOPTIONS -
_$ FOOBAR.DTIF/FORMAT=DTIF -

_$ MOOMAR.DDIF/FORMAT=DDIF

This command converts an input file named FOOBAR.DTIF, which
has the DTIF format, to an output file named MOOMAR.DDIF,
which has the DDIF format. The specified options file is named
OPTIONS.CDA$OPTIONS.

DCL1-72

CONVERT/RECLAIM

CONVERT/RECLAIM

Invokes the Convert/Reclaim Utility, which makes empty buckets in Prolog
3 indexed files available so that new records can be written in them. The
/RECLAIM qualifier is required. For a complete description of the Convert
/Reclaim Utility, see the VMS Convert and Convert/Reclaim Utility Manual.

FORMAT

CONVERT/RECLAIM filespec

DCL1-73

COPY

COPY

Creates a new file from one or more existing files. The COPY command can
do the following:

« Copy an input file to an output file.
« Concatenate two or more input files into a single output file.
« Copy a group of input files to a group of output files.

FORMAT COPY input-filespec],...] output-filespec

R e e

PARAMETERS input-filespec],...]
Specifies the name of an existing file to be copied. Wildcard characters
(* and %) are allowed. If you do not specify the device or directory, the
COPY command uses your current default device and directory. If you
specify more than one file, separate the file specifications with either
commas (,) or plus signs (+).

output-filespec
Specifies the name of the output file into which the input is copied.

You must specify at least one field in the output file specification. If you do
not specify the device or directory, the COPY command uses your current
default device and directory. The COPY command replaces any other
missing fields (file name, file type, version number) with the corresponding
field of the input file specification. If you specify more than one input file,
the COPY command generally uses the fields from the first input file to
determine any missing fields in the output file.

You can use the asterisk (*) wildcard character in place of any two of the
following: the file name, the file type, or the version number. The COPY
command uses the corresponding field in the related input file to name the
output file.

DESCRIPTION The COPY command creates a new file from one or more existing files.
If you do not specify the device or directory, the COPY command uses
your current default device and directory. The COPY command can do the
following:

* Copy an input file to an output file.

¢ Concatenate two or more input files into a single output file.

¢ Copy a group of input files to a group of output files.

The COPY command, by default, creates a single output file. When you
specify more than one input file, the first input file is copied to the output
file, and each subsequent input file is appended to the end of the output
file. If a field of the output file specification is missing or contains an

asterisk wildcard character, the COPY command uses the corresponding
field from the first, or only, input file to name the output file.

DCL1-74

COPY

If you specify multiple input files with maximum record lengths, the
COPY command gives the output file the maximum record length of the
first input file. If the COPY command encounters a record in a subsequent
input file that is longer than the maximum record length of the output
file, it issues a message noting the incompatible file attributes and begins
copying the next file.

To create multiple output files, specify multiple input files and use at least
one of the following:

* An asterisk wildcard character in the output directory specification,
file name, file type, or version number field

* Only a node name, a device name, or a directory specification as the
output file specification

* The /NOCONCATENATE qualifier

When the COPY command creates multiple output files, it uses the
corresponding field from each input file in the output file name. You
also can use the wildcard character in the output file specification to have
COPY create more than one output file. For example:

$ COPY A.A;1, B.B;1l *.C

This COPY command creates the files A.C;1 and B.C;1 in the current
default directory. When you specify multiple input and output files you
can use the /[LOG qualifier to verify that the files were copied as you
intended.

Note that there are special considerations for using the COPY command
with DECwindows compound documents. For more information, see the
Guide to VMS File Applications.

Version Numbers

If you do not specify version numbers for input and output files, the COPY
command (by default) assigns a version number to the output files that is
either of the following:

¢ The version number of the input file

* A version number one greater than the highest version number of an
existing file with the same file name and file type

When you specify the output file version number by an asterisk wildcard
character, the COPY command uses the version numbers of the associated
input files as the version numbers of the output files.

If you specify the output file version number by an explicit version number,
the COPY command uses that number for the output file specification. If
a higher version of the output file exists, the COPY command issues a
warning message and copies the file. If an equal version of the output file
exists, the COPY command issues a message and does not copy the input
file.

DCL1-75

COPY

DCL1-76

File Protection and Creation/Revision Dates

The COPY command considers an output file to be new when you specify
any portion of the output file name explicitly. The COPY command sets
the creation date for a new file to the current time and date.

If you specify the output file by one or more wildcard characters, the COPY
command uses the creation date of the input file.

The COPY command always sets the revision date of the output file

to the current time and date; it sets the backup date to zero. The file
system assigns the output file a new expiration date. (The file system sets
expiration dates if retention is enabled; otherwise, it sets expiration dates
to zero.)

The protection and access control list (ACL) of the output file is determined
by the following parameters, in the following order:

¢ Protection of previously existing versions of the output file

e Default Protection and ACL of the output directory

* Process default file protection

(Note that the BACKUP command takes the creation and revision dates
as well as the file protection from the input file.)

Use the /PROTECTION qualifier to change the output file protection.

Normally, the owner of the output file will be the same as the creator of
the output file. However, if a user with extended privileges creates the
output file, the owner will be the owner of the parent directory or of a
previous version of the output file if one exists.

Extended privileges include any of the following:
e SYSPRYV (system privilege) or BYPASS
e System user identification code (UIC)

¢ GRPPRYV (group privilege) if the owner of the parent directory (or
previous version of the output file) is in the same group as the creator
of the new output file

¢ An identifier (with the resource attribute) representing the owner of
the parent directory (or the previous version of the output file)

Copying Directory Files

If you copy a file that is a directory, the COPY command creates a new
empty subdirectory of the named directory. The COPY command does
not copy any files from the named directory to the new subdirectory. For
example:

$ COPY [SMITH]CATS.DIR [JONES]

This COPY command creates the new empty subdirectory
[JONESICATS.DIR. Once the COPY command creates the new
subdirectory [JONESICATS.DIR, you can copy the files in the directory
[SMITHICATS.DIR.

COPY

QUALIFIERS

/ALLOCATION=number-of-blocks

Forces the initial allocation of the output file to the specified number

of 512-byte blocks. If you do not specify the /ALLOCATION qualifier,

or if you specify it without the number-of-blocks parameter, the initial
allocation of the output file is determined by the size of the input file being
copied.

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates

of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you

to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,

or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/BY OWNER|=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

JCONCATENATE (default)
/NOCONCATENATE

Creates one output file from multiple input files when you do

not use wildcard characters in the output file specification. The
/NOCONCATENATE qualifier generates multiple output files. A wildcard
character in an input file specification results in a single output file
consisting of the concatenation of all input files matching the file
specification.

Files from Files—11 On-Disk Structure Level 2 disks are concatenated in
alphanumeric order; if you specify a wildcard in the file version field, files
are copied in descending order by version number. Files from Files-11
On-Disk Structure Level 1 disks are concatenated in random order.

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each copy operation to confirm
that the operation should be performed on that file. The following

DCL1-77

COPY

DCL1-78

responses are valid:

YES NO QUIT
TRUE FALSE (34174
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. You can abbreviate word responses to one or more letters

(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

/CONTIGUOUS
/NOCONTIGUOUS

Specifies that the output file must occupy contiguous physical disk blocks.
By default, the COPY command creates an output file in the same format
as the corresponding input file. Also, by default, if not enough space exists
for a contiguous allocation, the COPY command does not report an error.
If you copy multiple input files of different formats, the output file may

or may not be contiguous. You can use the /CONTIGUOUS qualifier to
ensure that files are copied contiguously.

The /CONTIGUOUS qualifier has no effect when you copy files to or from
tapes because the size of the file on tape cannot be determined until after
it is copied to the disk. If you copy a file from a tape and want the file to
be contiguous, use the COPY command twice: once to copy the file from
the tape, and a second time to create a contiguous file.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according

to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

/EXCLUDE=(filespec],...])

Excludes the specified files from the copy operation. You can include a
directory but not a device in the file specification. Wildcard characters
(* and %) are allowed in the file specification. However, you cannot use
relative version numbers to exclude a specific version. If you specify only
one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

COPY

/EXTENSION=n

Specifies the number of blocks to be added to the output file each time
the file is extended. If you do not specify the /EXTENSION qualifier, the
extension attribute of the corresponding input file determines the default
extension attribute of the output file.

/LOG

/NOLOG (default)

Controls whether the COPY command displays the file specifications of
each file copied.

When you use the /LOG qualifier, the COPY command displays the
following for each copy operation:

¢ The file specifications of the input and output files

¢ The number of blocks or the number of records copied (depending on
whether the file is copied on a block-by-block or record-by-record basis)

¢ The total number of new files created

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to

select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

/OVERLAY

/NOOVERLAY (default)

Requests that data in the input file be copied into the existing specified
file, overlaying the existing data, rather than allocating new space for the
file. The physical location of the file on disk does not change.

The /OVERLAY qualifier is ignored if the output file is written to a non-
file-structured device.

/PROTECTION=(ownership[:access]],...])

Specifies protection for the output file. Specify the ownership parameter
as system (S), owner (O), group (G), or world (W) and the access parameter
as read (R), write (W), execute (E), or delete (D). The default protection,
including any protection attributes not specified, is that of the existing
output file. If no output file exists, the current default protection applies.

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

/READ CHECK
/NOREAD_CHECK (default)

Reads each record in the input files twice to verify that it has been read
correctly.

DCL1-79

/REPLACE
/NOREPLACE (default)

Requests that, if a file exists with the same file specification as that
entered for the output file, the existing file is to be deleted. The COPY
command allocates new space for the output file. In general, when

you use the /REPLACE qualifier, include version numbers with the file
specifications. By default, the COPY command creates a new version
of a file if a file with that specification exists, incrementing the version
number. The /NOREPLACE qualifier signals an error when a conflict in
version numbers occurs.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify

time as an absolute time, as combination of absolute and delta times,

or as one of the following keywords: TODAY (default), TOMORROW, or u
YESTERDAY. Specify one of the following qualifiers with the /SINCE

qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/TRUNCATE

/NOTRUNCATE (default)

Controls whether the COPY command truncates an output file at the end- u
of-file (EOF) when copying it. By default, the allocation of the input file .
determines the size of the output file.

/VOLUME=n

Places the output file on the specified relative volume number of a
multivolume set. By default, the COPY command places the output
file arbitrarily in a multivolume set.

/WRITE_CHECK
/NOWRITE_CHECK (default) O

Reads each record in the output file after it was written to verify that the |
record was copied successfully and that the file can be read subsequently
without error.

EXAMPLES

$ COPY TEST.DAT

DCL1-80

NEWTEST.DAT

In this example, the COPY command copies the contents of the

file TEST.DAT from the default disk and directory to a file named
NEWTEST.DAT on the same disk and directory. If a file named
NEWTEST.DAT exists, the COPY command creates a new version of
the file.

ea

COPY

$ COPY ALPHA.TXT TMP
$ COPY ALPHA.TXT .TMP

In this example, the first COPY command copies the file ALPHA.TXT into
a file named TMP.TXT. The COPY command uses the file type of the input
file to complete the file specification for the output file. The second COPY

command creates a file named ALPHA.TMP. The COPY command uses the
file name of the input file to name the output file.

$ COPY/LOG TEST.DAT NEW.DAT;1l/REPLACE
$COPY-I-REPLACED, DBAO: [MAL]NEW.DAT;1l being replaced
$COPY-S-COPIED, DBAO:[MAL]TEST.DAT;1 copied to DBAQO:[MAL]NEW.DAT;1l (1 block)

In this example, the /REPLACE qualifier requests that the COPY
command replace an existing version of the output file with the new file.
The first message from the COPY command indicates that it is replacing
an existing file. The version number in the output file must be explicit;
otherwise, the COPY command creates a new version of the file NEW.DAT.

$ COPY *.COM [MALCOLM.TESTFILES]

In this example, the COPY command copies the highest versions of files
in the current default directory with the file type COM to the subdirectory
MALCOLM.TESTFILES.

$ COPY/LOG *.TXT *.OLD

%$COPY-S-COPIED, DBAQO:[MAL]A.TXT;2 copied to DBAO: [MALJA.OLD;2 (1 block)
%$COPY-S—-COPIED, DBAQO: [MAL]B.TXT;2 copied to DBAO: [MAL]B.OLD;2 (1 block)
%¥COPY-S-COPIED, DBAO:[MAL]G.TXT;2 copied to DBAO:[MAL]G.OLD;2 (4 blocks)
$COPY-S-NEWFILES, 3 files created

In this example, the COPY command copies the highest versions of files
with file types of TXT into new files. Each new file has the same file name
as an existing file, but a file type of OLD. The last message from the COPY
command indicates the number of new files that have been created.

$ COPY/LOG A.DAT,B.MEM C.*

%$COPY~-S-COPIED, DBAO: [MAL]A.DAT;5 copied to DBAO: [MAL]JC.DAT;1ll (1 block)
%$COPY-S-COPIED, DBAO:[MAL]B.MEM;2 copied to DBAO: [MAL]C.MEM;24 (58 records)
$COPY-S-NEWFILES, 2 files created

In this example, the two input file specifications are separated with a
comma. The asterisk wildcard character in the output file specification
indicates that two output files are to be created. For each copy operation,
the COPY command uses the file type of the input file to name the output
file.

DCL1-81

$ COPY/LOG *.TXT TXT.SAV
%¥COPY-S-COPIED, DBAQO: [MAL]A.TXT;2 copied to DBAO: [MAL]TXT.SAV;1 (1 block)
%COPY-S-APPENDED, DBAO: [MAL]B.TXT;2 appended to DBAO: [MAL]TXT.SAV;1l (3 records)
$COPY-S-APPENDED, DBAO: [MAL]G.TXT;2 appended to DBAO: [MAL]TXT.SAV;1 (51 records)
%$COPY-S-NEWFILES, 1 file created

In this example, the COPY command copies the highest versions of all files
with the file type TXT to a single output file named TXT.SAV. After the
first input file is copied, the messages from the COPY command indicate
that subsequent files are being appended to the output file.

Note that, if you use the INOCONCATENATE qualifier in this example,
the COPY command creates one TXT.SAV file for each input file. Each
TXT.SAV file has a different version number.

@ $ COPY MASTER.DOC DBAl: [BACKUP]

In this example, the COPY command copies the highest version of the

file MASTER.DOC to the device DBA1. If no file named MASTER.DOC
exists in the directory [BACKUP], the COPY command assigns the version
number of the input file to the output file. You must have write (W) access
to the directory [BACKUP] on device DBA1 for the command to work.

g $ COPY SAMPLE.EXE DALLAS::DISK2:[000,000]SAMPLE.EXE/CONTIGUOUS

In this example, the COPY command copies the file SAMPLE.EXE on
the local node to a file with the same name at remote node DALLAS.
The /CONTIGUOUS qualifier indicates that the output file is to occupy
consecutive physical disk blocks. You must have write (W) access to the
device DISK2 on remote node DALLAS for the command to work.

$ COPY *,* PRTLND::*,*

directory at the local node to the remote node PRTLND. The new files
have the same names as the input file. You must have write (W) access to

| In this example, the COPY command copies all files within the user
the default directory on remote node PRTLND for the command to work.

|

\

$ COPY BOSTON::DISK2:TEST.DAT;5
_To: DALLAS"SAM SECReturn"::DISKO: [MODEL.TEST]TEST.DAT/ALLOCATION=50

In this example, the COPY command copies the file TEST.DAT;5 on the
| device DISK2 at node BOSTON to a new file named TEST.DAT at remote
| node DALLAS. The /ALLOCATION qualifier initially allocates 50 blocks
for the new file TEST.DAT at node DALLAS. The access control string
SAM SECReturn is used to access the remote directory.

DCL1-82

COPY

$ MOUNT TAPEDI1: VOL025 TAPE:
$ COPY TAPE:*.* *

In this example, the MOUNT command requests that the volume labeled
VOLO025 be mounted on the magnetic tape device TAPED1 and assigns the
logical name TAPE to the device.

The COPY command uses the logical name TAPE as the input file
specification, requesting that all files on the magnetic tape be copied

to the current default disk and directory. All the files copied retain their
file names and file types.

$ ALLOCATE CR:

_CR1: ALLOCATED
$ COPY CR1l: CARDS.DAT
$ DEALLOCATE CR1:

In this example, the ALLOCATE command allocates a card reader for
exclusive use by the process. The response from the ALLOCATE command
indicates the device name of the card reader, CR1.

After the card reader is allocated, you can place a deck of cards in the
reader and enter the COPY command, specifying the card reader as the
input file. The COPY command reads the cards into the file CARDS.DAT.
The end-of-file (EOF) in the card deck must be indicated with an EOF card
(12-11-0-1-6-7-8-9 overpunch).

The DEALLOCATE command relinquishes use of the card reader.

DCL1-83

Creates a sequential disk file (or files).

FORMAT

CREATE filespec],...]

PARAMETER

DESCRIPTION

DCL1-84

fllesﬁpec[,...

Specifies the name of one or more input files to be created. Wildcard
characters are not allowed. If you omit either the file name or the file
type, the CREATE command does not supply any defaults. The file name
or file type is null. If the specified file already exists, a new version is
created.

R I
The CREATE command creates a new sequential disk file. In interactive
mode, each separate line that you enter after you enter the command line
becomes a record in the newly created file. To terminate the file input,
press Ctrl/Z.

When you enter the CREATE command from a command procedure file,
the system reads all subsequent records in the command procedure file
into the new file until it encounters a dollar sign ($) in the first position in
a record. Terminate the file input with a line with a dollar sign in column
1 (or with the end of the command procedure).

If you use an existing file specification with the CREATE command, the
newly created file has a higher version number than any existing files with
the same specification.

If you use the CREATE command to create a file in a logical name search
list, the file will only be created in the first directory produced by the
logical name translation.

Normally, the owner of the output file will be the same as the creator of
the output file. However, if a user with extended privileges creates the
output file, the owner will be the owner of the parent directory or any
previous versions of the output file.

Extended privileges include any of the following:
* SYSPRV (system privilege) or BYPASS
* System user identification code (UIC)

* GRPPRYV (group privilege) if the owner of the parent directory (or
previous version of the output file) is in the same group as the creator
of the new output file

* An identifier (with the resource attribute) representing the owner of
the parent directory (or previous version of the output file)

CREATE

QUALIFIERS /LOG
/NOLOG (default)
Displays the file specification of each new file created as the command
executes.
/OWNER_UIC=uic
Requires SYSPRYV (system privilege) privilege to specify a user
identification code (UIC) other than your own.
Specifies the UIC to be associated with the file being created. Specify the
UIC by using standard UIC format as described in the VMS DCL Concepts
Manual.
/PROTECTION=(ownership[:access][,...])
Specifies protection for the file. Specify the ownership parameter as
system (S), owner (O), group (G), or world (W) and the access parameter as
read (R), write (W), execute (E), or delete (D). If you do not specify a value
for each access category, or if you omit the /PROTECTION qualifier, the
CREATE command applies the following protection for each unspecified
category:
File Already
Exists? Protection Applied
Yes Protection of the existing file
No Current default protection
For more information on specifying protection codes, see the VMS DCL
Concepts Manual.
/VOLUME=n
Places the file on the specified relative volume of a multivolume set. By
default, the file is placed arbitrarily in a multivolume set.
EXAMPLES
$ CREATE MEET.TXT

John, Residents in the apartment complex will hold their annual meeting

this evening.

We hope to see you there, Regards, Elwood

The CREATE command in this example creates a text file named
MEET.TXT in your default directory. The text file MEET.TXT contains
the lines that follow until the CtrV/Z.

DCL1-85

CREATE

$ CREATE A.DAT, B.DAT
Input line one for A.DAT...
Input line two for A.DAT...

Input line one for B.DAT...
Input line two for B.DAT...

$
After you enter the CREATE command from the terminal, the system
reads input lines into the sequential file A.DAT until Ctrl/Z terminates the
first input. The next set of input data is placed in the second file, B.DAT.
Again, Ctrl/Z terminates the input.

$ FILE = F$SEARCH ("MEET.TXT")
$ IF FILE .EQS. ""
$ THEN CREATE MEET.TXT

John, Residents in the apartment complex will hold their annual meeting
this evening. We hope to see you there, Regards, Elwood

ELSE TYPE MEET.TXT

ENDIF

EXIT

»r 0

In this example, the command procedure searches the default disk and
directory for the file MEET.TXT. If the command procedure determines
that the file does not exist it creates a file named MEET.TXT using the
CREATE command.

DCL1-86

\/

CREATE

E# ...Input Data...
$ RUN WEATHER
$ LINK WEATHER

_[8 FORTRAN WEATHER
E ...Source Statements...
$ CREATE WEATHER FOR
[$ PASSWORD HENRY

$ JOB HIGGINS

ZK-0781-GE

In this batch job example, the CREATE command creates a FORTRAN
source file WEATHER.FOR. Records are read into that file until the
system encounters a dollar sign in the first position of the record

$ FORTRAN WEATHER. The next commands compile, link, and run
the file just created. Input data follows the RUN command.

DCL1-87

CREATE

[&2]

End of Input Stream

Input Stream for
CREATE Command

Input Stream with

Dollar Signs Follows

DCL1-88

/$EOJ

/ $ @WEATHER
/.

vd $ EOD

7/$ RUN WEATHER

/ $ LINK WEATHER

———7/3 FORTRAN WEATHER

e

4 $ DECK

/ $ CREATE WEATHER.COM

/ $ PASSWORD HENRY

/ $ JOB HIGGINS

ZK-0782-GE

This batch job example uses the CREATE command to create a command

procedure from data in the input stream. The DECK command is required
so that subsequent lines that begin with a dollar sign are not executed as

commands, but are accepted as input records. The EOD command signals

the end-of-file (EOF) for the data records. Then the WEATHER procedure

is executed with the @ (execute procedure) command.

CREATE/DIRECTORY

CREATE/DIRECTORY

Creates one or more new directories or subdirectories. The /DIRECTORY
qualifier is required.

Requires write (W) access to the master file directory (MFD) to create

a first-level directory. On a system volume, generally only users with a
system user identification code (UIC) or the SYSPRV (system privilege)
or BYPASS user privileges have write (W) access to the MFD to create a
first-level directory.

Requires write (W) access to the lowest level directory that currently
exists to create a subdirectory.

FORMAT

CREATE/DIRECTORY directory-spec],...]

PARAMETER

directory-spec],...]

Specifies the name of one or more directories or subdirectories to be
created. The directory specification optionally can be preceded by a device
name (and colon [:]). The default is the current default directory. Wildcard
characters are not allowed. When you create a subdirectory, separate the
names of the directory levels with periods (.).

Note that it is possible to create a series of nested subdirectories with

a single CREATE/DIRECTORY command. For example, [a.b.c] can be
created, even though neither [a.b] nor [a] exists at the time the command
is entered. Each subdirectory will be created, starting with the highest
level and proceeding downward.

DESCRIPTION

_
The CREATE/DIRECTORY command creates new directories as well as
subdirectories. Special privileges are needed to create new first-level
directories. (See the restrictions noted above.) Generally, users have
sufficient privileges to create subdirectories in their own directories. Use
the SET DEFAULT command to move from one directory to another.

QUALIFIERS

/LOG

/NOLOG (default)
Controls whether the CREATE/DIRECTORY command displays the
directory specification of each directory after creating it.

/OWNER_UIC[=option]
Requires SYSPRV (system privilege) privilege for a user
identification code (UIC) other than your own.

Specifies the owner UIC for the directory. The default is your UIC. You
can specify the keyword PARENT in place of a UIC to mean the UIC of
the parent (next-higher-level) directory. If a user with privileges creates a
subdirectory, by default, the owner of the subdirectory will be the owner
of the parent directory (or the owner of the MFD, if creating a main level

DCL1-89

CREATE/DIRECTORY

directory). If you do not specifiy the /OWNER_UIC qualifier when creating
a directory, the command assigns ownership as follows: (1) if you specify
the directory name in either alphanumeric or subdirectory format, the
default is your UIC (unless you are privileged in which case the UIC
defaults to the parent directory); (2) if you specify the directory in UIC
format, the default is the specified UIC.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

/PROTECTION=(ownership[:access]][,...])

Specifies protection for the directory. Specify the ownership parameter as
system (S), owner (O), group (G), or world (W) and the access parameter as
read (R), write (W), execute (E), or delete (D). The default protection is the
protection of the parent directory (the next-higher level directory, or the
master directory for top-level directories) minus any delete (D) access.

If you are creating a first-level directory, then the next-higher-level
directory is the MFD. (The protection of the MFD is established by the
INITIALIZE command.)

For more information on specifying protection code, see the VMS DCL
Concepts Manual.

/VERSION_LIMIT=n

Specifies the number of versions of any one file that can exist in the
directory. If you exceed the limit, the system deletes the lowest numbered
version. A specification of 0 means no limit. The maximum number

of versions allowed is 32,767. The default is the limit for the parent
(next-higher-level) directory.

When you change the version limit setting, the new limit applies only to
files created after the setting was changed. New versions of files created
before the change are subject to the previous version limit.

/VOLUME=n

Requests that the directory file be placed on the specified relative volume
of a multivolume set. By default, the file is placed arbitrarily within the
multivolume set.

EXAMPLES

$ CREATE/DIRECTORY/VERSION_LIMIT=2 $DISK1:[ACCOUNTS.MEMOS]

In this example, the CREATE/DIRECTORY command creates a
subdirectory named MEMOS in the ACCOUNTS directory on $DISKI.
No more than two versions of each file can exist in the directory.

$ CREATE/DIRECTORY/PROTECTION= (SYSTEM:RWED, OWNER:RWED, GROUP, WORLD) -
_$ [MALCOLM.SUB.HLP]

DCL1-90

In this example, the CREATE/DIRECTORY command creates a
subdirectory named [MALCOLM.SUB.HLP]. The protection on the
subdirectory allows read (R), write (W), execute (E), and delete (D) access
for the system and owner categories, but prohibits all access for the group
or world categories.

O

CREATE/DIRECTORY

CREATE/DIRECTORY DISK2: [MALCOLM]

In this example, the CREATE/DIRECTORY command creates a directory
named [MALCOLM] on the device DISK2. Special privileges are required
to create a first-level directory.

CREATE/DIRECTORY [MALCOLM.SUB]
SET DEFAULT [MALCOLM.SUB]

In this example, the CREATE/DIRECTORY command creates

a subdirectory named [MALCOLM.SUB]. This directory file is
placed in the directory named [MALCOLM]. The command SET
DEFAULT [MALCOLM.SUB] changes the current default directory
to this subdirectory. All files subsequently created are cataloged in
[MALCOLM.SUB].

CREATE/DIRECTORY [FRED.SUBl.SUB2.SUB3]

In this example, the CREATE/DIRECTORY command creates a top-
level directory ([FRED]) and three subdirectories ((FRED.SUB1],
[FRED.SUB1.SUB2], and [FRED.SUB1.SUB2.SUB3)).

DCL1-91

CREATE/FDL

CREATE/FDL

Invokes the Create/FDL Utility, which uses the specifications in a File
Definition Language (FDL) file to create a new, empty data file. The /FDL
qualifier is required. For a complete description of the Create/FDL Utility, see
the VMS File Definition Language Facility Manual.

FORMAT CREATE/FDL =fdl-filespec [filespec]

DCL1-92

CREATE/NAME_TABLE

CREATE/NAME_TABLE

Creates a new logical name table. The /NAME_TABLE qualifier is required.

FORMAT

PARAMETER

CREATE/NAME_TABLE t{able-name

table-name

Specifies a string of 1 to 31 characters that identifies the logical name
table you are creating. The string can include alphanumeric characters,
the dollar sign ($), and the underscore (_). This name is entered

as a logical name in either the process directory logical name table
(LNM$PROCESS_DIRECTORY) or the system directory logical name
table (LNM$SYSTEM_DIRECTORY).

DESCRIPTION

The CREATE/NAME_TABLE command creates a new logical name
table. The name of the table is contained within the LNM$PROCESS_
DIRECTORY directory table if the table is process-private, and within the
LNM$SYSTEM_DIRECTORY directory table if the table is shareable.

Every new table has a parent table, which determines whether the new
table is process-private or shareable. To create a process-private table, use
the /PARENT_TABLE qualifier to specify the name of a process-private
table (the process directory table). To create a shareable table, specify the
parent as a shareable table.

If you do not explicitly provide a parent table, the CREATE/NAME_
TABLE command creates a process-private table whose parent is
LNM$PROCESS_DIRECTORY; that is, the name of the table is entered in
the process directory.

Every table has a size quota. The quota may either constrain the potential
growth of the table or indicate that the table’s size can be virtually
unlimited. The description of the /QUOTA qualifier explains how to
specify a quota.

To specify an access mode for the table you are creating, use the /USER_

MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_MODE qualifier.
If you specify more than one of these qualifiers, only the last one entered

is accepted. If you do not specify an access mode, then a supervisor-mode
table is created.

To delete a logical name table, use the DEASSIGN command, specify the
name of the table you want to delete, and use the /TABLE qualifier to
specify the directory table where the name of the table was entered.

DCL1-93

CREATE/NAME_TABLE

QUALIFIERS

DCL1-94

/ATTRIBUTES[=(keyword],...])]

Specifies attributes for the logical name table. If you specify only one
keyword, you can omit the parentheses. If you do not specify the
/ATTRIBUTES qualifier, no attributes are set.

You can specify the following keywords for attributes:

CONFINE Does not copy the table name or the logical names contained in the
table into a spawned subprocess; used only when creating a private
logical name table. If a table is created with the CONFINE attribute,
all names subsequently entered into the table are also confined.

NO_ALIAS No identical names (either logical names or names of logical name
tables) may be created in an outer (less privileged) mode in the
current directory. If you do not specify the NO_ALIAS attribute, then
the table may be “aliased” by an identical name created in an outer
access mode. Deletes any previously created identical table names
in an outer access mode in the same logical name table directory.

SUPERSEDE Creates a new table that supersedes any previous (existing) table
that contains the name, access mode, and directory table that you
specify. The new table is created regardless of whether the previous
table exists. (If you do not specify the SUPERSEDE attribute, the
new table is not created if the previous table exists.)

If you specify or accept the default for the qualifier /LOG, you receive
a message indicating the result.

/EXECUTIVE_MODE
Requires SYSNAM (system logical name) privilege.

Creates an executive-mode logical name table. If you specify executive
mode, but do not have SYSNAM privilege, a supervisor-mode logical name
table is created.

/LOG (default)
/NOLOG

Controls whether an informational message is generated when the
SUPERSEDE attribute is specified, or when the table already exists
but the SUPERSEDE attribute is not specified. The default is the /LOG
qualifier; that is, the informational message is displayed.

/PARENT_TABLE=table

Requires execute (E) access to the parent table and SYSPRV
(system privilege) privilege to create a shareable logical name
table.

Specifies the name of the parent table. The parent table determines
whether a table is private or shareable; it also determines the size quota
of the table. If you do not specify a parent table, the default table is
LNM$PROCESS_DIRECTORY. A shareable table has LNM$SYSTEM_
DIRECTORY as its parent table. The parent table must have the same
access mode or a higher level access mode than the one you are creating.

/PROTECTION=(ownership[:access]],...])

Applies the specified protection to shareable name tables. Specify the
ownership parameter as system (S), owner (O), group (G), or world (W)
and the access parameter as read (R), write (W), execute (E), or delete (D).
The default protection is (S:RWED, O:RWED, G, W).

W/

U

CREATE/NAME_TABLE

For more information on specifying protection codes, see the VMS DCL
Concepts Manual.

The /PROTECTION qualifier affects only shareable logical name tables; it
does not affect process-private logical name tables.

/QUOTA=number-of-bytes

Specifies the size limit of the logical name table. The size of each logical
name entered in the new table is deducted from this size limit. The new
table’s quota is statically subtracted from the parent table’s quota holder.
The parent table’s quota holder is the first logical name table encountered
when working upward in the table hierarchy that has an explicit quota
and is therefore its own quota holder. If the /QUOTA qualifier is not
specified or the size limit is 0, the parent table’s quota holder becomes
the new table’s quota holder and space is dynamically withdrawn from it
whenever a logical name is entered in this new table. If you do not specify
the /QUOTA qualifier, or if you specify /QUOTA=0, the table has unlimited
quota.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name table. If you do not specify a
mode, a supervisor-mode logical name table is created.

JUSER_MODE

Creates a user-mode logical name table. If you do not explicitly specify a
mode, a supervisor-mode logical name table is created.

EXAMPLES

$ CREATE/NAME_TABLE TEST_TAB
$ SHOW LOGICAL TEST_ TAB
$SHOW-S-NOTRAN, no translation for logical name TEST_TAB
$ SHOW LOGICAL/TABLE‘.=LNM$PROCE‘.SS_DIRECTORY TEST_TAB

In this example, the CREATE/NAME_TABLE command creates a new
table called TEST_TAB. By default, the name of the table is entered in
the process directory. The first SHOW LOGICAL command does not find
the name TEST _TAB because it does not, by default, search the process
directory table. You must use the /TABLE qualifier to request that the
process directory be searched.

$ CREATE/NAME_TABLE/ATTRIBUTES=CONFINE EXTRA
$ DEFINE/TABLE=EXTRA MYDISK DISK4:
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE_DEV -
_$ EXTRA, LNM$SPROCESS, LNM$JOB, LNM$GROUP, LNMS$SSYSTEM
$ TYPE MYDISK:[COHEN]EXAMPLEl.LIS

This example creates a new logical name table called EXTRA that is
created with the CONFINE attribute. Therefore, the EXTRA table and the
names it contains will not be copied to subprocesses.

DCL1-95

CREATE/NAME_TABLE

Next, the logical name MYDISK is placed into the table EXTRA. To use
the name MYDISK in file specifications, you must make sure that the
table EXTRA is searched when RMS parses file specifications. To do this,
you can define a process-private version of the logical name LNM$FILE _
DEV to include the name EXTRA as one of its equivalence strings. (The
system uses LNM$FILE_DEV to determine the tables to search during
logical name translation for device or file specifications, and will use the
process-private version of the logical name before using the default system
version.) After you define LNM$FILE_DEYV, the system searches the
following tables during logical name translation: EXTRA, your process
table, your job table, your group table, and the system table. Now, you can
use the name MYDISK in a file specification and the equivalence string
DISK4 will be substituted.

U/

DCL1-96

CREATE/TERMINAL

CREATE/TERMINAL

The DCL command CREATE/TERMINAL creates a window that emulates
another terminal type.

Note: At present, only DECterm windows are available with this
command.

FORMAT CREATE/TERMINAL [command-string]

PARAMETER command-string

Specifies a command string that is to be executed in the context of the
created subprocess. You cannot specify this parameter with the /DETACH
or the /NOPROCESS qualifier. The CREATE/TERMINAL command is
used in much the same way as the SPAWN command.

DESCRIPTION The CREATE/TERMINAL command creates a subprocess of your current
process. When the subprocess is created, the process-permanent open
files and any image or procedure context are not copied from the parent
process. The subprocess is set to command level 0 (DCL level with the
current prompt).

If you do not specify the /PROCESS qualifier, the name of this subprocess
is composed of the same base name as the parent process and a unique
number. For example, if the parent process name is SMITH, the
subprocess name can be SMITH_1, SMITH_2, and so on.

The LOGIN.COM file of the parent process is not executed for the
subprocess, because the context is copied separately, allowing quicker
initialization of the subprocess. When the /WAIT qualifier is in effect, the
parent process remains in hibernation until the subprocess terminates and
returns control to the parent by using the ATTACH command.

You should use the LOGOUT command to terminate the subprocess and
return to the parent process. You can also use the ATTACH command

to transfer control of the terminal to another process in the subprocess
tree, including the parent process. (The SHOW PROCESS/SUBPROCESS
command displays the process in the subprocess tree and points to the
current process.)

Note: Because a tree of subprocesses can be established using the
CREATE/TERMINAL command, you must be careful when
terminating any process in the tree. When a process is terminated,
all the subprocesses below that point in the tree are automatically
terminated. For example, the SPAWN/NOWAIT CREATE
/TERMINAL command creates a subprocess that exits as soon
as the DECterm window is created. Once this process exits, the
DECterm window disappears. Instead, use the SPAWN/NOWAIT
CREATE/TERMINAL/WAIT command to allow the process to
continue.

DCL1-97

CREATE/TERMINAL

Qualifiers with the CREATE/TERMINAL command must directly follow
the command verb. The command-string parameter begins after the last
qualifier and continues to the end of the command line.

QUALIFIERS

DCL1-98

Note:

/APPLICATION_KEYPAD

Sets the APPLICATION_KEYPAD terminal characteristic in the
created terminal window. If the /APPLICATION_KEYPAD or the
/NUMERIC_KEYPAD qualifier is not specified, the default is to inherit
the characteristic from the parent. (See also /NUMERIC_KEYPAD.)

/BIG_FONT

Specifies that the big font (as specified in resource files) be selected when
the created terminal window is initialized. It is an error to specify the
/BIG_FONT qualifier in combination with the /LITTLE_FONT qualifier. If
you do not specify either the /BIG_FONT or the /LITTLE_FONT qualifier,
the initial font is the big font.

/BROADCAST
/NOBROADCAST

Determines whether the terminal window is created with broadcast
messages enabled. If neither qualifier is specified, the created terminal
window inherits the broadcast characteristic of the parent.

/CARRIAGE_CONTROL
/NOCARRIAGE _CONTROL

Determines whether carriage-return and line-feed characters are prefixed
to the subprocess’s prompt string. By default, the CREATE/TERMINAL
command copies the current setting of the parent process. The
CARRIAGE_CONTROL qualifier is used only with the /NODETACH
qualifier.

/CLI=cli-file-spec

/NOCLI

Specifies the name of a command language interpreter (CLI) to be used by
the subprocess. The default CLI is the same as that of the parent process
(defined in SYSUAF). If you specify the /CLI qualifier, the attributes of the
parent process are copied to the subprocess. The CLI you specify must be
located in SYS$SYSTEM and have the file type EXE. This qualifier is used
only with the /NODETACH qualifier.

/CONTROLLER-=filespec

Specifies the name of the terminal window controller image. This name
allows the CREATE/TERMINAL command to create a window on a variant
controller, such as for a language not supported by the base product. For a
DECterm window, the default is SYS$SYSTEM:DECW$TERMINAL.EXE.
The device and directory default to SYS$SYSTEM and the file type
defaults to EXE.

The “name” field of the file name as returned by $PARSE
is used to form the mailbox logical name. For example, if
the file “name” is DECW$TERMINAL, the mailbox logical
name will be DECWS$TERMINAL_MAILBOX_node::0.0. For
backward compatibility, the controller also defines a logical

CREATE/TERMINAL

name DECW$DECTERM_MAILBOX_host::0.0 to point to the same
mailbox.

/DEFINE_LOGICAL=({logname, TABLE=tablename}
L---])

Specifies one or more logical names that are set to the name of the created
pseudo-terminal device. Each element in the list is either a logical name
or TABLE= followed by the name of a logical name table in which all
subsequent logical names will be entered. The default is the process
logical name table.

/DETACH
/NODETACH (default)

Determines whether the created terminal process is detached or a
subprocess of the current process. The /DETACH qualifier cannot be
used with the command-string parameter.

/DISPLAY=display-name

Specifies the name of the display on which to create the terminal window.
If this parameter is omitted, the DECW$DISPLAY logical name is used.

/ESCAPE
/NOESCAPE

Sets or clears the ESCAPE characteristic of the created terminal window.
The default is to inherit the characteristic of the parent.

/FALLBACK
/NOFALLBACK

Sets or clears the FALLBACK characteristic of the created terminal
window. The default is to inherit the characteristic of the parent.

/HOSTSYNC (default)
/NOHOSTSYNC

Sets or clears the HOSTSYNC characteristic of the created terminal
window. The default is to inherit the characteristic of the parent.

/INPUT=filespec

Specifies an alternate input file or device to use as SYS$INPUT for the
new process. The default is to use the created terminal window for input.
This qualifier can be used with or without the /DETACH qualifier.

/INSERT

Creates the terminal window with insert mode as the default for line
editing. If the /INSERT or the /OVERSTRIKE qualifier is not specified,
the default is to inherit the characteristic from the parent. (See also
/OVERSTRIKE.)

/KEYPAD (default)
/NOKEYPAD

Determines whether keypad definitions and the current keypad state
are copied from the parent process. This qualifier is used only with the
/NODETACH qualifier.

DCL1-99

CREATE/TERMINAL

DCL1-100

/LINE_EDITING
/NOLINE_EDITING

Determines whether the terminal window is created with line editing
enabled. If neither qualifier is specified, the created terminal window
inherits the line editing characteristic of the parent.

JLITTLE_FONT

Specifies that the little font (as specified in resource files) be selected when
the created terminal window is initialized. It is an error to specify the
/LITTLE_FONT qualifier in combination with the /BIG_FONT qualifier. If
you do not specify either the /BIG_FONT or the /LITTLE_FONT qualifier,
the initial font is the big font.

/LOGGED_IN (default)
/NOLOGGED _IN

Determines whether a prompt for a user name and password are
supplied (NOLOGGED_IN) or the created terminal window is logged
in automatically (LOGGED_IN). This qualifier is used only with the
/DETACH qualifier.

/LOGICAL_NAMES (default)
/NOLOGICAL_NAMES

Determines whether the created terminal window inherits the parent’s
logical names. This qualifier is used only with the /NODETACH qualifier.

/NOTIFY
/NONOTIFY (default)

Determines whether a notification message is broadcast to the parent
when the created terminal window exits. This qualifier is used only with
the /NODETACH qualifier.

/NUMERIC_KEYPAD

Sets the NUMERIC_KEYPAD terminal characteristic in the created
terminal window. If the /NUMERIC_KEYPAD or the /APPLICATION_
KEYPAD qualifier is not specified, the default is to inherit the
characteristic from the parent. (See also /APPLICATION_KEYPAD.)

/OVERSTRIKE

Creates the terminal window with overstrike mode as the default for line
editing. If the /OVERSTRIKE or the /INSERT qualifier is not specified,
the default is to inherit the characteristic from the parent. (See also
/INSERT.)

/PASTHRU
/NOPASTHRU

Sets or clears the PASTHRU characteristic in the created terminal window.
The default is to inherit the characteristic of the parent.

CREATE/TERMINAL

/PROCESS (default)
/PROCESS=process-name
/NOPROCESS

Specifies the name of the process or subprocess to be created. The
/NOPROCESS qualifier causes a window to be created without a process.
If you specify the /PROCESS qualifier without a process name, a unique
process name is assigned with the same base name as the parent process
and a unique number. The default process name format is username_n.
If you specify a process name that already exists, an error message

is displayed. This qualifier is used with either the /DETACH or the
/NODETACH qualifier.

/PROMPT=prompt

Specifies the prompt string of the created terminal window. This qualifier
is used only with the /NODETACH qualifier.

/READSYNC
/NOREADSYNC

Sets or clears the READSYNC terminal characteristic in the created
terminal window. The default is to inherit the characteristic from the
parent.

/RESOURCE_FILE=filespec

Specifies that the created terminal window use the resource file
“filespec” instead of the default resource file, DECW$USER_
DEFAULTS:.DECW$TERMINAL_DEFAULT.DAT.
/SYMBOLS (default)

/NOSYMBOLS

Determines whether the subprocess inherits the parent’s DCL symbols.
This qualifier is used only with the /NODETACH qualifier.

/TABLE=command-table

Specifies the name of an alternate command table to be used by the
subprocess. This qualifier is used only with the /NODETACH qualifier.

/TTSYNC
/NOTTSYNC

Sets or clears the TTSYNC terminal characteristic in the created terminal
window; the default is to inherit the characteristic of the parent.

/TYPE_AHEAD

/NOTYPE_AHEAD
Sets or clears the TYPE_AHEAD terminal characteristic in the created
terminal window. The default is to inherit the characteristic of the parent.

/WAIT
/NOWAIT (default)

Requires that you wait for the subprocess to terminate before you enter
another DCL command. The /NOWAIT qualifier allows you to enter new
commands while the subprocess is running. This qualifier is used only
with the /NODETACH qualifier.

DCL1-101

CREATE/TERMINAL

/WINDOW _ATTRIBUTES=(parameter [,...])

Specifies initial attributes for the created terminal window to override the
defaults read from the resource file. These parameters include:

Parameter Description

BACKGROUND The background color.

FOREGROUND The foreground color.

WIDTH The width, in pixels.

HEIGHT The height, in pixels.

X_POSITION The x-position, in pixels.

Y_POSITION The y-position, in pixels.

ROWS The number of rows in the window, in character cells. If the Auto
Resize Window option is enabled, the ROWS and COLUMNS
parameters override the size specified by the WIDTH and
HEIGHT parameters.

COLUMNS The number of columns in the window, in character cells. If
the Auto Resize Window option is enabled, the ROWS and
COLUMNS parameters override the size specified by the WIDTH
and HEIGHT parameters.

INITIAL_STATE The initial state of the window, either ICON or WINDOW.

TITLE A character string specifying the window title.

ICON_NAME A character string specifying the window icon name.

FONT The name of the font to be used in the window. If you specify

the /LITTLE_FONT qualifier, or omit both the /LITTLE_FONT and

/BIG_FONT qualifiers, this overrides the name of the little font that
is set in the resource files; otherwise it overrides the name of the

big font. The font name can be a logical name, and it can be (but
does not have to be) the base font in a complete font set.

EXAMPLE

$ CREATE/TERMINAL=DECTERM -
_$ /DISPLAY=MYNODE::0 -
$ /WINDOW_ATTRIBUTES=(-

~§ ROWS=36, -

~$ COLUMNS=80,

___$ TITLE="REMOTE TERMINAL", -
_$ ICON_NAME="REMOTE TERMINAL")

DCL1-102

In this example, the command creates a detached process in a DECterm
window on node MYNODE:: that is 36 rows by 80 columns and has its
title and icon name set to “Remote terminal”.

DEALLOCATE

DEALLOCATE

Makes an allocated device available to other processes (but does not
deassign any logical name associated with the device).

FORMAT

DEALLOCATE device-namel:]

PARAMETER

device-name[:]

Name of the device to be deallocated. The device name can be a physical
device name or a logical name. On a physical device name, the controller
defaults to A and the unit to 0. This parameter is incompatible with the
/ALL qualifier.

QUALIFIER

/ALL

Deallocates all devices currently allocated by your process. This qualifier
is incompatible with the device-name parameter.

EXAMPLES

$ DEALLOCATE DMBL1:

$ ALLOCATE

In this example, the DEALLOCATE command deallocates unit 1 of the
RKO06/RK07 devices on controller B.

TAPE

$DCL-I-ALLOC, _MTB1l: allocated

$ DEALLOCATE TAPE:

In this example, the ALLOCATE command requests that any magnetic
tape drive be allocated and assigns the logical name TAPE to the device.
The response to the ALLOCATE command indicates the successful
allocation of the device MTB1. The DEALLOCATE command specifies
the logical name TAPE to release the tape drive.

$ DEALLOCATE/ALL

In this example, the DEALLOCATE command deallocates all devices that
are currently allocated.

DCL1-103

DEASSIGN

DEASSIGN

Cancels a logical name assignment that was made with one of the following
commands: ALLOCATE, ASSIGN, DEFINE, or MOUNT. The DEASSIGN
command also deletes a logical name table that was created with the CREATE
/NAME_TABLE command.

FORMAT

DEASSIGN [logical-namel:]]

PARAMETER

logical-name[:]

Specifies the logical name to be deassigned. Logical names can have from
1 to 255 characters. If the logical name contains any characters other than
alphanumerics, dollar signs ($), or underscores (_), enclose it in quotation
marks (" "). The logical-name parameter is required unless you use the
/ALL qualifier.

If the logical-name parameter ends with a colon (:), the command
interpreter ignores the colon. (Note that the ASSIGN and ALLOCATE
commands remove a trailing colon, if present, from a logical name before
placing the name in a logical name table.) If a colon is present in the
logical name, you must type two colons in the logical-name parameter of
the DEASSIGN command (for example, DEASSIGN FILE::).

To delete a logical name table, specify the table name as the logical-name
parameter. You must also use the /TABLE qualifier to indicate the logical
name directory table where the table name is entered.

DESCRIPTION

DCL1-104

The DEASSIGN command cancels a logical name assignment that was
made with one of the following commands: ALLOCATE, ASSIGN,
DEFINE, or MOUNT. The DEASSIGN command also deletes a logical
name table that was created with the CREATE/NAME_TABLE command.
You can use the /ALL qualifier with DEASSIGN to cancel all logical names
in a specified table. If you use the /ALL qualifier and do not specify a
table, then all names in the process table (except names created by the
command interpreter) are deassigned; that is, all names entered at the
indicated access mode or an outer access mode are deassigned.

To specify the logical name table from which you want to deassign a logical
name, use the /PROCESS, the /JOB, the /GROUP, the /SYSTEM, or the
/TABLE qualifier. If you enter more than one of these qualifiers, only the
last one entered is accepted. If entries exist for the specified logical name
in more than one logical name table, the name is deleted from only the
last logical name table specified on the command line. If you do not specify
a logical name table, the default is the /TABLE=LNM$PROCESS qualifier.

To specify the access mode of the logical name you want to deassign, use
the /USER_MODE, the /SUPERVISOR_MODE, or the /EXECUTIVE_
MODE qualifier. If you enter more than one of these qualifiers, only
the last one is accepted. If you do not specify a mode, the DEASSIGN
command deletes a supervisor-mode name. When you deassign a logical

QUALIFIERS

DEASSIGN

name, any identical names created with outer access modes in the same
logical name table are also deleted.

You must have SYSNAM (system logical name) privilege to deassign an
executive-mode logical name. If you specify the /EXECUTIVE_MODE
qualifier and you do not have SYSNAM privilege, then the DEASSIGN
command ignores the qualifier and attempts to deassign a supervisor-mode
logical name.

All process-private logical names and logical name tables are deleted when
you log out of the system. User-mode entries within the process logical
name table are deassigned when any image exits. The logical names in the
job table, and the job table itself, are deleted when you log off the system.

Names in all other shareable logical name tables remain there until they
are explicitly deassigned, regardless of whether they are user-, supervisor-,
or executive-mode names. You must have write (W) access to a shareable
logical name table to delete any name in that table.

If you delete a logical name table, all the logical names in the table
are also deleted. Also, any descendant tables are deleted. To delete a
shareable logical name table, you must have the user privilege SYSPRV
(system privilege) or you must have delete (D) access to the table.

/ALL

Deletes all logical names in the same or an outer (less privileged) access
mode. If no logical name table is specified, the default is the process table,
LNM$PROCESS. If you specify the /ALL qualifier, you cannot enter a
logical-name parameter.

/EXECUTIVE_MODE

Requires SYSNAM (system logical name) privilege to deassign
executive-mode logical names.

Deletes only entries that were created in the specified mode or an outer
(less privileged) mode. If you do not have SYSPRV (system privilege)
privilege for executive mode, a supervisor-mode operation is assumed.

/GROUP
Requires GRPNAM (group logical name) or SYSPRYV privilege to
delete entries from the group logical name table.

Indicates that the specified logical name is in the group logical name table.
The /GROUP qualifier is synonymous with the /TABLE=LNM$GROUP
qualifier.

/JOB

Indicates that the specified logical name is in the jobwide logical name
table. The /JOB qualifier is synonymous with the /TABLE=LNM$JOB
qualifier. If you do not explicitly specify a logical name table, the default
is the /PROCESS qualifier.

You should not deassign jobwide logical name entries that were made
by the system at login time, for example, SYS$LOGIN, SYS$LOGIN_
DEVICE, and SYS$SCRATCH. However, if you assign new equivalence
names for these logical names (that is, create new logical names in outer
access modes), you can deassign the names you explicitly created.

DCL1-105

DEASSIGN

DCL1-106

/PROCESS (default)

Indicates that the specified logical name is in the process logical
name table. The /PROCESS qualifier is synonymous with the
/TABLE=LNM$PROCESS qualifier.

You cannot deassign logical name table entries that were made by the
command interpreter, for example, SYS$INPUT, SYS$OUTPUT, and
SYS$ERROR. However, if you assign new equivalence names for these
logical names (that is, you create new logical names in outer access
modes), you can deassign the names you explicitly created.

/SUPERVISOR_MODE (default)

Deletes entries in the specified logical name table that were created in
supervisor mode. If you specify the /SUPERVISOR_MODE qualifier, the
DEASSIGN command also deassigns user-mode entries with the same
name.

/SYSTEM

Requires SYSNAM (system logical name) or SYSPRV (system
privilege) privilege to delete entries from the system logical name
table.

Indicates that the specified logical name is in the system logical
name table. The /SYSTEM qualifier is synonymous with the
/TABLE=LNM$SYSTEM qualifier.

/TABLE=name

Requires write (W) access to the table to delete a shareable logical
name. Requires SYSPRYV privilege or delete (D) access to delete a
shareable logical name table.

Specifies the table from which the logical name is to be deleted. Defaults
to LNM$PROCESS. The table can be the process, group, job, or system
table, one of the directory tables, or the name of a user-created table. (The
process, job, group, and system logical name tables should be referred to
by the logical names LNM$PROCESS, LNM$JOB, LNM$GROUP, and
LNM$SYSTEM, respectively.)

The /TABLE qualifier also can be used to delete a logical name table. To
delete a process-private table, enter the following command:

$ DEASSIGN/TABLE=LNMSPROCESS_DIRECTORY table-name
To delete a shareable table, enter the following command:
$ DEASSIGN/TABLE=LNM$SYSTEM DIRECTORY table-name

To delete a shareable logical name table, you must have delete (D) access
to the table or write (W) access to the directory table in which the name of
the shareable table is cataloged.

If you do not explicitly specify the /TABLE qualifier, the default is the
/TABLE=LNM$PROCESS qualifier.

/USER_MODE

Deletes entries in the process logical name table that were created in
user mode. If you specify the /USER_MODE qualifier, the DEASSIGN
command can deassign only user-mode entries.

™~

DEASSIGN

EXAMPLES

$

O

O

DEASSIGN MEMO

The DEASSIGN command in this example deassigns the process logical
name MEMO.

DEASSIGN/ALL

The DEASSIGN command in this example deassigns all process logical
names that were created in user and supervisor mode. This command
does not, however, delete the names that were placed in the process
logical name table in executive mode by the command interpreter (for
example, SYS$INPUT, SYS$OUTPUT, SYSSERROR, SYS$DISK, and
SYS$COMMAND).

DEASSIGN/TABLE=LNM$PROCESS_DIRECTORY TAX

The DEASSIGN command in this example deletes the logical name table
TAX, and any descendant tables. When you delete a logical name table,
you must specify either the /TABLE=LNM$PROCESS_DIRECTORY or the
/TABLE=LNM$SYSTEM_DIRECTORY qualifier, because the names of all
tables are contained in these directories.

ASSIGN USER DISK: COPY
DEASSIGN COPY

The ASSIGN command in this example equates the logical name COPY
with the device USER_DISK and places the names in the process logical
name table. The DEASSIGN command deletes the logical name.

DEFINE SWITCH: TEMP
DEASSIGN SWITCH::

The DEFINE command in this example places the logical name SWITCH:
in the process logical name table. The trailing colon is retained as part of
the logical name. Two colons are required on the DEASSIGN command to
delete this logical name because the DEASSIGN command removes one
trailing colon, and the other colon is needed to match the characters in the
logical name.

ASSIGN/TABLE=LNM$GROUP DBAl: GROUP_DISK
DEASSIGN/PROCESS/GROUP GROUP_DISK

The ASSIGN command in this example places the logical name GROUP_
DISK in the group logical name table. The DEASSIGN command specifies
conflicting qualifiers; because the /GROUP qualifier is last, the name is
successfully deassigned.

DCL1-107

DEASSIGN

$ ASSIGN DALLAS

$ DEASSIGN DATA

DCL1-108

: :USER_DISK: DATA

The ASSIGN command in this example associates the logical name DATA
with the device specification USER_DISK on remote node DALLAS.
Subsequent references to the logical name DATA result in references to
the disk on the remote node. The DEASSIGN command cancels the logical
name assignment.

DEASSIGN/QUEUE

DEASSIGN/QUEUE

Deassigns a logical queue from a printer or terminal queue and stops the
logical queue.

Requires OPER (operator) privilege or execute (E) access to the queue.
Cannot be used with batch queues.

FORMAT DEASSIGN/QUEUE /ogical-queue-namel:]

PARAMETER logical-queue-name[:]

Specifies the name of the logical queue that you want to deassign from a
specific printer or terminal queue.

DESCRIPTION Once you enter the DEASSIGN/QUEUE command, the jobs in the logical
queue remain pending until the queue is reassigned to another printer
queue or device with the ASSIGN/QUEUE command.

EXAMPLE

$ ASSIGN/QUEUE LPAO

ASTER

$ DEASSIGN/QUEUE ASTER

$ ASSIGN/MERGE LPBO

ASTER

The ASSIGN/QUEUE command in this example associates the logical
queue ASTER with the print queue LPAO. Later, you deassign the logical
queue with the DEASSIGN/QUEUE command. The ASSIGN/MERGE
command reassigns the jobs from ASTER to the print queue LPBO.

DCL1-109

DEBUG

Invokes the VMS Debugger after program execution is interrupted by Ctrl/Y,
but only if the /NOTRACEBACK qualifier was not specified with the LINK
command when the program was linked. For a complete description of the
VMS Debugger, see the VMS Debugger Manual.

FORMAT DEBUG

DCL1-110

DECK

DECK

Marks the beginning of an input stream for a command or program. The
DECK command is required in command procedures when the first nonblank
character in any data record in the stream is a dollar sign ($).

Can be used only after a request to execute a command or program that
requires input data.

FORMAT

DECK

DESCRIPTION

The DECK command marks the data that follows it as input for a
command or program. This command is required in command procedures
when the first nonblank character in any data record in the input stream
is a dollar sign.

The DECK command must be preceded by a dollar sign; the dollar sign
must be in the first character position (column 1) of the input record.

The DECK command defines an end-of-file (EOF) indicator only for a
single data stream. Using the DECK command enables you to place data
records beginning with dollar signs in the input stream. You can place one
or more sets of data in the input stream following a DECK command, if
each is terminated by an EOF indicator.

After an EOF indicator specified with the /DOLLARS qualifier is
encountered, the EOF indicator is reset to the default, that is, to any
record beginning with a dollar sign. The default is also reset if an actual
EOF occurs for the current command level.

QUALIFIER

/DOLLARS[=string]

Sets the EOF indicator to the specified string of 1 to 15 characters. Specify
a string if the input data contains one or more records beginning with the
string $EOD. Enclose the string in quotation marks (" ") if it contains
literal lowercase letters, multiple blanks, or tabs. If you do not specify
/DOLLARS, or if you specify /DOLLARS without specifying a string, you
must use the EOD command to signal the end-of-file (EOF).

DCL1-111

DECK

EXAMPLES
a

DCL1-112

Input Stream AN
tor . | $ EOJ
Program A _|$ PRINT SUMMARY.DAT
|$ EOD
. E . .
\\\\ r
. |$99.50
$86.42
| $ DECK
$ RUN A
$ LINK A
$ FORTRAN A

ZK-0783-GE

In this example, the FORTRAN and LINK commands compile and link
program A. When the program is run, any data the program reads from
the logical device SYS$INPUT is read from the command stream. The
DECK command indicates that the input stream can contain dollar signs
in column 1 of the record. The EOD command signals end-of-file (EOF) for

the data.

DECK

N,
. __ISEQ
\,
\\ .'
\\
N\ 1
“\[$ @TEST

AN [%
™\ [$PRINT RUNTEST.OUT
__IsE0D

N\, o.
\\ °
N\,

N, - |
. | $99.50

|$ DECK
[$ RUN READFILE
. $ ASSIGN RUNTEST.OUT
N OUTFILE
. $ ASSIGN SYS$INPUT
. INFILE
™\ [$ DECK/DOLLARS="%"
$ CREATE TEST.COM
$ JOB HIGGINS

@ Input stream for CREATE command.
@ Input stream for program READFILE.
ZK-0784-GE

The CREATE command in this example creates the command procedure
file TEST.COM from lines entered into the input stream. The DECK
/DOLLARS command indicates that the percent sign (%) is the EOF
indicator for the CREATE command. This allows the string $EOD to
be read as an input record, signaling the end of the input for the RUN
command.

DCL1-113

DEFINE

DEFINE

Associates equivalence names with a logical name. If you specify an existing
logical name, the new equivalence names replace the existing equivalence
name.

FORMAT

DEFINE /ogical-name equivalence-name],...]

PARAMETERS

DCL1-114

logical-name

Specifies the logical name string, which is a character string containing
from 1 to 255 characters. If the logical name is to be entered into the
process or system directory logical name tables (LNM$PROCESS_
DIRECTORY, LNM$SYSTEM_DIRECTORY), then the name can only
have from 1 to 31 alphanumeric characters (including the dollar sign [$]
and underscore [_]).

If you specify a colon (:) at the end of a logical name, the DEFINE
command saves the colon as part of the logical name. (This is in contrast
to the ASSIGN command, which removes the colon before placing the
name in a logical name table.) By default, the logical name is placed in
the process logical name table.

If the string contains any characters other than uppercase alphanumerics,
the dollar sign, or the underscore character, enclose the string in quotation
marks (" "). Use two consecutive quotation marks (") to denote an
actual quotation mark. Note that if you enclose a name in quotation
marks, the case of alphabetic characters is preserved.

equivalence-name],...]

Specifies a character string containing from 1 to 255 characters. If the
string contains any characters other than uppercase alphanumerics,

the dollar sign, or the underscore character, enclose the string in quotation
marks. Use two consecutive quotation marks to denote an actual quotation
mark. Specifying more than one equivalence name for a logical name
creates a search list.

When you specify an equivalence name that will be used as a file
specification, you must include the punctuation marks (colons, brackets,
periods) that would be required if the equivalence name were used directly
as a file specification. Therefore, if you specify a device name as an
equivalence name, you must terminate the equivalence name with a colon.

The DEFINE command allows you to assign the same logical name to
more than one equivalence name. For example, you can use the same
logical name to access different directories on different disks, or to access
different files in different directories. When you specify more than one
equivalence name for a logical name, you create a search list. See the
VMS DCL Concepts Manual for more information on search lists.

DEFINE

DESCRIPTION

Note:

The DEFINE command creates an entry in a logical name table by
defining a logical name to stand for one or more equivalence names.
An equivalence name can be a device name, another logical name, a file
specification, or any other string.

To specify the logical name table where you want to enter a logical name,
use the /PROCESS, the /GROUP, the /SYSTEM, the /JOB, or the /TABLE
qualifier. If you enter more than one of these qualifiers, only the last
one entered is accepted. If you do not specify a table, the default is the
/TABLE=LNM$PROCESS qualifier.

To specify the access mode of the logical name you are creating, use the
/USER_MODE, the /SSUPERVISOR_MODE, or the /EXECUTIVE_MODE
qualifier. If you enter more than one of these qualifiers, only the last one
entered is accepted. If you do not specify an access mode, a supervisor-
mode name is created. You can create a logical name in the same mode as
the table in which you are placing the name, or in an outer mode. (User
mode is the outermost mode; executive mode is the innermost mode.)

You can enter more than one logical name with the same name in the
same table, as long as each name has a different access mode. (However,
if an existing logical name within a table has the NO_ALIAS attribute,
you cannot use the same name to create a logical name in an outer mode
in this table.)

If you create a logical name with the same name, in the same table, and
in the same mode as an existing name, the new logical name assignment
replaces the existing assignment.

You can also use the ASSIGN command to create logical names. To delete
a logical name from a table, use the DEASSIGN command.

Avoid assigning a logical name that matches the file name of an
executable image in SYS$SYSTEM:. Such an assignment prohibits
you from invoking that image.

For additional information on how to create and use logical names, see the
VMS DCL Concepts Manual.

QUALIFIERS

/EXECUTIVE_MODE

Requires SYSNAM (system logical name) privilege to create an
executive-mode logical name.

Creates an executive-mode logical name in the specified table.

If you specify the /EXECUTIVE_MODE qualifier and you do not have
SYSNAM privilege, the DEFINE command ignores the qualifier and
creates a supervisor-mode logical name. The mode of the logical name
must be the same or less privileged than the mode of the table in which
you are placing the name.

DCL1-115

DEFINE

/GROUP

Requires GRPNAM (group logical name) or SYSPRV (system
privilege) privilege to place a name in the group logical name
table.

Places the logical name in the group logical name table. Other users who
have the same group number in their user identification codes (UICs) can
access the logical name. The /GROUP qualifier is synonymous with the
/TABLE=LNM$GROUP qualifier.

/JOB

Places the logical name in the jobwide logical name table. All processes
in the same job tree as the process that created the logical name can
access the logical name. The /JOB qualifier is synonymous with the
/TABLE=LNM$JOB qualifier.

/LOG (default) \/
/NOLOG

Displays a message when a new logical name supersedes an existing
name.

/NAME_ATTRIBUTES[=(keyword],...])]

Specifies attributes for a logical name. By default, no attributes are set.
Possible keywords are as follows:

CONFINE The logical name is not copied into a spawned subprocess. This u
qualifier is relevant only for logical names in a private table.

The logical name inherits the CONFINE attribute from the logical
name table where it is entered; if the logical name table is “confined,”
then all names in the table are “confined.”

NO_ALIAS A logical name cannot be duplicated in the specified table in a less
privileged access mode; any previously created identical names in
an outer (less privileged) access mode within the specified table are
deleted.

If you specify only one keyword, you can omit the parentheses. Only the u
attributes you specify are set.

/PROCESS (default)

Places the logical name in the process logical name table. The /PROCESS
qualifier is synonymous with the /TABLE=LNM$PROCESS qualifier.

/SUPERVISOR_MODE (default)

Creates a supervisor-mode logical name in the specified table. The mode
of the logical name must be the same as or less privileged than the mode
of the table in which you are placing the name.

/SYSTEM

Requires SYSNAM (system logical name) or SYSPRV (system
privilege) privilege to place a name in the system logical name
table.

Places the logical name in the system logical name table. All system users
can access the logical name. The /SYSTEM qualifier is synonymous with u
the /TABLE=LNM$SYSTEM qualifier.

DCL1-116

DEFINE

/TABLE=name

Requires write (W) access to the table to specify the name of a
shareable logical name table.

Specifies the name of the logical name table in which the logical name is
to be entered. You can use the /TABLE qualifier to specify a user-defined
logical name table (created with the CREATE/NAME_TABLE command);
to specify the process, job, group, or system logical name tables; or to
specify the process or system logical name directory tables.

If you specify the table name using a logical name that has more
than one translation, the logical name is placed in the first table
found. For example, if you specify DEFINE/TABLE=LNMS$FILE_
DEV and LNM$FILE_DEV is equated to LNM$PROCESS, LNM$JOB,
LNM$GROUP, and LNM$SYSTEM, then the logical name is placed in
LNM$PROCESS.

The default is the /TABLE=LNM$PROCESS qualifier.
/TRANSLATION_ATTRIBUTES[=(keyword],...])]

Equivalence-name qualifier.

Specifies one or more attributes that modify an equivalence string of the
logical name. Possible keywords are as follows:

CONCEALED Indicates that the equivalence string is the name of a concealed
device. When a concealed device name is defined, the system
displays the logical name, rather than the equivalence string, in
messages that refer to the device.

TERMINAL Logical name translation should terminate with the current
equivalence string; indicates that the equivalence string should
not be translated iteratively.

If you specify only one keyword, you can omit the parentheses. Only the
attributes you specify are set.

Note that different equivalence strings of a logical name can have different
translation attributes.

JUSER_MODE

Creates a user-mode logical name in the specified table.

User-mode logical names created within the process logical name tables
are used for the execution of a single image; for example, you can create

a user-mode logical name to allow an image executing in a command
procedure to redefine SYS$INPUT. User-mode entries are deleted from the
process logical name table when any image executing in the process exits
(that is, after a DCL command or user program that executes an image
completes execution).

EXAMPLES

$ DEFINE/USER_MODE TM1 $DISK1:[ACCOUNTS.MEMOS]WATER.TXT

In this example, the DEFINE command defines TM1 as equivalent to
a file specification. After the next image runs, the logical name TM1 is
automatically deassigned.

DCL1-117

DEFINE

Oy N

DEFINE MEMO $DISK1:[ACCOUNTS.MEMO]

In this example, the DEFINE command defines the logical name MEMO as
equivalent to the partial file specification $DISK1:]ACCOUNTS.MEMO].

DEFINE PROCESS NAME LIBRA
RUN WAKE

In this example, the DEFINE command places the logical name
PROCESS_NAME in the process logical name table with an equivalence
name of LIBRA. The logical name is created in supervisor mode. The
program WAKE translates the logical name PROCESS_NAME to perform
some special action on the process named LIBRA.

DEFINE TEMP: XXX1:

DEASSIGN TEMP::

In this example, the DEFINE command creates an equivalence name for
the logical name TEMP: and places the name in the process logical name
table. The colon is retained as part of the logical name. The DEASSIGN
command deletes the logical name. Note that two colons are required on
the logical name in the DEASSIGN command. One colon is deleted by the
DEASSIGN command. The other colon is kept as part of the logical name.

DEFINE PORTLAND PRTLND::YYYO: [DECNET.DEMO.COM]

In this example, the DEFINE command places the logical name
PORTLAND in the process logical name table with an equivalence name
of PRTLND::YYYO0:[DECNET.DEMO.COM]. Subsequent references to the
logical name PORTLAND result in the correspondence between the logical
name PORTLAND and the node, disk, and subdirectory specified.

DEFINE LOCAL "BOSTON""JOHN_ SMITH JKS""::"

In this example, the DEFINE command places the logical name LOCAL
in the process logical name table with a remote node equivalence name
of BOSTON"JOHN_SMITH JKS"::. To satisfy conventions for local DCL
command string processing, you must use three sets of quotation marks.
The quotation marks ensure that access control information is enclosed in
one set of quotation marks in the equivalence name.

DEFINE MYDISK XXXO0:[MYDIR], YYYO:[TESTDIR]

In this example, the DEFINE command places the logical name
MYDISK in the process logical name table with two equivalence names:
XXX0:[MYDIR] and YYYO:[TESTDIR].

DCL1-118

W

w|

DEFINE

CREATE/NAME_TABLE TABLE1l
DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNMSFILE DEV -
TABLE1l, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNMSSYSTEM
DEFINE/TABLE=TABLEl -

/TRANSLATION ATTRIBUTES=CONCEALED WORK_DISK DBALl:

In this example, the CREATE/NAME_TABLE command creates the
process private logical name table TABLE1.

The first DEFINE command ensures that TABLE1 is searched first in any
logical name translation of a device or file specification (because TABLE1
is the first item in the equivalence string for the logical name
LNMS$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated).

The second DEFINE command assigns the logical name WORK_DISK to
the physical device DBA1 and places the name in TABLE1. The logical
name has the concealed attribute. Therefore, the logical name WORK_
DISK is displayed in system messages.

$ CREATE/NAME_TABLE SPECIAL

$ DEFINE/TABLE=LNMSPROCESS DIRECTORY LNM$FILE DEV -
_$ SPECIAL, LNMSPROCESS, LNMJOB, LNMSGROUP, LNM$SYSTEM
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY TAB SPECIAL

$ DEFINE/TABLE=TAB REPORT [CHELSEA]STORES

$ SHOW LOGICAL/TABLE=SPECIAL REPORT

"REPORT" = " [CHELSEA]STORES" (SPECIAL)

In this example, the CREATE/NAME_TABLE command is used to create
a new logical name table called SPECIAL. This table is defined in the
process directory, LNM$PROCESS_DIRECTORY.

The first DEFINE command ensures that SPECIAL is searched first

in any logical name translation of a device or file specification (because
SPECIAL is the first item in the equivalence string for the logical name
LNMS$FILE_DEV, which determines the default search sequence of logical
name tables whenever a device or file specification is translated). The
logical name LNM$FILE_DEYV is placed in the process directory,
LNM$PROCESS_DIRECTORY.

With the next DEFINE command, a new logical name, TAB, is defined.
TAB translates to the string SPECIAL, which identifies a logical name
table. You must define TAB in the process directory because it translates
iteratively to a logical name table.

Next, the logical name REPORT is placed into the logical name table TAB.
Because TAB translates to the table SPECIAL, the name REPORT is
entered into SPECIAL table. The SHOW LOGICAL command verifies that
the name REPORT has been entered into the table SPECIAL.

Note that you can redefine TAB so it translates to a different table.
Therefore, if you run different programs that use the name TAB as a table
name, you can change the actual tables where the names are entered or
referenced.

DCL1-119

DEFINE/CHARACTERISTIC

DEFINE/CHARACTERISTIC

Assigns a numeric value to a queue characteristic. The /CHARACTERISTIC
qualifier is required. If a value has been assigned to the characteristic, the
DEFINE/CHARACTERISTIC command alters the assignment of the existing
characteristic.

Requires OPER (operator) privilege.

FORMAT

DEFINE/CHARACTERISTIC characteristic-name
characteristic-number

PARAMETERS

characteristic-name

Assigns a name to the characteristic being defined. The characteristic
name can be the name of an existing characteristic or a string of 1 to
31 characters that defines a new characteristic. The character string
can include any uppercase and lowercase letters, digits, the dollar sign
($), and the underscore (_), and must include at least one alphabetic
character.

characteristic-number

Assigns a number in the range 0 to 127 to the characteristic being defined.

DESCRIPTION

DCL1-120

The system manager or operator uses the DEFINE/CHARACTERISTIC
command to assign a name and number to a particular characteristic

for queues in the system. Characteristics can refer to any attribute of a
print or batch job that is meaningful for your environment. The name and
number of a characteristic are arbitrary, but they must be unique for that
characteristic.

After characteristics have been defined, they can be associated with
print or batch jobs and execution queues. For information on specifying
characteristics with jobs, see the description of the /CHARACTERISTICS
qualifier of the PRINT and SUBMIT commands.

To find out what characteristics are currently defined for the system, use
the SHOW QUEUE/CHARACTERISTICS command. To find out which
characteristics have been specified for a particular queue, use the SHOW
QUEUE/FULL command. For information on associating characteristics
with queues, see the descriptions of the /CHARACTERISTICS qualifier of
the INITIALIZE/QUEUE, SET QUEUE, and START/QUEUE commands.

The DELETE/CHARACTERISTIC command deletes a previously defined
characteristic.

For more information on specifying queue characteristics, see the Guide to
Maintaining a VMS System.

DEFINE/CHARACTERISTIC

EXAMPLE

$ DEFINE/CHARACTERISTIC REDINK 3

The DEFINE/CHARACTERISTIC command in this example defines
the characteristic REDINK with the number 3. When a user enters
the command PRINT/CHARACTERISTICS=REDINK (or PRINT
/CHARACTERISTICS=3), the job is printed only if the printer queue
has been established with the REDINK or 3 characteristic.

DCL1-121

DEFINE/FORM

DEFINE/FORM

Assigns a numeric value and attributes to a print form name. The /FORM
qualifier is required. If a value has been assigned already to the form name,
the DEFINE/FORM command alters the definition of the existing form.

Requires OPER (operator) privilege.

FORMAT

DEFINE/FORM form-name form-number

PARAMETERS

form-name

Assigns a name to the form being defined. The form name can be the
name of an existing form type or a string of 1 to 31 characters that defines
a new form type. The character string can include any uppercase and
lowercase letters, digits, the dollar sign ($), and the underscore (_), and
must include at least one alphabetic character.

form-number

Assigns a number in the range 0 to 2,147,483,647 to the form being
defined. The DEFAULT form, which is defined automatically when the
system is bootstrapped, is assigned number zero.

DESCRIPTION

DCL1-122

The system manager or operator uses the DEFINE/FORM command to
assign a name and number to a type of paper stock and printing area for
use with printer or terminal queues. When a new queue file is created, the
system defines a form named DEFAULT with a form number of zero and
all the default attributes.

Some DEFINE/FORM qualifiers specify the area for printing. The LEFT
and RIGHT options of the /MARGIN qualifier and the /WIDTH qualifier
determine the number of characters per line. Using the RIGHT option
of the MARGIN qualifier and the /WIDTH qualifier, you can affect the
point at which lines of text wrap. (You cannot use the LEFT and RIGHT
options of the MARGIN qualifier and the /WIDTH qualifier for filling or
formatting the text, however.)

You also can use the DEFINE/FORM command to specify different types
of paper stock. The /DESCRIPTION qualifier enables you to describe more
fully the form name.

After forms have been defined, they can be associated with print jobs and
output execution queues. For information on specifying forms with jobs,
see the description of the PRINT/FORM command.

To find out what forms have been defined for the system, use the SHOW
QUEUE/FORM command. To find out which form is mounted currently on
a particular queue and which form is specified as that queue’s default
form, use the SHOW QUEUE/FULL command. For information on
associating forms with queues, see the descriptions of the /DEFAULT

U/

DEFINE/FORM

and /FORM_MOUNTED qualifiers of the INITIALIZE/QUEUE, SET
QUEUE, and START/QUEUE commands.

For more information on how to use forms to control print jobs, see the
Guide to Maintaining a VMS System.

QUALIFIERS

/DESCRIPTION=string

A string of up to 255 characters used to provide operator information about
the form. The default string is the specified form name.

The string can be used to define the form type more specifically. For
example, if you have form names such as LETTER1, LETTERZ2, and
LETTERS3, the /DESCRIPTION qualifier could be used to let the users
and operators know that LETTERL1 refers to the standard corporate
letterhead paper (8.5 inches x 11 inches), LETTER2 refers to the smaller
corporate letterhead paper (6 inches x 9 inches), and LETTERS refers to
the president’s personalized letterhead paper.

Enclose strings containing lowercase letters, blanks, or other
nonalphanumeric characters (including spaces) in quotation marks (" ").

/LENGTH=n

Specifies the physical length of a form page in lines. The default page
length is 66 lines, which assumes a standard page length of 11 inches
with 6 lines of print per inch. The parameter n must be a positive integer
greater than zero and not more than 255.

The print symbiont sets the page length of the device equal to the form
length. This enables the driver to compute the number of line feeds for
devices lacking mechanical form feed.

/MARGIN=(option],...])
Specifies one or more of the four margin options: BOTTOM, LEFT, RIGHT,
and TOP.

BOTTOM=n Specifies the number of blank lines between the end of the print image
area and the end of the physical page; the value of n must be between
0 and the value of the /LENGTH qualifier. The default value is 6, which
generally means a 1-inch bottom margin.

LEFT=n Specifies the number of blank columns between the leftmost printing
position and the print image area; the value of n must be between 0 and
the value of the /WIDTH qualifier. The default is 0, which means that
the print image area starts as far to the left of the paper as the printer
can go.

RIGHT=n Specifies the number of blank columns between the /WIDTH qualifier
and the image area; the value of n must be between 0 and the value of
the /WIDTH qualifier. When determining the value of the RIGHT option,
start at the /WIDTH value and count to the left. The default value is
0, which means that the print image extends as far to the right as the
/WIDTH value.

TOP=n Specifies the number of blank lines between the top of the physical
page and the top of the print image; the value of n must be between 0
and the value of the /LENGTH qualifier. The default value is 0, which
generally means that there is no top margin.

DCL1-123

DEFINE/FORM

DCL1-124

/PAGE_SETUP=(modulel,...])
/NOPAGE_SETUP (default)

Specifies one or more modules that set up the device at the start of each
page. The modules are located in the device control library. While the
form is mounted, the system extracts the specified module and copies it to
the printer before each page is printed.

/SETUP=(modulel,...])

Specifies one or more modules that set up the device at the start of each
file. The modules are located in the device control library. While the form
is mounted, the system extracts the specified module and copies it to the
printer before each file is printed.

/SHEET _FEED

/NOSHEET_FEED (default)

Specifies that print jobs pause at the end of every physical page so that a
new sheet of paper can be inserted.

/STOCK=string

Specifies the type of paper stock to be associated with the form. The string
parameter can be a string of 1 to 31 characters, including the dollar sign,
underscore, and all alphanumeric characters. If you specify the /STOCK
qualifier you must specify the name of the stock to be associated with the
form. If you do not specify the /STOCK qualifier, the name of the stock
will be the same as the name of the form.

You can create any string that you want. However, when you are creating
forms with the same stock, be sure that the /STOCK string is identical in
all the DEFINE/FORM commands that refer to the same type of paper.

If you are defining a number of forms to provide different formatting
options, specify the same stock type for each form. If you specify the same
stock type for each form, jobs that request any of these forms will print on
the same queue.

/TRUNCATE (default)
/NOTRUNCATE

Discards any characters that exceed the current line length (specified

by the /WIDTH and /MARGIN=RIGHT qualifiers). The /TRUNCATE
qualifier is incompatible with the /WRAP qualifier. If you specify both
the /INOTRUNCATE and /NOWRAP qualifiers, the printer prints as many
characters on a line as possible. This combination of qualifiers is useful
for some types of graphics output.

/WIDTH=n

Specifies the physical width of the paper in terms of columns or character
positions. The parameter n must be an integer from 0 to 65,535; the
default value is 132.

Any lines exceeding this value wrap if the /WRAP qualifier is in effect
or are truncated if the /TRUNCATE qualifier is in effect. (If both the
/NOTRUNCATE and /NOWRAP qualifiers are in effect, lines print as far
as possible.)

The /MARGIN=RIGHT qualifier overrides the /WIDTH qualifier when
determining when to wrap lines of text.

DEFINE/FORM

/WRAP

/NOWRAP (default)

Causes lines that exceed the current line length (specified by the /WIDTH
and /MARGIN=RIGHT qualifiers) to wrap onto the next line. The /WRAP
qualifier is incompatible with the /TRUNCATE qualifier. If you specify
both the /NOWRAP and /NOTRUNCATE qualifiers, the printer prints as
many characters on a line as possible. This combination of qualifiers is
useful for some types of graphics output.

EXAMPLE

$ DEFINE/FORM /MARGIN=(TOP=6,LEFT=10) CENTER 3

The DEFINE/FORM command in this example defines the form CENTER
to have a top margin of 6 and a left margin of 10. The defaults remain
in effect for both bottom margin (6) and right margin (0). The form is
assigned the number 3.

DCL1-125

DEFINE/KEY

DEFINE/KEY

Associates an equivalence string and a set of attributes with a key on the
terminal keyboard. The /KEY qualifier is required.

FORMAT DEFINE/KEY key-name equivalence-string

PARAMETERS key-name
Specifies the name of the key that you are defining. All definable keys
on VT52 terminals are located on the numeric keypad. On VT100-series
terminals, you can define the left and right arrow keys as well as all the
keys on the numeric keypad. On terminals with LK201 keyboards, the
following three types of keys can be defined:

¢ Keys on the numeric keypad
¢ Keys on the editing keypad (except the up and down arrow keys)

¢ Keys on the function key row across the top of the keyboard (except
keys F1 to F5)

The following table lists the key names in column one. The remaining
three columns indicate the key designations on the keyboards of the three
different types of terminals that allow key definitions.

Key Name LK201 VT100-Series VT52
PF1 PF1 PF1 [blue]
PF2 PF2 PF2 [red]
PF3 PF3 PF3 [gray]
PF4 PF4 PF4 --
KPO, KP1, ..., KP9 0,1,..,9 01,..,9 0,1,..,9
Period

Comma , , n/a
Minus - - n/a
Enter Enter ENTER ENTER
Left — — —
Right — — —

Find (E1) Find — —_
Insert Here (E2) Insert Here — —
Remove (E3) Remove — —
Select (E4) Select — —

Prev Screen (E5) Prev Screen — —

DCL1-126

DEFINE/KEY

Key Name LK201 VT100-Series VT52
Next Screen (E6) Next Screen — —
Help Help — —_
Do Do —_ —
Fe, F7, ..., F20 Fe, F7, ..., F20 — —

Some definable keys are enabled for definition all the time. Others,
including KP0 to KP9, Period, Comma, and Minus, must be enabled
for definition purposes. You must enter either the SET TERMINAL
/APPLICATION or the SET TERMINAL/NONUMERIC command before
using these keys.

On LK201 keyboards, you cannot define the up and down arrow keys or
function keys F1 to F5. The left and right arrow keys and the F6 to F14
keys are reserved for command line editing. You must enter the SET
TERMINAL/NOLINE_EDITING command before defining these keys. You
can also press Ctrl/V to enable keys F7 to F14. Note that Ctrl/V will not
enable the F6 key.

equi valence-str ing

Specifies the character string to be processed when you press the key.
Enclose the string in quotation marks (" ") to preserve spaces and
lowercase characters.

DESCRIPTION

The DEFINE/KEY command enables you to assign definitions to the
peripheral keys on certain terminals. The terminals include VT52s, the
VT100 series, and terminals with LK201 keyboards.

To define keys on the numeric keypads of these terminals, you must
first enter the SET TERMINAL/APPLICATION or SET TERMINAL
/NONUMERIC command. When your terminal has this setting, the
system interprets the keystrokes from keypad keys differently. For
example, with SET TERMINAL/NONUMERIC in effect, pressing the 1
key on the keypad does not send the character “1” to the system.

The equivalence string definition can contain different types of
information. Definitions often consist of DCL commands. For example,
you can assign SHOW TIME to the zero key. When you press 0, the
system displays the current date and time. Other definitions can consist
of text strings to be appended to command lines. When you define a key
to insert a text string, use the /NOTERMINATE qualifier so that you can
continue typing more data after the string has been inserted.

In most instances you will want to use the echo feature. The default
setting is /ECHO. With /ECHO set, the key definition is displayed on the
screen each time you press the key.

You can use the /STATE qualifier to increase the number of key definitions
available on your terminal. The same key can be assigned any number of
definitions, as long as each definition is associated with a different state.
State names can contain any alphanumeric characters, dollar signs, and
underscores. Be sure to create a state name that is easy to remember and
type and, if possible, one that might remind you of the types of definitions

DCL1-127

DEFINE/KEY

you created for that state. For example, you can create a state called
SETSHOW. The key definitions for this state might all refer to various
DCL SET and SHOW commands. If you are used to the EDT Editor, you
might define a state as GOLD. Then, using the /IF_STATE qualifier, you
can assign different definitions to keys used in combination with a key
defined as GOLD.

The SET KEY command changes the keypad state. Use the SHOW KEY
command to display key definitions and states.

QUALIFIERS

DCL1-128

/ECHO (default)
/NOECHO

Displays the equivalence string on your screen after the key has
been pressed. You cannot use the /NOECHO qualifier with the
/NOTERMINATE qualifier.

/ERASE
/NOERASE (default)

Determines whether the current line is erased before the key translation
is inserted.

/IF_STATE=(state-name,...)
/NOIF_STATE

Specifies a list of one or more states, one of which must be in effect for
the key definition to work. The /NOIF_STATE qualifier has the same
meaning as /IF_STATE=current_state. The state name is an alphanumeric
string. States are established with the /SET_STATE qualifier or the SET
KEY command. If you specify only one state name, you can omit the
parentheses. By including several state names, you can define a key to
have the same function in all the specified states.

/LOCK_STATE

/NOLOCK_STATE (default)

Specifies that the state set by the /SET_STATE qualifier remain in effect
until explicitly changed. (By default, the /SET_STATE qualifier is in effect
only for the next definable key you press or the next read-terminating

character that you type.) This qualifier can be specified only with the
/SET_STATE qualifier.

/LOG (default)

/NOLOG

Displays a message indicating that the key definition has been successfully
created.

/SET_STATE=state-name
/NOSET_STATE (default)

Causes the specified state-name to be set when the key is pressed. (By
default, the current locked state is reset when the key is pressed.) If you
have not included this qualifier with a key definition, you can use the SET
KEY command to change the current state. The state name can be any
alphanumeric string; specify the state as a character string enclosed in
quotation marks.

U

DEFINE/KEY

/TERMINATE
/NOTERMINATE (default)

Specifies whether the current equivalence string is to be processed
immediately when the key is pressed (equivalent to entering the string
and pressing the Return key). By default, you can press other keys before
the definition is processed. This allows you to create key definitions that
insert text into command lines, after prompts, or into other text that you
are entering.

EXAMPLES

$ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%$DCL-I-DEFKEY, DEFAULT key PF3 has been defined
$
$ SHOW TIME

19-APR-1990 14:43:59

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad to perform the SHOW TIME command. DEFAULT refers to the
default state.

$ DEFINE/KEY PF1l "SHOW " /SET STATE=GOLD/NOTERMINATE/ECHO
$DCL-I-DEFKEY, DEFAULT key PF1l has been defined

$ DEFINE/KEY PFl " DEFAULT" /TERMINATE/IF STATE=GOLD/ECHO
$DCL-I-DEFKEY, GOLD key PFl has been defined

s [E
=

$ SHOW DEFAULT
DISK1: [JOHN.TEST]

In this example, the first DEFINE/KEY command defines the PF1 key to
be the string SHOW. The state is set to GOLD for the subsequent key. The
/NOTERMINATE qualifier instructs the system not to process the string
when the key is pressed. The second DEFINE/KEY command defines the
use of the PF1 key when the keypad is in the GOLD state. When the
keypad is in the GOLD state, pressing PF1 causes the current read to be
terminated.

If you press the PF1 key twice, the system displays and processes the
SHOW DEFAULT command.

The word DEFAULT in the second line of the example indicates that the
PF1 key has been defined in the default state. Note the space before the
word DEFAULT in the second DEFINE/KEY command. If the space is
omitted, the system fails to recognize DEFAULT as the keyword for the
SHOW command.

DCL1-129

DEFINE/KEY

$ SET KEY/STATE=ONE

$DCL-I-SETKEY, keypad state has been set to ONE
$ DEFINE/KEY PF1 "ONE"

$DCL-I-DEFKEY, ONE key PFl has been defined

$ DEFINE/KEY/IF_STATE=ONE PF1 "ONE"
$DCL-I-DEFKEY, ONE key PFl has been defined

This example shows two ways to define the PF1 key to be “ONE” for state
ONE.

The second DEFINE/KEY command shows the preferred method for
defining keys. This method eliminates the possibility of error by specifying
the state in the same command as the key definition.

DCL1-130

DELETE

DELETE

Deletes one or more files from a mass storage disk volume.

FORMAT

DELETE filespec],...]

PARAMETER

QUALIFIERS

filespec],...]

Specifies the names of one or more files to be deleted from a mass storage
disk volume. The first file specification must contain an explicit or
default directory specification plus an explicit file name, file type, and
version number. Subsequent file specifications need contain only a version
number; the defaults will come from the preceding specification. Wildcard
characters can be used in any of the file specification fields.

If you omit the directory specification or device name, the current default
device and directory are assumed.

If the file specification contains a null version number (a semicolon [;]
followed by no file version number), a version number of 0, or one or more
spaces in the version number, the latest version of the file is deleted.

To delete more than one file, separate the file specifications with either
commas (,) or plus signs (+).

/BACKUP

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /BACKUP qualifier selects files according to the dates

of their most recent backups. This qualifier is incompatible with the
/CREATED, /EXPIRED, and /MODIFIED qualifiers, which also allow you
to select files according to time attributes. If you specify none of these four
time qualifiers, the default is the /CREATED qualifier.

/BEFORE[=time]

Selects only those files dated prior to the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,

or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /BEFORE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

/BY OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches
the specified owner UIC. The default UIC is that of the current process.

Specify the UIC by using standard UIC format as described in the VMS
DCL Concepts Manual.

DCL1-131

DELETE

DCL1-132

/CONFIRM
/NOCONFIRM (default)

Controls whether a request is issued before each delete operation to
confirm that the operation should be performed on that file. The following
responses are valid:

YES NO QuIT
TRUE FALSE ctri/z
1 0 ALL

You can use any combination of uppercase and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters

(for example, T, TR, or TRU for TRUE), but these abbreviations must be
unique. Affirmative answers are YES, TRUE, and 1. Negative answers
include: NO, FALSE, 0, and pressing the Return key. Entering QUIT or
pressing Ctrl/Z indicates that you want to stop processing the command at
that point. When you respond by entering ALL, the command continues
to process, but no further prompts are given. If you type a response other
than one of those in the list, DCL issues an error message and redisplays
the prompt.

/CREATED (default)

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /CREATED qualifier selects files based on their dates of
creation. This qualifier is incompatible with the /BACKUP, /EXPIRED,
and /MODIFIED qualifiers, which also allow you to select files according

to time attributes. If you specify none of these four time qualifiers, the
default is the /CREATED qualifier.

JERASE
/NOERASE (default)

When you delete a file, the area in which the file was stored is returned to
the system for future use. The data that was stored in that location still
exists in the system until new data is written over it. When you specify
the /ERASE qualifier, the storage location is overwritten with a system
specified pattern so that the data no longer exists.

/EXCLUDE=(filespec],...])

Excludes the specified files from the delete operation. You can include a
directory but not a device in the file specification. Wildcard characters
(* and %) are allowed in the file specification. However, you cannot use
relative version numbers to exclude a specific version. If you specify only
one file, you can omit the parentheses.

/EXPIRED

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /EXPIRED qualifier selects files according to their expiration
dates. (The expiration date is set with the SET FILE/EXPIRATION_DATE
command.) The /EXPIRED qualifier is incompatible with the /BACKUP,
/CREATED, and /MODIFIED qualifiers, which also allow you to select
files according to time attributes. If you specify none of these four time
qualifiers, the default is the /CREATED qualifier.

DELETE

/LOG

/NOLOG (default)

Controls whether the DELETE command displays the file specification of
each file after its deletion.

/MODIFIED

Modifies the time value specified with the /BEFORE or the /SINCE
qualifier. The /MODIFIED qualifier selects files according to the dates
on which they were last modified. This qualifier is incompatible with the
/BACKUP, /CREATED, and /EXPIRED qualifiers, which also allow you to
select files according to time attributes. If you specify none of these four
time modifiers, the default is the /CREATED qualifier.

/SINCE[=time]

Selects only those files dated after the specified time. You can specify
time as an absolute time, as a combination of absolute and delta times,

or as one of the following keywords: TODAY (default), TOMORROW, or
YESTERDAY. Specify one of the following qualifiers with the /SINCE
qualifier to indicate the time attribute to be used as the basis for selection:
/BACKUP, /CREATED (default), /EXPIRED, or /MODIFIED.

For complete information on specifying time values, see the VMS DCL
Concepts Manual.

EXAMPLES

$ DELETE COMMO

$ DELETE *.OLD;*

$ DELETE ALPHA.

$ DELETE /BEFORE
$DELETE-I-FILDEL,

N.SUM; 2

The DELETE command deletes the file COMMON.SUM;2 from the current
default disk and directory.

The DELETE command deletes all versions of files with file type OLD
from the default disk directory.

TXT;*, BETA;*, GAMMA;*

The DELETE command deletes all versions of the files ALPHA.TXT,
BETA.TXT, and GAMMA.TXT. The command uses the file type of the
first input file as a temporary default. Note, however, that some form of
version number (here specified as wildcards) must be included in each file
specification.

=15-APR/LOG *.DAT; *
DISK2: [MALCOLM]ASSIGN.DAT;1 deleted (5 block)

$DELETE-I-FILDEL, DISK2:[MALCOLM]BATCHAVE.DAT;3 deleted (4 blocks)

$DELETE-I-FILDEL,
$DELETE-I-FILDEL,
$DELETE-I-FILDEL,
$DELETE-I-FILDEL,

DISK2: [MALCOLM]BATCHAVE.DAT;2 deleted (4 blocks)
DISK2: [MALCOLM]BATCHAVE.DAT;1 deleted (4 blocks)
DISK2: [MALCOLM]CANCEL.DAT;1 deleted (2 blocks)
DISK2: [MALCOLM]DEFINE.DAT;1 deleted (3 blocks)

$DELETE-I-FILDEL, DISK2:[MALCOLM]EXIT.DAT;1l deleted (1 block)

$DELETE-I-TOTAL,

7 files deleted (23 blocks)

The DELETE command deletes all versions of all files with file type DAT
that were either created or updated before April 15 of this year. The /[LOG

DCL1-133

DELETE

$ DELETE A.B;

qualifier not only displays the name of each file deleted, but also the total
number of files deleted.

The DELETE command deletes the file A.B with the highest version
number.

B $ DELETE/CONFIRM/SINCE=TODAY [MALCOLM.TESTFILES]*.OBJ;*
DISKO: [MALCOLM.TESTFILES]AVERAG.OBJ;1, delete? [N]:Y
DISKO: [MALCOLM.TESTFILES] SCANLINE.OBJ;4, delete? [N]:N
DISKO: [MALCOLM.TESTFILES] SCANLINE.OBJ;3, delete? [N]:N
DISKO: [MALCOLM.TESTFILES] SCANLINE.OBJ;2, delete? [N]:N
DISKO: [MALCOLM.TESTFILES]WEATHER.OBJ;3, delete? [N]:Y

The DELETE command examines all versions of files with file type OBJ
in the subdirectory [MALCOLM.TESTFILES], and locates those that
were created or modified today. Before deleting each file, it requests
confirmation that the file should be deleted. The default response—N—is
given in brackets.

$ DIRECTORY [.SUBTEST]
$DIRECT-W-NOFILES, no files found
$ SET PROTECTION SUBTEST.DIR/PROTECTION=OWNER:D
$ DELETE SUBTEST.DIR;1

Before the directory file SUBTEST.DIR is deleted, the DIRECTORY
command is used to verify that there are no files cataloged in the
directory. The SET PROTECTION command redefines the protection

for the directory file so that it can be deleted; then the DELETE command
deletes it.

‘ B $ DELETE DALLAS"THOMAS SECRET"::DISKO:[000,000]DECODE.LIS;1

$ DELETE QUEBEC:
$ DELETE QUEBEC:

DCL1-134

This DELETE command deletes the file DECODE.LIS;1 from the directory
[000,000] on device DISKO at remote node DALLAS. The user name and
password follow the remote node name.

:"DISK1:DEAL.BIG"
:DISK1:DEAL.BIG;

Either of these DELETE commands can be used to delete the file
DEAL.BIG on device ZZZ1 at remote node QUEBEC. Note that the
DELETE command requires an explicit version number in a file
specification, but the file to be deleted is on a remote node whose file
syntax does not recognize version numbers. (QUEBEC is an RT-11 node.)
Therefore, the file specification must either be enclosed in quotation marks
(" ") or entered with a null version number (that is, a trailing semicolon
LD.

DELETE/CHARACTERISTIC

DELETE/CHARACTERISTIC

Deletes the definition of a queue characteristic previously established with the
DEFINE/CHARACTERISTIC command. The /CHARACTERISTIC qualifier is
required.

Requires OPER (operator) privilege.

FORMAT

PARAMETER

DELETE/CHARACTERISTIC characteristic-name

characteristic-name
Specifies the name of the characteristic to be deleted.

DESCRIPTION

The DELETE/CHARACTERISTIC command deletes a characteristic from
the system characteristic table.

To change the number of an existing characteristic, you can use the
DEFINE/CHARACTERISTIC command. It is not necessary to delete the
characteristic before changing it.

QUALIFIER

EXAMPLE

/LOG

/NOLOG (default)
Controls whether the DELETE/CHARACTERISTIC command displays the
name of each characteristic after its deletion.

$ DEFINE/CHARACTERISTIC BLUE 7

$ DELETE/CHARACTERISTIC BLUE
$ DEFINE/CHARACTERISTIC BLUE_INK 7

The DEFINE/CHARACTERISTIC command in this example establishes
the characteristic BLUE, with number 7, to mean blue ink ribbons

for printers. To change the name of the characteristic, enter the
DELETE/CHARACTERISTIC command. Then enter another DEFINE
/CHARACTERISTIC command to rename the characteristic to BLUE_
INK, using the characteristic number 7.

DCL1-135

DELETE/ENTRY

DELETE/ENTRY

Deletes one or more print or batch jobs. The jobs can be in progress or
waiting in the queue. The /ENTRY qualifier is required.

Requires OPER (operator) privilege, execute (E) access to the queue, or
delete (D) access to the specified jobs.

FORMAT

DELETE/ENTRY=(entry-number],...]) [queue-namel:]]

PARAMETERS

entry-number],...]

Specifies the entry number (or a list of entry numbers) of jobs to

be deleted. If you specify only one entry number, you can omit the
parentheses. If you do not specify a queue name, you can delete entries
from multiple queues.

The system assigns a unique entry number to each queued print or batch
job in the system. By default, the PRINT and SUBMIT commands display
the entry number when they successfully queue a job for processing.
These commands also create or update the local symbol $ENTRY to reflect
the entry number of the most recently queued job. To find a job’s entry
number, enter the SHOW ENTRY or SHOW QUEUE command.

queue-namel:]

Specifies the name of the queue where the jobs are located. The queue
name can refer either to the queue to which the job was submitted or
to the queue where the job is executing. The queue-name parameter is
optional syntax. However, when you specify a queue name, the VMS
operating system uses it to verify an entry in the specific queue before
deleting the entry.

DESCRIPTION

The DELETE/ENTRY command deletes one or more jobs from a queue.
If you specify a queue name and more than one entry number with a
DELETE/ENTRY command, all the jobs must be located in the same
queue.

You can delete jobs that are currently executing, as well as jobs that are
in other states. For example, DELETE/ENTRY can delete a job that is
currently in a holding or a pending state.

QUALIFIER

DCL1-136

/LOG

/NOLOG (default)
Controls whether the DELETE/ENTRY command displays the entry
number of each batch or print job that it deletes.

DELETE/ENTRY

EXAMPLES

$ PRINT/HOLD ALPHA.TXT
Job ALPHA (queue SYSS$PRINT, entry 110) holding

$ DELETE/ENTRY=110 SYS$PRINT

The PRINT command in this example queues a copy of the file
ALPHA.TXT in a HOLD status, to defer its printing until a SET ENTRY
/RELEASE command is entered. The system displays the job name, the
entry number, the name of the queue in which the job was entered, and
the status. Later, the DELETE/ENTRY command requests that the entry
be deleted from the queue SYS$PRINT.

$ SUBMIT/AFTER=18:00 WEATHER

Job WEATHER (queue SYSS$BATCH, entry 203) holding until 19-APR-1990 18:00
$ SUBMIT/HOLD/PARAMETERS=SCANLINE DOFOR

Job DOFOR (queue SYSS$BATCH, entry 210) holding

$ DELETE/ENTRY=(203,210) /LOG
$DELETE-W-SEARCHFAIL, error searching for 203
-JBC-E-NOSUCHENT, no such entry
$DELETE-I-DELETED, entry 210 aborting or deleted

The SUBMIT commands in this example queue the command procedures
WEATHER.COM and DOFOR.COM for processing as batch jobs.
WEATHER.COM is queued for execution after 6:00 PM. DOFOR.COM

is queued in a HOLD status and cannot execute until you enter a SET
ENTRY/RELEASE command. Later, the DELETE/ENTRY/LOG command
requests that the system delete both these entries from the queue and
display a message indicating that the entries have been deleted.

The job WEATHER (entry 203) has completed by the time the DELETE
/ENTRY/LOG command is entered. Thus, entry 203 no longer exists. Note
that a message indicates that there is no entry 203 in the queue. The job
DOFOR (entry 210) is in a HOLD status when the DELETE/ENTRY/LOG
command is entered. Thus, the system deletes entry 210 from the queue
and displays a message to that effect.

$ PRINT CHAPTERS8.MEM
Job CHAPTER8 (queue SYSSPRINT, entry 25) pending on queue SYS$PRINT

$ SHOW QUEUE SYS$PRINT
Printer queue SYSSPRINT, on PARROT::PARROT$LPAO, mounted form DEFAULT

Jobname Username Entry Blocks Status
CHAPTER7 SMITH 24 274 Pending
CHAPTERS8 SMITH 25 976 Pending

$ DELETE/ENTRY=25

The PRINT command in this example submits the file CHAPTER8. MEM

DCL1-137

DELETE/ENTRY

DCL1-138

to the printer queue SYS$PRINT. Later, user Smith needs to edit the
file again before printing it. Using the SHOW QUEUE command, Smith
verifies that the job is still pending and that the entry number for the job
is 25. Smith then enters the DELETE/ENTRY command to delete the job

from the queue.

DELETE/FORM

DELETE/FORM

Deletes a form (for printer or terminal queues) previously established with the
DEFINE/FORM command. The /FORM qualifier is required.

Requires OPER (operator) privilege.

FORMAT DELETE/FORM form-name

PARAMETER form-name
Specifies the name of the form to be deleted.

DESCRIPTION The DELETE/FORM command deletes a form definition from the system
forms table. When you delete a form, there can be no outstanding
references to the form either in queues that have been mounted with
the form or by jobs requesting that form. To locate all references to the
form, use the SHOW QUEUE/FULL command.

To change the number or attributes of an existing form, use the DEFINE
/FORM command. It is not necessary to delete a form before changing it.

QUALIFIER /LOG
/NOLOG (default)

Controls whether the DELETE/FORM command displays the name of each
form after its deletion.

EXAMPLES

$ DELETE/FORM CENTER

The DELETE/FORM command in this example deletes the form named
CENTER.

B $ DEFINE/FORM /DESCRIPTION="letter size continuous form paper" CFLET 7

$ DELETE/FORM CFLET
$ DEFINE/FORM /DESCRIPTION="letter size continuous form paper" LETTER_CONT 7

The DEFINE/FORM command in this example establishes the form
CFLET with number 7 to mean continuous-form paper 8.5 inches by 11
inches. To change the name of the form, delete the form named CFLET
and define a new one named LETTER_CONT.

DCL1-139

DELETE/INTRUSION_RECORD

DELETE/INTRUSION_RECORD

Removes an entry from the break-in database.
Requires CMKRNL (change mode to kernel) and SECURITY privileges.

FORMAT

DELETE/INTRUSION_RECORD source

PARAMETER

source
Specifies the source field of the entry to be removed from the break-in
database.

DESCRIPTION

Use the DELETE/INTRUSION_RECORD command to remove an entry
from the break-in database. For example, if the user Hammer repeatedly
attempted to log in to terminal TTA24 with an expired password, the
SHOW INTRUSION command would display the following entry:

Intrusion Type Count Expiration Source

TERM_USER INTRUDER 9 10:29:39.16 TTA24 :HAMMER

The terminal is locked out of the system because the login failure limit
has been reached. When Hammer approaches you and you identify

the problem as an expired password, you can then use the DELETE
/INTRUSION command to remove the record from the break-in database.

EXAMPLES

m $ DELETE/INTRUSION RECORD TTC2:

In this example, the DELETE/INTRUSION_RECORD command removes
all intrusion records generated by break-in attempts on TTC2. No
username is specified because none of the login failures occurred for
valid users.

E $ DELETE/INTRUSION_ RECORD NODELI: :HAMMER

DCL1-140

This command removes all intrusion entries generated from node NODE1
for user HAMMER.

DELETE/KEY

DELETE/KEY

Deletes key definitions that have been established by the DEFINE/KEY
command. The /KEY qualifier is required.

FORMAT DELETE/KEY [key-name]

PARAMETER key-name

Specifies the name of the key to be deleted. This parameter is
incompatible with the /ALL qualifier.

QUALIFIERS /ALL

Deletes all key definitions in the specified state; the default is the current
state. If you use the /ALL qualifier, do not specify a key name. Use the
/STATE qualifier to specify one or more states.

/LOG (default)
/NOLOG

Controls whether messages are displayed indicating that the specified key
definitions have been deleted.

/STATE=(state-name],...])

/NOSTATE (default)

Specifies the name of the state for which the specified key definition is
to be deleted. The default state is the current state. If you specify only
one state name, you can omit the parentheses. State names can be any
alphanumeric string.

EXAMPLES

$ DELETE/KEY/ALL
$DCL-I-DELKEY, DEFAULT key PFl has been deleted
$DCL-I-DELKEY, DEFAULT key PF2 has been deleted
$DCL-I-DELKEY, DEFAULT key PF3 has been deleted
%$DCL-I-DELKEY, DEFAULT key PF4 has been deleted
$

In this example, the user has defined keys PF1 to PF4 in the default state.
The DELETE/KEY command deletes all key definitions in the current
state, which is the default state.

DCL1-141

DELETE/KEY

$ DEFINE/KEY PF3 "SHOW TIME" /TERMINATE
%$DCL-I-DEFKEY, DEFAULT key PF3 has been defined
s

$ SHOW TIME

19-APR-1990 14:43:59

$ DELETE/KEY PF3

%/DCL-I-DELKEY, DEFAULT key PF3 has been deleted
$

$

In this example, the DEFINE/KEY command defines the PF3 key on the
keypad as SHOW TIME. To delete the definition for the PF3 key, use the
DELETE/KEY command. When the user presses PF3, only the system
prompt is displayed.

DCL1-142

DELETE/QUEUE

DELETE/QUEUE

Deletes a print or batch queue created by the INITIALIZE/QUEUE command,
and deletes all the jobs in the queue. The /QUEUE qualifier is required.

Requires OPER (operator) privilege.

FORMAT

DELETE/QUEUE queue-namel:]

PARAMETER

queue-namey:]
Specifies the name of the queue to be deleted.

DESCRIPTION

To delete a queue, use the following procedure:
1 Stop the specified queue by using the STOP/QUEUE/NEXT command.

The STOP/QUEUE/NEXT command stops the specified queue after all
executing jobs have completed processing. Wait for any executing jobs
to complete processing.

2 Make sure that there are no outstanding references to the specified
queue.

If a generic queue refers to the specified queue as a target execution
queue, you must remove the specified queue from the list of target
e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>