
VAX Text Processing Utility
Manual: Part

Order Number: AA—PBTMA TE

June 1990

This manual describes the elements of the VAX Text Processing Utility
(VAXTPU). It is intended as a reference manual for experienced programmers.

Revision/Update Information: This document supersedes the VAX
Text Processing Utility Manual for V M S
Version 5.2.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at DEARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader's Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS
DECnet HSC ULTRIX VT
DECUS LiveLink UNIBUS XUI
DECwindows LN03 VAX ~,
DECwriter MASSBUS VAXcluster d 8 g 80 a s

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4350

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LN03R ScriptPrinter}, to
produce atypeset-quality copy containing integrated graphics.

Contents

PREFACE xxiii

VAXTPU TUTORIAL SECTION

CHAPTER 1 OVERVIEW OF THE VAX TEXT PROCESSING UTILITY 1-1

1.1 WHAT IS VAXTPU? 1-1

1.2 WHAT IS DECWINDOWS VAXTPU? 1-2
1.2.1 DECwindows VAXTPU and DECwindows Features 1-2
1.2.2 DECwindows VAXTPU and the DECwindows User Interface

Language 1-4

1.3 WHAT IS EVE? 1-4

1.4 THE VAXTPU LANGUAGE 1-5
1.4.1 VAXTPU Data Types 1-6
1.4.2 VAXTPU Language Declarations 1-7
1.4.3 VAXTPU Language Statements 1-7
1.4.4 VAXTPU Built-In Procedures 1-7
1.4.5 User-Written Procedures 1-8

1.5 TERMINALS SUPPORTED BY VAXTPU 1-8

1.6 INVOKING VAXTPU 1-9
1.6.1 Using EDIT/TPU Command Qualifiers 1-9
1.6.2 Using Startup Files 1-10

1.7 USING JOURNAL FILES 1-11
1.7.1 Buffer Change Journal File Naming Algorithm 1-12

v

Contents

1.8 LEARNING MORE ABOUT VAXTPU 1-13

CHAPTER 2 VAXTPU DATA TYPES 2-1

2.1 ARRAY 2-2

2.2 BUFFER 2-3

2.3 INTEGER 2-5

2.4 KEYWORD 2-5

2.5 LEARN 2-7

2.6 MARKER 2-8

2.7 PATTERN 2-11
2.7.1 Pattern Built-In Procedures 2-13
2.7.2 Keywords That Can Be Used to Build Patterns 2-14
2.7.3 Pattern Operators 2-15
2.7.3.1 + (Pattern Concatenation Operator} • 2-15
2.7.3.2 & (Pattern Linking Operator) • 2-15
2.7.3.3 ((Pattern Alternation Operator) • 2-16
2.7.3.4 ~ (Partial Pattern Assignment Operator) • 2-17
2.7.3.5 Relational Operators • 2-18
2.7.4 Pattern Compilation and Execution 2-18
2.7.5 Searching 2-18
2.7.6 Anchoring a Search 2-19

2.8 PROCESS 2-20

2.9 PROGRAM 2-21

2.10 RANGE 2-21

vi

Contents

2.11 STRING 2-23

2.12 UNSPECIFIED 2-24

2.13 WIDGET 2-24

2.14 WINDOW 2-25
2.14.1 Window Dimensions 2-25
2.14.2 Creating Windows 2-26
2.14.3 Window Values 2-27
2.14.4 Mapping Windows 2-27
2.14.5 Removing Windows 2-28
2.14.6 Screen Manager 2-28
2.14.7 Getting Information on Windows 2-29
2.14.8 Terminals That Do Not Support Windows 2-29

CHAPTER 3 LEXICAL ELEMENTS OF THE VAXTPU LANGUAGE 3-~

3.1 OVERVIEW 3-1

3.2 CHARACTER SET 3-1
3.2.1 Entering Control Characters 3-2
3.2.2 VAXTPU Symbols 3-3

3.3 IDENTIFIERS

3.4 VARIABLES

3.5 CONSTANTS 3-5

3.6 OPERATORS 3-6

3.7 EXPRESSIONS 3-8
3.7.1 Arithmetic Expressions 3-9
3.7.2 Relational Expressions 3-10
3.7.3 Pattern Expressions 3-11
3.7.4 Boolean Expressions 3-11

vii

Contents

3.8 RESERVED WORDS 3-12
3.8.1 Keywords 3-12
3.8.2 Built-In Procedure Names 3-12
3.8.3 Predefined Constants 3-13
3.8:4 Declarations and Statements 3-13
3.8.4.1 The Module Declaration •3-14
3.8.4.2 The Procedure Declaration •3-15

3.8.4.2.1 Procedure Names • 3-16
3.8.4.2.2 Procedure Parameters • 3-16
3.8.4.2.3 Procedures That Return a Result • 3-19
3.8.4.2.4 Recursive Procedures • 3-19
3.8.4.2.5 Local Variables • 3-20
3.8.4.2.6 Constants • 3-20
3.8.4.2.7 ON ERROR Statements • 3-21

3.8.4.3 The Assignment Statement •3-21
3.8.4.4 The Repetitive Statement •3-21
3.8.4.5 The Conditional Statement •3-22
3.8.4.6 The Case Statement •3-23
3.8.4.7 Error Handling • 3-25

3.8.4.7.1 Procedural Error Handlers • 3-26
3.8.4.7.2 Case-Style Error Handlers • 3-28
3.8.4.7.3 CTRVC Handling • 3-31

3.8.4.8 The RETURN Statement • 3-31
3.8.4.9 The ABORT Statement •3-33
3.8.4.10 Miscellaneous Declarations • 3-33

3.8.4.10.1 EQUIVALENCE Statement • 3-33
3.8.4.10.2 LOCAL • 3-34
3.8.4.10.3 CONSTANT • 3-35
3.8.4.10.4 VARIABLE • 3-36

3.9 LEXICAL KEYWORDS 3-36
3.9.1 Conditional Compilation 3-36
3.9.2 Specifying the Radix of Numeric Constants 3-37

CHAPTER 4 VAXTPU PROGRAM DEVELOPMENT 4--~

4.1 CREATING VAXTPU PROGRAMS 4-1
4.1.1 Simple Programs 4-2
4.1.2 Complex Programs 4-2
4.1.3 Program Syntax q^3

viii

Contents

4.2 PROGRAMMING IN DECWINDOWS VAXTPU 4^5
4.2.1 Widgets Supported by DECwindows VAXTPU 4-5
4.2.2 Input Focus Support in DECwindows VAXTPU 4-5
4.2.3 Global Selection Support in DECwindows VAXTPU 4-6
4.2.3.1 Difference Between Global Selection and Clipboard • 4-6
4.2.3.2 Handling of Multiple Global Selections • 4-6
4.2.3.3 Relation of Global Selection to Input Focus in DECwindows

VAXTPU • 4-7
4.2.3.4 DECwindows VAXTPU's Response to Requests for Information

About the Global Selection • 4-7
4.2.4 Using Callbacks in DECwindows VAXTPU 4-8
4.2.4.1 Background on DECwindows Callbacks • 4-8
4.2.4.2 Understanding the Difference Between VAXTPU's

Internally-Defined Callback Routines and a Layered Application's
Callback Routines • 4-9

4.2.4.3 Using Internally-Defined VAXTPU Callback Routines with
U I L • 4-9

4.2.4.4 Using Internally-Defined VAXTPU Callback Routines with Widgets
Not Defined by U I L •4-10

4.2.4.5 Using Application-Level Callback Action Routines •4-10
4.2.4.6 Callable Interface-Level Callback Routines •4-10
4.2.5 Using Closures in DECwindows VAXTPU 4-11
4.2.6 Specifying Values for Widget Resources in DECwindows

VAXTPU 4-12
4.2.6.1 VAXTPU Data Types for Specifying Resource Values •4--12
4.2.6.2 Specifying a List as a Resource Value •4--13

4.3 WRITING CODE COMPATIBLE WITH DECWINDOWS EVE ~ 4-14
4.3.1 Screen Objects in Applications Layered on DECwindows

VAXTPU 4-14
4.3.2 Select Ranges in DECwindows EVE 4-16
4.3.2.1 Dynamic Selection •4--17
4.3.2.2 Static Selection •4-17
4.3.2.3 Found Range Selection •4-18
4.3.2.4 Relation of EVE Selection to DECwindows Global

Selection • 4^18

4.4 COMPILING VAXTPU PROGRAMS 4-18
4.4.1 Compiling on the EVE Command Line 4-19
4.4.2 Compiling in a VAXTPU Buffer 4-19

ix

Contents

4.5 EXECUTING VAXTPU PROGRAMS 4-19
4.5.1 Interrupting Execution with CTRL/C 4-20
4.5.2 Procedure Execution 4-21

4.6 VAXTPU STARTUP FILES 4-21
4.6.1 Sequence in Which VAXTPU Processes Startup Files 4-22
4.6.2 Section Files 4-23
4.6.2.1 Creating and Processing a New Section File •4-23
4.6.2.2 Extending an Existing Section File •4-24
4.6.2.3 A Sample Section File •4-25
4.6.2.4 Recommended Conventions for Section Files •4-28

4.6.2.4.1 TPU$INIT PROCEDURE •4-28
4.6.2.4.2 TPU$LOCAL INIT •4-29
4.6.2.4.3 Special Variables •4-29

4.6.3 Command Files 4-29
4.6.4 EVE Initialization Files 4-31
4.6.4.1 Using an EVE Initialization File at Startup •4-31
4.6.4.2 Using an EVE Initialization File During an Editing Session •4-32
4.6.4.3 How an EVE Initialization File Affects Buffer Settings •4-32

4.7 DEBUGGING VAXTPU PROGRAMS 4-33
4.7.1 Invoking the VAXTPU Debugger 4-33
4.7.1.1 Section Files •4-34
4.7.1.2 Command Files •4-34
4.7.1.3 Other VAXTPU Source Code •4-35
4.7.2 Getting Started with the VAXTPU Debugger 4-35
4.7.3 VAXTPU Debugger Commands 4-36

4.8 ERROR HANDLING 4-38

CHAPTER 5 INVOKING VAXTPU 5-1

5.1 AVOIDING ERRORS RELATED TO VIRTUAL ADDRESS SPACE 5-1

5.2 INVOKING VAXTPU FROM A DCL COMMAND PROCEDURE 5-2
5.2.1 Setting Up a Special Editing Environment 5-2
5.2.2 Creating a Noninteractive Application 5-3

x

Contents

5.3 INVOKING VAXTPU FROM A BATCH JOB 5-5

5.4 QUALIFIERS TO THE DCL COMMAND EDIT/TPU 5-5
5.4.1 /COMMAND 5-6
5.4.2 /CREATE 5-7
5.4.3 /DEBUG 5-8
5.4.4 /DISPLAY 5-8
5.4.5 /INITIALIZATION 5-9
5.4.6 /INTERFACE 5-10
5.4.7 /JOURNAL 5-10
5.4.8 /MODIFY 5-12
5.4.9 /OUTPUT 5-12
5.4.10 /READ ONLY 5-13
5.4.11 /RECOVER 5-14
5.4.12 /SECTION 5-16
5.4.13 /START POSITION 5-17
5.4.14 /VIIRITE 5-17

5.5 HOW EVE USES /MODIFY, /OUTPUT, /READ ONLY, AND /WRITE 5-18

5.6 SPECIFYING A PARAMETER TO EDIT/TPU 5-19

CHAPTER 6 VAXTPU SCREEN MANAGEMENT s-1

6.1 HOW THE SCREEN MANAGER HANDLES WINDOWS AND i
BUFFERS 6-1

i

6.1.1 Buffer Changes 6-1 ~
6.1.2 Window Changes 6-2 j
6.1.2.1 Making a Window Current • 6-2
6.1.2.2 Mapping a Window • 6-3 ~
6.1.2.3 Shifting a Window • 6-3 ~
6.1.2.4 Deleting a Window • 6-4
6.1.2.5 How VAXTPU Window Size Affects a Terminal Emulator • 6-4 ~
6.1.2.6 How VAXTPU Window Size Affects the Display on a ~

Terminal • 6-4 '~
6.1.2.7 How a Window Displays Insertion of Records into a Buffer • 6-5 I'
6.1.2.8 How a Window Displays Deletion of Records from a Buffer • 6-5
6.1.2.9 How a Window Displays Changes to a Record in a Buffer • 6-6

Contents

6.2 INVOKING THE SCREEN MANAGER 6-6
6.2.1 Enabling Screen Updates 6-6
6.2.2 Automatic Updates 6-7
6.2.3 Updating Windows 6-8
6.2.4 Updating the Whole Screen 6-9
6.2.5 The REFRESH Built-In 6-'10
6.2.6 The SCROLL Built-In 6-10

6.3 CURSOR POSITION COMPARED TO EDITING POINT 6-10

6.4 BUILT-IN PADDING 6-11

VAXTPU REFERENCE SECTION

CHAPTER 7 VAXTPU BUILT IN PROCEDURES 7-1

7.1 BUILT-IN PROCEDURES GROUPED ACCORDING TO FUNCTION 7-1
7.1.1 Screen Layout 7-1
7.1.2 Cursor Movement 7-2
7.1.3 Moving the Editing Position 7-3
7.1.4 Text Manipulation 7-3
7.1.5 Pattern Matching 7-5
7.1.6 Status of the Editing Context 7-6
7.1.7 Defining Keys 7-g
7.1.8 Multiple Processing 7-g
7.1.9 Program Execution 7-10
7.1.10 DECwindows VAXTPU-Specific 7-10
7.1.11 Miscellaneous 7-13

7.2 DESCRIPTIONS OF THE BUILT-IN PROCEDURES
ABORT 7-16
ADD_KEY MAP 7-17
ADJUST WINDOW 7-19
ANCHOR 7_24
ANY 7_26
APPEND LINE 7_28
ARB 7.~0
ASCII 7-32

7-15

xii

Contents

ATTACH 7-35

BEGINNING OF 7-37
BREAK 7-39
CALL USER 7-40
CHANGE CASE 7-44
COMPILE 7-47
CONVERT 7-50
COPY TEXT 7-53
CREATE ARRAY 7-55
CREATE BUFFER 7-58
CREATE KEY MAP 7-63
CREATE KEY MAP LIST 7-65
CREATE PROCESS 7-67
CREATE RANGE 7-69
CREATE WIDGET 7-72
CREATE WINDOW 7-77
CURRENT BUFFER 7-80
CURRENT CHARACTER 7-81
CURRENT COLUMN 7-83
CURRENT DIRECTION 7-85
CURRENT LINE 7-86
CURRENT OFFSET 7-88
CURRENT ROW 7-90
CURRENT WINDOW 7-92

CURSOR HORIZONTAL 7-94
CURSOR VERTICAL 7-96

DEBUG LINE 7-99
DEFINE KEY 7-100
DEFINE WIDGET CLASS 7-105
DELETE 7-107

EDIT 7-111

END OF 7-115
ERASE 7-117
ERASE CHARACTER 7-119

ERASE LINE 7-121
ERROR 7-123
ERROR LINE 7-125
ERROR TEXT 7-127
EXECUTE 7-129
EXIT 7-133

EXPAND NAME 7-135
FAO 7-138

Contents

FILE PARSE 7-140
FILE SEARCH 7-143

FILL 7-146

GET CLIPBOARD 7-149

GET DEFAULT 7-151

GET GLOBAL SELECT 7-153

GET INFO 7-156
GET INFO (ANY_KEYNAME) 7-162
GET INFO (ANY KEYWORD) 7-164
GET INFO (ANY VARIABLE) 7-165
GET INFO (ARRAY) 7-166
GET INFO (ARRAY VARIABLE) 7-167
GET INFO (BUFFER) 7-169
GET INFO (BUFFER_VARIABLE) 7-170
GET INFO (COMMAND_LINE) 7-176
GET INFO (DEBUG) 7-179
GET INFO (DEFINED_KEY) 7-181
GET INFO (INTEGER VARIABLE) 7-182
GET INFO (KEY_MAP) 7-183
GET INFO (KEY_MAP LISA 7-184
GET INFO (MARKER VARIABLE) 7-185
GET INFO (MOUSE_EVENT KEYWORD) 7-188
GET INFO (PROCEDURES) 7-190
GET INFO (PROCESS) 7-191
GET INFO (PROCESS VARIABLE) 7-192
GET INFO (RANGE VARIABLE) 7-193
GET INFO (SCREEN) 7-194
GET INFO (STRING_VARIABLE) 7-203
GET INFO (SYSTEM) 7-205
GET INFO (WIDGET) 7-209
GET INFO (WIDGET VARIABLE) 7-214
GET INFO (WINDOVIn 7-218
GET INFO (WINDOW VARIABLE) 7-219

HELP TEXT 7-228
INDEX 7-230
INT 7-232
JOURNAL CLOSE 7-234
JOURNAL OPEN 7-235
KEY NAME 7-238
LAST KEY 7-242
LEARN ABORT 7-243
LEARN BEGIN AND LEARN END 7-244
LENGTH 7-247
LINE BEGIN 7-249

xiv

Contents

LINE END 7-251
LOCATE MOUSE 7-252
LOOKUP KEY 7-254
MANAGE WIDGET 7-258
MAP 7-259
MARK 7-261
MATCH 7-264
MESSAGE 7-266
MESSAGE TEXT 7-270
MODIFY RANGE 7-273
MOVE HORIZONTAL 7-278
MOVE TEXT 7-280
MOVE VERTICAL 7-282
NOTANY 7-284
PAGE BREAK 7-286
POSITION 7-287
QUIT 7-291

READ CHAR 7-293
READ CLIPBOARD 7-295
READ FILE 7-297
READ GLOBAL SELECT 7-299
READ KEY 7-301
READ LINE 7-303
REALIZE WIDGET 7-306
RECOVER BUFFER 7-307

REFRESH 7-310
REMAIN 7-312
REMOVE KEY MAP 7--313
RETURN 7-315
SAVE 7-316
SCAN 7-319
SCAN L 7-322

SCROLL 7-324

SEARCH 7-327
SEARCH QUIETLY 7-332
SELECT 7-337
SELECT RANGE 7-340
SEND 7-342

SEND CLIENT MESSAGE 7-344

SEND EOF 7-346

SET 7-347
SET (ACTIVE AREA) 7-350

xv

Contents

SET (AUTO REPEAL) 7-353
SET (BELL) 7 55
SET (CLIENT MESSAGE) 7-357
SET (COLUMN_MOVE_VERTICAL) 7-359
SET (CROSS WINDOW_BOUNDS) 7-361

SET (DEBUG) 7-362
SET (DEFAULT DIRECTORI~ 7-366
SET (DETACHED_ACTION) 7-367
SET (DISPLAY VALUE) 7-370
SET (DRM_HIERARCHY) 7-371
SET (ENABLE_RESIZE) 7-372

SET (EOB TEXT) 7-374

SET (ERASE_UNMODIFIABLE) 7-375

SET (FACILITY NAME) 7-378

SET (FORWARD) 7-379
SET (GLOBAL_SELEC'i') 7-380
SET (GLOBAL SELECT GRAB) 7-382
SET (GLOBAL_SELECT READ) 7-385
SET (GLOBAL_SELECT TIME) 7 87
SET (GLOBAL SELECT UNGRAB) 7-389
SET (HEIGHT 7-391

SET (ICON_NAME) 7-392

SET (ICON_PIXMAP) 7-393
SET (ICONIFY_PIXMAP) 7-395
SET (INFORMATIONAL) 7-397
SET (INPUT FOCUS) 7-398
SET (INPUT FOCUS_GRAB) 7-400
SET (INPUT FOCUS UNGRAB) 7102
SET (INSER'~ 7 04
SET (JOURNALING) 7-405
SET (KEYSTROKE_RECOVERY) 7-408
SET (KEY MAP_LISn 7-410
SET (LEFT MARGIN) 7-412
SET (LEFT MARGIN_ACTION) 7-414
SET (LINE NUMBER) 7-416
SET (MAPPED WHEN_MANAGED) 7-418
SET (MARGINS) 7-419
SET (MAX LINES) 7-421
SET (MENU_POSITION) 7-422
SET (MESSAGE_ACTION_LEVEL) 7-424
SET (MESSAGE_ACTION TYPE) 7-426
SET (MESSAGE_FLAGS) 727

xvi

Contents

SET (MODIFIABLE) 7-429
SET (MODIFIED) 7-431

SET (MOUSE) 7-432

SET (NO WRITE) 7-434
SET (OUTPUT FILE) 7 35
SET (OVERSTRIKE) 7-436
SET (PAD) 7 37
SET (PAD_OVERSTRUCK TABS) 7-439
SET (PERMANEN'~ 7-441
SET (POST KEY PROCEDURE) 7 42
SET (PRE KEY PROCEDURE) 7-444
SET (PROMPT AREA) 7-446
SET (RECORD_ATTRIBUTE) 7-448
SET (RESIZE ACTION) 7-451
SET (REVERSE) 7-453
SET (RIGHT MARGIN) 7 54
SET (RIGHT MARGIN_ACTION) 7 56
SET (SCREEN_LIMITS) 7-458
SET (SCREEN_UPDATE) 7-460
SET (SCROLL BAR) 7-462
SET (SCROLL BAR AUTO THUMB) 7 65
SET (SCROLLING) 7-467
SET (SELF_INSER7) 770
SET (SHIFT KEI~ 7-472
SET (SPECIAL ERROR_SYMBOL) 7-474
SET (STATUS_LINE) 7-76
SET (SUCCESS) 7-479
SET (SYSTEM) 7-480
SET (TAB_STOPS) 7-481
SET (TE)CT) 7-483
SET (TIMER) 7-486
SET (TRACEBACK) 7-488
SET (UNDEFINED_KEY) 7-490
SET (VIDEO) 7-492
SET (WIDGE'i~ 7-494

SET (WIDGET CALL_DATA) 7 96
SET (WIDGET CALLBACK) 7-499
SET (WIDTH) 7-501
SHIFT 7-503
SHOW 7-505
SLEEP 7-508
SPAN 7~'i10

xvii

Contents

SPANL 7-512

SPAWN 7-515
SPLIT LINE 7-518
STR 7-520

SU BSTR 7-523

TRANSLATE 7-526

UNANCHOR 7-530

UNDEFINE KEY 7-532

UNMANAGE WIDGET 7-534

UNMAP 7-536

UPDATE 7-538

WRITE CLIPBOARD 7-540

WRITE FILE 7-543

WRITE GLOBAL SELECT 7-546

APPENDIX A SAMPLE VAXTPU PROCEDURES A-~

A.1 LINE-MODE EDITOR A-1

A.2 TRANSLATION OF CONTROL CHARACTERS A-2

A.3 RESTORING TERMINAL WIDTH BEFORE EXITING FROM
VAXTPU A-5

A.4 RUNNING VAXTPU FROM A SUBPROCESS A-5

APPENDIX B SAMPLE DECWINDOWS VAXTPU PROCEDURES B-1

B.1 USING DECWINDOWS VAXTPU BUILT-INS B-1

8.2 DISPLAYING A DIALOG BOX B-1

B.3 CREATING A "MOUSE PAD" B-4

xviii

Contents

B.4 IMPLEMENTING AN EDT-STYLE APPEND COMMAND B-11

B.5 TESTING AND RETURNING A SELECT RANGE B-13

B.6 RESIZING WINDOWS B-16

B.7 UNMAPPING SAVED WINDOWS B-19

B.8 MAPPING SAVED WINDOWS B-22

B.9 HANDLING CALLBACKS FROM A SCROLL BAR WIDGET B-25

B.10 IMPLEMENTING THE COPY SELECTION OPERATION B-28

B.11 REACTIVATING A SELECT RANGE B-30

B.12 COPYING SELECTED MATERIAL FROM EVE TO ANOTHER DECWINDOWS
APPLICATION B-31

APPENDIX C VAXTPU TERMINAL SUPPORT C-1

C.1 SCREEN-ORIENTED EDITING ON SUPPORTED TERMINALS C-1
C.1.1 Terminal Settings That Affect VAXTPU C-1
C.1.2 The DCL Command SET TERMINAL C-3

C.2 LINE-MODE EDITING ON UNSUPPORTED TERMINALS C'3

C.3 TERMINAL WRAP

APPENDIX D VAXTPU MESSAGES D-1

xix

Contents

APPENDIX E DEC MULTINATIONAL CHARACTER SET E-1

APPENDIX F VAXTPU FILE SUPPORT F-1

APPENDIX G EVE$BUILD MODULE G-1

G.1 HOW TO PREPARE CODE FOR USE WITH EVE$BUILD G-1

G.1.1 Module Identifiers G-2

G.1.2 Parsers G-3

G.1.3 Initialization G--4
G.1.4 Command Synonyms G-5

G.1.5 Status Line Fields G-7

G.1.6 Exit and Quit Handlers G-8

G.1.7 How to Invoke EVE$BUILD G-10

G.2 WHAT HAPPENS WHEN YOU USE EVE$BUILD G-11

INDEX

EXAMPLES
1-1

2-1

3-1

3-2
3-3
3-4

3-5

3-6

3-7

3-8
3-9
3-10
3-11
3-12

3-13

3-14

Sample User-Written Procedure

Suppressing the Addition of Padding Blanks

Global and Local Variable Declarations

Global and Local Constant Declarations

1-8

2-11

3-5

3-6

A Procedure Using Relational Operators on Markers 3-11

Simple Procedure with Parameters 3-17

Complex Procedure with Optional Parameters 3-18

Procedure That Returns a Result 3-19

Procedure Within Another Procedure 3-19

Recursive Procedure 3-20

Procedure Using the CASE Statement 3-24

Procedure Using the ON_ERROR Statement 3-27

Procedure with aCase-Style Error Handler 3-29

Procedure That Returns a Value 3-32

Procedure Returning a Status 3-32

Using RETURN in an ON_ERROR Section 3-33

xx

Contents

3-15 Simple Error Handler 3-33

4-1 SHOW (SUMMARY) Display 4-2

4-2 Syntax of a VAXTPU Program 4-3

4-3 Sample VAXTPU Programs 4-4

4-4 Sample Program for a Section File 4-25

4-5 Source Code for Minimal Interface 4-26

4-6 Command File for Go to Text Marker 4-30
4-7 SHOW DEFAULTS BUFFER Display 4-33
5-1 DCL Command Procedure FILENAME.COM 5-3
5-2 DCL Command Procedure FORTRAN TS.COM 5-3
5-3 DCL Command Procedure INVISIBLE TPU.COM 5-4
5-4 VAXTPU Command File GSR.TPU 5-4
7-1 Initialization Procedure Using Variants of the SET Built-In 7-384
B-1 EVE Procedure That Displays a Selection Dialog Box B-2
B-2 Procedure That Creates a "Mouse Pad" B-4
B-3 EVE Procedure That Implements a Variant of the EDT

APPEND Command B-12
B-4 EVE Procedure That Returns a Select Range B-14
B-5 Procedure That Resizes Windows B-17
B-6 EVE Procedure That Unmaps Saved Windows B-20
B-7 Procedure That Maps Saved Windows B-23
B-8 EVE Procedure That Handles Callbacks from a Scroll Bar

Widget B-26
B-9 EVE Procedure That Implements the COPY SELECTION

Operation B-29
8-10 EVE Procedure That Reactivates a Select Range B-30
B-11 EVE Procedure That Implements COPY SELECTION B-32
C-1 DCL Command Procedure for SET TERM/NOWRAP C-4

FIGURES
1-1 VAXTPU as a Base for EVE 1-2
1-2 VAXTPU as a Base for User-Written Interfaces 1-5
4-1 Nomenclature of DECwindows VAXTPU Screen Objects 4-15
7-1 Screen Layout Before Using ADJUST WINDOW 7-21

7-2 Screen Layout After Using ADJUST WINDOW 7-22

xxi

Contents

TABLES
1-1 Qualifiers to the DCL Command EDIT/TPU 1-9
1-2 Journaling Behavior Established by EVE 1-12

2-1 Keywords Used for Key Names 2-6
3-1 VAXTPU Symbols 3-3
3-2 VAXTPU Operators 3-6

3-3 Operator Precedence 3-7

4-1 Correspondence Between VAXTPU Data Types and
DECwindows Argument Data Types 4-12

4-2 Special VAXTPU Variables Requiring a Value from a Layered
Application 4-29

5-1 Summary of How VAXTPU and the Application Layered on
VAXTPU Relate to the Qualifiers to EDIT/TPU 5-5

7-'1 CREATE RANGE Keyword Parameters 7-69

7-2 GET INFO Built-in Procedures by First Parameter 7-158

7-3 VAXTPU Keywords Representing Mouse Events 7-188

7-4 Detached Cursor Flag Constants 7-198

7-5 Valid Keywords for the Third Parameter When the Second
Parameter is "Bottom", "Left", "Length", "Right", "Top", or
"Width" 7-221

7-6 Message Flag Values 7-267

7-7 Message Fiag Values 7-270

7-8 MODIFY RANGE Keyword Parameters 7-273

7-9 VAXTPU Keywords Representing Mouse Events 7-35y

7-'10 Selected Built-in Actions When ERASE_UNMQDIFIABLE is
Turned Off 7-376

7-11 Message Codes for $PUTMSG System Service 7-427

7-12 Message Flag Values 7-427

C-1 Terminal Behavior That Affects VAXTPU's Performance C-1
D-y VAXTPU Messages and Their Severity Levels D-1
E-1 DEC Multinational Character Set E-1
F-1 VAXTPU Support of File Attributes F-1

Preface

Intended Audience
This manual is intended for experienced programmers who know at least
one computer language. Some features of VAXTPU, for example, the
callable interface and the built-in procedure FILE_PARSE, are intended
for system programmers who have a good understanding of VMS system
concepts. Relevant documents about the VMS operating system are listed
under Associated Documents.

Document Structure
This manual consists of six expository chapters, a reference section, and
seven appendixes. The six chapters discuss the following topics:

• Chapter 1 contains an overview of VAXTPU.

• Chapter 2 provides detailed information on VAXTPU data types.

• Chapter 3 discusses the lexical elements of VAXTPU. These include
the character set, identifiers, variables, constants, and reserved words,
such as VAXTPU language statements.

• Chapter 4 describes VAXTPU program development.

• Chapter 5 describes how to invoke VAXTPU.

• Chapter 6 discusses the VAXTPU screen manager and screen
management issues.

The VAXTPU Reference Section (Chapter 7) provides detailed descriptions
of the VAXTPU built-in procedures.

The seven appendixes are organized as follows:

• Appendix A contains sample procedures written in VAXTPU.

• Appendix B contains sample procedures written in DECwindows
VAXTPU.

• Appendix C describes terminals supported by VAXTPU.

• Appendix D lists each VAXTPU message, its abbreviation, and its
severity level.

• Appendix E contains the DEC Multinational Character Set.

• Appendix F lists the file types that VAXTPU supports.

• Appendix G discusses EVE$BUILD, a tool that enables you to layer
applications onto EVE or build new VAXTPU applications.

Preface

Associated Documents
To learn how to use the Extensible VAX Editor (EVE), see the Guide to
VMS Text Processing. For reference information on EVE commands, see
VMS EVE Reference Manual.

The VMS Utility Routines Manual contains a chapter presenting the
VAXTPU callable interface.

The VMS System Messages and Recovery Procedures Reference Manual
contains the VAXTPU messages, as well as an explanation and suggested
user action for each message. The messages are listed alphabetically by
the abbreviation for the message text.

The Overview of VMS Documentation briefly describes all VMS system
documentation, defining the intended audience for each manual and
providing a synopsis of each manual's contents.

The VMS DCL Dictionary describes the VMS DCL commands that help
you create, copy, and print files containing VAXTPU programs.

The VMS System Services Volume describes system services.

The Introduction to VMS System Routines and VMS Utility Routines
Manual describe utility routines.

The VMS Run-Time Library Routines Volume describes routines of the
run-time library.

The VMS Record Management Services Manual describes VMS R,MS
services.

Conventions
The following conventions are used in this document:

mouse

MB1, MB2, MB3

Return

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

In examples, a key name (usually abbreviated) shown
within a box indicates that you press a key on the
keyboard; in text, a key name is not enclosed in a
box. In this example, the key is the Return key. (Note
that the Return key is not usually shown in syntax
statements or in all examples; however, assume
that you must press the Return key after entering a
command or responding to a prompt.)

xxiv

Preface

CTRUC

red ink

{}

Q~

Q, . . . D

A key combination, shown in uppercase with a slash
separating two key names, indicates that you hold
down the first key while you press the second key.
For example, the key combination CTRUC indicates
that you hold down the key labeled CTRL while
you press the key labeled C. In examples, a key
combination is enclosed in a box.

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on. For online versions, user input is shown in
bold.

In examples, a vertical series of periods, or ellipsis,
means either that not all the data that the system
would display in response to a command is shown or
that not all the data a user would enter is shown.

Braces enclose a mandatory portion of the format of
a built-in procedure or lexical element. When braces
enclose a stacked list of items, you must choose one

of the items. For example: string
range

Double brackets in examples show an optional portion
of the format of a built-in procedure or lexical element.
When double brackets enclose an item or series of
items, you can select one of the items. For example:

string
range

Double brackets enclosing a comma and horizontal
ellipsis mean that you can repeat the preceding item
one or more times, separating two or more items with
commas. For example:

parameter [[, . . .]]

[] Delimits a case label. Single brackets do not indicate
optional parameters in this manual.

quotation marks The term quotation marks is used to refer to double
apostrophes quotation marks ("). The term apostrophe (') is used

to refer to a single quotation mark.

UPPERCASE letters Uppercase letters and special symbols in syntax
and special symbols descriptions and sample procedures indicate VAXTPU

reserved words and predeclared identifiers, and other
user input that must be typed exactly as shown. For
example:

PROCEDURE

UNDERLINE

String constants are shown in lowercase to emphasize
that they are strings. However, they, too, must be
typed exactly as shown.

xxv

Preface

lowercase letters Lowercase letters in syntax descriptions and sample
procedures represent elements that you must replace
according to the description in the text. For example,
when a data type, such as buffer, is used in a syntax
example, replace it with the variable name assigned
to the data item when it was created. In the following
assignment statement, my_buffer variable is the
variable name assigned to the buffer you are creating:

my buffer variable :_

CREATE_BUFFER ('my buf_name', 'my_file_name')

To specify a buffer as a parameter for a VAXTPU
built-in procedure, use the variable for the buffer. For
example, to erase the contents of the buffer created
in the preceding statement, enter the following:

ERASE (my buffer variable)

user Many of the sample procedures in this manual have
the prefix user as a part of the procedure name.
Digital suggests that you replace the prefix user with
your initials. This or some other convention helps
to ensure that the variables and procedure names
that you create do not conflict with either VAXTPU
built-in procedure names, or the procedure names
and variables of your editing interface.

filespec Mnemonic for file specification.

xxvi

VAXTPU Tutorial Section

1 Overview of the VAX Text Processing Utility

This chapter presents an overview of the VAX Text Processing Utility
(VAXTPU). In particular, this chapter addresses the following questions:

• What is VAXTPU?

• What is DECwindows VAXTPU?

• What is EVE?

• What is the VAXTPU language?

• What hardware does VAXTPU support?

• How do I start using VAXTPU?

• How do I learn more about VAXTPU?

1.1 What Is VAXTPU?
VAXTPU is ahigh-performance, programmable, text processing utility.
It is designed as a tool to aid application and system programmers in
developing tools that manipulate text. Programmers, for example, can
use VAXTPU to design an editor for a specific environment. The utility
includes ahigh-level procedural language, a compiler, an interpreter, and
an editing interface written in VAXTPU.

VAXTPU provides the following special features:

• Multiple buffers

• Multiple windows

• Multiple subprocesses

• Keystroke and buffer change j ournaling

• Text processing in batch mode

• Insert or overstrike text entry

• Free or bound cursor motion

• Learn sequences

• Pattern matching

• Key definition

• Procedural language

• Callable interface

The editor or other application that you layer on top of VAXTPU
becomes the interface between you and VAXTPU. You must either use
the Extensible VAX Editor (EVE) or create your own interface to access
VAXTPU.

1-1

Overview of the VAX Text Processing Utility
1.1 What Is VAXTPU?

You can think of VAXTPU as a base on which to layer text processing
applications. The Extensible VAX Editor (EVE) is a good example of an
application written in VAXTPU and layered on VAXTPU. See Figure 1-1.

Figure 1-1 VAXTPU as a Base for EVE

EVE
Editor

V A X T P U

ZK-6545-G E

1.2 What Is DECwindows VAXTPU?
VAXTPU can display text in two environments: a character cell terminal,
such as a VT320, or abit-mapped workstation running the DECwindowa
windowing software.

DECwindows VAXTPU provides additional built-in procedures to interact
with the DECwindows environment, including the ability to create and
manipulate widgets, global selection, input focus, and the clipboard. For
information about how to invoke the DECwindows version of VAXTPU, see
Chapter 5. If you try to use the DECwindows features of VAXTPU on a
character-cell terminal, VAXTPU returns an error.

Note that the windows referred to as DECwindows are not the same as
VAXTPU windows. For more information about the difference between
DECwindows windows and VAXTPU windows, see Chapter 4.

1.2.1 DECwindows VAXTPU and DECwindows Features
The DECwindows environment has a number of toolkits and libraries
containing routines for creating and manipulating DECwindows interfaces.
For example, DECwindows routines allow you to create .and manipulate
clipboard entries, global selections and widgets. For an overview of the
DECwindows libraries and toolkits, see the VMS DECwindows Guide to
Application Programming.

DECwindows VAXTPU contains a number of built-in procedures that
provide access to the routines in the DECwindows libraries and toolkits.

Using these DECwindows VAXTPU built-in procedures, you can create
and manipulate various features of a DECwindows interface from within
a VAXTPU program. For a list of the kinds of widgets you can create and
manipulate using VAXTPU built-in procedures, see Chapter 4. In most
cases, you use VAXTPU DECwindows built-in procedures without needing
to know what DECwindows routine a given built-in procedure calls.

~-2

Overview of the VAX Text Processing Utility
1.2 What Is DECwindows VAXTPU?

You cannot directly call DECwindows routines (such as XUI Toolkit or Xlib
Toolkit routines) from within a program written in the VAXTPU language.
To use a DECwindows routine in a VAXTPU program, you can use one or
more of the following techniques:

• Use a VAXTPU built-in procedure that calls a DECwindows routine.
Examples of such VAXTPU built-in procedures include the following:

CREATE WIDGET

DELETE (WIDGET)

MANAGE WIDGET

REALIZE WIDGET

SEND CLIENT MESSAGE

SET (CLIENT_MESSAGE)

SET (DRM_HIERARCHY)

SET (ICON_NAME)

SET (ICON_P~X:MAP)

SET (ICONIFY PIXIVIAP)

SET (MAPPED_WHEN_MANAGED)

SET (WIDGET)

SET (WIDGET CALL_DATA)

SET (WIDGET CALLBACK)

MANAGE WIDGET

For more information about how to use the DECwindows built-ins
in VAXTPU, see the individual built-in descriptions in the VAXTPU
Reference Section. For more information about the types of widget
resource values supported by VAXTPU, see Chapter 4.

• Using a compiled language that follows the VMS calling standard,
write a function calling the desired XUI Toolkit routine. You can then
use the built-in procedure CALL_USER in your VAXTPU program to
invoke the program written in the non-VAXTPU language. For more
information about using the built-in procedure CALL_USER, see the
VAXTPU Reference Section.

Using a compiled language that follows the VMS calling standard,
write a program calling the desired ~:UI Toolkit routine. You can
then invoke VAXTPU from the program using the VAXTPU callable
interface. For more information about using the VAXTPU callable
interface, see the VMS Utility Routines Manual.

The DECwindows version of VAXTPU does not provide access to all of
the features of DECwindows. For example, there are no VAXTPU built-in
procedures to handle floating-point numbers or to manipulate entities such
as lines, curves, and fonts.

Overview of the VAX Text Processing Utility
1.2 What Is DECwindows VAXTPU?

However, the DECwindows version of VAXTPU allows you to create a
wide variety of widgets, to designate callback routines for those widgets,
to fetch and set geometry and text-related resources of the widgets, and
to perform other functions related to creating a DECwindows application.
For example, the DECwindows EVE editor is a text processing interface
created with DECwindows VAXTPU.

1.2.2 DECwindows VAXTPU and the DECwindows User Interface Language
You can use VAXTPU programs with DECwindows User Interface
Language (UIL) files just as you would use programs in any other
language with UIL files. For an example of a VAXTPU program and a
UIL file designed to be used together, see the description of the CREATE_
WIDGET built-in in the VAXTPU Reference Section. For more information
about using UIL files in conjunction with programs written in other
languages, see the VMS DECwindows Guide to Application Programming.

1.3 What Is EVE?
The Extensible VAX Editor (EVE) is the editor provided with VAXTPU.
EVE is easy to learn and to use. Many of EVE's editing functions are
accessed by pressing a single key on the EVE keypad. EVE is also a
powerful and efficient editor, which makes it attractive to experienced
users of text editors. The more advanced editing functions are accessible
by entering commands on the EVE command line. Many of the special
features of VAXTPU (such as multiple windows) are available with
EVE commands. Other VAXTPU features can be accessed by entering
VAXTPU statements from within EVE. EVE has both acharacter-cell and
a DECwindows interface. To use EVE's DECwindows interface, you must
be using abit-mapped terminal or workstation.

EVE is a fully functional editor. However, it is designed to make
customization easy. You can use either VAXTPU statements or EVE
commands to tailor EVE to your editing style.

You can write extensions for EVE or you can write a completely separate
interface for VAXTPU. See Figure 1-2.

1-4

Overview of the VAX Text Processing Utility
1.3 What Is EVE?

Figure 1-2 VAXTPU as a Base for User-Written Interfaces

User-Written
Extensions

to EVE

User-Written
Application

EVE
Editor

V A X T P U

ZK-6544-G E

Extensions to EVE can be implemented with a VAXTPU command file
(VAXTPU source code), with a VAXTPU section file (compiled VAXTPU
code in binary form), or with an initialization file (commands in a format
processed by the application layered on VAXTPU). Because a VAXTPU
section file is already compiled, startup time for your editor or application
is shorter using a section file than using a command file or an initialization
file. For more information on using startup files, see Section 1.6.2.

To implement an editor or application that is entirely user written, use
a section file. See Chapter 4 for information on VAXTPU command files,
section files, and initialization files. See Appendix G for information on
layering applications on VAXTPU.

For tutorial information on EVE, see the Guide to VMS Text Processing.
For reference information on EVE commands, see the VMS EVE Reference
Manual.

1.4 The VAXTPU Language
VAXTPU is ahigh-level, procedural programming language that allows
you to perform text processing tasks. The VAXTPU language can be
viewed as the most basic component of VAXTPU. To access the features
of VAXTPU, write a program in the VAXTPU language and then use the
utility to compile and execute the program. A program written in VAXTPU
can be as simple as a single statement, or as complex as the section file
that implements EVE.

The VAXTPU language is block structured and is easy to learn and
use. VAXTPU language features include a large number of data types,
relational operators, error interception, looping and case statements,
and built-in procedures that simplify development or extension of an
editor or application. Comments are indicated with a single comment
character (!), so that you can document your procedures easily. There are

Overview of the VAX Text Processing Utility
1.4 The VAXTPU Language

also capabilities for debugging procedures with user-written debugging
programs.

1.4.1 VAXTPU Data Types
The VAXTPU language has an extensive set of data types. Data types are
used to interpret the meaning of the contents of a variable. Unlike many
languages, the VAXTPU language has no declarative statement to enforce
which data type must be assigned to a variable. A variable in VAXTPU
assumes a data type when it is used in an assignment statement. For
example, the following statement assigns a string data type to the variable
this var:

this_var :_ 'This can be a string of your choice.';

The following statement assigns a window data type to the variable x. The
window occupies 15 lines on the screen, starting at line 1, and the status
line is off (not displayed).

x : = CREATE GJINDOW (1, 15 , OFF) ;

Many of the VAXTPU data types (for example, learn and pattern) are
different from the data types usually found in programming languages.
Following is a list of VAXTPU keywords used to specify data types:

• ARRAY A structure for a collection of elements.

• BUFFER A collection of text records. You can think of a buffer as
an area in which to perform editing operations.

• INTEGER An integer. The range of valid integer values in VAXTPU
is —2,147,483,648 to 2,147,483,647.

• KEYWORD A reserved word that has special meaning to the
VAXTPU compiler.

• LEARN A sequence of VAXTPU keystrokes.

• MARKER A character position within a buffer. You can think of a
marker as a placemark in a buffer.

• PATTERN One or more sequences of characters. The pattern
operators and the pattern built-in procedures return this data type as
a result. Patterns are used with the built-in procedure SEARCH to
locate specific text within a buffer.

• PROCESS A VMS subprocess.

• PROGRAM The compiled form of a sequence of VAXTPU executable
statements.

• 1~'ANGE All of the text that occurs between and including two
markers.

• STRING A character string.

• UNSPECIFIED The initial state of a global variable after the code
containing the variable declaration has been compiled.

• WINDOW A subdivision of the screen. You can think of a window
as an area in which to view a portion of the text in a buffer.

1-6

Overview of the VAX Text Processing Utility
1.4 The VAXTPU Language

• WIDGET A widget is a structure used as an interaction mechanism
by which users give input to an application or receive messages from
an application.

See Chapter 2 of this manual for a discussion of VAXTPU data types.

1.4.2 VAXTPU Language Declarations
VAXTPU language declarations include the following:

• Module declaration (MODULE/IDENT/ENDMODULE)

• Procedure declaration (PROCEDURE/ENDPROCEDURE)

• Constant declaration (CONSTANT)

• Global variable declaration (VARIABLE)

• Local variable declaration (LOCAL)

See Chapter 3 of this manual for a discussion of VAXTPU language
declarations.

1.4.3 VAXTPU Language Statements
VAXTPU language statements include the following:

• Assignment statement (:_)

• Repetitive statement (LOOP/EXITIF/ENDLOOP)

• Conditional statement (IF/THEN/ELSElENDIF)

• Case statement (CASE/ENDCASE)

• Error statement (ON_ERRORIENDON_ERROR)

See Chapter 3 of this manual for a discussion of VAXTPU language
statements.

1.4.4 VAXTPU Built-In Procedures
The VAXTPU language has many built-in procedures that perform
functions such as screen management, key definition, text manipulation,
and program execution.

You can use built-in procedures to create your own procedures. You
can also invoke built-in procedures from within EVE. See the VAXTPU
Reference Section for a description of each of the VAXTPU built-in
procedures.

Overview of the VAX Text Processing Utility
1.4 The VAXTPU Language

1.4.5 User-Written Procedures
You can write your own procedures that combine VAXTPU language
statements and calls to VAXTPU built-in procedures. VAXTPU procedures
can return values and can be recursive. After you write a procedure and
compile it, you use the procedure name to invoke it.

When writing a procedure, follow these guidelines:

• Start each procedure with the word PROCEDURE, followed by the
procedure name of your choice.

• End each procedure with the word ENDPROCEDUR.E.

• Place a semicolon after each statement or built-in call if the statement
or call is followed by another statement or call.

Note that if the statement or call is not followed by another statement
or call, the semicolon is not necessary.

Example 1-1 is a sample procedure that uses VAXTPU language
statements (PROCEDURE/ENDPROCEDURE) and built-in procedures
(POSITION, BEGINNING OF, and CURRENT_BUFFER) to move the
current character position to the beginning of the current buffer. The
procedure displays a message with the MESSAGE built-in and obtains the
name of the current buffer with the GET INFO built-in.

Example 1-1 Sample User-Written Procedure

! This procedure moves the editing
! position to the top of the buffer

PROCEDURE user_top

POSITION (BEGINNING OF (CURRENT BUFFERj);

MESSAGE ("Now in buffer" + GET INFO (CURRENT BUFFER, "name"));

ENDPROCEDURE;

Once you have compiled this procedure, you can invoke it with the name
user_top. For information about writing procedures, see Chapter 3 and
Chapter 4.

1.5 Terminals Supported by VAXTPU
VAXTPU runs on all VAX computers, and supports screen-oriented editing
on the Digital VT300-, VT200-, and VT100-series terminals, as well as on
other video display terminals that respond to the ANSI control functions.

One of the major goals in the design of VAXTPU is fast performance for
screen-oriented editing. Optimum screen-oriented editing performance
occurs when you run VAXTPU from VT300-series, VT220-series, and
VT100-series terminals. Some video terminal hardware does not allow
optimum VAXTPU performance. See Appendix C for a list of hardware
characteristics that may adversely affect VAXTPU's performance.

1-8

Overview of the VAX Text Processing Utility
1.5 Terminals Supported by VAXTPU

Although you cannot use the screen-oriented features of VAXTPU on a
VT52 terminal, on hardcopy terminals, or on foreign terminals that do
not respond to ANSI control functions, you can run VAXTPU on these
terminals with a line mode style of editing. For information on how to
implement this style of editing, see the description of the /NODISPLAY
qualifier in Chapter 5 and the sample line mode editor in Appendix A.

1.6 Invoking VAXTPU
To invoke VAXTPU from DCL, type the command EDIT/TPU, optionally
followed by the name of your file. For example:

$ EDIT/TPU text file.lis

This command opens TEXT_FILE.LIS for editing. Note that you can
specify only one input ffie on the command line. You can include additional
files from within VAXTPU later in your editing session with the built-in
procedure READ_FILE or the EVE command GET FILE.

Digital suggests that you create a symbol like the following one to simplify
invoking EVE:

$ EVE __ "EDIT/TPU"

When you invoke VAXTPU with the preceding command, you are normally
placed in EVE, the default editor. However, your system manager may
have overridden this default.

1.6.1 Using EDIT/TPU Command Qualifiers
You can use qualifiers with the EDIT/TPU command. The qualifiers
control such items as recovery from an interrupted session and the
initialization files that set attributes of the application layered on
VAXTPU. Qualifiers for the EDIT/TPU command are listed in Table 1-1.

Table 1-1 Qualifiers to the DCL Command EDIT/TPU

Qualifier Default

/[NO]COMMAN D[=command-file]

/[NOJCREATE

/[NO]DEBUG[=debug-file]

/[NO]DISPLAY[= ~ CHARACTER_CELL l~
DECWINDOWS I

/[NO]IN ITIALIZATION[=init-file]

/[NO]INTERFACE[= ~ CHARACTER_CELL l~
DECWINDOWS I

/jN0]JOURNALj journal-file]

/[NO]MODIFY

/COMMAND=TPU$COMMAN D.TPU

/CREATE

/NODEBUG

/DISPLAY=CHARACTER CELL

/INITIALIZATION=EVE$INIT.EVE

/INTERFACE=CHARACTER
CELL

/JOURNAL

/MODIFY

(continued on next page)

Overview of the VAX Text Processing Utility
1.6 Invoking VAXTPU

Table 1-1 (Cont.) Qualifiers to the DCL Command EDIT/TPU

Qualifier Default

/[NO]OUTPUT[=output-file] /OUTPUT=input-file

/[NO]READ ONLY /NOREAD ONLY

/[NO]RECOVER /NORECOVER

/[NO]SECTION[=section-file] /SECTION

/START POSITION=(row[,column]) /START POSITION=(1,1 }

/WORK[=work-file] /WORK=TPU$WORK.TPU$WORK

/[NO]WRITE /WRITE

For descriptions of the EDIT/TPU command qualifiers, see Chapter 5.

1.6.2 Using Startup Files
Command files and section files can create or customize a VAXTPU editor
or application. Another kind of file, the initialization file, can customize
EVE or other layered applications, using EVE or other application-specific
commands, settings, and key bindings.

A command file is a file containing VAXTPU source code. A command
file has the file type TPU. It is used with the VAXTPU qualifier
/COMMAND=filespec. VAXTPU tries to read a command file unless
you specify /NOCOMMAND. The default command file is the file called
TPU$COMMAND.TPU in your current directory, if such a file exists. You
can specify a different file by defining the logical name TPU$COMMAND.

A section file is the compiled form of VAXTPU source code. It is a
binary file that has the default file type TPU$SECTION. It is used
with the qualifier /SECTION=filespec. The default section file is
TPU$SECTION.TPU$SECTION in the area SYS$SHAR.E. VMS is
shipped with the systemwide logical name TPU$SECTION defined as
EVE$SECTION. This definition causes the EVE editor to be invoked by
default when you use the DCL command EDIT/TPU. You must specify
a different section file (for example, /SECTION= my_section_file) or
/NOSECTION if you do not want to use the EVE interface.

Note: When you invoke VAXTPU with the /NOSECTION qualifier,
VAXTPU does not use any binary ffie to provide an interface.
Even the RETURN and DELETE keys are not defined. Use
/NOSECTION when you are running a standalone command file
or when you are creating a new section file and do not want the
procedures, variables, and definitions fi~om an existing section file
to be included. See Chapter 4 and Chapter 5 for more information
on /NOSECTION.

An initialization file contains commands for aVAXTPU-based application.
For example, an initialization file for EVE can contain commands defining
keys or setting margins. Initialization files are extremely easy to create,
but they cause VAXTPU to start up somewhat more slowly than section
and command files do. To invoke an initialization file, use the qualifier

1-10

Overview of the VAX Text Processing Utility
1.6 Invoking VAXTPU

/INITIALIZATION. For more information on using initialization files, see
the Guide to VMS Text Processing and Chapter 4.

You can use either a command file or a section file, or both, to customize or
extend an existing interface. A command file is generally used for minor
customization of an interface. Because startup time is faster with a section
file, a section file is generally used when the customization is lengthy or
complex, or when you are creating an interface that is not layered on an
existing editor or application. You can use an initialization file only if your
application supports the use of such a file.

The source files for EVE are i.n SYS$E~;AMPLES. To see a list of the EVE
source files, type the following at the DCL prompt:

$ DIRECTORY SYS$EXAMPLES:EVE$*.TPU

If you cannot find these files on your system, see your system manager.

Chapter 4 describes how to write and process command files and section
files.

1.7 Using Journal Files
VAXTPU offers two ways to recover your work in case of a system failure:

• Keystroke journaling

• Buffer change journaling

In keystroke journaling, VAXTPU keeps track of each keystroke made by
the user during a session, regardless of which buffer is in use when the
user presses the key. If a system interruption occurs during a session, the
user can use the /JOURNAL and /RECOVER qualifiers to reconstruct the
work done during the session. For more information on recovery using
a keystroke journal file, see Section 5.4.7 and the VMS EVE Reference
Manual.

Buffer change journaling creates a separate journal file for each text
buffer. The application can use the enhanced SET (JOURNALING) built-
in to direct VAXTPU to establish and maintain a separate journal file
for any buffer or buffers created during the session. The application
programmer or user can also use the SET (JOURNALING) built-in to turn
buffer change journaling off or on for a given buffer during a session.

In the buffer's journal file, VAXTPU keeps track of the following record
attributes (and any changes made to them):

• Left margin setting

• Modifiability or unmodifiability

• Display value

The journal file also tracks:

• Characters inserted in and deleted from a record (including the
location where the change took place)

Overview of the VAX Text Processing Utility
1.7 Using Journal Files

• Records inserted in and deleted from a buffer (including the location
where the change took place)

For more information on record attributes and display Values, see the
descriptions of the SET (RECORD ATTRIBUTE) and SET (DISPLAY
VALUE) built-in procedures in the VAXTPU Reference Section.

Note that buffer change journaling does not keep a record of all keystrokes
performed while editing a given buffer.

You can use both keystroke and buffer change journaling at the same
time (except on DECwindows, where you can use only buffer change
journaling). To turn on keystroke journaling, the application uses the
JOURNAL OPEN built-in.

The application layered on VAXTPU, not the VAXTPU engine, determines
what kind of journaling is turned on and under what conditions. Table 1-2
shows the journaling behavior established by EVE, which is the VAXTPU
default editor.

Table 1-2 Journaling Behavior Established by EVE

Qualifier

Effect on
Keystroke
Journaling Effect on Buffer Change Journaling

None specified Disabled Enabled

/JOURNAL Disabled Enabled

/JOURNAL =filename Enabled Enabled

/NOJOURNAL Disabled Disabled. Note, however, that you
can use SET (JOURNALING) to
enable buffer change journaling even if
/NOJOURNAL was specified.

To determine whether buffer change journaling is turned on, use a
statement similar to the following:

status : = GET_INFO (buf fer_name, "journaling") ;

To determine the name of the keystroke journal file, use a statement
similar to the following:

filename := GET_INFO (SYSTEM, "journal file");

Caution: Journal files contain a record of all information being edited.
Therefore, when editing files containing secure or confidential
data, be sure to keep the journal files secure as well.

1.7.1 Buffer Change Journal File Naming Algorithm
By default, VAXTPU creates the buffer change journal file name by using
the following algorithm:

1 Convert all characters in the buffer name that are not alphanumeric,
dollar sign, underscore, or hyphen to underscores.

1-12

Overview of the VAX Text Processing Utility
1.7 Using Journal Files

2 ~uncate the resulting file name to 39 characters.

3 Add the file type .TPU$JOURNAL.

For example, a buffer named TEST.BAR has a default journal file name of
TEST BAR.TPU$JOURNAL.

VAXTPU puts all journal files in the directory defined by the logical name
TPU$JOURNAL. By default, this logical is defined as SYS$SCRATCH.
You can reassign this logical name. For example, if you want journal files
written to the current default directory, define TPU$JOURNAL as [].

1.8 Learning More About VAXTPU
This manual is a reference volume for experienced programmers who want
to program in VAXTPU. The manual assumes that you are familiar with
programming concepts and VMS system concepts. Even though VAXTPU
is a language that is easy to read and learn, you must study the language
to use it successfully.

The suggested path for learning to use VAXTPU is to read the
documentation describing EVE first if you are not familiar with that
editor. The chapter describing the EVE interface in the Guide to VMS 2~xt
Processing contains tutorial material for new EVE users. It also contains
material for more experienced users of text editors and explains how to
use VAXTPU to emend the EVE interface.

When you are fam' ' ar with EVE, you may want to extend or customize
it. Study the source code to see which procedures, variables, and key
definitions the editor uses. Then write VAXTPU procedures to implement
your extensions. Make sure that the VAXTPU procedures you write to
customize or extend the editor do not conflict with procedures or variables
that EVE uses.

When you have successfully compiled and executed the VAXTPU
procedures shown in the Guide to VMS Text Processing, use this manual
to learn more about the VAXTPU language. In this manual, Chapter 2,
on VAXTFU data types; Chapter 3, on lexical elements of the VAXTPU
language; and the VAXTPU Reference Section, on VAXTPU built-in
procedures, describe the elements of the VAXTPU language. Chapter 5
tells you how to invoke VAXTPU with the procedures and programs you
have developed.

To help you learn about the VAXTPU language, this manual contains many
examples of VAXTPU procedures and programs. Every built-in procedure
in the VAXTPU Reference Section has an example that is a simple,
one-line VAXTPU statement using the built-in procedure. Many of the
descriptions of the built-in procedures in the VAXTPU Reference Section
also have a short sample procedure that uses the built-in procedure in an
appropriate context. Appendix A contains longer sample procedures that
perform useful editing tasks. These procedures are merely samples; adapt
them for your own use. You must substitute an appropriate value for any
item in lowercase in sample procedures and syntax examples.

Overview of the VAX Text Processing Utility
1.8 Learning More About VAXTPU

Some system programmers may not want to follow the suggested path of
learning about VAXTPU by studying and extending EVE. If you want to
design your own VAXTPU-based editor or application rather than using
EVE, see Chapter 4.

2 VAXTPU Data Types

A data type is a group of elements that "belong together;" the elements
are all formed in the same way and are treated uniformly. The data type
of a variable determines the operations that can be performed on it. The
VAXTPU data types are represented by the following keywords:

• ARRAY

• BUFFER

• INTEGER

• KEYWORD

• LEARN

• MARKER

• PATTERN

• PROCESS

• PROGRAM

• RANGE

• STRING

• UNSPECIFIED

• WIDGET

• WINDOW

Data types are used to interpret the contents of a variable. Unlike many
programming languages, VAXTPU permits any variable to have any type
of data as a value. VAXTPU has no declaration statement to restrict the
type of data that can be assigned to a variable. VAXTPU variables take on
a data type when they are placed on the left-hand side of an assignment
statement. The right-hand side of the assignment statement determines
the data type of the variable.

Although you can construct variables freely, VAXTPU built-in procedures
require that their parameters be of specific data types. Each built-in
procedure can operate only on certain data types. Some built-in procedures
return a value of a certain data type when they are executed. The
following sections describe the VAXTPU data types.

VAXTPU Data Types
2.1 Array

2.1 Array
An array is a structure for storing and manipulating a group of elements.
These elements can be of any data type. You create arrays with the built-
in procedure CREATE_ARRAY. For example, the following statement
creates the array new array:

new array := CREATE ARRAY;

You can delete arrays with the built-in procedure DELETE.

When you create an array, you can optionally direct VAXTPU to allocate
a specified number of integer-indexed array elements. VAXTPU processes
this block of preallocated elements very quickly. You can direct VAXTPU
to create such a block of elements only at the time you create the array.
The following statement creates the array int array, directs VAXTPU to
allocate 10 sequential, integer-indexed elements to the array, and specifies
that the lowest index value should be 1:

int_array : = CREATE ARRAY (10, 1) ;

Regardless of whether you specify a preallocated block of elements, you
can always add array elements dynamically. Dynamically added elements
can be of any data type except learn, pattern, program, or unspecified. You
can mix the data types of indexes in an array.

In the following code fragment, the array mix array is created and the
integer 1 is stored in the array element indexed by the marker markl.

mix array := CREATE ARRAY;

markl := MARK (NONE);

mix_array {markl} := l;
mix array {"Kansas"} :_ "Toto";

You can index dynamic elements with integers, even if this means that
the array ends up with more integer-indexed elements than you specified
when you created the array. Note, however, that VAXTPU does not process
dynamically added integer-indexed elements as quickly as it processes
preallocated elements.

To refer to an array element, use the name of an existing array variable
followed by the array index enclosed in braces { } or parentheses (). For
example, if you had created an array and stored it in the variable my_
array, the following would be valid element names:

my_array{2}

my_array ("fred")

To create an element dynamically for an existing array, simply use the
new element as the target of an assignment statement. For example, the
following statement creates the element "stringl " in the array my array
and assigns to the element the string "Topeka"

my_array{"stringl"} :_ "Topeka";

In the following example, the first statement creates an integer-indexed
array, int array. The array has 10 elements; the first element starts at
index 1. The second statement stores a string in the first integer-indexed
element of the array. The third statement stores a buffer in the eighth

2-2

VAXTPU Data Types
2.1 Array

element of the array. The fourth statement adds an integer-indexed
element dynamically. This new element contains a string.

int_array : = CREATE ARRAY (10, 1) ;
int_array { 1 } :_ "Store a string in the first element";
int_array {8} := CURRENT BUFFER;
int_array {42} :_ "This is a dynamically created element.";

If you assign a value to an element that has not yet been created, then
that element is dynamically created and both the index and the value are
stored. Subsequent references to that element index return the stored
value.

In most cases, if you reference an element that has not yet been created
and you do not assign a value to the nonexistent element, VAXTPU
does not create the element. VAXTPU simply returns the data type
unspecified. However, if you reference a nonexistent element by passing
the nonexistent element to a procedure, VAXTPU actually adds a new
element to the array, giving the element the index you pass to the
procedure. VAXTPU assigns to this new element the data type unspecified.

You can delete an element in the array by assigning the data type
unspecified to the element. For example, the following statement deletes
the element my array (" fred ")

my_array {"fred"} := TPU$K_UNSPECIFIED;

The following code fragment shows how you can find all the indexes in an
array:

the_index := GET_INFO (the array, "FIRST");

LOOP
EXITIF the index = TPU$K UNSPECIFIED;

the_index := GET_INFO (the_array, "NEXT");
ENDLOOP;

Note: VAXTPU does not guarantee the order in which it will return the
array indexes. Future versions of Vi4►XTPU may return the indexes
in a different order than the current version.

2.2 Buffer
A buffer is a work space for manipulating text. A buffer can be empty or
it can contain text records. You can have multiple buffers. A value of the
buffer data type is returned by the built-in procedures CREATE SUFFER,
CURRENT_BUFFER, and GET INFO. CREATE_BUFFER is the only
built-in procedure that creates a new buffer. CURRENT BUFFER and
GET_INFO return pointers to existing buffers.

The following statement makes the variable my_bu f a variable of type
buffer:

my buf := CREATE_BUFFER ("my buffer");

VAXTPU Data Types
2.2 Buffer

When you use a buffer as a parameter for VAXTPU built-in procedures,
you must use as the parameter the variable to which you assigned the
buffer. For example, if you want to erase the contents of the buffer created
in the preceding statement, enter the following:

ERASE (my_buf);

In this statement, my_buf is the identifier for the variable my_buf. The
string ~~my buffer~~ is the name associated with the buffer. The distinction
between the name of the buffer variable and the name of the buffer can be
useful when developing an application layered on VAXTPU. For example,
the application can manipulate a given buffer (such as the main buffer
in EVE) using an internal buffer name such as main_buffer. However,
the application can associate the name of the user's input file with the
buffer, making it easier for the user to remember which buffer contains
the contents of a given file.

If you want to delete the buffer itself, use the built-in procedure DELETE
with the buffer variable as the parameter.

More than one buffer variable can represent the same buffer. The
following statement causes both my_bu f and old_bu f to point to the same
buffer:

old buf := my buf;

A buffer remains in VAXTPU's internal list of buffers even when there are
no variables pointing to it. You can use the built-in procedure GET INFO
to retrieve buffers from VAXTPU's internal list.

Creating a buffer does not cause the information contained in the buffer
to become visible on the screen. The buffer must be associated with a
window that is mapped to the screen for the buffer contents to be visible.
Editing can take place in a buffer even if the buffer is not mapped to a
window on the screen.

The current buffer contains the active editing point. The editing point
can be different from the cursor position, and often each is in a different
location. When the current buffer is associated with a visible window (one
that is mapped to the screen), the editing point and the cursor position are
usually the same.

A line in a buffer can contain up to 960 characters. This limit is subject
to change in future versions. If you try to create a line that is longer
than 960 characters, VAXTPU truncates the inserted text and inserts only
the amount that fills the line to 960 characters. If you try to read a file
containing lines longer than 960 characters, VAXTPU truncates from such
lines all characters after the 960th character.

A single buffer can be associated with 0 to 255 windows for editing
purposes. It is often useful to have a buffer visible in two windows so
that you can look at two separate parts of the same file. For example, you
could display a set of declarations in one window and code that uses the
declarations in another window. Edits made to a buffer show up in all
windows to which that buffer is mapped and in which the editing point is
visible.

2-4

VAXTPU Data Types
2.3 Integer

2.3 Integer
VAXTPU uses the integer data type to represent numeric data. VAXTPU
performs only integer arithmetic. The type integer consists of the whole
number values ranging from —2,147,483,648 to 2,147,483,647. In VAXTPU,
an integer constant is a sequence of decimal digits; no commas or decimal
points are allowed.

The following example assigns a value of the integer data type to the
variable x:

x := 12345;

VAXTPU also supports binary, octal, and hexadecimal integers. Binary
integers are preceded by %b or %B, octal by %o or %O, and hexadecimal
by %x or %X. Thus, all the following statements are acceptable:

x :_ %B10000;
x : _ %020;
x :_ %X130;
x := 12345;

2A Keyword
Keywords are reserved words in VAXTPU that have special meaning to
the compiler.

To see a list of all VAXTPU keywords, use the SHOW (KEYWORDS)
built-in.

Keywords are used in the following ways:

• As parameters for VAXTPU built-in procedures (ALL, BLINK, PF2,
and so forth). The first parameter of the built-in procedure SET is
always a keyword (for instance, PAD, SCROLLING, STATUS_LINE).

• As values returned by VAXTPU built-in procedures, such as
CURRENT_DIRECTION, KEY NAME, LAST_KEY, READ_KEY,
and GET_INFO. For example, the call GET_INFO (window, ~~ status_
video ~~) has the following keywords as possible return values:

BLINK

BOLD

NONE

REVERSE

SPECIAL GRAPHICS

LfNDERLINE

• As pattern directives. The following keywords fall into this category:

ANCHOR

BUFFER BEGIN

BUFFER END

VAXTPU Data Types
2.4 Keyword

LINE BEGIN

LINE END

PAGE BREAK

REMAIN

UNANCHOR

These keywords are described in the VAXTPU Reference Section
because they behave like built-in procedures.

• To specify the VAXTPU data types (BUFFER, MARKER, LEARN, and
so forth).

• To report WARNING or ERROR status conditions
(TPU$_BADMARGINS, TPU$_CREATEFAIL, TPU$_NOEOBSTR,
and so forth).

• To pass the names of keys to VAXTPU procedures. See Table 2-1 for
information on keywords used to refer to keys.

Table 2-1 shows the correspondence between keywords used as VAXTPU
key names and the keys on the VT300, VT200, and VT100 series of
keyboards. Note that it is not necessarily advisable to define a key
or control sequence just because there is a VAXTPU keyword for the
key or sequence. Also, because they are special to the VMS terminal
driver, Digital recommends that you avoid defining the following control
characters and function key:

• CTRL/C

• CTRL/O

• CTRL/Q

• CTRL/S

• CTRL/T

• CTRL/X

• CTRL/Y

• F6

Table 2-1 Keywords Used for Key Names

VAXTPU Key Name
VT300-Series, VT200-
Series Key VT100 Key

PF1 PF1 PF1
P F2 P F2 P F2
P F3 P F3 P F3
P F4 P F4 PF4

KPO,KP1, . . . ,KP9 0, 1, . . . ,9 0, 1, . . . ,9

(continued on next page)

VAXTPU Data Types
2.4 Keyword

Table 2-1 (Copt.) Keywords Used for Key Names

VAXTPU Key Name
VT300-Series, VT200-
Series Key VT100 Key

PERIOD

COMMA

MINUS — —

ENTER ENTER ENTER

U P Up arrow Up arrow

DOWN Down arrow Down arrow

LEFT Left arrow Left arrow

RIGHT Right arrow Right arrow

E1 Find / E1

E2 Insert Here / E2

E3 Remove / E3

E4 Select / E4

E5 Prev Screen / E5

E6 Next Screen / E6

HELP Help / F15

DO Do / F16

F6, F7, . . . , F20 F6, F7, . . . , F20

NUL KEY CTRUSPACE CTRUSPACE

TAB KEY Tab Tab

RET KEY RETURN RETURN

DEL KEY 4 DELETE

LF KEY CTRUJ Line Feed

BS_KEY CTR VH Backspace

CTRL A KEY CTRVA' CTRVA'

CTRL B KEY CTRUB CTRUB

CTRL Z KEY CTRUZ CTRUZ

1 CTRVA means pressing the CTRL key simultaneously with the A key. A and a produce the
same results.

2.5 Learn
A learn sequence is a collection of VAXTPU keystrokes. The built-in
procedure LEARN_BEGIN causes VAXTPU to start collecting keystrokes
and the built-in procedure LEARN_END stops the collection of keystrokes

2-7 ~

VAXTPU Data Types
2.5 Learn

and returns a value of the learn data type as a result. The following
example assigns a learn data type to the variable x:

LEARN BEGIN (EXACT);

x := LEARN END;

All keystrokes that you enter between the built-in procedures LEARN
BEGIN and LEARN_END are stored in the variable x. The keyword
EXACT specifies that, when the learn sequence is replayed, the input (if
any) for the built-in procedures READ_CHAR, READ_KEY, and READ_
LINE (if used in the learn sequence) will be the same as the input entered
when the learn sequence was created. If you specify NO_EXACT, a replay
of a learn sequence containing keys which invoke the built-in procedures
READ_LINE, READ_KEY, or READ_CHAR looks for new input. For
information on replaying a learn sequence, see the descriptions of LEARN_
BEGIN and LEARN END in the VAXTPU Reference Section.

The execution of a learn sequence can be interrupted by the built-in
LEARN ABORT. For information on using LEARN ABORT, see the
description of LEARN_ABORT in the VAXTPU Reference Section. To
enable your user-written VAXTPU procedures to work successfully with
learn sequences, you must observe the following coding rules when you
write procedures that you or someone else can bind to a key:

• The procedure should return true and false as needed to indicate
whether execution of the procedure completed successfully.

• The procedure should invoke the LEARN_ABORT built-in in case of
error.

These practices help prevent a learn sequence from finishing if the
learn sequence calls the user-written procedure and the procedure is
not executed successfully.

Note that a procedure that does not explicitly return a value returns 0 by
default, thus aborting a learn sequence.

Note: Learn sequences do not include mouse input or characters
inserted in a widget.

2.6 Marker
A marker is a reference point in a buffer. You can think of a marker as a
"place mark." To create a marker, use the 1~IIARK built-in.

The following example assigns a value of the marker data type to the
variable x:

x : = MARK (NONE) ;

After this statement is executed, the variable x contains the character
position where the editing point was located when the statement was
executed. The editing point is the point in a buffer at which most editing
operations are carried out. For more information on the editing point, see
Chapter 6.

2-8

VAXTPU Data Types
2.6 Marker

You can cause a marker to be displayed with varying video attributes
(BLINK, BOLD, REVERSE, UNDERLINE). The keyword NONE in the
preceding example specifies that the marker does not have any video
attributes.

When you use the 1~IIARK built-in, VAXTPU puts the marker on the
buffer's editing point. The editing point is not necessarily the same as
the window's cursor position. See Chapter 6 for more information on the
difference between the buffer's editing point and the window's cursor
position.

A marker can be either bound or free. Free markers are useful for
establishing place marks in locations that do not contain characters, such
as locations before the beginning of a line, after the end of a line, in the
white space created by a tab, or below the end of a buffer. By placing
a free marker in such a location, you make it possible to establish the
editing point at that location without inserting padding space characters
that could complicate later operations such as FILL.

A marker is bound if there is a character in the position marked by the
editing point at the time you create the marker. Abound marker is tied
to the character on which it is created. If you move the character to which
a marker is bound, the marker moves with the character. If you delete
the character to which a marker is bound, VAXTPU binds the marker to
the nearest character or to the end of the line if that is closer than any
character.

To force the creation of a bound marker, use the 11IIARK built-in with
any of its parameters except FREE_CURSOR. This operation creates a
bound marker even if the editing point is beyond the end of a line., before
the beginning of a line, in the middle of a tab, or beyond the end of a
buffer. To create a bound marker in a location where there is no character,
VAXTPU fills the space between the marker and the nearest character
with padding space characters.

A marker is usually free if all of the following conditions are true:

• You used 1NIARK (FREE_CURSOR) to create the marker.

• There was no character in the position marked by the editing point at
the time you created the marker.

• Nothing has happened to cause the marker to become bound.

The following paragraphs explain each of these conditions in more detail.

If you use the built-in 1NIARK (FREE_CURSOR) and there is a character in
the position marked by the editing point, the marker is bound even though
you specify otherwise. Once a marker becomes bound, it remains bound
throughout its existence. To determine whether a marker is bound, use
the following GET INFO call:

GET INFO (marker variable, "bound");

VAXTPU keeps track of the location of a free marker by measuring the
distance between the marker and the character nearest to the marker.
If you move the character from which VAXTPU measures distance to
a free marker, the marker moves too. VAXTPU preserves a uniform

2-9

VAXTPU Data Types
2.6 Marker

distance between the character and the marker. If you collapse white
space containing one or more free markers (for example, if you delete a tab
or use the APPEND_LINE built-in), VAXTPU preserves the markers and
binds them to the nearest character.

If you use the POSITION built-in to establish the editing point at a free
marker, the marker remains free and the editing point is also said to
be free; that is, the editing point is not bound to a character. For more
information on characteristics of the editing point, see Section 6.3. Some
operations cause VAXTPU to fill the space between a free marker and the
nearest character with padding space characters, thereby converting the
free marker to a bound marker. For example, if you type text into the
buffer when the editing point is detached, VAXTPU inserts padding space
characters between the nearest character and the editing point. Using any
of the following built-in procedures when the editing point is detached also
causes VAXTPU to perform padding:

• APPEND LINE

• COPY TEXT

• CURRENT C~][ARACTER

• CURRENT LINE

• CURRENT OFFSET

• ER,ASE CHARACTER

• ERASE LINE

• MOVE HORIZONTAL

• MOVE VERTICAL

• MOVE TEXT

• SELECT

• SELECT I~;ANGE

• SPLIT LINE

Example 2-1 shows how to suppress padding while using these built-
ins. The example assumes that the editing point is free. The code in
this example assigns the string representation of the current line to the
variable bat without adding padding blanks to the buffer.

To remove a marker, use the built-in procedure DELETE with the marker
as a parameter. For example, the following statement deletes the marker
mark 1:

DELETE (markl) ;

You can also set all variables referring to the marker to refer to something
else, for example, tpu$k_unspecified or 0. The following statement sets the
variable markl to 0:

markl := 0;

VAXTPU Data Types
2.6 Marker

Example 2-1 Suppressing the Addition of Padding Blanks

x := MARK (FREE_CURSOR); Places a marker at the
detached editing point

POSITION (SEARCH QUIETLY ("",FORWARD)); !
!
!

Moves the active editing
point to the nearest
text character

bat := CURRENT_LINE; !
!
!
!

Assigns the string
representation of the
current line to bat without
adding padding blanks

POSITION (x); !
!

Returns the active editing
point to the free marker

Note that if mark 1 were the only variable referring to a marker, that
marker would be deleted upon execution of the previous statement.

The marker data type is returned by the built-in procedures MARK,
SELECT, BEGINNING OF, END_OF, and GET INFO.

2.7 Pattern
A pattern is a structure that VAXTPU uses when it searches for text in a
buffer. You can think of a pattern as a template that VAXTPU compares
to the searched text, looking for a match between the pattern and the
searched text. You can use a variable whose data type is the pattern data
type when you specify the first parameter to the SEARCH and SEARCH
QUIETLY built-ins.

To create a pattern, use VAXTPU pattern operators (+, &, I , C3) to connect
any of the following:

• String constants

• String variables

• Pattern variables

• Calls to pattern built-in procedures

• The following keywords:

ANCHOR

BUFFER BEGIN

BUFFER END

— LINE BEGIN

LINE END

— PAGE_BREAK

REMAIN

— UNANCHOR

VAXTPU Data Types
2.7 Pattern

• Parentheses (to enclose expressions)

Patterns can be simple or complex. A simple pattern can be composed of
sets of strings connected by one of the pattern operators. The following
example indicates that patl matches either the string "abc" or the string
"def" •

patl :_ "abc" ~ "def";

Note that if you connect two strings with the +operator, the result is a
string rather than a pattern. For example, the following statement gives
patl the string data type:

patl :_ "abc" + "def";

The SEARCH and SEARCH_QLTIETLY built-ins accept such a string as a
parameter.

A more complex pattern uses pattern built-in procedures and existing
patterns to form a new pattern. The following example indicates that pat2
matches the string "abc" followed by the longest string that contains any
characters from the string " 12345"

pat2 : _ "abc" + SPAN ("12345")

Pat2 matches the string "abc123" in the text string "xyzabc123def".

Following are additional examples of statements that create complex
patterns:

pat 1 : = any ("abc") ;
pat2 := line begin + remain;
pat3 :_ "abc" ~ "xes";
pat4 := patl + "12";
pats :_ "xes" @ varl;
path :_ "abc" & "123";

You can assign a pattern to a variable and then use the variable as a
parameter for the built-in procedure SEARCH or SEARCH_QUIETLY.
SEARCH or SEARCH_QUIETLY looks for the character sequences
specified by the pattern that you use as a parameter. If SEARCH or
SEARCH QUIETLY finds a match for the pattern, the built-in returns
a range containing the text that matches the pattern. The range can be
assigned to a variable.

The following example uses strings and pattern operators to create a
pattern that is stored in the variable my~at. The variable is then used
with the built-in procedure SEARCH or SEARCH QUIETLY in a forward
direction. If SEARCH or SEARCH QUIETLY finds a match for my~pat,
the range of matching text is stored in the variable match range. The
built-in procedure POSITION causes the editing point to move to the
beginning of match range.

my_pat : _ ("abc" ~ "def") + " : : ";
match range := SEARCH (my pat, FORWARD);
POSITION (match range) ;

VAXTPU Data Types
2.7 Pattern

2.7.1 Pattern Built-In Procedures
The following built-in procedures return values of the pattern data type:

• ANY —Matches one or more characters. You specify a set of
characters to be matched and an integer indicating how many of
them to match. For example, the following statement creates a pattern
that matches any two of the characters h, i, j, k, and 1.

patl := ANY ("hijkl", 2) ;

• ARB Matches an arbitrary sequence of characters. You use ARB's
parameter to specify the number of characters to be matched. For
example, the following statement creates a pattern that matches the
next five characters starting at the editing point:

patl := ARB (5);

• MATCH Looks on the current line for the sequence of characters you
specify. If VAXTPU locates the sequence in the searched text, MATCH
returns a range starting at the editing point and ending at the last
character of the sequence. For example, the following statement stores
in patl a pattern that matches a string of characters starting with the
editing point up to and including the characters abc:

pat 1 : = MATCH ("abc") ;

• NOTA►NY Matches one or mare characters; you specify how many
characters to match and which characters must not appear in the
matched characters. For example, the following statement creates a
pattern that matches the first character that is not an X, a Y, or a Z:

pat 1 : = NOTANY ("XYZ ") ;

• SCAN Matches any characters that are not specified in the
parameter. SCAN matches as many characters as possible, and must
match at least one character. Matching stops at the end of a line,
when SCAN finds one of the excluded characters, or if matching the
character would prevent the rest of the pattern from matching. For
example, the following statement stores in patl a pattern that matches
the longest string of characters that does not contain a, b, or c:

pat 1 : = SCAN ("abc") ;

Note that the keyword REVERSE modifies the behavior of SCAN in
reverse searches. For more information, see the description of the
SCAN built-in procedure in the VAXTPU Reference Section.

• SCANL Same as above, except that SCANL does not stop at the end
of a line. For example, the following statement creates a pattern that
matches a sentence. It assumes that a sentence ends with a period
(.), exclamation point (!), or question mark (?), and that a sentence
starts with a capital letter. The matched text does not include the
punctuation mark ending the sentence.

sentence_pattern := any ("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

VAXTPU Data Types
2.7 Pattern

Note that the keyword REVERSE modifies the behavior of SCANL
in reverse searches. For more information, see the description of the
SCANL built-in procedure in the VAXTPU Reference Section.

• SPAN Matches as many characters as possible, all of which must
be present in the text you pass as an argument. SPAN must match at
least one character. SPAN stops matching when it reaches the end of
a line, if it finds a character that was not specified, or if matching the
character would prevent the rest of the pattern from matching. For
example, the following statement creates a pattern that matches any
sequence of numbers:

patl : = span ("0123456789") ;

Note that the keyword REVERSE modifies the behavior of SPAN in
reverse searches. For more information, see the description of the
SPAN built-in procedure in the VAXTPU Reference Section.

• SPANL Same as above, except that SPANL does not stop at the
end of a line. For example, the following statement stores a pattern
in patl that matches the longest sequence of numbers starting at the
editing point and continuing to a nonnumeric character, or the end of
the range or buffer:

pat2 := SPANL ("0123456789");

Note that the keyword REVERSE modifies the behavior of SPANL
in reverse searches. For more information, see the description of the
SPANL built-in procedure in the VAXTPU Reference Section.

2.7.2 Keywords That Can Be Used to Build Patterns
The following keywords can be used as the first argument to the SEARCH
or SEARCH_QUIETLY built-ins. They can also be used to form patterns
in expressions using the pattern operators.

• ANCHOR —Directs SEARCH or SEARCH_QUIETLY to try to match
the next pattern element at the current search location. Normally,
when SEARCH or SEAR,CH_QUIETLY fails to find a match for a
pattern, the built-in retries the search, moving the starting position
one character forward or backward, depending upon the direction of
the search. If ANCHOR appears as the first element of a complex
pattern, the search does not move the starting position. If the pattern
does not match starting in the original position, the search fails.
For more information on using ANCHOR, see the description in the
VAXTPU Reference Section.

• BUFFER BEGIN Matches the beginning of the buffer in which the
search is executed.

• BUFFER END Matches the end of the buffer in which the search is
executed.

• LINE BEGIN Matches the beginning of a line.

• LINE_END Matches the end of a line.

• PAGE_BREAK Matches the form feed or page break character.

2-14

VAXTPU Data Types
2.7 Pattern

• REMAIN Matches the rest of the characters on the line.

• UNANCHOR Allows the next pattern element to match anywhere
at or after the current search location.

2.7.3 Pattern Operators
The following are the VAXTPU pattern operators:

• Concatenation operator (+)

• Link operator (&)

• Alternation operator (I)

• Partial pattern assignment operator (C~)

The pattern operators are equal in VA►XTPU's precedence of operators. For
more information on the precedence of VAXTPU operators, see Chapter 3.
Pattern operators associate from left to right. Thus, the following two
VAXTPU statements are identical:

pat 1 := a+ b& c I d@ e;
patl : _ (((a + b) & c) I d) @ e;

In addition to the pattern operators, two relational operators, equal (_)
and not equal (<>), can be used to compare patterns.

The following sections discuss the pattern operators.

2.7.3.1 + (Pattern Concatenation Operator)
The concatenation operator tells SEARCH or SEARCH_QUIETLY that
text matching the right pattern element must immediately follow the text
matching the left pattern element in order for the complete pattern to
match. In other words, the concatenation operator specifies a search in
which the right pattern element is anchored to the left. For example, the
following pattern matches only if there is a line in the searched text that
ends with the string abc.

patl :_ "abc" + line end;

If SEARCH or SEARCH QUIETLY finds such a line, the built-in returns a
range containing the text abc and the end of the line.

Digital recommends that you use the concatenation operator rather than
the link operator unless you specifically require the link operator.

2.7.3.2 & (Pattern Linking Operator)
The link operator (&) is very similar to the concatenation operator (+).
Unlike the concatenation operator, the link operator does not necessarily
cause an anchored search. If you define a pattern by spec' g any
pattern element, an ampersand (&), and a pattern or keyword variable, a
search for each subpattern is not an anchored search.

If you link elements other than pattern variables, the search is an
anchored search unless you specify otherwise. Strings, constants, and
the results of built-in procedures are not pattern variables.

VAXTPU Data Types
2.7 Pattern

For example, suppose two subpattern variables are defined as follows:

pl :_ "a" & ANY("012345678");

Suppose you then define the following pattern variable:

pat_var := pl & p2

Given this sequence of definitions, a search for pat_var succeeds if
VAXTPU encounters the following string:

a5xcd

Because two pattern variables are linked, VAXTPU searches first for the
text that matches p 1, then unanchors the search, and then searches for
the text that matches p2.

To specify an anchored search when the right-hand subpattern is a pattern
or keyword variable, use a plus sign (+). You must use a plus sign (+)
to anchor the search if the right-hand subpattern is a keyword variable.
If the right-hand subpattern is a pattern variable, you can anchor the
right-hand subpattern by using the ANCHOR keyword as the first element
of that subpattern.

For example, if you have defined the following patterns:

pl := LINE_BEGIN + "a";
p2 :_ "b" + LINE_END;

You anchor the search for p2 by using (+), as follows:

pat_var := pl + p2;

If you used an ampersand (&), you would unanchor the search for p2.

Alternatively, you can anchor the search for p2 by defining p2 as follows:

p2 := ANCHOR + "b" + LINE_END;

2.7.3.3 ~ (Pattern Alternation Operator)
The alternation operator (I) tells SEARCH or SEARCH_QiJIETLY
to match a sequence of characters if those characters match either of
the pattern elements separated by the alternation operator. Thus, the
following pattern matches either the string abc or the string xes:

patl :_ "abc" ("xes";

If the text being searched contains text that matches both alternatives,
SEARCH or SEARCH_QUIETLY matches the earliest occurring match. If
two matches start at the same character, SEARCH or SEARCH QUIETLY
matches the left element. For example, suppose you had the search text
abcd and the following pattern definitions:

pat 1 : _ "abc" ~ "bcd" ;
pat2 :_ "bcd" ~ "abc";
pat3 :_ "bc" ~ "bcd";
pat4 :_ "bcd" ~ "bc";

VAXTPU Data Types
2.7 Pattern

Given these definitions and search text, a search for the patterns patl
and pat2 would return a range containing the text abc. A search for the
pattern pat3 would return a range containing the text bc. Finally, a search
for the pattern pat4 would return a range containing the text bcd.

2.7.3.4 @ (Partial Pattern Assignment Operator)
The partial pattern assignment operator (@)tells SEARCH or SEARCH_
QUIETLY to create a range that contains the text matching the pattern
element to the left of the partial pattern assignment operator. When
the search is completed, the variable to the right of the partial pattern
assignment operator references the created range. If SEAttCH or
SEARCH_QUIETLY is given the search text abcdefg and the following'
pattern, it returns a range containing the text abcdefg.

patl : _ "abc" + (arb (2~ @ earl) + remain;

SEARCH or SEARCH_QUIETLY also assigns to earl a range containing
the text de.

If you assign to a variable a partial pattern that matches a position,
rather than a character, the partial pattern variable is a range containing
the character or line-end at the point in the file where the partial pattern
was matched. For example, in any of the following patterns containing

partial pattern assignments, the variable partial~nattern_variable contains
the character or line-end at the point in the file where the partial pattern
was matched:

• "" C~3 partial_pattern variable

• ANCHOR C~3 partial_pattern variable

• UNANCHOR C~ partial pattern variable

• LINE BEGIN @ partial_pattern variable

• BUFFER BEGIN @ partial_pattern variable

Note that if you use one of the preceding patterns when the cursor is free
(that is, in an area that does not contain text, such as the area after the
end of a line) the variable partial,,pattern_variable contains the line-end or
character nearest to the cursor.

SEARCH or SEARCH_QUIETLY does partial pattern assignment only if
the complete pattern matches. If the complete pattern matches, it makes
assignments only to those variables paired with pattern elements that
are used in the complete match. If a partial pattern assignment variable
appears more than once in a pattern in places where it is legal for a partial
pattern assignment to occur, the last occurrence in the pattern determines
what range SEARCH assigns to the variable. For example, with the
search text abcdefg and the following pattern, SEARCH or SEARCH_
QUIETLY returns a range containing the text abcde and assigns a range
containing the text d to the variable varl.

pat 1 : _ "a" + ("b" @ varl) + "c" + ("d" @ varl)

VAXTPU Data Types
2.7 Pattern

2.7.3.5 Relational Operators
The two relational operators, equal (_)and not equal (<>), can be used to
compare patterns. Two patterns are equal if they are the same pattern, as
patl and pat2 are in the following example:

patl : = notany ("abc", 2) + span ("123") ;
pat2 := patl;

Two patterns are also equal if they have the same internal representation.
Patterns have the same internal representation only if they are built in
exactly the same way. The order of the characters in the arguments to
A►NY, NOTANY, SCAN, SCANL, SPAN, and SPANL does not matter when
you are comparing patterns returned by any of these built-ins. Other than
this, almost any difference in the building of two patterns makes those
patterns unequal. For example, suppose you defined the variable this,pat
as follows:

this~at : = ANY ("abc") ;

Given this definition, the following patterns match the same text but are
not equal:

patl := LINE_BEGIN +ANY ("abc");
pat2 := LINE_BEGIN + this~at;

2.7.4 Pattern Compilation and Execution
When you execute a VAXTPU statement that contains a pattern
expression, VAXTPU builds an internal representation of the pattern.
VAXTPU uses the current contents of any buffers or ranges used as
arguments to pattern built-ins in the pattern expression to build the
internal representation. Later changes to those buffers and ranges do
not affect the internal representation for the pattern. VAXTPU also uses
the current values of any variables used in the pattern expression. Later
changes to these variables do not affect the internal representation of the
pattern. For example, suppose you wrote the following code fragment:

pl •_ "abc"•
p2 :_ "123";
pat := pl & p2;

p1 •=
nXyZn.

SEARCH (pat, FORWARD);

Given this code fragment, the search matches the string "abc123" because
the variable pat is evaluated as it is built from p1 and p2 during the
assignment statement.

2.7.5 Searching
The SEARCH and SEARCH QUIETLY built-ins use the following
algorithm to find a match for a pattern.

1 Put the internal marker that marks the search position at the starting
position for the search. The starting position is determined as follows:

• If the user does not specify where to search, search the current
buffer, starting at the editing point.

2-18

VAXTPU Data Types
2.7 Pattern

• If the user specifies a buffer or range where the search is to
take place, start at the beginning or end of the buffer or range
depending on the direction of the search.

2 Check whether the pattern matches text, starting at the current
search position and extending toward the end of the searched buffer or
range. If a range is being searched, the matched text cannot extend
beyond the end of that range. If the pattern matches, return a range
containing the matching text and stop searching.

3 If the previous step fails, move the search position one character
forward or backward, depending upon the direction of the search.
If this is impossible because the search position is at the end or
beginning of the searched buffer or range, stop searching. If this step
succeeds, repeat the previous step.

Note: This algorithm changes if you specify a reverse search for a
pattern starting with SCAN, SPAN, SCANL, or SPA►NL. For more
information, see the descriptions of these built-in procedures in
the VA►XTPU Reference Section.

2.7.6 Anchoring a Search
Anchoring a pattern forces SEARCH or SEARCH QUIETLY to match the
anchored part of the pattern to text starting at the current search position.
If the anchored part of a pattern fails to match that text, SEARCH or
SEARCH QUIETLY stops searching.

Normally, all pattern elements other than the first pattern element of a
pattern are anchored. This means that a pattern can match text starting
at any point in the searched text but that once it starts matching, each
pattern element must match the text immediately following the text that
matched the previous pattern element.

To direct VA►XTPU to stop searching if the characters starting at the
editing point do not match the pattern, use the keyword ANCHOR as the
first pattern element. For example, the following pattern matches only if
the string abc occurs at the editing point:

patl := ANCHOR + "abc";

There are two ways to unanchor pattern elements in the midst of a
pattern. The easiest is to concatenate or link the UNANCHOR keyword
before the pattern element you want to unanchor. Thus, in the following
pattern the pattern element xyz is unanchored:

patl :_ "abc" + UNANCHOR + "xyz";

This means that the pattern patl matches any text beginning with the
characters abc and ending with the characters xyz. It does not matter
what or how many characters or line breaks appear between the two
sets of characters. Of course, since SEARCH or SEARCH_QUIETLY
matches the first xyz it finds, the text between the two sets of characters
by definition does not contain the string xyz .

VAXTPU Data Types
2.7 Pattern

The second way to unanchor a pattern element is to use the special
properties of the link operator (&). While the concatenation operator
always anchors the right pattern element to the left, the link operator
does so only if the right pattern element is not a pattern variable. If
the link operator's right pattern element is a pattern variable, the link
operator unanchors that pattern element. Thus, the pattern pat2 defined
by the following assignments matches any sequence of text beginning with
the letter a and ending with a digit.

patl : = ANY ("0123456789") ;
pat2 :_ "a" & patl;

Any amount of text can occur between the a and the digit. Pat2 matches
the same text as the following pattern:

pat3 :_ "a" + UNANCHOR +ANY("0123456789");

The link operator unanchors a pattern variable regardless of what the left
pattern element is. In particular, the following two patterns match the
same text:

pat2 :_ "a" & patl;
pat3 :_ "a" & ANCHOR & pat1;

If you are using pattern variables to form patterns and you wish
those variables to be anchored, you have two choices: you can use the
concatenation operator, or you can use the keyword ANCHOR as the first
element of any pattern the pattern variables reference.

2.8 Process
In VAXTPU, a process is a VMS subprocess. The built-in procedure
CREATE_PROCESS returns a value of the process data type.

VAXTPU processes have the same restrictions that VMS subprocesses
have. Following are some of the restrictions:

• You cannot create more VAXTPU processes than your account
subprocess quota allows.

• You cannot spawn a subprocess in an account that has the CAPTIVE
flag set.

• Only VMS utilities that can perform I/O to a mailbox and that do
simple reads and writes (for example, MAIL} can run in a VAXTPU
process. Programs like FMS, EDT, PHONE, or any other program that
takes full control of the screen do not work properly in a VAXTPU
process. See the built-in procedure SPAWN for information on running
these types of programs from VAXTPU.

• You do not see any prompts from the utility you are using. For
example, in MAIL, you have to be aware of the sequence of prompts
for sending a mail message because you do not see the prompts.

The following example assigns a value of the process data type to the
variable x:

x : = CREATE PROCESS (main buffer, "MAIL") ;

u

2-20

VAXTPU Data Types
2.8 Process

The first parameter specifies that the output from the subprocess is to be
stored in MAIN BUFFER. The string "MAIL" is the first command sent
to the subprocess.

To pass subsequent commands to a subprocess, use the built-in procedure
SEND, as follows:

SEND ("MAIL" , x) ;

To pass the READ command to the Mail Utility, enter the following
VAXTPU statement:

SEND ("READ" , x) ;

The output from the READ command is stored in the buffer associated
with the subprocess x. If the buffer associated with a subprocess is deleted,
the subprocess is deleted as well.

2.9 Program
A program is the compiled form of a sequence of VAXTPU procedures and
executable statements. The built-in procedures COMPILE and LOOKUP_
KEY can optionally return a value of the program data type as a result.
The following example assigns a value of the program data type to the
variable x:

x := COMPILE (main buffer) ;

MAIN_BUFFER must contain only VAXTPU declarations, executable
statements, and comments. All declarations must come before any
executable statements that are not included in the declarations. The
declarations and statements are compiled and the resulting program is
stored in the variable x.

2.10 Range
A range contains all the text between (and including) two markers. You
can form a range with the built-in procedure CREATE_RANGE. A range
is associated with characters within a buffer. If the characters within
a range move, the range moves with them. If characters are added or
deleted between two markers that delimit a range, the size of the range
changes. If all the characters in a range are deleted, the range moves to
the nearest character.

VAXTPU does not support ranges of zero length unless the range begins
and ends at the end of a buffer. All other ranges contain at least one
character (which could be a space character) or a line-end (if the range is
created at the end of a line).

If you create a range by specifying a free marker as a parameter to the
CREATE_1~,ANGE built-in, VAXTPU creates a new marker and binds the
marker to the text nearest to the free marker position. VAXTPU uses the
new bound marker as the range delimiter. This operation does not cause
insertion of padding spaces.

Deleting the markers used to create a range does not affect the range.

2-21

VAXTPU Data Types
2.10 Range

To convert the contents of a range to a string, use either the STR or the
SUBSTR built-in.

To remove a range, use the built-in procedure DELETE with the range
as a parameter. For example, the following statement deletes the range
rangel:

DELETE (rangel);

You can also delete a range by removing all variable references to the
range. To do this, set all variables referring to the range to some other
value, such as 0. For example, the following statement sets the variable
rangel to 0:

rangel := 0;

Deleting a range does not remove the characters of the range from
the buffer; it merely removes the range data structure. To remove the
characters of a range, use the built-in procedure E1~~ASE with the range as
a parameter. For example, E1~~4SE (my_range) removes all the characters
in my range, but it does not remove the range structure. Using the
statement DELETE (range_variable) removes the range data structure,
but does not affect the characters in the range.

The following built-in procedures, as well as the partial pattern
assignment operator, all return values of the range data type:

• CHANGE CASE

• CREATE I~'ANGE

• EDIT

• GET INFO

• READ GLOBAL SELECT

• READ CLIPBOARD

• SEARCH

• SEARCH QUIETLY

• SELECT RANGE

• TRANSLATE

For example, the following example assigns a value of the range data type
to the variable x:

x := CREATE_R.ANGE (markl, mark2, UNDERLINE);

You can specify the video attribute with which VAXTPU should display
a range. The possible attributes are BLINK, BOLD, REVERSE, and
UNDERLINE. The keyword UNDERLINE in the preceding example
specifies that the characters in the range will be underlined when they
appear on the screen. You cannot give more than one video attribute
to a range. However, to apply multiple video attributes to a given set
of characters, you can define more than one range containing those
characters and give one video attribute to each range.

VAXTPU Data Types
2.11 String

2.11 String
VAXTPU uses the string data type to represent character data. A value
of the string data type can contain any of the elements of the DEC
Multinational Character Set. To specify a string constant, enclose the
value in quotation marks. In VAXTPU, you can use either the quotation
mark (") or the apostrophe (') as the delimiter for a string. The following
statements assign a value of the string data type to the variable x:

x : _ 'abcd' ;
x •_ "abcd"•

To specify the quote character itself within a string, type the character
twice if you are using the same quote character as the delimiter for the
string. The following statements show how to quote an apostrophe and a
quotation mark, respectively:

X ~= rrrr ;

X .= nn~~n .
! The value assigned to x is '.
! The value assigned to x is ".

If you use the alternate quote character as the delimiter for the string
within which you want to specify a quote character, you do not have to
type the character twice. The following statements show how to quote an
apostrophe and a quotation mark, respectively, when the alternate quote
character is used to delimit the string:

X ._ r ~~r .
•— r

! The value assigned to x is '.
! The value assigned to x is ".

A null string is a string of length zero. You can assign a null string to the
variable x in the following way:

x •_

To create a string from the contents of a range, use the STR or the
SUBSTR built-in. Zb create a string from the contents of a buffer, use
the STR built-in.

The maximum length for a string is 65,535 characters. A restriction of
the VAXTPU compiler is that a string constant (an open quotation mark,
some characters, and a close quotation mark) must have both its opening
and closing quotation marks on the same line. Note that while a string
can be up to 65,535 characters long, a line in a VAXTPU buffer can only
be 960 characters long. If you try to create a line that is longer than 960
characters, VAXTPU truncates the inserted text to the amount that fills
the line to 960 characters.

Many VAXTPU built-in procedures return a value of the string data type.
The built-in procedure ASCII, for example, returns a string for the ordinal
value that you use as a parameter. The following statement returns the
string "K" in the variable my char:

my_char : = ASCII (75) ;

To replicate a string, specify the string to be reproduced, then the
multiplication operator (*), and then the number of times you want
the string to be replicated. For example, the following VAXTPU statement
inserts 10 underscores into the current buffer at the editing point:

COPY TEXT (" " * 10

2-23

VAXTPU Data Types
2.11 String

Note that the string to be replicated must be on the left-hand side of the
operator. For example, the following VAXTPU statement produces an
error:

COPY TEXT (10 * ")

To reduce a string, specify the string to be modified, then the subtraction
operator (—), and then the substring to be removed. For example, the
following table shows the effects of two string-reduction operations:

VAXTPU Statement Result

COPY TEXT (" FILENAME.MEM"—"FILE")

COPY TEXT ("woolly"—"wool")

Inserts the string
"NAME.MEM" into the current
buffer at the editing point.

Inserts the string "ly" into the
current buffer at the editing
point.

2.12 Unspecified
An unspecified value is the initial value of a variable after it has been
compiled (added to the VAXTPU symbol table). In the following example,
the built-in procedure COMPILE creates the variable x and initially gives
it the data type unspecified unless x has previously been declared as a
global variable:

COMPILE ("x := 1") ;

An assignment statement that creates a variable must be executed before
a data type is assigned to the variable. In the following example, when
you use the built-in procedure EXECUTE to run the program that is
stored in the variable prog, the variable x is assigned an integer value:

prog : = COMPILE ("x : = 1 ") ;
EXECUTE (prog) ;

To give a variable the data type unspecified, assign the predefined constant
TPU$K UNSPECIFIED to the variable:

prog := TPU$K_UNSPECIFIED;

2.13 Widget
The DECwindows version of VAXTPU provides the widget data type to
support DECwindows widgets. The non-DECwindows version of VAXTPU
does not support this data type.

A widget is an interaction mechanism by which users give input to an
application or receive messages from an application. For more information
about what a widget is, see the VMS DECwindows Guide to Application
Programming.

VAXTPU Data Types
2.13 Widget

You can use the equal operator (-) or the not-equal operator (<>)
on widgets to determine whether they are equal (that is, whether
they are the same widget instance), but you cannot use any other
relational or arithmetic operators on them. For information about the
difference between a class of widgets and a widget instance, see the VMS
DECwindows Guide to Application Programming.

Once you have created a widget instance, VAXTPU does not delete the
widget instance, even if there are no variables referencing it. To delete a
widget, use the DELETE built-in.

DECwindows VAXTPU provides the same support for DECwindows
gadgets that it provides for widgets. A gadget is a structure similar
to a widget, but it is not associated with its own unique DECwindows
window. Gadgets do not require as much memory to implement as widgets
do. In most cases, you can use the same DECwindows VAXTPU built-ins
on gadgets that you use on widgets. For more information about gadgets,
see the VMS DECwindows Guide to Application Programming.

2.14 Window
A window is a portion of the screen used to display as much of the text
in a buffer as will fit in the screen area. In EVE, the screen contains
three windows by default: a large window for viewing the text in the
user's editing buffer, and two one-line windows, for displaying commands
and messages. In EVE or in auser-written interface, the screen can be
subdivided to create more windows.

A variable of the window data type "contains" a window. The built-in
procedures CREATE_WINDOW, CURRENT_WINDOW, and GET INFO
return a value of the window data type. CREATE_WINDOW is the only
built-in procedure that creates a new window. The following example
assigns a Value of the window data type to the variable x:

x : = CREATE WINDO~nT (1, 12 , OFF) ;

The first parameter specifies that the window starts at screen line number
1. The second parameter specifies that the window is 12 lines in length.
The keyword OFF specifies that a status line is not to be displayed when
the window is mapped to the screen.

2.14.1 Window Dimensions
Windows are defined in lines and columns. In EVE, all windows emend
the full width of the screen or terminal emulator. In VAXTPU, you can set
the window width to be narrower than the width of the screen or terminal
emulator.

The allowable dimensions of a window often depend on whether the
window has a status line, a horizontal scroll bar, or both. A status line
occupies the last line of a window. By default, a status line contains
information about the buffer and the file associated with the window. You
can turn a status line on or off with the built-in SET (STATUS_LINE).
A horizontal scroll bar is a one-line widget at the bottom of a window

2-25

VAXTPU Data Types
2.14 Window

that the user can use to shift the window to the right or left, controlling
what text in the buffer can be seen through the window. You can turn
a horizontal scroll bar on or off with the built-in SET (SCROLL BAR).
Lines on the screen are counted from one to the number of dines on the
screen; lines in a window are counted from one to the number of lines in
the window. Columns on the screen are counted from one to the physical
width of the screen; columns in a window are counted from one to the
number of columns in the window. The minimum length for a window is
one line if you do not include a status line or horizontal scroll bar, two
lines if you include either a status line or a horizontal scroll bar, and three
lines if you include both a status line and scroll bar.

The maximum length of a window is the number of lines on your screen.
For example, if your screen is 24 lines long, the maximum size for a single
window is 241ines. On the same size screen, you can have a maximum of
24 visible windows if you do not use status lines or horizontal scroll bars.
If you use a status line and a horizontal scroll bar for each window, the
maximum number of visible windows is eight.

2.14.2 Creating Windows
When you use a device that supports windows (see Appendix C for
information on terminals that VAXTPU supports), you or the section
file that initializes your application must create and map windows. In
most instances, it is also advisable to map a buffer to the window. To
map a buffer to a window, use the MAP built-in. If you do not associate a
buffer with a window and map the window to the screen, the only items
displayed on the screen are messages that are written to the screen at the
cursor position.

The built-in procedure CREATE_WINDOW defines the size and location of
a window and specifies whether a status line is to be displayed. CREATE_
WINDOW also adds the window to VAXTPU's internal list of windows
available for mapping. At creation, a window is marked as being not
visible and not mapped and the following values for the window are
calculated and stored:

• Original top Screen line number of the top of the window when it
was created.

• Original bottom Screen line number of the bottom of the window
when it was created (not including the status line).

• Original length Number of lines in the window (including the status
line).

Later calls to ADJUST WINDOW may change these values.

VAXTPU Data Types
2.14 Window

2.14.3 Window Values
When you create a window with the CREATE_WINDOW built-in
procedure,VAXTPU saves the numbers of the screen lines that delimit
the window in original top and original bottom. When you map a window
to the screen with the built-in procedure MAP, the window becomes visible
on the screen. If it is the only window on the screen, its visible top and
visible_bottom values are the same as its original top and original bottom
values. You can display the original and the visible values with SHOW
(WINDOWS) or retrieve them using the built-in procedure GET INFO.

However, if there is already a window on the screen and you map another
window over part of it, the values for the previous window's visible_top,
visible bottom, and visible length are modified. The value for visible_
length of the previous window is different from its original length until
the new window is removed from the screen. As long as the new window
is on the screen and does not have another window mapped over it, its
original top and bottom are the same as its visible top and bottom.

2.14.4 Mapping Windows
When you want a window and its associated buffer to be visible on the
screen, use the built-in procedure MAP. Mapping a window to the screen
has the following effects:

• The mapped window becomes the current window and the cursor is
moved to the editing point in the buffer associated with the window.

• The buffer associated with the window becomes the current buffer.

• The window is marked as visible and mapped.

• The visible_top, visible_bottom, and visible length of the window are
calculated and stored. Initially, these values are the same as the
original values that were calculated when the window was created.
(See the last item in the following list.)

Mapping a window to the screen may have the following side effects:

• The newly mapped window may occlude other windows. This
happens when the original_top or original bottom line of the newly
mapped window overlaps the boundaries of existing visible windows.
Overlapping can cause some windows to be totally occluded or not
visible. Note that occluded windows are still marked mapped; when
the window that is covering them is unmapped, they may reappear on
the screen without being explicitly remapped.

• If the newly mapped window divides a window into two parts, only the
top part of the segmented window continues to be updated. The lower
part of the segmented window is erased at the next window update.

• The visible top, visible_bottom, and visible length values of a window
that is occluded change from their original values.

VAXTPU Data Types
2.14 Window

when a newly mapped window becomes the current window (the built-
in procedures MAP, POSITION, and ADJUST_WINDOW cause this to
happen), the cursor is placed in the current window. In addition to the
active cursor position in the current window, there is a marker designating
a cursor position in all other windows. The cursor position in a window
other than the current window is the last location of the cursor when
it was in the window. By maintaining a cursor position in all windows,
VAXTPU allows you to edit in multiple locations of a single buffer if that
buffer is associated with more than one window. For more information on
the cursor position in a window, see Chapter 6 and the description of the
POSITION built-in in the V~4►XTPU Reference Section.

2.14.5 Removing Windows
To remove a window from the screen, you can use either the built-in
procedure UNMAP or the built-in procedure DELETE. I;n~TMAP removes
a window from the screen. However, the window is still in VAXTPU's
internal list of windows. It is available to be remapped to the screen
without being recreated. DELETE removes a window from the screen
and also removes it from VAXTPU's list of windows. It is then no longer
available for future mapping to the screen.

Unmapping or deleting a window has the following effects:

• The unmapped window is marked as not visible and not mapped.

• Another window becomes the current window and the cursor is moved
to the last cursor position in that window.

• If other windows were occluded by the window you removed from the
screen, text from the occluded windows reappears on the screen. The
visible top, visible_bottom, and visible length values of the previously
occluded windows are modified according to the lines that are returned
to them when the occluding window is unmapped. When an occluding
window is removed, the window or windows it occluded become visible
again.

2.14.6 Screen Manager
The screen manager is the part of VAXTPU that controls the display of
data on the screen. You can manipulate data without having it appear
on a terminal screen (see Chapter 4). However, if you use the VAXTPU
window capab' 'ty to make your edits visible, the screen manager controls
the screen.

In the main control loop of VAXTPU, the screen manager is not called
to perform its duties until all commands bound to the last key pressed
have finished executing and all input in the type-ahead buffer has been
processed. Upon completion of all the commands, the screen manager
updates every window to reflect the current state of the part of the buffer
that is visible in the window. If you want to make the screen reflect
changes to the buffer prior to the end of a procedure, use the built-in
procedure UPDATE to force the updating of the window. Using UPDATE
is recommended with built-in procedures such as CURRENT_COLUMN

2-28

VAXTPU Data Types
2.14 Window

that query VAXTPU for the current cursor position. To ensure that the
cursor position returned is the correct location (up to the point of the
most recently issued command), use UPDATE before using CURRENT_
COLUMN or CURRENT_ROW.

2.14.7 Getting Information on Windows
There are two VAXTPU built-in procedures that return information about
windows: GET_INFO and SHOW (WINDOW).

GET_INFO returns information that you can store in a variable. You
can get information about the visible and original values of windows,
as well as about other attributes that you have set up for your window
environment. See the description of GET_INFO in the VAXTPU Reference
Section.

SHOW (WINDOW) or SHOW (WINDOWS) puts information about
windows ixi the SHOW BUFFER. If you use an editor that has an INFO_
WINDOW, you can display the SHOW BUFFER information in the INFO_
WINDOW.

2.14.8 Terminals That Do Not Support Windows
VAXTPU supports windows only for ANSI CRTs. (See Appendix C if you
need more information about VAXTPU terminal support.) If the logical
name SYS$INPLTT points to an unsupported device, windows cannot be
used. When you are working on an unsupported device, you must specify
/NODISPLAY when you invoke VAXTPU, or the utility exits with an
error condition. The qualifier /NODISPLAY informs VAXTPU that you do
not expect the device from which you are issuing VAXTPU commands to
support screen-oriented editing. See Chapter 4 and Chapter 5 for more
information on the /NODISPLAY qualifier.

3 Lexical Elements of the VAXTPU Language

3.1 Overview
A VAXTPU program is composed of lexical elements. A lexical element
may be an individual character, such as an arithmetic operator, or it may
be a group of characters, such as an identifier. The basic unit of a lexical
element is a character from the DEC Multinational Character Set. (See
Appendix E for a complete list of the DEC multinational characters.) This
chapter describes the following VAXTPU lexical elements:

• Character set (Section 3.2)

• Identifiers (Section 3.3)

• Variables (Section 3.4)

• Constants (Section 3.5)

• Operators (Section 3.6)

• Expressions (Section 3.7)

• Reserved words (Section 3.8)

• Lexical keywords (Section 3.9)

3.2 Character Set
The DEC Multinational Character Set is an 8-bit character set with
256 characters. Each character is assigned a decimal equivalent number
ranging from 0 to 255. The first 128 characters in the set correspond to the
American Standard Code for Information Interchange (ASCII) character
set. The characters from 128 to 255 are extended control characters and
supplemental multinational characters. The characters can be grouped
into the following categories:

0-31 Nonprinting characters such as tab, line feed, carriage return, and bell

32 Space

33-64 Special characters such as the ampersand (&), question mark (?), equal
sign (_), and the numbers 0 through 9

65-122 The uppercase and lowercase letters A through Z and a through z

123-126 Special characters such as the left brace ({)and the tilde (~)

127 Delete

128-159 Extended control characters

160 Reserved

3-1

Lexical Elements of the VAXTPU Language
3.2 Character Set

161--191 Supplemental special graphics characters such as the copyright sign (©)
and the degree sign (°)

192-254 The supplemental multinational uppercase and lowercase letters such as
the Spanish N and n

255 Reserved

The VAXTPU compiler does not distinguish between uppercase and
lowercase characters except when they appear as part of a quoted string.
For example, the word EDITOR has the same meaning when written in
any of the following ways:

EDITOR
EDitOR
editor

The following, however, are quoted strings, and therefore represent
dii~erent values:

"XyZ ~~
~~ ~,Z ~~

3.2.1 Entering Control Characters
There are two ways to enter control characters in VAXTPU:

1 Use the built-in procedure ASCII with the decimal value of the control
character that you want to enter. For example, the following statement
causes the escape character to be entered in the current buffer:

COPY TEXT (ASCII (27)) ;

2 Use the special functions provided by EVE to enter control characters:

• EVE provides a QUOTE command that is bound to CTRL/V to
insert control characters in a buffer. For example, to use the quote
command to insert an escape character in a buffer, follow these
steps:

a. Press CTRL/V.

b. Press the ESCAPE key (on VT100-series terminals) or
CTRL/[.

The following example shows the previous steps:

CTRL/VI

• EVE's EDT-like keypad setting provides a SPECINS key sequence
to insert control characters in a buffer. For example, take the
following steps to enter a control character using the SPECINS
key•

a. Press the GOLD key.

b. Enter the ASCII value of the special character that you want
to insert in the buffer; in this case 27 (the escape character).
(Use the keys on the keyboard, not the ones on the keypad.)

c. Press the GOLD key again.

3-2

Lexical Elements of the VAXTPU Language
3.2 Character Set

d. Press the SPECINS key on the EDT keypad.

The following example shows the previous steps:

• ~ 27 • ~ I SPECINS I

3.2.2 VAXTPU Symbols
Certain symbols have special meanings in VAXTPU. They can be used as
statement delimiters, operators, or other syntactic elements. The VAXTPU
symbols are listed in Table 3-1.

Table 3-1 V14XTPU Symbols

Name Symbol VAXTPU Function

Apostrophe

Assignment operator :_

At sign ~

Left brace

Close parenthesis

{

Comma

Exclamation point !

Dollar sign

Right brace

Equal sign =

Greater than sign >

Greater than or equal
to sign

Slash /

Asterisk

Left bracket

Less than sign <

Less than or equal to
sign
Minus sign
Not equal sign
Vertical bar

Open parenthesis

}

>_

<_

<>

I

Ampersand &

Delimits a string

Assigns a value to a variable

Partial pattern assignment operator

Opens an array element index expression

Ends parameter list, expression, procedure call,
argument list, or array element index

Separates parameters

Begins comment

Indicates a variable, constant, keyword, or
procedure name that is reserved to Digital

Closes array element index expression

Relational operator

Relational operator

Relational operator

Integer division operator

Integer multiplication operator

Begins case label

Relational operator

Relational operator

Subtraction operator

Relational operator

Pattern alternation operator

Begins. parameter list, expression, argument list, or
array element index

Pattern linkage operator

(continued on next page)

Lexical Elements of the VAXTPU Language
3.2 Character Set

Table 3-1 (Cont.) VAXTPU Symbols

Name Symbol VAXTPU Function

Plus sign + String concatenation operator, pattern
concatenation operator, integer addition operator

Quotation mark Delimits string

Right bracket] Ends case label

Semicolon Separates language statements

Underscore _ Separates words in identifiers

3.3 Identifiers
In VAXTPU, identifiers are used to name programs, procedures, keywords,
and variables. An identifier is a combination of alphabetic characters,
digits, dollar signs, and underscores, and it must conform to the following
restrictions:

• An identifier cannot contain any spaces or symbols except the dollar
sign and the underscore.

• Identifiers cannot be more than 132 characters long.

VAXTPU identifiers for built-in procedures, constants, keywords, and
global variables are reserved words.

You can create your own identifiers to name programs, procedures,
constants, and variables. Note that any symbol that is neither declared
nor used as the target of an assignment statement is assumed to be an
undefined procedure.

3.4 Variables
Variables are names given to VAXTPU storage locations that hold values.
A variable name can be any valid VAXTPU identifier that is not a VAXTPU
reserved word or the name of a VAXTPU procedure. You assign a value to
a variable by using a valid identifier as the left-hand side of an assignment
statement. Following is an example of a variable assignment:

new buffer := CREATE BUFFER ("new buffer name");

Digital suggests that you establish some convention for naming variables,
so that you can distinguish your variables from the variables in the section
file that you are using.

VAXTPU allows two kinds of variables: global and local. Global variables
are in effect throughout a VAXTPU environment. Local variables are
evaluated only within the procedure or unbound code in which they
are declared. A variable is implicitly global unless you use the LOCAL
declaration. You can also declare global variables with the VARIABLE
declaration.

Lexical Elements of the VAXTPU Language
3.4 Variables

Example 3—'1 Global and Local Variable Declarations

VARIABLE user tab char;

! Tab key procedure. Always inserts a tab, even if current mode
! is overstrike.

PROCEDURE user_tab

LOCAL this mode; ! Local variable for current mode

this_mode := GET_INFO (CURRENT BUFFER,
SET (INSERT, CURRENT_BUFFER) ;
user_tab_char := ASCII (9);
COPY_TEXT (user tab char) ;
SET (this mode, CURRENT BUFFER) ;

ENDPROCEDURE;

"mode"); ! Save current mode
! Set mode to insert
! Define the tab char
! Insert tab
! Reset original mode

Example 3-1 shows a global variable declaration and a procedure that
contains a local variable declaration:

The global variable user tab char is assigned a value when the procedure
user_tab is executing. Since the variable is a global variable, it could have
been assigned a value outside the procedure user tab.

The local variable this mode has the value established in the procedure
user_tab only when this procedure is executing. You can have a variable
also named this_mode in another procedure. The two variables are not the
same and may have different values. You can also have a global variable
named this mode. However, using this mode as a global variable when
you are also using it as a local variable is likely to confuse people who
read your code. VAXTPU will return an informational message during
compilation if a local variable has the same name as a global variable.

3.5 Constants
VAXTPU has three types of constants: integers, strings, and keywords.

Integer constants can be any integer value that is valid in VAXTPU. See
Chapter 2 for more information on the integer data type.

String constants can be one character or a combination of characters
delimited by apostrophes or quotation marks. See Chapter 2 for a complete
description of how to quote strings in VAXTPU.

Keywords are reserved words that have special meaning to the VAXTPU
compiler. See Chapter 2 for a complete description of keywords.

With the CONSTANT declaration you can associate a name with a
constant expression. User-defined constants can be locally or globally
defined.

A local constant is a constant declared within a procedure declaration. The
scope of the constant is limited to the procedure in which it is defined.

A global constant is a constant declared outside a procedure. Once a global
constant has been defined, it is set for the life of the VAXTPU session. You
can reassign to a constant the same value it was assigned previously, but
you cannot redefine a constant during a VAXTPU session.

3-5

Lexical Elements of the VAXTPU Language
3.5 Constants

See Section 3.8.4.10.3 for a complete description of the CONSTANT
declaration.

Example 3-2 shows a global constant declaration and a procedure that
contains a local constant declaration.

Example 3-2 Global and Local Constant Declarations

! Define some global constants.

CONSTANT
user_bell := BELL,
user_hello :_ "Hello",
user ten := 10;

! Hello world procedure.

PROCEDURE user_hello world
CONSTANT

world :_ "world";
MESSAGE (user hello + " " +world); ! Display "Hello world"

! in message area

ENDPROCEDURE;

3.6 Operators
VAXTPU uses symbols and characters as language operators. There are
four types of operators:

• Arithmetic

• String

• Relational

• Pattern

• Logical

Table 3-2 lists the symbols and language elements that VAXTPU uses as
operators.

Table 3-2 VAXTPU Operators

Type Symbol Description

Arithmetic + Addition, unary plus

— Subtraction, unary minus

* Multiplication

/ Division

String + String concatenation

(continued on next page)

3-6

Lexical Elements of the VAXTPU Language
3.6 Operators

Table 3-2 (Cont.) VAXTPU Operators

Type Symbol Description

String reduction

String replication

Relational <> Not equal to

= Equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Pattern ~ Pattern alternation

~ Partial pattern assignment

+ Pattern concatenation

& Pattern linkage

Logical AND Boolean AN D

NOT Boolean NOT

OR Boolean OR

XOR Boolean exclusive OR

Note that you can use the +operator to concatenate strings. You can also
use the relational operators to compare a string with a string, a marker
with a marker, or a range with a range.

The precedence of the operators in an expression determines the order in
which the operands are evaluated. Table 3-3 lists the order of precedence
for VA►xTPU operators. Operators of equal precedence are listed on the
same line.

Table 3-3 Operator Precedence

Operator Precedence

unary +, unary —

NOT

*, /, AN D

Qr ,&,+,—, ~,OR,XOR

:= Lowest

Highest

Expressions enclosed in parentheses are evaluated first. You must
use parentheses for correct evaluation of an expression that combines
relational operators.

3-7

Lexical Elements of the VAXTPU Language
3.6 Operators

You can use parentheses in an expression to force a particular order for
combining operands. For example:

Expression Result

8 * 5 / 2 - 4 16
-20

3.7 Expressions
An expression can be a constant, a variable, a procedure, or a combination
of these separated by operators. Expressions can be used in a VAXTPU
procedure where an identifier or constant is required. Expressions are
frequently used within VAXTPU conditional language statements.

The data types of all elements of a VAXTPU expression must be the same.
Note, however, the following exceptions to this rule:

• You can mix keywords, strings, and pattern variables in expressions
used to create patterns.

• You can mix data types when using the not equal (<>) and equal (_)
relational operators.

• You can mix strings and integers when doing string replication.

Except for these cases, VAXTPU does not perform implicit type conversions
to allow for the mixing of data types within an expression. If you mix data
types, VAXTPU issues an error message.

In the following example, the elements (J > 4) and (my_string = "this is
my string") each evaluate to an integer type (odd integers are true; even
integers are false) so that they can be used following the VAXTPU IF
statement:

IF (J > 4) AND (my_string = "this is my string")
THEN

With the exception of patterns and the relational operators, the result of
an expression is the same data type as the elements that make up the
expression. The following example shows a pattern expression that uses
a string data type on the right-hand side of the expression. The pattern
keywords LINE_BEGIN and REMAIN are used with the string constant
"the" to create a pattern data type that is stored in the variable pat1:

patl := LINE BEGIN + "the" + REMAIN;

Whenever possible, the VAXTPU compiler evaluates constant expressions
at compile time. VAXTPU built-in procedures that can return a constant
value given constant input are evaluated at compile time.

In the example below, the variable fubar has a single string assigned to it:

fubar := ASCII (27) + " [Om";

~-

Lexical Elements of the VAXTPU Language
3.7 Expressions

Caution: Do not assume that the VAXTPU compiler automatically evaluates
an expression in left-to-right order. In future releases, the
compiler may evaluate expressions of equal precedence in any
order.

To avoid the need to rewrite code, you should write as if this compiler
optimization were already implemented. If you need the compiler to
evaluate an expression in a particular order, you should force the compiler
to evaluate each operand in order before using the expression. To do
so, use each operand in an assignment statement before using it in an
expression. For example, suppose you want to use ROUTINE_1 and
ROUTINE_2 in an expression. Suppose, too, that ROLTTINE_1 must be
evaluated first because it prompts for user input. To get this result, you
could use the following code:

PARTIAL_1 := ROUTINE_1;
PARTIAL 2 := ROUTINE 2;

You could then use a statement in which the order of evaluation was
important, such as the following:

IF PARTIAL_1 OR PARTIAL_2

There are five types of VAXTPU expressions:

• Arithmetic

• Relational

• Pattern

• Boolean

• String

The following sections discuss each of these expression types.

3.7.1 Arithmetic Expressions
You can use any of the arithmetic operators (+, —, *, /)with integer data
types to form arithmetic expressions. VAXTPU performs only integer
arithmetic. The following are e~mples of valid VAXTPU expressions:

12 + 4 ! adds two integers

"abc" + "def" ! concatenates two strings

The following is not a valid VAXTPU expression because it mixes data
types:

"abc" + 12 ! you cannot mix data types

3-9

Lexical Elements of the VAXTPU Language
3.7 Expressions

When performing integer division, VAXTPU truncates the remainder;
it does not round. The following examples show the results of division
operations:

Expression

39 / 10
-39 / 10

3.7.2 Relational Expressions

Result

3
-3

A relational expression tests the relationship between items of the same
data type and returns an integer result. If the relationship is true, the
result is integer l; if the relationship is false, the result is integer 0.

Use the following relational operators with any of the VAXTPU data types:

• Not equal operator (<>)

• Equal operator (_)

For example, the following code fragment tests whether stringl starts with
a letter that occurs later in the alphabet than the starting letter of stringl:

stringl :_ "gastropod";
stringl :_ "arachnid";
IF stringl > st ring2
THEN

MESSAGE ("Out of alphabetical order ");
ENDIF;

Use the following relational operators for comparisons of integers, strings,
or markers:

• Greater than operator (>)

• Less than operator (<)

• Greater than or equal to operator (>_)

• Less than or equal to operator (<_)

When used with markers, these operators test whether one marker is
closer to (or farther from) the top of the buffer than another marker. (If
markers are in different buffers, they will return as false.) For example,
the procedure in Example 3-3 uses relational operators to determine
which half of the buffer the cursor is located in.

3-10

Lexical Elements of the VAXTPU Language
3.7 Expressions

Example 3-3 A Procedure Using Relational Operators on Markers

PROCEDURE which half

LOCAL number_lines,
saved mark;

saved_mark := MARK (FREE CURSOR);
POSITION (BEGINNING OF (CURRENT BUFFER));
number_lines := GET_INFO (current buffer, "record count");
IF number lines = 0
THEN

MESSAGE ("The current buffer is empty") ;
ELSE

MOVE_VERTICAL (number lines/2);
IF MARK (FREE CURSOR) = saved_mark
THEN

MESSAGE ("You are at the middle of the buffer") ;
ELSE

IF MARK (FREE CURSOR) < saved_mark
THEN
MESSAGE ("You are in the second half of the buffer");

ELSE
MESSAGE ("You are in the first half of the buffer") ;

ENDIF;
ENDIF;

ENDIF;

ENDPROCEDURE;

3.7.3 Pattern Expressions
A pattern expression consists of the pattern operators (+, &, I , ~)
combined with string constants, string variables, pattern variables,
pattern procedures, pattern keywords, or parentheses. The following
are valid pattern expressions:

patl : = LINE_BEGIN + SPAN ("0123456789") +ANY ("abc") ;

pat2 := LINE_END + ("end"~"begin");

pat 3 : = SCAN (' ; " ! ') + (NOTANY ("' ") & LINE_END) ;

See Chapter 2 for more information on pattern expressions.

3.7.4 Boolean Expressions
VAXTPU performs bitwise logical operations on Boolean expressions. This
means that the logical operation is performed on the individual bits of
the operands to produce the individual bits of the result. In the example
below, the value of user variable is set to 3.

user variable := 3 AND 7;

As another example, if user var were %X7777 (30583), then you would use
the following statement to set user var to %x0077 (119):

user var := user var AND $XFF

3-11

Lexical Elements of the VAXTPU Language
3.7 Expressions

A true value in VAXTPU is any odd integer; a false value is any even
integer. Use the logical operators (AND, NOT, OR, XOR) to combine one
or more expressions. VAXTPU evaluates Boolean expressions enclosed
in parentheses before other elements. The following example shows the
use of parentheses to ensure that the Boolean expression is evaluated
correctly:

IF (x = 12) AND (y <> 40)
THEN

ENDIF;

3.8 Reserved Words
Reserved words are words that are defined by VAXTPU and that have a
special meaning for the compiler.

VAXTPU reserved words can be divided into the following categories:

• Keywords

• Built-in procedure names

• Predefined constants

• Language elements

The following sections describe the categories of reserved words.

3.8.1 Keywords
Keywords are a VAXTPU data type. They are reserved words that have
special meaning to the compiler. VAXTPU keywords can be redefined
by the user only in local declarations (local constants, local variables, and
parameters in a parameter list). If you give a local constant, local variable,
or parameter the same name as that of a keyword, the compiler issues a
message notifying you that the local declaration or parameter temporarily
supersedes the keyword. In such a circumstance, the keyword is said to be
occluded. See Chapter 2 for more information on keywords.

3.8.2 Built-In Procedure Names
The VAXTPU language has many built-in procedures that perform
functions such as screen management, key definition, text manipulation,
and program execution. VAXTPU built-in procedures are reserved words
that can be redefined by the user only in local declarations (local constants,
local variables, and parameters in a parameter list). If you give a local
constant, local variable, or parameter the same name as that of a built-
in procedure, the compiler issues a message notifying you that the local
declaration or parameter temporarily supersedes the built-in. In such
a circumstance, the built-in is said to be occluded. See the VAXTPU
Reference Section for a complete description of the VAXTPU built-in
procedures.

3-12

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.3 Predefined Constants
The following is a list of predefined global constants that VAXTPU sets up.
These constants cannot be redefined by the user.

• FALSE

• TPU$K ALT MODIFIED

• TPU$K CTRL MODIFIED

• TPU$K HELP MODIFIED

• TPU$K MESSAGE_FACILITY

• TPU$K MESSAGE_ID

• TPU$K MESSAGE_SEVERITY

• TPU$K .MESSAGE TEXT

• TPU$K SEARCH_CASE

• TPU$K SEAR,CH_DIACRITICAL

• TPU$K SHIFT MODIFIED

• TPU$K UNSPECIFIED

• TRUE

3.8.4 Declarations and Statements
A VAXTPU program can consist of a sequence of declarations and
statements. These declarations and statements control the action
performed in a prceedure or a program. The following reserved words
are the language elements that when combined properly make up the
declarations and statements of VAXTPU.

• Module declaration

MODULE

IDENT

ENDMODULE

• Procedure declaration

PROCEDURE

ENDPROCEDURE

• Repetitive statement

LOOP

EXITIF

ENDLOOP

• Conditional statement

IF

THEN

3-13

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

— ELSE

— ENDIF

• Case statement

— CASE

— FROM

— TO

— INR.ANGE

— OUTRANGE

— ENDCASE

• Error statement

— ON ERROR

— ENDON_ERROR

• RETURN statement

• ABORT statement

• Miscellaneous declarations

— EQUNALENCE

— LOCAL

— CONSTANT

— VARIABLE

GLOBAL, UNIVERSAL, BEGIN, and END are words reserved for future
expansion of the 'VAXTPU language.

The VAXTPU declarations and statements are reserved words that cannot
be redefined by the user. Any attempt to redefine these words results in a
compilation error.

3.8.4.1 The Module Declaration
The MODULE/ENDMODULE declaration allows you to group a series of
global CONSTANT declarations, VARIABLE declarations, PROCEDURE
declarations, and executable statements as one entity. After you compile a
module, the compiler will generate two procedures for you. One procedure
returns the identification for the module and the other contains all the
executable statements for the module. The procedure names generated
by the compiler are module-nacme MODULE IDENT and module-name_
MODULE INIT, respectively.

3-14

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Syntax

MODULE module-name (DENT string-literal
declarations]

QON_ERROR ... ENDON_ERROR]
statement 1;

statement n;
ENDMODULE

The declarations part of a module can include any number of global
VARIABLE, CONSTANT, and PROCEDURE declarations.

The ON ERRORIENDON ERROR block, if used, must appear after the
declarations and before the VAXTPU statements that make up the body
of the module. Statements that make up the body of a module must be
separated with semicolons. For more information on error handlers, see
Section 3.8.4.7.

In the following example, the two procedures that are created by the
compiler are user mod module_ident and user mod module_init. User
mod module_ident returns the string "v1.0" . User mod module init calls
the routine user hello.

MODULE user mod IDENT "v1.0"

PROCEDURE user hello
MESSAGE ("Hello") ;

ENDPROCEDURE;

ON ERROR
MESSAGE ("Good-bye");

END ON ERROR;

user_hello;
ENDMODULE

3.8.4.2 The Procedure Declaration
The PROCEDURE/ENDPROCEDURE declaration delimits a series of
VAXTPU statements so they can be called as a unit. The PROCEDURE
/ENDPROCEDURE combination allows you to declare a procedure with a
name so that you can call it from another procedure or from the command
line of a VAXTPU editing interface. Once you have compiled a procedure,
you can enter the procedure name as a statement in another procedure,
or enter the procedure name after the vA►XTPU Statement: prompt on the
command line of EVE.

3-15

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

syntax

PROCEDURE procedure-name Q (parameter-list)]
Qlocal-declarations]
QON_ERROR ... ENDON_ERROR]
statement 1;
statement 2;

statement n;
ENDPROCEDURE;

The local declarations part of a procedure can include any number of
LOCAL and CONSTANT declarations.

The ON ERRORIENDON ERROR block, if used, must appear after the
declarations and before the VAXTPU statements that make up the body of
the procedure. For more information on error handlers, see Section 3.8.4.7.

After the ON ERRORJENDON ERROR block, you can use any kind of
VAXTPU language statements in the body of a procedure except another
ON_ERRORIENDON_ERROR block. Statements that make up the body of
a procedure must be separated with semicolons.

Example

PROCEDURE version

MESSAGE ("This is Version 1-020");

ENDPROCEDURE;

This procedure writes the text "This is Version 1-020" in the message
area.

3.8.4.2.1 Procedure Names
A procedure name can be any valid identifier that is not a VAXTPU
reserved word. Digital suggests that you use a convention when naming
your procedures. For instance, you might prefix procedure names with
your initials. In this way, you can easily distinguish procedures that you
write from other procedures such as the V~►XTPU built-in procedures. For
example, if John Smith writes a procedure that creates two windows, he
might name his procedure js two_windows. This helps ensure that his
procedure name is a unique name. Most of the sample procedures in this
manual have the prefix user with procedure names. Digital suggests that
you replace the prefix user with your initials.

3.8.4.2.2 Procedure Parameters
Using parameters with procedures is optional. If you use parameters, they
can be input parameters, output parameters, or both. For example:

PROCEDURE user_input_output (a, b)

a :=a+5;
b •= a•

ENDPROCEDURE;

3-16

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

In the preceding procedure, a is an input parameter. It is also an output
parameter because it is modified by the procedure input output. In the
same procedure, b is an output parameter.

The scope of procedure parameters is limited to the procedure in which
they are defined. The maximum number of parameters in a parameter
list is 127. A procedure can declare its parameters as required or
optional. Required parameters and optional parameters are separated
by a semicolon. Parameters before the semicolon are required parameters;
those after the semicolon are optional. If no semicolon is specified, then
the parameters are required.

syntax

PROCEDURE proc-name [([req-param [...D ~ [;opt-param [...] ~) ~

ENDPROCEDURE;

A procedure parameter is a place holder or dummy identifier that is
replaced by an actual value in the program that calls the procedure. The
value that replaces a parameter is called an argument. Arguments can be
expressions. There does not have to be any correlation between the names
used for parameters and the values used for arguments. All arguments
are passed by reference. Example 3-4 shows a simple procedure with
parameters.

Example 3-4 Simple Procedure with Parameters

!This procedure adds two integers. The parameters, intl and int2,
!are replaced by the actual values that the user supplies.
!The result of the addition is written to the message area.

PROCEDURE ADD (intl, int2)

MESSAGE (STR (intl + int2));

ENDPROCEDURE;

For example, call the procedure ADD and specify the values 5 and 6 as
arguments, as follows:

ADD (5, 6);

The string ~~ 11 ~~ is written to the message buffer.

Any caller of a procedure must call it using all required parameters. The
caller can also use optional parameters. If the required parameters are not
present or the procedure is called with too many parameters (more than
the sum of the required and optional parameters), then VAXTPU issues an
error.

If a procedure is called with the required number of parameters, but
with less than the maximum number of parameters, then the remaining
parameters up to the maximum automatically become "null parameters."
A null parameter is a modifiable parameter of data type unspecified. A

3-17

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

null parameter can be assigned a value and will become the value it is
assigned, but the parameter's value is discarded when the procedure exits.

Null parameters can also be explicitly passed to a procedure. This is done
by omitting a parameter when calling the procedure.

Example 3-5 shows a more complex procedure that uses optional
parameters.

Example 3-5 Complex Procedure with Optional Parameters

CONSTANT
user warning := 0,
user_success := 1,
user_error := 2,
user_informational := 3,
user fatal := 4;

~ Warning severity code
! Success severity code
! Error severity code
! Informational severity code
! Fatal severity code

i

! Output a message with fatal/error/warning flash.
i

PROCEDURE user message (the text; the severity)

LOCAL flash it;
i

! Only flash warning, error, or fatal messages.
i

CASE the_severity FROM user warning TO user_fatal
[user warning, user_error, user_fatal] flash_it := TRUE;

[user success, user informational] flash it := FALSE;

[OUTRANGE] : flash it : = FALSE;

ENDCASE;
i

! Output the message - flash it, if appropriate.

MESSAGE (the text);
IF flash_it
THEN

SLEEP ("0 00:00:00.3");
MESSAGE ("") ;
SLEEP ("0 00:00:00.3");
MESSAGE (the text);

ENDIF;

ENDPROCEDURE;

Caution: Do not assume that the VA►XTPU compiler automatically evaluates
parameters in the order in which you place them. In future
releases of VA►XTPU, the compiler may evaluate parameters in
any order.

To avoid the need to rewrite code, you should write as if this compiler
optimization were already implemented. If you need the compiler to
evaluate parameters in a particular order, you should force the compiler
to evaluate each parameter in order before calling the procedure. To do
so, use each parameter in an assignment statement before calling the
procedure. For example, suppose you want to call a procedure whose
parameter list includes PARAM_1 and PARAM_2. Suppose, too, that

3-18

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

P _1 must be evaluated first. To get this result, you could use the
following code:

partial l := param 1;
partial_2 := param 2;
my~rocedure (partial_1, partial_2) ;

3.8.4.2.3 Procedures That Return a Result
Procedures that return a result are called function procedures.
Example 3-6 shows a procedure that returns a true (1) or false (0)
value.

Note: All VAXTPU procedures return a result. If they do not do so
explicitly, VAXTPU returns 0.

Example 3-6 Procedure That Returns a Result

PROCEDURE user_on_end of_line !test if at eol, return true or false

IF CURRENT_OFFSET = LENGTH (CURRENT_LINE) ! we are on eol
THEN

user_on_end_of_line := 1 ! return true
ELSE

user_on_end_of_line := 0 ! return false
ENDIF;

ENDPROCEDURE;

Another way of assigning a value of 1 or 0 to a procedure is to use
the VAXTPU language statement RETURN followed by a value. See
Example 3-13.

You can use a procedure that retuxns a result as a part of a conditional
statement to test for certain conditions. Example 3-7 shows the procedure
in Example 3-6 within another procedure.

Example 3-7 Procedure Within Another Procedure

PROCEDURE user_nested~rocedure

IF user_on_end_of_line = 1 ! at the eol mark
THEN

MESSAGE ("Cursor is at the end of the line")
ELSE

MESSAGE ("Cursor is not at the end of the line")
ENDIF;

ENDPROCEDURE;

3.8.4.2.4 Recursive Procedures
Procedures that call themselves are called recursive procedures.
Example 3-8 shows a procedure named user reverse that displays a list of
responses to the built-in procedure READ_LINE in reverse order. Notice
that there is a call to the procedure user reverse within the procedure
body.

3-19

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-8 Recursive Procedure

PROCEDURE user_reverse
LOCAL temp_string;

temp_string := READ_LINE("input>");

Read a response

Quit if nothing entered
but the RETURN key.

IF temp string <> " ~~

THEN
user reverse

ELSE
RETURN

ENDIF;
MESSAGE (temp_string);

ENDPROCEDURE;

! Call user reverse recursively

! All done, go to display lines

! Display lines typed in reverse order
! in the message window

3.8.4.2.5 Local Variables
The use of local variables in procedures is optional. If you use local
variables, they hold the values that you assign them only in the procedure
in which you declare them. The maximum number of local variables that
you can use is 255. Local variables are initialized to 0.

Syntax

LOCAL variable-name Q,...D;

Note that if you declare a local variable in a procedure and, in the same
procedure, use the EXECUTE built-in to assign a value to a variable with
the same name as the local variable, the result of the EXECUTE built-in
has no effect on the local variable. For example, consider the following
code fragment:

PROCEDURE test
LOCAL x;
EXECUTE ("x := 3");
MOVE_VERT I CAL (x) ;

ENDPROCEDURE;

In this fragment, when the compiler evaluates the string "x := 3", the
compiler assumes x is a global variable. The compiler creates a global
variable x (if none exists) and assigns the value 3 to the variable. When
the built-in MOVE VERTICAL uses the local variable x, the local variable
has the value 0 and the MOVE VERTICAL built-in has no effect.

Note that local variables may also be declared in unbound code. See
Section 3.8.4.10.2.

3.8.4.2.6 Constants
The use of constants in procedures is optional. The scope of a constant
declared within a procedure is limited to the procedure in which it is
defined. See Section 3.8.4.10.3 for more information on the CONSTANT
declaration.

Syntax

CONSTANT constant-name := compile-time-constant-expression Q,...D;

3-20

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.2.7 ON ERROR Statements
The use of ON_ERROR statements in procedures is optional. If you use
an ON ERROR statement, you must place it at the top of the procedure
just after any LOCAL and CONSTANT declarations. The ON ERROR
statement specifies the action or actions to be taken if an ERROR or
WARNING status is returned. See Section 3.8.4.7 for more information on
ON ERROR statements.

3.8.4.3 The Assignment Statement
The assignment statement assigns a value to a variable. In so doing, it
associates the variable with the appropriate data type.

Syntax

identifier := expression;

Note that the assignment operator is a combination of two characters, a
colon and an equal sign (:_). Do not confuse this operator with the equal
sign (_), which is a relational operator that checks for equality.

VAXTPU does not do any type checking on the data type being stored. Any
data type may be stored in any variable.

Example
x •_ "abc"•

This assignment statement stores the string "abc" in variable x.

3.8.4.4 The Repetitive Statement
The LOOP/ENDLOOP statements specify the repetitive execution of a
statement or statements until the condition specified by EXITIF is met.

Syntax

LOOP
statement 1;
statement 2;

EXITIF expression;
statement n;

ENDLOOP;

The EXITIF statement is the mechanism for exiting from a loop. You
can place the EXITIF statement anywhere inside a LOOP/ENDLOOP
combination. You can also use the EXITIF statement as many times as
you like. When the EXITIF statement is true, it causes a branch to the
statement following the ENDLOOP statement.

The syntax of the EXITIF statement is as follows:

EXITIF expression;

Note that the expression is optional without it, EXITIF always exits the
loop.

3-21

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Any VAXTPU language statement except an ON ERROR statement can
appear inside a LOOP/ENDLOOP combination.

Example

LOOP
EXITIF CURRENT OFFSET = 0;
temp_string := CURRENT_CHARACTER;
EXITIF (temp_string <> " ") AND

(temp_string <> ASCII (9)) ;
MOVE HORIZONTAL (-1);
temp length := temp length + l;

ENDLOOP;

This procedure uses the EXITIF statement twice. Each expression
following an EXITIF statement defines a condition that causes an exit
from the loop. The statements in the loop are repeated until one of the
EXITIF conditions is met.

3.8.4.5 The Conditional Statement
The IF/THEN statement causes the execution of a statement or group
of statements, depending on the Value of a Boolean expression. If the
expression is true, the statement is executed. Otherwise, program control
passes to the statement following the IF/THEN statement.

The optional ELSE clause provides an alternative group of statements for
execution. The ELSE clause is executed if the test condition specified by
IF/THEN is false.

The ENDIF statement specifies the end of a conditional statement.

Syntax

I F expression
THEN

statement 1;

statement n

QELSE
alternate-statement 1;

alternate-statement n;~
ENDIF;

You can use any VAXTPU language statements except ON ERROR
statements in a THEN or ELSE clause.

3-22

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example

PROCEDURE set direct

MESSAGE ("Press PF3 or PF4 to indicate direction");
temp char := READ KEY;
IF temp char = KP5
THEN

SET (REVERSE, CURRENT_BUFFER);
ELSE

IF temp char = KP4
THEN

SET (FORWARD, CURRENT_BUFFER);
ENDIF;

ENDIF;

ENDPROCEDURE;

In this example, nested IF/THEN/ELSE statements test whether a buffer
direction should be forward or reverse.

Caution: Do not assume that the VA►XTPU compiler automatically evaluates
all parts of an IF statement. In future releases, the compiler may
evaluate only as much of an IF statement as needed to determine
if the statement is true or false. For e$ample, if two clauses of an
IF statement are joined with a,n AND operator and one clause is
false, the compiler in future releases may not evaluate the other
clause because the condition will be false in any case. Similarly, if
two clauses of an IF statement are joined with an OR operator and
the one clause is true, the compiler may not evaluate the other
clause.

To avoid the need to rewrite code, you should write as if this compiler
optimization were already implemented. If you need the compiler to
evaluate all clauses of a conditional statement, you should force the
compiler to evaluate each clause before using the conditional statement.
To do so, use each clause in an assignment statement before using it in
a conditional statement. For example, suppose you want the compiler to
evaluate both CLAUSE_1 and CLAUSE_2 in a conditional statement. Tn
get this result, you could use the following code:

relation_1 := clause_1;
relation 2 := clause_2;
IF relation_1 AND relation_2
THEN

ENDIF;

3.8.4.6 The Case Statement
The CASE statement is a selection control structure that allows you to
list several alternate actions and choose one of them to be executed at run
time. In a CASE statement constant values, or case labels, are associated
with the possible executable statements or actions to be performed. The
CASE statement then executes the statement or statements labeled with a
value that matches the value of the case selector.

3-23

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Syntax

CASE case-selector [FROM
lower-constant-expr, TO upper-constant-exprD

[constant-expr 1 [,...~J : statement [,...D;
[constant-expr 2 [,...D] :statement [,...D;

[constant-expr n [,...D] :statement [,...D;

[[INRANGE] : statement [,...~ ;~

[[OUTRANGE] : statement [,...D ;~
ENDCASE;

Note that the single brackets are not optional for case constants.
Example 3-9 shows how to use the CASE statement in a procedure.

CASE constant expressions must evaluate at compile time to either
a keyword, a string constant, or an integer constant. All constant
expressions in the CASE statement must be of the same data type. There
are two special case constants in VAXTPU: INRANGE and OUTI~;ANGE.
IN~;ANGE matches anything that falls within the case range that does not
have a case label associated with it. OUTRANGE matches anything that
falls outside the case range. These special case constants are optional.

FROM and TO clauses of a CASE statement are not required. Note that
if FROM and TO clauses are not specified, INRANGE and OUTRANGE
labels refer to data between the minimum and maximum specified labels.

Example 3-9 shows a sample procedure that uses the CASE statement.

Example 3-9 Procedure Using the CASE Statement

PROCEDURE grades

answers := READ_LINE ("Enter number of correct answers:",5);

answers : = INT (answers) ;

CASE answers FROM 0 TO 10
[10] score :_ "A+"•
[9] score :_ ~~p~~~ .

iiT211 . [8] score :_ L i
nCn. [7] score :_
~~Dn . [6] score :_ r

[0, 1, 2, 3, 4, 5]
[OUTRANGE]

score
score

: _
:_

ttFn .

"Invalid entry. ~~ .

ENDCASE;

MESSAGE (score) ;

ENDPROCEDURE;

This CASE statement compares the value of the constant selector answers
to the case labels (the numbers 0 through 10). If the value of answers
is any of the numbers from 0 through 10, the statement to the right of
that number is executed. If the value of answers is outside the range of 0

3-24

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

through 10, the statement to the right of [OUTR'ANGE] is executed. The
value of score is written in the message area after the execution of the
CASE statement.

3.8.4.7 Error Handling
A block of code starting with ON_ERROR and ending with ENDON_
ERROR defines the actions that are to be taken when a procedure fails
to execute successfully. Such a block of code is called an error handler.
An error handler is an optional part of a VAXTPU procedure or program.
An error handler traps WARNING and ERROR status values. (See SET
(INFORMATIONAL) and SET (SUCCESS) in the VAXTPU Reference
Section for information on handling informational and success status
values.)

It is good programming practice to put an error handler in all but the
simplest procedures. However, if you omit the error handler, VAXTPU's
default error handling behavior is as follows:

• If the user presses CTRL/C, VAXTPU places an error message in the
message buffer, exits normally from all currently active procedures (in
their reverse calling order), and returns to the "wait for next key" loop.

• If an error or warning is generated during a CALL USER routine,
ERROR is set to the keyword representing the failure status of the
routine, ERROR LINE is set to the line number of the error, and
ERROR TEXT is set to the message associated with the error or
warning. VAXTPU places the message in the message buffer, then
resumes execution at the statement after the statement that generated
the error or warning.

• For other errors and warnings, ERROR is set to the keyword
representing the error or warning, ERROR LINE is set to the
line number of the error, and ERROR TEXT is set to the message
associated with the error or warning. VAXTPU places the message in
the message buffer, then resumes execution at the statement after the
statement that generated the error or warning.

In a procedure, the error handler must be placed at the beginning of a
procedure; after the procedure parameter list, the LOCAL or CONSTANT
declarations, if present, and before the body of the procedure. In a
program, the ON_ERROR language statements must be placed after
all the global declarations (PROCEDURE, CONSTANT, and VARIABLE)
and before any executable statements. Error statements can contain any
VAXTPU language statements except other ON ERROR statements.

There are three VAXTPU lexical elements that are useful in an error
handler: ERROR, ERROR_LINE, and ERROR TEXT.

ERROR returns a keyword for the error or warning. The VAXTPU
Reference Section includes information on the possible error and
warning keywords that can be returned by each built-in procedure. (See
Appendix D for an alphabetized list of all the possible return statuses
for VAXTPU and their severity levels. The VMS System Messages
and Recovery Procedures Reference Manual includes all the possible
return statuses for VAXTPU as well as the appropriate explanations and
suggested user actions.)

3-25

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

ERROR LINE returns the line number at which the error or warning
occurs. If a procedure was compiled from a buffer or range, ERROR LINE
returns the line number within the buffer. (This may be different from the
line number within the procedure.) If the procedure was compiled from a
string, ERROR_LINE returns 1.

ERROR TEXT returns the text of the error or warning, exactly as
VAXTPU would display it in the message buffer, with all parameters
filled in.

After the execution of an error statement, you can choose where to resume
execution of a program. The options are the following:

• ABORT This language statement causes an exit back to the
VAXTPU "wait for next key" loop.

• RETLfRN This language statement stops the execution of the
procedure in which the error occurred but continues execution of the
rest of the program.

If you do not specify ABORT or RETURN, the default is to continue
executing the program from the point at which the error occurred.

VAXTPU provides two forms of error handler, procedural and case style.

3.8.4.7.1 Procedural Error Handlers
If a WARNING status is trapped by an ON ERROR statement, the
warning message is suppressed. However, if an ERROR status is
trapped, the message is displayed. The ON ERROR trap allows you to
do additional error handling after the VAXTPU message is displayed.

Syntax

ON_ERROR
statement 1;
statement 2;

statement n;
ENDON_ERROR;

Example 3-10 shows error statements at the beginning of a procedure.
These statements return control to the caller if the input on the command
line of an interface is not correct. Any warning or error status returned by
a statement in the body of the procedure causes the error statements to be
executed.

3-26

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-y 0 Procedure Using the ON_ERROR Statement

~ Gold 7 emulation (command line processing)
!

PROCEDURE command line

LOCAL
line read, x;

ON_ERROR
MESSAGE ("Unrecognized command: + line_read);
RETURN;

ENDON ERROR;
i

! Get the commands) to execute
i

line read := READ LINE ("VAXTPU Statement: "); ! get line from user ' — —

! compile them

IF line_read <> ""
THEN

x := COMPILE (line read);
ELSE

RETURN
ENDIF;

! execute

IF x <> 0
THEN

EXECUTE (x) ;
ENDIF;

ENDPROCEDURE;

The effects of a procedural error handler are as follows:

• If the user presses CTRL/C, VAXTPU places an error message in the
message buffer, exits normally from all currently active procedures (in
their reverse calling order), and returns to the "wait for next key" loop.

• If an error or warning is generated during a CALL USER routine,
ERROR is set to a keyword representing the failure status of the
routine, ERROR LINE is set to the line number of the error, and
ERROR TEXT is set to a warning or error message that is placed in
the message buffer. Finally, VAXTPU runs the error handler code.

• For other warnings and errors, ERROR is set to a keyword
representing the error or warning, ERROR LINE is set to the line
number of the error, and ERROR TEXT is set to the error or warning
message associated with the keyword. VAXTPU places error messages
in the message buffer but suppresses the display of warning messages.
Finally, VAXTPU runs the error handler code.

3-27

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

If an error or warning is generated during execution of a procedural error
handler, VAXTPU behaves as follows:

• If the user presses CTRL/C during the error handler, VAXTPU puts an
error message in the message buffer, exits normally from all currently
active procedures (in their reverse calling order), and returns to the
"wait for next key" loop.

• For other errors and warnings, the appropriate error or warning
message is written to the message buffer. VAXTPU resumes execution
at the next statement after the statement that generated the error.

3.8.4.7.2 Case-Style Error Handlers
Case-style error handlers provide a number of advantages over procedural
error handlers. Case-style error handlers allow you to do the following:

• Suppress the automatic display of both WARNING and ERROR status
messages

• map the TPU$_CONTROLC status

• Write clearer code

Syntax

ON_ERROR
[condition_1]: statement 1;...
[condition_2]: statement 2;...

[condition_n]: statement n;
ENDON_ERROR;

You can use the [OTHERWISE] selector alone in an error handler as a
shortcut. For example, the following two error handlers have the same
effect:

! This error handler uses [OTHERWISE] alone as a shortcut.

ON_ERROR
[OTHERWISE] ;
ENDON_ERROR

! This error handler has the same effect as using
! [OTHERWISE] alone.

ON_ERROR
[OTHERWISE]

LEARN_ABORT;
RETURN (FALSE) ;

ENDON ERROR;

3-28

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-11 from the EVE editor shows a procedure with acase-style
error handler.

Example 3-11 Procedure with acase-Style Error Handler

PROCEDURE eve learn abort

ON—ERROR
[TPU$ CONTROLC]

MESSAGE (ERROR TEXT);
RETURN (LEARN ABORT);

ENDON ERROR;

IF LEARN ABORT
THEN

eve$message (EVE$_LEARNABORT);
RETURN (TRUE);

ELSE
RETURN (FALSE) ;

ENDIF;

ENDPROCEDURE;

If a program or procedure has acase-style error handler, VAXTPU handles
errors and warnings as follows:

• If the user presses CTRL/C, VAXTPU determines whether the error
handler contains a selector labeled TPU$_CONTROLC. If so, VAXTPU
sets ERROR to TPU$_CONTROLC, ERROR LINE to the line that
VAXTPU was executing when CTRL/C was pressed, and ERROR
TEXT to the message associated with TPU$_CONTROLC. VAXTPU
then executes the statements associated with the selector. If there is
no TPU$_CONTROLC selector, VAXTPU exits from the error handler
and looks for a TPU$_CONTROLC selector in the procedures or
program (if any) in which the current procedure is nested. If no TPU$_
CONTROLC selector is found in the conta1n~ng procedures or program,
VAXTPU places the message associated with TPU$_CONTROLC in
the message buffer.

• If an error or warning is generated during a CALL USER routine,
ERROR is set to a keyword representing the failure status of the
routine, ERROR LINE is set to the line number of the error, and
ERROR TEXT is set to the warning or error message associated with
the keyword. VAXTPU then processes the error handler that trapped
the CALL_USER error in the same way that VAXTPU processes
normal case-style error handlers as described below.

• For other warnings and errors, ERROR is set to a keyword
representing the error or warning, ERROR LINE is set to the line
number of the error, and ERROR TEXT is set to the error or warning
message associated with the keyword.

The way acase-style error handler processes an error or warning
depends on how the error handler traps the error. There are three
possible ways, as follows:

— The error handler can trap the error using a selector that
matches the error exactly (that is, using a selector other than
OTHERWISE).

3-29

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

— The error handler can trap the error using the OTHERWISE
selector.

— The error handler can completely fail to trap the error.

The following discussion explains how acase-style error handler
processes an error or warning in each of these circumstances.

If the error or warning is trapped by a selector other than
OTHERWISE, VAXTPU does not place the error or warning message
in the message buffer unless the error handler code instructs it to do
so. In this case, after setting ERROR, ERROR LINE, and ERROR
TEXT, VAXTPU executes the code associated with the selector. If the
code does not return to the calling procedure or program, VAXTPU
checks whether one of the selectors associated with the code just
executed is TPU$_CONTROLC or OTHERWISE. If so, VAXTPU
performs the equivalent of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If not, the error handler terminates and VAXTPU resumes execution
at the next statement after the statement that generated the error o~
warning.

For more information on the special error symbol in VAXTPU, see the
description of the built-in SET (SPECIAL ERROR SYMBOL) in the
VAXTPU Reference Section.

If the error or warning is trapped by the OTHERWISE selector,
VAXTPU writes the associated error or warning message in the
message buffer. Next, VAXTPU executes the code associated with
the OTHERWISE selector. If the code does not return to the calling
procedure or program, VAXTPU performs the equivalent of the
following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE) ;

If the error or warning is not trapped by any selector, VAXTPU writes
the associated error or warning message in the message buffer. Next,
VAXTPU performs the equivalent of the following sequence:

special_error_sym~ol := 0;
LEARN_ABORT;
RETURN (FALSE);

If an error or warning is generated during execution of a case-style error
handler, VAXTPU behaves as follows:

• If the user presses CTRL/C during the error handler, VAXTPU sets
ERROR to TPU$_CONTROLC, ERROR LINE to the line being
executed when CTRL/C was pressed, and ERROR TEXT to the
message associated with TPU$_CONTROLC.

3-30

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

If one of the case selectors in the error handler is TPU$_CONTROLC,
VAXTPU executes the code associated with the selector. If the code
does not return to the calling procedure or program, VAXTPU performs
the equivalent of the following sequence:

special__~rror_symbol : = 0;
LEARN_ABORT;
RETURN (FALSE) ;

If none of the selectors is TPU$_CONTROLC, then VAXTPU exits
from the error handler and looks for a TPU$_CONTROLC selector
in the procedures or program (if any) in which the current procedure
is nested. If VAXTPU does not find a TPU$_CONTROLC selector in
the containing procedures or program, VAXTPU places the message
associated with TPU$_CONTROLC in the message buffer.

• If the error is not due to the user pressing CTRIJC, the error message
is written to the message buffer and VAXTPU performs the equivalent
of the following sequence:

special_error_symbol := 0;
LEARN_ABORT ;
RETURN (FALSE) ;

In a procedure with acase-style error handler, an ABORT statement
produces the same effect as the sequence CTRL/C, with one exception. An
ABORT statement in the TPU$_CONTROLC clause of a case-style error
handler does not reinvoke the TPU$_CONTROLC clause, as is the case
when CTRL/C is pressed while TPU$_CONTROLC is executing. Instead,
an ABORT statement causes VAXTPU to exit from the error handler and
look for a TPU$_CONTROLC selector in the procedures or program (if
any) in which the current procedure is nested. If VAXTPU does not find
a TPU$_CONTROLC selector in the containing procedures or program,
VAXTPU places the message associated with TPU$_CONTROLC in the
message buffer.

3.8.4.7.3 CTRL/C Handling
The ability to trap a CTRL/C in your VAXTPU program is both powerful
and dangerous. When a user presses CTRL/C, the user usually wants the
application that is running to prompt for a new command. The ability
to trap the CTRL/C is intended to allow a procedure to clean up and exit
gracefully, not to thwart the user.

3.8.4.8 The RETURN Statement
This statement causes a return to the procedure that called the current
procedure or program. The return is to the statement following the
statement that called the current procedure or program. You can
specify an expression after the RETURN statement and the value of
this expression is passed to the calling procedure.

3-31

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Syntax

RETURN expression;

Note that the expression is optional; if it is missing, VAXTPU supplies a 0.
Also, the return statement itself is optional. That is, if VAXTPU reaches
the endprocedure of a procedure before encountering a return statement,
it will return 0.

Example 3-12 shows a sample procedure in which a value is returned to
the calling procedure.

Example 3-12 Procedure That Returns a Value

PROCEDURE user_get_shift_key

LOCAL key_to_shift; ! Keyword for key pressed after shift key

SET (SHIFT KEY, LAST_KEY) ;
key_to_shift := KEY_NAME (READ—KEY, SHIFT_KEY);
RETURN key_to_shift;

ENDPROCEDURE;

In addition to using RETURN to pass a value, you can use a 1(true) or a 0
(false) with the RETURN statement to indicate the status of a procedure.
Example 3-13 shows this usage of the RETURN statement.

Example 3-13 Procedure Returning a Status

PROCEDURE user at end of line

! This procedure returns a 1 (true) if user is at the end of a
! line, or a 0 (false) if the current character is not at the
! end of a line

ON_ERROR
! Suppress warning message

RETURN (1) ;
ENDOW—ERROR;

IF CURRENT_OFFSET = LENGTH (CURRENT LINE)
THEN

RETURN (1) ;
ELSE

RETURN (0 } ;
ENDIF;

ENDPROCEDURE;

The RETURN statement is often used in the ON ERROR section of a
procedure to specify a return to tl~e calling procedure if an error occurs in
the current procedure. Example 3-14 uses the RETURN statement in an
ON ERROR section.

3-32

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Example 3-14 Using RETURN in an ON_ERROR Section

~ Attach to the parent process. Used when EVE is spawned
! from DCL and run in a subprocess ("kept VAXTPU"). The
! ATTACH command can be used for more flexible process control.

PROCEDURE eve_attach

ON—ERROR
IF ERROR = TPU$_NOPARENT
THEN

MESSAGE ("Not running VAXTPU in a subprocess");
RETURN;

ENDIF;
ENDON ERROR;

ATTACH;

ENDPROCEDURE;

3.8.4.9 The ABORT Statement
The ABORT statement stops any executing procedures and causes
VAXTPU to wait for the next keystroke. ABORT is commonly used in
error handlers. For additional information on using ABORT in error
handlers, see Section 3.8.4.7.

Syntax

ABORT

Example 3-15 shows a simple error handler containing an ABORT
statement.

Example 3-15 Simple Error Handler

ON_ERROR
MESSAGE ("Aborting procedure because of error.");
ABORT ;

ENDON ERROR;

3.8.4.10 Miscellaneous Declarations
This section describes the VAXTPU language declarations
EQUIVALENCE, LOCAL, CONSTANT, and VARIABLE.

3.8.4.10.1 EQUIVALENCE Statement
The EQUNA.LENCE statement lets you create synonyms. Equivalences
work only when both the real_name and the synonym name are defined
at the same time. You cannot save a section file containing the real_
name and then later use that section file to extend code which uses
an EQUIVALENCE of the saved name. To avoid problems, include all
EQUIVALENCE statements in the same compilation unit where the real_
name is defined. Alternatively, the equivalences can reside in different
compilation units, but all of the compilation units must be used when
building the section file from scratch. If you use a base section file that
you extend interactively, you cannot make equivalences to procedures or
variables defined in the base section file.

3-33

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

Syntax

EQUIVALENCE synonym_namel = real_namel ,
synonym_name2 = real_name2, ...;

Elements of the EQUIVALENCE Statement

real_name
A user-defined global variable or procedure name. If real_name is
undefined, VAXTPU defines it as an ambiguous name. This ambiguous
name can become a variable or procedure later.

synonym_name
A name to be defined as a synonym for the real_name.

..
3.8.4.10.2 LOCAL

This declaration is used to identify certain variables as local variables
rather than global variables. All variables are considered to be global
variables unless you explicitly use the LOCAL statement to identify them
as local variables. The LOCAL declaration in a procedure is optional. It
must be specified after the PROCEDURE statement and before any ON
ERROR statement. LOCAL declarations and CONSTANT declarations can
be intermixed.

The maximum number of local variables you can declare in a procedure is
255. Local variables are initialized to 0.

Syntax

LOCAL
variable-name Q,...D;

Local variables may also be declared in unbound code. Such variables are
accessible only within that unbound code.

Unbound code can occur in the following places:

• Module initialization code. This occurs after all procedure declarations
within a module but before the ENDMODULE statement.

• Executable code. This occurs after all module and procedure
declarations in a file but before the end of file.

Example

The following example shows a complete compilation unit. This unit
contains a module named mmm that in turn, contains a procedure bat
and some initialization code mmm_module_init, aprocedure bar defined
outside the module, and some unbound code at the end of the file. In
each of these sections of code, a local variable x is defined. The variable is
displayed using the MESSAGE built-in.

MODULE mmm IDENT "mmm"

PROCEDURE bat; ! Declare procedure "bat" in module "mmm"

LOCAL
x; ! "x" is local to procedure "bat"

x :_ "Within procedure bat, within module mmm";
MESSAGE (x);

ENDPROCEDURE; ! End procedure "bat"

~~

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

LOCAL
x; ! "x" is local to

! procedure "mmm module_init"

x :_ "Starting or ending the module init code";
MESSAGE (x) ;
bat;
MESSAGE (x) ;

ENDMODULE;

PROCEDURE bar

LOCAL
x;

! End module "mmm"

! Declare procedure "bar"

! "x" is local to procedure "bar"

x :_ "In procedure bar, which is outside all modules";
MESSAGE (x) ;

ENDPROCEDURE; ! End procedure "bar"

LOCAL
x; ! "x" is local to the unbound code...

x :_ "Starting or ending the unbound, non-snit code";
MESSAGE (x);
mmm module_init;
bat;
bar;
MESSAGE (x) ;
EXIT;

If this code is included in a file TEMP.TPU, the following DCL command
demonstrates the scope of the various local variables:

$ EDIT/TPU/NOSECTION/NOINITIALIZE/NODISPLAY/COMMAND=temp.tpu
42 lines read from file TEMP .TPU; 1
Starting or ending the unbound, non-init code
Starting or ending the module init code
Within procedure bat, within module mmm
Starting or ending the module init code
Within procedure bat, within module mmm
In procedure bar, which is outside all modules
Starting or ending the unbound, non-init code

3.8.4.10.3 CONSTANT
This declaration is used to associate a name with certain constant
expressions. The constant expression must evaluate at compile time to
a keyword, a string, an integer, or an unspecified constant value. The
maximum length of a string constant allowed in a constant declaration is
about 4000 characters in length. VAXTPU sets up some predefined global
constants. See Section 3.8.3 for a list of predefined constants.

Constants can either be globally or locally defined. Global constants are
constants declared outside procedure declarations. Once a global constant
has been defined, it is set for the life of the VAXTPU session. An attempt
to redefine a constant will succeed only if the constant value is the same.

Local constants are constants declared within a procedure. A local
CONSTANT declaration must be specified after the PROCEDURE
statement and before any ON_ERROR statement. LOCAL statements
and CONSTANT statements can be intermixed.

Syntax

CONSTANT
constant-name := compile-time-constant-expression Q,...~;

3-35

Lexical Elements of the VAXTPU Language
3.8 Reserved Words

3.8.4.10.4 VARIABLE
This declaration is used to identify certain variables as global variables.
Any symbols that are neither declared nor used as the target of an
assignment statement before being referenced by VAXTPU are assumed to
be undefined procedures. The VARIABLE declaration must be used outside
a procedure declaration. Global variables are initialized to unspecified.

Syntax

VARIABLE
variable-name Q,...~;

3.9 Lexical Keywords
The following two sections explain the VAXTPU lexical keywords and how
to use them for:

• Conditional compiling

• Specifying the radix of numeric constants

3.9.1 Conditional Compilation
The following lexical keywords control what code is compiled under
different conditions:

• %IF

• %IFDEF

• %THEN

• %ELSE

• %ENDIF

Syntax

Conditional compilation lexical keywords are used in a manner similar to
ordinary IF/THENEELSE/ENDIF statements. The syntax is as follows:

%IFDEF variable_or~roc name %THEN ... [%ELSE ...] %ENDIF

or

%IF boolean_expression %THEN ... [%ELSE ...] %ENDIF

Description

If you use the %IFDEF structure, specify variable orproc_name as the
name of a VAXTPU procedure or variable. IFDEF is a statement that
says: ~~ if a variable or procedure with this name is defined. ~~ If the name is
defined, the compiler compiles the code marked by %THEN. If the name is
not defined, the compiler compiles the code marked by %ELSE.

3-36

Lexical Elements of the VAXTPU Language
3.9 Lexical Keywords

If you use the %IF structure, specify boolean expression as either a
numeric constant or a defined global variable whose value is an integer.
Any odd value is true and any even value is false. If the variable or
constant contains a value that is odd, the compiler compiles the code
marked by %THEN. If the variable or constant contains a value that is
even, the compiler compiles the code marked by %ELSE.

You do not have to put conditional compilation lexical keywords at the
beginning of a line. You can nest conditional statements to a depth of
2**32-1.

Example

ON_ERROR
[TPU$ CREATEFAILJ :

oIF eve$x_option_decwindows
oTHEN

IF eve$x_decwindows active
THEN

eve$popup message (MESSAGE—TEXT (EVE$—CANTCREADCL, 1));
ELSE

eve$message (EVE$_CANTCREADCL);
ENDIF;

ELSE
eve message (EVE$—CANTCREADCL);

%ENDIF
eve$learn_abort;
RETURN (FALSE) ;

[OTHERWISE]:

ENDON ERROR;

This ON_ERROR procedure determines whether a popup message widget
or a simple message is used, depending on whether the code is being
compiled by a DECwindows version of VAXTPU.

3.9.2 Specifying the Radix of Numeric Constants
You can specify constants with binary, octal, hexadecimal, and decimal
radices.

To specify a numeric constant in binary, precede the number with %B. The
number can consist only of digits 0 and 1.

To specify a numeric constant in octal, precede the number with %O. The
number can consist only of digits 0 through 7.

To specify a numeric constant in hexadecimal, precede the number with
%X. The number can consist of digits 0-9 and A—F.

There is no radu~ specifier for decimal. Any numeric constant without an
explicit radix specifier is assumed to be decimal. The radix specifier may
be in uppercase or lowercase.

3-37

Lexical Elements of the VAXTPU Language
3.9 Lexical Keywords

Examples

The following are examples of correct numeric constants:

! Many different ways of saying the same thing.

CONSTANT binary constant :_ %b11111;
CONSTANT octal_constant :_ %037;
CONSTANT decimal_constant := 31;
CONSTANT hex_constant :_ %xlf;
i

~ Compile time expressions work, too.
!
CONSTANT negat~ve_value :_ -%xlf;
CONSTANT strange_zero := hex_constant - %xlf;

Invalid constructs for numeric constants return the error level message
TPU$_UNKLEXICAL, ~~ Unknown lexical element ~~ during compilation.
The following examples are not valid:

constant bad binary :_ %b123;
constant bad_hex :_ %xl0abg;
constant not a radix :_ %z0123;

! only 0's and 1's are legal.
! 'g' is illegal digit.
! No such radix.

3-38

4 VAXTPU Program Development

Previous sections have described the lexical elements of the VAXTPU
language, such as data types, language statements, expressions, built-
in procedures, and so on. This section describes how to combine these
elements in VAXTPU programs. VAXTPU programs can be used to
perform editing tasks, to customize or extend an existing application,
or to implement your own application layered on VAXTPU.

For information on calling VAXTPU from a program written in another
programming language, see the VMS Utility Routines Manual.

Before you start writing programs to customize or extend an existing
application, be very familiar with the VAXTPU source code that creates
the editor or application that you want to change. For example, if you use
the Extensible VAX Editor (EVE) and you want to change the size of the
main window, you must know and use the procedure name that EVE uses
for that window. (If you were changing the main window, you would use
the procedure name eve~$main_window. Many of the EVE Variables and
procedure names begin with eves.)

The sample procedures and syntax examples in this book use uppercase_
letters for items that you can enter exactly as shown. VAXTPU reserved
words, such as built-in procedures, keywords, and language statements,
are shown in uppercase. Lowercase items in a syntax example or sample
procedure indicate that you must provide an appropriate substitute for
that item.

This section discusses the following topics:

• Creating VAXTPU programs

• Creating DECwindows VAXTPU programs

• writing code compatible with DECwindows EVE

• Comp' 'ng VAXTPU programs

• Executing VAXTPU programs

• Using VAXTPU startup files

• Debugging VAXTPU programs

4.1 Creating VAXTPU Programs
When you write a VAXTPU program, keep the following pointers in mind:

• You can use EVE or some other editor to enter or change the source
code of a program in the VAXTPU language.

• A program can be a single executable statement or a collection of
executable statements.

4-1

VAXTPU Program Development
4.1 Creating VAXTPU Programs

• You can use executable statements either within procedures or outside
procedures. You must place all procedure declarations before any
executable statements that are not in procedures.

• You can enter VAXTPU statements from within EVE by using the EVE
command TPU. For more information on using this command, see the
command description in the VMS EVE Reference Manual or see the
Guide to VMS 2~xt Processing.

4.1.1 Simple Programs
The following statement is an example of a simple program:

SHOW (SUMMARY) ;

The preceding statement, entered after the appropriate prompt from your
editor, causes VAXTPU to execute the program associated with the SHOW
(SUMMARY) statement. If you use EVE with auser-written command
file, your screen may display text similar to Example 4-1:

Example 4-1 SHOW (SUMMARY) Display

VAXTPU V2.6 1990-06-03 03:31

Journal file : LCLD$: [DOC . SRC] GET_INFO. TJL; 1

Section file: TPU$SECTION

Section file was image activated
Timer Message: working

20 System buffers and 7 User buffers
3768 calls to LIB$GET VM, 360 calls to LIB$FREE VM, 831528 bytes still allocated

4.1.2 Complex Programs
When writing complex VAXTPU programs, avoid the following practices:

• Creating very large procedures

• Creating a very large number of procedures

• Including large numbers of executable statements that are not within
procedures

These practices, if carried to extremes, can cause the parser stack to
overflow.

The VAXTPU parser currently allows a maximum stack depth of 1000
syntax tree nodes. When the parser first encounters a VAXTPU statement,
the parser assigns each token in the statement to a syntax tree node.
For example, the statement "a := 1" contains three tokens, each of which
occupies a syntax tree node. After the parser parses this statement, only
the assignment statement remains on the stack of nodes. The a and the 1
are subtrees to the assignment syntax tree node.

4-2

VAXTPU Program Development
4.1 Creating VAXTPU Programs

The most common cause of stack overflow, which is signaled by the status
TPU$_STACKOVER, is creating one or more large procedures whose
statements occupy too many syntax tree nodes. To make your program
manageable by the parser, break the large procedures into smaller ones.

Other possible reasons for a TPU$_STACKOVER condition are that you
have too many statements that are not in procedures, or that you have too
many small procedures. If you have too many small procedures, you must
either consolidate them or break them into separate files.

To see an example of a complex VAXTPU program, you can examine the
source files that implement EVE. The EVE source code files, located in
SYS$Ex;AMPLES:EVE$*.*, contain many procedure declarations and
executable statements spec' g EVE's screen layout and display. These
files also contain key definitions specifying which editing operations are
performed when you press certain keys on the keyboard. You can examine
these files to learn the programming techniques that were used to create
EVE.

See Section 4.6 for information on using a command file or section file to
create or customize an application layered on VAXTPU. See Appendix G
for information on using the EVE$BUILD module to layer applications on
top of EVE.

4.1.3 Program Syntax
The rules for writing VAXTPU programs are very simple. You must use a
semicolon to separate each executable statement from other statements. In
a program, you must place all procedure declarations before any executable
statements that are not part of a procedure declaration. For information
on VAXTPU data types, see Chapter 2. For information on VAXTPU
language elements, see Chapter 3. Example 4-2 shows the correct syntax
for a VAXTPU program.

Example 4-2 Syntax of a VAXTPU Program

PROCEDURE

ENDPROCEDURE

PROCEDURE;

ENDPROCEDURE;

PROCEDURE

ENDPROCEDURE;

(continued on next page)

4-3

VAXTPU Program Development
4.1 Creating VAXTPU Programs

Example 4-2 (Cunt.) Syntax of a VAXTPU Program

statement 1;
statement 2;

statement n;

A variety of syntactically correct VAXTPU programs is shown in
Example 4-3.

Example 4-3 Sample VAXTPU Programs

Program 1
This program consists of a single VAXTPU built-in procedure.

SHOW (KEYWORDS) ;

! Program 2
! This program consists of an assignment statement that
! gives a value to the variable video_attribute

video attribute := UNDERLINE;

! Program 3
! This program consists of the VAXTPU LOOP statement (with
~ a condition for exiting) and the VAXTPU built-in procedure ERASE_LINE.

x := 0; LOOP x :=x+1; EXITIF x > 100; ERASE LINE; ENDLOOP;

! Program 4
~ This program consists of a single procedure that makes
! VAXTPU quit the editing session.

PROCEDURE user_quit
QUIT; ! do VAXTPU quit operation

ENDPROCEDURE;

! Program 5
~ This program is a collection of procedures that
~ 11 ~~ 11 11 11 • 11 makes VAXTPU accept e , ex , or exi as
! the command for a VAXTPU exit operation.

PROCEDURE e
EXIT;

ENDPROCEDURE;

PROCEDURE ex
EXIT;

ENDPROCEDURE;

PROCEDURE exi
EXIT;

ENDPROCEDURE;

! do VAXTPU exit operation

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2 Programming in DECwindows VAXTPU
This section provides information about programming with DECwindows
VAXTPU.

4.2.1 Widgets Supported by DECwindows VAXTpU
DECwindows VAXTPU enables you to create widgets from within VAXTPU
programs by using the CREATE WIDGET built-in. For information about
how to use widgets to create a DECwindows text processing interface, see
the XUI Style Guide and the VMS DECwindows Guide to Application
Programming. For information about the characteristics of specific
widgets, see the VMS DECwindows ?bolkit Routines Reference Manual.

Using the CREATE WIDGET built-in, you can create the following
widgets in VAXTPU:

• Caution box

• Dialogbox

• File selection

• Label

• List box

• Main_window

• Menu bar

• Popup_attached db

• Popup_dialo~bog

• Popup menu

• Pulldown entry

• Pulldown menu

• Push button

• Scroll bar (vertical and horizontal)

• Separator

• Simple text

• Toggle button

4.2.2 Input Focus Support in DECwindows VAXTPU
In VMS DECwindows, at most one of the applications on the screen can
have the input focus; that is, can accept user input from the keyboard.
For more information about the input focus, see the XUI Style Guide.

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

DECwindows VAXTPU automatically grabs the input focus whenever the
user causes an unmodified MIDOWN event (that is, an event not modified
by SHIFT, CTRL, or other modifying key) while the pointer cursor is i,n
either of the following locations:

• VAXTPU's main window widget

• VAXTPU's title bar

When DECwindows VAXTPU grabs input focus or when an application
layered on VAXTPU requests input focus, DECwindows assigns the input
focus to VAXTPU only if and when it is possible to do so. Therefore, your
application should use the GET INFO (SCREEN, "input focus") built-in
to test whether it actually has the input focus before performing any
operation that requires the input focus.

Digital recommends that you use only a DECwindows section file with
DECwindows VAXTPU. (Note that all versions of EVE shipped with
VMS V5.1 or later are compatible with DECwindows and are suitable for
building DECwindows section files.) However, if you do not follow this
recommendation, VAXTPU's automatic grabbing of the input focus allows
your layered application to interact with other DECwindows applications.

4.2.3 Global Selection Support in DECwindows VAXTPU
Global selection in VMS DECwindows is a means of preserving
information selected by the user so the user's selection, or data about
the user's selection, can be passed between DECwindows applications.
Each DECwindows application can own one or more global selections.

4.2.3.1 Difference Between Global Selection and Clipboard
A global selection differs from the clipboard in that the global selection
changes dynamically as the user changes the select range, while the
contents of the clipboard remain unchanged until the user uses a command
(such as EVE's STORE TEXT command) that sends new information to
the clipboard. Note that by default EVE does not use the clipboard.

4.2.3.2 Handling of Multiple Global Selections
At any particular time, a global selection is owned by at most one
DECwindows application; a global selection can also be unowned. A
DECwindows application can own mare than one global selection at the
same time. For example, an application layered on VAXTPU can own
both the primary and secondary global selections. The DECwindows
server determines which application currently owns which global selection.
Information about a global selection property may be stored in different
formats, but the format of a particular property must be the same for all
DECwindows applications. VAXTPU directly accepts information that is
stored in integer or string format. VAXTPU handles information in other
formats by describing the information in an array. For more information
about this array, see the descriptions of the built-ins GET GLOBAL_
SELECT and WRITE_GLOBAL_SELECT in the VAXTPU Reference
Section.

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

Global selections are identified in VAXTPU either as strings or keywords.
While DECwindows provides for many global selections, applications
conforming to the XUI Style Guide are concerned with only two selections,
the primary and secondary selections. VAXTPU provides a pair of
keywords (PRIMARY and SECONDARY) to refer to these selections.
VAXTPU also provides built-in procedures that allow layered applications
to manipulate global selection information.

You can refer to other global selections by specifying a string instead of the
keywords PRIMARY and SECONDARY. For example, if your application
has a global selection whose name is auxiliary, specify the selection using
the string "auxiliary". Note that selection names are case sensitive; the
string "auxiliary ~~ does not refer to the same global selection as the string
~~AUxI~IARY~~ .

4.2.3.3 Relation of Global Selection to input Focus in DECwindows VAXTPU
An application that conforms to the XUI Style Guide requests ownership of
the primary global selection in its input focus grab procedure. Regardless
of whether the application conforms, when VAXTPU obtains the input
focus, it automatically grabs the primary global selection if it is not already
the owner. An application cannot prevent VAXTPU from attempting to
assert ownership of the primary global selection when VAXTPU receives
the input focus. If VAXTPU obtains the primary selection by grabbing
ownership itself, VAXTPU automatically executes the application's global
selection grab routine if one is present. If you are writing an application
that conforms to the XUI Style Guide and you find that VAXTPU has had
to grab ownership of the primary selection itself and execute the global
select grab routine, your application may have a design problem.

4.2.3.4 DECwindows VAXTPU's Response to Requests for Information About the
Global Selection

VAXTPU provides athree-level hierarchy for responding to requests
from another application for information about the current selection.
Applications layered on VAXTPU may specify a routine that responds
to requests for information about global selections either for the entire
application or for one or more buffers in the application. When VAXTPU
receives a request for information, it checks whether there is a routine for
the current buffer that responds to information about global selections. If
no buffer-specific routine is available, VAXTPU checks for an application-
wide routine. If no application-wide routine is available, VAXTPU
attempts to respond to the request itself, but it can only respond to a
limited number of requests. It provides information about the primary
selection and provides information about the file name, font, line number,
and text. VAXTPU responds to all other requests with a message that
no information is available. Note that VAXTPU itself does not send
requests for information about the global selection to other DECwindows
applications. VAXTPU applications may do so using the various built-ins.

4-7

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

VAXTPU's responses to requests for information about the primary
selection are as follows:

~~ FILE_NAME ~~ VAXTPU responds with the string returned by the built-in
procedure GET INFO (CURRENT BUFFER, ~~file name~~).

~~ FONT" VAXTPU responds with the string returned by the built-in
procedure GET INFO (SYSTEM, ~~default font~~).

~~LINE_NUMBER~~ VAXTPU responds with the value of type span containing the
record number where the select range starts and the record
number where the select range ends.

"TEXT" or VAXTPU responds with the text of the select range as a
"STRING" string, with each line break represented by a line feed.

Digital recommends that you not use anon-DECwindows section
file with DECwindows VAXTPU. However, if you do not follow this
recommendation, VA►XTPU's automatic grabbing of the primary
global selection allows your layered application to interact with other
DECwindows applications. If an application requests information about
the primary global selection while VAXTPU owns the selection, VAXTPU
attempts to respond to the request if the application cannot do so. If
VAXTPU responds to the request by sending the text of a buffer or range,
VAXTPU converts the buffer or range to a string, converts line breaks to
line feeds, and inserts padding blanks before text to fill any unoccupied
space between the margins. If neither the application nor VAXTPU can
respond to the request, VAXTPU informs DECwindows that the requested
information is not available.

VAXTPU does not automatically grab the secondary selection. Layered
applications are responsible for handling this selection.

4.2.4 Using Callbacks in DECwindows VAXTPU
This section presents background information on the DECwindows concept
of callbacks and explains how DECwindows VAXTPU implements this
concept.

4.2.4.E Background on DECwindows Callbacks
A callback is a mechanism used by a DECwindows widget to notify an
application that the widget has been modified in some way. DECwindows
applications have one or more callback routines that define what the
application does in response to the callback.

For more information about the use of callbacks and callback routines in
DECwindows programs, see the VMS DECwindows Guide to Application
Programming.

Callbacks can pass values known as closures, which are strings or
integers whose function depends on the application you are writing. Note
that closures are referred to as tags in DECwindows documentation.
For more information about what closures are and how to use them, see
Section 4.2.5.

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.4.2 Understanding the Difference Between VAXTPU's Internally-Defined Callback
Routines and a Layered Application's Callback Routines

VAXTPU implements the DECwindows concept of callback routines by
providing internally-defined routines that deliver the information obtained
from a widget's callback to a layered application. These routines are
referred to as "internally-defined VAXTPU callback routines."

Note that when a widget calls back to VAXTPU, VAXTPU packages the
callback information, adds the information to its input queue, and returns
to the widget. VAXTPU may not process the callback packet on its input
queue until some time later. As a result, the information about the widget
that VAXTPU gets from the callback may not match the information
returned by the built-in GET INFO (widget variable, ~~ widget info ~~).

When VAXTPU processes the callback packet, it executes the program or
learn sequence that was associated with the widget, using the CREATE_
WIDGET built-in or the SET (WIDGET CALLBACK) built-in. This
program or learn sequence controls what the application does in response
to the callback information passed by the VAXTPU callback routines. An
application's callback routines are referred to as "application-level callback
action routines."

The following subsections present information on internally-defined
VAXTPU callback routines first, and then present information on
application-level callback action routines.

4.2.4.3 Using Internally-Defined VAXTPU Callback Routines with UIL
VAXTPU declares two internally-defined callback routines to the X
Resources Manager (:ARM) to handle incoming callbacks and dispatch
them to the layered application:

• TPU$WIDGET INTEGER CALLBACK —Use this routine as the
callback routine for all callbacks that have an integer closure.

• TPU$WIDGET STRING CALLBACK —Use this routine as the
callback routine for all callbacks that have a string closure.

Note that although DECwindows allows you to specify a different callback
routine for each reason that a widget can call back, DECwindows VAXTPU
does not support this capability. Instead, it provides only the two callback
rnutines mentioned.

Use these callback routines only if you are spe ' ' ng a widget's callback
resources in a User Interface Language (UIL) file. When a widget is part
of an X Resource Manager hierarchy, do not include callback resource
names or values in the array you pass to SET (WIDGET). Instead, specify
one of the two internally defined callback routines in the UIL file.

4~-9

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.4.4 Using Internally-Defined VAXTPU Callback Routines with Widgets Not Defined
by UIL

Although the SET (WIDGET) built-in allows you to specify values for
various resources of a widget, there are restrictions on specifying values
for callback resources of widgets. When a widget is not part of an XUI
Resource Manager hierarchy, specify the names of the callback resources
in the array you pass to SET (WIDGET), and specify 0 as the value of each
such callback resource. VAXTPU automatically substitutes its common
callback entry point for the 0 value. Note that a widget calls back only for
those reasons specified in the widget's argument list. If a reason is omitted
from the list, the corresponding event does not cause a callback.

4.2.4.5 Using Application-Level Callback Action Routines
When VAXTPU receives a widget callback, it identifies and executes the
layered application procedure or learn sequence that has been designated
as the callback action routine. You can designate a procedure or learn
sequence as a callback action routine either when the widget is created,
using the built-in CREATE_WIDGET, or at some later time, using the
built-in SET (WIDGET_CALLBACK). Note that when you specify an
application-level callback program or learn sequence with CREATE_
WIDGET or SET (WIDGET CALLBACK), all widgets in the same X
Resource Manager hierarchy have the same callback program or learn
sequence. Therefore, the callback program or learn sequence must have a
mechanism for handling all possible callback reasons.

4.2.4.6 Callable Intertace-Level Callback Routines
If you are layering an application on VAXTPU or on EVE, you can specify
callable interface-level callback routines only if you are spec' g a
widget's callback resources in a User Interface Language (UIL) file.

Callbacks can pass values known as closures, which are strings or
integers whose function depends on the application you are writing.
Note that DECwindows documentation refers to closures as tags. For
more information about what closures are and how to use them, see
Section 4.2.5.

You use the VAXTPU callable interface routine TPU$WIDGET INTEGER
CALLBACK as the callback routine for all callbacks that have an integer
closure and the VAXTPU routine TPU$WIDGET STRING_CALLBACK for
all callbacks that have a string closure.

Although the SET (WIDGET) built-in allows you to specify values for
various resources of a widget, there are restrictions on specifying values
for callback resources of widgets. When a widget is part of an XUI
Resource Manager hierarchy, do not include callback resource names
or values in the array you pass to SET (WIDGET). Instead, specify
the callback routine in the UIL file. When a widget is not part of an X
Resource Manager hierarchy, specify the names of the callback resources
in the array you pass to SET (WIDGET), and specify 0 as the value of each
such callback resource. VAXTPU automatically substitutes its common
callback entry point for the 0 value. Note that a widget calls back only for
those reasons specified in the widget's argument list.. If a reason is omitted
from the list, the corresponding event does not cause a callback.

4-10

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.5 Using Closures in DECwindows VAXTPU
DECwindows allows you to specify a closure value for a widget. Note that
DECwindows documentation refers to closures as tags. DECwindows
does not define what a closure value is; a closure is simply a value that
DECwindows understands how to recognize and manipulate so that a
DECwindows application programmer can use the value if needed in the
application. For general information about using closures in DECwindows,
see the VMS DECwindows Guide to Application Programming.

When a widget calls back to the DECwindows application, the callback
parameters include the closure value assigned to the widget. DECwindows
allows the application to define the significance and possible values of the
closure.

VAXTPU supports closure values of type string and integer. Closure values
are optional for widgets used by applications layered on VAXTPU. If you do
not specify a closure value, the built-in GET_INFO (WIDGET, ~~ callback
parameters~~, array) returns unspecified in the "closure" array element.
If you create a widget without using a UIL file, the built-in GET_INFO
(WIDGET, ~~ callback_parameters ~~ , array) returns the closure you specified
as a parameter to CREATE WIDGET. If you create a widget using a UIL
file, the built-in GET INFO (WIDGET, ~~ callback_parameters ~~ , array)
returns the closure value (if any) defined in the XUI Resource Manager. If
none is defined, the built-in returns unspecified.

VAXTPU leaves it to the layered application to use the closure in any
way the application programmer wishes. VAXTPU passes through to the
application any closure value received as part of a callback.

DECwindows EVE provides an example of how an application can use
closure values. DECwindows EVE assigns a unique closure value to every
widget instance that can be created during an EVE editing session. Each
closure value corresponds to something that EVE must do in response to
the activation of that particular widget. When an event causes VAXTPU to
execute EVE's main callback program, the built-in GET INFO (WIDGET,
~~ callback parameters ~~ , array) returns the widget activated, the reason
code (the reason the widget is calling back), and the closure associated
with the particular widget instance. EVE's main callback program
contains an array that is indexed with values identical to the widget
closure values. Each array element contains a pointer to the EVE code
to be executed in response to the corresponding widget's callback. EVE's
callback program uses the closure value to locate the appropriate array
index so the correct EVE routine can be executed in response to the
callback.

If your layered application does not use EVE's callback program, then
its callback program or learn sequence must have a mechanism for
determining which widget is calling back and which application code
should be executed as a result.

4-11

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.6 Specifying Values for Widget Resources in DECwindows VAXTPU
This section discusses techniques for specifying values for widget
resources.

4.2.6.1 VAXTPU Data Types for Specifying Resource Values
VAXTPU supports the following data types with which to specify values
for widget resources:

• String

• Array of strings

• Integer

VAXTPU converts the value you specify into the data type appropriate
for the widget resource you are setting. Table 4-1 shows the relationship
between VAXTPU data types for widget resources and DECwindows data
types for widget resources.

Table 4-1 Correspondence Between VAXTPU Data Types and
DECwindows Argument Data Types

DECwindows Argument Data Type VAXTPU Data Type

Array of strings Array of strings

Boolean Integer

Callback Integer (o)
Compound string String

Compound string table Array of strings

Dimension Integer

Integer Integer

Position Integer

Short Integer

String String

Unsigned character Integer

VAXTPU does not support setting values for resources (such as pixmap,
color map, font, icon, widget, and so on) whose data types are not listed in
this table.

When you pass an array specifying values for a widget's resources using
CREATE_WIDGET or SET (WIDGET), VAXTPU verifies that each array
index is a string corresponding to a valid resource name for the specified
widget. VAXTPU also verifies that the data type of the value you specify
is valid for the specified resource.

4-12

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

4.2.6.2 Specifying a List as a Resource Value
List box and file selection widgets manipulate lists. For example, the file
selection widget manipulates a list of files. The widget resource that stores
such a list is specified to VAXTPU using an array.

To handle an array that passes a list to a widget, DECwindows must
know how many elements the array contains. For example, if you, the
application programmer, set the value of the "items" resource of a list box
widget to point to a given array, DECwindows does not handle the array
successfully unless the list box widget's "itemsCount" resource contains
the number of elements in the array.

However, you do not necessarily know how many elements the array has
at a given moment. To help you pass arrays, VAXTPU has a convention
for referring to widget resources. If you follow the convention, VAXTPU
will handle the resource that stores the number of array elements. The
following paragraphs discuss the naming convention in more detail.

When you use the VAXTPU built-in procedure SET (WIDGET) to pass
a list to a widget, specify both the list name and the list count resource
in the same array index, separated by a line feed (ASCII (10)). The
array element should be the array that is to be passed. For example, to
specify the "items" resource to the list box widget, use code similar to the
following:

linefeed := ASCII (10) ;
resource array {"items" + line feed + "itemsCount"}:=list_array;

The line-feed character, ASCII (10), is a delimiter separating two resource
names.

VAXTPU automatically generates two resource entries. The first is the
array of strings specifying the data to the list box for the "items" resource.
The second is the count of elements in the array for the "itemsCount"
resource.

To get resource values from a widget, use the following statement:

GET_INFO (widget, "WIDGET_INFO", array)

The indices of the array parameter are strings or string constants naming
the resources whose values you want. (The initial values in the array are
unimportant.) The GET_INFO statement directs VAXTPU to fetch the
specified resource values of the specified widget and put the values in the
array.

For list box widgets or file selection widgets, one element of the array
receives another array containing the list manipulated by the widget. The
indices of this array are of type integer. The lowest index has the value 0,
and each subsequent index is incremented by 1. The contents of the array
elements are of type string.

When you create the index of the element that receives the widget's list,
you must observe the naming convention so that VAXTPU can handle both
the list itself and the resource value specifying the length of the list. Give
the index the following format:

items<line-feed>items count

4-13

VAXTPU Program Development
4.2 Programming in DECwindows VAXTPU

For example, if you used GET INFO (widget, "WIDGET INFO", array) to
get resource values from a list box widget, you could specify the index for
the element storing the widget's list as follows:

"items" + ASCII(10) + "itemsCount"

Note that the element for the widget's list does not actually contain an
array until after execution of the GET INFO statement. when VAXTPU
encounters the GET_INFO statement, it parses the indices of the specified
array. When VAXTPU parses the index of the element for the widget's list,
it fetches both the list itself and the length of the list. Using the resource
specifying the length, VAXTPU creates an array of the correct size to hold
the widget's list.

See Section B.1 for sample uses of DECwindows VAXTPU built-ins.

4.3 Writing Code Compatible with DECwindows EVE
This section provides information useful for programmers who extend
DECwindows EVE or layer applications on DECwindows EVE.

4.3.1 Screen Objects in Applications Layered on DECwindows VAXTPU
Figure 4-1 and its accompanying text show the nomenclature for the
screen objects used in EVE and, optionally, in other applications layered
on VAXTPU.

4-14

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

Figure 4-~ Nomenclature of DECwindows VAXTPU Screen Objects

File Edit Search Format Display Customize

ZK-0239A-GE

4-15

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

Key to Figure 4-1

1 Display—In VAXTPU, the term display refers to the physical display device on
which screen objects are visible.

2 Main window widget This widget is created by VAXTPU, not by the layered
application. Although the main window widget is not visible as a separate entity,
it is the ancestor of all of EVE's visible widgets. The VAXTPU SCREEN keyword,
when used as a parameter to awidget-related built-in, refers to the main window
widget.

VAXTPU's main window widget is associated with a DECwindows window. Both
DECwindows and VAXTPU have objects called "windows." VAXTPU windows
have much the same function as DECwindows windows, but VAXTPU windows
operate within a more limited scope.

A DECwindows window is a viewport enabling a DECwindows application to
make visible some text and graphics. For example, a DECwindows window can
be used as a viewport onto a widget. A DECwindows window is mapped to an
area on a physical display device. For more information about DECwindows
windows, see the VMS DECwindows Guide to Application Programming.

A VAXTPU window is a viewport onto a VAXTPU buffer. EVE windows always
have the same width as the VAXTPU screen. For more information about the
VAXTPU screen, see item 3 in this key. You can map a VAXTPU window only
within an area of the physical display device occupied by a VAXTPU screen. For
more information about mapping VAXTPU windows, see Chapter 6.

3 VAXTPU screen—This widget is created by VAXTPU, not by the layered
application. When you use the SCREEN keyword as a parameter to a built-
in unrelated to widgets, the keyword refers to the VAXTPU screen. In non-
DECwindows VAXTPU, the phrase "VAXTPU screen" means all the area visible
on the physical terminal screen.

4 Title bar—The title bar for EVE (or any other application layered on VAXTPU) is
created by DECwindows, not by VAXTPU or the layered application.

5 Menu bar—The EVE menu bar widget is created by EVE, not by VAXTPU. You
can optionally create a menu bar widget in any application layered on VAXTPU.
if you do so, make the menu bar widget a child of the VAXTPU main window
widget.

6 EVE user window—This window is created by EVE and is mapped to a buffer.
It is a VAXTPU window, not a widget. Other applications layered on VAXTPU
should create one or more user windows in which to display the results of the
user's actions.

7 EVE command window—This window is created by EVE. It is a VAXTPU window,
not a widget. Other applications layered on VAXTPU can optionally create a
command window.

8 EVE message window—This window is created by EVE. It is a VAXTPU window,
not a widget. Other applications layered on VAXTPU can optionally create a
message window.

4.3.2 Select Ranges in DECwindows EVE
This section is intended for programmers extending EVE or layering an
application on EVE.

4--16

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

EVE can use only one type of selection at a time. There are four
possible types of selection: dynamic selection, static selection, found
range selection, and DECwindows primary or secondary global selection.
The ways in which these selections differ are explained in the following
sections.

EVE has a routine called EVE$SELECTION that returns the current
selection, regardless of whether the selection is dynamic, static, formed
from a found range, or the primary global selection. It is possible
to use the VAXTPU built-in SELECT RANGE to obtain the current
selection if the selection is a dynamic selection. However, Digital
recommends that you use EVE$SELECTION to obtain the current
selection, because this routine returns the current selection regardless
of how it was created. To see how the EVE$SELECTION routine works
and what parameters it takes, you can find the code for this routine in
SYS$Ex;AMPLES:EVE$CORE.TPU.

4.3.2.1 Dynamic Selection
When you press the Select key or invoke the EVE command SELECT, EVE
creates a dynamic selection. A dynamic selection expands and contracts
as you move the text cursor. Moving the text cursor away from the text
already selected does not cancel the selection. If you use the mouse to
start a selection while a dynamic selection is active, the dynamic selection
is canceled.

If EVE's current selection is a dynamic selection, the routine
EVE$SELECTION returns the selected range and terminates the
selection. If, for some reason, you want to use a statement that returns
the current dynamic selection but does not terminate it, you can use a
statement whose format ~ is similar to the following:

r1 := EVE$SELECTION (TRUE, TRUE, TRUE, TRUE, FALSE)

The last parameter directs EVE$SELECTION not to terminate the
selection. For more information on how to use these parameters, see
the EVE$SELECTION routine in SYS$EX:AMPLES:EVE$CORE.TPU.

4.3.2.2 Static Selection
EVE creates a static selection if you do any of the following:

• Click the MB1 mouse button two or more times to select a word, line,
paragraph, or buffer

• Use the EVE command SELECT ALL

• Press the MB 1 mouse button, drag the mouse across text, and then
release the mouse button

• Use the MB 1 mouse button with the SHIFT key to extend a selection

EVE implements a static selection by creating a range upon which you can
perform EVE commands such as STORE TEXT or REMOVE. However,
EVE does not start this range using the VAXTPU built-in SELECT. Thus,
if you use the SELECT RANGE built-in while a static selection is active,
VAXTPU returns the message ~~ No select active. ~~

4-17

VAXTPU Program Development
4.3 Writing Code Compatible with DECwindows EVE

If you move the text cursor off the text in the static selection, the selection
is canceled.

4.3.2.3 Found Range Selection
When EVE positions to the beginning of a range as the result of the FIND
command, WILDCARD FIND command, or pressing the FIND key, EVE
creates a found range containing the text EVE found as a match for your
search string. If no other selection is active, EVE treats the found range
as the current selection.

EVE implements a found range selection by creating a range upon which
you can perform EVE commands such as STORE TEXT or REMOVE.
However, EVE does not start this range using the VAXTPU built-in
SELECT. Thus, if you use the SELECT_l~'ANGE built-in while a found
range selection is active, VAXTPU returns the message ~~ No select active. ~~

If you move the text cursor off the text in the found range selection, the
selection is canceled.

4.3.2.4 Relation of EVE Selection to DECwindows Global Selection
If EVE has a dynamic selection or a static selection active, that selection
is automatically designated as the primary global selection. A found range
selection is not designated as the primary global selection.

You can use the routine EVE$SELECTION to obtain the text of the
primary global selection when an application other than VAXTPU owns
the selection. To do so, the call to EVE$SELECTION must be in code
bound to a mouse button other than MB 1. The value returned is a string
containing the text of the primary global selection.

4.4 Compiling VAXTPU Programs
Before compiling programs in VAXTPU, you should enable the display
of informational messages to help you locate errors. EVE automatically
enables the display of informational messages for you when you use
the EVE command. EXTEND EVE. For more information on displaying
messages, see the description of the SET (INFORMATIONAL) built-in in
the VAXTPU Reference Section.

The VAXTPU compiler numbers the lines of code it compiles. The
line numbers begin with 1. For a string, all VAXTPU statements are
considered to be on line 1. For a range, line 1 is the first line of the range,
regardless of where in the buffer the range begins. Buffers are numbered
starting at the first line. When a compilation error occurs, VAXTPU tells
you the approximate line number where the error occurred. To move to
the line at which the error occurred, use the POSITION (integer) built-in
procedure.

In EVE, you can use the LINE command. For example, the command
LINE 42 moves the editing point and the cursor to line 42.

To see VAXTPU messages while in EVE, use the EVE command BUFFER
MESSAGES. To return to the original buffer or another buffer of your
choice, use the EVE command BUFFER name_of buffer.

4-18

VAXTPU Program Development
4.4 Compiling VAXTPU Programs

There are two ways to compile a program in VAXTPU: on the command
line of EVE or in a VAXTPU buffer.

4.4.1 Compiling on the EVE Command Line
You can compile a simple VAXTPU program merely by entering it on the
EVE command line. For example, if you use the EVE command TPU and
then enter the statement SHOW (ST.JNIlVlARY), VAXTPU compiles and
executes the program associated with the SHOW (SIJMMARYj statement.

4.4.2 Compiling in a VAXTPU Buffer
VAXTPU programs are usually compiled by entering VAXTPU procedures
and statements in a buffer and then compiling the buffer. If you are
using EVE, you can enter the statement SHOW (VARIABLES) in a buffer
and compile the buffer by using EVE's command TPU and entering the
following statement after the prompt:

VAXTPU Statement : COMPILE (CURRENT BUFFER) ;

The program associated with SHOW (VARIABLES) is not executed until
you enter the following statement:

VAXTPU Statement: EXECUTE (CURRENT BUFFER) ;

Note that if you use a buffer, a range, or a string as the parameter for the
built-in procedure EXECUTE, VAXTPU first compiles and then executes
the buffer, range, or string. See the description of EXECUTE in the
VAXTPU Reference Section.

The built-in procedure COMPILE optionally returns a program data
type. If you want to use the program that you are compiling later in your
session, you can assign the program that is returned to a variable. The
following example shows how to make this assignment:

new~rogram : = COMPILE (CURRENT_BUFFER) ;

If no error messages are issued while you compile the current buffer, you
can then execute the program new._.program with the following statement:

EXECUTE (new program);

You can use the built-in procedure COMPILE to compile certain parts of
a buffer rather than a whole buffer. To do so, create a range that includes
the statements within the buffer that you want compiled, and then specify
the range as the parameter for COMPILE.

4.5 Executing VAXTPU Programs
You can use programs that are already compiled as parameters for the
built-in procedure EXECUTE. In addition, you can use buffers, ranges,
or strings that contain executable VAXTPU statements as parameters for
the built-in procedure EXECUTE. VAXTPU compiles the contents of the
buffer, range, or string if necessary; then VAXTPU executes the compiled
buffer, range, or string.

4-19

VAXTPU Program Development
4.5 Executing VAXTPU Programs

Suppose you created a program called new program by using the following
statement after using the EVE command TPU:

VAXTPU Statement: new program := COMPILE (CURRENT_BUFFER);

You could then execute new program by using the following statement
after using the EVE command TPU:

VAXTPU Statement: EXECUTE (new program);

Note, however, that you could also compile and execute the statements in
the current buffer by using the following VAXTPU statement after using
the EVE command TPU:

VAXTPU Statement: EXECUTE (CURRENT BUFFER);

Small VAXTPU programs can be entered, compiled, and executed on the
command line of EVE. The following example shows a small program that
you can enter after the prompt VAXTPU Statement:

VAXTPU Statement : SET (TIMER, ON, "Executing") ;

The preceding command executes the program associated with the
VAXTPU built-in procedure SET (TIMER) and causes the string
"Executing" to be displayed at 1-second intervals when a long procedure is
executing. The string is displayed in the last 15 spaces of the prompt area
at 1-second intervals.

4.5.1 Interrupting Execution with CTRL/C
Pressing CTRL/C causes VAXTPU to stop the execution of auser-written
program. You can also stop the execution of the following VAXTPU built-in
procedures with CTRL/C:

• LEAR.N_BEGIN . . . LEARN_END (Execution of a learn sequence)

• READ FILE

• SEARCH

• WRITE FILE

Caution: Because VAXTPU does not journal CTRL/C, using CTRL/C may
affect the accuracy of your keystroke journal file. In addition,
CTRL/C prevents completion of some built-in procedures, such as
El~CASE_~CANGE, MOVE TEXT, and FILL. VAXTPU behavior after
such an interruption is unpredictable. Digital recommends that
you exit from the editor after pressing CTRL/C to ensure that you
do not lose any work because of an inaccurate keystroke journal
file.

Note, however, that buffer change j ournaling works properly with
CTRL/C. Therefore, if you are not using keystroke journaling,
exiting from the editor is not necessary.

For more information on the effects of pressing CTRL/C, see Section 3.8.4.7
and Section 3.8.4.7.2.

4-20

VAXTPU Program Development
4.5 Executing VAXTPU Programs

4.5.2 Procedure Execution
If you include procedure declarations as part of a program, the procedure
is compiled and the procedure name is added to the VAXTPU list of
procedures when you execute the program. Invoke the procedure in one of
the following ways:

• Enter the name of the compiled procedure after the
TTAXTPU Statement: prompt from EVE.

• Call the procedure from within a program or another procedure.

4.6 VAXTPU Startup Files
This section discusses VAXTPU startup files. Startup files are files that
VAXTPU reads, compiles, and executes during its initialization sequence.

There are three types of VAXTPU startup files:

• Section files

• Command files

• Initialization files

Section Files

A section file is the compiled, binary form of a file containing VAXTPU
source code. To direct VAXTPU to execute a section file, either use the
/SECTION qualifier to the EDIT/TPU command or allow VAXTPU to
execute the default section file. For more information on the /SECTION
qualifier, see Chapter 5.

The default section file is TPU$SECTION. When VAXTPU tries to locate
the section file, VAXTPU supplies a default directory of SYS$SHA1~E and
a default file type of TPU$SECTION. VMS defines the systemwide logical
name TPU$SECTION as EVE$SECTION, so the default section file is the
file implementing the EVE editor. To override the VMS default, redefine
TPU$SE CTION.

Command Files

A command file contains a series of VAXTPU procedures, followed by
a sequence of VAXTPU statements. To direct VAXTPU to compile and
execute a command file, either use the /COMMAND qualifier to the
EDIT/TPU command or allow VAXTPU to compile and execute the default
command file. For more information on the /COMMAND qualifier, see
Chapter 5.

The default command file is TPU$COMMAND. When VAXTPU tries to
locate the command file, it supplies a default file type of TPU. To direct
VAXTPU to compile and execute a particular command file, define the
logical name TPU$COMI~ZAND to be the file you want VAXTPU to use.

4-21

VAXTPU Program Development
4.6 VAXTPU Startup Files

Initialization Files

An initialization file contains commands to be executed by an application
layered on VAXTPU. To specify an initialization file to be executed, use
the /INITIALIZATION qualifier to the EDIT/TPU command. For more
information on the /INITIALIZATION qualifier, see Chapter 5.

VAXTPU does not determine the default handling of an initialization file.
Likewise, VAXTPU does not directly load or execute the commands in an
initialization file. The application layered on VAXTPU must determine the
defaults and must handle the loading and execution of an initialization
file. For example, EVE reads an initialization file (if one is present) and
interprets the initialization commands when it processes the procedure
TPU$INIT POSTPROCEDURE. Any key definitions in an initialization
file override corresponding key definitions saved in a section file and key
definitions in a command file.

Typically, you use EVE initialization files to set values that are not usually
saved in a section file, such as margins, tab stops, and bound or free
cursor. For a list of the EVE default values that you might want to modify
by using an EVE initialization file, see the Ti~VIS EVE Reference Manual.

4.6.1 Sequence in Which VAXTPU Processes Startup Files
When you invoke VAXTPU, by default VAXTPU reads, compiles, and
executes several files. The sequence in which VAXTPU performs these
tasks is as follows:

1 VAXTPU loads into memory the specified or default section file unless
the user specified /NOSECTION on the DCL command line.

2 VAXTPU reads the specified or default command file into a buffer
named $LOCAL$INI$ unless the user specified /NOCOMMAND on the
DCL command line.

3 If the user specified /DEBUG on the DCL command line, VAXTPU
reads the specified or default debugger ffie into a buffer named
$DEBUG$INI$. A debugger file contains VAXTPU procedures and
statements to help debug VAXTPU code. For more information on the
default VAXTPU debugger, see Section 4.7.

4 If the buffer named $DEBUG$INI$ containing debugger code is
present, VAXTPU compiles the buffer and executes the resulting
program.

5 VAXTPU calls and executes the procedure named
TPU$INIT_PROCEDUR,E if the procedure is present in the section
file or was defined in the debug file.

6 If the command file was read into the buffer named $LOCAL$IIVI$,
VAXTPU compiles that buffer and executes the resulting program.

7 VAXTPU calls and executes the procedure named
TPU$INIT_POSTPROCEDUR.E if the layered application has defined
this procedure in the section file, debug file, or command file.

4-22

VAXTPU Program Development
4.6 VAXTPU Startup Files

If a layered application makes use of an initialization file, it is the
responsibility of the application to define when the initialization
file is processed. EVE processes initialization files during the
TPU$INIT POSTPROCEDURE phase.

4.6.2 Section Files
A section file is the binary form of a program implementing aVAXTPU-
based editor or application. It is a collection of compiled VAXTPU
procedure definitions, variable definitions, and key bindings. The
advantage of using a binary file is that the source code does not have
to be compiled each time you invoke the editor or application, so startup
performance is improved.

4.6.2.1 Creating and Processing a New Section File
To create a section file, begin by writing a program in the VAXTPU
language. The program must adhere to all the programming conventions
discussed throughout this manual. For examples of programs used to
create a section file, see the files in the directory SYS$EX:AMPLES. This
directory contains the sources used to create the EVE section file. To see a
list of the EVE source files, type the following at the DCL prompt:

$ DIR SYS$EXAMPLES:EVE$*.TPU

If you cannot find these files on your system, see your system manager.

when writing the VAXTPU program implementing your application,
place your initializing statements in a procedure named
TPU$INIT PROCEDURE. Such statements might create buffers, create
windows, associate windows with buffers, set up screen attributes,
initialize variables, define how the journal facility works, and so on.
You can put the procedure TPU$INIT PROCEDURE anywhere in the
procedure declaration portion of your program. VAXTPU executes
TPU$INIT PROCEDURE before executing the command file (if there
is one). For more information on VAXTPU's initialization sequence, see
Section 4.6.1.

Place any statements implementing or handling initialization files in a
procedure named TPU$INIT POSTPROCEDURE. VAXTPU executes this
procedure after both the TPU$INIT PROCEDURE and the command
file have been executed. This allows commands or definitions in the
initialization file to modify commands or definitions in the command
file. EVE defines both TPU$INIT_PROCEDURE and TPU$INIT
POSTPROCEDURE procedures. For more information on how EVE
implements initialization files, see Section 4.6.4.

After you put the desired VAXTPU procedures and statements into the
program implementing your application, end your program with the
following statements:

• A statement containing the built-in procedure SAVE. SAVE is the
mechanism by which you store all currently defined procedures,
variables, and bound keys in binary form. For more information on
SAVE, see the description of this built-in in the VAXTPU Reference
Section.

4-23

VAXTPU Program Development
4.6 VAXTPU Startup Files

• The built-in procedure QUIT. QUIT ends the VAXTPU session. For
more information on QUIT, see the description of this built-in in the
VAXTPU Reference Section.

For examples of files using these statements, see Example 4-4 and
Example 4-5.

To compile your program into a section file, invoke VAXTPU but do
not supply as a parameter the name of a file to be edited. Use the
/NOSECTION qualifier to indicate that no existing section file should be
loaded. Use the /COMMAND qualifier to specify the file containing your
program. For example, to create a section file from a program in a file
called MY APPLICATION.TPU, you would enter the following at the DCL
prompt:

$ EDIT/TPU/NOSECTION/COMMAND=my_application.TPU

This command causes VAXTPU to write the binary form of the file MY
APPLICATION.TPU to the file you specified as the parameter to the
SAVE statement in your program. To use the section file, invoke VAXTPU
specifying your section file.

For more information on invoking VAXTPU and using the qualifiers to the
EDIT/TPU command, see Chapter 5.

4.6.2.2 Extending an Existing Section File
To extend an existing section ffie, begin by writing a program in the
VAXTPU language.

If you are extending the EVE section file, put your initializing
statements in an initialization procedure called TPU$LOCAL ITTIT.
TPU$LOCAL INIT is an empty procedure in the EVE section ffie. When
you add your VAXTPU statements and procedures to the EVE section
file, your procedure named TPU$LOCAL_INiT supersedes EVE's original
empty value of TPU$LOCAL_IIVIT. TPU$LOCAL_ITTIT is called at the
end of the procedure TPU$INIT_PROCEDURE during the initialization
sequence. For more information on the initialization sequence, see
Section 4.6.1.

If you are extending anon-EVE section file, you must determine
whether that section file has implemented the convention of including
a TPU$LOCAL INIT procedure.

After adding VAXTPU procedures and statements implementing ;your
application, end your program with the following statements:

• A statement containing the built-in procedure SAVE. SAVE is the
mechanism by which you store all currently defined procedures,
variables, and bound keys in binary form. For more information on
SAVE, see the description of this built-in in the VAXTPU Reference
Section.

• The built-in procedure QUIT. QUIT ends the VAXTPU session. For
more information on QUIT, see the description of this built-in in the
VAXTPU Reference Section.

4-24

VAXTPU Program Development
4.6 VAXTPU Startup Files

For examples of files using these statements, see Example 4-4 and
Example 4-5.

Example 4-4 shows the syntax of a program that could be used to create a
section file:

Example 4-4 Sample Program for a Section File

PROCEDURE tpu$local_init

ENDPROCEDURE;

PROCEDURE vt100 keys

ENDPROCEDURE;

vt100_keys; !Call the procedure that defines the keys

SAVE ("sys$login:vt100ini");

QUIT;

To add your program to an existing section file, invoke VAXTPU but do not
supply as a parameter the name of a file to be edited. Use the /SECTION
qualifier to specify the section file to which you want to add your program.
Use the /COMMAND qualifier to specify the file containing your program.
For example, to add a program called MY CUSTOMIZATIONS.TPU to the
EVE section file, you would enter the following at the DCL prompt:

$ EDIT/TPU/SECTION=EVE$SECTION/COMMAND=my_customizations.TPU

This command causes VAXTPU to load the EVE section file and then read,
compile, and execute the command file you specify. Anew section file is
created. The new file includes both the EVE section file and the binary
form of your program. The section file is written to the file you specified as
the parameter to the SAVE statement in your program. To use the section
file, invoke VAXTPU specifying your section file.

For more information on invokin VAXTPU and usin the uahfiers to the g g q
EDIT/TPU command, see Chapter 5. ~

For more information on extending the EVE section file, see the Guide to ~~
VMS Text Processing.

4.6.2.3 A Sample Section File
If you choose to design an application layered on VAXTPU and not layered
on EVE, you must provide certain basic structures and key definitions to
be able to use the VAXTPU compiler and interpreter. Example 4-5 is a
sample of the source code that creates a minimal interface. It provides the
following basic structures:

• A buffer and a window for VAXTPU messages

• A buffer and a window for information from the built-in procedure
SHOW

• A buffer and a window in which to enter VAXTPU programs or text

4-25

VAXTPU Program Development
4.6 VAXTPU Startup Files

• A prompt area in which to enter VAXTPU commands

Because VAXTPU does not have any keys defined when invoked without a
section file, the sample program also contains the following key definitions:

• The RETURN key

• The DELETE key

• Key for exiting from VAXTPU

• Key for entering VAXTPU statements. Example 4-5 uses the Tab key.

By default, VAXTPU looks for TPU$INIT PROCEDURE, so the
statements that create the structures for a minimal interface are contained
in TPU$INIT PROCEDURE. Individual statements that define keys come
after any procedures in the file.

If you entered the text from Example 4-5 into a file named MINI.TPU
and .you wanted to compile that file into a section file, you would enter the
following command at the DCL level:

$ EDIT/TPU/NOSECTION/COMMAND=mini.TPU

when you enter this command, the qualifier /NOSECTION specifies that
no section file is to be read. (This ensures that none of the procedures
or variables from an existing section file are loaded into the internal
VAXTPU tables.) The qualifier /COMI~~IAND specifies that the command
file MINI.TPU is to be compiled by VAXTPU. The built-in procedure
SAVE at the end of the command file specifies that all of the procedures,
variables, and key definitions i.n the file are to be saved in binary form in
the file SYS$LOGIN:MINI.TPU$SECTION. The built-in procedure QUIT
then causes you to leave VAXTPU.

Example 4-5 Source Code for Minimal Interface

! mini.TPU - minimal VAXTPU interface

PROCEDURE tpu$init procedure

! Create a buffer and window for messages

message buffer := CREATE_BUFFER ("Message Buffer");
SET (NO WRITE, message buffer);
SET (SYSTEM, message buffer);
SET (EOB TEXT, message_buffer, "");
message_window := CREATE_WINDOW (21, 4, OFF);
MAP (message window, message buffer);

! Create a buffer and window for SHOW

show_buffer := CREATE_BUFFER("Show Buffer");
SET (NO WRITE, show_buffer);
SET (SYSTEM, show_buffer);
info_window := CREATE_WINDOW (1, 20, ON);

! Create a buffer and window for editing

main_buffer := CREATE_BUFFER ("Main Buffer");
main_window := CREATE_WINDOW (1, 20, ON);
MAP (main window, main buffer) ;

(con~nued on net page)

4-26

VAXTPU Program Development
4.6 VAXTPU Startup Files

Example 4-5 (Cont.) Source Code for Minimal interface

! Create an area on the screen for prompts

SET (PROMPT AREA, 21, 1, NONE) ;

!Put the editing point in the main buffer

POSITION (main buffer) ;
tpu$local_init;

ENDPROCEDURE;

PROCEDURE tpu$local_init !Procedure to allow end users
!to add private extensions

ENDPROCEDURE;

! Define the minimal editing keys:

DEFINE_KEY (".SPLIT LINE", RET_KEY) ;
DEFINE_KEY ("ERASE CHARACTER(-1)", DEL_KEY);
DEFINE_KEY ("EXECUTE (READ LINE ('VAXTPU Statement:
DEFINE KEY ("EXIT", CTRL Z KEY);

! Create a section file and then quit

SAVE ("sys$login:mini");
QUIT;

! End of mini.TPU

.))~~ TAB KEY) ;

If you created the section file SYS$LOGIN:MINI.TPU$SECTION, you
could use the procedures and definitions in that file as an interface to
VAXTPU. To invoke VAXTPU with the MINI section file, you would type
the following command at the DCL prompt. This command specifies the
file YOUR TEXT. FIL as the file to be edited:

$ EDIT/TPU/SECTION=sys$login:mini your text.fil

Rather than enter this long command each time you invoke VAXTPU,
define the logical name TPU$SECTION to point to your section file. By
default, VAXTPU looks for a file that TPU$SECTION points to, and reads
that file as the default section file.

Whenever you want to add new procedures, variables, learn sequences,
or key definitions to a section file, edit the command file to include the
new items, and then recompile the command file to produce a section file
with the new items. For example, if you want to add key definitions for
the arrow keys, you could edit the file MINI.TPU and add the following
statements after any procedures in the file:

DEFINE_KEY ("MOVE VERTICAL (-1) ", UP) ;
DEFINE_KEY ("MOVE VERTICAL (1) ", DOWN) ;
DEFINE_KEY ("MOVE HORIZONTAL (1) ", RIGHT) ;
DEFINE KEY ("MOVE HORIZONTAL (-1) ", LEFT) ;

Then you would recompile the command file with the following command:

$ EDIT/TPU/NOSECTION/COMMAND=mini.TPU

After completing these steps, when you invoke VAXTPU with the section
file MINI.TPU$SECTION the new key definitions would be included.

4~2?

VAXTPU Program Development
4.6 VAXTPU Startup Files

An alternate way of adding these key definitions to your section file is to
enter the definitions as text in the current buffer. You could then press the
Tab key (the command prompt key for the minimal interface) and enter
the following command after the prompt:

VAXTPU Statement: EXECUTE (CURRENT BUFFER);

This causes the new key definitions to be added to your current editing
context. To add the definitions to the section file so you can use them in
future sessions, enter the following statement after the command prompt:

Command: SAVE ("sys$login:mini") ;

If you want to save the VAXTPU source code for the key definitions, write
out the current buffer or use the built-in procedure EXIT to leave the
VAXTPU session so that the contents of the buffer are written to a file.

4.6.2.4 Recommended Conventions for Section Files
A section file implementing a layered application should include the
following procedures:

• TPU$INIT_PROCEDURE

• TPU$LOCAL_INIT

If your application is to support initialization files, the section file
implementing the application should also include a procedure called
TPU$INIT POSTPROCEDURE. This procedure should contain the
VAXTPU statements implementing or handling the initialization files.

For information on EVE's implementation of initialization files, see
Section 4.6.4.

A section file implementing a layered application should assign values to
the following special variables in the procedure TPU$INIT PROCEDURE:

• TPU$X MESSAGE_BUFFER or MESSAGE_BUFFER

• TPU$X SHOW BUFFER or SHOW BUFFER

• TPU$X SHOW WINDOW or INFO WINDOW

If you write a section file extending the EVE section file, EVE provides
the procedures and variables above. If you choose to write your
own application, your application must contain these structures and
procedures.

These procedures and variables are discussed in more detail in the
following subsections.

4.6.2.4.1 TPU$INIT PROCEDURE
This procedure should perform the following operations:

• Initialize all global variables to their startup values.

• Create all required work spaces for the editor (see the list of special
purpose buffers and windows in Table 4-2).

You can add other functions to TPU$INIT PROCEDURE, but it should
perform at least these two operations.

4-28

VAXTPU Program Development
4.6 VAXTPU Startup Files

4.6.2.4.2 TPU$LOCAL INIT
If your application allows the end user to customize the application using
a command file, you may want to make available to the user a procedure
called TPU$LOCAL_INIT. (Although this name is not required, it is
commonly used by VAXTPU programmers.)

In EVE, the code implementing the initialization sequence calls
TPU$LOCAL INIT as the last step of the sequence. EVE defines this
procedure but leaves it empty. The user can use this procedure in
a command file to contain VAXTPU statements implementing private
initializations.

The code implementing TPU$LOCAL_INIT in EVE can be found in
SYS$EXAMPLES:EVE$CORE.TPU.

4.6.2.4.3 Special Variables
VAXTPU creates six variables (three pairs of synonyms) to be used by
layered applications. Although VAXTPU automatically declares the
variables, the application must assign a value to one of the synonyms
in each pair.

Table 4-2 shows the names and uses of these variables.

Table 4-2 Special VAXTPU Variables Requiring a Value from a Layered Application

Recommended Name

Synonym Provided
for Backward Data Type
Compatibility Structure How VAXTPU Uses the Variable

TPU$X MESSAGE_BUFFER MESSAGE_BUFFER Buffer VAXTPU writes messages in this
buffer. If the MESSAGE BUFFER
is associated with -a window
that is mapped to the screen,
VAXTPU updates the window. If
the application does not assign a
buffer to this variable, VAXTPU
writes messages to the screen.

TPU$X SHOW BUFFER SHOW BUFFER Buffer VAXTPU writes information stored
by the SHOW built-in in this buffer..

TPU$X SHOW_WINDOW INFO_WINDOW Window VAXTPU displays information
stored by the SHOW built-in and
information from the HELP TEXT
built-in in this window.

If you want to use the built-in procedure SHOW in your application, you
must create these special variables that VAXTPU uses for SHOW.

4.6.3 Command Files
This section provides an overview of how to use command files. For more
detailed information on the relationship between EVE command files and
section files, see the Guide to VMS Text Processing.

4-29

VAXTPU Program Development
4.6 VAXTPU Startup Files

A command file is a VAXTPU source file that can contain procedures, key
definitions, and other VAXTPU executable statements. You can have any
number of command files in your directory. You might want to write one
command file that customizes your editor for programming in PASCAL,
another command file that customizes your editor for text editing, and so
on. If you have several command files, give them names that remind you
of their contents. If you have one command file that you use most of the
time, name it TPU$COMIIIIA.ND.TPU.

The syntax to invoke VAXTPU with a command file at the DCL command
level is as follows:

$ EDIT/TPU/COMMAND ~= filespec~

If you name your command file TPU$COMMAND.TPU and it is in

your default directory, VAXTPU reads the file by default, without your
having to use /COMMAND. If you name your file something other than
TPU$COM112AND.TPU, or if you put it in a directory other than your
default directory, you must use the qualifier /COM112AND explicitly and
provide a full file specification after the qualifier.

VAXTPU reads a command file, compiles it, and executes any commands
that do not contain syntax errors. If there are errors, VAXTPU writes an
error message to the message area. The command file can customize or
extend the application implemented by the section file with which you
invoked VAXTPU.

Example 4-6 is a sample VAXTPU command file defining a procedure that
moves the editing point to the beginning of a segment of text delimited by
the characters %(/ ~ at the beginning and ~ /)% at the end.

Example 4-6 Command File for Go to Text Marker

PROCEDURE goto_text marker

LOCAL text marker_pattern,

text marker range;

text marker pattern : _ ' % (/ *' +MATCH (' * /) o') ;
text marker range := SEARCH_QUIETLY (text marker pattern,

GET_INFO (CURRENT BUFFER, "direction"));

IF text marker_range <> 0
THEN

POSITION (text marker range);
ELSE

MESSAGE ("Text marker not found");
ENDIF;

RETURN text marker range;

ENDPROCEDURE;

If you name the file that contains this procedure TEXT_1VZARKERS.TPU,
you can invoke VAXTPU with EVE and your command file in the following
way:

$ EDIT/TPU/COMMAND=device:[user]text markers.tpu

4-30

VAXTPU Program Development
4.6 VAXTPU Startup Files

If you add procedures or statements to the command file TEXT
1NIARKERS.TPU, place all procedures before any individual statements
that are not listed within a procedure (for example, key definitions to move
to the next text marker).

Remember to name your variables and procedures so they do not
conflict with VAXTPU reserved words and predefined identifiers. Digital
recommends that you prefix your variable and procedure names with three
letters (your initials, for example) followed by an underscore (_).

4.6.4 EVE Initialization Files
Any application layered on VAXTPU can support initialization files.
This section describes EVE's implementation of initialization files. For
more information on EVE initialization files, see the Guide to VMS Text
Processing.

EVE initialization files enable you to do the following:

• Use EVE commands in a startup file to customize editing sessions

• Set formats for individual buffers

EVE initialization files contain EVE commands that are executed either
when you invoke the editor or when you issue the EVE C~ (at sign)
command.

To create an EVE initialization file, put in the file the EVE commands
you want to use to customize the editor. Use one command on each line
and one line for each command. Do not separate the commands with
semicolons. If a command in an EVE initialization file is incomplete,
EVE prompts you for more information, the same as if you were typing
the command during an editing session. Comments in EVE initialization
files must be on lines separate from commands and must begin with an
exclamation point (!). You cannot nest EVE initialization files. Do not use
the DO command in an EVE initialization file.

The following sample initialization file sets left and right margins,
establishes overstrike mode, binds the QUIT command to the GOLD/Q
key sequence, and enables an EDT like keypad:

SET LEFT MARGIN 5
SET RIGHT MARGIN 60
OVERSTRIKE MODE
DEFINE KEY=gold/q QUIT
SET KEYPAD EDT

4.6.4.1 Using an EVE Initialization File at Startup
You can cause an initialization file to be executed in any of the following
ways when you invoke EVE:

• Name the file EVE$INIT.EVE. This is the default file name for EVE
initialization files.

• Specify the name of the initialization file as a qualifier to EDIT/TPU.

• Define a logical name, EVE$INIT, to point to your initialization file.

4-31

VAXTPU Program Development
4.6 VAXTPU Startup Files

The first method and third method are appropriate if you intend to use
one initialization file most of the time to customize your editing sessions.
If you name the file EVE$INIT.EVE and do not specify another EVE
initialization file on the command line, EVE automatically executes
EVE$INIT.EVE when you issue the EDIT/TPU command.

Use the second method to control which initialization file EVE executes
to customize the editing session. For example, if you have an EVE$INIT
file but want to use another initialization file, specify the other file using
the /INITIALIZATION qualifier to EDIT/TPU. To specify an initialization
file called MY INIT.EVE, enter the following command string at the DCL
prompt:

$ EDIT/TPU/INITIALIZATION=my init.eve

EVE always executes the initialization file specified on the command line,
if such a file is present. If no file is specified on the command line, EVE
searches for EVE$INIT.EVE first in the current directory and then in
SYS$LOGIN. If it finds EVE$INIT.EV'E, the editor executes that file. If
the file is not found, the editor checks whether the logical name EVE$INIT
has been defined.

If you plan to create several initialization files and to use them equally,
you may not want to name one of the files EVE$INIT. For example, if you
want one initialization file to set narrow margins and another to set wide
margins, create both files and specify the file you want when you invoke
EVE.

4.6.4.2 Using an EVE Initialization File During an Editing Session
To execute an EVE initialization file during an editing session, use the
C«3 (at sign) command and specify the file. For example, the following
command executes an initialization file called MYEVE.EVE in your
current (default) directory.

Command: @myeve

Commands for buffer settings apply to the current buffer. This is
effectively the same as typing the commands that the file contains. You
may want to create initialization files to execute two or more. related
commands, such as resetting both margins.

4.6.4.3 How an EVE Initialization File Affects Buffer Settings
Commands in an EVE initialization file that set buffer characteristics
(such as margins and tab stops) affect a system buffer named
$DEFAULTS$. Buffers created during the editing session have the same
settings as $DEFAULTS$. For example, if your initialization file contains
the command SET RIGHT MARGIN 65, the value 65 is used as the right
margin setting for the main buffer and for any buffers you create during
the session with GET FILE or BUFFER commands.

To see the settings for the $DEFAULTS$ buffer, use the EVE command
SHOW DEFAULTS BUFFER. For example, if you wanted to know what
the tab settings were for the $DEFAULTS$ buffer, you would type the
following command:

Command: SHOW DEFAULTS BUFFER

4-32

VAXTPU Program Development
4.6 VAXTPU Startup Files

This command causes EVE to show buffer information in a format similar
to the format in Example 4-7 (using values that apply to your editing
session):

Example 4-7 SHOW DEFAULTS BUFFER Display

Information about buffer $DEFAULTS$

Not modified
Mode: Insert
Direction: Forward
Max lines: No limit

Tab Stops set every 8 columns

Non-default right margin action

Left margin set to: 1
Right margin set to: 79

To change the characteristics of the $DEFAULTS$ buffer during an
editing session, use the command BUFFER $DEFAITLTS$ to put the
defaults buffer in a window This buffer is empty and you cannot add
tee to it. However, when you change the settings of the $DEFAULTS$
buffer, the changes are saved and used to set the characteristics of any
user buffers you create. Use commands such as SET RIGHT MARGIN,
SET LEFT MARGIN, SET TABS, FORWARD, REVERSE, INSERT, or
OVERSTRIKE to change the characteristics of the $DEFAULTS$ buffer.
The new characteristics are applied to new buffers but not to existing ones.
To leave the $DEFAULTS$ buffer and put a different buffer in the window,
use the BUFFER command.

4.7 Debugging VAXTPU Programs
To debug VAXTPU programs, you can either write your own debugger in
the VAXTPU language or you can use the VAXTPU debugger provided
in TPU$DEBUG.TPU. Regardless of what debugger you use, you may
also find it helpful to enable the display of error line numbers using
SET (LINE_NLTMBER, ON) and to enable the display of procedures called
when an error occurs using SET (TRACEBACK, ON).

If you write your own debugger, you can invoke it by using the /DEBUG
qualifier to the EDIT/TPU command. For example, if you wanted to use
your own debugger, called MY DEBUGGER.TPU, on a file called MIGHT
BE_BUGGY.TPU, you would type the following at the DCL prompt:

$ EDIT/TPU/DEBUG=my_debugger.tpu might_be_buggy.tpu

4.7.1 Invoking the VAXTPU Debugger
You invoke the VAXTPU debugger to debug one of the following kinds of
files:

• Section files

• Command files

• Files containing VAXTPU programs that are not startup programs

4-33

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

The following subsections contain more information on debugging each
kind of file.

4.7.1.1 Section Files
To invoke the debugger for a section file, type the following at the DCL
prompt:

$ EDIT/TPU/DEBUG

The /DEBUG qualifier causes the VAXTPU initialization routine to execute
the debugger file before the procedure TPU$INIT PROCEDURE is run.

The debugger initially creates a window filling most of the screen. The
window consists of the following three areas:

• Source area Displays your code when it has been placed in the
debugger source buffer.

• Output area Displays one-line messages or one-line results of an
EXAMINE command.

• Debug command line Displays the Debug: prompt.

When VAXTPU displays the debug window, you can set breakpoints in
the section file using the SET BREAKPOINT command. For example, if
you wanted to debug a procedure called USER FUM, you would type the
following on the debugger command line:

Debug: SET BREAKPOINT user_fum

After setting breakpoints, use the GO command to switch control of
execution from the debugger to VAXTPU. After you have used this
command, the screen displays the code you specified.

4.7.1.2 Command Files
To invoke the debugger for use on a command file, invoke VAXTPU using
the /DEBUG, /COM112AND, and lNOSECTION qualifiers. For example, if
you wanted to debug a command file called MY COMMANDS.TPU, you
would type the following at the DCL prompt:

$ EDIT/TPU/NOSECTION/COMMAND=my_commands.tpu/DEBUG

VAXTPU compiles and executes the debugger and places the debug window
on the screen before compiling the command file. As a result, you must set
breakpoints in the command file before it has been compiled. when you
set breakpoints, VAXTPU notifies you that you have specified breakpoints
at nonexistent procedures.

To continue with the debugging session, use the GO command. GO causes
VAXTPU to compile the contents of the command file. Recompiling a
procedure does not remove any breakpoints set in that procedure.

You cannot use the VAXTPU debugger on a file that does not contain
VAXTPU procedures. If your command file does not contain any
procedures, you must find a different method of debugging it.

4-34

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

4.7.1.3 Other VAXTPU Source Code
To debug a VAXTPU program that is not a section file or a command file,
use the /DEBUG qualifier when you invoke VAXTPU. For example, if you
want to debug procedures in a file called USER APPLICATION.TPU, you
invoke the debugger as follows:

$ EDIT/TPU/DEBUG user application.tpu

The debugger creates a window filling the screen as described in
Section 4.7.1.1.

4.7.2 Getting Started with the VAXTPU Debugger
This section describes using the default VAXTPU debugger with EVE.

If you know which parts of the code you want to debug, use the SET
BREAKPOINT command to set breakpoints. If you need to look at the
code before setting breakpoints, use the GO command as soon as the
debugger window appears. This places on the screen the code in the file
you specified on the DCL command line. At this point, EVE commands are
available so you can manipulate the text. To return to the debugger so you
can set breakpoints, enter the command DEBUG at the EVE command
line. You can also gain access to the debugger with the VAXTPU procedure
called DEBUGON. To invoke this procedure from within EVE, type the
following at the EVE command prompt:

Command: TPU DEBUGON

When you use either DEBUG or DEBUGON, the screen displays the
debugger window and command line. After setting breakpoints, use the
GO command to return control of execution to VAXTPU.

To compile all code in the buffer, use the EVE command EXTEND ALL or
use the VAXTPU statement COMPILE (CURRENT BUFFER). To execute
a procedure after compilation, use the EVE command TPU. For example,
if you wanted to execute the compiled procedure USER FUM, you would
type the following at the EVE command prompt:

Command: TPU user fum

When VAXTPU encounters a breakpoint (or when you use the STEP
command described below), VAXTPU invokes the debugger program. As
the debugger assumes control, it receives from VAXTPU the name of the
procedure whose execution has been suspended. The debugger searches its
source buffer for that procedure.

When VAXTPU encounters the first breakpoint in the session, the code
you are debugging has not yet been placed in the debugger's source buffer.
The debugger prompts for the name of the file containing your code. Using
your response, the debugger places your code in its source buffer. The
debugger uses your previous response to supply missing fields, if any,
in subsequent file names that you specify. Note that all files read into
the source buffer remain there, so that the time VAXTPU takes to find a
procedure may increase as more files are read into the source buffer.

4-35

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

You cannot use the EVE command TPU followed by the VAXTPU built-in
MESSAGE to examine the contents of a local variable while debugging.
To examine a local variable using the MESSAGE built-in, you must write
the MESSAGE built-in into the procedure you are debugging. After
the statement containing MESSAGE is executed, you can examine the
message buffer to see the results. Alternatively, you can use the debugger
command EXAMINE to examine local variables and the formal parameters
of the suspended procedure.

4.7.3 VAXTPU Debugger Commands
Once you have set breakpoints, compiled code, and started execution, you
can use the following commands for debugging:

ATTACH process

Suspends the current editing session and transfers control to another
active process or subprocess. DCL process names are case sensitive.

CANCEL BREAKPOINT procedure-name

Cancels a breakpoint set with the SET BREAKPOINT command.

DEPOSIT variable :- expression

Enables you to set the values of global variables, local variables, and
formal parameters.

DISPLAY SOURCE

Clears text from the screen aver use of the HELP or SHOW
BREAKPOINTS command. Causes the source display area to display
your code. You can enter this command by pressing the key sequence
CTRL/Z when you are in the HELP or SHOW display.

EXAMINE variable

Displays the current contents of global and local variables, global
constants, formal parameters of the procedure that has been interrupted,
and variables local to that procedure. Local constants cannot be examined.

GO

Causes the debugger to relinquish control of execution until it is invoked
again by a breakpoint, by the DEBUG command, or by the DEBUGON
procedure.

HELP

Lists available debugger commands and keypad bindings.

QUIT

Stops execution of the current procedure. Uses the ABORT statement to
return to the main loop of VAXTPU. This command is useful when you
have located a problem in a procedure and are ready to get out of the
procedure.

4-36

VAXTPU Program Development
4.7 Debugging VAXTPU Programs

SCROLL [-] number-of-lines

Scrolls text in the source display area by the specified number of lines. To
scroll backward through the code in the display area, specify a negative
number of lines.

To scroll forward by one line less than the number of lines in the display
window, press the Next Screen key or the sequence GOLD/~,. To scroll
backward in the same way, press the Prev Screen key or the sequence
GOLD/T.

SET BREAKPOINT procedure-name

Invokes the debugger when the specified procedure is entered.

SET WINDOW topr length

Places the top of the debugger window at the line number specified by the
top parameter. Extends the window down by the number of lines specified
by the length parameter. The default length is 7 lines. The minimum
valid length is 3 lines. The SET WINDOW command only changes the
size of the source display area. The output area and command line always
occupy exactly one line.

SHIFT [-] number-of-columns

Moves the source display window left or right across the source code to
display text wider than the screen.

To move left, you can press the key sequence GOLD/~—, then enter
the number of columns to move. To move right, you can press the key
sequence GOLD/--~, then enter the number of columns to move.

SHOW BREAKPOINTS

List the current breakpoints in the debugger source window. To redisplay
code in the source window, use the DISPLAY SOURCE command.

SPAWN subprocess

Suspends the current editing session and creates a subprocess.

STEP

Executes one line of VAXTPU code, then returns control to the debugger.
If you have several VAXTPU statements on one line, all statements are
executed before control returns to the debugger.

TPU statement

Executes the VAXTPU statement you specify. You can enter more than one
statement using the TPU command just once.

4-37

VAXTPU Program Development
4.8 Error Handling

4.8 Error Handling
Each VAXTPU built-in procedure returns one or more status codes telling
you what happened when the built-in was executed. A VAXTPU status
code can have one of the following severity levels:

• SUCCESS

• INFORMATIONAL

• WARNING

• ERROR

• FATAL

You can enable or disable the display of informational or success messages
with the built-ins SET (INFORMATIONAL) and SET (SUCCESS).

See Chapter 3 for a description of how to use the ON_ERROR language
statement to trap error and warning messages.

In addition to messages that are generated by VAXTPU, abuilt-in
procedure may return system messages. Appendix C contains an
alphabetized list of all the possible return codes for VAXTPU and their
severity levels. The VMS System Messages and Recovery Procedures
Reference Manual includes all the possible return codes for VAXTPU
as well as the appropriate explanations and suggested user actions. In
addition, each built-in procedure that can return a warning or error
message has the possible messages it can return listed in a section called
SIGNALED ERRORS in the individual built-in procedure description.

4-38

5 Invoking VAXTPU

The basic DCL command for invoking VAXTPU with EVE (the default
editor) is as follows:

$ EDIT/TPU

This chapter covers the more advanced uses of the EDIT/TPU command,
including the following:

• Understanding how to avoid fatal VAXTPU internal errors before using
EDIT/TPU. See Section 5.1.

• Invoking VAXTPU from a DCL command procedure. See Section 52.

• Invoking VAXTPU from a batch job. See Section 5.3.

• Specifying qualifiers to the EDIT/TPU command. See Section 5.4.

• Understanding how EVE uses the qualifiers that are not processed by
VAXTPU. See Section 5.5.

• Specifying a parameter to the EDIT/TPU command. See Section 5.6.

5.1 Avoiding Errors Related to Virtual Address Space
VAXTPU manipulates data in a process's virtual memory space. If the
space required by the VAXTPU images, data structures and files in
memory exceeds the virtual address space, VAXTPU will try to write
part of the data to the work file, thus freeing up space for other parts of
the data that it needs immediately.

If the work file is full, VAXTPU attempts to return either a
TPU$_GETMEM or TPU$_NOCACHE error message. Although you
may be able to free up some space by deleting unused buffers, it is
recommended that you terminate the VAXTPU session if you encounter
either of these errors. You can then start a new session with fewer or
smaller buffers. Alternatively, you may want to put the work file on a disk
containing more free space—use one of the following methods to do this:

• Redefine TPU$WORK to point to the disk with more free space, or

• Invoke VAXTPU with the (WORK=filename qualifier

VAXTPU may be unable to signal an error when it frees up memory by
writing to the work file—in this case, VAXTPU aborts with a fatal internal
error.

You may be able to avoid writing to the work file by increasing the
virtual address space available to a process. The virtual address space
is controlled by the following two factors:

• The SYSGEN parameter VIRTUALPAGECNT

5-1

Invoking VAXTPU
5.1 Avoiding Errors Related to Virtual Address Space

• The page file quota of the account you are using

The VIRTUALPAGECNT parameter controls the number of virtual
pages that can be mapped for a process. For more information on
VIRTUALPAGECNT, see the description of this parameter in the VMS
System Generation Utility Manual.

The page file quota controls the number of pages in the system paging file
that can be allocated to your process. For more information on the page
file quota, see the description of the /PGFLQUOTA qualifier in the VMS
Authorize Utility Manual.

You may need to modify both the VIRTUALPAGECNT parameter and the
page file quota to enlarge the virtual address space.

VAXTPU keeps strings in a different virtual pool than it does other
memory. Once VAXTPU starts writing to the work file, the size of the
string memory pool is fixed. VAXTPU cannot write strings to the work
file, so if it needs to allocate more space in the string memory pool, it will
fail with a fatal internal error. If you encounter this problem, you can
expand the string memory pool during startup by preallocating several
large strings. The following example shows how to do this:

PROCEDURE preallocate_strings
LOCAL

str len,
stringl,
stringl;

str len := 65535;
stringl : _ ' a' * st r_len;
stringl := stringl;
ENDPROCEDURE;

5.2 Invoking VAXTPU from a DCL Command Procedure
There are two reasons that you might want to invoke VAXTPU from a
command procedure:

• To set up a special environment for interactive editing

• To execute a noninteractive, VAXTPU-based application

5.2.1 Setting Up a Special Editing Environment
You can run VAXTPU with a special editing environment by writing a
DCL command procedure that first establishes the environment that you
want, and then invokes VAXTPU. In such a command procedure, you must
define SYS$INPLTT to have the same value as SYS$COMMAND, because
VAXTPU signals an error if SYS$INPUT is not defined as the terminal.
To prevent such an error, place the following statement in the command
procedure setting up the environment:

$ DEFINE/USER SYS$INPUT SYS$COMMAND

5-2

Invoking VAXTPU
5.2 Invoking VAXTPU from a DCL Command Procedure

Example 5-1 shows a DCL command procedure that "remembers" the last
file that you were editing and uses it as the input file for VAXTPU. when
you edit a file, the file name you specify is saved in the DCL symbol last_
file edited. If you do not specify a file name when you invoke the editor
the next time, the file name from the previous session is used.

Example 5-1 DCL Command Procedure FILENAME.COM

$ IF P1 .NES. "" THEN last_file_edited == P1

$ WRITE SYS$OUTPUT "*** " last_file_edited' ***"

$ DEFINE/USER SYS$INPUT SYS$COMMAND

$ EDIT/TPU/COMMAND=DISK$: [USER]TPU$COMMAND.TPU 'last file—edited'

Example 5-2 establishes an environment that specifies tab stop settings
for FORTRAN programs.

Example 5-2 DCL Command Procedure FORTRAN TS.COM

$ IF P1 .EQS. "" THEN GOTO REGULAR_INVOKE

$ last_file_edited == Pl

$ FTN_TEST = F$FILE_ATTRIBUTES (last file edited,"RAT")

$ IF FTN_TEST .NES. "FTN" THEN GOTO REGULAR_INVOKE

$ FTN_INVOKE:

$ DEFINE/USER SYS$INPUT SYS$COMMAND

$ EDIT/TPU/COMMAND=FTNTABS 'last file edited'

$ GOTO TPU_DONE

$ REGULAR_INVOKE:

$ DEFINE/USER SYS$INPUT SYS$COMMAND

$ EDIT/TPU/ 'last file edited'

$ TPU DONE:

5.2.2 Creating a Noninteractive Application
In some situations, you may want to put all of your editing commands in a
ffie and have them read from the file rather than entering the commands
interactively. You may also want VAXTPU to perform the edits without
displaying them on the screen. You can do this type of editing from a
batch job; or, if you want to see the results of the editing session displayed
on your screen, you can do this type of editing from a DCL command
procedure. Even though the edits are not displayed on your screen as they
are being made, your terminal is not free while the command procedure is
executing.

Example 5-3 shows a DCL command procedure named
INVlSIBLE_TPU.COM containing a single command line that invokes
VAXTPU using the following qualifiers:

• /NOSECTION —This qualifier prevents VAXTPU from using a section
file. All prceedures and key definitions must be specified in a command
file.

• /COMMAND=gsr.tpu —This qualifier specifies a command file
containing the code to be executed (GSR.TPU).

5-3

Invoking VAXTPU
5.2 Invoking VAXTPU from a DCL Command Procedure

• lNODISPLAY This qualifier suppresses screen display.

Example 5-3 DCL Command Procedure INVISIBLE TPU.C~M

Example 5-4

!
!

This command procedure invokes VAXTPU without an editor.
The file GSR.TPU contains the edits to be made.
Specify the file to which you want the edits made as pl.

$ EDIT/TPU/NOSECTION/COMMAND=gsr.tpu/NODISPLAY 'pl'
i

The VAXTPU command file GSR.TPU, which is used as the file
specification for the qualifier /COMMAND, performs a search through
the current buffer and replaces a string or a pattern with a string.
Example 5-4 shows the file GSR.TPU. Note that GSR.TPU does not
create or manipulate any windows.

VAXTPU Command File GSR.TPU

PROCEDURE global_search_replace (str_or_pat, str2)

! This procedure performs a search through the current
! buffer and replaces a string or a pattern with a new string

LOCAL src_range, replacement_count;

! Return to caller if string not found
ON_ERROR

msg_text := FAO ('Completed !UL replacement!oS', replacement count);
MESSAGE (msg_text);
RETURN;

ENDON ERROR;

replacement count := 0;

LOOP

src_range := SEARCH (str_or pat, FORWARD);
ERASE (src_range);
POSITION (END_OF (src_range));
COPY_TEXT (str2) ;
replacement count := replacement—count + 1;

ENDLOOP;

ENDPROCEDURE; ! global_search_replace

! Search returns a range if found
! Remove first string
! Move to right place
~ Replace with second string

! Executable statements
input file := GET_INFO (COMMAND LINE, "file name");
main_buffer:= CREATE—BUFFER ("main", input_file);
POSITION (BEGINNING OF (main buffer));
global_search_replace ("xyz$_", "user$_");
pat1:= "" & LINE_BEGIN & "t";
POSITION (BEGINNING OF (main buffer));
global_search_replace (patl, "T");
WRITE FILE (main buffer, "newf ile . dat") ;
QUIT;

To use the DCL command procedure INVISIBLE TPU.COM interactively,
invoke it with the DCL command C~3 (at sign). For example, to use
INVISIBLE TPU.COM interactively on a file called MY FILE.TXT, you
would type the following at the DCL prompt:

$ @invisible tpu my file.txt

Invoking VAXTPU
5.2 Invoking VAXTPU from a DCL Command Procedure

You must explicitly write out any modified buffers before leaving the
editor with QUIT or EXIT. If you use QUIT before writing out such
buffers, VAXTPU quits without saving the modifications. If you use EXIT,
VAXTPU asks if it should write the file before exiting.

5.3 Invoking VAXTPU from a Batch Job
If you want your edits to be made in batch rather than at the terminal,
you can use the DCL command SUBMIT to send your job to a batch queue.

For example, if you wanted to use the file GSR.TPU (shown in
Example 5-4) to make edits in batch mode to a file called MY FILE.TXT,
you would enter the following command:

$ SUBMIT invisible_tpu.COM/LOG=invisible_tpu.LOG/parameter=my_file.txt

This job is then entered in the default batch queue for your system. The
results are sent to the LOG file that the batch job creates.

Note that in batch VAXTPU, EXIT is the same as QUIT.

5.4 Qualifiers to the DCL Command EDIT/TPU
The DCL command EDIT/TPU has qualifiers for setting attributes of
VAXTPU or an application layered on VAXTPU. The qualifiers fall into the
following two categories:

• Qualifiers handled by VAXTPU. Qualifiers in this category have their
defaults set by VAXTPU.

• Qualifiers handled by the application layered on VAXTPU. Some
qualifiers in this category have their defaults set entirely by VAXTPU;
some have their defaults set entirely by the layered application, and
some have their defaults set partly by each.

Table 5-1 shows, for each qualifier, which program sets the default and
which program is responsible for handling the qualifier.

Table 5--1 Summary of How VAXTPU and the Application Layered on VAXTPU Relate to the
Qualifiers to EDIT/TPU

Qualifier
Program That Sets the Qualifier's
Default

Program Responsible for
Handling the Qualifier

/[NO]COMMAN D[=filespec]
/[NO]CREATE

/[NO] D EBUGQ=filespec]

/[NO] D IS P LAY[=keyword

/[NO ~ IN ITIALIZATION [=filespec]

VAXTPU
Both VAXTPU and the application
layered on VAXTPU

VAXTPU
VAXTPU
Both VAXTPU and the application
layered on VAXTPU

VAXTPU

The application layered on
VAXTPU

VAXTPU

VAXTPU

The application layered on
VAXTPU

(continued on next page)

5-5

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

Table 5-1 (Cont.) Summary of How VAXTPU and the Application Layered on VAXTPU Relate to
the Qualifiers to EDIT/TPU

Qualifier
Program That Sets the Qualifier's
Default

Program Responsible for
Handling the Qualifier

/INTERFACEQ= interface

/QNO~J~URNALQ=filespec ~

/QNODMODIFY

/QNO~OUTPUTQ=filespec ~

/QNO~READ_ONLY

/QNO~RECOVER

/QNO~S ECTION Q=filespecD

/START POSITIONQ=(line,column)D

JQNO~WRITE

VAXTPU

Both VAXTPU and the application
layered on VAXTPU

The application layered on VAXTPU

Both VAXTPU and the application
layered on VAXTPU

Both VAXTPU and the application
layered on VAXTPU

VAXTPU

VAXTPU

VAXTPU

Both VAXTPU and the application
layered on VAXTPU

VAXTPU

The application layered on
VAXTPU

The application layered on
VAXTPU

The application layered on
VAXTPU

The application layered on
VAXTPU

VAXTPU

VAXTPU

The application layered on
VAXTPU

The application layered on
VAXTPU

The following subsections present the qualifiers in alphabetical order,
giving a more detailed description of each qualifier. The examples in
the following sections show the qualifiers directly after the EDIT/TPU
command and before the input file specification. You can place the
qualifiers anywhere on the command line after EDIT/TPU. These
subsections show the defaults that are set if you use EVE. The subsections
explain how EVE handles each qualifier that can be processed by a layered
application. Applications not based on EVE may handle such qualifiers
differently.

5.4.1 /COMMAND

/CONIIVIANDQ=filespec~
/NOCOMMAND
/COMMAND=TPU$COMMAND.TPU (default)

Determines whether VAXTPU compiles and executes a command file (a file
of VAXTPU procedures and statements) at startup time. Command files
extend or modify a VAXTPU-based application or create a new application.
The default file type for VAXTPU command files is TPU. You cannot use
wildcards in the file specification.

By default, VAXTPU tries to read a command file called
TPU$COMMAND.TPU in your default directory. You can use a full file
specification after the qualifier /COMMAND or define the logical name
TPU$COMMAND to point to a command file other than the default one.

5-6

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

To determine whether the user specified /CO Don the DCL
command line, use the following call in the application:

x : = GET INFO (COMMAND LINE, "command") ;

The preceding call returns 1 if /COMMAND was specified, 0 otherwise. To
fetch the name of the command file specified on the command line, use the
following call:

x : = GET INFO (COMMAND LINE, "command file") ;

For more information on GET_INFO, see the VAXTPU Reference Section.

The following command causes VAXTPU to read a command file named
SYS$LOGIN:MY TPU$COMMAND.TPU and uses LETTER.RI~TO as the
input file for an editing session:

$ EDIT/TPU/COMMAND=sys$login:my_tpu$command.tpu letter.rno

To prevent VAXTPU from processing a command file, use the qualifier
/NOCOMMAND. If you usually invoke VAXTPU without a command file,
define a symbol similar to the following:

$ EVE __ "EDIT/TPU/NOCOMMAND"

Using /NOCOMMAND when you do not want to use a command file
decreases startup time by eliminating the search for a command file.

If you specify a command file that does not exist, VAXTPU terminates the
editing session and returns you to DCL.

For more information on writing and using command files, see Chapter 4.

5.4.2 /CREATE

/CREATE (default)
/NOCREATE

Controls whether aVAXTPU-based application creates a new file when the
specified input file is not found. If the user specifies neither /CREATE nor
/NOCREATE on the command line, VAXTPU sets the default to /CREATE
but does not specify a default name for the file to be created.

The application layered on VAXTPU is responsible for handling this
qualifier.

To determine if the user specified /CREATE on the DCL command line,
include the following call in the application:

x := GET INFO (COMMAND LINE, "create");

The preceding call returns 1 if /CREATE was specified, 0 otherwise. For
more information on GET_INFO, see the VAXTPU Reference Section.

By default, EVE creates a new file if the specified input file does not exist.
If you use /NOCREATE and specify an input file that does not exist, EVE
aborts the editing session and returns you to the DCL command level. For
example, if your default device and directory are DISK$:[USER] and

5-7

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

you specify a nonexistent file, NEWFILE.DAT, your command and EVE's
response would be as follows:

$ EDIT/TPU/NOCREATE newfile.dat

Input file does not exist: DISK$: [USER]NEWFILE.DAT;

5.4.3 /DEBUG

/DEBUGS=debug source_filename~
/NODEBUG (default)

Determines whether VAXTPU loads, compiles, and executes a file
implementing a VAXTPU debugger. If /DEBUG is specified, VAXTPU
reads, compiles, and executes the contents of a debugger file before
executing the procedure TPU$INIT_PROCEDURE and before executing
the command file. For more information on the VAXTPU initialization
sequence, see Chapter 4.

By default, VAXTPU does not load a debugger. If you specify that a
debugger is to be loaded but do not supply a file specification, VAXTPU
loads the file SYS$SHARE:TPU$DEBUG.TPU. For more information on
how to use the default VAXTPU debugger, see Chapter 4.

To use a debugger file other than the default, use the /DEBUG qualifier
and specify the device, directory, and file name of the debugger to be
used. If you specify only the file name, VAXTPU searches SYS$SHARE
for the file. You can define the logical name TPU$DEBUG to specify a file
containing a debugger program. Once you define this logical name, using
/DEBUG without specifying a file calls the file specified by TPU$DEBUG.

5.4.4 /DISPLAY

/DISPLAY - CHAR.ACTER CELL (default)
= DECWINDOWS

/NODISPLAY

To choose the DECwindows or the non-DECwindows version of VAXTPU,
use the command qualifier /DISPLAY on the DCL command line when you
invoke VAXTPU.

The /DISPLAY command qualifier is optional. By default, VAXTPU uses
/DISPLAY=CHARACTER_CELL, regardless of whether you are running
VAXTPU on a workstation or a terminal.

If you specify !DISPLAY =CHAR.ACTER CELL, VAXTPU uses its
character-cell screen manager, which implements the non-DECwindows
version of VAXTPU by running in a DECterm (or VWS) terminal emulator
or on a physical terminal.

If you specify /DISPLAY=DECWINDOWS, and if the DECwindows
environment is available, VAXTPU uses the DECwindows screen manager,
which creates a DECwindows window in which to run VAXTPU.

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

If you specify !DISPLAY=DECWINDOWS and the DECwindows
environment is not available, VAXTPU uses its character-cell screen
manager to implement the non-DECwindows version of VAXTPU.

For more information about the difference between a DECwindows window
and a VAXTPU window, see Chapter 4.

The qualifier /NODISPLAY causes VAXTPU to run without using the
screen display and the keyboard functions of a terminal. Use the qualifier
/NODISPLAY in the following cases:

• When running VAXTPU procedures in a batch job

• When using VAXTPU on an unsupported terminal

When you use /NODISPLAY, all operations continue as normal, except
that no output occurs. (The only exception is that information normally
put into the message buffer will appear on SYS$OUTPUT if no message
buffer is available.)

The following command causes VAXTPU to edit the file
MY BATCH_FILE.RNO without using terminal functions such as screen
display•

$ EDIT/TPU/NODISPLAY my batch file.rno

5.4.5 /INITIALIZATION

/INITIALIZATION=filespec~ (default)
/NOINITIALIZATION

Determines whether the VAXTPU-based application being run executes
a file of initialization commands. The application layered on VAXTPU is
responsible for processing this qualifier.

To determine whether the user specified /INITIALIZATION on the DCL
command line, use the following call in the application:

x := GET INFO (COMMAND LINE, "initialization");

The preceding call returns 1 if /INITIALIZATION was specified, 0
otherwise. To fetch the name of the initialization file specified on the
command line, use the following call:

x : = GET INFO (COMMAND LINE, "initialization file") ;

For more information on GET_INFO, see the VAXTPU Reference Section.

If the user does not specify any form of /INITIALIZATION on the
DCL command line, VAXTPU specifies /INITIALIZATION but does
not supply a default file specification. The default file specification
for /INITIALIZATION is set by the application. Digital recommends
that auser-written application define the default file specification of an
initialization file using the following format:

facility$init .facility

For example, the default initialization file for the EVE editor is
EVE$INIT.EVE.

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

In EVE, if the user does not specify a device or directory, EVE first checks
the current directory. If the specified (or default) initialization file is not
there, EVE checks SYS$LOGIN. If EVE finds the specified (or default)
initialization file, EVE executes the commands in the file.

For more information on using initialization files with EVE, see Chapter 4
and the Guide to VMS Text Processing.

5.4.6 /INTERFACE

/INTERFACE(~ - CHAR.ACTER_CELL
11 = DECWINDOWS

/INTERFACE= CHARACTER_CELL (default)

Determines the interface or screen display you want (same as /DISPLAY).
The default is CHARACTER CELL.

For example, to invoke EVE with the DECwindows interface, you can use
the following command:

$ EDIT/TPU /INTERFACE=DECWINDOWS

Then, if DECwindows is available, VAXTPU displays the editing session in
a separate window on your workstation screen, and enables DECwindows
features for example, the EVE screen layout includes a menu bar and
scroll bars. If DECwindows is not available, VAXTPU works as if on a
character-cell terminal.

5.4.7 /JOURNAL

/JOURNALQ=input file.TJL~ (default for EVE)
/NOJOURNAL (default for VAXTPU)

Determines whether VAXTPU keeps a journal file of an editing session so
the session can be recovered if it is unexpectedly interrupted. VAXTPU
offers two forms of journaling:

• Keystroke—keeps track of each keystroke you make in a single journal
file, regardless of which buffer is in use when you press the key.

• Buffer change—keeps track of changes made to buffers in a separate
journal file for each buffer created during the session.

The application layered on VAXTPU is responsible for processing this
qualifier.

To determine whether the user specified /JOURNAL on the DCL command
line, use the following call in the application:

x := GET_INFO (COMMAND LINE, "journal");

The preceding call returns 1 if /JOURNAL was specified, 0 otherwise.

5-10

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

To determine whether buffer change journaling is turned on for a buffer,
use a statement similar to the following:

status : = GET_INFO (buf fer_name, "journaling") ;

To determine the name of the keystroke journal file specified on the
command line, use the following call:

x : = GET INFO (COMMAND LINE, "journal file") ;

For more information on GET_INFO, see the VAXTPU Reference Section.

In EVE, if the user does not specify any form of /JOURNAL or specifies
/JOURNAL but not a journal file, buffer change journaling is turned on.
The buffer change journal file's default file type is TPU$JOURNAL.

If the user specifies /JOURNAL --
filename, then EVE also turns on

keystroke journaling. The keystroke journal file's default file type is
TJL.

To prevent EVE from creating either a keystroke or buffer change journal
file for an editing session, use the qualifier lNOJOURNAL. For example,
the following command causes EVE to turn off buffer change journaling
when you edit the input file MEMO.TXT:

$ EDIT/TPU/NOJOURNAL memo.txt

If you are developing an application layered on VAXTPU, you can direct
VAXTPU to create a keystroke journal file for an editing session by using
the built-in JOURNAL_OPEN. Using JOURNAL_OPEN causes VAXTPU
to provide a 500-byte buffer in which to journal keystrokes. By default,
VAXTPU writes the contents of the buffer to the journal file when the
buffer is full.

You can use the built-in procedure SET (JOURNALING) to turn on buffer
change journaling, even if you have used lNOJOURNAL to turn it off
initially. You can also use SET (JOURNALING) to adjust the journaling
frequency.

For more information on JOURNAL_OPEN and SET (JOURNALING), see
the descriptions of these built-ins in the VAXTPU Reference Section.

For more information on buffer change journaling, see Section 1.7.

Once a keystroke journal file is created, use the qualifier /RECOVER to
direct VAXTPU to process the commands in the keystroke journal file. For
example, the following command causes VAXTPU to recover a previous
editing session on an input file named MEMO.TXT. Because the journal
file has a name different from the input file name, both /JOURNAL
and /RECOVER are used. The name of the keystroke journal file is
MEMO.TJL:

$ EDIT/TPU/RECOVER/JOURNAL=memo.tjl memo.txt

In buffer change journaling, to recover the changes made to a specifed
buffer, use the RECOVER BUFFER built-in procedure. For more
information on RECOVER_BUFFER, see its description in the VAXTPU
Reference Section.

5-11

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

For more information on how to recover from an interrupted EVE editing
session, see the Guide to VMS ~xt Processing and the VMS EVE Reference
Manual.

5.4.8 /MODIFY

/MODIFY (default)
/NOMODIFY

Determines whether the first user buffer in an editing session is
modifiable. The application layered on VAXTPU is responsible for
processing /MODIFY.

To determine what form of the /MODIFY qualifier was used on the DCL
command line, use the following calls:

x : = GET_INFO (COMMAND LINE, "modify") ;
x : = GET INFO (COMMAND LINE, "nomodi f y") ;

The first statement returns 1 if /MODIFY was explicitly specified on
the command line, 0 otherwise. The second statement returns 1 if
/NOMODIFY was explicitly specified on the command line, 0 otherwise. If
both statements return 0, then the application is expected to determine the
default behavior. For more information on GET_INFO, see the VAXTPU
Reference Section.

If you invoke EVE and do not specify !MODIFY, /NOMODIFY, /READ_
ONLY, or /NOWRITE, EVE makes the first user buffer of the editing
session modifiable. If you specify lNOMODIFY, EVE makes the first user
buffer unmodifiable. Regardless of what qualifiers you use on the DCL
command line, EVE makes all user buffers after the first buffer modifiable.

If you do not specify either form of the !MODIFY qualifier, EVE checks
whether you have used any form of the /READ_ONLY or /'WRITE
qualifiers. By default, aread-only buffer is unmodifiable and a write
buffer is modifiable. However, if you specify /READ_ONLY and /MODIFY
or /NOWRITE and /MODIFY, the buffer is modifiable. Similarly, if you
specify /WRITE and /NOMODIFY or /NOREAD_ONLY and /NOMODIFY,
the buffer is unmodifiable.

5.4.9 /OUTPUT

/OUTPUT=input file.type (default)
/NOOUTPUT

Determines whether the output of your VAXTPU session is written to a
file. The application layered on VAXTPU is responsible for processing this
qualifier.

To determine whether the user specified /OUTPUT on the DCL command
line, use the following call in the application:

x := GET_INFO (COMMAND_LINE, "output");

5-12

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

The preceding call returns 1 if /OUTPUT was specified, 0 otherwise. To
fetch the name of the output file specified on the command line, use the
following call:

x := GET_INFO (COMMAND LINE, "output file");

For more information on GET_INFO, see the VAXTPU Reference Section.

If you do not specify any form of /OUTPUT on the DCL command
line, VAXTPU specifies /OUTPUT but does not supply a default file
specification.

In EVE, using /OUTPUT allows you to name the file created from the main
buffer when you exit from VAXTPU. For example, the following command
causes VAXTPU to read in a file called LETTER.RNO and to write the
contents of the main buffer to the file NEWLET.RNO upon exiting from
VAXTPU:

$ EDIT/TPU/OUTPUT=newlet.rno letter.rno

By default, the output file has the same name as the input file, and the
version number is one higher than the highest existing version of the input
file. You can specify a different name for the output file by using the file
specification argument for the qualifier /OUTPUT.

In EVE, specifying /NOOUTPUT causes EVE to suppress creation of an
output file for the first buffer of the editing session. Using /NOOUTPUT
does not suppress creation of a journal file.

Using /NOOUTPUT, you can develop an application letting the user control
the output of a file. For example, an application could be coded so that if
the user specifies /NOOUTPUT on the DCL command line, VAXTPU would
set the NO WRITE attribute for the main buffer and suppress creation of
an output file for that buffer.

5.4.10 /READ_ONLY

/READ_ONLY
/NOREAD_ONLY (default)

Determines whether the application layered on VAXTPU creates an output
file from the contents of the main buffer if the contents are modified.

The processing of the /READ_ONLY qualifier is interrelated with the
processing of the /'WRITE qualifier. /READ_ONLY is equivalent to
/NOWRITE; /NOREAD_ONLY is equivalent to /WRITE.

VAXTPU signals an error and returns control to DCL if VAXTPU
encounters either of the following combinations of qualifiers on the DCL
command line:

• /READ ONLY and /'WRITE

• /NOREAD_ONLY and /NO WRITE

The application layered on VAXTPU is responsible for processing this
qualifier.

5-13

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

To determine whether either the /READ_ONLY or /NOWRITE qualifier
was used on the DCL command line, use the following call in an
application:

x := GET_INFO (COMMAND_LINE, "read_only");

This statement returns 1 if lREA.D_ONLY or lNOWRITE was explicitly
specified on the command line.

To determine whether either /NOREAD ONLY or /WRITE was used on the
DCL command line, use the following call in an application:

x := GET INFO (COMMAND LINE, "write");

This statement returns 1 if lNOREAD_ONLY or /'WRITE was explicitly
specified on the command line.

If both GET_INFO calls return false, the application is expected to
determine the default behavior. For more information on GET_INFO,
see the VAXTPU Reference Section.

In EVE, using the qualifier /READ_ONLY is equivalent to using the
qualifiers lNOJOURNAL, /NOMODIFY, and /NOOUTPUT. If you specify
/READ_ONLY, VAXTPU does not maintain a j ournal file for your editing
session, and the NO WRITE and NO MODIFY attributes are set for the
main buffer. When a buffer is set to NO WRITE, the contents of the
buffer are not written out upon exit, regardless of whether the session
is terminated with the EXIT built-in or the QUIT built-in. For example,
if you want to edit a file called MEETING:MEM but not write out the
contents when exiting or quitting, you would use the following command:

$ EDIT/TPU/READ ONLY meeting.mem

In response to lNOREAD_ONLY, EVE writes out the main buffer (if the
buffer has been modified) when an EXIT command is issued. This is the
default behavior.

5.4.11 /RECOVER

/RECOVER
/NORECOVER (default)

Determines whether VAXTPU reads a keystroke journal file at the start of
an editing session to recover edits made during a prior interrupted editing
session. For example, the following command causes VAXTPU to recover
the edits made in a previous EVE editing session on the file NOTES.TXT:

$ EDIT/TPU/RECOVER notes.txt

To determine whether the user specified /RECOVER on the DCL command
line, use the following call:

x := GET INFO (COMMAND LINE, "recover");

The preceding call returns 1 if /RECOVER was specified, 0 otherwise. For
more information on GET_INFO, see the VAXTPU Reference Section.

5-14

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

Note that VAXTPU uses /R,ECOVER to recover a keystroke journal file
only. In buffer change journaling, to recover the changes made to a
specifed buffer, use the RECOVER_BUFFER built-in procedure. For more
information on RECOVER BUFFER, see its description in the VAXTPU
Reference Section.

If VAXTPU encounters and executes the built-in procedure JOURNAL_
OPEN while running a layered application, by default VAXTPU opens the
journal file for output only. If the user specifies /R,ECOVER when invoking
VAXTPU with a layered application, then when the built-in procedure
JOURNAL_OPEN is executed, the keystroke journal file is opened for
input and output. VAXTPU opens the input file to restore whatever
commands it contains. Then VAXTPU continues to journal keystrokes for
the rest of the editing session or until a statement containing the built-in
JOURNAL CLOSE is executed.

When you recover an editing session, every file used during the session
must be in the same state as it was at the start of the session being
recovered. Each terminal characteristic must also be in the same state
as it was at the start of the editing session being recovered. If you have
changed the width or page length of the terminal, you must change the
attribute back to the value it had at the start of the editing session you
want to recover. Check especially the following values:

• Device type

• Edit mode

• Eight bit

• Page length

• Width

If the journal file has a different name from the input file, you must
include both /JOURNAL and /RECOVER with the EDIT/TPU command.
For example, if you wanted to recover the edits you had made to a file
called LETTER.DAT using the keystroke journal file SAVE.TJL, you would
enter the following command on the DCL command line:

$ EDIT/TPU/RECOVER/JOURNAL=save.TJL letter.dat

In EVE, /RECOVER may be used to recover either an editing session from
a keystroke journal file or a single buffer from a buffer change journal
file. If you specify /JOURNAL=filename, EVE recovers from the specified
keystroke journal file. Otherwise, EVE recovers from a buffer change
journal file that corresponds to the input parameter (or the buffer Main if
no input parameter is specified).

For more information on j ournaling and recovery in EVE, see the VMS
EVE Reference Manual or the Guide to VMS Text Processing.

5-15

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

5.4.12 /SECTION

/SECTIONQ=filespec~
/NOSECTION
/SECTION=TPU$SECTION (default)

Determines whether VAXTPU loads a section file. A section file is a
startup file containing key definitions and compiled procedures in binary
form.

The default section file is TPU$SECTION. When VAXTPU tries to locate
the section file, VAXTPU supplies a default directory of SYS$SHARE and
a default file type of TPU$SECTION. VMS defines the systemwide logical
name TPU$SECTION as EVE$SECTION, so the default section file is the
file implementing the EVE editor. To override the VMS default, redefine
TPU$SECTION.

You can specify a different section file. The preferred method is to define
the logical name TPU$SECTION to point to a section file other than the
default file. You can also supply a full file specification for the qualifier
/SECTION. For example, if your device is called DISK$USER and your
directory is called [SMITH], the following command causes VAXTPU to
read a section file called VT100INI.TPU$SECTION:

$ EDIT/TPU/SECTION=disk$user:[smith]vtl00ini

If you omit the device and directory in the file specification, VAXTPU
assumes the file is in SYS$SHARE. The section file must be located on the
same node on which you are running VAXTPU.

To determine whether /SECTION was specified on the DCL command line,
use the following call in the application:

x := GET INFO (COMMAND LINE, "section");

The preceding call returns 1 if /SECTION was specified, 0 otherwise. To
fetch the name of the section file specified on the command line, use the
following call:

x : = GET INFO (COMMAND LINE, "section file") ;

For more information on GET_INFO, see the VAXTPU Reference Section.

The file used as the value for the /SECTION qualifier must be compiled
by running the source code version of the file through VAXTPU and then
using the built-in procedure SAVE. This process converts the file to the
proper binary form. For more information on creating and using section
files, see Chapter 4 and the Guide to VMS Text Processing.

If you specify /NOSECTION, VAXTPU does not load a section file. Unless
you use the qualifier /COMMAND with !NOSECTION, VAXTPU has no
user interface and no keys are defined. In this state, the only way to exit
from VAXTPU is to press CTRL✓Y. Typically, you use /NOSECTION when
creating your own layered VAXTPU application without using EVE as a
base.

5-16

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

5.4.13 /START POSITION

/START POSITION=(line,column)
/START_POSITION=(1,1) (default)

Determines where the application layered on VAXTPU positions the cursor
when the user invokes the application.

The application layered on VAXTPU is responsible for processing this
qualifier.

To determine the row and column that the user has specified on the DCL
command line using /START_POSITION, use the following calls in the
application:

start line := GET_INFO (COMMAND_LINE, "start record");
start_char := GET_INFO (COMMAND_LINE, "start character");

For more information on GET_INFO, see the VAXTPU Reference Section.

VAXTPU sets the starting row and starting column to 1 if the user does
not use /START_POSITION on the DCL command line.

EVE uses this qualifier to determine the row and column in the main
buffer where the cursor first appears. By default, the start position is
row 1, column 1 (the upper left corner) of the buffer. Typically, you use
/START POSITION when you want to begin editing at a particular line or
column, such as when you want to skip over a standard heading in a file.

5.4.14 (WRITE

/WRITE (default)
/NOWRITE

Determines whether the application layered on VAXTPU creates an output
file from the contents of the main buffer if the contents are modified.

The processing of the /WRITE qualifier is interrelated with the processing
of the /READ_ONLY qualifier. /'WRITE is equivalent to /NOREAD_ONLY;
/NOWRITE is equivalent to /READ_ONLY.

VAXTPU signals an error and returns control to DCL if VAXTPU
encounters either of the following combinations of qualifiers on the DCL
command line:

• /READ ONLY and /'WRITE

• lNOREAD_ONLY and /NO WRITE

The application layered on VAXTPU is responsible for processing this
qualifier.

To determine whether the /'WRITE or the /NOREAD_ONLY qualifier was
used on the DCL command line, use the following call in the application:

x : = GET INFO (COMMAND LINE, "write") ;

5-17

Invoking VAXTPU
5.4 Qualifiers to the DCL Command EDIT/TPU

This statement returns 1 if /NOREAD_ONLY or /WRITE was explicitly
specified on the command line.

To determine whether the /NOWR,ITE or !READ_ONLY qualifier was used
on the DCL command line, use the following call in the application:

x := GET INFO (COMMAND LINE, "read only");

This statement returns 1 if /READ_ONLY or /NOWRITE was explicitly
specified on the command line.

If both GET INFO calls return false, the application is expected to
determine the default behavior. For more information on GET_INFO,
see the VAXTPU Reference Section.

In EVE, using the qualifier /NOWRITE is equivalent to using the qualifiers
/NOJOURNAL, /NOMODIFY, and /NOOUTPUT. If you specify lNOWRITE,
VAXTPU does not maintain a journal file for your editing session, and the
NO_WRITE and NO MODIFY attributes are set for the main buffer.
When a buffer is set to NO WRITE, the contents of the buffer are not
written out upon exit, regardless of whether the session is terminated with
the EXIT built-in or the QUIT built-in. For example, if you want to edit a
file called MEETING.MEM but not write out the contents when exiting or
quitting, you use the following command:

$ EDIT/TPU/READ ONLY meeting.mem

5.5 How EVE Uses /MODIFY, /OUTPUT, /READ_ONLY, and /WRITE
EVE uses the qualifiers /MODIFY, /OUTPUT, /READ_ONLY, and /WRITE
to determine whether to make the first user buffer of an EVE editing
session modifiable and whether to write the contents of the buffer, if
modified, to a file when the user exits. (By default, all EVE user buffers
created after the first buffer in an editing session start out modifiable and,
if modified, are written to a file when the user exits.)

Because these qualifiers are interrelated, this section covers the order in
which EVE processes the qualifiers. Note that if you layer an application
on top of EVE, then EVE handles these qualifiers for your application
unless you explicitly override EVE's actions.

To process these four interrelated qualifiers, EVE performs the following
steps in the order shown:

1 EVE makes the first user buffer modifiable and makes it a write buffer.

2 EVE checks whether /NOOUTPUT was specified on the DCL command
line. If so, the call GET_INFO (COMMAND_LINE, "output") returns
the value false and the callable interface bit TPU$V OUTPUT is set
to 0. EVE prevents the buffer from being written out by specifying the
ON parameter with the built-in SET (NO WRITE).

3 EVE checks whether /READ_ONLY was specified on the DCL
command line. If so, the call GET INFO (COMMAND_LINE, "read
only") returns the value true and the callable interface bit TPU$V
READ is set to 1. EVE prevents the buffer from being written out by
specifying the ON parameter with the built-in SET (NO_WRITE). EVE

5-18

Invoking VAXTPU
5.5 How EVE Uses /MODIFY, /OUTPUT, /READ_ONLY, and /WRITE

also prevents the buffer from being modified by specifying the OFF
parameter with the built-in SET (MODIFIABLE).

4 EVE checks whether /WRITE was specified on the DCL command line.
If so, the call GET_INFO (CO1V11VIAND_LINE, ~~write~~) returns the
value true and the callable interface bit TPU$V WRITE is set to 1.
EVE makes the buffer writable by specifying the OFF parameter with
the built-in SET (NO_WRITE). EVE also makes the buffer modifiable
by specifying the ON parameter with the built-in SET (MODIFIABLE).

5 EVE checks whether !MODIFY was specified on the DCL command
line. If so, the call GET_INFO (COM112AND_LINE, ~~modify~~) returns
the value true and the callable interface bit TPU$V MODIFY is set to
1. EVE makes the buffer modifiable by specifying the ON parameter
with the built-in SET (MODIFIABLE).

6 EVE checks whether /NOMODIFY was specified on the DCL
command line. If so, the call GET_INFO (COMMAND_LINE,
~~ nomodify ~~) returns the value true and the callable interface bit
TPU$V NOMODIFY is set to 1. EVE prevents the buffer from being
modified by spec' g the OFF parameter with the built-in SET
(MODIFIABLE).

7 EVE checks whether the user has both specified /NOWRITE and
specified /OUTPUT with a file specification. If so, EVE signals an
error and terminates the editing session.

5.6 Specifying a Parameter to EDIT/TPU
You can use a VMS file specification as a parameter to the command
EDIT/TPU. The syntax for invoking VAXTPU with a parameter is as
follows:

$ EDIT/TPU [[/qualifier, . . .]] [[filesp`c]]

The parameter is the name of the file you want to create or edit using
VAXTPU. For example, the following command invokes VAXTPU with
the section file EVE$SECTION and specifies as a parameter a file named
HISTORY.TXT:

$ EDIT/TPU/SECTION=sys$library:eve$section history.txt

VAXTPU never requires the parameter. However, most applications use
the parameter to the EDIT/TPU command to specify the file that is to be
processed. For example, EVE accepts a file specification as an optional
parameter. You can start an EVE editing session without specifying an
input file, but if you enter any data into a buffer, EVE prompts you for a
file name when you exit.

A file specification can be a full file specification or just the file name.
For example, if your device is called DISK$USER and your directory is
called [SMITH], the following command invokes VAXTPU with the file
LETTE R. DAT:

$ EDIT/TPU disk$user:[smith]letter.dat

5-19

Invoking VAXTPU

5.6 Specifying a Parameter to EDIT/TPU

To determine what file has been specified as a parameter, use the following
call in an application:

x : = GET INFO (COMMAND LINE, "file name") ;

The application layered on VAXTPU determines whether VAXTPU
recognizes wildcard characters in the input file specification. For example,
EVE handles wildcard characters if there is one unique file that matches
the wildcard specification. Otherwise, EVE does not read a file. Other
applications can handle wildcard characters differently.

You do not have to include the version number as part of the file
specification. If you do not specify a version number, EVE opens the file
that has the highest version number. To edit an earlier version, include
the version number in the file specification.

The handling of the specified file at exit time depends on the application
layered on VAXTPU. For example, EVE uses the input file name as the
name of the output file unless the user specifies the name of an output
file using the qualifier /OUTPUT. EVE leaves the original version of the
input file, unaltered, in its directory unless the system manager has set a
version limit. when you exit from EVE, a new file is created in the input
file's directory (unless the user has specified a different directory). The file
has the same name as the input file but has a version number that is one
higher than the input file.

5-20

6 VAXTPU Screen Management

The VAXTPU screen manager handles the display of windows and the
buffers mapped to those windows. This chapter discusses how to invoke
the screen manager, what you can expect it to do, and how the screen
manager handles various display situations.

To disable the screen manager, use the /NODISPLAY qualifier when you
invoke VAXTPU. By default, the screen manager is enabled, causing the
screen to display all VAXTPU operations.

6.1 How the Screen Manager Handles Windows and Buffers
A window is an area of the terminal screen used to display the contents of
a buffer. There are two ways to modify the way information is displayed
on the screen:

• Modify the size, attributes, or location of the display area

• Modify the information that is presented

The screen manager automatically updates the window when VAXTPU
finishes processing a keystroke or series of keystrokes. When input is
entered, VAXTPU queues the keystrokes for processing. As the input is
processed, either by inserting characters into the buffer or by executing
the procedures bound to the keys, the input is taken off the queue. When
the queue is completely empty, the screen manager is called to reflect the
changes. For more information on what happens during an update, see
Section 6.2.1, Section 6.2.2, and Section 6.2.3.

6.1.1 Buffer Changes
Buffers can be changed by:

• Inserting records

• Deleting records

• Modifying characters in a record

• Modifying video attributes associated with characters

• Modifying record attributes

To make the screen display modifications to a buffer, use the UPDATE
built-in. Note, however, that a screen update does not reflect any
modifications to portions of a buffer that are not visible in the window
mapped to the buffer. VAXTPU has a restriction on the screen display of
modifications to a buffer. If two or more windows are mapped to the same
portion of the same buffer and a select range is created in the current
window, the other windows do not display the select range unless the user

6-1

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

or subsequent code invokes the REFRESH built-in or the EVE REFRESH
command.

6.1.2 Window Changes
Changes to windows occur at the following times:

• When a window is mapped to a buffer

• When a window is deleted

• When a window becomes the current window

• When a window is shifted

• When a window changes size or location

Creating a window causes no visible effects. To become visible, a window
must be mapped to a buffer. For more information, see the descriptions
of the MAP, DELETE, POSITION, SHIFT, ADJUST_WINDOW, and
CREATE WINDOW built-ins in the VAXTPU Reference Section.

When you create a window, you specify the following:

• The screen line where the top of the window is to be located

• The number of rows in the window

• Whether a status line is associated with the window

6.1.2.1 Making a Window Current
There are three ways to make a window the current window:

• Map the window to a buffer

• Position to the window

• Adjust the size or location of the window

For more information, see the descriptions of the MAP, POSITION, and
ADJUST WINDOW built-ins in the VAXTPU Reference Section.

The screen manager makes the current window fully visible. If the current
window overlaps any other windows, the overlapped portions of the other
windows are not visible. A window that is partly hidden in such a fashion
is said to be partially occluded; a window that is completely hidden is said
to be fully occluded.

A fully occluded window is not visible on the screen. The window data
structures are not modified in any way, but screen updates ignore the fully
occluded window.

A partially occluded window is displayed as if it were a smaller window.
For example, if a window's status line is occluded by another window, the
next screen update makes the window smaller by one line. This creates
space to redisplay the window's status line. The screen manager always
displays the current record in the shrunken window.

6-2

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

Making a window the current window may cut another underlying window
into two discontiguous pieces. If this occurs, only the top portion of the
occluded window is displayed. The remaining lines of that window are
blank either until the occluding window is removed from view or until
another window is mapped to those remaining lines.

For example: window A is created from lines 1 through 24 of the screen,
and window B is created from lines 5 through 10. Each window has its
own status line. The buffer mapped to window A is visible in lines 1
through 3; the status line for window A is in line 4. The buffer mapped
to window B is visible in lines 5 through 9; the status line for window
B is in line 10. Because window B occludes window A cutting it into
two discontiguous pieces lines 11 through 24 are blank until one of the
following occurs:

• Window B is deleted (so that window A is no longer occluded)

• Anew window is created in lines 11 through 24 (to display those lines
of the buffer)

• Window A becomes the current window (which, in this example, would
fully occlude window B)

6.1.2.2 Mapping a Window
To become visible, a window must be mapped to a buffer. Mapping a
window to a buffer makes that window the current window and makes
that buffer the current buffer.

You can map more than one window to a buffer. For example, you could
display the text at the top of a buffer in one window and the text at the
bottom of the same buffer in another window. However, you can map only
one buffer to a window.

If a window is already mapped to a buffer, mapping the window to the
same buffer makes that window the current window and makes that
buffer the current buffer. Doing this has no other screen effects and does
not alter the cursor position of the window.

For more information, see the descriptions of the MAP and CREATE_
WINDOW built-ins in the VAXTPU Reference Section.

6.1.2.3 Shifting a Window
Windows are normally displayed with the first character on a line of
text in the leftmost column of the window. Shifting a window causes the
leftmost column of a window to display a different character on the current
line.

Once you shift a window, that window displays the shifted view of any
buffer to which the shifted window is mapped.

When a window is shifted, all the lines displayed in the window are
updated.

For more information, see the description of the SHIFT built-in in the
VAXTPU Reference Section.

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

6.1.2.4 Deleting a Window
When you delete a window, its screen lines are returned to any windows
it was occluding. Any lines from the deleted window that did not occlude
another window become blank and remain so until you map them to a
different window.

If you delete the current window, VAXTPU makes another window the
current window. VAXTPU tries to determine which other window, if any,
was most recently the current window, and automatically makes that
window current. The new current window may occlude other windows on
the screen.

An update refreshes the display of any occluded windows that became
unoccluded before the update.

For more information, see the description of the DELETE built-in in the
VAXTPU Reference Section.

6.1.2.5 How VAXTPU Window Size Affects a Terminal Emulator
If you are using VAXTPU on a VAXstation or other machine running VWS
or DECwindows and you increase or decrease the width of a window, the
terminal emulator resizes itself to match the width of the widest visible
window. This resizing causes a refresh operation, which clears the screen
and redisplays all visible windows.

When you use VAXTPU in a VWS or DECwindows environment, you
should not use the mouse to resize the terminal emulator window
while you are in VAXTPU. VAXTPU does not record the fact that the
terminal emulator window has been resized. As a result, VAXTPU may
unexpectedly truncate text at the edges'of the terminal emulator window.

You should not create a window wider or taller than the widest or tallest
possible setting of the terminal. If you do, VAXTPU may unexpectedly
truncate text at the edges of the window.

For more information, see the description of the ADJUST WINDOW
built-in in the VAXTPU Reference Section.

6.1.2.6 How VAXTPU Window Size Affects the Display on a Terminal
If you are using VAXTPU on a VT300-, VT200-, or VT100-series terminal,
there are only two possible modes for displaying text on the screen:
80-column mode and 132-column mode. You can specify any window width
between 1 and 255 using the SET (WIDTH) command. However, the
new window width does not necessarily cause any visible change to the
terminal display unless you change the width to 132 or to 80 columns. In
these two cases, VAXTPU sends the DECCOLM escape sequence to the
terminal. This sequence changes the display mode.

You should not create a window wider or taller than the widest or tallest
possible setting of the terminal. If you do, VAXTPU may unexpectedly
truncate text at the edges of the window.

For more information, see the description of the ADJUST_WINDOW
built-in in the VAXTPU Reference Section.

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

6.1.2.7 How a Window Displays Insertion of Records into a Buffer
If scrolling is disabled and the screen manager finds records that have
been inserted since the last update, the inserted records and all records
following the inserted records are repainted over whatever was previously
on the screen. The repainting stops when the window is completely
repainted or the last record in the buffer has been displayed.

If scrolling is enabled, the effect of updating depends upon whether the
inserted lines are followed by deleted lines, as follows:

• If the inserted records are followed by deleted records, the screen
manager puts the new records in the space vacated by the deleted
records.

• If there are too many new records to fit in the space vacated by the
deleted records, the screen manager scrolls currently displayed records
out of the window to make room for the rest of the new records.

• If there are fewer inserted records than deleted records, the screen
manager scrolls records into the screen to fill in the lines vacated by
the excess deleted lines.

• If an inserted record or a series of inserted records is not followed by a
deleted record or series of deleted records, the screen manager scrolls
the screen to make room for the new records. The screen manager
tries to scroll lines off the bottom of the screen whenever possible.

• If there are not enough lines in the buffer below the bottom of the
window to fill the entire window, the screen manager scrolls lines in
from the top. If there are still not enough lines to fill the window, the
screen ma~iager scrolls the end-of--buffer text up from the bottom line
of the window. If the end-of-buffer text has been scrolled up, all lines
below the end-of--buffer text are cleared.

6.'1.2.8 How a Window Displays Deletion of Records from a Buffer
The treatment of deleted records is similar to the treatment of inserted
records.

Inserted records are used to replace deleted records. If there are more
deleted records than inserted records, the extra deleted records are
replaced using the following algorithm:

If scrolling is disabled:

• When records are deleted, the screen manager takes records from
below the deleted records and paints the records into the vacated area.

• If there are not enough lines in the buffer to fill the entire window,
lines below the end-of-buffer text are cleared.

If scrolling is enabled:

• The screen manager tries to minimize scrolling by using inserted lines
below the deleted lines to fill in the deleted area.

• If there are no inserted lines following the area, the screen manager
scrolls lines in from the bottom of the window to cover the deleted
area.

6-5

VAXTPU Screen Management
6.1 How the Screen Manager Handles Windows and Buffers

• If there are not enough lines below the bottom line of the window to
fill the deleted area, the screen manager scrolls lines in from above the
top of the window.

• If there are still not enough lines to fill the deleted area, the screen
manager moves the bottom of the buffer up and clears the screen lines
below the end-of--buffer text.

If there are more inserted records than deleted records, the screen
manager scrolls lines off the bottom of the window and paints the new
records in the cleared area.

6.1.2.9 How a Window Displays Changes to a Record in a Buffer
When characters are inserted or deleted or when the video attributes
of characters are changed, the screen manager is informed of the first
changed character, the last changed character, and the nature of the
change to the characters.

If the window is set to NO T1~~ANSLATE mode, then each time a line is
modified the screen manager redisplays the line. The screen manager
truncates any of the line's text that lies to the left of the window's left
edge. The screen manager then sends the rest of the line to the terminal.

If the window is not set to NO_TR'ANSLATE, then the screen manager
updates a changed line by positioning to the first changed character and
repainting the rest of the characters in the line. If the change makes the
line too long for the window, a diamond character appears in the rightmost
column of the window to indicate that there is more text on the line.

If the line being updated has a left margin greater than 1 (that is, not at
the extreme left edge of the screen), the screen manager ensures that the
area left of the left margin is cleared or, if SET (PAD) is on, padded with
blank spaces.

After the characters on the line are painted, if SET (PAD) is on, the screen
manager appends blank spaces. Otherwise, the screen manager erases the
remainder of the line if there are leftover characters on the line.

6.2 Invoking the Screen Manager
When you write VAXTPU procedures, you can prevent updates or cause
immediate updates by using the UPDATE, REFRESH, or SET (SCREEN_
UPDATE) built-in. The SCROLL built-in causes an immediate update.

6.2.1 Enabling Screen Updates
To suppress screen updates, or to reenable updates after they have been
disabled, use the SET (SCREENUPDATE) built-in. When screen updates
are turned off, the screen is frozen in its current state.

While screen updating is off, built-ins that normally update the screen
(such as SCROLL, REFRESH, and UPDATE) have no effect or return an
error status.

6-6

VAXTPU Screen Management
6.2 Invoking the Screen Manager

Turning on screen updating causes an immediate update. If a refresh
was requested while screen updating was off, the screen is immediately
refreshed and repainted.

Updates can be turned on or off only on a global basis. That is, you cannot
prevent updating of one window while causing it in other windows.

6.2.2 Automatic Updates
When input is entered, VAXTPU queues the keystrokes for processing. As
the input is processed, either by inserting characters into the buffer or
by executing procedures bound to keys, the input is taken off the queue.
When the queue is empty, the screen manager updates the screen to reflect
the changes that have occurred.

Note that a stream of input arriving as fast as VAXTPU can process it
prevents the screen manager from running. For example, if you bind a
large, relatively slow procedure to an autorepeating key, a user holding
down that key may see no screen updates until the key is released. This is
because new input has arrived while the screen manager was handling the
first keystroke. After the key is released, the screen manager updates the
screen, rolling all the previous user input into one update.

Windows are updated from the top to bottom of the screen, except that
multiple windows mapped to the same buffer are updated one after
another. For example, given the following mapping of windows to
buffers, VAXTPU updates windows in the order shown in the four-step
list following:

Window A mapped to buffer 1
Window B mapped to buffer 2
Window C mapped to buffer 1
Window D mapped to buffer 3

1 Window A is updated first, because it is the top window on the screen.

2 Window C is updated next because it is also mapped to buffer 1.

3 Window B is then updated, because it is the next window in the
screen's top-to-bottom order after window A.

4 Because no other window is mapped to buffer 2, the update proceeds to
the next window down window C. However, since this window has
already been updated, the screen manager skips it and updates the
last window, window D.

When an automatic update occurs, the screen manager performs the
following operations:

1 Returns immediately if VAXTPU is running with /NODISPLAY or if
screen updating is off

2 Clears the prompt window if that window contains output and is not
occluded by another window

3 Clears any lines that no longer have windows mapped to them

6-7

VAXTPU Screen Management
6.2 Invoking the Screen Manager

4 Makes sure that the width of the screen (on a VAXstation) is set
correctly for the width of the widest window

5 If no windows are mapped, exits without taking further action

6 If mapped windows are present and a refresh request is still pending,
refreshes the screen

7 Updates each visible window (including the status line) from the top to
the bottom

8 Updates the status line if there is a status line and it has changed

9 Updates the cursor position in the current window after updating all
windows

6.2.3 Updating Windows
You can update a specific window by using the UPDATE built-in with
the appropriate window variable as the parameter. The update occurs
immediately. when updating a specific window, the screen manager
performs the following operations:

1 Returns a success status if VAXTPU is running with /NODISPLAY or
if screen updating is off

2 Returns the error TPU$_wINDOWNOTINIAPPED if the window is not
mapped to a buffer

3 Marks the cursor position as unknown if the window is not visible
(repaints the window the next time it becomes visible)

4 If a window needs to be completely repainted (for example, because a
new buffer is mapped to the window), determines the new first, last,
and current records in the window, and repaints all lines from the top
to the bottom

5 Updates the status line if there is a status line and it has changed

6 Determines the cursor position for this window

7 Updates any other windows mapped to the same buffer

8 Repositions the cursor to the active cursor position in the current
window

9 Enables the timer message (if it was disabled)

If a partial update is being done:

1 The screen manager determines which record contains the window's
cursor position. This record is the current record.

2 If the window being updated is the current window, and if there is a
select range active, the screen manager determines whether any of the
lines needs to have its video attributes updated.

6-8

VAXTPU Screen Management
6.2 Invoking the Screen Manager

3 The screen manager places the appropriate record at the top of the
window. If the cursor is on a record between the window's scroll
margins, the screen manager places the same record at the top of the
updated window as it placed at the top of the old window. If the cursor
is on a record that is not between the window's scroll margins, then
the screen manager places the record containing the cursor at the top
of the updated window. Usually the screen manager accomplishes this
by scrolling text. However, if this would mean scrolling more than
one window's worth of text, the screen manager repaints the window
instead. After placing the appropriate record at the top of the window,
the screen manager determines the video attributes to be applied to
the beginning of that record.

4 The screen manager disables the timer message.

5 The screen manager updates each line currently on the screen, from
the top to the bottom. If no records have been inserted or deleted in
the buffer, the screen manager paints in any video or text modifications
that have occurred.

6 If there are deleted records that were visible, the screen manager
checks whether there are any newly inserted records following and
paints the new records over the deleted records. If there are no newly
inserted records following, the screen manager scrolls lines in to fill
the vacated area.

7 If scrolling is turned off for tb.e window, the screen manager repaints
the window. If the end-of-buffer text is on the screen and there are
records above the first line of the window, the screen manager scrolls
lines down from above the top of the window. Otherwise, the screen
manager scrolls lines up to replace the deleted records.

8 If there are newly inserted records and there are more inserted records
than will fit on the screen, the screen manager repaints the window.
Otherwise, the screen manager checks whether the inserted records
are followed by records that were visible but are now deleted. If so,
the new records are painted over the deleted records. Otherwise, the
screen manager scrolls lines down to make room for the new records.

9 If scrolling is turned on for the window, the screen manager makes
room for the inserted lines and paints them in. If scrolling is turned
off for the window, or if the inserted records reach the bottom of
the window, the screen manager repaints the rest of the lines in the
window without checking for deleted records.

6.2.4 Updating the Whole Screen
To update all the windows visible on the screen, use the UPDATE (ALL)
built-in. If there is a refresh request, this causes a refresh to take place.
Otherwise, UPDATE (ALL) forces an automatic update, just as if all
procedures have finished execution and there is no user input waiting to
be processed. The screen is updated immediately in either case.

If screen updating has been turned off, UPDATE (ALL) has no effect.

6-9

VAXTPU Screen Management
6.2 Invoking the Screen Manager

6.2.5 The REFRESH Built-In
REFRESH clears the screen, reinitializes terminal settings such as
autorepeat, and repaints the windows from the top to the bottom of
the screen. Use REFRESH when line noise, power failure, or other events
external to VAXTPU cause the screen to be disrupted.

If screen updating has been turned off, REFRESH does nothing
immediately. However, the next update refreshes the screen.

6.2.6 The SCROLL Built-In
SCROLL requires that the screen be up to date. If there are modifications
to the buffers or to the sizes of windows since the last update, SCROLL
updates the screen before starting the scrolling operation. The scrolling
operation occurs immediately after the update.

You cannot use SCROLL when screen updating is off.

Although SCROLL updates the text on the screen, it does not update
changed video attributes. Thus, if you use SCROLL operations while a
select range is active, the video attributes of the screen may not be correct
until the next automatic update—unless you explicitly use the UPDATE or
REFRESH built-in in your procedure.

6.3 Cursor Position Compared to Editing Point
Cursor position is the location of the cursor in a window Each window
has an independent cursor position the location of the cursor when that
window becomes the current window

The cursor position must be within the bounds of the visible window.
To move the cursor position, use the CURSOR_HORIZONTAL or
CURSOR VERTICAL built-in. The cursor position is not necessarily
bound to text.

VAXTPU keeps the cursor position as close as possible to the editing point,
which is the point in the buffer where text operations occur. However, the
cursor position is not always exactly the same as the editing point. The
editing point may be at a location in a buffer that is not visible in the
current window, or the current buffer may not be mapped to a window
at all. In either of these situations, text operations take place at a point
different from the cursor position. In this situation, the editing point is
said to be detached. Being detached is not the same as being free. The
editing point is free when it is in a location not occupied by a character.
The editing point is detached when its location is not visible on the screen.
Whenever possible, keep the cursor position synchronized with the editing
point so that text operations are visible.

To move the editing point, use the MOVE_HORIZONTAL, MOVE_
VERTICAL, or POSITION built-in.

The editing point is free if it is located before the beginning of a line, aver
the end of a line, in the middle of a tab, or beyond the end of a buffer.

6-10

VAXTPU Screen Management
6.3 Cursor Position Compared to Editing Point

Each buffer has its own editing point, which becomes active when that
buffer becomes the current buffer.

Whenever the screen is updated, the cursor position in a window moves to
the editing point of the buffer mapped to that window.

To move the editing point of a buffer to the cursor position of a window,
use the POSITION built-in with a window variable as the parameter. The
MAP and ADJUST_WINDOW built-ins position to the window implicitly
and thus also move the editing point to the cursor position.

It is possible to move the editing point without moving the cursor position
and the reverse. However, to avoid confusion, the cursor position and
the editing point should be synchronized when an operation manipulates
the contents of a buffer. That is, both the cursor position and the editing
point should point to the same place, or as close as possible. For example,
using POSITION (buffer variable) or POSITION (marker variable) may
reposition to another buffer without changing the current window. In this
state, if the user adds self-inserting characters to a buffer, the cursor may
not be visible in a window mapped to the buffer where the characters are
inserted. Moreover, if the current buffer is not mapped to a visible window,
there is no visual feedback of the input at all.

There are various ways to avoid this discrepancy between the cursor
position and the editing point, depending on where a given text operation
is to be carried out. If you use POSITION (buffer variable) or POSITION
(marker_variable) to implement user operations in a given buffer, either
map the buffer to a visible window or position to a window to which the
buffer is already mapped and then update the window. Remember that
simply exiting from your procedure may allow the screen manager to
update the window automatically.

If you position to a buffer or marker to perform some housekeeping
operation and then want to restore the cursor position to its previous
location, you should position to the current window (the window in which
the visible cursor is located). This makes the buffer mapped to the current
window the current buffer, and moves the editing point to the cursor
position. Updating the screen at this point has no effect, because the
positions are already synchronized.

6.4 Built-In Padding
The cursor position is not necessarily bound to text. The cursor position
can be moved to locations where there is no underlying text, such as left
of the left margin, right of the end-of--line, in the middle of a tab, or on or
below the end-of-buffer text.

However, some built-ins require an accurate offset into the current line. If
you use such abuilt-in when the cursor position points to an area where
there is no text, the screen manager inserts padding records and spaces to
bind the current cursor position to a text offset.

6-11

VAXTPU Screen Management
6.4 Built-In Padding

The following built-ins cause this padding efi'ect:

APPEND_LINE MOVE_HORIZONTAL

ATTACH MOVE TEXT

COPY TEXT MOVE_VERTiCAL

CURRENT CHARACTER READ_FILE

CURRENT LINE SELECT

CURRENT OFFSET SELECT RANGE

ERASE_CHARACTER SPAWN

ERASE_LINE SPLIT LINE

MARK

The insertion of self-inserting characters also causes padding if the cursor
is free.

To determine whether padding will occur if you use one of the built-ins
listed above, use the following call:

GET INFO (window variable, "bound");

If the cursor is to the left of the left margin, the margin is moved to the
cursor position and spaces are inserted to fill the line from the cursor to
where the text begins. If the cursor is to the left of the left margin on a
blank line, the margin is moved to the cursor position and no spaces are
inserted.

To find out if the cursor position is before the beginning of a line in a
particular window, use the following call:

GET_INFO (window variable, "before bol") ;

If the cursor is to the right of the end-of-line, spaces are inserted from the
end of the line to the cursor position. To find out if the cursor is to the
right of the end of a line in a particular window, use the following call:

GET_INFO (window variable,"beyond_eol");

If the cursor is in the middle of a tab, spaces are inserted from the
tab character to the current cursor position. The tab character is not
destroyed; it is simply moved to the left. To find out if the cursor is in the
middle of a tab in a particular window, use the following call:

GET_INFO (window variable, "middle_of_tab") ;

If the cursor is below the bottom of the buffer, blank lines are added from
the end-of-buffer text to the line the cursor is on. These blank lines are
inserted using the left margin set for the buffer. If necessary, the line the
cursor is on is then padded, depending on whether the cursor is to the left
or right of the left margin. To find out if the cursor is below the bottom of
the buffer, use the following call:

GET_INFO (window variable, "beyond_eol");

6-12

f"1

Index

A
~ command •4-32
Abort

resulting from exceeding virtual address space •
5-1

ABORT statement • 3-26, 3-33, 7-16
Action routine

designating for client messages • 7-357
detached cursor

defining • 7-367
fetching • 7-197

for handling client messages
fetching • 7-197

Active area • 7-350
determining location of • 7-196

Active editing point • 2-4
ADD KEY MAP built-in procedure • 7-17 to 7-18
ADJUST WINDOW built-in procedure • 7-19 to 7-23
Algorithm

for naming buffer change journal file • 1-12
ALL keyword

with EXPAND NAME • 7-135
with REMOVE KEY MAP • 7-313
with SET (BELL) • 7-355
with SET (DEBUG) • 7-364
with UPDATE • 7-538

Alternation
pattern (() • 2-16

Anchored search • 7-24
ANCHOR keyword • 7-24 to 7-25

with SEARCH • 7-327, 7-328
with SEARCH QUIETLY • 7-332

AND operator • 3-7
"Ansi crt" string constant parameter to GET INFO •

7-196
ANY built-in procedure • 7-26 to 7-27
APPEND_LINE built-in procedure • 7-28 to 7-29
Application

use of DECwindows VAXTPU built-in procedures
in • B-1 to B-33

ARB built-in procedure • 7-30 to 7-31
Arithmetic expression • 3-9
ARRAY data type • 2-2 to 2-3

See also CREATE_ARRAY built-in procedure
ASCII built-in procedure • 7-32 to 7-34

Assignment statement • 3-21
ATTACH built-in procedure • 7-35 to 7-36
Attribute

buffer • 7-60
window • 7-78

Attribute for TPU
setting records • 7-448

AUTO REPEAT keyword • 7-353
"Auto_repeat" string constant parameter to GET

INFO • ?-196

B
Base

of numeric constant
specifying •3-37

Batch job • 5-5
Batch-like editing • 5-3
BEGINNING_OF built-in procedure • 7-37 to 7-38
BELL keyword • 7-355

with SET (MESSAGE ACTION TYPE) • 7-426
"Bell" string constant parameter to GET INFO •

7-205
"Beyond eob" string constant parameter to GET

I N FO.7-185
"Beyond_eol" string constant parameter to GET

I N FO.7-185, 7-220
BLANK TABS keyword • 7-483
BLINK keyword

with MARK • 7-261
with SELECT • 7-337
with SET (PROMPT AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Blink status" string constant parameter to GET
I N FO.7-221

"Blink video" string constant parameter to GET
I N FO.7-221

BOLD keyword
with MARK • 7-261
with SELECT • 7-337
with SET (PROMPT AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Bold_status" string constant parameter to GET
I N FO.7-221

Index-1

Index

"Bold video" string constant parameter to GET
I N FO.7-221

Boolean expression • 3-11
Bound marker • 2-9 to 2-10
"Bound" string constant parameter to GET INFO •

7-171, 7-185, 7-221
BREAK built-in procedure • 7-39
"Breakpoint" string constant parameter to GET

I N FO.7-179
BROADCAST keyword

with SET (BELL) • 7-355
Buffer

attributes • 7-60
controlling modification indicator • 7-431
converting contents of to string format using STR •

7-520
converting name to journal file name • 7-172
current • 7-59
deleting • 7-107
determining if unmodifiable records are present

in • 7-175
direction

current • 7-85
setting • 7-379

erasing • 2-4, 7-117
erasing unmodifiable records from

preventing or allowing • 7-375
getting file name of journal • 7-172
journal file • 1-11
margin action settings • 7-414, 7-456
margin settings • 7-412, 7-419, 7-454
multiple • 7-59
recovering contents of • 7-307
sensing safe journaling • 7-175
sensing unmodifiable records erasable state •

7-169
tab stops • 7-481
variables • 2-4
visible • 7-59

Buffer, multiple • 2-4
Buffer change journaling • 1-11

and keystroke journaling • 7-307
converting buffer to journal file name • 7-172
default file naming • 1-12
enabling • 7-405
getting file name of journal • 7-172
getting information on journal file • 7-203
recovery • 7-307
sensing safe state • 7-175
sensing the enable • 1-12, 5-10
specifying file name • 7-405

BUFFER command
for message buffer •4-18

BUFFER data type • 2-3 to 2-4
Buffer names • 2-4
"Buffer" string constant parameter to GET INFO •

7-185, 7-193, 7-222
BUFFER_BEGIN keyword • 7-69, 7-273

with POSITION • 7-287
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

BUFFER END keyword • 7-69, 7-273
with POSITION • 7-287
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

Building applications on EVE • G-1 to G-12
Built-in procedure

descriptions • 7-15 to 7-548
functions listed • 7-1 to 7-15
name of as reserved word •3-12
occluded • 3-12

C
Callable interface • 4-1, 7-41
Callback data structure

of widget
using in VAXTPU • 7-496

Callback routines
levels of • 4-9

Callbacks • 4-8 to 4-10
handling in EVE •4-11

CALL USER built-in procedure • 7-40 to 7-43
Case sensitivity

of widget names • 7-74
CASE statement • 3-23 to 3 25
Case-style error handler • 3 28 to 3-31
CHANGE CASE built-in procedure • 7-44 to 7-46
Character-cell measuring system

converting to coordinate system • 7-50
Character set • 3-1
"Character" string constant parameter to GET INFO •

7-171
Character cell display • 5-8
Child

of widget
fetching in VAXTPU • 7-210

Children
of widget

fetching in VAXTPU • 7-210

Index-2

Index

"children" string constant parameter to GET_INFO •
7-210

Class
of widget

fetching in VAXTPU • 7 214
of widget resource

fetching in VAXTPU • 7 215
"class" string constant parameter to GET INFO •

7-214
Client message

designating routine to handle • 7-357
fetching action routine for handling • 7-197
finding out type of • 7-197
sending from VAXTPU • 7-344

CLIENT MESSAGE
keyword parameter to SET built-in procedure •

7-357
"client message" string constant parameter to GET_

I N FO.7-197
"client message_routine" string constant parameter

to GET I N FO.7-197
Clipboard

fetching data from • 7-149
overview of • 7-149
reading data from • 7-295
writing data to • 7 540

Closures •4-11
COLUMN_MOVE_VERTICAL keyword • 7-359
"Column move vertical" string constant parameter to

GET I N FO.7-206
Command files •4-29 to 4-31

debugging •4-34
default •4-21
definition • 1-10
sample •4-30

Command line
DCL

determining whether /RECOVER specified
on • 7-408

fetching values from • 7-176, 7-177
/JOURNAL command qualifier • 1-11, 1-12
/NOJOURNAL command qualifier • 1-12
/RECOVER command qualifier • 1-11, 7-307

Command parameter
See EDIT/TPU command parameter

/COMMAND qualifier •4-25, 5-3 to 5-4, 5-6 to 5-7
Command qualifiers

See EDIT/TPU command qualifiers
"Command" string constant parameter to GET

I N FO.7-176
Command synonyms • G-5 to G-7

Command window
in EVE•4-16

"Command file" string constant parameter to GET_
I N FO.7-176

Comment character • 1-5
COMMENT keyword

with LOOK U P KEY • 7-254
Compilation

conditional • 3-36
COMPILE built-in procedure •4-19, 7-47 to 749
Compiler limits • 7-47
Compiling

in a VAXTPU buffer •4-19
in EVE •4-19
programs •4-18 to 4-19
to create section file • 4-24

Concatenation
pattern (+) • 2-15
string • 3-4

Conditional compilation • 3-36
Conditional statements • 3-22 to 3-23
Constant

specifying radix of • 3-37
TPU$K DISJOINT • 7-198, 7-368
TPU$K INVISIBLE • 7-198, 7-368
TPU$K OFF LEFT • 7-198, 7-368
TPU$K OFF RIGHT • 7-198, 7-368
TPU$K UNMAPPED • 7-198, 7-368

CONSTANT declaration •3-35
Constants • 3-5 to 3-6

local •3-20
predefined • 3-13

Control character
entering • 3-2
translation

example • A 2
Control code

function key • 7-241
Control sequence

function key • 7 241
Conventions • xxiv
CONVERT built-in procedure • 7-50

example of use • B-1 to B-4
Coordinate measuring system

converting to character-cell system • 7-50
COPY TEXT built-in procedure • 7-53 to 7-54
/CREATE qualifier • 5-7
"Create" string constant parameter to GET INFO •

7-177
CREATE ARRAY built-in procedure • 7-55 to 7-57
CREATE_BUFFER built-in procedure • 7-58 to 7-62,

7-203

Index-3

Index

CREATE_KEY MAP built-in procedure • 7-63 to
7-64

CREATE_KEY MAP_LIST built-in procedure • 7-65
to 7-66

CREATE_PROCESS built-in procedure • 7-67 to
7-68

CREATE_RANGE built-in procedure • 7-69 to 7-71
CREATE_WIDGET built-in procedure • 7-72

example of use • B-4 to B-11
using to specify callback routine • 4-9
using to specify resource values •4-12

CREATE_WINDOW built-in procedure • 2-26, 7-77
to 7-79

CROSS WINDOW BOUNDS keyword • 7-361
"Cross window bounds" string constant parameter

to GET I N FO.7-197
CTRUC •4-20

with case-style error handler •3-29, 3-30
with procedural error handler • 3-27, 3-28

Current buffer • 7-59
active editing point • 2--4
definition • 7-80

Current buffer direction • 7-85
Current date • 7-138, 7-268, 7-271
Current pointer position • 7-252
"Current" string constant parameter to GET INFO •

7-166, 7-167, 7-169, 7-184, 7-191, 7-218
Current time • 7-138, 7-268, 7-271
Current window • 2-27, 7-77
CURRENT BUFFER built-in procedure • 7-80
CURRENT CHARACTER built-in procedure • 7-81

to 7-82
CURRENT COLUMN built-in procedure • 7-83 to

7-84
"Current column" string constant parameter to GET_

I N FO.7-197, 7-222
CURRENT DIRECTION built-in procedure • 7-85
CURRENT LINE built-in procedure • 7-86 to 7-87
CURRENT OFFSET built-in procedure • 7-88 to

7-89
CURRENT ROW built-in procedure • 7-90 to 7-91
"Current row" string constant parameter to GET

I N FO.7-197, 7-222
CURRENT WINDOW built-in procedure • 7-92 to

7-93
Cursor

detached
defining routine to handle • 7-367
fetching action routine to handle • 7-197
fetching reason for • 7-198

Cursor movement • 7-94, 7-96
free • 7-95

Cursor position
compared to editing point •6-10
effect of scrolling on • 7-324
padding effects • 6-11 to 6-12

CURSOR_HORIZONTAL built-in procedure • 7-94
CURSOR_VERTICAL built-in procedure • 7-96 to

7-98

D
Data type

checking •4-12, 7-432
definition • 2-1
keywords

ARRAY • 2-2 to 2-3
BUFFER • 2-3 to 2-4
INTEGER • 2-5
KEYWORD • 2-5 to 2-7
LEARN • 2-7 to 2-8
MARK • 2-8 to 2-10
PATTERN • 2-11 to 2-20
PROCESS • 2-20 to 2-21
PROGRAM • 2-21
RANGE • 2-21 to 2-22
STRING • 2-23 to 2-24
UNSPECIFIED•2-24
WIDGET • 2-24 to 2-25
WINDOW • 2-25 to 2-29

Data types • 1-6 to 1-7
Date

inserting with FAO.7-138
inserting with MESSAGE • 7-268
inserting with MESSAGE TEXT • 7-271

DCL command line
overriding /RECOVER qualifiers on • 7-408

DCL command procedure
example • A-5

$DEBUG$INI$ buffer •4-22
DEBUG command •4-35
Debugger

invoking • 4-33
Debugging •4-33 to 4-37

ATTACH command •4-36
CANCEL BREAKPOINT command •4-36
command files •4-34
DEPOSIT command •4-36
DISPLAY SOURCE command •4-36
EXAMINE command •4-36
GO command • 4-34, 4-36
HELP command • 4-36

Index-4

Index

Debugging (font.)
program •4-35
QUIT command •4-36
SCROLL command •4-37
section files •4-34
SET BREAK POINT command •4-34, 4-37
SET WINDOW command •4-37
SHIFT command • 4-37
SHOW BREAKPOINTS command •4-37
source code •4-35
SPAWN command •4-37
STEP command •4-35, 4-37
to examine contents of local variable •4-36
TPU command •4-37

DEBUG keyword • 7-362, 7-363, 7-364
DEBUGON procedure •4-35
/DEBUG qualifier • 4-33, 5-8
DEBUG_LINE built-in procedure • 7-99
DEC Multinational Character Set • 3-1 to 3-2, E-1

to E-8
DECwindows

version of VAXTPU
sample uses of built-ins • B-1 to B-33

DECwindows VAXTPU
determining if present • 7-197
invoking with /DISPLAY • 5-8

DEC CRT2 mode • C-3
"Dec crt2" string constant parameter to GET INFO •

7-197
DEC CRT mode • C-2
"Dec crt" string constant parameter to GET INFO •

7-197
Default directory

fetching in VAXTPU • 7-206
setting in VAXTPU • 7-366

Default file naming algorithm
buffer change journal • 1-12

$DEFAULTS$ buffer •4-32
DEFAULT DIRECTORY parameter to SET built-in

procedure • 7-366
"default directory" string constant parameter to

GET I N FO.7-206
"Defined" string constant parameter to GET INFO •

7-190
DEFINE_KEY built-in procedure • 7-100 to 7-104
DEFINE_WIDGET CLASS built-in procedure • 7-105

example of use • B-4 to B-11
DELETE built-in procedure • 7-107 to 7-110
Deleting records • 6-5
Deletion

buffer • 2-4
line terminator • 7-28

Deletion (Cont.)
marker • 2-10
range • 2-22, 7-70
subprocess • 7-67
VAXTPU structure • 7-109
window • 2-28

Detached cursor
defining routine to handle • 7-367
fetching action routine to handle • 7-197
fetching reason for • 7-198

DETACHED ACTION parameter to SET built-in •
7-367

"detached_action" string constant parameter to GET
I N FO.7-197

"detached_reason" string constant parameter to
GET I N FO.7-198

DEVICE keyword
with FILE PARSE • 7-140
with FILE SEARCH • 7-143

Direction
of buffer • 7-85

setting • 7-379
"Direction" string constant parameter to GET_INFO •

7-171
Directory

default
fetching i n VAXTPU • 7-206
setting in VAXTPU • 7-366

DIRECTORY keyword
with FILE PARSE • 7-140
with FILE SEARCH • 7-143

Display
definition of in VAXTPU •4-16

Displaying version number • 4-2
/DISPLAY qualifier • 5-8

See also /NODISPLAY
"Display" string constant parameter to GET_INFO •

7-177, 7-206
Display value

fetching • 7-222
setting for window • 7-370
setting records • 7-448

DISPLAY VALUE parameter to SET built-in
procedure • 7-370

"display_value" string constant parameter to GET_
I N FO.7-186, 7-222

Drag operation
determining where started • 7-188

Dynamic selection
in EVE •4-16 to 4-17

Index-5

Index

E
EDIT built-in procedure • 7-111 to 7-114
Editing context status

built-in procedures
CURRENT BUFFER • 7-80
CURRENT CHARACTER • 7-81
CURRENT COLUMN •7-83
CURRENT DIRECTION • 7—$5
CURRENT LINE • 7-86
CURRENT OFFSET•?-88
CURRENT ROW • 7-90
CURRENT WINDOW•?-92
DEBUG LINE • 7-99
ERROR • 7-123
ERROR LINE • 7-125
ERROR TEXT • 7-127

built-in procedures for defining
SET • 7-347
SHOW • 7-505

Editing interface

See EV E
Editing point

built-in procedures for moving
MARK • 7-261
MOVE HORIZONTAL • 7-278
MOVE_VERTICAL • 7-282
POSITION • 7-287

compared to cursor position •6-10
effect of scrolling on • 7-324

EDIT/TPU command • 1-9, 5-1 to 5-20
parameter • 5-19
qualifiers • 5-5 to 5-20

/COMMAND • 5-6 to 5-7
/CREATE • 5 7
/DEBUG •4-33, 5-8
/DISPLAY • 5-8
/INITIALIZATION • 5-9 to 5-10
/INTERFACE • 5-10
/JOURNAL • 5-10
/MODIFY • 5-12
/OUTPUT •5-12
/READ_ONLY • 5-13
/RECOVER • 5-14, 7-408
/SECTION • 5-16
/START POSITION •5-17
/WRITE • 5-17

EDIT/TPU command qualifiers • 1-9 to 1-10
"Edit mode" string constant parameter to GET

I N FO.7-198

"Eightbit" string constant parameter to GET INFO •
7-198

ELSE clause • 3-22
%ELSE lexical keyword • 3-36
%ENDIF lexical keyword • 3 36
ENDIF statement • 3-22 to 3-23
ENDLOOP statement • 3-21 to 3-22
ENDMODULE statement • 3-14 to 3-15
ENDON ERROR statement • 3-25 to 3-31
ENDPROCEDURE statement • 3-15 to 3-21
END OF built-in procedure • 7-115 to 7-116
Entering control characters • 3-2
EOB_TEXT keyword • 7-374
"Eob text" string constant parameter to GET INFO •

7-171
EQUIVALENCE statement • 3-33 to 3-34
ERASE built-in procedure • 7-117 to 7-118
ERASE_CHARACTER built-in procedure • 7-119 to

7-120
ERASE_LINE built-in procedure • 7-121 to 7-122
ERASE UNMODIFIABLE

keyword parameter to SET built-in procedure •
7-375

ERASE_UNMODIFIABLE mode
and APPEND LINE • 7-376
and CHANGE CASE • 7-376
and COPY TEXT • 7-376
and EDIT • 7-376
and ERASE (buffer) • 7-376
and ERASE (range) • 7-376
and ERASE CHARACTER • 7-376
and ERASE LINE • 7-376
and FILL • 7-376
and MOVE TEXT • 7-376
and SPLIT LINE • 7-376
and TRANSLATE • 7-377

"erase_unmodifiable" string constant parameter
GET INFO built-in • 7-169

"Erase unmodifiable" string constant parameter to
GET INFO•?-171

Erasing unmodifiable records • 7-375
Error

resulting from exceeding virtual address space •
5-1

Error handler
case-style • 3-28 to 3-31
procedural • 3-26 to 3-28

Error handling • 3-25 to 3-31, 4-38
ERROR lexical element • 3-25
ERROR statement • 7-123 to 7-124
ERROR LINE lexical element • 3-26
ERROR LINE statement • 7-125 to 7-126

Index-6

Index

ERROR TEXT lexical element •3-26
ERROR TEXT statement • 7-127 to 7-128
EVE

building applications on • G-1 to G-12
command window •4-16
$DEFAULTS$ buffer •4-32
initialization files •4-31 to 4-33

during a session •4-32
effects on buffer settings •4-32

Initialization files •5-10
input files • 5-20
message buffer •4-18
message window •4-16
order of initialization • G-4
output file •5-13, 5-20
restriction on defining GOLD key • 7-472
sample procedures • B-1 to B-33
source files • 4-3
status line • G-7
use of EDIT/TPU command qualifiers •5-18
user window •4-16
wildcard characters in file specifications • 5-20
wildcards in file names •5-20

EVE$BUILD • G-1 to G-12
exit and quit handlers • G~8
initialization modules • G-4 to G-5
invoking • G-10 to G-11
output • G-11 to G-12
status line field • G 7 to G~8
synonym creation • G 5 to G-7
using parsing routines with • G-3 to G-4

EVE$GET STATUS_FIELDS procedure • G-8
EVE$INIT logical name •4-31
EVE$PARSER DISPATCH procedure • G-3
EVE$SELECTION procedure

using to obtain EVE's current selection •4-17
EVE default settings •4-32 to 4-33
EVE source files • 1-11
EXACT keyword

with LEARN BEGIN • 7-244
with SEARCH • 7-328
with SEARCH QUIETLY • 7-333

"Examine" string constant parameter to GET INFO •
7-179

Examples of DECwindows VAXTPU built-in
procedures • B-1 to B-33

Examples of VAXTPU procedures
ADJUST HELP • 7-23
ANCHOR • 7-25
ANY • 7-27
APPEND LINE • 7-29

Examples of VAXTPU procedures (Cont.)
ARB • 7-31
ASC I I.7-33, 7-34
BEGINNING OF • 7-38
BREAK • 7-39
CALL USER • 7-42
CHANGE CASE • 7-46
COPY TEXT • 7-54
CREATE BUFFER • 7-62
CREATE KEY MAP • 7-64
CREATE KEY MAP LIST • 7-66
CREATE PROCESS • 7-68
CREATE RANGE • 7-71
CREATE WINDOW • 7-79
CURRENT BUFFER • 7-80
CURRENT CHARCTER • 7-82
CURRENT COLUMN • 7-84
CURRENT DIRECTION • 7-85
CURRENT LINE •7-87
CURRENT OFFSET• 7-89
CURRENT ROW • 7-91
CURRENT WINDOW•?-93
CURRSOR HORIZONTAL • 7-95
CURSOR VERTICAL • 7-98
DEFINE KEY•?-103
DELETE • 7-109
EDIT • 7-114
END OF • 7-116
ERASE • 7-118
ERASE CHARACTER • 7-120
ERROR • 7-124
ERROR LINE •7-126
ERROR TEXT • 7-128
EXECUTE • 7-131, 7-132
EXPAND NAME • 7-137
FAO • ?-139
FILE PARSE • 7-142
FILE SEARCH • 7-145
GET I N FO.7-160 to 7-161
HELP TEXT • 7-229
INDEX•?-231
INT • 7-233
KEY NAME • 7-240
LENGTH • 7-248
LINE BEGIN • 7-250
LINE END • 7-251
LOCATE MOUSE • 7-253
LOOKUP KEY • 7-256 to 7 257
MAP • 7-260
MARK • 7-263
MATCH • 7-265
MESSAGE • 7-269

Index-7

Index

Examples of VAXTPU procedures (Cont.)

MOVE_HORIZONTAL • 7-279
MOVE TEXT • 7-281
MOVE_VERTICAL • 7-283
NOTANY • 7-285
PAGE BREAK • 7-286
POSITION • 7-290
QUIT • 7-292
READ CHAR • 7-294
READ FILE • 7-298
READ KEY • 7-302
REFRESH • 7-311
REMAIN • 7-312
RETURN • 7-315
SAVE • 7-318
SCAN • 7-320 to 7-321
SCAN L • 7-323
SCROLL • 7-326
SEARCH • 7-330 to 7-331
SEARCH QUIETLY • 7-335 to 7-336
SELECT • 7-339
SELECT RANGE • 7-341
SEND • 7-343
SET (AUTO REPEAT) • 7-354
SET (BELL) • 7-356
SET (DEBUG) • 7-365
SET (LINE_NUMBER) •7-417
SET (SELF INSERT) • 7-471
SET (TEXT) • 7-485
SET (TRACEBACK) • 7-489
SLEEP • 7 509
SPANL • 7-514
SPLIT LINE • 7-519
STR • 7 522
SUBSTR • 7-524
TRANSLATE • 7-528
UNANCHOR • 7-531
UNDEFINE KEY • 7-533
UNMAP • 7-537
UPDATE • 7-539
WRITE FILE • 7-545

EXECUTE built-in procedure •4-19
EXIT built-in procedure • 7-133 to 7-134
EXITIF statement • 3-21 to 3-22
EXPAND NAME built-in procedure • 7-135 to 7-137
Expressions • 3-8 to 3-12

arithmetic • 3-9
Boolean • 3-11
evaluation by compiler • 3-9
pattern • 3-11
relational • 3-10

Expressions (font.)

types of • 3-9
Extensible VAX Editor

See EVE

F
FACILITY NAME keyword • 7-378
"Facility name" string constant parameter to GET

I N FO.7-206
FAO built-in procedure • 7-138 to 7-139
FAO directives

with MESSAGE • 7-267
with MESSAGE TEXT • 7-270

Fatal internal error
resulting from exceeding virtual address space •

5-1
File

default name for journaling • 1-12
File organization • F-1
"File name" string constant parameter to GET

I N FO.7-171, 7-177
FILE PARSE built-in procedure • 7-140 to 7-142
FILE SEARCH built-in procedure • 7-143 to 7-145
FILL built-in procedure • 7-146 to 7-148
"Find buffer" string constant parameter to GET

I N FO.7-169
"first" string parameter to ADD KEY MAP • 7-17
"First" string constant parameter to GET i N FO •

7-166, 7-167, 7-169, 7-181, 7-183, 7-184,
7-191, 7-218

"First marker" string constant parameter to GET_
INFO • ?-172

"First range" string constant parameter to GET
INFO.7-172

FORWARD keyword • 7-85, 7-379
with SEARCH • 7-328
with SEARCH QUIETLY • 7-333

Found range selection
in EVE • 4-18

Free cursor movement • 7-95, 7-96
Free marker • 2-9 to 2-10
Free markers • 7-70
FREE CURSOR keyword

with MARK • 7-261
Function key

control code • 7-241
control sequence • 7-241

Function procedures • 3-19

Index-8

Index

G
Gadget • 2-25
GET CLIPBOARD built-in procedure • 7-149

example of use • B-11 to B-13
GET DEFAULT built-in procedure • 7-151
GET GLOBAL SELECT built-in procedure • 7-153

example of use • B-13 to B-15
GET INFO built-in procedure • 7-156 to 7-161

buffer variable parameter
"read_routine" • 7-174, 7-201

COMMAND_LINE keyword parameter
"line" • 7-176, 7-177

key_name parameter
"key_modifiers" • 7-162

marker variable parameter
"record number" • 7-186

mouse event keyword parameter
"mouse button" • 7-188
"window" • 7-188

SCREEN keyword parameter
"active area" • 7-196
"decwindows" • 7-197
"event" • 7-199
"global_select" • 7-199
"grab_routine" • 7-199
"icon name" • 7-199
"input focus" • 7-199
"length" • 7-199
"new length" • 7-200
"new width" • 7-200
"old_length" • 7-200
"old width" • 7-200
"original_length" • 7-200
"read routine" • 7-201
"screen limits" • 7-201
"time" • 7-202
"ungrab_routine" • 7-202

string constant parameter
"active area" • 7-196
"Ansi crt" • 7-196
"auto_repeat" • 7-196
"bell" • 7-205
"beyond_eob"•7-185
"beyond_eol" • 7-185, 7-220
"blink status" • 7-221
"blink video" • 7-221
"bold status" • 7-221
"bold video" • 7-221
"bottom" • 7-222

GET INFO built-in procedure
string constant parameter (Cont.)

"bound" • 7-171, 7-185, 7-221
"breakpoint" • 7-179
"buffer" • 7-185, 7-193, 7-222
"callback~arameters" • 7-209
"callback routine" • 7-214
"character" • 7-171
"children" • 7-210
"class" • 7-214
"client message" • 7-197
"client message routine" • 7-197
"column move vertical" • 7-206
"command" • 7-176
"command file" • 7-176
"create" • 7-177
"cross window bounds" • 7-197
"current" • 7-166, 7-167, 7-169, 7-184,

7-191, 7-218
"current column" • 7-197, 7-222
"current row" • 7-197, 7-222
"decwindows" • 7-197
"dec crt2" • 7-197
"dec crt" • 7-197
"default directory" • 7-206
"defined" • 7-190
"detached action" • 7-197
"detached_reason" • 7-198
"direction" • 7-171
"display" • 7-177, 7-206
"display_value" • 7-186, 7--222
"edit mode" • 7-198
"eightbit" • 7-198
"enable resize" • 7-206
"eob text" • 7-171
"erase_unmodifiable" • 7-169, 7-171
"event" • 7-199
"examine" • 7-179
"facility name" • 7-206
"file_name" • 7-171, 7-177
"find_buffer" • 7-169
"first" • 7-166, 7-167, 7-169, 7-181, 7-183,

7-184, 7-191, 7-218
"first marker" • 7-172
"first range" • 7-172
"global_select" • 7-199
"grab routine" • 7-199
"high_index" • 7-167
"icon name" • 7-199
"informational" • 7-206
"initialization" • 7-177
"initialization file" • 7-177

Index-9

Index

GET INFO built-in procedure
string constant parameter (Cont.)

"init file" • 7-177
"input focus" • 7-199
"is managed" • 7-214
"is subclass" • 7-214
"journaling" • 1-12, 5-10, 7-172
"journaling frequency" • 7-206
"journal" • 7-177, 7-203
"journal file" • 1-12, 5-11, 7-172, 7-177,

7-206
"journal_name" • 7-172
"key_map list" • 7-222
"key_map_list" • 7-172
"key modifiers" • 7--162
"key type" • 7-162
"last" • 7-166, 7-167, 7-169, 7-181, 7-183,

7-184, 7-191, 7-218
"!eft" • 7-222
"left margin" • 7-172, 7-186
"left margin action" • 7-172
"length" • 7-199, 7-223
"line" • 7-176, 7-177
"line" • 7-172
"line_editing" • 7-199
"line_number" • 7-179, 7-206
"local" • 7-179
"map count" • 7-173
"maximum~arameters" • 7-190
"max lines" • 7-173
"menu~osition" • 7-210
"message action_level" • 7-206
"message action type" • 7-206
"message flags" • 7-207
"middle of tab" • 7-223
"minimum~arameters" • 7-190
"mode" • 7-173
"modifiable" • 7-173
"modified" • 7-173
"modify" • 7-177
"mouse" • 7-200
"mouse button" • 7-188
"name" • 7-215
"name" • 7-164, 7-173, 7-182
"new length" • 7-200
"new width" • 7-200
"next" • 7-166, 7-168, 7-169, 7-180, 7-181,

7-183, 7-184, 7-191, 7-218, 7-223
"next marker" • 7-173
"next range" • 7-173
"nomodify" • 7-177
"no video" • 7-223

GET INFO built-in procedure
string constant parameter (Copt.)

"no video status" • 7-223
"no write" • 7-174
"offset" • 7-174, 7-186
"offset column" • 7-174, 7-186
"oid_length" • 7-200
"old width" • 7-200
"original_bottom" • 7-223
"original_length" • 7-200
"original_length" • 7-223
"original top" • 7-223
"original width" • 7-200
"output" • 7-177
"output file" • 7-174, 7-178
"pad" • 7-223
"pad overstruck tabs" • 7-207
"parameter" • 7-180
"parent" • 7-215
"permanent" • 7-174
"pid" • 7-192
"post key~rocedure" • 7-204
"previous" • 7--166, 7-188, 7-169, 7-180,

7-181, 7-183, 7-184, 7-191, 7-218,
7 223

"pre_key_„procedure" • 7-204
"procedure" • 7-180
"prompt length" • 7-200
"prompt row" • 7 201
"read only" • 7-178
"read routine" • 7-174, 7-201
"record count" • 7-175
"record_number" • 7-186
"record_number" • 7-175
"record size" • 7-175
"recover" • 7-207
"recover" • 7-178
"resize action" • 7-207
"resources" • 7-215
"reverse status" • 7-224
"reverse video" • 7-224
"right" • 7-224
"right margin" • 7-175, 7-186
"right margin_action" • 7-175
"safe for journaling" • 7-175
"screen limits" • 7-201
"screen_update" • 7-201
"scroll" • 7-201, 7-224
"scroll amount" • 7-224
"scroll bar" • 7-224
"scroll bar auto thumb" • 7-224
"scroll bottom" • 7-224

Index-10

Index

GET INFO built-in procedure
string constant parameter (Copt.)

"scroll top" • 7-225
"section" • 7-178
"section file" • 7-178, 7-207
"self insert" • 7 204
"shift amount" • 7-225
"shift key" • 7-204, 7-207
"special~raphics_status" • 7 225
"start character" • 7-178
"start record" • 7-178
"status line" • 7-225
"status video" • 7-225
"success" • 7-207
"system" • 7-175
"tab stops" • 7-175
"text" • 7-215
"text" • 7-225
"time" • 7-202
"timed message" • 7 207
"timer" • 7-207
"top" • 7-225
"traceback" • 7-207
"type" • 7-165
"undefined key" • 7-204
"underline status" • 7-225
"underline video" • 7 225
"ungrab routine" • 7-202
"unmodifiable records" • 7-175, 7-186,

7-193
"update" • 7-208
"version" • 7-208
"video" • 7-187, 7-193, 7-226
"visible" • 7-226
"visible bottom" • 7-226
"visible length" • 7-202, 7-226
"visible top" • 7-226
"vk100" • 7-202
"vt100" • 7-202
"vt200" • 7-202
"vt300" • 7-202
"widget id" • 7-209
"widget info" • 7-216
"width" • 7-226
"width" • 7 202
"window" • 7-188
"within range" • 7-187
"write" • 7-178

SYSTEM keyword parameter
"enable resize" • 7-206
"recover" • 7-207
"resize_action" • 7-207

GET_INFO built-in procedure
SYSTEM keyword parameter (Cont.)

"timer" • 7-207
WIDGET keyword parameter

"callback~arameters" •4-11, 7-209
"widget id" • 7-209

widget variable parameter
"name" • 7-215
"text" • 7-215
"widget info" • 7-216

widget variable parameter
"callback routine" • 7-214

window variable parameter
"left" • 7-222
"length" • 7 223
"right" • 7-224
"scroll bar" • 7-224
"scroll bar auto thumb" • 7-224
"top" • 7-225
"width" • 7-226

window variable parameter
"bottom" • 7-222
example of use • B-16 to B-19, B-19 to

B-22
"key_map list" • 7-222

Global selection
determining ownership of • 7-199
fetching grab routine for • 7-199
fetching information about • 7-153
fetching read request for • 7-199
fetching read routine for • 7-174, 7-201
fetching ungrab routine for • 7-202
fetching wait time for • 7-202
obtaining data from • 7-300
reading information about • 7-299
requesting ownership of • 7-380
sending information about to an application •

7-546
specifying expiration period for • 7-387
specifying grab routine for • 7-382
specifying read routine for • 7-385
specifying ungrab routine for • 7-389
support for • 4-6 to 4-8

Global variable • 3-4
GOLD key

restriction on defining in EVE • 7-472
Grab routine

fetching event in • 7-199
global selection

fetching • 7-199
specifying • 7-382

input focus • 7-398

Index-11

Index

Grab routine
input focus (Cont.)

fetching • 7-199
specifying • 7-400

GRAPHIC TABS keyword • 7-483

H
HEIGHT parameter to SET built-in procedure • 7-391
HELP TEXT built-in procedure • 7-228 to 7-229
"High index" string constant parameter to GET

INFO.7-167

Icon
fetching text of • 7-199
implementing in DECwindows VAXTPU • 7-393,

7-395
specifying text for • 7-392

ICONIFY PIXMAP parameter to SET built-in • 7-395
ICON_PIXMAP parameter to SET built-in • 7-393
Identifier • 3-4
(dent produced by EVE$BUILD • G-2
(DENT statement • 3-14 to 3-15
%IFDEF lexical keyword • 3-36
%IF lexical keyword • 3-36
I F statement • 3-22 to 3-23
INDEX built-in procedure • 7-230 to 7-231
INFORMATIONAL keyword • 7-397
"Informational" string constant parameter to GET

I N FO.7-206
INFO WINDOW identifier • 7-506
INFO WINDOW variable •4-29
Initialization files

default handling •4-22
definition • 1-11
during a session •4-32
effects on buffer settings • 4-32
EVE • 4-31 to 4-33

/INITIALIZATION qualifier • 5-9 to 5~~-10
"Initialization" string constant parameter to GET

I N FO.7-177
"Initialization file" string constant parameter to GET

I N FO.7-177
Initializing variables • 2-24
"Init file" string constant parameter to GET INFO •

7-177

Input files • 1-9, 5-19
Input focus

determining ownership of • 7-199
fetching grab routine for • 7-199
fetching ungrab routine for • 7-202
requesting • 7-398
specifying grab routine for • 7-400
specifying ungrab routine for • 7-402
support for • 4-5 to 4-6

I N RANG E case constant • 3-24
Inserted records • 6-5
Inserting date • 7-138, 7-268, 7-271
Inserting time • 7-138, 7-268, 7-271
INSERT keyword • 7-404
Insert mode

COPY TEXT • 7-53
MOVE TEXT • 7-280

INT built-in procedure • 7-232 to 7-23~
Integer constants • 3-5
INTEGER data type • 2 5
/INTERFACE qualifier • 5-10
Interruption of program • 4-20
Invisible record • 7-448
Invoking • 1-9
Invoking VAXTPU • 5-1

from a batch job • 5-5
from DCL command procedure • 5-2
interactively • 5-1
restriction to consider before • 5-1

"is_managed" string constant parameter to GET
I N FO.7-214

"is_subclass" string constant parameter to GET
INFO • ?-214

J
/JOURNAL command qualifier • 1-11, 1-12
Journal file • 7-307

default name • 1-12
getting characteristics of • 7-203
getting name of • 1-12, 5-11
recovering buffer contents • 7-307
security caution • 1-12, 7-59, 7-234, 7-235,

7-406
Journaling

buffer change • 1-11
converting buffer to journal file name • 7-172
default file name • 1-12
EVE default behavior • 1-12
getting file name of buffer change journal • 7-172

Index-12

Index

Journaling (Cont.)
getting journal file information • 7-203
keystroke

enabling and disabling • 7-408
layered application control • 1-12
recovery of buffer contents • 7-307
role of source file • 7-308
sensing a safe buffer • 7-175
sensing the enable of buffer change journaling •

1-12, 5-10
sensing the enable of keystroke journaling • 1-12,

5-11
using both keystroke and buffer change journaling

• 1-12
JOURNALING keyword • 7-405
JOURNALING parameter

SET built-in procedure • 7-405
"journaling" string constant parameter

GET INFO built-in • 1-12, 5-10
"Journaling" string constant parameter to GET

I N FO.7-172
"Journaling frequency" string constant parameter to

GET I N FO.7 206
/JOURNAL qualifier •5-10
"journal" string constant parameter

GET INFO built-in • 7-203
"Journal" string constant parameter to GET INFO •

7-177
JOURNAL CLOSE built-in procedure • 7-234
"Journal file" GET INFO request string • 7-177
"journal file" string constant parameter

GET INFO built-in • 1-12, 5-11, 7-172
"Journal file" string constant parameter to GET

I N FO.7-206
" journal_name" string constant parameter

GET INFO bu i It-i n • 7-172
JOURNAL OPEN built-in procedure • 1-12, 5-11,

7-235 to 7-237
controlling errors related to • 7-408

K
Key

See also Key map
built-in procedures for defining

DEFINE KEY•7-100
LAST KEY • 7-242
LOOKUP KEY • 7-254
SET {POST KEY_PROCEDURE) • 7-442
SET (PRE_KEY PROCEDURE) • 7-444

Key
built-in procedures for defining (Cont.)

SET (SELF INSERT) • 7--470
SET (UNDEFINED_KEY) • 7-,490
UNDEFINE KEY • 7-532

creating a name for • 7-238
Key map

built-in procedures
ADD KEY MAP • 7-17
CREATE_KEY MAP • 7-63
REMOVE_KEY MAP • 7-313
SHOW (KEY MAP) • 7 505
SHOW (KEY MAPS) • 7-505

Key map list
See also Key
built-in procedures

CREATE KEY MAP LIST • 7-65
SET (KEY MAP_LIST) • 7-410
SHOW (KEY MAP_LIST) • 7 505
SHOW (KEY MAP_LISTS) • 7-505

example of fetching • B-19 to B-22
Key name

table • 2-6
Keystroke journaling

and buffer change journaling • 7-307
comparative to buffer change journaling • 1-11
enabling and disabling • 7-408
sensing the enable • 1-12, 5-11

KEYSTROKE RECOVERY keyword • 7-408
KEYSTROKE_RECOVERY parameter

SET built-in procedure • 7-408
Keyword • 3-12

ALL
with EXPAND NAME • 7-135
with REMOVE KEY MAP • 7-313
with SET (BELL) • 7-355
with SET (DEBUG) • 7-364
with UPDATE • 7-538

ANCHOR • 7-24 to 7-25
with SEARCH • 7-327, 7-328
with SEARCH QUIETLY • 7-332

BELL • 7-355
with SET (MESSAGE_ACTiON TYPE) •

7-426
BLANK TABS • 7-483
BLINK

with SELECT • 7-337
with SET (PROMPT AREA) • 7--446
with SET (STATUS_LI N E) • 7^476
with SET (VIDEO) • 7-492

BOLD
with SELECT • 7-337

Index-13

Index

Keyword
BOLD (Cont.)

with SET (PROMPT AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

BROADCAST
with SET (BELL) • 7-355

BUFFER_BEGIN
with POSITION • 7-287
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

BUFFER_END
with POSITION • 7-287
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

COMMENT
with LOOK U P KEY • 7-254

CROSS WINDOW BOUNDS • 7-361
DEBUG • 7-362, 7-363, 7-364
DEVICE

with FILE PARSE • 7-140
with FILE SEARCH • 7-143

DIRECTORY
with FILE_PARSE • 7-140
with FILE_SEARCH • 7-143

EOB_TEXT • 7-374
EXACT

with LEARN BEGIN • 7-244
with SEARCH • 7-328
with SEARCH QUIETLY • 7-333

FACILITY NAME • 7-378
FORWARD • 7-85, 7-379

with SEARCH • 7-328
with SEARCH QUIETLY • 7-333

GRAPHIC TABS • 7-483
INFORMATIONAL • 7-397
INSERT•?-404
JOURNALING • 7-405
key name • 2-6
KEYSTROKE RECOVERY • 7-408
KEYWORDS

with EXPAND NAME • 7-135
KEY MAP

with LOOK UP KEY • 7-254
KEY MAP LIST • 7-410
LEFT MARGIN • 7-412
LEFT MARGIN ACTION • 7-414
LINE BEGIN • 7-249 to 7-250

with POSITION • 7-288
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

Keyword (Cont.)
LINE END • 7-251

with POSITION • 7-288
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

LINE_NUMBER • 7-416
MARGINS • 7-419
MAX LINES • 7-421
MESSAGE FLAGS • 7-427
MODIFIABLE • 7-429
MOUSE

with POSITION • 7-288, 7-289
NAM E

with FILE PARSE • 7-141
with FILE SEARCH • 7-144

NODE
with FILE PARSE • 7-140
with FILE SEARCH • 7-143

NONE
with SELECT • 7-337
with SET (MESSAGE_ACTION_TYPE) •

7-426
with SET (PROMPT AREA) • 7-446
with SET (STATUS_LI N E) • 7-476
with SET (VIDEO) • 7-492

NO_EXACT
with LEARN BEGIN • 7-244
with SEARCH • 7-328
with SEARCH QUIETLY • 7-333

NO TRANSLATE • 7-483
NO WRITE • 7-434
occluded • 3-12
OFF

with CREATE WINDOW • 7-77
with HELP TEXT • 7-228
with QUIT • 7-291
with SET (AUTO_R E P EAT) • 7-353
with SET (BELL) • 7-355
with SET (COLUMN_MOVE_VERTICAL) •

7-359
with SET (CROSS_WINDOW BOUNDS) •

7-361
with SET (DEBUG) • 7-363, 7-364
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) •7-416
with SET (MODIFIABLE) • 7-429
with SET (MOUSE) • 7-432
with SET (NO WRITE) • 7-434
with SET (PAD) • 7-437
with SET (PAD_OVERSTRUCK_TABS) •

7-439
with SET (SCREEN_UPDATE) • 7-460

Index-14

Index

Keyword
OFF (Cont.)

with SET (SCROLLING) • 7-467
with SET (SELF INSERT) • 7-470
with SET (SUCCESS) • 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK) • 7488
with SPAWN • 7-515

ON
with CREATE WINDOW • 7-77
with CREATE WINDOW • 7 77
with HELP TEXT • 7-228
with QUIT • 7-291
with SET (AUTO REPEAT) • 7-353
with SET (BELL) • 7-355
with SET (COLUMN_MOVE VERTICAL) •

7-359
with SET (CROSS WINDOW BOUNDS) •

7-361
with SET (DEBUG) • 7-363
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) • 7-416
with SET (MODIFIABLE} • 7-429
with SET (MOUSE) • 7-432
with SET (NO WRITE) • 7-434
with SET (PAD) • 7-437
with SET (PAD_OVERSTRUCK TABS) •

7-439
with SET (SCREEN_UPDATE) • 7-460
with SET (SCROLLING) • 7-467
with SET (SELF INSERT) • 7-470
with SET (SUCCESS) • 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK) • 7-488
with SPAWN • 7-515

OUTPUT FILE • 7-435
OVERSTRIKE •7-436
PAD • 7-437
PAD OVERSTRUCK TABS • 7-439
PAGE BREAK • 7-286
PAG E_BREAK

with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

PERMANENT • 7-441
POST KEY PROCEDURE • 7-442
PROCEDURES

with EXPAND NAME • 7-135
PROGRAM • 7-362

with LOOK UP KEY • 7-254
PROMPT AREA • 7-446
REMAIN • 7-312

with SEARCH • 7-327

Keyword
REMAIN (Cont.)

with S EARCH_QU I ETLY • 7-332
returned by CURRENT DIRECTION • 7-85
returned by READ_KEY • 7-301
REVERSE • 7-85, 7-453

with SEARCH • 7-328
with SEARCH QUIETLY • 7-333
with SELECT • 7-337
with SET (MESSAGE_ACTION TYPE) •

7-426
with SET (PROMPT AREA) • 7-446
with SET (STATUS_L I N E) • 7-476
with SET (VIDEO) • 7-492

RIGHT MARGIN • 7-454
RIGHT MARGIN ACTION • 7-456
SCREEN UPDATE • 7-460
SCROLLING • 7-467
SELF INSERT•?-470
SHIFT KEY • 7-472
SPECIAL GRAPHICS

with SET (STATUS_LINE) • 7-476
STATUS LINE • 7-476
SUCCESS • 7-479
SYSTEM • 7-480
TEXT • 7-483
TIMER • 7-486
TRACEBACK • 7-488
TYPE

with FILE PARSE • 7-141
with FILE SEARCH • 7-144

UNANCHOR • 7-530 to 7-531
with SEARCH QUIETLY • 7-333

UNDEFINED KEY • 7-490
UNDERLINE

with SELECT • 7-337
with SET (PROMPT AREA) • 7-446
with SET (STATUS_L I N E) • 7-476
with SET (VIDEO) • 7-492

VARIABLES
with EXPAND NAME • 7-135

VERSION
with FILE PARSE • 7-141
with FILE SEARCH • 7-144

VIDEO • ?-492
with SET • 7-347 to 7-348
with SHOW • 7-505 to 7-506

Keyword constants • 3-5
KEYWORD data type • 2-5 to 2-7
Keywords

lexical • 3-36

Index-15

Index

KEYWORDS keyword

with EXPAND_NAME • 7-135
KEY MAP keyword

with LOOK UP KEY • 7-254
KEY MAP_LIST keyword • 7-410
"Key_map list" string constant parameter to GET

I N FO.7-172
KEY NAME built-in procedure • 7-238 to 7-241
"Key type" string constant parameter to GET INFO •

7-162
KILL SELECTION client message • 7-344

L
"last" string parameter to ADD_KEY_MAP • 7-17
"Last" string constant parameter to GET INFO •

7-166, 7-167, 7-169, 7-181, 7-183, 7-184,
7-191, 7-218

LAST KEY built-in procedure • 7-242
LEARN data type • 2-7 to 2-8
LEARN ABORT built-in procedure • 7-243
LEARN_BEGIN built-in procedure • 7-244 to 7-246
LEARN_END built-in procedure • 7-244 to 7-246
Left margin

setting records • 7-448
LEFT MARGIN keyword • 7-412
"Left margin" string constant parameter to GET

INFO.7-172, 7-186
LEFT MARGIN_ACTION keyword • 7-414
"Left margin action" string constant parameter to

GET I N FO.7-172
LENGTH built-in procedure • 7-247 to 7-248
Lexical element • 3-1
Lexical keywords • 3-36 to 3-38
Line break

in data from global selection • 7-300
LINE command •4-18
Line mode editing • C-3
Line-mode editor

example • A-1
"Line" string constant parameter to GET INFO •

7-172
Line terminator

deleting • 7-28
LINE BEGIN keyword • 7-69, 7-249 to 7-250,

7-273
with POSITION • 7-288
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

"Line editing" string constant parameter to GET
I N FO.7-199

LINE_END keyword • 7-69, 7-251, 7-273
with POSITION • 7-288
with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

LINE NUMBER keyword •7-416
"Line number" string constant parameter to GET

I N FO.7-179, 7-206
List

specifying as a resource value •4-13
$LOCAL$INI$ buffer •4-22
LOCAL declaration • 3-34 to 3-35
"Local" string constant parameter to GET INFO •

7-179
Local variable • 3-4, 3-20
Local variables • 3-34
LOCATE_MOUSE built-in procedure • 7-252 to

7-253
Logical names

EVE$INIT•4-31
TPU$COMMAND • 5-6
TPU$DEBUG • 5-8
TPU$SECTION •5-16

Logical operators
AND operator • 3-7
NOT operator • 3-7
OR operator • 3-7
XOR operator • 3-7

Longword
to convert with FAO.7-138
to convert with MESSAGE • 7-268
to convert with MESSAGE TEXT • 7-271

LOOKUP_KEY built-in procedure • 7-254 to 7-257
LOOP statement • 3-21 to 3-22
"Low index" string constant parameter to GET

INFO.7-167

M
Main window widget • 4-16
MANAGE CHILDREN routine

See MANAGE WIDGET built-in procedure
MANAGE CHILD routine

See MANAGE_WIDGET built-in procedure
MANAGE WIDGET built-in procedure • 7-258

example of use • B-4 to B-11
Managing

of widget
controlling whether causes mapping • 7-418

Index-16

Index

MAP built-in procedure • 7-259 to 7-260
MAPPED WHEN_MANAGED parameter to SET

built-in procedure • 7-418
Mapping

of widget
controlling whether performed during

. managing • 7-418
"Map count" string constant parameter to GET_

INFO • ?-173
Margin

default • 7-412, 7-419, 7-454
left

setting records • 7-448
setting • 7-412, 7-419, 7-454

margin action
setting • 7-414

Margin action
default • 7-414

Margin Action
default • 7--456
setting • 7-456

MARGINS keyword • 7-419
MARK built-in procedure • 7-261 to 7-263
MARK data type • 2-8 to 2-10
Marker

deleting • 2-10, 7-108
determining if record containing is unmodifiable •

7-186
fetching display value of record containing • 7-186
padding effects • 2-10
video attributes • 2 9, 7-261

MATCH built-in procedure • 7-264 to 7-265
"Maximum~arameters" string constant parameter to

GET I N FO.7-190
MAX LINES keyword • 7-421
"Max_lines" string constant parameter to GET

I N FO.7-173
Measurement

converting units of • 7-50
Memory

error resulting from exceeding • 5-1
Menu bar widget •4-16
Menu position

of widget
fetching in VAXTPU • 7 210

setting in VAXTPU • 7-422
MENU_POSITION parameter to SET built-in

procedure • 7422
"menu~osition" string constant parameter to GET

I N FO.7-210
Message buffer • 4^18
MESSAGE built-in procedure • 7-266 to 7-269

Messages • D-1 to D-10
Message window

in EVE•4-16
MESSAGE ACTION_LEVEL keyword • 7-424
"Message_action_level" string constant parameter to

GET I N FO.7-206
MESSAGE ACTION TYPE keyword • 7-426
MESSAGE BUFFER identifier • 7 266
MESSAGE BUFFER variable •4-29
MESSAGE FLAGS keyword • 7-427
"Message flags" string constant parameter to GET

I N FO.7-207
MESSAGE TEXT built-in procedure • 7-270 to

7-272
"Middle_of tab" string constant parameter to GET

I N FO.7-223
Minimal interface example •4-26
"Minimum~arameters" string constant parameter to

GET I N FO.7-190
"Mode" string constant parameter to GET INFO •

7-173
Modifiability

setting records • 7-448
MODIFIABLE keyword • 7-429
"Modifiable" string constant parameter to GET

I N FO.7-173
"Modified" string constant parameter to GET INFO •

7-173
/MODIFY qualifier •5-12
"Modify" string constant parameter to GET INFO •

7-177
MODIFY RANGE built-in procedure • 7-273 to

7-277
Module declaration

syntax • 3-15
MODULE statement • 3-14 to 3-15
Modules used with EVE$BUILD • G-2
Mouse

determining support for • 7-432
determining where drag operation originated •

7-188
Mouse button

fetching information about • 7-188
MOUSE keyword • 7-432

with POSITION • 7-288, 7-289
Mouse pad

implementing • B-4
"Mouse" string constant parameter to GET INFO •

7-200
MOVE HORIZONTAL built-in procedure • 7-278 to

7-279
MOVE TEXT built-in procedure • 7-280 to 7-281

Index-17

Index

MOVE_VERTICAL built-in procedure • 7-282 to
7-283

Multinational Character Set
See DEC Multinational Character Set

Multiple buffers • 7-59

N
Name

widget
case sensitivity of • 7-74

NAME keyword
with FILE PARSE • 7-141
with FILE SEARCH • 7-144

Names for procedures • 3-16
"Name" string constant parameter to GET INFO •

7-164, 7-173, 7-182
"Next" string constant parameter to GET INFO •

7-166, 7-168, 7-169, 7-180, 7-181, 7-183,
7-184, 7-191, 7-218, 7-223

"Next marker" string constant parameter to GET
INFO • ?-173

"Next range" string constant parameter to GET
I N FO.7-173

NODE keyword
with FILE PARSE • 7-140
with FILE SEARCH • 7-143

/NODISPLAY qualifier
effect on LAST KEY • 7-242
to disable screen manager • 6-1
with EV E$BU I LD • G-10

/NOJOU RNAL command qualifier • 1-12
"Nomodify" string constant parameter to GET INFO •

7-177
NONE keyword

with MARK • 7-261
with SELECT • 7-337
with SET (MESSAGE_ACTION TYPE) • 7-426
with SET (PROMPT AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

NOTANY built-in procedure • 7-284 to 7-285
NOT operator • 3-7
NO EXACT keyword

with LEARN BEGIN • 7-244
with SEARCH • 7-328
with SEARCH QUIETLY • 7-333

NO TRANSLATE keyword • 7-483
"No video" string constant parameter to GET INFO •

7-223

"No video status" string constant parameter to
GET I N FO.7-223

"No write" GET INFO request string • 7-174
NO WRITE keyword • 7-434
Null parameters •3-18
Numeric constant

specifying radix of • 3-37

O
OFF keyword

with CREATE WINDOW • 7-77
with HELP TEXT • 7-228
with QUIT • 7-291
with SET (AUTO REPEAT) • 7-353
with SET (BELL) • 7-355
with SET (COLUMN_MOVE VERTICAL) • 7-359
with SET (CROSS WINDOW BOUNDS) • 7-361
with SET (DEBUG) • 7-363, 7-364
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) • 7-416
with SET (MODIFIABLE) • 7-429
with SET (MOUSE} • 7-432
with SET (NO WRITE) • 7-434
with SET (PAD) • 7-437
with SET (PAD_OVERSTRUCK TABS) • 7-439
with SET (SCREEN_UPDATE) • 7-460
with SET (SCROLLING) • 7-467
with SET (SELF INSERT) • 7-470
with SET (SUCCESS) • 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK) • 7-488
with SPAWN • 7-515

"Offset" string constant parameter to GET INFO •
7-174, 7-186

"Offset column" string constant parameter to GET
I N FO.7-174, 7-186

ON keyword
with CREATE WINDOW • 7-77
with HELP TEXT • 7-228
with QUIT • 7-291
with SET (AUTO REPEAT) • 7-353
with SET (BELL) • 7-355
with SET (COLUMN_MOVE_VERTICAL) • 7-359
with SET (CROSS WINDOW BOUNDS) • 7-361
with SET (DEBUG) • 7-363
with SET (INFORMATIONAL) • 7-397
with SET (LINE_NUMBER) •7-416
with SET (MODIFIABLE) • 7-429
with SET (MOUSE) • 7-432

Index-18

Index

ON keyword (font.)
with SET (NO WRITE) • 7-434
with SET (PAD) • 7-437
with SET (PAD_OVERSTRUCK TABS) • 7-439
with SET (SCREEN_UPDATE) • 7-460
with SET (SCROLLING) • 7-467
with SET (SELF INSERT) • 7-470
with SET (SUCCESS) • 7-479
with SET (TIMER) • 7-486
with SET (TRACEBACK) • 7-488
with SPAWN • 7 515

ON ERROR statement •3-25 to 3-31
location • 3-25

ON ERROR Statement • 3-21
Operators • 3-6 to 3-8

partial pattern assignment (a►) • 2-17
pattern alternation (~) • 2-16
pattern concatenation (+) • 2-15
pattern linking (&) • 2-15
precedence • 3-7
relational • 2-18

"Original_bottom" string constant parameter to GET
I N FO.7-223

"Original_length" string constant parameter to GET
I N FO.7-223

"Original top" string constant parameter to GET
I N FO.7-223

"Original width" string constant parameter to GET
INFO.7-200

OR operator • 3-7
Output file • 5-12
OUTPUT parameter

SET built-in procedure • 7-203
/OUTPUT qualifier •5-12
"Output" string constant parameter to GET INFO •

7-177
OUTPUT FILE keyword • 7-435
"Output file" string constant parameter to GET

I N FO.7-174, 7-178
OUTRANGE case constant • 3-24
OVERSTRIKE keyword • 7-436
Overstrike mode

COPY TEXT • 7-53
MOVE TEXT • 7-280

Ownership
global selection

determining • 7-199
losing • 7-202
requesting • 7-380

input focus
determining • 7-199
losing • 7-202

Ownership
input focus (font.)

requesting • 7-398

P
Padding effects •6-11 to 6-12

version differences • 7-439
with APPEND LINE • 7-28
with ATTACH • 7-35
with COPY TEXT • 7-53
with CURRENT CHARACTER • 7-81
with CURRENT LINE • 7-86
with CURRENT OFFSET • 7-88
with ERASE CHARACTER • 7-119
with ERASE LINE • 7-121
with MARK • 7-262
with MOVE HORIZONTAL • 7-278
with MOVE TEXT • 7-281
with MOVE VERTICAL • 7-282
with READ FILE • 7-297
with SELECT • 7-338
with SELECT RANGE • 7-341
with SET (PAD) • 7-437
with SPAWN • 7-516
with SPLIT LINE • 7-518

PAD keyword • 7-437
"Pad" string constant parameter to GET INFO •

7-223
PAD_OVERSTRUCK TABS keyword • 7-439
"Pad_overstruck tabs" string constant parameter to

GET I N FO.7-207
PAGE_BREAK keyword • 7-286

with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

Parameters
for procedures •3-16 to 3-19

"Parameter" string constant parameter to GET
INFO.7-180

Parent
of widget

fetching in VAXTPU • 7-215
""parent"" string constant parameter to GET INFO •

7-215
Parentheses

in expressions • 3-7
Parser

maximum stack depth of • 4-2
Parsers with EVE$BUILD • G-3 to G-4
Partial pattern assignment (~) • 2-17

Index-19

Index

Pattern
alternation (~) • 2-16
anchoring • 7-24
built-in procedures • 2-13
compilation • 2-18
concatenation (+) • 2-15
execution • 2-18
expression • 3-11
linking (&) • 2-15
operators • 2-15
searching • 2-11

Pattern assignment
partial (~) • 2-17

PATTERN data type • 2-11 to 2-20
Pattern matching

built-in procedures
ANCHOR • 7-24
ANY • 7-26
ARB • 7-30
LINE_BEGIN •7-249
LI N E_EN D • 7-251
MATCH • 7-264
NOTANY • 7-284
PAGE BREAK • 7-286
REMAIN • 7-312
SCAN • 7-319
SCAN L • 7-322
SPAN • 7-510
SPANL • 7-512
UNANCHOR • 7-530

PERMANENT keyword • 7-441
"Permanent" string constant parameter to GET_

I N FO.7-174
"Pid" string constant parameter to GET INFO •

7-192
Pixmap

use of to implent icon in DECwindows VAXTPU •
7-393, 7-395

Pointer position • 7-252
POSITION built-in procedure • 7-287 to 7-290

example of use • B-25 to B-27
POST KEY PROCEDURE keyword • 7-442
"Post key~rocedure" string constant parameter to

GET I N FO.7-204
Predefined constants

names • 3-13
"Previous" string constant parameter to GET_INFO •

7-166, 7-168, 7-169, 7-180, 7-181, 7-183,
7-184, 7-191, 7-218, 7-223

PRE_KEY PROCEDURE keyword •7-444
"Pre_key~rocedure" string constant parameter to

GET I N FO.7-204

Procedural error handler •3-26 to 3-28
Procedure

executing •4-21
name • 3-16
parameter •3-16 to 3-19
recommended naming conventions •4-31
recommended size for • 4-2
recursive • 3-19
returning result • 2-8, 3-19, 7-101
using LEARN ABORT in • 7-243

Procedures
samples using EVE • B-1 to B-33

PROCEDURES keyword
with EXPAND_NAME • 7-135

PROCEDURE statement • 3-15 to 3-21
"Procedure" string constant parameter to GET

I N FO.7-180
Process

deleting • 7-108
multiple

built-in procedures
ATTACH • 7-35
CREATE PROCESS • 7-67
RECOVER BUFFER • 7 307
SEND • 7-342
SEND EOF • 7-346
SPAWN • 7-515

PROCESS data type • 2-20 to 2-21
Program

add to section file •4-25
calling VAXTPU from • 4-1, 7-41
compiling •4-18 to 4-19
complex • 4-2
debugging •4-33 to 4-37
deleting • 7-108
executing •4-19 to 4-21
interrupting • 4 20
order • 4-3
simple • 4-2
syntax • 4-3

example • 4-4
writing • 4-1 to 4-14

PROGRAM data type • 2-21
Program execution

built-in procedures
COMPILE•?-47
SAVE • 7-316

PROGRAM keyword • 7-362
with LOOK UP KEY • 7 254

PROMPT AREA
video attributes • 7-446

Index-20

Index

PROMPT AREA keyword • 7-446
"Prompt length" string constant parameter to GET

I N FO.7-200
"Prompt row" string constant parameter to GET

IN FO.7-201

Q
Qualifier, command

See EDIT/TPU command qualifiers
QUIT built-in procedure • 7-291 to 7-292
Quote characters • 7-112, 7-113

R
Radix

of numeric constant
specifying • 3-37

Range
converting contents of to string format using STR •

7-520
deleting • 2-22, 7-70, 7-108
determining if unmodifiable records are present

i n • 7-193
erasing • 2-22, 7 70, 7-117
moving delimiters of • 7-273
video attributes • 2-22

RANGE data type • 2-21 to 2-22
Read request

fetching • 7-199
Read routine

fetching • 7-174, 7-201
specifying • 7-385

READ CHAR built-in procedure • 7-293 to 7-294
READ_CLIPBOARD built-in procedure • 7-295
READ FILE built-in procedure • 7-297 to 7-298
READ_GLOBAL SELECT built-in procedure • 7-299

example of use • B-28 to B-30, B-30 to B-31
READ_KEY built-in procedure • 7-301 to 7-302
READ_LINE built-in procedure • 7-303 to 7-305
/READ_ONLY qualifier •5-13
"Read only" string constant parameter to GET

I N FO.7-178
REALIZE_WIDGET built-in procedure • 7-306
Realizing

widgets in VAXTPU • 7-306

Record
determining if unmodifiable is present • 7-175,

7-186, 7-193
erasing unmodifiable

preventing or allowing • 7-375
fetching display value of • 7-186
sensing unmodifiable erasable state • 7-169
setting attribute • 7-448

Record attribute • F-1
Record deleting • 6-5
Record format • F-1
Record insertion • 6-5
RECORD_ATTRIBUTE parameter to SET built-in

procedure • 7-448
"Record count" string constant parameter to GET

IN FO.7-175
"Record_number" string constant parameter to GET

IN FO.7-175
"Record size" string constant parameter to GET

I N FO.7-175
/RECOVER command qualifier • 1-11, 7-307
"Recover" GET INFO request string • 7-178
/RECOVER qualifier • 5-11, 5-14

controlling errors related to • 7-408
Recovery

of buffer contents • 1-11, 7-307
role of source file • 7-308
using buffer change journaling • 7-307
using keystroke journal file

enabling and disabling • 7-408
RECOVER_BUFFER built-in procedure • 7-307 to

7-309
Recursive procedure • 3-19
REFRESH built-in procedure •6-10, 7-310 to 7-311

compared with UPDATE (ALL) • 7-538
Relational expression • 3-10
Relational operators • 2-18
REMAIN keyword • 7-312

with SEARCH • 7-327
with SEARCH QUIETLY • 7-332

Removal of key map
built-in procedures

REMOVE KEY MAP • 7-313
Removal of window • 2-28
REMOVE_KEY MAP built-in procedure • 7-313 to

7-314
Repetitive statements • 3-21 to 3-22
Reserved word

built-in procedures • 3-12
keywords •3-12
language elements •3-13 to 3-14
predefined constants • 3-13

1 ndex-21

Index

Resizing
of screen in VAXTPU • 7-391, 7-501

Resource
of widget

fetching class and data type of • 7-215
supported data types for •4-12

"resources" string constant parameter to GET INFO •
7-215

Restoring terminal width
example • A-5

Restriction
VAXTPU

virtual address space • 5-1
Restrictions

for subprocess • 2-20
RETURN statement • 3-26, 3-31 to 3-33, 7-315
REVERSE keyword • 7-85, 7-453

with MARK • 7-261
with SEARCH • 7-328
with SEARCH QUIETLY • 7-333
with SELECT • 7-337
with SET (MESSAGE_ACTION TYPE) • 7-426
with SET (PROMPT AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Reverse status" string constant parameter to GET
I N FO.7-224

"Reverse video" string constant parameter to GET
I N FO.7-224

RIGHT MARGIN keyword • 7-454
"Right margin" string constant parameter to GET

I N FO.7-175, 7-186
RIGHT MARGIN_ACTION keyword • 7-456
"Right margin_action" string constant parameter to

GET I N FO.7-175
Running VAXTPU from subprocess

example • A-5

S
"safe for—journaling" string constant parameter

GET INFO built-in • 7-175
Sample procedures using DECwindows VAXTPU

built-in procedures • B-1 to B-33
Sample VAXTPU procedures

debugon•7-365
delete all definitions • 7-533
init help_key_map list • 7-66
initsample_key_map • 7-64
line_number example • 7-417

Sample VAXTPU procedures (font.)
mail sub • 7-343
my_call_user • 7-43
remove comments • 7-312
SAVE • 7-318
shift key_handler • 7-257
show key_maps_in_list • 7-161
show key_map lists • 7-160
show self insert • 7-161
strip blanks • 7-124, 7-126, 7-128
strip eight • 7-528
toggle_self insert • 7-471
traceback example • 7-489
user change mode • 7-103
user change windows • 7-290
user clear key • 7-533
user collect rnos • 7-145
user dcl~rocess • 7-68
user define edtkey • 7-240
user define key • 7-103
user delete • 7-89
user delete char • 7-29
user delete extra • 7-109
user delete key • 7-120
user display_current character • 7-82
user display help • 7-23
user display_key_map list • 7-160
user display~osition • 7 522
user do • 7-131
user double~arens • 7-265
user edit string • 7-114
user emphasize_message • 7-509
user end_of line • 7-251
user erase message_buffer • 7-315
user erase to eob • 7-71
user error messsage • 7-139
user fao conversion • 7-139
user find chap • 7-330, 7-335
user find mark twain • 7-514
user find~arens • 7-320
user find~rocedure • 7-27
user find_string • 7-315
user free-cursor up • 7-98
user free cursor down • 7-98
user free cursor left • 7-95
user free cursor right • 7-95
user get info • 7-160
user get key_i nfo • 7-256
user go down • 7-91
user go up • 7-91
user help • 7-229

Index-22

Index

Sample VAXTPU procedures (Cont.)
user help buffer • 7-62
user help on_key • 7-302
user include file • 7-38
user initial cap • 7-524
user is character • 7-231
user lowercase_line • 7-46
user make window • 7-79
user mark • 7-248
user message_window • 7-260
user move_8 lines • 7-283
user move_by_lines • 7-279
user move text • 7-281
user move to_mouse • 7-253
user next~age • 7-286
user next screen • 7-93
user not quite working • 7-39
user one_window to_two • 7-537
user on_eol • 7-269
user~aste • 7-116, 7-263
user~rint • 7-485
user~rompt number • 7-233, 7-305
user quick arse • 7-137
user quit • 7-292
user quote • 7-294
user remove blank lines • 7-514
user remove comments • 7-25
user remove crlfs • 7-118
user remove dsrlines • 7-250
user remove_non_numbers • 7-323
user remove_numbers • 7-514
user remove odd characters • 7-321
user remove~aren text • 7-531
user repaint • 7-311
user replace~refix • 7-31
user ring_bell • 7-356
user runoff line • 7-87
user scroll buffer • 7-326
user search for nonalpha • 7-285
user search_range • 7-331, 7-336
user select • 7-341
user show direction • 7-85
user show first line • 7-539
user simple_insert • 7-54
user slow down arrow • 7-354
user slow up_arrow • 7-354
user split line • 7-84, 7-519
user start journal • 7-142
user start select • 7-339
user tab • 7-33
user test key • 7-34

Sample VAXTPU procedures (Cont.)
user toggle_direction • 780
user top • 7-38
user tpu • 7-132
user trans text • 7-528
user two window • 7-298
user upcase_item • 7-46
user what is comment • 7-256
user write file • 7-545

SAVE built-in procedure • 7-316 to 7-318
SCAN built-in procedure • 7-319 to 7-321
SCANL built-in procedure • 7-322 to 7-323
Screen

enabling resizing of • 7-372
resizing • 7-391, 7-501
specifying size of • 7-458
updating

controlling support for • 7-460
SCREEN keyword

using with widget-related built-in procedures • 4-16
Screen layout

built-in procedures
ADJUST WINDOW • 7-19
CREATE WINDOW • 7-77
MAP • 7-259
REFRESH •7-310
SHIFT • 7-503
UNMAP • 7-536
UPDATE • 7-538

Screen manager • 2-28, 6-1 to 6-12
automatic update • 6-7
line changes • 6-6
partial update • 6-8
specific window update • 6-8
suppressing updates • 6-6
update all windows • 6-9
update order • 6-7
updates • 6-6
update with ADJUST WINDOW • 7-22
update with CURSOR_HORIZONTAL • 7-94
update with CURSOR VERTICAL • 7-97

Screen object
in VAXTPU •4-14

Screen update
See Screen manager

SCREEN_UPDATE keyword • 7-460
"Screen update" string constant parameter to GET

I N FO.7-201
Scroll bar

disabling • 7-462
enabling • 7-462

Index-23

Index

Scroll bar slider
adjusting automatically • 7-224

Scroll bar widget
example of fetching • B-19 to B-22

SCROLL built-in procedure •6-10, 7-324 to 7-326
Scrolling

effect of on cursor position • 7-324
effect of on editing point • 7-324
with records deleted • 6-5
with records inserted • 6-5

SCROLLING keyword • 7^467
"Scroll" string constant parameter to GET INFO •

7-201, 7-224
"Scroll_amount" string constant parameter to GET_

I N FO.7-224
"Scroll_bottom" string constant parameter to GET

I N FO.7-224
"Scroll top" string constant parameter to GET

I N FO.7 225
Search

anchored • 7-24
anchoring a pattern • 2-19
for pattern • 2-11
unanchoring pattern elements • 2-19 to 2-20

SEARCH built-in procedure • 7-327 to 7-331
SEARGH_QUIETLY built-in procedure • 7-332 to

7-336
Section files • 5-16

created with EVE$BUILD • G-10 to G-11
creating •4-23
debugging •4-34
default •4-21
definition • 1-10
extending •4-24
processing •4-24, 4-25
recommended conventions •4-28

/SECTION qualifier •4-25, 5-16
"Section" string constant parameter to GET INFO •

7-178
"Section file" string constant parameter to GET_

I N FO.7-178, 7-207
Security considerations • 1-12, 7-59, 7-234, 7-235,

7-406
SELECT built-in procedure • 7-337 to 7-339
Selection •4-16

dynamic • 4-17
found range • 4-18
static • 4-17
using MODIFY RANGE built-in to alter • 7-273

Select range
in EVE •4-16

SELECT RANGE built-in procedure • 7-340 to
7-341

SELF INSERT keyword • 7-470
"Self insert" string constant parameter to GET

I N FO.7-204
Semicolon

as statement separator • 1-,8, 3-4, 3-15, 3-16,
3-17, 4-3

SEND built-in procedure • 7-342 to 7-343
SEND CLIENT MESSAGE built-in procedure •

7-344 to 7-345
SEND EOF built-in procedure • 7-346
Separator

semicolon used as • 1-8, 3-4, 3-15, 3-16, 3-17,
4-3

SET (ACTIVE AREA) built-in procedure • 7-350
SET (AUTO REPEAT) built-in procedure • 7353 to

7-354
SET (BELL) built-in procedure • 7 355 to 7-356
SET (CLIENT MESSAGE) built-in procedure • 7 357

to 7-358
SET (COLUMN_MOVE VERTICAL) built-in

procedure • 7-359 to 7-360
SET (CROSS WINDOW BOUNDS) built-in

procedure • 7-361
SET (DEBUG) built-in procedure • 7362 to 7365
SET (DEFAULT DIRECTORY) built-in procedure •

7366
SET (DETACHED ACTION) built-in procedure •

7367 to 7-369
SET (DISPLAY VALUE) built-in procedure • 7370
SET (DRM HIERARCHY) built-in procedure • 7-371
SET (ENABLE RESIZE) built-in procedure • 7-372
SET (EOB TEXT) built-in procedure • 7-374
SET (ERASE UNMODIFIABLE) built-in procedure •

7-375 to 7-377
SET (FACILITY NAME) built-in procedure • 7-378
SET (FORWARD) built-in procedure • 7-379
SET (GLOBAL SELECT) built-in procedure • 7-380
SET (GLOBAL SELECT GRAB) built-in procedure •

7382
SET (GLOBAL SELECT_READ} built-in procedure •

7-385
SET (GLOBAL SELECT_TIME) built-in procedure •

7-387
SET (GLOBAL SELECT_UNGRAB) built-in

procedure • 7-389
SET (HEIGHT) built-in procedure • 7-391
SET (ICONIFY PIXMAP) built-in procedure • 7-395

to 7-396
SET (ICON_NAME} built-in procedure • 7-392
SET (ICON_PIXMAP) built-in procedure • 7-393 to

7-394

Index-24

Index

SET (INFORMATIONAL) built-in procedure • 7-397
SET (INPUT FOCUS) built-in procedure • 7 398
SET (INPUT FOCUS_GRAB) built-in procedure •

7-400
SET (INPUT FOCUS_UNGRAB) built-in procedure

7-402
SET (INSERT) built-in procedure • 7-404
SET (JOU RNALING) built-in procedure • 7-405 to

7-407
SET (KEYSTROKE_RECOVERY) built-in procedure •

7-408 to 7-409
SET (KEY MAP_LIST) built-in procedure • 7-410 to

7-411
SET (LEFT MARGIN) built-in procedure •7-412 to

7-413
SET (LEFT MARGIN ACTION) built-in procedure •

7-414 to 7-415
SET (LINE_NUMBER) built-in procedure • 7-416 to

7-417
SET (MAPPED_WHEN_MANAGED) built-in

procedure • 7-418
SET (MARGINS) built-in procedure • 7-419 to 7420
SET (MAX LINES) built-in procedure • 7-421
SET (MENU_POSITION) built-in procedure • 7-422

to 7-423
SET (MESSAGE_ACTION_LEVEL) built-in procedure

• 7-424 to 7-425
SET (MESSAGE_ACTION_TYPE) built-in procedure •

7-426
SET (MESSAGE_FLAGS) built-in procedure • 7-427

to 7-428
SET (MODIFIABLE) built-in procedure • 7-429 to

7-430
SET (MODIFIED) built-in procedure • 7-431
SET (MOUSE) built-in procedure • 7-432 to 7-433
SET (N~ WRITE) built-in procedure • 7-434
SET (OUTPUT) built-in procedure • 7-203
SET (OUTPUT FILE) built-in procedure • 7-435
SET (OVERSTRIKE) built-in procedure • 7-436
SET (PAD) built-in procedure • 7-437 to 7-438
SET (PAD_OVERSTRUCK TABS) built-in procedure

• 7-439 to 7-440
SET (PERMANENT) built-in procedure • 7-441
SET (POST KEY PROCEDURE) built-in procedure •

7-442 to 7-443
SET (PRE KEY PROCEDURE) built-in procedure •

7-444 to 7-445
SET (PROMPT AREA) built-in procedure • 7-446 to

7-447
SET (RECORD_ATTRIBUTE) built-in procedure •

7-448 to 7-450
SET (RESIZE ACTION) built-in procedure • 7-451
SET (REVERSE) built-in procedure • 7-453

SET (RIGHT MARGIN) built-in procedure • 7-454 to
7-455

SET (RIGHT MARGIN ACTION) built-in procedure •
7-456 to 7-457

SET (SCREEN_LIMITS) built-in procedure • 7-458
SET (SCREEN_UPDATE) built-in procedure • 7-460

to 7-461
SET (SCROLLING) built-in procedure • 7-467 to

7-469
SET (SCROLL BAR) built-in procedure • 7-462

example of use •8-22 to B-25
SET (SCROLL BAR_AUTO THUMB) built-in

procedure • 7-465
example of use • B-22 to B-25

SET (SELF INSERT) built-in procedure • 7-470 to
7-471

SET (SHIFT KEY) built-in procedure • 7-472 to
7-473

SET (SPECIAL ERROR_SYMBOL} built-in
procedure • 7-474 to 7-475

SET (STATUS_LINE) built-in procedure • 7-476 to
7-478

SET (SUCCESS) built-in procedure • 7-479
SET (SYSTEM) built-in procedure • 7-480
SET (TAB_STOPS) built-in procedure • 7-481 to

7-482
SET (TEXT) built-in procedure • 7-483 to 7-485
SET (TIMER) built-in procedure • 7-486 to 7-487
SET (TRACEBACK) built-in procedure • 7-488 to

7-489
SET (UNDEFINED_KEY) built-in procedure • 7-490

to 7-491
SET (VIDEO) built-in procedure • 7-492 to 7-493
SET (WIDGET) built-in procedure • 7-494

example of use • B-22 to B-25, B-25 to B-27
using to specify resource values •4-12

SET (WIDGET CALLBACK) built-in procedure •
7-499

example of use • B-22 to B-25
using to specify callback routine • 4-9

SET (WIDGET CALL DATA) built-in procedure •
7-496 to 7-498

SET (WIDTH) built-in procedure • 7301 to 7-502
SET built-in procedure • 7-347 to 7-349

WIDGET•4-10
SHIFT built-in procedure • 7-503 to 7-504
SHIFT key

restriction on defining in EVE • 7-472
"Shift amount" string constant parameter to GET

I N FO.7-225
SHIFT KEY keyword • 7-472

1 ndex-25

Index

"Shift key" string constant parameter to GET INFO •
7-204, 7-207

SHOW (KEYWORDS) built-in procedure • 2-5
SHOW built-in procedure • 7-505 to 7-507
SHOW DEFAULTS BUFFER command • 4-32
Showing version number • 4-2
SHOW BUFFER identifier • 7-506
SHOW BUFFER variable •4-29
SLEEP built-in procedure • 7-508 to 7-509
Slider • 7-224

example of fetching • B-19 to B-22
Source file

defined • 7-308
Source files for EVE • 1-11
SPAN built-in procedure • 7-510 to 7-511
SPANL built-in procedure • 7-512 to 7-514
SPAWN built-in procedure • 7-515 to 7-517
SPECIAL GRAPHICS keyword

with SET (STATUS_LINE) • 7476
"Special_graphics_status" string constant parameter

to GET I N FO.7-225
SPLIT LINE built-in procedure • 7-518 to 7-519
Startup files • 1-10 to 1-11, 4-21 to 4-33

command file • 1-10
definition • 1-10
initialization file • 1-10
order of execution • 4-22
section file • 1-10

"Start character" string constant parameter to GET
I N FO.7-178

/START POSITION qualifier •5-17
"Start record" string constant parameter to GET

I N FO.7-178
Statement

separator for • 4-3
Static selection •4-17
Status line

default information • 7-77
fields added with EVE$BUILD • G-7 to G-8
video attributes • 7-476

STATUS_LINE keyword • 7-476
"Status_line" string constant parameter to GET_

I N FO.7-225
"Status video" string constant parameter to GET_

I N FO.7-225
STR built-in procedure • 7-520 to 7-522
String

concatenating • 3-4
converting contents of buffer to using STR • 7-520
converting contents of range to using STR • 7-520
to insert with FAO.7-138
to insert with MESSAGE • 7-268

String (Coot.)
to insert with MESSAGE TEXT • 7-271

String constants • 3-5
STRING data type • 2-23 to 2-24
STUFF SELECTION client message • 7-344
Subclass

finding out if a widget is a member of • 7-214
Subprocess

at DCL level • 7-67
built-in procedures

ATTACH • 7-35
CREATE PROCESS • 7-67
RECOVER BUFFER • 7-307
SEND • 7-342
SEND EOF • 7-346

built-in procedures for defining
SPAWN • 7-515

deleting • 7-67
restrictions • 2-20
running VAXTPU from • A-5
within VAXTPU • 7-67

SUBSTR built-in procedure • 7-523 to 7-525
SUCCESS keyword • 7-479
"Success" string constant parameter to GET INFO •

7-207
Supported terminals • 1-8
Symbols • 3-3 to 3-4
Synonyms for commands • G-5 to G-7
Syntax • 4-3
SYSTEM keyword • 7-480
"System" string constant parameter to GET_INFO •

7-175

T
TAB STOPS keyword

used with SET • 7-481
"Tab stops" string constant parameter to GET_

I N FO.7-175
Terminal

behavior • C-1
DEC CRT2 • C-3
restoring width • A-5
setting • C-1 to C-3

AUTO REPEAT• C-2
auxiliary keypad • C-2
132 columns • C-2
control sequence introducer • C-2
CSI • C-2
cursor • C-2

Index-26

Index

Terminal
setting (Cont.)

DEC CRT • C-2
edit mode • C-2
eightbit characters • C-2
scro I I i ng • C-3
video attributes • C-3
wrap • C-4

support • C-1
width

restoring • A-5
Terminal emulator • 6-4
Terminal support • 1-8
TEXT keyword • 7-483
Text manipulation

built-in procedures
APPEND LINE•?-28
BEGINNING OF • 7-37
CHANGE CASE • 7-44
COPY TEXT • 7-53
CREATE BUFFER • 7-58
EDIT • 7-111
END OF • 7-115
ERASE • 7-117
ERASE CHARACTER • 7-119
ERASE LINE•?-121
FILE PARSE • 7-140
FILE SEARCH • 7-143
FILL • 7-146
MOVE TEXT • 7-280
READ FILE • 7-297
SEARCH • 7-327
SEARCH QUIETLY • 7-332
SELECT • 7-337
SELECT RANGE • 7-340
SPLIT LINE •7-518
TRANSLATE • 7-526
WRITE FILE • 7-543

"Text" string constant parameter to GET INFO •
7-225

%THEN lexical keyword •3-36
Time

inserting with FAO.7-138
inserting with MESSAGE • 7-268
inserting with MESSAGE_TEXT • 7-271

"Timed_message" string constant parameter to GET
I N FO.7-207

TIMER keyword • 7-486
Title bar widget • 4-16
TPU$COMMAND logical name •4-21, 5-6
TPU$DEBUG logical name • 5-8
TPU$INIT PROCEDURE procedure •4-22, 4-28

TPU$K DISJOINT constant • 7-198, 7-368
TPU$K INVISIBLE constant • 7-198, 7-368
TPU$K OFF LEFT constant • 7-198, 7-368
TPU$K OFF RIGHT constant • 7-198, 7-368
TPU$K UNMAPPED constant • 7-198, 7-368
TPU$LOCAL INIT procedure •4-29
TPU$LOCAL INIT PROCEDURE procedure •4-23
TPU$SECTION logical name •4-21, 4-27, 5-16
TPU$STACKOVER status

correcting • 4-2
TPU$WIDGET INTEGER_CALLBACK callback

routine • 4-9, 4-10
TPU$WIDGET STRING_CALLBACK callback routine

• 4-9, 4-10
TPU$X MESSAGE_BUFFER variable •4-29
TPU$X SHOW BUFFER variable •4-29
TPU$X SHOW WINDOW variable •4-29
TPU$ UNKLEXICAL error message • 3-38
TPU command •4-19
TPU debugger •4-33 to 4-37

ATTACH command •4-36
CANCEL BREAKPOINT command •4-36
DEBUGON procedure •4-35
DEPOSIT command •4-36
DISPLAY SOURCE command •4-36
EXAMINE command •4-36
GO command •4-34, 4-36
HELP command •4-36
invoking •4-33
QUIT command •4-36
SCROLL command •4-37
SET BREAKPOINT command •4-34, 4-37
SET WINDOW command •4-37
SHIFT command •4-37
SHOW BREAKPOINTS command •4-37
SPAWN command •4-37
STEP command •4-35, 4-37
TPU command •4-37

TRACEBACK keyword • 7-488
"Traceback" string constant parameter to GET

INFO • ?-207
TRANSLATE built-in procedure • 7-526 to 7-529
"Type" GET INFO request string • 7-165
TYPE keyword

with FILE_PARSE • 7-141
with FILE_SEARCH • 7-144

U
UNANCHOR keyword • 7-530 to 7-531

Index-27

Index

UNANCHOR keyword {font.)
with SEARCH QUIETLY • 7-333

Unbound code
use of local variables in • 3-34

UNDEFINED_KEY keyword • 7-490
"Undefined_key" string constant parameter to GET

I N FO.7-204
UNDEFINE_KEY built-in procedure • 7-532 to 7-533
UNDERLINE keyword

with MARK • 7-261
with SELECT • 7-337
with SET (PROMPT AREA) • 7-446
with SET (STATUS_LINE) • 7-476
with SET (VIDEO) • 7-492

"Underline status" string constant parameter to
GET I N FO.7-225

"Underline video" string constant parameter to GET
I N FO.7-225

Ungrab routine
global selection

fetching • 7-202
specifying • 7-389

input focus
fetching • 7-202
specifying • 7-402

UNMANAGE WIDGET built-in procedure • 7-534
UNMAP built-in procedure • 7-536 to 7-537
Unmodifiable record • 7-448

determining if present • 7-175, 7-186, 7-193
preventing or allowing erasing of • 7-375
sensing erasable state • 7-169

"Unmodifiable_records" string constant parameter to
GET I N FO.7-175, 7-186, 7-193

UNSPECIFIED data type • 2-24
Unsupported terminals • 2-29
UPDATE built-in procedure • 6-9, 7-538 to 7-539

compared with REFRESH • 7-538
"Update" string constant parameter to GET_INFO •

7-208
Updating windows • 2-29
User window

in EVE •4-16
Utility routines

forming the VAXTPU callable interface • 4-1, 7-41

v

Values)
assigning to widget resources •4-10, 7-494

Variable
buffer • 2-4
global • 3-4
initializing • 2-24
local • 3-4, 3-20, 3-34

VARIABLE declaration • 3-36
Variables

recommended naming conventions •4-31
VARIABLES keyword

with EXPAND NAME • 7-135
VAXTPU

built-in procedures • 1-2
DECwindows • 1-2
journaling methods • 1-11
relationship with DECwindows features • 1-2
used with U IL • 1-4

VERSION keyword • 7-141
with FILE SEARCH • 7-144

Version number • 4-2
"Version" string constant parameter to GET INFO •

7-208
Video attribute

marker • 2-9, 7-261
PROMPT AREA • 7-446
range • 2-22
SET (VIDEO) built-in procedure • 7-492
with STATUS LINE • 7^476

V 1 D EO keyword • 7-492
"Video" string constant parameter to GET_INFO •

7-187, 7-193, 7-226
Virtual address space

VAXTPU restriction concerning • 5-1
Visibility

fetching display value of record or window • 7-186,
7-222

of record
using display value to determine • 7-370

setting record • 7-448
"Visible" string constant parameter to GET_INFO •

7-226
"Visible bottom" string constant parameter to GET

INFO • ?-226
"Visible length" string constant parameter to GET_

I N FO.7-202, 7-226
"Visible top" string constant parameter to GET_

I N FO.7-226
"Vk100" string constant parameter to GET_INFO •

7-202
"Vt100" string constant parameter to GET_INFO •

7-202
"Vt200" string constant parameter to G ET_I N FO •

7-202

Index-28

Index

"Vt300" string constant parameter to GET INFO •
7-202

W
Widget

callback~arameters • 7-209
case sensitivity of name • 7-74
creating • 7-72
defining a class of • 7-105
deleting • 7-108
fetching callback routine for • 7-214
fetching children of in VAXTPU • 7-210
fetching class of in VAXTPU • 7-214
fetching name of • 7-215
finding out if managed in VAXTPU • 7-214
getting information about • 7-216
listing of • 4-5
main window •4-16
managing • 7-258
mapped status

controlling in VAXTPU • 7-418
membership in subclass

finding out in VAXTPU • 7-214
menu bar

in VAXTPU •4-16
menu position of in VAXTPU • 7-210
parent of

fetching in VAXTPU • 7-215
realizing in VAXTPU • 7-306
resource

fetching class and data type of in VAXTPU •
7-215

scroll bar • 7-224, 7-462
scroll bar slider • 7-224
setting resource values of • 7-494
title bar •4-16
unmanaging • 7-534
using callback data structure in VAXTPU • 7-496
widget id • 7-209

Widget children
managing • 7-258
unmanaging • 7-534

WIDGET data type • 2-24 to 2-25
Widget resources

data types of •4-12
specifying •4-12

WIDGET CALL DATA parameter to SET built-in
procedure • 7-496

WIDTH parameter to SET built-in procedure • 7-501

"Width" string constant parameter to GET INFO •
7-202

Wildcard characters
in file names • 5-20

Window
adjusting size • 7-19
attributes • 7-78
bottom

example of fetching • B-16 to B-19
changing position • 7-20
command

in EVE •4-16
creating • 2-26
current • 2-27, 7-77
definition • 2-25
deleting • 6-4, 7-108
determining bottom of • 7-222
determining boundaries and size of • 7-222
determining last column of • 7-224
determining leftmost column of • 7-222
determining length of • 7-223
determining top of • 7-225
determining width of • 7-226
dimensions • 2-25
enlarging • 7-19
fetching display value of • 7-222
function of

in VAXTPU compared with DECwindows •
4-16

getting information • 2-29
key map list

example of fetching •6-19 to B-22
length • 2-26

example of fetching • B-16 to B-19
making current • 6-2
mapping • 2-27, 6-3
message

in EVE •4-16
reducing • 7-20
removing • 2-28
screen management • 6-2 to 6-4
screen updates • 6-7
scroll bar in • 7-224, 7462
scroll bar slider in • 7-224
setting display value of • 7-370
size

with terminal display • 6-4
with terminal emulator • 6-4

top
example of fetching • B-16 to B-19

unmapping • 2-28

Index-29

Index

Window (Cont.)
unsupported terminals • 2-29
updating • 2-29
user

in EVE •4-16
values • 2-27
width • 2-26

example of fetching • 6-19 to B-22
window width • 6-,4

WINDOW data type • 2-25 to 2-29
"Within range" string constant parameter to GET

I N FO.7-187
Word separators • 7-146
/VIIRITE qualifier • 5-17

"Write" string constant parameter to GET INFO •
7-178

WRITE_CLIPBOARD built-in procedure • 7-540
example of use • B-11 to B-13

WRITE FILE built-in procedure • 7-543 to 7-545
WRITE_GLOBAL SELECT built-in procedure • 7-546

example of use • B-31 to B-33

X
XOR operator • 3-7
X resource

fetching value of • 7-151

Index-30

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-343-4040 before placing
your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-DEC-DEMO (800-332-3366) using a 1200- or 2400-baud
modem. If you need assistance using the Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location Call Contact
Continental USA, 800-DIGITAL Digital Equipment Corporation
Alaska, or Hawaii P.O. Box CS2008

Nashua, New Hampshire 03061

Puerto Rico 809-754-7575 Local Digital subsidiary

Canada 800-26?-6215 Digital Equipment of Canada
Attn: DECdirect Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

International Local Digital subsidiary or
approved distributor

Internals USASSB Order Processing - W1VI0/E15
or
U.S. Area Software Supply Business
Digital Equipment Corporation
Westminster, Massachusetts 01473

s For internal orders, you must submit an Internal Software Order Form (EN-01740-0?).

Reader's Comments VAX Text Processing Uti I ity
Manual: Part I
AA-PBTMA-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) ❑ ❑ ❑ ❑
Clarity (easy to understand) ❑ ❑ ❑ ❑
Organization (structure of subject matter) ❑ ❑ ❑ ❑

Figures (useful) ❑ ❑ ❑ ❑
Examples (useful) ❑ ❑ ❑ ❑
Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/'I~tle Dept. _

Company Date

Mailing Address

 Phone

- — -- Do Not Tear -Fold Here and Tape

d 898 a
TM

— — Do Not Tear -Fold Here

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01--3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

iil~~~~~ll~li~~~~ll~~~~l~ll~i~~l~l~~l~~i~i~~~l~ll~~l

C
u
t
A

lo
n

tt
e
d
 L

in
e

Reader's Comments VAX Text Processing Utility
Manual: Part
AA—PBTMA—TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent Good Fair Poor

Accuracy (software works as manual says) ❑ ❑ ❑ ❑

Completeness (enough information) D D ❑ ❑

Clarity (easy to understand) ❑ ❑ ❑ ❑

Organization (structure of subject matter) ❑ ❑ D ❑

Figures (useful) ❑ ❑ ❑ ❑

Examples (useful) ❑ ❑ ❑ ❑

Index (ability to find topic) ❑ ❑ ❑ ❑

Page layout (easy to find information) ❑ ❑ ❑ ❑

I would like to see morelless

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/ri~tle Dept.

Company Date

Mailing Address

 Phone

--- Do Not Tear -Fold Here and `rape

d a9ao a TM

— — Do Not Tear -Fold Here

f ~

No Postage
Necessary
if Mailed

in the
United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

IIi~~~~~ll~ll~~~~ll~~~~i~ll~l~~l~l~~l~~l~l~~~l~il~~l

