
DECrpc

Programming Guide

Order Number: AA-PC2AA-TE

September 1990

Product Version: DECrpc, Version 1.0 and higher

Operating System and Version: VMS, Version 5.3 and higher

This manual provides information for programmers developing distributed
applications based on DECrpc.

digital equipment corporation
maynard, massachusetts

~"1

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013.

© Digital Equipment Corporation 1990
All rights reserved.

The information in this document is subject to change without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
Digital or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

d 9 g
CDA
DDIF
DDIS
DEC
DECnet
DECstation
DECsystem

DECUS
DECwindows
DTIF
LSE
MASSBUS
MicroVAX
Q-bus
ULTRIX
ULTRIX Mail Connection

ULTRIX Worksystem Software
UNIBUS
VAX
VAXstation
VMS
VMS/ULTRIX Connection
VT
XUI

UNIX is a registered trademark of AT&T in the USA and other countries.

IBM is a registered trademark of International Business Machines Corporation.

INTEL is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

Contents

About This Manual

Audience xv

Organization xv

Related Documentation xvi

Conventions xvi

1 Concepts and Terminology

1.1 Distributed Applications 1-1

1.2 RPC Software 1-1

1.2.1 RPC Run-time Library 1-2
1.2.2 Location Broker 1-2
1.2.3 Network Interface Definition Language Compiler 1-2

1.3 Object Orientation 1-3

1.3.1 Interfaces, Objects, and Types 1-3
1.3.2 Universal Unique Identifiers 1-3
1.3.3 Clients and Servers 1-4

1.4 Communication Protocols

1.4.1 Sockets and Socket Addresses
1.4.2 Well Known and Opaque Ports

1.5 The Remote Procedure Call Paradigm

1.5.1 Interfaces

1-4

1-4
1-6

1-7

1-8

1.5.2 Clients, Servers, and Managers 1-9
1.5.3 Handles 1-11

1.5.3.1 RPC Handles 1-12
1.5.3.2 RPC Binding States 1-12

1.5.4 Handle Representations and Binding Techniques 1-13

1.5.4.1 Explicit and Implicit Handles 1-14
1.5.4.2 Manual and Automatic Binding 1-15

1.5.5 Stubs 1-17

1.6 Interface Definitions and the NIDL Compiler 1-18

1.6.1 Interface Definitions 1-18
1.6.2 Files Generated by the NIDL Compiler 1-18

1.7 The Location Broker 1-19

1.7.1 Location Broker Software 1-19
1.7.2 Location Broker Data 1-19
1.7.3 Location Broker Registrations and Lookups 1-20
1.7.4 The Local Location Broker 1-21
1.7.5 The Global Location Broker 1-22
1.7.6 Designing an Application to Use Global Name Services 1-22

2 DECrpc Software

2.1 Processes and Utilities 2-1

2.1.1 The uuid~en Utility 2-2
2.1.2 The NIDL Compiler 2-2
2.1.3 Location Broker Processes 2-2
2.1.4 Location Broker Administrative Tool 2-2
2.1.5 Status Code Translator 2-3

2.2 The rpc_$ Client and Server Library Routines 2-3

2.2.1 Client Routines 2-3
2.2.2 Server Routines 2-4
2.2.3 Routines for Clients or Servers 2-5

2.3 The rrpc_$ Client Library Routines 2-6

~J

iv Contents

2.4 The socket_$ Library Routines 2-6

2.5 The lb_$ Library Routines 2-7

2.6 The uuid_$ Library Routines 2-8

2.7 The error $Library Routines 2-8

2.8 The pfm_$ Library Routines 2-9

2.9 The pgm_$ Library Routine 2-9

2.10 The System IDL Directory 2-10

2.10.1 Interface Definition Files for Types and Constants 2-10
2.10.2 Interface Definition Files for Local Interfaces 2-10
2.10.3 Interface Definition Files for Remote Interfaces 2-11

2.11 Header Files and Insert Files 2-11

3 Steps in Building a Distributed Application

3.1 A Distributed Application: The binop Interface Definition 3-1

3.2 A Distributed Application: The binop User-Written Files 3-4

3.2.1 The Client 3-5
3.2.2 The Server 3-6
3.2.3 The Manager 3-8
3.2.4 Building and Running the binop Application 3-8

3.3 Using Location Broker Lookups: The binop_lu Application 3-9

3.3.1 The Interface Definition 3-9
3.3.2 The Client 3-10
3.3.3 The Server 3-11
3.3.4 The Manager 3-13
3.3.5 Building and Running the binop_lu Application 3-13

4 Writing Interface Definitions

4.1 Generating Interface UUIDs 4-1

4.2 The Heading 4-3

Contents v

4.2.1 Interface Names 4-3
4.2.2 Interface Attributes 4-3
4.2.3 Examples of Interface Headings 4-4

4.3 Import Declarations 4-4

4.4 Constant Declarations 4-5

4.5 Type Declarations 4-5

4.5.1 The Type Attributes handle and transmit_as 4--5
4.5.2 The Field Attributes last is and max is 4-6
4.5.3 Examples of Type Declarations 4-6

4.6 Operation Declarations 4-7

4.6.1 Operation Attributes 4-7
4.6.2 Parameters 4-8
4.6.3 Pointers as Parameters 4--8
4.6.4 Arrays as Parameters 4-9
4.6.5 Parameter Attributes 4-9
4.6.6 The Field Attributes last is and max is 4-9
4.6.7 Examples of Operation Declarations 4-9

4.7 The binop_fw Interface Definition

4.8 Running the NIDL Compiler

5 Developing Distributed Applications

4-10

4-11

5.1 The binop_fw Application 5-1

5.2 Data Types and Portability 5-2

5.3 Writing the Client 5-2

5.3.1 Client Structure 5-2
5.3.2 Managing RPC Handles 5-3

5.3.2.1 Binding Techniques 5-3
5.3.2.2 Overview of RPC Handle Management Routines 5-4
5.3.2.3 Creating Handles 5-5
5.3.2.4 Changing Binding States 5-6

5.3.3 Obtaining Socket Addresses S-6

5.3.3.1 Using Location Broker Lookup Calls 5-6

vi Contents

5.3.3.2 Converting Names to Addresses 5-8

5.3.4 Using RPC Binding States 5-9

5.3.4.1 Fully Bound Handles 5-9
5.3.4.2 Bound-to-Host Handles 5-9
5.3.4.3 Unbound Handles 5-10

5.3.5 Identifying Servers 5-11
5.3.6 Handling Errors. 5-12

5.3.6.1 Communications Errors 5-12
5.3.6.2 Server Crashes 5-12
5.3.6.3 Interface Mismatches 5-13

5.3.7 Using Cleanup Handlers 5-13

5.3.7.1 Initializing the Fault Management Routines 5-13
5.3.7.2 Setting and Releasing Cleanup Handlers 5-13
5.3.7.3 Setting Multiple Cleanup Handlers 5-15
5.3.7.4 Portability Considerations 5-15

5.3.8 Using the comm_status Parameter Attribute 5-16

5.3.8.1 Declaring Status Parameters in Interface Definitions 5-16
5.3.8.2 Checking Status Parameters in Client Programs 5-17
5.3.8.3 Initializing Status Parameters in Manager Routines 5-17

5.3.9 Using the comm_status Operation Attribute 5-18
5.3.10 The binop_fw Client 5-18

5.3.10.1 The clients Module 5-18
5.3.10.2 The util.c Module 5-21

5.4 Writing the Server 5-22

5.4.1 Server Structure 5-22
5.4.2 Writing Server Initialization Code 5-23

5.4.2.1 Processing Arguments 5-23
5.4.2.2 Creating Sockets 5-23
5.4.2.3 Registering with the RPC Runtime Library 5-24
5.4.2.4 Registering with the Location Broker 5-24
5.4.2.5 Unregistering and Fault Handling 5-25
5.4.2.6 Listening for Requests 5-26

5.4.3 Writing Manager Code 5-26

5.4.3.1 Defining Manager EPVs 5-26

Contents vii

5.4.3.2 Identifying Objects 5-27
5.4.3.3 Identifying Clients 5-27
5.4.3.4 Registering Objects 5-28
5.4.3.5 Initializing Status Parameters 5-28

5.4.4 The binop_fw Server 5-28

5.4.4.1 The servers Initialization Module 5-28
5.4.4.2 The binop_fw.c Manager Module 5-32

5.5 Building an Application 5-32

6 NIDL C Syntax

6.1 Interface Definition Structure 6-1

6.1.1 Syntax Identifier 6-1
6.1.2 Heading 6-1
6.1.3 Body 6-1
6.1.4 Comments 6-2

6.2 Interface Attributes 6-2

6.2.1 QUID Attribute 6-2
6.2.2 Version Attribute 6-3
6.2.3 Port Attribute 6-3
6.2.4 Implicit Handle Attribute 6-4
6.2.5 Local Attribute 6-5

6.3 Import Declarations 6-5

6.4 Constant Declarations 6-5

6.5 Type Declarations 6-6

6.5.1 Type Attributes 6-6

6.5.1.1 The handle Attribute 6-6
6.5.1.2 The transmit as Attribute 6-7

6.5.2 Type Specifiers 6-7
6.5.3 Field Attributes 6-8
6.5.4 Type Declarators 6-9

6.5.4.1 Pointers 6-9
6.5.4.2 Arrays 6-9

viii Contents

6.6 Operation Declarations 6-10

6.6.1 Operation Attributes 6-10

6.6.1.1 The idempotent Attribute 6-10
6.6.1.2 The broadcast Attribute 6-10
6.6.1.3 The maybe Attribute 6-11
6.6.1.4 The Comm status Attribute 6-11

6.6.2 Operation Type Specifiers 6-11
6.6.3 Operation Declarators 6-11
6.6.4 Parameter Lists 6-11

6.6.4.1 Parameter Type Specifiers 6-12
6.6.4.2 Field Attributes and Parameter Attributes 6-12
6.6.4.3 Parameter Declarators 6-12

6.6.5 Examples 6-13

6.7 Data Types 6-13

6.7.1 Simple Types 6-13
6.7.2 Constructed Types 6-1 S
6.7.3 The RPC Handle Type 6-17
6.7.4 Named Types 6-17
6.7.5 Representation of Unions 6-18

7 Special Topics

7.1 Open Arrays 7-1

7.1.1 NIDL Attributes for Arrays 7-1

7.1.1.1 The last is Attribute 7-2
7.1.1.2 The max is Attribute 7-3

7.1.2 The primes Interface Definition 7-4
7.1.3 The primes Client Module 7-4
7.1.4 The primes Manager Module 7-5

7.2 Data Type Conversion 7-6

7.2.1 Type Conversion Routines 7-6
7.2.2 Using Type Conversion to Pass Complex Types 7-7
7.2.3 The xmitas Interface Definition 7-7

Contents ix

7.2.4 The xmitas util.c Module 7-8
7.2.5 Using Type Conversion for Efficiency 7-10

7.2.5.1 The sparse Interface Definition 7-10
7.2.5.2 The sparse util.c Module 7-11
7.2.5.3 Restrictions 7-12

7.3 Automatic Binding 7-13

7.3.1 Automatic Binding Activity 7-13
7.3.2 Autobinding and Autounbinding Routines 7-13
7.3.3 Automatic Binding in the bank Example 7-14

7.3.3.1 The bank Autobinding Routine 7-14
7.3.3.2 The bank Autounbinding Routine 7-16

7.4 Multiple Interface Versions 7-17

7.4.1 The binopmv Interface Definitions 7-18

7.4.1.1 The vers l .idl Interface Definition 7-18
7.4.1.2 The vers2.idl Interface Definition 7-18

7.4.2 Compiling the Interface Definitions 7-19
7.4.3 The binopmv Client Modules 7-19

7.4.3.1 Header Files 7-20
7.4.3.2 Location Broker Lookup Criteria 7-20
7.4.3.3 Checking Interface Versions 7-20

7.4.4 The binopmv Server Module 7-21

7.4.4.1 Registrations and Unregistrations 7-21

7.4.5 The binopmv Manager Module 7-23
7.4.6 Changing Operations in Interfaces with Multiple Versions 7-24
7.4.7 Constants and Types in Interfaces with Multiple Versions 7-25

7.5 Multiple Managers 7-26

7.5.1 The stacks Interface Definition 7-26
7.5.2 The stacksdf.h Header File 7-27
7.5.3 The stacks Client Module 7-27
7.5.4 The stacks Server Module 7-30
7.5.5 The stacks Manager Modules 7-31

x Contents

8 error_$ Routine Reference Pages

8.1 Data Types 8-1

9 Ib $Routine Reference Pages

9.1 External Variables 9-1

9.2 Constants 9-1

9.3 Data Types 9-1

9.4 Example 9-3

10 pfm_$ Routine Reference Pages

10.1 Constants 10-1

10.2 Data Types 10-1

11 pgm_$ Routine Reference Pages

12 rpc_$ Routine Reference Pages

12.1 External Variables 12-1

12.2 Constants 12-1

12.3 Data Types 12-2

13 rrpc_$ Routine Reference Pages

13.1 Constants 13-1

13.2 Data Types 13-2

Contents xi

14 socket_$ Routine Reference Pages

14.1 Constants 14-1

14.2 Data Types 14-2

15 uuid $Routine Reference Pages

15.1 External Variables 15-1

15.2 Data Types 15-1

15.3 Example 15-3

16 Process and Utility Reference Pages

Glossary

Examples

1-1: Textual Representations of Socket Addresses 1-6

3-1: The binop.idl Interface Definition 3-2

3-2: The clients Module for binop 3-5

3-3: The servers Module for binop 3-6

3-4: The binop.c Manager Module 3-8

3-5: The binop_lu.idl Interface Definition 3-10

3-6: The clients Module for binop_lu 3-10

3-7: The servers Module for binop_lu 3-12

3-8: The binop_lu.c Manager Module 3-13

4-1: Interface File Generated by uuid~en 4-2

4-2: The binop_fw Interface Definition 4-10

5-1: Setting Up a Cleanup Handler 5-15

5-2: Using Local Variables Portably in Fault Handling Code 5-16

xii Contents

5-3: Identifying a Status Parameter 5-16

5-4: Checking Status Parameters in Client Programs 5-17

5-5: Initializing Status Parameters in Manager Routines 5-17

5-7: The clients Client Module for binop_fw 5-18

5-8: The util.c Module for binop_fw 5-21

5-9: Checking the UUID in an Automatically Bound Interface 5-27

5-10: The servers Module for binop_fw 5-28

5-11: The binop_fw.c Manager Module for binop_fw 5-32

7-1: The primes.idl Interface Definition 7-4

7-2: Excerpts from the clients Module for primes 7-5

7-3: The managers Module for primes 7-5

7-4: The xmitas.idl Interface Definition 7-7

7-5: The util.c Module for xmitas 7-8

7-6: The sparse. idl Interface Definition 7-10

7-7: The util.c Module for sparse 7-11

7-8: An Autobinding Routine for UUIDs 7-15

7-9: An Autounbinding Routine for UUIDs 7-17

7-10: The versl.idl Interface Definition for binopmv 7-18

7-11: The vers2.idl Interface Definition for binopmv 7-18

7-12: Version-Checking Code in the client l .c Module for binopmv 7-20

7-13: Registrations and Unregistrations in the servers Module for binopmv 7-21

7-14: The managers Module for binopmv 7-23

7-15: A Manager Module with Two Versions of an Operation 7-24

7-16: An Interface Definition File for Shared Types and Constants 7-26

7-17: The stacks.idl Interface Definition 7-26

7-18: The stacksdf.h Header File 7-27

7-19: Excerpts from the clients Module for stacks 7-28

7-20: Registrations and Unregistrations in the servers Module for stacks 7-30

Contents xiii

7-21: The lmanager.c Manager Module for stacks

7-22: The amanager.c Manager Module for stacks/

Figures

7-32

7-33

1-1: RPC Communications 1-5

1-2: Socket Address Structures 1-6

1-3: Ordinary Local Procedure Ca11 Flow 1-7

1-4: Remote Procedure Call Flow 1-8

1-5: An RPC Server Exporting Two Interfaces 1-10

1-6: An RPC Server Exporting an Interface for Two Types 1-11

1-7: RPC Handle 1-12

1-8: Explicit and Implicit Handles 1-15

1-9: Client Agents and Location Brokers 1-21

3-1: Input and Output Files in the binop.idl Compilation 3-3

5-1: Calls That Manage RPC Handles and Their Binding States 5-5

Tables

1-1: RPC Binding States 1-13

1-2: Handle Representations and Binding Techniques 1-14

1-3: Comparison of Steps in Manual and Automatic Binding 1-16

1-4: Location Broker Database Entry 1-20

2- l : DECrpc Software 2-1

5-1: Comparison of the binop, binop_lu, and binop_fw Applications 5-1

5-2: Client Source Code Files for the binop_fw Example S-3

5-3: Server Source Code Files for the binop_fw Example 5-22

6- l : Family Values Supported by NIDL 6-3

7-l: Identifiers in the binopmv Example 7-19

xiv Contents

About This Manual

This manual provides programming information for the Digital Remote
Procedure Call (DECrpc) Version 1.0. The software is based on and is
compatible with Version 1.5 of Apollo's Network Computing System (NCS).

This is a new manual in the DECrpc documentation set; the manual is based
on the manual NCS Reference by Apollo Systems Division of Hewlett
Packard.

Audience
This reference manual is for programmers developing applications based on
DECrpc. If you are running, rather than developing, distributed applications,
you should not need this book. Guide to the Location Broker explains how to
establish and maintain the run-time support necessary for distributed
applications.

In general, the body of this book shows examples written in C for the VMS
operating system.

Organization
This manual contains sixteen chapters, a glossary, and an index.

Chapter 1 introduces DECrpc and the concept of a distributed application.

Chapter 2 surveys DECrpc software.

Chapter 3 introduces the steps in building a distributed application.

Chapter 4 describes how to define interfaces in Network Interface Definition
Language (NIDL).

Chapter 5 describes how to develop distributed applications that use DECrpc.

Chapter 6 describes the C syntax of NIDL.

Chapter 7 describes special programming topics.

Chapter 8 includes a reference page for each error_S routine.

Chapter 9 includes a reference page for each lb_$ routine.

Chapter 10 includes a reference page for each pfm_$ routine.

Chapter 11 includes a reference page for the pgm $exit routine.

Chapter 12 includes a reference page for each rp c_$ routine.

Chapter 13 includes a reference page for each r rp c_$ routine.

Chapter 14 includes a reference page for each socket_$ routine.

Chapter 15 includes a reference page for each uu i d $routine.

Chapter 16 includes a reference page for each process and utility.

To submit comments on this document, please use the Reader's Comments
form at the back of the book.

Related Documentation
For more information on topics related to NCS, see the following document:

Guide to the Location Broker

This book explains how to set up and administer the DECrpc run-time
software, the Location Broker.

Conventions
The following conventions are used in this guide:

spe c i a 1 In text, each mention of a specific command, option,
partition, pathname, directory, or file is presented in this
type.

variable In syntax descriptions, this type indicates terms that are
variable.

1 it e ra 1 In syntax descriptions, this type indicates terms that are
constant and must be typed just as they are presented.

[] In syntax descriptions, brackets indicate terms that are
optional.

. In syntax descriptions, a horizontal ellipsis indicates that
the preceding item can be repeated one or more times.

UPPERCASE The ULTRIX system differentiates between lowercase
and uppercase characters. On ULTRIX systems, enter
uppercase characters only where specifically indicated by
an example or a syntax line.

examp 1 e In examples, computer output text is printed in this type.

example In examples, user input is printed in this bold type.

xvi About This Manual

new term In text, new terms are introduced in this bold type.

$ This is the default user prompt in multiuser mode.

This is the default superuser prompt.

' In examples, a vertical ellipsis indicates that not all of the
' lines of the example are shown.

About This Manual xvii

Concepts and Terminology 1

This chapter describes the concepts and terminology of DECrpc, the remote
procedure call mechanism supported by the VMS and ULTRIX operating
systems. DECrpc is based on and is compatible with the RPC component of
Apollo's Network Computing System (NCS) Version 1.5. NCS is a set of
tools for heterogeneous distributed computing.

1.1 Distributed Applications
Using remote procedure calls, software applications can be distributed across
heterogeneous collections of computers, networks, and programming
environments. Distributed applications can take advantage of computing
resources throughout a network or Internet, with different parts of each
program executing on the computers best suited for the tasks.

There are many applications that can be distributed among multiple systems.
For example, one program might perform graphical input and output on a
workstation while it does intense computation on a supercomputer. A
program that performs many independent calculations on a large set of data
could distribute these calculations among any number of available processors
on the network or Internet.

1.2 RPC Software
The software for writing distributed applications is written in portable C
wherever possible. The components are:

• Remote Procedure Call (RPC) run-time library

• Network Interface Definition Language (NIDL) Compiler

• Location Brokers

The RPC run-time library and the Location Brokers provide run-time support
for distributed applications.

The NIDL Compiler is a tool for developing distributed applications.

1.2.E RPC Run-time Library
The DECrpc run-time library provides the routines that enable local
programs to execute procedures on remote hosts. These routines transfer
requests and responses between the programs calling the procedures and the
programs executing the procedures.

When you develop distributed applications, you usually do not use many
run-time routines directly. Instead, you write interface definitions in Network
Interface Definition Language and use the NIDL Compiler to generate most
of the required calls to the run-time library.

1.2.2 Location Broker
A broker is a server that provides information about resources. The
Location Broker enables clients to locate specific objects, such as a database
or a specialized processor, or specific interfaces, such as a data retrieval
interface or a matrix arithmetic interface.

Location Broker software includes the Local Location Broker (LLB), which
manages information about resources on the local host; the Global Location
Broker (GLB), which manages information about resources available on all
hosts; a client agent through which programs use the Location Broker
facilities; and the lb admin administrative tool.

The GLB stores in a database the locations of objects and interfaces in a
network or Internet. Clients can use the GLB to access an object or interface,
without knowing its location beforehand. The LLB also implements a
forwarding facility that provides access by way of a single address to all of
the objects and interfaces at the host.

Guide to the Location Brokej• describes the administration of the Location
Brokers.

1.2.3 Network Interface Definition Language Compiler
The NIDL Compiler takes as input an interface definition written in NIDL.
From this definition, the NIDL Compiler generates client and server stub
programs. An interface definition specifies the interface between a user of a
service and the provider of the service. The definition describes how a client
application sees a remote service and how a remote server sees requests for
its service.

The stubs produced by the NIDL Compiler contain nearly all of the
remoteness in a distributed application. The client stub program performs
data conversions, assembles and disassembles packets, and interacts with the
RPC run-time library. The server stub program provides similar support for
the server. It is easier to write an interface definition in NIDL than it would

1-2 Concepts and Terminology

be to write the stub code that the NIDL Compiler generates from your
definition.

1.3 Object Orientation
Programs written with RPC routines access objects through interfaces and
are cast in terms of the objects they manipulate rather than the machines with
which they communicate. Object-oriented programs are easy to design and
can readily accommodate changes to hardware and network configurations.

1.3.1 Interfaces, Objects, and Types
An object is an entity accessed by welldefined operations. A file, a serial
line, a printer, and a processor can all be objects.

Every object has a type. Programs can access any object of a given type
through one or more interfaces, with each interface a set of operations that
can be applied to any of those objects. For example, you can classify printer
queues as objects of the type printqueue, accessed through a
directory interface that includes operations to add, delete, and list jobs in
the queues.

As another example of how object, type, and interface apply to distributed
applications, consider array processors as objects of the arrayproc type.
Programs access these objects through either of two interfaces: a ve ct o r
interface, with operations such as vector $add and
vector $mu It ip 1 y, and a mi s c interface, with operations such as
misc$root mean square and misc$max abs val.

1.3.2 Universal Unique Identifiers
DECrpc identifies every object, type, and interface by a Universal Unique
Identifier (QUID). The UUID is defined as a 16-byte quantity identifying
the host on which the QUID is created and the time at which it is created.
Six bytes identify the time, two are reserved, and eight identify the host.

The uu i d_gen utility generates a UUID as a text string or as a data
structure defined in C syntax. The string representation used by the Network
Interface Definition Language (NIDL) Compiler consists of 28 hexadecimal
characters arranged as in this example (the 2 reserved bytes of the 16-byte
quantity are not included in the string representation):
3a2f883c4000.Od.00.00.fb.40.00.00.00

See Section 15.2 for additional information about the structure of a UUID.

Concepts and Terminology 1-3

1.3.3 CI Tents and Servers
A client is a program that makes remote procedure calls. A remote
procedure call requests that a particular operation be performed on a
particular object.

A server is a program that implements one or more interfaces and provides
access to one or more objects. A server accepts requests for operations in
any of its interfaces. When it receives a request from a client, it executes the
procedures that perform the operation and it sends a response to the client.

All DECrpc applications involve communication between clients and servers
through interfaces. However, some applications do not involve specific
objects and types. If your application operates on only one object, you can
specify uu i d_$ n i 1, the nil QUID, as the identifier for its type. If your
application does not operate on any object, you can specify uu i d_$ n i 1 for
both the type and the object.

1.4 Communication Protocols
The RPC run-time library is independent of any underlying communications
protocol. The DECrpc Version 1.0 run-time library, however, provides
support for only the DARPA-defined Internet Protocols (IP).

1.4.1 Sockets and Socket Addresses
The remote procedure calls use the Berkeley UNIX socket abstraction for
interprocess communications. A socket is an endpoint for communications,
in the form of a message queue. An RPC server 1 istens on one or more
sockets and receives any message delivered to a socket on which it is
listening.

Figure 1-1 illustrates RPC communications using sockets. It shows two
servers running on one host and several clients on other hosts.

1-4 Concepts and Terminology

Figure y -1: RPC Communications

Host 1
Y '~

Family: I P
Addr: 192.5.7.9
Port: 99

Family: I P
Addr: 192.5.7.9
Port: 33

socket socket

Host 2

~.ti :::::: .:::.:::::::: ~::.:::::::<:: ~:.:::::.;:::::.:
...':ti :_ .~____ ~..._..ti'..~

k ~ ~~; :;:

Family: IP
Addr: 192.5.7.9
Port: 25

Host 3

..~~•f......

socket
Fam i ly: I P
Addr: 192.5.7.8
Port: 44

~~~~~ertt :: _~ ~ ~~ 

Host 4 
ZK-0046U-R 

Each socket is identified uniquely by a socket address. A socket address, 
sometimes named sockaddr, is a data structure that specifies these socket 
characteristics: 

• Address family 

• Network address 

• Port number 

The address family, also called the protocol family, determines the 
communications protocol used to deliver messages and the structure of the 
addresses used to represent communications endpoints. 

The network address, given the address family, uniquely identifies a host 
and contains information sufficient to establish communication with the host. 
Hosts also have host IDs; a host ID uniquely identifies a host but may not be 
sufficient to establish communication. In the IP family, the network address 
and the host ID are identical. 

Concepts and Terminology 1-5 



The port number specifies a communications endpoint within the host. The 
terms port and socket are synonymous, but port number and socket address 
are not. A port number is one of the three parts in a socket address. For 
example, the character string 77 might represent a port number, while 
ip: woostej•[77J might represent a socket address. 

Figure 1-2 illustrates the structure of socket addresses in the IP family. 

Figure ~ -2: Socket Address Structures 

Family Port Network Address 

. 
16—bit Integer 16—bit Integer 

Network I D and Host I D 

32-bit integer 

ZK-00470-R 

A socket address can be represented textually by a string of the form 
family: host[port], where family is the textual name of an address family, host 
is either a textual host name or a numeric host ID preceded by a number sign 
(#), and port is a port number. Several of the routines and utilities accept 
textual representations of socket addresses as input or produce them as 
output. 

Example 1-1 shows two textual representations of socket addresses for the IP 
address family. The first line shows a textual host name and the second 
shows a numeric host ID. 

Example 1-1: Textual Representations of Socket Addresses 

ip:cactus[57] 
ip:#192.5.7.9[53] 

1.4.2 Well Known and opaque Ports 
It is possible to design an interface with a specific port number built in. 
Clients of the interface always send to that port and servers always listen on 
that port. The port used in such an interface is called a well known port. 
Some well known ports are assigned to particular servers by the 
administrators of a protocol. For example, the administrators of the Internet 
Protocols have assigned the port number 23 to the t e 1 net remote login 
facility. All t e lnet servers listen on this well known port, and all 
t e 1 net user programs send to it. 

For very widely used services such as t e lnet, well known ports offer a 
simple way to coordinate communication between clients and servers. For 
most applications, however, well known ports are impractical. Each protocol 

y-6 Concepts and Terminology 



family has a limited number of ports, so, unless you obtain an assignment 
from a central administrator, your application's well known port number is 
liable to conflict with that of another program. 

The Location Broker solves this problem by enabling clients to locate servers 
without direct use of well known ports. A server can use ports that the RPC 
run-time library assigns dynamically. The server registers its socket address, 
including the assigned port, with the Location Broker. A client can then use 
Location Broker lookup calls to obtain the socket address of the server. The 
dynamically assigned port is said to be opaque, because there is no need for 
either the client or the server to know the port number. 

Although the RPC run-time library supports both kinds of ports, if you use 
opaque ports your application can always coexist with other services. 

The Local Location Broker itself uses one well known port to listen for 
requests. Clients and servers find Global Location Brokers by broadcasting 
to this port. Section 1.7 describes the Location Broker. 

1.5 The Remote Procedure Call Paradigm 
Remote procedure calls extend the procedure call mechanism from a single 
computer to a distributed computing environment. They enable you to 
distribute the execution of a program among several computers in a way that 
is transparent to the application code. Figure 1-3 shows the flow of ordinary 
local procedure calls between a calling client and called procedures. 

Figure 1-3: Ordinary Local Procedure Call Flow 

call 

Client t 
return 

Interface 

Procedures 

ZK-00480—R 

In contrast to Figure 1-3, which shows the flow of local procedure calls, 
Figure 1-4 shows the flow of remote procedure calls and illustrates how the 
RPC paradigm hides the remote aspects of a call from the calling client. The 
client application uses ordinary calling conventions to request a procedure as 
if the procedure were a part of the local program, but the procedure is 
executed by a remote server. The client stub acts as the local representative 
of the procedure. 

Concepts and Terminology 1-7 



A stub is a program module generated by the NIDL Compiler from auser-
written interface definition. The stub uses RPC run-time library calls to 
communicate with the server. Similar activities occur within the server 
process. Section 1.6 briefly describes interface definitions and Chapter 4 
describes the procedure for writing an interface definition. 

Figure 1-4: Remote Procedure Call Flow 
Client process Server process 

apparent flow 
E 

Client 
call 

urn 

call 

Client Stub 

return 

cal r 
RPC Runtime Library 

return 

I rf me ace 

network 
messages 

Manager 

returnr 

Server Stub 

call 

return r 

RPC Runtime Library 

ZK-00490—R 

1.5.1 Interfaces 
The interface determines the calling syntax —the signature —for each of its 
operations. Both client and server procedures use the same syntax. The 
interface is independent of the mechanism that conveys the request between 
client and server. It is also independent of the way the operations are 
implemented. A server that implements the operations in an interface is said 
to export the interface. A client that requests the operations is said to 
import the interface. 

For example, suppose that a remote matrix arithmetic package is running as a 
server on an array processor. Servers on array processor hosts export a 
vector interface containing operations such as vector $add and 
vector $mu 1 t ip 1 y. Clients on other hosts import the vector interface 
by calling vector $add or vector $ mu 1 t ip 1 y. The client programs 
run on their local hosts, but the matrix operations run on the remote array 
processor. 

1-8 Concepts and Terminology 



1.5.2 Clients, Servers, and Managers 
An RPC client is a program that makes remote procedure calls to request 
operations. A client does not know how an interface is implemented and 
might not know the location of a server exporting the interface. 

An RPC server is a program that performs the operations in one or more 
interfaces. It executes these operations on objects of one or more types. A 
server receives requests for operations from clients and it sends responses 
containing the results of the operations. A server can export interfaces for 
one object or for several objects. In the array processor example, there is 
only one object, the array processor. A file server, however, might manage 
many file objects. 

A server can also be a client. For example, a server that gets time from a 
time server is a client of the time server. 

A manager is a set of procedures that implement the operations in one 
interface for objects of one type. It is possible for a server to export several 
interfaces or to export an interface for several types of objects; each 
combination of interface and type has its own manager. 

Figure 1-4 showed the simplest case, a server that exports one interface for 
objects of one type. Figure 1-5 illustrates a server that exports two 
interfaces. 

Concepts and Terminology 1-9 



Figure ~-5: An RPC Server Exporting Two Interfaces 

Server 

Manager 
for interface 1 

call A

Manager 
for Interface 2 

call A

';~;: ~:~: rf 2 rf 1 ..... .. . . . . .. . ... ... .. ....... . ... ... Inte ace I nt ace e .. ... .. . .... .. .. .... 

r 
return 

Server Stub 1 

call 

v return 

Server Stub 2 

return 
v r 

return 

RPC Runtime Library 

from clients to clients 
ZK-0050U-R 

Figure 1-6 shows a server that exports one interface to objects of more than 
one type. 

1-10 Concepts and Terminology 



Figure ~1-6: An RPC Server Exporting an Interface for Two Types 

Server 

Manager 
fo r Type 1 

call A 

In rf 
- -te ace ti ::,:: 

r return 

call 

Server Stub 

Manager 
fo r Type 2 

r return 

return 

RPC Runtime Library 

from clients 

to clients 

ZK-0051 U—R 

1.5.3 Handles 
When a client makes a remote procedure call, requesting that a particular 
operation be performed on a particular object, the RPC run-time library needs 
the following information to transmit the call: 

• The object on which the operation is to be performed 

• The location of the server that exports the interface containing the 
operation 

The client process represents this information about the object and the server 
location in a handle, which is a pointer to a data structure. The run-time 
library provides several routines to create and manage handles. Once created, 
a handle always represents the same object. However, it may represent 
different servers at different times, or it may not represent a server at all. The 
server location represented in a handle is called the binding. To bind a 
handle is to set its server location. 

Concepts and Terminology 1-11 



1.5.3.1 RPC Handles — An RPC handle is a pointer to an opaque data structure 
containing the information needed to access an object. The name for this 
pointer type is handle_t. In this manual, the term RPC handle refers to 
handle variables of this type and the term generic handle refers to handle 
variables of other types, such as a pathname. 

Clients and servers manipulate RPC handles indirectly, through RPC run-
time library routines. Figure 1-7 shows an RPC handle. 

Figure 1-7: RPC Handle 

Handle ...:... ~ ......;.}}Y:::: t:: • Y: •Y:.•.•:::::•.'{ll:: •:•:;:•: t:•: }.::.tom 

••~••• •'~~~• :•:ti+ 

Object I D 
:::tip: ~~ti: ::ti~~::~:ti~:.:::.~ti: .:ti:. ::~::: ti ff :.:::: :~::...::~ ::::::. ~::::::.::ti::..::. : >~ tip:: ti:: : ti.............................................................::: 

Address Family 
Network Address 

Port 
::ti::. .:: .::: •::ti: :f::: :::::ti :r.: 

• • .. •. ~ i i i 
~•.~;~;~ ~ ;.;. .•; 

~;•~ti:.':•:'••• : ~ ;•~•~'..."•.:. •••'.:: ••• .•;; 
'.;~.L;.~ •~ }:. 

Socket Address 

ZK-0083U-R 

1.5.3.2 RPC Binding States — An RPC handle can exist in three binding 
states: 

unbound 

An unbound handle (also called an allocated handle) identifies an 
object but does not identify a location. When a client uses an unbound 
handle to make a remote procedure call, the RPC run-time library 
broadcasts the request to all hosts on the local network. Any server that 
exports the requested interface and supports the requested object can 
respond. The client accepts the first response it receives. This 
mechanism is inefficient and has other disadvantages described in 
Chapter 5. 

bound-to-host 

A bound-to-host handle identifies. an object and a host but does not 
identify the port number of the server that exports the requested 
interface. When a client uses abound-to-host handle to make a remote 
procedure call, the RPC run-time library sends the request to the host 
identified in the handle. If the requested interface specifies a well 
known port, the request goes to that port; otherwise, the request goes to 

1-12 Concepts and Terminology 



the Local Location Broker forwarding port, and the LLB forwards the 
request to the server. 

fully bound 

A fully bound handle (also called abound-to-server handle) identifies 
an object and the complete socket address of a server. when a client 
uses a fully bound handle to make a remote procedure call, the RPC 
run-time library sends the message directly to the socket address 
identified by the handle. 

In all cases, when the client RPC run-time library receives a response from a 
server, it binds the handle to the server socket address. Therefore, RPC 
handles are always fully bound when a remote procedure call returns, and the 
client does not need to use the broadcasting or forwarding mechanism for 
subsequent calls to the server. 

Table 1-1 shows, for each possible binding state of a handle when a remote 
procedure call is made, the information that the handle represents, the 
delivery mechanism of the remote procedure call, and the binding state when 
the procedure call returns. 

Table 1-~ : RPC Binding States 

Binding Information Delivery Binding 
State Re resented Mechanism State 
on Call p on Return 

Unbound Object Broadcast to all Fully bound 
hosts on the local 
network 

Bound-to-host Object 
Host 

Sent to LLB 
forwarding port 
at host 

Fully bound 

Fully bound Object Sent to specific Fully bound 
Host port at host 
Server 

1.5.4 Handle Representations and Binding Techniques 
DECrpc provides a choice of handle representations and binding techniques. 
It allows applications to use: 

• Explicit or implicit handles 

• Manual or automatic binding 

Concepts and Terminology 1-13 



The handle representation, explicit or implicit, determines whether the 
client represents handle information with a parameter in each operation or 
with a global variable. The binding technique, manual or automatic, 
determines whether the client uses RPC handles directly or uses generic 
handles that are then converted to RPC handles by automatic binding 
routines. Table 1-2 summarizes the effects of the handle representation and 
the binding technique on the handle variable. 

Table '1-2: Handle Representations and Binding Techniques 

Handle Manual Binding Automatic Binding 

Explicit Handle Data Type: 
handl e_t 

Representation: 
Operation parameter 

Data Type: 
Generic, user defined 

Representation: 
Operation parameter 

Implicit Handle Data Type: 
Generic, user defined 

Representation: Representation: 
Client global variable Client global variable 

Data Type: 
handl e_t 

~.5.4.y Explicit and Implicit Handles — In an application that uses explicit 
handles, each operation in the interface must have a handle variable as its 
first parameter. This parameter passes explicitly from the client to the server, 
through the client stub, the client and server RPC run-time libraries, and the 
server stub. (The server run-time library manipulates the location 
information in the handle so that, on the server side of the application only, 
the handle specifies the location of the client making the call. The server can 
thereby identify its client. Of course, the handle always represents the same 
object.) 

In an application that uses implicit handles, the handle identifier is a global 
variable in the client. The operations do not need to include a handle 
parameter, and the server does not receive a handle. When the client stub 
delivers a remote procedure call, it uses the implicit handle variable to supply 
the handle information needed by the client RPC run-time library. 

An implicit handle makes remote procedure calls look more like ordinary 
procedure calls, because there is no need to pass special information in each 

1-14 Concepts and Terminology 



call. However, this added simplicity comes at the expense of reduced 
flexibility. Applications that use implicit handles have two major limitations: 

• Because the server does not receive the object identifier that a handle 
contains, the client can access only one object at any time, unless it 
explicitly passes some other form of object identifier, such as a 
pathname, as an operation parameter. 

• Because all remote procedure calls use the same global variable, the 
client can access only one server at any time. For example, you cannot 
use implicit handles in applications that divide computation in parallel 
among several hosts. 

Figure 1-8 illustrates the differences between explicit and implicit handles. 

Figure 1-8: Explicit and Implicit Handles 

Explicit Handle 

handle 

Client Client Stub 

handle 

Client Side Server Side 

RPC Runtime 
Library 

RPC Runtime 
Library 

Implicit Handle 

Client Side Server Side 

RPC Runtime 
Library 

handle 

Server Stub 

Server Stub 

handle 

Server 

Server 

ZK-0084U-R 

1.5.4.2 Manual and Automatic Binding — In an application that uses manual 
binding, the handle variable is an RPC handle, and the client makes all the 
RPC run-time library calls that create and bind the handle. 

In an application that uses automatic binding, the handle variable is generic, 
and the application developer must supply autobinding and autounbinding 
routines that convert generic handles (used by the client) to RPC handles 
(used by the RPC run-time library). The client stub invokes the autobinding 
routine each time the client makes a remote procedure call; it invokes the 
autounbinding routine after the remote call returns. The generic handle 

Concepts and Terminology 1-15 



variable must contain information sufficient for the autobinding routine to 
generate an RPC handle. 

Automatic binding offers convenience at the expense of performance. Each 
time the client stub processes a remote procedure call, it must call routines to 
convert between generic handles and RPC handles. Thus, an interface that 
uses automatic binding can require more processing than one in which the 
client performs the binding once and passes an RPC handle to the stub. The 
difference in performance is smallest in interfaces such as the remote file 
system example, where each call is likely to require rebinding of the handle. 

Table 1-3 shows the differences between manual and automatic binding when 
a client makes a remote procedure call. 

Table ~-3: Comparison of Steps in Manual and Automatic 
Binding 

Manual Binding Automatic Binding 

1. Client: 
Generates RPC handle 
Binds handle, as necessary 
Makes procedure call to stub 

2. Client stub: 
Sends request to server 
Receives response from server 
Returns to client 

3. Client: 
Receives call return from stub 
Manages RPC handle, as necessary, 
including unbinding the handle 

1. Client: 
Using generic handle, 

makes procedure call to stub 

2. Client stub: 
Calls autobinding routine 

3. Autobinding routine: 
Generates RPC handle from 

generic handle 
Binds RPC handle as necessary 
Returns RPC handle to stub 

4. Client stub: 
Sends request to server 
Receives response from server 
Calls autounbinding routine 

5. Autounbinding routine: 
Frees handles as necessary 
Returns to stub 

6. Client stub: 
Returns to client 

7. Client: 
Receives call return from stub 

Chapter 7 includes an example of an automatic binding routine. 

1-16 Concepts and Terminology 



1.5.5 Stubs 
Both clients and servers are linked (in the sense of combining object modules 
to form executable files) with stubs, which are generated by the NIDL 
Compiler from auser-written interface definition. The client stub takes the 
place of the remote procedures in the client process and the server stub takes 
the place of the client in the server process. Stubs make remote procedure 
calls resemble local calls, which enables clients and servers to use the RPC 
facilities almost transparently. 

The client stub marshalls data (copies data into an RPC packet} and 
unmarshalls data (copies data from an RPC packet) and transmits and 
receives the packet from the server stub. 

When a client calls an interface operation, it invokes a routine in the client 
stub. The client stub then performs these actions: 

1. Marshalls the input parameter values 

2. Calls rpc_$sar, an RPC run-time library routine called only by 
stubs, to send the packet to the server stub and await a reply 

3. Receives the reply packet 

4. Unmarshalls the output parameters from the reply packet into the data 
types expected by the client (that is, the data types specified in the 
interface definition) 

S. Converts the output data to the client's native representation, if the 
client's native representation is different (for example, converts 
characters from EBCDIC to ASCII) 

6. Returns to the client 

Similarly, the RPC run-time library at a server host calls a server stub routine 
when the server receives a request from the client. The server stub then 
performs these actions: 

1. Unmarshalls the input parameters from the request packet into the data 
types expected by the server (that is, the data types specified in the 
interface definition) 

2. Converts the input data into the representation native to the server, if 
the client uses a different representation (for example, converts 
characters from ASCII to EBCDIC) 

3. Calls the manager procedure that implements the operation 

4. Marshalls the output parameter values into an RPC packet 

5. Returns the packet to the RPC run-time library for transmission to the 
client stub 

Concepts and Terminology 1-17 



As the preceding summary shows, stub procedures in both the client and the 
server check the data representation format in incoming packets. Each side 
uses its native format when it marshalls parameters. A label in the header of 
each transmitted packet indicates the sender's data representation format for 
integers, characters, and floating-point numbers. If the sender's 
representation of a data type is different from the receiver's representation, 
the receiving stub converts that data type when it unmarshalls values. 

There is no conversion of data if the sending and receiving hosts have 
identical representations. This technique allows heterogeneity at minimum 
cost. 

The NIDL Compiler automatically generates source code for the client and 
server stubs from a definition of the interface written in Network Interface 
Definition Language. Section 1-6 provides more information about the NIDL 
Compiler and the stubs that it generates. Chapter 6 describes NIDL syntax in 
detail. 

1.6 Interface Definitions and the NIDL Compiler 
An interface definition written in 1~TIDL defines the signatures for each 
operation in an interface. The NIDL Compiler takes this definition as input 
and generates C source code files that you can use in building an application. 

1.6.1 Interface Definitions 
An interface definition describes the constants, types, and operations 
associated with an interface. NIDL contains constructs for specifying all of 
this information, but it contains no executable constructs; NIDL is strictly a 
declarative language. DECrpc supports the C syntax of NIDL and all of the 
examples in this book are in the C syntax. 

Chapter 3 introduces NIDL interface definitions with a simple example and 
describes the input and output files in the NIDL Compilation. Chapter 4 
describes how to write an interface definition and Chapter 6 completely 
describes the C syntax of NIDL. 

1.6.2 Files Generated by the NIDL Compiler 
The NIDL Compiler translates a NIDL interface definition into stub modules 
that you then link with clients and servers. As Section 1.5.5 described, these 
modules facilitate remote procedure calls by copying arguments to and from 
RPC packets, converting data representations as necessary, and calling the 
RPC run-time library. 

In addition to stub files, the NIDL Compiler generates C language header 
files. 

1-18 Concepts and Terminology 



1.7 The Location Broker 
The Location Broker provides clients with information about the locations of 
objects and interfaces. Servers register with the Location Broker their socket 
addresses and the objects and interfaces to which they provide access. 
Clients issue requests to the Location Broker for the locations of objects and 
interfaces they wish to access; the broker returns database entries that match 
an object, type, interface, or combination of these, as specified in the request. 

The Location Broker also implements the RPC message-forwarding 
mechanism. If a client sends a request for an interface to the Location 
Broker forwarding port on a host, the broker automatically forwards the 
request to the appropriate server on the host. 

This chapter describes the structure and function of the Location Broker 
software and databases. Guide to the Location Broker explains how to 
configure and administer the Location Brokers. 

1.7.1 Location Broker Software 
The Location Broker consists of the following interrelated components: 

Local Location Broker (LLB) 
The Local Location Broker is a server that maintains a database of 
information about objects and interfaces located on the local host. The 
LLB runs as the process llbd. The LLB provides access to its 
database for application programs and also provides the Location 
Broker forwarding service. An LLB must run on any host that runs 
DECrpc servers. 

Global Location Broker (GLB) 
The Global Location Broker is a server that maintains information 
about objects and interfaces throughout the network or Internet. The 
GLB process is named nrglbd. 

Location Broker Client Agent 
The Location Broker Client Agent is a set of library routines that 
application programs call indirectly to access LLB and GLB databases. 
When a program issues any Location Broker call, the call goes to the 
Client Agent at the local host. The Client Agent then performs the 
actual lookup or update of information in the appropriate Location 
Broker database. 

1.7.2 Location Broker Data 
Each entry in a Location Broker database contains information about an 
object, an interface, and the location of a server that exports the interface to 
the object. Table 1-4 lists the fields in a database entry. 

Concepts and Terminology 1-19 



Table 1-4: Location Broker Database Entry 

Field Description 

Object UUID 

Type QUID 

Interface QUID 

Flag 

Annotation 

Socket address length 

Socket addres s 

The unique identifier of the object 

The unique identifier that specifies the type of the object 

The unique identifier of the interface to the object 

A flag that indicates whether the object is global (and 
therefore should be registered in the GLB database) 

64 characters of user-defined information 

The length of the socket address field 

The location of the server that exports the interface to 
the object 

Because each database entry contains one object QUID, one interface QUID, 
one type QUID, and one socket address, a Location Broker database must 
have an entry for each possible combination of object, interface, and socket 
address. Thus, the database must have 10 entries for a server that: 

• Listens on two sockets, socket a and socket b 

• Exports int e r f ace_1 for ob j e ct_x, ob j e ct_y, and 
object z 

• Exports i nt e r f a c e_2 for ob j e ct_p and ob j e ct_q 

• Has only one type UUID 

When you look up Location Broker information, you specify any 
combination of the object UUID, type QUID, and interface QUID as keys, 
and you request the information from the GLB database or from a particular 
.LLB database. Thus, for example, you can obtain information about all 
objects of a specific type, all hosts with a specific interface to an object, or all 
objects and interfaces at a specific host. 

1.7.3 Location Broker Registrations and Lookups 
This section describes how servers register their locations with the Location 
Broker and how clients use Location Broker lookups to locate servers. 

Figure 1-9 illustrates a typical case in which a client requires a particular 
interface to a particular object but does not know the location of a server 
exporting the interface to the object. In this figure, a server registers itself 
with the Location Broker by calling the Client Agent in its host (1 a). The 

y-20 Concepts and Terminology 



Client Agent registers the server with the LLB at the server host (1 b) and 
with the GLB (1 c). To locate the server, the client issues a Location Broker 
lookup call (2a). The Client Agent on the client host sends the lookup 
request to the GLB, which returns it through the Client Agent to the client 
(2b). The client can then use RPC calls to communicate directly with the 
located server (3a, 3b). 

Figure 1-9: Client Agents and Location Brokers 

Register 
Object 

Object ~` 

~r Client 
Agent 

Server 

Local 
Location 
Broker 

3b 

Server Host 

Access Object 
Client Client 
Client 
Agent 2a 

Look up Object 

Global 
Location 
Broker 

ZK-0086U-R 

1.7.4 The Local Location Broker 
The LLB manages information about servers running on the local host. It 
also acts as a forwarding agent for remote procedure calls. 

The forwarding facility of the LLB eliminates the need for a client to know 
the specific port that a server uses and thereby helps to conserve well known 
ports. The LLB listens on one well known port per address family. It 
forwards any messages that it receives to the local server that exports the 
requested object. 

Forwarding is particularly useful when the requestor of a service already 
knows the host where the server is running. The server can use a 
dynamically assigned opaque port and register only with the LLB at its local 
host, not with GLB. To access the server, a client needs to specify the 
object, the interface, and the host, but not a specific port. 

Concepts and Terminology 1-21 



Although it is recommended that you run an llbd on every host, the 
process is required only on hosts that run RPC servers. Guide to the 
Location Broker describes Location Broker configuration and the 
lb_admin utility. 

1.7.5 The Global Location Broker 
The GLB manages information about servers running anywhere in the 
network or Internet. Clients typically issue lookup calls to the GLB when 
they do not know at what host a server is running. 

Guide to the Location Broker describes how to configure the Global Location 
Broker. 

1.7.6 Designing an Application to Use Global Name Services 
Currently, DECrpc uses the Location Broker as its sole name service. 
However, when designing an application that may eventually migrate to other 
environments, you should accommodate the naming requirements of global 
name services such as Digital Distributed Name Service (DECdns), X.500, 
and Hesiod/b i n d. Such services use global names to provide a means of 
advertising and locating computing resources in any size network. 

Global names reflect a naming scheme that is distinct from the QUID-based 
naming scheme of the Location Broker. A global name, like a UUID, is a 
unique identifier with universal scope. Unlike a UUID, a global name is an 
easy-to-read, structured text string that is meaningful to users in a particular 
computing environment. For example, a DECdns global name comprises a 
series of text strings, read from left to right, that begin with a dot (such as 
.ACME_CORP.MANUFCTR.INVENTORY). Establishing naming 
conventions for a given computing environment helps users to specify unique 
global names. 

Being structured enables global names to represent one thing in terms of its 
relationship to other things. For instance, in a full DECdns global name, 
each successive string is subordinate to the preceding string. The rightmost 
string is a simple name that identifies a specific resource. For example, the 
full global name .ACME_CORP.MANUFCTR.INVENTORY reflects the 
organization of a hypothetical company, Acme Corporation; the first string 
represents the company as a whole, the middle string represents Acme's 
manufacturing division, and the final string is a simple name representing a 
specific account named INVENTORY on a system in the manufacturing 
division. 

All name services maintain a database whose individual entries correspond to 
a specific resource. Database organization, however, differs between the 
Location Broker and global name services. In a Location Broker database, 
each entry has only unstructured identifiers (an object QUID, interface QUID, 

1-22 Concepts and Terminology 



and/or object type). These unstructured identifiers limit the Location Broker 
to a flat database, whose entries reside side by side, much like the files of a 
single-level directory. In contrast, in a global name-service database, each 
entry has a global name whose textual and structural information dictates the 
relative placement of the entry in the database. 

When entries have full global names, the entries reside in subgroups, much 
like files in subdirectories within amultiple-level directory. This allows 
resources belonging to different groups to have the same simple name. For 
example, the DECdns entries .ACME_CORP.MANUFCTR.INVENTORY 
and .ACME_CORP.RETAIL_DIST.INVENTORY would reside in a 
directory tree with the following organization: 

ACME 

/ 

\ 

MANUFCTR RETAIL DIST 

INVENTORY INVENTORY 

ZK-0175U-R 

The differences in the naming schemes of the Location Broker and global 
name services can obstruct the eventual migration of a DECrpc application 
from the Location Broker to a global name service. Though global name 
services can interpret UUIDs, the exclusive use of UUIDs to identify objects 
is incompatible with the structural aspects of global naming schemes. 

Moreover, the Location Broker can look up an entry by its object type, but 
some global name services cannot. Therefore, when designing a DECrpc 
application that might eventually use a global name service, you should 
constrain the use of Location Broker as follows: 

• Avoid proliferating UUIDs as object IDs. You can isolate UUIDs, for 
example, by restricting them to the 1 b_ $register and 
lb $ lookup_ob j ect routines or by creating a table to map UUIDs 
to object names. 

• Avoid defining object types. 

Concepts and Terminology 1-23 





DECrpc Software 2 

DECrpc software includes processes and utilities, library routines, interface 
definition files, and header files. This chapter provides a survey of the 
software to give you general background for the programming information in 
Chapter 4, Writing Interface Definitions; Chapter 5, Developing Distributed 
Applications; and Chapter 7, Special Topics. Table 2-1 lists the DECrpc 
software. 

Chapters 8 through 16 contain reference pages for each utility, library 
routine, and process. 

Table 2-~I : DECrpc Software 

Software Description 

nidl 
uuid gen 
stcode 
llbd 
nrglbd 
lb_admin 
. i dl files 
. h files 
Library routines 

Network Interface Definition Language compiler 
QUID generating program 
Status code translator 
Local Location Broker Process 
Global Location Broker Process (nonreplicatable) 
Location Broker administrative tool 
Interface definitions 
C header files 
rpc_$, rrpc_$, socket_$, lb_$, uuid_$, 
error $ , p f m $ , and p gm $routines 

2.1 Processes and Utilities 
The programs described in this section run as VMS foreign commands. The 
utilities nidl, uuid gen and stcode help you to develop distributed 
applications. The Location Broker processes, nrglbd and llbd, enable 
client applications to locate servers on remote hosts. The administrative tool, 
lb_admin, helps you to maintain Location Broker databases. 

Before running the utilities, define them as foreign commands in the site 
SYS$MANAGER:SYSLOGIN.COM, as shown in this example: 
$ lb admin 

$ uuid gen 

$ nidl •__ 

:_= rpc$exe:rpc$lb admin.exe 

:_= rpc$exe:rpc$uuid gen.exe 

rpc$exe:rpc$nidl.exe 

$ stcode :_= rpc$exe:rpc$stcode.exe 

Chapter 16 includes a reference page for each process and utility. 



2.1.1 The uuid_gen Utility 
The uu i d gen utility generates a UUID. Depending on the qualifiers you 
specify, uu i d_gen produces as output a character string representing a 
UUID, a C initialization for the UUID, or a skeletal interface definition file in 
the C syntax of NIDL. 

2.1.2 The NIDL Compiler 
The NIDL Compiler, n i dl, compiles interface definitions. It takes as input 
an interface definition written in NIDL. It produces as output a server stub, a 
client stub, and a client switch (all in the C language), together with header 
files. 

2.1.3 Location Broker Processes 
DECrpc includes processes that manage the Local Location Broker (LLB) 
database and the Global Location Broker (GLB) database. 

Any host that runs an RPC server must also run the LLB process, llbd. 
Any network that supports RPC activity must have at least one host running 
a GLB process. In an Internet, at least one GLB process must run in each 
network. 

The Location Broker processes typically run as detached processes. On most 
VMS systems, they start at boot time from the file 
S YS $STARTUP: RPC$UCX_STARTUP. COM. 

See Guide to the Locatiojz Brokej• for more information on Location Broker 
configuration. 

2.1.4 Location Broker Administrative Tool 

The lb_admin utility allows you to inspect or modify the contents of a 
Location Broker database. It provides lookup, register, unregister, and 
cleanup operations. It can perform these operations on any LLB or GLB 
database. 

2-2 DECrpc Software 



2.1.5 Status Code Translator 
The st code utility translates hexadecimal status code values produced by 
programs to textual messages. 

2.2 The rpc_$ Client and Server Library Routines 
The rpc_$ library routines constitute the interface to the RPC run-time 
library. Some of these routines are used only by clients, some only by 
servers, and some by either clients or servers. 

The following sections describe each set of routines. 

Chapter 12 includes a reference page for each rpc $routine. 

2.2.1 Client Routines 
Most of the rpc_$ client routines either create a handle or manage its 
binding state. 

rpc $alloc handle 

Allocates an RPC handle that identifies a specific object but not a 
specific server. 

rpc_$set_binding 

Sets the binding in an allocated handle so that it specifies a socket 
address. 

rpc $bind 

Allocates an RPC handle and sets its binding. This call has the same 
effect as an rp c_$ a 11 o c_handl e call followed by an 
rpc_$set binding call. 

rpc_$clear_server_binding 

Removes the association of an RPC handle with a server, but retains the 
association with a host. If a client uses this handle to make a remote 
procedure call, the call is sent either to a well known port or to the 
Local Location Broker forwarding port on the remote host. 

rpc_$clear_binding 

Removes the association of an RPC handle with a server and a host. 
This call saves the handle for reuse in accessing the same object, 
possibly via a different server. If a client uses this handle to make a 
remote procedure call, the call is broadcast. 

rpc $ dup handl e 

Returns a copy of an existing RPC handle. A handle is not freed until 
rpc_$ f ree_handle is called on all copies of the handle. 

DECrpc Software 2~3 



rpc $free handle 

Frees an RPC handle. This call removes any association of the handle 
with an object and an address and releases the handle. 

rpc_$set_async_ack 

Sets or clears asynchronous-acknowledgement mode in a client. 
Asynchronous-acknowledgement mode allows a client to acknowledge 
its receipt of replies from servers asynchronously, for greater efficiency. 

rpc_$set_short_timeout 

Sets or clears short-timeout mode on a handle. If a client uses a handle 
in short-timeout mode to make a remote procedure call, but the server 
shows no signs of life, the call fails quickly. 

rpc $sar 

Sends a remote procedure call request and awaits a reply from the 
server. This call is for use only by client stubs that the NIDL Compiler 
generates, so there is no reference description for it. 

2.2.2 Server Routines 
This section describes the rpc_$ server routines, most of which initialize 
the server so that it has a socket on which to listen and is registered with the 
RPC run-time library on its host. 

rpc $use family 

Creates a socket that the server will use to communicate with clients. 
You specify the address family. The run-time library assigns an 
available port number for the socket. 

rpc $use family wk 

Creates a socket that uses a well known port. You specify both the 
address family and the port number. 

rpc $register 

Registers an interface with the RPC run-time library. This call is 
superseded by rp c_$ r e g i s t e r_mg r and 
rp c_$ r e g i s t e r_ob j e s t. Any server that contains more than one 
implementation of a type interface or more than one version of a 
manager must use rp c_$ r e g i s t e r mgr rather than 
rpc $register. 

rpc $register mgr 

Registers a generic interface with the RPC run-time library. You 
specify an interface, a type for which the server exports the interface, 
and the set of manager procedures that implement the interface for that 

2-4 DECrpc Software 



type. Any server that contains more than one implementation or more 
than one version of a manager must use this call rather than 
rpc $register. 

rpc $register object 

Registers an object with the RPC run-time library. You declare an 
object for which the server exports interfaces and declare the type of the 
object. 

rpc $unregister 

Unregisters an interface that was previously registered with the server 
by the rpc_$register mgr or rpc_$register routines. The 
server will not respond to requests for the unregistered interface. 

rpc $listen 

Listens for remote procedure call requests from clients. When a request 
is received, call the requested manager procedure for the requested 
operation and send the result in a reply to the client. 

rpc $inq object 

Returns the QUID of the object represented by an RPC handle. This 
call enables manager procedures to determine the specific object that 
they must access. 

rpc $shutdown 

Shuts down. The server stops processing incoming requests and 
rpc $1 i s t e n returns. 

rpc $allow remote shutdown 

Allows or disallows remote shutdown initiated by rpc_$shutdown. 

rpc $set fault mode 

Controls handling of faults that occur in server routines. By default, 
the server reflects faults back to the client and continues processing. 
You can use this routine to set the fault-handling mode so that the 
server sends a ` ̀ communications failure" fault to the client and exits. 

2.2.3 Routines for Clients or Servers 
The rpc_$ routines listed in this section can be used by both clients and 
servers. 

rpc $inq binding 

Returns the socket address identified by an RPC handle. Typically, a 
client uses this call to identify the specific server that responded to a 
remote procedure call. 

DECrpc Software 2-5 



rpc_$ inq object 

Returns the UUID of the object represented by an RPC handle. 

rpc_$name_to_sockaddr 

Given a host name and port number, returns the equivalent socket 
address. This call is superseded by socket_$ f rom name. 

rpc_$sockaddr_to_name 

Given a socket address, returns the equivalent host name and port 
number. This call is superseded by socket_$to_name. 

2.3 The rrpc_$ Client Library Routines 
This section describes the rrpc $routines. These routines enable a client 
to request information about a server or to shut down a server. 

Chapter 13 includes a reference page for each rrpc_S routine. 

rrpc_$areyouu_there 

Checks whether a server is answering requests. 

rrpc_$inq_stats 

Obtains statistics about a server. 

rrpc_$inq_interfaces 

Obtains a list of the interfaces that a server exports. 

rrpc $shutdown 

Shuts down a server, if the server allows it. See also 
rp c_$ a 11 ow_r emot e_s but down. 

2.4 The socket $Library Routines 
This section describes the socket $routines. These routines manipulate 
socket addresses. Unlike the calls that operating systems typically provide, 
the socket $routines operate on addresses of any protocol family. 

Chapter 14 includes a reference page for each socket_$ routine. 

socket $equal 

Compares two socket addresses. 

socket $to name 

Converts a socket address to a textual host name and port number. 

socket $to numeric name 

Converts a socket address to a numeric host name and port number. 

2-6 DECrpc Software 



socket $from name 

Converts a textual host name and port number to a socket address. 

socket $family to name 

Converts the integer value of a protocol family to its textual name. 

socket $family from name 

Converts the textual name of a protocol family to its integer value. 

socket_$valid family 

Checks whether an address family is usable. 

socket $valid families 

Lists the address families that are usable. 

2.5 The Ib_$ Library Routines 
This section describes the lb $routines. These routines constitute the 
interface to the Location Broker Client Agent. The routines direct the Client 
Agent to look up, register, or unregister entries in a Location Broker 
database. 

Chapter 9 includes a reference page for each lb $routine. 

lb_$lookup_object 

Finds entries in the GLB database that match the specified object 
identifier. 

lb $lookup type 

Finds entries in the GLB database that match the specified type 
identifier. 

lb $lookup interface 

Finds entries in the GLB database that match the specified interface 
identifier. 

lb_$lookup_object_local 

Finds entries in the specified LLB database that match the specified 
object identifier. 

lb_$lookup_range 

Finds entries in the specified database (LLB or GLB) that match the 
specified combination of object, type, and interface UUIDs. 

D ECrpc Software 2 7 



lb $register 

Registers a specific object and interface, that is, creates an entry in the 
Location Broker database. You can specify an entry as local or global. 
If it is local, it will be registered only in the LLB. If it is global, it will 
also be registered in the GLB. 

lb $unregister 

Unregisters a specific object and interface, that is, removes an entry 
from the Location Broker database. 

2.6 The uuid_$ Library Routines 
This section describes the uuid S routines. These routines generate and 
manipulate Universal Unique Identifiers. 

Chapter 15 includes a reference page for each uuid $routine. 

uuid $gen 

Generates a new QUID. 

uuid $decode 

Converts acharacter-string representation of a UUID (as generated by 
the uuid gen utility) into a uuid $t value that is usable by a 
program. 

uuid $encode 

Cogverts a UUID into its character-string representation. 

uuid $equal 

Compares two UUIDs. 

2.7 The error_$ Library Routines 
Most of the run-time library routines indicate their completion status with 
status codes. The error $routines, which are listed in this section, 
conveR these status codes into textual error messages. 

Chapter 8 includes a reference page for each error_$ routine. 

error $c get text 

Returns system, module, and error texts for a status code. 

error $c text 

Returns an error message for a status code. 

2-8 DECrpc Software 



2.8 The pfm_$ Library Routines 
The pfm fault management routines, which are described in this section, 
allow programs to manage signals, faults, and exceptions by establishing 
cleanup handlers. 

Chapter 10 includes a reference page for each pfm $routine. 

pfm $cleanup 

Establishes a cleanup handler. 

pfm $enable 

Enables asynchronous faults after they have been inhibited by a call to 
pfm $inhibit. 

pfm $enable faults 

Enables asynchronous faults after they have been inhibited by a call to 
pfm $inhibit faults. 

pfm $inhibit 

Inhibits asynchronous faults. 

pfm $inhibit faults 

Inhibits asynchronous faults but allows task switching. 

pfm $init 

Initializes the PFM package. 

pfm $reset cleanup 

Resets a cleanup handler. 

pfm $rls cleanup 

Releases cleanup handlers. 

pfm $signal 

Signals the calling process. 

2.9 The pgm_$ Library Routine 
The pgm $exit program management routine is often used at the end of a 
cleanup handler to terminate a program. 

Chapter 11 includes a reference page for the pgm $exit routine. 

pgm $exit 

Exits from the calling program. 

DECrpc Software 2-9 



2.10 The System IDL Directory 
The system IDL directory, RPC$IDL, contains several interface definition 
files distributed with DECrpc. 

2.10.1 Interface Definition Files for Types and Constants 
The following files in the system IDL directory define only data types and 
constants, not operations: 

RPC$ IDL :BASE .IDL 

Defines some basic types and constants. 

RPC$IDL:NBASE.IDL 

Defines types and constants used in network interfaces. 

RPC$IDL:NCASTAT.IDL 

Defines the completion status codes specified by the RPC run-time 
library. 

Several of the interface definitions described in the following sections import 
one or more of these files. 

2.10.2 Interface Definition Files for Local Interfaces 
The following files in the system IDL directory define local interfaces: 

RPC$IDL:LB.IDL 

Defines the interface to the Location Broker Client Agent. 

RPC$ IDL :RPC .IDL 

Defines the interface to the RPC run-time library. The NIDL Compiler 
automatically imports RPC $IDL :RPC .IDL when it compiles the 
definition for any remote interface. 

RPC$IDL:SOCKET.IDL 

Defines types, constants, and operations pertaining to socket addresses 
and protocol families. 

RPC$IDL:UUID.IDL 

Defines types, constants, and operations pertaining to UUIDs 

The operations in these interfaces cannot be called remotely. The NIDL 
defines the interfaces so that header files can be generated from a common 
source. The NIDL files, rather than the generated header files, serve as 
readable descriptions of the interfaces. 

2-10 DECrpc Software 



2.10.3 Interface Definition Files for Remote Interfaces 
The following files in the system IDL directory define remote interfaces: 

RPC$IDL:CONV.IDL 

Defines operations that manage client-server conversations. 

RPC$IDL:GLB.IDL 

Defines the interface to the Global Location Broker. 

RPC$IDL:LLB.IDL 

Defines the interface to the Local Location Broker. 

RPC$IDL:RRPC.IDL 

Defines operations that a client can use to request information about a 
server or to shut down a server. 

You do not ordinarily need to call any of the operations in the cony, 
glb_, and llb_ interfaces, because you can access most of their 
functionality through the lb_ and rp c_ interfaces. 

The r rp c_ interface is automatically exported by every RPC server. Its 
operations are implemented by the run-time support for the server and are not 
part of the server proper. 

2.11 Header Files and Insert Files 
For each of the interface definition files described in the previous section, 
DECrpc provides corresponding header files in C. DECrpc also provides two 
header files that are hand coded, not generated from an interface definition. 

The C header files reside in SYS$SYSROOT:[RPC$INCLUDE], which is 
pointed to by the logical RPC$INCLUDE. Many C compilers support 
qualifiers that allow you to specify this directory as a place for the compiler 
to look for header files. 

RPC$INCLUDE:IDL BASE.H 

This file defines primitives that are present in NIDL but lacking in C, 
such as the Boolean type. The RPC$ INCLUDE : IDL_BASE . H file 
also contains declarations or definitions for data types, external 
functions, and macros used by stubs. 

RPC$INCLUDE:PFM.H 

This file defines a portable interface to the Process Fault Manager 
subsystem. 

DECrpc Software 2-11 





Steps in Building a Distributed 
Application 

To build a distributed application, you combine code that the NIDL Compiler 
generates with code that you write. This chapter describes the binop 
application to introduce the steps in building a distributed application. 
Section 3.1 uses binop to illustrate NIDL interface definitions, and Section 
3.2 describes the user-written files for the application. Many details, 
however, are not explained in this section. Chapters 4, 5, 6, and 7 describe 
interface definition and application development more thoroughly. 

See also Section 3.3, which describes binop_lu, an application that uses 
the Location Broker. 

3.1 A Distributed Application: The binop Interface 
Definition 
This section describes binop, an application that performs integer additions 
on a remote server. The examples directory, 
SYS$SYSROOT : [ SYSHLP .EXAMPLES ] ,contains the source code files for 
binop. 

The binop application uses explicit handles and manual binding. The 
binop. idl file, shown in Example 3-1, defines the binop interface. 
Section 3.2 describes the binop client and server programs. 

Chapter 4 describes how to generate the QUID and the skeletal interface 
definition file with uuid gen. 



Example 3-~ : The binop.idl Interface Definition 

oc p 
[uuid(41979f30a000.Od.00.00.fb.40.00.00.00), 

port ( ip: [6677]) ,version (1) ] 
interface binop 
{ 

[idempotent ] ~3 
void binop add( 4 

handle t [ in ] h, 
long [ in ] a, 
long [ in ] b, 
1 ong [out ] * c 
): 

} 

0 
0 

0 

0 

The first line of the interface definition states that the definition uses the 
C syntax of NIDL. 

The next three lines specify the UUID, well known ports, version, and 
name of the interface. 

This operation has the idempotent attribute, which specifies that the 
operation can safely be executed more than once and allows the RPC 
run-time library to employ more efficient calling semantics. 

The remainder of the definition defines the signature of binop $add, 
the one operation in the interface. The first parameter is an RPC 
handle. The next two are inputs. The last parameter is an output. 

Since the binop example imports no other interface definitions, defines no 
constants, and uses only predefined data types, it does not illustrate the NIDL 
import, constant, and type declarations. Examples in Chapters 5 and 6 
illustrate these constructs. 

To keep the client and server for binop simple, the interface definition 
specifies well known ports. However, as Chapter 1 recommends, you should 
avoid well known ports in real applications and use opaque ports instead. 
Section 3.3 describes the binop_lu example, which uses opaque ports by 
means of Location Broker lookups. Chapters 4 and 5 develop the 
binop_fw example, which uses opaque ports by means of Location Broker 
forwarding. 

To compile an interface definition, run the NIDL Compiler in the examples 
directory as shown for binop in this example: 
$ nidl binop.idl -m 

3-2 Steps in Building a Distributed Application 



Note 
This tool is available on VMS systems, ULTRIX systems, and 
other versions of the UNIX operating system. The command 
interface is common across all these systems, and therefore is not 
in a traditional DCL style. 

For this command, precede qualifiers with a hyphen (-), rather 
than the customary slash (n. 

You must define each DECrpc command as a foreign command. 

The —m qualifier allows a server to export more than one version of an 
interface and to implement an interface for more than one type. The 
compiler appends the version number to the interface name when it generates 
identifiers in the stub and header files. For example, the interface specifier 
for version 2 of the binop interface would be binop v 3 $ i f spec . 

Figure 3-1 shows the input and output files involved in the compilation of 
binop . i d 1. If you build the binop programs in the example directories, 
as described in the next section, you can examine the stub, switch, and 
header files that the NIDL Compiler produces. (The switch file 
(binop_cswtch . c) is generated but is not used.) 

Figure 3-1: Input and Output Files in the binop.idl Compilation 

NIDL 
Interface Definition 
binop wk.idl 

Header File 
binop wk.h 

Client Files 
binop wk cstub.c 
binop wk.cswitch.c 

Server Flle 
binop wk s stub . c 

ZK-0085 U- R 

The header file binop . h declares the binop $add procedure, initializes 
the binop v1$ i f_spec interface specifier, and defines the 
binop_v1$epv_t data type. It also contains directives to include the 
standard DECrpc header files that define basic data types and declare RPC 
run-time library routines. 

An i f_spec is a data structure that clients and servers pass to the RPC 
run-time library when they bind or register an interface. An epv_t is the 
data type for an entry point vector (EPV), a record of pointers to the 

Steps in Building a Distributed Application 3-3 



operations in an interface. If you run the NIDL Compiler with the —m 
qualifier, which allows multiple versions of an interface, the NIDL Compiler 
appends the version number, for example, _v 1, to the interface name when 
it generates EPV identifiers. 

The b i n op_c s t ub . c and b i n op_c s wt c h. c modules together 
implement the client stub. They contain a procedure named binop $add. 
This procedure marshalls its two input arguments, a and h, into an RPC 
packet and calls rp c_$ s a r to send a remote procedure call. When 
rp c_$ s a r returns, the result is unmarshalled from the returned packet into 
the output argument, c. 

The module binop_s stub .cis the server stub. It unmarshalls a and h 
from the packets sent by clients, then passes those values to the manager 
procedure binop add. It marshalls the result, c, into an RPC packet and 
returns control to the RPC run-time library, which sends the packet back to 
the waiting client. 

As Figure 3-1 shows, the NIDL Compiler generates two client files for an 
interface: a stub file, interface_cstub . c, and a switch file, 

interface_c s wt ch . c. The client switch contains public procedures (such as 
binop $add), while the client stub contains only private procedures whose 
names are not visible outside of the _cstub . c file. The client stub defines 
an EPV containing function pointers to the private procedures, and the client 
switch invokes these procedures through the EPV (for example, by calling 
binop v1$client epv.binop$add). 

To build a client, you link both the client switch and the client stub with the 
client. The client calls the procedures by their ordinary public names, as 
specified in the NIDL definition. These procedures are contained in the client 
switch, which then calls the client stub procedures through the client EPV. 

3.2 A Distributed Application: The binop User-Written 
Files 
Section 3.1 described the compiler-generated files for the binop example. 
This section describes the user-written files: 

client . c 

servers 

binop.c 

The main client module 

The main server module 

The manager 

The c 1 i ent . c and server . c examples shown in this chapter omit 
some conditional and diagnostic code, the utility module ut i 1. c, and the 
compiler-generated header, stub, and switch files. The binop example 
directory contains complete source code for binop. 

3-4 Steps in Building a Distributed Application 



3.2.1 The Client 
The binop application uses well known ports, explicit handles, and manual 
binding. The client code generates and binds an RPC handle that it passes as 
the first argument in its remote procedure calls. 

Example 3-2 shows the client module, client . c. 

Example 3-2: The clients Module for binop 

#include <sys/time.h> 
#include <stdio.h> 
#include "binop.h" 
#include "socket.h" 
#define CALLS PER PASS 100 

globalref uuid $t uuid $nil; 

main (argc, argv) 
int argc; 
char *argv [ ] ; 

{ 

handle_t h; 
status_$t st; 
socket_$addr_t loc; 
unsigned long lien; 
long i, n; 
int k, passes; 
int start time, stop time; 

if (argc ! = 3) { 
fprintf(stderr, "usage: client hostname passes\n"); 01
exit (1 } ; 

} 

passes = atoi (argv [ 2 ]) ; 

socket_$from name (socket_$unspec, (ndr_$char *) argv [ 1 ] , 
(long) strlen (argv [ 1 ]) , (long) rpc_$unbound_port, 
&loc, &llen, &st}; 

h = rpc $bind (&uuid $nil, &loc, lien, &st) ; 

for (k = 1; k <= passes; k++) { 

start time = time (NULL) ; 
for (i = l; i <= CALLS_PER PASS; i++) { 

binop add (h, i, i, &n} ; 

printf ("Two times old is NOT old\n", i, n) ; 

} 

} 

0 

} 

stop_time = time (NULL) ; 
printf ("pass o3d; real/call : o2d ms\n", 

k, ((stop_time - start_time) * 1000) / CALLS_PER_PASS) ; 

Steps in Building a Distributed Application 3-5 



0 

0 

0 

0 

This program takes two arguments: the network address of a host 
where a server is running and the number of passes to execute. 

To convert the network address of the server host to a socket address, 
the client calls socket_$ f rom_name, part of the socket address 
manipulation interface in the RPC run-time library. Because the port 
parameter for s o cket_$ f rom_name is the predefined constant 
rpc_$unbound port, the resulting socket address specifies a host, 
but not a particular port at that host. 

The client then supplies this socket address to the rpc_$bind library 
call, which creates an RPC handle and binds this handle to the socket 
address. Because the socket address does not specify a port, the 
rp c_$ b i n d call generates abound-to-host handle. The first argument 
to rp c_$ b i n d, the object identifier, is uu i d_$ n i 1, because 
binop does not operate on any particular object. 

When the client issues its first call to binop$add, the RPC run-time 
library at the client host extracts the well known port number for the 
server from the binop_v1$ i f_spec interface specifier, so that the 
handle is fully bound when the run-time library sends the request. The 
handle remains fully bound for all subsequent calls. 

3.2.2 The Server 

Example 3-3 shows the server module, server . c, which creates a socket, 
registers with the run-time library at its host, and then listens for a call for its 
services. 

Example 3-3: The servers Module for binop 

#include <stdio.h> 
#include "binop.h" 
#include "socket.h" 

globalref uuid_$t uuid_$nil; 
globalref binop_vl$epv_t binop_vl$manager_epv; 

main (argc, argv) 
int argc; 
char *argv[] ; 

{ 

status_$t st; 
socket_$addr_t loc; 
unsigned long lien; 
unsigned long family; 
socket_$string_t name; 
unsigned long namelen = sizeof(name); 
unsigned long port; 

if (argc != 2) { 

3-6 Steps in Building a Distributed Application 



Example 3-3: (continued) 

fprintf (stderr, "usage: server family\n") ; ❑1
exit (1) ; 

} 

} 

a 

0 

0 

0 

0 

0 

family = socket_$ f ami ly_f rom name ((ndr_$ cha r * ) 

(long) strlen (argv[1]) , &st) ; 

rpc_$use_family_wk(family, &binop_vl$if_spec, 

&loc, &llen, &st); 

rpc_$register_mgr( 

&uuid $nil, Q 
&binop_vl$if_spec, 

binop_vl$server_epv, 

(rpc_$mgr_epv_t) &binop_vl$manager_epv, 

&st); 

argv[1], 

socket_$to_name (&loc, llen, name, &namelen, &port, &st) ; 

name [namelen] = 0; 

printf ("Registered: name=' %s' , port=old\n", name, port) ; 

rpc_$listen ((long) 1, &st) ; 07 

0 

This program takes one argument, the name of an address family. 

The call to socket $family from name converts the address 
family name into the integer representation of the family, returned as 
f ami 1 y. 

The server then supplies f ami 1 y and the b i n op interface specifier 
to rp c_$ u s e_f ami 1 y_wk, which creates a socket for the server at 
its well known port. The 1 o c variable stores this socket address. 

In order to communicate with clients, a server registers itself with the 
RPC run-time library at its host. The b i n op server calls 
rp c_$ r e g i s t e r_mg r to tell the run-time library that it exports the 
b i n op v 1 interface. 

The first argument to rp c_ $ r e g i s t e r_mg r, the type identifier, is 
uuid $nil, because b inop does not operate on an object. If a 
server operates on objects of several types, as in Figure 1-7, it registers 
its managers by calling rp c_ $ r e g i s t e r_mg r once for each type, 
and it must register its objects by calling rpc_$ regi st e r_ob j e ct 
once for each object. 

After registering with the RPC run-time library, the b i nop server 
calls socket $ t o name to extract a textual network address and a 

Steps in Building a Distributed Application 3-7 



0 

port number from its socket address, and it uses this information to 
print an announcement of its registration. 

Finally, it invokes rpc_$1 i st en to begin handling remote 
procedure calls. The first argument to rp c_$1 i s t en must be 1. 

3.2.3 The Manager 
The manager module binop . c, which is shown in Example 3-4, contains 
the implementation of the binop $add procedure. This code is linked with 
the server module. 

Example 3-4: The binop.c Manager Module 

#include "binop.h" 

globaldef binop_v1$epv_t binop_vl$manager_epv 

binop add 
}; 

void binop add (h, a, b, c) 02 
handle t h; 
long a, b, *c; 

{ 

} 

D 

*c = a + b; 

{ 0 

The module first defines the manager EPV 
binop v1$manager epv. 

The next lines contain the actual implementation of the binop $add 
procedure. 

3.2.4 Building and Running the binop Application 
The binop client program is the result of compiling these modules: 

• client s 

• util.c 

• binop cstub.c 

• binop cswtch.c 

The server program is the result of compiling these modules: 

• servers 

• util.c 

• binop.c 

• binop sstub.c 

3-8 Steps in Building a Distributed Application 



All of these modules contain a # i n c 1 u de directive to incorporate the 
definitions in binop . h. 

To create the binop application on your system, execute the BUILD . COM 
file in the example directory. The file runs the NIDL Compiler to generate 
stub, switch, and header files, and then runs a C compiler to build the client 
and server programs. 

To run binop, first define the server and client programs as foreign 
commands. Then start the server, specifying the ip address family: 

$ server ip 

Registered: name'ip:elektra', port=6677 

After the server has registered itself, run the client, specifying the network 
address of the server host (in this example, elektra) and the number of passes 
to execute: 

$ client ip:elektra 4 
pass l; real/call: 20 ms 
pass 2; real/call: 20 ms 
pass 3; real/call: 10 ms 
pass 4; real/call: 10 ms 

3.3 Using Location Broker Lookups: The binop lu 
Application 
Sections 3.1 and 3.2 described binop, an application that uses well known 
ports to coordinate communication between client and server. The examples 
in this section show a modified version of binop that uses opaque ports by 
means of Location Broker lookups. The modified application is called 
binop_lu. As in the binop example, the code shown omits some 
conditional and diagnostic code. 

See also Chapter 1, which describes issues to consider if you are designing 
an application that in the future may use a name service other than the 
Location Broker. 

3.3.1 The Interface Definition 
The interface definition for binop_lu (Example 3-5) differs from the 
definition for binop (Example 3-1) in the interface UUID, the interface and 
operation names, and the absence of well known ports. 

Steps in Building a Distributed Application 3-9 



Example 3-5: The binop lu.idl Interface Definition 

oc 
[uuid (41979f38d000.Od.00.00. fb.40.00.00.00) , version (1) ] 
interface binop_lu 
{ 

[idempotent] 
void binop_lu$add( 

handle t [in] h, 
long [ in ] a, 
long [ in ] b, 
long [out ] *c 
); 

} 

3.3.2 The CI ient 
Example 3-6 contains the code for the binop_lu client. Unlike the 
binop client, which converts a host name to a socket address, the 
binop_lu client looks up a server address in the Location Broker database. 

Example 3-6: The clients Module for binop lu 

#include <sys/time.h> 
#include <stdio.h> 
#include "binop lu.h" 
#include "lb.h" 
#include "socket.h" 
#define CALLS PER PASS 100 

globalref uuid $t uuid $nil; 

main (argc, argv) 
int argc; 
char *argv [ ] ; 
{ 

handle_t h; 
status_$t st; 
lb_$ ent ry_t entry; 
lb_$lookup_handle_t ehandle = lb_$default_lookup_handle; 
unsigned long nresults; 
socket $addr t loc; 
unsigned long lien; 
long i, n; 
int k, passes 
int start_time, stop time; 
i f (argc ! = 2) { 

fprintf (stderr, "usage : client passes\n") ; 01
exit (1) ; 

} 
passes = atoi (argv [ 1 ]) ; 

3—~ 0 Steps in Building a Distributed Application 



Example 3-6: (continued) 

lb_$lookup_interface(&binop_lu_vl$if_spec.id, &ehandle, 1, 

&nresults, &entry, &st) ; 

} 

D 

0 

0 

h = rpc_$bind (&uuid_$nil, &entry .saddr, entry . saddr_len, & st) ; 0 

for (k = l; k <= passes; k++) { 

start time = time (NULL) ; 

for (i = l; i <= CALLS PER PASS; i++) { 

binop lu$add (h, i, i, &n) ; 

printf ("Two times old is NOT old\n", i, n) ; 
} 

stop time = time (NULL) ; 

printf ("pass o3d; real/call : o2d ms\n", 

k, ((stop_time - start time) * 1000) / CALLS_PER PASS) ; 
} 

The b i n op_1 u client program takes only one argument, the number 
of passes to execute. There is no need for the user to specify a host 
name. 

The lb_$ lookup interface call takes the place of the 
socket_$ f rom name call in the binop client (Example 3-2). 
This lookup call returns a Global Location Broker database entry that 
matches the binop_lu interface UUID. The returned entry contains, 
in its saddr field, the socket address of the server. 

Addresses in Location Broker entries always specify a port number, so 
the handle returned by rpc_$bind in this example is fully bound. 

3.3.3 The Server 
The b i n op_1 u server (Example 3-7) differs from the binop server 
(Example 3-3) in two important ways: 

• The binop_lu server calls rpc_$use_family rather than 
rp c $use f ami 1 y wk to obtain the socket on which it listens. This 
call requests the RPC run-time library to dynamically assign an 
available port. 

• The server calls lb_$ regi st e r to register its interface and its socket 
address with the Global Location Broker. 

Steps in Building a Distributed Application 3-11 



Example 3-7: The servers Module for binop_lu 

#include <stdio.h> 
#include "binop lu.h" 
#include "lb.h" 
#include "socket.h" 

globalref uuid_$t uuid_$nil; 
globalref binop_lu_vl$epv_t binop_lu_v1$manager_epv; 

main (argc, argv) 
int argc; 
char *argv [ ] ; 

{ 

status_$t st; 
socket_$addr_t loc; 
unsigned long lien; 
unsigned long family; 
socket_$string_t name; 
unsigned long namelen = sizeof(name); 
unsigned long port; 
lb $entry t entry; 

if (argc != 2) { 
fprintf(stderr, "usage: server family\n"); 
exit (1) ; 

} 

family = socket_$family_from name ((ndr_$char *) argv [ 1 ] , 
(long) strlen (argv[1]) , &st) ; 

rpc $use family (family, &loc, &lien, &st) ; 01

rpc_$register_mgr( 
&uuid $nil, 
&binop lu vl$if spec, 
binop_lu_vl$server_epv, 
(rpc $mgr epv t) &binop lu vl$manager epv, 
&st) ; 

lb_$register(&uuid_$nil, &uuid_$nil, &binop_lu_v1$if_spec.id, 0, Q 
(ndr_$char *) "binop_lu example", &loc, lien, &entry, &st) ; 

socket_$to_name(&loc, lien, name, &namelen, &port, &st); 
name [namelen] = 0; 
printf ("Registered: name' os' , port=old\n", name, port) ; 

rpc_$listen ((long) 1, &st) ; 
} 

The call to rp c_$ u s e_f ami 1 y requests the RPC run-time library to 
dynamically assign an available port. 

The call to lb_$register registers the interface and its socket 
address with the Global Location Broker. The first two arguments to 

3-12 Steps in Building a Distributed Application 



lb_$ re g i s t e r, the object and type identifiers, are both 
uu i d_$ n i 1, because binop does not operate on an object. The 
server supplies the text string "binop_lu example" as an annotation for 
its Location Broker database entry. 

3.3.4 The Manager 
Except for name changes, the binop_lu manager (Example 3-8) is the 
same as its counterpart in binop (Example 3-4). 

Example 3-8: The binop_lu.c Manager Module 

#include "binop lu.h" 

globaldef binop_lu_vl$epv_t binop_lu_v1$manager_epv 
binop_lu$add 

}; 

void binop lu$add (h, a, b, c) 
handle_t h; 
long a, b, *c; 

{ 

*c = a + b; 
} 

{ 

3.3.5 Building and Running the binop_lu Application 

You must set up Location Broker services on your network or Internet before 
you can run the binop_lu client and server. A Global Location Broker 
should be running on at least one host in the network or Internet where you 
intend to run a client or server. A Local Location Broker should be running 
on each host where you intend to run a server. Guide to the Location Broker 
contains guidelines for configuring the Location Broker and procedures for 
starting Location Broker processes. 

After you set up the Location Broker services and build the b i nop_1 u 
application, start the b i n op_1 u server (after defining the foreign 
commands), specifying the address family as ip as shown in this example: 
$ server ip 
Registered: name'ip:elektra', port=1330 

Your port number may differ from this one, because binop_lu uses 
dynamically assigned opaque ports. 

Steps in Building a Distributed Application 3-13 



After the server has registered itself, run the client, specifying the number of 
passes to execute as shown in this example: 
$ client 4 
pass 1; real/call: 20 ms 

pass 2; real/call: 20 ms 

pass 3; real/call: 10 ms 

pass 4; real/call: 10 ms 

3-14 Steps in Building a Distributed Application 



Writing Intertace Definitions 4 

The first step in developing a distributed application is to define its interface 
or interfaces in Network Interface Definition Language (NIDL}. A NIDL 
interface definition contains: 

• A heading 

• Import declarations 

• Constant declarations 

• Type declarations 

• Operation declarations 

The NIDL Compiler uses the information in an interface definition to 
generate header files and client and server stubs. 

This chapter explains how to: 

• Generate an interface Universal Unique Identifier (QUID) and a 
skeleton interface file 

• Write an interface definition in NIDL 

• Run the NIDL Compiler to produce the server and client stub files 

This chapter shows the development of an interface definition for 
b i n op_f w, an application that uses the Location Broker forwarding facility 
to perform integer additions on a remote server. Chapter 5 describes how to 
develop and build the binop_fw client and server programs. 

This chapter introduces NIDL through examples rather than syntax 
descriptions. For details of NIDL syntax, see Chapter 6. 

4.1 Generating Interface UUIDs 
Each object, type, and interface must have a UUID. You must generate a 
new QUID each time you create an object, type, or interface. You can create 
a QUID with the uu i d gen utility or in your application program with the 
u u i d $gen routine. 

The uu i d_gen utility is invoked as a foreign command, uu i d_gen. 
Before invoking the command, define it as a foreign command in the RPC 
startup file, SYS$STARTUP:RPC$UCX_STARTUP.COM, as follows: 

$ uuid gen :__ $rpc$exe:uuid gen 



After defining the foreign command, run the uuid_gen utility as shown in 
this example. The command generates an interface definition file in the C 
language syntax and places the output in the file b i n op_f w . i dl . 

$ define/user sys$output binop_fw.idl 

$ uuid gen -c 

Note 

This tool is available on VMS systems, ULTRIX systems, and 
other versions of the UNIX operating system. The command 
interface is common across all these systems, and therefore is not 
in a traditional DCL style. 

For this command, precede qualifiers with a hyphen (-), rather 
than the customary slash (n. 

You must define each DECrpc command as a foreign command. 

Example 4-1 shows the interface file generated by uu i d_gen. 

Example 4-1: Interface File Generated by uuid_gen 

oc Q 
uuid(41979f400000.Od.00.00.fb.40.00.00.00), 
version (1) 
J 
interface INTERFACENAME { Q 

} 

0 The first line of the skeletal definition is the syntax identifier, which is 
c in this example, for the C language. 

Q The next part of the definition is the heading, which specifies a name, a 
UUID, and a version number for the interface. 

The last part of the definition is a pair of braces, between which go 
import, constant, type, and operation declarations. This chapter 
describes the syntax for the declarations. 

By convention, the names of interface definition files end with the suffix 
. idl. To generate names for header, stub, and switch files, the NIDL 
Compiler replaces the suffix with . h, _c s t ub . c, _c s wt ch . c, and 
s stub . c. 

4-2 Writing Interface Definitions 



4.2 The Heading 
The heading of an interface definition specifies the name and attributes of the 
interface. 

4.2.1 Interface Names 
After you have used uu i d_ge n to generate a skeletal interface definition, 
replace the dummy string ` ̀ INTERFACENAME" with the name of your 
interface. 

One naming convention uses interface names that end with an underscore, 
such as rpc_ and socket_. Operation names begin with a dollar sign 
($), so that operations in interfaces have names such as rpc_$1 i st en and 
socket_$equal. Applications have interface names such as bank and 
b i nop and operation names such as bank $deposit and b i nop $add. 

4.2.2 Interface Attributes 
There are five interface attributes. Any interface that contains operations 
must specifiy at least the uu i d attribute or the 1 o c a 1 attribute. 

uu i d The Universal Unique Identifier assigned to the interface by 
uu i d_gen. No other object, type, or interface can be assigned 
this QUID. 

version The version number of the interface. If you want several 
versions of an interface to coexist, you can distinguish them with 
version numbers. 

port The well known port or ports on which servers exporting this 
interface will listen. In most cases, you should not use the 
port attribute; instead, you should allow the RPC run-time 
library to assign ports dynamically. See Chapter 1 for a 
discussion of well known ports. 

implicit_handle 
The global variable containing handle information. If you do not 
specify this attribute, the handle must be passed as an explicit 
parameter to each operation. 

1 o c a 1 A flag that tells the NIDL Compiler to generate only header files 
(. h), not stubs. The interface definition should contain 
declarations only for constants and types, not for operations. If 
you specify the 1 o c a 1 attribute, the NIDL Compiler ignores 
any other interface attributes. 

Writing Interface Definitions 4-3 



4.2.3 Examples of Interface Headings 
The heading for the b i n op_f w interface definition specifies only an 
interface QUID, a version number, and the interface name: 

[uuid (41979f400000.Od.00.00. fb.40.00.00.00) , version (1) ] 

interface binop_fw 

The heading for the binop application (see Chapter 3) specifies well known 
ports for the IP address family: 

[uuid (41979f30a000.Od.00.00. fb.40.00.00.00) , 

port (ip: [6677]) , version (1) ] 
interface binop 

4.3 Import Declarations 
The NIDL import declaration is similar to the C #include directive. 
An import declaration specifies another interface definition whose types 
and constants are used by the importing interface. 

The import declaration allows you to collect the declarations for types and 
constants that are used by several interfaces into one common file. For 
example, if you are defining two database interfaces named lookup and 
update, and these interfaces have many constants in common, you can 
declare those constants in a db . idl file and import this file in the 
lookup . idl and update . idl interface definitions: 

uuid(41979f400000.Od.00.00.fb.40.00.00.00), 
version (1) 

interface lookup { 

import 'db.idl'; 
} 

Interface definitions can also use the import declaration to import one or 
more of the files supplied in the system idl directory, RPC$IDL. (You 
should never need to explicitly import rpc . idl, the interface definition for 
the RPC run-time library, since the NIDL Compiler automatically imports 
rpc . i dl when it compiles any interface without the 1 o ca 1 interface 
attribute.) 

The -idir qualifier of the NIDL Compiler allows you to specify a 
directory from which the Compiler will resolve the pathnames of imported 
files. You can thereby avoid putting absolute pathnames in your interface 
definitions. 

Chapter 2 describes files in RPC$IDL. 

4-4 Writing Interface Definitions 



4.4 Constant Declarations 
The NIDL const declaration allows you to declare integer, character, or 
character string constants, as in the following examples: 

uuid(41979f400000.Od.00.00.fb.40.00.00.00), 
version (1) 

interface music { 

import 'music.idl'; 
const int array_size 100; 
const char jsb "Johann Sebastian Bach"; 

} 

4.5 Type Declarations 
NIDL provides a variety of data types, including simple types (such as 
integers, floating-point numbers, characters, and enumerations), constructed 
types (such as sets, strings, structures, unions, arrays, and pointers), and the 
handl e_t type. The NIDL type declaration lets you give a name to any of 
these types. 

The general form of a type declaration is 
typedef [ type_attribtste_list ] type specifier type_declarator_list; 

The type_declaf•atof =list is optional. 

This type declaration defines integer 3 2 as a name fora 32-bit integer 
type• 
typedef long integer32; 

4.5.1 The Type Attributes handle and transmit as 
The type attributes handle and transmit_as specify characteristics of 
a named type. 

The handle attribute specifies that a type can serve as a generic handle. 
You supply an autobinding routine to convert the generic handle type to the 
RPC handle type. 

The transmit_as attribute associates a transmitted type that stubs pass 
over the network with a presented type that clients and servers manipulate. 
You supply routines that perform conversions between the presented and 
transmitted types. 

One use of the t ransmit_as attribute is to help applications pass 
complex data types such as trees, linked lists, and records that contain 
pointers. The NIDL Compiler cannot generate code to marshall and 
unmarshall (copy data into and out of RPC packets) these data types, but the 

Writing Interface Definitions 4-5 



transmit_as attribute allows you to supply routines that convert the 
complex types into simpler types that can be marshalled and unmarshalled. 

You can also use this feature to pass data more efficiently. For example, you 
might write routines that convert between sparse arrays and packed arrays; 
stubs transmit packed arrays over the network, and they present sparse arrays 
to the client and server programs. Chapter 7 illustrates this technique. 

4.5.2 The Field Attributes last_is and maxis 
The field attributes last_i s and maxi s can apply to members of 
structures and to parameters of operations. These attributes let you pass 
open arrays between clients and servers. An open array is an array whose 
length is determined at run time, when an operation that uses it is called. 
The last_is and max is attributes control the amount of data 
transmitted between the client and server and the amount of storage allocated 
at the server. 

The type declaration for a structure containing an open array must specify 
1 a s t_i s and can also specify maxi s . Chapter 7 includes a description 
of the last is and max is attributes and presents an example. 

4.5.3 Examples of Type Declarations 
The following example declares the type s o ckhandl e_t as the textual 
representation of a socket address and specifies that this type is to be used as 
a generic handle: 
typedef [handle] socket_$string_t sockhandle_t; 

The interface definition for an example called sparse declares the type 
compress t as a structure containing an open array, then declares two 
array types, compress_array and no_compress_array: 

/* a run-length-encoded representation of an array */ 
typedef struct { 

int last; 
int [last is (last) ] data [CARRAY SIZE] ; 

} compress t; 

/* this type will be transmitted as a more compact type */ 

typedef [transmit_as(compress_t)] int compress_array[ARRAY_SIZE]; 

/* this type will be transmitted as is */ 
typedef int nocompress_array[ARRAY_SIZE]; 

For more examples of type declarations, look at the files in RPC$IDL, which 
contains interface definitions of structures used at run time, and in its c 
subdirectory, for C compiler include file formats. You can find 
representations of structures in these files so you will know the form if you 
want to extract information from a structure. 

4-6 Writing Interface Definitions 



4.6 Operation Declarations 
Operation declarations specify the signature of each operation in the 
interface, including the operation name, the type of data returned (if any), and 
the types of all parameters passed in the call. They also specify various field, 
parameter, and operation attributes. 

The general form of an operation declaration is: 
[operation_attribr~te_list ] type specifier operation_declarator (parameter list) ; 

The operation_attribute_list is optional. Each entry in the parametej-_list 
specifies the type, attributes, and the name of a parameter. 

This interface fora sparse operation contains the following declaration for 
the operation sparse compress sum: 

[idempotent] 
int sparse$compress_sum( 

handle_t [in] h, 
compress array [in] array 
): 

4.6.1 Operation Attributes 
The operation attributes describe characteristics of an operation that affect 
communication between server and client. You can specify any of the 
following operation attributes: 

• idempotent 

• broadcast 

• maybe 

• comm status 

The idempotent attribute allows an operation to be executed more than 
once, not just once. This attribute allows the RPC run-time library to forego 
enforcement of the default "at most once" semantics. Specify 
idempotent for any operation that can safely be executed more than once. 
The b i n op f w $add operation is idempotent. 

The broadcast attribute specifies that an operation be broadcast to all 
hosts on the local network, rather than delivered to a specific host. The RPC 
run-time library automatically applies idempotent semantics to any operation 
with the broadcast attribute. The use of this attribute is discouraged; see 
the discussion in Chapter 5. 

The maybe attribute specifies that there is no need for confirmation that an 
operation has been executed. You can apply this attribute only if an 
operation has no output parameters and returns no value. 

Writing Interface Definitions 4-7 



The comm_status attribute specifies that an operation returns a 
completion status. If a communications error occurs while the operation is 
executing, a cleanup handler in the client stub will catch the error and return 
the error code to the client. 

4.6.2 Parameters 
If an interface uses explicit handles, you must supply a handle as the first 
parameter in each operation declaration, as in the following example: 

void exp$op( 
handle_t [in] h, 
int [ in ] a, 
int [in] b, 
int [out] c 

); 

If an interface uses an implicit handle, you must specify the handle variable 
in an imp 1 i c it_handl e attribute of the interface, and the operations in 
the interface do not require handle parameters: 
[uuid(338b5f985000.Od.00.00.37.27.00.00.00), 

implicit_handle(handle_t array handle)] 

void imp$op( 
int [in] a, 
int [in] b, 
int [out] c 

); 

The in and out keywords in the preceding examples are parameter 
attributes. Section 4.2.2 describes the attributes you can apply to parameters. 

4.6.3 Pointers as Parameters 

NIDL pointers are really references: they must point to something and cannot 
be null. 

In the C syntax of NIDL, you specify a pointer by preceding the parameter 
name with an asterisk (* ). This construct is used primarily for output 
parameters, which, as in C, must be passed by reference. You can also use 
pointers to denote input parameters passed by reference. 

The NIDL Compiler generates code that can marshall and unmarshall 
pointers only at top level and not within any constructed types. Chapter 7 
describes the data type conversion mechanism that allows you to overcome 
this restriction. 

4-8 Writing Interface Definitions 



4.6.4 Arrays as Parameters 
In the C syntax of NIDL, you specify an array by placing the array length in 
brackets after the parameter name. Array subscripts start at 0. Arrays are 
always passed by reference, so an output array does not require a preceding 
asterisk. The following example specifies an array of 13 integers, indexed 
from 0 to 12, named outputs: 
long [out] outputs[13] 

NIDL also supports multidimensional arrays and open arrays. Chapter 6 
explains array syntax in more detail. 

4.6.5 Parameter Attributes 
Characteristics of an operation parameter are specified by pa ramet e r 
attributes. 

in The parameter is an input. It passes from client to server. 

out The parameter is an output. It passes from server to client. In the C 
syntax of NIDL, an output parameter must be a pointer marked by 
the *operator. 

comm_status 
An operation returns a completion status. If a communications error 
occurs while the operation is executing, a cleanup handler in the 
client stub will catch the error and return the error code to the client. 

4.6.6 The Field Attributes last is and max is 
If you pass an open array (an array of variable length) as an operation 
parameter, use the 1 a s t_i s and maxi s attributes to control how many 
elements are transmitted between the client and server and how much storage 
is allocated at the server. In operation declarations, field attributes appear 
together with parameter attributes, preceding the parameter. Chapter 6 
includes descriptions of these attributes. Chapter 7 discusses the attributes in 
more detail and provides an example. 

4.6.7 Examples of Operation Declarations 
The binop_fw interface definition declares one operation, 
binop fw$add: 

[idempotent] 
void binop_fw$add( 

handle t [in] h, 
long [in] a, 
long [in] b, 
long [out] *c 

); 

Writing Interface Definitions 4-9 



The next example shows one operation from among several in the bank 
interface definition. This operation declares the QUID as the RPC handle. 

[ uuid(35c2c6a25000.Od.00.00.c3.66.00.00.00), version(1) ] 

interface bank{ 

import ' nbase . idl' ; 

type int bank$acct_t [32] 

void bank$inq_acct( 

bank$acct_t [in] acct, 
int [out] balance, 
int [ out ] t rans_t ime, 

int [out] create time, 

); 

} 

The interface definition fora primes procedure, declares a primes $ gen 
operation: 
[idempotent] 
void primes$gen( 

handle_t [in] h, 
int [in, out] *last, 
int [in] max, 
status_$t [comm status, out] *st, 

int [ in, out, last_is (last) , max_is (max) ] values [ ] 

); 

4.7 The binop fw Interface Definition 
Example 4-2 shows the complete definition for the binop_fw interface. 

Example 4-2: The binop fw Interface Definition 

oc 
[uuid(4448ee491000.Od.00.00.fe.da.00.00.00), version(1)] 

interface binopfw 
{ 

[idempotent] 
void binopfw$add( 

handle t [in] h, 
long [ in ] a, 
long [ in ] b, 

4-1 o Writing Interface Definitions 



Example 4-2: (continued) 

1 ong [out ] * c 

); 
1 

4.8 Running the NIDL Compiler 
After you have written the interface definition, run the NIDL Compiler to 
generate stub and header files. The syntax for the command is shown in this 
example: 

nidl , frlenarrte [ -m ~ -s ] [other ~tralihers ] 

Note 
This tool is available on VMS systems, ULTRIX systems, and 
other versions of the UNIX operating system. The command 
interface is common across all these systems, and therefore is not 
in a traditional DCL style. 

For this command, precede qualifiers with a hyphen (-), rather 
than the customary slash (n. 

You must define each DECrpc command as a foreign command. 

The filename argument is the pathname of the interface definition file. 

Specify either the —m qualifier or the —s qualifier. These qualifiers 
determine how stubs generated by the Compiler will dispatch remote 
procedure calls. 

If you specify —m, the stubs will support multiple versions, multiple 
interfaces, or both within a single server, enabling you to build a server that 
exports more than one version of an interface. If you specify —s, the stubs 
will support only one version of an interface. 

The NIDL compiler is invoked as the foreign command, n i dl . Define the 
following foreign command in 
SYS$STARTUP:RPC$UCX_STARTUP.COM, the RPC start-up file: 

$nidl :__ $rpc$exe:nidl 

After writing the interface definition and defining the command, run the 
n i dl compiler as shown in this example: 

$ nidl -s binop.idl -idir rpc$idl: 

See the reference page for n i dl in Chapter 16 for a complete description of 
the qualifiers. 

Writing Interface Definitions 4-11 



The examples directory contains a BUILD . COM file that invokes the NIDL 
Compiler as follows: 
$ nidl -s [.idl d]bank.idl -idir rpc$idl: 

The —idir option specifies a directory from which the compiler resolves 
pathnames of imported files. 

On VMS systems, the compilation of binop_fw . idl generates files 
named binop_fw . h, binop_fw_cstub . c, binop_fw_cswtch . c, 
and binop_fw_s stub . c. These files are used to build the binop_fw 
client and server programs. 

4-12 Writing Interface Definitions 



Developing Distributed Applications 5 

After you have written interface definitions for a distributed application, you 
write a client program, write a server program, and build the application. 
This chapter expands upon the binop_fw application, whose interface 
definition was presented in Chapter 4. 

5.1 The binop_fw Application 
Table 5-1 compares the binop_fw example with the binop and 
binop_lu examples. In binop_fw, the user of the client program 
specifies a server host on the command line, and the server listens on an 
opaque port dynamically allocated by the RPC run-time library. The server 
registers with the Local Location Broker on its host so that the LLB can 
forward calls to the server port. 
All three binop applications use explicit handles and manual binding. 
With manual binding the client code generates and binds an RPC handle that 
it passes as the first argument in its remote procedure calls. 

Table 5-y : Comparison of the binop, binop_lu, and binop fw 
Applications 

Application Server Host Server Port LB Registration Call Delivery 

binop 

binop_lu 

binop_fw 

Specified on 
command line 
Obtained from 
LB lookup 
Specified on 
command line 

Well-known 

Opaque 

Opaque 

None 

Global and local 

Local only 

Direct to 
server port 
Direct to 
server port 
From server host 
forwarding port 

For applications in which the client knows where a server is running, use 
LLB forwarding, as illustrated in binop_fw. The server listens on an 
opaque port and does not require the server to register with the GLB. When 
the client makes its first remote procedure call, the server host LLB forwards 
the call to the server port. On return, the handle is fully bound, so that any 
subsequent calls go directly to the server port. 



For applications in which the client does not know where a server is running, 
use Location Broker registration and lookup, which are illustrated in 
binop_lu. The server listens on an opaque port and registers its objects, 
interfaces, and socket address with the GLB. The client uses a Location 
Broker lookup call to obtain the server socket address and fully binds the 
handle to this address. 

Have your applications use opaque ports with one of these two techniques 
rather than well known ports. (See the discussion of well known ports in 
Chapter l.) 

Complete source code for the binop example is in the examples directory. 
Chapter 3 includes descriptions of binop and binop_lu. 

5.2 Data Types and Portability 
When you develop distributed applications, the client and manager code that' 
you write must conform to the interfaces that you define. The C data types 
used by your code must therefore be equivalent to the NIDL data types 
specified in your interface definitions. 

Many systems (including most systems with Motorola MC680x0, Intel 
80x86, Digital VAX, or IBM System/370 processors) support C scalar types 
that correspond straightforwardly and exactly to the NIDL scalar types. On 
other systems, however, C types that match the NIDL types may not exist. A 
NIDL type may also be matched by different C types on different systems. 

The NIDL Compiler generates C code that uses data types defined by the 
Network Data Representation (NDR) protocol. Every NIDL scalar type maps 
to one NDR scalar type; this mapping is the same for all systems. The 
header file RPC$ INCLUDE : IDL BASE . H contains C definitions of the 
NDR types for particular systems. To ensure portability, you can use NDR 
data types to declare variables that correspond to scalars specified in your 
interface definitions. The examples in this manual often use the NDR types 
ndr $char, ndr $short int, and ndr $long int. 

5.3 Writing the Client 
This section explains how to write a client program. Section 5-4 presents the 
binop fw client code. 

5.3.1 Client Structure 
The source code for a client program consists of these elements: 

• The header file generated from your interface definition by the NIDL 
Compiler 

5-2 Developing Distributed Applications 



• The client application itself, that is, the user-written code that 
implements the client program and calls the remote procedures 

• The client switch generated from the interface definition by the NIDL 
Compiler 

• The client stub generated from the interface definition by the NIDL 
Compiler 

• Any user-written code that performs autobinding or data type 
conversion (see Chapter 7) 

If a client imports several interfaces, the client source code must include the 
header file, client switch, client stub, any autobinding routines, and any type 
conversion routines for each interface. 

Table 5-2 lists the source files that make up the client in the binop_fw 
example. There are two application code modules: c 1 i ent . c, which 
contains the main program, and ut i 1. c, which contains utility routines 
that are used by both the client and the server. 

Table 5-2: Client Source Code Files for the binop fw Example 

Source Code File Module 

b i n op_f w . h Header file generated by the NIDL Compiler 
c 1 i ent . c Main program 
ut i 1. c Utility routines used by client and server 
b i n op_f w_c s wt ch . c Client switch generated by the NIDL Compiler 
b i n op_f w_s s t ub . c Client stub generated by the NIDL Compiler 

5.3.2 Managing RPC Handles 
When a client makes a remote procedure call, it must specify to the RPC 
run-time library the object that it is trying to access. The client uses an RPC 
handle to represent the object and the location of a server that can execute the 
call. 

5.3.2.1 Binding Techniques —There are two binding techniques: 

Manual binding 

Automatic binding 

The client creates and manages RPC handles directly. 

The client uses generic handles instead of RPC 
handles. Whenever the client makes a remote 
procedure call, the stub calls auser-written 
autobinding routine that converts the generic handle 
into an RPC handle. 

Developing Distributed Applications 5-3 



The binding technique determines where RPC handle management occurs, in 
client code or in autobinding code, but it does not affect how RPC handle 
management is implemented. You use the same library routines in both 
cases. 

Like most of the examples in this book and in the online examples directory, 
binop_fw uses manual binding. 

Chapter 1 discusses the differences between manual and automatic binding 
and compares the advantages and disadvantages of these techniques. 

5.3.2.2 Overview of RPC Handle Management Routines —The RPC run-
time library contains several routines that client applications can use to create 
handles, free handles, or change their binding states. Figure 5-1 illustrates 
the effects of these routines and shows the information represented in each 
possible binding state of an RPC handle. (See Section 5.3.4 for more 
information about RPC binding states.) 

5--4 Developing Distributed Applications 



Figure 5-1: Calls That Manage RPC Handles and Their Binding 
States 

rpc_ $bind 
with specified port 

rpc $set binding 
with specified port 

rpc_ $bind 
with unspecified port 

rpc $alloc handle 

No Handle 

rpc $set binding 
with unspecified port 

Unbound 
Handle 

for broadcasting 

rpc $free handle 

rpc $set binding 
with specified port 

Bound-to-Host 
Handle 

for forwarding 

...,...:Y:: 

T i 

Fully Bound 
Handle 

.M..M. 

T i 
rpc $clear binding rpc $clear server binding 

rpc $clear binding 

rpc $free handle 

rpc_ $free handle 
ZK-0091 U-R 

5.3.2.3 Creating Handles — As Figure 5-1 illustrates, the rpc_$bind and 
rpc_$al loc_handle routines enable you to create an RPC handle in any 
binding state: fully bound, bound-to-host, or unbound. 

Developing Distributed Applications 5-5 



The rp c_$ b i n d routine takes as input an object QUID and a socket 
address. It creates a handle to represent the object and binds the handle to 
the socket address. You can create a fully bound handle by calling 
rpc_$bind with a fully specified socket address. You can create abound-
to-host handle by calling rpc_$bind with a socket address whose port 
number is socket $unspec port. 

The rp c_$ a 11 o c_handl e routine takes as input an object QUID. It 
creates an unbound handle to represent the object. You can use this handle 
to broadcast a remote procedure call, or you can invoke 
rp c $set binding to set its binding. 

5.3.2.4 Changing Binding States —The rpc_$ set binding routine sets 
or resets the binding state in a handle. This routine enables a client to 
change the binding state without freeing and re-creating the handle. For 
example, if an application sequentially accesses several locations of an 
object, the client can: 

1. Use rpc_$alloc_handle to create a handle. 

2. Use rp c $set binding to bind to a server. 

3. Make the remote procedure call to access the object. 

Repeat steps 2 and 3, binding to servers on each host in sequence, to access 
all of the other objects. 

The client does not need to call rp c_$ c 1 e a r_b i n d i n g before it rebinds 
the handle to the next server, because rp c $set binding replaces any 
existing binding. 

As with rpc_$bind, you can use rpc_$set_binding to obtain a 
bound-to-host handle, if you supply as input a socket address with a port 
number of socket_$unspec_port. You can use 
rpc_$clear_binding or rpc_$clear_server_binding to 
remove parts of the binding information in a handle. 

5.3.3 Obtaining Socket Addresses 
To obtain the socket address that rp c_ $bind and rp c $set b i n d i ~ g 
require as input, you can use a Location Broker lookup routine or the 
socket $from name routine. 

5.3.3.1 Using Location Broker Lookup Calls —The Location Broker Client 
Agent offers routines that perform Location Broker lookups by object, type, 
interface, or any combination of these identifiers. Each lookup routine 
returns as output an array of database entries that match the specified criteria. 

5-6 Developing Distributed Applications 



This chapter discusses the use of lb_$10 okup_i nt e r f a c e, which looks 
up servers by interface. The syntax and arguments for this routine are: 

lb_$lookup_interface (&interface, &lookup handle, 
max results, &num results, results, &status) ; 

The arguments are described here: 

inter face an interface QUID 

lookup handle a position in a Location Broker database 

max_results the maximum number of database entries that can be 
returned 

num_results the number actually returned 

results an array of the returned entries 

status the completion status 

A client usually specifies lb_$default_lookup_handle as the value 
for lookup handle in its first Location Broker lookup call; this value 
causes the lookup to start at the beginning of the database. 

Chapter 3 described the binop_lu example, in which the client uses the 
Location Broker to find a server for the binop_lu interface. The client 
calls lb $lookup interface as follows: 

status_$t st; 
lb_$ ent ry_t entry; 
lb_$lookup_handle_t lookup handle = lb_$default_lookup_handle; 
unsigned long nresults; 

do { 

lb_$lookup_interface(&binop_lu_v1$if_spec.id, &lookup_handle, 1L, 
&nresults, entry, &st ~ ; 

if (nresults < 1) { 
fprint f (stderr, 

"interface on valid family not found on lb_admin lookup\n"); 
exit (1) ; 

} 
} 

while ( ! socket_valid_family ( (long) entry. saddr. family, &st) ) ; 

The binop_lu client initializes lookup_handle to the constant 
lb $default_lookup_handle, which on input causes the lookup to 
begin at the start of the GLB database. The value 1 L for ma x_r e s u 1 t s 
indicates that the routine can return at most one result; nresults is the 
number of entries that are actually returned. 

If the lookup call returns an entry, the binop_lu client uses the routine 
s o c k et_$ va 1 i d_f ami 1 y to check that the address family for that entry 
is valid for the client host. 

Developing Distributed Applications 5-7 



The max_results parameter specifies the maximum number of entries 
that a lookup routine can return (in the preceding example, one) and should 
not exceed the length of the results array. 

If a lookup operation finds max_re su It s entries before it has searched the 
entire database, it returns a value for lookup handle that represents the 
start of the unsearched part of the database. 

If a lookup operation reaches the end of the database before it finds 
max_results entries, it returns lb_$default_lookup_handle as 
the value of lookup_handle. Thus, a client can obtain all entries that 
match the lookup criteria by repeating the lookup call, using at each iteration 
the 1 ookup_handl e returned by the previous call, until the call returns 
lb $default lookup handle. 

Under normal conditions, repeated lookup calls obtain all matching entries in 
a database. However, some conditions can cause entries to be skipped or 
duplicated, for instance, if the database is modified between lookup calls. The 
client should be prepared to deal with missing or duplicated entries in the 
results array by retrying and verifying the answer or by using lb_$ 
routines or lb admin to alter the database. 

The routine may return an entry whose address families cannot be used by 
the host doing the lookup. The client program can protect against this by 
doing a global lb_$10 o kup_i nt e r f a c e to get a list of all interfaces and 
verify that address families are valid. The client can also use the 
s o c k et_$ va l i d_f ami l i e s routine, which returns a list of the valid 
address families on the calling host. 

Once the client has obtained the Location Broker entry for a server with a 
valid address family, it can use the socket address information in the entry to 
bind its handle. The b i n op 1 u client calls rp c $bind as follows: 
h = rpc_$bind (&uuid_$nil, &entry . saddr, entry . saddr_len, & st) ; 
if (st .all ! = status_$ok) { 

fprint f (stderr, "Can't bind - o s \n" , error_text (st)) ; 
exit (1) ; 

} 

The code uses the e r r o r_t e xt routine, which is defined in ut i 1. c, to 
print any error message. 

5.3.3.2 Converting Names to Addresses — If a client knows the name and 
the address family of the host it wishes to access, it can call 
socket_$from name to obtain a socket address without using the 
Location Broker. 

The socket_$ f rom name call requires a port number as one of its 
parameters. Unless the client knows the port number for a server, specify 
socket_$unspec port. The run-time library will determine the port 

5-8 Developing Distributed Applications 



number at run time. The RPC run-time library extracts a port number, if one 
was specified in the NIDL definition of the interface, from the 

interface$ 

i f_spec variable. Otherwise, the port remains unknown, and the 
call is sent to the forwarding port at the host. 

The b i nop_f w client, which knows the name of a host where a server is 
running but not a port number, uses socket_$ f rom_name to convert the 
name into a socket address, then calls rp c $bind: 
socket_$f rom_name ((long) socket_$unspec, (ndr $char *) argv [ 1 ] , 

(long) strlen (argv [ 1 ]) , (long) socket_$unspec_port, 
& loc, & l len, & st) ; 

h = rpc_$bind(&uuid_$nil, &loc, llen, &st); 

5.3.4 Using RPC Binding States 
The RPC run-time library has a different delivery mechanism for each of the 
three RPC binding states. This section describes how and why an RPC client 
might use fully bound, bound-to-host, and unbound handles. 

5.3.4.1 Fully Bound Handles — When a client uses a fully bound handle to 
make a remote procedure call, the RPC run-time library sends the call 
directly to the host and port identified in the handle. 

To obtain a fully bound handle, supply a fully specified socket address to 
either rpc_$bind or rpc_$ set binding. Any socket address 
obtained from a Location Broker will be fully specified. A socket address 
converted from a host name will not be. 

Fully bound handles are always a direct and efficient means of 
communicating with a server. 

5.3.4.2 Bound-to-Host Handles — When a program uses abound-to-host 
handle to make a remote procedure call, the RPC run-time library sends the 
call to the host identified in the handle. 

If a well known port was specified in the definition of the requested interface, 
the call is delivered to that port. Otherwise the call is delivered to the LLB 
forwarding port. The LLB forwards the call to the port on which the server 
is listening, provided a server for the requested object and interface has 
registered with it. When the call returns, the RPC run-time library at the 
client host then binds the handle to that port, and any subsequent calls are 
sent directly to the server. 

You can obtain abound-to-host handle in two ways: 

• By calling rpc $bind or rpc_$ set binding with an 
unspecified port in the socket address input parameter 

Developing Distributed Applications 5-9 



• By calling rpc_$clear_server binding on a fully bound 
handle 

A client typically uses the first method (invoking rpc_$bind or 
rpc_$ set binding) after it uses socket_$ f rom name to generate a 
socket address. For example, the following code sends a matrix 
multiplication call to a server located at the host identified by hostname: 
socket_$from_name (socket $internet, hostname, hlen, 

socket_$unspec_port, &saddr, slen, &st); 
h = rpc_$bind (&mat rix_id, &saddr, s len, & st) ; 
matrix multiply (h, a, b, result, &st) ; 

A client typically uses the second method (invoking 
rpc_$clear_server binding) after it has received an 
rpc_$wrong_boot_time error in st .all. If a client is fully bound to 
a server that exits and then restarts, listening on a new port, the client can 
reset the binding to the new port by calling 
rp c_$ c l e a r_s e rve r_b fi n d i n g on the existing handle; the handle will 
be rebound when the server responds to the next call. 

Bound-to-host handles are most efficient when a client already knows the 
name or address of a host that is running the server it needs. For example, 
the client might be seeking a service that is provided by all hosts in the 
network, or the client might have been given the name of a particular host to 
access. The client does not need to do a Location Broker lookup. The server 
needs to register with the LLB on its host, but not with the GLB. 

5.3.4.3 Unbound Handles — When a program uses an unbound handle to make 
a remote procedure call, the RPC run-time library broadcasts the call to all 
hosts on the local network. If a well known port was specified in the 
definition of the requested interface, the call is broadcast to that port. 
Otherwise, the call is broadcast to the LLB forwarding port. 

You can obtain an unbound handle in two ways: 

• By calling rp c_$ a 11 o c_handl a to generate a new unbound handle 

• By calling rpc_$clear_binding on an existing handle to clear the 
binding 

You can also cause an operation to be broadcast by specifying the 
broadcast attribute in its NIDL declaration. If you make a remote 
procedure call to request an operation that has the broadcast attribute, the 
call is always broadcast, because the RPC run-time library automatically 
clears any binding of the handle before it issues the call. The client does not 
need to clear the binding before broadcasting again. 

5-10 Developing Distributed Applications 



Instead of using unbound handles or specifying the broadcast attribute, it 
is preferable, whenever possible, to determine the address of a server host 
from a Location Broker lookup or the socket_$from name routine. The 
broadcast delivery mechanism has several disadvantages: 

• Not all systems and networks support broadcasting. 

• Broadcasts are limited to hosts on the local network. 

• Broadcasts make inefficient use of network bandwidth and processor 
cycles. 

• The RPC run-time library does not support "at most once" semantics 
for broadcast operations; it applies idempotent semantics to all such 
operations. 

All of these disadvantages pertain both to broadcast operations and to 
any operations that are called with unbound handles. 

The RPC run-time 1 ibrary raises an error (rp c_ $ c omm_ f a i 1 u r e, 
described in Section 5.3.8) if you attempt to make a call with an unbound 
handle, unless you have declared the operation to be idempotent. 

The NIDL Compiler issues a warning if you specify the b ro a do a s t 
operation attribute without also specifying the idempotent attribute. 

5.3.5 Identifying Servers 
If a client application uses an unbound or bound-to-host handle to make a 
call, it may wish to identify the particular server that responded, for use in 
diagnostic or logging output. Because the handle is automatically bound to 
the responding server when the call returns, you can derive the location of the 
server from information in the returned handle. 

The rp c_$ i n q binding routine extracts a socket address from a handle. 
The socket_$to_name routine converts a socket address to a textual 
hostname. For example, a client might issue the following calls to report the 
location to which its handle is bound: 
rpc_$inq_binding (h, &saddr, &slen, &st); 
socket_$to_name (&saddr, slen, name, &namelen, &port, &st) ; 
name [namelen] = 0; 
print f ("bound to server on port old at host o s \n" , port, name) ; 

This technique works even for operations with the broadcast attribute. 
After a client receives a reply to a broadcast, the handle is fully bound, and 
the RPC run-time library does not clear the binding until the client uses that 
handle to issue another call. 

Developing Distributed Applications 5-11 



5.3.6 Handling Errors 
Distributed applications handle some errors in much the same way as local 
applications. For example, if a client issues a remote procedure call to 
request an operation, and the manager routine for the operation encounters a 
divide-by-zero error, that error is reflected to the client as if the server had 
been locally linked with the client. 

However, a distributed application can also encounter errors that a purely 
local application would not. The next sections discuss the causes of three 
kinds of errors that are specific to remote procedure calls: communications 
errors, server failures, and interface mismatches. 

5.3.6.1 Communications Errors —Communications errors occur in the 
underlying communications mechanisms, resulting in the failure of a client's 
request to reach the server or the failure of a server's response to reach the 
client. Communications errors are usually indicated by the 
rp c_$ c omm_f a i 1 u r e status. To recover, a client can retry the failed call 
or try to find another server. Each reference page in Chapter 12 lists 
applicable RPC runtime library statuses. 

You can use a status parameter, identified by the c omm_s t at u s parameter 
attribute to check for communications errors. Chapter 4 describes status 
parameters. 

5.3.6.2 Server Crashes — If a server crashes while handling a remote procedure 
call, an rpc_$comm failure status is signaled to the client. To the 
client, the server failure is a form of communications error. 

If the server fails and restarts between remote calls, the failure is usually 
indicated by an rpc_$wrong_boot_tfine status. A client can also 
receive an rpc_$wrong_boot_tfine status if one server fails and a 
different server starts, using the same port number as the failed server. 

Recovery techniques depend on whether the client and the server maintain 
any state information between procedure calls: 

• Ina "connectionless" application, one that maintains no state between 
calls, the client needs only to rebind the handle. The client can call 
rp c_$ c 1 e a r_s e rve r_b i n d i n g; then it can check whether the 
server has restarted. If the server did not restart, the client should 
unbind completely by calling rp c_$ c l e a r_b i n d i n g, locate a new 
server, and rebind to the new server. 

• In an application that does maintain some state between calls, the client 
must first clear the state (for example, by unwinding to the point at 
which it bound to the server), then rebind as in the connectionless case. 

5-12 Developing Distributed Applications 



5.3.6.3 Interface Mismatches — An interface mismatch occurs when the 
interface definition used to build a server differs from the interface definition 
used to build a client. If you increment the version number in the version 
interface attribute every time you change the interface definition, mismatches 
are easily detected and are indicated by an rp c_$ unk_i f status. If you do 
not increment the version number, the resulting errors may be difficult to 
diagnose. 

In most cases, programs cannot recover from interface mismatch errors. To 
eliminate the errors, rebuild the out-of--date client or server. 

If you want some clients to import an old version of an interface and some 
clients to import a new version, you can build one server that exports both 
versions of the interface. Chapter 7 describes how to build such a server. 

You can add operations to an interface and maintain some backward 
compatibility without changing the version number, provided you do not 
change the signature or implementation of any existing operation. when you 
modify the interface definition, place declarations for new operations after all 
declarations for existing operations; that is, add new operations at the end of 
the interface, not in the middle. 

Clients built with the old definition and servers built with the new definition 
will interoperate correctly. However, if a new client requests a new operation 
from an old server, the RPC run-time library will signal an 
rp c_$ op_rng_e r ro r status. Example 5-1 shows how you can use a 
cleanup handler to check for an rpc $op rng error status. 

5.3.7 Using Cleanup Handlers 
The RPC run-time library always signals a fault if an error occurs while it is 
handling a remote procedure call. Therefore, set cleanup handlers around 
remote procedure calls to catch and handle any such faults. 

5.3.7.1 Initializing the Fault Management Routines —Before invoking any 
other DECrpc routines, a client or server should always invoke p f m $ i n i t 
to initialize the fault management routines. This call causes C signals to be 
translated into signals that can be handled by the fault management routines. 
Attempts to use C signal handlers in the same program as fault management 
cleanup handlers can therefore result in unexpected behavior. 

5.3.7.2 Setting and Releasing Cleanup Handlers —The pfm $cleanup 
call sets a cleanup handler. The initial call to p f m $ c 1 e anup returns as 
its value p fm $ c 1 e anup_s et, a status indicating that the cleanup handler 
is set; this call also returns as its output a cleanup record, a record of the 
context when the cleanup handler was set. 

Developing Distributed Applications 5-13 



If a fault is signaled while a cleanup handler is set, these actions occur: 

1. The process stack is unwound to the most recent pfm $ c 1 e anup 
call. 

2. The cleanup handler is released. 

3. The p fm_$ c 1 e anup call returns the status value for the error that 
caused the fault. 

4. Execution proceeds with the code that immediately follows the 
pfm $cleanup call. 

After you call pfm $ c 1 e anup, test its return value, so that fault-handling 
code executes only if the value is an error status (indicating that an error has 
occurred), not if the value is pfm $ c 1 e anup_s et (indicating that the 
cleanup handler has just been set). 

A cleanup handler typically ends either with code to continue back into the 
program or with a call to pfm $ s i gn a 1 or p gm $exit . If the program 
will continue, it should call either p fm_$ re s et_c 1 e anup or 
pfm $enable. 

The pfm $ r 1 s_c 1 e anup call releases a cleanup handler. Release a 
cleanup handler as soon as it is no longer necessary, so that fault-handling 
code is not executed inappropriately. For example, suppose a cleanup 
handler is set before a remote procedure call, and the cleanup handler 
contains code that prepares to retry the call. If you do not release the cleanup 
handler immediately after the call, a fault that occurs later in the program 
could cause the call to be executed again, unnecessarily. 

In RPC applications, a cleanup handler is typically set just before a remote 
procedure call and released just after the call. 

Section 5.3.6.3 explained how to create a new version of a server, which adds 
new operations to an interface, and maintain compatibility between existing 
clients, which call only the previously defined interface. and new servers, 
which export both old and new operations. The original server cannot 
execute the new operations for a client that needs to access the newer version 
of the interface. when such a client calls a new operation, it should be 
prepared to receive an rp c $ op rn g error status. 

Example 5-1 shows how a client might use a cleanup handler to check for 
rpc $op rng error errors. 

5-14 Developing Distributed Applications 



Example 5-1: Setting Up a Cleanup Handler 

pfm $cleanup_rec clrec; 
st = pfm $cleanup (&clrec) ; 
/* 
* if an error occurred, clean up 
*~ 

if (st .all ! = pfm $cleanup set) { 
i f (stall == rpc_$op_rng_error) { 
found an out-of--date server; find another one and rebind 
pfm $reset_cleanup(&clrec, &st); 

/* set the cleanup handler */ 
/* test the return value */ 

} 

else { 

some other error occurred; report the error and exit 
pfm $signal (st) ; 

} 
} 
/* 
* otherwise, proceed normally 
*~ 

if$newop (h, input, &output) ; 
pfm $rls_cleanup (&clrec, &st) ; 

/* call the operation */ 
/* release the cleanup handler */ 

5.3.7.3 Setting Multiple Cleanup Handlers —More than one cleanup handler 
can be in effect at once. If a program has set several cleanup handlers and a 
fault occurs, the most recently established cleanup handler is entered first, 
followed by the next most recently established cleanup handler, and so on to 
the first established cleanup handler if necessary. 

5.3.7.4 Portability Considerations —The PFM package uses the C routines 
s e t j mp and 1 o n g j mp to implement cleanup handlers. If you use local 
variables in fault-handling code, the unusual flow of control introduced by 
s et jmp and long jmp can lead some optimizing C compilers to generate 
errant object code. You can circumvent this problem in a portable way. 

If a local variable is modified after a cleanup handler is set but before the 
cleanup handler is invoked, the variable has an indeterminate value when 
referenced in the ``fault-handling code path." To ensure that modifications 
made to the variable in the ` ̀ normal code path" are visible to the fault-
handling code, declare the variable with the ANSI C vo 1 at i 1 e qualifier. 

Because vo 1 at i 1 e is not yet supported by all C compilers, the PFM 
header file defines a portable Vo 1 at i 1 e macro. This macro translates to 
vo 1 at i 1 e on systems whose compilers support the qualifier; on other 
systems it is null. It is recommended that programs that use local variables 
in cleanup handlers declare those variables Vo 1 at i 1 e. The code in 
Example 5-2 shows how to use a local variable portably in fault-handling 
code. 

Developing Distributed Applications 5-15 



Example 5-2: Using Local Variables Portably in Fault Handling 
Code 

Volatile Boolean flag; 
flag = false; 
st =pfm $cleanup (&crec) ; 
if (stall ! = pfm $cleanup set ) 

if (flag) 
release_pkt(pkt); 

pfm $signal (st) ; 

{ 

} 

pkt = allocate_pkt(); 
flag = true; 

more code 
if a fault occurs here, the value of flag is indeterminate 
more code 
pfm $rls cleanup (&crec, &st) ; 

Without the vo 1 at i 1 e qualifier, the code in the example would not be 
portable. If a fault occurred at the point indicated, thereby invoking the 
cleanup handler, the value of f 1 a g would be indeterminate, and the cleanup 
handler would execute incorrectly. 

5.3.8 Using the Comm status Parameter Attribute 
The c omm status parameter attribute identifies a parameter as a 
status parameter. A status parameter provides a convenient way to 
check for communications errors in the execution of a remote procedure call. 
If you specify c omm status for an operation parameter, the NIDL 
Compiler puts a cleanup handler in the client stub routine for the operation. 
The cleanup handler catches any error with the rpc_$mod module code and 
passes the error to the client in the status parameter. 

All rp c_$ statuses have the rp c_$mod module code. The rp c_$ i nt ro 
page in Chapter 12 describes the rp c_$ statuses. 

5.3.8.1 Declaring Status Parameters in Interface Definitions — A status 
parameter must have the comm_status and out attributes and must be of 
type s t at u s_$ t . The declaration of primes $ ge n, the operation in a 
primes application shown in Example 5-3, identifies a status parameter. 

Example 5-3: Identifying a Status Parameter 

[idempotent] 
void primes$gen( 

handle_t [ in ] h, 
int [in, out] *last, 
int [in] max, 
status $t [comm status, out] *st, 

5-16 Developing Distributed Applications 



Example 5-3: (continued) 

int [in, out, last is (last) , max is (max) ] values [ ] 

); 

5.3.8.2 Checking Status Parameters in Client Programs — A client checks 
status parameters in the same way that it checks statuses returned by rpc_$ 
calls or other RPC calls. The client in the primes example checks a status 
parameter after primes $gen returns, as shown in Example 5-4. 

Example 5-4: Checking Status Parameters in Client Programs 

primes gen (h, &last, MAXVALS-1, &st, values) ; 
/* check comm_status value */ 
if (st .all ! = status_$ok) { 

fprint f (stderr, "Error in rpc - o s \n" , error_text (st)) ; 
exit (1) ; 

} 

The primes client simply prints an error message and exits if the status 
parameter indicates an error. In other applications, the client might retry the 
call that failed or try to find another server, depending on the particular status 
that is returned. 

5.3.8.3 Initializing Status Parameters in Manager Routines — If a remote 
procedure call executes without error, the value of its status parameter is not 
set. It is recommended, therefore, that the manager routine set the status 
parameter to status_$ok before it returns. Example 5-5 includes code 
from the primes $gen manager routine. 

Example 5-5: Initializing Status Parameters in Manager Routines 

void primes gen (h, last, max, status, values ) 
handle_t h; 
status_$t *status; 
ndr_$long_int *last, max, values[]; 

{ 

ndr_$long_int n, highest = values[0], index = 0; 

for (n = 2; n <= highest; n++) 
if (is prime (n)) { 

values [index++] = n; 
i f (index > max) break; 

} 

*last = index-1; 
status->all = status_$ok; 
return; 

} 

Developing Distributed Applications 5-17 



5.3.9 Using the comm_status Operation Attribute 
NIDL also supports a Comm status operation attribute, which specifies 
that an operation returns a completion status. The client stub routine for such 
an operation contains a cleanup handler that catches any error with the 
rp c $mod module code and returns the error code as its return value. 

The manager routine for an operation with c omm status should be coded 
to return status $ o k if successful. 

5.3.10 The binop fw Client 
The binop f w client is the result of compiling four source code modules: 

• client . c 

• util.c 

• binop fw cstub.c 

• binop fw swtch . c 

The switch and stub modules, of course, are generated by the NIDL Compiler 
from the interface definition. The ut i 1. c module contains a routine to 
print error messages; both the client and the server use this routine. The 
main routine is in the c 1 i e nt . c module 

5.3.10.1 The clients Module —The client module contains directives to include 
three header files: 

b i n op f w. h The header file generated from the b i n op_f w interface 
definition 

socket . h The header file for the socket $interface 

p fm , h The header file for the portable PFM interface 

Example 5-7 shows the client module, c 1 i ent . c. 

Example 5-7: The clients Client Module for binop fw 

#include <stdio.h> 
#include "binop fw.h" 01
#include "socket.h" 
#include <pfm.h> 

#define CALLS PER PASS 100 

globalref uuid_$t uuid_$nil; 
extern 1 ong time () ; 
extern char *error text(); 

main (argc, argv) 
int argc; 

D 

5-18 Developing Distributed Applications 



Example 5-7: (continued) 

char *argv [ ] ; 

{ 

handle t h; 

status $t st; 

socket $addr t loc; 

unsigned long lien; 

socket_$string_t name; 

unsigned long namelen = sizeof(name); 

unsigned long port; 

ndr_$long_int i, n; 

int k, passes; 

int start time, stop time; 

fprintf (stderr, "usage: client hostname passes\n"); ❑3
exit (1) ; 

} 

passes = atoi (argv [2 ]) ; 

pfm $init ((long) pfm $init_signal_handlers) ;® 

socket_$ f rom name ((long) socket_$unspec, (ndr_$char *) argv [ 1 ] , Q 
(long) strlen (argv [ 1 ]) , (long) socket_$unspec_port, 

&loc, &lien, &st); 

if (st .all ! = status_$ok) { 

fprintf (stderr, "Can't convert name to sockaddr - 
os\n", 

error text (st)) ; 

exit (1) ; 

} 

h = rpc_$bind(&uuid_$nil, &loc, lien, &st); Q7 
if (st .all ! = status $ok) { 

fprintf (stderr, "Can't bind - %s \n" , error text (st)) ; 

exit (1) ; 

} 

rpc_$inq_binding(h, &loc, &llen, &st); 

if (st .all ! = status $ok) { 

fprintf (stderr, "Can't inq binding - o s \n" , error text (st)) ; 
exit (1) ; 

} 

socket_$to_name(&loc, lien, name, &namelen, &port, &st); 

if (st .all ! = status $ok) { 

fprintf (stderr, "Can't convert sockaddr to name - %s \n" , 

error text (st)) ; 

Developing Distributed Applications 5-19 



Example 5-7: (continued) 

exit (1) ; 

} 

name [namelen] = 0; 

printf ("Bound to port old at host os\n", port, name) ; 

for (k = 1; k <= passes; k++) { 

start time = time (NULL) ; 

for (i = 1; i <= CALLS_PER_PASS; i++) { 

binop fw$add (h, i, i, &n) ; ❑9 

printf ("Two times old is NOT old\n", i, n) ; 

} 

stop time = time (NULL) ; 

printf ("pass o3d; real/call : o21d ms\n", n 

k, ((stop time - start time) * 1000) / CALLS_PER_PASS) ; 

} 

} 

Q The client module contains directives to include binop_fw . h, the 
header file generated from the b i nop_f w interface definition, and 
socket . h, the header file for the socket $interface. The handler 
file b i n op_ f w . h contains an include directive for rp c . h, the 
header file for the rp c_$ interface. The NIDL Compiler 
automatically puts such a directive in the header file it generates for 
any remote interface (that i s, any interface without the 1 o c a 1 
attribute). 

The module declares uu i d_$ n i 1, the nil UUID, as an external 
variable. The client uses uu i d_$ n i 1 as the object QUID in its 
handle. The g 1 oba 1 re f declaration provides portability to VAX C. 
For other compilers, the i dl_ba s e . h header file, which is included 
by rpc . h, defines gl oba 1 re f as a synonym for extern. 

3 The client program takes two arguments: the network address of a host 
where a server is running and the number of passes to execute. 

® After it has processed its arguments, the client calls p fm $ i n it to 
initialize the PFM package. This call should be made before calls to 
any other RPC routines. 

Q To convert the network address of the server host into a socket address, 
the client calls socket_$ f rom_name, part of the socket address 
manipulation interface in the RPC run-time library. Because the port 
parameter for socket_$ f rom name is the predefined constant 

0 

5-20 Developing Distributed Applications 



0 

❑9 

socket_$unspec port, the resulting socket address specifies a 
host, but not a particular port at that host. 

After socket_$ f rom_name returns, the client checks the 
completion status of the call, and if the status is not st atu s_$ ok, it 
prints an error message. Both the client and the server check the 
completion status of any call that returns a status. They use the 
e r ro r_t e xt routine, which is defined in ut i 1. c, to print error 
messages. 

The client supplies the address returned by socket $ f rom_name 
to rp c $bind, which creates an RPC handle and binds this handle 
to the socket address. Because the address does not specify a port, 
rpc_$bind generates abound-to-host handle. The object UUID in 
the rpc_$bind call is uuid_$nil, since binop_fw does not 
operate on any particular object. 

For diagnostic and teaching purposes, the client in this example calls 
rpc_$inq_binding and socket_$to_name, so that it can print 
the host and port to which it is bound. Most real applications omit this 
step. 

The first time the client calls binop_fw$add, the call is sent to the 
LLB forwarding port at the server host, and the LLB forwards the call 
to the server. On return, the handle is fully bound, so that all 
subsequent calls are sent directly to the server port. 

After each pass, the client prints the real elapsed time per call. 

After the last pass, the client exits. 

5.3.10.2 The util.0 Module —The ut i 1. c module in Example 5-8 contains 
only one routine, e rro r_t ext . Both the client and the server use this 
routine to generate error messages. 

Example 5-8: The util.c Module for binop fw 

#include "binop fw.h" 

char *error text (st ) 
status_$t st; 

{ 

} 

static char buff [200]; 
extern char *error $c text(); 

return (error $c text (st, buff, (sizeof) buff)) ; 

Developing Distributed Applications 5-21 



5.4 Writing the Server 
This section explains how to write a server program. 

5.4.1 Server Structure 

The source code for a server program consists of the following elements: 

• The header file generated from your interface definition by the NIDL 
Compiler 

• The server initialization code, which registers the interface with the 
RPC run-time library and the Location Broker 

• The manager code, which implements the operations in the interface 

• The server stub generated from the interface definition by the NIDL 
Compiler 

• Any user-written code that performs data type conversion 

If a server exports several interfaces, the server source code must include the 
header file, manager code, server stub, and any type conversion routines for 
each interface. 

Table 5-3 lists the source files that make up the server in the binop_fw 
example. 

Table 5-3: Server Source Code Files for the binop fw Example tWJ 

Source Code File Element 

b i n op_f w. h Header File generated from b i n op f w. i d l 
by the NIDL Compiler 

server . c Main program, which contains server initialization code 

binop f w . c Manager module 

b i n op_ f w_s s t ub . c Server stub generated from b i n op f w. i d l 
by the NIDL Compiler 

ut i 1. c Module containing utility routines used by both the 
client and the server 

Manager procedures are independent of RPC routines and are exactly as they 
would be in a local implementation. The following subsections discuss 
server initialization code. 

5-22 Developing Distributed Applications 



5.4.2 Writing Server Initialization Code 
The server initialization code usually appears in the server main procedure 
(main in C). This code typically does the following: 

• Processes any arguments supplied on the command line 

• Creates the sockets on which it will listen 

• Registers the server's objects and managers with the RPC run-time 
library 

• Registers the server's objects and interfaces with the Location Broker 

• Establishes termination and fault-handling conditions 

• Begins listening for requests 

The next sections describe each of these activities, using as an example the 
b i nop_f w server program, server . c. 

5.4.2.1 Processing Arguments —The binop_fw server program performs 
several initialization tasks. It checks that there are the right number of input 
arguments; it checks that the specified address family is valid; and, just 
before it begins listening for requests, it prints a notification of its host and 
port. 

The server takes as an argument the textual name of the address family ip. 
It calls socket_$ family_f rom_name to convert this name into the 
integer representation that the rp c_$ calls use, as shown in this example: 
family = socket_$family_from name ((ndr_$char *) argv [ 1 ] , 

(long) strlen (argv[1]) , &st) ; 

The server calls s o ck et_$ va 1 i d f ami 1 y to check whether the specified 
address family is valid for the host on which it is running: 
validfamily = socket_$valid_family (family, &st) ; 
if (!validfamily) { 

printf ("Family os is not valid\n", argv[1]); 
exit (1) ; 

} 

5.4.2.2 Creating Sockets — A single server can listen on several sockets at a 
time. However, a server that exports several interfaces can listen on one 
socket for requests for operations in any of those interfaces. Hence, most 
servers use only one socket per address family. 

To obtain sockets on which to listen, a server calls rp c_$ u s e_f ami 1 y or 
rp c_$ u s e_f ami 1 y_wk once for each socket. The routine 
rp c $use f ami 1 y dynamically assigns an available opaque port, while 
rp c $use f ami 1 y wk assigns the well known port that you specified in 

Developing Distributed Applications 5-23 



the interface definition. It is recommended that you avoid using well known 
ports, as discussed in Chapters 1 and 3. 

' n _fw server listens on one o a ue ort. It calls ~ The b i o p q p p 
rp c $use f ami 1 y to obtain its socket: 

rpc_$use_family (family, &loc, &lien, &st); 

In this call, f ami 1 y is the integer representation of the address family 
specified on the command line, 1 o c is the socket address for the port 
assigned by the RPC run-time library, and 11 en is the length of 1 o c. 

5.4.2.3 Registering with the RPC Runtime Library — As described in 
Chapter 3, a server can export several interfaces and can offer access through 
these interfaces to several types of objects. Each combination of interface 
and type requires a separate manager. 

When the server RPC run-time library receives a remote procedure call from 
a client, it determines the correct manager to execute the call, based on .the 
object and the operation requested, and dispatches the call to that manager. 
Every server must therefore inform the RPC run-time library about its 
managers and objects. A server calls rp c_$ r e g i s t e r_mg r once for each 
manager that it implements and calls rpc_$ regi st er_ob j ect once for 
each object that it supports. 

The binop_fw server program makes the following call to register its 
manager with the RPC run-time library: 

rpc_$register_mgr( 
&uuid $nil, 
&binop_fw_vl $ i f_spec, 
binop_fw_v1$server_epv, 
(rpc_$mgr_epv_t) &binop_fw_vl$manager_epv, &st); 

To register a manager, a server must supply a type identifier, an interface 
specifier, a server EPV, and a manager EPV. Because binop_fw does not 
involve any particular type, the b inop_f w server specifies uu i d_$ n i 1 as 
the type identifier. The interface specifier is defined in the header file, and 
the server EPV is defined in the server stub; both of these files are generated 
by the NIDL Compiler from your interface definition. You must define the 
manager EPV; typically this definition appears in the manager module. 

Because b i nop_f w does not involve any particular object, the b i nop_f w 
server does not need to call rp c_$ r e g i s t e r_ob j e ct . 

5.4.2.4 Registering with the Location Broker —Most servers register their 
objects and interfaces with the Location Broker; clients can then use lb_$ 
lookup calls to locate objects. A server must make a separate 
lb $register call to register each possible combination of object, 

5-24 Developing Distributed Applications 



interface, and socket address. For example, the server should make six 
registration calls if it: 

• Listens on one IP socket 

• Exports two interfaces 

• Manages three objects 

Because the b i nop_f w application does not involve an object, its server 
specifies uu i d_$ n i 1 as the object UUID for its Location Broker 
registration. Clients locate this server with Location Broker forwarding, so 
the server should register only with the Local Location Broker and not with 
the Global Location Broker. 

The b inop_f w server uses the following call to register with the Location 
Broker: 

lb_$register (&uuid_$nil, &uuid_$nil, &binop_fw_v1$if_spec.id, 
(long) lb_$server_flag_local, (ndr_$char *) ~"binop_fw example", 

& loc, l len, &entry, & st) ; 

This call specifies uu i d_$ n i 1 for the object and type identifiers. The 
interface identifier is the id member of the i f_spec for binop_fw, 
defined in the header file. To register only with the Local Location Broker, 
the server specifies lb $ s e rve r_f 1 ag_1 o ca 1. It supplies the text 
string "binop_fw example" as an annotation for the database entry. The 
1 o c specified in this call is the socket address that the server obtained from a 
call to rpc $use family. 

5.4.2.5 Unregistering and Fault Handling — When a server starts, it should 
register itself with the RPC run-time library and with the Location Broker, so 
that clients can locate the server and communicate with it. When a server 
exits, it should unregister itself, so that clients do not continue trying to use 
it. 

To unregister from the RPC run-time library, a server calls 
rp c_$ un r e g i s t e r. In servers that export several interfaces or manage 
several objects, unreg~strations should balance registrations: there should be 
an rpc_$unregister for every rpc_$register_mgr and an 
lb_$unregister for every lb_$register. 

The code to unregister a server typically appears in a cleanup handler. The 
server sets the cleanup handler before it begins listening for requests. If the 
server receives a signal, it removes its registrations with the RPC run-time 
library and the Location Broker before exiting. 

Following is the cleanup handler in the b i n op_f w server: 

st = pfm $cleanup (&crec) ; 
if (stall ! pfm $clean set ) 

status $t stat; 
{ 

Developing Distributed Applications 5-25 



fprintf (stderr, "Server received signal - os~n", 

error text (st) ) ; 

lb $unregister (&lb entry, &stat) ; 

rpc,$unregister (&binopfw_vl$if_spec, &stat) ; 

pfm $signal (st) ; 

The code uses the e r r o r_t e xt routine, which is defined in ut i 1. c, to 
print any error message. 

5.4.2.6 Listening for Requests — To begin listening for requests, the server 
calls rpc_$ l i sten. The first argument specifies the maximum number of 
requests that the server can process concurrently, in the DECrpc 
implementation, one (1). 

The server uses this call to begin accepting requests from clients: 

rpc $listen ( (long) 1, &st) ; 

On normal completion, rpc_$1 i sten does not return. However, the call 
will return on a catastrophic event or if an application issues a call to 
rpc_$ shutdown. The shutdown call returns with status_$ok. 

After a server creates sockets, registers objects and interfaces, and begins 
listening, it need not make any more calls. However, servers can register or 
unregister objects and interfaces while running, and they can also shut 
themselves down. A server can take these actions on its own or as part of its 
execution of client requests (in a manager routine). 

5.4.3 Writing Manager Code 
A manager implements the operations in one interface for objects of one 
type. In addition to defining a routine for each operation, the manager 
module defines the EPV through which these routines are called. Manager 
modules sometimes also require code to identify objects, to identify clients, 
or to register objects with the Location Broker. 

5.4.3.1 Defining Manager EPVs — A manager EPV names the routines that 
implement the operations in an interface. The names of manager EPVs and 
manager routines are arbitrary, since these names appear only in code that 
you write, not in code that the NIDL Compiler generates. This manual uses 
a convention in which EPV names are similar to those of the client and 
server EPVs and routine names are similar to the operation names in the 
interface definition. 

The b i nop_f w manager defines its EPV as follows: 
globaldef binop_fw_vl$epv_t binopfw_vl$manager_epv {binop_fw$add}; 

5-26 Developing Distributed Applications 



Chapter 7 provides examples in which a server contains more than one 
manager or more than one version of a manager. In these examples, the 
manager EPVs help to distinguish different implementations of an interface. 

5.4.3.2 Identifying Objects — In some applications, one manager supports 
several objects, and the manager must be able to identify the particular object 
on which the client wishes to operate. Clients in such applications typically 
use explicit handles, so that a handle passes from client to server with each 
call. 

If the interface is manually bound, the manager can call 
rpc_$ inq object to extract the object QUID from the RPC handle. If, 
however, the interface is automatically bound, the handle must be either the 
object UUID itself or some other data type from which the manager can 
determine the UUID. 

Example 5-9 shows a routine that checks to see if the object referred to by 
the RPC handle is the object expected. In the example, the bankd program 
passes the CheckObject routine a UUID, h. The routine compares the QUID 
to the known bank UUID. 

Example 5-9: Checking the UUID in an Automatically Bound 
Interface 

static Boolean Checkobject(h, st) 
uuid_$t *h; 
status $t *st; 

{ 

if (bcmp (h, &BankUUID, sizeof (BankUUID))) { 
fprintf (stderr, " (bankd) Request for wrong bank ! \n") ; 
st->all = -1; /* "object not found" */ 
return (false) ; 

} 

st->all = status_$ok; 
return (true) ; 

} 

5.4.3.3 Identifying Clients — A server can identify clients from which it receives 
requests, for use in diagnostic or logging output. The RPC run-time library 
at a server host manipulates the location information in an RPC handle so 
that on the server side of an application, the handle specifies the location of 
the client making the call. Thus, just as a client can identify its server by 
extracting location information from a handle, a server can identify its client. 

A manager routine might issue the following calls to report the location from 
which a server received a request: 
rpc_$inq_binding(h, &loc, &llen, &st); 
socket_$to_name (&loc, llen, name, &namelen, &port, &st) ; 

Developing Distributed Applications 5-27 



name [name 1 en ] = 0 ; 

printf ("Request from port old at host os\n", port, name) ; 

5.4.3.4 Registering Objects — In most applications, server initialization code 
registers the objects with the RPC run-time library and the Location Broker. 
However, if the server manages transient objects that it creates and deletes, 
have the manager routine that creates the objects register them, and have the 
manager routine that deletes objects unregister them. 

5.4.3.5 Initializing Status Parameters — If an operation has a status parameter 
(a parameter with the c omm status attribute), have the manager routine 
that implements the operation set the status parameter to status_$ok 
before it returns. 

5.4.4 The binop fw Server 

The binop_fw server is the result of compiling four source code modules: 
server . c, binop_fw. c, util . c, and binop_fw sstub . c. The 
stub module is generated by the NIDL Compiler from the interface definition. 
Example 5-8 includes ut i 1. c, which contains a routine to print error 
messages. The manager module, binop_fw . c, contains the 
b i n op_f w $add routine that executes the actual addition operations. The 
server . c module performs all of the server initialization tasks. 

5.4.4.y The servers Initialization Module —Example 5-10 contains the code 
for server . c. 

Example 5-10: The servers Module for binop fw 

#include <stdio.h> 

#include "binop fw.h" 
#include "lb.h" ~1
#include "socket.h" 
#include <pfm.h> 

globalref uuid_$t uuid_$nil; 
globalref binop_fw_vl$epv_t binop_fw_v1$manager_epv; 
extern char *error text(); 

main (argc, argv) 
int argc; 
char *argv [ ] ; 
{ 

status_$t st; 
socket_$addr_t loc; 
unsigned long lien; 
unsigned long family; 

0 

5-28 Developing Distributed Applications 



Example 5-10: (continued) 

Boolean validfamily; 

socket_$string_t name; 

unsigned long namelen = sizeof(name); 

unsigned long port; 

lb_$entry_t entry; 

pfm $cleanup_rec crec; 

fprintf (stderr, "usage : serverfamily\n") ; 

exit (1) ; 

} 

pfm $init ((long) pfm $init_signal_handlers) ; 

family = socket_$family_from name ((ndr_$char *) argv[1] , 

(long) strlen (argv[1]) , &st) ; 

if (st .all ! = status $ok) { 

fprintf (stderr, "Can't get family from name - os\n", 
error text (st)) ; 

exit (1) ; 

} 

validfamily = socket_$valid_family(family, &st); 

if (stall ! = status $ok) { 

fprintf (stderr, "Can't check family - os\n", error text (st)) ; 
exit (1) ; 

} 

if (!validfamily) { 

printf("Family %s is not valid\n", argv[1]); 

exit (1) ; 

} 

rpc_$use_family (family, &loc, &llen, &st) ; 

if (st all ! = status $ok { 

fprintf (stderr, "Can't use family - os\n", error text (st)) ; 
exit (1) ; 

} 

rpc_$register mgr( ❑7 
&uuid $nil, 

&binop_fw_v1$ i f_spec, 

binop_fw_vl$server_epv, 

(rpc_$mgr_epv_t) &binop_fw_vl$manager_epv, 

&st); 

if (st all ! = 0) { 

printf ("Can't register manager - os\n", error text (st)) ; 
exit (1) ; 

Developing Distributed Applications 5-29 



Example 5-10: (continued) 

} 

lb $register 

&uuid $nil, 

&uuid $nil, 

&binop fw vl$if spec . id, 

(long) lb $server flag local, 

(ndr $char *) "binop fw example", 

&loc, 

lien, 

& lb entry, 

&st); 

if (st all ! = 0) { 

printf("Can't register - os\n", error_text(st)); 
exit (1) ; 

} 

socket $to name (&loc, llen, name, &namelen, &port, &st) ; ❑9
if (st .all ! = status $ok) { 

fprintf (stderr, "Can't convert sockaddr to name - os\n", 
error text (st)) ; 

exit (1) ; 

} 

name [namelen] = 0; 

printf ("Registered : name' o s' , port=old\n" , name, port) ; 

st = pfm $cleanup (&crec) ; 

if (stall != pfm $cleanup set) { 

status $t stat; 

fprintf (stderr, "Server received signal - os\n", 
error text (st)) ; 

lb $unregister (&lb entry, &stat) ; 

rpc_$unregi ster (&binopfw_v1$ i f_spec, & stat) ; 

pfm $signal (st) ; 

10 

} 

rpc $listen ((long) 1, &st) ; n 

} 

Q The b i n op f w server module, like the client module, includes the 
b i n op f w , h, socket . h, and pfm . h header files. In addition, 
because the server makes Location Broker calls, the server module 
includes lb . h, the header file for the Location Broker Client Agent 
interface. 

5-30 Developing Distributed Applications 



The server declares as an external variable the manager EPV 
binopfw_v1$manager_epv. The manager module defines this 
EPV. The server specifies the EPV when it registers its manager with 
the RPC run-time library. 

Like the client, the server calls pfm $ init to initialize the PFM 
package before it makes any RPC calls. 

The server program takes as an argument the textual name of an address 
family. It calls s ocket_$ f ami ly_f rom name to convert the 
textual name into the corresponding integer representation. 

The call to s o c k e t_$ va 1 i d_f ami 1 y checks whether the family is 
valid. 

To obtain a socket on which to listen, the server supplies the address 
family, in its integer representation, to rp c_$ u s e_f ami 1 y. The 
RPC run-time library assigns an available opaque port to the server; the 
run-time library returns the socket address for this port in the 1 o c 
parameter. 

To register its manager with the RPC run-time library, the server 
supplies the manager EPV to rp c_$ r e g i s t e r_mg r. The first 
parameter, the type UUID, is uu i d $nil, because the b i n op f w 
application does not involve any particular type. 

To register with the Location Broker, the server calls 
lb_$register. It supplies the following information for its entry in 
the Location Broker database: 

• An object QUID, in this case nil 

• A type QUID, also nil 

• An interface UUID, taken from the i f s p e c 

• A flag that causes the entry to appear only in the Local Location 
Broker database 

• An annotation 

• A socket address 

The server uses socket_$to_name to extract the host name and the 
port number from its socket address. It prints this information in a 
message. 

Before it begins listening for requests, the server sets a cleanup handler. 
If the server receives a signal, it removes its registrations with the RPC 
run-time library and the Location Broker before exiting. 

To begin listening for requests, the server calls rpc_$1 i st en. 

Developing Distributed Applications 5-3~ 



5.4.4.2 The binop fw.c Manager Module —Example 5-11 contains code for 
the manager module. 

The manager makes no RPC calls, so it includes only binop_fw . h, which 
defines binop_fw_vl $epv_t and declares the binop_fw$add 
operation. 

Example 5-y 1: The binop fw.c Manager Module for binop fw 

#include "binop fw.h" 

globaldef binop_fw_vl$epv_t bino _fw_vl$manager_epv = { binop_fw$add }; 0 
void binop fw$add (h, a, b, c) 2 
handle_t h; 
long a, b, *c; 
{ 

*c = a + b; 
} 

Q The manager module defines binopfw_v1$manager_epv, the 
manager EPV. The globalde f provides portability to VAX C; for 
other C compilers, the i dl base . h header file in the c 
subdirectory of the system directory RPC$IDL defines g 1 oba 1 de f 
as a macro with no replacement text. 

Q The manager module contains the implementation of the 
binop_fw$add procedure. The definition is just as it would be in a 
local application. 

5.5 Building an Application 
This section lists the usual steps in building a distributed application: 

1. For each interface, run the NIDL Compiler to generate header files and 
to generate the source code for the server stub, the client stub, and the 
client switch. 

2. For each interface, use the C compiler to generate object modules for 
the server stub, the client stub, and the client switch. 

3. For each interface, compile any routines that perform automatic binding 
or data type conversion. 

4. Compile the client application source to create the client object 
modules. 

5. Compile the server initialization code and the managers to create the 
server object modules. 

6. Link the client application object modules, the client switches, the client 
stubs, any automatic binding routines, and any type conversion routines 
to make the executable client. 

~J 

5-32 Developing Distributed Applications 



7. Link the server and manager object modules, the server stubs, and any 
type conversion routines to make the executable server. 

Remember that the client and the server must include the header files for any 
lb $, rpc_$, socket_$, or uuid_$ library routines or types they use; 
similarly, make sure that any interface definition that uses predeclared system 
types imports the corresponding NIDL file. 

The NIDL files are located in the the RPC$IDL directory; the C header files 
are located in the c subdirectory. 

The SYS$SYSROOT : [ SYSHLP .EXAMPLES ] directory includes a 
README file, a BUILD . COM file, and the source files for the binop client 
and server programs. 

Developing Distributed Applications 5-33 





NIDL C Syntax 6 

This chapter describes the C syntax of the Network Interface Definition 
Language (NIDL). This syntax of NIDL is a subset of ANSI C, with a few 
constructs added to express remote procedure call semantics. 

Section 6.1 describes the overall structure of a NIDL interface definition. 
Sections 6.2 through 6.7 describe each of the elements in that structure. 
Section 6.8 is a detailed discussion of NIDL data types. 

6.1 Interface Definition Structure 
A NIDL interface definition file has the following structure: 

oc 
[ interface_attribrcte_list ] interface identifier 

{ 

import_declarations 
constant_declarations 
type declarations 
operation declarations 

} 

6.1.1 Syntax Identifier 
The first line of an interface definition file identifies the syntax of NIDL in 
which the interface definitions are written. For the C syntax of NIDL, this 
identifier is o c. 

6.1.2 Heading 
The interface definition heading consists of three elements: an interface 
attribute list, enclosed in brackets; the keyword interface; and the 
interface identifier. Section 6.2 describes interface attributes in detail. 

6.1.3 Body 
The interface definition body follows the heading and consists of one or more 
of these declarations: 

import declaration Described in Section 6.3 



constant declaration Described in Section 6.4 

type declaration Described in Section 6.5 

operation_declaj•ation Described in Section 6.6 

There must be at least one constant, type, or operation declaration; a body 
containing only import declarations is not sufficient. 

A semicolon terminates each declaration. Braces enclose the entire body. 

6.1.4 Comments 
As in C, / * and * / delimit comments as illustrated in this example: 

/* all natural */ 
import 'cereal.idl'; /* no preservatives */ 

6.2 Interface Attributes 
An interface definition heading specifies the name and attributes of the 
interface, as follows: 
[ interface_attribr~te_list ] interface identifier 

An inter face_attribute_list is enclosed in brackets and includes one or more 
of the following elements, separated by commas: 

uuid ( uuid string ) 
version ( version_number ) 
port ( port identifier_list ) 
implicit_handle ( type specifier identifier 
local 

If an interface definition contains any operation declarations, its heading must 
specify at least the 1 o c a 1 attribute or the uuid attribute. 

6.2.1 UUID Attribute 
The uuid attribute assigns a Universal Unique Identifier (UUID) to the 
interface. No other object, interface, or type can be assigned this QUID. 

The uuid attribute has the following syntax, where uuid string is the 
character-string representation of a UUID: 
uuid ( uuid string ) 

6-2 NIDL C Syntax 



6.2.2 Version Attribute 
The version attribute helps you to manage multiple versions of an 
interface. It has the following syntax, where version_numher is an integer: 
version ( version number ) 

For example, if you were changing the parameters to a procedure in the 
array interface, the interface definition heading might look like this: 
oc 
[uuid(338b5f985000.Od.00.00.37.27.00.00.00), version (2)] 
interface array 

6.2.3 Port Attribute 
The port attribute specifies the well known port or ports on which servers 
that export the interface will listen. In most cases, however, instead of using 
this attribute, allow the RPC run-time library to assign opaque ports 
dynamically. See Chapter 1 for a discussion of well known and opaque 
ports. 

The port attribute has the following syntax: 
port ( port identifier list ) 

Entries in a port identifier list are separated by commas. Each entry has this 
form, where family is the address family and port number is the well known 
port: 
family : [ port_numher ] 

Specify at most one port per family. Table 6-1 lists the family values 
supported by NIDL. 

Table 6-'I: Family Values Supported by NIDL 

Value Address Family 

un spe c Unspecified protocol 
un i x Local to host (UNIX pipes, portals) 
ip Internetwork protocols (TCP, UDP) 
implink ARPANET Interface Message Processor (IMP) addresses 
pup XEROX PARC Universal Packet (PUP) protocols 

chaos MIT CHAOS protocols 
n s XEROX Network Systems (XNS) protocols 
nbs National Bureau of Standards (NBS) protocols 
e cma European Computer Manufacturers Association (ECMA) 
dat ak it Datakit protocols 

N I D L C Syntax 6-3 



Table 6-1: (continued) 

Value Address Family 

c c itt International Telegraph and Telephone Consultative 
Committee (CCITT) protocols (X.25, for example) 

sna IBM Systems Network Architecture (SNA) protocols 
un spe c 2 Unspecified protocol 

Although NIDL supports the families in the preceding list, the DECrpc run-
time software supports only the IP address family. For example, the interface 
definition binop . idl, described in Chapter 3, specifies a well known port 
for the IP address family: 

port (ip: [6677] ) 

6.2.4 Implicit Handle Attribute 

The imp 1 i c it_handl e attribute indicates that an interface uses implicit 
global variables rather than explicit operation parameters to represent objects. 

The imp 1 i c it_handl e attribute has the following syntax: 

implicit_handle ( type specifier identifier ) 

The type_specifiej- and identifrej- are the type and name of the global variable 
to be used as an implicit handle. The type_specifcer must be either the RPC 
handle type handle_t or a generic handle type for which you have 
specified the handle type attribute. 

If you specify an implicit handle for an interface, the client stub uses this 
handle to represent objects in all remote procedure calls and it passes no 
handle information to the server. Do not include handle parameters in the 
signatures of operations in the interface. 

If you do not specify an imp 1 i c it_handl e in the interface definition 
heading, the interface uses explicit handles, and each operation must include 
a handle as the first parameter in its signature. 

The interface definition heading for an interface that uses an implicit handle 
might look like this: 
oc 
[uuid(338b5f985000.Od.00.00.37.27.00.00.00), 

implicit_handle(handle_t array handle)] 
interface array 

Chapter 1 discusses handles and binding in detail. 

6-4 NIDL C Syntax 



6.2.5 Local Attribute 
The 1 o c a 1 attribute indicates that the interface definition does not declare 
any remote operations; therefore, the NIDL Compiler generates only header 
files (. h files), not stubs. 

If you specify the 1 o c a 1 attribute, the NIDL Compiler ignores any other 
interface attributes. 

6.3 Import Declarations 
The NIDL import declaration is analogous to the C #include directive. 
It specifies an interface definition file that declares constants and types that 
the importing interface uses. It takes this form, where file is the pathname, 
enclosed in double quotation marks, of the file that you are importing: 
import file ; 

For example, the following declaration imports the definition for the 
potato interface: 
import "potato. idl"; 

The NIDL Compiler translates import declarations into C #include 
directives to include header files that correspond to the imported interfaces. 
However, if the imported interface contains operation declarations, the NIDL 
Compiler does not generate stub procedures for these operations. For 
example, if the interface definition foo . idl contains an import declaration 
for the potato_ interface, then the NIDL Compiler will generate a C 
header file named foo . h that contains the following #include directive: 
#include "potato.h"; 

The stub files that the Compiler generates, however, will contain no 
procedures for the potato_ operations. 

Importing an interface many times has the same effect as importing it once. 

6.4 Constant Declarations 
The NIDL constant declaration takes the form 

const type_specifier identifier integer I string 1 i~ali~e_identifier ; 

The type_specifier is the data type of the constant you are declaring, identifier 
is the name of the constant, and integer, string, or value identifier is the 
value you are assigning to the constant. A value_identifier can be any 
previously defined constant. 

N I D L C Syntax 6-5 



The C syntax of NIDL provides only int and char constants. NIDL does 
not support constant expressions. The following are examples of constant 
declarations: 
const int MAX = 100; 
const CHAR DSCH = "Dmitri Shostakovich"; 

6.5 Type Declarations 
The NIDL type_declaj~ation lets you give a name to a data type. It takes the 
following form: 

typedef [ type_attribute_list ] type_specifier type declarator_list ; 

The type_attribute_list is optional. 

Some of the constructs that appear in type declarations can also appear in the 
parameter lists of operation declarations. Section 6.6 describes the use of 
these constructs in operation declarations. Section 6.7 describes NIDL data 
types in detail. 

6.5.1 Type Attribute 
The optional type_attrihute_list includes one or both of the following 
elements, separated by commas: 

handle 
transmit_as (xmit_type ) 

These attributes can appear only in t ype de f declarations. 

6.5.1.1 The handle Attribute —The handle attribute specifies that a type can 
serve as a generic handle. You must supply automatic binding routines to 
convert this type to handle_t, the RPC handle type. 

The following example declares a generic handle type, f i lehandle_t, 
which is a structure containing the textual representations of a host and a 
pathname: 
typedef [handle ] st ruct { 

socket_$string_t host; 
char path [1024]; 
} filehandle t; 

Chapter 7 discusses automatic binding and autobinding and autounbinding 
routines, and describes an application that uses UUIDs as generic handles. 

6-6 NIDL C Syntax 



6.5.1.2 The transmit_as Attribute —The transmit as attribute associates a 
transmitted type that stubs pass over the network with a presented type that 
clients and servers manipulate. You must supply routines that perform 
conversions between the presented and transmitted types. 

There are two primary uses for this attribute: 

• To pass complex data types for which the NIDL Compiler cannot 
generate marshalling and unmarshalling code. Such types include trees, 
linked lists and structures that contain pointers. 

• To pass data more efficiently. An application can provide routines to 
convert a data type between a sparse representation (presented to the 
client and server programs) and a compact one (transmitted over the 
network). 

The xmit type in a transmit_as attribute must be a named type defined 
previously in another type declaration; it indicates the transmitted type that 
the stubs will pass between client and server. 

The following t ypede f statements declare presented and transmitted types 
for a linked list: 
typedef struct { 

int last; 
int [last is (last) ] values [MAXELEMENTS ] ; 
} trans_t; 

typedef [transmit_as (trans_t) ] struct { 
int value; 
list_t *next; 
} list t; 

Because 1 i s t_t contains a pointer to a 1 i s t_t , the NIDL Compiler 
cannot generate code to marshall this data type. Instead, it generates code that 
calls user-written routines to convert between 1 i st_t and trans t, and 
the stubs transmit the linked lists as trans t structures. 

_ 

Chapter 7 discusses type conversion, specifies the signatures for conversion 
routines, and describes two applications that use type conversion. 

6.5.2 Type Specifiers 
The type specifier portion of a type declaration can specify any of the 
following: 

N I D L C Syntax 6-7 



Simple type s 

int unsigned float byte 

long unsigned long double void 

short unsigned short char enum 

small unsigned small Boolean short 
enum 

Constructed types 

bitset union 
st ring0 arrays 
s t ru ct pointers 

The RPC handle type hand 1 e_t 

Named types defined with t ypede f declarations 

Section 6.7 describes these types in detail. 

6.5.3 Field Attributes 
NIDL provides two field attributes that apply only to arrays: 1 a s t_i s and 
maxi s. These attributes identify last and max fields that at run time will 
supply the stubs with information about the length of an array; 1 a s t_i s 
and maxi s are typically used for an open array, an array whose 
declaration does not specify an explicit fixed length. 

An array with 1 a s t_i s or maxi s must be either a member of a 
structure or a parameter of an operation. These attributes therefore can appear 
either in type declarations or in operation declarations. The attributes precede 
the array name in a field attribute_l ist: 

type_specifier [ field attribute list ] array_declarator [ array_len~th ] 

The field attj-ibute_list comprises one or both of the following elements, 
separated by commas: 
last i s ( last ) 
max i s ( max ) 

The last_is attribute identifies another field, last, that at run time will be 
the index of the last array element to be passed. Client and server programs 
use this field to dynamically indicate the size of an array. 

The maxi s attribute identifies another field, max, that at run time will be 
the maximum possible index of the array. Client programs use this field to 
dynamically indicate the maximum size of an array. 

The following type declaration defines a structure that contains an open array, 
its max, and its last: 

6-8 N I DL C Syntax 



typedef struct { 
int Amax; 
int plast; 
int [max is (pmax) , last_is (plast) ] parray [ ] ; 
} pixels; 

See Chapter 7 for a detailed discussion of last i s and max i s . 

6.5.4 Type Declarato~s 
The type_declarator list specifies names for a particular type. To include 
more than one name in a list, separate the names with commas. For 
example: 

typedef long integer32, int32; 

6.5.4.1 Pointers — To specify a pointer type, precede the name with an asterisk. 
For example: 

typedef int *pointer to int; 

6.5.4.2 Arrays — To specify an array type, put brackets after the name. Inside the 
brackets you can supply the array size, an asterisk, or nothing. If you supply 
an asterisk or you supply nothing, you are declaring an open array (one 
whose length will not be known until run time), and you must apply the 
1 a s t i s field attribute to the array. Array subscripts start at 0. The 
following example of a struct includes two arrays: 
typedef struct { 

char fixed[32]; 
int last; 
char [ last_is (last) ] open [ ] ; 
} arrays; 

Ina struct that contains an open array, the array must be the last member. 
A union cannot contain an open array. See Chapter 7 for more 
information about open arrays. 

Use consecutive pairs of brackets to declare multidimensional arrays, as in C. 
For example: 
typedef int two by four [ 2 ] [ 4 ] ; 

Only the first dimension of a multidimensional array can be unspecified. For 
example: 
typedef int n_by_four [ ] [ 4 ] ; /* this is valid */ 
typedef int two_by_n [2][]; /* this is NOT valid */ 

N I DL C Syntax 6-9 



6.6 Operation Declarations 
The NIDL operation_declaj•ation is analogous to a C function heading. An 
operation declaration has the following form: 

[ operation_attrihr~te_list ] o_type_specifier operation_declarator ( parameter list) ; 

Entries in a parametej=list are separated by commas. Each entry has the 
following form: 

p_type_specifier [field attrihc~te_list parameter _attrihr~te_list ] parameter declarator 

The following subsections discuss the parts of an operation declaration. 

6.6.1 Operation Attributes 
The optional operation_attribute_list includes one or more of the following 
keywords, separated by commas: 

idempotent 
broadcast 
maybe 
Comm status 

6.6.1.1 The idempotent Attribute — By default, the RPC run-time library 
provides "at most once" call semantics. These semantics ensure that an 
operation, when called once, is executed not more than once. They require 
the server to save the results of an operation until the client acknowledges its 
receipt of those results. 

The idempotent attribute specifies that an operation can be executed any 
number of times. If an operation is idempotent, the server does not need to 
save results and the client does not need to issue acknowledgements, so 
performance is improved. Use the idempotent attribute for any operation 
that can safely be executed more than once; for instance, an operation that 
simply reads a value is idempotent, while one that increments a value is not. 

6.6.1.2 The broadcast Attribute —The broadcast attribute specifies that the 
RPC run-time software should always broadcast an operation to all hosts on 
the local network. The broadcast is to a well known port if one has been 
specified and to the Local Location Broker forwarding port if it has not. 
When a client calls an operation with the broadcast attribute, the run-
time software automatically clears any binding from the handle before issuing 
the remote procedure call. 

The RPC run-time library applies idempotent call semantics for all broadcast 
operations, so it executes any operation with the broadcast attribute as 
though the operation also had the idempotent attribute. For clarity, 

6-10 NIDL C Syntax 



explicitly specify idempotent whenever you specify broadcast; if 
you do not, the NIDL Compiler issues a warning. 

Because of the disadvantages listed in Chapter 5, avoid using the 
broadcast attribute. See the discussion of unbound handles and 
broadcasting in Chapter 5. 

6.6.1.3 The maybe Attribute —The maybe attribute specifies that the caller of 
an operation does not expect any response and that the RPC run-time 
software need not guarantee delivery of the call. Operations with this 
attribute cannot have any output parameters and cannot return anything. You 
might use maybe for an operation that posts a notification whose receipt is 
not crucial. 

6.6.1.4 The Comm status Attribute —The comm status attribute specifies 
that an operation returns a completion status, a status code of type 
s t at u s_$ t . If a communications error occurs while the operation is 
executing, a cleanup handler in the client stub will handle the error and return 
the error code as the return value of the operation. Code the manager routine 
for an operation with the comm status attribute to return status $ o k 
if successful. 

NIDL also supports a comm status parameter attribute; this attribute 
identifies an output parameter that will reflect status and hence provides 
functionality similar to that of the comm status operation attribute. 
Chapter 5 describes the use of status parameters. 

6.6.2 Operation Type Specifiers 
The o_type_specifier is the data type that the operation returns. It can be any 
scalar type or previously named type, but it cannot be a pointer. For example, 
if the operation returns a short integer, specify short as the 
o_type_specifier. Specify s t at u s_$ t if the operation has the 
comm status operation attribute. Specify void if the operation does not 
return. If you omit the o_type_specifier, the operation must return an i nt . 

6.6.3 Operation Declarators 
The operation declarator is the name of the operation. 

6.6.4 Parameter Lists 
The parameters of an operation appear in a parametej _list. The entry for each 
parameter takes the following form: 
p_type_specifier [ freld attrihr~te_list parameter_attrihrrte_list) parameter declarator 

N i DL C Syntax 6-11 



Use commas to separate the entries in a parameter=list. 

If an interface uses explicit handles, the first parameter in the parameter _list 
for each operation must be the explicit handle. If an operation uses manual 
binding, the handle must have the type handle_t. 

6.6.4.1 Parameter Type Specifiers —The p_type_specifcer specifies the data 
type of the parameter. 

6.6.4.2 Field Attributes and Parameter Attributes —The field attribute_list 
can include last_is and maxis and can apply only to array 
parameters. The associated last and max must also be parameters in the 
parameter list. Section 6.5.3 describes field attributes; Chapter 7 discusses 
them in further detail and presents an example. The parameter attribute list 
can include the following attributes: 

in The parameter is an input. It passes from client to server, 
that is, from the calling routine to the called routine. 

out The parameter is an output. It passes from server to 
client, that is, from the called routine to the calling 
routine. Output parameters are passed by reference and 
must be either pointers or arrays. 

c omm status The parameter is a status parameter. If a communications 
error occurs, a cleanup handler in the client stub will 
handle the error and pass the error code to the client in 
this parameter. 

Every parameter must have at least one of the directional attributes in and 
out. A list including both in and out indicates that the parameter passes 
in both directions. 

A parameter with the c omm_s t at u s attribute must be of type 
st at u s_$ t and must also have at least the out attribute. Chapter 5 
describes the use of status parameters. 

Field attributes and parameter attributes can appear in any order. If a 
parameter has more than one attribute, separate the attributes with commas. 

6.6.4.3 Parameter Declarators —The parameter declarator specifies the name 
of each parameter. By default, in parameters are passed by value. To 
denote an i n parameter that is passed by reference, precede the 
parameter declarator with an asterisk (* ). This construct is typically used 
when the application software is implemented in Pascal. 

All out parameters are passed by reference. Unless the parameter is an 
array, you must precede the parameter declarator with an asterisk (* ). 

6-~ 2 N I D L C Sy ntax 



Use brackets to specify arrays. The syntax for array parameters is the same 
as for array types, described in Section 6.5.4. 

6.6.5 Examples 
The following example declares an operation named s imp 1 e $ op that takes 
no parameters, returns no value, and need not be executed: 
[maybe] void simple$op(); 

The interface definition for an xmit a s application declares the 
xmit a s $sum operation. This idempotent operation returns an integer. Its 
input parameters are an explicit RPC handle and a list structure of the named 
type 1 i s t_t 
[idempotent ] 
int xmitas$sum( 

handle t 
list_t 

); 

_ [in) h, 
[in] list 

The interface definition fora primes application declares the 
primes $ gen operation. This operation does not return a value. Its 
parameters include two pointers and an open array. Its declaration illustrates 
the use of operation attributes, field attributes, and parameter attributes: 
[idempotent] 
void primes$gen( 

handle_t [in] h, 
int [in, out] *last, 
int [in] max, 
status_$t [comm status, out] *st, 
int [in, out, last is (last) , max is (max) ] values [ ] 

); 
— — 

6.7 Data Types 
This section describes in detail the type specifier expressions that you can 
use in type declarations and in the parameter lists of operation declarations. 
These expressions can specify simple types, constructed types, named types, 
or the RPC handle type handle_t. 

6.7.1 Simple Types 
NIDL supports a variety of simple data types including integers, floating-
point numbers, characters, bo 01 e an, byte, void, and enumerations: 

N I DL C Syntax 6-13 



Integer Types 

Type Size 

int 32 bits 
1 on g 32 bits 
short 16 bits 
small 8 bits 
unsigned 32 bits 
unsigned long 32 bits 
unsigned short 16 bits 
unsigned small 8 bits 

You can include the keyword int after any of the other integer type 
names. For example, long and long int are synonymous. 

Floating-Point types 

Type Size 

float 32 bits 
doub 1 e 64 bits 

The byte Type 

The integer types listed in the integer type table are subject to data 
conversion when the native data representation formats of client and 
server hosts differ. The byte type is an 8-bit integer whose 
representation format is guaranteed not to be converted. You can 
protect data of any type from data conversion by transmitting that type 
as an array of byte; Chapter 7 discusses the use of transmitted types. 

The char Type 

The character type, char, is unsigned. NIDL does not support a 
signed character. 

The Boolean Type 

Following C convention, a value of 0 means "false," and any nonzero 
value means ``true." 

The vo i d Type 

This type is used for an operation that does not return a value. 

6-14 N I D L C Syntax 



Enumerations 
enum { identifier list } 
short enum { identifier list } 

The enumerated types provide names for integers. An enum is a 32-
bit integer; a short enum is a 16-bit integer. You can declare these 
types only in t ype de f statements. The NIDL Compiler assigns 
integer values, beginning at 0, to enum identifiers based on their order 
in identifier list. For example: 
typedef enum {John, Paul, George, Ringo } beatles; 

In this declaration, John gets the value 0, Pau 1 gets 1, George 
gets 2, and Ringo gets 3 . 

6.7.2 Constructed Types 
NIDL also supports constructed data types, including sets, strings, structures, 
discriminated unions, pointers, and arrays: 

Sets 
bit set enum { identifier list } 
short bitset enum { identifier list } 

A bitset is similar to an enumeration, but instead of defining names 
for integers, it defines names for bits in a single 32-bit integer, starting 
with the least significant bit. A short bit set defines names for 
bits in a 16-bit integer. For example: 
typedef bitset enum {Steinhardt, Dalley, Tree, Soyer} guarneri; 

In this declaration, Steinhardt represents the value of bit 0 in an 
integer, D a 11 e y represents bit 1, Tree represents bit 2, and S o ye r 
represents bit 3. 

Strings 

string0 [ length ] 

A string 0 is a C-style null-terminated string, that is, a character 
array whose last element is the null character \ 0. The length indicates 
the maximum length of the string, including the terminating zero -byte. 
For example: 
st ring0 [ 7 ] 

The specified string is long enough to hold "Ligeti". 

Structures 
struct tag { 

type specifier [ field attribute_list ] declarator ; 

} 

N I DL C Syntax 6-15 



A NIDL struct cannot contain pointers unless you apply the 
transmit as type attribute and supply routines to convert the 
structure to a transmissible type. The tag is optional. 

The field attribute list can apply only to arrays. Section 6.5.3 
describes field attributes. 

An open array can appear in a structure only as the last member. A 
structure containing an open array must be passed by reference. 

Unions 
union switch ( d type_specifier discriminator) tag { 

case constant : type_specifrer declarator ; 
... 
default type specifier declarator ; 
} 

A NIDL union must be discriminated and hence differs considerably 
from its C counterpart. In the union header, you specify a discriminator 
and its type; the discriminator selects a member at the time the union is 
used. The NIDL union is a combination of C union and 
switch syntax. 

The d type_specifcer and the discriminator are the type and the name 
of the discriminator. The d type specifier must be one of the simple 
types described in Section 6.7.1. The NIDL Compiler uses ~ the optional 
tag to generate identifiers in source code representations of the union; 
see Section 6.7.5. 

A default member, identified by the label default, can optionally 
appear anywhere in the list of cases. At the time the union is used, if 
the value of discriminator does not match any constant in the list of 
cases, the default member applies. In the absence of a default member, 
failure to match a discriminator raises an error. 

The NIDL Compiler can generate C source code to represent a union 
with a de f au 1 t case. 

To indicate that several cases ta1~e the same declarator, omit the 
type_specifier, the declarator, and the semicolon in all but the last 
case. To indicate an empty member, omit the type specifier and the 
declarator. For example: 
typedef union switch ( int pick ) 

case 1 
case 2 int fraise; 
case 3 float framboise; 
case 4 
case 5 
} berries; 

{ 

6-16 NIDL C Syntax 



A union, like a s t ru ct, cannot contain pointers unless you apply 
the transmit_as type attribute and supply routines to convert the 
union to a transmissible type. 

Section 6.7.5 discusses how the NIDL Compiler represents 
discriminated unions in the C source code it generates. 

Pointers 

type specifier *identifier 

To specify a pointer, precede the identifier with an asterisk (*). For 
example: 
int *pointer_to_int 

A NIDL pointer cannot be null. 

The NIDL Compiler generates code that can marshall and unmarshall 
pointers only "at top level" and not within any constructed types. 
You can overcome this restriction by applying the transmit_as 
type attribute and supplying routines to convert the constructed type to 
a transmissible one. 

Arrays 

type 

specifier 

identifier [ 

length ] 

To specify an array, follow the name with brackets enclosing the 
number of elements in the array. If length is an asterisk or is omitted, 
the array is open. Consecutive pairs of brackets specify a 
multidimensional array. Section 6.5.4 describes array syntax in more 
detail. 

6.7.3 The RPC Handle Type 
The handle_t type denotes an opaque handle type meaningful to the RPC 
run-time library. If you specify this type for the explicit handles or the 
implicit handle in an interface, the interface uses manual binding. 

6.7.4 Named Types 
Named types are types defined by type declarations. For example, the 
following t ype de f statement defines 1 ong_i nt to be a synonym for 
int: 

typedef int long_int; 

Section 6.5 describes type declarations in detail. 

N I DL C Syntax 6-17 



6.7.5 Representation of Unions 
NIDL unions are discriminated, unlike C unions. When the NIDL Compiler 
generates C code to represent a NIDL union, it embeds the union and the 
discriminator in a C structure. The name of the NIDL union becomes the 
name of the C structure. If you assign a tag to the NIDL union in your type 
declaration, the compiler uses the tag to name the embedded C union; 
otherwise, the compiler uses a generic name. 

The following declaration assigns ut ag as the tag for a union named 
union with tag: 
typedef union switch (short i) utag { 

case 1: 
case 2: 

struct { short a, b; } struct 1; 
case 3: 
case 4: 

struct { float x, y; } struct 2 ; 
case 5: 

char p; 
case 6: 

char q; 
} union_with_tag; 

In the C definition that the NIDL Compiler generates, the union name 
u n i o n_w i t h_t a g becomes the name of the embedding structure, and the 
tag ut ag becomes the name of the embedded union: 

This example of NIDL Compiler output shows code reformatted for 
readability and with comments added: 
typedef struct union_with_tag union_with_tag; 
struct union with tag { 

ndr_$short_int i; 
union { 

/* case (s) : 1, 2 */ 
struct { 

ndr_$short_int a; 
ndr_$short_int b; 
} structl; 

/* case (s) : 3, 4 */ 
struct { 

ndr_$ short_f loat 
ndr_$short float 
} struct2;` 

/* case (s) : 5 */ 
ndr_$char p; 
/* case (s) : 6 */ 
ndr_$char q; 
} ut ag; 

}; 

x; 

Y% 

/* the discriminator */ 
/* the union */ 

6-18 N IDL C Syntax 



Special Topics 7 

This chapter covers the following special topics: 

• Open array s 

• Data type conversion 

• Automatic binding 

• Servers that export multiple interface versions 

• Servers that contain multiple managers 

The examples in this chapter omit most error-handling code and use ellipses 
(. .) to indicate substantial omissions. 

7.1 Open Arrays 
DECrpc supports fixed arrays, which have an explicitly declared length, and 
open arrays, which have no explicitly declared length. Because the length of 
an open array is not known until run time, special treatment is required to 
dynamically inform stubs about the array length. 

This section describes the NIDL constructs associated with open arrays and 
discusses the interface definition, client module, and manager module for a 
simple primes application that generates prime numbers and passes an 
open array as input and output. 

7.1.1 NIDL Attributes for Arrays 
NIDL provides two field attributes that apply only to arrays: 1 a s t_i s and 
maxi s. These attributes identify last and max fields that, at run time, 
contain information about the length of an array. The client stub and server 
stub use the last and max information to marshall, unmarshall, and store the 
array. 

An array with last_i s or maxi s must be either a member of a 
structure or a parameter of an operation. The attributes precede the array 
name in a field attribute list: 

type specifier [ field attribtcte_list ] array_dec•larator [ array_len~~th ] 



The array_length is optional. To specify an open array, supply an asterisk 
(*) as the array_length or omit the array length altogether. The 
field attribute list comprises one or both of the following elements, 
separated by commas: 

last i s (last ) 
max is (max) 

7.~ .~ .~ The last_is Attribute —The last_i s attribute enables client and 
server programs to indicate dynamically the size of an array. This attribute 
informs the NIDL Compiler that, at run time, last will be the index of the 
last array element to be passed. when an array passes from client to server, 
the client program assigns a value for last, and the client stub uses this value 
to marshall the array. Likewise, when an array passes from server to client, 
the server manager code assigns a value for last, and the server stub uses this 
value to marshall the array. 

Note that last is an index, not a count. 

The 1 a s t_i s attribute is required for open arrays. For a fixed array, 
1 a s t_i s is not required, but you can use it to increase efficiency when you 
intend to pass only part of the array; the stubs will not marshall any element 
with an index greater than last. Examples 7-4 and 7-6 apply 1 a s t_i s to 
fixed arrays. 

An array with 1 a s t_i s can appear either in the parameter list of an 
operation declaration or in the declaration of a structure. In an operation 
declaration, the array and its last are parameters of the operation; in a 
structure declaration, the array and its last are members of the structure, and 
the array must be the last member. 

The following declaration specifies that, at run time, n 1 a st will be the 
index of the last element to be passed in the array narray: 

typedef struct { 
int nlast; 
char [last is (nlast) ] narray [ ] ; 
} name; 

If an array has a last, the stub that sends the array uses the last to determine 
how many elements to marshall, and it embeds the element count in the 
transmitted representation of the array. The stub that receives the array uses 
this embedded count to determine how many elements it should unmarshall. 
Therefore, the last, whether a structure member or a parameter, must be 
available to the sending stub but need not be available to the receiving stub. 

If the array and its last are members of a structure, this condition is 
automatically met because the array and the last are always sent together. 
However, if the array and its last are parameters of an operation, you must 
ensure that the last parameter travels with or before the array parameter: an lJ 

7-2 Special Topics 



in array requires an in last, but an out array can have either an in or an 
out last. 

It is possible for a last to serve as both last and max for an array, as 
described in the next section. 

7.1.1.2 The maxis Attribute —The maxi s attribute enables a client program 
to indicate dynamically the maximum possible size of an array. This 
attribute informs the NIDL Compiler that, at run time, max will be the 
maximum possible index of the array. The client program assigns the value 
of max; the server stub uses this value when it allocates storage for the 
` ̀ surrogate" copy of the array on the server side. 

Like last, max is an index, not a count. 

You typically apply maxi s to open arrays that are returned by the server, 
but you can omit it. If you omit maxi s for an open array, the NIDL 
Compiler uses the last of the array as its max, as though you had declared 
max i s (last) . 

Like last_is, maxis can appear in an operation declaration or in a 
structure declaration. In an operation declaration, the array and its max are 
parameters of the operation; in a structure declaration, the array and its max 
are members of the structure, and the array must be the last member. 

The following declaration specifies both maxis and last_is attributes 
for the array parray: 

typedef struct { 
int pmax; 
int plast; 
int [max_is (pmax) , last_is (plast) ] parray [ ] ; 
} pixels; 

Because the client program supplies max for use by the server stub, max must 
pass from client to server and therefore must have at least the i n attribute. 
If you omit the maxi s attribute and allow a last to serve as a max, this 
directional requirement applies to the last. 

One implication of this is that a structure containing an open array can never 
be simply an out. If you intend the array to pass in the out direction 
only, the interface definition must declare the structure as both in and out, 
and the client program must set the input value of last to prevent the client 
stub from marshalling data; in the C syntax of NIDL, arrays are zero-based, 
so the input value of last should be —1. 

Special Topics 7~3 



7.1.2 The primes Interface Definition 
Example 7-1 shows the NIDL definition for the primes interface. This 
definition contains only one declaration, that of the primes $gen operation. 
The operation passes input and output in the array values. 

Example 7-1: The primes.idl Interface Definit~an 

oc 
[uuid(443d5a1a4000.Od.00.00.fe.da.00.00.00), version(1)] 
interface primes 
{ 
[idempotent] 
void primes gen( 

handle_t [in] h, 
int [in, out] *last, 
int [in] max, 
status_$t [comm status, out] *st, 
int [ in, out, last is (last) , max is (max) ] values [ ] 
): 
/* the first element of values[] will be used 

to hold an input parameter */ 
} 

The empty brackets indicate that values is an open array. The array, its 
last, and its max are all parameters of the primes $gen operation. 

This interface definition also illustrates use of the comm status parameter 
attribute. If a communications error occurs during a primes $gen call, a 
cleanup handler inserted by the NIDL Compiler in the client stub handles the 
error and passes the error code to the client in the st status parameter. 
Chapter S discusses status parameters. 

7.1.3 The primes Client Module 
Example 7-2 shows excerpts from the client module, c 1 i ent . c. 

The client initializes values to a length of 1000 elements. It asks the user 
to specify the integer up to which prime numbers will be generated, and it 
assigns this integer to the first element of values. 

The client sets 1 a s t to 0, so that only one element will pass as input to the 
server. When it calls primes $gen, the client supplies 999 as the max 
parameter, to ensure that, on return, the array will not exceed the space 
allocated for it. 

When primes $gen returns, the client prints the array elements, whose 
indexes range from 0 to last . 

7-4 Special Topics 



Example 7-2: Excerpts from the clients Module for primes 

... 
#define MAXVALS 1000 
... 
main ( ) 
{ 

handle_t h; 
status $t st; 

. . 
ndr_$long_int values[MAXVALS), last; 
char buf[100); 
int i; 

.. 
printf("Generate primes up to what integer: "); 
gets (bu f) ; 
values [ 0 ] _ (ndr_$long_int) atoi (buf) ; 
last = 0; /* marshall only the first element of the array 
primes$gen(h, &last, MAXVALS-1, &st, values); 

.. 
printf ("Primes are : \n") ; 
for (i = 0; i <= last; i++) printf (" od 
printf ("\n") ; 

} 

~~ values [ i) ) ; 

7.1.4 The primes Manager Module 
Example 7-3 shows the manager module, manager . c. 

The manager routine primes $gen checks integers for primeness and 
assigns prime numbers to elements of va 1 u e s . It quits when it reaches the 
limit specified on input by the client or when it reaches the array element 
with index max. Before it returns, primes $gen sets last to the index 
of the last element in value. 

Example 7-3: The managers Module for primes 

#include "primes.h" 

globaldef primes_vl$epv_t primes_vl$manager_epv {primes gen}; 

void primes gen (h, last, max, status, values) 
handle_t h; 
status_$t *status; 
ndr $long int *last, max, values [) ; 
{ 

ndr_$long_int n, highest =values[0], index = 0; 

for (n = 2; n <= highest; n++) 
if (is prime (n) ) { 

values [index++] = n; 
i f (index > max) break; 

} 
*last = index-1; 

Special Topics 7-5 



Example 7-3: (continued) 
status->all = status $ok; 

return; 

} 

static int is prime (n) 

ndr $long int n; 

{ 

int i; 

for (i = n/2; i > l; i--) 

if (i* (n/i) _= n) return 0; 

return 1; 

} 

The xmi t a s and sparse applications, described in Section 7.2, apply 
last_i s to fixed arrays and also show how to pass an array as a member of 
a structure. 

7.2 Data Type Conversion 
The NIDL transmit_as attribute lets you associate a transmitted type 
that stubs pass over the network with a presented type that clients and 
servers manipulate. You write routines to convert between the presented and 
transmitted types, and you link those routines with the stubs. This section 
lists the requirements for the conversion routines and presents two examples: 
one that uses type conversion to pass a complex data type and one that uses 
type conversion for efficiency. Chapter 4 describes the use of 
transmit as in NIDL definitions. 

7.2.1 Type Conversion Routines 
When you associate a transmitted type with a presented type, you must write 
four routines to perform conversion and to manage storage for the types. 
This section specifies C prototypes for these routines; in the prototypes, 
PRES is the name of the presented type and TRANS is the name of the 
transmitted type. The P RE S_t o_xmi t_r ep routine allocates storage for 
the transmitted type and converts from the presented type to the transmitted 
type: 
void PRES_to_xmit_rep (presented,transmitted) 

PRES presented; 

TRANS **transmitted; 

The PRE S_f rom_xmit_rep routine allocates storage for the presented 
type and converts from the transmitted type to the presented type: 
void PRES from xmit_rep (transmitted, presented) 

7-6 Special Topics 



TRANS *transmitted; 

PRES *presented; 

The PRES free routine frees any storage that has been allocated for the 
presented type by PRES_f rom xmit_rep: 
void PRES_free (presented) 

PRES presented; 

The P RE S_f r e e_xmi t_r ep routine frees any storage that has been 
allocated for the transmitted type by PRES to xmit rep: 
void PRES_free_xmit_rep (transmitted) 

TRANS *transmitted; 

7.2.2 Using Type Conversion to Pass Complex Types 
The NIDL Compiler cannot generate stub code to marshall and unmarshall 
complex types such as trees, linked lists, and structures that contain pointers. 
Any data type containing a pointer not ` ̀ at top level" is complex. 

The xmitas application uses type conversion to pass a linked list as an 
open array. The client and server manipulate the linked list type. The client 
and server stubs transmit arrays over the network. 

7.2.3 The xmitas Interface Definition 
Example 7-4 shows the NIDL definition for the xmitas interface. 

Example 7-4: The xmitas.idl Interface Definition 

oc 
[uuid (441f8a28a000.Od.00.00. fe.da.00.00.00) , version (1) ] 
interface xmitas 

{ 

const int MAXELEMENTS = 100; /* maximum size of list */ 

typedef struct { 
int last; 
int [last is (last)] values[MAXELEMENTS]; 

} trans t ; 

typedef [transmit as (trans t) ] struct { 
int value; 
list t *next; 

} list t; 

[idempotent] 
int xmitas$sum(handle t [in] h, list t [in] list) ; 

} 

The transmitted type, trans_t, is a structure whose members are the 
integer last and the integer array values . Though values has a 

Special Topics 7-7 



declared length, the 1 a s t_i s attribute is supplied so that no more elements 
than necessary are passed. 

The presented type, 1 i st_t, is a linked list structure whose members are 
the integer va 1 u e and the pointer next , which points to the next 
1 i st t. 

There is one operation in the xmitas interface, xmitas $sum. Its inputs 
are h (a handle) and 1 i st (a linked list). The operation returns an integer 
that is the sum of the values in 1 i s t . 

7.2.4 The xmitas util.c Module 
Example 7-5 shows the ut i 1. c module, which contains routines to convert 
between the 1 i st_t and t ran s_t types and to allocate and free storage 
for those types. 

Example 7-5: The util.c Module for xmitas 

#include <stdio.h> 
#include "xmitas.h" 

static void free list recursively(); /* auxiliary function */ 

void list_t_to_xmit_rep(list, xmit_struct) 01
list_t list; 
trans_t **xmit struct; 

{ 

int count = 0; 
list t *lp = &list; 

/* allocate the structure */ 
*xmit struct = (trans t *)malloc (sizeof (trans t)) ; 

/* copy the values from the list to the array */ 
while (lp) { 

(*xmit struct) ->values [count++] = 1p->value; 
1p = 1p->next; 

} 

(*xmit struct) ->last = (ndr $long int) (count-1) ; 
} 

void list_t from_xmit_rep(xmit_struct, list) ❑2 
trans_t *xmit struct; 
list_t *list; 

{ 

int index = 0; 

/* reconstruct the linked list from the array */ 
do { 

list->value = xmit_struct->values[index++]; 

if (index <= xmit_struct->last) 
list->next = (list t *) malloc (sizeof (list t)) ; 

else list->next = NULL; 

7-8 Special Topics 



Example 7-5: (continued) 

list = list->next; 

} while (index <= xmit struct->last); 

} 

void list t free (list) 

list t list; 

{ 

f ree_list_recursively (list .next) ; 

} 

void list_t_free_xmit_rep(xmit_struct) 

trans t *xmit struct; 

{ 

free (xmit struct) ; 

} 

static void free_list_recursively (1) 

list_t *lp; 

{ 

if (lp->next) free_list_recursively(lp->next); 

free (lp) ; 

} 

char *error text(st) 

status $t st; 

{ 

static char buff [200] ; 

extern char *error $c text(); 

return (error $c text (st, buff, sizeof buff)) ; 

The first routine, 1 i st_t_t o_xmit_rep, allocates storage for the 
structure to be transmitted and then copies values from the linked list 
into the array. It sets (* xmi t_s t ru ct) -> 1 a s t to the index of the 
last element that it copied to (*xmit_struct) ->values. 

The second routine, 1 i st_t f rom_xmit_rep, copies values from 
the transmitted array into the linked list, allocating additional storage as 
it builds the list, until it reaches the array element with index 1 a s t . 

Any storage allocated by 1 i st_t_f rom xmit_rep for the linked 
list is freed by 1 i st_t_f ree. 

Any storage allocated by 1 i st_t_t o_xmit_rep is freed by 
1 i st t free xmit rep. 

Special Topics 7-9 



7.2.5 Using Type Conversion for Efficiency 
The sparse application uses type conversion to transmit arrays in a run-
length-encoded format. The code supplies routines to encode and decode the 
arrays. The stubs present sparse arrays to the client and server but pass 
compact arrays over the network. 

This section discusses the interface definition and ut i 1, c module for 
sparse. 

7.2.5.'1 The sparse Interface Definition —Figure 7-6 shows the NIDL 
definition for the sparse interface. 

Example 7-6: The sparse.idl Interface Definition 

oc 
[uuid (442548088000.Od. 00.00 . fe . da .00.00.00) , version (1) ] 
interface sparse 
{ 

const int ARRAY_SIZE = 1000; 
const int CARRAY_SIZE = 2000;0 
/* worst case: twice the original size */ 

/* a run-length-encoded representation of an array */ 

typedef struct { 
int last; 
int [last is (last) ] data [CARRAY SIZE] ;[J2 

} compress t;~ 

/* this type will be transmitted as a more compact type */ 
typedef [transmit_as (compress_t) ] int compress array [ARRAY_SIZE] ;0 

/* this type will be transmitted as is */ 

typedef int nocompress array [ARRAY SIZE];® 

[idempotent] 
int sparse compress sum(5~ 

handle_t [ in ] h, 
compress_array [in] array 

); 

[idempotent] 
int sparse$nocompress sum(© 

handle_t [ in ] h, 
_ 

nocompress_array [in] array 
); 

} 

Q In the worst case, encoding doubles the length of an array, so the 
declared length of the compact array is twice that of the sparse array. 

Q Because we expect the compact array to be shorter we give it the 
l a s t_ i s attribute and embed it in the c omp r e s s_t structure with a 
last. 

7-10 Special Topics 



❑3 The example declares two sparse array types: compress array 
has compress t as its transmitted form. 

~4 The array nocompress_array is transmitted unchanged. 

❑5 Both of the operations in the sparse interface take a sparse array as 
input and return the sum of its elements. The operation 
sparse$compress_sum passes its inputs in a compact array. 

~6 The operation sparse$nocompress_sum passes a sparse array. 

7.2.5.2 The sparse util.c Module —Example 7-7 shows the ut i 1. c module, 
which contains the conversion routines for the sparse application. These 
routines are similar to those for the xmit a s application. 

Example 7-7: The util.c Module for sparse 

#include <stdio.h> 
#include "sparse.h" 

void compress array to xmit rep (array, xmit struct) 
compress_array array; 
compress_t **xmit struct; 
{ 

0 

int rep, val, index = 0, pos = 0; 

/* allocate the structure */ 
*xmit struct (compress t *) malloc (sizeof (struct compress t) ) ; 

/* run-length encode the array 
do { 

} 

*~ 

rep = 0 ; 
val = array [pos ] ; 
while (pos < ARRAY SIZE && array [pos] _= val) { 

pos++; 
rep++; 

} 
(*xmit struct) ->data [index ] = rep; 
(*xmit struct) ->data [index+l ] = val; 
index += 2; 

while (pos < ARRAY_SIZE); 

(*xmit struct) ->last = index-1; 2 
} 

void compress_array_from_xmit_rep(xmit_struct, array) 
compress_t *xmit struct; 
compress_array *array; 
{ 

} 

0 

int index, rep, count = 0; 

for (index = 0; index < xmit_struct->last; index+=2) 
for (rep = 0; rep < xmit_struct->data [index] ; rep++) 

(*array) [count++] = xmit_struct->data [index+l ] ; 

Special Topics 7-11 



Example 7-7: (continued) 

void compress_array_free(object) 

compress_array object; 

{ 

/* no freeing is appropriate here */ 

} 

void compress_array_free_xmit_rep(xmit_struct) Q 
compress_t *xmit_struct; 

{ 

free (xmit st ruct) ; 

} 

char *error text(st) 

status $t st; 

{ 

static char buff [200] ; 

extern char *error $c text(); 

return (error $c text (st, buff, sizeof buff)) ; 

} 

Q The compress_array_to_xmit_rep routine allocates storage for 
the compact array and then encodes the sparse array. 

The routine sets (* xmi t_s t ru ct) -> 1 a s t to the index of the last 
element that it copied to (* xmi t_s t ru ct) ->dat a, so that no more 
elements are passed than necessary. 

The compres s_array_f rom xmit_rep routine decodes the 
compact array, reconstructing the sparse array. Storage for the sparse 
array has already been allocated, so this routine does not perform any 
allocation. 

Because compre s s_array_f rom xmit_rep did not allocate any 
storage, c omp r e s s_a r r a y_ f r e e does not need to free any and thus 
is defined as a null operation. 

Storage allocated by compress_array_to_xmit_rep is freed by 
compre s s_array_f ree_xmit_rep. 

0 

0 

a 

0 

7.2.5.3 Restrictions —You cannot use a data type with the t ransmit_as 
attribute as an element of an array or as a member of a structure or union. In 
effect, you can use a type with transmit_as only as an operation 
parameter. 

A data type with the t r a n s m i t_a s attribute cannot serve as the 
transmitted type for another type. 

7-12 Special Topics 



7.3 Automatic Binding 
Automatic binding allows a client to represent objects with generic handles 
rather than RPC handles. The data type of a generic handle must have the 
handle type attribute. The generic handle can be either a first parameter in 
each operation (an explicit handle) or a global variable in the client (an 
implicit handle). 

Because the RPC run-time library uses only RPC handles, you must supply 
an autobinding routine that generates RPC handles from generic handles. The 
client stub invokes the autobinding routine each time the client makes a 
remote procedure call. In addition, you supply an autounbinding routine that 
performs any necessary cleanup (for instance, freeing the RPC handle) after 
the remote call returns. 

7.3.1 Automatic Binding Activity 
If an application uses automatic binding, the following occurs when the client 
makes a remote procedure call: 

1. The client makes a remote procedure call, through the client switch, to 
the stub. The client provides a generic handle either as the first 
parameter of the call (an explicit handle) or through a global variable 
(an implicit handle). 

2. The stub calls the autobinding procedure, passing to it the generic 
handle. 

3. The autobinding procedure returns an RPC handle to the stub. 

4. The stub uses the RPC handle as a parameter to the rp c_$ s a r library 
routine. 

5. The rp c_$ s a r routine returns the server response to the stub. 

6. The stub calls the autounbinding procedure, passing to it the RPC 
handle. 

7. The autounbinding procedure frees the RPC handle and any unneeded 
resources associated with the generic handle. 

8. The stub returns to the client. 

7.3.2 Autobinding and Autounbinding Routines 
When you use a generic handle type, you must write autobinding and 
autounbinding routines. This example shows the autobinding routine for 
UUIDs from the bank example. (Example 7-8 shows the entire routine.) The 
routine generates an RPC handle from an object QUID and returns the RPC 
handle: 

Special Topics 7-13 



handle_t uuid_$t_bind(object) 

uuid $t object; 

The next examples show C prototypes for these routines; in the prototypes, 
GENERIC is the name of the generic handle type (replacing uu i d_$ t in 
the previous example). The autobinding routine GENERIC_b i nd generates 
an RPC handle from a generic handle and returns the RPC handle: 

handle_t GENERIC_bind (~-handle) 
GENERIC ~-handle ; 

The autounbinding routine GENERIC_unb i nd takes two inputs, a generic 
handle and the RPC handle that was generated from it, and has no outputs: 

void GENERIC_unb i nd (g-handle, rpc-handle) 
GENERIC g-handle; 
handle t rpc-handle) ; 

An autounbinding routine typically frees the RPC handle and any unneeded 
resources associated with the generic handle, but it is not required to do 
anything. 

7.3.3 Automatic Binding in the bank Example 
Examples 7-8 and 7-9 show the autobinding and autounbinding routines from 
the bank example. 

These routines, defined in the uu i db i n d . c module, enable the bank 
example to use UUIDs as generic handles. They maintain a cache of handles 
to save the expense of invoking lb_$ lookup_ob j ect and rpc_$bind 
every time the client makes a remote procedure call; this approach is 
particularly useful in applications where the client tends to make several calls 
to access the same object. The file RPC $ I D L : NBASE . I D L defines the 
QUID data type, uu i d_$t, and assigns to this type the handle type 
attribute. 

7.3.3.y The bank Autobinding Routine -The autobinding routine, 
uu i d $ t bind, searches the cache for an RPC handle that matches the 
generic handle (the object UUID). If there is no matching handle in the 
cache, it calls lb_$ lookup_ob j ect to get the location of the object and 
calls rpc_$bind to create a new handle. It uses rpc_$dup_handle to 
return a copy of the handle. 

Each handle in the cache has an associated reference count. When all copies 
of a handle have been freed, meaning that its binding is not in use, the 
original handle is kept available but is considered "collectible." If its entry 
in the cache is needed for a new handle, it can be freed. 

7-14 Special Topics 



Example 7-8: An Autobinding Routine for UUIDs 

/* 
* Table mapping UUIDs into RPC handles. 
*/ 

r1 

static struct db entry { 
Boolean valid; /* 
uuid_$t obj; /* 
handle_t handle; /* 
unsigned short refcnt; /* 

} uuid db[MAX ENTRIES]; 

/* 
* Autobinding procedure for type "uuid $t". */ — 

handle_t uuid_$t_bind(object) 
uuid_$t object; 
{ 

Is this entry valid? */ 
Object UUID */ 
RPC handle for the object */ 
# of references on this entry */ 

short i, invalid_i = -1, collectible_i = -1; 
lb_$ ent ry_t lb_ent ry; 
unsigned long n_results; 
status_$t st; 
lb_$lookup_handle_t lookup handle = lb_$default_lookup_handle; 

/* 
* Scan the table for an entry that has a matching UUID. If 
* we find one, return the handle that's stored there. While 
* scanning, keep note of the last invalid entry (i.e. one that 
* is unused) and the last collectible entry (i.e. one that has 
* an object and handle but isn't being referenced by anyone). 
*/ 

for (i = 0; i < MAX ENTRIES; i++) { 
struct db_entry *db = &uuid db [ i ] ; 
if ( ! db->valid) 

invalid_i = i; 
else { 

if (bcmp (&db->obj, &object, sizeof object) _= 0) 
db->refcnt++; 
return (rpc $dup handle(db->handle, &st)); 

} 

if (db->refcnt == 0 ) 
collectible i = i; 

} 

{ 

} 

/* 
* Didn't find a match in the table. 
* Ask the LB for the location. 
*/ 

lb_$lookup_object(&object, &lookup handle, 1L, &n results, 
& lb entry, & st) ; 

if (st all != status_$ok ~ ~ n_results <= 0) { 
fprintf (stderr, 

" (uuid $t bind) Lookup failed, n_results old\n", 
n results); 

Special Topics 7-15 



Example 7-8: (continued) 

pfm $signal (st) ; 

} 

/* 

* Decide whether we have an entry to use. 

* Free the current handle if we're collecting the entry. 

*~ 

if (invalid i !_ -1) 

i = invalid i; 

else if (collectible i !_ -1) { 

i= collectible i; 

rpc_$ f ree_handle (uuid_db [ i ] .handle, & st) ; 

} 

else { 

fprintf (stderr, " (uuid_$t_bind) No space in cache\n") ; 

abort () ; 

} 

/* 

* Fill in the entry with our values. 

*~ 

uuid db[i].obj = object; 

uuid db [ i ] .valid = true; 

uuid db [ i ] . refcnt = 1; 

/* 

* Make an RPC handle for the object and location and return it. 

*~ 

uuid_db [ i ] .handle rpc_$bind (&object, & lb_entry . saddr, 

lb_entry.saddr_len, &st); 

if (st .all ! = status $ok) 

pfm $signal (st) ; 

return (rpc_$dup_handle (uuid_db [ i ] .handle, & st) ) ; 

} 

7.3.3.2 The bank Autounbinding Routine —The autounbinding routine, 
uuid_$t_unbind, uses rpc_$free_handle to free a copy of the RPC 
handle that matches the generic handle and decrements the reference count of 
the generic handle. 

7—~ 6 Special Topics 



Example 7-9: An Autounbinding Routine for UUIDs 

~* 
* Autounbinding procedure for type "uuid $t". *~ — 

void uuid_$t_unbind(object, handle) Q 
uuid_$t object; 
handle_t handle; 
{ 

} 

a 

0 
0 

unsigned short i; 
status $t st; 

/* 
* Scan the table looking for the handle. 
*~ 

for (i = 0; i < MAX ENTRIES; i++) { 

struct db entry *db = &uuid db [ i ] ; 

if (db->valid && db->handle == handle) 
rpc_$ f ree_handle (handle, & st) ; 02 
db->refcnt--; 03 
return; 

} 

{ 

} 

fprint f (stderr, 
" (uuid $t bind) tried to free a handle we didn't return\n") ; 

abort () ; 

The autounbinding routine uuid $ t_unb i n d takes two 
arguments—an object (of type uuid t $ and a handle of type 
handle_t. 

The routine uses rpc_$ f ree_handle to free a copy of the RPC 
handle that matches the generic handle. 

The routine then decrements the reference count of the handle. 

7.4 Multiple Interface Versions 
DECrpc allows a single server to simultaneously export several versions of 
an interface. The binopmv example, an extension of the binop_lu 
example described in Chapter 3, illustrates this feature. 

There are two versions of the binopmv interface. The first version is 
essentially identical to the binop_lu interface; the second version has one 
additional operation. 

The binopmv example actually does not require a server that exports both 
versions of the interface. Chapter 5 describes a way to add operations to 
interfaces while maintaining backward compatibility. However, binopmv 
illustrates the most general way to compatibly modify an interface. 

Special Topics 7-17 



This section describes the interface definitions, the client modules, the server 
module, and the manager module for binopmv. 

7.4.1 The binopmv Interface Definitions 
The binopmv example has two interface definition files, named 
vers 1 . idl and vers2 . idl. 

7.4.1.1 The versl.idl Interface Definition —Example 7-10 shows 
vers 1 . i dl, the NIDL definition for version 1 of the binopmv interface. 
This interface definition declares one operation, binopmv add. 

Example 7-10: The versl.idl Interface Definition for binopmv 

oc 
[uuid(4433af7ed000.Od.00.00.fe.da.00.00.00), version(1)] 

interface binopmv 
{ 

[idempotent] 
void binopmv add( 

handle t [in] h, 
long [ in ] a, 
long [ in ] b, 
long [out] *c 

); 
} 

7.4.1.2 The vers2.idl Interface Definition —Example 7-11 shows 
vers 2 . idl, the NIDL definition for version 2 of the binopmv interface. 
The definitions for the two versions of binopmv specify the same interface 
QUID and the same interface name, but different version numbers. 

The definition for version 2 declares two operations, binopmv add and 
binopmv$sub. 

Example 7-11: The vers2.idl Interface Definition for binopmv 

oc 
[uuid (4433af7ed000.Od.00.00. fe.da.00.00.00) , version (2) ] 
interface binopmv 

{ 

[idempotent ] 
void binopmv add( 

handle t [in] h, 
long [ in ] a, 
long [ in ] b, 
long [out] *c 

); 

[idempotent] 

7-18 Special Topics 



Example 7-11: (continued) 

void binopmv sub( 

handle t [in] h, 

long [in] a, 

long [ in ] b, 

long [out] *c 

): 
} 

7.4.2 Compiling the Interface Definitions 
When you compile interface definitions for an application whose server will 
export multiple interface versions, you must specify the NIDL Compiler's 
-m qualifier. 

If invoked with -m, the NIDL Compiler appends the version number to the 
interface name when it generates identifiers in the stub and header files. In 
effect, different versions of an interface have different names. 

The n i dl reference page describes all of the NIDL Compiler qualifiers. 

Table 7-1 lists the identifiers that the NIDL Compiler generates for the 
binopmv application. These identifiers are generated from the interface 
name and the version number. 

Table 7-1: Identifiers in the binopmv Example 

Component Identifier for Version 't Identifier for Version 2 

EPV type 
Client EPV 
Server EPV 
Interface specifier 

binopmv_v1$epv_t 
binopmv_vl$client_epv 
binopmv_v1$server_epv 
binopmv_v1$if_spec 

binopmv_v2$epv_t 
binopmv_v2$client_epv 
binopmv_v2$server_epv 
binopmv v2$if spec 

7.4.3 The binopmv Client Modules 
There are two client programs. The first, c 1 i ent 1. c, uses version 1 of 
the interface and calls binopmv add. The second, client2 . c, uses 
version 2 of the interface and calls both binopmv $add and 
binopmv sub. 

In most respects, the c 1 i ent 1. c and c 1 i ent 2 . c programs are similar 
to the binop_lu client described in Chapter 3, so the following 
discussions concentrate on the client program's use of multiple interface 
versions. 

Special Topics 7-19 



7.4.3.1 Header Fides —Each client includes the header file for its version of the 
interface as shown in the following examples. 

This example shows the include file for client 1. c: 

#include "versl.h" 

This example shows the include file for c 1 i ent 2 . c: 

#include "vers2.h" 

7.4.3.2 Location Broker Lookup Criteria —The clients perform Location 
Broker lookups by interface. Each client supplies to 
lb_$lookup_interface the id member of the if_spec for its 
version of the interface. 

This example shows the lb_$lookup_interface call for 
clientl.c: 
lb_$lookup_interface (&binopmv_vl$if_spec. id, &lookup_handle, 1L, 

&nresults, &entry, &st) ; 

This example shows the lb_$ lookup interface call for 
client2.c: 

lb_$lookup_interface(&binopmv_v2$if_spec.id, &lookup handle, 1L, 
&nresults, &entry, &st) ; 

Although these lookup calls appear to be different, they are in effect identical 
because versions 1 and 2 of the interface have the same UUID. Hence, the 
lookup calls will return information about all servers for binopmv, 
regardless of version. Each client must either check that a server exports the 
correct version or deal with possible version mismatches. 

7.4.3.3 Checking Interface Versions — After a binopmv client has obtained 
the Location Broker entry fora binopmv server, the client binds its handle 
to the location of the server and then checks that the server exports a 
matching version of the interface. Example 7-12 shows the version-checking 
code in c 1 i ent 1. c; c 1 i ent 2 . c contains essentially the same code. 

Example 7-12: Version-Checking Code in the client~l.c Module 
for binopmv 

... 
#include "versl.h" 
... 
#define VERSION 1 /* version of interface requested */ 

handle_t h; 
status $t st; 
rrpc $interface vec t ifs; 

7-20 Special Topics 



Example 7-12: (continued) 
unsigned long lastif; 

int k, passes, found version; 

.. 

/* check for appropriate version */ 

rrpc_$inq_interfaces (h, 2L, ifs, (ndr_$long_int *) &lastif, &st) ; Q 

for (k = 0, found version = 0; k <= lastif; k++) 02 

if (ifs [k] .vers == VERSION) found version = 1; 

if (!found version) { 

fprintf (stderr, "Couldn't get version od\n", VERSION) ; 

exit (1) ; 

} 

else printf("Found version od\n", VERSION); 

0 The client calls rrpc_$ inq_interfaces to obtain an 
r rp c_$ i nt e r f a c e_ve c_t , an array of interface specifiers for the 
interfaces exported by the server. 

The client code checks the vers member of each interface specifier 
against its own version until it finds a match. 

7.4.4 The binopmv Server Module 
The server module, server . c, largely resembles the b i n op_1 u server 
described in Chapter 3, but does all of its registrations and unregistrations 
twice, once for each interface version. 

7.4.4.1 Registrations and Unregistrations —Example 7-13 shows the 
registration and unregistration code in server . c. 

Example 7-13: Registrations and Unregistrations in the servers 
Module for binopmv 

... 
#include "versl.h" ~1
#include "vers2.h" 

globalref uuid_$t uuid_$nil; 
globalref binopmv vl$epv_t binopmv vl$manager_epv; 
globalref binopmv_v2$epv_t binopmv_v2$manager_epv; 

.. 
status $t st; 
socket_r$addr_t loc; 
unsigned long lien; 
lb $ ent ry_t lb_ent ry [ 2 ] ; 
pfm $cleanup_rec crec; 

0 

Special Topics 7-21 



Example 7-13: (continued) 

.. 

/* register version 1... */ 

rpc_$register_mgr(&uuid_$nil, &binopmv_vl$if_spec, Q 
binopmv_v1$server_epv, 

(rpc_$mgr_epv_t)&binopmv_v1$manager_epv, &st); 

/* ...and version 2 with the run-time library */ 

rpc_$register_mgr(&uuid_$nil, &binopmv_v2$if_spec, 

binopmv_v2$server_epv, 

(rpc_$mgr_epv_t)&binopmv_v2$manager_epv, &st); 

/* register version 1 with the lb */ 

lb_$register(&uuid_$nil, &uuid_$nil, &binopmv_vl$if_spec.id, OL, 

(ndr $char *) "binopmv example (vl) ", &loc, llen, 

& lb entry [ 0 ] , & st) ; 

/* ...and version 2 with the lb */ 

lb_$register(&uuid_$nil, &uuid_$nil, &binopmv_v2$if_spec.id, OL, 

(ndr $char *) "binopmv example (v2) ", &loc, lien, 

& lb entry [ 1 ] , & st) ; 

st =pfm $cleanup (&crec) ; 07 
if (stall ! pfm $cleanup_set) { 

status $t stat; 

fprintf (stderr, "Server received signal - os\n", 
error text (st)) ; 

lb_$unregister (&lb_entry [0] , &stat) ; 

lb $unregister (& lb entry [ 1 ] , & stat) ; 

rpc $unregister(&binopmv vl$if spec, &stat); 

rpc $unregister (&binopmv v2$if spec, &stat) ; 

pfm $signal (st) ; 

} 

0 
a 

The server includes the header files for both versions of the interface. 

The server declares two manager DPVs as external variables. 

These EPVs are defined in the manager module. Their names resemble 
those of the client and server EPVs, but this is merely by convention. 
Manager EPV names are arbitrary, since they appear only in server and 
manager code that you write, not in code that the NIDL Compiler 
generates. 

7--22 Special Topics 



0 

a 
0 

0 
0 

Because it exports several interface versions, the binopmv server 
must register each of its manager versions with the RPC run-time 
library at its (the server's) host. These registrations enable the run-time 
library to dispatch incoming requests to the correct version of the 
manager. 

This call registers the second version with the run-time library. 

The server also registers twice with the Location Broker. These 
registrations supply the same UUID to the Location Broker, and hence 
are indistinguishable to a client performing lookups. Each entry has a 
different annotation. 

This call registers the second version with the Location Broker. 

Before it calls rpc_$1 i st en to begin accepting requests, the server 
sets a cleanup handler. If it is signaled, the server removes all of its 
registrations before it exits. 

7.4.5 The binopmv Manager Module 
Figure 7-14 shows manager . c, the manager module for binopmv. This 
module contains all the code to implement both versions of binopmv. 

Example 7-~ 4: The managers Module for binopmv 

#include "versl.h" 01
#include "vers2.h" 

globaldef binopmv_vl$epv_t binopmv_vl$manager_epv = 
{binopmv add}; 

globaldef binopmv_v2$epv_t binopmv_v2$manager_epv = 
{binopmv add, binopmv sub}; Q 

void binopmv add (h, a, b, c) 
handle_t h; 
ndr_$long_int a, b, *c; 
{ 

*c a + b; 
} 

void binopmv sub (h, a, b, c) 
handle_t h; 
ndr $long int a, b, *c; 
{ 

} 

D 

*c a - b; 

The manager includes both versions of the header file. 

0 
0 

❑2 This global definition defines the manager EPV for version 1. 

Q The EPV for version 1 lists only one operation. 

Special Topics 7-23 



~4 This global definition defines the manager EPV for version 2. 

~5 The EPV for version 2 lists two operations. 

7.4.6 Changing Operations in Interfaces with Multiple Versions 
In the binopmv application, version 1 and version ?can share the manager 
routine for binopmv$add because the operation is identical in the two 
versions. If an operation has different signatures or implementations in two 
versions of the interface, you must write two manager routines for the 
operation. 

Suppose you are changing the implementation of b inopmv$ add between 
versions 1 and 2, and you are building a server that exports both versions. 
You must give distinct names such as binopmv_vl $add and 
binopmv_v2 $add to the two versions of the manager routine. Because 
these names are not declared in the ve r s 1. h and ve r s 2 . h header files 
that the NIDL Compiler generates, you must declare them in the manager 
module. 

Example 7-15 shows what a binopmv manager with two versions of 
b inopmv$ add might look like. 

Example 7-15: A Manager Module with Two Versions of an 
Operation 

#include "versl.h" 
#include "vers2.h" 

void binopmv_v1$add(); 
void binopmv v2$add(); 

globaldef binopmv vl$epv t binopmv_vl$manager_epv 
{binopmv vl$add}; 

globaldef binopmv_v2$epv_t binopmv_v2$manager_epv 
{binopmv v2$add, binopmv$sub}; 

void binopmv_vl$add (h, a, b, c) 
handle_t h; 
ndr $long int a, b, *c; 
{ 

*c a + b; 
} 

void binopmv_v2$add (h, a, b, c) 
handle_t h; 
ndr $long int a, b, *c; 
{ 

*c=b+a; 
} 

void binopmv$ sub (h, a, b, c ) 
handle_t h; 
ndr $long int a, b, *c; 

/* "old implementation" 

/* "new implementation" 

~D 

/1❑ 

7--24 Special Topics 



Example 7-15: (continued) 

*c = a - b; 

In this manager, the two versions of the add operation have different 
names and trivially different implementations. Clients of either 
interface version continue to invoke the operation by its name in the 
interface definition, b i n opmv $add. 

Of course, if an operation has a different signature as well as a different 
implementation in two versions of an interface, the manager routines 
and the interface definitions must reflect this difference. 

7.4.7 Constants and Types in Interfaces with Multiple Versions 
When you define a manager EPV, you can declare either that two versions of 
an interface will share a manager routine (as in Example 7-14) or that they 
will use different manager routines (as in Example 7-15). Thus, the names of 
the manager routines in a server will not conflict. The names of constants and 
types, however, can conflict. 

If you declare the same type in two versions of an interface definition, the 
NIDL Compiler emits a C t ype de f declaration for the type in both of the 
C header files it generates. When you build a server program that exports 
both interface versions, the server includes both header files, and hence the 
type declarations are duplicated. Most C compilers reject such duplicate type 
declarations. 

To avoid conflicts of type names, extract type declarations that are shared by 
the two versions of the interface and put these declarations in a version-
independent interface definition that is imported by the two version-specific 
interface definitions. When you compile the definitions, the NIDL Compiler 
emits directives in the version-specific header files to include the version-
independent header file. 

In effect, a server that exports both versions of the interface includes this file 
twice, but every header file generated by the NIDL Compiler contains 
conditional statements to ensure that its contents are read only once, and 
therefore no declarations are duplicated. 

If you declare a constant in two versions of an interface definition, the NIDL 
Corrtpiler emits a C preprocessor #define directive for the constant in 
both of the C header files it generates. Although most C preprocessors 
accept the resulting duplication, it is better practice to define each constant 
only once, so we recommend that you keep shared constants together with 
shared types in a separate interface definition file. Example 7-16 shows what 
an interface definition file for shared types and constants might look like. 

Special Topics 7-25 



The interface requires a name but no attributes. 

Example 7-~ 6: An Interface Definition File for Shared Types and 
Constants 

oc 
interface sharedstuff 
{ 
const VSIZE 1024; 

typedef struct { 
int vlast; 
float [last is (vlast) ) varray [VSIZE] ; 
} values; 

} 

7.5 Multiple Managers 
DECrpc allows one server to implement an interface for several object types. 
A separate manager implements each combination of interface and type. The 
server registers its objects and their types with the RPC run-time library and 
the Location Broker; it registers its managers with the RPC run-time library. 
This section describes the stacks application, in which a server manages 
two types of stacks, one based on lists and one based on arrays. 

7.5.1 The stacks Interface Definition 
Example 7-17 shows stacks . i dl, the NIDL definition for the stack s 
interface. There are operations to initialize a stack, to push a value onto a 
stack, and to pop a value off a stack. Because the interface definition is 
purely syntactic, it does not indicate in any way the existence of two types of 
stacks. Different object types require different implementations of operations, 
but not different signatures. 

When you compile stacks . i dl, specify the NIDL Compiler's —m 
qualifier. The n i dl reference description describes the NIDL Compiler 
qualifiers. 

Example 7-y 7: The stacks.idl Interface Definition 

oc 
[uuid (4438675bf000.Od.00.00. fe.da.00.00. 00) , version (1) ] 
interface stacks 
{ 
[idempotent] 

void stacks$init( 
handle_t [ in] h 
); 

/* stack functions return non-zero on error, zero otherwise */ 

7-26 Special Topics 



Example 7-17: (continued) 

int stacks push( 

handle t [in] h, 

int [ in ] value 

): 

int stacks pop( 

handle t [in] h, 

int [out] *value 

); 
} 

7.5.2 The stacksdf.h Header File 
Most of the examples in this book do not involve a particular object and 
hence specify uu i d_$ n i 1 as the object identifier. The bank example, 
introduced to illustrate automatic binding, accesses two bank databases that 
are objects of the same type. The stacks example accesses two stacks that 
are objects of different types. 

The stacksdf . h header file, shown in Example 7-18, defines symbolic 
constants to represent UUIDs for the two stacks (ASTACK and LSTACK) 
and their types (ASTACKT and LSTACKT). The replacement texts for these 
constants are C representations of UUIDs, which are generated by invoking 
uuid gen -with the —C qualifier. 

Example 7-18: The stacksdf.h Header File 

/* the two stack objects and their types */ 

/* the array-based object */ 
#define ASTACK {Ox44349d2c, 0x2000, 0x0000, OxOd, \ 

{ 0x00, 0x00, Oxfe, Oxda, 0x00, 

#define ASTACKT { Ox44349e25, 0x0000, 0x0000, OxOd, \ 
{ 0x00, 0x00, Oxfe, Oxda, 0x00, 

/* the list-based object */ 
#define LSTACK {Ox44349e48, 0x2000, 0x0000, OxOd, \ 

{ 0x00, 0x00, Oxfe, Oxda, 0x00, 

#define LSTACKT { Ox44349eed, 0x6000, 0x0000, OxOd, \ 
{ 0x00, 0x00, Oxfe, Oxda, 0x00, 0x00, 0x00 } } 

0x00, 0x00 } } 

0x00, 0x00 } } 

0x00, 0x00 } } 

7.5.3 The stacks Client Module 
Example 7-19 shows excerpts from the client module, c 1 i ent . c. The 
client program lets the user access both types of stacks within one session; it 
maintains a separate handle for each stack. (Other clients discussed maintain 
only one handle.) The handles are kept in an array, as are the UUIDs for the 

Special Topics 7-27 



stack types. For each type, the client: 

1. Performs a Location Broker lookup by type 

2. Scans the entries returned for one with the desired interface and address 
family 

3. Binds a handle to represent the object and the location registered in the 
entry 

When the client program calls stacks push or stacks pop, the 
object UUID in the handle determines the stack to be accessed. 

Example 7-19: Excerpts foam the clients Module for stacks 

... 
#include "stacks.h" 
#include "stackdf.h" 

#define MAXENTRIES 5 /* how many L.B. entries we can handle */ 

... 
main() 

{ 

handle_t handle[2]; 
status_$t st; 
lb $entry t entries [MAXENTRIES ] ; 

.. 
static uuid_$t types [ 2 ] _ { ASTACKT, LSTACKT } ; 

int s, t, k, found_if; 
ndr_$long_int val; 
char command [ 100 ] , which [ 100 ] , value [ 100 ] ; 

/* bind handles for each object type */ 
for (t = 0; t < 2; t++) { 

/* find lb entries for the type */ 
lb_$lookup_type(&types[t], &lookup handle, MAXENTRIES, &nresults, 

entries, &st) ; 
if (nresults < 1) { 

fprintf (stderr, 
"Couldn't find interfaces for type [ od] \n", t) ; 

exit (1) ; 
} 

/* check for appropriate interface for the type */ 
for (k = 0, found_if = 0; k < nresults; k++) 

if (uuid $equal (&entries [k] .obj interface, 
&stacks_vl$if_spec. id) && 

socket $valid family (entries [k] . saddr. family, &st) ) 
{ 

found if = 1; /* found appropriate interface */ 
break; 

} 

i f (! f ound_i f) { 
fprintf (stderr, "Couldn't find appropriate interface\n") ; lJ 

7-28 Special Topics 



Example 7-19: (continued) 

exit (1) ; 
} 

/* bind handle */ 

handle [t] = rpc_$bind (&entries [k] .object, 

&entries [k] .saddr, entries [k] .saddr len, &st) ; 
} 

printf ("Initialize stack objects (y/n) ? ") ; 

gets (command) ; 

i f (*command ! _ ' n' & & *command ! _ ' N') { 

stacks$init (handle [ 0 ]) ; 

stacks$init (handle [ 1 ] ) ; 
} 

do { 

printf ("push, pop, or quit : ") ; 

gets (command) ; 

i f (!strcmp (command, "quit ") ) break; 

printf("astack or lstack: "); 

gets (which) ; 

if ( !strcmp (which, "astack") ) s = 0; 

else s = 1; 

i f ( !strcmp (command, "push") ) { 

printf ("value : ") ; 

gets (value) ; 

val (ndr $long int) atoi (value) ; 

printf ("Pushing od onto o s . . . ", 

val, s?"lstack" : "astack") ; 

if (stacks push (handle [ s ] , val) ) printf ("stack full ! \n") ; 

else printf ("successful\n") ; 
} 

else i f (!strcmp (command, "pop") ) { 

printf ("Popping off of os . . . ", s?"lstack" : "astack") ; 

if (stacks pop (handle [ s ] , &val) ) 

printf ("nothing on stack ! \n") ; 

else printf ("value is od\n", val) ; 
} 

} while (strcmp (command, "quit") ) ; 
} 

Special Topics 7-29 



7.5.4 The stacks Server Module 
The server . c module is linked together with two manager modules to 
form the stacks server program, as shown in Example 7-20. 

The stacks server offers access to both types of stacks. It registers the 
stack objects and types with the RPC run-time library and the Location 
Broker, and it registers its managers with the RPC run-time library. 

The Location Broker registrations enable clients to look up the objects, types, 
and interfaces that the server supports, along with the location of the server. 

Example 7-20: Registrations and Unregistrations in the servers 
Module for stacks 

... 
#include "stackdf.h" 
#include "stacks.h" 
... 
globalref stacks_vl$epv_t stacks_vl$amanager_epv; 01
globalref stacks_vl$epv_t stacks_vl$lmanager_epv; 
. . 

status_$t st; 
lb_$ ent ry_t lb_ent ry [ 2 ] ; 
pfm $cleanup rec crec; 
static uuid_$t astack = ASTACK, astackt = ASTACKT; 
static uuid $t lstack = LSTACK, lstackt = LSTACKT; 

. . 

/* register manager and object for array-based stack object... */ 

rpc_$register_mgr(&astackt, &stacks_v1$if_spec, 02 
stacks_vl$server_epv, 

(rpc_$mgr_epv_t)&stacks_vl$amanager_epv, &st); 

rpc_$register_object(&astack, &astackt, &st); 0 

/* ...and list-based stack object with the run-time library */ 

rpc_$register mgr(&lstackt, &stacks_v1$if_spec, 
stacks_vl$server_epv, 
(rpc_$mgr_epv_t)&stacks_vl$mmanager_epv, &st); 

rpc_$register_object(&lstack, &lstackt, &st);05 

/* register array-based stack object/interface... */ 

lb_$register(&astack, &astackt, &stacks_vl$if_spec.id, OL, 
( ndr_$ char * ) "astack example" , & loc, l len, & lb_ent ry [ 0 ] , & st) ; 

/* ...and list-based stack object/interface with the lb*/ 

lb_$register (&lstack, &lstackt, &stacks_vl$if_spec. id, OL, 
(ndr_$char * ) "lstack example", &loc, llen, &lb_entry [ 1 ] , &st) ; Q7 

st = pfm $cleanup (&crec) ; 
if (st all ! pfm $cleanup set) { 

status_$t stat; 
fprintf (stderr, "Server received signal - os\n", 

error text (st) ) ; 

7—~0 Special Topics 



❑3

❑7 

❑8 

0 

Example 7-20: (continued) 

lb_$unregister (& lb_entry [ 0 ] , & stat) ; 

lb $unregister (&lb entry [ 1 ] , &stat) ; 

rpc_$unregister (&stacks_vl$if_spec, &stat) ; /* once for each 

rpc_$unregister(&stacks_vl$if_spec, &stat); /* manager 

pfm $signal (st) ; 
} 

~ The server module declares two manager EPVs as external variables. 

Q The manager registrations (rp c_$ r e g i s t e r_mg r calls) tell the RPC 
run-time library what combination of interface and type each manager 
implements. When the server receives a remote procedure call from a 
client, the run-time library dispatches the call to the correct- manager. 
This first call registers the manager for the array-based stack object. 

The object registrations (rpc_$ regi st e r_ob j e ct calls) tell the 
RPC run-time library what objects the server supports and what the 
type of each object is. This first call registers the array-based stack 
object. 

The second manager registration registers the manager for the list-based 
stack object. 

The second object registration registers the list-based stack object with 
the run-time library. 

The Location Broker registrations enable clients to look up the objects, 
types, and interfaces that the server supports, along with the location of 
the server. This call registers the array-based stack object/interface with 
the Location Broker. 

The second call to lb_$ r e g i s t e r registers the array-based stack 
object/interface. 

Before it calls rp c_$1 i s t en to begin accepting requests, the server 
sets a cleanup handler. 

If the cleanup handler is signaled, the server removes all of its 
registrations before it exits. 

7.5.5 The stacks Manager Modules 
A separate manager module implements the stacks interface for each type 
of stack: lmanage r . c (Example 7-21) manages stacks based on linked 
lists, and amanager . c (Example 7-22) manages stacks based on arrays. 

Each manager module defines a manager EPV. The EPV specifies the names 
under which the stacks operations are implemented. Because both 
managers are being linked in one server, the two implementations of each 
operation have different names. 

Special Topics 7-31 



Example 7-21: The imanager.c Manager Module for stacks 

#include "stacks.h" 

void stacks$lstack_init(); 
ndr_$long_int stacks$lstack_push(), stacks$lstack_pop(); 

globaldef stacks_vl$epv_t stacks_v1$lmanager_epv = 
{stacks$lstack init, stacks$lstack push, stacks$lstack pop}; 

#define NULL (struct node *) 0 
extern struct node *malloc(); 

static struct node { 
ndr_$long_int value; 
struct node *next; 

} the stack; 

void stacks$lstack_init(h) 
handle_t h; 
{ 

the stack.next = NULL; 
} 

ndr_$long_int stacks$lstack_push(h, value) 
handle_t h; 
ndr_$long_int value; 
{ 

struct node *head = malloc (sizeof (struct node) ) ; 
if (head == NULL) return -1; /* stack is full */ 

head->value = value; 
head->next = the stack.next; 
the_stack.next = head; 
return 0; 

} 

ndr_$long_int stacks$lstack_pop(h, value) 
handle_t h; 
ndr_$long_int *value; 
{ 

struct node *head = the_stack.next; 
if (head == NULL) return -l; /* stack is empty */ 

*value head->value; 
the_stack.next = head->next; 
free (head) ; 
return 0; 

} 

7~2 Special Topics 



Example 7-22: The amanager.c A~anager Module for stacks/ 

#include "stacks.h" 

void stacks$astack_init(); 
ndr_$long_int stacks$astack_push(), stacks$astack_pop(); 

globaldef stacks_vl$epv t stacks_vl$amanager_epv 
{stacks$astack_init, stacks$astack_push, stacks$astack_pop}; 

#define STACKSIZE 1000 

static struct { 
int head; 
ndr_$long_int values[STACKSIZE]; 

} the stack; 

void stacks$astack_init(h) 
handle t h; 
{ 

the stack.head = STACKSIZE; 
} 

ndr_$long_int stacks$astack_push(h, value) 
handle_t h; 
ndr_$long_int value; 
{ 

if (the stack.head == 0) return -1; /* stack is full */ 

the stack.values[--the stack.head] value; 

return 0; 
} 

ndr_$long_int stacks$astack_pop(h, value) 
handle_t h; 
ndr_$long_int *value; 
{ 

if (the_stack.head == STACKSIZE) return -1; /* stack is empty */ 
*value = the_stack.values[the_stack.head++]; 
return 0; 

} 

Special Topics 7-33 





error_$ Routine Reference Pages 

This chapter contains reference pages for the error $routines. 

The error text database operations use the e r ro r_$ c_get_t e xt and 
error_$c_text library routines to convert status codes into textual error 
messages. The run-time library reports operational problems back to the 
application following a call by setting the "all" field of the status_$t 
structure. A value of status_$ok indicates that no errors were detected. Any 
other value implies that a problem occurred. The status_$t structure and the 
error_$ routines can be used to display a textual representation of the error 
condition. 

8.1 Data Types 
This section describes the data types used in error $routines. 

The error_$ routines take as input a status code in status_$t format. 

status $t A status code. Most of the DECrpc routines supply their 
completion status in this format. The status_$t type is 
defined as a structure containing a long integer: 

struct status_$t { 
long all; 

} 

However, the routines can also use status_$t as a set of bit 
fields. To access the fields in a returned status code, you can 
assign the value of the status code to a union defined as 
follows: 

typedef union { 
struct { 

unsigned fail 1, 
subsys 7, 
modc 8 ; 

short code; 

} s; 
long all; 

} status u; 

all All 32 bits in the status code. If all is equal 
to status_$ok, the routine that supplied the 
status was successful. 



fail If this bit is set, the error was not within the 
scope of the module invoked, but occurred 
within alower-level module. 

subsys This indicates the subsystem that 
encountered the error. 

modc This indicates the module that encountered 
the error. 

code This is a signed number that identifies the 
type of error that occurred. 

8-2 error $Routine Reference Pages 



error_$c_get text 

Name 
error_$c~et_text —return subsystem, module, and error texts for a status code 

Format 
void error_$c_get_text(status, suhsys, suhsysmax, module, modulemax, 

error, errormax) 
status_$t status; 
char *suhsys; 
long suhsysmax; 
char *module; 
long modulemax; 
char *error; 
long errormax; 

Arguments 

status 

suhsys 

suhsysmax 

module 

modulemax 

error 

errormax 

A status code in status $t format. 

A character string. The subsystem represented by the status code. 

The maximum number of bytes to be returned in suhsys. 

A character string. The module represented by the status code. 

The maximum number of bytes to be returned in module. 

A character string. The error represented by the status code. 

The maximum number of bytes to be returned in erroj-. 

Description 
The error $c_get_text routine returns predefined text strings that describe the 
subsystem, the module, and the error represented by a status code. The strings are 
null terminated. 

Data Types 
This section describes the data types used in this error $routine. 

The error_$ routine take as input a status code in status_$t format. 

status $t 
A status code. Most of the DECrpc routines supply their completion status 
in this format. The status_$t type is defined as a structure containing a long 
integer: 

error $Routine References Pages 8-3 



error $c_get_text 

struct status_$t { 
long all; 

} 

However, the routines can also use status_$t as a set of bit fields. To access 
the fields in a returned status code, you can assign the value of the status 
code to a union defined as follows: 
typedef union { 

struct { 

unsigned fail 1, 
subsys 7, 

modc 8; 
short code; 

} s; 
long all; 

} status u; 

all All 32 bits in the status code. If all is equal to status_$ok, 
the routine that supplied the status was successful. 

fail If this bit is set, the error was not within the scope of the 
module invoked, but occurred within alower-level module. 

subsys This indicates the subsystem that encountered the error. 

modc This indicates the module that encountered the error. 

code This is a signed number that identifies the type of error that 
occurred. 

Files 
RPC$LIB:RPC$STCODE.DAT 

8-4 error $Routine References Pages 



error_$c text 

Name 
error_$c_text —return an error message for a status code 

Format 
void error_$c_text(status, message, messagemax) 
status_$t status; 
char *message; 
int messagemax; 

Arguments 

status A status code in status $t format. 

message A character string. The error message represented by the status 
code. 

messagemax The maximum number of bytes to be returned in message. 

Description 
The error_$c_text routine returns a null terminated error message for reporting 
the completion status of a routine. The error message is composed from predefined 
text strings that describe the subsystem, the module, and the error represented by the 
status code. 

Files 
RPC$LIB:RPC$STCODE.DAT 

error $Routine References Pages 8-5 





Ib_$ Routine Reference Pages 9 

This chapter contains reference pages for the lb_$ routines, which 
implement the programmatic interface to the Location Broker Client Agent. 

The lb $interface is defined by these files: 

On VMS systems RPC$IDL:LB.IDL 

On ULTRIX systems /usr/include/idl/c/glb . h 

9.1 External Variables 
This section describes the external variable used in lb $routines. 

uuid_$nil An external uuid_$t variable that is preassigned the value of 
the nil UUID. Do not change the value of this variable. 

9.2 Constants 
This section describes constants used in lb $routines. 

lb_$default_lookup_handle 
Used as an input in Location Broker lookup routines. 
Specifies that a lookup is to start searching at the beginning 
of the database. 

lb_$server_flag_local 
Used in the flags field of an lb_$entry_t variable. Specifies 
that an entry is to be registered only in the Local Location 
Broker (LLB) database. See the description of 
lb_$server_flag_t in Section 9.3. 

status_$ok A constant used to check status. If a completion status is 
equal to status_$ok, then the routine that supplied it was 
successful. 

9.3 Data Types 
This section describes data types used in lb_$ routines. 

lb_$entry_t An identifier for an object, a type, an interface, and the 
socket address used to access a server exporting the interface 
to the object. The lb $entry_t type is defined as follows: 



typedef struct lb_$entry_t lb_$entry_t; 
struct lb_$entry_t { 

uuid_$t object; 
uuid_$t obj_type; 
uuid_$t obj_interface; 
lb_$server_flag_t flags; 
ndr_$char annotation[64]; 
ndr_$ulong_int saddr_len; 
socket $addr t saddr; 

}; 

object A uuid_$t. The UUID for the object. Can 
be uuid_$nil if no object is associated. 

ob j_type A uuid_$t. The QUID for the type of the 
object. Can be uuid_$nil if no type is 
associated. 

obj_interface A uuid_$t. The QUID for the interface. 
Can be uuid_$nil if no interface is 
associated. 

flags An lb_$server_flag_t. Must be 0 or 
lb_$server_flag_local. A value of 0 
specifies that the entry is to be registered in 
both the Local Location Broker (LLB) and 
global Location Broker (GLB) databases. A 
value of lb_$server_flag_local specifies 
registration only in the LLB database. 

annotation A 64-character array. User-defined textual 
annotation. 

saddr_len A 32-bit integer. The length of the saddr 
field. 

saddr A socket_$addr_t. The socket address of 
the server. 

lb_$lookup_handle_t 
A 32-bit integer used to specify the location in the database 
at which a Location Broker lookup operation will start. 

lb_$server_flag_t 
A 32-bit integer used to specify the Location Broker 
databases in which an entry is to be registered. A value of 0 
specifies registration in both the Local Location Broker 
(LLB) and Global Location Broker (GLB) databases. A 
value of lb_$server_flag_local specifies registration only in 
the LLB database. 

socket_$addr_t 
A socket address record that uniquely identifies a socket. 

9-2 Ib_$ Routine Reference Pages 



status $t 

uuid $t 

A status code. Most of the DECrpc routines supply a 
completion code in this format. The status_$t type is 
defined as a structure containing a long integer: 
struct status_$t { 

long all; 
} 

However, the system calls can also use status_$t as a set of 
bit fields. To access the fields in a returned status code, you 
can assign the value of the status code to a union defined as 
follows: 
typedef union { 

struct { 
unsigned fail 1, 

subsys 7, 
modc 8; 

short code; 
} s; 
long all; 

} status u; 

all All 32 bits in the status code. If all is equal 
to status_$ok, the system call that supplied 
the status was successful. 

fail If this bit is set, the error was not within the 
scope of the module invoked, but occurred 
within alower-level module. 

subsys This indicates the subsystem that 
encountered the error. 

modc This indicates the module that encountered 
the error. 

code This is a signed number that identifies the 
type of error that occurred. 

A 128-bit value that uniquely identifies an object, type, or 
interface for all time. 

9.4 Example 
The following statement looks up information in the GLB database about a 
matrix multiplication interface: 
lb_$lookup_interface (&matrix_id, &lookup handle, max_results, 

&num results, &matrix results, &st); 

Ib_$ Routine Reference Pages 9-3 



Ib_$lookup_interface 

Name 
lb_$lookup_interface —look up information about an interface in the Global Location 
Broker database 

Format 
#include <lb.h> 

void lb_$lookup_interface(obj_inte~ face, lookup handle, max num_j•esults, 
num results, results, status) 

uuid_$t *obj_ifzter face; 
lb_$lookup_handle_t *lookup handle; 
unsigned long max_num_j-esults; 
unsigned long * num results; 
lb_$entry_t results[ ]; 
status ~t *status; 

Arguments 

ohj_inte~ face 

lookup handle 

The QUID of the interface being looked up. 

A location in the database. 

On input, the lookup_handle indicates the location in the 
database where the search begins. An input value of 
lb_$default_lookup_handle specifies that the search will 
start at the beginning of the database. 

On return, the lookup_hajzdle indicates the next unsearched 
part of the database (that is, the point at which the next 
search should begin). A return value of 
lb_$default_lookup_handle indicates that the search 
reached the end of the database. Any other return value 
indicates that the search found, at most, max_num_resul is 
matching entries before it reached the end of the database. 

max_num_results The maximum number of entries that can be returned by a 
single routine. This should be the number of elements in the 
results array. 

num results The number of entries that were returned in the results array. 

9-4 Ib_$ Routine Reference Pages 



Ib $lookup interface 

results An array that contains the matching GLB database entries, 
up to the number specified by the max num_results 
parameter. If the array contains any entries for servers on 
the local network, those entries appear first. 

status The completion status. 

Description 
The lb_$10 okup_i nt e r f a c e routine returns GLB database entries whose 
obj_interface fields match the specified interface. It returns information about objects 
that can be accessed through that interface. 

The lb_$ lookup_int e r f ace routine cannot return more than max num_results 
matching entries at a time. The lookup handle parameter enables you to find all 
matching entries by doing sequential lookups. 

If you use a sequence of lookup routines to find entries in the database, it is possible 
that the returned results will skip or duplicate entries. This is because the Location 
Broker does not prevent modification of the database between lookups, and such 
modification can change the locations of entries relative to a lookup handle value. 

It is also possible that the results of a single lookup routine will skip or duplicate 
entries. This can occur if the size of the results exceeds the size of an RPC packet 
(64K bytes). 

Example 
The following statement looks up information in the GLB database about a matrix 
multiplication interface: 

lb_$lookup_interfa~e (&matrix_id, &lookup handle, max results, 
&num results, &matrix results, &st) ; 

Diagnostics 
This section lists status codes for errors returned by this lb_$ routine. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 
Location Broker; in this case, delete the out-of-date database 
and reregister any entries that it contained. The LLB or 
GLB that was accessed may be running out-of-date software; 
in this case, update all Location Brokers to the current 
software version. 

Ib $Routine Reference Pages 9-5 



Ib_$lookup_interface 

lb_$database_busy The Location Broker database is currently in use in an 
incompatible manner. 

lb_$not_registered The Location Broker does not have any entries that match 
the criteria specified in the lookup or unregister routine. The 
requested object, type, interface, or combination thereof is 
not registered in the specified database. If you are using an 
lb_$lookup_object_localorlb_$lookup_range 
routine specifying an LLB, check that you have specified the 
correct LLB. 

lb_$cant_access The Location Broker cannot access the database. Among the 
possible reasons: 

1. The database does not exist. 

2. The database exists, but the Location Broker cannot 
access it. 

lb_$server_unavailable 
The Location Broker Client Agent cannot reach the 
requested GLB or LLB. A communications failure occurred 
or the broker was not running. 

Files 
RPC$INCLUDE:/glb.h 

See Also 
intro, lb_$lookup_object, lb_$lookup_range, lb_$lookup_type 

9-6 Ib_$ Routine Reference Pages 



Ib $lookup_object 

Name 
lb_$lookup_object —look up information about an object in the Global Location 
Broker database 

Format 
#include <lb.h> 

void lb_$lookup_object (object, lookup_handle, max_num_results, 
num results, results, status) 

uuid_$t *object; 
lb_$lookup_handle_t *lookup handle; 
unsigned long max num results; 
unsigned long * num_resul ts; 
lb_$entry_t results[ ]; 
status_$t *status; 

Arguments 

object The QUID of the object being looked up. 

lookup handle A location in the database. 

On input, the lookup_haizdle indicates the location in the 
database where the search begins. An input value of 
lb_$default_lookup_handle specifies that the search will 
start at the beginning of the database. 

On return, the lookup handle indicates the next unsearched 
part of the database (that is, the point at which the next 
search should begin). A return value of 
lb_$default_lookup_handle indicates that the search 
reached the end of the database. Any other return value 
indicates that the search found, at most, max_num_resul is 
matching entries before it reached the end of the database. 

max num_j-esul is The maximum number of entries that can be returned by a _ 
single routine. This should be the number of elements in the 
results array. 

num results The number of entries that were returned in the results array. 

Ib_$ Routine Reference Pages 9-7 



Ib_$lookup_object 

results 

status 

An array that contains the matching GLB database entries, 
up to the number specified by the ma_x num_resi~lts 
parameter. If the array contains any entries for servers on 
the local network, those entries appear first. 

The completion status. If the completion status returned in 
status . a 11 i s equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The lb_$1 ookup_ob j e ct routine returns GLB database entries whose object field 
matches the specified object QUID. 

The lb_$10okup_ob j ect routine cannot return more than max_num_results 
matching entries at a time. The lookup handle parameter enables you to find all 
matching entries by doing sequential lookups. 

If you use a sequence of lookup routines to find entries in the database, it is possible 
that the returned results will skip or duplicate entries. This is because the Location 
Broker does not prevent modification of the database between lookups, and such 
modification can change the locations of entries relative to a lookup_hayidle value. 

It is also possible that the results of a single lookup routine will skip or duplicate 
entries. This can occur if the size of the results exceeds the size of an RPC packet 
(64K bytes). 

Example 
The following statement, looks up GLB database entries for the object identified by 
bank id 

lb_$lookup_object(&bank_id, &lookup handle, 
MAX LOCS, &n locs, bank loc, &status) ; 

Diagnostics 
This section lists status codes for errors returned by this lb_$ routine in 
status .all. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 
Location Broker; in this case, delete the out-of-date database 
and reregister any entries that it contained. The LLB or 
GLB that was accessed may be running out-of-date software; 
in this case, update all Location Brokers to the current 
software version. 

9-8 Ib_$ Routine Reference Pages 

lJ 



Ib $lookup object 

Files 

lb_$database_busy 

lb_$not_registered 

lb $cant access 

The Location Broker database is currently in use in an 
incompatible manner. 

The Location Broker does not have any entries that match 
the criteria specified in the lookup or unregister routine. The 
requested object, type, interface, or combination thereof is 
not registered in the specified database. If you are using an 
lb_$lookup object_localorlb_$lookup range 
routine specifying an LLB, check that you have specified the 
correct LLB. 

The Location Broker cannot access the database. Among the 
possible reasons: 

• The database does not exist. 

• The database exists, but the Location Broker cannot 
access it. 

lb $server unavailable _ 
The Location Broker Client Agent cannot reach the 
requested GLB or LLB. A communications failure occurred 
or the broker was not running. 

RPC$IDL:LB.IDL 

See Also 
lb_$lookup_interface, lb_$lookup_object_local, lb_$lookup_range, lb_$lookup_type 

Ib_$ Routine Reference Pages 9-9 



Ib_$lookup_object_local 

Name 
lb_$lookup_object_local —look up information about an object in a Local Location 
Broker database 

Format 
#include <lb.h> 

void lb_$lookup_object_local(object, location, location length, lookup_handle 
max num results, num results, results, status) 

uuid_$t object; 
socket_$addr_t *location; 
unsigned long location length; 
lb_$lookup_handle_t *lookup handle; 
unsigned long max num results; 
unsigned long *num_results; 
lb_$entry_t results[ ]; 
status $t *status; 

Arguments 

object The QUID of the object being looked up. 

location The location of the LLB database to be searched. The 
socket address must specify the network address of a host. 
However, the port number in the socket address is ignored, 
and the lookup request is always sent to the LLB port. 

location length The length, in bytes, of the socket address specified by the 
location field. 

lookup handle A location in the database. 

On input, the lookup_handle indicates the location in the 
database where the search begins. An input value of 
lb_$default_lookup_handle specifies that the search will 
start at the beginning of the database. 

On return, the lookup handle indicates the next unsearched 
part of the database (that is, the point at which the next 
search should begin). A return value of 
lb_$default_lookup_handle indicates that the search 
reached the end of the database. Any other return value 

9—~ 0 Ib_$ Routine Reference Pages 



Ib_$lookup_object_local 

indicates that the search found, at most, max_num_resul is 
matching entries before it reached the end of the database. 

max_num_results The maximum number of entries that can be returned by a 
single routine. This should be the number of elements in the 
results array. 

num j-esults The number of entries that were returned in the j•esults array. 

results An array that contains the matching GLB database entries, 
up to the number specified by the max num_results 
parameter. If the array contains any entries for servers on 
the local network, those entries appear first. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The lb_$1 ookup_ob j e ct_1 o ca 1 routine searches the specified LLB database 
and returns all entries whose object field matches the specified object. 

The lb_$1 ookup_ob j e ct_1 o ca 1 routine cannot return more than 
max num results matching entries at a time. The lookup_handle parameter enables 
you to find all matching entries by doing sequential lookups. 

If you use a sequence of lookup routines to find entries in the database, it is possible 
that the returned results will skip or duplicate entries. This is because the Location 
Broker does not prevent modification of the database between lookups, and such 
modification can change the locations of entries relative to a lookup_handle value. 

It is also possible that the results of a single lookup routine will skip or duplicate 
entries. This can occur if the size of the results exceeds the size of an RPC packet 
(64K bytes). 

Example 
The following statement looks up information about the object locobj. Because there 
is only one entry on any host, the routine will return at most one result: 

lb_$lookup_object_local (&locobj_id, &location, location length, 

&lookup handle, 1, &num results, 

&results, &status); 

Ib_$ Routine Reference Pages 9-11 



Ib_$lookup_object_locai 

Diagnostics 
This section lists status codes for errors returned by this lb_$ routine in 
status .all. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 
Location Broker; in this case, delete the out-of-date database 
and reregister any entries that it contained. The LLB that 
was accessed may be running out-of-date software; in this 
case, update all Location Brokers to the current software 
version. 

Files 

lb_$database_busy 

Ib_$not_registered 

The Location Broker database is currently in use in an 
incompatible manner. 

The Location Broker does not have any entries that match 
the criteria specified in the lookup or unregister routine. The 
requested object, type, interface, or combination thereof is 
not registered in the specified database. If you are using an 
lb_$lookup_object local or lb_$lookup_range 
routine specifying an LLB, check that you have specified the 
correct LLB. 

lb_$cant_access The Location Broker cannot access the database. Among the 
possible reasons: 

• The database does not exist. 

• The database exists, but the Location Broker cannot 
access it. 

lb_$server_unavailable 
The Location Broker Client Agent cannot reach the 
requested LLB. A communications failure occurred or the 
broker was not running. 

RPC$IDL:LB.IDL 

See Also 
lb_$lookup_range 

9-12 Ib_$ Routine Reference Pages 



Ib $lookup range 

Name 
lb_$lookup_range —look up information in a Global Location Broker or Local 
Location Broker database 

Format 
#include <lb.h> 

void Ib_$lookup_range (ohjec.~t, ohj_rype, ohj_iiTte~ face, locationz, 
location length, lookup_handle, max_num_results, 
num_results, results, status) 

uuid_$t *object; 
uuid_$t *ohj_rype; 
uuid_$t *ohj_intej face; 
socket_$addr_t *location; 
unsigned long location length; 
lb_$lookup_handle_t lookup_handle; 
unsigned long max_num_results; 
unsigned long *num_results; 
lb_$entry_t results( J; 
status_$t *status); 

Arguments 

object 

ohj_rype 

obj_inte~ face 

location 

location length 

lookup handle 

The QUID of the object being looked up. 

The QUID of the type being looked up. 

The QUID of the interface being looked up. 

The location of the database to be searched. If the value of 
location length is 0, the GLB database is searched. 
Otherwise, the LLB database at the host specified by 
location is searched; in this case, the port number in the 
socket address is ignored, and the lookup request is sent to 
the LLB port. 

The length, in bytes, of the socket address specified by the 
location field. A value of 0 indicates that the GLB database 
is to be searched. 

A location in the database. 

On input, the lookup handle indicates the location in the 
database where the search begins. An input value of 

Ib $Routine Reference Pages 9-13 



Ib_$lookup_range 

lb_$default_lookup_handle specifies that the search will 
start at the beginning of the database. 

On return, the lookup handle indicates the next unsearched 
part of the database (that is, the point at which the next 
search should begin). A return value of 
lb_$default_lookup_handle indicates that the search 
reached the end of the database. Any other return value 
indicates that the search found, at most, max ni~m results 
matching entries before it reached the end of the database. 

max num resul is The maximum number of entries that can be returned by a 
single routine. This should be the number of elements in the 
results array. 

num results The number of entries that were returned in the results array. 

results An array that contains the matching GLB database entries, 
up to the number specified by the max num_results 
parameter. If the array contains any entries for servers on 
the local network, those entries appear first. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The lb $ lookup_range routine returns database entries whose object, ohj_type, 
and ohj interface fields match the specified values. A value of uuid_$nil in any of 
these input parameters acts as a wildcard and will match any value in the 
corresponding entry field. You can specify wildcards in any combination of these 
parameters. 

The lb_$ lookup range routine cannot return more than max num_results 
matching entries at a time. The lookup handle parameter enables you to find all 
matching entries by doing sequential lookups. 

If you use a sequence of lookup routines to find entries in the database, it is possible 
that the returned results will skip or duplicate entries. This is because the Location 
Broker does not prevent modification of the database between lookups, and such 
modification can change the locations of entries relative to a lookup handle value. 

It is also possible that the results of a single lookup routine will skip or duplicate 
entries. This can occur if the size of the results exceeds the size of an RPC packet 
(64K bytes). 

9—~ 4 Ib_$ Routine Reference Pages 



Ib $lookup range 

Example 
The following statement looks up information in the GLB database about servers that 
export the matrix interface for any objects of type array. The variable glb is defined 
elsewhere as a null pointer. 
lb_$lookup_range(&uuid_$nil, &array_id, &matrix_id, glb, 0, 

&lookup handle, max_results, 
&num results, results, &status); 

Diagnostics 
This section lists status codes for errors returned by this lb_$ routine in 
status all. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 
Location Broker; in this case, delete the out-of-date database 
and reregister any entries that it contained. The LLB or 
GLB that was accessed may be running out-of-date software; 
in this case, update all Location Brokers to the current 
software version. 

Ib_$database_busy 

lb_$not_registered 

lb $cant access 

The Location Broker database is currently in use in an 
incompatible manner. 

The Location Broker does not have any entries that match 
the criteria specified in the lookup or unregister routine. The 
requested object, type, interface, or combination thereof is 
not registered in the specified database. If you are using an 
lb_$lookup object_localorlb_$lookup range 
routine specifying an LLB, check that you have specified the 
correct LLB. 

The Location Broker cannot access the database. Among the 
possible reasons: 

• The database does not exist. 

• The database exists, but the Location Broker cannot 
access it. 

lb_$server_unavailable 
The Location Broker Client Agent cannot reach the 
requested LLB. A communications failure occurred or the 
broker was not running. 

Ib_$ Routine Reference Pages 9-15 



Ib_$lookup_range 

Files 
RPC$IDL:LB.IDL 

See Also 
lb_$lookup_interface, lb_$lookup_object, lb_$lookup_object_local, lb_$lookup_type 

9—~ 6 Ib_$ Routine Reference Pages 



Ib_$lookup type 

Name 
lb_$lookup_type —look up information about a type in the Global Location Broker 
database 

Format 
#include <lb.h> 

void lb_$lookup_type(obj_type, lookup handle, mar ~Tum_results, 
num results, results, status) 

uuid_$t *obj_type; 
lb_$lookup_handle_t lookup_handle; 
unsigned long max num results; 
unsigned long *num results; 
lb_$entry_t j-esults[ ]; 
status_$t `status; 

Arguments 

obj_type 

lookup_hajzdle 

The UUID of the type being looked up. 

A location in the database. 

On input, the lookl~p_hatldle indicates the location in the 
database where the search begins. An input value of 
lb_$default_lookup_handle specifies that the search will 
start at the beginning of the database. 

On return, the lookup_hajidle indicates the next unsearched 
part of the database (that is, the point at which the next 
search should begin). A return value of 
lb_$default_lookup_handle indicates that the search 
reached the end of the database. Any other return value 
indicates that the search found, at most, max_num_j•esults 
matching entries before it reached the end of the database. 

max_jlum_resi~lts The maximum number of entries that can be returned by a 
single routine. This should be the number of elements in the 
j•esults array. 

num results The number of entries that were returned in the results array. 

results An array that contains the matching GLB database entries, 
up to the number specified by the max num results 

Ib_$ Routine Reference Pages 9-17 



Ib_$lookup type 

status 

parameter. If the array contains any entries for servers on 
the local network, those entries appear first. 

The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The lb_$ lookup type routine returns GLB database entries whose obj_type 
fields match the specified type. It returns information about all objects of that type 
and about all interfaces to each of these objects. 

The lb_$ lookup type routine cannot return more than max num_results 
matching entries at a time. The lookup_handle parameter enables you to find all 
matching entries by doing sequential lookups. 

If you use a sequence of lookup routines to find entries in the database, it is possible 
that the returned results will skip or duplicate entries. This is because the Location 
Broker does not prevent modification of the database between lookups, and such 
modification can change the locations of entries relative to a lookup_handle value. 

It is also possible that the results of a single lookup routine will skip or duplicate 
entries. This can occur if the size of the results exceeds the size of an RPC packet 
(64K bytes). 

Example 
The following statement looks up information in the GLB database about the type 
array 

lb_$lookup_type (&array_id, &lookup handle, max results, 
&num results, &results, &status); 

Diagnostics 
This section lists status codes for errors returned by this lb_$ routine in 
status.all. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 
Location Broker; in this case, delete the out-of--date database 
and reregister any entries that it contained. The LLB or 
GLB that was accessed may be running out-of--date software; 
in this case, update all Location Brokers to the current 
software version. 

9-18 Ib_$ Routine Reference Pages 



Ib_$lookup type 

Files 

lb_$database_busy 

lb_$not_registered 

lb $cant access 

The Location Broker database is currently in use in an 
incompatible manner. 

The Location Broker does not have any entries that match 
the criteria specified in the lookup or unregister routine. The 
requested object, type, interface, or combination thereof is 
not registered in the specified database. If you are using an 
lb_$lookup_object_localorlb_$lookup_range 
routine specifying an LLB, check that you have specified the 
correct LLB. 

The Location Broker cannot access the database. Among the 
possible reasons: 

• The database does not exist, and the Location Broker 
cannot create it. 

• The database exists, but the Location Broker cannot 
access it. 

• The GLB entry table is full. 

lb_$server_unavailable 
The Location Broker Client Agent cannot reach the 
requested GLB or LLB. A communications failure occurred 
or the broker was not running. 

RPC$IDL:LB.IDL 

See Aiso 
lb_$lookup_interface, lb_$lookup_object, lb_$lookup_range 

Ib_$ Routine Reference Pages 9-19 



Ib_$register 

Name 
lb_$register —register an object and an interface with the Location Broker 

Format 
#include <lb.h> 

void lb_$register(object, obj_type, obj_ir~terface, flags, annotation[64], 
location, location length, entry, status) 

uuid_$t object; 
uuid_$t *obj_type; 
uuid_$t *obj_interface; 
lb_$server_flag_t flags; 
unsigned char annotation [64]; 
socket_$addr_t *location; 
unsigned long location_length; 
lb_$entry_t *entry; 
status $t *status; 

Arguments 

object The QUID of the object being registered. 

obj_type The QUID of the type of the object being registered. 

obj interface The QUID of the interface being registered. 

flags Must be either lb_$server_flag_local (specifying registration 
with only the LLB at the local host) or 0 (specifying 
registration with both the LLB and the GLB). 

annotation A character array used only for informational purposes. This 
field can contain a textual description of the object and the 
interface. For proper display by the lb_$admin tool, the 
annotation should be terminated by a null character. 

The socket address of the server that exports the interface to 
the object. 

The length, in bytes, of the socket address specified by the 
location field. 

location 

location length 

entry 

9-20 Ib_$ Routine Reference Pages 

A copy of the entry that was entered in the Location Broker 
database. 



lb_$database_busy 

lb_$update_failed 

lb $cant access 

Ib $register 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The lb_$ re g i s t e r routine registers with the Location Broker an interface to an 
object and the location of a server that exports that interface. This routine replaces 
any existing entry in the Location Broker database that matches object, ohj_type, 
obj_interface, and both the address family and host in location; if no such entry 
exists, the routine adds a new entry to the database. 

If the flags parameter is lb_$ s e rve r_f 1 a g_1 o c a 1, the entry is registered only 
in the LLB database at the host where the call is issued. Otherwise, the flag should 
be 0 to register with both the LLB and the GLB databases. 

Example 
The following statement registers the bank interface to the object identified by 
bank id 

lb_$register (&bank_id, &bank_$uuid, &bank_$if_spec.id, 0, 
BankName, &saddr, slen, &entry, &status) ; 

Diagnostics 
This section lists status codes for errors returned by this lb $routine in 
status.all. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 
Location Broker; in this case, delete the out-of-date database 
and reregister any entries that it contained. The LLB or 
GLB that was accessed may be running out-of-date software; 
in this case, update all Location Brokers to the current 
software version. 

The Location Broker database is currently in use in an 
incompatible manner. 

The Location Broker was unable to register the entry. 

The Location Broker cannot access the database. Among the 
possible reasons: 

• The database does not exist, and the Location Broker 
cannot create it. 

Ib_$ Routine Reference Pages 9-21 



Ib_$register 

• The database exists, but the Location Broker cannot 
access it. 

• The GLB entry table is full. 

lb_$server_unavailable 
The Location Broker Client Agent cannot reach the 
requested GLB or LLB. A communications failure occurred 
or the broker was not running. 

Files 
RPC$IDL:LB.IDL 

See Also 
lb_$unregister 

9-22 Ib_$ Routine Reference Pages 



Ib $unregister 

Name 
lb_$unregister —remove an entry from the Location Broker database 

Format 
#include <lb.h> 

void lb_$unregister(ent~y, status) 
lb_$entry_t *entry; 
status_$t *status; 

Arguments 

entj y The entry being removed from the Location Broker database. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The lb_$unregister routine removes from the Location Broker database the 
entry that matches entry. The value of entry should be identical to that returned by 
the lb_$ r e g i s t e r routine when the database entry was created. However, 
lb_$ un re g i s t e r does not compare all of the fields in entry, the annotation field, 
and the port number in the saddr field. 

This routine removes the entry from the LLB database on the local host (the host that 
issues the routine). If the flags field of entry is equal to 0, it removes the entry from 
the GLB database. If the flags field is equal to lb_$server_flag_local, it deletes only 
the LLB entry. 

Example 
The following statement unregisters the entry specified by BankEnt ry, which was 
obtained from a previous lb_$register routine: 
lb —$unregister (&BankEnt ry, &status) ; 

Diagnostics 
This section lists status codes for errors returned by this lb_$ routine in 
status.all. 

lb_$database_invalid The format of the Location Broker database is out of date. 
The database may have been created by an old version of the 

Ib $Routine Reference Pages 9-23 



Ib_$unregister 

Files 

lb_$database_busy 

lb_$not_registered 

lb_$update_failed 

lb $cant access 

Location Broker; in this case, delete the out-of-date database 
and reregister any entries that it contained. The LLB or 
GLB that was accessed may be running out-of--date software; 
in this case, update all Location Brokers to the current 
software version. 

The Location Broker database is currently in use in an 
incompatible manner. 

The Location Broker does not have any entries that match 
the criteria specified in the unregister routine. The requested 
object, type, interface, or combination thereof is not 
registered in the specified database. 

The Location Broker was unable to register or unregister the 
entry. 

The Location Broker cannot access the database. Among the 
possible reasons: 

• The database does not exist. 

• The database exists, but the Location Broker cannot 
access it. 

lb_$server_unavailable 
The Location Broker Client Agent cannot reach the 
requested GLB or LLB. A communications failure occurred 
or the broker was not running. 

RPC$IDL:LB.IDL 

See Also 
lb_$register 

9-241b_$ Routine Reference Pages 

u 



pfm_$ Routine Reference Pages 1 

This chapter contains reference pages for the pfm_$ routines, which allow 
programs to manage signals, faults, and exceptions by establishing clean-up 
handlers. 

A clean-up handler is a piece of code that ensures a program terminates 
gracefully when it receives a fatal error. A clean-up handler begins with a 
pfm $ c 1 e anup call, and usually ends with a call to p fm_$ s i gn a 1 or 
pgm $exit, though it can also simply continue back into the program after 
the clean-up code. 

A clean-up handler is not entered until all fault handlers established for a 
fault have returned. If there is more than one established clean-up handler 
for a program, the most recently established clean-up handler is entered first, 
followed by the next most recently established clean-up handler, and so on to 
the first established clean-up handler if necessary. 

There is a default clean-up handler invoked after all user-defined handlers 
have completed. It releases any resources still held by the program, before 
returning control to the process that invoked it. 

10.1 Constants 
This section describes the constants used by the pfm $routines. 

pfm_$init_signal_handlers 
A constant used as the flags parameter to pfm $ i n i t , 
causing C signals to be intercepted and converted to PFM 
signals. 

10.2 Data Types 
This section describes the data types used in pfm $routines. 

pfm_$cleanup_rec 
A record type for passing process context among clean-up 
handler routines. It is an opaque data type. 

status_$t A status code. Most of the DECrpc routines supply a 
completion code in this format. The status_$t type is 
defined as a structure containing a long integer: 



struct status_$t { 
long all; 

} 

However, the system calls can also use status_$t as a set of 
bit fields. To access the fields in a returned status code, you 
can assign the value of the status code to a union defined as 
follows: 
typedef union { 

struct { 
unsigned fail 1, 

subsys 7, 
modc 8 ; 

short code; 
} s; 
long all; 

status u; } 

all All 32 bits in the status code. If all is equal 
to status_$ok, the system call that supplied 
the status was successful. 

fail If this bit is set, the error was not within the 
scope of the module invoked, but occurred 
within alower-level module. 

subsys This indicates the subsystem that 
encountered the error. 

modc This indicates the module that encountered 
the error. 

code This is a signed number that identifies the 
type of error that occurred. 

10-2 pfm $Routine Reference Pages 



pfm $cleanup 

Name 

Format 

pfm_$cleanup — establish a cleanup handler 

#include <base.h> 
#include <pfm.h> 

status_$t pfm_$cleanup (cleanup record) 
pfm_$cleanup_rec *cleanup_j-ecord; 

Arguments 

cleanup record A record of the context when p fm_$ c 1 e anup is called. A 
program should treat this as an opaque data structure and not 
try to alter or copy its contents. It is needed by 
pfm $rls_cleanup and pfm $reset cleanup to 
restore the context of the calling process at the cleanup 
handler entry point. 

Description 
The pfm $ c 1 e anup routine establishes a cleanup handler that is executed when a 
fault occurs. A cleanup handler is a piece of code executed before a program exits 
when a signal is received by the process. The cleanup handler begins where 
pfm $ c 1 e a nup i s called; the pfm $ c 1 e a nup routine registers an entry point 
with the system where program execution resumes when a fault occurs. When a fault 
occurs, execution resumes after the most recent call to pfm $cleanup . 

There can be more than one cleanup handler in a program. Multiple cleanup handlers 
are executed consecutively on a last-in/first-out basis, startiMg with the most recently 
established handler and ending with the first cleanup handler. The system provides a 
default cleanup handler established at program invocation. The default cleanup 
handler is always called last, just before a program exits, and releases any system 
resources still held, before returning control to the process that invoked the program. 

Diagnostics 

When called to establish a cleanup handler, pfm_$cleanup returns the status 
pfm_$cleanup_set to indicate the cleanup handler was successfully established. 
When the cleanup handler is entered in response to a fault signal, pfm_$cleanup 
effectively returns the value of the fault that triggered the handler. 

pfm_$ Routine Reference Pages 10-3 



pfm_$cleanup 

This section lists status codes for errors returned by this pfm $routine in 
status.all. 

pfm_$bad_rls_order Attempted to release a cleanup handler out of order. 

pfm_$cleanup_not_found 
There is no pending cleanup handler. 

pfm_$cleanup_set A cleanup handler was established successfully. 

pfm_$cleanup_set_signalled 
Attempted to use pfm_$cleanup_set as a signal. 

pfm_$invalid_cleanup_rec 
Passed an invalid cleanup record to a routine. 

pfm_$no_space Cannot allocate storage for a cleanup handler. 

NOTE 

Clean-up handler code runs with asynchronous faults inhibited. 

When pfm $ c 1 e anup returns something other than pfm_$cleanup_set indicating 
that a fault has occurred, there are four possible ways to leave the cleanup code: 

• The program can call pfm $ s i gn a 1 to start the next cleanup handler 
with a different fault signal. 

• The program can call pgm $exit to start the next cleanup handler 
with the same fault signal. 

• The program can continue with the code following the cleanup handler. 
It should generally call pfm $ e n ab 1 e to reenable asynchronous 
faults. Execution continues from the end of the cleanup handler code; it 
does not resume where the fault signal was received. 

• The program can reestablish the handler by calling 
pfm $ re s et_c 1 e anup before proceeding. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

See Also 
pfm_$signal 

y 0-4 pfm_$ Routine Reference Pages 



pfm $enable 

Name 

Format 

pfm_$enable —enable asynchronous faults 

#include <base.h> 
#include <pfm.h> 

void pfm_$enable ( ) 

Description 
The p fm $enab 1 e routine enables asynchronous faults after they have been 
inhibited by a routine to pfm $inhibit ; pfm $enab 1 e causes the operating 
system to pass asynchronous faults to the calling process. 

While faults are inhibited, the operating system holds, at most, one asynchronous 
fault. Consequently, when pfm $enab 1 e returns, there can be, at most, one fault 
waiting on the process. If more than one fault was received between routines to 
pfm $inhibit and pfm $enable, the process receives the first asynchronous 
fault received while faults were inhibited. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

See Also 
pfm_$enable_faults, pfm_$inhibit 

pfm_$ Routine Reference Pages 10-5 



pfm $enable faults 

Name 

Format 

pfm_$enable_fai pfm_$enable_faults —enable asynchronous faults 

#include <base.h> 
#include <pfm.h> 

void pfm_$enable_faults ( ) 

Description 
The pfm $enab 1 e_f au I t s routine enables asynchronous faults after they have 
been inhibited by a call to pfm $inhibit faults; pfm $enable faults 
causes the operating system to pass asynchronous faults on to the calling process. 

While faults are inhibited, the operating system holds, at most, one asynchronous 
fault. Consequently, when pfm $enab 1 e_f au 1 t s returns, there can be, at most, 
one fault waiting on the process. If more than one fault was received between 
routines to pfm $inhibit faults and pfm $enable faults, the process 
receives the first asynchronous fault received while faults were inhibited. 

Diagnostics 
This section lists the status codes for errors returned by this pfm $routine. 

pfm_$bad_rls_order Attempted to release a cleanup handler out of order. 

pfm_$cleanup_not_found 
There is no pending cleanup handler. 

pfm_$cleanup_set A cleanup handler was established successfully. 

pfm_$cleanup_set_signalled 
Attempted to use pfm_$cleanup_set as a signal. 

pfm_$invalid_cleanup_rec 
Passed an invalid cleanup record to a routine. 

pfm_$no_space Cannot allocate storage for a cleanup handler. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

10-6 pfm_$ Routine Reference Pages 



pfm_$enable faults 

See Also 
pfm_$enable , pfm_$inhibit_faults 

pfim_$ Routine Reference Pages 10-7 



pfm $inhibit 

Name 
pfm_$inhibit —inhibit asynchronous faults 

Format 
#include <base.h> 
#include <pfm.h> 

void pfm_$inhibit ( ) 

Description 
The p f m $ ,inhibit routine prevents asynchronous faults from being passed to the 
calling process. While faults are inhibited, the operating system holds at most one 
asynchronous fault. Consequently, a call to p fm $inhibit can result in the loss 
of some signals. It is good practice to inhibit faults only when absolutely necessary. 

NOTE 

This routine has no effect on the processing of synchronous faults, such 
as floating-point and overflow exceptions, access violations, and so on. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

See Also 
pfm_$enable, pfm_$inhibit_faults 

~ 0-8 pfm_$ Routine Reference Pages 



pfm $inhibit faults 

Name 
pfm_$inhibit_faults —inhibit asynchronous faults 

Format 
#include <base.h> 
#include <pfm.h> 

void pfm_$inhibit_faults ( ) 

Description 
The pfm $ inh ib it_f au It s routine prevents asynchronous faults from being 
passed to the calling process. While faults are inhibited, the operating system holds 
at most one asynchronous fault. Consequently, a call to pfm $inhibit fault s 
can result in the loss of some signals. It is good practice to inhibit faults only when 
absolutely necessary. 

tdOTE 

This call has no effect on the processing of synchronous faults such as 
floating-point and overflow exceptions, access violations, and so on. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

See Also 
pfm_$enable_faults, pfm_$inhibit 

pfm_$ Routine Reference Pages 10-9 



pfm $init 

Name 
pfm_$init —initialize the PFM package 

format 
#include <base.h> 
#include <pfm.h> 

void pfm_$init(flags) 
unsigned long flags; 

Arguments 

flags 

pfm_$init_signal_handlers 
Currently the only valid flag value. A flag's variable must be set to 
contain this value or the call will perform no initialization. A call to 
pfm_$init_signal_handlers causes C signals to be intercepted and 
converted to PFM signals. On ULTRIX and VMS systems, the signals 
intercepted are SIGINIT, SIGILL, SIGFPE, SIGTERM, SIGHUP, 
SIGQUIT, SIGTRAP, SIGBUS, SIGSEGV, and SIGSYS. 

Description 
The call to pfm_$ init () establishes a default set of signal handlers for the routine. 
The call to pfm_$init () should be made prior to the application's use of all other 
runtime RPC routines. This enables the RPC runtime system to catch and report all 
fault and/or interrupt signals that may occur during normal operation. Additionally, 
the user may provide a fault processing cleanup handler for application-specific exit 
handling. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

See Also 
pfm_$cleanup 

y 0-10 pfm_$ Routine Reference Pages 



pfm $reset cleanup 

Name 
pfm_$reset_cleanup — reset a cleanup handler 

Format 
#include <base.h> 
#include <pfm.h> 

void pfm_$reset_cleanup(&cleanup_r•ecord, status) 
pfm_$cleanup_rec *cleanup record; 
status_$t *status; 

Arguments 

cleanup_recor•d A record of the context at the cleanup handler entry point. It 
is supplied by pfm $ c 1 eanup, when the cleanup handler 
if first established. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The pfm $ re s et_c 1 e anup routine reestablishes the cleanup handler last entered, 
so that any subsequent errors enter it first. Use this procedure only within cleanup 
handler code. 

Diagnostics 
This section lists status codes for errors returned by this pfm $routine in 
status.all. 

pfm_$bad_rls_order Attempted to release a cleanup handler out of order. 

pfm_$cleanup_not_found 
There is no pending cleanup handler. 

pfm_$cleanup_set A cleanup handler was established successfully. 

pfm_$invalid_cleanup_rec 
Passed an invalid cleanup record to a routine. 

pfm_$no_space Cannot allocate storage for a cleanup handler. 

pfm $Routine Reference Pages 10-11 



pfm $reset cleanup 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

10-12 pfm_$ Routine Reference Pages 



pfm_$rls_cleanup 

Name 

Format 

pfm_$rls_cleanup —release cleanup handlers 

#include <base.h> 
#include <pfm.h> 

void pfm_$rls_cleanup(&cleanup_recoj-d, &status) 
pfm_$cleanup_rec *cleanup_recoj•d; 
status $t *status; 

Arguments 

cleanup record The cleanup record for the first cleanup handler to release. 

status The completion status. If status is pfm_$bad_rls_order, it 
means that the caller attempted to release a cleanup handler 
before releasing all handlers established after it. This status 
is only a warning; the intended cleanup handler is released, 
along with all cleanup handlers established after it. If the 
completion status returned in status . a 11 is equal to 
status_$ok, then the routine that supplied it was successful. 

Description 
The pfm $rls cleanup routine releases the cleanup handler associated with 
cleanup record and all cleanup handlers established after it. 

Diagnostics 
This section lists the status codes for errors returned by this pfm $routine in 
status.all. 

pfm_$bad_rls_order Attempted to release a cleanup handler out of order. 

pfm_$cleanup_not_fou nd 
There is no pending cleanup handler. 

pfm_$cleanup_set A cleanup handler was established successfully. 

pfm_$cleanup_set_signalled 
Attempted to use pfm_$cleanup_set as a signal. 

pfm $Routine Reference Pages 10-13 



pfm $rls_cleanup 

pfm_$invalid_cleanup_rec 
Passed an invalid cleanup record to a routine. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

10-14 pfm_$ Routine Reference Pages 



pfm $signal 

Name 
pfm_$signal —signal the calling process 

Format 
#include <base.h> 
#include <pfm.h> 

void pfm_$signal(fault signal) 
status_$t *fault signal; 

Arguments 

fault signal A fault code. 

Description 
The pfm_$signal routine signals the fault specified by fault signal to the calling 
process. It is usually called to leave cleanup handlers. 

NOTE 

This routine does not return when successful. 

Diagnostics 
This section lists status codes for errors returned by this pfm_$ routine. 

pfm_$bad_rls order Attempted to release a cleanup handler out of order. 

pfm_$cleanup_not_found 
There is no pending cleanup handler. 

pfm_$cleanup_set A cleanup handler was established successfully. 

pfm_$cleanup_set_signalled 
Attempted to use pfm_$cleanup_set as a signal. 

pfm_$invalid_cleanup_rec 
Passed an invalid cleanup record to a routine. 

pfm_$no_space Cannot allocate storage for a cleanup handler. 

pfm_$ Routine Reference Pages 10-15 



pfm $signal 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE: PFM. H 

10-16 pfm_$ Routine Reference Pages 



pgm_$ Routine Reference Pages 11 

This chapter contains the reference page for the pgm $ init command. 



pgm_$exit 

Name 

Format 

Pg~ pgm_$exit — exit a program 

#include <base.h> 
#include <pfm.h> 

void pgm_$exit 

Description 
The pgm_$exit routine exits from the calling program and returns control to the 
process that invoked it. When pgm_$exit is called, any files left open by the 
program are closed, any storage acquired is released, and asynchronous faults are 
reenabled if they were inhibited by the calling program. 

The pgm $exit routine always calls p fm $ s i gna 1 with a status of status_$ok. 

Files 
RPC$INCLUDE:BASE.H 
RPC$INCLUDE:PFM.H 

11-2 pgm_$ Routine Reference Page 



rpc_$ Routine Reference Pages 1 2 

This chapter contains reference pages for the rpc_$ routines, which 
implement the DECrpc remote procedure call (RPC) mechanism. The 
rpc_$ interface is defined by these files: 

On VMS systems RPC$IDL:RPC.IDL 

On ULTRIX systems /usr/include/idl/rpc . idl 

Most of the rpc_$ routines can be used only by clients or only by servers. 
This aspect of their usage is specified at the beginning of each routine 
description, in the Name section. 

12.1 External Variables 
This section describes the external variable used in rpc $routines. 

uuid_$nil An external uuid $t variable that is preassigned the value of 
the nil QUID. Do not change the value of this variable. 

12.2 Constants 
This section describes constants used in rpc $routines. 

rpc_$mod A module code indicating the RPC module. 

status_$ok A constant used to check status. If a completion status is 
equal to status_$ok, then the routine that supplied it was 
successful. See the description of the status_$t type. 

rpc_$unbound~ort 
A port number indicating to the RPC run-time library that no 
port is specified. Identical to socket_$unspec_port. 

The following 16-bit-integer constants are used to specify the 
communications protocol address families in socket_$addr_t structures. 
Note that several of the rpc_$ and socket_$ calls use the 32-bit-integer 
equivalents of these values. 

socket_$unspec 
Address family is unspecified. 

socket_$internet 
Internet Protocols (IP). 



12.3 Data Type 
This section describes data types used in rpc_S routines. 

handle_t An RPC handle. 

rpc_$epv_t An entry point vector (EPV). An array of 
rpc_$server_stub_t, pointers to server stub procedures. 

rpc_$gener~c_epv_t 
An entry point vector (EPV). An array of 
rpc_$generic_server_stub_t, pointers to generic server stub 
procedures. 

rpc_$if spec_t 
An RPC interface specifier. This opaque data type contains 
information about an interface, including its QUID, the 
current version number, any well known ports used by 
servers that export the interface, and the number of 
operations in the interface. 

rpc_$mgr_epv_t 
An entry point vector (EPV). An array of pointers to 
manager procedures. 

rpc_$shut_check_fn t 
A pointer to a function. If a server supplies this function 
pointer to rpc_$allow_remote_shutdown, the function will 
be called when a remote shutdown request arrives, and if the 
function returns true, the shutdown is allowed. The 
following C definition for rpc_$shut_check_fn_t illustrates 
the prototype for this function: 

typedef Boolean (*rpc $shut check fn t) 
handle_t h, 
status $t *st ) 

The handle argument can be used to determine information 
about the remote caller. 

socket $addr t 

status $t 

A socket address record that uniquely identifies a socket. 

A status code. Most of the DECrpc routines supply their 
completion status in this format. The status_$t type is 
defined as a structure containing a long integer: 
struct status_$t { 

long all; 
} 

~ 2-2 rpc $Routine Reference Pages 



However, the routines can also use status_$t as a set of bit 
fields. To access the fields in a returned status code, you can 
assign the value of the status code to a union defined as 
follows: 
typedef union { 

struct { 
unsigned fail 1, 

subsys 7, 
modc 8; 

short code; 
} s; 
long all; 

} status u; 

uuid $t 

all All 32 bits in the status code. If all is equal 
to status_$ok, the routine that supplied the 
status was successful. 

fail If this bit is set, the error was not within the 
scope of the module invoked, but occurred 
within alower-level module. 

subsys This indicates the subsystem that 
encountered the error. 

modc This indicates the module that encountered 
the error. 

code This is a signed number that identifies the 
type of error that occurred. 

A 128-bit value that uniquely identifies an object, type, or 
interface for all time. 

rpc $Routine Reference Pages 123 



rpc $alloc_handle 

Name 

Format 

rpc_$alloc_har rpc_$alloc_handle —create an RPC handle (client only) 

#include <rpc.h> 

handle_t rpc_$alloc_handle(~ohject, family, &status) 
uuid_$t `object; 
unsigned long family; 
status $t `status; 

Arguments 

object 

family 

status 

The UUID of the object to be accessed. If there is no 
specific object, specify uuid_$nil. 

The address family to use in communications to access the 
object. Currently, only socket_$ Internet is supported. 

The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ a 11 o c_handl e routine creates an unbound RPC handle that identifies 
a particular object but not a particular server or host. 

If a remote procedure call is made using the unbound handle, it will effect a 
broadcast to all Local Location Brokers (LLBs) on the local network. If the call's 
interface and the object identified by the handle are both registered with any LLB, 
that LLB forwards the request to the registering server. The client RPC runtime 
library returns the first response that it receives and binds the handle to the first 
responding server. 

Example 
The following statement allocates a handle that identifies the Acme company's 
payroll database object: 

h = rpc $alloc handle (&acme pay id, socket $Internet, &status); 

12-4 rpc $Routine Reference Pages 



rpc_$alloc_handle 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status .all. 

rpc_$comm_failure The client was unable to get a response from the server. 

rpc_$unk_if The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the QUID in the request does not match the UUID of the 
registered interface. 

rpc_$cant_create_sock 
The RPC runtime library was unable to create a socket. 

rpc_$cant_bind_sock The RPC runtime library created a socket but was unable to 
bind it to a socket address. 

Files 

rpc_$not_in_call 

rpc_$you_crashed 

rpc_$wrong_boot_time 
The server boot time value maintained by the client does not 
correspond to the current server boot time. The server was 
probably rebooted while the client program was running. 

An internal error. 

This error can occur if a server has crashed and restarted. A 
client RPC runtime library sends the error to the server if the 
client makes a remote procedure call before the server 
crashes, then receives a response after the server restarts. 

rpc_$proto_error An internal protocol error. 

RPC$IDL:RPC.IDL 

See Also 
rpc_$free_handle, rpc_$set_binding 

rpc $Routine Reference Pages 12-5 



rpc $allow remote shutdown 

Name 
rpc_$allow_remote_shutdown —allow or disallow remote shutdown of a server 
(server only) 

Format 
#include <rpc.h> 

void rpc_$allow remote_shutdown(allow, checkproc, status) 
unsigned long allow; 
rpc_$shut_check_fn_t checkproc; 
status $t *status; 

Arguments 

allow 

checkproc 

status 

A value indicating "false" if zero, "true" otherwise. 

A pointer to a Boolean function. 

The completion status. 

Description 
The rp c_$ a 11 ow_remot e_s but down call allows or disallows remote callers to 
shut down a server using r rp c_$ s but down . 

By default, servers do not allow remote shutdown via rrpc_$shutdown. If a 
server calls rpc $ a 11 ow remote s but down with a 11 ow true (not zero) and 
checkproc nil, then remote shutdown will be allowed. If a 11 ow is true and 
checkproc is not nil, then when a remote shutdown request arrives, the function 
denoted by checkproc is called and the shutdown is allowed if the function returns 
true. If a 11 ow is false (zero), remote shutdown is disallowed. 

Diagnostics 
This section lists status 

rpc_$comm failure 

rpc_$op_rng_error 

rpc_$unk_if 

12-6 rpc $Routine Reference Pages 

codes for errors returned by rpc_$ calls. 

The client was unable to get a response from the server. 

The requested operation does not correspond to a valid 
operation in the requested interface. 

The requested interface is not known. It is not registered in 
the server, the version. number of the registered interface is 



rpc_$al low_remote_shutdown 

different from the version number specified in the request, or 
the QUID in the request does not match the QUID of the 
registered interface. 

rp~_$cant_create_sock 
The RPC runtime library was unable to create a socket. 

rpc_$cant_bind_sock The RPC runtime library created a socket but was unable to 
bind it to a socket address. 

rpc_$wrong_boot_tim e 
The server boot time value maintained by the client does not 
correspond to the current server boot time. The server was 
probably rebooted while the client program was running. 

rpc_$too_many_ifs The maximum number of interfaces is already registered 
with the RPC runtime library; the server must unregister 
some interface before it registers an additional interface. 

rpc_$not_in call An internal error. 

rpc_$you crashed This error can occur if a server has crashed and restarted. A 
client RPC runtime library sends the error to the server if the 
client makes a remote procedure call before the server 
crashes, then receives a response after the server restarts. 

rpc_$proto_error An internal protocol error. 

rpc_$too_many_sockets 
The server is trying to use more than the maximum number 
of sockets that is allowed; it has called rpc_$use_family or 
rpc_$use_family_wk too many times. 

rpc_$illegal_register You are trying to register an interface that is already 
registered and you are using an EPV different from the one 
used when the interface was first registered. An interface 
can be multiply registered, but you must use the same EPV 
in each rpc_$register call. 

rpc_$bad_pkt The server or client has received an ill-formed packet. 

rpc_$unbound_handle 
The handle is not bound and does not represent a particular 
host address. Returned by rpc_$in~binding. 

rpc_$addr_in_use The address and port specified in an rpc_$use_family_wk 
call are already in use. This is caused by multiple calls to 
rpc_$use_family_wk with the same well-known port. 

rpc $Routine Reference Pages 12-7 



rpc $allow remote shutdown 

Files 
RPC$IDL:RPC.IDL 

See Also 
rpc_$shutdown, rrpc_$shutdown 

12-8 rpc_$ Routine Reference Pages 



rpc_$bind 

Name 

Format 

rpc_$bind —allocate an RPC handle and set its binding to a server (client only) 

#include <rpc.h> 

handle_t rpc_$bind(&object, &sockaddr, slength, &status) 
uuid_$t ~ohject; 
socket_$addr_t *sockaddr; 
unsigned long slen~~th; 
status_$t *status; 

Arguments 

object The UUID of the object to be accessed. If there is no 
specific object, specify uuid_$nil. 

sockaddr The socket address of the server. 

slength The length, in bytes, of sockaddr. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rpc_$bind routine creates a fully bound RPC handle that identifies a 
particular object and server. This routine is equivalent to an 
rpc_$alloc_handle routine followed by an rpc_$set_binding routine. 

Example 
The following statement binds the binop client to the specified object and socket 
address. The loc parameter is the result of a previous call to 
rpc_$name_to_sockaddr, which converted the host name and port number to a 
socket address. 

rh = rpc $bind (&uuid $nil, & loc, lien, &status) ; 

rpc_$ Routine Reference Pages 12-9 



rpc $bind 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$cant_bind_sock The RPC runtime library created a socket but was unable to 
bind it to a socket address. 

rpc_$not_in call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$IDL:RPC.IDL 

See Also 
rpc_$clear_binding, rpc_$clear server binding, rpc_$set_binding 

12-10 rpc $Routine Reference Pages 



rpc $clear binding 

Name 
rpc_$clear_binding — unset the binding of an RPC handle to a host and server (client 
only) 

Format 
#include <rpc.h> 

void rpc_$clear_binding(handle, status) 
handle_t handle; 
status_$t *status; 

Arguments 

handle The RPC handle whose binding is being cleared. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The rp c_$ c 1 e a r_b i ndi ng routine removes any association between an RPC 
handle and a particular server and host, but it does not remove the association 
between the handle and an object. This routine saves the RPC handle so that it can 
be reused to access the same object, either by broadcasting or after resetting the 
binding to another server. 

A remote procedure call made using an unbound handle is broadcast to all Local 
Location Brokers (LLBs) on the local network. If the call's interface and the object 
identified by the handle are both registered with any LLB, that LLB forwards the 
request to the registering server. The client RPC runtime library returns the first 
response that it receives and binds the handle to the first server that responded. 

The rpc $clear binding routine i s the inverse of the rpc $set b i n d i n g 
routine. 

Example 
Clear the binding represented in handle: 
rpc $clear binding (handle, &status); 

rpc $Routine Reference Pages 12-11 



rpc_$clear_binding 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$not_in call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$ IDL :RPC .IDL 

See Also 
rpc_$bind, rpc_$clear_server_binding, rpc_$set_binding 

12-12 rpc $Routine Reference Pages 



rpc $clear server binding 

Name 
rpc_$clear_server_binding — unset the binding of an RPC handle to a server (client 
only) 

Format 
#include <rpc.h> 

void rpc_$clear_server_binding(handle, status) 
handle_t handle; 
status_$t *status; 

Arguments 

handle The RPC handle whose binding is being cleared. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ c l e a r_s e rve r_b fi n d i n g routine removes the association between an 
RPC handle and a particular server (that is, a particular port number), but does not 
remove the associations with an object and with a host (that is, a network address). 
This call replaces a fully bound handle with abound-to-host handle. Abound-to-host 
handle identifies an object located on a particular host but does not identify a server 
exporting an interface to the object. 

If a client uses abound-to-host handle to make a remote procedure call, the call is 
sent to the Local Location Broker (LLB) forwarding port at the host identified by the 
handle. If the call's interface and the object identified by the handle are both 
registered with the host's LLB, the LLB forwards the request to the registering 
server. When the client RPC runtime library receives a response, it binds the handle 
to the server. Subsequent remote procedure calls that use this handle are then sent 
directly to the bound server's port. 

The rp c_$ c 1 e a r_s e rve r_b i n di n g routine is useful for client error recovery 
when a server dies. The port that a server uses when it restarts is not necessarily the 
same port that it used previously; therefore, the binding that the client was using may 
not be correct. This routine enables the client to unbind from the dead server while 
retaining the binding to the host. When the client sends a request, the binding is 
automatically set to the server's new port. 

rpc_$ Routine Reference Pages 12-13 



rpc_$clear_server binding 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$not_in call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$IDL:RPC.IDL 
RPC$INCLUDE:RPC.H 

See Also 
rpc_$bind, rpc_$clear_binding, rpc_$set_binding 

12-14 rpc $Routine Reference Pages 



rpc_$dup_handle 

Name 
rpc_$dup handle — make a copy of an RPC handle (client only) 

F©rmat 
#include <rpc.h> 

handle_t rpc_$dup_handle(handle, status) 
handle_t handle; 
status_$t *status; 

Arguments 

handle The RPC handle to be copied. 

status The completion status. If the completion status returned in status .all is 
equal to status $ok, then the routine that supplied it was successful. 

Description 
The rpc_$dup_handle routine returns a copy of an existing RPC handle. Both 
handles can then be used in the client program for concurrent multiple accesses to a 
binding. Because all duplicates of a handle reference the same data, an 
rpc_$set_binding, rpc_$clear_binding, or 
rp c_$ c 1 e a r_s e rve r_b i n d i n g routine made on any one duplicate affects all 
duplicates. However, an RPC handle is not freed until rpc_$free_handle is 
called on all copies of the handle. 

Fi ies 
RPC$IDL:RPC.IDL 

See Also 
rpc_$alloc_handle, rpc_$free_handle 

rpc $Routine Reference Pages 12-15 



rpc_$free_handle 

Name 
rpc_$free_handle —free an RPC handle (client only) 

Format 
#include <rpc.h> 

void rpc_$free_handle(handle, status) 
handle_t handle; 
status $t *status; 

Arguments 

handle The RPC handle to be freed. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The rpc_$ f ree_handle routine frees an RPC handle. This routine clears any 
association between the handle and a server or an object and releases the resources 
identified by the RPC handle. The client program cannot use a handle after it is 
freed. 

Example 
The following statement frees a handle: 

rpc $free handle (handle, &status) ; 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$not_in call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$IDL:RPC.IDL 

12-16 rpc $Routine Reference Pages 



rpc $free handle 

See Also 
rpc_$alloc_handle, rpc_$dup_handle 

rpc $Routine Reference Pages 12-17 



rpc $inq_binding 

Name 
rpc_$in.q_binding —return the socket address represented by an RPC handle (client or 
server) 

Format 
#include <rpc.h> 

void rpc_$inc~binding(handle, .sockaddr, slength, status) 
handle_t handle; 
socket_$addr_t *sockaddr; 
unsigned long ~`slength; 
status_$t `status; 

Arguments 

handle An RPC handle. 

sockaddr The socket address represented by handle. 

slength The length, in bytes, of sockaddr. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ i n q binding routine enables a cl ient to determine the socket address, 
and therefore the server, identified by an RPC handle. It is useful when a client uses 
an unbound handle in a remote procedure call and wants to determine the particular 
server that responded to the call. 

Example 
The Location Broker administrative tool, lb_$admin, uses the following statement 
to determine the GLB that last responded to a lookup request: 
rpc_$inq_binding(lb_$handle, &global_broker_addr, 

&global broker addr len, &status); 

12-18 rpc $Routine Reference Pages 



rpc $inq_binding 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$not_in_call An internal error. 

rpc_$proto_error An internal protocol error. 

rpc_$unbound_handle 
The handle is not bound and does not represent a particular 
host address. Returned by rp c_$ i n q binding . 

Files 
RPC$IDL:RPC.IDL 

See Also 
rpc_$bind, rpc_$set_binding 

rpc $Routine Reference Pages 12-19 



rpc_$inq_object 

Name 
rpc_$inq_object —return the object QUID represented by an RPC handle (client or 
server) 

Format 
#include <rpc.h> 

void rpc_$inq_object(handle, object, status) 
handle_t handle; 
uuid_$t *object; 
status $t *status; 

Arguments 

hand I e An RPC handle. 

object The UUID of the object identified by handle. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rpc_$inq_object routine enables a client or server to determine the 
particular object that a handle represents. 

If a server exports an interface through which clients can access several objects, it 
can use rpc_$ inq object to determine the object requested in a call. This 
routine requires an RPC handle as input, so the server can make the call only if the 
interface uses explicit handles (that is, if each operation ire the interface has a handle 
parameter). If the interface uses an implicit handle, the handle identifier is not passed 
to the server. 

Example 
A database server that manages multiple databases must determine the particular 
database to be accessed whenever it receives a remote procedure call. Each manager 
routine makes the following call; the routine then uses the returned UUID to identify 
the database to be accessed: 
rpc $inq object (handle, &db uuid, &status) ; 

12-20 rpc $Routine Re#erence Pages 



rpc_$inq_object 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

Files 

rpc_$unk_if 

rpc_$not_in_call 

rpc_$proto_error 

RPC$IDL:RPC.IDL 

The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the UUID in the request does not match the QUID of the 
registered interface. 

An internal error. 

An internal protocol error. 

rpc_$ Routine Reference Pages 12-21 



rpc_$listen 

Name 
rpc_$listen —listen for and handle remote procedure call (RPC) packets (server only) 

Format 
#include <rpc.h> 

void rpc_$listen(max calls, status) 
unsigned long max calls; 
status_$t *status; 

Arguments 

max calls 

status 

This value indicates the maximum number of calls that the server 
is allowed to process concurrently. On ULTRIX systems, the only 
recognized value is 1; any other value is ignored and defaulted to 
1. 

The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rpc_$1 i sten routine dispatches incoming remote procedure call requests to 
manager procedures and returns the responses to the client. You must issue 
rpc_$use_family or rpc_$use_family_wk before you use 
rp c_$1 i s t en . This routine normally does not return. A return from this routine 
indicates either an irrecoverable error, or that an rp c_$ s but down call has beep 
issued. If status . a 11 is equal to status_$ok, the assumption is that 
rpc $shutdown has occurred. 

Example 

Listen for incoming remote procedure call requests. 
rpc $listen (l, &status) ; 

12-22 rpc $Routine Reference Pages 



rpc_$listen 

Diagnostics 
This section lists status codes for errors returned by this rpc $routine in 
status.all. 

rpc_$not in call An internal error. 

rpc_$you_crashed This error can occur if a server has crashed and restarted. A 
client RPC runtime library sends the error to the server if the 
client makes a remote procedure call before the server 
crashes, then receives a response after the server restarts. 

rpc_$proto_error An internal protocol error. 

rpc_$bad_pkt The server or client has received an ill-formed packet. 

Files 
RPC$ IDL :RPC .IDL 
RPC$INCLUDE:RPC.H 

Sep Also 
rpc_$shutdown 

rpc_$ Routine Reference Pages 12-23 



rpc $name to sockaddr 

Name 
rpc_$name_to_sockaddr — convert a host name and port number to a socket address 
(client or server) 

Format 
#include <rpc.h> 

void rpc_$name_to_sockaddr(name, nlength, port, family, sockaddr, 
slength, status) 

unsigned char name; 
unsigned long nlength; 
unsigned long port; 
unsigned long family; 
socket_$addr_t *sockaddr-; 
unsigned long *slength; 
status $t *status; 

Arguments 

name A string that contains a host name and, optionally, a port and 
an address family. The format is family:host [port ] . If you 
specify a family as part of the name parameter, you must 
specify socket_$unspec in the family parameter. The family 
part of the name parameter is ip; host is the host name; port 
is an integer port number. 

nlength The number of characters in name. 

poj~t The socket port number. If you are not specifying awell-
known port, give this parameter the value 
rpc_$unbound_port; in this case, the returned socket 
address will specify the Local Location Broker (LLB) 
forwarding port at host. If you specify the port number in 
the name parameter, this parameter is ignored. 

family The address family to use for the socket address. This value 
corresponds to the communications protocol used to access 
the socket and determines how the sockaddj~ is expressed. If 
you specify the address family in the name parameter, this 
parameter must have the value socket_$unspec. 

sockaddr The socket address corresponding to name, port, and family. 

12-24 rpc $Routine Reference Pages 



rpc $name_to sockaddr 

slength The length, in bytes, of sockaddj•. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ n ame_t o_s o c k a ddr routine provides the socket address for a socket, 
given the host name, the port number, and the address family. 

You can specify the socket address information either as one text string in the name 
parameter or by passing each of the three elements as separate parameters( name, 
port, and family ); in the latter case, use only the hostname in the name parameter. 

NOTE 

This routine has been superseded by the socket_$ f rom_name 
routine. 

Diagnostics 
This section lists status codes for errors returned by this rpc_S routine in 
status.all. 

rpc_$not_in_call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$IDL:RPC.IDL 

See Also 
rpc_$sockaddr_to_name, socket_$from_name 

rpc_$ Routine Reference Pages 12-25 



rpc $register 

Name 

Format 

rpc_$re; rpc_$register —register an interface (server only). 

#include <rpc.h> 

void rpc_$register(ifspec, epv, status) 
rpc_$if spec_t *ifspec; 
rpc_$epv_t epv; 
status_$t *status; 

Arguments 

ifspec 

epv 

status 

The interface being registered. 

The entry point vector (EPV) for the operations in the 
interface. The EPV is always defined in the server stub that 
is generated by the NIDL compiler from an interface 
definition. 

The completion status. If the completion status returned in 
status . a 11 is equal to status $ok, then the routine that 
supplied it was successful. 

Description 
The rpc_ $register routine registers an interface with the RPC runtime 1 ibrary. 
After an interface is registered, the RPC runtime library will pass requests for that 
interface to the server. 

You can call rpc_$register several times with the same interface (e.g., from 
various subroutines of the same server), but each call must specify the same EPV. 
Each registration increments a reference count for the registered interface; an equal 
number of rp c_$ u n r e g i s t e r routines are then required to unregi ster the 
interface. 

Example 
The following statement registers the bank interface with the bank server host's RPC 
runtime library: 
rpc_$register (&bank_$if_spec, bank_$server_epv, &status); 

12-26 rpc $Routine Reference Pages 



rpc $register 

Diagnostics 
This section lists status codes for errors returned by this rpc $routine in 
status.all. 

rpc_$op_rng_error The requested operation does not correspond to a valid 
operation in the requested interface. 

rpc_$too_many_ifs The maximum number of interfaces is already registered 
with the RPC runtime library; the server must unregister 
some interface before it registers an additional interface. 

rpc_$not_in_call An internal error. 

rpc_$you_crashed This error can occur if a server has crashed and restarted. A 
client RPC runtime library sends the error to the server if the 
client makes a remote procedure call before the server 
crashes, then receives a response after the server restarts. 

rpc_$proto_error An internal protocol error. 

rpc_$illegal_register You are trying to register an interface that is already 
registered and you are using an EPV different from the one 
used when the interface was first registered. An interface 
can be multiply registered, but you must use the same EPV 
in each rpc $register routine. 

rpc_$bad_pkt The server or client has received an ill-formed packet. 

Files 
RPC$ IDL :RPC .IDL 

See Also 
rpc_$register_mgr, rpc_$register_object, rpc_$unregister 

rpc_$ Routine Reference Pages 12-27 



rpc $register mgr 

Name 

Format 

rpc_$register_r rpc_$register_mgr — register a manager (server only) 

#include <rpc.h> 

void rpc_$register_~ngr(type, ifspec, sepv, mepv, status) 
uuid_$t type; 
rpc_$if spec_t *ifspec; 
rpc_$generic_epv_t sepv; 
rpc_$mgr_epv_t mepv; 
status $t *status; 

Arguments 

type The UUID of the type being registered. 

ifspec The interface being registered. 

sepv The generic EPV, a vector of pointers to server stub 
procedures. 

mepv The manager EPV, a vector of pointers to manager 
procedures. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ r e g i s t e r_mg r routine registers the set of manager procedures that 
implement a specified interface for a specified type. 

Servers can invoke this routine several times with the same interface (ifspec) and 
generic EPV (sepv) but with a different object type (type) and manager EPV (mepv) 
on each invocation. This technique allows a server to export several implementations 
of the same interface. 

Servers that export several versions of the same interface (but not different 
implementations for different types) must also use rpc_$register_mgr, not 
rp c_$ r e g i s t e r . Such servers should supply uuid_$nil as the type to 
rpc $register mgr. 

y 2-28 rpc $Routine Reference Pages 



rpc $register mgr 

If a server uses rpc_$register mgr to register a manager for a specific interface 
and a specific type that is not nil, the server must use rpc_$ regi st e r_ob j e ct 
to register an object. 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$op_rng_error The requested operation does not correspond to a valid 
operation in the requested interface. 

rpc_$unk_if The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the QUID in the request does not match the UUID of the 
registered interface. 

rpc_$too_many_ifs The maximum number of interfaces is already registered 
with the RPC runtime library; the server must unregister 
some interface before it registers an additional interface. 

rpc_$not_in_call An internal error. 

rpc_$you_crashed This error can occur if a server has crashed and restarted. A 
client RPC runtime library sends the error to the server if the 
client makes a remote procedure call before the server 
crashes, then receives a response after the server restarts. 

rpc_$proto_error An internal protocol error. 

rpc_$illegal_register You are trying to register an interface that is already 
registered and you are using an EPV different from the one 
used when the interface was first registered. An interface 
can be multiply registered, but you must use the same EPV 
in each rpc $register routine. 

Files 
RPC$IDL:RPC. IDL 

See Also 
rpc_$register, rpc_$register_object, rpc_$unregister 

rpc $Routine Reference Pages 12-29 



rpc_$register_object 

Name 
rpc_$register_object —register an object (server only) 

Format 
#include <rpc.h> 

void rpc_$register_object(object, type, status) 
uuid_$t *object; 
uuid_$t *type; 
status_$t *status; 

Arguments 

object The QUID of the object being registered. 

type The QUID of the type of the object. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The rp c_$ r e g i s t e r_ob j e ct routine declares that a server supports operations 
on a particular object and declares the type of that object. 

A server must register objects with rpc_$ regi ste r_ob j e ct only if it registers 
generic interfaces with rpc_$register_mgr . When a server receives a call, the 
RPC runtime library searches for the object identified in the call (that is the object 
that the client specified in the handle) among the objects registered by the server. If 
the object is found, the type of the object determines which of the manager EPVs 
should be used to operate on the object. 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$op_rng_error The requested operation does not correspond to a valid 
operation in the requested interface. 

12-30 rpc $Routine Reference Pages 



rpc $register object 

I"1 

Files 

rpc_$unk_if 

rpc_$too_many_ifs 

rpc_$not_in_call 

rpc_$proto_error 

rpc_$illegal_register 

RPC$ IDL :RPC .IDL 

The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 
different from the version number specified in the request, or 
the QUID in the request does not match the QUID of the 
registered interface. 

The maximum number of interfaces is already registered 
with the RPC runtime library; the server must unregister 
some interface before it registers an additional interface. 

An internal error. 

An internal protocol error. 

You are trying to register an interface that is already 
registered and you are using an EPV different from the one 
used when the interface was first registered. An interface 
can be multiply registered, but you must use the same EPV 
in each rpc $register routine. 

See Also 
rpc_$register, rpc_$register_mgr, rpc_$unregister 

rpc $Routine Reference Pages y 2-31 



rpc_$set async_ack 

Name 

Format 

rpc_$set_async_a~ rpc_$set async_ack —set or clear asynchronous-acknowledgement mode (client only) 

#include <rpc.h> 

void rpc_$set async_ack (state) 
unsigned long state; 

Arguments 

state If "true" (nonzero), asynchronous-acknowledgement mode is 
set. If "false" (zero), synchronous-acknowledgement mode 
is set. 

Description 
The rp c_$ s et_a s yn c_a c k call sets or clears asynchronous-acknowledgement 
mode in a client. 

Synchronous-acknowledgement mode is the default. Calling the routine with a 
nonzero value for state sets asynchronous-acknowledgement mode. Calling it with a 
zero value for state sets synchronous-acknowledgement mode. 

After a client makes a remote procedure call and receives a reply from a server, the 
RPC runtime library at the client acknowledges its receipt of the reply. This "reply 
acknowledgement" can occur either synchronously (before the runtime library returns 
to the caller) or asynchronously (after the runtime library returns to the caller). 

It is generally good to allow asynchronous reply acknowledgements. Asynchronous-
acknowledgement mode can save the client runtime library from making explicit 
reply acknowledgements, because after a client receives a reply, it may shortly ~ issue 
another call that can act as an implicit acknowledgement. 

Asynchronous-acknowledgement mode requires that an "alarm" be set to go off 
sometime after the remote procedure call returns. Note that setting the alarm can 
cause two problems: 

1 If only one alarm can be set, and the application itself may be trying to 
use it 

2 If, at the time the alarm goes off, and the application is blocked in a 
system call that is doing I/O to a "slow device" (such as a terminal), the 

12-32 rpc $Routine Reference Pages 



rpc $set_async_ack 

system call will return an error (with the EINTR erroo); the application 
may not be coded to expect this error. 

If neither of these problems exists, set asynchronous-acknowledgement mode in the 
application to get greater efficiency. 

Files 
RPC$INCLUDE:RPC.H 
RPC$IDL:RPC.IDL 

rpc_$ Routine Reference Pages 12-33 



rpc $set binding 

Name 
rpc_$set_binding —bind an RPC handle to a server (client only) 

Format 
#include <rpc.h> 

void rpc_$set_binding(handle, sockaddr, slength, status) 
handle_t handle; 
socket_$addr_t *sockaddj-; 
unsigned long slength; 
status $t *status; 

Arguments 

handle An RPC handle. 

sockaddr The socket address of the server with which the handle is 
being associated. 

slength The length, in bytes, of sockaddr. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ s e t_b i n d i n g routine sets the binding of an RPC handle to the 
specified server. The handle then identifies a specific object at a specific server. Any 
subsequent remote procedure calls that a client makes using the handle are sent to 
this destination. 

You can use this routine either to set the binding in an unbound handle or to replace 
the existing binding in a fully bound or bound-to-host handle. 

Example 
The following statement sets the binding on the handle h to the first server in the 
lb re s u 1 t s array, which was returned by a previous Location Broker lookup 
routine, lb $lookup interface: 
rpc_$set_binding (h, &lbresults [ 0 ] . saddr, lbresults [ 0 ] . saddr_len, 

&status) ; 

12-34 rpc $Routine Reference Pages 



rpc_$set_binding 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$cant_bind_sock The RPC runtime library created a socket but was unable to 
bind it to a socket address. 

rpc_$not_in_call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$ IDL :RPC .IDL 

See Also 
rpc_$alloc_handle, rpc_$clear_binding, rpc_$clear_server_binding 

rpc $Routine Reference Pages 12-35 



rpc_$set fault_mode 

Name 
rpc_$set fault_mode —set the fault-handling mode for a server (server only) 

Format 
#include <rpc.h> 

unsigned long rpc_$set_fault_mode(state) 
unsigned long state; 

Arguments 

state If "true" (not zero), the server exits when a fault occurs. If "false" (zero), the 
server reflects faults back to the client. 

Description 
The rpc_$set fault_mode function controls the handling of faults that occur in 
user server routines. 

In the default mode, the server reflects faults back to the client and continues 
processing. Calling rpc_$ set_fault_mode with value other than zero for state 
sets the fault-handling mode so that the server sends an rpc_$comm_failure fault 
back to the client and exits. Calling rpc_$set fault_mode with state equal to 
zero resets the fault-handling mode to the default. 

This function returns the previous state of the fault-handling mode. 

Diagnostics 
This section lists status codes for errors returned by this rpc$ routine. 

Files 

rpc_$not_in_call 

rpc_$proto_error 

RPC$IDL:RPC.IDL 

12-36 rpc_$ Routine Reference Pages 

An internal error. 

An internal protocol error. 



rpc $set_short timeout 

Name 
rpc_$set_short_timeout —set or clear short-timeout mode (client only) 

Format 
#include <rpc.h> 

unsigned long rpc_$set_short_timeout(handle, state, status) 
handle_t handle; 
unsigned long state; 
status_$t *status; 

Arguments 

handle An RPC handle. 

on If "true" (not zero}, short-timeout mode is set on handle. If "false" (zero), 
standard timeouts are set. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The rp c_$ s et_s ho rt_t ime out routine sets or clears short-timeout mode on a 
handle. If a client uses a handle in short-timeout mode to make a remote procedure 
call, but the server does not respond, the call fails quickly. As soon as the server 
responds, standard timeouts take effect and apply for the remainder of the call. 

Calling rpc_$ s et_short timeout with a value other than zero for state sets 
short-timeout mode. Calling it with state equal to zero, sets standard timeouts. 
Standard timeouts are the default. 

This routine returns the previous setting of the timeout mode in status . a 11. 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$not_in call An internal error. 

rpc_$proto_error An internal protocol error. 

rpc_$ Routine Reference Pages 12-37 



rpc $set short timeout 

Files 
RPC$IDL:RPC.IDL 

12-38 rpc $Routine Reference Pages 



rpc_$shutdown 

Name 
rpc_$shutdown —shut down a server (server only) 

Format 
#include <rpc.h> 

void rpc_$shutdown status) 
status_$t *status; 

Arguments 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The rpc_$ shut down routine shuts down a server. When this routine is executed, 
the server stops processing incoming calls and rp c $1 i s t e n returns. 

If rpc_$shutdown is called from within a remote procedure, that procedure 
completes, and the server shuts down after replying to the caller. 

Diagnostics 
This section lists status codes for errors returned by this rpc_S routine in 
status.all. 

Files 

rpc_$comm_failure 

rpc_$not in_call 

rpc_$proto_error 

RPC$ IDL :RPC .IDL 

The call could not be completed due to a communication 
problem. 

An internal error. 

An internal protocol error. 

See Also 
rpc_$allow_remote_shutdown, rpc_$listen, rrpc_$shutdown 

rpc_$ Routine Reference Pages 12-39 



rpc $sockaddr to_name 

Name 
rpc_$sockaddr_to_name — convert a socket address to a host name and port number 
(client or server) 

Format 
#include <rpc.h> 

void rpc_$sockaddr_to_name(&sockaddj•, slength, name, c4~nlength, 
port, status) 

socket_$addr_t *sockaddr; 
unsigned long slength; 
unsigned char name; 
unsigned long *nlength; 
unsigned long sport; 
status_$t *status; 

Arguments 

sockaddr A socket address. 

slength The length, in bytes, of sockaddr. 

name A string that contains the host name and the address family. 
The format is family: host [port], where family is ip. 

nlength On input, nlength is the length of the name buffer. On 
output, nlength is the number of characters returned in the 
name parameter. 

port The socket port number. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ s o c k a ddr_t o_n ame routine provides the address family, the host 
name, and the port number identified by the specified socket address. 

12-40 rpc $Routine Reference Pages 



rpc $sockaddr to_name 

NOTE 

This routine has been superseded by the socket $ t o name routine. 

Diagnostics 
This section lists status codes for errors returned by this rpc $routine in 
status.all. 

rpc_$not_in call An internal error. 

rpc_$proto_error An internal protocol error. 

Files 
RPC$IDL:RPC.IDL 

See Also 
rpc_$name_to_sockaddr, socket_$to_name 

rpc $Routine Reference Pages 12-41 



rpc $unregister 

Name 

Format 

rpc_$unreg rpc_$unregister —unregister an interface (server only) 

#include <rpc.h> 

void rpc_$unregister(ifspec, status) 
rpc_$if spec_t *ifspec; 
status $t *status; 

Arguments 

ifspec 

An rpc_$if spec_t. An interface specifier obtained from a 
previous RPC register call. The interface being unregistered. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ un r e g i s t e r routine unregisters an interface that the server previously 
registered with the RPC runtime library. After an interface is unregistered, the RPC 
runtime library will not pass requests for that interface to the server. 

If a server uses several rp c_$ r e g i s t e r or rp c_$ r e g i s t e r_mg r routines to 
register an interface more than once, then it must call rp c_$ un r e g i s t e r an equal 
number of times to unregister the interface. 

Example 
The following statement unregisters a matrix arithmetic interface: 
rpc_$unregi ster (&mat rix_$ i f_spec, &status) ; 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$op_rng_error 

rpc_$unk_if 

12-42 rpc_$ Routine Reference Pages 

The requested operation does not correspond to a valid 
operation in the requested interface. 

The requested interface is not known. It is not registered in 
the server, the version number of the registered interface is 



rpc_$unregister 

Files 

rpc_$not_in_call 

rpc_$proto_error 

RPC$IDL:RPC.IDL 

different from the version number specified in the request, or 
the QUID in the request does not match the UUID of the 
registered interface. 

An internal error. 

An internal protocol error. 

See Also 
rpc_$register, rpc_$register mgr, rpc_$register object 

rpc $Routine Reference Pages 12-43 



rpc_$use_family 

Name 
rpc_$use_family — create a socket of a specified address family for a remote 
procedure call (RPC) server (server only) 

Format 
#include <rpc.h> 

void rpc_$use_family(family, sockaddr•, slength, status) 
unsigned long family; 
socket_$addr_t *sockaddr; 
unsigned long slength; 
status_$t *status; 

Arguments 

family The address family of the socket to be created. The value must be 
one of socket_$internet or socket_$unspec. 

sockaddr The socket address of the socket on which the server will listen. 

slength The length, in bytes, of sockaddr. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ u s e_f ami 1 y routine creates a socket for a server without specifying its 
port number. The RPC runtime software assigns a port number. If a server must 
listen on a particular well-known port, use rp c_$ u s e_f ami 1 y wk to create the 
socket. 

A server listens on one socket per address family, regardless of how many interfaces 
that it exports. Therefore, servers should make this call once per supported address 
family. 

Example 
The following statement creates a server's socket: 
rpc—$use family (family, &saddr, &slen, &status) ; 

12-44 rpc $Routine Reference Pages 



r1 rpc $use family 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

rpc_$cant_create_sock 
The RPC runtime library was unable to create a socket. 

rpc_$not_in_call An internal error. 

rpc_$proto_error An internal protocol error. 

rpc_$too_many_sockets 
The server is trying to use more than the maximum number 
of sockets that is allowed; it has called 
rpc $use family or rpc $use family wk too —, — — — —
many times. 

rpc_$addr_in_use The address and port specified in an
rpc $use f ami 1 y wk routine are already in use. This 
is caused by multiple calls to rp c_$ u s e_f ami 1 y_wk 
with the same well-known port. 

Files 
RPC$ IDL :RPC .IDL 

See Also 
rpc_$use_family_wk 

rpc $Routine Reference Pages 12-45 



rpc_$use family_wk 

Name 
rpc_$use_family_wk — create a socket with awell-known port for a remote procedure 
call (RPC) server (server only) 

Format 
#include <rpc.h> 

void rpc_$use_family_wk(family, ifspec, sockaddj•, slength, status) 
unsigned long family; 
rpc_$if spec_t *ifspec; 
socket_$addr_t *sockaddr; 
unsigned long *slength; 
status $t *status; 

Arguments 

family The address family of the socket to be created. This value 
corresponds to the communications protocol used to access the 
socket and determines how the sockaddr is expressed. The value 
must be one of socket_$unspec or socket $internet. 

ifspec The interface that will be registered by the server. Typically, this 
parameter is the interface if spec generated by the NIDL compiler 
from the interface definition; the well-known port is specified as an 
interface attribute. 

sockaddr The socket address of the socket on which the server will listen. 

slength The length, in bytes, of sockaddj-. 

status The completion status. If the completion status returned in 
status . a 11 i s equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The rp c_$ u s e_f ami 1 y_wk routine creates a socket that uses the port specified 
through the if spec parameter. Use this routine to create a socket only if a server 
must listen on a particular well-known port. Otherwise, use rp c_$ u s e_f ami 1 y . 

A server listens on one socket per address family, regardless of how many interfaces 
that it exports. Therefore, servers that use well-known ports should make this call 
once per supported address family. 

12-46 rpc $Routine Reference Pages 



n rpc_$use_family_wk 

Exarr~ple 
The following statement creates the well-known socket identified by s o c k a ddr for 
an array processor server: 
rpc_$use_family_wk (socket_$internet, &matrix$if_spec, 

&sockaddr, &slen, &status); 

Diagnostics 
This section lists status codes for errors returned by this rpc_$ routine in 
status.all. 

Fifes 

rpc_$cant create_sock _ 
The RPC runtime library was unable to create a socket. 

rpc_$not_in_call An internal error. 

rpc_$proto_error An internal protocol error. 

rpc_$too_rnany_sockets 
The server is trying to use more than the maximum number 
of sockets that is allowed; it has called 
rpc $use family or rpc $use family wk too 
many times. 

rpc_$bad_pkt The server or client has received an ill-formed packet. 

rpc_$addr_in_use The address and port specified in an 
rp c_$ u s e_f ami 1 y_wk routine are already in use. This 
is caused by multiple calls to rp c_$ u s e_f ami 1 y_wk 
with the same well-known port. 

RPC$ IDL :RPC .IDL 

See Also 
rpc_$use_family 

rpc $Routine Reference Pages 12-47 





rrpc_$ Routine Reference Pages 1 3 

This chapter contains reference pages for the rrpc_$ routines, which 
enable a client to request information about a server or to shut down a server. 

The rrpc_$ interface is defined by these files: 

On VMS systems RPC$IDL:RRPC.IDL 

On ULTRIX systems /usr/include/idl/rrpc . idl 

13.1 Constants 
This section describes constants used in rrpc_$ calls. 

rrpc_$sv 

status $ok 

Indices for elements in an rrpc_$stat_vec_t array. Each 
element is a 32-bit integer representing a statistic about a 
server. The following list describes the statistic indexed by 
each rrpc_$sv constant: 

rrpc_$sv_calls_in 
The number of calls processed by the server. 

rrpc_$sv_rcvd 
The number of packets received by the server. 

rrpc_$sv_sent 
The number of packets sent by the server. 

rrpc_$sv_calls_out 
The number of calls made by the server. 

rrpc_$sv_frag_resends 
The number of fragments sent by the server that 
duplicated previous sends. 

rrpc_$sv_dup_frags_rcvd 
The number of duplicate fragments received by the 
server. 

A constant used to check status. If a completion status is 
equal to status_$ok, then the system call that supplied it was 
successful. 



13.2 Data Types 
This section describes data types used in rpc_$ routines. 

handle t An RPC handle. 

rrpc_$interface vec_t 
An array of rpc_$if spec_t, RPC interface specifiers. 

rrpc_$stat_vec t 
An array of 32-bit integers, indexed by rrpc_Ssv 
constants, representing statistics about a server. 

rpc_$if spec_t 
An RPC interface specifier. An opaque data type containing 
information about an interface, including the QUID, the 
version number, the number of operations in the interface, 
and any well known ports used by servers that export the 
interface. 

Applications may need to access two members of 
rpc_$if spec_t: 

id A uuid_$t indicating the interface UUID. 

vers An unsigned 32-bit integer indicating the interface 
version. 

13-2 rrpc $Routine Reference Pages 



rrpc_$are_you there 

Name 
rrpc_$areyouu_there —check whether a server is answering requests 

Format 
#include <rrpc.h> 

void rrpc_$areyouu_there( handle, *status) 
handle_t handle; 
status_$t *status; 

Arguments 

handle A remote procedure call (RPC) handle. 

status The completion status. 

Description 
The rrpc_$areyouu_there call checks whether a server is answering requests. 

Restrictions 
On the client side, because of the way the rrpc_ calls are defined and implemented 
in the run-time library libnck . a, you must explicitly call into the entry point 
vector table for the rrpc_ interface to send an rrpc_ request across the network. 
The following is an example of a call that works as desired. 
(*rrpc $client epv.rrpc $are you there)(handle, &status); 

The server side stub routine calls the entry point rrpc_$areyouu_there on 
behalf of the client. The results of the call are then passed back to the client. 

Files 
RPC$IDL:RRPC.IDL 

rrpc_$ Routine Reference Pages 13-3 



rrpc_$i nq_i nterfaces 

Name 

Format 

rrpc_$inq_interfac rrpc_$inq_interfaces — obtain a list of the interfaces that a server exports 

#include <rrpc.h> 

void rrpc_$inc~interfaces (handle, max ifs, ifs, l if, status) 
handle_t handle; 
unsigned long max_ifs; 
rrpc_$interface_vec_t ifs ~]; 
unsigned long ~`l_if; 
status $t *status; 

Arguments 

handle An RPC handle. 

max ifs The maximum number of elements in the array of interface 
specifiers. 

ifs An array of rpc_$if spec_t. 

1 if The index of the last element in the returned array. 

status The completion status. If the completion status returned in 
status .all is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The r rp c_$ i n q interfaces routine returns an array of RPC interface 
specifiers. 

Restrictions 
On the client side, because of the way the r rp c_ calls are defined and implemented 
in the run-time library libnck . a, you must explicitly call into the entry point 
vector table for the r rp c_ interface to send an r rp c_ request across the network. 
The following is an example of a call that works as desired: 

(*rrpc $client_epv. rrpc $inq interfaces) (handle, 
(unsigned long) max ifs, ifs, &1 if, &status) ; 

13-4 rrpc $Routine Reference Pages 



rrpc_$i nq_i nterfaces 

The server side stub routines call the entry point r rp c_$ i n q interfaces on 
behalf of the client. The results of the call are then passed back to the client. 

Files 
RPC$IDL:RRPC.IDL 

rrpc $Routine Reference Pages 13-5 



rrpc_$inq stars 

Name 

Format 

rrpc_$inq_ rrpc_$inq_stats —obtain statistics about a server 

#include <rrpc.h> 

void rrpc_$inq~stats(handle, max stars, stars, l star, status) 
handle_t handle; 
unsigned long max stars; 
rrpc_$stat_vec_t stars; 
unsigned long *l_stat; 
status_$t *status; 

Arguments 

handle A remote procedure call (RPC) handle . 

max stars The maximum number of elements in the array of statistics. 

scats An array of 32-bit integers representing statistics about the server. A set 
of rrpc_$sv constants defines indices for the elements in this array. The 
following list describes the statistic indexed by each rrpc_$sv constant: 

rrpc_$sv_calls_in 
The number of calls processed by the server. 

rrpc_$sv_rcvd 
The number of packets received by the server. 

rrpc_$sv_sent 
The number of packets sent by the server. 

rrpc_$sv_calls_out 
The number of calls made by the server. 

rrpc_$sv_frag_resends 
The number of fragments sent by the server that 
duplicated previous sends. 

rrpc_$sv_d u p_frags_rcvd 
The number of duplicate fragments received by the server. 

l star The index of the last element in the returned array. 

13-6 rrpc $Routine Reference Pages 



rrpc $inq stats 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that supplied it 
was successful. 

Description 
The r rp c_$ i nq stats routine returns an array of integer statistics about a server. 

Restrictions 
On the client side, because of the way the rrpc_ calls are defined and implemented 
in the run-time library 1 ibnck . a, you must explicitly call into the entry point 
vector table for the rrpc_ interface to send an rrpc_ request across the network. 
The following is an example of a call that works as desired: 
(*rrpc_$client_epv.rrpc_$inq_stats)(handle, 

(unsigned long) max stats, stats, &1 stat ,&status); 

The server sidestub routine calls the entry Dint r rp c_$ i n q stats on behalf of the 
client. The results of the call are then passed back to the client. 

Files 
RPC$IDL:RRPC.IDL 

rrpc $Routine Reference Pages 13-7 



rrpc $shutdown 

Name 

Format 

rrpc_$shutd rrpc_$shutdown —shut down a server 

#include <rrpc.h> 

void rrpc_$shutdown(handle, status) 
handle_t handle; 
status_$t *status; 

Arguments 

handle A remote procedure call (RPC) handle. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The r rp c_$ s but down routine shuts down a server, if the server allows it. A 
server can use the rp c_$ a 11 ow_remot e_s but down routine to allow or disallow 
remote shutdown. 

Restrictions 
On the client side, because of the way the rrpc_ calls are defined and implemented 
in the run-tune library 1 ibnck . a, you must explicitly call into the entry point 
vector table for the rrpc_ interface to send an rrpc_ request across the network. 
The following is an example of a call that works as desired: 
(*rrpc_$client_epv.rrpc_$shutdown)(handle, &status); 

The server side stub routine calls the entry point r rp c_$ s but down on behalf of 
the client. The results of the call are then passed back to the client. 

Before making the shutdown call, the server must have previously executed the 
following call: 
rpc_$allow_remote_shutdown((unsigned long) TRUE, NULL,&status); 

If the server has not allowed remote shutdown, the r rp c_$ s but down call returns 
an operation not implemented status code. 

13-8 rrpc_$ Routine Reference Pages 



n

Files 
RPC$IDL:RRPC.IDL 

See Also 
rpc_$allow_remote_shutdown, rpc_$shutdown 

rrpc_$shutdown 

rrpc $Routine Reference Pages 13-9 





socket_$ Routine Reference Pages 14 

This chapter contains reference pages for the socket_$ routines, which 
manipulate socket addresses. Unlike the routines that operating systems such 
as BSD UNIX provide, the socket_$ routines operate on addresses of any 
protocol family. 

The socket_$ interface. is defined by these files: 

On VMS systems RPC$IDL:SOCKET.IDL 

On ULTRIX systems /usr/include/idl/socket . idl 

14.1 Constants 
This section describes constants used in socket $routines. 

socket_$eq Flags indicating the fields to be compared in a 
socket_$equal call. 

socket_$eq_hostid 
Indicates that the host IDs are to be compared. 

socket_$eq_netaddr 
Indicates that the network addresses are to be 
compared. 

socket_$eq_port 
Indicates that the port numbers are to be compared. 

socket_$eq_network 
Indicates that the network IDs are to be compared. 

socket_$unspec_port 
A port number indicating to the RPC run-time library that no 
port is specified. 

socket_$addr_family_t 
Values used to specify the address family in a 
socket_$addr_t structure. Note that several of the rpc_$ 
and socket_$ routines use the 32-bit-integer equivalents 
of these values. 



status $ok 

socket_$unspec 
Address family is unspecified. 

socket_$internet 
Internet Protocols (IP). 

A constant used to check status. If a completion status is 
equal to status_$ok, then the routine that supplied it was 
successful. 

14.2 Data Types 
This section describes data types used in socket_$ routines. 

socket_$addr family_t 
An enumerated type for specifying an address family. The 
Constants section lists values for this type. 

socket $addr list t 
An array of socket addresses in socket_$addr_t format. 

socket_$addr_t 
A structure that uniquely identifies a socket address. This 
structure consists of a socket_$addr_family_t specifying an 
address family and 14 bytes specifying a socket address. 

socket_$host_id_t 
A structure that uniquely identifies a host. This structure 
consists of a socket_$addr family_t specifying an address 
family and 12 bytes specifying a host. 

socket_$len_list_t 
An array of unsigned 32-bit integers, the lengths of socket 
addresses in a socket $addr list t. 

socket_$local_sockaddr_t 
An array of 50 characters, used to store a socket address in a 
format native to the local host. 

socket_$net_addr_t 
A structure that uniquely identifies a network address. This 
structure consists of a socket_$addr_family_t specifying an 
address family and 12 bytes specifying a network address. It 
contains both a host ID and a network ID. 

socket_$string_t 
An array of 100 characters, used to store the string 
representation of an address family or a socket address. 

The string representation of an address family is a textual 
name such as dds, ip, or unspec. 

14-2 socket $Routine Reference Pages 



status $t 

The string representation of a socket address has the format 
family:host [port ] ,where family is the textual name of an 
address family, host is either a textual host name or a 
numeric host ID preceded by a #, and port is a port number. 

A status code. Most of the DECrpc routines supply their 
completion status in this format. The status_$t type is 
defined as a structure containing a long integer: 
struct status_$t { 

long all; 
} 

However, the routines can also use status_$t as a set of bit 
fields. To access the fields in a returned status code, you can 
assign the value of the status code to a union defined as 
follows: 
typedef union { 

struct { 

unsigned fail 1, 
subsys 7, 
modc 8; 

short code; 

} s; 
long all; 

} status u; 

all All 32 bits in the status code. If all is equal 
to status_$ok, the routine that supplied the 
status was successful. 

fail If this bit is set, the error was not within the 
scope of the module invoked, but occurred 
within alower-level module. 

subsys This indicates the subsystem that 
encountered the error. 

modc This indicates the module that encountered 
the error. 

code This is a signed number that identifies the 
type of error that occurred. 

socket $Routine Reference Pages 14-3 



socket_$equal 

Name 
socket_$equal —compare two socket addresses 

Format 
#include <socket.h> 

boolean socket_$equal (sockaddrl ,sllength, &sockaddrl, s2length, flags, 
status) 

socket_$addr_t *sockaddrl ; 
unsigned long sllength; 
socket_$addr_t *sockaddrl; 
unsigned long s2length; 
unsigned long flags; 
status $t *status; 

Arguments 

sockaddrl A socket address. The socket address is the structure 
returned by either rp c_$ u s e_f ami 1 y or 
rpc_$use_family_wk . 

sllength The length, in bytes, of sockaddj•1. 

sockaddrl A socket address. The socket address is the structure 
returned by either rp c_$ u s e_f ami 1 y or 
rpc_$use_family_wk. 

s2length The length, in bytes, of sockaddrl. 

flags The logical OR of values selected from the following: 

socket_$eq_hostid Indicates that the host IDs are to be 
compared. 

socket_$eq_netaddr Indicates that the network addresses 
are to be compared. 

socket_$eq_port Indicates that the port numbers are 
to be compared. 

socket_$eq_network Indicates that the network IDs are to 
be compared. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

14-4 socket $Routine Reference Pages 



socket_$equal 

Description 
The s ocket_$ equa 1 routine compares two socket addresses. The ,flags parameter 
determines which fields of the socket addresses are compared. The call returns "true" 
(not zero) if all of the fields compared are equal, "false" (zero) if not. 

Example 
The following routine compares the network and host IDs in the socket addresses 
sockaddrl and sockaddrl: 
if (socket_$equal (&sockaddrl, sllength, &sockaddrl, s2length, 

socket_$eq_network ~ socket_$eq_hostid, status)) 
printf ("sockaddrs have equal network and host IDs\n"); 

Files 
RPC$IDL:SOCKET.IDL 
RPC$INCLUDE:SOCKET.H 

socket_$ Routine Reference Pages 14-5 



socket_$family from name 

Name 

Format 

socket_$family_from_name socket_$family_from_name —convert an address family name to an integer 

#include <socket.h> 

unsigned long socket_$family_from_name(name, nlength, status) 
socket_$string_t name; 
unsigned long nlength; 
status $t status; 

Arguments 

name 

nlength 

status 

The textual name of an address family. Currently, only ip is 
supported. 

The length, in bytes, of name. 

The completion status. If the completion status returned in 
status . a 11 i s equal to status $ok, then the routine that 
supplied it was successful. 

Description 
The s o c k et_$ f ami 1 y f r om_n ame routine returns the integer representation of 
the address family specified in the text string name. 

Example 
The server program for the banks example, / u s r /examples /banks / b a n k d . c 
accepts a textual family name as its first argument. The program uses the following 
socket $ f ami 1 y from name routine to convert this name to the corresponding 

Files 

integer representation: 
family = socket—$family from name 

(argv[1] , (long) strlen (argv[1]) , &status) ; 

RPC$IDL:SOCKET.IDL 
RPC$INCLUDE:SOCKET.H 

14-6 socket_$ Routine Reference Pages 



~"1 socket $family_from_name 

See Also 
socket_$family_to_name, socket_$from_name, socket_$to_name 

socket $Routine Reference Pages 14-7 



socket_$family to_name 

Name 

Format 

socket_$family_to_nam socket_$family_to_name —convert an integer address family to a textual name 

#include <socket.h> 

void socket_$family_to_name(family, name, nlength, status) 
unsigned long family; 
socket_$string_t name; 
unsigned long *nlength; 
status_$t *status; 

Arguments 

family The integer representation of an address family. 

name 

The textual name of 
family. 

Currently, only ip is supported. 

nlength On input, the maximum length, in bytes, of the name to be 
returned. On output, the actual length of the returned name. 

status The completion status. If the completion status returned in 
status . a 11 is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The socket $family_to_name routine converts the integer representation of an
address family to a textual name for the family. 

Files 
RPC$IDL:SOCKET.IDL 
RPC$INCLUDE:SOCKET.H 

14-8 socket $Routine Reference Pages 



socket_$from_name 

Name 

Format 

socket_$from_name — convert a name and port number to a socket address 

#include <socket.h> 

void socket_$from_name(family, name, nlength, port, ~sockaddr, ~slength, 
status) 

unsigned long family; 
socket_$string_t name; 
unsigned long nlength; 
unsigned long port; 
socket_$addr_t *sockaddr; 
unsigned long *slength; 
status $t *status; 

Arguments 

family The integer representation of an address family. Value can be 
socket_$internet or socket_$unspec. If the family parameter is 
socket_$unspec, then the name parameter is scanned for a prefix of family: 
(for example, ip:). 

name A string in the format family:host [port ] ,where family:, host, and [port ] 
are all optional. 

The family is an address family. The only valid family is ip. If you specify 
a family as part of the name parameter, you must specify socket_$unspec in 
the family parameter. 

The host is a host name. Use a leading number sign (#) to indicate that the 
host name is in the standard numeric form (for example, # 192.9.8.7). If host 
is omitted, the local host name is used. 

The port is a port number. If you specify a poj•t as part of the name 
parameter, the port parameter is ignored. 

nlength 
The length, in bytes, of name. 

port A port number. If you specify a port number in the name parameter, this 
parameter is ignored. 

socket_$ Routine Reference Pages 14-9 



socket_$from_name 

sockaddr 
A socket address. 

slength The length, in bytes, of sockaddr. 

status The completion status. If the completion status returned in status . a 11 is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The socket_$from name routine converts a textual address family, host name, 
and port number to a socket address. The address family and the port number can be 
either specified as separate parameters or included in the name parameter. 

Files 
RPC$IDL:SOCKET.IDL 
RPC$INCLUDE:SOCKET.H 

See Also 
socket_$family_from_name, socket_$to_name 

14-10 socket $Routine Reference Pages 



socket_$to_name 

Name 
socket_$to_name — convert a socket address to a name and port number 

Format 
#include <socket.h> 

void socket_$to_name(sockaddj-, slength, name, nlength, port, status) 
socket_$addr_t *sockaddr; 
unsigned long slength; 
socket_$string_t name; 
unsigned long *nlength; 
unsigned long *port; 
status $t *status; 

Arguments 

sockaddr A socket address. The socket address is the structure 
returned by either rp c $use f am i 1 y or 
rpc $use family wk. 

slength The length, in bytes, of sockaddr. 

name A string in the format family: host port], where family is the 
address family and host is the host name; host can be in the 
standard numeric form (for example, #192.1.2.3) if a textual 
host name cannot be obtained. Currently, only ip is 
supported for family. 

nlength On input, the maximum length, in bytes, of the name to be 
returned. On output, the actual length of the name returned. 

port The port number. 

status The completion status. If the completion status returned in 
status . a 11 i s equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The socket_$to_name routine converts a socket address to a textual address 
family, host name, and port number. 

socket_$ Routine Reference Pages 14-11 



socket_$to_name 

Files 
RPC$IDL:SOCKET.IDL 
RPC$INCLUDE:SOCKET.H 

See Also 
socket_$family_to_name, socket_$from_name, socket_$to_numeric_name 

14-12 socket $Routine Reference Pages 



socket_$to numeric_name 

Name 
socket_$to_numeric_name — convert a socket address to a numeric name and port 
number 

Format 
#include <socket.h> 

void socket_$to_numeric_name(&sockaddr, slength, name, ~nlength, &port, 
status) 

socket_$addr_t *sockaddr; 
unsigned long slength; 
socket_$string_t name; 
unsigned long *nlength; 
unsigned long *port; 
status_$t *status; 

Arguments 

sockaddr A socket address. The socket address is the structure 
returned by either rp c_$ u s e_f ami l y or 
rpc $use family wk. 

slength The length, in bytes, of soc.~kaddr. 

name A string in the format family: host[portJ, where family is the 
address family and host is the host name in the standard 
numeric form (for example, # 192.7.8.9 for an IP address). 
Currently only ip is supported for family. 

nlength ~ On input, the maximum length, in bytes, of the name to be 
returned (error if less than size of "nnnnn.nnnn"). On 
output, the actual length of the name returned. 

port The port number. 

status The completion status. If the completion status returned in 
status . al 1 is equal to status_$ok, then the routine that 
supplied it was successful. 

socket_$ Routine Reference Pages 14—~ 3 



socket_$to_numeric_name 

Description 
The s o ck et_$ t o_nume r i c_n ame routine converts a socket address to a textual 
address family, a numeric host name, and a port number. 

Files 
RPC$IDL:SOCKET.IDL 
RPC$INCLUDE:SOCKET.H 

See Also 
socket_$family_to_name, socket_$from_name, socket_$to_name 

~ 4-14 socket $Routine Reference Pages 



socket_$valid families 

Name 

Format 

socket_$valid_families — obtain a list of valid address families 

#include <socket.h> 

void socket_$valid_families(max~ families, families, status) 
unsigned long *mar families; 
socket_$addr_family_t families[ ]; 
status $t *status; 

Arguments 

maxJ families 

families[ J 

status 

The maximum number of families that can be returned. 

An array of socket_$addr_family_t. Possible values for 
this type are enumerated in / i d l/ nb a s e. i d l. 
Currently, only ip is supported for family. 

The completion status. This variable is set if the families[ J 
array is not long enough to hold all the valid families. If the 
completion status returned in status . a 11 is equal to 
status_$ok, then the routine that supplied it was successful. 

Description 
The s o ck et_$ va 1 i d_f ami 1 i e s routine returns a list of the address families that 
are valid on the calling host. 

Example 
The following call returns the valid address family: 
socket $valid families (l, &families, $status) ; 

Files 
RPC$IDL:SOCKET.IDL 

RPC$INCLUDE:SOCKET.H 

socket_$ Routine Reference Pages 14-15 



socket $valid families 

See Also 
socket_$valid_family 

14-16 socket $Routine Reference Pages 



socket $valid family 

Name 

Format 

socket_$valid_family —check whether an address family is valid 

#include <socket.h> 

boolean socket_$valid_family ~ family, status) 
unsigned long family; 
status_$t *status; 

Arguments 

family The integer representation of an address family. 

status The completion status. If the completion status returned in 
status .all is equal to status_$ok, then the routine that 
supplied it was successful. 

Description 
The socket $ va 1 i d_f ami 1 y routine returns "true" if the specified address 
family is valid for the calling host, "false" if not valid. 

Example 
The following routine checks whether socket_$internet is a valid address family: 

internetvalid = socket $valid family (socket $internet, &status); 

Files 
RPC$IDL:SOCKET.IDL 

RPC$INCLUDE:SOCKET.H 

See Also 
socket_$valid_families 

socket_$ Routine Reference Pages 14-17 





uuid_$ Routine Reference Pages 1 5 

This chapter contains reference pages for the uuid_$ routines, which 
operate on UUIDs (Universal Unique Identifiers). 

The uuid_$ interface is defined by these files: 

On VMS systems RPC$IDL:UUID.IDL 

On ULTRIX systems /usr/include/idl/uuid. idl 

15.1 External Variables 
This section describes external variables used in uuid S routines. 

uuid_$nil 
An external uuid_$t variable that is preassigned the value of the nil 
QUID. Do not change the value of this variable. 

15.2 Data Types 
This section describes data types used in uuid S routines. 

status $t A status code. Most of the DECrpc routines supply their 
completion status in this format. The status_$t type is 
defined as a structure containing a long integer: 
struct status_$t { 

long all; 
} 

However, the routines can also use status_$t as a set of bit 
fields. To access the fields in a returned status code, you can 
assign the value of the status code to a union defined as 
follows: 
typedef union { 

struct { 
unsigned fail 1, 

subsys 7, 
modc 8; 

short code; 

} s; 
long all; 

} status u; 



all All 32 bits in the status code. if all is equal 
to status_$ok, the routine that supplied the 
status was successful. 

fail If this bit is set, the error was not within the 
scope of the module invoked, but occurred 
within alower-level module. 

subsys This indicates the subsystem that 
encountered the error. 

modc This indicates the module that encountered 
the error. 

code This is a signed number that identifies the 
type of error that occurred. 

uuid_$string_t 
A string of 37 characters (including a null terminator) that is 
an ASCII representation of a UUID. The format is 
cccccccccccc.,~`'. hl . h2 . h3 . h4 . h5 . h6 . h7, where 
cccccccccccc is the timestamp, f.~ is the address family, and 
hl ... h7 are the 7 bytes of host identifier. Each character in 
these fields is a hexadecimal digit. 

uuid_$t A 128-bit value that uniquely identifies an object, type, or 
interface for all time. The uuid_$t type is defined as 
follows: 

typedef struct uuid $t { 
unsigned long time high; 
unsigned short time low; 
unsigned short reserved; 
unsigned char family; 
unsigned char (host) [ 7 ] ; 

} uuid $t; 

time_high The high 32 bits of a 48-bit unsigned time 
value that is the number of 4-microsecond 
intervals that have passed between 1 January 
1980 00:00 GMT and the time of UUID 
creation. 

time low The low 16 bits of the 48-bit time value. 

reserved 16 bits of reserved space. 

family 8 bits identifying an address family. 

host 7 bytes identifying the host on which the 
QUID was created. The format of this field 
depends on the address family. 

1~-2 uuid_$ Routine Reference Pages 



15.3 Example 
The following routine returns as f oo_uu i d the UUID corresponding to the 
character-string representation in f o o_uu i d_rep 

uuid $decode (foo uuid rep, &foo uuid, &status) ; 

uuid_$ Routine Reference Pages 15-~ 



uuid_$decode 

Name 
uuid_$decode —convert acharacter-string representation of a QUID into a UUID 
structure 

Format 
#include <uuid.h> 

void uuid $decode (s, uuid, status) 
uuid_$string_t s; 
uuid_$t *uuid; 
status_$t *status; 

Arguments 

s The character-string representation of a UUID. 

uuid The UUID that corresponds to s. 

status The completion status. If the completion status returned in status .all is 
equal to status_$ok, then the routine that supplied it was successful. 

Description 
The uuid $decode routine returns the UUID corresponding to a valid character-
string representation of a UUID. 

Example 
The following routine returns as foo_uuid the QUID corresponding to the character-
string representation in foo_uuid_$rep: 
uuid—$decode (foo_uuid_$rep, &foo_uuid, &status); 

Files 
RPC$IDL:UUID.IDL 
RPC$INCLUDE:UUID.H 

See Also 
uuid_$encode 

15-4 uuid_$ Routine Reference Pages 



uuid $encode 

Name 

Format 

uuid_$encode — convert a UUID into its character-string representation 

#include <uuid.h> 

void uuid_$encode (uuid, s) 
uuid_$t *uuid; 
uuid_$string_t s; 

Arguments 

uuid A UUID. 

s The character-string representation of uuid. 

Description 
The uuid $encode routine returns the character-string representation of a UUID. 

Example 
The following routine returns as foo_uuid_$rep the character-string representation 
for the UUID foo uuid: 

Files 

uuid—$encode (&foo_uuid, foo_uuid_$rep); 

RPC$IDL:UUID.IDL 
RPC$INCLUDE:UUID.H 

See Also 
uuid_$decode 

uuid_$ Routine Reference Pages 15-5 



uuid equal 

fVame 
uuid_$equal —compare two UUIDs 

Format 
#include <uuid.h> 

boolean uuid_$equal (ul , u2) 
uuid_$t *ul ; 
uuid $t *u2; 

Arguments 

ul A QUID. 

u2 Another QUID. 

Description 
The uuid_$encode routine compares the UUIDs ul and u2. It returns "true" if 
they are equal, "false" if they are not. 

Example 
The following code compares the UUIDs bar_uuid and foo_uuid: 
if (uuid_$equal (bar_uuid, foo_uuid)) 

printf ("bar and foo UUIDs are equal\n"); 
else 

printf ("bar and foo UUIDs are not equal\n") ; 

Files 
RPC$IDL:UUID.IDL 
RPC$INCLUDE:UUID.H 

15-6 uuid_$ Routine Reference Pages 



uuid $gen 

Name 
uuid_$gen — generate a new QUID 

Format 
#include <uuid.h> 

void uuid_$gen (uui~ 
uuid_$t *uuid; 

Arguments 

uuid A pointer to a UUID structure to be filled in. 

Description 
The uuid Sgen routine returns a new UUID. Typically used when creating a new 
remote application. 

Example 
The following routine returns as new uuid a new UUID: 
uuid $gen (&new uuid); 

Files 
RPC$IDL:UUID.IDL 
RPC$INCLUDE:UUID.H 

uuid_$ Routine Reference Pages 15-7 





~ Process and Utility Reference Pages 1 6 

This chapter contains reference pages for the DECrpc processes and utilities. 



Ib_$admin 

Name 
Ib_$admin —Location Broker Administrative Tool 

Format 
lb $admin [ —version ] [ —nq] 

Note 

This tool is available on VMS systems, ULTRIX systems, and other 
versions of the UNIX operating system. The command interface is 
common across all these systems, and therefore is not in a traditional 
DCL style. 

For this command, precede qualifiers with a hyphen (-), rather than the 
customary slash (n. 

You must define each DECrpc command as a foreign command. 

Description 
The lb $admin tool monitors and administers the registrations of DECrpc-based 
servers in Global Local Broker (GLB) or Local Location Broker (LLB) databases. A 
server registers Universal Unique Identifiers (UUIDs) specifying an object, a type, 
and an interface, along with a socket address specifying its location. A client can 
locate servers by issuing lookup requests to GLBs and LLBs. 

In accepting input or displaying output, Ib_$admin uses either character strings or 
descriptive textual names to identify objects, types, and interfaces. A character string 
directly represents the data in a UUID in the following format, where each n is a 
hexadecimal digit: 

nnnnnnnnnnnn.nn.nn.nn.nn.nn.nn.nn.jTn 

With Ib_$admin, you examine or modify only one database at a time, referred to 
as the current database. The u s e_b roke r command selects the type of Location 
Broker database, GLB or LLB. The set_broker command selects the host whose 
LLB database is to be accessed. 

Information about the lb_$ admi n commands is available through the help 
command. 

Before invoking the lb_admin utility, define it as a foreign command in 
SYS$MANAGER:SYSLOGIN.COM, as shown in this example: 

$ lb admin :_= rpc$exe:rpc$lb admin.exe 

l~J 
16-2 Process and Utility Reference Pages 



Ib $admin 

Qualifiers 

—nq 

—version 

Do not query for verification of wildcard expansions in 
unregister operations. 

Display the version of the Network Computing Kernel 
(NCK) that this lb_$admin belongs to, but do not start the 
tool. (NCK is part of the Network Computing System 
(NCS) on which DECrpc is based.) 

Commands 
In the descriptions of 10 o k up , register , and unregister , the object, type, 
and interface arguments can be either character strings representing UUIDs or textual 
names corresponding to UUIDs, as described earlier. 

In the descriptions of register and unregister, the location argument is a 
string in the format family: host[portJ, where family is an address family, host is a 
host name, and port is a port number. The only value for family is ip. You can use 
a leading number sign (#) to indicate that a host name is in the standard numeric 
form. For example, ip:vienna[1756], and ip:#192.5.5.5[1791] are both acceptable 
location specifiers. 

a [ dd] 

c [lean] 

Synonym for register . 

Find and delete obsolete entries in the current database. 

When you issue the c 1 can command, lb_$ admin attempts to 
contact each server registered in the database. If the server does not 
respond, lb_$ admin tries to look up its registration in the LLB 
database at the host where the server is located, tells you the result of 
this lookup, and asks whether you want to delete the entry. If a 
server responds, but its UUIDs do not match the entry in the 
database, lb_$admin tells you this result and asks whether you 
want to delete the entry, even if you used the -nq qualifier to 
lb $admin . 

There are two situations in which it is likely that a database entry 
should be deleted: 

• The server does not respond, lb_$admin succeeds in 
contacting the LLB at the host where the server is located, and 
the server is not registered with that LLB. The server is 
probably no longer running. 

Process and Utility Reference Pages 16-3 



Ib_$admin 

• A server responds, but its UUIDs do not match the entry in the 
database. The server that responded is not the one that 
registered the entry. 

Entries that meet either of these conditions are probably safe to delete 
and are considered eligible for automatic deletion (described in the 
next paragraph). In other situations, it is best not to delete the entry 
unless you can verify directly that the server is not running (for 
example, by listing the processes running on its host). 

When the c 1 e an command asks whether you want to delete an 
entry, choose one of the following responses: 

y[es] Delete the entry. 

n[o] Leave the entry intact in the current database. 

g[o] Invoke automatic deletion, in which all eligible entries (see 
the previous paragraph) are deleted and all ineligible entries 
are left intact, without your being queried, until all entries 
have been checked. 

q [uit] Terminate the c 1 e an operation. 

delete] Synonym forunregister. 

h [ e 1p ] [command] or ? [command] 

Display a description of the specified command or, if none is 
specified, list all of the lb_$admin commands. 

1 [ ookup ] object type inter face 

Look up and display all entries with matching object, type, and 
interface fields in the current database. You can use asterisks as 
wildcards for any of the arguments. If all the arguments are 
wildcards, or if no arguments are given, lookup displays the entire 
database. 

q [uit ] Exit the lb $admin session. 

r [ egi st e r ] object type inter face location annotation flag] 
Add the specified entry to the current database. You can use an 
asterisk to represent the nil QUID in the object, type, and interface 
fields. 

The annotation is a string of up to 64 characters annotating the entry. 
Use double quotation marks (" ") to delimit a string that contains a 

16-4 Process and Utility Reference Pages 

V 



Ib $admin 

space or contains no characters. To embed a double quotation mark 
in the string, precede it with a backslash (~). 

The flab is either 1 o c a 1 (the default) or g 1 oba 1, indicating 
whether to mark the entry for local registration only or for 
registration in both the LLB and the GLB databases. The flag is a 
field that is stored with the entry; it does not affect where the entry is 
registered. The set_broker and use_broker commands select 
the particular LLB or GLB database for registration. 

set broker [ hy-oker su~~itch] location 

Set the host for the current LLB or GLB. If you specify global as 
the hroker_switch, set_broker sets the current GLB; otherwise, it 
sets the current LLB. The host is a location specifier as described 
earlier, but the [port] portion is ignored and can be omitted. 

Issue the u s e_b r o k e r command, not the s et_b r ok e r command, 
to determine whether subsequent operations will access the LLB or 
the GLB. 

sett [ imeout ] [shoj-t / longJ 

Set the timeout period used by lb_$ admin for all of its operations. 
With an argument of short or long, set_timeout sets the 
timeout accordingly. With no argument, it displays the current 
timeout value. 

u n r e g i s t e r] ohject type in tee face 1 ocation 

Delete the specified entry from the current database. 

You can use an asterisk as a wildcard in the ohject, type, and 
intej face fields to match any value for the field. Unless you suppress 
queries by specifying the -nq qualifier of lb_$admin, 
unregister asks you whether to delete each matching entry. 
Choose one of the following responses: 

y[es] Delete the entry. 

n[o] Leave the entry in the database. 

g[o] Delete all remaining database entries that match, without 
your being queried. 

quit] Terminate the unregister operation, without deleting any 
more entries. 

Process and Utility Reference Pages 16-5 



Ib $admin 

u s [ e broker ] ~hroker switch J 
Select the type of database that subsequent operations will access, 
GLB or LLB. The broker switch is either g 1 oba 1 or 1 o c a l . If 
you do not supply a hrokef =switch, use broker tells whether the 
current database is global or local. 

Use set_broker to select the host whose GLB or LLB is to be 
accessed. 

See Also 
llbd, nrglbd 
Guide to the Location Broker 

16-6 Process and Utility Reference Pages 



Ilbd 

Name 
llbd —Local Location Broker Process 

Format 
llbd [ —version ] 

Note 

This tool is available on VMS systems, ULTRIX systems, and other 
versions of the UNIX operating system. The command interface is 
common across all these systems, and therefore is not in a traditional 
DCL style. 

For this command, precede qualifiers with a hyphen (-), rather than the 
customary slash (n. 

You must define each DECrpc command as a foreign command. 

Description 
The Local Location Broker Process (llbd) is part of the Network Computing 
System (NCS). It manages the Local Location Broker (LLB) database, which stores 
information about RPC-based server programs running on the local host. 

A host must run llbd if it is to support the Location Broker forwarding function or 
to allow remote access (for example, by the lb_$admin tool) to the LLB database. 
In general, any host that runs an RPC-based server program must run an Ilbd, and 
llbd must be running before any such servers are started. Additionally, any 
network supporting RPC activity should have at least one host running a Global 
Location Broker Process (nrglbd ). 

The command file SYS$STARTUP:RPC$UCX_STARTUP.COM starts the Ilbd 
process on a VMS system. The process should run as a detached process, 
independently of login activity, for as long as the system is up. 

The following example shows the line in the command procedure that starts the 
process: 
$ RUN/DETACHED/PRIV=SYSPRV/PROCESS NAME=RPC$LLBD RPC$EXE:RPC$LLBD.EXE 

Process and Utility Reference Pages 16-7 



Ilbd 

Qualifier 

—version Display the version of the Network Computing Kernel (NCK) that this 
Ilbd belongs to, but do not start the process. (NCK is part of the 
Network Computing System (NCS) on which DECrpc is based.) 

See Also 
lb_$admin, nrglbd 
Guide to the Location Broker 

16-8 Process and Utility Reference Pages 



nidl 

Name 
nidl —Network Interface Definition Language Compiler 

Format 
nidl filename [options] 

Note 

This tool is available on VMS systems, ULTRIX systems, and other 
versions of the UNIX operating system. The command interface is 
common across all these systems, and therefore is not in a traditional 
DCL style. 

For this command, precede qualifiers with a hyphen (-), rather than the 
customary slash (n. 

You must define each DECrpc command as a foreign command. 

Description 
The nidl compiler is a compiler for the Network Interface Definition Language 
(NIDL). 

The filename argument is the pathname of an interface definition file, written in the C 
syntax of NIDL. 

The compiler generates a header file, a client stub file, a server stub file, and a client 
switch file, all in C source code. The compiler derives the names of these output 
files from 

filename by replacing the suffix (the rightmost period and all subsequent 
characters) with extensions for the client stub, server stub, and client switch. 

Before invoking the nidl compiler, define it as a foreign command in 
SYS$MANAGER:SYSLOGIN.COM, as shown in this example: 
$ nidl :_= rpc$exe:rpc$nidl.exe 

Qualifiers 

—confirm Display the qualifiers chosen but do not compile anything. 
In displaying information about —idir, the compiler 
constructs the list of all directories it would use to resolve 
relative pathnames of imported files, not just the ones 
explicitly supplied. (If the list is empty, the compiler uses 

Process and Utility Reference Pages 16-9 



only the current directory.) This qualifier is useful for 
viewing the "idir list" and for viewing the default values for 
other qualifiers. 

Run the specified program instead of the default C 
preprocessor. You can use the —confirm qualifier to view 
the default pathname. 

Pass the specified definitions to the C preprocessor. A 
definition can take either of two forms: symhol or 
symhol=value. 

—exts cstub—ext, sstuh—ext, cswtch—ext 
Set the extensions that the compiler uses to name the stub 
and switch files it generates. The text strings cstuh—ext, 
sstub—ext, and cswtch—ext must be separated by commas, 
with no spaces; they are used as extensions for the client 
stub, the server stub, and the client switch, respectively. 
You can use the —confirm qualifier to view the defaults. 

Generate client switch code that is compatible with the 
ULTRIX f 7 7 compiler. The NIDL Compiler appends an 
underscore (_)character to the name of each client switch 
routine, so that the routines can be called from FORTRAN 
programs generated by the f 7 7 compiler. 

Generate server stub code that is compatible with the 
ULTRIX f 7 7 compiler. The NIDL Compiler appends an 
underscore (_)character to the name of each manager 
routine that the stub calls, so that the stub can call routines 
generated by the f 7 7 compiler. 

—idir dij~ectoj yl [directory2 ...] 
Use the specified directories as paths from which to resolve 
relative pathnames of imported files. The compiler generates 
an ordered list of these directories. By default, it prepends 
to this list your current working directory and appends the 
system idl directory. You can suppress this default by 
supplying the —no_def idir qualifier. 

Support multiple versions and multiple managers within a 
single server. This qualifier allows a server to export more 
than one version of an interface ("multiple versions") and to 
implement an interface for more than one type ("multiple 
managers"). 

nidl 

—cpp pathname 

—def defl [deft ...] 

—f77c 

—f77s 

—m 

16-10 Process and Utility Reference Pages 



nidl 

The compiler appends the version number to the interface 
name when it generates identifiers in the stub and header 
files. For example, the interface specifier for version 3 of 
the foobar interface would be foobar_v3$if spec. 

—no_cpp 

—no def idir 

—rio stubs 

—no_warn 

—out directory 

—s 

The server for an interface compiled with —m must use 
rp c_$ r e g i s t e r_mg r to register its managers. The 
server supplies the name of a manager EPV to 
rpc_$register_mgr; the manager code defines this 
EPV. If the server supports objects of several types, it must 
use rp c $register object to register each object. 
These registrations enable the RPC runtime library at the 
server host to dispatch incoming requests to the correct 
manager. 

If you do not specify either —m or its counterpart, —s, the 
compiler assumes —s and issues a warning. However, this 
default may be removed or changed in future NIDL 
compilers. Even if your server exports only one version of 
its interface and contains only one manager, use the —m 
qualifier, so that it will be easy for you to incorporate 
multiple versions and multiple managers later. 

Do not run the C preprocessor on the input file. If you 
specify this qualifier, the NIDL compiler does not interpret 
any C preprocessor statements (such as #include 
statements) in the interface definition. 

Do not prepend the current working directory or append the 
system idl directory to the list of directories constructed 
from -idir arguments. If you specify —no_def idir without 
—idir, the compiler resolves pathnames of imported files only 
relative to the current working directory. 

Do not generate any stub or switch files. The NIDL 
Compiler generates only header files and insert files. 

Suppress warning messages. 

Place the generated files in directory. The default is the 
current working directory. 

Allow a server to export only a single version of an interface 
and to implement an interface for only a single type. This 
qualifier requests the behavior of NIDL compilers before 

Process and Utility Reference Pages 16-11 



nidl 

—space_opt 

—version 

See Also 
uuid~en 

Version 1.5, which added support for multiple versions and 
multiple interfaces. (See the —m qualifier.) 

The server for an interface compiled with —s must use 
rp c $register to register its interfaces. 

If you do not specify either —s or its counterpart, —m, the 
compiler assumes —s and issues a warning. However, this 
default may be removed or changed in future NIDL 
compilers. Even if your server exports only one version of 
its interface and contains only one manager, use the —m 
qualifier, so that it will be easy for you to incorporate 
multiple versions and multiple managers later. 

Reduce the size of generated stub code, possibly at the 
expense of slower data marshalling. 

Display the version number of the NIDL compiler but do not 
compile anything or generate any output files. 

16-12 Process and Utility Reference Pages 



nrgibd 

Name 
nrglbd —Non-Replicating Global Location Broker Process 

Format 
nrglbd [ —version ] 

Note 

This tool is available on VMS systems, ULTRIX systems, and other 
versions of the UNIX operating system. The command interface is 
common across all these systems, and therefore is not in a traditional 
DCL style. 

For this command, precede qualifiers with a hyphen (-), rather than the 
customary slash (n. 

You must define each DECrpc command as a foreign command. 

Description 
The Global Location Broker (GLB), enables clients to locate servers on a network or 
Internet. The GLB database stores the locations (that is, the network addresses and 
port numbers) where server processes are running. The GLB maintains this database 
and provides access to it. 

The nz glbd daemon should run as a detached process. It requires no qualifiers or 
arguments. A Local Location Broker process (llbd) must be running on the local 
host when nrglbd is started. 

You can run only one n r g 1 b d on a network or Internet. 

The following command procedure starts the GLB process nrglbd on a VMS 
system: 
SYS$STARTUP:RPC$UCX STARTUP.COM 

The process has no qualifiers and takes no arguments. It should run as a detached 
process, independently of login activity for as long as the system is up. 

The following example shows the line in the command procedure that starts the 
process. 

$ RUN/DETACHED/PRIV=SYSPRV/PROCESS NAME=RPC$NRGLBD RPC$EXE:RPC$NRGLBD.EXE 

Process and Utility Reference Pages 16-13 



nrglbd 

Qualifier 

—version Display the version of the Network Computing Kernel (NCK) that this 
nrglbd belongs to but do not start the process. (NCK is part of the 
Network Computing System (NCS) on which DECrpc is based.) 

Restrictions 
This section discusses the procedure to follow if the system running the nrglbd is 
taken off-line. 

If you restart nrglbd on the same system and no server on any other system 
changed state, all things should run as before. If, however, an application tries to 
contact a server that is no longer running or which has different port numbers, the 
application will fail. The application also will not see any new server registrations. 

If a copy of glbdbase . dat is not available, you must create an up to date version 
of the file before restarting nrglbd. To do so, use lb_$admin to query the 
llbd for registration data on every system running a DECrpc server and to register 
all DECrpc servers with the GLB on the new host. Then restart nrglbd . 

See Also 
lb_$admin, llbd 
Guide to the Location Broker 

16-14 Process and Utility Reference Pages 



stcode 

Name 

Format 

stcode — translate a hexadecimal status code value to a textual message 

stcode hex star code 

Note 

This tool is available on VMS systems, ULTRIX systems, and other 
versions of the UNIX operating system. The command interface is 
common across all these systems, and therefore is not in a traditional 
DCL style. 

For this command, precede qualifiers with a hyphen (-), rather than the 
customary slash (n. 

You must define each DECrpc command as a foreign command. 

Description 
The stcode command prints the textual message associated with a hexadecimal 
status code. This command is useful when a program produces a hexadecimal status 
code instead of a textual message. 

The stcode command processes predefined status codes. No provision is currently 
made to add user-defined status codes to the error text database. 

Before running the stcode utility, define it as a foreign command in 
SYS$MANAGER:SYSLOGIN.COM, as shown in this example: 
$ stcode :_= rpc$exe:rpc$stcode.exe 

Example 
Translate the hexadecimal status code 1c010003: 

Files 

# stcode 1c010003 
unknown interface (network computing system/RPC runtime) 

RPC$EXE:RPC$STCODE.DAT 

Process and Utility Reference Pages 16-15 



uuid_gen 

Name 

Format 

u~ uuid~en —UUID generating program 

uuid_gen [ —c ] [ —C ] ~ —version ] 

Note 

This tool is available on VMS systems, ULTRIX systems, and other 
versions of the UNIX operating system. The command interface is 
common across all these systems, and therefore is not in a traditional 
DCL style. 

For this command, precede qualifiers with a hyphen (-), rather than the 
customary slash (n. 

You must define each DECrpc command as a foreign command. 

Description 
The uu i d gen program generates Universal Unique Identifiers (UUIDs). Without 
qualifiers, it generates acharacter-string representation of a UUID. The --c qualifier 
enables you to generate a template for Network Interface Definition Language 
(NIDL) files. The —C qualifier enables you to generate source-code representations of 
UUIDs, suitable for initializing variables of type uu i d_t . 

Before invoking the uuid_gen utility, define it as a foreign command in 
SYS$MANAGER:SYSLOGIN.COM, as shown in this example: 
$ uuid gen :_= rpc$exe:rpc$uuid gen.exe 

Qualifiers 

—c Generate a template, including a UUID attribute, for an interface 
definition in the C syntax of NIDL. 

—C Generate a Csource-code representation of a UUID. 

—version Display the version of the Network Computing Kernel (NCK) that 
this uuid_gen belongs to, but do not generate a UUID. (NCK is 
part of the Network Computing System (NCS) on which DECrpc is 
based. } 

16-16 Process and Utility Reference Pages 



uuid~en 

Examples 
Generate acharacter-string representation of a QUID: 

$ uuid gen 
34dc23469000.Od.00.00.7c.5f.00.00.00 

Generate a template for an interface definition in the C syntax of NIDL: 

$ uuid gen -c 
oc 

uuid(34dc239ec000.Od.00.00.7c.5f.00.00.00), 
version (1) 
J 
interface INTERFACENAME { 

} 

Generate an interface definition template in the file my f i 1 e . i dl 

$ define/user sys$output myfile.idl 
$ uuid gen -c 

Generate a Csource-code representation of a UUID: 

$ uuid gen -C 
_ { Ox34dc23af, 
Oxf 000, 
0x0000, 
OxOd, 
{ 0x00, 0x00, Ox7c, OxSf, 0x00, 0x00, 0x00 } } ; 

Process and Utility Reference Pages 16-17 





Glossary 

address family 
A set of communications protocols that use a common addressing 
mechanism to identify endpoints. The terms address family and 
protocol family are used synonymously in this manual. 

allocate a handle 
To create a Remote Procedure Call (RPC) handle that identifies an
object but not a location. Such a handle is said to be allocated or 
unbound. 

attributes 
Characteristic declared in the Network Interface Definition Language 
(NIDL). An interface itself can be described by five attributes: uuid, 
local, version, port, implicit handle. Type declarations and operation 
declarations also have specified attributes: type and field. 

automatic binding 
Binding technique, in which the client uses generic handles that are 
then converted to Remote Procedure Call (RPC) handles by automatic 
binding routines. In an application that uses automatic binding, the 
client does not manage the binding. The handle variable is generic, and 
the application developer must supply autobinding and autounbinding 
routines that convert generic handles (used by the client) to RPC 
handles (used by the RPC run-time library). See also binding state. 

binding 
The representation of a server in a handle. To bind a handle or to set 
its binding is to establish this representation. See also binding state 
and handle. 

binding state 
The amount of information in a handle. A Remote Procedure Call 
(RPC) handle can exist in three binding states: unbound, bound-to-
host, and fully bound. 

binding technique 
Determines whether the client uses Remote Procedure Call (RPC) 
handles directly or uses generic handles that are then converted to RPC 
handles. See also manual binding and automatic binding. 



bound-to-host handle 
Handle that identifies an object and a host but does not identify the port 
number of the server that exports the requested interface. When a client 
uses abound-to-host handle to make a remote procedure call, the 
Remote Procedure Call (RPC) run-time library sends a message to the 
Local Location Broker (LLB) forwarding port on the specified host. 
The LLB forwards the message to the server. 

bound-to-server handle 
See fully bound and binding state. 

broadcast 
To send a remote procedure call to all hosts in a network. 

broker 
A server that manages information resources, as in a Location Broker. 

client 
A process that uses resources. In the context of this manual, a program 
that makes remote procedure calls. 

entry point vector (EPV) 
A record of pointers to the operations in an interface. 

explicit handle 
A handle that is passed as an operation parameter, rather than 
represented as a global variable in the client process. See also implicit 
handle. 

export an interface 
To provide the operations defined by an interface. A server exports an 
interface to a client. 

forward 
Automatic dispatch of a request to a server that exports the requested 
interface for the requested object. The Local Location Broker (LLB) 
forwards remote procedure calls that are sent to the LLB forwarding 
port on a server host. 

fully bound handle 
A Remote Procedure Call handle that identifies an object, a host, and a 
port. 

generic handle 
Handle variables that are not of type handl e_t, such as a pathname. 
See also R~'C handle. 

GLB See Global Location Broker. 

Global Location Broker (GLB) 
A server that maintains global information about objects on a network 
or an Internet. Part of the Location Broker, it runs as the nrglbd 
process. 

2 Glossary 



handle 
A temporary local identifier for an object. A handle represents for a 
client process the object and a server that exports one or more interfaces 
to the object. A handle always represents the same object, but it may 
represent different servers at different times, or it may not specify a 
server at all. See also binding. 

host 
A computer that is attached to a network. 

host ID 
An identifier for a host. A host ID uniquely specifies a host within an 
address family on a network, but does not specify the network. A host 
ID may not be sufficient to establish communications with a host. See 
also network ID. 

idempotent operation 
An operation whose results do not affect the results of any operation. 
For example, a call that reads a value is idempotent, but an operation 
that increments a value is not. 

implement an interface 
To provide the routines that execute the operations in an interface. A 
manager implements one interface for one type. 

implicit handle 
A handle that is represented as a global variable in the client process, 
rather than passed as an operation parameter. See also explicit handle. 

import an interface 
To request the operations defined by an interface. A client imports an 
interface from a server. See also export. 

interface 
A set of operations defined by the Network Interface Definition 
Language (NIDL). 

interface UUID 
A Universal Unique Identifier (UUID) that permanently identifies a 
particular interface. Both the Remote Procedure Call (RPC) run-time 
library and the location broker use interface UUIDs to specify 
interfaces. 

Internet 
A collection of networks interconnected by gateways. 

LB See Location Broker. 

LLB See Local Location Broker. 

Local Location Broker (LLB) 
A server that maintains information about objects on the local host. The 
LLB also provides the Location Broker forwarding facility. 

Glossary 3 



Location Broker (LB) 
A set of software that includes the Local Location Broker, the Global 
Location Broker, and the Location Broker Client Agent. The Location 
Broker maintains information about the locations of objects. 

Location Broker Client Agent 
Part of the Location Broker. Programs communicate with Global 
Location Brokers and Local Location Brokers by means of the Location 
Broker Client Agent. 

manager 
A set of routines that implement the operations in one interface for 
objects of one type. 

manual binding 
A binding technique in which the client uses Remote Procedure Call 
(RPC) handles. 

marshall 
To copy data into a Remote Procedure Call (RPC) packet. Stubs 
perform marshalling. See also unmarshall. 

network address 
A unique identifier (within an address family) for a specific host on a 
network or an Internet. A network address is sufficient to identify a 
host, but it does not identify a communications endpoint within the 
host. 

Network Computing System (NCS) 
A set of software components on which DECrpc is based. These 
components include the Remote Procedure Call run-time library, the 
Location Broker, and the NIDL Compiler. 

Network Interface Definition Language (NIDL) 
A declarative language for the definition of interfaces. NIDL has two 
syntaxes, one resembling C and one resembling Pascal. 

NIDL 
See Network Interface Definition Language. 

NIDL Compiler 
An NCS tool that converts an interface definition written in Network 
Interface Definition Language (NIDL) into several program modules, 
including source code for client and server stubs. The NIDL Compiler 
accepts interface definitions written in either syntax of NIDL; it 
generates C source code and C or Pascal header files. 

object 
An entity that is manipulated by well-defined operations. Disk files, 
printers, and array processors are examples of objects. Objects are 
accessed through interfaces. Every object has a type. 

4 Glossary 



object UUID 
A Universal Unique Identifier (UUID) that identifies a particular object. 
Both the Remote Procedure Call (RPC) run-time library and the 
Location Broker use object UUIDs to identify objects. 

opaque port 
A port that is dynamically assigned to a server by the Remote 
Procedure Call run-time library. The port number is said to be opaque 
because there is no need for either clients or servers to know the 
number. See also well known port. 

operation 
A procedure through which an object is accessed. 

port 
A specific communications endpoint within a host. A port is identified 
by a port number. See also socket. 

port number 
One of the three parts in a socket address. For example, the character 
string 77 might represent a port number, while ip: wooster[77] might 
represent a socket address. 

protocol family 
A set of communications protocols, for example, the DARPA 
Internetwork Protocols. All members of a protocol family use a 
common addressing mechanism to identify endpoints. The terms 
address family and protocol family are used synonymously in this 
manual. 

register an interface 
To make an interface known to the Remote Procedure Call (RPC) run-
time library and thereby available to clients through the RPC 
mechanism. The rp c_ $register call registers an interface. 

register a manager 
To make a manager (the code that implements a particular interface for 
a particular type) known to the Remote Procedure Call (RPC) run-time 
library and thereby available to clients through the RPC mechanism. 
The rp c_$ r e g i s t e r mgr call registers a manager. 

register an object with the Location Broker 
To enter an object and its location in the Location Broker database. The 
lb_$register call registers an object with the Location Broker. A 
program can use Location Broker lookup calls to determine the location 
of a registered object. 

Glossary 5 



register with the RPC run-time library 
Call to rp c_$ re g i s t e r that allows your program to call routines in 
the Remote Procedure Call (RPC) run-time library. Initializes access to 
the run-time library. 

remote procedure call 
An invocation of a remote operation. You can make remote procedure 
calls between processes on different hosts or on the same host. 

Remote Procedure Call (RPC) run-time library 
The set of rp c_$ system calls that DECrpc provides to implement its 
remote procedure call mechanism. 

RPC See Remote Procedure Call. 

RPC handle 
A Remote Procedure Call (RPC) handle is a pointer to an opaque data 
structure containing the information needed to access an object. The 
name for this pointer type is handle_t. 

server 
A process that implements interfaces. In the context of this manual, a 
server whose procedures can be invoked from remote hosts. A server 
exports one or more interfaces for one or more objects. 

set a binding 
To set the representation of a server location in a Remote Procedure 
Call (RPC) handle. 

signature 
The syntax of an operation, that is, its name, the data type it returns, 
and the order and types of its parameters. The definition of an 
operation specifies only its signature, not its implementation. 

socket 
A communications endpoint in the form of a message queue. A socket 
is identified by a socket address. 

socket address 
A data structure that uniquely identifies a specific communications 
endpoint. A socket address consists of a port number and a network 
address. 

stub 
A program module that transfers remote procedure calls and responses 
between a client and a server. Stubs perform marshalling, 
unmarshalling, and data format conversion. Both clients and servers 
have stubs. The NIDL Compiler generates client and server stub code 
from an interface definition. 

6 Glossary 



transmitted type 
For data types with the transmit_as attribute, the data type that 
stubs pass over the network. Stubs invoke conversion routines to 
convert the transmitted type to a presented type, which is manipulated 
by clients and servers. 

type 
A class of object. All objects of a specific type can be accessed 
through the same interface or interfaces. 

type QUID 
A Universal Unique Identifier (UUID) that permanently identifies a 
particular type. Both the Remote Procedure Call (RPC) run-time 
library and the Location Broker use type UUIDs to specify types. 

unbound handle 
A Remote Procedure Call (RPC) handle that identifies an object 
but not a location. Synonymous with allocated handle. 

Universal Unique Identifier (UUID) 
An identifier used by DECrpc to identify interfaces, objects, and types. 

unmarshall 
To copy data from a Remote Procedure Call (RPC) packet. Stubs 
perform unmarshalling. See also marshall. 

well known port 
A port whose port number is part of the definition of an interface. 
Clients of the interface always send to that port; servers always listen 
on that port. See also opaque port. 

Glossary 7 





Index 

A 

address 

converting from names, 5-8 

obtaining with socket_$ f rom name 

routine, 5-8 

address families, 1-5 

application 

See distributed application 

arrays, 6-17 

as parameters, 4-9, 6-13 

field attributes, 6-8 

in structures, 6-9 

in unions, 6-9 

multidimensional, 6-9 

open, 6-8, 6-9, 7-1, 7-4 

packed, 7-10 

run-length-encoded, 7-10 

sparse, 7-10 

specifying type, 6-9, 6-17 

subscripting, 6-9 

assignment of port, 1-6 to 1-7 

at most once calling semantics, 6-10 

attribute 

for QUID in interface definition, 6-2 

idempotent, 3-2e, 4-7e 

implicit handle, 6-4 

local, 6-5 

attribute (cont.) 

of interface definition, 6-2 

port, 6-3 

version of interface, 6-3 

autobinding routines, 1-15, 7-14e 

prototypes for, 7-13 

automatic binding, 7-13 to 7-17 

checking QUID in, 5-27 

comparison with manual binding, 1-14 

handle attribute, 6-6 

in bank example, 7-14 

routines far, 7-14e 

stub activity in, 7-13 

autounbinding routines, 1-15, 7-16e 

prototypes for, 7-13 

B 

bank example 

automatic binding in, 7-14 

checking the QUID in, 5-27 

interface definition for, 4-10 

_bind routine, 7-13, 7-14e 

binding 

See automatic binding 

binding state 

bound-to-host handle, 5-9 

fully bound handle, 5-9 



binding state (cont.) 
unbound handle, 5-10 

binding techniques, 5-3 
binop application 

building and running, 3-8 
client module for, 3-5, 5-2 
comparison to binop_lu and binop_fw, 5-1 

interface definition, 3-1 
manager module for, 3-8 
server module for, 3-6 
source code, 3-9 
user-written files, 3-4 

binop_fw application, 5-1 
client module for, 5-18 
manager module for, 5-32 
managing RPC handles, 5-3 
server for, 5-28 
server initialization module for, 5-23, 5-28 
server module, 5-22 
util.c module, 5-21 

binop_lu application 
client module for, 3-10 
interface definition for, 3-9 
Location Broker lookup calls in, 3-9 
manager module for, 3-13 
server module for, 3-11 

binopmv example 
client for, 7-19 
description of, 7-17 
interface definition compilation for, 7-19 
interface definition for, 7-18 
manager for, 7-23 
server for, 7-21 

bitset type, 6-15 
boolean type, 6-14 
bound-to-host handle, 1-12 
broadcast attribute, 4-7 
broadcast messages, 1-7 
broadcast operation attribute, 6-10 
broker 

Global Location Broker, 1-2 
Location Broker, 1-2 

Index-2 

byte type, 6-14 

C 
case clause 

in unions, 6-16 

char type, 6-14 

characters 

See char type 

cleanup handlers 

example of, 5-14 

in servers, 5-25e 

local variables in, 5-15 

portability issues, 5-15 

use of multiple handlers, 5-15 

client 

description of, 1-4 

example of, 5-18 

identification of on server side, 5-27 

in client/server paradigm, 1-9 

library routines, 2-3, 2-5 

Comm status attribute, 4-8 

comm_status operation attribute, 6-11 

Comm_status parameter 

use of, 5-16 

comm_status parameter attribute, 5-16, 6-12 

communication errors, 5-12 

compatibility issues 

of data types, 5-2 

when adding operations to interfaces, 5-13 

compiling an interface with nidl, 4-11 

complex types, 6-7, 7-7 

constant declaration, 4-5, 6-5 

constants 

in interfaces with multiple versions, 7-25 

constructed types, 6-15 



conversion of data 
suppressing, 6-14 

converting names to addresses, 5-8 

D 
data conversion 

suppressing, 6-14 

DECrpc run-time library, 1-2 

directional attributes, 6-12 

discriminators 

in unions, 6-16 

distributed application 

binding techniques in, 5-3 

binop_fw application, 5—1, 5-22 

building and running, 3-8 

client example, 5-18 

client module for, 3-5, 5-2 

developing, 5-1 

error-handling strategies, 5-13, 5-21 

example of, 3-1 

explicit handles, 5-1 

interface definition for, 3-1 

listening for requests, 5-26 

manager module for, 3-8 

managing RPC handles, 5-3 

manual binding, 5-1 

registration of objects, 5-28 

server example, 5-22 

server for, 3-6 

server initialization module for, 5-23 

steps in building, 3-1, 5-32 

user-written files for, 3-4 

util.c module, 5-21 

distributed programming with DECrpc, 1-1 

double type, 6-14 

dynamic assignment of ports, 1-7 

E 
entry point vectors 

See EPV 

enum type, 6-15 

enumerations, 6-15 

EPV 

defining for manager, 5-26 

in manager module, 7-23 

in server module, 7-22 

managers with multiple interface versions, 

7-24 

names for manager module, 5-26 

with multiple managers, 7-32 

error_$ library routines, 2-8 

reference pages, 8-1 

error-handling strategies, 5-13, 5-21 

errors 

causes of, 5-12 to 5-13 

handling, 5-12 to 5-13 

explicit handles 

as operation parameter, 4-3 

defined, 1-14 

in binop application, 3-1 e 

in operation declaration, 4-8, 6-4, 6-12 

external variables 

the uuid_$nil variable, l~ 

F 
fault management routines, 2-9 

field attributes, 7-1 

examples of, 7-4 

in interface definition, 4-9 

in operation declarations, 6-12 

Index-3 



field attributes (cont.) 
in structures, 6-16 
in type declarations, 6-8 
last_is, 4-6, 6-8, 6-12 
maxis, 4-6, 6-8, 6-12 

files 
RPC$IDL:BASE.IDL, 2-10 
RPC$IDL:CONV.IDL, 2-11 
RPC$IDL:GLB.IDL, 2-11 
RPC$IDL:LB.IDL, 2-10 
RPC$IDL:LLB.IDL, 2-11 
RPC$IDL:NBASE.IDL, 2-10 
RPC$IDL:NCASTAT.IDL, 2-10 
RPC$IDL:RPC.IDL, 2-10 
RPC$IDL:RRPC.IDL, 2-11 
RPC$IDL:SOCKET.IDL, 2-10 
RPC$IDL:UUID.IDL, 2-10 
RPC$INCLUDE:IDL_BASE.H, 2-11 
RPC$INCLUDE:PFM.H, 2-11 

float type, 6-14 
foreign commands, 3-3, 4-2, 4-11 
forwarding 

binop_fw application, 5-1 
port, 1-12 

free routine, 7-6, 7-9e, 7-12e 
_free_xmit_rep routine, 7-6, 7-9e, 7-12e 
_from xmit_rep routine, i-6, 7-9e, 7-12e 

G 

generation of an interface QUID, 4-1 e 

generic handles 

defined, 1-15 

handle attribute, 6-6 

with automatic binding, 7-13 

Global Location Broker, 1-19, 1-22 

definition of, 1-2 

process, 1-19 

registration with, 1-21 

globaldef declaration, 5-32 

Index-4 

H 

handle binding techniques, 5-3 

handle parameters, 4-8 

handle type attribute 

described, 4-5 

syntax for, 6-6 

handles 

as parameters, 6-12 

bound-to-host, 1-12, 5-9 

bound-to-server, 1-13 

fully bound, 1-13, 5-9 

generic, 1-15, 7-13 

handle attribute, 6-6 

in operation declarations, 6-12 

management of, 5-3 

management routines, 5-4 

RPC type of, 1-15, 6-17 

server side of, 1-14 

unbound, 1-12, 5-10 

header files, 2-11 

idempotent operation attribute, 3-2e, 4-7, 

4-7e, 6-10 

idempotent semantics, 5-11 

idl base.h file 

NDR scalar types, 5-2 

implicit handles 

attribute syntax, 6-4 

defined, 1-14 

import declaration, 4-4, 6-5 

in parameter attribute, 6-12 

int type, 6-14 

integers 

types of, 6-14 



interface attributes, 4-3, 6-2 
interface definition 

attributes of, 4-3, 6-2 
body of, 6-1 
comments in, 6-2 
constant declaration, 4-5, 6-5 
definition of, 1-2 
field attributes in, 4-6, 4-9 
for binop application, 3-1 
handle parameters in, 4-8 
heading for, 4-3, 4--4e, 6-1 
implicit handle attribute, 6-4 
import declaration, 4-4, 6-5 
interface names in, 4-3 
local attribute, 6-5 
operation attributes in, 4-7 
operation declaration in, 4-7 
parameter attributes in, 4-9 
port attribute, 6-3 
structure of, 6-1 
syntax identifier for, 6-1 
type attributes, 4-5 
type declaration, 4-5 
QUID attribute of interface, 6-2 
version attribute for, 6-3 
writing of, 4-1 to 4^9 

interface definition files 
example, 3-1 
for DECrpc, 2-10 

interface mismatches, 5-13 
interface QUID 

definition of, 1-3 
generation of, 4-1 e 

interfaces 
adding operations compatibly, 5-13 
checking version of, 7-20 
multiple versions of, 7-19 

interprocess communications, 1-4 
IP protocols, 1-4 

socket address structure for, 1-6 

L 

last is field attribute 

described, 4-6 

for arrays, 7-1 

in parameter list, 6-12 

syntax for, 6-8 

use with arrays, 6-9 

use with maxis, 7-4e 

lb_$ library routines, 2-7 

reference pages, 9-1 

library routines, 2-3 

client, 2-3 

error $, 2-8 

lb_$, 2-7 

pfm_$, 2-9 

pgm_$~ 2-9
rpc_$, 2-3 

rrpc_$, 2-6 

server, 2--4 

socket_$, 2-6 

uuid_$, 2-8 

llbd process, l -19 

where it must run, 1-22 

local attribute, 6-5 

Local Location Broker, 1-21 

definition of, 1-2 

functionality of, 1-21 

registration with, 1-21 

software described, 1-19 

where process must run, 1-22 

Location Broker 

administrative utility for, 2-2 

database entries for, 1-19 

introduction to, 1-2 

library routines, 2-7 

processes, 2-2 

Index-5 



Location Broker (cont.) multidimensional arrays, 6-9 
registering objects with, 1-20, 5-28 open, 6-9 
registration of multiple interface versions, 

multiple interface versions 
7-21 

software, 1-19 
changing operations in, 7-24 

Location Broker Client Agent, 1-19 constants in, 7-25 

definition of, 1-2 example of, 7-17 

server registration with, 1-20 types in, 7-25 
Location Broker lookups multiple managers 

lb $lookup interface call, 5-6 
examples of, 7-26 

binop_lu application, 3-9 
interface definition for, 3-9 
when host is unknown, 1-21 N 

long type, 6-14 ~`~ name services 

designing applications to use, 1-22 
M Location Broker, 1-22 

manager module named types, 6-6, 6-17 

defining EPVs, 5-26 names 

EPV with multiple interface versions, 7-24 of manager EPVs, 5-26 

EPV with multiple managers, 7-32 of manager routines, 5-26 

identifying an object,~5-27 NCS (Network Computing System) 

multiple for interface, 7-26 to 7-33 defined, 1-1 

registration of multiple versions, 7-21 NDR 

use of multiple, 7-26e scalar types in, 5-2 

manual binding ndr_$ types, 5-2 

See automatic binding "~ network addresses, 1-5 

max is field attribute, 7-1 Network Computing System 

described, 4-6 See NCS 

in parameter list, 6-12 Network Data Representation 

syntax for, 6-8 See NDR 

use with arrays, 6-9 Network Interface Definition Language 

use with last_is, 7-4e See NIDL 

maybe operation attribute NIDL 

defined, 4-7 definition of, 1-2 

syntax for, 6-11 interface definition in, 4-1 

messages support for constructed types, 6-15 to 6-17 

broadcast type, 1-7 NIDL Compiler 

input to, 1-2 

Index-6 



NIDL Compiler (cont.) 
output from, 1-2, 2-2 
purpose of, 2-2 
running, 4-11 

null pointers, 6-17 

0 

object orientation, 1-3 

object QUID, 1-3 

objects, 1-2, 1-3 

multiple managers for, 7-26e 

obtaining socket addresses 

socket $from name routine, 5-6 

opaque port 

definition of, 1-6 

open arrays, 6-9, 7-1 

field attributes of, 6-8 

in structures, 6-9 

in unions, 6-9 

multidimensional, 6-9 

use with last_is and maxis, 7-4e 

operation attributes 

described, 4-7 

syntax for, 6-10 

operation declarations, 4-7, 6-13e 

syntax for, 6-10 

operations, 1-3 

adding to interfaces compatibly, 5-13 

calling semantics for, 6-10 

changing with interface versions, 7-24 

declarators of, 6-11 

parameters for, 6-11 

out parameter attribute, 6-12 

P 

packed arrays, 7-10 

parameter attributes 

comm_status, 6-12 

described, 6-12 

directional, 6-12 

of interface definition, 4-9 

status, 6-12 

use of comm_status, 5-16e 

parameter declarators, 6-12 

parameters 

of an operation, 6-11 

use of, 5-16 

passing by reference 

input parameters, 6-12 

structures containing open arrays, 6-16 

pfm_$ library routines, 2-9 

reference pages, 10-1 

pgm_$ library routine, 2-9 

reference page, 11-1 

pointer operator, 6-12 

pointers, 6-9, 6-17 

as parameters, 4-8, 6-12 

in structures, 6-16 

in unions, 6-17 

null, 6-17 

restrictions in use, 4-8, 6-17 

port, 1-6 

attribute, 6-3 

definition of opaque, 1-6 

definition of well known, 1-6 

dynamic assignment of, 1-7 

numbers, 1-6 

portability issues 

of cleanup handlers, 5-15 

of data types, 5-2 

Index 7 



portability with DECrpc, 1-1 
presented types 

routines for conversion, 7-6 
storage for, 7-6 

primes example, 7-4 
client module for, 7-4 
interface definition for, 7-4 
manager module for, 7-5 

process 
Global Location Broker, 1-19 
llbd, 1-19 
Local Location Broker, 1-19 
nrglbd, 1-19 

program management routine, 2-9 
.protocol families, 1-5 
protocols 

IP, 1-~ 
socket address structure for IP, 1-6 
supported by DECrpc, 1-4 

Q 
qualifier syntax, 3-3, 4-2, 4-11 

R 

reference 

passing parameters by, 6-12, 6-16 

registration of 

managers with multiple versions, 7-21 

multiple interface versions with the Location 

Broker, 7-21 

objects with the Location Broker, 5-28 

server with Global Location Broker, 1-21 

server with Local Location Broker, 1-21 

remote procedure call definition, 1 ~ 

RPC handles 

defined, 1-15 

type of, 6-17 

Index-8 

RPC run-time library, 1-4 

rpc_$ library routines 

reference pages, 12-1 

rpc_$ status codes 

rpc_$op_rng_error, 5-13 

RPC$IDL:BASE.IDL file, 2-10 

RPC$IDL:CONV.IDL file, 2-11 

RPC$IDL:GLB.IDL file, 2-11 

RPC$IDL:LB.IDL file, 2-10 

RPC$IDL:LLB.IDL file, 2-11 

RPC$IDL:NBASE.IDL file, 2-10 

RPC$IDL:NCASTAT.IDL file, 2-10 

RPC$IDL:RPC.IDL file, 2-10 

RPC$IDL:RRPC.IDL file, 2-11 

RPC$IDL:SOCKET.IDL file, 2-10 

RPC$IDL:UUID.IDL file, 2-10 

RPC$INCLUDE:IDL BASE.H file, 2-11 

rrpc_$ library routines, 2-6 

reference pages, 13-1 

running the nidl compiler, 4-11 

run-time library 

See RPC run-time library 

S 
server 

cleanup handlers in, 5-25e 

definition of in client/server paradigm, 1-4 

definition of RPC server, 1-9 

establishing sockets, 5-23 

failures, 5-12 

identifying, 5-11 

initialization module, 5-23 

1 ibrary routines, 2-4, 2-5 

listening for requests, 5-26 

looking up by interface, 5-6 

manager code for, 5-26 



server (cont.) 
printing error messages, 5-26 
processing arguments, 5-23 
registering with the Location Broker, 5-24 
registering with the RPC run-time library, 

5-24 

source code structure, 5-22 
sets, 6-15 
short bitset type, 6-15 
short enum type, 6-15 
short type, 6-14 
signatures of operations 

handles parameters in, 6-4 
restrictions to, 6-4 

simple types, 6-13 
small type, 6-14 
socket 

how to obtain, 5-23 
socket abstraction, 1-4 
socket addresses, 1-4 

data structure for, 1-6 
versus port numbers, 1-6 

socket_$ >~brary routines, 2-6 
reference pages, 14-1 

sparse arrays, 7-10 
conversion routines in, 7-11 e 
in example, 7-10 
in interface definition, 7-10e 

stacks example 
client for, 7-27 
header file for, 7-27 
interface definition compilation for, 7-26 
interface definition for, 7-26 
managers for, 7-31 
multiple managers for, 7-26 
server for, 7-30 

status parameters 
checking, 5-17e 
in interface definitions, 5-16, 6-12 
initializing, 5-17e, 5-28 
use of, 5-16 

string terminatar, 6-15 

strings 
types, 6-15 

structures, 6-15 
open arrays in, 6-9 
pointers in, 6-16 

stubs, 1-2 
examining, 3-3 
generation of, 4-11 

system idl directory, 2-10 

T 
tags 

in unions, 6-16, 6-18 

to xmit_rep routine, 7-6, 7-11 e 

transmit as type attribute 

described, 4-5 

examples of, 7-7, 7-10 

restrictions in use of, 7-12 

syntax for, 6-7 

transmitted types 

example of, 7-10 

routines for conversion, 7-6 

storage for, 7-6 

type attributes 

example of transmit_as, 7-7, 7-10 

handle, 4-5 

handle syntax, 6-6 

restrictions in use of, 7-12 

syntax for, 6-6 

transmit_as, 4-5, 6-7 

type conversion, 7-6 to 7-12 

examples of, 7-7 

examples of routines for, 7-8 to 7-12 

for efficiency, 7-10 

prototype routines for, 7-6 

restrictions in use of, 7-12 

to pass complex types, 7-7 

Index 9 



type declarations 

described, 4-5 
examples of, 4^6 
syntax for, 6-6 

type specifiers, 6-13 
type QUID, 1-3 
typedef declaration, 6-6 

types 
arrays, 6-9 
complex, 6-7 
declarators, 6-9 
definition of, 1-3 ~. 
in interfaces with multiple versions, 7-25 

in NDR, 5-2 
multiple managers for, 7-26e 
NDR representation of scalar, 5-2 

pointers, 6-9 
portability issues with, 5-2 
specifiers, 6-7 
specifiers for operations, 6-11 

specifiers for parameters, 6-12 

U 
unbind routine, 7-13 

examples, 7-16 

unbound handle, 1-12 

alternative to use, 5-11 

creation of, 5-6 

reasons for use, 5-10 

unions 

discriminated, 6-16 

in NIDL, 6-16 

open arrays in, 6-9 

pointers in, 6-17 

representation in generated code, 6-18 

tags for, 6-16, 6-18 

unregistering 

with the Location Broker, 5-25 

with the RPC run-time library, 5-25 

Index-10 

unsigned integer types, 6-14 

user-written files 

for application, 3-4 

utilities 

description of, 2-1 

reference pages, 16-1 

UUID 

argument to routines, 5-6 

as RPC handle, 4-10e 

attribute in interface definition, 6-2 

checking in bank example, 5-27 

data structure, 1-3 

definition of, 1-3 

generation of, 1-3, 2-2 

generation of for interface, 4-2e 

in interface definition, 4--4 

routines for manipulating, 2-8 

string representation, 1-3 

the nil QUID, 1-4 

uuid_$ library routines, 2-8 

reference pages, 15-1 

uuid $nil external variable, 1-4 

uuid_gen utility 

description of, 1-3 

example of use, 4-1 

output from, 2-2 

V 
VAX C 

globaldef declaration in, 5-32 

version attribute, 6-3 

versions of interfaces 

checking version of, 7-20 

version number in interface name, 7-19 

void type, 6-14 

for operations, 6-11 



Volatile macro, 5-15 
volatile qualifier, 5-15 

W 

well known port 

defined, 1-6 

use of LB instead, 1-21 

X 

xmitas example, 7-7 

conversion routines for, 7-8 

interface definition for, 7-7 

Index-11 





How to Order Additional Documentation 

Technical Support 
If you need help deciding which documentation best meets your needs, call 800-343-4040 
before placing your electronic, telephone, or direct mail order. 

Electronic Orders 
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-baud 
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the 
Electronic Store, call 800-DIGITAL (800-344-4825). 

Telephone and Direct Mail Orders 

Your Location Call Contact 

Continental USA, 800-DIGITAL Digital Equipment Corporation 
Alaska, or Hawaii P.O. Box CS2008 

Nashua, New Hampshire 03061 

Puerto Rico 809-754-7575 Local Digital Subsidiary 

Canada 800-267-6215 Digital Equipment of Canada 
Attn: DECdirect Operations KA02/2 
P.O. Box 13000 
100 Herzberg Road 
Kanata, Ontario, Canada K2K 2A6 

International Local Digital subsidiary or 
approved distributor 

Internal SSB Order Processing - WMO/E 15 
or 
Software Supply Business 
Digital Equipment Corporation 
Westminster, Massachusetts 01473 

* For internal orders, you must submit an Internal Software Order Form (EN-01740-07). 





Reader's Comments DECrpc 
Programming Guide 

AA-PC2AA-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: Excellent Good Fair Poor 
Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

❑ O ❑ ❑ 
❑ ❑ ❑ 

❑ 

❑ ❑ a a 
a o o a 
❑ ❑ a o 

❑ 

❑ 

❑ 

❑ 

❑ ❑ 

❑ ❑ 

a a ❑ a 

What would you like to see more less of?  

What do you like best about this manual?  

What do you like least about this manual?  

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using?  

Name/Title   Dept.  

Company   Date  

Mailing Address  

  Email   Phone  



- - - - Do Not Tear -Fold Here and Tape 

d 9 g 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0,33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Publications Manager 
Open Software Publications Group 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NAS H UA, N H 03062-9987 

- - - Do Not Tear -Fold Here 

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I 

No Postage 
Necessary 

if Mailed in the 
United States 

Cut 
Along 
Dotted 
Line 



Reader's Comments DECrpc 
Programming Guide 

AA-PC2AA-TE 

Please use this postage-paid form to comment on this manual. If you require a written reply 
to a software problem and are eligible to receive one under Software Performance Report 
(SPR) service, submit your comments on an SPR form. 

Thank you for your assistance. 

Please rate this manual: Excellent Good Fair Poor 
Accuracy (software works as manual says) 
Completeness (enough information) 
Clarity (easy to understand) 
Organization (structure of subject matter) 
Figures (useful) 
Examples (useful) 
Index (ability to find topic) 
Page layout (easy to find information) 

o ❑ ❑ a 
❑ O ❑ D 
❑ a o 0 
❑ ❑ ❑ ❑ 
0 o a a 
O ~ ❑ D 
❑ ❑ ❑ ❑ 
❑ ❑ ❑ ❑ 

What would you like to see more less of?  

~~ What do you like best about this manual?  

What do you like least about this manual?  

Please list errors you have found in this manual: 

Page Description 

Additional comments or suggestions to improve this manual: 

What version of the software described by this manual are you using?  

Name/Title   Dept.  
Company   Date  
Mailing Address  

  Email   Phone 



- - - - Do Not Tear -Fold Here and Tape 

d 9 g 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0,33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Digital Equipment Corporation 
Publications Manager 
Open Software Publications Group 
ZK03-2/Z04 
110 SPIT BROOK ROAD 
NAS H UA, N H 03062-9987 

- Do Not Tear -Fold Here 

III~~~~~II~II~~~~II~~~~I~II~I~~I~I~~I~~I~I~~~I~II~~I 

No Postage 
Necessary 

if Mailed in the 
United States 

Cut 
Along 
Dotted 
Line 


