INTEGRATED FAMILY OF TEST EQUIPMENT (IFTE)
COMMERCIAL EQUIVALENT EQUIPMENTCEE HANDBOOK
CONTRACT NO. DAAB07-89-C-N001
CDRL SEQUENCE NO. 5001
Prepared for:
PM-TMDE
US ARMY COMMUNICATIONS-ELECTRONICS COMMAND
FT. MONMOUTH, NJ 07703-5008
Prepared by:
GRUMMAN CORPORATION
ELECTRONICS SYSTEMS DIVISION
BETHPAGE, NY 11714

		REVISION SHEET
	DATE	REVISION DESCRIPTION
01	This document has been revised to incorporate various changes in paragraphs 4.1.4, 4.3.2, 4.6 .3 and 4.7. A vertical bar-mark is used in the right-hand margin of this document to indicate the approximate location in the text where a change was made.	

1.	GENERAL INFORMATION
1.1	CEE Handbook Purpose \& Scope
1.2	CEE General Description
1.3	Physical Requirements
1.3 .1	Major Component List
1.4	Physical Requirements
1.4.1	Power Requirement
1.4.2	Environmental Requirement
1.4.3	Mechanical Interface
1.5	Station Top Assembly Drawing
1.6	System Interconnect
2.	CEE APPLICATIONS
2.1	CEE CONFIGURATIONS
2.2	CEE Core Equipment
2.2 .1	Power Control Unit
2.2.2	Peripheral Interface Controller (PIC)
2.2 .3	System Mass Memory
2.2 .4	UUT Interface
2.2 .5	Virtual instrument Chassis (VIC)
2.2.5.1	Digital VIC
2.2.5.2	Analog VIC

3.

3.1
3.2
3.3
3.4
3.4 .1
3.4.2 Removing the Removable Pack
3.4 .3
4.
4.1
4.1.1
4.1 .2
4.1.3
4.1 .4
4.1 .5
4.1 .6
4.1 .7
4.1 .8
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.3

OPERATING INSTRUCTIONS
SYSTEM INITIALIZATION

POWER TURN ON PROCEDURE

POWER TURN OFF PROCEDURE
PROGRAM EXECUTION
Mounting the Removable Pack

Running a Program
OPERATIONAL CHARACTERISTICS
Power Subsystem
Power Control Panel
AC Power Supply
Programmable DC Power Supplies
28 VDC Power Supply
Programmable DC Load
VIC Power Supply
VIC Linear Power Supply

CONTROL SUBSYSTEM
Peripheral Interface Controller (PIC)
USER INTERFACE

Terminal

Printer
Disk Drive

List of Allowable Supplies, Power Control Unit and Loads

4.4	ANALOG/VIDEO SUBSYSTEM
4.4 .1	Digital Multimeter
4.4 .2	High Frequency Probe
4.4 .3	Arbitrary Function Generator (AFG)
4.4 .4	Counter Timer
4.4.5	Digitizer
4.4 .6	Display Analyzer - Simulator
4.4 .7	Synchro/Resolver Indicator
4.4 .8	Synchro/Resolver Simulator
4.5	RF SUBSYSTEM
4.5 .1	RF Interface Unit (RFIU)
4.5 .2	RF Generator 1 (RFG1)
4.5 .3	RF Generator 2 (RFG2)
4.5 .4	RF Generator 3 (RFG3)
4.5 .5	Spectrum Analyzer
4.5 .6	RF Power Meter
4.5 .7	Rubidium Frequency Reference
4.5 .8	RF Millivoltmeter
4.5 .9	List of Allowable RF Instruments
4.6	DIGITAL SUBSYSTEM
4.6 .1	Digital VIC
4.6 .2	Bus Test Unit
4.6 .3	Wizard Probe System
4.6 .4	Timing Generator
4.7	SOFTWARE SUBSYSTEM
4.7 .1	Run Time Software (RTS)

4.7 .2	Executive Software
4.7 .3	Maintenance, Self Test, Diagnosis Software
4.7 .4	C - Atlas Compiler
4.7 .5	Administrative Software
5.	SYSTEM INTERFACE
5.1	GOLD-DOT INTERFACE PANEL
5.2	SIGNAL DISTRIBUTION SYSTEM
5.3	AUXILIARY INTERFACE PANEL
5.4	RF INTERFACE UNIT
6.	TEST PROGRAM SET IMPLEMENTATION TOOLS
6.1	TPS TOOL DESCRIPTION
6.1 .1	User Interface (UI)
6.1 .2	C-ATLAS Compiler
6.1 .3	Syntax Directed Editor (SDE)
6.1 .4	Text Editor
6.1 .5	ATE Simulator
6.1 .6	HITS Digital ATG
6.1 .7	ATSE Data Base and Data Base Manager
6.1 .8	ATSE/CEE User Environment Link
6.1 .9	Tool Interface
7.0	TESTING AND TROUBLE SHOOTING

7.1	Maintenance
7.1 .1	General
7.1 .2	Preventive Maintenance
7.1 .3	Dust
7.1 .4	Cables
7.1 .5	Blowers
7.1 .6	Frequency of System Self-Test
7.1 .7	Frequency of System Alignment
7.2	LOADING SYSTEM SOFTWARE AND SELF-TEST AND ALIGNMENT PROGRAM
7.2 .1	General
7.2 .2	Loading the System Software
7.2 .3	Self-Test Operation
7.2 .4	Self-Alignment Operation
7.3	General
7.3 .1	Self-Test ICD
7.3 .2	Self-Alignment ICD
7.3 .3	General
7.3 .4	Cable Set
7.4	INGMENT SWITCH SETTINGS

1. GENERAL INFORMATION

1.1 CEE HANDBOOK PURPOSE \& SCOPE
The purpose of this handbook is to assist test program set developers in the application and use of the IFTE CEE. For this purpose, the handbook has been divided into the following major sections:
A. General Information - A summary of the physical characteristics and requirements of a fully-configured CEE.
B. CEE Applications - A discussion of the various configurations of the CEE that can be used to meet the requirements of particular application. This includes the identification of the various elements present in each configuration.
C. Operating Instructions - Specific instructions for system
initialization, turn on, turn off, and program execution.
D. Operational Characteristics - Detailed characteristics of
CEE resources, organized by major subsystem.
E. System Interface - Application and use of the various UUT and user interfaces of the CEE.
F. TPS Implementation Tools - A summary description of the TPS tools presently available with the ATSE.
G. Testing and Troubleshooting - Description and use of the preventative maintenance, self test and self alignment capabilities of the CEE.

1.2 CEE GENERAL DESCRIPTION

The CEE is designed for use in developing and validating Test Program
Sets (TPSs) capable of performing end-to-end (performance) testing and fault isolation of LRUs, WRAs, SRUs, SRAs, etc.
In addition, the CEE is used for factory and depot-level testing in lieu of the militarized BSTS ATE.
The approach to CEE design and configuration stresses maximum
commonality to the BSTS through the observation of the following guidelines:
A. It utilizes software common to the BSTS.
B. It utilizes TPS tools common to the BSTS (ATSE).
C. It contains features that are the exact equivalent of the BSTS:- UUT Interface

- Operator Interface
- Test Capability
This approach allows a contractor to perform TPS development and to*
implement a factory and depot test capability that is functionally, and in
software capability, the same as the full militarized version that will host the
TPS in the field.
1.3 PHYSICAL CHARACTERISTICS
1.3.1 Major Components List
The following list of major components shall comprise all of the CEE
configurations, unless otherwise noted. (Reference Figures 1.1 through 1.6)
A. System Controller and Peripherals
(1) Peripheral Interface Controller (System Controller)
(2) Printer
(3) Disc Drive
(4) Display terminal
(5) Touch Screen
B. Power Subsystem
(1) Programmable DC Load
(2) AC Power Supply
(3) Programmable DC Power Supply \#1, \#2 (CEE -103, -109 only)
(4) 28 VDC Supply
C. RF Instruments
(1) RF Interface Unit (RFIU) (CEE -101, -103, -107, -109 only)
(2) RF Generator 1 (RFGI) (CEE -103, -109 only)
(3) RF Generator 2 (RFG2) (CEE -101, -103, -107, -109 only)
(4) RF Generator 3 (RFG3) (CEE -101, - 107 only)
(5) Spectrum Analyzer and Display (CEE -101, -103, -107, -109 only)
(6) RF Power Meter (CEE -101, -103, -107, -109 only)
(7) Rubidium Frequency Reference
(8) RF Millivoltmeter (CEE -103, -109 only)
D. Miscellaneous Units
(1) Power Control Unit
(2) High Frequency Probe for DMM
(3) Self-Alignment ICD
(4) Self-Test ICD

```
E. Analog VIC Assembly
```

(1) Resource Controller
(2) Signal Distribution System (SDS)
(3) Arbitrary Function Generator
(4) Synchro/Resolver Simulator-Indicator
(5) Digitizer
(6) Counter-Timer
(7) Digital Multimeter
(8) Display Analyzer-Simulator
F. Digital VIC Assembly
(1) Resource Controller
(2) Digital I/O
(3) BUS Test Unit
(4) Wizard Probe System
G. VIC Power SupplyH. Interface Panels
(1) Gold Dot Interface Pane]
(2) Auxiliary Interface Panel
I. Mechanical
(1) Racks to house electronic equipment and drawers of the CEE.
(2) CEE Work Surfaces
J. Software
(1) Executive Software
(2) Maintenance Software
a. Self Test
b. Self Alignment
(3) Run Time System
(4) Administrative
(5) ATG Post Processor - Analyzer

COMMERCIAL EQUIVALENT EQUIPMENT
 A31U17000-101

COMMERCIAL EQUIVALENT EQUIPMENT A31U17000-103

> DIGITAL YIC RESOURCES WIPRES CONTROLLER TIMING GEN WRARE OWG YROBE 116 PIM EA) (IO) 3US TEST UNIT
OIGPLAYCRR-TMMOIGITIZER (S)
UNIVERSAL SWITCH (6)
SYNCH-RES SIMIIND

COMMERCIAL EQUIVALENT EQUIPMENT A31U17000-105

COMMERCIAL EQUIVALENT EQUIPMENT-FULL UP A31U1.7000-107

COMMERCIAL EQUIVALENT EQUIPMENT-HAWK A31U17000-109

FIGURE

ANALOG VIC RESOURCES	DIGITAL VIC RESOURCES
MIPRCS CONTROLLER TIMING GEN	MIPRCS CONTROLLER TIMING GEN
CTR-TIMOIGITIZER DY*	WIZARD PROBE DWG 110 (16 PIN EA) (10)
ISPLAY ANALYZER/SIMULATOR	BUS TEST UNIT ${ }^{\text {a }}$
UNIVERSAL SWITCH (6)	DWG HV (2)
DAC/UTILITY SWITCH	

COMMERCIAL EQUIVALENT EQUIPMENT-HYBRID A31U17000-111

1.4.1 Power Requirements

External power applied must be three phase, wye configured, five wire
(three phases plus neutral and ground), $120 \pm 10 \%$ VAC (line to neutral) at a frequency in the range of 47 Hz to $64 \mathrm{~Hz}, 50$ amperes per phase. The pin assignments for the Jl connector are as follows:

PIN FUNCTION

A Phase A - 50 amps, max.

B Phase B - 50 amps, max.

C Phase C -50 amps, max.

D
Neutral

E Ground

F Neutral

G Neutral

The part number of the External Power Interface Connector Jl is MS3450W24-10P.

Grumman provides cable P/N A31U17328-3 which connects to the Jl connector,
consisting of seven wires, and is approximately 24 feet long, with the ends
pigtailed for connections to facility power.

1.4.2 Environmental Requirements

The CEE shall be capable of withstanding the following environmental

conditions:

A. Vibration and Shock - $\quad 10-33 \mathrm{~Hz}, 0.1$ inches peak excursion
B. Operating Temperature - $10^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}$
C. Non-Operating Temperature - $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
D. Humidity - 80%, non-condensing

1.4.3 Mechanical Interface

The CEE sits directly on the floor, and requires no special mechanical
interface. The footprint of the CEE -101, $-103,-107$ and -109 is shown in

Figure 1.7. The weight is no greater than 3000 pounds. The footprint of the CEE -105 and -111 is shown in Figure 1.8. The weight is no greater than 2500 pounds.

FIGURE 1.7
CEE FOOT PRINT
$(-101,-103,-107,-109)$

FIGURE 1.8
CEE FOOT PRINT

$$
(-105,-111)
$$

1.5 STATION TOP ASSEMBLY DRAWING
The station top assembly drawing (drawing number A31U17000) contains
all part numbers on the CEE station.
1.6 SYSTEM INTERCONNECT
The interconnection block diagrams for the CEE are broken up into two
figures. Figure 1.9 shows the bus structure and figure 1.10 shows the signal
distribution of the CEE. Drawing number A31U17010 gives a more detailed picture
of the System Interconnection and can be obtained from Grumman.

FIGURE 1.9A CEE BUS STRUCTURE (CEE -101, -107)

FIGURE 1.9B CEE BUS STRUCTURE (CEE -103, -109)

FIGURE 1.9C CEE BUS STRUCTURE (CEE -105, -111)

FIGURE 1.10B
CEE SIGNAL DISTRIBUTION
(CEE-105, -111)
2.1 CEE CONFIGURATIONS

For a savings in cost when less instrumentation or test capability is
required, various configurations of the CEE have been created (CEE -101, -103, $-105,-107,-109,-111)$ to meet the requirements of a specific testing application or of a particular maintenance scenario. All configurations maintain TPS transportability to the BSTS. Therefore, for a factory test environment, the same TPSs could be utilized from factory to field.

All CEE configurations must be restricted by the inclusion of that specific equpment which is integral to system operation and to the UUT and operator interfaces. In addition, there are restrictions intended to minimize changes to CEE hardware and software design, for which non-recurring engineering efforts would be required. The following paragraphs outline the common core of equipment/instrumentation used in all CEE configurations. Later sections will describe other resources and will indicate which specific configurations these resources are present in.
2.2 CEE Core EquipmentThe equipment comprising the CEE core is integral to the hardware andsoftware design and CEE system architecture.
2.2.1 Power Control Unit
The Power Control Unit is used to route and monitor power.
2.2.2 Peripheral Interface Controller (PIC)
The PIC is the CEE system controller. It performs the following
functions:
(a) Controls system operation.
(b) Distributes processing and instrumentation control tasks.
(c) Interfaces to all system peripherals.
(d) Performs test executive functions.
(e) Establishes all system busses.

2.2.3 System Mass Memory

The CEE Mass Memory is an Amcodyne Disc Drive containing 100 MBytes
total capacity, including a 20 MByte removable 8-inch cartridge. It interfaces
to the PIC via a SCSI (Small Computer System Interface) bus.
2.2 .4 UUT Interface
The principal UUT interface is via the Gold Dot Interface Panel. It
is a pinless connector system less susceptible to damage than a conventional
patch panel, and contains 3200 terminations in a greatly-reduced space. If TPS
transportability to the BSTS is not required, an alternative UUT interface could
be incorporated into a tailored CEE configuration.
In addition to the Gold Dot Interface Panel, the CEE contain an
Auxiliary Interface Panel. The Auxiliary Interface Panel contains conventional
connectors to provide additional interface capability for UUT testing. There is
an IEEE-488 standard connector which can be used to interface an external
instrument to the CEE. In addition, there are connectors for utilizing the
Wizard and analog probes, and connectors to provide high-current paths to the DC
power supplies, the AC power supply, and the programmable loads.
2.2.5 Virtual Instrument Chassis (VIC)
The Digital and Analog VICs provide the majority of the CEE's non-RF
instrumentation, as well as serving as the Signal Distribution System (SDS).
Each VIC contains a Resource Controller, which is the identical Common
Microprocessor/Controller card as the System Controller in the PIC, as well as a
Timing Generator card. The balance of each VIC contains the appropriate
digital, analog and switching resources.
2.2.5.1 Digital VICThe configuration of the standard Digital VIC is shown in Figure 2.1.
Each digital VIC contains a Common Microprocessor/Controller card, a Timing
Generator card, and the following test resources:
0 One (1) through ten (10) High-Speed Digital I/O card containing
16 pins per card, programmable from -10 to +10 volts, and capableof operation at up to 50 MHz .o One (1) or two (2) High-Voltage Digital I/O cards containing 16
pins per card, programmable from -30 to +30 volts and capable of
operation at up to 10 MHz .o One (1) Bus Test Unit (BTU) card - 1553B Manchester-compatible.o One (1) Wizard Probes I \& II card containing the electronics for
the CEE digital probes.

CHASSIS	CARD TYPE
1	uProc/Controller Card
2	High Speed Digital I/0 Card
3	High Speed Digital I/0 Card
4	High Speed Digital I/O Card
5	High Speed Digital I/O Card
σ	High Speed Digital I/0 Card
7	High Speed Digital I/O Card
8	High Speed Digital I/0 Card
9	High Speed Digital I/0 Card
10	High Speed Digital I/O Card
11	High Speed Digital I/0 Card
12	High Voltage Digital I/O Card
13	High Voltage Digital I/O Card
14	Spare Slot
15	Spare Slot
16	Bus Test Unit Card
17	Wizard Probes I \& II Card
18	Timing Generator Card

FIGURE 2.1 Virtual Instrument Chassis-Digital
2.2.5.2 Analog VICThe configuration of a standard Analog VIC is shown in Figure 2.2. As
in the Digital VIC, the Analog VIC contains the Common Microprocessor/Controllercard and the Timing Generator. In addition, there are seven cards whichtogether comprise the Signal Distribution (or switching) System (SDS) and whichare contained in VIC slots 7 through 13 (of 18).
The SDS provides the capabilities of 130 Universal I/O pins, 144
Extended Performance I/O pins, 48 dedicated instrument ports, 32 form C relays,and eight precision DC references. It is inherently a key component of theswitching flexibility designed into the compiler and run-time system software.The Analog VIC also contains the following resources.

CHASSIS	CARD TYPE
1	uProc/Controller Card
2	Spare Slot
3	AFG/C-T/Digitizer Card
4	AFG/C-T/Digitizer Card
5	AFG/C-T/Digitizer Card
6	AFG/C-T/Digitizer Card
7	Univ/Ext. Perf. Pin Switch Card
8	Univ/Ext. Perf. Pin Switch Card
9	Univ/Ext. Perf. Pin Switch Card
10	Univ/Ext. Perf. Pin Switch Card
11	Univ/Ext. Perf. Pin Switch Card
12	Univ/Ext. Perf. Pin Switch Card
13	DACS/Utility Switch Card
14	Synchro-Res/Simulator-Indicator Card
$\overline{15}$	AFG/C-T/Digitizer Card
$\overline{16}$	DMM Card
17	Display Analyzer/Simulator Card
18	Timing Generator Card

3.

 OPERATING INSTRUCTIONS
3.1

SYSTEM INITIALIZATION

The CEE automatically initializes itself during power turn-on. (See
paragraph 3.2). To reinitialize the station, the user types in the following commands (NOTE: all entries are lower case and are bracketed []):
At the CEE TPS User Interface,
enter [stop] - press return.
At the $>$ prompt,
enter [b] - press return.
The prompt, login: will appear after a short wait. The user will enter:
[ifte] - press return.After following instructions on screen for date and time update, the prompt
for a user-name will appear. Enter [station]
The prompt for a password will appear. Enter [station]
The CEE TPS user interface prompt will appear and the user can run
test programs or any of the resident software.

To turn on the CEE, the following steps are to be performed (NOTE:
all entries are in lower case and are bracketed []):

1. Turn on Circuit Breakers on the Power Control Unit.
2. Press the 0 N switch on the Power Control Unit.
3. Wait while the station initializes.
4. When the prompt CEE login appears, enter: [ifte] -press return.
3.3 POWER TURN OFF PROCEDURE

To power down the CEE;

At the CEE TPS user interface, type in:
[halt] - press return.

This command will park all the heads on the disk drives. The user
then can press the OFF switch on the Power Control Unit and switch the Circuit

Breakers to the OFF position.
3.4 PROGRAM EXECUTION

3.4.1 Mounting The Removable Pack

To mount the removable pack, the user must first install the disk in the disk drive and set the START/STOP switch to the START position. Wait for the ready light to illuminate.
3.4.2 Removing the Removable Pack

To remove the removable pack, the user enters the [stop] command from the CEE TPS user interface and waits for the prompt to appear.

When the $>$ prompt is displayed, the user can set the START/STOP switch to the stop position and, after the LOAD indicator illuminates, remove the pack.

3.4.3 Running a Program

After station initialization and login, the station will automatically enter the system user interface.

The operator will then be given a menu of execution options (CEE TPS

DEVELOPMENT TOOL MENU). Select the test program execution option. (Ref IFTE

Programmers Ref.Manual P/N IFTE85E2101).

This will get the user into the ATLAS Execution System. At the prompt
(!) type [run (filename)] and press return. When you are finished executing the program, type: [exit] then press return. This will bring the user back to the
user interface. For more information about running programs or mounting and
removing disks, see IFTE Programmers Reference Manual P/N IFTE85E2101.
4. OPEPATIONAL CHARACTERISTICS
4.1 POWER SUBSYSTEM
4.1.1 Power Control Panel
(1) Controls: Power ON/OFF Switches, Power ON Indicator, ElapsedTime Meter, Voltmeter.
(2) Over Voltage Shut Down: If voltage changes more than 10 voltsfrom nominal 115 VRMS.
4.1.2 AC POWER SUPPLY
The AC Power Supply has programmable output voltage, current-limit,
frequency and phase angle capability. The following types of outputs are
available to the UUT at $J 9$ of the Auxiliary Interface Panel with the following
output voltage and current:

Voltage Range $(L-N)$	Voltage Resolution	Maximum Continuous Current	Maximum Allowable Current	Current Limit
0.0 to 135.0 V	0.0342 V	6.25 A	10.0 A	0.1 A
0.0 to 270.0 V	0.0684 V	3.125 A	5.0 A	0.1 A

(2) Output Voltage Accuracy: $\pm 0.5 \%$ of full scale voltage range

Output Current Limit Accuracy: $\pm 2 \%$ of maximum allowable current
(3) Output Regulation (no load to full load): 0.5% full scale

The frequency and phase angle are programmable with the following ranges:
(4) Output Frequency:

Frequency Range Frequency Resolution
45.0 to $999.9 \mathrm{~Hz} \quad 0.1 \mathrm{~Hz}$

1000 to $5000 \mathrm{~Hz} \quad 1.0 \mathrm{~Hz}$
(5) Output Frequency Accuracy: 0.5\% of programmed value.
(6) Phase Angle Relationship:
A. Individual Phases: Phase B and Phase C lag Phase A, and are
individually programmable from 0° to 360° with a resolution
of 1 degree.
B. Accuracy: $\pm\left(1^{\circ}+1^{\circ}\right.$ per KHz or fraction thereof).
4.1.3 PROGRAMMABLE DC POWER SUPPLIES

There are 8 floating, bipolar DC power supplies (an additional 4 in the CEE -103 and -109). All of the power supplies are brought to the gold dot
interface through power relays, and to $J 6$ and $J 7$ of the Auxiliary Interface
Panel (the additional 4 of of the CEE -103 and -109 are brought to 99$)$. All
supplies have remote sensing for maintaining a constant voltage at the
interface. The sense leads are available at the gold dot interface and the
auxiliary interface panels. If the sense leads are not connected, the power
supplies will operate using internal, local sensing only.
(1) Voltage Range and Maximum Current:
A. 2 @ 0-7V, 20.5A
B. 2 @ $0-16 \mathrm{~V}, 9.1 \mathrm{~A}$
C. 1 @ $0-36 \mathrm{~V}, 4.1 \mathrm{~A}$
D. $2 @ 0-55 \mathrm{~V}, 2.8 \mathrm{~A}$
E. 1 @ $0-100 \mathrm{~V}, 1.5 \mathrm{~A}$
F. 4 @ 0-200V, 0.75V (CEE -103 and -109 only)
(2) Resolution: 10 mv or (1/4096) x max. voltage; whichever is greater
(3) Accuracy: $\pm 0.5 \%$ programmed value or $\pm 10 \mathrm{mv}$; whichever is greaterNOTE: Accuracy specification is valid only when using remote sensing.(4) Configuration: All power supplies are floating and bipolar.
(5) Ripple and Noise: 12 millivolts p/p max.

4.1.4 28 VDC POWER SUPPLY

The 28 VDC Power Supply has a fixed voltage output of 28 volts $D C=5 \%$ with a maximum current rating of 22.5 amperes.

When gold dot pins H51 and G51 are not connected (open), the 28 VDC power supply is turned off. When gold dot pins H51 and G51 are shorted via a relay or switch closure in the Test Program Set (TPS) ICD, the 28 VDC power supply is turned on. It will remain on until the connection between gold dot pins H51 and G51 is opened, at which time the 28 VDC power supply will be turned off. The 28VDC Power is available to the UUT at the Auxiliary Interface Panel via the $J 8$ connector. Overvoltage and overcurrent protection is provided with this supply.
4.1.5 PROGRAMMABLE DC LOAD

The programmable DC loads provide eight individually programmable active load channels. Each load is programmed over the IEEE-488 bus. Each channel is available through a dedicated pair of pins at connectors $J 10$ and $J 11$ on the Auxiliary Interface Panel. The following load characteristics are available at the Auxiliary Interface Panel as shown in Table I.

Programmable Load Characteristics

Characteristics	$\begin{gathered} \text { Load } \\ 1 \end{gathered}$	$\begin{gathered} \text { Load } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \text { Load } \\ 3 \end{gathered}$	$\begin{gathered} \text { Load } \\ 4 \end{gathered}$	$\begin{gathered} \text { Load } \\ 5 \end{gathered}$	$\begin{gathered} \text { Load } \\ 6 \end{gathered}$	$\begin{gathered} \text { Load } \\ 7 \end{gathered}$	$\begin{gathered} \text { Load } \\ 8 \end{gathered}$
Maximum voltage	50 V	50 V	50 V	50 V	130V	130 V	130 V	250 V
Minimum compliance voltage	3 V	3 V	3 V	3 V	7 V	7 V	7 V	10 V
Maximum current	30A	15A	15A	30A	15A	15A	15A	5A
Maximum power 1/	750W	300W	300W	750W	750W	750W	750W	750W

1/ Maximum power dissipation for simultaneous use of load channels must not exceed 3000 watts. Where power dissipation is less than 1000 watts, duty may be continuous. Where power dissipation is greater than 1000 watts, duty cycle is limited to 3 minutes $O N$ followed by 2 minutes OFF.
(1) Load current programming resolution is the load channel's maximum
current divided by 1023.
(2) Any combination of loads may be operated in parallel to achieve a
higher value load capability (current or power) provided that no
individual load specifications are exceeded.
(3) The maximum load current accuracy is 5% of programmed value or 1.0% of full rated current, whichever is greater.
(4) Any or all loads may be modulated by a single source from a pin on 311 on the Auxiliary Interface Panel. The modulating signal's peak
positive and peak negative excursions must be in the range of 0 to +10 volts and will program the selected channel(s) for 0 to a maximum rated current, respectively.
(5) The impedance of the modulating signal input depends upon the number of load channels (N) programmed as follows:

Zin $=10 / \mathrm{N}$ Kohms where $N=1$ to 8

(6) The loads contain built-in protection for overvoltage, overcurrent and overpower.

4.1.6 VIC Power Supply

The VIC Power Supply provides $\pm 15 \mathrm{VDC}$ and $+24 V D C$ power for internal use
by the VIC instruments and the VIC signal distribution system. This supply is
not intended to provide power to units under test.

```
4.1.7 VIC Linear Power Supply
The VIC Linear Power Supply provides \pm15VDC linear power for internal
use by the Analog VIC instruments. These supplies are not intended to provide
power to units under test.
4.1.8 List Of Power Subsystem Elements
Instrument
Qty.
MFG
Part Number
Prog. DC Power Supply 1
gar
5801237-01,
5702007-01
```

Prog. Load

AC Power Supply

Power Control Unit

VIC Power Supply 1

28 V Power Supply

1

1

1 Grumman

Grumman Grumman
4.2 CONTROL SUBSYSTEM
4.2 .1 Peripheral Interface Controller
The Peripheral Interface Controller (PIC) contains a 32 Bit Motorola
68020 microprocessor with a Motorola 68881 as a coprocessor on a Sun Micro-
systems board. The system clock operates at 16.67 MHz . The memory for the PIC
is made up of 4 M Bytes of on board dynamic memory, but can access 2 gigabytes of
VME address space. The operating system for the PIC is UNIX. The PIC
communicates with the peripherals through the following Buses:
(1) Small Computer System Interface (SCSI)
(2) IEEE-488(3) RS-423 Serial Data Bus(4) IEEE-802.3 bus (Thinnet)
(5) Centronics Interface
(6) High Speed 8 Bit Differential Parallel Data Bus
(7) VME Bus
Communication between the PIC and the Analog and Digital VIC's is
achieved by a daisy-chained Thinnet Bus. The mass memory is an Amcodyne disk
drive connected to the PIC via the SCSI Bus. There are four IEEE-488 buses, twoconnected to the PIC, one to the analog VIC and one to the Digital VIC. TheTerminal and the Printer are connected to the PIC by two RS-423 buses.
4.3 USER INTERFACE
The Terminal consists of a colorgraphic's CRT, a graphics generator, a
keyboard, and an IR Touch Screen with the following characteristics:
(1) Screen Size: 13 inch diagonal
(2) Type: 60 Hz non-interlaced raster scan
(3) Modes: Alphanumeric and Colorgraphics
(4) Alphanumeric Display Capacity: 24 lines $\times 80$ columns
(5) Graphics Display Capacity: 640×480 pixel.
(6) Color: 16 colors displayable simultaneously
(7) Cursor Type: Blinking underline for Alphanumeric. Crosshair for
graphics
(8) Graphics Primitives: Point, vector, rectangle, polygon, circle, arc
and pie segment drawing, 30 fill patterns, 5 line types
(9) Keyboard.(10) Touch Screen (IR): 48×32 matrix, scan rate of 20 frames per second,resolution 0.125 inches.
4.3 .2(1) Number of characters/line: 80
(2) Type of Printer: Ink Jet
(3) Speed: 150 characters/second
(4) Resolution: 96×96 dots/inch
(5) Paper: 8.5×11 inches (trimmed), fan fold
4.3.3 Disk Drive
(1) Computer Interface: Small Computer System Interface (SCSI)
(2) Uses three dual surface fixed disks and one dual surface removable
disk cartridge
(3) Disk Cartridge Size: 8 inches (diameter)
(4) Disk Data Surfaces: 8 (6 fixed, 2 removable)
(5) Disk Cartridge Formatted Storage Capacity: 20 Mbytes
(6) Fixed Disk Formatted Storage Capacity: 20 Mbytes/disk
(7) Total Disk Drive Formatted Storage Capacity: 80 Mbytes
(8) Total Disk Drive Unformatted Storage Capacity: 100 Mbytes
4.3.4 Optical Disk Drive
(1) Computer Interface: Small Computer System Interface (SCSI)
(2) Uses removable disk cartridges as storage media
(3) Disk cartridge size: 5.25 inches (diameter)
(4) Disk cartridge data surfaces: 2
(5) Disk Cartridge User Storage Capacity: 200 Megabytes per surface
(6) Read/Write Technology; Write-once-read-many (WORM).

```
4.4 ANALOG/VIDEO SUBSYSTEM
4.4.1 Digital Multimeter
The Digital Multimeter consists of 5\frac{1}{2}}\mathrm{ digits with the following
```

specifications:
(1) $D C$ Voltage Measurement:

INPUT

RANGE	RESOLUTION		ACCURACY	IMPEDANCE
300 V	1 mv	0.024\%	input + 10 digits	10 Megohms
100 V	1 mv	0.024\%	input + 10 digits	10 Megohms
10 V	100 uv	0.012\%	input + 10 digits	10 Gigohms
1V	10 uv	0.012\%	input + 10 digits	10 Gigohms
0.1 V	1 uv	0.012\%	input + 10 digits	10 Gigohms

NOTE: The input to the 300 V range is limited to 200 V .
(2) AC Voltage Measurement (AC Coupled Input):

RANGE	RESOLUTION	INPUT IMPEDANCE		
300 V	1 mv	1 Megohm, 100 pF		
100 V	1 mv	1 Megohm, 100 pF		
10 V	100 uv	1 Megohm, 100 pF		
1 V	10 uv	1 Megom, 100 pF		
0.1 V	1 uv	1 Megohm, 100 pF		

ACCURACY
10 Hz to 30 Hz
0.6% input +120 digits
30 Hz to 100 Hz
0.12% input +50 digits
100 Hz to 20 KHz
0.12% input + 50 digits
20 KHz to 100 KHz
100 KHz to 300 KHz
300 KHz to 1 MHz
0.36% input +120 digits
3.6% input + 360 digits
12% input +1200 digits

NOTES: (1) Performance is specified for signals greater than 1% of range.
(2) For DC - coupled voltage measurements, add 0.5% of DC input plus 600 digits.
(3) The input to the 300 V range is limited to 200 V peak.
(3) Ohms Measurement:
PANGE RESOLUTION ACCURACY

ACCURACY

10 Mohm 100 ohm10 ohm
1 Mohm100 Kohm
0 Kohm1 ohm
100 mohm1 Kohm10 mohm1 mohm
0.12% input + 10 digits 0.06% input + 10 digits 0.024% input + 10 digits 0.02% input + 10 digits
0.02% input + 10 digits 0.02% input +10 digits
Specifications are for four-wire ohms measurement. For 2-wire, degrade by 2
ohms plus external lead resistance.
(4) Autoranging - all functions have autoranging
4.4.2 High Frequency Probe
The High Frequency Probe is used in conjunction with the Digital
Multimeter (DMM). The probe is connected to either the J4 or J5 connector on
the auxiliary interface panel.
The High Frequency Probe has the following characteristics:
(1) Function: Converts $D C$ voltmeter to high-frequency $A C$ voltmeter
(2) Input Voltage Range: 0.25 to 30V RMS
(3) $A C$ to $D C$ Transfer Accuracy (when loaded with 10 megohms $\pm 10 \%$):
A. $100 \mathrm{KHz}-100 \mathrm{MHz}: \pm 0.5 \mathrm{~dB}$
B. $100 \mathrm{MHz}-500 \mathrm{MHz}: \pm 1.2 \mathrm{~dB}$
(4) Input Impedance: 4 Mohms shunted by 3 pF maximum.

4.4.3 Arbitrary Function Generator (AFG)

(1) Number of Channels: 1 per card, 4 cards total.
(2) Standard Waveshapes programmable by parameters: Sine, Triangle, Square, Pulsed DC, DC
(3) In the Arbitrary Function mode, user defined custom waveforms can be created as a series of segments with individually specified amplititudes.
(4) Trigger Function: External pulse inịtiates the generation of a single shot waveform. Subsequent triggers repeat the generation of the waveform.
A. Input Impedance: 1 megohm
B. Max Input Voltage: ± 5 volts
(6) Sync Output: A TTL Output in sync with the programmed output, and capable of driving a 50 ohm load
(7) Output Amplitude: 0 to 10 Vpp into 50 ohm load (200 mA maximum drive current)
(8) Source Impedance: 50 ohms
(9) Pulse Mode Parameters
A. Frequency Range: 0.02 Hz to 25 MHz
B. Frequency Resolution: 20 nanosec
C. Frequency Accuracy: $\pm 0.001 \%$ of programmed value
D. Pulse Width: 20 nanoseconds to 39.995 seconds
E. Delay: -180 degrees to +180 degrees
F. Delay Resolution: 0.1 degree
G. Delay Accuracy: ± 0.5 degree
H. Rise/Fall Time: less than 50 nanoseconds
I. Amplitude: 50 millivolts to 20 volts peak-to-peak into high impedance (10V peak-to-peak into 50 ohms)
J. Amplitude Resolution: 0.5% of Range
K. Amplitude Accuracy: +/- (4% of Programmed Value +15 mV)
L. Offset: -10 volts to +10 volts into high impedance (the absolute value of output voltage plus offset shall be 10 volts)
M. Offset Resolution: 5 mV
N. Offset Accuracy: $+/-(5 \%$ of Programmed Value $+20 \mathrm{mV})$
(10) Fixed Waveform Mode Parameters
A. Waveforms: Square, Sine, Triangle
B. Frequency: 0.2 Hz to 2 MHz for sine and triangle 0.005 Hz to 25 MHz for square
C. Frequency Resolution: 20 nanosec
D. Frequency Accuracy: $\pm 0.001 \%$ of programmed value
E. Amplitude: 50 millivolts to 20 volts peak-to-peak into high impedance (10 volts peak-to-peak into 50 ohms)
F. Offset: -10 volts to +10 volts into high impedance (the absolute value of output voltage plus offset shall be less than 10 volts)
G. Amplitude Resolution: 0.5% of range
H. Amplitude Accuracy: +/- (5\% programmed value +15 mV) for Sine Wave, +/- (4\% programmed value +15 mV) for Square Wave +/- (6\% programmed value +15 mV) for Triangle Wave
I. Offset Resolution: 5 mV
J. Offset Accuracy: +/- (5\% of programmed value +20 mV)
(11) Arbitrary Waveform Mode Parameters
A. Segment Time Duration: 20 nanosec to 42 sec .
B. Segment Time Resolution: 20 nanosec
C. Number of Equal Time Segments: 2 to 4096
D. Segment Time Accuracy: $\pm(0.005 \%$ of programmed value +5
nanosec)
E. Segment Amplitude: 50 mV to 20 V peak-to-peak into high impedance
(10V peak-to-peak into 50 ohms)
F. Segment Amplitude Resolution: 0.5\% of Range
G. Segment Amplitude Accuracy: +/- (6% of programmed value +15 mV)
H. Offset: -10V to +10 V into high impedance (the absolute value ofoutput voltage plus offset shall be 10 volts).
(12) Output Impedance (All modes): 50 ohms
4.4.4 Counter-Timer
(1) Input Signal Frequency (Into 50 ohm Input Impedance):
A. DC Coupling - DC to 100 MHz
B. AC Coupling - 20 Hz to 100 MHz
NOTE: for 1 Mohm input impedance, upper frequency is 50 MHz
(2) Display (equivalent): 8.5 digits
(3) Frequency Range: $D C$ to 100 MHz
(4) Time Interval and Period Range: 100 ns to 10,000 seconds
(5) Input Voltage Range: 100 mV to 200 V (7V with 50 ohm input impedance)
(6) Input Impedance: 50 ohms (2 watts) or 1 Mohm (1/8 watt)
(7) Input Coupling: $D C$ or $A C$
(8) Trigger Slope: positive or negative
(9) Standard Functions:
A. Frequency
B. Period/Period Average
C. PRF
D. Time Interval/TI Average
E. Totalize (Count Events)
F. Pulse Width
G. Rise Time
H. Fall Time
I. Duty Cycle
J. Phase Angle
(10) Number of Input Channels: 2(A,B)
(11) External Gate Input:
A. Impedance: Greater than 1 Kohm or 50 ohm
B. Input Voltage: $+7,-0.5$ volts $D C$
(12) Accuracy:
A. Frequency measurement accuracy:
± 1 count \pm time base error
B. Time measurement accuracy:
$\pm 10 \mathrm{~ns} \pm 1$ count \pm time base error
C. Time base error:

Less than 12 parts in million per year
D. Phase angle accuracy:
\pm Freq Measurement accuracy \pm Time Interval measurement
accuracy
4.4.5 Digitizer
(1) Number of Channels - two
(2) Input Voltage Range:
A. $\pm 100 \mathrm{mv}$ to ± 7 volts with 50 ohm input impedance in the following ranges:

1. Greater than 2 MHz sampling rate: $1,2,2.5,4,5,8$ and 10 volt ranges
2. Less than or equal to 2 MHz sampling rate: $2.5,5,6.25,10$, 12.5, 20 and 25 volt ranges
B. $\pm 100 \mathrm{mv}$ to ± 100 volts with 1 Mohm input impedance in the
following ranges:
3. Greater than 2 MHz sampling rate: $1,2,5,10,20,50$ and

100 volt ranges
2. Less than or equal to 2 MHz sampling rate: $2.5,5,12.5$, $25,50,125$ and 250 volt ranges
(3) Input Impedance: 50 ohm (2 watt) or 1 Mohm (1/8 watt)
(4) Amplitude Resolution:
A. 12 bits for sampling frequency equal to or less than 2 MHz
B. 8 bits for sampling frequency greater than 2 MHz to 100 MHz
(5) Amplitude Measurement Accuracy:
A. $\pm 6 \%$ of full scale of input voltage range*, $D C$ to 1 MHz input signal frequency.
B. $\pm 15 \%$ of full scale of input voltage range*, 1 MHz to 25 MHz input signal frequency.
C. $\pm 25 \%$ of full scale of input voltage range*, 25 MHz to 50 MHz input signal frequency.

* NOTE: Input voltage ranges are defined above.
(6) Sampling Interval: 10 nanoseconds to 42.9 seconds in 10 nanosecond intervals.
(7) Sample Storage Depth: 1001 samples maximum
(8) Input Channel B.W.: 50 MHz at 50 ohms
(9) Trigger Mode:
A. Internal or external
B. Trigger Delay: 0 to 42 seconds in 10 nsec increments
(10) External Trigger Input:
A. Input Impedance: 50 ohms and greater than 3 Kohms
B. Max input voltage: $+7,-0.5$ volts $D C$
(11) Automatic Measurement: Positive Peak, Negative Peak, Peak toPeak, True RMS voltage
4.4 .6 Display Analyzer-Simulator
A. Functions: The display anayzer-simulator (DAS) is a multi-format
video display generator. Composite with any possible sync format,rectilinear and polar raster, multi-image interactive stroke, andmixed video (stroke over composite, or stroke over raster) are allsupported by the DAS. The DAS also supports video image acquisition(for all video formats) and sync processor/analyzer functions.B. System Time Base: The DAS uses a phase locked loop type frequency
synthesizer as its time base.

1. Frequency: 1 Hz to 40 MHz
2. Resolution: $\pm 0.05 \%$
3. Accuracy: $\pm 0.005 \%$
4. Time base is directly accessible at the Gold-Dot interface as a
digital singal (20 MHz max)
5. An external clock source may be used as the time base (20 MHz
max).
C. Composite video/raster generator (CVRG):
6. Composite video:
a. Pixel time $=1$
time base frequency
(Maximum time base frequency $=40 \mathrm{MHz}$)
b. Video memories:
(1) Horizontal parameter memory: $4 \mathrm{~K} \times 12$
(2) Vertical attribute memory: 4K x 6
(3) Pixel depth: 4 bits
c. Horizontal timing: Programmable from 2 to 8192 pixel times
with granularity equal to two pixel times
(1) The horizontal line may be arbitrarily divided into active display time and blanking time
(2) The blanking time may be arbitrarily divided into front porch, back porch, and sync times
d. Vertical timing: Programmable from 2 to 4096 horizontal
half-lines with granularity equal to one horizontal
half-line
(1) Vertical timing may be arbitrarily divided into active display time and blanking time
(2) Vertical sync time may be any time not greater than the vertical blanking time
(3) Vertical sync pulse may be located anywhere within the blanking time. Equalizing and broad pulses may be added as required and are subject to the same granularity as horizontal parameters
e. Video output:
(1) Signal amplitude: 0 to 4 volts peak-to-peak
(2) White positive or white negative
(3) Offset: -4 volts to +4 volts
(4) Output range: $-4 V$ less than or equal to (Signal Offset)
less than or equal to $+4 V$
(5) Bandwidth: 20 MHz
(6) Voltage accuracy: 20 mV or 2% whichever is greater
f. Video pattrn algorithms: The composite video shall create patterns by the operation of a set of two-dimensional
vectors [(horz-size, vert-size), (horz-repetition,
vert-repetition) and (horz-position, vert-position)], and
single valued parameters (width and z-modulation) upon one
of the following pattern primitives:
(1) $R G B / g r e y s c a l e ~(o n e ~ d i m e n s i o n a l ~ r e p e t i t i o n ~ o n l y) ~$
(2) Border (repetitions limited to 1 or 0)
(3) Bar
(4) Dot
(5) Checkerboard
Two patterns are simultaneously available in a master-slave relationship. The slave output must follow the sync format and timing as the master output.
7. Raster video portion of CVRG:
a. Three independent output channels:
(1) X - Horizontal deflection
(2) Y - Vertical deflection
(3) Z - Intensity modułation
b. Video memories:
(1) $\times-4 K \times 10$
(2) $Y-4 K \times 10$
(3) $Z-4 K \times 9$ video data/blanking
(4) $4 \mathrm{~K} \times 6$ line attribute
c. Time base frequency (maximum): 20 MHz (10 MHz polar)
d. The raster display may be generated in either rectilinear or polar coordinate reference frame.
e. Raster Outputs (Z-intensity):
(1) Signal amplitude: 0 to 3 volts peak-to-peak
(2) White positive or white negative
(3) Offset: -4 volts to +4 volts
(4) Output range: $-4 V$ less than or equal to (Signal + Offset) less than or equal to +4 V
(5) Bandwidth: 20 MHz
(6) Voltage accuracy: 20 mV or 2% whichever is greater
f. Raster Outputs (X-horizontal deflection, Y-verticaldeflection):
(1) Signal amplitude: 0 to 8 volts peak-to-peak
(2) Offset: -4 volts to +4 volts
(3) Output range: $-4 V$ less than or equal to (Signal + Offset) less than or equal to $+4 V$
(4) Bandwidth: 20 MHz (5) Voltage accuracy: 20 mV or 2% whichever is greater g. Video pattern algorithms are the same as for monochrome composite video.
D. Stroke Video

1. Three output channels:

a. X - Horizontal deflection
b. $\quad Y$ - Vertical deflection
c. \quad Z - Intensity modulation
2. Video memories:
a. $\quad \mathrm{X}: 32 \mathrm{~K} \times 12$
b. Y: 32K 12
c. Z: 32 Kx 6
d. Control: 256 32
3. Time base frequency (maximum) : 5 MHz
4. An external clock source may be used as a separate time base for
the stroke video section without affecting the system time base.
5. Stroke Outputs:
a. Signal amplitude: 0 to 8 volts peak-to-peak
b. Offset: -4 volts to +4 volts
c. Output range: $-4 V$ less than or equal to (Signal + Offset)
less than or equal to +4 V
d. Bandwidth: 20 MHz
e. Voltage accuracy: 20 mV or 2% whichever is greater
6. Stroke Pattern Algorithms:
The stroke section can generate any pattern that can be expressed
as an arbitrary series of points connected by
either blanked or unblanked lines. The stroke section can
store and output a continuous series of patterns. Eachpattern in a series may be either internally controlled,
where the individual pattern repeats for a user defined
number of repetitions, or externally controlled where the
individual pattern repeats until an external trigger is
received. This intermixing of internally controlled and
externally controlled patterns allows the simulation of
interactive display control.
E. Image acquisition:

1. Input video buffers:
a. Three Channels: 0, 1, 2
Channel 0: CVIA input or RSIA X-MOD input
Channel 1: RSIA Y-MOD input
Channel 2: Sync processor input or RSIA Z-MOD input
b. Impedance: 75 ohms (fixed)
c. Input attenuation: 1:1 or 1:0.268
d. Gain: 0 to 3.75 in 16 steps of 0.25 per step
e. Gain polarity: positive or negative
f. Offset: -4 volts to +4 volts
g. Accuracy: $\pm 3 \%$
h. Bandwidth: 20 MHz
i. Characteristics c, d, e and f are used to level
translate each input signal into the DAS internal
normalized range of -1 volt to +1 volt.
2. Sync Processor:
a. Processes and captures the sync, blanking and active
video pattern for any user specified line within a
frame. Detected vertical sync, field state and
re-constructed horizontal sync are directly accessible
at the Gold-Dot interface as digital signals.
b. Digitizing rate: 10 MHz
c. Input Line Rate: 7.5 KHz to 45 KHz
d. The sync tip and pedestal (blanking) amplitudes of a
composite video input are sampled and measured with an
accuracy of $\pm 3 \%$.
e. Separate (non-composite) horizontal and vertical syncs
may be applied to the sync processor via the digital
I/O.
3. Composite video image acquisition (CVIA)
a. Full frame acquisition: Interlaced and non-interlaced
b. Available four line window memory: $2 \mathrm{~K} x$ 16
c. Video depth: 4 bits
d. Pixels/line: 2048 max.
e. Digitizing rate: 40 MHz (max.)
f. Digitizing accuracy: $\pm 1 / 4$ LSB
4. Raster/stroke image acquisition (RSIA)
a. Captures following formats:
(1) Rectilinear raster
(2) Polar raster
(3) Stroke (X-Y-Z)
b. Normalized image written into $256 \times 256 \times 4$ array
c. 'X' and 'Y' address depth: 8 bits
d. 'Z' modulation depth: 4 bits
e. Digitizing rate: 20 MHz (max.)
f. Digitizing accuracy:
(1) 'X' and 'Y'" ± 1 LSB
(2) 'Z': $\pm 1 / 8 \mathrm{LSB}$
g. The timing and duration of an RSIA capture may be controlled by an external digital gate signal.
F. Digital I/O characteristics - All digital communication between
the DAS and the Gold Dot interface is in differential format.

4.4.7 Synchro/Resolver Indicator

(1) Signal Input:
A. Synchro operation:

1. $11.8 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$ at 47 to 440 Hz
2. $90 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$ at 47 to 440 Hz
B. Resolver operation:
3. $11.8 \mathrm{~V}(\mathrm{~L}-\mathrm{L})$ at 100 to 1000 Hz
4. 26 V (L-L) at 100 to 440 Hz
(2) Reference Input:
A. Voltage: 10 to 130 V RMS
B. Frequency: 47 Hz to 1000 Hz
C. Impedance: 100 Kohm min.
(3) Angle Range: 359.99°
(4) Resolution: 0.01°
(5) Accuracy: $\pm 0.1^{\circ}$
(6) Dynamic Rate:
A. $450^{\circ} / \mathrm{sec}$ maximum (tracking) at 400 Hz
B. $110^{\circ} / \mathrm{sec}$ maximum (tracking) at 60 Hz
4.4.8 Synchro/Resolver Simulator
(1) Angle Range: 0° to 359.98°
(2) Resolution: 0.02°
(3) Accuracy: $\pm 0.36{ }^{\circ}$ Full Load
$=0.12{ }^{\circ}$ No Load
(4) Reference Input:
A. Voltage: 26 V or 115 V (either reference voltage input may be usedfor any specified signal output below).
B. Frequency: 47-1000 Hz
C. Impedance: 13 Kohms, minimum
(5) Signal Output:
A. Voltage:
5. Resolver mode $V(L-L): 11.8 \mathrm{~V}$, 26 V
6. Synchro mode $V(L-L): 11.8 \mathrm{~V}$, 90 V
B. Frequency:
7. $360-1000 \mathrm{~Hz}$ for 11.8 V Synchro or Resolver mode, 26 V Resolvermode, and 90V Synchro mode.
8. For Synchro operation from 47 Hz to less than 360 Hz , anexternal 90V Synchro transformer is required. Referenceinput must be 115 VRMS for 6.8 V resolver output to external
transformer.
C. Output Impedance:
9. 100 ohms minimum at $11.8 \mathrm{~V} \mathrm{~L}-\mathrm{L}$
10. 500 ohms minimum at 26 V L-L
11. 4000 ohms minimum at 90 V L-L
D. Response Time: 25 millisecond max.
E. Dynamic Rate: $140^{\circ} /$ second max.
4.5 RF SUBSYSTEM (CEE -101, -103, -107, -109)
4.5 .1 RF Interface Unit (RFIU)The RFIU provides the RF interface between the entire system and the
UUT, encompassing signal switching, amplification, attenuation, and amplitude
demodulation. There are eight RF outputs (for CEE -101, -103), nine RF outputs
(for CEE -107, -109) and four RF inputs. The RF outputs provide two
simultaneous RF signals. All RF connectors are type N precision stainless
steel. In addition, there are two rear panel mounted BNC connectors, which
connect to one RF output and one RF input. These signals are used as instrument
inputs in the Signal Distribution System. The RFIU facilitates the following RF
measurements:
(1) Power: Using the power meter and spectrum analyzer.
(2) Frequency: Using the spectrum analyzer.
(3) Pulse/AM Detection: Using the RFIU detectors or the spectrum analyzer
detected video output.

The performance of the above instrumentation are normalized to the

RFIU interface. The detailed RFIU specifications are as follows:
(4) Four outputs from RFG 1. (CEE -103); Five outpuis from

RFG1 (CEE -107)
(5) Four outputs from RFG 2.
(6) Four outputs from RFG3 (CEE -101); Five outputs from RFG3 (CEE -107)
(7) Four inputs to the following instrumentation:
A. Power Meter
B. Spectrum Analyzer
C. RF Detectors
(8) Input RF attenuation is provided for all four inputs as follows:
A. Range: 0 to 100 dB
B. Resolution: 10 dB
C. Frequency: $D C$ to 22 GHz
D. Input Power: 1 watt (0 to 20 dB)
10 watts (30 to 100 dB)
(9) Input RF Pulse/AM Detection is provided. Video amplification is
available for low level detected signals. Sensitivity at the
interface is as follows:
A. 10 MHz to $0.5 \mathrm{GHz}:-10 \mathrm{dBm}$
B. Greater than 0.5 GHz to $22 \mathrm{GHz}:-25 \mathrm{dBm}$
(10) Output RF amplification is provided for both RFG1, RFG2 and RFG3
as follows:
A. RFG1:

1. 0.3 to 1.3 GHz
2. 100 KHz to 300 MHz
B. RFG2:
3. 0.3 to 1.3 GHz
4. 100 KHz to 300 MHz

C. RFG3:

1. 0.3 to 2 GHz2. 2 to 8 GHz
2. 100 KHz to 300 MHz
4.5.2 RF Generator 1 (RFG1) (CEE -103, -109)
RFG1 is available at any one of four outputs (for CEE -103), five
outputs (for CEE -109) in the RFIU. The output signal may also be wrapped
around to any of the response instrumentation, through the RFIU, for self-test.
An external modulating pulse, AM, FM, or phase modulation signal may be routed
to RFGl from other system resources. RFGl provides the following capabilities
at the interface:
3. Frequency:
A. Range: 10 KHz to 1.3 GHz
B. Resolution: 1 Hz
C. Harmonics:
10 KHz to 650 MHz :
Less than or equal to -30 dBc (w/o amplifiers)
```
    Greater than 650 MHz;
    Less than or equal to -25 dBc (w/o amplifiers)
    D. Spurious: Less than or equal to -50 dBc (w/o amplifiers)
    non-harmonic)
    E. Accuracy: \pm 15 Hz (based on Rubidium Frequency)
    Reference time base accuracy of }\pm2\times1\mp@subsup{0}{}{-9}\mathrm{ .
```

2. Power:
A. Range:
+8 to -120 dBm (10 KHz to 100 KHz , w/o amp.)
+16 to $-120 \mathrm{dBm}(100 \mathrm{KHz}$ to 132.1875 MHz , w/o amp.)
+17 to -120 dBm (132.1875 MHz to 528.75 MHz , w/o amp.)
+14 to -120 dBm (528.75 MHz to 1.0575 GHz , w/o amp.)
+13 to -120 dBm (1.0575 GHz to $1.3 \mathrm{GHz}, \mathrm{w} / \mathrm{o} \mathrm{amp}$.)
+38 to -50 dBm (150 MHz , w/amp.)
+32 to -50 dBm (100 KHz to 150 KHz , w/amp.)
+35 to -50 dBm (150 KHz to 300 MHz , w/amp.)
+20 to -50 dBm (300 MHz to $1.3 \mathrm{GHz}, \mathrm{w} / \mathrm{amp}$.
```
NOTE (CEE -109 on7y) Power Range specifications (w/amp.) do not apply to output
                    at RFIU J27.
    B. Resolution: 0.1 dB
    C. Accuracy: =1.5 dB (using supplied RF utilities), except:
土2.2 dB from +8 to -65 dBm (10 KHz to 100 KHz, w/o amp.)
\pm3.2 dB from -65 to -120 dBm (10 KHz to 100 KHz, w/o amp.)
\pm2.2 dB from +16 to -65 dBm(100 KHz to 8 MHz, w/o amp.)
\pm3.2 dB from -65 to -120 dBm (100 KHz to 8 MHz, w/o amp.)
\pm2.2 dB from -65 to -90 dBm (8 MHz to 1.3 GHz, w/o amp.)
\pm2.0 dB from -90 to -120 dBm (8 MHz to 1.3 GHz, w/o amp.)
```

For CEE -109 only, the following additional accuracy specification applies to output at RFIU J27 only:
$+9.0 \mathrm{~dB} /-10.0 \mathrm{~dB}(10 \mathrm{KHz}$ to 20 KHz$)$
$+4.0 \mathrm{~dB} /-5.0 \mathrm{~dB}$ (greater than 20 KHz to 100 KHz)
$+1.0 \mathrm{~dB} /-2.0 \mathrm{~dB}$ (greater than 100 KHz to 1 GHz)
$+1.0 \mathrm{~dB} /-3.0 \mathrm{~dB}$ (greater than 1 GHz to 1.3 GHz)
3. Pulse Modulation:
A. ON/OFF ratio: Greater than or equal to $40 \mathrm{~dB}(10 \mathrm{KHz}$ to
1.0575 GHz)
Greater than or equal to 55 dB
(greater than 1.0575 GHz)
B. Rise/fall times: Less than or equal to 400 nanosec
C. Min. pulse width: 2 microsec
D. Max repetition rate: 100 KHz
4. Amplitude Modulation:
A. Rate: 20 Hz to 100 KHz (external AC coupling or internal)
DC to 100 KHz (external DC coupling)
B. Modulation depth:
0 to 99.9% (output level less than +8 dBm w/o amp.)
5. Frequency Modulation:

Programmed Frequency	$\begin{aligned} & \text { Max. Rate * } \\ & \text { (fMOD) } \end{aligned}$		Maximum Deviation
	INT	EXT	INT or EXT AC Coupled (smaller of the following)
10 KHz to 1 MHz	$\begin{aligned} & 0.1 \times \\ & \text { Prog. } \\ & \text { Freq. } \end{aligned}$	$\begin{aligned} & 0.1 x \\ & \text { Prog. } \end{aligned}$	$0.5 \times$ Prog. Freq. or $\text { fMOD } \times 1080$
1 MHz to 2 MHz	100 KHz		
2 MHz to 3 MHz	100 KHz	200 KHz	
3 MHz to 132.1875 MHz	100 KHz	200 KHz	1.5 MHz or fMOD $\times 1080$
$\geq 132.1875 \mathrm{MHz}$ to 264.375 MHz	100 KHz	200 KHz	375 KHz or fMOD $\times 270$
$>264.375 \mathrm{MHz}$ to 528.75 MHz	100 KHz	200 KHz	750 KHz or fMOD $\times 540$
>528.75 MHz to 1057.5 MHz	100 KHz	200 KHz	1.5 MHz or $\mathrm{FMOD} \times 1080$
$>1057.5 \mathrm{MHz}$	100 KHz	200 KHz	3.0 MHz or fMOD $\times 2160$

* NOTE: Min. rate is 20 Hz .

6. Phase Modulation:
A. Rate: 20 Hz to 15 KHz (external AC coupled or internal)
B. Deviation: 0 to 300 degrees
4.5.3 RF Generator 2 (RFG2)

RFG2 is available at any one of four (4) outputs in the RFIU. The
output signal may also be wrapped around to any of the response instrumentation, through the RFIU, for self-test. An external modulating pulse, AM, FM, or phase modulation signal may be routed to RFG2 from other system resources. RFG2
provides the following capabilities at the interface:
(1) Frequency:
A. Range: 10 KHz to 1.3 GHz
B. Resolution: 1 Hz
C. Harmonics:

$$
10 \mathrm{kHz} \text { to } 650 \mathrm{MHz}:
$$

Less than or equal to -30 dBc (w/o amplifiers)

Greater than 650 MHz :

Less than or equal to -25 dBc (w/o amplifiers)
D. Spurious: Less than or equal to -50 dBc (w/o amplifiers) (non-harmonic)
E. Accuracy: $\pm 15 \mathrm{~Hz}$ (based on Rubidium Frequency Reference time base accuracy of $\pm 2 \times 10^{-9}$).
(2) Power:
A. Range:

```
    +8 to -120 dBm (10 KHz to 100 KHz, w/o amp.)
    +16 to -120 dBm(100 KHz to 132.1875 MHz, w/o amp.)
    +17 to -120 dBm (132.1875 MHz to 528.75 MHz, w/o amp.)
```

 +14 to -120 dBm (528.75 MHz to 1.0575 GHz , w/o amp.)
 +13 to -120 dBm (1.0575GHz to 1.3 GHz , w/o amp.)
 +38 to -50 dBm (150 MHz , w/amp.)
 +32 to -50 dBm (100 KHz to 150 KHz , w/amp.)
 +35 to -50 dBm (150 KHz to 300 MHz , w/amp.)
 +20 to -50 dBm (300 MHz to \(1.3 \mathrm{GHz}, \mathrm{w} / \mathrm{amp}\).)
 B. Resolution: 0.1 dB
 C. Accuracy: \(\pm 1.5 \mathrm{~dB}\) (using supplied RF utilities), except:
 \(\pm 2.2 \mathrm{~dB}\) from +8 to -65 dBm (10 KHz to 100 KHz , w/o amp.)
 $=3.2 \mathrm{~dB}$ from -65 to- $120 \mathrm{dBm}(10 \mathrm{KHz}$ to 100 KHz , w/o amp.)
$\pm 2.2 \mathrm{~dB}$ from +16 to -65 dBm (100 KHz to 8 MHz , w/o amp.)
$\pm 3.2 \mathrm{~dB}$ from -65 to -20 dBm (100 KHz to 8 MHz , w/o amp.)
$\pm 2.2 \mathrm{~dB}$ from -65 to -90 dBm (8 MHz to 1.3 GHz , w/o amp.)
$\pm 2.0 \mathrm{~dB}$ from -90 to -120 dBm (8 MHz to 1.3 GHz , w/o amp.)
(3) Pulse Modulation:
A. ON/OFF Ratio: Greater than or equal to $40 \mathrm{~dB}(10 \mathrm{KHz}$ to
1.0575 GHz)
Greater than or equal to 55 dB
(greater than 1.0575 GHz)
B. Rise/Fall Times: Less than or equal to 400 nanoseconds
C. Minimum pulse width: 2 microseconds
D. Maximum repetition rate: 100 KHz
(4) Amplitude Modulation:
A. Rate: 20 Hz to 100 KHz (External AC Coupling or internal)
DC to 100 KHz (External DC Coupling)
B. Modulation Depth: 0 to 99.9% (output level less than +8 dBm
w/o amp.)
(5) Frequency Modulation:

Programmed Frequency	$\begin{aligned} & \text { Max. Rate * } \\ & \text { (fMOD) } \end{aligned}$		Maximum Deviation
	INT	EXT	INT or EXT AC Coupled (smaller of the following)
10 KHz to 1 MHz	$\begin{aligned} & 0.1 \times \\ & \text { Prog. } \\ & \text { Freq. } \end{aligned}$	$\begin{aligned} & 0.1 x \\ & \text { Prog. } \end{aligned}$	```0.5 x Prog. Freq. or fMOD x 1080```
1 MHz to 2 MHz	100 KHz		
2 MHz to 3 MHz	100 KHz	200 KHz	
3 MHz to 132.1875 MHz	100 KHz	200 KHz	1.5 MHz or fMOD $\times 1080$
$>132.1875 \mathrm{MHz}$ to 264.375 MHz	100 KHz	200 KHz	375 KHz or $\mathrm{FMOD} \times 270$
$>264.375 \mathrm{MHz}$ to 528.75 MHz	100 KHz	200 KHz	750 KHz or $\mathrm{FMOD} \times 540$
$>528.75 \mathrm{MHz}$ to 1057.5 MHz	100 KHz	200 KHz	1.5 MHz or fMOD $\times 1080$
$>1057.5 \mathrm{MHz}$	100 KHz	200 KHz	3.0 MHz or fMOD $\times 2160$

* NOTE: Min. rate is 20 Hz .
(6) Phase Modulation:
A. Rate: 20 Hz to 15 KHz (external AC Coupled or internal)
B. Deviation: 0 to 300 degrees.
4.5.4 RF Generator 3 (RFG3) (CEE -101, -107) - RFG3 is available at any one
of four outputs (for CEE -101), five outputs (for CEE -107) in the

RFIU. The output signal may also be wrapped around to any of the response instrumentation, through the RFIU, for self-test. An
external modulating pulse or AM signal may be routed to RFG3 from
other system resources. RFG3 provides the following capabilities:
(1) Frequency:
A. Range: 50 MHz to 22 GHz
B. Resolution: 1 KHz
C. Harmonics: -55 dBc (w/o amplifiers)
D. Spurious: -55 dBC (w/o amplifiers)
E. Accuracy: $\pm 55 \mathrm{~Hz}$ (based on rubidium frequency reference time base accuracy of $\pm 2 \times 10^{-9}$.
(2) Power:
A. Range:
-3 to -100 dBm (50 MHz to 10 GHz , w/o amp.)
-7 to -100 dBm (10 GHz to 22 GHz , w/o amp.)
+35 to -50 dBm (50 MHz to 300 MHz , w/amp.)
+20 to -50 dBm (300 MHz to 2 GHz , w/amp.)
+25 to -50 dBm (2 GHz to 8 GHz , w/amp.)

NOTE (CEE -107 only): Power Range specifications (w/amp.) do not apply to output at RFIU J27.
B. Resolution: 0.1 dB
C. Accuracy: $\pm 1.5 \mathrm{~dB}$ (using supplied RF utilities), except:
$\pm 2.2 \mathrm{~dB}$ from -65 to -90 dBm (50 MHz to 6.2 GHz , w/o amp.)
$\pm 2.5 \mathrm{~dB}$ from -90 to -100 dBm (50 MHz to 6.2 GHz , w/o amp.)
$\pm 2.2 \mathrm{~dB}$ from -65 to -80 dBm (6.2 GHz to 10 GHz , w/o amp.)
$\pm 2.5 \mathrm{~dB}$ from -80 to -100 dBm (6.2 GHz to 10 GHz , w/o amp.)
$\pm 3.5 \mathrm{~dB}$ from -80 to -100 dBm (10 GHz to 12.7 GHz , w/o amp.)
$\pm 2.2 \mathrm{~dB}$ from -65 to -75 dBm (12.7 GHz to 19.9 GHz , w/o amp.)

```
        =3.5 dB from -75 to -100 dBm (12.7 GHz to 19.9 GHz,w/o amp.)
        土2.2 dB from -65 to -70 dBm (19.9 GHz to 22 GHz, w/o amp.)
        \pm3.5 dB from -70 to -100 dBm (19.9 GHz to 22 GHz, w/o amp.)
    For CEE -107 only, the following additional
        accuracy specification applies to output at RFIU J27 only:
        +1.0 dB / -2.0 dB (50 MHz to 1 GHz)
        +1.0 dB / -3.0 dB (greater than 1 GHz to 4 GHz)
        +1.0 dB / -4.0 dB (greater than 4 GHz to 12 GHz)
        +1.0 dB / -5.0 dB (greater than 12 GHz to 18 GHz)
        +2.0 dB / -7.0 dB (greater than 18 GHz to 22 GHz)
    (3) Pulse Modulation:
        A. ON/OFF Ratio: Greater than or equal to 60 dB to 18 GHz
        Greater than or equal to 30 dB to 22 GHz
    B. Rise/Fall Times: Less than or equal to 25 nanosec
    (4) Amplitude Modulation:
        A. SCAN Mode (DC Coupled):
```

1. Dynamic Range:
RF Freq. Greater than
Modulating 50 MHz 200 MHz 18 GHz
Rate to less than 200 MHz to 18 GHz to 22 GHz
DC to 5 KHz 30 dB
40 dB 35 dB
5 KHz to 20 KHz 21 dB 28 dB 25 dB
B. AM Mode (AC Coupled):
2. Modulation Depth: 0 to 90%
3. Frequency Range: 10 Hz to 20 KHz
4.5.5 Spectrum Analyzer
The spectrum analyzer provides frequency domain analysis. UUT signals
are routed to the spectrum analyzer from any one of the four inputs in the RFIU.
System RF resource signals may be wrapped around within the RFIU for measurement
and self-test. The spectrum analyzer provides the following capabilities at the
interface:
(1) Frequency Range - 100 Hz to 22 GHz in two bands.
A. Band 1: 100 Hz to 2.7 GHz
B. Band 2: 2.7 GHz to 22 GHz
(2) Frequency Span -
A. Band 1: 0 Hz or 100 Hz to 2.6999999 GHz .
B. Band 2: 0 Hz or 100 Hz to 19.3 GHz .
(3) Resolution BW: 10 Hz to 3 MHz (1, 3, 10 seq.)
(4) Video BW: 3 Hz to $3 \mathrm{MHz}(1,3,10 \mathrm{seq}$.
(5) Input Power Sensitivity:
A. $-70 \mathrm{dBm}: 100 \mathrm{~Hz}$ to 100 KHz .
B. -80 dBm : greater than 100 KHz to 300 KHz .
C. -90 dBm : greater than 300 KHz to 1.0 MHz .
D. $-100 \mathrm{dBm}:$ greater than 1.0 MHz to 6.2 GHz .
E. -90 dBm : greater than 6.2 GHz to 12.7 GHz .
F. $-85 \mathrm{dBm}:$ greater than 12.7 GHz to 19.9 GHz .
G. -80 dBm : greater than 19.9 GHz to 22.0 GHz .
(6) Input Power Accuracy using supplied RF utilities:

A. 1.05 dB for inputs up to 8 MHz

B. 1.5 dB for inputs greater than 8 MHz
(7) Input Power Relative Accuracy:
A. $\pm 0.5 \mathrm{~dB}(0$ to 50 dB$)$
B. $=1.0 \mathrm{~dB}(50$ to 80 dB$)$
(8) Input Power Resolution: 0.1 dB
(9) Frequency accuracy - $\pm 55 \mathrm{~Hz}$ (based on a rubidium frequency referencetime base accuracy of $=2 \times 10^{-9}$, and using 100 Hz span).
4.5.6 RF Power Meter
The Power Meter provides the following capabilities at the interface:
(1) Channel A (Internal RFIU power sensor)
a. Frequency: 8 MHz to 22 GHz
b. Power Range: -55 dBm to +40 dBm (using RFIU input attenuator)
c. Accuracy: $\pm 1.5 \mathrm{~dB}$ (using supplied RF utilities)
d. Relative Accuracy: $\pm 0.2 \mathrm{~dB}$ (0 to 40 dB)
(2) Channel B (External power sensor) -
a. Frequency - 8 MHz to 22 GHz
b. Power range - -20 to -70 dBm
c. Accuracy

FREQUENCY RANGE

POWER LEVEL	$8 \mathrm{MHz}-10 \mathrm{MHz}$	$10 \mathrm{MHz}-10 \mathrm{GHz}$	$10 \mathrm{GHz}-18 \mathrm{GHz}$	$18 \mathrm{GHz}-22$
-20 to -60 dBm	$\pm 0.19 \mathrm{~dB}$	$\pm 0.16 \mathrm{~dB}$	$\pm 0.21 \mathrm{~dB}$	$\pm 0.26 \mathrm{~dB}$
-60 to -70 dBm	$\pm 0.40 \mathrm{~dB}$	$\pm 0.39 \mathrm{~dB}$	$\pm 0.42 \mathrm{~dB}$	$\pm 0.44 \mathrm{~dB}$
NOTE: Above accuracy excludes effect of source VSWR.				
4.5.7 Rubidium Frequency Reference (all CEES)				
The Rubidium Frequency Reference is an Efratom FRT-GR-LA and provides				
eight frequency outputs, as specified below. Four of these outputs are utilized				
as an external frequency reference input to RFG1, RFG2, RFG3 and the spectrum				
analyzer.				
(1) Frequency: $10 \mathrm{MHz} \pm 0.02 \mathrm{~Hz}$ (assumes 1 year calibration interval)				
(2) Stability:				
A. less than 1×10^{-11} parts/day				
B. 1	than 4×10^{-1}	parts/month		

(3) Output Voltage:
A. Outputs 1 and 2: 0.5 to 0.7 V RMS into 50 ohms
B. Outputs 3 and 4: IV RMS into 1 Kohm
C. Outputs 5 through 8: IV RMS into 50 ohms
4.5.8 RF Millivoltmeter (CEE -103, -109 only)
The RF millivoltmeter has the following characteristics:
(1) Input Frequency Range: 10 KHz to 1.2 GHz with supplied probe
(2) Voltage Measurement Range: 200 uv to 3 V
A. 8 display ranges in 1-3-10 sequence
B. Four digit display in mv
C. Usable indications extended down to 50 uv(3) Voltage Measurement Accuracy: The maximum uncertainty is the sum of
the basic uncertainty, frequency effect and temperature effect:
A. Basic uncertainty:
Voltage Input Level Error
3 mv - 3000 mv 1% reading ± 1 count
$1 \mathrm{mv}-3 \mathrm{mv}$ 2% reading ± 2 counts
$0.2 \mathrm{mv}-1 \mathrm{mv}$ 3% reading ± 3 counts
B. Frequency effect (for properly terminated 50 ohm measurements):
Frequency Error
1 MHz (calibration freq.) 0
$10 \mathrm{KHz}-100 \mathrm{MHz}$ 1% reading
100 MHz - 1 GHz 3\% reading
$1 \mathrm{GHz}-1.2 \mathrm{GHz}$ 7% reading
C. Temperature$21^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$0
$18^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ 1\% reading
$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ 6\% reading
(4) Maximum AC input: 10 V
(5) Maximum DC input: 400 V
4.5.9 List of RF Instruments
InstrumentQTY.MFGPart Number
Spectrum Analyzer Display 1
HP 70206A
Spectrum Analyzer 1
HP 70001A
C. Programming Resolution: 12 bits
D. Voltage Accuracy: 0.5% of programmed value $\pm 2.44 \mathrm{mV}$
(9) Bandwidth:
A. Universal Pins: $40 \mathrm{MHz}(3 \mathrm{~dB})$
B. Extended Performance Pins: 100 MHz (3 dB)
(10) Load Sets: There are six load sets, each consisting of one pull-up
(to +5 V) and one pull-down (to system ground) load. Each load is
individually programmable to the following values and accuracy:
A. $50+15 /-5$ ohms
B. $75+17.5 /-7.5$ ohms
C. $100+20 /-10$ ohms
D. $500+60 /-50$ ohms
E. $1000+110 /-100$ ohms
5.3 AUXILIARY INTERFACE PANEL
The Auxiliary Interface Panel, shown in figure 5.2, provides eleven
connectors for additional interfacing capability for UUT testing as follows:

IFTE CEE AUXILIARY INTERFACE PANEL
FIGURE 5.2A

FIGURE 5.2B
CEE AUXILIARY INTERFACE PANEL
(CEE -107, -109, -111)
(1) J1 and J 2 provide the interface for the two Wizard probes used for the digital UUT testing.
(2) J 3 is an IEEE-488 standard bus connector which enables an operator to interface an external instrument to the station.
(3) J4 and J5 provide BNC connectors for connecting external analog probes to universal I/O pins. J4 signal lead and return is connected to U142 and $U 143$ respectively. J5 signal lead and return is connected to U144 and U144 respectively.
(4) J 6 and $\mathrm{J7}$ (Figures 5.3 and 5.4) provide the high current (20.5 amps maximum) interface for the eight programmable DC Power supply outputs.
(5) 38 (Figure 5.5) provides the interface for the $28 \mathrm{VDC}, 22.5$ amps fixed power supply output.
(6) 99 (Figure 5.6) provides the interface for the $A C$ power supply output, and for the four 200 VDC programmable DC power supply outputs (CEE -103, -109).
(7) J10 and J11 (Figures 5.7 and 5.8) provide the interface for the eight programmable high power loads.

FIGURE 5.3A

AUXILIARY INTERFACE PANEL

 DC POWER CONNECTOR \#1 PIN ASSIGNMENTS(CEE-101, -103, -105)

J 6

MS3100A28-15S

PIN	FUNCTION			PIN	FUNCTION		
A	P.S. \# 1	+	SENSE	V	P.S. \# 3	+	V
B	P.S. \# 1	+	V	W	P.S. \# 3	+	V
C	P.S. \# 1	+	V	X	P.S. \# 3	-	V
D	P.S. \# 1	+	V	Y	P.S. \# 3	-	V
E	P.S. \# 1	-	V	Z	P.S. \# 3	-	V
F	P.S. \# 1	-	V	a	P.S. \# 3	-	SENSE
G	P.S. \# 1	-	V	b	P.S. \# 4	+	SENSE
H	P.S. \# 1	-	SENSE	c	P.S. \# 4	+	V
J	P.S. \# 2	+	SENSE	d	P.S. \# 4	+	V
K	P.S. \# 2	+	V	e	P.S. \# 4	+	V
L	P.S. \# 2	+	v	f	P.S. \# 4	-	v
M	P.S. \# 2	+	V	g	P.S. \# 4	-	v
N	P.S. \# 2	-	v	n	P.S. \# 4	-	V
P	P.S. \# 2	-	v	j	P.S. \# 4	-	SENSE
R	P.S. \# 2	-	\checkmark	k	SPARE		
S	P.S. \# 2	-	SENSE	1	SPARE		
T	P.S. \# 3	+	SENSE	m	SPARE		
U	P.S. \# 3	+	\checkmark				

AUXILIARY INTERFACE PANEL

DC POWER CONNECTOR \#1 PIN ASSIGNMENTS

(CEE-107, -109, -111)

D38999/40 WJ29SN

PIN	FUNCTION			PIN	FUNCTION		
A	P.S. \# 1	+	SENSE	V	P.S. \# 3	+	V
B	P.S. \# 1	+	V	W	P.S. \# 3	-	V
C	P.S. \# 1	+	V	X	P.S. \# 3	-	V
D	P.S. \# 1	$+$	V	Y	P.S. \# 3	-	SENSE
E	P.S. \# 1	-	V	Z	P.S. \# 4	+	SENSE
F	P.S. \# 1	-	V	a	P.S. \# 4	+	V
G	P.S. \# 1	-	V	b	P.S. \# 4	+	V
H	P.S. \# 1	-	SENSE	c	P.S. \# 4	-	V
J	P.S. \# 2	$+$	SENSE	d	P.S. \# 4	-	V
K	P.S. \# 2	+	V	e	P.S. \# 4	-	SENSE
L	P.S. \# 2	+	V	f	SPARE		
M	P.S. \# 2	+	V				
N	P.S. \# 2	-	V				
P	P.S. \# 2	-	V				
R	P.S. \# 2	-	V				
S	P.S. \# 2	-	SENSE				
T	P.S. \# 3	+	SENSE				
\cup	P.S. \# 3	$+$	V				

FIGURE 5.4A

AUXILIARY INTERFACE PANEL
DC POWER CONNECTOR \#2 PIN ASSIGNMENTS
(CEE-101, -103, -105)

J 7

MS3100A28-15SW

PIN	FUNCTION			PIN	FUNCTION		
A	P.S. \# 5	+	SENSE	V	P.S. \# 7	+	V
B	P.S. \#5	$+$	\checkmark	W	P.S. \# 7	+	V
C	P.S. \# 5	+	V	X	P.S. \# 7	-	V
D	P.S. \# 5	+	V	Y	P.S. \# 7	-	V
E	P.S. \# 5	-	V	Z	P.S. \# 7	-	V
F	P.S. \# 5	-	V	a	P.S. \# 7	-	SENSE
G	P.S. \# 5	-	V	b	P.S. \# 8	$+$	SENSE
H	P.S. \# 5	-	SENSE	C	P.S. \#8	+	V
J	P.S. \# 6	$+$	SENSE	d	P.S. \#8	+	V
K	P.S. \# 6	+	V	e	P.S. \# 8	+	V
L	P.S. \# 6	+	V	\dagger	P.S. \# 8	-	V
M	P.S. \# 6	+	V	g	P.S. \# 8	-	V
N	P.S. \# 6	-	V	h	P.S. \# 8	-	V
P	P.S. \# 6	-	V	I	P.S. \# 8	-	SENSE
R	P.S. \# 6	-	V	k	SPARE		
S	P.S. \# 6	-	SENSE	1	SPARE		
T	P.S. \# 7	+	SENSE	m	SPARE		
U	P.S. \# 7	+	\checkmark				

FIGURE 5.4B

AUXILIARY INTERFACE PANEL DC POWER CONNECTOR \#2 PIN ASSIGNMENTS
(CEE-107, -109, -111)

D38999/40 WJ29SA

PIN	FUNCTION			PIN	FUNCTION
A	P.S. \#5	+	SENSE	V	SPARE
B	P.S. \#5	+	V	W	SPARE
C	P.S. \#5	-	V	X	SPARE
D	P.S. \#5	-	SENSE	Y	SPARE
E	P.S. \# 6	$+$	SENSE	Z	SPARE
F	P.S. \# 6	+	V	a	SPARE
G	P.S. \# 6	-	V	b	SPARE
H	P.S. \# 6	-	SENSE	c	SPARE
J	P.S. \# 7	+	SENSE	d	SPARE
K	P.S. \# 7	$+$	\checkmark	e	SPARE
L	P.S. \# 7	-	\checkmark	f	SPARE
M	P.S. \# 7	-	SENSE		
N	P.S. \#8	$+$	SENSE		
P	P.S. \#8	$+$	V		
R	P.S. \#8	-	V		
S	P.S. \#8	-	SENSE		
T	SPARE				
U	SPARE				

FIGURE 5.5A

AUXILIARY INTERFACE PANEL $28 V$ DC CONNECTOR PIN ASSIGNMENTS (CEE-101, -103, -105)

J 8

MS3100A24-27S

PIN	FUNCTION
A	$+28 V D C$
B	$+28 V D C$
C	$-28 V D C$
D	$-28 V D C$
E	SPARE
F	SPARE
G	SPARE

AUXILIARY INTERFACE PANEL

(CEE-107, -109, -111)

J 8

D38999/40WE8SN

PIN	FUNCTION
A	$+28 V$ DC
B	+28 VDC
C	$-28 V D C$
D	$-28 V$ DC
E	SPARE
F	SPARE
G	SPARE
H	SPARE

6.1 .7 ATSE Data Base and Data Base Manager
The ATSE Data Base Management System (DBMS) is a software interface
between the physical ATSE data storage area and the user, where the term "user"
refers to either the end-user sitting at a terminal or an ATSE tool utilizing
embedded DBMS software. It allows these functions to be performed on the database:

* Insertion* Deletion* Modification* Retrieval* Update
6.1 .8 ATSE/CEE User Environment LinkThe CEE link provides an interactive means of transferring files from
the ATSE software development station to the CEE ATE station. The CEE link is
capable of copying files as well as entire directory subtrees between systems.
Test Program data is transfered from the ATSE workstation to the CEE via theIEEE802.3 Ethernet Protocol.

6.1.9 Tool Interface

```
            The ATSE Tool Interface specification is the basis for integrating new
tools into the system. The Tool Interface describes:
    a. accessibility to system services
    b. interface to the ATSE DBMS
7.0 Testing and Troubleshooting
7.1 Maintenance
7.1.1 General
```

 This section describes the recommended maintenance necessary to
 support the CEE Test Station. The detailed maintenance for all equipment is
covered within their respective maintenance manuals.
Preventative maintenance is performed at scheduled intervals. Its
purpose is to prevent equipment deterioration and extend the useful operating
life of the test station.

Part replacement procedures are performed when required and their purpose is to restore normal operation to an assembly after a fault has been
detected and isolated to a replaceable component.
7.1 .2 Preventative Maintenance
SYSTEM AIR FILTERS
Throughly clean the system air intake filters located at the lower
front of each rack on a monthly basis. Proceed as follows:
a. Remove blower grill.
b. Remove air filter element.
c. Wash both items thoroughly in warm soapy water and rinse well.
d. Re-install when dry.
7.1 .3 Dust
If required, remove dust and other light debris from the test station
using a vacuum cleaner. Loosen encrusted dust with a soft bristled brush and
remove with vacuum cleaner.
7.1.4 Cables
With system disconnected from facility power sources, check system
interconnection cables, connectors and hoods for cracks, burns, dirt or wear.
Make necessary repairs where defects are found.

Care should be taken not to extend the Spectrum Analyzer, RF Signal

Generators or RFIU without first removing both ends of the semi-rigid coaxial
transmission line(s) that attach at the front of the instrument. Flexible coaxial cables are provided for operation of any instrument in its extended position.
7.1.5 Blowers

With the system in operation, check all blowers for proper operation.

Ensure that the intake and exhaust areas are unobstructed and that no object
interferes with the rotation of the blowers.
7.1.6 Frequency of System Self-Test

It is recommended that the system Self-Test should be run on a weekly
basis in the fault detection mode and daily in the confidence mode.
7.1.7 Frequency of System Alignment

It is recommended that the system Self-Alignment test be performed on
a monthly basis or on an individual basis whenever an assembly has been replaced
or a repair action taken.

7.2.1 General

This section describes the procedures to load the System Software and to execute the Self Test and Self Alignment programs for the CEE station

7.2.2 Loading the System Software

Select System Software disc in accordance with IFTE Software

Configuration Index, drawing A31U17380. Proceed as follows:
(a) Install the System Software Disc Cartridge into the Disc Drive

Assembly and close the door.
(b) On the Disc Drive Assembly, place the START/STOP switch to the

START position. The LOAD light extinguishes.
(c) Depress BREAK key on the terminal. After approximately 90
seconds, the READY light illuminates on the Disc Drive Assembly.
(d) Boot up the operating system by entering the monitor command: bsd
$(0,3,2)$
NOTE: All entries are followed by depressing the RETURN key.
(e) When the prompt, cee (n) login:, is displayed on the terminal, log in by entering: root
N.TE: The (n) in cee (n), indicates a number, or space for a number.
(f) The terminal displays:
Password:
(g) Enter:
grumman
(h) When the prompt, "cee(n)\#" a number, on the terminal, enter:
installcee
NOTE: The (n) in "cee(n)\#", indicates a number, or space for a number.
The following message is displayed on terminal:

(i) Select "Install Cee System Software" by touching appropriate bar on touchscreen. The following message is displayed on terminal:

ENTER STATION SERIAL NUMBER
(j) Enter the station serial number on the terminal. The following message is displayed on terminal: ENTER ETHERNET ADDRESS FOR THE DIGITAL VIC (DWG)
(k) Enter the enthernet address for the digital VIC in the following format:

$$
x: x: x x: x: x x: x x
$$

(where $x: x: x x: x: x x: x x$ is the unique ethernet address for the digital VIC cpu board as labelled on the front of the board).

The following message is displayed on the terminal:

ENTER ETHERNET ADDRESS FOR THE ANALOG VIC (SDS)
(1) Enter the ethernet address for the analog VIC in the following
format:
$x: x: x x: x: x x: x x$
(where $x: x: x x: x: x x: x x$ is the unique ethernet address for the Analog VIC cpu board as labelled on the front of the board).

```
The following message is displayed on the terminal:
                    OK TO WRITE OVER FIXED PLATTERS (y OR n)?
    (m) Type in: y
            The following message is displayed on terminal:
            **************************************************
                * *
            * INSTALLING CEE SYSTEM SOFTWARE TO FIXED DISK *
                            * *


\subsection*{7.2.3 Self Test Operation}

This paragraph contains instructions needed to run the self-test
program for individual components of the CEE. Self-Test is run on the instrument the maintainer has just replaced. The self-test program is stored on the Self Test and Alignment Disk P/N TPDA31U12660S2-(*). NOTE: (*) refers to latest version as specified on IFTE Software Configuration Index, drawing A3IU17380. To run individual self-test for the CEE install Self-Test and Alignment Disk and, perform these steps:
a. After system power-up and operator 10 g in, the first menu displayed at the terminal is the CEE TPS DEVELOPMENT TOOL MENU. To select self-test, enter st (RETURN).
b. After Self-Test is selected, the IFTE SELF-TEST MAIN MENU is displayed. If the preset run mode or printer option conditions are set correctly, touch the INDIVIDUAL TEST SELECTION MENU bar, and proceed to the SELF-TEST INDIVIDUAL MODE SYSTEM MENU, at step d. If the maintainer needs to change the preset print or run modes, touch the CHANGE PRESET RUN/PRT OPTIONS bar.
c. If the CHANGE PRESET RUN/PRT OPTIONS menu selection is made at the IfTE SELF-TEST MAIN MENU, the PRESET OPTIONS SELECTION MENU is displayed.

To change the self-test run mode option, touch the RUN MODE \(=\) \(\qquad\) bar the required number of times until the desired test mode appears. To change the printer option, touch the PRINT OPTION \(=\) \(\qquad\) bar the required number of times until the desired printer option appears. When the run mode and printer option are set, touch PREV and the new run mode and printer option become the preset conditions. To return to the CEE TPS DEVELOPMENT TOOL MENU without changing the preset conditions, touch EXIT.
d. Touching the INDIVIDUAL TEST SELECTION MENU bar at the IFTE SELF-TEST

MAIN MENU will result in the station readiness test being executed.

When it is successfully completed, the CRT will display the SELF-TEST

INDIVIDUAL MODE SYSTEM MENU. This menu allows selection of an
individual subsystem test.
If the USER INTERFACE/AUX. SUBSYSTEM bar is touched, the USER
INTERFACE/AUXILIARY SUBSYSTEM MENU is displayed, from which the User
Interface Self-Test or the Analog Probes and J4/J5 Tests can beselected.
If the SIGNAL DISTRIBUTION SYSTEM [SDS] bar is touched, the Signal
Distribution System individual Self-Test status screen (step e) isdisplayed.
If the POWER [AC, DC, LOAD] SUBSYSTEM Bar is touched, the POWER
SUBSYSTEM INDIVIDUAL TEST MENU (step f) is displayed.
If the ANALOG [AFGS, DMM ...] SUBSYSTEM bar is touched, the ANALOG
SUBSYSTEM INDIVIDUAL TEST MENU (step g) is displayed.
If the DIGITAL [DWG, BTU ...] SYBSYSTEM bar is touched, the DIGITAL
SUBSYSTEM INDIVIDUAL TEST MENU (step h) is displayed.
    If (for CEE -101, -103, -107,-109) the RADIO FREQUENCY [RF] SUBSYSTEM
    bar is touched, the RF SUBSYSTEM INDIVIDUAL TEST MENU (for CEE -101,
    -107), or the RF SUBSYSTEM INDIVIDUAL TEST MENU \#1 (for CEE -103,
    -109) (step i) is displayed.
    e. Touching the SIGNAL DISTRIBUTION SYSTEM [SDS] bar at the SELF-TEST
    INDIVIDUAL MODE SYSTEM MENU displays the Signal Distribution System
    Self-Test status screen momentarily, followed by the SIGNAL
    distribution system self-test selection menu.
    This menu is utilized to run the individual portions of the Signal
    Distribution System Self-Tests.
    f. Touching the POWER [AC, DC, LOAD] SUBSYSTEM bar at the SELF-TEST
    INDIVIDUAL MODE SYSTEM MENU displays the POWER SUBSYSTEM INDIVIDUAL
    TEST MENU, which is utilized to select self-test for the DC Power
    Supplies, the AC Power Supply or the High Power Load.
    g. Touching the ANALOG [AFGS, DMM ...] SUBSYSTEM bar at the SELF-TEST
    INDIVIDUAL MODE SYSTEM MENU displays the following menu, which is
utilized to select self-test for the AFGs, the Counter-Timer, the Digitizer, the Synchro/Resolver Simulator-Indicator, the DMM and the DAS.
h. Touching the DIGITAL [DWG, BTU ...] SUBSYSTEM bar at the SELF-TEST

INDIVIDUAL MODE SYSTEM MENU displays the following menu, which is
utilized to select the self-test for the Digital Word Generator, the

Bus Test Unit or the Wizard Probing System.
i. If the RADIO FREQUENCY [RF] SUBSYSTEM bar is touched at the SELF-TEST

INDIVIDUAL MODE SYSTEM MENU, the RF SUBSYSTEM INDIVIDUAL TEST MENU is displayed, for CEE -101 and -107 . This menu is utilized to select the self-test for the RF Generator \#3, RF Generator \#2, Spectrum Analyzer, the RFIU, the Power Meter and the Rubidium Standard.

For CEE -103 and -109 , the RF SUBSYSTEM INDIVIDUAL TEST MENU \#1 is
displayed, and is utilized to select self-test for the RF Generator \#1, RF Generator \#2, Spectrum Analyzer, RFIU, Power Meter and Rubidium Standard.

If the NEXT bar is touched, the RF SUBSYSTEM INDIVIDUAL TEST MENU \#2, is displayed. This menu is utilized to select self-test for the RF Millivoltmeter.
7.2.4 Self Alignment Operation

This paragraph contains instructions needed to run the self-alignment
program for individual components of the CEE. Self-Alignment is run on the instrument requiring alignment that the maintainer has just replaced. The Self-Alignment program is stored on the Self Test and Alignment Disk, P/N TPDA31U12660S2-(*). NOTE: (*) refers to latest version as specified on IFTE Software Configuration Index, drawing A31U17380.

Self-Alignment provides the operator with these capabilities:
- Automatically verify the calibration of all the components of the CEE that require alignment.
o Correct out-of-tolerance conditions.
o Verify CEE performance to specification.
o Provide system and component stability logs.

The CEE uses transfer and resistance standards to align the
measurement instruments. Then those instruments are used to align other
components in the system.

To run individual Self-Alignment for the CEE install the Self-Test and

Alignment Disk and, perform these steps:
a. After system power-up and operator \(\log\) in, the first menu displayed at the terminal is the CEE TPS DEVELOPMENT TOOL MENU. To select

Self-Alignment, enter align (RETURN).
b. After Self-Alignment is selected, the IFTE SELF-ALIGNMENT MAIN MENU is displayed. The following is general information about each of the menu bars on the IFTE SELF-ALIGNMENT MAIN MENU.

TEST STATUS STATION FRONT VIEW - Touching this bar displays a graphics representation of the station front view, which provides, using color codes, the alignment status of instruments aligned during self-alignment execution.

RUN WITH PRESET PRINT OPTION - Touching this bar runs alignment. End to End (all tests one after another), with the preset print option. Preset options are values that are stored and remain the same, unless changed by the operator.

INDIVIDUAL TEST SELECTION MENU - Touching this bar executes the

Readiness Test and at its conclusion brings the operator
to another touch screen menu, which will allow the choice of
running any alignment program individually. The individual
program execution will run using the preset print mode option.

RUN ALIGNMENT ICD SELF-TEST - Touching this bar will run the alignment

ICD Self-Test, testing all internal standards and then will
return the operator to the Self-Alignment Main Menu.

CHANGE PRESET PRINT OPTION - Touching this bar brings the operator to
another touch screen menu, which will allow the operator to
change and save the preset print option.
c. If the preset run mode and printer option are set correctly, touch the

INDIVIDUAL TEST SELECTION MENU bar to initiate the individual
alignment mode. The SELF-ALIGNMENT INDIVIDUAL MODE MENU is displayed.

The following is general information about each of the menu bars on
this menu.

SDS [DAC 1-8] SLF-ALIGN - Touching this bar runs the Self-Alignment for the Signal Distribution System (D/A Converters or DACS 1 thru 8 housed in the Analog VIC Chassis).

POWER [AC, DC, LOAD] SUBSYSTEM - Touching this bar brings the operator to another menu which allows the selection if either running the DC Power, AC Power or High Power Load Alignments, individually.

ANALOG [AFGs, DMM ...] SUBSYSTEM - Touching this bar brings the operator to another menu which allows the selection of either running the AFG (1 thru 4), Counter-Timer, Digitizer (DIGTZ), Syn/Res Ind/Sim, DMM or Display Analyzer/Simulator (DAS) Alignments, individually.

DIGITAL (BTU) SUBSYSTEM - Touching this bar brings the operator to another menu which allows the selection of running the Bus Test Unit (BTU) Self-Alignment, individually.

RADIO FREQUENCY [RF] SUBSYSTEM - Touching this bar brings the operator to another menu which allows the selection of running the RFG \#1 (CEE -103, -105), RFG \#2, RFG \#3 (CEE -101, -107), RFIU, Spectrum
                Analyzer Alignment, RF Millivoltmeter (CEE -103, -109) or Power
                Meter Sensor Calibration Factor installation individually.
            NOTE: Any alignment, that is run in the Individual Test Mode will run
                with preset print option. If the operator wishes to change the
                preset values, he must return to the main menu.
                    7.3 Self-Test ICD and Self-Alignment ICD Description
                    7.3.1 General
This section contains descriptions of the Self-Test ICD and
Self-Alignment ICD.
7.3.2 Self-Test ICD
The self-test interface connection device (ICD) is in accordance with drawing A31U12660, and is connected to the station gold dot interface, when required, during the performance of station self-test.
The structure of the ICD consists of two aluminum side lates \(P / N^{\prime} s\)
A31U17889-1, A31U17890-1, hinged to the gold dot interface housings.
Internal to the ICD, wiring connects the gold dot interface to a wire wrap motherboard, \(P / N\) A31U29801-1, which distributes all required signals and
power to the top mounted connector panel, where all components (consisting of sixteen resistors) are mounted. The wire wrap motherboard is hinged to the top panel.

Wiring from the gold dot modules to the wire wrap motherboard is
located in the tongue of the ICD. The gold dot interface contains 3200
connections, each of which consists of a gold dot plated with approximately 100 micro inches of 24 karat gold. The plating acts as an oxidation barrier and allows the gold dot to meet military environmental requirements for contacts.

Wiring wrapping is used extensively within the ICD, and provides low cost manufacturing and simplified maintenance, while providing design flexibility and reliability.

The top mounted panel contains connectors Jl through J15, and test points TP1 through TP48. Cables A31U12679-2, A31U12680-2, A31U12681-2, and A31U12682-2 comprise the cable set A31U12687-2, and are connected between J1, \(\mathrm{J} 3, \mathrm{~J} 5, \mathrm{~J} 7\) on the top mounted panel, and \(\mathrm{J} 8, \mathrm{~J} 9, \mathrm{~J} 10\), and J 11 , respectively, on the auxiliary interface panel (CEE \(-107,-109,-111\) ), during self-test. For the CEE -101, \(-103,-105\), cables and connections are the same except that the cable
and cable set dash numbers are -1 instead of -2 . In addition, \(J 6\) and TP4l are utilized during probe self-test. All other connections are available for integration purposes. The test points are utilized to monitor the programmable DC power supply outputs, the switch card relays, the DWG functions, the programmable loads, and the synchro Indicator/Simulator voltages.

Accessibility to internal wiring is obtained via the hinged clam shell construction of the interface connector panel, which is able to be retained open at a 45 degree angle via pit pins, and two removable panel covers.

\subsection*{7.3.3 Self-Alignment ICD}

The self-alignment interface connection device (ICD) is in accordance with drawing A31U12661, and contains the transfer standards used for self-alignment.

The structure of the ICD consists of two aluminum side plate \(P / N^{\prime} s\)

A31U17889-1 and A31U17890-1, hinged to the gold dot interface housings.

Internal to the ICD, wiring connects the gold dot interface to a wire wrap motherboard, P/N A31U29801-1, which distributes all required signals and power to the precise standard assembly and to the top mounted connector panel.

The wire wrap motherboard is hinged to the top panel.

Wiring from the gold dot modules to the wire wrap motherboard is
located in the tongue of the ICD. The gold dot interface contains 3200
connections, each of which consists of a gold dot plated with approximately 100
micro inches of 24 karat gold. The plating acts as environmental requirements
for contacts.

Wiring wrapping is used extensively within the ICD, an provides low
cost manufacturing and simplified maintenance, while providing design
flexibility and reliability.

The precision standard assembly, which contains the DC standards
consisting of regulator \(P / N\) ZVR-518-18.000 and voltage divider \(P / N 314242\), the AC standard P/N OTS-02-1023, and the thermal converter P/N 1395A-1, is
mechanically fastened in place where the component board is normally plugged in for a test program set ICD, and is in accordance with drawing A31U12676.

The resistance standards are mounted on the top mounted, hinged panel

P/N A31U12674-7. In addition, the top mounted panel contains connectors J1, J2, J3, J4, J5, J7, and J8, and test points TP1 through TP30. Cables A31U12679-2,

A31U12680-2, A31U12681-2, and A31U12682-2 comprise the cable set A1U12687-2, and are connected between \(\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{J4}\) on the top mounted panel, and \(\mathrm{J8}, \mathrm{J9}, \mathrm{~J} 10\), and J 11 , respectively, on the auxiliary interface panel (CEE \(-107,-109,-111\) ), during self-alignment. For CEE -101, \(-103,-105\) cables and connections are the same except that the cable and cable set dash numbers are -1 instead of -2 . Test points TP1 through TP26 are available for calibration of the ICD at the designed calibration facility. Test points TP27 through TP30 are available for self-test and self-alignment of the Contact Test Set (CTS).

Accessibility to internal wiring and components are obtained via the hinged clam shell construction of the interface connector panel, which are able to be retained open at a 45 degree angle via pit pins, and two removable panel covers.

Transfer standards used for self-alignment have the following characteristics whithin the operating temperature range of \(10^{\circ} \mathrm{C}\) to \(32^{\circ} \mathrm{C}\) :
a. DC standards -
1. \(18.0 \mathrm{~V} \pm 0.0056 \% / \mathrm{yr}\).
2. \(9.0 \mathrm{~V} \pm 0.0076 \% / \mathrm{yr}\).
3. \(0.90 \mathrm{~V}=0.0076 \% / \mathrm{yr}\).
4. \(0.090 \mathrm{~V} \pm 0.0076 \% / \mathrm{yr}\).
b. \(\quad\) AC standards -
1. 1 VRMS \(\pm 0.06 \% / \mathrm{yr} ; 20 \mathrm{KHz} \pm 1 \%\)
2. 10 VRMS \(\pm 0.06 \% / \mathrm{yr} ; 20 \mathrm{KHz} \pm 1 \%\)
c. Resistance standards -
1. \(0.1 \mathrm{Kohm} \pm 0.0055 \% / \mathrm{yr}\).
2. \(1 \mathrm{Kohm} \pm 0.0055 \% / \mathrm{yr}\).
3. \(10 \mathrm{Kohm} \pm 00.0055 \% / \mathrm{yr}\).
4. \(100 \mathrm{Kohm} \pm 0.0055 \% / \mathrm{yr}\).
5. \(1000 \mathrm{Kohm} \pm 0.0055 \% / \mathrm{yr}\).
d. Programmable Load Current Sense Resistance Standards
1. 0.01 ohms \(\pm 0.55 \% / \mathrm{yr}\).
2. 0.02 ohms \(\pm 0.55 \% / \mathrm{yr}\).
3. 0.06 ohms \(\pm 0.55 \% / \mathrm{yr}\).
e. Thermal converter -
1. Input impedance: \(50 \pm 0.15\) ohms.
7.4 Instrument Switch Settings
7.4 .1 General
This section contains jumper installation and address switch setting
(DIP switches) procedures for the following CEE components.
1. Programmable DC Power Supply
2. Spectrum Analyzer
3. RF Generator (upper)
4. RF Generator (lower)
5. RF Millivoltmeter
6. Programmable Load
7. Power Meter
8. AC Power Supply
9. RFIU
10. PIC
11. Printer
12. Optical Disk Drive

\section*{13. Digital VIC}
14. Analog VIC
15. Amcodyne Disk Drive
16. Display Terminal
```

(-101. -103, -105 ASSY)

```

IA. AT REAR PANEL OF THE UPPER PROG DC PS (A3IU29940\}, VERIFY THIS GPIB ADDRESS SWITCH AND THIS CHANNEL GROUP SELECT SWITCH SETTING:

\[
(-101,-103,-105 \text { ASSY })
\]

1B. AT REAR PANEL OF THE LOWER PROG DC PS (A3IU29940). VERIFY CHANNEL GROUP SELECT SWITCH SETTING AS FOLLOWS:


AT THE PROGRAMMABLE POWER SUPPLY, A3IU29280-I. (-107, -109 8 -III ASSY). REMOVE YXP CONTROLLER MODULE. A31U29280-115. AND ON THE CONTROLLER MODULE, VERIFY THE ADDRESS SWITCH SETTING:


AT THE PROGRAMMABLE POWER SUPPLY. A3IU29280-3. (-109 ASSY) REMOVE YXP CONTROLLER MODULE. A31U29280-II5. AND ON THE TOP OF THE CONTROLLER MODULE. YERIFY THE ADDRESS SWITCH SETTING:

2. AT THE SPECTRUM ANALYZER. ASSY)

A3IU29346. (-101, -103, -107, 109 ON THE TOP OF THE LOCAL OSCILLATOR MODULE HP 70900A. VERIFY THIS ADDRESS SWITCH SETTING:

3. AT RF GENERATOR (UPPER).

\section*{VERIFY THE FOLLOWING ADDRESS SWITCH SETTINGS:}

AT THE REAR PANEL OF A3IU29218 (-101 \(\mathcal{G}-107\) ASSY)
10


1


2


3


4


AT THE FRONT PANEL OF A3IU29306 (-103 ๕̇ - 109 ASSY)
(WITH POWER ON).
DISPLAY CURRENT ADDR BY DEPRESSING "SHIFT" AND "LOCAL" KEYS IENT ADDRI.
IF THE ADDRESS DISPLAYED IS NOT 6 , THEN ENTER G USING THE NUMERIC KEY PAD. DEPRESS THE "Hz uV" KEY IOR ANY TERMINATORI.
4. AT RF GENERATOR \{LOWER). VERIFY THE FOLLOWING ADDRESS SWITCH SETTINGS:

AT THE FRONT PANEL OF A3IU29306 (-101,-103,-107,-109 ASSY) (WITH POWER ON).

DISPLAY CURRENT ADDR BY DEPRESSING "SHIFT" AND 'LOCAL" KEYS IENT ADDRI.
IF THE ADDRESS DISPLAYED IS NOT IO, THEN ENTER 10 USING THE NUMERIC KEY PAD. DEPRESS THE "Hz UY" KEY IOR ANY TERMINATORI.
5. AT REAR PANEL OF RF MILLIVOLTMETER. A3IU29399, (-103 \& -109 ASSY) VERIFY THIS GPIB ADDRESS SWITCH SETTING:

6. AT THE PROG. LOAD (A3IU29176). OPEN HINGED TOP COVER TO GAIN ACCESS TO MICROPROCESSOR CARD MOUNTED ON INNER SIDE OF TOP COVER. YERIFY THIS ADDRESS SWITCH SETTING:

7. AT POWER MTR., A3IUI4845. ( \(-101,-103,-107,-109\) ASSY)

LOOSEN ONE CAPTIVE SCREW AT TOP REAR OF PWR MTR. SLIDE COVER OFF TOWARD REAR OF PWR MTR. AT SWITCH NEAR REAR PANEL. VERIFY THIS ADDRESS SETTING:

8. AT REAR PANEL OF AC PS. A3IU29364, VERIFY THIS ADDRESS SWITCH SETTING:
\(\square\)
\(2 \square \square\)
\(3 \square\)
\(4 \square\)
\(5 \square\)
\(6 \square\)
\(7 \square\)
\(8 \square\)
9. AT THE RFIU, A3IUI3560, (-101, -103, -107, -109 ASSY) OPEN TOP COVER TO GAIN ACCESS TO MICROPROCESSOR CARD (U20, A3IUI3696). VERIFY THIS ADDRESS SWITCH SETTING:


II. ON PIC MOTHERBOARD (A3IUI7226),

REMOVE JUMPERS WIO B WII. JUMPERS W5, WB \& W9 REMAIN INSTALLED.

12. AT PRINTER (A3IU29290 P/O A3IUI3070 ASSY), ON REAR, verify the following address and mode settings.

13. AT THE OPTICAL DISK DRIVE (A3IU29314).

VERIFY THAT THE W4 PARITY ENABLE JUMPER is installed.
14. AT THE DIGITAL AND ANALOG VIC, VERIFY THAT MICROPROSSOR CARDS (P/N A3IU29294) LOCATED IN SLOT XAI have THE FOLLOWING SWITCH SETTINGS.

15. AT PERIPHERAL INTERFACE CONTROLLER, A3IUI7460. VERIFY THAT THE MICROPROCESSOR CARD (P/N A3IU29294) locate in slot xal has the following switch settings:

16. AT DISC DRIVE (A3IU29229) REMOVE LOWER FRONT PANEL (BELOW DISC DRIVE DOOR). VERIFY THIS ADDRESS SWITCH SETTING:



19. AT THE DISPLAY TERMINAL (A31U29291).

ENTER THE FOLLOWING SEQUENCE OF COMMANDS
on the keyboard to setup the correct parameters:

DEPRESS THE "SETUP" KEY.
AT THE ASTERISK PROMPT TYPE:
* FACTORY
dEPRESS THE "RETURN" KEY.
depress the "SETUP" kEy when the cursor reappears.
AT THE ASTERISK PROMPT ENTER THE FOLLOWING:
IAFTER EACH ENTRY DEPRESS THE "RETURN" KEY).
* ORiginmode absolute

DEPRESS THE "RETURN" KEY 12) MORE TIMES.
* baudrate 9600, 9600
* Flagging in/out
* parity even
* CODE ANS!
\(\left[\frac{\text { FOR } 4208 \text { TERMINALS W/CAROL TOUCH SMART-Y'S ONLY: }}{\text { * TERMINAL } 4107}\right]\)
* NVSAVE

DEPRESS THE "SETUP" KEY TO EXIT SETUP MODE.```

