Table of Contents

Chapter 11: Keyboard Interfaces

Description of Keyboards 11-1
Types of Keyboards 11-1
How the Primary Keyboard Is Chosenoooo ... 11-3
Overview of Keyboard Features............................ 11-4
ASCII and Non-ASCIL Keysoooonnin e 11-4
The Shift and Control Keys 11-5

Keyboard Operating Modes 11-9
The Caps Lock Modeooouieoeeee 11-9
The Print Al Mode ... 11-10
Disabling Scrollingooooi 11-10
Modifying the Repeat and Delay Intervals..................... ..., 11-11

Entering Data from the Keyboard.................... 11-13
Sending the EOI Signal oo 11-15

Sending Data to the Keyboard..................... 11-16
Sending Non-ASCII Keystrokes to the Keyboard 11-16

Second Byte of Non-ASCII Key Sequences (String) 11-18
Closure Keysooiuiii 11-23

SOftKeYS ... 11-25

Sensing Knob Rotation 11-26

Enhanced Keyboard Controlo oo, ... 11-28
Trapping Keystrokes 11-29
Mouse Keys 11-32
Softkeys and Knob Rotation..............o i 11-32
Disabling Interactive Keyboard 11-33

Locking Out the Keyboard 11-34

Keyboard Interfaces 1 1

As with displays, access to keyboards can be made with OUTPUT, ENTER, CON-
TROL, and STATUS statements. This chapter describes I/O programming techniques
for “interfacing” to the keyboard.

Description of Keyboards

This section introduces you to the different types of keyboards available with Series
200/300 computers, and provides an overview of their capabilities. Here are the topics
covered:

e Types of keyboards.

¢ How the “primary” keyboard is chosen (in machines with more than one keyboard
installed).

o Overview of keyboard features.

Types of Keyboards

There are essentially three types of keyboards available with Series 200/300 computers:

¥
2 7

—uupoE

o

LI

3

L]
LT

LI
S aanunon

Figure 11-1. The HP 98203A Keyboard

Keyboard Interfaces 11-1

ceeeeeoe06e0eeo
uuuuuu coooooocae

C D) 00

+ &
[e e s e B e =)
o] G0 CEEEES

[DE]G ﬂ %
B 0/0/0/0/0/00/6/66/c> 0000

Figure 11-2. HP 98203B and 98203C Keyboards

LOJUUOO000000E) 88
E JOVOO0OOO0On000 ®&
HOOO000000000FE) 80
OO 00O0MO00E 5H®mE
&) E(1 & S

&) [njas]a]a]E]=]a]a]aa]a)

Figure 11-3. ITF Keyboards (HP 46020 and HP 46021)

Series 200 Model 216 computers may have the smaller HP 98203A keyboard or optionally
the larger 98203B keyboard. Model 220 computers have options which allow either the
HP 98203A or HP 98203B Keyboards, or the HP 98203C or ITF Keyboards. Models 226
and 236 computers have built-in 98203B keyboards. Models 217 and 237 and all Series
300 computers have ITF keyboards as the standard, but you can also order the 98203C

keyboard as an option.

11-2 Keyboard Interfaces

—

Complete descriptions of the BASIC definitions of each key of every keyboard is pro-
vided in the “Keyboard Reference” chapter of the Installing, Using, and Maintaining the
BASIC System manual.

There is also a mode of operation, enabled and disabled via keyboard CONTROL register
15 (or the KBD CMODE statement), in which ITT Keyboards can emulate an HP 982038
keyboard; see the “Keyboard Status and Control Register Summary” section at the end
of this chapter for values and effects. Details of using this mode are provided in the
“Porting to Series 300" chapter of BASIC Programming Techniques.

How the Primary Keyboard Is Chosen

Select code 2* is always assigned to the keyboard interface. However, Series 200/300
computers can have more than one keyboard installed at one time. In such cases, the
BASIC system has to choose which one will be the primary keyboard. Here is the order
that the system chooses this keyboard:

1. If there is an “internal” keyboard, then it is chosen as the primary keyboard.
Examples are as follows:

a. The 98203 keyboard on a Series 200 computer.
b. The HIL keyboard on a Series 200 or 300 computer?.

2. If there is an “external” HIL keyboard, and no “internal” keyboard interface, then
it will be chosen as the primary keyboard. An example is:

a. A keyboard connected to the HIL port of an HP 98700 Display Controller.

Only one primary keyboard and one HIL interface will be recognized by the BASIC
system.

Note that the primary keyboard determines the keyboard language and which softkey
labels are chosen. Thus, if two keyboards with different languages are connected to
the computer (and recognized by BASIC), then the language and softkey labels of the
primary keyboard are used. This effect may cause some keys on the secondary keyboard
to produce incorrect characters.

Re-Configuring HIL Devices

If you add or remove HIL devices while the BASIC system is in the computer, you must
re-configure in order for BASIC to properly recognize all devices. Executing SCRATCH
A initiates this re-configuration.

L BASIC provides the KBD function which returns a value of 2.
2 1f two keyboards are connected to the same HIL interface, the one closest to the computer is chosen.

Keyboard Interfaces 11-3

Overview of Keyboard Features

Series 200/300 computer keyboards are controlled by their own separate processors, which
allows many more capabilities than most other desktop-computer keyboards. These
keyboards are devices which reside at select code 2!. Here is a brief list of keyboard
capabilities:

¢ You can use the ENTER statement to enter data from the keyboard, and thus
simulate devices for debugging purposes.

e You can monitor keys and the “knob” (rotary pulse generator), if present, and
enable them to interrupt BASIC programs; the BASIC program can contain a
segment of code to read and use this input.

¢ You can OUTPUT commands to the keyboard, simulating an operator entering
them. You can also OUTPUT data to the keyboard which the operator can then
edit and send back.

Note, however, that the INTR and TIMEOUT event-initiated branches cannot be sensed
by the keyboard.

ASCIlI and Non-ASCIl Keys

The keys of the Series 200/300 computer keyboards can be generally grouped by function
into the ASCII and non-ASCII keys. The ASCII (or alphanumeric) keys all produce an
ASCII character when pressed, and include the character entry and numeric keys. The
non-ASCII (or non-alphanumeric) keys do not produce characters but initiate specific
actions when pressed; the [Return], (Enter] and [Back space] keys are non-ASCII keys for this
reason. Non-ASCII keys also include all program control, editing, cursor control, and
system control keys.

11-4 Keyboard Interfaces

The Shift and Control Keys
The and keys (and key on ITF Keyboards) are not really either

type of key because they cannot cause action on their own; instead, they are used only
with the other types of keys. Pressing the key with another key qualifies the
other keypress, allowing the other key to have a second meaning. For instance, in the
“Caps lock off” mode, pressing an alphabetic ASCII key generates a lowercase alphabetic
character. Pressing the key simultaneously with an alphabetic key in the “Caps
lock off” mode generates an uppercase character. The key is used similarly with
the non-ASCII keys, allowing many of those keys to have a second function.

The key, when present, is held down while you press other keys from the
main typewriter section to generate the rest of the available 256 ASCII characters. It
also has a special use with the softkeys when in keyboard compatibility mode, see the
chapter entitled “Porting to Series 300” found in the BASIC Programming Technigues
manual.

The (Control) key is also used to further qualify both ASCII and non-ASCII
keypresses. Pressing the key simultaneously with an ASCII key generates an
ASCII control character in the display, and is often faster than using the key.
The following table shows how to generate control characters by simultaneously pressing
the key and a key as listed. This is particularly useful when you need to include
a control character in a string.

Keyboard Interfaces 11-5

Table 11-1. Generating Control Characters with CTRL and ASCII Keys

Key ASCII Character’s Key(s) Pressed Character
Code Character Description with CTRL on CRT
0 NUL Null (space bar) Ny
1 SOH Start of Header 5
2 STX Start of Text S
3 ETX End of Text B
4 EOT End of Transmission (o] Ep
5 ENQ Enquiry B
6 ACK Acknowledgement A
7 BEL Bell
8 BS Backspace Bg
9 HT Horizontal Tab) Hp
10 LF Line-feed Le
11 VT Vertical Tab Vp
12 FF Form-feed Fe
13 CR Carriage-return (M) G
14 SO Shift Out (] %o
15 SI Shift In (o] 51
16 DLE Data Link Escape (P) o
17 DC1 Device Control Q] Dy
18 DC2 Device Control (R] D,
19 DC3 Device Control Dy
20 DC4 Device Control D,
21 NAK Neg. Acknowledgement N
22 SYN Synchronous Idle 5
23 ETB End of Text Block By
24 CAN Cancel G

11-6 Keyboard Interfaces

Table 11-1. Generating Control Characters with CTRL and ASCII Keys (continued)

Key ASCII Character’s Key(s) Pressed Character
Code Character Description with CTRL on CRT

25 EM End of Media By

26 SUB Substitute EY

27 ESC Escape 1 B

28 FS File Separator (shiftH 1) Fs

29 GS Group Separator 1 Gg

30 RS Record Separator Ry

31 Us Unit Separator Ug

Pressing the key on the ITF keyboard is an alternative to {1} The keys
listed in the preceding table are not the only ways to generate control characters, but
are generally the simplest and most easily memorized method. For instance, to generate
a line-feed character, press the and the keys simultaneously.

Pressing the key with a non-ASCII key is used to generate and store non-ASCII
keystrokes within strings and is further discussed in “Outputs to the Keyboard”.

Keyboard Interfaces 11-7

On an ITF Keyboard, the display enhancement control codes can be generated by press-
ing [CTRL], [Extend char), and a key from the following table simultaneously.

Table 11-2. Generating Control Characters with CTRL, Extend char, and ASCII Keys

Key Character’s Key(s) Pressed with Character (\//
Code Description CTRL and Extend char| on CRT

128 | Clear enhancements G

129 |Inverse video L

130 |Blinking Bg

131 |Inverse blinking (4] I

132 | Underline (5] 4

133 | Underline and Inverse (6] I

134 | Underline and Blinking By

135 Uﬁderline, Inverse, I

and Blinking

136 | White (a] ¥

137 |Red Ry

138 | Yellow g (N
139 | Green (R] &R \/)
140 Cyan G

141 |Blue By

142 | Magenta Y

143 | Black 1 B

11-8 Keyboard Interfaces

Keyboard Operating Modes

The keyboard has three operating modes which can be changed within a program with the
CONTROL statement. This section describes changing these modes from the program.

The Caps Lock Mode

Pressing the key (or key on the HP 98203 keyboard) toggles the key-
board between the “Caps lock on” and “Caps lock off” modes. In the “Caps lock on”
mode, pressing any alphabetic key causes an uppercase letter to be displayed on the
screen; in the “Caps lock off” mode, these keys generate lowercase letters. This mode
can be changed with the CONTROL statement and sensed with the STATUS statement.
Writing any non-zero numeric value into register 0 (of interface select code 2) sets the
caps lock mode on; writing a zero into this register sets the mode off.

100 STATUS 2;Caps_lock ! Check mode.
110 !

120 PRINT "Initially, ",

130 IF Caps_lock=1 THEN

140 Mode$="0N"

150 ELSE

160 Mode$="0FF"

170 END IF

180 !

190 PRINT "CAPS LOCK was "&Mode$&CHR$(10) ! Skip line.
200 BEEP

210 WAIT 1

220 !

230 CONTROL 2;1

240 PRINT "CAPS LOCK now QN

250 PRINT "Type in a few characters"&CHR$(10)
260 WAIT 4

270 !

280 CONTROL 2:0

290 PRINT "CAPS LOCK now QOFF"

300 PRINT
310 BEEP
320 END

Keyboard Interfaces 11-9

The Print All Mode

Pressing the key (or the softkey in the System menu) toggles the “Print all”
mode “on” and “off”. The “Print all” mode can also be sensed and changed by reading
and writing to STATUS register 1 and CONTROL register 1 (of interface select code 2).
Writing a non-zero numeric value into this register sets the “Print all” mode on; writing
a value of zero turns this mode “off”. The following statement turns the “Print all”
mode off.

CONTROL 2,1;0

Disabling Scrolling

If there are results you do not want to accidentally scroll off the screen after or while
executing a program, keyboard CONTROL register 16 can be used to prevent this from
happening. The “scrolling keys” which keyboard register 16 affect are:

. and

° and

. and (ITF keyboard only)
o (Next] and [Shift}-{Next] (ITF keyboard only)
) and (ITF keyboard only)

including implied (4] and (Y] arrows from knobs and mice, OUTPUT KBD of these keys,
and typing-aid softkey definitions which contain these keycodes.

To disable the keys mentioned above, execute the following statement:
CONTROL KBD,16;1

You can re-enable these keys by writing a 0 (the default state) into this register.
CONTROL KBD,16;0

The “scrolling keys” are also re-enabled when you:
e power-up your computer,

o press [Shift}[Reset] ([SHIFT H{RESET] on HP 98203 keyboards),
o execute either the SCRATCH or SCRATCH A statement.

11-10 Keyboard Interfaces

If you are not sure of the status of the scrolling keys previously mentioned, you can
execute the following statement in a program:

100 STATUS KBD,16:;A
110 END

The results returned will be a 1 if the keys are disabled and a 0 if they are enabled.
Note that keyboard register 16 has no effect when you are in the EDIT mode.

Also, programmatic scrolling will still occur as a result of executing TABXY or CON-
TROL CRT,1;... or printing more lines than fit in the QUTPUT Area.

Modifying the Repeat and Delay Intervais

The keyboard has an auto-repeat feature which allows you to hold a key down to repeat
its function rather than pressing and releasing it repeatedly. Holding a key down will
cause it to be repeated every 80 milliseconds for as long as it is held down, resulting in a
repeat rate of approximately 12.5 characters per second. However, you may have noticed
that the initial delay between the key being pressed and the key being repeated is longer
than successive delays between repeats; the initial delay before a key is repeated for the
first time is 700 milliseconds (7/10 second). The following plot of a key’s defanlt repeat
function shows these two intervals.

Initial 1st 2nd
Keystroke Repeat Repeat Repect Repect

Vo YV

i | 80ms | 80ms ; 80ms |
i
\ A J
Y Y
Inital delay . Repeat intervals

These intervals can be changed from the program, if desired, by writing different values
into CONTROL registers 3 and 4 (of interface select code 2). Register 3 contains the
parameter that controls the auto-repeat interval, and register 4 contains the parameter
that controls the initial delay. The values of these parameters, multiplied by 10, give
the respective intervals in milliseconds with the following exception; if register 3 is set to
256, the auto-repeat is disabled.

Keyboard Interfaces 11-11

The following program sets up softkeys 1, 4, 6, 8 to change these parameters. Run the
program and experiment with these intervals to optimize them for your own preferences
and needs.

NOTE

Softkey labels (on the keycaps) are through on ITF key-
boards. In default mode, the correspondence between key labels
(i1}, (2], etc.) and KEY numbers (in ON KEY and with typing-
aid softkeys) is (f{}=KEY 1, (f2}=KEY 2, etc. You can change this
correspondence by writing a 1 into KBD CONTROL register 14;
the new correspondence will be ({}=KEY 0, (2}=KEY 1, etc.

100 ON KEY 1 LABEL "Faster" GOSUB Decr_interval
110 ON KEY 4 LABEL "Slower" GOSUB Incr_interval
120 ON KEY 6 LABEL "Sooner" GOSUB Decr_delay
130 ON KEY 8 LABEL "Later" GOSUB Incr_delay

140 !

150 Interval=80 ! Defaults.

160 Delay=700

170 !

180 DISP "Interval=";Interval;" Delay= ";Delay
190 GOTO 180 ! Loop.

200 !

210 Incr_interval:Interval=Interval+10*(Interval<2560)
220 CONTROL 2,3;Interval/10

230 RETURN

240 !

250 Decr_interval:Interval=Interval-10*(Interval<>10)
260 CONTROL 2,3;Interval/i0

270 RETURN

280 !

290 Incr_delay:Delay=Delay+10*(Delay<2560)

300 CONTROL 2,4;Delay/10

310 RETURN

320 !

330 Decr_delay:Delay=Delay-10*(Delay>10)

340 CONTROL 2,4;Delay/10

350 RETURN

360 !

370 END

11-12 Keyboard Interfaces

Entering Data from the Keyboard

When the keyboard is specified as the source of data in an ENTER statement, the
computer executes the process just as if entering data from any other device. The
computer signals to the keyboard that the keyboard is to be the sender of data. The
keyboard in turn signals that it is not ready to send data and waits for you to type in
and edit the desired data.

The characters you type in appear in the keyboard area of the display, but they are not
automatically sent to the computer. As long as you can see the characters, you can edit
them before sending them to the computer, just as during an INPUT statement. Avail-
able characters include all 256 characters that can be generated either with keystrokes
or with the key (softkey (7] in the System menu of the ITF keyboard).

Pressing either the:
o [Return] key ([ENTER] key on the HP 98203 keyboard),
. keys on the ITF Keyboard,

. key (System softkey on the ITF keyboard),

. key (on an ITF Keyboard System softkey (2], and User 1 and 2 softkey
— these User menu softkeys require the KBD binary)

signals the keyboard that the data is to be sent to the computer. The data is then sent
byte-serially according to an agreed-upon handshake convention. The computer enters
the data in byte-serial fashion and processes it according to the specified variable(s),
type of ENTER statement, and image (if it is an ENTER USING statement).

Keyboard Interfaces 11-13

The differences in pressing the keys or softkeys in the above paragraph are as follows.
Keep in mind that the ENTER statement is still being executed as long as the “?”
appears in the lower right corner of the display.

)

All of the characters displayed in the keyboard area are sent to the N’
or computer, followed by carriage-return and line-feed characters. These

last two characters usually terminate entry into the current item in the
or ENTER statement. In addition, the key causes the computer

to remain in the single-step mode after the ENTER statement has

been completely executed.

All of the characters displayed in the keyboard area are sent to the
computer for processing; no trailing carriage-return and line-feed char-
acters are sent. The key is pressed if more characters are
to be entered into the current variable in the destination list of the
ENTER statement.

Type in and run the following program. Experiment with how entry into each variable
item is terminated by using the different keys (i.e. the key versus [Return),
(ENTER], or [STEP] keys). Pressing the [Retun], (ENTER], or [STEP) key terminates entry
into the current variable, while pressing the key allows additional characters
to be entered into the current variable. {)

100 DIM String_array$(1:3) [100]
110 ASSIGN @Device_simulate TO 2

120 !

130 ENTER @Device_simulate;String_array$(x)
140 !

150 OUTPUT 1;String_array$(x)

160 !

170 END

This use of the keyboard is very powerful when tracing the cause of an error in an ENTER
operation. With this tool, you can “debug” or verify any type of ENTER statement,
including ENTER statements whose source is intended to be a device on the HP-IB
interface. The next section describes this topic.

11-14 Keyboard Interfaces

Sending the EOI Signal

The EOI signal is implemented on the HP-IB interface. This line ordinarily signals to
the computer that the data byte being received is the last byte of the item; thus, it is
either an item terminator or a terminating condition for the ENTER statement!

The EOI signal can be simulated from the keyboard when this feature is properly enabled.
CONTROL register 12 of interface select code 2 controls this feature; the following
example statement shows how to enable this feature.

CONTROL 2,12;1

To simulate the EOI signal with a character, the and (or on the
numeric keypad) keys are pressed simultaneously before the character to be accompanied
with EOI is typed. For instance, if the characters “DATA” are to be entered and the
EOI is to accompany the last “A”, the following key sequence should be pressed before
pressing the [Retum], [(ENTER], [STEP], or [CONTINUE] key (or softkey).

(o)A] [CTRLHE] (A]

The same result can be obtained by placing an ENQ character (ASCII control character
CHRS$(5), Eq) in front of the character to be accompanied by the EOI signal (see the
previous section for further details).

1 See the chapter “Entering Data” for a further explanation of the EOI signal’s effects during ENTER.

Keyboard Interfaces 11-15

Sending Data to the Keyboard

Characters output to the keyboard are indistinguishable from characters typed in from
the keyboard. All characters output to the keyboard, including control characters, are
displayed in the keyboard area. The following program outputs the BEEP statement to
the keyboard. Read on to see how it works.

100 OUTPUT 2;"BEEP"; ! No CR/LF
110 !
120 END

Sending Non-ASCII Keystrokes to the Keyboard

The preceding program sent the characters BEEP to the keyboard, but the statement was
not executed. Pressing the [ENTER] or [Return] key after the program has ended executes
the statement. Modify the program to “press” the (ENTER) or [Retum] key by typing
in [CTRL] [ENTER] (or [Retun]) following the BEEP. Sending this special two-character
sequence to the keyboard is equivalent to the operator pressing the [ENTER] or [Retun)
key. Thus, in general, to store a non-ASCII “keystroke” within a program line, press the
key while simultaneously pressing the desired non-ASCII key.

Since CHR$(255) does not generate the same character on most printers as it does on the
computer’s display, it is recommended that some explicit means of documenting these
character sequences be employed. For instance, string variables can be defined to contain
these sequences; then when the program is listed on an external printer, it will be much
easier to determine which non-typing keys are being represented. The key is still
used with the non-ASCII key to generate the two-character sequence, but the special
character should be changed to a CHR$(255).

100 Enter_key$=CHR$(255)&"E"
110 Printall_key$=CHR$ (255)&"A"
!

120

130 OUTPUT 2;Printall_key$; ! Use ";" to suppress CR/LF.
140 OUTPUT 2;"BEEP"&Enter_key$;

150 END

11-16 Keyboard Interfaces

NOTE

Since this type of output can be used to send immediately exe-
cuted commands (such as SCRATCH &), it is important that you use
care when outputting commands to the keyboard and when editing
statements and commands sent to the keyboard. Undesirable re-
sults may occur if the wrong non-ASCII key sequences are output
by a program.

The table in the next section shows the resultant characters that follow CHR$(255) in
the two-character sequences generated by these keystrokes. The table can be used to look
up which non-ASCII key is to be output if the second character is known or vice-versa.

e

Keyboard Interfaces 11-17

Second Byte of Non-ASCIl Key Sequences (String)

Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence
on the CRT. The first character is a “inverse-video” K. This table can be used to look
up the key that corresponds to the second character of the sequence. (On the small
HP 98203A keyboard some non-ASCII keys generate ASCII characters when they are
pressed while holding the CTRL key down.)

Normally on an ITF keyboard, corresponds to ON KEY 1 ..., corresponds to ON
KEY 2 ..., etc. However, you can use CONTROL KBD,14;1 to change this relationship

so that corresponds to ON KEY 0..., corresponds to ON KEY 1, ete.

With 98203 keyboard compatibility (KBD CMODE ON), the ITF keyboard softkeys
thru (f4], the (Menu] and (System] keys, and thru correspond to 98203 softkeys

thru [k9], respectively. See “Porting to Series 300” chapter of BASIC Programming

Techniques for further information about this mode.

Table 11-3. Second Byte of Non-ASCII Key Sequences (String)

Character| Value ITF Key 98203 Key Closure Key

space 32 1 L
! 33 Yes
" 34 1 1
35
$ 36 System Yes
% 37 Yes
& 38 (Select P 3,5
' 39 3 Yes
(40
) 41 Tab TAB

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non-

alphanumeric keycode.).

3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an
error is not reported. Instead, the system will perform as much of the indicated action as possible.
5 These keys have no system meaning, and will BEEP if not trapped by ON KBD.

11-18 Keyboard Interfaces

Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue)

Character| Value ITF Key 98203 Key Closure Key
* 42 Yes
+ 43
, 44 $ Yes
- 45 (DEL CHR]

46 3 3
/ 47 Yes
0 48 User 3 Yes
1 49 User 1 Yes
2 50 User 1 [f2) Yes
3 51 User 1 [f3)? Yes
4 52 User 1[4 Yes
5 53 User 1 (152 Yes
6 54 User 1 76 (k8] Yes
7 55 User 1 [77) Yes
8 56 User 1 [18)? Yes
9 57 User 2 (f1)° Yes
: 58 | System [Shirt 16]*"° 3
; 59 System [Shift 117 *° 3
< 60
= 61 Result?
> 62
? 63 Recali4
e 64 (Shift FRecall?

System and user refer to the softkey menu which is currently active on an ITF keyboard.

Cannot generate this keycode from this keyboard. If this character is QUTPUT to the keyboard, an
error 18 not reported. Instead, the system will perform as much of the indicated action as possible.
This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note
that these keys have no labels on their keycaps; however, they do have labels on the BASIC keyboard
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard,
read the manual entitled Installing, Using, and Maintaining the BASIC System.

These keys have no system meaning, and will BEEP if not trapped by ON KBD,

o

Keyboard Interfaces 11-19

Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue)

Character| Value ITF Key 98203 Key Closure Key
A 65 System Yes
B 66
c 67 System
D 68 User 1
E 69 Yes
F 70 System Yes
G 71
H 72 (shift { <] (SHIFT}H+]

I 73

J 74 (Katakana)® (Katakana)®

K 75 Yes
L 76 Graphics 4 Yes
M 7 Alpha 4 Yes
N 78 Dump Graph * Yes
0 79 Dump Alpha 4 Yes
P 80 Yes
Q 81 1 1

R 82 System Yes
s 83 System Yes
T 84 (SHIFT}H *] Yes
Y 85 Yes
v 86 7 Yes
W 87 Yes

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non-

alphanumeric keycode.).

11-20 Keyboard Interfaces

Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an
error is not reported. Instead, the system will perform as much of the indicated action as possible.
This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note
that these keys have no labels on their keycaps; however, they do have labels on the BASIC keyboard
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard,
read the manual entitled Installing, Using, and Maintaining the BASIC System.

Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue)

Character| Value ITF Key 98203 Key Closure Key
X 88 3 Yes
Y 89 (Roman)® (Roman)® Yes
z 90 ! 1
[91 System {15
\ 92 3 Yes
] 93 | System
- 94 t Yes
_ 95 System s Yes
’ 9% 1 1
a 97 User 2 SHIFT Yes
b 98 User 2 Yes
c 99 User 2 Yes
d 100 User 2 Yes
e 101 User 2 Yes
f 102 User 2 Yes
g 103 User 2 Yes
h 104 User 3 Yes
i 105 User 3 Yes
j 106 User 3 SHIFT Yes
k 107 User 3 3 Yes
1 108 User 3 3 Yes
m 109 User 3 3 Yes
n 110 User 3 3 Yes
o 111 | System [Shir {12 3
P 112 | System [Shit ;72 ° 8

113 | System [Snift }{13]*+ 3

-

These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non-
alphanumeric keycode.).

System and user refer to the softkey menu which is currently active on an ITF keyboard.

Cannot generate this keycode from this keyboard. If this character is QUTPUT to the keyboard, an
error is not reported. Instead, the system will perform as much of the indicated action as possible.
These keys have no system meaning, and will BEEP if not trapped by ON KBD.

L -

Keyboard Interfaces 11-21

Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue)

Character| Value ITF Key 98203 Key Closure Key

r 114 | System [Shift }[f4)*° 3

s 115 | User 1 [Shift}{f1]*>6 3

t 116 | User 1 (Shift Hf2)%56 3

u 117 | User 1 (Shift }(f3]?-%-6 3

v 118 | User 1 [Shift }[faJ*® 8

w 119 | User 1 (Shift}{15]*° 3

x 120 | User 1 Shift}{76)*5 3

y 121 User 1 [Shift }[f7]*5 3

z 122 User 1 [Shift }(f8]*° 3

{ 123 3 Yes

| 124 3 Yes

} 125 3 Yes

- 126 8 Yes
127 ! !

These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non-

alphanumeric keycode.).
System and user refer to the softkey menu which is currently active on an ITF keyboard.

Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an
error is not reported. Instead, the system will perform as much of the indicated action as possible.
These keys have no system meaning, and will BEEP if not trapped by ON KBD.

These keys are also generated by the HP 46060A (HP Mouse) buttons unless GRAPHICS INPUT IS is

using them.

11-22 Keyboard Interfaces

Closure Keys

Several of the non-ASCII keys are known as “closure keys”!. Closure keys are so named
because they close (block) further keyboard input until processed. The computer can
only process two closure keys between program lines during a running program. If more
than two appear in the data output to the keyboard, the extra keys will be deferred until
the next end-of-line is encountered and two more closure keys can be processed.

As an example, the following program sends four closure keys to the keyboard with a
single OUTPUT statement. Only the first two closure keys are processed after this
OUTPUT statement (but before DISP "Next BASIC line" is executed). The third and
fourth closure keys are processed after DISP "Next BASIC line" is executed (but before
DISP "2nd BASIC line" is executed). This accounts for the following display after running
the program, since the “Printall” command was not executed until after DISP "Next BASIC
line" was executed.

160 ! Define non-ASCII keys.

110 En$=CHR$(255)&"E" | ENTER or Return key.
120 Up$=CHR$(255)&"~" | Up arrow key.

130 Prt$=CHR$(255)&"A" ! PRT ALL key or softkey.
140 !

150 CONTROL 2,1;0 ! Turn PRINTALL off.

160 CONTROL 1,1;1 ! Begin on top screen line.

170 OUTPUT 1;"Line 1"
180 OQUTPUT 1;"Line 2"
190 OUTPUT 1;"Line 3"

200 WAIT 1

210 !

220 ! Now send statement with 4 closure keys.
230 OUTPUT 2;"DISP “""Hello"""En$;Up$;Up$.Prt$;
240 DISP "Next BASIC line" | PRT ALL still off.
250 DISP "2nd BASIC line" ! Now PRT ALL is on.
260 !

270 END

! See the table on the preceding pages to determine which keys are “closure keys”.

Keyboard Interfaces 11-23

Display After Running Program
(")

Line 3
2nd BASIC line

2nd BASIC line

Printall on

_ J

In addition, if the last character sent to the keyboard is a CHR$(255), the next character
typed in by the user will give unexpected results. Again, it is important to exercise care

when using this feature.

11-24 Keyboard Interfaces

Softkeys

The keys on the upper-left portion of the keyboard are called “softkeys.” These keys can
be defined by BASIC programs to initiate program branches. In addition, these keys can
be defined as typing-aid keys, which produce keystrokes just as if you had typed them
in yourself.

Brief examples of using the softkeys have already been presented in the “Interface Events”
chapter, and in the section found earlier this chapter entitled “Modifying the Repeat and
Delay Intervals”. Typing-aid softkeys are discussed in the chapter “Introduction to the
System” found in the Installing, Using, and Maintaining the BASIC System manual.
Softkeys are also briefly described in the “Program Structure and Flow” and “Commu-
nicating with the Operator” chapters of the BASIC Programming Technigques manual.

Keyboard Interfaces 11-25

Sensing Knob Rotation

Your computer system may, or may not, have a knob (built-in, or HP 46083) or a mouse
(HP 46060). In any event, the programs below are illustrative of how knob and mouse
movements can be trapped in a program. It is assumed that you will use the techniques
and apply them to your programming situation.

The “event” of the knob (rotary pulse generator) being rotated can be sensed by a
program. The branch location, interval at which the computer interrogates the knob for
the occurrence of rotation, and branch priority are set up with a statement such as the
following:

ON KNOB Interval,Priority CALL Knob_turned

In addition to the program being able to sense rotations of the knob, it can also determine
how many pulses the knob has produced and whether or not either or both of the
or ((SHIFT] on the HP 98203 keyboard) keys are being pressed!. This ability to
“qualify” the use of the knob allows it to be used for up to four different purposes. The
following program shows how to set up the branch, how to determine the number of
pulses, and how to determine the direction of rotation.

100 ON KNOB .25 GOSUB Knob ! Check knob every 1/4 sec.

110 !

120 FOR Iteration=1 TO 400

130 WAIT .2

140 DISP Iteration

150 NEXT Iteration

160 !

170 STOP

180 !

190 Knob: STATUS 2,10;Key_with_knob

200 PRINT KNOBX;" pulses ";KNOBY;" pulses ";

201 DISP TAB(40),"Status = ";Key_with_knob

210 IF Key_with_knob=0 THEN

220 PRINT

230 ELSE

240 IF Key_with_knob=1 THEN PRINT "with SHIFT"
250 IF Key_with_knob=2 THEN PRINT "with CTRL"
260 IF Key_with_knob=3 THEN PRINT "with SHIFT and CTRL"
270 END IF

280 RETURN

290 END

! HIL devices (this includes the HP 98203C Keyboard) do not set the “CTRL” bit, although they do set
the “SHIFT” bit (if the last record processed was “y-axis” data). Consequently, you should not depend
on the value of keyboard status register 10.

11-26 Keyboard Interfaces

If any pulses have occurred since the last branch, the specified branch will be initiated.

One full rotation of the knob produces 120 pulses. The service routine calls the KNOBX
and KNOBY functions to determine how many pulses (only net rotation) have been gen-
erated since the last call to this function. If the number is positive, a net clockwise rota-
tion has occurred; a negative number signifies that a net counterclockwise rotation has
occurred. Since the pulse counter (on built-in knobs) can only sense +128 to —127 pulses
during the specified interval!, the interval parameter should be chosen small enough to
interrogate the knob before. the pulse counter reaches one of these values. Experiment
with this parameter to adjust it for your particular application.

The next program illustrates the use of an ON KNOB with a mouse (HP 46060). Note
changes in iteration as you move the mouse.

10 COM /Knob/ Kx,Ky

20 Kx=0

30 Ky=0

40 ON KNOB 1 CALL Xnob
50 PRINT TABXY(1,1);"
60 FOR I=1 TO 1.E+8

70 DISP I

80 PRINT TABXY(1,2);Kx;Ky:" "
90 NEXT I

100 END

110 SUB Knob

120 COM /Knob/ Kx,Ky

130 INTEGER Knx,Kny

140 Knx=KNOBX

150 Kny=KNOBY

160 Kx=Kx+Knx

170 Ky=Ky+Kny

180 PRINT TABXY(1,5);Knx;Kny;" "
190 SUBEND

You can also trap mouse keys with ON KBD and KBD$ function (see the subsequent
section for details on using these keywords). These keys produce the same codes as the

(Snitt (1, (Snift 2], ete. keys on ITF keyboards (while in any User menu).

! HIL devices can count from 32 767 to —32 768 pulses during the interval.

Keyboard Interfaces 11-27

Note

If you have programs written in BASIC 1.0 or 2.0, refer to the

knob section of the “Porting to 3.0” chapter found in the BASIC

Programming Techniques manual for information on how the knob { \J
handler was changed in 3.0 and subsequent system revisions.

Enhanced Keyboard Control

Normally, the BASIC operating system handles all keyboard inputs. Several BASIC
statements allow programs to handle inputs from the keyboard; examples are the IN-
PUT, LINPUT, ENTER, ON KEY, and ON KNOB statements. Additional keyboard
statements provide BASIC programs with a means of intercepting both ASCII and non-
ASCII keystrokes for processing by the program. The statements are:

ON KBD sets up and enables keystrokes to be trapped.

ON KBD ,ALL includes (PAUSE], (STOPJ, (CLR 1/0], (System), [User), [Menu), [Shift}F \
and sofkeys. See the key tables in the section of this chapter L
entitled “Second Byte of Non-ASCII Key Sequences (String)” for ~
appropriate ITF key labels.

KBD$ returns keystrokes trapped in the buffer.

OFF KBD resumes normal keystroke processing.

11-28 Keyboard Interfaces

ON KBD allows terminal emulation, keyboard masking, and special data inputs. Each
keystroke produces unique code(s) that allow the program to differentiate between dif-
ferent keys being pressed. The program can also determine whether the ((sHiFT)
on HP 98203 keyboards) or keys are being pressed with most keys, but these
keystrokes cannot be detected by themselves. Also, the ((RESET] on HP 98203
keyboards) key cannot be trapped by ON KBD.

Trapping Keystrokes

The ON KBD statement sets up a branch that is initiated when the keyboard buffer
becomes “non-empty”. The service routine may then interrogate the buffer as desired,
processing the keystrokes as determined by the program. The keyboard buffer of Series
200/300 computers contains up to 256 characters. Calling the KBD$ function does two
things: it returns all keystrokes trapped since the last time the buffer was read, and it
then clears the keyboard buffer.

Keyboard Interfaces 11-29

The following program uses ON KBD, KBD$, and OFF KBD to trap and process

keystrokes, rather than allowing the operating system to do the same.

defines each keystroke to print a complete word.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

OPTION BASE 1

DIM String$(26) [6]

READ String$(*)

!

DATA A,BROWN,CAT,DOG,EXIT,FOX,GOT

DATA HI,IN,JUMPS,KICKED,LAZY,MY

DATA NO,OVER,PUSHED, QUICK,RED, SMART

DATA THE,UNDER, VERY,WHERE, XRAY, YES, Z00

!

PRINTER IS 1

PRINT "Many ASCII keys have been"

PRINT "defined to produce words."

PRINT

PRINT "Press the following keys."

PRINT"TQBFJOTLD."

!

ON KBD GOSUB Process_keys

!

Loop

EXIT IF Word$="EXIT"

END LOOP

!

STOP

!

Process_keys:Key$=KBD$! Read buffer.

!

REPEAT ! Process ALL keys trapped.
Key_code=NUM(Key$[1;1]) ! Calculate code.
!
SELECT Key_code ! Choose response.
!
CASE 65 TO 90 ! CASE "A" TO "Z".

Word$=String$(Key_code-64)
Key$=Key$[2] ! Remove processed key.
!

11-30 Keyboard Interfaces

The program

o

450 CASE 97 TO 122 ! CASE "a" TQ "z%.

460 Word$=String$ (Key_code-96)

470 Key$=Key$[2] ! Remove processed key.
480 !

490 CASE 255 ! CASE non-ASCII key.
500 IF Key$[2;1]<>CHR$(255) THEN

510 Word$=Key$[1,2] ! Non-ASCII key alone,
520 Key$=Key$ (3] ! so take 2 codes.

530 ELSE

540 Word$=Key$[1, 3] ! Non-ASCII w/ CTRL,
550 Key$=Key$[4] ! so take 3 codes.

560 END IF

570 CASE ELSE ! CASE all others.

580 Wordg=""

590 Key$=Key${2] ! Remove processed key.
600 !

610 END SELECT

620 !

630 ! Execute response.
640 Defined=LEN (Word$) <>0

650 IF Defined THEN

660 PRINT Word$;" ";

670 DISpP

680 ELSE

690 BEEP 100, .05

700 DISP "Key undefined."

710 END IF

720 !

730 UNTIL LEN(Key$)=0 ! Until ALL keys processed.
740 !

750 RETURN

760 !

770 Quit:END

Notice that all non-ASCII keys produce two-character sequences: CHR$(255) followed
by an ASCII character. Pressing the [CTRL] key with non-ASCII keys produce three-
character sequences: another CHR$(255) character preceding the two-character sequence
produced by pressing the non-ASCII key by itself. See the tables in the section entitled
“Second Byte of Non-ASCII Key Sequences (String)” for a listing of the sequences pro-
duced by non-ASCII keys.

Keyboard Interfaces 11-31

BASIC programs can output ASCII keystrokes to the keyboard, via OUTPUT 2, without
initiating an ON KBD branch; however, outputting non-ASCII “closure” keys followed
by other keys will initiate the ON KBD branch. For example, executing the following
statement (in a program line):

OUTPUT 2;"32%2";CHR$(255) ; "E"; "KBD" :

causes the characters KBD which follow the closure key to be placed in the KBD$
buffer, which also initiates the ON KBD branch. The (EXECUTE }key (or equivalent such
as [Return]) sequence which was sent to the keyboard executes the numeric expression
32%2 before the branch is initiated. QOUTPUT to the keyboard while ON KBD is in
effect should contain at most one closure key, and that key should be at the end, in order
to avoid this “recirculation” of closure keys.

ON KBD branching is disabled by DISABLED, deactivated by OFF KBD, and tem-
porarily deactivated when the program is executing LINPUT, INPUT, or ENTER KBD
statements. Note that the keyboard input line can be read without deactivating ON
KBD by using the SYSTEM$(“KBD LINE”) function.

Mouse Keys

You can also trap mouse keys with this technique. The keys produce CHR$(255) followed
by “s”, “t”, and so forth.

Softkeys and Knob Rotation

When ON KNOB is not in effect, knob rotation is also trapped by ON KBD. Rotation
of the knob will produce “cursor” keystrokes. A clockwise rotation of the knob produces
CHR$(255) followed by “>”, while a counter-clockwise rotation produces CHR$(255)
followed by “<”. On HP 98203 Keyboards, pressing the key and rotating the Knob
clockwise produces CHR$(255) followed by “*”, and rotating the Knob counter-clockwise
produces CHR$(255) followed by “V”. These same results can be produced when using
the HP 46083A Rotary Control Knob and HP 46060A Mouse; however, the results are
dependent on the “toggle” state for the Rotary Control Knob and “horizontal” and
“vertical” movements for the HP Mouse.

ON KBD ,ALL allows softkey trapping (“overrides” oN KEY) but does not change the softkey
labels.

11-32 Keyboard Interfaces

Disabling Interactive Keyboard
Another group of statements is used to disable the interactive keyboard functions:

SUSPEND INTERACTIVE ignores the (PAUSE], [STOP), [STEP), and
keys (see the table in the section entitled “Second
Byte of Non-ASCII Key Sequences (String)” for
equivalent ITF keys) and disables live keyboard
execution.

SUSPEND INTERACTIVE,RESET ignores (see the table in the section enti-
tled “Second Byte of Non-ASCII Key Sequences
(String)” for equivalent ITF key) too.

RESUME INTERACTIVE returns to normal operation.

SUSPEND INTERACTIVE can be used to prevent interruption of programs which gather data
or which control other systems.

Special care should be taken when using SUSPEND INTERACTIVE,RESET. If an “infinite loop”
is executed while interactive keyboard functions are disabled, only the power switch will
stop execution of the program.

110 ! This program cannot be stopped by

120 ! PAUSE, STOP, or RESET

130 ! before its normal completion.

140 !

150 !

160 SUSPEND INTERACTIVE, RESET ! Ignore keyboard.
170 !

180 PRINT "COUNTDOWN IS *

190 PRINT

200 I=10 ! Initial value.
210 REPEAT

220 PRINT " T minus ";I ! Print count.
230 I=I-1 ! Decrement count.

240 WAIT 1

250 UNTIL I<0
260 !

270 PRINT

280 BEEP 100,1
290 PRINT "Done"

Wait one second.

300 RESUME INTERACTIVE ! Return to normal.
310 !
320 END

Keyboard Interfaces 11-33

Locking Out the Keyboard

There are certain times during program execution when it is expedient to prevent the
operator from using the keyboard, such as during a critical experiment which cannot

be disturbed. Then the knob and groups of keyboard keys can be enabled and disabled
separately.

Setting bit 0 of register 7 (of interface select code 2) disables all keys (excluding the
key for the ITF keyboard and for the HP 98203 keyboard) and the knob.
The following program first sets up the KNOB and KEY events to initiate program
branches. It is assumed that the keyboard is already enabled; if you are not sure, press
the key. When the program is run, the keyboard and knob remain enabled for
about five seconds, after which they are disabled. The program then displays the time
of day indefinitely; the only way to stop the program is to press the key.

100 ON KEY 1 LABEL "SFK 1" GOSUB Key1
110 ON KNOB .2 GOSUB Knob

120 !

130 PRINT "You’ve got 5 seconds. GO! "
140 FOR Iteration=1 TO 20

150 WAIT .25

160 NEXT Iteration

170 !

180 Reset_disable=0 ! RESET remains ENABLED.

190 Ky_knb_disable=1 ! DISABLE reset of kbd.
200 CONTROL 2,7;2+Reset_disable+Ky_knb_disable
210 PRINT "Time’s up!"

220 BEEP

230 !

240 Loop: DISP TIME$(TIMEDATE)

250 GOTO Loop

260 !

270 !

280 Keyl: PRINT "Special function key 1 pressed."
290 RETURN

300 !

310 Knob: PRINT "Knob rotation sensed."
320 RETURN

330 END

11-34 Keyboard Interfaces

(

If the value of the variable Reset_disable is set to 1 in the preceding program, the only

way to stop the program is to turn off power to the computer, losing the program and
all data currently in computer memory.

Note

Use care when locking out both the key and the keyboard
keys. If both are locked out, the only way to prematurely stop the
program is to turn the computer off.

Keyboard Interfaces 11-35

Keyboard Status and Control Registers

STATUS Register 0
CONTROL Register 0
STATUS Register 1
CONTROL Register 1
STATUS Register 2
CONTROL Register 2

STATUS Register 3
CONTROL Register 3

STATUS Register 4
CONTROL Register 4
STATUS Register 5

CONTROL Register 5
STATUS Register 6

CONTROL Register 6

CAPS LOCK flag

Set CAPS LOCK if non-0
PRINTALL flag

Set PRINTALL if non-0
Function key menu.

Function key menu:
0 = System menu (or SYSTEM KEYS statement)
1-3 = User menu 1 thru 3 (or USER n KEYS statement
along with the appropriate menu number)

Undefined

Set auto-repeat interval. If 1 thru 255, repeat interval in mil-
liseconds is 10 times this value. 256 = turn off auto-repeat.
(Default at power-on or SCRATCH A is 80ms.)

Undefined

Set delay before auto-repeat. If 1 thru 256, delay in millisec-
onds is 10 times this value. (Default at power-on or SCRATCH
A is 700ms.)

KBDS$ buffer overflow register. 1 = overflow
Register is reset when read.

Undefined

Typing aid expansion overflow register.
1 = overflow. Register is reset when read.

Undefined

11-36 Keyboard Interfaces

\

;‘\J

STATUS Register 7 Interrupt Status

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INI- Reserved |Reserved |RESET | Keyboard
TIALIZE |For For Key and
Timeout | Future Future Interrupt |and Knob
0 0 0 Interrupt | Use Use Disabled |Interrupt
Disabled Disabled
Value=128 |Value=64 |Value=32 | Value=16 | Value=8 |Value=4 |Value=2 | Value=1

CONTROL Register 7 Interrupt Disable Mask

Most Significant Bit Least Significant Bit
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
INI- Reserved | Reserved
b TIALIZE |For For RESET | Keyboard
Not Use
ot Used Timeout | Future Future Key and Knob
Use Use
Value=128 |Value=64 |[Value=32 | Value=16 |Value=8 |Value=4 | Value=2 | Value=1

Keyboard Interfaces 11-37

STATUS Register 8

0-US ASCII
1-French
2-German
3-Swedish
4-Spanish
5-Katakana
6-Canadian English

Keyboard Language Jumper

7-United Kingdom

8-Canadian French

9-Swiss French
10-Italian
11-Belgian
12-Dutch

13-Swiss German
14-Latin(Spanish)

15-Danish

16-Finnish
17-Norwegian
18-Swiss French*

19-Swiss German*

See also SYSTEM$(“KEYBOARD LANGUAGE”) which requires the LEX binary. Note
that the STATUS statement when used with this register does not require the LEX

binary.

CONTROL Register 8
STATUS Register 9

Most Significant Bit

Undefined

Keyboard Type

Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1=HIL 1=No 1=n-Key 1=98203C | 1=98203A
Keyboard | Keyboard |Rollover Keyboard | Keyboard
gmernal glsternal Interface 0=Key- 0=2 or 0 0=Other 0=Other
¢ ¢ O=non- board less Keyboard |Keyboard
HIL Present rollover
Value=128 | Value=64 |Value=32 |Value=16 |Value=8 | Value=4 | Value=2 Value=1

11-38 Keyboard Interfaces

Bits 5, 1, and 0 of STATUS Register 9 and the following table can be used to determine
the Keyboard Type.

Bit 5 Bit 1 Bit 0 Keyboard Type
0 0 0 HP 982038 or built-in
0 0 1 HP 98203A
1 0 0 ITF (such as the HP 46020A and 46021A)
1 1 0 HP 98203C

CONTROL Register 9 Undefined

STATUS Register 10 Status at Last Knob Interrupt

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

CTRL SHIFT
0 0 0 0 0 0 Key Key
Pressed Pressed

Value=128 | Value=64 |Value=32 |Value=16 | Value=8 | Value=4 |Value=2 | Value=1

Note that bit 1 is always 0 for keyboards connect to an HP-HIL interface, and with all
HP-HIL mice and knobs (e.g. HP 46083A Rotary Control Knob, HP 46085 Control Dials,
and HP 98203C Keyboard Knob).

CONTROL Register 10 Undefined
STATUS Register 11 O=horizontal-pulse mode; 1=all-pulse mode.

CONTROL Register 11 Set knob pulse mode (0 is default). See the knob discussion
in the “Porting to 3.0” chapter of BASIC Programming Tech-
nigues.

STATUS Register 12 “Pseudo-EOI for CTRL-E ” flag
CONTROL Register 12 Enable pseudo-EQI for CTRL-E if non-0

Keyboard Interfaces 11-39

STATUS Register 13
CONTROL Register 13

STATUS Register 14

CONTROL Register 14

STATUS Register 15

CONTROL Register 15

STATUS Register 16

CONTROL Register 16

Katakana flag
Set Katakana if non-0

Numbering of softkeys on ITF keyboard:
0= is key number 1 (default);
1= is key number 0;

Softkey numbering on ITF keyboard (see above register de-
scription).

Currently in 98203 keyboard compatibility mode:
0—OFF (default)
1—-ON

Turns “98203 keyboard compatibility mode” on (#0) and off
(=0). (See the chapter “Porting to Series 300” in the Program-
ming Techniques manual for further information about using
this mode.) Note that instead of using the CONTROL regis-
ter 15 statement you can use the KBD CMODE statement to
turn the “98203 keyboard compatibility mode” ON and OFF.

Returns the enabled/disabled status of the up and down arrow
keys, [Prev], [Next], and (both shifted and un-shifted for all
of these keys). If the status value is 1 it means these keys are
deactivated. Note that the default value is 0.

Allows you to disable or re-enable the display scrolling keys
mentioned for STATUS Register 16. This prevents accidental
scrolling of the display screen. Executing a 1 with the CON-
TROL statement deactivates the print scrolling keys and a 0
activates them.

11-40 Keyboard Interfaces

Mt

- 5
s

Table of Contents

Chapter 12: The HP-IB Interface

Introduction. 12-1
Initial Installation and Verification 12-2
Communicating with Devicesc.oiei i, 12-3
HP-IB Device Selectors .,o 12-3
Moving Data Through the HP-IB 12-4
General Structure of the HP-IB, 12-5
Addressing Multiple Listenersooueiiienini .. 12-8
Secondary Addressingii i 12-9
General Bus Management 12-10
Remote Control of Deviceso.oovui . 12-11
Locking Out Local Control i i, 12-11
Enabling Local Control N 12-12
Triggering HP-IB Devices e e 12-12
Clearing HP-IB Devices.ouurviiint e 12-13
Aborting Bus Activityo 12-13
HP-IB Service Requests.o 12-14
Polling HP-IB Devices e 12-16
Advanced Bus Managemento i 12-19
The Message Conceptoouviivineii i 12-19
Types of Bus Messagesot 12-19
Explicit Bus Messagesoooviiiii ... B 12-24
HP-IB Message Mnemonicsooouiiiiiiininaainnnnn... 12-27
The Computer As a Non-Active Controllero vuiire i, 12-29
Determining Controller Status and Address 12-29
Changing the Controller’s Address 12-31
Passing Control....... ... 12-31
Interrupts While Non-Active Controller 12-32
Addressing a Non-Active Controller 12-37
Requesting Service 12-38
Responding to Parallel Polls..................... e 12-39
Responding to Serial Polls i, 12-41
Interface-State Information............ 12-42
Servicing Interrupts that Require Data Transfers.................... 12-43
HP-IB Control Lines 12-46

Handshake Lines ot 12-47

The Attention Line (ATN) 12-47

The Interface Clear Line (IFC) 12-48
The Remote Enable Line (REN) 12-48
The End or Identify Line (EOI).......................... 12-48
The Service Request Line (SRQ), 12-49
Determining Bus-Line States 12-50
Summary of HP-IB STATUS and CONTROL Registers.................. 12-51
HP-IB Status and Control Registers (cont.) 12-52
HP-IB Status and Control Registers (cont.) 12-53
HP-IB Status and Control Registers (cont.) 12-54
HP-IB Status and Control Registers (cont.) 12-55
HP-IB Status and Control Registers (cont.) 12-56
Summary of HP-IB READIO and WRITEIO Registers 12-57
READIO Registersoo.ooiiii i, 12-57
HP-IB WRITEIO Registerscooiiiiiiiininn. .. 12-64
Summary of Bus Sequences 12-70
ABORT .o 12-70
CLEAR .. 12-71
LOCAL . . 12-71
LOCAL LOCKOUT oo 12-71
PASS CONTROL e 12-72
PPOLL . 12-72
PPOLL CONFIGURE. i 12-72
PPOLL UNCONFIGURE. ..., 12-73
REMOTE ... o 12-73
SPOLL ..o 12-74
TRIGGER 12-74

The HP-IB Interface 1 2

Introduction

This chapter describes the techniques necessary for programming the HP-IB interface.
Many of the elementary concepts have been discussed in previous chapters; this chapter
describes the specific details of how this interface works and how it is used to communicate
with and control systems consisting of various HP-IB devices.

The HP-IB (Hewlett-Packard Interface Bus), commonly called the “bus”, provides com-
patibility between the computer and external devices conforming to the IEEE 488-1978
standard. Electrical, mechanical, and timing compatibility requirements are all satisfied
by this interface.

Data
8 >
HP-I1B
interface
Handshake S | Shielded Cable
Data and 3 b to Device(s)
Control Hardware g
Backplane and 8 @Z>
Connector Firmware Control c
<— 5 > &
D
o™

I Logic and Shield
Grounds

—

Figure 12-1. HP-IB Interface Block Diagram

N\

The HP-IB Interface is both easy to use and allows great flexibility in communicating
data and control information between the computer and external devices. It is one of
the easiest methods to connect more than one device to the same interface.

The HP-IB Interface 12-1

Initial Installation and Verification

Refer to the HP-IB Installation Note for information about setting the switches and
installing an external HP-IB interface. Once the interface has been properly installed,
you can verify that the switch settings are what you intended by running the following
program. The defaults of the internal HP-IB interface can also be checked with the
program. The results are displayed on the CRT.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

PRINTER IS CRT
PRINT CHR$(12) ! Clear screen w/ FF.
|

Ask: INPUT "Enter HP-IB interface select code",Isc

IF Isc<7 OR Isc>30 THEN GOTO Ask
1

STATUS Isc;Card_id
IF Card_id<>1 THEN
PRINT "Interface at select code";Isc;
PRINT "is not an HP-IB"
PRINT
STOP
END IF
!
PRINT "HP-IB interface present"
PRINT " at select code";Isc
PRINT
!
STATUS Isc,1;Intr_dma
Level=3+(BINAND (32+16,Intr_dma) DIV 16)
PRINT "Hardware interrupt level =";Level
!
STATUS Isc,3;Addr_ctrlr
Address=Addr_ctrlr MOD 32
PRINT "Primary address =";Address
!
Sys_ctrl=BIT(Addr_ctrlr,7)
IF Sys_ctrl THEN
PRINT "System Controller"
ELSE
PRINT "Non-system Controller"
END IF
]
END

The hardware interrupt level is described in Chapter 7. Hardware interrupt level is set to
3 on built-in HP-IB interface, but can range from 3 to 6 on optional interfaces. Primary
address is further described in “HP-IB Device Selectors” in the next section.

12-2 The HP-IB Interface

The term “System Controller” is also further described later in this chapter in “General
Structure of the HP-IB”. The internal HP-IB has a jumper that is set at the factory to
make it a system controller. This jumper is located below the lowest interface slot at
the computer backplane. The lowest interface (or memory board) in the backplane must
be removed to access this jumper. If the jumper in the center of the clear plastic cover
is placed on the middle and rightmost pins, (as seen from the rear of the computer),
the computer is set to be a System Controller. If it is on the middle and leftmost pins,
the computer is not a System Controller. External HP-IB interfaces have a switch that
controls this interface state.

Communicating with Devices

This section describes programming techniques used to output data to and enter data
from HP-IB devices. General bus operation is also briefly described in this chapter. Later
chapters will describe: further details of specific bus commands, handling interrupts, and
advanced programming techniques.

HP-IB Device Selectors

Since the HP-IB allows the interconnection of several devices, each device must have a
means of being uniquely accessed. Specifying just the interface select code of the HP-1B
interface through which a device is connected to the computer is not sufficient to uniquely
identify a specific device on the bus.

Each device “on the bus” has an primary address by which it can be identified; this
address must be unique to allow individual access of each device. Each HP-IB device
has a set of switches that are used to set its address. Thus, when a particular HP-IB
device is to be accessed, it must be identified with both its interface select code and its
bus address.

The interface select code is the first part of an HP-IB device selector. The interface select
code of the internal HP-1B is 7; external interfaces can range from 8 to 31. The second
part of an HP-IB device selector is the device’s primary address, which are in the range
of 0 through 30. For example, to specify the device:

the interface at select code 7 use device selector = 722
the device at primary address 22

the interface at select code 10 use device selector = 1002
the device at primary address 2

The HP-IB Interface 12-3

Remember that each device’s address must be unique. The procedure for setting the
address of an HP-IB device is given in the installation manual for each device. The
HP-IB interface also has an address. The default address of the internal HP-IB is 21 or
20, depending on whether or not it is a System Controller, respectively. The addresses of
external HP-IB interfaces are set by configuring the address switches on each interface
card. Each HP-IB interface’s address can be determined by reading STATUS register 3
of the appropriate interface select code, and each interface’s address can be changed by
writing to CONTROL register 3. See “Determining Controller Status and Address” and
“Changing the Controller’s Address” for further details.

Moving Data Through the HP-IB

Data is output from and entered into the computer through the HP-IB with the OUTPUT
and ENTER statements, respectively; all of the techniques described in Chapters 4 and
5 are completely applicable with the HP-IB. The only difference between the OUTPUT
and ENTER statements for the HP-IB and those for other interfaces is the addressing
information within HP-IB device selectors.

Examples

100 Hpib=7

110 Device_addr=22

120 Device_selector=Hpib*100+Device_addr
130 !

140 OUTPUT Device_selector;"F1R7T2T3"
150 ENTER Device_selector;Reading

320 ASSIGN @Hpib_device TO 702

330 OUTPUT @Hpib_device;"Data message"
340 ENTER QHpib_device;Number

440 OUTPUT 822;"F1R7T2T3"

380 ENTER 724;Readings(*)

12-4 The HP-IB Interface

All of the IMAGE specifiers described in Chapters 4 and 5 can also be used by QUT-
PUT and ENTER statements that access the HP-IB interface, and the definitions of all
specifiers remain exactly as stated in those chapters.

Examples

100 ASSIGN @Printer TO 701
110 OUTPUT @Printer USING "“6A,3X,2D.D";Item$,Quantity

860 ASSIGN @Device TO 825
870 QUTPUT @Device USING "#,B";65,66,67,13,10
870 ENTER @Device USING "#,K";Data$

General Structure of the HP-IB

Communications through the HP-IB are made according to a precisely defined set of
rules. These rules help to ensure that only orderly communication may take place on the
bus. For conceptual purposes, the organization of the HP-IB can be compared to that of
a committee. A committee has certain “rules of order” that govern the manner in which
business is to be conducted. For the HP-IB, these rules of order are the IEEE 488-1978
standard.

One member, designated the “committee chairman,” is set apart for the purpose of
conducting communications between members during the meetings. This chairman is
responsible for overseeing the actions of the committee and generally enforces the rules
of order to ensure the proper conduct of business. If the committee chairman cannot
attend a meeting, he designates some other member to be “acting chairman.”

On the HP-IB, the System Controller corresponds to the committee chairman. The
system controller is generally designated by setting a switch on the interface and cannot
be changed under program control. However, it is possible to designate an “acting
chairman” on the HP-IB. On the HP-IB, this device is called the Active Controller, and
may be any device capable of directing HP-IB activities, such as a desktop computer.

When the System Controller is first turned on or reset, it assumes the role of Active
Controller. Thus, only one device can be designated System Controller. These responsi-
bilities may be subsequently passed to another device while the System Controller tends
to other business. This ability to pass control allows more than one computer to be
connected to the HP-IB at the same time.

The HP-IB Interface 12-5

In a committee, only one person at a time may speak. It is the chairman’s responsibility
to “recognize” which one member is to speak. Usually, all committee members present
always listen; however, this is not always the case on the HP-IB. One of the most powerful

features of the bus is the ability to selectively send data to individual (or groups of)
devices.

Imagine slow note takers and a fast note takers on the committee. Suppose that the
speaker is allowed to talk no faster than the slowest note taker can write. This would
guarantee that everybody gets the full set of notes and that no one misses any infor-
mation. However, requiring all presentations to go at that slow pace certainly imposes
a restriction on our committee, especially if the slow note takers do not need the infor-
mation. Now, if the chairman knows which presentations are not important to the slow
note takers, he can direct them to put away their notes for those presentations. That
way, the speaker and the fast note taker(s) can cover more items in less time.

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc
are connected to the bus. Both devices do not need to listen to all data messages sent
through the bus. Also, if all the data transfers must be slow enough for the printer to
keep up, saving a program on the disc would take as long as listing the program on the
printer. That would certainly not be a very effective use of the speed of the disc drive if
it was the only device to receive the data. Instead, by “unlistening” the printer whenever
it does not need to receive a data message, the computer can save a program as fast as
the disc can accept it.

During a committee meeting, the current chairman is responsible for telling the commit-
tee which member is to be the talker and which is (are) to be the listener(s). Before
these assignments are given, he must get the attention of all members. The talker and
listener(s) are then designated, and the next data message is presented to the listener(s)
by the talker. When the talker has finished the message, the designation process may be
repeated.

On the HP-IB, the Active Controller takes similar action. When talker and listener(s)
are to be designated, the attention signal line (ATN) is asserted while the talker and
listener(s) are being addressed. ATN is then cleared, signaling that those devices not
addressed to listen may ignore all subsequent data messages. Thus, the ATN line sep-
arates data from commands; commands are accompanied by the ATN line being true,
while data messages are sent with the ATN line false.

12-6 The HP-IB Interface

On the HP-IB, devices are addressed to talk and addressed to listen in the following
orderly manner. The Active Controller first sends a single command which causes all
devices to unlisten. The talker’s address is then sent, followed by the address(es) of the
listener(s). After all listeners have been addressed, the data can be sent from the talker
to the listener(s). Only device(s) addressed to listen accept any data that is sent through
the bus (until the bus is reconfigured by subsequent addressing commands).

The data transfer, or data message, allows for the exchange of information between
devices on the HP-IB. Our committee conducts business by exchanging ideas and infor-
mation between the speaker and those listening to his presentation. On the HP-IB, data
is transferred from the active talker to the active listener(s) at a rate determined by the
slowest active listener on the bus. This restriction on the transfer rate is necessary to
ensure that no data is lost by any device addressed to listen. The handshake used to
transfer each data byte ensures that all data output by the talker is received by all active
listeners.

Examples of Bus Sequences

Most data transfers through the HP-IB involve a talker and only one listener. TFor
instance, when an OUTPUT statement is used (by the Active Controller) to send data
to an HP-IB device, the following sequence of commands and data is sent through the
bus.

QUTPUT 701;"Data"

1. The unlisten command is sent.

2. The talker’s address is sent (here, the address of the computer; “My Talk Address”),
which is also a command.

3. The listener’s address (01) is sent, which is also a command.

4. The data bytes “D”, “a”, “t”, “a”, CR, and LF are sent; all bytes are sent using
the HP-1B’s interlocking handshake to ensure that the listener has received each
byte.

The HP-IB Interface 12-7

Similarly, most ENTER statements involve transferring data from a talker to only one
listener. For instance, the following ENTER statement invokes the following sequence of
commands and data-transfer operations.

ENTER 722;Voltage
1. The unlisten command is sent.
2. The talker’s address (22) is sent, which is a command.

3. The listener’s address is sent (here, the computer’s address; “My Listen Address”),
also a command.

4. The data is sent by device 22 to the computer using the HP-IB handshake.

Bus sequences, hardware signal lines, and more specific HP-IB operations are discussed
in the “HP-IB Control Lines” and “Advanced Bus Management” sections.

Addressing Multiple Listeners

HP-IB allows more than one device to listen simultaneously to data sent through the bus
(even though the data may be accepted at differing rates). The following examples show
how the Active Controller can address multiple listeners on the bus.

100 ASSIGN Q@Listeners TO 701,702,703
110 OUTPUT @Listeners;String$
120 OUTPUT @Listeners USING Image_1;Array$(*)

This capability allows a single OUTPUT statement to send data to several devices si-
multaneously. It is however, necessary for all the devices to be on the same interface.
When the preceding OUTPUT statement is executed, the unlisten command is sent first,
followed by the Active Controller’s talk address and then listen addresses 01, 02, and 03.
Data is then sent by the controller and accepted by devices at addresses 1, 2, and 3.

If an ENTER statement that uses the same I/O path name is executed by the Active
Controller, the first device is addressed as the talker (the source of data) and all the rest
of the devices, including the Active Controller, are addressed as listeners. The data is
then sent from the device at address 01 to the devices at addresses 02 and 03 and to the
Active Controller.

130 ENTER @Listeners;String$
140 ENTER QListeners USING Image_2;Array$(*)

12-8 The HP-IB Interface

Secondary Addressing

Many devices have operating modes which are accessed through the extended addressing
capabilities defined in the bus standard. Extended addressing provides for a second
address parameter in addition to the primary address. Examples of statements that use
extended addressing are as follows.

100
110

200
160
160
170

120

ASSIGN QDevice TO 72205 ! 22=primary, O5=secondary.
OUTPUT @QDevice;Message$

QUTPUT 72205;Message$

ASSIGN @Device TO 7220529 ! Additional secondary
! address of 29.

OUTPUT QDevice;Message$

OQUTPUT 7220529;Message$

The range of secondary addresses is 00-31; up to six secondary addresses may be specified
(a total of 15 digits including interface select code and primary address). Refer to the
device’s operating manual for programming information associated with the extended
addressing capability. The HP-IB interface also has a mechanism for detecting secondary
commands. For further details, see the discussion of interrupts.

The HP-1B Interface 12-9

General Bus Management

The HP-IB standard provides several mechanisms that allow managing the bus and the

devices on the bus. Here is a summary of the statements that invoke these control
mechanisms.

ABORT is used to abruptly terminate all bus activity and reset all devices to power-on
states.

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent
state.

LOCAL is used to return all (or selected) devices to local (front-panel) control.
LOCAL LOCKOUT is used to disable all devices’ front-panel controls.

PPOLL is used to perform a parallel poll on all devices (which are configured and capable
of responding).

PPOLL CONFIGURE is used to setup the parallel poll response of a particular device.

PPOLL UNCONFIGURE is used to disable the parallel poll response of a device (or all
devices on an interface).

REMOTE is used to put all (or selected) devices into their device-dependent, remote
modes.

SEND is used to manage the bus by sending explicit command or data messages.

SPOLL is used to perform a serial poll of the specified device (which must be capable of
responding).

TRIGGER is used to send the trigger message to a device (or selected group of devices).

These statements (and functions) are described in the following discussion. However, the
actions that a device takes upon receiving each of the above commands are, in general,
different for each device. Refer to a particular device’s manuals to determine how it will
respond. Detailed descriptions of the actual sequence of bus messages invoked by these
statements are contained in “Advanced Bus Management” later in this chapter.

12-10 The HP-IB Interface

Remote Control of Devices

Most HP-IB devices can be controlled either from the front panel or from the bus. If
the device’s front-panel controls are currently functional, it is in the Local state. If it is
being controlled through the HP-IB, it is in the Remote state. Pressing the front-panel
“Local” key will return the device to Local (front-panel) control, unless the device is in
the Local Lockout state (described in a subsequent discussion).

The Remote message is automatically sent to all devices whenever the System Controller
is powered on, reset, or sends the Abort message. A device also enters the Remote
state automatically whenever it is addressed. The REMOTLE statement also outputs the
Remote message, which causes all (or specified) devices on the bus to change from local
control to remote control. The computer must be the System Controller to execute the
REMOTE statement.

Examples

REMOTE 7

ASSIGN @Device TO 700
REMOTE @Device

REMOTE 700

Locking Out Local Control

The Local Lockout message effectively locks out the “local” switch present on most HP-
IB device front panels, preventing a device’s user from interfering with system operations
by pressing buttons and thereby maintaining system integrity. As long as Local Lockout
is in effect, no bus device can be returned to local control from its front panel.

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This
message is sent to all device on the specified HP-IB interface, and it can only be sent by
the computer when it is the Active Controller.

Examples

ASSIGN @Hpib TO 7
LOCAL LOCKOUT @Hpib

LOCAL LOCKOUT 7

The Local Lockout message is cleared when the Local message is sent by executing the
LOCAL statement. However, executing the ABORT statement does not cancel the Local
Lockout message.

The HP-IB Interface 12-11

Enabling Local Control

During system operation, it may be necessary for an operator to interact with one or
more devices. For instance, an operator might need to work from the front panel to make
special tests or to troubleshoot. And, in general, it is good systems practice to return
all devices to local control upon conclusion of remote-control operations. Executing
the LOCAL statement returns the specified devices to local (front-panel) control. The
computer must be the Active Controller to send the LOCAL message.

Examples

ASSIGN @Hpib TO 7
LOCAL @Hpib

ASSIGN @Device TO 700
LOCAL @Device

If primary addressing is specified, the Go-to-Local message is sent only to the specified
device(s). However, if only the interface select code is specified, the Local message is sent
to all devices on the specified HP-IB interface and any previous Local Lockout message
(which is still in effect) is automatically cleared. The computer must be the System
Controller to send the Local message (by specifying only the interface select code).

Triggering HP-IB Devices

The TRIGGER statement sends a Trigger message to a selected device or group of
devices. The purpose of the Trigger message is to initiate some device-dependent action;
for example, it can be used to trigger a digital voltmeter to perform its measurement
cycle. Because the response of a device to a Trigger Message is strictly device-dependent,
neither the Trigger message nor the interface indicates what action is initiated by the
device.

Examples

ASSIGN @Hpib TO 7
TRIGGER QHpib

ASSIGN @Device TO 707
TRIGGER @Device

Specifying only the interface select code outputs a Trigger message to all devices currently
addressed to listen on the bus. Including device addresses in the statement triggers only
those devices addressed by the statement. The computer can also respond to a trigger
from another controller on the bus. See “Interrupts While Non-Active Controller” for
details.

12-12 The HP-IB Interface

Clearing HP-IB Devices

The CLEAR statement provides a means of “initializing” a device to its predefined,
device-dependent state. When the CLEAR statement is executed, the Clear message
is sent either to all devices or to the specified device(s), depending on the information
contained within the device selector. If only the interface select code is specified, all
devices on the specified HP-IB interface are cleared. If primary-address information
is specified, the Clear message is sent only to the specified device. Only the Active
Controller can send the Clear message.

Examples

ASSIGN @Hpib TO 7
CLEAR QHpib

ASSIGN @Device TO 700
CLEAR @Device

Aborting Bus Activity

This statement may be used to terminate all activity on the bus and return all the HP-IB
interfaces of all devices to a reset (or power-on) condition. Whether this affects other
modes of the device depends on the device itself. The computer must be either the
active or the system controller to perform this function. If the System Controller (which
is not the current Active Controller) executes this statement, it regains active control of
the bus. Only the interface select code may be specified; device selectors which contain
primary-addressing information (such as 724) may not be used.

Examples

ASSIGN QHpib TO 7
ABORT GHpib

ABORT 7

The HP-IB Interface 12-13

HP-IB Service Requests

Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers, are
capable of generating a “service request” when they require the Active Controller to take
action. Service requests are generally made after the device has completed a task (such
as making a measurement) or when an error condition exists (such as a printer being
out of paper). The operating and/or programming manuals for each device describe the

device’s capability to request service and conditions under which the device will request
service.

To request service, the device sends a Service Request message (SRQ) to the Active
Controller. The mechanism by which the Active Controller detects these requests is the
SRQ interrupt. Interrupts allow an efficient use of system resources, because the system
may be executing a program until interrupted by an event’s occurrence. If enabled,
the external event initiates a program branch to a routine which “services” the event
(executes remedial action).

Chapter 7 described interrupt events in general. This chapter describes the two types of
interrupts that can occur on an HP-IB Interface: SRQ interrupts from external devices
(that can occur while the computer is an Active Controller), and interrupts that can
occur while the computer is a non-Active Controller. The first type of interrupts are
described in this section. The second type are described in the section called “The
Computer as a Non-Active Controller.”

Setting Up and Enabling SRQ Interrupts
In order for an HP-IB device to be able to initiate a service routine in the Active Con-
troller, two prerequisites must be met: the SRQ interrupt event must have a service
routine defined, and the SRQ interrupt must be enabled to initiate the branch to the
service routine. The following program segment shows an example of setting up and
enabling an SRQ interrupt.

100 Hpib=7

110 ON INTR Hpib GOSUB Service_routine

120 !

130 Mask=2
140 ENABLE INTR Hpib;Mask

The value of the mask in the ENABLE INTR statement determines which type(s) of
interrupts are to be enabled. The value of the mask is automatically written into the
HP-IB interfaces’s interrupt-enable register (CONTROL register 4) when this statement
is executed. Bit 1 is set in the preceding example, enabling SRQ interrupts to initiate a
program branch. Reading STATUS register 4 at this point would return a value of 2.

12-14 The HP-IB Interface

When an SRQ interrupt is generated by any device on the bus, the program branches
to the service routine when the current line is exited (either when the line’s execution
is finished or when the line is exited by a call to a user-defined function). The service
routine, in general, must perform the following operations:

o determine which device(s) are requesting service (parallel poll)
e determine what action is requested (serial poll)
e clear the SRQ line

o perform the requested action

L

re-enable interrupts

e return to the former task (if applicable)

Servicing SRQ Interrupts

The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present momentarily
but does not remain long enough to be sensed by the computer, an interrupt will not
be generated. The level-sensitive nature of the SRQ line also has further implications,
which are described in the following paragraphs.

Example

Assume only one device is currently on the bus. The following service routine first serially
polls the device requesting service, thereby clearing the interrupt request. In this case,
the computer did not have to determine which device was requesting service because
only one device is on the bus. It is also assumed that only service request interrupts have
been enabled; therefore, the type of interrupt need not be determined either. The service
is then performed, and the SRQ event is re-enabled to generate subsequent interrupts.

500 Serv_rtn: Ser_poll=SPOLL(@Device)

510 ENTER @Device;Value

520 PRINT Value

530 ENABLE INTR 7 ! Use previous mask.
540 RETURN

The IEEE standard has defined that when an interrupting device is serially polled, it
is to stop interrupting until a new condition arises (or the same condition arises again).
In order to “clear” the SRQ line, it is necessary to perform a serial poll on the device.
This poll is an acknowledgement from the controller to the device that it has seen the
request for service and is responding. The device then removes its request for service (by
releasing SRQ).

The HP-IB Interface 12-15

Had the SRQ line not been released, the computer would have branched to the ser-
vice routine immediately upon re-enabling interrupts on this interface. This is another
implication of the level-sensitive nature of the SRQ interrupt.

It is also important to note that once an interrupt is sensed and logged, the interface
cannot generate another interrupt until the initial interrupt is serviced. The computer
disables all subsequent interrupts from an interface until a pending interrupt is serviced.
For this reason, it was necessary to allow for subsequent branching.

Polling HP-IB Devices

The Parallel Poll is the fastest means of gathering device status when several devices are
connected to the bus. Each device (with this capability) can be programmed to respond
with one bit of status when Parallel Polled, making it possible to obtain the status of
several devices in one operation. If a device responds affirmatively (“I need service”)
to a Parallel Poll, then more information as to its specific status can be obtained by
conducting a Serial Poll of the device.

Configuring Parallel Poll Responses

Certain devices can be remotely programmed by the Active Controller to respond to a
Parallel Poll. A device which is currently configured for a Parallel Poll responds to the
poll by placing its current status on one of the bus data lines. The logic sense of the
response and the data-bit number can be programmed by the PPOLL CONFIGURE
statement. No multiple listeners can be specified in the statement; if more than one
device is to respond on a single bit, each device must be configured with a separate
PPOLL CONFIGURE statement.

Example

ASSIGN @Device TO 701
PPOLL CONFIGURE @Device;Configure_code

The value of Configure_code (any numeric expression can be specified) is first rounded
to an integer and then used to configure the device’s Parallel Poll Response. The least-
significant 3 bits (2 thru 0) of the expression are used to determine which data line the
device is to respond on (place its status on). Bit 3 specifies the logic sense of the Parallel
Poll Response bit of the device. For instance, a value of 0 implies that the device’s
response is 0 when its Status Bit message is “I need service.”

12-16 The HP-IB Interface

\"'ﬁ/

Example

The following statement configures the device at address 01 on the HP-IB interface at
select code 7 to respond by placing a 0 on bit 4 (DIO5) when its Status Bit response is
affirmative.

PPOLL CONFIGURE 701, 4
Conducting a Parallel Poll
The PPOLL function returns a single byte containing up to 8 status bit messages of
the devices on the bus (which are capable of responding to the Parallel Poll. Each bit
returned by the function corresponds to the status bit of the device(s) configured to
respond to the Parallel Poll. (Recall that one or more devices can respond on a single
line.) The PPOLL function can only be executed by the Active Controller.
Example

Response=PPOLL(7)
Disabling Parallel Poll Responses
The PPOLL UNCONFIGURE statement gives the Active Controller the capability of
disabling the Parallel Poll responses of one or more devices on the bus.
Examples

PPOLL UNCONFIGURE 705
The following statement disables all devices on the HP-IB interface at select code 8 from
responding to a Parallel Poll.

PPOLL UNCONFIGURE 8
If no primary addressing is specified, all bus devices are disabled from responding to a

Parallel Poll. If primary addressing is specified, only the specified devices (which have
the Parallel Poll Configure capability) are disabled.

The HP-IB Interface 12-17

Conducting a Serial Poll

A sequential poll of individual devices on the bus in known as a Serial Poll. One entire
byte of device-specific status is returned in response to a Serial Poll. This byte is called
the “Status Byte” message and, depending on the device, may indicate an overload, a

request for service, or a printer being out of paper. The particular response of each ,
device depends on the device. N

The SPOLL function performs a Serial Poll of the specified device; the computer must
currently be the Active Controller in order to execute this function.

Examples

ASSIGN @Device TO 700
Status_byte=SPOLL (700)

Spoll_724=SPOLL(724)

Just as the Parallel Poll is not defined for individual devices, the Serial Poll is meaningless
for an interface; therefore, primary addressing must be used with the SPOLL function.

12-18 The HP-IB Interface

Advanced Bus Management

Bus communication involves both sending data to devices and sending commands to
devices and the interface itself. “General Structure of the HP-IB” stated that this com-
munication must be made in an orderly fashion and presented a brief sketch of the
differences between data and commands. However, most of the bus operations described
so far in this chapter involve sequences of commands and/or data which are sent auto-
matically by the computer when HP-IB statements are executed. This section describes
both the commands and data sent by HP-IB statements and how to construct your own,
custom bus sequences.

The Message Concept

The main purpose of the bus is to send information between two (or more) devices. These
quantities of information sent from talker to listener(s) can be thought of as messages.
However, before data can be sent through the bus, it must be properly configured. A
sequence of commands is generally sent before the data to inform bus devices which is
to send and which is (or are) to listen to the subsequent message(s). These commands
can also be thought of as messages.

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is
true, these bytes are considered commands; when ATN is false, they are interpreted as
data. Bus command groups and their ASCII characters and codes are shown in “Bus
Commands and Codes”.

Types of Bus Messages

The messages can be classified into twelve types. This computer is capable of imple-
menting all twelve types of interface messages. The following list describes each type of
message.

1. A Data message consists of information which is sent from the talker to the lis-
tener(s) through the bus data lines.

2. The Trigger message causes the listening device(s) to initiate device-dependent
action(s).

3. The Clear message causes either the listening device(s) or all of the devices on the
bus to return to their device-dependent “clear” states.

4. The Remote message causes listening devices to change to remote program control
when addressed to listen.

The HP-IB Interface 12-19

10.

11.

12.

. The Local message clears the Remote message from the listening device(s) and

returns the device(s) to local front-panel control.

The Local Lockout message disables a device’s front-panel controls, preventing a
device’s operator from manually interfering with remote program control.

The Clear Lockout/Local message causes all devices on the bus to be removed from
Local Lockout and to revert to the Local state. This message also clears the Remote
message from all devices on the bus.

The Service Request message can be sent by a device at any time to signify that the
device needs to interact with the the Active Controller. This message is cleared by
sending the device’s Status Byte message, if the device no longer requires service.

A Status Byte message is a byte that represents the status of a single device on the
bus. This byte is sent in response to a serial poll performed by the Active Controller.
Bit 6 indicates whether the device is sending the Service Request message, and the
remaining bits indicate other operational conditions of the device.

A Status Bit message is a single bit of device-dependent status. Since more than
one device can respond on the same line, this Status Bit may be logically com-
bined and/or concatenated with Status Bit messages from many devices. Status
Bit messages are returned in response to a Parallel Poll conducted by the Active
Controller.

The Pass Control message transfers the bus management responsibilities from the
Active Controller to another controller.

The Abort message is sent by the System Controller to assume control of the
bus unconditionally from the Active Controller. This message terminates all bus
communications, but is not the same as the Clear message.

These messages represent the full implementation of all HP-IB system capabilities; all of
these messages can be sent by this computer. However, each device in a system may be
designed to use only the messages that are applicable to its purpose in the system. It
is important for you to be aware of the HP-IB functions implemented on each device in
your HP-IB system to ensure its operational compatibility with your system.

12-20 The HP-IB Interface

Bus Commands and Codes

The table below shows the decimal values of IEEE-488 command messages. Remember
that ATN is true during all of these commands. Notice also that these commands are
separated into four general categories: Primary Command Group, Listen Address Group,
Talk Address Group, and Secondary Command Group. Subsequent discussions further
describe these commands.

Table 12-1. HP-IB Commands and Codes

Decimal ASCII Interface
Value Character Message Description
PCG Primary Command Group
1 SOH GTL Go to Local
4 EOT SDC Selected Device Clear
5 ENQ PPC Parallel Poll Configure
8 BS GET Group Execute Trigger
9 HT TCT Take Control
17 DC1 LLO Local Lockout
20 DC4 DCI Device Clear
21 NAK PPU Parallel Poll Unconfigure
24 CAN SPE Serial Poll Enable
25 EM SPD Serial Poll Disable
LAG Listen Address Group
32-62 Space through > Listen Addresses 0 through 30
(Numbers & Special Chars.)
63 ? UNL Unlisten
TAG Talk Address Group
64-94 @ through 1 Talk Addresses 0 through 30
(Uppercase Letters)
95 ~ (underscore) UNT Untalk
SCG Secondary Command Group
96-126 ¢ through ~ Secondary Commands 0 through 30
(Lowercase Letters)
127 DEL Ignored

The HP-IB Interface 12-21

Address Commands and Codes
The following table shows the ASCII characters and corresponding codes of the Listen

Address Group and Talk Address Group commands. The next section describes how to
send these commands.

Table 12-2. HP-IB Listen and Talk Address Commands

Listen Talk Address
Address Address Address Switch
Character | Character Code Settings
Space @ 0 00000
! A 1 00001

» B 2 00010
C 3 00011

$ D 4 00100
% E 5 00101
& F 6 00110

’ G 7 00111

(H 8 01000

) I 9 01001

* J 10 01010

+ K 11 01011

, L 12 01100

- M 13 01101
N 14 01110

/ 0 15 01111

0 P 16 10000

1 Q 17 10001

2 R 18 10010

12-22 The HP-IB Interface

Table 12-2. HP-IB Listen and Talk Address Commands (continued)

Listen Talk Address
Address Address Address Switch
Character | Character Code Settings
3 S 19 10011

4 T 20 10100

5 U 21 10101

6 \'% 22 10110

7 w 23 10111

8 X 24 11000

9 Y 25 11001

Z 26 11010

; g 27 11011

/ 28 11100

=] 29 11101

) 30 11110

The preceding table implicitly shows that:

¢ Listen address commands can be calculated from the primary address by using one
of the following equations:

Listen_address=32+Primary_address
or
Listen_address$=CHR$ (32+Primary_address)

e Similarly, talk address commands can be calculated from the primary address by
using one of the following equations

Talk_address=64+Primary_address
or
Talk_address$=CHR$ (64+Primary_address)

The HP-IB Interface 12-23

However, the table does not show that:
e the Unlisten command is “?”, CHR$(63)
e the Untalk command is “_”, CHR$(95)

-

e therefore, primary address 31 is an unusable device address, but can be used to
send the Unlisten and Untalk commands.
Explicit Bus Messages

It is often desirable (or necessary) to manage the bus by sending explicit sequences of
bus messages. The SEND statement is the vehicle by which explicit commands and data
can be sent through the bus. The SEND statement is also a method of sending data
with odd parity through the bus (instead of using the PARITY attribute discussed in
the “I/O Path Attributes” chapter). This section shows several uses of this statement.

Examples of Sending Commands

As a simple example, suppose the following statement is executed by the Active Controller
to configure the bus (i.e., to address the talker and listener).

OUTPUT 701 USING "#,K"
The SEND statement can be used to send the same sequence of commands, as shown in
the following statement.

SEND 7;CMD "?U!"

This statement configures the bus explicitly by sending the following commands:
e the unlisten command (ASCII character “?”; decimal code 63)
e talk address 21 (ASCII character “U”; decimal code 85)
e listen address 1 (ASCII character “!I”; decimal code 33)

The same sequence of commands and data is sent with any of the following statements.
SEND 7;CMD UNL MTA LISTEN 1
SEND 7;CMD UNL TALK 21 LISTEN 1

SEND 7;CMD 32+31,64+21,32+1

12-24 The HP-IB Interface

Commands can be sent by specifying the secondary keyword CMD. The list of commands
(following CMD) can be any numeric or string expressions. If more than one expression
is listed, they must be separated by commas. A numeric expression will be evaluated,
rounded to an integer (MOD 256), and sent as one byte. Each character of a string
expression will be sent individually. All bytes are sent with ATN true. The computer
must be the current Active Controller to send commands.

SEND Isc;CMD 8 ! Group Execute Trigger
SEND Isc;TALK New_controller CMD 9 ! Pass Control
SEND 8;CMD 1 ! Go to Local

If SEC is used, the specified secondary commands will be sent. An extended talker may
be addressed by using SEC after the talk address; extended listener(s) may be addressed
by using SEC after the listen address(es).

SEND 7;MTA UNL LISTEN 1 CMD 5 SEC i6 ! SEND PPD.
The computer must be the Active Controller to send CMD, LISTEN, UNL, MLA, TALK,
UNT, MTA, and SEC. If a non-Active Controller attempts to send any of these messages,
an error is reported.
Simulate the following SPOLL function with SEND and ENTER statements.
A=SPOLL(724)

When an SPOLL is performed, the resulting bus activity is:
o Unlisten command
e My Listen Address (the computer’s listen address; MLA)
e device’s talk address (one of the TAG commands)
e Serial Poll Enable command (SPE; decimal code 24)
e one data byte is read (the Status Byte message)
e Secrial Poll Disable (SPD; decimal code 25)

o Untalk command

The HP-1B Interface 12-25

This is accomplished by either of the following sequences:

SEND 7;CMD "?5X"&CHR$ (24) ! Configure the bus; send SPE.
ENTER 7 USING "#,B";A ! Read Status Byte.
SEND 7;CMD CHR$(25)&"_" ! Send SPD and Untalk.

SEND 7;UNL MLA TALK 24 CMD 24
ENTER 7 USING "#,B";A
SEND 7;CMD 25 UNT

The preceding secondary keywords provide the capability of sending various command
messages through the bus. The activity that results on the bus when several other
high-level commands are issued is summarized in “HP-IB Message Mnemonics”.

Examples of Sending Data

Data messages can be sent by specifying the secondary keyword DATA. If the computer
is the Active Controller, the data is sent immediately. However, if the computer is not
the Active Controller, it waits to be addressed to talk before sending the data.

SEND 7;DATA "Message",13,10 ! Send with CR/LF.

SEND Bus;DATA "Data" END ! Send with EOI.

The data list may contain any mixture of numeric or string expressions; if more than
one expression is specified, they must be separated by commas. Each numeric expression
is evaluated as an integer (MOD 256) and sent as a single byte. Each string item is
evaluated and all resultant characters are sent serially. Each byte is sent with ATN false
(sent as a data message). The last expression may be followed by the secondary keyword
END, which causes the EOI terminator to be sent concurrently with the last data byte.

As another example, simulate this ENTER statement with a SEND statement.
ENTER 724 ;Number,String$

Any of the following pairs of statements can be used to accomplish the same operation.

SEND 7;UNL TALK 24 MLA
ENTER 7;Number,String$

SEND 7;UNL TALK 24 LISTEN 21
ENTER 7;Number,String$

SEND 7;CMD "?X5"
ENTER 7;Number, String$

12-26 The HP-IB Interface

-,

HP-IB Message Mnemonics

This section contains the descriptions of several bus messages described by the IEEE
488-1978 standard. The following table describes message mnemonics, their meanings,
and the secondary keywords used with the SEND statement. The HP-IB messages that
require primary keywords are noted in the table.

All BASIC statements which send HP-IB messages (except SEND) always set ATN-true
(command) messages with the most-significant bit set to zero. Using CMD (with SEND)
allows you to send ATN-true messages with the most-significant bit set to one. This may
be useful for non-standard IEEE-488 devices which require the most-significant bit to
have a particular value.

The CMD and DATA secondary keywords of SEND statements allow string expressions
as well as numeric expressions (e.g., CMD “?” is the same as CMD 63). All other
secondary keywords which need data require numeric expressions. Keep this in mind
while reading through this table.

Table 12-3. HP-IB Messages and Mnemonics

Message Message SEND Clause Required
Mnemonic Description (numeric values are decimal)
DAB Data Byte DATA 0 through 255
DCL Device Clear CMD 20 (or 148)
EOI End or Identify DATA data list END
GET Group Execute Trigger CMD 8 (or 136)
GTL Go To Local CMD 1 (or 129)
IFC Interface Clear Not possible with SEND;
use the ABORT statement.
LAG Listen Address LISTEN 0 through 30;
or CMD 32 through 62;
or CMD 160 through 190
LLO Local Lockout CMD 17
MLA My Listen Address MLA
MTA My Talk Address MTA

The HP-1B Interface 12-27

Table 12-3. HP-IB Messages and Mnemonics (continued)

Message Message SEND Clause Required
Mnemonic Description (numeric values are decimal)
PPC Parallel Poll Configure CMD 5 (or 133)
PPD Parallel Poll Disable SEC 16; or CMD 112 (or 240)
(Must be preceded by PPC.)
PPE Parallel Poll Enable SEC 0+Mask:
SEC 0 through 15;
or CMD 96 through 111;
or CMD 224 through 239
(Must be preceded by PPC.)
PPU Parallel Poll Unconfig. CMD 21 (or 149)
PPOLL Parallel Poll Not possible with SEND;
use the PPOLL function.
REN Remote Enable Not possible with SEND;
use the REMOTE statement.
SDC Selected Device Clear CMD 4 (or 132)
SPD Serial Poll Disable CMD 25 (or 153)
SPE Serial Poll Enable CMD 24 (or 152)
TAD Talk Address TALK 0 through 30;
or CMD 64 through 94;
or CMD 192 through 222
TCT Take Control CMD 9 (or 137)
UNL Unlisten UNL; or LISTEN 31;
or CMD 63 (or 191)
UNT Untalk UNT; or TALK 31;
or CMD 95 (or 223)

12-28 The HP-IB Interface

The Computer As a Non-Active Controller

The section called “General Structure of the HP-IB” described how communications take
place through HP-IB Interfaces. The functions of the System Controller and Active Con-
troller were likened to a “committee chairman” and “acting chairman,” respectively, and
the functions of each were described. This section describes how the Active Controller
may “pass control” to another contreller and assume the role of a non-Active Controller.
This action is analogous to designating another committee member to take the respon-
sibility of acting chairman and then becoming a committee member who listens to the
acting chairman and speaks when given the floor. The following topics will be discussed:

o Determining whether the computer is currently the Active Controller and/or Sys-
tem Controller

e Determining the computer’s HP-IB primary address, and changing it, if necessary
e Passing control to another HP-IB controller

¢ Requesting service from the Active Controller

o Responsibilities of being a non-Active Controller

e Responding to interrupts that occur while non-Active Controller

Determining Controller Status and Address

1t is often necessary to determine if an interface is the System Controller and to determine
whether or not it is the current Active Controller. It is also often necessary to determine
or change the interface’s primary address. The example program shown in the beginning
of this chapter interrogated interface STATUS registers and printed the resultant System-
Controller status and primary address. Those operations are explained in the following
paragraphs.

The HP-IB Interface 12-29

Example

Executing the following statement reads STATUS register 3 (of the internal HP-IB) and
places the current value into the variable Stat_and_addr. Remember that if the statement
is executed from the keyboard, the variable Stat_and_addr must be defined in the current
context.

STATUS 7,3;Stat_and_addr

STATUS Register 3 Controller Status and Address

Bit 7 Bit6 | Bits | Bitd | Bit3 | Bit2 | Bit1 | Bito
System Active
Controller |[Controller

Value—128 |Value=64 |Value=0 |Value=16 |Value=8 |[Value=4 [Value=2 |Value—1

0 Primary Address of HP-IB Interface

If bit 7 is set (1), it signifies that the interface is the System Controller; if clear (0), it
is not the System Controller. Only one controller on each HP-IB interface should be
configured as the System Controller.

If bit 6 is set (1), it signifies that the interface is currently the Active Controller; if it is
clear (0), another controller is currently the Active Controller.

Bits 4 through 0 represent the current value of the interface’s primary address, which is
in the range of 0 through 30. The power-on default value for the internal HP-IB is 21 (if
it is the System Controller) and 20 (if not the System Controller). For external HP-IB
interfaces, the default address is set to 21 at the factory but may be changed by setting
the address switches on the card itself.

Example

Calculate the primary address of the interface from the value previously read from STA-
TUS register 3.

Intf_addr=Stat_and_addr MOD 32
This numerical value corresponds to the talk (or listen) address sent by the computer
when an OUTPUT (or ENTER) statement containing primary-address information is

executed. Talk and listen addresses are further described in “Advanced Bus Manage-
ment”.

12-30 The HP-IB Interface

o

Changing the Controller’s Address
It is possible to use the CONTROL statement to change an HP-IB interface’s address.

Example

CONTROL 7,3;Intf_addr

The value of Intf_addr is used to set the address of the HP-IB interface (in this case, the
internal HP-IB). The valid range of addresses is 0 through 30; address 31 is not used.
Thus, if a value greater than 30 is specified, the value MOD 32 is used (for example: 32
MOD 32 equals 0, 33 MOD 32 equals 1, 62 MOD 32 equals 30, and so forth).

Passing Control

The current Active Controller can pass this capability to another computer by sending the
Take Control message (TCT). The Active Controller must first address the prospective
new Active Controller to talk, after which the TCT message is sent. If the other controller
accepts the message, it then assumes the role of Active Controller; this computer then
assumes the role of a non-Active Controller.

Passing control can be accomplished in one of two ways: it can be handled by the
system, or it can be handled by the program. To handle it programmatically, use the
PASS CONTROL statement. For example, the following statements first define the HP-
IB Interface’s select code and new Active Controller’s primary address and then pass
control to that controller.

100 Hp_ib=7
110 New_ac_addr=20
120 PASS CONTROL 100%Hp_ib+New_ac_addr

The following statements perform the same functions.

100 Hp_ib=7
110 New_ac_addr=20
120 SEND Hp_ib;TALK New_ac_addr CMD 9

Once the new Active Controller has accepted the TCT command, the controller passing
control assumes the role of a non-Active Controller (or “HP-IB device”) on the specified
HP-IB Interface. The next section describes the responsibilities of the computer while it
is a non-Active Controller.

The HP-IB Interface 12-31

Interrupts While Non-Active Controller

When the computer is not an Active Controller, it must be able to detect and respond
to many types of bus messages and events.

The computer (as a non-Active Controller) needs to keep track of the following informa-
tion.

e It must keep track of itself being addressed as a listener so that it can enter data
from the current active talker.

e It must keep track of itself being addressed as a talker so that it can transmit the
information desired by the active controller.

e It must keep track of being sent a Clear, Trigger, Local, or Local Lockout message
so that it can take appropriate action.

e It must keep track of control being passed from another controller.

One way to do this is to continually monitor the HP-IB interface by executing the STA-
TUS statement and then taking action when the values returned match the values desired.
This is obviously a great waste of computer time if the computer could be performing
other tasks. Instead, the interface hardware can be enabled to monitor bus activity and
then generate interrupts when certain events take place.

The computer has the ability to keep track of the occurrences of all of the preceding
events. In fact, it can monitor up to 16 different interrupt conditions. STATUS registers
4, 5 and 6 provide access to the interface state and interrupt information necessary to
design very powerful systems with a great degree of flexibility.

Each individual bit of STATUS register 4 corresponds to the same bit of STATUS register
5. Register 4 provides information as to which condition caused an interrupt, while
register 5 keeps track of which interrupt conditions are currently enabled. To enable a
combination of conditions, add the decimal values for each bit that you want set in the
interrupt-enable register. This total is then used as the mask parameter in an ENABLE
INTR statement.

12-32 The HP-IB Interface

STATUS Register 5

Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Parallel . Talker/
Active Poll Con- %g dTalk idgrdLlsten EOL SPAS ﬁen{];)te/ Listener
Controller {figuration R ‘r.essd R xtessd Received C;m Address
Change eceive eceive ange Change
Value= Value= Value= Value= Value= Value= Value= Value=
—-32768 16 384 8192 4096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecog- |Secondary Unrecog-
Trigger Handshake | nized Command| Clear | nized SRQ IFC
Received |Error Universal | While Received |Addressed | Received | Received
Comman |Addresse Comman
Value=128 |Value=64 |Value=32 |Value=16 |Value=8 |Value=4 [Value=2 |Value=1

Bit 15 enables an interrupt upon becoming the Active Controller. The computer then
has the ability to manage bus activities.

Bit 14! enables an interrupt upon detecting a change in Parallel Poll Configuration.

Bit 13 enables an interrupt upon being addressed as an active talker by the Active

Controller.

Bit 12 enables an interrupt upon being addressed as an active listener by the Active

Controller.

Bit 11 enables an interrupt when an EOI is received during an ENTER operation (the
EOI signal line is also described in “HP-IB Control Lines”).

Bit 10 enables an interrupt when the Active Controller performs a Serial Poll on the
computer (in response to its service request).

Bit 9 enables an interrupt upon receiving either the Remote or the Local message from
the active controller, if addressed to listen. The action taken by the computer is, of
course, dependent on the user-programmed service routine.

! This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the
“Advanced Bus Management” section for further details.

The HP-IB Interface

12-33

-

Bit 8 enables an interrupt upon a change in talk or listen address. An interrupt will
be generated if the computer is addressed to listen or talk or “idled” by an Unlisten or
Untalk command.

Bit 7 enables an interrupt upon receiving a Trigger message, if the computer is currently
addressed to listen. This interrupt can be used in situations where the computer may be
“armed and waiting” to initiate action; the active controller sends the Trigger message
to the computer to cause it to begin its task.

Bit 6 enables an interrupt if a bus error occurs during an OUTPUT statement. Par-
ticularly, the error occurs if none of the devices on the bus respond to the HP-IB’s
interlocking handshake (see “HP-IB Control Lines”). The error typically indicates that
either a device is not connected or that its power is off.

Bit 5! enables an interrupt upon receiving an unrecognized Universal Command. This
interrupt condition provides the computer with the capability of responding to new
definitions that may be adopted by the IEEE standards committee.

Bit 4! enables an interrupt upon receiving a Secondary Command (extended addressing)
after the interface receives either its primary talk address or primary listen address.
Again, this interrupt provides the computer with a way to detect and respond to special
messages from another controller.

Bit 3 enables an interrupt on receiving a Clear message. Reception of either a Device
Clear message (to all devices) or a Selected Device Clear message (addressed to the
computer) will cause this type of interrupt. The computer is free to take any “device-
dependent” action; such as, setting up all default values again, or even restarting the
program, if that is defined by the programmer to be the “cleared” state of the machine.

Bit 2! enables an interrupt upon receiving an unrecognized Addressed Command, if the
computer is currently addressed to listen. This interrupt is used to intercept and respond

to bus commands which are not defined by the standard.

Bit 1 enables an interrupt upon detecting a Service Request.

This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the
“Advanced Bus Management” section for further details.
This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the
“Advanced Bus Management” section for further details.

12-34 The HP-IB Interface

()
N’

Bit 0 enables an interrupt upon detecting an Interface Clear (IFC). The interrupt is gen-
erated only when the computer is not the System Controller, as only a System Controller
is allowed to set the Interface Clear signal line. The service routine typically is used to
recover from the abrupt termination of an I/O operation caused by another controller
sending the IFC message.

Note that most of the conditions are state- or event-sensitive; the exception is the SRQ
event, which is level-sensitive. State-or event-sensitive events can never go unnoticed by
the computer as can service requests; the event’s occurrence is “remembered” by the
computer until serviced.

For instance, if the computer is enabled to generate an interrupt on becoming addressed
as a talker, it would interrupt the first time it received its own talk address. After having
responded to the service request (most likely with some sort of OUTPUT operation), it
would not generate another interrupt, even if it was still left assigned as a talker by the
Active Controller. Thus, it would not generate another interrupt until the event occurred
a second time.

An oversimplified example of a service routine that is to respond to multiple conditions
might be as follows.

100 ON INTR Hpib GOSUB Service
110 Mask=INT(2"13)+INT(2°12)
120 ENABLE INTR Hpib;Mask ! Interrupt on receiving

130 ! talk or listen addr.
140 Idle: GOTO Idle

150 i

160 Service: STATUS Hpib,4;Status,Mask

170 IF BIT(Status,13) THEN Talker
180 IF BIT(Status,12) THEN Listener
190 RETURN! Ignore other interrupts.
200 Talker: ! Take action for talker.

210 GOTO Exit_point

220 !

230 Listener: ! Take action for listener.

240 !

250 Exit_point: ENABLE INTR Hpib;Mask

260 RETURN

270 END

Register 4, the interrupt status register, is a “read-destructive” register; reading the
register with a STATUS statement returns its contents and then clears the register (to
a value of 0). If the service routine’s action depends on the contents of STATUS register
4, the variable in which it is stored must not be used for any other purposes before all
of the information that it contains has been used by the service routine.

The HP-IB Interface 12-35

The computer is automatically addressed to talk (by the Active Controller) whenever
it is Serially Polled. If interrupts are concurrently enabled for My Address Change
and/or Talker Active, the ON INTR branch will be initiated due to the reception of the
computer’s talk address. However, since the Serial Poll is automatically finished with
the Untalk Command, the computer may no longer be addressed to talk by the time the
interrupt service routine begins execution. See “Responding to Serial Polls” for further
details.

Addressing a Non-Active Controller

The bus standard states that a non-Active Controller cannot perform any bus addressing.
When only the interface select code is specified in an ENTER or OUTPUT statement
that uses an HP-IB interface, no bus addressing is performed.

If the computer currently is not the Active Controller, it can still act as either talker
or listener, provided it has been previously addressed as such. Thus, if an ENTER
or OUTPUT statement is executed while the computer is not an Active Controller,
the computer first determines whether or not it is an active talker or listener. If not
addressed to talk or listen, the computer waits until it is properly addressed and then
finishes executing the statement. It relies on the Active Controller (another computer
or device) to perform the bus addressing, and then simply participates as a device in
the exchange of the data. Example statements which send and receive data while the
computer is not an Active Controller are as follows.

100 OQUTPUT 7;"Data" ! If not talker, then wait until

110 ! addressed as talker to send data.
200 ENTER 7;Data$! If not listener, then wait until
210 ! addressed as listener to accept data.

12-36 The HP-IB Interface

O

If the computer is the Active Controller, it proceeds with the data transfer without
addressing which devices are talker and listener(s). However, if the bus has not been
configured previously, an error is reported (Error 170 I/0 operation not allowed). The
following program does not require the “overhead” of addressing talker and listeners each
time the OUTPUT statement in the FOR..NEXT loop is executed, because the bus is
not reconfigured each time.

100 OQUTPUT 701 USING "#,K" | Configure the bus:

110 ! This interface = talker, and
120 ! printer (701) = listener.
130 !

140 FOR Iteration=1 TO 25

150 OUTPUT 7;"Data message"

160 NEXT Iteration

170 !

180 END

This type of HP-IB addressing should be used with the understanding that if an event
initiates a branch between the time that the initial addressing was made (line 100) and
the time that any of the OUTPUT statements are executed (line 150), the event’s service
routine may reconfigure the bus differently than the initial configuration. If so, the data
will be directed to the device(s) addressed to listen by the last I/0 statement executed
in the service routine. Events may need to be disabled if this method of addressing is
used.

In general, most applications do not require this type of bus-overhead minimization; the
computer’s I/0 language has already been optimized to provide excellent performance.
Advanced methods of explicit bus management will be described in the section called
“Advanced Bus Management”.

The HP-IB Interface 12-37

Requesting Service

When the computer is a non-Active Controller, it has the capability of sending an SRQ
to the current Active Controller. The following statement is an example of requesting
service from the Active Controller of the HP-IB Interface on select code 7.

CONTROL 7,1;64

The REQUEST statement can be used to perform the same function.
REQUEST 7;64

Both of the preceding example place a logic True on the SRQ line. (Note that the line
may already be set True by another device.) Other bits may be set in the Status Byte
message, indicating that other device-dependent conditions exist.

The SRQ line is held True until the Active Controller executes a Serial Poll or this
computer executes a REQUEST with bit 6 equal to 0. (Note also that the line may still
be held True by another device.)

When the Active Controller detects an SRQ message, it usually polls device(s) on the
bus to determine which need(s) service and what kind of service is needed. To determine
which device(s) are requesting service, the Active Controller conducts a Parallel Poll. If
there are not more than one device currently capable of requesting service, the Parallel
Poll is not necessary. ‘

The Parallel Poll is conducted by sending an Identify (ATN & EOI). This non-Active
Controller’s response to a Parallel Poll performed by the Active Controller depends on
the current Parallel Poll Response set up for this controller. Setting up this controller’s
Parallel Poll Response is described in the next section.

If the Active Controller needs to determine what service action is required for a particular
device, it performs a Serial Poll on the device(s) that responded to the Parallel Poll with
an “I need service.” As each device is Serially Polled, it responds by placing its Status
Byte on the bus.

This non-Active Controller’s response to a Serial Poll performed by the Active Controller
is handled automatically by the system. The Status Byte is the byte sent to the Serial Poll
Response Byte Register (with CONTROL or REQUEST, as shown above). A subsequent
section further describes this non-Active Controller’s responses to Serial Polls.

12-38 The HP-IB Interface

W,

Responding to Parallel Polls

Before performing a Parallel Poll of bus devices, the Active Controller configures selected
device(s) to respond on one of the eight data lines. Each device is directed to respond on
a particular data line with a logic True or False; the logic sense of the response informs
the Active Controller either “I do need service” or “I don’t need service.” The logic sense
of the response is also specified by the Active Controller. This response to the Parallel
Poll is known as the Status Bit message.

After the desired devices have been told how to respond, the Active Controller can send
the Identify message and read the Status Bits placed on the data lines to determine
which device(s) need service. Identify is sent by placing ATN and EOI in the logic True
state. All devices which are currently configured for the poll respond as configured.

To configure its own Parallel Poll Response, the computer must receive a Parallel Poll
Configure (PPC) command followed by a Parallel Poll Enable (PPE) command from
the Active Controller. Receiving this “Parallel Poll Configuration Change” generates
an interrupt (this type of interrupt is enabled by setting bit 14 of the Interrupt Enable
Register). The service routine takes care of configuring this controller’s response by first
accepting the encoded “configure byte” (the PPE command from the Active Controller)
and then setting up a corresponding response.

The desired Status Bit message can be configured and sent by one of two methods. The
first, and simplest, method is to define an automatic response by using the PPOLL
RESPONSE statement. With this method, the computer reads the configure byte from
the data lines (HP-IB STATUS Register 7) and then writes the byte’s numeric value into
HP-IB CONTROL Register 5. The following statements show an example of configuring
this controller’s Parallel Poll Response.

100 STATUS 7,7;Configure_code

110 CONTROL 7,5;Configure_code

120 I_need_service=0

130 PPOLL RESPONSE 7;I_need_service

When the computer receives a subsequent Identify from the Active Controller, the spec-
ified response (“I do/don’t need service”) is automatically sent to the Active Controller.
The computer will probably need to respond to a Serial Poll, which is described in the
next section.

The second method requires that the service routine decode the configure byte and set

up the corresponding response. The configure byte read from HP-IB STATUS Register
7 contains 5 bits of data encoded with the following information:

The HP-IB Interface 12-39

CONTROL Register 5 Parallel Poll Response Mask

Bit7 | Bit6 | Bits | Bita | Bis | Bio | Bit:1 [Bito
Uncon- Logic
Not Used figure S:rie Data Bit Used for Response
Value=128 IVa.lue=64 lValue:O Value=16 |Value=8 [Value=4 IVa.lue:2 lVa.lue:l

Bit 4 determines whether a response will or will not be configured. A 1 tells this controller
not to configure a response, and a 0 tells the controller to configure a response.

Bit 3 determines the logic sense of the Status Bit. If this bit is 0, then the “I need
service” message is a 0; if this bit is 1, the “I need service” message is 1.

Bits 2 through 0 determine the data line on which the Status Bit is to be placed. For
instance, if these bits are “000”, then the Status Bit is to be placed on DIO1. If these
bits are “111”, then the response is to be placed on DIOS.

The service routine calculates the desired response and places the appropriate bit pattern
in HP-IB CONTROL Register 2. For instance, if the configure byte has a value of 12
(positive-true logic on DIO5 for “I need service”), the value sent to CONTROL Register
2 is 16 for “I need service.” The appropriate statement might be:

CONTROL 7,2;16

When the Identify is received from the Active Controller, the specified response is made
automatically.

As another example, suppose that the configure byte has a value of 7. The Status Bit
to be written into DIO8 would be a 0 for “I need service.” The corresponding statement
might be:

CONTROL 7,2;0

12-40 The HP-IB Interface

The following general routine calculates the value to be sent to CONTROL Register 2:

790 STATUS 7,7;Config_code ! Read data lines.

800 Config_code=Config code MOD 256 ! Strip 8 MSBs.
810 Unconfig=BIT(Config_code,4)

820 Sense=BIT(Config_code,3)

830 IF Unconfig=1 OR Sense=0 THEN | Unconfigure.
840 Ppoll_response=0

850 ELSE ! Configure.

860 Status_bit=Config_code MOD 8 ! Get bits 2-0.
870 Ppoll_response=2"Status_bit ! Set proper bit.
880 END IF

890 CONTROL 7,2;Ppoll_response

Responding to Serial Polls

As a non-Active Controller, the response to Serial Polls is automatically handled by the
system. The desired Serial Poll Response Byte is sent to HP-IB CONTROL Register 1.
If bit 6 is set (bit 6 has a value of 64), an SRQ is indicated from this controller. All other
bits can be considered to be “device-dependent,” and can thus be set according to the
program’s needs.

The following statement sets up a response with SRQ and bits 1 and 0 set to 1’s.

CONTROL 7,1;64+2+1

When the Active Controller performs a Serial Poll on this non-Active Controller, the
specified byte is automatically sent to the Active Controller by the system.

This non-Active Controller is automatically addressed to talk by the Active Controller
during a Serial Poll. If interrupts are concurrently enabled for My Address Change and/or
Talker Active interrupts, the ON INTR branch will be initiated due to the reception of
this controller’s talk address. However, since the Serial Poll Response is terminated with
the Untalk command, this controller may no longer be addressed to talk when the service
routine begins its execution. In such a case, the SPAS interrupt (if enabled) will also be
indicated. If desired, the interrupt may be ignored.

The HP-IB Interface 12-41

Interface-State Information

It is often necessary to determine which state the interface is in. STATUS register 6 con-
tains interface-state information in its upper byte; it also contains the same information
as STATUS register 3 in its lower byte. In advanced applications, it may be necessary
to detect and act on the interface’s current state. Register 6’s definition is shown below.

STATUS Register 3 Interface State Information

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
N

REM LLO ,‘gﬁe LPAS TPAS LADS TADS *
Value= Value= Value= Value= Value= Value= Value= Value=
—-32768 16 384 8192 4096 2048 1024 512 256

Bit 7 Bit6 | Bit5 | Bitd | Bit3 | Bit2 | Bl | Bico
System Active .
Controller |Controller 0 Primary Address of Interface
Value=128 | Value=64 |Value=32 |Value=16 |Value=8 |Value=4 [Value=2 [Value=1

* Least-significant bit of last address recognized.

Bit 15 set indicates that the interface is in the Remote state.

Bit 14 set indicates that the interface is in the Local Lockout state.
Bit 13 set indicates that the ATN line is currently set (true).

Bit 12 set indicates that the interface is in the Listener Primary Addressed State (has
received its primary listen address).

Bit 11 set indicates that the interface is in the Talker Primary Addressed State (has
received its primary talk address).

Bit 10 set indicates that the interface is in the Listener Addressed State and is currently
an active listener. If Bit 4 of the Interrupt Enable register is set (Secondary Command
While Addressed), two additional conditions are required to enter this state: the interface
must have first received its own primary address followed by a secondary command, and it
must have accepted the secondary command (by writing a non-zero value to CONTROL
register 4 to release the NDAC Holdoff).

12-42 The HP-IB Interface

Bit 9 set indicates that the interface is in the Talker Addressed State and is currently
an active talker. This state is entered in a manner analogous to the Listener Addressed
State (see Bit 10 above).

Bit 8 contains the least-significant bit of the last address recognized by this interface.
Bits 7 through 0 have the same definitions as STATUS register 3.

Servicing Interrupts that Require Data Transfers

During the discussion on interrupts, three special types of interrupt conditions were
described (which are enabled by setting bits in CONTROL register 4). These interrupts
occur upon receiving: an unrecognized Universal Command, an unrecognized Addressed
Command, or a Secondary Command. These situations all require the computer to read
a byte of information from the bus and respond as desired by the programiner.

STATUS Register 4 Interrupt Status

Bit 5 Bit 4

Unrecog- [Secondary

nized Command
niversal | While

Jommand JAddressed

i Value=32 [Value=16

As a reminder, these interrupt conditions occur under the following circumstances.

Bit 14 enables an interrupt on any change in Parallel Poll configuration. If a Parallel
Poll Configure command is received, the computer must set up its own Parallel Poll
Response designated by the Active Controller. The response itself is set up by writing
to CONTROL register 2 of the HP-IB interface.

The HP-IB Interface 12-43

Bit 5 enables an interrupt upon receiving an unrecognized Universal Command. This
interrupt condition provides the computer with the ability to respond to new definitions
that may be adopted by the IEEE standards committee.

Bit 4 enables an interrupt upon receiving a Secondary Command, if addressed to either
talk or listen during the command mode. Again, this allows the computer to detect and
respond to special information from another controller.

Bit 2 enables an interrupt upon receiving an unrecognized Addressed Command, if ad-
dressed to listen. This interrupt is used to detect and respond to commands that are
undefined by the standard (but which may be recognized by the computer).

Whenever any of the above interrupt conditions are enabled and occur, the computer logs
the interrupt and then sets a bus holdoff. In other words, all bus activity is “frozen” until
the program has released this holdoff. The holdoff is established to allow the program
time to determine the current state of the bus.

12-44 The HP-IB Interface

The bus state is determined by reading HP-IB STATUS register 7, which returns the
current logic state of the data and control lines as a 16-bit integer.

STATUS 7,7;Bus_lines

After reading the state of the lines, it is necessary to release the bus holdoff by writing
any value into HP-IB CONTROL register 4.

CONTROL 7,4;Any_value

CONTROL Register 4 Release NDAC Holdoff

0 = Don’t Accept Secondary Command
Any non-zero value = Accept Secondary Command
(Writing anything to this register releases NDAC holdoff)

When a Secondary Command is received, two computer responses are possible.

o The first is to accept the address as a valid secondary address and consequently
become an Extended Talker or Listener.

e The second is not to accept the address as valid and consequently remain in the
primary addressed state.

If Secondary Command interrupts are enabled (while the computer is a non-Active Con-
troller), the computer will not respond to its primary address alone; a valid secondary
address is also required. Statements such as ENTER 7, OUTPUT 7, and LIST #7
should only be executed in the interrupt service routine after CONTROL has been used
to indicate that a valid secondary address has been received but before interrupts are
re-enabled.

When you no longer want the computer to respond as an Extended Talker/Listener,
execute an ENABLE INTR with a mask which has bit 4 equal to zero.

The HP-IB Interface 12-45

HP-IB Control Lines

Device A

f1tt 4] {T

b

Able to talk,

listen, and

control

(8 signal lines)
o

(e.g.,

HP 9826)

Device B —e

Able to talk

and listen

Handshake Lines
(3 signal lines)

(e.g.

multimeter)

Device C —4

Only able to

listen

Bus Lines

(5 signal lines)

(e.g., signal

El)

N

Device D —e

Only able to

talk

(e.g., counter)

} DIO 1..8

DAV
NRFD
NDAC

IFC

S —
———————— AN

SRQ

REN

EOI

Figure 12-2. HP-IB Control Lines

12-46 The HP-IB Interface

N—

Handshake Lines

The preceding figure shows the names given to the eight control lines that make up the
HP-IB. Three of these lines are designated as the “handshake” lines and are used to
control the timing of data byte exchanges so that the talker does not get ahead of the
listener(s). The three handshake lines are as follows.

DAV Data Valid
NRFD Not Ready for Data
NDAC Not Data Accepted

The HP-IB interlocking handshake uses the lines as follows. All devices currently desig-
nated as active listeners would indicate when they are ready for data by using the NRFD
line. A device not ready would pull this line low (true) to signal that it is not ready for
data, while any device that is ready would let the line float high. Since an active low
overrides a passive high, this line will stay low until all active listeners are ready for data.

When the talker senses that all devices are ready, it places the next data byte on the
data lines and then pulls DAV low (true). This tells the listeners that the information
on the data lines is valid and that they may read it. Each listener then accepts the data
and lets the NDAC line float high (false). As with NRFD, only when all listeners have
let NDAC go high will the talker sense that all listeners have read the data. It ean then
float DAV (let it go high) and start the entire sequence over again for the next byte of
data.

The Attention Line (ATN)

Command messages are encoded on the data lines as 7-bit ASCII characters, and are
distinguished from normal data characters by the logic state of the attention line (ATN).
That is, when ATN is false, the states of the data lines are interpreted as data. When
ATN is true, the data lines are interpreted as commands. The set of 128 ASCII characters
that can be placed on the data lines during this ATN-true mode are divided into four
classes by the states of data lines DIO6 and DIO7. These classes of commands are shown
in a table in the section called “Advanced Bus Management”. Only the Active Controller
can set ATN true.

The HP-IB Interface 12-47

The Interface Clear Line (IFC)

Only the System Controller can set the IFC line true. By asserting IFC, all bus activity
is unconditionally terminated, the System Controller regains the capability of Active
Controller (if it has been passed to another device), and any current talker and listeners
become unaddressed. N ormally, this line is only used to terminate all current operations,
or to allow the System Controller to regain control of the bus. It overrides any other
activity that is currently taking place on the bus.

The Remote Enable Line (REN)

This line is used to allow instruments on the bus to be programmed remotely by the
Active Controller. Any device that is addressed to listen while REN is true is placed in
the Remote mode of operation.

The End or Identify Line (EOI)

Normally, data messages sent over the HP-IB are sent using the standard ASCII code and
are terminated by the ASCII line-feed character, CHR$(10). However, certain devices
may wish to send blocks of information that contain data bytes which have the bit pattern
of the line-feed character but which are actually part of the data message. Thus, no bit
pattern can be designated as a terminating character, since it could occur anywhere in
the data stream. For this reason, the EOI line is used to mark the end of the data
message.

The EOI line is used as an END indication (ATN false) during ENTER statements
and as the Identify message (ATN true) during an identify sequence (the response to
parallel poll). During data messages, the EOI line is set true by the talker to signal
that the current data byte is the last one of the data transmission. Generally, when a
listener detects that the EOI line is true, it assumes that the data message is concluded.
However, EOI may either be used or ignored by the computer when entering data with an
ENTER statement that uses an image. Chapter 5 fully describes the definitions of EQI
during all ENTER statements and shows how to use the image specifiers that modify
the statement-termination conditions.

12-48 The HP-IB Interface

ENTER statements can use images to re-
great degree of flexibility. Using the
the definition of the EOI signal as s

define the meaning of EOI to provide a very
“#7 or “%” specifier in an ENTER statement affects
hown in the following table.

Table 12-4. Definition of EOI During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING
Statements | without # or % with # with %
Definition of EOI |Immediate Item terminator |Item terminator Immediate
statement or statement or statement statement
terminator terminator terminator terminator
Statement Yes Yes No No
Terminator
Required?
Early No No No Yes
Termination
Allowed?

The Service Request Line (SRQ)

The Active Controller is always in charge of the order of events that occur on the HP-IB.

If a device on the bus needs the Active Controller’s help, it can set the

line true. This line sends a request, not a demand, and it is up to the
to choose when and how it will service that device. However, the device will continue

to assert SRQ until it bas been “satisfied”.
depends on the requesting device, which is e

The HP-IB Interface

Service Request

Active Controller

Exactly what will satisfy a service request
xplained in the device’s operating manual.

12-49

Determining Bus-Line States

STATUS register 7 contains the current states of all bus hardware lines. Reading this
register returns the states of these lines in the specified numeric variable.

STATUS Hpib,7;Bus_lines

STATUS Register 7 Bus Control and Data Lines
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN DAV NDAC! | NRFD! EOI SRQ? IFC REN
True True True True True True True True

Value= Value= Value= Value= Value= Value= Value= Value=

—-32768 16 384 8192 4096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS8 DIO7 DIO6 DIOS DIO4 DIO3 DIO2 DIO1

Value=128 | Value=64 |Value=32 |Value=16 |Value=8 |Value=4 |Value=2 |Value=1

Note

Due to the way the bi-directional buffers work, NDAC and NRFD
are not accurately read by this STATUS statement unless the in-
terface is currently addressed to talk. Also, SRQ is not accurately
shown unless the interface is currently the active controller.

1 Only if currently Addressed to Talk, else not valid.
Only if currently Active Controller, else not valid.

12-50 The HP-IB Interface

C

HP-IB Status and Control Registers

Status Register 0 Card identification = 1

Control Register 0 Reset interface if non-zero

Status Register 1

Interrupt and DMA Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DMA
Interrupts |Interrupt |Hardware |Interrupt M DMA
Enabled R a |Level Switche 0 0 Channel 1 |Channel 0
nable: equeste eve witches Enabled |Enabled
Value=128 |Value=64 |Value=32 |Value=16 |Value=8 |Value=4 |Value=2 Value=1
Control Register 1 Serial Poll Response Byte
Bit 7 Bit6 | Bit5 | Bitd | Bit3 | B2 | Bl | Bito
Device SRQ
Dependent |1=I did it Device Dependent Status
Status 0=I didn’t
Value=128 |Value=64 |Value=32 ’Vaiue::l()' !Value::S lValue:ti lVaIue:Q]Value:l

The HP-IB Interface 12-51

HP-IB Status and Control Registers (cont.)

Status Register 2 Busy Bits
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved
0 0 0 0 For Iiar;{d-l Interrupts TRANS-
Futwre [$12%¢ ™0 pyapieq [FER In
Use Togress Progress
Value=128 | Value=64 Value=32 |Value=16 |Value=8 [Value=4 Value=2 |Value=1
Control Register 2 Parallel Poll Response Byte
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DIO4 DIO3 DIO2 DIO1
1=True 1=True 1=True 1=True 1=True 1=True 1=True 1=True
Value=128 [Value=64 |Value=32 |Value=16 |Value=8 [Value—4 Value=2 |Value=1
Status Register 3 Controller Status and Address
Bit 7 Bit6 | Bits | Bit4 | Bit3 | Bit2 | Bl | Bito
System | Active .
Controller |Controller 0 Primary Address of HP-IB Interface
Value=128 | Value=64 |Value=32 |Value=16 IValue=8 IValue=4 |Value=2 |Va.lue=l
Control Register 3 Set My Address
Bit 7 Bit6 | Bit5 | Bit4 | Bit3 | Bz]| Bt | Bito
Not Used Primary Address

Value=128 IValue=64 IValue:32

Value=16 IValue:S IValue=4 |Va1ue:2 |Value:1

12-52 The HP-IB Interface

HP-IB Status and Control Registers (cont.)

Status Register 4

Interrupt Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Parallel Iker
Active Poll My Talk |My Listen EOI Remote/ I’Ji‘a er/
C’ N éven Configur- |Address | Address Received SPAS |Local Alggener
ontroier ation Received [Received eeetve Change i ress
Change 1ange
Value= Value= Value= Value= Value= Value= Value= Value=
—32 768 16 384 8192 4096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecog- [Secondary Unrecog-
Trigger Handshake inized Command | Clear |nized SRQ IFC
Received |Error Universal |While Received [Addressed | Received | Received
Command |Addressed Command
Value=128 {Value=64 |Value=32 [Value=16 |Value=8 [Value=4 [Value=2 [|Value=1

Control Register 4 Writing anything to this register releases NDAC holdoff. If
non-zero, accept last secondary address as valid. If zero,

don’t accept last secondary address (stay in LPAS or TPAS

state).

The HP-IB Interface 12-53

HP-IB Status and Control Registers (cont.)

Status Register 5

Interrupt Enable Mask

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Parallel . Talker/
Active Poll Con- My Talk My Listen EOI Remote/ Listener
. . Address |Address . SPAS |Local
Controller |figuration Received |Received Received Address
Change eceive eceive Change Change
Value= Value= Value= Value= Value= Value= Value= Value=
—32768 16 384 8192 4096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Hand- Unrecog- [Secondary Unrecog-
Trigger shake nized Command| Clear nized SRQ IFC
Received |Error Universal | While Received |Addresse [Received [Received
Comman |Addresse Comman
Value=128 |Value=64 |Value=32 |Value=16 |Value=8 |Value=4 |Value=2 |Value=1
Control Register 5 Parallel Poll Response Mask
Bit7 | Bité | Bits | Bit4 | Bits | Btz | Bl | Bito
Not Used Uncon- Logic Data Bit Used for Response
figure Sense
Value=128 lValue=64 IVa.lue:O Value=16 |Value=8 [Value=4 |Value=2 !Va.luezl

12-54 The HP-IB Interface

HP-IB Status and Control Registers (cont.)

Status Register 6

Interface Status

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
ATN

REM LLO True LPAS TPAS LADS TADS *
Value= Value= Value= Value= Value= Value= Value= Value=
—32768 16 384 8192 4096 2048 1024 512 256

Bit 7 Bit6 | Bits | Bitd | Bt | Bit2 | Bit1 | Bito
System Active .
Controller | Controller 0 Primary Address of Interface
Value=128 |Value=64 |Value=32 |Value=16 |Va1u628 lVa.lae=4 lValue:Z 1Va1ue:1

* Least-significant bit of last address recognized

Status Register 7

Bus Control and Data Lines

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8

ATN DAV NDAC! | NRFD! EOI SRQ? IFC REN

True True True True True True True True
Value= Value= Value= Value= Value= Value= Value= Value=
—32768 16 384 8192 4096 2048 1024 512 256

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

DIO8 DIO7 D106 DIOS DIO4 DIO3 DIO2 DIO1
Value=128 |Value=64 {Value=32 |Value=16 |Value=8 |[Value=4 |Value=2 [Value=1

1 Only if currently Addressed to Talk, else not valid.
2 Only if currently Active Controller, else not valid.

The HP-IB Interface 12-55

HP-IB Status and Control Registers (cont.)
Interrupt Enable Register (ENABLE INTR)

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8
Parallel . Talker/
Active Poll Con- My Talk [My Listen EOI Remote/ Listener
. . Address |Address . SPAS |Local
Controller [figuration Received |Received Received Ch Address
Change eceive eceive ange Change
Value= Value= Value= Value= Value= Value= Value= Value=
—32768 16 384 8192 4096 2048 1024 512 256
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unrecog- [Secondary Unrecog-
Trigger Handshak [nized Command | Clear |nized SRQ IFC
Received Error Universal | While Received [Addressed | Received | Received
Command |Addressed Command
Value=128 [Value=64 [Value=32 |Value=16 Value=8 [Value=4 [Value=2 [Value=1

12-56 The HP-IB Interface

Summary of HP-IB READIO and WRITEIO Registers

READIO Registers

Register 1-— Card Identification

Register 3-— Interrupt and DMA Status
Register 5-— Controller Status and Address
Register 17 — Interrupt Status 0!

Register 19 — Interrupt, Status 12

Register 21 — Interface Status

Register 23 — Control-Line Status

Register 29— Command Pass-Through
Register 31 — Data-Line Status!

HP-IB READIO Register 1

Card Identification

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TFuture Use
Jumper 0 0 0 0 0 0 1
Installed
Value=128 | Value=64 |Value=32 | Value=16 Value=8 |Value=4 |Value=2 |Value=1

Bit 7 is set (1) if the “future use” jumper is installed and clear (0) if not.

Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards).

Note

This register is only implemented on external HP-IB cards. The
internal HP-IB, at interface select code 7, “floats” this register (i.e.,

the states of all bits are indeterminate).

! Indicates that a READIO operation will change the state of the interface.

The HP-IB Interface 12-57

HP-IB READIO Register 3 Interrupt and DMA Status

Bit 7 Bit6 | Bits | Bit4 | Bit3 | Bit2 | Biel | Bito

Interrupt |Interrupt
Enabled Requested

Value=128 |Value=64 |Value=32 IVa.lue:lG Value=8 |Value=4 |Value=2 [Value=1

Interrupt Level X X DMA1 DMAO

Bit 7 is set (1) if interrupts are currently enabled.
Bit 6 is set (1) when the card is currently requesting service.

Bits 5 and 4 constitute the card’s hardware interrupt level (a switch setting on all external
cards, but fixed at level 3 on the internal HP-IB).

Hardware Interrupt
Bit 5 | Bit 4 Level
0 3
0 1 4
1 0 5
1 1 6

Bits 3 and 2 are not used (indeterminate).
Bit 1 is set (1) if DMA channel one is currently enabled.

Bit 0 is set (1) if DMA channel zero is currently enabled.

Note

Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB
(interface select code 7).

12-58 The HP-IB Interface

HP-IB READIO Register 5 Controller Status and Address

Bit 7 Bit6 | Bits | Bitd | Bit3 | Bie2 | Bit1 | Bito
Not , .
System . e HP-IB Primary Address of Interface —
Active X
Controller
Controller (MSB) (LSB)
Value=128 |Value=64 |Value=32 |Value=16 IValue:S !Vaiue:/l }Valuez? lVa}uerl

Bit 7 is set (1) if the interface is the System Controller.

Bit 6 is set (1) if the interface is not the current Active Controller and clear (0) if it is
the Active Controller.

Bit 5 is not used.

Bits 4 through 0 contain the card’s Primary Address switch setting. The following bit
patterns indicate the specified addresses.

Bit Primary
43210 Address
600000 0
00001 1
11101 29
11110 30
11111 (not allowed)

Note
Bits 5 through 0 are not implemented on the internal HP-IB.

The HP-IB Interface 12-59

HP-IB READIO Register 17 MSB of Interrupt Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Ready Remote/ |My

xtse]?ru t ilstfrru t gﬁ; ed for Next gn‘? ted SPAS Local Address

p p M Byte checte Change Change

Value=128 |Value=64 |Value=32 |Value=16 |Value=8 Value=4 |Value=2 |Value=1

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by
reading the contents of this register.

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by
reading Interrupt Status Register 1 (READIO Register 19).

Bit 5 set (1) indicates that a data byte has been received.

Bit 4 set (1) indicates that this interface is ready to accept the next data byte.
Bit 3 set (1) indicates that an End (EOI with ATN=0) has been detected.

Bit 2 set (1) indicates that a Remove/Local State change has occurred.

Bit 0 set (1) indicates that a change in My Address has occurred.

12-60 The HP-IB Interface

M

HP-IB READIO Register 19 LSB of Interrupt Status

Bit 7 Bit ¢ Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

My Ad-
Clear |dress

Unrecog- [Secondary

Trlg?m Handshak rfm,d Cczn?mand Received |Received SRQ IF.(,
Received |[Error Command | While Received | Received
. (MLA or

aToup Addressed

MTA)
Value=128 [Value=64 [Value=32 [Value=16 Value=8 [Value=4 [Value=2 [Value=1

Bit 7 set (1) indicates that a Group Execute Trigger command has been received.
Bit 6 set (1) indicates that an Incomplete-Source-Handshake error has occurred.
Bit 5 set (1) indicates that an unidentified command has been received.

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended-
addressing mode.

Bit 3 set (1) indicates that the interface has entered the Device-Clear-Active State.
Bit 2 set (1) indicates that My Address has been received.
Bit 1 set (1) indicates that a Service Request has been received.

Bit 0 set (1) indicates that the Interface Clear message has been received.

The HP-IB Interface 12-61

HP-IB READIO Register 21 Interface Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ATN LSB of
REM LLO LPAS TPAS LADS TADS |Last
True
Address
Value=128 |Value=64 [Value=32 |Value=16 |Value=8 |Value—4 Value=2 |Value=1

Bit 7 set (1) indicates that this interface is in the Remote State.

Bit 6 set (1) indicates that this interface is in the Local Lockout State.

Bit 5 set (1) indicates that the ATN signal line is true.

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State.
Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed State.
Bit 2 set (1) indicates that this interface is in the Listener-Addressed State.

Bit 1 set (1) indicates that this interface is in the Talker-Addressed State.

Bit 0 set (1) indicates that this is the least-significant bit of the last address recognized
by this interface.

12-62 The HP-IB Interface

HP-IB READIO Register 23 Control-Line Status

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

ATN DAV NDAC! NRID! EOIL SRQQ IFC REN

True True True True True True True True
Value=128 [Value=64 |{Value=32 |Value=16 |Value=8 |Value=4 Value=2 }|Value=1

A set bit (1) indicates that the corresponding line is currently true; a 0 indicates that

the line is currently false.
Command Pass-Through

HP-IB READIO Register 29

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIO5 DI04 DIO3 DIO2 DIO1L
Value=128 |Value=64 [Value=32 {Value=16 |Value=8§ |Value=4 |Value=2 |Value=1

This register can be read during a bus holdoff to determine which Secondary Command

has been detected.
Bus Data Lines

HP-IB READIO Register 31
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 DIOS DIO4 DIO3 DIO2 DIO1
Value=128 | Value=64 |Value=32 |Value=16 |{Value=8 |Value=4 [Value=2 |Value=1

A set bit (1) indicates that the corresponding HP-IB data line is currently true: a 0

indicates the line is currently false.

L Only if addressed to TALK, else not valid.
2 Only if Active Controller, else not valid.

The HP-1B Interface 12-63

HP-IB WRITEIO Registers

Register 3 — Interrupt Enable

Register 17— MSB of Interrupt Mask
Register 19— LSB of Interrupt Mask
Register 23 — Auxiliary Command Register
Register 25 — Address Register

Register 27 — Serial Poll Response

Register 29 — Parallel Poll Response
Register 31 — Data Out Register

HP-IB WRITEIO Register 3 Interrupt and DMA Enable
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Enable Enable Enable
Interrupt X X X X X Channel 1 [Channel 0
Value=128 |Value=64 [Value=32 |Value=16 |Value=8 Value=4 {Value=2 |[Value=1

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0).

Bits 6 through 2 are “don’t cares” (i.e., their values have no effect on the interface’s
operation).

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0).

Bit 0 enables DMA channel 0 if set (1) and disables if clear (0).

Note

Bits 7 through 1 are not implemented on the internal HP-IB inter-
face and thus have no effect on the interface’s operation.

WRITEIO Register 17 MSB of Interrupt Mask
Setting a bit of this register enables an interrupt for the specified condition. The bit

assignments are the same as for the MSB of Interrupt Status Register (READIO Register
17), except that bits 7 and 6 are not used.

12-64 The HP-IB Interface

S

WRITEIO Register 19 LSB of Interrupt Mask

Setting a bit of this register enables an interrupt for the specified condition. The bit
assignments are the same as for the LSB of Interrupt Status Register (READIO Register
19).

HP-IB WRITEIO Register 23 Auxiliary Command Register
Bit 7 Bit6 | Bits | Bitd | Bw3 | Bie2 | Bl | Bito
Set X X Auxiliary Command Function

Value=128 [Value=64 [Value=32 [Value=16 i\/’a]ue:S alue=4 lValue:Q alue=1

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation.
Bits 6 and 5 are “don’t cares.”

Bits 4 through 0 are Auxiliary-Command-Function-Select bits. The following commands
can be sent to the interface by sending the specified numeric values.

The HP-IB Interface 12-65

Table 12-5. Auxiliary Commands

Decimal
Value

Description of Auxiliary Command

0
128
1

129

130

131

132

133

134

135

136

137
10
138

Clear Chip Reset
Set Chip Reset

Release ACDS holdoff. If Address Pass Through is set, it indicates an invalid sec-
ondary has been received.

Release ACDS holdoff. If Address Pass Through is set, indicates a valid secondary
has been received.

Release RFD holdoff.

Same command as decimal 2 (above).
Clear holdoff on all data.

Set holdoff on all data.

Clear holdoff on EOI only.

Set holdoff on EOI only.

Set New Byte Available (nba) false.
Same command as decimal 5 (above).

Pulse the Group Execute Trigger line, or clear the line if it was set by decimal
command 134.

Set Group Execute Trigger line.
Clear Return To Local (rtl).

Set Return To Local (must be cleared before the device is able to enter the Remote
state).

Causes EOI to be sent with the next data byte.
Same command as decimal 8 (above).

Clear Listener State (also cleared by decimal 138).
Set Listener State.

Clear Talker State (also cleared by decimal 137).
Set Talker State.

12-66 The HP-IB Interface

Table 12-5. Auxiliary Commands (continued)

Decimal
Value Description of Auxiliary Command
11 Go To Standby (gts; controller sets ATN false).
139 Same command as decimal 11 (above).
12 Take Control Asynchronously (tca; ATN true).
140 Same command as decimal 12 {above).
13 Take Control Synchronously (tes; ATN true).
141 Same command as decimal 13 (above).
14 Clear Parallel Poll
142 Set Parallel Poll (read Command-Pass-Through register before clearing).
15 Clear the Interface Clear line (IFC).
143 Set Interface Clear (IFC maintained > 100 pus).
16 Clear the Remote Enable (REN) line.
144 Set Remote Enable.
17 Request control (after TCT is decoded, issue this to wait for ATN to drop and
receive control).
145 Same command as decimal 17 (above).
18 Release control (issued after sending TCT to complete a Pass Control and set ATN
false).
146 Same command as decimal 18 (above).
19 Enable all interrupts.
147 Disable all interrupts.
20 Pass Through next Secondary Command.
148 Same command as decimal 20 (above).
21 Set TI delay to 10 clock cycles (2 us at § MHz).
149 Set TI delay to 6 clock cycles (1.2 ps at 5 MHz).
22 Clear Shadow Handshake
150 Set Shadow Handshake.

The HP-IB Interface 12-67

HP-IB WRITEIO Register 25

Address Register

Bit 7 Bit6 | Bit5 | Bitd | Bz | B2 | Bt]| Bico
Enabl
Dual [Pisable [Disable Primary Address
Addressing Listen Talker
Value=128 [Value=64 [Value=32 |Value=16 lValue:S |Value=4 IValue=2 |Value:l

Bit 7 set (1) enables the Dual-Primary-Addressing Mode.

Bit 6 set (1) invokes the Disable-Listen function.

Bit 5 set (1) invokes the Disable-Talker function.

Bits 4 through 0 set the device’s Primary Address (same address bit definitions as REA-

DIO Registe

HP-IB WRITEIO Register 27

rb).

Serial Poll Response Byte

Bit 7 Bit6 | Bits5 | Bitd | Bits | B2 | Bl | Bito
Device R ¢
Dependent edues Device Dependent Status
Service
Status
Value=128 | Value=64 |Value=32 |Value:16 |Value:8 IValue:4 lValue:2 IVaIue:I

Bits 7 and 5—0 specify the Device-Dependent Status.

Bit 6 sends an SRQ if set (1).

Note

Given an unknown state of the Serial Poll Response Byte, it is
necessary to write the byte with bit 6 set to zero followed by a
write of the byte with bit 6 set to the desired final value. This will
insure that a SRQ will be generated if one was desired.

12-68 The HP-IB Interface

Nl i
g

HP-IB WRITEIO Register 29

Parallel Poll Response

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIOS DI1O7 31(0]4) DIOS DIO4 DIO3 DIO2 DIO1
Value=128 | Value=64 |Value=32 |Value=16 Value=8 [Value=4 |Value=2 |Value=1

A 1 sets the appropriate bit true during a Parallel Poll; a 0 sets the corresponding bit
false. Initially, and when Parallel Poll is not configured, this register must be set to all

72eros.

HP-IB WRITEIO Register 31

Data-Out Register

Bit 7 Bit 8 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DIO8 DIO7 DIO6 D105 DIO4 DIO3 DIO2 DIO1
Value=128 |Value=64 |Value=32 |Value=16 |Value=8 |Value=4 |Value=2 Value=1
The HP-IB Interface 12-69

Summary of Bus Sequences

The following tables show the bus activity invoked by executing HP-IB statements and
functions. The mnemonics used in these tables were defined in the previous sections of
this chapter.

Note that bus messages are sent by using single lines (such as the ATN line) and multiple
lines (such as DCL). The information shows the state of and changes in the state of the
ATN line during these bus sequences. The tables implicitly show that these changes in
the state of ATN remain in effect unless another change is explicitly shown in the table.
For example, if a statement sets ATN (true) with a particular command, then it remains
true unless the table explicitly shows that it is set false. The ATN line is implemented in
this manner to avoid unnecessary transitions in this signal whenever possible. It should
not cause any dilemmas in most cases.

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
IFC (duration ATN
Active =100usec) MTA
Controller REN UNL
i ATN
ATN Error Error
) IFC (duration
Not Active =100 psec)* No
Controller REN Action
ATN

*The IFC message allows a non-active controller (which is the system controller) to
become the active controller.

12-70 The HP-IB Interface

9

CLEAR

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressin
Code Only Specified Code Only S%ecified ¢
ATN ATN
Active ATN "L'}:;é ATN I\J;C
Controll
ontroller bCL LAG DCL LAG
sDC SDC
Not Active E
Controller rror
LOCAL
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active REN mi‘ ATN t‘jm
Controller ATN GTL
LAG LAG
GTL GTL
Not Active REN Etror Error
Controller
LOCAL LOCKOUT
System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
Active ATN ATN
Controller LLO Error LLO Error
Not Active
Controller Error

The HP-IB Interface 12-71

PASS CONTROL

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
Active TAD TAD
Controller Error TCT Error TCT
ATN ATN
Not Active
Controller Error
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN & EOI ATN & EOI
(duration=25us) (duration=25us)
Active Read byte Read byte
Controller EOI Error EOI Error
Restore ATN to Restore ATN to
previous state previous state
Not Active
Controller Error

PPOLL CONFIGURE

System Controller Not Systeniﬁ Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active UNL UNL
Controller Error LAG Error LAG
PPC PPC
PPE PPE
Not Active
Controller Error

12-72 The HP-IB Interface

PPOLL UNCONFIGURE

System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA MTA
Active ATN UNL ATN UNL
Controller PPU LAG PPU LAG
PPC PPC
PPD PPD
Not Active Error
Controller
REMOTE
System Controller Not System Controlier
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
REN
Acti ATN
c thﬁ REN MTA Error
ontrotler m UNL
LAG
Not Active REN Error Error
Controller

The HP-1B Interface 12-73

SPOLL

System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
UNL UNL
MLA MLA
TAD TAD
Active SPE SPE
Controller Error ATN Error ATN
Read data Read data
ATN ATN
SPD SPD
UNT UNT
Not Active
Controller Error
TRIGGER
System Controller Not System Controller
Interface Select Primary Addressing Interface Select Primary Addressing
Code Only Specified Code Only Specified
ATN ATN
MTA
Active ATN UNL ATN UNL
Controller GET LAG GET LAG
GET GET
Not Active Error
Controller

12-74 The HP-IB Interface

Table of Contents

Chapter 13: The RS-232C Serial Interface

Asynchronous Data Communication 13-2
Data Transfers Between Computer and Peripheral 13-5
Overview of Serial Interface Programming. 13-6
Determining Operating Parameters. 13-6
Using Interface Defaults to Simplify Programming 1 13-7
Using Program Control to Override Defaults 13-9
Data Transfers 13-12
Program Flow o 13-12
Modem Line Handshaking 13-13
Incoming Data Error Detection and Handling 13-14
Trapping Serial Interface Errors 13-16
Special Applications 13-17
Sending BREAK Messages e 13-17
Using the Modem Control Register.......... 13-17
READIO and WRITEIO Registerso 13-19
Interface Hardware Registers 13-20
Cable Options and Signal Funetions oo .. 13-29
The DTE Cable ... 13-30
The DCE Cable ... 13-31
RS-232C J CCITT V24 .. oo i 13-34
Summary of RS-232C Serial STATUS and CONTROL Registers 13-36
Model 216 and 217 Built-In 98626 Interface Differences 13-45
HP 98644 Interface Differences 13-46
Hardware Differences ... 13-46
BASIC Differenceso 13-49

The RS-232C Serial Interface

The HP 98626 Serial Interface! is an RS-232C compatible interface used for simple
asynchronous I/O applications such as driving line printers, terminals, or other periph-
erals where the more sophisticated capabilities of the HP 98628 Data Communications
Interface? are not justified. It uses a UART (Universal Asynchronous Receiver and
Transmitter) integrated circuit to generate the required asyne signals.

Bit-Serial Data

(In)
I
Paraliel Data_ | Parallel/Serial (Out)
M (oanener Handshake,
Dat d : (UART) 2 Shielded Cable
ontrol i m to & Device

. Control Serial
Backplane Interface
Connector
Hardware < Special Purpose
: >

Grounds
)

Figure 13-1. Block Diagram of the Serial Interface

—

25-Pin Connector

The BASIC system must provide most control functions because the card does not have
its own microprocessor (as does the 98628 card). Consequently, there is more interaction
between the card and computer than when you use a more intelligent interface except
for relatively simple applications.

! The lower-cost HP 98644 Serial Interface is also available for these types of applications. Differences are
described where necessary in the text, and are also summarized at the end of this chapter.
2 Gee the “Datacomm Interface” chapter for details.

The RS-232C Serial Interface 13-1

The RS-232C interface standard! establishes electrical and mechanical interface require-
ments, but does not define the exact function of all the signals that are used by various
manufacturers of data communications equipment and serial I /O devices. Consequently,
when you plug your serial interface into an RS-232 connector, there is no guarantee the
devices can communicate unless you have configured optional parameters to match the
requirements of the device you are connecting to.

Asynchronous Data Communication

The terms Asynchronous (Async for short) data communication and Serial 1/0 refer to
a technique of transferring information between two communicating devices by means of
bit-serial data transmission. This means that data is sent, one bit at a time, and that
characters are not synchronized with preceding or subsequent data characters; that is,
each character is sent as a complete entity without relationship to other events, before
or after. Characters may be sent in close succession, or they may be sent sporadically as
data becomes available. Start and stop bits are used to identify the beginning and end
of each character, with the character data placed between them.

Character Format
Each character frame consists of the following elements:

e Start Bit: The start bit signals the receiver that a new character is being sent. Since
the receiver knows how many bits per second are being transmitted (specified by
the baud rate), it can determine the expected arrival time for all subsequent bits in
that character frame. All other bits in a given frame are synchronized to the start
bit.

¢ 5-8 Character Data Bits: The next bits are the binary code of the character being
transmitted, consisting of 5, 6, 7, or 8 bits; depending on the application. The
parity bit is not included in the character data bits.

e Parity Bit: The parity bit is optional, included only when parity is enabled.

e Stop Bit(s): One or more stop bits identify the end of each character. The serial
interface has no provision for inserting time gaps between characters.

1 RS-232C is a data communication standard established and published by the Electronic Industries As-
sociation (EIA). Copies of the standard are available from the association at 2001 Eye Street N. W,
Washington D. C. 20006. Its equivalent for European applications is CCITT V.24.

13-2 The RS-232C Serial Interface

Here is a simple diagram showing the structure of an asynchronous character and its
relationship to other characters in the data stream:

| | | |] |
“l I i i | 1 |
]] |

Preceding . 1 o 1 o 0 0 1 Start Bit

Character Line in |Start Parity Stop for Next
ldle State | Bit Bit Bit(s) Character
(Mark)

<~ Single Character Frame

Beginning of End of
Character Character

Figure 13-2. Asynchronous Format

Parity .

The parity bit is used to detect errors as incoming characters are received. If the parity bit
does not match the expected sense, the character is assumed to be incorrectly received.
The action taken when an error is detected depends upon how the interface and the
BASIC program are configured.

Parity sense is determined by system requirements. The parity bit may be included or
omitted from each character by enabling or disabling the parity function. If the parity
bit is enabled, four options are available. Parity is checked by the receiver for all parity
options including ONE and ZERO. (The HP 98628 Datacomm Interface does not check
parity when parity is set to ONE or ZERO.)

The RS-232C Serial Interface 13-3

Parity options include:

o NONE Parity function is DISABLED, and the parity bit is omitted from each
character frame.

¢ ODD Parity bit is SET if there is an EVEN! number of ones in the data character.
The receiver performs parity checks on incoming characters.

¢ EVEN Parity bit is SET if there is an ODD! number of ones in the data character.
The receiver performs parity checks on incoming characters.

e ONE Parity bit is set for all characters. Parity is checked by the receiver on all
incoming characters.

¢ ZERO Parity bit is cleared, but present for all characters. Parity is checked by
the receiver on all characters.

Error Detection
Two types of incoming data errors can be detected by serial receivers:

o Parity errors are signalled when the parity bit does not match the number of ones,
including the parity bit, even or odd as defined by interface configuration. When
parity is disabled, no parity check is made.

¢ Framing errors are signaled when start and stop bits are not properly received
during the expected time frame. They can be caused by a missing start bit, noise
errors near the end of the character, or by improperly specified character length at
the transmitter or receiver.

Two additional error types are detected by the receiver section of the serial interface:

e Overrun errors result when the desktop computer does not consume characters
as fast as they arrive. The card provides only one character of buffer space, so
the current character must be consumed by an ENTER before the next character
arrives. Otherwise, the character is lost when the next character replaces it, and
an error is sent to BASIC.

® Received BREAKS are detected as a special type of framing error. They generate
the same type of BASIC error as framing errors.

1 Parity sense is determined by counting the number of ones in the character including the parity bit.
Consequently, the parity sense is reversed from the number of ones in a character without the parity bit.

13-4 The RS-232C Serial Interface

Data Transfers Between Computer and Peripheral

Four statements are used to transfer information between your desktop computer and
the interface card:

o The CONTROL statement is used to control interface operation and defines such
parameters as baud rate, character format, or parity.

e The OUTPUT statement sends data to the interface which, in turn, sends the
information to the peripheral device.

e The ENTER statement inputs data from the interface card after the interface has
received it from the peripheral device.

o The STATUS statement is used to monitor the interface and obtain information
about interface operation such as buffer status, detected errors, and interrupt enable
status.

Since the interface has no on-board processor, ENTER and QUTPUT statements cause
the computer to wait until the ENTER or OUTPUT operation is complete before con-
tinuing to the next line. For OUTPUT statements, this means that the computer waits
until the last bit of the last character has been sent over the serial line before continning
with the next program statement.

The RS-232C Serial Interface 13-5

Overview of Serial Interface Programming

Serial interface programming techniques are similar to most general I/O applications.
The interface card is initialized by use of CONTROL statements; STATUS statements
evaluate its readiness for use. Data is transferred between the desktop computer and a
peripheral device by OUTPUT and ENTER statements. In most cases, default configu-
ration switches on the interface card can be used to eliminate or significantly reduce the
need for using CONTROL statements to initialize the card.

Due to the asynchronous nature of serial /O operations, special care must be exercised
to ensure that data is not lost by sending to another device before the device is ready
to receive. Modem line handshaking can be used to help solve this problem. These and
other topics are discussed in greater detail elsewhere in this chapter.

Determining Operating Parameters

Before you can successfully transfer information to a device, you must match the operat-
ing characteristics of the interface to the corresponding characteristics of the peripheral
device. This includes matching signal lines and their functions as well as matching the
character format for both devices.

Handshake and Baud Rate
To determine hardware operating parameters, you need to know the answer for each of
the following questions about the peripheral device:

e Which of the following signal and control lines are actively used during communi-
cation with the peripheral?

Data Set Ready (DSR)
Data Carrier Detect (DCD or CD)
Clear to Send (CTS)
Ring Indicator (RI)
e What baud rate (line speed) is expected by the peripheral?

13-6 The RS-232C Serial Interface

Character Format Parameters
To define the character format, you must know the requirements of the peripheral device
for the following parameters:

o Character Length: How many data bits arc used for cach character, excluding start,
stop, and parity bits?

e Parity Enable: Is parity enabled (included) or disabled (absent) for each charactor?
o Parity Sense: Is the parity bit, if enabled, ODD, EVEN, always ONE, or always
ZERO?

e Stop Bits: How many stop bits are included with each character: 1, 1.5, or 27

Using Interface Defaults to Simplify Programming

The serial interface includes three default configuration switch clusters in addition to the
select code and interrupt level switches. Their functions are described in the following
paragraphs.

Modem-Line Disconnect Switches
The Modem Line Disconnect switches are used to connect or disconnect the following
modem lines from the interface cable:

o Data Set Ready (DSR)

o Data Carrier Detect (DCD or CD)
o Clear to Send (CTS)

o Ring Indicator (RI)

When a given switch is in the CONNECT position, the corresponding modem line is
connected from the peripheral device to the interface cireuitry. When it is in the discon-
nected position, the modem line is disconnected, and the interface receiver input for that
line is held HIGH (true). Any modem lines that are not actively used while communicat-
ing with the peripheral should be disconnected to minimize errors due to electrical noise
in the cable. Modem line disconnect switch settings cannot be altered under program
control. To reconfigure the switches, the interface must be removed from the computer,
and the settings changed by hand.

The RS-232C Serial Interface 13-7

Note

The built-in 98626 serial interface in Series 200 Models 216 and 217
and 98644 interface in Series 300 computers have no “modem-line
disconnect” switches. Because switch settings can vary, cable con- \ /
nections between the computer and an external device can require

some cross-wiring. Use of a breakout box can be helpful.

Baud Rate Select Switches!

The rate at which data bits are transferred between the interface and the peripheral is
called the baud rate. The interface card must be set to transmit and receive at the same
rate as the peripheral, or data cannot be successfully transferred. To preset the baud
rate, the Baud Rate Select switches can be set to any one of the following values:

Table 13-1. Baud Rate Select Switch Settings

Switch Settings Switch Settings
Baud Rate 3210 Baud Rate 3210
50 0000 1200 1000
75 0001 1800 1001 N
110 0010 2400 1010
134.5 0011 3600 1011
150 0100 4800 1100
200 0101 7200 1101
300 0110 9600 1110
600 0111 19200 1111

\

@

1 These switches are not implemented on the 98644 interface. See the description of register 13, which
allows you to set a “SCRATCH A default” value for the baud rate.

13-8 The RS-232C Serial Interface

Line-Control Switches!
The Line Control switches are used to preset character format and parity options. Func-
tions are as follows:

Table 13-2. Line Control Switch Settings

Parity Sense Parity Enable Stop Bits Character Length
(Switches 5&4) (Switch 3) (Switch 2) (Switches 1&0)

00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char

01 EVEN parity 1 Enabled I 1.5 stop bits 01 6 bits/char

10 Always ONE (if 5 bits/char), |10 7 bits/char

1t Always ZERO or 2 stop bits 11 8 bits/char
(f6,7,0r8
bits/char).

Bits 6 and 7 are reserved for future use.

Using Program Control to Override Defaults

You can override some of the interface default configuration options by use of CONTROL
statements. This not only enables you to guarantee certain parameters, but also provides
a means for changing selected parameters in the course of a running program. CONTROL
Register tables are listed at the end of this chapter as well as in the BASIC Language
Reference. Refer to them as needed during the discussion which follows.

Interface Reset

Whenever an interface is connected to a modem that may still be connected to a telecom-
munications link from a previous session, it is good programming practice to reset the
interface to force the modem to disconnect, unless the status of the link and remote
connection are known. When the interface is connected to a line printer or similar pe-
ripheral, resetting the interface is usually unnecessary unless an error condition requires
it.

100 CONTROL Sc¢,0;1 ! Reset interface.

! These switches are not implemented on the 98644 interface. See the description of register 14, which
allows you to set a “SCRATCH A default” value for the character format,

The RS-232C Serial Interface 13-9

When the interface is reset by use of a CONTROL statement to CONTROL Register 0
with a non-zero value, the interface is restored to its power-up condition—except that the
current character format is not altered, whether or not it is the same as the current default
switch configuration. If you are not sure of the present settings, or if your application
requires changing the configuration during program operation, you can use CONTROL
statements to configure the interface. An example of where this may be necessary is
when several peripherals share a single interface through a manually operated RS-232
switch such as those used to connect multiple terminals to a single computer port, or a
single terminal to multiple computers.

Selecting the Baud Rate

In order to successfully transfer information between the interface card and a peripheral,
the interface and peripheral must be set to the same baud rate. A CONTROL statement
to register 3 (or 13 with 98644 interfaces) can be used to set the interface baud rate to
any one of the following values:

50 150 1200 4800

75 200 1800 7200

110 300 2400 9600
134.5 (or 134) 600 3600 19200

For example, to select a baud rate of 3600, the following program statement is used:
1190 CONTROL Sc, 3;3600
Use of values other than those shown may result in incorrect operation.

To verify the current baud rate setting, use a STATUS statement addressed to register
3. All rates are in baud (bits/second).

13-10 The RS-232C Serial Interface

Setting Character Format and Parity

CONTROL Register 4 overrides the Line Control switches! that control parity and char-
acter format. To determine the value sent to the register, add the appropriate values
selected from the following table:

Table 13-3. Character Format and Parity Settings

Parity Sense Parity Enable Stop Bits Character Length
(Bits 5&4) (Bit 3) (Bit 2) (Bits 1&0)
00 ODD parity 0 Disabled 0 1 stop bit 0 5 bits/char
16 EVEN parity 8 Enabled 4 1.5 stop bits I 6 bits/char
32 Always ONE (if 5 bits/char), |2 7 bits/char
48 Always ZERO or 2 stop bits 3 8 bits/char
(if 6,7, 0r 8
bits/char).

For example, to configure a character format of 8 bits per character, two stop bits, and
EVEN parity, use the following CONTROL statement;

1200 CONTROL Sc,4;3+4+8+16
or
1200 CONTROL Sc,4;31

To configure a 5-bit character length with 1 stop bit and no parity bit, use the following:

1200 CONTROL Sc,4;0

! With 98644 interfaces, there are no Line Control switches. You can simulate their effect by writing to
CONTROL register 14. Note that individual bits of this register are the same as for register 4.

The RS-232C Serial Interface 13-11

Data Transfers

The serial interface card is designed for relatively simple serial 1/O operations. It is
not intended for sophisticated applications that use ON INTR statements extensively
to service the interface. If your situation requires full interrupt capability such as in
terminal emulator applications, use the HP 98628 Datacomm Interface instead. Limited
ON INTR capabilities are provided by the serial interface for error trapping and other
simple tasks.

Program Flow

When the interface is properly configured, either by use of default switches or CONTROL
statements, you are ready to begin data transfers. OUTPUT statements are used to send
information to the peripheral; ENTER statements to input information from the external
device.

OUTPUT 20;"String data",Numeric_var, Etc
ENTER 20;String_var$, Numeric_var,Etc

Any valid OUTPUT or ENTER statement and variable(s) list may be used, but you must
be sure that the data format is compatible with the peripheral device. For example, non-
ASCII data sent to an ASCII line printer may result in unexpected behavior.

Various other /0O statements can be used in addition to OUTPUT and ENTER, depend-
ing on the situation. For example, the LIST statement can be used to list programs to an
RS-232 line printer—provided the interface is properly configured before the operation
begins.

Data Output

To send data to a peripheral, use OUTPUT, OUTPUT USING, or any other similar
or equivalent construct. Suppression of end-of-line delimiters and other formatting ca-
pabilities are identical to normal operation in general 1/O applications. The OUTPUT
statement hangs the computer until the last bit of the last character in the statement
variable list is transmitted by the interface. When the output operation is complete, the
computer then continues to the next line in the program. See the “Outputting Data”
chapter for details of the OUTPUT statement.

13-12 The RS-232C Serial Interface

Data Entry

To input data from a peripheral, use ENTER, ENTER USING, or an equivalent state-
ment. Inclusion or elimination of end-of-line delimiters and other information is deter-
mined by the formatting specified in the ENTER statement. The ENTER statement
hangs the computer until the input variables list is satisfied. To minimize the risk of
waiting for another variable that isn’t coming, you may prefer to specify only one vari-
able for cach ENTER statement, and analyze the result before starting the next input
operation. See the “Entering Data” chapter for details of the ENTER statement.

Be sure that the peripheral is not transmitting data to the interface while no ENTER
is in progress. Otherwise, data may be lost because the card provides buffering for
only one character. Also, interrupts from other I/0 devices, or operator inputs to the
computer keyboard can cause delays in computer service to the interface that result in
buffer overrun at higher baud rates.

Modem Line Handshaking

Modem line handshaking, when used, is performed automatically by the computer as
part of the OUTPUT or ENTER operation. If the modem line states have not been
latched in a fixed state by Control Register 5, the following sequence of events is exceuted
automatically during each OUTPUT or ENTER operation:

For OUTPUT operations:

L. Set Data Terminal Ready and Request-to-Send modem lines to active state.

o

Check Data Set Ready and Clear-to-Send modem lines to be sure they are active.

R

Send information to the interface and thence to the peripheral.

>

After data transfer is complete, clear Data Terminal Ready and- Request-to-Send
signals.

The RS-232C Serial Interface 13-13

For ENTER operations:
1. Set Data Terminal Ready line to active state. Leave Request-to-Send inactive.

2. Check Data Set Ready and Data Carrier Detect modem lines to be sure they are
active.

3. Input information from the interface as it is received from the peripheral.

4. After the input operation is complete, clear the Data Terminal Ready signal.

After a given OUTPUT or ENTER operation is completed, the program continues exe-
cution on the next line.

Control Register 5 can be used to force selected modem control lines to their active
state(s). The Data Rate Select and Secondary Request-to-Send lines are set or cleared
by bits 3 and 2 respectively. Request-to-send and Data Terminal Ready are held in
their active states when bits 1 and 0 are true, respectively. If bits 1 and/or 0 are
false, the corresponding modem line is toggled during OUTPUT or ENTER as explained
previously.

Incoming Data Error Detection and Handling

The serial interface card can generate several errors that are caused when certain con-
ditions are encountered while receiving data from the peripheral device. The UART
detects a given error condition and sets the corresponding bit in Status Register 10. The
card then generates a pending error to BASIC. Errors can be generated by any of the
following conditions:

e Parity error. The parity bit on an incoming character does not match the parity
expected by the receiver. This condition is most commonly caused by line noise.
When this error occurs, bit 2 of Status Register 10 is set.

e Framing error. Start and stop bit(s) do not match the timing expectations of the
receiver. This can occur when line noise causes the receiver to miss the start bit or
obscures the stop bits. When this error is detected, bit 3 of Status Register 10 is
set.

e Overrun error. Incoming data buffer overrun caused a loss of one or more data
characters. This is usually caused when data is received by the interface, but no
ENTER statement has been activated to input the information. Bit 1 of Status
Register 10 is set when this error occurs.

13-14 The RS-232C Serial Interface

e Break received. A BREAK was scut to the interface by the periplieral device. The
desktop computer program must be able to properly interpret the meaning of a
break and take appropriate action. When this condition occurs. bit 4 of Status
Register 10 is set. Since a BREAK is detected as a special type of framing error,
the framing error indicator, bit 3, is also set.

All UART status errors are generated by incoming data, never by outbound data. When
a UART error oceurs, the corresponding bit of Status Register 10 is set, and a pending
error (LRROR 167: Interface status error) is sent to BASIC. BASIC processes the error
according to the following rules:

e Ifan ENTER is in progress, the crror is handled immediately as part of the ENTER
process. An active ON ERROR causes the error trap to be executed. If no ON
ERROR is active, the error is fatal and causes the program to terminate.

o [fan OUTPUT is in progress, or if there is no current activity between the computer
and interface, the error is flagged, but nothing is done by BASIC until an ENTER
statement is encountered. When the computer begins execution of the ENTER
statement, if an ON ERROR is active, the error trap is executed. If there is no
active ON ERROR for that select code, the fatal ERROR. 167 causes the BASIC
program to terminate.

e If a STATUS statement is executed to Status Register 10 before an ENTER state-
ment is encountered for that select code, the pending BASIC error is cleared, and
the program continues as if no error had been generated. Whenever a STATUS
statement is executed to Status Register 10, bits 1 through 4 of the register are
cleared and the data is destroyed. If you need to perform multiple operations (such
as II' BIT tests) on the register contents, be sure to store the information in a
ariable before you use it.

The RS-232C Serial Interface 13-15

Trapping Serial Interface Errors

Pending BASIC errors can be trapped by using an ON ERROR statement in conjunction

with an error trapping service routine to evaluate the error condition. Here is an example
technique:

\

1200 Sc=9 ! Set serial interface select code. K J
1210 ON ERROR GOTO Error ! Set up error trap routine.

1400 ENTER Sc;A$! Input line of data from interface.

1530 Error: ! Error trap routine:

1535 IF ERRN<>167 THEN Other_error

1540 STATUS Sc,10;Uart_error ! Get UART error information.

1550 IF BIT (Uart_error,1) THEN Overrun ! Overrun error.

1560 IF BIT (Uart_error,2) THEN Parity
1570 IF BIT (Uart_error,4) THEN Break
1580 IF BIT (Uart_error,3) THEN Framing

Parity error.
BREAK received.

1
!
! Framing error.
1

1590 Other: Other error type.
1650 Overrun: ! Overrun error routine:

. i \
1700 Parity: ! Parity error routine: \ J
1750 Framing: ! Framing error routine:
1800 Break: ! BREAK received routine:
1850 Other_error: ! Not error 167. Process accordingly.

This example is not intended to show a specific application, but only to illustrate the
technique for trapping interface errors. Only UART errors are shown in this example,
but the technique is valid for other errors related to a given interface.

13-16 The RS-232C Serial Interface

Note that in this example, the UART error information is checked for a BREAK before
looking at the framing error bit. When a break is received, both the BREAK and framing
error bits are set. Consequently, if the error check sequence were reversed, it would be
necessary to check for a BREAK whenever a framing error is processed. Reversing the
order eliminates an extra step by making it unnecessary to check for framing errors when
a BREAK occurs. That is because whenever the BREAK is processed, the framing error
is also cleared, making it unnecessary to perform any operations related to framing errors
that are handled by the BREAK routine.

Special Applications

This section provides advanced programming information for applications requiring spe-
cial technigues.

Sending BREAK Messages

A BREAK is a special character transmission that usually indicates a change in operating
conditions. Interpretation of break messages varies with the application. To send a break
message, send a non-zero value to Control Register 1 as follows (8c is the interface select
code):

1640 CONTROL Sc,1;1 ! Send a BREAK to peripheral.

Using the Modem Control Register

Control Register 5 controls various functions related to modem operation. Bits 0 thru 3
control modem lines, and bit 4 enables a self-test loopback configuration.

Modem Handshake Lines (RTS and DTR)
As explained ecarlier in this chapter, Request-to-send and Data Terminal Ready lines are
set or cleared at the beginning and end of each OUTPUT or ENTER operation. In some
cases, it may be advantageous or necessary to maintain either or both in an active state.
This is done by setting bit 1 or 0 respectively in Control Register 5 as follows:

1650 CONTROL Sc,5;2 Set RTS line only and hold active.

1660 CONTROL Sc,5;1 Set DTR line only and hold active.

!

!
1870 CONTROL Sc,5;3 ! Set both RTS and DTR lines active.
1680 CONTROL Sc¢,5;0 ! Return to normal modem line handshake.

The RS-232C Serial Interface 13-17

When RTS and/or DTR are set by Control Register 5, they are not toggled during
OUTPUT or ENTER operations, but remain constantly in an active state until the
CONTROL register is cleared by:

e writing a different value to CONTROL register 5
e an interface reset to CONTROL register 0

* an interface reset ([Reset]) from the keyboard ([Shift) on an ITF keyboard, or
on a 98203 keyboard).

Programming the DRS and SRTS Modem Lines

Bits 3 and 2 of Control Register 5 control the present state of the Data Rate Select (DRS)
and Secondary Request-to-send (SRTS) lines, respectively. When either bit is set, the
corresponding modem line is activated. When the bit is cleared, so is the modem line.
To set both lines, the following statement or its equivalent can be used:

1690 CONTROL Sc,5;8+4 ! Set DRS and SRTS lines.

These lines are also cleared by a CONTROL statement to Control Register 5 with bits
2 and 3 cleared, or by an interface reset.

Configuring the Interface for Self-test Operations

Self-test programs can be written for the serial interface. Prior to testing the interface,
it must be properly configured. Using bit 4 of Control Register 5, you can rearrange the
interconnections between input and output lines on the interface, enabling the interface
to feed outbound data to the inbound circuitry.

When LOOPBACK is enabled (bit 4 is set), the UART output is set to its MARK state
and sent to the Transmitted Data (TxD) line. The output of the transmitter shift register
is then connected to the input of the receiver shift register, causing outbound data to be
looped back to the receiver. In addition, the following modem control lines are connected
to the indicated modem status lines:

Table 13-4. Modem Control Line/Modem Status Line Connections

Modem Control Line Modem Status Line
DTR Data Terminal Ready CTS Clear-to-send
RTS Request-to-send DSR Data Set Ready
DCD Data Carrier Detect DRS Data Rate Select
SRTS Secondary RTS RI Ring Indicator

13-18 The RS-232C Serial Interface

When loopback is active, receiver and transmitter interrupts are fully operational. Mo-
dem control interrupts are then generated by the modem control outputs instead of the
modem status inputs. Refer to serial interface hardware documentation for information
about card hardware operation.

READIO and WRITEIO Registers

For those cases where you need to write special interface driver routines, the interface card
provides registers that can be accessed by use of READIO and WRITEIO statements.
These capabilities are intended for use by experienced programmers who understand the
inherent programming complexities that accompany this versatility.

Some registers are read/write; that is, both READIO and WRITEIO operations can
be performed on a given register. Writing places a new value in the register; a read
operation returns the current value. All registers have 8 bits available, and accept values
from 0 through 255 unless noted otherwise. When the valie of a given bit is 1, the bit is
set; otherwise, it is zero (cleared or inactive).

Note

Some READIO and WRITEIO registers are similar in structure
and function to Status and Control Registers. However, their inter-
action with the BASIC operating system is considerably different.
To prevent incorrect program operation, do NOT intermix the use
of STATUS/CONTROL registers and READIO/WRITEIO regis-
ters in a given program.

The RS-232C Serial Interface 13-19

Interface Hardware Registers

READIO and WRITEIO registers 1, 3, 5, and 7 access interface registers. Their functions
are as follows:

READIO Register 1 Interface ID

This register returns the interface ID value: 2 for the HP 98626
Serial Interface; 66 for the HP 98644 interface.

WRITEIO Register 1 Interface Reset

Writing any value to this register, 1 thru 255, resets the inter-
face as when using a CONTROL statement to Control Register
0.

READIO Register 3: Interrupt Status

Only the upper four bits of Register 3 are used. Bit 7 returns
the current interrupt enable value. Bit 6 is set when an in-
terrupt request is originated by the UART. (No interrupt can
occur unless bit 7, Interrupt Enable, is set by a WRITEIO
statement.)

Bits 5 and 4 return the setting of the Interrupt Level switches \/'/
on the interface!. Their values are as follows:

00 Interrupt Level 3
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6

WRITEIO Register 3: Interrupt Enable

Only bit 7 can is affected by WRITEIO statements. Writing
a 1 into this bit enables interrupts, while a 0 disables them.

1 With 98644 interfaces (which have no interrupt level switches), this register always indicates an interrupt
level of 5.

13-20 The RS-232C Serial Interface

READIO Register 5

Optional Circuit and Baud Rate Status

READIO returns current states of the optional circuit drivers,
plus the following:

Bit 5 Optional Circuit Receiver 2 state.
Bit 4 Optional Circuit Receiver 3 state.
Bits 3-0 Current Baud Rate switch setting (not necessarily the current
UART baud rate) as shown in the following table.
Table 13-5. Baud Rate Switch Settings
Switch Settings Switch Settings
Baud Rate 3210 Baud Rate 3210
50 06000 1200 1000
75 0001 1800 1001
110 0010 2400 1010
134.5 0011 3600 1011¢
150 0100 4800 1100
200 0101 7200 1101
300 0110 9600 1110
600 0111 19200 1111

WRITEIO Register 5:

Bits 3-0

Optional Circuit and Baud Rate Control

WRITEIO to bits 7 and 6 control the state of optional circuit
drivers 3 and 4, respectively.

WRITEIO to this register cannot be used to set the baud rate.
(Use Register 23, bit 7 and Registers 17 and 19 instead.)

The RS-232C Serial Interface 13-21

READIO Register 7 Line Control Switch Monitor!

READIO to this register enables you to input the present set-
tings of the Line Control switches that preset default character
format and parity. Bit functions are included in the table ear-
lier in this chapter under Using Interface Defaults to simplify
programming. Bits 7 thru 0 correspond to switches 7 thru 0,
respectively.

WRITEIO Register 7 WRITEIO operations to this register are meaningless.

UART Registers
Registers 17 through 29 access UART registers. They are used to directly control certain
UART functions. The function of Registers 17 and 19 are determined by the state of bit
7 of Register 23.

READIO Register 17 Receive Buffer/Transmitter Holding Register

When bit 7 of Register 23 is clear (0), this register accesses
the single-character receiver buffer by use of READIO.

The receiver and transmitter are doubly buffered. When the
transmitter shift register becomes empty, a character is trans-
ferred from the holding register to the shift register. You can
then place a new character in the holding register while the
preceding character is being transmitted. Incoming characters
are transferred to the receiver buffer when the receiver shift
register becomes full. You can then input the character (REA-
DIO) while the next character is being constructed in the shift
register.

WRITEIO Register 17 Receive Buffer/Transmitter Holding Register

A WRITEIO statement places a character in the transmitter
holding register.

! Since the 98644 interface does not have these switches, READIO of this register will be meaningless.

13-22 The RS-232C Serial Interface

READIO/WRITEIO
Registers 17 and 19

READIO Register 19

Bit 3

Bit 2

Bit |

Bit 0

WRITEIO Register 19

Baud Rate Divisor Latch

When bit 7 of Register 23 is set (1), Registers 17 and 19 access
the 16-bit divisor latch used by the UART to set the baud rate.
Register 17 forms the lower byte; Register 19 the upper. The
baud rate is determined by the following relationship:

Baud Rate = 153 600/Baud Rate Divisor

To access the Baud Rate Divisor latch, set bit 7 of Register
23. This disables access to the normal functions of Registers
17 and 19, but preserves access to the other registers. When
the proper value has been placed in the latch, be sure to clear
bit 7 of Register 23 to return to normal operation.

Interrupt Enable Register

When bit 7 of Register 23 is clear (0), this register enables the
UART to interrupt when specified conditions occur. Only bits
0 thru 3 are used. Interrupt enable conditions are as follows:

Enable Modem Status Change Interrupts, when set, enables
an interrupt whenever a modem status line changes state as
indicated by Register 29, bits 0 thru 3.

Enable Receiver Line Status Interrupts, when set. enables in-
terrupts by errors, or received BREAKSs as indicated by Reg-
ister 27, bits 1 thru 4.

Enable Transmitter Holding Register Empty Interrupt, when
set, allows interrupts when bit 5 of Register 27 is also set.

Enable Receiver Buffer Full Interrupts, when set, enables in-
terrupts when bit 0 of Register 27 is also set.

Interrupt Enable Register

When bit 7 of Register 23 is clear (0), this register enables the
UART to interrupt when specified conditions occur. Only bits
0 thru 3 are used. WRITEIO establishes a new value for each
bit. Interrupt enable conditions are described in the preceding
explanation of READIO register 19.

The RS-232C Serial Interface 13-23

READIO Register 21 Interrupt Identification Register

This register identifies the cause of the highest-priority, cur-
rently-pending interrupt. Only bits 2, 1, and 0 are used. Bit 0, P
if set, indicates no interrupt pending. Otherwise an interrupt u
is pending as defined by bits 2 and 1. Causes of pending
interrupts in order of priority are as follows:

Bits 2&1 Interrupt Cause

11 Receiver Line Status interrupt (highest priority) is caused
when bit 2 of Register 19 is set and a framing, parity, or over-
run error, or a BREAK is detected by the receiver (indicated
by bits 1 thru 4 of Register 27). The interrupt is cleared by
reading Register 27.

10 Receive Buffer Register Full interrupt is generated when bit 0
of Register 19 is set and the Data Ready bit (bit 0) of Register
27 is active. To clear the interrupt, read the receiver buffer,
or write a zero to bit 0 of Register 27.

01 Transmitter Holding Register Empty interrupt occurs when
bit 1 of Register 19 is set and bit 5 of Register 27 is set. The % ™
interrupt is cleared by writing data into the transmitter hold- \/

ing register (Register 17 with bit 7 of Register 23 clear) with
a WRITEIO statement, or by reading this register (Interrupt
Identification).

00 Modem Line Status Change interrupt occurs when bit 3 of
Register 19 is set and a modem line change is indicated by one
or more of bits 0 thru 3 of Register 29. To clear the interrupt,
read Register 29 which clears the status change bits.

13-24 The RS-232C Serial Interface

READIO/WRITEIO Character Format Control Register!

Register 23 . . o . . }
& This register is functionally equivalent to Control and Status

Register 4 except for bits 6 and 7. WRITEIO sets a new char-
acter format; READIO returns the current character format
setting.

Bit 7 Divisor Latch Access Bit, when set, enables you to access the
divisor latches of the Baud Rate generator during read/write
operations to registers 17 and 19.

Bit 6 Set BREAK, when set, holds the serial line in a BREAK state
(always zero), independent of other transmitter activity. This
bit must be cleared to disable the break and resume normal
activity.

Bits 5,4 Parity Sense is determined by both bits 5 and 4. When bit 5
s set, parity is always ONE or ZERO. If bit 5 is not set, parity
is ODD or EVEN as defined by bit 4. The combinations of
bits 5 and 4 are as follows:

00 ODD parity
01 EVEN parity
10 Always ONE
11 Always ZERO

Bit 3 Parity Enable, when sct, sends a parity bit with each outbound
character, and checks all incoming characters for parity errors.
Parity is defined by bits 4 and 5.

Bits 2,1&0 Stop Bit(s) are defined by a combination of bit 2 and bits [&
0.
Bit 2 i Character Length Stop Bits
0 5,6,7 0r8 1
1 5 1.5
1 6,7, or8 2

i

! Since the 98644 interface does not have these switches, READIO of bits 5 through 0 of this register will
be meaningless.

The RS-232C Serial Interface 13-25

Bits 1&0

READIO/WRITEIO
Register 25

Bits 7, 6, and 5
Bit 4

Bit 3
Bit 2

Bit 1

Bit 0

Character Length is defined as follows:

Bits 1&0 Character Length
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Modem Control Register

This is a READ/WRITE register. READIO returns current
control register value. WRITEIO sets a new value in the reg-
ister. This register is equivalent to interface Control Register

5.
Not used.

Loopback, when set, enables a loopback feature for diagnos-
tic testing. Serial line is set to MARK state, UART receiver
is disconnected, and transmitter output shift register is con-
nected to receiver input shift register. Modem line outputs
and inputs are connected as follows: DTR to CTS, RTS to
DSR, DRS to DCD, and SRTS to RI. Interrupts are enabled,
with interrupts caused by modem control outputs instead of
inputs from modem.

Data Rate Select controls the OCD1 driver output. 1=Active,
0=Disabled.

Secondary Request-to-Send controls the OCD2 driver output.
1=Active, 0=Disabled.

Request-to-Send controls the RTS modem control line state.
When bit 1=1, RTS is always active. When bit 1=0, RTS is
toggled by the OUTPUT statement as described earlier in this
chapter.

Data Terminal Ready holds the DTR modem control line ac-
tive when the bit is set. If not set, DTR is controlled by the
OUTPUT or ENTER statement as described earlier.

13-26 The RS-232C Serial Interface

READIO Register 27
Bit 7
Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Line Status Register
Not used.

Transmitter Shift Register Empty indicates no data present in
transmitter shift register.

Transmitter Holding Register Empty indicates no data present
in trausmitter holding register. The bit is cleared whenever a
new character is placed in the register.

Break Indicator indicates that the received data input re-
mained in the spacing (line idle) state for longer than the
transmission time of a full character frame. This bit is cleared
when the line status register is read.

Framing Error indicates that a character was received with im-
proper framing; that is, the start and stop bits did not conform
with expected timing boundaries.

Parity Error indicates that the received character did not have
the expected parity sense. This bit is cleared when the register
is read.

Overrun Error indicates that a character was destroyed be-
cause it was not read from the receiver buffer before the next
character arrived. This bit is cleared by reading the line status
register.

Data Ready indicates that a character has been placed in the
receiver buffer register. This bit is cleared by reading the re-
ceiver buffer register, or by writing a zero to this bit of the
line status register.

The RS-232C Serial Interface 13-27

READIO Register 29
Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Modem Status Register

Data Carrier Detect, when set, indicates DCD modem line is
active.

Ring Indicator, if set, indicates that the RI modem line is
active.

Data Set Ready, if set, indicates that the DSR modem line is
active.

Clear-to-send, if set, indicates that C'TS is active.

Change in Carrier Detect, when set, indicates that the DCD
modem line has changed state since the last time the modem
status register was read.

Trailing Edge of Ring Indicator is set when the RI modem line
changes from active to inactive state.

Delayed Data Set Ready is set when the DSR line has changed
state since the last time the modem status register was read.

Change in Clear-to-send, if set, indicates that the CTS modem
line has changed state since the last time the register was read.

13-28 The RS-232C Serial Interface

</

\

Cable Options and Signal Functions

The HP 98626A Serial Interface is available with RS-232C DTE and DCE cable configu-
rations. The DTE cable option consists of a male RS-232C connector and cable designed
to function as Data Terminal Equipment (DTE) when used with the serial interface.
This means that the cable and connector are wired so that signal paths are correctly
routed when the cable is connected to a peripheral device wired as Data Communication
Equipment (DCE), such as a modem. The cables are designed so that you can write pro-
grams that work for both DCE and DTE connections without requiring modifications to
accommodate equipment changes.

The DCE cable option includes a female connector and cable wired so that the interface
and cable behave like normal DCE. This means that signals are routed correctly when
the female cable connector is connected to a male DTE connector.

Line printers and other peripheral devices that use RS-232C interfacing are frequently
wired as DTE with a female RS-232C chassis connector. This means that if you use a male
(DTE) cable option to connect to the female DTE device connector, no communication
an take place because the signal paths are incompatible. To eliminate the problem, use
an adapter cable to convert the female RS-232C chassis connector to a cable connector
that is compatible with the male or female interface cable connector. The HP 13242
adapter cable is available in various configurations to fit most common applications.
Consult cable documentation to determine which adapter cable to use.

The RS-232C Serial Interface 13-29

The DTE Cable

The signals and functions supported by the DTE cable are shown in the signal iden-

tification table which follows. The table includes RS-232C signal identification codes,

CCITT V.24 equivalents, the pin number on the interface card rear panel connector, the ,
RS-232C connector pin number, the signal mnemonic used in this manual, whether the \-/'
signal is an input or output signal, and its function.

Table 13-6. RS-232C DTE (Male) Cable Signal Identification Table

RS-232C V.24 | Interface | RS-232C
Signal Signal| Pin# Pin# |Mnemonic| I/O | Function
AA 101 24 1 - — | Safety Ground
BA 103 12 2 Out Transmitted
Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out | Request to Send
CB 108 44 5 CTS In | Clear to Send
CC 107 45 6 DSR In |Data Set Ready
AB 102 . 48 7 — — | Signal Ground .
CF 109 46 8 DCD | In |Data Carrier Detect U/
SCF (OCR2) | 122 47 12 SDCD In |Secondary DCD
SCA (OCD2) | 120 15 19 SRTS Out |Secondary RTS
CD 108.1 14 20 DTR Out |Data Terminal Ready
CE (OCR1) | 125 9 22 RI In | Ring Indicator
CH (OCD1) | 111 40 23 DRS Out |Data Rate Select

13-30 The RS-232C Serial Interface

Optional Circuit Driver/Receiver Functions

Not all signals from the interface card are included in the cable wiring. RS-232C provides
for four optional circuit drivers and two receivers. Only two drivers and two receivers
are supported by the DCE and DTE cable options. They are as follows:

Drivers Receivers
Name Function Name Function
OCD1 |Data Rate Select OCR1 |Ring Indicator

0OCD2 | Secondary Request-to-send | OCR2 | Secondary Data Carrier
Detect

OCD3 | Not used
OCD4 | Not used

If your application requires use of OCD3 or OCD4, you must provide your own interface
cable to fit the situation.

The DCE Cable

The DCE cable option is designed to adapt a DTE cable and serial or data communi-
cations interface to an identical interface on another desktop computer. It is also used
with the serial interface to simulate DCE operation when driving a peripheral wired for
DTE operation. The DCE cable is equipped with a female connector. Since most DTE
peripherals are also equipped with female connectors (pin numbering is the same as the
standard male DTE connector), an adapter (such as the HP 13242M) is used to connect
the two female connectors as explained earlier.

Note

Not all RS-232C devices are wired the same. To ensure proper
operation, you must know whether the peripheral device is wired
as DTE or DCE. The interface cable option and associated adapter
cable, if needed, must be configured to properly mate with the
female DTE chassis connector.

The RS-232C Serial Interface 13-31

The following schematic diagram shows the input and output signals for the serial inter-

face and how they are connected to a DCE peripheral.

98626 DTE RS-232C

INTERFACE CABLE SIGNALS
—>un___ g2 > BA (PIN 2) >— DATA

— o825 by qpin3) >— DA

e ST I
—< s e > CB(PINS) >—CLEAR

TO SEND (OUT)

DCD 46 DATA CARRIER
—< }—<<———>
CF (PIN8) > pETECT (ouT)

SECONDARY , ,I5

SECONDARY REQUEST
—

RTS SCA (PIN I9) >~ 10 SEND (IN)
_<}%ECCSNDAQ,\£ S SCF(PIN|2) >— SECONDARY DATA

CARRIER DETECT (0OUT)

— >R, cocen 20) >— DATA TERMINAL

—< }RI <& > CE(PIN zz)>—mg|gATOR o)

{}DSR —~ 28 > CC(PIN 6) >—pEai P8r)
SIGNAL & SAB(PINT) *—47 SIGNAL
GROUND, GROUND
ggg≫ <& > AA(PIN |) >j= gags;g

—D%—(T(L—T CH(PIN 23) T*‘gﬁlé SELECT (IN)

INTE RFACE MALE FEMALE

REAR PANEL RS-232C DCE PERIPHERAL
CONNECTOR INTERFACE CHASSIS CONNECTOR
CABLE CONNECTOR

Figure 13-3. DTE Cable Interconnection Diagram

13-32 The RS-232C Serial Interface

DCE Interface
Signals to and
from Peripheral

NOTE: Some DCE
peripherals may not
provide for all the

signal lines shown.

This diagram shows an HP 13242M adapter cable connected to a DCE interface cable
and a DTE peripheral. Note that RTS is connected to CTS in the DCE cable. If your
peripheral uses RTS/CTS handshaking, a different adapter cable must be used with the

appropriate DTE or DCE interface cable option.

13242 M
98626 BCE RS-232C ADAPTER
INTERFACE CABLE SIGNALS CABLE

BB{PIN3) ¢——p)3 DATAIN

DATA 12
> ouT
<} &ATA 52

BA(PIN2) €———) »B_ DATAOUT

8 DATA CARRIER
—
CCF (PIN8) > peTECT (N}

peD 46 4 REQUEST TO
ey
‘.Q ¢ { CA(PIN 4) > SEND (0UT)

CLEARTO
CB(PIN 5) ¢ 3
>SECONDARY 15
RTS

SEND (IN}
SECONDARY , .47
DCD

soF (A < SRTL
SCA (PINI9) ¢~ 2. SECONDARY REQUEST
___DDTR 4 CE(PIN 22) ¢y Y22 RING INDICATOR (IN)
L_(DATA SET READY {IN)
___<}RI
< DSR &J

¥

TO SEND (OUT)

T

CCPIN 6) €y Y2
.9 0

20 DATA TERMINAL
[——]
CD (PIN 20) o READY {OUT)

7
SIGNAL A (AB(PINT) €y SIGNAL
GROUND GROUND
24 |
SAFETY h—((——-—-———--<AA (PINI) SAFETY
GROUND = | = GROUND
«{>9ﬂ§——~<éi‘3~~m USED
| !
INTERFAGE FEMALE FEMALE
REAR PANEL RS-232C RS-232C
CONNECTOR INTERFACE DTE PERIPHERAL

CABLE CONNECTOR CHASSIS CONNECTOR

Figure 13-4. DCE Cable Interconnection Diagram

DCE inferface
Signals fo and
from Peripheral

NOTE! Some DTE
peripherals may not
provide for all the
signal lines shown,

The RS-232C Serial Interface 13-33

RS-232C / CCITT v24

The following table provides information about each data communications interface func-
tion. The pin assignments are also shown. Not all functions provided by RS-232C stan-
dard are implemented. The functions denoted with a * are implemented.

Table 13-7. RS-232C/CCITT V.24

RS-232C |CCITT V24 Signal Name

*Pin 1 101 PROTECTIVE GROUND. Electrical equipment frame and
ac power ground.

*Pin 2 103 TRANSMITTED DATA. Data originated by the terminal to
be transmitted via the sending modem.

*Pin 3 104 RECEIVED DATA. Data from the receiving modem in response
to analog signals transmitted from the sending modem.

*Pin 4 105 REQUEST TO SEND. Indicates to the sending modem that the
terminal is ready to transmit data.

*Pin 5 106 CLEAR TO SEND. Indicates to the terminal that its modem is
ready to transmit data.

*Pin 6 107 DATA SET READY. Indicates to the terminal that its modem
is not in a test mode and that modem power is ON.

*Pin 7 102 SIGNAL GROUND. Establishes common reference between the
modem and the terminal.

*Pin 8 109 DATA CARRIER DETECT. Indicates to the terminal that its
modem is receiving carrier signals from the sending modem.

Pin 9 Reserved for test.

Pin 10 Reserved for test.

Pin 11 Unassigned.

*Pin 12 122 SECONDARY DATA CARRIER DETECT. Indicates to the
terminal that its modem is receiving secondary carrier signals
from the sending modem.

Pin 13 121 SECONDARY CLEAR TO SEND. Indicates to the terminal that
its modem is ready to transmit signals via the secondary channel.

Note that the signals on pins 2, 3, and 7 above are commonly used for 3 wire (no modem)
links.

1 International Telephone and Telegraph Consultative Committee European standard.

13-34 The RS-232C Serial Interface

Table 13-7. RS-232C/CCITT V24 (continued)

RS-232C |CCITT V24 Signal Name

Pin 14 118 SECONDARY TRANSMITTED DATA. Data from the terminal
to be transmitted by the sending modem’s channel.

*Pin 15 114 TRANSMITTER SIGNAL ELEMENT TIMING. Signal from
the modem to the transmitting terminal to provide signal
element timing information.

Pin 16 119 SECONDARY RECEIVED DATA. Data from the modem’s
secondary channel in response to analog signals transmitted from
the sending modem.

*Pin 17 115 RECEIVER SIGNAL ELEMENT TIMING. Signal to the
receiving terminal to provide signal element timin g information.

Pin 18 Unassigned.

*Pin 19 120 SECONDARY REQUEST TO SEND. Indicates to the modem
that the sending terminal is ready to transmit data via
the secondary channel.

*Pin 20 108.2 DATA TERMINAL READY. Indicates to the modem that the
associated terminal is ready to receive and transmit data.

Pin 21 110 SIGNAL QUALITY DETECTOR. Signal from the modem
telling whether a defined error rate in the received data
has been exceeded.

*Pin 22 125 RING INDICATOR. Signal from the modem indicating that a
ringing signal is being received over the line.

*Pin 23 11l DATA SIGNAL RATE SELECTOR. Selects one of two signaling
rates in modems having two rates.

*Pin 24 113 TRANSMIT SIGNAL ELEMENT TIMING. Transmit clock
provided by the terminal.

Pin 25 Unassigned.

The RS-232C Serial Interface 13-35

Summary of RS-232C Serial
STATUS and CONTROL Registers

General Notes: Most Control registers accept values in the range of zero through 255.
Some registers accept only specified values as indicated, or higher values for baud rate
settings. Values less than zero are not accepted. Higher-order bits not needed by the
interface are discarded if the specified value exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up until the
value is overridden by a CONTROL statement.
STATUS Register 0 Card Identification

Value returned: 2 indicates a 98626 (if 130 is returned, the Re-
mote jumper wire has been removed from the interface card);
66 indicates a 98644 (194 if the Remote jumper has been re-
moved).

CONTROL Register 0 Interface Reset

Any value from 1 thru 255 resets the card. Execution is im-
mediate; any data transfers in process are aborted and any
buffered data is destroyed. A value of 0 causes no action.

STATUS Register 1 Interrupt Status
Bit 7 set: Interface hardware interrupt to CPU enabled.
Bit 6 set: Card is requesting interrupt service.
Bits 5&4:
00 Interrupt Level 3
01 Interrupt Level 4
10 Interrupt Level 5
11 Interrupt Level 6
Bits 3 thru 0 not used.

13-36 The RS-232C Serial Interface

A

CONTROL Register 1 Transmit BREAK

Any non-zero value sends a 400 milliseccond BREAK on the
serial line.

STATUS Register 2 Interface Activity Status
Bit 7 thru 3 are not used.

Bit 2 set: Handshake in progress. This occurs only
during multi-line function calls.

Bit I set: Firmware interrupts enabled (ENABLE INTR
active for this select code).

Bit 0: Reserved for future use.

STATUS Register 3 Current Baud Rate
Returns one of the values listed under CONTROL Register 3.

CONTROL Register 3 Set New Baud Rate

Use any one of the following values:

50 150 1200 4800

75 200 1800 7200

110 300 2400 9600

134.5 800 3600 19200
(or 134)

The RS-232C Serial Interface 13-37

STATUS Register 4 Current Character Format
See CONTROL Register 4 for function of individual bits.
CONTROL Register 4 Set New Character Format

Table 13-8. Character Format and Parity Settings

Parity Sense! Parity Enable Stop Bits Character Length
(Switches 5&4) (Switch 3) (Switch 2) (Switches 1&0)
00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char
01 EVEN parity 1 Enabled 1 1.5 stop bits 01 6 bits/char
10 Always ONE (if 5 bits/char), [10 7 bits/char
11 Always ZERO or 2 stop bits 11 8 bits/char
(if 6, 7, or 8
bits/char).

Bits 7 and 6 are reserved for future use.

STATUS Register 5 Current Status of Modem Control Lines

Returns CURRENT line state values. See CONTROL Regis-
ter 5 for function of each bit.

1 Parity sense valid only if parity is enabled (bit 3=1). If parity is disabled, parity sense is meaningless.

13-38 The RS-232C Serial Interface

CONTROL Register 5 Set Modem Control Line States
Sets Modem Control lines or interface state as follows:

Bit 4 set: Enables loopback mode for diagnostic tests.

Bit 3 set: Set Secondary Request-to-Send modem line to
active state.

Bit 2 set: Set Data Rate Select modem line to active state.

Bit I set: TForce Request-to-Send modem line to fixed
active state.

Bit I clear: Toggle RTS line as in normal QUTPUT
operations.

Bit 0 set: Force Data Terminal Ready modem line to
fixed active state.

Bit 0 clear: Toggle DTR line as in normal QUTPUT and
ENTER operations.

STATUS Register 6 Data In

Reads character from input buffer. Buffer contents is not de-
stroyed, but bit 0 of STATUS Register 10 is cleared.

CONTROL Register 6 Data Out

Sends character to transmitter holding register. This register
is sometimes used to transmit protocol control characters or
other characters without using QOUTPUT statements. Modem
control lines are not affected.

The RS-232C Serial Interface 13-39

STATUS Register 7 Optional Receiver/Driver Status

Returns current value of optional circuit drivers or receivers
as follows:

Bit 3: Optional Gircuit Driver 3 (OCD3). /
Bit 2: Optional Circuit Driver 4 (OCD4).

Bit 1: Optional Circuit Receiver 2 (OCR2).

Bit 0: Optional Circuit Receiver 3 (OCR3).

Other bits are not used (always 0).

CONTROL Register 7 Set New Optional Driver States

Sets (bit=1) or clears (bit=0) optional circuit drivers as fol-
lows:

Bit 3: Optional Circuit Driver 3 (OCD3),
Bit 2: Optional Circuit Driver 4 (OCD4).

Other bits are not used.

STATUS Register 8 Current Interrupt Enable Mask

Returns value of interrupt mask associated with most recent
ENABLE INTR statement. Bit functions are as follows:

Bit 3: Enable interrupt on modem line change. STATUS
Register 11 shows which modem line has changed.

Bit 2: Enable interrupt on UART status error. This bit
is used to trap ERROR 167 caused by UART error
conditions. STATUS Register 10, bits 4 thru 1,
show cause of error.

Bit 1: Enable interrupt when Transmitter Holding
Register is empty.

Bit 0: Enable interrupt when Receiver Buffer is full.

13-40 The RS-232C Serial Interface

STATUS Register 9 Cause of Current Interrupt
Returns cause of interrupt as follows:
Bits 2&1: Return cause of interrupt

11=UART error (BREAK, parity, framing, or overrun
error). See STATUS Register 10.

10=Receiver Buffer full. Cleared by STATUS to
Register 6.

0l=Transmitter Holding Register empty. Cleared by
CONTROL Register 6 or STATUS to Register 9.

00=Interrupt caused by change in modem status line(s).
See STATUS Register 11.

Bit 0: Set when no active interrupt requests from UART
are pending. Clear until all pending interrupts
have been serviced.

STATUS Register 10 UART Status

Bit set indicates UART status or detected error as follows:
Bit 7: Not used.
Bit 6: Transmit Shift Register empty.
Bit 5: Transmit Holding Register empty.
Bit 4: Break received.
Bit 3: IFraming error detected.
Bit 2: Parity error detected.
Bit 1: Receive Buffer Overrun error.

Bit 0: Receiver Buffer full.

The RS-232C Serial Interface 13-41

STATUS Register 11 Modem Status

Bit set indicates that the specified modem line or condition
active.

Bit 7: Data Carrier Detect (DCD) modem line active.
Bit 6: Ring Indicator (RI) modem line active.

Bit 5: Data Set Ready (DSR) modem line active.

Bit 4: Clear-to-Send (CTS) modem line active.

Bit 3: Change in DCD line state detected.

Bit 2: RI modem line changed from true to false.

Bit 1: Change in DSR line state detected.

Bit 0: Change in CTS line state detected.

13-42 The RS-232C Serial Interface

STATUS Register 12 Modem Handshake Control

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Carrier Data Set | Clear to
Detect 0 Ready Send 0 0 0 0
Disable! Disable? | Disable®
Value=128 |Value=064 |Value=0 | Value=16 |Value=8 | Value=4 Value=2 | Value=1

CONTROL Register 12 Modem Handshake Control
Bit 7 Bit6 | Bits | Bitd | B3 | Bitz | Bl | Bito
Jarrier Not Data Set | Clear to
Detect U(') J Ready Send Not Used
Disable! /8¢ Disable? | Disable®
Value=128 | Value=64 | Value=0 |Value=16 |Value=8 iV&luorél l Value=2 [Value:l

Interrupt Enable Register (ENABLE INTR)

Bit 7 Bit6 | Bits | Bit4 | Bits | Bz | Bici | Bito
Trans-
Modem Receiver | mitter Receiver
Not Used Status Line Holding | Buffer
Change | Status Register | Full
Empty
Value=128 | Value=64 |Va1ue:() Value=16 | Value=8 | Value=4 |Value=2 |Value=1

Y0 = Wait for Carrier Detect on Enter Operations; 1 = Don’t wait.
2 (0 = Wait for Data Set Ready on Enter and Output Operations; I = Don’t wait.
3 0 = Wait for Clear to Send on Qutput Operations; | = Don’t wait.

The RS-232C Serial Interface 13-43

STATUS Register 13 Read 98644 “SCRATCH A default” baud rate

Returns the baud rate that will be restored whenever
SCRATCH A is executed (same bit-definitions as STATUS
register 3).

CONTROL Register 13 Set 98644 “SCRATCH A default” baud rate

Sets both the “current” and the “default” baud rate that will
be restored whenever SCRATCH A is executed (same bit-
definitions as CONTROL register 3). Default value in this
register is 9600 baud.

STATUS Register 14 Read 98644 “SCRATCH A default” character format

Returns the character format parameters that will be restored
whenever SCRATCH A is executed (same bit-definitions as
STATUS register 4).

CONTROL Register 14 Set 98644 “SCRATCH A default” character format

Sets the character format parameters that will be restored
whenever SCRATCH A is executed (same bit-definitions as
CONTROL register 4). Default value in this register specifies
a character format of 8 bits/character, 1 stop bit, and parity
disabled.

13-44 The RS-232C Serial Interface

Model 216 and 217
Built-In 98626 Interface Differences

This section deseribes the differences between the HP 98626 Serial interface and the
built-in Serial interface in the Model 216 (HP 9816) and 217 (HP 9817) Computers.

The hardware differences between the built-in serial interfaces and the 98626 interface
occur in the following arcas:

o There are no “Sclect Code” switches (the seleet code is hard-wired to 9).
¢ There are no “Interrupt Level” switches (the interrupt level is hard-wired to 3).

e There are no “Status Line Disconnect” switches (the modem status lines are always
mouitored; you cannot throw switches to make them “ALWAYS ON” like you can
with with the 98626 interface).

There are no differences between programming these two interfaces with the BASIC
system.

The RS-232C Serial Interface 13-45

HP 98644 Interface Differences

The HP 98644 RS-232 Serial Interface is nearly identical to the HP 98626 RS-232 Serial
Interface. This section describes the few differences between them.

Hardware Differences

The differences in the hardware of the two cards occur in the following areas:
e Card ID register contains 66 (rather than 2).
e There are no optional driver and receiver lines.

e There are fewer configuration switches (there are no Baud Rate or Line Control
switches).

e There is a 25-pin coverplate connector (instead of 50).

e There are different cables available.

Card ID Register
The default card ID for the HP 98644 interface is 66. (The card ID of the 98626 is 2.)

Note

HP 98644 cards are logged as HP 98626 interfaces while booting
machines with Boot ROM 3.0 (and earlier versions). This is not a
problem, because the BASIC recognizes the 98644 card properly.

You can also change the card ID to 2 (to make it look like a 98626)
by cutting a jumper on the card. See the 98644’s installation man-
ual for details.

See the following “BASIC Differences” section for details of how to read this register
with software.

13-46 The RS-232C Serial Interface

Optional Driver Receiver Circuits

On the 98626 interface, there are two optional driver lines (OCD3 and OCD4) and two
optional receiver lines (OCR2 and OCR3). These lines are not implemented on the 98644
interface.

Configuration Switches
The 98644 card does not implement the following configuration switches on the card:

¢ Baud Rate
¢ Line Control (character length, parity, etc.)

These operating parameters are set to defaults that match the 98626 card by the BASIC
system. See the subsequent “BASIC Differences” section for default values.

The RS-232C Serial Interface 13-47

Coverplate Connector

The connector on the 98644 interface’s coverplate is set up for DTE (Data Terminal
Equipment) applications; it has a 25-pin, female, D-series connector (the connector on
the 98626 is a 50-pin connector). Here are the pin designators for the connector.

Table 13-9. Coverplate Connector Pin Designators

Pin | Signal Description
1 Safety Ground
2 Transmitted Data
3 Received Data
4 Request to Send
5 Clear to Send
6 | Data Set Ready
7 Signal Ground
8 Carrier Detect
9 not used
10 | not used
11 | not used
12 | not used
13 | not used
14 | not used
15 | not used
16 | not used
17 | not used
18 [not used
19 | not used
20 | Data Terminal Ready
21 [not used
22 | Ring Indicator
23 |Data Rate Select
24 | not used
25 |not used

13-48 The RS-232C Serial Interface

Cables
You can use standard RS-232C compatible cables, as long as the signal lines are connected
properly. Here are cables available from HP Computer Supplies Operation.

Table 13-10. Available RS-232C-Compatible Cables

HP Product Number | Description
13242N Modem cable (male to male)
13242G DTE cable (male to male, with pins 2 and 3 reversed)
13242H DCE cable (male to female, with pins 2 and 3 reversed)

BASIC Differences

The only differences between programming these two interfaces with the BASIC system
are in the register definitions given in this section. See the “Summary of RS-232 Serial
STATUS and CONTROL Registers” section for further details.

Card ID Register

The card ID register is Status register 0. It will contain a value of 66 if the interface is a
98644. (It will contain 2 if the card ID jumper has been cut.) If the REMOTE jumper
has been removed, then the value returned will be 194 (=128+66) or 130 (=128+2).

The card ID can also be determined by reading READIO register 1.

Optional Driver/Receiver Registers

Since there are no optional driver or receiver lines on the 98644 interface, Status and
Jontrol register 7 are meaningless for this card. (Status register 7 always contains 0, and

Control register 7 is a no-op.)

The hardware register bits that are mot defined because of this difference are as follows:
bits 7 and 6 of WRITEIO register 5 (for writing OCD3 and OCD4, respectively); bits 7
and 6 of READIO register 5 (for reading OCD3 and OCD4, respectively); bits 5 and 4
of READIO register 5 (for reading OCR2 and OCR3, respectively).

The RS-232C Serial Interface 13-49

Baud-Rate and Line-Control Registers

Since there are no switches to set the default baud rate and line control parameters, the
BASIC system sets them to its own default values, which are as follows:

Table 13-11. Baud Rate and Line Control Default Values

Parameter Default Value
Baud rate 9600 baud
Character length 8 bits/character
Stop bits 1 stop bit
Parity Parity disabled
Parity type Odd parity

Status registers 3 (baud rate) and 4 (line control) are still implemented for the 98644
interface and retain their original definitions. However, the hardware registers no longer
contain any baud rate and line control information (since there are no switches to read).
The hardware registers affected are READIO register 5 (bits 3 thru 0) and READIO
register 7 (bits 7 thru 0), respectively.

You can still program the baud rate and line control parameters by writing to Control
register 3 (baud rate) and Control register 4 (character format). These registers corre-
spond to WRITEIO register 5 (bits 3 thru 0) and register 23 (bits 5 thru 0), respectively.

Series 300

Built-In 98644 Interface Differences

The differences between the separate HP 98644 RS-232C serial interface and the built-in
98644-like interface of Series 300 computers are as follows:

e There are no “Select Code” switches (the select code is hard-wired to 9).

e There are no “Interrupt Level” switches (the interrupt level is hard-wired to 5).

There are no differences in programming these interfaces with the BASIC system.

13-50 The RS-232C Serial Interface

Table of Contents

Chapter 14: The Datacomm Interface

Prerequisites 14-2
Protocol 14-3
Data Transfers Between Computer and Interface 14-5
Overview of Datacomm Programming 14-9
Establishing the Connection 14-10
Determining Protocol and Link Operating Parameters 14-10
Using Defaults to Simplify Programming..................... 14-12
Resetting the Datacomm Interface 14-14
Protocol Selection. ... 14-15
Datacomm Options for Asyne Communication 14-16
Datacomm Options for Data Link Communication 14-22
Connecting to the Line 14-25
Connection Procedure ... 14-26
Initiating the Connection 14-29
Setting up the Interrupt System, 14-30
Setting up Softkey Interrupts 14-30
Setting Up Program Operator Inputs.............................. 14-31
Setting Up Datacomm Interrupts 14-31
Background Program Routines, 14-33
Interrupt Service Routines 14-34
Servicing Datacomm Interrupts 14-34
Servicing Keyboard Interrupts 14-40
Service Routines for ON KEY Interrupts............. 14-43
Jooperating Programs. 14-44
The Datacomm Errors and Recovery Procedures 14-49
Error Recovery ..o 14-51
Error Detection and Program Recovery 14-52
Terminal Emulator Example Programs 14-53
Datacomm Programming Helps 14-59
Terminal Prompt Messages. ... 14-59
Secondary Channel, Half-duplex Communication.................... 14-61
Automatic Answering Applications 14-64
Communication Between Desktop Computers....................... 14-68
Cable and Adapter Options and Functions 14-69

DTE and DCE Cable Options 0o ., 14-69

Optional Circuit Driver/Receiver Functions
RS-232C/CCITT V24!

The Datacomm Interface

14

The HP 98628 Data Communications Interface enables your desktop computer to commu-
nicate with any device that is compatible with standard asynchronous or HP Data Link
data communication protocols. Devices can include various modems or link adapters, as
well as equipment with standard RS-232C or current loop links.

This chapter discusses both asynchronous and Data Link protocols, and provides useful
programming techniques so you can quickly create working programs. Subject arcas
that are similar for both protocols are combined, while information that is unique to one
protocol or the other is separated according to application.

Backplone
Connector

Date and
Control

o

Parallel
Data

8

| Bit-Serial Data

Micro—
Processor
Controlied

Data
Buffer
and
Protocol
Hondler

Paralle! t
Data

Datocomm
interface
Hardware

/{
NN N
25~Pin Connector

< Special Purpose
]

Grounds
< -

Figure 14-1. Block Diagram of the Datacomm Interface

The Datacomm Interface

l Parollel/Serial
S——
<:—;l—l>' Converter Hondshake Shielded Cable
| (UaRT)

to a Device

14-1

—

Prerequisites

It is assumed that you are familiar with the information presented in Data Communi-
cation Basics, and that you understand data communication hardware well enough to
determine your needs when configuring the datacomm link. Configuration parameters
include such items as half/full duplex, handshake, and timeout requirements. If you
have any questions concerning equipment installation or interconnection, consult the
appropriate interface or adapter installation manuals.

The datacomm interface supports several cable and adapter options. They include:

e RS-232C Interface cable and connector wired for operation with data communica-
tion equipment (male cable connector) or with data terminal equipment (female
cable connector).

e HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data Link
network applications

¢ HP 13265A Modem for asynchronous connections up to 300 baud, including built-in
autodial capability?.

e HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of these
devices in specific applications.

Before you begin datacomm operation, be sure all interfaces, cables, connectors, and
equipment have been properly plugged in. Power must be on for all devices that are to
be used. Consult applicable installation manuals if necessary.

The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems, and is approved for use in
the USA and Canada. Most other countries do not allow use of user-owned modems. Contact your local
HP Sales and Service office for information about local regulations.

14-2 The Datacomm Interface

C

Protocol

Two protocols are switch selectable on the datacomm interface. They are also software
selectable during normal program operation. The switch setting on the interface deter-
mines the default protocol when the computer is first powered up. Protocol is changed
between Async and Data Link during program operation by selecting the new protocol,
waiting for the message to reach the card, then resetting the card. The exact procedure
is explained in “Protocol Selection”.

Asynchronous Communication Protocol

Asynchronous data communication is the most widely used protocol, especially in appli-
cations where high data integrity is not mandatory. Data is transmitted, one character
at a time, with each character being treated as an individual message. Start and stop
bits are used to maintain timing coordination between the receiver and transmitter. A
parity bit is sometimes included to detect character transmission errors. Asynchronous
character format is as follows: Each character consists of a start bit, 5 to 8 data bits,
an optional parity bit, and 1, 1.5, or 2 stop bits, with an optional time gap before the
beginning of the next character. The total time from the beginning of one start bit to
the beginning of the next is called a character frame.

Parity options include:
e NONE No parity bit is included.
e ODD Parity set if EVEN number of “1”s in character bits.
e EVEN Parity set if ODD number of “17s in character bits.

o ONE Parity bit is set for all characters.

ZERQ Parity bit is zero for all characters.

Here is a simple diagram showing the structure of an asynchronous character and its
relationship to previous and succeeding characters:

"l] f i] | I
| | |

3 A 3 A
Fe— ! | ! © ¢ Stort Bit
Preceding | i 1 o} 1 0 0 0 for Next
Character Lne in |Start on "
ldle State | Bit arocter
(Mark)
eff——————— Single Character Frame
Beginning of End of
Character Character

Figure 14-2. Structure of Asynchronous Character

The Datacomm Interface 14-3

Data Link Communication Protocol

Data Link protocol overcomes the data integrity limitations of Async by handling data
in blocks. Each block is transmitted as a stream of individual asynchronous characters,
but protocol control characters and block check characters are also transmitted with the
data. The receiver uses the protocol control characters to determine block boundaries
and data format. Block check characters are used to detect transmission errors. If an
error occurs, the block is usually retransmitted until it is successfully received. Block

protocol and format is similar to Binary Synchronous Communication (BSC or Bisync,
for short).

Data Link protocol provides for two transmission modes: transparent, and normal. In
transparent mode, any data format can be transferred because datacomm control char-
acters are preceded by a DLE character. If a control character is sent without an accom-
panying DLE, it is treated as data. When normal mode is used, only ASCII data can be
sent, and datacomm control characters are not allowed in the data stream.

The HP 1000 and HP 3000 computers usually transmit in transparent mode. All trans-
missions from your desktop computer are sent as transparent data. If your application
involves non-ASCII data transfers (discussed later in this chapter), be sure the HP 1000
or HP 3000 network host is using transparent mode for all transmissions to your com-
puter.

Each data block sent to the network host by the datacomm interface is structured as
follows:

Id—— Start of Block End of Block —hl

D D E B B
DL sT GI I text (data) L T c c
E| x| o] o by E| x| “c| "¢
ALY
——— N — I
1 2 3 4 5

Figure 14-3. Structure of Data Block Sent by Datacomm Interface

1. The “start transmission” control characters identify the beginning of valid data. If
a DLE is present, the data is transparent; If absent, data is normal. All data from
your desktop computer is transparent.

2. The terminal identification characters are included in blocks sent to the network
host. Blocks received from the network host do not contain these two characters.

14-4 The Datacomm Interface

A\

3. Data characters are transmitted in succession with no time lapse between charae-
ters.

4. The “end transmission” control characters identify the end of data. DLE ETX or
DLIE ETB indicate transparent data. ETX or ETB indicates normal data.

9. Block check characters (usually two characters) are used to verify data integrity. If
the value received does not match the value caleulated by the receiver, the entire
block is rejected by the receiver. Block check includes Group Identifier (GID) and
Device Identifier (DID) characters in transmissions to the network host.

Protocol control characters are stripped from the data transfer, and are not passed from
the interface to the computer. For information about network polling, terminal selection
and other Data Link operations, consult the Data Link network manuals supplied with
the HP 1000 or HP 3000 network host computer.

Data Transfers Between Computer and Interface

Data transfers between your desktop computer and its datacomm interface involve two
message types: control blocks and data. Control blocks contain information sent to and
received from the interface regarding its operation. Data is sent to and received from
a remote device through the interface. Control blocks are not sent to or received from
remote devices. Both types are encountered in both output and input operations as
follows:

e Qutbound control blocks are created by CONTROL statements.
e Outbound data messages are created by OUTPUT statements.

e Inbound control blocks are created by certain protocol operations such as Data
Link block boundaries, or Asyne prompt, end-of-line, parity /framing error, or break
detection.

Inbound data messages are created by the interface as messages are received from
the remote. They are transferred to BASIC by ENTER statements.

Outbound Controt Blocks

Outbound control blocks are messages from your computer to the datacomm interface
that contain interface control information. They are usually generated by CONTROL
statements, although OUTPUT...END creates a control block that terminates a given
Asyne transmission or forces a block to be sent on the Data Link. Qutbound control
blocks are serially queued with data, and executed by the interface in the same order
as created by BASIC. The single exception to the queued control block rule is when
a non-zero value is output to Control Register 0 (Interface Reset) which is executed
immediately.

The Datacomm Interface 14-5

Note

When an interface card reset is executed by use of a CONTROL
statement, the control block that results is transmitted directly
to the interface. It is not queued up, so any previously queued
data and control blocks are destroyed. To prevent loss of data, be
sure that all queued messages have been sent before resetting the
datacomm interface. Status Register 38 returns a value of 1 when
the outbound queue is empty. Otherwise, its value is 0. To prevent
loss of inbound data, Status Register 5 must return a value of zero
prior to reset.

Inbound Control Blocks

Inbound control blocks are messages from the interface to the computer that identify
protocol control information. Which item(s) are allowed to create a control block is
determined by the contents of Control Register 14. Status Registers 9 and 10 identify the
contents of the block, and Control Register 24 defines what protocol characters are also
included with inbound Async data messages. Refer to the BASIC Language Reference
Control and Status Register section for details about register contents for various control
block types.

Two types of information are contained in each control block: type and mode. The type
is contained in STATUS register 9; the mode in STATUS register 10. Type and Mode
values can be used to interpret datacomm operation as follows:

Table 14-1. Async Protocol Control Blocks

Type | Mode | Interpretation

250 1 Break received (channel A).

251 1! Framing error in the following character.

251 2! Parity error in the following character.

251 3! Both Framing and Parity error in the following character.
252 1 End-of-line terminator detected.

253 1 Prompt received from remote.

1 Parity /framing error control blocks are not generated when characters with parity and/or framing errors
are replaced by an underscore (_) character.

14-6 The Datacomm Interface

Table 14-2. Data Link Protocol Control Blocks

Type lMode] Interpretation

254 1 Preceding block terminated by ETB character.
S 254 2 Preceding block terminated by ETX character.
2531 (See following table for Mode interpretation.)
Mode Bit(s) Interpretation
0 I=Transparent data in following block.

0=Normal data in following block.
2,1 00=Device Select (most common).
01=Group Select

10=Line Select

3 1=Command Channel

O=Data Channel

For Data Link applications, control blocks are normally set up for end-of-block (ETB
or IKTX). Control blocks are then used to terminate ENTER operations. Control block
contents are not important for most applications unless you are doing sophisticated
protocol-control programming.

For Async applications, terminal emulator programs usually use prompt and end-of-line
control blocks. Use of other functions such as break or error detection depend on the
requirements of the individual application.

L This type is used mainly in specialized applications. In most cases, you can expect a Mode value of zero
or one for Type 253 Data Link control blocks. For most Data Link applications, control blocks are not
used by programmers.

The Datacomun Interface 14-7

Outbound Data Messages

Outbound data messages are created when an OUTPUT statement is executed. Here is
a short summary of how OUTPUT parameters can affect datacomm operation.

e Async protocol: Data is transmitted directly from the outbound queue. When
operating in half-duplex, OUTPUT...END causes the interface to turn the line
around and allow the remote device to send information back (line turn-around is
initiated when the interface sets the Request-to-send line low). OUTPUT...END
has no effect when operating in full duplex.

¢ Data Link protocol: Data messages are concatenated until at least 512 characters
are available, then a block of 512 characters is sent. Block boundaries may or may
not coincide with the end of a given OUTPUT message.

You can force transmission of shorter blocks by using the OUTPUT...END state-
ment. The interface then transmits the last pending block regardless of its length.
This technique is useful for ensuring that block boundaries coincide with message
boundaries, or for sending one message string per block when you are transmitting
short records.

e Unless a semicolon or END appears at the end of a free-field QUTPUT statement,
an EOL sequence is automatically sent at the end of the data. The EOL sequence
is also suppressed by using the appropriate IMAGE specifier in an OUTPUT state-
ment. For further information, see the chapter called “Outputting Data.”

Inbound Data Messages

Inbound data messages are created by the datacomm interface as information is received
from the remote. ENTER statements are terminated when a control block is encountered
or the input variable is filled. Whether control characters are included in the data stream
depends on the configuration of Control Register 24 (Async operation only). Control
information is never included in inbound data messages when using Data Link protocol.

With this brief introduction to the data communications capabilities of the HP 98628
Datacomm Interface, you are ready to begin programming your desktop computer for
datacomm operation. The next section of this chapter introduces BASIC datacomm
programming techniques using simple terminal emulator examples that can be readily
expanded into much more sophisticated datacomm programs.

14-8 The Datacomm Interface

Overview of Datacomm Programming

Your desktop computer uses four BASIC statements for data communication with remote
computers, terminals, and other peripheral devices. Datacomm programs include part
or all of the following elements:

o CONTROL statements to configure the datacomm link and establish the connee-
tion.

e QUTPUT and ENTER statements to transfer information.

o STATUS statements to monitor operation.

°*

CONTROL statements to alter link parameters during the session, if needed for
unusual applications.

QUTPUT and ENTER statements to transfer additional information.

A CONTROL statement to disconnect at the end of the session.

Here is a simple example of an Async terminal emulator that uses default parameters.
The user must disconnect at the end of a session by executing the command CONTROL
Sc,12;0 from the keyboard.

1000 Sc=27 ! Datacomm on Select Code 27.

1010 CONTROL Sc,14;6 ! Set Control Block Mask.

1020 QUTPUT Sc;CHR$(13); ! Datacomm interface uses defaults
1025 ! and automatically connects to line.
1030 Check_reader:DIM A$[700] ! Up to 700 characters per line.

1040 STATUS Sc,b;Rx_avail_bits | Get Rx queue status.

1050 IF Rx._avail_bits>1 THEN

1060 ENTER Sc USING "#,K";A$ | Get data from queue.

1070 PRINT USING "#,K";A$! Print data.

1080 STATUS Sc,9;R ! Get Control Block TYPE field.
1090 IF R=253 THEN

1100 LINPUT "Enter line to send to remote.";A$

1110 QUTPUT Sc;A$;CHR$(13);

1120 END IF

1130 END IF

1140 GOTO Check_reader

1150 END

While this program shows the relative simplicity of using your computer for data commu-
nication, most applications require more sophisticated techniques. The following pages
show more elaborate structures to iliustrate some of the concepts used in creating pro-
grams for datacomm applications.

The Datacomm Interface 14-9

Two sample terminal emulator programs, one for Async and one for Data Link, are
used in this chapter to show you how to write datacomm programs with a minimum of
difficulty and complexity. Both versions are very similar; differences are explained fully.
The emulators are explained in logical sequence, with complete program listings included
at the end. The examples can be used as written, or expanded to include other features.
They are designed to demonstrate program structures and programming techniques that
are used in many data communication applications.

Establishing the Connection

Determining Protocol and Link Operating Parameters

Before information can be successfully transferred between two devices, a communication
link must be established. You must include the necessary protocol parameters to ensure
compatibility between the communicating machines. To determine the proper parameters
for your application, select Async or Data Link protocol, then answer the following
questions:

For BOTH Async and Data Link Operation:

e Is a modem connection being used? What handshake provisions are required?
(Data Link does not use modems, but multi-point Async modem connections use
a protocol compatible with Data Link.)

e Is half-duplex or full-duplex line protocol being used?

For Async Operation ONLY:
e What line speed (baud rate) is being used for transmitting?
e What line speed is being used for receiving?
e How many bits (excluding start, stop, and parity bits) are in each character?
e What parity is being used: none, odd, even, always zero, or always one?
e How many stop bits are required on each character you transmit?
e What line terminator should you use on each outgoing line?
e How much time gap is required between characters (usually 0)?
e What prompt, if any, is received when the remote device is ready for more data?

e What line terminator, if any, is sent at the end of each incoming line?

14-10 The Datacomm Interface

For Data Link Operation ONLY:

e What line speed (baud rate) is being used? (Data Link uses the same speed in both
directions.)

e What parity is being used: none (HP 1000 network host). or odd (HP 3000 network
host)?

o What is the device Group IDentifier {(GID) and Device IDentifier (DID) for your
terminal?

e What is the maximum block length (in bytes) the network host can accept from
your terminal?

All these parameters are configured under program control by use of CONTROL state-
ments. Alternately, default values for line speed, modem handshake, parity, and Asyne
or Data Link protocol selection can be set using the datacomm interface configuration
switches. Other default parameters are preset by the datacomm interface to accom-
modate common configurations. You can use the defaults, or you can override them
with CONTROL statements for program clarity and immunity to card settings. De-
fault Control Register values are shown in the “Interface Register” section in the back of
the BASIC Language Reference for your desktop computer. The HP 98628 Datacomm
Interface Installation manual (98628-90000) explains how to set the default switches.

The next section of this chapter shows a summary of the available default options and
switch settings for both Async and Data Link.

Using Defaults to Simplify Programming

The datacomm interface includes two switch clusters. One cluster is used to program the
select code and interrupt level (hardware priority). The other cluster sets defaults for
protocol, line speed (baud rate), modem handshake, and parity. Setting the defaults on
the card eliminates the need to program the corresponding interface CONTROL registers.
These defaults are useful in applications where the configuration of the link is rarely
altered, and the program is not used on other machines with dissimilar configurations.
They also enable a beginning programmer to use OUTPUT and ENTER statements to
perform simple datacomm operations without using CONTROL or STATUS statements.
On the other hand, where link configuration may vary, or where programs are used
on several different machines with dissimilar configurations, it is usually worthwhile
to override the defaults with CONTROL statements as described in the programming
examples. This assures known datacomm behavior, independent of interface defaults.

The Datacomm Interface 14-11

Here, for your convenience

[

qoanoan

is a brief summary of the default switch options:

(0000000

\ﬂ_l

Default Switches

Parity Bits/Char Hardware Handshake Baud Rate Stop Bits
00=None 8 00=Handshake OFF, 000=110 2
01=None 7 non—modem connnection 1 001=150 2
10=0dd 7 01=FULL Duplex modem 010=300 1
11=Even 7 connection 2 011=600 1

10=HALF Duplex modem 100=1200 1
connection 2 101=2400 1
11=Handshake ON, 110=4800 1
non—modem connnection 1 111=9600 1

1 Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

Figure 14-4. Async Default Configuration Switches

! Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

14-12 The Datacomm Interface

[ooooong

Default Swilches

—— [mm" o ‘

DID:(""0"..."G") Boud Rate Hardware Handshake

000=0 100=D 00=300 00=Handshake OFF, non—modem connection
001=A 101=E 01=1200 01=FULL Duplex modem connection

010=B 110=F 10=9600 10=HALF Duplex modem connection

011=C 111=G6 11=19200 11=Handshoke ON, non—modem connection
Default GID="A" Default No Activity timeout: 10 minutes

Figure 14-5. Data Link Default Configuration Switches

The Datacomm Interface 14-13

Resetting the Datacomm Interface

Before you establish a connection, the datacomm interface must be in a known state.
The datacomm interface does not automatically disconnect from the datacomm link
when the computer reaches the end of a program. To prevent potential problems caused
by unknown link conditions left over from a previous session, it is a good practice to
reset the interface card at the beginning of your program before you start configuring
the datacomm connection. Resetting the card causes it to disconnect from the line and
return to a known set of initial conditions.

In the following example, a numeric variable is used to define the select code. The second
statement resets the card after the select code has been defined.

1110 Sc=20 ! Set select code to 20.

1160 CONTROL Sc,0;1 ! Reset the card to disconnect from line.

Protocol Selection

During power-up and reset, the card uses the default switches to preset the card to a
known state. The protocol select switch defines which protocol the card uses at power-
up only. If the default protocol is the same as you are using, you can skip the protocol
selection statements. However, if the switch might be set to the wrong protocol, or if you
want to change protocol in the middle of a program, you can use a CONTROL statement
to select the protocol. After the protocol is selected, reset the card again to make the
change. Here is how to do it:

Select the protocol to be used:
1170 CONTROL Sc,3;1 ! Select Async Protocol
or

1170 CONTROL Sc,3;2 ! Select Data Link Protocol

14-14 The Datacomm Interface

Wait until the protocol select message has been sent to the card, (lines 1180-1200) then
reset the card. The Reset command restarts the interface microcomputer using the
selected protocol.

1180 Wait:STATUS Sc,38;All_sent ! Get transmit queue status.

1190 IF NOT All_sent THEN Wait ! If not done, wait.
1200 CONTROL 8¢,0;1 ! Reset interface card.
Note

Be careful when resetting the interface card during normal program
operation. Data and Control information are sent to the card in
the same sequence as the statements originating the information
are executed. When a card reset is initiated by a CONTROL
statement, the reset is not placed in the queue with outbound
data, but is executed immediately. Therefore, if there is other
information in the output queue waiting to be sent, a reset can
cause the data to be lost. To prevent loss of data, use STATUS
statements (register 38) to verify that all data transfers have run
to completion before you reset the interface.

You are now ready to program datacomm options that are related to the selected protocol.
In applications where defaults are used, the options are very simple. The following pair
of examples shows how to set up datacomm options for each protocol.

The Datacomm Interface 14-15

Datacomm Options for Async Communication

This section explains how to configure the datacomm interface for asynchronous data
communication. The example used shows how to set up all configurable options with-
out considering default values. Some statements in the example are redundant because
they override interface defaults having the same value. Others may or may not be re- \ '
dundant because they override configuration switch options. The remaining statements ~
are necessary because they override the default values, replacing them with non-default

values required for proper operation of the example program. If you are not familiar

with Asynchronous protocol, consult the section on protocol for the needed background
information.

The following program lines set up all the CONTROL register options (a 300-baud
connection to an HP 1000 is assumed):

1260 CONTROL Sc,14;3
* 1260 CONTROL Sc,15;0
1270 CONTROL Sc,16;0
1280 CONTROL Sc,17;0
1290 CONTROL Sc,18;40
1300 CONTROL Sc,19;10
1310 CONTROL Sc,20;7
1320 CONTROL Sc,21;7
1330 CONTROL Sc,22;2

Set control block mask for EOL & Prompt.
No modem line-change notification.
Infinite connection timeout.

Disable No Activity timeout.

Lost Carrier 400 ms. *

Transmit timeout 10 s.

Transmit speed = 300 baud.

Receive speed = 300 baud.

EQ/AK (as terminal) handshake.

Plewd

— 1340 CONTROL Sc,23;1 Full Duplex connection. 4
\'/
1360 EOL. Change errors to Underscore.

1370 CONTROL Sc,26;6

1380 CONTROL Sc,27;5

1390 CONTROL Sc,28;2,13,10
1400 CONTROL Sc,31;1,17
1410 CONTROL Sc,34;2

1420 CONTROL Sc,35;0

1430 CONTROL Sc,36;1

1440 CONTROL Sc,37;0

1450 CONTROL Sc,39;4

Assign AK character for EQ/AK.
Assign EQ character for EQ/AK.

Set EOL sequence to be CR-LF.

Set prompt to be DC1. (33 not used).
Seven bits per character.

One stop bit.

0dd parity.

No inter-character time gap.

!
!
!
!
!
!
!
!
!
1
1350 CONTROL Sc,24;66 ! Remove protocol characters except
!
!
!
]
1
!
!
1
]
! Set BREAK to four character times.

lil

*: Redundant statement. Same as interface default.
—: May be redundant. Overrides configuration switch option.
Refer to the Control Register tables in the back of the BASIC Language Reference as

you examine the CONTROL statements. The paragraphs which follow explain register
functions and how to configure them. _J

14-16 The Datacomm Interface

Control Block Contents

Configuration of the link begins with register 14 which determines what information is
placed in the control blocks that appear in the input (receive) queue. In this example,
only the end-of-line position and prompts are identified. Parity or framing errors in
received data, and received breaks are not identified in the queue. This register interacts
with Control registers 28 thru 33.

Modem-initiated ON INTR Branching Conditions

Register 15 is rarely used in most applications because the interface usually manages all
nteraction with the moder. Modem interrupts are helpful when you are simulating your
own line protocol. This register determines what changes in one or more modem lines
can cause a program branch to occur when an ON INTR. statement is active for that
select code. Values from 0 thru 31 can be used, where a “I™ in a bit position enables
branching whenever the corresponding signal line changes state. Lines correspond to
bits 0 thru 4 of STATUS register 7. In this example, modem functions are handled by
the interface; no interaction with BASIC is necessary. If this register is given a non-zero
value, bit 3 of the ENABLE INTR mask should be set. (ENABLE INTR statement is
line 1820 of the example terminal emulator program.)

Datacomm Line Timeouts

Registers 16-19 set timeout values to force an automatic disconnect from the datacomm
link when certain time limits are exceeded. For most applications, the default values are
adequate. A value of zero disables the timeout for any register where it is used. Each
register accepts values of 0 thru 255; units vary with the register function.

e Register 16 (Connection timeout) sets the time limit (in seconds) allowed for con-
necting to the remote device. It is useful for aborting unsuccessful attempts to dial
up a remote computer using public telephone networks.

o Register 17 (No Activity timeout) sets an automatic disconnect caused by no data-
comm activity for the specified munber of minutes. Default value is determined by
default handshake switch setting. Default is not affected by CONTROL statements
to Control Register 23 (hardware handshake).

o Register 18 (Lost Carrier timeout) disconnects when:

Full Duplex: Data Set Ready (Data Mode) or Data Carrier Detect go false, or
Half Duplex: Data Set Ready goes false,

indicating that the carrier from the remote modem has disappeared

from the line. Value is in multiples of 10 milliseconds.

o Register 19 (Transmit timeout) disconnects when a loss-of-clock occurs or a clear-to-
send (CTS) is not returned by the modemn within the specified number of seconds.

The Datacomm Interface 14-17

Line Speed (Baud Rate)

The transmit and receive line speed(s) are set by Control Registers 20 and 21, respec-
tively. Each is independent of the other, and they are not required to have identical
values. The following baud rates are available for Async communication:

Table 14-3. Async Baud Rates

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate
0 0! 4 134.5 8 6002 12 3600
1 50 5 1502 9 12002 13 4800°
2 75 6 200 10 1800 14 96002
3 1102 7 3002 11 24002 15 19200

All configurable line speeds are available to CONTROL Registers 20 and 21. Only
the eight speeds indicated can be selected using the default switches (see the switch
configuration diagram earlier in this chapter). When the configuration switch defaults
are used, transmit and receive speeds are identical. The selected line speed must not
exceed the capabilities of the modem or link.

Handshake
Registers 22 and 23 configure handshake parameters. There are two types of handshake:

o Software or protocol handshake specifies which of the participants is allowed to
transmit while the other agrees to receive until the exchange is reversed. Options
include:

o No handshake, commonly used with connections to non-interactive devices
such as printers.

e Enq/Ack (EQ/AK) or DC1/DC3 handshake, with the desktop computer con-
figured either as a host or a terminal. Handshake characters are defined by
registers 26 and 27.

e DC1/DC3 handshake with the desktop computer as both a host AND a ter-
minal. Handshake characters are defined by registers 26 and 27. This option
simplifies communication between two desktop computers.

L An external clock must be provided for this option.
2 These speeds can be programmed using the default switches on the interface card. Other speeds are
accessed by CONTROL statements. (The HP 13265A Modem can be operated up to 300 baud.)

14-18 The Datacomm Interface

o Hardware or modem handshake that establishes the communicating relationship
between the interface and the associated datacomm hardware such as a modem or
other link device. The four available options are:

©

Handshake Off, non-modem connection — most commonly used for 3-wire di-
rect connections to a remote device.

Full Duplex modem connection — used with full-duplex modems or equivalent
connections.

Half Duplex modem connection — used with half-duplex modems or equivalent
connections.

Handshake On, non-modem connection — used with printers and other similar
devices that use the Data Carrier Detect (DCD) and Clear-to-send (CTS) lines
to signal the interface card. When DCD is held down by the peripheral, the
interface ignores incoming data. When CTS is held down, the interface does
not transmit data to the device until CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but may be used
occasionally with direct connections when the remote device provides the proper signals.
Refer to the table at the end of this chapter for a list of handshake signals and how they
are handled for each cable or adapter option.

Handling of Non-Data Characters

Register 24 specifies what non-data characters are to be included in the imput queue.
For each bit that is set, the corresponding information is passed along with the incoming
data. If the bit is not set, the information is discarded, and is not included in the inbound
data stream that is passed to the desktop computer by the interface.

Bit 0

Bit 1

Bit 2

Bit 3

Include handshake characters in data stream. They are defined by Control
Registers 26 and 27.

Include incoming end-of-line character(s). EOL characters are defined by
Control Registers 28-30.

Include incoming prompt character(s). Prompt is defined by Control Regis-
ters 31-33.

Include any null characters encountered.

The Datacomm Interface 14-19

Bit 4 Include any DEL (rubout) characters in data.

Bit 5 Include any CHR$(255) encountered. This character is encountered ONLY
when 8-bit characters are received.

Bit 6 Change any characters received with parity or framing errors to an underscore.
If this bit is not set, all inbound characters are transferred exactly as received,
with or without errors.

Register 25 is not used.

Protocol Handshake Character Assignment

Registers 26 and 27 establish what characters are to be used for handshaking between
communicating machines. You can select the values of 6 (AK) or 17 (DC1) for register
26, and 5 (EQ) or 19 (DC3) for register 27. Any ASCII value from 0 thru 255 can be
used, but non-standard values should be reserved for exceptional situations.

End-of-line Recognition

Registers 28, 29, and 30 operate in conjunction with registers 14 (control block mask) and
24 (non-data character stripping) and defines the end-of-line sequence used to identify
boundaries between incoming records. Register 28 (value of 0, 1 or 2) defines the number
of characters in the sequence, while registers 29 and 30 contain the decimal equivalent
of the ASCII characters. If register 28 is set for one character, register 30 is not used.
Register 29 contains the first EOL character, and register 30, if used, contains the second.
If register 28 is zero, registers 29 and 30 are ignored and the interface cannot recognize
line separators.

Prompt Recognition

Registers 31, 32, and 33 operate in conjunction with registers 14 and 24 and define the
prompt sequence that identifies a request for data by the remote device. As with end-of-
line recognition, the first register defines the number of characters (0, 1, or 2), while the
second and third registers contain the decimal equivalents of the prompt character(s).
Register 33 is not used with single-character prompts. If register 31 is zero, registers 32
and 33 are ignored and the interface is unable to recognize any incoming prompts.

14-20 The Datacomm Interface

Character Format Definition
Registers 34 through 37 are used to define the character format for transmitted and
incoming data.
e Register 34 sets the character length to 5, 6, 7, or 8 bits. The value used is the
number of bits per character minus five (0=5 bits, 3=8 bits). When 8-bit format is
specified, parity must be Odd, Even, or None (parity “1” or “0” cannot be used).

o Register 35 specifies the number of stop bits sent with each character. Values of 0,
1, or 2 are used to select 1, 1.5, or 2 stop bits, respectively.

e Register 36 specifies the parity to be used. Options include:

Table 14-4. Parity Options

Register
Value Parity | Result

0 None | Characters are sent with no parity bit. No parity checks are made
on incoming data.

1 Odd! | Parity bit is set if there is an EVEN number of ones in the character
code. Incoming characters are also checked for odd parity.

2 Even! | Parity bit is set if there is an ODD number of ones in the character
code.

3 0 Parity bit is present, but always zero. No parity checks are made

on incoming data.

4 1 Parity bit is present, but always one. No parity checks are made
on incoming data.

Parity must be odd, even, or none when 8-bit characters are being transferred.

o Register 37 sets the time gap (in character times, including start, stop, and parity
bits) between one character and the next in a transmission. It is usually included to
allow a peripheral, such as a teleprinter, to recover at the end of each character and
get ready for the next one. A value of zero causes the start bit of a new character
to immediately follow the last stop bit of the preceding character.

Control Register 38 is not used.

1 parity seuse is based on the number of ones in the character including the parity bit. An EVEN number
of ones in the character, plus the parity bit set produces an ODD parity. An ODD number of ones in
the character plus the parity bit set produces an EVEN parity.

The Datacomm Interface 14-21

Break Timing

Register 39 sets the break time (2-255 character times). A Break is a time gap sent to
the remote device to signify a change in operating conditions. It is commonly used for
various interrupt functions. The interface does not accept values less than 2. Register 6
is used to transmit a break to the remote computer or device.

Datacomm Options for Data Link Communication

This section explains how to configure the datacomm interface for Data Link operation.
The example used shows how to set up configuration options without considering default
values. Some statements in the example are redundant because they override interface
defaults having the same value. Others may or may not be redundant because they
override configuration switch options. The remaining statements are necessary because
they override the default values, replacing them with non-default values required for
proper operation of the example program. If you are not familiar with Data Link protocol
and terminology, consult the section called “Protocol.”

The following program lines set up all the CONTROL register options (a 9600-baud
connection to an HP 1000 network host is assumed):

* 12560 CONTROL Sc,14;6
* 1260 CONTROL Sc,15;0
1270 CONTROL Sc,16;0

Set Control Block Mask for ETB/ETX.
No modem line-change notification.
Disable Connection timeout.
— 1280 CONTROL Sc,17:;0 ! Disable No Activity timeout.
* 1290 CONTROL Sc,18;40 Set Lost Carrier to 400 ms.

1300 CONTROL Sc,19;10 ! Set Transmit Timeout=10 s.
— 1310 CONTROL Sc,20;14 Set Line Speed to 9600 baud.
* 1320 CONTROL Sc,21;1 Set GID character to "A".
— 1330 CONTROL Sc,22;1 Set DID character to "A".
—
%
E3

1340 CONTROL Sc,23;0 Hardware Handshake 0ff for HP 13264A.
1350 CONTROL Sc,24:0 Set transmit block size to 512.
1360 CONTROL Sc,36;0 Parity not used with HP 1000.

*: Redundant statement. Same as interface default.

—: May be redundant. Overrides configuration switch option.

14-22 The Datacomm Interface

If your application requires a different GID/DID pair, you can use either of the following
two techniques (assume: GID="C" and DID="Q"):

1320 CONTROL Sc,21:3 | Set GID character to "C".
1330 CONTROL S8c¢,22;0 ! Set DID character to "Q@".
or

1320 CONTROL S8¢,21:3,0 ! Set GID/DID to “"C@".
(Line 1330 is not needed in this case.)

Here is an alternative method using string operations:

1320 CONTROL Sc,21i;BUM("C")-64
1330 CONTROL Sc,22;NUM("@")-64

or

1320 CONTROL Sc,21;NUM("C")-64, NUM("@")-64

Refer to the Control Register tables in the back of the BASIC Language Reference as
you examine the CONTROL statements. The paragraphs which follow explain register
functions and how to configure them. When the register function is identical for both
Asyne and Data Link, you are referred to the previous explanation in the Asyne section.

Control Block Contents

Data Link configuration begins with Control Register 14. This register determines what
information is to be placed in control blocks and included with inbound data transferred
from the interface to the desktop computer.

o ETX (Bit 1) identifies the end of a transmission block that contains one or more
complete records.

o ETB (Bit 2) identifies the end of a transmission block where the last record is
continued in the next block of data.

o Bit 0 causes a control block to be inserted that identifies the beginning of a new
block of data.

The Datacomm Interface 14-23

ON INTR Branching Conditions,

Datacomm Line Timeouts, and Line Speed

Registers 15 through 19 are functionally identical for both Async and Data Link. Refer to
the preceding Async section for more information. Register 20 sets the line speed for both

transmitting and receiving (Data Link does not accommodate split-speed operation). The
following line speed options are available:

Table 14-5. Data-Link Baud Rates

Register

Baud

Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate
0 Clock! 9 12002 12 3600 15 192002

7 3002 10 1800 13 4800

8 600 11 2400 14 96002

Terminal Identification

Registers 21 and 22 specify the terminal identifier characters for the datacomm inter-
face. Register 21 contains the GID (Group IDentifier), and register 22 contains the DID
(Device IDentifier. Values of 0-26 correspond to the characters @, A, B, . . ., Z. These
registers must be configured to match the terminal identification pair assigned to your
device by the Data Link Network Manager. In the example, Line 1320 is redundant
because it duplicates the default GID value. Line 1330 overrides the DID default switch
on the interface card, and may or may not be necessary. Alternate methods for as-

signing different GID/DIDs are shown following the group of configuration CONTROL
statements.

Handshake

Register 23 establishes the hardware handshake type. There is no formal software hand-
shake with Data Link because the network host controls all data transfers. Hardware or
modem handshake options are identical to Asynchronous operation. Handshake should
be OFF (register set to 0) when using the HP 13264A Data Link Adapter. When you are
using non-standard interconnections such as direct or modem links to the network host,
select the handshake option that fits your application. Refer to the table at the end of

this chapter for a list of handshake signals and how they are handled for each cable or
adapter option.

1 An external clock must be provided for this option.

These speeds can be programmed using the default switches on the interface card. Other speeds are
accessed by CONTROL statements.

14-24 The Datacomm Interface

Transmitted Block Size

Register 24 defines the maximum transmitted block length. When transmitting blocks
of data to the network host, the block length must not exeeed the available buffer space
on the receiving device. Block size can be specified for increments of two from 2 to
512 characters per block. A value of zero forces the block length to a maximum of 512
bytes. For other values, the block length limit is twice the value sent to the register. Tor
example, a register value of 130 produces a transmitted block length not exceeding 260
characters {bytes).

Parity
Register 36 defines the parity to be used. Unlike Async, Data Link has only two parity
options: None, or Odd. Odd parity is:

Table 14-6. Data-Link Parity Options

Register
Value Parity | Application
0 NONE | Required for operation with HP 1000
network host
i ODD | Required for operation with HP 3000
network host

Registers 25 through 35, and 37 and above are not used.

Connecting to the Line

Interface configuration is now complete. You are ready to begin connecting to the data-
comm line. The exact procedure used to connect to the line varies slightly, depending on
the type of link being used. Before you connect, you must know what the link require-
ments are, including dialing procedures, if any.

Switched (Public) Telephone Links

When you are using a public or switched telecommunications link, the modem connection
between computers must be established. The HP 13265A Modem can be used in any
Asyne application that requires a Bell 103- or Bell 113-compatible modem operating at
up to 300 baud line speed. However, the HP 13265A Modem is not suitable for data
rates exceeding 300 baud. For higher baud rates, use a modem that is compatible with
the one at the remote computer site. Modems cannot be used for remote connections
from a terminal to the data link.

The Datacomm Interface 14-25

Private Telecommunications Links
Private (leased) links require modems unless the link is short enough for direct connection

(up to 50 feet, depending on line speed). The HP 13265A Modem can be used at data
rates up to 300 baud. For higher speeds, a different modem must be used.

Direct Connection Links

For short distances, a direct connection may be used without modems or adapters, pro-
vided both machines use compatible interfaces. Async connections normally use RS-232C
interfaces. You can also operate as a Data Link terminal directly connected to an HP
1000 or HP 3000 host computer through a dedicated Multipoint Async interface on the
network host, although such connections are unusual.

Data Link Connections

Most Data Link connections use an HP 13264A Data Link Adapter to connect directly
to the Data Link. In special situations, a modem may be used to communicate with a
Multipoint Async interface on the HP 1000 or HP 3000 network host. When the Data
Link Adapter is used, no special procedures are required. If you are using a leased or
switched telecommunications link, the procedures are the same as when using point-to-
point Async with modems.

Connection Procedure

This section describes procedures for modem connections using telephone telecommuni-
cations circuits. If you are not using a switched, modem link, skip to the next section:
Initiating the Connection.

Dialing Procedure for Switched (Public) Modem Links

Except for dialing, connection procedures do not usually vary between switched and
dedicated links. Dialing procedures depend on whether the modem is designed for manual
or automatic dialing. Automatic dialing can be used with the HP 13265A Modem, but
other modems must be operated with manual dialing unless you design your own interface
to an Automatic Calling Unit. For manual dialing procedures, consult the operating
manual for the modem you are using.

14-26 The Datacomm Interface

Automatic Dialing with the HP 13265A Modem:

The automatic dialer in the HP 13265A Modem is accessed by Control Register 12, The
CONTROL statement is followed by an QUTPUT statement that contains the telephone
number string, including dial rate and timing characters. The two statements set up the
automatic dialer, but dialing is not started until a “start connection” command is sent
to Control Register 12. Here is an example sequence:

1500 CONTROL Sc¢,12;2 ! Enable the Automatic Dialer.
1510 OUTPUT Sc;"> 9 @@@ (303);555-1234";

1/

Unrecognized characters are ignored.
3-second wait for secondary dial tone.
Select FAST dial rate.

The OUTPUT statement contains several essential elements.

e The first character (“>"), if included, specifies a fast dialing rate. If it is omitted,
the default slow dialing rate is used.

e A time delay character “@” may be inserted anywhere in the string. A one-second
time delay is executed in the dialing sequence each time a delay character is en-
countered.

e Numeric character sequences define the telephone number. Multiple dial-tone se-
quences, such as when calling out from a PBX (Private Branch Exchange), can be
used by inserting a suitable delay to wait for the next dial tone.

e Unrecognized characters such as parentheses, hyphens, and spaces can be included
for clarity. They are ignored by the automatic dialer.

e Up to 500 characters can be included in the telephone number string.

The Datacomm Interface 14-27

Here is how an autodial connection is executed:

The CONTROL Sc,12;2 statement places a “start dialing” control block in the out-
bound queue to the interface. The OUTPUT statement places the telephone num-
ber string (including spaces and other characters) in the queue after the control
block. When the interface encounters the control block, it transfers the string to
the HP 13265A Modem’s autodial circuit. No other action is taken at this time.

When a CONTROL Sc,12;1 statement (line 1600 in the example) is executed, another
control block is queued up. When the interface encounters the block, it sends a
“start connection” command to the modem. The modem then disconnects from
the line, waits two seconds, then reconnects. The autodialer waits 500 milliseconds,
then starts executing the telephone number string. The string is executed character-
by-character in the same sequence as sent by the OUTPUT statement.

If your application requires more than 500 milliseconds to guarantee a dial tone is
present, you can increase the delay by adding delay characters (“@”) where needed,
one second per character. Be sure to provide adequate delays in multiple dial tone
sequences, such as when calling through a private branch exchange (PBX) to a
public telephone network.

When dialing is complete, the modem is connected to the line, and you are ready to
start communication. The next section explains how to determine when connection
is complete.

Two dialing rates are available: slow (default) and fast. To select the fast rate, you must
include the fast rate character (“>") as the FIRST character in the telephone number
string. Here is a summary of differences between the two options:

Table 14-7. Dialing Options

Parameter Slow Dialing Fast Dialing
Click Length 60 milliseconds | 32.5 milliseconds

Click Gap 40 milliseconds | 17.5 milliseconds
Number Gap | 700 milliseconds | 300 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively. The
number gap is the time lag between the end of the last click of one number and the
beginning of the first click of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but private or
independent telephone systems or companies may require slow dialing.

14-28 The Datacomm Interface

Initiating the Connection

After you have executed the necessary dialing procedures, if any, you are ready to initiate
the connection. The following statement is used to start the connection:

1600 CONTROL Sc,12;1 ! Start Connection.

This statement sends a control block to the interface telling it to connect to the datacomm
line. If the HP 13265A Modem is being used, and the autodialer is enabled, it starts
dialing the number. Otherwise, the interface executes a direct connection to the line, or
tells the modem or data link adapter to connect.

The status of the connection process can be monitored by using the STATUS state-
ment. The following lines hold the computer in a continuous loop until the connection
is complete:

18650 Conn:STATUS Sc,12;Line_state { Get datacomm line status.

1660 IF Line_state=2 THEN DISP "Dialing"

1670 IF Line_state=1 THEN DISP "Trying to Connect"
1680 IF Line_state<>3 THEN Conn

1690 DISP "Connected"

Refer to the “Interface Registers” section of the BASIC Languuge Reference for interpre-
tation of the values in Status Register 12. Only values of 1, 2, or 3 are usually encountered
at this stage of the program.

As soon as Status Register 12 indicates that connection is complete, you are ready to

continue into the main body of the terminal emulator or other program you are writing.
This completes the datacomm initialization and connection phase of the program.

The Datacomm Interface 14-29

Setting up the Interrupt System

Most datacomm programs, especially complex ones, use interrupt branching extensively
to maintain efficient, orderly program operation. Branching is usually set up for:

e I/O interrupts from peripheral devices by use of ON INTR and ENABLE INTR,
statements.

¢ Datacomm interrupts from the datacomm interface. Statements used are the same
as for other /O interrupts.

e Operator interrupts using softkeys for program control. A separate ON KEY state-
ment is used to set up the branch for each key used.

e Operator interrupts using ASCII keys for program input. The ON KBD statement
is used to set up the branch, and KBDS$ is the keyboard-entry string holding the
data.

Each interrupt branch must be provided with a corresponding interrupt service routine,
with priority levels assigned when appropriate. General I/0O interrupt techniques are ex-
plained in the chapter “Interface Events.” This section explains the interrupt structures
commonly encountered in datacomm applications.

Setting up Softkey Interrupts

Softkeys are usually set up for repetitively executed functions to improve operator conve-
nience and efficiency. Labels can have up to eight or 14 characters for each key, depending
on CRT screen width. The following statements add a disconnect and break capability
to the emulator example we are using:

1750 ON KEY O LABEL " Disconn" GOTO Disconnect
1760 ON KEY 1 LABEL " Break" GOSUB Break

Other keys can be set up and labelled as needed, but remember a service routine is
required for each label specified by a GOTO, GOSUB, CALL, or RECOVER.

14-30 The Datacomm Interface

,

Nl

Setting Up Program Operator Inputs

Two methods are commonly used to input information from the operator through the
computer keyboard. The first method uses the LINPUT (or INPUT) statement for data
entry. An example program using the LINPUT statement is shown in the overview of
datacomm programming earlier in this chapter. When the LINPUT statement requests a
data entry, type the information, use the keyboard editor to make any necessary correc-
tions, then press CONTINUE to transfer the information to the running program. This
is the simplest method for programming keyboard entry. The second method is used in
our ongoing example. It uses the ON KBD statement in conjunction with an interrupt
service routine that is responsible for all data manipulation, including display, editing,
and transfer to the program. The following statement sets up the keyboard interrupt.
The interrupt service routine is discussed later.

1770 ON KBD GOSUB Keyboard

Setting Up Datacomm Interrupts

The ON INTR and ENABLE INTR statements are used to set up program branching
for the datacomm interface. STATUS Register 4 contains information that shows the
cause(s) of the most recent interrupt. The interrupt mask specified in the ENABLE
INTR statement determines the events that are allowed to cause an interrupt branch.
Bits 0 thru 5 of the interrupt mask and STATUS register are identical for both Async
and Data Link protocols.’ Bits 6 and 7 are used for Async only.

The following statements set up the interrupt structure for datacomm:

1810 ON INTR Sc GOSUB Datacomm
1820 ENABLE INTR Sc;1 ! Interrupt when data received.

The Datacomm Interface 14-31

In more elaborate applications, you may want to enable additional interrupt causes by
changing the interrupt mask. Here are the available interrupt bits and their functions:

Table 14-8. Interrupt Mask Bits for Async Operation

Bit | Value Function Bit | Value Function

0 1 Data in Receive Queue 4 16 No Activity Timeout
1 2 Prompt Received 5 32 Lost Carrier Timeout
2 4 Framing/Parity Error 6 64 End-of-line Received
3 8 Modem Line Change 7 128 Break Received

Table 14-9. Interrupt Mask Bits for Data Link Operation

Bit l Value | Function I Bit I Value I Function

0 1 Data in Receive Queue 3 8 Modem Line Change
1 2 Block Successfully Sent 4 16 No Activity Timeout
2 4 Transmit or Receive Error | 5 32 Lost Carrier Timeout

Interrupt mask bits 6 and 7 are not used with Data Link protocol.

To construct the interrupt mask value, add the bit values for each function that is to
cause an interrupt. For example, to interrupt when there is data in the receive queue (bit
value=1), or a modem line change (bit value=8) or a Lost Carrier timeout (bit value=32),
the interrupt mask becomes: 1+ 8 + 32 =41. The ENABLE INTR statement becomes:

1820 ENABLE INTR Sc;41

14-32 The Datacomm Interface

i

Background Program Routines

After the interrupt structures have been established by the running program, the pro-
gram begins executing a “background” routine while it waits for interrupts. Background
routines vary according to application, and can consist of anything from a simple idle
loop to a very complex program. They are called background programs or background
routines because their execution is generally suspended whenever interrupts from previ-
ously defined sources are received. See the chapter “Interface Events” for more discussion
of interrupt and software priority.

Background program operations can affect interrupt handling under certain conditions.
For example, if the background program contains a subprogram call, the interrupt service
routines are temporarily suspended until subprogram execution is complete if the ON
INTR statements use GOSUB, or GOTO. Incoming data is held in the receive queue
during subprogram execution, and the remote is held off by the interface when the queue
is full, if handshaking between devices is active. If handshaking is not being used in
Async operation, buffer overflow can occur. When handshake is being used, be sure that
the remote computer does not disable the link when extended hold-offs oceur.

When interrupt service routines are subprograms accessed by an ON INTR...CALL state-
ment, background subprograms may be temporarily suspended to allow interrupt pro-
cessing. Be careful when using subprograms to be sure that variables are properly used
for orderly flow of information between contexts.

Most BASIC programmers, to maintain clarity in program flow, place interrupt service
routines after the background routines. This technique simplifies documentation and
makes it easier for others to understand program operation. The location of subroutines
or program labels in BASIC programs does not affect efficiency or speed of execution by
the desktop computer.

A detailed discussion of background programs is beyond the scope of this chapter be-
cause they are dependent upon the individual application. In the example shown in
this chapter, a simple idle loop is sufficient. A typical idle loop resembles the following
statement:

1880 Background: GOTO Background ! Background program idle loop.

The next topics addressed are interrupt service routines for datacomm and keyboard
operations.

The Datacomn Interface 14-33

Interrupt Service Routines

Interrupt service routines are required to service any peripheral device or interface that
uses interrupt to access the computer. In the example we are using, interrupt service
routines are required for the datacomm interface, computer keyboard, and softkeys. Each
routine is treated separately in this section.

Servicing Datacomm Interrupts

Whenever the datacomm interface interrupts a running BASIC program, the interrupt
request is first logged and then DISABLE INTR is automatically executed by the system.
The cause of interrupt is then placed in STATUS Register 4. The interrupt service
routine must do several things to guarantee that: (1) the interrupt is properly handled,
(2) the interrupt structure is restored after the current interrupt is acknowledged, and
(3) no data is left in the receive queue after the last interrupt request is processed. The
following items outline the basic elements of the datacomm interrupt service routine
(similar techniques are used for other interfaces).

o Read STATUS Register 4 to clear the interrupt request and determine the cause
of the interrupt. If you do not clear the interrupt request, it remains active and a
new interrupt is generated as soon as you exit the service routine, whether or not
there is any information to process.

e Use ENABLE INTR (usually without specifying a new interrupt mask) to reactivate
the datacomm interrupt system. It is usually unnecessary to redefine the interrupt
mask when this is done.

o Take appropriate action based on what caused the interrupt.

e Exit the interrupt service routine with a RETURN (or equivalent statement as
appropriate) taking care to maintain proper program structure.

14-34 The Datacomm Interface

Interrupts are usually generated when data is available for transfer between the interface
and your computer. The interrupt service routine then processes the transfer using the
ENTER statement. In the following interrupt service routine, A$ is dimensioned to a
length of one character (DIM A$[1]). The calling sequence might be:

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;Mask

2090 Datacomm:STATUS Sc,4;Interrupt_cause

2100
2110
2120
2130
2140
2150

Dc:

ENABLE INTR Sc

STATUS Sc,5;Rx_queue_status

IF Rx_queue_status=0 THEN RETURN
ENTER Sc USING "#,-K";A$

PRINT USING "#,K";A$

GOTO Dc

While this interrupt service routine (ISR) looks deceptively simple, its structure performs
several important functions:

e Line 2090 acknowledges the interrupt and places the cause-of-interrupt information
in Interrupt_cause

e Line 2100 reenables the interrupt without changing the mask.

o Line 2110 gets the receive queue status. Four values are possible:

Rx_queue_status=(: Receive queue is empty.

Rx_queue_status=1: Receive queue contains data.

Rx_queue_status=2: Receive queue contains at least one control block.

Rx_queue_status=3: Receive queue contains data and at least one control block.

e Line 2120 checks to make sure there is data or control information available be-
fore continuing. This prevents attempts to enter data that does not exist. The
f]
placement of this statement is explained under Exit Conditions.

e Line 2130 enters the data. The format used guarantees that no data is lost during
searches for end-of-line delimiters. The “#7 IMAGE specifier prevents search for
end-of-line (EOL) delimiters. Use of “=K” places CR, LF, and CR-LT end-of-line
delimiters in the string variable when they are encountered. BASIC can then locate
the delimiters by using separate operations.

e Line 2140 prints the data on the PRINTER IS device. The “#” specifier suppresses
the EOL sequence because the string variable already contains terminators.

The Datacomm Interface 14-35

e Line 2150 goes back to check for more data before exiting. This guarantees that
no data is missed in the event that additional data arrives during interrupt service.
Otherwise, some interrupt requests may be missed.

To understand why the interrupt is handled as shown, consider the following sequence
of events:

Interface places data in queue and requests interrupt.
I Interface receives more data and requests a second interrupt.

Interface requests a third interrupt.

| |
Y Y
l 1 1
1 T
2 3t 5

A A
|
|

5} <

l
N
A

|

ISR begins processing second interrupt.
| ISR finishes first interrupt.

ISR acknowledges then reenables interrupt.
It then begins entering the data.

Figure 14-6. How BASIC Handles Datacomm Interrupts

At time t0, the interface places data in the receive queue and requests interrupt service.
At t1, the ISR responds and acknowledges the interrupt. The interrupt is reenabled,
but subsequent interrupt service requests are logged but not serviced until the routine
is finished. While the ISR is processing the first interrupt request, a second and third
request are made at t2 and t3. (The already active interrupt request line is reactivated
by the third request. From the computer’s point of view, nothing happened because the
second interrupt request was already active). When the ISR completes the first interrupt
process (t4), it exits, then acknowledges, the second interrupt (t5).

Here is what really happens when the example routine is executed: Since the routine
checks for no more data in the queue before it processes the interrupt, and remains in
the ENTER/PRINT loop until the queue is empty, all available information is processed
before exit occurs. Therefore, data placed in the queue at the time of the second and
third interrupt requests is processed before the exit at t4, guaranteeing that nothing
is left. When the second entry is made to the routine (t5) in response to the second
interrupt request, no data is in the queue unless it was placed there between exit and
reentry. In this case, the queue is empty, so exit is immediate. The third interrupt
request cannot be recognized, because the second was still pending when it occurred.

14-36 The Datacomm Interface

If the routine were written differently, and only one ENTER statement was executed
for each interrupt request, the example sequence would result in only two interrupts
being acknowledged. The third interrupt request and its corresponding data would not
be processed until a fourth request caused the third data entry to be executed. Such a
strueture presents a risk of data loss.

Exit Conditions

In the preceding example, line 2120 exits or continues the interrupt service routine,
depending on the status of the receive queue. The example shown assumes that A$ can
hold only a single ASCII character or data byte. The ENTER statement is terminated
as soon as A$ is filled, so data transfer is one byte at a time. By checking for Status
Register 5=0, you are guaranteed that no data messages remain in the receive queue.
Sontrol blocks are immaterial in this case.

When using Data Link protocol, most programmers specify data transfer formats of one
record per block. This eliminates the need to search data for delimiters!. Since the
datacomm interface can receive Data Link transmission blocks up to 1000 characters, it
is wise to dimension A$ to a length exceeding the maximum expected block length; for
example, DIM A$[1050]. In such cases, it is necessary to modify line 2120 to provide exit
if a full block is not available for A$. Instead of examining for the presence of data, a
test is made to look for a control block in the queue, indicating the presence of a full
block of data. (Control Register 14 must be set so that only ETB/ETX terminators are
allowed to create a control block.) If a control block is present, a full block of data is
also available. When the ENTER statement is executed, the input operation terminates
when the control block is encountered, and the resulting length of A$ matches the received
block length. To operate in “block mode” instead of “character mode” as earlier, change
line 2120 to:

2120 IF Rx_avail_bits<2 THEN RETURN

Only the dimension of A$ is affected by this change. Other interrupt service routine
statements remain unchanged.

! The HP 3000 packs multiple records per block when transferring ASCII text files, so you must decode
delimiters to find record boundaries. Consult the appropriate HP 3000 Data Link manuals for more
information.

The Datacomm Interface 14-37

Note

It is good programming practice to be sure the receive queue or
input buffer is completely empty before exiting an interrupt ser-
vice routine, and make sure there is data present before trying to
process it.

This example datacomm interrupt service routine is adequate for most applications where
data is not sent with a known, fixed format, and where prevention of data loss is im-
portant. In other situations, where loss of data between the end of the input variables
list and the delimiter in incoming data is unimportant, or a fixed format is used, other
formats can be specified. It is usually wise to avoid using multiple variables with the
ENTER statement when using the formats shown in this example. Here’s why:

A control block indicates End-of-data, not End-of-information. Consequently, an EN-
TER statement is terminated whenever a control block is encountered (variables are
terminated by EOI, not EOD). If more than one variable is included in the statement,
and EOD (control block) occurs before the list is filled, the unfilled variables retain their
previous values which can lead to improper results.

Data Formats for Datacomm Transfers

All datacomm data transfers use the OUTPUT and ENTER statements. Consequently,
any formatting techniques that are compatible with these statements can also be used.
However, since most computers send and expect to receive a limited variety of data
formats, most data transfers use a limited assortment of formats.

14-38 The Datacomm Interface

ASCII Data Transfers — In asynchronous data communications applications, information
is usually transferred as lines of ASCII text. In most cases, lines are terminated by
a carriage-return followed by a line-feed (CR-LF), or by a carriage-return only. Other
methods may be used occasionally to recognize record boundaries in special applications.

Most Data Link applications consist of ASCI text records transferred between the net-
work host computer and other terminals and/or computers in the network. Records are
transmitted in blocks, one or more records per block. When multiple-record blocks are
transferred, delimiters between records are included as part of the text, and individual
records must be unpacked by the receiver.

Non-ASCII Data Transfers — Non-ASCII data includes non-text or non-ASCII text data
that must be transmitted over the datacomm link, but may contain characters that could
be interpreted as datacomm control characters. Examples of non-ASCII data includes
encoded data files, non-text program files, or specially formatted data. To provide a
means of transferring non-ASCII data formats requires non-standard techniques in Asyne,
and transparent transmission when using Data Link.

To transfer non-ASCII data using asynchronous protocol, use an eight-bit character for-
mat with or without parity as dictated by your application. End-of-line and prompt
recognition, and any character stripping functions must be disabled to allow passage of
arbitrary character patterns. Use of Async for such applications is uncommon, primarily
because of the limited reliability of parity checks as a means for error detection.

Transfer of non-ASCII data using Data Link protocol is much casier because all data
transmitted by the desktop computer through the datacomm interface is sent as trans-
parent data; i. ¢., data that could be mistaken for control characters is transferred intact.
Data Link transfers from the network host are also sent as transparent data. In order to
transfer non-ASCII data from the network host, a cooperating program on the host must
originate the data, and suppress end-of-line and other unwanted character sequences.

The Datacomm Interface 14-39

Servicing Keyboard Interrupts

The keyboard interrupt service routine has several functions. In the case of a terminal
emulator or similar application, it inputs keystrokes, interprets them, then transmits
the results to the datacomm interface. In addition, it may be required to display the
keystroke(s) or perform backspace and editing operations (such as in line-mode terminal
emulators). Certain keys may also be reserved to perform program command functions
while others are used to transmit information to the host.

Here is a simple example of a keyboard interrupt service routine that sends ASCII
keystrokes to the datacomm interface as each key is pressed, then sends an end-of-line
(CR) if Async, or end-of-block if Data Link. The example shown is for Async proto-
col; Line 2410 is changed for Data Link. The calling sequence might be ON KBD GOSUB
Keyboard. An explanation follows the example.

2290 Keyboard:K$=KBD$
2300 K: IF NOT LEN(K$) THEN RETURN

2310 Key=NUM(K$)

2320 K$=K$ [2]

2330 IF Key=255 THEN

2340 Key=NUM(K$)

2350 K$=K[2]

2360 IF Key=255 THEN

2370 Key=NUM(K$)

2380 K$=K$[2]

2390 END IF

2400 IF Key=NUM("E") THEN
2410 OUTPUT Sc;CHR$(13) ;END
2420 ELSE

2430 BEEP

2440 END IF

2450 ELSE

2460 OUTPUT Sc;CHR$ (Key) ;
2470 END IF

2480 GOTO K

To change the example for Data Link, eliminate the carriage return in line 2410 as follows:

2410 OUTPUT Sc;END

14-40 The Datacomm Interface

This Async example assumes that the host echoes any data sent to it; that is, when a
character is sent to the host, the host sends the same character back to the terminal
where it is displayed. Consequently, keystrokes are displayed AFTER they are returned
by the host. Data Link protocol does not provide this feature (called echo-plex). To
print each keystroke on the CRT as it is keyed in, add the following line to the Data Link
example:

2465 PRINT CHR$(Key);

This keyboard routine is a good illustration of how to use an IF... THEN...ELSE structure
to decode a keystroke, and decide whether it is ASCIH, end-of-line, or an unrecognized
character. If ASCIL, it is transmitted. If the ENTER key is pressed, it sends an EOL.
Any other key is ignored, but the computer beeps to acknowledge the keystroke.

To understand the routine, you must be aware that several data formats are found in
KBD$. ASCIH keystrokes are stored. one byte per stroke. as key codes equivalent in
value to the NUM value of the corresponding ASCII character code. Non-ASCII keys
are stored as two bytes: the first byte is CHR$(255). the second byte is the keycode. If
the CONTROL key is pressed simultancously with a non-ASCII key, a three-byte entry
is made in KBD$. The first is CHR$(255) representing a non-ASCII key, the second is
also CHR$(255) representing the CONTROL key, and the third byte is the keystroke.
Keycode values for non-ASCII keys are listed in the Keyboard Qutput Codes table in the
back of the BASIC Language Reference for your computer. The following table shows
the KBD$ data format for each keystroke:

Table 14-10. KBD$ Data Formats

Keystroke(s) First Byte Second Byte Third Byte
ASCII or CONTROL-ASCII ASCI keycode None None
Non-ASCII Key CHR$(255) Non-ASCII keycode | None
CONTROL-Non-ASCII Key CHR$(255) CHR$(255) Nou-ASCIH
keycode

The contents of KBD$ is destroyed when you transfer it to another string or perform
any other operation on KBD$. Since only one read from KBD$ is possible, K$ is used
as a temporary storage and work area for the contents of KBD$, permitting additional
string operations.

The Datacomm Interface 14-41

The first IF... THEN...ELSE looks for a CHR$(255) indicating a non-ASCII key. If none
is found, the ASCII key is sent to the datacomm interface. The second IF... THEN...ELSE
is entered ONLY if the first character indicates a non-ASCII key. It looks for a second
CHR$(255), which is discarded, if found. (Both ENTER and CTRL-ENTER are ac-
cepted as end-of-line.) The keystroke data byte is then checked to see if it is the ENTER
key. If the value is not equivalent to NUM(“E”), the key is rejected. Otherwise, and
end-of-line/end-of-block is sent to the datacomm interface.

In more elaborate applications, other keys such as backspace or other cursor control
characters could be interpreted, and the CRT display and other program parameters
varied accordingly.

Note that the interrupt service routine remains active until the entire contents of KBD$
as it existed at time of interrupt is processed. If, in the meantime, more keystrokes are
placed in KBD$, a new interrupt occurs as soon as the service routine is finished.

Service Routines for ON KEY Interrupts

ON KEY interrupt service routines are usually simpler than ON KBD service routines.
In this example, KEY 0 disconnects the datacomm line, and KEY 1 sends a BREAK.
The routines are implemented as follows:

To send a BREAK on either Async or Data Link, set bit zero of Control Register 6. Here
is how:

2520 Break:CONTROL Sc,6;1
2530 RETURN

To disconnect from the datacomm line, clear Control Register 12 as follows:

2570 Disco:CONTROL Sc,12;0
2580 DISP "Disconnected"
2590 END

You now have a working terminal emulator.

14-42 The Datacomm Interface

Cooperating Programs

Some applications, while similar in some respects to terminal emulators, require unat-
tended operation of the desktop computer and network host. In such cases, cooperating
programs on the host and terminal computer are used. Applications can include such
things as the desktop computer controlling a local data gathering system, making pre-
liminary calculations, and sending the results to the network host. Since data integrity
is important in such cases, Data Link is frequently used because of its ability to detect
transmission errors.

Here is an example of cooperating programs you can run on your desktop computer
and an HP 1000 Data Link network host computer. The FORTRAN program COOP
runs on the HP 1000, and is responsible for opening and transferring the specified file(s)
from the HP 1000 to the Data Link. A cooperating BASIC program on the desktop
computer acts as an interface between the operator and the HP 1000. The specified file
is transferred from the Data Link to local mass storage as it is received from the HP
1000. Assuming the file is an ASCII program file containing valid BASIC statements,
it can then be attached to the cooperating program and run. Note that variables used
by both the original BASIC program and the downloaded program must be specified as
COM variables to prevent destroying their values during pre-RUN initialization of the
downloaded program. The program listings are as follows:

FORTRAN Program COOP for the HP 1000:
FTN4,L

PROGRAM COQP
This is a FORTRAN program that runs on the HP 1000 and cooperates
with a compatible program running simultaneously on a Series 200/300
computer.

This program waits in I/0 suspend until the Series 200/300 computer returns
a file name. When the name is received, it is parsed, and the

success status of the parse is sent to the Series 200/300 computer. If the
file name parses successfully, this program tries to open the file.

The status of the UPEN is also sent to the Series 200/300 computer.

[*HeResRsNeNeNe e NN o]

INTEGER DCB(144),IDBUF(10),IBUF(80)
INTEGER NAME(3),SCODE,CRN
INTEGER DTC,ERROR,O0K
EQUIVALENCE (NAME,IDBUF), (SCODE,IDBUF(5)), (CRN, IDBUF (6))
C #++INITIALIZE DTC TO BE THE LU# OF THE SERIES 200/300 COMPUTER:#*x*

DTC=21

The Datacomm Interface 14-43

***Send the ASCII string "SYNCHRONIZE" to the Series 200/300 computers*x*
This signals the Series 200/300 computer to begin executing the sister
program to this one.

QaQaQ

CALL EXEC(2,DTC,11HSYNCHRONIZE,-11)

*+*Now wait in I/0 suspend until the Series 200/300 computer sends the**x \‘—’)
name of the program file that is to be downloaded to the
Series 200/300 computer.

QaaQ

CALL EXEC(1,DTC, IBUF,-40)

CALL ABREG(IA,LEN)

IP=1

IF (NAMR (IDBUF,IBUF,LEN,IP)) 9200,100
100 CALL EXEC (2,DTC,2HOK,-2)

C **x0PEN THE FILE AND SEND THE CONTENTS TO THE SERIES 200/300 COMPUTER##%

IF (OPEN (DCB,ERROR,NAME,O,SCODE,CRN)) 9100, 200
200 CALL EXEC (2,DTC,2HOK,-2)

250 CALL READF (DCB,ERROR, IBUF,80,LENGTH)
IF (LENGTH,EQ,-1) GOTO 300
CALL EXEC (2,DTC, IBUF,LENGTH)
GOTO 250

C *++TELL THE SERIES 200/300 COMPUTER THAT THE END OF FILE HAS BEEN#*x
C REACHED, THEN STOP.

300 CALL EXEC(2,DTC,11H*ENDOFFILE*,-11 p—y
STOP
stk sk ok sk ok ok oK oK ok ok Kok sk ok oK sk s ok sk ok sk s o sk sk ok sk ok o ok sk ok o ok ok sk ok sk sk sk ok o ok sk ok o ok ok o Kok ok ok Kok o
ERROR HANDLING ROUTINES

33k ok sk sk ok ok sk ok ok sk ok ok ok ok Sk sk ok Sk sk sk sk s sk ok sk ok sk sk ok sk ok sk sk sk ok sk sk sk sk sk sk sk ok 5k 5k sk sk sk ok ok ok ok sk sk sk ok 5k 3k 3k 3k ok 3k ok K K

sorckkorskokkokkkkkTHIS ROUTINE HANDLES DISC ERRORS* sk sk s sk sk sk sk ok sk ok sk sk ok ok sk ok 3 ok
BY SENDING THE FMP ERROR AND CLOSING THE FILE.

aQa [eXoXe]

9100 WRITE(DTC,9101)ERROR

9101 FORMAT ("THE OPEN FMP ERROR CODE WAS "I6)
CALL CLOSE(DCB)
STOP

C kskxtrskxk+xTHIS ROUTINE HANDLES PARSING ERRORS:H ks koksk ko kokoktokkk ko
9200 WRITE(DTC,9201)
9201 FORMAT ("THE FILE NAME RECEIVED DID NOT PARSE CORRECTLY")

STOP
END

14-44 The Datacomm Interface

Cooperating BASIC Program for the Series 200/300 Computer:

1000 sk sk o ok o ok o ok o o ok sk o sk ok S K ok 3R ok sk Kk o o Sk sk s sk sk sk sk sk ke sl ok st sk st ok e sk sk o ok s st sk sk siokoROR SRk sk ok sk ok ok ok
1010 This BASIC program cooperates with the FORTRAN program "COOP" and

1020 downloads a BASIC program file from the HP 1000 for execution on

1030 the Series 200/300 computer. While the program is not elegant, it

1040 illustrates the basic concepts involved in downloading files to

1
t
t
!
!
1050 ! local mass storage, then loading them into memory for execution.
!
!
!
!

1060 The same technique is useful for transferring data files.

1070

1080 sk ok 3 ok o ofe ok e sk e o o o sk o o ok sk o o o oK ok ook R o ook ok o o ok 3K KR o K SRR o8 58 oK oK R R R R K R R R o R R A HOR K kK R
1090)

1100 COM Sc,Insep$[4] ,Prompt$[2] ! The values of these variables must be
1110 ! preserved between programs.

1120 S¢=20 ! Set select code.

1130 DIM Rx$[1050] , Tx$[1050] ! Set up data transfer strings.

1140 Insep$=CHR$ (13) &CHR$ (10)&CHR$ (27)&"_" ! HP 1000 EOL string.

1150 Esc_u_score$=CHR$ (27)&" _* ! Escape-Underscore.

1180 INTEGER A

1170 !

TAB0 1 shsksiokokoskofokofol ok b ot i skt skl ok s ok sk ok ok sk ook o s o ok sk sk ok ook o ok vk skofe ook of ok ok sk ok sk sk R sl ok ok ook kol skok sk ok ok
1190 | Set up DATA LINK protocol

1200 !

1210 CONTROL Sc,0;1 ! Reset the interface.

1220 CONTROL 8¢,3;2 ! Set Data Link protocol.

1230 Wait: STATUS Sc,38;All_sent

1240 IF NOT All_sent THEN Wait ! Wait for control block sent.
1250 CONTROL 8¢,0;1 ! Reset interface to start new protocol.
1260 !

1280 ! Set up the datacomm configuration.

1200 !

1300 CONTROL Sc¢,16;0 ! Disable Connect timeout.

1310 CONTROL Sc,17,;0 ! Disable No Activity timeout.

1320 CONTROL Sc,20;14 ! Set baud rate to 9600.

1330 CONTROL Sc,21;1 ! GID="A".

1340 CONTROL Sc,22;1 ! DID="A".

1350 CONTROL Sc¢,23;0 I Override default switches and set

1360 ! Hardware Handshake OFF, non-modem connection.
1370 CONTROL §c¢,24;0 ! Transmit block length maximum: 512 bytes.
1380 CONTROL Sc,36;0 ! Set parity: NONE (HP 1000 connection).
1390 !

TAQQ Fseskotoskon shookok ootk sk o sk s e sk o b sk ok s st ok skt sk ok o s o ok ook sk o e sk ok e sk sk s ok s ok o ok skook o o ok oo ok o o ok ok sk ko ook ok
1410 ! Connect to the Data Link.

1420 !

1430 CONTROL Sc,12:1 ! Send connection command to the interface.
1440 DISP "Trying to connect"

1450 Conn: STATUS Sc,12;Line_state

1460 IF Line_state3 THEN Conn ! Wait for connection complete.

1470 DISP "Connected"

The Datacomm Interface 14-45

1480
1490
1500
1610
15620
1630
15640
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970

1
!**
!This is a MINIMAL Terminal Emulator.

!
Prompt: LINPUT Tx$! Get line to send to network host.
PRINT USING "#,K";Tx$! Print line on CRT.
OUTPUT Sc;Tx$ END ! Send line to host.

Idle: STATUS Sc,5;Receive ! Look for reply from host.
IF NOT Receive THEN Idle ! If nothing, try again.

ENTER Sc USING "#,-K";Rx$! Get reply message.
PRINT USING "#,K";Rx$[1,POS(Rx$,Esc_u_score$)-1] ! Print reply.

! Trap messages from HP-1000:

IF POS(Rx$,"UNABLE TO COMPLETE LOG-ON") THEN Prompt ! If error,
IF POS(Rx$,"END OF SESSION") THEN Prompt ! try again.
IF POS(Rx$,"SYNCHRONIZE") THEN Coop ! When synchronized, start.

STATUS Sc,5;Receive ! Look for line with EOL characters missing.
! If not CrLfEsc_, it is a system or sub-
! system prompt from the HP 1000. Otherwise,
! go to idle loop.
IF NOT Receive AND (POS(Rx$,Insep$)=0) THEN Prompt! Prompt?
GOTO Idle ! No.
!
!**
! This section starts the cooperating program.
!
Coop: LINPUT "TYPE IN A FILE NAME",Tx$! Get file name for transfer.
T1: STATUS Sc,4;Transmit ! Get transmit queue status.
IF NOT BIT(1,Transmit) THEN Ti ! If not empty, wait.
OUTPUT Sc;Tx$;END ! Send file name.

R1: STATUS Sc,5;Receive
IF NOT Receive THEN R1
ENTER Sc USING "#,-K";Rx$
IF POS(Rx$,"0K") THEN R2
PRINT Rx$
STOP

Get receive queue status.

If empty, wait for data.

Get data. Keep CR-LF.

If OK, continue.

Not OK. Print error message.
Error. STOP.

R2: STATUS Sc,5;Receive ! Look for another OK from
IF NOT Receive THEN R2 ! the HP 1000.
ENTER Sc USING "#,-K ";Rx$
IF POS(Rx$,"OK") THEN Rd_prog ! If OK, start download.
PRINT Rx$! Not OK. Print error message.
STOP ! Error. STOP.
!
1 sokokookskookook ok sk sk sk ok ok ok ok ok ok ok o o ok ok ok ok ok sk sk ok K Kok Kk ok ok ok ok ke ok sk ok ok ok ok o ok o ok ok ok ok ok ok ok ok ok ok Kok sk ok KoK oK

14-46 The Datacomm Interface

O

: \
[

-,

1980 For this section to work, the HP 1000 must send the 4-character

1

1990 ! end-of-line sequence: CR-LF followed by escape-code, underscore.

2000 ! Auto-answer must be disabled, and the data being sent from the

2010 t HP 1000 MUST consist of valid BASIC program lines, each including a
2020 ! valid line number.

2030 !

2040 Rd_prog: ASSIGN @File TO "DOWNLOAD" ! Assign destination file for
2050 ! file transfer.

2060 R3: STATUS Sc,5;Receive ! Look for data record.

2070 IF NOT Receive THEN R3 ! If nothing, wait for record.
2080 ENTER Sc USING “#,-K";Rx$! Get record. Keep CR-LF.
2090 PRINT Rx$! Print record on printer.

2100 IF POS{Rx$,"+ENDOFFILE*") THEN Get_prog !Check for end-of-file.
2110 QUTPUT QFile;Rx$[1,POS(Rx$,Esc_u_score$)-1] ! Store record on
2120 GOTO R3 ! Mass Storage file and repeat for next record.
2130 ¢

2140 Get_prog: ! File has been downloaded to local mass storage.

2150 ASSIGN @File TO * ! Close the file.

2160 GET "DOWNLOAD",2200,2200 ! Get the downloaded program.

2170 !

2200 END | This statement is destroyed by GET.

Program File to be Downloaded from the HP 1000:

1000 ! This program is downloaded to the desktop computer for execution.
1010 !

LR 1020 DIM A$[20]

e 1040 PRINT "Now I'1l count to 10."
1050 FOR I=1 TO 10
1060 PRINT " I
1070 NEXT I
1080 PRINT "That’s the end of the demo!!"
1090 PRINT "Nice to meet you, ";A$
1100 GOTO Idle
1110 END

The Datacomm Interface 14-47

Modified Cooperating BASIC Program After Loading:

2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

!
Get_prog:

ENTER Sc USING "#,-K";Rx$! Get record. Keep CR-LF.

PRINT Rx$! Print record on printer.

IF POS(Rx$,"*ENDOFFILE+") THEN Get_prog !Check for end-of-file.

OUTPUT QFile;Rx$[1,POS(Rx$,Esc_u_score$)-1] ! Store record on , \

GOTO R3 ! Mass Storage file and repeat for next record. i_‘)
! File has been downloaded to local mass storage. GET it.

ASSIGN QFile TO * ! Close the downloaded file first.

GET "DOWNLOAD",2200,2200 ! Get the downloaded program.

This program is downloaded to the desktop computer for execution.

DIM A$[20]
INPUT "H1. 1’m the downloaded program. What is your name?", A$
PRINT "Now I’1l count to 10."
FOR I=1 TO 10
PRINT " "L
NEXT I
PRINT "That’s the end of the demo!!"
PRINT "Nice to meet you, ";A$
GOTO Idle
END

14-48 The Datacomm Interface

Results:

Assuming you have logged onto the HP 1000, the printed output that is displayed on the
CRT screen or current PRINTER IS device should look something like this:

RU, COOP

SYNCHRONIZE

TYPE IN A FILE NAME

FAB2::10

HI, I'm the downloaded program. What is your name?
SUE

Now I’1l count to 10

R RIS N RN

110
That’s the end of the demo!!
Nice to meet you SUE

COOP: STOP
EX
$END FMGR
FMG21 REMOVED
SESSION 21 OFF 1:26 PM FRI., 11 SEP., 1981
CONNECT TIME: 00 HRS., 08 MIN., 28 SEC.
CPU USAGE 00 HRS., 00 MIN., 00 SEC., 470 MS.
CUMULATIVE CONNECT TIME 01 HRS., 09 MIN., 02 SEC.
END OF SESSION

e

The Datacomm Interface 14-49

The Datacomm Errors and Recovery Procedures

Several errors can be encountered during datacomm operation. They are listed here with

probable causes and suggested corrective action.

Error

Description and Probable Cause

306

313

314

315

316

317

14-50

Interface card failure. This error occurs during interface self-test, and indicates
an interface card hardware malfunction. You can repeat the power-up self-test by
pressing [SHIFT J[PAUSE] (or [RESET). If the error persists, replace the defective card.

Using a defective card may result in improper datacomm operation, and should be
considered only as a last resort.

USART receive buffer overflow. The SIO buffer is not being cleared fast enough
to keep up with incoming data. This error is uncommon, and is usually caused
by excessive processing demands on the interface microprocessor. To correct the
problem, examine BASIC program flow to reduce interference with normal interface
operation. This error causes the interface to disconnect from the datacomm line and
go into SUSPENDED state. Clear or reset the interface card to recover.

Receive Buffer overflow. Data is not being consumed fast enough by the desktop
computer. Consequently, the buffer has filled up causing data loss. This is usually
caused by excessive program demands on the desktop computer CPU, or by poor
program structure that does not allow the desktop computer to properly service
incoming data when it arrives. Modify the BASIC program(s) to allow more frequent
interrupt processing by the desktop computer, or change to a lower baud rate and/or
use protocol handshaking to hold off incoming data until you are ready to receive it.
This error causes the interface to disconnect from the datacomm line and go into a
SUSPENDED state. Clear or reset the interface to recover.

Missing Clock. A transmit timeout has occurred because the transmit clock has not
allowed the card to transmit for a specified time limit (Control Register 19). This
error can occur when the transmit speed is 0 (external clock), and no external clock
is provided, or it can be caused by a malfunction. The interface is disconnected from
the datacomm line and is SUSPENDED. To recover, correct the cause, then reset
the card.

CTS false too long. Due to clear-to-send being false on a half-duplex line, the interface
card was unable to transmit for a specified time limit (Control Register 19). The
card has disconnected from the datacomm line, and is in a SUSPENDED state. To
recover, determine what has caused the problem, correct it, then reset or clear the
interface card.

Lost Carrier disconnect. Data Set Ready (DSR) (and/or Data Carrier Detect, if
full-duplex) went inactive for the specified time limit (Control Register 18). This
condition is usually caused by the telecommunications link or associated equipment.
The card has disconnected from the datacomm line and is in a SUSPENDED state.
To recover, clear or reset the interface card.

The Datacomm Interface

Error

Description and Probable Cause

318

319

325

326

327

No Activity Disconnect. The interface card disconnected from the datacomm line
automatically because no information was transmitted or received within the time
limit specified by Control Register 17. The card is in a SUSPENDED state. Clear
or reset the interface to recover.

Connection not established. The card attempted to establish connection, but Data
Set Ready (DSR) (and Data Carrier Detect, if full duplex) was not active within
the time limit specified by Control Register 16. The card has disconnected from
the datacomm line and is in a SUSPENDED state. Clear or reset the interface to
recover.

Illegal DATABITS/PARITY combination. CONTROL statements have attempted
to program 8 bits per character and parity “1” or “0”. The CONTROL statement
causing the error is ignored, and the previous setting remains unchanged. To correct
the problem, change the CONTROL statement(s) and/or interface default switch
settings.

Register address out of range. A CONTROL or STATUS statement has attempted
to address a non-existing register. The command is ignored, and the interface card
state remains unchanged. This error can also occur when illegal HP-IB statements
are used with this interface.

Register value out of range. A CONTROL command attempted to place an illegal
value in a defined register. The command is ignored, and the interface card state
remains unchanged.

Error Recovery

When any error from Error 313 through Error 319 occurs, it forces the interface card
to disconnect from the datacomm line. When a forced disconnect terminates the con-
nection, the interface is placed in a SUSPENDED state, indicated by Status Register 12
returning a value of 4. The interface cannot be reconnected to the datacomm line when
it is SUSPENDED. CLEAR, ABORT, and RESET are used to recover from the sus-
pended state and resume normal card operation. Executing OUTPUT and CONTROL
statements while the card is suspended places corresponding data and control block(s)
in the transmit (outbound) queue and can continue to do so until the queue is filled, at
which time the desktop computer operating system hangs. ENTER statements can be
executed to retrieve data that was there prior to SUSPEND until the receive (inbound)
queue is empty. Subsequent ENTER statements, if executed while the card is suspended,
hang the computer.

The Datacomm Interface 14-51

To recover from a SUSPENDED interface, three programmable options are available, all
of which destroy any existing data in the transmit and receive queues. They are:

e The CLEAR statement clears the receive and transmit queues. In addition, if the
interface card is suspended, it disconnects the card from the datacomm line. If

the card is not suspended, its connection state is not changed, but the queues are
cleared.

e The ABORT statement is identical to the CLEAR, statement, except that the in-
terface card is unconditionally disconnected from the datacomm line.

e RESET interface (Control Register 0) clears all buffers and queues, and resets
all CONTROL options to their power-up state EXCEPT the protocol which is
determined by the most recent CONTROL statement (if any) addressed to register
3 since power-up.

A fourth (keyboard only) option is available. (or (RESET)) causes a hard-

ware reset to be sent to ALL peripherals. This completely resets the datacomm interface
to its power-up state with protocol and other options determined by the default switch
settings.

Error Detection and Program Recovery

When a timeout or datacomm error occurs, an interrupt is generated by the interface
card to BASIC. If an ON ERROR is active for that select code, the error is trapped and
handled by the error routine specified by the ON ERROR statement. If no ON ERROR,
is active for that select code, the program is stopped at the end of the current line by
the BASIC operating system, and an error message is sent to the PRINTER IS device.

When a datacomm error is trapped by an error routine, the routine must decide what
to do about the problem. Options include the suggested recovery techniques discussed
previously with the error messages, or orderly program termination. The options you
select are determined by your specific application. Since datacomm interface errors are
not related to a specific program line, the ERRL function is always false, and ERRN
returns the error number generated by the interface card. ERRL and ERRN are dis-
cussed in greater detail in the BASIC Programming Techniques manual for your desktop
computer.

14-52 The Datacomm Interface

C

Terminal Emulator Example Programs

The following pages contain complete listings of two terminal emulator programs based
on the preceding discussion. The first program is for asynchronous data communication
with an HP 1000. It can be easily adapted for other remote computers and different
operating parameters. The second program uses Data Link to communicate with an HP
1000 network host. It can be used with the HP 3000, but the parity specifier must be
changed, and other changes made as appropriate.

Both programs can be enhanced and expanded to include many additional features. The
examples shown illustrate the general structure of terminal emulator programs, and are
recommended as a basis for developing your own.

Other example programs are also included for your convenience and to further illustrate
some of the concepts discussed in this chapter. If you have an HP 46020/21A keyboard,
you need to adjust the ON KEY 0 LABEL statement in line 1750 (and any other affected
lines).

F000 1 sheskstoroskokok s skeof shokob sk skl e sk ook e i s 638 o sk e o ot ok e ok s ok sk ok sk ke ok e o s sk o ok ok ok o ok o ok o ok ok ok s o ok o 3k ke ok ok ok ok o
1010 1 = *
1020 ' = #xkkkExample Async Terminal Emulatorssx# *#
1030 ! =® *
1040 1 seskestessteokoshof sestosook e sk ook ok o skeoke se sk ofe ok ok ok ok ke ok ok ok sk sk o o o o o ke ook ke s ok ke S ke ok sk ok ok ok e sl ok ok ok o o sk sk ok sk sk
1050 ! * This sample terminal emulator program is a simple example of the *
1060 ! =* program structure of general-purpose emulators. It is not elegant,*
1070 ! * but contains the essential elements and illustrates commonly used *
1080 ! * programming techniques. *
1090 1 skt sk sk stol ol stk ok sk sk ok s of s o ok ok ok o sk ook ook sk o ok KR o ok Sk sk sk Rk ok
1100 !

1110 85¢=20 ! Select code of datacomm interface.
1120 DIM A$[1],K$[100] ! Set up string variables.

1130 !

1140 ! Reset datacomm interface and enable Async protocol.

1150 ¢

1160 CONTROL 8¢,0;1 ! Reset card to disconnect from line.
1170 CONTROL Sc¢,3;1 ! Select Async protocol.

1
1180 Wait: STATUS S8c,38;All_sent ! Wait until Control Block is sent to
1190 IF NOT All_sent THEN Wait ! interface before resetting again.
!

1200 CONTROL Sc,0;1 ! Reset card to start new protocol.
1210 ¢

1220 ! Set up datacomm options. Normally Just a few are included in the
1230 ! program. This group overrides ALL defaults including switches.
1240 ¢

1250 CONTROL 8c¢,14;3 ! Set Control Block mask for EQL and Prompt.
1260 CONTROL 8c¢,15;0 ! No modem line-charge notification.

1270 CONTROL S¢,16;0 ! Disable connection timeout.

The Datacomm Interface 14-53

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1405
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
15670
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760

CONTROL Sc,17;0
CONTROL Sc,18;40
CONTROL Sc,19;10
CONTROL Sc,20;7
CONTROL Sc,21;7
CONTROL Sc,22;2
CONTROL Sc,23;1
CONTROL Sc,24;66

! Disable No Activity timeout.
! Lost Carrier 400ms (default) .
! Transmit timeout 10 s (default).
! Transmit Speed: 300 baud.
! Receive Speed: 300 baud.)
! EQ/AK (as terminal) handshake. ()
! Full Duplex Modem connection. —
! Remove protocol characters except
! EOL. Change errors to underscores.
CONTROL Sc,26;6 ! Assign AK character for EQ/AK.
CONTROL Sc,27;5 ! Assign EQ character for EQ/AK.
CONTROL Sc,28;2,13,10 ! Set EOL sequence to CR/LF (default).
CONTROL Sc,31;1,17 ! Set prompt to be DCl (default).

! Register 33 is not used.

! Seven bits per character.

! One stop tit per character.

! 0dd parity.

! No inter-character time gap (default).

! Set BREAK to four character times (default).

CONTROL Sc,34;2
CONTROL Sc,35;0
CONTROL Sc,36;1
CONTROL Sc,37;0
CONTROL Sc,39;4

You are now ready to connect to the remote computer. Optionally, this
may include autodialing with the HP 13265A Modem.

CONTROL Sc,12;2 ! Start Autodial.
OUTPUT Sc;"> 9 @ (303) 555-1234" ! Send telephone number string.

{
| | Unrecognized characters are ignored. \&-/J
| Insert 1-second pause (used with PBX to wait for
Select FAST dialing rate. dial tone).

Autodialing is not started until Start Connection is initiated by the
following CONTROL statement:

CONTROL Sc,12;1 ! Start the connection.

If desired, this is the proper place to monitor STATUS Register 12 to
see if the connection is actually made.

Conn: STATUS Sc,12;Line_state ! Get Line State from STATUS Register.

1
!
!
!
!

IF Line-State=2 THEN DISP "Dialing" ! State=2.
IF Line_state=L THEN DISP "Waiting to Connect" ! State=1.
IF Line_state<>3 THEN Conn ! Wait for connection.
DISP "Connected" ! Connection is now complete.

Softkey O is set up so you can disconnect easily. y 3
Softkey 1 sends a break to the remote computer. \)
Most other keys are trapped by the ON KBD interrupt service routine.

ON KEY O LABEL " Disconn" GOTO Disconnect ! Set up Softkey O.
ON KEY 1 LABEL " Break" GOSUB Break ! Set up Softkey 1.

14-54 The Datacomm Interface

1770 ON KBD GOSUB Keyboard ! Set up keyboard interrupt.

1780 !

1790 ! Now set up the datacomm ON INTR service routine then enable interrupts
1800 ! for any data and/or Control Blocks (see STATUS Register 4 definition).
1810 ON INTR Sc GDSUB Datacomm

1820 ENABLE INTR Sc;L

1830 !

1840 ! Everything is handled under interrupt. The background routine can be
1850 ! an idle loop doing nothing or a program that runs when interrupts are
1860 ! not being processed.

1870 ¢

1880 Background: GOTO Background

1890 !

1800 mm22>2255555>>>>> Datacomm Interrupt Service Routine <<<<<<<<<<<<<<<<
1910 This emulator operates in character mode, handling only one character
1920 at a btime. It is set up for no control blocks in the receive queue,
1930 and the dimension of A$ limits inputs from datacomm to one character.

a
1
!
!
!
1940 |
1950 ! The STATUS...4 acknowledges the interrupt from the card. Since only
1860 ! one interrupt condition is enabled, there is8 no reason to check the
1
!
!
!
!
!
!
1
!
!
!

1970 value of STATUS Register 4.
1680
1960 The ENABLE INTR allows the card to generate another interrupt when it
2000 is ready. BASIC does not branch to the service routine until after
2010 the RETURN exit is completed.

L ; 2020

i 2030 Since the datacomm interface can interrupt much faster than BASIC can
2040 service, exit from the routine occurs ONLY after ALL data has been
2050 removed from the receive queue. Since an interrupt can be generated
2060 even though the data has already been ENTERed, we must check STATUS
2070 Register 5 FIRST to see if any data is available.
2080 !
2090 Datacomm: STATUS Sc,4;Interrupt_bits ! Acknowledge interrupt by card.
2100 ENABLE INTR Sc ! Reenable interrupt.
2110 De: STATUS Sc,5;Rx_avail_bits ! Get data available status bits.
2120 IF Rx-Avail-Bits=0 THEN RETURN ! If empty, exit service routine.
2130 ENTER Sc USING "#,-K";A$! Get next data byte.
2140 PRINT USING "#,K";A$! Print the character.
2150 GOTO Dc ! Check for more data available,
2160 !
2170 ! This keyboard routine is not very exotic, but it CAN handle a fast
2180 ! typist. Some of the nested IF...THENs are used to decode the 255-
2190 ! and 255-255 notations for special and CONTROL-special keys. The only
2200 ! special key allowed by this routine is ENTER (code is NUM("E™)). It
2210 ! is converted to a carriage-return followed by a line turn-around
2220 ! (;END) indication. All ASCII keys are transmitted to the card without
2230 ! alteration.
2240 !
2250 ! The keyboard routine loops until the keyboard string has been
2260 ! completely serviced. Notice the similarities between the keyboard and

The Datacomm Interface 14-55

2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

datacomm interrupt service routines.

Keyboard: K$=KBD$

K: IF NOT LEN(K$) THEN RETURN ! Stay in routine until K$ is empty.
Key=NUM(K$) ! Get key or prefix (255=non-ASCII).
K$=K$[2] ! Strip first character from string.
IF Key=255 THEN ! If not 255, transmit character.

Key=NUM(K$) ! 265. Get value of next character.
K$=K$ [2] ! Strip second character.
IF Key=255 THEN ! If 255 (CONTROL),
Key=NUM(K$) ! get third character value.
K$=K$ [2] ! Strip third character and check
END IF ! for ENTER.
IF Key=NUM("E") THEN ! Check non-ASCII to see if ENTER.
OUTPUT Sc;CHR$(L3);END ! Send CR then turn line around.
ELSE ! Illegal character. Beep and return
BEEP ! for next character(s).
END IF
ELSE ! ASCII key. Send it to the remote
OUTPUT Sc;CHR$ (Key) ; ! computer.
END IF ! End of character check routine.
GOTO K ! Go get next keystroke, if any.
!
! Key 1 sends a BREAK indication to the datacomm interface card.
1
Break: CONTROL Sc,6;1 ! Tell card to send a BREAK.
RETURN ! End of routine.
!
! Key O disconnects the card and stops the program.
!
Disconnect: CONTROL Sc,12;0 ! Disconnect gracefully.

DISP "Disconnected-"
END

If you have an HP 46020/21A keyboard, adjust the ON KEY statements to reflect available

keys.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1081
1090
1100
1120

e 3k ok sk ok ok ok sk ok sk ok ok sk ok sk ok Sk 3k Sk sk sk 3k ok sk sk ke sk ok ok ok ok ok ok ok ok ok ok Sk ke 3 sk ok sk Sk sk ok ke sk sk ok ok sk ok sk sk ke sk sk 3k ok ok 3k 3k 3k 3k 3K K sk ok

* *
* **x*kxExample Data Link Terminal Emulatorskkkxx *
* *

ke ok sk ok ke ok ok ok sk ke 3k ok ek ok ok ke ok ok sk ok ok sk s ok sk ok sk ok ok Sk sk ok sk e ok ok sk ok sk 3k 3 3k ok 3k ok 3k sk sk ok sk sk ok ok sk sk ok ok sk 3k ok ok sk ok ok sk ok
* This sample terminal emulator program is a simple example of the *
* program structure of general-purpose emulators. It is not elegant,*
* but contains the essential elements and illustrates commonly used *
* programming techniques. Line numbers are matched to the Async *
* example for your convenience in comparing the two versionms. *
stk skoR Rk Rk ko skok sk ook ok ok ok ok ok ok skokak sk ok ok ook ok ok Kok ok ok ook ok sk ok sk sk ok ok ok K
Sc=20 ! Select code of datacomm interface.
DIM A$[1050] ,K$[100] ! s*****x->-> A$ now handles 1000 characters.

14-56 The Datacomm Interface

e

1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1460
1570
1590
1600
1610
1620
1630
1640
1645
1650
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

Wait:

Conn:

Reset datacomm interface and enable Async protocol.

CONTROL Sc¢,0;1 ! Reset card to disconnect from line.
CONTROL Sc,3;2 ! Select Data Link protocol.

STATUS Sc¢,38;A11_sent ! Wait until Comtrol Block is sent to
IF NOT All_sent THEN Wait ! interface before resetting again.
CONTROL S8c,0;1 ! Reset card to start new protocol.

Set up datacomm options. Normally just a few are included in the
program. This group overrides ALL defaults including switches.

CONTROL Sc,14;6
CONTROL Sc,15;0
CONTROL Sc,16;0

! 8et Control Block Mask for ETB/ETX.

! Set ON INTR mask for data in receive queue.
! Disable Connection timeout.

CONTROL Sc¢,17;0 ! Disable Lost Carrier timeout.

CONTROL Sc,18;40 ! Set Lost Carrier to 400 me (default).
CONTROL Sc¢,19;10 ! Set Transmit Timeout=10 s (default).
CONTROL Sc,20;14 ! Bet Line Speed to 9600 baud.

CONTROL Sc,21:1 ! Set GID character to "A" (default).
CONTROL Sc,22;1 ! Set DID character to "A".

CONTROL S8¢,23;0 ! Hardware Handshake OFF f o r HP 132644.
CONTROL 8c¢,24;0 ! Set transmit block size to 512 (default).
TONTROL 8¢,36;0 ! Parity not used with HP 1000 (default).

Now we can initiate Start Connection.
CONTROL Sc,12;1 ! Start the connection.

If desired, this is the proper place to monitor STATUS Register 12 to
see if the connection is actually made.

DISP "Trying to connect"

STATUS Sc,12;Line_state ! Get Line State from STATUS Register.
IF Line_state<>3 THEN Conn ! Wait for connection.
DISP "Connected" ! Connection is now complete.

Softkey is set up so you can disconnect easily.
Softkey sends a break to the remote computer.
Most other keys are trapped by the ON KBD interrupt service routine.

ON KEY O LABEL " Disconn" GOTO Disconnect ! Set up Softkey.
ON KEY 1 LABEL " Break" GOSUB Break ! Set up Softkey.
ON KBD GOSUB Keyboard ! Set up keyboard interrupt.

Now set up the datacomm ON INTR service routine then enable interrupts
for anything received (see STATUS Register 4 definitiom). s##xkssskssx
ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L

The Datacomm Interface 14-57

1840

Everything is handled under interrupt. The background routine can be

1
1850 ! an idle loop doing nothing or a program that runs when interrupts are
1860 ! not being processed.

1870 !

1880 Background: GOTO Background

1890 !

1900 ! -->>>>>>>>>>>>>>> Datacomm Interrupt Service Routine <<<<<<<<<<<<<<<--
1910 ! This emulator operates in block mode, handling incoming data one block
1920 ! at a time. Entire data blocks are read from the receive queue, but
1930 ! they MUST be properly terminated by a Control Block.

1940 !

1950 ! The STATUS...4 acknowledges the interrupt from the card. Since only
1960 ! one interrupt condition is enabled, there is no reason to check the
1970 ! value of STATUS Register 4.

1980 !

1990 ! The ENABLE INTR allows the card to generate another interrupt when it
2000 ! is ready. BASIC does not branch to the service routine until after
2010 ! the RETURN exit is completed (i.e., the routine does not call itself).
2020 !

2030 ! Since the datacomm interface can interrupt much faster than BASIC can
2040 ! service, exit from the routine occurs ONLY after ALL data has teen
2050 ! removed from the receive queue. Since an interrupt can be generated
2060 ! even though the data has already been ENTERed, we must check STATUS
2070 ! Register 5 FIRST to see if any data is available.

2080 !

2090 Datacomm: STATUS Sc,4;Interrupt_bits ! Acknowledge interrupt by card.
2100 ENABLE INTR Sc ! Reenable interrupt.

2110 Dc: STATUS Sc,5;Rx_avail_bits ! Get data available status bits.
2120 IF Rx_avail_bits<2 THEN RETURN !x*xIf no control block, exit.

2130 ENTER Sc USING "#,-K";A$! Get next data byte.

2140 PRINT USING "#,K";A$! Print the incoming block.

2150 GOTO Dc ! Check for more data available.
2160 !

2170 ! This keyboard routine is not very exotic, but it CAN handle a fast
2180 ! typist. Some of the nested IF...THENs are used to decode the 255-
2190 ! and 255-255 notations for special and CONTROL-special keys. The only
2200 ! special key allowed by this routine is ENTER (code is NUM("E")). It
2210 ! is connerted to an end-of-block (;END) indication. All ASCII keys are
2220 ! transmitted to the card without alteration.

2240 !

2250 ! The keyboard routine loops until the keyboard string has been

2260 ! completely serviced. Notice the similarities between the keyboard and
2270 ! datacomm interrupt service routines.

2280 !

2290 Keyboard: K$=KBD$

2300 K: IF NOT LEN(K$) THEN RETURN ! Stay in routine until K$ is empty.
2310 Key=NUM(K$) ! Get key or prefix (255=non-ASCII).
2320 K$=K$[2] ! Strip first character from string.
2330 IF Key=255 THEN ! If not 255, transmit character.
2340 Key=NUM(K$) ! 265. Get value of next character.

14-58 The Datacomm Interface

2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2465
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

K$=K$[2] ! Strip second character.
IF Key=255 THEN ! If 255 (CONTROL),
Key=NUM(K$) ! get third character value.
K$=K$ [2] ! Strip third character and check
END IF ! for ENTER.
IF Key=NUM("E") THEN ! Check non-ASCII to see if ENTER.
OUTPUT Sc;END ! Send end-of-block.
ELSE ! Illegal character. Beep and return
BEEP ! for next character(s).
END IF
ELSE ! ASCII key. Send it to the remote
OUTPUT Sc;CHR$ (Key) ; ! computer.
PRINT USING "#,A"; CHR$(Key) ! Print character not echoed by DL.
END IF End of character check rontine.
GOTO X ! Go get next keystroke, if any.
1
! Key 1 sends a BREAK indication to the datacomm interface card.
i
Break: CONTROL Sc,6;1 ! Tell card to send a BREAK.
RETURN ! End of routine.
!
! Key O disconnects the card and stops the program.
i
Disconnect: CONTROL 8c¢,12;0 ! Disconnect gracefully.
DISP "Disconnected"
END

The Datacomm Interface

14-59

Datacomm Programming Helps

This section discusses some obstacles to the beginning datacomm programmer and how
to overcome them.

Terminal Prompt Messages

Care must be exercised to ensure that messages are never transmitted to the network
host if the host is not prepared to properly handle the message. Receipt of a poll from
the host does not necessarily mean that the host can handle the message properly when
it is received. Therefore, prompts or interpretation of messages from the host are used
to determine the status of the host operating system.

Prompts are message strings sent to the terminal by a cooperating program. They are
well-defined and predictable, and are usually tailored to specific applications. When the
terminal interacts directly with RTE or one or more subsystems, the process becomes
less straightforward. Each subsystem usually has its own prompt which is not identical
to other subsystem prompts. To maintain orderly communication with subsystems, you
must interpret each message string from the host to determine whether it is a prompt.

Prevention of Data Loss on the HP 1000

On the HP 1000, the RTE Operating System manages information transfer between
programs or subsystems and system I/O devices, including DSN/DL. Terminals are con-
tinually polled by the host’s data link interface (unless auto-poll has been disabled by
use of an HP 1000 File Manager CN command). Since there is no relationship between
automatic polling and HP 1000 program and subsystems execution, it is possible to poll a
terminal when there is no need for information from that terminal. If the terminal sends
a message in response to a poll when no data is being requested, the HP 1000 discards
the message, causing the data to be lost, and treats it as an asynchronous interrupt. A
break-mode prompt is then sent to the terminal by the host.

The terminal must determine that the host is ready to receive a message in order to ensure
that messages are properly handled by the host. This is done by checking all messages
from the host (ENTER until queue is empty) and not transmitting (OUTPUT) until
a prompt message or its equivalent has been received (unless you want to enter break-
mode operation). Since the HP 1000 does not generate a consistent prompt message
for all programs and subsystems, it is easiest to use cooperating programs to generate
a predictable prompt. If your application requires interaction with other subsystems,
prompts can usually be most easily identified by the ABSENCE of the sequence: Glpfe_
at the end of a message. When a proper sequence has been identified, you are reasonably
certain that the host is ready for your next message block.

14-60 The Datacomm Interface

Here is an example of host messages where a prompt is sent by the File Manager (FMGR)
and answered by a RUN, EDITR command. Note that the prompt from the interac-
tive editor fits the description of a prompt because a line-feed is not included after the
carriage-return in the sequence.

By Prompt is sent by FMGR to terminal.
RU,EDITR EDITR Run command is sent to host.
SOURCE FILE NAME?SRLFEC_ File name message is sent by the host, followed by
Cr/BiE a prompt sequence which has no line-feed. Sequence

is different from FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is treated as an
asynchronous interrupt which terminates normal communication with that terminal. A
break-mode prompt is sent to the terminal by RTE, and the next message is expected to
be a valid break-mode command. If the message is not a valid command (such as data
in a file being transferred), the data is discarded, and an error message is sent to the
terminal. If, in the meantime, the cooperating program or subsystem generates an input
request, the next data block is sent to the proper destination, but is out of sequence
because at least one block has been lost. You can prevent such data losses and the mass
confusion that usually ensues (especially during high-speed file transfers to the host), by
disabling auto-poll on the HP 1000 data link interface. With auto-poll OFF, no polls are
sent to your terminal unless the host is prepared to receive data.

Disabling Auto-poll on the HP 1000

To operate with auto-poll OFF, log on to the network host, disable auto-poll, perform
all datacomm activities and file transfers, enable auto-poll, then log off. If you don’t
enable auto-poll at the end of a session, polling is suspended to you terminal after log-
off, and you cannot reestablish communication with the host unless polling is restored
from another terminal or the network host System Console,

The auto-poll ON/OFF commands are (LU# is the terminal’s logical unit number):

CN,LU#,23B,101401B Auto-poll OFF!
CN,LU#,23B,001401B Auto-poll ON!

The File Manager CN (Control) command parameters for the multipoint interface are described in more
detail in the 917304 Multipoint Terminal Interface Subsystem User’s Guide.

The Datacomm Interface 14-61

When auto-poll is disabled, no polls are sent to your terminal unless an input request
is initiated by the cooperating program or subsystem on the network host. When the
request is made, a poll is scheduled, and polling continues until a reply is received from
the terminal. When the reply is received, and acknowledged, polling is suspended until
the next input is scheduled. Operating with auto-poll OFF is especially useful when
transferring files to the HP 1000. Otherwise, in most applications, it is practical to leave
auto-poll ON.

Prevention of Data Loss on the HP 1000

Neither the HP 1000 nor the HP 3000 provide a DC1 poll character when they are ready
for data inputs from DSN/DL. The HP 3000, like the HP 1000, also discards data if it
has not requested the transfer. Since the HP 3000 does not provide an auto-poll disable
command, you must interpret messages from the HP 3000 to determine that it is ready
for the next data block before you transmit the block.

Secondary Channel, Half-duplex Communication

Half-duplex telecommunications links frequently use secondary channel communication
to control data transmission and provide for proper line turn-around. This is done by
using Secondary Request-to-send (SRTS) and Secondary Data Carrier Detect (SDCD)
modem signals.

Consider two devices communicating with each other: Each connects to the datacomm
link, then waits for SDCD to become active (true). As each device connects to the line,
Secondary Request-to-send is enabled, causing each modem to activate its secondary
carrier output. The Secondary Data Carrier Detect is, in turn, activated by each modem
as it receives the secondary data carrier from the other end.

When communication begins, the first device to transmit (assumed to be your com-
puter, in this case) clears its Secondary Request-to-send modem line. This removes the
secondary data carrier from the line, causing the other modem to clear SDCD to its
terminal or computer, telling it that you have the line. (The modems also maintain
proper line switching and prevent timing conflicts so both ends don’t try to get the line
simultaneously.) The other device receives data, and must not attempt to transmit until
you relinquish control of the line as indicated by SDCD true. After you finish transmit-
ting, you must again activate SRTS so that SDCD can be activated to the other device,
allowing it to use the line if it has a message.

14-62 The Datacomm Interface

The following example is a simple terminal emulator that uses secondary channel com-
munication to control data flow on a half-duplex link:

1000 1 sesmskeobseomok stk koot sbobse ks ok ke sk okl s 8o o o koo sk ko o o o o o ke ok ok ok ko o ks oo ko ks ko ke o
1010 ! * : *
1020 ! * HALF-OUPLEX TERMINAL EMULATOR FOR SECONDARY CHANNEL OPERATION *
1030 I * *
1040 ! * This program uses secondary channel modem lines to indicate which
1050 ! * end is in control of the line. BASIC is used to assemble data *
1060 ! * for transmission to the other end. This example is compatible *
1070 ! * with the Option 001 (male) cable only. *®
1080 ! % *
1000 1 soskokokosokshosksbeoksk ok kot e sofeof e ek ook sk ok ook o ook ook ok o ok s o oo sk o oo ko ko ok ok o ok ok ke ok sk ok o ok s sk ok o ok
1100 !

1110 Sc=20 ! Select code of HP98628 datacomm interface.
1120 DIM A$[1],K$[100] ! Size of datacomm and keyboard strings.

1130 ¢

1140 ! Reset the card to disconnect, then select Async protocol.

1160 !

1160 CONTROL S8c,0;1

1170 CONTROL Sc,3;1

1180 Wait: STATUS Sc,38;All_sent

1190 IF NOT All_sent THEN Wait

1200 CONTROL 8¢,0;1

1210 !

1220 ! Set up all the interface configuration options for Async protocol.
1230 !

1240 CONTROL Sc,14;0 ! Set Control Block mask off.

1250 CONTROL Sc,15;16 ! Interrupt when Secondary Carrier Detect
1255 ! modem line changes state.

1260 CONTROL Sc,16;0 ! Disable connection timeout.

1270 CONTROL Sc¢,17;0 ! Disable No Activity timeout.

1280 CONTROL Sc,18;40 ! Lost Carrier 400 ms (default).

1290 CONTROL Sc,19;10 ! Transmit timeout 10 s, (default).

1300 CONTROL 8¢,20;7.7 ! Line speed: 300 baud in both directions.
1310 CONTROL Sc,22;0 ! Disable protocol handshake.

1320 CONTROL Sc¢,23;2 ! Half duplex modem connection.

1330 CONTROL Sc,24,;255 ! Do not remove protocol characters.

1340 CONTROL Sc,28;2,13,10! EOL sequence CR/LF (default).

1350 CONTROL Sc,31;1,17 ! Prompt DCl (default).

1360 CONTROL Sc¢,34;2 ! 7 bits per character.

1370 CONTROL Sc¢,35;0 ! 1 stop bit.

1380 CONTROL Sc¢,36;1 ! odd parity.

1390 CONTROL S¢,37;0 ! No inter-character gap (default).

1400 CONTROL Sc,39;4 ! Set Break to 4 character times (default).
1410 !

1420 ! Initiate connection to the telecommunications line.

1430 !

1440 CONTROL Sc,12;1

1450 !

The Datacomm Interface 14-63

1460
1470
1480

Tell the operator what is happening, then wait for connection to finish.

DISP "Waiting to connect"

1490 Conn: STATUS Sc,L2;Line_state

1500
1510
1520
1530
1540
1550
1560
15870
1680
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940

!
!
1

IF Line_state=L THEN Conn
DISP "Waiting for SDCD to become active"

Get the SDCD handshake started properly by waiting for the other end to
relinquish control of the line by activating SDCD.

Statck:STATUS Sc,7;Modem_lines

IF NOT BINAND(Modem_lines,16) THEN Statck
DISP "Connected"

Set up a key to gracefully disconnect the datacomm connection.
ON KEY O LABEL " Disconn" GOTO Disconnect
Interrupt on data received or modem line change (change in SDCD) .

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;1+8

Send a "READY" message to the remote to getthings started. This is
optional.

CONTROL Sc,8;7 ! Put down SRTS
OUTPUT Sc;"READY";CHR$ (L3) ;END
CONTROL Sc,8;15 ! Put up SRTS

The background idle loop simply waits for interrupts to happen.

Background: GOTO Background
!

1
!
!
1
1
]
]
!
!
!
!
!
]
1
1

ok o koo o kst s ok sk ok o ok sk ok o ok sk ok sk ok ok ks sk ok ok s ok sk sk ok sk sk o ks ok sk ok sk s ok ok o sk ok ok o K ok ok Kok 3k ok
DATACOMM INTERRUPT SERVICE ROUTINE

First, acknowledge interrupt by reading STATUS register 4.

Read all existing data in the buffer.

When SDCD becomes true, it indicates that the remote is through
transmitting. A LINPUT statement is provided to let the user enter a
line of data. The line is then sent to both the screen and the
datacomm card. To maintain control of the line, we disable SRTS

(Control Register 8), then reactivate it when we are through sending.

Finally, re-enable interrupts and exit the interrupt routine.

1950 Datacomm:STATUS Sc,4;Interrupt_bits

14-64 The Datacomm Interface

1960 Read: STATUS Sc,5;Rx_avail_bits

1970 IF Rx_avail_bits=0 THEN Chkmdm

1980 ENTER Sc USING "#,-K";A$

1890 PRINT USING “#,K";A$

2000 GOTO Read

2010 Chkmdm:STATUS Sc,7;Modem_lines

2020 IF BINAND(Modem_lines,L6) THEN

2030 CONTROL Sc,8;7! Put down SRTS

2040 LINPUT "Line to send...?",K$

2050 PRINT K$

2060 OUTPUT Sc;K$;CHR$(13) ;END

2070 CONTROL $c¢,8;15 ! Put up SRTS

2080 END IF

2090 ENABLE INTR Sc

2100 RETURN

2110 3 sk sk s ofe sk ok e sk sk ke ok sk o sk ke ok sk o sl ok o sk sk ok sk sk 3k ok ok s sk S oF ok o ok ok oK ok 3K K ok s ok sk s sk ok sk ok sk ok ok ok ok ok sk ok ok
2120 ! Key O was set up to disconnect from the datacomm line.
2130 !

2140 Disconnect:CONTROL Sc,12;0

2150 DISP "Disconnected"

2160 END

Automatic Answering Applications

Desktop computers are sometimes used in applications where they may have to be able to
automatically answer incoming calls from other computers by means of public (switched)
telephone lines. For instance, a desktop computer may be located at an unattended
remote site in a data gathering network where the network host computer periodically
calls the remote site for data updates. In other situations, the desktop computer may be
the host for several computers or terminals that originate the calls. Other applications
may require that two (or more) desktop computers be able to call each other in either
direction at will.

The Datacomm Interface 14-65

In automatic answering applications, the Ring Indicator (RI) modem line is used by the
desktop computer to recognize incoming calls from the host. This enables the desktop
computer to answer the call by connecting to the datacomm line. Usually, a continuously
running program on the unattended computer contains an ON INTR, statement set up
to monitor the RI modem signal. When RI is activated by the incoming call, normal
program flow is interrupted, and the connection is initiated. The desktop computer
then sets up the necessary datacomm and other program interrupts, and proceeds to
the program segment responsible for transferring data to the remote computer. The
following example illustrates the general technique and how it fits into overall program
structure:

1000 ! **
1010 ! = *
1020 ! * TERMINAL EMULATOR WITH AUTOMATIC ANSWERING CAPABILITY *
1030 ! * *
1040 ! * This program waits for the ring-indicator modem line to change *
1050 ! * (indicating an incoming datacomm call), then connects to the *
1060 ! * datacomm line, Use with Option 001 (male) modem cable. *
1070 ! =% *
1080 ! **
1090 !

1100 Sc=20 ! Select code of HP 98628 datacomm interface.

1110 DIM A$[1] ,K$[100]! Size of datacomm and keyboard strings.

1120 !

1130 ! Reset the card to disconnect, then select Async protocol.
1140 !

1150 CONTROL Sc,0;1

1160 CONTROL Sc,3;1

1170 Wait: STATUS Sc,38;All_sent

1180 IF NOT All_sent THEN Wait

1190 CONTROL Sc,0;1

1200 !

1210 ! Set up all the interface configuration options for Async protocol.
1220 !

1230 CONTROL Sc,14;0 ! Set Control Block mask off.

1240 CONTROL Sc,15;8 ! Interrupt when Ring Indicator line changes.
1250 CONTROL Sc,16;0 ! Disable connection timeout.

1260 CONTROL Sc,17;0 ! Disable No Activity timeout.

1270 CONTROL Sc,18;40 ! Lost Carrier400ms (default).

1280 CONTROL Sc,19;10 ! Transmit timeout 10 s (default).

1290 CONTROL Sc,20;7,7 ! Line speed: 300baud in both directions.
1300 CONTROL Sc,22;0 ! Disable protocol handshake.

1310 CONTROL Sc,23;1 ! Full duplex modem connection.

1320 CONTROL Sc,24;255 ! Remove no protocol characters.

1330 CONTROL Sc,28;2,13,10! EOL sequence CR/LF (default).

1340 CONTROL Sc¢,31;1,17! ! Prompt DC1 (default).

1350 CONTROL Sc,34;2 ! 7 bits per character.

1360 CONTROL Sc,35;0 ! 1 stop bit.

14-66 The Datacomm Interface

.' ‘\
i
o/

1370 CONTROL 8¢,36;1 ! 0dd parity.

1380 CONTROL S¢,37;0 ! No inter-character gap (default).

1390 CONTROL Sc,39;4 ! Set Break to 4 character times (default).
1400 !

1410 ! Wait for Ring Indicator modem line to change.

1420 !

1430 ON INTR Sc GOTO Ri_int

1440 ENABLE INTR Sc;8

1450 DISP "Waiting for ring to come in"

1460 Waitri:GOTO Waitri

1470 !

1480 ! When interrupt occurs, initiate connection to the datacomm line.
1490 !

1500 Ri_int:CONTROL Sc,12;1

1510 !

1520 ! Tell the operator what is happening, then wait for connection to finish.
1530 !

1540 DISP "Waiting to connect"

1550 Conn: STATUS Sc,L2;Line_state

1560 IF Line_state=1 THEN Conn

1570 DISP “Connected"

1580

1590 Set up key Oto gracefully disconnect from the datacomm line, then

1600 set up key 1 to send a break.

1610

1620 ON KEY O LABEL " Disconn" GOTO Disconnect

1630 ON KEY 1 LABEL * Break" GOSUB Break

1640 !

1650 1 Interrupt on data received. Also set up keyboard interrupts.
1660 !

1670 ON INTR Sc GOSUB Datacomm

1680 ENABLE INTR Sc;L

1690 ON KBD GOSUB Keyboard

1700 !

1710 ! The background idle loop simply waits for interrupts to happen.
1720 !

1730 Background: GOTO Background

1740 1 shookoisfototok shokokskok o s i ootttk s e shof o ok st stk e ok ook ook o s o o o ok o sk ok ok ok ok sk ok ok o b ook
1750 ! DATACOMM INTERRUPT SERVICE ROUTINE

1760 !

1770 ! First, acknowledge interrupt by reading STATUS register 4.

1780 !

1790 ! Re-enable interrupts, then read all existing data in the buffer.
1800 !

1810 ! When the buffer is empty, exit the service routine.

1820 !

1830 Datacomm:STATUS Sc,4;Interrupt_bits

1840 ENABLE INTR Sc

1850 Read: STATUS Sc,5;Rx_avail_bits

1860 IF Rx_avail_bits=0 THEN RETURN

The Datacomm Interface 14-67

1870 ENTER Sc USING "#,-K";A$

1880 PRINT USING "#,K";A$
1890 GOTO Read
1900 ***

!
1910 ! This keyboard interrupt service routine is similar to the other
1920 ! examples in this chapter. It sends ASCII keys to the remote, and
!
[

1930 accepts ENTER as a Carriage-Return. Other keys cause a BEEP.
1940 !

1950 Keyboard:K$=KBD$

1960 K: IF NOT LEN(K$) THEN RETURN ! Repeat until K$ is empty:
1970 Key=NUM(K$) ! Get key or prefix

1980 K$=K$ [2]

1990 IF Key=255 THEN

2000 Key=NUM(K$) ! If prefix, get next character
2010 K$=K$[2]

2020 IF Key=255 THEN ! If control-key prefix, get
2030 Key=NUM(K$) ! the third character

2040 K$=K$[2]

2050 END IF

2060 IF Key=NUM("E") THEN ! Check for ENTER key

2070 OUTPUT Sc;CHR$(L3);;END ! If so, send carriage return
2080 ELSE

2090 BEEP

2100 END IF

2110 ELSE

2120 OUTPUT Sc;CHR$(Key) ; ! ASCII key: just send it
2130 END IF

2140 GOTO K ! Repeat until K$ is empty
2150 1 seskokskokokokok okok sk sk ok sk ok sk ok s ok sk sk sk sk sk ok ok sk ok ok sk sk sk ok sk ok sk ok sk s ok ok sk sk K sk ok sk 3k sk 3 sk sk ok ok sk ke sk ok sk ok sk ok ok o ok sk 3k
2160 ! Key 1 was set up to send a break.

2170 !

2180 Break: CONTROL Sc,6;1

2190 RETURN

2200 !

2210 ! Key O was set up to disconnect the interface from the datacomm line.
2220 !

2230 Disconnect:CONTROL Sc,12;0

2240 DISP "Disconnected"

2250 END

14-68 The Datacomm Interface

Communication Between Desktop Computers

Two desktop computers can be connected, directly, or by use of modems. DC1/DC3
handshake protocol can be used conveniently to enable each computer to transmit at

will without risk of buffer or queue overruns. To ensure proper operation, the following
guidelines apply:

e Set up Control Register 22 with a value of 5. This allows both computers to act

either as host or terminal in any given situation, depending on which one initiates
the action.

o Set up Control Registers 26 and 27 for DC1 and DC3 respectively, or use two other
characters if necessary.

o Data to be transmitted must NOT contain any characters matching the contents
of Control Register 26 or 27. This prevents the receiving interface from confusing
data with control characters.

o If both computers attempt to transmit large amounts of data at the same time, a

lock-up condition may result where each side is waiting for the other to empty its
buffers.

The Datacomm Interface 14-69

Cable and Adapter Options and Functions

The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE cable

configurations, or it can be connected to various modems or adapters for other applica-
tions.

DTE and DCE Cable Options

DTE and DCE cable options are designed to simplify connecting two desktop computers
without the use of modems. The DTE cable (male RS-232 connector) is configured
to make the datacomm interface look like standard data terminal equipment when it
is connected to an RS-232C modem. The DCE cable (female RS-232 connector) is
configured so that it eliminates the need for modems in a direct connection. When you
connect two computers to each other in a direct non-modem connection, both datacomm
interfaces are functionally identical. The DCE cable acts as an adapter so that both
interfaces behave exactly as they would if they were connected to a pair of modems by
means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct connections, outputs
from one interface are connected to the corresponding inputs on the other interface.
Certain outputs on each interface are also connected to inputs on the same card by
“loop-back” connections in the DCE cable.

The schematic diagram in this section shows two datacomm interfaces directly connected
through a DTE-DCE cable pair. Note that the DCE cable wiring complements the DTE
cable so that output signals are properly routed to their respective destinations. Signal
names at the RS-232C connector interface are the same as the signal names for the DTE
interface. However, because the DCE cable adapts signal paths, the signal name at the
RS-232C connector does not necessarily match the signal name at the DCE interface.
Connector pin numbers are included in the diagram for your convenience.

14-70 The Datacomm Interface

{ /
\\-—f’/

RS-232C DTE (male) Cable Signal Identification Tables

Signal Signal | Interface | RS-232C
RS8-232C V.24 Pin# Pin# |Mnemonic| I/O | Function
AA 101 24 1 B ~ | Bafety Ground
BA 103 12 2 Out Transmitted
Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out | Request to Send
CB 108 44 5 CTS In | Clear to Send
CC 107 45 6 DSR In | Data Set Ready
AB 102 48 7 — — {Signal Ground
CF 109 46 8 DCD In | Data Carrier Detect
SCF (OCR2) | 122 47 12 SDCD In | Secondary DCD
DB 114 41 15 In DCE Transmit Timing
DD 115 43 17 In DCE Receive Timing
SCA (OCD2) | 120 15 19 SRTS Out | Secondary RTS
o, CD 108.1 14 20 DTR Out | Data Terminal Ready
" E (OCR1) | 125 9 22 RI In |Ring Indicator
CH (OCD1) 111 40 23 DRS Out | Data Rate Select
DA 113 7 24 Out Terminal Transmit
Timing

Optional Circuit Driver/Receiver Functions

Two optional drivers and receivers are used with the RS-232C cable options. Their
functions are as follows:

Drivers Receivers
Name | Function Name | Function
OCD1 |Data Rate Select OCRI1 |Ring Indicator
OCD2 | Secondary Request-to-send OCR2 | Secondary Data Carrier Detect

OCD3 | Not used
OCD4 | Not used

The Datacomm Interface 14-71

OCD2? is used for autodial pulsing in the HP 13265A Modem. None of the optional
drivers and receivers are used for Data Link and Current Loop Adapters.

98628 DTE RS-232C DCE 98628
INTERFACE *| CABLE SIGNALS CABLE INTERFACE *2
DATA 12 42 DATA
—-| > < €=————3 BA (PIN 2) >—%>>—|IN >
DATA 42 12 DATA
X BNy >— &, Mm]

—-|>RTS —~ 3 —> CA(PING) >— ¢ >——|°°° >
—<]L—<#——> CB(PIN5) >—
—<}L«—45——> CF (PIN 8) >—<r——'3> RS

TS
44, c

>3RE1(-:SONDARY: E|5 > SCA(PIN I9) 3 47; :SECONDsg;‘ >
< I%E(:%ONDARY: §47 > SCF(PIN 12)) |5; SECONDSTRSY
— >R coein zo»——T—)g [
45;: DSR| >
—<]RL—<<9———> CE(PIN 22) >__TM_) DTR
— e (PN 6) >
—<})?r§|$T|MING«4I —>DB(PINIS) F—'P’ﬁﬁb—
—< R e 00PN >4 Ty ocE]

48 48
SIGNAL <€ —>AB(PIN7) >—— SIGNAL
GROUND ROUND
24 24
SAFETY <& > AA(PIN 1) >———)>—_| SAFETY
GROUNDZE ’ L GROUND
DTE 7
XMIT TIMING € > DA (PIN 24) >——NOT USED
—l %DRS \T’—\‘m > CH(PIN 23) >——NOT USED
INTERFACE MALE FEMALE INTERFACE
REAR PANEL RS-232C RS-232C REAR PANEL

CONNECTOR CONNECTOR CONNECTOR CONNECTOR

Figure 14-7. DTE/DCE Interface cable wiring

14-72 The Datacomm Interface

RS-232C/CCITT V24:

The following table provides information about each data communications interface func-
tion. The pin assignments are also shown. Not all of the functions provided by RS-232C
are implemented. The functions denoted with an * are implemented.

RS-232C/CCITT V24!

RS-232C |CCITT V24 Signal Name

*Pin 1 101 PROTECTIVE GROUND. Electrical equipment frame and
ac power ground.

*Pin 2 103 TRANSMITTED DATA. Data originated by the terminal to
be transmitted via the sending modem.

*Pin 3 104 RECEIVED DATA. Data from the receiving modem in response
to analog signals transmitted from the sending modem.

*Pin 4 105 REQUEST TO SEND. Indicates to the sending modem that the
terminal is ready to transmit data.

*Pin 5 106 CLEAR TO SEND. Indicates to the terminal that its modem is
ready to transmit data.

*Pin 6 107 DATA SET READY. Indicates to the terminal that its modem
is not in a test mode and that modem power is ON.

*Pin 7 102 SIGNAL GROUND. Establishes common reference between the
modem and the terminal.

*Pin 8 109 DATA CARRIER DETECT. Indicates to the terminal that its
modem is receiving carrier signals from the sending modem.

Pin 9 Reserved for test.

Pin 10 Reserved for test.

Pin 11 Unassigned.

*Pin 12 122 SECONDARY DATA CARRIER DETECT. Indicates to the
terminal that its modem is receiving secondary carrier signals
from the sending modem.

Pin 13 121 SECONDARY CLEAR. TO SEND. Indicates to the terminal that
its modem is ready to transmit signals via the secondary channel.

Note that the signals on pins 2, 3, and 7 above are commonly used for 3 wire (no modem)

links.

! International Telephone and Telegraph Consultative Committee European standard.

The Datacomm Interface 14-73

RS-232C/CCITT V24 (Cont’d)

RS-232C |CCITT V24 Signal Name

Pin 14 118 SECONDARY TRANSMITTED DATA. Data from the terminal
to be transmitted by the sending modem’s channel.

*Pin 15 114 TRANSMITTER SIGNAL ELEMENT TIMING. Signal from
the modem to the transmitting terminal to provide signal
element timing information.

Pin 16 119 SECONDARY RECEIVED DATA. Data from the modem’s
secondary channel in response to analog signals transmitted from
the sending modem.

*Pin 17 115 RECEIVER SIGNAL ELEMENT TIMING. Signal to the
receiving terminal to provide signal element timing information.

Pin 18 Unassigned.

*Pin 19 120 SECONDARY REQUEST TO SEND. Indicates to the modem
that the sending terminal is ready to transmit data via
the secondary channel.

*Pin 20 108.2 DATA TERMINAL READY. Indicates to the modem that the
associated terminal is ready to receive and transmit data.

Pin 21 110 SIGNAL QUALITY DETECTOR. Signal from the modem
telling whether a defined error rate in the received data
has been exceeded.

*Pin 22 125 RING INDICATOR. Signal from the modem indicating that a
ringing signal is being received over the line.

*Pin 23 111 DATA SIGNAL RATE SELECTOR. Selects one of two signaling
rates in modems having two rates.

*Pin 24 113 TRANSMIT SIGNAL ELEMENT TIMING. Transmit clock
provided by the terminal.

Pin 25 Unassigned.

14-74 The Datacomm Interface

Summary of Datacomm
Status and Control Registers

Unless indicated otherwise, the Status Register returns the current value for a given
parameter; the Control Register sets a new value.

Register

Function

0
1 {Status only)
2 (Status only)

3

4 (Status only)
5

6

7 (Status only)
8

9 (Status only)
10 (Status only)
11 (Status only)
12

13

14

15

16

17

Control: Interface Reset; Status: Interface Card ID
Hardware Interrupt Status: 1=Enabled, 0=Disabled

Datacomm activity: O=inactive, 1=ENTER in process, 2=0QUTPUT in
process

Select Protocol: 1= Async, 2= Data Link

Cause of ON INTR program branch

Control: Terminate transmission; Status: Inbound queue status
Control: Send BREAK to remote; Status: 1=BREAK pending
Current modem receiver line states

Modem driver line states

Control block TYPE

Control block MODE

Available outbound queue space

Control: Connect/Disconnect line; Status: Line connection status
ON INTR mask

Control Block mask

Modem Line interrupt mask

Connection timeout limit

No Activity timeout limit

The Datacomm Interface 14-75

Register Function

18 Lost Carrier timeout limit
19 Transmit timeout limit
20 Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)
21 Async: Incoming (receiver) baud rate (line speed)
Data Link: GID address (0 thru 26 corresponds to “@” thru “Z7)
22 Async: Protocol handshake type
Data Link: DID address (0 thru 26 corresponds to “@” thru “Z”)
23 Hardware handshake type: ON/OFF, HALF/FULL duplex, Modem/
Non-modem
24 Async: Control Character mask
Data Link: Block Size limit
25 (Status only) Number of received errors since last interface reset
26 Async: First protocol character (ACK/DC1)

Data Link: NAKSs received since last interface reset

Registers 27-35, 37, and 39 are used with Async protocol only. They are not accessible
during Data Link operation.

Register Function

27 Second protocol handshake character (ENQ/DC3)

28 Number of characters in End-of-line sequence

29 First character in EOL sequence

30 Second character in EOL sequence

31 Number of characters in PROMPT sequence

32 First character in PROMPT sequence

33 Second character in PROMPT sequence

34 Data bits per character excluding start, stop and parity

35 Stop bits per character (0=1, 1=1.5, and 2=2 stop bits)

36 Parity sense: 0=NONE, 1=0DD, 2= EVEN, 3=ZERO, 4=ONE
Data Link: 0=NONE (HP 1000 host), 1=0DD (HP 3000 host)

37 Inter-character time gap in character times (Async only)

38 (Status only) Transmit queue status (1=empty)

39 BREAK time in character times (Async only)

14-76 The Datacomm Interface

HP 98628 Datacomm Interface
Status and Control Registers

General Notes: Control registers accept values in the range of zero through 255.

Status 0

Control 0

Status 1

Status 2

Status 3

Control 3

Some regi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>