
Table of Contents

Chapter 11: Keyboard Interfaces
Description of Keyboards ... 11-1

Types of Keyboards .. 11-1
How the Primary Keyboard Is Chosen . 11-3
Overview of Keyboard Features 11-4
ASCII and Non-ASCII Keys 11-4
The Shift and Control Keys . 11-5

Keyboard Operating Modes ... 11-9
The Caps Lock Mode . 11-9
The Print All Mode . 11-10
Disabling Scrolling . 11-10
Modifying the Repeat and Delay Intervals. 11-11

Entering Data from the Keyboard 11-13
Sending the EOI Signal . 11-15

Sending Data to the Keyboard .. 11-16
Sending Non-ASCII Keystrokes to the Keyboard 11-16

Second Byte of Non-ASCII Key Sequences (String) 11-18
Closure Keys ... 11-23

Softkeys . 11-25
Sensing Knob Rotation .. 11-26
Enhanced Keyboard Control ... 11-28

Trapping Keystrokes .. 11-29
Mouse Keys . 11-32
Softkeys and Knob Rotation 11-32
Disabling Interactive Keyboard 11-33

Locking Out the Keyboard ... 11-34
Keyboard Status and Control Registers . 11-36

.• \ u

I . r()"

(J

Keyboard Interfaces 11
As with displays, access to keyboards can be made with OUTPUT, ENTER, CON
TROL, and STATUS statements. This chapter describes I/0 programming techniques
for "interfacing" to the keyboard.

Description of Keyboards
This section introduces you to the different types of keyboards available with Series
200/300 computers, and provides an overview of their capabilities. Here are the topics
covered:

• Types of keyboards.

• How the "primary" keyboard is chosen (in machines with more than one keyboard
installed).

• Overview of keyboard features.

Types of Keyboards
There are essentially three types of keyboards available with Series 200/300 computers:

0

Figure 11-1. The HP 98203A Keyboard

Keyboard Interfaces 11-1

Figure 11-2. HP 98203B and 98203C Keyboards

~~~o~uu~o~uo~o~~ 
~~u~~D~~uDDDD~~u 
[;] EJ~DOEJ~uEJEJEJ[]EJ Ll~LJ 
~ EJ EJ ~w~ 

[':J~[]EJ 

~~EJO 
LJEJEJf1 
L:::J 0 u 

Figure 11-3. ITF Keyboards (HP 46020 and HP 46021) 

Series 200 Model 216 computers may have the smaller HP 98203A keyboard or optionally 
the larger 98203B keyboard. Model 220 computers have options which allow either the 
HP 98203A or HP 98203B Keyboards, or the HP 98203C or ITF Keyboards. Models 226 
and 236 computers have built-in 98203B keyboards. Models 217 and 237 and all Series 
300 computers have ITF keyboards as the standard, but you can also order the 98203C 
keyboard as an option. 

11-2 Keyboard Interfaces 

u 

u 



Complete descriptions of the BASIC definitions of each key of every keyboard is pro
vided in the "Keyboard Reference" chapter of the Installing, Using, and Maintaining the 
BASIC System manual. 

There is also a mode of operation, enabled and disabled via keyboard CONTROL register 
15 (or the KBD CMODE statement), in which ITF Keyboards can emulate an HP 98203B 
keyboard; see the "Keyboard Status and Control Register Summary" section at the end 
of this chapter for values and effects. Details of using this mode are provided in the 
"Porting to Series 300" chapter of BASIC Programming Techniques. 

How the Primary Keyboard Is Chosen 
Select code 21 is always assigned to the keyboard interface. However, Series 200/300 
computers can have more than one keyboard installed at one time. In such cases, the 
BASIC system has to choose which one will be the primary keyboard. Here is the order 
that the system chooses this keyboard: 

1. If there is an "internal" keyboard, then it IS chosen as the primary keyboard. 
Examples are as follows: 

a. The 98203 keyboard on a Series 200 computer. 

b. The HIL keyboard on a Series 200 or 300 computer2 . 

2. If there is an "external" HIL keyboard, and no "internal" keyboard interface, then 
it will be chosen as the primary keyboard. An example is: 

a. A keyboard connected to the HIL port of an HP 98700 Display Controller. 

Only one primary keyboard and one HIL interface will be recognized by the BASIC 
system. 

Note that the primary keyboard determines the keyboard language and which softkey 
labels are chosen. Thus, if two keyboards with different languages are connected to 
the computer (and recognized by BASIC), then the language and softkey labels of the 
primary keyboard are used. This effect may cause some keys on the secondary keyboard 
to produce incorrect characters. 

Re-Configuring HIL Devices 
If you add or remove HIL devices while the BASIC system is in the computer, you must 
re-configure in order for BASIC to properly recognize all devices. Executing SCRATCH 
A initiates this re-configuration. 

1 BASIC provides the KBD function which returns a value of 2. 
2 If two keyboards are connected to the same HIL interface, the one closest to the computer is chosen. 

Keyboard Interfaces 11-3 



Overview of Keyboard Features 
Series 200/300 computer keyboards are controlled by their own separate processors, which 
allows many more capabilities than most other desktop-computer keyboards. These 
keyboards are devices which reside at select code 21 . Here is a brief list of keyboard 
capabilities: 

• You can use the ENTER statement to enter data from the keyboard, and thus 
simulate devices for debugging purposes. 

• You can monitor keys and the "knob" (rotary pulse generator), if present, and 
enable them to interrupt BASIC programs; the BASIC program can contain a 
segment of code to read and use this input. 

• You can OUTPUT commands to the keyboard, simulating an operator entering 
them. You can also OUTPUT data to the keyboard whiCh the operator can then 
edit and send back. 

Note, however, that the INTR and TIMEOUT event-initiated branches cannot be sensed 
by the keyboard. 

ASCII and Non-ASCII Keys 
The keys of the Series 200/300 computer keyboards can be generally grouped by function 
into the ASCII and non-ASCII keys. The ASCII (or alphanumeric) keys all produce an 
ASCII character when pressed, and include the character entry and numeric keys. The 
non-ASCII (or non-alphanumeric) keys do not produce characters but initiate specific 
actions when pressed; the I Return I, I Enter I and I Back space I keys are non-ASCII keys for this 
reason. Non-ASCII keys also include all program control, editing, cursor control, and 
system control keys. 

11-4 Keyboard Interfaces 

u 

\ 

0 



The Shift and Control Keys 
The I Shift I and I CTRL I keys (and!'""' E-x-te-nd---,ch-ar--.1 key on ITF Keyboards) are not really either 
type of key because they cannot cause action on their own; instead, they are used only 
with the other types of keys. Pressing the I Shift I key with another key qualifies the 
other keypress, allowing the other key to have a second meaning. For instance, in the 
"Caps lock off" mode, pressing an alphabetic ASCII key generates a lowercase alphabetic 
character. Pressing the I Shift I key simultaneously with an alphabetic key in the "Caps 
lock off" mode generates an uppercase character. The I Shift I key is used similarly with 
the non-ASCII keys, allowing many of those keys to have a second function. 

The I Extend char I key, when present, is held down while you press other keys from the 
main typewriter section to generate the rest of the available 256 ASCII characters. It 
also has a special use with the softkeys when in keyboard compatibility mode, see the 
chapter entitled "Porting to Series 300" found in the BASIC Programming Techniques 
manual. 

The I CTRL I (Control) key is also used to further qualify both ASCII and non-ASCII 
keypresses. Pressing the I CTRL I key simultaneously with an ASCII key generates an 
ASCII control character in the display, and is often faster than using the I ANY CHAR I key. 
The following table shows how to generate control characters by simultaneously pressing 
the I CTRL I key and a key as listed. This is particularly useful when you need to include 
a control character in a string. 

Keyboard Interfaces 11-5 



Table 11-1. Generating Control Characters with CTRL and ASCII Keys 

Key ASCII Character's Key(s) Pressed Character 
Code Character Description with CTRL on CRT 

0 NUL Null (space bar) ~ 
1 SOH Start of Header 0 ~ 
2 STX Start of Text [[] flx 
3 ETX End of Text []] Ex 
4 EOT End of Transmission []] Er 
5 ENQ Enquiry [I] ~ 
6 ACK Acknowledgement [£] "K 
7 BEL Bell @] J.:J. 
8 BS Backspace []] Bs 
g HT Horizontal Tab OJ Fir 
10 LF Line-feed Q] Ir-
11 VT Vertical Tab [R] VT 

12 FF Form-feed ITJ FF 

13 CR Carriage-return em '1t 
14 so Shift Out [ill so 

15 SI Shift In []] SI 

16 DLE Data Link Escape m It 
17 DC1 Device Control [Q] D1 

18 DC2 Device Control []] D2 

19 DC3 Device Control []] D3 

20 DC4 Device Control ITJ D4 

21 NAK Neg. Acknowledgement []] \ 
22 SYN Synchronous Idle [YJ Sy 

23 ETB End of Text Block [RJ \ 
24 CAN Cancel []] s, 

11-6 Keyboard Interfaces 



Table 11-1. Generating Control Characters with CTRL and ASCII Keys (continued} 

Key ASCII Character's Key(s) Pressed Character 
Code Character Description with CTRL on CRT 

25 EM End of Media ITJ EM 
26 SUB Substitute []] Sa 
27 ESC Escape rn Et 
28 FS File Separator 1 Shift ~rn Fs 
29 GS Group Separator rn Gs 
30 RS Record Separator 0 !\; 
31 us Unit Separator I Shift ~[ZJ us 

Pressing the I ESC I key on the ITF keyboard is an alternative to I CTRL I [I]. The keys 
listed in the preceding table are not the only ways to generate control characters, but 
are generally the simplest and most easily memorized method. For instance, to generate 
a line-feed character, press the I CTRL I and the Q] keys simultaneously. 

Pressing the I CTRL I key with a non-ASCII key is used to generate and store non-ASCII 
keystrokes within strings and is further discussed in "Outputs to the Keyboard". 

Keyboard Interfaces 11-7 



On an ITF Keyboard, the display enhancement control codes can be generated by press
ing I CTRL I, I Extend char I, and a key from the following table simultaneously. 

Table 11-2. Generating Control Characters with CTRL, Extend char, and ASCII Keys 

Key Character's Key(s) Pressed with Character 
Code Description CTRL and Extend char on CRT 

128 Clear enhancements OJ <t. 
129 Inverse video []] 1V 
130 Blinking [I] BG 

131 Inverse blinking ITJ lB 
132 Underline m i 
133 Underline and Inverse []] ~ 
134 Underline and Blinking [[] ~ 
135 Underline, Inverse, []] ~ 

and Blinking 

136 White [Q] ~ 
137 Red lliJ Rn 
138 Yellow [I] YE 

139 Green []] ~ 
140 Cyan [I] <;. 
141 Blue IT] 1\J 
142 Magenta [gJ ~>\; 

143 Black ITJ ~ 

11-8 Keyboard Interfaces 

I \ 

0 



Keyboard Operating Modes 
The keyboard has three operating modes which can be changed within a program with the 
CONTROL statement. This section describes changing these modes from the program. 

The Caps Lock Mode 
Pressing the~ key (or [,_,c,-A-=-Ps=--c-LO.,-c=K.,...,[ key on the HP 98203 keyboard) toggles the key
board between the "Caps lock on" and "Caps lock off" modes. In the "Caps lock on" 
mode, pressing any alphabetic key causes an uppercase letter to be displayed on the 
screen; in the "Caps lock off" mode, these keys generate lowercase letters. This mode 
can be changed with the CONTROL statement and sensed with the STATUS statement. 
Writing any non-zero numeric value into register 0 (of interface select code 2) sets the 
caps lock mode on; writing a zero into this register sets the mode off. 

100 STATUS 2;Caps_lock ! Check mode. 
110 ! 
120 PRINT "Initially, "; 
130 IF Caps_lock=1 THEN 
140 Mode$="0N" 
150 ELSE 
160 Mode$="0FF" 
170 END IF 
180 
190 PRINT "CAPS LOCK was "&Mode$&CHR$(10) 
200 BEEP 
210 WAIT 1 
220 
230 CONTROL 2;1 
240 PRINT "CAPS LOCK now ON" 
250 PRINT "Type in a few characters"&CHR$(10) 
260 WAIT 4 
270 
280 CONTROL 2;0 
290 PRINT "CAPS LOCK now OFF" 
300 PRINT 
310 BEEP 
320 END 

Skip line. 

Keyboard Interfaces 11-9 



The Print All Mode 
Pressing the I PRT ALL I key (or the softkey in the System menu) toggles the "Print all" 
mode "on" and "off". The "Print all" mode can also be sensed and changed by reading 
and writing to STATUS register 1 and CONTROL register 1 (of interface select code 2). 
Writing a non-zero numeric value into this register sets the "Print all" mode on; writing 
a value of zero turns this mode "off". The following statement turns the "Print all" 
mode off. 

CONTROL 2,1;0 

Disabling Scrolling 
If there are results you do not want to accidentally scroll off the screen after or while 
executing a program, keyboard CONTROL register 16 can be used to prevent this from 
happening. The "scrolling keys" which keyboard register 16 affect are: 

• 0 and I Shift ~0 

• [!] and I Shift ~[!] 

• I Prev I and I Shift H Prev I (ITF keyboard only) 

• I Next I and I Shift H Next I (ITF keyboard only) 

• m and I Shift ~m (ITF keyboard only) 

including implied 0 and[!] arrows from knobs and mice, OUTPUT KBD of these keys, 
and typing-aid softkey definitions which contain these keycodes. 

To disable the keys mentioned above, execute the following statement: 

CONTROL KBD,16;1 

You can re-enable these keys by writing a 0 (the default state) into this register. 

CONTROL KBD,16;0 

The "scrolling keys" are also re-enabled when you: 

• power-up your computer, 

• press I Shift H Reset I (I SHIFT H RESET I on HP 98203 keyboards), 

• execute either the SCRATCH or SCRATCH A statement. 

11-10 Keyboard Interfaces 

\ 
' l 
\...-/ 



If you are not sure of the status of the scrolling keys previously mentioned, you can 
execute the following statement in a program: 

100 STATUS KBD,16;A 
110 END 

The results returned will be a 1 if the keys are disabled and a 0 if they are enabled. 

Note that keyboard register 16 has no effect when you are in the EDIT mode. 

Also, programmatic scrolling will still occur as a result of executing TABXY or CON
TROL CRT,l; ... or printing more lines than fit in the OUTPUT Area. 

Modifying the Repeat and Delay Intervals 
The keyboard has an auto-repeat feature which allows you to hold a key down to repeat 
its function rather than pressing and releasing it repeatedly. Holding a key down will 
cause it to be repeated every 80 milliseconds for as long as it is held down, resulting in a 
repeat rate of approximately 12.5 characters per second. However, you may have noticed 
that the initial delay between the key being pressed and the key being repeated is longer 
than successive delays between repeats; the initial delay before a key is repeated for the 
first time is 700 milliseconds (7 /10 second). The following plot of a key's default repeat 
function shows these two intervals. 

Initial 1st 2nd 3rd 4th 
Repeat Repeat Repeat Repeat 

700ms + + + + I 80ms I 80ms I 80ms I 
A 

y 
) \.. y 

lnital delay Repeat intervals 

These intervals can be changed from the program, if desired, by writing different values 
into CONTROL registers 3 and 4 (of interface select code 2). Register 3 contains the 
parameter that controls the auto-repeat interval, and register 4 contains the parameter 
that controls the initial delay. The values of these parameters, multiplied by 10, give 
the respective intervals in milliseconds with the following exception; if register 3 is set to 
256, the auto-repeat is disabled. 

Keyboard Interfaces 11-11 



The following program sets up softkeys 1, 4, 6, 8 to change these parameters. Run the 
program and experiment with these intervals to optimize them for your own preferences 
and needs. 

NOTE 

Softkey labels (on the key caps) are 1JIJ through [][] on ITF key
boards. In default mode, the correspondence between key labels 
(IJIJ, [ill, etc.) and KEY numbers (in ON KEY and with typing
aid softkeys) is IJIJ=KEY 1, @]=KEY 2, etc. You can change this 
correspondence by writing a 1 into KBD CONTROL register 14; 
the new correspondence will be IJIJ=KEY 0, @]=KEY 1, etc. 

100 ON KEY 1 LABEL "Faster" GOSUB Decr_interval 
110 ON KEY 4 LABEL "Slower" GOSUB Incr_interval 
120 ON KEY 6 LABEL "Sooner" GOSUB Decr_delay 
130 ON KEY 8 LABEL "Later" GOSUB Incr_delay 
140 
150 Interval=80 ! Defaults. 
160 Delay=700 
170 ! 
180 DISP "Interval=";Interval;" Delay= ";Delay 
190 GOTO 180 ! Loop. 
200 ! 
210 Incr_interval:Interval=Interval+10*(Interval<2560) 
220 CONTROL 2,3;Interval/10 
230 RETURN 
240 ! 
250 Decr_interval:Interval=Interval-10*(Interval<>10) 
260 CONTROL 2,3;Interval/10 
270 RETURN 
280 ! 
290 Incr_delay:Delay=Delay+10*(Delay<2560) 
300 CONTROL 2,4;Delay/10 
310 RETURN 
320 ! 
330 Decr_delay:Delay=Delay-10*(Delay>10) 
340 CONTROL 2,4;Delay/10 
350 RETURN 
360 
370 END 

11-12 Keyboard Interfaces 

' \ , I 
~ 



Entering Data from the Keyboard 
When the keyboard is specified as the source of data in an ENTER statement, the 
computer executes the process just as if entering data from any other device. The 
computer signals to the keyboard that the keyboard is to be the sender of data. The 
keyboard in turn signals that it is not ready to send data and waits for you to type in 
and edit the desired data. 

The characters you type in appear in the keyboard area of the display, but they are not 
automatically sent to the computer. As long as you can see the characters, you can edit 
them before sending them to the computer, just as during an INPUT statement. Avail
able characters include all 256 characters that can be generated either with keystrokes 
or with the I ANY CHAR I key (softkey [ill in the System menu of the ITF keyboard). 

Pressing either the: 

• I Return I key (I ENTER I key on the HP 98203 keyboard), 

• I Enter I keys on the ITF Keyboard, 

• ~key (System softkey [ill on the ITF keyboard), 
• I CONTINUE 1 key (on an ITF Keyboard System softkey @],and User 1 and 2 softkey 

@] - these User menu softkeys require the KBD binary) 

signals the keyboard that the data is to be sent to the computer. The data is then sent 
byte-serially according to an agreed-upon handshake convention. The computer enters 
the data in byte-serial fashion and processes it according to the specified variable(s), 
type of ENTER statement, and image (if it is an ENTER USING statement). 

Keyboard Interfaces 11-13 



The differences in pressing the keys or softkeys in the above paragraph are as follows. 
Keep in mind that the ENTER statement is still being executed as long as the "?" 
appears in the lower right corner of the display. 

I Return I 
or 

I ENTER I 
or 

I STEP I 

I CONTINUE I 

All of the characters displayed in the keyboard area are sent to the 
computer, followed by carriage-return and line-feed characters. These 
last two characters usually terminate entry into the current item in the 
ENTER statement. In addition, the I STEP I key causes the computer 
to remain in the single-step mode after the ENTER statement has 
been completely executed. 

All of the characters displayed in the keyboard area are sent to the 
computer for processing; no trailing carriage-return and line-feed char
acters are sent. The I CONTINUE I key is pressed if more characters are 
to be entered into the current variable in the destination list of the 
ENTER statement. 

Type in and run the following program. Experiment with how entry into each variable 
item is terminated by using the different keys (i.e. the I CONTINUE I key versus I Return I, 
I ENTER I, or I STEP I keys). Pressing the I Return I, I ENTER I, or I STEP I key terminates entry 
into the current variable, while pressing the I CONTINUE I key allows additional characters 
to be entered into the current variable. 

100 DIM String_array$(1:3) [100] 
110 ASSIGN ~Device_simulate TO 2 
120 ! 
130 ENTER ~Device_simulate;String_array$(*) 
140 
150 OUTPUT 1;String_array$(*) 
160 
170 END 

This use of the keyboard is very powerful when tracing the cause of an error in an ENTER 
operation. With this tool, you can "debug" or verify any type of ENTER statement, 
including ENTER statements whose source is intended to be a device on the HP-IB 
interface. The next section describes this topic. 

11-14 Keyboard Interfaces 

I ) 
"--" 



Sending the EOI Signal 
The EOI signal is implemented on the HP-IB interface. This line ordinarily signals to 
the computer that the data byte being received is the last byte of the item; thus, it is 
either an item terminator or a terminating condition for the ENTER statement1 . 

The EOI signal can be simulated from the keyboard when this feature is properly enabled. 
CONTROL register 12 of interface select code 2 controls this feature; the following 
example statement shows how to enable this feature. 

CONTROL 2,12;1 

To simulate the EOI signal with a character, the I CTRL I and CIJ (or I Shift I GJ on the 
numeric keypad) keys are pressed simultaneously before the character to be accompanied 
with EOI is typed. For instance, if the characters "DATA" are to be entered and the 
EOI is to accompany the last "A", the following key sequence should be pressed before 
pressing the I Return I, I ENTER I, I STEP I, or ! CONTINUE I key (or softkey). 

The same result can be obtained by placing an ENQ character (ASCII control character 
CHR$(5), Eq) in front of the character to be accompanied by the EOI signal (see the 
previous section for further details). 

1 See the chapter "Entering Data" for a further explanation of the EO! signal's effects during ENTER. 

Keyboard Interfaces 11-15 



Sending Data to the Keyboard 
Characters output to the keyboard are indistinguishable from characters typed in from 
the keyboard. All characters output to the keyboard, including control characters, are 
displayed in the keyboard area. The following program outputs the BEEP statement to 
the keyboard. Read on to see how it works. 

100 OUTPUT 2; "BEEP"; ! No CR/LF 
110 
120 END 

Sending Non-ASCII Keystrokes to the Keyboard 
The. preceding program sent the characters BEEP to the keyboard, but the statement was 
not executed. Pressing the I ENTER I or I Return I key after the program has ended executes 
the statement. Modify the program to "press" the I ENTER I or I Return I key by typing 
in I CTRL I I ENTER I (or I Return I) following the BEEP. Sending this special two-character 
sequence to the keyboard is equivalent to the operator pressing the I ENTER I or I Return I 
key. Thus, in general, to store a non-ASCII "keystroke" within a program line, press the 
I CTRL I key while simultaneously pressing the desired non-ASCII key. 

Since CHR$(255) does not generate the same character on most printers as it does on the 
computer's display, it is recommended that some explicit means of documenting these 
character sequences be employed. For instance, string variables can be defined to contain 
these sequences; then when the program is listed on an external printer, it will be much 
easier to determine which non-typing keys are being represented. The I CTRL I key is still 
used with the non-ASCII key to generate the two-character sequence, but the special 
character should be changed to a CHR$(255). 

100 
110 
120 
130 
140 
150 

Enter_key$=CHR$(255)&"E" 
Printall_key$=CHR$(255)&"A" 

OUTPUT 2;Printall_key$; Use 
OUTPUT 2;"BEEP"&Enter_key$; 
END 

11-16 Keyboard Interfaces 

n.n . to suppress CR/LF. 

! 

\.J 



NOTE 
Since this type of output can be used to send immediately exe
cuted commands (such as SCRATCH A), it is important that you use 
care when outputting commands to the keyboard and when editing 
statements and commands sent to the keyboard. Undesirable re
sults may occur if the wrong non-ASCII key sequences are output 
by a program. 

The table in the next section shows the resultant characters that follow CHR$(255) in 
the two-character sequences generated by these keystrokes. The table can be used to look 
up which non-ASCII key is to be output if the second character is known or vice-versa. 

Keyboard Interfaces 11-17 



Second Byte of Non-ASCII Key Sequences (String) 
Holding the CTRL key and pressing a non-ASCII key generates a two-character sequence 
on the CRT. The first character is a "inverse-video" K. This table can be used to look 
up the key that corresponds to the second character of the sequence. (On the small 
HP 98203A keyboard some non-ASCII keys generate ASCII characters when they are 
pressed while holding the CTRL key down.) 

Normally on an ITF keyboard, ill] corresponds to ON KEY 1 ... , fJ?J corresponds to ON 
KEY 2 ... , etc. However, you can use CONTROL KBD,14;1 to change this relationship 
so that ill] corresponds to ON KEY 0 ... , fJ?J corresponds to ON KEY 1, etc. 

With 98203 keyboard compatibility (KBD CMODE ON), the ITF keyboard softkeys ill] 
thru [E), the I Menu I and I System I keys, and @] thru [][] correspond to 98203 softkeys 
IT[) thru [E[J, respectively. See "Porting to Series 300" chapter of BASIC Programming 
Techniques for further information about this mode. 

Table 11-3. Second Byte of Non-ASCII Key Sequences {String) 

Character Value ITF Key 98203 Key Closure Key 

space 32 1 1 

! 33 I Shift ~[§!2£] I SHIFT H CLR 110 I Yes 
II 34 1 1 

# 35 I Shift H Clear line I I CLR LN I 
$ 36 System@] I ANY CHAR I Yes 

% 37 I Clear line I I CLR+END I Yes 

& 38 I Select 15 3,5 

, 39 I Prev I 3 Yes 

( 40 I Shift H Tab I I SHIFT H TAB I 
) 41 I Tab I I TAB I 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 
error is not reported. Instead, the system will perform as much of the indicated action as possible. 

5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 

11-18 Keyboard Interfaces 

\ 
~? 



Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue) 

Character Value ITF Key 98203 Key Closure Key 

* 42 I Insert line I )INS LN I Yes 
+ 43 I Insert char I )INS CHR I 

44 I Next I 3 Yes . 
- 45 I Delete char I I DEL CHR I 

46 3 3 

I 47 I Delete line I I DEL LN I Yes 
0 48 User 3 [![) CEQ] Yes 

1 49 User 1 [ill [ill Yes 

2 50 User 1 @]2 1m Yes 

3 51 User l @]2 [ill Yes 

4 52 User 1 @]2 [ill Yes 

5 53 User 1 ffi]2 @] Yes 

6 54 User 1 [][]2 lliJ Yes 

7 55 User 1 @]2 em Yes 

8 56 User 1 [![)2 [ill Yes 

9 57 User 2 []]2 [ill Yes 

: 58 System I Shift ~[][]2 • 5 3 

; 59 System I Shift ~@]2 • 5 3 

< 60 GJ G 
= 61 Result4 I RESULT I 
> 62 [8 EJ 
? 63 Recall4 I RECALL I 
® 64 I Shift ~Recall4 I SHIFT H RECALL I 

2 System and user refer to the softkey menu which is currently active on an ITF keyboard. 
3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 

error Is not reported. Instead, the system will perform as much of the indicated action as possible. 
4 This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note 

that these keys have no labels on their keycaps; however, they do have labels on the BASIC keyboard 
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard, 
read the manual entitled Installing, Using, and Maintaining the BASIC System. 

5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 

Keyboard Interfaces 11-19 



Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue) 

Character Value ITF Key 98203 Key Closure Key 
A 65 System [E) I PRT ALL I Yes 
B 66 I Back space ) I BACK SPACE I 
c 67 System OIJ I CONTINUE I 
D 68 User 1 [ill I EDIT I 
E 69 I Enter) I ENTER I Yes 

F 70 System~ I DISPLAY FCTNS I Yes 

G 71 I Shift ~G I SHIFT~G 
H 72 I Shift ~8] I SHIFT~G 
I 73 I Break) I CLR 1/0 I 
J 74 (Katakana) 3 (Katakana) 3 

K 75 I Clear display I I CLR SCR I Yes 

L 76 Graphics 4 I GRAPHICS I Yes 

M 77 Alpha 4 )ALPHA) Yes 

N 78 Dump Graph 4 I DUMP GRAPHICS I Yes 

0 79 Dump Alpha 4 I DUMP ALPHA I Yes 
p 80 ~ )PAUSE) Yes 

Q 81 1 1 

R 82 System@] )RUN) Yes 

s 83 System [ill I STEP I Yes 

T 84 I Shift~[!] )SHIFT~QJ Yes 

u 85 ~ I CAPS LOCK I Yes 

v 86 [!] m Yes 

w 87 I Shift ~0 )SHIFT~QJ Yes 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 
error Is not reported. Instead, the system will perform as much of the indicated action as possible. 

4 This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note 
that these keys have no labels on their keycaps; however, they do have labels on the BASIC keyboard 
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard, 
read the manual entitled Installing, Using, and Maintaining the BASIC System. 

11-20 Keyboard Interfaces 

: 1 ""-") 



Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue) 

Character Value ITF Key 98203 Key Closure Key 
X 88 3 

I EXECUTE I Yes 
y 89 (Roman) 3 (Roman) 3 Yes 
z 90 1 1 

[ 91 System [ill I CLR TAB I 
\ 92 w 3 Yes 
] 93 System I Shift ~@] I SET TAB I 
- 94 IT] OJ Yes 

95 System 1 Shift ~W 3 Yes -
< 96 1 1 

a 97 User 2@] I SHIFT H~ill Yes 

b 98 User 2@] I SHIFT HID Yes 

c 99 User 2 [ill ISHIFTH:g) Yes 

d 100 User 2 (][] I SHIFT ~Dill Yes 

e 101 User 2 (][] I SHIFT H~ill Yes 

f 102 User 2@] I SHIFT~@] Yes 

g 103 User 2 [][] I SHIFT ~[ill Yes 

h 104 User 3 [ill I SHIFT H~ill Yes 

i 105 User 3@] I SHIFT ~[ill Yes 

j 106 User 3@] ISHIFn@J Yes 

k 107 User 3 [ill 3 Yes 

1 108 User 3@] 3 Yes 

m 109 User 3 (][] 3 Yes 

n 110 User 3@] 3 Yes 

0 111 System I Shift ~[ITJ2 '5 3 

p 112 System I Shift ~@]2 ' 5 3 

q 113 System I Shift ~@]2 ' 5 3 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

2 System and user refer to the softkey menu which is currently active on an ITF keyboard. 
3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 

error Is not reported. Instead, the system will perform as much of the indicated action as possible. 
5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 

Keyboard Interfaces 11-21 



Table 11-3. Second Byte of Non-ASCII Key Sequences (String) (continue) 

Character Value ITF Key 98203 Key Closure Key 
r 114 System I Shift ~[ill2 • 5 3 

s 115 User 1 I Shift ~[ill2 • 5 • 6 3 

t 116 User 1 I Shift ~@]2 • 5 •6 3 

u 117 User 1 I Shift ~@]2 • 5 •6 3 

v 118 User 1 I Shift ~[ill2 • 5 3 

w 119 User 1 I Shift ~[][)2 • 5 3 

X 120 User 1 I Shift ~~2 •5 3 

y 121 User 1 I Shift ~[ill2 •5 3 

z 122 User 1 I Shift ~[][]2 •5 3 

{ 123 I System I 3 Yes 
I 124 I Menu I 3 Yes 
} 125 I User I 3 Yes 
- 126 I Shift H Menu I 3 Yes 

I 127 1 1 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

2 System and user refer to the softkey menu which is currently active on an ITF keyboard. 
3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an error Is not reported. Instead, the system will perform as much of the indicated action as possible. 
5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 
6 These keys are also generated by the HP 46060A (HP Mouse) buttons unless GRAPHICS INPUT IS is 

using them. 

11-22 Keyboard Interfaces 

. \ 
·~ 

.. \ 
. ) 
\._; 



Closure Keys 
Several of the non-ASCII keys are known as "closure keys" 1 . Closure keys are so named 
because they close (block) further keyboard input until processed. The computer can 
only process two closure keys between program lines during a running program. If more 
than two appear in the data output to the keyboard, the extra keys will be deferred until 
the next end-of-line is encountered and two more closure keys can be processed. 

As an example, the following program sends four closure keys to the keyboard with a 
single OUTPUT statement. Only the first two closure keys are processed after this 
OUTPUT statement (but before DISP "Next BASIC line" is executed). The third and 
fourth closure keys are processed after DISP "Next BASIC line" is executed (but before 
DISP "2nd BASIC line" is executed). This accounts for the following display after running 
the program, since the "Printall" command was not executed until after DISP "Next BASIC 
line" was executed. 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 

Define non-ASCII 
En$=CHR$(255)&"E" 
Up$=CHR$(255)&"-" 
Prt$=CHR$(255)&"A" 

keys. 
ENTER or Return key. 
Up arrow key. 
PRT ALL key or softkey. 

CONTROL 2,1;0 Turn PRINTALL off. 
CONTROL 1,1;1 Begin on top screen line. 
OUTPUT 1; "Line 1" 
OUTPUT 1; "Line 2" 
OUTPUT 1; "Line 3" 
WAIT 1 

! Now send statement with 4 closure keys. 
OUTPUT 2; "DISP '"'Hello"""; En$; Up$; Up$; Prt$; 
DISP "Next BASIC line" PRT ALL still off. 
DISP "2nd BASIC line" ! Now PRT ALL is on. 

END 

1 See the table on the preceding pages to determine which keys are "closure keys". 

Keyboard Interfaces 11-23 



Display After Running Program 

Line 3 
2nd BASIC line 

2nd BASIC line 

Printall on 

In addition, if the last character sent to the keyboard is a CHR$(255), the next character 
typed in by the user will give unexpected results. Again, it is important to exercise care 
when using this feature. 

11-24 Keyboard Interfaces 

. I 
\~ 

i ) 
\......_,; 

'\J 



Softkeys 
The keys on the upper-left portion of the keyboard are called "softkeys." These keys can 
be defined by BASIC programs to initiate program branches. In addition, these keys can 
be defined as typing-aid keys, which produce keystrokes just as if you had typed them 
in yourself. 

Brief examples of using the softkeys have already been presented in the "Interface Events" 
chapter, and in the section found earlier this chapter entitled "Modifying the Repeat and 
Delay Intervals". Typing-aid softkeys are discussed in the chapter "Introduction to the 
System" found in the Installing, Using, and Maintaining the BASIC System manual. 
Softkeys are also briefly described in the "Program Structure and Flow" and "Commu
nicating with the Operator" chapters of the BASIC Programming Techniques manual. 

Keyboard Interfaces 11-25 



Sensing Knob Rotation 
Your computer system may, or may not, have a knob (built-in, or HP 46083) or a mouse (HP 46060). In any event, the programs below are illustrative of how knob and mouse movements can be trapped in a program. It is assumed that you will use the techniques and apply them to your programming situation. 

The "event" of the knob (rotary pulse generator) being rotated can be sensed by a program. The branch location, interval at which the computer interrogates the knob for the occurrence of rotation, and branch priority are set up with a statement such as the 
following: 

ON KNOB Interval,Priority CALL Knob_turned 

In addition to the program being able to sense rotations of the knob, it can also determine how many pulses the knob has produced and whether or not either or both of the I CTRL I or I Shift I (I SHIFT I on the HP 98203 keyboard) keys are being pressed1. This ability to "qualify" the use of the knob allows it to be used for up to four different purposes. The following program shows how to set up the branch, how to determine the number of 
pulses, and how to determine the direction of rotation. 

100 ON KNOB .25 GOSUB Knob ! Check knob every 1/4 sec. 
110 
120 FOR Iteration=! TO 400 
130 WAIT .2 
140 DISP Iteration 
150 NEXT Iteration 
160 
170 STOP 
180 
190 Knob: 
200 
201 
210 
220 
230 
240 
250 
260 
270 

STATUS 2,10;Key_with_knob 
PRINT KNOBX; " pulses " ; KNOBY; " pulses " ; 
DISP TAB(40), "Status = ";Key_with_knob 
IF Key_with_knob=O THEN 

PRINT 
ELSE 

IF Key_with_knob=l THEN PRINT "with SHIFT" 
IF Key_with_knob=2 THEN PRINT "with CTRL" 
IF Key_with_knob=3 THEN PRINT "with SHIFT and CTRL" 

END IF 
280 RETURN 
290 END 

1 HIL devices (this includes the HP 98203C Keyboard) do not set the "CTRL" bit, although they do set the "SHIFT" bit (if the last record processed was "y-axis" data). Consequently, you should not depend on the value of keyboard status register 10. 

11-26 Keyboard Interfaces 

i ) 
.'--" 



If any pulses have occurred since the last branch, the specified branch will be initiated. 

One full rotation of the knob produces 120 pulses. The service routine calls the KNOBX 
and KNOBY functions to determine how many pulses (only net rotation) have been gen
erated since the last call to this function. If the number is positive, a net clockwise rota
tion has occurred; a negative number signifies that a net counterclockwise rotation has 
occurred. Since the pulse counter (on built-in knobs) can only sense +128 to -127 pulses 
during the specified interval1, the interval parameter shoul.d be chosen small enough to 
interrogate the knob before the pulse counter reaches one of these values. Experiment 
with this parameter to adjust it for your particular application. 

The next program illustrates the use of an ON KNOB with a mouse (HP 46060). Note 
changes in iteration as you move the mouse. 

10 COM /Knob/ Kx,Ky 
20 Kx=O 
30 Ky=O 
40 ON KNOB 1 CALL Knob 
50 PRINT TABXY(1,1) ; 11 

II 

60 FOR I=1 TO 1.E+6 
70 DISP I 
80 PRINT TABXY(1,2) ;Kx;Ky; 11 

90 NEXT I 
100 END 
110 SUB Knob 
120 COM /Knob/ Kx,Ky 
130 INTEGER Knx,Kny 
140 Knx=KNOBX 
150 Kny=KNOBY 
160 Kx=Kx+Knx 
170 Ky=Ky+Kny 
180 PRINT TABXY(1,5);Knx;Kny; 11 

190 SUBEND 

You can also trap mouse keys with ON KBD and KBD$ function (see the subsequent 
section for details on using these keywords). These keys produce the same codes as the 
I Shift HJIJ, I Shift H]IJ, etc. keys on ITF keyboards (while in any User menu). 

1 HIL devices can count from 32 767 to -32 768 pulses during the interval. 

Keyboard Interfaces 11-27 



Note 

If you have programs written in BASIC 1.0 or 2.0, refer to the 
knob section of the "Porting to 3.0" chapter found in the BASIC 
Programming Techniques manual for information on how the knob 
handler was changed in 3.0 and subsequent system revisions. 

Enhanced Keyboard Control 
Normally, the BASIC operating system handles all keyboard inputs. Several BASIC 
statements allow programs to handle inputs from the keyboard; examples are the IN
PUT, LINPUT, ENTER, ON KEY, and ON KNOB statements. Additional keyboard 
statements provide BASIC programs with a means of intercepting both ASCII and non
ASCII keystrokes for processing by the program. The statements are: 

ON KBD 

ON KBD ,ALL 

KBD$ 

OFF KBD 

sets up and enables keystrokes to be trapped. 

includes I PAUSE I, I STOP I, I CLR 1/0 I, I System I, I User I, I Menu I, I Shift~ 
I Menu I and sofkeys. See the key tables in the section of this chapter 
entitled "Second Byte of Non-ASCII Key Sequences (String)" for 
appropriate ITF key labels. 

returns keystrokes trapped in the buffer. 

resumes normal keystroke processing. 

11-28 Keyboard Interfaces 

\ 
'~ 



ON KBD allows terminal emulation, keyboard masking, and special data inputs. Each 
keystroke produces unique code(s) that allow the program to differentiate between dif
ferent keys being pressed. The program can also determine whether the I Shift I (I SHIFT I 
on HP 98203 keyboards) or I CTRL I keys are being pressed with most keys, but these 
keystrokes cannot be detected by themselves. Also, the I Reset I (I RESET I on HP 98203 
keyboards) key cannot be trapped by ON KBD. 

Trapping Keystrokes 
The ON KBD statement sets up a branch that is initiated when the keyboard buffer 
becomes "non-empty". The service routine may then interrogate the buffer as desired, 
processing the keystrokes as determined by the program. The keyboard buffer of Series 
200/300 computers contains up to 256 characters. Calling the KBD$ function does two 
things: it returns all keystrokes trapped since the last time the buffer was read, and it 
then clears the keyboard buffer. 

Keyboard Interfaces 11-29 



The following program uses ON KBD, KBD$, and OFF KBD to trap and process 
keystrokes, rather than allowing the operating system to do the same. The program 
defines each keystroke to print a complete word. 

100 OPTION BASE 1 
110 DIM String$(26) [6] 
120 READ String$(*) 
130 
140 DATA A,BROWN,CAT,DOG,EXIT,FOX,GOT 
150 DATA HI,IN,JUMPS,KICKED,LAZY,MY 
160 DATA NO,OVER,PUSHED,QUICK,RED,SMART 
170 DATA THE,UNDER,VERY,WHERE,XRAY,YES,ZOO 
180 
190 PRINTER IS 1 
200 PRINT "Many ASCII keys have been" 
210 PRINT "defined to produce words." 
220 PRINT 
230 PRINT "Press the following keys." 
240 PRINT "T Q B F J 0 T L D ." 
250 
260 ON KBD GOSUB Process_keys 
270 
280 
290 
300 
310 

LOOP 
EXIT IF Word$="EXIT" 
END LOOP 

320 STOP 
330 ! 
340 Process_keys:Key$=KBD$ 
350 

! Read buffer. 

360 
370 
380 
390 

REPEAT ! Process ALL keys trapped. 
Key_code=NUM(Key$[1;1]) Calculate code. 

SELECT Key_code Choose response. 
400 
410 CASE 65 TO 90 CASE "A" TO "Z". 
420 Word$=String$(Key_code-64) 
430 Key$=Key$[2] ! Remove processed key. 
440 

11-30 Keyboard Interfaces 

\ 

0 

\ 

\.._) 



450 CASE 97 TO 122 ! CASE "a" TO "z". 
460 Word$=String$(Key_code-96) 
470 Key$=Key$ [2] ! Remove processed key. 
480 
490 CASE 255 ! CASE non-ASCII key. 
500 IF Key$[2;1]<>CHR$(255) THEN 
510 Word$=Key$[1,2] Non-ASCII key alone, 
520 Key$=Key$[3] so take 2 codes. 
530 ELSE 
540 Word$=Key$[1,3] Non-ASCII w/ CTRL, 
550 Key$=Key$[4] so take 3 codes. 
560 END IF 
570 CASE ELSE CASE all others. 
580 Word$="" 
590 Key$=Key$[2] Remove processed key. 
600 
610 END SELECT 
620 
630 Execute response. 
640 Defined=LEN(Word$)<>0 
650 IF Defined THEN 
660 PRINT Word$; " " · 
670 DISP 
680 ELSE 
690 BEEP 100,.05 
700 DISP "Key undefined." 
710 END IF 
720 
730 UNTIL LEN(Key$)=0 Until ALL keys processed. 
740 
750 RETURN 
760 
770 Quit:END 

Notice that all non-ASCII keys produce two-character sequences: CHR$(255) followed 
by an ASCII character. Pressing the I CTRL I key with non-ASCII keys produce three
character sequences: another CHR$(255) character preceding the two-character sequence 
produced by pressing the non-ASCII key by itself. See the tables in the section entitled 
"Second Byte of Non-ASCII Key Sequences (String)" for a listing of the sequences pro
duced by non-ASCII keys. 

Keyboard Interfaces 11-31 



BASIC programs can output ASCII keystrokes to the keyboard, via OUTPUT 2, without 
initiating an ON KBD branch; however, outputting non-ASCII "closure" keys followed 
by other keys will initiate the ON KBD branch. For example, executing the following 
statement (in a program line): 

OUTPUT 2; "32*2" ;CHR$(255); "E"; "KBD"; 

causes the characters KBD which follow the closure key to be placed in the KBD$ 
buffer, which also initiates the ON KBD branch. The I EXECUTE ~key (or equivalent such 
as I Return I) sequence which was sent to the keyboard executes the numeric expression 
32*2 before the branch is initiated. OUTPUT to the keyboard while ON KBD is in 
effect should contain at most one closure key, and that key should be at the end, in order 
to avoid this "recirculation" of closure keys. 

ON KBD branching is disabled by DISABLED, deactivated by OFF KBD, and tem
porarily deactivated when the program is executing LINPUT, INPUT, or ENTER KBD 
statements. Note that the keyboard input line can be read without deactivating ON 
KBD by using the SYSTEM$("KBD LINE") function. 

Mouse Keys 
You can also trap mouse keys with this technique. The keys produce CHR$(255) followed 
by "s", "t", and so forth. 

Softkeys and Knob Rotation 
When ON KNOB is not in effect, knob rotation is also trapped by ON KBD. Rotation 
of the knob will produce "cursor" keystrokes. A clockwise rotation of the knob produces 
CHR$(255) followed by ">", while a counter-clockwise rotation produces CHR$(255) 
followed by "<". On HP 98203 Keyboards, pressing the I Shift I key and rotating the Knob 
clockwise produces CHR$(255) followed by "'", and rotating the Knob counter-clockwise 
produces CHR$(255) followed by "V". These same results can be produced when using 
the HP 46083A Rotary Control Knob and HP 46060A Mouse; however, the results are 
dependent on the "toggle" state for the Rotary Control Knob and "horizontal" and 
"vertical" movements for the HP Mouse. 

ON KBD , ALL allows softkey trapping ("overrides" ON KEY) but does not change the softkey 
labels. 

11-32 Keyboard Interfaces 

' I \ ,/ --



Disabling Interactive Keyboard 
Another group of statements is used to disable the interactive keyboard functions: 

SUSPEND INTERACTIVE 

SUSPEND INTERACTIVE,RESET 

RESUME INTERACTIVE 

ignores the I PAUSE I, I STOP I, I STEP I, and I CLR 110 I 
keys (sec the table in the section entitled "Second 
Byte of Non-ASCII Key Sequences (String)" for 
equivalent ITF keys) and disables live keyboard 
execution. 

ignores I RESET I (sec the table in the section enti
tled "Second Byte of Non-ASCII Key Sequences 
(String)" for equivalent ITF key) too. 

returns to normal operation. 

SUSPEND INTERACTIVE can be used to prevent interruption of programs which gather data 
or which control other systems. 

Special care should be taken when using SUSPEND INTERACTIVE,RESET. If an "infinite loop" 
is executed while interactive keyboard functions are disabled, only the power switch will 
stop execution of the program. 

110 This program cannot be stopped by 
120 PAUSE, STOP, or RESET 
130 before its normal completion. 
140 
150 
160 SUSPEND INTERACTIVE, RESET Ignore keyboard. 
170 
180 PRINT "COUNTDOWN IS II 

190 PRINT 
200 I=10 
210 REPEAT 
220 PRINT" T minus ";I 
230 I=I-1 
240 WAIT 1 
250 UNTIL I <0 
260 
270 PRINT 
280 BEEP 100,1 
290 PRINT "Done" 
300 RESUME INTERACTIVE 
310 
320 END 

Initial value. 

Print count. 
Decrement count. 
Wait one second. 

Return to normal. 

Keyboard Interfaces 11-33 



Locking Out the Keyboard 
There are certain times during program execution when it is expedient to prevent the operator from using the keyboard, such as during a critical experiment which cannot be disturbed. Then the knob and groups of keyboard keys can be enabled and disabled separately. 

Setting bit 0 of register 7 (of interface select code 2) disables all keys (excluding the I Reset I key for the ITF keyboard and I RESET I for the HP 98203 keyboard) and the knob. The following program first sets up the KNOB and KEY events to initiate program branches. It is assumed that the keyboard is already enabled; if you are not sure, press the I Reset I key. When the program is run, the keyboard and knob remain enabled for about five seconds, after which they are disabled. The program then displays the time of day indefinitely; the only way to stop the program is to press the I Reset I key. 
100 ON KEY 1 LABEL "SFK 1" GOSUB Key1 
110 ON KNOB .2 GOSUB Knob 
120 ! 
130 PRINT "You've got 5 seconds. GO! " 
140 FOR Iteration=1 TO 20 
150 WAIT .25 
160 NEXT Iteration 
170 ! 
180 Reset_disable=O ! RESET remains ENABLED. 
190 Ky_knb_disable=1 ! DISABLE reset of kbd. 
200 CONTROL 2,7;2*Reset_disable+Ky_knb_disable 
210 PRINT "Time's up!" 
220 BEEP 
230 
240 Loop: DISP TIME$(TIMEDATE) 
250 GOTO Loop 
260 
270 
280 Key1: PRINT "Special function key 1 pressed." 
290 RETURN 
300 ! 
310 Knob: PRINT "Knob rotation sensed." 
320 RETURN 
330 END 

11-34 Keyboard Interfaces 

\ .. · -..._;.1 



If the value of the variable Reset_disable is set to 1 in the preceding program, the only 
way to stop the program is to turn off power to the computer, losing the program and 
all data currently in computer memory. 

Note 

Use care when locking out both the I Reset I key and the keyboard 
keys. If both are locked out, the only way to prematurely stop the 
program is to turn the computer off. 

Keyboard Interfaces 11-35 



Keyboard Status and Control Registers 
STATUS Register 0 CAPS LOCK flag 

CONTROL Register 0 Set CAPS LOCK if non-0 

STATUS Register 1 PRINTALL flag 

CONTROL Register 1 

STATUS Register 2 

CONTROL Register 2 

STATUS Register 3 

CONTROL Register 3 

STATUS Register 4 

Set PRINTALL if non-0 

Function key menu. 

Function key menu: 
0 = System menu (or SYSTEM KEYS statement) 

1-3 =User menu 1 thru 3 (or USER n KEYS statement 
along with the appropriate menu number) 

Undefined 

Set auto-repeat interval. If 1 thru 255, repeat interval in mil
liseconds is 10 times this value. 256 = turn off auto-repeat. 
(Default at power-on or SCRATCH A is 80ms.) 

Undefined 

CONTROL Register 4 Set delay before auto-repeat. If 1 thru 256, delay in millisec- \__} 
onds is 10 times this value. (Default at power-on or SCRATCH 
A is 700ms.) 

STATUS Register 5 KBD$ buffer overflow register. 1 = overflow 
Register is reset when read. 

CONTROL Register 5 Undefined 

STATUS Register 6 Typing aid expansion overflow register. 
1 = overflow. Register is reset when read. 

CONTROL Register 6 Undefined 

11-36 Keyboard Interfaces 



STATUS Register 7 Interrupt Status 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

INI- Reserved Reserved RESET Keyboard 
TIALIZE For For Key and 
Timeout Future Future Interrupt and Knob 

0 0 0 Interrupt Use Use Disabled Interrupt 
Disabled Disabled 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

CONTROL Register 7 Interrupt Disable Mask 

Most Significant Bit Least Significant Bit 

Bit 7 I Bit 6 I Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

INI- Reserved Reserved 

Not Used TIALIZE For For RESET Keyboard 
Timeout Future Future Key and Knob 

Use Use 

Value=128 jvalue=64 jValue=32 Value=16 Value=8 Value=4 Value=2 Value=l 

Keyboard Interfaces 11-37 



STATUS Register 8 Keyboard Language Jumper 

0-US ASCII 7-United Kingdom 13-Swiss German 
1-French 8-Canadian French 14-Latin(Spanish) 
2-German 9-Swiss French 15-Danish 
3-Swedish 10-Italian 16-Finnish 
4-Spanish 11-Belgian 17-Norwegian 
5-Katakana 12-Dutch 18-Swiss French* 
6-Canadian English 19-Swiss German* 

See also SYSTEM$("KEYBOARD LANGUAGE") which requires the LEX binary. Note 
that the STATUS statement when used with this register does not require the LEX 
binary. 

CONTROL Register 8 Undefined 

STATUS Register 9 Keyboard Type 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
l=HIL l=No l=n-Key 1=98203C 1=98203A 
Keyboard Keyboard Rollover Keyboard Keyboard 

Internal Internal Interface 
O=Key- 0=2 or 0 O=Other O=Other Use Use 

O=non- board less Keyboard Keyboard 
HIL Present rollover 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

11-38 Keyboard Interfaces 

\ 
I 

\..-1 



Bits 5, 1, and 0 of STATUS Register 9 and the following table can be used to determine 
the Keyboard Type. 

Bit 5 Bit 1 Bit 0 Keyboard Type 

0 0 0 HP 98203B or built-in 

0 0 1 HP98203A 

1 0 0 ITF (such as the HP 46020A and 46021A) 

1 1 0 HP98203C 

CONTROL Register 9 Undefined 

STATUS Register 10 Status at Last Knob Interrupt 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

CTRL SHIFT 
0 0 0 0 0 0 Key Key 

Pressed Pressed 

jValue=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=! 

Note that bit 1 is always 0 for keyboards connect to an HP-HIL interface, and with all 
HP-HIL mice and knobs (e.g. HP 46083A Rotary Control Knob, HP 46085 Control Dials, 
and HP 98203C Keyboard Knob). 

CONTROL Register 10 Undefined 

STATUS Register 11 O=horizontal-pulse mode; 1=all-pulse mode. 

CONTROL Register 11 Set knob pulse mode (0 is default). See the knob discussion 
in the "Porting to 3.0" chapter of BASIC Programming Tech
mques. 

STATUS Register 12 "Pseudo-EOI for CTRL-E " flag 

CONTROL Register 12 Enable pseudo-EO! for CTRL-E if non-0 

Keyboard Interfaces 11-39 



STATUS Register 13 Katakana flag 

CONTROL Register 13 Set Katakana if non-0 

STATUS Register 14 Numbering of softkeys on ITF keyboard: 
0 :::;. lliJ is key number 1 (default); 
1 :::;. lliJ is key number 0; 

CONTROL Register 14 Softkey numbering on ITF keyboard (see above register de
scription). 

STATUS Register 15 Currently in 98203 keyboard compatibility mode: 
0----+0FF (default) 
1----+0N 

CONTROL Register 15 Turns "98203 keyboard compatibility mode" on ( #0) and off 
(=0). (See the chapter "Porting to Series 300" in the Program
ming Techniques manual for further information about using 
this mode.) Note that instead of using the CONTROL regis
ter 15 statement you can use the KBD CMODE statement to 
turn the "98203 keyboard compatibility mode" ON and OFF. 

STATUS Register 16 Returns the enabled/disabled status of the up and down arrow 
keys, I Prev I, I Next I, and [EJ (both shifted and un-shifted for all 
of these keys). If the status value is 1 it means these keys are 
deactivated. Note that the default value is 0. 

CONTROL Register 16 Allows you to disable or re-enable the display scrolling keys 
mentioned for STATUS Register 16. This prevents accidental 
scrolling of the display screen. Executing a 1 with the CON
TROL statement deactivates the print scrolling keys and a 0 
activates them. 

11-40 Key board Interfaces 

\ 

( ) 
"--" 



Table of Contents 

Chapter 12: The HP-IB Interface 
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1 
Initial Installation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 
Communicating with Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 

HP-IB Device Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 
Moving Data Through the HP-IB .................................. 12-4 
General Structure of the HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 
Addressing Multiple Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8 
Secondary Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 

General Bus Management ............................................ 12-10 
Remote Control of Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 
Locking Out Local Control ....................................... 12-11 
Enabling Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 
Triggering HP-IB Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 
Clearing HP-IB Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 
Aborting Bus Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 
HP-IB Service Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14 
Polling HP-IB Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16 

Advanced Bus Management .......................................... 12-19 
The Message Concept ........................................... 12-19 
Types of Bus Messages .......................................... 12-19 
Explicit Bus Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-24 
HP-IB Message Mnemonics ...................................... 12-27 

The Computer As a Non-Active Controller ............................. 12-29 
Determining Controller Status and Address . . . . . . . . . . . . . . . . . . . . . . . . 12-29 
Changing the Controller's Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31 
Passing Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31 
Interrupts While Non-Active Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-32 
Addressing a Non-Active Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-37 
Requesting Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-38 
Responding to Parallel Polls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-39 
Responding to Serial Polls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-41 
Interface-State Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-42 
Servicing Interrupts that Require Data Transfers. . . . . . . . . . . . . . . . . . . . 12-43 

HP-IB Control Lines ................................................ 12-46 
Handshake Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 



The Attention Line (ATN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 
The Interface Clear Line (IFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-48 
The Remote Enable Line (REN) .................................. 12-48 
The End or Identify Line (EOI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-48 
The Service Request Line (SRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-49 
Determining Bus-Line States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-50 

Summary of HP-IB STATUS and CONTROL Registers .................. 12-51 
HP-IB Status and Control Registers (cont.) ............................ 12-52 
HP-IB Status and Control Registers (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-53 
HP-IB Status and Control Registers (cont.) ............................ 12-54 
HP-IB Status and Control Registers (cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-55 
HP-IB Status and Control Registers (cont.) ............................ 12-56 
Summary of HP-IB READIO and WRITEIO Registers .................. 12-57 

READIO Registers .............................................. 12-57 
HP-IB WRITEIO Registers ...................................... 12-64 

Summary of Bus Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-70 
ABORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-70 
CLEAR ....................................................... 12-71 
LOCAL ........................................................ 12-71 
LOCAL LOCKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-71 
PASS CONTROL ............................................... 12-72 
PPOLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-72 
PPOLL CONFIGURE ........................................... 12-72 
PPOLL UN CONFIGURE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-73 
REMOTE ..................................................... 12-73 
SPOLL ........................................................ 12-74 
TRIGGER ..................................................... 12-74 



The HP-IB Interface 12 
Introduction 
This chapter describes the techniques necessary for programming the HP-IB interface. 
Many of the elementary concepts have been discussed in previous chapters; this chapter 
describes the specific details of how this interface works and how it is used to communicate 
with and control systems consisting of various HP-IB devices. 

The HP-IB (Hewlett-Packard Interface Bus), commonly called the "bus", provides com
patibility between the computer and external devices conforming to the IEEE 488-1978 
standard. Electrical, mechanical, and timing compatibility requirements are all satisfied 
by this interface. 

Data 

8 
HP-IB 
Interface 

Handshake 0 Shielded Cable 
3 t5 to Device(s) Q) 

Hardware c 
Backplane c 

and 0 
Connector Control 

() 
Firmware c 

5 0:: 
.;, 
C\J 

Logic and Shield 
Grounds 

8 

Figure 12-1. HP-IB Interface Block Diagram 

The HP-IB Interface is both easy to use and allows great flexibility in communicating 
data and control information between the computer and external devices. It is one of 
the easiest methods to connect more than one device to the same interface. 

The HP-IB Interface 12-1 



Initial Installation and Verification 
Refer to the HP-IB Installation Note for information about setting the switches and 
installing an external HP-IB interface. Once the interface has been properly installed, 
you can verify that the switch settings are what you intended by running the following 
program. The defaults of the internal HP-IB interface can also be checked with the 
program. The results are displayed on the CRT. 

100 PRINTER IS CRT 
110 PRINT CHR$(12) ! Clear screen w/ FF. 
120 
130 Ask: INPUT "Enter HP-IB interface select code",Isc 
140 IF Isc<7 OR Isc>30 THEN GOTO Ask 
150 
160 
170 
180 
190 
200 
210 

STATUS Isc;Card_id 
IF Card_id<>1 THEN 

PRINT "Interface at select code";Isc; 
PRINT "is not an HP-IB" 
PRINT 
STOP 

220 END IF 
230 
240 PRINT "HP-IB interface present" 
250 PRINT" at select code";Isc 
260 PRINT 
270 
280 STATUS Isc,1;Intr_dma 
290 Level=3+(BINAND(32+16,Intr_dma) DIV 16) 
300 PRINT "Hardware interrupt level =";Level 
310 
320 STATUS Isc,3;Addr_ctrlr 
330 Address=Addr_ctrlr MOD 32 
340 PRINT "Primary address =";Address 
350 ! 
360 Sys_ctrl=BIT(Addr_ctrlr,7) 
370 IF Sys_ctrl THEN 
380 PRINT "System Controller" 
390 ELSE 
400 PRINT "Non-system Controller" 
410 END IF 
420 
430 END 

The hardware interrupt level is described in Chapter 7. Hardware interrupt level is set to 
3 on built-in HP-IB interface, but can range from 3 to 6 on optional interfaces. Primary 
address is further described in "HP-IB Device Selectors" in the next section. 

12-2 The HP-IB Interface 

\ •.'-J 



The term "System Controller" is also further described later in this chapter in "General 
Structure of the HP-IB". The internal HP-IB has a jumper that is set at the factory to 
make it a system controller. This jumper is located below the lowest interface slot at 
the computer backplane. The lowest interface (or memory board) in the backplane must 
be removed to access this jumper. If the jumper in the center of the clear plastic cover 
is placed on the middle and rightmost pins, (as seen from the rear of the computer), 
the computer is set to be a System Controller. If it is on the middle and leftmost pins, 
the computer is not a System Controller. External HP-IB interfaces have a switch that 
controls this interface state. 

Communicating with Devices 
This section describes programming techniques used to output data to and enter data 
from HP-IB devices. General bus operation is also briefly described in this chapter. Later 
chapters will describe: further details of specific bus commands, handling interrupts, and 
advanced programming techniques. 

HP-18 Device Selectors 
Since the HP-IB allows the interconnection of several devices, each device must have a 
means of being uniquely accessed. Specifying just the interface select code of the HP-IB 
interface through which a device is connected to the computer is not sufficient to uniquely 
identify a specific device on the bus. 

Each device "on the bus" has an primary address by which it can be identified; this 
address must be unique to allow individual access of each device. Each HP-IB device 
has a set of switches that are used to set its address. Thus, when a particular HP-IB 
device is to be accessed, it must be identified with both its interface select code and its 
bus address. 

The interface select code is the first part of an HP-IB device selector. The interface select 
code of the internal HP-IB is 7; external interfaces can range from 8 to 31. The second 
part of an HP-IB device selector is the device's primary address, which are in the range 
of 0 through 30. For example, to specify the device: 

the interface at select code 7 
the device at primary address 22 

the interface at select code 10 
the device at primary address 2 

use device selector = 722 

use device selector = 1002 

The HP-IB Interface 12-3 



Remember that each device's address must be unique. The procedure for setting the 
address of an HP-IB device is given in the installation manual for each device. The 
HP-IB interface also has an address. The default address of the internal HP-IB is 21 or 
20, depending on whether or not it is a System Controller, respectively. The addresses of 
external HP-IB interfaces are set by configuring the address switches on each interface 
card. Each HP-IB interface's address can be determined by reading STATUS register 3 
of the appropriate interface select code, and each interface's address can be changed by 
writing to CONTROL register 3. See "Determining Controller Status and Address" and 
"Changing the Controller's Address" for further details. 

Moving Data Through the HP-18 
Data is output from and entered into the computer through the HP-IB with the OUTPUT 
and ENTER statements, respectively; all of the techniques described in Chapters 4 and 
5 are completely applicable with the HP-IB. The only difference between the OUTPUT 
and ENTER statements for the HP-IB and those for other interfaces is the addressing 
information within HP-IB device selectors. 

Examples 

100 Hpib=7 
110 Device_addr=22 
120 Device_selector=Hpib*100+Device_addr 
130 ! 
140 OUTPUT Device_selector;"F1R7T2T3" 
150 ENTER Device_selector;Reading 

320 ASSIGN ~Hpib_device TO 702 
330 OUTPUT ~Hpib_device;"Data message" 
340 ENTER ~Hpib_device;Number 

440 OUTPUT 822;"F1R7T2T3" 

380 ENTER 724;Readings(*) 

12-4 The HP-IB Interface 

. ) \...._, 

\ .. J 

. i 
\...../ 



All of the IMAGE specifiers described in Chapters 4 and 5 can also be used by OUT
PUT and ENTER statements that access the HP-IB interface, and the definitions of all 
specifiers remain exactly as stated in those chapters. 

Examples 

100 ASSIGN ~Printer TO 701 
110 OUTPUT ~Printer USING "6A,3X,2D.D";Item$,Quantity 

860 ASSIGN ~Device TO 825 
870 OUTPUT ~Device USING "#,B";65,66,67,13,10 
870 ENTER ~Device USING "#,K";Data$ 

General Structure of the HP-18 
Communications through the HP-IB are made according to a precisely defined set of 
rules. These rules help to ensure that only orderly communication may take place on the 
bus. For conceptual purposes, the organization of the HP-IB can be compared to that of 
a committee. A committee has certain "rules of order" that govern the manner in which 
business is to be conducted. For the HP-IB, these rules of order are the IEEE 488-1978 
standard. 

One member, designated the "committee chairman," is set apart for the purpose of 
conducting communications between members during the meetings. This chairman is 
responsible for overseeing the actions of the committee and generally enforces the rules 
of order to ensure the proper conduct of business. If the committee chairman cannot 
attend a meeting, he designates some other member to be "acting chairman." 

On the HP-IB, the System Controller corresponds to the committee chairman. The 
system controller is generally designated by setting a switch on the interface and cannot 
be changed under program control. However, it is possible to designate an "acting 
chairman" on the HP-IB. On the HP-IB, this device is called the Active Controller, and 
may be any device capable of directing HP-IB activities, such as a desktop computer. 

When the System Controller is first turned on or reset, it assumes the role of Active 
Controller. Thus, only one device can be designated System Controller. These responsi
bilities may be subsequently passed to another device while the System Controller tends 
to other business. This ability to pass control allows more than one computer to be 
connected to the HP-IB at the same time. 

The HP-IB Interface 12-5 



In a committee, only one person at a time may speak. It is the chairman's responsibility 
to "recognize" which one member is to speak. Usually, all committee members present 
always listen; however, this is not always the case on the HP-IB. One of the most powerful 
features of the bus is the ability to selectively send data to individual (or groups of) 
devices. 

Imagine slow note takers and a fast note takers on the committee. Suppose that the 
speaker is allowed to talk no faster than the slowest note taker can write. This would 
guarantee that everybody gets the full set of notes and that no one misses any infor
mation. However, requiring all presentations to go at that slow pace certainly imposes 
a restriction on our committee, especially if the slow note takers do not need the infor
mation. Now, if the chairman knows which presentations are not important to the slow 
note takers, he can direct them to put away their notes for those presentations. That 
way, the speaker and the fast note taker(s) can cover more items in less time. 

A similar situation may exist on the HP-IB. Suppose that a printer and a flexible disc 
are connected to the bus. Both devices do not need to listen to all data messages sent 
through the bus. Also, if all the data transfers must be slow enough for the printer to 
keep up, saving a program on the disc would take as long as listing the program on the 
printer. That would certainly not be a very effective use of the speed of the disc drive if 
it was the only device to receive the data. Instead, by "unlistening" the printer whenever 
it does not need to receive a data message, the computer can save a program as fast as 
the disc can accept it. 

During a committee meeting, the current chairman is responsible for telling the commit
tee which member is to be the talker and which is (are) to be the listener(s). Before 
these assignments are given, he must get the attention of all members. The talker and 
listener(s) are then designated, and the next data message is presented to the listener(s) 
by the talker. When the talker has finished the message, the designation process may be 
repeated. 

On the HP-IB, the Active Controller takes similar action. When talker and listener(s) 
are to be designated, the attention signal line (ATN) is asserted while the talker and 
listener(s) are being addressed. ATN is then cleared, signaling that those devices not 
addressed to listen may ignore all subsequent data messages. Thus, the ATN line sep
arates data from commands; commands are accompanied by the ATN line being true, 
while data messages are sent with the ATN line false. 

12-6 The HP-IB Interface 

u 



On the HP-IB, devices are addressed to talk and addressed to listen in the following 
orderly manner. The Active Controller first sends a single command which causes all 
devices to unlisten. The talker's address is then sent, followed by the address( es) of the 
listener(s). After all listeners have been addressed, the data can be sent from the talker 
to the listener(s). Only device(s) addressed to listen accept any data that is sent through 
the bus (until the bus is reconfigured by subsequent addressing commands). 

The data transfer, or data message, allows for the exchange of information between 
devices on the HP-IB. Our committee conducts business by exchanging ideas and infor
mation between the speaker and those listening to his presentation. On the HP-IB, data 
is transferred from the active talker to the active listener( s) at a rate determined by the 
slowest active listener on the bus. This restriction on the transfer rate is necessary to 
ensure that no data is lost by any device addressed to listen. The handshake used to 
transfer each data byte ensures that all data output by the talker is received by all active 
listeners. 

Examples of Bus Sequences 
Most data transfers through the HP-IB involve a talker and only one listener. For 
instance, when an OUTPUT statement is used (by the Active Controller) to send data 
to an HP-IB device, the following sequence of commands and data is sent through the 
bus. 

OUTPUT 701; "Data" 

1. The unlisten command is sent. 

2. The talker's address is sent (here, the address of the computer; "My Talk Address"), 
which is also a command. 

3. The listener's address (01) is sent, which is also a command. 

4. The data bytes "D", "a", "t", "a", CR, and LF are sent; all bytes are sent using 
the HP-IB's interlocking handshake to ensure that the listener has received each 
byte. 

The HP-IB Interface 12-7 



Similarly, most ENTER statements involve transferring data from a talker to only one 
listener. For instance, the following ENTER statement invokes the following sequence of 
commands and data-transfer operations. 

ENTER 722;Voltage 

1. The unlisten command is sent. 

2. The talker's address (22) is sent, which is a command. 

3. The listener's address is sent (here, the computer's address; "My Listen Address"), 
also a command. 

4. The data is sent by device 22 to the computer using the HP-IB handshake. 

Bus sequences, hardware signal lines, and more specific HP-IB operations are discussed 
in the "HP-IB Control Lines" and "Advanced Bus Management" sections. 

Addressing Multiple Listeners 
HP-IB allows more than one device to listen simultaneously to data sent through the bus 
(even though the data may be accepted at differing rates). The following examples show 
how the Active Controller can address multiple listeners on the bus. 

100 ASSIGN ~Listeners TO 701,702,703 
110 OUTPUT ~Listeners;String$ 
120 OUTPUT ~Listeners USING Image_1;Array$(*) 

This capability allows a single OUTPUT statement to send data to several devices si
multaneously. It is however, necessary for all the devices to be on the same interface. 
When the preceding OUTPUT statement is executed, the unlisten command is sent first, 
followed by the Active Controller's talk address and then listen addresses 01, 02, and 03. 
Data is then sent by the controller and accepted by devices at addresses 1, 2, and 3. 

If an ENTER statement that uses the same 1/0 path name is executed by the Active 
Controller, the first device is addressed as the talker (the source of data) and all the rest 
of the devices, including the Active Controller, are addressed as listeners. The data is 
then sent from the device at address 01 to the devices at addresses 02 and 03 and to the 
Active Controller. 

130 ENTER ~Listeners;String$ 
140 ENTER ~Listeners USING Image_2;Array$(*) 

12-8 The HP-IB Interface 



Secondary Addressing 
Many devices have operating modes which are accessed through the extended addressing 
capabilities defined in the bus standard. Extended addressing provides for a second 
address parameter in addition to the primary address. Examples of statements that use 
extended addressing are as follows. 

100 ASSIGN ~Device TO 72205 ! 22=primary, 05=secondary. 
110 OUTPUT ~Device;Message$ 

200 OUTPUT 72205;Message$ 

150 ASSIGN ~Device TO 7220529 Additional secondary 
160 address of 29. 
170 OUTPUT ~Device;Message$ 

120 OUTPUT 7220529;Message$ 

The range of secondary addresses is 00-31; up to six secondary addresses may be specified 
(a total of 15 digits including interface select code and primary address). Refer to the 
device's operating manual for programming information associated with the extended 
addressing capability. The HP-IB interface also has a mechanism for detecting secondary 
commands. For further details, see the discussion of interrupts. 

The HP-IB Interface 12-9 



General Bus Management 
The HP-IB standard provides several mechanisms that allow managing the bus and the 
devices on the bus. Here is a summary of the statements that invoke these control 
mechanisms. 

ABORT is used to abruptly terminate all bus activity and reset all devices to power-on 
states. 

CLEAR is used to set all (or only selected) devices to a pre-defined, device-dependent 
state. 

LOCAL is used to return all (or selected) devices to local (front-panel) control. 

LOCAL LOCKOUT is used to disable all devices' front-panel controls. 

PPOLL is used to perform a parallel poll on all devices (which are configured and capable 
of responding). 

PPOLL CONFIGURE is used to setup the parallel poll response of a particular device. 

PPOLL UNCONFIGURE is used to disable the parallel poll response of a device (or all 
devices on an interface). 

REMOTE is used to put all (or selected) devices into their device-dependent, remote 
modes. 

SEND is used to manage the bus by sending explicit command or data messages. 

SPOLL is used to perform a serial poll of the specified device (which must be capable of 
responding). 

TRIGGER is used to send the trigger message to a device (or selected group of devices). 

These statements (and functions) are described in the following discussion. However, the 
actions that a device takes upon receiving each of the above commands are, in general, 
different for each device. Refer to a particular device's manuals to determine how it will 
respond. Detailed descriptions of the actual sequence of bus messages invoked by these 
statements are contained in "Advanced Bus Management" later in this chapter. 

12-10 The HP-IB Interface 

i ) 
\....../ 



Remote Control of Devices 
Most HP-IB devices can be controlled either from the front panel or from the bus. If 
the device's front-panel controls are currently functional, it is in the Local state. If it is 
being controlled through the HP-IB, it is in the Remote state. Pressing the front-panel 
"Local" key will return the device to Local (front-panel) control, unless the device is in 
the Local Lockout state (described in a subsequent discussion). 

The Remote message is automatically sent to all devices whenever the System Controller 
is powered on, reset, or sends the Abort message. A device also enters the Remote 
state automatically whenever it is addressed. The REMOTE statement also outputs the 
Remote message, which causes all (or specified) devices on the bus to change from local 
control to remote control. The computer must be the System Controller to execute the 
REMOTE statement. 

Examples 

REMOTE 7 

ASSIGN ~Device TO 700 
REMOTE ~Device 

REMOTE 700 

Locking Out Local Control 
The Local Lockout message effectively locks out the "local" switch present on most HP
IB device front panels, preventing a device's user from interfering with system operations 
by pressing buttons and thereby maintaining system integrity. As long as Local Lockout 
is in effect, no bus device can be returned to local control from its front panel. 

The Local Lockout message is sent by executing the LOCAL LOCKOUT statement. This 
message is sent to all device on the specified HP-IB interface, and it can only be sent by 
the computer when it is the Active Controller. 

Examples 

ASSIGN ~Hpib TO 7 
LOCAL LOCKOUT ~Hpib 

LOCAL LOCKOUT 7 

The Local Lockout message is cleared when the Local message is sent by executing the 
LOCAL statement. However, executing the ABORT statement does not cancel the Local 
Lockout message. 

The HP-IB Interface 12-11 



Enabling Local Control 
During system operation, it may be necessary for an operator to interact with one or 
more devices. For instance, an operator might need to work from the front panel to make 
special tests or to troubleshoot. And, in general, it is good systems practice to return 
all devices to local control upon conclusion of remote-control operations. Executing 
the LOCAL statement returns the specified devices to local (front-panel) control. The 
computer must be the Active Controller to send the LOCAL message. 

Examples 

ASSIGN ~Hpib TO 7 
LOCAL ~Hpib 

ASSIGN ~Device TO 700 
LOCAL ~Device 

If primary addressing is specified, the Go-to-Local message is sent only to the specified 
device(s). However, if only the interface select code is specified, the Local message is sent 
to all devices on the specified HP-IB interface and any previous Local Lockout message 
(which is still in effect) is automatically cleared. The computer must be the System 
Controller to send the Local message (by specifying only the interface select code). 

Triggering HP-18 Devices 
The TRIGGER statement sends a Trigger message to a selected device or group of 
devices. The purpose of the Trigger message is to initiate some device-dependent action; 
for example, it can be used to trigger a digital voltmeter to perform its measurement 
cycle. Because the response of a device to a Trigger Message is strictly device-dependent, 
neither the Trigger message nor the interface indicates what action is initiated by the 
device. 

Examples 

ASSIGN ~Hpib TO 7 
TRIGGER ~Hpib 

ASSIGN ~Device TO 707 
TRIGGER ~Device 

Specifying only the interface select code outputs a Trigger message to all devices currently 
addressed to listen on the bus. Including device addresses in the statement triggers only 
those devices addressed by the statement. The computer can also respond to a trigger 
from another controller on the bus. See "Interrupts While Non-Active Controller" for 
details. 

12-12 The HP-IB Interface 

I \ 

'0 

\ 
I \_; 

I \ 

\.._) 



Clearing HP-18 Devices 
The CLEAR statement provides a means of "initializing" a device to its predefined, 
device-dependent state. When the CLEAR statement is executed, the Clear message 
is sent either to all devices or to the specified device(s), depending on the information 
contained within the device selector. If only the interface select code is specified, all 
devices on the specified HP-IB interface are cleared. If primary-address information 
is specified, the Clear message is sent only to the specified device. Only the Active 
Controller can send the Clear message. 

Examples 

ASSIGN ~Hpib TO 7 
CLEAR ~Hpib 

ASSIGN ~Device TO 700 
CLEAR ~Device 

Aborting Bus Activity 
This statement may be used to terminate all activity on the bus and return all the HP-IB 
interfaces of all devices to a reset (or power-on) condition. Whether this affects other 
modes of the device depends on the device itself. The computer must be either the 
active or the system controller to perform this function. If the System Controller (which 
is not the current Active Controller) executes this statement, it regains active control of 
the bus. Only the interface select code may be specified; device selectors which contain 
primary-addressing information (such as 724) may not be used. 

Examples 

ASSIGN ~Hpib TO 7 
ABORT ~Hpib 

ABORT 7 

The HP-IB Interface 12-13 



HP-IB Service Requests 
Most HP-IB devices, such as voltmeters, frequency counters, and spectrum analyzers, are 
capable of generating a "service request" when they require the Active Controller to take 
action. Service requests are generally made after the device has completed a task (such 
as making a measurement) or when an error condition exists (such as a printer being 
out of paper). The operating and/or programming manuals for each device describe the 
device's capability to request service and conditions under which the device will request 
service. 

To request service, the device sends a Service Request message (SRQ) to the Active 
Controller. The mechanism by which the Active Controller detects these requests is the 
SRQ interrupt. Interrupts allow an efficient use of system resources, because the system 
may be executing a program until interrupted by an event's occurrence. If enabled, 
the external event initiates a program branch to a routine which "services" the event 
(executes remedial action). 

Chapter 7 described interrupt events in general. This chapter describes the two types of 
interrupts that can occur on an HP-IB Interface: SRQ interrupts from external devices 
(that can occur while the computer is an Active Controller), and interrupts that can 
occur while the computer is a non-Active Controller. The first type of interrupts are 
described in this section. The second type are described in the section called "The 
Computer as a Non-Active Controller." 

Setting Up and Enabling SRQ Interrupts 
In order for an HP-IB device to be able to initiate a service routine in the Active Con
troller, two prerequisites must be met: the SRQ interrupt event must have a service 
routine defined, and the SRQ interrupt must be enabled to initiate the branch to the 
service routine. The following program segment shows an example of setting up and 
enabling an SRQ interrupt. 

100 Hpib=7 
110 ON INTR Hpib GOSUB Service_routine 
120 
130 Mask=2 
140 ENABLE INTR Hpib;Mask 

The value of the mask in the ENABLE INTR statement determines which type(s) of 
interrupts are to be enabled. The value of the mask is automatically written into the 
HP-IB interfaces's interrupt-enable register (CONTROL register 4) when this statement 
is executed. Bit 1 is set in the preceding example, enabling SRQ interrupts to initiate a 
program branch. Reading STATUS register 4 at this point would return a value of 2. 

12-14 The HP-IB Interface 

\ 
\ ) 
'~ 



When an SRQ interrupt is generated by any device on the bus, the program branches 
to the service routine when the current line is exited (either when the line's execution 
is finished or when the line is exited by a call to a user-defined function). The service 
routine, in general, must perform the following operations: 

• determine which device ( s) are requesting service (parallel poll) 

• determine what action is requested (serial poll) 

• clear the SRQ line 

• perform the requested action 

• re-enable interrupts 

• return to the former task (if applicable) 

Servicing SRQ Interrupts 
The SRQ is a level-sensitive interrupt; in other words, if an SRQ is present momentarily 
but does not remain long enough to be sensed by the computer, an interrupt will not 
be generated. The level-sensitive nature of the SRQ line also has further implications, 
which are described in the following paragraphs. 

Example 

Assume only one device is currently on the bus. The following service routine first serially 
polls the device requesting service, thereby clearing the interrupt request. In this case, 
the computer did not have to determine which device was requesting service because 
only one device is on the bus. It is also assumed that only service request interrupts have 
been enabled; therefore, the type of interrupt need not be determined either. The service 
is then performed, and the SRQ event is re-enabled to generate subsequent interrupts. 

500 Serv_rtn: Ser_poll=SPOLL(~Device) 
510 ENTER ~Device;Value 
520 PRINT Value 
530 ENABLE INTR 7 ! Use previous mask. 
540 RETURN 

The IEEE standard has defined that when an interrupting device is serially polled, it 
is to stop interrupting until a new condition arises (or the same condition arises again). 
In order to "clear" the SRQ line, it is necessary to perform a serial poll on the device. 
This poll is an acknowledgement from the controller to the device that it has seen the 
request for service and is responding. The device then removes its request for service (by 
releasing SRQ). 

The HP-IB Interface 12-15 



Had the SRQ line not been released, the computer would have branched to the ser
vice routine immediately upon re-enabling interrupts on this interface. This is another 
implication of the level-sensitive nature of the SRQ interrupt. 

It is also important to note that once an interrupt is sensed and logged, the interface 
cannot generate another interrupt until the initial interrupt is serviced. The computer 
disables all subsequent interrupts from an interface until a pending interrupt is serviced. 
For this reason, it was necessary to allow for subsequent branching. 

Polling HP-18 Devices 
The Parallel Poll is the fastest means of gathering device status when several devices are 
connected to the bus. Each device (with this capability) can be programmed to respond 
with one bit of status when Parallel Polled, making it possible to obtain the status of 
several devices in one operation. If a device responds affirmatively ("I need service") 
to a Parallel Poll, then more information as to its specific status can be obtained by 
conducting a Serial Poll of the device. 

Configuring Parallel Poll Responses 
Certain devices can be remotely programmed by the Active Controller to respond to a 
Parallel Poll. A device which is currently configured for a Parallel Poll responds to the 
poll by placing its current status on one of the bus data lines. The logic sense of the 
response and the data-bit number can be programmed by the PPOLL CONFIGURE 
statement. No multiple listeners can be specified in the statement; if more than one 
device is to respond on a single bit, each device must be configured with a separate 
PPOLL CONFIGURE statement. 

Example 

ASSIGN ~Device TO 701 
PPOLL CONFIGURE ~Device;Configure_code 

The value of Configure_code (any numeric expression can be specified) is first rounded 
to an integer and then used to configure the device's Parallel Poll Response. The least
significant 3 bits (2 thru 0) of the expression are used to determine which data line the 
device is to respond on (place its status on). Bit 3 specifies the logic sense of the Parallel 
Poll Response bit of the device. For instance, a value of 0 implies that the device's 
response is 0 when its Status Bit message is "I need service." 

12-16 The HP-IB Interface 

1 
I I 
'-..._~' 



Example 

The following statement configures the device at address 01 on the HP-IB interface at 
select code 7 to respond by placing a 0 on bit 4 (DI05) when its Status Bit response is 
affirmative. 

PPOLL CONFIGURE 701; 4 

Conducting a Parallel Poll 
The PPOLL function returns a single byte containing up to 8 status bit messages of 
the devices on the bus (which are capable of responding to the Parallel Poll. Each bit 
returned by the function corresponds to the status bit of the device(s) configured to 
respond to the Parallel Poll. (Recall that one or more devices can respond on a single 
line.) The PPOLL function can only be executed by the Active Controller. 

Example 

Response=PPOLL(7) 

Disabling Parallel Poll Responses 
The PPOLL UNCONFIGURE statement gives the Active Controller the capability of 
disabling the Parallel Poll responses of one or more devices on the bus. 

Examples 

PPOLL UNCONFIGURE 705 

The following statement disables all devices on the HP-IB interface at select code 8 from 
responding to a Parallel Poll. 

PPOLL UNCONFIGURE 8 

If no primary addressing is specified, all bus devices are disabled from responding to a 
Parallel Poll. If primary addressing is specified, only the specified devices (which have 
the Parallel Poll Configure capability) are disabled. 

The HP-IB Interface 12-17 



Conducting a Serial Poll 
A sequential poll of individual devices on the bus in known as a Serial Poll. One entire 
byte of device-specific status is returned in response to a Serial Poll. This byte is called 
the "Status Byte" message and, depending on the device, may indicate an overload, a 
request for service, or a printer being out of paper. The particular response of each 
device depends on the device. 

The SPOLL function performs a Serial Poll of the specified device; the computer must 
currently be the Active Controller in order to execute this function. 

Examples 

ASSIGN ~Device TO 700 
Status_byte=SPOLL(700) 

Spoll_724=SPOLL(724) 

Just as the Parallel Poll is not defined for individual devices, the Serial Poll is meaningless 
for an interface; therefore, primary addressing must be used with the SPOLL function. 

12-18 The HP-IB Interface 



Advanced Bus Management 
Bus communication involves both sending data to devices and sending commands to 
devices and the interface itself. "General Structure of the HP-IB" stated that this com
munication must be made in an orderly fashion and presented a brief sketch of the 
differences between data and commands. However, most of the bus operations described 
so far in this chapter involve sequences of commands and/or data which are sent auto
matically by the computer when HP-IB statements are executed. This section describes 
both the commands and data sent by HP-IB statements and how to construct your own, 
custom bus sequences. 

The Message Concept 
The main purpose of the bus is to send information between two (or more) devices. These 
quantities of information sent from talker to listener(s) can be thought of as messages. 
However, before data can be sent through the bus, it must be properly configured. A 
sequence of commands is generally sent before the data to inform bus devices which is 
to send and which is (or are) to listen to the subsequent message(s). These commands 
can also be thought of as messages. 

Most bus messages are transmitted by sending a byte (or sequence of bytes) with numeric 
values of 0 through 255 through the bus data lines. When the Attention line (ATN) is 
true, these bytes are considered commands; when ATN is false, they are interpreted as 
data. Bus command groups and their ASCII characters and codes are shown in "Bus 
Commands and Codes" . 

Types of Bus Messages 
The messages can be classified into twelve types. This computer is capable of imple
menting all twelve types of interface messages. The following list describes each type of 
message. 

1. A Data message consists of information which is sent from the talker to the lis
tener(s) through the bus data lines. 

2. The Trigger message causes the listening device(s) to initiate device-dependent 
action(s). 

3. The Clear message causes either the listening device(s) or all of the devices on the 
bus to return to their device-dependent "clear" states. 

4. The Remote message causes listening devices to change to remote program control 
when addressed to listen. 

The HP-IB Interface 12-19 



5. The Local message clears the Remote message from the listening device(s) and 
returns the device( s) to local front-panel control. 

6. The Local Lockout message disables a device's front-panel controls, preventing a 
device's operator from manually interfering with remote program control. 

7. The Clear Lockout/Local message causes all devices on the bus to be removed from 
Local Lockout and to revert to the Local state. This message also clears the Remote 
message from all devices on the bus. 

8. The Service Request message can be sent by a device at any time to signify that the 
device needs to interact with the the Active Controller. This message is cleared by 
sending the device's Status Byte message, if the device no longer requires service. 

9. A Status Byte message is a byte that represents the status of a single device on the 
bus. This byte is sent in response to a serial poll performed by the Active Controller. 
Bit 6 indicates whether the device is sending the Service Request message, and the 
remaining bits indicate other operational conditions of the device. 

10. A Status Bit message is a single bit of device-dependent status. Since more than 
one device can respond on the same line, this Status Bit may be logically com
bined and/or concatenated with Status Bit messages from many devices. Status 
Bit messages are returned in response to a Parallel Poll conducted by the Active 
Controller. 

11. The Pass Control message transfers the bus management responsibilities from the 
Active Controller to another controller. 

12. The Abort message is sent by the System Controller to assume control of the 
bus unconditionally from the Active Controller. This message terminates all bus 
communications, but is not the same as the Clear message. 

These messages represent the full implementation of all HP-IB system capabilities; all of 
these messages can be sent by this computer. However, each device in a system may be 
designed to use only the messages that are applicable to its purpose in the system. It 
is important for you to be aware of the HP-IB functions implemented on each device in 
your HP-IB system to ensure its operational compatibility with your system. 

12-20 The HP-IB Interface 

,I 
\~ 



Bus Commands and Codes 
The table below shows the decimal values of IEEE-488 command messages. Remember 
that ATN is true during all of these commands. Notice also that these commands are 
separated into four general categories: Primary Command Group, Listen Address Group, 
Talk Address Group, and Secondary Command Group. Subsequent discussions further 
describe these commands. 

Table 12-1. HP-IB Commands and Codes 

Decimal ASCII Interface 
Value Character Message Description 

PCG Primary Command Group 

1 SOH GTL Go to Local 

4 EOT SDC Selected Device Clear 

5 ENQ PPC Parallel Poll Configure 

8 BS GET Group Execute Trigger 

9 HT TCT Take Control 

17 DC1 LLO Local Lockout 

20 DC4 DCI Device Clear 

21 NAK PPU Parallel Poll Unconfigure 

24 CAN SPE Serial Poll Enable 

25 EM SPD Serial Poll Disable 

LAG Listen Address Group 

32-62 Space through > Listen Addresses 0 through 30 

(Numbers & Special Chars.) 

63 ? UNL Unlisten 

TAG Talk Address Group 

64-94 @through i Talk Addresses 0 through 30 

(Uppercase Letters) 

95 (underscore) UNT Untalk 

SCG Secondary Command Group 

96-126 'through - Secondary Commands 0 through 30 

(Lowercase Letters) 

127 DEL Ignored 

The HP-IB Interface 12-21 



Address Commands and Codes 
The following table shows the ASCII characters and corresponding codes of the Listen 
Address Group and Talk Address Group commands. The next section describes how to 
send these commands. 

Table 12-2. HP-IB Listen and Talk Address Commands 

Listen Talk Address 
Address Address Address Switch 

Character Character Code Settings 
Space @ 0 00000 

! A 1 00001 

" B 2 00010 

# c 3 0 0 0 1 1 
$ D 4 00100 
% E 5 00101 
& F 6 0 0 11 0 

' G 7 0 0 1 1 1 

( H 8 01000 

) I 9 0 1 0 0 1 

* J 10 0 1 0 1 0 

+ K 11 0 1 0 1 1 

' L 12 01100 
- M 13 0 1 1 0 1 

N 14 0 1 1 1 0 

I 0 15 0 1 1 1 1 

0 p 16 10000 

1 Q 17 1 0 0 0 1 

2 R 18 10010 

12-22 The HP-IB Interface 



Table 12-2. HP-IB Listen and Talk Address Commands (continued) 

Listen 
Address 

Character 

3 

4 

5 

6 

7 

8 

9 

< 

> 

Talk 
Address 

Character 

s 
T 

u 
v 
w 
X 

y 

z 

I 

The preceding table implicitly shows that: 

Address 
Code 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Address 
Switch 

Settings 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 0 1 

1 0 1 1 0 

1 0 1 1 1 

11 0 0 0 

1 1 0 0 1 

1 1 0 1 0 

11 0 11 

1 1 1 0 0 

1 1 1 0 1 

1 1 1 1 0 

• Listen address commands can be calculated from the primary address by using one 
of the following equations: 

Listen_address=32+Primary_address 
or 

Listen_address$=CHR$(32+Primary_address) 

• Similarly, talk address commands can be calculated from the primary address by 
using one of the following equations 

Talk_address=64+Primary_address 
or 

Talk_address$=CHR$(64+Primary_address) 

The HP-IB Interface 12-23 



However, the table does not show that: 

• the Unlisten command is "?", CHR$(63) 

• the Untalk command is "-", CHR$(95) 

• therefore, primary address 31 is an unusable device address, but can be used to 
send the Unlisten and Untalk commands. 

Explicit Bus Messages 
It is often desirable (or necessary) to manage the bus by sending explicit sequences of 
bus messages. The SEND statement is the vehicle by which explicit commands and data 
can be sent through the bus. The SEND statement is also a method of sending data 
with odd parity through the bus (instead of using the PARITY attribute discussed in 
the "I/0 Path Attributes" chapter). This section shows several uses of this statement. 

Examples of Sending Commands 

As a simple example, suppose the following statement is executed by the Active Controller 
to configure the bus (i.e., to address the talker and listener). 

OUTPUT 701 USING "#,K" 

The SEND statement can be used to send the same sequence of commands, as shown in 
the following statement. 

SEND 7;CMD "?U!" 

This statement configures the bus explicitly by sending the following commands: 

• the unlisten command (ASCII character "?"; decimal code 63) 

• talk address 21 (ASCII character "U"; decimal code 85) 

• listen address 1 (ASCII character "!"; decimal code 33) 

The same sequence of commands and data is sent with any of the following statements. 

SEND 7;CMD UNL MTA LISTEN 1 

SEND 7;CMD UNL TALK 21 LISTEN 1 

SEND 7;CMD 32+31,64+21,32+1 

12-24 The HP-IB Interface 

\ 
\ i 
"-" 



Commands can be sent by specifying the secondary keyword CMD. The list of commands 
(following CMD) can be any numeric or string expressions. If more than one expression 
is listed, they must be separated by commas. A numeric expression will be evaluated, 
rounded to an integer (MOD 256), and sent as one byte. Each character of a string 
expression will be sent individually. All bytes are sent with ATN true. The computer 
must be the current Active Controller to send commands. 

SEND Isc;CMD 8 
SEND Isc;TALK New_controller CMD 9 
SEND 8;CMD 1 

Group Execute Trigger 
Pass Control 
Go to Local 

If SEC is used, the specified secondary commands will be sent. An extended talker may 
be addressed by using SEC after the talk address; extended listener(s) may be addressed 
by using SEC after the listen address ( es). 

SEND 7;MTA UNL LISTEN 1 CMD 5 SEC 16 ! SEND PPD. 

The computer must be the Active Controller to send CMD, LISTEN, UNL, MLA, TALK, 
UNT, MTA, and SEC. If a non-Active Controller attempts to send any of these messages, 
an error is reported. 

Simulate the following SPOLL function with SEND and ENTER statements. 

A=SPOLL(724) 

When an SPOLL is performed, the resulting bus activity is: 

• Unlisten command 

• My Listen Address (the computer's listen address; MLA) 

• device's talk address (one of the TAG commands) 

• Serial Poll Enable command (SPE; decimal code 24) 

• one data byte is read (the Status Byte message) 

• Serial Poll Disable (SPD; decimal code 25) 

• Untalk command 

The HP-IB Interface 12-25 



This is accomplished by either of the following sequences: 

SEND 7;CMD "?5X"&CHR$(24) 
ENTER 7 USING "#,B";A 
SEND 7;CMD CHR$(25)&"_" 

SEND 7;UNL MLA TALK 24 CMD 24 
ENTER 7 USING "#,B";A 
SEND 7;CMD 25 UNT 

Configure the bus; send SPE. 
Read Status Byte. 
Send SPD and Untalk. 

The preceding secondary keywords provide the capability of sending various command 
messages through the bus. The activity that results on the bus when several other 
high-level commands are issued is summarized in "HP-IB Message Mnemonics". 

Examples of Sending Data 
Data messages can be sent by specifying the secondary keyword DATA. If the computer 
is the Active Controller, the data is sent immediately. However, if the computer is not 
the Active Controller, it waits to be addressed to talk before sending the data. 

SEND ?;DATA "Message",13,10 Send with CR/LF. 

SEND Bus;DATA "Data" END Send with EOI. 

The data list may contain any mixture of numeric or string expressions; if more than 
one expression is specified, they must be separated by commas. Each numeric expression 
is evaluated as an integer (MOD 256) and sent as a single byte. Each string item is 
evaluated and all resultant characters are sent serially. Each byte is sent with ATN false 
(sent as a data message). The last expression may be followed by the secondary keyword 
END, which causes the EOI terminator to be sent concurrently with the last data byte. 

As another example, simulate this ENTER statement with a SEND statement. 

ENTER 724;Number,String$ 

Any of the following pairs of statements can be used to accomplish the same operation. 

SEND 7;UNL TALK 24 MLA 
ENTER 7;Number,String$ 

SEND 7;UNL TALK 24 LISTEN 21 
ENTER 7;Number,String$ 

SEND 7;CMD "?X5" 
ENTER ?;Number, String$ 

12-26 The HP-IB Interface 



HP-18 Message Mnemonics 
This section contains the descriptions of several bus messages described by the IEEE 
488-1978 standard. The following table describes message mnemonics, their meanings, 
and the secondary keywords used with the SEND statement. The HP-IB messages that 
require primary keywords are noted in the table. 

All BASIC statements which send HP-IB messages (except SEND) always set ATN-true 
(command) messages with the most-significant bit set to zero. Using CMD (with SEND) 
allows you to send ATN-true messages with the most-significant bit set to one. This may 
be useful for non-standard IEEE-488 devices which require the most-significant bit to 
have a particular value. 

The CMD and DATA secondary keywords of SEND statements allow string expressions 
as well as numeric expressions (e.g., CMD "?" is the same as CMD 63). All other 
secondary keywords which need data require numeric expressions. Keep this in mind 
while reading through this table. 

Table 12-3. HP-IB Messages and Mnemonics 

Message Message SEND Clause Required 
Mnemonic Description (numeric values are decimal) 

DAB Data Byte DATA 0 through 255 

DOL Device Clear CMD 20 (or 148) 

EOI End or Identify DATA data list END 

GET Group Execute Trigger CMD 8 (or 136) 

GTL Go To Local CMD 1 (or 129) 

IFC Interface Clear Not possible with SEND; 
use the ABORT statement. 

LAG Listen Address LISTEN 0 through 30; 
or CMD 32 through 62; 
or CMD 160 through 190 

LLO Local Lockout CMD 17 

MLA My Listen Address MLA 

MTA My Talk Address MTA 

The HP-IB Interface 12-27 



Table 12-3. HP-IB Messages and Mnemonics (continued) 

Message Message SEND Clause Required 
Mnemonic Description (numeric values are decimal) 

PPC Parallel Poll Configure CMD 5 (or 133) 
PPD Parallel Poll Disable SEC 16; or CMD 112 (or 240) 

(Must be preceded by PPC.) 
PPE Parallel Poll Enable SEC O+Mask: 

SEC 0 through 15; 
or CMD 96 through 111; 
or CMD 224 through 239 
(Must be preceded by PPC.) 

PPU Parallel Poll Unconfig. CMD 21 (or 149) 

PPOLL Parallel Poll Not possible with SEND; 
use the PPOLL function. 

REN Remote Enable Not possible with SEND; 
use the REMOTE statement. 

SDC Selected Device Clear CMD 4 (or 132) 

SPD Serial Poll Disable CMD 25 (or 153) 

SPE Serial Poll Enable CMD 24 (or 152) 

TAD Talk Address TALK 0 through 30; 
or CMD 64 through 94; 
or CMD 192 through 222 

TCT Take Control CMD 9 (or 137) 

UNL Unlisten UNL; or LISTEN 31; 
or CMD 63 (or 191) 

UNT Untalk UNT; or TALK 31; 
or CMD 95 (or 223) 

12-28 The HP-IB Interface 



The Computer As a Non-Active Controller 
The section called "General Structure of the HP-IB" described how communications take 
place through HP-IB Interfaces. The functions of the System Controller and Active Con
troller were likened to a "committee chairman" and "acting chairman," respectively, and 
the functions of each were described. This section describes how the Active Controller 
may "pass control" to another controller and assume the role of a non-Active Controller. 
This action is analogous to designating another committee member to take the respon
sibility of acting chairman and then becoming a committee member who listens to the 
acting chairman and speaks when given the floor. The following topics will be discussed: 

• Determining whether the computer is currently the Active Controller and/or Sys-
tem Controller 

• Determining the computer's HP-IB primary address, and changing it, if necessary 

• Passing control to another HP-IB controller 

• Requesting service from the Active Controller 

• Responsibilities of being a non-Active Controller 

• Responding to interrupts that occur while non-Active Controller 

Determining Controller Status and Address 
It is often necessary to determine if an interface is the System Controller and to determine 
whether or not it is the current Active Controller. It is also often necessary to determine 
or change the interface's primary address. The example program shown in the beginning 
of this chapter interrogated interface STATUS registers and printed the resultant System
Controller status and primary address. Those operations are explained in the following 
paragraphs. 

The HP-IB Interface 12-29 



Example 

Executing the following statement reads STATUS register 3 (of the internal HP-IB) and 
places the current value into the variable Stat_and_addr. Remember that if the statement 
is executed from the keyboard, the variable Stat_and_addr must be defined in the current 
context. 

STATUS 7,3;Stat_and_addr 

STATUS Register 3 Controller Status and Address 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 r Bit 0 
System Active 

Primary Address of HP-IB Interface Controller Controller 0 

Value=128 Value=64 Value=O Value=16 lvarue=8 lvarue=4 lvalue=2 lvarue=l 

If bit 7 is set (1), it signifies that the interface is the System Controller; if clear (0), it 
is not the System Controller. Only one controller on each HP-IB interface should be 
configured as the System Controller. 

If bit 6 is set (1), it signifies that the interface is currently the Active Controller; if it is 
clear ( 0), another controller is currently the Active Controller. 

Bits 4 through 0 represent the current value of the interface's primary address, which is 
in the range of 0 through 30. The power-on default value for the internal HP-IB is 21 (if 
it is the System Controller) and 20 (if not the System Controller). For external HP-IB 
interfaces, the default address is set to 21 at the factory but may be changed by setting 
the address switches on the card itself. 

Example 

Calculate the primary address of the interface from the value previously read from STA
TUS register 3. 

Intf_addr=Stat_and_addr MOD 32 

This numerical value corresponds to the talk (or listen) address sent by the computer 
when an OUTPUT (or ENTER) statement containing primary-address information is 
executed. Talk and listen addresses are further described in "Advanced Bus Manage
ment". 

12-30 The HP-IB Interface 

u 



Changing the Controller's Address 
It is possible to use the CONTROL statement to change an HP-IB interface's address. 

Example 

CONTROL 7,3;Intf_addr 

The value of IntLaddr is used to set the address of the HP-IB interface (in this case, the 
internal HP-IB). The valid range of addresses is 0 through 30; address 31 is not used. 
Thus, if a value greater than 30 is specified, the value MOD 32 is used (for example: 32 
MOD 32 equals 0, 33 MOD 32 equals 1, 62 MOD 32 equals 30, and so forth). 

Passing Control 
The current Active Controller can pass this capability to another computer by sending the 
Take Control message (TCT). The Active Controller must first address the prospective 
new Active Controller to talk, after which the TCT message is sent. If the other controller 
accepts the message, it then assumes the role of Active Controller; this computer then 
assumes the role of a non-Active Controller. 

Passing control can be accomplished in one of two ways: it can be handled by the 
system, or it can be handled by the program. To handle it programmatically, use the 
PASS CONTROL statement. For example, the following statements first define the HP
IB Interface's select code and new Active Controller's primary address and then pass 
control to that controller. 

100 Hp_ib=7 
110 New_ac_addr=20 
120 PASS CONTROL 100*Hp_ib+New_ac_addr 

The following statements perform the same functions. 

100 Hp_ib=7 
110 New_ac_addr=20 
120 SEND Hp_ib;TALK New_ac_addr CMD 9 

Once the new Active Controller has accepted the TCT command, the controller passing 
control assumes the role of a non-Active Controller (or "HP-IB device") on the specified 
HP-IB Interface. The next section describes the responsibilities of the computer while it 
is a non-Active Controller. 

The HP-IB Interface 12-31 



Interrupts While Non-Active Controller 
When the computer is not an Active Controller, it must be able to detect and respond 
to many types of bus messages and events. 

The computer (as a non-Active Controller) needs to keep track of the following informa
tion. 

• It must keep track of itself being addressed as a listener so that it can enter data 
from the current active talker. 

• It must keep track of itself being addressed as a talker so that it can transmit the 
information desired by the active controller. 

• It must keep track of being sent a Clear, Trigger, Local, or Local Lockout message 
so that it can take appropriate action. 

• It must keep track of control being passed from another controller. 

One way to do this is to continually monitor the HP-IB interface by executing the STA
TUS statement and then taking action when the values returned match the values desired. 
This is obviously a great waste of computer time if the computer could be performing 
other tasks. Instead, the interface hardware can be enabled to monitor bus activity and 
then generate interrupts when certain events take place. 

The computer has the ability to keep track of the occurrences of all of the preceding 
events. In fact, it can monitor up to 16 different interrupt conditions. STATUS registers 
4, 5 and 6 provide access to the interface state and interrupt information necessary to 
design very powerful systems with a great degree of flexibility. 

Each individual bit of STATUS register 4 corresponds to the same bit of STATUS register 
5. Register 4 provides information as to which condition caused an interrupt, while 
register 5 keeps track of which interrupt conditions are currently enabled. To enable a 
combination of conditions, add the decimal values for each bit that you want set in the 
interrupt-enable register. This total is then used as the mask parameter in an ENABLE 
INTR statement. 

12-32 The HP-IB Interface 

\ 
i i 
"-" 



STATUS Register 5 Interrupt Enable Mask 

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 

Parallel 
My Talk My Listen Remote/ 

Talker/ 
Active Poll Con- EOI Listener 
Controller figuration Address Address Received SPAS Local 

Address 
Change Received Received Change 

Change 

Value= Value= Value= Value= Value= Value= Value= Value= 
-32 768 16384 8192 4096 2 048 1024 512 256 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Unrecog- Secondary Unrecog-
Trigger Handshake nized Command Clear nized SRQ IFC 
Received Error Universal While Received Addressed Received Received 

Cornman Addresse Cornman 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

Bit 15 enables an interrupt upon becoming the Active Controller. The computer then 
has the ability to manage bus activities. 

Bit 141 enables an interrupt upon detecting a change in Parallel Poll Configuration. 

Bit 13 enables an interrupt upon being addressed as an active talker by the Active 
Controller. 

Bit 12 enables an interrupt upon being addressed as an active listener by the Active 
Controller. 

Bit 11 enables an interrupt when an EOI is received during an ENTER operation (the 
EOI signal line is also described in "HP-IB Control Lines"). 

Bit 10 enables an interrupt when the Active Controller performs a Serial Poll on the 
computer (in response to its service request). 

Bit 9 enables an interrupt upon receiving either the Remote or the Local message from 
the active controller, if addressed to listen. The action taken by the computer is, of 
course, dependent on the user-programmed service routine. 

1 This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the 
"Advanced Bus Management" section for further details. 

The HP-IB Interface 12-33 



Bit 8 enables an interrupt upon a change in talk or listen address. An interrupt will 
be generated if the computer is addressed to listen or talk or "idled" by an Unlisten or 
Untalk command. 

Bit 1 enables an interrupt upon receiving a Trigger message, if the computer is currently 
addressed to listen. This interrupt can be used in situations where the computer may be 
"armed and waiting" to initiate action; the active controller sends the Trigger message 
to the computer to cause it to begin its task. 

Bit 6 enables an interrupt if a bus error occurs during an OUTPUT statement. Par
ticularly, the error occurs if none of the devices on the bus respond to the HP-IB's 
interlocking handshake (see "HP-IB Control Lines"). The error typically indicates that 
either a device is not connected or that its power is off. 

Bit 51 enables an interrupt upon receiving an unrecognized Universal Command. This 
interrupt condition provides the computer with the capability of responding to new 
definitions that may be adopted by the IEEE standards committee. 

Bit 41 enables an interrupt upon receiving a Secondary Command (extended addressing) 
after the interface receives either its primary talk address or primary listen address. 
Again, this interrupt provides the computer with a way to detect and respond to special 
messages from another controller. 

Bit 3 enables an interrupt on receiving a Clear message. Reception of either a Device 
Clear message (to all devices) or a Selected Device Clear message (addressed to the 
computer) will cause this type of interrupt. The computer is free to take any "device
dependent" action; such as, setting up all default values again, or even restarting the 
program, if that is defined by the programmer to be the "cleared" state of the machine. 

Bit 21 enables an interrupt upon receiving an unrecognized Addressed Command, if the 
computer is currently addressed to listen. This interrupt is used to intercept and respond 
to bus commands which are not defined by the standard. 

Bit 1 enables an interrupt upon detecting a Service Request. 

1 This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the 
"Advanced Bus Management" section for further details. 

1 This condition requires accepting data from the bus and then explicitly releasing the bus. Refer to the 
"Advanced Bus Management" section for further details. 

12-34 The HP-IB Interface 

\ 

\..-t) 



Bit 0 enables an interrupt upon detecting an Interface Clear (IFC). The interrupt is gen
erated only when the computer is not the System Controller, as only a System Controller 
is allowed to set the Interface Clear signal line. The service routine typically is used to 
recover from the abrupt termination of an I/0 operation caused by another controller 
sending the IFC message. 

Note that most of the conditions are state- or event-sensitive; the exception is the SRQ 
event, which is level-sensitive. State-or event-sensitive events can never go unnoticed by 
the computer as can service requests; the event's occurrence is "remembered" by the 
computer until serviced. 

For instance, if the computer is enabled to generate an interrupt on becoming addressed 
as a talker, it would interrupt the first time it received its own talk address. After having 
responded to the service request (most likely with some sort of OUTPUT operation), it 
would not generate another interrupt, even if it was still left assigned as a talker by the 
Active Controller. Thus, it would not generate another interrupt until the event occurred 
a second time. 

An oversimplified example of a service routine that is to respond to multiple conditions 
might be as follows. 

100 ON INTR Hpib GOSUB Service 
110 Mask=INT(2-13)+INT(2-12) 
120 ENABLE INTR Hpib;Mask ! Interrupt on rece1v1ng 
130 ! talk or listen addr. 
140 Idle: GOTO Idle 
150 
160 Service: STATUS Hpib,4;Status,Mask 
170 IF BIT(Status,13) THEN Talker 
180 IF BIT(Status,12) THEN Listener 
190 RETURN! Ignore other interrupts. 
200 Talker: ! Take action for talker. 
210 GOTO Exit_point 
220 
230 Listener: ! Take action for listener. 
240 
250 Exit_point: ENABLE INTR Hpib;Mask 
260 RETURN 
270 END 

Register 4, the interrupt status register, is a "read-destructive" register; reading the 
register with a STATUS statement returns its contents and then clears the register (to 
a value of 0). If the service routine's action depends on the contents of STATUS register 
4, the variable in which it is stored must not be used for any other purposes before all 
of the information that it contains has been used by the service routine. 

The HP-IB Interface 12-35 



The computer is automatically addressed to talk (by the Active Controller) whenever 
it is Serially Polled. If interrupts are concurrently enabled for My Address Change 
and/or Talker Active, the ON INTR branch will be initiated due to the reception of the 
computer's talk address. However, since the Serial Poll is automatically finished with 
the Untalk Command, the computer may no longer be addressed to talk by the time the 
interrupt service routine begins execution. See "Responding to Serial Polls" for further 
details. 

Addressing a Non-Active Controller 
The bus standard states that a non-Active Controller cannot perform any bus addressing. 
When only the interface select code is specified in an ENTER or OUTPUT statement 
that uses an HP-IB interface, no bus addressing is performed. 

If the computer currently is not the Active Controller, it can still act as either talker 
or listener, provided it has been previously addressed as such. Thus, if an ENTER 
or OUTPUT statement is executed while the computer is not an Active Controller, 
the computer first determines whether or not it is an active talker or listener. If not 
addressed to talk or listen, the computer waits until it is properly addressed and then 
finishes executing the statement. It relies on the Active Controller (another computer 
or device) to perform the bus addressing, and then simply participates as a device in 
the exchange of the data. Example statements which send and receive data while the 
computer is not an Active Controller are as follows. 

100 OUTPUT 7;"Data" If not talker, then wait until 
110 addressed as talker to send data. 

200 ENTER 7;Data$ 
210 

If not listener, then wait until 
addressed as listener to accept data. 

12-36 The HP-IB Interface 



If the computer is the Active Controller, it proceeds with the data transfer without 
addressing which devices are talker and listener(s). However, if the bus has not been 
configured previously, an error is reported (Error 170 I/0 operation not allowed). The 
following program does not require the "overhead" of addressing talker and listeners each 
time the OUTPUT statement in the FOR..NEXT loop is executed, because the bus is 
not reconfigured each time. 

100 OUTPUT 701 USING "#,K" 
110 
120 
130 
140 FOR Iteration=1 TO 25 

Configure the bus: 
This interface =talker, and 
printer (701) = listener. 

150 OUTPUT 7; "Data message" 
160 NEXT Iteration 
170 
180 END 

This type of HP-IB addressing should be used with the understanding that if an event 
initiates a branch between the time that the initial addressing was made (line 100) and 
the time that any of the OUTPUT statements are executed (line 150), the event's service 
routine may reconfigure the bus differently than the initial configuration. If so, the data 
will be directed to the device(s) addressed to listen by the last I/0 statement executed 
in the service routine. Events may need to be disabled if this method of addressing is 
used. 

In general, most applications do not require this type of bus-overhead minimization; the 
computer's I/0 language has already been optimized to provide excellent performance. 
Advanced methods of explicit bus management will be described in the section called 
"Advanced Bus Management". 

The HP-IB Interface 12-37 



Requesting Service 
When the computer is a non-Active Controller, it has the capability of sending an SRQ 
to the current Active Controller. The following statement is an example of requesting 
service from the Active Controller of the HP-IB Interface on select code 7. 

CONTROL 7,1;64 

The REQUEST statement can be used to perform the same function. 

REQUEST 7;64 

Both of the preceding example place a logic True on the SRQ line. (Note that the line 
may already be set True by another device.) Other bits may be set in the Status Byte 
message, indicating that other device-dependent conditions exist. 

The SRQ line is held True until the Active Controller executes a Serial Poll or this 
computer executes a REQUEST with bit 6 equal to 0. (Note also that the line may still 
be held True by another device.) 

When the Active Controller detects an SRQ message, it usually polls device(s) on the 
bus to determine which need(s) service and what kind of service is needed. To determine 
which device(s) are requesting service, the Active Controller conducts a Parallel Poll. If 
there are not more than one device currently capable of requesting service, the Parallel 
Poll is not necessary. 

The Parallel Poll is conducted by sending an Identify (ATN & EOI). This non-Active 
Controller's response to a Parallel Poll performed by the Active Controller depends on 
the current Parallel Poll Response set up for this controller. Setting up this controller's 
Parallel Poll Response is described in the next section. 

If the Active Controller needs to determine what service action is required for a particular 
device, it performs a Serial Poll on the device(s) that responded to the Parallel Poll with 
an "I need service." As each device is Serially Polled, it responds by placing its Status 
Byte on the bus. 

This non-Active Controller's response to a Serial Poll performed by the Active Controller 
is handled automatically by the system. The Status Byte is the byte sent to the Serial Poll 
Response Byte Register (with CONTROL or REQUEST, as shown above). A subsequent 
section further describes this non-Active Controller's responses to Serial Polls. 

12-38 The HP-IB Interface 

I \ 

\_) 



Responding to Parallel Polls 
Before performing a Parallel Poll of bus devices, the Active Controller configures selected 
device(s) to respond on one of the eight data lines. Each device is directed to respond on 
a particular data line with a logic True or False; the logic sense of the response informs 
the Active Controller either "I do need service" or "I don't need service." The logic sense 
of the response is also specified by the Active Controller. This response to the Parallel 
Poll is known as the Status Bit message. 

After the desired devices have been told how to respond, the Active Controller can send 
the Identify message and read the Status Bits placed on the data lines to determine 
which device(s) need service. Identify is sent by placing ATN and EOI in the logic True 
state. All devices which are currently configured for the poll respond as configured. 

To configure its own Parallel Poll Response, the computer must receive a Parallel Poll 
Configure (PPC) command followed by a Parallel Poll Enable (PPE) command from 
the Active Controller. Receiving this "Parallel Poll Configuration Change" generates 
an interrupt (this type of interrupt is enabled by setting bit 14 of the Interrupt Enable 
Register). The service routine takes care of configuring this controller's response by first 
accepting the encoded "configure byte" (the PPE command from the Active Controller) 
and then setting up a corresponding response. 

The desired Status Bit message can be configured and sent by one of two methods. The 
first, and simplest, method is to define an automatic response by using the PPOLL 
RESPONSE statement. With this method, the computer reads the configure byte from 
the data lines (HP-IB STATUS Register 7) and then writes the byte's numeric value into 
HP-IB CONTROL Register 5. The following statements show an example of configuring 
this controller's Parallel Poll Response. 

100 STATUS 7,7;Configure_code 
110 CONTROL 7,5;Configure_code 
120 I_need_service=O 
130 PPOLL RESPONSE 7;I_need_service 

When the computer receives a subsequent Identify from the Active Controller, the spec
ified response ("I do/don't need service") is automatically sent to the Active Controller. 
The computer will probably need to respond to a Serial Poll, which is described in the 
next section. 

The second method requires that the service routine decode the configure byte and set 
up the corresponding response. The configure byte read from HP-IB STATUS Register 
7 contains 5 bits of data encoded with the following information: 

The HP-IB Interface 12-39 



CONTROL Register 5 Parallel Poll Response Mask 

Bit 7 I Bit 6 I Bit 5 Bit 4 Bit 3 Bit 2 I Bit 1 I Bit 0 

Not Used 
Uncon- Logic 
figure Sense Data Bit Used for Response 

Value=128 I Value=64 lvalue=O Value=16 Value=8 Value=4 I Value=2 lvalue=l 

Bit 4 determines whether a response will or will not be configured. A 1 tells this controller 
not to configure a response, and a 0 tells the controller to configure a response. 

Bit 3 determines the logic sense of the Status Bit. If this bit is 0, then the "I need 
service" message is a 0; if this bit is 1, the "I need service" message is 1. 

Bits 2 through 0 determine the data line on which the Status Bit is to be placed. For 
instance, if these bits are "000", then the Status Bit is to be placed on DIOl. If these 
bits are "111", then the response is to be placed on DI08. 

The service routine calculates the desired response and places the appropriate bit pattern in HP-IB CONTROL Register 2. For instance, if the configure byte has a value of 12 
(positive-true logic on DI05 for "I need service"), the value sent to CONTROL Register 2 is 16 for "I need service." The appropriate statement might be: 

CONTROL 7,2;16 

When the Identify is received from the Active Controller, the specified response is made 
automatically. 

As another example, suppose that the configure byte has a value of 7. The Status Bit to be written into DI08 would be a 0 for "I need service." The corresponding statement 
might be: 

CONTROL 7,2;0 

12-40 The HP-IB Interface 

. ) 
\....._,/ 



The following general routine calculates the value to be sent to CONTROL Register 2: 
790 STATUS 7,7;Config_code ! Read data lines. 
800 Config_code=Config __ code MOD 256 ! Strip 8 MSBs. 
810 Unconfig=BIT(Config_code,4) 
820 Sense=BIT(Config_code,3) 
830 IF Unconfig=1 OR Sense=O THEN Unconfigure. 
840 Ppoll_response=O 
850 ELSE ! Configure. 
860 Status_bit=Config_code MOD 8 Get bits 2-0. 
870 Ppoll_response=2~Status_bit Set proper bit. 
880 END IF 
890 CONTROL 7,2;Ppoll_response 

Responding to Serial Polls 
As a non-Active Controller, the response to Serial Polls is automatically handled by the 
system. The desired Serial Poll Response Byte is sent to HP-IB CONTROL Register 1. 
If bit 6 is set (bit 6 has a value of 64), an SRQ is indicated from this controller. All other 
bits can be considered to be "device-dependent," and can thus be set according to the 
program's needs. 

The following statement sets up a response with SRQ and bits 1 and 0 set to l's. 
CONTROL 7,1;64+2+1 

When the Active Controller performs a Serial Poll on this non-Active Controller, the 
specified byte is automatically sent to the Active Controller by the system. 

This non-Active Controller is automatically addressed to talk by the Active Controller 
during a Serial Poll. If interrupts are concurrently enabled for My Address Change and/or 
Talker Active interrupts, the ON INTR branch will be initiated due to the reception of 
this controller's talk address. However, since the Serial Poll Response is terminated with 
the Untalk command, this controller may no longer be addressed to talk when the service 
routine begins its execution. In such a case, the SPAS interrupt (if enabled) will also be 
indicated. If desired, the interrupt may be ignored. 

The HP-IB Interface 12-41 



Interface-State Information 
It is often necessary to determine which state the interface is in. STATUS register 6 con
tains interface-state information in its upper byte; it also contains the same information 
as STATUS register 3 in its lower byte. In advanced applications, it may be necessary 
to detect and act on the interface's current state. Register 6's definition is shown below. 

STATUS Register 3 Interface State Information 

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 

REM LLO 
ATN 

LPAS TPAS LADS TADS * True 

Value= Value= Value= Value= Value= Value= Value= Value= 
-32 768 16384 8192 4096 2 048 1024 512 256 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 
System Active 

0 Primary Address of Interface Controller Controller 

Value=128 Value=64 Value=32 Value=16 lvalue=8 lvalue=4 lvalue=2 lvalue=1 

* Least-significant bit of last address recognized. 

Bit 15 set indicates that the interface is in the Remote state. 

Bit 14 set indicates that the interface is in the Local Lockout state. 

Bit 13 set indicates that the ATN line is currently set (true). 

Bit 12 set indicates that the interface is in the Listener Primary Addressed State (has 
received its primary listen address). 

Bit 11 set indicates that the interface is in the Talker Primary Addressed State (has 
received its primary talk address). 

Bit 10 set indicates that the interface is in the Listener Addressed State and is currently 
an active listener. If Bit 4 of the Interrupt Enable register is set (Secondary Command 
While Addressed), two additional conditions are required to enter this state: the interface 
must have first received its own primary address followed by a secondary command, and it 
must have accepted the secondary command (by writing a non-zero value to CONTROL 
register 4 to release the NDAC Holdoff). 

12-42 The HP-IB Interface 

\ 
. I 
~ 

,'-") 

u 



Bit 9 set indicates that the interface is in the Talker Addressed State and is currently 
an active talker. This state is entered in a manner analogous to the Listener Addressed 
State (see Bit 10 above). 

Bit 8 contains the least-significant bit of the last address recognized by this interface. 

Bits 7 through 0 have the same definitions as STATUS register 3. 

Servicing Interrupts that Require Data Transfers 
During the discussion on interrupts, three special types of interrupt conditions were 
described (which are enabled by setting bits in CONTROL register 4). These interrupts 
occur upon receiving: an unrecognized Universal Command, an unrecognized Addressed 
Command, or a Secondary Command. These situations all require the computer to read 
a byte of information from the bus and respond as desired by the programmer. 

STATUS Register 4 Interrupt Status 

As a reminder, these interrupt conditions occur under the following circumstances. 

Bit 14 enables an interrupt on any change in Parallel Poll configuration. If a Parallel 
Poll Configure command is received, the computer must set up its own Parallel Poll 
Response designated by the Active Controller. The response itself is set up by writing 
to CONTROL register 2 of the HP-IB interface. 

The HP-IB Interface 12-43 



Bit 5 enables an interrupt upon receiving an unrecognized Universal Command. This interrupt condition provides the computer with the ability to respond to new definitions that may be adopted by the IEEE standards committee. 

Bit 4 enables an interrupt upon receiving a Secondary Command, if addressed to either talk or listen during the command mode. Again, this allows the computer to detect and respond to special information from another controller. 

Bit 2 enables an interrupt upon receiving an unrecognized Addressed Command, if addressed to listen. This interrupt is used to detect and respond to commands that are undefined by the standard (but which may be recognized by the computer). 

Whenever any of the above interrupt conditions are enabled and occur, the computer logs the interrupt and then sets a bus holdoff. In other words, all bus activity is "frozen" until the program has released this holdoff. The holdoff is established to allow the program time to determine the current state of the bus. 

12-44 The HP-IB Interface 

' I .'-.....,/ 

u 



The bus state is determined by reading HP-IB STATUS register 7, which returns the 
current logic state of the data and control lines as a 16-bit integer. 

STATUS 7,7;Bus_lines 

After reading the state of the lines, it is necessary to release the bus holdoff by writing 
any value into HP-IB CONTROL register 4. 

CONTROL 7,4;Any_value 

CONTROL Register 4 

0 ==> Don't Accept Secondary Command 
Any non-zero value =:;. Accept Secondary Command 
(Writing anything to this register releases NDAC holdoff) 

Release NDAC Holdoff 

When a Secondary Command is received, two computer responses are possible. 

• The first is to accept the address as a valid secondary address and consequently 
become an Extended Talker or Listener. 

• The second is not to accept the address as valid and consequently remain in the 
primary addressed state. 

If Secondary Command interrupts are enabled (while the computer is a non-Active Con
troller), the computer will not respond to its primary address alone; a valid secondary 
address is also required. Statements such as ENTER 7, OUTPUT 7, and LIST #7 
should only be executed in the interrupt service routine after CONTROL has been used 
to indicate that a valid secondary address has been received but before interrupts are 
re-enabled. 

When you no longer want the computer to respond as an Extended Talker/Listener, 
execute an ENABLE INTR with a mask which has bit 4 equal to zero. 

The HP-IB Interface 12-45 



HP-18 Control Lines 

A ttttt ttl 
Device A f--< 

Able to talk, f--t-< 
listen, and 

control 

(e.g., 

HP 9826) 

Device B ~ 
( r-1' 

Able to talk 
t-- p and listen 

(e.g., 
multimeter) 

A 

Device C ~ 
Only able to 

t--

listen 

(e.g., signal 
\ generator) 

v 
A 

Device D ~ 

Only able to 
1--

talk 

(e.g., counter) 

S'i Dat 

(8 sig 

a Bus 

nal lines) -p 

Hondsho ke Lines 

I lines) (3 signa 

Bus Lines 

(5 sign ol lines) 

~}010 1 ... 8 

DA 

NR 

NO 

FD 

AC 

IFC 

A TN 

Q SR 

RE 

EOI 

Figure 12-2. HP-IB Control Lines 

12-46 The HP-IB Interface 

i I 
\..,J 



Handshake Lines 
The preceding figure shows the names given to the eight control lines that make up the 
HP-IB. Three of these lines are designated as the "handshake" lines and are used to 
control the timing of data byte exchanges so that the talker does not get ahead of the 
listener(s). The three handshake lines are as follows. 

DAV 

NRFD 

NDAC 

Data Valid 

Not Ready for Data 

Not Data Accepted 

The HP-IB interlocking handshake uses the lines as follows. All devices currently desig
nated as active listeners would indicate when they arc ready for data by using the NRFD 
line. A device not ready would pull this line low (true) to signal that it is not ready for 
data, while any device that is ready would let the line float high. Since an active low 
overrides a passive high, this line will stay low until all active listeners are ready for data. 

When the talker senses that all devices are ready, it places the next data byte on the 
data lines and then pulls DAV low (true). This tells the listeners that the information 
on the data lines is valid and that they may read it. Each listener then accepts the data 
and lets the NDAC line float high (false). As with NRFD, only when all listeners have 
let NDAC go high will the talker sense that all listeners have read the data. It can then 
float DAV (let it go high) and start the entire sequence over again for the next byte of 
data. 

The Attention Line (ATN) 
Command messages are encoded on the data lines as 7-bit ASCII characters, and are 
distinguished from normal data characters by the logic state of the attention line (ATN). 
That is, when ATN is false, the states of the data lines are interpreted as data. When 
ATN is true, the data lines are interpreted as commands. The set of 128 ASCII characters 
that can be placed on the data lines during this ATN-true mode are divided into four 
classes by the states of data lines DI06 and DI07. These classes of commands are shown 
in a table in the section called "Advanced Bus Management". Only the Active Controller 
can set ATN true. 

The HP-IB Interface 12-47 



The Interface Clear Line (IFC) 
Only the System Controller can set the IFC line true. By asserting IFC, all bus activity 
is unconditionally terminated, the System Controller regains the capability of Active 
Controller (if it has been passed to another device), and any current talker and listeners 
become unaddressed. Normally, this line is only used to terminate all current operations, 
or to allow the System Controller to regain control of the bus. It overrides any other 
activity that is currently taking place on the bus. 

The Remote Enable Line (REN) 
This line is used to allow instruments on the bus to be programmed remotely by the 
Active Controller. Any device that is addressed to listen while REN is true is placed in 
the Remote mode of operation. 

The End or Identify Line (EOI) 
Normally, data messages sent over the HP-IB are sent using the standard ASCII code and 
are terminated by the ASCII line-feed character, CHR$(10). However, certain devices 
may wish to send blocks of information that contain data bytes which have the bit pattern 
of the line-feed character but which are actually part of the data message. Thus, no bit 
pattern can be designated as a terminating character, since it could occur anywhere in 
the data stream. For this reason, the EOI line is used to mark the end of the data 
message. 

The EOI line is used as an END indication (ATN false) during ENTER statements 
and as the Identify message (ATN true) during an identify sequence (the response to 
parallel poll). During data messages, the EOI line is set true by the talker to signal 
that the current data byte is the last one of the data transmission. Generally, when a 
listener detects that the EOI line is true, it assumes that the data message is concluded. 
However, EOI may either be used or ignored by the computer when entering data with an 
ENTER statement that uses an image. Chapter 5 fully describes the definitions of EOI 
during all ENTER statements and shows how to use the image specifiers that modify 
the statement-termination conditions. 

12-48 The HP-IB Interface 

\ 

0 



ENTER statements can use images to re-define the meaning of EOI to provide a very great degree of flexibility. Using the "#" or "%" specifier in an ENTER statement affects the definition of the EOI signal as shown in the following table. 

Table 12-4. Definition of EOI During ENTER Statements 

Free-Field ENTER ENTER ENTER ENTER USING USING USING Statements without # or % with# with% 
Definition of EOI Immediate Item terminator Item terminator Immediate 

statement or statement or statement statement 
terminator terminator terminator terminator 

Statement Yes Yes No No Terminator 
Required? 

Early No No No Yes Termination 
Allowed? 

The Service Request Line (SRQ) 
The Active Controller is always in charge of the order of events that occur on the HP-IB. If a device on the bus needs the Active Controller's help, it can set the Service Request line true. This line sends a request, not a demand, and it is up to the Active Controller to choose when and how it will service that device. However, the device will continue to assert SRQ until it has been "satisfied". Exactly what will satisfy a service request depends on the requesting device, which is explained in the device's operating manual. 

The HP-IB Interface 12-49 



Determining Bus-Line States 
STATUS register 7 contains the current states of all bus hardware lines. Reading this 
register returns the states of these lines in the specified numeric variable. 

STATUS Hpib,7;Bus_lines 

STATUS Register 7 Bus Control and Data Lines 

Bit 15 

ATN 
True 

Value= 
-32 768 

Bit 7 

DI08 

Value=128 

Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 

DAV NDAC 1 NRFD 1 EOI SRQ2 IFC 
True True True True True True 

Value= Value= Value= Value= Value= Value= 
16384 8192 4096 2048 1024 512 

Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 

DI07 DI06 DI05 DI04 DI03 DI02 

Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 

Note 

Due to the way the bi-directional buffers work, NDAC and NRFD 
are not accurately read by this STATUS statement unless the in
terface is currently addressed to talk. Also, SRQ is not accurately 
shown unless the interface is currently the active controller. 

1 Only if currently Addressed to Talk, else not valid. 
2 Only if currently Active Controller, else not valid. 

12-50 The HP-IB Interface 

Bit 8 

REN 
True 

Value= 
256 

Bit 0 

DIOl 

Value=1 

\ 
I ' ,_; 



HP-IB Status and Control Registers 
Status Register 0 Card identification = 1 

Control Register 0 Reset interface if non-zero 

Status Register 1 

Bit 7 Bit 6 Bit 5 Bit 4 

Interrupts Interrupt Hardware Interrupt 
Enabled Requested Level Switches 

Bit 3 

0 

Value=128 Value=64 Value=32 Value=16 Value=8 

Control Register 1 

Bit 7 Bit 6 Bit 5 I Bit 4 l Bit 3 

Device SRQ 

Interrupt and DMA Status 

Bit 2 Bit 1 Bit 0 

DMA DMA 
0 Channell ChannelO 

Enabled Enabled 

Value=4 Value=2 Value=1 

Serial Poll Response Byte 

J Bit 2 I Bit 1 l Bit 0 

Dependent 1=1 did it Device Dependent Status 
Status O=I didn't 

Value=128 Value=64 Value=32 lvalue=16 lvalue=8 lvalue=4 lvalue=2 Jvalue=1 

The HP-IB Interface 12-51 



HP-18 Status and Control Registers (cont.) 
Status Register 2 Busy Bits 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Reserved 

Hand-For Interrupts TRANS-
0 0 0 0 

Future shake In 
Enabled FER In 

Use Progress Progress 

\ u 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

Control Register 2 Parallel Poll Response Byte 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
DI08 DI07 DI06 DI05 DI04 DI03 DI02 DI01 
1=True 1=True l=True 1=True l=True 1=True 1=True 1=True 
Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

Status Register 3 Controller Status and Address 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 
System Active 

0 Primary Address of HP-IB Interface Controller Controller 

Value=128 Value=64 Value=32 Value=16 1Value=8 1Value=4 1Value=2 1Value=1 

Control Register 3 Set My Address 

Bit 7 I Bit 6 I Bit 5 Bit 4 I Bit 3 I Bit 2 1 Bit 1 I Bit 0 
Not Used Primary Address 

Value=128 lvalue=64 lvalue=32 Value=16 lvalue=8 lvalue=4 lvalue=2 lvalue=l 

i \ 
\_) 

12-52 The HP-IB Interface 



HP-18 Status and Control Registers (cont.) 
Status Register 4 

Bit 15 Bit 14 

Parallel 
Poll Active 

Controller 
Configur-

at ion 
Change 

Value= Value= 
-32 768 16384 

Bit 7 Bit 6 

Trigger Handshake 
Received Error 

Value=128 Value=64 

Control Register 4 

Interrupt Status 

Bit 13 Bit 12 Bitll Bit 10 Bit 9 Bit 8 

My Talk My Listen Remote/ Talker/ 
EOI Listener Address Address 

Received 
SPAS Local 

Received Received Change Address 
Change 

Value= Value= Value= Value= Value= Value= 
8192 4096 2 048 1024 512 256 

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Unrecog- Secondary Unrecog-
nized Command Clear nized SRQ IFC 
Universal While Received Addressed Received Received 
Command Addressed Comm:md 

Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

Writing anything to this register releases NDAC holdoff. If 
non-zero, accept last secondary address as valid. If zero, 
don't accept last secondary address (stay in LPAS or TPAS 
state). 

The HP-IB Interface 12-53 



HP-IB Status and Control Registers (cont.) 
Status Register 5 Interrupt Enable Mask 

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 
Parallel 

My Talk Talker/ 
Active Poll Con- My Listen 

EOI Remote/ Listener 
Controller figuration Address Address 

Received SPAS Local 
Address 

Change Received Received Change 
Change 

Value= Value= Value= Value= Value= Value= Value= Value= 
-32 768 16384 8192 4096 2 048 1024 512 256 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Hand- Unrecog- Secondary Unrecog-

Trigger shake nized Command Clear nized SRQ IFC 
Received Error Universal While Received Addresse Received Received 

Cornman Addresse Cornman 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

Control Register 5 Parallel Poll Response Mask 

Bit 7 I Bit 6 I Bit 5 Bit 4 Bit 3 Bit 2 l Bit 1 l Bit 0 

Not Used 
Uncon- Logic 

Data Bit Used for Response figure Sense 

Value=128 I Value=64 lvalue=O Value=16 Value=8 Value=4 1Value=2 IValue=l 

12-54 The HP-IB Interface 



HP-IB Status and Control Registers (cont.) 
Status Register 6 Interface Status 

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 

REM LLO 
ATN 

LPAS TPAS LADS TADS * True 

Value= Value= Value= Value= Value= Value= Value= Value= 
-32 768 16384 8192 4096 2 048 1024 512 256 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 

System Active 
Primary Address of Interface Controller Controller 0 

Value=128 Value=64 Value=32 Value=16 lvalue=8 

* Least-significant bit of last address recognized 

Status Register 7 

Bit 15 Bit 14 Bit 13 Bit 12 

ATN DAV NDAC1 NRFD 1 

True True True True 

Value= Value= Value= Value= 
-32 768 16384 8192 4096 

Bit 7 Bit 6 Bit 5 Bit 4 

DI08 DI07 DI06 DI05 

Value=128 Value=64 Value=32 Value=16 

1 Only if currently Addressed to Talk, else not valid. 
2 Only if currently Active Controller, else not valid. 

Bit 11 

EOI 
True 

Value= 
2 048 

Bit 3 

DI04 

Value=8 

Jvalue=4 lvalue=2 lvalue=1 

Bus Control and Data Lines 

Bit 10 Bit 9 Bit 8 

SRQ2 IFC REN 
True True True 

Value= Value= Value= 
1024 512 256 

Bit 2 Bit 1 Bit 0 

DI03 DI02 DI01 

Value=4 Valuc=2 Valuc=1 

The HP-IB Interface 12-55 



HP-18 Status and Control Registers (cont.) 
Interrupt Enable Register (ENABLE INTR) 

Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 
Parallel 

My Talk My Listen Remote/ 
Talker/ Active Poll Con- EOI Listener Controller figuration Address Address 

Received SPAS Local 
Address Change Received Received Change 
Change 

Value= Value= Value= Value= Value= Value= Value= Value= -32 768 16384 8192 4096 2048 1024 512 256 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Unrecog- Secondary Unrecog-

'frigger Handshak nized Command Clear nized SRQ IFC Received Error Universal While Received Addressed Received Received 
Command Addressed Command 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

: \1 
0 

12-56 The HP-IB Interface 



Summary of HP-18 READIO and WRITEIO Registers 
READIO Registers 
Register 1 
Register 3 
Register 5 
Register 17 
Register 19 
Register 21 
Register 23 
Register 29 
Register 31 

Card Identification 
Interrupt and DMA Status 
Controller Status and Address 
Interrupt Status 01 

Interrupt Status 11 

Interface Status 
Control-Line Status 
Command Pass-Through 
Data-Line Status1 

HP-IB READIO Register 1 Card Identification 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Future Use 
Jumper 0 0 0 0 0 0 1 Installed 

Value=128 Value=64 Value==32 Value==16 Value==8 Value==4 Value=2 Value==1 

Bit 7 is set (1) if the "future use" jumper is installed and clear (0) if not. 

Bits 6 through 0 constitute a card identification code (=1 for all HP-IB cards). 

Note 

This register is only implemented on external HP-IB cards. The 
internal HP-IB, at interface select code 7, "floats" this register (i.e., 
the states of all bits are indeterminate). 

1 Indicates that a READIO operation will change the state of the interface. 

The HP-IB Interface 12-57 



HP-IB READIO Register 3 Interrupt and DMA Status 

Bit 7 Bit 6 Bit 5 I Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Interrupt Interrupt 

Interrupt Level X X DMA1 DMAO Enabled Requested 

Value=128 Value=64 Value=32 I Value=16 Value=8 Value=4 Value=2 Value=1 

Bit 7 is set ( 1) if interrupts are currently enabled. 

Bit 6 is set (I) when the card is currently requesting service. 

Bits 5 and 4 constitute the card's hardware interrupt level (a switch setting on all external 
cards, but fixed at level 3 on the internal HP-IB). 

Hardware Interrupt 
Bit 5 Bit 4 Level 

0 0 3 

0 1 4 

1 0 5 

1 1 6 

Bits 3 and 2 are not used (indeterminate). 

Bit 1 is set (1) if DMA channel one is currently enabled. 

Bit 0 is set (1) if DMA channel zero is currently enabled. 

Note 

Bits 7, 5, 4, 3, 2, and 1 are not implemented on the internal HP-IB 
(interface select code 7). 

12-58 The HP-IB Interface 

' ) \'-"' 



HP-IB READIO Register 5 Controller Status and Address 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 

System 
Not 

HP-IB Primary Address of Interface Active X +--- --> 
Controller 

Controller (MSB) (LSB) 
Value=128 Value=64 Value=32 Value=16 lvalue=S lvalue=4 lvalue=2 lvalue=1 

Bit 7 is set (I) if the interface is the System Controller. 

Bit 6 is set (I) if the interface is not the current Active Controller and clear (0) if it is 
the Active Controller. 

Bit 5 is not used. 

Bits 4 through 0 contain the card's Primary Address switch setting. The following bit 
patterns indicate the specified addresses. 

Bit Primary 
4 3 2 1 0 Address 

0 0 0 0 0 0 

0 0 0 0 1 1 

: : 

: : 

1 1 1 0 1 29 

1 1 1 1 0 30 

1 1 1 1 1 (not allowed) 

Note 

Bits 5 through 0 are not implemented on the internal HP-IB. 

The HP-IB Interface 12-59 



HP-IB READIO Register 17 MSB of Interrupt Status 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

MSB LSB Byte 
Ready 

End Remote/ My 
for Next SPAS Local Address Interrupt Interrupt Received Byte Detected 

Change Change 
Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

Bit 7 set (1) indicates that an interrupt has occurred whose cause can be determined by reading the contents of this register. 

Bit 6 set (1) indicates that an interrupt has occurred whose cause can be determined by reading Interrupt Status Register 1 (READIO Register 19). 

Bit 5 set (1) indicates that a data byte has been received. 

Bit 4 set ( 1) indicates that this interface is ready to accept the next data byte. 

Bit 3 set (1) indicates that an End (EOI with ATN=O) has been detected. 

Bit 2 set (1) indicates that a Remove/Local State change has occurred. 

Bit 0 set ( 1) indicates that a change in My Address has occurred. 

12-60 The HP-IB Interface 



HP-IB READIO Register 19 LSB of Interrupt Status 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Uurecog- Secondary 
My Ad-

Clear dress Trigger Handshak nized Command 
Received Received SRQ IFC Received Error Command While 

(MLA or Received Received 
Group Addressed 

MTA) 
Value=128 Value=64 Value=32 Valne=16 Value=8 Value=4 Valne=2 Value= I 

Bit 7 set (1) indicates that a Group Execute Trigger command has been received. 

Bit 6 set (1) indicates that an Incomplete-Souree-Handshake error has occurred. 

Bit 5 set ( 1) indicates that an unidentified command has been received. 

Bit 4 set (1) indicates that a Secondary Address has been sent in while in the extended
addressing mode. 

Bit 3 set ( 1) indicates that the interfaee has entered the Deviee-Ciear-Active State. 

Bit 2 set ( 1) indieates that My Address has been received. 

Bit 1 set (1) indicates that a Serviee Request has been received. 

Bit 0 set ( 1) indieates that the Interface Clear message has been received. 

The HP-IB Interface 12-61 



HP-IB READIO Register 21 Interface Status 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

ATN LSB of 
REM LLO LPAS TPAS LADS TADS Last Thue 

Address 
Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

Bit 7 set ( 1) indicates that this interface is in the Remote State. 

Bit 6 set ( 1) indicates that this interface is in the Local Lockout State. 

Bit 5 set ( 1) indicates that the ATN signal line is true. 

Bit 4 set (1) indicates that this interface is in the Listener-Primary-Addressed State. 

Bit 3 set (1) indicates that this interface is in the Talker-Primary-Addressed State. 

Bit 2 set (1) indicates that this interface is in the Listener-Addressed State. 

Bit 1 set ( 1) indicates that this interface is in the Talker-Addressed State. 

Bit 0 set ( 1) indicates that this is the least-significant bit of the last address recognized 
by this interface. 

12-62 The HP-IB Interface 

',~ 



HP-IB READIO Register 23 Control-Line Status 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
ATN DAV NDAC 1 NRFD 1 EOI SRQ2 IFC REN 
True True True True True True True True 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

A set bit ( 1) indicates that the corresponding line is currently true; a 0 indicates that 
the line is currently false. 

HP-IB READIO Register 29 Command Pass-Through 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DIOS DI07 DI06 DI05 DI04 DI03 DI02 DIOl 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

This register can be read during a bus holdoff to determine which Secondary Command 
has been detected. 

HP-IB READIO Register 31 Bus Data Lines 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DIOS DI07 DI06 DI05 DI04 DI03 DI02 DIOl 

Value=l28 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

A set bit (1) indicates that the corresponding HP-IB data line is currently true; a 0 
indicates the line is currently false. 

1 Only if addressed to TALK, else not valid. 
2 Only if Active Controller, else not valid. 

The HP-IB Interface 12-63 



HP-IB WRITEIO Registers 
Register 3- Interrupt Enable 
Register 17 ~- MSB of Interrupt Mask 
Register 19-- LSB of Interrupt Mask 
Register 23- Auxiliary Command Register 
Register 25 -- Address Register 
Register 27 --Serial Poll Response 
Register 29 - Parallel Poll Response 
Register 31- Data Out Register 

HP-IB WRITEIO Register 3 Interrupt and DMA Enable 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Enable 

X X X X Enable Enable Interrupt X Channell Channel 0 
Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

Bit 7 enables interrupts from this interface if set (1) and disables interrupts if clear (0). 

Bits 6 through 2 are "don't cares" (i.e., their values have no effect on the interface's 
operation). 

Bit 1 enables DMA channel 1 if set (1) and disables if clear (0). 

Bit 0 enables DMA channel 0 if set (1) and disables if clear (0). 

Note 

Bits 7 through 1 are not implemented on the internal HP-IB inter
face and thus have no effect on the interface's operation. 

WRITEIO Register 17 MSB of Interrupt Mask 

\ ....... ) 

Setting a bit of this register enables an interrupt for the specified condition. The bit 
assignments are the same as for the MSB of Interrupt Status Register (READIO Register 
17), except that bits 7 and 6 are not used. U 

12-64 The HP-IB Interface 



WRITEIO Register 19 LSB of Interrupt Mask 

Setting a bit of this register enables an interrupt for the specified condition. The bit 
assignments are the same as for the LSB of Interrupt Status Register (READIO Register 
19). 

HP-IB WRITEIO Register 23 Auxiliary Command Register 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 
Set X X Auxiliary Command Function 

Value=128 Value=64 tyalue=32 tyaluc=16 jvaluc=8 jvalue=4 jvaluc=2 jvaluc=l 

Bit 7 is set (1) for a Set operation and clear (0) for a Clear operation. 

Bits 6 and 5 arc "don't cares." 

Bits 4 through 0 arc Auxiliary-Command-Function-Select bits. The following commands 
can be sent to the interface by sending the specified numerie values. 

The HP-IB Interface 12-65 



Decimal 
Value 

0 

128 

1 

Clear Chip Reset 

Set Chip Reset 

Table 12-5. Auxiliary Commands 

Description of Auxiliary Command 

Release ACDS holdoff. If Address Pass Through is set, it indicates an invalid sec
ondary has been received. 

129 Release ACDS holdoff. If Address Pass Through is set, indicates a valid secondary 
has been received. 

2 Release RFD holdoff. 

130 Same command as decimal 2 (above). 

3 Clear holdoff on all data. 

131 Set holdoff on all data. 

4 Clear holdoff on EOI only. 

132 Set holdoff on EOI only. 

5 Set New Byte Available (nba) false. 

133 Same command as decimal 5 (above). 

6 Pulse the Group Execute Trigger line, or clear the line if it was set by decimal 
command 134. 

134 Set Group Execute Trigger line. 

7 Clear Return To Local (rtl). 

135 Set Return To Local (must be cleared before the device is able to enter the Remote 
state). 

8 Causes EOI to be sent with the next data byte. 

136 Same command as decimal 8 (above). 

9 Clear Listener State (also cleared by decimal 138). 

137 Set Listener State. 

10 Clear Talker State (also cleared by decimal 137). 

138 Set Talker State. 

12-66 The HP-IB Interface 



Decimal 
Value 

11 

139 

12 

140 

13 

141 

14 

142 

15 

143 

16 

144 

17 

145 

18 

146 

19 

147 

20 

148 

21 

149 

22 

150 

Table 12-5. Auxiliary Commands (continued) 

Description of Auxiliary Command 

Go To Standby (gts; controller sets ATN false). 

Same command as decimal 11 (above). 

Take Control Asynchronously (tea; ATN true). 

Same command as decimal 12 (above). 

Take Control Synchronously (tcs; ATN true). 

Same command as decimal 13 (above). 

Clear Parallel Poll 

Set Parallel Poll (read Command-Pass-Through register before clearing). 

Clear the Interface Clear line (IF C). 

Set Interface Clear (IFC maintained> 100 11s). 

Clear the Remote Enable (REN) line. 

Set Remote Enable. 

Request control (after TCT is decoded, issue this to wait for ATN to drop and 
receive control). 

Same command as decimal 17 (above). 

Release control (issued after sending TCT to complete a Pass Control and set ATN 
false). 

Same command as decimal 18 (above). 

Enable all interrupts. 

Disable all interrupts. 

Pass Through next Secondary Command. 

Same command as decimal 20 (above). 

Set TI delay to 10 clock cyciPs ( 2 11s at 5 MHr-). 

Set TI delay to 6 clock cycles ( 1.2 11s at 5 MHr-). 

Clear Shadow Handshake 

Set Shadow Handshake. 

TIH' HP-IB Interfac(' 12-67 



HP-IB WRITEIO Register 25 Address Register 

Bit 7 Bit 6 Bit 5 Bit 4 I Bit 3 l Bit 2 J Bit 1 I Bit 0 
Enable 

Disable Dual Disable 
Listen Talker Primary Address Addressing 

Value=128 Value=64 Value=32 Value=16 lvalue=8 IValue=4 Jvalue=2 lvalue=1 

Bit 7 set (1) enables the Dual-Primary-Addressing Mode. 

Bit 6 set (1) invokes the Disable-Listen function. 

Bit 5 set ( 1) invokes the Disable-Talker function. 

Bits 4 through 0 set the device's Primary Address (same address bit definitions as REA
DIO Register 5). 

HP-IB WRITEIO Register 27 Serial Poll Response Byte 

Bit 7 Bit 6 Bit 5 I Bit 4 I Bit 3 I Bit 2 I Bit 1 I Bit 0 
Device 

Request Dependent Device Dependent Status 
Status Service 

Value=128 Value=64 Value=32 lvalue=16 IValue=8 lvalue=4 lvalue=2 lvalue=l 

Bits 7 and 5-0 specify the Device-Dependent Status. 

Bit 6 sends an SRQ if set ( 1). 

Note 

Given an unknown state of the Serial Poll Response Byte, it is 
necessary to write the byte with bit 6 set to zero followed by a 
write of the byte with bit 6 set to the desired final value. This will 
insure that a SRQ will be generated if one was desired. 

12-68 The HP-IB Interface 

. \ 1\..-/ 



HP-IB WRITEIO Register 29 Parallel Poll Response 

I3it 7 I3it 6 I3it 5 I3it 4 I3it 3 I3it 2 I3it 1 I3it 0 
DI08 DI07 DI06 DI05 DI04 DI03 DI02 DIOl 

Valuc=128 Valuc=64 Valuc=32 Value=16 Valuc=8 Valuc=4 Valuc=2 Valuc=l 

A 1 sets the appropriate bit true during a Parallel Poll; a 0 sets the corresponding bit 
false. Initially, and when Parallel Poll is not configured, this register must be set to all 
zeros. 

HP-IB WRITEIO Register 31 Data-Out Register 

I3it 7 I3it 6 I3it 5 I3it 4 I3it 3 I3it 2 I3it 1 I3it 0 
DI08 DI07 DI06 DI05 DI04 DI03 DI02 DIOl 

Valuc=128 Value=64 Valuc=32 Value=16 Value=8 Valuc=4 Value=2 Value=l 

The HP-II3 Interface 12-69 



Summary of Bus Sequences 
The following tables show the bus activity invoked by executing HP-IB statements and 
functions. The mnemonics used in these tables were defined in the previous sections of 
this chapter. 

Note that bus messages are sent by using single lines (such as the ATN line) and multiple 
lines (such as DCL). The information shows the state of and changes in the state of the 
ATN line during these bus sequences. The tables implicitly show that these changes in 
the state of ATN remain in effect unless another change is explicitly shown in the table. 
For example, if a statement sets ATN (true) with a particular command, then it remains 
true unless the table explicitly shows that it is set false. The ATN line is implemented in 
this manner to avoid unnecessary transitions in this signal whenever possible. It should 
not cause any dilemmas in most cases. 

ABORT 

System Controller Not System Controller 
Interface Select Primary Addressing Interface Select Primary Addressing Code Only Specified Code Only Specified 

IFC (duration ATN 
Active ;;<100~sec) MTA 

Controller REN UNL 
ATN ATN 

Error Error 

IFC (duration 
No Not Active ;;<100 ~sec)* 

Controller REN Action 
ATN 

*The IFC message allows a non-active controller (which 1s the system controller) to 
become the active controller. 

12-70 The HP-IB Interface 

' ) \~ 



CLEAR 

System Controller Not System Controller 
Interface Select Primary Addressing Interface Select Primary Addressing Code Only Specified Code Only Specified 

ATN ATN 
Active ATN MTA 

ATN MTA 
Controller OCL UNL 

OCL UNL 
LAG LAG 
soc soc 

Not Active 
Error Controller 

LOCAL 
System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing 
Code Only Specified Code Only Specified 

ATN ATN 

Active REN MTA 
ATN MTA 

Controller ATN UNL 
GTL UNL 

LAG LAG 
GTL GTL 

Not Active REN 
Error Error Controller 

LOCAL LOCKOUT 
System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing 
Code Only Specified Code Only Specified 

Active ATN 
Error ATN 

Error Controller LLO LLO 

Not Active 
Error Controller 

The HP-IB Interface 12-71 



PASS CONTROL 

System Controller Not Syster17 Controller 
Interface Select Primary Addressing Interface Select I Primary Addressing 

Code Only Specified Code Only I Specified 

ATN ATN 
Active 

Error TAD 
Error TAD 

Controller TCT TCT 
ATN ATN 

Not Active 
Error 

I 

Controller 

PPOLL 

System Controller Not Systerl) Controller 
Interface Select Primary Addressing Interface Select Primary Addressing 

Code Only Specified Code Only Specified 

ATN & EOI ATN & EOI 
(duration""25f1S) {duration""25f1S) 

I 

Active Read byte 
Error Read byte 

Error Controller EOT EOI 
Restore ATN to Restore ATN to 
previous state previous state 

Not Active 
Error Controller 

PPOLL CONFIGURE 
System Controller Not Systerljl Controller 

Interface Select Primary Addressing Interface Select I Primary Addressing 
Code Only Specified Code Only Specified 

ATN I ATN 
MTA MTA 

Active 
Error 

UNL 
Error UNL 

Controller LAG LAG 
PPC PPC 
PPE PPE 

I 

Not Active I 

Controller Error 
\~ 

12-72 The HP-IB Interface 



PPOLL UNCONFIGURE 
System Controller Not System Controller 

Interface Select Primary Addressing Interface Select Primary Addressing Code Only Specified Code Only Specified 

ATN ATN 
MTA MTA Active ATN UNL ATN UNL Controller PPU LAG PPU LAG 
PPC PPC 
PPD PPD 

Not Active 
Error Controller 

REMOTE 
System Controller Not System Controller 

Interface Select Primary Addressing Interface Select [ Primary Addressing Code Only Specified Code Only Specified 

REN 

Active ATN 
REN MTA Error Controller 
ATN UNL 

LAG 

Not Active 
REN Error Error Controller 

The HP-In Interfaee 12-73 



SPOLL 

System Controller Not System Controller 
Interface Select Primary Addressing Interface Select Primary Addressing 

Code Only Specified Code Only Specified 

ATN ATN 
UNL UNL 
MLA MLA 
TAD TAD 

Active 
Error SPE 

Error SPE 
Controller ATN ATN 

Read data Read data 
ATN ATN 
SPD SPD 
UNT UNT 

Not Active 
Error Controller 

TRIGGER 

System Controller Not System Controller 
Interface Select Primary Addressing Interface Select Primary Addressing 

Code Only Specified Code Only Specified \ 

\......./! 
ATN ATN 
MTA Active ATN UNL ATN 
UNL Controller GET LAG GET 
LAG 

GET 
GET 

Not Active 
Error Controller 

12-74 The HP-IB Interface 



Table of Contents 

Chapter 13: The RS-232C Serial Interface 
Asynchronous Data Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 
Data Transfers Between Computer and Peripheral . . . . . . . . . . . . . . . . . . . 13-5 

Overview of Serial Interface Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Determining Operating Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Using Interface Defaults to Simplify Programming . . . . . . . . . . . . . . . . . . . 13-7 
Using Program Control to Override Defaults ........................ 13-9 

Data Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 
Program Flow .................................................. 13-12 
Modern Line Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13 
Incoming Data Error Detection and Handling . . . . . . . . . . . . . . . . . . . . . . 13-14 
Trapping Serial Interface Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16 

Special Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17 
Sending BREAK Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17 
Using the Modem Control Register ................................ 13-17 

READIO and WRITEIO Registers .................................... 13-19 
Interface Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20 

Cable Options and Signal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
The DTE Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-30 
The DCE Cable ................................................ 13-31 

RS-232C / CCITT V24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-34 
Summary of RS-232C Serial STATUS and CONTROL Registers . . . . . . . . . . 13-36 
Model 216 and 217 Built-In 98626 Interface Diff<'renccs . . . . . . . . . . . . . . . . . . 13-45 
HP 98644 Interface Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-46 

Hardware Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-46 
BASIC Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-49 

Series 300 Built-In 98644 Interface Differences . . . . . . . . . . . . . . . . . . . . . . . . . . 13-51 



u 

(J 

0 



The RS-232C Serial Interface 
The HP 98626 Serial Interfaee1 is an RS-232C compatible interface used for simple 
asynchronous I/0 applications such as driving line printc'rs, tc'nninals, or otlH'r p<'riph
erals where the more sophisticatc'd capabilities of tlw HP 98628 Data Communications 
Interfaee2 are not justified. It uses a UART (Universal Asynchronous ReceiV<'r and 
Transmitter) integrated circuit to generate the required asyne signals. 

Backplane 
Connector 

Parallel Data 

Serial 
Interface 
Hardware 

I 

Bit-Serial Data 

(In) 

1 Parallel/Serial 

Special Purpose 

6 

Grounds 

7 

Figure 13-1. Block Diagram of the Serial Interface 

0 
ti 
Q) 
c 
c 
0 
u 
c 
ii 
.;., 
N 

Shielded Cable 
to a Device 

The I3ASIC system must provide most control functions because the card does not have' 
its own microprocessor (as does the 98628 card). Consec)lwntly, there is more intc'raetion 
between the card and computer than when you use a more intdligcnt intNface rxcept 
for relatively simple applications. 

1 The lower-cost HP 98644 Serial Interface is also availabl(' for these types of applications. Diffcrcncps are 
described where necessary in the text~ and arc also sununarized at th<' end of 1 his chapter. 

2 See the "Dataconun Interface" chapter for details. 

The RS-232C ~:krial Interface 13-1 



The RS-232C interface standard1 establishes electrical and mechanical interface require
ments, but does not define the exact function of all the signals that are used by various 
manufacturers of data communications equipment and serial 1/0 devices. Consequently, 
when you plug your serial interface into an RS-232 connector, there is no guarantee the 
devices can communicate unless you have configured optional parameters to match the 
requirements of the device you are connecting to. 

Asynchronous Data Communication 
The terms Asynchronous (Async for short) data communication and Serial I/0 refer to 
a technique of transferring information between two communicating devices by means of 
bit-serial data transmission. This means that data is sent, one bit at a time, and that 
characters are not synchronized with preceding or subsequent data characters; that is, 
each character is sent as a complete entity without relationship to other events, before 
or after. Characters may be sent in close succession, or they may be sent sporadically as 
data becomes available. Start and stop bits are used to identify the beginning and end 
of each character, with the character data placed between them. 

Character Format 
Each character frame consists of the following elements: 

• Start Bit: The start bit signals the receiver that a new character is being sent. Since 
the receiver knows how many bits per second are being transmitted (specified by 
the baud rate), it can determine the expected arrival time for all subsequent bits in 
that character frame. All other bits in a given frame are synchronized to the start 
bit. 

• 5-8 Character Data Bits: The next bits are the binary code of the character being 
transmitted, consisting of 5, 6, 7, or 8 bits; depending on the application. The 
parity bit is not included in the character data bits. 

• Parity Bit: The parity bit is optional, included only when parity is enabled. 

• Stop Bit(s): One or more stop bits identify the end of each character. The serial 
interface has no provision for inserting time gaps between characters. 

1 RS-232C is a data communication standard established and published by the Electronic Industries As
sociation (EIA). Copies of the standard are available from the association at 2001 Eye Street N. W., 
Washington D. C. 20006. Its equivalent for European applications is CCITT V.24. 

13-2 The RS-232C Serial Interface 



Here is a simple diagram showing tlw strueture of an asynchronous character and its 
relatiouship to other characters in the data stream: 

Preceding '--y--J 
Character Line in 

Idle State 
(Mark) 

Parity 

Beginning of 
Character 

0 0 0 

Single Character Frome 

Parity 
Bit 

Figure 13-2. Asynchronous Format 

'------.>~ 
Stop 
Bit(s) 

End of 
Character 

for Next 
Character 

The parity bit is used to detect PITOrs as incoming eharactPrs arP received. If the parity bit 
does not match the expected seuse, the eharactPr is assunwd to ])(' ineorrectly reeeived. 
The action taken wheu an error is deteet<'d <kpmds upou how the iuterfac:e and the 
BASIC program are coufigured. 

Parity seuse i1:1 d<'t,Prmined by system requiremeuts. The parity bit may lw iududed or 
omitted from each eharaeter by euabliug or disabling the parity fuuction. If til<' parity 
bit is mabled, four optious are available. Parity is checked by the reeeiver for all parity 
options including ONE and ZERO. (The HP 98628 Datacomm Iut<Tface does uot check 
parity when parity is set to ONE or ZERO.) 

Th<' R8-232C Serial Iuterfaee 13-3 



Parity options include: 

• NONE 

• ODD 

• EVEN 

• ONE 

• ZERO 

Parity function is DISABLED, and the parity bit is omitted from each 
character frame. 

Parity bit is SET if there is an EVEN 1 number of ones in the data character. 
The receiver performs parity checks on incoming characters. 

Parity bit is SET if there is an ODD 1 number of ones in the data character. 
The receiver performs parity checks on incoming characters. 

Parity bit is set for all characters. Parity is checked by the receiver on all 
incoming characters. 

Parity bit is cleared, but present for all characters. Parity is checked by 
the receiver on all characters. 

Error Detection 
Two types of incoming data errors can be detected by serial receivers: 

• Parity errors are signalled when the parity bit does not match the number of ones, 
including the parity bit, even or odd as defined by interface configuration. When 
parity is disabled, no parity check is made. 

• Framing errors are signaled when start and stop bits are not properly received 
during the expected time frame. They can be caused by a missing start bit, noise 
errors near the end of the character, or by improperly specified character length at 
the transmitter or receiver. 

Two additional error types are detected by the receiver section of the serial interface: 

• Overrun errors result when the desktop computer does not consume characters 
as fast as they arrive. The card provides only one character of buffer space, so 
the current character must be consumed by an ENTER before the next character 
arrives. Otherwise, the character is lost when the next character replaces it, and 
an error is sent to BASIC. 

• Received BREAKs are detected as a special type of framing error. They generate 
the same type of BASIC error as framing errors. 

1 Parity sense is determined by counting the number of ones in the character including the parity bit. 
Consequently, the parity sense is reversed from the number of ones in a character without the parity bit. 

13-4 The RS-232C Serial Interface 



Data Transfers Between Computer and Peripheral 
Four statements arc used to transfer information between your desktop computer and 
the interface card: 

• The CONTROL statement is used to control interface operation and defines such 
parameters as baud rate, character format, or parity. 

• The OUTPUT statement sends data to the interface which, m turn, sends the 
information to the peripheral device. 

• The ENTER statement inputs data from the interface c:ard after the interface has 
received it from the peripheral deviee. 

• The STATUS statement is used to monitor the interface and obtain information 
about interface operation such as buffer status, deteeted errors, and interrupt enable 
status. 

Since the interface has no on-board processor, ENTER and OUTPUT statements cause 
the computer to wait until the ENTER or OUTPUT operation is complete before con
tinuing to the next line. For OUTPUT statements, this means that the computer waits 
until the last bit of the last character has been sent over the serial line beforr continuing 
with the next program statement. 

TIH' RS-232C Serial Interfac.e 13-5 



Overview of Serial Interface Protgramming 
Serial interface programming techniques are similar to most general I/0 applications. 
The interface card is initialized by use of CONTROL statements; STATUS statements 
evaluate its readiness for use. Data is transferred between the desktop computer and a 
peripheral device by OUTPUT and ENTER statements. In most cases, default configu
ration switches on the interface card can be used to eliminate or significantly reduce the 
need for using CONTROL statements to initialize the card. 

Due to the asynchronous nature of serial I/0 operations, special care must be exercised 
to ensure that data is not lost by sending to another device before the device is ready 
to receive. Modem line handshaking can be used to help solve this problem. These and 
other topics are discussed in greater detail elsewhere in this chapter. 

Determining Operating Parameters 
Before you can successfully transfer information to a device, you must match the operat
ing characteristics of the interface to the corresponding characteristics of the peripheral 
device. This includes matching signal lines and their functions as well as matching the 
character format for both devices. 

Handshake and Baud Rate 
To determine hardware operating parameters, you need to know the answer for each of 
the following questions about the peripheral device: 

• Which of the following signal and control lines are actively used during communi
cation with the peripheral'? 

Data Set Ready (DSR) 

Data Carrier Detect (DCD or CD) 

Clear to Send (CTS) 

Ring Indicator (RI) 

• What baud rate (line speed) is expected by the peripheral? 

13-6 The RS-232C Serial Interface 



Character Format Parameters 
To define the character format, you must know the requir<'HH'nts of tlw I><'riphnal ckvic<' 
for the following parameters: 

• Character Length: How many data bits ar<' used for each character, excluding start, 
stop, and parity bits? 

• Parity Enable: Is parity enabled (included) or disabkd (absent) for each character? 

• Parity Sense: Is the parity bit, if enabled, ODD, EVEN, always ONE, or always 
ZERO? 

• Stop Bits: How many stop bits are included with each character: 1. 1.5. or 2? 

Using Interface Defaults to Simplify Programming 
The serial interface includes three default configuration switch clusters in addition to th<' 
select code and interrupt level switches. Their fuuetions are described in tlH' followiug 
paragraphs. 

Modem-Line Disconnect Switches 
The Modem Line Disconnect switches arc used to connect or disconnect the following 
modern lines from the interface cable: 

• Data Set Ready (DSR) 

• Data Carrier Detect (DCD or CD) 

• Clear to Send (CTS) 

• Ring Indicator (RI) 

When a given switch is in the CONNECT position, the correspondiug modem line is 
ecmnected from the peripheral device to the interface circuitry. When it is in the discon
neeted position, the modem line is disconnected, and the interfac<' receiver input for that 
line is held HIGH (true). Any modem liues that are not actively used whih' communicat
ing with the peripheral should be disconnected to minimi~e errors due to electrical nois<' 
in the cable. Modem line disconnect switch settings cannot be altered under program 
control. To reconfigure the switches, the interface must lw rernov<'d from the computer, 
and the settings ehanged by hand. 

The RS-232C Serial Interfac<' 13-7 



Note 

The built-in 98626 serial interface in Series 200 Models 216 and 217 
and 98644 interface in Series 300 computers have no "modem-line 
disconnect" switches. Because switch settings can vary, cable con
nections between the computer and an external device can require 
some cross-wiring. Use of a breakout box can be helpful. 

Baud Rate Select Switches1 

The rate at which data bits are transferred between the interface and the peripheral is 
called the baud rate. The interface card must be set to transmit and receive at the same 
rate as the peripheral, or data cannot be successfully transferred. To preset the baud 
rate, the Baud Rate Select switches can be set to any one of the following values: 

Table 13-1. Baud Rate Select Switch Settings 

Switch Settings Switch Settings 
Baud Rate 3 2 1 0 Baud Rate 3 2 1 0 

50 0 0 0 0 1200 1 0 0 0 
75 0 0 0 1 1800 1 0 0 1 

110 0 0 1 0 2400 1 0 1 0 
134.5 0 0 1 1 3600 1 0 1 1 
150 0 1 0 0 4800 1 1 0 0 
200 0 1 0 1 7200 1 1 0 1 
300 0 1 1 0 9600 1 1 1 0 
600 0 1 1 1 19200 1 1 1 1 

1 These switches are not implemented on the 98644 interface. See the description of register 13, which 
allows you to set a "SCRATCH A default" value for the baud rate. 

13-8 The RS-232C Serial Interface 

\ , I 
0 



Line-Control Switches 1 

The Line Control switches are used to preset character format and parity options. Func
tions are as follows: 

Table 13-2. Line Control Switch Settings 

Parity Sense Parity Enable Stop Bits Character Length 
(Switches 5&4) (Switch 3) (Switch 2) (Switches 1&0) 

00 ODD parity 0 Disabled 0 1 stop bit 00 5 bits/char 
01 EVEN parity 1 Enabled 1 1.5 stop bits 01 6 bits/char 
10 Always ONE (if 5 bits/char), 10 7 bits/char 
11 Always ZERO or 2 stop bits 11 8 bits/char 

(ifG, 7, or 8 
bits/char). 

Bits 6 and 7 are reserved for future usc. 

Using Program Control to Override Defaults 
You can override some of the interface default configuration options by use of CONTROL 
statements. This not only enables you to guarantee certain parameters, but also provides 
a means for changing seleetcd parameters in the c.ourse of a running program. CONTROL 
Register tables are listed at the end of this chapter as wPll as in the BA8IC: Language 
Reference. Refer to them as needed during the diseussion which follows. 

Interface Reset 
Whenever an interface is conneeted to a modem that may still be connected to a teleeorn
nnmications link from a previous session, it is good programming practic<' to reset the 
interface to force the modem to disconnect, unless the status of the link and rernot<' 
connection are known. When the interface is connected to a line printer or similar pe
ripheral, resetting the interface is usually unnecessary unless an error condition requires 
it. 

100 CONTROL Sc,0;1 Reset interface. 

1 These switches are not implement('(} on th<' 98644 interfac<'. See the d<'Scription of register 14, which 
allows you to set a "SCRATCH A default" vain<' for the character format. 

The RS-232C SPrial Interface 13-9 



When the interface is reset by use of a CONTROL statement to CONTROL Register 0 
with a non-zero value, the interface is restored to its power-up condition- -except that the 
current character format is not altered, whether or not it is the same as the current default 
switch configuration. If you are not sure of the present settings, or if your application 
requires changing the configuration during program operation, you can use CONTROL 
statements to configure the interface. An example of where this may be necessary is 
when several peripherals share a single interface through a manually operated RS-232 
switch such as those used to connect multiple terminals to a single computer port, or a 
single terminal to multiple computers. 

Selecting the Baud Rate 
In order to successfully transfer information between the interface card and a peripheral, 
the interface and peripheral must be set to the same baud rate. A CONTROL statement 
to register 3 (or 13 with 98644 interfaces) can be used to set the interface baud rate to 
any one of the following values: 

50 

75 

110 

134.5 (or 134) 

150 

200 

300 

600 

1200 

1800 

2400 

3600 

4800 

7200 

9600 

19 200 

For example, to select a baud rate of 3600, the following program statement is used: 

1190 CONTROL Sc,3;3600 

Use of values other than those shown may result in incorrect operation. 

To verify the current baud rate setting, use a STATUS statement addressed to register 
3. All rates are in baud (bits/second). 

13-10 The RS-232C Serial Interface 



Setting Character Format and Parity 
CONTROL Register 4 overrides the Line Control switdws 1 that control parity and ehar
aeter format. To determine the value sent to the registcr. add til<' appropriat<' values 
selected from the following table: 

Table 13-3. Character Format and Parity Settings 

Parity Sense Parity Enable Stop Bits Character Length 
(Bits 5&4) (Bit 3) (Bit 2) (Bits 1&0) 

()() ODD parity () Disabled () 1 stop bit () 5 bits/char 
lG EVEN parity 8 Enabled 4 1.5 stop bits 1 G bits/char 
32 Always ONE (if 5 bits/char), 2 7 bits/char 
48 Always ZERO or 2 stop bits 3 8 bits/char 

(ifG, 7, or 8 
bits/char). 

For <'xampk, to coufigure a character format of 8 bits per character, two stop bits, and 
EVEN parity, usc the following CONTROL statement: 

1200 CONTROL Sc,4;3+4+8+16 
or 

1200 CONTROL Sc,4;31 

To configure a 5-bit charaetcr length with 1 stop bit and no parity bit, use the following: 

1200 CONTROL Sc,4;0 

1 With 98644 int<>rfaccs, there are no Line Coutrol switches. You can simulate th<>ir effpct by writing to 
CONTROL register 14. Note that individual bits of this r<'gister are the same as for register 4. 

The RS-232C Serial Intcrfac<' 13-11 



Data Transfers 
The serial interface card is designed for relatively simple serial I/0 operations. It is 
not intended for sophisticated applications that use ON INTR statements extensively 
to service the interface. If your situation requires full interrupt capability such as in 
terminal emulator applications, use the HP 98628 Datacomm Interface instead. Limited 
ON INTR capabilities are provided by the serial interface for error trapping and other 
simple tasks. 

Program Flow 
When the interface is properly configured, either by use of default switches or CONTROL 
statements, you are ready to begin data transfers. OUTPUT statements are used to send 
information to the peripheral; ENTER statements to input information from the external 
device. 

OUTPUT 20;"String data",Numeric_var,Etc 

ENTER 20;String_var$,Numeric_var,Etc 

Any valid OUTPUT or ENTER statement and variable(s) list may be used, but you must 
be sure that the data format is compatible with the peripheral device. For example, non
ASCII data sent to an ASCII line printer may result in unexpected behavior. 

Various other I/0 statements can be used in addition to OUTPUT and ENTER, depend
ing on the situation. For example, the LIST statement can be used to list programs to an 
RS-232 line printer-provided the interface is properly configured before the operation 
begins. 

Data Output 
To send data to a peripheral, use OUTPUT, OUTPUT USING, or any other similar 
or equivalent construct. Suppression of end-of-line delimiters and other formatting ca
pabilities are identical to normal operation in general I/0 applications. The OUTPUT 
statement hangs the computer until the last bit of the last character in the statement 
variable list is transmitted by the interface. When the output operation is complete, the 
computer then continues to the next line in the program. See the "Outputting Data" 
chapter for details of the OUTPUT statement. 

13-12 The RS-232C Serial Interface 

' l ""-"; 



Data Entry 
To input data from a peripheral, use ENTER, ENTER USING, or au equival<'nt stat<'
ment. Inclusion or elimination of end-of-line delimiters and other information is deter
mined by the formatting specified in the ENTER statem<'nt. The ENTER stat<'nwut 
hangs the computer until the input variables list is satisfied. To minimize the risk of 
waiting for another variable that isn't eoming, you may prefer to specify only on<' vari
able for each ENTER statement, aud analyze the result before starting the next input 
operation. See the "Entering Data" chapter for details of the ENTER statemmt. 

l3e sure that the peripheral is not transmitting data to the iuterface while no ENTER 
is in progress. Otherwise, data may be lost because t!H' card provides bufferiug for 
only one character. Also, interrupts from other I/0 devices, or operator inputs to the 
computer keyboard can cause delays in computer serviee to the interfaee that result in 
buffer overrun at higher baud rates. 

Modem Line Handshaking 
Modem line handshaking, when used, is performed automatically by tlw computer as 
part of the OUTPUT or ENTER operation. If the modem liue states have not been 
latched in a fixed state by Control Register 5, the followiug sequeuce of eveuts is executed 
automatieally during eaeh OUTPUT or ENTER operation: 

For OUTPUT operations: 

l. Set Data Terminal Ready all(l Request-to-Send modem lines to aetive state. 

2. Check Data Set Ready ami Clear-to-Send modem lines to be sur<' they are active. 

3. Send information to the interface and thence to the peripheral. 

4. After data transfer is complete, dear Data Tenninal Ready and Request-to-Send 
signals. 

TIH' RS-232C Serial Intprfac<' 13-13 



For ENTER operations: 

1. Set Data Terminal Ready line to active state. Leave Request-to-Send inactive. 

2. Check Data Set Ready and Data Carrier Detect modem lines to be sure they are 
active. 

3. Input information from the interface as it is received from the peripheral. 

4. After the input operation is complete, clear the Data Terminal Ready signal. 

After a given OUTPUT or ENTER operation is completed, the program continues exe
cution on the next line. 

Control Register 5 can be used to force selected modem control lines to their active 
state(s). The Data Rate Select and Secondary Request-to-Send lines are set or cleared 
by bits 3 and 2 respectively. Request-to-send and Data Terminal Ready are held in 
their active states when bits 1 and 0 are true, respectively. If bits 1 and/or 0 arc 
false, the corresponding modem line is toggled during OUTPUT or ENTER as explained 
previously. 

Incoming Data Error Detection and Handling 
The serial interface card can generate several errors that are caused when certain con
ditions are encountered while receiving data from the peripheral device. The UART 
detects a given error condition and sets the corresponding bit in Status Register 10. The 
card then generates a pending error to BASIC. Errors can be generated by any of the 
following conditions: 

• Parity error. The parity bit on an incoming character does not match the parity 
expected by the receiver. This condition is most commonly caused by line noise. 
When this error occurs, bit 2 of Status Register 10 is set. 

• Framing error. Start and stop bit(s) do not match the timing expectations of the 
receiver. This can occur when line noise causes the receiver to miss the start bit or 
obscures the stop bits. When this error is detected, bit 3 of Status Register 10 is 
set. 

• Overrun error. Incoming data buffer overrun caused a loss of one or more data 
characters. This is usually caused when data is received by the interface, but no 
ENTER statement has been activated to input the information. Bit 1 of Status 
Register 10 is set when this error occurs. 

13-14 The RS-232C Serial Interface 

~~ 

\ 

\_) 



e Break received. A BREAK was sent to the' int<,rface by t!H' rwriplH'ral d<>vice. TIH' 
desktop computer program must lw able to prope'rly interpret tlw meaning of a 
break and tak<> appropriat<' actiou. Wh(']} this condition occurs. bit 4 of Status 
Registe'r 10 is set. Siuce' a BREAK is dete'cted as a special type' of framiug error, 
the framiug error iudicator, bit 3, is also set. 

All UAHT status errors an• ge'm'rat<>d by £ncorn£ng data, ne•v<>r by outbound data. When 
a UART error occurs, the corresponding bit of Status Re'gister 10 is s<'l, and a JWll(ling 
error (EHBDR 167: Interface status error) is sent to BASIC. BASIC proe·e'sses t!H' <'rrm· 
accordiug to the following rules: 

e If an ENTER is iu progress, the error is handled inmH'diatdy as part of th<> ENTER 
process. An active' ON ERROR causes the error trap to be' executed. If no ON 
ERROR is active', the e'rrm· is fatal and causes tlw program to tcnninat<•. 

e If an OUTPUT is in progress, or if then' is 110 current activity betweeu the' comput<'l' 
aud iuterface, the <>rror is t1agg('(l, but nothing is douc• by BASIC uutil au ENTER 
statemeut is encountered. WIH'll the' computc•r bc•gins C'XC'cution of th<' ENTER 
statemeut, if au ON ERROR is aetivr, the c•rror trap is <'X<>cute'cl. If tlwr<' is 110 
active ON ERROR for that sdc•ct code, the' fatal ERROR 1G7 cause's tlw BASIC 
program to terminal<'. 

e If a STATUS stateme'llt is C'X<'cuted to Status RPgister 10 lwfore an ENTER statc'
llH'nt is e11couutered for that sPkct code. tlw p<'uding BASIC <'ITOl' is clC'arecL and 
the program contimi<'S as if uo error had been g<'llerated. Whrue'ver a STATUS 
statemeut is ex<'cuted to Status Registc•r 10. bits 1 through 4 of the' register an' 
cleared a11d tlH' data is d<'stroy<'d. If you ueed to perform multiple' op<'rations (such 
as IF BIT tests) 011 the register contents, be sure to store' tlH' iuforrnation in a 
variable lwfore you usc' it. 

ThP RS-232C Serial Iutprface' 13-15 



Trapping Serial Interface Errors 
Pending BASIC errors can be trapped by using an ON ERROR statement in conjunction 
with an error trapping service routine to evaluate the error condition. Here is an example 
technique: 

1200 Sc=9 
1210 ON ERROR GOTO Error 

Set serial interface select code. 
Set up error trap routine. 

1400 ENTER Sc;A$ Input line of data from interface. 

1530 Error: ! Error trap routine: 
1535 IF ERRN<>167 THEN Other_error 
1540 STATUS Sc,10;Uart_error ! Get UART error information. 
1550 IF BIT (Uart_error ,1) THEN Overrun Overrun error. 
1560 IF BIT (Uart_error, 2) THEN Parity Parity error. 
1570 IF BIT (Uart_error,4) THEN Break BREAK received. 
1580 IF BIT (Uart_error,3) THEN Framing Framing error. 
1590 Other: Other error type. 

1650 Overrun: Overrun error routine: 

1700 Parity: Parity error routine: 

1750 Framing: Framing error routine: 

1800 Break: BREAK received routine· 

1850 Other error: Not error 167. Process accordingly. 

This example is not intended to show a specific application, but only to illustrate the 
technique for trapping interface errors. Only UART errors are shown in this example, 
but the technique is valid for other errors related to a given interface. 

13-16 The RS-232C Serial Interface 



Note that in this example, the UART rrror information is dH'cked for a BREAK before 
looking at the framing error bit. When a break is received, both the BREAK and framing 
error bits arc set. Consequently, if the error check sequence were reversed, it would be 
necessary to check for a BREAK whenever a framing C'lTor is processed. Reversing the 
order eliminates an extra step by making it unnecessary to check for framing errors when 
a BREAK occurs. That is because whenPver the BREAK is proepsscd, the framing error 
is also cleared, making it mmecessary to perform any operations related to framing errors 
that are handled by the BREAK routine. 

Special Applications 
This section provides advanced programming information for applications requiring spe
cial tedmiques. 

Sending BREAK Messages 
A BREAK is a special character transmission that usually indicates a change' in operating 
conditions. Interpretation of break messages varies with the application. To send a break 
message, send a non-zero value to Control R<'gister 1 as follows (sc is the interface select 
code): 

1640 CONTROL Sc,1;1 ! Send a BREAK to peripheral. 

Using the Modem Control Register 
Control Register 5 controls various functions related to modem operation. Bits 0 thru 3 
control modem lines, and bit 4 enables a self-test loopback confignration. 

Modem Handshake Lines (RTS and DTR) 
As explained earlier in this chapter, Request-to-scud and Data T<'nninal Ready lines arc 
set or cleared at the beginuing and end of each OUTPUT or ENTER operatiou. In some 
cases, it may be advantageous or necessary to maintain either or both in an active state. 
This is done by setting bit t or 0 respeetivdy in Control Register 5 as follows: 

1650 CONTROL Sc,5;2 
1660 CONTROL Sc,5;1 
1670 CONTROL Sc,5;3 
1680 CONTROL Sc,5;0 

Set RTS line only and hold active. 
Set DTR line only and hold active. 
Set both RTS and DTR lines active. 
Return to normal modem line handshake. 

The RS-232C Serial Iuterfac<' 13-17 



When RTS and/or DTR are set by Control Register 5, they are not toggled during 
OUTPUT or ENTER operations, but remain constantly in an active state until the 
CONTROL register is cleared by: 

• writing a different value to CONTROL register 5 

• an interface reset to CONTROL register 0 

• an interface reset (I Reset I) from the keyboard (I Shift II Break I on an ITF keyboard, or 
I SHIFT H PAUSE I on a 98203 keyboard). 

Programming the DRS and SRTS Modem Lines 
Bits 3 and 2 of Control Register 5 control the present state of the Data Rate Select (DRS) 
and Secondary Request-to-send (SRTS) lines, respectively. When either bit is set, the 
corresponding modem line is activated. When the bit is cleared, so is the modem line. 
To set both lines, the following statement or its equivalent can be used: 

1690 CONTROL Sc,5;8+4 ! Set DRS and SRTS lines. 

These lines are also cleared by a CONTROL statement to Control Register 5 with bits 
2 and 3 cleared, or by an interface reset. 

Configuring the Interface for Self-test Operations 
Self-test programs can be written for the serial interface. Prior to testing the interface, 
it must be properly configured. Using bit 4 of Control Register 5, you can rearrange the 
interconnections between input and output lines on the interface, enabling the interface 
to feed outbound data to the inbound circuitry. 

When LOOPBACK is enabled (bit 4 is set), the UART output is set to its MARK state 
and sent to the Transmitted Data (TxD) line. The output of the transmitter shift register 
is then connected to the input of the receiver shift register, causing outbound data to be 
looped back to the receiver. In addition, the following modem control lines are connected 
to the indicated modem status lines: 

Table 13-4. Modem Control Line/Modem Status Line Connections 

Modem Control Line Modem Status Line 

DTR Data Terminal Ready CTS Clear-to-send 
RTS Request-to-send DSR Data Set Ready 
DCD Data Carrier Detect DRS Data Rate Select 
SRTS Secondary RTS RI Ring Indicator 

13-18 The RS-232C Serial Interface 



When loopbaek is active, receiver and transmittPr intPITupts an' fully OJwrational. Mo
dem control interrupts are then generated by the modPm control outputs instead of tlH' 
modem status inputs. Refer to serial interface hardwarp documPntation for information about card hardware operation. 

READIO and WRITEIO Registers 
For those cases where you need to write special interfac<' driver routines, tliP intcrfac<' card 
provides registers that can be accessed by use of READIO and WIUTEIO statcnwnts. 
These capabilities are intended for usc by experienced programmers who understand tlw 
inherent programming complexities that accompany this versatility. 

Some registers are read/write; that is, both READIO and WIUTEIO OJWrations cau 
be performed on a given register. Writing places a new valm' in the register; a rpad 
operation returns the current value. All registers have 8 bits available, and accept valu<'S 
from 0 through 255 unless noted otherwise. Whcu the vain<' of a givm bit is 1, the bit is 
set; otherwise, it is zero (cleared or inactive). 

Note 

Some READIO and WIUTEIO registers arc similar in structure 
and function to Status and Control Registers. Howt'V<'r, their intPr
action with the BASIC opPrating system is considerably different. 
To prevent incorrect program operation, do NOT intermix the usc 
of STATUS/CONTROL registers and READIO/WRITEIO regis
ters in a given program. 

The RS-232C Serial Interfac<' 13-19 



Interface Hardware Registers 
READIO and WRITEIO registers 1, 3, 5, and 7 access interface registers. Their functions 
are as follows: 

READIO Register 1 

WRITEIO Register 1 

READIO Register 3: 

Interface ID 

This register returns the interface ID value: 2 for the HP 98626 
Serial Interface; 66 for the HP 98644 interface. 

Interface Reset 

Writing any value to this register, 1 thru 255, resets the inter
face as when using a CONTROL statement to Control Register 
0. 

Interrupt Status 

Only the upper four bits of Register 3 are used. Bit 7 returns 
the current interrupt enable value. Bit 6 is set when an in
terrupt request is originated by the UART. (No interrupt can 
occur unless bit 7, Interrupt Enable, is set by a WRITEIO 
statement.) 

Bits 5 and 4 return the setting of the Interrupt Level switches 
on the interface1 . Their values are as follows: 

00 Interrupt Level 3 
01 Interrupt Level 4 
10 Interrupt Level 5 
11 Interrupt Level 6 

WRITEIO Register 3: Interrupt Enable 

Only bit 7 can is affected by WRITEIO statements. Writing 
a 1 into this bit enables interrupts, while a 0 disables them. 

1 With 98644 interfaces (which have no interrupt level switches), this register always indicates an interrupt 
level of 5. 

13-20 The RS-232C Serial Interface 



READIO Register 5 

Bit 5 

Bit 4 

Bits 3-0 

Baud Rate 

50 

75 

110 

134.5 

150 

200 

300 

600 

Optional Circuit and Baud Rate Status 

READIO returns eurrmt states of the optional circuit drivers, 
plus the following: 

Optional Circuit Receiver 2 stat('. 

Optional Circuit Receiver 3 state. 

Current Baud Rate switch setting (not necessarily the current 
UART baud rate) as shown in the following table. 

Table 13-5. Baud Rate Switch Settings 

Switch Settings Switch Settings 
3 2 1 0 Baud Rate 3 2 1 0 
() () () () 1200 1 () () () 

() () () 1 1800 1 0 () 1 
0 () 1 () 2400 1 0 1 0 
() 0 1 1 3600 1 () 1 1 
0 1 () 0 4800 1 1 0 0 
0 1 0 1 7200 1 1 0 1 
0 1 1 0 9600 1 1 1 0 
0 1 1 1 19200 1 1 1 1 

WRITEIO Register 5: Optional Circuit and Baud Rate Control 

Bits 3-0 

WIUTEIO to bits 7 and 6 control the state of optional circuit 
drivers 3 and 4, respectively. 

WRITEIO to this register cannot be usPd to set tiH' baud rate. 
(Usc Register 23, bit 7 and Registers 17 and 19 instead.) 

ThP RS-232C S('!'ial Interface 13-21 



READIO Register 7 

WRITEIO Register 7 

UART Registers 

Line Control Switch Monitor1 

READIO to this register enables you to input the present set
tings of the Line Control switches that preset default character 
format and parity. Bit functions are included in the table ear
lier in this chapter under Using Interface Defaults to simplify 
programming. Bits 7 thru 0 correspond to switches 7 thru 0, 
respectively. 

WRITEIO operations to this register are meaningless. 

Registers 17 through 29 access DART registers. They arc used to directly control certain 
DART functions. The function of Registers 17 and 19 are determined by the state of bit 
7 of Register 23. 

READIO Register 17 Receive Buffer /Transmitter Holding Register 

When bit 7 of Register 23 is clear ( 0), this register accesses 
the single-character receiver buffer by use of READIO. 

The receiver and transmitter are doubly buffered. When the 
transmitter shift register becomes empty, a character is trans
ferred from the holding register to the shift register. You can 
then place a new character in the holding register while the 
preceding character is being transmitted. Incoming characters 
are transferred to the receiver buffer when the receiver shift 
register becomes full. You can then input the character (REA
DIO) while the next character is being constructed in the shift 
register. 

WRITEIO Register 17 Receive Buffer /Transmitter Holding Register 

A WRITEIO statement places a character in the transmitter 
holding register. 

1 Since the 98644 interface does not have these switches, READJO of this register will be meaningless. 

13-22 The RS-232C Serial Interface 



READIO /WRITEIO 
Registers 17 and 19 

READIO Register 19 

Baud Rate Divisor Latch 

When bit 7 of Register 23 is set (1), Registers 17 and 19 access 
the 16-bit divisor latch used by the UART to set the baud rate. 
Register 17 forms the lower byte; Register 19 the upper. The 
baud rate is determined by the following relationship: 

Baud Rate = 153 600/Baud Rate Divisor 

To access the Baud Rate Divisor latch, set bit 7 of Register 
23. This disables access to the normal functions of Registers 
17 and 19, but preserves aceess to the other registers. When 
the proper value has been placed in the latch, be sure' to clear 
bit 7 of Register 23 to return to normal operation. 

Interrupt Enable Register 

When bit 7 of Register 23 is dear (0), this register enables the 
UART to interrupt when specified conditions occur. Only bits 
0 thru 3 are used. Interrupt enable eonditions arc' as follows: 

Bit 3 Enable Modem Status Change Interrupts, when set, enables 
an interrupt whenever a modem status line changes state as 
indicated by Register 29, bits 0 thru 3. 

Bit 2 Enable Receiver Line Status Interrupts, when set, enables in
terrupts by errors, or received BREAKs as indicated by Reg
ister 27, bits 1 thru 4. 

l3it 1 Enable Transmitter Holding Register Empty Interrupt, when 
set, allows interrupts when bit 5 of Register 27 is also srt. 

l3it 0 Enable Receiver Buffer Full Interrupts, when set, enables in
terrupts when bit 0 of Register 27 is also set. 

WRITEIO Register 19 Interrupt Enable Register 

When bit 7 of Register 23 is clear (0), this register enables the 
UART to interrupt when specified conditions oeeur. Only bits 
0 thru 3 arc used. WRITEIO establishes a new value for each 
bit. Interrupt enable conditions are described in thr preceding 
explanation of READIO register 19. 

The RS-232C Serial Interface 13-23 



READIO Register 21 

Bits 2&1 

11 

10 

01 

00 

Interrupt Identification Register 

This register identifies the cause of the highest-priority, cur
rently-pending interrupt. Only bits 2, 1, and 0 are used. Bit 0, 
if set, indicates no interrupt pending. Otherwise an interrupt 
is pending as defined by bits 2 and 1. Causes of pending 
interrupts in order of priority are as follows: 

Interrupt Cause 

Receiver Line Status interrupt (highest priority) is caused 
when bit 2 of Register 19 is set and a framing, parity, or over
run error, or a BREAK is detected by the receiver (indicated 
by bits 1 thru 4 of Register 27). The interrupt is cleared by 
reading Register 27. 

Receive Buffer Register Full interrupt is generated when bit 0 
of Register 19 is set and the Data Ready bit (bit 0) of Register 
27 is active. To clear the interrupt, read the receiver buffer, 
or write a zero to bit 0 of Register 27. 

Transmitter Holding Register Empty interrupt occurs when 
bit 1 of Register 19 is set and bit 5 of Register 27 is set. The 
interrupt is cleared by writing data into the transmitter hold
ing register (Register 17 with bit 7 of Register 23 clear) with 
a WRITEIO statement, or by reading this register (Interrupt 
Identification). 

Modem Line Status Change interrupt occurs when bit 3 of 
Register 19 is set and a modem line change is indicated by one 
or more of bits 0 thru 3 of Register 29. To clear the interrupt, 
read Register 29 which clears the status change bits. 

13-24 The RS-232C Serial Interface 

\ 
I ' 
\ ) 
~ 



READIO /WRITEIO 
Register 23 

l3it 7 

Bit 6 

l3its 5,4 

l3it 3 

l3its 2,1&0 

Bit 2 

Character Format Control Register1 

This register is functionally equival<'nt to Control and Status 
Register 4 except for bits 6 and 7. WRITEIO sets a new char
acter format; READIO returns the current character format 
setting. 

Divisor Latch Access Bit, when set, <'nables you to access tlw 
divisor latches of the' Baud Rate generator during read/write 
operations to registers 17 and 19. 

Set BREAK, when set, holds the serial line in a BREAK state 
(always zero), independent of other transmitter activity. This 
bit must be cleared to disable the break and resume normal 
activity. 

Parity Sense is determined by both bits 5 alHl 4. When bit 5 
is set, parity is always ONE or ZERO. If bit 5 is not set, parity 
is ODD or EVEN as defined by bit 4. The combinations of 
bits 5 and 4 are as follows: 

00 ODD parity 
01 EVEN parity 
10 Always ONE 
11 Always ZERO 

Parity Enable, when set, sends a parity bit with each outbound 
charaeter, and checks all incoming characters for parity errors. 
Parity is defined by bits 4 and 5. 

Stop Bit(s) are defined by a eombination of bit 2 and bits 1 & 
0. 

Character Length Stop Bits 

0 5, 6, 7, or 8 

1 

1 6, 7, or 8 

1.5 

2 

l Since the 98644 interface docs not have t.hesP switches, READ!() of bits 5 through 0 of this r<•gistPr will 
be rneaninglcss. 

The RS-232C Serial Interface 13-25 



Bits 1&0 

READIO /WRITEIO 
Register 25 

Bits 7, 6, and 5 

Bit 4 

Bit 3 

Bit 2 

Bit 1 

Bit 0 

Character Length is defined as follows: 

Bits 1&0 

00 

01 

10 

11 

Character Length 

5 bits 

6 bits 

7 bits 

8 bits 

Modem Control Register 

This is a READ/WRITE register. READIO returns current 
control register value. WRITEIO sets a new value in the reg
ister. This register is equivalent to interface Control Register 
5. 

Not used. 

Loopback, when set, enables a loopback feature for diagnos
tic testing. Serial line is set to MARK state, UART receiver 
is disconnected, and transmitter output shift register is con
nected to receiver input shift register. Modem line outputs 
and inputs are connected as follows: DTR to CTS, RTS to 
DSR, DRS to DCD, and SRTS to RL Interrupts are enabled, 
with interrupts caused by modem control outputs instead of 
inputs from modem. 

Data Rate Select controls the OCD1 driver output. 1=Active, 
O=Disabled. 

Secondary Request-to-Send controls the OCD2 driver output. 
1=Active, O=Disabled. 

Request-to-Send controls the RTS modem control line state. 
When bit 1=1, RTS is always active. When bit 1=0, RTS is 
toggled by the OUTPUT statement as described earlier in this 
chapter. 

Data Terminal Ready holds the DTR modem control line ac
tive when the bit is set. If not set, DTR is controlled by the 
OUTPUT or ENTER statement as described earlier. 

13-26 The RS-232C Serial Interface 



READIO Register 27 

Bit 7 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

Bit 2 

Bit 1 

Bit 0 

Line Status Register 

Not used. 

Transmitter Shift Register Empty indicates no data present in 
transmitter shift register. 

Transmitter Holding Register Empty indicates no data prcsmt 
in transmitter holding register. The bit is cleared wheuevcr a 
new character is placed in the register. 

Break Indicator indicates that the received data input re
mained in the spaciug (line idle) statc for longer than tlH' 
transmission time of a full character frame. This bit is clean'd 
when the line status register is read. 

Framing Error indicates that a character was received with im
proper framing; that is, the start and stop bits did not couform 
with expected timing boundaries. 

Parity Error indicates that the n'ccived character did not havc 
the expected parity sense. This bit is elcared when tlw register 
is read. 

Overrun Error indicates that a character was destroyed be
cause it was not read from the receiver buffer before the twxt 
character arrived. This bit is dean'd by reading the line status 
register. 

Data Ready indicates that a character has been placed in the 
receiver buffer register. This bit is cleared by reading the re
ceiver buffer register, or by writing a zero to this bit of tlw 
line status register. 

Tlw RS-232C Serial Interface 13-27 



READIO Register 29 

Bit 7 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

Bit 2 

Bit 1 

Bit 0 

Modem Status Register 

Data Carrier Detect, when set, indicates DCD modem line is 
active. 

Ring Indicator, if set, indicates that the RI modem line is 
active. 

Data Set Ready, if set, indicates that the DSR modem line is 
active. 

Clear-to-send, if set, indicates that CTS is active. 

Change in Carrier Detect, when set, indicates that the DCD 
modem line has changed state since the last time the modem 
status register was read. 

Trailing Edge of Ring Indicator is set when the RI modem line 
changes from active to inactive state. 

Delayed Data Set Ready is set when the DSR line has changed 
state since the last time the modem status register was read. 

Change in Clear-to-send, if set, indicates that the CTS modem 
line has changed state since the last time the register was read. 

13-28 The RS-232C Serial Interface 

. \ 
\...-) 



Cable Options and Signal Functions 
The HP 98626A Serial Interface is available with RS-232C DTE and DCE cable configu
rations. The DTE cable option consists of a male RS-232C connector and cable designed 
to function as Data Terminal Equipment (DTE) when used with the serial interface. 
This means that the cable and eonnector are wired so that signal paths are correctly 
routed when the cable is connected to a peripheral device wired as Data Communication 
Equipment (DCE), such as a modem. The cables are designed so that you can write pro
grams that work for both DCE and DTE connections without requiring modifieations to 
accommodate equipment changes. 

The DCE cable option ineludes a female connector and cable wired so that the interface 
and cable behave like normal DCE. This means that signals arc routed correctly when 
the female cable connector is connected to a male DTE connector. 

Line printers and other peripheral devices that usc RS-232C interfacing arc frequently 
wired as DTE with a female RS-232C chassis connector. This means that if you usc a male 
(DTE) cable option to connect to the female DTE device connector, no communication 
can take place because the signal paths arc incompatible. To eliminate the problem, use 
an adapter cable to convert the female RS-232C chassis connector to a cable connector 
that is compatible with the male or female interface eablc connector. The HP 13242 
adapter cable is available in various configurations to fit most common applications. 
Consult cable documentation to determine which adapter cable to usc. 

The RS-232C: Serial Interface 13-29 



The DTE Cable 
The signals and functions supported by the DTE cable are shown in the signal iden
tification table which follows. The table includes RS-232C signal identification codes, 
CCITT V.24 equivalents, the pin number on the interface card rear panel connector, the 
RS-232C connector pin number, the signal mnemonic used in this manual, whether the 
signal is an input or output signal, and its function. 

Table 13-6. RS-232C DTE (Male) Cable Signal Identification Table 

RS-232C V.24 Interface RS-232C 
Signal Signal Pin# Pin# Mnemonic 1/0 Function 

AA 101 24 1 - - Safety Ground 
BA 103 12 2 Out Transmitted 

Data 

BB 104 42 3 In Received Data 
CA 105 13 4 RTS Out Request to Send 

CB 108 44 5 CTS In Clear to Send 

cc 107 45 6 DSR In Data Set Ready 

AB 102 48 7 - - Signal Ground 

CF 109 46 8 DCD In Data Carrier Detect 

SCF (OCR2) 122 47 12 SDCD In Secondary DCD 

SCA (OCD2) 120 15 19 SRTS Out Secondary RTS 

CD 108.1 14 20 DTR Out Data Terminal Ready 

CE (OCR1) 125 9 22 RI In Ring Indicator 

CH (OCDl) 111 40 23 DRS Out Data Rate Select 

13-30 The RS-232C Serial Interface 

. \ \0 

. \ 

! J 

~ 



Optional Circuit Driver/Receiver Functions 
Not all signals from the interface card arc included in the cable wiring. RS-232C provid<'S 
for four optional circuit drivers allCl two receivers. Only two drivers and two r0c0ivcrs 
arc supported by the DCE and DTE cable options. They are as follows: 

Drivers Receivers 

Name Function Name Function 

OCDl Data Rate Select OCRl Ring Indicator 

OCD2 Secondary Request-to-send OCR2 Secondary Data Carrier 
Detect 

OCD3 Not used 

OCD4 Not used 

If your application requires use of OCD3 or OCD4, you must provid0 your own interfac<> 
cable to fit the situation. 

The DCE Cable 
The DCE cable option is designed to adapt a DTE cable and s<>rial or data cmmnuni
eations interface to an identical interface on another desktop computer. It is also used 
with the serial interface to simulate DCE operation when driving a periph<>ral wired for 
DTE operation. The DCE cable is equipped with a female connector. Sine<> most DTE 
peripherals are also equipped with female connectors (pin numbering is the same as the 
standard male DTE connector), an adapter (such as the HP 13242M) is used to connect 
the two female connectors as explained earlier. 

Note 

Not all RS-232C devices are wired the same. To ensure proper 
operation, you must know whether the peripheral device is wired 
as DTE or DCE. The interface cable option and associated adapter 
cable, if needed, must be configured to properly mate with the 
female DTE chassis connector. 

The RS-232C Serial Interface 13-31 



The following schematic diagram shows the input and output signals for the serial inter
face and how they are connected to a DCE peripheral. 

98626 DTE RS-232C 
INTERFACE CABLE SIGNALS 
~(12 T ) BA (PIN 2) >-DATA 

IN 

~(42 
N ) BB(PIN3) >-DATA 

OUT 

~(13 )CA(PIN4) REQUEST 
>-TO SEND(IN) 

~(44 ) CB(PIN5) CLEAR 
>-TO SEND (OUT) 

~(46 ) CF (PIN 8) >--DATA CARRIER 
DETECT (OUT) 

-~SEfSOI•ID~R'I'_. ~(.:.:15~---7) SCA(PIN 19) >-SECONDARY REQUEST ~ TO SEND (IN) 
~ 47 SECONDARY DATA ~( ) SCF(PINI2 )>-CARRIER DETECT(OUT) 

~ ( 14 ) CD (PIN 20 ) >-DATA TERMINAL ~ READY(IN) 

~~.::..9 ___ -7 RING -~--------._..,. ) CE (PIN 22) >--INDICATOR (OUT) 

./"1 DSR ; (45 DATA SET ~ f-'-=-----7) CC (PIN 6 ) >--READY (OUT) 

SIGNALr-----<~<4_.:.;8"----~) AB (PIN 7) 
GROUND~ 

24 SAFETY_r---<~(~--~) AA (PIN I) 
GROUND.,.. 

~ SIGNAL 
~ GROUND 

>----J_ SAFETY 
.,. GROUND 

~/L-.!.40=-----7 DATA ~r tCH(PIN 23 )tRATESELECT(IN) 

INTERFACE MALE FEMALE 
REAR PANEL RS-232C DCE PERIPHERAL 
CONNECTOR INTERFACE CHASSIS CONNECTOR 

CABLE CONNECTOR 

Figure 13-3. DTE Cable Interconnection Diagram 

13-32 The RS-232C Serial Interface 

DCE Interface 
Signals to and 
from Peripheral 

NOTE: Some DCE 
peripherals may not 
provide for all the 

signal lines shown. 

:0 

: ) 

'"-"' 



This diagram shows an HP 13242M adapter cable eonneeted to a DCE interface cable 
and a DTE peripheral. Note that RTS is connected to CTS in the DCE cable. If your 
peripheral uses RTS/CTS handshaking, a different adapter cable must be used with the 
appropriate DTE or DCE interface cable option. 

98626 
INTERFACE 

DCE 
CABLE 

RS-232C 
SIGNALS 

~ ~12~-----<: 88(PIN3) 

~~(-"42"-----<( BA (PIN 2) 

~~~~13'---.--~< CF (PIN 8) 

~¢1.---J

13242M
ADAPTER

CABLE

(----~ ~DATA OUT

.. /'1DCD .. /((-'-4"-6---rc----< CA(PIN 4) ~REQUEST TO ~ SEND(OUT)

-2._ CLEAR TO
CB (PIN 5) f------7 r- SEND (IN)

~~15'------<.SCF (PIN 12) ~---~ ~ ~;~~~~:~~~~6~ (IN)

/'1§1;C
0
0NQA!l'0 (-4-'-'7------<:SCA (PIN 19) ~----? >'.2.. SECONDARY REQUEST ~ TO SEND (OUT)

~(14 CCE(PIN22) ~RINGINDICAlOR (IN)

CC (PIN 6) (-------?..;.._DATA SET READY (IN)

_./lRI ____/ 9 (CD (pIN 20) ..p2. DATA TERMINAL ~~~=---,.---< f-------t READY (OUT)

~¢LJ
48

SIGNAL r-<(-=-----<.AB (PIN 7)
GROUND-&

24
SAFETY _r--{F'-----<AA (PIN I)
GROUND-,.

~~NOTUSED
1 I

INTERFACE FEMALE
REAR PANEL RS-232 C
CONNECTOR INTERFACE

CASLE CONN ECTOR

7 >----, SIGNAL , \7 GROUND

f----~ ~ SAFETY
.,. GROUND

FEMALE
RS-232C

DTE PERIPHERAL
CHASSIS CONNECTOR

Figure 13-4. DCE Cable Interconnection Diagram

DCE Interface
Signals to and
from Peripheral

NOTE: Some DTE
peripherals may not
provide for all the

signal lines shown.

The RS-232C Serial Iuterfaee 13-33

RS-232C / CCITT V24
The following table provides information about each data communications interface func
tion. The pin assignments are also shown. Not all functions provided by RS-232C stan
dard are implemented. The functions denoted with a * are implemented.

Table 13-7. RS-232C/CCITT V.241

RS-232C CCITT V24 Signal Name
*Pin 1 101 PROTECTIVE GROUND. Electrical equipment frame and

ac power ground.

*Pin 2 103 TRANSMITTED DATA. Data originated by the terminal to
be transmitted via the sending modern.

*Pin 3 104 RECEIVED DATA. Data from the receiving modem in response
to analog signals transmitted from the sending modem.

*Pin 4 105 REQUEST TO SEND. Indicates to the sending modem that the
terminal is ready to transmit data.

*Pin 5 106 CLEAR TO SEND. Indicates to the terminal that its modern is
ready to transmit data.

*Pin 6 107 DATA SET READY. Indicates to the terminal that its modem
is not in a test mode and that modem power is ON.

*Pin 7 102 SIGNAL GROUND. Establishes common reference between the
modem and the terminal.

*Pin 8 109 DATA CARRIER DETECT. Indicates to the terminal that its
modem is receiving carrier signals from the sending modem.

Pin 9 Reserved for test.

Pin 10 Reserved for test.

Pin 11 Unassigned.

*Pin 12 122 SECONDARY DATA CARRIER DETECT. Indicates to the
terminal that its modem is receiving secondary carrier signals
from the sending modern.

Pin 13 121 SECONDARY CLEAR TO SEND. Indicates to the terminal that
its modem is ready to transmit signals via the secondary channel.

Note that the signals on pins 2, 3, and 7 above are commonly used for 3 wire (no modem)
links.

1 International Telephone and Telegraph Consultative Committee European standard.

13-34 The RS-232C Serial Interface

Table 13-7. RS-232C/CCITT V24 (continued)

RS-232C CCITT V24 Signal Name
Pin 14 118 SECONDARY TRANSMITTED DATA. Data from the terminal

to be transmitted by the sending modem's channel.
*Pin Hi 114 TRANSMITTER SIGNAL ELEMENT TIMING. Signal from

the modem to the transmitting terminal to provide signal
element timing information.

Pin 16 119 SECONDARY RECEIVED DATA. Data from the modem's
secondary channel in response to analog signals transmitted from
the sending modem.

*Pin 17 115 RECEIVER SIGNAL ELEMENT TIMING. Signal to the
receiving terminal to provide signal element timing information.

Pin 18 Unassigned.

*Pin 19 120 SECONDARY REQUEST TO SEND. Indicates to the modem
that the sending terminal is ready to transmit data via
the secondary channel.

*Pin 20 108.2 DATA TERMINAL READY. Indicates to the modem that the
associated terminal is ready to receive and transmit data.

Pin 21 110 SIGNAL QUALITY DETECTOR. Signal from the modem
telling whether a defined error rate in the recPived data
has been exceeded.

*Pin 22 125 RING INDICATOR. Signal from the modem indicating that a
ringing signal is being received over the line.

*Pin 23 111 DATA SIGNAL RATE SELECTOR. Selects one of two signaling
rates in modems having two n<tPs.

*Pin 24 113 TRANSMIT SIGNAL ELEMENT TIMING. Transmit clock
provided by the terminal.

Pin 25 Unassigned.

The RS-232C Serial Interface 13-35

Summary of RS-232C Serial
STATUS and CONTROL Registers
General Notes: Most Control registers accept values in the range of zero through 255.
Some registers accept only specified values as indicated, or higher values for baud rate
settings. Values less than zero are not accepted. Higher-order bits not needed by the
interface are discarded if the specified value exceeds the valid range.

Reset value is the default value used by the interface after a reset or power-up until the
value is overridden by a CONTROL statement.

STATUS Register 0 Card Identification

Value returned: 2 indicates a 98626 (if 130 is returned, the Re
mote jumper wire has been removed from the interface card);
66 indicates a 98644 (194 if the Remote jumper has been re
moved}.

CONTROL Register 0 Interface Reset

STATUS Register 1

Any value from 1 thru 255 resets the card. Execution is im
mediate; any data transfers in process are aborted and any
buffered data is destroyed. A value of 0 causes no action.

Interrupt Status

Bit 7 set: Interface hardware interrupt to CPU enabled.

Bit 6 set: Card is requesting interrupt service.

Bits 5&4:

00 Interrupt Level 3

01 Interrupt Level 4

10 Interrupt Level 5

11 Interrupt Level 6

Bits 3 thru 0 not used.

13-36 The RS-232C Serial Interface

CONTROL Register 1 Transmit I3REAK

STATUS Register 2

STATUS Register 3

Any non-zero value sends a 400 millisecond I3REAK on the
serial line.

Interface Activity Status

I3it 7 thru 3 are not used.

I3it 2 set: Handshake in progress. This occurs only
during multi-line function calls.

I3it 1 set: Firmware interrupts enabled (ENABLE INTR
active for this select code).

I3it 0: Reserved for future use.

Current I3aud Rate

Returns one of the values listed under CONTROL Register 3.

CONTROL Register 3 Set New I3aud Rate

Use any one of the following values:

50
75

110
134.5

(or 134)

150
200
300
600

1200
1800
2400
3600

4800
7200
9600

19200

The RS-232C Serial Interface 13-37

STATUS Register 4 Current Character Format

See CONTROL Register 4 for function of individual bits.

CONTROL Register 4 Set New Character Format

Table 13-8. Character Format and Parity Settings

Parity Sense1

(Switches 5&4)

00 ODD parity 0
01 EVEN parity 1
10 Always ONE
11 Always ZERO

STATUS Register 5

Parity Enable Stop Bits Character Length
(Switch 3) (Switch 2) (Switches 1&0)

Disabled 0 1 stop bit 00 5 bits/char
Enabled 1 1.5 stop bits 01 6 bits/char

(if 5 bits/char), 10 7 bits/char
or 2 stop bits 11 8 bits/char

(if 6, 7, or 8
bits/ char).

Bits 7 and 6 are reserved for future use.

Current Status of Modem Control Lines

Returns CURRENT line state values. See CONTROL Regis
ter 5 for function of each bit.

1 Parity sense valid only if parity is enabled (bit 3=1). If parity is disabled, parity sense is meaningless.

13-38 The RS-232C Serial Interface

CONTROL Register 5 SPt Mod<'m Control Lirw States

STATUS Register 6

Sets Modem Control liw's or interface stat<' as follows:

Dit 4 set: Enables loophack mod<' for diagnostic tests.

Dit 3 sPt: Set Secondary Request-to-Send modem liue to
active state.

Dit 2 set: Set Data Rate Sdect modem lim' to active state.

Dit 1 set: Force Request-to-Send modem lirw to fixed
active state.

Dit 1 clear: Toggle RTS line as iu normal OUTPUT
operations.

Dit 0 set: ForcP Data Terminal Ready modmr line to
fixed active state.

Dit 0 dear: Toggle DTR line as in normal OUTPUT and
ENTER operations.

Data In

Reads draracter from input lmffPr. Duffer contents is not de
stroy<'d, but hit 0 of STATUS Register 10 is e!Pared.

CONTROL Register 6 Data Out

Sends character to transmitter holding registPr. This register
is sometimes used to transmit protocol control characters or
other characters without using OUTPUT statPmPnts. Modem
control lines are not affected.

The RS-232C Serial Int<>rface 13-39

STATUS Register 7 Optional Receiver /Driver Status

Returns current value of optional circuit drivers or receivers
as follows:

Bit 3: Optional Circuit Driver 3 (OCD3).

Bit 2: Optional Circuit Driver 4 (OCD4).

Bit 1: Optional Circuit Receiver 2 (OCR2).

Bit 0: Optional Circuit Receiver 3 (OCR3).

Other bits are not used (always 0).

CONTROL Register 7 Set New Optional Driver States

STATUS Register 8

Sets (bit=1) or clears (bit=O) optional circuit drivers as fol
lows:

Bit 3: Optional Circuit Driver 3 (OCD3),

Bit 2: Optional Circuit Driver 4 (OCD4).

Other bits are not used.

Current Interrupt Enable Mask

Returns value of interrupt mask associated with most recent
ENABLE INTR statement. Bit functions are as follows:

Bit 3: Enable interrupt on modem line change. STATUS
Register 11 shows which modem line has changed.

Bit 2: Enable interrupt on UART status error. This bit
is used to trap ERROR 167 caused by UART error
conditions. STATUS Register 10, bits 4 thru 1,
show cause of error.

Bit 1: Enable interrupt when Transmitter Holding
Register is empty.

Bit 0: Enable interrupt when Receiver Buffer is full.

13-40 The RS-232C Serial Interface

STATUS Register 9

STATUS Register 10

Cause of Current Interrupt

Returns cause of interrupt as follows:

I3its 2&1: Return cause of interrupt

ll=UART error (BREAK, parity, framing, or overrun
error). See STATUS Register 10.

10=Receiver Duffer full. Cleared by STATUS to
Register 6.

Ol=Transmitter Holding Register empty. Cleared by
CONTROL Register 6 or STATUS to Register 9.

OO=lnterrupt caused by change in modem status line(s).
See STATUS Register 11.

I3it 0: Set when no aetive interrupt requests from UART
are pending. Clear until all pending interrupts
have been serviced.

UART Status

I3it set indicates U ART status or detected error as follows:

I3it 7: Not used.

I3it 6: Transmit Shift Register empty.

I3it 5: Transmit Holding Register empty.

I3it 4: I3reak received.

I3it 3: Framing error detected.

I3it 2: Parity error detected.

I3it 1: Receive Duffer Overrun error.

I3it 0: Receiver Duffer full.

The RS-232C Serial lrlt<'rface 13-41

STATUS Register 11 Modem Status

Bit set indicates that the specified modem line or condition
active.

Bit 7: Data Carrier Detect (DCD) modem line active. :0
Bit 6: Ring Indicator (RI) modem line active.

Bit 5: Data Set Ready (DSR) modem line active.

Bit 4: Clear-to-Send (CTS) modem line active.

Bit 3: Change in DCD line state detected.

Bit 2: RI modem line changed from true to false.

Bit 1: Change in DSR line state detected.

Bit 0: Change in CTS line state detected.

··~

(. \

0

13-42 The RS-232C Serial Interface

STATUS Register 12 Modem Handshake Control

l3it 7 l3it 6 l3it 5 l3it 4 l3it 3 l3it 2 l3it 1 l3it ()
Carrier Data Set Clear to
Detect () Ready Send () () () ()
Disable1 Disable2 Disab!e3

Value=128 Value=64 Value=O Value=16 Vahte=8 Value=4 VahH'=2 Value=1

CONTROL Register 12 Modem Handshake Control

l3it 7 l3it 6 l3it 5 l3it 4 l3it 3 l l3it 2 J l3it 1 I l3it ()
Carrier

Not
Data Set Clear to

Detect Ready Send Not Used
Disablc1 Used

Disable2 Disab!e3

Value=128 Value=64 Value=O Value=16 Value=8 I Value=4 I Value=2 J Value=1

Interrupt Enable Register (ENABLE INTR)

l3it 7 I l3it 6 I l3it 5 I l3it 4 l3it 3 l3it 2 l3it 1 l3it ()

Trans-
Modem Receiver mitter Receiver

Not Used Status Lin<' Holding Duffer
Change Status Register Full

Empty

Value=128 I Valuc=64 I Valuc=O I Value=16 Value=8 Value=4 Value=2 Value=1

1 () = Wait for Carrier Detect on Enter Operations; 1 = Don't wait,
2 () Wait for Data Set Ready on Enter and Output Operations; 1 = Don't wait. 3 0 = Wait for Clear to Send on Output Operations; 1 = Don't wait.

Tlw RS-232C Serial Intcrfaee 13-43

STATUS Register 13 Read 98644 "SCRATCH A default" baud rate

Returns the baud rate that will be restored whenever
SCRATCH A is executed (same bit-definitions as STATUS
register 3).

CONTROL Register 13 Set 98644 "SCRATCH A default" baud rate

STATUS Register 14

Sets both the "current" and the "default" baud rate that will
be restored whenever SCRATCH A is executed (same bit
definitions as CONTROL register 3). Default value in this
register is 9600 baud.

Read 98644 "SCRATCH A default" character format

Returns the character format parameters that will be restored
whenever SCRATCH A is executed (same bit-definitions as
STATUS register 4).

CONTROL Register 14 Set 98644 "SCRATCH A default" character format

Sets the character format parameters that will be restored
whenever SCRATCH A is executed (same bit-definitions as

:· \

'0

CONTROL register 4). Default value in this register specifics (. I.

a character format of 8 bits/character, 1 stop bit, and parity ~
disabled.

13-44 The RS-232C Serial Interface

Model 216 and 217
Built-In 98626 Interface Differences
This section describes the differences between the HP 98626 Serial interfae(' and the
built-in Serial interface in the Model 216 (HP 9816) and 217 (HP 9817) Computers.

The hardware differences between the built-in })erial interfaces and the 98626 interface
occur in the following areas:

• There are no "Select Code" switches (the select code is hard-wired to 9).
• There are no "Interrupt L('vel" switches (the int('ITupt level is hard-wired to 3).
• There are no "Status Line Disconnect" switches (tlw mo(km status lines are always

monitored; you cannot throw switches to make them "ALWAYS ON" like you can
with with the 98626 interface).

There are no differeners between programming these two intrrfaces with the BASIC
system.

The RS-232C Serial Interface 13-45

HP 98644 Interface Differences
The HP 98644 RS-232 Serial Interface is nearly identical to the HP 98626 RS-232 Serial
Interface. This section describes the few differences between them.

Hardware Differences
The differences in the hardware of the two cards occur in the following areas:

• Card ID register contains 66 (rather than 2).

• There are no optional driver and receiver lines.

• There are fewer configuration switches (there are no Baud Rate or Line Control
switches).

• There is a 25-pin coverplate connector (instead of 50).

• There are different cables available.

Card ID Register
The default card ID for the HP 98644 interface is 66. (The card ID of the 98626 is 2.)

Note

HP 98644 cards are logged as HP 98626 interfaces while booting
machines with Boot ROM 3.0 (and earlier versions). This is not a
problem, because the BASIC recognizes the 98644 card properly.

You can also change the card ID to 2 (to make it look like a 98626)
by cutting a jumper on the card. See the 98644's installation man
ual for details.

See the following "BASIC Differences" section for details of how to read this register
with software.

13-46 The RS-232C Serial Interface

u

/ .,\
v

0

Optional Driver Receiver Circuits
On the 98()26 interface, there arc two optional driver lines (OCD3 and OCD4) and two
optional receiver lines (OCR2 and OCR3). These lines arc not implemented on the 98644
interface.

Configuration Switches
The 98644 card docs not implement the following configuration switches on the card:

• Baud Rate

• Line Control (character length, parity, etc.)

These operating parameters arc set to defaults that match the 98626 rare! by the BASIC
system. Sec the subsequent "BASIC Differences" seetiou for default values.

The RS-232C Serial Interface 13-47

Coverplate Connector
The connector on the 98644 interface's coverplate is set up for DTE (Data Terminal
Equipment) applications; it has a 25-pin, female, D-series connector (the connector on
the 98626 is a 50-pin connector). Here are the pin designators for the connector.

Table 13-9. Coverplate Connector Pin Designators

Pin Signal Description

1 Safety Ground

2 Transmitted Data

3 Received Data

4 Request to Send

5 Clear to Send

6 Data Set Ready

7 Signal Ground

8 Carrier Detect

9 not used

10 not used

11 not used

12 not used

13 not used

14 not used

15 not used

16 not used

17 not used

18 not used

19 not used

20 Data Terminal Ready

21 not used

22 Ring Indicator

23 Data Rate Select

24 not used

25 not used

13-48 The RS-232C Serial Interface

I I
\~

Cables
You can usc standard RS-232C compatibk cables, as long as tlH' signallill{'S arc comH'ct<'d
properly. Here are cables available from HP Computer Suppli<'S Operation.

Table 13-10. Available RS-232C-Compatible Cables

HP Product Number Description

13242N Modern e.able (male to male)

13242G DTE e.able (male to male, with pius 2 and 3 r<'wrsed)

13242H DCE e.able (male to female, with pins 2 and 3 r<'vPrsed)

BASIC Differences
The only differences between programming these two interfaces with the BASIC syst<'m
are in the register definitions given in this section. See the "Smmnary of RS-232 Serial
STATUS and CONTROL Registers" scetion for further details.

Card ID Register
The card ID register is Status register 0. It will contain a value of 66 if the interfac<' is a
98644. (It will contain 2 if the card ID jumper has been cut.) If tlH' REMOTE jumper
has been rernovecl, then the value returned will be 194 (=128+66) or 130 (=128+2).

The card ID can also be detennined by reading READIO register l.

Optional Driver/Receiver Registers
Since there arc no optional driver or receiver lines on the 98644 intPrfae<', Status and
Control register 7 are meaningless for this card. (Status registc>r 7 always contains 0. and
Control register 7 is a no-op.)

The hardware register bits that are not defined because of this difference ar<' as follows:
bits 7 and 6 of WRITEIO register 5 (for writing OCD3 and OCD4, respectively); bits 7
and 6 of READIO register 5 (for reading OCD3 and OCD4, r<'speetively): bits 5 and 4
of READIO register 5 (for reading OCR2 and OCR3, respectively).

The RS-232C Serial Intcrfacc 13-49

Baud-Rate and Line-Control Registers
Since there are no switches to set the default baud rate and line control parameters, the
BASIC system sets them to its own default values, which are as follows:

Table 13-11. Baud Rate and Line Control Default Values

Parameter Default Value

Baud rate 9600 baud
Character length 8 bits/character
Stop bits 1 stop bit

Parity Parity disabled
Parity type Odd parity

Status registers 3 (baud rate) and 4 (line control) are still implemented for the 98644
interface and retain their original definitions. However, the hardware registers no longer
contain any baud rate and line control information (since there are no switches to read).
The hardware registers affected are READIO register 5 (bits 3 thru 0) and READIO
register 7 (bits 7 thru 0), respectively.

You can still program the baud rate and line control parameters by writing to Control
register 3 (baud rate) and Control register 4 (character format). These registers corre
spond to WRITEIO register 5 (bits 3 thru 0) and register 23 (bits 5 thru 0), respectively.

Series 300
Built-In 98644 Interface Differences
The differences between the separate HP 98644 RS-232C serial interface and the built-in
98644-like interface of Series 300 computers are as follows:

• There are no "Select Code" switches (the select code is hard-wired to 9).

• There are no "Interrupt Level" switches (the interrupt level is hard-wired to 5).

There are no differences in programming these interfaces with the BASIC system.

13-50 The RS-232C Serial Interface

\

I
\.._/

Table of Contents

Chapter 14: The Datacomm Interface
Prerequisites . 14-2
Protocol . 14-3
Data Transfers Between Computer and Interface . 14-5

Overview of Datacomm Programming 14-9
Establishing the Connection . 14-10

Determining Protocol and Link Operating Parameters 14-10
Using Defaults to Simplify Programming. 14-12
Resetting the Datacomm Interface 14-14
Protocol Seleetion. 14-15
Dataeornm Options for Async Communication 14-16
Datacomm Options for Data Link Communication 14-22
Connecting to the Line . 14-25
Connection Procedure . 14-26
Initiating the Connection . 14-29

Setting up the Interrupt System . 14-30
Setting up Softkey Interrupts . 14-30
Setting Up Program Operator Inputs. 14-31
Setting Up Dataeornm Interrupts . 14-31

Background Program Routines . 14-33
Interrupt Service Routines . 14-34

Servicing Datacomm Interrupts . 14-34
Servicing Keyboard Interrupts . 14-40
Service Routines for ON KEY Interrupts. 14-43

Cooperating Programs. 14-44
The Datacornm Errors and Recovery Procedures . 14-49

Error Recovery . 14-51
Error Detection and Program Recovery . 14-52

Terminal Emulator Example Programs . 14-53
Datacomm Programming Helps 14-59

Terminal Prompt Messages. 14-59
Secondary Channel, Half-duplex Communication. 14-61
Automatic Answering Applications . 14-64
Comnmnication Between Desktop Computers. 14-68

Cable and Adapter Options and Functions . 14-69
DTE and DCE Cable Options 14-69

Optional Circuit Driver /Receiver Functions . 14-71
RS-232C/CCITT V241 .. 14-73
Summary of Datacomm Status and Control Registers 14-75
HP 98628 Datacomm Interface Status and Control Registers 14-77

!. \1 .\...-)

f. 1
~

The Datacomm Interface 14
The HP 98628 Data Communications Interface enables your desktop computer to commu
nicate with any device that is compatible with standard asynchronous or HP Data Link
data communication protocols. Devices can include various modems or link adapters, as
well as equipment with standard RS-232C or current loop links.

This chapter discusses both asynchronous and Data Link protocols, and provides useful
programming techniques so you can quiekly create working programs. Subject areas
that are similar for both protocols are combined, while information that is unique to one
protocol or the other is separated according to application.

Backplane

Connector

Parallel .------. Parallel 1-----....;Bit-Scrial Data
Micro

Data
Processor

Controlled

Data

Buffer

and

Protocol

Handler

Dotocomm

Interface

Hardware

Data I Parallel/Serial

Converter
Handshake

Special Purpose

6

Grounds

7

Figure 14-1. Block Diagram of the Datacomm Interface

Shielded Cable

to a Device

The Dataeomm Interface 14-1

Prerequisites
It is assumed that you are familiar with the information presented in Data Communi
cation Basics, and that you understand data communication hardware well enough to
determine your needs when configuring the datacomm link. Configuration parameters
include such items as half/full duplex, handshake, and timeout requirements. If you
have any questions concerning equipment installation or interconnection, consult the
appropriate interface or adapter installation manuals.

The datacomm interface supports several cable and adapter options. They include:

• RS-232C Interface cable and connector wired for operation with data communica
tion equipment (male cable connector) or with data terminal equipment (female
cable connector).

• HP 13264A Data Link Adapter for use in HP 1000- or HP 3000-based Data Link
network applications

• HP 13265A Modem for asynchronous connections up to 300 baud, including built-in
autodial capability1 .

• HP 13266A Current Loop Adapter for use with current loop links or devices.

Some of the information contained in this chapter pertains directly to certain of these
devices in specific applications.

Before you begin datacomm operation, be sure all interfaces, cables, connectors, and
equipment have been properly plugged in. Power must be on for all devices that are to
be used. Consult applicable installation manuals if necessary.

1 The HP 13265A modem is compatible with Bell 103 and Bell 113 Modems, and is approved for use in
the USA and Canada. Most other countries do not allow use of user-owned modems. Contact your local
HP Sales and Service office for information about local regulations.

14-2 The Datacomm Interface

;)
\""-"

Protocol
Two protocols arc switch selectable on the datacomm interface. They an' also software
selectable during normal program operation. The switch setting on the interfacp deter
mines the default protocol when the eomputer is first powPred up. Protocol is changed
between Async and Data Link during program operation by selecting the new protocol,
waiting for the message to reach the card, then resetting the carcl. Tlw exact procednrP
is explained in "Protocol Selection".

Asynchronous Communication Protocol
Asynchronous data communication is the most widely used protocol, especially in appli
cations where high data integrity is not mandatory. Data is transmittPd, one character
at a time, with each character being treated as an individual message. Start and stop
bits are used to maintain timing coordination between the receiver and transmitter. A
parity bit is sometimes ineludcd to detect character transmission errors. Asynchronous
character format is as follows: Each character consists of a start bit, 5 to 8 data bits,
an optional parity bit, and 1, 1.5, or 2 stop bits, with an optional time gap lH'fore the
beginning of the next character. The total time from the beginning of oue start bit to
the beginning of the next is called a character frame.

Parity options inelude:

• NONE No parity bit is ineluded.

• ODD Parity set if EVEN number of "l"s in charactN bits.

• EVEN Parity set if ODD number of "1" s in character bits.

• ONE Parity bit is set for all characters.

• ZERO Parity bit is zero for all characters.

Here is a simple diagram showing the structure of an asynchronous character and its
relationship to previous and succeediug characters:

Preceding ~
Character Line in Start

Idle State Bit
(Mark)

Beginning of
Character

0 0 0 0

Single Character Frame

Parity
Bit

..________,fl
Start B1t

Stop
Bit(s)

End of
Character

far Next
Character

Figure 14-2. Structure of Asynchronous Character

The Dataeomm Interfaee 14-3

Data Link Communication Protocol
Data Link protocol overcomes the data integrity limitations of Async by handling data
in blocks. Each block is transmitted as a stream of individual asynchronous characters,
but protocol control characters and block check characters are also transmitted with the
data. The receiver uses the protocol control characters to determine block boundaries
and data format. Block check characters are used to detect transmission errors. If an
error occurs, the block is usually retransmitted until it is successfully received. Block
protocol and format is similar to Binary Synchronous Communication (BSC or Bisync,
for short).

Data Link protocol provides for two transmission modes: transparent, and normal. In
transparent mode, any data format can be transferred because datacomm control char
acters are preceded by a DLE character. If a control character is sent without an accom
panying DLE, it is treated as data. When normal mode is used, only ASCII data can be
sent, and datacomm control characters are not allowed in the data stream.

The HP 1000 and HP 3000 computers usually transmit in transparent mode. All trans
missions from your desktop computer are sent as transparent data. If your application
involves non-ASCII data transfers (discussed later in this chapter), be sure the HP 1000
or HP 3000 network host is using transparent mode for all transmissions to your com
puter.

Each data block sent to the network host by the datacomm interface is structured as
follows:

r-- Start of Block End of Block ___,

I D LEIsT X I G I D I D I D I text (data) ::~ ____ ...~.-I D__:;L E...~.-1 E_T x...~.-1 B_c c...~.-1 B___,c c I
~ ~'--------v--------....J~ ~

2 3 4 5

Figure 14-3. Structure of Data Block Sent by Datacomm Interface

1. The "start transmission" control characters identify the beginning of valid data. If
a DLE is present, the data is transparent; If absent, data is normal. All data from
your desktop computer is transparent.

2. The terminal identification characters are included in blocks sent to the network
host. Blocks received from the network host do not contain these two characters.

14-4 The Datacomm Interface

(J
\.......,/

\

0

3. Data characters arc transmitted in succession with no time lapse between charac
ters.

4. The "end transmission" control characters identify the end of data. DLE ETX or
DLE ETI3 indicate transparent data. ETX or ETB indicates normal data.

5. Block cheek eharactcrs (usually two characters) are used to verify data integrity. If
the value rceeived does not match the value caleulatcd by the rceeiver, the entire
block is rejected by the receiver. Bloek check ineludes Group Identifier (GID) and
Device Identifier (DID) charaeters in transmissions to the network host.

Protocol eontrol eharaeters are stripped from the data transfer, and are not passed from
the interface to the computer. For information about network polling, terminal scleetion
and other Data Link operations, consult the Data Link network manuals supplied with
the HP 1000 or HP 3000 network host eomputer.

Data Transfers Between Computer and Interface
Data transfers between your desktop computer and its dataeomm interface involve two
message types: control blocks and data. Control blocks contain information sent to and
received from the interface regarding its operation. Data is sent to and received from
a remote deviee through the interface. Control blocks are not sent to or received from
remote devices. Doth types are encountered in both output and input operations as
follows:

• Outbound control blocks are created by CONTROL statements.

• Outbound data messages are created by OUTPUT statements.

• Inbound control blocks are created by certain protocol operations such as Data
Link block boundaries, or Async prompt, end-of-line, parity /framing error, or break
detection.

• Inbound data messages are created by the interface as messages are reeeived from
the remote. They arc transferred to BASIC by ENTER statements.

Outbound Control Blocks
Outbound control blocks arc messages from your eomputer to the datacornrn interface
that contain interface control information. They are usually generated by CONTROL
statements, although OUTPUT ... END creates a control block that terminates a given
Async transmission or forees a block to be sent on the Data Link. Outbound control
blocks are serially queued with data, and executed by the interface in the same order
as created by BASIC. Tlw single exception to the queued control block rule is when
a non-zero value is output to Control Register 0 (Interface Reset) which is executed
immediately.

The Datacornm Interface 14-5

Note

When an interface card reset is executed by use of a CONTROL
statement, the control block that results is transmitted directly
to the interface. It is not queued up, so any previously queued
data and control blocks are destroyed. To prevent loss of data, be
sure that all queued messages have been sent before resetting the
datacomm interface. Status Register 38 returns a value of 1 when
the outbound queue is empty. Otherwise, its value is 0. To prevent
loss of inbound data, Status Register 5 must return a value of zero
prior to reset.

Inbound Control Blocks
Inbound control blocks are messages from the interface to the computer that identify
protocol control information. Which item(s) are allowed to create a control block is
determined by the contents of Control Register 14. Status Registers 9 and 10 identify the
contents of the block, and Control Register 24 defines what protocol characters are also
included with inbound Async data messages. Refer to the BASIC Language Reference
Control and Status Register section for details about register contents for various control
block types.

Two types of information are contained in each control block: type and mode. The type
is contained in STATUS register 9; the mode in STATUS register 10. Type and Mode
values can be used to interpret datacomm operation as follows:

Table 14-1. Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (channel A).
251 11 Framing error in the following character.
251 21 Parity error in the following character.
251 31 Both Framing and Parity error in the following character.
252 1 End-of-line terminator detected.
253 1 Prompt received from remote.

1 Parity /framing error control blocks are not generated when characters with parity and/ or framing errors
are replaced by an underscore (_) character.

14-6 The Datacomm Interface

\~

Table 14-2. Data Link Protocol Control Blocks

Type Mode Interpretation

254

254

253 1

1

2

Preceding block terminated by ETB character.

Preceding block terminated by ETX character.

(See following table for Mode interpretation.)

Mode Bit(s) Interpretation

0 l='n·ansparent data in following block.

O=Normal data in following block.

2,1 OO=Device Select (most common).

Ol=Group Select

lO=Line Select

3 !=Command Channel

O=Data Channel

For Data Link applications, control blocks are normally set up for end-of-bloek (ETI3
or ETX). Control blocks are then used to terminate ENTER operations. Control block
contents are not important for most applieations unless you are doing sophisticated
protocol-control programming.

For Asyne applications, terminal emulator programs usually usc prompt and end-of-line
control blocks. Use of other functions sueh as break or error detection depend on the
requirements of the individual application.

1 This type is used nul.inly in specialized applications. In tnost cases, you can expect a Mode value of zero
or one for Type 253 Data Link control blocks. For most Data Link applications, control blocks are not
used by programmers.

The Dataeomrn Interface 14-7

Outbound Data Messages
Outbound data messages are created when an OUTPUT statement is executed. Here is
a short summary of how OUTPUT parameters can affect datacomm operation.

• Async protocol: Data is transmitted directly from the outbound queue. When
operating in half-duplex, OUTPUT ... END causes the interface to turn the line
around and allow the remote device to send information back (line turn-around is
initiated when the interface sets the Request-to-send line low). OUTPUT ... END
has no effect when operating in full duplex.

• Data Link protocol: Data messages are concatenated until at least 512 characters
are available, then a block of 512 characters is sent. Block boundaries may or may
not coincide with the end of a given OUTPUT message.

You can force transmission of shorter blocks by using the OUTPUT ... END state
ment. The interface then transmits the last pending block regardless of its length.
This technique is useful for ensuring that block boundaries coincide with message
boundaries, or for sending one message string per block when you are transmitting
short records.

• Unless a semicolon or END appears at the end of a free-field OUTPUT statement,
an EOL sequence is automatically sent at the end of the data. The EOL sequence
is also suppressed by using the appropriate IMAGE specifier in an OUTPUT state
ment. For further information, see the chapter called "Outputting Data."

Inbound Data Messages
Inbound data messages are created by the datacomm interface as information is received
from the remote. ENTER statements are terminated when a control block is encountered
or the input variable is filled. Whether control characters are included in the data stream
depends on the configuration of Control Register 24 (Async operation only). Control
information is never included in inbound data messages when using Data Link protocol.

With this brief introduction to the data communications capabilities of the HP 98628
Datacomm Interface, you are ready to begin programming your desktop computer for
datacomm operation. The next section of this chapter introduces BASIC datacomm
programming techniques using simple terminal emulator examples that can be readily
expanded into much more sophisticated datacomm programs.

14-8 The Datacomm Interface

Overview of Datacomm Programming
Your desktop computer uses four l3ASIC statements for data commm1icatiou with r<>mote
computers, terminals, and other peripheral devices. Dataeomm programs include part
or all of the following elements:

• CONTROL statements to configure the datacomm link and establish tlw coum'c
tion.

• OUTPUT and ENTER statements to transfer iuformation.

• STATUS statements to monitor operation.

• CONTROL statements to alter link parameters during the session, if needed for
unusual applications.

• OUTPUT aud ENTER statements to transfer additional iuformation.

• A CONTROL statement to disconnect at the end of the session.

Here is a simple example of an Asyne terminal emulator that uses default parameters.
The user must disconneet at the end of a session by executing the command CONTROL
Sc, 12; 0 from the keyboard.

1000 Sc=27 Datacomm on Select Code 27.
1010 CONTROL Sc,14;6 Set Control Block Mask.
1020 OUTPUT Sc;CHR$(13); Datacomm interface uses defaults
1025 and automatically connects to line.
1030 Check_reader:DIM A$[700] Up to 700 characters per line.
1040 STATUS Sc,5;Rx_avail_bits Get Rx queue status.
1050 IF Rx_avail_bits>1 THEN
1060 ENTER Sc USING "#, K"; A$ Get data from queue.
1070 PRINT USING "#, K"; A$ Print data.
1080 STATUS Sc,9;R Get Control Block TYPE field.
1090 IF R=253 THEN
1100 LINPUT "Enter line to send to remote."; A$
1110 OUTPUT Sc;A$;CHR$(13);
1120 END IF
1130 END IF
1140 GOTO Check_reader
1150 END

While this program shows the relative simplicity of using your computer for data commu
nication, most applications require more sophisticated techniques. The following pages
show more elaborate structures to illustrate some of the concepts used in creating pro
grams for datacomm applieations.

The Dataconnn Interface 14-9

Two sample terminal emulator programs, one for Async and one for Data Link, are
used in this chapter to show you how to write datacomm programs with a minimum of
difficulty and complexity. Both versions are very similar; differences are explained fully.
The emulators are explained in logical sequence, with complete program listings included
at the end. The examples can be used as written, or expanded to include other features.
They are designed to demonstrate program structures and programming techniques that
are used in many data communication applications.

Establishing the Connection

Determining Protocol and Link Operating Parameters
Before information can be successfully transferred between two devices, a communication
link must be established. You must include the necessary protocol parameters to ensure
compatibility between the communicating machines. To determine the proper parameters
for your application, select Async or Data Link protocol, then answer the following
questions:

For BOTH Async and Data Link Operation:

• Is a modem connection being used? What handshake prov1s10ns are required?
(Data Link does not use modems, but multi-point Async modem connections use
a protocol compatible with Data Link.)

• Is half-duplex or full-duplex line protocol being used?

For Async Operation ONLY:

• What line speed (baud rate) is being used for transmitting?

• What line speed is being used for receiving?

• How many bits (excluding start, stop, and parity bits) are in each character?
• What parity is being used: none, odd, even, always zero, or always one?
• How many stop bits are required on each character you transmit?

• What line terminator should you use on each outgoing line?

• How much time gap is required between characters (usually 0)?
• What prompt, if any, is received when the remote device is ready for more data?
• What line terminator, if any, is sent at the end of each incoming line?

14-10 The Datacomm Interface

I

0

For Data Link Operation ONLY:

• What line speed (baud rate) is being usrd? (Data Link uses t!H' same speed in both
directions.)

• What parity is being used: none (HP 1000 ndwork host), or odd (HP 3000 network
host)?

• What is the device Group IDentifier (GID) and Device IDentifier (DID) for your
terminal?

• What is the maxirnmn block length (in bytes) thr network host can accept from
your terminal?

All these parametNs are configured under program control by us<' of CONTROL state
ments. Alternately, default values for line speed, modem handshake, parity, and Async
or Data Link protocol selection can be set using the datacomm interface configuration
switches. Other default parameters are presrt by the dataeorurn interface to accom
modate common configurations. You can use thr defaults, or you can ovrrride thrm
with CONTROL statements for program clarity and immunity to card settings. De
fault Control Register values arc shown in the "Interface Register" section in the back of
the BASIC Language Reference for your desktop computer. The HP .98(J28 Datacomm
Interface Installation manual (98628-90000) explains how to set the default switches.

The next seetion of this chapter shows a summary of the available default options and
switch settings for both Async and Data Link.

Using Defaults to Simplify Programming
The datacomrn interface includes two switch clusters. One cluster is used to program the
select eo de and interrupt level (hardware priority). The other cluster sets defaults for
protocol, line speed (baud rate), modem handshake, and parity. Setting the defaults on
the card Plirninates the need to program the corresponding interface CONTROL registers.
These defaults arc useful in applications where the configuration of the link is rarely
altered, and the program is not used on other machines with dissimilar configurations.
They also enable a beginning programmer to use OUTPUT and ENTER statements to
perform simple dataeomm operations without using CONTROL or STATUS statements.
On the other hand, where link configuration may vary, or wher<' programs ar<' used
on several different machines with dissimilar configurations, it is usually worthwhile
to override the defaults with CONTROL statements as described in tlw programming
examples. This assures known datacomrn behavior, ind<'pendent of interface defaults.

The Datacomm Interface 14-11

Here, for your convenience is a brief summary of the default switch options:

--- looooooool looooooool

Default Switches

0

Parity Bits/Char Hardware Handshake Baud Rate Stop Bits
OO=None 8 OO=Handshake OFF, 000=110 2
01=None 7 non-modem connnection 1 001=150 2
10•0dd 7 01=FULL Duplex modem 010=300 1
11 =Even 7 connection 2 011=600

1 O=HALF Duplex modem 1 00=1200
connection 2 101=2400

11 =Handshake ON, 110=4800
non-modem connnection 1 111 =9600

1 Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

Figure 14-4. Async Default Configuration Switches
\

I j v
1 Default No Activity timeout: Disabled
2 Default No Activity timeout: 10 minutes

14-12 The Datacomm Interface

--- looooooool

000=@ 100=D

001•A 101=E

010=8 110=F

011=C 111=G

Default GID="A"

Default Switches

00=300

01=1200

10=9600
11=19200

0

Hardware Handshake

OO=Handshake OFF, nan-modem connection

01 =FULL Duplex modem connection

1 O=HALF Duplex modem connection

11 =Handshake ON, non-modem connection

Default No Activity timeout: 1 0 minutes

Figure 14-5. Data Link Default Configuration Switches

The Dataeomm Interface 14-13

Resetting the Datacomm Interface
Before you establish a connection, the datacomm interface must be in a known state.
The datacomm interface does not automatically disconnect from the datacomm link
when the computer reaches the end of a program. To prevent potential problems caused
by unknown link conditions left over from a previous session, it is a good practice to
reset the interface card at the beginning of your program before you start configuring
the datacomm connection. Resetting the card causes it to disconnect from the line and
return to a known set of initial conditions.

In the following example, a numeric variable is used to define the select code. The second
statement resets the card after the select code has been defined.

1110
1160

Sc=20
CONTROL Sc,0;1

Protocol Selection

Set select code to 20.
Reset the card to disconnect from line.

During power-up and reset, the card uses the default switches to preset the card to a
known state. The protocol select switch defines which protocol the card uses at power
up only. If the default protocol is the same as you are using, you can skip the protocol
selection statements. However, if the switch might be set to the wrong protocol, or if you
want to change protocol in the middle of a program, you can use a CONTROL statement
to select the protocol. After the protocol is selected, reset the card again to make the
change. Here is how to do it:

Select the protocol to be used:

1170 CONTROL Sc,3;1 Select Async Protocol

or

1170 CONTROL Sc,3;2 Select Data Link Protocol

14-14 The Datacomm Interface

u

Wait until the protocol select message has been sent to tlw card, (liw's 1180-1200) tlH'll
reset the card. Tlw Reset command r<'starts t!H' interface microcomputer using th<'
selected protocol.

1180 Wait:STATUS Sc,38;All_sent ! Get transmit queue status.
1190 IF NOT All_sent THEN Wait ! If not done, wait.
1200 CONTROL Sc,0;1 ! Reset interface card.

Note

Be careful when resetting the interfac<' card during normal program
operation. Data and Control information are sent to the card in
the same sequence as the statements originating the iufonnation
are executed. When a card reset is initiated by a CONTROL
statement, the reset is not placed in the queue with outbound
data, but is executed immediately. Therefore, if there is other
information in the output queue waiting to be sent, a reset ean
cause the data to be lost. To prevent loss of data, use STATUS
statements (register 38) to verify that all data transfers hav<' nm
to completion before you reset the interface.

You are now ready to program dataeomm options that are related to the selected protocol.
In applications where defaults are used, the options arc very simple. The followiug pair
of examples shows how to set up dataeomm options for Pach protocol.

TIH' Dataeomm Iuterfacc 14-15

Datacomm Options for Async Communication
This section explains how to configure the datacomm interface for asynchronous data
communication. The example used shows how to set up all configurable options with
out considering default values. Some statements in the example are redundant because
they override interface defaults having the same value. Others may or may not be re
dundant because they override configuration switch options. The remaining statements
are necessary be-:ause they override the default values, replacing them with non-default
values required for proper operation of the example program. If you are not familiar
with Asynchronous protocol, consult the section on protocol for the needed background
information.

The following program lines set up all the CONTROL register options (a 300-baud
connection to an HP 1000 is assumed):

1250 CONTROL Sc,14;3
* 1260 CONTROL Sc,15;0

1270 CONTROL Sc,16;0
--+ 1280 CONTROL Sc, 17; 0
* 1290 CONTROL Sc,18;40
* 1300 CONTROL Sc,19;10

--+ 1310 CONTROL Sc,20;7
--+ 1320 CONTROL Sc,21;7

1330 CONTROL Sc,22;2
--+ 1340 CONTROL Sc,23;1

1350 CONTROL Sc,24;66
1360
1370 CONTROL Sc,26;6
1380 CONTROL Sc,27;5

* 1390 CONTROL Sc,28;2,13,10
* 1400 CONTROL Sc,31;1,17

--+ 1410 CONTROL Sc,34;2
--+ 1420 CONTROL Sc,35;0
--+ 1430 CONTROL Sc,36;1
* 1440 CONTROL Sc,37;0
* 1450 CONTROL Sc,39;4

Set control block mask for EOL & Prompt.
No modem line-change notification.
Infinite connection timeout.
Disable No Activity timeout.
Lost Carrier 400 ms. *
Transmit timeout 10 s.
Transmit speed = 300 baud.
Receive speed = 300 baud.
EQ/AK (as terminal) handshake.
Full Duplex connection.
Remove protocol characters except
EOL. Change errors to Underscore.
Assign AK character for EQ/AK.
Assign EQ character for EQ/AK.
Set EOL sequence to be CR-LF.
Set prompt to be DC1. (33 not used).
Seven bits per character.
One stop bit.
Odd parity.
No inter-character time gap.
Set BREAK to four character times.

*= Redundant statement. Same as interface default.

--+: May be redundant. Overrides configuration switch option.

Refer to the Control Register tables in the back of the BASIC Language Reference as
you examine the CONTROL statements. The paragraphs which follow explain register
functions and how to configure them.

14-16 The Datacomm Interface

' I \,_.!

Control Block Contents
Configuration of the link begins with register 14 which determin<'S what information is
placed in the control blocks that appPar iu tlH' input (n'C<'iV<') quem'. In this <'xarnpk,
only the end-of-line position and prompts are identifiPd. Parity or framing <'ITors in
received data, and received breaks are not identified in tlw queue. This register interacts
with Control registers 28 thru 33.

Modem-initiated ON INTR Branching Conditions
Register 15 is rarely used in most applications bPcause the interface usually manages all
interaetion with the modem. Modem interrupts are helpful when you are simulating your
own line protocol. This register det<'rrnines what changes in one or more mod<'m lines
can cause a program branch to occur when an ON INTR statement is aetivP for that
select code. Values from 0 thru 31 can he used, when' a "1" in a bit position euables
branching whenever the corresponding signal line changes state. Lines correspond to
bits 0 thru 4 of STATUS register 7. In this example, modem functions are handled by
the interface; no interaction with BASIC is necessary. If this register is given a 11011-zero
value, bit 3 of the ENABLE INTR mask should be set. (ENABLE INTR stat<'ment is
line 1820 of the example terminal <'mtllator program.)

Datacomm Line Timeouts
Registers 16-19 set timeout values to force an automatic discomwct from the dataconnn
link when cprtain time limits are Pxceeckd. For most applications, the default values are
adequate. A vahH' of zero disablPs the timeout for any regist<'r where it is used. Each
register accepts values of 0 thru 255; units vary with the register function.

• Register 16 (Connection timeout) sets the time limit (in S<'<'OIH!s) allowed for <·on
ll(~ctiug to tlH' remote device. It is useful for aborting unsuccessful attempts to dial
up a remote computer using public tekphone networks.

• Register 17 (No Activity timeout) sets an automatic disconnect caused by no data
comm activity for the specified rmmber of minutes. Default value is detennined by
default handshake switch setting. Default is not affected by CONTROL statements
to Control Register 23 (hardware handshake).

• R<'gister 18 (Lost Carrier timeout) discmmects when:

Full Duplex: Data Set Ready (Data Mode) or Data Carri<'r Detpct go f<ds<', or
Half Duplex: Data Set Ready goes fals<',

iwlicating that the carrier from the remote' modem has disappearPd
from the line. Value is in multiples of 10 milliseconds.

• Register 19 (Transmit timeout) disconnects when a loss-of-dock occurs or a ekar-to
send (CTS) is not returnpd by tlw modem within the specific'd nmnber of S<'C<mds.

TIH' Datacomm Intc'l'face 14-17

Line Speed (Baud Rate)
The transmit and receive line speed(s) are set by Control Registers 20 and 21, respec
tively. Each is independent of the other, and they are not required to have identical
values. The following baud rates are available for Async communication:

Table 14-3. Async Baud Rates

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate

0 ol 4 134.5 8 6002 12 3600
1 50 5 1502 9 12002 13 48002

2 75 6 200 10 1800 14 96002

3 1102 7 3002 11 24002 15 19 200

All configurable line speeds are available to CONTROL Registers 20 and 21. Only
the eight speeds indicated can be selected using the default switches (see the switch
configuration diagram earlier in this chapter). When the configuration switch defaults
are used, transmit and receive speeds are identical. The selected line speed must not
exceed the capabilities of the modem or link.

Handshake
Registers 22 and 23 configure handshake parameters. There are two types of handshake:

• Software or protocol handshake specifies which of the participants is allowed to
transmit while the other agrees to receive until the exchange is reversed. Options
include:

• No handshake, commonly used with connections to non-interactive devices
such as printers.

• Enq/ Ack (EQ/ AK) or DCI/DC3 handshake, with the desktop computer con
figured either as a host or a terminal. Handshake characters are defined by
registers 26 and 27.

• DC1/DC3 handshake with the desktop computer as both a host AND a ter
minal. Handshake characters are defined by registers 26 and 27. This option
simplifies communication between two desktop computers.

1 An external clock must be provided for this option.
2 These speeds can be programmed using the default switches on the interface card. Other speeds are

accessed by CONTROL statements. (The HP 13265A Modem can be operated up to 300 baud.)

14-18 The Datacomm Interface

'0

o Hardware or modem handshake that establishes the communicating relationship
between the interface and the associated datacomm hardware such as a modem or
other link device. The four available options are:

o Handshake Off, non-modem connection- most commonly used for 3-wire di
rect connections to a remote device.

o Full Duplex modem connection - used with full-duplex mod('lllS or ('quivalent
connections.

o Half Duplex modem connection - used with half-duplex modems or equivalent
connections.

o Handshake On, non-modem connection- used with printers and other similar
devices that use the Data Carrier Detect (DCD) and Clear-to-send (CTS) lines
to signal the interface card. When DCD is held down by the I)('riph('ral, the
interface ignores incoming data. When CTS is hdd down, the intt'rfaee does
not transmit data to the d('viee until CTS is raised.

Options 2 and 3 are usually associated with modems or similar devices, but may b(' tul('d
occasionally with direct eormections when the remote d('Viee provides the proper signals.
Refer to the table at the end of this chapter for a list of handshake signals and how they
are handled for each cable or adapter option.

Handling of Non-Data Characters
Register 24 specifies what non-data characters are to be included in the input queue.
For each bit that is set, the corresponding information is passed along with the incoming
data. If the hit is not set, the information is discarded, and is not included in the inbound
data stream that is passed to the desktop computer by the interfae<'.

I3it 0 Include handshake characters in data stream. They are defined by Control
Registers 26 and 27.

I3it 1 Include iucoming end-of-line eharaeter(s). EOL characters are defined by
Control Registers 28-30.

I3it 2 Include incoming prompt character(s). Prompt is defined by Control Regis
ters 31-33.

I3it 3 Include any null characters encountered.

The Datacomm Interfae(' 14-19

Bit 4 Include any DEL (rubout) characters in data.

Bit 5 Include any CHR$(255) encountered. This character is encountered ONLY
when 8-bit characters are received.

Bit 6 Change any characters received with parity or framing errors to an underscore.
If this bit is not set, all inbound characters are transferred exactly as received,
with or without errors.

Register 25 is not used.

Protocol Handshake Character Assignment
Registers 26 and 27 establish what characters are to be used for handshaking between
communicating machines. You can select the values of 6 (AK) or 17 (DC1) for register
26, and 5 (EQ) or 19 (DC3) for register 27. Any ASCII value from 0 thru 255 can be
used, but non-standard values should be reserved for exceptional situations.

End-of-line Recognition
Registers 28, 29, and 30 operate in conjunction with registers 14 (control block mask) and
24 (non-data character stripping) and defines the end-of-line sequence used to identify
boundaries between incoming records. Register 28 (value ofO, 1 or 2) defines the number
of characters in the sequence, while registers 29 and 30 contain the decimal equivalent
of the ASCII characters. If register 28 is set for one character, register 30 is not used.
Register 29 contains the first EOL character, and register 30, if used, contains the second.
If register 28 is zero, registers 29 and 30 are ignored and the interface cannot recognize
line separators.

Prompt Recognition
Registers 31, 32, and 33 operate in conjunction with registers 14 and 24 and define the
prompt sequence that identifies a request for data by the remote device. As with end-of
line recognition, the first register defines the number of characters (0, 1, or 2), while the
second and third registers contain the decimal equivalents of the prompt character(s).
Register 33 is not used with single-character prompts. If register 31 is zero, registers 32
and 33 are ignored and the interface is unable to recognize any incoming prompts.

14-20 The Datacomrn Interface

' I
\._!

,')
<.._/

Character Format Definition
Registers 34 throngh 37 an' nsed to ddlne the character format for trausmitted aud
iueoming data.

• Register 34 sets tlw character length to 5, 6, 7, or 8 bits. TIH' value used is the
number of bits p<'r character minus five (0=5 bits, 3=8 bits). Wheu 8-bit format is
specified, parity must be Odd, Even, or Norw (parity ''1" or "0" cannot lw us<'d).

• Register 35 specifics the uurnber of stop bits seut with each charact<'r. Valm's of 0,
1, or 2 arc used to select 1, 1.5, or 2 stop bits, resp<'<:tively.

• Register 36 specifics the parity to lw used. Optious inclnd<':

Register
Value

Table 14-4. Parity Options

Parity Result

0 None Characters are sent with no parity bit. No parity clwcks are mad<'
on incoming data.

1 Odd 1 Parity bit is set if there is an EVEN munber of ones in the character
code. Incoming characters are also checked for odd parity.

2 Even 1 Parity bit is set if there is an ODD numl)('r of ones in tlw charact<'r

3 ()

4

code.

Parity bit is present, but always zero. No parity checks are made
on incoming data.

Parity bit is present, but always one. No parity checks are made
on incoming data.

Parity must be odd, cveu, or none when 8-bit characters are beiug trausferred.

• Register :n sets the time gap (in character times, iucludiug start, stop, aud parity
bits) between oue character awl the next in a transmission. It is usually inclucl<'cl to
allow a peripheral, such as a teleprint<'r, to r<'cover at the cud of each character and
get ready for the next ouc. A value of zero caus<'S the start bit of a new character
to immediately follow the last stop bit of the JH'Ceeding character.

Control Register 38 is not used.

1 Parity sense is based on the number of ones in tlH' charact<'r including tlH• parity bit. An EVEN munlH'r

of ones in the charactPr, plus the parity bit set prodnc<'S an ODD parity. An ODD numlH'r of onps in

the character plus tlH' parity bit set produc<'S au EVEN parity.

The Datacomm Iuterface 14-21

Break Timing
Register 39 sets the break time (2-255 character times). A Break is a time gap sent to
the remote device to signify a change in operating conditions. It is commonly used for
various interrupt functions. The interface does not accept values less than 2. Register 6
is used to transmit a break to the remote computer or device.

Datacomm Options for Data Link Communication
This section explains how to configure the datacomm interface for Data Link operation.
The example used shows how to set up configuration options without considering default
values. Some statements in the example are redundant because they override interface
defaults having the same value. Others may or may not be redundant because they
override configuration switch options. The remaining statements are necessary because
they override the default values, replacing them with non-default values required for
proper operation of the example program. If you are not familiar with Data Link protocol
and terminology, consult the section called "Protocol."

The following program lines set up all the CONTROL register options (a 9600-baud
connection to an HP 1000 network host is assumed):

* 1250 CONTROL Sc,14;6 Set Control Block Mask for ETB/ETX.
* 1260 CONTROL Sc,15;0 No modem line-change notification.

1270 CONTROL Sc,16;0 Disable Connection timeout.
---+ 1280 CONTROL Sc,17;0 Disable No Activity timeout.
* 1290 CONTROL Sc,18;40 Set Lost Carrier to 400 ms.

1300 CONTROL Sc,19;10 ! Set Transmit Timeout=10 s.
---+ 1310 CONTROL Sc,20;14 Set Line Speed to 9600 baud.
* 1320 CONTROL Sc,21;1 Set GID character to "A".

---+ 1330 CONTROL Sc,22;1 Set DID character to "A".
---+ 1340 CONTROL Sc,23;0 Hardware Handshake Off for HP 13264A.
* 1350 CONTROL Sc,24;0 Set transmit block size to 512.
* 1360 CONTROL Sc,36;0 Parity not used with HP 1000.

*= Redundant statement. Same as interface default.

---+: May be redundant. Overrides configuration switch option.

14-22 The Datacomm Interface

\
\._,)

\

0

If your application requires a different GID /DID pair, you can us<' eitlH'r of the following
two techniques (assume: GID="C" and DID="(<~"):

1320 CONTROL Sc,21;3
1330 CONTROL Sc,22;0

Set GID character to "C".
! Set DID character to"@".

or

1320 CONTROL Sc,21;3,0 ! Set GID/DID to "C@".

(Line 1330 is not needed in this cas<'.)

Here is an alternative method using string operations:

1320 CONTROL Sc,21;NUM("C")-64
1330 CONTROL Sc,22;NUM("@")-64

or

1320 CONTROL Sc,21;NUM("C")-64,NUM("@")-64

Refer to the Control Register tables in the back of the BASIC Languaye Reference as
you examirH' tlH' CONTROL statements. The paragraphs which follow explain register
functions and how to eoufigure them. Wheu the register function is identical for both
Async and Data Link, yon are referred to the previous explanation in the Asyne section.

Control Block Contents
Data Link configuration begins with Control R.egist<'r 14. This register determines what
information is to l)(' placed in control blocks and included with inbound data transferred
from the interface to the desktop computer.

• ETX (l3it 1) identifies the end of a transmission block that contains one or more
cornpkte records.

• ETB (l3it 2) identifies the end of a transmission block where the last record 1s
contilllH'd in the next block of data.

• l3it 0 causes a control block to be inserted that identifies the beginning of a new
block of data.

Tlw Datacomm Interface 14-23

ON INTR Branching Conditions,
Datacomm Line Timeouts, and Line Speed
Registers 15 through 19 are functionally identical for both Async and Data Link. Refer to
the preceding Async section for more information. Register 20 sets the line speed for both
transmitting and receiving (Data Link does not accommodate split-speed operation). The
following line speed options are available:

Table 14-5. Data-Link Baud Rates

Register Baud Register Baud Register Baud Register Baud
Value Rate Value Rate Value Rate Value Rate

0 Clock1 9 12002 12 3600 15 19 2002

7 3002 10 1800 13 4800
8 600 11 2400 14 96002

Terminal Identification
Registers 21 and 22 specify the terminal identifier characters for the datacomm inter
face. Register 21 contains the GID (Group IDentifier), and register 22 contains the DID
(Device IDentifier. Values of 0-26 correspond to the characters @, A, B, ... , Z. These
registers must be configured to match the terminal identification pair assigned to your
device by the Data Link Network Manager. In the example, Line 1320 is redundant
because it duplicates the default GID value. Line 1330 overrides the DID default switch
on the interface card, and may or may not be necessary. Alternate methods for as
signing different GID /DIDs are shown following the group of configuration CONTROL
statements.

Handshake
Register 23 establishes the hardware handshake type. There is no formal software hand
shake with Data Link because the network host controls all data transfers. Hardware or
modem handshake options are identical to Asynchronous operation. Handshake should
be OFF (register set to 0) when using the HP 13264A Data Link Adapter. When you are
using non-standard interconnections such as direct or modem links to the network host,
select the handshake option that fits your application. Refer to the table at the end of
this chapter for a list of handshake signals and how they are handled for each cable or
adapter option.

1 An external clock must be provided for this option.
2 These speeds can be programmed using the default switches on the interface card. Other speeds arc

accessed by CONTROL statements.

14-24 The Datacomm Interface

Transmitted Block Size
Register 24 defines the maximum transmitted block length. When transmitting blocks
of data to the network host, the block length must not exceed the available buffer space
on the receiving device. Block size can be specified for inerements of two from 2 to
512 characters per block. A value of zero forces the block length to a maximum of 512
bytes. For other values, the block length limit is twice the value sc>nt to the register. For
example, a register value of 130 produces a transmitted block length not exceeding 260
characters (bytes).

Parity
Register 36 defines the parity to be used. Unlike Async, Data Link has only two parity
options: None, or Odd. Odd parity is:

Table 14-6. Data-Link Parity Options

Register
Value Parity Application

0 NONE Required for operation with HP 1000
network host

ODD Required for operation with HP 3000
network host

Registers 25 through 35, and 37 and above an' not used.

Connecting to the Line
Interface configuration is now eomplet<'. You are ready to begin eonneeting to the data
comrn line. The exact procedure used to eonneet to tlH' line varies slightly, depending on
the type of link being used. Before you eonneet, you must know what the link require
ments are, including dialing procedures, if any.

Switched (Public) Telephone Links
When you are using a public or switched telecommunications link, the modem cmmection
between computers must be established. The HP 13265A Modem can be used in any
Async application that requires a I3ell 103- or I3ell 113-cornpatible modem operating at
up to 300 band line speed. However, the HP 13265A Modern is not suitable for data
rates exceeding 300 baud. For higher baud rates, use a modem that is compatible with
the one at the remote computer site. Modems cannot be used for remote connections
from a terminal to the data link.

The Dataeornm Interface 14-25

Private Telecommunications Links
Private (leased) links require modems unless the link is short enough for direct conneetion
(up to 50 feet, depending on line speed). The HP 13265A Modem can be used at data
rates up to 300 baud. For higher speeds, a different modem must be used.

Direct Connection Links
For short distances, a direct connection may be used without modems or adapters, pro
vided both machines use compatible interfaces. Async connections normally use RS-232C
interfaces. You can also operate as a Data Link terminal directly connected to an HP
1000 or HP 3000 host computer through a dedicated Multipoint Async interface on the
network host, although such connections are unusual.

Data Link Connections
Most Data Link connections use an HP 13264A Data Link Adapter to connect directly
to the Data Link. In special situations, a modem may be used to communicate with a
Multipoint Async interface on the HP 1000 or HP 3000 network host. When the Data
Link Adapter is used, no special procedures are required. If you are using a leased or
switched telecommunications link, the procedures are the same as when using point-to
point Async with modems.

Connection Procedure
This section describes procedures for modem connections using telephone telecommuni
cations circuits. If you are not using a switched, modem link, skip to the next section:
Initiating the Connection.

Dialing Procedure for Switched (Public) Modem Links
Except for dialing, connection procedures do not usually vary between switched and
dedicated links. Dialing procedures depend on whether the modem is designed for manual
or automatic dialing. Automatic dialing can be used with the HP 13265A Modem, but
other modems must be operated with manual dialing unless you design your own interface
to an Automatic Calling Unit. For manual dialing procedures, consult the operating
manual for the modem you are using.

14-26 The Datacomm Interface

\
' J \..._!

\
. l
\,.,_!

Automatic Dialing with the HP 13265A Modem:
The automatic dialer in the HP 13265A Modem is accessed by Control Regist<'r 12. The
CONTROL statement is follow<'d by an OUTPUT statement that contains the tdephon<'
number string, including dial rate and timing characters. The two statements set up tlw
automatic dialer, but dialing is not started until a "start connection" conunand is sent
to Control Register 12. Here is an example sequence:

1500 CONTROL Sc,12;2 ! Enable the Automatic Dialer.
1510 OUTPUT Sc;"> 9 @@@ (303)-555-1234"; L tl2Jmecogni"d dmmct<'m ace ignon"l.

3-second wait for secondary dial tone.

Select FAST dial rate.

The OUTPUT statement eontains several essential elements.

• The first eharaeter (">"),if ineluded, specifies a fast dialing rate. If it is omitt<'d,
the default slow dialing rate is used.

• A time delay character "@" may be inserted anywhere in the string. A onc-seeoud
time delay is exeeuted in the dialing sequence each time a delay eharaeter is en
countered.

• Numeric character sequences define the telephone mnnber. Multiple dial-tow' se
quences, such as when ealling out from a PBX (Private Branch Exchange), can be
used by inserting a suitable delay to wait for the next dial tone.

• Unrecognized characters such as parentheses, hyphens, and spaces can be indud<'d
for elarity. They are ignored by the automatic dialer.

• Up to 500 eharaeters can be included in the telephone nmnber string.

The Datacomm InterfaeP 14-27

Here is how an autodial connection is executed:

• The CONTROL Sc, 12; 2 statement places a "start dialing" control block in the out
bound queue to the interface. The OUTPUT statement places the telephone num
ber string (including spaces and other characters) in the queue after the control
block. When the interface encounters the control block, it transfers the string to
the HP 13265A Modem's autodial circuit. No other action is taken at this time.

• When a CONTROL Sc, 12; 1 statement (line 1600 in the example) is executed, another
control block is queued up. When the interface encounters the block, it sends a
"start connection" command to the modem. The modem then disconnects from
the line, waits two seconds, then reconnects. The autodialer waits 500 milliseconds,
then starts executing the telephone number string. The string is executed character
by-character in the same sequence as sent by the OUTPUT statement.

• If your application requires more than 500 milliseconds to guarantee a dial tone is
present, you can increase the delay by adding delay characters ("@") where needed,
one second per character. Be sure to provide adequate delays in multiple dial tone
sequences, such as when calling through a private branch exchange (PBX) to a
public telephone network.

• When dialing is complete, the modem is connected to the line, and you are ready to
start communication. The next section explains how to determine when connection
is complete.

Two dialing rates are available: slow (default) and fast. To select the fast rate, you must
include the fast rate character (">") as the FIRST character in the telephone number
string. Here is a summary of differences between the two options:

Table 14-7. Dialing Options

Parameter Slow Dialing Fast Dialing

Click Length 60 milliseconds 32.5 milliseconds

Click Gap 40 milliseconds 17.5 milliseconds

Number Gap 700 milliseconds 300 milliseconds

One to ten dial pulses (clicks) are sent for each digit 1 through 0, respectively. The
number gap is the time lag between the end of the last click of one number and the
beginning of the first click of the next number.

Most Bell System facilities can handle both fast and slow dialing rates, but private or
independent telephone systems or companies may require slow dialing.

14-28 The Datacomm Interface

Initiating the Connection
After you have executed the necessary dialing procedures, if any, you arc ready to initiate
the connection. The following statement is used to start the connection:

1600 CONTROL Sc,12;1 ! Start Connection.

This statement sends a control block to the interface telling it to eonnect to the datacornm
line. If the HP 13265A Modem is being used, and the autodialer is enabled, it starts
dialing the number. Otherwise, the interface executes a direct connection to the line, or
tells the modem or data link adapter to connect.

The status of the connection process can be monitored by using the STATUS state
ment. The following lines hold the computer in a continuous loop until the connection
is complete:

1650 Conn:STATUS Sc,12;Line_state Get datacomm line status.
1660 IF Line_state=2 THEN DISP "Dialing"
1670 IF Line_state=1 THEN DISP "Trying to Connect"
1680 IF Line_state<>3 THEN Conn
1690 DISP "Connected"

Refer to the "Interface Registers" section of the BASIC Language Reference for interpre
tation of the values in Status Register 12. Only values of 1, 2, or 3 arc usually encountered
at this stage of the program.

As soon as Status Register 12 indicates that connection is complete, you are ready to
continue into the main body of the terminal emulator or other program yon are writing.
This completes the datacomm initialization and connection phase of the program.

The Datacomm Interface 14-29

Setting up the Interrupt System
Most datacomm programs, especially complex ones, use interrupt branching extensively to maintain efficient, orderly program operation. Branching is usually set up for:

• 1/0 interrupts from peripheral devices by use of ON INTR and ENABLE INTR statements.

• Datacomm interrupts from the datacomm interface. Statements used are the same
as for other 1/0 interrupts.

• Operator interrupts using softkeys for program control. A separate ON KEY statement is used to set up the branch for each key used.
• Operator interrupts using ASCII keys for program input. The ON KBD statement is used to set up the branch, and KBD$ is the keyboard-entry string holding the

data.

Each interrupt branch must be provided with a corresponding interrupt service routine, with priority levels assigned when appropriate. General 1/0 interrupt techniques are explained in the chapter "Interface Events." This section explains the interrupt structures commonly encountered in datacomm applications.

Setting up Softkey Interrupts
Softkeys are usually set up for repetitively executed functions to improve operator convenience and efficiency. Labels can have up to eight or 14 characters for each key, depending on CRT screen width. The following statements add a disconnect and break capability to the emulator example we are using:

1750 ON KEY 0 LABEL " Disconn" GOTO Disconnect
1760 ON KEY 1 LABEL " Break" GOSUB Break

Other keys can be set up and labelled as needed, but remember a service routine is required for each label specified by a GOTO, GOSUB, CALL, or RECOVER.

14-30 The Datacomm Interface

\
\.,.._,../

Setting Up Program Operator Inputs
Two methods are commonly used to input information from the operator through the
computer keyboard. The first method uses the LINPUT (or INPUT) statement for data
entry. An example program using the LINPUT statemmt is shown in the overview of
datacornm programming earlier in this chapter. When the LINPUT statement requests a
data entry, type the information, use the keyboard editor to make any necessary correc
tions, then press CONTINUE to transfer the information to the running program. This
is the simplest method for programming keyboard entry. The second method is used in
our ongoing example. It uses the ON KI3D statement in conjunction with an interrupt
service routine that is responsible for all data manipulation, including display, editing,
and transfer to the program. The following statement sets up the keyboard interrupt.
The interrupt service routine is discussed later.

1770 ON KBD GOSUB Keyboard

Setting Up Datacomm Interrupts
The ON INTR and ENAI3LE INTR statements are used to set up program branching
for the datacomrn interface. STATUS Register 4 contains information that shows the
cause(s) of the most recent interrupt. The interrupt mask specified in the ENAI3LE
INTR statement determines the events that are allowed to cause an interrupt brauch.
I3its 0 thru 5 of the interrupt mask and STATUS register are identical for both Async
and Data Link protocols.' I3its 6 and 7 are used for Async only.

The following statements set up the interrupt structure for datacomm:

1810 ON INTR Sc GOSUB Datacomm
1820 ENABLE INTR Sc;1 ! Interrupt when data received.

The Datacomm Interface 14-31

In more elaborate applications, you may want to enable additional interrupt causes by
changing the interrupt mask. Here are the available interrupt bits and their functions:

Table 14-8. Interrupt Mask Bits for Async Operation

Bit Value Function Bit Value Function
0 1 Data in Receive Queue 4 16 No Activity Timeout
1 2 Prompt Received 5 32 Lost Carrier Timeout
2 4 Framing/Parity Error 6 64 End-of-line Received
3 8 Modem Line Change 7 128 Break Received

Table 14-9. Interrupt Mask Bits for Data Link Operation

Bit Value Function Bit Value
0 1 Data in Receive Queue 3 8

1 2 Block Successfully Sent 4 16

2 4 Transmit or Receive Error 5 32

Function

Modem Line Change

No Activity Timeout

Lost Carrier Timeout

Interrupt mask bits 6 and 7 are not used with Data Link protocol.

To construct the interrupt mask value, add the bit values for each function that is to
cause an interrupt. For example, to interrupt when there is data in the receive queue (bit
value=l), or a modem line change (bit value=8) or a Lost Carrier timeout (bit value=32),
the interrupt mask becomes: 1 + 8 + 32 = 41. The ENABLE INTR statement becomes:

1820 ENABLE INTR Sc;41

14-32 The Datacomm Interface

\ :0

Background Program Routines
After the interrupt structures have been established by the running program, tlH' pro
gram begins executing a "background" routine while it waits for interrupts. Background
routines vary according to application, and can consist of anything from a simple idle
loop to a very complex program. They are called background programs or background
routines because their execution is generally suspended whenever interrupts from previ
ously defined sources are received. See the chapter "Interface Events" for more discussion
of interrupt and software priority.

Background program operations can affect interrupt handling under certain conditions.
For example, if the background program contains a subprogram call, the interrupt service
routines are temporarily suspended until subprogram execution is complete if the ON
INTR statements use GOSUB, or GOTO. Incoming data is held in the receive queue
during subprogram execution, and the remote is held off by the interface when the queue
is full, if handshaking between devices is active. If handshaking is not being used in
Async operatio11, buffer overflow can occur. When handshake is being used, be sure that
the remote computer does not disable the link when extended hold-offs occur.

When interrupt service routines are subprograms accessed by an ON INTR. .. CALL state
ment, background subprograms may be temporarily suspended to allow interrupt pro
cessing. Be careful when using subprograms to be sure that variables are properly used
for orderly f1ow of information between contexts.

Most BASIC programmers, to maintain clarity in program f1ow, place interrupt serviee
routines after the background routines. This technique simplifies documentation and
makes it easier for others to understand program operation. The location of subroutines
or program labels in BASIC programs does not affect efficiency or speed of execution by
the desktop computer.

A detailed discussion of background programs is beyond the scope of this chapter be
cause they are dependent upon the individual application. In the example shown in
this chapter, a simple idle loop is sufficient. A typical idle loop resembles the following
statement:

1880 Background: GOTO Background Background program idle loop.

The next topies addressed are interrupt service routines for datacomm and keyboard
operations.

Tlw Datacmmn Interface 14-33

Interrupt Service Routines
Interrupt service routines are required to service any peripheral device or interface that
uses interrupt to access the computer. In the example we are using, interrupt service
routines are required for the datacomm interface, computer keyboard, and softkeys. Each
routine is treated separately in this section.

Servicing Datacomm Interrupts
Whenever the datacomm interface interrupts a running BASIC program, the interrupt
request is first logged and then DISABLE INTR is automatically executed by the system.
The cause of interrupt is then placed in STATUS Register 4. The interrupt service
routine must do several things to guarantee that: (1) the interrupt is properly handled,
(2) the interrupt structure is restored after the current interrupt is acknowledged, and
(3) no data is left in the receive queue after the last interrupt request is processed. The
following items outline the basic elements of the datacomm interrupt service routine
(similar techniques are used for other interfaces).

• Read STATUS Register 4 to clear the interrupt request and determine the cause
of the interrupt. If you do not clear the interrupt request, it remains active and a
new interrupt is generated as soon as you exit the service routine, whether or not
there is any information to process.

• Use ENABLE INTR (usually without specifying a new interrupt mask) to reactivate
the datacomm interrupt system. It is usually unnecessary to redefine the interrupt
mask when this is done.

• Take appropriate action based on what caused the interrupt.

• Exit the interrupt service routine with a RETURN (or equivalent statement as
appropriate) taking care to maintain proper program structure.

14-34 The Datacomm Interface

·.)
"--"

Interrupts an' usually generatPd wlwn data is available for transfer between tlw intt>rfac<'
and yonr computer. The interrupt sPrvicc• routine then procc'sses the transfer using the
ENTER statement. In tlH' following interrupt service routine, A$ is dimensiow'd to a
length of one character (DIM A$ [1]). Tlw calling sequence might be:

ON INTR Se GOSUB Dataeomm
ENABLE INTR Se;Mask

2090 Dataeomm:STATUS Se,4;Interrupt_eause
2100 ENABLE INTR Se
2110 De:
2120
2130
2140

STATUS Se,5;Rx_queue_status
IF Rx_queue_status=O THEN RETURN
ENTER Se USING "#,-K";A$
PRINT USING "#,K";A$

2150 GOTO De

While this interrupt service routine (ISR) looks ckceptivcly 8imple, its structure performs
several important functions:

• Liuc 2090 acknowledges the intPrTupt and places th<' caus<'-of-interrupt information
iu Interrupt_eause.

• Line 2100 reenables the intc•rTupt without changing the mask.

• Line 2110 g<>ts the receive• qH<'1H' status. Four vah!('s are possible•:

Rx_queue_status=O: Receive qnenP is empty.

Rx_queue_status= 1: Receive queue contaius data.

Rx_queue_status=2: Receive quem' contains at lc>ast one control block.

Rx_queue_status=3: Receive queue contains data and at least one coutrol block.

• Line 2120 dH'cks to makP sure there is data or control information available' be
fore coutinuing. This prevents attempts to <'ntPr data that does not exist. The'
placement of this statement is explainPd under Exit Conditions.

e Line 2130 enters the data. The format used guarant<'<'S that no data is lost during
searches for end-of-line delimiters. The "#" IMAGE speeifi<'r prevents search for
<'ncl-of-liHe (EOL) delimitc'rs. Use of "-K" place's CR, LF. and CR-LF <'!HI-of-line
delimiters in the string variable when they are <'necmnt<'r<'d. BASIC can then locate'
the delimitc•rs by using separate' operations.

• Line 2140 prints the' data on the PRINTER IS device. The '"#'" specifier suppresses
the EOL sequence because the' string variable' already contains terminators.

The' Datacomm Interface' 14-35

• Line 2150 goes back to check for more data before exiting. This guarantees that
no data is missed in the event that additional data arrives during interrupt service.
Otherwise, some interrupt requests may be missed.

To understand why the interrupt is handled as shown, consider the following sequence
of events:

Interface places data in queue and requests interrupt.
I

I

' I
tO t1

' I

Interface
I

I
' I
t2

receives more data and requests a second interrupt.
Interface requests a thkd interrupt.

I

' I
t3 t4 t5

A ..
I I

ISR begins processing second interrupt.

ISR finishes first interrupt.
ISR acknowledges then reenables interrupt.
It then begins entering the data.

Figure 14-6. How BASIC Handles Datacomm Interrupts

At time tO, the interface places data in the receive queue and requests interrupt service.
At tl, the ISR responds and acknowledges the interrupt. The interrupt is reenabled,
but subsequent interrupt service requests are logged but not serviced until the routine
is finished. While the ISR is processing the first interrupt request, a second and third
request are made at t2 and t3. (The already active interrupt request line is reactivated
by the third request. From the computer's point of view, nothing happened because the
second interrupt request was already active). When the ISR completes the first interrupt
process (t4), it exits, then acknowledges, the second interrupt (t5).

Here is what really happens when the example routine is executed: Since the routine
checks for no more data in the queue before it processes the interrupt, and remains in
the ENTER/PRINT loop until the queue is empty, all available information is processed
before exit occurs. Therefore, data placed in the queue at the time of the second and
third interrupt requests is processed before the exit at t4, guaranteeing that nothing
is left. When the second entry is made to the routine (t5) in response to the second
interrupt request, no data is in the queue unless it was placed there between exit and
reentry. In this case, the queue is empty, so exit is immediate. The third interrupt
request cannot be recognized, because the second was still pending when it occurred.

14-36 The Datacomm Interface

()
"'-"

\

0

If the routine were written differently, and only one ENTER statement was executed

for each interrupt request, the example sequence would result in only two interrupts

being acknowledged. The third interrupt request and its corresponding data would not

be processed until a fourth request caused the third data entry to be executed. Such a

structure presents a risk of data loss.

Exit Conditions
In the preceding example, line 2120 exits or continues the interrupt service routine,

depending on the status of the receive queue. The example shown assunH's that A$ can

hold only a single ASCII character or data byte. The ENTER statement is terminated

as soon as A$ is filled, so data transfer is one byte at a time. By checking for Status

Register 5=0, you arc guaranteed that no data messages remain in the receive queue.

Control blocks are immaterial in this case.

When using Data Link protocol, most programmers specify data transfer formats of one

record per block. This eliminates the need to search data for delimiters 1 . Since the

datacornm interface can receive Data Link transmission blocks up to 1000 characters, it

is wise to dimension A$ to a length exceeding the maximum expected block length; for

example, DIM A$ [1050]. In such cases, it is necessary to modify line 2120 to provide exit

if a full block is not available for A$. Instead of examining for the presence of data, a

test is made to look for a control block in tlw queue, indicating the presence of a full

block of data. (Control Register 14 must be set so that only ETB /ETX terminators are

allowed to create a control block.) If a control block is present, a full block of data is

also available. When the ENTER statement is executed, the input operation terminates

when the control block is encountered, and the resulting length of A$ matches the received

block length. To operate in "block mode" instead of "character mode" as earlier, change

line 2120 to:

2120 IF Rx_avail_bits<2 THEN RETURN

Only the dimension of A$ is affected by this change. Other interrupt serv1ce routi11e

statements remain unchanged.

1 The HP 3000 packs multiple records per block when transferring ASCII text files, so you must decode

delimiters to find record boundaries. Consult the appropriate HP 3000 Data Link manuals for more

inforrnation.

The Datacomm Int<'rface 14-37

Note

It is good programming practice to be sure the receive queue or
input buffer is completely empty before exiting an interrupt ser
vice routine, and make sure there is data present before trying to
process it.

This example datacomm interrupt service routine is adequate for most applications where
data is not sent with a known, fixed format, and where prevention of data loss is im
portant. In other situations, where loss of data between the end of the input variables
list and the delimiter in incoming data is unimportant, or a fixed format is used, other
formats can be specified. It is usually wise to avoid using multiple variables with the
ENTER statement when using the formats shown in this example. Here's why:

A control block indicates End-of-data, not End-of-information. Consequently, an EN
TER statement is terminated whenever a control block is encountered (variables are
terminated by EOI, not EOD). If more than one variable is included in the statement,
and EOD (control block) occurs before the list is filled, the unfilled variables retain their
previous values which can lead to improper results.

Data Formats for Datacomm Transfers
All datacornm data transfers use the OUTPUT and ENTER statements. Consequently,
any formatting techniques that are compatible with these statements can also be used.
However, since most computers send and expect to receive a limited variety of data
formats, most data transfers use a limited assortment of formats.

14-38 The Datacomm Interface

ASCII Data Transfers -In asynchronous data commm1ications applications, information
is usually transferred as lines of ASCII t<•xt. In most cases, lirH'S are t<>rminated by
a carriage-return followed by a line-feed (CR-LF). or by a carriage-n>turn only. Otlwr
methods may be used occasionally to reeogniz.e reeord boundaries in special applieations.

Most Data Link applieations consist of ASCII t<•xt records transfe1Ted lwtw<•en th<• n<>t
work host computer and other terminals and/or computers in the network. R<•cords ar<>
transmitted in blocks, one or more n•eords p<•r block. Wh<•n multiple-n•corcl blocks an•
transferr<>d, delimiters between records arc included as part of the t<•xt, awl individual
records must be unpacked by the receiver.

Non-ASCII Data Transfers- Non-ASCII data includes rwn-text or non-ASCII t<>xt data
that must be transmitted ov<>r the datacomm link. but may contain characters that could
be interpreted as dataconnn control charactc•rs. Examples of uon-ASCII data ineludcs
encoded data files, non-text program files, or specially fonnatt<•d data. To provide a
means of transferring uon-ASCII data formats n•quires non-standard t<•clmiqu<>s in A sync,
and transparent transmission when using Data Link.

To transfer non-ASCII data using asynchronous protocol, use an eight-bit character for
mat with or without parity as dietated by your applicatiou. End-of-lilH' and prompt
recognition, and any character stripping functions must be disabled to allow passage of
arbitrary character patterns. Use of Async for such applicatious is 1meommon. primarily
because of the limited reliability of parity cheeks as a means for error d<'t<•ction.

Transfer of non-ASCII data using Data Link protocol is nmeh <'asier because all data
transmitted by the desktop computer through the clatacomm interface is sent as trans
parent data; i.e., data that could be mistaken for control characters is transfern•d intact.
Data Link transfers from the network host are also s<•nt as transparent data. In onlPr to
transfer non-ASCII data from the uetwork host, a cooperating program on the host must
originate the data, and suppress end-of-lirw and other 1mwantPd charaetc•r s<•quPm'<'S.

TlH• Datacomm Interfac<' 14-39

Servicing Keyboard Interrupts
The keyboard interrupt service routine has several functions. In the case of a terminal
emulator or similar application, it inputs keystrokes, interprets them, then transmits
the results to the datacomm interface. In addition, it may be required to display the
keystroke(s) or perform backspace and editing operations (such as in line-mode terminal
emulators). Certain keys may also be reserved to perform program command functions
while others are used to transmit information to the host.

Here is a simple example of a keyboard interrupt service routine that sends ASCII
keystrokes to the datacomm interface as each key is pressed, then sends an end-of-line
(CR) if Async, or end-of-block if Data Link. The example shown is for Async proto
col; Line 2410 is changed for Data Link. The calling sequence might be ON KBD GDSUB
Keyboard. An explanation follows the example.

2290 Keyboard:K$=KBD$
2300 K: IF NOT LEN(K$) THEN RETURN
2310 Key=NUM(K$)
2320 K$=K$ [2]
2330 IF Key=255 THEN
2340 Key=NUM(K$)
2350 K$=K [2]
2360 IF Key=255 THEN
2370 Key=NUM(K$)
2380 K$=K$ [2]
2390 END IF
2400 IF Key=NUM("E") THEN
2410 OUTPUT Sc;CHR$(13) ;END
2420 ELSE
2430 BEEP
2440 END IF
2450 ELSE
2460 OUTPUT Sc;CHR$(Key);
2470 END IF
2480 GOTO K

To change the example for Data Link, eliminate the carriage return in line 2410 as follows:

2410 OUTPUT Sc;END

14-40 The Datacomm Interface

\0

This Async example assumes that the host echoes any data sent to it: that is, wlH'n a
character is sent to the host, the' host sends tlw same characte'r back to the terminal
where it is displayed. Conscqnmtly, kcystrokt's an' displaye'd AFTER they arc returned
by the host. Data Link protocol does not provide this featun' (called echo-plcx). To
print each keystroke on the CHT as it is ke'yed in, add the following]ill(~ to the Data Link
example:

2465 PRINT CHR$(Key);

This keyboard routine is a good illustration of how to us<' an IF ... THEN ... ELSE stntctur<'
to decode a keystroke, and decide whether it is ASCII, cnd-of-liue, or an mm'cognillcd
character. If ASCII, it is transmitted. If the ENTER key is pressed, it s<'llds an EOL.
Any other k<'y is iguorcd, but the' computer beeps to acknowkdg<' the keystroke.

To uuderstand the routine, yon must lH' aware that several data formats an' found in
KDD$. ASCII keystrokes are stored. one byte per stroke. as key eodes cqnivaknt in
value to the NUM value of the corresponding ASCII charactc'r code. Non-ASCII k<'ys
arc stored as two bytes; the first byte is CHR$(255). the second byte' is t]l(' keycode. If
the CONTROL key is pressed simultaneously with a nm1-ASCII k<'y, a three'-byt<' entry
is made in KDD$. The first is CHR$(255) representing a non-ASCII key, tlw second is
also CHR$(255) r<'pn'scuting the CONTROL key, aud the third byte is the kc'ystrok<'.
Keyeodc values for non-ASCII keys arc listed iu the Keyboard Output Codes table' in the
back of the DASIC Language Rc>fer<'IH'<' for your cornput<'r. The following table shows
the KDD$ data format for e'ach keystroke:

Table 14-10. KBD$ Data Formats

Keystroke(s)

ASCII or CONTROL-ASCII

Non-ASCII Key

CONTROL-Non-ASCII Key

First Byte

ASCII k<'ycock

CHR$(255)

CHR$(255)

Second Byte

None

Non-ASCII keycod<'

CHR$(255)

Third Byte

Non<'

Non<'

Non-ASCII
k<>y('ode

The conteuts of KI3D$ is destroyed wh<'ll you trausfer it to auother string or perform
any other operation on KDD$. Siuce ouly oue read from KDD$ is possihk, K$ is used
as a temporary storage and work ar<'a for the ccmtents of KI3D$. permitting additional
::;tring operations.

Tlw Datacornm IutcTface 14-41

The first IF ... THEN ... ELSE looks for a CHR$(255) indicating a non-ASCII key. If none
is found, the ASCII key is sent to the datacomm interface. The second IF ... THEN ... ELSE
is entered ONLY if the first character indicates a non-ASCII key. It looks for a second
CHR$(255), which is discarded, if found. (Both ENTER and CTRL-ENTER are ac
cepted as end-of-line.) The keystroke data byte is then checked to see if it is the ENTER
key. If the value is not equivalent to NUM("E"), the key is rejected. Otherwise, and
end-of-line/end-of-block is sent to the datacomm interface.

In more elaborate applications, other keys such as backspace or other cursor control
characters could be interpreted, and the CRT display and other program parameters
varied accordingly.

Note that the interrupt service routine remains active until the entire contents of KBD$
as it existed at time of interrupt is processed. If, in the meantime, more keystrokes are
placed in KBD$, a new interrupt occurs as soon as the service routine is finished.

Service Routines for ON KEY Interrupts
ON KEY interrupt service routines are usually simpler than ON KBD service routines.
In this example, KEY 0 disconnects the datacomm line, and KEY 1 sends a BREAK.
The routines are implemented as follows:

To send a BREAK on either Async or Data Link, set bit zero of Control Register 6. Here
is how:

2520 Break:CONTROL Sc,6;1
2530 RETURN

To disconnect from the datacomm line, clear Control Register 12 as follows:

2570 Disco:CONTROL Sc,12;0
2580 DISP "Disconnected"
2590 END

You now have a working terminal emulator.

14-42 The Datacomm Interface

Cooperating Programs
Some applications, while similc1,r in some respects to terminal emulators, require unat
tended operation of the desktop computer and network host. In such cases, cooperating
programs on the host and terminal computer are used. Applications can inelude such
things as the desktop computer controlling a local data gathering system, making pre
liminary caleulations, and sending the results to the network host. Since data integrity
is important in such cases, Data Link is frequently used becaus<' of its ability to detect
transmission errors.

Here is an example of cooperating programs you can run on your desktop computer
and an HP 1000 Data Link network host computer. The FORTRAN program COOP
runs on the HP 1000, and is responsible for opening and transferring the sp<'cified file(s)
from the HP 1000 to the Data Link. A cooperating BASIC program on the desktop
computer acts as an interfaee between the operator and the HP 1000. The specified file
is transferred from the Data Link to local mass storage as it is received from the HP
1000. Assuming the file is an ASCII program file containing valid BASIC statements,
it can then be attached to the cooperating program and run. Note that variablPs nsPd
by both the original BASIC program and the downloa<kd program must be specified as
COM variables to prevent destroying their values during pre-RUN initialization of the
downloaded program. The program listings arc as follows:

FORTRAN Program COOP for the HP 1000:
FTN4,L

PROGRAM COOP
C This is a FORTRAN program that runs on the HP 1000 and cooperates
C with a compatible program running simultaneously on a Series 200/300
C computer.
c
C This program waits in I/0 suspend until the Series 200/300 computer returns
C a file name. When the name is received, it is parsed, and the
C success status of the parse is sent to the Series 200/300 computer. If the
C file name parses successfully, this program tries to open the file.
C The status of the OPEN is also sent to the Series 200/300 computer.
c

INTEGER DCB(144) ,IDBUF(10) ,IBUF(80)
INTEGER NAME(3),SCODE,CRN
INTEGER DTC,ERROR,OK
EQUIVALENCE (NAME,IDBUF),(SCODE,IDBUF(5)) ,(CRN,IDBUF(6))

C ***INITIALIZE DTC TO BE THE LU# OF THE SERIES 200/300 COMPUTER***

DTC=21

The Dataeomm Int<'rfaee 14-43

C ***Send the ASCII string "SYNCHRONIZE" to the Series 200/300 computer***
C This signals the Series 200/300 computer to begin executing the sister C program to this one.

CALL EXEC(2,DTC,11HSYNCHRONIZE,-11)

C ***Now wait in I/0 suspend until the Series 200/300 computer sends the***
C name of the program file that is to be downloaded to the
C Series 200/300 computer.

CALL EXEC(1,DTC,IBUF,-40)
CALL ABREG(IA,LEN)
IP=l
IF (NAMR (IDBUF,IBUF,LEN,IP)) 9200,100

100 CALL EXEC (2,DTC,2HOK,-2)

C ***OPEN THE FILE AND SEND THE CONTENTS TO THE SERIES 200/300 COMPUTER***

IF (OPEN (DCB,ERROR,NAME,O,SCODE,CRN)
200 CALL EXEC (2,DTC,2HOK,-2)

250 CALL READF(DCB,ERROR,IBUF,80,LENGTH)
IF (LENGTH,EQ,-1) GOTO 300
CALL EXEC (2,DTC,IBUF,LENGTH)
GOTO 250

9100,200

C ***TELL THE SERIES 200/300 COMPUTER THAT THE END OF FILE HAS BEEN***
C REACHED, THEN STOP.

300 CALL EXEC(2,DTC,11H*ENDOFFILE*,-11

STOP

c ** C ERROR HANDLING ROUTINES
c **

C *************THIS ROUTINE HANDLES DISC ERRORS********************* C BY SENDING THE FMP ERROR AND CLOSING THE FILE.

9100 WRITE(DTC,910l)ERROR
9101 FORMAT ("THE OPEN FMP ERROR CODE WAS "I6)

CALL CLOSE(DCB)
STOP

C ************THIS ROUTINE HANDLES PARSING ERRORS*******************

9200 WRITE(DTC,9201)
9201 FORMAT ("THE FILE NAME RECEIVED DID NOT PARSE CORRECTLY")

STOP
END

14-44 The Datacomm Interface

Cooperating BASIC Program for the Series 200/300 Computer:
1000 **
1010 This BASIC program cooperates with the FORTRAN program "COOP" and
1020 downloads a BASIC program file from the HP 1000 for execution on
1030 the Series 200/300 computer. While the program is not elegant, it
1040 illustrates the basic concepts involved in downloading files to
1050 local mass storage, then loading them into memory for execution.
1060 The same technique is useful for transferring data files.
1070
1080 **
1090
1100
1110
1120
1130
1140
1150
1160
1170

COM Sc,Insep$[4] ,Prompt$[2] The values of these variables must be
preserved between programs.

Sc=20 Set select code.
DIM Rx$[1050] ,Tx$[1050] Set up data transfer strings.
Insep$=CHR$(13)&CHR$(10)&CHR$(27)&"_" ! HP 1000 EOL string.
Esc_u_score$=CHR$(27)&"_" ! Escape-Underscore.
INTEGER A

1180 **
1190 Set up DATA LINK protocol
1200
1210
1220
1230 Wait:
1240
1250
1260

CONTROL Sc,0;1
CONTROL Sc,3;2
STATUS Sc,38;All_sent

Reset the interface.
Set Data Link protocol.

IF NOT All_sent THEN Wait ! Wait for control block sent.
CONTROL Sc,0;1 ! Reset interface to start new protocol.

1270 '***
1280 ! Set up the datacomm configuration.
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390

CONTROL Sc,16;0
CONTROL Sc,17;0
CONTROL Sc,20;14
CONTROL Sc,21;1
CONTROL Sc,22;1
CONTROL Sc,23;0

CONTROL Sc,24;0
CONTROL Sc,36;0

Disable Connect timeout.
Disable No Activity timeout.
Set baud rate to 9600.
GID="A".
DID="A".
Override default switches and set

Hardware Handshake OFF, non-modem connection.
Transmit block length maximum: 512 bytes.

! Set parity: NONE (HP 1000 connection).

1400 '***
1410 ! Connect to the Data Link.
1420
1430
1440
1450 Conn:
1460
1470

CONTROL Sc,12;1 ! Send connection command to the interface.
DISP "Trying to connect"
STATUS Sc,12;Line_state

IF Line_state3 THEN Conn
DISP "Connected"

Wait for connection complete.

Th<' Dataeomm Iut<'rfac<' 14-45

1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

'** !This is a MINIMAL Terminal Emulator.

Prompt:

Idle:

LINPUT Tx$
PRINT USING "#,K";Tx$
OUTPUT Sc;Tx$ END

STATUS Sc,5;Receive
IF NOT Receive THEN Idle

Get line to send to network host.
Print line on CRT.
Send line to host.

Look for reply from host.
If nothing, try again.

ENTER Sc USING "#,-K";Rx$ Get reply message.
PRINT USING "#,K";Rx$[1,POS(Rx$,Esc_u_score$)-1] Print reply.

Trap messages from HP-1000:

IF POS (Rx$, "UNABLE TO COMPLETE LOG-ON") THEN Prompt ! If error,
IF POS (Rx$, "END OF SESSION") THEN Prompt ! try again.
IF POS(Rx$,"SYNCHRONIZE") THEN Coop ! When synchronized, start.

STATUS Sc,5;Receive

IF NOT Receive AND
GOTO Idle

Look for line with EOL characters missing.
If not CrLfEsc_, it is a system or sub
system prompt from the HP 1000. Otherwise,
go to idle loop.

(POS(Rx$,Insep$)=0) THEN Prompt! Prompt?
No.

1750 '**
1760
1770

! This section starts the cooperating program.

1780 Coop:
1790 T1:
1800
1810
1820
1830 R1:
1840
1850
1860
1870
1880
1890
1900 R2:
1910
1920
1930
1940
1950
1960

LINPUT "TYPE IN A FILE NAME",Tx$
STATUS Sc,4;Transmit
IF NOT BIT(1,Transmit) THEN T1

OUTPUT Sc;Tx$;END

STATUS Sc,5;Receive
IF NOT Receive THEN Rl

ENTER Sc USING "#,-K";Rx$
IF POS(Rx$,"0K") THEN R2

PRINT Rx$
STOP

STATUS Sc,5;Receive
IF NOT Receive THEN R2

ENTER Sc USING "#,-K ";Rx$
IF POS(Rx$,"0K") THEN Rd_prog

PRINT Rx$
STOP

Get file name for transfer.
Get transmit queue status.
If not empty, wait.
Send file name.

Get receive queue status.
If empty, wait for data.
Get data. Keep CR-LF.
If OK, continue.
Not OK. Print error message.
Error. STOP.

Look for another OK from
the HP 1000.

If OK, start download.
Not OK. Print error message.
Error. STOP.

1970 **

14-46 The Datacomm Interface

I I
"-"'!

,-- ',

0

1980 For this section to work, the HP 1000 must send the 4-character
1990 end-of-line sequence: CR-LF followed by escape-code, underscore.
2000 Auto-answer must be disabled, and the data being sent from the
2010 HP 1000 MUST consist of valid BASIC program lines, each including a
2020 valid line number.
2030
2040 Rd_prog:
2050
2060 R3:
2070
2080
2090
2100
2110
2120
2130
2140 Get_prog:
2150
2160
2170
2200

ASSIGN ©File TO "DOWNLOAD" Assign destination file for
file transfer.

STATUS Sc,5;Receive Look for data record.
IF NOT Receive THEN R3 If nothing, wait for record.

ENTER Sc USING "#,-K";Rx$ Get record. Keep CR-LF.
PRINT Rx$ Print record on printer.
IF POS(Rx$,"*ENDOFFILE*") THEN Get_prog !Check for end-of-file.
OUTPUT ©File;Rx$[1,POS(Rx$,Esc_u_score$)-1] ! Store record on
GOTO R3 ! Mass Storage file and repeat for next record.

File has been downloaded to local mass storage.
ASSIGN @File TO * Close the file.
GET "DOWNLOAD",2200,2200 ! Get the downloaded program.

END ! This statement is destroyed by GET.

Program File to be Downloaded from the HP 1000:
1000
1010
1020
1040
1050
1060
1070
1080
1090
1100
1110

This program is downloaded to the desktop computer for execution.

DIM A$ [20]
PRINT "Now I'll count to 10."
FOR I=1 TO 10

PRINT II

NEXT I
:II; I

PRINT "That's the end of the demo!!"
PRINT "Nice to meet you, ";A$
GOTO Idle
END

The Datacomm Interfac<' 14-4 7

Modified Cooperating BASIC Program After Loading:
2080
2090
2100
2110
2120
2130
2140 Get_prog:
2150
2160
2170
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310

ENTER Sc USING "#, -K"; Rx$! Get record. Keep CR-LF.
PRINT Rx$! Print record on printer.
IF POS(Rx$,"*ENDOFFILE*") THEN Get_prog !Check for end-of-file.
OUTPUT ~Fi1e;Rx$[1,POS(Rx$,Esc_u_score$)-1] ! Store record on
GOTO R3 ! Mass Storage file and repeat for next record.

File has been downloaded to local mass storage. GET it.
ASSIGN ~File TO * Close the downloaded file first.
GET "DOWNLOAD",2200,2200 ! Get the downloaded program.

This program is downloaded to the desktop computer for execution.

DIM A$[20]
INPUT "Hl. l'm the downloaded program.
PRINT "Now I'll count to 10."
FOR I=1 TO 10

PRINT II

NEXT I
:II ;L

PRINT "That's the end of the demo!!"
PRINT "Nice to meet you, ";A$
GOTO Idle
END

What is your name?",A$

14-48 The Datacomm Interface

)
~

\
. I

\J

Results:
Assuming you have logged onto the HP 1000, the printed output that is displayed on the
CRT screen or current PRINTER IS device should look something like this:

RU,COOP
SYNCHRONIZE
TYPE IN A FILE NAME
FAB2: :10
HI, I'm the downloaded program. What is your name?
SUE
Now I'll count to 10

:1
:3
:4
:5
:6
:7
:8
:9
:10

That's the end of the demo!!
Nice to meet you SUE

COOP: STOP
EX
$END FMGR
FMG21 REMOVED
SESSION 21 OFF 1:26PM FRI., 11 SEP., 1981
CONNECT TIME: 00 HRS. , 08 MIN. , 28 SEC.
CPU USAGE 00 HRS. , 00 MIN. , 00 SEC. , 4 70 MS.
CUMULATIVE CONNECT TIME 01 HRS., 09 MIN., 02 SEC.
END OF SESSION

The Datacomm Interface 14-49

The Datacomm Errors and Recovery Procedures
Several errors can be encountered during datacomm operation. They are listed here with
probable causes and suggested corrective action.

Error Description and Probable Cause

306 Interface card failure. This error occurs during interface self-test, and indicates
an interface card hardware malfunction. You can repeat the power-up self-test by
pressing I SHIFT II PAUSE I (or I RESET I). If the error persists, replace the defective card.
Using a defective card may result in improper datacomm operation, and should be
considered only as a last resort.

313 USART receive buffer overflow. The SIO buffer is not being cleared fast enough
to keep up with incoming data. This error is uncommon, and is usually caused
by excessive processing demands on the interface microprocessor. To correct the
problem, examine BASIC program flow to reduce interference with normal interface
operation. This error causes the interface to disconnect from the datacomm line and
go into SUSPENDED state. Clear or reset the interface card to recover.

314 Receive Buffer overflow. Data is not being consumed fast enough by the desktop
computer. Consequently, the buffer has filled up causing data loss. This is usually
caused by excessive program demands on the desktop computer CPU, or by poor
program structure that does not allow the desktop computer to properly service
incoming data when it arrives. Modify the BASIC program(s) to allow more frequent
interrupt processing by the desktop computer, or change to a lower baud rate and/or
use protocol handshaking to hold off incoming data until you are ready to receive it.
This error causes the interface to disconnect from the datacomm line and go into a
SUSPENDED state. Clear or reset the interface to recover.

315 Missing Clock. A transmit timeout has occurred because the transmit clock has not
allowed the card to transmit for a specified time limit (Control Register 19). This
error can occur when the transmit speed is 0 (external clock), and no external clock
is provided, or it can be caused by a malfunction. The interface is disconnected from
the datacomm line and is SUSPENDED. To recover, correct the cause, then reset
the card.

316 CTS false too long. Due to clear-to-send being false on a half-duplex line, the interface
card was unable to transmit for a specified time limit (Control Register 19). The
card has disconnected from the datacomm line, and is in a SUSPENDED state. To
recover, determine what has caused the problem, correct it, then reset or clear the
interface card.

317 Lost Carrier disconnect. Data Set Ready (DSR) (and/or Data Carrier Detect, if
full-duplex) went inactive for the specified time limit (Control Register 18). This
condition is usually caused by the telecommunications link or associated equipment.
The card has disconnected from the datacomm line and is in a SUSPENDED state.
To recover, clear or reset the interface card.

14-50 The Datacomm Interface

u

u

u

Error Description and Probable Cause

318 No Activity Disconnect. The interface card disconnected from the datacomm line
automatically because no information was transmitted or received within the time
limit specified by Control Register 17. The card is in a SUSPENDED state. Clear
or reset the interface to recover.

319 Connection not established. The card attempted to establish connection, but Data
Set Ready (DSR) (and Data Carrier Detect, if full duplex) was not active within
the time limit specified by Control Register 16. The card has disconnected from
the datacomm line and is in a SUSPENDED state. Clear or reset the interface to
recover.

325 Illegal DATABITS/PARITY combination. CONTROL statements have attempted
to program 8 bits per character and parity "1" or "0". The CONTROL statement
causing the error is ignored, and the previous setting remains unchanged. To correct
the problem, change the CONTROL statement(s) and/or interface default switch
settings.

326 Register address out of range. A CONTROL or STATUS statement has attempted
to address a non-existing register. The command is ignored, and the interface card
state remains unchanged. This error can also occur when illegal HP-IB statements
are used with this interface.

327 Register value out of range. A CONTROL command attempted to place an illegal
value in a defined register. The command is ignored, and the interface card state
remains unchanged.

Error Recovery
When any error from Error 313 through Error 319 occurs, it forces the interface card
to disconnect from the datacomm line. When a forced disconnect terminates the con
nection, the interface is placed in a SUSPENDED state, indicated by Status Register 12
returning a value of 4. The interface cannot be reconnected to the datacomm line when
it is SUSPENDED. CLEAR, ABORT, and RESET are used to recover from the sus
pended state and resume normal card operation. Executing OUTPUT and CONTROL
statements while the card is suspended places corresponding data and control block(s)
in the transmit (outbound) queue and can continue to do so until the queue is filled, at
which time the desktop computer operating system hangs. ENTER statements can be
executed to retrieve data that was there prior to SUSPEND until the receive (inbound)
queue is empty. Subsequent ENTER statements, if executed while the card is suspended,
hang the computer.

The Datacomm Interface 14-51

To recover from a SUSPENDED interface, three programmable options are available, all
of which destroy any existing data in the transmit and receive queues. They are:

• The CLEAR statement clears the receive and transmit queues. In addition, if the
interface card is suspended, it disconnects the card from the datacomm line. If
the card is not suspended, its connection state is not changed, but the queues are
cleared.

• The ABORT statement is identical to the CLEAR statement, except that the in
terface card is unconditionally disconnected from the datacomm line.

• RESET interface (Control Register 0) clears all buffers and queues, and resets
all CONTROL options to their power-up state EXCEPT the protocol which is
determined by the most recent CONTROL statement (if any) addressed to register
3 since power-up.

A fourth (keyboard only) option is available. I SHIFT II PAUSE I (or I RESET I) causes a hard
ware reset to be sent to ALL peripherals. This completely resets the datacomm interface
to its power-up state with protocol and other options determined by the default switch
settings.

Error Detection and Program Recovery
When a timeout or datacomm error occurs, an interrupt is generated by the interface
card to BASIC. If an ON ERROR is active for that select code, the error is trapped and
handled by the error routine specified by the ON ERROR statement. If no ON ERROR
is active for that select code, the program is stopped at the end of the current line by
the BASIC operating system, and an error message is sent to the PRINTER IS device.

When a datacomm error is trapped by an error routine, the routine must decide what
to do about the problem. Options include the suggested recovery techniques discussed
previously with the error messages, or orderly program termination. The options you
select are determined by your specific application. Since datacomm interface errors are
not related to a specific program line, the ERRL function is always false, and ERRN
returns the error number generated by the interface card. ERRL and ERRN are dis
cussed in greater detail in the BASIC Programming Techniques manual for your desktop
computer.

14-52 The Datacomm Interface

i)
~

i \ v

Terminal Emulator Example Programs
The following pages contain complete listings of two terminal emulator programs based
on the preceding discussion. The first program is for asynchronous data communication
with an HP 1000. It can be easily adapted for other remote computers and different
operating parameters. The second program uses Data Link to communicate with an HP
1000 network host. It can be used with the HP 3000, but the parity specifier must be
changed, and other changes made as appropriate.

Both programs can be enhanced and expanded to include many additional features. The
examples shown illustrate the general structure of terminal emulator programs, and arc
recommended as a basis for developing your own.

Other example programs are also included for your convenience and to further illustrate
some of the concepts discussed in this chapter. If you have an HP 46020/21A keyboard,
you need to adjust the ON KEY 0 LABEL statement in line 1750 (and any other affected
lines).

1000 **
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170

*
*
*

*****Example Async Terminal Emulator*****
*
*
*

**
* This sample terminal emulator program is a simple example of the *
* program structure of general-purpose emulators. It is not elegant,*
* but contains the essential elements and illustrates commonly used *
* programming techniques. *
**

Sc=20
DIM A$[1] ,K$[100]

Select code of datacomm interface.
Set up string variables.

Reset datacomm interface and enable Async protocol.

CONTROL Sc,0;1
CONTROL Sc,3;1

Reset card to disconnect from line.
Select Async protocol.

1180 Wait:
1190

STATUS Sc,38;All_sent
IF NOT All_sent THEN Wait
CONTROL Sc,0;1

Wait until Control Block is sent to
interface before resetting again.

1200 Reset card to start new protocol.
1210
1220 Set up datacomm options. Normally Just a few are included in the
1230 program. This group overrides ALL defaults including switches.
1240
1250
1260
1270

CONTROL Sc,14;3
CONTROL Sc,15;0
CONTROL Sc,16;0

Set Control Block mask for EOL and Prompt.
No modem line-charge notification.
Disable connection timeout.

The Datacomm Interface 14-53

1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1405
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640

CONTROL Sc,17;0
CONTROL Sc,18;40
CONTROL Sc,19;10
CONTROL Sc,20;7
CONTROL Sc,21;7
CONTROL Sc,22;2
CONTROL Sc,23;1
CONTROL Sc,24;66

CONTROL Sc,26;6
CONTROL Sc,27;5
CONTROL Sc,28;2,13,10
CONTROL Sc,31;1,17

CONTROL Sc,34;2
CONTROL Sc,35;0
CONTROL Sc,36;1
CONTROL Sc,37;0
CONTROL Sc,39;4

Disable No Activity timeout.
Lost Carrier 400ms (default).
Transmit timeout 10 s (default).
Transmit Speed: 300 baud.
Receive Speed: 300 baud.
EQ/AK (as terminal) handshake.
Full Duplex Modem connection.
Remove protocol characters except
EOL. Change errors to underscores.
Assign AK character for EQ/AK.
Assign EQ character for EQ/AK.

! Set EOL sequence to CR/LF (default).
Set prompt to be DCl (default).
Register 33 is not used.
Seven bits per character.
One stop tit per character.
Odd parity.
No inter-character time gap (default).
Set BREAK to four character times (default).

You are now ready to connect to the remote computer. Optionally, this
may include autodialing with the HP 13265A Modem.

CONTROL Sc,12;2 Start Autodial.
OUTPUT Sc;"> 9 «! (303) 555-1234" Send telephone number string.

Unrecognized characters are ignored.
Insert 1-second pause (used with PBX to wait for

Select FAST dialing rate. dial tone).

Autodialing is not started until Start Connection is initiated by the
following CONTROL statement:

CONTROL Sc,12;1 Start the connection.

If desired, this is the proper place to monitor STATUS Register 12 to
see if the connection is actually made.

1650 Conn:
1660

STATUS Sc,12;Line_state ! Get Line State from STATUS Register.
IF Line-State=2 THEN DISP "Dialing" ! State=2.

1670
1680
1690
1700
1710
1720
1730
1740
1750
1760

IF Line_state=L THEN DISP "Waiting to Connect" ! State=1.
IF Line_state<>3 THEN Conn Wait for connection.
DISP "Connected" ! Connection is now complete.

Softkey 0 is set up so you can disconnect easily.
Softkey 1 sends a break to the remote computer.
Most other keys are trapped by the ON KBD interrupt service routine.

ON KEY 0 LABEL " Disconn" GOTO Disconnect
ON KEY 1 LABEL " Break" GOSUB Break

Set up Softkey 0.
Set up Softkey 1

14-54 The Datacomm Interface

'U

1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260

ON KBD GOSUB Keyboard ! Set up keyboard interrupt.

Now set up the datacomm ON INTR service routine then enable interrupts
for any data and/or Control Blocks (see STATUS Register 4 definition).

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L

Everything is handled under interrupt. The background routine can be
an idle loop doing nothing or a program that runs when interrupts are
not being processed.

Background:
!

GOTO Background

!

-->>>>>>>>>>>>>>> Datacomm Interrupt Service Routine <<<<<<<<<<<<<<<<-
This emulator operates in character mode, handling only one character
at a time. It is set up for no control blocks in the receive queue,
and the dimension of A$ limits inputs from datacomm to one character.

The STATUS ... 4 acknowledges the interrupt from the card. Since only
one interrupt condition is enabled, there is no reason to check the
value of STATUS Register 4.

The ENABLE INTR allows the card to generate another interrupt when it
is ready. BASIC does not branch to the service routine until after
the RETURN exit is completed.

Since the datacomm interface can interrupt much faster than BASIC can
service, exit from the routine occurs ONLY after ALL data has been
removed from the receive queue. Since an interrupt can be generated
even though the data has already been ENTERed, we must check STATUS
Register 5 FIRST to see if any data is available.

Datacomm: STATUS Sc,4;Interrupt_bits
ENABLE INTR Sc

Acknowledge interrupt by card.
Reenable interrupt.

De: STATUS Sc,5;Rx_avail_bits
IF Rx-Avail-Bits=O THEN RETURN
ENTER Sc USING "#,-K";A$
PRINT USING "#,K";A$
GOTO De

Get data available status bits.
If empty, exit service routine.
Get next data byte.
Print the character.
Check for more data available.

This keyboard routine is not very exotic, but it CAN handle a fast
typist. Some of the nested IF ... THENs are used to decode the 255-
and 255-255 notations for special and CONTROL-special keys. The only
special key allowed by this routine is ENTER (code is NUM("E")). It
is converted to a carriage-return followed by a line turn-around
(;END) indication. All ASCII keys are transmitted to the card without
alteration.

The keyboard routine loops until the keyboard string has been
completely serviced. Notice the similarities between the keyboard and

The Datacomm Interface 14-55

2270
2280

datacomm interrupt service routines.

2290 Keyboard: K$=KBD$
2300 K: IF NOT LEN(K$) THEN RETURN
2310 Key=NUM(K$)
2320 K$=K$[2]
2330 IF Key=255 THEN
2340 Key=NUM(K$)
2350 K$=K$[2]
2360 IF Key=255 THEN
2370 Key=NUM (K$)
2380 K$=K$ [2]
2390 END IF
2400 IF Key=NUM("E") THEN
2410 OUTPUT Sc;CHR$(L3) ;END
2420 ELSE
2430
2440
2450
2460
2470
2480
2490

BEEP
END IF

ELSE
OUTPUT Sc;CHR$(Key);

END IF
GOTO K

Stay in routine until K$ is empty.
Get key or prefix (255=non-ASCII) .
Strip first character from string.
If not 255, transmit character.
255. Get value of next character.
Strip second character.
If 255 (CONTROL),

get third character value.
Strip third character and check

for ENTER.
Check non-ASCII to see if ENTER.
Send CR then turn line around.
Illegal character. Beep and return

for next character(s).

ASCII key.
computer.

Send it to the remote

End of character check
Go get next keystroke,

routine.
if any.

2500
2510

Key 1 sends a BREAK indication to the datacomm interface card.

2520 Break: CONTROL Sc,6;1 Tell card to send a BREAK.
End of routine. 2530 RETURN

2540
2550
2560
2570
2580
2590

Key 0 disconnects the card and stops the program.

Disconnect: CONTROL Sc,12;0
DISP "Disconnected-"
END

! Disconnect gracefully.

If you have an HP 46020/21A keyboard, adjust the ON KEY statements to reflect available
keys.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1081
1090
1100
1120

*
*
*

*****Example Data Link Terminal Emulator*****
*
*
* ***

* This sample terminal emulator program is a simple example of the *
* program structure of general-purpose emulators. It is not elegant,*
* but contains the essential elements and illustrates commonly used *
* programming techniques. Line numbers are matched to the Async *
* example for your convenience in comparing the two versions. *

Sc=20 ! Select code of datacomm interface.
DIM A$[1050] ,K$[100] ! ******->-> A$ now handles 1000 characters.

14-56 The Datacomm Interface

u

1130
1140
1150
1160
1170
1180 Wait:
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1460
1570
1590
1600
1610
1620
1630
1640
1645
1650 Conn:
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830

Reset datacomm interface and enable Async protocol.

CONTROL Sc,0;1
CONTROL Sc,3;2
STATUS Sc,38;All_sent

Reset card to disconnect from line.
Select Data Link protocol.

IF NOT All_sent THEN Wait
CONTROL Sc,0;1

Wait until Control Block is sent to
interface before resetting again.

Reset card to start new protocol.

Set up datacomm options. Normally just a few are included in the
program. This group overrides ALL defaults including switches.

CONTROL Sc,14;6
CONTROL Sc,15;0
CONTROL Sc,16;0
CONTROL Sc,17;0
CONTROL Sc,18;40
CONTROL Sc,19;10
CONTROL Sc,20;14
CONTROL Sc,21;1
CONTROL Sc,22;1
CONTROL Sc,23;0
CONTROL Sc,24;0
~ONTROL Sc,36;0

Set Control Block Mask for ETB/ETX.
Set ON INTR mask for data in receive queue.
Disable Connection timeout.
Disable Lost Carrier timeout.
Set Lost Carrier to 400 ms (default).
Set Transmit Timeout=lO s (default).
Set Line Speed to 9600 baud.
Set GID character to "A" (default).
Set DID character to "A".
Hardware Handshake OFF f o r HP 13264A.
Set transmit block size to 512 (default).
Parity not used with HP 1000 (default).

Now we can initiate Start Connection.

CONTROL Sc,12;1 Start the connection.

If desired, this is the proper place to monitor STATUS Register 12 to
see if the connection is actually made.

DISP "Trying to connect"
STATUS Sc,12;Line_state
IF Line_state<>3 THEN Conn
DISP "Connected"

Get Line State from STATUS Register.
! Wait for connection.

Connection is now complete.

Softkey is set up so you can disconnect easily.
Softkey sends a break to the remote computer.
Most other keys are trapped by the ON KBD interrupt service routine.

ON KEY 0 LABEL " Disconn" GOTO Disconnect ! Set up Softkey.
ON KEY 1 LABEL " Break" GOSUB Break ! Set up Softkey.
ON KBD GOSUB Keyboard ! Set up keyboard interrupt.

Now set up the datacomm ON INTR service routine then enable interrupts
for anything received (see STATUS Register 4 definition). ***********

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L

The Datacomm Interface 14-57

1840 Everything is handled under interrupt. The background routine can be
1850 an idle loop doing nothing or a program that runs when interrupts are
1860 not being processed.
1870
1880 Background:
1890

GOTO Background

1900 -->>>>>>>>>>>>>>> Datacomm Interrupt Service Routine <<<<<<<<<<<<<<<--
1910 This emulator operates in block mode, handling incoming data one block
1920 at a time. Entire data blocks are read from the receive queue, but
1930 they MUST be properly terminated by a Control Block.
1940
1950 The STATUS ... 4 acknowledges the interrupt from the card. Since only
1960 one interrupt condition is enabled, there is no reason to check the
1970 value of STATUS Register 4.
1980
1990 The ENABLE INTR allows the card to generate another interrupt when it
2000 is ready. BASIC does not branch to the service routine until after
2010 the RETURN exit is completed (i.e., the routine does not call itself).
2020
2030 Since the datacomm interface can interrupt much faster than BASIC can
2040 service, exit from the routine occurs ONLY after ALL data has teen
2050 removed from the receive queue. Since an interrupt can be generated
2060 even though the data has already been ENTERed, we must check STATUS
2070 Register 5 FIRST to see if any data is available.
2080
2090 Datacomm: STATUS Sc,4;Interrupt_bits
2100 ENABLE INTR Sc
2110 De: STATUS Sc,5;Rx_avail_bits
2120 IF Rx_avail_bits<2 THEN RETURN
2130 ENTER Sc USING "#, -K"; A$
2140 PRINT USING "#,K" ;A$
2150 GOTO De
2160

Acknowledge interrupt by card.
Reenable interrupt.
Get data available status bits.

!***If no control block, exit.
Get next data byte.
Print the incoming block.
Check for more data available.

2170 This keyboard routine is not very exotic, but it CAN handle a fast
2180 typist. Some of the nested IF ... THENs are used to decode the 255-
2190 and 255-255 notations for special and CONTROL-special keys. The only
2200 special key allowed by this routine is ENTER (code is NUM("E")). It
2210 is connerted to an end-of-block (;END) indication. All ASCII keys are
2220 transmitted to the card without alteration.
2240
2250 The keyboard routine loops until the keyboard string has been
2260 completely serviced. Notice the similarities between the keyboard and
2270 datacomm interrupt service routines.
2280
2290 Keyboard: K$=KBD$
2300 K: IF NOT LEN(K$) THEN RETURN
2310 Key=NUM(K$)
2320 K$=K$ [2]
2330 IF Key=255 THEN
2340 Key=NUM(K$)

14-58 The Datacomm Interface

Stay in routine until K$ is empty.
Get key or prefix (255=non-ASCII) .
Strip first character from string.
If not 255, transmit character.
255. Get value of next character.

\
\ I_,

2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
2465
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590

ELSE

K$=K$ [2]
IF Key=255 THEN

Key=NUM(K$)
K$=K$[2]

END IF
IF Key=NUM("E") THEN

OUTPUT Sc;END
ELSE

BEEP
END IF

OUTPUT Sc;CHR$(Key);
PRINT USING "#,A";CHR$(Key)

END IF
GOTO K

Strip second character.
If 255 (CONTROL),

get third character value.
Strip third character and check

for ENTER.
Check non-ASCII to see if ENTER.
Send end-of-block.
Illegal character. Beep and return

for next character(s).

ASCII key. Send it to the remote
computer.

! Print character not echoed by DL.
End of character check routine.
Go get next keystroke, if any.

Key 1 sends a BREAK indication to the datacomm interface card.

Break: CONTROL Sc,6;1
RETURN

Tell card to send a BREAK.
End of routine.

Key 0 disconnects the card and stops the program.

Disconnect: CONTROL Sc,12;0
DISP "Disconnected"
END

Disconnect gracefully.

The Datacomm Interface 14-59

Datacomm Programming Helps
This section discusses some obstacles to the beginning datacomm programmer and how
to overcome them.

Terminal Prompt Messages
Care must be exercised to ensure that messages are never transmitted to the network
host if the host is not prepared to properly handle the message. Receipt of a poll from
the host does not necessarily mean that the host can handle the message properly when
it is received. Therefore, prompts or interpretation of messages from the host are used
to determine the status of the host operating system.

Prompts are message strings sent to the terminal by a cooperating program. They are
well-defined and predictable, and are usually tailored to specific applications. When the
terminal interacts directly with RTE or one or more subsystems, the process becomes
less straightforward. Each subsystem usually has its own prompt which is not identical
to other subsystem prompts. To maintain orderly communication with subsystems, you
must interpret each message string from the host to determine whether it is a prompt.

Prevention of Data Loss on the HP 1000
On the HP 1000, the RTE Operating System manages information transfer between
programs or subsystems and system 1/0 devices, including DSN/DL. Terminals are con
tinually polled by the host's data link interface (unless auto-poll has been disabled by
use of an HP 1000 File Manager CN command). Since there is no relationship between
automatic polling and HP 1000 program and subsystems execution, it is possible to poll a
terminal when there is no need for information from that terminal. If the terminal sends
a message in response to a poll when no data is being requested, the HP 1000 discards
the message, causing the data to be lost, and treats it as an asynchronous interrupt. A
break-mode prompt is then sent to the terminal by the host.

The terminal must determine that the host is ready to receive a message in order to ensure
that messages are properly handled by the host. This is done by checking all messages
from the host (ENTER until queue is empty) and not transmitting (OUTPUT) until
a prompt message or its equivalent has been received (unless you want to enter break
mode operation). Since the HP 1000 does not generate a consistent prompt message
for all programs and subsystems, it is easiest to use cooperating programs to generate
a predictable prompt. If your application requires interaction with other subsystems,
prompts can usually be most easily identified by the ABSENCE of the sequence: St~Et:_
at the end of a message. When a proper sequence has been identified, you are reasonably
certain that the host is ready for your next message block.

14-60 The Datacomm Interface

' ()
~

Here is an example of host messages where a prompt is sent by the File Manager (FMGR)
and answered by a RUN, EDITR command. Note that the prompt from the interac
tive editor fits the description of a prompt because a line-feed is not included after the
carriage-return in the sequence.

:Fe_

RU,EDITR

Prompt is sent by FMGR to terminal.

EDITR Run command is sent to host.

SOURCE FILE NAME?<lt~EC_
<lt!\ Fe_

File name message is sent by the host, followed by
a prompt sequence which has no line-feed. Sequence
is different from FMGR prompt.

Whenever an unexpected message from a terminal is received by RTE, it is treated as an
asynchronous interrupt which terminates normal communication with that terminal. A
break-mode prompt is sent to the terminal by RTE, and the next message is expected to
be a valid break-mode command. If the message is not a valid command (such as data
in a file being transferred), the data is discarded, and an error message is sent to the
terminal. If, in the meantime, the cooperating program or subsystem generates an input
request, the next data block is sent to the proper destination, but is out of sequence
because at least one block has been lost. You can prevent such data losses and the mass
confusion that usually ensues (especially during high-speed file transfers to the host), by
disabling auto-poll on the HP 1000 data link interface. With auto-poll OFF, no polls are
sent to your terminal unless the host is prepared to receive data.

Disabling Auto-poll on the HP 1000
To operate with auto-poll OFF, log on to the network host, disable auto-poll, perform
all datacomm activities and file transfers, enable auto-poll, then log off. If you don't
enable auto-poll at the end of a session, polling is suspended to you terminal after log
off, and you cannot reestablish communication with the host unless polling is restored
from another terminal or the network host System Console.

The auto-poll ON/OFF commands are (LU# is the terminal's logical unit number):

CN,LU#,23B,101401B
CN,LU#,23B,001401B

Auto-poll OFF1

Auto-poll ON 1

1 The File Manager CN (Control) command parameters for the multipoint interface are described in more
detail in the 91730A Multipoint Terminal Interface Subsystem User's Guide.

The Datacomm Interface 14-61

When auto-poll is disabled, no polls are sent to your terminal unless an input request
is initiated by the cooperating program or subsystem on the network host. When the
request is made, a poll is scheduled, and polling continues until a reply is received from
the terminal. When the reply is received, and acknowledged, polling is suspended until
the next input is scheduled. Operating with auto-poll OFF is especially useful when
transferring files to the HP 1000. Otherwise, in most applications, it is practical to leave
auto-poll ON.

Prevention of Data Loss on the HP 1000
Neither the HP 1000 nor the HP 3000 provide a DCl poll character when they are ready
for data inputs from DSN/DL. The HP 3000, like the HP 1000, also discards data if it
has not requested the transfer. Since the HP 3000 does not provide an auto-poll disable
command, you must interpret messages from the HP 3000 to determine that it is ready
for the next data block before you transmit the block.

Secondary Channel, Half-duplex Communication
Half-duplex telecommunications links frequently use secondary channel communication
to control data transmission and provide for proper line turn-around. This is done by
using Secondary Request-to-send (SRTS) and Secondary Data Carrier Detect (SDCD)
modem signals.

Consider two devices communicating with each other: Each connects to the datacomm
link, then waits for SDCD to become active (true). As each device connects to the line,
Secondary Request-to-send is enabled, causing each modem to activate its secondary
carrier output. The Secondary Data Carrier Detect is, in turn, activated by each modem
as it receives the secondary data carrier from the other end.

When communication begins, the first device to transmit (assumed to be your com
puter, in this case) clears its Secondary Request-to-send modem line. This removes the
secondary data carrier from the line, causing the other modem to clear SDCD to its
terminal or computer, telling it that you have the line. (The modems also maintain
proper line switching and prevent timing conflicts so both ends don't try to get the line
simultaneously.) The other device receives data, and must not attempt to transmit until
you relinquish control of the line as indicated by SDCD true. After you finish transmit
ting, you must again activate SRTS so that SDCD can be activated to the other device,
allowing it to use the line if it has a message.

14-62 The Datacomm Interface

!.)
\..._/

r \
i. .)

"'-"'

The following example is a simple terminal emulator that uses secondary channel com
munication to control data flow on a half-duplex link:

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1255
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450

**
! * * ! * HALF-DUPLEX TERMINAL EMULATOR FOR SECONDARY CHANNEL OPERATION *
! * *

* This program uses secondary channel modem lines to indicate which *
* end is in control of the line. BASIC is used to assemble data *
* for transmission to the other end. This example is compatible *
*with the Option 001 (male) cable only. *

! * *
**

Sc=20
DIM A$[1] ,K$[100]

Select code of HP98628 datacomm interface.
Size of datacomm and keyboard strings.

Reset the card to disconnect, then select Async protocol.

CONTROL Sc,0;1
CONTROL Sc,3;1

Wait: STATUS Sc,38;All_sent
IF NOT All_sent THEN Wait
CONTROL Sc,0;1

Set up all the interface configuration options for Async protocol.

CONTROL Sc,14;0
CONTROL Sc,15;16

CONTROL Sc,16;0
CONTROL Sc,17;0
CONTROL Sc,18;40
CONTROL Sc,19;10
CONTROL Sc,20;7,7
CONTROL Sc,22;0
CONTROL Sc,23;2
CONTROL Sc,24;255
CONTROL Sc,28;2,13,10!
CONTROL Sc,31;1,17
CONTROL Sc,34;2
CONTROL Sc,35;0
CONTROL Sc,36;1
CONTROL Sc,37;0
CONTROL Sc,39;4

Set Control Block mask off.
Interrupt when Secondary Carrier Detect

modem line changes state.
Disable connection timeout.
Disable No Activity timeout.
Lost Carrier 400 ms (default).
Transmit timeout 10 s. (default).
Line speed: 300 baud in both directions.
Disable protocol handshake.
Half duplex modem connection.
Do not remove protocol characters.
EOL sequence CR/LF (default).
Prompt DCl (default).
7 bits per character.
1 stop bit.
odd parity.
No inter-character gap (default).
Set Break to 4 character times (default).

Initiate connection to the telecommunications line.

CONTROL Sc,12;1

The Datacomm Interface 14-63

1460
1470
1480
1490
1500
1510
1520
1530
1540
1550

Tell the operator what is happening, then wait for connection to finish.

DISP "Waiting to connect"
Conn: STATUS Sc,L2;Line_state

IF Line_state=L THEN Conn
DISP "Waiting for SDCD to become active"

Get the SDCD handshake started properly by waiting for the other end to
relinquish control of the line by activating SDCD.

1560 Statck:STATUS Sc,7;Modem_lines
1570 IF NOT BINAND(Modem_lines,16) THEN Statck
1580 DISP "Connected"
1590
1600 Set up a key to gracefully disconnect the datacomm connection.
1610
1620 ON KEY 0 LABEL " Disconn" GOTO Disconnect
1630
1640 Interrupt on data received or modem line change (change in SDCD).
1650
1660 ON INTR Sc GOSUB Datacomm
1670 ENABLE INTR Sc;1+8
1680
1690
1700
1710
1720
1730
1740
1750

Send a "READY" message to the remote to getthings started.
optional.

CONTROL Sc,8;7 ! Put down SRTS
OUTPUT Sc; "READY"; CHR$ (L3) ; END
CONTROL Sc,8;15 ! Put up SRTS

This is

1760 The background idle loop simply waits for interrupts to happen.
1770
1780 Background: GOTO Background
1790 !

1800 **
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940

DATACOMM INTERRUPT SERVICE ROUTINE

First, acknowledge interrupt by reading STATUS register 4.

Read all existing data in the buffer.

When SDCD becomes true, it indicates that the remote is through
transmitting. A LINPUT statement is provided to let the user enter a
line of data. The line is then sent to both the screen and the
datacomm card. To maintain control of the line, we disable SRTS
(Control Register 8), then reactivate it when we are through sending.

Finally, re-enable interrupts and exit the interrupt routine.

1950 Datacomm:STATUS Sc,4;Interrupt_bits

14-64 The Datacomm Interface

i)
"--"

1960 Read: STATUS Sc,5;Rx_avail_bits
1970 IF Rx_avail_bits=O THEN Chkmdm
1980 ENTER Sc USING "#,-K";A$
1990 PRINT USING "#,K" ;A$
2000 GOTO Read
2010 Chkmdm:STATUS Sc,7;Modem_lines
2020 IF BINAND(Modem_lines,L6) THEN
2030 CONTROL Sc,8;7! Put down SRTS
2040 LINPUT "Line to send ... ?" ,K$
2050 PRINT K$
2060 OUTPUT Sc;K$;CHR$(13);END
2070 CONTROL Sc, 8; 15 Put up SRTS
2080 END IF
2090 ENABLE INTR Sc
2100 RETURN
2110 ***
2120 Key 0 was set up to disconnect from the datacomm line.
2130
2140 Disconnect:CONTROL Sc,12;0
2150 DISP "Disconnected"
2160 END

Automatic Answering Applications
Desktop computers are sometimes used in applications where they may have to be able to
automatically answer incoming calls from other computers by means of public (switched)
telephone lines. For instance, a desktop computer may be located at an unattended
remote site in a data gathering network where the network host computer periodically
calls the remote site for data updates. In other situations, the desktop computer may be
the host for several computers or terminals that originate the calls. Other applications
may require that two (or more) desktop computers be able to call each other in either
direction at will.

The Datacomm Interface 14-65

In automatic answering applications, the Ring Indicator (RI) modem line is used by the
desktop computer to recognize incoming calls from the host. This enables the desktop
computer to answer the call by connecting to the datacomm line. Usually, a continuously
running program on the unattended computer contains an ON INTR statement set up
to monitor the RI modem signal. When RI is activated by the incoming call, normal
program flow is interrupted, and the connection is initiated. The desktop computer
then sets up the necessary datacomm and other program interrupts, and proceeds to
the program segment responsible for transferring data to the remote computer. The
following example illustrates the general technique and how it fits into overall program
structure:

1000
1010
1020

**
! *
! * TERMINAL EMULATOR WITH AUTOMATIC ANSWERING CAPABILITY

1030 ! *
*
*
* 1040

1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160

! * This program waits for the ring-indicator modem line to change *
! * (indicating an incoming datacomm call), then connects to the *
! * datacomm line, Use with Option 001 (male) modem cable. *
! * * **

Sc=20 Select code of HP 98628 datacomm interface.
DIM A$[1] ,K$[100]! Size of datacomm and keyboard strings.

Reset the card to disconnect, then select Async protocol.

CONTROL Sc,0;1
CONTROL Sc,3;1

1170 Wait:
1180

STATUS Sc,38;All_sent
IF NOT All_sent THEN Wait
CONTROL Sc,0;1 1190

1200
1210 Set up all the interface configuration options for Async protocol.
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360

CONTROL Sc,14;0
CONTROL Sc,15;8
CONTROL Sc, 16; 0
CONTROL Sc,17;0
CONTROL Sc,18;40
CONTROL Sc,19;10
CONTROL Sc,20;7,7
CONTROL Sc,22;0
CONTROL Sc,23;1
CONTROL Sc,24;255
CONTROL Sc,28;2,13,10!
CONTROL Sc,31;1,17!
CONTROL Sc,34;2
CONTROL Sc,35;0

14-66 The Datacomm Interface

Set Control Block mask off.
Interrupt when Ring Indicator line changes.
Disable connection timeout.
Disable No Activity timeout.
Lost Carrier400ms (default).
Transmit timeout 10 s (default).
Line speed: 300baud in both direGtions.
Disable protocol handshake.
Full duplex modem connection.
Remove no protocol characters.
EOL sequence CR/LF (default).
Prompt DCl (default).
7 bits per character.
1 stop bit.

I~

1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490

CONTROL Sc,36;1
CONTROL Sc,37;0
CONTROL Sc,39;4

Odd parity.
No inter-character gap (default).
Set Break to 4 character times (default).

Wait for Ring Indicator modem line to change.

ON INTR Sc GOTO Ri_int
ENABLE INTR Sc;8
DISP "Waiting for ring to come in"

Waitri:GOTO Waitri
!
! When interrupt occurs, initiate connection to the datacomm line.
!

1500 Ri_int:CONTROL Sc,12;1
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720

Tell the operator what is happening, then wait for connection to finish.

DISP "Waiting to connect"
Conn: STATUS Sc,L2;Line_state

IF Line_state=1 THEN Conn
DISP "Connected"

Set up key Oto gracefully disconnect from the datacomm line, then
set up key 1 to send a break.

ON KEY 0 LABEL " Disconn" GOTO Disconnect
ON KEY 1 LABEL " Break" GOSUB Break

Interrupt on data received.

ON INTR Sc GOSUB Datacomm
ENABLE INTR Sc;L
ON KBD GOSUB Keyboard

Also set up keyboard interrupts.

The background idle loop simply waits for interrupts to happen.

1730 Background: GOTO Background
1740 ! ***
1750 DATACOMM INTERRUPT SERVICE ROUTINE
1760
1770 First, acknowledge interrupt by reading STATUS register 4.
1780
1790 Re-enable interrupts, then read all existing data in the buffer.
1800
1810 When the buffer is empty, exit the service routine.
1820
1830 Datacomm:STATUS Sc,4;Interrupt_bits
1840 ENABLE INTR Sc
1850 Read:
1860

STATUS Sc,5;Rx_avail_bits
IF Rx_avail_bits=O THEN RETURN

The Datacomm Interface 14-67

1870 ENTER Sc USING "#,-K";A$
1880 PRINT USING "#,K" ;A$
1890 GOTO Read
1900 *** 1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170

This keyboard interrupt service routine is similar to the other
examples in this chapter. It sends ASCII keys to the remote, and
accepts ENTER as a Carriage-Return. Other keys cause a BEEP.

Keyboard:K$=KBD$
K: IF NOT LEN(K$) THEN RETURN

Key=NUM(K$)
K$=K$ [2]
IF Key=255 THEN

Key=NUM(K$)
K$=K$ [2]
IF Key=255 THEN

Key=NUM(K$)
K$=K$ [2]

END IF

ELSE

IF Key=NUM("E") THEN
OUTPUT Sc;CHR$(L3) ;END

ELSE
BEEP

END IF

OUTPUT Sc;CHR$(Key);
END IF
GOTO K

Repeat until K$ is empty:
Get key or prefix

If prefix, get next character

If control-key prefix, get
the third character

Check for ENTER key
If so, send carriage return

ASCII key: just send it

Repeat until K$ is empty
** Key 1 was set up to send a break.

2180 Break: CONTROL Sc,6;1
2190 RETURN
2200
2210 Key 0 was set up to disconnect the interface from the datacomm line.
2220
2230 Disconnect:CONTROL Sc,12;0
2240 DISP "Disconnected"
2250 END

14-68 The Datacomm Interface

i l
\.-1

1.)

~

Communication Between Desktop Computers
Two desktop computers can be connected, directly, or by use of moderns. DC1/DC3
handshake protocol can be used conveniently to enable each computer to transmit at
will without risk of buffer or queue overruns. To ensure proper operation, the following
guidelines apply:

• Set up Control Register 22 with a value of 5. This allows both computers to act
either as host or terminal in any given situation, depending on which one initiates
the action.

• Set up Control Registers 26 and 27 for DCl and DC3 respectively, or use two other
characters if necessary.

• Data to be transmitted must NOT contain any characters matching the contents
of Control Register 26 or 27. This prevents the receiving interface from confusing
data with control characters.

e If both computers attempt to transmit large amounts of data at the same time, a
lock-up condition may result where each side is waiting for the other to empty its
buffers.

The Datacornm Interface 14-69

Cable and Adapter Options and Functions
The HP 98628A Datacomm Interface is available with RS-232C DTE and DCE cable
configurations, or it can be connected to various modems or adapters for other applica
tions.

DTE and DCE Cable Options
DTE and DCE cable options are designed to simplify connecting two desktop computers
without the use of modems. The DTE cable (male RS-232 connector) is configured
to make the datacomm interface look like standard data terminal equipment when it
is connected to an RS-232C modem. The DCE cable (female RS-232 connector) is
configured so that it eliminates the need for modems in a direct connection. When you
connect two computers to each other in a direct non-modem connection, both datacomm
interfaces are functionally identical. The DCE cable acts as an adapter so that both
interfaces behave exactly as they would if they were connected to a pair of modems by
means of DTE cables.

Several signal lines are rerouted in the DCE cable so that, in direct connections, outputs
from one interface are connected to the corresponding inputs on the other interface.
Certain outputs on each interface are also connected to inputs on the same card by
"loop-back" connections in the DCE cable.

The schematic diagram in this section shows two datacomm interfaces directly connected
through a DTE-DCE cable pair. Note that the DCE cable wiring complements the DTE
cable so that output signals are properly routed to their respective destinations. Signal
names at the RS-232C connector interface are the same as the signal names for the DTE
interface. However, because the DCE cable adapts signal paths, the signal name at the
RS-232C connector does not necessarily match the signal name at the DCE interface.
Connector pin numbers are included in the diagram for your convenience.

14-70 The Datacomm Interface

RS-232C DTE (male) Cable Signal Identification Tables

Signal Signal Interface RS-232C
RS-232C V.24 Pin# Pin# Mnemonic I/0 Function

AA 101 24 1 Safety Ground
BA 103 12 2 Out Transmitted

Data
BB 104 42 3 In Received Data
CA 105 13 4 RTS Out Request to Send

CB 108 44 5 CTS In Clear to Send

cc 107 45 6 DSR In Data Set Ready

AB 102 48 7 Signal Ground

CF 109 46 8 DCD In Data Carrier Detect

SCF (OCR2) 122 47 12 SDCD In Secondary DCD

DB 114 41 15 In DCE Transmit Timing

DD 115 43 17 In DCE Receive Timing

SCA (OCD2) 120 15 19 SRTS Out Secondary RTS

CD 108.1 14 20 DTR Out Data Terminal Ready

CE (OCRl) 125 9 22 RI In Ring Indicator

CH (OCDl) 111 40 23 DRS Out Data Rate Select

DA 113 7 24 Out Terminal Transmit
Timing

Optional Circuit Driver/Receiver Functions
Two optional drivers and receivers are used with the RS-232C cable options. Their
functions are as follows:

Drivers

N arne Function

OCD1 Data Rate Select

OCD2 Secondary Request-to-send

OCD3 Not used

OCD4 Not used

Receivers

N arne Function

OCRl Ring Indicator

OCR2 Secondary Data Carrier Detect

The Datacomm Interface 14-71

OCD2 is used for autodial pulsing in the HP 13265A Modem. None of the optional
drivers and receivers are used for Data Link and Current Loop Adapters.

98628 DTE RS-232C DCE 98628
INTERFACE •1 CABLE SIGNALS CABLE INTERFACE "'2
~~E'-"12'------~~ BA(PIN 2))>----4-"'2=7)~
~~E~42~--~~ BB (PIN 3) >>----.!!12~)~
~E13 ~CA(PIN4)) i46~~
--<J-m-<:~E..:.44"-----7~ CB (PIN 5 l > -

~~E-'-4=-6----7) CF (PIN 8))>----j.--..:..:13~:~ i ... __ 4.,_4'7-~
~~E.:..:I5'-------?) SCA(PIN 19))>----4.:..:77))SECOND~~~C>
~~r4.:..:7---~~ SCF(PIN 12))>----..:..:15~)~ ~~ ~

~E14)CD(PIN20))>---tt----=9:~
j,_ __ 4.:.::57~

~E9 ~CE(PIN22))>----'i14>~
~~E..:.45=-----?~ CC(PIN 6) > -

~ 41 43 ~ DCE ['..,___

~~:4-3------?: ::::::::: :>-__ ___.!,..,77:~ ~~ 7 ~
SIGNAL r----<~E-'-48~--~) AB (PIN 7))>-----'-48~>>-----, SIGNAL
GROUND~ ~GROUND
SAFETY r----<~E"'-24~--~) AA (PIN I))>----2;;:_47)?---J_ SAFETY GROUND.,j,. . =GROUND
~E7)0A(PIN24))--NOTUSED

~~(-'-40~---7) CH (PIN 23))--NOT USED

1 1 1
INTERFACE MALE FEMALE INTERFACE

REAR PANEL RS-232C RS-232C REAR PANEL
CONNECTOR CONNECTOR CONNECTOR CONNECTOR

Figure 14-7. DTE/DCE Interface cable wiring

14-72 The Datacomm Interface

' !
·~

RS-232C/CCITT V241

The following table provides information about each data communications interface func
tion. The pin assignments are also shown. Not all of the functions provided by RS-232C
are implemented. The functions denoted with an * are implemented.

RS-232C/CCITT V241

RS-232C CCITT V24 Signal Name

*Pin 1 101 PROTECTIVE GROUND. Electrical equipment frame and
ac power ground.

*Pin 2 103 TRANSMITTED DATA. Data originated by the terminal to
be transmitted via the sending modern.

*Pin 3 104 RECEIVED DATA. Data from the receiving modern in response
to analog signals transmitted from the sending modern.

*Pin 4 105 REQUEST TO SEND. Indicates to the sending modem that the
terminal is ready to transmit data.

*Pin 5 106 CLEAR TO SEND. Indicates to the terminal that its modern is
ready to transmit data.

*Pin 6 107 DATA SET READY. Indicates to the terminal that its modern
is not in a test mode and that modem power is ON.

*Pin 7 102 SIGNAL GROUND. Establishes common reference between the
modern and the terminal.

*Pin 8 109 DATA CARRIER DETECT. Indicates to the terminal that its
modem is receiving carrier signals from the sending modem.

Pin 9 Reserved for test.

Pin 10 Reserved for test.

Pin 11 Unassigned.

*Pin 12 122 SECONDARY DATA CARRIER DETECT. Indicates to the
terminal that its modern is receiving secondary carrier signals
from the sending modem.

Pin 13 121 SECONDARY CLEAR TO SEND. Indicates to the terminal that
its modem is ready to transmit signals via the secondary channel.

Note that the signals on pins 2, 3, and 7 above are commonly used for 3 wire (no modem)
links.

1 International Telephone and Telegraph Consultative Committee European standard.

The Datacomm Interface 14-73

RS-232C/CCITT V24 (Cont'd)

RS-232C CCITT V24 Signal Name
Pin 14 118 SECONDARY TRANSMITTED DATA. Data from the terminal

to be transmitted by the sending modem's channel.
*Pin 15 114 TRANSMITTER SIGNAL ELEMENT TIMING. Signal from

the modem to the transmitting terminal to provide signal
element timing information.

Pin 16 119 SECONDARY RECEIVED DATA. Data from the modem's
secondary channel in response to analog signals transmitted from
the sending modem.

*Pin 17 115 RECEIVER SIGNAL ELEMENT TIMING. Signal to the
receiving terminal to provide signal element timing information.

Pin 18 Unassigned.

*Pin 19 120 SECONDARY REQUEST TO SEND. Indicates to the modem
that the sending terminal is ready to transmit data via
the secondary channel.

*Pin 20 108.2 DATA TERMINAL READY. Indicates to the modem that the
associated terminal is ready to receive and transmit data.

Pin 21 110 SIGNAL QUALITY DETECTOR. Signal from the modem
telling whether a defined error rate in the received data
has been exceeded.

*Pin 22 125 RING INDICATOR. Signal from the modem indicating that a
ringing signal is being received over the line.

*Pin 23 111 DATA SIGNAL RATE SELECTOR. Selects one of two signaling
rates in modems having two rates.

*Pin 24 113 TRANSMIT SIGNAL ELEMENT TIMING. Transmit clock
provided by the terminal.

Pin 25 Unassigned.

14-74 The Datacomm Interface

\
I

'...._;

Summary of Datacomm
Status and Control Registers
Unless indicated otherwise, the Status Register returns the current value for a given
parameter; the Control Register sets a new value.

Register

0

1 (Status only)

2 (Status only)

3

4 (Status only)

5

6

7 (Status only)

8

9 (Status only)

10 (Status only)

11 (Status only)

12

13

14

15

16

17

Function

Control: Interface Reset; Status: Interface Card ID

Hardware Interrupt Status: 1=Enabled, O=Disabled

Datacomm activity: O=inactive, 1=ENTER in process, 2=0UTPUT in
process

Select Protocol: 1= Async, 2= Data Link

Cause of ON INTR program branch

Control: Terminate transmission; Status: Inbound queue status
Control: Send BREAK to remote; Status: l=BREAK pending
Current modem receiver line states

Modem driver line states

Control block TYPE

Control block MODE

Available outbound queue space

Control: Connect/Disconnect line; Status: Line connection status

ON INTR mask

Control Block mask

Modem Line interrupt mask

Connection timeout limit

No Activity timeout limit

The Datacomm Interface 14-75

Register

18

19

20

21

22

23

24

25 (Status only)

26

Function

Lost Carrier timeout limit

Transmit timeout limit

Async: Transmit baud rate (line speed)
Data Link: Set Transmit/Receive baud rate (line speed)

Async: Incoming (receiver) baud rate (line speed)
Data Link: GID address (0 thru 26 corresponds to "@" thru "Z")

Async: Protocol handshake type
Data Link: DID address (0 thru 26 corresponds to "@" thru "Z")

Hardware handshake type: ON/OFF, HALF/FULL duplex, Modem/
Non-modem

Async: Control Character mask
Data Link: Block Size limit

Number of received errors since last interface reset

Async: First protocol character (ACK/DC1)
Data Link: NAKs received since last interface reset

Registers 27-35, 37, and 39 are used with Async protocol only. They are not accessible
during Data Link operation.

Register

27

28

29

30

31

32

33

34

35

36

37

38 (Status only)

39

Function

Second protocol handshake character (ENQ/DC3)

Number of characters in End-of-line sequence

First character in EOL sequence

Second character in EOL sequence

Number of characters in PROMPT sequence

First character in PROMPT sequence

Second character in PROMPT sequence

Data bits per character excluding start, stop and parity

Stop bits per character (0=1, 1=1.5, and 2=2 stop bits)

Parity sense: O=NONE, 1=0DD, 2= EVEN, 3=ZERO, 4=0NE
Data Link: O=NONE (HP 1000 host), 1=0DD (HP 3000 host)

Inter-character time gap in character times (A sync only)

Transmit queue status (1=empty)

BREAK time in character times (Async only)

14-76 The Datacomm Interface

HP 98628 Datacomm Interface
Status and Control Registers
General Notes: Control registers accept values in the range of zero through 255.

Some registers require specified values, as indicated. Illegal values
or values less than zero or greater than 255, cause ERROR 327.

Reset value, shown for various Control Registers, is the default value
used by the interface after a reset or power-up until the value is
overridden by a CONTROL statement.

Status 0 Card Identification
Value returned: 52 (if 180 is returned, check select code switch cluster and
make sure switch RisON).

Control 0 Card Reset
Any value, 1 thru 255, resets the card. Immediate execution. Data in
queues is destroyed.

Status 1 Hardware Interrupt Status (not used in most applications)
1 =Enabled 0 =Disabled

Status 2 Datacomm Activity
0 =No activity pending on this select code.
Bit 0 set: ENTER in process.
Bit 1 set: OUTPUT in process.
(Non-zero ONLY during multi-line function calls.)

Status 3 Current Protocol Identification:
1 = Async, 2 =Data Link Protocol

Control 3 Protocol to be used after next card reset (CONTROL Sc. o; 1)
1 = Async Protocol 2 =Data Link Protocol
This register overrides default switch configuration.

The Datacomm Interface 14-77

Status 4

Bit

0

1

2

3

4

5

6

7

Status 5

Cause of ON INTR program branch.

Function: Async Protocol Function: Data Link Protocol
Data and/or Control Block available Data Block Available
Prompt received Space available for a new transmission

block

Framing and/or parity error Receive or transmit error

Modem line change Modem line change

No Activity timeout (forces a discon- No Activity timeout (forces a discon-
nect) nect)

Lost carrier or connection timeout Lost carrier or connection timeout
(forces a disconnect) (forces a disconnect)

End-of-line received Not Used

Break received Not used

Contents of this register are cleared when a STATUS statement is executed
to it.

Inbound queue status

Value Interpretation

0 Queue is empty

1 Queue contains data but no control
blocks

2 Queue contains one or more control
blocks but no data

3 Queue contains both data and one or
more control blocks

14-78 The Datacomm Interface

Control 5

Status 6

Control 6

Status 7

Terminate Transmission
OUTPUT S • 5; 0 is equivalent to OUTPUT S ; END

Data Link: Sends previous data as a single block with an ETX terminator,
then idles the line with an EOT.

Async: Tells card to turn half-duplex line around. Does nothing when
line is full-duplex. The next data OUTPUT automatically regains control
of the line by raising the RTS (request-to-send) modem line.

Break status: 1 = BREAK transmission pending, 0 = no BREAK pending.

Send Break; causes a Break to be sent as follows:

Data Link Protocol: Send Reverse Interrupt (RVI) reply to inbound block,
or CN character instead of data in next outbound block

Async Protocol: Transmit Break. Length is defined by Control Register
39.

Note that the value sent to the register is arbitrary.

Modem receiver line states (values shown arc for male cable connecter
option for connection to modems).

Bit 0: Data Mode (Data Set Ready) line
Bit 1: Receive ready (Data Carrier Detect line)
Bit 2: Clear-to-send (CTS) line
Bit 3: Incoming call (Ring Indicator line)
Bit 4: Depends on cable option or adapter used

The Datacomm Interface 14-79

Status 8

Control 8

Status 9

Returns modem driver line states.

Sets modem driver line states (values shown are for male cable connector
option for connection to modems).

Bit 0: Request-to-send (RS or RTS) line 1 =line set (active)
Bit 1: Data Terminal Ready (DTR) line 0 =line clear (inactive)
Bit 2: Driver 1: Data Rate Select
Bit 3: Driver 2: Depends on cable option or adapter used
Bit 4: Driver 3: Depends on cable option or adapter used
Bit 5: Driver 4: Depends on cable option or adapter used
Bit 6,7: Not used

Reset value=O prior to connect. Post-connect value is handshake depen
dent.

Note that RTS line cannot be altered (except by OUTPUT or OUT
PUT ... END) for half-duplex modem connections.

Returns control block TYPE if last ENTER terminated on a control block.
See Status Register 10 for values.

14-80 The Datacomm Interface

Status 10 Returns control block MODE if last ENTER terminated on a control block.

Async Protocol Control Blocks

Type Mode Interpretation

250 1 Break received (Channel A)

251 11 Framing error in the following character

251 21 Parity error in the following character

251 31 Parity and framing errors in the following character

252 1 End-of-line terminator detected

253 1 Prompt received from remote

0 0 No Control Block encountered

Data Link Protocol Control Blocks

Type Mode Interpretation

254 1 Preceding block terminated by ETB character

254 2 Preceding block terminated by ETX character

2532 (see following table for Mode interpretation)

0 0 No Control Block encountered

Mode Bit(s) Interpretation

0 1 = Transparent data in following block
0 = Normal data in following block

2,1 00 = Device select
01 = Group select
10 = Line select

3 1 = Command channel
2 = Data channel

1 Parity /framing error control blocks are not generated when characters with parity and/or framing errors
are replaced by an underscore (_) character.

2 This type is used primarily in specialized applications.

The Datacornrn Interface 14-81

Status 11

Status 12

Returns available outbound queue space (in bytes), provided there is suf
ficient space for at least three control blocks. If not, value is zero.

Datacomm Line connection status

Value Interpretation

0 Disconnected

1 Attempting Connection

2 Dialing

3 Connected1

4 Suspended

5 Currently receiving data (Data Link only)

6 Currently transmitting data (Data Link only)

NOTE

When the datacomm line is suspended, CLEAR, ABORT, or RE
SET must be executed before the line can be reconnected.

Reset value- 0 if R on interface select code switch cluster is ON (1).

Control 12 Connects, initiates auto-dial sequence, and disconnects interface from dat
acomm line.

Value Interpretation

0 Disconnected from datacomm line

1 Connected to datacomm line (set DTR & RTS)

2 Start auto dial. (Followed by OUTPUT of tele-
phone numbers)

1 When using Data Link: Connected - datacomm idle

14-82 The Datacomm Interface

u

Status 13 Returns current ON INTR mask

Control 13 Sets ON INTR mask 1

Data Link Protocol

Bit Value Enables interrupt when:

0 1 A full block is available in receive queue

1 2 Transmit queue is empty

2 4 Receive or transmit error detected

3 8 A modem line changed

4 162 No Activity timeout forced a disconnection

5 322 Lost Carrier or Connection timeout caused a dis-
connection

Async Protocol

Bit Value Enables interrupt when:

0 1 Data or control block available in receive queue

1 2 Prompt received from remote device

2 4 Framing or parity error detected in incoming data

3 8 A modem line changed

4 162 No Activity timeout forced a disconnection

5 322 Lost Carrier or Connection timeout caused a dis-
connection

6 64 End-of-line received

7 128 Break received

Reset value = 0

1 If a CONTROL statement is used to access this register, the control block is placed in the outbound
queue. If the ENABLE INTR. ... statement is used with a mask, the mask value is placed directly in the
control register, bypassing any queue delays.

2 If bits 4 and 5 arc not set, the corresponding errors can be trapped by using an ON ERROR statement.

The Dataeornrn Interface 14-83

Status 14 Returns current Control Block mask.

Control 14 Sets Control Block mask. Control block information is queued sequentially
with incoming data as follows:

Bit Value Async Control Block Passed Data Link Control Block Passed
0 1 Prompt position Transparent/Normal Mode1

1 2 End-of-line position ETX Block Terminator2

2 4 Framing and/or Parity error3 ETB Block Terminator2

3 8 Break received

Reset Value: 0 (Control Blocks disabled) 6 (ETX/ETB Enabled)

Bits 4, 5, 6, and 7 are not used.

Status 15 Returns current modem line interrupt mask.

Control15 Sets modem line interrupt mask. Enables an interrupt to ON INTR when
Bit 3 of Control Register 13 is set as follows:

Bit Value Modem Line to Cause Interrupt

0 1 Data Mode (Data Set Ready)

1 2 Receive Ready (Data Carrier Detect)

2 4 Clear-to-send

3 8 OCRl, Incoming Call (Ring Indicator)

4 16 OCR2, Cable or adapter dependent

Reset Value= 0

Note that bit functions are the same as for STATUS register 7. Functions
shown are for male connector cable option for modem connections.

1 Transparent/Normal format identification control block occurs at the beginning of a given block of
data in the receive queue.

2 ETX and ETB Block Termination identification control blocks occur at the END of a given block of
data in the receive queue.

3 This control block precedes each character containing a parity or framing error

14-84 The Datacomm Interface

: \ 10

Status 16 Returns current connection timeout limit.

Control 16 Sets Attempted Connection timeout limit. Acceptable values: 1 thru
255 seconds. O=timeout disabled.
Reset Value=25 seconds

Status 17 Returns current No Activity timeout limit.

Control17 Sets No Activity timeout limit.
Acceptable values: 1 thru 255 minutes. O=timeout disabled.
Reset Value=10 minutes (disabled if Async, non-modem handshake).

Status 18 Returns current Lost Carrier timeout limit.

Control 18 Sets Lost Carrier timeout limit in units of 10 ms.
Acceptable values: 1 thru 255. O=timeout disabled.
Reset Value=40 (400 milliseconds)

Status 19 Returns current Transmit timeout limit.

Control 19 Sets Transmit timeout limit (loss of clock or CTS not returned by modem
when transmission is attempted).
Acceptable values: 1 thru 255.0=timeout disabled.
Reset Value=10 seconds

The Datacomm Interface 14-85

Status 20 Returns current transmission speed (baud rate). See table for values.

Control 20 Sets transmission speed (baud rate) as follows:

Status 21

Register Register
Value Baud Rate Value Baud Rate

0 External Clock 8 600
*1 50 9 1200
*2 75 10 1800
*3 110 11 2400
*4 134.5 12 3600
*5 150 13 4800
*6 200 14 9600

7 300 15 19200

* Async only. These values cannot be used with Data Link. These values
set transmit speed ONLY for Async; transmit AND receive speed for Data
Link. Default value is defined by the interface card configuration switches.

Protocol dependent. Returns receive speed (Async) or GID address (Data
Link) as specified by Control Register 21.

Control 21 Protocol dependent. Functions are as follows:

Data Link: Sets Group IDentifier (GID) for terminal. Values 0 thru 26 cor
respond to identifiers @, A, B, ... Y, Z, respectively. Other values
cause an error. Default value is 1 ("A").

Async: Sets datacomm receiver speed (baud rate). Values and defaults
are the same as for Control Register 20.

14-86 The Datacomm Interface

Status 22 Protocol dependent. Returns DID (Data Link) or protocol handshake type
(Async) as specified by Control Register 22.

Control 22 Protocol dependent. Functions are as follows:

Data Link: Sets Device IDentifier (DID) for terminal. Values are the same as
for Control Register 21. Default is determined by interface card
configuration switches.

Async: Defines protocol handshake type that is to be used.

Value Handshake type

0 Protocol handshake disabled

1 ENQ/ ACK with desktop computer as the host

2 ENQ/ ACK, desktop computer as a terminal

3 DC1/DC3, desktop computer as host

4 DC1/DC3, desktop computer as a terminal

5 DC1/DC3, desktop computer as both host and ter-
minal

Status 23 Returns current hardware handshake type.

Control 23 Sets hardware handshake type as follows:
O=Handshake OFF, non-modem connection.
l=FULL-DUPLEX modem connection.
2=HALF-DUPLEX modem connection.
3=Handshake ON, non-modem connection.
Reset Value is determined by interface configuration switches.

The Datacomm Interface 14-87

Status 24 Protocol dependent. Returns value set by preceding CONTROL statement
to Control Register 24.

Control 24 Protocol dependent. Functions as follows:
Data Link protocol: Set outbound block size limit.

Value Block size Value Block size

0 512 bytes 4 8 bytes

1 2 bytes

2 4 bytes

3 6 bytes 255 510 bytes

Reset outbound block size limit=512 bytes

Async Protocol: Set mask for control characters included in receive data
message queue.
Bit set: transfer character(s).
Bit cleared: delete character(s).

Bit set Value Character(s) passed to receive queue

0 1 Handshake characters (ENQ, ACK, DC1, DC3)

1 2 Inbound End-of-line character(s)

2 4 Inbound Prompt character(s)

3 8 NUL (CHR$(0))

4 16 DEL (CHR$(127))

5 32 CHR$(255)

6 64 Change parity /framing errors to underscores (_) if
bit is set.

7 128 Not used

Reset value=127 (bits 0 thru 6 set)

14-88 The Datacomm Interface

.. I v

Status 25 Returns number of received errors since power up or reset.

Note

Control Registers 26 through 35, Status Registers 27 through 35,
and Control and Status Registers 37 and 39 are used for ASYNC
protocol ONLY. They are not available during Data Link opera
tion.

Status 26 Protocol dependent

Data Link protocol: Returns number of transmit errors (NAKs received)
since last interface reset.

Async protocol: Returns first protocol handshake character (ACK or
DCl).

Control 26
(Async only)

Status 27
(Async only)

Control 27
(Async only)

Status 28
(Async only)

Control 28
(Async only)

Sets first protocol handshake character as follows:
6=ACK, 17=DC1. Other values used for special applications only.
Reset value=17 (DCl). Use ACK when Control Register 22 is set to 1
or 2. Use DCI when Control Register 22 is set to 3, 4, or 5.

Returns second protocol handshake character.

Sets second protocol handshake character as follows:
5=ENQ, 19=DC3. Other values used for special applications only.
Reset value=19 (DC3). Use ENQ when Control Register 22 is set to 1
or 2. Use DC3 when Control Register 22 is set to 3, 4, or 5.

Returns number of characters in inbound End-of-line delimiter sequence.

Sets number of characters in End-of·line delimiter sequence.
Acceptable values are 0 (no EOL delimiter), 1, or 2. Reset Value=2

The Datacomm Interface 14-89

Status 29 Returns first End-of-line character.
(Async only)

Control 29 Sets first End-of-line character. Reset Value=13 (carriage return)
(Async only)

Status 30 Returns second End-of-line character.
(A sync only)

Control 30
(Async only)

Status 31
(Async only)

Control 31
(Async only)

Status 32
(Async only)

Control 32
(Async only)

Status 33
(Async only)

Control 33
(Async only)

Status 34
(Async only)

Control 34
(Async only)

Sets second End-of-line character. Reset Value=10 (line feed)

Returns number of characters in Prompt sequence.

Sets number of characters in Prompt sequence. Acceptable values are 0
(Prompt disabled), 1 or 2.
Reset Value=1

Returns first character in Prompt sequence.

Sets first character in Prompt sequence.
Reset Value=17 (DC1)

Returns second character in Prompt sequence.

Sets second character in Prompt sequence.
Reset Value=O (null)

Returns the number of bits per character.

Sets the number of bits per character as follows:
0=5 bits/character 2=7 bits/character
1=6 bits/character 3=8 bits/character
When 8 bits/char, parity must be NONE, ODD, or EVEN.
Reset Value is determined by interface card default switches.

14-90 The Datacomm Interface

u

u

Status 35
(Async only)

Control 35
(Async only)

Status 36

Control 36

Returns the number of stop bits per character.

Sets the number of stop bits per character as follows:
0=1 stop bit 1=1.5 stop bits 2=2 stop bits
Reset Value: 2 stop bits if 150 baud or less, otherwise 1 stop bit.
Reset Value is determined by interface configuration switch settings.

Returns current Parity setting.

Sets Parity for transmitting and receiving as follows:

Data Link Protocol: O=NO Parity; Network host is HP 1000
Computer.

Async Protocol:

l=ODD Parity; Network host is HP 3000
Computer.
Reset Value=O

O=NONE; no parity bit is included with
any characters.
l=ODD; Parity bit SET if there is an
EVEN number of "l"s in the character
body.
2=EVEN; Parity bit OFF if there is an
ODD number of "l"s in the character body.
3= "0"; Parity bit is always ZERO, but par
ity is not checked.
4="1"; Parity bit is always SET, but parity
is not checked.

Default is determined by interface configuration switches. If 8 bits per
character, parity must be NONE, ODD, or EVEN.

The Datacomm Interface 14-91

Status 37 Returns inter-character time gap in character times.
(Async only)

Control 37
(Async only)

Status 38

Status 39
(Async only)

Control 39
(Async only)

Sets inter-character time gap in character times.
Acceptable values: 1 thru 255 character times.
O=No gap between characters. Reset Value=O

Returns Transmit queue status.
If returned value=l, queue is empty, and there are no pending trans
missions.

Returns current Break time (in character times).

Sets Break time in character times.
Acceptable values are: 2 thru 255. Reset Value=4.

14-92 The Datacomm Interface

i l
\J

Table of Contents

Chapter 15: Powerfail Protection
Overview of Capabilities Provided. 15-1
The Computer's Reaction to Powerfails . 15-2

Continuous-Memory Registers . 15-2
Real-Time Clock . 15-2
Powerfail-Protection Timers . 15-3
Interrupt Events . 15-3
Powerfail Status and Timers. 15-6

Typical Service Routines . 15-8
Using the Continuous-Memory Registers 15-8
Storing Data on Disc . 15-9
Power-Is-Back and One-Second-Left Interrupts . 15-12

Summary of Powerfail Status and Control Registers 15-14

0

0

0

Powerfail Protection 15
With the HP 98270 Powerfail Protection option, Series 200 Model 226 and 236 computers
have an optional capability of up to about one minute of powerfail protection. This
chapter describes the capabilities provided by this optional internal interface, which has
been permanently assigned to interface select code 5.

This optional feature is discussed in this Interfacing Techniques manual because of the
nature of its access from BASIC programs. If you need additional explanation regarding
interface registers or interface interrupt events, refer to the "Registers" and "Interface
Events" chapters of this manual, respectively.

Note

The powerfail option is not available for all Series 200 computers.
Also, not all Series 200 computers use the same monitors. The
actual parameters you need may differ from those shown in some of
the example programs. See the documentation for your hardware
system for details.

Overview of Capabilities Provided
The powerfail protection provided by the internal battery-backup circuitry is as follows.

• A period of operation after powerfail may be specified. (See the hardware docu
mentation for Option 050 for the Model 226 or 236 computers).

• The interface may optionally interrupt the computer when a powerfail has occurred.
A delay time before interrupt may also be programmed to allow the computer to
ignore power "glitches".

• The program can read both the powerfail interrupt cause and determine current
powerfail status information, including ac power status, battery time remaining,
and time elapsed since power was returned.

• The real-time clock and 64 bytes of memory registers are maintained after power
has been down for greater than one minute.

Powerfail Protection 15-1

The Computer's Reaction to Powerfails
There are two general categories of computer reactions to powerfail situations. The
default response is to continue running as before the failure for up to one minute. The
alternate response is to interrupt the current routine's execution to service the failure.
In either case, the computer beeps and the following warning message is displayed on the
CRT when the powerfail is detected.

Power failed

If power remains off for more than one minute, or if the computer turns itself off, only a
real-time clock and 64 bytes of low-power memory registers are maintained. If power is
restored, the computer powers on in its normal powerup sequence.

Continuous-Memory Registers
The sixty-four, single-byte registers on the interface are maintained after power has failed.
The contents of these registers can be written with CONTROL statements and read with
STATUS statements. The registers are numbered 8 through 71.

Real-Time Clock
The clock on the powerfail interface is read at powerup and is used to set the BASIC
system clock. However, the system clock, not the powerfail clock, is read by the TIMEDATE
function.

Executing either SET TIME or SET TIMEDATE sets both clocks to the specified value. Thus,
the two clocks may drift apart temporarily but may be synchronized by setting time with
either of these statements. See the "Clock and Timers" chapter of BASIC Programming
Techniques for further details.

15-2 Powerfail Protection

Powerfaii-Protection Timers
Three additional timers are used by the interface to keep track of times between different
powerfail events. These timers allow the program to keep track of Powerfail events so
that the desired service response may be initiated.

When a powerfail occurs, the Powerfail Timer is cleared and begins to count the sec
onds elapsed since the powerfail occurred. After waiting the Powerfail Delay Time, the
interface may generate a Powerfail interrupt, if enabled to do so. If and when the Power
fail Timer reaches the value of the Protection Time, the computer automatically powers
down.

When power is returned, the Power Back Timer is cleared and begins counting seconds
elapsed since the power back occurred. When this timer reaches the value of the Power
Back Delay, the computer is no longer in the Powerfail State; a Power Back interrupt is
generated, if enabled.

When a powerfail occurs, the Overheat Protection Timer begins to increment, counting
the seconds elapsed since the powerfail event occurred. When power is restored, this
timer is decremented one second for every two seconds that power is back. If power
remains on long enough, the timer decrements to 0. However, if the timer reaches 60
seconds, the computer automatically powers down. These actions ensure that the fan
adequately cools the computer during continuous power fluctuations.

Further description of delay times, timer actions, and enabling interrupt events are de
scribed in the remainder of this chapter.

Interrupt Events
Interrupts can be generated by the powerfail-protection controller when three different
events are sensed: when power fails, when power is returned, and when approximately
one second of battery power remains. Enabling these events to initiate interrupts and
typical responses to these events are explained in this and in the following section.

Powerfail Protection 15-3

Setting Up and Enabling Interrupts
The desired interrupt condition(s) may be enabled by specifying the appropriate numeric
mask value. The bits of the Interrupt Enable register enable the following interrupts.

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used Not used Not used Not used Not used One Power Power

Second Is Has
Left Back Failed

~alue=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

One Second Left- When this bit is set (1), an interrupt to the computer is generated
when approximately one second of battery power remains.

Power Is Back - When this bit is set (1), an interrupt to the computer is generated
when power has been returned (after a previous powerfail).

Power Has Failed- When this bit is set (1), an interrupt to the computer is generated
when a powerfail has been detected.

The branch to the powerfail service routine is set up and enabled in the same manner as
are other interrupt service routines. A typical example is as follows.

200 ON INTR 5 GOSUB Power_down
210 Mask=1 ! Enable Powerfail Interrupt.
210 ENABLE INTR 5;Mask

15-4 Powerfail Protection

Service Routines
The service routine must determine which type of event initiated the interrupt branch.
The bits of the Interrupt Cause register have the same definitions as those of the Interrupt
Enable Mask register.

STATUS Register 1 Powerfail Interrupt Cause

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Not used Not used Not used Not used Not used One Power Power

Second Is Has
Left Back Failed

:Va1ue=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value= I

If more than one interrupt cause has occurred, more than one bit will be set in this
register. Also, the register's contents must be stored in a variable which is not used until
all causes have been determined, because reading this register clears its contents.

Also keep in mind that when the "One Second Left" bit is a 1, the computer will power
down regardless of whether on not power is back before the end of the one second.

The action performed by the service routine is usually to store critical data. The internal
disc drives remain fully operational for this purpose. External drives usually lose power
when the computer loses its power; if so, they should not be used for this purpose. Other
external devices may also be affected by the failure and therefore may not respond to
the request to transfer the data. Therefore, all attempts to communicate with external
devices should have ON TIMEOUT branches set up and enabled so that the program
will not spend the entire minute waiting for the device to respond.

Powerfail Protection 15-5

Powerfail Status and Timers
The Powerfail Status register and Timer registers provide useful information describing
the state of computer power. The following example service routine reads these STATUS
registers and displays the information on the CRT.

100 ON INTR 5 GOSUB Pfail_service
110 ENABLE INTR 5;7 Enable all three causes.
120
130 Pback_delay=300 Delay 3 seconds before Pback interrupt.
140 Protection=2000 20 seconds maximum of Pfail protection.
150 Pfail_delay=100 Delay 1 second before Pfail interrupt.
160 CONTROL 5,5;Pback_delay,Protection,Pfail_delay
170
180 LOOP
190 CONTROL 1;1,1 Upper-left corner.
200 OUTPUT !;Number
210 Number=Number+1
220 END LOOP
230
240 Pfail_service: CONTROL 1;1,3 ! Begin on third line.
250 OUTPUT 1·" Powerfail Interface Register"
260 OUTPUT 1·" -----------------------------"
270
280 REPEAT
290 CONTROL 1;1,5 ! Begin printing on line 5.
300 STATUS 5,3;Pf_status
310 Pfail=BIT(Pf_status,O)
320 Ac_down=BIT(Pf_status,1)
330 Batt_on=BIT(Pf_status,2)
340 One_sec=BIT(Pf_status,3)
350 S_test=BIT(Pf_status,4)
360 OUTPUT 1
370 OUTPUT 1; "STATUS Register 3 - Powerfail Status:"
380 OUTPUT 1;" Test Fail 1 Sec. Batt. On Ac Down In Pfail"
390 OUTPUT 1 USING "#,5X,D,5X";S_test,One_sec,Batt_on,Ac_down,Pfail
400 OUTPUT 1 USING II/"
410

15-6 Powerfail Protection

u

420 STATUS 5,4;0verheat
430 OUTPUT 1; "STATUS Register 4 - Overheat Timer:
440 OUTPUT 1 USING "DD.D./";Overheat/100
450
460 STATUS 5,5;Pback
470 OUTPUT !;"STATUS Register 5- Power Back Timer: "·
480 OUTPUT 1 USING "DD.D,/";Pback/100
490
500 STATUS 5,6;Pf_timer
510 OUTPUT !;"STATUS Register 6- Powerfail Timer: "·
520 OUTPUT 1 USING "DD.D,/" ;Pf_timer/100
530
540 STATUS 5,4;0v_heat
550 UNTIL Ov_heat=O UNTIL Overheat timer expires.
560
570 ENABLE INTR 5 ! Use same mask.
580 RETURN
590
600 END

Type in and run the program. Alternately remove and replace the power cord while
watching the status values and timers change. You are highly encouraged to experiment
with the parameters until you are familiar with how the computer responds to power
failures. The next section presents several simple examples of service routines.

Powerfail Protection 15-7

Typical Service Routines
The Powerfail Protection option allows programming several types of service responses.
A few typical examples are shown in this section. All STATUS and CONTROL registers
are summarized at the end of the chapter.

Using the Continuous-Memory Registers
The most common function of service routines is to store any critical data and then turn
the computer off to conserve battery power. The following simple example shows the use
of the continuous-memory registers for storing a message.

100 ON INTR 5 GOTO Pfail_serve
110 ENABLE INTR 5;1 Pfail interrupts only.
120
130 Use defaults of: 500 ms Pback Delay.
140 60 s Protection Time.
150 100 ms Pfail Delay.
160
170 LOOP
180 DISP Number
190 Number=Number+1
200 END LOOP
210
220 STOP
230
240 Pfail_serve: ! Write message in Cont-Mem. Registers.

Message$="Adios, amigos."
Message$=Message$&CHR$(10)
No_bytes=LEN(Message$)
!
FOR Reg=8 TO 8+No_bytes-1

Add LF.

250
260
270
280
290
300
310
320

CONTROL 5,Reg;NUM(Message$[Reg-7;1])
NEXT Reg

330
340 CONTROL 5;1
350
360 END

Shut down when finished.

Type in the program and press I RUN I (or the System-@] key on the ITF keyboard). The
CRT shows a counter running continuously. Unplugging the power cord initiates the
Powerfail interrupt after the default delay of 100 milliseconds. Thus, if power had failed
for a duration of less than 100 milliseconds, the interrupt would not have been generated.
Similarly, the Power Back Delay determines how long the computer will delay after power
has been restored before generating a Power Back interrupt, when enabled.

15-8 Powerfail Protection

' \ \0

The program did not allow the Powerfail Timer to reach the default Protection Time (60
seconds). Instead, it powered itself down after storing a message in the registers in order
to save battery power. If power is subsequently restored, the computer powers on in the
normal power-up sequence. If an Autostart routine exits, it will be run automatically.

The following program shows a method for reading the message stored in the continuous
memory registers by the preceding program. The program makes use of the fact that the
message was terminated by a line-feed character, CHR$(10).

100 PRINTER IS 1
110
120 ! Read message in Continuous-Memory Registers.
130 DIM Registers$[64] ,Message$[64]
140 !
150 FOR Register=8 TO 71 ! Read all 64 registers.
160 STATUS 5,Register;Byte
170 Registers$[Register-7]=CHR$(Byte)
180 NEXT Register
190 !
200 ENTER Registers$;Messages$ Enter and stop at LF.
210 !
220 PRINT Message$
230
240 END

Storing Data on Disc
Service routines can be programmed to take many other actions, such as to store data
on an internal disc. The following program shows a technique for storing the ALPHA
and GRAPHICS displays and the value of the clock at the time the powerfail occurred.
This program requires GRAPH BIN file.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

INTEGER Crt_graphics(1:12480)
DIM Crt_alpha$(1:57) [80]

(1:7500) for Model 226.
[50] for Model 226

ON INTR 5 GOTO Pfail_serve
ENABLE INTR 5;1 Pfail interrupts only.

Pback_delay=100 Delay 1 second before Pback interrupts.
Protection=3000 30 seconds maximum of Protection Time.
Pfail_delay=200 Delay 2 seconds before Pfail interrupts.
CONTROL 5,5;Pback_delay,Protection,Pfail_delay

FOR Crt_line=1 TO 57
OUTPUT !;"Output Area line";Crt_line

NEXT Crt_line

Powerfail Protection 15-9

250 GCLEAR
260 GRAPHICS ON
270 FRAME
280 MOVE 50,50
290 LABEL "GRAPHICS DISPLAY"
300
310 LOOP
320 DISP Number
330 Number=Number+1
340 END LOOP
350
360 STOP
370
380 Pfail_serve: ! First, store GRAPHICS display.
390 GSTORE Crt_graphics(*)
400 !
410 ! Then store ALPHA display.
420 STATUS 1,3;Lines_above
430 CONTROL 1;1,-Lines_above+1 ! Move print position
440 to "top" of display.
450 ENTER 1 USING "K";Crt_alpha$(*) ! Enter screen.
460
470 ON ERROR GOTO Already
480 CREATE BDAT "Pfail_data:INTERNAL,4,1",116
490 Already: OFF ERROR ! File already created.
500 ASSIGN <OFile TO "Pfail_data:INTERNAL,4,1"
510 OUTPUT <OFile;Crt_graphics(*),Crt_alpha$(*)
520
530 CONTROL 5;1 ! Shut down when finished.
540 END

The INTEGER array used to store the graphics display was dimensioned for the Model
236's display (12 480 INTEGER elements). Other computers require different array sizes.
See the GSTORE entry in the BASIC Language Reference for details.

The size of the BDAT file was chosen for the "worst case" storage requirement. In order
to calculate the maximum number of of disc sectors required to store both displays, you
must determine three facts: the maximum number of data elements to be stored, the
data type of each item, and the number of bytes required to store one element of each
data type.

15-10 Powerfail Protection

u

u

The Model 236 display's Output-Area memory can hold up to 57 lines of 80 characters
each (4 560 bytes). The graphics display requires 12 480 INTEGERs (24 960 bytes). A
total of 29 520 bytes of storage is required. Since BDAT files contain default records of
256 bytes each, the file "PFAIL_DATA" was dimensioned to 116 256-byte records.

The following program gives a method of restoring the alpha and graphics displays and
real-time clock. Actual programs would probably also restore other variables and resume
program execution that was interrupted by the powerfail. This program requires GRAPH
BIN file.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310

! This program is for use on a Model 236; change
! array sizes and msus for us on a Model 226.
!
INTEGER Graphics(1:12480)
DIM Crt_alpha$(1:57)[80]

(1:7500) for Model 226.
! [50] for Model 226.

ASSIGN ~File TO "Pfail_data:INTERNAL,4,1"
":INTERNAL,4,0" for Model 226.

ENTER ~File;Graphics(*)
ENTER ~File;Crt_alpha$(*)
ENTER ~File;Clock

GRAPHICS ON
GLOAD Graphics(*)

OUTPUT 1;Crt_alpha$(*)

SET TIME Clock
DISP "Powerfail occurred at";Clock

END

A very important consideration for the powerfail service routine is that it has enough
battery time to store all the specified data. If there is sufficient battery time to allow
storing all desired data, the service routine should be able to record exactly how far it
got into the backup when battery power went down. The next example shows how to
enable interrupts to signal that power is back or that only one second of battery power
is left.

Powerfail Protection 15-11

Power-Is-Back and One-Second-Left Interrupts
The powerfail-interface controller has the ability to sense when power is back and when
approximately one second of battery power remains; it can optionally generate interrupts
to the BASIC program when these events occur. The following example program shows
how to enable and service these types of interrupts.

100 COM Important_data$(1:8192)[28]
110 DIM Random$[28]
120
130 ON INTR 5,14 CALL Pfail_response
140 ENABLE INTR 5;1 ! "Power Has Failed" interrupts.
150
160
170 REPEAT

370 UNTIL Error<1.E-12
380
390 END
400

Main program

410 ! ******** Powerfail Service Routine ********
420 SUB Pfail_response
430 COM Important_data$(1:8192)[28]
440 DIM Message$[64]
450
460 Set up and enable service routine for
470 "One-Sec-Left" and "Power-Back" interrupts;
480 priority 15 allows data storage to be interrupted.
490 ON INTR 5,15 GOSUB Stop_storing
500 ENABLE INTR 5;4+2
510
520 ! Assume BDAT file (1024 records) exists.
530 ASSIGN «!Storage TO "PFAIL_DATA"
540 ! Store elements individually to permit interrupts.
550 FOR Element=1 TO 8192
560 OUTPUT «!Storage;Important_data$(Element)
570 NEXT Element
580
590 ! Power Down after all data stored.
600 CONTROL 5;1
610

15-12 Powerfail Protection

' \ u

620 ! ********* New service routine. *********
630 Stop_storing: STATUS 5,1;Intr_cause
640 !
650 IF BIT(Intr_cause,2) THEN ! One Second Left.
660 ! Define Message.
670 Message$="0nly the first "&VAL$(Element)
680 Message$=Message$&" elements have been stored."
690 Message$=Message$&" Error="&VAL$(Error)
700 Message$=Message$&CHR$(10) ! End with LF.
710 ! Write to Continuous-Memory Regs.
720 FOR Reg=8 TO LEN(Message$)+7
730 CONTROL 5,Reg;NUM(Message$[Reg-7;1])
740 NEXT Reg
750 ! Power Down.
760 CONTROL 5;1
770 END IF
780
790 IF BIT(Intr_cause,1) THEN ! Power Is Back.
800 ! Re-enable "Power Has Failed" interrupts.
810 ENABLE INTR 5;1
820 ! Then return to interrupted context.
830 SUBEXIT
840 END IF
850
860 SUBEND ! ***********************************

The service routine first enables two types of interrupts; one is generated when power is
back after the powerfail, and the other is generated when approximately one second of
battery power remains. Then, the service routine attempts to store the specified data.
Notice that the service routine stores the data one item at a time so that either interrupt
may be serviced while the data are being stored.

If the Power-Is-Back interrupt is generated, the service routine ends and returns to the
main program. You may want to expand the service routine to sense recurring power
fluctuations and to respond accordingly. If the One-Second-Left interrupt is generated,
the program stores a message to show how much of the desired data have been stored.
Keep in mind that once this interrupt is generated, the computer powers down, regardless
of whether power is restored before the end of the one second.

Powerfail Protection 15-13

Summary of Powerfail
Status and Control Registers
This section lists all STATUS and CONTROL registers of the Powerfail-Protection In
terface, which is permanently assigned to interface select code 5.

STATUS Register 0 Card Identification is always 5.

CONTROL Register 0 Shut Down. Any non-zero value written to this register will
turn off both battery and ac-line power to the computer, which
conserves battery power after the service routine has finished
responding to a powerfail. If ac-line power is on when this
statement is executed, the computer will be turned back on in
the normal power-up sequence.

STATUS Register 1 Powerfail Interrupt Cause

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Not used Not used Not used Not used Not used One Power Power
Second Is Has
Left Back Failed

jvalue=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

Bit 2 - One Second Left indicates that approximately one second of battery power
remains. The computer will automatically power itself down, even if power is restored
before one second has expired.

Bit 1 -Power Is Back indicates that ac-line power has been restored.

Bit 0 -Power Has Failed indicates that ac-line power has failed (even though it may
be back now).

CONTROL Register 1 Not Used.

STATUS Register 2 Interrupt Mask has bit definitions identical to the preceding
register (Powerfail Interrupt Cause).

CONTROL Register 2 Not Used

15-14 Powerfail Protection

; \ v

i \ v

STATUS Register 3 Powerfail Status

Most Significant Bit Least Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Failed Not used Not used Not used One Currently Ac In the
Self-Test Second Using Is Powerfail

Left Battery Down State
Value=l2~ Value=64 Value=32 Value=l6 Value=8 Value=4 Value=2 Value= I

Bit 7 Failed Self Test indicates the outcome of the self test: a 1 indicates failure, and
0 indicates successful results.

Bit 3 One Second Left indicates that approximately one second of battery power
remains. The computer will automatically power itself down, even if power is restored
before one second has expired.

Bit 2 - Currently Using Battery indicates whether or not the battery is being used: 1
indicates it is currently being used for computer power, and 0 indicates that it is not.

Bit 1 - Ac Is Down indicates the current status of ac-line power: a 1 indicates that
ac power is completely gone. If bit 2 is a 1 and this bit is 0, the battery is being used
because ac power is not completely gone but has dropped below an acceptable level; in
this case, a "brown-out" condition is indicated.

Bit 0- In the Powerfail State indicates whether or not the computer is currently in the
Powerfail State: a 1 indicates Powerfail State, and 0 indicates that the computer is not
currently in the Powerfail State. The Powerfail State is exited when power is back and
the Power Back Timer reaches the value of the Power Back Delay.

CONTROL Register 3 Not Used.

Powerfail Protection 15-15

STATUS Register 4 Overheat Protection Timer contains the amount of battery
time used during this Powerfail State (in tens of milliseconds).
For every second the power is down, it must be back for two
seconds to ensure adequate cooling for the machine. Thus, the
value of this register bounds the maximum amount of time
that can be obtained from the battery, even though 60 seconds
may have been specified as the protection time (CONTROL
Register 6).

CONTROL Register 4 Not Used.

STATUS Register 5 Power Back Timer contains the time elapsed since power was
restored after the last powerfail (in tens of milliseconds).

CONTROL Register 5 Power Back Delay. The value of this register determines the
amount of time (in tens of milliseconds) that the computer will
delay, after power is back, before leaving the powerfail state
(i.e., before generating a "Power Is Back" interrupt). The
power-on default value is 50 (500 milliseconds).

STATUS Register 6 Powerfail Timer contains the time elapsed since the last pow
erfail (in tens of milliseconds).

CONTROL Register 6 Protection Time. The value of register determines the maxi
mum amount of time (in tens of milliseconds) that the com
puter is to have battery backup. Power-on default is 6000 (60
seconds).

STATUS Register 7 Not Used.

CONTROL Register 7 Powerfail Delay Timer. The contents of this register determine
the amount of time (in tens of milliseconds) that the Powerfail
Protection Interface will wait, after a powerfail, before gener
ating a "Power Has Failed" interrupt. Power-on default is 10
(100 milliseconds) .

STATUS Registers 8 Continuous-Memory Registers contain the 64 bytes of data
thru 71 written by the last CONTROL statement directed to these

registers.

CONTROL Registers 8 Continuous-Memory Registers. These sixty-four, single-byte
thru 71 registers can be filled with any desired data, one byte (ASCII

character) per register.

15-16 Powerfail Protection

' .
(i)
~

Table of Contents

Chapter 16: The GPIO Interface
Introduction. 16-1
Interface Description . 16-2
Interface Configuration . 16-4

Interface Select Code . 16-5
Hardware Interrupt Priority . 16-5
Data Logic Sense . 16-5
Data Handshake Methods . 16-5

Interface Reset . 16-17
Outputs and Enters through the GPIO 16-18

ASCII and Internal Representations . 16-18
GPIO Timeouts . 16-24

Using Alternate Data Representations . 16-27
BCD Representation .. 16-27
Character Conversions. 16-30

GPIO Interrupts . 16-31
Types of Interrupt Events. 16-31
Setting Up and Enabling Events . 16-31
Interrupt Service Routines . 16-33

Designing Your Own Transfers .. 16-36
Full Handshake Transfer . 16-37
Interrupt Transfers. 16-38

Using the Special-Purpose Lines . 16-40
Driving the Control Output Lines 16-40
Interrogating the Status Input Lines. 16-41
Using the PSTS Line .. 16-42

Summary of GPIO STATUS and CONTROL Registers 16-43
Summary of GPIO READIO and WRITEIO Registers 16-46

GPIO READIO Registers . 16-46
GPIO WRITEIO Registers. 1:6-48

/ \ u

0

0

The GPIO Interface 1
Introduction
This chapter should be used in conjunction with the HP 98622A GPIO Interface Instal
lation manual. The best way to use these two documents is to read this chapter before
attempting to configure and connect the interface according to the directions given in the
installation manual. The reason for this order of use is that knowing how the interface
works and how it is driven by BASIC programs will help you to decide how to connect
it to your peripheral device.

The HP 98622 Interface is a very flexible parallel interface that allows you to communicate
with a variety of devices. The interface sends and receives up to 16 bits of data with a
choice of several handshake methods. External interrupt and user-definable signal lines
are provided for additional flexibility. The interface is known as the General-Purpose
Input/Output (GPIO) Interface for these reasons. This chapter describes the use of the
interface's features from BASIC programs.

Use of some statements or suggestions for interfacing requires that you load the TRANS
BIN file.

The GPIO Interface 16-1

Interface Description
The main function of any interface obviously to transfer data between the computer
and a peripheral device. This section briefly describes the interface lines and how they
function. Using the lines from BASIC programs is more fully described in subsequent
sections.

The GPIO Interface provides 32 lines for data input and output: 16 for input (DIO
Dl15), and 16 for output (DOO- D015).

Backplane
Connector

Data and
GPIO
Interface
Hardware

Parallel Data Out
16

Parallel Data In
16

Handshake

4

Special Purpose

6

Grounds

7

0
t5
Ql
c
c
0
0
c

i:.i:
6
l{)

Figure 16-1. Block Diagram of the GPIO Interface

16-2 The GPIO Interface

Shielded Cable
to a Device

I ' ,"'-")

\

0

Two lines are dedicated to handshaking the data from source to destination device. The
Peripheral Control line (PCTL) is controlled by the interface and is used to initiate data
transfers. The Peripheral Flag line (PFLG) is controlled by the peripheral device and is
used to signal the peripheral's readiness to continue the transfer process.

One line is used to signal External Interrupt Requests to the computer (EIR). The
interface must be enabled to initiate interrupt branches for the interface to detect this
request. The state of the line can also be read by the program.

Four general-purpose lines are available for any purpose that you may desire; two arc
controlled by the computer and sensed by the peripheral (CTLO and CTLl), and two
are controlled by the peripheral device and sensed by the computer (STIO and STil).

Both Logic Ground and Safety Ground are provided by the interface. Logic Ground
provides the reference point for signals, and Safety Ground provides earth ground for
cable shields.

The GPIO Interface 16-3

Interface Configuration
This section presents a brief summary of selecting the interface's configuration-switch settings. It is intended to be used as a checklist and to begin to acquaint you with programming the interface. Refer to the installation manual for the exact location and setting of each switch.

The following sample program checks a few of these switch settings on a GPIO Interface already installed in the computer and displays the settings. However, many of the settings cannot be determined from BASIC programs. If any of the displayed settings are different than desired, or if any settings are not already known, refer to the installation manual for switch locations and settings.

100 PRINTER IS 1 Select printer device.
110 PRINT CHR$(12) ! Clear screen.
120
130 DISP "Enter GPIO Interface Select Code (CONT=12)"
140 OUTPUT 2 USING "#,DD"; 12
150 ENTER 2;Isc
160 DISP
170
180 ASSIGN ~Gpio TO Isc ! FORMAT ON default.
190
200 ! Read STATUS registers 0 and 1.
210 STATUS Isc;Card_id,Intr_stat
220
230 ! Is this card a GPIO?
240 IF Card_id<>3 THEN
250 PRINT "The interface at select code";Isc
260 PRINT "is not a GPIO Interface."
270 PRINT "Program stopped."
280 STOP
290 ELSE
300 PRINT "The card ID of the GPIO at"
310 PRINT "interface select code";Isc
320 PRINT "is";Card_id
330 END IF
340 PRINT
350
360 ! Calculate hardware interrupt priority.
370 Bits_5_and_4=BINAND(Intr_stat,32+16)
380 Switches=Bits_5_and_4 DIV 16
390 Hd_prior=Switches+3
400 PRINT "Hardware Interrupt Priority is";Hd_prior
410 PRINT
420
430 END

16-4 The GPIO Interface

Interface Select Code
In BASIC, allowable interface select codes range fi·om 8 through 31; codes 1 through 7 arc
already used for built-in interfaces. The GPIO interface has a factory default setting of
12, which can be changed by rc-configuring the "SEL CODE" switches on the interface.

Hardware Interrupt Priority
Two switches are provided on the interface to allow selection of hardware interrupt
priority. The switches allow hardware priority levels 3 through 6 to be selected. Hardware
priority determines the order in which simultaneously occurring interrupt events arc
logged, while software priority determines the order in which interrupt events are serviced
by the BASIC program 1 .

Data Logic Sense
The data lines of the interface are normally low-true; in other words, when the voltage
of a data line is low, the corresponding data bit is interpreted to be a L This logic sense
may be changed to high-true with the Option Select Switch. Setting the switch labeled
"DIN" to the "0" position selects high-true logic sense of Data In lines. Conversely,
setting the switch labeled "DOUT" to the "1" position inverts the logic sense of the
Data Out lines. The default setting is "1" for both.

Data Handshake Methods
This section describes the data handshake methods available with the GPIO Interface.
A general description of the handshake modes and clock sources is given first. A more
detailed discussion of each handshake is then given to allow you to choose the hand
shake mode, clock source, and handshake-line logic sense that is compatible with your
peripheral device.

As a brief review, a data handshake is a method of synchronizing the transfer of data
from the sending to the receiving device. In order to usc any handshake method, the
computer and peripheral device must be in agreement as to how and when several events
will occur. With the GPIO Interface, the following events must take place to synchronize
data transfers; the first two are optionaL

e The computer may optionally be directed to perform a one-time "OK check" of the
peripheral before beginning to transfer any data.

• The computer may also optionally cheek the peripheral to determine whether or
not the peripheral is "ready" to transfer data.

The GPIO Interface 16-5

• The computer must indicate the direction of transfer and then initiate the transfer.

• During OUTPUT operations, the peripheral must read the data sent from the
computer while valid; similarly, the computer must clock the peripheral's data into
the interface's Data In registers while valid during ENTER operations.

• The peripheral must acknowledge that it has received the data.

Handshake Lines
The GPIO handshakes data with three signal lines. The Input/Output line, I/0, is driven
by the computer and is used to signal the direction of data transfer. The Peripheral
Control line, PCTL, is also driven by the computer and is used to initiate all data
transfers. The Peripheral Flag line, PFLG, is driven by the peripheral and is used to
acknowledge the computer's requests to transfer data.

Handshake Logic Sense
Logic senses of the PCTL and PFLG lines are selected with switches of the same name.
The logic sense of the I/0 line is High for ENTER operations and Low for OUTPUT
operations; this logic sense cannot be changed. The available choices of handshake logic
sense and handshake modes allow nearly all types of peripheral handshakes to be accom
modated by the GPIO Interface.

Handshake Modes
There are two general handshake modes in which the PCTL and PFLG lines may be used
to synchronize data transfers: Full-Mode and Pulse-Mode Handshakes. If the peripheral
uses pulses to handshake data transfers and meets certain hardware timing requirements,
the Pulse-Mode Handshake may be used. The Full-Mode Handshake should be used if
the peripheral does not meet the Pulse-Mode timing requirements.

The handshake mode is selected by the position of the "HSHK" switch on the interface, as
described in the installation manual. Both modes are more fully described in subsequent
sections.

16-6 The GPIO Interface

.·... ')
\~

Data-In Clock Source
Ensuring that the data are valid when read by the receiving device is slightly different
for OUTPUT and ENTER operations. During OUTPUTs, the interface generally holds
data valid while PCTL is in the Set state, so the peripheral must read the data during
this period. During ENTERs, the data must be held valid by the peripheral until the
peripheral signals that the data are valid (which clocks the data into interface Data In
registers) or until the data is read by the computer. The point at which the data are
valid is signalled by a transition of PFLG. The PFLG transition that is used to signal
valid data is selected by the "CLK" switches on the interface. Subsequent diagrams and
text further explain the choices.

Optional Peripheral Status Check
Many peripheral devices are equipped with a line which is used to indicate the device's
current "OK-or-Not-OK" status. If this line is connected to the Peripheral Status line
(PSTS) of the GPIO Interface, and the computer may determine the status of the pe
ripheral device by checking the state of PSTS. The logic sense of this line may be selected
by setting the "PSTS" switch.

If enabled, the computer performs a one-time check of the Peripheral Status line (PSTS)
before initiating any transfers as part of the data-transfer handshake. If PSTS indicates
"Not OK," Error 172 is reported; otherwise, the transfer proceeds normally. If this
feature is not enabled, this one-time check is neyer made. This feature is available with
both Full-Mode and Pulse-Mode Handshakes. See "Using the PSTS Line" for further
details.

The GPIO Interface 16-7

Full-Mode Handshakes
The Full-Mode Handshake mode is described first for two reasons. The first reason is
that the PCTL and PFLG transitions must always occur in the order shown, so only
one sequence of peripheral handshake responses needs to be shown. Secondly, this mode
will generally work when the Pulse-Mode Handshake may not be compatible with the
peripheral's handshake signals. The Pulse-Mode Handshake is described in the next
section.

The following diagrams show the order of events of the Full-Mode OUTPUT and ENTER
Handshakes. These drawings are not drawn to any time scale; only the order of events
is important. The I/0 line has been omitted to simplify the diagrams; in all cases, it
is driven Low before any OUTPUT is initiated by the computer and High before any
ENTER is initiated.

Clear 0
I

PCTL I

Set
I
I
I
I
I
I

Busy I
I

PFLG I

Ready
I

I
I
I

10

I.__PCTL_j
Delay -~

L~~

~
I
I
I
I

I I
I I I
I I I
I I I

12 13 14

I
I
I
I

15

Figure 16-2. Diagram of Full-Mode OUTPUT Handshakes

With Full-Mode Handshakes, the computer first checks to see that the peripheral device
is Ready before initiating the transfer of each byte/word (tO); with this handshake mode,
the peripheral indicates Ready when both PCTL is Clear and PFLG is Ready. If the
peripheral does not indicate Ready, the computer waits until a Ready is indicated.

When a Ready is sensed, the computer places data on the Data Out lines (tl) and drives
the I/0 line Low (not shown). The interface then waits the PCTL Delay time before
initiating the transfer by placing PCTL in the Set state (t2).

16-8 The GPIO Interface

')
'··~

The peripheral acknowledges the computer's request by placing the PFLG line Busy (t3);
this PFLG transition automatically Clears the PCTL line (t4). However, the computer
cannot initiate further transfers until the peripheral is Ready with Full-Mode Handshake;
the peripheral is not Ready until both PCTL is Clear and PFLG is Ready (t5).

The data on the Data Out lines is held valid from the time PCTL is Set until after the
peripheral indicates Ready. The peripheral may read the data any time within this time
period.

The PCTL and PFLG lines are used in the same manner in Full-Mode ENTER Hand
shakes as in Full-Mode OUTPUT Handshakes. However, there are three options available
as to when the peripheral's data may be valid: at the Ready-to-Busy transition of PFLG
(BSY clock source), at the Busy-to-Ready transition of PFLG (RDY clock source), and
when the Data In lines are read with a STATUS statement (READ clock source). The
first two of these options are shown in the following two diagrams; the READ clock
source is discussed later in "Designing Your Own Transfers".

CI'~TL r I
PCTL I

Set :
1

I
I I
I I
I I

BUsy
I

1 Data Must Be

~
: 1 Valid Here --..._

PFLG I I
I I

Ready I

0

Data In

I I I I I
I I I I I I

tO t1 t2 t3 t4 t5

Figure 16-3. Full-Mode ENTER Handshake with BSY Clock Source

As with Full-Mode OUTPUT Handshakes, the computer first checks to see if the periph
eral is Ready (tO); since PCTL is Clear and PFLG is Ready, the handshake may proceed.
The computer places the I/0 line in the High state (not shown) and then initiates the
handshake by placing PCTL in the Set state (tl).

The GPIO Interface 16-9

With the "BSY" clock source, the PFLG transition to the Busy state clocks the periph
eral's data into the interface's Data-In registers; consequently, the peripheral must place
data on the Data-In lines (t2), allowing enough time for the data to settle before placing
PFLG in the Busy state (t3). This PFLG transition to the Busy state automatically
Clears PCTL (t4). The next handshake may be initiated when PFLG is placed in the
Ready state by the peripheral (t5).

ClearTLJ
PCTL I

I
Set 1 ,

1

I I I
I I
I I

Busy I'!
Ready -e---r--1 ~ l

PFLG

Data In

I
tO

Data Must Be
Valid Here

I
I

t5

Figure 16-4. Full-Mode ENTER Handshake with RDY Clock Source

As with other Full-Mode Handshakes, the computer first checks to see if the peripheral
is ready (tO). Since PCTL is Clear and PFLG is Ready, the computer may drive the I/0
line High (not shown) and initiate the handshake by placing PCTL in the Set state (tl).

The peripheral may acknowledge by placing PFLG Busy (t2), which automatically Clears
PCTL (t3). Unlike the previous example, this transition does not clock data into the
interface Data-In registers. With the "RDY" clock source, the peripheral must place the
data on the Data-In lines (t4), allowing enough time for the data to settle before placing
PFLG in the Ready state (t5). The computer may then initiate a subsequent transfer.

16-10 The GPIO Interface

: J
~

I .)
\...._/

Pulse-Mode Handshakes
The following drawings show the order of handshake-line events during Pulse-Mode Hand
shakes. Notice that the main difference between Full-Mode and Pulse-Mode Handshakes
is that the PFLG is not checked for Ready before the computer initiates Pulse-Mode
Handshakes; the computer may initiate a subsequent data transfer as soon as the PCTL
line is Cleared by the Ready-to-Busy transition of PFLG.

Two cycles of data transfers are shown in these diagrams to illustrate that the computer
need not wait for the PFLG=Ready indication with the Pulse-Mode Handshake. The
first cycle shown in each diagram is a typical example of the first transfer of an I/0
statement. The dashed PFLG line at the beginning of the second cycle shows that
computer disregards whether or not PFLG is in the Ready state before the next transfer
is initiated.

This absence of the PFLG check allows a potentially higher data-transfer rate than
possible with the Full-Mode Handshake; however, in some cases, it also places additional
timing restrictions on the peripheral's response time, as described in the text.

Data Out

0-----.
First Data
Is Valid

I PCTL .I
-Delayj

Second Data
Is Valid

L PCTL_ J
jDelayl

Clear----\
1

-----, J~ r--
p= Sot ! ~ , L,_j

Busy

PFLG

Ready

I 1 I
I 1 I
I 1 I

! ! J!L2J
I I I

I
I

t1

I I I
I 1 I

t2 t3 t4 t5

Figure 16-5. Busy Pulses with Pulse-Mode OUTPUT Handshake

The PFLG line is not checked for Ready before the computer drives the I/0 line Low
(not shown) and places data on the Data-Out lines (tl). A PCTL Delay time later, the
interface initiates the transfer by placing PCTL in the Set state (t2).

The GPIO Interface 16-11

The peripheral acknowledges by placing PFLG Busy (t3); this transition automatically
Clears PCTL (t4). The dashed PFLG line shows that the computer may initiate another
transfer any time after PCTL is Clear, possibly before the peripheral places PFLG in
the Ready state (t5).

The Busy Pulse shown in the diagram is identical to the PFLG's response during the
previous Full-Mode handshake; however, the Pulse-Mode Handshake works properly with
this type of pulse only if the peripheral reads the data by the time PCTL is Clear (data
should be read between t2 and t3). If the peripheral has not read the data by the time
that PCTL is Clear, it might erroneously read the data for the second transfer, since the
computer might have already changed the data and initiated the second transfer.

Data In

Busy

PFLG

I
I

t1 t2 t4 t5

Data Must
Be Valid
Here

Figure 16-6. Busy Pulses with Pulse-Mode ENTER Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/0 in the
High state (not shown) and initiating the transfer by placing PCTL in the Set state (tl).

16-12 The GPIO Interface

\ u

The peripheral must place data on the Data In lines (t2), allowing enough time for
the data to settle before placing PFLG in the Busy state (t3). This Ready-to-Busy
transition of PFLG automatically Clears PCTL. The dashed PFLG signal shows that
the next transfer may be initiated before PFLG indicates Ready.

ClearL
PCTL

Set J
I
I
I
I

Computer May

R"d D•ta H'"] ' .L
J

Computer May
R"d Dot• Hore _

1

0 --+--1
Data ~ Data In

"--va_li_d-+------i 1--~--...; ~
I

Lsettling_j
I~T1me ~~ I

.._Settling_j
T1me ~~

I

PFLG Busy ~~r--i-ll --,-L--f !- -- - -;

Ready --+--1 f---+l ----li
1

: I I I
I I I

t1 t2 t3 t4 t5

Figure 16-7. Busy Pulses with Pulse-Mode ENTER Handshakes (RDY Clock Source)

The computer does not have to check for PFLG to be Ready before placing I/0 in the
High state (not shown) and initiating the transfer by placing PCTL in the Set state (tl).

The peripheral must place data on the Data In lines (t2), allowing enough time for the
data to settle before placing PFLG Busy (t3). This requirement may seem contradictory,
since the clock source is the Busy-to-Ready transition of PFLG. However, with Pulse
Mode handshakes, the peripheral is assumed to be Ready whenever P(jTL is Clear;
consequently, the eomputer may read the data any time after PCTL is eleared by the
Ready-to-Busy transition of PFLG. The PFLG transition to Busy Clears PCTL (t4),
after whieh the peripheral may place PFLG Ready (t5).

The GPIO Interface 16-13

Data Out

Note

In order to use this type of pulse with the Pulse-Mode Handshake
and RDY clock source, the peripheral must adhere to the stated
timing restrictions.

I
I
I

Second Data
Is Valid
~-----l f----11---

LPCTL__j
1'-Delayl

PFLGA:----+!-----i!--j 1 J1I ----------- __ l F
I I I I I
I I I I I

M ~ ~ t4 t5

Figure 16-8. Ready Pulses with Pulse-Mode OUTPUT Handshakes

The PFLG line is not checked for Ready before the computer drives the I/0 line Low
(not shown) and places data on the Data Out lines (tl). At a PCTL Delay time later,
the interface initiates the transfer by placing PCTL in the Set state (t2).

The peripheral later acknowledges by placing PFLG in the Ready state (t3). The hand
shake is completed by the peripheral placing PFLG in the Busy state (t4), which auto
matically Clears PCTL (t5).

16-14 The GPIO Interface

If the peripheral uses the type of Ready pulses shown, either the Pulse-Mode handshake
with default PFLG logic sense or Full-Mode handshake with inverted PFLG logic sense
may be used. With this type of pulse, the data being output may be read by the
peripheral as long as PCTL is Set.

PCTLCiear I r I I
Set ~ 1-----1 1------__..J L f-----1 1-1 ---------11

I

Data In

I
I
I

0 ---l---11-----l~d ---- >------1 ~~
~ ---~

!
_Settling .I

T1me I 1
- Settling . I

T1me 'J

PFLG : I Be Valid : Be Valid

Busy ---+--1 L : Data Must ~---1 1-----1l Data Must

1 1 Here 1 Here Ready I I J----.1..
1
-----' L-- -1 J- J------.....1

I I I
I I I I

11 t2 t3 t4

Figure 16-9. Ready Pulses with Pulse-Mode ENTER Handshakes (BSY Clock Source)

The computer does not have to check for PFLG to be Ready before placing 1/0 in the
High state (not shown) and initiating the transfer by placing PCTL in the Set state (tl).

The peripheral acknowledges by placing PFLG in the Ready state (t2). The peripheral
must place data on the Data In lines (t3), allowing enough time for the data to settle
before placing PFLG in the Busy state (t4). With this type of pulse, events t2 and t3
may also occur in the reverse order.

The GPIO Interface 16-15

The Ready-to-Busy transition of PFLG automatically Clears PCTL (t4). The dashed
PFLG signal shows that the state of PFLG is not checked before the computer initiates
a subsequent transfer.

Clear

PCTL

Set

0~~
Data In

~~~~~~~ 
r-~:~ng-1 

Busy --+---1 1--~---= 
PFLG 

Ready 

I 
I 
I 
I 
I 
I 

t1 t5 

Be Valid Here 
1----11-------

Figure 16-10. Ready Pulses w/ Pulse-Mode ENTER Handshakes (RDY Clock Source) 

The computer does not have to check for PFLG to be Ready before placing I/0 in the 
High state (not shown) and initiating the transfer by placing PCTL in the Set state (tl). 

The peripheral must place data on the Data In lines (t2), allowing enough time for the 
data to settle before placing PFLG Ready (t3). The peripheral places PFLG in the Busy 
state (t4), which automatically Clears PCTL (t5). 

16-16 The GPIO Interface 



Interface Reset 
The interface should always be reset before usc to ensure that it is in a known state. All 
interfaces are automatically reset by the computer at certain times: when the computer 
is powered on, when the I RESET I key (I Shift H Reset I on an ITF keyboard) is pressed, and 
at other times described in the Reset Table1 . The interface may be optionally reset at 
other times under control of BASIC programs. Two examples are as follows: 

Gpio=12 
CONTROL Gpio,0;1 

Reset=! 
CONTROL Gpio;Reset 

The following action is invoked whenever the GPIO Interface is reset: 
• The Peripheral Reset line (PRESET) is pulsed Low for at least 15 microseconds. 
• The PCTL line is placed in the Clear state. 

• If the DOUT CLEAR jumper is installed, the Data Out lines are all cleared (set to 
logic 0). 

• The interrupt enable bit is cleared, disabling subsequent interrupts until rc-enablcd 
by the program. 

The following lines are unchanged by a reset of the GPIO Interface: 
• The CTLO and CTLI output lines. 

• The I/0 line. 

• The Data Out lines, if the DOUT CLEAR jumper is not installed. 

1 The Reset Table is given in the Useful Tables of the BASIC Language Reference. 

The GPIO Interface 16-17 



Outputs and Enters through the GPIO 
This section describes techniques for outputting and entering data through the GPIO 
Interface. The mechanism by which data are communicated are the electrical signals on 
the data lines. The actual signals that appear on the data lines depend on three things: 

• the data currently being transferred, 

• how this data is being represented, 

• the logic sense of the data lines. 

Brief explanations of ASCII and internal data representation are given in the "Interfacing 
Concepts" chapter. Complete details of the freefield convention and effects of IMAGE 
specifiers during OUTPUT and ENTER statements are described in the "Outputting 
Data" and "Entering Data" chapters, respectively. The section of the chapter "I/0 Path 
Attributes" called "The FORMAT OFF Attribute" describes how internal-form data are 
represented during OUTPUT and ENTER. This section gives simple examples of how 
several representations are implemented during OUTPUTs and ENTERs through the 
GPIO Interface. 

ASCII and Internal Representations 
When data are moved through the GPIO Interface, the data are generally sent one byte 
at a time, with the most significant byte first. This byte-mode transfer is independent of 
whether FORMAT ON or FORMAT OFF is the I/0 path attribute. However, there are 
two exceptions; data are represented by words when the "W" image specifier is used and 
when numeric data are moved with reads of STATUS register 3 and writes to CONTROL 
register 3. The following diagrams illustrate which data lines are used during byte and 
word transfers. 

GPIO 
Interface 

0015-008 
or 

0115-018 

007-000 
or 

017-010 

Peripheral 
Device 

Upper 8 bits are not used 
(all o·s during byte transfers). 

Only lower 8 bits are used. 

Figure 16-11. Diagram of Byte Transfers 

16-18 The GPIO Interface 

~~ 



Example Statements that Output Data Bytes 
The following diagrams show the actual logic signals that appear on the least significant 
data byte (D07 thru DOO) as the result of the corresponding OUTPUT statement; the 
most significant byte is always zeros with byte transfers. The actual logic levels depend 
on how the data lines arc configured (i.e., as Low-true or High-true). 

ASSIGN ~Gpio TO 12 
OUTPUT \OGpio; 11 ASCII 11 

Gpio=12 
Number=-4 
OUTPUT Gpio USING "MD.DD";Number 

ASSIGN @Gpio TO 12;FORMAT OFF 
Integer_1=256*85+76 
OUTPUT \0Gpio;Integer_1 

Signal Line ASCII 
D07 ....... DOO Char. 

0 1 0 0 0 0 0 1 A 
0 1 0 1 0 0 1 1 s 
0 1 0 0 0 0 1 1 c 
0100 1001 I 
0100 1001 I 
0 0 0 0 1 1 0 1 CR 

0 0 0 0 1 0 1 0 LF 

Signal Line ASCII 
007 ....... DOO Char. 

0 0 1 0 
0 1 1 0 
0 0 1 0 
0 0 1 1 
0 0 1 1 
0 0 0 0 
0 0 0 0 

1 1 0 1 
0 1 0 0 
1 1 1 0 
0 0 0 0 
0 0 0 0 
1 1 0 1 
1 0 1 0 

4 

Signal Line ASCII 
D07 ....... DOO Char. 

0101 0101 u 
01001100 L 

The GPIO Interface 16-19 



ASSIGN ~Gpio TO 12;FORMAT OFF 
Signal Line ASCII String$="1234" 

OUTPUT ~Gpio;String$ 007 ....... DOO Char. 

0 0 0 0 0 0 0 0 Nu 

0 0 0 0 0 0 0 0 Nu 

0 0 0 0 0 0 0 0 Nu 

0 0 0 0 0 1 0 0 Et 

0 0 1 1 0 0 0 1 1 
0 0 1 1 0 0 1 0 2 
0 0 1 1 0 0 1 1 3 
0 0 1 1 0 1 0 0 a 

Example Statements that Enter Data Bytes 
The following diagrams show the variable values that result from the logic signals being 
present during the corresponding ENTER statement on the least significant data byte 
(DI7 thru DIO); the most significant byte is always ignored with byte transfers. The 
actual logic levels required depend on how the data lines are configured (i.e., as Low-true 
or High-true). 

ENTER ~Gpio USING "#,B";Byte 
DISP "Value entered=";Byte 

Value entered= 65 

ENTER 12;String$ 
DISP "String entered= ";String$ 

String entered= ruok? 

16-20 The GPIO Interface 

Signal Line ASCII 
017 ......... 010 Char. 

0 1 0 0 0 0 0 1 A 

Signal Line ASCII 
017 ......... 010 Char. 

0 1 1 1 0 0 1 0 r 
0 1 1 1 0 1 0 1 u 
0 1 1 0 1 1 1 1 0 

0 1 1 0 1 0 1 1 ~\ 
0 0 1 1 1 1 1 1 ? 
0 0 0 0 1 0 1 0 LF 

u 

(0 



REAL Number 
ASSIGN ~Gpio TO 12 
ENTER ~Gpio;Number 
DISP "Number=";Number 

Number= 2 

GPIO 
Interface 

D015-D08 
or 

DI15-DI8 

D07- DOD 
or 

DI7-DIO 

Peripheral 
Device 

Signal Line ASCII 
017 ......... DIO Char. 

0100 0000 @ 

0 0 0 0 0 0 0 0 Nu 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 Nu 

Upper 8 bits are used only when: 

1. Writing to CONTROL register 3 
(reading from STATUS register 3). 

2. The "W" image specifier is used. 

Lower 8 bits are used for ALL data 
transfers. 

Figure 16-12. Diagram of Word Transfers 

The GPIO Interface 16-21 



Example Statements that Output Data Words1 

The following diagrams show the logic signals that appear on the Data Out lines as a 
result of the corresponding BASIC statements and numeric values. All numeric values 
are first rounded to an INTEGER value before being placed on the Data Out lines. The 
actual logic level that appears on each line depends on how the lines have been configured 
(i.e., as High-true or Low-true). 

Word=3*256+3 
OUTPUT (fJGpio USING "#,W";Output_word 

Signal Lines 
0015 008 007 ........ 000 

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

Output_16_bits=-1 
CONTROL Gp_isc,3;0utput_16_bits 

Signal Lines 
0015 008 007 ........ 000 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

It is important to note that no output handshake is executed when the CONTROL state
ment is executed; only the states of the Data Out lines and the I/0 line are affected. 
Handshake sequence, if desired, must be performed by BASIC statements in the program. 
See "Designing Your Own Transfers" for design suggestions. 

1 Data are automatically sent as words when using an I/0 path with the WORD attribute. See the "I/0 
Path Attributes" chapter for further information. 

16-22 The GPIO Interface 



Example Statements that Enter Data Words1 

The following diagrams show the variable values that result from entering the logic signals 
on the Data In lines. Note that all sixteen-bit values entered are interpreted as INTEGER 
values. 

Signal Lines 
0115 ........ DIS DI7 ......... 010 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

ENTER 12 USING "#,W";Enter_16_bits 
DISP "INTEGER entered=";Enter_16_bits 

INTEGER entered= 511 

Signal Lines 
0115 ........ DIS DI7 ......... DIO 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 
STATUS Gp_isc,3;Enter_16_bits 
DISP "INTEGER entered=";Enter_16_bits 

INTEGER entered= -512 

It is important to note that no enter handshake is performed when the STATUS statement 
is executed. The only actions taken are the 1/0 line being placed in the High state and 
the Data In registers being read. If an enter handshake is required, it must be performed 
by the BASIC program. See "Designing Your Own Transfers" for design suggestions. 

Remember also that the Data In Clock source is solely determined by the switch setting 
on the interface card. Thus, when the STATUS statement is used to read the Data 
In lines, the data on the lines may or may not be clocked into the registers when the 
statement is executed. If the data are to be clocked in by the STATUS statement, the 
"READ" clock source must be selected. See the installation manual for further details. 

1 Data are automatically received as words when using an I/0 path with the WORD attribute. See the 
"I/0 Path Attributes" chapter for further information. 

The GPIO Interface 16-23 



GPIO Timeouts 
Timeout events were generally discussed in the chapter "Interface Events". However, 
specific details of the affects of the time parameter on the event's occurrence were not 
described. This section explains how the time parameter is measured and describes 
typical service routines. 

Timeout Time Parameter 
There are two general time intervals measured and compared to the specified TIMEOUT 
time. The first interval is measured between the computer initiating the first handshake 
(PCTL=Set) and the peripheral signalling Ready (with the PFLG line). If the peripheral 
does not indicate readiness1 by the specified TIMEOUT time parameter, a TIMEOUT 
event occurs. 

The time elapsed during each handshake is also measured and compared to the TIME
OUT time. The timing begins when the transfer is initiated (PCTL Set by the computer) 
and, in general, ends when the peripheral responds on the PFLG line. 

Keep in mind that the TIMEOUT time parameter specifies the minimum time that the 
computer will wait before initiating the ON TIMEOUT branch. However, the computer 
may occasionally wait an additional 25% of the specified time parameter before initiating 
the branch. For instance, if a time of 0.4 seconds is specified, the computer will wait at 
least 0.4 seconds for the handshake to be completed, but it may occasionally wait up to 
0.5 seconds before initiating the ON TIMEOUT branch. 

1 The computer optionally reads the state of the PSTS line before initiating the transfer. See "Using the 
PSTS Line" for further details. 

16-24 The GPIO Interface 

I l \"'-"" 

. \ 
'0 



Timeout Service Routines 
The service routine usually responds by determining if the peripheral is functioning 
properly ( "ok") or is down ("not ok"). The simplest action that might be taken by the 
computer is to read the state of the PSTS signal line, as shown in the following service 
routine. 

100 Gpio=12 
110 ON TIMEOUT Gpio, .08 GOSUB Gpio_down 

200 OUTPUT Gpio;String$ 
210 ! Next line. 

300 Gpio_down: 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 RETURN 

STATUS Gpio,5;Periph_status 
Psts=BIT(Periph_status,3) ! Read PSTS. 
IF NOT Psts THEN 

PRINT "GPIO interface is " 
PRINT "non-functional" 
PRINT "Program paused." 
PAUSE 

ELSE 
Take other action. 

END IF 

A TIMEOUT has been set up to occur if the peripheral takes approximately more than 
.08 second to complete its response during a data transfer; how the peripheral com
pletes its response depends on the handshake mode currently selected. With Pulse-Mode 
Handshakes, the peripheral completes its response by using PFLG to Clear PCTL; with 
Full-Mode Handshakes, the response is complete only fter PCTL has been Cleared and 
PFLG is in the Ready state. 

When a TIMEOUT occurs, the computer automatically executes an Interface Reset; the 
PCTL line is Set and then Cleared, and the PRESET line is pulsed Low. See the section 
called "Interface Reset" for further effects. The Service routine checks the PSTS line to 
see if the peripheral is OK or not OK. If not OK, a message is displayed and the program 
is paused; if OK, program execution is returned to the line following that in which the 
TIMEOUT occurred. The service routine may be programmed to attempt the transfer 
again, if desired; however, the automatie Reset performed when the TIMEOUT occurred 
may make this type of response difficult to implement. 

The GPIO Interface 16-25 



Using Alternate Data Representations 
As with any other interface, representations other than the ASCII or internal representa
tions may sometimes be more meaningful to the peripheral. This section briefly describes 
a few techniques for implementing alternate data representations. 

BCD Representation 
With OUTPUT and ENTER statements, numeric values are either represented by ASCII 
characters or by one of the internal representations (INTEGER or REAL). Another 
common method of representing numeric data is to use four-bit, binary-coded decimal 
(BCD) characters. Only ten of the available sixteen bit patterns need to be used to 
represent decimal digits "0" through "9". The remaining six patterns can be used for sign, 
decimal point, exponent, and other special characters, as required by the application. 

The following bit patterns have been chosen arbitrarily to correspond to numeric 
characters1 . Note that this representation cannot be used if more than six other charac
ters are to be represented. 

Table 16-1. Bit Patterns for Numeric Characters 

Decimal Bit Pattern Other Bit Pattern 
Digit MSB LSB Character MSB LSB 

0 0 0 0 0 Line-Feed 1 0 1 0 
1 0 0 0 1 + 1 0 1 1 
2 0 0 1 0 1 1 0 0 
3 0 0 1 1 1 1 0 1 
4 0 1 0 0 E 1 1 1 0 
5 0 1 0 1 1 1 1 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

1 This is also the data representation used by the HP 98623 BCD Interface. See the "BCD Interface" 
chapter for further information. 

16-26 The GPIO Interface 

' I 
\_) 

.I 

~ 



The following subprogram assumes that BCD numbers are to be entered through the 
GPIO Interface. Sixteen BCD characters are represented by four 16-bit words from the 
peripheral. The sixteen four-bit BCD characters have the following general format. 

Mantissa sign 

1 
(optional) 

Mantissa 

Up to 16 
(at least one) 

"E" 

1 
(optional) 

Exponent sign 

1 
(optional) 

Exponent 

Up to 3 
(optional) 

The GPIO Interface 16-27 



Each BCD character is represented by four bits of data. The first word entered contains 
the four most significant BCD characters, and the last word contains the least significant. 
The program changes the BCD characters to their ASCII representation and then uses 
the number builder to generate the corresponding numeric value. 

100 ASSIGN ~Gpio TO 12 
110 
120 ! Define conversion string. 
130 Conv$="0123456789"&CHR$(10)&"+,-E." 
140 
150 CALL Enter_bcd(~Gpio,Conv$,Number) 
160 OUTPUT 1;"The BCD number is ";Number 
170 
180 END 
190 
200 
210 SUB Enter_bcd(~Device,Conv$,Number) 
220 COM /Enter_bcd/ INTEGER Word(1:4) 
230 
240 ! Enter 4 words (=16 BCD digits). 
250 ENTER ~Device USING "#,W";Word(*) 
260 
270 FOR W=1 TO 4 ! Process four words. 
280 
290 Shift right multiples of four bits. 
300 FOR Bits_rt=12 TO 0 STEP -4 
310 Shifted_word=SHIFT(Word(W) ,Bits_rt) 
320 Four_lsb=BINAND(Shifted_word,15) ! Mask MSB's. 
330 Ascii_char$=Conv$[Four_lsb+1;1] ! LSB's = index. 
340 Number$=Number$&Ascii_char$ 
350 NEXT Bits_rt 
360 
370 NEXT W 
380 
390 ENTER Number$;Number ! Use number builder. 
400 SUBEND ! Returns BCD number as "Number". 

16-28 The GPIO Interface 

' l 
\._) 



Character Conversions 
One of the most common needs of a computer is to convert1 certain unused or disallowed 
bit patterns into meaningful or allowed bit patterns. A typical example is to change the 
radix character from a decimal point to a comma. For instance, the following ASCII 
characters represent the same number. 

U.S. Representation European Representation 

1,234,567.89 1.234.567,89 

A remedy is needed to allows these types of numbers to be entered through the number 
builder. To enter a number with the preceding European format, the commas must be 
changed to periods and the periods changed to spaces. The following routine changes the 
numeric radix from the European to the US convention when numeric data are entered 
through the GPIO. 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 

! Generate string with no conversions. 
DIM Conv$[256] 
FOR Code=O TO 255 

Conv$[Code+1]=CHR$(Code) 
NEXT Code 
! 
! Then define the conversions. 
Conv$[NUM(".")+1;1]=" " Change 
Conv$[NUM(".")+1;1]="." ! Change 

! 
Number$="123.456,789" 

II II 

II II 

PRINT "Before conversion ";Number$ 
CALL Convert(Conv$,Number$) 

260 
270 
280 

PRINT "After conversion ";Number$ 

END 

290 SUB Convert(Conv$,Data$) 
300 
310 FOR Char_pos=1 TO LEN(Data$) 
320 Index=NUM(Data$[Char_pos])+1 
330 Data$[Char_pos;1]=Conv$[Index;1] 
340 NEXT Char_pos 
350 ! 

tO II II 

to II II 

360 ! Returns Data$ with converted characters. 
370 SUBEND 

1 Conversions can also be made by using the CONVERT attribute. Sec the "1/0 Path Attributes" chapter 
for further information. 

The GPIO Interface 16-29 



If more characters are to be converted, simply change the default (standard ASCII) 
character in Conv$ to the desired code. The speed of the conversion is not affected by 
the number of characters to be converted. This routine works for either input or output, 
but the characters to be converted must be in a string variable. 

GPIO Interrupts 
This section describes the types of and techniques for using the interrupts available on 
the GPIO Interface. 

Types of Interrupt Events 
The GPIO Interface can sense two interrupt events: the first is the interface becoming 
"Ready" for subsequent handshakes, and the second is the External Interrupt Request 
line (EIR) being driven to logic low by the peripheral. As with all interfaces, both events 
initiate identical computer responses- the service routine must be able to determine 
which of these interrupts have occurred if both are enabled to initiate interrupts. 

Both of these types of interrupt events are level-sensitive; in other words, the signal that 
caused the event should be maintained until the program has time to determine which 
event has caused the interrupt. Further explanation follows in this section. 

Setting Up and Enabling Events 
When either event occurs, the interrupt is logged by the BASIC operating system. After 
logging the occurrence, any further interrupts from the GPIO Interface are automatically 
disabled until specifically enabled by a program. All further computer responses to either 
event depend entirely on the BASIC program currently in memory. 

The following program segment shows the steps involved in setting up and enabling 
Ready interrupts. 

100 Gpio=12 
110 ON INTR Gpio GOSUB Gpio_serv 
120 
130 Mask=2 
140 ENABLE INTR Gpio;Mask 

16-30 The GPIO Interface 

I \ 
\~ 

\ \0 



The value of the interrupt mask determines which, if any, of the GPIO interrupt events 
are to be enabled to initiate the corresponding branch. Bits of the Interrupt Mask register 
have the following definitions. 

Interrupt Enable Register (ENABLED INTR) 

Most Significant Bit Least Significant Bit 

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 I Bit 2 Bit 1 Bit 0 

Enable Enable 

Not used Interface EIR 
Ready Interrupts 
Interrupts 

Value=1281Value=64 lvalue=32 IValue=16 I Value=8 I Value=4 Value=2 Value=l 

Interface Ready Setting this bit (1) enables an interrupt to initiate the ON INTR 
branch when the interface detects that it is Ready to handshake data. If Full-Mode 
Handshake is selected (with the Option Select switch), the Ready event is PCTL=Clear 
and PFLG=Ready. With Pulse-Mode Handshake, the event is PCTL=Clear (indepen
dent of the state of PFLG). 

External Interrupt Request Setting this bit (1) enables an interrupt to initiate the ON 
INTR branch when the interface senses an External Interrupt Request (EIR line=Low). 

The GPIO Interface 16-31 



Interrupt Service Routines 
If both events are enabled, the service routine must be able to differentiate between the 
two. And, if both have occurred, the service routine must be able to service both causes. 
The following registers contain the current state of the Interface Ready flag and EIR 
signal lines, from which the interrupt cause(s) may be determined. 

STATUS Register 4 

STATUS Register 5 

Most Significant Bit 

Bit 7 Bit 6 

0 0 

Value=128 Value=64 

Interface is ready for a subsequent data transfer; l=Ready, 
l=Busy. 

Peripheral Status 

Least Significant Bit 

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 
PSTS EIR STil STIO 
Ok Line Low Line Low Line Low 

Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

As mentioned in preceding paragraphs, these two interrupt causes are both level-sensitive 
events, not edge-triggered events. This fact has two important implications. The first 
is that, for an event to be recognized, the corresponding signal line must be held in the 
interrupting state until the computer can interrogate the line's logic state. If the signal 
line's state is changed before the service routine checks the line, the interrupt may be 
"missed". This will happen only if both events are enabled; if only one event is enabled, 
determining the cause may not be necessary. 

16-32 The GPIO Interface 

I 
\...-1 



The second implication is that the service routine must be able to acknowledge the 
request in order for the peripheral device to remove the request. If the request is not 
removed after service, the same request may be serviced more than once. 

The following program shows a simple example of servicing an External Interrupt Re
quest. Note thi1t only EIR-type interrupts have been enabled and that the peripheral 
device provides its own interrupt cause with signals on the STIO and STil lines. 

100 PRINTER IS 1 
110 Gpio=12 
120 CONTROL Gpio;1 ! Reset Interface. 
130 
140 ON INTR Gpio GOSUB Gpio_serv 
150 ENABLE INTR Gpio;1 ! Enable EIR-type only. 
160 
170 ! Show concurrent processing. 
180 Loop: Counter=Counter+1 
190 DISP Counter 
200 GOTO Loop 
210 
220 STOP 
230 
240 Gpio_serv: 
250 STATUS Gpio,5;Periph_status 
260 IF BIT(Periph_status,2) THEN 

Check EIR line. 
EIR interrupt. 

270 
280 
290 
300 
310 
320 
330 
340 

IF BIT(Periph_status,O) THEN ! STIO=True. 
BEEP 
PRINT "Improper value; type in correct" 
PRINT "value, and press ENTER." 
PRINT 
ENTER 2;Value 
OUTPUT Gpio;Value 

350 END IF 

The GPIO Interface 16-33 



360 
370 
380 
390 
400 
410 
420 

IF BIT(Periph_status,1) THEN ! STI1=True. 
BEEP 
PRINT "Reading of:";Reading;" out of range" 
PRINT "No other action will be taken." 
PRINT 
WAIT 2 

430 BEEP 
440 END IF 
450 
460 END IF 
470 
480 Put Ready service routine here. 
490 
500 
510 ENABLE INTR Gpio 
520 RETURN 
530 
540 END 

Use same mask. 

A slightly different method that peripherals use to communicate the cause of their inter
rupt request is to place the interrupt cause on the data lines concurrent with the interrupt 
request. The service routine can determine the cause by reading STATUS register 3 and 
take the appropriate action. 

Notice that the service routine indicates a likely place for a Ready-interrupt service rou
tine. The Service routine must check for the Ready condition, acknowledge the interrupt, 
and then take the desired action. In this case, no service action has been defined because 
Ready interrupts have not been enabled. The next section provides an example of a 
Ready interrupt service routine. 

16-34 The GPIO Interface 



Designing Your Own Transfers 
Other specialized methods of handshaking data can be deHigned according to your specific 
needs. The methods of synchronizing data transfers are as f1exible as the GPIO Interface 
hardware. However, the general techniques will probably still require the fundamental 
handshake features: initiation by the sending device, acknowledgement from the receiving 
device, and agreement as to when the data are valid. The TRANSFER statement can 
be used to transfer data. See the chapter "Advanced Transfer Techniques" for further 
information. 

A wide choice of initiating events is available; obvious possibilities include use of the 
PCTL, EIR, or CTLO (or CTLl) lines to signal the start of the transfer. Data can be 
placed on the Data Out lines by writing to CONTROL register 3, or data can be clocked 
into the Data In registers by reading STATUS register 3. Sensing acknowledgement from 
the peripheral can be accomplished by reading the state of such lines as PFLG, PSTS, 
EIR, or STIO (or STil). 

The feature common to all of these methods is that each byte (or word) of data must be 
transferred individually. If an entire block of data is to be entered or output, the BASIC 
program that implements the transfer must keep a "pointer" to which byte/word is to 
be transferred. 

The GPIO Interface 16-31> 



Full Handshake Transfer 
The following program implements a handshake similar to the Full OUTPUT Handshake 
by controlling the PCTL and sensing the PFLG and PCTL lines. The actual "Output" 
routine consists of lines 150 through 190. Timeout capability can easily be included in 
the routine, if so desired. 

100 DATA 65,66,67,68,69 
110 
120 STATUS 12,5;Periph_status Check PSTS. 
130 IF BIT(Periph_status,3) THEN PSTS True. 
140 
150 FOR Char=1 TO 5 
160 READ Code 
170 Wait: STATUS 12,4;Interface_ready 
180 IF NOT Interface_ready THEN Wait 
190 Output: CONTROL 12,3;Code Data onto lines. 
200 CONTROL 12,1; 1 ! Set PCTL. 
210 NEXT Char 
220 
230 ELSE PSTS False. 
240 PRINT "Peripheral error" 
250 PAUSE 
260 END IF 
270 
280 END 

Notice that each byte of data must be output separately and that the program must 
keep track of which byte, of several, is to be sent. Keep in mind that the data written to 
CONTROL register 3 is 16-bit words; in this case, the most significant eight bits (byte) 
is all zeros. Also, using FOR. .. NEXT loops to index each byte/word to be sent may 
not be the most expedient way of sending data, so your particular application may use 
alternative methods for handling the data. 

16-36 The GPIO Interface 



The following subprogram implements a handshake similar to the Full ENTER hand
shake. 

170 SUB Enter_word(@Device,Data_word) 
180 
190 Wait1: 
200 
210 
220 
230 Wait2: 
240 
250 
260 

STATUS 12,4;Interface_ready 
IF NOT Interface_ready THEN Wait1 
STATUS 12,3;Dummy_read ! I/0 High. 
CONTROL 12,1;1 ! Set PCTL. 
STATUS 12,4;Interface_ready 
IF NOT Interface_ready THEN Wait2 
STATUS 12,3;Data_word ! Enter word. 

270 SUB END 

The appropriate Data-In Clock source should be selected to ensure the data arc clocked 
into the registers when valid. Refer to the installation manual for further details. 

Interrupt Transfers 
The interrupt capabilities of the GPIO Interface can be used to synchronize the transfer 
of data between the computer and peripheral. These examples describe simple methods 
of synchronizing the transfer of data by using both the EIR and the PFLG line. Sec 
the section of this chapter ealled "GPIO Interrupts" for further explanation of GPIO 
interrupts in general. 

General interrupt transfers through the GPIO Intcrfaee involve the following clements: 

• placing data on (or reading data from) the data lines 

• signaling to the peripheral deviec to initiate the transfer 

• continuing processing until an interrupt is received, at whieh time the handshake 
is finished and transfer of the next byte/word ean be initiated. 

Examples of using Ready interrupts to implement interrupt transfers arc given in the 
remainder of this section. 

Ready Interrupt Transfers 
The Ready interrupt event oceurs when the GPIO Interface becomes "Ready". Whether 
or not the GPIO Interface is Ready depends on the currently seleeted handshake mode. 
If Full-Mode Handshake is selected, the intcrfaee is Ready if both the PFLG line is Ready 
and the PCTL line is Clear; if Pulse-Mode is selected, the interface is Ready if PCTL is 
in the Clear state, regardless of the state of PFLG. The following program shows how to 
implement Ready interrupt transfers. 

The GPIO Interface 16-37 



100 PRINTER IS 1 
110 Gpio=12 
120 CONTROL Gpio;1 ! Reset Interface. 
130 ON INTR Gpio GOSUB Ready_xfer 
140 
150 DIM Data_out$[256] 
160 Data_out$="123ABC" 
170 Pointer=1 
180 Size=LEN(Data_out$) 
190 ! 
200 ! Initiate the transfer. 
210 GOSUB Ready_xfer 
220 ! 
230 ! Show concurrent processing. 
240 Loop: Counter=Counter+1 
250 DISP Counter 
260 GOTO Loop 
270 
280 STOP 
290 
300 The branch to this subroutine is initiated 
310 first by the program, but thereafter by 
320 Ready Interrupt events. 
330 
340 Ready_xfer: ! 
350 

IF Pointer<=Size THEN 
Byte_out=NUM(Data_out$[Pointer;1]) 
PRINT Data_out$[Pointer;1] ;" sent" 
CONTROL Gpio,3;Byte_out Place data 
Pointer=Pointer+1 

Set PCTL. 

on lines. 

360 
370 
380 
390 
400 
410 
420 
430 
440 

CONTROL Gpio,1;1 
ENABLE INTR Gpio;2 Enable Ready INTR's. 
RETURN 

450 ELSE 
460 DISABLE INTR Gpio 
470 RETURN 
480 
490 END IF 
500 
510 
520 END 

Disable after done. 

Interrupt transfers that use the EIR line are similar to Ready interrupt transfers. The 
main difference is that the interrupt-initiating event is the EIR line, rather than the 
PCTL line (and PFLG if in Full Handshake mode) indicating Interface Ready. 

16-38 The GPIO Interface 

:. .i 
~ 



Using the Special-Purpose Lines 
Four special-purpose signal lines are available for a variety of uses. Two of these lines 
are available for output (CTLO and CTLl), and the other two are used as inputs (STIO 
and STil). 

Driving the Control Output Lines 
Setting bits 0 and 1 of GPIO CONTROL register 2 places a logic low on CTLO and 
CTLl, respectively. The definition of this CONTROL register is shown in the following 
diagram. 

CONTROL Register 2 Peripheral Control 

Most Significant Bit Least Significant Bit 

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 

Not used 

lvalue=1281Value=64 lvalue=32 Jvalue=16J Value=8 

CtlO=O ! Clear. 
Ctl1=1 ! Set. 
CONTROL 12,2;Ctl1*2+Ctl0 

Bit 2 Bit 1 Bit 0 

PSTS Set CTLl Set CTLO 
Error (l=Low; (l=Low; 
(!=Report; O=High) O=High) 
O=Ignore) 

Value=4 Value=2 Value=! 

As indicated in the diagram, setting a bit in the register places the corresponding line 
Low, while clearing the bit places a logic High on the line. The logic polarity of these 
signals cannot be changed. The signal remains on these lines until another value is 
written into the CONTROL register, and Reset has no effect on the state of either line. 

The GPIO Interface 16-39 



Interrogating the Status Input Lines 
The state of both status input lines STIO and STil are determined by reading bits 0 
and 1 of STATUS register 5, respectively. A logic "1" in a bit position indicates that 
the corresponding line is at logic Low, and a "0" indicates the opposite logic state. This 
logic polarity cannot be changed. The definition of GPIO STATUS register 5 is shown 
below. 

STATUS Register 5 Peripheral Status 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 

0 0 0 0 

lvalue=128 Value=64 Value=32 Value=16 

STATUS 12,5;P_status 
StiO=BIT(P_status,O) 
Sti1=BIT(P_status,1) 

Least Significant Bit 

Bit 3 Bit 2 Bit 1 Bit 0 

PSTS EIR STil STIO 
Ok Line Low Line Low Line Low 

Value=8 Value=4 Value=2 Value=l 

Reading this register returns a numeric value that reflects the logic states of these lines 
at the instant the computer reads the interface lines; the state of these lines are not 
latched by any internal or external event. 

16-40 The GPIO Interface 



Using the PSTS Line 
The Peripheral Status line (PSTS) is generally used to indicate whether or not the 
peripheral device is functional. The current state of PSTS may be checked by reading 
STATUS Register 5 (bit 3). It may also optionally be checked automatieally at the 
,Beginning of an OUTPUT or ENTER statement; normally, it is not checked. This 
feature is only enabled by by setting Bit 2 of CONTROL register 2. 

CONTROL Register 2 Peripheral Control 

Most Significant Bit Least Significant Bit 

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 Bit 2 Bit 1 Bit 0 

PSTS Set CTLl Set CTLO 

Not used Error (l=Low; (l=Low; 
(l=Report; O=High) O=High) 
O=Ignore) 

1Value=1281Value=64 lvalue=32 IValue=161 Value=8 Value=4 Value=2 Value=l 

When Bit 2 is set and PSTS is false at the beginning of either an OUTPUT or ENTER 
statement, Error 172 (Peripheral error) is reported. The error must be trapped with 
ON ERROR, since it generates no INTR or TIMEOUT branch. 

The GPIO Interface 16-41 



Summary of GPIO STATUS and CONTROL Registers 
STATUS Register 0 Card Identification. Always 3. 

CONTROL Register 0 Interface Reset. Any non-zero value causes a reset. 

STATUS Register 1 Interrupt and DMA Status. 

\ 

~~ 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Interrupts An Interrupt Interrupt Burst- Word- DMA DMA 
Are Interrupt Level Level Mode Mode Channell Channel 0 
Enabled Is Currently Switches Switches DMA DMA Enabled Enabled 

Requested (Hardware (Hardware 
Priority) Priority) 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

CONTROL Register 1 Set PCTL Line. Any non-zero value sets the line. 

u 

16-42 The GPIO Interface 



STATUS Register 2 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Handshake Interrupts Transfer 
0 0 0 0 0 In Arc In 

Process Enabled Progress 
Value=l28 Value=64 Value=32 Value=l6 Value=8 Value=4 Value=2 Valuc=l 

CONTROL Register 2 Peripheral Control 

Most Significant Bit Least Significant Bit 

Bit 7 I Bit 6 I Bit 5 I Bit 4 I Bit 3 Bit 2 Bit 1 Bit 0 

PSTS Set CTLl Set CTLO 

Not used Error (l=Low; (l=Low; 
(l=Report; O=High) O=High) 
O=Ignore) 

1Value=l281Value=641Valuc=321Value=l61 Value=8 Value=4 Value=2 Value= I 

The GPIO Interface 16-43 



STATUS Register 3 Data In (16 bits) 

CONTROL Register 3 Data Out (16 bits) 

STATUS Register 4 Interface Ready. Interface is Ready for a subsequent data 
transfer: 1=Ready, O=Busy. 

STATUS Register 5 Peripheral Status 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

0 0 
PSTS EIR STil STIO 0 0 Ok Line Low Line Low Line Low 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

Interrupt Enable Register (EN ABLE INTR) 

Most Significant Bit Least Significant Bit 

Bit 7 I Bit 6 I Bit 5 1 Bit 4 I Bit 3 I Bit 2 Bit 1 Bit 0 

Enable Enable 

Not used Interface EIR 
Ready Interrupts 
Interrupts 

jvalue=1281Value=64jValue=32jValue=16 I Value=8 I Value=4 Value=2 Value=l 

16-44 The GPIO Interface 

u 



Summary of GPIO READIO and WRITEIO Registers 
This section describes the GPIO Interface's READIO and WRITEIO registers. Keep in 
mind that these registers should be used only when you know the exact consequences 
of their use, as using some of the registers improperly may result in improper interface 
behavior. If the desired operation can be performed with STATUS or CONTROL, you 
should not use READIO or WRITEIO. 

GPIO READIO Registers 
Register 0 Interface Ready 

Register 1 Card Identification 

Register 2 Undefined 

Register 3 Interrupt Status 

Register 4 MSB of Data In 

Register 5 LSB of Data In 

Register 6 Undefined 

Register 7 Peripheral Status 

READIO Register 0 Interface Ready. A 1 indicates that the interface is Ready for 
subsequent data transfers, and 0 indicates Not Ready. 

READIO Register 1 

READIO Register 3 

Most Significant Bit 

Bit 7 Bit 6 

Interrupts An 
Are Interrupt 
Enabled Is Currently 

Requested 

Value=128 Value=64 

Card Identification. This register always contains 3, the iden
tification for GPIO interfaces. 

Interrupt Status 

Least Significant Bit 

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Interrupt Interrupt Burst- Word- DMA DMA 
Level Level Mode Mode Channell Channel 0 
Switches Switches DMA DMA Enabled Enabled 
(Hardware (Hardware 
Priority) Priority) 

Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

The GPIO Interface 16-45 



READIO Register 4 MSB of Data In 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
DI15 DI14 DI13 DI12 Dill DilO DI9 DI8 

l\'alue=128 Value= 54 Value=32 Value=16 Value=8 Value=4 Value=2 Value= I 

READIO Register 5 LSB of Data In 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DI7 DI6 DI5 DI4 DI3 DI2 Dil DIO 

l\'alue=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value= I 

READIO Register 7 Peripheral Status 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

PSTS EIR STil STIO 0 0 0 0 Ok Line Low Line Low Line Low 

1Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

16-46 The GPIO Interface 



GPIO WRITEIO Registers 
WRITEIO Register 0 

WRITEIO Register 1 

WRITEIO Register 2 

WRITEIO Register 3 

WRITEIO Register 4 

WRITEIO Register 5 

WRITEIO Register 6 

WRITEIO Register 7 

WRITEIO Register 0 

WRITEIO Register 1 

WRITEIO Register 2 

Most Significant Bit 

Bit 7 I Bit 6 I 

Set PCTL 

Reset Interface 

Interrupt Mask 

Interrupt and DMA Enable 

MSB of Data Out 

LSB of Data Out 

Undefined 

Set Control Output Lines 

Set PCTL. Writing any non-zero numeric value to this register 
places PCTL in the Set state; writing zero causes no action. 

Reset Interface. Writing any non-zero numeric value to this 
register resets the interface. 

Interrupt Mask 

Least Significant Bit 

Bit 5 I Bit 4 l Bit 3 I Bit 2 Bit 1 Bit 0 

Enable Enable 

Not; used Interface EIR 
Ready Interrupts 
Interrupts 

jvalue=1281Value=64 Jvalue=32JValue=16J Value=8 j Value=4 Value=2 Value=l 

The GPIO Interface 16-47 



WRITEIO Register 3 Interrupt and DMA Enable 

Most Significant Bit 

Bit 7 Bit 6 I Bit 5 I Bit 4 Bit 3 Bit 2 

Enable Enable 
Enable 

Not used Burst- Word-
Interrupts Mode Mode 

DMA DMA 

Value=l28 Value=64 lvalue=32 lvalue=l6 Value=8 Value=4 

WRITEIO Register 4 MSB of Data Out 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 

D015 D014 D013 D012 DOll DOlO 

Value=l28 Value=64 Value=32 Value=l6 Value=8 Value=4 

WRITEIO Register 5 LSB of Data Out 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 

D07 D06 D05 D04 D03 D02 

Value=l28 Value=64 Value=32 Value=l6 Value=8 Value=4 

WRITEIO Register 7 Set Control Output Lines 

Most Significant Bit 

Bit 7 I Bit 6 I Bit 5 I Bit 4 j Bit 3 I Bit 2 

Not used 

Value=l28 lvalue=64 IValue=32 IValue=l6 I Value=8 I Value=4 

16-48 The GPIO Interface 

Least Significant Bit 

Bit 1 Bit 0 

Enable Enable 
DMA DMA 
Channel 1 Channel 0 

Value=2 Value=l 

Least Significant Bit 

Bit 1 Bit 0 

D09 DOS 

Value=2 Value=l 

Least Significant Bit 

Bit 1 Bit 0 

DOl DOO 

Value=2 Value=l 

Least Significant Bit 

Bit 1 Bit 0 

Set CTLl Set CTLO 
(l=Low; (l=Low; 
O=High) O=High) 

Value=2 Value=l 

' ) 
~ 



Table of Contents 

Chapter 17: The BCD Interface 
Brief Description of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 Data Representations and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 Configuring the Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-12 Determining Interface Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-12 Setting the Interface Select Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-14 Setting the Hardware Priority (Interrupt Level) . . . . . . . . . . . . . . . . . . . . . 17-14 Setting the Peripheral Status Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-14 Setting the Handshake Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-15 Configuring the Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-17 Interface Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-18 Entering Data Through the BCD Interface ............................. 17-19 Entering Data from One Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-20 Entering Data from Two Peripherals .............................. 17-27 Outputting Data Through the BCD Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 17-30 Output Routines Using CONTROL and STATUS . . . . . . . . . . . . . . . . . . . 17-30 Sending Data with OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-31 BCD Interface Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-33 BCD Interface Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36 Setting Up and Enabling Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36 Interrupt Service Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-37 Summary of BCD STATUS and CONTROL Registers . . . . . . . . . . . . . . . . . . . 17-38 Summary of BCD READIO and WRITEIO Registers . . . . . . . . . . . . . . . . . . . 17-42 BCD READIO Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-42 BCD WRITEIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-45 



u 

0 

0 



The BCD Interface 
This chapter should be used in conjunction with the HP 98628 BCD Interface Installation 
Note. The best way to use these two documents is to first read the section of this chapter 
called "Brief Description of Operation" to see how the interface works with the BASIC 
language. Within this section is information about the interface's modes of operation that 
will help you to understand how you might use the interface for your application. Second, 
read "Configuring the Interface" while referring to the Installation Note as necessary to 
configure and connect the interface according to your application's needs. The reason 
for this order is that you will be able to configure and use the interface once you know 
a little about how it works. 

The main section of the chapter presents several techniques for using the interface to 
move data between the computer and peripheral devices using BASIC programs. 

Backplane 

Connector 

Data and 

Control 
BCD 

Interface 

Hardware 

Parallel Data Out 

8 

Handshake 

4 

Special Purpose 

5 

Grounds 

7 

c 
0:: 
I .... 

tO 

Figure 17-1. Block Diagram of the BCD Interface 

The BCD Interface 17-1 



Brief Description of Operation 
The HP 98623 Interface consists of data registers and handshake circuitry required to 
transfer data to and from the computer using either BCD or binary data formats. The 
interface cable contains the following sixty-four conductors: 

• forty data, two sign, and one overload signal lines used to enter data from the 
peripheral 

• eight lines used to output data to the peripheral 

• two sets of handshake lines (two wires per set) 

• one reset line to the peripheral device 

• one five-volt logic line 

• five logic (signal) grounds and two safety (shield) grounds 

Data Representations and Formats 
The BCD interface can be used to transfer data using one of two data representations: 
BCD (binary-coded decimal) and binary representations. BCD is the default data rep
resentation; the binary representation may be selected by software (as described in the 
configuration section). 

The BCD Data Representation 
When the BCD representation is in use, data lines are handled in groups of four, with 
each group representing one BCD digit. The sixteen possible combinations of logic states 
and corresponding characters which each four-line group may represent are as follows: 

Table 17-l. BCD Logic States 

Data Line Character Data Line Character 
Logic Sense Represented Logic Sense Represented 

(MSB) (LSB) (MSB) (LSB) 

0 0 0 0 0 1000 8 
0001 1 1 0 0 1 9 
0 0 1 0 2 1 0 1 0 line-feed 

0 0 11 3 1 0 1 1 + 
0 1 0 0 4 1 1 0 0 

' 
0 1 0 1 5 1 1 0 1 -

0 1 1 0 6 1 1 1 0 E 

0 1 1 1 7 1 1 1 1 

17-2 The BCD Interface 



When the BCD representation is in use, the data lines are read character read, a cor
responding ASCII character (listed above) is generated. Operating system "drivers" 
control both the sequence of reading the BCD-character groups and the generation of 
the appropriate ASCII character which each group represents. The sequence used by 
the drivers and the resultant numeric value entered depends on which BCD format is 
currently in use: Standard or Optional format. 

Standard Format 
The Standard BCD format is used to connect one peripheral to the computer. The data 
lines are arranged as follows to form two numbers: one mantissa sign bit, eight BCD 
mantissa characters, one exponent sign bit, and one BCD exponent character form the 
first number; one overload-indicator bit and one BCD character are combined to form 
the second number. 

The following diagram shows how the signal lines are organized in Standard format (i.e., 
the order in which the lines are read with ENTER statements). The notation used with 
these diagrams is as follows: SGNl, SGN2, and OVLD are individual signal lines, while 
Dll through DilO are groups of four lines each. The signal lines of group Dix (in which 
x denotes one of the BCD characters 1 through 10) consist of Dix-8, Dlx-4, Dix-2, and 
Dlx-1; the 8, 4, 2, and 1 prefixes are used to denote the binary-weighted significance of 
each line. 

Table 17-2. Standard Format (Read One BCD Device) 

Signal Name SGN! Dll 012 013 014 DIS DIG 017 018 SGN2 019 OVLD DI!O 
Mont. Exp Exp. Exp. o-oVLD Fn. Info. MSD LSD Char Sign Digit Comma H-OVLD Digit Une·Feed Sign 

BCD Cha<. l !Oil 0000 0000 +lOll 0000 0000 0000 
thru thru 1110 thru !100 thru 10!0 (Pos. True) -]]()] !III Ill! -1101 Ill! !OliO Ill! 

ASCII Char. + ·- X X X X X X X X E + X Oor8 X LF 

The BCD Interface 17-3 



Let's take a closer look at how data is entered into the computer with a BASIC-language 
ENTER statement while using the Standard format. (Standard format is selected when 
the Peripheral Status Switch marked "OF" is in the "ON" position; further details will 
be given in the subsequent configuration section.) Suppose the following logic signals are 
present on the lines from the peripheral device: 

Table 17-3. BCD-mode Standard Format 

Signal z co .q- C\1,.... a:>~C\1.-
(!) ~~~~ C.:..c\Jc\sN 

Name (f) 0000 0000 

Logic 
1 0 0 0 1 0 0 1 0 Level 

BCD 
Character 

- 1 2 

Number ~ - 1 .2345678E + 16 
Function ~ 2 

CO'"I'j'"C\1.-
MrhMM 
0000 

0 0 1 1 

3 

00'"\tC\IT- CO""d"C\1.- COVC\J.- C:O""d"C\J,.- CO""d"C\J.-
~.¢..J....t J,J,J,J, IDc.bc.bc.b ~...:.....:..~ cOcO cOcO 0000 0000 0000 0000 0000 

0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 

4 5 6 7 8 

~'9,.~~ 
0 00-.::I'"C\Ir-

I I I I 

....J 0000 
CJ~~~Q? > ~~~~ 
(f) 0000 0 0000 

0 1 0 0 1 0 0 0 1 0 

+ 9 0 2 

Let's further assume the following: the Peripheral Status Switch settings are DATA=ON, 
SGNl=ON, SGN2=0N, OVLD=ON; and the following ENTER statement has been 
executed (with the BCD Interface as the source): 

ENTER Bcd;Number,Function 

The ENTER statement is executed as follows. The computer first initiates a handshake 
with the CTLA signal (handshake operation is also described in the configuration sec
tion). The peripheral responds to the request by placing data on the lines and then 
completing the handshake. The states of all data lines are now stored in registers on the 
interface (i.e, the data signals are "latched"). 

The Standard-format driver reads the state of the SGNlline and generates an ASCII "+" 
character. The "number builder" routine of the free-field ENTER statement (described 
in Chapter 5) is used to construct the number as characters are entered for the variable 
Number. 

17-4 The BCD Interface 



The BCD digits Dll through DIS are then read and used to form the mantissa. The "E" 
character is generated automatically by the driver, after which it reads the SGN2 line 
and generates a "-" character. BCD digit DI9 is read; the driver generates a "3" for 
the exponent character. A comma is automatically generated by the driver, terminating 
entry into Number. The number builder then constructs the internal representation of 
-0.4205, which is placed in Number. 

Since one additional numeric variable has been specified in the ENTER statement, the 
computer continues to enter characters from the interface. The OVLD signal line is read, 
and a "0" is generated and entered. BCD digit DUO is read, and the resultant ASCII 
"2" is entered by the number builder. The driver automatically generates the line-feed 
character, which terminates both entry of characters into the Function variable and the 
ENTER statement. The variable Function is assigned a value of 2, and the ENTER has 
finished execution. Further examples of sending and receiving data through the BCD 
Interface are given in the main section of this chapter. 

Optional Format 
With the Optional format, two peripherals may be connected to the interface. One four
digit and one five-digit mantissa arc generated with this format. The signal lines are 
organized as follows with Optional format: 

Table 17-4. Optional Format (Read Two BCD Devices) 

First Device (FD) Second Device (SO) 

Signal Name SGN! Dl4 Dl2 Dl6 DIS SGN2 DI!O Dll DIS Dl3 Dl7 OVLD Dl9 
Info. Mant. Sign MSD LSD Comma Mant. Sign MSD LSD Exp. Char. FD SD Line·Feed 

BCD Char. + 1011 0000 0000 +lOll 0000 0000 0000 0000 
thru thru lillO thru thru 1110 thru thru 1010 (Pos. True) 1101 1111 1111 -1101 1111 1111 1000 ·1000 

ASC!l Char + - X X X X 
' 

+ - X X X X X E 0 or 8 0 or 8 LF 

The BCD Interface 17-5 



Let's take a closer look at how data is entered into the computer by a BASIC-language 
ENTER statement while using the Optional format ("OF"=OFF). Suppose the following 
logic signals are present on the lines from the peripheral device: 

z COo:::tC\1~ Signal 
C) :± :± :± :± Name en oooo 

Logic 
1 0 1 0 0 Level 

BCD 
4 Character 

-

NumbeU = -4268 
Number_2 = 1.537E+84 

Table 17-5. BCD-mode Optional Format 

COVC\J..- CQ<q"C\1,.-

"? -r ~ 11 ~ 
OOo:::f"C\J,..-
6666 '7'"'1"~~ COVC\1..-NNNN cb<bc.bcb J,J,J,J, 0000 0000 

<XlCXl OJ OJ (!) o o o o. en 0000 0000 0000 

0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 

2 6 8 + 0 1 5 

0 co "'d" C\1 ...... COo:::tC\1..- CO"'d"C\1..-MMMM ~~r-:.r!. _J I I I I 

>22~2222 0000 0000 0 0000 

0 0 1 1 0 1 1 1 1 0 0 0 1 

3 7 8 1 

Let's further assume that the Peripheral Status Switches are set as follows: DATA=ON, 
SGNl=ON, SGN2=0N, OVLD=ON; and that the following ENTER statement has been 
executed (with the BCD Interface as the source): 

ENTER Bcd;Number_1,Number_2, 

The computer initiates a handshake with the first peripheral (or device A) by using 
the CTLA and CTLB signals (handshake operation is described in the configuration 
section). The first peripheral responds to the request by placing data on the lines and 
then completing the handshake. The states of all data lines from the first device are now 
stored in registers on the interface (i.e, the data signals are "latched"). 

As with Standard format, the Optional-format driver reads the states of the signal lines 
from the peripheral and generates the appropriate ASCII characters. The computer uses 
the "number builder" routine of the free-field ENTER statement (described in the chapter 
"Entering Data") to enter the ASCII characters from the interface and to generate the 
internal representation of the number(s) represented by the BCD characters. 

17-6 The BCD Interface 



In this example, the logic state ofSGNl (1, or True) is read by the driver, which generates 
a "-" character (see table). The BCD digits DI4, DI2, DI6, and DIS are read, and 
corresponding characters arc generated. The comma (generated by the driver) terminates 
entry into the first numeric variable, called Number_1. In this case, the value assigned to 
Number _1 is -4268. 

Since another number has been specified in the ENTER statement, the computer con
tinues to enter characters through the interface until the line-feed is entered. A value of 
1.537E+84 is assigned to the variable Number_2. The line-feed character (also generated 
by the driver) terminates both entry of characters into Number_2 and the ENTER state
ment. Further examples of entering data through this interface are given in in the main 
section of this chapter. 

The Binary Data Representation 
A binary data representation is available on the HP 98623 BCD Interface. With this rep
resentation, the forty data lines (groups Dil through DIIO) are treated as five individual 
data bytes which can be entered using ENTER or STATUS statement(s). 

The BCD Interface 17-7 



The Binary Mode 
Unlike the BCD representation, the Binary Mode has no Standard and Optional format; 
thus, the setting of the Option Format switch has no effect while in the Binary Mode. 

To select the Binary Mode, write a non-zero numeric value into BCD Control register 3; 
the following statement shows a typical method. 

CONTROL 11 , 3; 1 

To see how the ENTER statement enters data through the BCD Interface while in Binary 
Mode, let's suppose the logic signals on the data lines are as follows. 

Table 17-6. Binary mode ENTER 

co..q-C\1..--0?'1":-1~0?'1~"7 OOVC\I.,....CO-.::t-C\1..-- CO...::t'C\Ir-COVC\Ir- COVC\Ir-CX>VC\1,.... co""" NT'"" I I ' ' Signal MMMM...t...t.¢-...t J>J, ... :.,J> mmmm r-:..r--:.r-:..r-:..oooooooo I I I I 0000 ,.....,.....,....,....C\JC\JC\IC\1 0')0)0)0)..-.,.....,....,.... 
Name 00000000 00000000 00000000 00000000 oooooooo 
Logic 

0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 1 Level 

Decimal 
49 50 51 69 53 Value 

ASCII 
1 2 3 E 5 Character 

17-8 The BCD Interface 

\ 
\ .) 

"'-" 



Let's make the same assumptions that have been made in the previous examples: the 
logic sense of the data lines is positive-true (the "DATA" switch is set to "ON"). Assume 
that the following ENTER statement has been executed. 

ENTER Bed USING "B";Byte1,Byte2,Byte3,Byte4,Byte5 

The Control signal line (CTLA) is placed in the Set state by the computer to signal to 
the peripheral that a data transfer is to take place. The peripheral responds on the Data 
Flag line (DFLGA), completing the handshake and clocking ("latching") the data on the 
lines into interface registers. 

The Binary-Mode driver begins reading the line states as bytes in the order Dll through 
DIIO; the first byte contains DII as the most significant bits and DI2 as the least signif
icant bits. The second byte contains DI3 and DI4, and so forth. In this ease, the values 
49, 50, 51, 69, and 53 arc given to the variables Byte1 through Byte5, respectively. 

In this example, the "B" image is used to direct the computer to enter the data on the 
input signal lines as bytes. A line-feed eharaeter is generated by the driver to terminate 
the ENTER statement. 

As another example, suppose that the data on the input lines and the switch settings 
are as in the preceding example. Let's look at how the computer would enter the data 
with the following statement. 

ENTER Bcd;Number 

As in the preceding example, the ENTER statement latches the data into the interface 
registers with the same handshake. The Binary-Mode driver begins reading the line 
states as bytes in the order DII through DIIO; the first byte contains DII as the most 
significant bits and DI2 as the least significant bits. The second byte contains DI3 and 
DI4, and so forth. In this ease, the characters "123E5" are entered, followed by a line-feed 
generated by the driver. In this ease, the variable Number receives a value of 1.23E+7. 

The BCD Interface 17-9 



Alternate Methods of Entering Data 
As with other interfaces, the data signal lines' logic states can be read with STATUS 
statements. However, no handshake is performed with this method of entering data. 

With the BCD Interface, STATUS registers 5 through 9 contain digits Dll through DllO, 
and STATUS register 4 contains SGNl, SGN2, and OVLD. Examples are given in the 
main section of this chapter. 

Outputting Data 
Data may be output through the BCD Interface by using the OUTPUT statement. 
Data are sent through the eight output lines in byte-serial fashion. The eight lines 
are called D0-7 through D0-0, in which D0-7 is the most significant bit. Numeric 
data are sent with the most significant digits first; string data are sent with the lowest
subscripted string characters sent first. Representation depends on whether FORMAT 
ON or FORMAT OFF is in effect. 

Let's look at how data are output through the BCD Interface with the following OUT
PUT statement. 

OUTPUT 11;"A2C" 

17-10 The BCD Interface 



With OUTPUT, each byte is transferred under control of a handshake which is identical 
to a corresponding ENTER handshake. The Binary-Mode driver does not send four-bit 
BCD digits, it sends entire bytes of data; so the driver does not perform any ASCII-to
BCD translation. The items specified in the OUTPUT list are evaluated and sent to the 
BCD Interface byte-serially. The following diagram shows the Iogie signals that appear 
on the Data Output signal lines: 

Table 17-7. Data Output 

Decimal 
ASCII/Char. Value D0-7 D0-6 D0-5 00-4 D0-3 D0-2 D0-1 D0-0 

A 65 0 1 0 0 0 0 0 1 
2 50 0 0 1 1 0 0 1 0 
c 67 0 1 0 0 0 0 1 1 

CR 13 0 0 0 0 1 1 0 1 
LF 10 0 0 0 0 1 0 1 0 

Notice that the free-field convention is used, since the free-field form of the OUTPUT 
statement was used. The CR-LF (default) EOL sequence is sent after all items have been 
output. The same data may be sent with the following statement. 

OUTPUT 11 USING "#, B"; 65,50, 67,13,10 

Other examples are given in the main section of the chapter. 

The BCD Interface 17-11 



Configuring the Interface 
This section describes the range of or recommended interface's switch settings for use 
with BASIC language. The switch locations are described in the HP 98623 BCD Interface 
Installation Note. 

Determining Interface Configuration 
If the interface is already installed in a computer which currently has the BASIC-language 
system resident, you can determine the configuration by running the following program. 
If the interface is not yet installed, you may want to check the switch settings as you 
read this section to see that they are set for use with your particular application. 

100 
110 
120 
130 
140 
150 
160 

PRINTER IS 1 
PRINT CHR$(12) ! Clear screen. 

DISP "Enter select code of BCD Interface." 
ENTER 2;Isc 
DISP 

170 ON ERROR GOTO Skip_status Skip if bad isc. 
180 STATUS Isc;Id 
190 Skip_status: OFF ERROR 
200 ! 
210 PRINT "The Interface at select code ";Isc; 
220 IF Id=4 THEN 
230 PRINT "is a BCD Interface." 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 

ELSE 
PRINT "is NOT a BCD Interface." 
PRINT "Program terminated." 
STOP 

END IF 
PRINT 

CONTROL Isc;1 ! Reset interface. 

STATUS Isc,1;Intr_status 
Mask=2-5+2-4 ! Mask out all but bits 5 and 4. 
Bits_set=BINAND(Intr_status,Mask) 
Hd_prior=(Bits_set MOD 16)+3 ! Shift Rt. and add 3. 
PRINT "Hardware priority (Interrupt Level) is ";Hd_prior;"." 

380 PRINT 
390 

17-12 The BCD Interface 

( ) 
\.....,.;/ 



400 STATUS Isc,3;Binary_mode 
410 IF Binary_mode THEN 
420 PRINT "Binary mode selected." 
430 ELSE 
440 STATUS Isc,4;Switches 
450 IF BIT(Switches,7)=1 THEN 
460 PRINT "BCD mode, Optional format selected (2 devices)." 
470 ELSE 
480 PRINT "BCD mode. Standard format selected (1 device) . " 
490 END IF 
500 END IF 
510 PRINT 
520 

PRINT "Logic sense of signals:" 
IF BIT(Switches,6)=1 THEN 

530 
540 
550 
560 
570 
580 

PRINT" Input data: Low=1, High=O." 
ELSE 

PRINT II Input data: Low=O, High=1." 
END IF 

590 ! 
600 IF BIT(Switches,5)=1 THEN 
610 PRINT" SGN1: High=""+"". Low=""-""." 
620 ELSE 
630 PRINT" SGN1: High=""-'"'. Low=""+""." 
640 
650 
660 
670 
680 
690 
700 
710 

END IF 
! 
IF BIT(Switches,4)=1 THEN 

PRINT II SGN2: High=""+"". 
ELSE 

PRINT II SGN2: High=""-"". 
END IF 

720 IF BIT(Switches,3)=1 THEN 

Low="H_nu.u 

Low=" 11 +""·" 

730 PRINT" OVLD: High=O. Low=8." 
740 ELSE 
750 PRINT II 

760 END IF 
770 PRINT 
780 
790 END 

OVLD: High=8. Low=O." 

Thr BCD Interfaee 17-13 



Setting the Interface Select Code 
The interface's select code setting determines the value of the interface select code pa
rameter in which is used in ENTER and OUTPUT statements to specify the interface 
through which data is to be sent. The allowable range is 8 through 31, since internal 
interfaces already use select codes 1 through 7. Keep in mind that no two interfaces 
should be set to the same select code. 

The default select code is 11. If a different select code is desired, set the switches as 
described in the installation note. 

Setting the Hardware Priority (Interrupt Level) 
The hardware priority assigned to an interface determines the order in which the inter
rupts from the interface are logged by the system. The software priority of interrupts 
determines the order of interrupt service, which is independent of this hardware priority. 

A default setting of 3 is generally used. See the installation note for switch location and 
settings. 

Setting the Peripheral Status Switches 
The peripheral status switches are used to select the format of BCD data and the logic 
sense of data input lines. The OF switch selects between the Optional BCD format and 
the Standard BCD format. Set the switch to 01\ (default) if Standard is desired, or to 
OFF if Optional format is desired. The setting of this switch is irrelevant if the interface 
is only to be used in the Binary mode. 

The DATA switch determines the logic sense of all 40 data input lines. If set to ON, 
positive-true logic is used (logic high is a 1). If set to OFF, negative-true logic is used; 
(logic low is a 1). 

The SGNl and SGN2 switches determine the logic sense of the respective sign-bit signal 
lines. If set to ON, a logic high signifies a "-" and logic low signifies a "+". If set to 
OFF, a logic high signifies a "+" and logic low signifies a "-". 

The OVLD switch determines the logic sense of the OVLD signal line. If set to ON, a 
logic high is entered as an "8" and a low is entered as a "0". If set to OFF, a logic high 
is entered as a "0" and low is an "8". 

17-14 The BCD Interface 

u 



Setting the Handshake Configuration 
The handshake used by the BCD Interface is a two-wire handshake that synchronizes 
the exchange of data in one of two general manners: Type 1 timing or Type 2 timing. 
Type 1 and Type 2 timing differ in when the peripheral's data are clocked (latched) into 
the interface's data registers. 

The logic sense of both the Control lines from the computer (CTLA and CTLB) and 
Data Flag lines from the peripheral (DFLGA and DFLGB) are switch-selectable. 

Type 1 Timing 
With Type 1 handshake timing, the Busy-to-Ready transition of the peripheral's data flag 
line (DFLGA or DFLGB) Clears the Control line (CTLA or CTLB) from the computer 
and clocks the data into the interface's Data In registers. The following timing diagram 
shows an example of how this sequence of events takes place. Note that the CTLA and 
DFLGA switches are set to OFF (Low-true). 

CTLA 
CLEAR~ 

SET : H t-----tl~---~ 
I I 
I I 
I I 
I I BUSY 
I I 

READY Q : 
DFLGA 

0 
DATA liNES 

Figure 17-2. Type 1 Handshake Timing Diagram 

The BCD Interface 17-15 



At time tO, CTLA is Clear and DFLGA is Ready, indicating that a transfer may be 
initiated. At time tl, the computer initiates the handshake. At t2, the peripheral 
responds by placing DFLGA Busy. The peripheral then places the data on the data lines. 
When data have settled, the peripheral completes the handshake by placing DFLGA 
Ready, which also Clears CTLA and clocks the data into the interface registers (at time 
t4). Another handshake cycle may then be initiated by the computer. 

Note 

If only one peripheral is connected to the interface, connect the 
CTLB line to the DFLGB line and set both CTLB and DFLGB 
switches to the OFF positions. If this is not done, the handshake 
cannot be completed. 

Type 2 Timing 
With Type 2 handshake timing, the Ready-to-Busy transition of the peripheral's data 
flag line (DFLGA or DFLGB) Clears the Control line from the computer; however, the 
Busy-to-Ready transition still clocks the data into the interface's Data In registers. The 
following timing diagram shows an example of how this sequence of events takes place. 
Note that the CTLA and DFLGA switches are set to OFF (Low-true). 

CTLA 

BUSY 
DFLGA 

DATA liNES 

Figure 17-3. Type 2 Handshake Timing Diagram 

17-16 The BCD Interface 

\ 
! I 
\.,..,./ 



At time tO, CTLA is Clear and DFLGA is Ready, indicating that a transfer may be 
initiated. At time tl, the computer initiates the handshake. At t2, the peripheral 
responds by placing DFLGA Busy, which also Clears CTLA. When ready, the peripheral 
places DFLGA Ready (at time t4), which also docks the data into the interface registers. 
Another handshake cycle may then be initiated by the computer. 

Note 

If only one peripheral is connected to the interface, connect the 
CTLB line to the DFLGB line and set both CTLB and DFLGB 
switches to the OFF positions. If this is not done, the handshake 
cannot be completed. 

Configuring the Cable 
The installation note describes how to connect the cable wires. Any unused lines should 
be connected as follows: conneet the line to the "+5 Ref" signal line if the line is to 
be read as high, or to logic ground if the line is to be read as low. With lines such as 
SGNl, SGN2, and OVLD the line may be tied either to ground or to +5V, because the 
logic-sense switch allows either sense to be selected independent of other signals. 

Note 

Be sure to follow the recommendations in the installation note 
exactly to ensure signal integrity and operator safety. 

The BCD Interface 17-17 



Interface Reset 
The interface should always be reset to ensure that it will be in a known state before use. All interfaces are automatically reset by the computer at certain times: when the computer is powered on, when the I RESET I (I Shift H Reset I on an ITF keyboard) key is pressed, and at other times described in the Reset Table (in the Useful Tables). The interface may also be reset by BASIC programs, as in the following examples. 

Bcd=11 
CONTROL Bcd;1 

Reset_value=1 
CONTROL Bcd,O;Reset_value 

RESET Bed 

The following action is take when the BCD Interface is reset: 
• The peripheral reset signal line (PRESET) is pulsed low for at least 15 microsec-

onds. 

• The CTLA and CTLB handshake lines are Cleared. 
• The Data Out register is cleared (set to all O's). 
• The Interrupt Enable bit is cleared, disabling subsequent interrupts until re-enabled by the program, and the Interrupt Request bit is set. 

The state of the BCD/Binary Mode register (STATUS and CONTROL Register 3) is unchanged by the Interface Reset. 

17-18 The BCD Interface 

,' ) v 



Entering Data Through the BCD Interface 
This section describes BASIC programming techniques useful for entering data through 
the BCD Interface. Several examples of entering data were given in the first section 
to show how the interface works in BCD Mode with Standard and Optional formats 
and Binary Mode. This section gives additional general techniques for entering data 
from peripheral devices. If you need further explanation of how the ENTER statement 
works, refer to the chapter "Entering Data"; the chapter entitled "Registers" discusses 
the STATUS statement. 

The diagrams and corresponding BASIC-language statements in this section show how 
data on the interface signal lines get read by the ENTER statement and corresponding 
values assigned to BASIC-language variable(s). The notation used in the examples is that 
the name of the interface signal line (or group of lines) is shown above the decimal value 
and ASCII character that the driver produced by reading the line(s). The Iogie sense of 
the lines is not shown here; see the preceding configuration section for a description of 
selecting the logic sense of the interface signals. 

As an example, the following drawing shows that an ASCII "+" was generated by the 
driver when it read the SGNl signal line; similarly, the four signals of the group DI5 
produced a period character. The driver produces the "E" (exponent), comma, and 
line-feed characters automatically. 

SGN1 Dl1 Dl2 Dl3 Dl4 DIS Dl6 Dl7 DIS SGN2 Dl9 OVLD Dl10 

I 6 I 7 I 0 I 4 I LF I 

The following statements show how the preceding data might be entered and the resultant 
values assigned to program variables. 

Bcd=11 
ENTER Bcd;Number,Function 
PRINT "Number= " ; Number 
PRINT "Function= ";Function 

The following display is the result of executing the preceding statements. 

Number= 1.234678E-3 
Function= 4 

Thr BCD Interface 17-19 



Entering Data from One Peripheral 
There are several methods of entering data through the BCD Interface when only one 
peripheral device is connected. The Standard BCD format can be used with many 
devices; the Binary mode must be used with others, and some require that you write 
your own "drivers." 

Entering with BCD-Mode Standard Format 
Using the Standard format of BCD mode usually provides the most convenient means of 
entering data from one device. This format allows up to 8 BCD digits for mantissa and 
one BCD digit for exponent. The state of an overload-indicator signal and one optional 
BCD digit can also be entered, if desired. 

SGN1 011 012 013 014 015 016 017 018 

+ I o 

100 ENTER 11;Number,Function 
110 PRINT "Number= ";Number 
120 IF Function>=80 THEN 
130 PRINT "Overload of function ";Function-SO 
140 ELSE 
150 PRINT "Function= ";Function 
160 END IF 

SGN2 019 OVLO 0110 

+ I 4 I 8 I 4 I LF I 

The following results would be printed by the preceding program segment: 
Number= 3456 
Overload of function 4 

The ENTER statement calls the Standard-format driver, which reads the BCD characters 
on the interface lines in the order shown and generates the appropriate ASCII characters. 
Characters are entered until the "," is read, which terminates entry into the variable 
Number. The characters after the comma are used to build the value of Function. The 
ENTER statement is properly terminated when the line-feed (an ENTER-statement 
terminator) is encountered. 

Notice that an "8" is generated by the driver when the OVLD line is true. The BASIC 
program must "separate" this from the "function" digit (DIIO). The method shown in 
the example is only one of many methods available. 

17-20 The BCD Interface 

I 1 

0 



If a second variable would not have been included in the preceding ENTER statement, 
ENTER would have continued asking the driver for characters until it encountered the 
line-feed, which terminates the statement. 

To contrast the preceding example, suppose that the following statement has been exe
cuted: 

ENTER 11 USING "#,K";Number 

In this case, the # specifier directs the ENTER statement to suppress its default re
quirement of looking for a line-feed character (or other statement-termination condition) 
to terminate the ENTER. Thus, the comma terminates both entry of data into Number 
and the ENTER statement. Consequently, a subsequent ENTER statement would begin 
entering characters beginning with the "8" character (OVLD), which may not be the 
desired action. 

In such a case, several remedies are possible. The simplest is probably to go ahead 
and include a second variable so that the driver is left pointing to the first character 
after the ENTER is completed. The second variable is thus used for a "dummy" read 
operation. Another remedy is to write a non-zero value to BCD CONTROL register 1, 
which "resets" the driver pointer to the first character of the format (SGNl). Executing 
the following statement performs the driver reset. 

CONTROL 11 , 1 ; 1 

This type of "problem" may also occur when the BCD device sends a line-feed as one of 
the BCD characters. 

SGN1 011 012 013 014 015 016 017 018 SGN2 019 OVLO 0110 

c==r1 12 LF I 4 I 5 I 6 I 7 LF I E I + I 0 I 0 I 0 I LF I 
In such case, two numbers are sent separated by line-feeds. The following statements 
would read these two numeric values and then reset the driver pointer to the first char
acter (the SGNl character). 

ENTER 11;Number_1,Number_2 
CONTROL 11,1;1 

The BCD Interface 17-21 



If the CONTROL statement had not been executed, the driver would have been left 
pointing to the "E" character. 

As another example, suppose the exponent is to be ignored but the overload and function 
digits are to be read. The following statement would be appropriate in such a situation. 

ENTER 11;Number_1,Number_2,Dummy,Function 

The variable Dummy is so named to show that it is included in the ENTER statement only 
to ensure that the overload and function digits are read and assigned to a variable (i.e., 
it is not used for any other purposes). Of course, the value could be used if desired. 

If your application requires reading only certain characters or groups of characters, you 
may want to read the chapter "Entering Data" to see more examples of using images 
with ENTER statements. 

Entering with the Binary Mode 
If your application represents data with eight-bit ASCII characters or has a data format 
that is not compatible with the Standard BCD format, the Binary Mode can be used. 
With the Binary Mode, data are entered in groups of eight bits each, rather than in 
groups of four-bit BCD digits. Five bytes are latched with each handshake; the driver 
reads the bytes sequentially until the fifth byte is read, after which it sends a line-feed 
character to terminate the ENTER. Another handshake operation is required if more 
data are to be entered. 

As an example, let's assume that the following logic signals are present on the interface 
lines. Only 16 signals are shown here because that is all that we will be using for this 
example. 

Table 17-8. Sixteen Signals 

Signal qJ"r~"'":" CO"<tC\J~ CO"<tC\J~ CO"<tC\J~ 

T""" T""" T"""' T"'"" c\Jc\Jc\Jc\J dJdJdJdJ -.:t-.:t-.:t-.:t 
Name 

---- 0000 0000 0000 0000 

Logic 
0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 Level 

Decimal 
65 49 Value 

ASCII 
A 1 Character 

17-22 The BCD Interface 

\ 
\..._/ 

\ u 



Assume also that the 1/0 path name "@Bed" is assigned to the select code of a BCD 
Interface. The following ENTER statement enters these two bytes of data as numbers 
in the range 0 through 255. 

ENTER <ilBcd USING "B";Di1_di2,Di3_di4 

The "B" spceificr directs the computer to enter one byte of data from the interface and 
place it into the corresponding numeric variable, which happens two times in this case. 
The variables DiLdi2 and Di3_di4 receive values of 65 and 49, respectively. The ENTER 
statement continues to request characters from the Binary-Mode driver until a line-feed 
(generated by the driver) is returned, which terminates the ENTER statement. Even 
though only two bytes were used to fill variables in this example, all five bytes of data 
were read from the interface. 

The following statement could be used to enter the two bytes as one 16-bit word. 
ENTER <ilBcd USING "W";Word1 

The variable "Word1" receives a value of 16 689 (256*65 + 49). 

As another example, suppose that the data on the lines arc to be interpreted as ASCII 
characters. The following diagrams show the ASCII representations of data read from 
the interface; entering ten bytes of data in this mode requires two handshake cycles. 

011&012 013&014 015&016 017&018 019&0110 

011&012 013&014 015&016 017&018 019&0110 

The following ENTER statement enters characters until an item terminator is found 
and then calls the "number builder" routine to construct the number; this sequence is 
performed for each numeric variable in the statement. 

ENTER Bcd;Number_1,Number_2 

The BCD Interface 17-23 



In this case, Number_! is assigned a value of 12345, and Number_2 is assigned 6.78E+5. 
With a Binary-Mode ENTER, the driver does not read SGNl, SGN2, or OVLD, and 
does not insert any E's, or commas; only a line-feed is generated as a sixth character to 
terminate the ENTER statement. 

If your application has a data format that is not compatible with the Standard BCD 
format, the Binary Mode can be used in conjunction with a routine of your own design 
that is tailored for your application's requirements. Let's look at an example of how this 
might be accomplished. 

Suppose that your peripheral requires five digits of mantissa but must have three ex
ponent digits and two function digits. A program will be used to read the data using 
the desired format. If the peripheral's handshake method is compatible with one of the 
handshake types available on the BCD Interface, the Binary mode may be used to enter 
the data; if not, see the example of implementing a handshake in the next section. 

For this example, suppose the following conditions exist: the mantissa is entered from 
Dll through DI5, the exponent is entered from DI6 through DI8, and function is entered 
from DI9 and DllO. The mantissa and exponent signs and the overload indicator are still 
available as individual signal lines, but they must be read with the STATUS statement. 

The subroutine shown in the following program reads the data on the lines with ENTER 
and STATUS statements and then formats the data as required for the application. The 
formatted information is then entered from a string variable into the desired numeric 
variables. 

100 This program executes a subroutine which enters data from the 
110 BCD Interface using Binary mode and formats it as follows: 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 

SGN1 DI1 DI2 DI3 DI4 DI5 E SGN2 DI6 DI7 DIS 
OVLD DI9 DI10 LF 

Define ordering of BCD characters. 
Bcd_chars$="0123456789+,-E" 

Bcd=11 
CONTROL Bcd,3;1 ! Set Binary mode. 

GOSUB New_format 
ENTER Format$;Number,Function 
PRINT "Number=";Number 
PRINT "Function=";Function 

Execute subroutine. 
Use results for ENTER. 

17-24 The BCD Interface 

0 

u 

u 



270 STOP 
280 ! 
290 New_format: 
300 

******* Beginning of Subroutine. ******* 

310 ! Perform a Binary-mode ENTER. 
320 ENTER Bed USING 11 5A 11 ;Bytes$ ! 5 bytes read. 
330 
340 ! Use STATUS to read SGN1, SGN2, OVLD. 
350 STATUS Bcd,4;Sgns_and_ovld 
360 ! 
370 ! Generate two ASCII characters from each byte. 
380 FOR Byte=1 TO 5 
390 ! 
400 ! Get numeric value of single byte from Bytes$. 
410 Char=NUM(Bytes$[Byte]) 
420 
430 ! Upper 4 bits form first ASCII char. 
440 Up_4_bits=Char DIV 16 ! Shift right 4 places. 
450 ! Use numeric value as index into Bcd_chars$. 
460 First_char$=Bcd_chars$[Up_4_bits+1;1] 
470 
480 ! Lower 4 bits form 2nd ASCII char. 
490 Lo_4_bits=Char MOD 16 ! Mask upper 4 bits. 
500 ! Use numeric value as index into Bcd_chars$. 
510 Second_char$=Bcd_chars$[Lo_4_bits+1;1] 
520 ! 
530 ! Now append characters onto format string. 
540 Digits$[2*Byte-1]=First_char$&Second_char$ 
550 
560 NEXT Byte 
570 
580 
590 Calc. SGN1's and SGN2's ASCII representations. 
600 Sgn1=BIT(Sgns_and_ovld,2) 
610 Sgn1$=CHR$(43+2*Sgn1) ! 11 +11 if Lo; 11

-
11 if Hi. 

620 Sgn2=BIT(Sgns_and_ovld,1) 
630 Sgn2$=CHR$ ( 43+2*Sgn2) ! 11 + 11 if Lo; 11

-
11 if Hi. 

640 ! 
650 ! Calc. Overload's ASCII representation. 
660 Ovld=BIT(Sgns_and_ovld,O) 
670 Ovld$=CHR$(48+8*0vld) ! ·11 0 11 if Lo; 11 8 11 if Hi. 
680 ! 
690 Number$=Sgn1$&Digits$[1,5]& 11 E11 &Sgn2$&Digits$[6,8] 
700 Function$=0vld$&Digits$[9,10] 
710 Format$=Number$& 11 , 11 &Function$& 1111 

720 
730 RETURN ! ******* End of Subroutine. ******* 
740 
750 END 

The BCD Interface 17-25 



Entering with STATUS Statements 
The preceding examples assumed that the handshake options available with the BCD 
Interface are compatible with your peripheral. This section shows examples of designing 
enter operations using STATUS and CONTROL statements to implement your own 
handshakes. 

100 Bcd=11 
110 CALL Enter_bytes(Bcd,Bytes$) 
120 PRINT Bytes$ 
130 STOP 
140 
150 END 
160 
170 SUB Enter_bytes(Isc,Return_string$) 
180 ! 
190 CONTROL Isc,2;1 ! Initiate handshake. 
200 
210 Check: STATUS Isc,1;Intr_stat 
220 Irq=BIT(Intr_stat,6) 
230 IF NOT Irq THEN Check Wait for response. 
240 
250 
260 
270 

! Now read bytes in registers 5 -> 9. 
STATUS 11,5;R5,R6,R7,R8,R9 

280 ! Return bytes as a string. 
290 Return_string$=CHR$(R5)&CHR$(R6)&CHR$(R7) 
300 Return_string$=Return_string$&CHR$(R8)&CHR$(R9) 
310 
320 SUBEND 

Note that the program uses the Interrupt Request bit (bit 6 of register 1) to determine 
when the handshake is completed by the peripheral. This bit is cleared (0) when a 
Request is performed (i.e., when the handshake is initiated by writing a non-zero value 
to CONTROL register 2). The bit is set when the peripheral acknowledges the Control 
(CTLA/B) signal by responding with Data Flag (DFLGA/B). The acknowledgement 
occurs when the Control line is Cleared by the leading edge of Data Flag (Type 2 timing) 
or by its trailing edge (Type 1 timing). 

The transfer of data can also be implemented with interrupts, which is described in the 
BCD Interrupts section. 

17-26 The BCD Interface 



Entering Data from Two Peripherals 
Data can be entered from two devices by using either BCD-mode Optional format or 
by using STATUS statements. Optional format allows up to 4 BCD digits from the 
first peripheral and up to 5 BCD digits from the second peripheral; overload from either 
device may also be detected. Data from each deviee is handshaked independently. 

Optional Format 
This section describes how to use the Optional format with BASIC programs. In order 
to use this format, the peripheral's handshake convention must be compatible with one 
of the handshake options available on the BCD Interface. Since the preceding section de
scribed how to implement handshake routines with STATUS and CONTROL statements, 
you should refer to that discussion if your application requires that type of solution. 

With the BCD-Mode Optional format, the data, sign, and overload signals are read and 
formatted into ASCII characters in the following sequence: 

SGN1 014 012 016 DIS SGN2 0110 011 015 013 017 OVLD 019 

I + I 4 I 2 I s I s LF I 

The following program segment shows an example of how these characters might be 
entered and stored in variables. 

100 ENTER 11;Number_1,Number_2 
110 PRINT "Number 1= ";Number_! 
120 PRINT "Number 2= ";Number_2 

The following results would be printed by the preceding program segment: 

Number 1= 4265 
Number 2= -1537 

The ENTER statement calls the Optional-format driver, which reads the signals on 
the interface lines in the order shown and generates the appropriate ASCII characters. 
Characters are entered and sent to the "number builder" until the "," is read, whieh 
terminates entry into the variable Number_1; the internal representation of the numeric 
value is then generated. The characters after the eornma are used to build the value of 
Number_2. The ENTER statement is properly terminated when the line-feed (an ENTER
statement terminator) is encountered. 

The BCD Interface 17-27 



If a second variable would not have been included in the preceding ENTER statement, 
ENTER would have continued asking the driver for characters until it encountered the 
line-feed, which terminates the statement. 

It is important to note that an "8" is generated by the driver when the OVLD line is true 
or when any of the bits of DI9 are true, making the possibilities of exponent values 0, 8, 
80, or 88; consequently, the BASIC program must "separate" these overload indicators. 

Separating overload information from the mantissa may be a problem when one number 
can be represented in two ways; for instance, ".0001E8" and "10000" both represent the 
value "l.OE+4", but the two representations have entirely different meanings. The first 
representation indicates an overload on the second device, while the second value does 
not. 

To solve this potential problem, the second number can be entered into a string variable, 
as shown in the following segment. 

100 ENTER 11;Number_1,Number_2$ 
110 
120 ! Separate 2nd mantissa and exponent. 
130 Exponent$=Number_2$[8,9] 
140 Number_2$=Number_2$[1,6] 
150 ! 
160 ! Place 2nd mantissa in numeric variable. 
170 ENTER Number_2$;Number_2 
180 ! 
190 PRINT "Number 1=";Number_1 
200 ! Check overload information. 
210 IF Exponent$[1;1]="8" THEN 
220 PRINT "Overload on device 1." 
230 PRINT 
240 END IF 
250 
260 PRINT "Number 2=";Number_2 
270 ! Check overload information. 
280 IF Exponent$[2]="8" THEN 
290 PRINT "Overload on device 2." 
300 PRINT 
310 END IF 
320 PRINT 
330 
340 END 

The program checks the exponent digits separately and indicates an overflow on either 
device. 

17-28 The BCD Interface 



To contrast the preceding examples, suppose that the following statement has been exe
cuted: 

ENTER 11 USING "#,K";Number 

In this case, the # specifier directs the ENTER statement to suppress its default re
quirement of looking for a line-feed character (or other statement-termination condition) 
to terminate the ENTER. Thus, the comma terminates both entry of data into Number 
and the ENTER statement. Consequently, a subsequent ENTER statement would be
gin entering characters beginning with the character following the comma (i.e., the first 
character of the second number), which may not be the desired action. 

In such a case, several remedies are possible. The simplest is probably to go ahead 
and include a second variable so that the driver is left pointing to the first character 
after the ENTER is completed. The second variable is thus used for a "dummy" read 
operation. Another remedy is to write a non-zero value to BCD CONTROL register 1, 
which "resets" the driver pointer to the first character of the format (SGNl). Executing 
the following statement performs the driver reset. 

CONTROL 11,1;1 

This type of situation may also occur when the BCD device sends a line-feed as one of 
the BCD characters. 

SGN1 Dl4 Dl2 Dl6 DIS SGN2 0110 Dl1 Dl5 013 Dl7 Dl9 OVLD 

LF I + I o I I 5 I 3 LF I E I 0 I 0 I LF I 

In such case, two numbers are sent separated by line-feeds. The following statements 
would read these two numeric values and then reset the driver pointer to the first char
acter (the SGNl character). 

ENTER 11;Number_1,Number_2 
CONTROL 11 , 1 ; 1 

If the CONTROL statement had not been executed, the driver would have been left 
pointing to the "E" character. 

The BCD Interface 17-29 



Outputting Data Through the BCD Interface 
All data outputs through the BCD Interface are made through the eight output lines. 
There are two general methods of sending data to devices through the BCD Interface -
by using CONTROL statements and by using OUTPUT statements. With CONTROL 
statements, the data are latched on the output lines, but the handshake (if desired) must 
be performed with STATUS and CONTROL statements. With the OUTPUT statement, 
each data byte is sent individually under handshake control. With both methods, neither 
the setting of the Optional Format switch nor the current Mode (BCD or Binary) has 
any effect on how data are output through the interface. 

Output Routines Using CONTROL and STATUS 
Many applications do not require that data be sent with a handshake operation. In such 
cases, the following example shows how one byte of data may be sent to the peripheral. 

100 Byte=2-6+2-4 Set Bits 6 and 4. 
110 CONTROL 12,4;Byte ! Send data w/o handshake. 

If your application requires a handshake which is not compatible with the handshake 
options available on the BCD Interface, you can program your own. The following 
program shows an example handshake. The transition of the Data Flag signal that 
Clears the Control signals is still determined by the setting of the CTLA-2 and CTLB-2 
switches. See the configuration section for further details. 

100 Bcd=11 
110 Chars$="1A2B" 
120 Eol$=CHR$(10) ! LF is EOL sequence. 
130 CALL Output_bcd(Bcd,Chars$,Eol$) 
140 
150 END 
160 ! 
170 SUB Output_bcd(Isc,Characters$,Eol$) 
180 ! 
190 Output_data$=Characters$&Eol$ 
200 FOR I=1 TO LEN(Output_data$) 
210 CONTROL Isc,2;1 ! Initiate handshake. 
220 ! 
230 ! Now output byte(s) to registers 4. 
240 CONTROL Isc,4;NUM(Output_data$[I;1]) 
250 

17-30 The BCD Interface 



260 
270 Check: 
280 
290 
300 

! See if Ready for next byte. 
STATUS Isc,1;Intr_stat 
Irq=BIT(Intr_stat,6) 
IF NOT Irq THEN Check Wait for response. 

310 NEXT I 
320 
330 SUBEND 

The data are output on the Data Output lines in byte-serial fashion. The program uses 
the Interrupt Request indicator (Bit 6 of STATUS Register 1) to indicate the interface's 
and peripheral's joint readiness for a subsequent handshake operation. Interrupts can 
also be used; for more details, see the discussion of BCD Interrupts. 

Sending Data with OUTPUT 
With the OUTPUT statement, data are output byte-serially, one byte per handshake 
cyde. The following program shows an example of outputting data through the BCD 
Interface. 

100 Bcd=11 
110 OUTPUT Bed; 123,456,"ABC" ,"DEF" 
120 OUTPUT Bed; 123,456; "ABC"; "DEF" 
130 OUTPUT Bcd;"123","456"; 
140 
150 END 

The following diagram shows the sequence of ASCII characters sent to the destination 
device with the preceding program. The notation indicates that each ASCII character is 
sent through the output lines D0-7 through D0-0. 

2 3 I ' 
4 5 6 I ' A B c lcR 1 LF I D I E I F I EOL Characters I 

2 3 I 4 5 6 A I B c D E F J EOL Characters J 

I 1 I 2 3 lcR I LF I 4 5 6 

The BCD Interface 17-31 



Notice that when a comma follows an output item in a free-field OUTPUT statement, a 
numeric item in the output data is terminated by a comma and a string item is terminated 
by a CR/LF sequence (one carriage-return and one line-feed character). If an item is 
followed by a semicolon, no item terminator is sent. If an item is the last one in the 
output list, an end-of-line (EOL) sequence is sent instead of the item terminator; the 
default EOL sequence is a CR/LF with no time delay. Changing the EOL sequence is 
described in the chapter "Outputting Data". 

In the preceding program, the FORMAT ON attribute was in effect so the ASCII rep
resentation of each data item was generated and sent to the peripheral device. It is 
also possible to OUTPUT with FORMAT OFF in effect by using I/0 path names. See 
Chapter 10 for further details. 

It is interesting to note that all handshake cycles latch both input and output data. In 
the following example, an OUTPUT statement is used to place one byte on tlie Data 
Out lines under handshake control. A STATUS statement is then used to read the Data 
In lines, since the handshake operation also latched the data on the input lines into 
STATUS Registers. 

100 Byte=64+32 ! Set bits 6 and 5. 
110 OUTPUT 11 USING "#,B";Byte ! Handshake byte 1 out. 
120 ! Now read SGN1, SGN2, OVLD, and DI1 thru DI10. 
130 STATUS 11,4;Reg4,Reg5,Reg6,Reg7,Reg8,Reg9 
140 Sgn1=BIT(Reg4,2) 
150 Sgn2=BIT(Reg4,1) 
160 Ovld=BIT(Reg4,0) 
170 Di1=Reg5 DIV 16 
180 Di2=Reg5 MOD 16 
190 Di3=Reg6 DIV 16 
200 Di4=Reg6 MOD 16 

The program determines the states of the sign, overload, and data lines. The data may 
then be formatted as desired. 

17-32 The BCD Interface 

\ 

' ) 
\...-/ 



BCD Interface Timeouts 
When a peripheral device does not respond to a handshake request from the computer, 
it is convenient to be able to sense this condition and respond accordingly. Using the 
ON TIMEOUT statement sets up and enables a branch which will be initiated when the 
computer determines that the interface has taken too much time to respond. 

Timeout events were generally discussed in the chapter "Interface Events". However, 
speeific details such as the effects of the TIMEOUT event's occurrence on each interface 
and how the time parameter is measured were not described. This section describes such 
topics. 

Timeout Time Parameter 
When an ON TIMEOUT is set up for an interface, the time required to complete each 
handshake is measured and compared to the time specified in the ON TIMEOUT state
ment. The interval measured is shown in the following diagram. 

TYPE 2 TYPE 1 
TIMING TIMING 

CLEAR ( I CTLA 
SET 

I 
I 

BusY I 
I 

DFLGA I 
I I 

READY I I 

~ T2 ~ I 
I 

Tl 
I 

~ ~ 

Figure 17-4. Measuring the BCD Interface's TIMEOUT Parameter 

Timing begins when the CTLA (or CTLB) signal is placed in the Set state to initiate a 
handshake cycle. The computer continues to cheek the time elapsed against the specified 
time (TIMEOUT time parameter). Timing ends when the peripheral has eompleted its 
response; with both Type 1 and Type 2 timing, this oceurs only when the Control line 
is cleared and the Data Flag line is placed in the Ready state by the peripheral. 

The BCD Interface 17-33 



Timeout Service Routines 
When a TIMEOUT occurs, the computer automatically executes an Interface Reset. The 
Peripheral Reset line to the peripheral (Preset) is pulsed low for at least 15 microseconds, 
and CTLA and CTLB are then Cleared. This action should "get the peripheral's atten
tion", if it is functional. The service routine should then take the appropriate corrective 
action. See a previous section called "Interface Reset" for further effects of the reset. 

Timeout service routines generally determine whether or not the peripheral is still func
tional. If so, the computer may take corrective action such as tore-initiate the preceding 
transfer. If not, perhaps the program may inform the operator of the condition and then 
proceed. 

The following program shows an example of setting up a branch to a service routine 
upon detecting a TIMEOUT on the BCD Interface. When a TIMEOUT occurs while 
trying to send the first message, the service routine attempts to send an escape character 
to the peripheral, which here is a request for status of our fictitious peripheral. If the 
peripheral does not respond, the destination of data is changed to the CRT. 

100 Bcd=11 ! Interface select code of BCD. 
110 Dest=Bcd ! Destination is device is BCD. 
120 ON TIMEOUT Bcd,2 GOSUB Try_bcd_again 
130 ! 
140 Message$="This sent to BCD." 
150 OUTPUT Dest;Message$ 
160 If TIMEOUT, this line is executed upon RETURN. 
170 
180 ! All subsequent data sent to Dest=CRT (if TIMEOUT) . 
190 Message$="This sent to CRT." 
200 OUTPUT Dest;Message$ 
210 
220 STOP 
230 

17-34 The BCD Interface 

\ 

'\0 



240 Try_bcd_again: ON TIMEOUT Bcd,3 GOTO Forget_it 
250 ! 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 Forget_it: 
360 
370 
380 
390 
400 

! See if escape character is accepted. 
OUTPUT Bed USING "#,B";27 

If accepted, then 2nd TIMEOUT didn't occur; 
so this segment might contain a routine 
that interrogates a peripheral. 

ON TIMEOUT Bcd,3 GOSUB Try_bcd_again 
GOTO Exit_point 
! 
PRINT "BCD Down; Data will be sent to CRT." 
PRINT 
Dest=1 
BEEP 
OFF TIMEOUT Bed ! No longer need active TIMEOUT. 

410 Exit_point: RETURN ! to line following TIMEOUT's occurrence. 
420 
430 END 

The timeout service routine may be programmed to attempt to contirnw the transfer 
where it timed out; however, this action may be difficult to implement for two reasons: 
the computer may not be keeping track of where in the transfer the TIMEOUT oc
curred, and the automatic Interface Reset performed when the TIMEOUT occurred may 
have also reset the peripheral. How your program implements the transfer and how the 
peripheral responds to the reset will determine the feasibility of continuing the transfer. 

The BCD Interface 17-35 



BCD Interface Interrupts 
The BCD Interface can detect one type of interrupt condition: an interrupt can be 
generated when the interface is Ready for a subsequent data transfer, which generally 
occurs after the program initiates a handshake and the peripheral completes it. 

Setting Up and Enabling Interrupts 
When an event occurs, the event is logged by the BASIC operating system. After the 
event is logged, any further interrupts from the interface are disabled until specifically 
re-enabled by a program. All further computer responses to the event depend entirely 
on the program. 

The following segment shows a typical sequence of setting up and enabling a BCD inter
rupt to initiate its branch. 

100 ON INTR 11 GOSUB Bed intr 
110 Mask=1 
120 ENABLE INTR 11;Mask 

The value of the interrupt mask (Mask in the program) determines whether the interrupt 
is to be enabled or disabled. In this case, any non-zero value enables the Ready interrupt. 

17-36 The BCD Interface 

I ) 
\..-/ 



Interrupt Service Routines 
Since there is only one type of interrupt possible with the BCD Interface, the service 
routine does not need to determine the interrupt cause. In general, all the service routine 
needs to do is to determine whether another data item is to be transferred or the transfer 
is to be terminated. The following segment is a typical interrupt service routine. 

100 Bcd=11 
110 ON INTR Bed GOSUB Get_bytes 
120 
130 CONTROL Bcd,2;1 
140 ENABLE INTR Bcd;1 
150 

Initiate 1st handshake. 
Enable Ready Interrupts. 

160 ! Execute background routine. 
170 WHILE Iteration<1.E+6 
180 Iteration=Iteration+1 
190 DISP Iteration 
200 END WHILE 
210 
220 Get_ bytes: ! 
230 STATUS Bcd,5;Reg5,Reg6,Reg7,Reg8,Reg9 
240 PRINT Reg5,Reg6,Reg7,Reg8,Reg9 
250 CONTROL Bcd,2;1 Initiate next handshake. 
260 ENABLE INTR Bed ! Re-enable (use same Mask) . 
270 RETURN 
280 
290 END 

The main program sets up the branch location, initiates the first data-transfer handshake, 
and then enables the interface to interrupt when it is Ready; the peripheral is Ready 
when it has cleared the Control line(s) and placed the Data Flag line(s) in the Ready 
state. 

The service routine reads the data on lines Dll through DUO, initiates the subsequent 
handshake, and then re-enables another Ready interrupt. Since tlw mask parameter was 
not included, the last specified value (1) was used. 

Obviously, this is a very simplistic example; however, the main topics of using interrupts 
have been shown. Your routine may need to format the data, keep track of how many 
bytes have been transferred, and check for terminator charaeters. 

The BCD Interface 17-37 



Summary of 
BCD Status and Control Registers 
STATUS Register 0 

CONTROL Register 0 

STATUS Register 1 

Card Identification = 4. I 
I 
I 

Reset Interface (if non-zero value sent)'. 

Interrupt Status 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 

Interrupts Interrupt 
are Request 
enabled 

Value=128 Value=64 

CONTROL Register 1 

STATUS Register 2 

Bit 5 Bit 4 Bit 3 Bit 2: Bit 1 

Hardware Hardware 
Interrupt Interrupt 

0 0 0 Level Level I 
I 

Switches Switches I 

Value=32 Value=16 Value=O Value=O Value=O 

I 
I 

Reset driver pointer (if non-zero value 'sent). 

Busy Bit 

I 

Bit 0 

0 

Value=O 

Most Significant Bit teast Significant Bit 

I Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 I Bit 1 Bit 0 
I 

' 

0 
Handshake Interrupts 

0 0 0 0 0 
in progress Enabled 

Value=O Value=O Value=32 Value=16 Value=8 Value=4 : Value=2 Value=l 

Bit 0 is 1 when a handshake is currently in progress. 

CONTROL Register 2 Request data by Setting CTLA and CTLB (if a non-zero value 
is sent); this operation also clears an Interrupt Request (clears 
bit 6 of Status Register 1). 1 

17-38 The BCD Interface 

\ ) 
~ 



STATUS Register 3 Binary Mode: 1 if the interface is currently operating in Binary 
mode, and 0 if in BCD mode. 

CONTROL Register 3 Set Binary Mode: set Binary Mode if non-zero value sent, and 
BCD Mode if zero sent. 

STATUS Register 4 Switch and Line States 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

OF DATA SGNl SGN2 OVLD SGNl SGN2 OVLD 
Switch Switch Switch Switch Switch Input Input Input 
Is ON Is ON Is ON Is ON Is ON Is True Is True Is True 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

CONTROL Register 4 Data Out Lines 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Set Set Set Set Set Set Set Set 
D0-7 D0-6 D0-5 D0-4 D0-3 D0-2 DO-l D0-0 
True True True True True True True True 

Value=l28 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

The BCD Interface 17-39 



STATUS Register 5 BCD Digits Dll and Dl2 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 

Dll-8 Dll-4 Dll-2 Dil-l DI2-8 
is is is is JS 

True True True True True 

Value=l28 Value=64 Value=32 Value=l6 Value=8 

STATUS Register 6 BCD Digits DI3 and Dl4 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 

DI3-8 DI3-4 DI3-2 DI3-l DI4-8 
is is is is lS 

True True True True True 

Value=l28 Value=64 Value=32 Value=l6 Value=8 

STATUS Register 7 BCD Digits DI5 and Dl6 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 

DI5-8 DI5-4 DI5-2 DI5-l DI6-8 
lS is JS JS JS 

True True True True True 

Value=l28 Value=64 Value=32 Value=l6 Value=8 

17-40 The BCD Interface 

Bit 2 

DI2-4 
is 
True 

Value=4 

Bit 2 

DI4-4 
lS 

True 

Value=4 

Bit 2 

DI6-4 
JS 

True 

Value=4 

Least Significant Bit 

Bit 1 Bit 0 

DI2-2 DI2-l 
JS JS 

True True 

Value=2 Value=l 

Least Significant Bit 

Bit 1 Bit 0 

DI4-2 DI4-l 
is JS 

True True 

Value=2 Value=l 

Least Significant Bit 

Bit 1 Bit 0 

DI6-2 DI6-l 
is is 
True True 

Value=2 Value=l 

' \ \J 



STATUS Register 8 DCD Digits DI7 and DIS 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DI7-8 DI7-4 DI7-2 DI7-l DI8-8 DI8-4 DI8-2 DI8-l 
IS is is is is IS IS is 
True True True True True True True True 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value= I 

STATUS Register 9 DCD Digits Dl9 and DllO 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DI9-8 DI9-4 Dl9-2 DI9-1 Dil0-8 Dil0-4 Dil0-2 Dil0-1 
is is is is is is IS IS 

True 'n·ue True True True True True True 

Value=128 Value=64 Value=32 Value=l6 Value=8 Value=4 Value=2 Value=l 

The DCD Interface 17-41 



Summary of 
BCD READIO and WRITEIO Registers 
This section describes the BCD Interface's READIO and WRITEIO registers. Keep in ; ) 
mind that these registers should be used only when an operation cannot be performed \..-/ 
with a STATUS or CONTROL statement. 

BCD READIO Registers 
Register 1 Card Identification 

Register 3 Interface Status 

Register 17 Dll and DI2 

Register 19 DI3 and DI4 

Register 21 DI5 and DI6 

Register 23 DI7 and DI8 

Register 25 DI9 and DIIO 

Register 27 Peripheral Status 

READIO Register 1 Card Identification (The contents of this register are always 
4.) 

READIO Register 3 Interrupt Status 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Interrupts Interrupt Hardware Hardware 
are Request Priority Priority 

0 0 0 0 enabled (INT LVL (INT LVL 
Switches) Switches) 

Value=128 Value=64 Value=32 Value=16 Value=O Value=O Value=O Value=O 

17-42 The BCD Interface 

\ 
\ 1 

\ ) 
"-" 



READIO Register 17 Dll and DI2 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Dll-8 Dll-4 Dll-2 Dil-l DI2-8 DI2-4 DI2-2 DI2-1 
is is is is is is is is 
True True True True True True True True 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

READIO Register 19 DI3 and DI4 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DI3-8 DI3-4 DI3-2 DI3-l DI4-8 DI4-4 DI4-2 DI4-1 
is is is is is is is is 
True True True True True True True True 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

READIO Register 21 DI5 and DI6 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

DI5-8 DI5-4 DI5-2 DI5-1 DI6-8 DI6-4 DIG-2 DI6-l 
is is is IS is is is is 
True True True True TI·ue True TI·ue True 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l 

The BCD Interface 17-43 



READIO Register 23 DI7 and DI8 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 

DI7-8 DI7-4 DI7-2 Dl7-1 Dl8-8 
is is is IS is 
True True True True True 

Value=l28 Value=64 Value=32 Value=16 Value=8 

READIO Register 25 DI9 and DilO 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 

DI9-8 Dl9-4 Dl9-2 Dl9-1 Dll0-8 
is is is is is 
True True True True True 

Value=128 Value=64 Value=32 Value=16 Value=8 

READIO Register 27 Switch and Line States 

Most Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 

OF DATA SGNl SGN2 OVLD 
Switch Switch Switch Switch Switch 
Is ON Is ON Is ON Is ON Is ON 

Value=128 Value=64 Value=32 Value=16 Value=8 

17-44 The BCD Interface 

Bit 2 

Dl8-4 
IS 

True 

Value=4 

Bit 2 

Dll0-4 
is 
True 

Value=4 

Bit 2 

SGNl 
Input 
Is True 

Value=4 

Least Significant Bit 

Bit 1 Bit 0 

Dl8-2 Dl8-1 
IS IS 

True True 

Value=2 Value=l 

Least Significant Bit 

Bit 1 Bit 0 

DII0-2 Dll0-1 
is IS 

True True 

Value=2 Value= I 

Least Significant Bit 

Bit 1 Bit 0 

SGN2 OVLD 
Input Input 
Is True Is True 

Value=2 Value= I 

! ) 

~ 

\ 

\._) 



BCD WRITEIO Registers 
Register 1 Reset Interface 

Register 3 Enable Interrupt 

Register 5 Output Data 

Register 7 Initiate Handshake 

WRITEIO Register 1 

WRITEIO Register 3 

WRITEIO Register 5 

Reset interface (any value causes reset). 

Most Significant Bit 

Bit 7 Bit 6 

Set Set 
D0-7 D0-6 
True True 

Value=128 Value=64 

WRITEIO Register 7 

Enable interrupt if Bit 7 Set (1); disable if Bit 7 Clear (0). 

Set Data Output Lines 

Least Significant Bit 

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

Set Set Set Set Set Set 
D0-5 D0-4 D0-3 D0-2 DO-l D0-0 
True True True True True True 

Value=32 Value=l6 Value=8 Value=4 Value=2 Value=! 

Initiate handshake: sending any value to this register initiates 
handshake cycle by setting CTLA and CTLB. 

The BCD Interface 17-45 



17-46 The BCD Interface 



Table of Contents 

Chapter 18: EPROM Programming 
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 

Accessories Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 
Hardware Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 
Brief Overview of Using EPROM Memory .......................... 18-2 

Initializing EPROM Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3 
EPROM Programmer Select Code ................................. 18-3 
EPROM Addresses and Unit Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3 
Verifying Hardware Operation ..................................... 18-4 
Initializing Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-8 
EPROM Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-9 

Programming EPROM .............................................. 18-10 
Storing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-10 
Determining Unused EPROM Memory ............................ 18-12 
Storing Programs ............................................... 18-15 
Programming Individual Words and Bytes ......................... 18-15 
Operations Not Allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-18 

Reading EPROM Memory ........................................... 18-19 
Retrieving Data and Programs ................................... 18-19 

Summary of EPROM Programmer STATUS and CONTROL Registers . . . . 18-20 



(.J 



EPROM Programming 
Introduction 
With HP Series 200/300 BASIC, erasable programmable read-only memory (EPROM) 
devices are generally used like other mass storage devices. However, EPROM can also 
be accessed as individual bytes or words of data. This chapter describes both types of 
usage. 

Accessories Required 
In order to program and read EPROM memory devices with HP Series 200/300 comput
ers, you will need the following HP accessories: 

• HP 98253 EPROM Programmer card 

• HP 98255 EPROM Memory card(s) and compatible EPROM devices 

Hardware Installation 
At this point, you should install the programmer and memory cards or verify that they 
have already been properly installed. The following manuals describe setting up your 
system to program EPROM devices. 

e HP 98253 EPROM Programmer Installation describes setting the select code 
switches on the programmer card and installing the card. 

• HP 98255 EPROM Memory Installation describes selecting compatible EPROM 
parts, loading the parts on the card, setting memory address switches, and installing 
EPROM memory cards. 

The first example program in the chapter describes how to interrogate EPROM Program
mer and Memory cards to determine their current configurations (and also to determine 
whether or not both are operational before installing EPROMs in the memory boards). 

EPROM Programming 18-1 



Brief Overview of Using EPROM Memory 
EPROM memory is organized and accessed like other mass storage devices from BA
SIC. Briefly, programs and data can be stored in EPROM memory with the following 
procedure: 

1. Determine the EPROM Programmer card's select code. Determine the address of 
the EPROM Memory card to be programmed, relative to other cards' addresses, 
which determines its mass storage unit number. 

2. INITIALIZE the memory unit, which writes directory and system information in 
the EPROM (see "EPROM Directories" for further information). 

3. Store the information using whichever one of the following statements is appropri
ate: 

CONTROL-store individual data words 
COPY -store any type of file 
SAVE-store the program as an ASCII file 
STORE-store the program as a PROG file 
STORE KEY -store typing-aid keys in a KEY file 

4. Access the information with the corresponding one of the following statements: 
CAT -get a catalog listing of the files in the EPROM unit 
COPY -copy an EPROM file's contents into another file 
ENTER-enter data from a file into a program variable 
GET-load an ASCII program file into the computer 
LOAD-load a BIN, KEY, or PROG file into the computer 
LOADSUB-load SUB or FN subprograms from a PROG file 
TRANSFER-transfer data from data file to a memory BUFFER 
STATUS-read individual data words from EPROM memory 

18-2 EPROM Programming 

' \ 
\ J 
""-" 



Initializing EPROM Memory 
Like other mass storage media, EPROM media must be initialized before being used for 
storage. Since EPROM Memory cards are organized as mass storage units, each card 
being one unit, EPROM memory must be initialized by units. The EPROM Programmer 
card is used to initialize and store other information in EPROM. This section describes 
how to specify EPROM units and programmer cards while initializing and accessing 
EPROM. 

EPROM Programmer Select Code 
The EPROM Programmer card is accessed like other interface cards: you must specify 
its select code in BASIC statements. The factory default setting of the select code is 
27, which is the select code assumed in the examples in this section. (Setting the select 
code is described in the HP 98253 EPROM Programmer Installation manual.) You 
don't usually need to specify the programmer card's select code when reading data from 
EPROM. This will be explained in a later section of this chapter. 

EPROM Addresses and Unit Numbers 
With the BASIC system, EPROM Memory cards should be given memory addresses 
100 000 through lFF FFF (hexadecimal) 1. The address switches on EPROM Memory 
cards can therefore be set in the range of 0001000 through 0001111, which result in 
hexadecimal base addresses of 100 000 through lEO 000, respectively, with intervals of 
20 000 bytes (hex) between base addresses. When using addresses in this range, SW2 
must be set to the "AD" position2 . (Note that differences between base addresses of 
cards containing 27128 EPROMs must be at least 40 000 hexadecimal. See the HP 
98255 EPROM Memory Installation manual for further explanation.) 

At power-up, the system automatically gives unit numbers to all cards according to the 
initialized cards' relative memory addresses. The card with the lowest numbered address 
(which is initialized) is given unit number 0; the initialized card with the next higher 
address is given unit number 1, and so forth. (Note that un-initialized EPROM units 
are not given unit numbers by the system.) 

1 Make sure that no other device is set to this same address, or the EPROM memory (as well as the other 
device) will not work properly. 

2 With computers which feature HP-UX memory management capabilities, this switch should be set to 
"GD" position. 

EPROM Programming 18-3 



As an example, suppose that two EPROM Memory cards are properly installed in the 
computer with hexadecimal base addresses of 100 000 and 180 000. Assume that they 
have already been initialized. At power-up, the former card will be given unit number 0 
and the latter will be given unit number 1. 

If an initialized card with base address 140 000 is then installed (with power off, of 
course), this card is given unit number 1 and the card at address 180 000 is given unit 
number 2 at power-up. (Note that, like disc media, the unit number is not written on 
the media. Unit numbers are a function of relative EPROM addresses only.) 

It is a good idea to keep track of the addresses of all EPROM Memory cards in the 
system so that you will know the resultant unit number of each card. 

Verifying Hardware Operation 
In order to INITIALIZE an EPROM unit, you will need to connect a programmer card 
to it. Connect the cable from the desired programmer card to the EPROM unit to be 
programmed; the power need not be turned off to make this connection. All EPROM 
devices on the unit to be initialized must be completely erased. Also, the address of the 
EPROM card to be initialized must be higher than all other initialized EPROM cards 
in the system, which results in the card being given a unit number one greater than the 
largest unit number currently in the system. 

If you have been keeping track of memory addresses, you should know the unit number of 
the EPROM Memory card to be programmed. If not, you can use the following program 
to determine the address of each EPROM Memory card in the computer by plugging the 
connector into each memory card in succession. 

100 This program interrogates interfaces at select codes 
110 8 thru 31 to find an EPROM Programmer card. If one IS found, 
120 the program reads and displays its STATUS registers; if one 
130 is NOT found, the program reports this negative result. 
140 
150 Clear screen. 
160 PRINT CHR$(12) 
170 
180 Sel_code=8 
190 Found_card=O 
200 ON ERROR GOTO Next_sel_code 
210 

18-4 EPROM Programming 

Start with select code 8. 

Goto next select code if 
no interface at this one. 



220 REPEAT 
230 STATUS Sel_code;Id 
240 IF Id=27 THEN 
250 Found_card=1 
260 PRINT "EPROM Programmer card found at Select Code";Sel_code 
270 PRINT 
280 END IF 
290 Next_sel_code: IF NOT Found_card THEN Sel_code=Sel_code+1 
300 UNTIL Found_card=1 DR Sel_code>=31 
310 OFF ERROR 
320 
330 IF Found_card=O THEN 
340 PRINT "EPROM Programmer card not found." 
350 PRINT "Program stopped." 
360 STOP 
370 END IF 
380 
390 ! Check to see if connected to memory card. 
400 STATUS Sel_code,4;Capacity 
410 IF Capacity=O THEN 
420 PRINT "EPROM Programmer is NOT connected"· 
430 PRINT "to an EPROM Memory card" 
440 STOP 
450 END IF 
460 
470 ! Read STATUS Registers 0 thru 6. 
480 STATUS Sel_code;RegO,Reg1,Reg2,Reg3,Reg4,Reg5,Reg6 
490 
500 ! Show register contents. 
510 PRINT "STATUS Register 0:" 
520 PRINT" Card ID of EPROM Programmer card=";Id 
530 
540 PRINT "STATUS Register 6:" 
550 PRINT USING "#,K,8D";" Connected to EPROM card at address ";Reg6 
560 Msb_hex$=IVAL$(Reg6/65536,16) Get MSB's in hex. 
570 PRINT" (";Msb_hex$[3,4] ;"0 000 hexadecimal)" ! Trim leading O's. 
580 

EPROM Programming 18-5 



590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 

PRINT "STATUS Register 4:" 
PRINT " Memory card size="; Reg4;" bytes"; 
Msb_hex$=IVAL$(Reg4/65536,16) 
PRINT" (";Msb_hex$[3,4] ;"0 000 hex)" 

PRINT "STATUS Register 5:" 

Get MSB's in hex. 
Trim leading O's. 

PRINT" Number of contiguous, erased bytes=";Reg5; 
Msb_hex$=IVAL$(Reg4/65536,16) ! Get MSB's in hex. 
PRINT" (";Msb_hex$[3,4] ;"0 000 hex)" ! Trim leading O's. 

PRINT "STATUS Register 2:" 
PRINT" Current target address=";Reg2 

PRINT "STATUS Register 3:" 
Word$=IVAL$(Reg3,16) 
PRINT" Word at current target address=";Reg3;" (";Word$;" hex)" 

PRINT "STATUS Register 1:" 
IF Reg1=0 THEN 

PRINT " Programming time 52.5 ms" 
ELSE 

PRINT " Programming time 13.1 ms" 
END IF 

END 

18-6 EPROM Programming 



The following display is a typical result of running the program. 

EPROM Programmer card found at Select Code 27 

STATUS Register 0: 
Card ID of EPROM Programmer card= 27 
STATUS Register 6: 
Connected to EPROM card at address 1048576 (100 000 hexadecimal) 
STATUS Register 4: 
Memory card size= 262144 bytes (040 000 hexadecimal) 
STATUS Register 5: 
Number of contiguous, erased bytes= 0 
STATUS Register 2: 
Current target address= 0 
STATUS Register 3: 
Word at current target address= -1 (FFFF hex) 
STATUS Register 1: 
Programming time = 52.5 ms 

Figure 18-1. Program Results 

The program interrogates interfaces until it finds an EPROM Programmer card. It 
then prints the values of the Programmer card's STATUS registers. Register 6 shows 
the memory address of the EPROM Memory card to which the programmer card is 
connected. The program also shows that it can determine the type of EPROM devices 
being used on the card (2764's or 27128's). 

The "target address" register points to the memory location (an offset address to the 
card's base address) at which the next word of data will be read (STATUS register 3) or 
written (CONTROL register 3). Target address 0 is the first word on the EPROM card. 
STATUS register 1 indicates which programming time will be used (for each word) during 
subsequent programming operations; 0 indicates a program time of 52.5 milliseconds, and 
1 indicates 13.1 milliseconds. 

EPROM Programming 18-7 



Initializing Units 
To INITIALIZE an EPROM unit, you must specify the select code of the EPROM 
Programmer card and the unit number of the EPROM Memory card. For instance, the 
following statement initializes the memory with unit number 0 through the programmer 
card at select code 27. 

INITIALIZE ":EPROM,27,0" 

Because the unit number defaults to 0 if not specified, an equivalent statement would 
be: 

INITIALIZE ":EPROM,27" 

An error is reported if the specified programmer card is not connected to the specified 
EPROM unit. Furthermore, if the specified EPROM memory unit is not completely 
erased, error 66 (INITIALIZE Failed) is reported. Note that the entire card need not be 
filled with EPROMs for it to appear as entirely erased, since empty sockets and erased 
EPROM memory read as "FF" data bytes. The following simple program determines 
whether or not the EPROM unit contains all erased EPROMs (or erased EPROMs and 
empty sockets). 

10 
20 
30 
40 
50 
60 

CONTROL 27,2;0 ! Set target address to first byte. 
STATUS 27,4;Total_capacity,Erased_bytes 
PRINT "EPROM card is"; 
IF Total_capacity=Erased_bytes THEN 

PRINT "completely erased (or empty)." 
ELSE 

70 PRINT "NOT completely erased." 
80 END IF 
90 END 

18-8 EPROM Programming 



EPROM Directories 
The INITIALIZE operation writes a directory and system information in the EPROM 
unit. This information occupies the first "sectors" of EPROM memory (since the unit is 
treated like mass storage, it is logically divided into 256-byte records known as sectors). 
The following table shows how the BASIC system allocates EPROM sectors. 

Table 18-1. EPROM Sector Allocation 

EPROM Usable Sectors for Sectors Maximum No. 
Type Sectors System Use for Users of Files 

2764 511 0-6 7 510 40 

27128 1023 0- 11 12 - 1022 80 

Note that the figures given for Total Sectors and Seetors for User are for fully loaded 
memory eards. Note also that the Total Sectors is one less than you may have expeeted, 
which shows that one sector is required by the system for overhead. 

EPROM Catalogs 
Performing a CAT of the EPROM eard reveals that it has been initialized. You ean either 
speeify the seleet eode of the programmer card or use 0, since reading the EPROM eard 
does not require the programmer card be eonnected to it. However, if you do speeify 
a seleet eode, then that programmer eard must be eonnected to the specified EPROM 
unit, or error 72 will be reported. The following statements perform the same function 
(specifying select eo de 27 would change the first line of the catalog listing aecordingly): 

CAT ":EPROM,O" 

or 

CAT ":EPROM,27" 

:EPROM,O 
VOLUME LABEL: B9836 
FILE NAME PRO TYPE REC/FILE BYTE/REC ADDRESS 

This directory has the same general format as internal-dise directories, which are de
scribed in the "Data Storage and Retrieval" ehapter of BASIC Programming Technique8. 
You can also perform all operations on EPROM directories that you can with other mass 
storage directories (such as SKIP and COUNT files and CAT individual PROG files). 

EPROM Programming 18-9 



Programming EPROM 
Once an EPROM unit is initialized, you can store data and programs in it. The following storage operations are supported for EPROM memory: 

• CHECKREAD-direct the system whether to perform an additional verify opera
tion after all operations that write to mass storage 

• CONTROL-store individual data words in EPROM 
• COPY -copy any type of file (that already exists on another mass storage device) 

into EPROM 

• SAVE-store the current program in an ASCII file 

• STORE-store the current program in a PROG file 
• STORE KEY -store the current typing-aid keys in a KEY file 

Using these statements is described in the following sections of this chapter. The topic 
of reading EPROM information is described in a subsequent section. 

Storing Data 
As a simple example of storing a data file in EPROM, suppose that you want to store the date that the EPROM was initialized and the current number of EPROM chips on the card in EPROM memory. The following program shows a simple example of how 
you might perform this operation. 

100 This program stores the Date that the 
110 EPROM Memory unit was initialized. 
120 (An EPROM file name shows the date.) 
130 
140 Select EPROM mass storage unit. 
150 Progmr_sc=27 
160 Unit_no=O 
170 Eprom_msus$=":EPROM,"&VAL$(Progmr_sc)&","&VAL$(Unit_no) 
180 

18-10 EPROM Programming 

' 0 

\ v 



190 ! Determine date to write in EPROM. 
200 Correct_date=O 
210 REPEAT 
220 DISP "Enter date to be stored in EPROM "· 
230 DISP "(Press ENTER for time shown)." 
240 OUTPUT KBD;DATE$(TIMEDATE); 
250 ENTER KBD;Date_$ 
260 SET TIMEDATE DATE(Date_$)! Set date. 
270 DISP "Is this correct? ";DATE$(TIMEDATE) 
280 ENTER KBD;Ans$ 
290 IF UPC$(Ans$[1,1])="Y" THEN Correct_date=1 
300 UNTIL Correct_date 
310 DISP 
320 
330 ! Format Date_$ from "DD MMM YYYY" 
340 ! to "MMM_DD_YY". 
350 Month$=Date_$[4,6] 
360 Day$=TRIM$(Date_$[1,2]) ! Strip leading space (if one). 
370 Year$=Date_$ [10, 11] ! Remove "19" from year. 
380 File_name$=Month$&"_"&Day$&"_"&Year$ 
390 ! 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 

Create a one-record ASCII file on the internal disc 
(use an external disc with Model 16) 
with the DATE as the file's name. 

Disc_msus$=":INTERNAL" 
CREATE ASCII File_name$&Disc_msus$,1 Error if file exists. 

! Write info into EPROM file. 
COPY File_name$&Disc_msus$ TO File_name$&Eprom_msus$ 
PURGE File_name$&Disc_msus$ ! Remove disc file after use. 

! Now read date with catalog of file names. 
CAT Eprom_msus$ 

END 

EPROM Programming 18-11 



The program first prompts for the EPROM unit number (the programmer card is as
sumed to be at select code 27). The program then prompts for the date by presenting 
the current clock date to the user on the keyboard input line. The user can either modify 
the date or accept it as it is shown. 

Assuming that the program is run on a Model 226 or 236, the program stores this 
information in an ASCII file on a disc in the internal drive. (It would be much faster to 
store the file in a MEMORY volume or in Bubble memory.) This information is then 
stored in EPROM, and the internal ASCII file is purged. 

Data Storage Rates 
The information is stored in EPROM at a approximately the following rates (program 
time is set by writing to CONTROL register 1): 

Table 18-2. Approximate Storage Rates 

Program Seconds per Bytes per 
Time Sector Second 

13.1 ms 2 150 

52.5 ms 7 38 

Note that these times are for COPY, SAVE, and STORE operations. The storage rate 
when using CONTROL is lower slightly than these figures. 

Determining Unused EPROM Memory 
A potential problem with the example program in the preceding section is that there are 
times when you are not sure whether or not there is enough erased EPROM memory 
to store your information. Unfortunately, the system generally cannot determine before
hand whether there is sufficient room left in an EPROM unit to store the information it 
has been directed to store. This consequence is due to the fact that both blank sockets 
and erased EPROM memory read as all l's (hexadecimal FF bytes). The system can, 
however, determine when there is not enough room left on a fully loaded card (Error 64 
is reported). 

18-12 EPROM Programming 

< .. ) 



Thus, when the system is directed to store data in EPROM, it begins programming 
the EPROMs one word at a time at the "next available" location. After each word is 
programmed, the system reads the word and compares it to what was to be written; this 
operation is known as "verifying" the word. An error will be reported when the word 
is not verified (such as when a blank socket, a previously programmed word, or other 
hardware failure has been reached). So before you attempt to store any information in 
EPROM memory, you should determine whether or not there is enough erased memory 
to hold the data. 

The general method of determining whether or not an EPROM memory unit has enough 
erased space to store your information is as follows: Determine the total number of usable 
sectors on the EPROM card, and then subtract the number already used. The result 
is the number of sectors available for storing additional information. This procedure is 
broken down into steps as follows (an example follows the procedure): 

1. Determine the number of usable sectors on the EPROM card. 

a. Determine the number of usable sectors of EPROM by using the following 
formulas: 

Total Sectors=(Chips on card)*(Bytes/Chip)*(1 Sector/256 Bytes) 

Usable Sectors=Total Sectors - 1 sector (used by the system) 

in which: Bytes/Chip= 16 384 (for 27128's) 
= 8192 (for 2764's) 

b. Use the CAT statement to determine how many EPROM sectors are already 
being used by files (already programmed). 

2. Determine the number of sectors required to store your information. 

a. For ASCII data files, this number will simply be the number of records spec
ified in the CREATE ASCII statement that created the file. 

b. For BDAT data files, multiply the number of records in the file by the record 
size ( default=256 bytes), divide this product by 256, and round any non
integer result to the next larger integer. Add one to this result to account for 
the sector used by the system (for EOF pointer and number of records). 

c. For programs, place the information in a mass storage file using STORE or 
SAVE (MEMORY volumes and BUBBLE memory are best suited for this 
purpose). Use the CAT statement to determine how many 256-byte sectors 
were required to store the information. 

d. For all other types of files, a quick look at the directory of the media on which 
the file is presently stored shows how many sectors are required to store the 
file. 

EPROM Programming 18-13 



3. Compare the amount of usable memory in EPROM to the amount of memory 
required for your information. If there is sufficient memory, perform the storage 
operation. Otherwise, use another EPROM unit or mass storage device. 

As an example, suppose that you want to store a BDAT file that contains 20 records of 
20 bytes each in EPROM. Since 20*20=400, and 400/256=1.5625 (which rounds up to 
the next larger integer of 2), two sectors of EPROM are required for the data. Add one 
sector for system use. Therefore, three sectors are required to store the file. 

To determine how much EPROM memory is available, first calculate the total number 
of sectors on the card. For this example, suppose that only two 27128 chips are on the 
board. The total number of sectors on the card is calculated by applying the preceding 
formula: 

Total sectors = 2 * 16 384 / 256 = 128 

Usable sectors = Total sectors - 1 = 127 

To see how many sectors have already been used, perform a CAT of the EPROM card; 
assume EPROM unit 0. 

CAT ":EPROM,O" 

:EPROM,O 
VOLUME LABEL: B9836 
FILE NAME PRO TYPE REC/FILE BYTE/REC 

Mar 8 83 
EPROM_BITS 
EPROM_INIT 

ASCII 
ASCII 
ASCII 

1 
17 
11 

256 
256 
256 

ADDRESS 

12 
13 
30 

The CAT reveals that the last file begins at sector 30 and is 11 sectors in length. Thus, 
the next unused sector begins at sector 41. Since sector addresses start at 0, 42 sectors 
have already been used. Assuming that you have not written any data in subsequent 
sectors (such as with the CONTROL statement), there are 85 (=127-42) sectors of 
unused EPROM remaining. The BDAT file can be stored in the unit. 

18-14 EPROM Programming 

u 



Storing Programs 
Storing programs in EPROM is a simple operation. Like storing programs in other mass 
storage media, you can use either the STORE statement or the SAVE statement. The 
one you will use depends on whether you want the program to be stored in a PROG 
or an ASCII file; the STORE statement stores the program in a PROG file, while the 
SAVE statement stores it in an ASCII file. If the program is already stored on another 
device, use the COPY statement. 

Compiled Pascal subprograms, or "CSUBs," can also be stored in EPROM with COPY. 
For instructions on how to write these compiled subprograms, see the CSUB Utility 
manual. 

As with storing data files, you must ensure that there is enough memory on the card 
to hold the program. First execute a CAT operation on the EPROM unit to determine 
how many sectors are unused. Then determine how many sectors will be required to 
store the program by using STORE or SAVE to store the program on another mass 
storage device. If there is enough unused EPROM memory, execute STORE or SAVE 
with the destination as the desired EPROM unit. For instance, the following statements 
are typical ways to store programs in EPROM. 

STORE "Prog_1:EPROM,27,0" 
SAVE "Prog_1:EPROM,27" 

Programming Individual Words and Bytes 
You can also program individual words and bytes in EPROM with the BASIC system. 
However, you should not use these techniques to program EPROMs which are to be used 
as mass storage "units" in this manner. In other words, if you are going to access the 
EPROM with mass storage statements, use only operations such as SAVE, STORE, and 
COPY to program the EPROM unit. If the EPROM is to be for another purpose, such 
as to store machine-language code in another system, you can use these techniques to 
program the EPROMs. 

To program individual words, use CONTROL to set the target address and then write 
the desired word at that address. Repeat this process for as many words as you need to 
write. Note that you need to set the target address before every write operation. If you 
don't, an error will be reported. 

EPROM Programming 18-15 



The automatic verify operation is still performed for each word written into EPROM 
memory. The following example program shows how you might perform this type of 
operation; the first 16 384 bytes of the EPROMs in sockets marked "OU" and "01" are 
programmed. (The program takes approximately eight minutes to run.) 

100 
110 
120 

Assume data source is a BDAT file that contains exactly 
! 8192 INTEGER elements (written with FORMAT OFF) . 

130 ASSIGN @Source TO "EPROMWORDS:INTERNAL" 
140 INTEGER Int_array(0:8191) 
150 ENTER <!lSource;Int_array(*) 
160 ! 
170 ! Write 8K words (16K bytes). 
180 FOR Addr=O TO 16382 STEP 2 
190 CONTROL 27,2;Addr,Int_array(Addr/2) 
200 NEXT Addr 
210 
220 END 

Write to EVEN addresses. 

Notice that the target address (CONTROL register 2) begins at an even address (0) and 
is incremented by two for each subsequent word. Attempting to program a word at an 
odd address will generate an error. 

18-16 EPROM Programming 

/ \ 
\.J 



To program individual bytes, you will need to mask the byte that is not to be pro
grammed. For instance, suppose that you want to insert one EPROM chip in the board 
and program it with data bytes. Inserting the chip in one of the sockets marked with 
an "L" gives the memory odd addresses. The program will need to be modified so that 
it writes only the least significant eight bits of each word (since you can only program 
words, which begin at even addresses). 

To program only the least significant byte, you would make the most significant byte all 
l's so that the program operation will verify (remember that empty sockets and erased 
bits read as all l's). The following program shows an example of programming single 
bytes of data in the EPROM located in the socket marked "01." Note that the only 
difference between this program and the previous one is the manipulation of the upper 
eight bits of each integer. 

100 Assume data source is a BDAT file that contains exactly 
110 ! 8192 INTEGER elements (written with FORMAT OFF). 
120 
130 ASSIGN <OSource TO "EPROMBYTES:INTERNAL" 
140 INTEGER Int_array(0:8191) 
150 ENTER <OSource;Int_array(*) 
160 
161 ! Define mask for upper 8 bits. 
162 FfOO=IVAL("FFOO", 16) 
163 
170 ! Write 8K bytes. 
180 FOR Addr=O TO 16382 STEP 2 ! Must still write to EVEN addresses. 
181 Low_byte=BINIOR(FfOO,Int_array(Addr/2)) ! MSB=FF (LSB=unchanged). 
190 CONTROL 27,2;Addr,Low_byte 
200 NEXT Addr 
210 
220 END 

To program bytes of an EPROM located in a socket marked "U", you would left-shift the 
8-bit value by eight places (which shifts the least significant byte to the most significant 
byte). For instance, the following statement shifts the least significant byte to the most 
significant byte and then makes the least significant byte all 1 's: 

High_byte=BINIOR(SHIFT(Low_byte,-8) ,255) 

Programming EPROM with such eight-bit values writes the eight bits into EPROM 
devices at even addresses (i.e., in sockets marked with "U" ). 

EPROM Programming 18-17 



Operations Not Allowed 
Once data is written in EPROM, it cannot be selectively erased (without erasing the entire EPROM device). Consequently, the following mass storage operations are not allowed for EPROM mass storage: 

CONTROL (cannot be used to write to registers 7 and 8 
of an 1/0 path name assigned to a BDAT file) 

CREATE ASCII 
CREATE BDAT 
COPY (of an entire mass storage unit £nto EPROM) 
OUTPUT 
PROTECT 
PURGE 
RENAME 
RE-SAVE 
RE-STORE 
RE-STORE KEY 
TRANSFER (to an EPROM file) 

18-18 EPROM Programming 

i. ) 

"--" 



Reading EPROM Memory 
After an EPROM unit has been programmed, you can perform the following operations 
to read the information: 

• CAT-get a catalog listing of the files in an EPROM unit 

• COPY-copy an EPROM file's (or unit's) contents into another file (or unit) 

• ENTER---enter data from an ASCII or BDAT data file into program variables 

• GET-load an ASCII program file into the computer 

• LOAD-load a BIN, KEY, or PROG file into the computer 

• LOADSUB--load SUB or FN subprogram(s) from a PROG file 

• TRANSFER--transfer data from a BDAT data file into a memory BUFFER 

• STATUS read individual data words from EPROM memory 

Retrieving Data and Programs 
Reading data files stored in EPROM is similar to reading data files stored in other mass 
storage devices; the only difference is the mass storage unit specifier (msus), which will 
be of the form :EPROM,Select_code,Unit_number. Remember that both Select_code and 
Uni t_number parameters can be any type of numeric expression. Also keep in mind that 
when reading EPROM units you do not need to specify the selcet code of the EPROM 
programmer card; you can specify a select code of 0. However, if you do specify the 
programmer card's select code, it must be connected to the specified EPROM unit. If 
the unit number parameter is omitted, a default value of 0 is used. 

The broad subject of using ENTER to read data files is discussed in the BASIC Pro
gramming Techniques manual. This manual discusses the ENTER statement in detail, 
and also describes using the TRANSFER statement to transfer the contents of data files 
into memory BUFFERs. 

Like reading data files, retrieving programs from EPROM is identical to performing 
these operations from other mass storage devices. Refer to the BASIC Programming 
Techniques manual. 

EPROM Programming 18-19 



Summary of EPROM Programmer 
STATUS and CONTROL Registers 

STATUS Register 0 ID Register. This register contains a value of 27 (decimal) 
which is the ID of an EPROM Programmer card. 

Most Significant Bit Least Significant Bit 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
0 0 0 1 1 0 1 1 

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1 

CONTROL Register 0 Interface Reset. Writing any non-zero value into this register 
resets the card; writing a value of zero causes no action. 

STATUS Register 1 Read Program Time. A value of 0 indicates that the program 
time is 52.5 milliseconds for each 16-bit word (default); a non
zero value indicates that the program time is 13.1 milliseconds. 

CONTROL Register 1 Set Program Time. Writing a value of 0 into this register sets 
the program time to 52.5 milliseconds for each 16-bit word; 
any non-zero value sets program time to 13.1 milliseconds. 

STATUS Register 2 Read Target Address. This register contains the offset address 
(relative to the card's base address) at which the next word 
of data will be read (via STATUS Register 3) or written (via 
CONTROL Register 3). The default address is 0, which is the 
address of the first byte on the card. 

CONTROL Register 2 Set Target Address. Writing to this register sets the offset ad
dress at which the next word of data will be read (via STATUS 
Register 3) or written (via CONTROL Register 3). The target 
address must always be an even number. 

18-20 EPROM Programming 

' ) 
\_) 

' I 
\..._,/ 



STATUS Register 3 Read Word at Target Address. This register contains the 16-
bit word at the current target address. 

CONTROL Register 3 Write Word at Target Address. Writing a data word to this 
register programs a 16-bit word at the current target address. 
The target address must be set (via CONTROL register 2) 
before every word is written. Automatic verification is also 
performed after the word is programmed. 

STATUS Register 4 Current Memory Card Capacity (in bytes). This register con
tains the current capacity of a fully loaded card in bytes; it also 
indirectly indicates which type of EPROM devices are being 
used on the card. If 262144 is returned, then 27128 EPROMs 
are being used; if 131 072 is returned, then 2764 devices are 
being used. A 0 is returned if the programmer card is not 
currently connected to any EPROM memory card. 

CONTROL Register 4 Undefined. 

STATUS Register 5 Number of Contiguous, Erased Bytes. Reading this register 
causes the system to begin counting the number of subsequent 
bytes, beginning at the current target address, that are erased 
(or are empty sockets). The counting is stopped when a pro
grammed byte (i.e., one containing at least one logical 0) is 
found or when the end of the card is reached. If the byte at 
the current target address is not FF, then a count of 0 is re
turned. Error 84 is reported if the programmer card is not 
currently connected to any EPROM card. 

CONTROL Register 5 Undefined. 

S.TATUS Register 6 Base Address of EPROM Memory Card. This register con
tains the (absolute) base address of the EPROM memory card 
to which the programmer card is currently connected; this 
base address is also the absolute address of the first word on 
the card. Error 84 is reported if the programmer card is not 
currently connected to any EPROM memory card. 

CONTROL Register 6 Undefined. 

EPROM Programming 18-21 



18-22 EPROM Programming 



Table of Contents 

Chapter 19: HP-HIL Interface 
The Interface to HP-HIL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1 

Preview of HP-HIL Devices ....................................... 19-3 
Communicating through the HP-HIL Interface ....................... 19-4 

Supported HP-HIL Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-6 
Identifying All Devices on the HP-HIL Link ......................... 19-6 
Explanation of the HIL_ID Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-8 
HP-HIL Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-20 

Communicating with HP-HIL Devices ................................. 19-28 
HP-HIL Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-28 
ID Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19~29 
Function Box and Vectra Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-32 
Using a Touchscreen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-43 
Using a Bar Code Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-48 
Interaction Between Multiple HP-HIL Devices . . . . . . . . . . . . . . . . . . . . . . 19-52 



u 

u 

u 



HP-HIL Interface 19 
The Interface to HP-HIL Devices 
This chapter describes communication with the HP-HIL interface. It is primarily a 
description of the use of HIL SEND and HIL EXT to handle the HP-HIL interface. This 
interface is capable of supporting up to seven devices, such as a Function Box, a system 
ID Module, and other peripherals generally related to human input. 

Before launching into a discussion of the workings of the HP-HIL interface, a general 
overview needs to be presented. HP-HIL stands for "Hewlett-Packard Human Interface 
Link". The following diagram illustrates the basic components. 

Figure 19-1. Hewlett-Packard Human Interface Link 

HP-HIL Interface 19-1 



HP-HIL initialization takes place when BASIC is booted or when you execute SCRATCH 
A. BASIC logs HP-HIL devices which are present on the link. The link can deal with 
a maximum of seven devices at any one time (any devices present after the seventh one 
are not recognized). If you add an HP-HIL device to the HP-HIL link after the BASIC 
system has been booted, the device will not automatically be recognized by the system. 
If you replace a device on the link with a different device, the system may mis-interpret 
the data coming from the new device. Therefore, when adding, removing, or replacing a 
device on the link, either re-boot the system or execute a SCRATCH A. 

The address of a particular device is merely its topological order of placement along 
the link. In the above diagram, Device A has address 1, B has address 2, and C has 
address 3. This is only a result of their physical order of connection. If Device C had 
been connected between Devices A and B, Device A would still have been address 1, but 
Device C would be address 2, and B would be address 3. The type of device is irrelevant 
to the address assigned to it. 

After the link is operational, and during subsequent link operations, each device looks 
at the data being sent down the link. If a device notices that the destination address 
associated with the link data is the same as that device's address, that device receives 
and acts on the data. Otherwise, the data is merely shuttled along to the next device. 

19-2 HP-HIL Interface 



Preview of HP-Hil Devices 
HP-HIL devices can be divided into a number of categories. This seetion provides you 
with a table that ineludes these categories, as well as a list of high level and low level 
statements that apply to each category. 

Table 19-1. HP-HIL Device categories 

HP-HIL Device High Level Low Level 
Categories BASIC Access BASIC Access 

HP-HIL Keyboards BASIC Operating System normally ON/OFF KEY 
handles keystrokes. Programs can ON/OFF KBD 
enter text and numbers with the KBD$ 
statements: INPUT, LINPUT, and 
ENTER. 

Relative Positioner BASIC Operating System handles as ON/OFF KBD (traps 
cursor-movement input. Can also be movement as arrow 
used with GRAPHICS INPUT IS. keys and also traps 

mouse buttons) 
KBD$ 
ON/OFF KNOB 
ON/OFF CDIAL 
CDIAL 

Absolute Positioner Can be used with GRAPHICS IN- HIL SEND 
PUT IS. ON HIL EXT 

HILBUF$ 

ID Module One can be used with HIL SEND 
SYSTEM$( "SERIAL NUMBER") ON HIL EXT 

HILBUF$ 

Other Devices None HIL SEND 
ON HIL EXT 
HILBUF$ 

HP-HIL Interface 19-3 



Communicating through the HP-HIL Interface 
This section provides a brief description of the HIL Interface Driver. The HIL Interface 
Driver supports a set of statements which allow communications between the HP-HIL 
interface and HP-HIL devices. These statements and commands are as follows: 

HIL SEND Address; H!L_ Command 

ON HIL EXT Address_mask Branch 

OFF HIL EXT 

19-4 HP-HIL Interface 

allows you to send HP-HIL Commands to an HP
HIL device (e.g. HIL SEND 1;IDD). The BASIC 
HP-HIL commands can be found in the "HP-HIL 
Appendix" in this manual. The Address is the 
location of the device in the HP-HIL link. Ad
dress 1 is assigned to the first device on the link 
that is addressable (i.e. any device except HP
HIL Extension Modules). Ascending address are 
assigned to subsequent devices on the link. 

enables end-of-line interrupts from HP-HIL de
vices. This statement allows you receive inter
rupts from up to seven devices on the HP-HIL 
link. The Address_mask is a bit-map of the lo
cations of the device or devices in the HP-HIL 
link. The default Address_mask is 254 which al
lows up to 7 devices to send interrupts. To se
lect devices from which you want to receive in
terrupts, you need to raise 2 to the power of that 
device's address. For example, if the device is the 
second one on the HP-HIL link then you would 
raise 2 to the 2nd power which would result in 
an Address_mask of 4. If you have two devices 
on the HP-HIL link, one at the second position 
and the other at the third position, then to en
able interrupts from both of these devices you 
would add 2'2 and 2'3 together. The resulting 
Address_mask would be 12. Branch refers to a 
branch to a program line number, label, subrou
tine or subprogram using the keywords GOTO. GO
SUB, RECOVER, or CALL. 

disables end-of-line interrupts. This statement 
does not require an address mask. It will disable 
all previously enabled end-of-line interrupts for 
HP-HIL devices. 

\__} 



HILBUF$ is a function used to capture data returned from 
HP-HIL devices. This function provides a buffer 
for data to be stored in after execution of the 
first two statements listed above. Note that this 
buffer only holds up to 256 bytes of data. Once 
the buffer limit is reached it will not receive any 
new data until it has been emptied by reading the 
buffer. The first byte stored in the string buffer 
tells you how many bytes of data have been lost. 
This byte is initially null. It is only null if no 
bytes of data have been lost; otherwise, it con
tains the number of packets (i.e. poll records or 
responses to commands) lost. A poll record is a 
set of data sent by an HP-HIL device to HILBUF$. 
This data first includes a poll record header byte 
which contains information about the bytes that 
follow it (covered in the "HP-HIL Appendix" un
der the section entitled "Poll Record"). 

The poll records (see HILBUF$ above) for the devices listed below are not available through 
ON HIL EXT. An Address_mask (ON HIL EXT) can include these devices, but no 
interrupts will be generated. For example: 

• any relative pointing deviee 

• the current GRAPHICS INPUT IS device 

• any keyboard 

The HIL SEND statement operates under a different set of conditions than ON HIL 
EXT: 

• HIL SEND Address; IDD is allowed with all devices. 

• HIL SEND Address; HP-HIL command is allowed if that device is not: 

• a relative pointing deviee 

• currently a GRAPHICS INPUT IS device 

HP-HIL Interface 19-5 



Supported HP-HIL Devices 
This section provides a brief description of those devices supported by the HIL Interface 
Driver, references to information for those devices not supported by the HIL Interface 
Driver, a program for identifying all devices on the HP-HIL link, and an explanation of 
that program. The topics are as follows: 

• Identifying All Devices on the HP-HIL Link 

• Explanation of the HIL_ID Program 

• HP-HIL Devices 

Identifying All Devices on the HP-HIL Link 
Each device in the HP-HIL link has a Device ID which identifies that device and a 
Describe Record which provides you with device characteristics. This information can be 
obtained by executing the HP-HIL IDD command and parsing the string value returned 
by the HILBUF$ function. A program called HIL_ID located on your BASIC Manuals 
Examples Disc makes use of the IDD command and HILBUF$ function for: 

• Determining if a device is recognized as being in the HP-HIL link, 
• Identifying the device at a specific address, and 

• Determining the device's characteristics (what it can do). 

Assuming your HP-HIL link has a: 

• Touchscreen located at address 1 

• ITF Keyboard (HP 46020/21A) located at address 2 

• Function Box located at address 3 

19-6 HP-HIL Interface 

\ 

'0 



Executing the HIL_ID program would produce the following output: 

HP 25723A (Touchscreen) located at address 1 
Describe Record Information 

I/0 Descriptor Information 
Does not support Prompts/Acknowledges 1 thru 7 
Supports Proximity Detection 
Does not report buttons 

X and Y axis information reported 
Absolute positioning device 
Returns 8 bits/axis 

HP 46020/21A (ITF Keyboard) located at address 2 
Describe Record Information 

No special features 

HP 46086A (Function Box) located at address 3 
Describe Record Information 

I/0 Descriptor Information 
Recognizes General Prompt and Acknowledge 
Does not support Prompts/Acknowledges 1 thru 7 
Does not report buttons 

No axis information reported 

NO MORE DEVICES. 

Just what does the above information tell you? Let's look at the first device. It is a 
Touchscreen located at address 1 in the HP-HIL link. To determine what this device can 
do, you need to know its eharacteristics. The Describe Record provides you with this 
information. Deseribe Record information returned by this device is as follows: 

• I/0 Descriptor byte information is reported. The information supplied in this byte 
tells you that when you touch your finger on the screen it will be deteeted and 
when you remove it from the sereen it will be deteeted. This is called proximity 
in/ out deteetion. 

• It is an absolute positioning deviee. This means that every coordinate position 
on the sereen is refereneed to the lower left-hand eorner of the Touchsereen (X
eoordinate = 0 and Y-eoordinate = 0). 

• X and Y axis information is reported. This tells you that Poll Reeords reeeived 
when eommunieating with this device will eontain X andY eoordinate information. 
These are absolute coordinate positions. 

• Coordinate information is returned as 8 bits per axis. This means there will only 
be one byte of X eoordinate information returned in the Poll Reeord and one byte 
of Y eoordinate information returned in the Poll Reeord. 

HP-HIL Interface 19-7 



Putting the above information together, the Touchscreen makes a great device for option 
selection from screen menus. Other uses are left up to your creativity. 

Explanation of the HIL_ID Program 
The program called HIL_ID is located on your BASIC Manual Examples Disc. This 
program has been divided into four segments. Each segment of the program will be 
given and explained in this section. It is not absolutely necessary for you to read this 
section to gain an understanding of how to communicate with HP-HIL devices. If you 
decide not to read this section, skip to the next one entitled "HP-HIL Devices." 

Segment 1 of HIL_ID 
This segment of the program executes the HP-HIL command IDD for each device in the 
HP-HIL link. The system places the information returned from executing this command 
in the string buffer used by the HILBUF$ function. The buffer information has been stored 
in a string array to simplify future processing. The string buffer used by HILBUF$ is 
cleared each time the function is executed. 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 

OPTION BASE 1 
DIM Idd$ (7) [20] 
INTEGER Dev_id,Address_num,Des_header,Test,Count 
COM INTEGER Io_header 

'****************************************************** 
! This is segment 1 of the program. It stores Identify 
! and Describe information in the array Idd$. 
'****************************************************** 

1100 ON ERROR GOTO Link_end 
1110 FOR I=1 TO 7 
1120 HIL SEND I;IDD 
1130 Idd$(I)=HILBUF$ 
1140 NEXT I 
1150 Link_ end: 
1160 Count=I-1 
1170 PRINT 
1180 

19-8 HP-HIL Interface 



The following information is an explanation of program segment 1. 

Line 1000 sets a lowerbound of 1 for the string array Idd$ in the program. 

Lines 1010 to 1030 declare the variables for the program. 

Line 1100 sets up a branch to the label Link_end if an error occurs. Note that an error 
will occur in the FOR loop of lines 1110 to 1140 if there are less than 7 devices on the 
HP-HIL link. The branch to the label Link_end is designed to prevent execution of the 
program from stopping when this condition occurs. 

Lines 1110 to 1140 are a FOR loop which executes the HP-HIL IDD command as many 
times as there are devices recognized plus one or until seven devices have been recognized 
on the HP-HIL link. Identify and Describe information from executing the IDD command 
is stored in the string array Idd$ for future processing. If there are fewer than 7 HP-HIL 
devices in the link, then ON ERROR causes a branch to be taken outside of the FOR loop. 
If there are 7 devices in the loop, then ON ERROR branching does not take place. 

Line 1150 is the destination label Link_end for the ON ERROR branch from the FOR loop. 

Line 1160 sets the loop Count for the FOR loop in the second segment of the demonstra
tion program. 

HP-HIL Interface 19-9 



Segment 2 of Hll_ID 
This segment of the program is a large FOR loop with a SELECT statement in it for 
selecting and identifying the various devices in the HP-HIL link. Each CASE statement 
within the SELECT statement causes a message to be displayed for the device found on the 
link. This message contains the HP product number, device name and device address. 
After the SELECT statement a CALL is made to the subprogram Describe_rec which is 
used for determining the characteristics of the devices in the HP-HIL link. If the device 
is found to report I/0 Descriptor information, the Describe_rec subprogram calls the 
subprogram Io_descriptor. This subprogram provides additional information about the 
device. 

1190 '****************************************************** 1200 ! This is segment 2 of the program. It identifies all 
1210 devices on the link and provides their address 
1220 in the link. It also uses two subprograms called 
1230 Describe_rec and Io_descriptor. These subprograms 
1240 describe what each device can do. 
1250 
1260 

'****************************************************** 

1270 FOR I=1 TO Count 
1280 Dev_id=NUM(Idd$(I)[4]) 
1290 PRINT 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 

Address_num=NUM(Idd$(I) [3]) 
Des_header=NUM(Idd$(I)[5]) 
Io_header=NUM(Idd$(I)[LEN(Idd$(I))]) 

SELECT Dev_id 
CASE 0 TO 31 ! Vectra Keyboard 

PRINT "HP 46030A (Vectra Keyboard) located at address ";Address_num 
CASE 48 ! Function Box 

PRINT "HP 46086A (Function Box) located at address ";Address_num 
CASE 52 ! ID Module 

PRINT "HP 46084A (HP-HIL ID Module) located at address ";Address_num 
CASE 92 ! Bar Code Reader 

PRINT "HP 92916A (Bar Code Reader) located at address ";Address_num 
CASE 96 ! Rotary Control Knob 

PRINT "HP 46083A (Rotary Control Knob) located at address"· 
Address_num 

19-10 HP-HIL Interface 



1460 CASE 97 ! Control Dials and Quadrature Port 
1470 This is a test to determine if the device is an HP 46085A 
1480 ! or an HP 46094A. Note that both of these devices have the 
1490 ! same ID number. 
1500 IF (NOT BIT(Io_header,O)) THEN 
1510 PRINT "One third of an HP 46085A (Control Dials) located at 
address ";Address_num 
1520 ELSE 
1530 
Address_num 

PRINT "HP 46094A (HP-HIL Quadrature Port) located at address"· 

1540 END IF 
1550 CASE 104 ! HP Mouse 
1560 PRINT "HP 46060A (HP Mouse) located at address ";Address_num 
1570 CASE 140 ! Touchscreen 
1580 PRINT "HP 35723A (Touchscreen) located at address ";Address_num 
1590 CASE 147 ! Digitizer A 
1600 PRINT "HP 46087A (Digitizer A) located at address ";Address_num 
1610 CASE 148 ! Digitizer B 
1620 PRINT "HP 46088A (Digitizer B) located at address ";Address_num 
1630 CASE 149 ! Graphics Tablet 
1640 PRINT "HP 45911A (Graphics Tablet) located at address ";Address_num 
1650 CASE 160 TO 191 ! Integral Keyboard 
1660 PRINT "Integral Keyboard located at address ";Address_num 
1670 CASE 192 TO 223 ! HP 46020/21A Keyboard 
1680 PRINT "HP 46020/21A (ITF Keyboard) located at address ";Address_num 
1690 CASE 224 ! HP 98203C Keyboard 
1700 PRINT "HP 98203C Keyboard located at address ";Address_num 
1710 CASE ELSE 
1720 PRINT "Un-recognized device located at address ";Address_num 
1730 Unknown_dev$=IVAL$(Dev_id,16) 
1740 PRINT "Device ID is ";Unknown_dev$[3] 
1750 END SELECT 
1760 CALL Describe_rec(Des_header,Address_num,Dev_id) 
1770 
1780 NEXT I 
1790 PRINT 
1800 PRINT "NO MORE DEVICES." 
1810 
1820 END 
1830 

HP-HIL Interface 19-11 



The following information is an explanation of program segment 2. 

Lines 1270 to 1780 are a FOR loop which identifies all the devices specified by the Count 
variable. It also gives the address of these devices in the HP-HIL link. 

Lines 1350 to 1750 are a SELECT statement within the FOR loop. This statement contains 
CASE statements which cause a message to be printed for each type of device found on 
the HP-HIL link. An example of the type of message printed is as follows: 

HP 46086A (Function Box) located at address 2 

Assuming that there is a Function Box located at address 2 in your HP-HIL link. 

Note that in lines 1460 to 1540 a test is made for the type of device found with the ID 
number of 97 (decimal) because there are two devices which have that device ID number. 
They are the Control Dials box and the Quadrature Port. Also, in the case of a device 
not being recognized, lines 1710 to 17 40 will cause the following message to be displayed: 

Un-recognize device located at address 2 
Device ID is 20 

Assuming there is an un-recognized device located at address 2 and the ID number of 
that device is 20 (hexadecimal). 

19-12 HP-HIL Interface 

•.. ) ·......_; 

' \ 
\.._/ 



Segment 3 of HIL_ID 
This segment of the program is a subprogram called Describe_rec. The subprogram 
interprets each bit of the Describe Record byte to characterize the device at a specified 
address in the HP-HIL link. For a detail description of the Describe Record byte, read 
the section in the "HP-HIL Appendix" entitled "Des(Tibe Record". 

1840 '***************************************************** 
1850 ! This is segment 3 of the program. It is a subprogram 
1860 that provides information on each device. This 
1870 information will help you determine what you can do 
1880 with a particular devic~. 
1890 '**************************************************** 
1900 ! 
1910 SUB Describe_rec(INTEGER Des_header,Address_num,Dev_id) 
1920 COM INTEGER Io_header 
1930 
1940 PRINT TAB(2) ."Describe Record Information" 
1950 IF Des_header=O THEN 
1960 PRINT TAB(5),"No special features" 
1970 SUBEXIT 
1980 END IF 
1990 IF BIT(Des_header,2) THEN PRINT TAB(5),"Reports Security Code 
information" 
2000 IF BIT(Des_header,3) THEN PRINT TAB(5) ,"Supports the Extended Describe 
command" 
2010 
2020 
2030 
sets 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2120 
2130 
2140 
2150 
2160 

of 

IF BIT(Des_header,4) THEN CALL Io_descriptor(Io_header) 
IF BIT(Des_header,7) THEN PRINT TAB(5),"Contains two independent 
coordinate axes" 

SELECT Des_header MOD 4 
CASE 0 

PRINT TAB(5) ,"No axis information reported" 
SUB EXIT 

CASE 1 
PRINT TAB(5),"X axis information reported" 

CASE 2 
PRINT TAB(5) ,"X andY axis information reported" 

CASE 3 
PRINT TAB(5),"X, Y and Z axis information reported" 

END SELECT 

HP-HIL Interface 19-13 



2170 IF BIT(Des_header,6) THEN 
2180 PRINT TAB(8),"Absolute positioning device" 
2190 ELSE 
2200 PRINT TAB(8),"Relative positioning device" 
2210 
2220 
2230 
2240 

END IF 
IF BIT(Des_header,5) THEN 

PRINT TAB(8),"Returns 16 bits/axis" 
ELSE 

2250 PRINT TAB(8),"Returns 8 bits/axis" 
2260 END IF 
2270 SUBEND 
2280 

The following information is an explanation of program segment 3. 

Line 1940 prints the message: 

Describe Record Information 

This indicates that the information to follow this messages was taken from the Describe 
Record. Note that the Describe Record consist of up to 10 bytes of information. This 
information includes a Describe Record Header, Axes information, and an 1/0 Descriptor 
Byte. 

Lines 1950 through 1980 are an IF ... THEN statement which tests to see if there is in
formation in the Describe Record Header byte . If the byte contains all zeros, then the 
following message is printed and the subprogram is exited: 

No special features 

If the Describe Record Header byte is not all zeros, then the subprogram continues to 
process the header information. 

19-14 HP-HIL Interface 



Line 1990 tests bit 2 of the Describe Record Header byte to determine if the HP-HIL 
device reports security code information. If it does not, then the subprogram passes on 
the the next test. However, if it does report security eode information, then the following 
message is displayed: 

Reports Security Code information 

Line 2000 tests bit 3 of the Deseribe R.eeord Header byte to determine if the HP-HIL 
deviee supports the Extended Deseribe eornmand. If it does not, then the subprogram 
passes on to the next test. However, if it does support the Extended Deseribe command, 
the11 the following message is displayed: 

Supports the Extended Describe command 

Line 2020 tests bit 4 of the Describe Reeord Header byte to determine if the HP-HIL 
deviee reports I/0 Descriptor information. If it does not, the subprogram passes on to 
the next test. However, if it does a CALL to the subprogram ealled Io_descriptor is made 
and I/0 Deseriptor byte information is displayed. 

Line 2030 tests bit 7 of the Deseribe Record Header byte to determine if the HP-HIL 
deviee contains two independent sets of eoordinate axes. If it does not, the subprogram 
passes on to the next test. However, if it does the following information is displayed and 
the subprogram passes on to the next test: 

Contains two independent sets of coordinate axes 

Lines 2050 through 2150 are a SELECT statement whieh test bits 0 and 1 for axis infor
mation. If no axis information is reported, then the following message is displayed and 
the subprogram is exited. 

No axis information reported 

However, if axis information is reported, you may reeeive one of the following messages: 
X axis information reported 

X and Y axis information reported 

X, Y, and Z axis information reported 

Onee this test is eompleted program f1ow passes on to the next statement. 

HP-HIL Interfaee 19-15 



Lines 2170 through 2210 test bit 6 of the Describe Record Header byte to determine 
if the device is a relative or absolute positioning device. If bit 6 is set, the following 
message is displayed: 

Absolute positioning device 

If bit 6 is clear (not set), the following message is displayed: 

Relative positioning device 

Lines 2220 through 2260 complete the subprogram called Describe_rec. They test bit 5 
of the Describe Record Header byte to determine if the device returns 8 bits per axis or 
16 bits per axis. If bit 5 is set, the following message is displayed: 

Returns 16 bits/axis 

If bit 5 is clear (not set), the following message is displayed: 

Returns 8 bits/axis 

19-16 HP-HIL Interface 

• l 
~ 

\ . .J 



Segment 4 of HIL_ID 
This segment of the program is a subprogram called Io_descriptor. This subprogram 
provides information on the number of buttons the devices has and whether or not 
the device responds to general prompt and acknowledge commands. It also provides 
information on whether or not the device supports "proximity detection". Proximity 
detection checks for the in and out motion of a stylus or finger in relation to a digitizer 
or touchscreen. Io_descriptor is called by the subprogram Describe_rec. 

2290 '************************************************* 
2300 This is segment 4 of the program. It is a 
2310 ! subprogram that provides you with additional 
2320 ! information on what a device can do. 
2330 '************************************************* 
2340 
2350 SUB Io_descriptor(INTEGER Io_header) 
2360 PRINT TAB(5),"I/0 Descriptor Information" 
2370 IF Io_header=O THEN 
2380 PRINT TAB(8) ,"No features" 
2390 SUBEXIT 
2400 END IF 
2410 IF BIT(Io_header,7) THEN PRINT TAB(8),"Recognizes General Prompt and 
Acknowledge" 
2420 ! 
2430 Test_bits=(Io_header MOD 128) DIV 16 
2440 SELECT Test_bits 
2450 CASE 0 
2460 PRINT TAB(8),"Does not support Prompts/Acknowledges 1 thru 7" 
2470 CASE 1 
2480 PRINT TAB(8),"Supports Prompt/Acknowledge 1" 
2490 CASE 2 
2500 PRINT TAB(8),"Supports Prompts/Acknowledges 1 and 2" 
2510 CASE ELSE 
2520 PRINT TAB(8),"Supports Prompts/Acknowledges 1 thru "&VAL$(Test_bits) 
2530 END SELECT 
2540 
2550 IF BIT(Io_header,3) THEN PRINT TAB(8),"Supports Proximity Detection" 
2560 
2570 Test_bits=(Io_header MOD 8) 
2580 SELECT Test_bits 
2590 CASE 0 
2600 PRINT TAB(8), "Does not report buttons" 
2610 CASE 1 
2620 PRINT TAB (8) , "Reports 1 button" 
2630 CASE 2 
2640 PRINT TAB(8), "Reports buttons 1 and 2" 
2650 CASE ELSE 
2660 PRINT TAB(8),"Reports buttons 1 thru "&VAL$(Test_bits) 
2670 END SELECT 
2680 SUBEND 

HP-HIL Interface 19-17 



The following information is an explanation of program segment 4. 

Line 2360 displays the following message: 

I/0 Descriptor Information 

Lines 2370 through 2390 test the 1/0 Descriptor byte to determine if it contains any 
information. If this byte is not all zeros, then the subprogram continues on with the next 
test. However, if it does contain all zeros, then the message given below is displayed and 
program execution is passed to the subprogram (Describe_rec) which called it. 

No features 

Line 2410 tests bit 7 of the 1/0 Descriptor byte (Io_header) to determine if the device 
being tested recognizes General Prompt and Acknowledge commands. A message is 
displayed if the test is true; otherwise, no message is displayed and the subprogram 
continues with the next test. The message displayed is: 

Recognizes General Prompt and Acknowledge 

Line 2430 does a MOD 128 of the 1/0 Descriptor byte to mask off the bits above bit 6 of 
the byte and then does a DIV 16 to mask off the lower four bits of the byte and shifts the 
remaining bits to the right. The variable Test_bits is assigned the result of the above 
operation. The result is a value in the range of 0 through 7. Note that Test_bi ts is the 
decimal value of bits 4 through 6 of the 10 Descriptor byte. 

Lines 2440 through 2530 are a SELECT statement which tests bits 4 through 6 of the 1/0 
Descriptor byte to determine if Prompts/ Acknowledges 1 through 7 are supported by 
the device being tested. If they are not supported, the following message is displayed: 

Does not support Prompts/Acknowledges 1 thru 7 

19-18 HP-HIL Interface 

: l 
\_.I 

( ) 
~ 



If they are supported, you will receive one of the following messages depending upon how 
many Prompts/ Acknowledges your device supports: 

Supports Prompt/Acknowledge 1 

Supports Prompts/Acknowledges 1 and 2 

Supports Prompts/Acknowledges 1 thru 3 

Supports Prompts/Acknowledges 1 thru 4 

Supports Prompts/Acknowledges 1 thru 5 

Supports Prompts/Acknowledges 1 thru 6 

Supports Prompts/Acknowledges 1 thru 7 

Line 2550 tests bit 3 of the I/0 Descriptor byte to detennirw if tlH' ckvicP being tested 
supports proximity detection. A message is displayed if thP tPst is true; otherwise, no 
message is displayed and the subprogram continues with the next test. The message 
displayed is: 

Supports Proximity Detection 

Line 2570 does a MOD 8 of the I/0 Descriptor byte to mask off the bits above bit 2 the 
byte. The variable Test_bits is assigned the result of the above operation. The result is 
a value in the range of 0 through 7. Note that Test_bits is the decimal value of bits 0 
through 2 of the IO Descriptor byte. 

Lines 2580 through 2670 are a SELECT statement which tests bits 0 through 2 of the I/0 
Descriptor byte to determine if Buttons 1 through 7 arc reported by the device being 
tested. If they are not reported, the following message is displayed: 

Does not report buttons 

HP-HIL Interface 19-19 



If they are reported, you will receive one of the following messages depending upon how 
many buttons your device reports: 

Reports 1 button 

Reports buttons 1 and 2 

Reports buttons 1 thru 3 

Reports buttons 1 thru 4 

Reports buttons 1 thru 5 

Reports buttons 1 thru 6 

Reports buttons 1 thru 7 

HP-HIL Devices 
A brief description will be provided for those devices supported by HIL SEND, ON HIL 
EXT, and HILBUF$. For those devices not supported by these statements and function, 
there will be a reference given to help you locate further information on that device, as 
well as statements you may use to interact with it. 

HP-HIL devices have been divided into the following categories: 

• HP-HIL Keyboards 

• Relative Positioners 

• Absolute Positioners 

• Security Device (the ID Module) 

• Other Devices (i.e. Keyboards, Button Devices, Bar Code Reader) 

19-20 HP-HIL Interface 

' 0 



HP-HIL Keyboards 
There are three HP-HIL keyboards supported (as Keyboards) on the HP-HIL link. They 
arc the: 

• HP 46020/21A (for information on this keyboard see the BASIC User's Guide) 

• HP 98203C (for information on this keyboard see the BASIC User's Guide) 

• Integral Keyboard (for information on this keyboard see the HP- UX Technical 
BASIC Getting Started Guide) 

These keyboards will not cause ON HIL EXT interrupts. Using HIL SEND to transmit 
a command (other than IDD) to one of these devices will cause an error only for the 
HP 98203C keyboard which is also a relative positioning device (see the next section). To 
do interrupt branching with the keyboard keys, you need to usc the following statements 
and function: 

ON/OFF KEY ON KEY defines and enables an event-initiated branch to be taken when 
a softkey is pressed. OFF KEY cancels event-initiated branches previ
ously defined and enabled by an ON KEY statement. Without the KBD 
binary, subsequent softkey presses cause beeps. With the KBD binary, 
the action of subsequent softkey presses depends upon the typing-aid 
definitions. 

ON/OFF KBD ON KBD defines and enables an event-initiated branch to be taken when 
a key is pressed. OFF KBD cancels event-initiated branches previously 
defined and enabled by an ON KBD statement. Subsequent key presses 
are sent to the operating system in the normal manner. 

KBD$ This function returns the contents of the keyboard buffer when ON 
KBD is active. 

For more information on keyboards, read the chapter "Keyboard Reference" found in 
the Installing, Using, and Maintaining the BASIC System manual, as well as the chapter 
"Keyboard Interfaces" found in the BASIC Interfacing Techniques manual. 

HP-HIL Interface 19-21 



Relative Positioners 
These devices will not cause ON HIL EXT interrupts. Using HIL SEND to transmit 
a command (other than ID D) to one of these devices will cause an error. Relative 
positioners can be categorized into two groups: those that are two axis devices and those 
that are three axis devices. A list of these devices and their statements and functions is 
given below. 

Examples of two-axis relative positioning devices are: 

• HP 46060A (HP-Mouse) 

• HP 46083A (Rotary Control Knob) 

• HP 46094A (HP-HIL/Quadrature Port) 

• HP 98203C (Keyboard) 

These devices support the following statements and functions. Note that in the case of the 
HP 46094A (HP-HIL/Quadrature Port) it supports statements and functions appropriate 
to the quadrature device connected to it (e.g. the HP 46095A 3-button Mouse). 

ON/OFF KBD 

KBD$ 

ON/OFF KNOB 

DIGITIZE 

ON KBD defines and enables an event-initiated branch to be taken 
when a key is pressed. OFF KBD cancels event-initiated branches 
previously defined and enabled by an ON KBD statement. Subse
quent key presses are sent to the operating system in the normal 
manner. 

This function returns the contents of the keyboard buffer. 

ON KNOB defines and enables an event-initiated branch to be 
taken when the knob is turned. OFF KNOB cancels event-initiated 
branches previously defined and enabled by an ON KNOB state
ment. Subsequent use of the knob results in normal scrolling or 
cursor movement. 

This statement is used when: 

GRAPHICS INPUT IS KBD,"KBD" 

It inputs the X and Y coordinates of a digitized point from the 
locator specified by GRAPHICS INPUT IS. 

READ LOCATOR This statement is used when: 

GRAPHICS INPUT IS KBD,"KBD" 

It samples the locator device, without waiting for a digitizing 
operation. 

19-22 HP-HIL Interface 

i I \'-" 



For more information on these statements, read the BABIC Language Reference, the 
ehapter entitled "Keyboard Interfaces" found in the BASIC Interfacing Techniques man
ual, and the chapter entitled "Interactive Graphics and Graphics Input" found iu the 
BASIC Graphics Techniques manual. 

There are also three-axis devices, for example the HP 46085A (Control Dials) module 
contains 3 such devices. This device supports the following statement and function: 

ON/OFF CDIAL 

CDIAL (Counter) 

ON CDIAL enables end-of-line interrupts in response to the rota
tion of one or more knobs on the HP-HIL Control Dials deviee. 
While such interrupts are enabled, pulses (rotation counts) are 
accumulated and returned via the CDIAL functiou (see below). 
OFF CDIAL cancels end-of·line interrupts previously enabled by 
an ON CDIAL statement. After an OFF CDIAL statement, left over 
counts may be read via CDIAL (but only once), and uo further 
aceumulation occurs. 

This funetion is used to return counts from the Control Dials 
module or other 3-axis relative positioning devices. It is linked 
to a status word and 15 Counters. Each of the 15 high order 
bits in the status word corresponds to one Counter, the first 
Counter being represented by bit 1 of the status word (bit 0 of 
the status word is unused). Normally the Counters one through 
nine correspond to the nine knobs on the Control Dials mod
ule. Counter 1 is the kuob in the lower left-hand corner of 
the module. The remaining Counters are numbered from left 
to right. The status word and Counters are zeroed when an 
ON CDIAL statement is executed. Thereafter, whenever a count 
arrives from any of the knobs, the corresponding Counter is 
incremented and its status bit is set. Reading a Counter zeros 
both the Counter aud its bit in the status word. Reading the 
status word does not change its value. The status word is read 
as CDIAL(O). 

For more information on these statements see the BASIC Programming Techniqnes man
ual. 

HP-HIL Interface 19-23 



Absolute Positioners 
These devices can generate ON HIL EXT interrupts, but will not when: 

GRAPHICS INPUT IS KBD,"TABLET" 

is in effect. Moreover, due to the speed which data is returned from the digitizers, 
a BASIC program cannot keep up with them when using ON HIL EXT (HILBUF$ 
overflows). Therefore, the only device in this group capable of using the ON HIL EXT 
statement is the Touchscreen. Using HIL SEND to transmit a command (other than 
IDD) to these devices while: 

GRAPHICS INPUT IS KBD,"TABLET" 

will result in an error. 

The following statements should be used when: 

GRAPHICS INPUT IS KBD,"TABLET" 

is in effect. 

DIGITIZE )(_coord, Jf_coord 

READ LOCATOR )(_coord, Jf_coord 

inputs the )( and Jf coordinates of a digitized 
point. 

samples the locator device without waiting for a 
digitize operation. 

For more information on these statements read the chapter "Interactive Graphics and 
Graphics Input" found in the BASIC Graphics Techniques manual. An explanation of 
each of these statements may also be found in the BASIC Language Reference. 

19-24 HP-HIL Interface 

< . .J 



The following are absolute position devices: 

• HP 35723A (HP-HIL/Touchscreen) This module is a screen bezel which replaces 
the bezel of the HP 35731 (medium resolution black and white) and HP 35741 
(medium resolution color) 12-inch video monitors. It can be programmed to select 
various functions by simply touching the screen. Note that this device is simply 
a lower resolution digitizer. The Touchscreen can be used as a GRAPHICS INPUT IS 
device or with the ON HIL EXT statement. 

• HP 46087 A (A-size Digitizer) 
device. 

• HP 46088A (B-size Digitizer) 
device. 

This device is best used as a GRAPHICS INPUT IS 

This device is best used as a GRAPHICS INPUT IS 

If a three-axis absolute positioning device existed, it could always be used with HIL 
SEND and ON HIL EXT since it would not be recognized for use with: 

GRAPHICS INPUT IS KBD,"TABLET" 

Security Device 
The HP 46084A (HP-HIL ID Module) is an HP-1-UL device that returns an identification 
number for identifying you as the computer user. The identification number is unique 
to your particular ID Module. This allows application programs to use the ID Module 
to control access to program functions, data bases, and networks. Note that the identifi
cation number is the product/exchange and serial numbers returned in a packed format 
as explained in the section "ID Module" found in this chapter. 

This device can be used with SYSTEM$( "SERIAL NUMBER") or HIL SEND device 
address;RSC. 

HP-1-UL Interface 19-25 



Other Devices 
These devices can generate ON HIL EXT interrupts and respond to various HIL SEND 
commands. They all have HP-HIL device IDs less the 96 (60 hexadecimal). 

The HP 46086A (Function Box) provides 32 keys to select software-defined functions. It 
has an LED that acts as a visual prompt for any purpose you assign to it. This device 
uses a non-standard keycode set (Keycode Set 2) which is shown below. 

Keycode Set 2 for the Function Box 

(press value/release value) 

0/1 2/3 4/5 6/7 

8/9 10/11 12/13 14/15 16/17 18/19 

20/21 22/23 24/25 26/27 28/29 30/31 

32/33 34/35 36/37 38/39 40/41 42/43 

44/45 46/47 48/49 50/51 52/53 54/55 

56/57 58/59 60/61 61/63 

The HP 46086A (Function Box) responds to the following HP-HIL commands when sent 
by the HIL SEND statement: 

• PRM 

• ACK 

• DKA 

• EKA 1 

• EKA 2 

19-26 HP-HIL Interface 



The HP 46030A (Vectra Keyboard) provides 103 keys to select software-defined func
tions. It has three LEDs which act as visual prompts for any purpose you assign to 
them. This device uses Keycode Set 3 which is described in the "HIL Appendix." 

The Vectra Keyboard responds to the following HP-HIL commands when sent by the 
HIL SEND statement: 

• PRM 1 through 3 

• ACK 1 through 3 

• DKA 

• EKA 1 

• EKA 2 

In order to use an HP 46030A (Vectra Keyboard) as an auxiliary input device, you 
must have a computer capable of using the HP 98203C keyboard. It need not have an 
HP 98203C keyboard. 

The HP 92916A (Bar-Code Reader) reads all standard bar-codes using a wand as the 
input device. It provides you with an effective and reliable alternative to the time 
consuming keyboard for data entry. Note that BASIC supports this device in both the 
ASCII transmit mode, where the input from the device is ASCII charaeters and in the 
Keyboard mode 1

, where it transmits the same keycodes as an HP 46020/21A Keyboard. 
The codes which can be read by the Bar-Code Reader are: 3 of 9, Interleaved 2 out of 
5, UPC/EAN, and Codabars USD-4 and ABC. 

When the HP 92916A (Bar-Code Reader) is in the ASCII transmit mode use the following 
statement: 

• ON HIL EXT 

When the HP 92916A (Bar-Code Reader) is in the Keyboard mode use the following 
statements: 

• ON KBD 

• ENTER KBD 

• INPUT 

o LINPUT 

1 When in the Keyboard mode, this device returns an HP-HIL ID in the same range as an HP 46020/21A 
Keyboard. 

HP-HIL Interface 19-27 



Communicating with HP-HIL Devices 
This section of the chapter covers the use HP-HIL devices which support the HIL SEND 
and ON HIL EXT statements. In the examples covered in this section, you will be 
looking at four HP-HIL devices and how to use them in the HP-HIL link. 

• ID Module 

• Function Box 

• Touchscreen 

• Bar Code Reader 

HP-HIL Device Characteristics 
Once the HP-HIL device is in the link, you will need to verify its address and determine 
its characteristics. Accessing this information is the purpose of this section. 

To verify a device's address and determine its characteristics, use the HIL SEND ad
dress; IDD statement and HILBUF$ function. The HIL SEND address; IDD statement executes 
the HP-HIL Identify and Describe command. Data resulting from the execution of this 
command is placed in the buffer used by the HILBUF$ function. Assuming that the address 
of your device is 1, entering this program and running it will give you the information you 
need. Note that the information returned is hexadecimal and will have to be interpreted 
using the information found in the "HP-HIL Appendix" of this manual. 

100 HIL SEND 1;IDD 
110 A$=HILBUF$ 
120 FOR I= 1 TO LEN(A$) 
130 B$=IVAL$(NUM(A$[I]) ,16) 
140 PRINT B$[3] ;" "· 
150 NEXT I 
160 END 

Results from executing this program can be found under the topic heading "Device 
Characteristics" in each of these sections: 

• ID Module 

• Function Box and Vectra Keyboard 

• Touchscreen 

• Bar Code Reader 

19-28 HP-HIL Interface 

I_ \ 

'-' 

\ 

'J 



ID Module 
This module provides a means for securing your software. In this section, you will be: 

• Determining ID Module characteristics, 

• Verifying your ID Module's product/exchange and serial numbers, 

• Learning how to install and remove the ID Module. 

Device Characteristics 
This section provides and explains the results from executing the program found in the 
section entitled "HP-HIL Device Characteristics". Remember that these results assume 
your ID Module is located at address 1. The program results are as follows: 

00 04 01 34 04 

where: 

00 is a buffer overflow count. Zero means the buffer has not overflowed since 
last read. If the buffer of the HILBUF$ function overflowed, this value would 
represent the number of packets of information lost. 

04 is the number of bytes of data to follow this byte and including this byte. 
The number of bytes is 4. 

01 is the address of the device in the loop. The address of the device in this ease 
is 1 which means that it is the first device in the link with an address. 

34 is the type of device located at the address given. The device in this case, as 
interpreted from the "Device ID Byte Definitions" table found in the "HP-HIL 
Appendix" in this manual, is the ID Module. 

04 is the Describe Record for the device. This record helps you determine the 
device characteristics. To interpret this hexadecimal value, you need to turn 
to the "HP-HIL Appendix" found in this manual. Looking in the seetion 
entitled "Describe Record", you will find that if bit 2 is set then the device 
reports security code information. 

HP-HIL Interface 19-29 



Interpreting ID Module Data 
In this section, you will learn how to verify the product/exchange and serial numbers for 
your ID Module. 

To verify your product/exchange number, type in and execute the following program: 

100 Sn$=SYSTEM$("SERIAL NUMBER") 
110 OUTPUT Sn_disp$ USING "9D";256*(256*(256.*(NUM(Sn$[8]) MOD 64) 
+NUM(Sn$[7]))+NUM(Sn$[6]))+NUM(Sn$[5]) 
120 PRINT VAL$ (256* (256. *BIT(NUM(Sn$ [4]) , 7) +NUM (Sn$ [3])) +NUM (Sn$ [2])) &CHR$ 
(NUM(Sn$[4]) MOD 128),Sn_disp$[1,4]&CHR$(NUM(Sn$[9]) MOD 128)&Sn_disp$[5] 
130 END 

The results from executing the above program look similar to this: 

46084A 2529A10988 

The same results can be obtained using the HP-HIL Report Security Code command (Rsc) 
in the above program. This requires replacing program line 100 with three additional 
program lines as shown below. Note that you may need to replace line 120 with additional 
statements if your program is also using HILBUF$ to return other data. 

100 HIL SEND 3;RSC 
110 Temp_sn$=HILBUF$ 
120 Sn$=Temp_sn$[4,12] 
130 OUTPUT Sn_disp$ USING "9D";256*(256*(256.*(NUM(Sn$[8]) MOD 64) 
+NUM(Sn$[7]))+NUM(Sn$[6]))+NUM(Sn$[5]) 
140 PRINT VAL$(256*(256.*BIT(NUM(Sn$[4]),7)+NUM(Sn$[3]))+NUM(Sn$[2]))&CHR$ 
(NUM(Sn$[4]) MOD 128),Sn_disp$[1,4]&CHR$(NUM(Sn$[9]) MOD 128)&Sn_disp$[5] 
150 END 

19-30 HP-HIL Interface 



Note about Installing and Removing ID Modules 
The HP 46084 (ID Module) is an HP-HIL device which connects to the computer through 
the HP-HIL (HP Human-interface Link) interface. Normally you will be connecting this 
module to the computer before booting the system. When the KBD binary is loaded, the 
system recognizes that the module is installed. The SYSTEM$ function reads the module's 
contents each time the function is accessed, rather than keeping the contents in memory. 

The ID Module can also be installed while the computer is running. However, in order 
for BASIC to recognize that it has been connected, you must execute this statement: 

SCRATCH A 

Executing this statement performs a "rc-configuration" of the link, after which the BA
SIC system recognizes and can properly talk to any additional HP-HIL device. 

If your machine has both an ID PROM and an ID Module, the ID Module has precedence. 
In other words, if both arc installed (and recognized at boot or SCRATCH A), then the ID 
Module's contents are read and returned by the SYSTEM$ function. 

If you remove the ID Module and do not re-boot or execute SCRATCH A, then the SYSTEM$ 
function will return a null string (even if an ID PROM is present). This behavior is due 
to the fact that the system still expects the ID Module to be installed, and thus reads 
nothing when you attempt to read it with SYSTEM$. 

Conversely, if you install an ID Module in a machine with an ID PROM after booting 
BASIC and without performing a SCRATCH A, then SYSTEM$("SERIAL NUMBER") will return 
the ID PROM's contents (because it does not recognize that the ID Module is present). 

HP-HIL Interface 19-31 



Function Box and Vectra Keyboard 
This section deals mainly with the Function Box and not the Vectra keyboard. However, 
to use the Vectra keyboard you would use the same techniques as used for the Function 
Box. The main difference between the two devices are the number of keys and the 
keycode sets used. The Vectra keyboard has 103 keys and uses Keycode Set 3 found in 
the "HP-HIL Appendix." The Function Box has 32 keys and uses Keycode Set 2 which 
is found in the section entitled "Other Keyboards and Button Devices." Note that in 
order to use a Vectra Keyboard as an auxiliary input device, you must have a computer 
capable of using the HP 98203C Keyboard. It need not have an HP 98203C Keyboard 
(or any keyboard for that matter). This section covers the following topics: 

• Determining Function Box characteristics, 

• Activating the Function Box, 

• Trapping Key Presses, 

• Assigning Functions to Keys. 

Device Characteristics 
This section provides and explains the results from executing the program found in the 
section entitled "HP-HIL Device Characteristics". These results assume your ID Module 
is located at address 1. The program results are as follows: 

00 05 01 30 10 80 

where: 

00 is an overflow indicator. If the buffer to the HILBUF$ function overflowed, 
this value would represent the number of packets of information lost. 

05 is the number of bytes contained in the packet of information sent to the 
buffer used by the HILBUF$ function including that byte. 

01 is the address of the device within the HP-HIL link. The address of the device 
is 1 in this example. 

30 is the ID number of the device. This number helps to determine what devices 
are connected in the HP-HIL link. Hexadecimal 30 is the ID number for the 
Button Box as found in the table entitled "Device ID Byte Definitions" in 
the "HP-HIL Appendix." 

19-32 HP-HIL Interface 

•· ) 
\._1 



10 is the Describe Record Header. It returns information, such as what type 
of HP-HIL commands are supported by this device, proximity in/out infor
mation, and coordinate information. By use of the Describe Record Header 
information provided in the "HP-HIL Appendix" you will be able to inter
pret the information contained in this byte. In this case, the 4th bit of the 
Describe Record byte is set which indicates that the last byte in the packet 
of information is the 1/0 Descriptor Byte. 

80 is the I/0 Descriptor Byte. This byte contains information as found in the 
"1/0 Descriptor Byte" table in the "HP-HIL Appendix." You will find that 
bit 7 of this byte has been set. This indicates that the HP-HIL General 
Prompt and Acknowledge are supported by this device. 

Activating the Function Box 
A status light is located in the upper-righthand corner of your Function Box. You could 
use this light to indicate whether the buttons on the Funetion Box are active or non
active. The following program which is entitled "Activate" can be found on the "BASIC 
Manual Examples Disc." Note that the program assumes your Function Box's address is 
2. You may have to change this address if your Function Box's address is different from 
that found in the program. 

100 CLEAR SCREEN 
110 DISP "Do you want to activate the Function Box?"; 
120 DISP " Enter Yes or No."; 
130 INPUT "",Response$ 
140 IF LWC$(Response$[1,1])="y" THEN 
150 HIL SEND 3;PRM 
160 ON HIL EXT 8 CALL Key_service 
170 PRINT TABXY (15, 10)., "The status light is on and keys are active." 
180 ELSE 
190 HIL SEND 3;ACK 
200 OFF HIL EXT 
210 PRINT TABXY (15, 10) , "The status light is off and keys are not active." 
220 END IF 
230 Loop: GOTO Loop 
240 END 
250 
260 SUB Key_service 
270 PRINT "Key_service called." 
280 SUBEND 

HP-HIL Interface 19-33 



This program executes the HP-HIL General Prompt and Acknowledge commands using 
the statements found on lines 150 and 190 of the above program. When the program is 
run you are prompt by the following message: 

Do you want to activate the Function Box? Enter Yes or No. 

You need to type in either Yes or No. If your answer is Yes, the the status light on the 
Function Box lights up and this message is displayed: 

The status light is on and keys are active. 

Each time a button on the Function Box is pressed or released, this message is displayed: 

Key_service called. 

Note that the subprogram called Key_service just prints a message that it has been 
called. It is left up to you to write your own subprograms to assign processes to the keys. 
If you answered No to the prompt, the status light either remains off if it was already off 
or is turned off if it was on and the following message is displayed: 

The status light is off and keys are not active. 

Press the I PAUSE I key which pauses the program and allows you to re-run it or to go on 
to the next example. 

19-34 HP-HIL Interface 



Trapping Key Presses 
Key presses are recognized as interrupts and cause end-of-line branching when the ON 
HIL EXT statement is executed in your program. Recognition of a key press and then 
branching to a subprogram is called "trapping" a key press. The program given in 
this section provides a good example of trapping key presses. This program is called 
"Mul_press" and can be found on the "BASIC Manual Examples Disc." When you enter 
and run this program a Function Box key matrix is displayed on the screen. Each time 
you press a key that key's location in the key matrix is displayed on the screen. Note 
that you should only press one key at a time because the Function Box does not provide 
for multi-key presses. For example, pressing key number 12 on the Function Box results 
in the following being displayed: 

I I I I I I I 

I I I I I I I 

I I I I I 

I I I I I I I 

I I I I I I I 

I I II I I I 

HP-HIL Interface 19-35 



Releasing the same key you pressed causes key 12's matrix location to go blank. The fol
lowing program entitled "Mul_press" produced the above results. Note that this program 
assumes a Function Box address of 3. If your Function Box is not located at address 3, 
then you need to change the addresses on both lines 120 and 290 of the program to the 
proper address for your Function Box. 

100 CLEAR SCREEN 
110 
120 HIL SEND 3;DKA 
130 

Assumes button box at location 3. 
Disable Key Auto-repeat. 

140 COM INTEGER Array(31,1:2) 
150 INTEGER Key,Packet_length,Packet_start,Index,Packet_end 
160 INTEGER Keycode 
170 DIM A$[256] 
180 
190 DATA 2,1,3,1,4,1,5,1 
200 DATA 1,2,2,2,3,2,4,2,5,2,6,2 
210 DATA 1,3,2,3,3,3,4,3,5,3,6,3 
220 DATA 1,4,2,4,3,4,4,4,5,4,6,4 
230 DATA1,5,2,5,3,5,4,5,5,5,6,5 
240 DATA 2,6,3,6,4,6,5,6 
250 
260 READ Array(*) 
270 Framework 
280 enable device at location 3 (button box) 
290 ON HIL EXT 2-3 GOSUB Service_req 
300 
310 Loop:GOTO Loop 
320 
330 Service_req:! 
340 A$=HILBUF$ 
350 IF LEN(A$)=1 THEN RETURN no data in buffer 
360 Packet_start=2 
370 REPEAT 
380 Packet_length=NUM(A$[Packet_start]) 
390 Packet_end=Packet_start+Packet_length-1 
400 FOR Index=Packet_start+3 TO Packet_end 
410 Keycode=NUM(A$[Index]) 
420 Key=(Keycode DIV 2) 
430 Disp_key(Key,NOT BIT(Keycode,O)) 
440 NEXT Index 
450 Packet_start=Packet_end+1 
460 UNTIL Packet_start>LEN(A$) 
470 RETURN 
480 
490 END 

19-36 HP-HIL Interface 

. I 

\.J 

I 

0 



500 SUB Disp_key(INTEGER N,On) 
510 COM INTEGER Array(*) 
520 IF On THEN ! Even='downstroke'. 
530 PRINT TABXY (2*Array (N ,1) +17, 2*Array (N, 2) +4) , "II"; 
540 ELSE Odd=>'upstroke'. 
550 PRINT TABXY(2*Array(N,1)+17,2*Array(N,2)+4)," 11 • 

560 END IF 
570 SUBEND 
580 SUB Framework 
590 FOR I=O TO 10 STEP 2 
600 PRINT TABXY(18,I+5);"-------------" 
610 PRINT TABXY(18,I+6);"1 I I I I I I" 
620 NEXT I 
630 PRINT TABX¥(18,17);"-------------" 
640 SUBEND 

Here an explanation of the above program. 

Line 100 clears the display. 

Line 120 disables the auto-keyswitch repeat mode by executing the HP-HIL command 
DKA. 

Lines 140 through 170 declare the variables for the program. 

Lines 190 through 240 provide values for the element locations in the two dimensional 
array called Array. Note that OPTION BASE 0 is used for this program. 

Line 260 is a READ statement which assigns all of the values in the DATA statements of 
lines 190 to 240 to the clements in the array called Array. 

Line 270 calls the subprogram Framework which causes a 6 by 6 Function Box key matrix 
to be displayed on the screen. The subprogram Framework consist of lines 580 to 640. 

Line 290 enables end-of-line branching when a key on the Function Box is pressed. 

Line 310 is a continuous loop which allows the program to wait for key presses. 

Line 330 is the label for the beginning of the service routine called Service_req. 

Line 340 assigns the value of the buffer used by the function HILBUF$ to the string array 
called A$. 

HP-HIL Interface 19-37 



Line 350 tests the string length. If the string length is 1, then the data that generated 
this interrupt has already been read and a return from the subroutine is made. 

Line 360 assigns the value of 2 to the integer variable Packet_start. Note that 
Packet_start initially is the subscript for the second element in A$. This element tells 
how many ele,ments there are in the first packet of information including that element. 
This variable will also be the counter used to determine the starting position of each 
packet of information in the string array (A$). 

Lines 370 through 460 are a REPEAT loop used to search the data in the string array 
(A$) for each packet of key press information. Lines 400 through 440 scan the packet for 
the up or down key presses. Line 430 detects the up or down key press and passes this 
parameter to the subprogram called Disp_key. Note that the integer variable Key is the 
key which was either pressed or released. 

Line 470 is the return back from the subroutine. 

Lines 500 through 570 are the subprogram called Disp_key. This subprogram has a test 
in it for an up or down press of a key on the Function Box. Each time you press a 
key that key's location in the key matrix is displayed on the screen as an inverse video 
character. When you release that key a blank appears in the key matrix. 

Lines 580 through 640 are the subprogram called Framework which draws the key matrix 
on the display. 

Assigning Functions to Keys 
It was previously mentioned that processes or functions can be assigned to each key on 
the Function Box. These functions are not assigned in the same manner as those assigned 
to typing-aids keys nor do they have softkey labels which appear at the bottom of the 
display. 

A functions is assigned by pressing a key which causes an interrupt. This interrupt is 
trapped and causes a branch to a subprogram which sets a process in motion. Once the 
process is completed the subprogram returns execution back to the main program and 
waits for another key press. An example of this can be seen by typing in and executing 
the following program called "Button_box" on your "BASIC Manual Examples Disc." 
Keep in mind that only two keys are being used in this program. These keys are located 
in the top row starting from the left. Pressing the first key stops the program, pressing 
the second key draws a series of circles. Any other key press causes the following message 
to appear on the display: 

This key is not implemented. 

19-38 HP-HIL Interface 

! i 
1-._1 



Note that you must have the graphics binary (GRAPH) loaded in order for this program to 
work. Also, lines 120, 130, and 400 may have to be changed if your Function Box is not 
located at address 3 in order for the program to work. 

100 INTEGER Packet_length,Packet_start,Packet_end 
110 DIM A$[256] 
120 ON HIL EXT 2-3 GOSUB Service_req 
130 HIL SEND 3;PRM 
140 CLEAR SCREEN 
150 GINIT 
160 PEN 0 
170 GRAPHICS ON 
180 Loop:GOTO Loop 
190 
200 Service_req: ! 
210 A$=HILBUF$ 
220 IF LEN(A$)=1 THEN RETURN 
230 Packet_start=2 
240 REPEAT 
250 Packet_length=NUM(A$[Packet_start]) 
260 Packet_end=Packet_start+Packet_length-1 
270 FOR Index=Packet_start+3 TO Packet_end 
280 Key_check(NUM(A$[Index])) 
290 NEXT Index 
300 Packet_start=Packet_end+1 
310 UNTIL Packet_start>LEN(A$) 
320 RETURN 
330 
340 Prog_done:END 
350 ! 
360 SUB Key_check(INTEGER Key_num) 
370 SELECT Key_num 
380 CASE 0,1 
390 DISP "The program has STOPPED!" 
400 HIL SEND 3;ACK 
410 STOP 
420 CASE 2 
430 MOVE 50,50 
440 FOR I=1 TO 20 
450 POLYGON I,20,20 
460 NEXT I 
470 FOR I=20 TO 1 STEP -1 
480 POLYGON I,20,20 
490 NEXT I 
500 GCLEAR 

HP-HIL Interface 19-39 



510 
520 
530 
540 
550 
560 
570 
580 

CASE ELSE 
IF (Key_num MOD 2)=0 THEN 

PRINT TABXY(20 ,10), "This key 
WAIT 1 
CLEAR SCREEN 

END IF 
END SELECT 

SUB END 

is not implemented." 

The following is an explanation of the above program. This program assumes your 
Function Box is located at address 3 in the HP-HIL link. 

Lines 100 and 110 declare the integer and string variables. 

Line 120 executes the statement ON HIL EXT 8 which sets up a branch to be made to the 
subprogram Service_req. At the same time this branch is initiated Poll Record data 
is sent to the buffer used by the function HILBUF$. This data contains information on 
which key was pressed. You can trap these key presses and use them to activate various 
process. 

Line 130 turns on the status light of the Function Box. 

Line 140 clears the alpha display. 

Line 150 set the graphics parameters to their default values. 

Line 160 sets the graphics pen value to zero (0). 

Line 170 turns the graphics display on. 

Line 180 causes the program to loop until a key is pressed. 

Line 200 is the label for the beginning of the service routine called Service_req. 

Line 210 assigns the value of the buffer used by the function HILBUF$ to the string called 
A$. 

Line 220 tests the string length. If the string length is 1, then the data associated with 
this interrupt has already been processed, and a return from the subroutine is made. 

19-40 HP-HIL Interface 



Line 230 assigns the value of 2 to the intcg<.'r variable Packet_start. Note that 
Packet_start initially is the subscript for the seeond element in A$. This element tells 
how many elements there arc in the first paeket of information ineluding that element. 
This variable will also be the eounter used to determine the starting position of each 
paeket of information in the string (A$). 

Lines 240 through 310 are a REPEAT loop used to search the data in the string (A$) for 
eaeh packet of key press information. Lines 270 through 290 search the paeket for up or 
down key presses. Line 280 ealls the subprogram Key_check and passes it the value of 
the key yon have pressed. 

Line 320 is the return back from the subroutine. 

Lines 360 through 580 are the subprogram called Key_check. This subprogram is a 
large SELECT structure starting at line 370 and going to line 570. This strneture selects 
a particular process to be performed depending on which key has been pressed. One 
process can be found in each of the three different CASE segments. 

Lines 380 through 410 arc the first CASE segment. This segment when executed causes 
the following message to be displayed: 

The program has STOPPED! 

It also executes the I-IP-HIL command ACK (General Acknowledge) which turns the status 
light on the Funetion Box off and terminates the program. 

HP-HIL Interface 19-41 



Lines 420 through 500 are the second CASE segment. This segment causes circles to be 
displayed one inside the other starting with a small circle and going to a large one. It 
then erases these circles in the reverse order. 

Lines 510 to 560 are the third CASE segment. All key releases come through this CASE 
segment and are ignored due to line 520. This includes the release of key 2. Any key 
press coming here causes the following message to be displayed: 

This button is not implemented. 

Remember there are only two keys who's interrupts were recognized as a result of running 
this program. When you press one of the keys which does not cause a process to become 
activated the above message is displayed. 

19-42 HP-HIL Interface 



Using a Touchscreen 
As its name indicates, the Touchscreen responds to a touch of the screen. A touch 
of the screen will report you are in proximity and a release of this touch will report 
you are out of proximity. At the same time this device is reporting in and out proximity 
information it is also returning X andY axis coordinate information for the screen touch. 
Combining both of these characteristics, the user is able to do location selection using 
the Touchscreen. Below is a list of the topics covered in this section: 

• Determining Touchscreen characteristics, 

• Plotting selected locations. 

Device Characteristics 
Assuming the Touchscreen is located at address 2, it will return Identify and Describe 
information as follows: 

00 OB 02 8C 52 OA 01 38 00 2A 00 08 

where: 

00 is the overflow eounter. 

OB indieates the number of bytes of data to follow ineluding this byte (in this 
case there are 11). 

02 is the address of the deviee. 

8C is the deviee type. In this ease, it is the Touchscreen as determined from the 
table entitled, "Device ID Byte Definitions." 

52 is the Describe Record. This gives information about the device. The bit 
pattern for a Deseribe Record of 52 is as follows: 

Bit 0 is not set and bit 1 is. This says the device will return X and Y 
eoordinates. 

Bit 4 is set. This indicates that the last byte of the Describe Record is the 
1/0 Deseriptor byte. 

Bit 5 is not set. This indicates that the X and Y coordinates returned will 
only be 8 bits each (one byte). 

Bit 6 is set. This indieates that Absolute Positional data will be returned by 
the device. 

HP-HIL Interface 19-43 



OA 
01 

38 

00 

These two bytes are combined to give 010A (i.e. the 2nd byte is the more 
significant part of the number). Since bit 5 of the Describe Record is not set, 
this value is the number of counts per meter (in this case 266). 

These two bytes are combined to give 0038. (i.e. the 2nd byte is the more 
significant part of the number). This value represents the total number of 
absolute graphics units in the X-axis (in this case 56). 

2A These two bytes are combined to give 002A. (i.e. the 2nd byte is the more 
00 significant part of the number). This value represents the total number of 

absolute graphics units in the Y-axis (in this case 42). 

08 is the I/0 Descriptor Byte. Bit 3 of this byte is set indicating that the 
device indicates changes in proximity in or out status in its Poll Record (only 
returned when the status changes). 

Plotting Selected Locations 
This task requires the use of the statement ON HIL EXT. Information returned by the 
Touchscreen can be found in the buffer used by the HILBUF$ function. 

The following program called "Touch_plot" on the "BASIC Manual Examples Disc" 
continuously displays the X and Y coordinates of your finger or stylus as you move it 
across the screen. The first release of your touch on the screen will cause a MOVE to 
that position. Any subsequent screen releases will cause a line to be draw from the last 
coordinate position to the present one. This particular program only allows you to plot 
and draw lines to 6 different locations on the screen. 

19-44 HP-HIL Interface 

l ) 

"--" 



Below arc some sample results which you could receive from entering and running the 
program in this section. 

Point 6 X=40 Y=40 

The following program called "Touch_plot" returned the above results. Note that in 
order for this program to work on your BASIC system you need to change the address 
on line 210 to the address of your Touchscreen. The address currently assigned to this 
HP-HIL device in the program is 1 (2'0). 

100 CLEAR SCREEN Clear alpha. 
110 GINIT ! Initializes graphics. 
120 GRAPHICS ON ! Turn on graphics. 
130 WINDOW 0,56,0,43 ! Scale to match Touchscreen resolution. 
140 

HP-HIL Int<'rface 19-45 



150 INTEGER Test,Point,Packet_start,Packet_length,Packet_end 
160 INTEGER In_proximity,X_coord,Y_coord 
170 DIM A$[256] 
180 
190 PRINT TABXY(16 ,12), "Touch the screen at 6 different locations." 
200 
210 ON HIL EXT 2 GOSUB Service_req Assumes the Touchscreen is the 
220 
230 Point=! 
240 
250 Loop:GOTO Loop 
260 
270 Service_req: 
280 IF Point=! THEN CLEAR SCREEN 
290 A$=HILBUF$ 
300 IF LEN(A$)=1 THEN RETURN 
310 Packet_start=2 
320 REPEAT 

first device on the link. 

330 Packet_length=NUM(A$[Packet_start]) 
340 Packet_end=Packet_start+Packet_length-1 
350 IF BIT(NUM(A$[Packet_start+2]),1)=1 THEN 
360 X_coord=NUM(A$[Packet_start+3]) 
370 Y_coord=NUM(A$[Packet_start+4]) 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 

DISP "Point ";Point;": X= ";X_coord;" Y ";Y_coord 
END IF 
IF BIT(NUM(A$[Packet_start+2]),6)=1 THEN 

In_proximity=NUM(A$[Packet_end]) 
IF In_proximity=142 THEN 

IF Point=! THEN 
MOVE X_coord,Y_coord 

ELSE ! Point=2 thru 6. 
DRAW X_coord,Y_coord 

END IF 
END IF 

490 END IF 
500 Packet_start=Packet_end+1 
510 UNTIL Packet_start>LEN(A$) 
520 IF In_proximity=143 THEN 
530 Point=Point+1 
540 END IF 
550 IF Point<7 THEN RETURN 
560 DISP "You're Done" 
570 
580 END 

19-46 HP-HIL Interface 

( ) 
~ 



The following is an explanation of the above program. 

Line 100 clears the alpha screen. 

Line 110 initializes graphies to its default values. 

Line 120 turns graphics on. 

Line 130 sets the graphics seale to match the Touchscreen resolution. 

Lines 150 through 170 declare the program variables. 

Line 190 prompts the user to make 6 screen touches. This means moving your finger or 
stylus in and out of proximity 6 times. 

Line 210 enables end-of-line interrupts from the Touchscreen located at address l. 

Line 230 initializes the counter variable to 1. The counter variable is called Point and 
it keeps track of the number of times you have released your finger or stylus from the 
screen. 

Line 250 is a continuous loop which allows the system to wait for either a screen touch 
or release. 

Lines 270 through 560 is a subroutine called Service_req. Whenever a touch or release 
of the screen is made this service routine is called. 

Line 290 assigns the value of the buffer used by the function HILBUF$ to the string called 
A$. 

Line 300 tests the string length. If the string length is 1, then the data associated with 
this interrupt has already been processed, and a return from the subroutine is made. 

Line 310 assigns the value of 2 to the integer variable Packet_start. Note that 
Packet_start initially is the subscript for the second element in A$. This element tells 
how many elements there are in the first packet of information including that element. 
This variable will also be the counter used to determine the starting positiou of each 
packet of information in the string (A$). 

HP-HIL Interface 19-47 



Lines 320 through 510 are a REPEAT loop used to search the data in the string (A$) for 
each packet of screen touch and release information. Lines 350 through 490 check the 
packet for coordinate and proximity information. The REPEAT loop continues until the 
last element in the string A$ is reached. 

Lines 400 through 480 test for proximity in and out. As long as proximity in is detected \....._, 
the coordinates of your present finger or stylus position arc printed. Lines 430 through 
470 determine whether to draw a line on the display or to move the graphics pen to the 
initial position before plotting. 

Line 560 is reached when the sixth point is plotted on the screen. This line will cause 
the following to be displayed: 

You're Done 

Using a Bar Code Reader 
A Bar Code Reader may either act as a keyboard or a transmitter of ASCII characters. 
In this section, you will assume it is a transmitter of ASCII characters. When your Bar 
Code Reader is acting as a keyboard it is returning keyboard presses. When it is acting 
as an ASCII transmitter it is sending ASCII characters. 

To use this HP-HIL device as a reader of ASCII characters you need to program the ~ 
switches on its underside for the proper settings. The settings for these keys are explained 
in the installation manual for this device. Below is a list of settings you need to verify 
on the Bar Code Reader before booting the system. 

• The four switches used to define the Transmission Type (i.e. switches 5 through 8 
on the right-hand set of switches) should be set to all zeros. This puts you in the 
non-keyboard mode. 

• The Appended Key switch setting (i.e. switches 2 and 3 on the right-hand set 
of switches) should be set for none. This assures that no key operation will be 
appended to the end of your bar-code reading. 

19-48 HP-HIL Interface 



• The Bar Code Reader should have its Auto Recognition switch set (i.e. switch 1 
on the right-hand set of switches) and the bar code you arc going to be reading 
selected (usc the eight left-hand set of switches). The following arc possible bar 
code selections: 

• Interleaved 2/5 

• Code 3/9 

• Extended Code 3/9 

• CODABAR USD-4 and ABC 

• UPC/EAN/JAN 

• UPC E (8 digits) 

Note that the Automatic code recognition docs not mean that the bar-code reader will 
automatically know the codes you intend to read, you have to select them first. It does 
mean that it will automatically recognize the codes you have scleeted. For example, if 
you wanted to read bar codes that may be either the Interleaved 2 of 5 bar code or the 
3 of 9 bar code, you would set the right-hand set of switches to the following: 

• switch 8 to 1 

• switch 7 to 1 

• switches 6 through 1 to 0 

Topics covered in this section are: 

• Determining device characteristics, and 

• Transmitting ASCII Charaeters. 

Device Characteristics 
The following results assume the Bar Code Reader is at address 4. The Bar Code Reader 
returns Identify and Describe information as follows: 

00 04 04 5C 00 

If this is not the ease, you need to cheek the switch settings on the underside of your Bar 
Code reader again. 

HP-HIL Interface 19-49 



After the system has been re-booted you should do another Identify and Describe of the 
device to see that it is recognized as a Bar Code Reader. The program used to obtain 
this information is found in the section entitled "HP-HIL Device Characteristics." Your 
results after entering and running this program should be as follows: 

00 04 04 5C 00 

where: 

00 is the null character (packet overflow count). 

04 is the number of bytes to follow including this byte. 

04 is the address of the device. 

5C is the type of device which in this case is the Bar Code Reader. 

00 is the Describe Record Header with no special features. 

Transmitting ASCII Characters 
The device by now has been determined to be a Bar Code Reader and you are now ready 
to read the bar code you have selected. To do this, enter the program called "Bar _code" 
found on your "BASIC Manual Examples Disc" and run it. Note that if your Bar Code 
Reader is not located at address 4, then you need to change line 100 of the program to 
match your devices address. 

100 ON HIL EXT 2-4 CALL Disp_buf 
110 Loop:GOTO Loop 
120 END 
130 
140 SUB Disp_buf 
150 DIM A$[256] 
160 A$=HILBUF$ 
170 IF LEN(A$)=1 THEN RETURN 
180 Packet_start=2 
190 REPEAT 
200 Packet_length=NUM(A$[Packet_start]) 
210 Packet_end=Packet_start+Packet_length-1 
220 PRINT A$[Packet_start+3,Packet_end]; 
230 Packet_start=Packet_end+1 
240 UNTIL Packet_start>LEN(A$) 
250 PRINT 
260 SUBEND 

19-50 HP-HIL Interface 

' \-....._,~ 

' \"'-"' 

I \ 

\J 



To have data displayed on the screen, you need to move the Bar Code Reader's wand 
rapidly and at a constant speed across the bar code. The wand should also be held as 
shown: 

Maximum 15" 

Figure 19-2. The Correct Method for Holding the Bar Code Reader 

The following is an explanation of the program provided in this section. 

Line 100 enables end-of-line branching on movement of the wand across the bar code. 

Line 110 is a continuous loop which allows the program to idle while waiting for a bar
code reading. 

Line 140 is the beginning of the subprogram Disp_buf. This subprogram is used to display 
the data read by the Bar Code Reader. 

Line 160 dimensions the string A$. 

Line 170 tests for an empty buffer. If the buffer is empty the data that caused the 
interrupt has already been processed by a previous invocation of the service routine, so 
it simply returns to the idle loop on line 110. 

If the buffer is not empty, a REPEAT loop in lines 190 through 240 causes ASCII bar 
code information to be displayed. 

HP-HIL Interface 19-51 



Line 180 assigns the value of 2 to the integer variable Packet_start. Note that 
Packet_start initially is the subscript for the second element in A$. This element tells 
how many elements there are in the first packet of information including that element. 
This variable will also be the counter used to determine the starting position of each 
packet of information in the string (A$). 

Lines 190 through 240 are a REPEAT loop used to search the data in the string (A$) for 
each packet of information in the string A$. 

Line 220 prints out the ASCII characters found in each packet. 

To end the program press the I Stop I key. 

Interaction Between Multiple HP-HIL Devices 
End-of-line interrupts can be handled when they come from more than one HP-HIL 
device during program execution. To demonstrate this a program called Multi_dev has 
been provided for you to load and run from the "BASIC Manual Examples Disc." The 
program and its explanation are included in this section. Note that line 1030 of this 
program assumes that you have a Touchscreen located at address 1 and a Function Box 
located at address 3. If these are not the correct addresses for your devices, you will 
have to change the address mask on line 1030 of this program. For information on how 

I 

~ 

to change the address mask, read the section in this chapter entitled "Communicating '"'-' 
through the HP-HIL Interface." 

The interaction covered in this section is between a Touchscreen and a Function Box. 
Both of these devices could easily be replaced by two other HP-HIL devices which are 
supported by the ON HIL EXT and/or HIL SEND statements. To do this, you would 
have to make a few variables changes to suit the new program and write new subprograms 
which would be appropriate for the HP-HIL devices you are using. 

1000 DIM Buf$[256] ,Packet$[15] 
1010 INTEGER Index,Hil_addr 
1020 
1030 ON HIL EXT 10 GOSUB Disp_buf Set up interrupts for 
1040 addresses 1 and 3. 
1050 GINIT ! Initialize 
1060 GRAPHICS ON ! Turn on graphics. 
1070 PRINT TABXY (16, 4) , " This program allows you to touch a point on" 
1080 PRINT TAB(16),"the screen and draw a figure at that location" 
1090 PRINT TAB(16),"by pressing a key on the Function Box. The" 
1100 PRINT TAB(16),"keys are numbered from left to right starting" 
1110 PRINT TAB(16), "with the top row of Function Box keys." 

19-52 HP-HIL Interface 

u 



1120 
1130 
1140 
1150 
1160 
1170 

PRINT 
PRINT TAB(21),"Key 
PRINT TAB(21),"Key 
PRINT TAB(21),"Key 
PRINT TAB(21),"Key 
PRINT 

1 draws a TRIANGLE." 
2 draws a SQUARE." 
3 draws a PENTAGON." 
4 draws a CIRCLE." 

1180 PRINT TAB(16),"To continue with the program:" 
1190 PRINT 
1200 PRINT TAB(21),"Press 'Continue', or" 
1210 PRINT TAB(21),"Type 'CONT' and press 'Return'." 
1220 PAUSE 
1230 CLEAR SCREEN ! Clear the alpha display. 
1240 WINDOW 0,56,0,43 ! Scale to match Touchscreen resolution. 
1250 
1260 Loop:GOTO Loop 
1270 
1280 Disp_buf : ! 
1290 Buf$=HILBUF$ 
1300 IF LEN(Buf$)=1 THEN RETURN ! Data already processed. 
1310 Packet_start=2 ! Skip "overflow" indicator. 
1320 REPEAT 
1330 Packet_length=NUM(Buf$[Packet_start]) ! Determine packet length. 
1340 Packet_end=Packet_start+Packet_length-1 ! Find end of packet. 
1350 Packet$=Buf$[Packet_start,Packet_end] 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 

Hil_addr=NUM(Packet$[2]) 
SELECT Hil_addr 
CASE 1 ! Touchscreen 

CALL Touchscreen(Packet$) 
CASE 3 ! Function box 

CALL Function_box(Packet$[4]) 
END SELECT 

1450 Packet_start=Packet_end+1 Prepare for next packet. 
1460 
1470 UNTIL Packet_start>LEN(Buf$) 
1480 PRINT 
1490 RETURN 
1500 END 
1510 
1520 SUB Touchscreen(Coordinate$) 
1530 
1540 IF BIT(NUM(Coordinate$[3]) ,1)=1 THEN 
1550 X_coord=NUM(Coordinate$[4]) 
1560 Y_coord=NUM(Coordinate$[5]) 
1570 MOVE X_coord,Y_coord 
1580 END IF 
1590 SUBEND 
1600 

HP-HIL Interfaee 19-53 



1610 SUB Function_box(Key_press$) 
1620 INTEGER Key_num 
1630 WHILE LEN(Key_press$) 
1640 Key_num=NUM(Key_press$) 
1650 SELECT Key_num 
1660 CASE 0,1 
1670 POLYGON 5,3,3 
1680 CASE 2,3 
1690 POLYGON 5,4,4 
1700 CASE 4,5 
1710 POLYGON 5,5,5 
1720 CASE 6,7 
1730 POLYGON 5,50,50 
1740 CASE ELSE 
1750 BEEP 
1760 END SELECT 
1770 Key_press$=Key_press$[2] 
1780 END WHILE 
1790 SUBEND 

The following is an explanation of the above program. This program as lines 1070 to 
1110 state allows you to touch a point on the screen and draw a figure at that location 
by pressing a key on the Function Box. The keys are numbered from left to right starting 
with the top row of Function Box keys. 

Line 1030 initiates the end-of-line interrupts for the HP-HIL devices located at addresses 
1 and 3. To do this you need to know how to set up the mask which will cause end-of-line 
interrupts to be recognized by both devices .. The mask value is obtained by raising 2 by 
the power of each of the addresses and adding these values. For example, 2 raised to the 
first power added to 2 raised to the third power results in the value 10 for your mask. 
When an interrupt is received from either of the HP-HIL devices, program execution 
branches to the subroutine called Disp_buf. 

The subroutine Disp_buf includes lines 1280 through 1490. This subroutine separates the 
packets of data sent by each HP-HIL device to the string buffer of the function HILBUF$ 
and sends those packets to appropriate subprograms which process this data. In other 
words, packets containing the address 1 are sent to the subprogram called Touchscreen 
and those packets with address 3 are sent to the subprogram called Function_box. Once 
the string buffer has been completely processed the subroutine is exited. 

19-54 HP-HIL Interface 

u 



Touchscreen is the subprogram located in lines 1520 through 1590 which searc~hes the 
string Coordinate$ to determine if it has X and Y axis coordinate information. If coor
dinate information is available, it is assigned to the variables X_coord and Y_coord. The 
graphics pen is next moved to the location of these coordinates. Plotting of the figures 
will start at these locations. Once the pen move is made program execution is returned 
to the main program. 

Now that a screen location has been selected pressing a key on the Function Box will 
cause a triangle, square, pentagon or circle to be drawn at that location. The subprogram 
called Function_ box located at lines 1610 to 1790 receives the string called Key _press$ 
and looks at its fourth byte for the number of the key which was pressed and assigns that 
value to the variable called Key _num. The SELECT structure uses the variable Key _num to 
choose which figure should be drawn at the last selected screen location. Note that the 
CASE segment will responded to both the press and release of a Function Box key. The 
WHILE loop on lines 1630 through 1780 handles multiple keys in the packet, since the 
program only expects keycodes from the Function Box. 

Modifying the Interactive Program 
The program explained in the previous section made the assumption that there was a 
Touchscreen located at address 1 and a Function Box located at address 3. If you didn't 
have those HP-HIL devices or they weren't located at the addresses given above, you 
would need a way of determining what devices were on your HP-HIL link and their 
address. This section provides a method for doing this. 

Determining which HP-HIL devices are on the HP-HIL link and their address, can be 
accomplished by adding the following FOR loop to the your program: 

1030 ON ERROR GOTO Link_end 
1040 FOR I=1 TO 7 
1050 HIL SEND I;IDD 
1060 Buf$=HILBUF$ 
1070 Idd(I)=NUM(Buf$[4]) 
1080 NEXT I 
1090 Link_end: ! 

These program lines can be inserted in the previous program just after line 1020. The 
FOR loop consisting of lines 1040 through 1080 is designed to loop 7 times because that 
is the maximum number of addressable devices you may have on the HP-HIL link at any 
time. If there are less than 7 devices on the link an error occurs and the FOR loop exits 
to line 1090 labeled Link_end. This branch to the label Link_end is a result of the ON 
ERROR statement on line 1030. 

HP-HIL Interface 19-55 



Line 1050 uses the HIL SEND statement along with the HP-HIL IDD command to deter
mine the device's location in the HP-HIL link, as well as its Device ID. Using the Device 
ID number returned upon executing the HIL SEND address; IDD statement, you can deter
mine what your device is by looking the number up in the "Device ID Byte Definition" 
table found in the "HP-HIL Appendix" in the back of this manual. 

Information returned after executing the HIL SEND address; IDD statement is placed in 
the string buffer of the HILBUF$ function. Line 1060 takes the information found in this 
string buffer and assigns it to the string variable Buf$. 

Line 1070 assigns the integer value of the fourth element of Buf$ to the integer array 
variable Idd (I). The fourth element in Buf$ is the Device ID number. "I" (device address) 
in the subscript portion of the array is incremented as many times as there are devices 
in the link. 

A SELECT structure lines 1500 through 1610 can be added to the program to access 
various subprograms which perform a process for a specified HP-HIL device on the link. 
A device address called Hil_addr is used as an index to the array Idd to obtain the 
device ID number associated with the index value. For example, if 1 is assign to the 
variable Hil_addr and Hil_addr is used as the index to the array Idd and the device ID 
number found at that index is 48 (decimal), the subprogram Function_ box is called and 
its process is executed. Note that the additional SELECT structure should follow line 1370 
of the program. The SELECT structure contains the following program lines: 

1500 SELECT Idd(Hil_addr) 
1510 CASE 0 to 31 
1520 Vectra(Packet$) 
1530 CASE 48 
1540 Function_box(Packet$[4]) 
1550 CASE 92 
1560 Bar_code(Packet$) 
1570 CASE 140 
1580 Touchscreen(Packet$) 
1590 CASE ELSE 
1600 Ignore 
1610 END SELECT 

19-56 HP-HIL Interface 

~~ 

I ,......._, 



Table of Contents 

Appendix A: HP-HIL Appendix 
HP-HIL Command Reference.......................................... A-2 

Identify and Describe (IDD)....................................... A-2 
Read Register (RRG)............................................. A-3 
Write Register (WRG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-3 
Report Name (RNM)............................................. A-4 
Report Status (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4 
Extended Describe (EXD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 
Report Security Code (RSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5 
Disable Keyswitch Autorepeat (DKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6 
Enable Keyswitch Autorepeat (EKA 1,EKA 2) . . . . . . . . . . . . . . . . . . . . . . A-6 
Prompt I thru Prompt 7 (PRM 1 .. PRM 7). . . . . . . . . . . . . . . . . . . . . . . . . A-7 
Prompt (PRM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-7 
Acknowledge 1 thru Acknowledge 7 (ACK 1 .. ACK 7) . . . . . . . . . . . . . . . A-8 
Acknowledge (ACK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8 
Device-Dependent Commands (DDC 128 .. 239) . . . . . . . . . . . . . . . . . . . . . A-9 

Device ID Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-10 
Describe Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-14 
Extended Describe Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-18 
Poll Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-21 
Report Security Code Record......................................... A-24 
Accessible Keycode Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-30 





HP-HIL Appendix A 
This appendix contains information necessary for the development of drivers for HP-HIL 
devices. The conteats of this appendix should be used in conjunction with the chapter 
in this manual entitled "HP-HIL Devices". This appendix has been divided into the 
following section: 

e HP-HIL Command Reference 

e Device ID Byte 

e Describe Record 

e Extended Describe Record 

o Poll Record 

o Report Security Code Record 

o Accessible Keycode Definitions 

For more information on how HP-HIL devices work, order the HP-HIL Technical Refer
ence Manual (HP product number 45918A). 

HP-HIL Appendix A-1 



HP-HIL Command Reference 
This section provides information for each of the existing HP-HIL commands which are 
supported by BASIC. The usage of the command is given first, followed by a brief listing 
of the characteristics of the command. ~~ 

The characteristics of the commands include: 

• how or what the command is used for 

• device identification 

• data input 

• data output 

• what commands are not supported by most devices 
• a verbal description of the operation of the command 

If a device does not support a particular command, it will ignore the command when 
sent to it. 

Identify and Describe (IDD) 
Usage: 

Characteristics: 

Description: 

The IDD command is used to determine the type of the attached 
devices, as well as some general characteristics of the device re
quired to understand the data it reports. 

Used for device identification. 

A device responds to the IDD command by first transmitting the 
device ID byte. The Device ID Byte is used to identify the general 
class of device and the nationality (in the case of a keyboard other 
than the HP 98203C). After the ID byte, a series of data bytes, 
referred to as the Describe Record, is transmitted. This Record 
will vary in length from 1 to 10 data bytes. See the "Device ID 
Byte" and "Describe Record" sections of the "HP-HIL Appendix". 

A-2 HP-HIL Appendix 



Read Register (RRG) 
Usage: 

Characteristies: 

Description: 

Read Register provides the System with an alternate method of 
collecting data from a device supporting RRG. Note that RRG is 
not supported by most HP-HIL devices. 

Used for data input. 
Not supported by most devices. 

A deviee indicates support of the Read Register command in the 
Extended Describe Record, also indicating the spec.ific read reg
isters eontained in the device. To perform a register read, the 
System transmits the address of the register to be read, with the 
Read Register command. The device, upon receiving the com
mand, transmits the contents of the register. 

If the register address is outside the range supported by the device, 
it rPturns a Register I/0 Error. It is not possible to read more 
than a single register at a time using this command. 

Devices whieh do not support the Read Register command will 
ignore it (no Register I/0 Error is sent). 

Write Register (WRG) 
Usage: 

Characteristics: 

Description: 

Write Register provides a means of setting the contents of indi
vidual registers in devices supporting this advanced feature. 

Used for data output. 
Not supported by most devices. 

There are two forms of the Write Register command. Devices indi
cate support of either of these two forms (or both) in the Extended 
Describe Record. Both Write Register forms are support('d to ac
commodate devices which support only one or the other form, but 
they are equivalent capabilities as supported by BASIC. 

A Register I/0 Error is transmitted from the device if the register 
address is outside the range supported by the device, or an un
supported type of transfer is used. 

Devices which do not support the Write Register command will 
ignore it (no Register I/ 0 error is sent). 

HP-HIL Appendix A-3 



Report Name (RNM) 
Usage: 

Characteristics: 

Description: 

Report Name is used to request a string of up to 15 characters (8-
bit ASCII) which would aid in describing the device to the user. 

Used for device identification. 
Not supported by most devices. 

Characters returned are US ASCII. Devices indicate support of 
the Report N arne command in the Extended Describe Record. 

Report Status (RST) 
Usage: 

Characteristics: 

Description: 

Report Status is used to extract device-specific status information 
from devices configured on the Link. 

Used for data input. 
Not supported by most devices. 

Devices indicate support of the Report Status command in the 
Extended Describe Record. Devices supporting the command will 
respond with from 1 to 15 bytes of device-specific status informa
tion. Interpretation of the status bytes will necessarily depend 
upon the device in question. 

A-4 HP-HIL Appendix 



Extended Describe (EXD) 
Usage: 

Charaeteristies: 

Deseription: 

Extended Deseribe provides additional information eoneerning 
more advaneed deviee features whieh may not be required for basie 
operation. 

Used for deviee identifieation. 
Not supported by most deviees. 

Support of the Extended Deseribe eommand is indieated in the 
Deseribe Reeord. Deviees supporting the EXD eommand respond 
with a series of data bytes referred to as the Extended Deseribe 
Reeord. The reeord length may vary from 1 to 15 bytes (although 
only 6 bytes are eurrently defined). Detailed information on the 
Extended Deseribe Reeord ean be found in the seetion of this 
appendix entitled "Extended Deseribe Reeord". 

Report Security Code (RSC) 
Usage: 

Charaeteristies: 

Description: 

The Report Seeurity Code eommand is used to extract a unique 
identifier from a deviee. 

Used for data input. 
Not supported by most deviees. 

Support of the eornmand is indicated in the Describe Record. The 
Security Code Record consists of a Header and 1-14 bytes of data, 
which uniquely identify the device in question. See the "Report 
Security Code Reeord" section of this appendix for further infor
mation. 

HP-HIL Appendix A-5 



Disable Keyswitch Autorepeat (DKA) 
Usage: 

Characteristics: 

Description: 

This command is used to disable the "repeating keys" feature in 
the addressed device, reducing returned data to one report per 
keyswitch transition. 

Not supported by most devices. 

The default condition of devices supporting DKA and EKA Au
toRepeat Commands is Keyswitch AutoRepeat Disabled. More 
advanced key repeat features may be implemented using device 
specific commands. 

Note that this AutoRepeat is independent of the normal Keyboard 
AutoRepeat implemented by Series 200 and 300 computers. 

Enable Keyswitch Autorepeat (EKA 1 ,EKA 2) 
Usage: 

Characteristics: 

Description: 

These two commands are used to enable the "repeating keys" 
feature in the addressed device (if the feature is supported). 

Not supported by most devices. 

When Keyswitch AutoRepeat is enabled, most keys will repeat at 
the rate of one report every 40 milliseconds. Following a keyswitch 
down transition, a delay of 200 ms will occur and the key begins 
to repeat. Modifier keys (I Shift I, I CTRL I, I Extend char I, etc.) will not 
repeat, while based on the argument of the Enable Keyswitch Au
toRepeat command the Cursor Keys (cursor left, right, up, and 
down) will repeat at either 20 millisecond or 40 millisecond inter
vals. Most keys repeat by generating repeated down transitions 
corresponding to the key position being repeated, although re
peating cursor keys on an ITF Keyboard will report a keycode 
of 02(hexadecimal). Since the BASIC system does not recognize 
02 as a valid Keycode, the effect is no cursor key autorepeat for 
either argument with the ITF Keyboard. 

Note that this autorepeat is independent of the normal Keyboard 
AutoRepeat implemented by Series 200 and 300 computers. 

A-6 HP-HIL Appendix 



Prompt I thru Prompt 7 (PRM 1 .. PRM 7) 
Usage: 

Characteristics: 

Description: 

Prompt (PRM) 
Usage: 

Characteristics: 

Description: 

These commands are used to provide an audible or visual stimu
lus to the user, perhaps indicating that the System is ready for a 
particular type of input. Although intended to be directly associ
ated with Acknowledge 1 thru Acknowledge 7 and Button 1 thru 
Button 7, this association is not a requirement. 

Used for data output. 
Not supported by most deviees. 

The Prompts and Acknowledges supported are indicated in the 
Describe Record. All unsupported Prompts will be treated the 
same as other unsupported commands. 

Intended as a general-purpose stimulus to the user. Prompt is not 
intended to be associated with a particular Button as are Prompt 
1 thru Prompt 7. 

Used for data output. 
Not supported by most devices. 

A device indicates support of Prompt in the Describe Record. 

HP-HIL Appendix A-7 



Acknowledge 1 thru Acknowledge 7 (ACK 1 .. ACK 7) 
Usage: 

Characteristics: 

Description: 

These commands, similar to the Prompt 1 thru Prompt 7 com
mands, are intended to provide an audible or visual response to the 
user, and are generally directly associated with the corresponding 
Prompt and Button of the same number, although this is not a 
requirement. 

Used for data output. 
Not supported by most devices. 

Since there is no explicit "Prompt Off" function provided, this 
functionality may be part of the Acknowledge definition for a par
ticular device. 

The Prompts and Acknowledges supported by the devices are in
dicated in the Describe Record, and all unsupported Prompts will 
be treated the same as other unsupported commands. 

Acknowledge (ACK) 
Usage: 

Characteristics: 

Description: 

Similar to Prompt, Acknowledge is not associated with any par
ticular Button, but is intended merely as a general purpose audio 
or visual response to the user. 

Used for data output. 
Not supported by most devices. 

Since there is no explicit "Prompt Off" function provided, this 
functionality may be part of the Acknowledge definition for a par
ticular device. Support of Prompt and Acknowledge is indicated 
in the Describe Record. 

A-8 HP-HIL Appendix 

\~ 

\ v 



Device-Dependent Commands (DOC 128 .. 239) 

Usage: 

Characteristics: 

Description: 

A range of 112 commands has been reserved for usc as "device
dependent" commands. 

Not supported by most devices. 

These eornmands arc intended for usc by devices with special 
requirements which the other HP-HIL commands do not really 
support. Devices should use Read and Write Registers and the 
Prompts and Acknowledges for special functionality where possi
ble. 

HP-HIL App<'ndix A-9 



Device ID Byte 
This section defines the device ID bytes for all types of devices currently defined or an
ticipated and lists the ID numbers which have currently been allocated. Nationalization 
for Keyboards is given in the second table. \~ 

The Device ID Byte is used to identify the general class of device and the nationality 
(language) in the case of a Keyboard. Since it is not possible to designate the character
istics of all future devices, the ID Byte should be used to identify only the basic type of 
device and the nationality (for a Keyboard). 

The following table gives device ID Byte definitions for general classes of devices (key
boards, absolute positioners, etc.). For keyboard type devices other than the HP 98203C, 
note that the ID has a range of 00 to IF. This allows for the nationalization to be em
bedded in the ID Byte. The table of nationalized ID definitions gives the lower five bits 
of the ID Byte. Thus a French ITF keyboard (with an ID range of CO to DF), would 
report its ID Byte as DB (CO+ IB). 

A-10 HP-HIL Appendix 

' l 
~ 



Table B-1. Device ID Byte Definitions 

Device ID Range Assigned HP Product 
Type (hexadecimal) Device IDs· HP-HIL Device Name Number 

Keyboard AO .. FF EO Model 236 type keyboard 98203C 
Group 1 CO .. DF ITF Keyboard 46020/21A 

AO .. BF Integral Keyboard 

95 11 x 11 Graphics Tablet 45911A 
Absolute 80 .. 9F 94 Sille-B Digitiller 46088A 
Positioners 93 Sille-A Digitiller 46087A 

sc Touchscreen 35723A 

66 2-Button Mouse 46060A 
66 3-Button Mouse 46060B 

Relative 60 .. 7F 61 Quadrature Port 46094A 
Positioners 61 Control Dials 46085A 

GO Rotary Control Knob 4G083A 

Character 40 .. 5F 5C Barcode Reader 9291GA 
Entry 

Other 20 .. 3F 34 ID Module 4G084A 
Devices 30 Function Box 4G066A 

Keyboard 00 .. lF 00 .. 1F Vectra Keyboard 46030A 
Group 2 

HP-HIL Appendix A-ll 



Table B-2. Keyboard Nationalized ID Definition 

Lower 5 Bits of Device ID Byte Nationality of 
(hexadecimal) Keyboard/Keypad 

00 Other* 
\ 

01 reserved 

02 Kanji 

03 Swiss /French 

04 Portuguese 

05 Arabic 

06 Hebrew 

07 Canadian/English 

08 Turkish 

09 Greek 

OA Thai (Thailand) 

OB Italian 

oc Hangul (Korea) 

OD Dutch 

OE Swedish 

OF German 

10 Chinese-PRC (China) 

11 Chinese-ROC (Taiwan) 

12 Swiss/French II 

13 Spanish 

14 Swiss/German II 

15 Belgian (Flemish) 

16 Finnish 

17 United Kingdom 

18 French/Canadian 

19 Swiss/ German 

* See the section "Extended Describe Record" for usage. 

A-12 HP-HIL Appendix 



Table B-2. Keyboard Nationalized ID Definition (continued) 

Lower 5 Bits of Device ID Byte Nationality of 
(hexadecimal) Keyboard/Keypad 

lA Norwegian 

1B French 

IC Danish 

1D Katakana 

IE Latin American/Spanish 

IF United States 

HP-HIL Appendix A-13 



Describe Record 
The Identify and Describe command is used to determine the type of device(s) attached 
to the Link and also what their characteristics are. 

When a device receives the IDD command, the device will respond by returning a device 
ID byte followed by the Describe Record. The Record consists of 1 to 10 bytes of 
information. The first byte of the Describe Record is the Describe Record Header. If the 
device reports positional information, then 2 bytes will follow containing the resolution 
of the device. If the device is an absolute positioner, then the maximum count per axis 
is then reported (for each axis), 2 bytes per axis. The last byte of the Describe Record 
is the 1/0 Descriptor Byte. 

The Describe Record is shown graphically below: 

Device ID 

Describe Record Header 

Number of counts I em (m) Low Byte 

Number of counts I em (m) High Byte 

Maximum Count X-axis Low Byte 

Maximum Count X-axis High Byte 

Maximum Count Y -axis Low Byte 

Maximum CountY-axis High Byte 

Maximum Count Z-axis Low Byte 

Maximum Count Z-axis High Byte 

IIO Descriptor Byte 

A-14 HP-HIL Appendix 



Every device will respond to the IDD command with at least 2 bytes of data, the Device 
ID Byte, and the Describe Record ( 1 to 10 bytes). Cursor positioning devices and devices 
containing buttons, proximity detection, and/ or prompt/ acknowledge functions will need 
to report additional information. The Describe Record H0ackr contains some information 
about the device and provides an indicator of how much additional information is to 
follow the Header. The description of the Describe Record Header follows: 

Bit 7 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

Bit 2 

Bit 1,0 

Set if the device contains two independent sets of coordinate axes. Consider, 
for example, a device which interfaces two joysticks to HP-HIL, each with its 
own independent set of X, Y axes. It is assumed, however, that both sets of 
coordinate axes share common characteristics as identified in the remainder 
of the record. Default (clear) indicates a maximum of one set of axes. 

Set if the device is to return absolute positional data (unsigned integers). 
Default ( elear) indicates relative data (2's complement). 

Set if the device returns all positional information at 16-bits/axis. Default 
(clear) is 8-bitsjaxis. 

Set if the I/0 Descriptor Byte is to follow later in the Describe Record. De
fault (clear) indicates that the deviee has no buttons, no proximity detection, 
and no prompt/acknowledge functionality, with no I/0 Descriptor Byte to 
follow. 

Set if the device supports the Extended Describe command. Default (clear) 
indicates Extended Describe command is not supported. 

Set if the device supports the Report SPcuri ty Code command. Defanl t (clear) 
indicates Report Security Code is not supported. 

Bit 1 and bit 0 indicate the coordinate axes the' device will report. If non
zero, then following the header will be 16 bits describing tlw resolution of th0 
device, and in the case of an absolute positioner, 16 bits/axis detailing the 
extent of each coordinate axis. 

Bit 1 Bit 0 Axes Reported 

0 0 none 

0 1 X 

1 0 X andY 

X, Y, and Z 

HP-HIL Appendix A-15 



If the Describe Record Header indicates a non-zero number of axes for which the device 
will report positional information, then following the Header will be 16 bits describing 
the resolution of the device in counts per centimeter if the device reports data in a 16-bit 
format, or in counts per meter if 8-bit format. In the case of an absolute positioner, 
following the Number of Counts/em (m) will be 16 bits per axis indicating the maximum 
extent of each axis for which the device reports data, assuming an origin at the lower 
left. This is the maximum count per axis the device is capable of reporting, based on a 
minimum value of 0. Note that these values are reported as 16 bits regardless of whether 
the device indicates 8-bit or 16-bit data reporting format. 

The I/0 Descriptor Byte indicates the buttons the device will report keycodes for, 
whether the device has proximity detection, and what Prompt/ Acknowledge functions, 
if any, are implemented in the device. Note that Prompt and Acknowledge are treated 
as a set, and no device may indicate support of any particular Prompt or Acknowledge 
without also supporting its counterpart. If none of the above features are implemented, 
the I/0 Descriptor byte may not be transmitted. The following is the definition of the 
I/0 Descriptor byte: 

Bit 7 

Bits 6,5,4 

Set if the device implements the general purpose Prompt and Acknowledge 
functions. Default (clear) implies these functions are not implemented. 

Bits 6, 5, and 4 indicate specific Prompt/ Acknowledges (Prompt 1 thru 
7 and Acknowledge 1 thru 7) implemented by the device. Default (clear) 
indicates none. 

Prompt/ Acks. 
Bit 6 Bit 5 Bit 4 Implemented 

0 0 0 none 

0 0 1 1 

0 1 0 1 and 2 

0 1 1 1, 2, and 3 

1 0 0 1 thru 4 

1 0 1 1 thru 5 

1 1 0 1 thru 6 

1 1 1 1 thru 7 

A-16 HP-HIL Appendix 

\ 
I 

~' 

\ 

\J 



Bit 3 Set if the device will report the Proximity In/Out keycodes. Default 
(dear) indieates no proximity detection. 

Bits 2,1,0 Bits 2, 1, and 0 indicate the buttons for which the deviee will report 
keyeodes. 

Bit 2 Bit 1 Bit 0 Buttons Reported 

0 0 0 none 

0 0 1 1 

0 1 0 1 and 2 

() 1,2,and3 

1 () () 1 thru 4 

() 1 1 thru 5 

1 1 () 1 thru G 

1 1 thru 7 

HP-HIL Appendix A-17 



Extended Describe Record 
Support of the Extended Describe command is indicated in the Describe Record Header. 
The Extended Describe Record provides additional information concerning more ad
vanced features which may not be required for basic operation. 

Devices supporting the Extended Describe command respond with a series of data bytes 
referred to as the Extended Describe Record. The record length may vary from 1 to 15 
bytes (although only 6 bytes are currently defined). The Extended Describe Record has 
the following format: 

Extended Describe Record Header 

Maximum Read Register Support 

Maximum Write Register Support 

Maximum Write Buffer Length Low Byte 

Maximum Write Buffer Length High Byte 

Localization Code 

A-18 HP-HIL Appendix 

u 

' 
l \ \.._./ 



Devices responding to the Extended Describe command return at least 1 byte of data, the 
Extended Describe Record Header. Devices supporting Read Register or Write Register 
or those returning a Localization Code will need to report additional information so that 
their capabilities may be more fully defined. The Extended Describe Record Header both 
supplies some of the parameters of the device and provides an indication of how much 
additional information is to follow. The meanings of the individual bits in the Header 
are as follows: 

Bit 7 

Bit 6 

Bit 5 

Bit 4 

Bit 3 

Bit 2 

Bit 1,0 

Reserved for future use. Default will be clear. 

Set if the Localization Code is supported. If set, then following the Maximum 
Write Buffer Length High Byte will be one byte indicating the nationality of 
the device (keyboard). See the table in the previous section for a listing of 
the Localization Codes. Default (clear) indicates that the Localization Code 
is not supported. 

Set if the Report Status command is supported. Default (clear) indicates 
Report Status not supported. 

Set if the Report N arne command is supported. Default (clear) indicates 
Report Name not supported. 

Reserved for future usc. Default will be clear. 

Set if Read Register supported. If set, immediately following the Header is a 
byte indicating the registers supported for reading in the device. Default will 
be clear, indicating Read Register not supported. 

Bit 1 and bit 0 indicate support of the Write Register command. If bit 1 is 
set, Write Register Type 2 is supported by the device. If bit 0 is set, Write 
Register Type 1 is supported. If both bits are set, then the device supports 
both Type 1 and Type 2. If either bit 1 or bit 0 is set, then following in the 
Record will be information indicating the registers supported for writing in 
the device. If bit 1 is set, then an additional 16 bits will be returned indicating 
the maximum number of data bytes which may be written to the device at a 
time using Write Register Type 2 without data loss. 

HP-HIL Appendix A-19 



If the device indicated support for the Read Register command in the Header, then 
following the Header is a byte indicating the read registers supported by the device. This 
byte, the Maximum Read Register Supported byte, indicates the largest read register 
address supported. Note that it is assumed that all addresses less than this maximum 
are also supported. Thus a byte of OFh indicates that the device contains 16 read 
registers, addressed as read registers 0 thru 15. HP-HIL protocol allows for devices 
containing up to 128 read registers, addressed as 0 thru 127. 

If Write Register (Type 1 or Type 2) support is indicated, then next is a byte indicating 
the write registers supported. The Maximum Write Register Supported byte indicates 
the largest write register address supported in the device. It is assumed that all addresses 
less than the maximum are also supported. Up to 128 write registers, addressed as 0 
thru 127, are supported in the HP-HIL protocol. 

If Write Register Type 2 is supported, as indicated by bit 1 of the Extended Describe 
Record Header being set, then following the Maximum Write Register Supported byte 
is 16 bits of data indicating the maximum number of bytes which may be transmitted 
to the device in a Type 2 transfer without overflowing the device's internal buffer. This 
number, transmitted first low byte, then high byte, represents the buffer length of the 
device minus 1. Thus a device capable of buffering 1024 bytes of data would transmit a 
Maximum Buffer Length Low Byte of FFh and a Maximum Buffer Length High Byte of 
03h. 

If the Localization code is supported, then the Localization Code byte will be included 
in the Extended Describe Record. The Localization Code is an 8 bit number which 
corresponds to a nationality (language) of a keyboard. The table in the previous section, 
lists currently assigned Localization Codes and languages (values from 20 through FF 
are reserved). 

A-20 HP-HIL Appendix 

' ) 
\........,~ 



Poll Record 
The Poll command is the fundamental means for extracting data from the input devices 
attached to the Link. Data is sent back to the host in the form of a record, which may 
contain character data, position data, or some status information. 

Data returned from HP-HIL devices is in record form, similar to the response to the 
Describe command. Each device transmits its individual Poll Record. Note that it may 
not be required for the device to report all available information in response to a single 
Poll request; data may be split between Polls provided correct formatting is observed for 
each record reported. The Poll Record is structured as follows: 

Poll Record Header 

X-axis Data Low Byte 

X-axis Data High Byte 

Y-axis Data Low Byte 

Y-axis Data High Byte 

Z-axis Data Low Byte 

Z-axis Data High Byte 

Character Data 

Character Data 

HP-HIL Appendix A-21 



The function of the Poll Record Header is to indicate to the System the type and quantity 
of information to follow, as well as to report simple status information. The bits of the 
Header are assigned as follows: 

Bit 7 

Bit 6,5,4 

Set if the device is reporting data from the second set of coordinate axes. 
Default (clear) indicates data from set 1. 

Based on the value of these 3 bits, following all position information will 
be character data (up to 8 bytes): 

Bit 6 Bit 5 Bit 4 Character Data Description 

0 0 0 No character data to follow 

0 0 1 Reserved Character Set 1 

0 1 0 US ASCII Characters 

0 1 1 Binary Data 

1 0 0 Keycode Set 1 

1 0 1 Reserved Character Set 2 

1 1 0 Keycode Set 2 * 
1 1 1 Keycode Set 3 

* These keycodes are device dependent. 
They use the LSB to indicate the key 
transition (0 =Down, 1 =Up). 126 keys maximum. 

Bit 3 Set indicates request for status check. Clear (default) indicates status 
unchanged. 

Bit 2 Set indicates device ready for data. Default (clear) indicates not ready 
for data transfer at this time. 

Bit 1,0 Bit 1 and bit 0 indicate the coordinate axes the device is reporting: 

Bit 1 Bit 0 Axes Reported 

0 0 none 

0 1 X 

1 0 X andY 

1 1 X, Y, and Z 

A-22 HP-HIL Appendix 

LJ 



Following the Header is the device data. If the device indicated that it would report 
coordinate information 16-bitsjaxis in the Describe Record, then for each axis reported 
will be first the low, then high byte coordinate data. Otherwise, the high byte will not 
be transmitted. In general, the Poll Record format indicates the maximum data which 
can be reported; most devices will transmit only a subset eaeh time. Following the 
positional information will be up to 8 bytes of eharaeter data, as specified in the Poll 
Record Header. The different types of eharaeter data may not be mixed. Note that more 
than one deviee may respond to the Poll eomrnand; eaeh will respond with an individual 
Poll Reeord, distinguishable from the previous by the address field of the data. 

The BASIC system automatieally sends poll commands at approximately 20 millisecond 
intervals. 

HP-HIL Appendix A-23 



Report Security Code Record 
The Report Security Code command is used to extract a unique identifier from the 
device. Support of the command is indicated in the Describe Record Header. The 
Report Security Code Record consists of a header (1 byte) which defines the format of 
the data following the header (the remaining 1 to 14 bytes of data). Bits 7 through 4 of 
the header byte describe the data format type. Currently, only one data format type is 
defined, Type 1. Bits 3 through 0 are reserved, and should be set to 0. Thus the only 
currently valid header is for a Type 1 format (hexadecimal10). The Report Security Code 
Record is similar in purpose to a serial number, it may also contain information related 
to user identity, network address, or other information which is unique to a particular 
user or environment. 

The only data transmitted by the ID Module is in response to the Report Security 
Command. However, the following information applies to any device that supports the 
Report Security command. 

The data format consists of a one byte header and eight bytes of binary data. The eight 
data bytes are the packed product and serial numbers of the HP-HIL device. In the case 
where an ID Module is an exchange module signified by a ten digit part number, the five 
digit prefix number remains the same and the product number letter is replaced by the 
least significant digit of the part number. 

A-24 HP-HIL Appendix 



The product, exchange and serial number formats are: 

Header H (1 byte header) 

Product number is 

Ext;:hange part number 

Serial number is 

DDDDDA 

DDDDDd 

(5 digits and 1 ASCII character) 

(5 digits and 1 ASCII character) 

YYWW!ONNNNN (9 digits and 1 ASCII character) 

where: 

H is the data header. 

DDDDD is the product number (e.g. 46084). 

A is the product number alpha character. 

d is the least significant numeric character of the exchange number. 

YY is the year code (year less 60). 

ww is the week code (0 to 51). 

@ is the serial eountry of manufacturing eode. 

NNNNN is the serial suffix ( 0 to 99 999) 

The header byte is transmitted before the eight data bytes. The header's purpose is to 
allow for other data formats, however none are eurrently implemented. 

The five digits of the product or exehange part prefix number are converted to a two byte 
binary number and the high order bit of a third byte. The remaining lower seven bits 
of the third byte eontain the ASCII eharaeter. In produets where two alpha charaeters 
are used in the product number, only the first character is used in the data format. The 
order of the bytes have been arranged to transmit the least significant byte of the number 
first. 

In a similar manner, the nine digits of the serial number are converted to a four byte 
binary number. The eountry eode of manufacturing is in the last byte to be transmitted 
and is an ASCII character. 

HP-HIL Appendix A-25 



The Report Security data bytes are transmitted in the following order, starting with byte 
1 and going through byte 9. Bits are numbered starting with bit 0 at the right most 
position of the byte (least significant bit) and going through bit 7 (most significant bit), 
left most position. 

Header (10 hexadecimal) 

Product Number Bits 7 .. 0 

Product Number Bits 15 .. 8 

Product Number Bit 16 l Product Letter Suffix ASCII (7 Bits) 

Serial Number Bits 7 .. 0 

Serial Number Bits 15 .. 8 

Serial Number Bits 23 .. 16 

0 o I Serial Number Bits 29 .. 24 

oj Country of Manufacture USASCII (7 Bits) 

A-26 HP-HIL Appendix 



Byte Bit(s) Description 

1 7- () The first byte is the hcadt>r containing the number 
10 hexadecimal for the following format. The general 
scheme for the header is: 

I3its 7 - 4 are assigned as format variations, where 
format 1 is tlw only assignment. 

I3its 3 - 0 arc undefined, but set to zero. 

2 7- () The second and third bytes and the 7th bit of the fourth 
3 7- () byte represent the 5 digits of tiH' product or Pxchange 
4 7 part number DDDDD in binary form. The least signifi-

cant bit is bit 0 of byte two. 

4 6- () The least significant seven bits of byte four represent 
the product letter or the least significant digit of th<: 
exchange number numeric character. The character is 
the US ASCII 7 bit representation of the character. 

5 7- () The fifth, sixth, seventh bytes and th<' six least signifi-
6 7- () cant bits of byte eight rcpresmt the 9 digits of the serial 
7 7- () number YYWWNNNNN in binary form, without the al-
8 5- () pha character. The least significant bit is bit 0 of byte 

5. 

8 7- 6 The two most significant bits of byte eight arc reserved 
for future use and are s<'l, to zero. 

g 6-0 The least significant S<'Wn bits of byte 9 represent th<' 
serial number letter. The charact<'r is the US ASCII 7 
bit representation of the charact<'r. 

g 7 The most significant bit of byt<' nine is reserved for fu-
turc us<' and is s<'l to zero. 

HP-HIL Appendix A-27 



Sample of Report Security Format 
for A Product Module 
The following information is returned upon receiving a Report Security command for a 
Product Module. The data is based on the data format described in the last section. 
Byte 1 is the first byte sent from the module to the host. 

The sample results given are based on the product number 46084A and serial number 
2519A00001. The serial number corresponds with the year of 1985, week 19, and serial 
number suffix 00001. Note that by adding 60 to the above serial numbers first two digits 
you get the year 85. 

Byte No. Data (hex) Description 

1 10 Header 

2 04 Part of product number 46084 

3 B4 Part of product number 46084 

4 41 Product letter "A" and part of product number 46084 

5 61 Part of serial number 

6 BO Part of serial number 

7 03 Part of serial number 

8 OF Part of serial number 

9 41 Country of Manufacturing Code 

A-28 HP-HIL Appendix 

' 1 
\~ 



Sample of Report Security Format 
for An Exchange Module 
The following information is returned upon receiving a Report Security command for 
an Exchange Module. The data is based on the data format described in the section, 
"Report Security Code (RSC)". Byte 1 is the first byte sent from the module to the host. 

The sample results given are based on the exchange number 46084-69901 and serial 
number 2519A00001. The serial number corresponds with the year of 1985, week 19, and 
serial number suffix 00001. Note that by adding 60 to the above serial numbers first two 
digits you get the year 85. 

Byte No. Data (hex) Description 

1 10 Header 

2 04 Part of product number 46084 

3 B4 Part of product number 46084 

4 31 US ASCII character ''1" whieh is part of the product 
number 460841 

5 61 Part of serial number 

6 BO Part of serial number 

7 03 Part of serial number 

8 OF Part of serial number 

9 41 Country of Manufacturing Code 

Since the sample is an exchange module, the exchange part number transmitted is 460841. 
Byte 4 is the hexadecimal value of 31 which represent the US ASCII character "1". Note, 
the prefix number 46084 does not change from the sample of the product module and 
the character "1" is really an ASCII character. 

HP-HIL Appendix A-29 



Accessible Keycode Definitions 
This section covers Keycode Set 3 and a subset of Keycode Set 1. Keycode Set 1 provides 
the keycodes for the down and up keystrokes of ITF keyboards (HP 46020/21A). Note 
that both the ITF Keycode Set 1 and the version of Keycode Set 2 used by the HP 98203C 
keyboard are always processed by the system and thus are never available through the 
buffer used by the HILBUF$ function. The subset of Keycode Set 1 which is used by 
HP-HIL Graphics Tablets is the small portion of Keycode Set 1 covered in this section. 
The HP 46066A Function Box uses Keycode Set 2. Its keys are numbered 0 through 
31 starting with the upper-left key and going from left to right, then down. Key down 
generates Keycode 2' nand key up generates Keycode 2' n+ 1 where n is the key number. 
Keycode Set 3 provides the keycodes for the down and up keystrokes of the Vectra 
Keyboard. 

Table B-3. Keycode Set 1 

Keycode for Down Keycode for Up United States 
Transition (hex) Transition (hex) Keycap Legend Notes 

so Sl <BUTTON!> 1 

S2 S3 <BUTTON2> 1 

S4 S5 <BUTTON 3> 1 

S6 S7 <BUTTON 4> 1 

ss S9 <BUTTON 5> 1 

SA SB <BUTTON 6> 1 

sc SD <BUTTON 7> 1 

SE SF <PROXIMITY IN/OUT> 1 

1 Typically used in positioning devices and not found on keyboards. 

A-30 HP-HIL Appendix 



Table B-4. Keycode Set 3: Vectra Keycodes 

Keycode for Down Keycode for Up United States 
Transition (hex) Transition (hex) Keycap Legend Notes 

00 so Reserved 

01 S1 I ESC I 
02 S2 OJ/OJ 
03 S3 ITJ/~ 
04 S4 W/0 
05 S5 lCD I 
06 S6 ITJ/00 
07 S7 []] 
OS ss ITJ/[[J 
09 S9 []]I GJ 
OA SA ITJ/[0 
OB SB []]/[0 
oc SC 0/[_] 
OD SD IG/CD 
OE SE I Back s12ace I 
OF SF I Tab I 
10 90 lw 
11 91 [}'[) 
12 92 [I] 
13 93 []] 
14 94 [I] 
15 95 i[i] 

16 96 [QJ 
17 97 OJ 
lS 9S [QJ 
19 99 w 
lA 9A CIJ/ITJ 
lB 9B OJ/OJ 
lC 9C I Enter I 
1D 9D I CTRL I 

HP-HJL Appendix A-31 



Table B-4. Keycode Set 3: Vectra Keycodes (continued) 

Keycode for Down Keycode for Up United States 
Transition (hex) Transition (hex) Keycap Legend Notes 

1E 9E [TI 
1F 9F []] 

\ v 
20 AO [Q] 
21 A1 ITJ 
22 A2 []] 
23 A3 [EJ 
24 A4 Q] 
25 A5 [EJ 
26 A6 ITJ 
27 A7 DID 
28 A8 D I c::J 
29 A9 CJ 1 c-J 
2A AA I Shift I Left side 
2B AB CSJ I [IJ 
2C AC ITJ 

\ ) ."--"' 
2D AD []] 
2E AE IT] 
2F AF 0[] 
30 BO [I] 
31 B1 [K] 
32 B2 [E] 
33 B3 DIQ 
34 B4 010 
35 B5 CZJ I OJ 
36 B6 I Shift I Right side 
37 B7 GJ I Prt Sc 
38 B8 Alt 

A-32 HP-HIL Appendix 



Table B-4. Keycode Set 3: Vectra Keycodes (continued) 

Keycode for Down Keycode for Up United States 
Transition (hex) Transition (hex) Keycap Legend Notes 

39 B9 <space bar> 
3A BA Caps lock 

3B BB Fl 

3C BC F2 

3D BD F3 

3E BE F4 

3F BF F5 

40 co FG 

41 Cl F7 

42 C2 FS 

43 C3 F9 

44 C4 FlO 

45 C5 Num lock 

46 C6 [Break I I ScrLck 

47 C7 Home I[[] 
48 cs 01[]] 
49 C9 Pg Up I(]] 
4A CA D 
4B CB GICTI 
4C cc m 
4D CD GI(].J 
4E CE CD 
4F CF Encl I OJ 
50 DO IITJ 
51 Dl Pg Dn I rn 
52 D2 Ins I []] 
53 D3 CQKJID 
54 D4 Sysreq 

HP-HIL Appc11dix A-33 



Table B-4. Keycode Set 3: Vectra Keycodes (continued) 

Keycode for Down Keycode for Up United States 
Transition (hex) Transition (hex) Keycap Legend Notes 

55 D5 Reserved 
56 D6 Reserved 
57 D7 Reserved 
58 D8 Reserved 
59 D9 Reserved 
5A DA Reserved 
5B DB Reserved 
5C DC Reserved 
5D DD Reserved 
5E DE Left side 3 

5F DF Right side 3 

60 EO 0 Cursor pad 
61 El 8] Cursor pad 

62 E2 [!] Cursor pad 

63 E3 G Cursor pad 

\ 
I ~ J 

\._/ 

64 E4 Home Cursor pad 

65 E5 PgUp Cursor pad 

66 E6 End Cursor pad 

67 E7 Pg Dn Cursor pad 

68 E8 Ins Cursor pad 

69 E9 I DEL I Cursor pad 

6A EA <unlabeled> Cursor pad 

6B EB Reserved 

6C EC Reserved 

6D ED Reserved 

6E EE Reserved 

6F EF Reserved 

··~ 
3 Key position is not loaded. Position is covered by a non-positional filler key. 

A-34 HP-HIL Appendix 



Table B-4. Keycode Set 3: Vectra Keycodes (continued) 

Keycode for Down Keycode for Up United States 
Transition (hex) Transition (hex) Keycap Legend Notes 

70 FO []] 
71 Fl Oil 
72 F2 [ill 
73 F3 [ill 
74 F4 [ill 
75 F5 00 
76 F6 ICill 
77 F7 [ill 
78 F8 Reserved 

79 F9 Reserved 

7A FA Reserved 

7B FB Reserved 

7C FC Reserved 

7D FD Reserved 

7E FE Reserved 

7F FF Reserved 

HP-HIL Appendix A-35 



Notes 

u 

A-36 HP-HIL Appendix 



Table of Contents 

Appendix B: Useful Tables 
Option Numbers ...................................................... B-1 
Interface Select Codes ................................................. B-2 Display-Enhancement Characters ....................................... B-3 

Monochrome Enhancements ........................................ B-3 
Color Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 

U.S. ASCII Character Codes ........................................... 13-5 U.S./European Display Characters ...................................... B-7 Katakana Display Characters .......................................... B-13 Master Reset Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-17 Graphic Reset Table ................................................. B-20 Interface Reset Table ................................................. B-21 Second Byte of Non-ASCII Key Sequences (String) ....................... B-23 
Selected High-Precision Metric Conversion Factors ....................... B-28 



\ 
j 

\.._1 



Useful Tables 

Option Numbers 
These option numbers are displayed when ERROR 1 is reported. 

Option Option 
Number Binary Number Binary 

1 BASIC Main 21 CS80 

2 GRAPH 22 BUBBLE 

3 GRAPHX 23 EPROM 

4 IO 24 HP 9885 

5 BASIC Main 25 HPIB 

6 TRANS 26 FHPIB 

7 MAT 27 SERIAL 

8 PDEV 28 GPIO 

9 XREF 29 BCD 

10 KBD 30 DCOMM 

11 CLOCK 31-40 Reserved 

12 LEX 41 "PHYREC" 

13 BASIC Main 42 CRTB 

14 MS 43 CRTA 

15 SRM 44-45 Reserved 

16 Reserved 46 COMPLEX 

17 PCIB 1 47 CRTX 

18 KNB2_0 48 EDIT 

19 ERR 49 Reserved 

20 DISC 50 HFS 

1 This binary is included in the support software for the HP 98647 PC Instruments Interface. It is not 
supplied with the BASIC 5.0 system. 

Useful Tables B-1 



Interface Select Codes 
Internal Select Codes 

Select 
Code Device or Interface 

\ 
\-.._) 

1 Display (alpha) 

2 Keyboard 

3 Display (graphics) 

4 Internal floppy-disc drive 

5 Optional powerfail protection inter-
face 

6 Display (Graphics for bit mapped) 

7 HP-IB interface (built-in) 

Factory Presets for External Interfaces 

Select 
Code Device or Interface 

8 HP-IB 

9 RS-232 

10 (not used) 

11 BCD 

12 GPIO 

14 HP-IB "High-Speed" Disc Interface 

20 Data Communications 

21 Shared Resource Management 

27 EPROM Programmer 

28 RGB Color Video 

30 Bubble Memory 

32 Parity, Cache, Floating-point math 
hardware, and battery-backed clock 
(Pseudo Select Code) ' \ v 

B-2 Useful Tables 



Display-Enhancement Characters 
Displaying these characters on the CRT (with OUTPUT CRT, PRINT, or DISP, etc.) 
produce special effects. 

Monochrome Enhancements 
These characters produce special effects on most monochrome displays. 

Character Action Resulting from 
Code Displaying the Character 

128 All enhancements off. 

129 Inverse mode on. 

130 Blinking mode OIL * 
131 Inverse and Blinking modes on. * 
132 Underline mode on. 

133 Underline and Inverse modes on. 

134 Underline and Blinking modes OIL * 
135 Underline, Inverse, and Blinking modes on. * 

* Blinking not available on bit-mapped alpha displays. 

Useful Tables B-3 



Color Enhancements 
These characters change the alpha pen color on color displays. 

Character Model 236C Bit-mapped 
Code Display Alpha Display 

136 White PEN 1 
137 Red PEN 2 
138 Yellow PEN 3 
139 Green PEN 4 
140 Cyan PEN 5 

141 Blue PEN 6 

142 Magenta PEN 7 

143 Black PEN 0 

CRT CONTROL registers 5 and 15 through 17 also provide a method of changing the 
alpha color. 

PRINTing CHR$ (x), where 136::;x::;143, will provide the same colors as on the Model 236C 
as long as the color map contains default values and the alpha write-enable mask includes 
planes 0 through 2. A user-defined color map which changes the values of pens 0 to 7 
will change the meaning of CHR$ (x). 

B-4 Useful Tables 



U.S. ASCII Character Codes 

ASCII EQUIVALENT FORMS 
HP·IB 

Char. Doc Binary Oct Hox 
ASCII EQUIVALENT FOAMS 

HP·IB 
Char. Doc Binary Oct Hox 

NUL 0 00000000 000 00 space 32 00100000 040 20 LAO 

SOH 1 00000001 001 01 GTL ! 33 00100001 041 21 LA1 

STX 2 00000010 002 02 " 34 00100010 042 22 LA2 

ETX 3 00000011 003 03 # 35 00100011 043 23 LA3 

EOT 4 00000100 004 04 soc $ 36 00100100 044 24 LA4 

ENQ 5 00000101 005 05 PPC % 37 00100101 045 25 LAS 

ACK 6 00000110 006 06 & 38 00100110 046 26 LAB 

BEL 7 00000111 007 07 39 00100111 047 27 LA7 

BS 8 00001000 010 08 GET ( 40 00101000 050 28 LAB 

HT 9 00001001 011 09 TCT ) 41 00101001 051 29 LA9 

LF 10 00001010 012 OA * 42 00101010 052 2A LA10 

VT 11 00001011 013 OB + 43 00101011 053 2B LA11 

FF 12 00001100 014 oc 44 00101100 054 2C LA12 

CR 13 00001101 015 00 - 45 00101101 055 20 LA13 

so 14 00001110 016 OE 46 00101110 056 2E LA14 

Sl 15 00001111 017 OF I 47 00101111 057 2F LA15 

OLE 16 00010000 020 10 0 48 00110000 060 30 LA16 

DC1 17 00010001 021 11 LLO 1 49 00110001 061 31 LA17 

OC2 18 00010010 022 12 2 50 00110010 062 32 LA18 

OC3 19 00010011 023 13 3 51 00110011 063 33 LA19 

OC4 20 00010100 024 14 OCL 4 52 00110100 064 34 LA20 

NAK 21 00010101 025 15 PPU 5 53 00110101 065 35 LA21 

SYNC 22 00010110 026 16 6 54 00110110 066 36 LA22 

ETB 23 00010111 027 17 7 55 00110111 067 37 LA23 

CAN 24 00011000 030 18 SPE 8 56 00111000 070 38 LA24 

EM 25 00011001 031 19 SPO 9 57 00111001 071 39 LA25 

SUB 26 00011010 032 1A 58 00111010 072 3A LA26 

ESC 27 00011011 033 1B 59 00111011 073 3B LA27 

FS 28 00011100 034 tC < 60 00111100 074 3C LA28 

GS 29 00011101 035 10 = 61 00111101 075 30 LA29 

AS 30 00011110 036 1E 62 00111110 076 3E LA30 

us 31 00011111 037 1F ? 63 00111111 077 3F UNL 

Useful Tables B-5 



U.S. ASCII Character Codes 

ASCII EQUIVALENT FORMS 
HP-IB ASCII 

Char. Dec Binary Oct Hex Char. 

@ 64 01000000 100 40 TAO 

A 65 01000001 101 41 TA1 a 

B 66 01000010 102 42 TA2 b 

c 67 01000011 103 43 TA3 c 

0 68 01000100 104 44 TA4 d 

E 69 01000101 105 45 TA5 e 

F 70 01000110 106 46 TAB I 

G 71 01000111 107 47 TA7 g 

H 72 01001000 110 48 TAB h 

I 73 01001001 111 49 TA9 ; 

J 74 01001010 112 4A TA10 I 

K 75 01001011 113 4B TAii k 

l 76 01001100 114 4C TA12 I 

M 77 01001101 115 4D TA13 m 

N 78 01001110 116 4E TA14 n 

0 79 01001111 117 4F TA15 0 

p 80 01010000 120 50 TA16 p 

Q 81 01010001 121 51 TA17 q 

A 82 01010010 122 52 TA18 ' 
s 83 01010011 123 53 TA19 ' 
T 84 01010100 124 54 TA20 t 

u 85 01010101 125 55 TA21 " 
v 86 01010110 126 56 TA22 v 

w 87 01010111 127 57 TA23 w 

X 88 01011000 130 58 TA24 ' 
y 89 01011001 131 59 TA25 y 

z 90 01011010 132 SA TA26 , 

[ 91 01011011 133 58 TA27 { 

" 92 01011100 134 5C TA28 I 

J 93 01011101 135 50 TA29 } 

" 94 01011110 136 5E TA30 -
- 95 01011111 137 SF UNT DEL 

B-6 Useful Tables 

EQUIVALENT FORMS 

Dec Binary Oct 

96 01100000 140 

97 01100001 141 

98 01100010 142 

99 01100011 143 

100 01100100 144 

101 01100101 145 

102 01100110 146 

103 01100111 147 

104 01101000 150 

105 01101001 151 

106 01101010 152 

107 01101011 153 

108 01101100 154 

109 01101101 i 55 

110 01101110 156 

111 01101111 157 

i 12 01110000 160 

113 01110001 161 

114 01110010 162 

115 01110011 163 

116 01110100 164 

ii7 01110101 165 

118 01110110 166 

119 01110111 167 

120 01111000 170 

121 01111001 i 71 

122 01111010 172 

123 01111011 173 

124 01111100 174 

125 01111101 175 

126 01111110 176 

127 01111111 177 

Hex 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

6A 

6B 

6C 

60 

BE 

6F 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

7A 

7B 

7C 

70 

7E 

7F 

HP-18 

sco 

SCi 

SC2 

SC3 

SC4 

SC5 

SC6 

SC7 

sea 

SC9 

SC10 

SC11 

SC12 

SC13 

SC14 

SC15 

SC16 

SC17 

SC18 

SC19 

SC20 

SC21 

SC22 

SC23 

SC24 

SC25 

SC26 

SC27 

SC28 

SC29 

SC30 

SC31 

\ 
\.._,.I 



U.S./European Display Characters 
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A 
display), 226, and 236 Computers. 

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS 
Char. Dec Binary Char. Dec Binary 

00000000 32 00100000 

00000001 33 00100001 

00000010 34 00100010 

00000011 # 35 00100011 

00000100 36 00100100 

00000101 37 00100101 

00000110 38 00100110 

00000111 39 00100111 

00001000 40 00101000 

00001001 41 00101001 

10 00001010 42 00101010 

11 00001011 + 43 00101011 

12 00001100 44 00101100 

13 00001101 45 00101101 

14 00001110 46 00101110 

15 00001111 47 00101111 

16 00010000 48 00110000 

17 00010001 49 00110001 

18 00010010 50 00110010 

19 00010011 51 00110011 

'< 20 00010100 4 52 00110100 

21 00010101 5 53 00110101 

22 00010110 54 00110110 

23 00010111 55 00110111 

24 00011000 56 00111000 

25 00011001 57 00111001 

~: 26 00011010 58 00111010 

27 00011011 59 00111011 

28 00011100 60 00111100 

1:[ 29 00011101 61 00111101 

30 00011110 62 00111110 

!J;, 31 00011111 63 00111111 

ASCII EQUIVALENT FORMS 

Char. Dec 

Iii 

1'1 

H 

L 

1·1 

tl 

T 

u 

'/ 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

BB 

89 

90 

91 

92 

93 

94 

95 

Binary 

01000000 

01000001 

01000010 

01000011 

01000100 

01000101 

01000110 

01000111 

01001000 

01001001 

01001010 

01001011 

01001100 

01001101 

01001110 

01001111 

01010000 

01010001 

01010010 

01010011 

01010100 

01010101 

01010110 

01010111 

01011000 

01011001 

01011010 

01011011 

01011100 

01011101 

01011110 

01011111 

ASCII EQUIVALENT FORMS 

Char. Dec Binary 

96 01100000 

97 01100001 

98 01100010 

99 01100011 

d 100 01100100 

101 01100101 

f 102 01100110 

103 01100111 

h 104 01101000 

105 01101001 

106 01101010 

107 01101011 

108 01101100 

109 01101101 

110 01101110 

111 01101111 

112 01110000 

113 01110001 

114 01110010 

115 01110011 

116 01110100 

117 01110101 

'.) 118 01110110 

119 01110111 

120 01111000 

121 01111001 

122 01111010 

123 01111011 

124 01111100 

125 01111101 

126 01111110 

127 01111111 

Useful Tables B-7 



U.S./European Display Characters 
These characters can be displayed on the alpha screens of Models 216, 220 (with a 98204A 
display), 226, and 236 Computers. 

B-8 

ASCIJ EQUIVALENT FORMS 

Char. Deo Binary 
ASCII EQUIVALENT FORMS 

Char. Deo Binary 
ASCII EQUIVALENT FORMS 

Char. Deo Binary 
ASCII EQUIVALENT FORMS 

Char. Deo Binary 
;.; 128 10000000 160 10100000 192 11000000 A 224 11100000 

'~· 129 10000001 H 161 10100001 193 11000001 H 225 11100001 

'r 130 10000010 Fl 162 10100010 19< 11000010 :l. 226 11100010 

f; 131 10000011 E 163 10100011 195 11000011 .D 227 11100011 

C; 132 10000100 164 10100100 196 11000100 d 228 11100100 

133 10000101 E 165 10100101 197 11000101 229 11100101 

134 10000110 166 10100110 198 11000110 230 11100110 

135 10000111 167 10100111 199 11000111 0 231 11100111 

136 10001000 168 10101000 200 11001000 ::: 232 11101000 

f; 137 10001001 169 10101001 201 11001001 C! 233 11101001 

138 10001010 170 10101010 202 11001010 
,-) 

234 11101010 

139 10001011 171 10101011 203 11001011 :;::; 235 11101011 

140 10001100 172 10101100 204 11001100 236 11101100 

141 10001101 173 10101101 205 11001101 u 237 11101101 

142 10001110 u 174 10101110 206 11001110 238 11101110 

143 10001111 175 10101111 207 11001111 239 11101111 

144 10010000 176 10110000 208 11010000 240 11110000 

145 10010001 177 10110001 209 11010001 241 11110001 

146 10010010 178 10110010 210 11010010 242 11110010 

147 10010011 179 10110011 211 11010011 243 11110011 

148 10010100 180 10110100 212 11010100 244 11110100 

'~· 149 10010101 181 10110101 213 11010101 245 11110101 

150 10010110 i···i 182 10110110 (1 214 11010110 246 11110110 

151 10010111 ;:; 183 10110111 215 11010111 247 11110111 

152 10011000 184 10111000 216 11011000 248 11111000 

153 10011001 185 10111001 217 11011001 249 11111001 

154 10011010 186 10111010 >:, 218 11011010 ,. 250 11111010 

155 10011011 187 10111011 219 11011011 251 11111011 

156 10011100 188 10111100 220 11011100 252 11111100 

157 10011101 189 10111101 221 11011101 253 11111101 

158 10011110 190 10111110 222 11011110 254 11111110 

"' 
159 10011111 

,., 
191 10111111 0 223 11011111 ~~ 255 11111111 

Note 1. Characters 128 thru 135 produce h1ghhghts on machmes wtth monochrome htghllghts when used in PRINT and DISP statements. 
Note 2: Characters 136 thru 143 change the color of text printed or displayed on machines capable of displaying text in color 
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements 

Useful Tables 

\ 

'0 



U.S.fEuropean Display Characters 
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with 
98204B display), and 237 computers, and on Series 300 computers using a 98546 Display 
Compatibility Interface or 98700 Display Controller. 

ASCII 

Num. Chr. Num. Chr. Num. Chr. Num. Chr. 

0 N 32 64 @ 96 u 
1 5 33 65 A 97 a H 

2 !l 34 II 66 B 98 b X 

3 E 35 # 67 c 99 c X 

4 \ 36 $ 68 D 100 d 
5 E 37 % 69 E 101 e Q 

6 A 38 & 70 F 102 f K 

7 0 39 71 G 103 g 
8 8 40 72 H 104 h 5 

9 H 41 73 I 105 i T 

10 L 
F 42 * 74 J 106 j 

11 v 43 + 75 K 107 k T 

12 FF 44 76 L 108 1 
13 c 45 77 M 109 m R 

14 , 46 78 N 110 n 
15 5 47 I 79 0 111 0 I 

16 OL 48 0 80 p 112 p 
17 o, 49 1 81 Q 113 q 
18 ~ 50 2 82 R 114 r 
19 ~ 51 3 83 s 115 s 
20 'a 52 4 84 T 116 t 
21 N 53 5 85 u 117 u K 

22 ~ 54 6 86 v 118 v 
23 \ 55 7 87 w 119 w 
24 c 56 8 88 X 120 X N 

25 E 57 9 89 y 121 y M 

26 \ 58 90 z 122 z 
27 '?: 59 91 [ 123 { 
28 ~ 60 < 92 \ 124 I 
29 1. 61 93 ] 125 } 
30 R 62 > 94 126 s 
31 u 63 ? 95 127 • 5 

Useful Tables B-9 



U.S.fEuropean Display Characters 
These characters can be displayed on the alpha screen of Series 200 Model 217, 220 (with 98204B display), and 237 computers, and on Series 300 computers using a 98546 Display 

. ) Compatibility Interface or 98700 Display Controller. 
\......./ 

ASCII 

Num. Chr. Num. Chr. Num. Chr. Num. Chr. 

128 c 160 192 a 224 A L 

129 I 161 A 193 ~ 225 A v 

130 B 162 " 194 0 226 a G 

131 I 163 :E 195 0 227 D B 

132 u 164 t 196 a 228 d .l. 
133 I 165 i!: 197 e 229 :f: .!..! 
134 B 166 :t 198 6 230 :t ... 
135 I 167 i: 199 u 231 0 .!..! 
136 w 168 200 ~ 232 0 H 

137 R 169 201 e 233 0 D 

138 y 170 202 0 234 es E 

'\_) 139 G 171 203 D. 235 s R 

140 c 172 204 a 236 s y 

141 B 173 u 205 e 237 (J u 
142 M 174 0 206 0 238 y G 

143 B 175 £ 207 u 239 y K 

144 8 176 208 A 240 p 0 

145 8 177 B 209 i 241 p 1 1 

146 8 178 B 210 0 242 F 2 2 2 

147 8 179 211 A: 243 F 3 3 
148 8 180 <; 212 a 244 F 

" " 149 8 181 9 213 i 245 I 5 0 

150 8 182 ~ 214 (1J 246 G 

151 8 183 1'\ 215 a: 247 * 7 

152 8 184 216 A 248 t 8 

153 8 185 (, 217 l 249 .1. 8 

154 8 186 tl 218 0 250 .2 A 

0 155 8 187 £ 219 0 251 « B 

156 8 188 ¥ 220 t 252 • c 
157 8 189 § 221 1 253 » D 

158 8 190 f 222 a 254 ± E 

159 8 191 ¢ 223 0 255 m F 

B-10 Useful Tables 



U.S.jEuropean Display Characters 
These characters can be displayed on the screen of Series 300 computers (except with 
a 98546 Display Compatibility Interface or 98700 Display Controller; see the preceding 
table). 

ASCII 

Num Chr. Num. Chr. Num. Chr. Num. Chr. 

0 N 32 64 @ 96 u 
1 5 33 65 A 97 a H 

2 5 34 II 66 B 98 b X 

3 E 35 # 67 c 99 c X 

4 ~ 36 $ 68 D 100 d 
5 E 37 % 69 E 101 e Q 

6 A 38 & 70 F 102 f K 

7 r;. 39 71 G 103 g 
8 B 40 ( 72 H 104 h 5 

9 H 41 ) 73 I 105 i T 

10 L 42 * 74 J 106 j F 

11 v 43 + 75 K 107 k T 

12 ff 44 76 L 108 1 
13 c 45 77 M 109 m R 

14 !5 46 78 N 110 n 0 

15 5 47 / 79 0 111 0 I 

16 0 48 0 80 p 112 p L 

17 o, 49 1 81 Q 113 q 
18 ~ 50 2 82 R 114 r 
19 ~ 51 3 83 s 115 s 
20 'a 52 4 84 T 116 t 
21 N 53 5 85 u 117 u K 

22 5 54 6 86 v 118 v y 

23 \ 55 7 87 w 119 w 
24 c 56 8 88 X 120 X N 

25 E 57 9 89 y 121 y M 

26 \ 58 90 z 122 z 
27 ~ 59 ; 91 [ 123 { 
28 ~ 60 < 92 \ 124 I 
29 \ 61 93 ] 125 } 
30 R 62 > 94 126 5 

31 u 63 ? 95 127 • 5 

Useful Tables B-11 



U.S./European Display Characters 
These characters can be displayed on the screen of Series 300 computers (except with 
a 98546 Display Compatibility Interface or 98700 Display Controller; see the preceding 

·0 table). 

ASCII 

Num. Chr. Num. Chr. Num. Chr. Num. Chr. 

128 c 160 192 a 224 A L 

129 I 161 A 193 ~ 225 X v 
130 6 162 A 194 0 226 a G 

131 I 163 E 195 0 227 D 6 

132 u 164 ! 196 a 228 d .1. 

133 I 165 i!: 197 e 229 f .!.! 
134 6 166 :t 198 6 230 J: Ji 
135 I 167 :t 199 t1 231 6 .!.! 
136 w 168 200 ~ 232 0 H 

137 R 169 201 e 233 0 D 

138 y 170 202 0 234 es I E 

0 139 G 171 203 u 235 s R 

140 c 172 204 a 236 s y 

141 6 173 u 205 e 237 (J u 
142 M 174 0 206 6 238 y G 

143 6 175 £ 207 u 239 y K 

144 9 176 208 A 240 p 0 

145 9 177 6 209 i 241 p 1 1 

146 9 178 6 210 0 242 F 2 2 2 

147 9 179 211 A 243 F 3 3 

148 9 180 <; 212 a 244 F ll ll 

149 9 181 ~ 213 f 245 I 5 0 

150 8 182 ~ 214 Ql 246 6 

151 9 183 ri 215 E 247 t 7 

152 9 184 216 A 248 t 8 

153 9 185 l. 217 l 249 A. 9 

154 9 186 ~ 218 0 250 .2 
' \ 

A 

155 9 187 £ 219 0 251 « '\......) 6 

156 8 188 ¥ 220 E 252 • c 
157 9 189 § 221 1 253 » 0 

158 9 190 f 222 a 254 ± E 

159 9 191 ¢ 223 0 255 C1 F 

B-12 Useful Tables 



Katakana Display Characters 
These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236 
computers, and on Series 300 computers using a 98546 Display Compatibility Interface. 

ASCII EQUIVALENT FORMS 
ASCII EQUIVALENT FOAMS 

ASCII EQUIVALENT FORMS 
ASCII EQUIVALENT FORMS 

Char. Doc Binary Char. Dec Binary Char, Dec Binary Char. Dec Binary 

0 00000000 32 00100000 64 01000000 96 01100000 

1 00000001 I 33 00100001 65 01000001 97 01100001 

2 00000010 34 00100010 66 01000010 98 01100010 

3 00000011 35 00100011 I. 67 01000011 99 01100011 

4 00000100 36 00100100 68 01000100 100 0! 100100 

5 00000101 37 00100101 69 01000101 101 0110010! 

6 00000110 38 00100110 70 01000110 I 102 01100110 

l,i 7 00000111 39 00100111 !.:1 71 01000111 103 01100111 

8 00001000 40 00101000 H 72 01001000 I! 104 01101000 

~ 9 00001001 41 00101001 J. 73 01001001 105 01101001 

'I 10 00001010 42 00101010 I 74 01001010 I 106 01101010 

11 00001011 43 00101011 I 75 01001011 I 107 01101011 ,, 
12 00001100 44 00101100 '~~ 76 01001100 I 108 01101100 

13 00001101 45 00101101 77 01001101 i'' 109 01101101 

14 00001110 46 00101110 78 01001110 ,, 110 01101110 

15 00001111 47 00101111 " 79 01001111 " 111 01101111 

16 00010000 48 00110000 80 01010000 112 01110000 

17 00010001 49 00110001 i;! 81 01010001 ., 113 01110001 

18 00010010 50 00110010 82 01010010 I 114 01110010 

19 00010011 51 00110011 83 01010011 115 01110011 

20 00010100 ·I 52 00110100 84 01010100 116 01110100 

21 00010101 53 00110101 1.1 85 01010101 '-" 117 01110101 

22 00010110 I ·~ 54 00110110 ',.' 86 01010110 " 118 011101 !0 

23 00010111 55 00110111 i·l 87 01010111 J,j 119 01110111 

24 00011000 56 00111000 88 01011000 120 01111000 

25 00011001 57 00111001 89 01011001 121 01111001 

26 00011010 58 00111010 90 01011010 122 01111010 

l,: 27 00011011 59 00111011 I~ 91 01011011 123 01111011 

28 00011100 60 00111100 92 01011100 I 124 01111100 

29 00011101 61 00111101 ~~ 
93 01011101 125 01111101 

30 00011110 62 00111110 94 01011110 126 01111110 

., 
31 00011111 ' 63 00111111 -- 95 01011111 127 01111111 

Useful Tables B-13 



Katakana Display Characters 
These characters can be displayed on the screen of Model 216, 217, 220, 226, and 236 
computers, and on Series 300 computers using a 98546 Display Compatibility Interface. 

ASCII EQUIVALENT FORMS 

Char. Dec Binary 
ASCII EQUIVALENT FORMS 

Char. Dec Binary 
ASCII EQUIVALENT FORMS 

Char. Dec Binary 
ASCII EQUIVALENT FORMS 

Char. Dec Binary 

128 10000000 160 10100000 192 11000000 224 11100000 

129 10000001 161 10100001 193 11000001 225 11100001 

130 10000010 162 10100010 194 11000010 226 11100010 

131 10000011 163 10100011 195 11000011 227 11100011 

>,. 132 10000100 164 10100100 195 11000100 228 11100100 

133 10000101 165 10100101 197 11000101 229 11100101 

134 10000110 156 10100110 198 11000110 230 11100110 

135 10000111 167 10100111 199 11000111 231 11100111 

136 10001000 158 10101000 200 11001000 232 11101000 

137 10001001 169 10101001 201 11001001 233 11101001 

138 10001010 170 10101010 202 11001010 234 11101010 

139 10001011 ::•r 171 10101011 203 11001011 235 11101011 

140 10001100 172 10101100 204 11001100 235 11101100 

141 10001101 173 10101101 205 11001101 237 11101101 

142 10001110 174 10101110 206 11001110 238 11101110 

143 10001111 175 10101111 207 11001111 239 11101111 

r,. 144 10010000 176 10110000 208 11010000 240 11110000 

.,. 145 10010001 177 10110001 209 11010001 241 11110001 

f •. 146 10010010 178 10110010 210 11010010 242 11110010 

~r- 147 10010011 " 179 10110011 t 211 11010011 243 11110011 

~F- 148 10010100 l 180 10110100 212 11010100 244 11110100 

'F· 149 10010101 181 10110101 213 11010101 245 11110101 

;.F. 150 10010110 il 182 10110110 214 11010110 246 11110110 

';:· 151 10010111 :;:- 183 10110111 215 11010111 247 11110111 

f,. 152 10011000 J 184 10111000 215 11011000 248 11111000 

~r- 153 10011001 185 10111001 217 11011001 249 11111001 

154 10011010 186 10111010 218 11011010 250 11111010 

\ 155 10011011 it 187 10111011 219 11011011 251 11111011 

156 10011100 188 10111100 220 11011100 252 11111100 

157 10011101 189 10111101 221 11011101 253 11111101 

'r- 158 10011110 190 10111110 222 11011110 254 11111110 

f,. 159 10011111 . ., 
191 10111111 223 11011111 [~ 255 11111111 

~~!: ~~ ~~=~=~~:~! g~ ~~~~ B~ ~~~~~~e~~~g;~~;~~~~~x~~~i~~e"J ~i~~s;l~~~dh~~%ea~hT~~i;~~sp~~~~n0~s~~~~~~~~Jx~?~ ~~~~~statements 
Note 3: Characters 144 thru 159 are ignored by PRINT and DISP statements. 

B-14 Useful Tables 



Katakana Display Characters 
These characters can be displayed on the Model 237 and on all Series 300 bit-mapped 
alpha displays. 

ASCII EQUIVALENT FORMS ASCII EQUIVALENT FORMS 
ASCII EQUIVALENT FORMS 

ASCII EQUIVALENT FORMS 
Char. Dec Binary Char. Dec Binary Char. Dec Binary Char. Dec Binary 

~:. 0 00000000 32 00100000 1~1 64 01000000 96 01100000 

~ 1 00000001 I 33 00100001 65 01000001 97 01100001 

2 00000010 
., 

34 00100010 E: 66 01000010 98 01100010 

~; 3 00000011 35 00100011 67 01000011 c 99 01100011 

" 4 00000100 36 00100100 68 01000100 100 01100100 

5 00000101 37 00100101 69 01000101 101 01100101 

6 00000110 38 00100110 70 01000110 f 102 01100110 

1,1 7 00000111 39 00100111 71 01000111 103 01100111 

8 00001000 40 00101000 H 72 01001000 h 104 01101000 

9 00001001 41 00101001 I 73 01001001 i 105 01101001 

10 00001010 42 00101010 i 74 01001010 1 106 01101010 

11 00001011 + 43 00101011 !... 75 01001011 I 107 01101011 

rr 12 00001100 44 00101100 L_ 76 01001100 I 108 01101100 

13 00001101 ·- 45 00101101 l·i 77 01001101 f(l 109 01101101 

14 00001110 46 00101110 II 78 01001110 " 110 01101110 

::! 15 00001111 47 00101111 79 01001111 0 111 01101111 

16 00010000 48 00110000 80 01010000 112 01110000 

17 00010001 1 49 00110001 81 01010001 113 01110001 

18 00010010 50 00110010 82 01010010 j·-· 114 01110010 

19 00010011 51 00110011 83 01010011 115 01110011 

'< 20 00010100 52 00110100 T 84 01010100 '· 116 01110100 

21 00010101 53 00110101 u 85 01010101 u 117 01110101 

22 00010110 54 00110110 ',' 86 01010110 118 01110110 

23 00010111 
":' 

55 00110111 1·1 87 01010111 ,,, 119 01110111 

24 00011000 56 00111000 88 01011000 120 01111000 

25 00011001 '" 57 00111001 ' 89 01011001 121 01111001 

26 00011010 ' 58 00111010 90 01011010 122 01111010 

27 00011011 1 59 00111011 I' 91 01011011 123 01111011 

1:; 28 00011100 60 00111100 92 01011100 I 124 01111100 

29 00011101 61 00111101 l 93 01011101 125 01111101 

30 00011110 62 00111110 94 01011110 126 01111110 

'·c 31 00011111 63 00111111 - 95 01011111 . 127 01111111 

Useful Tables B-15 



Katakana Display Characters 
These characters can be displayed on the Model 237 and on all Series 300 bit-mapped 
alpha displays. 

ASCII EQUIVALENT FORMS 
ASCII EQUIVALENT FORMS 

Char. Dec Binary Char. Dec Binary 
c 
L 128 10000000 160 10100000 

I, 129 10000001 161 10100001 

6 c 130 10000010 162 10100010 

I 
6 131 10000011 163 10100011 

u 
132 ~ 10000100 164 10100100 

I 
133 10000101 ~ 165 10100101 

6 
134 ~ 10000110 166 10100110 

I 
135 ~ 10000111 167 10100111 

' H 136 10001000 .. ( 168 10101000 

"o 137 10001001 169 10101001 

' E 138 10001010 170 10101010 

c 
139 10001011 R .. 171 10101011 

c 
140 y 10001100 172 10101100 

6 
141 u 10001101 173 10101101 

M 
c 142 10001110 174 10101110 

6 
143 ' 10001111 175 10101111 

8 
144 0 10010000 176 10110000 

8 
I 145 10010001 177 10110001 

8 
146 2 10010010 178 10110010 

~ 147 10010011 179 10110011 

'l. 148 10010100 -'· 180 10110100 

8 

' 149 10010101 181 10110101 

8 
6 150 10010110 182 10110110 

ll, 151 10010111 "!= 183 10110111 

8 
152 6 10011000 184 10111000 

8 
8 153 10011001 185 10111001 

8 
154 A 10011010 186 10111010 

~ 155 10011011 187 10111011 

8 
c 156 10011100 188 10111100 

8 
0 157 10011101 189 10111101 

'l: 158 10011110 190 10111110 

8F 159 10011111 
., 

191 10111111 

~~!! ~~ §g:~=~~:~~ g~ ~g~~ i2~ e:~----:··e'":'e• 
Note 3: Characters 144 thru 159 are 

B-16 Useful Tables 

ASCII EQUIVALENT FORMS ASCII 
Binary Char. 

1 1000000 'o 
11000001 EI 

11000010 ,, 
11000011 E3 

11000100 '• 
11000101 

,, 
11000110 's 

11000111 E7 

11001000 E8 

11001001 's 

11001010 EA 

11001011 'e 

11001100 'c 

11001101 'o 

11001110 
,, 

11001111 EF 

11010000 F 0 

11010001 F I 

11010010 F 2 

11010011 F 3 

11010100 Fa 

11010101 Io 

11010110 Fs 

11010111 F 7 

11011000 F 8 

11011001 Fs 

11011010 FA 

11011011 FB 

11011100 • 
11011101 Fo 

11011110 FE 

[!l 

EQUIVALENT FORMS 

Deo Binary 

224 11100000 

225 11100001 

226 11100010 

227 11100011 

228 11100100 

229 11100101 

230 11100110 

231 11100111 

232 11101000 

233 11101001 

234 11101010 

235 11101011 

236 11101100 

237 11101101 

238 11101110 

239 11101111 

240 11110000 

241 11110001 

242 11110010 

243 11110011 

244 11110100 

245 11110101 

246 11110110 

247 11110111 

248 11111000 

249 11111001 

250 11111010 

251 11111011 

252 11111100 

253 11111101 

254 11111110 

255 11111111 

DISP statements 
color 

\ v 

' \ 

0 



Master Reset Table 

CRT 

CRT DISP Line 

CRT Display Functions 

CRT Message Line 

CRT Input Line (Note 6) 

CRT Printout Area 

CRT Print Position (TABXYJ 

ALPHA ONIOFF (Note 3) 

KEYBOARD 

Keyboard Recall Buffer 

Keyboard Result Buffer 

Keyboard Knob Mode 

Tabs On Input Line 

Typing Aid Labels 

l<eyboard Katakana Mode 

SUSPEND INTERACTIVE 

PRINTING 

Print column 

PRINT ALL 

PRINT ALL IS 

PRINTER IS 

ENVIRONMENTS & VARIABLES 

Allocated Variables 

Normal Variables 

COM Variables 

OPTION BASE 

110 Path Names 

110 Path Names in COM 

Keyboard Vmiable Access 

BASIC Program Lines 

BASIC Program Environment 

Normal Binary Programs 

SUB Stack 

NPAR 

CONTINUE Allowed 

ON <event> ACTIONS 

ON <event> Log 

System Priority 

ON KEY Labels 

ENABLE/DISABLE 

KNOBX & KNOBY 

Note 2 

Power RESET ENDI LOAD LOAD GET GET 

On 

Clear C!ei:lr Clear 

Off Oil 

Ready Clear Clear Clear Reset 

Clear Clear Clear 

Clear Clear 

1,1 

On 

Clear 

1,1 

On 

Empty Empty 

None None 

Note 16 Note 16 

Off 

Off 

Off 

Off 

Off 

Off 

On 

Off 

Off 

On 

011 

Clear 

Note 15 

On 

Off 

011 

011 

STOP &Go &Go 

On 

011 Off Off Off Off 

None None None None Note 1 Note 1 None None None None 

None None None None None None None None 

None None None Note 9 Note 9 

Note 9 Note 9 

None Closed Closed Closed None Closed Closed Closed Closed Closed 

None Closed Closed None Note 10 Note 10 Note 10 Note 10 

Main SUB SUB 

Prerun Entry Exit 

Clear 

Oil 

None None Pre-ent 

Note 11 Note 11 Pre-en! 

Note 9 Note 9 Pre-ent 

Closed sub dsd 

No No No No Main Main No In cnt No In cnt. In cnt. Main SUB Pre-ent 

None None None Note 4 Note 4 Note 4 Note 4 Note 4 

Main Main Main Main Main Main Main Main Main Main 

None None Note 5 Note 5 

Clear Clear Clear CleM Clear Clear Clear Clear Clear Clear 

No No No No No No No Yes No Yes Yes 

Empty Empty Empty Empty Empty Empty Empty Empty Empty Empty 

None None None None None None None None None None 

Enable Enable Enable Enable Enable Enable Enable Enable Enable Enable 

Main SUB Pre-ent 

Clear Push Pop 

Actual Pre-ent 

Yes Yes Yes 

Empty Note 8 Note 8 

Note 7 Pre-ent 

None Pre-ent 

Enable 

Useful Tables B-17 



~ 
if> :;; n 

Power :;; ...; n n 
I ...; I n 

On :» I n 

MISC. 

GOSUB Stack Clear Clear Clear Clear 
TIMEDATE Note 14 - - -
ERRL, ERRN, and ERRDS 0 0 - -
ERRM$ Nun Null - -
DATA Pointer None None None None 

LEXICAL ORDER IS Stand. Stand. - -
MASS STORAGE IS Note 12 Note 12 - -
CHECKREAD ON/OFF Off Off - -
Angle Mode RAD RAD RAD RAD 

Random Number Seed Note 13 Note 13 Note 13 -
DET 0 0 0 -
TRANSFER None Aborts Note 17 Waits 

TRACE ALL Off Off Off -

- = Unchanged 

Pre-en! = As existed previous to entry into the subprogram. 
In cnt = Access to variables in current context only. 

RESET 

Clear 

-

-

-

None 

-

-

-

-

-

-

Aborts 

-

1st main = Pointer set to first DATA statement in main program. 
1st sub = Pointer set to first DATA statement in subprogram. 
sub clsd = All local l/0 path names are closed at subexit 
Waits = Operation waits until TRANSFER completes. 

Note 1: Only those allocated in the main program are available. 

Note 2 

END/ 

STOP 

Clear 

-

-

-

None 

-

-

-

-

-

-

Waits 

-

r 

LOAD LOAD GET GET 
~ 
0 
if> 

Main SUB SUB 

&Go &Go 
c 
"' Pre run Enrry Exit 

Clear Clear Clear Clear - Clear Local Pre-ent 

- - - - - - - -
- 0 - 0 - 0 - -
- Nul! - Nul! - Null - -

None lstmain None lstmain - lstmain 1st sub Pre-ent 

- - - - - - - -
- - - - - - - -
- - - - - - - -

RAD RAD RAD RAD - RAD - Pre-ent 

- Note 13 - Note 13 - Note 13 - -

- - - - - 0 - -
None Note 18 None Waits - None - Note 19 

- - - - - - - ---

Note 2: Pressing the STOP key is identical in function to executing STOP. Editing or altering a paused program causes the program to go 
into the stopped state. 
Note 3: Alpha is turned on automatically by typing on the input line, by writing to the display line, or by an output to the message line. 
Note 4: Modified according to the statement or command parameters and file contents. 
Note 5: Any new binary programs in the file are loaded. 
Note 6: Includes cursor position, INS CHR mode, ANY CHAR sequence state, but not tabs, auto-repeat rate, and auto-repeat delay. 
(These last three are defaulted only at SCRATCH A and Power On.) 
Note 7: The system priority changes at SUB entry if the subroutine was invoked by an ON <event> CALL. 
Note 8: See the appropriate keyword. 
Note 9: As specified by the new environment or program. 
Note 10: A COM mismatch between programs will close l/0 path names. If l/0 path names exist in a labeled COM, and a LOAD or GET 
brings in a program which does not contain that labeled COM, those l/0 path names are closed. 
Note 11: Numeric variables are set to 0, and string lengths are set to 0. 
Note 12: The default mass storage device is INTERNAL (the right-hand drive) on the 9826 and 9836. See the 9816lnstallation Manual for 
information on its default mass storage device. 

B-18 Useful Tables 

I "'\) 

1\._../ 



Further Comments 

Note 13: The default random number seed is INT(PI x (2" 1
- 2)/180). This is equal to 37 480 660. 

Note 14: The default TIMEDATE is 2.086 629 12 E+ 11 (midnight March 1, 1900, Julian time). 

Note 15: After a RESET, the CRT print position is in column one of the next line below the print position before the RESET. 

Note 16: Typing aid labels are displayed unless a program is in the RUN state. 

Note 17: Operation waits until TRANSFER completes unless both 1/0 path names are in COM. 

Note 18: Operation waits until TRANSFER completes unless both 1/0 path names are in a COM area preserved during the LOAD. 

Note 19: Operation waits until TRANSFER completes if the TRANSFER uses a local 1/0 path name. 

The PAUSE key, the programmed PAUSE statement, and executing PAUSE from the keyboard all have identical effects. The only 

permanent effects of the sequence "PAUSE ... CONTINUE" on a running program are: 

1. Delay in execution. 

2. Second and subsequent interrupt events of a given type are ignored. 

3. INPUT. LINPUT, and ENTER 2 statements will be restarted. 

4. ON KEY and ON KNOB are temporarily deactivated (i.e. not Jogged or executed) during the pause. 

5. A TRANSFER may complete during the pause, causing ON EOT to be serviced at the next end-of-line. 

Fatal program errors (i.e. those not trapped by ON ERROR) have the following effects: 

-a PAUSE 

-a beep 

- an error message in the message line 

setting the values of the ERRL. the ERRN, and possibly the ERRDS functions 

setting the default EDIT line number to the number of the line in which the error occurred. 

Autostart is equivalent to: Power On. LOAD "AUTOST". RUN. 

CLR 10 terminates ENTER and OUTPUT on all interfaces. handshake setup operations. HP-IB control operations. DJSP. ENTER 

from CRT or keyboard, CAT, LIST. external plotter output. and output to the PRINTER IS. PRINT ALL IS, and DUMP DEVICE IS 

devices when they are external. CLR 10 does not terminate CONTROL. STATUS. READIO. WRITEIO. TRANSFER. real-time clock 

operations, mass storage operations (other than CAT). OUTPUT 2 (keyboard). or message line output. 

CLR 10 clears any pending closure key action. 

If CLR 10 is used to abort a DUMP GRAPHICS to an external device. the external device may be in the middle of an escape-code 

sequence. Thus, it might be counting characters to determine when to return to normal mode (from graphics mode). This means that a 

subsequent 1!0 operation to the same device may yield "strange" results. Handling this situation is the responsibility of the user and is 

beyond the scope of the firmware provided with the product. Sending 75 ASCII nulls is one way to "clear" the 9876 Graphics Printer. 

Useful Tables B-19 



Graphic Reset Table 

u; 

;;; u; ;;; Note 2 n 
Power --; ;;; --; 

RESET END• GIN IT Main n n 
I --; 

I n 
On )> I n STOP Prerun 

n 

PLOTTER IS CRT CRT - - CRT - CRT -
Graphics Memory Clear Clear - - Note 1 - Note 1 -
VIEWPORT hrd clip hrd clip - - hrd clip - hrd clip -
X andY Scaling (unit of measure) GDU GDU - - GDU - GDU -
Soft Clip hrd clip hrd clip - - hrd dip - hrd clip -
Current Clip hrd clip hrd clip - - hrd clip - hrd clip -
CLIP ON>OFF Off Off - - Off - Off -
PIVOT 0 0 - - 0 - 0 -

AREA PEN 1 1 - - 1 - 1 -
PEN 1 1 - - 1 - 1 -
LINE TYPE 1.5 1.5 - - 1.5 - 1.5 -

Pen Position 0.0 0.0 - - 0.0 - 00 -

LORG 1 1 - - 1 - 1 -

CSIZE 5 .. 6 5. 6 - - 5. 6 - 5. 6 -

LDIR 0 () - - 0 - 0 -

PDIR 0 0 - - 0 - () -
GRAPHICS ON OFF Off Off - - -- - - -

ALPHA ON-OFF [Note 3) On On On On On On - -
DUMP DEVICE IS 701 701 - - - - - -
GRAPHICS INPUT IS None None - - None - None -
TRACK ONiOFF Off Off - - Off - Off -

Color Map (Note 4) Off Off - - Note 5 - Note 5 -

Drawing Mode Norm Norm - - Norm - Norm -

- = Unchanged 

hrd clip = The default hard clip boundaries of the CRT. 

Note 1: Although RESET leaves the graphics memory unchanged, it will be cleared upon execution of the next graphics statement that sets 
a default plotter following the RESET. 

Note 2: Pressing the STOP key is identical to executing STOP. Altering a paused program causes the program to go into the stopped state. 
Note 3: Alpha is turned on automatically by typing on the input line. by writing to the display line. or by an output to the message line. 
Note 4: With color map off. 8 standard colors are available. With color map on, 16 user-defined colors are available. See PLOTTER IS. 
Note 5: Although the color map remains unchanged, it is changed if a graphics statement selects the device as a default plotter. 

B-20 Useful Tables 



Interface Reset Table 

GPIO Card 

Interrupt Enable Bit 

Active Timeout Counter 

Enable Interrupt Mask 

Hardware Reset of Card (PRESET) 

PSTS Error Flag 

RS-232 Card 

Interrupt Enable Bit 

Active Timeout Counter 

Enable Interrupt Mask 

Hardware Reset of Card 

Data Rate/Character Format 

RTS-DTR Latch 

Request to Send Line 

Data Terminal Ready Line 

Line Status Register 

Modem Status Register 

Data-In Buffer 

Error-Pend, Flag 

HP-IB 

Interrupt Enable Bit 

Active Timeout Counter 

Interrupt Enable Mask 

User Interrupt Status 

Serial Po!\ Register 

Parallel Poll Register 

My Address Register 

IFC Sent 

REN Set True 

Data Communications 

Interrupt Enable Bit 

Active Timeout Counter 

Interrupt Enable Mask 

Note 5 Note 6 

Power BASIC END/ LOAD GET Reset Ma;n SUB SUB 

On RESET STOP Cmd Prerun Entry Exit 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Reset Note 1 Note 1 Reset Note 1 Note 1 Note 1 Reset Note 1 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clem Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear CleM Clear Clear Clear Clear 

Reset Reset Reset Reset 

Swtch Swtch 

Clear Clear Clear 

Clear Clear Clear Clear 

Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Empty Empty Empty Empty Empty Empty Empty Empty Empty 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear CleM Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear 

Clear Clear 

Note 4 Note 4 

Note 3 Note 3 

Note 3 Note 3 

Clear 

Clear 

Note 3 

Note 3 

Clear 

Clear 

Note 3 

Note 3 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear 

Clear Clear Clear Clear Clear Clear Clear Clear Clear 

Hardware Reset of Card Reset Note 7 Reset Note 7 

Line State Dscon Dscor 

Data Buffers Empty Empty 

Protocol Selection (Async or Data Link) Swtch Note 8 

Protocol Options Swtch Swtch 

Dscon 

Empty 

Swtch 

Swtch 

Dscon 

Empty 

Note 8 

Swtch 

CLR 

l/0 

Note 1 

Note 2 

Note 2 

Clear 

Clear 

Empty 

Clear 

Useful Tables B-21 



(f> 
n 

"' n Note 5 )> 

"' -; Power n )> BASIC END/ -; :r n 
On )> :r RESET STOP 

BCD Card 

Interrupt Enable Bit Clear Clear Clear Clear Clear 

Active Timeout Counter Clear Clear Clear Clear Clear 

Interrupt Enable Mask Clear Clear Clear Clear Clear 

Hardware Reset of Card Reset Note 1 Note 1 Note 1 Note 1 

Rewind Driver Rwd Rwd Rwd Rwd Rwd 

BCD/Binary Mode Swtch Swtch - - -
EPROM Programmer 

Hardware Reset of Card Reset Reset - Reset -

Programming Time Register Clear Clear - - -

Target Address Register Clear Clear - - -

- = Unchanged 

Swtch = Set according to the switches on the interface card 
Dscon = A disconnect is performed 

Note 1: Reset only if card is not ready. 

LOAD 

Clear 

Clear 

Clear 

Note 1 

Rwd 

-

-

-

-

Note 2: Cleared only if corresponding modem control line is not set. 
Note 3: Sent only if System Controller. 

Note 6 

GET Reset Main SUB 

Cmd Pre run Entry 

Clear Clear Clear -

Clear - Clear -

Clear Clear Clear -

Note 1 Reset Note 1 -

Rwd Rwd Rwd -
- - - -

- Reset - -

- Clear - -

- Clear - -

Note 4: If System Controller and Active Controller, address is set to 21. Otherwise, it is set to 20. 

SUB CLR 

Exit 110 

- -

- -

- -

- Note 1 

- Rwd 

- -

- -

- -

- -

Note 5: Pressing the STOP key is identical in function to executing STOP or END. Editing or altering a paused program causes thE ) 
program to go into the stopped state. \.._/ 
Note 6: Caused by sending a non-zero value to CONTROL register 0. 
Note 7: This is a "soft reset," which does not include an interface self-test or a reconfiguration of protocol. 
Note 8: Set according to the value used in the most recent CONTROL statement directed to Register 3. If there has been no 
CONTROL 3 statement, the switch settings are used. 

B-22 Useful Tables 



Second Byte of Non-ASCII Key Sequences (String) 
Holding the I CTRL I key and pressing a non-ASCII key generates a two-character sequence 
on the CRT. The first character is a "inverse-video" K. This table can be used to look 
up the key that corresponds to the second character of the sequence. (On the small 
HP 98203A keyboard some non-ASCII keys generate ASCII characters when they are 
pressed while holding the I CTRL I key down.) 

Normally on an ITF keyboard,[]] corresponds to ON KEY 1 ... ,@]corresponds to ON 
KEY 2 ... , etc. However, you can use CONTROL KBD,14;1 to change this relationship 
so that[]] corresponds to ON KEY 0 ... ,@] corresponds to ON KEY 1, etc. 

With 98203 keyboard compatibility (KBD CMODE ON), the ITF keyboard softkeys []] 
thru ill], the I Menu I and I System I keys, and [][] thru [][] correspond to 98203 softkeys 
[EQJ thru ~' respectively. See "Porting to Series 300" chapter of BASIC Programming 
Techniques for further information about this mode. 

Character Value ITF Key 98203 Key Closure Key 

space 32 1 1 

! 33 !Shift~~ I SHIFT H CLR 1/0 I Yes 
II 34 1 1 

# 35 I Shift H Clear line I I CLR LN I 
$ 36 System [ill I ANY CHAR I Yes 

% 37 I Clear line I I CLR+END I Yes 

& 38 I Select 15 3,5 

, 39 I Prev I 3 Yes 

( 40 I Shift H Tab I I SHIFT H TAB I 
) 41 I Tab I I TAB I 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 
error is not reported. Instead, the system will perform as much of the indicated action as possible. 

5 These keys have no system meaning, and will DEEP if not trapped by ON KI3D. 

Useful Tables B-23 



Character Value ITF Key 98203 Key Closure Key 

* 42 I Insert line I [INS LN I Yes 
+ 43 I Insert char I [INS CHR I 

44 I Next I 3 Yes 
- 45 I Delete char I I DEL CHR I 

46 3 3 

I 47 I Delete line I I DEL LN I Yes 
0 48 User 3 [][] [ill Yes 
1 49 User 1 (]] [ill Yes 
2 50 User 1 @]2 [ill Yes 
3 51 User 1 [QJ2 [ill Yes 

4 52 User 1 [E)2 [ill Yes 

5 53 User 1 [][]2 [ill Yes 

6 54 User lffi:f [ill Yes 

7 55 User 1 [][)2 [ill Yes 

8 56 User 1 [][)2 [ill Yes 

9 57 User 2 (]]2 [}[] Yes 

58 System I Shift ~Cill:J2 ' 5 3 

59 System I Shift ~[][)2 ' 5 3 

< 60 ~ G 
= 61 Result4 I RESULT I 
> 62 G El 
? 63 Recall4 I RECALL I 
<0 64 ~Recall4 I SHIFT H RECALL I 

2 System and user refer to the softkey menu which is currently active on an ITF keyboard. 
3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 

error is not reported. Instead, the system will perform as much of the indicated action as possible. 
4 This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note 

that these keys have no labels on their keycaps; however, they do have labels on the BASIC keyboard 
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard, 
read the manual entitled Installing, Using, and Maintaining the BASIC System. 

5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 

B-24 Useful Tables 

\ ,, 

\._) 



Character Value ITF Key 98203 Key Closure Key 

A 65 System [EJ I PRT ALL I Yes 

B 66 I Back space I I BACK SPACE I 
c 67 System [K) I CONTINUE I 
D 68 User 1 []] I EDIT I 
E 69 I Enter I I ENTER I Yes 

F 70 System[§] I DISPLAY FCTNS I Yes 

G 71 []blli]-[8 I SHIFT~EJ 
H 72 []blli]-[3] I SHIFT~G 
I 73 I Break I I CLR 1/0 I 
J 74 (Katakana) 3 (Katakana) 3 

K 75 I Clear dis[Jiay I I CLR SCR I Yes 

L 76 Graphics 4 I GRAPHICS I Yes 

M 77 Alpha 4 I ALPHA I Yes 

N 78 Dump Graph 4 I DUMP GRAPHICS I Yes 

0 79 Dump Alpha 4 I DUMP ALPHA I Yes 
p 80 []I2QJ I PAUSE I Yes 

Q 81 1 1 

R 82 System [ill )RUN) Yes 

s 83 System[]] I STEP I Yes 

T 84 I Shift~[!] I SHIFT~[}] Yes 

u 85 ~ I CAPS LOCK I Yes 

v 86 [!] [}] Yes 

w 87 []blli}ITJ I SHIFT ~ITJ Yes 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 
error is not reported. Instead, the system will perform as much of the indicated action as possible. 

4 This ITF key is located in the System Control Key Group just above the Numeric Keypad Group. Note 
that these keys have no labels on their kcycaps; however, they do have labels on the BASIC keyboard 
overlay for the ITF keyboard. For information on the BASIC keyboard overlay for the ITF keyboard, 
read the manual entitled Installing, Using, and Maintaining the BASIC System. 

Useful Tables B-25 



Character Value ITF Key 98203 Key Closure Key 
X 88 3 

[EXECUTE[ Yes 
y 89 (Roman) 3 (Roman) 3 Yes 
z 90 1 1 

[ 91 System[][) I CLR TAB I 
\ 92 m 3 Yes 
] 93 System I Shift ~[][] I SET TAB I 
- 94 m LIJ Yes 

95 System I Shift ~m 3 Yes -
' 96 1 1 

a 97 User 2@] 1 sHIFnLEQJ Yes 

b 98 User 2@] I SHIFT HTIJ Yes 

c 99 User 2lli] I SHIFTHgj Yes 

d 100 User 2 [][] 1 sHIFn@J Yes 

e 101 User 21][] I SHIFT HTIJ Yes 

f 102 User 2 [![] I SHIFT~@] Yes 

g 103 User 2 [][] I SHIFT ~[ill Yes 

h 104 User 3 []] I SHIFT ~[ill Yes 

i 105 User 3@] I SHIFT ~[ill Yes 

j 106 User 3@] 1 sHIFnlill Yes 

k 107 User 3lli] 3 Yes 

1 108 User 3 [][] 3 Yes 

m 109 User 31][] 3 Yes 

n 110 User 3 [![] 3 Yes 

0 111 System I Shift ~[]]2 ' 5 3 

p 112 System I Shift ~@]2 ' 5 3 

q 113 System I Shift ~@]2 ' 5 3 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 

2 System and user refer to the softkey menu which is currently active on an ITF keyboard. 
3 Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 

error Is not reported. Instead, the system will perform as much of the indicated action as possible. 
5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 

B-26 Useful Tables 

\ 

0 

\ 

0 

u 



Character Value ITF Key 98203 Key Closure Key 

r 114 System I Shift ~[ill2 • 5 3 

s 115 User 1 I Shift H:.TIJ2
•
5

•
6 3 

t 116 User 1 I Shift ~@]2 • 5 • 6 3 

u 117 User 1 []Elli]-@]2
•5 •

6 3 

v 118 User 1 I Shift ~[ill2 • 5 3 

w 119 User 1 I Shift ~@]2 • 5 3 

X 120 User 1 I Shift ~0§]2 • 5 3 

y 121 User 1 I Shift ~@]2 • 5 3 

z 122 User 1 I Shift H}~]2 • 5 3 

{ 123 I System I 3 Yes 

I 124 I Menu I 3 Yes 

} 125 I User I 3 Yes 

- 126 []Elli]-1 Menu I 3 Yes 

I 127 1 1 

1 These characters cannot be generated by pressing the CTRL key and a non-ASCII key. If one of these 
characters follows CHR$(255) in an output to the keyboard, an error is reported (Error 131 Bad non
alphanumeric keycode.). 
System and user refer to the softkey menu which is currently active on an ITF keyboard. 
Cannot generate this keycode from this keyboard. If this character is OUTPUT to the keyboard, an 
error is not reported. Instead, the system will perform as much of the indicated action as possible. 

5 These keys have no system meaning, and will BEEP if not trapped by ON KBD. 
6 These keys are also generated by the HP 46060A (HP Mouse) buttons unless GRAPHICS INPUT IS is 

using them. 

Useful Tables B-27 



Selected High-Precision Metric Conversion Factors 

B-28 

* Exact conversion Prefix Symbol Multiplier Prefix Symbol Multiplier t Conversion redefined in 1959 
t Conversion redefined in 1964 exa E 1018 deci d §Conversion redefined in' 1956 pet a p 10 15 centi c 

tera T 1012 milli m 
Note: The preferred metric unit for giga G 109 micro I" force is the newton; for pressure, the mega M 106 nano n pascal; and for energy, the joule. kilo k 103 pico p 

hecto h 102 fern to f 
deka da 101 atto a 

Sources 
American Society for Testing and Materials (AST!vf), "Standard for Metric Practice". Reprinted from Annual Book of ASTM Standards. 
U.S. Department of Commerce, National Bureau of Standards, "NBS Guidelines for the Use of the Metric System". Reprinted from Dimensions/NBS (October 1977) 

Useful Tables 

10 1 
10-2 
10-3 
10-6 
10-9 
10-12 
10-15 
10-18 

'\....../ 

I. ) 

\.._I 



Index 

a 
Abort message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
ABORT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10, 14-52 
ABORTIO statement .................................................... 9-20 
Above-Screen Lines 
Absolute Positioners 

••••••••••••••••••••• 0 ••••••••••••••••••••••••• 0 ••••• 10-22 
19-24 

Active controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29 
Additional Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Address, primary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
Addressed to listen, HP-IB ............................................... 12-7 
Addressed to talk, HP-IB ................................................ 12-7 
Addressing multiple listeners on the HP-IB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8 
Addressing, Non-Active HP-IB Controller ................................. 12-37 
Addressing, Secondary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 
ALPHA HEIGHT statement .............................................. 10-5 
Alpha pen colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 
ALPHA PEN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
ASCII and Non-ASCII Keys .............................................. 11-4 
ASCII Data Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-39 
ASCII Files ............................................................. 8-22 
ASCII Representation of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 
ASCII Representation of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 
ASCII representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-18 
ASSIGN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9, 8-4, 9-6 
ASSIGN Statements, Determining the Outcome of ........................... 8-18 
Assigning I/0 Path Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 
Assigning I/0 Path Names Locally Within Subprograms . . . . . . . . . . . . . . . . . . . . . 3-12 
Async and Data Link Operation, BOTH .................................. 14-10 
Async Operation ONLY ................................................. 14-10 
Asynchronous Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3 
Asynchronous Data Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 
Attention Line (ATN), HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 
Attribute, BYTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Attribute control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 
Attribute, WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 

Index 1 



Attributes, Additional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Attributes, Changing Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-39 
Attributes, FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 
Attributes, I/0 Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
Attributes, Restoring the Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Auto-poll on the HP 1000, Disabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-60 
Auto-repeat, keyboard .................................................. 11-11 
Automatic Answering Applications, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-64 
Automatic Dialing with the HP 13265A Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27 

b 
Background Datacomm Program Routines ................................. 14-33 
Backplane, computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 
Bar Code Reader, Using a ............................................... 19-48 
Battery-backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 
Baud rate (RS-232C) ................................................... 13-10 
Baud Rate, RS-232C Handshake and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Baud Rate Select Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8 
BCD binary data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-7 
BCD binary mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-8 
BCD binary mode entry ................................................. 17-22 
BCD cable configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-17 
BCD data entry ........................................................ 17-19 
BCD data output ...................................................... 17-10 
BCD Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 
BCD EN ABLE INTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36 
BCD handshake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-15 
BCD hardware priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-14 
BCD Interface ..................................................... 2-11, 17-1 
BCD interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-12 
BCD Interface Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36 
BCD interface reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-18 
BCD interface select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-14 
BCD Interface Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-33 
BCD interrupt service routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-37 
BCD interrupts, setting up and enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36 
BCD operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2 
BCD optional format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5 
BCD output routines using CONTROL and STATUS . . . . . . . . . . . . . . . . . . . . . . . 17-30 
BCD peripheral status switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-14 
BCD Representation .................................................... 16-27 

2 Index 



BCD standard format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3 
BCD STATUS and CONTROL Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-38 
BCD STATUS statement entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-26 
BCD timeout service routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-34 
BCD timeout time parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-33 
BCD type 1 timing ..................................................... 17-15 
BCD type 2 timing ..................................................... 17-16 
BCD-Mode standard format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-20 
BDAT Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 
Binary Images .......................................................... 5-20 
Binary images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 
Binary specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 
Bits and Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 
Branch, Conditions Required for Initiating a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 
BREAK Message ....................................................... 13-17 
Break received . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-15 
Break Timing, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22 
Buffer Attributes, Changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-39 
Buffer, Narned ........................................................... 9-5 
Buffer Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Buffer Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
BUFFER statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4, 9-5 
Buffer Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-40 
Buffer, Unnarned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Buffer-Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Buffers, A Closer Look at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Buffers and Transfers, Overview of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
Buffers, Creating Named . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Buffers, Types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Burst Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-35 
Bus ..................................................................... 2-2 
BYTE Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
BYTE attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Byte count 9-8 

c 
Cable Options and Functions, Dataeomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-69 
Cable options, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
Caps Loek Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9 
CDIAL function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-23 
Chapter Previews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 

Index 3 



Character conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-30 
Character Format and Parity, RS-232C ................................... 13-11 
Character Format Definition, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21 
Character Format Parameters, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7 
Character Length (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7 
Character specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
Characters, Converting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
Characters, Ignoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 
Characters, Representing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Circuit Driver /Receiver Functions, Optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31 
Clear Lockout/Local message .......................................... , . 12-20 
Clear message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19 
CLEAR SCREEN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
CLEAR statement ...................................................... 12-10 
Clear to Send (CTS), RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Clearing the Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
Closing I/0 Path Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 
Closure Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-23 
CMD secondary keyword ................................................ 12-27 
Color Enhancements .................................................... 10-19 
Comma separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
Communicating with HP-IB devices ....................................... 12-3 
Communication Between Desktop Computers, Datacomm ................... 14-68 
Computer As a Non-Active Controller on the HP-IB Bus .................... 12-29 
Computer backplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 
Concurrency ............................................................ 9-27 
Conditions, Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Configuration Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-47 
Configuring Parallel Poll Responses ....................................... 12-16 
Continuous-Memory Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 
Control Block Contents, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-17 
Control Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15 
Control characters, generating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 
Control, Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31 
CONTROL statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 
Control-Character Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 
Controller address, HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29 
Controller status, HP-IB ................................................ 12-29 
Controller's Address, Changing the HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31 
CONVERT IN statement ................................................. 8-14 
CONVERT OUT statement .............................................. 8-14 

4 Index 



CONVERT statement ................................................... 8-11 
CONVERT ... BY INDEX statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 
CONVERT ... BY PAIRS statement ........................................ 8-13 
Cooperating Programs .................................................. 14-44 
Copying Data into the Destinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 
Copying Data to the Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 
COUNT parameter ...................................................... 9-15 
CRT STATUS and CONTROL Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-36 
CRTA display driver ..................................................... 10-2 
CRTB display driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 

d 
Data Carrier Detect (DCD or CD), RS-232C ............................... 13-6 
Data Communication Equipment (DCE), RS-232C ......................... 13-29 
Data Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Data, Entering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 
Data entry, RS-232C .................................................... 13-13 
Data Flow, Directing ..................................................... 3-1 
Data Formats for Datacomm Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-39 
Data Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 
Data Link Communication Protocol ....................................... 14-4 
Data Link Connections, Datacomm ....................................... 14-26 
Data Link Operation ONLY ............................................. 14-11 
Data Loss Prevention on the HP 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-59 
Data message ........................................................... 12-7 
DATA messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-26 
Data on the HP-IB bus, Sending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-26 
Data output, RS-232C .................................................. 13-12 
Data, Outputting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
Data, Re-Directing ...................................................... 3-16 
Data Representation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-24 
Data Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 
DATA secondary keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-27 
Data Set Ready (DSR), RS-232C .......................................... 13-6 
Data Terminal Equipment (DTE), RS-232C ............................... 13-29 
Data to the Keyboard, Sending .......................................... 11-16 
Data Transfers, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 
Data Valid (DAV), HP-IB ............................................... 12-47 
Data-Link Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24 
Data-Representation Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 
Datacomm adapter options and functions ................................. 14-69 

Index 5 



Datacomm automatic answering applications 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-64 
Datacomm, Break Timing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 

0 0 0 0 14-22 
Datacomm character format definition 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-21 
Datacomm communication between desktop computers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-68 
Datacomm connection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-10 
Datacomm control block contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-23 
Datacomm Data Transfers Between Computer and Interface 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 0 0 0 14-5 
Datacomm ENABLE INTR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 14-17 
Datacomm Error Detection and Program Recovery 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-52 
Datacomm error recovery 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-51 
Datacomm Errors and Recovery Procedures 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-49 
Datacomm Exit Conditions 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-38 
Datacomm handshake 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-24 
Datacomm interface 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-9, 9-37, 14-1 
Datacomm Interface Protocol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-3 
Datacomm Interrupt Service Routines 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-34 
Datacomm interrupt system, setting up the 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 

Datacomm Interrupts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14-30 
14-31 

Datacomm interrupts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Datacomm line connection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Datacomm Line Timeouts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Datacomm Options for Async Communication 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Datacomm Options for Data Link Communication 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Datacomm parity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Datacomm Parity option: 
EVEN ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

NONE ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

ODD OOOOOOOOOOOOOooOOoooooooooooooooooooooooOOOooooooooooooooooooooo 

ONE oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

ZERO ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 

14-30 
14-25 
14-17 
14-16 
14-22 
14-25 

14-3 
14-3 
14-3 
14-3 
14-3 

Datacomm program operator inputs, setting up 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-31 
Datacomm Programming 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-9 
Datacomm Programming Helps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-59 
Datacomm prompt recognition 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-20 
Datacomm Protocol and Link Operating Parameters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-10 
Datacomm Protocol Selection 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 14-15 
Datacomm Service Routines for ON KEY Interrupts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-43 
Datacomm Start bits 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-3 
Datacomm STATUS and CONTROL Registers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-75 
Datacomm Stop bits 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 •• o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-3 
Datacomm Time gap 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14-3 

6 Index 

\J 



Datacomm timeouts .................................................... 14-17 
Datacomm Transfers, Data Formats for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-39 
Datacomm transmitted block size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25 
DCE cable option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
DCE Cable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-69 
DCE cable options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31 
DCE Cable, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31 
Declaring I/0 Path Names in Common .................................... 3-14 
Default protection time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9 
DELAY statement ....................................................... 8-15 
DELIM parameter ....................................................... 9-15 
Delimiter Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15 
Device Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
Dialing Procedure for Switched (Public) Modem Links ...................... 14-26 
Digit specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 
DIGITIZE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-22 
Direct Connection Links, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26 
Direct Interface Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 
Direct memory access (DMA) ............................................. 9-12 
Directing Data Flow ...................................................... 3-1 
DISABLE INTR statement ............................................... 7-16 
Disabling Auto-poll on the HP 1000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-60 
Disabling the Cursor Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-31 
DISP Line ............................................................. 10-30 
Display Features, Overview of ............................................. 10-3 
Display Functions Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 
DISPLAY FUNCTIONS statement ....................................... 10-20 
Display interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 
Display Line, Output Area and the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
Display regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 
Display Regions Affected by Pen Color Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 
Display types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 
Display-Enhancement Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18 
DMA Mode ............................................................ 9-34 
DRS and SRTS Modem Lines, Programming the ........................... 13-18 
DTE Cable Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-69 
DTE cable options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31 
DTE Cable, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-30 

Index 7 



e 
Electrical and Mechanical Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Empty pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
ENABLE INTR, BCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36 
ENABLE INTR, Datacomm ............................................. 14-17 
ENABLE INTR, GPIO ................................................. 16-32 
ENABLE INTR statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16, 12-14, 14-30 
Enabling and setting up GPIO events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-31 
Enabling Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 
Enabling the Insert Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-32 
END in Freefield OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8 
End or Identify Line (EOI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-48 
END parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 
END with Data Communications Interfaces ................................. 4-26 
END with HP-IB Interfaces ............................................... 4-9 
END with OUTPUTs that Use Images ..................................... 4-25 
END with the Data Communications Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 
End-of-line (EOL) ........................................................ 4-3 
End-of-line Recognition, Datacomm ...................................... 14-20 
End-of-line sequence .................................................. 4-6, 8-1 
End-or-identify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22 
End-or-identify signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 
Enhanced Keyboard Control ............................................. 11-28 
ENTER and Buffers, OUTPUT and ....................................... 9-13 
ENTER images ......................................................... 4-21 
ENTER statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19, 3-2, 5-1 
ENTER USING statement ............................................... 5-13 
Entering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 
Entering Data from the Keyboard ........................................ 11-13 
Entering from the CRT ................................................. 10-27 
Entering String Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 
Enters that Use Images .................................................. 5-13 
EOI Re-Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22 
EOI Signal, Sending the ................................................. 11-15 
EPROM Addresses and Unit Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3 
EPROM Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-9 
EPROM data storage rates .............................................. 18-12 
EPROM Directories ..................................................... 18-9 
EPROM hardware operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4 
EPROM memory initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3 
EPROM memory overview ............................................... 18-2 

8 Index 



EPROM memory, reading ............................................... 18-19 
EPROM memory which is unused ........................................ 18-12 
EPROM Programmer Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3 
EPROM programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1 
EPROM, Programming Individual Words and Bytes in ...................... 18-15 
EPROM, reading data files stored in ...................................... 18-19 
EPROM, storing data in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-10 
EPROM to store programs, using the ..................................... 18-15 
EPROM unit initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-8 
ERRL function ........................................................ 14-52 
ERRN function ........................................................ 14-52 
Error Detection and Program Recovery, Datacomm ......................... 14-52 
Error Detection, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
Error Recovery, Datacomm .............................................. 14-51 
Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29 
Event-Initiated Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
Events, Enabling Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 
Events, Logging and Servicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 
Events, Servicing Pending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 
Events, Types of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
Execution Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 
Exit Conditions, Datacomm ............................................. 14-38 
Explicitly close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 
Exponent specifier ....................................................... 4-14 
External interrupt request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-32 

f 
Fast handshake (FHS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 
Files, ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 
Files, BDAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 
Files, I/0 Paths to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 
Fill pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Firmware ............................................................... 2-19 
FORMAT attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 
FORMAT Attributes, Assigning Default .................................... 8-4 
FORMAT OFF statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17, 8-2 
FORMAT ON statement ............................................. 3-17, 8-2 
FORMAT statement ...................................................... 8-2 
Formatting, Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 
Framing error (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
Free-Field ENTER Statements ............................................ 5-10 

Index 9 



Free-Field Enters 
••••••••••••••• 0 •••••• 0 •••••••••••••••••• 0 ••••••••••••••• 5-1 

Free-field output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
Freefield OUTPUT, END in ............................................... 4-8 
Function Box, Activating the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-33 
Function Box and Vectra Keyboard ....................................... 19-32 
Function Box key presses, Trapping ....................................... 19-35 \..._/ 
Function Box Keys, Assigning Functions to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-38 

g 
GPIO control output lines, driving the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-40 
GPIO data handshake methods ........................................... 16-5 
GPIO data logic sence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5 
GPIO data-in clock source ................................................ 16-7 
GPIO ENABLE INTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-32 
GPIO events, enabling and setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-31 
GPIO Full Handshake Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-37 
GPIO full-mode handshakes .............................................. 16-8 
GPIO handshake lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6 
GPIO handshake logic sence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6 
GPIO handshake modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6 
GPIO hardware interrupt priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5 ,; 
GPIO interface ................................................ 2-10, 9-37, 16-1 '"'-"" 
GPIO interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4 
GPIO interface reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-17 
GPIO Interface Select Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5 
GPIO interrupt transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-38 
GPIO interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-31 
GPIO optional peripheral status check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-7 
GPIO OUTPUT of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-31 
GPIO, Outputs and Enters through the .................................. . 16-18 
GPIO pulse-mode handshakes ........................................... . 16-11 
GPIO ready interrupt transfers ......................................... . 16-38 
GPIO special-purpose lines ............................................. . 16-40 
GPIO statements that enter data bytes .................................. . 16-20 
GPIO statements that enter data words .................................. . 16-23 
GPIO statements that output data bytes ................................. . 16-19 
GPIO statements that output data words ................................ . 
GPIO STATUS and CONTROL Registers ................................ . 
GPIO status input lines, interrogating the ................................ . 

16-22 ',, 

16-43 0 
16-41 

GPIO Timeouts ....................................................... . 16-24 
GPIO transfer design 16-36 

10 Index 



GPIO, Types of Interrupt Events 16-31 

h 
Half-duplex telecommunications .......................................... 14-61 
Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7 
Handshake and Baud Rate, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Handshake Character Assignment, Datacomm Protocol . . . . . . . . . . . . . . . . . . . . . 14-20 
Handshake, Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 
Handshake, Datacomm .................................................. 14-18 
Handshake Lines, HP-IB ................................................ 12-47 
Hardware priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
HIL Devices, Re-Configuring .............................................. 11-3 
HIL SEND statement .................................................... 19-4 
HILBUF$ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-5 
HIL_ID program ........................................................ 19-7 
HIL_ID program explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-8 
HP 1000, Disabling Auto-poll on the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-60 
HP 13264A Data Link Adapter ........................................... 14-2 
HP 13265 Modem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2 
HP 13265A Modem, Automatic Dialing with the . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27 
HP 13266A Current Loop Adapter ........................................ 14-2 
HP 92916A (Bar-Code Reader) .......................................... 19-27 
HP 98626 RS-232 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-46 
HP 98628 Data Communications Interface .................................. 14-1 
HP 98644 RS-232 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-46 
HP-HIL Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-28 
HP-HIL device preview .................................................. 19-3 
HP-HIL devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-20 
HP-HIL Devices, Communicating with .................................... 19-28 
HP-HIL Devices, Interaction Between Multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-52 
HP-HIL devices supported by the HIL Interface driver . . . . . . . . . . . . . . . . . . . . . . . 19-6 
HP-HIL ID Module Data, Interpreting .................................... 19-30 
HP-HIL ID Modules, Note about Installing and Removing . . . . . . . . . . . . . . . . . . . 19-31 
HP-HIL initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2 
HP-HIL Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1 
HP-HIL Interface, Communicating through the ............................. 19-4 
HP-HIL interface driver statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-4 
HP-HIL Keyboards ..................................................... 19-21 
HP-HIL Link, Identifying All Devices on the ................................ 19-6 
HP-HIL, Other Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-26 
HP-HIL Security Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-25 

Index 11 



HP-IB ABORT 
••• 0 ••••••••••••••••• 0 •••••• 0 •••••••••••• 0 ••••• 0 ••••••• 0 12-10 

HP-IB active controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 
HP-IB Address Commands and Codes .................................... 12-22 
HP-IB addressed to listen ................................................ 12-7 
HP-IB addressed to talk .................................................. 12-7 
HP-IB attention line (ATN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 
HP-IB attention signal line (ATN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 
HP-IB Bus Activity, Aborting ........................................... 12-13 
HP-IB bus, Addressing multiple listeners on the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8 
HP-IB Bus Commands and Codes ........................................ 12-21 
HP-IB Bus Management ................................................ 12-10 
HP-IB Bus Management, Advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19 
HP-IB Bus Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19 
HP-IB Bus Messages, Explicit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-24 
HP-IB bus sequences .................................................... 12-7 
HP-IB Bus-Line States, Determining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-50 
HP-IB CLEAR ........................................................ 12-10 
HP-IB Control Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-46 
HP-IB controller address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29 
HP-IB controller status ................................................. 12-29 
HP-IB data movement ................................................... 12-4 
HP-IB Data Valid (DAY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 1'-" 

HP-IB Device Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6, 12-3 
HP-IB Devices, Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 
HP-IB devices, Communicating with ....................................... 12-3 
HP-IB Devices, Polling .................................................. 12-16 
HP-IB Devices, Triggering ............................................... 12-12 
HP-IB ENABLE INTR ................................................. 12-14 
HP-IB end-or-identify line (EOI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-48 
HP-IB Handshake Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 
HP-IB Installation and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 
HP-IB Interface ..................................................... 2-7, 12-1 
HP-IB interface ......................................................... 9-37 
HP-IB, Interface Clear Line (IFC) ........................................ 12-48 
HP-IB Interface-State Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-42 
HP-IB interlocking handshake .......................................... . 12-47 
HP-IB Interrupts that Require Data Transfers, Servicing ................... . 12-43 
HP-IB LOCAL ........................................................ . 12-10 
HP-IB LOCAL LOCKOUT ............................................. . 12-10 
HP-IB Message Mnemonics ............................................. . 12-27 
HP-IB messages ....................................................... . 12-19 

12 Index 

\"'-"' 



HP-ID NDAC holdoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-53 
HP-IB Not Data Accepted (NDAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-47 
HP-IB Not Ready for Data (NRFD) ...................................... 12-47 
HP-IB ON INTR ....................................................... 12-14 
HP-IB PPOLL ......................................................... 12-10 
HP-IB PPOLL CONFIGURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10 
HP-IB PPOLL UNCONFIGURE ......................................... 12-10 
HP-IB REMOTE ...................................................... 12-10 
HP-IB remote enable line (REN) ......................................... 12-48 
HP-IB Secondary Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 
HP-IB select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 
HP-IB SEND .......................................................... 12-10 
HP-IB Service request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-38 
HP-ID service request line (SRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-49 
HP-IB Service Requests ................................................. 12-14 
HP-IB SPOLL ......................................................... 12-10 
HP-IB SRQ Interrupts .................................................. 12-14 
HP-IB SRQ Interrupts, Servicing ......................................... 12-15 
HP-IB STATUS and CONTROL Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-51 
HP-IB Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 
HP-IB system controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-29 
HP-IB TRIGGER ...................................................... 12-10 
HP-IB: 

Abort message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Clear Lockout/Local message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Clear message ....................................................... 12-19 
Data message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19 
Local Lockout message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Local message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Pass Control message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Remote message ..................................................... 12-19 
Service Request message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Status Bit message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Status Byte message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Trigger rnessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19 

HP 35723A (HP-HIL/Touchscreen) ....................................... 19-25 
HP 46020/21A Keyboard ................................................ 19-21 
HP 46030A (Vectra Keyboard) ........................................... 19-27 
HP 46060A (HP-Mouse) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-22 
HP 46083A (Rotary Control Knob) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-22 
HP 46084A (HP-HIL ID Module) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-25 

Index 13 



I 

HP 46086A (Function Box) ............................................. . 19-26 
HP 46087 A (A-size Digitizer) ........... 0 •••••••••••••••••••••••••••• 0 ••• 19-25 
HP 46088A (B-size Digitizer) . 0 •••••••••••••••••••••• 0 •••••••••••••••••••• 19-25 
HP 46094A (HP-HIL/Quadrature Port) ....... 0 ••••••••••••••••••••• 0 ••••• 19-22 
HP 98203C Keyboard ........................................ 0 •••••••••• 19-21 
HP 98622 Interface ...................... 0 ••••••••••••••••••••••••••••••• 16-1 
HP 98626 and HP 98644 Card ID Register ..... 0 •••• 0 •••••••••••••••••••••• 13-46 
HP 98626 Optional Driver Receiver Circuits .............................. . 13-47 
HP 98644 Baud-Rate and Line-Control Registers .......................... . 13-50 
HP 98644 Card ID Register ................... 0 •••••••••••••••••••••••••• 13-49 
HP 98644 Coverplate Connector .......................... 0 ••••••••••••••• 13-48 
HP 98644 Optional Driver /Receiver Registers ............................. . 13-49 

. 
I 

Image Definitions During Outputs ........ 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 4-13 
Image OUTPUT ......................................................... 4-1 
Image output ............................................................ 4-2 
Image Re-Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23, 5-25 
Image Repeat Factors .................................................... 4-22 
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11, 5-14 
Images, binary .................................................. , ....... 4-18 
Images, ENTER .......................... 0 ••••••••••••••••••••••••••••• 4-21 
Images, nested .......................................................... 4-24 
Images, numeric ......................................... 0 ••••••••••••••• 4-14 
Images, Outputs that Use 0 ••••••••••••••••••••••••••••••••••••••••••••••• 4-10 
Images, Special-Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 
Images, string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
Images, Terminating Enters that Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 
Inbound and Outbound Transfers .......................................... 9-2 
Inbound Control Blocks, Datacomm ....................................... 14-6 
Inbound Datacomm Data Messages ........................................ 14-8 
Inbound transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
Initiating the Datacomm Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-29 
Input ................................................................... 2-2 
INPUT statement ...................................................... 14-31 
INT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 
Integers, ASCII Representation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 
Integers, Internal Representation of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Integers, Representing Signed .......... 0 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2-14 
Integral Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-21 
Interactive Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-33 

14 Index 

\.._/ 



Interface Access, Direct .................................................. 6-12 
Interface Clear Line (IFC), HP-IB ........................................ 12-48 
Interface Functions, Additional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Interface Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14 
Interface, primary function of an . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 
Interface ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-32 
Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
Interface Reset, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9 
Interface Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 
Interfaces, Select Codes of Built-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
Interfaces, Select Codes of Optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Interfacing Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
Internal Representation of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Internal Representation of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 
Internal representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-18 
Interrupt Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 
Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 
Interrupt (INT) ......................................................... 9-12 
Interrupt Mask Bits for Async Operation .................................. 14-31 
Interrupt Mask Bits for Data Link Operation .............................. 14-32 
Interrupt service routine (ISR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-36 
Interrupt service routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-33 
Interrupt Service Routines, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-34 
Interrupts and Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
Interrupts, Non-Active HP-IB Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-32 
I/0 ..................................................................... 2-2 
I/0, Applications of Unified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 
I/0, Concepts of Unified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 
I/0 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 
I/0 Operations with String Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 
I/0 Path Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 
I/0 Path Attributes, Specifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
I/0 Path Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 
I/0 path name .......................................................... 3-10 
I/0 Path Names ................................................. 3-7, 6-9, 8-1 
I/0 path names .......................................................... 9-7 
I/0 Path Names as Parameters, Passing ................................... 3-14 
I/0 Path Names Assigned to a BDAT File ................................. 6-10 
I/0 Path Names Assigned to a Buffer ...................................... 6-11 
I/0 Path Names Assigned to a Device ...................................... 6-9 
I/0 Path Names Assigned to an ASCII File ................................. 6-9 

Index 15 



1/0 Path Names Assigned to an HP-UX File ............................... 6-10 
1/0 Path Names, Assigning ................................................ 3-9 
1/0 Path Names, Closing ................................................. 3-11 
1/0 Path Names in Common, Declaring .................................... 3-14 
1/0 Path Names in Subprograms .......................................... 3-12 
1/0 Path Names Locally Within Subprograms, Assigning ..................... 3-12 \.._1 
1/0 Path Names, Re-Assigning ............................................ 3-11 
1/0 Path Names to Named Buffers, Assigning ............................... 9-6 
1/0 Path Names to Unnamed Buffers, Assigning ............................. 9-6 
1/0 Path Register Summary ............................................... 6-9 
1/0 Path Registers ....................................................... 6-5 
1/0 Paths to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 
1/0 Process ............................................................ 2-19 
1/0 Statements and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 
Item Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3, 5-2 
Item Terminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3, 5-2 
ITF Keyboards ........................................................ 10-34 

k 
KBD$ function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27, 19-21 
KBD LINE PEN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
KBD Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-36 \...-~ 
KEY LABELS ON/OFF statement ....................................... 10-34 
KEY LABELS PEN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
Keyboard auto-repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11 
Keyboard CAPS LOCK mode ............................................ 11-9 
Keyboard ENTER ..................................................... 11-13 
Keyboard features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-4 
Keyboard, Interactive ................................................... 11-33 
Keyboard Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
Keyboard Interrupts, Servicing Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-40 
Keyboard, Locking Out the .............................................. 11-34 
Keyboard Operating Modes .............................................. 11-9 
Keyboard OUTPUT .................................................... 11-16 
Keyboard types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1 
Keyboards, Description of ................................................ 11-1 
Keystrokes, Trapping ................................................... 11-29 , 
Knob Rotation ......................................................... 11-26 \J 
KNOBX function ...................................................... 11-27 
KNOBY function ...................................................... 11-27 

16 Index 



I 
Line connection, Datacomm ............................................. 14-25 
Line Speed (Baud Rate), Datacomm ...................................... 14-18 
Line Speed, Datacomm ................................................. 14-24 
Line-Control Switches, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9 
LINPUT statement ..................................................... 14-31 
LOADSUB ALL FROM .................................................. 8-39 
Local Control, Enabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 
Local Lockout message .................................................. 12-20 
LOCAL LOCKOUT statement ........................................... 12-10 
Local message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
LOCAL statement ...................................................... 12-10 
Locking Out Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 
Locking Out the Keyboard .............................................. 11-34 

m 
Manual Organization ..................................................... 1-1 
Mechanical Compatibility, Electrical and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5 
Modem Control Register, RS-232C ....................................... 13-17 
Modem Handshake Lines, RS-232C ....................................... 13-17 
Modem Line Handshaking, RS-232C ...................................... 13-13 
Modem-initiated ON INTR Branching Conditions, Datacomm . . . . . . . . . . . . . . . 14-17 
Modem-Line Disconnect Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7 
Modifiers, Statement-Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23 
Monochrome Enhancements ............................................. 10-18 
Mouse Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-32 
Multiple Termination Conditions .......................................... 9-16 

n 
Named buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Named Buffers, Assigning I/0 Path Names to ............................... 9-6 
Named Buffers, Creating .................................................. 9-5 
Named Buffers via Variable Names, Accessing .............................. 9-10 
NDAC holdoff, HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-53 
Nested Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24, 5-25 
Non-Active HP-IB Controller Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-37 
Non-Active HP-IB Controller Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-32 
Non-ASCII Data Transfers .............................................. 14-40 
Non-ASCII Keystrokes .................................................. 11-16 
Non-Data Datacomm Characters, Handling of ............................. 14-19 

Index 17 



Not Data Accepted (NDAC), HP-IB ...................................... 12-47 
Not Ready for Data (NRFD), HP-IB ..................................... 12-47 
Number builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
Numbers, Representing .................................................. 2-13 
Numeric Format, Standard ................................................ 4-2 
Numeric Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14, 5-16 1

\._-

Numeric Outputs ....................................................... 10-14 
Numeric specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 

0 
OFF HIL EXT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-5 
OFF INTR statement .................................................... 7-17 
OFF KBD statement ................................................... 11-28 
ON CDIAL statement .................................................... 7-1 
ON END statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
ON ERROR statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1, 13-16, 14-52 
ON HIL EXT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-4 
ON INTR Branching Conditions, Datacomm ............................... 14-24 
ON INTR Branching Conditions, Datacomm Modem-initiated ............... 14-17 
ON INTR statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2, 12-14, 14-30 
ON KBD statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27 
ON KEY Interrupts, Datacomm Service Routines for ....................... 14-43 ~ 
ON KEY statement ...................................................... 7-1 
ON KNOB statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2, 11-26 
ON TIMEOUT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2, 17-33 
One-Second-Left Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12 
ON/OFF CDIAL statement ............................................. 19-23 
ON/OFF KBD statement ............................................... 19-21 
ON/OFF KEY statement ............................................... 19-21 
ON/OFF KNOB statement .............................................. 19-22 
Operating Parameters, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Outbound Control Blocks, Datacomm ..................................... 14-5 
Outbound Datacomm Data Messages ...................................... 14-8 
Outbound transfer ....................................................... 9-2 
Outbound Transfers, Inbound and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
Output ................................................................. 2-2 
OUTPUT and ENTER and Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 
Output Area and the Display Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 \~ 
OUTPUT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19, 3-2, 4-2, 5-1 
Output to the CRT ..................................................... 10-14 
OUTPUT USING statement .............................................. 4-10 

18 Index 



Output-Area Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-22 
Outputs that Use Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 
Outputting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 
Overheat Protection Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 
Overrun error (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 

p 
PAIRS conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 
Parallel Poll, Conducting a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-17 
Parallel Poll Responses, Configuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16 
Parallel Poll Responses, Disabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-17 
Parallel Polls, Responding to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-39 
Parity bit, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 
Parity, Datacomm ...................................................... 14-25 
Parity Enable (RS-232C) ................................................. 13-7 
Parity error (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
Parity Generation and Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 
Parity option: 

EVEN ............................................................... 13-4 
NONE ............................................................... 13-4 
ODD ................................................................ 13-4 
ONE ................................................................ 13-4 
ZERO ............................................................... 13-4 

Parity options, Datacomm ................................................ 14-3 
Parity, RS-232C Character Format and ................................... 13-11 
Parity Sense (RS-232C) .................................................. 13-7 
PARITY statement ...................................................... 8-16 
Pass Control message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Passing Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31 
Passing I/0 Path Names as Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 
Path name, I/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 
Pen Colors, Changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-31 
Pen Colors in Display Regions, Changing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
Peripheral Status line (PSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-42 
Plotting Selected Locations on a Touchscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-44 
Pointers, Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Power Back Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 
Power Back Timer ....................................................... 15-3 
Power-Is-Back Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-12 
Powerfail protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 
Powerfail protection capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1 

Index 19 



Powerfail Status and Control Registers ................................... . 15-14 
Powerfail Status register ................................................ . 15-6 
Powerfail Timer 

••• 0 ••••••••••••••• 0 0 ••••••• 0 ••••• 0 •••• 0 ••••••••••• 0 ••• 0 0 15-3 
Powerfail Timer register ................................................. . 15-6 
Powerfail-Protection Timers ............................................. . 15-3 
PPOLL CONFIGURE statement ........................................ . 12-10 
PPOLL statement ..................................................... . 12-10 
PPOLL UNCONFIGURE statement ..................................... . 12-10 
Premature Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-38 
Previews, Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
Primary address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6, 12-3 
Primary function of an interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4 
Primary keyboard ....................................................... 11-3 
PRINT ALL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10 
Print All Mode ........................................................ 11-10 
PRINT PEN statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
PRINT position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24 
Priority, Changing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
Priority, Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
Priority, Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 
Private Telecommunications Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26 
Program control (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-9 
Program flow (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 
Prompt Recognition, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20 
Protection time, default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-9 
Protection Timer, Overheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3 
Protocol Handshake Character Assignment, Datacomm ..................... 14-20 

r 
Radix specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 
Re-Assigning I/0 Path Names ............................................ 3-11 
Re-Directing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 
READ LOCATOR statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-22 
Reading a Screen Line ................................................. . 10-27 
Reading the Entire Output-Area Memory ................................ . 10-28 
READIO and WRITEIO Interface Hardware Registers ..................... . 13-20 
READIO and WRITEIO Registers ...................................... . 13-19 
READIO statement ................................................... . 13-19 
Real Numbers, ASCII Representation of ................................... . 2-18 
Real Numbers, Internal Representation of ................................. . 2-17 
Real Numbers, Representing ............................................. . 2-17 

20 Index 

I 
~~ 

I 

"'-' 

\ \0 



Real-Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 
Received BREAKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
RECORDS parameter ................................................... 9-16 
Records, Transferring .................................................... 9-16 
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20, 6-1 
Registers, Buffer-Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7 
Registers: 

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
1/0 Path .............................................................. 6-5 

Relative Positioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-22 
Remote Control of HP-IB Devices ........................................ 12-11 
Remote Enable Line (REN), HP-IB ....................................... 12-48 
Remote message ....................................................... 12-19 
REMOTE statement .................................................... 12-10 
Repeat and Delay Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11 
Repeat Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25 
Repeat Factors, Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 
Repeatable specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22 
Representing Real Numbers .............................................. 2-17 
RESET statement ....................................................... 9-21 
Resetting the Datacomm Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14 
Resource, Specifying a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 
RESUME INTERACTIVE statement ..................................... 11-33 
RETURN attribute ...................................................... 8-18 
Ring Indicator (RI), RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Rotary Control Knob ................................................... 11-32 
RS-232C character format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2 
RS-232C Character Format Parameters .................................... 13-7 
RS-232C compatible cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-49 
RS-232C Data Error Detection and Handling, Incoming ..................... 13-14 
RS-232C Data Transfers Between Computer and Peripheral . . . . . . . . . . . . . . . . . . 13-5 
RS-232C DTE and DCE cable configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
RS-232C Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
RS-232C framing errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
RS-232C Handshake and Baud Rate ....................................... 13-6 
RS-232C Interface Defaults to Simplify Programming, Using . . . . . . . . . . . . . . . . . . 13-7 
RS-232C, List of Signals ................................................ 14-73 
RS-232C Modem Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17 
RS-232C Modem Handshake Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17 
RS-232C operating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
RS-232C Optional Circuit Driver /Receiver Functions . . . . . . . . . . . . . . . . . . . . . . . 14-71 

Index 21 



RS-232C overrun errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
RS-232C parity bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 
RS-232C parity errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
RS-232C received BREAKs ............................................... 13-4 
RS-232C Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8, 13-1 
RS-232C Serial Interface Self-test Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-18 \......_1 
RS-232C Serial STATUS and CONTROL Registers ......................... 13-36 
RS-232C: 

Clear to Send (CTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Data Carrier Detect (DCD or CD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Data Set Ready (DSR) ................................................. 13-6 
Ring Indicator (RI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 

s 
Screenwidth, determining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 
Scrolling, Disabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-10 
Scrolling the Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-25 
Second Byte of Non-ASCII Key Sequences ................................. 11-18 
Secondary Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-9 
Sector size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31 
Select Codes of Built-In Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 

\_,1 Select Codes of Optional Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 
Selectors, Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 
Selectors, HP-IB Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 
Semicolon separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
SEND statement ....................................................... 12-10 
Separator, Comma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 
Separator, semicolon ...................................................... 4-4 
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1 
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-37 
Serial Interface Errors, Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16 
Serial Interface Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Serial Interface, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8 
Serial Poll, Conducting a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-18 
Serial Polls, Responding to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-41 
Series 300 Built-In 98644 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-51 
Service request, HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-38 i l 
Service Request Line (SRQ), HP-IB ...................................... 12-49 \.._/ 
Service Request message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Service Request (SRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14 
Service Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 

22 Index 



Service routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 
SET TIME function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2 
SET TIMEDATE function ............................................... 15-2 
Shift and Control Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 
Sign specifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 
Signal functions, RS-232C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
Signed Integers, Representing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 
Softkey Interrupts, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-30 
Softkey Label Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-35 
Softkey Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-32 
Softkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25 
Softkeys and Knob Rotation ............................................. 11-32 
Software priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 
Special-Character Images ................................................. 4-20 
Specifiers: 

Binary ............................................................... 4-18 
Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
Digit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 
Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 
Numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 
Radix ................................................................ 4-14 
R.epeatable ........................................................... 4-22 
Sign ................................................................. 4-14 
Special-Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 
Termination .......................................................... 4-21 

Specifying a Resource ..................................................... 3-2 
Speed, Execution ........................................................ 3-15 
SPOLL statement ...................................................... 12-10 
SRQ Interrupts, HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14 
SRQ Interrupts, Servicing HP-IB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-15 
Start bits, Datacomm .................................................... 14-3 
Statement-Termination Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23 
Status Bit message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
Status Byte message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20 
STATUS statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
Stepwise refmement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-37 
Stop bits, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3 
Stop Bits (RS-232C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7 
String Data, Entering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 
String Format, Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 
String Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18 

Index 23 



String images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17 
String Variables, Entering Data From . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30 
String Variables, Outputting Data to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 
String-Variable Names .................................................... 3-2 
SUSPEND INTERACTIVE statement .................................... 11-33 
SUSPENDED statement ................................................ 14-50 '0 
Suspended Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-30 
Switched (Public) Modem Links, Dialing Procedure for ..................... 14-26 
Switched (Public) Telephone Links ....................................... 14-25 
System controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 
SYSTEM PRIORITY statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
SYSTEM$("CRT ID") function ........................................... 10-7 
SYSTEM$("SERIAL NUMBER") ........................................ 19-25 

t 
Telecommunications Links, Private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26 
Telephone Links, Switched (Public) ....................................... 14-25 
Terminal Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-53 
Terminal Identification, Datacomm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24 
Terminal Prompt Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-59 
Terminating a Transfer ................................................... 9-20 
Terminating Enters that Use Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 
Termination Conditions, Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 
Termination Conditions, Multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 
Termination, premature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-38 
Termination specifier .................................................... 4-21 
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 
Time gap, Datacomm .................................................... 14-3 
TIMEDATE function .................................................... 15-2 
Timeout Events, Setting Up .............................................. 7-20 
Timeout Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21 
Timeout service routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-25 
TIMEOUT time parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-24 
Timeouts, Datacomm ................................................... 14-17 
Timeouts, Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 
Timeouts, Interrupts and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 
Timing Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 
Top-Down Approach, Taking a ............................................ 8-32 
Touchscreen, Using a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-43 
TRANS binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
Transfer Event-Initiated Branching ........................................ 9-18 

24 Index 

\ 
i } \"'-" 



Transfer examples ....................................................... 9-22 
Transfer Formatting ..................................................... 9-13 
Transfer methods ........................................................ 9-12 
Transfer Methods and Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 
Transfer parameters ..................................................... 9-14 
Transfer performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31 
Transfer rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-35 
TRANSFER Records and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17 
Transfer restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
Transfer Sources and Destinations, Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 
TRANSFER statement ............................................. 9-1, 16-36 
Transfer status .......................................................... 9-13 
Transfer techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1 
Transfer, Terminating a .................................................. 9-20 
Transfer Termination .................................................... 9-13 
Transfer types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 
Transferring a Specified Number of Bytes .................................. 9-15 
Transferring Records ..................................................... 9-16 
Transfers and Disc Drives, Overlapped ..................................... 9-31 
Transfers, Continuous Non-Overlapped ..................................... 9-15 
Transfers, Inbound and Outbound .......................................... 9-2 
Transfers Indefinitely, Continuing ......................................... 9-14 
Transfers, Non-Overlapped ............................................... 9-15 
Transfers, RS-232C Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 
Transfers, Suspended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-30 
Transfers, The Purpose of ................................................. 9-1 
Transmitted Block Size, Datacomm ....................................... 14-25 
Trapping Function Box key presses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-35 
Trapping Keystrokes .................................................... 11-29 
Trapping Serial Interface Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16 
Trigger message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-19 
TRIGGER statement ................................................... 12-10 
Types of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

Index 25 



u 
DART Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-22 
Unified I/0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 
Unnamed buffer .......................................................... 9-5 
Unnamed Buffers, Assigning I/0 Path Names to ............................. 9-6 \-.._.r~ 

w 
WAIT FOR statement ................................................... 9-19 
WAIT parameter ........................................................ 9-19 
WORD attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
WRITEIO Registers, READIO and ....................................... 13-19 
WRITEIO statement .............................................. 7-16, 13-19 

26 Index 



B
U

S
IN

E
S

S
 

R
E

P
LY

 
M

A
IL

 
F

IR
S

T
 C

L
A

S
S

 
P

E
R

M
IT

 N
O

. 
37

 

P
O

S
T

A
G

E
 W

IL
L

 B
E

 P
A

ID
 B

Y
 A

D
D

R
E

S
S

E
E

 

H
ew

le
tt-

P
ac

ka
rd

 C
om

pa
ny

 
A

ttn
: 

C
us

to
m

er
 D

oc
um

en
ta

tio
n 

34
04

 E
as

t 
H

ar
m

on
y 

R
oa

d 
F

or
t 

C
ol

lin
s,

 C
ol

or
ad

o 
80

52
5 

LO
V

E
LA

N
D

, 
C

O
L

O
R

A
D

O
 

N
O

 P
O

S
T

A
G

E
 

N
E

C
E

S
S

A
R

Y
 

IF
 M

A
IL

E
D

 
IN

 T
H

E
 

U
N

IT
E

D
 S

T
A

T
E

S
 



Name: 

Company: 

Address: 

Phone No: 

MANUAL COMMENT CARD 
BASIC 5.0 

Interfacing Techniques 
HP 9000 Series 200/300 Computers 

HP Part No.98613-90022 

Thank you for taking the time to respond. 

Please note the latest printing date from the Printing History (page iii) of this manual 
and any applicable update(s) so we know which material you are commenting on 



HP. Part Number 
98613-90022 
Microfiche No. 98613-99022 
Printed in U.S.A. 1/87 

rf/flW HEWLETT 
~~PACKARD 

98613-90632 
For Internal Use Only 


	11.Keyboard Interfaces 
	12. The HP-IB Interface
	13. The RS-232C Serial Interface
	14. The Datacomm Interface
	15. Powerfail Protection
	16. The GPIO Interface
	17. The BCD Interface
	18. EPROM Programming
	19. HP-HIL Interface
	A. HP-HIL Appendix
	B.Useful tables 
	Index

