
Text Editors and Processors
HP-UX Concepts and Tutorials

HP Part Number 97089-90022

F//;'1 HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages In connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright© Hewlett-Packard Company 1986, 1987

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written premission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (bX3Xii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

ii

u

u

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

August 1986 ... Edition 1

October 1987 ... Edition 2. Replaced vi and ex tutorials with new vi/ ex tutorial and
replaced sed tutorial with new material. Added new Introduction section and a
short section on Regular Expressions.

97089-90022, rev: 10/87 Printing History iii

~
'·)

n

iv Printing History

u

u

u

Preface

A Note from the Author
This Second Edition of the Text Editors and Processors volume of HP- UX Concepts and
Tutorials represents a significant departure from its predecessor. This version contains
two brand new, major tutorials for the vi/ ex editor and the sed editor as well as new
sections that provide a short overview of available editors and where each is most com­
monly used plus a short introduction to regular expressions. The new editor tutorials
were developed from a broad base of experience: nearly three years of using vi daily, in­
cluding several months of exploring the obscure corners of both vi and sed to determine
why they have presented so much difficulty to many who have attempted to learn them
well.

The result of this effort is two new tutorials that are written from the point of view
that a tutorial should, like a tutor, teach you how to start from essentially nothing and,
without further assistance from another human being, become reasonably expert in using
the program described. Whether you are a secretary who just received the announcement
that you have to learn to do your word processing on an HP-UX system, an engineer
who has to write reports and accomplish other documentation tasks, or an experienced
programmer who is interested in some advanced techniques, these tutorials provide much
enlightenment as well as some useful tricks of the trade.

Until now, there has been a painful lack of quality and thorough books available that
describe these two powerful and highly productive tools. Frankly, many users, especially
newcomers, find these editors either terribly intimidating or so difficult to understand
that they are unwilling to use them unless forced to do so. These new tutorials are
designed so that you can start as a novice with the first few chapters or first few pages,
and start doing a few simple but useful things, then, as you become more comfortable
with the simple aspects of each editor, expand your knowledge into more advanced or
specialized areas until, with sufficient commitment to study and learning, you can become
highly expert in the use of either program.

Preface v

To create documents of this quality requires months of sometimes painful effort to explore
and discover many of the hidden features that the original software authors built in, but
either didn't bother to document, or their documentation has been lost to most users.
The vi/ ex tutorial, for example is well over twice as large as originally intended because,
after using the editor for over two years, the author of the tutorial suddenly discovered a
wealth of obscure but very useful commands and features that had previously been largely
unknown and undocumented. After investing many months into thorough exploration
and testing of the examples, commands, and capabilities covered in these tutorials, they
are believed to be two of the most, if not the most complete documents available for the
vi, ex, and sed editors. The sed tutorial was written and expanded after extensive study
of various documents, especially the validation test software used to verify the correct
operation of the editor program itself as well as SVID compatibility before HP-UX is
shipped to customers. These resources were very valuable in forcing sed to reveal many
obscure capabilities.

Our desire to provide new information as soon as possible has led to the release of these
tutorials before any work could be done on other tutorials we would like to improve, and
before the section on regular expressions could be fully developed. However, we are sure
the quality of what is now available will be sufficient to obtain your forgiveness for the
imperfect state of those other areas. The enthusiastic acceptance of the new tutorials by
those who have had an opportunity to review and use preliminary drafts indicate that
you should find their pages quite valuable as a learning tool.

vi Preface

If)

Learning Suggestions
It has been said that:

People who think learning is not fun don't know much about either.

The new additions to this document are intended to replace the friend looking over your
shoulder, watching your every move and pointing out easier ways (in fact, the introduc­
tory part of the vi tutorial is derived closely from an afternoon of one-on-one teaching a
secretary with hardly any HP-UX experience to use the editor for some simple, but still
somewhat tricky text reformatting). However, since printed pages cannot observe, it is
up to you, the user, to exert some effort in gleaning from the words they contain the
many opportunities that these very useful and not unfriendly (though they may seem
otherwise at times) text processing tools provide for you to get more done in less time
with less effort. Many of the examples are the direct result of users asking "How can
I. .. ?".

The new words contained herein have been scrutinized by many users, both experienced,
and inexperienced. It has been found that few of their questions remain unanswered.
Special thanks to Ray Liere of Vantage Consulting and Research Corporation as well
as many reviewers within HP are in order. Their comments have been most helpful in
making it possible to provide top quality learning materials.

Some users of this manual, like a farmer who plants in the Spring to reap in the Autumn,
have found that effort invested in the labor of learning yields a generous reward in making
programming, writing, and other text-handling tasks much easier. On the other hand, / others who restricted their learning to the obvious "easy stuff", found themselves, like
the carpenter who used a rock for a hammer, spending more time in under-productive
effort than it would have taken to learn easier techniques. We have tried to make the
task as enjoyable as possible. The choice is yours. The tools are in your hands.

We would appreciate any comments you may have about the usefulness of this manual or
other topics you would like to see covered. Please feel free to write or use the comment
card in the back of this volume.

HP-UX Documentation Staff
Hewlett-Packard Company
Fort Collins Systems Division
3404 East Harmony Road
Fort Collins, CO 80525

Preface vii

0
/

n

I
I

I
I

u
Table of Contents

Introduction to Text Editors and Processors
Introduction . 1 Where Do I Go from Here? ... 2 Which Editor Do I Use? ... 4 Interactive Editing .. 4 Non-Interactive Editing .. 6

Table of Contents

n

n

n

u

u

Introduction to
Text Editors and Processors 1
HP-UX is a very large operating system, and to explain it fully would require a horrible
number of manuals. Since you are not interested in burying yourself in a library for the
next year or so to learn it, we have created this manual so you can use the powerful ca­
pabilities of HP-UX to solve your text editing and processing problems without investing
a lot of effort learning about what you don't really need or want to know. Of course,
as you gain experience, you will want to use more sophisticated techniques. Advanced
topics are also covered, but only after clearly explaining the simple things first.

HP-UX can be likened to a large international airport. As you enter the terminal, there
are hundreds of planes outside, each ready to take you to a different destination. When
you log in on an HP-UX system, you have hundreds of commands at your disposal to
perform almost any task you can conceive. However, you probably have a clearly defined
result you want to obtain, and don't need to use more than a very small percentage of
the available commands. Much like an airport guide, this manual will lead you down the
various corridors and concourses toward your desired destination. If you prefer, you can
ignore the many distractions that lie on every side.

Introduction to Text Editors and Processors 1

Where Do I Go from Here?
This manual falls in the category of Almost Everything You Will Ever Need to Know
About HP-UX Text Processing (but didn't understand well enough to know what to ask).
It discusses and explains how to use the following text editors and processing programs:

• vi: An interactive editor that maintains a continually updated display, and its
variants view and vedit. This is the most popular HP-UX editor and is well-suited
to a broad range of users who use a CRT display and keyboard to interact with
HP-UX.

• ex: This is the same interactive editor program as vi, but it does not use the inter­
active full-screen visual CRT display. ex is intended for use with electro-mechanical
teletypewriter terminals, but can also be used with CRT displays as a simple line
editor. ex has a few useful capabilities that are not accessible from vi, but it is
easy to switch between the two personalities during a single session to gain access
to those capabilities. A variant of ex masquerades under the name edit, and is
documented in a separate tutorial later in this volume.

• The non-interactive streaming editor: sed. This program is very helpful when a
well-structured set of changes must be made automatically under program control
or must be performed on a large number of files (or both). sed is a very fast
editor and quite flexible when making complex changes in one or more files in a
non-interactive environment.

• The line editor: ed is most commonly used in shell programs.

A short tutorial on the awk text processing program is also included.

Each tutorial topic is identified by a tab divider at the beginning of the section, and
explains the operation of a particular editing program. This, the first section provides
an overview of text editing and processing in general.

Topics are arranged in sections as follows. Each section may contain several chapters,
depending on the nature of the material being presented.

1. The first section in this volume provides a general overview of the HP-UX system
and its directory and file structure. General topics such as file structure and how
to choose which editor program to use are the primary focus of this section.

2. The second section describes how to use regular expressions, a method of defining
arbitrary text patterns for locating various text patterns or sequences in files being
processed. This information is of limited interest to beginners, but is essential for
intermediate and advanced users.

2 Introduction to Text Editors and Processors

n

~n

u

u

u

3. The third section demonstrates how to use the vi and ex editors. vi is one of the
most popular HP-UX editors. Easy to use and very interactive, it provides you
with a comfortable interaction with the file you are altering.

4. The next section describes the sed streaming editor that is so useful when perform­
ing simple or complex edits on files when manual editing with an interactive editor
is too repetitive or time consuming.

5. The edit editor, a simplified version of ex is of limited interest, but included here
for those few who prefer to use it. ·

6. The ed editor, used mainly with shell scripts and programs is documented for those
who need to use it or interpret an ed script written by someone else.

7. awk, a text processing and analyzing program whose name is derived from an
acronym composed of the first initial of the last names of its three authors, is
described in this volume because of its close relationship to the other materials
presented here.

This section of this manual explains briefly what editors are provided with the HP-UX
operating system, and where each one is typically used. This should make a newcomer's
task of selecting an editor much easier.

Later sections explain each of the different editors on HP-UX, what each is useful for
and the kinds of tasks each is well suited to.

After the sections on text editing, various text processing and related topics are explained.
At present, only the powerful text processor awk which can scan text for patterns and
perform various operations based on those patterns is described.

If you are already familiar with the HP-UX operating system and know which editor you
want to use, proceed to the section of interest. If your knowledge of HP-UX is limited,
you may want to invest some time in a beginning tutorial such as the book provided with
you system, Introducing UNIX1 System Vby Morgan and McGilton and review the rest
of this section.

If you are a newcomer, don't feel intimidated. We all went through the pain of learning
at one time. This book will help make the task easier (much easier, we hope) for you
than it was for some of us who walked the same path before.

1 UNIX is a trademark of AT&T Bell Laboratories, Inc.

Introduction to Text Editors and Processors 3

Which Editor Do I Use?
The HP-UX operating system contains three main editing programs: vi, ed, and sed.
However, the vi editor program has several independent personalities, each of which
is accessed by a corresponding command. The three visually interactive versions of vi
that maintain a continually updated screen display are accessed through the HP-UX
commands vi, view, and vedit. Their differences are discussed briefly below. The three
interactive versions of vi that do not maintain a continually updated screen display as
changes occur are accessed by the HP-UX commands e, ex, and edit (e and ex are
synonymous). edit is a variant of ex that is sometimes preferred for beginning or casual
users, although vi (or view when file protection is needed) is by far the most popular
HP-UX editor among beginners and experienced users alike.

Interactive Editing

Most HP-UX users access HP-UX through a full-feature CRT display terminal or terminal
emulator program running on another computer with a full-screen CRT display. For this
group of users, vi is obviously the most convenient and the most popular HP-UX editor.
For the small minority of users who may be restricted to a teleprinter or terminal at the
end of a slow (such as a 300 baud) data communications link, a non-interactive editor
such as ex or ed might be more suitable. vi has the following variants:

The Vi Editor Family
vi This version is a fully interactive robust editor that maintains a continually

updated display screen showing text changes as they occur. The original
file being edited is copied into a separate buffer file for editing so that you
can make changes to a file without risk of damaging the original until the
editing session is finished. With practice, vi quickly becomes a versatile,
powerful, and convenient editor for performing any operation from the
simple to the quite complex.

vi is also able to access ex commands for configuring the editor's person­
ality, performing global search-and-replace operations, splitting a file into
multiple files, extracting parts of a file, merging text from other files, and
other useful tasks. It can also spawn a new shell, enabling you to tem­
porarily suspend vi, perform other work, then return without exiting and
restarting the editor or losing your place in the file you were editing.

4 Introduction to Text Editors and Processors

n

view This version is equivalent to vi except that the source file is protected by
a read only access permission so that it cannot be accidentally destroyed
when the edit session is finished. Otherwise, all of the features of vi are
available. This command is popular among users who need to edit a file
in order to create a new file elsewhere, but who want to ensure that the
original file cannot be accidentally destroyed in a moment of inattention.

The command view is equivalent to the command vi - R.

vedit This version of vi receives limited use, mainly as a learning tool for begin­
ners who have little editing experience. It is equivalent to using vi with
the novice and showmode flags set, and the report flag set to 1 (report any
changes that affect more than one line before making them). Otherwise, it
has all the normal features of the standard vi command

e This command is synonymous and interchangeable with the ex command if
the link has been set up in directory jusr/bin by your system administrator.
The e command exists on some early versions of HP-UX, but the single
letter violates the rule that all UNIX commands must have two or more
letters in their names.

ex This command accesses the non-visual version of the vi editor program
package. It is interactive with the user, but does not maintain a continu­
ously updated display. It is most commonly used on slow terminal devices
(such as teleprinters that are considered largely obsolete in the computer
industry). ex commands are easily accessed from vi when using a terminal,
so for most users, there is little advantage in using ex instead of vi.

edit This variant of ex is sometimes preferred by beginning or casual users
instead of ex. However, for those who have a full-feature terminal, edit is
not commonly used.

The Ed Editor
ed could easily be called the "original recipe" UNIX editor that has descended from the
early development stages of the UNIX operating system. Its use is very limited except in
shell scripts and other programs, so it is of little interest to most casual users of HP-UX.

ex is an expanded version of ed that was later expanded further to form the full-feature
vi editor. However, a separate tutorial in this volume documents the ed editor for those
who need to use it.

Introduction to Text Editors and Processors 5

Non-Interactive Editing
HP-UX also provides a non-interactive streaming editor that is accessed by the sed
command. This editor uses a command string provided as part of the HP-UX command
that starts the editor or a file containing one or more editor commands, then processes
the specified text file(s), one line at a time, executing each command on every line as it n
is encountered in the file(s) being edited. sed is capable of processing many large files
very quickly when compared with typical hand editing with a typical interactive editor
such as vi. It is best suited for repetitive operations based on text content or position
in a line, and is particularly useful when reformatting text or changing format coding
such as converting nroff/troff text source into SGML or some other mark-up language
for electronic publishing or comparable functions in other occupations.

6 Introduction to Text Editors and Processors

Table of Contents

Regular Expressions
Introduction. 1

Why Use Regular Expressions? 2
Where are REs Used? . 4

When Are Regular Expressions Not? 5
Defining the Search Area. 5

Simple Matches ·. 6
Shell Meta-Characters . 7
Regular Expressions versus Editor Commands , 8

I Constructing Regular Expressions 10
Single-Character Expressions . 12
Using Substitution Characters in Expressions 15
Using Control Characters in Expressions 15

u

Table of Contents

()

u

u

Regular Expressions
Introduction
Regular expressions are a simple pattern-matching language used by most major HP-UX
text processing tools for locating desired text patterns in a file. They can be used to
locate a misspelled word, find all 5-letter words in a file that begin with T or t, locate
lines in a file that contain a certain pattern of characters (or a given word) followed
by an arbitrary string of text which is followed, in turn, by another specific pattern of
text characters, or almost any other imaginable combination. Indeed, the usefulness of
regular expressions is frequently limited only by your imaginative abilities as will become
evident through further study of the topics in this tutorial.

This tutorial explains how to define and use regular expressions to conduct pattern
searches when using an editor or text processor. The subject matter presented here is
somewhat tedious and usually of limited interest to beginning users. However, as you
gain experience in using the various programs and commands presented in other parts of
this manual, you will frequently encounter the need to understand regular expressions at
varying levels of complexity. We suggest that you peruse this topic only to the extent of
your current interest but be familiar with its content so that you know what capabilities
are available when you need them.

HP-UX editors (such as vi, ex, ed and sed), text processors (such as awk and grep), and
other HP-UX facilities use user-supplied character sequences called regular expressions
(or REs for short) to search text files for any character patterns that match the possible
character sequences defined by the regular expression. Like the HP-UX operating system
itself, regular expressions tend to intimidate newcomers and inexperienced users who
have not discovered their incredible ability to quickly locate both simple and tedious
character sequences so that needed information or changes can be made with minimum
effort. Regular expressions are especially helpful when handling particularly complex
operations commonly encountered in sophisticated text edits such as search-and-replace
or global changes, or when using ed or sed. However, if you are willing to invest the
necessary time to learn how to use REs, you will find the effort well rewarded. For
example, a few hours spent learning how to effectively use REs in sed command scripts
can save literally weeks of tedious interactive editing with vi when the task is large and
complex but of such a nature that sed can handle most of the job in a few minutes.

Regular Expressions 1

Why Use Regular Expressions?
One of the most common tasks for a text editor or text processing program is to scan
a file or block of text for a certain sequence of characters prior to performing an insert,
append, delete, copy, or replace operation. The character sequences can vary from very
simple to extremely complex.

For example, suppose a file contains the word cjt which happens to be a typographical
error that should have been cat. Searching the file for a character sequence that matches
the regular expression cjt quickly locates the misspelled word, and a simple substitution
of ca for cj solves the problem quite easily.

On the other hand, consider this problem: A source file contains nrofff troff font-change
commands \fl (change to italic font) and \ffi (change back to Roman font) throughout the
text. You want to change the file to a format that uses the standard mm (memorandum
macros) macros .I and .IR. This situation poses several problems. First, you have no
control over what characters lie between the \fl and \ffi. You know that there is usually
only one word between each pair of font changes and that the \fl and \ffi nearly always
both appear in pairs on the same line. In addition, the \ffi may or may not be followed
by a punctuation character such as a period, comma or semicolon. A sequence like this:

... running text \fiword\fR more running text ...

must be changed to

... running text

.I word
more running text.

and this sequence:

... running text \fiword\fR. More running text ...

must be changed to

... running text

.IR word .
More running text.

2 Regular Expressions

n

u

Several characteristics soon become apparent in this problem:

• The \fl is nearly always preceded by a space or appears at the beginning of a line.
• The \ffi occurs in several positions:

• At the end of a word before a space character,

• Between the word and a period, comma, colon, or semicolon,
• Between the word and end-of-line, or

• Between the word and one or more spaces or tabs at the end of the line.

We will not solve the problem here, but you can easily see that identifying which sequence
is being dealt with and determining what action to take is not as trivial as fixing a three­
letter misspelled word.

Here is another problem: Suppose you want to use an editor such as vi or ex (or sed if
you are performing the operation on several files in a single batch) to remove all white
space at the end of every line in a file (or files) if it exists. If you tell the editor to remove
all spaces and tabs, the file would probably become unusable. You need some way to tell
the editor to only look for spaces and/ or tabs at the end of the line after the last visible
character.

Regular expressions provide an easy-to-use and understand (once it is clearly explained)
method for describing any type of character sequence or pattern so that it can be correctly
identified by the text editor or processor before taking a specified action. Of course, when
multiple successive operations must be performed in a given area of text, care must be
exercised in choosing the sequence of operations. The pattern recognition and text
alteration performed by one operation must not sabotage the success of a subsequent
operation by altering or destroying a pattern that the next operation must be able to
recognize in order to perform its work correctly.

Regular Expressions 3

Where are REs Used?
Regular expressions are used by several popular HP-UX commands/programs:

• vi and its related editors edit, ex, vedit, and view.

• The ed editor and its restricted-access counterpart red; also bfs, a close relative of
ed, that is used for searching (scanning) unusually large files for an expression.

• sed, the streaming editor.

• grep and its relatives egrep and fgrep.

• more.

• awk.

• expr.

• lex.

• nl.

• The -n option of the acctcom command, and

• bs in certain situations.

Regular expressions are also used in connection with the system subroutines regcmp and
regex, and in the compile and match routines discussed on the regexp(3) manual page in
the HP- UX Reference.

4 Regular Expressions

u

(. u

When Are Regular Expressions Not?
This heading is intentionally confusing. The software that makes up the HP-UX operat­
ing system and other similar systems has come from many sources with many authors.
How each program handles regular expressions varies somewhat, depending on the pro­
gram and the operating environment. As some programs from one vendor (University
of California, Berkeley, for example) have been merged into the AT&T System V UNIX
package, as in the case of vi/ ex, a few minor changes have been made in some instances
for various reasons. This factor combined with the natural evolution of programs be­
tween releases has led to differences fu minor details even though the programs appear
largely unchanged to the non-expert user.

As a direct consequence of this confusion amid standardization, the various ways in
which regular expressions are handled by various programs has led to attempts by var­
ious stardization bodies such as the IEEE POSIX committees and the X/OPEN inter­
nationalization committee to resolve the matter more fully. At the time of this writing,
there are three general categories of interpretation of regular expressions, with most of
the differences largely of little interest to the non-expert user. As the standards issue
reaches a fuller resolution, it will be easier to include a complete set of information in
this manual.

Defining the Search Area
Some HP-UX commands such as grep search entire files for a regular expression while
others, such as most editors, can limit searches to as little as one line or search the entire
file, depending on the specified address range and nature of the command that includes
the regular expression. In this tutorial, searches are usually referred to as extending
throughout the file because that is how they are most commonly used. However, the
same principles apply whether the search is throughout a long file, many lines in a file,
a few lines, or even only one line.

Regular Expressions 5

Simple Matches
In their simplest form, regular expressions define a character sequence, character-by­
character, exactly as it is expected to look in the text being searched for a matching
string. Thus, the regular expression: (}

Now is the time

tells the search program to scan its input text for the text pattern Now is the time on a
single line with or without additional text. On the other hand, if a period and asterisk
character pair is introduced between Now and time in this manner:

Now.*time

where the period represents any arbitrary character except newline (end-of-line) and
asterisk represents zero or more of the preceding character (this combination is often
pronounced "dot-star") the expression then can successfully match any of the following
text patterns provided each pattern appears on a single line, with or without other text:

Nowtime
Now's the time
Now is not the best time
Now is not any time
Now is the worst time

and so forth. In this example, the period tells the text scanner to look for any character
except newline (end-of-line) in the position represented by its placement in the regular
expression. The asterisk tells the scanner to accept any number in succession (zero or
more) of the immediately preceding character (or single-character expression as described
later). Thus the two together match zero or more successive arbitrary characters except
end-of line. The use of the .* combination is shown in several later examples along with
other uses of the period in the same editor command.

6 Regular Expressions

n

(_)

u

Shell Meta-Characters
It is important at this point that you clearly understand that the use of characters used
in regular expressions to represent other characters in text is not related to the shell
interpreting special characters as representations of something else. For example, in a
regular expression, $represents end-of-line, whereas the shell interprets it as a command
to substitute the contents of a variable in place of the present parameter in the command
(parameter substitution), as in $HOME which tells the shell to use the contents of the
shell variable named HOME. Likewise, the asterisk in a regular expression indicates zero
or more of the previous character or single-character expression in succession whereas
the shell interprets the asterisk to mean zero or more arbitrary characters, such as when
identifying a file name.

These two examples show extreme difference and some similarity. Some characters have
nearly the same meaning when interpreted by the shell as when they are processed in a
regular expression. However, if you clearly establish the understanding in your mind that
shell special characters are interpreted in a completely different environment (much like
a foreign language in a foreign country) and have nothing to do with regular expressions
(despite some similarities), learning how to use them is much easier.

Regular Expressions 7

Regular Expressions versus Editor Commands
Another area of common confusion lies in the use of certain characters in regular expres­
sions and using the same characters in other parts of an editor command. For example,
the period (.) character represents any arbitrary character except newline when it ap-
pears in a regular expression, but represents the current line when it appears in a line n
address. This becomes difficult for some learners when they see an editor command such ·)
as the following ex editor command:

. , .+3s/-.*[0-9]//

where:

• The first dot represents the current line (first address).

• .+3 represents the third line following the current line (second address).

• s is the abbreviated form of the ex substitute command.

• The first / character separates the regular expression from the command. The
second separates the regular expression from the replacement text. The third ter­
minates the replacement text and also separates any command options and/ or flags
that may follow the replacement text string.

• The complete regular expression used for the pattern search is -. *[0-9], and it is
interpreted as follows: n

• The - symbol specifies that any matching text pattern must start at the
beginning of the line.

• .*represents an arbitrary number (zero or more) of arbitrary characters lying
between beginning-of-line (represented by the circumflex) and the last occur­
rence in the line of any numbers lying in the range zero through nine (defined
by the character sequence [0-9]).

• [0-9] is a single-character regular expression that specifies a match for any
single character in the numeric range of 0 through 9.

Using spoken language, a literal interpretation of this command says, in essence, "Start­
ing with the current line and continuing through the third line after the current line,
search each line starting at the beginning of the line and, if you find an arbitrary number
of arbitrary characters followed by a numeric character before the end of the line, replace
those characters (including the last numeric character on the line) with nothing." In n
other words, delete the characters identified by the regular expression. .

8 Regular Expressions

u

u

u

A more straight-forward way of saying the same thing is, "If the line contains one or
more numeric characters, delete all characters from beginning of line through the last
numeric character on the line, but don't disturb any subsequent non-numeric characters
through end-of-line."

Here is another example, where a second character($ this time) has a dual meaning and
the period (.) is used three ways:

. ,$s/-.*[0-9] .*$/This line contained a number in the range 0-9./

where:

• As before, the first dot represents the current line (first address).

• $ represents the last line in the file (second address).

• s is the abbreviated form of the ex substitute command.

• The regular expression is the same as before, except that a sequence . * $ has been
added at the end.

• The . * sequence means, as before, an arbitrary number of arbitrary charac­
ters.

• The $ represents end-of-line, meaning an arbitrary number of characters up
to end-of-line.

• Any text pattern that matches the regular expression is replaced with the replace­
ment text between the last two slash characters in the line.

Note the use of the period as an address, then as an arbitrary character twice in the
regular expression, then as a replacement character at the end of the replacement sen­
tence. In the regular expression, the period represents an arbitrary character. If you
were searching for a text pattern containing a period in a specific position such as a
period at the start of a text formatting macro at the start of a line, the period must
be escaped by a backslash character to protect the period from being interpreted by the
regular expression compile and match operations associated with the editor. For exam­
ple, to form a regular expression to match a tbl table-start macro .TS where the period
is always in the first column in the line, construct a regular expression as follows:

Failure to use the backslash causes the interpreter to also match such occurrences as
ATS, oTS, ?TS, etc., etc. since the period can represent any character except end-of-line
(also called newline).

Regular Expressions 9

The previous example is equivalent to saying, "Replace any line containing a digit in the
range of 0 through 9 with the replacement text."

Constructing Regular Expressions
As indicated in the earlier topic on simple matches, the most elementary form of regular ~
expression is a series of common typing characters that restrict matching to an identical 1.)

character in an identical sequence in the file being searched. Thus, cjt in a regular
expression matches cjt occurring anywhere in the specified region in the file. However,
there are other times when text can be classified into general patterns that do not have
identical contents. For example, consider the following series of lines that result from
execution of an HP-UX ll command:

drwxrwxrwx 2 hank projA 1024 Dec 29 1987 proj_mail
drwxr-x--- 2hank projA 1024 Oct 25 1987 proj_status
-rwxr----- 2 hank projA 1024 Jan 24 1988 do_today
drwxr-x--- 2 hank projA 1024 Oct 20 1987 master_files
drwxrwxrwx 2hank projA 1024 Dec 20 1987 prod_input
drwx------ 2hank projA 64 Nov 15 1987 personal

Each line is arranged in a columnar format. Some columns have identical text on every
line while others vary greatly. Suppose you needed to modify lines that describe direc-
tories. It is easy to identify lines that are directories because a d is present in the first
column. However, if you needed to list directories that included write permission for ~
users outside of the group named projA, it becomes somewhat more complex. Here is '.)
how each situation can be handled in an expression:

To identify a character at the beginning of a line, it must be preceded by a circumflex
character n like this:

~d

This expression tells the search algorithm to look for the letter d immediately following
an imaginary zero-width character at the beginning of each line (represented by the
circumflex character) in the text being searched. Since this expression looks at only the
first visible character on the line, no other information is available for additional scrutiny.

To find the directories that have write permission enabled for users ouside of the group
named projA, the letter w must be present in column 9. Since we do not know or care
what other permissions are set for the directory, we can look at column 1 to find the
directory (must match d as before), and column 9 for a w. We can use the period
character to represent arbitrary text for other characters in columns 2 through 8, thus
forming the expression:

~d w

10 Regular Expressions

u

u

Finding Long Lines
You can find the lines in a file that contain, for example, more than 50 characters by
searching for a pattern matching a regular expression composed of 51 dots. If 51 (or
more) arbitrary characters are present in the line, a match occurs. However, if you
are using sed which can have multiple lines in the pattern space at the same time, a
match occurs if 51 or more characters occur between beginning of pattern space and first
embedded newline, between last embedded newline and end of pattern space, or between
two embedded newlines.

There are many more possibilities, but first, let us introduce the other characters used
in constructing regular expressions.

Regular Expressions 11

Single-Character Expressions
All regular expressions are constructed from a series of one or more single-character
expressions. Single-character expressions can take several forms as indicated in the fol­
lowing list:

Classes of Single-Character Expressions

Characters
Character Class in Class Description and Use

Typing Characters A-Z, a-z, 0-9, Any alpha-numeric or symbol character that
!, @, #, %, <, >, can be typed on a standard terminal keyboard
(,), {, }, [, 1," -, except characters used in substitution repre-
I, :, ;, ?1 +, =, -, _, sentations. These characters match only an
tab, space, identical character in the text being scanned.
control characters

Substitution or ., A)$,/,[, 12, \, These characters represent another character,
Search Control *,and - 2. beginning or end of line, or serve as delimiters,
Characters range identifier, or escape character in the con-

struction of regular expressions. However, un-
der certain conditions, -and 1 are interpreted
directly as explained in footnote 2 below.

Sets or Ranges [(set_of_characters) 1 A group of single characters or range of char-
of Characters or acters enclosed within a pair of square brack-

[(range_of_characters) 1 ets (such as [actz58&1 or [3-7]) is a single-
or character expression where a match is accepted
[(combination_of_both) if any of the characters between the left and

right bracket or in the specified range appears
in the position defined by the position of the
single-character expression in a larger expres-
sion. The second form example shown accepts
a match if any one of the numbers 3, 4, 5, 6,
or 7 appears in the position indicated.

1 ? must be preceded by a backslash (\) if used as the first character in a backwards search in vi where
the search command character is also a ? . n 2 The hyphen is interpreted as a range specifier when defining sets of characters as in the single-character · ...
expression [a-z] unless it is the first character in a set of characters as in the expression [-abdfh12]
which matches any one of the characters -, a, b, d, f, h, 1, or 2. Likewise, the right square bracket (])
terminates the expression unless it is the first character in the set as in the group [J=+rt12] which
matches any one of the characters], =, +, r, t, 1, or 2.

12 Regular Expressions

u

u

Using Typing Characters as Single-Character Expressions
The simplest from of regular expression is a series of one or more typing characters
in succession as in a word of text. For example, the regular expression copiler, which
consists of seven single-character expressions, can be combined with an editor search
command to locate a misspelling of the word compiler in a file. In general, this form
of regular expression is constructed by simply typing a pattern, usually preceded and
followed by a slash character (/) to delimit it from other parts of the editor or text
processor command.

While quite useful and frequently employed, this form of regular expression has many
limitations, especially where multiple patterns having related characteristics need to be
located as described in the topics which follow.

Using Beginning/End-of-Line Anchors in Regular Expressions
It is one thing to locate the word The anywhere in a text file. It is quite another thing
to locate the word The when and only when it is the first (or the last) word on a line;
especially if, in addition, you don't want the search to match the word There or Then at
the beginning of a line.

Two characters are reserved for use in regular expressions to represent the beginning and
the end of a line. The circumflex C), sometimes called "hat" or (incorrectly) "caret",
represents a zero-width imaginary character at beginning-of-line, provided it is the first
character in the expression. The dollar sign ($) likewise represents a zero-width imagi­
nary character at end-of-line, provided it is the last character in the expression. When
constructing a regular expression, the A or $ is typed as a single-character expression just
as any normal character except it must be the first or last character, respectively, in the
expression. In a nutshell,

~ (expression)

(expression)$

searches for (expression) at beginning-of-line, whereas

searches for (expression) at end-of-line.

Both A and $ must appear as first or last character, respectively, in an expression in
order to be interpreted as beginning- or end-of-line substitution characters. If they
appear elsewhere in the regular expression, they are interpreted literally as ordinary
typing characters. Thus the expression $The causes a search routine to search for a
four-character sequence consisting of the four visible characters $The followed by any
arbitrary combination of characters and/or end-of-line.

Regular Expressions 13

For example, to find the three letters The at the beginning of a line, the correct regular
expression would be AThe. In this example, the circumflex tells the search algorithm
to look at the beginning of each line for the character T followed immediately by the
characters h and e (if no match occurs, the search routine immediately skips to the next
line). To prevent matching other words such as Then or There, add a space after the e {j
in The (assuming that The is always followed by a space character when in appears at \ /
the beginning of a line in the file. This forces the search routine to look for a space after
the word before it accepts the match.

Likewise, to locate the same word at the end of a line, use the expression The$. This tells
the search routine to look for The followed immediately by end-of-line. In this instance,
unless there is an unusual condition in your text file, it should be unnecessary to begin
the expression with a space character since it is unlikely that the word would not be
preceded by a space since the initial T is uppercase.

Suppose you used an expression such as $The or end$$. What then? In the first case,
the search routine looks for the characters $The anywhere on any line being searched. In
the second case, the search is for end$ at the end of any line in the search area. Similarly,
TheA causes a search for TheA anywhere on any line in the file, while AAThe searches for
AThe at the beginning of each line.

Representing Arbitrary .Characters n
If you are a frequent user of text processors, you will commonly encounter the need to
search for a group of text objects that closely resemble each other, but which also have
important differences. A simple example might be a search for these and those where
only one letter is different. A search for the picks up many unwanted words, but by
using the dot (.) character (period) to represent any arbitrary character except newline
(end-of-line), the regular expression th.se matches both words. However, it also matches
th se in the word-pair "both secondary [schools ...].

This is easily overcome by using word delimiters if they are available (vi only). To find
the word the when using vi, simply surround the word with the character pairs\< and\>
as in \<the\>. The matches the conditions Athe (the at beginning of line and followed
by a blank, the$ (the at end of line preceded by a blank, and the preceded and followed
by blank elsewhere in the line where blank is a space or a tab character. Unfortunately,
only the vi editor is able to identify words by this method. Other editors require tests
for each of the three conditions.

14 Regular Expressions

u

u

IMPORTANT

Three terms are used when discussing whitespace. Space refers to
the ASCII space character; tab refers to the ASCII horizontal tab
character. The term blank refers to either a tab or a space.

Using Substitution Characters in Expressions
The most commonly used substitution character is the period and a combination of the
period and asterisk as described earlier. Other combinations of substitution and typing
characters make up the great majority of regular expressions in most operations. Other
examples are included in the vi/ ex and sed tutorials as well as in the ed tutorial and
elsewhere.

Using Control Characters in Expressions
Characters in this group add dramatic flexibility to your collection of available text pro­
cessing capabilities. Two very useful character groups are the right and left brackets used
to define ranges of characters and character sets to match a given character position, and
the left and right parentheses, each preceded by a backslash to construct subexpressions
as detailed in the sed tutorial and also shown to a lesser extent in the ed tutorial.

Let's talk about the right and left brackets. Suppose you need to isolate a pattern such as
the filename that contains the HP-UX Reference entry for the fsck[SDF](lM) command
in a long list of filenames as well as any other manual page that is for the SDF file format.
Assuming the names all start at the beginning of the line and end with whitespace, the
regular expression looks like this:

.*\[SDF\]

This form also matches sections other than 1M if applicable. Note the use of backslash
before square brackets to force interpretation as typing characters instead of control
characters.

Now let's change the rules so that any filename that has three uppercase letters between
square brackets is matched. Here is the expression: u . *\ [[A-Z] [A-Z] [A-Z] \]

Regular Expressions 15

This expression matches a square bracket followed by a letter in the range A-Z followed
by another followed, in turn, by another. A closing square bracket finishes the expression
matching.

Suppose you want to match the words: that, they, thou, thee, but not them. You can ~
specify certain characters that can be accepted as a match in each position by placing '. .)
the characters between square brackets as follows:

th [aeo] [tyue]

However, this expression also matches the words thay, thau, thae, thet, theu, thot, etc.
These examples show the need for judgement in setting up regular expression groups and
ranges to obtain correct results.

Excluding Characters From a Set
You can also specify that any character is to be accepted as a match except those specified
by starting the series with a circumflex and placing the series between square brackets.
For example,

[-aslm]

in a given position tells the matching routines to accept any character in the position ~
represented by this single-character expression except a, s, l, and m, :.)

Other combinations are possible. Refer to the examples in the sed, ed, and vi/ ex tutorials,
and to the ed(l) manual page entry in the HP-UX Reference for additional information.

16 Regular Expressions

u
Table of Contents

All You Need to Know
Vi the Lazy Way. 1

Chapter 1: Introducing the Vi/Ex Editor
HP-UX Command Names for the Vi Editor 3
HP-UX Command Names for the Ex Editor 4

Switching Between Vi and Ex .. 5
For Ex Users ... 5
International Language Support . 5
Why Vi? ... 6

Audience Definition and Learning Suggestions 6
Manual Organization . 7

User Interaction . 7
Operating Modes . 7
What Are All Those Tildes C) On My Screen? 10
What about Long Text Lines at the Bottom of My Screen? 11

Program Limits . 12
Maximum Line Length ... 12
Maximum File Size ... 12
Other Limitations .. 12

Basic Editing . 13

Chapter 2: Basic Editing: Starting and Ending a Session
File Usage During an Editing Session 15
Baud Rate versus Display Size . 15
Opening a Session .. 16

Selecting the File . 16
Editing an Existing File . 17
Protecting an Existing File . 18
Editing Lisp Files .. 19

Terminating a Session . 19
Normal Termination . 20 U Aborting an Editing Session ... 21

Table of Contents

Common Difficulties .. 22
Oops! I Got the Wrong File. Now What? 22
Time-Saving Tip . 22
What ifl Try to Edit a Directory? . 23

Starting a New File . 24
Entering Text . 24
Backing Up over Typographical Errors 25
Line Lengths . 25
Continuous Text Input . 26
I Have Typed My Text. Now What? 26

Saving Text During an Edit . 28
Using the Write Command .. 29

Overwriting Files .. 29
Beware the Wiles of ZZ . 31
Writing to an HP-UX Command ... 32
Using Saved Text .. 32
Recovering from a System Crash . 33

Power-Failure and System Crash Protection 33
Recovery Procedure . 34

Chapter 3: Basic Editing: Cursor and Display Control
Editor Window Operation. 38

Finding a Sample File to Edit . 39
Using the File ... 41
Determining File Size ... 41

Positioning the Cursor on the Current Line . 42
Arrow Keys . 42
Positioning the Cursor on the Screen . 43

What is that Beep I Hear? . 45
Exercise Time . 45

Scrolling Text . 46
Half-Screen Scrolls ... 47
Cursor Movement During Scrolling . 4 7
Positioning the Cursor Line in the Display Window 47
Where Am I in the File? . 48
Practice Time . 49
But I Can't Scroll Forward Using CTRL-F 49
Searching Through a File for a Pattern . 49

ii Table of Contents

n
I

0·
·.)

u

u

u

In case of Difficulty . 51
Restoring a Garbled Display. 51
What If Screen Behavior Becomes Strange? 51
Conflicts Between Commands and Terminal Protocol 52

Positioning the Cursor in the File . 53
Moving to a Specific Column Number 53
Text Objects . 53
The Find Commands: f, F, t, and T . 54
The Word Commands: w, W, e, E, b, and B 55
Sentence, Paragraph, and Section Commands: () { } [[and II 58
Using Text Pattern Searches to Define Text Object Boundary 59
What is the Exact Boundary of a Text Object . 60

Chapter 4: Basic Editing: Manipulating Text
Escaping from the Sand 'fraps of vi . 64

Using the Escape Key .. 64
Recovering from Mistakes: The Undo Command 64

Adding New Text to a File . 66
ASCII Control Characters in Text . 68

Control Characters Defined . 68
Obtaining Control Characters 68
Displaying Control Characters . 69
Entering Control Characters . 69
Selecting Control Characters . 70

Changing Text: Overview . 73
Command Format . 7 4
Text Object Boundaries. 75

The Commands and What They Do . 76
Deleting Characters and Lines . 76
Deleting Text Objects . 77
Deleting to a Text Location in Line or File . 79
Text Delete/Change Command Examples 81

Recovering Deleted Text . 82
Using Named Buffers for Deleted or Yanked Text 83

Changing Text . 83
Replace Text Character(s) .. 83
Change Line(s) .. 84
Change Text Objects ... 85
Change Text between Two Boundaries in Line or File 87

Table of Contents iii

Repeating a Text Change Operation . 89
Using Numbered Buffers to Restore Text . 90

Restoring Changes/Deletions in Reverse Order 91
But I Don't Want Them in Reverse Order 91

Using the Commands . 92
Examples of Deleting and Swapping Characters 92
Deleting Characters . 93
Swapping Characters . 95
Changing Uppercase/Lowercase 95
Searching within a Line: f and F versus t and T . 95
Examples of Replacing Text in a Line . 96
Replacing a Single Character with Multiple Characters 96
Replacing Multiple Characters with Zero or More New Characters 97
Replacing a Single Character with Another . 97
Replacing Multiple Characters with a Single Character 97
Changing Words Within a Line 98

Changing Multiple Lines of Text .. 101
Pattern Searches . 103

Forward Searches ... 103
Searching Backwards in a File . 104
Repeating the Search . 104
Defining the Pattern .. 104

Shifting Lines Horizontally Left or Right . 105
Automatic Indenting .. 106

Using Automatic Indentation 106

Chapter 5: Intermediate Editing: Using Text Objects
Common Text Objects . 109

Word: w or W . 109
Line: ' or $.. 110
Sentence: (or) . 110
Paragraph: { or } . 111
Section: [[or]] ... 111

User-Defined Text Objects ... 112
Text Markers Within a File . 113

Creating Markers ... 113
Using Markers for Cursor Control 114

n
' /

n

Exa~;;:sg .~~.r~~~~ ~~~ ~~~t. ~~j~~~ .~~~~~~i~~·s·::::::::::::::::::::::::::: ~~: n

iv Table of Contents

u

Chapter 6: Intermediate Editing: Copying and Moving Blocks of Text
Using Buffers ... 118

Naming and Filling the Target Buffer . 119
Appending Text to Buffers ... 120
Retrieving Text from Buffers 120
Executing a Buffer as an Editor Command 121

Using Ex Commands to Copy or Move Text 122
Using Files to Copy or Move Text 122

Chapter 7: Intermediate Editing: Search and Replace Operations
Colon Commands ... 123

Fixing Mistakes ... 124
Aborting the Command ... 124
Undoing Colon Commands . 125
File Safety . 125

Command Structure . 126
Line Addresses . 126

Global Searches ... 128
Limited Searches . 128

Displaying Tabs and other Control Characters . 129
Splitting Lines . 130

Switch to Ex . 130
Forming the Command .. 130
Switch Back to Vi. 131
Another Example . 132
Double-Spacing Text . 133
Strip Unneeded Blanks .. 133

Save Time by Executing a Buffer . 134
Fixing Errors in Commands . 134
Forming Multiple Substitute Commands . 135

Chapter 8: Intermediate Editing: Editing Multiple Files
Editing Multiple Files in Succession . 138

Opening the Session . 138
Using Buffers in Multi-File Edits 139
Going Back to the First File. 139
Using Shell Characters in Filenames . 140

Editing Two Files Simultaneously 141
Opening the Files ... 141
Switching Files ... 142

Table of Contents v

Chapter 9: Intermediate Editing: File Manipulation Techniques
Merging Another File into Text .. . 144

Merging a File after a Text Pattern 145
The Write Command: Saving All or Part of the Current Workfile 147

Using File Markers
Using Text Patterns .. .

148 n 148
Appending to a File .. . 149
Changing File Names 150

Amending Current Filename During Write 150
Changing the N arne of the Current File 150

Piping the Workfile to a Command 151
Escaping to an HP-UX Shell .. . 151

Dealing with Special Characters 152
Using Tag Files to Edit Large or Multiple Programs 154

The Program File .. . 154
Creating a Tags File .. . 156
Using the Tags File .. . 157
Editing other Program Segments 159

Chapter 10: Using Ex Commands
Colon Commands ... 163
CommL andAFdodrmatp .. 164 n

ine ress rimitives . 165
Combining Addressing Primitives for Multiple-Line Operations 166

Building the Command . 169
Command Parameters ... 169
Flags and Options After Commands . 170
Comments . 171
Multiple Commands per Line 171
Reporting Large Changes . 171

Ex Command Descriptions . 172
Define an Abbreviation for Use as a Typing Aid (vi/ex) 172
Append Text after Specified or Current Line (ex only) 173
Print Current Command Argument List (vi/ex) 174
Change One or More Lines to New Text (ex only) 175
Change Current Directory (vi/ex) 176
Copy One or More Lines to New Location (ex only) 177
Encrypt Files (vij ex) . 178 ~
Delete One or More Lines (vi/ex) 179 r.)

Edit a Different File (vi/ex) .. 181

vi Table of Contents

Ex Command Descriptions (Chapter 10 continued):
Edit New File Starting at Specified Address (vi/ex) 182
Print Current File Name and Description (vi/ex) 182
Change Name of Current File (vi/ex) 182

u Process all Lines Containing (pattern) (vi/ex) 183
Insert New Text Before Specified or Current Line (ex only) 184
Join (combine) Lines on Single Line and Trim Whitespace (vi/ex) 185
Combine Multiple Lines on Single Line with Retained Whitespace (vi/ex) 185
Print Text Showing Tabs and End-of-Line (vi/ex) 186
Map Text Pattern or Macro to a Function Key (vi only) 186
Mark Current or Specified Line (vi/ex) 187
Move One or More Lines to a New Location (vi/ex) 187
Edit Next File in Argument List (vi/ex) 188
Print Line(s) Preceded by Corresponding Buffer Line Number (vi/ex) ... 189
Enter Open Mode (ex only) .. 190
Emergency File Preservation (vijex) 190
Print One or More Lines (vi/ex) 191
Put Yanked or Deleted Text back in File (vi/ex) 192
Abort Editing Session but Protect Buffer (vi/ex) 192
Merge File from File System into Buffer File (vi/ex) 193
Merge Standard Output into Buffer File (vi/ex) 194

u Recover File After Hangup, Power Fail, or System Crash (vi/ex) 194
Rewind Argument List to First Argument (vi/ex) 195
Set or List Editor Options (vi/ex) 195
Create New Shell from Editor (vi/ex) 196
Input Ex Editor Commands from a File (vi/ex) 197
Substitute Text Within Line or Lines (vi/ex) 198
Repeat Most Recent Substitution . 199
Using Tags to Edit a New Location 199
Reverse (Undo) Changes Made Previously . 200
Print Editor Version Number and Last Change Date 200
Change from Ex to Vi Editor or from Vi to Ex 201
Edit Another File with Vi. ... 202
Write All or Part of Buffer to a Permanent File . 202
Append All or Part of Buffer to a Permanent File 203
Force Write All or Part of Buffer to a Permanent File 203
Write All or Part of Buffer to an HP-UX Command 203

u Write then Quit: Terminate a Session 204
Terminate Editing Session . 204
Yank Text into a Buffer for Use in Copy Operations 204

Table of Contents vii

Ex Command Descriptions (Chapter 10 continued):
Print Window Containing (count) Lines 206
Execute a Shell Command . 208
Repeat Previous Shell-Escape Command 209
Ppi~etPCart or tAll oAfdBduffer dtoL~ CoNmmanb d (vi/ex) 2

2
0
0
9
9

(\.
rm urren or resse me urn er .

1

)

Shift Lines Left or Right ... 210
Execute a Buffer (vi/ex) ... 210
Miscellaneous Commands .. 211

Regular expressions and substitute replacement patterns 212
Regular expressions ... 212

Magic and nomagic ... 212
Using Ex Commands .. 213·

Editing the Command ... 213
Aborting or Changing the Command . 213
Undoing Colon Commands ... 214
Global Searches ... 214
Limited Searches. 215
Finding Tabs and other Control Characters . 215

Chapter 11: Advanced Editing: Shell Operations
Operation Types . 218 11}
Text Replacement Shell Operations . 219
Text Replacement: Command Format 219
Text Replacement: Adjusting Text Paragraphs . 220

Adjusting Multiple Paragraphs 221
Speeding It Up: Tradeoffs .. 222
Using Left/Right Shift with Adjust 222

Text Replacement: Sorting Lists · 224
Sorting the List . 224
Working with Multi-Colunm Lines 225

Text Replacement: Rearranging Lists into Tables . 226
Expanding Tabs to Spaces in Colunmar Output. 227
Adding tbl Macros , . 228
Sorting by Field before Formatting in Colunms . 229

Text Insertion: Reading Shell Output. 230
Check Your Spelling the Easy Way 232
Writing to a Shell Command Instead of a File : . 233 n

Custom Processing . 233 ' 1

viii Table of Contents

u

Chapter 12: Editor: Configuring the Vi/Ex Editor
Configuration Options . 236

Enabling, Disabling, and Setting Options . 236
Option Descriptions . 237

autoindent (vifex) .. 237
autoprint (ex only) . 238
autowrite (vi/ex) ... 238
beautify (vi/ex) ... 239
directory (vifex) .. 240
edcompatible (vi/ex) .. 240
errorbells (vi/ex) .. 241
flash (vi/ex) .. 241
hardtabs (vi/ex) .. 241
ignorecase (vifex) .. 242
lisp (vi/ex) ... 242
list (vi/ex) ... 242
magic (vi/ex) ... 243
mesg (vi/ex) ... 243
modelines (vifex) ... 244
number (vi/ex) ... 245
optimize . 245
paragraphs (vi/ex) .. 245
prompt (ex only) . 246
readonly (vifex) .. 246
redraw ... 247
remap (vi/ex) .. 247
report (vi/ex) .. 247
scroll (vi/ex) ... 248
sections (vi/ex) ... 248
shell (vifex) .. 249
shiftwidth (vifex) ... 249
showmatch (vi/ex) .. 249
showmode (vi only) . 250
slowopen (vifex) .. 250
tabstop (vi/ex) ... 251
taglength (vi/ex) .. 251
tags (vi/ex) .. 251

Table of Contents ix

Option Descriptions (Chapter 12 continued):
term (vi/ex) .. 251
terse (vi/ex) .. 252
timeout (vi/ex) ... 252
ttytype (vi/ex) ... 252
warn (vi/ex) ... 253
window (vi/ex) ... 253
w300, w1200, w9600 (vi only) 253
wrapscan (vi/ex) .. 254
wrapmargin (vi/ex) ... 254
writeany (vi/ex) .. 254

Automating Editor Configuration . 255
Datacomm Protocol Conflicts. 258

Chapter 13: Using Ex
Starting ex . 259
File Manipulation . 261

Current File . 261
Alternate File . 261
Filename Expansion . 261

n

Multiple Files and Named Buffers 262
Read-only Operation . 262 rJ

Exceptional Conditions . 263
Errors and Interrupts . 263
Recovering from Hangups and Crashes . 263

Editing Modes . 264
Command Structure . 265

Command Parameters . 265
Command Variants. 265
Flags After Commands . 265
Comments . 266
Multiple Commands per Line 266
Reporting Large Changes . 266
Additional Topics . 266

Index 267

x Table of Contents

n

u

u

u

All You Need to Know
It has been said that vi is hard to learn. Not so. Everything you need to know is on this
and the next page.

Vi the Lazy Way
If you quickly thumb through this tutorial, you will discover that several hundred pages
were needed to detail vz's many capabilities and show how to properly use them. If you
want to become a proficient vi user, you will find a thorough study of its contents very
rewarding. However, on the other hand, if you think you are too busy to take the trouble,
you can get by using only 12 basic commands. They are summarized here for those who
insist on doing it the "quick and dirty" way. You'll be much less efficient, but you can
get simple jobs done. Then, when the pressing matters of the moment are less urgent,
you can study the manual in detail and discover how much time you could have saved
by using better methods. Here they are:

Command Mode Access Commands
I ESC I Return to Command Mode. Used to terminate adding new text after i, a,

o, and 0 commands. If you press I ESC I and get a beep, you are already in
command mode.

Start ex-mode command at bottom of screen. A few ommands are listed
on the next page.

Vi Editor Commands

a

X

dd

h

j

k

Insert new text in front of current character. I ESC I ends insertion.

Append new text after current character. I ESC I ends appending.

Delete current cursor character.

Delete entire current cursor line.

Move cursor left one position.

Move cursor right one position.

Move cursor down one line.

Move cursor up one line.

All You Need to Know 1

More Vi Editor Commands
0

0

Open a new line after current line and start inserting new text until I ESC I
is pressed.

Open a new line before current line and start inserting new text until I ESC I
is pressed.

ZZ Terminate the editing session after storing the buffer file in permanent
storage.

/text Search file for series of characters that matches text.

Ex-Mode Commands
:w

:q

:q!

Easier Ways
r

R

u

u
y

p

p

Write file to filename.

Quit if the file has been preserved in permanent storage.

Quit after discarding edited file. Do not store it permanently.

Replace current cursor character with a new single character.

Replace existing text, one character at a time, until I ESC I is pressed.

Cancel the last change and restore to condition before change.

Restore current line to original condition before you changed it.

Yank (copy) current line into the unnamed buffer.

Put unnamed buffer contents into text after the current cursor position.

Put unnamed buffer contents into text before the current cursor position.

2 All You Need to Know

Introducing 1 the Vi/Ex Editor
The HP-UX operating system contains a powerful text editor program that exhibits
several personalities, depending on which command was used to start it. However, of the
six possible commands, only two really distinctive personalities exist:

• The vi, view, and vedit commands access the interactive style of operation that
maintains a continuously updated screen display that shows changes as they occur.

• The ex and edit commands access the line-editor style of operation which is essen­
tially an extended version of the UNIX1 line editor program ed.

HP-UX Command Names for the Vi Editor
vi

view

vedit

Full-capability visually interactive editor that maintains a continuously
updated display screen showing the changes made by the editor as they
occur.

Equivalent to vi except that the original file is marked as "read-only" to
the editor so that it is reasonably safe from being casually or accidentally
overwritten or destroyed2 by the user or the editor during the session. How­
ever, the edited file can be stored elsewhere in a new file. This command
is commonly used when original source files must be carefully preserved.

Same capabilities as vi, but special flags are set, indicating to the editor
program that the user is a beginner who wants special treatment. Various
releases of vi have differing default options for vedit, making the behavior
of this command somewhat unpredictable. Most users, including casual
and inexperienced, use the standard vi and view commands. Few HP-UX
users ever use vedit.

1 UNIX is a trademark of AT&T Bell Laboratories, Inc.
2 The original file can be overwritten by a forced write command if you have the necessary access permis­

sions on the file.

1: Introducing the Vi/Ex Editor 3

HP-UX Command Names for the Ex Editor
ex

edit

Extended form of the ed editor. Not as popular as the vi editor because
it does not maintain an updated display of edited text as the session pro­
gresses and most ex features are readily accessible from vi.

Counterpart of vedit for the ex editor. Editor behavior is altered to accom­
modate the needs of casual or inexperienced users (sets novice, nomagie,
report=l, and showmode which are described in Chapter 12). This form
of ex holds little or no interest for most HP-UX users.

vi and view are by far the most commonly used editors among HP-UX users equipped
with CRT display terminals. ex is used much less frequently. vedit and edit are rarely
used on most systems, mainly because vi is reasonably straightforward and easy to learn
and use, despite its powerful capabilities.

4 1: Introducing the Vi/Ex Editor

1:)

u

Switching Between Vi and Ex
There are times when it is necessary or desirable to switch from vi to ex editor personal­
ities and vice-versa without leaving the session. This is easily accomplished by pressing
Q (I SHIFT~[]]) when in vi to change to ex or typing vi I RETURN I after the colon prompt
when in ex. This situation most commonly arises when performing intermediate and
advanced editing tasks as described in the more advanced chapters of this manual.

For Ex Users
If you are using ex exclusively instead of vi (perhaps because you have an electro­
mechanical printing terminal instead of a CRT display terminal), most of the mechanics
of using ex are explained in Chapter 13, and in Chapters 10 and 12 with some topics
of interest scattered elsewhere such as in Chapters 6 and 7. However, this manual is
designed to be most useful for those who have access to CRT display terminals (well over
95% of all HP-UX users).

U International Language Support

u

vi and ex support 8-bit character codes necessary for editing text files in various lan­
guages. HP-UX supports several 8-bit character sets that are described in Section 5 of
the HP-UX Reference such as kana(8) and roman(8). This means that the vi/ex editor
does not strip the eighth bit from ASCII text, unlike some similar editors having the
same name on various UNIX1 or UNIX-like systems. For 8-bit character sets to be cor­
rectly displayed on a terminal, system terminal support must be correctly configured for
language and character set being used.

vi on HP 9000 Series 800 and Series 300 systems also supports 16-bit1 (Asian) languages,
provided the proper local language option is installed and operational.

For more information about using vi in non-English 8- and 16-bit language environments,
refer to the documents included with the optional local-language software.

1 Portions of the 16-bit capabilities in vi are based, in part, on software developed by the Toshiba Corpo­
ration.

1: Introducing the Vi/Ex Editor 5

Why Vi?
The vi command provides a powerful, visually interactive text editor that provides a con­
tinuously updated text display as editing progresses. The close interaction between user
and editor program includes the ability to recover from mistakes by using the editor's
"undo" command. Since vi is an extension of the ex editor, it also supports many ex capa­
bilities that simplify repetitive operations such as search-and-replace and global changes
on all or part of a file from a simple command, provide typing aids with the abbrevi­
ate command, and support file manipulation and other capabilities. These conveniences,
coupled with several safeguards to aid in recovery from operator errors, provide a flexible
tool that meets the needs of beginning and experienced users alike.

The ex command accesses a useful, but much less commonly used, editor that does not
provide the high level of visual interaction with the user that is available from vi. Ex
is an extended form of the early UNIX editor ed that receives only limited use on most
systems (other than in shell scripts and programs). While both ex and vi are really only
a single program that behaves differently depending on the command used to access it,
where, when, and how each command is used varies significantly.

Audience Definition and Learning Suggestions
This manual is designed so that anyone who has a rudimentary understanding of the
HP-UX file system and text editors in general, but little experience with HP-UX, can n
quickly begin performing useful work using vi, then progress with study and experience
to an expert level. Because of the broad range of skill and knowledge that is addressed,
the tutorial is, of necessity, rather lengthy. However, few users will have a need to read
the entire manual from start to finish.

Use the Table of Contents to grasp the general outline and structure of the manual,
then select those areas you need to understand and proceed accordingly. Beginning users
should read the first four chapters and try the examples on a terminal before proceeding
further.

If you are a more experienced user, you will likely discover that time spent perusing
topics you are already familiar with will yield enough useful techniques that you had
previously overlooked to make the effort worthwhile. Considerable effort has been in­
vested in providing various unusual shortcuts to easier editing by bringing some of vz's
largely undiscovered capabilities out of obscurity.

6 1: Introducing the Vi/Ex Editor

(~
' /

u

Manual Organization
The bulk of this tutorial explains how to use the vi editor and access and use the ex
commands from vi. A separate chapter explains how to access and use the ex editor,
then refers to other chapters for detailed information about ex editing commands. The
chapters that form the body of this text are tutorial in nature. Appendices at the
end contain abbreviated reference material of value to experienced users. The Table of
Contents provides a useful list of the topics covered in this manual, and the index is more
comprehensive than is typical in most UNIX-like systems documentation.

User Interaction
vi has three main operating modes and a few related behavior traits that may be some­
what confusing to a beginning user. They are presented here for reference. You may
prefer to skim over this section so that you know what it contains, then come back later
when understanding it becomes important.

Operating Modes
The three primary operating modes are

(_j • Text-input mode,

• vi-command mode, and

u

• ex-command mode, sometimes referred to as external mode.

Associated with the third (external) operating mode is the shell-escape command that
is used to access HP-UX system commands as well as the external capabilities in the ex
editor that are used by vi for such tasks as global changes, search-and-replace, and other
operations on all or part of a file.

Not to be confused with the external-mode shell escape is the vi command mode shell
escape that pipes all or part of the buffer to an HP-UX command. This feature is used
for performing paragraph adjusting, sorting, and other useful tasks on part or on all of
the current vi buffer. This topic is discussed in the chapter entitled Advanced Editing:
Shell Operations

1: Introducing the Vi/Ex Editor 7

Vi Command Mode
When vi is started and ready for use, Command Mode is active, and all keyboard input
is treated as command information until a valid command is encountered. There are two
classes of commands: non-printing, and printing.

• Most vi user commands are non-printing, which means that they are not printed n
on the terminal as they are received by vi because they would disrupt the visible
text display. Such commands are usually related to inserting, deleting, or altering
text relative to the current cursor position, or they pertain to cursor movement or
changing text position on the display screen. Processing these commands without
printing them on the display screen is not a problem because other visible terminal
or display behavior indicates that the command was received correctly. If a mistake
is made, the undo command quickly repairs the damage and you can try again.

• vi has only four printing commands. They are:

• /, the forward search command,

• ? , the backward search command, and

• !, the shell pipe (or filter) command.

• :, the prefix for ex commands being executed from vi.

These commands and the ensuing command text (search string and/or HP-UX 0
command) are printed on the bottom line of the display screen below the displayed ·..)
text. These commands are used for such editor tasks as searching forward or
backwards for a text pattern, or piping all or parts of the buffer through an HP-UX
command (such as sort, adjust, or pr).

vi always uses the bottom line of the screen to display printing commands, error messages,
and echoed command lines. Look there to verify your commands or find other information
about errors and command completion.

Text Input Mode
vi enters Text Input mode whenever an insert text, append text, or change text command
is given. In Text Input mode, characters are added to the text file as they are typed
from the terminal keyboard until you press I ESC I, at which time vi returns to Command
Mode. Text Input mode is described in detail in later chapters.

If you press I ESC I while in command mode, the terminal vi ignores the command and
beeps the terminal. ~

()

8 1: Introducing the Vi/Ex Editor

New vi users often find it difficult to determine whether they are in input mode or
command mode. The editor can be reconfigured quite easily to display the mode by
typing the following command from the keyboard after the editing session is started as
described later: u :set showmode I RETURN I

u

Once this command has been typed, vi displays the message INPUT MODE in the lower
right-hand corner of the editor display screen when in input mode. If not in input mode,
no message is present. This command can also be placed in your . exrc file as explained
in Chapter 12 under the topic "Automating Editor Configuration".

External Mode
External Mode is accessed by typing : while in Command Mode. The colon, the first
character in a printing external command, is displayed on the bottom line of the screen
and tells vi that the command is to be executed by ex. If the colon is followed by an
exclamation point, the exclamation point tells ex that the remainder of the command is
to be passed to an HP-UX shell for execution instead of being processed by ex.

Upon completion of any external-mode operation, control is returned to vi. When an
ex command results in a shell escape, the return from the HP-UX shell requires that
you press a key telling vi to update the display screen and resume operation. This
provides an opportunity for you to review any displayed information on the screen (such
as the results from a file listing command, for example) before it is destroyed when vi
overwrites the screen. Whenever vi suspends operation for a shell escape, it provides a
prompt indicating the proper recovery procedure.

If an open file was modified prior to the External Mode command, vi may issue the
message:

l [No write since last change])

1: Introducing the Vi/Ex Editor 9

This message occurs when the command that produces the message results in a shell
escape from the editor. It has two purposes: First, it is a caution warning telling you that
the current workfile has not been written back to permanent storage and the changes you
have made will be lost if no write operation occurs before terminating vi upon return
from the shell escape; Second, it also tells you that if an HP-UX program such as a n
compiler is run by the external-mode command, the source file cannot be used because .. ,
it is not up to date. Since most shell-escape commands result in a return to vi, loss of
the edited file is not usually a concern unless something happens that causes vi to be
aborted. However, if you run a compiler such as cc on an older version of the file, you
will probably not get the desired result. If you need to abort such a command, press
I BREAK I to return to the editor.

When HP-UX completes the shell escape and returns to vi, vi usually displays themes­
sage:

l [Hit return to continue])
Violence directed toward a keyboard is definitely not recommended. Simply press (no
need to hit) any normal typing key such as I RETURN I or the space bar to resume editing.
vi then updates the screen and places the cursor where it was before vi was interrupted n
by the external command.

What Are All Those Tildes r) On My Screen?
If you are editing a new file or if text is positioned on the display screen such that the
end of the file occurs before the bottom line of the screen, vi displays tilde C) characters
down the left-hand column of the display screen. These characters are placed there by vi
as part of its normal display screen handling processes to mark lines on the display that
have no corresponding line of text in the file being displayed. vi does not place any visible
characters in the text file stored on disk other than those that were intentionally placed
there by someone using vi at the time the file was created or during a subsequent editing
session, so relax- those tildes don't mean a thing, but they can help you recognize blank
lines at the end of a text file. If you see empty lines between the last line of visible text
in the file and the first line with a tilde in the left column on the display screen, those
empty lines are blank lines in the file (or a long string of spaces and/ or tabs on the last
line that forced the line to wrap to the succeeding line(s)- not likely, but possible).

10 1: Introducing the Vi/Ex Editor

n

(·.

u

u

You may also occasionally see a - at the end of the last line in the file. The tilde indicates
that the last line in the file is not terminated by a newline character. Normally, this can
only happen when the original file being edited had no trailing newline at the start of
the session. When the file is written back out at the end of the editing session, vi places
a newline after the last line.

What about Long Text Lines at the Bottom of My Screen?
Occasionally, you may encounter files where a single line contains more characters than
can be displayed on a single line of the terminal's CRT display. When such a line
is encountered, vi wraps the line at the right screen margin onto the next line without
regard for word boundaries. The line is still a single line in the buffer file, but is displayed
as two or more lines on the CRT.

Occasionally, as when scrolling text, a displayed line preceding a long line may occupy
the next to the last line of the CRT display window (excluding the command line at the
bottom of the screen). Since vi cannot display the following line on the single available
line at the bottom of the screen because it is too long, vi omits the line from the display
and, instead, places a single character (@!) in the left column of the blank display line.
If the undisplayed line requires two or more lines on the CRT display, an @! character is
placed at the beginning of each blanked display line until sufficient lines are available to
display the entire line of text as it exists in the buffer file.

If a long line is scrolled off the top of the screen, it disappears one display line at a time
as the lines roll up. If the screen is scrolled down, the display jumps downward by enough
display lines to bring the long line fully into view.

1: Introducing the Vi/Ex Editor 11

Program Limits
vi and ex impose several limits which must be considered when you depart from the range
of typical applications. However, these limits rarely affect most users. They are grouped
here for your convenience should you need to know what they are. The commands and 0)
other conditions that these limits affect are described throughout the later chapters in
this tutorial.

Maximum Line Length
vi allows line lengths up to 1024 characters including a small number of characters (about
two or three) used for overhead. In general, unless your line lengths can exceed 1020
characters, you should have no difficulty. .index: Maximum line length

Maximum File Size
On Series 500 systems, hardware constraints limit maximum file size to about lf2
megabyte. Exceeding the limit causes a memory segmentation error.

On Series 300 and 800 systems, system capacity is such that file size is rarely, if ever, of
concern since the silently enforced maximum file length is 250 000 lines.

Other Limitations
Other limits you are likely to encounter as you reach more advanced levels include:

• 256 characters per global command list,

• 128 characters in a file name (HP-UX maximum filename length is 14 characters)
in vi or ex open mode,

• 128 characters in the previous-insert/delete buffer,

• 100 characters in a shell escape command,

• 63 characters in a string valued option (:set command),

• 30 characters in a program tag name,

• 32 or fewer macros defined by map command,

• 512 or fewer characters total in combined existing map macros.

12 1: Introducing the Vi/Ex Editor

n

n

u

Basic Editing
Editing consists of various related tasks that include:

• Creating new text; called text entry or text input

• Deleting existing text

• Altering existing text

• Inserting or appending new text into an existing line

• Inserting new lines between existing lines

• Rearranging blocks of existing text

The next few chapters describe relatively simple editor tasks that are commonly used by
a majority of users. More advanced topics are discussed in later chapters. A summary
of commands, key functions and other information is located at the end of this tutorial
for easy reference.

1: Introducing the Vi/Ex Editor 13

n

14 1: Introducing the Vi/Ex Editor

u

u

u

Basic Editing:
Starting and Ending a Session 2
An editing session begins when you invoke vi from an HP-UX user shell (or program).
The session can be terminated normally by a write-and-quit command, or it can be
aborted by using only the quit command in which case the results of the editing session
are discarded unless they were previously saved by a separate write command. This
chapter describes each of these possibilities in greater detail.

File Usage During an Editing Session
When vi starts operation, it creates a buffer file (in the system directory jtmp) that is
used to hold the text being edited. If you are editing an existing file, the existing file
is copied into the buffer for editing. If you specify a new file to edit, new text from
the terminal keyboard is copied into the buffer file and edited according to the editing
commands you provide. At the end of the session, unless you specify otherwise, the
contents of the buffer file are copied back into the existing file, or a new file is created to
hold the buffer contents if you are editing a new file.

Baud Rate versus Display Size
On most HP-UX systems, the terminals are wired directly to the computer or use high­
speed modems. Such installations usually display a full screen on the terminal display;
typically 23 lines plus a command line at the bottom of the screen. However, when a
slower modem is used for connection over public telephone lines, the time required to
draw the screen when opening a new session or redrawing after a jump to a new location
in the file, can become disconcerting. To minimize delays in updating the display, vi
displays fewer than 23 lines on baud rates of 1200 or less, then adds more lines as
editing progresses in the new file area. To further conserve time and resources, vi always
determines and uses screen updating methods that require the fewest possible characters
to make the needed display changes. Partial screen displays are discussed in greater
detail in Chapter 12 under the window, w300, w1200, and w9600 options. If you are
using a slow modem connection but still prefer a full screen, you can override the default
values on these options by setting them to non-default values as explained in Chapter
12.

2: Starting and Ending a Session 15

Opening a Session
The editing session begins by invoking vi with an optional filename. If no filename is
specified when you start the session, you must end the session by using a write or write-

1

(\

1

,

and-quit command with a filename provided at that time. Thus, it is usually preferred
1

)
(and easier) to provide the filename when vi is invoked. If you want to edit an existing
file, it is much easier to provide a filename at the beginning than to use read commands
to retrieve the file after vi has started.

Selecting the File
vi can be used to edit an existing file or create a new file. In either case, the name of the
existing file or the name of the new file to be created is usually specified when invoking
vi as follows:

vi filename I RETURN I

If you intentionally or inadvertently invoke vi without including the filename, vi opens
a buffer file that is maintained for the duration of the editing session. Upon completion
of (or at any time during) the session, you can save the contents of the buffer file in a
specified filename by using the Write command that is described later in this chapter.
If you prefer, you can abort the session at any time and destroy the contents of the
buffer file without disturbing the original contents of the source text file being edited n
by using the Quit command as explained later in this chapter under the section entitled
Terminating a Session.

File Must Be a Text File
Only text files consisting of ASCII (or other supported) characters can be edited using
vi. If you attempt to edit a non-text file, an error will probably result. Non-text files
can also wreak havoc with terminal configuration.

Existing or New File?
During startup, vi checks to see if filename exists. If the file is present in the current
(or specified other directory), it is copied to a buffer file, then the beginning part of the
buffer file is printed on the display screen. (If the file is smaller than the available screen
size, the entire file is displayed and any unused diBplay lines are marked by tildes in
the left-most column.) When vi opens an existing file for editing, pertinent information
concerning the filename and number of lines and characters in the file is displayed at the
bottom of the screen. During the edit, only the buffer file is used; the original file is
preserved in its original, undisturbed form. Depending on which options you use when
terminating the edit session, the buffer file is usually written back to the original file at
which time the original file is destroyed and replaced by the new edited file.

16 2: Starting and Ending a Session

u

u

u

If filename does not exist (or if filename is a directory), vi opens a buffer file and displays
a blank screen with tilde C) characters down the left side, one on each line. vi then awaits
your first command. At the end of the session, again depending on which options you
select and what commands are used to terminate the edit, vi usually writes the contents
of the buffer file to a new file, giving it the filename you specified when invoking vi at
the beginning of the session.

Note the message at the bottom of the screen when the file is opened. If the specified file
does not exist, vi displays the filename enclosed between double quote marks followed
by:

[New file]

What if filename is a Directory?
If the specified file is a directory, the filename between quotes is followed by:

Directory

This means that you must take alternative action now or later because vi cannot be
used to alter the contents of a directory. To allow otherwise would create catastrophic
confusion in the HP-UX file system. If this situation arises, refer to the topics under the
Common Difficulties section of this chapter for further instructions.

Editing an Existing File
If filename already exists, vi copies the file into a temporary buffer file, then displays the
first few lines of the file on the terminal screen. You can now edit the file as discussed in
later chapters. When you have finished editing, terminate the session using any of the
methods discussed in the next parts of this chapter as well as elsewhere in this tutorial.

2: Starting and Ending a Session 17

Protecting an Existing File
Most users occasionally need to edit an existing file but need a guarantee that they
cannot accidentally overwrite it during or at the end of an editing session. As usual,
HP-UX and vi provide several ways for doing this. You can use the HP-UX cp command
to copy the original file to a new file then edit the new file, or you can use the readonly n
option to the command which, again, can be handled several ways: ·

• Start the session by using a - R option between the vi command and the filename,

• Use the view command which is equivalent to using the -R option with vi, or

• Start the session with the usual vi command, then use the :set readonly command
to the editor to prevent overwriting the file.

These techniques are equivalent. Obviously, the easiest of the three is simply use the view
command instead of vi, then proceed with the edit. When you are ready to save the file
in permanent storage, use the :w command and a different filename before terminating
vi. Exact procedures for saving the edited file are explained in detail later in this and
subsequent chapters.

Note

Do not fall prey to a false sense of security when using the :set
readonly or view commands to protect your source file. You can
still destroy it by using a :w! command (no space between w
and !) if you have proper access permissions to the file. This is
especially hazardous if you start editing another file while in the
current editing session by using a :vi filename command from vi
or view. The best way to protect a file is by setting the file access
permissions to read-only (mode 400, 440, or 444) by using the
HP-UX chmod command.

18 2: Starting and Ending a Session

u

u

u

Editing Lisp Files
vi has a special option for editing Lisp program files which is used as follows:

vi -1 filename I RETURN I

When the -1 option is used, indents and the cursor-move characters (,), {, }, [[, and
]] are redefined so that they are compatible with Lisp programming. If the lisp option
is active, press I % I to move back and forth between matching parentheses, etc. If the
session is already underway, you can use the :set lisp command as described in Chapter
12.

Terminating a Session
Upon completion of an editing session, you have several options:

• Abort the edit and destroy the contents of the buffer file.

• Terminate normally by writing the buffer file contents to the file specified when vi
was invoked.

• Write all or part of the buffer file to one or more alternate filenames then abort.
• Write all or part of the buffer file to one or more alternate filenames then continue

editing.

• Write all or part of the buffer file to one or more alternate filenames then write it
to the file specified when vi was invoked and terminate normally.

• Any combination of the above as well as other options.

2: Starting and Ending a Session 19

Normal Termination
vi editing sessions are nearly always terminated normally by a write-and-quit command
that can be given in either of two forms. With vi in Command Mode (if you are not
sure, press I ESC I once or twice until you hear a beep from the terminal), type either of
the following: n

zz

or

: wq I RETURN I

Obviously the first is easier because it is a shorthand form of the second and does not
require use of the I RETURN I key.

The second form is an ex command that is executed from vi. Thew tells HP-UX to write
the buffer file to the current file that was (usually) specified when vi was invoked. The
q command tells vi to abort after the file is written to permanent storage.

Other forms of the write (w) command are useful for splitting files, saving parts of a file
in other locations, and other related tasks. The write command is described in greater
detail later in this chapter as well as in the File Manipulation Techniques chapter of this
tutorial. n

Note

The ZZ command must be used with care when using the :w or :w!
command to copy the working file to other files. If the original file
is modified then written to another file, typing ZZ terminates the
edit without updating the original file. This problem is discussed
in greater detail later in this chapter.

20 2: Starting and Ending a Session

()
' /

u

u

u

Aborting an Editing Session
You may occasionally want to abort an editing session for any of various reasons. Some­
times a complex operation can be disastrously misdirected due to a typographical error
or accidental keystroke, making it easier to start over than to repair the damage. At
other times, you may simply decide to abort the edit and go back to the original version.
You also may use vi at times to scan a file then want to abort the session to ensure that
the source file is not altered.

You can easily exit gracefully without disturbing existing file structures by using the quit
(:q) command. If you execute any editing command before quitting, vi will not accept
:q as a valid quit command (this is to keep you from abandoning a long editing session
if you accidentally give a wrong command). If you want to quit, even though you may
have already executed an editing operation, use :q! instead to override the protection
barrier.

If you send vi an ordinary quit (:q) command and an override is needed because one or
more editing commands were executed before the quit command was received, vi sends
the error message

No write since last change (:quit! overrides)

To force vi to quit, repeat the quit command with the exclamation point. If you want to
continue editing, just give vi your next command. No recovery is necessary. Note that
:q and :quit are equivalent, but most users prefer :q because it is easier to type.

2: Starting and Ending a Session 21

Common Difficulties
Typographical errors, oversights, slips of the finger or a brief mental lapse can lead to
mistakes, however minor, when invoking vi. The consequences are seldom serious, but
can be disconcerting if you don't know how to recover. Here are a few examples of typical n
problems that cover most situations.

Oops! I Got the Wrong File. Now What?
The most common error is usually accidentally striking the wrong key when specifying
a filename. This causes vi to look for an incorrect file name that may or may not exist.
If vi cannot find the file, it opens a new file. If a file exists whose name matches the
mistyped one, the wrong file is opened for editing.

Another common error occurs when you forget to include a complete directory pathname
and the file does not reside in the current working directory. Again, vi opens a new file
if the name is not present in the current directory, or it opens a wrong file if a file having
the same name is present.

When such accidents happen, you usually do not want to modify an existing file, nor
do you want to create a new one. To exit gracefully without disturbing existing file
structures, use the quit (:q or :q!) command discussed earlier in this chapter under the n
topic Aborting an Editing Session. \ .

Time-Saving Tip
When you abort an editing session then restart with a new file, the vi program must be
reloaded into memory by HP-UX. You can avoid the time required to reload the editor
when you switch to a new file by using the command:

: e new_filename I RETURN I

This ex-mode command causes vi to abandon the current buffer file contents and imme­
diately open a new file and reload the buffer without terminating the editor program,
usually saving several seconds. If you have modified a file and want to abort and change
files without updating the original file and reloading the editor program, use:

: e! new _filename I RETURN I

Either of these commands can be used after the write command (:w or :w!) described ;-..,
later in this chpater if you need to edit another file and don't want to reload the editor. 1

'.)

22 2: Starting and Ending a Session

u

u

u

What if I Try to Edit a Directory?
It is easy to absent-mindedly type the name of a directory when invoking vi. When
filename is a directory, you obviously cannot store the buffer file under that filename
when you finish. You have two options:

• Abort the edit immediately by typing

:q! I RETURN I

or

• Continue the new file then write it to a file when finished by using the write com­
mand:

: w filename I RETURN I

or

: w! existing_filename I RETURN I

then following it with an abort (:q or :q!) command. The safest and least confusing
option is usually to abort immediately and try again with a valid filename.

Note

Do not type a space character between w and ! when using the
:w! command. If a space is present, vi interprets it as a command
to copy the buffer to standard input and pipe it to the command
existing_filename which may not exist, and, if it does, certainly is
not what you want {the :w! (commanll) command is discussed at
the end of Chapter 11).

2: Starting and Ending a Session 23

Starting a New File
If you specify a filename that does not exist when invoking vi, after vi completes its start­
up initialization including creation of a temporary buffer file, your terminal will show an
empty screen with the cursor in the upper left corner and a row of tilde C) characters n
down the left side. The new filename followed by the message [new file] appears on the
bottom line of the screen, indicating that vi is ready for your first command:

[new file] j
Entering Text
To enter text in a new file, press i (insert text in front of the character identified by
the current cursor position) or a (append text following the character identified by the
current cursor position). At the time you press i or a, the editor is in command-input
mode, so the command character is not printed when pressed and no visible change in the
screen display is evident. However, as soon as you press i or a, vi changes immediately to
text input mode so you can start typing in new text. Begin by typing text much as you
would with an ordinary typewriter. Other methods for adding new text are discussed in
Chapter 4 which discusses text manipulation techniques.

To quit entering text and return to command mode at any time, simply press I ESC 1.

24 2: Starting and Ending a Session

~n

u

u

Backing Up over Typographical Errors
When occasional typographical errors occur during text input, an important convenience
is being able to backspace, overstrike the error, then continue. vi handles the need with
only minor inconvenience. Simply use the I BACK SPACE I key or I CTRL ~[RJ to back up
to the (first) mistyped character, retype it, then retype the text that you backspaced
over. The restrictions in this technique are that you can only back up on the current
cursor line, and you cannot backspace beyond the point where you started inserting new
text. If the error occurred on an earlier line, you must press I ESC I to return to command
mode, move the cursor to the error, then make the needed corrections using techniques
described in the Basic Editing chapters on display and cursor control and manipulating
text.

If the line is long and the error is early in the line, it may be easier to press I ESC I, back
up to the error(s), then replace with new character(s) than to backspace then retype the
rest of the line. Again, methods for changing errors in a line are discussed in detail in
the chapter, Basic Editing: Manipulating Text.

Line Lengths
vi can accept line lengths longer than the width of the terminal CRT screen (up to about
1020 characters). If the line length exceeds maximum screen width, vi breaks the line at
the right-hand screen boundary (often in the middle of a word), and continues it on the
next physical line on the display even though the line is treated as a single line in the
text file. This feature is helpful for some situations where long lines are necessary, but for
ordinary text, shorter lines are much easier to deal with. A good general rule-of-thumb
to use for ordinary text is:

• Keep lines shorter than the width of the narrowest terminal that will be using
the file (usually about 70 to 75 characters is appropriate for standard SO-character
screen widths).

• End each line by pressing I RETURN I (you can also use the wrapmargin option that
is discussed later in the topic Continuous Text Input to eliminate the need to use
I RETURN I after each line).

2: Starting and Ending a Session 25

Limiting line length to a single display line keeps text from confusing other users when
they must edit it, especially when moving the cursor up or down through text. For
example, suppose a given long line of text in a file occupies three lines on the CRT
display while the next line in the file occupies only one line on the CRT. As you move
the cursor down the screen, it reaches the first displayed line of the long line in the file.
As the cursor moves down to the next line in the file, it suddenly jumps three lines at once
on the screen, creating the illusion that it skipped two lines. However, vi recognized only
the long line in the file which happened to require three lines on the display. It moved
the cursor to the same column of the next line in the file which was being displayed on
the third lower line on the display.

Continuous Text Input
You can use the ex set command to create an automatic right margin located a specified
number of columns from the right-hand side of the terminal screen. Then, whenever the
cursor reaches the column that has been defined as the right-hand margin, the cursor is
immediately moved to the left margin of the next line. If a word has been only partly
typed when the margin is crossed, the first part of the word is also moved to the next
line and the cursor advanced accordingly. To set the margin, type:

:set wrapmargin=8

n

T(hi
1
s esta

7
b
2
lishes a

8
m
0

arg
1
in eigdh.t c

1
har)ac

11
ters in

1
fromd.~e right-h~d e?ge

1
of the

1
screehn n\. .

co umn on an -co umn 1sp ay . o se ect a Iuerent margm, s1mp y rep ace t e .
number 8 in the command with some other value that does not exceed the width of the
screen in columns.

Once wrapmargin has been set, you can begin typing text at will (in Insert Mode, of
course) and vi will automatically jump to the next line when you exceed the margin.
This feature is especially useful to touch typists who are transcribing large amounts of
text from a typed, printed, or handwritten source, or users who want to save a few
keystrokes. wrapmargin can also be automatically set each time vi is used by placing a
set wrapmargin command in a .exrc configuration file in your home directory. Using the
.exrc file is discussed at length in the chapter entitled Configuring the Vi/Ex Editor.

I Have Typed My Text. Now What?
Once you have placed the editor in insert or append mode by pressing i or a, all incoming
characters are treated as new text until an escape character is received from the keyboard.
To terminate text entry, press I ESC I (ALT on some terminals), or I CTRL ~[I]. vi then
returns to Command Mode and awaits your next command.

26 2: Starting and Ending a Session

u

u

Note Regarding Escape Sequences

Most terminals use escape sequences to implement arrow and func­
tion keys (and some other keys, depending on the terminal). These
sequences consist of an ASCII ESC character followed by one or
more typing characters. Since vi uses ESC to terminate text en­
try, it must be able to differentiate between an ESC to terminate
input followed by another key such as h for backspacing, and the
HOME UP key that also provides an ESC-h character pair and
moves the cursor to the upper left corner of the screen. By en­
abling the timeout option (described in Chapter 12), a time limit
that varies, depending on which computer series and which HP-UX
release you are using1 is used to determine: that the sequence is a
terminate-input, backspace if timeout is exceeded; or HOME UP
if the timeout does not expire.

This can be a problem for fast users who type ESC then follow
quickly with a new vi command such as h and see the cursor
snapped from its position to the upper left corner of the screen.
The operation, in effect, terminates input mode, executes a cur­
sor move to the new location, reopens input mode, and accepts
new typing until I ESC I is typed again. Pressing u to undo the
change on the new cursor line after the ESC h restores changes
after the move, but does not affect text before the misinterpreted
escape sequence (you can use " (double accent grave) to return
to the cursor location before the misinterpreted escape sequence).
Consequently, experienced users who use home row keys for cursor
control may find ESC followed by a cursor move being interpreted
by vi as something other than what they intended unless they pause
slightly after pressing ESC before using any other keys.

Solving the problem is made even more difficult by the program­
ming demands of international language support, but efforts are
being made to resolve or minimize this problem in future releases
ofHP-UX.

1 The timeout value was increased to 500 ms from 85 ms at Series 500 Release 5.2 to accommodate certain
slow terminals and their users who use arrow and function keys).

2: Starting and Ending a Session 27

Saving Text During an Edit
As described earlier in this chapter, vi maintains a buffer file that is used to hold the text
being edited for the duration of the editing session. At the end of the session, the buffer
is usually copied to the permanent storage file where it normally resides when no edits
are being performed on the file. It is easy, particularly when performing complex edits,
to make a mistake that can have disastrous effects on the buffer file. These mistakes are
usually corrected without difficulty by using the undo command. However, a mistake is
sometimes not discovered until it is no longer recoverable by undo, making it necessary
to abort the edit and start over. Much of the lost work can be recovered if the user was
cautious and saved the buffer file in permanent storage periodically during the editing
session, especially before any complicated changes.

Prudent computer users usually update the stored version of the file they are editing
several times during the editing session, especially when the editing session is long and
tedious. By keeping the permanent file up to date, they cannot lose more than a few min-
utes' work, at most, if an operator error, system crash, power failure, or other interruption
unexpectedly stops the editing session or damages the buffer file beyond convenient re-
pair. It is comforting to know that HP-UX has extensive protective features that help

n ' '

prevent loss of data due to system crashes and power failures. However, these protection
mechanisms are useless against operator errors. You can easily update the permanent n
storage file with the current contents of the buffer by using the vi command: ,

:w I RETURN I

This command copies the current workfile onto permanent disc storage in the filename
specified when vi was invoked. It does not change your current location in the file being
edited, and returns you to vi so you can conveniently continue with your next command
as soon as the write operation is complete. This simple operation can be especially useful
when you are about to try a complex search-and-replace operation and want to make
sure you don't lose the work you have already done on the file.

Repeating the :w command every few minutes keeps your J)etmanent file up to date. This
means that you have little opportunity to destroy your work if you make an incorrect
keyboard entry in a moment of inattention. The risk of lost work is particulary important
to fast touch typists who occasionally forget to enter input mode before typing new text,
especially when the text happens to coincide with a command sequence that destroys
part of the file beyond easy recovery.

28 2: Starting and Ending a Session

u

u

u

Using the Write Command
The write command:

: w filename I RETURN I

can be used at any time to store the current buffer file in a file identified by filename
(include the full or relative directory pathname if the file is not being stored in the current
directory). This is a convenient way to store slightly different versions of the same file
in more than one location. This version of the write command should be used when you
want to prevent accidentally overwriting an existing file.

Overwriting Files
You can overwrite the contents of an existing file with the contents of the buffer file by
using the overwrite command:

: w! existing_filename I RETURN I

If you use :w! and the file does not exist, the command is treated the same as :w.
Remember that no space is allowed between the w and the ! when writing the buffer to
a file.

The exclamation point (usually pronounced "bang" by HP-UX users) tells vi one of two
things:

• You know the file exists and you want to overwrite the old file (destroying its
previous contents), or

• You want the file written to that filename, even if an existing file having the same
name would be destroyed by the write operation.

If you use the :w command and a file having the specified filename already exists, vi
displays the warning message:

"<filename>" File exists - use "w! <filename>" to overwrite

You can continue editing, select a different filename, or use the :w! command (no space
before the ! to overwrite the existing file. You can also abort the edit by using the
command:

:q! I RETURN I

2: Starting and Ending a Session 29

When you have finished editing and are ready to store the file on the previously specified
disc file, send a write (:w or :w!) or exit (ZZ) command to vi. The write command
copies the buffer file to the specified (or current if not specified) filename then returns
to vi. To end the session after a write command, use the quit command. ZZ copies the
buffer file to the current filename, destroys the temporary buffer file, then terminates vi ~
(equivalent to :wq). 1.)

When invoking vi with an existing filename, the file must reside in the current working
directory. If the file is located in a different directory, the appropriate directory pathname
must also be provided with the filename. Any legitimate pathname can be used including
the substitution characters . and .. for the current directory and parent of the current
directory, respectively.

Creating Multiple Versions of a File
Occasionally, you may need to create several files that are similar in some respects, but
different in others. Or, you may want to split a long file into several smaller files. The
:w command can be used to accomplish this with little difficulty by copying all or part
of the file being edited to another file or files. The use of this and other commands to
copy or split files and perform other useful tasks are described in greater detail in the
File Manipulation Techniques chapter.

After using the write command, you can end the vi session or continue editing until
you are ready to record another file or end the session.. Whenever you choose a normal
termination by pressing ZZ, the current buffer file, as edited, is rewritten over the file
originally specified when vi was invoked.

Note Concerning :w! and :w!

The previous paragraphs describe the use of :w! without any space
between thew and! to overwrite existing files. This command is
radically different from the :w ! with a space between w and !
which writes (all or part of) the buffer out as standard input to an
HP-UX command. This second form (:w !) is discussed near the
end of Chapter 11 which deals with shell operations.

30 2: Starting and Ending a Session

n . I

n

u

u

u

Beware the Wiles of ZZ
For most normal, simple editing where you open a file, alter it, then store it back under
its original name, you can indiscriminately terminate with either :wq or ZZ and obtain
the same, identical, and desired effect. However, if you are a more advanced user or
performing more specialized tasks, you may encounter some surprising and unwanted
effects if you indiscriminately use ZZ after certain types of :w operations.

When a new file is opened, vi/ ex sets a "modified-file" flag when the first change is made
to the buffer file. Whenever a :w or :w! command is used to write the entire buffer file
to permanent storage, the flag is cleared, whether the buffer was written to the original
file or to some other file (if only part of the file is written, the flag remains unchanged).

On the other hand, when ZZ is used to terminate an editing session, it examines the
modified-file flag. If the flag is not set, it exits the session without writing the buffer
file back to its original filename in the file system. This means that if you open file A
for editing, modify it and write the entire buffer to file B, then use ZZ to terminate,
file A remains unchanged (since no changes were made after writing to file B) and file
B contains the modified form of the original file A. This may or may not be what you
want, depending on whether you need to update the original text file.

If you want to update the original file so that it is identical to the buffer before you leave
the editor and you have written the entire buffer to another file by using :w or :w!, you
must force the file to be written back to the original file. As you might expect, there are
multiple ways to accomplish this. Here are two:

• Use :wq without specifying a file name, or :w! followed by :q if the file is read
only or has been assigned "edited" status by vi. Be sure that the name of the
current file is the same as the original. If you are not sure, use I CTRL ~[§] to list
the information about the current file at the bottom of the screen or type:

:file I RETURN I

to get the same information. If the filename is not correct, use the :file filename
command described in Chapter 10 to change it back, or simply use the :w! filename
to force a write to the existing original file.

• Perform a harmless modification such as ddP or xP to set the modified file flag, then
use ZZ as usual. For most users, this method is probably easier and less susceptible
to error.

2: Starting and Ending a Session 31

Writing to an HP-UX Command
The :w command can also be used to send all or part of the buffer file to any HP-UX
command for processing. This is helpful when you want to print a sample section of
text on the system printer, change format before storing in a file, converting control n
characters to printable visible character sequences, and so forth. Procedures and several
examples are explained in detail near the end of Chapter 11.

Using Saved Text
Once a new file contains text and has been written to permanent storage, it is treated
as an existing file from that time on. Most of the topics discussed in this tutorial can be
tried on a text file that contains two or more paragraphs. Use the previous discussion to
create a sample text file containing two or more paragraphs, then type ZZ to store the
file. Restart the editor, specifying the stored file name, and wait until the text appears
on the terminal display screen.

For example, if you start by using the command:

vi junk I RETURN I

add several lines of text, then type:

zz

to terminate the session, a new file named junk is created in the current directory that
contains the new text you just typed. You can now edit the file by using the same
command you used before:

vi junk I RETURN I

but instead of the [New File] message at the bottom of the screen, you see "junk" followed
by the number of lines and characters in the file. For example:

"junk" 21 lines, 382 characters

The cursor is located at the beginning of the file, and vi is waiting for your first command.
You are ready to proceed as described in later chapters.

32 2: Starting and Ending a Session

n

u

u

u

Recovering from a System Crash
HP-UX system crashes, other than shutdowns caused by power failures, are usually rare.
However utility company power failures do happen, and there is always the possibility
that someone may accidentally knock a power cord loose in a moment of carelessnes or
inattention, so such events must be provided for and coped with. Great care was taken
when designing HP-UX to provide a high immunity to problems related to power failures
so there is little need for concern other than knowing how to recover when power is
restored. ·

Power-Failure and System Crash Protection
Most system disk drives used with HP-UX have automatic power-fail detection. If a
power failure occurs, they immediately write any data being held by the drive controller
onto the correct disk location then withdraw the heads to prevent a head crash. However,
the system computer may be holding additional data in memory buffers that have not
been emptied to the disk drive controller. During of a power failure, the disk controller
does not accept attempted output from the computer, because it is busy shutting down
the disk drive.

To protect against the loss of data being held in memory by the computer when power
fails, Series 300 HP-UX systems include a System Administration command named
syncer. syncer periodically (every 30 seconds unless specified otherwise) and automat­
ically empties output buffers to system disk storage so that little information is being
held in user buffers. This means that if syncer is running on your system, you will not
lose more than the last 30 seconds of work if the power goes off. Contact your System
Administrator to find out if syncer is being used on your system. Series 500 systems use
a different system architecture, so syncer is not needed, and is therefore not included in
Series 500 HP-UX software.

2: Starting and Ending a Session 33

Recovery Procedure
When a system shutdown occurs, the original file being edited is still in its original
location and contains the same data it contained at the start of the session or after the
last write command that updated it from the buffer file. The preserved buffer file, on
the other hand, contains the buffer file as it was following the last buffer update by vi. ~~
If syncer was in operation, the computer's buffer memory was dumped to the disc soon •.)
before the crash. If syncer was not in operation, all the data being held in the computer's
internal buffer memory since the last disk write operation from the buffer was probably
lost, making the buffer file less up to date.

Recovering the buffer file from the previous session is easy because vi provides a conve­
nient means for recovering from a power failures and system shutdowns. The recovery
procedure described below conveniently resumes your interrupted session. It is important
to note, however, that this protection against power failure does not reduce the value
of periodically updating permanent storage by writing the buffer to a permanent file as
described earlier in this chapter.

When a power failure or other condition causes the system to shut down or crash, vi
buffer files are maintained in the temporary storage directory jtmp. When the system
is restarted, you will probably receive mail from the system indicating that your vi/ ex
buffer file has been preserved along with instructions on how to recover it. To continue
editing that file, use the cd command to change your current working directory to the n
same directory you were in during the edit, then invoke the vi command exactly as you
did for the previous interrupted session except using the -r option as follows:

vi-r filenameiRETURNI

The file will be restored to the terminal screen, and will contain exactly the data it
contained at the time the disk drive shut down or the system crashed. You can then use
the :w or ZZ command to update the original file, or you can continue editing; whichever
you prefer. In the vast majority of cases, your file will be missing the last line typed
or the last few keystrokes, but rarely will there be extensive damage unless the editor
was in the midst of a complex undo operation or some similar condition when the power
failure occurred.

34 2: Starting and Ending a Session

u

u

u

If you are using another editor such as view, ex, or edit, use the same command form;
just use the appropriate command:

view -r filename I RETURN I
ex -r filename I RETURN I

or

edit -r filename I RETURN I

Do not wait several days before recovering the preserved file. Editor buffer files are stored
in directory jtmp. Prudent System Administrators usually discard files in /temp on a
regular basis to conserve disk space and keep the file system clean. If you cannot be
available when the system is restored to operation, it is recommended that you arrange
for someone to copy the file into another directory where you can recover it later. You
can usually identify your buffer file by its name. Use the HP-UX command:

11 /tmp I RETURN I

The filename listed in the right-hand column will start with Ex followed by a (usually 5-
digit) process ID number. The file owner column normally contains your login ID unless
you have changed to another user name while logged in. If you need assistance, contact
your System Administrator.

2: Starting and Ending a Session 35

()

n
' /

36 2: Starting and Ending a Session

u

u

Basic Editing:
Cursor and Display Control 3
Once you have an existing file to edit, you are ready to alter existing text. However, editing is much easier when you know how to control cursor movement, scrolling, and other CRT display features provided by vi. This chapter addresses two general topics:

• The beginning sections of this chapter explain how to use common screen control operations for moving quickly to a location of interest before making desired changes
in text.

• Later sections describe cursor movement commands that are commonly used to alter text objects and blocks of text and accomplish other useful tasks.

3: Cursor and Display Control 37

Editor Window Operation
Most terminals display about 20 to 24 lines of text (excluding the command/message
line at the bottom) with up to 80 characters horizontally in each line. These lines are
your access window into the file you are editing. When vi starts up, the window displays n
the first part of the file with line 1 of the window being in the same position as line 1 of
the file as shown in the figure below.

Displayed Text

Beginning of file

i Scrolling text up on
screen moves window
toward end of file.

~
Scrolling text down on
screen moves window
toward beginning of file.

End of file

CRT Display Provides a Viewing Window into a File

You can use cursor control keys to move the cursor to any position in the visible screen
area, and use scrolling control keys to move the text up or down on the screen. As text
scrolls up, the viewing window moves toward the end of the file. To get a good feel for
using vts screen control features, you need a file that is much longer than two full screens ~n\.
{about 50 lines).

38 3: Cursor and Display Control

u

u

(.

u

Finding a Sample File to Edit
Let's be creatively lazy. Rather than typing a long file just to try a few cursor control
exercises, let's use a text file that already exists. An easy place to find relatively large
text files to experiment with is the on-line manual page file set. Manual page files are
part of the HP-UX operating system and should not be modified by anyone who is not
properly authorized to do so. However, since only the system administrator (or other
super-user) can write to these files but anyone can read them, they make good source
material for experimenting. Do not try the following exercises if you are logged in as
super-user or have super-user capability!

Be sure you are logged in as an ordinary user in your home account. Use your home
directory, or change to some other directory that you own and have write permission in.
First we must find the manual page for the vi command. Manual pages are stored in a
directory under jusr /man To determine which directory contains the command, use the
HP-UX command (not available on AXE):

whereis vi I RETURN I

You should get a response similar to the following:

vi: /usr/bin/vi /usr/man/man1/vi.1

or

vi: /usr/bin/vi /usr/man/man1.Z/vi.1

This command tells you where the vi files are stored. /usr /bin/vi is the vi program itself,
while directory usr /man/man1 contains the vi manual page in normal text form and
usr jman/man1.Z contains the vi manual page in compressed text form.

If you are using AXE, execute the HP-UX command:

ls /usr /man I RETURN I

The file listing should contain a directory named cat1 and/or a directory named cat1.Z.
If directory cat1.Z is present, it probably contains the file vi.1 in compressed form. To
verify, use the command:

ls /usr/man/cat1.Z/vi* IRETURNI

for compressed pages, or

ls /usr/man/cat1/vi* IRETURNI

if the compressed pages directory is not present, and look for a file named vi.1.

3: Cursor and Display Control 39

Copying an Uncompressed Manual Page
If the vi.1 file is in an uncompressed directory (/usrjmanjman1 or jusr/manjcat1), copy
the file into the current directory by executing one of the following commands:

On an ordinary HP-UX system,

cp /usr/man/man1/vi* ./junk I RETURN I

places a copy of the unformatted on-line manual page file jusr jmanjman1 into a new
file named junk in the current working directory.

If you are using an AXE (Applications eXecution Environment) system, you will have
to copy the formatted page as follows:

cp /usr/man/cat1/vi* ./junk IRETURNI

This file is formatted (by nroff) and may or may not be largely unreadable because of
character and word highlighting sequences. However, it can still be used for experiment­
ing with cursor control.

Uncompressing and Copying a Compressed Manual Page
If file vi.1 is in directory man1.Z (or cat1.Z on AXE), the files are compressed. To copy
the file into a form you can use, execute the command:

uncompress -c </usr/man/man1. Z/vi.1 >./junk I RETURN I

on standard HP-UX, or

uncompress -c </usr/man/cat1.Z/vi.1 >./junk I RETURN I

on an AXE system. The file J'unk is now ready for use if no errors occur.

Note

Experienced users may wonder why the zcat command is not used
in this example. uncompress and zcat both expect a .z suffix on
the filename. Compressed manual pages use the .z on the directory
name instead, thus requiring use of the -c option to recover any
compressed manual page files.

40 3: Cursor and Display Control

~~
' /

{"\,
' I

/

u

/ ' u

u

Using the File
Now start an editing session by typing:

vi junk I RETURN I

Don't panic when the screen fills with strange character sequences mixed with text.
File man1/vi.1 or man1.Zjvi.1 contains the source text used to typeset the printed HP­
UX Reference pages through a troff formatter program. This file is also used by the
built-in HP-UX nroff program used by the man command when printing a formatted
manual page on the display screen. If you are using an AXE system, your file will look
different because the vi.1 file in directory cat1 or cat1.Z is produced by nroff from the
man1 version prior to producing the AXE software package. This formatted version may
contain some rather bizarre character strings that are used for terminal highlighting.
That's not important- we just need a nice long file to play with while learning to use
the editor.

Notice that the first line on your terminal screen looks like the beginning of the file. The
next several topics in this chapter help you quickly learn how to move around in the file.

Determining File Size
When vi first displays the file on the screen, it prints some information about the file
on the bottom line, including the number of lines and characters in the file. You can
recover this and other information about the file during an edit by using the I CTRL ~[§]
or :f command discussed in the next section.

3: Cursor and Display Control 41

Positioning the Cursor on the Current Line
The cursor is easily moved back and forth within the current line while the editor is in
command mode by using the space bar (or I key) and I BACK SPACE I (or h) key (use of
h and I is explained next after the arrow keys topic). Use the following to conveniently n
move to specific locations at the beginning or end of the line:

Beginning/End-of-Line Cursor Positioning Commands

Command New Cursor Position

0 or I Move cursor to column 0 (left edge) of screen on current line.

nl Move cursor to column n on current line.

A Move cursor to first non-blank character on current line.

$ Move cursor to last character (blank or otherwise) on current line.

Arrow Keys
If you are accustomed to using arrow (up, down, left, right, home) keys to control your
terminal display, vi provides some improvements. While you may find them a bit clumsy
at first, after some practice you will learn to appreciate the many short-cuts that help
you control the display without moving your fingers all over the keyboard.

Vi works correctly with the arrow keys on many terminals, but not all (how well they
work depends on your $TERM setting and how the terminal characteristics have been
defined in the terminfo database, among other things). Use of arrow keys is discouraged,
partly because they do not always work correctly, but also because using the "home row"
keys h (or I BACK SPACE 1), j, k, and I (or space bar) is faster and much more convenient for
users such as touch typists who prefer to keep their fingers on the home row. However,
for those less expert users who feel more comfortable with arrow keys, most HP terminals
handle arrow keys without difficulty. If you are a frequent user of vi and take the trouble
to learn to use the home row keys, you will likely find the effort rewarding once you
become accustomed to them.

42 3: Cursor and Display Control

u

u

(\

L0

Positioning the Cursor on the Screen
Cursor screen-positioning commands are used to manipulate the cursor's current location
on the screen and to control the position of the screen window in the file being edited.
The cursor control commands shown here are for general moving around in the file. Other
methods for moving the cursor to a specific position in the text file by searching for text
patterns, character location on current line, word, paragraph, or section beginning or
end, and such are covered later in this chapter as well as elsewhere in the manual as
various related topics are introduced.

Here are the most commonly used cursor positioning commands. n represents a numerical
value that is typed before the command. I RETURN I is not used after these commands
unless specifically shown. Some of these commands can also be used in conjunction with
editing commands when deleting or changing several lines or larger blocks of text

Screen/File Cursor Movement Commands

Command Cursor Motion

h (or I BACK SPACE I) Move cursor left one character
nh (or I BACK SPACE I) Move cursor left n characters

j Move cursor down one line; stop at bottom of screen
and scroll if necessary.

nj Move cursor down n lines; stop at bottom of screen
and scroll if necessary.

k Move cursor up one line; stop at top of screen and scroll if necessary.
nk Move cursor up n lines; stop at top of screen and scroll if necessary.

I (or Space Bar) Move cursor right one character
nl (or Space Bar) Move cursor right n characters

I RETURN I Move cursor to beginning1 of next line.
nl RETURN I Move cursor to beginning1 of the nth line after current line.

+or n+ Same as I RETURN I and nl RETURN I
-or n- Same as I RETURN I and nl RETURN I except that movement is toward

beginning of file. For example, - moves to the first visible character
in the preceding line.

1 Beginning of line in this context is the first visible character in the line or end-of-line, whichever occurs
first.

3: Cursor and Display Control 43

Screen/File Cursor Movement Commands (continued)

Command Cursor Motion

G Move cursor to first visible character in last line of file.
lG Move cursor to first visible character in first line of file.
nG Move cursor to first visible character in line n of file.

I CTRL~G or Display line number of cursor line and other information about the file
:fl RETURN I on the bottom (command) line of the terminal display.

A

$
nl

0 or I Move cursor to absolute beginning of line (left column of screen).
Move cursor to first visible character in current line.
Move cursor to last character in current line.
Move cursor to column n in current line.

H Move cursor to beginning1 of line at top of screen.
nH Move cursor to beginning1 of nth line from top of screen.
M Move cursor to beginning1 of line at middle of screen.
L Move cursor to beginning1 of line at bottom of screen.
nL Move cursor to beginning1 of nth line from bottom of screen.

Note

When using j, k, or up/down arrow keys to move the cursor up or
down, if a vertical cursor movement would place the cursor beyond
the last character of the new cursor line, the cursor is placed at
the end of the new line. However, vi remembers the column where
the cursor began its vertical movements, so if you move the cursor
to an equal or longer line than the original cursor line, the cursor
is placed it its original column on the terminal screen.

The exception to this rule is when a$ command moves the cursor
to end of line. Any subsequent j, k, or up/down arrow commands
move the cursor to the end of the target new cursor line, indepen­
dent of line length.

1 Beginning of line in this context is the first visible character in the line or end-of-line, whichever occurs
first. For example, if a line contains five blanks (spaces), the cursor is placed at the last blank character
in the line. If the line contains no characters, the cursor is placed at the left margin of the display

screen.

44 3: Cursor and Display Control

n

n

u

What is that Beep I Hear?
In the preceding list of cursor positioning commands, n is any positive integer numerical
value (obviously, it must not be preceded by+ or-), but it cannot exceed the number
of lines between the current line and the end or beginning of file if movement is vertical.
For example, if you are editing a 100-line file and the cursor is on line 55, you cannot
use the command:

58 I RETURN I or 58+

because 55 +58 is more than 100 lines. The same is true if you attempt to use the
command:

62-

because you cannot back up beyond line 1. Whenever you try to move beyond beginning
or end of file, vi responds with a beep and ignores the command.

On the other hand, if you are moving horizontally, vi always tries to meet your require­
ments. For example if the cursor is located in column 45 of the current line and the line
contains 68 characters, the commands:

1001

and

100h

or

or

100 (spacebar)

100 I BACK SPACE I

move the cursor to the last character or first character respectively (including tabs and
spaces) in the current line without complaint.

Exercise Time
Using the junk file on your screen, try a few combinations of these commands until you
feel comfortable with their behavior. Here are some suggestions. Try others on your
own:

Move cursor to the end of the 25th line following the current line ($ 25j or 25j $).
Now move to the first visible character of the lOth line preceding (10-).

Go to the end of the last line in the file (G $). Why doesn't $ G give the same result
when the last line has more than one visible character?

3: Cursor and Display Control 45

Scrolling Text
Once you have reasonable mastery of cursor movement, you are ready to learn scrolling
techniques. Here are the most common scrolling commands (I CTRL I and the following
character are pressed simultaneously; n is a numeric value that is typed before the com­
mand):

Command Resulting Text Motion

ICTRLHIJ Scroll backward to the previous screen.
nl CTRL ~[[] Scroll backward to the nth previous screen.

lCTRL~W Scroll backward one half screen.
nlCTRL~W Set half-screen scroll to n lines then scroll backward one-half screen.

I CTRL~[QJ Scroll forward one half screen.
nl CTRL ~[QJ Set half-screen scroll to n lines then scroll forward one-half screen.

I CTRL ~[£] Scroll forward to the next following screen.
nl CTRL ~[£] Scroll forward to the nth following screen.

ICTRL~W Scroll backward one line.
nl CTRL~[YJ Scroll backward n lines (cursor movement explained below).

I CTRL~[TI Scroll forward one line.
nl CTRL ~[TI Scroll forward n lines (cursor movement explained below).

These commands are simple and straight-forward, especially if you have mastered the
cursor control commands. The most unexpected characteristic in these commands is the
numbered half-screen scroll.

46 3: Cursor and Display Control

n

(\
' /

n

(_)

Half-Screen Scrolls
The numbered half-screen scroll sets the number of lines to be scrolled to n, then scrolls
up or down that many lines. From that time on, any half-screen scrolls, whether up or
down, will use the same number of lines (unless you specify a new value for n). The
default (no n specified) is about 10-12 lines, but you can select any number (within
reason). However, values greater than 20 would probably not be very useful.

Cursor Movement During Scrolling
If scrolling moves the current (cursor) line beyond the screen boundary, vi usually po­
sitions the cursor at the first visible character or end-of-line (whichever occurs first) at
the top (forward scroll) or bottom (backward scroll) of the display screen.

If you are using I CTRL ~[Y] or I CTRL ~W, vi leaves the cursor at its current location in
the file until the cursor is forced off the screen at which time it remains on the top or
bottom line and usually moves to the first visible character in the line.

Positioning the Cursor Line in the Display Window
Sometimes you may want to move the current cursor line to a different position in the
display window. One example is when forward scrolling leaves the cursor at the last line
in the file and at the bottom of the screen. You can easily move the cursor line to the LJ top, middle, or bottom of the screen as follows:

Commands to Reposition Cursor Line on Screen

Command Resulting Text Position

z I RETURN I Move cursor line to the top of the screen. Scroll surrounding text
accordingly. z+ cannot be used for the same purpose.

z. Move cursor line to the middle of the screen. Scroll surrounding text
accordingly.

z- Move cursor line to the bottom of the screen. Scroll surrounding text
accordingly.

3: Cursor and Display Control 4 7

Where Am I in the File?
Vi is a visually-oriented rather than a line-oriented editor, so you usually have no need to
know line numbers. However, there are occasions when it is helpful to know the current
line number. A common instance is the need to specify a line number or range of line
numbers when using an escape to the ex editor for global search-and-replace operations. n
The G or nG command is used to move to a specific line in the file. To determine the
number of the current cursor line at any time, place the editor in command mode, then
use the command:

or

:f I RETURN I

Vi lists several items of information at the bottom of the screen on the command line
using a format similar to the following:

"junkfile" line 788 of 870 --90%--

or

"junkfile" [Modified] line 788 of 870 --90%--

The first example shows the cursor is currently located on line 788 in an 870-line file
named junkfile, and about 90% of the file precedes the current cursor line (the file has
not been modified). The second example is the same line in the same file, but the file
has been modified since the editing session began.

Note

vi can be configured to display line numbers along the left side of
the display screen (they are not added to the file being edited) with
some loss of available text display space. To display line numbers,
use the :set number command discussed in the chapter entitled
Configuring the Vi/Ex Editor.

48 3: Cursor and Display Control

u

u

u

Practice Time
Try some scrolling sequences on the junk file on your screen until you feel comfortable
with their behavior.

But I Can't Scroll Forward Using 1 crRL ~F

Sometimes I CTRL I F does nothing. This is not a bug in vi. I CTRL ~W is the ASCII
ACK control character used in ENQI ACK data communications protocol, and it gets
discarded by any terminal or software interface that is set for ENQI ACK protocol. If
your terminal does not use or need ENQI ACK protocol, you can correct the problem by
disabling ENQI ACK protocol with the following command:

stty -ienqak echoe from HP-UX, or

:!stty -ienqak echoe from vi.

If your terminal uses ENQI ACK protocol, you cannot use the I CTRL ~W scrolling feature.
If you do not use ENQI ACK protocol on your terminal, you can add the HP-UX version
of the stty command above to your $HOME/profile file, thus eliminating having to do
this each time you use vi.

Searching Through a File for a Pattern
An important feature in text editors is the ability to search for a pattern of characters in
a file and display the surrounding text on the terminal screen. vi has several commands
that can accomplish this task, depending on the situation. The most common technique
is through use of the I and ? commands.

The I and ? commands are used for mainly two purposes:

• Positioning the text being searched for within the range of the current viewing
window as described in this section.

• Establishing boundaries for text-object modifications as described later in this chap­
ter.

3: Cursor and Display Control 49

When you type / followed by a text pattern or regular expression (regular expressions
are treated in greater detail in the tutorial on regular expressions earlier in this volume),
vi searches the file for the first occurrence of the pattern beginning at the current cursor
location, then displays the surrounding text if the pattern is found. The search is con­
ducted in the forward direction. If you are not at the beginning of the file and end-of-file
is encountered before the pattern is matched, the search wraps to beginning of file1 and
continues until the pattern is found or the cursor location is again reached, meaning that
the pattern does not exist in the file.

The? command works the same way except that the search is conducted in the reverse
direction (backwards in the file). If the pattern does not appear between the cursor line
and beginning of file, the search wraps to end of file1 and continues as before.

Repeating the Search
Sometimes an expression appears several times in a file. You can search for the first
occurrence by specifying the pattern. To find additional occurrences of the pattern, it
is not necessary to repeat the command. Simply use n to repeat the search in the same
direction, or N to repeat the search in the opposite direction.

Aborting a Long or Incorrect Search
Occasionally, especially when editing extremely large files, you may enter a search string
that does not exist or make a typographical error when entering the search string. To
abort the search, simply press the I BREAK I key. The editor returns a message on the
bottom line of the CRT display:

Interrupt

You can then proceed with a corrected search command or do something else.

1 End-of file wrap-around requires that the wrapscan option be enabled, which is the normal default
condition. Refer to the chapter entitled Configuring the Vi/Ex Editor for more information.

50 3: Cursor and Display Control

n

n

u

In case of Difficulty
While vi rarely misbehaves, it can present some perplexing problems on occasion. Here
are a few CRT display problems you may encounter along with suggested solutions.

Restoring a Garbled Display
Occasionally, you may be in the middle of an editing session when the text on your
display becomes garbled. This can happen when noise on the line between terminal and
computer causes characters to be incorrectly received, someone writes a message on your
terminal (sometimes as an annoying prank), you try to display a non-ASCII file using a
command such as more, head or tail, or something else causes the display to be altered
so that you cannot use vi correctly. Vi provides an easy solution. Press:

I CTRL ~[I] simultaneously

to tell vi to redraw the screen. This usually solves the problem. If the problem persists
or data is repeatedly incorrect, contact your system administrator for help in diagnosing
the cause.

What If Screen Behavior Becomes Strange?
HP-UX and vi use the lowest possible number of characters to produce new text on the
user's terminal display. Sometimes the system uses tab characters to accomplish this
objective. As a result, you may occasionally be moving the cursor along a line while
vi is in command mode only to discover that the display text starts changing as the
cursor moves or blocks of text suddenly relocate on the screen. This is usually caused by
the tab stops being altered for any of various reasons but most commonly by embedded
control characters in text that cause the terminal to interpret text characters as screen
configuration commands. To correct the problem, execute the HP-UX command:

: ! tabs I RETURN I

tabs I RETURN I

from vi, or

from HP-UX

then continue. If the problem persists, clear all the tab stops on the terminal by using the
AIDS keys or by placing your terminal in local (REMOTE MODE off) then pressing I ESC I
[]] (standard for HP terminals; varies with other brands- refer to terminal operating
manual for correct sequence).

3: Cursor and Display Control 51

Place the terminal back in remote (REMOTE MODE on) then execute the tabs command
again as follows:

tabs I RETURN I from HP-UX, or

: ! tabs I RETURN I from vi

then resume using vi. This sequence of operations should clear up most problems. If this
does not work, you can write the file to permanent storage, log off, cycle the terminal
power switch off then on again, then log in again and restart the editor.

This is a good time to talk about manners. The multi-user and networking capabilities
in HP-UX make it a very useful tool. At the same time, power given to a user demands
responsible use of that power. Don't use the system to annoy others who may not
appreciate your humor, especially when they are in the middle of a complex operation.
Treat others as you would want them to treat you if you were in a similar situation.

Conflicts Between Commands and Terminal Protocol
Some vi scrolling commands and any other commands that use I CTRL I key sequences may
be identical to characters used in terminal data communications protocol. Thus, if you
are using enqfack protocol for the terminal connection and you send a I CTRL ~F (an ack
character) to vi, it is consumed by the terminal interface and does not reach its intended
destination. This leads to the problem with I CTRL H:IJ not working as described earlier n
in this chapter. Similar problems occur when you use I CTRL ~[[]and it is being used as
an end-of-file character. These problems are discussed at length in the chapter entitled
Configuring the Vi/Ex Editor.

Characters that most commonly produce difficulties include DOl, DC3, ENQ, and ACK
in the handshaking group, DEL (sometimes called DLE), and ETX (~c) sometimes used
as an interrupt character, and the quit character configured for your terminal by the stty
command in your login script file.

52 3: Cursor and Display Control

u

u

u

Positioning the Cursor in the File
Discussions of cursor movement in the preceding parts of this chapter are related to
positioning the cursor on the CRT display screen and moving the screen display window
around in the file. The topics discussed in the remainder of this chapter are focused on
moving the cursor to specific locations in a file, particularly with regard to how such
movements relate to text modification commands discussed in Chapter 4 and elsewhere
in this tutorial.

Moving to a Specific Column Number
In some situations, you may want to move quickly to a particular column on the current
line. Two commands move the cursor to the left end of the line:

Command Result
~

moves the cursor to the first visible text character in the line.
I or 0 moves the cursor to the extreme left column on the current line.

nl moves the cursor to column n in the line.

nSPACE BAR moves the cursor n spaces to the right from current position.
nl BACK SPACE I moves the cursor n spaces to the left from current position.

Text Objects
A text object, in vi parlance, is an arbitrary collection of text between the current cursor
position and some other user-defined location in the file. vi provides various cursor
move commands for identifying words, lines, sentences, paragraphs, sections, or other
text blocks as the text object to be acted upon by an editing operation. In general,
the boundaries chosen by vi when identifying an object such as a word, sentence, or
paragraph closely resemble the interpretation most people would use given the same
situation. However, there are some important (and quite useful) differences that are
discussed in detail during the next several topics.

Using the delete (d), change (e), and yank (y) editor commands in conjunction with
cursor move commands that define the text object being acted upon provides a useful
means for deleting, altering, copying or moving small or large blocks of text anywhere in
the file being edited. But as you might expect, getting full value from these capabilities
requires that you be aware of their availability and how they can be used.

3: Cursor and Display Control 53

The Find Commands: f, F, t, and T
vi provides four cursor move commands for searching forward or backwards in the current
line for the next or nth occurrence of a given character. They do not search beyond
beginning- or end-of-line as the case may be. The commands are as follows:

Find Commands: Search for Character within Current Line

Command Action

fc Forward to next occurrence of character c.
nfc Forward to nth occurrence of character c.
Fe Backwards to next occurrence of character c.
nFc Backwards to nth occurrence of character c.

tc Forward to character before next occurrence of character c.
ntc Forward to character before nth occurrence of character c.
Tc Backwards to character after next occurrence of character c.
nTc Backwards to character after nth occurrence of character c.

; To next occurrence of character c in same direction as previous search.
n; To nth occurrence of character c in same direction as previous search.

'
To next occurrence of character c in opposite direction from previous
search.

n, To nth occurrence of character c in opposite direction from previous
search.

where search directions and character positions are:

• forward: Toward end of file from current position.

• backwards: Toward beginning of file from current position.

• after: Adjacent to target character, but toward end of file.

• before: Adjacent to target character, but toward beginning of file.

These commands apply only to the current line, and cannot be used to move the cursor
to another line.

54 3: Cursor and Display Control

n

n

n

u

u

u

Examples
Consider the following sentence and assume that the cursor is located under the y in
Wiggly:

Willie the Wiggl! Worm went to Washington to wander in wonder.

Here is a list of commands and the associated cursor movement:

Command Cursor Location after Move

fW Win Worm
2fW Win Washington
2fw win wonder
3fW No movement because character does not exist.

tW Blank space before Worm
2tW Blank space before Washington
2tw Blank space before wonder
3tW No movement because character does not exist.

FW Win Wiggly
2FW Win Willie
2Fw No movement because character does not exist.
3FW No movement because character does not exist.

TW i in Wiggly
2TW First i in Willie
2Tw No movement because character does not exist.
3TW No movement because character does not exist.

The Word Commands: w, W, e, E, b, and B
vi provides four cursor move commands for searching forward or backwards in the file by
words: w or W for forward moves, and b or B for moving backwards in the file. Word
boundaries are defined as the imaginary zero-width space at the beginning of the next
word. Thus any given word includes the white space between it and the next word, if any
exists. Moving by words is unlimited within the file and is not restricted to the current
line.

vi interprets word boundaries in two ways. You must define which interpretation is to be
used as part of each command. Using a lowercase word move command {w or b) treats
any non-alphanumeric character except underscore (_) as part of the next word. An
uppercase word move command (W or B), on the other hand, uses white space (space,
tab, or new-line character) as a word separator and the next word begins at the next
character past the one or more whitespace characters adjacent to the end (forward moves)
or beginning {backwards moves) of the current word.

3: Cursor and Display Control 55

Word Commands: Search for Specified Beginning or End of Word

Command Action

w Forward to next beginning of word or first non-alphanumeric
character.

nw Forward to nth beginning of word/non-alphanumeric character.
w Forward to next beginning of word; only white space as word

separator.
nW Forward to nth beginning of word; only white space as word

separator.

e Forward to next end of word or first non-alphanumeric character.
ne Forward to nth end of word/non-alphanumeric character.
E Forward to next end of word; only white space as word separator.
nE Forward to nth end of word; only white space as word separator.

b Backwards to next beginning of word or first non-alphanumeric
character.

nb Backwards to nth beginning of word/non-alphanumeric character.
B Backwards to next beginning of word; only white space as word

separator.
nB Backwards to nth beginning of word; only white space as

word separator.

Note that all moves are from current cursor position and are independent of where the
cursor is within the current word. For example, if the uursor is currently located in the
middle of a word, the b or B command moves the cursor to the beginning of the current
word. Likewise, if the cursor is located in the whitespace between two words, a w or W
moves the cursor to the beginning of the adjacent word, not to the beginning of the next
word after it.

These commands are not restricted to the current line. The cursor is wrapped to pre­
ceding or following lines as necessary in order to meet the specified word count.

56 3: Cursor and Display Control

n

n

u

Examples of Word Moves
Consider the following line of text:

This line contains a one,annatwo!anna_three&four$five(six)seven weird word.

where the cursor is located at the space character position between the words contains
and a as indicated by the • character. To move the cursor from the position indicated
to the beginning of the word "weird" requires the command 15w or 3W. The command
f2w would accomplish the same (find the second occurrence of the character ''w"; skip
the w in "two", stopping at the w in ''weird". To move the cursor to the end of the word
seven (cursor underneath then), use 14e or 2E.

When vi performs the forward move by 15 words (lowercase command version), text is
interpreted as a succession of the following words:

a one , annatwo ! anna_three & four $ five (six) seven weird

counting from the starting cursor position. Using the uppercase form, the same text is
interpreted as the following three words:

a one,annatwo!anna_three&four$five(six)seven weird

U Note the unvarying treatment of the underscore character in anna_ three.

u
3: Cursor and Display Control 57

Sentence, Paragraph, and Section Commands:
() { } [[and]]

vi also recognizes sentence, paragraph, and section boundaries, using a technique similar
to that used with words as follows:

• Ends of sentences are detected by the presence of a period (.), question mark (?), or
exclamation point (!) followed by two or more spaces. A continuum of one or more
empty lines (containing no spaces or tabs) is also treated as a separate sentence {a
continuum of one or more apparently blank lines, each containing spaces and/or
tabs, is treated as part of the preceding sentence).

To move the cursor to the next adjacent beginning-of-sentence, use) for forward
moves or (for backwards moves. Use n) or n(to move to the nth beginning of
sentence in the forward or backwards direction, respectively.

• Recognized paragraph boundaries include any paragraph macro defined by the :~et
paragraphs and :set sections commands, as well as empty lines {blank lines contain­
ing no space or tab characters). Default paragraph macros include: .IP, .LP, .PP,
.QP, .P, .LI, and .bp. Beginning-of-paragraph is defined as the beginning of the
first empty line after a paragraph of text or the beginning of a text line that starts
with a paragraph or section macro. The macros shown are found in document for­
matting macro packages such as mm or man which are both documented in Section
5 of the HP- UX Reference. They can be redefined as explained in Chapter 12 by ~~. .
using the :set paragraphs command. ·.)

To move the cursor to the next adjacent beginning-of-paragraph, use } for forward
moves or { for backwards moves. Use n} or n{ to move to the nth beginning-of­
paragraph in the forward or backwards direction, respectively.

• Recognized section boundaries include any section macro defined by the :set sections
command. Default section macros include: .NH, .SH, .H, and .HU. The macros
shown are found in document formatting macro packages such as mm or man which
are both documented in Section 5 of the HP- UX Reference. They can be redefined
as explained in Chapter 12 by using the :set sections command.

To move the cursor to the next adjacent beginning-of-section, use]] for forward
moves or [[for backwards moves. Use n]] or n[[to move to the nth beginning-of­
section in the forward or backwards direction, respectively.

To add any other macros to the list of recognized paragraph or section macros, use the
:set paragraphs or :set sections command as explained in the chapter entitled Configuring ·,;-"\. .
the Vi/Ex Editor. ·.)

58 3: Cursor and Display Control

Using Text Pattern Searches to Define Text Object Boundary
Text pattern searches scan forward or backwards in a text file for a text pattern specified
by a regular expression included in the command preceding the I RETURN 1. The command
format is as follows:

U I regular_ expressionj RETURN I

u

u

for forward searches, or

?regular_expressionj RETURN I

for backwards searches.

In its simplest and most commonly used form, regular_expression is a simple string of
characters identical to the text being searched for. For example,

/thimk I RETURN I

searches the file for the characters thim.k either as a stand-alone full word, or as part of a
larger word. As you can see, this is a useful means of quickly locating a misspelled word
so that it can be corrected.

Other much more elaborate constructions can be used such as:

/the.*wooly.*superstar$IRETURNI

which searches the file for the first encountered single line, if any, that contains all of the
following elements:

Expression Matching Pattern
the The word the anywhere in the line followed by
. * Zero or more arbitrary characters followed by
wooly The word wooly followed by
. * Zero or more arbitrary characters followed by
superstar The word superstar located at the end of the line.
$ End-of-line immediately after the word superstar.

Regular expressions provide a powerful means for specifying text patterns used by many
HP-UX commands and programs such as grep, awk, various editors, etc. Regular expres­
sions and their use is the subject of a separate tutorial earlier in this volume. Refer to
that presentation for more details as well as examples.

3: Cursor and Display Control 59

Repeating the Search
You will frequently need to search for a pattern, then repeatedly search for the same
pattern in the same file. Once the search pattern has been specified in conjunction with
a / or ? command, to repeat the search for the same search expression in the same
direction, press en:]. To repeat the search for the same search expression, but in the
opposite direction, press [J[).

What is the Exact Boundary of a Text Object
Most users typically have little concern over the exact boundary of a text object because
if they guess wrong the mistake is easily fixed. However, for those isolated cases where
it is important, here are the general rules for determining where a text object starts and
ends.

In general, a text object is bordered by the current cursor position and another location
in the file that is determined by a cursor move command or a text pattern search. Its
text contents are as follows:

• If the cursor position in the file precedes the target location resulting from the
move or search, the text object contains all text starting at the cursor position and
continuing up to, but not including, the new cursor position character after the
move or search is completed .

• If the cursor position in the file follows the target location resulting from the move n
or search, the text object contains all text starting at the new cursor position
character after the move or search is completed, and continuing up to, but not
including, the original cursor position character.

In simpler terms, the object begins at the earlier cursor position boundary in the file,
and ends with the character preceding the second cursor position boundary in the file.

Entire Text Object on Current Line
Here is an example to illustrate. Note the position of the cursor on the second line before
the word "particularly" .

This is example text placed here purely for illustrative
purposes. It is neither complicated norAparticularly long.

60 3: Cursor and Display Control

n

u

u

u

Let's use the "change text from current postion to first previous beginning of sentence
command, e(. The cursor immediately moves to the first character in the sentence under
the I in It. A $ character replaces the last character before the original cursor location
(the r in nor), indicating that all text from the cursor through the position of the $
symbol will be replaced with whatever text is typed until you press I ESC I (the change
command is explained in greater depth in Chapter 4).

This is example text placed here purely for illustrative purposes.
~t is neither complicated no$ particularly long.

On the other hand, if you use the e) command (change text from current postion to
next following end of sentence, notice that the cursor does not move and the$ symbol is
placed at the period's former position at the end of the sentence:

This is example text placed here purely for illustrative purposes.
It is neither complicated nor_particularly long$

Text Object on Multiple Lines
If the beginning or end of sentence is not on the current line, the text object is handled
somewhat differently. For example, in the following text the cursor is located after the
first word in the first sentence:

ThisAsentence is longer than the one before, so it does not

all fit on one line. It also has a second sentence in the
same paragraph.

Typing c) to change the rest of the sentence causes the text being changed to be removed
from the display screen. The paragraph now looks like this with the cursor under the I
in It:

Thisit also has a second sentence in the
A

same paragraph.

Notice that the whitespace after the period at the end of the sentence is treated as part of
the sentence being changed, so it has disappeared. New replacement text is then inserted
in front of the cursor character as it is typed until I ESC I is pressed.

Now let's change the second sentence by placing the cursor in front of the last word in
the second sentence then use the e(command to change to beginning of current sentence:

This sentence is longer than the one before, so it does not
all fit on one line. It also has a second sentence in the
sameAparagraph.

3: Cursor and Display Control 61

As before, the text that is to be replaced is removed from the screen. Notice this time
that the whitespace after the previous sentence is preserved as well as the character in
the starting cursor position. This clearly shows that the whitespace after a sentence is
treated as part of the sentence (unless it is an empty line which is treated as a separate
sentence in and of itself), and sentence boundaries are interpreted as the beginning of
each sentence. As before, new text is inserted in front of the cursor as it is typed until
you press I ESC 1:

This sentence is longer than the one before, so it does not
all fit on one line. ,paragraph.

62 3: Cursor and Display Control

n

n

n

u

u

u

Basic Editing:
Manipulating Text 4
The primary purpose of a text editor is to alter the contents of a text file. Editing
operations can be performed on an existing text file or on a new file that is being created
in conjunction with the editing session. This chapter explains how to:

• Recover from mistakes (I ESC I and undo).

• Add new text to a file (insert, append, and open).

• Include non-printable ASCII control characters in text.

• Delete text.

• Recover deleted text and move or copy text to other locations.

• Change, replace, or substitute text including changing uppercase to lowercase and
vice versa.

Each of these operations can be performed on new as well as existing files. Several exam­
ples are used throughout the chapter to introduce each type of operation and demonstrate
its use. Learning is much easier if you try them yourself. Before you can try the example
exercises, you must terminate any currently active editing session. If you have been using
the file }unk discussed in the previous chapter, quit vi by typing:

:q! I RETURN I

When you get your HP-UX shell prompt (usually a dollar sign), type

vi dummy I RETURN I

to open a new file for practice. To create practice text, press A to enter Append Mode
then press I RETURN I a couple of times to create some blank lines. Type the practice line
then press I RETURN I another two or three times for more blank lines. Press I ESC I to return
to Command Mode.

To move around while editing, use j and k to move the cursor up or down from line to
line,· and I RETURN I to move it to the beginning of the next line as needed.

4: Manipulating Text 63

Escaping from the Sand Traps of vi
Like a bad swing in a golf game, a wrong keystroke when using vi can put you in a
difficult situation one would usually prefer to avoid. The possible errors are numerous,
making it impossible to describe every situation and how to get out of it. However, a few n
simple skills can be easily mastered so you can readily recover and return to the task at
hand.

Using the Escape Key
If you find yourself out on a limb, so to speak, press I ESC I a couple of times until you get a
beep. The beep acknowledges that you are in command mode so that anything you type
will not be placed in the text you are working on. When you get the beep, examine the
screen to see if the text near the cursor is as it should be. If the incorrect keystrokes have
deleted, inserted, or changed characters that need to be restored, press u or U (usuaJly
the lowercase command is sufficient) to undo the last alteration as explained in the next
topic. If you find yourself elsewhere in the file, use the cursor control commands from
the preceding chapter to recover your position. To move to the beginning of the file,
type lG. Use G to move to the end of the file. For other moves, use other appropriate
commands. The u and U commands are described next.

Recovering from Mistakes:
The Undo Command
Relax. If you make a mistake it is (usually) quite easy to recover; provided, of course,
that you do it immediately -not after you have made some other change.

Vi has an "undo" command that reverses the last change made by vi, but the command
does have some limitations that you should understand (most mistakes are easy to correct,
but habitual carelessness can be dangerous). The undo command has two forms that
serve two different purposes:

The Undo Commands

Command Action Taken

u Undo the most recent text change. If the most recent change was an
undo, undo the preceding undo (u).

u Undo all of the changes made to the current line since the cursor was
moved to the current line. Not allowed if cursor is moved from current
line then returned, with or without a subsequent text change.

64 4: Manipulating Text

u

u

u

The u Command
These commands need additional explanation. The u command applies to the most
recent text change regardless of present cursor location. It can also be used to undo an
immediately preceding undo, provided no other changes have been made since. Thus, if
you alter line 50 in a file then move the cursor to line 75 and press u, the cursor returns
to line 50 and the last change is reversed to its original form (cursor location in the
line after the undo operation may or may not reflect the location where the change was
made). Pressing u again reverses the undo, restoring the original change and leaving the
cursor on the changed line. There is no limit on the number of times u can be used in
succession but it cannot undo more than the last previous change or undo.

The U Command and Examples of use
The U command, on the other hand, applies only to changes made on the current line
while the cursor was on that line, and it can only be used once on that line (unless
you make additional changes to the line). If the cursor is moved to another line, the U
command cannot be used, even if it is returned immediately to the correct line before U
is attempted. For example, consider the following line of text:

This is the original line.

Now use two separate insert/append commands to add the two words shown in different
locations without allowing the cursor to move to a different line:

This is NOT the original UNCHANGED line.

Press U to restore the original text:

This is the original line.

Repeat the previous insert/append commands to get the altered sentence:
This is NOT the original UNCHANGED line.

Now move the cursor to a different line (press I RETURN I, for example), then move it back
to the altered line. Press U again. Note that the cursor may move to the beginning of
the line, but the text is not changed. Press U again. As before, you get no change, but
you also get a beep because U cannot undo itself, unlike u. The altered sentence is still
present:

This is NOT the original UNCHANGED line.

4: Manipulating Text 65

Adding New Text to a File
Before discussing how to change text, let's spend more time on adding new text to a
file. If the file is empty (new edit on a file that does not already exist), the cursor is
at the beginning of the first line and cannot be moved because there are no additional n
characters in the file. If you are editing an existing file, the cursor must be moved to the
location in the file where the change is to be made before you select an editing command
to add new text. Here are the vi commands that can be used to add new text to a new
or existing file:

Commands for Adding Text to a File

Command Result

i Insert new text in front of current cursor character until I ESC I is
pressed.

I Insert new text in front of the first visible character in the current line
until I ESC I is pressed.

a Append new text after the current cursor character until I ESC I is
pressed.

A Append new text following the last character on the current line until
I ESC I is pressed.

0 Open a new line after the current line and add new text until I ESC I is
pressed.

0 Open a new line above the current line and add new text until I ESC I
is pressed.

When any of these commands is used, there is no limit on the number of characters
that can be added. You can add zero characters by pressing I ESC I immediately, add a
few or several characters, or add many lines of new text. Here are some examples that
demonstrate the effect of each command. Consider the following sample line of text
where the underscore character represents the current cursor location:

This is the.starting sentence.

66 4: Manipulating Text

~n

u

u

u

In each example that follows, the text being added does not vary; only the command
changes between examples. Only the characters shown are typed; there are no leading
or trailing blanks (spaces) before or after the new text:

ADDED TEX'I1 ESC I

Using the i command:

This is theADDED TEXT starting sentence.

Using the I command:

ADDED TEXTThis is the starting sentence.

Using the a command:

This is the ADDED TEXTstarting sentence.

Using the A command:

This is the starting sentence.ADDED TEXT

Using the o command:

This is the starting sentence.
ADDED TEXT

Using the 0 command:

ADDED TEXT
This is the starting sentence.

4: Manipulating Text 67

ASCII Control Characters in Text
Many common situations require the ability to insert or deal with ASCII control char­
acters as part of the normal text body. The need may arise in a computer program, or
be as a simple as the insertion of a form-feed or other character being used to control n
devices or programs that interact with the file when it is used or processed in the future.

Control Characters Defined
ASCII is an acronym that stands for American Standard Code for Information Inter­
change. A particular pattern of binary digits (bits) establishes a code pattern that de­
fines a corresponding character. Thus a code value equivalent to 106 decimal represents
lowercase j and the code value equivalent to decimal 82 represents uppercase R. Most
ASCII character codes produce visible text when printing or editing. However, certain
characters such as form-feed (FF), carriage-return (CR), end-of-transmission (EOT), and
such do not produce a visible printed character because their functions are related to
data handling and formatting instead of forming words.

Obtaining Control Characters
Control characters are usually typed from the terminal keyboard by pressing a normal
typing character key while holding the I CTRL I key down, thus producing a control char-
acter. However, many control characters represent vi editor commands, making it im- n
possible to enter them directly into text. For example, I CTRL ~[EJ and the I BACK SPACE I · ,
key both generate a backspace character which is used as a backspace command while
in insert/append mode. If you needed to include an ASCII backspace character in the
text file being edited, the editor would interpret the character as a backspace command
and act accordingly instead of placing it in the text file. Other control characters are
also interpreted as editor commands, either during insert/append mode or while in com-
mand mode. For example, I CTRL ~[Q] and I CTRL H:IJ are used for screen manipulation
in command mode.

n

68 4: Manipulating Text

u

u

u

Displaying Control Characters
When vi or HP-UX displays control characters, each control character is displayed as
a combination of two characters: a circumflex (A) character representing the I CTRL I key
followed by the typing key that is pressed simultaneously with the I CTRL I key to obtain
the control character. For example, I CTRL H~, which produces a vertical tab character
is displayed in text on the display screen as AK. However, the two displayed characters
only represent the single control character that exists in the file being edited. Thus when
you move the cursor along a line containing a control character, you will discover that
the cursor skips over the circumflex character and stops on the uppercase character that
follows it, thus identifying the character as a single control character rather than two
ASCII printable characters.

A complete list of control characters and the keypress combinations required to produce
them is contained in Table 4-llater in this section.

Entering Control Characters
When adding new text during insert, append, replace, substitute, and similar operations
with vi/ ex, press I CTRL ~[YJ (think "verbatim" to remember the V) to tell the editor that
the next character is a text character instead of an editor control command (this rule
applies both in insert mode and in regular expressions). vi acknowledges the I CTRL ~[YJ
by placing a circumflex character (A) on the screen at the cursor position. When you
type the next control character, the cursor advances one column and the typing character
used with the I CTRL I key is displayed. If the next character is not a control character
(I CTRL I key was not held down while typing key was pressed), the circumflex character
from the I CTRL ~[YJ is removed and the typed character is displayed in its stead. Thus
you can change your mind after typing the 'V and continue typing normal text without
any special procedures to abort the control character set-up.

Control characters in text are easily differentiated from a circumflex text character fol­
lowed by another character. While in command mode, use the space bar or OJ to
advance the cursor across the character(s). If the cursor stops on the circumflex when a
cursor advance key is pressed, it is ordinary text. If the cursor skips the circumflex and
stops on the following character, a control character is located at that position in the
file.

4: Manipulating Text 69

Important

Control characters used in terminal-computer handshaking such
as ENQ, ACK, etc., are consumed by the datacomm interfacing
hardware and are not transmitted as part of the text. Thus they
cannot be used. This also means that I CTRL ~[£] cannot be used
for scrolling on an ENQ/ ACK protocol connection because it is an
ACK character.

Selecting Control Characters
Understanding how to enter control characters is all well and good, but one cannot con­
veniently use them without knowing which typing key produces a given control character.
Few manuals document the relationship between a typed key and its corresponding con­
trol character (obtained when I CTRL I is pressed at the same time), so the next page
contains a useful table for making the conversion with little effort. Columns 1, 2, and 3
in the table show octal, decimal, and hexadecimal numerical equivalents for the ASCII
character code whose acronym is shown in the fifth column. Column 4 contains the
character code as displayed on a terminal screen by vi, and Column 6 contains the full
name of the character and the right-hand column lists the keys that must be pressed
simultaneously to produce the control character described on that line. n
For a complete list of ASCII character codes, refer to the ascii(5) manual entry in the
HP-UX Reference. For European languages, see roman8(5) instead. Control character
codes are identical in both character sets.

Note

The table of ASCII control codes on the next page lists 32 ASCII
control characters and provides a way to obtain each one. However,
since there are many more typing keys on a keyboard than there
are control characters, most control characters can be obtained by
several different key combinations. For example, I CTRL H SHIFT ~c:J
and I CTRL H SHIFT~~ both produce the record separator character
that is also used to switch between two files that are being edited
simultaneously as described in Chapter 11.

70 4: Manipulating Text

' /

Table 4-1: Typical Typing-Key to Control-Character Conversions

Oct Dec Hex Dsp Symbol Character N arne Keypress

u
000 000 00 none NUL Null I CTRL H SHIFT~~
001 001 01 'A SOH Start of Header ICTRL~W
002 002 02 'B STX Start of Text I CTRL~[]J
003 003 03 'C ETX End of Text ICTRL~W
004 004 04 'D EOT End of Thansmission I CTRLHIJ
005 005 05 'E ENQ Enquire ICTRL~W
006 006 06 'F ACK Acknowledge ICTRLHIJ
007 007 07 'G BEL Bell ICTRLHIJ
010 008 08 'H BS Back Space I CTRL~[B]
011 009 09 'I HT Horizontal Tab I CTRL ~[JJ
012 010 OA 'J LF Line Feed (newline) I CTRL~Q]
013 011 OB 'K VT Vertical Tab I CTRLH~J
014 012 oc 'L FF Form Feed (newpage) I CTRL ~ITJ
015 013 OD 'M CR Carriage Return I CTRLHJ~J
016 014 OE 'N so Shift Out I CTRL~[[]
017 015 OF '0 SI Shift In I CTRL~[QJ
020 016 10 ·p DLE (or DEL) Delete ICTRLHIJ u 021 017 11 'Q DC1 Device Control 1 I CTRL~[Q]
022 018 12 'R DC2 Device Control 2 I CTRL~[[]
023 019 13 ·s DC3 Device Control 3 I CTRL H::§J
024 020 14 'T DC4 Device Control 4 I CTRL~ITJ
025 021 15 'U NAK Negative Acknowledge I CTRL~[]]
026 022 16 'V SYN Synchronize ICTRL~[Yj
027 023 17 ·w ETB End Thansmission Block ICTRL~[}Y]
030 024 18 'X CAN Cancel I CTRL ~[]]
031 025 19 ·y EM End of Medium I CTRL~[Y]
032 026 1A ·z SUB Substitute ICTRL~W
033 027 1B A [ESC Escape Code I CTRL~[O
034 028 1C '\ FS File Separator I CTRL ~[SJ
035 029 1D '] GS Group Separator I CTRL~[O
036 030 1E

,,
RS Record Separator I CTRL H SHIFT~~

037 031 1F A

- us Unit Separator I CTRL H SHIFT~[_]

u 177 127 7F A

- DEL Delete 1 CTRL ~rn 1 DEL 11

1 To obtain the DEL character, press I CTRL ~[YJ, then press I DEL I.

4: Manipulating Text 71

CAUTION

Certain control characters cannot be used in creating and editing
text because they are used in datacomm protocol and terminal
control functions. Which characters fall into this control category
and become unusable as a result depends on the brand and model
of terminal being used as well as datacomm line protocol. Refer to
the terminal operating manual for more information.

8-Bit Control Characters
When editing files containing 8-bit characters, the following table shows how 8-bit control
characters are displayed on the terminal display screen. These control characters cannot
be entered directly from the terminal keyboard, but vi does process them correctly if
they exist in the file.

Table 4-1: Display Representation for 8-bit Control Characters

Oct Dec Hex Dsp Oct Dec Hex Dsp

177 127 7F A? 220 144 90 A
p

200 128 80 A' 221 145 91 A
q

201 129 81 A a 222 146 92 A
r

202 130 82 Ab 223 147 93 A s
203 131 83 A c 224 148 94 At

204 132 84 Ad 225 149 95 A
u

205 133 85 A e 226 150 96
A
v

206 134 86 Af 227 151 97 A
w

207 135 87 A
g 230 152 98 A

X

210 136 88 Ah 231 153 99 A
y

211 137 89 Ai 232 154 9A A
z

212 138 8A Aj 233 155 9B A{

213 139 8B Ak 234 156 9C A I
214 140 8C Al 235 157 9D A}

215 141 8D A m 236 158 9E A-

216 142 8E A
n 237 159 9F A>

217 143 8F A
0 377 255 FF AI

72 4: Manipulating Text

{~

n

u

u

u

Changing Text: Overview
Most text change operations involve fairly simple operations such as correcting a typo­
graphical error or changing the wording in a sentence or restructuring a line of computer
program source code. vi provides a useful set of tools for performing various combina­
tions of common and not-so-common text alterations. Here are a few topics that are
discussed in this chapter:

• Delete text. Deleted text is copied into a buffer so that it can be used elsewhere in
the file.

• Replace existing text with new text by using replace, substitute, or change com­
mands.

• Copy (yank) existing text into a buffer so that it can be used elsewhere in the file.

• Copy text from a yank or delete buffer into the current cursor location by using
the put command. A delete and put sequence is used to move blocks of text to a
different location; a yank and put sequence copies text from one location to another.
Under certain conditions, these commands can be used to copy or move text from
one file to another as described in the advanced topics chapters of this manual.

4: Manipulating Text 73

Command Format
Like the HP-UX and other similar operating systems in general, vi usually provides
several ways for performing any given task. This fact will become readily apparent as
you learn more about the editor and its many capabilities. This section shows several
commands that are, for most practical purposes, essentially identical or very similar. A n
significant effort has been invested in making those similarities visible for ease in learning.

All vi commands related to deleting, changing, copying, or moving text objects have a
form that, if understood beforehand, makes them much easier to learn and use. Each
command is a variation on the following two structures:

(countl) command

or

(countl) command (count2) text_obJ'ect

These two simple structures support a vast selection of editing options which are de­
scribed in greater detail in the remainder of this chapter.

Character and Line Oriented Commands
Commands that have the form:

(countl) command

are generally commands related to character- or line-oriented operations such as:

• Deleting one or more characters or lines by specifying the number of characters or
lines to delete,

• Replacing one or more characters or lines with new text by specifying the number
of characters or lines to replace, or

• Moving or copying text to another location (however, certain common text
copy /move operations require the text object form described next).

7 4 4: Manipulating Text

u

u

u

Word, Sentence, and Text Object Oriented Commands
On the other hand, commands that use the form:

(countl} command (count2) text_object

are generally commands related to specified text objects. Text objects are words, sen­
tences, paragraphs, sections, or all text between two marked or known locations in the
file. Editing operations performed on text objects include:

• Deleting one or more text objects such as words, sentences, paragraphs, or all text
from current position to another specified position.

• Replacing one or more text objects with new text by specifying the type and number
of text objects to replace,

• Moving or copying one or more text objects to another location by use of buffers.

Note the similarities between this list and the one preceding.

How Text Objects are Defined
In general, a text object is defined as all text between the current cursor position and
another position in the file that is specifed by a cursor move command from the current
cursor location. Thus, if a delete command is followed by a command to move the
cursor forward nine words, the editor deletes nine words starting with the current cursor
character which may or may not be at the beginning of the current word.

Text Object Boundaries
In general, text objects such as words, sentences, paragraphs, and sections are bounded
at the start of an object where the starting point is the boundary between the first
character in the object and the preceding character. Thus, in the text string one two
three, the word two begins at the boundary between the t and the space preceding it.

Likewise, when the current cursor position is used as a text object boundary, the object
boundary is at the boundary between the cursor character and the character preceding
it. This means that if a change, deletion, or yank is from the current cursor position
in the forward direction, the current cursor character is included in the change because
it falls within the object as the first character in the object. On the other hand, if the
change, deletion, or yank is in the reverse direction toward beginning of file, the cursor
character falls outside the boundary and is not included in the change because the text
object starts in the boundary region before the cursor character and progresses away
from it toward beginning of file.

4: Manipulating Text 75

The Commands and What They Do
This section explains the behavior of individual text manipulation commands based on
the type of operation. Detailed examples of how to use many of these commands follow
later in the chapter.

Deleting Characters and Lines
When deleting text, the editor p¢rforms the deletion as soon as it has sufficient informa­
tion to determine the operation to be made. Pressing I ESC I is not necessary.

Delete Character(s)

Command Action Taken

X Delete single character at current cursor position.
nx Delete n characters or to end-of-line, whichever occurs first, starting

at current cursor position

X Delete single character immediately preceding current cursor position.
nX Delete n characters or to beginning-of-line, whichever occurs first,

starting with the character immediately preceding the current cursor
position.

D or d$ Delete all characters from current cursor position to end of line.
dO or dl Delete all characters from left column of screen to character preceding

current cursor position on current line.

Delete Line(s)

Command Action Taken

dd Delete current line.
ndd or dnd Delete n lines beginning at current line.

dG Delete all lines, starting with current line, through end-of-file.
dlG Delete all lines, starting with current line, through beginning-of-file.
dnG Delete all lines, starting with current line, through line n in file {forward

or backward, depending on position of linen relative to current line).

d- Delete current and first preceding line. 1

d+ Delete current and first following line. 1

nd- or dn- Delete current and n previous lines. 1

nd+ or dn+ Delete current and n following lines. 1

1 In these commands, k can be used instead of-, and j or I RETURN I can be used instead of[::±::].

76 4: Manipulating Text

n

n

u

Deleting Text Objects
Delete Word or Part of Word

Command Action Taken

dw Delete from cursor position through end of current word1 .
dW Delete from cursor position through end of current Word1 .

dnw or ndw Delete from cursor position through nth following word1 ending.
dnWor ndW Delete from cursor position through nth following Word1 ending.

db Delete from nearest preceding beginning1 of word through char-
acter before current cursor position.

dB Delete from nearest preceding Beginning1 of word through char-
acter before current cursor position.

dnb or ndb Delete from nth preceding beginning1 of word through character
before current cursor position.

dnB or ndB Delete from nth preceding Beginning1 of word through character
before current cursor position.

Dealing with Whitespace
When deleting words, any whitespace between the word being deleted (or the last word if
multiple words are being deleted) and the word following is also deleted. If the last word
being deleted is at the end of the line, the end of line remains after the word preceding the
deleted text. If one or more words beyond the end of the current line are being deleted,
the following line is appended to the current line during the deletion. If the word count
in a multiple-word deletion spans more than two lines, additional lines are appended
to the current line prior to the deletion until the deleted word count specification is
satisfied. For deletions toward beginning of file, the beginning of the removed text block
is calculated, then the deletion proceeds from that point toward end of file.

1 When lowercase b or w is used, any character other than alphanumeric or underscore is considered as
the beginning of a new word except whitespace characters that are treated as word separators.

When uppercase B or W is used, word boundaries are defined by whitespace word separators. Any
other non-alphanumeric characters (including underscore and control characters) are treated as part of
the word.

4: Manipulating Text 77

Note

Deleting text objects such as words, sentences, paragraphs, and
such are not restricted to the current line. If the number of text
objects specified exceeds current line contents, the object is ex­
tended until the text specification is completely satisfied.

Note

Word boundaries are defined based on beginning of word. Thus in
deleting a word in the forward direction dw or dW, if any whites­
pace exists between the current position and the start of the next
word, it is deleted. If the deletion is toward beginning of file (db or
-dB), only whitespace between the current position (not including
current character) and the target beginning of word is deleted.

Delete All or Part of Sentence, Paragraph, or Section

Command Action Taken

d) Delete from cursor position through first following end of sentence.
d} Delete from cursor position through first following end of paragraph.
d] Delete from cursor position through first following end of section.

dn) or nd) Delete from cursor position through nth following end of sentence.
dn} or nd} Delete from cursor position through nth following end of paragraph.
dn] or nd] Delete from cursor position through nth following end of section.

d(Delete from closest previous start of sentence through character before
cursor.

d{ Delete from closest previous start of paragraph through character be-
fore cursor.

d[Delete from closest previous start of section through character before
cursor.

dn(or nd(Delete from nth preceding start of sentence through character before
cursor.

dn{ or nd{ Delete from nth preceding start of paragraph through character before
cursor.

dn[or nd[Delete from nth preceding start of section through character before
cursor.

78 4: Manipulating Text

Deleting to a Text Location in Line or File
Text is deleted from current cursor position to a specified character on current line or
a specified text pattern in the file being edited. The differences between f and t and
between F and T are subtle, but useful in certain situations.

Delete Through Character on Current Line

Command Action Taken

dfc Delete text from current position through first occurrence of character
c on the current line when scanning toward end of line.

dnfc Delete text from current position through nth occurrence of character
con the current line when scanning toward end of line.

dFc Delete text from first occurrence of character c on the current line
when scanning toward beginning of line to character preceding cursor.

dnFc Delete text from nth occurrence of character c on the current line when
scanning toward beginning of line to character preceding cursor.

Delete Up To a Given Character on the Current Line

Command Action Taken

dtc Delete text from current position to first occurrence of character c on
the current line when scanning toward end of line.

dntc Delete text from current position to nth occurrence of character c on
the current line when scanning toward end of line.

dTc Delete text from character following first occurrence of character c on
the current line when scanning toward beginning of line to character
preceding cursor.

dnTc Delete text from character following nth occurrence of character c on
the current line when scanning toward beginning of line to character
preceding cursor.

4: Manipulating Text 79

Delete Text from Current Position to a Specifed Text Pattern
In the following descriptions, search_pattern is any valid HP-UX regular expression recog­
nized by standard HP-UX editors and other commands. Refer to the tutorial on Regular
Expressions earlier in this volume for more information.

Command Action Taken

d/ search_patternl RETURN I Delete all text from current location to first occurrence
of text matching search_ pattern when searching ,in for­
ward direction toward end of file. If search_pattern is
matched before end of file is reached, deletion is from
current cursor character up to but not including the
matched text pattern. If search wraps to beginning of
file before the pattern is matched, deletion begins with
text pattern and all text is removed up to, but not in­
cluding, the current cursor character.

d?search_patternl RETURN I Delete all text from current location to first occur­
rence of text matching search_pattern when search­
ing in reverse direction toward beginning of file. If
search_pattern is matched before beginning of file is
reached, deletion is from start of text that matches
search-pattern up to, but not including, current cursor
character. If search wraps to end of file before,the pat­
tern is matched, deletion begins with the current cursor
character and continues up to, but not including, the
matching text pattern.

Note

In general, the current cursor character is included in all changes
and deletions in the forward direction. If the change or deletion
is in the reverse direction, the current cursor character remains
undisturbed.

80 4: Manipulating Text

u

u

u

Text Delete/Change Command Examples
The following examples show various forms of text delete commands. They apply equally
to change or yank commands by replacing the d in each command with c or y respectively.

• 4dd, d4d, 3d+, and d3+ are equivalent. Each removes 4lines starting with current
line.

• d5w deletes five words starting at current cursor position. If there is only one word
left on current line, the remaining four words are deleted on the following line or
lines until the count of five words is filled. Counts related to sentences, paragraphs,
and sections are handled the same way.

• wordl,word2,word3 is one Word or five words (each comma is treated as a separate
word). This_is_one_word is treated as a single word.

• If cursor is in mid-sentence, d) deletes rest of sentence. To delete entire sentence
use (d) where (moves cursor to beginning of sentence. Same technique applies for
paragraphs and sections.

• If cursor is at beginning of sentence, d) deletes entire sentence. On the other hand,
(d) deletes the previous sentence because (moves cursor to next previous beginning­
of-sentence and the d) deletes to the next following end-of-sentence. Same technique
applies for paragraphs and sections.

• (d) and)d(are functionally equivalent if cursor is not at beginning of sentence. One
moves cursor to beginning of sentence and removes to following end of sentence;
the other moves cursor to end of sentence and removes text starting at previous
beginning of sentence. The same logic applies when deleting or changing paragraphs
or sections.

4: Manipulating Text 81

Recovering Deleted Text
Whenever a change, delete, or yank command is executed on a text object, the object is
copied into a buffer where it can be easily recovered. The two commands used to recover
text from the buffer are the "put" commands, p and P:

Command Action Taken

p Put buffer contents in text after current cursor position.
p Put buffer contents in text before current cursor position.

The buffer may contain part of a line or it may contain one or more lines. Consequently,
the transfer of buffer text must be handled according to the nature of the text being
copied from the buffer. Generally speaking, text is copied from the buffer as follows:

• If the original command that placed text in the buffer was a change, delete, or yarik
lines command, buffer text is copied into the file being edited immediately before
or immediately after the current cursor line as dictated by the p (after current line)
or P (before current line) command.

• For most other changes, deletions, or yanks (characters, words, sentences, para­
graphs, sections, etc.), buffer text is copied into the current line in front of or
immediately after the current cursor character as dictated by the p (after current ~.
character) or P (before current character) command. ' .)

It is this technique that gives rise to the xp command for swapping the positions of
the current and next following character on the current line or the ddp command for
swapping the position of the current and following line in a file.

Text can be easily copied or moved from one location to another by using a delete or
yank command to place text in a buffer, moving the cursor to a new location in the file,
then using p or P to place the deleted or yanked text in the new location. The p and P
commands only copy the buffer into text, so the buffer contents is not disturbed. This
means you can easily move to another location in the file and use another put command
to repeat the operation as many times as you choose.

This method is described in greater detail in Chapter 6 which discusses moving and
copying text in a file.

82 4: Manipulating Text

Using Named Buffers for Deleted or Yanked Text
In addition to the default buffer, vi provides 26 named buffers that can be used for copying
and moving text objects. Again, these buffers and how they are used in conjunction with
delete and yank commands are discussed in detail in Chapter 6 which deals with copying u and moving blocks of text.

u

Changing Text
When the editor is given a text change command, it enters replace or insert mode as soon
as it can determine the type of operation being performed, then accepts new input text
until I ESC I is pressed. The only exception is the r or nr command form which accepts only
one character of replacement text and does not require an I ESC I character to terminate
the operation.

Replace Text Character(s)

Command

r
nr

8

ns

Cor c$
cO or cl

Action Taken

Change cursor character from lowercase to uppercase or vice-versa.
Identical to- command (n is ignored).

Replace single character at current cursor position (no I ESC I needed).
Replace single character at current cursor position with n copies
of replacement character (no I ESC I needed).

Replace text, character by character, starting at current cursor
position.
Change n characters or to end-of-line, whichever occurs first, starting
with character immediately preceding current cursor position.

Replace single character at current cursor position with new text.
Replace n characters (or to end of line if it occurs before n characters)
starting at current cursor position with new text.

Change all characters from current cursor position to end of line.
Change all characters from left column of screen to character
preceding current cursor position on current line.

When overstriking characters in conjunction with the R or nR command, if you encounter a tab charac­
ter, the tab character is not replaced by a single replacement character, but rather, the tab is expanded
on the display screen and the number of characters that replace the tab is determined by the number of
spaces used to expand the tab character for display purposes.

4: Manipulating Text 83

To abort a character replacement following an r, nr, R, or nR command, press I ESC I
instead of the replacement character. To abort a substitute or change command, press
I ESC I, then lowercase GJ to undo the text removal that results from the I ESC 1.

Change Line(s)

Command Action Taken

cc Change current line.
nee or cnc Change n lines beginning at current line.

cG Change all lines, starting with current line, through end-of-file.
clG Change all lines, starting with current line, through beginning-of-file.
enG Change all lines, starting with current line, through line n in file (for-

ward or backward, depending on position of line n relative to current
line).

c- Change current and preceding line.
c+ Change current and following line.

nc- or en- Change current and n previous lines.
nc+ or en+ Change current and n following lines.

To abort a change command, press I ESC I, then lowercase [!!] to undo the text removal
that results from the I ESC 1.

84 4: Manipulating Text

u

u

Change Text Objects
Change Word or Part of Word

Command Action Taken

cw Change from cursor position through end of current word1 .
cW Change from cursor position through end of current Word1.

cnw or new Change from cursor position through nth following word1 ending.
cnWor neW Change from cursor position through nth following Word1 ending.

cb Change from nearest preceding beginning1 of word through char-
acter before current cursor position.

cB Change from nearest preceding Beginning1 of word through char-
acter before current cursor position.

cnb or ncb Change from nth preceding beginning1 of word through character
before current cursor position.

cnB or ncB Change from nth preceding Beginning1 of word through character
before current cursor position.

Note

When changing words, vi assumes that whitespace should not be
disturbed. Consequently, the change is from the boundary between
the current cursor character and the character preceding it and
the destination defined by the number and type of object(s) to
be changed (word, sentence, paragraph, etc.). Any whitespace
preceding or following the object to be changed remains unaltered.

When lowercase b or w is used, any character other than alphanumeric or underscore is considered as
the beginning of a new word except whitespace characters that are treated as word separators.

When uppercase B or W is used, word boundaries are defined by whitespace word separators. Any
other non-alphanumeric characters (including underscore and control characters) are treated as part of
the word.

4: Manipulating Text 85

Change All or Part of Sentence, Paragraph, or Section

Command Action Taken

c) Change from cursor position through next end of sentence.
c} Change from cursor position through next end of paragraph.
c]] Change from cursor position through next end of section.

c(Change from preceding start of sentence through character
before cursor.

c{ Change from preceding start of paragraph through character
before cursor.

c[[Change from preceding start of section through character
before cursor.

Note

Changing text objects such as words, sentences, paragraphs, and
such are not restricted to the current line. If the number of text ob­
jects specified exceeds current line contents, the object is extended
until the text specification is completely satisfied.

To abort a change command, press I ESC I, then lowercase w to undo the text removal
that results from the I ESC 1.

86 4: Manipulating Text

n

n

Change Text between Two Boundaries in Line or File
Text from current cursor position to a specified character on current line or a specified
text pattern in the file being edited is replaced with new text until I ESC I is pressed.

U Change Text Up To and Including a Given Character on Current Line

Command Action Taken

cfc Change text from current position through first occurrence of character
con the current line when scanning toward end of line.

cnfc Change text from current position through nth occurrence of character
c on the current line when scanning toward end of line.

cFc Change text from current position through first occurrence of character
c on the current line when scanning toward beginning of line.

cnFc Change text from current position through nth occurrence of character
c on the current line when scanning toward beginning of line.

U Change Text Up To but not Including a Given Character on Current Line

Command Action Taken

etc Change text from before current position up to first occurrence of
character c on the current line when scanning toward end of line.

cntc Change text from before current position up to nth occurrence of char-
acter c on the current line when scanning toward end of line.

eTc Change text from before current position up to first occurrence of
character c on the current line when scanning toward beginning of
line.

cnTc Change text from before current position up to nth occurrence of char-
acter c on the current line when scanning toward beginning of line.

u

4: Manipulating Text 87

Change Text from Current Position to a Specifed Text Pattern

Command Action Taken

c /search_ pattern I RETURN I Change all text from current location to first occurrence
of text matching search_pattern when searching in for­
ward direction toward end of file. If search_pattern is
matched before end of file is reached, text change is
from current cursor character up to but n.ot including
the matched text pattern. If search wraps to beginning
of file before the pattern is matched, change begins with
text pattern and all text is removed up to, but not in­
cluding, the current cursor character.

c?search_patternl RETURN I Change all text from current location to first occur­
rence of text matching search_pattern when search­
ing in reverse direction toward beginning of file. If
search_pattern is matched before beginning of file is
reached, change is from start of text that matches
search-pattern up to, but not including, current cursor
character. If search wraps to end of file before the pat­
tern is matched, change begins with the current cursor
character and continues up to, but not including, the
matching text pattern.

88 4: Manipulating Text

,ry

n

u

u

u

Repeating a Text Change Operation
vi provides a "dot" command (.) that tells the editor to repeat the last operation that
resulted in a text change. It can be used after a delete, replace, change, yank/put, or
any other command that changes text.

It is most commonly used when making a series of identical or very similar changes
throughout a file without typing the text more than once. It is especially useful when
using the search commands/ and? together with the repeat-search commands nand N.
To repeat a search for a given text pattern in a file, use n (repeat search in same direction)
or N (repeat search in opposite direction). Adjust the cursor position if necessary, then
press . (period or "dot") to repeat the last change.

For example, suppose you are building a list of file names preceded by a common path­
name for use in a file manipulation script or a system document. Here is a sample of
fictitious text:

This program block contains the following files:

Be sure all files are present before compiling the package.

You now need to add file and pathnames to the text from a handwritten list. Placing the
cursor anywhere in the line preceding the blank line, type the o command followed by
the path and file name: jusers/prog_mgrjsystemA/fileset1 then press I ESC 1. The result
becomes:

This program block contains the following files:
/users/prog_mgr/systemA/fileset1/file1

Be sure all files are present before compiling the package.

By pressing . three times after I ESC I is pressed, the result looks like this:

This program block contains the following files:
/users/prog_mgr/systemA/fileset1/file1
/users/prog_mgr/systemA/fileset1/file1
/users/prog_mgr/systemA/fileset1/file1
/users/prog_mgr/systemA/fileset1/file1

Be sure all files are present before compiling the package.

4: Manipulating Text 89

Now it is a simple matter to move the cursor to the last word on each of the second,
third, and fourth lines and edit the filename to obtain the other desired names. You can
also get three more copies of the yanked line by typing yy followed by p . . or p p p after
pressing I ESC 1.

With a little experimentation, you can quickly become proficient in the use of the fre­
quently used command.

Using Numbered Buffers to Restore Text
vi maintains a delete/change buffer that can be used to restore the last change by means
of the put (p or P) command. However, the put command, by itself is only able to restore
the most recent changed, yanked, or deleted text.

vi also maintains a history of changes/deletions in a group of numbered buffers, 1 through
9. They contain the preceding deletions and/or changes in a last-in, first-out push-down
stack arrangement. This means that buffer 1 contains the most recent text while buffer
9 contains the least recent. To show how they are used, consider the following text:

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9

90 4: Manipulating Text

n

n

u

u

u

Restoring Changes/Deletions in Reverse Order
Place the cursor on the first line, line 1, and type the dd command to delete the line.
Now, press . eight times in succession to delete the remaining lines in the series. To
restore the most recent deletion, type a double quote (") followed by the buffer number
(1), and the lowercase p command (none of the typed characters appear on the display).
Notice how the last line deleted now appears on the next line, after the cursor and the
cursor is moved to that line. Now, press . eight times to get this result:

line 9
line 8
line 7
line 6
line 5
line 4
line 3
line 2
line 1

This technique shows that the buffer pointer is advanced to the next buffer each time a
put command is executed provided the buffer number is used for the first put and • is
used for successive operations. The recovered line is placed after the current line, thus
producing the reversed order.

But I Don't Want Them in Reverse Order
You can also do the same without reversing the order. After making the last deletion,
use the command" 1P (note the uppercase P) followed by . eight times to get this:

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9

In this example, recovered lines are placed before the current line such that the lines are
restored in their original order.

You can also specify any buffer as you need it. For example, "6p restores the buffer
containing the text line 4 after the current line if you use the previous deletion example.
Specifying any number greater than 9 restores the most recent deletion.

4: Manipulating Text 91

Using the Commands
The remainder of this chapter shows various examples that illustrate how to use many of
the commands previously discussed for deleting and altering text. In many cases, several
approaches to a given problem are used to demonstrate the flexibility of a large editor n
program like vi.

Examples of Deleting and Swapping Characters
Ws flexibility usually offers several ways to accomplish a given task. The approach you
use will usually depend a great deal on how familiar you are with various methods and
techniques as well as your particular interests and preference. For example, consider the
following line of text where errors have been marked by a circumflex on the next line
below:

For exammple, Consider the follollowing line of txeT.

We could tell you that the easiest way to fix the line is to simply move the cursor to near
the beginning of the line then type the following characters:

fmxfl3xfxxp

but you probably would wonder what all those characters mean, so let's take some time
and learn how to attack a problem of this nature and determine what methods work
best.

Four words need to be changed. A fast typist could move the cursor to the first error,
clear the rest of the line, and retype it by using a D command followed by an a or A
command. A less proficient user would probably prefer other methods requiring fewer
keystrokes. Let's look at our options.

92 4: Manipulating Text

u

u

u

Deleting Characters
Assuming that the cursor is located at the beginning of the line and vi is in Command
Mode, use the space bar (or the l key) to move the cursor to either m in exammple.
Deleting a single character corrects the misspelling, so press x to remove the character
at the current cursor location (uppercase X removes the character preceding the cursor
character).

Now let's try a second, faster method. Press u to undo the change, then press 0 (zero)
to move the cursor to the beginning of the line. Now, type fm. What happened? Why?
Press 0 again. Now type 2fm. What is different? Why? Press x to remove the current
cursor character.

The sentence should now look like this:

For example, Consider the follollowing line of txeT.

4: Manipulating Text 93

Now let's work on that gruesome word follollowing. Before we can fix it, the cursor has
to be moved to the characters that should be removed (the first or second no). First,
an explanation of several ways to do it:

1. We have already learned that using l or the space bar is not always the quickest
way to move through a line. It is adequate for up to a half-dozen or so characters, n
but for longer moves it is usually too slow.

2. The word-skip command is available to move over words much like l moves over
characters. Here is how it can be used:

While observing the cursor, type w. The cursor moves to the comma because it is a
non-alphanumeric character that is treated as the beginning of the next word. Press
w again. The cursor moves to the beginning of Consider (the comma and space are
treated as a single word). Now type Fp to move the cursor back to the previously
deleted character position. Press W. Notice how the cursor skips over the comma
this time and moves to the beginning of the next full word. w tells vi to use only
white space to detect the end of a word, and include non-alphanumeric characters
as part of the word being skipped over (use of w and other similar cursor control
commands are discussed in detail in the advanced topics section of this tutorial).

Return the cursor to the previously deleted character (Fp), then type 3W. Note
how the cursor moves over three full words (ignoring punctuation), and stops at the
beginning of follollowing. Now move the cursor back where it was and type 4w. n
Notice that you get the same result as using 3W. Use the space bar or l to move ·.
the cursor to the first llo in follollowing, then type 3x to delete three characters.

3. The easy way, given the characters in the sentence is to use the find command, fl.
Note the new cursor position. Now type FF. Note that this gives the same result in
this case as using 0. Type fl again. Press 0 to return to the left column. Now type
2 fl then 3 x. Here is another way. Press u then 0 to undo the change and return to
the left column, then fl to return to the first 1. Now type d f o to delete characters
from the cursor position through the first occurrence of o. In this situation, d f o
is equivalent to d 2 t l (delete up to but not including the second occurrence of the
character 1). Simple enough?

4. Repeat step 3, but instead of using 3 x, type d f o. This time it removes all characters
up through the following o to obtain the same result.

The sentence now reads:

For example, Consider the following line of txeT.

94 4: Manipulating Text

u

u

u

Swapping Characters
Now let us correct the last word in the line. Press[[) to move the cursor to the last
character position, then use h or I BACK SPACE I to move back to the x in txet (fx would
get you there faster). Type x to delete the cursor character, then type p to add it after
the e. Thus, to reverse two characters in text, type xp while in Command Mode.

Changing Uppercase/Lowercase
Now press the space bar or I to move the cursor to the last letter in texT. Press - (tilde)
to change the uppercase T to lowercase. Notice that the cursor advances to the period
after the reversal is completed. Press I BACK SPACE I -. What happens? Why? Press
I BACK SPACE I - again to restore lowercase.

The sentence now reads:

For example, Consider the following line of text.

Searching within a Line: f and F versus t and T
The cursor is now located at the end of the sentence underneath the period. We know
from experience that FC would move the cursor to the uppercase C at the beginning of
the third word in the current line. Type TC instead. What happened? Why? Type [[)
then FC. Type - to drop C to lowercase. Now, type tx. Where did the cursor go? How
is this different from fx?

The preceding pages have covered many concepts, but you now have the foundation for
many skills that can be used with vi. Take some time to practice them on a few sentences
of your own. The time will be amply rewarded as you move toward editing usable text.

Using Semicolon and Comma to Repeat a Search Within a Line
As you become more familiar with using f and F to search for characters in a line, you
will discover that you frequently execute a search for a character (such as 5fl) only to
find that you miscounted and got the wrong occurrence. Rather than typing another
search command, it is usually easier to press semicolon(;) as a command to find the next
occurrence of the character, possibly pressing it twice or more to get the correct one.

If you overshoot the character you want in a forward search, you can easily back up to
the previous occurrence by using the comma (,) command. Thus 5fw , is equivalent to
4fw.

4: Manipulating Text 95

Both the comma and semicolon can be preceded by a number (such as 3; or 2,) to repeat
the search more than once. Thus, 7fw 3, is equivalent to 4fw, and 3fw 3; is equivalent to
6fw.

The semicolon or comma repeat search command always works in any form with f and F.
However, if used with torT, the semicolon must be preceded by a number larger than
1 to obtain meaningful movement. If only the next occurrence of the search character is
specified by the absence of a number greater than 1, the cursor does not move after the
semicolon command because the search looks for the next occurrence of the character
specified in the search, then moves to the previous or following character (depending on
whether the search is forward or backwards). When the search is repeated by using ;,
the character found in the previous search is again encountered, but when the cursor
placement is determined, the result places the cursor in its location prior to the ; com­
mand, resulting in no movement. On the other hand, if the repeat command is preceded
by a number larger than one, the search is made for the nth occurrence of the search
character, then the cursor returns to its correct position next to the specified character.

Examples of Replacing Text in a Line
We continue our discussion of editing within a line by using another example sentence
with several errors:

Dis is a vewy junquey excyuse for a sentense, but wi'll uze it anyweigh.

Replacing a Single Character with Multiple Characters
This time, let's make the corrections in order, left to right. The first error is in the
first word, so position the cursor at the first character in the line. We could use x to
delete the first character, then insert two more characters to make the correction, but it
is easier to use the 8 command. With the cursor positioned at the the D in Dis, press 8.
Vi places a dollar sign ($) at the cursor location, indicating that this character will be
replaced with zero or more characters (until you press I ESC I to restore Command Mode).
If you press I ESC I without entering any characters, the character space is deleted (same
as the x command earlier). To correct the error, type Th and press I ESC 1. Notice how
the remainder of the line was pushed to the right to accommodate new characters after
the first was replaced.

96 4: Manipulating Text

n

n

u

u

Replacing Multiple Characters with Zero or More New Characters
The s command can be preceded by a numeric value to specify the number of characters
that are to be changed. Thus, lOs replaces 10 characters beginning at the current cursor
location with new text until I ESC I is pressed. If there are fewer than 10 characters
between the cursor location and the end of the line, only the remaining characters in
the line are replaced. The end-of-line position is extended, if ne~essary, to accommodate
new characters being typed, and can continue into multiple lines if enough characters of
the right kind are typed. This technique is demonstrated later in this example exercise.

Replacing a Single Character with Another
Now type 3w to move to the next incorrect word, then press the space bar twice to move
to the incorrect character and type rr. The first r tells vi to replace the current cursor
character with the next character typed. The second r is the replacement character.
Since only one character is being replaced, vi does not require an I ESC I to return to
Command Mode. However, if you press r, then decide not to make the change, you
can use I ESC I to abort the change (unlike s, the character is not deleted when you press
I ESC I).

Our sentence now looks like this:

This is a very junquey excyuse for a sentense, but wi'll uze it anyweigh.

Replacing Multiple Characters with a Single Character
Now press f (for "find character") q. This tells vi to move the cursor to the next occur­
rence of the character q in the line (if the character is not present in the current line, vi
beeps). Now type 3s. Note that the cursor remains in its current position, but the dollar
sign is located in the second column to the right. This means that new characters will
be placed in the three character positions indicated until I ESC I is pressed. Type k and
press I ESC 1. Now, type 2fy, then type xI ESC 1. What happened and why?

Note the present cursor position in the word excuse. Now type slowly and watch what
happens when you type 3fsrc. What happened and why? What happens when you press
I ESC I? Why? If you want to try it again, press u to undo the change, then move the
cursor back to where it was. Our example sentence now looks like this:

This is a very junky excuse for a sentence, but wi'll uze it anyweigh.

Type 4w I BACK SPACE I se I ESC 1. Now type / (look at the bottom line of the screen) z
I RETURN 1. This operation is explained in detail later, but you just performed a forward
search in the file for the next occurrence of the string expression "z". Notice how much
faster and easier it would have been to simply use fz to accomplish the same thing. Now
type rs to make the c~ange.

4: Manipulating Text 97

The sentence now looks like this:

This is a very junky excuse for a sentence, but we'll use it anyweigh.

Now type 10 then press the space bar. The cursor should be located at the e in eigh.
Count the number of character positions from the previous cursor position to its present
position (10 total). We need to change eigh to ay. There are several ways to accomplish
this, and here are a few. Try and retry all of them until you understand the principles
behind each technique.

First, type 4say I ESC 1. What happened? Four characters were replaced by two. Now
press u to undo the change and put the cursor back where it was.

Next, type cfhay I ESC 1. What happened this time? c means change all characters from
the current cursor position through the character position identified by the next command
sequence which must follow immediately. fh means find the the next occurrence of the
character "h", and use ay as replacement characters as before. I ESC I again terminates
the substitution and returns vi to Command Mode. Press u again to undo the change.

Here is another way to do the same thing: Type cway I ESC 1. As in the preceding method,
c means change all characters from the current cursor position through the end of the
"word" (as defined by our previous discussion of w versus W). Why did 'we use w instead
of W? What happens if W is used instead?

The example sentence now looks like this:

This is a very junky excuse for a sentence, but we'll use it anyway.

There are many other ways to do the same thing, but these provide a useful sampling.
The next topic discusses the change (c) command in more detail.

Changing Words Within a Line
It is sometimes necessary to reword part of a line by changing one or more words in
succession. It can be tedious to use the ns command because of the need to count
characters before you know what n should be. Vi provides an easy solution: the change
(c) and delete (d) commands which come in many varieties that were listed earlier in
this chapter.

More power comes to your fingertips when certain commands are used in convenient
combinations. It is much easier to swap two characters, words or lines with two to four
keystrokes than to laboriously retype them.

98 4: Manipulating Text

rtJ

u

u

u

Delete or Swap Word Commands

Command Action Taken

dw Delete the current word consisting of all characters from the current
cursor position up to, but not including, the next non-alphanumeric
character unless it is a blank or tab character (if the first non-
alphanumeric character is blank or tab, it and any additional con-
tiguous white-space excluding end-of-line is also removed).

dnw Delete n words starting with the current word as defined by the dw
command description. Count each non-alphanumeric character except
blank (space), tab, and end-of-line as a separate word. Wrap to next
line if necessary to match n word count .. If the nth word is followed
by a blank or tab, the blank or tab is also deleted, as are multiple
contiguous blank/tab characters if present.

dW Delete the word consisting of all characters from the current cursor
position up to and including any following white-space characters (one
or more blanks or tabs, but not end-of-line).

dnW Delete n words consisting of all characters from the current cursor
position up to and including, the nth white-space character or group
of characters {blank, tab, or end-of-line or any contiguous multiple-
character combination of the three). Wrap to next line if necessary to
match n word count.

dwwP Swap word beginning at cursor with word that follows (see dw). Treat
non-alphanumeric characters as separate words.

dWWP Swap word beginning at cursor with word that follows (see dW). Treat
non-alphanumeric characters as part of the word(s) being swapped.

Let's modify our previous example sentence using some of these commands. Here is the
sentence after our last changes:

This is a very junky excuse for a sentence, but we'll use it anyway.

Place the cursor at the beginning of the sentence, then type fa to move it to the third
word a (you could also use 2w if the cursor is at the beginning of first word or 3w if the
cursor was in the left column of the display screen but the sentence was indented one or
more spaces- try it yourself and see).

Now, let us reword part of the sentence. Type the command c6w, then type:

not a written welliEscl

4: Manipulating Text 99

To produce a reworded sentence:

This is not a written well sentence, but we'll use it anyway.

Type the command 2b to back up two words. Now type the command dwwP to reverse
the two words:

The sentence now reads:

This is not a well written sentence, but we'll use it anyway.

Now type (slowly) the command b I BACK SPACE I r-. What happened and why? (The
b command is the opposite of w in that it moves backwards. In like manner, B is the
counterpart of W.) The result is now as follows:

This is not a well-written sentence, but we'll use it anyway.

While our sentence does not reflect the literary genius of a Milton or Shakespeare, you
now have a good sampling of several simple commands that are quite useful when mas­
tered.

100 4: Manipulating Text

n

n

u
Changing Multiple Lines of Text
The change and delete commands can also be used with line-oriented cursor movement
commands. For example, c 10 I RETURN I replaces the complete current cursor line and the
10 following lines with new text until you press I ESC 1. In like manner, c- replaces the
current cursor line and the preceding line with new text until you press I ESC 1. In the first
case, c 10 I RETURN I, c 10 +, and 11 cc are equivalent and can be used interchangeably.

Likewise, d 10 I RETURN I deletes the current cursor line and the 10 following lines while
d - deletes the current cursor line and the preceding line. As when changing lines,
d 10 I RETURN I and 11 dd are equivalent and can be used interchangeably.

Remember that when you use cord and a line-oriented cursor control command such as
+, -, G, j, k, H, L, or I RETURN I, the current cursor line is replaced or deleted. On the
other hand, when text-oriented cursor control commands such as w or W, b orB, and
such, or text search commands (/ or ?) are used, the change or deletion begins at the
present cursor character location and affects text from the current character to the new
cursor location.

U When using c or d with / or ?1 , text is changed as follows:

u

• Forward search (/): Text is changed starting with current cursor character up to
but not including the first character in the text string that matches the search
expression.

• Backwards search (?): Text is changed starting with the first character in the text
string that matches the search expression up to but not including the original cursor
character.

Here are several commands for changing, deleting, and swapping lines of text in a file.
They are defined earlier in this chapter, but are shown together here to illustrate various
approaches to a given task.

1 The f and ? commands are discussed in greater detail in the Pattern Searches section later in this
chapter.

4: Manipulating Text 101

Line-Change Commands

Command Action Taken

cl RETURN I, Replace current cursor line and the line that follows with new text
c +,or 2cc until I ESC I is pressed.

c nl RETURN I Replace current cursor line and the n lines that follow with new text n
or c n+ until I ESC I is pressed.

nee Replace n lines starting with the current cursor line with new text until
I ESC I is pressed.

c- Replace current cursor line and the line that precedes it with new text
until I ESC I is pressed.

en- Replace current cursor line and the n lines that precede it with new
text until I ESC I is pressed.

Delete or Swap Lines Commands

Command Action Taken

dd Delete current cursor line.

ndd Delete n lines beginning at cursor line.

ddp Swap cursor line and the line that follows it. n

n

102 4: Manipulating Text

u

u

u

Pattern Searches
You will frequently want to search through a file for a certain (often a misspelled) word
or expression during normal edits. Vi provides a forward/backwards pattern search
capability that is very useful for locating a certain phrase or word in a file, finding a
misspelled word, or locating a line in a program. You provide the phrase or word or an
excerpt from the line, and vi does the work. If a word is misspelled, provide the word as
misspelled, let vi find it, then make the needed correction.

You can also do repetitive searches for the same pattern so that you can make a change
based on the location of the pattern, then repeat the change for all or some of the other
occurrences of the same pattern in the file. Here is how it is done.

Forward Searches
To search forward in a file for a certain text pattern, use the forward search command:

/pattern

where pattern is a series of characters that match a text word or phrase that occurs in
the file. When you press I RETURN I, vi searches the file beginning at the current cursor
location and moving in the forward (toward end of file) direction until it finds the pattern
or encounters end-of-file. If end-of-file occurs before the pattern is found, the search wraps
to beginning of file and continues until the pattern is found or the current cursor line is
reached. If the pattern cannot be found, the message:

Pattern not found

is displayed and the cursor is returned to its original position prior to the search com­
mand.

If the pattern exists in the file, the cursor stops at the first character in the first detected
occurrence of the pattern. You can then make text changes or choose not to.

4: Manipulating Text 103

Searching Backwards in a File
You can search backwards in a file from the current cursor position by using the ?
command instead of I. Thus,

?pattern

searches backwards for the first occurrence of pattern. If beginning-of-file is encountered
before pattern is found, the search wraps to end-of-file and continues unt!l it returns
full-circle to the current cursor line if the pattern is not found. As before, vi displays a
Pattern not found message if the pattern is not present in the file or stops the cursor at
the first character in the specified pattern if it is found.

Repeating the Search
Sometimes you may need to search for every occurrence of the pattern in the file. Obvi­
ously, it makes little sense to have to retype the pattern each time you want to continue
to the next occurrence. You can use then command to find the next occurrence without
using I RETURN 1. When you press n, vi immediately resumes the forward search from the
current cursor position (not from the previous pattern location).

You can reverse the direction of the search for the next occurrence of the pattern by using
the N command instead of n. Thus, if your last search for pattern was in the forward
direction, n searches forward from current cursor position for the next bccurrence of
pattern while N searches backwards. Conversely, if your last search was in the backwards
direction, n searches backwards while N searches forward for the next occurrence of the
same pattern.

Defining the Pattern
The pattern associated with a forward or backwards search initiated by the I or ? com­
mand is most commonly a simple string of characters exactly matching the text or word
of interest. However, it is not limited to only simple strings. Any valid regular expression
(RE) recognized by vi and ex can be used for pattern. Using regular expressions in this
manner harnesses some of the massive processing power implemented on HP-UX, thus
providing a great deal of flexibility. This means that REs can become quite complex,
depending on their use. Refer to the tutorial on regular expressions earlier in this volume
for a detailed discussion about how to use them. If you are a beginner, you can easily
use alphanumeric characters to form search patterns for finding text. If you use non
alpha-numerics, remember that some of them are used to represent other characters or
combinations of characters and their use requires special care.

104 4: Manipulating Text

n

n

n

u

u

u

Shifting Lines Horizontally Left or Right
vi has a shift left/right command that moves the entire current line (or specified number
of lines starting with the current line) right (> > command) or left (< < command)
shiftwidth columns. The default value for shiftwidth is 8, but it can be altered by using
the :set shiftwidth=n command where n is the number of columns to shift.

The shift-right (> >) and shift-left (< <) commands are useful on those occasions where
you may need to move the left margin of a text block or paragraph right or left from
the left margin or its current position. One method commonly employed by casual users
is to insert or delete tabs or spaces at the beginning of each line. However, this can be
cumbersome when a large number of lines are being shifted.

Consider the following lines of text:

These lines are about fifty characters in length.
They don't take a lot of space but they leave a
wide margin at the right-hand side. If the lines
are shifted over, they move closer to the center.

By placing the cursor on the first line and typing 4>> {shift four lines one shiftwidth to
the right), they move one shiftwidth {8 columns) to the right.

These lines are about fifty characters in length.
They don't take a lot of space but they leave a
wide margin at the right-hand side. If the lines
are shifted over, they move closer to the center.

Note that the cursor remains on the same line so you can easily press . to repeat the
operation if you want to shift right again. To cancel the most recent shift, press u {undo).
To shift four lines one shiftwidth to the left, type 4< <.

Shiftwidth is discussed in Chapter 12 entitled Configuring the Vi/Ex Editor.

4: Manipulating Text 105

Automatic Indenting
When using structured programming languages such as C or Pascal, it is desirable to
change indentation for each level in hierarchical source code structures. The vi/ ex editor
provides an autoindent option that supports this feature. It is described in detail under n
the autoindent heading in the chapter entitled Configuring the Vi/Ex Editor.

vi and ex are normally configured with autoindent disabled (default) unless a user con­
figuration file named .exrc exists in a given user's home directory (see Chapter 12 for
information about configuration files). To enable autoindent without disturbing other
aspects of your editing session, simply type:

:set ai I RETURN I

To disable autoindent at any time during the session, type:

:set noai I RETURN I

Using Automatic Indentation
When autoindent is enabled, vi identifies the position of the first visible character on the
current cursor line and sets that column number as. the current indent value. Whenever
a new line is created while in insert mode (open or Open create a new line immedi- (\
ately; insert/append/change/substitute create a new line whenever I RETURN I is pressed ',)
or whenever wrapmargin forces a new line if it is set), the new line automatically begins
at the current indent.

Changing Current Indent
The current indent is easy to change. To increase the indent on a new line, use spaces
or tabs to obtain the appropriate indent. To decrease the indent, use the special com­
mand I CTRL ~[QJ (end-of-file character) which moves the current indent left by shiftwidth
characters or to the left margin, whichever occurs first.

Good program structure also includes comment lines and other features to promote
readability and ease of interpretation. It is often desirable to provide a single line (such
as a comment) at the left margin, then resume normal indent for succeeding lines of
program code. This is easily accomplished with a slightly different technique for moving
the current margin to the left. Assuming that you just finished a line starting at the
current indent and pressed I RETURN I to start the next line (or perhaps twice to obtain a

~~= n

106 4: Manipulating Text

u

• Press the circumflex key (A) as the first character on the new line. The character
is printed on the screen by vi.

• Press I CTRL ~[[] to select extreme left margin for one line only.

• The circumflex character disappears from the screen and the cursor is moved to the
extreme left column on that line.

• Type the new line as desired, starting at the left column and inserting desired white
space, if any, on the left before visible text.

• When the line is finished, press I RETURN 1. The cursor appears below the left margin
of the previous line, not the left margin of the line that was just typed.

• Use the same procedure to type another line at the left margin, continue with the
current margin, or change it right or left, as desired.

In Summary

• Use space or tab characters to move autoindent margin right.

• Use I CTRL ~[[](must be first character typed on new line) to move margin left by
one shiftwidth.

• Use ~ followed by I CTRL ~[[] to type a single line at left margin without changing
current indent value.

Use of Tabs
Autoindent uses tab characters where possible to conserve the total character count in
the file being edited. Some applications may require that all leading whitespace be only
spaces. In such instances, you must either edit the file with autoindent disabled, or
process the file using the expand command which converts tabs into spaces. To expand
tabs in a file, use a command similar to:

expand filename >new_filename

which replaces tabs with spaces such that text is lined up at intervals of eight characters
starting at the left. Other forms of the command can be used to specify tab column
positions other than every eight. Another technique in specifying options provides the
ability to specify that tabs be assigned to stop on certain column numbers in each line.
Refer to the expand(!) manual entry in the HP-UX Reference for more information.

4: Manipulating Text 107

n

n

108 4: Manipulating Text

u

u

u

Intermediate Editing:
Using Text Objects 5
One of the great strengths of vi is its ability to handle a variety of text objects such as
words, sentences, paragraphs, sections, and such, and its ability to allow each user to
independently define certain objects such as sections by using vi configuration commands.
Learning about and understanding these text objects and how they are used is a critical
key to accessing and using the true power that is available from vi for the experienced
user. Text objects were introduced in Chapters 3 and 4 with limited discussion. This
chapter explains them in greater depth so that more experienced users can make better
use of them.

Common Text Objects

Word: w or W
Word objects are treated in two ways: Words and words. When the uppercase W is used,
word boundaries are delimited only by white space which is defined by any one or more or
a combination of blank, tab, or newline (end-of-line sequence) characters (see Glossary for
more information about white-space characters). When the lowercase w is used, word
boundaries are delimited by white space or detection of any other non-alphanumeric
character (except underscore). A sequence of one or more contiguous non-alphanumeric
characters (other than white space and underscore) is treated as a single word. Thus the
expression:

This, at least, is a sentence.

is treated as nine words or six Words (the lowercase w version treats each comma and
period as a separate word). On the other hand, the expression:

$%one_word#&(<D

is treated as one Word or three words: $%, one_word, and #&(CI.

5: Using Text Objects 109

Line: "or$
The current line and the current position within the current line form the basic foundation
from which vi operations are referenced. Two characters are used in vi and ex commands
that represent the beginning and end of the current line:

When used in a regular expression, this character represents the position
that would be occupied by a character if it were inserted in front of the first
character in the line (left screen margin).

When used as a cursor control command, the cursor moves to the first visible
(non-blank) character in the line.

$ When used in a regular expression, this character represents the position that
would be occupied by a character if it were appended after the last character
in the line.

When used as a command, the cursor moves to the last character (visible or
invisible) at the end of the line.

Note

End-of-line refers to the end of the line as it exists in the buffer
file, not as it is displayed on the terminal screen. If the line is
longer than the width of the display screen, beginning and end of
line occur on separate lines of the display.

Sentence: (or)
vi accommodates two types of sentences:

• A group of words terminated by.,!, or? followed by at least two spaces (blanks) or
end-of-line. This defines a sentence as commonly used in normal spoken language,
and is consistent with standard typing practice. If the ., !, or ? is followed by
fewer than two spaces (unless at end-of-line), it is not treated as an end-of-sentence
condition.

• For the Lisp programming language, a sentence is a valid Lisp s-expression, pro­
vided the -1 (Lisp) option was specified as part of the HP-UX vi command at the
beginning of the session as discussed in Chapter 2, or the :set lisp command is
included in an EXINIT variable or . exrc file or executed as a command from the
editor.

110 5: Using Text Objects

n

n

n

u

u

u

Paragraph: { or }
A paragraph is a group of one or more sentences that is bounded before and after by:

• One or more blank lines, or

• Any paragraph macro among:

• The default paragraph and section macros defined by v£, or

• An alternate set of macros defined by a :set paragraphs and/or :set sections
command.

• But not both.

New paragraphs begin at a blank line, defined paragraph macro, or defined section macro.

Unless redefined by a :set paragraphs and/or set sections command, the following default
paragraph macros from various nroffftroffmacro packages are recognized by vi:

.IP .LP .PP .QP .P .11 .bp

To add new macros or change the current list of recognized paragraph macros, the entire
string must be redefined. Refer to the chapter entitled Configuring the Vi/Ex Editor for
procedures.

Section: [[or]]
A section is a block of text bounded by a section macro or end-of-file where the section
macro marks the beginning of a new section. Recognized section macros are defined by
the :set sections command.

vi recognizes the following default section macros that originate from various nroffftroff
macro packages:

.NH .SH .H .HU

To add new macros or change the current recognized section macros, the entire string
must be redefined. Refer to the chapter entitled Configuring the Vi/Ex Editor for pro­
cedures.

5: Using Text Objects 111

User-Defined Text Objects
In addition to the preceding text objects recognized by vi, you can define any other text
object by specifying the text lying between the current cursor position and any standard ~
cursor move command including text markers. User-defined text objects fall into two 1.)
general categories:

• Line-oriented objects identified by beginning and ending line, and

• Exact-position-oriented objects such as all characters between two markers.

Note

Text pattern searches (/ and ? commands) cannot be used in
certain situations when defining a text object.

112 5: Using Text Objects

n

n

u

u

Text Markers Within a File
File markers are a locating device used by vi and other editors to accurately pinpoint a
specific location in a file. vi file markers can be used to locate a specific character in the
file or the beginning of the line containing the marked character, depending on the type
of command used with the marker. vi file markers are not stored as part of the file, so
they are lost at the end of the editing session.

Up to 26 file markers can be specified in any given file during the editing session. Each
marker is given a lowercase single-character name in the range a through z.

Creating Markers
To mark a location in the file, use any normal combination of screen and/ or cursor control
commands to move the cursor to the desired location in the file. Once the cursor is in
the correct location, type the command:

mmarker_name

where m is the "mark file location" command and marker_name is a single lowercase
character in the range a through z. If an illegal character is specified for marker_ name,
the command is ignored and the editor sends a beep sequence to the terminal to signal
the error.

Up to 26 simultaneous locations can be marked in the file during any given editing
session. If a new marker command is given and the marker name is the same as an
existing marker, the previous marker is cancelled then redefined for the new location.

5: Using Text Objects 113

Using Markers for Cursor Control
One common use for markers is as a convenient means for moving quickly between
arbitrary locations in a large file. For such uses, marked text locations can be reached
by two methods. The first command form:

' marker_ name

precedes the marker_name with an accent grave (also variously called a backwards single
quote or other similar names) moves the cursor to the exact character in the file that is
identified by the marker_ name provided as part of the command.

On the other hand, using a single quote (apostrophe) as follows:

'marker_ name

moves the cursor to the beginning (first visible non-blank character) of the line containing
the marked character.

This subtle but important difference between forms is very useful in certain situations
when performing editing text objects defined by marker-specified boundaries.

Using Markers for Text Object Operations

n

Markers can bde used to define text objects being manipulated by a delete, change, or n
yank comman . In general, the text object is bounded by the cursor position at the time
the command is given and the location of the marker specified in the command sequence
or by the lines containing each, depending on the cursor move command associated with
the marker name.

Note

If a line or characer associated with a file marker is deleted, the
marker definition is also cancelled at the same time.

114 5: Using Text Objects

n

u

u

u

As indicated in earlier chapters on basic editing, the text characters contained within
the text object depend on whether the cursor position before the move operation is at
the beginning or end of the object in the file. Here is the general structure of the editing
commands as they are used in conjunction with file markers:

1. Move cursor to beginning or end of text object being manipulated.

2. Specify operation type:

• d to delete entire text object,

• d preceded by buffer name to delete text object into named buffer (buffers are
described in Chapter 6),

• e to change text object to replacement text,

• y to yank text object into default buffer,

• y preceded by buffer name to yank text object into named buffer,

3. Specify other boundary of text object being manipulated.

• 'marker_name sets boundaries on marked character and current cursor posi­
tion. Text object includes first boundary character in file and all text up to
second boundary character, but does not include the second boundary char­
acter.

• 'marker_name sets boundaries to include entire line containing marker and
entire line containing cursor character, regardless of their relative positions in
the file.

5: Using Text Objects 115

Examples
The flexibility of text objects, especially when dealing with sentences, paragraphs, sec­
tions, and markers, make it difficult to provide any quick useful examples involving large
text blocks. However, here are a few examples of commands that reference text objects
so that you can readily become quite proficient in their use with a little practice.

In the following table, marker a is assumed to precede marker b in the file.

Command Action Taken

'ad'b Remove all characters starting with the character marked by marker
a up to but not including the character marked by marker b.

'ad'b Remove all lines starting with the line containing marker a and con-
tinuing through the line containing marker b.

'adG Remove all lines starting with the line containing marker a and con-
tinuing through the last line in the file.

'ad'b Remove all lines starting with the line containing marker a and con-
tinuing through the character preceding marker b.

'ad'b Remove all text starting at marker a and continuing through the entire
line containing marker b.

The list of examples could be expanded to hundreds of pages, but we must stop some­
where. In this and the preceding chapter, you have the tools to learn all you need to
know about the types of operations described.

116 5: Using Text Objects

II)

n

u

u

Intermediate Editing:
Copying and Moving Blocks of Text 6
vi/ ex provides three basic ways for moving and copying blocks of text from one area in
a file to another:

• Delete or yank text into the default {unnamed) buffer or any of the 26 named
buffers maintained by vi, then use the put command to copy the buffer contents
into the same or one or more different locations in the file. A text object of any
size can be handled in this manner.

Line numbers, line addresses, word, sentence, paragraph, section, markers and other
commands can be used to determine what text block is placed in the buffer by the
delete or yank command. If named buffers are used and a second file is opened
from the first editing session, you can use this technique to copy or move text from
one file to another using the techniques described in Chapter 8 for editing two files
simultaneously by switching between files.

• Use the ex move or copy command to transfer or copy one or more lines to a different
location in the file. Only full lines can be handled in this way. This technique is
restricted to move/copy operations within the current file.

• Use the ex write file command to copy one or more lines in the file into a second
mass storage file, delete the copied lines from the file if desired, then copy the
new file back into the file being edited at the new location. This technique is not
frequently used because it is somewhat more cumbersome, but it does reduce the
risk of losing the contents of the unnamed buffer during a move due to an accidental
incorrect keystroke.

This method is also commonly used for copying blocks of text from one file to
another.

Most text copy and move operations during vi sessions, especially those that involve mov­
ing or copying text to another location in the current file, use buffers as an intermediate
storage facility during the copy or move. Some users prefer to use the ex copy and move

commands to accomplish the same thing. Use of external files as a temporary resource
for accomplishing copies and moves is most common when the transfer is between files,
especially when a single text block is being copied into several other files.

6: Copying and Moving Blocks of Text 117

Using Buffers
vi maintains 27 buffers that are always available for use when copying or moving blocks
of text. They are:

• The default, unnamed buffer,

• 26 named buffers a though z.

The most commonly used buffer is the default buffer which is somtimes referred to as
the unnamed buffer. Whenever a delete or yank operation is performed, the deleted or
yanked text is copied into the default buffer (unless another buffer name is specified). It
can then be placed elsewhere or replaced in its original position by using the put (p or P)
command. However, the contents of the default buffer are maintained only until the next
text modification command is executed. Thus, if you delete a block of text (causing it to
be placed in the default buffer), move elsewhere and execute another text modification
command, then move again and try to place the buffer contents in your new location in
the file, you will discover that the buffer text was destroyed by the command executed
since the deletion. The buffer is destroyed even if the change is not a deletion or yank
(for example, an insert or append).

The contents of the named buffers, a through z, remain intact for the entire time that vi
is running except when a new delete or yank to that named buffer overwrites the buffer n
contents. All buffers, both named and unnamed, are dismantled when vi terminates;
not at the end of editing the current file. This means that information can be copied
into named buffers when editing multiple files, then the contents of those buffers can be
placed in other files being edited as part of the same session. 1

Note

The default (unnamed) buffer contents are destroyed at the end of
a file edit, even if several files are being edited in a single session.
If you need to copy data between files using buffers, use named
buffers instead to preserve contents until the appropriate file is
open.

1 The :rewind command can be used to move back to the first file in a group of files, providing useful
flexibility in manipulating data between files. Techniques used when editing multiple files in a single
session are described in greater detail in Chapter 8. The general techniques of deleting or yanking to a
buffer then placing back in a file apply to both editing within a file and editing multiple files.

118 6: Copying and Moving Blocks of Text

n

u

u

u

Naming and Filling the Target Buffer
vi/ ex predefines the named buffers a through z. However, you must specify the name of
the buffer being used for a particular operation unless you are using the default unnamed
buffer. You recall that, when we discussed file markers, the reverse single quote or accent
grave (') followed by a marker name is used to move the cursor to the exact character
location of the specified marker. The standard single quote ('), also called apostrophe or
acute accent, followed by a marker name moves the cursor to the beginning of the line
containing the specified marker. You may also have noticed that the available marker
names are the same as the available buffer names, except that the buffer names are
accessed by using a double quote before the buffer name which is specified prior to the
delete or yank command in the command line.

Here are some examples of how text is copied into a named buffer:

Command Action Buffer

"a6dd Delete 6 lines starting with current line. a

"r3yy Yank 3 lines starting with current line r

"xd4) Delete 4 sentences starting at current lo- X

cation

"hdG Delete all text from current line through h
end of file

"b3x Delete 3 characters starting at current po- b
sit ion

"gy /text I RETURN I Yank from current position to but not in- g
eluding text

Note

Named buffers are named a through z, as are the 26 possible marker
names. However, text buffers and editor file buffer markers are
completely unrelated and independent of each other.

6: Copying and Moving Blocks of Text 119

Appending Text to Buffers
Text can be appended to an existing buffer instead of replacing any current buffer con­
tents. Simply use the uppercase buffer names A through Z instead of the corresponding
lowercase buffer names a through z.

Retrieving Text from Buffers
Anytime prior to end of session, data can be retrieved from a named buffer and placed
in text relative to the current cursor position. To place the data, use the form:

11 (buffer_ name)p

to place text after current character or line, or
11 (buffer_ name) P

to place text before current character or line. As in normal yank/ delete and put op­
erations using the default buffer as described in various locations in Chapter 4, if the
buffer contents was originally yanked or deleted relative to current cursor positiion in a
line (character, word, sentence, section, etc.) the buffer text is placed in the current line
starting relative to the current cursor position within the line. If, on the other hand,
the yank/delete operation was performed on full lines (ndd, nyy, etc.), the put command
places text before or after the current line.

Thus, using the previous yank/ delete examples:

Command Buffer Text Size and Placement

"a6p a Six lines previously deleted after current line.

"r3P r Three lines previously yanked before current line.
"xp) x;. 4 sentences starting after current character.

"hP h Lines to former end-of-file before current line.

"bP b 3 characters before current character.

120 6: Copying and Moving Blocks of Text

n

n

n

u

u

Executing a Buffer as an Editor Command
Many commands, especially search-and-replace commands, can involve tedious typing
with risk of mistakes, especially if you are a bit clumsy with the keyboard on occasion,
or perhaps a casual or inexperienced user.

vi has a rarely documented but very useful feature that can be used in conjunction with
the yank command to save much retyping if you are doing complex ex operations that
require a lot of typing. The procedure is simple:

• Use a yank-line {Y) command to yank the entire current cursor line {which must
be a valid ex command including the colon at the beginning) into a named buffer.
For example, to use buffer h, the command is:

"hY

• Use the vi@ command followed by the buffer name to execute the buffer contents.
For example, to execute the contents of buffer h that was previously yanked, type:

@h

No I RETURN I is necessary in either case because both commands are processed by
the vi command-mode interpreter.

The editor places the command in the buffer on the bottom line of the display
just as it would appear if you had typed it in ex command mode, then executes
the command. You will note that if the command was a substitute command, the
substitution is made on the regular expression part of the command as well as
anywhere else in the text file unless the address range was restricted to only part
of the file.

The substitute command is discussed in greater detail in the next chapter.

When using this technique, it is usually best to place lines being yanked at the beginning
or end of the buffer file so that they can be easily deleted at the end of the session before
writing the file back to permanent storage.

6: Copying and Moving Blocks of Text 121

Using Ex Commands to Copy or Move Text
The ex commands, copy, move yank, and put can also be used to copy or move text
directly or through named buffers. Procedures are similar to using vi methods with some
obvious variations. Use of each command is discussed in detail in Chapter 10. r}

Using Files to Copy or Move Text
External mass storage files can also be used to copy all or part of a file to another location
in the file or to other files. To move text, the lines of interest are written to a file then
the lines are deleted from the current workfile. To copy text, the lines are written to a
file but not deleted. The external file can then be read back into the file being edited or
into another file.

For more information about using the read and write commands, :r and :w, refer to
Chapter 9 which discusses file manipulation techniques.

122 6: Copying and Moving Blocks of Text

rJ

u

u

u

Intermediate Editing:
Search and Replace Operations 7
Search-and-replace capabilities are an important feature in any useful editor program.
The search-and-replace features in this editor are accessible both from vi and ex as ex­
mode commands. This chapter describes several techniques for using search-and-replace
to solve a variety of editing problems.

The simplest form of search-and-replace is conducting a pattern search as described
earlier in Basic Editing, then performing a character, word, or line replacement. The
replacement can be done on other occurrences of the same pattern in the file by pressing
[][]to find the next occurrence, then pressing 0 to repeat the previous change.

Obviously, this process becomes dull and tedious rather rapidly if a large number of
changes are needed in the file. The ex capabilities addressed in this chapter can be used
to automate this process greatly and save considerable time and effort. However, be wary
because if you do not exercise adequate care in defining the string to be changed, you
may get more changes than you really wanted. For example, changing every occurrence
of the to xyz in a file also changes Athena to Axyzna; probably not what you would want.

Search-and-replace operations are most commonly performed using the substitute com­
mand in the ex command set with a global suffix on the command if the operation is
to be performed more than once on any given line. The ex command set is accessed
from vi command mode by typing a colon which switches vi to ex-mode operation for the
duration of ex command execution.

Colon Commands
ex-mode (or external-mode) commands always begin with a colon when accessed from vi,
and are therefore often referred to as colon commands. When forming a colon command,
the first character, the colon, is followed by a command sequence that can be any legiti­
mate ,ex command (except for certain cases when program bugs or other considerations
require a change to ex by using the Q command). ex commands are discussed in de­
tail Chapter 10. This chapter deals primarily with the substitute command and related
items necessary to form a valid search-and-replace command expression. To execute a
completed command, press I RETURN I or I ESC I after typing it (I RETURN I is most commonly
used and preferred, but I ESC I also works).

7: Search and Replace Operations 123

Fixing Mistakes
If you make an error while typing a colon command, use I BACK SPACE I to move the cursor
left to the appropriate position, then retype the rest of the command. As with normal
vi operation, characters are not erased from the screen as you move the cursor left, but
they are removed from the vi/ ex command buffer. Hence, any extra characters that are ~
not obliterated by retyping are ignored (you will notice that they disappear from the

1
·)

bottom line of the display as soon as you press I RETURN I or I ESC I).

If you make a mistake early in the line and prefer to retype the complete line, press the
KILL (line-erase character, usually I CTRL ~[[], which immediately moves the cursor to
the first character following the colon so you can type a new line.

Aborting the Command
If you type part of a colon command then decide you want to do something else instead,
you can abort the command by pressing I BACK SPACE I several times (or press I CTRL ~[[]
followed by I BACK SPACE I) to back the cursor up to the left margin past the colon. When
the cursor passes the colon, the the editor abandons the command and returns the cursor
to where it was prior to the aborted colon command. This same method can be used to
abort a vi search command (/ or ?) .

An easier method is to simply press the I BREAK I key. This method has the side-effect
of setting the HP-UX vi command return status flag to FALSE when vi terminates, rrJ
but unless you are operating in an unusual environment, using the BREAK key should
present no discernable disadvantage.

Aborting After Execution Begins
You may discover, particularly when performing global operations on a very large file,
that you gave an incorrect command (such as inadvertently pressing / or ? instead of :)
or an inappropriate command, and need to abort it. Press I BREAK 1. Command execution
stops, and an error message is displayed:

tterrupt)
If you accidentally type a search command (/ or ?) and interrupt the search with
I BREAK I, the cursor usually returns to its original position prior to the command, and
the file remains unmodified by the command. ·If you interrupt a substitution part-way
through the file or if the incorrect command runs to completion before being interrupted, .~
you can use the u (undo) command to repair the damage and return to the pre-command •. ·)
state.

124 7: Search and Replace Operations

u

u

u

Should the screen be left in an unusable state (not likely but it can happen on occasion,
simply press I CTRL HIJ to redraw it.

Undoing Colon Commands
Like normal vi commands, the external-mode commands are also subject to the u com­
mand. If you discover that the change you made did not produce the desired effect,
press u immediately before executing any other command. As usual, if any command
is executed after the colon command, the undo option for that command is forever lost,
and you must either use another command or set of commands to fix the error or abort
the session (:q! command) and start over.

File Safety
Because certain complex ex commands can have a disastrous effect on a file if they are
incorrectly formed and you forget to execute an undo before you execute the next com­
mand, it is a good idea to write your buffer file to permanent storage before performing
a complex instruction. That way, if the command happens to demolish your file beyond
use, you can easily abort by using :q! without overwriting the back-up, then use the
vi command again to reopen the file. Use of write and quit commands is discussed in
greater detail in Chapter 2.

7: Search and Replace Operations 125

Command Structure
The search-and-replace command consists of the following parts in the following sequence:

• A colon to identify the command as an ex-mode command

• A starting line number or address

• An ending line number or address

• A substitute command

• A regular expression that defines the search string to be identified

• A substitute string to replace the search string when found

• A global suffix if the operation is to be performed more than once on any lines
containing two or more strings that match the search string expression.

Line Addresses
Colon search-and-replace commands start with a colon which tells vi to execute the ex­
mode command (ex can also execute the same command except that the ex personality
provides a colon prompt so it is not necessary to type a new colon, although if you do
type a colon while in ex it is not treated as an error). The colon is then followed by zero,
one, or two line addresses where:

• If no address is present, it implies that the operation is to be performed on the
current line only.

• One address tells the editor to perform the operation on the addressed line only.

• When two line addresses are provided, the operation is performed on all lines start­
ing with the first line addressed and continuing through the second addressed line.
The first line address must precede the second address in the file. A comma sepa­
rates the first and second line address.

Whitespace (space or tab character) is optional but rarely used before, between, and
after line addresses.

All colon commands include a line address for a single line, a double line address for a
group of contiguous lines, or an implied address when no specific address is included in

n

n

the command. Here is a list of line address forms recognized by ex: n

126 7: Search and Replace Operations

u

u

u

Recognized Colon Command Line Address Forms

Address Corresponding Line

none Current line only (implied address)
1 First line in file.
$ Last line in file.

Current line.
n nth line in file.
. -n nth line before current line .
. +n nth line after current line .
% Abbreviation for 1,$ which means every line in the file.

When two addresses are present to define starting and ending line numbers for the
command, they must be separated with a comma (,) as shown in some of the following
examples:

Examples of Colon Command Line Address Forms

Address Corresponding Line

1 First line in file.
n Line n in file.

Current line in file.
. -4 Fourth line before current line in file .
. +8 Eighth line after current line in file .

$ Last line in file.
g All lines in file.

1' . All lines from beginning of file to current line.
. '$ All lines from current line to end of file.

. ,.+5 Current line through fifth following line .

1,.+5 First line in file through fifth line after current line.
. -10' .+5 Tenth preceding line through fifth following line .

Global searches (described next) can also be used to identify certain lines in the file in
lieu of the address forms in the preceding list, as can file markers.

1 Space characters after the colon and before and/or after the comma are optional but not normally used.

7: Search and Replace Operations 127

Global Searches
Suppose you are working on a large file such as a large computer program or text file
and need to look at every line in the file that contains a certain word, program label ~. .
reference, or operand name. Rather than using a cumbersome series of/ or? followed r.)
by n or N search sequences, you can print all occurrences of the desired text pattern with
a simple command of the form:

:g/text_pattern/p I RETURN I

where text_pattern is any regular expression of the form described in the tutorial on
regular expressions earlier in this volume that is compatible with vi and ex. The g
command specifies that the search is to be made globally (on every line) throughout the
file, and the p command specifies that the results are to be printed on the display screen.
Experienced users will recognize that this command is very similar to the HP-UX grep
command.

After the lines are printed to the screen, the message:

~it return to continue])
appears at the bottom of the screen. Press any typing key to restore the normal editor
display.

Limited Searches
You can easily limit the search for a given expression to a certain part of the file by
specifying the starting and ending line numbers. Here is the command form:

: start_line, end_line g/text_pattern/p I RETURN I

where start_line is any valid line number identifier that specifies the starting line and
end_line specifies the the last line in the search space. Valid line specifiers can be the
actual line number (1 is the first line in the file, $ specifies the last line, and 25 specifies
line 25, etc.), line locations relative to current line, or any other form recognized by ex.

128 7: Search and Replace Operations

rfJ

u

u

u

Displaying Tabs and other Control Characters
Suppose you need to determine whether and where any control characters might be
hidden in a file. This can be particularly important when examining a computer program
file as well as in many other circumstances.

The I command accomplishes this task quite handily with the form:

: start_line, end_lineli RETURN I

Any control characters contained within the specified file segment are displayed in "hat"
format, "hat" being a common vernacular name among UNIX users for the circumflex
character (A). Tabs are displayed as AI, and end-of-line is displayed as $. For example,
consider the following rather innocent looking line of text:

If this looks like a simple sentence, look between the words

Placing the cursor anywhere on the line and executing the command:

:.11 RETURN I

reveals more than what meets the eye:

If this looks like aAisimple sentence, look between the words AI $

showing two hidden tabs plus several spaces at the end of the line. Likewise, a command
of the form:

: .•. +101 I RETURN I

displays all control characters in the current plus the 10 following lines.

After listing the lines, press any key to restore the normal editor display.

7: Search and Replace Operations 129

Splitting Lines
One very perplexing problem for many vi users lies in how to split lines during a pattern
search-and-replacement operation. In other words, when a certain pattern is found,
how can an end-of-line be placed near that location so that multiple lines are formed. n
Likewise, how can a pair of lines be combined in a global search-and-replace sequence?

Switch to Ex
It is impossible to accomplish either of these feats from vi because the vi command
interpreter cannot handle multiple-line command input. However, the task is much
easier when using ex. To switch from vi to ex, press Q (I SHIFT ~[QJ). ex then responds
with the usual colon prompt.

Forming the Command
Like any normal search-and-replace command, the colon prompt is followed by typing an
address or pair of addresses followed by the s (substitute) command. A regular expression
followed by replacement text forms the substitution part of the command, and any flags
or options are added at the end of the command.

For illustration, let us use the following paragraph as original text:

This paragraph is only one of the many possible demonstrations
of the substitute command for splitting lines. However, the
result may make you writhe in pain or laughter as your friends
watch the scene.

With the cursor on the first line of the paragraph, press Q to get the colon prompt, then
type the following command:

:. ,.+3s/the /the\
/g

Now for the explanation. The colon prompt was provided by ex. The .,.+3 specifies
the current and three following lines. s says substitute the replacement text for the
text pattern defined by the first expression. The first expression is identified by the
slash characters before and after. The second expression consists of the followed by a
backslash (\) which is in turn followed by I RETURN I and another slash, meaning that the
replacement ends with an end-of-line (the \ at the end of the first line in the command
escapes the newline character from interpretation by the editor as end-of-command).
The g option tells ex to make the substitution for every occurrence of the first expression n
throughout the specified body of text even when it occurs more than once on any given
line.

130 7: Search and Replace Operations

Executing the command yields the following displayed line:

scene.

Now, change back to vi by typing vi I RETURN 1. The previous line appears at the top of
the screen. Scroll the text down to reveal the following:

This paragraph is only one of the
many possible demonstrations
of the
substitute command for splitting lines. However, the
result may make you writhe
in pain or laughter as your friends
watch the
scene.

As expected, every occurrence of the followed by a space was replaced with the and a
newline sequence. Even writhe was subjected to the same treatment as you would expect
since no restrictions were placed on the text preceding the.

Unfortunately, regular expressions cannot have newlines escaped into them, so it is not
possible to reverse the process and join lines using global search-and-replace operations.

Switch Back to Vi
After the operation is completed, you can switch back to vi. Type the ex command:

vi I RETURN I

vi is then reactivated, with the current line from the last ex operation at the top of the
screen. You can use scrolling, nG, or any other suitable screen control command to move
to a particular location in the file, or use any other appropriate command to continue
editing.

7: Search and Replace Operations 131

Another Example
Using the first sentence from the previous example, let us change a few of the ASCII
space characters to tab characters as follows:

This paragraph is only one of the many
demonstrations of the substitute
splitting lines.

possible
command for

Now, using the previous procedure, place the cursor on the first line of the three, press
Q to switch to ex, then execute the following command:

: . , . +2s/ [space tab] 1\
/g I RETURN I

where the regular expression (space tab] contains a space and tab character; that is,
((space)(tab)]. This tells the editor to search for any space or tab character and replace
it with the replacement expression which is an end-of-line preceded by an escape character
to protect it from being devoured by the editor commands interpreter. The g option at
the end tells the editor to perform the substitution for all matches throughout each line
in the body of text being searched. After executing the vi command to restore the vi
personality, the sentence looks like this:

This
paragraph
is
only
one
of
the
many
possible
demonstrations
of
the
substitute
command
for
splitting
lines.

132 7: Search and Replace Operations

u

u

u

There is a defect in this example in that if two or more spaces and/ or tabs appear in
succession, each is converted to a newline which results in blank lines in the output. This
is easily solved by the following command:

: . , . +2s/ [space tab] [space tab] *I\
/g I RETURN I

which tells the editor to replace any space or tab followed by zero or more spaces and/or
tabs with a newline (treating the series of one or more characters as a single entity),
and perform the substitution globally across the line. The asterisk after the second
closing square bracket tells the regular expression evaluator to look for zero or more of
the previous character which can be either a space or a tab as specified by the enclosing
square brackets. If no tabs exist in the file, the search expression can be simply two
spaces followed by an asterisk. The technique of searching for spaces and/or tabs is used
because HP-UX and other similar operating systems use the term "blank" to mean either
a space character or a tab character.

Double-Spacing Text
To double space text by placing a double newline at the end of each line, use the com­
mand:

:'!.s/$/\
/g I RETURN I

Strip Unneeded Blanks
It is often desirable to remove unneeded blanks (space and/or tab characters) at the end
of every line in a text file in order to conserve disk or tape storage space. This is easily
accomplished by using the following command:

:'!.s/[spacetab]*$1/ \RETURN\

where space tab is a single space and a single tab character (or vice-versa) placed between
square brackets. The asterisk after the closing bracket and the dollar currency symbol
after the asterisk tell the editor to search for zero or more blanks and/or tabs at the
end of every line in the file and replace them with nothing. Even blank lines that may
contain invisible blanks are trimmed to empty strings by this command.

7: Search and Replace Operations 133

Save Time by Executing a Buffer
One of the frustrating problems of working with complex substitution commands, espe-
cially if the regular expressions used involve subexpressions (subexpressions are described ~.
in detail with several examples in the sed tutorial elsewhere in this volume). You can ')
easily alter, fix, or modify a command and executed it over and over without retyping
the entire command by using buffers.

For example, suppose you made a minor mistake when typing a substitute command
which created an unwanted result. You can easily use the undo command to fix the
damage and restore the original to its state before the command was executed, but you
are now faced with retyping the whole command, and you don't have the previously
typed line to use as a reference. There is an easier way.

Fixing Errors in Commands
First, type the command on the last line in the file instead of at the bottom of the screen.
This is done by typing Go from vi while in command mode. The command moves the
cursor to the end of the file (set a marker at your old location as described in Chapter
5 if you need to return to your previous location later), then opens a new line after the
existing file.

Now, type the colon command, exactly as you normally would when using the ex com­
mand mode. When the command is fully typed, press I ESC I, then examine the command
to make sure it is correct.

When you have a fully formed command, yank the line (cursor is on the line containing
the colon command) using the technique described in Chapter 6:

" (buffer _name) Y

where (buffer_name) is the name of any buffer, a through z. The line is now in the buffer
you have specified.

To execute the buffer, type two characters:

@(buffer_name)

The command appears at the bottom of the screen, and is immediately executed. Make

n

sure the changes are correct before proceding. If they are not what you wanted, press u ~
to undo the changes, then press G to return to the line containing the command, edit as \)
needed, then repeat the procedure.

134 7: Search and Replace Operations

u

When you are finished, delete the line from the file.

Forming Multiple Substitute Commands
In complex edits, you will likely use many substitute commands. You can easily take a
previous command on the last line of the file, modify it as needed, yank it to a buffer for
execution, then repeat the process as required. Again, as before, delete the command
line from the file before you terminate the edit.

7: Search and Replace Operations 135

r!)

136 7: Search and Replace Operations

Intermediate Editing:
Editing Multiple Files 8

U As you gain experience, you will likely encounter times when you need to edit several files
in a single session. You may also need to edit two files simultaneously with the ability
to:

u

u

• Arbitrarily switch back and forth between the two files while performing similar
operations on each file, or

• Move text back and forth between two or more files without terminating the edit.

This chapter describes how to do various types of edits involving multiple files.

8: Editing Multiple Files 137

Editing Multiple Files in Succession
The most common type of multiple-file editing usually involves normal editing on two or
more files in succession. The procedure is simple and very straight-forward.

Opening the Session
As in any editing session, start by executing the vi command. The only difference between
this session and a single-file edit is that you specify more than one file to be edited. There
are several ways to do this. For example, to edit files one, two; and three in the current
directory, execute the following command:

vi one two three I RETURN I

vi opens file one and, if it exists, displays the beginning part of the file on the display
screen. If the file does not exist, the new file message explained in an earlier chapter is
displayed.

Edit the first file as if it were the only file being edited. You can close the edit on that
file by using a write (:w) or terminate (ZZ) command. If you use the :w command, a
message at the bottom of the screen shows the filename and number of lines and bytes
in the file as follows:

"myfile" 179 lines, 6511 characters

If you use ZZ, the file name and size message is displayed briefly while the file is being
written, then it is replaced by an new message indicating that you still have two files to
edit:

t more files to edit

In either case, to proceed to the next file, use the "next file" command:

:n I RETURN I

)

vi terminates the edit on the first file and opens the second file specified in the original
HP-UX command that started the session. Edit and close the second file the same way
as you did with the first file.

138 8: Editing Multiple Files

u

(\

0

u

When the third file is opened, proceed as usual, and terminate as usual. Upon termina­
tion of the last file in the series, a :wq or ZZ command closes the file, ends the session,
and returns to the shell process from which the session started. The shell then displays
a new shell prompt on the terminal display screen.

Using Buffers in Multi-File Edits
When using this method to edit multiple files, named buffers are preserved between files.
Thus you can yank or delete text into a named buffer as described in Chapter 6 while
editing one file, then copy (put or Put) the named buffer contents into a later file in
the series. The contents of the unnamed buffer cannot be transported between files, but
the last command is remembered so you can use the dot (.) command from file to file
without losing the last operation.

Going Back to the First File
Sometimes, especially on long, complex edits, you may want to make additional changes
on files already edited. You can reset the file pointer to the first file while editing any
other file (but before you close the last file) by executing the command:

:rewind

This command closes the current file (if autowrite is set) then reopens the first file for
editing. If autowrite is not set, execute a :w command then the :rewind command.

An alternate form of the rewind command can be used to abort the current file and
immediately reopen the first file:

:rewind!

8: Editing Multiple Files 139

Using Shell Characters in Filenames
When specifying filenames in the vi command line, all normal shell special characters
(sometimes called metacharacters or wild-card characters) such as * can be used. For
example, suppose you have several files, each containing a chapter in a book project and
you need to make some minor corrections in each chapter. If each file was named chap1, n
chap2, chapS, etc. the easiest way to specify the files being edited would be:

vi chap* I RETURN I

or even:

vi C* I RETURN I

if no other files in the directory started with c. You can use any legitimate expression
that the shell can correctly interpret when specifying file names. The use of shell special
characters and their expansion is discussed in any good textbook on the UNIX system
and in various HP-UX manuals that address the Bourne, C, and Korn shells and their
use.

140 8: Editing Multiple Files

u

u

u

Editing Two Files Simultaneously
Situations occasionally arise in computer programming and technical composition when
it is useful to be able to open two files simultaneously and perform editing operations on
both files with the ability to switch between files without losing the contents of buffers
or memory of the last editing operation. Such a capability enables you to conveniently:

• Delete or yank text from one file and insert it in the other and/or vice-versa,

• Perform identical changes, one pair at a time, on both files.

• Search for an expression through one file using / and ? followed by n or N, then
switch files and continue in the other file.

vi does not have the ability to handle multiple files simultaneously, but it does allow you
to switch between two files being edited without losing memory of the last operation
including yanked or deleted text using named buffers. Thus you can switch to the other
file and repeat the last change (using the . command) or put yanked or deleted text
in the chosen location in the other file. This capability works best when the autowrite
option is set as discussed in Chapter 10: ex Commands.

Opening the Files
To start editing the two files file1 and file2, open file1 with the command:

vi file1 I RETURN I

This command opens file1 and, if it already exists, copies the file into the vi workfile
buffer. Any editing operations performed at this time are placed in the buffer. The
buffer must be written to permanent storage before the second file can be opened. If the
autowrite option is set, this is done automatically. If not, the :w command must be used
before opening the second file.

To open the second file, use the external-mode command :e as follows:

: e file2 I RETURN I

vi then writes the buffer to permanent storage if autowrite is set (or clears the buffer if it
has been written already or has not been altered since it was opened), then copies file2
into the buffer area if file2 exists or opens a new file if it does not.

8: Editing Multiple Files 141

Switching Files
You can easily switch back and forth between files by using the I SHIFT H CTRL ~c:::J com­
mand (press c:::J while holding the I SHIFT I and I CTRL I keys down simultaneously). Using
this method preserves the contents of all named buffers (but not the default buffer),
search bstrindgs (huse~fby n anddd N commanfid

1
s).' etc . .' an

1
d the l~t opheratio~ (h.)fi

1
is alsdo n

remem ere . T us 1 you a text to one e m a smg e operatiOn, t en sw1tc es an
move the cursor to a desired location in the other file and press the period (.) key, the
same operation is repeated in the new current file.

The ex command, :e #(reopen previous file), when executed from vi, theoretically should
behave the same way but it tends to be susceptible to requiring a :w! command before
switching files, even when autowrite option is set, and, besides, the command requires
more keypresses.

142 8: Editing Multiple Files

n

u

u

u

Intermediate Editing:
File Manipulation Techniques 9
Vi users frequently need to perform file manipulations that include a variety of operations
such as:

• Insert the contents of an existing text file into the file being edited.

• Copy part of the file being edited into another file.

• Copy all or part of the file being edited into one or more other files.

• Split the current file being edited into several smaller files.

• Edit two files simultaneously and use shared buffers to easily move text between
the two files.

This list is not complete. There are many reasons and combinations of user needs that
require writing all or part of the buffer file to other locations in the HP-UX file system.

In addition, you may need to access the HP-UX operating system to perform some nec­
essary task without terminating the editing session. Perhaps you need to list a directory
before selecting a filename to be used with a write command to store the current workfile.
Or you may need to mail a file to someone or perform some other task. Vi provides a
"shell-escape" capability so that you can exit to a user shell to perform the task, then
return to vi.

These and other topics are discussed in this chapter.

9: File Manipulation Techniques 143

Merging Another File into Text
Probably the most common file manipulation task is merging all of an existing file into
text (vi cannot copy only part of a file; if you don't want the entire file, you must edit
it first or copy it to a different file and edit the copy if the original must be preserved n
intact). The procedure for merging a file into the file being edited is simple. Simply give
vi the following command:

: r filename I RETURN I

Vi then uses HP-UX to locate the file and copy it into the file being edited beginning
after the current cursor line. Subsequent lines in the file being edited are pushed down
to make room for the file being inserted. For example, consider the following excerpt
from a sample file:

This line represents the early part of the file.
This line is the current cursor line. - Current cursor line

This line represents the remainder of the file.

The cursor is located anywhere on the second line when the read-file command is given.
After the file is read and inserted, the cursor is moved to the first line of the inserted file
(the line following the cursor line before the insertion began). Thus, the result looks like
this:

This line represents the early part of the file.
This line is the current cursor line.
This line represents the inserted file.

This line represents the remainder of the file.
- New cursor line

The cursor is relocated to the third line and positioned at the first visible character on
the line.

144 9: File Manipulation Techniques

n

n

u

u

Merging a File after a Text Pattern
You may occasionally need to merge a file into the file being edited starting after the
line that contains a certain text pattern, although you may not know the location of the
pattern in the file. Of course, you could search for the pattern then use the :r command to
read the file being merged, but you can also combine an ex global search command with
the read command to perform the same operation. Assuming you are already familiar
with ex commands (described in Chapter 10), the command form is as follows:

: g/text_pattern/r filename

to read a file, or

:g/text_pattern/r ! HP-UX_command

to read standard output from an HP-UX command or command sequence into the file.
Also note that any standard ex line address form described in the chapter covering ex
commands can be used instead of the g address form shown. For example, consider the
following text segment from an earlier chapter in this manual:

However, be wary because if you do not exercise adequate care
in defining the string to be changed, you may get more changes
than you really wanted. For example, changing every occurrence
of the to xyz in a file also changes Athena to
Axyzna; probably not what you would want.
:g/xyz/r junk_

The bottom (command line) on the display shows an ex command that is interpreted as
follows:

9: File Manipulation Techniques 145

gfxyz/ Tells ex to search every line in the file for the text pattern xyz.

Open a new line after any line containing the pattern xyz and fill it
with the text contained in file junk. In this example, the file junk
consists of a single line containing the text, "junk file"

r

underscore
character

Represents the cursor). When I RETURN I is pressed, the following
change occurs in the displayed text:

However, be wary because if you do not exercise adequate care
in defining the string to be changed, you may get more changes
than you really wanted. For example, changing every occurrence
of the to xyz in a file also changes Athena to
junk file
Axyzna; probably not what you would want.
junk file
2 lines added

Note that since the pattern xyz appears on more than one line, the file is merged after
each line where the text appears.

This technique can be used for various purposes such as form letters or other applications.
The example shown should be sufficient for you to develop other more useful ideas.

Note

The example shown reads a file into the file being edited. How­
ever, changing the r (read file) to w (write file) does not write
the line containing text_pattern to a file, but rather writes the en­
tire file being edited to the specified file each time text_pattern is
encountered, and is therefore not useful.

146 9: File Manipulation Techniques

n

n

n

u

('
_)

The Write Command:
Saving All or Part of the Current Workfile
The ZZ command is most commonly used to save the current workfile at the end of an
editing session and was discussed in an earlier chapter. However, there are times when
you may want to save all or part of the current file in its present form elsewhere, then
edit it further. One obvious method for doing so is to copy the file before invoking vi
by using the HP-UX cp command. However, it is not uncommon to take an existing file
and edit it before creating the copy. You can avoid having to terminate the edit before
copying the file by using the :w command. As discussed in Chapter 2, the command:

: w filename I RETURN I

is used to save the current workfile in its present form in a specified file. You can also
specify that only certain lines are to be copied into the file by specifying a starting and
ending line. There are several ways to do this. For example,

: 10, 88w junk I RETURN I

tells vi to copy lines 10 through 88 into a file named J·unk. If junk already exists, you
must use the forced form of the command:

:10,88w! junk I RETURN I

which overwrites (and destroys the previous contents of) the file junk if it already exists
(if the file does not exist, a new file is created without complaint).

Other methods can also be used to identify beginning and last line. For example:
: . , . +2w junk I RETURN I

copies the current line and the two following lines into file junk. Note that the ex notation
for line numbering (. +2) is used, rather than the vi cursor command sequence 2+.

:. , $w junk I RETURN I

copies the current line through end-of-file into file junk.

When using this command, you can use any combination of addressing methods that
is recognized by ex as described in Chapter 10. Several methods are illustrated in the
remainder of this chapter.

9: File Manipulation Techniques 147

Using File Markers
File markers can also be used to specify start and finish lines. Markers can be accessed
by using the accent grave (') or apostrophe (') in normal editor operation. The accent
grave is used to move the cursor to the exact location where the marker was placed,
while the apostrophe moves the cursor to the first visible character of the line where the n
marker was placed. When using file markers to locate beginning and ending line in a file ·. ,
write command, only the apostrophe form can be used. Thus, to write all of the current
file from marker a through marker c, use the command:

:'a, 'cw junk I RETURN I

If both markers reside on the same line of the file, only one line is written to the output
file. If you attempt to write part of a line by placing both markers on the same line then
using the accent grave form to identify cursor location, an error message results and no
write operation is performed.

Using Text Patterns
As with any ex command that uses line addresses, a text pattern can be used instead
of a line number to define beginning and/ or ending line in the file being written. For
example,

: .,/pattern/w! junk

writes all lines starting withe the current line through the line containing the text pattern
pattern to the file J'unk. The exclamation point (!) forces the file to be overwritten if it
already begins. Likewise,

:/pattern_a/,/pattern_b/w! junk

writes all lines starting with the line containing pattern_a through the line containing
pattern_b to file j'unk with overwrite if the file exists.

Other combinations are also possible using addressing forms discussed in the chapters
dealing with ex commands.

148 9: File Manipulation Techniques

u

u

u

Appending to a File
You can also append to an existing file instead of writing to a file by using the "double
redirection" symbol. For example, to write lines 1 through 25 to a file named junk then
append lines 150 through 200 to the same file, use the sequences:

: 1, 25w junk I RETURN I

then

: 150, 200w »junk I RETURN I

To append the entire workfile to an existing file named existingfile, use:

:w >>existingfileiRETURNJ

If the named file does not exist, the specified text is written to a new file having the
specified name. This is a useful way to write the file and ensure that any existing text is
not overwritten as well as a convenient means of merging text from various sources.

9: File Manipulation Techniques 149

Changing File Names
In the course of normal editing, you will commonly encounter the need to change the
name of the file being edited before writing or closing a session, or storing various versions
of a file under multiple names that are similar, yet unique. ()

Amending Current Filename During Write
Another version of the write command can be used to amend the name of the file slightly.
For example, suppose you are currently editing file filename and execute the following
command:

:w %1 I RETURN I

Vi remembers the filename used when it was invoked, in this case filename. The percent
sign (%) is used to represent the name of the file currently associated with the buffer
file. Thus, when the example command is executed by vi, the 1 is appended to filename,
and the buffer is stored in file filename1. Note that if a directory pathname is associated
with %, the new file will be stored in same directory as filename.

Other variations on these basic themes can be used. Possibilities should be self-evident
as you gain experience.

Changing the Name of the Current File
Sometimes, as when creating various versions of a given file, it is helpful to be able to
write the current file, change the current file name to something else, edit the file again
and store it under the new name, and possibly continue ad infinitum, ad nauseum. To
change the name of the current file, execute the ex :file command as follows:

:file new_filename I RETURN I

150 9: File Manipulation Techniques

u

u

u

Piping the Workfile to a Command
All or part of the current workfile can be piped to the shell (actually a new shell is
spawned) for filtering or other processing. A shell can also be spawned and results from
the process inserted or appended to the current buffer file. The techniques used for
performing such tasks are described in detail along with several examples in Chapter 11
which is entitled Advanced Editing: Shell Operations.

Escaping to an HP-UX Shell
Vi provides an escape mechanism for escaping to an external HP-UX shell where you can
run programs, manipulate files, or perform other tasks. This is accomplished by entering
External Mode (as discussed in Chapter 1) then using the shell-escape character (!) as
follows:

: ! command I RETURN I

Command can be any valid HP-UX command. If you need to perform several HP-UX
operations before returning, you may prefer to spawn a new user shell from which you
can execute the commands and later use a logout command or keypress sequence to
return to the undisturbed editing session. You have several options.

You can use the ex command sh to spawn a new Bourne shell directly from the editor as
follows:

: sh I RETURN I

This command can only be used to access the Bourne shell. It cannot be used to access
any other shells such as C shell, Korn shell or a custom shell you might have written
yourself.

A second method involves typing only one more character, but creates a different sequence
of events to obtain an equivalent result. It also provides access to any available shell on
your system. Here are three examples:

: ! sh I RETURN I to access the Bourne shell

: ! csh I RETURN I

: ! ksh I RETURN I

to access the C shell

to access the Korn shell

9: File Manipulation Techniques 151

This command form behaves as follows:

• The :! sequence spawns a new user process {Bourne shell) to execute an HP-UX
command.

• The remainder of the command is the name of a shell program name such as sh,
csh, or ksh. The shell spawned by the :! sequence then spawns a new process to
execute the shell you specified on the remainder of the line.

This means that the preferred method for spawning a Bourne shell is to use the ex
command :sh, but for other shells, the :! form must be used. If you use the latter form to
access the Bourne shell, you might get questioned by a System Administrator who has a
preference for reducing the number of open processes on a multi-user system, but aside
from that either approach is equally effective and does not measurably affect system
performance.

When you are ready to return to the editor, type the normal logout sequence for the shell
you are using or use the exit command if it is supported by the shell. This terminates
the processes that were spawned during the detour from the editing session, and resumes
the editing session. You will probably have to press another key such as I RETURN I or the
space bar to redraw the screen if the :! command form was used. Also remember that
you must eventually return to vi to prevent possible loss of the buffer file unless you have
written it to permanent storage immediately before executing the shell-escape command. n
Dealing with Special Characters
The command interpreter in vi/ ex is similar in some respects to the C-shell interpreter
in csh. Thus the special characters used by csh are also significant to vi when using
shell escapes. This can be a problem if you are sending mail by using a vi shell escape.
For example, suppose you used a command similar to the following to originate a mail
message:

: !mailx ihxp5!netsys_a!corpsys_b!john

This tells vi to spawn a new shell to handle mail, run the mail program, and originate
a message to John who resides on corpsys_b that can be accessed by our system by
making two hops through backbone systems ihxp5 and netsys_a. Or does it? csh uses
the exclamation point {!) to represent the previous command. Other characters such as
% are also significant to the command interpreter (% represents the current filename).
To successfully mail a note, use a backslash (\) to escape the special character. Thus
the previous command should be: n

152 9: File Manipulation Techniques

: !mailx ihxp5\!netsys_a\!corpsys_b\!john

If the address includes a path to an external mail handler such as HP-mail on HP 3000 u systems where% is used, the% should also be preceded by a backslash.

u

u

csh special characters include the following:

! & I % + - * ? I ~ < . > < > && I I « » # ; and $

Which of these characters is interpreted as a special chru:acter depends on the context
in which it is used. In any case, preceding the character with a backslash cancels its
interpretation as a special character.

9: File Manipulation Techniques 153

Using Tag Files to Edit Large
or Multiple Programs
vi and ex include a tag-file capability that, when used in conjunction with the ctags(l)
command (see HP-UX Reference for information about the ctags command), greatly
simplifies editing random code segments in a large program or group of programs. This
section uses a simple example to illustrate the general technique. Expanding the tech­
nique to extremely large multiple-file code structures, however, is not difficult.

The Program File
An example Amigo-protocol line printer driver program is shown in one of the appendices
in the Device I/0 Library tutorial (not contained in this volume). Here are two excerpts
from that program which is about nine printed pages long in total. For this example,
the program is stored in file program_file in the current directory. Each line in the file is
preceded by a line number.

Excerpt from C Program Source File

Segment 1:

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

I* ROUTINE TO DO THE MAIN I/0 TO THE BUS */
I* lock bus, do preamble, read/write, do postamble and unlock bus *I
I* preamble must be 3 or 4 bytes, postamble must be 1 or 2 bytes *I
int
HPIB_msg(rw_flag, pcm1, pcm2, pcm3, buffer, length, ocmO, ocm1)
int rw_flag;
int pcm1;
int pcm2;
int pcm3;
char *buffer;
int length;
int ocmO;
int ocm1;
{

unsigned char pre_cmd[4];
unsigned char post_cmd[2];
int tlog = -1;

pre_cmd[O] = UNL;
pre_cmd[1] = pcm1;
pre_cmd[2] = pcm2;
pre_cmd[3] = pcm3;

post_cmd[O] = ocmO;
post_cmd[1] = ocm1;

I* always issue unlisten command first *I

154 9: File Manipulation Techniques

u

u

u

297
298
299
300
301

Segment 2:

I* first get exclusive use of the bus *I
if (io_lock(eid) < 0)

fatal_err("io_lock", ptr_dev. F_EXIT);

I* do the amigo clear followed by selective device clear *I
amigo_ clear()

375
376
377
378
379
380 }
381
382
383
384
385
386
387
388
389
390 }
391
392
393
394
395
396
397
398
399
400 }
401
402
403
404
405
406

{

HPIB_msg(H_WRITE, MTA, DLA, SCG_BASE + 16, "\0", 1, SDC, UNL);

I* get the dsj
int

byte *I

amigo_dsj 0
{

unsigned char dsj_byte[1];

HPIB_msg(H_READ, MLA, DTA, PR_SEC_DSJ, dsj_byte, 1, UNT, 0);
return(dsj_byte[O]);

I* return the amigo status byte *I
int
amigo_status 0
{

unsigned char status_byte[1];

HPIB_msg(H_READ, MLA, DTA, PR_SEC_RSTA, status_byte, 1, UNT, 0);
return(status_byte[O]);

I* output a buffer to printer *I
amigo_write(buffer, length)
char *buffer;
int length;
{

407 int status, dsj = 0;
408
409 I* write the buffer *I
410 HPIB_msg(H_WRITE, MTA, DLA, PR_SEC_DATA. buffer, length, UNL, 0);
411 again:
412
413
414
415
416

I* now wait for parallel poll response *I
if (Debug) printf("'Y.s Ppoll wait\n", ptr_dev);
if (hpib_wait_on_ppoll(eid, Ox80>>devba, 0) < 0)

fatal_err("hpib_wait_on_ppoll". ptr_dev. F_EXIT);

9: File Manipulation Techniques 155

417
418
419
420

I* a DSJ is required to remove the ppoll response from device *I
if (dsj = amigo_dsj()) {

if (Debug) printf("Y.s DSJ = OxY.x\n", ptr_dev, dsj);

421 status= amigo_status();
422
423

if (Debug) printf("Y.s STATUS= OxY.x\n", ptr_dev, status);
goto again;

424 }
425 }
426

I* output error message and conditionally abort *I
fatal_err(message, fname, flag)

427
428
429
430
431
432
433
434
435
436
437
438
439 }

char *message;
char *fname;
{

fprintf(stderr, "%s: Error - %s of %s "
if (errno) perror("");

procnam, message, fname);

else fprintf(stderr, "\n");

if (flag == F_RTRN) return;
if (flag== F_EXIT) exit(2);
exit(3);

Creating a Tags File
Before the tags option can be used with vi, the tags file must be created by the ctags
command. To create a tags file on the example file, Execute the ctags command on file
program_file as follows:

ctags program_file IRETURNI

This command produces a new file nameq. tags in the current directory. File tags contains
the following information:

HPIB_msg program_file
buffer, 1/

Mprogram_file program_file
amigo_clear program_file
amigo_dsj program_file
amigo_identify program_file
amigo_set_pmask program_file
amigo_status program_file
amigo_write program_file
fatal_err program_file

1·216 HPIB_msg(rw_flag, pcm1, pcm2, pcm3,

1·128 main(argc, argv)$/
;·377 amigo_clear()$/
;·384 amigo_dsj()$/
;·334 amigo_identify()$/
;·371 amigo_set_pmask()$/
;·394 amigo_status()$/
;·403 amigo_write(buffer, length)$/
;·428 fatal_err(message, fname, flag)$/

156 9: File Manipulation Techniques

()
I

u

u

Creating a Tags File for Multiple Files
ctags is most useful when you have a large collection of mixed C and Fortran (and possibly
Pascal) source files. For example, suppose you have a collection of program files located
under various directories that are, in turn, all collected under a single parent directory.
For this example, suppose all C source file names end with .e, FORTRAN source file
names end with .f, and Pascal source files end with .p. To create a single tags file, change
to the parent directory of the directories containing the source files (cd command), then
execute the command:

ctags *l*.[cfp] (RETURN!

The result is a new tags file in the current directory. You can also specify other path
names to the files of interest if they reside in other directory trees or subtrees.

When using this or an equivalent method, ctags complains if it creates a tag from a given
file then finds another tag having the same name in another file. When such duplicate
names are encountered, the first tag is retained and subsequent tags are not included.
This is usually not a big problem, but care should be taken to avoid duplicate names.
This condition can also occur when a program line looks like a procedure declaration but
isn't.

Using the Tags File
Suppose you want to edit the code segment amigo_identify. Suppose further that file
program-file is only one of a complex collection of programs and program segments and
you don't have time to sift through 500 pages of source code listings to find which file
contains the code segment. Fortunately for you, someone has run ctags on the entire set
of files and the previous tags listing is only a small segment of the total tags file. You
have three options:

• Use the -t option on the vi or ex command,

• Use the :ta command from vi or ex while editing a program source file, or

• While editing a program source file, place the cursor on the first character of the
name of a program tag (such as on the line that calls a tagged subroutine) and
press I CTRL HJJ.

9: File Manipulation Techniques 157

Note

When using tag files, the current directory must be the directory
containing the tags file. However, since the path to the file to be
edited is specified on each line in the tag file, it is not necessary
that the file being edited be in the same directory.

If starting a new session, execute the command:

vi -tamigo_identify I RETURN I

or:

ex -tamigo_identify I RETURN I

where the -t option tells vi (or ex) to use the specified tag from the tags file to determine
which file to edit. vi searches the tags file for the identifier amigo_identify in the first
column. The second column on the same line contains the name of the file where the
code segment resides. vi opens the file, then uses the third column on the tag line as a
search string to find the requested code segment. A few moments after the command is
given, vi produces the following image on the screen with the cursor in the first column n
of line 334:

158 9: File Manipulation Techniques

u
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

}

fatal_err("hpib_send_cmnd postamble", ptr_dev, F_EXIT);

I* at last unlock the bus so other bus users can access it *I
if (io_unlock(eid) < 0)

fatal_err("io_unlock", ptr_dev, F_EXIT);

return(tlog);

int
amigo_identify()
{

unsigned char identify[2];

I* TLK31 (UNT) is special for amigo identify *I
I* finish with a MTA (UNT is not save for non-amigo devices) *I
HPIB_msg(H_READ, MLA, UNT, SCG_BASE + devba, identify, 2, MTA, 0);

switch(identify[O]) {
case 32:

I* Amigo identify *I
switch(identify[1]) {

346 case 1: return(T2608A);
"program_file" 439 lines, 14254 characters

Editing other Program Segments
Programmers often change several program segments during an editing session. This can
become especially cumbersome as programs become large or involve a large number of
files. Using tags to move around greatly simplifies the problem, and you can move from
file to file without terminating vi (or ex) by using the :ta command.

Again using the previous example tags file, suppose you have modified amigo_identify
and want to look at HPIB_msg. Simply execute the external-mode vi/ ex command:

: ta HPIB_msg I RETURN I

or place the cursor under the H in HP- IB_msg on line 340 and press I CTRL ~OJ.

The editor examines the tag file then immediately moves back in the current file and
displays line 276 at mid-screen with the cursor at the beginning of the line. Since the
new tag is in the file currently being edited, no file change is needed so the editor does
not write the buffer back into permanent storage before moving to the new tag.

9: File Manipulation Techniques 159

When the New Tag Opens Another File
Suppose you decide to edit the file containing tag new_tag. Using the command:

:ta new_ tag I RETURN I

(or I CTRL ~[I]) causes one of two results. If the autowrite option has not been set (options ,!)
are discussed in the chapter entitled Configuring the Vi/Ex Editor) and the file has not
been preserved by using the :w command, the editor ignores the new tag command and
displays the following error message at the bottom of the display screen:

No write since last change (:tag! overrides)

To recover, save the buffer by executing:

:w I RETURN I

or

:set autowrite

then repeat the :ta new _tag command.

If the autowrite option is set and the :ta command needs to open a new file, the current
buffer is written back to permanent storage before the new file is opened.

Overriding Autowrite when Changing Files
You may occasionally need to change to another file after changing the current file, but
for some reason you do not want to overwrite the original file (in other words, abort the
edit and continue on another file). You can use the tag command to abort the current
file without writing it back and open a new file by using the command form:

:ta! new_tag I RETURN I

The exclamation point after the :ta tells vi to abort (same as :q!) and open a new tagged
file. To write the current file to a modified filename before changing can be done by using
a write command where the filename is of the form %text where text is the character or
characters used to alter the original filename as discussed earlier in this chapter under
the topic Changing File Names.

160 9: File Manipulation Techniques

n

u

u

Important

The tag command writes the current buffer only when changing
files with the autowrite option set. The tag command followed
by an exclamation point unconditionally aborts the current edited
file and opens a new file. Any changes made to the current file are
always lost when :ta! is used.

9: File Manipulation Techniques 161

162 9: File Manipulation Techniques

u

u

u

Using Ex Commands 10
This chapter discusses how to use ex commands from the ex editor and from vi as ex­
mode commands (colon commands). Most commands are used identically from either
editor. Any exceptions are explained in the command description.

Access to these commands is obtained from vi by typing a colon while in command mode.
Start-up and use of vi is discussed in previous chapters starting with Chapter 2.

These commands can also be directly accessed when using ex instead of vi. Few HP-UX
users use ex directly because most of them prefer to access ex features directly from vi.
However, if you need to use ex directly, Chapter 13 describes the necessary procedures.

Colon Commands
The user prompt displayed by ex when it is ready for a new command is the colon. If you
are in vi command mode, typing a colon switches vi to ex (external) mode so that you
can use any appropriate ex command without leaving vi except for while executing the
command. For this reason, ex commands are often referred to as colon commands when
used from vi. To form a colon command, the colon character, whether an ex prompt or a
vi command, is followed by a command sequence that can be any legitimate ex command.
To execute the command, press I RETURN I or I ESC I after typing it.

10: Using Ex Commands 163

Command Format
In general, ex commands follow a format resembling:

Standard form:

or

Variant form:

Element

(line_ address)

(command)

(command)!

(parameters)

: (line_ address) (command) (parameters) (count) (flags)

:(line_address)(command}! (parameters)(count)(flags)

where all items except the colon are optional and can be in­
cluded or omitted as the situation dictates. The function of
each item when present in a command line is as follows:

Elements in a Command Line and Their Purpose

Description

Start of command (vz) or prompt (ex). To avoid confusion over
whether a colon was typed from vi or automatically provided ,r-'\
by ex and whether another colon needs to be typed, the ed- \)
itor ignores the second colon if one is present (three colons,
however, produce an error message).

Defines which line or lines are to be processed by the com­
mand. For commands that accept an address, zero, one, or
two addresses may be present. If more addresses are provided
than the command can use, extra addresses are ignored begin­
ning with the first. If no address is present but one is needed
by the command, the current line is assumed.

Defines the type of operation to be performed. If no command
is provided, the last previous command is repeated.

Specifies the variant form of (command) if available. Some
default variants can be controlled by (options) in which case
the ! serves to toggle the default.

Arguments or options to a command such as option names n
in a :set command, file name in an :edit' command, regular
expression in a :substitute command, or a target address for a
:copy command.

164 10: Using Ex Commands

u

u

u

(count)

(flags)

Usually specifies the number of lines affected by (command).
Optional or required, depending on the command. Value is
rounded down if rounding is necessary.

Identifies action to be taken upon completion of (command).
Flag characters include p (print line), c (confirm each change
before making it), and g (repeat (command) globally across
the line). Any number of + or - characters can be used im­
mediately before a flag to introduce an offset from the current
line before executing the action specified by the flag. With
the exception of the confirm and global flags associated with
substitutions, flags are of little interest to vi users although
they can be important when using ex on an electro-mechanical
printer/ terminal.

The topics that follow describe the components of a command line in greater detail.

Line Address Primitives

The first item after the colon is usually a line address of some form (if absent, the current
line is assumed) unless the command does not require or does not accept an address. A
missing address or a single address identifies a single line. Two line addresses separated
by a comma specify the starting and ending line for a group of contiguous lines. ex
recognizes the following line address forms which are sometimes referred to as addressing
primitives:

Address

1
$

n
. -n
. +n
%

Corresponding Line in the File Being Edited

First line in file.
Last line in file.
Current line.
nth line in file.
nth line before current line .
nth line after current line .
Abbreviation for 1 , $ which means every line in the file.

10: Using Ex Commands 165

I (pattern) I
or
? (pattern)?

••
or
• (marker_name)

Searches forward (/) or backward (?) respectively for a line con­
taining text that matches (pattern) where (pattern) is any regular
expression, usually a string of text characters. The number of that
line is then used as an address. Searches normally wrap around the
end of the buffer file. If you only want to print the next line con­
taining (pattern), the trailing I or ? can be omitted. If (pattern)
is omitted or explicitly empty, the last previous regular expression
used in a pattern search is substituted for (pattern).

Used to locate previously-marked lines. Before each non-relative
motion of the current line (.), the previous current line is marked
with a tag, subsequently referred to by a double single quote (acute
accent) character pair (• •). Thus you can easily refer or return to
this previous location. A line can also be marked by using the
mark command followed by a (marker_name) consisting of any
single lowercase letter in the range a through z. Marked lines can
then be referred to in addresses by using (marker_ name) preceded
by a single quote (').

Combining Addressing Primitives for Multiple-Line Operations
One or more addressing primitives can be combined (with the use of appropriate sep- (j
arators) to specify a group of lines that are to be subjected to (command) where each , ·
separator character is a comma(,) or semicolon(;). Such address lists are evaluated from
left-to-right. When addresses are separated by ; the current line address (.) is set to the
value of the addressing primitive immediately preceding the ; before the next address is
interpreted. If the command line contains more addresses than the command requires,
all but the last one or two are ignored. If two addresses are required by the command
the line identified by the first address must precede the second-line position in the buffer
file. A zero-character address can be used in an address specification, in which case it
defaults to the current line. Thus , 100 is equivalent to . , 100 and , +5 is equivalent to
. , .+5. Providing a prefix address for a command that expects none produces an error
diagnostic.

166 10: Using Ex Commands

Here are several examples of commonly used address forms including single-line addresses
and combined addressing primitives for multiple-line operations:

Address1

1
n

. -4

. +8
$
g

1' .
. ,$
. ,.+5
1,.+5
. -10,.+5

Examples of Colon Command Line Address Forms

Affected Line(s)

First line in file.
Line n in file.
Current line in file.
Fourth line before current line in file .
Eighth line after current line in file .
Last line in file.
All lines in file.
All lines from beginning of file to current line.
All lines from current line to end of file.
Current line through fifth following line .
First line in file through fifth line after current line.
Tenth preceding line through fifth following line .

Pattern searches and markers can also be used to specify lines in the buffer file that are
to be subjected to (command). Here are some examples of how they are used:

Address1

l(reg_exp1)I

?(reg_exp1)?

I (reg_exp1) I, I (reg_exp2) I

Affected Line(s)

First line in forward search direction containing text
pattern that matches the valid regular expression
(reg_ exp1) .

First line in backwards search direction containing
text pattern that matches the valid regular expression
(reg_exp1).

First line in forward search direction containing a
text pattern that matches the valid regular expression
(reg_ exp1) through first following line in forward search
direction containing a text pattern that matches the
valid regular expression (reg_ exp2). Second line must
not precede first line in file due to end-of-file wrap­
around.

1 Space characters after the colon and on either side of the comma are optional but not normally used.

10: Using Ex Commands 167

?(reg_exp2)?, ?(reg_exp1)?

'' ,.

'(marker_l), '(marker_2)

168 10: Using Ex Commands

First line in backwards search direction containing a
text pattern that matches the valid regular expression
(reg_exp1) through first encountered line in same search
direction containing a text pattern that matches the
valid regular expression (reg_exp2). Line containing
(reg_exp1) must not precede line containing (reg_exp2)
in file due to beginning-of-file wrap-around.

All lines starting with previous current line through
current line (previous line must precede current line in
file).

All lines starting at line containing (marker_l) through
the line containing (marker_2). (marker_2) must not
precede (marker_2) in file. The name of each marker
is any distinct lowercase letter in the range a through
z.

u

u

u

Building the Command
Once the address has been defined and structured, you are ready to form the command
part of the line. Most command names are English words, and the first letter in the
word or a prefix form of the word is acceptable as an abbreviation. However, similarity
between two commands can result in an ambiguous or conflicting abbreviations if not
properly resolved. All such ambiguous abbreviations are resolved in favor of the more
commonly used commands. Thus, for example, the abbreviated form of the substitute
command is s, while the shortest available abbreviation for set is se because substitute
is used more often by more people than set.

Command Parameters
The number and type of parameters associated with each command varies, depending
on the command. This section describes those parameters, their purpose, and use.

Address Parameter
Many commands require one or two addresses where each address can have any of the
valid forms previously described. Some commands can use either one or two addresses.
If only one address is present, operations are performed relative to that line. If two
addresses are present, they identify the starting and ending line in the text block that
is to be processed by the command. If no address is provided on the command line but
one is required by the command, the current line is assumed.

Command Name
The command name or its abbreviation comes after the address (if any). A complete list
of command names and corresponding abbreviations follows this section along with a full
description of each command and its use. Some commands require other information or
parameters that are always appended following the command name; for example, option
names in a set command, a file name in an edit command, a regular expression in a
substitute command, or a target address for a copy command as in 1 . 5 copy 25 or . , . +5
copy 12.

10: Using Ex Commands 169

Flags and Options After Commands
Various flags and options can be used after many commands to specify additional action
to be taken upon completion of the command. They include the following:

Flag Option Description

p

c Confirm option used mainly with the substitute com­
mand., Confirm each change before continuing to next.
Editor displays the line being changed with a circumflex
(A) underneath each character that will be affected if the
change is made. To accept the change, press [Y] then
I RETURN 1. To reject it, type[]] (or any other character
except [YJ then I RETURN I, or simply press I RETURN 1. 1

g Global option. If proper conditions exist, execute
(command) across entire line. This flag is most com­
monly used with the substitute command where a text
pattern to be changed may exist more than once in a
given line. If the g flag is not present, only the first
matching pattern in the line is changed. With the g
flag, the text pattern is processed every time it appears
in the line.

Print flag. Print the current line after (command) has
been processed. Has no effect if colon command is initi­
ated directly from vi.

List flag. Print the current line after (command) has
been processed, but also show the position of tab char­
acters and end-of-line position. Has no effect if colon
command is initiated directly from vi.

Print-line-number flag. Print the current line after
(command) has been processed, but precede the printed
line with its corresponding line number in the current
buffer file.

vi users have no need to use the P flag since the display shows the current file contents
at all times. The r option that is used with the substitute command is equivalent to the
& command and is described later with the substitute command.

This option does not work correctly on HP-UX Release 5.2 on Series 500 systems. It behaves as described,
except that no changes are made in the buffer file, even if the change response is "yes".

170 10: Using Ex Commands

n

n

If you are running ex directly (or after a Q command from vz) instead of accessing ex
commands from vi, ex normally prints the new current line after each change, so p is still
rarely necessary. Any number of + or - characters can also be given with these flags if
you are using ex to move the current line in the specified direction. If any + or - flags are
present in the command, the specified offset is applied to the current line value before
the printing command is executed. For example, the command :sfnewfold/p+++ would
print (display) the third line following the modified line.

Comments
Comment commands are ignored by the editor. This feature is useful when making
complex editor scripts where explanatory comments are needed. Any line beginning with
a double quotation mark (11

) is treated as a comment and no action results. Comments
beginning with 11 can also be placed at the ends of commands, except in cases where they
could be confused as part of text (as in shell escape sequences or in substitute or map
commands).

Multiple Commands per Line
Multiple commands can be combined on a single line by separating adjacent commands
with a I character. However, global commands, comments, and the shell escape ! must
be the last command on a line because they are not terminated by a I .

Using the I Command Separator Character in :map Commands
The vertical bar character (1), since it is used as a command separator, must be escaped
when using it in a :map command in order to protect it from interpretation as a sep­
arator between two commands on the same line. To escape the character, it must be
preceded by a AV. However, the AV character is also interpreted as a special character,
so it must, in turn be preceded by another AV. Thus to place a vertical bar command
separator character in an argument to the :map command, you must press I CTRL ~W
twice, followed by the I key.

Reporting Large Changes
Most commands that change the editor buffer file contents give feedback whenever the
scope of the change exceeds a threshold set by the report option. This feedback helps
detect undesirably large changes so that they can be quickly and easily reversed with an
undo. When using commands that have a more global effect (such as global or vi) you
will be informed if the net change in the number of lines in the buffer file during this
command exceeds the threshold.

10: Using Ex Commands 171

Ex Command Descriptions
As we said before, all ex commands are constructed around a variation on the following
form:

<address> <command> ! <parameters> <count> <flags>

where all parts are optional (or not allowed in some cases as described later). The
simplest case in ex is the empty command which prints the next line in the file (if part
of a vi colon command, it does nothing). To preserve user sanity when operating from
vi or visual mode from ex, ex ignores a : preceding any command.

In the following command descriptions, the command, its standard abbreviation, and
default value (if any) are shown in the left column.

Define an Abbreviation for Use as a Typing Aid (vifex)

Command Format Command Description

:abbreviate (word) (text) Adds the specified abbreviation to the current list of
or abbreviations. (word) is the abbreviated form of (text)
:ab (word) (text) that is being defined by the command. When vi is in

insert/append mode, if (word) is typed as a complete
word (whitespace before and after), the editor expands
the abbreviation, replacing it with (text). Defined ab-
breviations are discarded at end of editing session. No
address is allowed with this command.

vi/ ex maintains a table of abbreviations that can be used as typing aids. When a text
pattern is typed that matches the abbreviation (word) and it is preceded and followed by
a whitespace character, (space, tab, or end/beginning-of-line) the pattern is replaced by
(text) in the buffer file and on the display screen. The table of abbreviations is destroyed
at the end ofteach session. To construct a permanent set of abbreviations, use a .exrc
file in your home directory as described in Chapter 12 entitled Configuring the Vi/Ex
Editor.

172 10: Using Ex Commands

n

n

u

u

u

For example, to abbreviate the term "cathode ray tube" as "crt" for ease in typing, use
the command:

:abbreviate crt cathode ray tube IRETURNI
or

:ab crt cathode ray tube IRETURNI

Whenever you type the abbreviation, the editor will automatically expand it to the full
form if it is preceded and followed by whitespace (space, tab, or end/beginning of line).

Cancel a Previously Defined Abbreviation (vi/ex)

Command Format Command Description

:unabbreviate (word) Delete (word) from the list of abbreviations.
or
:una (word)

For example, to cancel the previous abbreviation for "crt", type the command:

unabbreviate crt IRETURNI
or

una crt I RETURN I

Append Text after Specified or Current Line (ex only)

Command Format Command Description

:append (text) Inputs one or more lines of new text, starting after the
or specified line. If the address preceding the append com-
:a (text) mand is the current-line address (.) or absent, new
Default addr: current line (text) is placed after the current line. If address zero (0)
Uses one address is given, (text) is placed at the beginning of the buffer

file. To terminate the append, type • at the beginning
of a new line then press I RETURN I with no further text
on that line. This command is not recognized by vi in
ex mode.

This command is used to enter new text after the specified or current address. Press
return after the :a or :append, type the text being added, then press I RETURN I after the
last (or only) line being added followed by . and I RETURN I to terminate input.

10: Using Ex Commands 173

For example, to add three lines after the 12th line following the current line, type:

: . +12a I RETURN I
This is added line 1. I RETURN I
This is added line 2. I RETURN I
This is added line 3. IRETURNI
. I RETURN I

Append Text but Toggle Autoindent Option (ex only)

Command Format Command Description

:append! (text} Same as append except the variant flag on append tog-
or gles the setting of the autoindent option to its opposite
:a! (text} state for the duration of text input. Upon termination
Default addr: current line of append, autoindent reverts to its normal state. This
Uses one address command is not recognized by vi in ex mode.

For more information about autoindenting, refer to the discussion near the end of Chapter
4 which treats the subject of manipulating text, and the :set autoindent command in
Chapter 12, Configuring the Vi/Ex Editor.

Print Current Command Argument List (vifex)

Command Format Command Description

:args This command prints the members of the argument list
or that was provided as part of the HP-UX command line
ar when the editor was started. The current argument is

delimited by left and right brackets in a form resem-
bling: (... arg arg [arg] arg arg ...). No address or other
arguments are allowed with this command.

This command is sometimes useful when you are editing several files in succession and
need to know which file in the list of files is currently being edited or what other files are
in the list.

This command can be used only in the following form, exactly as shown, with no other
arguments:

: arg I RETURN I

174 10: Using Ex Commands

If)

u

Change One or More Lines to New Text (ex only)

Command Format Command Description
:change (count) (text) Replaces lines specified by (count) with the input (text).
or Upon completion, the current line becomes the last line
:c (count) (text) in (text). If no text is provided, the command is treated
Default addr: current line as a delete. Uses one address if (count) is specified or
Uses one or two addresses implied or two address if changing multiple lines without

using (count) .

This command can be a bit confusing because it can take several line addressing forms
including:

First and Last Address Specified:

: (start_ addr), (end_ addr)c I RETURN I

Starting Line and Number of Changed Lines Specified:

:(start_addr)c(line_count} I RETURN I

Start at Current Line with Number of Changed Lines Specified:

:c(line_count) I RETURN I

Replacement text is then typed on subsequent lines following the form described for the
append command.

The templates above show the general form of the command. Any accepted address can
be used, whether line number, marker, or regular expression; provided it can correctly
identify the line or lines being affected by the command.

Here is an example where 13 lines are replaced by three lines starting at the second line
after the current line:

: . +2c13 I RETURN I
This is changed line 1. RETURN
This is changed line 2. RETURN
This is changed line 3. RETURN

I RETURN I

10: Using Ex Commands 175

Change One or More Lines to New Text but Toggle Autoindent (ex only)

Command Format Command Description

:change! (count) (text) Same as :change except the variant flag on :change
or toggles the setting of the autoindent option to its oppo-
:c! (count) (text) site state for the duration of text input.
Addressing: same as above

Change Current Directory (vijex)

Command Format Command Description

:cd (directory_ name) Changes the current working directory to the directory
specified by (directory_name). If autowrite is set and
the file has been modified, the buffer file is written to
permanent storage before the change is made. If au-
towrite is not set, the file must be written to per-
manent storage before the command can be executed.
To change directories without writing the current buffer
file to permanent storage, use the command form :cd!
(directory_ name).

This command has no effect unless the :edit (file) or :n (file) command is used. The
current buffer file is written to permanent storage (if autowrite is set) or discarded as
appropriate, and the new file is opened from the new directory specified by the :cd
command. If autowrite is not set, the current buffer must be written before the directory
can be changed unless you override with a :cd! command. This lockout feature prevents
you from changing directories then writing the current buffer into the wrong directory
after making the change. You can use this feature to move from directory to directory
and edit various files without terminating and restarting vi or ex between each file. When
you terminate the editor program with ZZ or the quit command, the current directory
changes back to what it was before editing started. This command does not affect the
location of the directory where the buffer file is stored (the buffer directory is determined
by the :set directory command described in Chapter 12).

176 10: Using Ex Commands

n
\ '

n

n

u

u

u

Any legitimate directory and pathname descriptors can be used when specifying
(directory_name}, including .. and •. If the :cd! form of the command is used, the
buffer file is not lost. If this command is used during an editing session, commands such
as :w and ZZ write the buffer to a file whose name matches the current filename being
edited. Thus, if you are editing a file named file_ a in directory directory_X then change
to directory_ Y, :w or ZZ writes the buffer to a file named file_ a in directory_ Y, creating
a new file if necessary. If directory_ Y already contains a file of that name, the existing
file is overwritten by the new buffer file contents.

Copy One or More Lines to New Location (ex only)

Command Format Command Description

:copy (address) (flags) A copy of the lines specified by the address primitives
:co (address) (flags) that precede the copy command is placed after the line
or identified by (address) which can be zero. Upon com-
:t (address) (flags) pletion, the current line (.) addresses the last line of the
Default addr: current line copy. The :t command is a synonym for :copy. Ad-

dressing rules are the same as for the change command
with or without (count). (flags) is pertinent only when
using ex instead of vi.

The addressing parameters preceding the copy command are similar to the addresses
preceding the change command. A single address (or implied single address) copies one
line to the specified target address (address}. Two addresses, when present or implied,
specify the starting and ending line when multiple lines are to be copied.

Commands can have any of the following general formats:

First and Last Address Specified:

:(start_addr),(end_addr}co (destination_address} I RETURN I

Starting Line and Number of Copied Lines Specified:

:(start_addr)co(line_count) (destination_ address) I RETURN I

Start at Current Line with Number of Copied Lines Specified:

:co(line_count) (destination_address) I RETURN I

10: Using Ex Commands 177

Here are some examples:

• Copy the second line after the current line, placing it after Line 13 in the current
file:

: . +2co13 I RETURN I

• Copy the current line through the second line after the current line (three lines
total), placing them after Line 22 in the current file:

: . , . +2co22 I RETURN I

• Copy the entire buffer file, placing it after the last line. This produces the equivalent
of two files concatenated head-to-tail in a new single file and is equivalent to the
HP-UX command, cat buffer_file »buffer_file :

:%co$ I RETURN I

Flags:
The copy command accepts the following flags:

Print current line preceded by line number after copy.

p Print current line without line number after copy.

Encrypt Files (vifex)

Command Format Command Description

:cr If your system is properly licensed and has file encryp-
or tion software installed, this command provides editing
:X for encrypted files.

178 10: Using Ex Commands

n

(f)

u

u

Delete One or More Lines (vijex)

Command Format Command Description
:delete (buffer) (count) Removes the lines specified by (count) and (flags) from
(flags) the text buffer file, and the line following the last line
or deleted becomes the new current line. If the deleted lines
:d (buffer) (count) (flags) were originally at the end of the text buffer file, the new
Default addr: current line last line in the file becomes the current line. If a named

(buffer) is specified by a single letter, the deleted lines
are saved in that buffer. If the buffer name is lowercase,
previous buffer contents are overwritten; if uppercase,
the lines are appended to any existing text in the buffer.

Again, the addressing parameters are similar to the copy and change commands. A
single address deletes a single line unless the delete command is followed by a (count)
parameter. A pair of addresses identifies a block of lines to be deleted provided no
(count) parameter is present. If (count) is present in the command line, the second
address is used and (count) lines are deleted starting at that address (the first address is
ignored). To store the deleted lines in a named buffer, specify the buffer name between
the delete command and the (count) parameter as indicated above.

If a p, 1, or # flag is included in the command and ex is being used instead of vi, the
new current line after the deletion is completed is printed as specified by which flag is
present.

10: Using Ex Commands 179

First and Last Address Specified:

:(start_addr),(end_addr)d I RETURN I

Starting Line and Number of Deleted Lines Specified:

:(start_addr)d(line_count) I RETURN I

Current Line and Number of Deleted Lines Specified:

:d(line_count) I RETURN I

Current Line, Number of Deleted Lines, and Overwrite Buffer "u" Specified:

:d u (line_ count) I RETURN I

Current Line, Number of Deleted Lines, and Append to Buffer "u" Specified:

:d U (line_ count) I RETURN I

Examples
Here are some more examples that are similar to those given for change and copy but
showing some variations on the use of (pattern) addressing:

• Delete 3 lines starting at second line after the first encountered line containing text,
and append to buffer r:

: /text/+2. d.R3 I RETURN I

• Delete the current line and the next two lines after the current line:

: .•. +2d I RETURN I

• Delete all lines, starting at the 5th line after the line that contains marker a and
continuing through the 4th line before the last line in the file:

: 'a+5. $-4d I RETURN I

180 10: Using Ex Commands

n

n
/

n

u

u

u

Edit a Different File (vifex)

Command Format Command Description
:edit (file) Terminates the current editing session and starts a new
:e (file) session on the specified (file). If the autowrite option
or is not set (see Chapter 12) and the current file has been
:ex (file) modified but not written, the command is aborted and

an error message is displayed. If autowrite is set and
the file has been modified, the current buffer is written
to permanent storage before the new file is loaded into
the buffer for editing. This command is commonly used
from vi as well as ex.

That the three names and abbreviations for this command are identical to three HP-UX
commands used to access various personalities of the ex editor is purely coincidentaL
When used as commands within the editor, edit, e, and ex are synonymous with each
other. They are also synonymous with the synonymous HP-UX commands e (if it exists
on the system in the form of a link to the vi/ex editor program file) and ex.

When this command is given, the editor checks the current file to see if it has been
modified. If the file has been modified, the editor checks the autowrite option to see if it
is set. If autowrite is not set, an error message is sent to the terminal and the command
is aborted. If autowrite is set, the buffer file is written to permanent storage and the
buffer is destroyed.

When the current buffer is cleared (current file not modified or modified file copied to
permanent storage), the editor then examines the specified new file to make sure that
it is a valid text file. If so, it is copied to the buffer area for editing and a new session
begins in the usual manner.

After ensuring that this file looks reasonable, the editor reads the source file into its
buffer. If the transfer is completed without error, the number of lines and characters in
the file is displayed. Any 8-bit characters in the file are handled as 8-bit values in order
to maintain compatibility with the international language capabilities that are supported
on Series 800 HP-UX systems and Series 300/500 systems starting at Release 5.2.

Under certain conditions, the new file is sometimes treated as a modified file. If the last
line in the new file is missing its trailing newline character, one will be supplied and a
complaint message will be displayed. The current line (.) is the last line in the new
buffer file.

10: Using Ex Commands 181

The :e command and its variants cannot be used with a multiple filename list, unlike the
:n (next) command.

Edit a Different File; Forced Command Version (vi/ex)

Command Format Command Description

:edit! (file) The variant form of the :edit command terminates the
:e! (file) current editing session, destroys the current buffer file
or whether it has been modified or not, then copies the
:ex! (file) specified new (file) to the editor buffer for editing. Any

error or complaint messages that would normally result
when switching to a new file without saving the current
file are suppressed. Even if the autowrite option is set,
the buffer is not written to permanent storage before it
is destroyed.

Edit New File Starting at Specified Address (vijex)

Command Format Command Description

:edit+(n) (file) Same as edit command, but causes the editor to begin
:e+(n) (file) at line (n) rather than at the last line or start with
:edit+ I (pattern) the first line containing (pattern. Important: (pattern)
:e+ I (pattern) must contain no spaces or tabs.

Print Current File Name and Description (vijex)

Command Format Command Description

:file Prints the current file name and provides the following
or information: whether the file has been modified since the
:f last write command; whether it is read-only; current line

number; number of lines in the buffer; and the relative
location of the current line in the buffer (expressed as
a percentage). This command is equivalent to the vi
command I CTRL ~[[].

Change Na,me of Current File (vijex)

Command Format Command Description

:file (file) The current filename is changed to (file) which is con-
sidered not modified.

182 10: Using Ex Commands

n

u

u

u

Process all Lines Containing (pattern) (vijex)

Command Format Command Description
:global/ (pattern)/ (commands) Scans each line among those specified and
or marks those lines that match the regular ex-
:g/ (pattern)/ (commands) pression in (pattern) . Current line is then
Default: All lines in file set to each marked line in sequence and

(commands) are then executed from each sue-
cessive new current line before advancing to
the next marked line.

The (commands) parameter represents all of the remaining commands on the current
input line. The current input line can consist of multiple lines, provided that each line
except the last line in the multiple-line command ends with a slash (/) which is interpreted
as a line-continuation flag. If (commands) (and possibly the trailing (/) delimiter after
(pattern)) is omitted, each line matching (pattern) is printed. This means that these
two commands are equivalent:

: g/ (pattern) /p
: g/ (pattern)

Append, insert, and change commands and their associated new input (text) are per­
mitted. The (.) terminator normally required for insert, append, and change can be
omitted if the end of the (text) associated with the command coincides with the end of
the global command line or lines. :open and :visual commands can also be used in the
command list, but their input text must be typed from the terminal keyboard because
the commands do not accept text as arguments. When accessing the global command
from vi, (commands) must not contain any commands that cannot be used from vi (such
as the append command).

The :global command itself must not appear in (commands). The :undo command is
also not permitted in (commands) because :undo could have the effect of reversing thP.
entire global command. The autoprint and autoindent options are inhibited during
global command. The / delimiter at the end of input lines may also be inhibited. Th
value of the report option is temporarily set to an infinite value (disabled) so that S(

that reporting can be based on the entire global operation. The context mark (") is set
to the current line (.) address before the global command begins. It remains unchanged
during the global command with the possible exception of an :open or :visual within the
global.

10: Using Ex Commands 183

Process all Lines that Do Not Contain (pattern) (vifex)

Command Format Command Description

:global! I (pattern} I (commands} The variant form of global runs (commands} on each
:g! I (pattern} I (commands} line that does not contain text that matches (pattern } .
or Note that the v command is synonymous with g!, but
:vI (pattern} I (commands} there is nov! variant.

Insert New Text Before Specified or Current Line (ex only)

Command Format Command Description

:insert (text} Places (text} before the specified line. Upon completion,
:i (text} the new current line becomes the last line in (text } . If no
Default addr: current line (text} is given, it is set to the line before the addressed
Uses one address line. This command is equivalent to append except that

the new text is inserted in the file before the current
line instead of after it. As with append, (Text} must
be terminated by a line that contains a period in the first
column position with no other characters on the line (ex-
cept for certain situations in :global). This command
is not recognized by vi as a valid colon command.

Insert New Text but Toggle Autoindent (ex only)

Command Format Command Description

:insert! (text} Same as :insert except the variant flag on insert tog-
:i! (text} gles the setting of the autoindent option to its opposite
Default addr: current line state for the duration of text input. Upon termination of
Uses one address insert, autoindent reverts to its normal state. This com-

mand is not recognized by vi as a valid colon command.

For more information about insert!, refer to the earlier text related to the append!
command.

184 10: Using Ex Commands

n

n

u

u

Join (combine) Lines on Single Line and Trim Whitespace (vifex)

Command Format Command Description
:join (count) (flags) Places the text from a specified range of lines together
: j (count) (flags) on one line. White space is adjusted at each junction to
Default addr: current provide at least one blank character, two if there was a

and next line period, question mark, or exclamation point at the end
Uses one or two addresses of the line, or none if the first following character is a

right-hand parenthesis. If there is already white space
at the end of the line, the white space at the start of the
next line is discarded.

Addressing
If (address) and (count) are absent, current and next line are combined. If two addresses
are present without a (count), the lines starting with the first address and ending with
the last address are joined into a single line. If (count) is specified, only one address is
used (if two addresses are present, the first is ignored) and (count) lines are printed. If
(count) is specified but no address is given, (count) lines are joined, starting with the
current line.

Combine Multiple Lines on Single Line with Retained Whitespace
(vifex)

Command Format Command Description
:join! (count) (flags) The variant of :join causes a simpler join with no white-
: j! (count) (flags) space processing. Adjacent lines are simply concate-

nated, and no whitespace is eliminated. Addressing is
same as join command.

10: Using Ex Commands 185

Print Text Showing Tabs and End-of-Line (vifex)

Command Format Command Description

:list (count) (flags) Prints the specified lines so that tab characters and end-
or of-line are recognizable. Tabs are printed as I CTRL ~
:1 (count) (flags) uppercase I CI), and the end of each line is marked
Default addr: current line with a trailing $. The last line printed becomes the new
Uses one or two addresses current line.

Map Text Pattern or Macro to a Function Key (vi only)

Command Format

:map (key) (replacement)

Command Format

:unmap (key) (replacement)
or
:unm (key) (replacement)

186 10: Using Ex Commands

Command Description

This command can be executed from vi or ex, but
the macro or text pattern produced by the defini­
tion can only be used when in vi mode. map is used
to define macros that are associated with specific
keyboard key codes. This form of the command
has an effect only when vi is in command mode.

(Key) should be a single character, or the sequence
"#n" where (n) is a digit referring to function key
(n) . When the character or key specified by (key)
is typed from vi, the corresponding (replacement)
expression is substituted (and displayed if appropri­
ate). On terminals that do not have function keys,
you can type #n to represent the missing key.

Examples of how this command is used are shown
in greater detail in the example exrc file examples in
Chapter 12 entitled Configuring the Vi/Ex Editor.

Command Description

The macro expansion defined by a previous :map
command for (key) is cancelled.

Command Format Command Description
:map! (key) (replacement) Same as :map command but variant form has effect

in both command and insert/append mode.

u :unmap! (key) (replacement) The macro expansion defined by a previous :map!
or command for (key) is cancelled.
:unmap! (key) (replacement)

Mark Current or Specified Line (vifex)

Command Format Command Description
:mark (x) Assigns the specified marker name (x) to the current
:ma (x) line. (x) is a single lowercase letter that must be pre-
or ceded by a blank or a tab. The marker name (x) can
:k (x) then be used as an address in subsequent commands
Default addr: current line to specify this line. The current line does not change.
Uses only one address :mark, :ma, and :k are synonymous. A blank or tab

between :k and the marker name is optional.

Move One or More Lines to a New Location (vifex) u Command Format Command Description

:move (address) Deletes the specified lines and copies them to a new loca-
or tion immediately after the line identified by (address) .
:m (address) The first of the moved lines becomes the new current
Default: Current line only line. This command is functionally equivalent to a copy
Uses one or two addresses followed by a delete or a delete followed by a put. Re-

fer to the copy command for information about line
addressing for the lines being moved.

u

10: Using Ex Commands 187

Edit Next File in Argument List (vifex)

Command Format Command Description

:next Starts editing next (file) in argument list. If the file
or currently being edited has been saved or has not been
:n modified since the session began, the new file is opened.

If the current file has been modified but has not been
saved, it is written to permanent storage if autowrite is
set and opens the new file. If autowrite is not set and
the file has been modified, an error message is produced
and the command to open the next file is aborted. Used
to open next file when HP-UX vi or ex command in-
eludes multiple filename arguments and you are ready
to open the nex file. Previous file in argument list must
be written unless autowrite option is set.

More About (file)
Within the text of (file), the characters % and # are expanded as the current working
file name and the alternate file name respectively (as when working with two alternate
files and switching between them).

Force Edit Next File in Argument List (vifex)

Command Format Command Description

:next! This variant of the next command forces the termina-
or tion of the current edit file without rewriting to perma-
:n! nent storage whether the file has been modified or not.

Any warnings or error messages that would normally re-
suit from terminating the session and starting a new file
are suppressed. Any changes that may have been made
to the current file are irretrievably discarded.

188 10: Using Ex Commands

n

n

n

u

u

u

Print Line(s) Preceded by Corresponding Buffer Line Number (vi/ex)

Command Format Command Description
:number (count) (flags) Prints one or more lines with each line preceded by its
:nu (count) (flags) line number in the buffer file. Can be used with one ad-
: # (count) (flags) dress (specified or implied) and optional (count) or two
Default: current line addresses with no (count) specified as described below.

The last line printed becomes the new current line.

Addressing
Addressing is the same as for the print command. If (address) and (count) are absent,
current line is printed. If two addresses are present without a (count), all lines starting
with the first address and ending with the last address are printed. If (count) is specified,
only one address is used (if two addresses are present, the first is ignored) and (count)
lines are printed. If (count) is specified but no address is given, (count) lines are printed,
starting with the current line.

Here are some example command structures. Addresses can take any form previously
described in the section entitled Line Address Primitives. (count) can be any numerical
value that does not exceed the boundaries of the buffer file. Each command line shows
a different form of the number command:

First and Last Address Specified:

:(start_addr),(end_addr)number I RETURN I

Starting Line and Number of Changed Lines Specified:

:(start_addr)nu(line_count) I RETURN I

Start at Current Line with Number of Changed Lines Specified:

:#(line_count) I RETURN I

10: Using Ex Commands 189

Enter Open Mode (ex only)

Command Format

:open (flags)
or
:open/ (pattern)/ (flags)
Default: current line
Uses only one address

Command Description

Enables open mode editing on the current or addressed
line. Open mode operation essentially amounts to
changing to vi instead of ex except that only the cur­
rent line is printed as with normal ex operation instead
of displaying a full-screen file window as with normal vi.
Thus you can use all of the normal vi commands such as
i, I, a, A, o, 0, cw, cW, dw, dW, cfx, and so forth. If
a (pattern) is used to define the line address, the cursor
is initially placed at the beginning of the string matched
by the pattern. I ESC I is used at the end of each change
just as in vi. Cursor control keys such as h, j, k, and I
as well as the nG and other commands can be used to
move from one line to another. To exit open mode, use
Q. For more information about vi editor commands and
operations, consult Chapters 2-4.

The Q command used to exit open mode is related to,
but not the same command as the Q command used to
switch from vi to ex.

The open command is of little interest to most users who have ready access to display
terminals, but can be useful for bringing many vi features to printing terminals for more
interactive operation than can be obtained from ex in normal line mode or if you are
using ex to circumvent vi on an unknown terminal type that is not supported by the
terminfo database.

Emergency File Preservation (vifex)

Command Format Command Description

:preserve You may, on rare occasion, encounter an error during a
or write operation, placing the contents of the buffer file
pre in jeopardy if you follow it by a quit command. Use the

preserve command to hold the buffer just as it would be
in a system crash. This command is for emergency use
when a write command has resulted in an error and you
don't know how to save your work. After a preserve
you should seek help from your System Administrator.

190 10: Using Ex Commands

n
I

n

n

u

u

Print One or More Lines (vifex)

Command Format Command Description

:print (count) Prints one or more lines with non-printing characters
:p (count) displayed as control characters in the format "-x" (DEL
:P (count) is printed as -?). Can be used with one address (spec-
Default: print only current ified or implied) and optional (count) or two addresses
line with no (count) specified as described below. The last

line printed becomes the new current line.

Addressing
Addressing is the same as for the number command. If (address) and (count) are absent,
current line is printed. If two addresses are present without a (count), all lines starting
with the first address and ending with the last address are printed. If (count) is specified,
only one address is used (if two addresses are present, the first is ignored) and (count)
lines are printed. If (count) is specified but no address is given, (count) lines are printed,
starting with the current line.

Here are some example command structures. Addresses can take any form previously
described in the section entitled Line Address Primitives. (count) can be any numerical
value that does not exceed the boundaries of the buffer file. Each command line shows
a different form of the print command:

First and Last Address Specified:

:(start_addr),(end_addr}print I RETURN I

Starting Line and Number of Changed Lines Specified:

:(start_addr)p{line_count) I RETURN I

Start at Current Line with Number of Changed Lines Specified:

:P{line_count) I RETURN I

10: Using Ex Commands 191

Put Yanked or Deleted Text back in File (vifex)

Command Format Command Description

:put (buffer) Restores previously deleted or yanked lines after the line
or specified in the put command. Normally used with
:pu (buffer) delete to move lines, or with yank to duplicate lines.

()
Default: current line If no buffer is specified, the last deleted or yanked text

is restored. By using a named buffer, text can be re-
stored that was saved there at any previous time in the
current session.

Abort Editing Session but Protect Buffer (vifex)

Command Format Command Description

:quit Terminates the editing session if the current buffer is not
or modified or has been saved if modified. If the buffer file
:q has not been modified, termination is immediate. If the

buffer file has been modified and the autowrite option
is set (see Chapter 12 for information about setting op-
tions), the buffer is written to permanent storage before
terminating the session. If autowrite is not set, an er-
ror message is displayed indicating that the file has been n
modified but not written and the command is aborted.
To save the changes, use a write command then a quit
or combine both commands using the form :wq. To
abort the session without saving the changes, use the
:q! command variant to force termination.

Abort Editing Session and Discard Buffer File (vifex)

Command Format Command Description

:quit! Forced quit terminates the editing session without sav-
or ing the buffer file regardless of whether or not au-
:q! towrite option is set. Unconditionally discards any

changes to the current buffer. This command is com-
monly used to force termination of the editor when a
buffer file has been badly damaged by inappropriate ed-
its and when a list of files was specified for editing but
you do not want to edit the remaining files in the list.

192 10: Using Ex Commands

u

Merge File from File System into Buffer File (vifex)

Command Format Command Description
:read (file) Copies the entire contents of text file (file) into the edit-
or ing buffer beginning after the current line if no address
:r is specifed or after the specified line if an address prim-
Default addr: current line itive is provided before the read command. Specifying
Uses only one address address zero inserts the file before the first line in the

buffer. Upon completion of the read, the number of lines
and bytes read are displayed as when starting a new ses-
sion.

Filename Specification
In most situations, this command is very simple and does exactly what is expected: it
reads a specified file into the current file after the current or specified line; especially when
accessed from vi. However, under certain circumstances the result may be different:

• No Current Filename: If no filename argument is provided when the HP-UX com­
mand is given to start the session, the editor opens a buffer file, but does not assign
a filename to it for permanent storage. If this condition exists when the read com­
mand is executed, the filename specified with the read command is assigned to the
buffer. This means that when you execute a write command to save the buffer in
permanent storage, the file you read when the read command was executed will be
overwritten by the write command. This may not be what you want to happen
(play it safe - specify a working file name when you start the session or be very
careful about specifying a file name every time you use write during the session).

• No Filename Specified for read Command: If you use the read command but do
not specify a filename, the current file being edited is used instead. This means
that the file as it existed at the start of the session (or after the last write in the
current session, if any) is inserted into the buffer file which again may or may not
be what you want.

• No Filename Specified and Buffer is Empty: If the current buffer is empty (you
are editing a new file or you deleted all lines from the existing file) and the read
command has no filename specified, an error message is displayed.

10: Using Ex Commands 193

Merge Standard Output into Buffer File (vifex)

Command Format Command Description

:read !(hpux_command) Reads standard output from any HP-UX command
or (hpux_command) in the editor buffer starting on the
:r !(hpux_command) next line after the line secified by (address) . This is
Default addr: current line not a variant form of read, but rather a read command

that inputs standard output from an HP-UX command
sequence directly into the buffer instead of sending it to
the terminal display. A blank or tab before the (!) is
strongly recommended, and may be mandatory in some
earlier versions of vi/ ex.

More About (hpux_command)
Within the text of (com manti), the characters % and # are expanded as the current
working file name and the alternate file name respectively (as when working with two
alternate files and switching between them).

Recover File After Hangup, Power Fail, or System Crash (vifex)

Command Format Command Description

:recover (filename) Recovers (filename) from the system save area. Used
or after an accidental hangup of the phone, a system crash,
:rec (filename) or after a preserve command. You will be notified by

mail when a file is saved (except after a :preserve or
a modem hangup). You can also recover the preserved
file by using the -r option to the vi or ex command at
the beginning of the session as described near the end
of Chapter 2 which discusses recovery procedures.

194 10: Using Ex Commands

n

n

n

Rewind Argument List to First Argument (vi/ex)

Command Format Command Description

u :rewind This command, which apparently got its name from its
or similarity to rewinding tapes, rewinds the argument list
:rew associated with the HP-UX command that started the

current editing session. The file corresponding to the
first file in the list is then copied to the buffer and opened
for editing. The same restrictions apply with respect to
the autowrite option and modified files as for any new
file when changing from the current file to a new file.
See the description of the next command earlier in this
section for details.

Rewind Argument List to First Argument and Discard Current Buffer (vifex)

Command Format Command Description

:rewind! Rewinds the argument list, discarding any changes made
or to the current buffer.
:rew!

u Set or List Editor Options (vifex)

Command Format Command Description

:set (parameter) Sets or lists current editor configuration parameters. If
:set (parameter) ? (parameter) is included after the command, that param-
:set all eter is set to the value specified. If (parameter) is fol-
:set lowed by a question mark ((parameter)?) the current
No address allowed setting of that parameter is printed or displayed. The

set all command lists all available parameters with their
Abbreviated form: current settings, while set lists only those options whose
:se values have been changed from their defaults. Chapter

12 entitled Configuring the Vi/Ex Editor provides a de-
tailed discussion of this command.

10: Using Ex Commands 195

Create New Shell from Editor (vifex)

Command Format Command Description

:shell Creates a new shell. When you terminate the shell with
or a I CTRL ~[]], the shell dies and editing resumes at the
:sh same location in the file. This is a convenient way to

temporarily depart from the editor, change directories
if you wish, and perform other tasks or take care of any
other spur-of-the-moment need then return without ter-
minating the edit or disturbing the editing environment
such as current directory.

A typical use is when you are editing a program and
need to use the man command to look at a manual page
entry so you can verify an option or some other operating
detail then return.

Spawning New Shells
This command spawns a new shell as specified by the :set shell configuration command
(default is the Bourne shell). An alternate form is used by some operators:

: ! sh I RETURN I

However, when this form is used, the exclamation point after the colon spawns a shell
which, in turn, spawns the Bourne shell (a :! csh command, on the other hand spawns
a C shell). If you use this method, do not be surprised if your System Administrator
asks you why you need so many shells operating at the same time (the practice is really
rather harmless but you can avoid the new shell process by using the command :!exec
sh, :!exec csh, or :!exec ksh).

On the other hand, if you prefer to use the C shell (or some other shell if it is available
on your system) use the less elegant form to specify the alternate shell. For example, to
get a C shell, use:

: ! csh I RETURN I

This command spawns a Bourne shell(! shell escape) which, in turn executes the HP-UX
command csh, thus spawning a new C shell.

196 10: Using Ex Commands

(}

u

u

u

Return Conditions
To return to the editor, use a normal shell termination command. For example, to
terminate a Bourne or C shell, press I CTRL ~[[] or type:

exit I RETURN I

The spawned shell dies, the intermediate shell, if one was spawned, also dies, and control
returns to the editor program.

Input Ex Editor Commands from a File (vifex)

Command Format Command Description
:source (file) Causes the editor to read and execute ex commands from
or the specified commands file (file) . Commands in the file
:so (file) can be nested.

This command provides a means for collecting a series of ex commands into a file then
using that file to edit another file. If you are editing a large number of files, the streaming
editor sed would probably be a better choice, but this command provides a convenient
means for collecting several global changes that need to be made on a file before you
manually make other changes that are not suitable for execution from a commands file.

Note

On Series 200, 300, and 500 systems up to and including HP-UX
Release 5.2 and Series 800 Release 1.0 and 1.1 this command does
not work correctly when accessed from vi in ex-command mode due
to a bug in the vi program. From vi, :so executes the first command
in the file then returns without executing the remainder of the file.
However, the command works correctly when using the ex editor.
To work around the problem when using vi, use the Q command in
vi command mode to change to ex, then type the so command after
ex displays its colon prompt. When ex provides another prompt
after completing the command file, type vi I RETURN I to resume
editing with vi.

10: Using Ex Commands 197

Substitute Text Within Line or Lines (vifex)

Command Format

:substitute/ (pattern)/ (repl) /
(options) (count) (flags)
or
:s /(pattern)/ (repl) / (options)
(count) (flags)
Default addr: current line
Uses one or two addresses

Options and Flags

Command Description

On each line as defined by the one or two ad­
dresses preceding the substitute command or
the combination of an address and (count), the
first text encountered that matches the regu­
lar expression (pattern) is replaced by the re­
placement text pattern defined by (repl). If
the global (g) option is present in the com­
mand line, all occurrences are substituted. If
the confirm option (c) is specified, you are
asked to confirm each substitution beforehand.
The line to be substituted is displayed (with
the string to be substituted marked with 'A'
characters underneath). To accept the sub­
stitution, type y. Any other input causes no
change to take place. After a substitute the
current line is the last line substituted.

Option
or Flag

Description of Action Taken

c Confirm each change before making it.
g Perform the change for every occurrence of (pattern) in each addressed line.

r This option is used without specifying a search pattern or replacement text.
The :(address)s r command reuses the search pattern and replacement text
from the last substitute command, but on the lines specified by the cur­
rent (address), and is equivalent to the :(address)& command in the same
situation.

p Print current line after copy without line number.
Print current line preceded by line number after copy.
I Print current line after copy and show tabs and end-of-line position.

Lines can be split (only when in ex, not from vi colon command) by substituting new­
line characters into the line. The newline in (rep/) must be escaped by preceding it with
a backslash (\). Other metacharacters available in (pattern) and (repl) are described
below.

198 10: Using Ex Commands

n

n

n

u

u

u

Repeat Most Recent Substitution

Command Format Command Description
:substitute (options) (count) (flags) If (pattern) and (repl) are omitted from
or the substitute command, the last previ-
:s (options) (count) (flags) ous substitution is repeated. substitute
Addressing: same as above without (pattern) and (repl) is equivalent

to the & command.

Using Tags to Edit a New Location

Command Command Description
Format

:tag (tag) Changes the defined current line from its present locaton to a new
or location defined by (tag) which may be in the current file or in a
:tag (tag) different file. If (tag) is located in a different file, the present file is

saved in permanent storage and the file containing the new (tag)
is copied to the buffer and opened for editing. Refer to Chapter 9
entitled File Manipulation Techniques for more information about
creating and using tag files.

A file named tags file is normally created by a program such as ctags, and consists of
a number of lines with three fields separated by blanks or tabs. The first field in each
line contains the name of the tag, the second field is the name of the file where the tag
resides, and the third field contains an addressing primitive that can be used by the
editor to find the tag in the file specified in the second field. The address field is usually
a contextual scan using I (pattern) I to maintain immunity from minor changes in the
file. Scans for I (pattern) I are always performed with the nomagic option temporarily
set for the duration of the scan, independent of its normal setting.

(tag) names in the tags file must be sorted alphabetically. Sorting is done automatically
by the ctags command (see ctags(l) in the HP-UX Reference for more information about
ctags).

10: Using Ex Commands 199

Reverse (Undo) Changes Made Previously

Command Command Description
Format

:undo Restores all changes made in the buffer by the most recent buffer
or editing command to their original form prior to the command.
:u If the command included global operations, all changes result-

ing from the global command are treated as a single operation,
whether the changes are made by vi, ex, or ex in open mode.
However, commands that interact with the file system such as
write and edit cannot be undone. If you use undo to reverse a
change only to find that the result is not what you wanted, the
changes can be restored by another undo before executing any
other command that alters the buffer file. In other words, undo
is its own inverse.

Current Line
Undo always assigns the file mark ' to the current line prior to performing any undo
changes so that you can readily return to that position by pressing the backwards single
quote twice (' '). When the undo is completed, the new current line is usually the first
line restored or the line before the first line deleted if no lines were restored. But for
commands such as global that affect larger blocks of text, the current line position is not
changed by the undo.

Print Editor Version Number and Last Change Date

Command Command Description
Format

:version While this command is rarely of interest to most users, it may be
or useful on occasion if you need to identify what version of the vi/ ex
:ve editor you are using. The version command prints the current

version number of the editor and the date the editor program was
last changed.

200 10: Using Ex Commands

n

u

u

u

Change from Ex to Vi Editor or from Vi to Ex

Command Format Command Description
:visual (type) (count) (flags) Changes from ex to visual operation and displays
or a text window whose height and location in the file
:vi (type) (count) (flags) is defined by the parameters provided on the com-
Default addr: current line mand line. Uses only one address (specified or im-

plied), whether or not (count) is specified.
Q While in vi command mode, the Q command

switches the editor to its ex personality.

Window Size and Location
If no parameters are provided with the vi command, a full-screen window or default
window size defined by the baud rate between the terminal and the HP-UX computer
is created with the current line located at the top of the window. If (type) is specified,
window size, text placement, and format are as follows:

• (type) not specified: A window (count) lines high and ending at the bottom of
the display screen is displayed with the current or addressed line at the top of the
window. If (count) is not specified or if it is greater than the available screen size,
a full screen display window is used.

• (type) = - : Same as (type) not specified except that the current or addressed
line is placed at the bottom of the window.

• (type) = . : Same as (type) not specified except that the current or addressed line
is placed at the center of the window.

• (type) = # : Displays a full window starting at the current or addressed line but
each line is preceded by its corresponding line number in the editor buffer. (count)
cannot be used with this (type).

Returning to Ex from Vi
To return to ex from vi or to change from vi to ex at any time, press Q (I SHIFT H~J)
while in vi command mode. :Q cannot be used from vi and causes an error message if
attempted.

10: Using Ex Commands 201

Edit Another File with Vi

Command Format Command Description

visual (file) These forms of the ex visual command are equivalent
or to comparable forms of the ex edit command except
visual +n (file) that the visual editor is used instead of the line editor.
Abbreviated forms: See the edit command for more information about each
vi (file) form.
or
vi +n (file)

Write All or Part of Buffer to a Permanent File

Command Format Command Description

:write (file) Writes the contents of the current buffer to the speci-
or fied (file) . If (file) is not specified, the buffer is writ-
:w (file) ten to the original file currently being edited. If two
Default addr: entire file addresses are specified, all lines starting at the first ad-
Uses one or two addresses dress through the line identified by the second address

are written to the specified or default file. If only one
address is provided, only one line is written. If no ad-
dress is included in the command line, the entire file is
written.

The most common form for this command is simply

:w I RETURN I

which writes the current buffer back to the original file if it exists. If no file exists (new
file edit), a file is created then written to. If no filename was specified at the beginning
of the edit, a new file is created and the current file name is changed to (file) before
writing the new file.

If (file) already exists, and the filename does not match the current file, an error message
is displayed and the write operation is aborted. This protects files from being accidentally
overwritten in a moment of carelessness or inattention. If the current file name matches
the specified (file), the file is overwritten even if you don't want it overwritten (unless
the readonly flag is set).

202 10: Using Ex Commands

n

u

u

u

The current line is not changed by this command. If an error occurs while writing the
file, the editor treats the buffer file as a modified file whether it has been modified or not
since the beginning of the session.

Append All or Part of Buffer to a Permanent File

Command Format Command Description

:write >>(file) Equivalent to the previous write command description
or except that the buffer or specified lines are appended
:w >>(file) to (file) which must already exist (an error message is
Default: entire file displayed if it does not exist).

Force Write All or Part of Buffer to a Permanent File

Command Format Command Description

:write! (name) This variant form of the write command overrides
or checking for an existing file and forces a write to the
:w! (name) named file if the file system permissions allow the write
Default addr: entire file operation to proceed. Note that there is no space be-
Uses one or two addresses tween the write command and the variant flag (!).

If the file does not already exist, this command is equiv-
alent to :write.

Write All or Part of Buffer to an HP-UX Command

Command Format Command Description

:write ! (command) This is not a variant form of the write command, but
or rather a shell-escape form of the write command. The
:w ! (command) Writes the specified lines into command. Note the dif-
Default: entire file ference between :w! which overrides checks and :w !
Uses one or two addresses (space before !) which writes to a command.

More About (command}
Within the text of (command), the characters % and # are expanded as the current
working file name and the alternate file name respectively (as when working with two
alternate files and switching between them).

10: Using Ex Commands 203

Write then Quit: Terminate a Session

Command Format Command Description

:wq (name) Combined write file and terminate session command on
a single line. Similar in effect to the vi command ZZ. n

. I

:wq! (name) Variant form of write then quit does not protect an
existing file from being overwritten (equivalent to :w!)
and terminates the session as soon as the write operation
is complete.

Terminate Editing Session

Command Format Command Description

:xit (name) Equivalent to the vi command ZZ. Terminates the edit-
or ing session. If the buffer file has been modified but not
:x (name) yet written to permanent storage, the file is saved be-

fore terminating the editor. If the file is not writable
(readonly option set or no write permission on file being
edited, the exit command is aborted so you can save the
buffer in a different file before it is discarded. n

Yank Text into a Buffer for Use in Copy Operations

Command Format Command Description

:yank (buffer) (count) Copies the lines specified by (count) and (flags) from
(flags) the text buffer file into the specified (buffer) or into the
or default buffer if no buffer name is provided. The current
:y (buffer) (count) (flags) line does not change. (buffer) can be any lowercase letter
Default addr: current line in the range a through z. If a buffer name in the range

A through Z is specified, yanked text is appended to the
named buffer instead of replacing it.

204 10: Using Ex Commands

u

u

u

Note

If the ex commands yank and put are used directly from vi as
colon commands to copy text from one location to another, undo
may not work correctly on Series 200, 300, 500 HP-UX systems
through Release 5.5 and Series 800 through Release 1.1. Use the
vi commands for yank and put (which work correctly) instead as
explained in earlier chapters of this tutorial.

Addresses
yank can be used with one or two addresses specified. One address with no (count)
specified copies the specified line into the named buffer. Two addresses with no (count)
specified copies multiple lines starting and ending with the specified lines. Two addresses
and a (count) value copies (count) lines starting at the second specified address (the first
address is ignored). If no address is specified, the current line address is used by yank.

Examples
First and Last Address Specified:

:(start_addr),(end_addr)ya I RETURN I

Starting Line and Number of Yanked Lines Specified:

:(start_addr)ya(line_count) I RETURN I

Current Line and Number of Yanked Lines Specified:

:ya(line_count) I RETURN I

Current Line, Number of Yanked Lines, and Buffer e Specified:

:ya e (line_ count) I RETURN I

10: Using Ex Commands 205

Print Window Containing (count) Lines
(type) not Specified

Command Format Command Description

:z (count) Print (count) lines starting at next line after addressed
Default addr: next line line. If address is omitted, printing starts at next line

after current line. If (count) is not specified, a default
window is printed which contains the number of lines
specified by the scroll option to the set command, pro-
vided it does not exceed display screen capacity (see
Chapter 12 for details). Upon completion of the com-
mand, the current line is changed to the last line printed
in the window.

(type) Specified

Command Format Command Description

:z (type) (count) Similar to the preceding :z command, except a (type)
Default addr: current line parameter specifies the placement of the addressed line

in the printed text window. If (count) is not specified,
the default window contains twice the number of lines
specified by the scroll option to the set command de-
scribed in Chapter 12, provided the number of lines does
not exceed display screen capacity. Upon completion of
the command, the current line is changed to the last line
printed in the window.

206 10: Using Ex Commands

n

n

u

u

u

Text Positioning in the Window
(type) determines the position of the displayed text in the window as follows:

(type) description

-(minus) Addressed line (or current line if no address primitive is provided) is
placed at the bottom of the window.

(period) Places the addressed (or current) line at the center of the window.

+ Displays window of lines following specified line. Successive z+ com-
mands scroll down through the buffer.

A Displays window of lines that are two windows prior to the specified
line. Successive zA commands scroll up through the buffer.

= Displays specified line at center of window with a line of 40 dashes
(-) above and below the specified line. The current line becomes the
specified line (not the last line of the window as with the other (types)).

No other values for (type) are accepted. (count) specifies the window length in lines, if
present. If no window length is given, the current value of the scroll option to the set
command (see Chapter 12) is doubled and used as a window length, provided the value
does not exceed available screen display space. If any window size value exceeds screen
capacity, the full screen is used. If a full-screen window is needed, the display screen is
cleared before displaying the new window.

10: Using Ex Commands 207

Execute a Shell Command

Command
Format

:! (command)

Command Description

The shell-escape character (!) in this command is an editor com­
mand that spawns a new shell and sends the remainder of the
command following the exclamation point to the shell for execu­
tion. When the command has been executed by the shell, the
spawned shell dies and control returns to the editor. When this
command is executed from ex, a single ! is printed on a line by it­
self after the text currently displayed on the terminal screen. The
prompt for the next command is printed on the following line. If
this command is executed from vi, the message: [Hit return to
continue] is displayed instead (press any key to continue with
vi).

If the buffer has been modified since the beginning of the session
or since the last buffer write command to permanent storage,
whichever occurred later, the warning message No write since
last change is displayed. However, if the shell escape command
is followed by another shell escape command before any other
changes are made in the file, no warning is given on the second
escape.

More About (command)
Within the text of (command), the characters % and # are expanded as the current
working file name and the alternate file name respectively (as when working with two
alternate files and switching between them). The character ! , if present in (command), is
replaced with the text of the last previous command. Thus, in particular, !! repeats the
last such shell escape. If any such expansion is performed, the expanded line is echoed
to the terminal screen. The current line position in the buffer is not changed by this
command.

208 10: Using Ex Commands

n

Repeat Previous Shell-Escape Command

Command Command Description
Format

u :!! Repeats the most recent shell-escape command. The existing
shell command buffer is again sent as command input to a newly
spawned shell.

Pipe Part or All of Buffer to a Command (vifex)

Command Format Command Description

: ((addr 1), (addr2))! (hpux_ command) Copies all text lines within the specified line
Uses one or two addresses address range to HP-UX standard input for
Default: none processing by (hpux_ command). Standard
Address must be specified output from (hpux_command) is then returned

to the editor where it replaces the original lines
that were sent to standard input. If no address
is specified and the command requires input
from standard input, stdin is switched to the
keyboard and the command hangs, waiting for

u keyboard input.

Print Current or Addressed Line Number

Command Format Command Description

·- Prints line number of current or addressed line.
Default addr: last line in file If an address primitive is provided before the
Uses only one address = command, the line number of the addressed

line in the buffer file is printed. If no address
precedes the command, the line number of the
last line in the file (address $) is printed in-
stead. The location of the current line remains
unchanged.

u

10: Using Ex Commands 209

Shift Lines Left or Right

Command Format Command Description

(.,.)) (count) (flags) Perform intelligent shifting on the specified
(.,.) ((count) (flags) lines; (shifts left and) shifts right. The quan-

tity of shift is determined by the shiftwidth n
option and the repetition of the specification
character. Only white space (blanks and tabs)
is shifted; no non-white characters are dis-
carded in a left-shift. The current line becomes
the last line which changed due to the shifting.

Execute a Buffer (vifex)

Command Format Command Description
: * (buffer_name) Execute the contents of buffer {buffer_name)

as a valid ex command. The buffer must con-
tain a valid ex command that does not begin
with a colon. This feature is useful for yank-
ing a complex editing command that has been
placed in the file being edited, executing it, and n
being able to edit the command then yank and
execute it again to fix errors in the command
or perform a similar but different operation. It
the command is accessed while in vi, a colon
must precede the asterisk.

@ (buffer_name) This alternate form executes a valid ex com-
mand stored in {buffer_name) directly from vi.
The command residing in the buffer must be-
gin with a colon. The @ command cannot
be used from the ex editor (use the * com-
mand instead).

210 10: Using Ex Commands

u

u

u

Miscellaneous Commands

Command Format

: (address_1), (address_2)
or
:(address_1),(address_2) I

: (address) & (options) (count) (flags)
0, 1, or 2 addresses

: (addresst (options) (count) (flags)
0, 1, or 2 addresses

Command Description

An end-of-file from a terminal input
scrolls through the file. The scroll option
specifies the size of the scroll, normally a
half screen of text.

An address or pair of addresses without
a command causes the addressed lines to
be printed. A blank line (no address or
command) prints the next line in the file.

The ampersand command repeats the
previous substitute command.

Equivalent to the & command if the most
recent previous regular expression was the
search pattern part of a substitute com­
mand. If the most recent regular expres­
sion was part of a global command (not
a global flag on a substitute command),
you can use a tilde (between slash char­
acters) as a regular expression and supply
new replacement text to save retyping the
previous expression.

The - command can be used, for example, to search for a pattern using a global command,
review the lines that contain patterns matching the regular expression, then construct
a new substitute command with appropriate address or addresses, then complete the
command with the form:

sr /(new_text)

and add any flags or options that may be appropriate. The & command can then be
used to repeat the command on a new set of addresses, if desired.

10: Using Ex Commands 211

Regular expressions and substitute replacement
patterns

Regular expressions
A regular expression specifies a set of strings of characters. A member of this set of
strings is said to be matched by the regular expression. Ex remembers two previous
regular expressions; the previous regular expression used in a substitute command the
the previous regular expression used elsewhere (referred to as a previous scanning regular
expression). The previous regular expression can always be referred to by a null re, e.g.
'//'or'??'.

Magic and nomagic
The regular expressions allowed by ex are constructed in one of two ways depending on
the setting of the magic option. The ex and vi default setting of magic gives quick access
to a powerful set of regular expression metacharacters. The disadvantage of magic is that
the user must remember that these metacharacters are "magic" and precede them with
the character'\' to use them as "ordinary" characters. With nomagic, the de(ault for edit,
refguhlar ehxpressionshare much si~p11ler, there bbeing only two me(tacha)racters. The power n
o t e ot er metac aracters is st1 available y preceding the now ordinary character
with a'\'. Note that '\'is thus always a metacharacter.

The remainder of this discussion of regular expressions assumes that the setting of this
option is magic.

212 10: Using Ex Commands

n

u

u

u

Using Ex Commands

Editing the Command
If you make an error while typing a colon command, use I BACK SPACE I to move the cursor
left to the appropriate position, then retype the rest of the command. As with normal
vi operation, characters are not erased from the screen as you move the cursor left, but
they are removed from the vi/ ex command buffer. Hence, any extra characters that are
not obliterated by retyping are ignored (you will notice that they disappear from the
bottom line of the display as soon as you press I RETURN I or I ESC 1).

An alternate and sometimes easier method for correcting a command is pressing the
terminal "kill" charcter (usually I CTRL HJLJ) which immediately moves the cursor to
the first character following the colon so you can retype the entire line as a different
command.

If the command is complicated and you want to be able to easily change or fix errors
in it, type the command as a line in the file, yank the line to a buffer, and execute the
buffer. Procedures for doing so are described in Chapters 5 and 6.

Aborting or Changing the Command
If you type part of a colon command then decide you want to do something else instead,
you can abort the command by using I BACK SPACE I or I CTRL ~[QJ followed by I BACK SPACE I
to back the cursor up to the left margin past the colon. When the cursor passes the colon,
the the editor abandons the command and returns the cursor to where it was prior to
the aborted colon command.

An easier method is to simply press the I BREAK I key (I DEL I produces the same result).
This method has the side-effect of setting the HP-UX vi command return status flag to
FALSE when vi terminates, but unless you are operating in an unusual environment,
using the BREAK key should present no discernable disadvantage.

10: Using Ex Commands 213

Aborting After Execution Begins
You may discover, particularly when performing global operations on a very large file,
that you gave an incorrect command (such as inadvertently pressing I or ? instead of:)
or an inappropriate command, and need to abort it. Press I BREAK 1. Command execution
stops, and an error message is displayed:

tterrupt)
The cursor may or may not return to its original position prior to the command, and the
file may or may not be untouched by the command, depending on what was happening
at time of interrupt. If changes were made before the command was interrupted, you can
use the u (undo) command to repair the damage and return to the pre-command state.
After the undo, the cursor may move to a different location in the file, depending on the
situation.

Undoing Colon Commands
Like normal vi commands, the external-mode commands are also subject to the u com­
mand. If you discover that ;the change you made did not produce the desired effect,
press u immediately before executing any other command. As usual, if any command
is executed after the colon command, the undo option for that command is forever lost,
and you must either use another command or set of commands to fix the error or abort
the session (:q! command) and start over.

Global Searches
Suppose you are working on a large file such as a large computer program or text file
and need to look at every line in the file that contains a certain word, program label
reference, or operand name. Rather than using a cumbersome series of I or ? followed
by n or N search sequences, you can print all occurrences of the desired text pattern with
a simple command of the form:

:g/text_pattern/p I RETURN I

where text_pattern is any regular expression of the form described in the tutorial on
regular expressions earlier in this volume that is compatible with vi and ex. The g
command specifies that the search is to be made globally (on every line) throughout the
file, and the p command specifies that the results are to be printed on the display screen.
Experienced users will recognize that this command is very similar to the HP-UX grep
command.

214 10: Using Ex Commands

n

After the lines are printed to the screen, the message:

~it return to continue])
appears at the bottom of the screen. Press any typing key to restore the normal editor
display.

Limited Searches
You can easily limit the search for a given expression to a certain part of the file by
specifying the starting and ending line numbers. Here is the command form:

:start_ line, end_lineg/text_pattern/p I RETURN I

where start_line is any valid line number identifier that specifies the starting line and
end_line specifies the the last line in the search space. Valid line specifiers can be the
actual line number (1 is the first line in the file, $ specifies the last line), line locations
relative to current line, or any other form recognized by ex.

Finding Tabs and other Control Characters
Suppose you need to determine whether and where any control characters might be
hidden in a file. This can be particularly important when examining a computer program
file as well as in many other circumstances.

The I command accomplishes this task quite handily with the form:

: start_line, end_linell RETURN I

Any control characters contained within the specified file segment are displayed in "hat"
format, "hat" being a common vernacular name among UNIX users for the circumflex
character (A). Tabs are displayed as AI, and end-of-line is displayed as $. For example,
consider the following rather innocent looking line of text:

If this looks like a simple sentence, look between the words

Placing the cursor anywhere on the line and executing the command:

: . 1 I RETURN I

reveals more than what meets the eye:

10: Using Ex Commands 215

If this looks like a-Isimple sentence, look between the words -I $

showing two hidden tabs plus several spaces at the end of the line. Likewise, a command
of the form:

: .•. +101 I RETURN I

displays all control characters in the current plus the 10 following lines.

After listing the lines, press any key to restore the normal editor display.

216 10: Using Ex Commands

n

rfJ

u

u

Advanced Editing: Shell Operations 11
As you gain experience, you will commonly encounter situations where you need to
directly access HP-UX commands and capabilities from within the vi editor without ter­
minating or disturbing the editing session. vi command mode supports several methods
for accessing HP-UX commands, opening a vast field of possibilities for the imaginative
user.

When accessing HP-UX commands, all or part of the current vi buffer is used as the
standard input source for thoes HP-UX commands requiring standard input, and as
standard output when the command standard output is to be placed in the text file. This
ability to use the buffer as the source for standard input as well as the destination for
standard output opens a wide realm of possibilities that fall into three general categories:

All or part of the current buffer can be sent to a series of one or more HP-UX commands
whose final output is brought back to replace the original text that was sent to standard
input. The tee command can also be used to send the output of any of the commands in
the series to another file. This technique for accessing HP-UX commands is commonly
called piping the buffer to a command.

In addition, all or part of the buffer can be sent as standard input to an HP-UX command
in a write operation where the command output is sent elsewhere and is not brought back
to replace the original text. This is called writing the buffer to a command. A comparable
read operation imports standard output from an HP-UX command, and is called reading
from a command.

This chapter presents several typical examples of each of these types of operations, dis­
cusses some useful techniques, and is intended to serve as a source of ideas that you can
use in your own text editing applications.

For more information about the HP-UX commands used in the examples in this chapter,
refer to the corresponding manual page entry in Section 1 of the HP-UX Reference.

11: Shell Operations 217

Operation Types
As mentioned, shell operations fall into three general categories:

• Operations that modify (replace after processing) existing text in the file,

• Operations that insert new text from an HP-UX command into the file after the
current line, and

• Operations that send existing text in the file to an HP-UX command and produce
output elsewhere without altering the existing buffer contents.

The remainder of this chapter addresses each category separately.

218 11: Shell Operations

n

n

u

u

u

Text Replacement Shell Operations
When shell operations are used to modify text currently residing in the vi buffer, that
portion of the buffer being modified by HP-UX is sent by vi as standard input to the
specified HP-UX command or commands. Standard output from the command is then
sent back to vi which uses it to replace the original text. The text from vi that was sent
to HP-UX can also be used or stored elsewhere by using the tee command in addition to
being brought back for replacement in its modified form.

When you use this method for altering text, the command to vi that specifies the work
to be done causes vi to spawn a new shell in response to the shell escape sequence. The
spawned shell process then executes the shell command specified in the remainder of the
shell escape command line that spawned the process. The command can consist of a
single shell program/command, or it can be a series of commands piped together. Upon
completion of the specified shell command, standard output from the last command is
returned to the editor and replaces the original text object. The editor undo command
can be used to restore the original text if the result is not what was wanted.

Text Replacement: Command Format
Text replacing shell operation commands generally have the form:

(!) (count) (text_ object) (shell_ command(s)) I RETURN I

Element

(!)

(count)

(text_ object)

(shell_ command(s))

Description

Exclamation point (!) is used to escape from vi to the
shell interpreter.

Number of (text_object)s (such as sentences or para­
graphs) to pass to the shell for processing.

Any valid vi text object definition; can be preceded by a
(count) parameter (for example, 2} defines the text ob­
ject as all text from current position to second following
end of paragraph).

Any valid sequence of one or more HP-UX commands
including pipe and tee connections between commands.
Standard input for commands is the text object defined
by (text_object). (text_object) is replaced by standard
output from (shell_command(s)).

11: Shell Operations 219

Text Replacement: Adjusting Text Paragraphs
As any experienced user of text processors and editors knows, text consisting of choppy
lines of varying length are common. Here is and example:

This paragraph
consists of several lines of varying length.
It
would look much better if
it was rearranged into a group of lines of more uniform length.
Do you
agree?

Shell operations provide a convenient means for easily adjusting paragraphs or other text
blocks while in vi. While several programs could be used to do this (as well as your own
custom shell script), the HP-UX adjust command is probably the most convenient.

In its default form, adjust arranges contiguous lines of text (in this case taken from
standard input provided by vi) into a paragraph of successive lines separated by word
boundaries and containing the maximum possible number of characters per line up to
the default limit of 72 characters per line. If the adjust command does not include any
non-default options, no extra spaces are provided and the finished paragraph has an even
left margin with a ragged right margin.

Here is what adjust does to the previous example paragraph following the command
!}adjust with the cursor placed anywhere on the first line in the paragraph:

This paragraph consists of several lines of varying length. It would
look much better if it was rearranged into a group of lines of more
uniform length. Do you agree?

To obtain even margins on both right and left boundaries, use the -j option. Here is the
result of the same paragraph using the !}adjust -j command:

This paragraph consists of several lines of varying length. It would
look much better if it was rearranged into a group of lines of more
uniform length. Do you agree?

The -m option is used to change line length. Here is the result of the command !}adjust
-j -m40 or !}adjust -jm40. Note the smooth right margin and observe how the options
can be separate or combined.

220 11: Shell Operations

n

u

u

u

This paragraph consists of several
lines of varying length. It would
look much better if it was rearranged
into a group of lines of more uniform
length. Do you agree?

Here is the result when the -j option is omitted:

This paragraph consists of several
lines of varying length. It would
look much better if it was rearranged
into a group of lines of more uniform
length. Do you agree?

Refer to the ady'ust(1) entry in the HP-UX Reference for more information about available
options. The topics which follow show several other ways for using the adJ'ust command.

Adjusting Multiple Paragraphs
Suppose you have four paragraphs of text that are separated by empty lines or lines
consisting of paragraph macros. For the purpose of illustration, let us assume that each
paragraph contains four sentences (16 sentences in four paragraphs), and the cursor is
located somewhere on the first line of the first paragraph.

Since vi passes any defined text object to the shell without knowing what you want to
do with it, the following two commands are equivalent:

! 4}adj ust RETURN
or

! 16)adjust RETURN

(adjust next 4 paragraphs)

(adjust next 16 sentences)

Either form adjusts all four paragraphs with a left-justified, ragged right margin, up to
72 characters per line. The first command adjusts the next four paragraphs starting
with the cursor line. The second adjusts the next 16 sentences starting with the line
of the sentence that contains the cursor. When the operation is complete, the cursor is
returned to the left margin of the line it was on when the operation started.

11: Shell Operations 221

Note

When piping text objects to a command, the current cursor po­
sition represents the beginning or end of the object sent to the
pipeline unless a move command precedes the text object defini­
tion sequence. Therefore, be careful when using text objects this
way to ensure that the correct text is being sent.

Speeding It Up: Tradeoffs
Whenever you perform an adjust operation this way, vi must spawn a new process, load
the adjust program, run it on the text object, return the result to vi and terminate the
process. This involves a lot of overhead. Thus it is much faster to adjust 16 paragraphs
at once than to adjust the same number of paragraphs, one at a time. However, as
the number of paragraphs adjusted in a single operation increases, so does the risk of
encountering a text object within the defined text object (such as a table or heading)
that you do not want to adjust.

Using Left/Right Shift with Adjust
The shift-right (> >) and shift-left (< <) commands are useful on those occasions where
you may need to move the left margin of a text block or paragraph right or left from
the left margin or its current position. One method commonly employed by casual users
is to insert or delete tabs or spaces at the beginning of each line. However, this can be
cumbersome, especially if adjust is used to justify the margins (adjust has no provision
for altering the left margin indent to a given column position).

To solve the problem, consider the following paragraph that was formatted by using the
vi command !}adjust -j I RETURN I:

Occasionally, you may need to move the left margin of a text block or
paragraph right or left from the left margin or its current position.
One method commonly employed by casual users is to insert or delete tabs
or spaces at the beginning of each line. However, this can be
cumbersome, especially if adjust is used to justify the margins (adjust
has no provision for altering the left margin indent to a given column
position) .

Suppose we need to indent the left margin five columns while holding the same right
margin position. First, repeat the previous adjust command, but use a right margin of
67 instead of 72 to gain five columns:

222 11: Shell Operations

u

u

u

!}adjust -j -m67

Occasionally, you may need to move the left margin of a text block
or paragraph right or left from the left margin or its current
position. One method commonly employed by casual users is to
insert or delete tabs or spaces at the beginning of each line.
However, this can be cumbersome, especially if adjust is used to
justify the margins (adjust has no provision for altering the left
margin indent to a given column position).

Note the narrower paragraph width. To change the default shiftwidth, use the command:

:set shiftwidth=5 !RETURN!

then press 7> > (shift 7 lines right beginning with the current line). The entire paragraph
moves to the right with the following result:

Occasionally, you may need to move the left margin of a text block
or paragraph right or left from the left margin or its current
position. One method commonly employed by casual users is to
insert or delete tabs or spaces at the beginning of each line.
However, this can be cumbersome, especially if adjust is used to
justify the margins (adjust has no provision for altering the left
margin indent to a given column position).

Shiftwidth is discussed in Chapter 12 entitled Configuring the Vi/Ex Editor.

11: Shell Operations 223

Text Replacement: Sorting Lists
A common problem in text processing involves taking a random list of items and sorting
them in some pre-determined fashion - sometimes one word or item per line, sometimes
multiple-column lines sorted according to a certain column, sometimes simply long lines ~~
that need to be sorted - and getting the job done with a minimum of effort or difficulty.
Normally, this could be a very tedious task. With vi it becomes surprisingly simple.

The techniques shown here for sorting are simple. However, they can be readily expanded
to fit more sophisticated needs. The examples that follow can serve as a seed bed for
more ideas. Refer to Section 1 of the HP- UX Reference for more information about the
sort command.

Sorting the List
Suppose you have the following list of colors somewhere in the middle of a large text file;
arranged as indicated, one color per line with one or more empty lines before and after
the list (thus forming one paragraph):

red
blue
green
orange
yellow
maroon
brown
cyan
purple
chartreuse
violet
crimson

First, let us sort the list into alphabetical order, still one color per line, without disturbing
surrounding text. Place the cursor on the first line (red), then execute the vi command:

! }sort I RETURN I

The ! command tells vi that this command is to be sent to the shell for interpretation.
The } command is a vi directive identifying the text object to be processed. It tells vi to
send the text from the current cursor line through the end of the current paragraph to
the shell as standard input for the command which follows. sort is the HP-UX command

()

that is to be executed by the shell. Upon completion, the shell returns its standard !)
output from the sort to vi which, in turn, uses the processed text to replace the original
text that was previously sent to the shell for processing.

224 11: Shell Operations

u

u

u

As you type the command, notice that when you press !, nothing visible happens (vi
is holding the character in a buffer, and is waiting for your next command character).
The } character represents the text object (the object can be preceded by a count). As
soon as vi recognizes a valid text object, the ! character is displayed at the bottom of
the screen on the command line, but the object is never displayed just as in normal vi
editing operations. Once the text object has been defined, the remaining characters in
the command are treated as a valid shell command, and are sent directly to the shell for
interpretation. After processing by vi, only the following characters from the command
sequence are visible on the command line at the bottom of the terminal screen:

!sort

The result that replaces the original text is:

blue
brown
chartreuse
crimson
cyan
green
maroon
orange
purple
red
violet
yellow

Working with Multi-Column Lines
Occasionally, you may have a similar series of lines except that each line contains several
columns of text separated by tabs or other whitespacejdelimiter characters. You may
want to sort the lines based on the contents of the first column of each line. However,
you may also need to sort the lines based on the contents of column 3 or 4, for example,
or based on contents from any position in the line to any other position in the same line.
For more information, refer to the sort(l) manual page entry in the HP-UX Reference,
and to discussions of the sort command elsewhere in this volume.

For example, to sort a paragraph containing several lines, each of which contains five
columns, in alphabetical order according to the contents of column 2, and ignoring up­
percase/lowercase differences, use:

! }sort -f +1 -2

11: Shell Operations 225

sort is explored in greater detail among the text processing topics discussed elsewhere in
this volume.

Text Replacement: Rearranging Lists into Tables
Another common text processing problem entails rearranging a single column of text or
data, one item per line, into a multiple-column table format. The HP-UX pr command
provides an easy way to do this. For example, using the unsorted list of colors from the
previous section, execute the following vi command:

! }pr -4t I RETURN I

while the cursor is on the first color (red). This single-column list:

red
blue
green
orange
yellow
maroon
brown
cyan
purple
chartreuse
violet
crimson

is replaced by this four-column layout:

red
blue
green

orange
yellow
maroon

brown
cyan
purple

chartreuse
violet
crimson

However, the list is not sorted into alphabetical order. To sort and format the list in a
single operation, execute both commands in a single pipeline as follows:

!}sort I pr -4t

The resulting table is now in alphabetical order:

blue
brown
chartreuse

crimson
cyan
green

226 11: Shell Operations

maroon
orange
purple

red
violet
yellow n

u

u

u

As discussed previously, the sort part of the command sequence sorts the paragraph
into alphabetical order in a single-column format. The pr command option -4 specifies
four-column output (columns are separated by an appropriate combination of tab and
space characters); the t option suppresses page headers, footers, and any empty lines that
would normally be created before or after the processed text when formatting printed
pages. The processed output text from pr is returned to vi by the shell so it can be used
to replace the original text object.

However, the embedded tab characters in the formatted multi-column output may not
be acceptable for some situations. Here is what the text really looks like when the tabs
are identified:

blue<tab ><tab > crimson< tab >
brown<tab><tab > cyan<tab ><tab>
chartreuse<tab > green<tab><tab>

maroon<tab >
orange<tab >
purple<tab >

red
violet
yellow

where <tab > (including spaces within the angle brackets < and > represents the space on
the terminal screen that is consumed by the corresponding tab character in the sorted
output.

Expanding Tabs to Spaces in Columnar Output
If the table must not contain tab characters, they are easily eliminated by using another
HP-UX command, expand, in the pipeline:

! }sort I pr -4t I expand I RETURN I

As before, the sort part of the command sequence sorts the specified text object into
alphabetical order in a single-column format; pr formats the sorted output into four­
column output with columns separated by tab characters, and expand converts each tab
character into a string of blanks to create the correct appearance on the terminal screen
(pr and expand use the same default column numbers for tab stop positions). The shell
returns the processed result to vi:

blue
brown
chartreuse

crimson
cyan
green

without any embedded tab characters.

maroon
orange
purple

red
violet
yellow

11: Shell Operations 227

Adding tbl Macros
The table preprocessor tbl converts table source text in a special form into a series of
commands sequences that can be used in conjunction with an nroff or trofftext formatting
program or mm (memorandum macro) processing program. The output from the sort I
pr command shown previously would not be suitable for use with tbl (table formatter)
preprocessor macros because tbl expects a single tab character as a field separator between
items on each line.

In both examples shown earlier, the table contains either multiple adjacent tab characters
and spaces, or multiple spaces between items. Therefore, both are incompatible with tbl
unless some changes are made. To convert a combination of multiple tabs and spaces
to the single tab separator expected by tbl, use a global substitution technique similar
to the following (cursor is anywhere on the first of the three lines in the table) on the
unexpanded table:

: . , . +2sl [tab] [tab]* [] *ltablg

where tab is a single tab character.

To convert each occurrence of a series of one or more spaces (as in the second example
where tabs were expanded to spaces) to a single tab, use a construction like this:

: . , . +2sl [] [] *I [tab] I g

Either method applied to the appropriate text produces the following (source text con­
tains no leading blanks or tabs):

b1ue<tab>crimson<tab>maroon<tab>red
brown<tab>cyan<tab>orange<tab>vio1et
chartreuse<tab>green<tab>purp1e<tab>ye11ow

where <tab> represents a single tab character. This format is now compatible with tbl
formatting requirements. To arrange the three lines into a boxed table with each pair of
adjacent columns separated by a single vertical line add three lines before and one line
after as follows:

.TS
center box;
1 I 1 I 1 I 1 .
b1ue<tab>crimson<tab>maroon<tab>red
brown<tab>cyan<tab>orange<tab>vio1et
chartreuse<tab>green<tab>purp1e<tab>ye11ow
.TE

228 11: Shell Operations

n

n

u

(_j

As always, the table definition sequence on the second and third line could be changed
to add more information such as column headings, etc.

Sorting by Field before Formatting in Columns
You may occasionally need to sort a list consisting of two or more words (such as first
and last names in a name list) based on the second (or later) column. For example, the
following list of notable names:

George Washington
Henry Clay
John Adams
Napoleon Bonaparte
Abraham Lincoln
John Calvin
Martin Luther

is easily sorted into three columns by placing the cursor anywhere on the first line in the
list then using the command:

!}sort -t\ +1b lpr -3t

John Adams<tab><tab>Henry Clay<tab><tab>Martin Luther
Napoleon Bonaparte<tab>Abraham Lincoln<tab><tab>George Washington
John Calvin

The -t\ (space) option defines the ASCII space character between first and last names
as the field separator. A backslash precedes the space to protect it from interpretation
by the shell. A second space separates the -t option from the +lb option which tells
sort to arrange entries according to the contents of the first field following the left or
first field on the line, thus sorting by surname. (A bug in pr may place an unwanted tab
character between first and last name on some names in the list.)

11: Shell Operations 229

Text Insertion: Reading Shell Output
Suppose you are writing a procedure for how to use a new program you have written and
need to include an example of expected program output. Obviously, you want the result
to be accurate. What better way then than to let the program provide the result and rJ
place it directly into the file you are editing instead of sending it to the standard output
which usually shows up on the terminal display screen?

In an earlier chapter we talked about merging a file into text using the :r command which
reads a file into the buffer file starting on a new line following the current cursor line.
Suppose we replace the filename (following the space after the r command) with the shell
escape character (!) and an HP-UX command sequence as follows:

: r ! (hpux_command) I RETURN I

Voila! Standard output appears in the file right where the file normally goes when a
filename is specified. Now for an example:

Suppose you have three files, each containing ten items, one item per line. file1 contains
the letters a through j, file2 contains the numbers 0 through 9, and file3 contains the
words zero through ten (note that file3 contains lllines instead of ten like the other two
files). With the cursor in the current line of visible text followed by another visible text n
line, the command: ·

:r !paste file1 file2 file3 IRETURNI

produces the following result:

the current line of visible text
a 0 zero
b 1 one
c 2 two
d 3 three
e 4 four
f 5 five
g 6 six
h 7 seven
i 8 eight

9 nine
ten

another visible text line

n

230 11: Shell Operations

u

u

Note

There is a big difference between:

:w! filename

and

,image :w !hpux_command

To reinforce the difference, the command form:

:r !hpux_command

is emphasized instead of the equivalent ;r! hpux_command which
produces identical results for read operations only.

11: Shell Operations 231

Check Your Spelling the Easy Way
One perplexing problem for typists and terminal users and humans in general is having
an easy way to check for spelling and typing errors. This becomes very easy when using vi
in an HP-UX environment, and as usual, there are several ways of doing it. The method 1~
shown here is simple and effective, and is not significantly more cumbersome than using
specialized programs to accomplish the same thing.

To check spelling on the entire file, type the command:

:w !spell >spell.errors !RETURN I

When the prompt to continue is displayed upon completion, press any key to restore
the display screen and continue. Misspelled words are now stored in the file named
spell.errors. However, it is a bit of a nuisance to have them in an external file, so let's
import the errors file to the working file being edited. Type G to move the cursor to the
last line in the file, then type:

: r spell. errors I RETURN I

to read the errors file in at the end of the file. If you prefer to have the errors at the
beginning of the file, place the cursor on the first line of the error file text, type the
command dG, then type lG to move the cursor to the beginning of the file and type P 1~ to insert the deleted text before the first line. · .. ·)

Now it is a simple matter to scan through the merged errors file, delete those lines
that may be correctly spelled but were not included in the HP-UX spelling dictionary
database. After eliminating the correctly spelled words that showed up as misspelled,
you can search for the others, make the needed corrections, then delete each entry from
the errors list after it has been corrected and continue with the next error.

232 11: Shell Operations

(~

u

u

u

Writing to a Shell Command Instead of a File
The previous spelling example shows a typical situation where a block of text needs to
be written as standard input to a shell command without bringing the standard output
back to replace the original text object. The command used is deceptively similar to the
standard forced write command (:w!) except for the placement or absence of a blank
(space or tab) before the exclamation point. Command format to force the buffer to be
written to filename, even if the file already exists (provided you have write permission)
is:

: w! filename I RETURN I

To send the entire file as standard input to an hpux_command, use:
: w ! hpux_ command I RETURN I

The type of output produced by the command (or shell script or other program) and its
destination is determined by the command and what options, if any, are used with it.

As discussed in the section on using the write command in Chapter 9, text blocks defined
by file markers, text object specifications, etc. can be sent to the command instead of
the entire file by preceding the w with marker names, line numbers, ex addresses, or any
other compatible construction that can be used with the w command.

Custom Processing
The :w ! construction can also be used to process the file through a shell script, awk
script, or other device or program as your needs might dictate. No further discussion
of such devices is presented here because the level of competence required for writing
such scripts is such that the information presented earlier in this topic is sufficient for
providing the standard input text.

11: Shell Operations 233

rfJ

234 11: Shell Operations

u

u

u

Editor:
Configuring the Vi/Ex Editor 12
For most casual users, the default configuration of vi is quite adequate. However, you
may have some special needs or preferences that make it advantageous to have certain
editor operating characteristics and features changed to suit your situation. You have
two choices:

• Use the :set command to immediately change the desired operating characteristic
or feature, or

• Store the desired characteristics and features in a default configuration file that
vi/ ex uses each time a new session begins.

The first part of this chapter explains how to use configuration commands to set up
characteristics and features. The latter part of the chapter explains how to set up
a configuration file so that your preferred characteristics are automatically configured
every time you use vi.

12: Configuring the Vi/Ex Editor 235

Configuration Options
The following operating options can be configured by use of the vi/ ex :set command.
Option listing shows typical default values for most releases of vi. To determine the
c(u

1
rrent)op

1
tiohnsb s~ttin1 gsdfor "fyour ~ession, huse the :fixset all hcomma~d. Chommandd~ abre

1
ld·n n, "

a most a p a et1ca or er 1 you 1gnore t e no pre on t ose opt10ns t at are 1sa e . "

noautoindent
autoprint
noautowrite
no beautify
directory=/tmp
noedcompatible
noerrorbells
flash
hardtabs=8
noignorecase
no lisp
no list
magic
mesg
nomodelines

Typical Default vijex Options Settings

nonovice noshowmode
nonumber noslowopen
nooptimize tabstop=8
paragraphs=IPLPPPQPP Libp taglength=O
prompt tags=tags /usr/lib/tags
noreadonly term=hp
redraw noterse
remap timeout
report=5 ttytype=hp
scroll=11 warn
sections=NHSHH HU window=8
shell=/bin/sh wrapscan
shiftwidth=8h wrapmargin=O
noshowmatch nowriteany

Enabling, Disabling, and Setting Options
To enable or disable an option, use the :set command followed by the option name then
press I RETURN I as follows:

:set option_name I RETURN I

:set nooption_name I RETURN I

:set option_name=value I RETURN I

Enable the option,

Disable the option, or

Assign a value to the option.

Some (but not all) commands can be abbreviated to save typing. The abbreviation for
each option, if available, is listed with the command in the following list which describes
each option in greater detail. When typing a command, spell the option name in its
entirety as shown above, or use the abbreviation as shown in the paragraphs that follow.
No other spellings are recognized, and produce an error if used.

236 12: Configuring the Vi/Ex Editor

n

n

u

u

u

Option Descriptions
The following topics describe the options that are supported on vi and ex. Each option
is recognized by one editor or the other or both as indicated between parentheses in the
heading for that option. In general, vi options apply equally to view, and ex options
apply to edit and vedit.

autoindent (vifex)
abbr: ai Default: noai

To enable:

To disable:

:set autoindent

:set noautoindent

or

or

:set ai

:set noai

Automatic indenting is most commonly used when writing structured programs as in C
or Pascal. When this option is set and the editor is in insert mode, the editor determines
the current indent (as it exists in the preceding line when a new line is started), then
uses that indent on all subsequent lines until it is changed. Thus, when starting a new
line, if the previous line starts with its first visible character in column 10 from the left
side of the display screen, all subsequent lines will start in the same column 10.

If disabled, I RETURN I moves the cursor to the extreme left margin of the next line, re­
gardless of the indent of current or previous lines.

How Vi/Ex Determines Current Indent
Current indent is defined as the column position of the first visible character on the line
where the cursor was located at the time insert mode is entered. If an Open command is
used to open a new line before the current line, the current line indent is used; not the
previous line. Note that vi/ ex uses a combination of tabs and spaces to set the indent of
new lines being added. If your requirements are such that tabs are not acceptable, this
option probably should not be used.

Changing Current Indent
To change autoindent on a given new line, space over to the desired column to increase
indent. To decrease indent to the previous shiftwidth column, use I CTRL ~[QJ (back-tab)
as the first character in the line. To input a single line with no indent then return to
the previous indent, use a circumflex (A) followed by @!BD-[QJ at the beginning of the
unindented line. If the first character pressed after I RETURN I is not a I CTRL ~[QJ or ~
followed by I CTRL ~[QJ, no change in indent occurs. However, if you start a new line
with one or more tabs or spaces, the next following line is started at the new indent
determined by the position of the first visible character on the current line.

12: Configuring the Vi/Ex Editor 237

No Whitespace Added to Empty Lines
Autoindent automatically adds indenting whitespace (space or tab) characters whenever
text is added in the line. If an empty line (such as between paragraphs or blocks of
program source code) is created, no whitespace characters are added to that line in the
file (an empty line has zero length except for its terminating newline character).

When autoindent is disabled, I RETURN I moves the cursor to the left column of the next
line, regardless of the indent in previous lines.

Autoindent is inactive during global commands and when the keyboard input device is
not a terminal.

autoprint (ex only)
abbr: ap

To enable:

To disable:

Default: ap

:set autoprint

:set noautoprint

or

or

:set ap

:set noap

Automatically prints the current line after each delete, copy, JOzn, move, substitute, l,
undo, or shift command. Has the same effect as supplying a trailing p at the end of each
such command. Autoprint is inactive during global operations, and only applies to the
last command on the line when multiple commands are combined on a single line. This
option is not used by vi.

autowrite (vijex)
abbr: aw

To enable:

To disable:

Default: noaw

:set autowrite

:set noautowrite

or

or

:set aw

:set noaw

Causes the contents of the buffer to be written to the current file if it has been modified
and a next, rewind, tag, or ! (shell-escape) command is encountered in vi1 or ex, or a •
(switch files) or 'I (tag goto) command in vi. Note that the edit and ex commands do
not force an autowrite.

1 Commands must be preceded by a colon when using vi.

238 12: Configuring the Vi/Ex Editor

n

n

n

u

u

Bypassing the Autowrite Feature
You may occasionally encounter times when you have been editing a file then decide to
abandon the file without placing the modified text back in permanent storage. If the
autowrite option is set (which means that if you try to quit the editor it will write the
file back anyway; not what you want) you can prevent autowriting when terminating or
changing files by using alternate forms of standard editor commands: 1

- quit! instead of quit,
- edit instead of next,
- rewind! instead of rewind,
- stop! followed by the tag! command instead of tag,
-shell instead of! (when you exit from the new shell, the edit resumes).

From vi, use:

- :e# when switching between two files or
- :tal command when using tag files to find text segments.

beautify (vi/ex)
abbr: bf

To enable:

To disable:

Default: nobeautify

:set beautify

:set nobeautify

or

or

:set bf

:set nobf

Setting this option discards all control characters except tab, newline, and form-feed
during input. A complaint is registered the first time a backspace is discarded. Beautify
affects only keyboard text input. It does not alter command input.

12: Configuring the Vi/Ex Editor 239

directory (vifex)
abbr: dir Default: directory=/tmp

Specifies which directory is used by vi or ex when creating the buffer file following an edit
file command from within the editor. This option does not affect the buffer location if n
the option is set during the session. To control the location of the buffer at the opening of · ,
each session, the option must be set in the .exrc file in your home directory ($HOME) or
the session must be opened without specifying a filename. If you open the session without
specifying a filename on the HP-UX command line, set the option after the session is
open, then specify the name of the file to edit, the buffer location will be determined by
the directory specifed when this option was set.

If write permission is not available for the specified directory and the directory is specified
by . exrc, the editor exits and terminates immediately. If the file is being specified
interactively after the session is open and the directory is specified and write permission
is not available in that directory, an error message is generated.

edcompatible (vifex)
abbr: ed

To enable:

To disable:

When this option is enabled:

Default: noedcompatible

:set edcompatible

:set noedcompatible

or

or

:set ed

:set noed

• If a g (global) or c (check) suffix is present on a substitute command, the global
or check flag is toggled and the command is processed accordingly. If the suffix is
absent on subsequent substitution commands, the toggled flag (unchanged from the
previous substitution command) is used to determine how to process the command.
When a new suffix appears on a substitute command, the flag is again toggled to
its opposite state and processing is reversed accordingly.

• An r suffix on a substitution command recognizes the ed metacharacter % as
the replacement string from the last preceding substitution instead of using the
~ metacharacter that is normally used in vi/ex for that purpose. As usual, the &
metacharacter represents the text string that matched the search regular expression
in the current substitution string.

240 12: Configuring the Vi/Ex Editor

n
J

errorbells (vijex)
abbr: eb

To enable:

To disable:

Default: noerrorbells

:set errorbells

:set noerrorbells

or

or

:set eb

:set noeb

When enabled, this option precedes error messages with a bell only on terminals that
do not support a standout or highlighting mode such as inverse video. If the terminal
supports highlighting, the bell is never used prior to error messages and this option has
no effect.

flash (vijex)
abbr: none

To enable:

To disable:

Default: flash

:set flash

:set noflash

or

or

:set fl

:set nofl

When enabled, this option causes the screen to flash instead of beeping, provided an
appropriate fiash_screen entry is present in the terminfo data base for the terminal being
used (see terminfo(4) entry in HP-UX Reference for more information).

hardtabs (vifex)
abbr: ht

To enable:

To disable:

Default: hardtabs=8

:set hardtabs

:set nohardtabs

or

or

:set ht

:set noht

Defines the spacing between hardware tab settings and the number of spaces used by the
system when expanding tab characters. Tab stops are placed in each column number
(starting at the left edge of the screen) that corresponds to an integer multiple of the
numeric value used when setting this option.

12: Configuring the Vi/Ex Editor 241

ignorecase (vifex)
abbr: ic

To enable:

To disable:

Default: noignorecase

:set ignorecase

:set noignorecase

or

or

:set ic

:set noic

When enabled, this option maps all uppercase characters in text to lowercase when
matching regular expressions. It also maps all uppercase characters in regular expressions
to lowercase except for character-class specification characters.

lisp (vifex)
(no abbr)

To enable:

To disable:

:set lisp

:set nolisp

Default: nolisp

When this option is set, it causes the Autoindent option to indent appropriately for lisp
program code and modifies the meaning of (), { }, [[, and]] commands in open and vi
so that they correspond to lisp usage.

list (vifex)
(no abbr)

To enable:

To disable:

:set list

:set nolist

Default: nolist

Setting this option causes all printed lines to be displayed less ambiguously, showing tabs
and newlines as in the ex :list command.

242 12: Configuring the Vi/Ex Editor

n

n

(. u

magic (vifex)
(no abbr)

To enable:

To disable:

Default: magic for ex and vi

:set magic

:set nomagic

If nomagic is set, the number of regular expression metacharacters is greatly reduced,
with only A and $ having special effects. In addition, if the metacharacters N (text used
in the last previous replacement) and &; (text matching the regular expression used in
the current replacement) appear in the replacement pattern, they are treated as normal
characters and must be preceded by a \ if they are to be used as special characters.
Any metacharacters that have been disabled by setting nomagic can re-enabled for use
as metacharacters while nomagic remains set by preceding them with a\. The principle
metacharacters affected by this option are: ., [(and the accompanying]),&, N and*.

mesg (vifex)
(no abbr)

To enable:

To disable:

Default: mesg

:set mesg

:set nomesg

Setting nomesg blocks write permission to your terminal from other system users while
you are using vi (equivalent to the HP-UX command mesg n I RETURN 1). If mesg is
set, other users can use the HP-UX write command to send messages to your terminal,
possibly disrupting the screen display unless you have disabled that ability from a mesg
n command prior to starting the editor.

12: Configuring the Vi/Ex Editor 243

modelines (vifex)
abbr: modeline

To enable:

To disable:

Default: nomodelines

:set modelines

:set modelines

or

or

:set modeline

:set nomodeline

If modelines is set, the editor scans the first and last five lines in the file when a new
file is opened, looking for any ex commands that might exist in those lines. After all
. exrc and EXINIT commands are processed, and before editing control is given to the
user, the commands embedded in the first and last five lines of the file, if they exist, are
executed.

Any commands that are placed in the file must lie within the first and/ or last five lines
of the file, must be prefixed by ex: or vi: and must be terminated by a colon (:); all
in a single line. The commands can be prefixed by ex: or vi:, but only valid ex editor
commands can be used. For example, to set the list option, use the command:

ex: set list:

or

ex: set list:

anywhere in the first or last five lines. There is no restriction on the length of the
command except that it must all fit on a single line and not exceed approximately 1020
total characters in the line. To separate multiple commands on a single modeline, use
the vertical bar character (I).

Be careful when using this option to make sure that the first and last lines in a normal
file cannot be incorrectly interpreted as commands. To be safe, your . exrc file should
probably leave this option disabled unless you have a specific need that requires enabling
modelines.

244 12: Configuring the Vi/Ex Editor

n

n

n

u

u

number (vifex)
abbr: nu

To enable:

To disable:

Default: nonumber

:set number
:set number

or

or
:set nu
:set nonu

Setting this option causes the editor to precede all printed or displayed lines of text with
a line number. In text input mode (insert, append, or open) a line number is provided
and the cursor advanced to the beginning text column whenever a new line is started.
Line numbers are displayed on the terminal only; they are not included in the file when
it is written back to permanent storage. To add line numbers to a file, use the HP-UX
pr command.

optimize
abbr: opt

To enable:

To disable:

Default: optimize

:set optimize
:set nooptimize

or

or

:set opt

:set noopt

Setting this option suppresses automatic carriage returns by the terminal on terminals
that do not support direct cursor addressing. This streamlines text output in certain
situations such as when printing multiple lines that contain leading white space.

paragraphs (vifex)
abbr: para Default: paragraphs=IPLPPPQPP Llbp

Specifies the one- or two-character macro names that are to be recognized (in addition to
empty lines) as paragraph boundaries when interpreting cursor movements related to the
{ and } commands in vi or in ex open mode. All macros defined by the sections option
are also recognized as paragraph boundaries in addition to those defined by paragraphs.

A macro is a one- or two-character symbol following a period (.) at the beginning of a line of text that
serves as a formatting command to a text formatting program such as nroff. The macro usually replaces
a larger set of lower-level commands that would be necessary to, for example, clean up a paragraph,
space down for the next paragraph, then continue with the next block of text, or perform some other
comparable task.

12: Configuring the Vi/Ex Editor 245

If any macros have a single-character name, use a blank (space character) to substitute
for the missing second character in the name. When typing a space character in such
situations, the space must be preceded by a backslash (\) to prevent the editor from
interpreting it as a delimiter.

Example: To define recognized paragraph macros to include .bullet, .item, .step, and n
.note in addition to blank lines and the mm macros .P and .PP, use the command:

set paragraphs=PPP\ buitstnoiRETURNI

after a colon (or colon prompt from vi) or in the .exrc file in your home directory $HOME.
When the :set all command is used to list the current options, the backslash preceding
the space is not shown because it is consumed during initial interpretation by the editor.

When the editor is scanning for paragraph boundaries, only the first two letters after the
period at the beginning of the line are used by vi to recognize a macro. Any subsequent
characters on a text line containing a defined macro character pair are ignored by vi and
ex.

prompt (ex only)
(no abbr)

To enable:

To disable:

Default: prompt

:set prompt

:set noprompt

If this option is set, the editor prompts for a new command when in command mode by
printing a colon.

246 12: Configuring the Vi/Ex Editor

n

n

u

u

u

readonly (vijex)
abbr: ro

To enable:

To disable:

Default: noreadonly

:set readonly

:set noreadonly
or

or

:set ro

:set noro

This option sets the read-only flag for the file being edited, thus preventing accidental
overwriting at the end of the session. This option is equivalent to invoking vi or ex with
the -R option or using the HP-UX view command. Setting this option in the .exrc file
in your home directory or in the EX/NIT variable in your .profile file has the effect of
making all files being edited read-only so that the edited result must be placed elsewhere.
It does not, however, prevent overwriting the original file by using the :w! command.

redraw
(no abbr)

To enable:

To disable:

Default: noredraw

:set redraw

:set noredraw

When this option is set, the editor simulates an intelligent terminal on a dumb terminal.
This is usually accomplished by outputting new characters on the current line to the
right of the cursor position or reprinting subsequent lines on the screen as needed when
inserting, deleting, or changing the number of visible characters on the display. This
method usually results in large amounts of data being transferred to the terminal, and
is useful only when the terminal-to-computer data path operates at very high speed.

remap (vijex)
(no abbr)

To enable:

To disable:

Default: remap

:set remap

:set noremap

If this option is set, macro redefinitions are repeatedly followed until the last definition
is found. For example, suppose o is mapped to 0, and 0 is mapped to I. If remap is set,
o maps to I; if noremap is set, the link between 0 and I is ignored and o instead maps
to 0 as originally defined.

12: Configuring the Vi/Ex Editor 247

report (vifex)

(no abbr)

To enable:

To disable:

Default: report=5

:set report

:set noreport

Specifies a threshold for feedback from commands. Any command that modifies more
than the specified number of lines will provide feedback as to the scope of its changes.
For commands such as global, open, undo, and visual which have potentially more far
reaching scope, the net change in the number of lines in the buffer is presented at the
end of the command, subject to this same threshold. Thus notification is suppressed
during a global command on the individual commands performed.

scroll (vifex)

(no abbr)

To enable:

To disable:

Default: scroll=ll

:set scroll

:set noscroll

Determines the number of logical lines scrolled when an end-of-file character (typically
I CTRL ~[QJ unless redefined otherwise) is received from the terminal keyboard while in
command mode. The value also defines the number of lines printed by a command-mode
command (double the value of scroll).

248 12: Configuring the Vi/Ex Editor

n

,f)

u

sections (vifex)
(no abbr) Default: sections=SHNHH HU

Specifies the one- or two-character macro1 names that are to be recognized as section
boundaries when interpreting cursor movements related to the [[and]] commands in
vi or in ex open mode. If any macros have a single-character name, use a blank (space
character) to substitute for the missing second character in the name.

If any macros have a single-character name, use a blank (space character) to substitute for
the missing second character in the name. When typing a space character in the macro
names that are to be recognized as section boundaries, the space must be preceded by a
backslash (\) to protect it from interpretation as a delimiter by the editor.

Example: Suppose you are using a proprietary text formatting program where section
heads are set by the section level macros .1 through .4. To reconfigure the editor so it
can recognize the macros .1, .2, .3, and .4, use the command:

set sections=1\ 2\ 3\ 4\ IRETURNI

after a colon (or the ex colon prompt) or in the . exrc file in your home directory $HOME.

U
, , shell (vifex)

abbr: sh Default: sh=/binfsh

This option specifies the path and filename of the user shell that is to be used when a shell
escape command (!) or sh command is encountered and the user SHELL environment
variable is undefined. If the SHELL environment variable is defined, that value is used
instead.

U\1 _____ _

A macro is a one- or two-character symbol following a period (.) at the beginning of a line of text that
serves as a formatting command to a text formatting program such as nroff. The macro usually replaces
a larger set of lower-level commands that would be necessary to, for example, clean up a paragraph, set
a new section head, then continue with the next paragraph, or perform some other comparable task.

12: Configuring the Vi/Ex Editor 249

shiftwidth (vifex)
abbr: sw

To enable:

To disable:

Default: shiftwidth=8

:set shiftwidth

:set noshiftwidth

or

or

:set sw

:set nosw

Specifies the spacing between software tab stops. This value is used when: (a) reverse
tabbing with AD, (b) using autoindent to append text, and (c) using the right/left shift
(»and«) commands.

showmatch (vifex)
abbr: sm

To enable:

To disable:

Default: noshowmatch

:set showmatch

:set noshowmatch

or

or

:set sm

:set nosm

If this option is set and you are in vi or using ex in open mode, when a) or } is typed,
the cursor moves to the matching (or { for one second (if the matching character is
on the screen) then returns. This feature is very useful when working with the Lisp
programming language but a general nuisance otherwise.

showmode (vi only)
(no abbr)

To enable:

To disable:

Default: noshowmode

:set showmode

:set noshowmode

If this option is set and you are in vi, the message INPUT MODE is displayed in the lower
right-hand comer of the vi display area of the terminal screen whenever vi is operating
in input mode. This feature is very helpful for beginning users who may experience
difficulty in understanding the difference between command mode and input mode and
knowing which mode is currently active.

n

The INPUT MODE message displayed by vi relates only to vi program operation. When vi
is being used on intelligent terminals, vi may overwrite the current screen or place the
terminal in terminal screen input mode, whichever requires less communication overhead.
When the terminal is placed in its own internal input mode, it may display a second Input n
Mode message, usually below the softkey labels. The terminal input-mode message has no \ "
direct relationship to the INPUT MODE message displayed by vi when the showmode option
is enabled.

250 12: Configuring the Vi/Ex Editor

u

slowopen (vifex)
abbr: slow

To enable:

To disable:

Default is terminal- and speed-dependent

:set slowopen

:set noslowopen

or

or

:set slow

:set noslow

Setting this option alters the display algorithm used for vi editing to accommodate slow
or unintelligent terminals by limiting the printing of input or new text in exchange for
better operating speeds.

tabstop (vifex)
abbr: ts Default: tabstop=8

This option defines the tab spacing used by the editor when expanding tabs in the output
file to match display tabstop boundaries.

taglength (vifex)
abbr: tl Default: taglength=O

Specifies the maximum number of characters in a tag that are to be treated as significant.

U, ' Characters beyond the limit are ignored. A value of zero (default value) means that all
characters in the tag are significant.

u

tags (vifex)
(no abbr) Default: tags=tags /usr /lib/tags

Specifies path and file names to be used as tag files for the tag command or -t option
when the editor is started. vi (or ex) sequentially searches the specified tag files for the
tag name, then uses the tagfile entry to open the file containing the tagged text and
search for the tag in that file. Default tag file searching begins in file tags in the current
directory (if present), then proceeds to the master system-wide tags file in jusr /lib. Tags
are most commonly used when editing large complex program structures that involve a
large number of files in multiple directories, although they are useful in much smaller
structures.

12: Configuring the VifEx Editor 251

term (vifex)
(no abbr) Value obtained from the environment variable,

TERM

Defines the type of terminal being used with the editor. Value is obtained from the r-'\
TERM user environment variable and cannot be altered from within vi/ ex.

1

·)

terse (vifex)
(no abbr)

To enable:

To disable:

Default: noterse

:set terse

:set noterse

Setting this option specifies shorter error diagnostics for the experienced user.

timeout (vi/ex)
(no abbr)

To enable:

To disable:

Default:

:set timeout

:set notimeout

timeout

This option sets or disables the timer used to determine whether an escape character is
the escape key (such as when I ESC I is used to terminate input mode in vi) or the first
character in a two-character escape sequence representing arrow keys, function keys, etc.
If set, the timeout function is enabled, meaning that if an escape character is not followed
within the time limit by another character, the escape is treated as a separate character
rather than as part of a two-character sequence.

If this option is disabled (:set notimeout), the timeout counter is disabled and any es­
cape character received is always treated as the first character in a two-character escape
sequence. Length of the timeout period and its effect on typing speed is discussed in
Chapter 2.

252 12: Configuring the Vi/Ex Editor

I~

ttytype (vifex)
(no abbr) Value obtained from the environment variable,

TERM

U, Defines the ttytype for the terminal being used with the editor. Value is obtained from
the TERM user environment variable and cannot be altered from within vi/ ex.

warn (vifex)
(no abbr)

To enable:

To disable:

Default: warn

:set warn

:set nowarn

Warn if there has been "no write since last change" before a ! or shell command escape.
nowarn disables the message.

window (vifex)
(no abbr) Default: window=speed dependent

U
/ ·.. Specifies the number of lines that are displayed in a vi text window when a file is opened

or after a jump to another location in the file, based on modem baud rate. Default is 8
lines at slow speeds (600 baud or less), 16 at medium speed (1200 baud), and the full
screen minus one line at higher speeds. The limited number of lines only applies when

u

the entire screen must be redrawn. If you are working in a limited area in the file, the
number of lines displayed increases until the screen is full. The screen then remains full
until an editor command creates a situation where the entire screen must be redrawn.

This option is useful when slow-speed telephone line modems are used for remote termi­
nals to improve screen updating performance by restricting the amount of display area
that must be altered during redraws, scrolls, etc.

12: Configuring the Vi/Ex Editor 253

w300, w1200, w9600 (vi only)
(no abbr) Default: not invoked

These are not true options but set window only if the speed is slow (300), medium (1200),
or high (9600), respectively. They are suitable for use in an EXINIT variable or .exrc ()
file, and make it easy to change the 8-line/16-line/full-screen rule.

wrapscan (vifex)
abbr: ws

To enable:

To disable:

Default: wrapscan

:set wrapscan

:set nowrapscan

or

or

:set ws

:set nows

When this option is set, pattern searches resulting from a /, ? , n, or N command auto­
matically wrap around to the opposite end of the file and continue whenever beginning­
or end-of-file is reached.

wrapmargin (vifex)
abbr: wm

To enable:

To disable:

Default: wrapmargin=O

:set wrapmargin

:set nowrapmargin

or

or

:set wm

:set nowm

Defines the position of the right margin with respect to the right-hand screen boundary
that is to be used for automatically wrapping to a new line when the margin is exceeded
during text input (automatic newline insertion) from vi or from open mode. See the
Continuous Text Input topic in Chapter 2 for more details.

writeany (vifex)
abbr: wa

To enable:

To disable:

Default: nowriteany

:set writeany

:set nowriteany

or

or

:set wa

:set nowa

Enabling this option inhibits the checks normally made before write commands, thus
allowing a write to any file that the system protection mechanism will allow.

254 12: Configuring the Vi/Ex Editor

u

u

Automating Editor Configuration
There are three ways to automatically configure the editor each time you use it with the
options, macro definitions, and other characteristics that you prefer:

• Define non-default values in your local environment variable EXINIT, or

• Build an editor configuration file named . exrc in your home directory and/ or in the
current directory that contains a series of ex editor :set commands, macro definitions
and other desired characteristics.

• Embed ex editor commands in the first and/ or last five lines of the file being edited.

Each time the HP-UX command that starts the vi/ex editor is executed, the editor
searches for the environment variable EXINIT and uses its contents as configuration
commands if it exists. If EXINIT is not defined, the editor then searches for the file
. exrc in your home directory and uses its configuration commands if the file exists. If
neither EXINIT nor .exrc exist, the default values discussed earlier in this chapter are
used instead.

After processing the EXINIT variable and/ or .exrc file in your home directory, the editor
then searches the current directory for another file named . exrc. If the file exists, it is
also processed. This provides a means to have various kinds of files in assorted directories
and alter the editor configuration to meet the needs of each directory.

After completing the above tasks, the editor opens the file being edited then, if the
modelines option is set, it scans the first and last five lines in the file to determine
whether any ex commands have been placed there. If so, the commands are executed
before editing control is transferred to the user. See the modelines option discussion
earlier in this chapter for more information about the modelines option.

An example .exrc file that can be used as a starting base is contained in file /etcjd.exrc.
Here is a modified form of that file with some features you might find interesting. Lines
beginning with a double quote character are comments and are ignored by the editor
during start-up. Their presence slows the start-up process somewhat, but they make the
script easier to interpret.

This .exrc file contains comments to tell you what each command
does. Some commands may not be desirable in your case. If so,
comment them out by using the " character, or delete them.

The actual names of special keys are in capital letters (like INSERT LINE).
The exact names are not universally used, but you should have no trouble

12: Configuring the Vi/Ex Editor 255

figuring out which keys they refer to. Some may not be present on
your terminal, depending on make and model.

Caution: this file reflects characteristics of an hp2622 terminal
or terminal emulator ($TERM=hp2622). If you use other
terminals or other $TERM values, changes may be needed.

$$$
$$$

Set up automatic indenting and set right margin at column 72:

et autoindent wrapmargin=8
II

Block any messages from other users to protect display:

set nomesg

Change HOME UP key to move to upper left corner of screen:

map ~ [h H
II

Change HOME DOWN key to move to lower left corner of screen:

map ~ [F L
II

Change Left Arrow key to BACKSPACE:

Change NEXT PAGE key to CTRL-F (ACK) command character:
(Cannot be used in certain situations)

map ~[u ~F
II

Change PREV PAGE key to CTRL-B command

map ~[v ~B
II

Change ROLL DOWN key to Scroll window down 1, move cursor up 1 line:

map ~[T ~yk

II

Change ROLL UP key to Scroll window up 1, move cursor down 1 line:

map ~[S ~Ej
II

Change INSERT CHAR key to vi insert (i) command:

256 12: Configuring the Vi/Ex Editor

u

II

II Change DELETE CHAR key to vi delete character (x) command:

map
II

Change DELETE LINE key to vi delete line (dd) command:

map - [M dd
II

Change INSERT LINE key to vi Open-new-line (0) command:

map -[L 0
II

Change CLEAR DISPLAY key to vi Delete-to-bottom-of-screen (dL) command:

map -[J dL
II

Change CLEAR LINE key to vi Delete-to-end-of-line (D) command:

map - [K D
II

Change Left Arrow key (insert mode ONLY) to BACKSPACE:

Change Right Arrow key (insert mode ONLY) to Move Right:

map! -[c -v
II

Change Up Arrow key (insert mode ONLY) to Move Right:

map! -[A -v
II

Change Down Arrow key (insert mode ONLY) to RETURN:

Change CTRL-X to "adjust both margins on current paragraph":

map -x {!}adjust -j-M
II

" S = save current vi buffer contents and run spell on it, putting list of
misspelled words at the end of the vi buffer.

map S G:w!-M:r!spell %-M
II

The last map command in the file shows how to use the []] key in command mode to
automatically run the spell command on the current buffer and append the output of
spell to the buffer file. Here is how it works:

12: Configuring the Vi/Ex Editor 257

• When the []] key is pressed, the G command moves the cursor to the last line of
the file.

• The :w! command then writes the buffer to the original file so that it is up-to-date.

• The :r!spell % command tells the editor to run spell on the current filename then r-'\
read the standard output from spell into the current buffer after the current (last) '.)
line in the file.

• The AM characters are carriage-return characters that separate the commands in
the mapping.

Datacomm Protocol Conflicts
Most HP-UX systems use DC1/DC3 handshake protocol between the HP-UX computer
and user terminals where a DC3 (I CTRL ~[]]) character from the terminal tells the com­
puter to suspend output to the terminal and a DCl (I CTRL ~[9]) tells the computer to
resume sending output. However, this does not prevent users or other factors from con­
figuring your terminal for ENQ/ ACK protocol even though it is not being used, or from
setting EOT I CTRL ~[[]as an end-of-file marker character.

When a vi (or ex) editing session is in progress, the editor takes over all terminal interface n
functions from the shell so that it can implement special key commands (such as using
the h, j, k, and 1 keys for cursor control) and maintain screen displays. Since the terminal
interface drivers still handle all characters being transferred, they interpret datacomm
protocol characters being used as communication signals and may discard some characters
interpreted as datacomm control data even though they are needed by vi. Consequently,
when DC1/DC3 handshaking is configured but ENQ/ ACK is also enabled, any ENQ
or ACK characters are lost, thus leading to certain functions such as I CTRL H:IJ being
disabled as mentioned in Chapter 3.

258 12: Configuring the Vi/Ex Editor

u

u

u

Using Ex 13
The ex editor, which is essentially an extended version of ed is used mainly by those
who do not have access to a CRT display terminal. It is much more comprehensive and
more versatile than the edit version that uses predefined defaults for some options to
better fit the needs of beginning and casual users, but is rarely used by most HP-UX
users except as accessed from vi. In this tutorial, default settings are assumed for all
command options unless stated otherwise.

Starting ex
When invoked, ex (and vi) uses the environment variable TERM to determine the ter­
minal type. If a entry in the terminfo data base matches the terminal described by the
TERM variable, that description is used. If there is a variable EXINIT in the environ­
ment, the editor executes the commands contained in that variable. Otherwise, if there
is a file . exrc in your HOME directory, ex reads commands from that file to configure the
editor. Option-setting commands placed in EXINIT or .exrc are executed before each
editor session. In addition, the editor looks for another . exrc file

The ex start-up command has the following prototype:

ex [-] [-v] [-t <tag>] [-r][-1] [-w<n>] [-x] [-R] [+ <command>] <name> ...

where brackets ([]) surround optional command parameters. The most common case
edits a single file with no options, i.e.:

ex name

Command-line options function as follows:

-v

-t

Suppresses all interactive-user feedback; useful when processing editor
scripts in command files.

Equivalent to using vi rather than ex.

Equivalent to an initial tag command. Edits the file containing the tag and
positions the editor at its definition.

13: Using Ex 259

-r

-1

-w

-x

-R

name

Used in recovering after an editor or system crash. retrieves the last saved
version of the named file or, if no file is specified, types a list of saved files.

Sets up for editing LISP, by setting the showmatch and lisp options.

Sets the default window size ton, and is useful on dial-ups to start in small
windows.

Causes ex to prompt for a key that is then used to encrypt and decrypt the
contents of the file. The file should have been previously encrypted using
the same key, see crypt(1).

Sets the read-only option at the start.

Indicates which file(s) to edit.

An argument of the form + <command> indicates that the editor should begin by exe­
cuting the specified command. If <command> is omitted, the argument defaults to "S",
initially positioning the editor at the last line of the first file. Other useful commands
here are scanning patterns of the form /pattern, or line numbers such as +100 (which
starts at line 100).

260 13: Using Ex

n
/

!f)
I

/ ·, u

u

u

File Manipulation

Current File
In normal use, ex is used to edit the contents of a single file whose name is specified by
the current filename. In a typical editing sequence, the name of the file to be edited
becomes the current filename, and the original file contents are copied into a buffer
which is actually a temporary buffer file. Ex performs all editing actions on the buffer
file. Changes made to the buffer have no effect on the file being edited unless and until
the original file is replaced by the edited buffer contents (by use of a write command).
The write operation destroys the original file and replaces it with the edited version.

The current file is almost always treated as having been edited. This means that the
buffer file contents are logically connected with the current file name so that writing
the current buffer contents onto that file, even if it exists, is a reasonable action. If the
original file has not been edited, then ex will not normally write on it if it already exists
(a "not edited" message is returned when the write operation is attempted).

Alternate File
Each time the current filename is given a new value, the previous current file name is
saved as the alternate filename. Similarly, if a file is mentioned but does not become the
current file, it is saved as the alternate filename.

Filename Expansion
Filenames within the editor can be specified using normal shell-expansion conventions. In
addition, the character % in filenames is replaced by the current file name; the character
is replaced by the alternate file name (this makes it easy to deal alternately with two
files and eliminates the need for retyping the name supplied on an edit command after a
No write since last change diagnostic is received).

13: Using Ex 261

Multiple Files and Named Buffers
If the command line specifies more than one file to be edited, the first file is edited as
previously explained. Command-line arguments and file names for the first and subse­
quent files to be edited are placed in the argument list (the current argument list can
be displayed by using the args command). When you are ready to edit the next file in n
the list, use the next command. If you want to destroy the original argument list and ·. ·
associated file names, replacing them with a new list, append the desired new arguments
and file names to the next command. HP-UX then expands the next command with its
new arguments. The resulting list of names becomes the new argument list; the old list
is destroyed, and ex edits the first file on the new list.

Ex has a group of named buffers that are particularly useful for saving blocks of text
during normal editing, especially when editing multiple files. These buffers are similar to
the normal buffer file, except that only a limited number of operations can be used with
them. The buffers have names a or A through z or Z. Uppercase and lowercase names
refer to the same buffers, but commands append to uppercase-named buffers and replace
lowercase-named buffers.

Read-only Operation
You can use ex in read-only mode to look at files that you have no intention of modifying,
thus preventing the possibility of accidentally overwriting a file. Read-only mode is active r--'\
when the readonly option is set by: ')

• Using the -R command-line option,

• The view command line invocation, or

• By setting the readonly option.

Read-only can be cleared by setting noreadonly (type: :set noreadonly RETURN). You
still can write to a file, even while in read-only mode, by indicating to the editor that
you really know what you are doing. This is done by writing to a different file or using
the ! form of the ex write command, but you must have write permission on the file
being overwritten (if the file is marked as read-only, it cannot be overwritten except by
super-user).

262 13: Using Ex

u

u

u

Exceptional Conditions

Errors and Interrupts
When errors occur, ex prints an error diagnostic and, optionally, rings the terminal bell.
If the primary input is from a file, editor processing terminates. If an interrrupt signal
is received, ex prints "Interrupt" and returns to its command level. If the primary input
is a file, ex exits when an interrupt occurs.

Recovering from Hangups and Crashes
If a hangup signal is received and the buffer has been modified since it was last written
out, or if the system crashes, either the editor (in the first case) or the system (after it
reboots in the second case) attempts to preserve the buffer. The next time you log in
you should be able to recover the work you were doing, losing, at most, a few lines of
changes from the last point before the hangup or editor crash. To recover a file, you can
use the -r option. For example, if you were editing the file resume, you should change
to the directory you were using when the crash occurred, giving the command:

ex -r resume

After checking that the retrieved file is indeed intact, you can write it back over the
original unedited file. The system normally sends you mail, telling you when a file has
been saved after a crash. The command:

ex -r

prints a list of the files that have been saved for you. (In the case of a hangup, the file
does not appear in the list, although it can be recovered.)

13: Using Ex 263

Editing Modes
Ex has five distinct operating modes:

• Command mode where commands are entered when a colon (:) prompt is present r-"\
and executed each time a complete line is sent. r)

• Text-input mode where ex gathers incoming lines of text and places them in the
file. Append, insert, and change commands use text-input mode to alter existing
text.

No prompt is printed when you are in text-input mode. To exit this mode, type a
period (.) immediately followed by an end-of-line key (RETURN). Command mode
then resumes.

• Open and visual modes enable you to perform local editing operations on text
in the file. The modes are accessed by commands having the same name. The
open command displays text, one line at a time, on any terminal, while the visual
command switches to vi and is designed for CRT terminals that have direct screen
cursor-addressing capability so ex can use the CRT as a window for file-editing
changes.

• Text insertion mode operates within open and visual modes.

These modes are discussed elsewhere throughout this tutorial.

264 13: Using Ex

n , I

n

u
Command Structure
ex commands are described in detail in Chapter 10. Most command names are English
words, and initial prefixes of the words are acceptable abbreviations. Ambiguous abbre­
viations are resolved in favor of the more commonly used commands (for example, the
command substitute can be abbreviated s, while the shortest available abbreviation for
set is se.

Command Parameters
Most commands accept prefix addresses specifying which line(s) they are to affect. The
forms these addresses can take is discussed in Chapter 10 (as well as in the sed tutorial
elsewhere in this volume). Some commands also accept or require a trailing count spec­
ifying the number of lines to be affected by the command (if rounding is necessary, the
number is rounded down). Thus the command 10p prints the tenth line in the buffer
while delete 5 deletes five lines from the buffer, starting with the current line.

Some commands require other information or parameters that are always appended fol­
lowing the command name; for example, option names in a set command, a file name in
an edit command, a regular expression in a substitute command, or a target address for
a copy command as in 1,5 copy 25.

U Command Variants

u

Several ex commands have two distinct variants. The variant form of the command is
invoked by placing an exclamation point (!) immediately after the command name.
Some of the default variants can be controlled by options; in this case, the ! serves to
toggle the default.

Flags After Commands
The characters#, p, and 1 can be placed after many commands (a p or 1 must be preceded
by a blank or tab except in the single special case dp). The commands abbreviated by
these three characters are executed after the command completes. Since ex normally
prints the new current line after each change, p is rarely necessary. Any number of +
or - characters can also be given with these flags. If they appear, the specified offset is
applied to the current line value before the printing command is executed.

13: Using Ex 265

Comments
Comment commands are ignored by the editor. This feature is useful when making
complex editor scripts (used with the source command) where explanatory comments are
needed. Any line beginning with a double quotation mark (")is treated as a comment
and no action results. Comments beginning with " can also be placed at the ends of ,n
commands, except in cases where they could be confused as part of text (as in shell
escape sequences or in substitute or map commands).

Multiple Commands per Line
Multiple commands can be combined on a single line by separating adjacent commands
with a I character. However, global commands, comments, and the shell escape ! must
be the last command on a line because they are not terminated by a I·

Reporting Large Changes
Most commands that change the editor buffer contents give feedback whenever the scope
of the change exceeds a threshold set by the report option (described in Chapter 12).
This feedback helps detect undesirably large changes so that they can be quickly and
easily reversed with an undo. When using commands that have a more global effect
(such as global or visual) you will be informed if the net change in the number of lines
in the buffer during this command exceeds the threshold.

Additional Topics
The full set of ex editor commands are described in Chapter 10. Chapter 12 details the
use of the set command which is used to alter various editor configuration parameters.
Refer to those chapters and other related topics elsewhere for information about how to
use commands. This chapter has been restricted to a general discussion of how the use
the ex editor program in contrast with the vi editor.

266 13: Using Ex

n

n
/

u

u

u

Index

a
abbreviate command . 172
Abort editing session . 21
Abort session after saving buffer ... 192
Abort session and discard buffer ' 192
Aborting ex command .. 124
aborting ex commands . 213
Adding new text to a file . 66
Addressed or current line number, print . 209
Addresses, line . 126
Addressing primitives for multiple-lines 166
Adjusting paragraphs . 220
Alter current workfile name before write operation . 150
Alternate filenames . 261
Append buffer to file .. 203
Append new text .. 66
Append text after current line (ex command) 173
Append text then toggle auto indent (ex command) . 17 4
Append workfile to existing file .. 149
Argument list, print HP-UX vi/ ex command . 17 4
Arrow keys . 42
ASCII control characters:

how displayed . 69
table of . 71, 72
typing ... 68

autoindent option . 237
Automatic editor configuration ... 255
Automatic indenting . 106
Automatic right margin .. 26
autoprint option . 238
autowrite option . 238
awk scripts . 233

Index 267

b
Backspacing over typographical errors . 25
Backwards search:

on current line . 54
Baud rate versus terminal display size . 15
beautify option . 239
Beep, error indication . 45
Beginning of word, move cursor to . 55
Beginning-of-line character in regular expressions 110
Blanks at end-of-line, remove .. 133
Boundary commands, sentence, section, or paragraph . 58
Boundary:

text object ... 60
Buffer as standard input/ output in shell operations . 217
Buffer file description . 15
Buffer file, recover after crash .. 194
Buffer file, use by ex . 261
Buffer, pipe to an HP-UX command .. 209
Buffer:

append to file . 203
default buffer .. 118
execute contents of as an ex command . 210
force write buffer to existing file . 203
named buffers . 118, 262
placing text in named/unnamed for move/copy 119
retrieving text from ... 120
used to copy or move text ... 118
write as standard input to HP-UX command 203
write to file . 202

Building ex commands .. 169

c
Change current directory (ex command) . 176
Change current workfile name .. 150
Change files without reloading editor program . 22
Change files without restarting editor . 181
Change from ex to vi . 131 (~
Change from vi to ex . 130
Change line or lines to new text and toggle autoindent (ex command) 176
Change line or lines to new text (ex command) 175

268 Index

u

u

u

Change to open mode (ex command) 190
Change:

all or part of sentence, paragraph, or section . 86
change current automatic indent . 106
multiple lines of text . 101
repeat last change or deletion . 89
replace or overwrite characters .. 83
replace or retype lines . 84
swapping characters . 95
swapping lines . 102
swapping words within a line . 99
text between boundaries in line . 87
text blocks using text pattern search . 88, 101
uppercase to lowercase . 95
word or part of word . 85, 98

Changing current file list for editing . 262
Changing files in multi-file edit ... 139
Changing from vi to ex and vice-versa 201
Changing lines to single column text . 132
Changing text:

command format . 7 4
overview . 73

Character on current line, delete through . 79
Character on current line, delete up to . 79
Characters and lines, delete . 76
Characters, example of deleting by various means . 93
Characters, replace or overwrite existing . 83, 96
Check spelling . 232
Closing an editing session .. 19
Colon commands, using . 163
Colon (ex) commands defined . 123
Column, single, change lines to . 132
Combine lines and trim whitespace (ex command) 185
Combining files .. 144
Command argument list, print HP-UX vijex 174
Command format for changing text . 7 4
Command parameters, ex . 265 ·

Index 269

Command:
aborting ex commands . 124
all or part of file used as input to HP-UX command 233
ex search-and-replace command structure 126
paragraph, move to end/beginning . 58
rewind . 118, 139
section, move to end/beginning . 58
sentence, move to end/beginning . 58

Commands script file, get commands from (ex command) 197
Commands:

colon (ex) commands defined . 123
non-printing . 8
printing ... 8

Comments in ex commands . 171
Comments in ex editor commands and scripts . 266
Compressed files, uncompressing . 40
Configuration, automatic editor . 255
Configuration, editor . 235
Configuration option, set to new value . 195
Configuration options . 236
Control characters, 8-bit ... 72
Control characters and tabs, how to display . 129
Control-F doesn't work .. 49
Converting lists into tables . 226
Converting lists into tables after sorting . 226
Converting lists into tables after sorting by field . 229
Copy lines to new location (ex command) . 177
Copy or move text between files . 139
Copying files . 40
Crash recovery . 33, 34
Creating a tags file . 156
Creating text file markers . 113
ctags command . 156
Current directory, change (ex command) . 176
Current file list for editing, changing .. 262
Current line number, how to list . 48
Current or addressed line number, print 209
Cursor line, reposition on screen .. 47

270 Index

u

u

u

Cursor:
move by word boundaries . 55
move to specific column number . 53
move to start or end of line . 42
position after scroll .. 47
positioning in file . 44
positioning on screen .. 43
use of arrow keys . 42
use of home-row keys to move . 42

Custom processing . 233

d
Datacomm conflicts . 49, 52
Default buffer .. 118
Defining new file list for editing . 262
Delete one or more lines (ex command) . 179
Delete:

all or part of sentence, paragraph or section . 78
characters and lines . 76
current position to text pattern . 80
example of deleting characters . 93
repeat last change or deletion . 89
through character on current line . 79
up to character on current line . 79
used to swap characters . 95
used to swap words . 99
word or part of word . 77, 99

Deleted or yanked text, recovering . 82
Deleted/yanked text, put back in file 192
Delete/insert buffer size . 12
Determining file size . 41
Directory, change current (ex command) 176
Directory name given instead of file to edit . 17, 23
directory option . 240
Discard buffer and abort session . 192
Display screen size versus baud rate . 15
Display window . 38

Index 271

Display:
erratic behavior . 51
long lines . 11
scrambled .. 51

Displaying ASCII control characters . 69
Double space text . 133

e
edcompatible option . 240
Edit a different file without restarting . 181
Edit new file from vi without restarting . 202
Edit next file in argument list (ex command) 188
Edit:

opening a session .. 16
Editing multiple files . 137
Editing:

closing a session ... 19
directory instead of filename . 17, 23
existing file . 17
Lisp files ... 19

n

new filename . 24 (\
Editor buffer file .. 15 r\)

Editor commands script file, use (ex command) 197
Editor configuration . 235
Editor configuration, automatic . 255
Editor configuration files . 255
Editor configuration options . 236
Editor program, edit new file without reloading . 22
Editor software version/change date, identify 200
Eight-bit control characters ... 72
Emergency, preserve file in (ex command) 190
Encrypted files . 178
End of word, move cursor to . 55
End-of-line blanks, remove . 133
End-of-line character in regular expressions 110
Ending a session (also see Terminate) . 30
Enter text in new file . 24

~~~~~i~i~=~~~i!e~~:0:x· : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . 2~! n 

272 Index 



u 

u 

Error: 
typing errors in ex command line 0 o o o o 0 o o 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 
124 

errorbells option ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 241 
Errors: 

asked for existing file, got new file o 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 

22 
filename specified is a directory o o 0 o o 0 0 0 o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17, 23 
protection against o o o o o o o o o o o o o o o o 0 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 
using undo command 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 
wrong filename specified o o o o o o o 0 o o • o 0 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 
22 

ESC key, use of 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 24 26 
' ESC timeout conflicts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 

Escape key, return to command mode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 
Escaping to a shell 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151 
ex, change from, to vi o o o o o o 0 o o o o 0 0 0 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 131 
ex, change to from vi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 130 
ex command parameters o 0 0 o o o 0 0 o o o o 0 0 0 0 o 0 0 0 o o o o o 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 265 
ex command: 

abbreviatejunabbreviate 0 o o o o o o o 0 o o o o o 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 172 
abort session after saving buffer o o o 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192 
abort session and discard buffer o o o o 0 0 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 192 
aborting the command o o o o 0 0 0 o o o o o o 0 0 o o o o o o 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 213 
append buffer to file 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 203 
append text after current line 0 o o o o o o o o 0 o o o o o o o o o 0 0 0 o o o o 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 173 
append text then toggle autoindent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 174 
change current directory o o o 0 o 0 0 0 o o o o o o 0 0 o o o o o o o o 0 0 o o o o o 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 176 
Change line or lines to new text o o o o o o o o o o o o o o o o 0 0 0 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 175 
Change line or lines to new text then toggle autoindent 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 176 
change to open mode o o o o o o 0 o 0 o o o o o o o 0 0 0 o o o o o o o o o 0 o o o o o o o 0 0 0 0 0 o o o o o 0 0 0 0 0 190 
changing from vi to ex and vice-versa 0 0 o o o o 0 o o 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 201 
Copy lines to new location o o o o o o o o o 0 0 0 o o o o o o o 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 177 
Delete one or more lines 0 0 o o o o o 0 0 0 0 0 0 0 o o o o o o 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 179 
edit a different file without restarting 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 181 
edit new file from vi without restarting o 0 o 0 o o o o o o o o o o o 0 o o o o o o o o o 0 o o o o o o o o • 0 202 
edit next file in argument list o o o o o o o 0 0 0 o o o o o o o o 0 0 0 0 o o o o o o o o 0 0 0 0 o o o o o o o 0 0 0 188 
execute a buffer as an ex command 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210 
execute shell command from editor 0 0 0 0 o o o o o o o 0 o 0 0 0 o o o o o o o 0 0 0 0 0 0 o o o o o 0 0 0 0 0 208 
exit, terminate session 0 0 0 o o o o o o o o 0 0 0 0 o o o o o o o 0 o 0 0 0 o 0 o o o o o o o 0 0 0 0 o o o o o o o 0 o o 204 
finding tabs and control characters 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 215 
force write buffer to existing file 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 203 

Index 273 



ex command (continued): 
get editor commands from script file ...................................... 197 
global command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
global searches ......................................................... 214 
identify editor software version/ change date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 
insert new text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
insert new text then toggle autoindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
Join lines and trim whitespace ........................................... 185 
list lines and show tab/EOL characters ................................... 186 
map macro to function key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
mark lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 
merge command standard output into buffer ............................... 194 
merge external file into text buffer ........................................ 193 
miscellaneous commands ................................................ 211 
move lines to new location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 
next file in argument list, edit ............................................ 188 
pipe buffer to an HP-UX command ....................................... 209 
preserve file in emergency ............................................... 190 
print current or addressed line number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 
print HP-UX vi/ ex command argument list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 
print lines including line number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
print one or more lines .................................................. 191 
print window containing (count) lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
process all lines containing (pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
put yanked/deleted text back in file ...................................... 192 
recover buffer file after crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
regular expressions used in .............................................. 212 
repeat execution of previous shell command from editor . . . . . . . . . . . . . . . . . . . . . 209 
repeat last substitution ................................................. 199 
rewind argument list to first file and discard buffer ......................... 195 
rewind argument list to first file, save buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
set configuration option to new value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
shift lines right or left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 
spawn new shell from editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 
substitute text within line or lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
toggle autoindent after appending text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 
unabbreviate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
undo previous change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 
undoing previous ....................................................... 214 
using tags to change editing location ...................................... 199 

274 Index 

n 

() 

n 
I 



u 

u 

u 

ex command (continued): 
write and quit, terminate session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 
write buffer as standard input to HP-UX command ......................... 203 
write buffer to file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 
xit, terminate session ................................................... 204 
yank text into buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 

ex commands, aborting ................................................... 124 
ex commands: 

building commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 
command format ....................................................... 164 
comments in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 
flags and options after . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
format ................................................................ 172 
line addressing ......................................................... 165 
multiple commands per line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
reporting large changes after . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
using ................................................................. 163 

ex search-and-replace command structure .................................... 126 
ex to vi, switching from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Execute a buffer as an ex command ......................................... 210 
Execute shell command from editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 
Executing colon (ex) commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
EXINIT variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 
Existing file, append workfile to ............................................ 149 
Existing file, editing an . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Existing file, protecting an .................................................. 18 
exit, terminate session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 
Expanding tabs into spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
exrc files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 
External file, merge into text buffer ......................................... 193 
External mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Index 275 



f 
File list, defining new list for editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 
File marker, set (ex command) ............................................. 187 
File markers used to save part of workfile .................................... 148 I\ 
File: ', ) 

append workfile to existing .............................................. 149 
automatic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 
backup before ex command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 
change current workfile name ............................................ 150 
change files without reloading editor program ............................... 22 
current position in ....................................................... 48 
determining size of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
edit existing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
editing Lisp files ........................................................ 19 
.exrc files .............................................................. 255 
manipulation techniques ................................................ 143 
merge external file into text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 
merge external file into text buffer (ex command) ........................... 193 
modify current workfile name before write operation . . . . . . . . . . . . . . . . . . . . . . . . 150 
pattern searches ......................................................... 49 
pipet wtorfkfile tdo'ta comman?t ............................................. 15181 n 
pro ec rom e 1 or overwn e ............................................ . 
save all or part of current workfile ........................................ 147 
search for pattern then merge external file ................................. 145 
write all or part to HP-UX command ..................................... 233 

Filename expansion in commands .......................................... 261 
Filenames: 

metacharacters in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 
Files: 

changing in multi-file edit ............................................... 139 
copy or move text between .............................................. 139 
editing multiple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
simultaneous edit of two ................................................ 141 
switching between two being edited ....................................... 142 

276 Index 



u 

u 

u 

Find all lines containing (pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
Finding tabs and control characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 
Fixing mistakes (undo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
Flags and options after ex commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 
flash option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
Force write buffer to existing file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 
Format: 

text change commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 
Forward search: 

on current line ••• 0 0. 0 ••••• 0 •• 0 ••• 0 •••• 0 0 ••••• 0 0. 0 ••• 0. 0 •• 0 0 •• 0 •••••••• 0. 54 
186 Function key, map macro to •••• 0 0 •••••• 0 •• 0 •••• 0 ••• 0 •• 0 ••••••••••••• 0 •• 0. 0 

g 
Get editor commands from script file (ex command) .......................... 197 
Global command list size limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Global search for lines containing (pattern) .................................. 183 
Global searches .......................................................... 214 
Global searches for a pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 
Globalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

h 
hardtabs option .......................................................... 241 
HP-UX vi/ex command argument list, print ................................. 174 

. 
I 

Identify editor software version/ change date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 
ignorecase option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 
Indent, change current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
Indenting, automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
Input mode: 

exit from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 26 
Insert new line in file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Insert new text and toggle autoindent (ex command) ......................... 184 
Insert new text (ex command) ............................................. 184 
Insert new text in file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 
Insert/delete buffer size .................................................... 12 
International Language Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Invoking the ex editor program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 

Index 277 



. 
J 

Join lines and trim whitespace (ex command) ................................ 185 

I 
Large changes after command, reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Large programs, using tag files to edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 157 
Last substitution, repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 
Left, shift line ............................................................ 105 
Line addresses ........................................................... 126 
Line addressing for ex commands: 

165 
Line lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Line number, current, how to list ............................................ 48 
Line number, print lines preceded by ........................................ 189 
Line or lines: 

change to new text and toggle autoindent (ex command) . . . . . . . . . . . . . . . . . . . . 176 
change to new text (ex command) ........................................ 175 
copy to new location (ex command) ...................................... 177 
delete (ex command) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
move to new location (ex command) ...................................... 187 !'"'\ 

i. ) print (ex command) .................................................... 191 · 1 

shift right or left ....................................................... 210 
substitute text within (ex command) ...................................... 198 

Line: 
repeat search within line ................................................. 95 
searching within a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Lines and characters, delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 
Lines, splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
Lines: 

replace or retype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
shift left or right ....................................................... 105 

Lisp file editing ........................................................... 19 
lisp option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 
List lines and show tab/EOL characters ..................................... 186 
list option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 

278 Index 

n 



u 

u 

u 

Lists: 
converting into tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 
sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 
sorting by field then converting into tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 
sorting multi-column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
sorting then converting into tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 

Long lines displayed ....................................................... 11 
Lowercase, change to uppercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

m 
Macros, recognized paragraph or section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
Macros: 

tbl for tables ........................................................... 228 
magic option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 
Manipulating files, techniques for ........................................... 143 
Map command buffer/ definition limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Map macro to function key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
Mark lines (ex command) ................................................. 187 
Markers: 

setting text file ......................................................... 113 
text file ............................................................... 112 
used for cursor movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 
used for text object operations ........................................... 114 
used to save part of workfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 

Maximum limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Maximum line length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Maximum tag length ...................................................... 12 
Merge an external file into text ............................................ 144 
Merge command standard output into buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
Merge external file into text buffer .......................................... 193 
Merge file after search for location .......................................... 145 
Merging shell standard output into file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 
mesg option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 
Message, no write since last change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Metacharacters in filenames ............................................... 140 
Miscellaneous ex commands ............................................... 211 
Mistakes, recovering from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
modelines option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244, 255 

Index 279 



Modes: 
command mode .......................................................... 8 
external mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
text input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Move cursor by word boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
Move cursor left/right ..................................................... 42 
Move lines to new location (ex command) ................................... 187 
Move or copy text between files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
Moving cursor line to new position .......................................... 47 
Multi-column lists, sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
Multi-file edit, changing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
Multiple commands per line in ex commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Multiple ex commands per line ............................................. 266 
Multiple files, editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
Multiple-line addressing primitives ......................................... 166 

n 
Named buffers 118 
Native Language Support ................................................... 5 

,:) 

~:: ~~:: :~~: :~:~~~: ~:~~:~::gg e~~~~~ ~~~~~~~ . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ·1~i rJ 
New file: 

editing ................................................................. 24 
text entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

Next file in argument list, edit (ex command) ................................ 188 
NLS ...................................................................... 5 
No write since last change message .......................................... 10 
number option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 

0 
Open mode, change to (ex command) ....................................... 190 
Opening a session ......................................................... 16 
Operating modes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Operating modes for ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 
optimize option . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
Options and flags after ex commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 r-\ 
Options, editor configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 ' ) 
Options in HP-UX ex commands ........................................... 259 

280 Index 



u 

u 

u 

Options: 
autoindent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 
autoprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 
autowrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 
beautify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 
directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
edcompatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
errorbells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
flash .................................................................. 241 
hardtabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
ignorecase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 
lisp ................................................................... 242 
list ................................................................... 242 
magic ................................................................. 243 
mesg ................................................................. 243 
modelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244, 255 
number ............................................................... 245 
optimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
prompt ............................................................... 246 
readonly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 
redraw ................................................................ 247 
remap ................................................................ 247 
report ................................................................ 247 
scroll ................................................................. 248 
sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 
shell .................................................................. 249 
shiftwidth ............................................................. 249 
showmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
showmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
slowopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
tabstop ............................................................... 251 
taglength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
tags .................................................................. 251 
term .................................................................. 251 
terse .................................................................. 252 
timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 
ttytype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 

Index 281 



Options (continued): 
w300, w1200, w9600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o o 0 0 0 o o o o o o o o o o o o o o o o o o o o o 253 
warn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 253 
window 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o 0 o 0 0 0 o o o o o o o o o o o o o o 0 0 o o o o o o o o 253 
wrapmargin 0 0 0 0 0 0 0 0 0 0 0 o o o 0 o 0 0 0 0 0 0 0 o o o o o o o o o 0 0 0 0 0 0 0 0 0 o o o o o o o o o o o o 0 0 o o o o 254 
wrapscan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o o 0 0 0 o o o o o o o o o o o o 0 o o 0 0 o o o o o o o o o o o o 0 0 o o o o o 254 
writeany 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o 0 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 254 

Output from shell, merging into file 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 o o o o o o 0 0 0 0 0 0 0 o o o o o o o o o 0 0 230 
Overwrite existing file with buffer o 0 0 0 0 0 o o o o o o o o o o 0 0 0 0 0 0 o o o o o o o o o 0 0 o 0 o o o o o o o o 29 

p 
Paragraph boundary commands o o o o o o o 0 0 0 o o o o o o o o o 0 0 0 0 o o o o o o o o o 0 0 0 0 o o o o o o 0 0 0 58 
Paragraph, sentence, or section - change all or part of 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 
Paragraph, sentence, or section - delete all or part 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 78 
Paragraphs, adjusting 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 
paragraphs option 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245 
Paragraphs used as text objects o o o o 0 0 0 0 o o o o o o o 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 111 
Parameters in ex editor commands 0 0 0 0 0 o o o o o o 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 265 
Pattern, global searches for o o o o o o 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 
Pattern search to define text object boundary 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 
Pattern searches 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59, 103 
Pattern searches in a file 0 0 o o o o o o o 0 0 0 0 0 o o o o o o o 0 o 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 49 
Pattern searches, repeating o o 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60, 104 
Pattern: 

search for then merge external file 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 145 
Patterns, text, used to save part of workfile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 148 
Pipe buffer to an HP-UX command o o o o o 0 0 0 o o o o o o 0 0 0 o o o o o o o 0 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 209 
Pipe workfile to a command 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 151 
Placing text in named/unnamed buffer for move/copy o o o o o 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 119 
Position in file o o o o 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 
Power failure recovery 0 0 0 o o o o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 
Power-fail protection o o o o o 0 0 0 o o o o o o 0 0 0 0 o o o o o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33 
Preserve file in emergency (ex command) o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 190 
Previous change, undo (ex command) 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 
Previous shell command from editor, repeat execution of o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209 
Previously saved file, re-editing a 0 o o o o o o 0 0 o o o o o o 0 0 0 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 
Print current or addressed line number o 0 0 0 o o o o o 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 209 

n 

Print HP-UX vi/ ex command argument list 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 4 ,:) 

282 Index 



u 

u 

( ·. 

0 

Print lines and show tab/EOL characters .................................... 186 
Print lines preceded by line number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 
Print one or more lines (ex command) ...................................... 191 
Print window containing (count) lines (ex command) . . . . . . . . . . . . . . . . . . . . . . . . . . 206 
Process all lines containing (pattern) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 
Processing, special programs for custom ..................................... 233 
Programs, special processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 
prompt option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 
Protecting an existing file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Protecting yourself from errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Protection against power failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Put command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 
Put yanked/deleted text back in file ........................................ 192 
Putting text into a single column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

Quit after write, terminate session 
Quit (terminate session) command 

q 

r 

204 
30 

Re-editing a previously saved file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Read-only files, writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 
readonly option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 
Recover buffer file after crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
Recover yanked/deleted text ............................................... 192 
Recovering deleted or yanked text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 
Recovering from mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
Recovery from power failure or crash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34, 263 
redraw option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 
Redrawing the screen display ............................................... 51 
Regular expressions used in ex command .................................... 212 
Regular expressions: 

beginning/ end-ofline character in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 
Reloading editor program, edit new file without . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
remap option ............................................................ 247 
Remove end-of-line blanks ................................................. 133 
Repeat execution of previous shell command from editor . . . . . . . . . . . . . . . . . . . . . . 209 
Repeat last change or deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

Index 283 



Repeat last substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 
Repeat search for text pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 
Repeat search within a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
Repeating pattern searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
Replace operations, search and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 ~ 
Replace or overwrite existing characters ...................................... 83 r. ) 
Replace or retype one or more lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
Replace: 

multiple characters with single character ................................... 97 
multiple characters with zero or more characters ............................ 97 
single character with another . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
single character with zero or more characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

report option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 
Reporting large changes after command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 
Repositioning cursor line ................................................... 47 
Retrieving text from buffers ............................................... 120 
Return to command mode (escape key) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 
Rewind argument list to first file, discard buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
Rewind argument list to first file, save buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
Rewind command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118, 139 
Right margin, automatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Right, shift line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 :() 

s 
Save all or part of workfile ................................................. 147 
Save buffer and abort session .............................................. 192 
Save buffer in file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Saved file, re-editing a previously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Scrambled display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 
Screen size (terminal display) versus baud rate ................................ 15 
scroll option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 
Scrolling text on screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Search and replace operations .............................................. 123 
Search and Replace: 

Aborting .............................................................. 124 
Search for pattern and merge external file ................................... 145 
Search for text pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 
Search for text pattern, repeat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 
Search-and-replace command structure, ex .................................... 126 

284 Index 



u 

u 

u 

Search on current line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Searches, global, for a pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 
Searching for a pattern in a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Searching forward/backwards for a pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
Searching within a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
Searching within a line, repeat search ........................................ 95 
Section boundary commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
Section, sentence, or paragraph- change all or part of ......................... 86 
Section, sentence, or paragraph- delete. all or part ............................ 78 
sections option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 
Sections used as text objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 
Sentence boundary commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 
Sentence, paragraph, or section - change all or part of . . . . . . . . . . . . . . . . . . . . . . . . . 86 
Sentence, paragraph, or section - delete all or part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
Sentences used as text objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 
Session: 

aborting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
closing ................................................................. 19 
directory specified instead of file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 23 
normal termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
opening ................................................................ 16 
terminating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 30 
wrong filename specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

set command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 
Set configuration option to new value ....................................... 195 
Set file marker (ex command) .............................................. 187 
Set: 

autoindent . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 
autoprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 
autowrite .............................................................. 238 
beautify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 
directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
edcompatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 
errorbells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
flash .................................................................. 241 
hardtabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 
ignorecase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 
lisp ................................................................... 242 
list ................................................................... 242 

Index 285 



Set (continued): 
magic ................................................................. 243 
mesg ................................................................. 243 
modelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244, 255 
number ............................................................... 245 
optimize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 
prompt ............................................................... 246 
readonly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 
redraw ................................................................ 247 
remap ................................................................ 247 
report ................................................................ 247 
scroll ................................................................. 248 
sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 
shell .................................................................. 249 
shiftwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
showmatch ............................................................ 249 
showmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
slowopen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
tabstop ............................................................... 251 
taglength .............................................................. 251 
tags .................................................................. 251 
term .................................................................. 251 
terse .................................................................. 252 
timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 
ttytype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 
w300, w1200, w9600 .................................................... 253 
warn .................................................................. 253 
window ............................................................... 253 
wrapmargin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26, 254 
wrapscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 
writeany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 

Setting text file markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
Shell command, execute from editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 
Shell command, repeat execution of previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 
Shell commands, effect of special characters in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
Shell escape command length limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Shell escapes ............................................................. 151 
Shell operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 

286 Index 

n 

() 

n 



u 

u 

u 

shell option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
Shell, spawn new from editor .............................................. 196 
Shell standard output, merging into file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 
Shift lines left or right .................................................... 105 
Shift lines right or left .................................................... 210 
shiftwidth option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
show tab/EOL characters, print lines and ................................... 186 
showmatch option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 
showmode option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
Simultaneous edit of two files .............................................. 141 
Single column, change lines to ............................................. 132 
Size of file, determining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
slowopen option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 
Software version/change date, identify editor ................................. 200 
Sorting lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 
Sorting lists by field then converting to tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 
Sorting lists then converting to tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 
Sorting multi-column lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 
Spaces, expanded from tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
Spawn new shell from editor ............................................... 196 
Spawning a new shell from the editor ....................................... 151 
Special characters, effect in shell commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 
Special characters recognized by editor, list of ................................ 153 
Special processing programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 
Spelling checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 
Splitting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
Standard input, buffer used as, in shell operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 
Standard output, buffer used as, in shell operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 
Standard output from shell, merging into file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 
Standard output, merge into text buffer ..................................... 194 
Starting an edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Starting new file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Starting the ex editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 
Stop entering new text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Store all or part of workfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 
Store buffer in file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Substitute command (ex) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 
Substitute text within line or lines .......................................... 198 

Index 287 



Swapping characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 
Swapping lines ........................................................... 102 
Swapping words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
Switch from ex to vi ...................................................... 131 
Switch from vi to ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
Switching between two files ................................................ 142 
Switching from vi to ex or ex to vi ............................................ 5 
System crash recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
System crashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

t 
Table macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 
Table of ASCII control characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71, 72 
Tables: 

converted from lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 
converted from sorted lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 
converted from sorted-by-field lists ....................................... 229 

Tabs and control characters, how to display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 
Tabs, expanding to spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 
Tabs, used with automatic indenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
tabstop option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
Tag file: 

creating a tags file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 
Tag files: 

override autowrite when changing files .................................... 160 
using to edit large programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154, 157 

taglength option ......................................................... 251 
tags option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 
Tags used to change editing location ........................................ 199 
tbl macros for tables ...................................................... 228 
Temporary buffer file for editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
term option ............................................................. 251 
Terminal display screen size versus baud rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Terminate text entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Terminating a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
terse option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 

288 Index 

n 

If) 
I 



u 

u 

u 

Text, double space ....................................................... 133 
Text entry, new file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Text file markers ......................................................... 112 
Text file markers, setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
Text object: 

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 
defined ................................................................. 53 
pattern search to define boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

Text objects: 
paragraphs ............................................................ 111 
sections ............................................................... 111 
sentences .............................................................. 110 
user-defined by using markers ............................................ 112 
using markers for text object boundaries .................................. 114 
words ................................................................. 109 

Text pattern search to find text block change boundary . . . . . . . . . . . . . . . . . . . . . . . . 88 
Text patterns used to save part of workfile ................................... 148 
Text-input mode ........................................................... 8 
Text: 

copy or move between files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 
scrolling on screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

Tildes ( ) on side of screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
timeout option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 
Toggle auto indent after appending text (ex command) . . . . . . . . . . . . . . . . . . . . . . . . 17 4 
ttytype option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 
Two files, simultaneous edit of ............................................. 141 
Typing ASCII control characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 
Typing errors in ex command line .......................................... 124 
Typographical errors: 

using BACK SPACE key ................................................. 25 

Index 289 



u 
unabbreviate command 173 
Uncompressing compressed files ............................................. 40 
Undo .................................................................... 64 
undo ex commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 ~ ~. ) 
Undo previous change (ex command) ....................................... 200 
Undoing previous ex command ............................................. 214 
Updating permanent storage ................................................ 28 
Uppercase, change to lowercase ............................................. 95 
Use of ESC key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24, 26 
User-defined text objects using markers ..................................... 112 
Using ex commands ...................................................... 163 
Using tags to change editing location ....................................... 199 

v 
Version/change date, identify editor software ................................ ,200 
vi, change from, to ex ..................................................... 130 
vi, change to from ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 
vi to ex, switching from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

w n 
w300, w1200, w9600 options ............................................... 253 
warn option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 
Wild-card characters in filenames ........................................... 140 
Window containing (count} lines, print (ex command) . . . . . . . . . . . . . . . . . . . . . . . . . 206 
Window, display .......................................................... 38 
window option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 
Word or part of word, change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 
Word or part of word, delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 
Words, changing within a line ............................................... 98 
Words, move cursor forward/backwards by ................................... 55 
Words, swapping .......................................................... 99 
Words used as text objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 
Workfile, append to existing file ............................................ 149 
Wrapmargin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
wrapmargin option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 n 
wrapscan option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 
Write all or part of file to HP-UX command ................................. 233 
Write and quit, terminate session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 
Write buffer as standard input to HP-UX command .......................... 203 

290 Index 



u 

u 

u 

Write buffer to existing file, force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 
Write buffer to file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 202 
writeany option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 
Writing read-only files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 
Wrong filename specified when opening session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

y 
Yank text into buffer (ex command) ........................................ 204 
Yanked or deleted text, recovering ........................................... 82 
Yanked/deleted text, put back in file ........................................ 192 

Index 291 



n 

292 Index 



Table of Contents 

U sed: A Non-Interactive Streaming Editor 

u 

u 

Introduction 0 o o o o o o o 0 o o o 0 o o o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Manual Organization 0 o o o 0 o o 0 o o 0 o o 0 o o 0 o o o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Editor Operation o 0 o o o o o 0 o o o 0 0 o o 0 0 0 0 o o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Sed Command 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
Editor Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Invoking the HP-UX Sed Commando o o 0 o o o o o o 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
Program Start-up and Operation o 0 o o o o o o 0 0 o o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

Sed Editor Command Script Limits 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 

Forming Editor Commands 
Editor Command Format o o o 0 o o o 0 o o o o o o o o o o o o o o o o 0 o o o 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 10 
Pattern Space 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 
Constructing Line Addresses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 

Line Address Defined o 0 0 o o o 0 o o o o 0 o o o 0 o o o o o o o o 0 0 .. o o o o o o 0 0 o o 0 0 0 o o 0 0 0 o 0 14 
Interpreting Line Addresses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 
Constructing Context Addresses o o 0 0 0 o o 0 0 0 o o 0 0 0 o o 0 0 0 o o 0 0 0 o 0 0 0 0 o 0 0 0 0 o 0 18 
Using Sub-Expressions in Addresses o 0 o o o o 0 o o o 0 0 o o o 0 0 o o o o 0 0 o o o 0 o o o o 0 o o 20 

Editor Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 22 
Constructing Editor Commands o o o 0 0 o o o 0 0 o o o 0 0 o o o o 0 0 o o 0 0 o o o o 0 0 o o 0 0 o o o o 0 o 24 

Whole-Line Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 : 0 24 
Substitute Command 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 o 0 28 
Transform Command 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 o o 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o o 35 
Input/Output Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 
Processing Multiple Lines Simultaneously 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 
Hold and Get Commands 0 o 0 0 0 0 o o 0 0 0 o o o 0 0 o o o 0 0 o o o 0 0 o o o 0 0 o o o o 0 o o o o 0 o o 42 
Flow-of-Control Commands o o o o 0 o o o o o o o o o o 0 o o o 0 0 0 o o o o o o o o 0 0 o o o 0 o o o 0 0 44 
Miscellaneous Commands 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 

Writing Command Scripts 
Command Script Limitations in Review 0 0 0 0 0 0 0 0 o o 0 0 0 o o 0 0 0 o o o 0 0 o o o 0 0 0 o o 0 0 0 o 47 
Arranging Commands in Sequence o 0 0 o o o o 0 0 0 o o o 0 0 o o o 0 0 o o o o 0 o o o o 0 0 o o o o 0 o o o 48 
Commenting Scripts 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o o o 0 0 0 o 0 0 0 o o o o 0 0 o o o 0 0 0 o o o 0 o 49 
A Real-World, Non-Trivial Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 

Time to Test 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53 

Table of Contents i 



On to the Next Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Checking Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 
Cleaning Up What's Left ........................................... 58 
Tradeoff's . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

Putting Scripts in the HP-UX Command Line ............................. 65 n ' 
White Space in Scripts ............................................. 67 , 
Testing In-Line Scripts ............................................. 67 
Including Comments in In-Line Scripts ............................... 67 
A Large Single-Line Script .......................................... 68 

() 

n 
ii Table of Contents 



sed: A Non-Interactive Streaming Editor 1 
U Introduction 

u 

u 

If you have been around HP-UX or other UNIX-based systems, you have no doubt heard 
that sed is a powerful text editor, but few people, even in rather large corporations with a 
large number of installed systems, know more than a minimal amount about the program 
and its capabilities. This tutorial is the result of in-depth examination of validation tests 
and other tools used in maintaining the integrity of the program in order to discover its 
deep, dark secrets as well as extensive testing of the examples used. So, for probably the 
first time in history, sed is being brought out of obscurity and into full public view. 

sed is a high-speed, non-interactive, streaming (batch process) text editor. It is most 
commonly used for complex editing operations on large files or repetitive operations on a 
large number of files where interactive editing with an editor such as vi is too tedious or 
time consuming. Editing operations to be performed are defined by the editor commands 
which can be included as part of the HP-UX sed command line or stored in a separate 
commands file. 

The commands, which can range from very simple commands included in the HP-UX sed 
command line to extremely complex command streams stored in separate files, specify 
what alterations are to be performed on input text as a function of current text contents. 
For long and complex operations on many large files, sed can be run as a background 
process, freeing your terminal for other tasks while it runs. However, don't be surprised 
if it finishes much sooner than expected, because sed is a very fast editor. 

While using sed is conceptually rather simple, many users have experienced difficulty 
with existing learning aids to date because most writings tend to be terse and difficult 
to understand or are targeted at the beginner and do not address more advanced topics. 
Some users have treated sed as an unpleasant task that must be learned instead of 
a powerful tool that can often make tedious work a breeze. This tutorial has been 
structured to eliminate your fears of the unknown by making the unknown knowable, 
and not only knowable but also usefully simple. Many examples have been included after 
testing them to be sure they actually work the way they are explained. 

sed: A Non-Interactive Streaming Editor 1 



Manual Organization 
This tutorial is divided into three chapters: 

• Chapter 1 introduces the sed editor and explains how the editor operates and how 
to start it using the HP-UX sed command. 

• Chapter 2 explains how editor commands are constructed. It discusses addressing, 
commands, and related arguments, including typical examples. 

• Chapter 3 discusses command script files and how to arrange commands in the 
correct sequence to obtain desired results. Non-trivial examples are provided to 
support the concepts that are covered. 

Editor Operation 

() 

sed is a very fast editor because it does not maintain large blocks of text in memory. 
Instead, text is read from the input file, one line at a time. As each line is read into 
a location in memory called the pattern space, the command(s) contained in the editor 
command script file (or the command provided on the HP-UX command line when the 
editor was started) are applied to the line, indicated changes are made if any, and the 
result is written to standard output before the next line is read into the pattern space. n 
This "bucket brigade" approach greatly reduces computing resources and can reduce · · · 
many weeks of tedious interactive editing to a very few minutes of high-speed processing 
when the tasks to be performed are well-defined and easy to reduce to sequences that 
resemble a computer program in their order of execution. 

By eliminating the use of temporary files and holding only a few lines in memory at any 
given time, the maximum file size that sed can handle is limited only by the amount of 
external file storage space available for the file being edited and the resulting output file. 
By supporting command scripts stored in existing files, sed can run faster than virtually 
any known editor, even when that editor can be driven from comparable scripts. The 
availability of command script support greatly improves operating reliability through less 
need for repetitive typing and the attending errors, although the speed and efficiency 
comes at the price of less interaction, and thus no ability to verify that the change made 
is really what was wanted or intended. 

2 sed: A Non-Interactive Streaming Editor 

,n 



u 

u 

u 

Commands 
You need to clearly understand two categories of commands when using this manual: 

• The HP-UX sed command and its options which are used to run the editor program. 
• Editor commands that are interpreted by the sed program and which specify what 

editing actions are to be performed by the program as it processes the incoming 
input text file(s). 

Sed Command 
The HP-UX sed command is interpreted by the HP-UX user shell and can include the 
following arguments in the command line when the command is typed on the terminal 
keyboard: 

• A -f option with a filename argument specifying a script file that contains a group 
of one or more editor commands that can be interpreted and executed by the sed 
editor, or a -e option and an argument consisting of a valid sed editor command 
included in the HP-UX command line. 

• A list of one or more source files to be edited. If multiple input files are specified 
in a single command, they are concatentated into a single output file. 

• Output redirection or other programming device to send editor output to a location 
other than standard output. 

These items are discussed in greater detail in the remainder of this chapter. 

Editor Commands 
Editor commands (such as append, substitute, insert, print, etc.) are interpreted and 
executed by the editor as it processes the input file and produces a new output file. These 
commands must be included in the HP-UX command line following the -e option or be 
placed in sequence in an external commands stream file whose name is specifed as an 
argument to the -f option in the HP-UX sed command line. 

Editor commands are discussed at length in the next chapter. 

sed: A Non-Interactive Streaming Editor 3 



Invoking the HP-UX Sed Command 
The recognized format for the HP-UX sed command varies, depending on whether the 
editor command(s) are included as arguments in the HP-UX command line or are placed 
in a script file, and whether default output is to be produced or suppressed. All editor r~ 
output is sent to standard output unless specified otherwise by a redirection directive or .. · 
other programming device. Command format for each HP-UX command line option is 
as follows: 

Edit File Using Commands Contained in a Commands Script: 
Using an -f option in the HP-UX sed command line indicates that the editor commands 
are to be taken from an editor script file while processing the source file file: 

sed -f script_file file 

script_file is a file containing a stream of valid sed commands. file is the file to be edited. 
If file is not specified, input is taken from standard input. Multiple files can also be 
specified, in which case they are concatenated together and sent to standard output 
after editing. This command form is most commonly used for multiple commands and 
complex operations. 

Edit File Using Commands Provided in HP-UX Command Line: r-'\ 
An -e option in the HP-UX sed command line indicates that all editor commands are ~. ) 
present as an argument on the HP-UX command line for processing the source file file: 

sed -e '(editor_command)' file 

If file is not included in command line, input is taken from standard input. Multiple 
files can also be specified, in which case they are concatenated together and sent to 
standard output after editing. Note the use of single quotes (') around the sed command 
to protect it from interpretation by the HP-UX command shell. This command form is 
most commonly used for one-line commands and simple operations. 

A variation on this form can be used to simulate a script by including multiple -e options 
on a single command line. This method is discussed in detail in Chapter 3. 

Note 

A blank (space or tab) is required after the -e option before the 
corresponding command and after the -f option before the stream 
file name. 

4 sed: A Non-Interactive Streaming Editor 



Edit File but Suppress Default Output: 
The -n option can be used with either the -f or -e option to suppress output on all 
except for those lines identified by a print command or flag in the sed command or editor 
command script. The -n option is used in either of the following two forms: 

U sed -n -f script_file file 

u 

u 

or 

sed -n -e '(editor_command}' file 

The -n in the HP-UX command line tells sed to suppress all output to standard output 
except for the following situations: 

• Current line in pattern space matches the address field of an editor print com­
mand for single-line pattern spaces (p command) or for multi-line pattern spaces 
(P command) as described later in this tutorial. 

• Current line matches a substitute command that includes a print flag (p) after the 
(replacement_ text) argument in the substitute command line. 

Note 

Unlike many HP-UX commands, the -n option cannot be com­
bined with the -e or -f as a single argument (as in -ne or -nf). 
The -n, -e, and f options must be separate arguments as shown 
above whenever the -n option is present in the command line. 

sed: A Non-Interactive Streaming Editor 5 



Program Start-up and Operation 
When HP-UX executes the sed command line, it creates a new process and starts the 
editor program. sed then opens the stream file containing the editor commands if the -f 
option is specified or accesses the editor command(s) included in the HP-UX command 
line if the -e option is specified. ~~ 
The editor commands are then compiled into a form that will be moderately efficient 
during execution (comments are removed for better speed, for example) when the com-
mands are actually applied to the input file. Commands are compiled in the order in 
which they are encountered which is also the general order in which they will be at­
tempted at execution time. Commands are applied, one at a time, to the pattern space 
text in its current form. That means that the pattern space always contains the result 
from the most recently executed sed editor command that affected the pattern space 
contents. 

The order in which commands are applied to the pattern space can be modified by using 
the two branching commands: t (for conditional branching), and b (for unconditional 
branching). Labels are used to identify destinations when branching commands are used. 

Commands can also be grouped under a single address or address range for multiple 
operations on a given line or set of lines by using the grouping symbols { and } . 

After the commands have been compiled, the text file(s) to be edited is then opened (one 
file at a time if more than one file is specified), and editing proceeds according to the 
commands provided. 

Each line in the input text file(s) is read into the pattern space, one line at a time. The 
editor commands specified in the HP-UX sed command or in the commands stream file 
are applied in sequence to each line while it is in the pattern space, and the results are 
sent to standard output or elsewhere as specified in the HP-UX command option or by 
the individual editor commands themselves. When the last line has been read from the 
input text file(s) and the last applicable command has been executed on that line, the 
program closes all files and terminates. 

An alternate quit editor command can be used to terminate the edit on a given line as 
determined by the corresponding address if you want to edit only part of the file. Lines in 
the input file that follow the address of the line matching the quit command are omitted 
from the output. Judicious use of grouping and quit commands can provide an easy ~ 
means for extracting an edited form of only part of an existing file without manually 1

• ) 

going back later and deleting unwanted text from the output file. 

6 sed: A Non-Interactive Streaming Editor 



Most of the remainder of this tutorial discusses how to construct and use editor commands 
and scripts. Examples are provided to illustrate typical use. 

U Sed Editor Command Script Limits 

u 

u 

Certain limits are imposed on sed users by the program itself. These limits are discussed 
in greater detail elsewhere (mainly in Chapter 3), but are collected here for easy reference: 

• Up to 10 files can be open for writing or reading in conjunction with w and r 
commands and w flags (see Chapter 2) in addition to the input file and commands 
stream file specified in the HP-UX command line. 

• As many as 100 editor commands can be included in a commands stream file in 
addition to labels and comments. An error is generated if this limit is exceeded. 
This limitation is listed as a bug on the sed(l) manual page in the HP-UX Reference. 
Multiple commands that are collected within braces for grouping to a common 
address are still treated as separate commands when determining compliance with 
the 100-command limit. 

The number of commands that can be included in an HP-UX sed command line 
as arguments to one or more -e options is limited by the number of characters 
allowed in the HP-UX command-line buffer and other factors such as the number 
of arguments allowed by the shell commands interpreter as well as the sed program 
itself. It is difficult to determine the number of -e options that can be used in 
a particular situation, but it is safe to say that it is usually much less than 100 
commands. 

• Up to 50 labels can be included in the commands stream for conditional and un­
conditional branching. An error is generated if this limit is exceeded. 

• Label names can contain as many as seven alphanumeric characters. Eight or more 
characters produce an error message. 

• There is no limit on the number of comment lines that can be included in the com­
mands stream file. Scripts are compiled at the beginning of an edit, and comments 
are removed from the compiled commands at that time. Thus, comments do not 
require significant additional processing time and do not slow down complex edits 
on large files. Their use makes debugging and interpretation of the script months 
(or even a few hours) later much easier, so their use is strongly recommended. 

• Grouped commands ({and}) can be nested up to 100 levels deep. It's not obvious 
why one would need that many nesting levels with only 100 commands per script 
available, but that's the rule. 

sed: A Non-Interactive Streaming Editor 7 



() 
/ 

8 sed: A Non-Interactive Streaming Editor 



u 

u 

Forming Editor Commands 2 
This chapter discusses how to construct sed editor commands. It begins with a brief 
overview of what components are used to build a command, then explains each compo­
nent part in greater detail. Commands are grouped into classifications according to use 
and each is explained thoroughly. A solid understanding of the basic concepts introduced 
in this chapter is necessary before you can effectively use sed commands, and it can be 
gained in a couple of hours or so by most users who already have some experience in 
using HP-UX and regular expressions. If your understanding of regular expressions is 
weak, you will need to spend some time in the tutorial on regular expressions earlier in 
this volume. However, you do not need to understand them thoroughly before you can 
benefit from reading this chapter. As you progress, you may find it beneficial to switch 
back and forth between tutorials as questions arise. 

Be Careful 

If you are a frequent ed editor user, be aware that many of the com­
mands and regular expression constuctions in sed closely resemble 
similar commands and expressions in the ed editor, partly because 
sed is descended from ed. However, casually using ed commands in 
a sed environment can produce results very unlike what a habitual 
ed user might expect, much to his or her chagrin. 

Forming Editor Commands 9 



Editor Command Format 
All sed editor commands have the following general form (square brackets identify the 
various parts of a command line, but they are not used when constructing an actual sed 
editor command): n 

[ address1, address2] [editor_ command] [arguments] 

This general form is used in basically three different variations: 

• When no address is specified, the command is applied to every line in the input 
file: 

[editor_ command] [arguments] 

• When only one address is specified, the command is applied to every line in the file 
that is specified by address: 

[ single_address] [editor _command] [arguments] 

• When two addresses are specified, the command is applied to every line in the input 
file starting with the first line identified by address1, and continues through the first 
subsequent line that is indentified by address2. 

[ address1, address2] [editor_ command] [arguments] 

10 Forming Editor Commands 

n 
' / 

n 



u 

u 

u 

Command components are as follows: 

address1, address2 

editor _command 

arguments 

Zero, one, or two addresses that identify lines in the file that 
are to be affected by the operations or changes specified by ed­
itor_ command and arguments. Line addresses can be specified 
by using line numbers, or regular expressions can be used to lo­
cate text within a line. When regular expressions are used, the 
address specifies any line containing one or more text patterns 
that match the pattern specified by the regular expression (for 
example, any line containing a character pattern such as xyz or 
some other pattern as defined by a syntactically correct regular 
expression). 

Specifies the type of operation to be performed on the lines 
identified by the address( es) if present. If no address is present 
in the command line, editor_command is applied to every line 
in the file. Editor commands fall into several general cate­
gories that include full-line commands (such as delete line, 
append lines after current line, insert lines before current line, 
and change current line to specified new text), the substitute 
command that replaces all or part of the existing text within 
a specified line with new text, input/output commands, and 
others. 

Replacement text, flags, pattern-recognition expressions, and 
other elements related to the specific editor_command con­
tained on a given editor command line. Arguments vary widely 
depending on the command being used, as discussed later in 
conjunction with each command. 

Whitespace in the form of one or more blanks and/or tabs is allowed between addresses 
and between the address field and the editor_command field in each command line. 
Whitespace between the editor command and its arguments may or may not be allowed, 
depending on the editor command and the context in which it is used. 

Forming Editor Commands 11 



Pattern Space 
Before discussing how to build addresses and commands using regular expressions, it is 
very important that you clearly understand the use of the pattern space which holds the 
line or line~ being processed at any given moment. ,fj 
In normal operation, whenever a line is processed and sent to output, a new line is read 
into the pattern space from the input file to replace it. After editing, that line is sent to 
output and a new line replaces it in turn, and so forth. 

However, there are situations where the line in the current pattern space might be 
changed into multiple lines. For example, substituting one or more patterns with re­
placement text that includes end-of-line characters can split the line into two or more 
lines (depending on the desired result). In other situations, the D, P, and N commands 
can be used to append new lines at the end of the current pattern space, delete the first 
part of the current pattern space (up to the first newline- also known as end-of-line), 
or print the same to standard output. This means that the current pattern space can 
contain what will become several lines in the output from the editor. When multiple 
input or output lines reside in the pattern space, they are separated by what is called 
embedded newlines. Embedded new lines is nothing more than a fancy way of saying that 
multiple input or output lines are being treated as a single line for processing purposes. 

12 Forming Editor Commands 



u 

u 

u 

Multiple lines residing together in the pattern space are usually fairly harmless, but they 
can create some frustrating moments when you are trying to understand why a command 
script doesn't work correctly. Most problems arise because regular expressions treat the 
entire pattern space as a single line with embedded newlines while most users prefer to 
think of the pattern space as containing multiple lines. As usual, when such disputes arise 
the computer always wins -just like when you try to fight with a credit card company's 
computer over a billing error. So remember: 

Note 

When using regular expressions in addresses and substitution com­
mands, remember that the entire pattern space is treated as a sin­
gle line with embedded newlines that are part of that line even 
though they serve as end-of-line on each line when they appear 
in the output. This means that the first character tested in an 
address or substitution search to match the corresponding regular 
expression in a line is the first character in the first line in the pat­
tern space. The last character in an address or substitution search 
is the last character in the last line in the pattern space. The reg­
ular expression special characters A and $ represent the beginning 
and end of the current pattern space, respectively, and have no 
relationship to individual embedded newlines within the pattern 
space. 

The remainder of this chapter explains how to build each component of an editor com­
mand line into a usable command for inclusion as an argument to an HP-UX sed command 
using the -e option or in a sed command script (stream) file using the -f option. 

Forming Editor Commands 13 



Constructing Line Addresses 
Line addresses appear on each editor command line; zero, one, or two addresses per line. 
Each address, if present, can have one of two general forms; a numerical line-number 
address, or a context address which consists of a regular expression used to identify one n 
or more specific lines in the file based on textual content within the line (thus the name, 
context address). 

Line Address Defined 
In this discussion, the term line address refers to either of two possible address forms: 

• Numerical addresses: A line number used as an address refers to the line numbering 
sequence in the input file. 

• Context addresses: A regular expression used as an address refers to any line in the 
entire contents of the input file that contains a pattern that matches the specified 
address while it is being processed in the current pattern space. If the line has been 
subjected to alteration by previous commands while residing in the pattern space, 
the address of the current command must match the line in its current state, which 
may be very similar to the original text line that was placed in the pattern space 
when it was read from the input file, but it could be very different, depending on 
what changes have already been made to the line by previous commands in the 
commands script. 

14 Forming Editor Commands 

n 
\ ' 

n 



u 

u 

u 

Interpreting Line Addresses 
Line number 

Regular Expression 
(Context Address) 

Any valid line number in the value range of 1 through the 
number of the last line in the input file can be used for either or 
both addresses. When two addresses are specified for starting 
and ending line numbers, they must be separated by a comma 
(,). For example, the address pair 2,24 indicates that the editor 
command is to be applied to all lines starting with line 2 and 
continuing through line 24. The value of the second address 
must be greater than the first. The dollar currency symbol 
($) can be used as a line address to represent the last line in a 
file when the line number is not known or subject to change. 
Thus the address 13,$ specifies all lines from line 13 through 
the last line in the file. Obviously, the $ must always occupy 
the second position in a two-address field. 

It is often preferable to identify a line by its contents rather 
than by line number, especially since most text files and 
many higher level computer programs do not use line num­
bers. This is easily accomplished by replacing the numeri­
cal address with a regular expression between slash characters 
( J regular_ expression/ ) . For example, the address pair: 

/start text block Aj,Jend text block A/ 

affects all lines starting with the line containing the text pat­
tern start text block A and ending with the subsequent line 
end text block A. Other examples of this technique are demon­
strated in later topics. 

Forming Editor Commands 15 



Line addresses can appear in any of the following combinations on any given editor 
command line: 

• No address implies that the editor command on that line is to be applied equally 
to all lines in the input file. 

• A single address implies that the editor command is to be applied to all lines that 
match the specified address. If the address is in the form of a number, n, only line 
n in the file is to be subjected to the command. If the address is in the form of a 
text pattern or other regular expression, any line in the input file that contains a 
pattern that matches the address expression is to be subjected to the command. 

• A double address of the form address1,address2 indicates that the command is to 
be applied to all lines starting with the line identified by address1 and continuing 
through the line identified by address2 where address1 and/or address2 can be a 
line number or a regular expression. 

When a command is preceded by two addresses, the double address is interpreted as 
follows: 

• If one or both line addresses reference line numbers as indicated by their numerical 
or partially numerical form (n1,n2; n1,expression2; or expression1,n2;) the com­
mand is applied as follows: 

• nl,n2: All lines starting with line n1 through line n2 are processed by edi­
tor_ command. Lines outside the specified range are ignored. If n2 is less than 
n1, the command is ignored and no error is generated. 

• nl,expression2: All lines starting with line n1 through the first subsequent 
line containing a text pattern that matches the regular expression expres­
sion2 are processed by editor_command. Lines outside the specified range are 
ignored. 

• expressionl,n2: All lines starting with the first line containing a text pattern 
that matches the regular expression expression1 through line n2 are processed 
by editor_command. Lines outside the specified range are ignored. If the line 
that matches address expression1 occurs later in the file than line n2, all lines 
from the line containing expression1 through end of file are subjected to the 
corresponding command. 

16 Forming Editor Commands 

n 

n 



l) 

( ' u 

u 

• If both addresses are regular expressions meaning that the address has the form 
expression1,expression2, all lines starting with the first line that contains expres­
sion1 through the next subsequent line containing expression2 are processed by the 
editor command specified on the same command line. If another line containing 
expression1 appears in the file after the line containing expression2, processing by 
editor_command resumes on that line and again continues until a line containing 
expression2 (or end-of-file) is again encountered. 

If only one line in the file contains expression1 and one other line contains expres­
sion2 but the line containing the second expression precedes the line containing 
the expression1, the command is applied to the entire remaining file starting at the 
line containing expression1. Two-address operation is equivalent to setting a flag to 
start command execution on all lines when expression1 is matched to a line, then 
leaving the flag set until expression2 is matched or end-of-file is reached, whichever 
occurs first. 

Note 

When two addresses are used with an editor command and the 
second address is a regular expression, sed does not search the line 
identified by the first address to determine whether the second 
address also exists in that same line. Thus it is impossible to 
restrict editor commands to a single line when a regular expression 
is used for the second address. 

If the second address is a line number, the operation always termi­
nates on that line, even if the first address (whether line number 
or regular expression) refers to the same line. 

Forming Editor Commands 17 



Constructing Context Addresses 
The use of regular expressions is discussed at length earlier in this volume in the tutorial 
on regular expressions. The following table is a short summary of regular expressions 
and their use in the sed environment for your convenience. Examples in later topics show 
how to use regular expressions for addressing and in substitutions. n 

Character 

$ 

\n 

* 

[chars 1 

Regular Expression Character Interpretation 

Matching Text 

Matches an imaginary zero-width character at the beginning of the 
pattern space if it is the first character in the expression (in any other 
position, it is treated as a normal character). Often used to match a 
string of text that starts at the beginning of the pattern space without 
matching any identical strings occuring elsewhere. 

Matches an imaginary zero-width character at the end of the pattern 
space. Often used to match a string of text that terminates at the 
end of the pattern space without matching an identical string occuring 
elsewhere. 

Matches a newline (end-of-line) character placed within the pattern 
space instead of at its normal end-of-line position. Does not match a 
newline character at the end of the pattern space. 

A single-character regular expression that represents any arbitrary 
character except newline (end-of-line). Frequently used with * to rep­
resent an arbitrary block of text within a line between two other text 
patterns or before/after a text pattern. .. represents two adjacent 
arbitrary characters. The form . * cannot be used to span across one 
or more embedded newlines. 

Matches zero or more of the immediate preceding one-character reg­
ular expression. Thus xy*z matches xz, xyz, xyyz and xyyyyyyz. 
Likewise, a b. *xyz matches ab followed by xyz with any amount of 
arbitrary text (except newline) between the two. 

Text pattern character can match any one character in the group be­
tween the [ and 1 provided the first character is not a circumflex (A). 
If the first character is a circumflex, the match is tested against all 
characters except the characters between the [ and 1· To include 
circumflex in the group of matching characters, place it in any other 
position. To match [ or ], place them in the first position(s) in the 
group as in [[]abcA1· 

18 Forming Editor Commands 

() 
I 

n 



u 

u 

u 

Regular Expression Character Interpretation (continued) 

Character Matching Text 

\(string\) The delimiters \ ( and \) are used to isolate part of a larger regular 
expression for use in substitution and addressing operations. string is 
an ordinary regular expression of one or more characters. Up to nine 
sub-expressions can be defined by this method. Patterns in a line that 
match a given sub-expression can be specified in related operations by 
using the \digit specifier described next. 

\digit Where digit is a single-digit numerical value. Specifies the text pattern 
that matches the dth sub-expression in the preceding regular expression 
on the same line. For example, \2 represents the text that matches ex-
pression "the" in the regular expression \(over\) \(the\) \(moon\). 
See examples later in this chapter for more information. 

any other Ordinary typing characters except those above are one-character reg-
ular expressions that match only themselves in a pattern search. 

Note 

Be careful when searching for patterns that match regular expres­
sions because matches may not produce the desired result if the 
expression is incorrectly structured. For example, to isolate the 
word "the" requires three (or four) pattern searches: ( 1) " the " 
preceded and followed by a space, (2) "the" preceded by beginning 
of pattern space character (A) and followed by a space, and (3 and 
4) an expression to identify "the" (preceded by a space) preceding 
a newline and/or end of pattern space. 

Forming Editor Commands 19 



Using Sub-Expressions in Addresses 
In the preceding table of regular expressions, use of the character pairs \ ( and \) as 
delimiters to isolate part or parts of a regular expression as an aid in substitutions and 
addressing was discussed. This obscure and often confusing feature is a very useful 
mechanism for identifying certain types of patterns in text files such as lines that contain n 
repeating words or patterns, the same word twice in a row such as here here, and others, 
although its usefulness is not limited to these cases. 

An example from the HP-UX Reference manual entry for ed(l) says you can find a line 
consisting of two repeated appearances of the same string by using the address A\ (. *\) \1$. 
From this example, it is tempting to try a similar addressing expression to identify lines 
containing a single word twice in succession in a sentence like like this this. The most 
obvious expression to attempt would be a very simple address of the following form where 
the white space between words is assumed to consist of one or more spaces and/or tabs 
(in other words, arbitrary white space except beginning or end of line): 

/ \ ( . * \ ) [ space tab 1 [ space tab 1 * \ 1 / 

But when you discover that the address matches every line in the file except blank lines, 
you begin to scratch your head in bewilderment. Condolences are in order. You are 
among the many victims of the asterisk which says zero or more of the previous single­
character regular expression which, in this case, is the . representing anything except 
newline. Thus the address matches any line containing one or more spaces and/or tabs 
preceded and followed by zero or more other characters of any kind except newline which 
reduces to any line containing one or more spaces and/ or tabs. 

You can add a . before each . * to specify that at least one other arbitrary character 
is required. This addition helps, but now the address matches lines containing "this 
system", "when new", "command and", and even lines starting with three or more 
spaces or tabs; still not what we want. 

20 Forming Editor Commands 

n 



After careful evaluation, it can be readily determined that successive patterns such as 
improperly repeated words can occur at beginning of line or after beginning of line (which 
includes end-of-line). Thus two addresses are needed. The first case is addressed this 
way: 

lJ I A \ ( [ A space tab] •• * \) [ space tab] [ space tab] * \ 1 I 

and the second address is: 

I [ space tab] \ ( [ A space tab] •• * \) [ space tab] [ space tab] * \ 1 I 

In both addresses, there are no blanks except where indicated by space or tab. The two 
addresses are interpreted as follows: At beginning of line or starting at any blank (space 
or tab), look for a non-blank character followed by one or more arbitrary characters in 
turn followed by another one or more blanks and the same non-blank text pattern as 
before. 

If you know that there are no tabs in the text block, replace the expression [ space tab] 
with a space, thus producing the addresses: 

1 A \ ( •• * \) space space * \ 1 I 

U and 

u 

I space\( .. *\) space space*\ 1 I 

Other examples of using \( and \) with \digit are included later in this chapter under 
the substitute command. 

Forming Editor Commands 21 



Editor Commands 
sed editor commands are grouped into the following general categories: 

Whole-Line Commands 
These commands include: 

• delete lines, 

• Read next line, 

• append new text lines after current line, 

• insert new text lines before current line, and 

• change addressed lines to new text. 

They operate only in conjunction with full lines of text; one or more full lines in the 
input file, and one or more full lines of replacement text in insert, replace, and change 
operations. 

Substitute Command 
The substitute command changes part of an addressed line by conducting a context 
search within the line and altering the line accordingly. 

Transform Command 
Related to the substitute command, the transform command is used to singly replace 
certain characters whenever they occur in an addressed line with another character chosen 
from a corresponding set of replacement characters. 

Input/Output Commands 
These commands include: 

• print addressed lines on standard output, 

• write addressed lines to specified (filename) (often used to keep a record of changed 
lines for future reference), and 

• read contents of specified (filename) and append on standard output after addressed 
line (merge text from external file). 

22 Forming Editor Commands 

n 

n 

n 



u 

u 

u 

Commands to Process Multiple Input Lines Simultaneously 
These commands are used to combine multiple input lines into a single pattern space 
then process the entire pattern space. They include: 

• append Next line into pattern space, 

• Delete up to first newline character in pattern space, and 

• Print up to and including the first newline (entire first line) in pattern space (send 
to standard output). 

Hold and Get Commands 
These commands manipulate text between the current pattern space and a separate hold 
pattern space (buffer). They include: 

• Copy pattern space into hold area, 

• Append pattern space to current Hold pattern, 

• get contents of hold space and place in pattern space, 

• Get contents of hold space and append to current pattern space contents, and 

• eXchange contents of the pattern space and hold area. 

Flow-of-Control Commands 
These commands do not alter input lines, but serve, rather, as a means for controlling 
the application of editor commands to lines selected by the address(es) associated with 
the flow-control commands. They include: 

• Address inversion (operate on all addresses except those matching the command 
address), 

• Command grouping for multiple operations on a single line or pattern space, 

• Labelling and branching to labels, and 

• Testing for successful substitutions in the current pattern space. 

Miscellaneous Commands 
There are two commands in this group: 

• Print line number ( =) matched by address on standard output, and 

• quit. 

Forming Editor Commands 23 



Constructing Editor Commands 
As mentioned earlier, sed commands have the following general forms: 

• For commands that are to be applied to all lines in the input file, use: 

command [optional_ arguments] 

• For commands applied to a single line or lines containing a given text pattern, use: 

address command [optional_ arguments] 

• For commands that affect a group of contiguous lines starting with address1 and 
continuing through address2, use: 

address1, address2 command [optional_ arguments] 

Which of the three basic forms you select depends on the command and what needs 
to be accomplished. This section explains how to construct the commands, deter­
mine what address forms to use, and decide how to arrange command arguments 
for the correct result. Commands are presented in groups in the same sequence as 
they are listed in the previous section. 

Whole-Line Commands 
These commands operate on an entire line or on a group of complete lines. They include 
delete or change line(s), insert/append text before/after line(s), and read next line in 
input file. 

24 Forming Editor Commands 



u 

u 

Command 

d 
(delete line( s)) 

n 
(next line) 

a\ 
(text) 

(append lines) 

No. of 
Addresses 

0, 1, or 2 

0, 1, or 2 

0 or 1 

Whole-Line Commands 

Delete all lines matched by the address( es) specified with 
the command; do not write them to the output. When a 
line is deleted, the pattern space is empty and no further 
commands are attempted on the corpse. A new line is read 
from the input file into the pattern space. The list of editing 
commands is then restarted from the beginning on the new 
line. 

Reads the next line from the input file, replacing the current 
line in the pattern space. The current line is written to the 
output if it should be before being replaced by the new line. 
Execution of editing commands continues with the command 
following the n command instead of starting over at the be­
ginning of the commands (unless the n command happens to 
be the last command in the list). 

This command appends (text) after the addressed line in 
standard output. The a\ command (together with its ad­
dress, if any, must be on a line by itself followed by one or 
more lines of (text). If (text) is two or more lines, each line 
except the last must end with a backslash escape character 
(\) indicating that the next line is text, and is not to be inter­
preted as a new command. The first line in (text) that ends 
with a normal end-of-line terminates the append operation. 

Once an a\ command is successfully completed, the resulting 
(text) is sent to standard output at the appropriate time 
regardless of any subsequent editor commands applied to the 
line that triggered the append. This means that even if the 
triggering line is deleted or destroyed, the appended text is 
still written to standard output. Likewise, if the line (or lines) 
is altered by a substitute or change command, the altered 
line(s) is sent to standard output before the appended (text). 

(text) is not part of the input file, so it is not scanned for ad­
dress matches and it is completely unaffected by any editing 
commands. It also does not affect the input file line address 
counter. 

(continued next page) 

Forming Editor Commands 25 



Whole-Line Commands (continued) 

No. of 
Command Addresses 

i\ 0 or 1 Exactly identical to a\ except that (text) is written to stan-
(text) dard output before the addressed line instead of after it. 

(insert lines) 

c\ 0, 1, or 2 Identical to i\ and a\ except that (text) replaces the ad-
(text) dressed line(s) instead of being inserted or appended. Any 

(change lines) lines that match the specified address( es) in the change com-
mand are deleted and no further editing operations are per-
formed on them. 

If c \ is preceded by two addresses, all lines in the addressed 
group of lines are deleted and replaced by a single copy of 
(text) in the standard output (sed does not produce one copy 
of (text) per deleted line when two addresses are used). 

If c \ is preceded by one address, each line that matches the 
address is deleted and replaced by a copy of (text) in the 
standard output (thus producing a copy of (text) per deleted 
line when one address is used). 

If no address is provided, every line in the file is·· deleted and 
the output consists of a complete copy of (text) for each line n 
in the file (doesn't sound very useful, but that's the way it 
works). 

If an append (a\) or read file ( r) command is executed for the 
same address as the c\ command, (text) from the c\ com-
mand is sent to standard output before the text from the a\ 
or r command. If both an a\ and r command are associated 
with the same address as the change, they are written on 
standard output in the same order as the append and read 
commands appear in the editor commands sequence. 

Upon completion of the change and any append/read opera-
tions associated with the same address, the next line is read 
from the input file and execution of editor commands starts 
over with the first command in the list. The input-file line-
address counter is incremented as part of the next-line read 
operation. 

26 Forming Editor Commands 



u 

u 

u 

Whole-Line Commands: Important Details 

• No whitespace (space or tab) is allowed between the command name and any pre­
ceding address(es). If any space is present, a command garbled error message is 
produced. 

• If two addresses are used and the second address is a regular expression, sed does 
not search the line matching the first address to see if it contains a text pattern 
matching the second address. Thus, if the line identified by the first address contains 
a text pattern matching the second address, the command will always be applied to 
more than one line (to end-of-file if the second-address pattern cannot be matched 
in a subsequent line) unless the line matching the first address is also the last line 
in the file. 

On the other hand, if the first address is a regular expression and the second address 
is a line number, if the first address matches the same line as the second address, 
only one line is affected by the command. 

Using Whole-Line Commands 
Here are some typical examples of whole-line commands showing how they are con­
structed and what they do. 

Command Used Action Taken 

3,5d Delete input file lines 3 through 5. 

r\.mc/d Delete all lines that begin with .me. This is 
useful for removing change marks from files 
that have been marked by the HP-UX com-
mand, diffmk. 

a\ Append the specified two lines of new text af-
This text is appended after\ ter every line in the file. 
the addressed line(s). 

fxyzfa\ Append the specified two lines of new text af-
This text is appended after\ ter every line in the file that contains the char-
the addressed line(s). acter string xyz. 

15i\ Insert the specified two lines of new text before 
This text is appended after\ line 15 in the input file. 
the addressed line(s). 

3,/the/c\ Change line 3 through the first subsequent line 
This text replaces\ containing "the" to two lines of new text, even 
the addressed lines. if the pattern occurs within a word such as 

"whether". 

Forming Editor Commands 27 



Substitute Command 
The substitute (and the related transform command that is discussed in the next topic) 
is the only sed command that can be used to arbitrarily alter text within an addressed 
line. Substitute command format is as follows: 

• The no-address form performs the substitution on every line in the file that contains 
a text pattern matching (regular _expression): 

sf (regular_ expression) f (replacement_ text)/ (flags) 

• The single-address form performs the substitution on all lines that match address 
and contain a text pattern that matches (regular_expression): 

addresssf (regular_ expression)/ (replacement_ text)/ (flags) 

• The two-address form performs the substitution on each line from address1 through 
address2 that contains a text pattern matching (regular_expression): 

address1, address2s/ (regular_ expression) f (replacement_ text) f (flags) 

Substitute Command: Regular Expression 

n 

The text pattern (regular_ expression) can be delimited by the slash character (/) as ~ 
shown, or you can use any other character except space and newline. Any valid expression i. ) 

can be used. To use special characters as normal characters, they must be preceded by 
a backslash (\). Whatever delimiter you use must appear three times in the arguments 
part of the command line: before the regular expression, between the regular expression 
and the replacement text, and after the replacement text. 

Substitute Command: Replacement Text 
Replacement text can be arbitrary text. Special characters used in regular expressions 
and elsewhere have no significance, so they do not need to be preceded by a backslash 
(\). To include a backslash in the output text, it must be preceded by another backslash; 
that is, use \\ to get \. If the replacement text consists of more than one line, each line 
must end with a backslash to protect the end-of-line from interpretation by sed as end­
of-command-line. 

28 Forming Editor Commands 



u 

u 

Substitute Command: Delimiters between Regular Expression and Replacement 
Text 
The delimiter (usually a slash, but it can be anything except space or newline) must 
appear exactly three times in the editor command line; namely, before the regular ex­
pression, between the expression and the replacement text, and immediately after the 
replacement text (unless it is preceded by a backslash escape character when used for 
pattern matching or in regular text). If you need to use the delimiter character in a 
regular expression or in the replacement text, precede it with a backslash to force sed 
to treat it as a normal text character instead of interpreting it as a representation of 
something else. 

Substitute Command: Special Characters Used in Replacement Text 
With the exception of & and \digit, when typing the (replacement_text) part of the editor 
command you can use regular expression special characters A, $, [, ], ., and * without 
preceding them with a backslash escape. The only restrictions you must remember are 
escaping the delimiter character by preceding it with a backslash, using a backslash 
before end-of-line if the replacement text has more than one line, and terminating the 
last line in the replacement text with the delimiter character (usually a slash) followed 
by any optional flags that might be needed. All other characters in the command line 
are treated literally without interpretation of any kind. However, if you get confused and 
want to make sure nothing is misinterpreted, you can always use the \ escape. If it is 
present but not needed by the command, it is discarded by the editor before making the 
text substitution. 

Substitute Command: Using Matched Text in Replacement Text 
There are two types of matched text that can be used in the replacement expression 
without retyping it: 

& 

\digit 

& represents that string of text in the current pattern space 
that matches the complete search expression immediately fol­
lowing the s command on the current command line. 

\digit represents the string of text in the current pattern space 
that matches the digitnth sub-expression in the search expres­
sion as determined by counting the number of \ ( sequences in 
the regular expression that precede the sub-expression. This 
method of defining and using sub-expressions is explained in 
greater detail including some examples later in this substitute 
command section of this chapter. 

Thus, to change all occurrences of filename to filename.c, use the command: 

sf filename/ &.cf 

Forming Editor Commands 29 



Substitute Command: Flags 
The substitute command accepts three independent flags as optional arguments in the 
editor command line after the regular expression and replacement text part of the com­
mand. These flags can be used in any combination; alone, in pairs, or all three together 
as your needs might dictate. The recognized flags are: 

Substitute Command Flags 

Flag Function 

g If the regular expression matches text in the input line in more 
than one location, the substitution is performed on every match 
in the line. If this flag is absent, the substitution occurs only on 
the first encountered match in the line. Overlapping occurrences 
of regular_expression are ignored and no change is made to either 
occurrence. 

n Substitute only the nth occurrence of regular_expression where n 
can have any value from 1 through 512. 

p If a pattern matching the regular expression was found and the 
substitution made, the line is printed (written) to standard out-
put. If no substitution is made, and the -n option was included 
in the HP-UX sed command line, no output is produced mean-
ing that only changed lines appear on the output unless dictated 
otherwise by another command in the commands script dictates 
otherwise). Likewise, if other substitution commands in the script 
include a p flag, match the current line, and alter the line, multi-
ple, dissimilar copies of the line are produced, one for each success-
ful substitution (again assuming that the -n option was included 
in the original HP-UX sed command line). 

w (filename) Equivalent to the p flag, except that output is written to the 
specified file instead of standard output. If the file exists before 
sed is run, the file is overwritten. If not, a new file is created with 
the specified name. As with the p flag, multiple dissimilar copies 
of the line can be written as a result of multiple substitutions on 
a given line. 

A single space (not tab) must separate thew flag from the file-
name. Good command writing practice places this flag last, after 
the command and all other arguments and flags. 

Up to 10 different files can be open for writing during a sed ses-
sion. If the read file command is present in the editor commands 
stream, only nine different filenames can be specified by various 
w flags and w (write) commands. 

30 Forming Editor Commands 

rt) 

n 

n 



u 

u 

u 

Substitute Command: Important Details 
Remember that the regular expressions used in addresses associated with the s command 
are completely independent from the regular expression used in pattern substitution. 
This independent relationship proves rather difficult for many beginners. Some of the 
examples that follow in this section should help clarify the matter considerably. 

Using the Substitute Command 
Here are several examples of various substitute commands and addressing combinations: 

3s/the/xyzfg 

3s/ the fxyzfg 
3srthe fxyz/ 
3s/ the$fxyz/ 

(address) sf 
the\n/xyz\n/ 

In line 3, change every occurrence of the character trio the to 
xyz, even if it occurs in a word such as weather. 

In line 3, change every occurrence of the character trio the to 
xyz, provided it is preceded and followed by a space. To test 
for the at beginning and end of line requires two additional 
commands, one for each case. ed, sed, and ex offer no equiva-
lent to \ < and \> that are used in vi to delimit a word with 
whitespace, beginning-of-line, or end-of-line. 

Same as above but isolates the word the immediately preceding 
an embedded newline when multiple output lines are present 
in the current pattern space. Note the use of \n in the replace-
ment text to preserve the position of the newline which would 
otherwise be destroyed. 

/the/sf (space) for( space) /xyz/g 

In every line containing the text pattern the (even if the pat­
tern is part of a larger word), search for the characters for 
with a space before and after (not at end or beginning of line 
unless there is a space on both sides of the word). If the pat­
tern exists, replace all five characters with the three characters, 
xyz. If the word for is found more than once in the specified 
sequence, replace every occurrence of the pattern. 

Forming Editor Commands 31 



/the/s/ (space)for(space) fxyz/gw changes 

Same as before, but also write the current pattern space to a 
file named changes in the current directory. This technique can 
be used to create a log file that contains a copy of all changed 
lines as they appeared after the substitution is complete. For 
other whole-line-oriented commands, thew file command form 
must be used after the command that produced the change. 
No output occurs on addressed lines if no substitution is made 
on that line. If no substitutions are made in the entire file that 
would otherwise be written to file changes, the file is created 
and opened at the beginning of the edit, but when closed at 
the end, changes is a zero-length file. 

/the/s/ ( space)for( space) jxyz/gp 

Same as before, but the changed line is printed to standard 
output if the address matches. As with the w flag, no output 
occurs on addressed lines if no substitution is made on that 
line. 

() 
/ 

The p flag has no effect unless the -n option is used in the 
original HP-UX sed command that started the session because n 
the pattern space is always printed to standard output after it 
has been edited if -n is not specified in the HP-UX command 
line. 

/~125/,/~248/s/[spacetab][spacetab]*/\ 
/g 

Starting with the line that begins with 125 as the first three 
characters in the line through the line that begins with 248, 
replace every sequence of one or more contiguous spaces and/ or 
tabs with a single newline (end-of-line). This has the effect of 
placing all words in the lines (as determined by whitespace 
separators) in a single column, one word per line. 

32 Forming Editor Commands 

n 



u 

u 

u 

rThe first timel,$sllsf.*file3llsf \fusr\fman• $HOME file31 

Starting with the first line in the file that contains the string 
The first time starting in the first column, and continuing 
through end of file, whenever a line containing the command 
lsf followed by any number of arbitrary characters in turn fol­
lowed by the filename file3 is encountered, replace the entire 
string (lsfthrough file3) with a new text pattern lsf lusrlman* 
$HOME file3. Note the use of\ to protect the I characters in 
lusrlman* from interpretation as delimiters by the editor. 

Using Sub-expressions in Substitutions 
In the table ofregular expressions earlier in this chapter, use of the character pairs\( and 
\) as delimiters to isolate part or parts of a regular expression as an aid in substitutions 
was discussed. This obscure and often confusing feature is a very useful mechanism 
for making certain types of changes in text files such as reversing columns in a table, 
swapping first and last name in mailing or personnel lists, etc., although its usefulness is 
not limited to rearranging order of appearance in a line. 

Earlier in this chapter, we discussed using sub-expressions in addresses and showed how 
to identify a line containing one word twice in succession. Since the obvious next task is 
to fix the unwanted duplication, let us use the same technique to change two words into 
one. 

We determined that two addresses were needed to cover duplicate words at beginning of 
line and after beginning of line with arbitrary whitespace between words: 

I A \ ( [ A space tab] •• * \) [ space tab] ( space tab] * \ 1 I 

and 

I [ space tab ] \ ( [ A space tab] •• * \) [ space tab] [ space tab] * \ 1 I 

This means that two substitute commands must be used; one for each case. For conve­
nience, let us refer to each of the two addresses as addressA and addressB, respectively 
(after removing the I character before and after for clarity) in the discussion which 
follows. 

Forming Editor Commands 33 



We already know that regular expressions used in addresses are completely independent 
entities that have nothing in common with the regular expression used to find a pattern 
match for the substitution, other than they must both match a given line before a 
substitution can occur in that line. 

The safest way to ensure that the matched substitution pattern is the same as the pattern 
that produced the address match is to use the same expression in both positions in the 
command line. Thus, using the abbreviated notation specified earlier, the two commands 
become: 

/ addressA/s/ addressA/ \1/ 
/ addressB/s/ addressB/ \1/g 

Note the use of the g flag after the second command. If two or more repeated word pairs 
occur in a given line like like this this has has, any successive pairs can be detected and 
fixed. This eliminates the need to place the commands in a programmed test loop using 
the t and b commands described later under flow-of-control commands. Note also the 
space before the \1 to preserve spacing between words. 

Another situation where using sub-expressions is helpful is in rearranging columns in 

ttJ 
/ 

text such as in a list of last and first names separated by comma and space that must be 
switched to first and last name separated by a single space. Assuming, for this example, r-'\ 
that only the names appear on each line with an optional one or more middle names and 1

• ) 

no additional non-name text, use a command of the form: 

s/\(.*\), \(.*\)/\2 \1/ 

Of course, this command operates on all lines in the file because no addresses are specified. 
If the list of names occurs only on a group of lines or on certain isolated lines, proper 
addressing means must be employed to ensure correct processing. 

34 Forming Editor Commands 

n 



u 

u 

Transform Command 
The transform command (y) is used to translate text characters into different characters. 
It is similar to the substitute command described earlier in that it changes text within 
the current pattern space, but it does not replace a text pattern with another. Instead, 
it behaves more like a series of substitute commands that each changes one character 
globally throughout a line to another without having the ability to "shoot itself in the 
foot" so to speak by changing a character to another only to have the changed character 
altered by a subsequent command. 

The transform command compares each character in the pattern space with a series of 
characters contained in the expression called string_1, and replaces each match with the 
character that occupies the same relative position in string_2. Thus, the command: 

y/abcfcde/ 

changes every occurrence of a in the pattern space to c, b to d, and c to e for every line 
in the input file. Like the substitute command, it accepts 0, 1, or 2 addresses. Unlike the 
substitute command, it does not accept flags at the end of the command. The g flag is 
implied by the very nature of the command. p and w filename must appear as separate 
commands, if needed. 

Forming Editor Commands 35 



The transform command can be constructed in any of the following three forms: 

• No address performs the transformation on all lines in the input file: 

y / string_1f string_2f 

• A single address performs the transformation on all lines whose line number or text n 
matches address_1: 

address_1 y / string_1f string_2f 

• A double address performs the transformation on all lines whose addresses fall 
within the range defined by address_1 and address_2. 

address_1,address_2y / string_1f string_2j 

A transformation command to convert uppercase to lowercase characters on all lines 
would resemble the following: 

y / ABCDEFGHIJKLMNOPQRSTUVWXYZ/ abcdefghijklmnopqrstuvwxyz/ 

Of course, this technique is useful for many other situations, including alteration of 
non-printing ASCII control codes. 

Input/Output Commands 
The input/output command group is related to reading from and writing to specified 
external files and printing to standard output. The write, print, and list commands 
accept 0, 1, or 2 addresses because any number of lines from the input file can be written 
to a file. The read command accepts only 0 or 1 address because the address tells the 
editor where to place the file when it is read and copied to standard output. The following 
table lists the commands and their operating characteristics. 

36 Forming Editor Commands 



Input/Output Commands 

No. of 
Command Addresses Description 

u p 0, 1, or 2 If the line currently held in the pattern space matches the 
print to std out address or address range for this command, print the pattern 

space in its present form to standard output, regardless of 
what changes might be made to the current pattern space by 
subsequent commands in the command stream. 

I 0, 1, or 2 Same as p except that non-printing text characters are 
list to std out printed as their octal equivalent (each octal character code is 

preceded by a backslash) and long lines are folded into mul-
tiple lines not exceeding 72 characters in length (excluding 
newline). For example, ASCII STX (I CTRL ~[]]) is printed 
as \02, and embedded newlines are printed as a backslash at 
the end of a line with the remainder of the line (or up to the 
next newline) printed on the next line. 

w (filename) 0, 1, or 2 If the line currently held in the pattern space matches the 
Write to file address or address range for this command, write the pat-

tern space to the file specified by (filename) in its present 
form, regardless of what changes might be made to the cur-

u rent pattern space by subsequent commands in the command 
stream. If the file is not already open, open the file before 
writing. 

Exactly one space character must separate the w command 
from the (filename). In any given commands stream, up to 
10 filenames can be specified in w commands and after w 
flags in s editor command lines. If r commands are present 
in the commands stream, this limit must be reduced by one 
to nine filenames. 

(continued next page) 

Forming Editor Commands 37 



Input/Output Commands (continued) 

No. of 
Command Addresses Description 

r (filename) 0 or 1 Read the file specified by (filename) and copy to standard 
Read from file output after all editing operations have been completed on 

the current pattern space and it has been printed to standard 
output. If the pattern space is modified by commands sub-
sequent to the read command, those commands are executed 
first. The read does not copy filename until after the current 
pattern space is printed to standard out and a new line is to 
be copied from the input file into the pattern space. 

Exactly one space character must separate the r command 
from the (filename). In any given commands stream, up to 
nine filenames can be specified in w commands and after w 
flags in s command lines if one or more r commands are also 
present. 

If multiple r (filename) and/or a\ commands are included 
in a single commands stream, the text produced by the two 
commands are placed after the current line in the same se-
quence as the commands that produce the text. 

1/0 Commands: Operating Characteristics 
These commands do not affect the current line in the pattern space. The print and write 
commands immediately copy the line in the current pattern space to standard output 
or to the specified file as the case may be, then continue with the commands stream. If 
the command happens to be the last command in the stream, a new line is read into the 
pattern space. If it is not the last command, subsequent lines in the stream are executed 
until the stream has been completed for that line. 

On the other hand, the read command does not act immediately. To conserve memory 
and prevent unnecessary file size limitations, instead of reading the specified file into 
memory for writing out later, it places the read operation in a tasks queue and waits 
until processing of the commands stream on the current pattern space line is complete, 
then copies the specified file to standard output. 

38 Forming Editor Commands 

n 



u 

u 

u 

If a w command is present in the stream, a new file must be opened the first time it is 
encountered. Since the entire stream is re-executed for each line in the file, the file must 
remain open until the input is completely processed. In addition, whenever a r command 
is encountered, a file must be opened for the duration of the read. The file is closed as 
soon as the copy is complete, so it is not necessary to have more than one file open at 
a time when reading multiple files in a single stream. sed allows up to 10 open files at 
any given time (the HP-UX limit for a single process is 29). This means that if there are 
no r commands in the commands stream, you can specify up to 10 different filenames 
in conjunction with w commands or w flags after s commands. If you are reading from 
one or more files with the r command, the limit for w must be reduced to nine different 
filenames. Of course, there is no limit to the number of w commands and/or flags. Only 
the number of open filenames is limited. 

Using 1/0 Commands 
Here are several examples of how these commands can be used in a typical commands 
stream: 

/Example 1 goes here/r example! 
/Example 1 goes here/d Read file examplel into output after the line containing the 

text: "Example 1 goes here". The second command in the 
stream deletes the original line that matched the address so 
that it does not appear in the standard output file since it 
obviously is no longer needed. The order of the commands 
cannot be reversed because the second command would de­
stroy the line before the address in the first command could 
match it. 

3,20w text_blockl Copy lines 3 through 20 into an external file named 
text_blockl. This command can also be grouped with other 
commands by using the commands-grouping delimiters { 
and } to work in conjunction with the w file flag on sub­
stitute commands when creating a log file of changed lines 
resulting from the edit. It can also be used for other pur­
poses as your needs might dictate. 

Forming Editor Commands 39 



This is a deceptively simple command. It can be used to pro­
duce a readable copy of any file containing ASCII control char­
acters. For example, the HP-UX command: 

sed -e 'I' source_file >visible_file 

produces a new file named visible_file that contains the text 
from source_file with control characters in octal value form pre­
ceded by a backslash. Thus \177 represents a DEL character, 
and a DC2 character (I CTRL ~[[]) is listed as \22. The hori­
zontal tab character, instead of being listed as \11, is displayed 
as the single character >. Newlines (line-feed) are usually not 
displayed as an octal sequence. Note that a space is required 
after the -e in the command line. 

An alternative to this command is the HP-UX cat command 
using the -v option. See cat(l) in the HP-UX Reference for 
more information. 

Processing Multiple Lines Simultaneously 
There are essentially two situations where multiple lines are encountered in the pattern 
space which is always treated as a single line by sed: 

• The pattern space is split into multiple lines by a substitute command that includes 
one or more newlines in the replacement text. 

• When processing running text, and part of the text pattern of interest is at the end 
of one line and the remainder is on the following and possibly subsequent lines. 

Both of these conditions require the ability to manipulate part of the pattern space 
without using the rest. Conducting pattern searches and text manipulation in such 
situations can become complex and difficult, but is made considerably easier by the 
availability of three sed commands that are used to merge multiple lines into the pattern 
space and processing only the first part of the pattern space up to the first newline. 
Note that each command is an uppercase letter representing a very similar standard sed 

!f) 

command. The commands function as described in the following table. n 

40 Forming Editor Commands 



u 

u 

u 

Multiple-Line Commands for Current Pattern Space 

No. of 
Command Addresses Description 

N 0, 1, or 2 Read next line from input file and append to current pattern 
Next line space. A newline character is embedded between the previ-

ous pattern space contents and the new line so that pattern 
matches can extend across the line boundary. 

D No address Delete text from beginning of pattern space up to and in-
Delete first part eluding the first newline character and restart execution of 
of pattern space the commands stream with the first command in the stream. 

Equivalent to removing the first line in the pattern space. If 
the newline is also the last character in the pattern space, 
the next line is read from the input file. Exactly equivalent 
to d if there are no embedded newlines in the pattern space 
(only newline is at end of pattern space). 

p No address Print text from beginning of pattern space up to and includ-
Print first part of ing the first newline character in its present form to stan-
pattern space dard output, regardless of what changes might be made to 

the current line by subsequent commands in the command 
stream. Does not affect current pattern space contents. Ex-
actly equivalent to p if there are no embedded newlines in 
the pattern space (only newline is at end of pattern space). 

These commands are most commonly used in grouped commands using { and } grouping 
delimiters and in command streams that are controlled by conditional and unconditional 
branching commands in the flow-of-control group. 

Forming Editor Commands 41 



Hold and Get Commands 
In addition to the pattern space that is used for formal editing operations, sed maintains 
a separate hold space that serves as temporary storage for the current pattern space. You 
can copy or append the pattern space to the current hold space (copy destroys previous 
contents), copy or append hold space to current pattern space (again, copy destroys 
existing pattern space contents), or swap hold and pattern space contents. Hold text in 
hold area Exchange text with hold area 

No. of 
Command Addresses 

h 0, 1, or 2 
Copy pat-
tern space to hold 
area 

H 0, 1, or 2 
Append pattern 
space to hold area 

g 0, 1, or 2 
Copy hold area to 
pattern space 

G 0, 1, or 2 
Append hold area 
to pattern space 

x 0, 1, or 2 
Exchange pattern 
space and hold 
area 

Description 

Copy entire current pattern space contents to hold area. De­
stroys previous hold area contents. 

Append a newline followed by the entire current pattern 
space contents to the current hold area contents. Preserves 
existing hold area contents. 

Copy current hold area contents into pattern space. Destroys 
current pattern space contents. 

Append a newline followed by the entire current hold area 
contents to the current pattern space contents. Preserves 
existing pattern space contents. 

Move current pattern space contents to hold area and current 
hold area contents to pattern space. Swaps the two text 
blocks without otherwise altering any text in either. 

42 Forming Editor Commands 

() 



u 

u 

u 

Hold and Get Commands Example 
Consider the following text taken from Coleridge: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river ran 
Through caverns measureless to man 
Down to a sunless sea. 

Applying the following commands: 

1h 
is/ did.*// 
1x 
G 
s/\n/ :/ 

produces this result: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

Now for an explanation. The first three lines in the command script operate only on 
line 1 in the source text. The first command copies line 1 from the pattern space into 
the hold area. The second command substitutes all text starting with the space before 
the word did in the pattern space with nothing, in effect deleting the rest of the line. 
The third command then exchanges the hold area and pattern space so that the pattern 
space now contains In Xanadu did Kubla Khan, and the hold area contains In Xanadu. 

The remaining lines affect all lines in the source file. While the original first line is still 
in the pattern space, the G command appends a newline and the hold area contents to 
the line in the pattern space. The last command is a substitution command that replaces 
the newline between the original pattern space line and In Xanadu with two spaces and a 
colon. After the last command is applied to the line in the pattern space, it is written to 
the output. As subsequent lines are read from the input file, the first three commands are 
skipped since their addresses match only line 1 which has already been processed. The 
last two commands have no specified address, so they perform their hold-area append 
and substitution operations on every line. 

Forming Editor Commands 43 



Flow-of-Control Commands 
These commands are used to create program structures when writing sed command 
scripts. They provide conditional branching, unconditional branching, grouping of mul­
tiple commands and tying them to a single address or address pair, address inversion 
(execute command on all lines not addressed by the address on that command), and la­
bels used for branching. Flow control commands Don't (invert address) command Group 
commands Label command Branching commands 

Flow-of-Control Commands 

No. of 
Command Addresses Description 

! 0, 1, or 2 Reverses the sense of address matching so that the associated 
Don't command is performed on all lines except those that match 

the line-number or context address(es) appearing on the same 
line as the !. 

{and} 0, 1, or 2 Associates two or more commands with a single command-
Group commands line address field so that multiple related operations can be 

performed without retesting for address match at each com-
mand line. Commands are grouped in a script as follows: 

(address( es)) {optional first command 
first (if not on previous line) or second command 

(additional commands as needed) 

last command 
} 

Groups can be nested up to 100 levels deep. 

:(label) none Marks a location in the commands stream that can be re-
Define and locate ferred to by b (unconditional branch) and t (conditional 
a label branch) commands. ( label) can be any sequence of seven 

or fewer characters. If two identical labels are defined in the 
commands stream, an error is generated and no execution 
of the commands stream is attempted. Up to 48 labels are 
allowed in a commands stream. A blank (space or tab) after 
the colon is optional. 

44 Forming Editor Commands 



u 

u 

u 

Command 

b( label) 
Unconditional 
branch 

t( label) 
Conditional 
branch 

Flow-of-Control Commands (continued) 

No. of 
Addresses 

0, 1, or 2 

0, 1, or 2 

Description 
Causes commands stream execution to immediately and un­
conditionally start execution at the first command following 
: ( label) in the commands stream. If no corresponding ( label) 
definition can be found at compile time, an error is generated 
and no execution of the commands stream is attempted. A 
blank (space or tab} after the colon is optional. 

If the b command has no (label} argument, the branch is to 
the end of the commands stream. The current input line in 
the pattern space is subjected to normal last-command pro­
cessing (such as being printed on standard output if printing 
has not been suppressed by a-n HP-UX command-line op­
tion}, a new line is read, and processing resumes with the 
beginning of the commands stream. 
Tests to determine whether any successful substitutions have 
been performed on the current pattern space line. If so, it 
branches to ( label). If not, it continues with the next com­
mand in the stream. A substitution flag is set whenever a 
substitution occurs. It can be cleared by: 

1. Reading a new line from the input file, or 
2. Executing a t command. 

Forming Editor Commands 45 



Miscellaneous Commands 
Two commands are in this group. One prints the number of the addressed line on 
standard output and the other aborts the editing session. Print line number command 
Quit command 

No. of 
Command Addresses Description 

= 1 Print the input-file line number of the line currently in the 
Line number pattern space. The line is printed as a decimal line number 

starting in the left column without leading zeros or whites-
pace on a line by itself. The line number appears on stan-
dard output before the line in the current pattern space if it 
is printed to standard output at the end of the commands 
stream for the current line. 

q 1 Terminate the editing session immediately if the address fie1d 
Quit on the command line matches the current line in the pattern 

space. Current pattern space is processed according to nor-
mal end-of-commans-stream procedures and the sed program 
terminates (current pattern space is printed on standard out-
put before termination unless suppressed). 

46 Forming Editor Commands 

() 



u 

u 

u 

Writing Command Scripts 3 
This chapter explains how to combine commands that were described in previous topics 
into useful command scripts for use with the sed command. A non-trivial example that 
looks fairly simple on the surface is used to illustrate the use of sed's capabilities. 

Command Script Limitations in Review 
There are a few limitations in sed scripts that must be carefully followed. Otherwise, 
you have a very flexible and powerful tool at your fingertips. 

• A commands script file can contain up to 100 sed commands. Comment lines and 
script lines that serve as labels are not included in this limit. Multiple, grouped 
commands that share a common address are treated as separate commands when 
calculating the 100-command limit. 

• When a commands script is implemented as multiple -e options in the HP-UX 
sed command line, the maximum number of -e options that can be used is deter­
mined by the limits stated here for command file scripts plus other factors such 
as command-line buffer size and other factors, but is generally greater than most 
users' needs. 

• Up to 50 different labels are allowed in a script. Fifty-one labels causes an error. 
• Label names can contain up to seven alphanumeric characters. Eight characters 

produces an error. 

• Grouping commands ( { and } ) can be nested up to 100 deep. 
• Not over 10 files can be open at one time for read/write commands to separate files 

other than the input file being edited. Only one file is open at any time for read 
commands, no matter how many may be present in the commands stream. 

Writing Command Scripts 47 



Arranging Commands in Sequence 
The order in which commands are executed can be critically important to obtaining the 
correct results. For example, grossly incorrect results can occur in either of these two 
cases: 

• A command early in the commands stream alters a pattern in the line currently 
residing in the pattern space. A later command in the stream which must be able 
to recognize the pattern in its original unaltered state cannot because the pattern 
no longer exists due to the earlier change 

• A modification of the line by an earlier command in the stream creates a pattern 
that is recognized by a later command but that should have been ignored. 

The number of possible combinations that can lead to incorrect results is virtually endless, 
so it is impossible to include them all in this tutorial. To simplify the problem as much 
as possible, you must carefully analyze the commands in your commands stream to 
ensure that no addressing conflicts and altered text can create an opportunity for sed 
to misinterpret text patterns in the current pattern space during commands execution. 
This is most easily done by running the commands stream on one or more test files 
with sufficient rigor to ensure that the stream is working correctly. You may also find it 
much easier to start with a simple script and build on that until you have all the needed 
features to accomplish the task at hand. 

48 Writing Command Scripts 

r) 



u 

u 

Commenting Scripts 
It can be extremely difficult to interpret an existing command script that someone else 
wrote or that you once wrote and have forgotten how, especially if you used some exotic 
"neat tricks" to perform some complicated format conversion (something that sed can 
be very useful for). The t~sk is greatly simplified if you take the time to add comments 
to your script explaining what the next instruction or group of instructions does. 

To add comments, simply start the comment line with a hash mark character ( #) and one 
or more spaces just like when commenting shell scripts. The comment character must be 
in the first column. Unfortunately, leading whitespace is important in sed scripts, so you 
cannot improve readability by indenting the commands without introducing malfunctions 
in the script. Here is an example of two script command lines that remove whitespace 
(space or tab) at the beginning and end of every line in a file: 

# Remove whitespace at beginning and end of line before continuing. 
# 
sl [spacetab] [spacetab] *$1 I 
sr [spacetab] [spacetabJ *I I 
# 
# Comment for next command. 
# 

Facts of Life 

It is very difficult to represent invisible characters in text so that 
they are easily identified. HP-UX and similar systems recognize 
space and tab characters as "blanks" , but editors have no single 
regular expression character that matches both a space and a tab. 
Thus it becomes necessary to use a space and tab between a pair of 
square brackets. Since there are no standard typesetting characters 
that can be appropriately used to represent the two chararacters, 
and resorting to forms such as (space) (tab) are difficult to code 
and look cluttered when printed, we have used spacetab or space tab 
(with a thin space between the two words) to represent a space and 
a tab together (space first or vice-versa) in a regular expression for 
text matching purposes. 

Writing Command Scripts 49 



A Real-World, Non-Trivial Example 
sed was used once on a project that required reformatting the Star base Reference manual 
from inconsistently applied troff coding sequences to consistently styled man macros. 
The general layout of the pages was also extensively modified at the same time. sed 
completed about 90% of the work on over 250 pages (over 100 files) in less than four 
minutes; a task that would have consumed most of a month for a moderately skilled 
operator using vi. This example is loosely based on that experience. 

Here is a sample paragraph using conventional trojJl coding: 

This paragraph contains \fitroff\fR coding where acronyms such as 
\s-1HP-UX\s+1 are set in \s-1SMALLER\s+1 typeface and \fBemphasis\fR 
as well as \fBcommand options\fR are in \fBboldface\fR. Most of 
these \fitroff\fR coding sequences can be converted into macros 
using the \fiman\fR macro package described in the \fiman\fR(5) 
entry in the \fi\s-1HP-UX\s+1 Reference\fR. Much of the work can 
be done by a \fised\fR script, saving you valuable time. The 
\fised\fR(1) manual page entry is mainly for experienced users. 

When finished, the desired result should look something like this: 

This paragraph contains 
.I troff 
coding where acronyms such as 
.SM HP-UX 
are set in 
.SM SMALLER 
typeface and 
.B emphasis 
as well as 
.B command options 
are in 
.BR boldface 
Most of 
these 
.I troff 
coding sequences can be converted into macros 
using the 
.I man 
macro package described in the 

1 tro.ff is not supported on HP-UX, but equivalent programs are available for HP-UX systems from var­
ious third-party software suppliers (for more information, contact your nearest HP Sales and Support 
Office). tro.ff coding sequences and man macros are compatible with the nro.ff formatter provided as 
part of standard HP-UX, although some features cannot be implemented. For example, font changes use 
highlighting instead, and point size changes cannot be performed by nro.ff. The man macro package is 
stored in file jusr/lib/macros/an. 

50 Writing Command Scripts 

n 



u 

u 

.IR man (5) 
entry in the 
.SM 
.I HP-UX 
.IR Reference 
Much of the work can 
be done by a 
.I sed 
script, saving you valuable time. The 
.IR sed (1) 
manual page entry is mainly for experienced users. 

This paragraph poses some interesting practical problems. Without launching into a 
lengthy dissertation, a few explanations are in order so you can understand the logic 
necessary in forming the correct commands sequence and structure. 

troff normally typesets in Roman font (typeface). The \fl and \ffi coding sequences 
change to italic and bold fonts, respectively. The \fR sequence after the word(s) set 
in italic or bold is a change back to standard Roman font. HP- UX Reference manual 
entries are referred to by page name followed by section number where the name is in 
italic and the section number (in parentheses) is in Roman. Acronyms and uppercase 
character strings such as HP-UX tend to look overwhelming when placed in typical text, 
so troffusers usually set them in a subdued point size (one point smaller) by using the 
man macro .SM instead of preceding the uppercase text with \s-1 and following it with 
\s+l. 

Writing Command Scripts 51 



For a first pass attempt, let us collect some basic pieces to start forming the structure. 

• First, eliminate all whitespace (space or tab characters) at end of pattern space so 
that there are no invisible blanks to destroy subsequent editing logic. End-of-line 
occurs only once, so there is no g flag on the command. Use: 

# Get rid of end-of-line whitespace 
sl [space tab] [spacetab] *$1 I 

A similar command is used to remove whitespace at beginning of pattern space 
(change$ to A and move to front of expression): 

# Get rid of beginning-of-line whitespace 
sJ- [spacetab] [spacetab] *I I 

• The \s+ 1 after acronyms and uppercase words needs to be changed to a newline if it 
is followed by one or more spaces, or deleted if it occurs at end-of-line. This change 
the text block in the pattern space which now contains one or more embedded 
newlines to still be treated as a single line by sed, even though the embedded 
new lines produce a multi-line output when printed. Two commands are required to 
make the desired changes (two space characters precede the * in the first command): 

# Change \s+1 followed by 1 or more spaces to newline. 
sl\\s+1 *1\ 
lg 
# Delete \s+1 at end of pattern space. 
sl\\s+1$ll 
# Delete \s+1 before embedded newline, but keep newline. 
sl\\s+1\(\n\)l\11 

• Do the same for any \ffi after a word if it is followed by one or more spaces 
(convert to newline) or end of line (delete \ffi at end-of-line). These changes also 
break the pattern space into additional lines that must be handled carefully in 
future operations on the pattern space. As before, use two commands (two space 
characters precede the * in the first command): 

# Change \fR followed by 1 or more spaces to newline. 
sl\\fR *1\ 
lg 
# Delete \fR at end of pattern space. 
sl\\fR$11 
# Delete \fR before embedded newline, but keep newline. 
sl\\fR\(\n\)l\11 

52 Writing Command Scripts 



u 

• If \ffi is followed by a comma or period, it must be changed to a space for use 
with the .BR or .IR macro. If the comma or period is not at the end of the line, 
it must be followed by one or more spaces which, in turn must be changed (s) to a 
newline. If the comma or period is at end-of-line, no newline is needed. As before, 
two commands for used (note no global flag for end-of-line, unlike within the line 
and two spaces before * for matching one or more): 

# Change \fR, and 1 or more spaces to global space comma newline. 
sl\\fR, *I ,\ 
lg 
# Change \fR, at end of line to space comma. 
sl\\fR,$1 .I 
# Change \fR. and 1 or more spaces to global space period newline. 
sl\\fR. *I .\ 
lg 
# Change \fR. at end of line to space period. 
sl\\fR.$1 .1 

Time to Test 
Now that we have a skeleton, let's try it. Placing the script in file filesed and the original 
paragraph in file file then executing: 

sed -f filesed file I RETURN I 

we get the following results. 

Writing Command Scripts 53 



First, the script file in its present form: 

# Get rid of end-of-line whitespace 
sl [spacetab] [spacetab] *$1 I 
# Get rid of beginning-of-line whitespace 
sr [spacetab] [spacetab] *I I 
# Change \s+1 followed by 1 or more spaces to newline. 
sl\\s+1 *1\ 
lg 
# Delete \s+1 at end of pattern space. 
sl\\s+1$ll 
#Delete \s+1 before embedded newline globally, but keep newline. 
sl\\s+1\(\n\)l\1lg 
# Change \fR followed by 1 or more spaces to newline. 
sl\\fR *1\ 
lg 
# Delete \fR at end of pattern space. 
sl\\fR$11 
# Delete \fR before embedded newline, but keep newline. 
sl\\fR\(\n\)l\11 
# Change \fR, and 1 or more spaces to global space comma newline. 
sl\\fR, *I ,\ 
lg 
# Change \fR, at end of line to space comma. 
sl\\fR,$1 .I 
# Change \fR. and 1 or more spaces to global space period newline. 
sl\\fR. *I .\ 
lg 
# Change \fR. at end of line to space period. 
sl\\fR.$1 .1 

54 Writing Command Scripts 

if) 

n 



u 

u 

u 

To clearly show how the pattern space is being handled by the editor, the lines are shown 
in the form in which they are held in the pattern space followed by the form they would 
take when sent to standard output. On output, each location in the following lines that 
contains a \n is converted to an end-of-line and the next character following the \n 
appears at the beginning of the following line. 

Here is how each line in the file looks while it is still in the pattern space after completion 
of the last command that affects it: 

This paragraph contains \fitroff\ncoding where acronyms such as 
\s-1HP-UX\nare set in \s-1SMALLER\ntypeface and \fBemphasis 
as well as \fBcommand options\nare in \fBboldface .\nMost of 
these \fitroff\ncoding sequences can be converted into macros 
using the \fiman\nmacro package described in the \fiman\fR(5) 
entry in the \fi\s-1HP-UX\nReference .\nMuch of the work can 
be done by a \fised\nscript, saving you valuable time. The 
\fised\fR(1) manual page entry is mainly for experienced users. 

Here is how the edited file looks when it appears in the output file: 
This paragraph contains \fitroff 
coding where acronyms such as 
\s-1HP-UX 
are set in \s-1SMALLER 
typeface and \fBemphasis 
as well as \fBcommand options 
are in \fBboldface 
Most of 
these \fitroff 
coding sequences can be converted into macros 
using the \fiman 
macro package described in the \fiman\fR(5) 
entry in the \fi\s-1HP-UX 
Reference . 
Much of the work can 
be done by a \fised 
script, saving you valuable time. The 
\fised\fR(1) manual page entry is mainly for experienced users. 

Writing Command Scripts 55 



On to the Next Task 
So far, so good. But we still have more to do. Now looks like a good time to start 
attacking the \fB and \fl patterns. No, we haven't forgotten those \ffi sequences that 
are still in there. They are best left in there for now (remember the guy on TV who 
keeps saying, "Trust me."?). n 

• Change \fl preceded by spaces to a newline followed by a .I macro and a space. If 
the \fl is at the beginning of the line already, change it to .I and a space. Use two 
commands [Again, two spaces before the*. Do you remember why?]: 

# Change \fi after 1 or more spaces to newline, .I and space. 
sl *\\fii\ 
.I lg 
# Change \fi at beginning of line to .I and space. 
sr\\fii.I I 

• Use two commands to do the same for the \fB sequences: 
# Change \fB after 1 or more spaces to newline, .B and space. 
sl *\\fBI\ 
.B lg 
# Change \fB at beginning of line to .B and space. 
sr\\fBI .B I 

Checking Progress 
Adding these commands to the previous script and rerunning it on the original file 
produces the expected result in the pattern space: 

This paragraph contains\n.I troff\ncoding where acronyms such as 
\s-1HP-UX\nare set in \s-1SMALLER\ntypeface and\n.B emphasis 
as well as\n.B command options\nare in\n.B boldface .\nMost of 
these\n.I troff\ncoding sequences can be converted into macros 
using the\n.I man\nmacro package described in the\n.I man\fR(5) 
entry in the\n.I \s-1HP-UX\nReference .\nMuch of the work can 
be done by a\n.I sed\nscript, saving you valuable time. The 
.I sed\fR(1) manual page entry is mainly for experienced users. 

56 Writing Command Scripts 



u 

u 

u 

On output, the result looks like this: 

This paragraph contains 
.I troff 
coding where acronyms such as 
\s-1HP-UX 
are set in \s-1SMALLER 
typeface and 
.B emphasis 
as well as 
.B command options 
are in 
.B boldface 
Most of 
these 
.I troff 
coding sequences can be converted into macros 
using the 
.I man 
macro package described in the 
.I man\fR(5) 
entry in the 
.I \s-1HP-UX 
Reference . 
Much of the work can 
be done by a 
.I sed 
script, saving you valuable time. The 
.I sed\fR(1) manual page entry is mainly for experienced users. 

Comparing this with the desired text result shown earlier shows that we have made 
considerable progress toward the desired result, but a few tasks still remain; some easy, 
some less so. 

Writing Command Scripts 57 



Cleaning Up What's Left 
Changing \s-1 to .SM Macro 
First, let's convert all \s-1 sequences to a .SM macro. If it is preceded by a macro such as 
.1, .B, etc., it must be converted to a .SM by itself on the preceding line. If it is not pre-
ceded by a macro, it can be changed to a .SM followed by a newline. This is accomplished n 
by using several insert and substitution commands to insert lines and change/delete text 
within a line as shown in the following script segment that also includes explanatory 
comments: 

# Process \s-1 at beginning of pattern space: 
sr\\s-11. SM \ 
I 
# Process \s-1 preceded by .I, .B, .IR, .BR, etc. at start of pattern space: 
# First, put .SM macro in front of current line on output file. Assume 
# single space after .I, .B, etc. macro before \s-1. 
1~\. [IBR] [IBR]* \\s-1li\ 
.SM 
# Now, do the same where the line is hidden in the middle of the 
# pattern space. Instead of using insert, use substitute. 
# Search for \n instead of ~ and use same pattern. The 
# embedded newline represented by \n gets eaten by the search, 
# and must be replaced by another OnE! in the replacement text. 
1\n\. [IBR] [IBR]* \\s-11sl\n\(\. [IBR] [IBFt]* \)\\s-11\ 
.SM\ 
\11 
# Now delete \s-1 if line matches same address. 
r\. [IBR] [IBR] * \ \s-1/sr\. [IBR] [IBR] * \\s-1/ I 
# Now we can process \s-1 in mid-line preceded by one or more spaces or 
# tabs. Use global substitution flag in case of multiple occurrences: 
I [space tab] [space tab] *\\s-1lsl [space tab] [space tab] *\\s-11\ 
.SM\ 
lg 

Cleaning Up Remaining \ fR Sequences 
We still have a few \ffi sequences remaininl~· They appear to be embedded within 
basename and section number of HP- UX Reference entry titles which occur at end-of­
line or within a line. This will require two set8 of commands. 

To process the end-of-line case (we can handle it first because it is easy and will not 
sabotage the next command), we must consider end of pattern space and end of line 
before embedded newline. Two commands are used, one for each case, respectively: 

# Change \fR in manpage name at end of pattern space to a space. 
sl\([a-z] [a-z]\)\\fR\(([1-9] [A-Z]*)\)$1\1 \2 
# Change \fR in manpage name before embedded newline to a space. 
sl\([a-z] [a-z]\)\\fR\(([1-9] [A-Z]*)\n\)1\1 \2 

58 Writing Command Scripts 

n 



u 

u 

u 

The first command searches for any occurrence of \fR that is located after two lowercase 
letters and before a pair of parentheses. The parentheses, in turn, must enclose a number 
in the range 0-9 followed by any uppercase letter which may or may not be present (* 
means zero or more occurrences). The entire pattern as specified must be located at the 
end of the pattern space (identified by $ in the search expression). 

The second command is very similar, but instead of$ to indicate end of pattern space, 
the symbol for an embedded newline (\n) is used and placed within the sub-expression 
delimiters so that it does not have to be added to the replacement string. The replacement 
string consists of a space followed by the text pattern specified by \1 which is the text 
that matched the two parentheses, the number and optional uppercase letter between, 
and the original newline which is preserved. This method replaces the \fR with a space 
character. 

The construction of these two commands specifies that the \fR separates what is assumed 
to be a valid HP-UX command name or manual page entry name based on the presence 
of two lowercase letters and a valid section number in parentheses (Section 3 entries can 
have an optional subsection letter as can some commands in Section 1). 

The manual entry name in mid-line is handled in much the same way. The only differ­
ence is that one or more spaces or tabs must follow the section number and its closing 
parenthesis and a newline replaces the white space: 

# Change \fR in manpage name not at newline to space & add newline. 
s/\([a-z] [a-z]\)\\fR\(([1-9] [A-Z]*)\)[spacetab] [spacetab]*/\1 \2\ 
/g 

Interim Result 
The file, on output, now looks like this: 

This paragraph contains 
.I troff 
coding where acronyms such as 
.SM 
HP-UX 
are set in 
.SM 
SMALLER 
typeface and 
.B emphasis 
as well as 
.B command options 
are in 
.B boldface 
Most of 
these 

Writing Command Scripts 59 



.I troff 
coding sequences can be converted into macros 
using the 
.I man 
macro package described in the 
.I man (5) 
entry in the 
.SM 
.I HP-UX 
Reference . 
Much of the work can 
be done by a 
.I sed 
script, saving you valuable time. The 
.I sed (1) 
manual page entry is mainly for experienced users. 

Now we need to change .I and .B to .IR and .BR wherever the .I or .B is followed by a 
single word followed by a space and comma or period. This causes the word to be typeset 
in italic or bold and the punctuation to be set in normal Roman. The space before the 
comma or period is a delimiter for mixed-font macros and is discarded by the .IR or .BR 
macro when the file is formatted prior to printing. 

One could easily be tempted to use a command such as these to make the changes: 

/\.B ·* [. ,]/s/\.B/&R/ 

and 

/\.I ·* [.,]/s/\.I/&R/ 

These commands search the pattern space for a .B or .I followed by a space, an arbitrary 
block of text containing no newlines, another space, and a period or comma. If such 
a pattern is found, the address matches and the substitute command is executed. The 
substitute command tells the editor to search for a .B (or .I) and replace it with the same 
pattern followed by an uppercase R. However, when you run the command, the output 
shows the lines: 

as well as 
.BR command options 
are in 
.B boldface 
Most of 

60 Writing Command Scripts 



u 

u 

u 

as the processed replacement for the original third line. We expected the second .B to be 
changed to .BR; not the first. If you remember way back in Chapter 2 where we discussed 
regular expressions, the pattern search occurs through the entire pattern space, and 
indeed, the address match occurs on the second .B which meets the address requirements. 
However, the substitution begins at the beginning of the pattern space. Thus, the first 
.B in the pattern space is changed to .BR, and the second was ignored because no g 
flag was specified after the replacement text argument to the substitute command. We 
cannot use the g flag because the first change would produce "commandoptions" instead 
of "command options" like it should. The computer wins again, but the war is not over. 

A different approach is obviously in order. Let us pursue some of the methods used 
earlier in the embedded \ffi and \s-1 sequences. 

If you observe carefully in the output file as it is currently being processed by the script, 
the following lines (extracted from the most recent result) are of interest: 

.B boldface 

.I man (5) 

.SM 

.I HP-UX 
Reference 

.I sed (1) 

Here is the file as it exists when each line is in the pattern space: 

This paragraph contains\n.I troff\ncoding where acronyms such as 
.SM\nHP-UX\nare set in\n.SM\nSMALLER\ntypeface and\n.B emphasis 
as well as\n.B command options\nare in\n.B boldface .\nMost of 
these\n.I troff\ncoding sequences can be converted into macros 
using the\n.I man\nmacro package described in the\n.I man (5) 
entry in the\n.SM\n.I HP-UX\nReference .\n Much of the work can 
be done by a\n.I sed\nscript, saving you valuable time. The 
.I sed (1)\nmanual page entry is mainly for experienced users. 

Writing Command Scripts 61 



As you can see, the lines of interest fall at the beginning and elsewhere in the pattern 
space, so we cannot escape handling all cases. Three situations must be considered: 

• Patterns at beginning of pattern space, 

• Patterns between embedded newlines, and 

• Patterns at end of pattern space. 

With some clever handling, we can combine processing of the .I and .B macros. We also 
know that the space that triggers a need for an R suffix on the macro is followed by a 
period, comma, or left parenthesis. Observation of the resulting file shows that all lines 
are completely broken down, so there is no need to test for mid-line cases; only embedded 
newline cases. 

Tradeoffs 
When you get into a situation like the one currently being discussed where embedded 
newlines can complicate matters, it is sometimes easier to take the file in its present 
imperfect form and send it to standard output by not adding any more editing commands 
to the script. This creates a new file with no embedded newlines within a line, and you 
can then use a second sed command to finish the job. Whether you gain more benefit 
by taking this "coward's way out" or continuing to process the file in its present form 

rfJ 

can best be determined by estimating the time it would take to finish the edit using each ~ 
technique (including allowance for script-writing time) and evaluating the nature of the 

1
· ) 

task. Is it a "one-shot" job, never to be repeated once editing is complete, or is it a 
task that must be repeated periodically over a longer time period. In the former case, 
the short-cut, multiple-edit approach may well make more sense. But if you expect to 
reuse the script periodically, you are likely better off if you clean up the script so that 
all necessary changes can be handled in a single pass. 

To show how the problems we have found so far can be solved in a single script, we will 
continue as before to finish handling multiple lines in the pattern space. To refresh your 
memory, here are the lines of interest again: 

.B boldface 

.I man (5) 

.SM 

.I HP-UX 
Reference 

.I sed (1) 

62 Writing Command Scripts 



u 

u 

u 

The first, second, and last lines look like they should be easy to handle because they 
occur at the beginning or end of the pattern space or between newlines. They do not 
occur except where bounded by newlines, or newlines and beginning or end of pattern 
space. This looks a good opportunity to use sub-expressions. For openers, let's try: 

# Change .B or .I at beginning of pattern space followed by 
# space, word, space and ( , or . to .BR or .IRrespectively. 
s/~\(\. [IB]\)\( [a-z0-9A-Z] [a-z0-9A-Z]* [(,.]\)/\iR\2/ 
# Do the same for .B or .I after embedded newlines. 
s/\(\n\. [IB]\)\( [a-z0-9A-Z] [a-z0-9A-Z]* [(, .]\)/\iR\2/g 

Here is the new result: 

This paragraph contains 
.I troff 
coding where acronyms such as 
.SM 
HP-UX 
are set in 
.SM 
SMALLER 
typeface and 
.B emphasis 
as well as 
.B command options 
are in 
.BR boldface 
Most of 
these 
.I troff 
coding sequences can be converted into macros 
using the 
.I man 
macro package described in the 
.IR man (5) 
entry in the 
.SM 
.I HP-UX 
Reference 
Much of the work can 
be done by a 
.I sed 
script, saving you valuable time. The 
.IR sed (1) 
manual page entry is mainly for experienced users. 

Writing Command Scripts 63 



Comparing this result with the original expected result shown at the beginning of the dis­
cussion of this example shows that we have almost accomplished our objective. Two prob­
lems remain. The .SM macro is not on the same line with the HP-UX and SMALLER 
arguments. However, this is not a problem for the man, mm, and ms macros where such 
structures usually are used. The other case is the second line in HP-UX Reference. To 
work correctly, it needs to be preceded by a .IR macro followed by a space. 

The first problem is easily solved by a simple substitution of a space for the embedded 
newline (\n) after the .SM provided an uppercase character (A-Z) follows the newline. 
The command to do this is: 

s/\(\.SM\)\n\([A-Z]\)/\1 \2/g 

The second problem will probably require a simple search for the actual sequence; that 
is: 

s/\(\n\)\(Reference \[.,]\)/.IR &/ 

64 Writing Command Scripts 

n 



u 

u 

u 

Putting Scripts in the HP-UX Command Line 
When performing complex edits on a large number of files, most users prefer to place 
editor commands in a separate script so they can be used with the -f option to the sed 
command. However, there are also cases, especially in shell scripts, where having the 
editing commands script embedded within the shell script is a distinct advantage. This 
is easily accomplished by using multiple -e options in a single command but spreading 
them over several lines by escaping newlines that precede the end of the completed 
command line. 

Note 

It is important that you clearly understand that the entire sed 
command must be constructed so that it is correctly treated as a 
single command line by the HP-UX command interpreter (shell), 
even though it may span as many as a hundred lines or more in a 
shell script file. This is accomplished by properly escaping end-of­
line on some (but not necessarily all) lines making up the script so 
that the commands associated with each -e option are correctly 
constructed as single- or multi-line editor commands when they 
are sent to the sed program for compiling after they have been 
processed by the shell's command interpreter. The techniques for 
constructing complex command structures is explained in great 
detail later in this section. 

In general, the rules for using multiple -e options are the same as for script files. Labels, 
nesting, and the number of -e options per HP-UX command are the same as specified 
at the beginning of this chapter for command script files except that the available buffer 
space for command-line processing must not be exceeded. For most applications such 
limits are not a problem. 

Writing Command Scripts 65 



Here is an example of how the technique is implemented, based on the first 10 commands 
in the script that was developed earlier in this chapter: 

sed -e 'sl [space tab] [space tab] *$1 I'\ 
-e • sr [space tab] [space tab] $1 I'\ 
-e 'sl\\s+1 *I\ 

lg'\ 
-e 'sl\\s+i$11•\ 
-e 'sl\\fR *1\ 

lg'\ 
-e '# Delete \fR at end of line. 

sl\\fR$11'\ 
-e 'sl\\fR, *I ,\ 

lg'\ 
-e 'sl\\fR,$1 .1'\ 
-e 'sl\\fR\. *I .\ 

lg'\ 
-e 'sl\\fR\.$1 .1' file 

Note how quoting around the argument for each -e is used. If the argument requires 
more than one line, each line is terminated by a backslash (\) when it would also be 
terminated with a backslash in a separate script file. Likewise, each line where the -e 
argument ends must also be terminated by a backslash after the closing quote for that 
argument. Note the -e argument that also contains a comment; no backslash is used 
at the end of the comment. No backslash would be used in a command script, so none 
is used here. The HP-UX shell command interpreter that decodes the commf!nd line 
determines whether the \ escape at end of line applies within the -e option and its 
argument or at the end of it by the presence or absence of the closing single quote (') 
before the backslash. Anything between the quotes is passed, line-for-line to the sed 
editor for interpretation and compiling. A backslash after the closing quote on any given 
-e option tells HP-UX that the command line continues on the next input line. The 
HP-UX command interpreter does not terminate interpretation of the command until it 
encounters a line that does not have a backslash at the end of the line. 

Note also how the period in the search pattern in the last two substitute commands 
is preceded by a backslash. This forces the editor to search for a period following \ffi 
instead of any arbitrary character (as it would if using the . as a regular expression 
substitution character). 

The name of the file to be edited is then placed after the closing quote on the last -e 
option argument or by itself on a separate line. In the latter case, the preceding line 
must be terminated by a backslash before the end-of-line just as before. If the filename 
is placed at the beginning of the last line, it must always be preceded by a space or tab 
just as when it appears after the argument to the last -e option because the escaped 

66 Writing Command Scripts 

n 

n 
' / 



u 

u 

u 

newline (\ followed by end-of-line) is not interpreted as a separator in lieu of a blank by 
the HP-UX command interpreter. 

An example such as the one used here can be included as a small part of a much larger 
shell script (this technique is used, for example, to produce the Table of Contents and 
Permuted Index for the HP-UX Reference), as a stand-alone script that can be executed 
as a shell command, or in any combination between the two extremes. 

White Space in Scripts 
When using multiple -e options in a multiple-line format that is being treated as a single 
sed command line, the escaped newline that precedes a given -e option is not treated as 
white space. This means that one or more blanks (space or tab) must be placed either 
before the backslash (after the closing quote) at the end of the preceding line or before 
the -e appearing at the beginning of the line. Whitespace must also be placed between 
the end of the last option and the name of the file being edited. 

Testing In-Line Scripts 
When using scripts in this form, it still saves much time and trouble if you build the 
script file much as before using an editor such as vi, then use the HP-UX command: 

sh sedfile 

to test the file for correct operation in its present form. Once a known-good script has 
been developed, it can then be integrated into a larger script to meet the needs of the 
larger application. 

Including Comments in In-Line Scripts 
Comments can be included in in-line scripts that use multiple -e options. Simply use a 
two-line (or more) argument to the -e option that resembles the following: 

sed -e '# Remove end-of-line whitespace 
sl [space tab] [space tab] *$1 I'\ 
-e '# Remove beginning-of-line whitespace 

sr [space tab] [space tab] $1 I • \ 

filename 

It is not as easy to read as comments in a separate sed editor commands script file, but 
it does provide some indication as to what the command does. 

Writing Command Scripts 67 



A Large Single-Line Script 
Here is a large script based on the example previously developed in this chapter that 
demonstrates how to construct a non-trivial editing script as a single HP-UX command 
line: 

sed -e '# Get rid of end-of-line whitespace 
sl [ ] [ ] *$1 I'\ 
-e '# Get rid of beginning-of-line whitespace 

sl-[ ] [ ]*II'\ 
-e '# Change \s+1 followed by 1 or more spaces to newline. 

sl\\s+1 *1\ 
lg'\ 
-e '# Delete \s+1 at end of pattern space. 

sl\\s+1$ll'\ 
-e '# Globally delete \s+1 before embedded newline, but keep newline. 

sl\\s+1\(\n\)l\1lg'\ 
-e '# Change \fR followed by 1 or more spaces to newline. 

sl\\fR *1\ 
lg'\ 
-e '# Delete \fR at end of pattern space. 

sl\\fR$11'\ 
-e '# Delete \fR before embedded newline, but keep newline. 

sl\\fR\(\n\)l\11'\ 
-e '# Change \fR, and 1 or more spaces to global space comma newline. 

sl\\fR, *I ,\ 
lg'\ 
-e '# Change \fR, at end of line to space comma. 

sl\\fR, $1 .1' \ 
-e '# Change \fR. and 1 or more spaces to global space period newline. 

sl\\fR. *I .\ 
lg'\ 
-e '# Change \fR. at end of line to space period. 

sl\\fR.$1 .1'\ 
-e '# Change \fi after 1 or more spaces to newline, .I and space. 

sl *\\fii\ 
.I lg'\ 
-e '# Change \fi at beginning of line to .I and space. 

sJ-\\fii. I I'\ 
-e '# Change \fB after 1 or more spaces to newline, .B and space. 

sl *\\fBI\ 
.B lg'\ 
-e '# Change \fB at beginning of line to .B and space. 

sJ-\\fBI. B I'\ 
-e '# Process \s-1 at beginning of pattern space: 

sJ-\\s-1/.SM \ 
1'\ 
-e '# Process \s-1 preceded by .I, .B, .IR, .BR, etc. at start of pattern 

space: 
# First, put .SM macro in front of current line on output file. Assume 

68 Writing Command Scripts 



u 

u 

u 

# single space after .I, .B, etc. macro before \s-1. 
/~\.[IBR] [IBR]* \\s-1/i\ 
.SM'\ 
-e '# Now, do the same where the line is hidden in the middle of the 

# pattern space. Instead of using insert, use substitute. 
# Search for \n instead of ~ and use same pattern. The 
# embedded newline represented by \n gets eaten by the search, 
# and must be replaced by another one in the replacement text. 
/\n\.[IBR] [IBR]* \\s-1/s/\n\(\. [IBR] [IBR]* \)\\s-1/\ 
.SM\ 
\1/'\ 
-e '# Now delete \s-1 if line matches same address. 

/~\.[IBR] [IBR]* \\s-1/s/~\.[IBR] [IBR]* \\s-1//'\ 
-e '# Now we can process \s-1 in mid-line preceded by one or more spaces or 

#tabs. Use global substitution flag in case of multiple occurrences: 
I [ ] [ ] *\\s-1/s/ [ ] [ ] *\\s-1/\ 
.SM\ 
/g'\ 
-e '# Change \fR in manpage name at end of pattern space to a space. 

s/\([a-z] [a-z]\)\\fR\(([1-9] [A-Z]*)\)$/\1 \2/'\ 
-e '# Change \fR in manpage name before embedded newline to a space. 

s/\([a-z] [a-z]\)\\fR\(([1-9] [A-Z]*)\n\)/\1 \2/'\ 
-e '# Change \fR in manpage name not at newline to space & add newline. 

s/\([a-z] [a-z]\)\\fR\(([1-9] [A-Z]*)\)[ ][ ]*/\1 \2\ 
/g'\ 
-e '# Change .B or .I at beginning of pattern space followed by 

# space, word, space and ( , or . to .BR or .IR respectively. 
s/~\(\.[IB]\)\( [a-z0-9A-Z] [a-z0-9A-Z]* [(,.]\)/\1R\2/'\ 
-e '# Do the same for .B or .I after embedded newlines. 

s/\(\n\. [IB]\)\( [a-z0-9A-Z] [a-z0-9A-Z]* [(, .]\)/\1R\2/g'\ 
file 

Writing Command Scripts 69 



n 

n 

n 

70 Writing Command Scripts 



u 

u 

Index 

a 
Addressing lines ........................................................... 14 
Append line command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

c 
Change line command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Commands: 

append new text after current line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
change line to new text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
comments in scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
delete .................................................................. 24 
don't (invert address) .................................................... 44 
exchange text with hold area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
format ................................................................. 10 
get text from hold area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
group commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
hold text in hold area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
insert new text after current line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
1/0 .................................................................... 38 
1/0 example ............................................................ 39 
label command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
list .................................................................... 38 
overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
print ................................................................... 38 
print line number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
quit ................................................................... 46 
read ................................................................... 38 
read next line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
sequence in scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
substitute command ..................................................... 28 
transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
whole-line commands .................................................... 24 
write .................................................................. 38 

Index 71 



Comments between commands in scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
Context line addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Delete line command 
Delimiters for substitute command 

Editor commands defined 
Editor commands: 

d 

e 

See Commands ........................................................ . 
Embedded newlines ....................................................... . 
Example I/0 commands .................................................. . 
Example substitute commands ............................................. . 
Expressions, regular ...................................................... . 

f 

24 
29 

3 

22 
12 
39 
31 
18 

Flags used in substitute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Format of editor commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

g 
Get text from hold area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

h 
HP-UX sed command ....................................................... 3 
HP-UX sed command, invoking 4 

. 
I 

Insert line command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Invoking the sed command from HP-UX ....................................... 4 
I/0 commands ............................................................ 38 

I 
Limits, script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 47 

n 

n 

Line addressed by contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Line addressing ........................................................... 14 n 
Line numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 15 · 
Lines, processing multiple simultaneously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

72 Index 



u 

u 

m 
Matched text used in substitute command .................................... 29 
Multiple lines in pattern space .............................................. 13 
Multiple lines, processing simultaneously ..................................... 40 

n 
Newlines, embedded ....................................................... 12 
Numerical line addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

0 
Operation, sed program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

p 
Pattern space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Pattern space, multiple lines treated as single . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Processing multiple lines simultaneously ...................................... 40 
Program operation, sed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

r 
Read next line command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Regular expression, used with substitute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Regular expressions in line address .......................................... 15 
Replacement text for substitute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

s 
Script limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 47 
Scripts: 

comments in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
sequence of commands in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

sed command from HP-UX .................................................. 3 
sed command from HP-UX, invoking .......................................... 4 
sed editor commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
sed program operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Sequence of commands in scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 
Space, pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Special characters used in substitute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Sub-expressions in regular expressions ....................................... 20 
Sub-expressions used in substitute commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Index 73 



Substitute command ....................................................... 28 
Substitute command: 

delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Examples of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Flags used in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
matched text used in ........................... " . . . . . . . . . . . . . . . . . . . . . . . . 29 
regular expression used with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
replacement text for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
special characters used in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
sub-expressions used in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

t 
Transform command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

74 Index 

() 
/ 

rij 

(\, 
, I 



u 

u 

u 

Table of Contents 

The Ed Editor 
Creating an Ordinary File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Getting Acquainted with Ed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

Invoking Ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Prompting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Moving Around in the File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Line Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Searching for Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Adding, Deleting, and Correcting Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Printing Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Appending Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Inserting Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Deleting Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Undoing Commands ................................................ 21 
Changing Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Moving Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Copying Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Modifying Text Within a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Making Commands Effective Globally ................................ 29 
Joining Lines Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
Splitting Lines Apart ............................................... 34 

Special Ed Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
Finding the Currently Remembered File N arne . . . . . . . . . . . . . . . . . . . . . . . . 35 
Writing Buffer Text Onto a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 
Reading Files Into the Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
Editing Other Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
Silencing the Character Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
Encrypting and Decrypting Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

The Shell Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Escaping to the Shell Temporarily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
Exiting the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Miscellaneous Topics . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Interrupting the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
Editing Scripts .................................................... 47 

Table of Contents i 



ii Table of Contents 



u 

u 

u 

The Ed Editor 
Ed is an interactive, line-oriented text editor. Its purpose is to enable you to create 
ordinary files and to add to, delete, or modify the text in those files. 

Creating an Ordinary File 
The remainder of this chapter contains several examples illustrating ed commands. These 
examples are more instructive if you try each of them on some text of your own. Thus, 
create an ordinary file by typing in the commands and text shown below in bold (portions 
of the example text shown below are taken from A User Guide to the UNIX System, by 
Rebecca Thomas and Jean Yates). 

$ ed testfile 
?testfile 
a 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 
your unput as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
to the file. 

w 
461 
q 
$ 

Be sure to type in the text exactly as it is shown above. The mistakes are corrected later 
in the examples. 

The Ed Editor 1 



Getting Acquainted with Ed 
Material Covered: 

ed 

ed file 

p 

h 

H 

Invoking Ed 

command; invokes ed without a file name argument; 

command; invokes ed with a file name argument; 

command; enables or disables ed prompt ( * ); 
command; explains the last question mark given by ed; 

command; enables or disables verbose error messages; explains the last 
question mark given by ed, and all future question marks. 

Ed can be invoked in one of two ways. The first is to simply type ed, followed by 
[RETURN]. For example, 

$ ed 

invokes ed without a file name argument. When invoking ed this way, you must specify 
the file you want to edit with a separate command. It is more common to invoke ed by 
typing n 

$ ed filename 

where filename is the name of the file you want to edit. This combines the two separate 
commands mentioned above into a single command. 

Ed responds differently depending on whether or not the file already exists. Try creating 
a new file called newfile: 

$ ed newfile 
?newfile 

Ed responds with "?newfile", which means that ed cannot find that file in your working 
directory. This is to be expected, since the file does not yet exist. Ed is now waiting for 
your commands to create and edit newfile. 

2 The Ed Editor 



If the file already exists, ed reads its contents into a buffer named ftm.p/e#, where # 
is the number of the process running ed. Ed then displays a count of the characters 
contained in that file. You have a file called testfile in your working directory. You are 
probably still in ed from the previous example, so type q(RETURN] to exit ed, then edit 

U\ testfile by typing 

$ ed testfile 
461 

u 

u 

Ed tells you that testfile currently contains 461 characters. Do not exit ed this time, but 
leave it in its current state. The examples that follow pick up where you left off above. 

Prompting 
One of the most noticeable features of ed is its lack of prompts. When you type in a 
command, ed attempts to execute it, and, if successful, ed returns silently to you for 
another command. If an error is encountered, or a command cannot be executed for 
some reason, ed prints a question mark, and then silently waits for you to figure out the 
problem. 

Many people find this silence desirable, but for those who do not, there are commands 
that make ed more friendly. The P command causes ed to prompt you with an asterisk 
( * ). Executing the P command again turns off the prompt. By default, ed's prompt is 
disabled. 

Error Messages 
As mentioned above, ed's default error message is a single question mark(?). As you gain 
experience with ed, these question marks become easier to interpret, but for the beginning 
user, it can be somewhat difficult to discover the problem. Fortunately, ed provides 
commands to eliminate this vagueness. The h command explains the last question mark 
printed by ed. The H command also explains the last question mark, but also causes 
a more descriptive explanation of the problem to replace all future question marks. 
Executing the H command again disables the descriptive explanation. 

The Ed Editor 3 



Moving Around in the File 
Material Covered: 

= 
p 

+n 
-n 

$ 

k 

I··· I 

? ? 

\n 

$ 

n* 

[ ... 1 

(dot) pointer to the current line; 

operator; yields line number; 

command; prints specific lines; 

operator; increments dot by n; default n = 1; 

operator; decrements dot by n; default n = 1; 

pointer to the last line of the file; 

shorthand notation for the range "1,$"; 

shorthand notation for the range ".,$"; 

command; creates a pointer to a specific line; 

command; initiates a forward search for the string of characters enclosed 
between the slashes; 

command; initiates a backward search for the string of characters enclosed {j 
between the question marks; 

metacharacter; matches any single character when used in a search string; 

metacharacter; strips away the special meaning (if any) of the character n 
when used in a search string; 

metacharacter; when specified as the last character in a search string, 
matches the string at the end of a line; 

metacharacter; when specified as the first character in a search string, 
matches the string at the beginning of a line; 

metacharacter; matches zero or more adjacent occurrences of the character 
n when used in a search string; 

metacharacters; match any one of the characters enclosed between them 
when used in a search string; 

metacharacter; stands for "any character except" when. specified as the 
first character inside [ ... ], causing the braces to match any one character 
not enclosed between them; 

4 The Ed Editor 



u 

u 

u 

\{ ... \} metacharacters; match a specified number of occurrences of the single char­
acter enclosed between them when used in a search string. 

Your position in a file is always relative to a specific line. Ed does not provide commands 
that move you from character to character. There are five commands that enable you to 
reference specific lines in a file. 

Line Pointers 
Of the five commands mentioned above, three are pointers to specific lines in the file. 

Pointer to the Current Line 
Ed maintains a line pointer called dot (.), which always points to the current line in the 
file. The current line is defined to be the last line affected by an ed command. The 
following table lists some of the more common ed operations, and the value of dot after 
these operations have been performed: 

After this operation ... Dot points to ... 

Invoking ed Last line of file. 

Search for pattern Closest line containing pattern, relative to your pre-
vious position. 

Delete last line of file New last line of file. 

Delete line( s) other than last line Line following last deleted. 

Appending, inserting, or changing text Last line entered. 

Read from a file Last line read in. 

Write to a file Your previous position; dot is not changed. 

Substitute new text for old Last line affected by substitution. 

Execute a shell command Your previous position; dot is not changed. 

Set a line pointer Your previous position; dot is not changed. 

Any unsuccessful or erroneous command Your previous position; dot is not changed. 

Dot can be used as a line number argument for ed commands. Assuming you are still 
editing testfile, type 

.p 
to the file. 

The Ed Editor 5 



The p command prints specific lines from the ed buffer, thus .p prints the current line. 
Note that dot is automatically set to the last line of the file when you first begin editing. 
You can also specify a range of line numbers with dot. For example, 

-3,.p 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
to the file. 

prints the last four lines of the file. Has the value of dot changed? No, because the last 
line affected by the p command was still the last line of the file. Now try 

-5,.-3p 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 

which prints the fifth line before dot to the third line before dot. What is dot's value 
now? Find out by typing 

.p 
important to note that ed always makes changes to the 

Dot is now set to the last line affected by the previous p command. 

Note that dot need not be typed when specifying ranges. Whenever ed sees the+ and­
operators, ed assumes that they refer to the current value of dot. For example, 

-2,+2p 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 

If) 

prints the range of lines from two lines before dot to two lines after dot. Dot is set to 
the last line printed. n 

6 The Ed Editor 



u 

u 

u 

The + and - operators can be used independently to increment or decrement dot by one, 
respectively. For example, the command 

--,+p 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
to the file. 

prints the range of lines from dot decremented by two to dot incremented by one. Also, 
you can step forward through your text, one line at a time, with a series of plus signs, 
or step backward with a series of minus signs. Note that [RETURN] is equivalent to+. 
[RETURN] increments dot by one and prints the resulting current line. 

The p command provides one other shortcut. Whenever a line number, or one or more 
operators pointing to a line, appear on a line by themselves, the p command is assumed. 
Some examples are: 

8 
original file are not changed until you write the changes 

ed keeps a copy of the file you are editing. It is \\ *. 
++ 
copy of yourrr file in the buffer. The contents of the 

If a range appears on a line by itself, only the last line of the range is printed. For 
example, 

-,+ 
original file are not changed until you write the changes 

You can find out the current value of dot by typing 

8 

which tells you that dot is currently pointing to the eighth line of the file. 

The Ed Editor 7 



Note that you cannot manually set the value of dot. A command like 

.=6 
? 

produces an error. Ed reserves to itself the right to change the value of dot, although :tJ 
you may indirectly change dot's value through ed commands. 

Pointer to the Last Line 
Ed also maintains a pointer, called$, which always points to the last line of the file. For 
example, 

$ 
to the file. 

prints the last line of the file. $ can also be used in ranges, as in 

1,$-6p 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 
your unput as a command. In text entry mode, ed adds 

which prints the first three lines of testfile. Also, 

+4,$p 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
to the file. 

prints the last three lines of the file. Note that the+ and- operators can apply to$ only 
when $ is explicitly typed. By themselves, + and - always apply to dot. 

You can find out the value of$ by typing 

$= 
9 

which tells you that the ninth line is the last line in the file. Note that= does not change 
the value of dot. 1~ 

8 The Ed Editor 



u 

u 

u 

The value of $ changes only when a command creates a new last line. $ is not user­
settable. 

Because the "1,$" and ".,$" ranges are so commonly used when editing with ed, ed 
provides a shorthand notation for each range. The comma can be used in place of "1,$", 
so that ,p prints all the lines in the file. Also, the semicolon means the same thing as 
".,$", so ;p prints all the lines from the current line to the end of the file. 

Setting Pointers to Lines 
The k command creates a pointer to a specific line, so you can reference that line without 
knowing its line number. The pointer name must be a lower-case letter. Creating a 
pointer does not change the value of dot. For example, 

to the file. 
-4ka 
-2kb 

to the file. 

creates two pointers, a and b, which point to the fourth line before dot, and the second 
line before dot, respectively. Note that dot does not change. 

To reference a line with a line pointer you have created, precede its Jetter name with a 
single quote ('), as in 

'a,'bp 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 

which prints all lines from the line pointed to by a to the line pointed to by b. 

A pointer set by the k command always points to the same line, even if that line's line 
number changes. Thus, the k command does not create pointers to specific line numbers, 
but to specific lines. 

Once a pointer has been created, the only way to delete it is to delete the line it points 
to. Otherwise, that pointer continues to exist until your editing session is over. You can, 
however, re-assign a pointer to another line, as in 

The Ed Editor 9 



'ap 
ed keeps a copy of the file you are editing. It is \\ *. 
2ka 
'ap 
texct entry mode. In command mode, the edytor interprets 

which re-assigns a to the second line of the file. 

You can find out the current line number of a pointer by typing 

'a= 
2 
'b= 
7 

which tells you that a is currently pointing to line number 2, and b is currently pointing 
to line number 7. 

Searching for Strings 
Ed provides a facility which enables you to search for a particular string of characters in 
your file. A string of characters searched for in this manner is called a pattern. 

Forward Searches 
To initiate a forward search, enclose the pattern between two slashes, and press [RE­
TURN]. For example, 

funput/ 
your unput as a command. In text entry mode, ed adds 

searches for the pattern "unput". If the pattern is found, dot is set to the line containing 
the pattern, and the line is printed on your screen. An unsuccessful search looks like 
this: 

/bob/ 
? 

The value of dot is unchanged. 

Ed searches forward in your file, starting with the line following the current line. If your 
pattern has not been found by the time ed gets to the end of the file, ed wraps around to n 
the beginning of your file and continues looking. Ed searches until the pattern is found, \ 
or until ed reaches the line prior to the starting line of the search. 

10 The Ed Editor 



u 

u 

u 

Backward Searches 
You can search backwards in your file by enclosing the pattern between two question 
marks. For example, 

?file? 
to the file. 

searches backwards from the current line, looking for a line containing the string "file". 
Ed found the pattern after wrapping around to the end of the file. 

Repeating a Search 
Ed remembers the last pattern that was matched. Thus, if you want to repeat a search, 
you simply type two slashes or question marks. The pattern itself need not be re-typed. 
For example, 

?file? 
original file are not changed until you write the changes 
?? 
copy of yourrr file in the buffer. The contents of the 
?? 
ed keeps a copy of the file you are editing. It is \\ *. 

initiates a backward search for the pattern "file", then finds the next two instances of 
"file". Note that a repeated search need not be in the same direction as the initial search. 
For example, 

/buffer/ 
copy of yourrr file in the buffer. The contents of the 
?? 
your input to the text located in a special buffer where 

initiates a forward search for "buffer", then repeats the search backwards. 

The Ed Editor 11 



Line Number Arithmetic with Searches 
The + and - operators can be used with searches to position yourself at specific lines. 
For example, 

/note/+ 
copy of yourrr file in the buffer. The contents of the 

searches forward for a line containing "note", and positions you on the following line. 
Also, 

?text? 
your input to the text located in a special buffer where 
??--
The ed editor operates in two modes: command mode and 

searches backwards for the second line containing "text", and positions you two lines 
before it. 

Note that, although searches have wrap-around capabilities, the + and- operators do 
not. Thus, an error results if a + or - operator attempts to increment or decrement dot 
to values greater than $, or less than one. 

The = operator can be used with forward and backward searches to find the line number 
referred to by the search, as in 

funput/= 
3 

Note that dot is not set to the line containing "unput" in the last example, because = 
does not change the value of dot. 

Using Metacharacters With Searches 
There are several characters that have special meaning within the context of a search. 
These characters, consisting of.,*,[,], A'$,\,\{, and\}, are called metacharacters. 

The. metacharacter matches any single character except a new-line. Thus, the search 

f.nput/ 
your unput as a command. In text entry mode, ed adds 
II 
your input to the text located in a special buffer where 

12 The Ed Editor 

n 



u 

u 

first matches "unput" in line 3, and then, when repeated, matches "input" in line 4. 

The * metacharacter matches zero or more occurrences of the character immediately 
preceding it. For example, 

/your*/ 
ed keeps a copy of the file you are editing. It l.s \\ *. 

matches "you" in the line displayed. Ed stops searching when it finds the first string of 
characters that matches the given pattern. Thus, "your" or "yourrr" can also be matched 
with the above search, depending on the current line when the search is initiated. 

The last example shows that, even though an "r" is explicitly typed in /your*/, there 
need not be an "r" in the string of characters that are actually matched. This is because 
zero occurrences of the preceding character is considered a legal match when the asterisk 
is used. Keeping this in mind, consider the search /r* f. Is it useful? No, because zero 
or more r's can be found on every line in the file. If you want to search for one or more 
r's, type /rr* f. 

The \ { and \} metacharacters enable you to control how many occurrences of a particular 
character are matched. For example, the search /g\{4\}/ finds a string of four g's. The 
integer between the two metacharacters specifies how many instances of the preceding 
character are to be matched. Note that this construct matches exactly four g's, not four 
or more. Thus, "yourrr" can be matched by 

/r\{3\}/ 
copy of yourrr file in the buffer. The contents of the 

If you put a comma after the integer, the \{ ... \} construct matches at least the 
specified number of occurrences. For example, /33.3\{4,\}/ matches "33.", followed by 
at least four 3's. Finally, two integers separated by a comma can be placed in the \ { 
.. . \} construct to define an inclusive range which specifies the number of occurrences 
to match. An example is /-13\{2,5\}1-/, which matches -1331-, -13331-, -133331-, or 
-1333331-. 

The [ and 1 metacharacters match any one of the characters enclosed between them. For 
example, /h[iau1t/ matches "hit", "hat", or "hut". A range of characters can be specified 
by typing the beginning and ending character.ofthe range, separated by a minus sign. An 
example is /[a-zA-Z][0-9][0-91* /, which searches for a single upper- or lower-case letter, 
followed by one or more digits (the * applies only to the [ .. . 1 construct immediately 
preceding it). The minus sign loses its special meaning within the [ ... 1 construct if it 
occurs at the beginning (after an initial A, if any), or at the end of the character list. 

The Ed Editor 13 



If the first character after the left bracket is a circumflex (A), then the [ . . . ] construct 
matches any single character not included between the brackets. For example, /r0-9Jr0-
9]* /matches one or more occurrences of any character except a digit. The A has special 
meaning in the [ ... ] construct only when it is the first character after the left bracket. 

Note that the metacharacters., [, \, $,\{,and\} have no special meaning when listed 
within the [ . . . ] construct. Also, the right bracket does not terminate the construct if it 
is the first character listed after the left bracket (after an initial A' if any). For example, 
f(]a-r]/ searches for a single right bracket, or a lower-case letter in the range a through 
r. 

The A is also special when typed at the beginning of a string within a search, and requires 
that the string be matched at the beginning of a line. For example, 

red/ 
ed keeps a copy of the file you are editing. It is \\ *. 

searches for a line beginning with "ed". The A is special only when typed at the beginning 
of a search string. If A is embedded in a pattern, or if it is the only character in the 
pattern, it is matched literally. 

The various ways to use A can be illustrated with rA[Aa-z]/. The first A means "match 
the following pattern at the beginning of a line". The second A is literal; it has no special 
meaning. The third A, as the first character inside the brackets, means "match any single 
character except". Thus, this search looks for a A, followed by any single character except 
a lower-case letter, occurring at the beginning of a line. 

The $ metacharacter is special when typed at the end of a string within a search, and 
requires that the string be matched at the end of a line. For example, 

/and$/ 
The ed editor operates in two modes: command mode and 

searches for a line ending with "and". Also, rTEST$/ searches for a line consisting of 
the single word "TEST". 

The $ is special only when typed at the end of a search string. When embedded in the 

n 
/ 

string, the $ is matched literally. n 

14 The Ed Editor 



The \ {backslash) metacharacter is used to strip away the special meaning associated 
with a metacharacter. This is useful when you need to match a metacharacter literally 
in a string. To strip away the special meaning of a metacharacter, simply precede it with 
\. For example, 

u /\\\\\*\.$/ 

u 

u 

ed keeps a copy of the file you are editing. It is \\ *. 

matches the string "\ \ *." at the end of a line. Note that \ itself must also be preceded 
with \ to be matched literally. If you attempt to match the string without using the \ 
(as in /\\ * .$ /), ed interprets the search to mean "search for zero or more occurrences of 
a backslash followed by any single character at the end of a line", which is obviously not 
what you want. Also, 

/file\.$/ 
to the file. 

matches "file." at the end of a line. If you are ever in doubt about whether or not 
a character has special meaning, it is safe to precede it with \ just to be sure. If the 
character has no special meaning, then the \ is ignored. 

The Ed Editor 15 



Adding, Deleting, and Correcting Text 
Material Covered: 

n 

a 

d 

c 

m 

t 

j 

s 

g 

G 

v 

v 

u 

\( ... \) 

% 

& 

command; list specific lines; 

command; print lines with line numbers; 

command; append lines of text after current line; 

command; insert lines of text before current line; 

command; delete lines of text; 

command; change lines of text; 

command; move lines of text; 

command; copy lines of text; 

command; join lines together; 

command; substitute new text for old text; 

command; global; perform command list on selected lines of entire file; 

command; interactive global; on each line selected in the entire file, perform n 
a user-specified command; 

command; global; perform command list on all lines not selected in the 
entire file; 

command; interactive global; on each line not selected in the entire file, 
perform one user-specified command; 

command; reverse the most recent modification to the buffer; 

metacharacters; used in left-hand side of s command to break up pattern 
into pieces that can be referenced individually; 

metacharacter; used in right-hand side of s command to duplicate right­
hand side of most recent s command; 

metacharacter; used in right-hand side of s command to duplicate left-hand 
side of same s command. 

16 The Ed Editor 



u 

u 

u 

Printing Lines 
Besides p, there are two other commands that enable you to print specific lines in the 
ed buffer. The I (list) command is similar top, but gives you slightly more information. 
The I command enables you to see characters that are normally invisible. Backspace and 
tab are represented by overstrikes, and other invisible characters, such as bell, vertical 
tab, and formfeed, are represented by \nnn, where nnn is the octal equivalent of the 
character in the ASCII character set. 

The I command also breaks long lines into smaller lines of 72 characters each. Thus, if 
you have lines of text in a file that are longer than 72 characters, I breaks them down 
into 72-character lines so they can fit on your screen. A \ is printed at the end of each 
line that is broken. 

Print out the contents oftestfile with the I command, and look for any invisible characters: 

,I 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 
your unput as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
to the file. 

If you did not make any typing errors that could produce invisible characters, the output 
looks as shown above. Note that a carriage return and a line feed are not considered 
invisible, since the placement of text on your screen indicates their presence. 

Since some invisible characters can cause strange terminal behavior, you almost always 
want to eliminate them from your text. This is where the I command can save you time 
and effort by making these characters visible. 

Then (number) command also enables you to print specific lines, but differs from p and 
I in that each line is preceded by its line number and a tab character. Try printing out 
the contents of testfiie with n: 

The Ed Editor 17 



,n 
1 The ed editor operates in two modes: command mode and 
2 texct entry mode. In command mode, the edytor interprets 
3 your unput as a command. In text entry mode, ed adds 
4 your input to the text located in a special buffer where 
5 ed keeps a copy of the file you are editing. It is \\ *. 
6 important to note that ed always makes changes to the 
7 copy of yourrr file in the buffer. The contents of the 
8 original file are not changed until you write the changes 
9 to the file. 

Note that the line numbers and tab characters are display enhancements only, and do 
not become part of the text in the ed buffer. 

The p command is the most common command used to print lines in the ed buffer. Keep 
in mind, however, that wherever it is legal to use the p command, the I and n commands 
may also be used. The I and n commands leave dot pointing to the last line printed. 

Appending Text 

,:) 

The a (append) command appends one or more lines of text after the specified line. 
By default, the lines of text are added after line dot. Dot is left pointing to the last rJ 
line appended. After the a command is typed, everything you enter is appended to the · · 
specified line. To stop appending text, type a period at the beginning of a line, all by 
itself. This terminates the a command, and returns you to command mode. For example, 

Oa 
The ed editor is a simple, easy-to-use text editor. 

1,3p 
The ed editor is a simple, easy-to-use text editor. 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 

The a command is one of the few ed commands that accepts 0 as a line number, enabling 
you to add text to the beginning of the file, as above. Note that the period at the 
beginning of an empty line terminates the appended text. The following example can 
easily occur by forgetting to type the terminating period (do not try this example-0: n 

18 The Ed Editor 



$a 

It is always comforting to know that your original 
file remains intact until you are sure you want to 
change it. 
1,$p 
$-4,$p 
;I 

$-7,$p 
original file are not changed until you write the changes 
to the file. 
It is always comforting to know that your original 
file remains intact until you are sure you want to 
change it. 
1,$p 
$-4,$p 
;I 

This poor user typed in the three lines of text that he wanted to append to the end of 
his file, and then attempted to print out the results. Ed, however, was still appending 
text, and calmly added the user's commands to the file. The user finally realized his 
mistake, typed the solitary period, and printed out the last eight lines of his file, three 
of which were the three commands he attempted to execute. The moral of the story is: 
REMEMBER THE PERIOD! 

If you type the a command and then change your mind, simply type a solitary period on 
the next line. This terminates the a command and adds no lines to the file. Dot is left 
pointing to the line you specified when you typed the a command. 

The Ed Editor 19 



Inserting Text 
The i (insert) command is similar to the a command, except that the added text is 
inserted before the specified line. By default, the added text is inserted before line dot. 
Dot is left pointing to the last line inserted. Like the a command, the inserted text is 
terminated by a solitary period at the beginning of a line. For example, n 

2i 
Also, it takes very little time to learn. 

1,3p 
The ed editor is a simple, easy-to-use text editor. 
Also, it takes very little time to learn. 
The ed editor operates in two modes: command mode and 

If you type the i command and then change your mind, simply type a solitary period on 
the next line. This terminates the i command and adds no lines to the file. Dot is left 
pointing to the line you specified when you typed the i command. 

Deleting Text 
The d (delete) command deletes one or more lines of text from the file. If no lines are 
specified, line dot is deleted. After a deletion, dot is left pointing to the line following r-'\ 
the last line deleted. If the last line of the file is deleted, dot points to the new last line. • ) 
For example, 

$d 
a 
on top of the original contents of your file. 

$-1,$p 
original file are not changed until you write the changes 
on top of the original contents of your file. 

The current last line is deleted, and a new one is typed in its place using the a command. 
The a command is used because dot is left pointing at the new last line after the deletion. 
Thus, it is convenient to append after dot to create the desired last line. 

20 The Ed Editor 

rJ 



u 

u 

u 

The d command can delete several lines at once by specifying a range of lines, as follows: 

3,6d 
,p 
The ed editor is a simple, easy-to-use text editor. 
Also, it takes very little time to learn. 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 

This shows that testfile currently contains 7 lines of text, since lines 3 through 6 have 
been deleted. 

Undoing C.ommands 
I 

The u (undo) command reverses the effect of the most recent command that made a 
change to any of the text in the buffer. Use it now to restore the four lines you just 
deleted: 

u 
,p 
The ed editor is a simple, easy-to-use text editor. 
Also, it takes very little time to learn. 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 
your unput as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 

Note that the u command reverses only the most recent command that modified text. 
Commands that have been succeeded with one or more other commands cannot be 
reversed with u. Besides d, u also reverses the a, i, c, g, G, v, V, j, m, r, s, and t 
commands. Dot is left pointing to the last line affected by the reversal. 

The Ed Editor 21 



Changing Lines 
The c (change) command replaces one or more lines with the text you specify. The 
c command is a combination of the d and i commands, in that the specified lines are 
deleted, and the text you type in is inserted in their place. Like the a and i commands, 
the replacement text is terminated with a solitary period at the beginning of a line. Dot ,~ 
is left pointing to the last line of replacement text typed in. For example, 

1,2c 
The ed editor is easy to learn and easy to use. 

1,3p 
The ed editor is easy to learn and easy to use. 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 

In this example, the first two lines are deleted and replaced with a single line. Of course, 
you can also replace a single line with several lines, as in 

2c 
It was designed to enable the user to get his work done 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed editor operates in two modes: command mode and 

1,/texctfp 
The ed editor is easy to learn and easy to use. 
It was designed to enable the user to get his work done 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 

which replaces the second line of the file with five lines. 

If you type the c command and then change your mind, simply type a solitary period at 
the beginning of the next line. This terminates the c command with no changes made, 
and leaves dot pointing to the first line you specified when you typed the c command. n 

22 The Ed Editor 



u 

u 

Moving Lines 
Them (move) command moves one or more lines to a new position in the file. By default, 
m moves line dot. Dot is left pointing to the last line moved. For example, 

2,5m$ 
,p 
The ed editor is easy to learn and easy to use. 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 
your unput as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 
It was designed to enable the user to get his work done 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 

which moves lines two through five to the end of the file. Note that m appends the moved 
lines after the specified line. Thus, line number zero is legal as a destination line number, 
enabling you to move lines to the beginning of the file. The destination line cannot be 
one of the lines being moved. 

Note that the m command, as well as any command that accepts line number arguments, 
accepts pattern searches and line pointers (set by the k command) to reference specific 
lines. For example, 2,/user / +++m$ has the same effect as 2,5m$ in the previous exam­
ple. Using pattern searches and line pointers becomes more valuable when you edit large 
files. 

The Ed Editor 23 



Copying Lines 
The t command copies one or more lines and places the copy at a specified location in 
the file. By default, t copies line dot. Dot is left pointing to the last line copied, in its 
new location. For example, 

lt$ 
.-4,$-ltl 
,p 
The ed editor is easy to learn and easy to use. 
It was designed to enable the user to get his work done 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed editor operates in two modes: command mode and 
texct entry mode. In command mode, the edytor interprets 
your unput as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is \\ *. 
important to note that ed always makes changes to the 
copy of yourrr file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 
It was designed to enable the user to get his work done 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed editor is easy to learn and easy to use. 

This example copied the first line and moved it to the end of the file. Then, the four lines 
before the new last line were copied and moved after the first line of the file, producing 
the text shown above. 

The only difference between the m and t commands is that t copies the indicated lines 
and moves them to a new position, leaving the original lines intact. The m command 
moves the specified lines from their original position to a new position. No new text is 
created. 

24 The Ed Editor 



u 

u 

u 

Modifying Text Within a Line 
The s (substitute) command is the only ed command that enables you to change one or 
more characters within a line, without having to type the line over again. By default, s 
modifies text on line dot. Dot is left pointing to the last line in which a modification has 
occurred. 

The s command enables you to correct the mistakes in your file. Of course, you could 
use the d and i commands and re-type each line containing an error, but that is more 
work than is necessary. For example, 

/texct/ 
texct entry mode. In command mode, the edytor interprets 
sftexctftext/p 
text entry mode. In command mode, the edytor interprets 

All s command lines are of the form 

sfreplace this/with this/ 

Thus, the above example first searches for the line containing the string "texct", and 
then replaces "texct" with "text" on that line. Note that the p command is appended 
to the s command to verify that the intended substitution took place. 

Note that the pattern search in the previous example can be included on the s command 
line. The s command accepts one line number, to perform a specific replacement on a 
single line, or two line numbers separated by a comma, to perform a replacement on a 
range of lines. For example, 

/unput/s/ /inputfp 
your input as a command. In text entry mode, ed adds 

which searches for the pattern "unput" and replaces it with "input". Another feature is 
illustrated in the above example. Note that the replace this portion of the s command 
is empty. This is because the replace this portion of the s command is a pattern search, 
just like those discussed under Searching for Patterns. You recall from that discussion 
that ed remembers the last pattern you searched for. Thus, since "unput" is the last 
pattern you searched for, it need not be re-typed in the s command. Ed remembers the 
pattern and supplies it for you. 

The Ed Editor 25 



Metacharacters can be used in the s command. The replace this portion recognizes all the 
metacharacters discussed under Searching for Patterns, plus two additional metacharac­
ters, \ {and \). These two metacharacters are used to break up the replace this portion 
into pieces that can be referenced individually. For example, in line 1 of the file, suppose 
you want to interchange the phrases "easy to learn" and "easy to use". The obvious way 
to do that is to retype the entire line, but there is an easier way: 

1sf\ea.*rn\) and \(ea.*se\)/\2 and \1/p 
The ed editor is easy to use and easy to learn. 

Although it is hard to read, it is handy to be able to define pieces of patterns and 
rearrange them in the with this portion. In the above example, the entire replace this 
portion matches "easy to learn and easy to use". The first \( ... \) matches "easy to 
learn", and the second \( ... \) matches "easy to use". These pieces are referred to in 
the with this portion with \n, where n refers to the n-th occurrence of a\( ... \)pair in 
the replace this portion, counting from the left. Thus, the with this portion interchanges 
the two pieces defined in the replace this portion. 

Here is another example. Suppose you have a file containing information like 

Alderson, Mike 
Anderson, David 
Belford, John 
Donally, Kyle 

and you want to rearrange each name so that the first name is first, followed by the last 
name. Retyping each line could take forever, but the task is easy using the \( and \) 
metacharacters. The command 

,sf\W,J*\), \(.*\)/\2 \1/ 

does the job. The first\( ... \)pair matches any number of characters except a comma­
the last name. The comma-space between each last and first name is explicitly matched. 
Finally, the second\( ... \) pair matches any number of any characters - the first name. 
These pieces are rearranged in the with this portion. {j 

26 The Ed Editor 



u 

u 

u 

Note that the two portions of an s command do not have to be delimited by slashes. You 
can use any character except a space or a new-line, as long as you use the same character 
throughout the command line. For example, the previous example can be made a bit 
more clear by using a capital o as the delimiter: 

,sO\W,J*\), \(.*\)0\2 \10 

You must be careful to choose a delimiter that is not already used in the s command 
line. 

The with this portion of the s command recognizes only the \ metacharacter, plus two new 
metacharacters, & and%. All other metacharacters previously discussed are interpreted 
literally in this portion. 

The & metacharacter is recognized only in the with this portion, and stands for whatever 
is matched by the pattern in the replace this portion. For example, 

2sfdone/& quicklyfp 
It was designed to enable the user to get his work done quickly 

The & stands for whatever pattern is matched in the replace this portion, so it stands 
for "done" in this example. Thus, this example replaces "done" with "done quickly". As 
another example, first add the line "ed is great" to the end of the file: 

$a 
ed is great 

Now use & to create two sentences out of one: 

$sf.*/&? &!/p 
ed is great? ed is great! 

The & must be preceded by *e to be interpreted literally. 

The Ed Editor 27 



The % is also recognized only in the with this portion, and stands for whatever was 
specified in the with this portion of the last s command that was executed. For example, 

ls/ed editorfed text editorfp 
The ed text editor is easy to use and easy to learn. 
fed editor/sf /%/p 
The ed text editor operates in two modes: command mode and 
/ /s/ /%/p 
The ed text editor is easy to learn and easy to use. 

In the first s command, the with this portion has to be explicitly typed out. Thereafter, 
a % is the only character appearing in the with this portion, and stands for "ed text 
editor". Since the replacement text is the same for the remaining s commands, it does 
not need to be re-typed. Note also how ed's pattern memory is utilized, especially in the 
last s command above. 

The % is special only when it is the only character in the with this portion. If % is 
included in a string of one or more characters, it is no longer special. You can also 
precede the % with a \ to cause literal interpretation. 

Now that you know all about the s command, you can go through and fix the remaining 
errors in your file. Here are some suggestions: 

fedy /s/ fedi/p 
text entry mode. In command mode, the editor interprets 
+3s/\ \\\\ *\.f /p 
ed keeps a copy of the file you are editing. It is 
fyourrr/s/fyourfp 
copy of your file in the buffer. The contents of the 

Note that, in the seconds command above, the with this portion is empty. This is legal, 
and is often used when you want to replace erroneous text with nothing at all. 

Finally, note that the s command operates only on the first occurrence of a pattern on 
a specified line. Thus, if there are two or more patterns on a line that are identical 
to the pattern specified in the replace this portion, only the first occurrence is actually 
replaced. The s command must be re-executed once for each additional pattern that is 
to be replaced on the same line. 

n 

The s command must replace text on at least one of the addressed lines, or ed prints a n 
question mark. 

28 The Ed Editor 



Making Commands Effective Globally 
The g (global) command is used to execute one or more commands on several lines. The 
lines on which the commands are to be executed are usually specified by pattern searches. 
The form of a g command is 

x, ygf pattern/ command list 

where x andy are optional line number arguments, pattern is the pattern to be searched 
for, and command list is the list of one or more commands to be executed on each line 
containing pattern. If x and y are missing, "1,$" is assumed. 

The g command first marks every line containing the specified pattern. Then, dot is 
successively set to each marked line, and the list of commands is executed. If only 
one command is specified, it is placed on the same line as the g command. If several 
commands are specified, the first command is placed on the same line as the g command, 
and all other commands are placed on the following lines. Every line of a multi-line 
command list is terminated by \ except the last. Ending a line with \ in this way quotes 
the following new-line, and hides it from the g command, thus preventing the new-line 
from terminating the g command prematur~ly. If no commands are specified, the p 
command is assumed. Any command except g, G, v, and V can be used in the command 
list. 

The g command can be used as a modifier for the 8 command, enabling the 8 command 
to replace all the occurrences of a particular pattern on a line, instead of just the first. 
For example, 

$8/ed/The & editor/gp 
The ed editor is great? The ed editor is great! 

which replaces both instances of "ed" on the last line with "The ed editor". The g 
command is often used with the 8 command in this way to avoid having to repeat the 8 

command once for every additional pattern you want to change on a line. Note that, if 
the p command is omitted, the line is not printed after the substitution is done. 

The g command becomes more powerful when you specify more than one command to 
be executed. For example, suppose that you want to change every instance of the string 
"ed" to "ED", and then mark every line on which the substitution occurs by preceding 
the line with a series of asterisks. This can be done by typing 

The Ed Editor 29 



gfedfs/ /ED/g\ 
i\ 
*** 
,p 
*** 
The ED text EDitor is easy to use and easy to learn. 
*** 
It was designED to enable the user to get his work done quickly 
with the least possible amount of interference from the 
*** 
EDitor. This is evident in the lack of prompts and the 
curt error messages. 
*** 
The ED text EDitor operates in two modes: command mode and 
*** 
text entry mode. In command mode, the EDitor interprets 
*** 
your input as a command. In text entry mode, ED adds 
*** 
your input to the text locatED in a special buffer where 
*** 
ED keeps a copy of the file you are EDiting. It is 
*** 
important to note that ED always makes changes to the 
copy of your file in the buffer. The contents of the 
*** 
original file are not changED until you write the changes 
on top of the original contents of your file. 
*** 
It was designED to enable the user to get his work done 
with the least possible amount of interference from the 
*** 
EDitor. This is evident in the lack of prompts and the 
curt error messages. 
*** 
The ED text EDitor is easy to learn and easy to use. 
*** 
The ED EDitor is great? The ED EDitor is great! 

This example, though not very useful, illustrates how the g command can be used to 
perform a script of ed commands on specific lines. Note that the g command accepts as 
input all lines up to and including the first line that does not end in *e. Thus, the first 

30 The Ed Editor 

() 
' / 



line that is not part of the g command above is the line containing ,p. Note also that 
the period that usually must be typed to end the i command is not necessary if the line 
containing the period is also the last line of the g command. Thus, the period, along 
with the line on which it is typed, can be omitted. 

U A g command can be included in a g command list only when it is part of another 
command, as illustrated in the last example. It is illegal to try to nest command lists by 
specifying g command lists within other command lists. 

u 

u 

The v command is identical to the g command, except that the command list is executed 
on all lines that do not contain the specified pattern. 

If the results of a g command are not exactly what you had in mind, you can use the u 
command to restore your text to its previous state. 

u 
,p 
The ed text editor is easy to use and easy to learn. 
It was designed to enable the user to get his work done quickly 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed text editor operates in two modes: command mode and 
text entry mode. In command mode, the editor interprets 
your input as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is 
important to note that ed always makes changes to the 
copy of your file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 
It was designed to enable the user to get his work done 
with the least possible amount of interference from the 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed text editor is easy to learn and easy to use. 
The ed editor is great? The ed editor is great! 

Note that the u command also reverses itself, so you can follow one u command with 
another to get back text that you have already reversed. 

The Ed Editor 31 



The G (interactive global) command is used when you have one command to execute on 
each line containing a specific pattern, but this command varies depending on the line. 
The g or v command is not appropriate in this case, since the command list for these 
commands is constant. 

The G command is invoked in the form 

x,yGjpattern/ 

where x andy are line number arguments (if not specified, "1,$" is assumed), and pattern 
is the particular pattern you want to match in a line. G first marks every line containing 
a string that matches pattern. Then, dot is successively set to each marked line, and 
the resulting current line is printed on your screen. After the current line is printed, 
G waits for you to enter any single command, and the command you enter is executed. 
You may specify any command except the a, i, c, g, G, v, or V commands. Note that 
your command can address and affect lines other than the current line. A new-line is 
interpreted to be a null command. The G command can be terminated prematurely by 
pressing [DEL] or [BREAK]; otherwise it terminates normally when all lines in the file 
have been scanned for a string matching pattern. 

Here is an example: 

G/editor/ 
The ed text editor is easy to use and easy to learn. 
s /easy/ simple/ 
editor. This is evident in the lack of prompts and the 

The ed text editor operates in two modes: command mode and 
s/The ed text editorjed/ 
text entry mode. In command mode, the editor interprets 
s/the editor/ed/ 
editor. This is evident in the lack of prompts and the 

The ed text editor is easy to learn and easy to use. 
sjeasy to use/simple to use/ 
The ed editor is great? The ed editor is great! 
s/[~?J*? I I 

n 

In this e~fyampNlet, G hlooks for a1l~ the lines codntaining "editor", and executes the commands n 
you spec1 . o e t at a new- me was type on each of the two blank lines above, causing 
no command to be executed. 

32 The Ed Editor 



u 

u 

The &; character can be typed in place of a command. This causes the most recent 
command executed within the current invocation of G to be re-executed. 

The V command is identical to the G command, except that the lines that are marked 
and printed are those that do not contain a string that matches pattern. 

The u command can be used to reverse all the effects of a G command. 

Joining Lines Together 
The j (join) command joins two or more lines together. By default, j appends line dot+l 
to line dot, but you can specify a range of lines to be joined. Note that j does not add 
any white space between the joined lines. Dot is left pointing to the line created after 
the specified lines have been joined. 

As an example, try joining the last two lines of the file together. First, however, you 
need to shorten line $-1 so the joined line fits on one line of the screen. Do this by typing 

$-lsI easy to learn and I I p 
The ed text editor is simple to use. 

Now join the last two lines together with 

jp 
The ed text editor is simple to use.The ed editor is great! 
si\.TI. TIP 
The ed text editor is simple to use. The ed editor is great! 

The last s command in this example is used to insert two spaces between the two joined 
lines. Note that the p command can be appended to the j command to verify that the 
two lines have been joined. 

The Ed Editor 33 



Splitting Lines Apart 
The s command can be used to split a single line into two separate lines. This is done 
by inserting a new-line between the characters where the split is desired. To do this, the 
new-line must be preceded by \ to avoid terminating the s command prematurely. Thus, 
you can split the two lines that were joined in the previous example into two separate rtJ 
lines with the s command (you cannot use the u command to split the last line into two 
lines now -why?). Do this by typing the following: 

sf\. Tf.Tfp 
The ed text editor is simple to use.The ed editor is great! 
sf\.Tf.\ 
Tf 
$-1,$p 
The ed text editor is simple to use. 
The ed editor is great! 

The firsts command gets rid of the extra white space in the sentence (note that the u 
command could have been used here). The seconds command inserts a new-line between 
the period and the capital T, thus creating two separate lines. Note that, although the 
second s command takes up two lines, it is actually one command. 

34 The Ed Editor 

n 
' / 



Special Ed Commands 
Material Covered: 

ur command; set/print currently remembered file name; 

delimiter; set dot's value; 

u 

u 

w command; writer characters in buffer to file, or read standard output from 
a shell command; 

r command; read contents of file into buffer, or read standard output from 
shell command; 

e, E commands; begin editing another file, or read standard output from shell 
command; 

X 

-x 

option; silences character counts generated by w, r, e, E, or an invocation 
of ed; 

command; initiates text encryption mode; 

option; initiates text encryption mode. 

Finding the Currently Remembered File Name 
If you invoke ed with a file name argument, ed remembers that file name until your 
editing session is over, or until the file name is changed as a result of commands that are 
discussed later in this section. The f (file name) command enables you to find out at any 
time what file name ed is remembering. For example, 

f 
test file 

which tells you that ed is remembering testfile as the current file name. 

The f command also enables you to change the current file name. For example, to change 
the current file name to file2, type 

f file2 
file2 

The Ed Editor 35 



Ed echoes "file2" so you can verify that the current file is set correctly. Now change the 
file name back to the current file, or errors could result in later operations: 

f testfile 
test file 

If no file name ~s specified when ed is invoked, then ed initially remembers no current 
file name. Thus, this file name must be supplied when using thew, r, e, orE commands 
(discussed later), or it can be set with the f command. 

Writing Buffer Text Onto a File 
The w (write) command writes the text contained in the ed buffer onto the specified 
file, or onto the currently remembered file if no file name is specified. If the write is 
successful, a count of the number of characters written is printed. Dot is left unchanged. 

The w command accepts zero, one, or two line number arguments specifying the line or 
lines to be written. If no line number arguments are given, "1,$" is assumed. 

Try the w command by typing 

w 
986 

The previous contents of testfile have now been overwritten by the contents of the ed 
buffer. The number 986 tells you that the write was successful, and that 986 characters 
were written. 

Note that the ed buffer is not affected by thew command. Its contents are still the same. 
In fact, all of the line pointers (dot, $, and any that you have set) are still pointing to the 
same lines as they were prior to the w command. Thus, you may write out the contents 
of the ed buffer several times during an edit session without disturbing the current state 
of the editor. It is a good idea to write often, especially if you have been editing a long 
time and have made many changes. Depending on how often you write, you can be sure 
that a current version of your file resides in the relative safety of the file system, should 
a system crash or a power failure eat up whatever data is in the ed buffer. 

You can tell ed to write to a file other than the currently remembered file by typing 

redf;ronfw filel 
561 

36 The Ed Editor 

n 

n 



u 

u 

This command writes the range of lines from the line beginning with "ed" to the line 
beginning with "on" onto the file filel. If filel exists, its previous'contents are completely 
overwritten by the specified lines of text. If filel does not exist, it is created with a file 
mode of 666 (modified by the current value of the file creation mask, umask) and the 
specified text is written on it. Again, the number returned indicates that ed was successful 
in writing 561 characters on the file. 

The semicolon that appears in the last example is new. If a comma had been used to 
separate the two searches, ed would have started the search for a line beginning with "ed" 
from the current line. After finding that line, however, ed would return to the current 
line to search for the line beginning with "on". The value of dot would be reset only after 
finding the line beginning with "on", with the result that a single line address is passed 
to the w command, causing a single line to be written. The semicolon causes the value 
of dot to be set to the line beginning with "ed", so that the second search is carried out 
with respect to this line, instead of the previous current line. Thus, two addresses are 
processed, and the correct lines are written. The semicolon can always be used in place 
of a comma to force dot to be set at that point in the construct. 

You can also run shell commands with thew command. The shell command is introduced 
with !. For example, 

w !ls 
filel 
testfile 
986 

runs ls and also writes the current contents of the buffer to the currently remembered 
file. Note that the output from ls appears on your screen, but is not added to the actual 
contents of the buffer (the listing that appears on your screen may be longer than that 
shown above). After the listing is produced, ed writes the contents of your buffer to the 
currently remembered file, and reports the number of characters written. Note that there 
is no way to run a shell command and write to a file other than the currently remembered 
file with the w command. Note also that ! is illegal if the editor was invoked from a 
restricted shell (see rsh(l) in the HP-UX Reference manuaQ. 

The currently remembered file name is set to the file name you specify with the w com­
mand, if the specified file name is the first file name mentioned since ed was invoked. 
Otherwise, the currently remembered file name is not affected. A shell command intro­
duced with ! is never remembered as the current file name. 

The Ed Editor 37 



Reading Files Into the Buffer 
The r (read) command reads the contents of a specified file, or the currently remembered 
file, if no file is specified, into the ed buffer after the specified line. If no line is specified, 
the contents are read in after line $. Dot is set to the last line read in. 

To illustrate the r command, first create a new file called readfile: 

w 
986 
e readfile 
?readfile 
a 
Here is some text that is to be read in. 
It is used to illustrate the r command. 

w 
81 

You now have a file in your working directory called readfile, containing the text shown 
above. Now begin editing testfile again, and read in the contents of readfile: 

e testfile 
986 
Or readfile 
81 
1,5p 
Here is some text that is to be read in. 
It is used to illustrate the r command. 
The ed text editor is simple to use and easy to learn. 
It was designed to enable the user to get his work done quickly 
with the least possible amount of interference from the 

This example reads the contents of readfile into testfile after line 0, or at the beginning 
of the file. Ed responds by printing the number of characters that were read in. The first 
five lines of the buffer are printed to verify that the text is placed correctly. 

You can also run shell commands with the r command. The shell command is introduced 
with !. For example, n 

38 The Ed Editor 



u 

u 

feurtfr !date 
29 
6,9p 
editor. This is evident in the lack of prompts and the 
curt error messages. 
Thu Jul 22 10:59:13 MDT 1982 
ed operates in two modes: command mode and 

which reads the output from date into testfile after the line containing the pattern "curt". 
The lines surrounding the insertion are printed to verify that the read executed correctly. 
Note that, unlike thew command, the output from the command becomes part of the 
text in the buffer. Also, the number of characters read from the command is printed on 
your screen, but the actual output appears only in the buffer. Note that the ! is illegal 
if the editor was invoked from a restricted shell. 

The currently remembered file name is reset to the file name you specify with the r 
command, if the specified file name is the first file name mentioned since ed was in­
voked. Otherwise, the currently remembered file name is not affected. A shell command 
introduced by ! is never remembered as the current file name. 

An r command can be reversed with the u command. Try this now: 

u 
6,8p 
editor. This is evident in the lack of prompts and the 
curt error messages. 
ed operates in two modes: command mode and 

Note that the date and time are no longer present in the buffer. 

The Ed Editor 39 



Editing Other Files 
The e (edit) command discards the entire contents of the ed buffer and reads in the 
specified file. If no file is specified, then the currently remembered file is read. Dot is set 
to the last line of the buffer. 

If you have made any changes to the buffer since the last w command, ed requires that 
you precede the e command with a w command to save the contents of the buffer. If 
you are sure that you want to discard the contents of the buffer, you can invoke the e 
command a second time. This forces ed to discard the buffer contents and read in the 
new file. For example, 

e filel 
? 
e fUel 
561 

The question mark after the first invocation of e is to warn you that you have made 
changes to the current contents of the buffer, and that these changes will be lost if you 
do not write them on testfile. The second invocation of e tells ed "I don't care! Do it 
anyway!". Ed complies by discarding the current buffer and reading in the contents of 
filel. Ed reports to you the number of characters read. 

If you are sure that you want to discard the current contents of the buffer without saving 
them, you can use the E (Edit) command. E is similar to e, except that ed does not 
check to see if any changes have been made to the current buffer. Thus, you do not have 
to type the e command twice. 

If you have made several changes to the buffer, and then decide that you do not like 
what you have done, you can start editing the same file all over again by typing e or E 
with no specified file name. This causes the contents of the currently remembered file to 
be read into the buffer, destroying the previous contents. Of course, if you have written 
some of the changes you have made to the current file already, there is no quick and easy 
way to reverse them. 

If you specify a file name with the e or E command, that file name becomes the new 
current file, and is remembered for future use with w, r, e, or E. 

You can also execute shell commands with thee orE command. The shell command is ~.~. 
introduced with!. For example, 1 I 

40 The Ed Editor 



u 

u 

u 

E !Is 
23 
,p 
filel 
readfile 
testfile 

This example runs the shell command ls, and places its output in the edbuffer, destroying 
whatever was in the buffer previously. The number of characters placed in the buffer is 
printed for you. The actual list of files and the number of characters read into the buffer 
may be different than those shown above. Note that! is illegal if the editor was invoked 
from a restricted shell A shell command is never remembered as the current file name. 

Silencing the Character Counts 
If the character counts that ed produces (when ed is invoked, or with thew, r, e, orE 
commands) are annoying or are not helpful, they can be silenced with the- option. It is 
specified when ed is invoked, as in 

$ ed - filename 

The - option also suppresses the question mark generated by the e and q commands 
whenever they are not preceded by a w command (the q command is discussed in the 
next section). 

Encrypting and Decrypting Text 
Ed provides a feature that enables you to encrypt and decrypt the text in a file so that 
other users are not able to read your files. The text is encrypted and decrypted by 
means of the DES encryption algorithm (see crypt(l) in the HP-UX Reference manual). 
To encrypt your text, you must supply a key, which is simply a string of one or more 
characters. The key determines the manner in which the DES algorithm encrypts your 
text. You must remember this key. 

The Ed Editor 41 



The X (encrypt) command enables you to encrypt the text in the ed buffer. The X 
command accepts no arguments, but prompts you to enter a key. The echoing on your 
screen is disabled while you enter the key, so there is no visible record of it. For example, 

E filel 
561 
,p 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed text editor operates in two modes: command mode and 
text entry mode. In command mode, ed interprets 
your input as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is 
important to note that ed always makes changes to the 
copy of your file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 
X 
Enter file encryption key: 
w 
561 
q 
$ 

This example edits filel, and prints out its contents. After the X command is invoked, 
you are prompted to enter a key. This key can be any string of characters, but whatever 
it is, do not forget your ke'!}. When the w command is invoked, the text in the buffer is 
encrypted according to the key you entered and written on filel. The q command, which 
is discussed later, exits the editor and leaves you at the shell level. Now execute the cat 
command to try to print out the contents of filel: 

$cat filel 
(garbage) 

$ 

You probably got a screenful of garbage. If your bell beeped a couple of times, this is 
because the text is encrypted into invisible characters as well as visible characters. There 
is no practical way for another user to tell what is actually contained in your file. 

42 The Ed Editor 



u 

u 

To edit a file containing encrypted text, use the -x option when ed is invoked: 

$ ed -x filel 
Enter file encryption key: 
561 
,p 
editor. This is evident in the lack of prompts and the 
curt error messages. 
The ed text editor operates in two modes: command mode and 
text entry mode. In command mode, ed interprets 
your input as a command. In text entry mode, ed adds 
your input to the text located in a special buffer where 
ed keeps a copy of the file you are editing. It is 
important to note that ed always makes changes to the 
copy of your file in the buffer. The contents of the 
original file are not changed until you write the changes 
on top of the original contents of your file. 

The -x option is the same as the X command, except that it is used when you invoke 
ed. When prompted for the key, you must enter the same key that you entered when 
the text was encrypted. Otherwise, the text in that file is inaccessible. This is why it is 
so important that you remember your key. After the key is entered, the text in filel is 
decrypted and read into the ed buffer. You may now edit the text normally. 

When you are done editing, if you invoke the w command to write your changes to the 
file, the text is encrypted according to your key. If you want to change your key or 
disable encryption altogether, you must use the X command. When you are prompted 
for your key, either type in your new key to change the encryption key, or simply type 
a new-line. If you type a new-line, a null key is entered, and encryption is disabled. 
Disable encryption now by typing 

X 
Enter file encryption key: (new-line) 
w 
561 

The contents of filel are now in a readable form. 

Note that, when encryption is enabled, all subsequent e, r, and w commands encrypt the 
text in the ed buffer. 

The Ed Editor 43 



As a general rule, text encryption is seldom needed by the typical user except when 
extreme security is required. The HP-UX file system has its own security system which 
is sufficient for most security needs. Using text encryption often and/or on several files 
at once is a dangerous practice, since you must remember your key to successfully edit 
these files. You should therefore exercise caution when using the text encryption feature. 

The Shell Interface 
Material Covered: 

command; execute shell command; 

q command; exit editor after checking for changes to the buffer; 

Q command; exit editor without checking buffer for changes. 

Escaping to the Shell Temporarily 
The ! command enables you to execute a shell command from within the ed editor. To 
do this, type a !, followed by the shell command. For example, 

!(date;who) > whofile 
! 

executes the date and who commands, and redirects their output into the file whofile. 
Note that ed returns a! to tell you when the command has completed execution. 

If the character % appears anywhere in the shell command, it is replaced with the 
currently remembered file name. Thus, 

!sort % > sortedfile 
sort filel > sortedfile 
! 

sorts (in reverse alphabetical order) the current contents of filel. Note that the current 
contents of filel, not the ed buffer, are sorted. The sorted version of filel is redirected 
to the file sortedfile. The I/0 redirection in the last two examples is used so that the 
output from these shell commands does not clutter up your screen while you are editing. 
Note that, if the output from a shell command is printed on your screen, the output does rJ 
not become part of the ed buffer unless ! is used with the r, e, orE commands. 

44 The Ed Editor 



u 

u 

u 

A final feature of the ! command is the ability to re-execute the last shell command you 
executed with !, without having to retype the entire command. This is done by typing 
two exclamation points, as in 

!! 
! 

which re-executes the last shell command executed within the ed editor. Thus, sort % 
>sortedfile is re-executed. 

If a shell command contains any metacharacters, ed echoes the command line back to you 
with all metacharacters expanded (this is what ed did in the first sort example above). 
For example, 

!eat * > bigfile 
cat file! readfile sortedfile testfile whofile >bigfile 
! 

which echoes the expanded command line, then executes the command. 

Exiting the Editor 
The q (quit) command exits the editor. The contents of the buffer are not automatically 
written on the current file. If you have made any changes to the buffer since the last time 
you invoked the w command, ed requires that you issue the w command before exiting 
with q. Invoking the q command a second time forces ed to let you exit without writing 
the contents of the buffer on the current file. To illustrate this command, first add some 
text to the buffer, then try to exit without writing: 

$a 
Here is some extra text. 

q 
? 
q 
$ 

A change is made to the buffer by adding a single line of text to the end of the buffer. 
When the first q command is typed, ed sees that there have been changes to the buffer 
since the last write, so ed issues a question mark. This warns you that there are changes 
to the text in the buffer that will not be saved if you exit without writing. The second 
q command forces ed to discard the contents of the buffer and exit. Be very sure that 
this is what you want to do, since you cannot recover the buffer contents once you have 

The Ed Editor 45 



exited. The $ is the default shell prompt, indicating that you are once more at the shell 
level (your shell prompt may be different). 

If you know that you want to discard the contents of the buffer and exit, but you do not 
want to type the q command twice, use the Q command. The Q command is similar to !) 
q, but ed does not check to see if changes have been made to the contents of the buffer. :. . 

The - option previously discussed disables the question mark that ed issues when you do 
not write before executing an e or q command. You are living dangerously when it is 
disabled, however. That question mark has kept many users from accidentally throwing 
away hours of work. Besides, the E and Q commands are implemented for those special 
cases when you want to discard the contents of the buffer. 

Miscellaneous Topics 
Material Covered: 

[DEL],[RUB],[BREAK] keys; any of these keys generates an interrupt signal to ed; 

Editing Scripts 

Interrupting the Editor 
[DEL], [RUB], or [BREAK] causes ed to stop whatever command it is executing and 
return to you for a command. Ed tries to restore the state of your file to whatever 
it was before the command was issued. This is easily done if ed is interrupted while 
printing, since dot is not set until printing is done. If ed is reading or writing files, or 
performing substitutions or deletions, however, the state of the buffer (and the current 
file) is unpredictable; dot may or may not be changed. Thus, it is usually safer to let ed 
finish whatever it is doing, rather than risk finding the buffer or the current file in some 
garbled state. 

46 The Ed Editor 



u 

u 

Editing Scripts 
An editing script is simply a file containing a list of ed commands. If you have several 
files on which a specific list of commands must be executed, it is easier to use an editing 
script than it is to invoke ed once for every file, and perform the tasks in each. 

Suppose you have several files named filel, file2, ... , and you want to perform some 
specific substitutions, additions, and deletions on each. First, create a file (called script, 
for example), and put all the ed commands that you want to execute, in the order that 
they must be executed, in the file: 

$ ed script 
?script 
a 
Or !date 
lsf.*$/& DATE OF LAST UPDATE/ 
$-3,$d 
gfKarl Harrison/sf /Georgia Mitchell/ 
w 
q 

w 
87 
q 
$ 

The file script now contains ed commands to put the current date and time at the 
beginning of each file, append "DATE OF LAST UPDATE" to the date and time, delete 
the last four lines of each file, and replace every instance of "Karl Harrison" in each file 
with "Georgia Mitchell". Note that the w and q commands are included so that the 
script writes the buffer on each file and exits the editor automatically. 

To use script, invoke ed as follows: 

$ ed - filel <script 
$ ed - file2 <script 

etc. 

The 1/0 redirection character < causes ed, when invoked, to take its input from script. 
Thus, as ed is invoked with each file name, that file is edited according to the commands 
contained in script. 

The Ed Editor 47 



48 The Ed Editor 



u 

u 

Index 

a 
adding text, ed ............................................................ 16 
appending text, ed ......................................................... 18 
arrays, awk ............................................................... 14 
awk: 

actions ................................................................. 13 
arrays ................................................................. 14 
Boolean expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
built-in functions ........................................................ 15 
command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
error messages .......................................................... 19 
expression combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
field variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
flow-of-control statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
formatting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
pattern combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
predefined variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
ranges of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 12 
redirecting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
relational expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 11 
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
writing patterns .......................................................... 9 

b 
built-in functions, awk ..................................................... 15 

u c 
changing lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
command line, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
comments, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Index 49 



copying lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
correcting text ............................................................ 16 
correcting text, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
creating a text file, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
current line, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 r) 
currently remembered file name, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 · 1 

d 
decryption, ed ............................................................ 41 
deleting text, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 20 

e 
ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 46 
ed: 

adding text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
appending text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
changing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
copying lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
creating a text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
current line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ~ 
currently remembered file name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 r ) 

decryption .............................................................. 41 
deleting text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 20 
editing scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
ending a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
error messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
global commands ........................................................ 29 
inserting text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
joining lines ............................................................ 33 
line pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
metacharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 25 
modifying text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
moving lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
pointer to the last line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 8, 9 ~ 
printing lines ........................................................... 17 '. ) 
prompts ................................................................. 3 
reading files into the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
search function .......................................................... 10 

50 Index 



u 

u 

setting pointers to lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
shell interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
silencing character counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
special commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
splitting lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
starting a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
undo command ......................................................... 21 
writing buffer text onto a file ............................................. 36 

editing scripts, ed ......................................................... 47 
encryption, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
ending a session, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
error messages, awk ........................................................ 19 
error messages, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

f 
flow-of-control statements, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
formatting output, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

g 
global commands, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

. 
I 

inserting text, ed .......................................................... 20 
interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
interrupt, ed .............................................................. 46 

. 
J 

joining lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

I 
line pointers, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

m 
metacharacters, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 25 
modifying text, ed ......................................................... 25 
moving lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Index 51 



p 
pointer to the last line, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
predefined variables, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
printing lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ~ 
prompts, ed ................................................................ 3 1,, ) 

r 
redirecting output, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

s 
scripts, editing with ed ..................................................... 47 
search function, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
setting pointers to lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
shell interface, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
silencing character counts, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
special commands, ed ...................................................... 35 
splitting lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

t 
text editor: 

awk ..................................................................... 1 
ed ...................................................................... 1 

u 
undo command, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

n 

52 Index 



u 

u 

u 

Table of Contents 

EDIT - An Interactive Line Editor 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Session 1 Creating a Text File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Asking for edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
Creating text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Messages from edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Text Input Mode ................................................... 6 
Writing Text to Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Logging Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Session 2 ............................................................... 9 
Adding More Text to the File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Making Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Listing Buffer Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Finding Things in the Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
The Current Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Numbering Lines (nu) .............................................. 13 
Substitute Command (s) ............................................ 13 
Another Way to List What's in the Buffer (z) ......................... 15 
Saving the Modified Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Session 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Bringing Text Into the Buffer (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Moving Text in the Buffer (m) ....................................... 18 
Copying Lines (copy) ............................................... 19 
Deleting Lines (d) .................................................. 19 
Be Careful ........................................................ 21 
Oops! I goofed. Now what? (undo) .................................. 21 
More About Dot (.) and Buffer End ($) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Moving Around in the Buffer ( + and -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Changing Lines (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

Session 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Making Commands Global (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
More about Searching and Substituting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Special Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Issuing HP-UX Commands from the Editor ........................... 29 
Filenames and File Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

Table of Contents i 



The File (f) Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Reading Additional Files ( r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Writing Parts of the Buffer .......................................... 30 
Recovering Files ................................................... 31 

FuOtherRecovde~yTecdhni~ues ......................................... 31 ~ 
rther Rea mg an ln1ormation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Using ex .......................................................... 32 

~ 

~ 

ii Table of Contents 



EDIT - An Interactive Line Editor 1 
U Introduction 

u 

The editor program edit is a somewhat simplified version of the ex editor described earlier 
in this volume. It is most useful on older-model typewriter terminals and generally is of 
little interest to users who have access to the intelligent CRT display termials that are 
most commonly used with the HP-UX operating system. 

This tutorial is divided into four lessons and assumes no prior familiarity with computers 
or with text editing. A series of text editing sessions lead you through the basic steps 
of creating and revising a text file. After scanning each lesson but before beginning the 
next, try the examples at a terminal to get a feeling for the actual process of text editing. 
Allow time for experimentation, and you can quickly learn to use a computer for writing 
and modifying text. 

Other HP-UX features are useful besides the text editor. These features are discussed in 
the book Introducing UNIX System Vas well as in other tutorials that provide a general 
introduction to the system. As soon as you are familiar with your terminal keyboard, 
its special keys, the system login procedure, and know how to correct typing errors, you 
are ready to start. Let's first define some terms: 

Program 

HP-UX 

A group of computer instructions that defines the sequence of steps to be 
performed by the computer in order to accomplish a specific task. For 
example, a series of steps to balance your checkbook is a program. 

A special type of program called an operating system that supervises the 
computer, peripheral devices, and all programs that use the HP-UX oper­
ating system. 

u Edit The name of the HP-UX text editor that you will be learning to use; a 
program that aids you in writing or revising text. Edit was designed for 
beginning users, and is a simplified version of a more extensive editor named 
ex. 

EDIT - An Interactive Line Editor 1 



File Each HP-UX account is allotted disk storage space for permanent storage 
of information such as programs, data, or text. A file is a logical collection 
of data (such as an essay, a program, or a chapter from a book) that is 

Filename 

k
storted at~ld mainttlalinthed by ta comt puter sys~tem~T Once you crteatefial fidle i~ is n. . 
ep un 1 you e e sys em o remove 1 . IOU can crea e a e urmg . 

one HP-UX session, log out, then return to use it at a later time. Files 
contain anything you choose to write and store in them. File sizes vary, 
depending on individual needs. One file might contain a single number, 
while another could contain a very long document or program. The only 
way to save information from one session to the next is to store it in a file 
where it is kept for later use. 

Filenames are used to distinguish one file from another, serving the same 
purpose as labels on manila folders in a file cabinet. To write or access 
information in a file, use the name of that file in an HP-UX command. 
The system automatically determines where the file is located. 

Disk Files are stored on a thin circular disk that is coated with magnetic particles 
similar to magnetic recording tape. The disk may be permanently installed 
in a disk drive, or it may be a removable flexible disk that resembes a 

Buffer 

small phonograph record in a thin, square protective container or envelope. 
1

!'\. 

Information from the computer (such as your text) is recorded on the disk . ) 
surface by the disk drive. 

A temporary work space that is available to the user during a text editing 
session. The buffer is used to build and modify text files. Buffers are 
analagous to a piece of scratch paper that is diskarded at the end of a 
session after the information it contained has been copied (written) to a 
permanent disk file. 

2 EDIT - An Interactive Line Editor 



u 

u 

u 

Session 1 
Creating a Text File 
Before you can use the editor, you must first log onto the computer so HP-UX can set 
up communication between your terminal and the editor program. Here is a review of 
the standard HP-UX login procedure: 

If the terminal you are using is directly linked to the computer, turn it on and press 
I Return I (or I Enter 1). If your terminal uses an acoustic coupler (or modem) and telephone 
line instead, turn on the terminal, dial the system-access telephone number, then, when 
you hear a high-pitched tone, place the telephone receiver in the acoustic coupler. If you 
are using a modem, consult the modem manual for procedures. Press carriage return (or 
the I Return I key) once, and await the login message: 

:login: 

Type your login name (which identifies you to HP-UX) on the same line as the login 
message, then press I Return 1. If the keyboard on your terminal supports both uppercase 
and lowercase, be sure you enter your login name in lowercase. Otherwise, HP-UX 
assumes your terminal has only uppercase and will not recognize any lowercase letters 
you may type. When HP-UX types :login:, reply with your login name, for example 
susan: 

:login: susan I Return I 

(In this example, input typed by the user appears in bold face to distinguish it from 
information displayed by HP-UX.) 

HP-UX responds with a request for a password as an additional precaution to prevent 
unauthorized people from using your account. The password will not appear when you 
type it (to prevent others from seeing it). The message is: 

Password: _ (type your password and press I Return I) 

If any of the information you gave during the login sequence was mistyped or incorrect, 
HP-UX responds with: 

Login incorrect. 
:login: 

EDIT - An Interactive Line Editor 3 



If this happens, start over and repeat the process. When you successfully log in, HP-UX 
prints the message of the day and eventually presents you with a '!. at the beginning of a 
fresh line. The% is the HP-UX prompt symbol that tells you HP-UX is ready to accept 
a command. 

Asking for edit 
You are ready to tell HP-UX that you want to use edit, the text editor program. Now is 
a convenient time to choose a name for the text file you are about to create. To begin 
your editing session type edit followed by a space, then the filename you have selected, 
such as text. When you have completed the command, press I Return I and wait for edit's 
response: 

'/, edit text 
"text" no such file or directory 

If you typed the command correctly, you will now be in communication with edit. Edit 
has set aside a buffer for use as a temporary working space during your current editing 
session. It also checked to see if the file you named, text, already exists. As we expected, 
it was unable to find such a file since text is the name of the new file to be created. Edit 
confirms this with the line: 

"text" No such file or directory 

The colon on the next line is edit's prompt, announcing that edit expects a command 
from you. You are now ready to create the new file. 

The "Command not found" Message 
Suppose you misspelled edit by typing editor. Your request would be handled as follows: 

'/, editor 
editor: Command not found. 
'/, 

Your mistake in calling edit editor was treated by HP-UX as a request for a program 
named editor. Since there is no program named editor, HP-UX reported that the program 
or command could not be found. A new % prompt indicates that HP-UX is ready for 
another command, so you can now enter the correct command. 

4 EDIT - An Interactive Line Editor 

,f) 

if) 



u 

Summary 
Your exchange with HP-UX as you logged in and made contact with edit should look 
something like this: 

:login: susan 
Password: 

... A message of General Interest... 
% edit text 
"text" No such file or directory 

Creating text 
You can now begin to enter text into the buffer. This is done by appending text to 
whatever is currently in the buffer. Since there is nothing in the buffer at the moment, 
you are appending text to nothing which, in effect, creates text. Most edit commands 
have two forms: a word that describes what the command does and a shorter abbreviation 
of that word. Either form can be used. Many beginners find the full command names 
easier to remember, but once you are familiar with editing you may prefer to type the 
shorter abbreviations. The command to input text is append which can be abbreviated 
a. Type append, then press I Return 1. 

% edit text 
:append 

Messages from edit 
If you make a mistake while entering a command and type something that edit does not 
recognize, edit responds with a message intended to help you diagnose your error. For 
example, if you misspell the command to input text by typing perhaps, add instead of 
append or a, you receive this message: 

:add 
add:Not an editor command 

When you receive a diagnostic message, examine what you typed to determine what part 
of your command confused edit. The message above means that edit could not recognize 
your mistyped command, so the command was ignored. After displaying a new colon 
prompt, edit is now ready to receive a new command. 

EDIT - An Interactive Line Editor 5 



Text Input Mode 
By giving the command append (or using the abbreviation a), you activated text input 
mode, also known as append mode. When you enter text input mode, edit responds by 
doing nothing. No prompts appear during text input mode, your signal to begin entering 
lines of text. You can type almost anything you want while inputting text lines. Lines ,ry 
are transmitted one at a time to the buffer and held there during the editing session. You 
can append as much text as you want. When you are through entering new text lines, 
type a period by itself at the beginning of a new line, then press I Return 1. This signals the 
editor to terminate text input mode and return to command mode. Edit then prompts 
you for a new command by displaying a colon (:) prompt. 

When you leave append mode and return to command mode (necessary in order to do any 
of the other kinds of editing, such as changing, adding, or printing text), edit preserves 
the text you just typed in the editor buffer, so nothing is lost. If you type any other 
character besides a period by itself on the last line, edit treats the line as text instead of 
an exit command, and will not let you leave append. To exit, type a period by itself on 
a single line terminated by I Return 1. 

This is a good place to learn an important lesson about computers and text: as far as 
the computer is concerned, a blank space is a character as distinct as any letter of the 
alphabet. If you so much as type a blank after the period (that is, type a period then r-'\ 
press the space bar on the keyboard), you will remain in append mode with the last line ' ) 
of text being a period followed by a single space. 

Let's say that the lines of text you enter are (try to type exactly what you see, including 
"thiss"): 

This is some sample text. 
And thiss is some more text. 
Text editing is strange, but nice. 

The last line is the period followed by I Return I that gets you out of append mode. If, while 
typing the line, you hit an incorrect character, you can change the incorrect character 
by using the I Back space I key to back up then retype the line beginning with the incorrect 
character. If you back-space to the first character in the line then press I Return I, a blank 
line is stored in the buffer. Corrections to a line must be done before the line has been 
completed by a I Return I (changes in lines already typed are discussed in Session 2). 

6 EDIT- An Interactive Line Editor 



u 

Writing Text to Disk 
Text input is now complete. Before you break for lunch, the text should be put in a disk 
file for safekeeping until the next editing session. Storing the editor's buffer in a disk 
file is the only way to save information from one session to the next, since the buffer 
is temporary and is destroyed after the end of the editing session. Thus, learning how 
to write a file to disk is second in importance only to entering the text. To write the 
contents of the buffer to a disk file, use the command, write (or its abbreviation w): 

:write 

Edit now copies the buffer to a disk file. If the file does not exist, a new file is created 
automatically and the presence of a "New File" will be noted. The newly-created file 
is given the name specified when you entered the editor, in this case, text. To confirm 
that the disk file has been successfully written, edit repeats the filename, then gives 
the number of lines and the total number of characters in the file. The buffer remains 
unchanged by the write command. All of the lines that were written to the disk are still 
in the buffer, should you want to modify or add to them. 

This ability to write a file to the disk and still continue editing is useful insurance against 
loss of data during power failures. It is a good idea to periodically write the edit buffer 
to a permanent file to minimize the risk of losing an hour's work should the power go 
off for some reason (the risk is actually not as serious as this sounds, because HP-UX 
has recovery commands that recover all but very little of the file in the event of a power 
failure). 

Edit must have a filename to use before it can write a file. If you forgot to indicate the 
name of the file when you began the editing session, edit prints: 

No current filename 

in response to your write command. If this happens, you can specify the filename in a 
new write command: 

:write text 

After the write (or w) type a space followed by the name of the file. 

EDIT - An Interactive Line Editor 7 



Logging Off 
We have done enough for this first lesson on using the HP-UX text editor, and are ready 
to terminate (quit) the editing session. To do this, type quit (or q), then press I Return 1. 
The terminal display looks like this: 

:write 
"text" [New file] 3 lines, 90 characters 
:quit 
% 

The (%) prompt is from HP-UX, telling you that your session with edit is over and 
you can now interact with HP-UX. To end the entire session at the terminal, you must 
also exit from HP-UX. In response to the HP-UX prompt of "%" press the I CTRL I and 
[[]keys simultaneously to terminate the session with HP-UX and make the terminal 
available to the next user. It is always important to logout at the end of a session to 
make absolutely sure no one could accidentally stumble into your abandoned session and 
thus gain access to your files, a condition that tempts even the most honest of souls. 

This is the end of the first session on HP-UX text editing. 

8 EDIT- An Interactive Line Editor 



u 

Session 2 
Login with HP-UX as in the first session: 

:login:susan 
Password: 
% 

This time when you type the edit command, you can specify the name of the file you 
worked on last time. Thus, when edit starts, it will transfer the original file into its 
buffer so that you can resume editing the same file. When edit has copied the file into 
the buffer, it shows the original file name, and lists the number of lines and characters 
in the file as follows: 

%edit text 
"text" 3 lines, 90 characters 

Your command to edit file text caused the editor to copy the 90 characters of text into 
the buffer. Edit now awaits your next cm;nmand. In this session you learn to append 
more text to the file, print the contents of the buffer, and change the text in a line. 

Adding More Text to the File 
To add more to the end of your text, use the append command to enter text input mode. 
When append is the first command of your editing session, the lines you enter are placed 
at the end of the buffer. Why this happens is explained later in this session. This time, 
use the abbreviation for the append command: a: 

:a 
This is text added in Session 2. 
It doesn't mean much here, but 
it does illustrate the editor. 

EDIT - An Interactive Line Editor 9 



Interrupt 
Most terminals supported by HP-UX have a I DEL I (delete) key. If you press I DEL I while 
working with edit, any task the editor is performing is stopped, and the following message 
is sent to you: 

Interrupt 

Any command that edit might be executing is terminated by I DEL I, causing edit to prompt 
you for a new command. If you are appending text at the time the key is pressed, append 
mode terminates and you are expected to give another command. The line of text that 
you were typing when the append operation was interrupted is lost and is not entered 
into the buffer. 

Making Corrections 
If you have read a general HP-UX introductory text, you will recall that it is possible to 
erase individual letters that you have typed. This is done by typing the designated erase 
character as many times as there are characters you want to erase. Accounts normally 
start out using the number sign(#) as the erase character, but it's possible for a different 
erase character to be selected. We'll show "#" as the erase character in our examples, 
but if you've changed your erase character to backspace (control-H) or something else, 
be sure to use your own erase character. 

If you make a bad start in a line and would like to begin again, erasing individual 
characters with a "#" is cumbersome - what if you had 15 characters in your line and 
wanted to get rid of them? To do so either requires: 

This is yukky tex############### 

with no room for the great text you would like to type, or, 

This is yukky tex~This is great text. 

When you type the at-sign (@), you erase the entire line typed so far. (An account 
can select a different line erase character to use in place of@. If your line-erase char­
acter has been changed, use it where the examples show "@" ,). You can immediately 
begin to retype the line. This, unfortunately, does not help after you type the line and 
press I Return 1. To make corrections in completed lines, it is necessary to use the editing 
commands covered in this and following sessions. 

HP-UX and edit also support use of I Back space I for text corredions. lfow the backspace 1~ 
key affects the terminal screen display depends on how your terminal or terminal emulator 
functions. You can look it up in the manual, or just try it out. 

10 EDIT - An Interactive Line Editor 



( 

u 

u 

u 

Listing Buffer Contents 
Having appended text to what you wrote in Session 1, you might be curious to see what 
is in the buffer. To print the contents of the buffer, type the command: 

:1,$p 

The "1" stands for line 1 of the buffer, the "$" is a special symbol designating the last 
line of the buffer, and p (for print) is the command to print from line 1 to the end of the 
Thus, 1, $p gives you: 

This is some sample text. 
And thiss is some more text. 
Text editing is strange, but nice. 
This is text added in Session 2. It doesn't mean much 
It doesn't mean much here, but 
it does illustrate the editor. 

You may occasionally place a character in the buffer that cannot be printed (ASCII 
control characters are not printed on most output devices). These characters are usually 
obtained by pressing I CTRL I and some other key at the same time. When printing lines, 
edit uses a special notation to show the existence of non-printing (control) characters. 

Suppose you had introduced the non-printing character "control-A" into the word "il­
lustrate" by accidently holding down the I CTRL I key while typing a. If you asked to have 
the line printed, EDIT would display: 

it does illustr'Ate the editor. 

The two-character sequence • A indicates that the I CTRL I key was depressed simultaneously 
with the "A" key, resulting in a corresponding control character (the apostrophe indicates 
that 1 CTRL I was pressed). The error is easily corrected, as discussed later in this session. 

In looking over the text we see that "this" is typed as "thiss" in the second line, as was 
previously suggested. Let's correct the spelling. 

EDIT - An Interactive Line Editor 11 



Finding Things in the Buffer 
You must find something in the buffer before you can change it. To find "thiss" in the 
text you entered, look at a listing of the lines. Edit searches the buffer, looking for the 
text sequence "thiss", and stops searching when it finds the specified character pattern. 
You can tell edit to search for a pattern by typing the pattern between slash marks: r) 

:/thiss/ 

By typing /thiss/ and pressing I Return I, edit is instructed to search for "thiss" (if edit 
cannot find the pattern of characters in the buffer, it responds "Pattern not found"). 
When edit finds the characters "thiss", it prints the line where the pattern was found for 
your inspection: 

And thiss is some more text. 

Edit is now positioned in the buffer at the line which it just printed, ready to make a 
change in the line. 

The Current Line 
Edit always keeps track of its position in the buffer by identifying the "current line" at 
the end of each operation. In general, the line that was most recently printed, entered, 
or changed is considered to be the current position or line in the buffer. The editor 
assumes the next command is to be applied to the current line, unless you direct it to 
act in another location (or perform an operation that is not related to the current line). 
When you bring a file into the editor, the editor is always positioned at the last line in 
the file. If your initial editing command is "append", the lines you enter are added to 
the end of the file, that is, they are placed after the current line. You can refer to your 
current postion in the buffer by the symbol period (.),usually called "dot". If you type 
"." then press I Return I, you are telling edit to print the current line: 

And thiss is some more text. 

If you want to know the number of the current line, you can type . = and carriage return, 
and edit will respond with the line number: 

2 

12 EDIT - An Interactive Line Editor 



u 

u 

u 

If you type the number of any line and a carriage return, edit will position you at that 
line and print its contents: 

:2 
And thiss is some more text. 

Experiment with these commands to ensure that you understand what they do. 

Numbering Lines (nu) 
The number (nu) command is similar to print, giving both the number and the text of 
each printed line. To see the number and text of the current line, type 

:nu 
2 And thiss is some more text. 

Notice that the shortest abbreviation for the number command is nu (not n which is used 
for a different command). You can specify a range of lines to be listed by the number 
command in the same way that lines are specified for print. For example, 1, $nu lists all 
lines in the buffer and their corresponding line numbers. 

Substitute Command (s) 
Now that you have found the misspelled word, it is time to change "thiss" to "this". As 
far as edit is concerned, changing text is a matter of substituting one pattern for another. 
Just as a stood for append, so s stands for substitute. Use the abbreviation s to reduce 
the chance of mistyping the substitute command. This command instructs edit to make 
the change: 

2s/thiss/this/ 

First, indicate the line to be changed (2), then type the command (s), followed by the 
characters to be removed (typed between slashes). Finish the line with the characters to 
be put back in followed by a closing slash mark, then press I Return 1. Here it is in plain 
English: 

2s/what is to be changed/what to change to/ 

EDIT - An Interactive Line Editor 13 



If edit finds an exact match of the characters to be changed it makes the change only in 
the first occurrence of the characters. If it does not find the characters to be changed it 
will respond: 

Substitute pattern match failed 

indicating that your instructions could not be carried out. If edit finds the characters 
you want to change, it makes the sutstitution and automatically prints the changed line 
so you can verify that the correct substitution was made. In the example, 

:2s/thiss/this/ 
And this is some more text. 

line 2 (and line 2 only) is searched for the character pattern "thiss". When the first 
exact match is found, "thiss" is changed to "this". In reality, since you set the current 
line number to 2 in an earlier operation, it was unnecessary to specify the number of the 
line to be changed by this command. In the command: 

:s/thiss/this/ 

edit assumes that the line where the editor is currently positioned (the current line) is 
to be used. A period can also be used to specify the current line as in the command: 

: .s/thiss/this/ 

although the period is totally unnecessary. In either case, the command without a line 
number or without a period would have produced the same result as when the line number 
was specified because the editor was already positioned at the line to be changed. Here 
is another illustration of substitution. 

Text editing is strange, but nice. 

To be a bit more positive, take out the characters "strange, but" so the line reads: 

Text editing is nice. 

A command that positions edit at that line then makes the substitution is: 

:/strange/a/strange, but // 

14 EDIT- An Interactive Line Editor 

n 



u 

u 

u 

This command combines the search with a substitution, a perfectly allowable combina­
tion. Thus, you do not necessarily have to use line numbers to identify a line to edit. 
Instead, you can identify the line to be changed by asking edit to search for a specified 
pattern of characters that occurs in the line of interest. The function of each part of the 
command is as follows: 

/strange/ 
s 
/strange,but 

tells edit to find the characters "strange" in the text 
tells edit we want to make a substitution 

I I substitutes nothing at all for the characters "strange, but " 

Note the space after "but" on "/strange, but /". If you do not indicate the space is to 
be taken out, your line becomes: 

Text editing is nice. 

which looks odd because of the extra space between "is" and "nice". Again, you can see 
that a blank space is a real character to a computer, and when editing text you need to 
be aware of spaces within a line just as you would be aware of an "a" or a "4". 

Another Way to List What's in the Buffer (z) 
Although the print command is useful for looking at specific lines in the buffer, other 
commands can be more conveniet for viewing large sections of text. You can ask to see 
a screen full of text at a time by using the command z. If you type 

: 1z I Return I 

edit starts with line 1 and continues printing lines, stopping either when the screen of 
your terminal is full, or when the last line in the buffer has been printed. If you want to 
read the next segment of text, type the command 

:z I Return I 

If no starting line number is given for the z command, printing starts at the "current" 
line; in this case the last line printed. Viewing lines in the buffer one full screen at a 
time is known as paging. Paging can also be used to print a section of text on a printing 
terminal. 

EDIT - An Interactive Line Editor 15 



Saving the Modified Text 
Now is a good place to pause and end the second session. If you hastily type q I Return I 
to terminate the session, your interaction with edit resembles: 

:q 
No write since last change (q! quits) 

This is edit's warning that you have not written the modified contents of the buffer to 
disk. You are risking the loss of the work you have done during the editing session since 
the last previous write command. Since no previous disk write was performed during 
this session, everything done during the session would be lost. If you do not want to save 
the work done during this editing session, you can type q! to confirm that you indeed 
want to end the session immediately, losing the contents of the buffer. However, since 
you probably prefer to preserve the edited file, use the write command as follows: 

:w 
"text" 6 lines, 171 characters 

then follow with 

:q 
%logout 

and hang up the phone or tum off the terminal when HP-UX asks for a login name. 

This is the end of the second session on HP-UX text editing. 

16 EDIT - An Interactive Line Editor 

,fj 



u 

Session 3 

Bringing Text Into the Buffer (e) 
Login to UNIX and make contact with edit. 'fry to do it without using notes if you can. 

Did you remember to give the name of the file you wanted to edit by typing: 

%edit text 

or did you type: 

%edit 

Both commands activate edit, but only the first version can bring a copy of the file named 
text into the buffer. If you forgot to specify the filename, you can recover by typing: 

:e text 
"text" 6 lines, 171 characters 

The edit command which can be abbreviated e when you're in the editor, tells edit that 
you want to destroy anything already in the editor's buffer and copy the file text into the 
buffer for editing. You can also use the edit (e) command to change files in the middle of 
an editing session or to give edit the name of a new file that you want to create. Because 
the edit command clears the buffer, you will receive a warning if you try to edit a new 
file without having saved a copy of the old file. This gives you a chance to write the 
contents of the buffer to disk before editing the next file. 

EDIT - An Interactive Line Editor 17 



Moving Text in the Buffer (m) 
Edit enables you to move lines of text from one location in the buffer to another by means 
of the move ( m) command: 

:2,4m$ 

This example directs edit to move lines 2, 3, and 4 to the end of the buffer following the 
last line, indicated by ($). When constructing the move command, specify the first line 
to be moved, the last line to be moved, the move command m, then the line after which 
the moved text is to be placed. Thus, 

:1,6m20 

commands edit to move lines I through 6 (inclusive) to a position immediately following 
line 20 in the buffer. To move only one line, say line 4, to a position in the buffer after 
line 6, the command would be "4m6". 

Let's move some text using the command: 

:5,$m1 
2 lines moved 
it does illustrate the editor. 

After executing a command that changes more than one line of the buffer, edit tells 
how many lines were affected by the change. The last moved line is printed for your 
inspection. If you want to see more than just the last line, use the print (p), z, or 
number (nu) command to view more text. The buffer should now contain: 

This is some sample text. 
It doesn't mean much here, but 
it does illustrate the editor. 
And this is some more text. 
Text editing is nice. 
This is text added in Session 2. 

You can restore the original order by typing: 

:4,$m1 

18 EDIT - An Interactive Line Editor 



u 

u 

u 

or you can combine context searching and the move command for the same result: 

:/And this is some/,/This is text/m/This is some sample/ 

The danger in combining context searching with the move command lies in the higher 
probability of making a typing error in such a long command. Typing line numbers is 
usually much safer. 

Copying Lines (copy) 
The copy command is used to make a second copy of specified lines. leaving the original 
lines where they were. Copy has the same format as the move command. For example: 

:12,15copy$ 

makes a copy of lines 12 through 15, placing the added lines after the last line in the 
buffer ($). Experiment with the copy command so that you can become familiar with 
how it works. Note that the shortest abbreviation for copy is co (and not the letter c 
which has another meaning). 

Deleting Lines (d) 
Suppose you want to delete the line 

This is text added in Session 2. 

from the buffer. If you know the number of the line to be deleted, you can type that 
number followed by delete or d. This example deletes line 4: 

:4d 
It doesn't mean much here, but 

Here "4" is the number of the line to be deleted and "delete" or "d" is the command 
to delete the line. After executing the delete command, edit prints the resulting new 
current line(.). 

If you do not happen to know the line number, you can search for the line and then 
delete it using this sequence of commands: 

:/added in Session 2./ 
This is text added in Session 2. 
:d 
It doesn't mean much here, but 

EDIT - An Interactive Line Editor 19 



The "/added in Session 2./" asks edit to locate and print the next line containing the 
indicated text. Once you are sure that you have correctly specified the line you want to 
delete, you can enter the delete (d) command. In this case it is not necessary to specify 
a line number before the "d". If no line number is given, edit deletes the current line (.), 
that is, the line found by the search operation. After the deletion, your buffer should 
contain: 

This is some sample text. 
And this is some more text. 
Text editing is nice. 
It doesn't mean much here, but 
it does illustrate the editor. 

To delete both lines 2 and 3: 

And this is some more text. 
Text editing is nice. 

type 

:2,3d 

to specify the range of lines (2 thru 3) and the operation on those lines (d for delete). 

Again, this assumes that you know the line numbers for the lines to be deleted. If you 
do not, you can combine the search and delete commands as follows: 

:/And this is.some/,/Text editing is nice/d 

This tells the editor to find the first line (following the current line) that contains the 
characters "And this is some", then delete it and all subsequent lines until it has deleted 
the line containing "Text editing is nice". 

20 EDIT - An Interactive Line Editor 

,f) 



u 

u 

Be Careful 
In using the search function to locate lines to be deleted, make absolutely sure that 
the characters you give as the basis for the search will take edit to the line you want 
deleted. Edit searches for the first occurrence of the characters starting from where you 
last edited; that is, from the line you see printed if you type a period (.) then press 
I Return 1. 

A search based on too few characters may result in the wrong line being deleted {if 
an identical pattern appears elsewhere in the text). For this reason, it is usually safer 
to specify the search, then delete in a second separate step, at least until you become 
familiar enough with the editor that you understand how best to specify searches. For 
beginners, be safe and double-check each command before pressing I Return I to send the 
command on its way. 

Oops! I goofed. Now what? (undo) 
The undo { u) command has the ability to reverse the effects of the last {and only the last) 
command. To undo the previous command type u or undo. Undo can rescue the contents 
of the buffer from many an unfortunate mistake. However, its powers are not unlimited, 
so it is still wise to be reasonably careful about the commands you give. Undo affects 
only those commands that can change the buffer, such as delete, append, move, copy, 
substitute, and even undo itself. The commands write ( w) and edit (e) which interact 
with disk files cannot be undone, nor can commands such as print which do not change 
the buffer. Most important: the only command that can be reversed by undo is the last 
"undo-able" command preceding the undo. 

To illustrate, let's issue an undo command. Recall that the last buffer-changing command 
deleted the lines that were formerly numbered 2 and 3. Executing undo at this time 
reverses the effects of the deletion, causing those two lines to be restored to their original 
position in the buffer. 

:u 
2 more lines in file after undo 
And this is some more text. 

Again, as before; edit informs you when the command affects more than one line, and 
prints the text of the resulting new current line. 

If after using undo you discover that the change was correct, you can undo the undo by 
giving another undo command. 

EDIT - An Interactive Line Editor 21 



More About Dot(.) and Buffer End($) 
The function assumed by the dot symbol (period) depends on its context. It can be used 
to: 

• Exit from append mode by typing a period (by itself) followed immediately by ,r-'\ 
I Return I ·. ) 

• Refer to the current line in the editor's buffer. 

A period can also be combined with an equal sign to get the number of the line currently 
being edited (current line): 

Thus, type . = to ask for the number of the current line, or use a colon instead of the 
equal sign (. : ) to ask for the text in the current line. 

In this editing session, as in the last, the dollar sign was used to to indicate the last line 
in the buffer for commands such as print, copy, and move. As a command, the dollar 
sign asks edit to print the last line in the buffer. If the dollar sign is combined with the 
equal sign ($=), edit prints the line number corresponding to the last line in the buffer. 

(.) and ($) therefore represent line numbers. Whenever appropriate, these symbols can 
be used in place of line numbers in commands. For example: 

:. ,$d 

instructs edit to delete all lines from the current line (.) through the last line in the 
buffer. 

22 EDIT - An Interactive Line Editor 

,r) 



u 

Moving Around in the Buffer ( + and -) 
It is frequently convenient during an editing session to go back and re-read a previous 
line. You could specify a context search for a line you want to read if you remember 
some of its text, but if you simply want to see what was written a few (say, 3) lines ago, 
you can type: 

-3p 

This tells edit to move back to a position 3 lines before the current line (.) and print 
that line. You can move forward in the buffer similarly: 

+2p 

tells edit to print the line which is 2 ahead of our current position. You can use + and -
in any command where edit accepts line numbers. Line numbers specified with "+" or 
"-" can be combined to print a range of lines. The command: 

: -1 , +2copy$ 

copies 4 lines: the line preceding the current line, the current line, and the two lines 
following the current line, placing them after the last line in the buffer ($). 

Try typing a single minus (- ). You will move back one line just as if you had typed, 
: -1p. Typing the command "+" works similarly. You might also try typing a few plus or 
minus signs in a row (such as "+++") to see edit's response. Typing a carriage return 
alone on a line is the equivalent of typing "+lp": it moves you one line ahead in the 
buffer and prints that line. 

If you are at the last line in the buffer and try to move further ahead, perhaps by typing 
a "+" or a carriage return alone on the line, edit reminds you that you are at the end of 
the buffer: 

At end-of-file 

Similarly, if you try to move to a position before the first line, edit will print one of these 
messages: 

Nonzero address required on this command 
Negative address - first buffer line is 1 

The number associated with a buffer line is the line's "address", in that it can be used 
to locate the line. 

EDIT - An Interactive Line Editor 23 



Changing Lines (c) 
There may be occasions when you want to delete certain lines and insert new text in 
their place. This can be accomplished easily with the change (c) command. The change 
command instructs edit to delete specified lines then switch to text input mode in order 
to accept the text that will replace them. Let's assume that you want to change the first ,r) 
two lines in the buffer: 

This is some sample text. 
And this is some more text. 

to read 

This text was created with the HP-UX text editor. 

To do so, you can type: 

:. ,2c 
2 lines changed 
This text was created with the HP-UX text editor. 

The command 1,2c, specifies that you want to change the range of lines beginning with ~ 
1 and ending with 2 by giving line numbers as with the print command. These lines , ) 
will be deleted. After a I Return I enters the change command, edit notifies you if more 
than one line is being changed, then places you in text input mode. Any text typed on 
the following lines is inserted into the position where lines were deleted by the change 
command. You remain in text input mode until you exit by typing a period alone on 
a line. Note that the number of lines added to the buffer need not be the same as the 
number of lines deleted. 

This is the end of the third session on text editing with HP-UX. 

24 EDIT - An Interactive Line Editor 



u 
Session 4 
This lesson covers several topics, starting with commands that affect the entire buffer, 
characters with special meanings, and how to issue HP-UX commands while using the 
editor. The next topics deal with files, discussing more about reading and writing, and 
explaining how to recover files lost in a crash. The final section provides leads to other 
sources of information and other editors that expand beyond edit. 

Making Commands Global (g) 
One disadvantage of using the commands in the manner illustrated when searching or 
substituting is that if you have a number of instances of a word to change, it would 
appear that you have to type the command repeatedly, once for each time the change 
needs to be made. Edit, however, provides a way to make commands apply to the entire 
contents of the buffer - the global (g) command. To print all lines containing a certain 
sequence of characters (say, "text") the command is: 

:g/text/p 

The g instructs edit to make a global search through the file for all lines in the buffer u containing the character pattern text. The p prints the lines found. 

u 

To issue a global command, start by typing a "g" and then a search pattern identifying 
the lines to be affected. Then, on the same line, type the command to be executed on the 
identified lines. Global substitutions are frequently useful. For example, to change all 
instances of the word "text" to the word "material" the command would be a combination 
of the global search and the substitute command: 

:g/text/s/text/material/g 

In this example, the "g" at the beginning of the line tells edit to change every line in 
the file that contains the word or words between it and the s command. The "g" at the 
end of the line tells edit to make the substitution every time the word or words being 
changed appear in any given line. If the second "g" is absent, the substitution is made 
only on the first occurrence of the text being altered on the line identified by the pattern 
between the first "g" and the "s" command. 

EDIT - An Interactive Line Editor 25 



You can give a command such as: 

:14x/text/material/g 

to change every instance of "text" in line 14 alone. Note further that neither command 
will change "Text" to "material" because "Text" begins with a capital rather than a 
lower-case t. Edit does not automatically print the lines modified by a global command. 
If you want the lines to be printed, type a "p" at the end of the global command: 

:g/text/s/text/material/gp 

The usual qualification should be made about using the global command in combination 
with any other. Be sure you know what you are telling edit to do to the entire buffer. 
For example: 

:g/ /d 
72 less lines in file after global 

deletes every line containing a blank anywhere in it. This could demolish your document, 
because most lines contain spaces between words, and thus would be deleted. After 
executing the global command, edit prints a warning if the command added or deleted 
more than one line. Fortunately, the undo command can reverse the effects of a global 
command. Try experimenting with the global command on a small buffer of text to see 
what it can do for you. 

Be careful when using global substitutions. For example, in the previous illustration, the 
word "textual" A would be changed to "materialual" by the substitution of "material" 
for "text". 

26 EDIT- An Interactive Line Editor 

II) 



u 

u 

u 

More about Searching and Substituting 
Previous examples of using slashes to identify a character string that you want to search 
for or change have always specified the exact characters. There is a less tedious way to 
repeat the same string of characters .. To change "noun" to "nouns" you can type either 

:/noun/a/noun/nouns/ 

as before, or use a somewhat abbreviated command: 

"/noun/s//nouns/ 

In this example, the characters to be changed are not specified (there are no characters, 
not even a space, between the two slash marks that indicate what is to be changed). This 
lack of characters between the slashes is taken by the editor to mean "use the characters 
we last searched for as the characters to be changed". 

Similarly, the last context search can be repeated by typing a pair of slashes with nothing 
between them: 

"/does/ 
It doesn't mean much here, but 
:// 
it does illustrate the editor 

Because no characters are specified for the second search, the editor scans the buffer for 
the next occurrence of the characters "does". 

Edit normally searches forward through the buffer, wrapping around from the end of 
the buffer to the beginning, until the specified character string is found. If you want to 
search in the reverse direction, use question marks (?) instead of slashes to surround the 
character string. 

It is also possible to repeat the last substitution without having to retype the entire 
command. An ampersand (&) used as a command repeats the most recent substitute 
command, using the same search and replacement patterns. After altering the current 
line by typing 

:a/noun/nouns/ 

you could use the command 

EDIT - An Interactive Line Editor 27 



:/nouns/& 

or simply 

://& 

to make the same change on the next line in the buffer containing the characters "nouns". 

Special Characters 
Two characters have special meanings when used in specifying searches: the dollar sign 
($), and circumflex ('). ($) is taken by the editor to mean "end of the line" and is used 
to identify strings which occur at the end of a line. 

:g/ing&/s//ed/p 

tells the editor to search for all lines ending in "ing" (and nothing else, not even a blank 
space) to change each final "ing" to "ed" and print the changed lines. 

The circumflex C) indicates the beginning of a line. Thus, 

:sr/1. 1 

instructs the editor to insert "1." and a space at the beginning of the current line. 

These characters, ($) and ('), have special meanings only in the context of searching. 
At other times, they are ordinary characters. If you ever need to search for a character 
that has a special meaning, you must indicate that the character is to temporarily lose 
its special significance by typing another special character, the backslash (\), before it. 

:s/\$/dollar/ 

looks for the character "$" in the current line and replaces it by the word "dollar". Were 
it not for the backslash, the "$" would have represented "the end of the line" in your 
search, rather than the character "$". The backslash retains its special significance unless 
it is preceded by another backslash. 

28 EDIT - An Interactive Line Editor 

,!) 



u 

u 

Issuing HP-UX Commands from the Editor 
After creating several files with the editor, you may want to delete files no longer useful 
to you or ask for a list of your files. Removing and listing files are not editor functions, 
so they require use of HP-UX system commands (also referred to as "shell" commands, 
because the HP-UX program that processes HP-UX commands is called a "shell"). You 
do not need to quit the editor to execute an HP-UX command as long as you indicate 
that it is to be sent to the shell for execution. To use the HP-UX command rm to remove 
the file named junk, type: 

: !rm junk 
! 

The exclamation point (!) indicates that the rest of the line is to be processed as an 
HP-UX command. If the buffer contents have not been written since the last change, a 
warning is printed before the command is executed. The editor replies with an exclama­
tion point when the command is completed. The Getting Started with HP-UX manual 
describes useful features of the system, and is helpful background when you need to 
access HP-UX from edit. 

Filenames and File Manipulation 
Throughout each editing session, edit keeps track of the name of the file being edited 
as the current filename (the current filename is the name given when you entered the 
editor). The current filename changes whenever the edit (e) command is used to specify 
a new file. Once edit has recorded a current filename, it inserts that name into any 
command where a filename has been omitted. If a write command does not specify a 
file, edit, as you have seen, supplies the current filename. You can have the editor write 
all or part of its buffer contents to a different file by including the new file name in the 
write command: 

:w chapter3 
"chapter3" 283 lines, 8698 characters 

The current filename remembered by the editor does not change as a result of the write 
command unless it is the first filename given in the editing session. Thus, using the 
previous example, the next write command that does not specify a file name will write 
onto the current file, not onto the file chapterS. 

EDIT - An Interactive Line Editor 29 



The File (f) Command 
To ask for the current filename, type file (or f). In response, the editor provides updated 
information about the buffer, including the filename, your current position, and the 
number of lines in the buffer: 

:f 
"text" [Modified] line 3 of 4--75%--

If the contents of the buffer have changed since the last time the file was written, the 
editor will tell you that the file has been "Modified". After you save the changes by 
writing to a disk file, the buffer is no longer considered modified: 

:w 
"text"4 lines, 88 characters 
:f 
"text"line 3 of 4--75%--

Reading Additional Files (r) 
The read (r) command enables you to add the contents of a file to the buffer without 
destroying the text already there. To use it, specify the line after which the new text is 
to be placed, the command r, then the name of the file. 

:$r bibliography 
"bibliography" 18 lines, 473 characters 

This command reads in the file bibliography and adds it to the buffer after the last line. 
The current filename is not changed by the read command unless it is the first filename 
given in the editing session. 

Writing Parts of the Buffer 
The write ( w) command can write all or part of the buffer to any file you specify. You 
are already familiar with writing the entire contents of the buffer to a disk file. To write 
only part of the buffer onto a file, indicate the beginning and ending lines before the 
write command. For example: 

:45,$w ending 

Here all lines from 45 through the end of the buffer are written to the file named ending. 
The lines remain in the buffer as part of the document you are editing, so you can 
continue to edit the entire buffer. 

30 EDIT- An Interactive Line Editor 

n 



u 

u 

u 

Recovering Files 
Under most circumstances, edit's crash recovery mechanism is able to save work to within 
a few lines of changes after a crash or if your terminal is accidentally diskonnected. If 
you lose the contents of an editing buffer in a system crash, you will normally receive 
mail when you login, listing the name of the recovered file. To recover the file, enter the 
editor and type the command recover ( rec), followed by the name of the lost file. 

:recover chap6 

Recover is sometimes unable to save the entire buffer successfully, so always check the 
contents of the saved buffer carefully before writing it back onto the original file. 

Other Recovery Techniques 
If something goes wrong while you are using the editor, it may be possible to save your 

. work by using the command preserve (pre), which saves the buffer as if the system had 
crashed. If you are writing a file and receive the message "Quota exceeded" , you have 
tried to use more disk storage than is allotted to your account. Proceed with caution 
because it is likely that only a part of the editor's buffer is now present in the file you 
tried to write. In this case, you should use the shell escape from the editor (!) to remove 
some files you don't need and try to write the file again. If this is not possible and you 
cannot find someone to help you, enter the command 

:preserve 

then seek help. Do not simply leave the editor. If you do, the buffer will be released 
(and possibly destroyed), and you may not be able to save your file. After a preserve, 
you can use the recover command once the problem has been corrected. 

If you make an unwanted change to the buffer and issue a write command before diskover­
ing your mistake, the modified version will replace any previous version of the file. Should 
you ever lose a good version of a document in this way, do not panic and leave the editor. 
As long as you stay in the editor, the contents of the buffer remain accessible. Depending 
on the nature of the problem, it may be possible to restore the buffer to a more complete 
state with the undo command. After fixing the damaged buffer, you can again write the 
file to disk. 

EDIT - An Interactive Line Editor 31 



Further Reading and Information 
Edit is an editor designed for beginning and casual users. It is actually a version of 
a more powerful editor called ex. These lessons are intended to introduce you to the 
editor and its most commonly used commands. We have not covered all of the editor's 
commands, just a selection of commands which should be sufficient to accomplish most !f} 
of your editing tasks. You can find out more about the editor in the ex tutorial, which 
is applicable to both ex and edit. One way to become familiar with ex is to begin by 
reading the description of commands that you already know. 

Using ex 
As you become more experienced with using the editor, you may still find that edit 
continues to meet your needs. However, should you become interested in using ex, it is 
easy to switch. To begin an editing session with ex, use ex in your command instead of 
edit. 

Edit commands work the same way in ex, but the editing environment is somewhat 
different. You should be aware of a few differences that exist between the two versions of 
the editor. In edit, only the characters ~, $, and\ have special meanings in searching the 
buffer or indicating characters to be changed by a substitute command. Several additional 
characters have special meanings in ex, as described in the ex tutorial. Another feature 
of the edit environment prevents users from accidentally entering two alternative modes r-\ 
of editing, open and visual, in which the editor behaves quite differently than in normal 1 

) 

command mode. If you are using ex and the editor behaves strangely, you may have 
accidently entered open mode by typing o. Type the ESC key and then a "Q" to get 
out of open or visual mode and back into the regular editor command mode. The Vi/Ex 
Editor tutorial earlier in this volume provides a full discussion of visual mode. 

32 EDIT - An Interactive Line Editor 



u 

u 

u 

Index 

a 
adding text, ed ............................................................ 16 
adding to a text file, edit ....................... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
append mode, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
appending text, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
arrays, awk ............................................................... 14 
ASCII control characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
awk: 

actions ................................................................. 13 
arrays ................................................................. 14 
Boolean expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
built-in functions ........................................................ 15 
command line . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
comments .............................................................. 18 
error messages .......................................................... 19 
expression combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
field variables ........................................................... 14 
flow-of-control statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
formatting output ........................................................ 7 
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
pattern combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
predefined variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
ranges of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 12 
redirecting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
relational expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 11 
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
writing patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

b 
buffer contents, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 15 
built-in functions, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Index 33 



c 
changing lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
changing lines, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
command line, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
command mode ............................................................ 6 
command mode, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
command not found, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
comments, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
control characters, ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
copying lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
copying lines, edit ......................................................... 19 
correcting text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
correcting text, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
creating a text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
creating a text file, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
creating a text file, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
current line, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
current line, edit ......................... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
currently remembered file name, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

d 
decryption, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
deleting lines, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
deleting text, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 20 

e 
ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 46 
ed: 

adding text ............................................................. 16 
appending text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
changing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
copying lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
creating a text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
current line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
currently remembered file name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

!f) 

decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ~ 
deleting text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 20 : ) 
editing scripts .......................................................... 47 
encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
ending a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

34 Index 



u 

u 

error messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
global commands ........................................................ 29 
inserting text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
introduction ............................................................. 1 
joining lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 
line pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
metacharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 25 
modifying text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
moving lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
pointer to the last line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 8, 9 
printing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
prompts ................................................................. 3 
reading files into the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 
search function .......................................................... 10 
setting pointers to lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
shell interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
silencing character counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
special commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
splitting lines ........................................................... 34 
starting a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
undo command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
writing buffer text onto a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

edit ....................................................................... 6 
edit: 

adding to a text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
append mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
changing lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
command not found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
copying lines ............................................................ 19 
creating a text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
current line ............................................................. 12 
deleting lines ........................................................... 19 
differences from ex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
ending a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
erase character ................................................... , ...... 10 
error messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
file command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
file manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
file names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
file recovery ............................................................ 31 

Index 35 



global commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
issuing HP-UX commands ................................................ 29 
listing buffer contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 15 
moving text in the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
numbering lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
reading additional files ................................................... 30 
recovering files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
search and substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
search function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 27 
special characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
starting a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
substitute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
undo command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
writing parts of the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
writing text to disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 16 
moving around in the buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

editing scripts, ed ......................................................... 47 
encryption, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
ending a session, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 
erase character, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
error messages, awk ........................................................ 19 
error messages, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
error messages, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
ex: 

differences from edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

f 
file command, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
file manipulation, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
file names, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
file recovery, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
flow-of-control statements, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
formatting output, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

g 
global commands, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
global commands, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

36 Index 

,f) 
/ 

n 



u 

u 

u 

. 
I 

inserting text, ed .......................................................... 20 
interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
interrupt, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
interrupt, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

. 
J 

joining lines, ed ........................................................... 33 

I 
line pointers, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

m 
metacharacters, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12, 25 
modifying text, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
moving around in the buffer, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
moving lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

n 
nonprinting characters ..................................................... 11 
numbering lines, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

0 
open mode, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

p 
pointer to the last line, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
predefined variables, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
printing lines, ed .......................................................... 17 
prompts, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

r 
recovering files, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
redirecting output, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Index 37 



s 
scripts, editing with ed ..................................................... 47 
search function, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
search function, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 r-\ 
setting pointers to lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 •. ) 
shell interface, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
silencing character counts, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
special characters, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
special commands, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 
splitting lines, ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
substitute command, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

t 
text editor: 

awk ..................................................................... 1 
ed ...................................................................... 1 
edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 4 

text file, creating ........................................................... 3 
text file, creating (edit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
text input mode, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

u 
undo command, ed 
undo command, edit 

........................................................ 21 
21 

v 
visual mode, edit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

w 
writing text to disk, edit 7, 16 

38 Index 

n 

n 



I 
I 

u 

u 

u 

Table of Contents 

A WK: A Programming Language for Manipulating Data 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
The Command Line . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Structure of Awk Programs .............................................. 4 
Predefined Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Output ................................................................ 6 

Redirecting Output to Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Formatting Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Details of Awk Programming ............................................. 8 
Designing Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Designing Actions ................................. ·, . . . . . . . . . . . . . . . . 13 
Commenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Error Messages ................... , .................................... 19 
Notes on the Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Notes on Awk Implementation ........................................... 21 
Annotated Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

Generating Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Doing Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Rearranging Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Table of Contents 



n 

ii Table of Contents 



AWK: A Programming Language 
for Manipulating Data 

U Introduction 

u 

u 

Awk is a useful tool for manipulating data and text. Unlike the HP-UX commands that 
do similar work, awk comprises its own programming language. This lets you process 
input in various ways, such as: 

• Generate reports on the contents of files 

• Transform the text or data within files 

• Manipulate columnar data 

• Search files for specific patterns 

With awk's ability to search files and generate reports, you can treat some of your 
ordinary files as databases. The terminology used in awk - "records" and "fields" -
reinforces this idea. 

The awk programming language includes such constructs as for, while, and if-else, as 
well as a set of built-in functions and variables. The language resembles the C program­
ming language. If you are familiar with C, you should be able to master awk almost 
immediately. If you don't know C, you should still find awk easy to learn and use. 

Awk is named for its designers: Alfred V. Aho, Peter J. Weinberger, and Brian W. 
Kernighan, from Bell Laboratories. For a detailed discussion written by these people, 
read "Awk-A Pattern Scanning and Processing Language," published by Bell Labs in 
1978 and available in many technical libraries. 

This article is for the user who is familiar with HP-UX and who has used a program­
ming language. There are examples throughout the article; you should try them as you 
encounter them. You should take time now to create a small input file, using any of the 
HP-UX editors, or by typing the following command line: 

$ cat >hello.awk 

The cat command followed by > allows you to type text directly into the file hello.awk 
from the keyboard. The filename is arbitrary; the . awk suffix is just a reminder for you 
and is optional. 

AWK: A Programming Language for Manipulating Data 1 



Now type in 

Hello, world! 
Howdy, partner! 

End the file by typing CONTROL and[]] together (the end-of-file character) and then n 
pressing I Return 1. (CONTROL may be marked I CTRL I or I CTRL I on your keyboard; I Return I 
is marked I Enter I on some keyboards with HP-UX overlays.) The shell prompt should 
reappear; your example file is ready to use. 

The Command Line 
You can program awk entirely on the same line with the prompt. This is often done in 
practice. The format is: 

$ awk 'awk_program' input_filename 

The dollar sign at the begining of this command line represents the shell prompt in this 
tutorial. Your shell prompt may be different. 

Command-line awk programs must be surrounded by single or double quotes, so that the n 
shell will see the whole program as a single argument to the command. Single quotes 
prevent the shell from interpreting any special characters you may have included in the 
awk program. All examples in this tutorial use single quotes. For more information on 
shell quoting rules, read "UNIX Programming" in Volume 2 of HP- UX Concepts and 
Tutorials. 

If your awk program exceeds one line, you can type a backslash (\), then press the I Return I 
key, and continue typing the program. For example: 

$ awk 'awk_pro\ IReturnl 
> gram' in\ I Return I 
> put_filename I Return I 
output of program 
$ 

The > is an auxiliary prompt (which may be different on different systems or shells) that 
tells you you're still typing a single logical command line. n 

2 AWK: A Programming Language for Manipulating Data 



u 

u 

u 

This maneuver is called escaping the newline character. You can use it when invoking 
any command from the shell. 

For some applications you may want to write awk programs that are many lines long. 
It makes sense to store such long programs, and any programs that you often use, in 
separate files. Note that no compilation step is necessary. The file doesn't have to be 
executable, just readable. 

To invoke awk using a program stored in a separate file, use the -f option: 
$ awk -f awk_program_name input_filename 

You can give an awk program input from your keyboard (standard input) by typing 
a dash ("-") instead of an input filename. Keyboard input is terminated by typing 
CONTROL-[[]. Your command line would look like this: 

$ awk 'awk_program' -

or 

$ awk -f awk_program_name -

An example of this procedure is shown in the Annotated Example, "Doing Calculations." 

AWK: A Programming Language for Manipulating Data 3 



Structure of Awk Programs 
Awk programs are built of one or more statements that have the general form: 

pattern {action} 

For every line in the input that matches the pattern, the specified action is executed. 
The action part is always enclosed in braces. 

You can specify multiple actions within the action part by separating them with semi­
colons or newline characters (typing I Return I creates a newline character). 

Awk processes input one line at a time. For each line of input, awk scans all the patterns 
in the program. Whenever it finds a pattern that matches the line of input in question, 
it executes the associated action. 

An awk statement may consist of the pattern or the action or both. A pattern without an 
action prints out each input line that matches the pattern (this is the default action); an 
action without a pattern executes the action on every line of input (the default pattern 
matches anything). 

4 AWK: A Programming Language for Manipulating Data 

n 



u 

u 

u 

Predefined Variables 
The input is made up of a series of records. The default record separator is a newline 
character; by default, each input line is a record. 

Records are divided into fields; the default field separator is white space (tabs or blanks). 
So the input 

Hello, world! 

consists of one record (one line) and two fields (the strings "Hello," and ''world!", which 
are separated by a blank). 

The output is also made up of fields and records. The default output field separator is a 
blank and the default output record separator is the newline character. 

The variables FS and RS contain the current input field and record separators; the 
output separators are in OFS and ORS. You can change any of them at any time by 
simply assigning them any single character value. 

On the command line, you can use the argument -Fe, which sets FS to the character 
value c. Use assignment statements (such as RS = "@") to specify new values for any 
of the other predefined variables or as an alternate way to change FS. (Be sure to put 
double quotes around new separators to ensure that they are interpreted correctly.) 

Each field is designated by a field variable. In the first record of hello. awk, the string 
"Hello," is stored in the field variable $1 and "world!" is stored in the field variable $2. 
In general, field n of the current record is stored in the variable $n. The whole current 
record is stored in $0. 

A predefined variable called NF contains the number of fields in the current record. The 
number of the record currently being processed is stored in NR; you can find out how 
many records are in the input by printing NR at the end of your program. 

AWK: A Programming Language for Manipulating Data 5 



Output 
The simplest type of awk program prints out each line in an input file that matches a 
specified string. Try this command: 

$ awk '/Hello/' hello.awk 

There is no action supplied here, so each record (line) that contains "Hello" somewhere 
within it is printed. Note that the string is surrounded by slashes, and that the whole 
awk program is surrounded by single quotes. You must always use these slashes around 
patterns which consist of strings that are regular expressions (described in the section of 
this article entitled "Regular Expressions and Special Characters"), and you should use 
single quotes around a command-line program so the shell will see it as one argument and 
not attempt to interpret any special characters that may be lurking within the program. 

The output for the above command is the matching record: 

Hello, world! 

The following program contains an action, but it does the same thing as the above 
actionless program: 

$ awk '/Hello/ {print $0}' hello.awk 

This is an example of the print action. Since $0 refers to the entire record, this program 
prints every record containing "Hello" on the standard output. To print out the second 
and first fields, in that order, of each record containing "Hello", type: 

$ awk '/Hello/ {print $2, $1}' hello.awk 

and you'll get: 

world! Hello, 

The comma between the field arguments tells awk to put an output field separator (a 
space by default) between the output fields. Without the comma, the fields would be 
concatenated (run together). 

6 AWK: A Programming Language for Manipulating Data 

n 



u 

Redirecting Output to Files 
You can send the output of the print action into files by using> or>>. The program 

$ awk '/Hello/ {print $1 >"file1"; print $2 >"file2"}' hello.awk 

writes the first field, "Hello,", into file1 and the second, ''world!", into file2 (creating the 
files if necessary). You must put double quotes around the file names. The program: 

$ awk '/Hello/ {print $1 »"file1 "}' hello. awk 

appends the first field to file1 rather than overwriting it, so now file1 contains: 

Hello, 
Hello, 

The file name to which you divert your output may also be a variable or a field. The 
action: 

$ awk '/Hello/ {print NF > $2}' hello.awk 

uses $2 for the filename. You should take care in cases like this one that the value 
assigned to the variable is a valid file name. If it is not, you will get an error message u and the program will abort. 

u 

Formatting Output 
You can format your output with the printf statement. The awk printf statement is iden­
tical to the printf library routine used in the C programming language. The statement's 
structure is 

printf format, expr, expr, ... 

The format for the list of expressions is specified in the format argument. Printf prints 
the expressions in the specified format. For example, 

$ awk '{printf "%7s %10.3f\n", $1, NF}' hello.awk 

prints $1 {the first field) as a seven-character string, and NF as a floating-point number 
in a ten-digit field width with three digits after the decimal point. Try this and get: 

Hello, 2.000 

AWK: A Programming Language for Manipulating Data 1 



The newline character is \n, which appears at the end of the format. You must specify 
all spaces, separators, and newlines that you want in the output. Note that you don't 
have to specify a newline when using print, because print automatically appends the 
output record separator (by default, a newline) to its output string. 

For a full discussion of printf, look in McGilton and Morgan's Introducing the UNix@ n 
System, Kernighan and Ritchie's The C Programming Language, or the article "Using the 
C Library Routines" in HP- UX Concepts and Tutorials. (These are listed in a reference 
section at the end of this tutorial.) 

Details of Awk Programming 
The full structure of awk programs includes optional statements labeled by the special 
patterns BEGIN and END: 

BEGIN { action } 

pattern { action } 

END { action } 

The action in the BEGIN statement is executed once before any of the input has been 
read (hence before any patterns are evaluated). The action in the END statement is 
executed once after all the input has been read. These special statements give you 
opportunities to set parameters before the program begins or to process or tabulate data 
after awk has seen all of the input. For example, 

BEGIN {OFS = <a} 
END {print NR} 

changes the output field separator to "@" before any input is read, and prints out how 
many records are found in the input after all of it has been read. 

8 AWK: A Programming Language for Manipulating Data 



u 

u 

u 

Designing Patterns 
You have many options for writing awk patterns, including: 

• Regular expressions 

• Relational expressions 

• Combinations of expressions 

• Boolean expressions 

• Ranges of patterns 

You have a complete set of operators and special characters with which to build patterns. 

Regular Expressions and Special Characters 
Patterns can be made from regular expressions. Regular expressions are always enclosed 
in slashes. A simple pattern is a string enclosed in slashes: 

/world/ 

If entered as a program ( $ awk '/world/' hello. awk) this expression would print out all 
lines in an input containing occurrences of "world", both as a field alone (a complete 
word) and as part of a field, such as "worldly" or "world!" 

Between the slashes that delimit regular expressions, you can use most of the standard 
special characters (or metacharacters) that are recognized by the ed editor and by the 
shell. The available special characters for use between slashes in regular expressions are: 

+ 

? 

[] 

perform a logical OR of the regular expressions on either side of the vertical 
bar. 

match if there are one or more occurrences of the preceding regular expression. 

match if there are zero or one occurrence(s) of the preceding regular expres­
sion. 

match any of the characters inside the brackets. 

[x-x] match any character in the lexical range bounded by the characters on either 
side of the dash. The range is enclosed by the brackets. 

$ 

match only if the matching regular expression is found at the beginning of 
the line. 

match only if the matching regular expression is found at the end of the line. 

AWK: A Programming Language for Manipulating Data 9 



* match a succession of zero or more of the preceding single-character regular 
expression. 

\ 

match any one character in the position of the period. 

turn off the special meaning of the next character, so the character can rep­
resent itself (a maneuver known as escaping the character). 

( ) group the evaluation of regular expressions 

For example, 

$ awk '/Amain/' c_program.c 

matches records beginning with "main", and: 

$ awk '/AlbuquerqueiSanta Fe/' article_about_NM 

matches records containing a reference to either Albuquerque or Santa Fe. 

To turn off a special character's special meaning, precede it with a backslash in the 
expression. For example, 

/\1.*\11 

matches any string of one or more characters that is enclosed in slashes. 

You can abbreviate a sequence of characters in a string. This is called character class 
abbreviation. For example, 

$ awk '/[Hh]ello/' hello.awk 

matches: 

Hello, world! 

but it would also have matched a record containing: 

Well, world, hello! 

The sequence [a 1-zA 1-ZO l-9] would match all letters, both upper and lower case, and all 
digits. To use such ranges you need to understand how your character set is arranged. 
McGilton and Morgan explain this in their book. 

10 AWK: A Programming Language for Manipulating Data 

n 



u 

u 

u 

In patterns, you can specify that a field or variable (an expression) matches a regular 
expression using the tilde character .. -, to mean "match" and "!-" to mean "don't 
match." For example, the pattern: 

$ awk '$1 - /[Hh]ello/' hello.awk 

matches all records that contain either "Hello" or "hello" in the first field. This pattern 
also matches records containing "Othello" in the first field. To reJ·ect records with "Hello", 
use 

$ awk '$1 !- /[Hh]ello/' hello.awk 

Relational Expressions 
In awk patterns, you can use the relational operators <, <=, ==, !=, >=, and> between 
expressions. For example, the pattern 

$ awk '$2 >= $1 + 100' filename 

selects lines in which the second field is numeriCally at least 100 greater than the first 
field. 

Relational operations are always numeric comparisons (as in the above example) unless 
both operands are strings; in that case a string comparison is made. Fields are treated 
as strings unless there is information to the contrary, so 

$ awk '$1 > $2' filename 

automatically performs a string comparison on the first two fields, matching if $1 has a 
larger character value (in ASCII) than $2. 

Note that the regular expressions in the last two examples of the Regular Expressions 
and Special Characters section match the string "Hello," in the hello.awk file as well as 
"Hello" or "hello", or even "helloes". You can eliminate these various matchings by using 
a string instead of a regular expression: 

$ awk '$1 == "Hello," I I "hello," ' hello.awk 

matches only if $1 is either the string "Hello," or "hello," and nothing else. This generates 
the same output as the program 

$ awk ' $1 - /A[Hh]ello,$/ ' hello.awk 

AWK: A Programming Language for Manipulating Data 11 



which specifies that $1 starts with "H" or "h" and ends with a comma. In this case it's 
shorter to use the regular expression. 

If you use regular expressions in your patterns, you can match many strings. But if you 
use strings in your patterns, you can match only those exact strings in the input. Both 
tactics are valuable in different situations. 

Combinations of Patterns 
You can combine several patterns into one using the Boolean operators I (or),&.&. (and), 
== (equal to), and!= (not equal to). For example, the pattern 

$ awk '$1 >= "H" && $1 < "I" && NF == 2 && $2 != "world!"' hello.awk 

matches records that begin with "H" and have two fields but do not have "world!" as the 
second field. The record "Hello, world!" won't match, but the record "Howdy, partner!" 
(or "Houston, Texas" for that matter) will match. 

Awk always evaluates the operands of &,&, and I from left to right. The evaluation stops 
as soon as the expression is found to be true or false. You can use parentheses freely to 
force the order of evaluation or to increase legibility. 

Pattern Ranges 
The pattern you specify in a pattern-action statement can consist of two patterns sepa­
rated by a comma. When you specify the pattern in this way, the action is executed on 
each record from an occurrence of the first pattern through the next occurrence of the 
second pattern. For example, 

$ awk '/Hello/,/partner/' hello.awk 

prints all records from the first one matching "Hello" through the next one matching 
"partner". The statement 

$ awk 'NR == 10, NR == 30 {print $0}' filename 

prints records 10 through 30 of some file (try it on one of your files). If you use the above 
program on a 20-line file, awk will print lines 10 through 20 and stop without generating 
an error. 

12 AWK: A Programming Language for Manipulating Data 



u 

u 

u 

Designing Actions 
Actions consist of one or more statements. A statement can include: 

• Arithmetic expressions 

• Assignment statements 

• Output statements 

• Built-in function calls 

• Flow-of-control statements 

Variables 
In awk programs, you do not need to write declaration statements for variables. The 
variables take on numeric (floating point) or string values automatically, according to 
context. For example, 

X = 1 

X = "HP-UX" 

X = 11 3 11 + 11 4 11 

gives x a numeric value; 

gives x a string value; 

assigns 7 to x as if the equation were x = 9 + 4 (because context 
demands numeric values in this case). 

Variables are automatically initialized to the null string (numerical value = 0), so you 
don't need to initialize variables in a BEGIN statement. For example, the sums of the 
first two fields of all records can be computed by a two-line program: 

{ s1 = s1 + $1; s2 = s2 + $2 } 
END {print s1, s2 } 

which you can enter and then try by typing 

$ awk -f two_line_program file_with_numbers 

Awk does all of its arithmetic internally and in floating point. The available operators 
are: 

+, -,*,and/ 

% 

++and--

addition, subtraction, multiplication, and division 

the mod operator (for example, the pattern NF % 2 
== 0 prints all lines in the input that have an even 
number of fields) 

the increment and decrement operators (like those in 
C language) 

AWK: A Programming Language for Manipulating Data 13 



+=, -=, *=, /=, and %= the C language assignment operators (for example, x 
+= 1 is the same as x = x + 1). 

Any of these operators may be used in an expression. 

Field Variables 
You can treat the field variables ($1, $2, etc.) just as any other variable. You can 
replace fields with other numbers, assign results to a field, or use fields' in expressions. 
For example, 

$ awk '{ $1 = $2 + $3; print $0 }' filename 

accumulates fields 2 and 3 into field 1 and prints out the record with a new field 1. If 
you use hello.awk for filename, awk will convert the strings to numbers in response to 
the context and $1 will turn out to be zero. $9 is a null string which equals zero. 

Fields can be referred to by numerical expressions, such as $(i}, $(n+1}, or ${NF*4 + 
9/{NR-5}}. (If the expression comes out non-integer, awktruncates the decimal portion 
and uses the remaining integer portion as the result.) For example, to refer to the last 
field when you're unsure how many fields are in the record, use $NF. 

Whether a field variable is considered numeric or string depends on context. The matter 
is not a concern to most awk users. You may run into ambiguous cases such as 

if ($1 == $2) 

in which awk has no criteria for deciding whether to compare strings or numbers. Just 
as in the relational expressions discussed earlier, awk solves the ambiguity by treating 
fields as strings in such cases. 

Arrays 
Awk also defines and initializes arrays automatically. To create an array, simply mention 
it when you need it; awk creates the array for you then and there. The subscripts can 
have numeric values or string values, such as x["Hello,"]. The program 

/Hello/ 
/world/ 
END 

{x ["Hello"]++} 
{x["world"] ++} 
{print x["Hello"], x["world"]} 

counts the occurrences of "Hello" and "world" in the input, stores the counts in elements 
of the array, and prints the final results. Enter this progam in a file, and try it using the 
-f option. 

14 AWK: A Programming Language for Manipulating Data 



u 

u 

u 

Built-in Functions 
You can use a number of built-in functions in your awk programs. These include both 
string and arithmetic operations. 

length(x) 

sqrt(x) 

log(x) 

exp(x) 

int(x) 

returns the length of the argument. For example, 

$ awk '{print length($1), $0}' hello.awk 

prints the length of the first field then prints out the entire record. 

returns the square root of the argument. 

returns the base e logarithm of the argument. 

returns the exponential of the argument. 

returns the integer part of the argument. 

The arguments of functions can be any expression. For all of the above functions, the 
name of the function alone, with no argument, will cause the function to be performed 
on the entire record. 

substr( s,m,n) returns the substring of 8 that begins at postion m and is at most n 
characters long. For example, 

$ awk '/Hello/ {print substr($2,3,5)}' hello.awk 

will produce 

rld! 

which is the substring of $2 - "world!" - starting with the third 
letter - "r" - and is no more than five characters long (the length 
of this substring happens to be four). 

split(s,array,sep) splits the string 8 into array[l], ... ,array[n]. (8 can be a variable.) The 
number of elements found is returned as n. If you don't provide a 
field separator in the 8ep argument, the current value of FS is used 
by default. 

index(s1,s2) returns the position in which the string 82 occurs in the string 81. If 
82 is not a subset of 81, index returns a 0. For example, 

$ awk '/world/ {print index($2,"r")}' hello.awk 

prints out 3, because "r" is the third character in $2 ("world!"). 

AWK: A Programming Language for Manipulating Data 15 



sprintf(f,e1,e2 ... ) places the values of e1, e2, and so on into the formatted fields speci­
fied by f. The argument fis the format string, which is like the printf 
format string. For example, 

$ awk '{x = sprintf ( "%8s %10s" , $1, $2) ; \ 
> print x}' hello.awk 

sets x to the string produced by formatting strings $1 and $2 and 
prints the result. For a complete discussion of output formatting, 
look in "Using the C Library Routines" in Volume 2 of HP-UX Con­
cepts and Tutorials or Kernighan and Ritchie's The C Programming 
Language. 

The other built-in functions that you have already seen are: 

print introduced in the Output section of this article 

printf introduced in the Formatting Output section 

Flow-of-Control Statements 
You can use many of the same flow-of-control statements available in C (see The C 
Programming Language). Awk provides if-else, while, and for statements, and statement 
grouping with braces just as in C. 

if( con d) stmt 

else stmt 

the condition in parentheses is evaluated; if it's true, the statement 
following the if is executed. Multiple statements are enclosed in 
braces and separated by semicolons or newlines. The braces are 
optional if there is only one statement. 

The optional else statement is executed if the if condition is false. 
Multiple statements are enclosed in braces and separated by semi­
colons or newlines. The braces are optional if there is only one 
statement. For example, 

$ awk '{if($1 != "Hello,") print $0;\ 
> else print "Argh!"}' hello.awk 

prints lines that do not start with "Hello," and prints a complaint 
when it encounters a line that does. (Note the use of the backslash 
to fit this long program onto a single command line.) 

16 AWK: A Programming Language for Manipulating Data 

n 

n 



u 

u 

u 

while( cond) stmt The condition in parentheses is evaluated; as long as it is true, the 
statements in braces are executed. Multiple statements are enclosed 
in braces and separated by semicolons or newlines. The braces are 
optional if there is only one statement. The while condition is tested 
before each pass. Try this example: 

$ awk '{while(i<=2) {print $(i); i++ };\ 
> i=O}' hello.awk 

for( cond) stmt While a variable changes from an initial to a final value, the state­
ment(s) in the braces are executed. Multiple statements are enclosed 
in braces and separated by semicolons or newlines. The braces are 
optional if there is only one statement. Here is the format of the 
condition: 

for (initialize; final; increment){ ... } 

Also, you can use: 

for (i in array) statement 

This construction executes statement for each element in the specified 
array. The elements are not necessarily accessed in order. Changing 
i or accessing any new elements during the statement will introduce 
side effects. 

The conditional expression used in the if, while, and for statements can contain any of 
the standard relational operators ( <, <=, >, >=) as well as the match operators - and 
!- and the logical operators I, &&, ==, and !=. Parentheses for grouping are allowed 
(and encouraged). 

Here are the other flow-of-control statements: 

break 

continue 

next 

exit 

exits the current while or for construct. 

immediately starts the next iteration of the current loop. 

causes awk to skip immediately to the next record and begin scanning 
the patterns from the beginning of the program. 

causes the program to behave as if the end of the input had occurred 
(thus exit causes execution of the END statement if there is one) 

AWK: A Programming Language for Manipulating Data 17 



Commenting 
Comments in awk programs begin with the # character and end with the end of the line: 

/string/ {print $2, $5} #Print fields 2 and 5 if string matches 

18 AWK: A Programming Language for Manipulating Data 



u 

u 

u 

Error Messages 
Diagnostic output for awk is sparse and cryptic. Most awk errors that stop the program are syntax errors. Typical error statements are: 

syntax error near li~e 1 
illegal statement near line 1 

Syntax errors often produce an additional message: 
bailing out near line 1 

meaning that the program gave up and returned control to the shell. 

"Near" means that the line specified in the error message may not be the line that contains the actual error. 

The message 

funny variable xxxxxxxxx 

is awk's response to a variable it can't deal with, such as a the negative field variable ${-1). 

Some awk messages are more specific: 

newline in character class near line 1 

states the problem clearly. 

Except when redirecting output, if you refer to a file that doesn't exist or can't be opened, you'll get the shell message: 

awk: can't open file 

AWK: A Programming Language for Manipulating Data 19 



Notes on the Design 
Awk improves on grep, egrep, fgrep, sed, and ed by offering numeric processing, logical 
relations, and variables. Awkprograms do not require compilation, as C programs do, and 
you d)o not need to know the c programming language to use awk (though it sometimes n 
helps . Awk is one of the few tools on HP-UX that let you conveniently access fields 
within a line (cut is another such tool). 

The designers of awk tried to integrate strings and numbers, treating all quantities as 
both, and postponing a choice until the last minute. This is why you can generally ignore 
the difference between a string and a number as you write a program. 

Most awk users extract or manipulate information from the inputs. These usages are 
sometimes referred to as report generation and data transformation. 

20 AWK: A Pr6gramming Language for Manipulating Data 



u 

u 

u 

Notes on Awk Implementation 
Aho, Weinberger, and Kernighan wrote awk using tools available on HP-UX, including 
yacc and lex. The elements that recognize regular expressions are deterministic finite au­
tomata, constructed directly from the expressions. When you invoke awk, your program 
is translated into a parse tree by the parser that was generated by yacc and lex. A simple 
interpreter executes the parse tree. 

Awk is not fast. Breaking input into fields and delaying the evaluation of variable types 
are inherent bottlenecks. Further, there is no awk compiler, so you cannot use faster 
compiled versions of oft-used programs. The awk command is a machine that translates 
(parses) and interprets a program written in the awk language each time the program is 
run. 

AWK: A Programming Language for Manipulating Data 21 



Annotated Examples 

Generating Reports 
One of the practical applications of awk is to put text into a different form or to alter 
its format for a particular requirement. This example shows how text can be selectively 
extracted and manipulated with awk. 

The input file is a list of universities from the Big 8, Big 10, and Pac 10 athletic confer­
ences. (If you wish to test this example, you must type in part or all of the file, or one 
like it.) The file lists the universities' names (one or two fields), the states in which they 
are located, and the seating capacities of their stadiums. The name of this file is schools. 
You can print the file with: 

$ awk '{print $0}' schools 
Arizona AZ Pac 10 52000 
Arizona State AZ Pac 10 70021 
Southern Cal CA Pac 10 92516 
Stanford CA Pac 10 84892 
UCLA CA Pac 10 92516 
Washington WA Pac 10 59800 
Washington State WA Pac 10 40000 
Oregon OR Pac 10 41009 
Oregon State OR Pac 10 40593 
California CA Pac 10 76780 
Michigan MI Big 10 101701 
Ohio State OH Big 10 85290 
Indiana IN Big 10 52354 
Iowa IA Big 10 66000 
Illinois IL Big 10 70906 
Michigan State MI Big 10 76000 
Minnesota MN Big 10 62212 
Northwestern IL Big 10 49256 
Purdue IN Big 10 69250 
Wisconsin WI Big 10 77280 
Oklahoma OK Big 8 75008 
Oklahoma State OK Big 8 50817 
Missouri MD Big 8 62000 
Iowa State IA Big 8 50000 
Colorado co Big 8 51805 
Nebraska NE Big 8 73650 
Kansas State KS Big 8 42000 
Kansas KS Big 8 51500 
$ 

22 AWK: A Programming Language for Manipulating Data 

n 

n 

n 



u 

u 

u 

Suppose you became interested in how many of these 28 schools (print out NR to verify 
that) were located in a particular state. Because each record contains the two-letter 
abbreviation of the school's state, the command: 

$ awk '/CA/ {print $0}' schools 

results in: 

Southern Cal 
Stanford 
UCLA 
California 

CA 
CA 
CA 
CA 

Pac 10 
Pac 10 
Pac 10 
Pac 10 

92516 
84892 
92516 
76780 

Similarly, you can print all the records from a particular conference, or all the schools 
with "State" in their names: 

$ awk '/State/ {print $0}' schools 
Arizona State AZ Pac 10 
Washington State WA Pac 10 
Oregon State OR Pac 10 
Ohio State OH Big 10 
Michigan State MI Big 10 
Oklahoma State OK Big 8 
Iowa State IA Big 8 
Kansas State KS Big 8 
$ 

70021 
40000 
40593 
85290 
76000 
50817 
50000 
42000 

In the last two examples, pattern matching was done using regular expressions. This 
could have backfired if the file had included records on, say, the Central YMCA Commu­
nity College of Chicago (first example) or of a college on Staten Island (second example). 
When designing patterns you should be aware of such potential pitfalls and think of ways 
around them. 

Printing out all these records (lines) may not be all that you want to do. Suppose you're 
working for a professional soccer league that's looking for stadiums. You've been assigned 
to find stadiums with seating capacities greater than 60,000. The schools file is a limited 
resource, but it's a fair place to start. To find out which stadiums are big enough for 
your needs, use an action containing an if statement. Because you want to test every 
record, a pattern is not necessary. Type: 

$ awk '{if ($(NF) > 60000) print $0}' schools 

AWK: A Programming Language for Manipulating Data 23 



and get: 

Arizona State AZ Pac 10 70021 
Southern Cal CA Pac 10 92516 
Stanford CA Pac 10 84892 
UCLA CA Pac 10 92516 
California CA Pac 10 76780 
Michigan MI Big 10 101701 
Ohio State OH Big 10 85290 
Iowa IA Big 10 66000 
Illinois IL Big 10 70906 
Michigan State MI Big 10 76000 
Minnesota MN Big 10 62212 
Purdue IN Big 10 69250 
Wisconsin WI Big 10 77280 
Oklahoma OK Big 8 75008 
Missouri MD Big 8 62000 
Nebraska NE Big 8 73650 

Remember, NF is the predefined variable that means the number of fields in the current 
variable. You could do this job with just a pattern: 

$ awk ' $NF > 60000 ' schools 

gets the same result (and it's shorter). If you want to save this information, type 

$ awk '{if ($NF > 60000) print $0 »"big_stadiums"}' schools 

The > > operator appends the output to big_ stadiums; you should use this operator as 
you search other files for similar information. Note the use of $NF for the stadium­
capacity field. This is used because the number of fields per record varies, but the 
stadium capacity is always in the last field. 

Assume you want to find the average size of a group of stadiums. You need to scan all 
the records to add up the stadium sizes, then divide the total by the number of records 
to get the average. The final calculation takes place in an END statement after you have 
processed all of the input. Due to the size of this awk program, place it in a separate file: 

$cat >avg_capacity 
{ x += $(NF) } # accumulate capacities in x 
END { x /= NR; print "Average Capacity=", x} 
<control-d> 
$ 

The <control-d> line represents typing CONTROL-[[]. 

24 A WK: A Programming Language for Manipulating Data 



u 

u 

u 

No quotes are needed around the program to protect it from shell interpretation, because 
you are not typing it on the command line. Also, you do not need to initialize x; awk sets 
x to the null string when it is created. The arithmetic is automatically done in floating 
point. To run the program, use the -f option: 

$ awk -f avg_capacity schools 
Average capacity= 64898.4 
$ 

A longer program finds the average stadium capacity of each conference: 

/Pac/ {xp += $(NF); ip++} #accum caps in xp; incr. count 
/Big 10/ {x10 += $(NF); i10++} #accum caps in x10; incr. count 
/Big 8/ {x8 += $(NF); iS++} #accum caps in x8; incr. count 
END {print "Avg. cap. Pac 10 = ". (xp/ip) 

print "Avg. cap. Big 10 = ". (x10/i10) 
print "Avg. cap. Big 8 = ", (x8/i8) 

} 

The calculations and print statements for each conference cannot be on the same line 
with the accumulation statements because awk runs all the pattern-action pairs on each 
input record as it arrives. END is executed after all the input comes in. You don't know 
all the data until the END statement. 

Notice that no semicolons are used in the multi-line END statement. Awk treats the 
newline as another expression separator. 

The output of this program is 

Avg. cap. Pac 10 = 65012.7 
Avg. cap. Big 10 = 71024.9 
Avg. cap. Big 8 = 57097.5 

The information in the file schools forms a small database. Awk is useful for retrieving 
and manipulating information from such databases. Other applications include updating 
or reformatting input files. 

One last job. Who has the biggest stadium? 

$cat >findbiggest 
{ x = $(NF); if (x>y) {y=x; bigrecord = $0}} 
END {print bigrecord} 
<control-d> 
$ 

$ awk -f findbiggest schools 
Michigan MI Big 10 101701 
$ 

AWK: A Programming Language for Manipulating Data 25 



Doing Calculations 
The following program finds the mean and the square root of the sum of the squares 
(root-mean-square or rms) of a list of input numbers. The work is performed on every 
record, so there are no patterns in this program other than END. This example is taken ,!\ 
from "A Walk Through Awk," a paper by Leon S. Levy of Bell Laboratories. , ) 

{sum_of_squares += $1 * $1} #accum sum of squares 
{sum += $1} #accum nos for mean calc 
END {mean = sum I NR #calc mean 

} 

print "mean=". mean 
rms = sqrt(sum_of_squares/NR) #calc rms 
print "rms = ", rms 

Type this program into a file called meanrms and type some numbers into an input file, 
perhaps called meanrms. data. 

$cat >meanrms.data 
20 
30 
55 
40 
<control-d> 
$ awk -f meanrms meanrms.data 
mean = 36.26 
rms = 38.487 
$ 

The <control-d> notation means you should press CONTROL-[[] to end the new file. 

You don't have to create an input file to use this program. You can run it using the 
standard input (your keyboard): 

$ awk -f rms_mean -

The dash for the input is optional. 

Type in each number you want in the calculation, pressing I Return I after each entry. After 
typing the last entry and pressing I Return I, type CONTROL-[[] (the end-of-file character). 
Awk then executes the END statement. 

Because awk treats variables as strings until otherwise informed, giving character strings 
to this program produces unexpected answers. Mixing numbers and characters causes n 
awk to calculate the mean and rms using the ASCII values of the characters. ', , 

26 AWK: A Programming Language for Manipulating Data 



u 

u 

u 

Rearranging Data 
You can use awk to change the format of records in a file. Assume you have this list of 
names in a file called poets: 

Poe, Edgar Allan 
Longfellow, Henry Wadsworth 
Shakespeare, William 
Frost, Robert 
Dickinson, Emily 

To transpose the first and last names, type 

$ awk '{print $2, $1}' poets 

This successfully switches around the first two fields, but it leaves out the middle names 
on two of the records and it leaves the commas on all the surnames. 

To remove the commas, type 

$ awk '{print $2, substr( $1, 1, length($1)-1 )}' poets 

This complex-looking program drops the commas by printing a substring of the surname 
field consisting of everything but the comma, using the substr function. The first param­
eter, $1, is the object of the substr function. The second parameter, 1, means that we 
want the substring to start at the beginning of $1. The third parameter, length{$1}-1, 
means that the substring should end one character before the end of $1 (just before the 
comma). 

Saving the middle names is more awkward. Try adding $9 to the print action: 

$ awk '{print $2, $3, substr($1, 1, length($1)-1)}' poets 

The records with middle names come out correctly. But when no middle name is present 
an extra space occurs between the first and last names. The extra space is an output 
field separator being printed after $9; when $9 is null (no middle name), you get two 
output field separators in a row. 

One solution is to use an if-else statement to detect a middle name in the record. The 
program 

{if (length($3) > 0) print $2, $3, substr($1, 1, length($1)-1) 
else print $2, substr($1, 1, length($1)-1) } 

AWK: A Programming Language for Manipulating Data 27 



when run: 

$ awk -f reverse_names poets 

results in: 

Edgar Allan Poe 
Henry Wadsworth Longfellow 
William Shakespeare 
Robert Frost 
Emily Dickinson 

Now that you have the format you want, save it by redirecting it to another file: 

$ awk -f reverse_names poets >poets.awked 

Another job you may want to do with a file like poets is to rearrange the records in 
alphabetical order. Unfortunately, awk cannot reorder records. Try using the sort utility. 
Sort is described in the HP-UX Reference and in the McGilton and Morgan book starting 
on page 138. 

References 
1. Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger, "Awk-A Pattern 

Scanning and Processing Language", Bell Laboratories, September 1978. Second 
Edition. (Not available from HP.) 

2. Henry McGilton and Rachel Morgan, Introducing the UNix.ffi!Y System, McGraw 
Hill, 1983, pp. 177-184. (UNIX is a trademark of AT&T Bell Laboratories.) HP 
Part # 98680-90025. 

3. HP-UX Reference for the HP 9000 Series 200/500. HP Part# 09000-90006. 

4. Brian Kernighan and Dennis Ritchie, The C Programming Language, Prentice-Hall, 
1978. HP part# 97089-90000. 

5. "C Library Routines," Programming Environment, HP-UX Concepts and Thtorials . 

28 AWK: A Programming Language for Manipulating Data 

n 

. f) 
. I 



u 

u 

u 

Index 

arrays, awk 
awk: 

a 
............................................................... 16 

actions ................................................................. 15 
arrays ................................................................. 16 
Boolean expressions ..................................................... 11 
built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
error messages .......................................................... 21 
expression combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
field variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
flow-of-control statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
formatting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
pattern combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
predefined variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
ranges of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 14 
redirecting output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
regular expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
relational expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11, 13 
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
writing patterns ......................................................... 11 

b 
built-in functions, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Index 29 



Index (continued) 

c 
command line, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
comments, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

e 
error messages, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

f 
flow-of-control statements, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 
formatting output, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

p 
predefined variables, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

r 
redirecting output, awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

t 
text editor: 

awk ..................................................................... 3 

30 Index 

n 

n 



fold-

r 
I 

MANUAL COMMENT CARD 

Text Editors and Processors 
HP-UX Concepts and Tutorials 

HP Part Number 97089-90022 10/87 

Please help us improve this manual. Circle the numbers in the following 
statement that best indicate how useful you found this manual. Then add 
any further comments in the spaces below. In appreciation of your time, we 
will enter your name in a quarterly drawing for an HP calculator. Thank 
you. 

The information in this manual: 

Is poorly organized 1 2 3 4 5 Is well organized 

Is hard to find 1 2 3 4 5 Is easy to find 

Doesn't cover enough 1 2 3 4 5 Covers everything 

Has too many errors 1 2 3 4 5 Is very accurate 

Particular pages with errors? -----------------

Comments:------------------------

Name: _________________________ _ 

Job Title:-----------------------
Company: ________________________ _ 

Address: ________________________ _ 

Please Tape Here 



BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 37 

POSTAGE WILL BE PAID BY ADDRESSEE 

Hewlett-Packard Company 
Attn: Customer Documentation 
3404 East Harmony Road 
Fort Collins, Colorado 80525 

LOVELAND, COLORADO 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

!~ 



HP Part Number 
97089-90022 
Microfiche No. 97089-99022 
Printed in U.S.A. 10/87 

FJ/o- HEWLETT 
a!~ PACKARD 

97089-90630 
For Internal Use Only 


	Cover

	Printing History

	Preface

	Learning Suggestions

	
Introduction to Text Editors and Processors 
	Regular Expressions

	All You Need to Know

	1. Introducing the Vi/Ex Editor

	2. Basic Editing: Starting and Ending a Session

	3. Basic Editing: Cursor and Display Control

	4. Basic Editing: Manipulating Text

	5. Intermediate Editing: Using Text Objects

	6. Intermediate Editing: Copying and Moving Blocks of Text

	7. Intermediate Editing: Search and Replace Operations

	8. Intermediate Editing: Editing Multiple Files

	9. Intermediate Editing: File Manipulation Techniques

	10.Using Ex Commands

	11. Advanced Editing: Shell Operations

	12. Editor: Configuring the Vi/Ex Editor

	13. Using Ex

	Index


	sed: A Non-Interactive Streaming Editor

	1. sed: A Non-Interactive Streaming Editor

	2. Forming Editor Commands

	3. Writing Command Scripts

	Index


	The Ed Editor

	Index


	EDIT - An Interactive Line Editor

	Index


	AWK: A Programming Language for Manipulating Data

	Index


	Manual Comment Card

	Back Cover


