
tor the /OUTPUT ND INPUT MEMOR~~CESSORY
ET-3400 Trainer

for the 3400
del ETA-

Mo 59s-2211-01

HEATH COMPANY PHONE DIRECTORY

The following telephone numbers are direct lines to the departments listed:

Kit orders and delivery information (616) 982-3411
Credit ... (616) 982-3561
Replacement Parts (616) 982-3571

Technical Assistance Phone Numbers
8:00 A.M. to 12 P.M. and 1:00 P.M. to 4:30 P.M., EST, Weekdays Only

R / C, Audio, and Electronic Organs (616) 982-3310
Amateur Radio (616) 982-3296
Test Equipment, Weather Instruments and

Home Clocks (616) 982-3315
Television .. (616) 982-3307
Aircraft, Marine, Security, Scanners, Automotive,

Appliances and General Products (616) 982-3496
Computer Hardware (616) 982-3309
Computer Software (616) 982-3860
Heath Craft Wood Works (616) 982-3423

YOUR HEATHKIT 90-DAY LIMITED WARRANTY

Consumer Protection Plan for Heathkit Consumer Products

Welcome to the Heath family. We believe you will en1oy assembling your kit and will be pleased with its
performance. Please read this Consumer Protection Plan carefully. It is a "LIMITED WARRANTY"' as
defined in the U.S. Consumer Product Warranty and Federal Trade Commission Improvement Act. This
warranty gives you specific legal rights. and you may also have other rights which vary from state to state.

Heath's Responsibility
PARTS - Replacements for factory defective parts will be supplied tree for 90 days from date of purchase. Replacement parts are
warranted for the remaining portion of the original warranty period. You can obtain warranty parts direct from Heath Company by writing
or telephoning us at (616) 982-3571. And we will pay shipping charges to get those parts to you ... anywhere in the world.

SERVICE LABOR - For a period of 90 days from the date of purchase. any malfunction caused by defective parts or error in design will
be corrected at no charge to you. You must deliver the unit at your expense to the Heath factory, any Heathkit Electronic Center (units of
Veritechnology Electronics Corporation). or any of our authorized overseas distributors.

TECHNICAL CONSULTATION - You will receive free consultation on any problem you might encounter in the assembly or use of your
Heathkit product. Just drop us a line or give us a call. Sorry. we cannot accept collect calls.

NOT COVERED - The correction of assembly errors. adjustments. calibration. and damage due to misuse. abuse. or negligence are
not covered by the warranty. Use of corrosive solder and/or the unauthorized modification of the product or of any furnished component
will void this warranty in its entirety. This warranty does not include reimbursement for inconvenience. loss of use. customer assembly,
set-up time. or unauthorized service.

This warranty covers only Heath products and is not extended to other equipment or components that a customer uses in conjunction with
our products.

SUCH REPAIR AND REPLACEMENT SHALL BE THE SOLE REMEDY OF THE CUSTOMER AND THERE SHALL BE NO LIABILITY
ON THE PART OF HEATH FOR ANY SPECIAL. INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO ANY LOSS OF BUSINESS OR PROFITS. WHETHER OR NOT FORSEEABLE.

Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not
apply to you.

Owner's Responsibility
EFFECTIVE WARRANTY DATE - Warranty begins on the date of first consumer purchase. You must supply a copy of your proof of I
purchase when you request warranty service or parts.

ASSEMBLY - Before seeking warranty service. you should complete the assembly by carefully following the manual instructions.
Heathkit service agencies cannot complete assembly and adjustments that are customer's responsibility.

ACCESSORY EQUIPMENT - Performance malfunctions involving other non-Heath accessory equipment, (antennas, audio compo
nents. computer peripherals and software. etc.) are not covered by this warranty and are the owner's responsibility.

SHIPPING UNITS - Follow the packing instructions published in the assembly manuals. Damage due to inadequate packing cannot be

repaired under warranty. J
If you are not satisfied with our service (warranty or otherwise) or our products. write directly to our Director of
Customer Service. Heath Company. Benton Harbor Ml 49022. He will make certain your problems receive
immediate. personal attention.

~~~~M~~~~~~ 



SOFTWARE REFERENCE MANUAL 

HEATH COMPANY 

for the 

MEMORY AND INPUT/OUTPUT 
ACCESSORY 

for the ET-3400 Trainer 

Model ET A-3400 
595-2271-01 

BENTON HARBOR, MICHIGAN 49022 

Copyright © 1979 
Heath Company 

All Rights Reserved 
Printed in the United States of America 



2 

TABLE OF CONTENTS 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Heath/Wintek Fantom II Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

Symbols .......................................................... 5 

Using the Monitor ................................................ 6 

Display I Alter Register Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Display/Alter Memory Contents .................................... 9 

Display Program Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Block Memory Transfer .......................................... 12 

Program Execution Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Program Storage and Retrieval .................................... 18 

Using a Teletypewriter .................................... ~ . . . . . . 20 

Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

Monitor Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Heath/Pittman Tiny BASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Editing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 

Using Tiny BASIC ............................................... 28 

Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 

Instructions ..................................................... 30 

Mathematical Expressions ........................................ 32 

Tiny BASIC Re-Initialization (Warm Start) ......................... 33 

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

Sample USR Programs ........................................... 36 

Appendixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Appendix A - Memory Map ..................................... 40 

Appendix B - Tiny BASIC Error Message Summary ............... 41 

Appendix C - Heath/Wintek Monitor Listing ...................... 43 

Appendix D - Excerpts from "Kilobaud" ......................... 75 

INDEX .............................................................. 95 



INTRODUCTION 

This Manual describes the operation of your ET-3400/ETA-3400 microcomputer 
system. The major operational features of the system are explained in the sec
tions titled "Heath/Wintek F ANTOM II Monitor" and "Heath/Pittman Tiny 
BASIC." The keyboard commands, "Monitor Listing," sample programs, and 
memory maps are also included, as well as several article reprints from 
"Kilobaud" magazine that will help you more fully enjoy your ET-3400/ET A-
3400 Microcomputer System. 

The Microcomputer system easily interfaces to a video terminal and a cassette 
recorder. The increase in memory size and software support gives you a more 
flexible, general-purpose computer system, while the trainer itself still remains 
functional and useful. The following list summarizes the main features. 

• The ETA-3400 uses an independent power supply. 

• The system supports 1024 (1K) bytes of read/write random-access 
memory. This is expandable to 4K. 

• A 2K ROM MONITOR. 

• A 2K ROM Tiny BASIC interpreter. 

• Expanded 1/0 support: 

Audio cassette mass storage; 

Video terminal. 

3 



4 

HEATH/WINTEK F ANTOM II 
MONITOR 

This Monitor consists of a group of individual computer programs linked to
gether that operate as a single supervisory systems controller. These programs 
are permanently located in a ZK ROM (2048 bytes of Read-Only-Memory) on the 

ETA-3400 circuit board. FANTOM II schedules and verifies the operation of 
peripheral computer components. You use the Monitor to build, test, execute, 

store, and retrieve computer programs written in machine code. 

The Monitor provides you with a means of communicating between the microp
rocessor, the terminal, and a cassette.You select a Monitor command by pressing 
a key on the console terminal associated with the particular command. This 
information is processed by the Monitor, which then directs the computer to the 
routine that performs the operation. Control is returned to the Monitor after the 

operation is completed. 

This section of the Manual describes the function, operation and features of 
F ANTOM II. Some of the major features are: 

• Display/ Alter register contents. 

• Display/Alter memory contents. 

• Display Program Instructions 

• Program Execution Control. 

• Program Storage and Retrieval. 

NOTE: A knowledge of the Motorola 6800 microprocessor and common pro

gramming techniques is essential for understanding the F ANTOM II Monitor. 
The HEATH EE-3401 microprocessor course provides this knowledge. 



SYMBOLS 
This Manual uses symbols to describe some terms. Frequently used symbols and 
their meaning are listed below. In examples of keyboard dialogue, monitor and 
program output are underlined. 

MICROPROCESSOR 

A Accumulator or register A. The 8-bit arithmetical or logical sec
tion of the computer that processes data. 

B Accumulator or register B. An 8-bit register similar to register A. 

C The condition code register. A 6-bit register that indicates the 
nature or result of an instruction. 

P The program counter. A 16-bit register that sequentially counts 
each program instruction. 

S The stack pointer. A 16-bit register that records the last address of 
an entry onto the stack. 

X The index register. This 16-bit register permits automatic pro
gram modification of an instruction address without destroying 
the address contained in memory. The index register is frequently 
used as a memory pointer. 

TERMINAL 

ESC 

BRK 

CTRL 

The ESCape key. Press this key to return control to the Monitor. 

The BReaK key. Press this key once to return control to the 
Monitor. Press it twice to return control to the ET-3400 trainer. 

The control key. When it is used in conjunction with another key, 
it creates a special function. For instance, if you hold CTRL and 
press P, the contents of the program counter will be displayed. 

The carriage return, or return key, on your video terminal. 

PROMPT CHARACTERS 

MON> The FANTOM II Monitor prompt character. It indicates that your 
system is functioning and ready to accept a Command. 

Tiny BASIC prompt character. 

5 



6 

USING THE MONITOR 

POWER UP and MASTER RESET 

When power is first applied to the ET-3400/ET A-3400 Microcomputer System, 
you should press the RESET key on the ET-3400 keypad. The display will then 

show CPU UP, and the next keypad entry will be interpreted as a command. Use 

the RESET key to initialize the system or escape from a malfunctioning program. 

When you wish to use F ANTOM II, after pressing the RESET key, press the DO 

(D) key on your trainer and enter the hexadecimal starting address 1400. This 
command causes FANTOM II to print the prompt characters (MON> )* on the 
video terminal. This tells you that the system Monitor is functioning and is 

waiting for a command. For instance, the following sequence will initialize the 
Monitor, examine the contents of several memory locations, and return control 

to the ET-3400 microcomputer. 

• Apply power to the microcomputer system. 

• Press RESET on the ET-3400 keypad. 

• Press DO on the keypad and enter hexadecimal address 1400. 

• Look for the prompt character ( MON> ) on your terminal. 

• Type M ( Memory ) on the terminal keyboard and enter the address 
1400 followed by a carriage return. 

• The video display responds by printing the address and the memory 
contents. ( 1400 OF) 

• Enter several carriage returns and observe the display. You will notice 
that, for each carriage return, a sequential memory location and its 
corresponding data is shown. 

• Press the ESCape or BReaK key on your terminal. The prompt character 
reappears and control is returned to the monitor. 

• Press the BReaK key a second time and control is returned to the 
Trainer. 

uThroughout this Manual, the computer output has been underlined to set it off from the user response. 



DISPLAY/ALTER REGISTER CONTENTS 

DISPLAY REGISTERS 

The ET-3400/ETA-3400 Microcomputer System manipulates all data through its 
registers. You can examine the contents of a single register or all the registers by 
selecting the appropriate command. When you use the correct format, display
ing the contents of a selected register is simple. For instance, pressing Rafter the 
prompt character displays the contents of all microprocessor registers. In this 
and subsequent examples, unless specified, the data shown is only given as an 
example. You should expect to get different displays. 

MON> R C=DB B=DB A=DB X=OBOB P=1401 S=OOD2 CE 1000 
MON> 

In this example, you can see that the condition code register was set to hexadec
imal integer DB. The A and B registers equal OB, while the index register X was set 
to DBDB. The program counter f.~) displays the address of the next instruction to 
be executed and~ is the current address of the stack pointer. Finally, the next 
instruction that would be executed if the program were run is CE 1000. This 
information, when displayed on the video screen, is useful for correcting pro
gram errors. 

The two most significant bits of the 8-bit RAM location that hold the condition 
code are neglected by the system hardware. In the example, DB (1101 1011) 
shows the status of the condition codes. By pressing CTRL/C and entering a 
different value, you can change the status of register C. 

DISPLAY/ALTER REGISTERS 

The Monitor also lets you display or change the contents of individual registers, 
except the stack pointer. To display the contents of a register (other than the stack 
pointer), press the CTRL key on the terminal, and then select and press the key 
that corresponds to the register name. When you wish to change the contents of a 
register, enter the new value after displaying the original contents. The follow
ing examples show you how to display and alter the contents of each micro
processor register. 

For instance, to display the program counter, simultaneously press the CTRL 
and the P keys. A return causes the Monitor to complete the command and 
display the prompts. 

M.Ql:t: CTRL/P P=1401 § 

.M.QB2 

7 



8 

In the next example, the contents of register A are first displayed and then 

altered. Press CTRL/ A to display the current contents of register A. Enter a new 

hexadecimal value, for instance lB, and a carriage return. The return signals the 

Monitor to execute the command, and the displayed prompt character indicates 

a successful completion of the command. You can then press CTRL/ A and verify 

that the register contents were changed. 

MON> CTRL/ A A=NN 1B § 

MON> CTRL/ A A=1B § 

MON> 

The Monitor uses the same format to display or alter the contents of each 

microprocessor register. In all subsequent examples, NN or NNNN represents a 

random hexadecimal value. The list summarizes the usage ofregister commands 

available to you through the Monitor. 

MON> CTRL/A A=1B § (Display A) 

MON> CTRL/B B=NN 12 § (Alter B to read 12) 
MON> CTRL/C C=NN DO § (Alter c to read DD) 
MON> CTRL/P P=NNNN 1234 §> ( p = 1234 

MON> CTRL/X X=NNNN 5678 § ( x = 5678 
MON> R C=DO B=12 A=1B X=5678 P=1234 S=NNNN "' 
MON> 

*You can neither alter the stack pointer, nor predict its value, with the FANTOM II Monitor. Also, machine 

instructions or data will be output after the stack pointer address is printed. 



DISPLAY/ALTER MEMORY CONTENTS 

JJISPLA Y MEMORY 

The F ANTOM II Monitor can access individual or sequential memory locations. 
This feature allows you to rapidly examine and correct program instructions or 
data. To display an area of memory on the video terminal, type D {display) and 
specify the range of the memory locations. The following example shows you 
how to display the contents of 16 sequential memory cells from address 1400 
thru 140F. Because the area shown in the example is part of the Monitor, you 
should obtain the same results. 

MON> D 1400 , 140F § 

1400 OF CE 10 00 6F 01 6F 03 86 01 A7 DO 86 7F A7 02 
MON> 

The Monitor responds to the carriage return by typing the starting address and 
listing the memory contents. The address of each line displayed is always the 
first four-digit number, followed by the contents of the next sixteen sequential 
memory locations. 

DISPLAY/ALTER MEMORY 

Use the M (Memory) command when you wish to examine or alter the contents of 
an individual or a sequence of memory locations. For instance, as shown below, 
type an M after the prompt character and the address 1400. FANTOM II responds 
by printing the address and the memory contents (OF) after you press the carriage 
return. To proceed to the next location, press the carriage return again. FANTOM 
II responds by printing an address and its contents. To exit the display mode and 
return to the Monitor, press ESC or BRK. 

The following example shows you how to examine the contents of ROM memory 
locations. You can compare the data with the "Heath/Wintek Monitor Listing," 
("Appendix C," Page 37) and/or examine additional locations. This feature 
provides a quick method of searching for useful Monitor or Tiny BASIC sub
routines. 

MON> M 1400 § 
1400 OF § 

1401 CE §! 

1402 10 1§> 

1403 OD §! 
1404 6F ESC 
MON> 

9 



10 

You may use the same procedure to modify memory contents that you use to 
change register contents. In the next example, use the M command to alter the 
contents of several hexadecimal locations between 100 and 105. The procedure 
always gives you an option of changing or not changing the program data. You 
will not alter memory contents if you press a carriage return after the data is 
displayed. 

MON> M 100 §> 
0100 NN A §) 

0101 NN DB § 

0102 NN c § 

0103 NN OD '§ 

0104 NN E §) 

0105 NN BRK 
MON> 

The previous example features free-format hexadecimal input. This means you 
do not h3ve to enter leading zeros. For example, at location 0104 we entered the 
value E rather than OE. Free-format allows you to correct or modify a bad entry 
simply by typing extra digits. For instance, assume that, in the previous exam
ple, you incorrectly entered 109 after the M command. Enter the address 0100 

before the carriage return to correct the mistake. For example: 

MON> M 1090100 § 

0100 NN ESC 
MON> 

Since a maximum of four digits is all that are needed for an address, only the last 
four are retained. Similarly, if only two digits are expected, then only two will be 
retained. 



DISPLAY PROGRAM INSTRUCTIONS 

The F ANTOM II Monitor offers an important extra feature. You may use the 
Instruction (I) command to display program instructions. The format is similar to 
the memory display instruction except that the Monitor prints a single micro
processor instruction per line rather than the contents of each memory cell. An 
instruction can be one, two, or three bytes. A carriage return, as with the M 
command, causes FANTOM II to display the next sequential instruction. The I 

command allows data changes using the same procedure as the M command. 
However, only the last byte of an instruction can be altered. 

The next example displays the first four Monitor program instructions. 

MON> I 1400 § 

1400 OF § 

14Q1 CE 1000 § 

1404 6F 01 § 
1406 6F 03 BRK 

MON> 

When the data in the first byte of an instruction address memory location is not a 
machine instruction, the Monitor prints a DATA=NN message. The next instruc
tion following the DATA=NN statement is printed after the carriage return. For 
instance, the command sequence: 

MON> I 1ADD '§) 

1ADD DATA=45 § 

1ADE DATA=15 § 

1ADF 39 ESC 

MON> 

produces the DAT A= NN message until the Monitor encounters a valid machine 
instruction. In this example, the Monitor recognizes the integer (39H) as a 

machine instruction. 

11 



12 

BLOCK MEMORY TRANSFER 

The Monitor features a command that allows you to move the contents of a block 
of memory from one location to another. The SLIDE memory command simply 
copies one section of memory to another. 

To use the SLIDE memory command, you must determine the parameters of the 
block of memory to be moved. These parameters include a hexadecimal starting 

address of both the source and destination of the memory block to be moved. In 

addition, a hexadecimal count of the number of memory cells to be transferred is 
also required. Press and hold the CTRL key on the keyboard while pressing the S 

key to initiate the SLIDE command after you determine the program parameters. 
F ANTOM II prompts you with the keyword SLIDE.You respond to this keyword 
by typing the starting address of the origin and destination, followed by the 
count and a carriage return. 

The SLIDE command in the next example transfers thirty-two (decimal} bytes of 
data from ROM into low memory. The starting address of data to be moved is 
1400 and the data will be moved to an area of memory starting at location 200. 

The display (D) command only verifies the data manipulation before and after 
the SLIDE command is executed. 

MON> D 200, 21F ~ 
020D NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN 
0210 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN 
MON> D 1400,141F ~ 
14DD OF CE 10 DO 6F 01 6F D3 86 Di A7 DD 86 7F A7 02 
1410 C6 04 E7 D1 E7 D3 A7 DO 09 A6 DD 63 DD 43 D1 00 
MON> CTRL/S SLIDE 1400, 2DD, 20 § 

MON> D 2DO, 21F ~ 
D20D OF CE 10 DO 6F 01 6F 03 86 D1 A7 OD 86 7F A7 02 
021D C6 D4 E7 01 E7 03 A7 DO 09 A6 DD 63 DD 43 A1 OD 



PROGRAM EXECUTION CONTROL 

F ANTOM II gives you two options when you execute a machine language 
program. With the first option, you execute the complete program by entering 
the GO (G) command and a starting address. The second option allows you to 
execute a program segment with the S or E command. It is primarily used for 
detecting errors in program logic. 

EXECUTING A PROGRAM 

The ETA-3400 Microcomputer Accessory contains a machine language program 
(Tiny BASIC). We will use this routine to show program execution with the GO 
command, G. The G command and a program starting address causes the system 
to fetch the operational code in the memory location specified. Program execu
tion begins from this location and continues until your program returns control 
to the FANTOM II Monitor, or the RESET key is pressed on the ET-3400. To run 
Tiny BASIC, enter: 

MON> G 1COO § 
HTB1 G 1COO 

~10 REM HTB 1 IS PRINTED OVER MON> §> 
__;_20 PRINT "HEATH TINY BASIC IS RUNNING" §> 

_;_30 END § 

~RUN§ 

HEATH TINY BASIC IS RUNNING 

_:_BYE§ 

MON> 

NOTE: Tiny BASIC writes over the MON> prompt with the HTB1 letters and then 
issues a carriage return. The prompt character(:) signifies that Tiny BASIC is in 
the command mode and waiting for an instruction. 

Using the Tiny BASIC firmware is only one example of program execution. For 
another example, you should enter the program shown at the top of Page 14 
using the M command. This routine prints a message on your video terminal. 
The format is similar to the listing printed in "Appendix C," and it illustrates a 
format that you might encounter in some computer magazines. The JSR (Jump to 
SubRoutine) mnemonic at hexadecimal location 100 is translated to machine 
code instructions BD 1618. BD is the machine equivalent of JSR and 1618 is the 
starting address of a Monitor subroutine that prints a character string. Likewise, 
FCB is a pseudo-mnemonic that reserves a block of memory for your character 
string (i.e. the message). 

13 



14 

0100 BD 1618 MSG JSR OUTIS ;OUTPUT CHARACTERS 
;INSERT ASCII MSG. 
;CR,LF,HELLO,O 

0103 ODOA48 FCB OD,OA,48 
0106 454C4C FCB 45,4C,4C 
0109 4FOO 
01DB BD 1400 

FCB 4F,OO 
JSR MAIN ;RETURN TO MONITOR 

Machine language program to print a message on your video terminal. 

The following operational sequence uses the Monitor to enter the machine code, 
check the accuracy of the instructions, and execute the program. 

MON> M 100 § 

0100 NN BD '@ 

0101 NN 16 '@ 

0102 NN 18 ·~ 
0103 NN OD §) 

010D NN DO '@ 

01DE NN ESC 
MON> 

( ... Enter machine code ... ) 
{ ... JSR ... ) 
( ... High byte address .... ) 
( ... Low byte address ..... ) 
( ... Sequentially enter ) 

data from the 
machine code 
until complete. 

( ... JSR MAIN ............ ) 

The display instruction (I) lets you sequentially verify the accuracy of your work. 

MON> I 100 ,~ 

0100 BD 1618 ~ 

0108 BD 1400 ESC 
MON> 

The program is ready for execution. Use the Go (G) instruction to run your 
program from address 100. 

MON> G 100 § 

~ 

The computer prints a friendly greeting on the display when you execute the 
program. 



WARNING 

Al ways originate your programs at or above hexadecimal 
location 100 because Tiny BASIC and F ANTOM II fre
quently use the low memory as a buffer. "Appendix A" 
contains a memory map of the RAM locations that the 
firmware uses. 

EXECUTING A PROGRAM SEGMENT 

Isolating and correcting program errors is another function of program execu
tion control. This function is commonly referred to as breakpointing. For a more 
complete discussion on breakpointing, refer to the operation section of the 
ET-3400 Microprocessor Trainer Manual. The Monitor supports breakpointing 
techniques by providing you with both single STEP (S) and multiple step 
EXECUTE (E) commands. A third technique lets you enter breakpoint addresses 
into a table and then use the GO command to execute a program segment. 

Assume that, in the previous example, machine instruction BD 1618 was incor
rectly entered to read BD 1600. The simple method to detect this error is to set 
the program counter to address 100 and step through each instruction, compar
ing the computer activity with the results expected from your algorithm. 

The single STEP command requires that you define the initial program para
meters and preset any registers to their initial status. For this example, only the 
program counter is affected and must be preset to the starting address of the 
program (i.e. 100). Use the command to display/alter the program counter to read 
hexadecimal integer 100. Type S after presetting the initial parameters to exe
cute a single instruction. The Monitor responds by executing the instruction 
located at the program address contained in the program counter, and then 
printing the contents of each CPU register on the terminal. 

~ CTRL/P P=NNNN 100 '§ 
MON> R C=NN B=NN A=NN X=NNNN P=0100 S=NNNN 
MON> S C=NN B=NN A=NN X=NNNN P=160D S=NNNN 
MON> 

15 



16 

Analysis of the program data displayed on your terminal, when compared with 
the algorithm (i.e. see Chart 1), shows an incorrect address for the JSR mnemonic. 
Once the initial parameters have been defined, you may continuously single step 

through a program by typing S. 

A better technique for debugging large programs is to use the EXECUTE (E} 
multiple step command. The EXECUTE command is similar to the STEP com

mand, except control is returned to the Monitor only after a specified number of 
steps have been executed. The step count is a hexadecimal integer. For example, 
the following sequence would execute 18 program steps, and then display the 
registers in the same format as the STEP command. 

MON> CTRL/P P=NNNN 100 § 

MON> E 12 § 

C=NN B=NN A=NN X=NNNN P=NNNN S=NNNN NN NN * 
MON> 

Breakpointing is another technique for isolating errors in your program. A 
breakpoint in your program interrupts the normal program execution and lets 
you test or analyze program parameters. Type H to set a breakpoint (Haltpoint), 
followed by the address and a carriage return. 

For instance, 

would set a breakpoint in the table that would halt your program at address 10B. 

*NOTE: Be extremely careful when you are using ROM subroutines and the S, E, and H commands. 

In this example, it is not possible to accurately predict the program results because the F ANTOM II 

Monitor and the ET-3400 Monitor share RAM locations. Occasionally, this sharing causes unpre

dictable results. 



When you wish to examine the status of the breakpoint table, simply type 
CTRL/H. This command displays the contents of the breakpoint table. The 
Monitor forbids the entering of additional breakpoints into the table until one of 
the entries is cleared. A cleared table entry is displayed as FFFF. 

MON> CTRL/H 01DB FFFF FFFF FFFF 
MON> 

The only way to delete a breakpoint from the table is to use the CLEAR (C) 

command. To remove a breakpoint, type C and the address. For instance: 

MON> C 1DB § 
MON> 

would remove the breakpoint 10B from the table. 

A maximum of four breakpoints (Haltpoints) is permissible in the table. An 
attempt to set more than four breakpoints would return the following message: 

ERROR! 

Al ways place a haltpoint at a RAM location containing an operation code. Use 
the G command to execute the program until the haltpoint is reached. After it 
encounters a haltpoint address, the Monitor prints the current status of the 
microprocessor registers. You may examine or alter the contents of memory or 
registers before proceeding with program execution. 

17 



18 

PROGRAM STORAGE AND RETRIEVAL 

The ET A-3400 Microcomputer Accessory lets you choose either of two different 
methods for controlling a cassette magnetic tape recorder. The simpler method 
allows you to use a recorder and the ET-3400 keypad. The other method lets you 
use a recorder and console terminal to store data. The advantage to the second 
method is the optional increase in speed with which you can LOAD or DUMP 
your routine. Either method lets you create and use an inexpensive library of 
computer routines. The information you store on cassette tape uses the Kansas 
City Standard (KCS) format with a five second leader and trailer. 

The method you choose to LOAD or DUMP a magnetic tape is optional. However, 
using a console lets you select different baud rates to transfer data between 
cassette tape and computer memory. A baud rate is the measure (bits per second) 
of the speed of transmission of data pulses. We recommend that you use 300 
baud. The important thing about baud rates is that they be the same for each 
device when you are reading or writing information between devices. For your 
convenience, always write the baud rate on the cassette label next to the program 
name. 

CASSETTE USAGE WITH A CONSOLE TERMINAL 

To use the Tape (T) command, press CTRL/T after the Monitor prompt character. 
This command causes the terminal to print a T after which you specify the baud 
rate* (1 to 8). A colon (:) separates the baud rate from the program starting 
address, and a comma is used between the starting and ending address of the 
memory block to be recorded. Prepare the cassette by installing and rewinding a 
tape before typing a carriage return. Always allow the recorder to attain a normal 
operating speed by waiting several seconds before hitting the return key. For 
instance, assume you wish to save sample program number one on Page (22). 

MON> CTRL/T .'.!'.1: 100, 126 § 
MON> 

This command writes the data from memory locations 100 through 126 to 
cassette tape at 2400 baud. When the data is completely written, program control 
is returned to the Monitor and the FANTOM II prompt character reappears. To 
specify 300 baud, type 8 rather than 1. 

;,Any integer can be used to specify a baud rate. However, the common rates use: 300 for TB; 600 for 
T4; 1200 for T2; and 2400 for Tl. 



Because 300 baud is the recommended rate, the Monitor lets you select and type 
T rather than CTRL/T when writing data. With this feature, you may standardize 
all your tapes at 300 baud and, in so doing, be able to use either the keypad or the 
terminal to LOAD your tapes. For example, the following two commands are 

equivalent: 

MON> CTRL/T ,1.8: 100, 126 §J 

or 

MON> T 100 , 126 §l 

The LOAD (L) command allows you to read data from a cassette tape into 

memory. The baud rate with which the tape was written must agree with the 
baud rate at which you wish to read the data. If the baud rates do not agree or you 
find a tape error, possibly due to dirt on the recorder heads, a tape error message 
will be generated. To use the load command, type L followed by the integer code 

(1 to 8) that indicates the selected baud rate. For example: 

.M.Q1i2:. L 1 @ 

MON> 

would load a tape written at 2400 baud. A tape written at 300 baud can be read by 
either an "LB" or "L" command. 

ET-3400 CASSETTE USAGE 

You may use the ET-3400 keypad to save a block of memory on cassette tape. This 
routine prompts you for the first and last address of the memory block to be 
recorded. To execute the cassette dump routine from the keypad, use the DO 

function to transfer control to address 1A8F. The following two prompts are 
printed on the ET-3400 displays: 

____ Fr. 

- ___ La. 

You respond to the prompts by entering the first (Fr.) and last (La.) address of the 
block of memory to be saved on cassette tape. Before you enter the last digit, 
activate the cassette recorder by pressing the record button on the cassette. For 
instance, assume you wish to save sample program number one on Page 22. 

• Press DO (D) on the ET-3400 keypad and enter address 1A8F. 

• Enter the first address (0100) of the memory block to be transferred after 
the ____ Fr. prompt. 

19 



20 

• Enter the first three digits of the last address (012) after the ____ La. 
prompt. 

• Install and rewind a magnetic tape. Then press the Record button. Be 
sure the leader passes the recording head. 

• Enter the last digit (6) of the address. When the memory block is 
recorded, the ET-3400 displays will print CPU UP. 

The ET-3400 cassette LOAD routine, located in the Monitor from address 1ABC 
through 1AD4, reads a block of memory data from cassette tape into computer 
memory. The routine proceeds until the last record is found or until a tape error 
occurs. An error can be caused by many diverse problems such as, dirt on the 
tape or tape heads, an incorrect baud rate, etc. If an error is found the ET-3400 
display prints: 

Error 

If no error is found, the CPU UP message is printed after the data is completely 
loaded. Don't forget to turn off the recorder at this point. The following proce
dure transfers binary data from a cassette tape into computer memory: 

• Press the DO (D) key on the trainer and enter the first three digits of the 
cassette loader routine, 1AB_ . 

• Install and rewind the cassette tape. 

• Press the PLAY button on the recorder and enter the last digit (C) on the 
keypad. 

• Wait for the message (CPU UP or Error) to be printed on the displays. 

USING A TELETYPEWRITER 

Two commands let you Punch/List formatted absolute binary tapes using the 
Motorola MIKBUG* format. The tape format is shown in Figure 1. When you 
want to load or store binary data from a teletypewriter, use the L or P monitor 
commands. For instance, to transfer binary data from a paper tape to memory, 
enter the following command from your console: 

MON> LO 

NOTE: Always activate the teletypewriter before you enter any monitor com
mands. 

*Registered Trademark, Motorola Inc. 



To Print/Punch a formatted binary tape, enter the P command followed by a 
beginning and ending address. F ANTOM II responds by outputting the data. The 
next example displays the sixteen bytes of memory from hexadecimal location 
1400 to 140 F. 

MON> P 1400, 140F'§ 
S11314000FCE10006F016FD3861A700867FA7022D 
S9 
MON> 

Figure 1 is a breakdown of the Motorola MIKBUG* format. Use the information 
only to decode programs stored in the MIKBUG* format. 

} Leader (Nulls) 

-00- (CRJ Formau1ng for priMer 

Frame 0A (LFI readab1 I ity, ignored 

00 !NULL) by leader 
53 s Start·of.record 

cc CC 0 Type of Record 

} Byre Count I two frames -
4 one byte) 

5 ~ I } 0 

l 
Address/Size 

j '." 

;::: 3 u } Data 
10 3 l ~ > 

"' 

N } ChPCk'SU''l 

Frames 3 through N are hexadec•mal d1g•ts l1n 7·b1t ASCII) which are convertPd 
to BCD. Two BCD d•g•ts are combined to make one 8·b1t byte 

Thr· checksum 15 the onr·s comrilF'rllP.nt of the s.ummat1on of 8·b1t bytes 

cc 30 cc 31 cc 39 
HP,Hter Data End·of F ·le 

Frame R1•corrl Flecord Record 

1 Start of Record ---22_ _s_ _2]_ _s_ _§}_ 
2 Type of Re co rd ___]Q_ _0_ 31 1 _lQ_ 
3 31 31 

15 
30 

03 
4 

By re Count 
---1L 

12 
~ -1L 

5 30 31 30 

6 Addn1 ss S1 Zf-' 30 31 1100 30 0000 

30 
0000 

30 30 

___l_L ___]!_ --1L 
9 34 39 

98 
46 FC 

10 
Data 

___lL 
48 11 

~ 43 

34 30 
32 

(Chelksurnl 

~ 
44-D 

32 :; "" EE 
ffE]-9E- 48 

AB ~ChPl kSlJrll~ 

N Checksum 

Figure 1 
Courtesy of Motorola Semiconductor Products Inc. 

21 



22 

A SAMPLE PROGRAM 

The sample program provides you with a routine to test the operation of your 

ETA-3400 Microcomputer Accessory. You can use the routine to gain profi

ciency with the FANTOM II Monitor. The routine is a duplicate (with minor 

changes) of a program listed in the ET-3400 Manual. 

0100 8D FC8C START JSR RED IS 
0103 86 01 LDA A $01 
0105 20 07 BRA OUT 
0107 D6 Fl SAME LDA B DIGADD+l 
0109 CB 10 ADD B $10 
0108 D7 Fl STA B DIGADD+l 
OlDD 48 ASL A 
DlDE 8D FE3A OUT JSR OUT CH 
0111 CE 2FOO LDX $2F'DO 
0114 09 WAIT DEX 
0115 26 FD BNE WAIT 
0117 16 TAB 
0118 5D TST B 
0119 26 EC BNE SAME 
0118 86 01 LDA A $01 
011D DE FD LDX DI GADD 
011F 8C C10F CPX $C10F 
0122 26 EA BNE OUT 
0124 BD 1400 JSR MAIN 

Use FANT OM II when you enter, verify, and execute the sample program. When 

the program is running, the LED display on the ET-3400 Trainer will sequen

tially turn each segment on and off and then return to the monitor. 



MONITOR COMMAND SUMMARY 

REGISTER 

R 
CTRL/P 
CTRL/X 
CTRL/A 
CTRL/B 
CTRL/C 

COMMAND 

MEMORY 

COMMAND 

D addrl, ... ,addrN 

M addr1 

I addr1 

CTRL/S addr1, addr2,cnt 

FUNCTION 

Display all the registers. 
Display/alter the program counter. 
Display I alter the index register. 
Display/alter accumulator A 
Display/alter accumulator B 
Display/alter the condition codes. 

FUNCTION 

Display an area of memory on your console start
ing from location addrl through addrN. 

Display/Alter sequential memory location start
ing from addrl. 

Display sequential program instructi ans starting 
from memory location addr1. 

Transfer a block of memory contents starting 
from location addr1 to the memory location 
starting at addr2. The hexadecimal integer count 
(cnt<=FF ) is the number of bytes to be trans
ferred. 

23 



24 

PROGRAM EXECUTION CONTROL 

COMMAND 

G addrl 

S addrl 

E cnt 

H addrl 

C addrl 

CTRL/H 

FUNCTION 

Run the program starting from location addrl. 

Execute a single program instruction from loca
tion addrl. 

Using the present value of the program counter 
as a starting value, execute a series of instruc
tions. (cnt<=FF ) 

Insert a single haltpoint address into the break
point table. 

Remove a single haltpoint address from the 
breakpoint table. 

Examine the status of the breakpoint table. 

INPUT/OUTPUT OPERATIONS 

COMMAND 

T addrl, ... ,addrN 

CTRL/T # ,addrl ,addrN 

L 

L # 

FUNCTION 

Write the memory contents from location addrl 
through addrN to a cassette tape at 300 baud. 

Write the memory contents from location addrl 
through addrN to a cassette tape. The symbol 
"#" refers to an integer value representing the 
desired output baud rate. 

Read a cassette tape into memory at 300 baud. 

Read a cassette tape into memory. The symbol 

"#" refers to an integer value representing the 
desired output baud rate. 



ET-3400 USAGE 

COMMAND 

D 1ABF 
----Fr 

La 

D 1ABC 

TELETYPEWRITER 

COMMAND 

P addrl ,addrN 

LO 

FUNCTION 

Start the cassette and: 
enter the first address 
enter the last address 

Start the cassette and the monitor routine that 
reads a cassette tape. 

FUNCTION 

Punches a tape using the MIKBUG* format. 

Reads a paper tape that was created with the 
MIKBUG format. 

25 



26 

HEATH/PITTMAN TINY BASIC 

Tiny BASIC is a subset of BASICrr that allows you to easily create your own 

computer programs. For instance, a program to balance your checkbook is easy 

to write using Tiny BASIC. The People's Computer Company (PCC), a nonprofit 

corporation in Menlo Park, Ca., conceived the idea of a compact computer 

language designed to teach programming skills. The implementation of Tiny 

BASIC follows the philosophy of the original idea. 

In keeping with the "small is good" philosophy, Heath/Pittman Tiny BASIC 
employs a two-level interpreter approach with its consequent reduction in 

speed. The Heath Tiny BASIC firmware is permanently located in your computer 

system. The obvious advantage to this arrangement is the protection from a 
runaway program given to the Tiny BASIC interpreter. Also, you do not need to 

load the interpreter from cassette every time BASIC is used. 

The following pages describe the function, operation, and features of Tiny 
BASIC. Some of the major features are: 

• Integer Arithmetic (16-bit) 

• Twenty six Variables (A, B, ... ,Z) 

• Fifteen BASIC statements: 

LET LOAD INPUT REM 
RUN SAVE PRINT IF (THEN) 
END GOTO GOSUB RETURN 
BYE LIST CLEAR 

• FUNCTIONS: Random (RND) 
User (USR) 

ff BASIC is a registered trademark of the Trustees of Dartmouth College. 



EDITING COMMANDS 

Tiny BASIC lets you modify a program by inserting, changing, or deleting lines 
in the program. You can insert lines by typing a line with a line number that is 
not currently in the program. You can change lines by typing a new line with the 
same line number, and you can delete lines by typing a line number followed 
immediately by a carriage return. 

Two control characters also permit you to edit a line as you enter it. Hold the 
control (CTRL) key down and then press a U or H to delete either a complete line 
of text or a single character, respectively. 

CTRL/U This command deletes the current line. 

CTRL/H This command deletes the previous character. 

27 



28 

USING TINY BASIC 

Heath Tiny BASIC employs several F ANTOM II Monitor subroutines. Therefore, 
you must always initialize the Monitor and use the Monitor command (G) to start 
BASIC. This causes Tiny BASIC to execute a CLEAR command. BASIC then 
prints a prompt character (:) on your terminal, indicating that the system 
firmware is functioning and ;-waiting a command. The entry to Tiny BASIC is at 
lCOO, so you must use "G lCOO" to start it. 

For example, the following program prints a message on your terminal several 
times. The procedure to implement this program requires that you initialize the 
FANTOM II Monitor, start the Tiny BASIC interpreter, create and execute a 
BASIC program, and finally return control to the monitor. 

• Initialize the FANTOM II monitor by entering "DO 1400 §". 

• Type "G 1COO §" on your console. This is the Tiny BASIC starting 
address. 

• Enter the following program statements after the prompt ( 
ter. 

.:_100 LET I=O 
_;_200 PRINT "HEATH TINY BASIC" 
_;_300 I=I+1 
~400 IF I<5 GOTO 200 

_:_ 500 END 

• Type "RUN §". The program prints 
HEATH TINY BASIC 

) charac-

five times on your display, and then outputs a prompt character. 

• Type "BYE '§)" . System control is then returned to the monitor. 

The BReaK key is used to interrupt the execution of a Tiny BASIC program. This 
is particularly valuable if a program is in an infinite loop. You may stop it by 
pressing the BReaK key and holding it until Tiny BASIC responds 
" ! 0 AT NNN" . Thes error message tells you that the BreaK key was pressed and 
line NNN is the next line to be executed. To continue running your program, you 
may type "GOTO NNN". 

NOTE: When your program is at an INPUT statement, the BreaK key is disabled. 
You must either respond to the INPUT request with data or use a "MASTER 
RESET" from the ET-3400 keypad to regain system control. 



MODES OF OPERATION 

You can use either the COMMAND mode or the PROGRAM mode when working 
with Tiny BASIC. An instruction in the COMMAND mode does not have a line 
number and is immediately executed after the carriage return. An instruction in 
the PROGRAM mode has a line number and will not execute until a RUN 
command is given. For example, the following two statements perform the same 
operation. However, the second statement will not be executed until you type 
RUN '§ on the keyboard. 

: PRINT "TESTING THE ETA-3400 ACCESSORY" @J 

~10 PRINT "TESTING THE ETA-3400 ACCESSORY" ~ 

The important thing to remember about the modes of operation is: The COM
MAND mode primarily assists you in detecting and debugging program errors, 
whereas the PROGRAM mode collects statements that will eventually become 
your finished computer program. 

All Tiny BASIC instructions are valid in either mode. However, some of the 
instructions only make sense in one of the modes. For this reason, RUN and LIST 
should not be used in the PROGRAM mode. Also, END and RETURN should not 
be used in the COMMAND mode. 

All instructions function the same in either mode except for INPUT and GOTO. 
In COMMAND mode, the data that is to be INPUTted must be on the same line. 
Thus, 

:INPUT X,5,Y,7 

will cause the variable X to be set to 5 and Y to be set to 7. In addition, in the 
COMMAND mode, a GOTO will not be accepted until the program has been 
started with a RUN command at least once. 

29 



30 

INSTRUCTIONS 

A list of the instructions that Tiny BASIC recognizes is given below. It assumes 

that you are familiar with programming in the BASIC language. If you are not 

comfortable using BASIC, a course such as "BASIC Programming," Heath Model 

EC-1100, will help you to become proficient with BASIC. 

INSTRUCTION FORM 

REM (text) 

LET Var= Exp 
or 

Var= Exp 

INPUT Varl, ... ,VarN 

PRINT "message";Arg 
or 

PR Argl, ... ,ArgN 

GOTONNN 

GOSUB NNN 

RETURN 

DESCRIPTION 

The remark (REM) is a nonexecutable statement, 

used only for commentary. 

This instruction assigns the value of the expre
sion to the variable. Variable values are not pre
set. Therefore, always assign an initial value to a 
variable before using it. 

This instruction allows you to read data from the 
keyboard and assign values to the variables. 

The message or value of the argument is printed 
on the console terminal. Messages may be 
numbers or letters and are enclosed within quo
tations. If a comma is used between items in the 
PRINT list, items are printed in fields that start in 

columns 1, 8, 16, 32, and so on. If semicolons are 
used between the items, no space is left between 
them when they are printed. 

The program is unconditionally transferred to 
the statement numbered NNN and execution 
continues. 

The go-to-subroutine (GOSUB) instruction 

transfers program execution to the statement 
number. When the RETURN instruction is en
countered in the subroutine, program execution 
returns to the statement following GOSUB. 

Once program control is transferred to a sub
routine, program execution continues until pro
gram control encounters a RETURN statement. A 
subroutine must always be terminated with a 
RETURN statement. 



IF Expl rel Exp2 
THEN Stmt 

RUN 

END 

LIST 
LIST NNN 
LIST NNN1,NNN2 

CLEAR 

BYE 

SAVE 

LOAD 

If the test "Expl rel Exp2" is true, the statement 
after the "THEN" is executed. This statement 
can be any Tiny BASIC statement. The ''THEN 
Stmt" part can be replaced by 

GOTONNN 
Tiny BASIC recognizes the relational operators: 

<><=>=<>>< 

This instruction starts the program at the state
ment with the lowest statement number. 

When the interpreter encounters an END state
ment in your program, it stops program execu
tion and returns control to the command mode. 

The LIST instruction writes the entire buffer 
contents to your terminal. The LIST instruction 
followed by an argument writes either a single 
program statement or the range of statements 
between the arguments. (( NNN1 < NNN2 )) 

The interpreter removes all program statements 
from the buffer when it encounters a CLEAR 
instruction. 

Executing a BYE instruction causes the interpre
ter to exit BASIC and return to the FANTOM II 
Monitor. The exit does not clear the buffer and 
you can return to BASIC with the buffer contents 
intact by using a warm start (see Page 33). 

The SA VE instruction directs ·Tiny BASIC to 
write the buffer contents at 300 baud to a cassette 
tape. 

The LOAD instruction reads a cassette tape at 
300 baud and transfers a previously saved com
puter program into the buffer. 

31 



32 

MATHEMATICAL EXPRESSIONS 

A mathematical expression is the combination of one or more constants, vari

ables, and functions connected by arithmetical operators. For instance, the Tiny 

BASIC statement: LET A = 5+6/3-2*2 contains a mathematical expression. 

NUMERICAL CONST ANTS 

All constants in Tiny BASIC are evaluated as 16-bit signed integers. An integer 

constant is written without a decimal point, using the decimal digits zero 

through nine. Unless they are preceded by a negative sign, integer constants are 

assumed to be positive. 

VARIABLES 

A variable is any capital letter (A-Z). The letter is a symbol for a numeric value 

capable of changing during program execution. The value of this variable can 

range from -32768 to 32767. "Appendix A" contains the address of each of the 

26 variables used by Tiny BASIC. 

OPERATORS 

Tiny BASIC uses four arithmetical operators; addition ( +), subtraction (-), 

multiplication(*), and division(/). The statement LET A = 5+6/3-2*2 is an 

example of a mathematical expression using these operators. Tiny BASIC pro

cesses these operators in the same fashion that you would use to solve an 

algebraic.expression. For example, Tiny BASIC first evaluates 6/3 and 2*2 and 

then evaluates the expression to A=5+2-4 and sets the variable A equal to 3. 

Because Tiny BASIC evaluates multiplication and division before addition and 

subtraction, you must be careful when writing any mathematical expression. If 
you are not certrin of the order of operations, use parentheses to force the order 

you wish. Evaluation always proceeds from left to right, except that arguments 

enclosed within parentheses are evaluated first. 

Tiny BASIC also uses two unary ( + or - ) operators. These operators denote 

whether an expression is positive or negative. The expression LET A = 5- (-3) 

causes the variable A to equal eight. 



TINY BASIC RE-INITIALIZATION (Warm Start) 

Tiny BASIC, in conjunction with the FANTOM II Monitor, allows you to exit 
Tiny BASIC and then re-enter it without clearing program statements and vari
ables. In particular, the warm start re-entry preserves any remaining program 
and sets your memory limits. You can also reserve a block of memory by 
changing the high or low memory address ("Appendix A, Tiny BASIC Memory 
Map") and combine a BASIC program with a routine written in machine code. 

The warm start is used after you have left Tiny BASIC by typing "BYE" or by 
pressing RESET on the ET-3400 Trainer. From the FANTOM II Monitor, when 
you have the "MON>" prompt, type "B" to do a warm start of Tiny BASIC. 

33 



34 

FUNCTIONS 

You may use either of two intrinsic functions in Tiny BASIC. The random (RND) 
function allows you to generate a positive pseudo-random integer. The user 
(USR) function is actually a call to a machine language subroutine that you have 
previously written. You can use either function in the COMMAND or PROGRAM 
mode. 

THE RND FUNCTION 

The RaNDom function selects a positive pseudo-random integer between zero 
and one less than the argument. The argument is an integer or variable between 1 

and 32767. For instance, the following statement, when inserted in the sample 
program, causes the computer to store a random integer between zero and eight 
in the variable J. 

LET J = RND(9) 

THE USR FUNCTION 

If a subroutine is written in Tiny BASIC, you simply use the GOSUB and 
RETURN commands to call and return from the subroutine. This is no problem. 
But suppose you wish to call a machine language subroutine from a program 
written in Tiny BASIC. This is the purpose of the USR function. 

The USR function also permits you to call two routines in the Tiny BASIC 
interpreter. These two are commonly called PEEK and POKE, but they are not 
part of Tiny BASIC's vocabulary. You must implement the USR function to call 
the PEEK and POKE interpreter subroutines. These two routines let you get at 
nearly every feature of your microcomputer. As the name implies, you can 
examine the contents of selected memory locations with the PEEK routine. The 
POKE routine lets you enter data into memory locations. 

First, how do machine language subroutines work? A subroutine is called with a 
JSR instruction. This pushes the return address onto the stack and jumps to the 
subroutine whose address is in the JSR instruction. When the subroutine has 
finished its operation, it executes the RTS instruction, which retrieves that 
address from the stack, returning control to the program that called it. 

Depending on what function the subroutine is to perform, data may be passed to 
the subroutine by the calling program in one or more of the CPU registers and 
results may be passed back from the subroutine to the main program in the same 

way. The registers contain either addresses or more data. In some cases, the 
subroutine has no need to pass data back and forth, so the contents of the 
registers may be ignored. 



The USR function may be called with one, two, or three arguments. These 
arguments are enclosed by parentheses, separated by a comma, and may be 
constants, variables, or expressions. The first of these is always the address of the 
subroutine to be called. The second and third arguments allow you to pass data 
through the CPU registers. The value of the second argument is placed in the 
index register while registers A and B contain the third argument. The forms of 
the USR statement are: 

A = USR (sa) 
A = USR (sa, x) 
A = USR (sa, x, r) 

The starting address (sa) and the index register (x) are 16-bit arguments. The 
third argument (r) is also 16 bits, but must be split between two registers. The 
most significant 8 bits of the third argument go into the B register, while the least 
significant bits are placed in the A register. However, it is important to realize 
that the three arguments in the USR function are decimal expressions and not the 
hexadecimal expressions that are normally associated with machine language 
programs. Any valid combination of numbers, variables, or expressions can be 
used as arguments. 

The value returned by a USR function is a 16-bit number that is split between the 
A and B registers. The most significant byte is in the B register, and the least 
significant byte is in the A register. If your BASIC program does not use a 
returned value (such as POKE), the USR does not have to set up one. However, if 
the USR is supposed to return a value (such as PEEK), you must set up the value 
in the machine language of the USR. 

The sample program on the next page shows you how to implement the USR 
function. The program accesses the Tiny BASIC interpreter subroutines "POKE" 
and "PEEK", which permit you to alter or examine the contents of memory 
locations. The program lets you store fifteen integer variables into an array that 
occupies the lowest memory in your computer system. 

The program uses a simple loop to input and store data in memory locations zero 
through fourteen. After running the program, use the BYE command to exit Tiny 
BASIC and return to the Monitor. You can then examine the memory locations 
and verify that the program stores data in memory. By using a warm start, you 
can return to your Tiny BASIC program without deleting program statements. 

The program accesses two machine language subroutines. PEEK and POKE. 
PEEK is permanently programmed into ROM starting at hexadecimal memory 
locations 1C14 (7188) and POKE is at location 1C18 (7192). 

35 



36 

SAMPLE USR PROGRAMS 

10 REM THIS PROGRAM IS AN ADAPTATION OF A ROUTINE 
11 REM PUBLISHED BY TOM PITTMAN FOR KILOBAUD MAGAZINE. 
12 REM HEATH HAS OBTAINED PERMISSION FROM KILOBAUD TO 
13 REM REPRINT SEVERAL ARTICLES AT THE END OF THIS 
14 REM MANUAL ABOUT TINY BASIC. THESE ARTICLES PRESENT 
15 REM AN INFORMATIVE DISCUSSION ON TINY BASIC. 
16 REM 
17 REM 
18 REM 
20 REM LET "L" REPRESENT THE VARIABLE FOR THE 
21 REM ADDRESS OF THE INDEX REGISTER. 
22 REM 
23 LET L=O 
24 REM 
30 REM LET "J" REPRESENT THE VARIABLE DATA THAT 
31 REM WILL BE STORED IN ARRAY MEMORY LOCATIONS 0-15. 
32 REM 
33 INPUT J 
34 REM 
40 REM "POKE" THE VARIABLE "J" INTO LOCATION "L" 
41 REM 
42 LET J=USR(7192,L,J) 
43 REM 
50 REM USE THE "PEEK"COMMAND TO WRITE DATA FROM 
51 REM ARRAY LOCATION "L" INTO VARIABLE "N", THEN 
52 REM USE A PRINT STATEMENT TO VERIFY THAT THE DATA 
53 REM WAS CORRECTLY STORED. 
54 REM 
55 LET N=USR(7188,L) 
56 REM 
57 PRINT "INTEGER 11 ,N, 11 IS LOCATED AT ADDRESS ",L 
58 REM 
60 REM INCREMENT INDEX REGISTER AND TEST FOR END OF ARRAY. 
62 LET L=L+1 
64 IF L<15 GOTO 30 
70 END 



In the next example, the USR function lets you call two separate machine 
language subroutines. A listing of these routines is provided in Figures 1A and 
1B. The first routine, "LEDOFF", turns off the ET-3400 LED display, while the 
other routine, "LEDON", lights various LED segments. Both routines use ac
cumulators A and B to pass a value from the USR function to the BASIC program. 

DODO BD FE50 LEDO FF JSR OUTST1 
DDD3 OD DODD FCB 0,0,0 
OD06 ODO DOD FCB 0,0,0 
0009 80 FCB 8D 
DOOA 86 44 LDAA #$44 
oooc 5F CLRB 
DODD 39 RTS 

Figure lA 

0100 CE C16F LEDON LDX DG6ADD 
0103 BD FE50 JSR OUTST1 
0106 3E5B05 FCB 3E, 58,05 
0109 47158D FCB 47, 15, SD 
010C 86 AA LDAA #/AA 
010E 5F CLRB 
010F 39 RTS 

Figure lB 

The USR function requires that you either reserve an area of memory for machine 
code by adjusting the low memory address of BASIC user space upward, or you 
use the available bytes in low memory.* Both methods are featured in this 
example. 

trNQTE: See "Appendix A" for a complete memory map. Always use caution when you are 
working in memory locations below 100H for subroutines. This area is generally used by BASIC 
and the Monitors to store program variables. This example only shows you that areas of memory 
are available. However, the accepted procedure is to reserve an area of memory above address 100y 
for your programs. 

37 



38 

Use the following procedure to adjust BASIC's low memory limit. For example, 
the "LEDON" subroutine requires sixteen bytes of memory. Therefore, add the 

number of program bytes to the constant 0100H and insert the result in memory 
locations 20n and 21H. Replacing these values changes the low memory limit in 
BASIC. 

0100 Tiny BASIC low memory address. 
+ 10 Number of program bytes needed. 
0110 New low memory address. 

Reserve memory locations OlOOH through OlOF H for the program by using the 
following procedure. First, enter BASIC from the monitor. This will initialize the 
interpreter, and you will be able to set the new low memory limit by exiting 

BASIC and replacing the value with your new low memory limit. For example: 

MON> G 1CDO 
HTB1: BYE 
MON> M 20 '§) 

0020 01 § 
0021 00 10 § 

0022 NN ECS 
MON> 

Now use the Phantom II Monitor to enter the machine code from Figure 1A and 
1B. The two subroutines are almost identical because they call another sub

routine f0UTST1) located in the ET-3400 monitor. This routine outputs data to 
the LED displays. The major difference between the routines is in the program 
data. Changing this data changes the display. 

Observe that the program statement, LOX DG5ADD, is missing from the LEDO FF 

routine. The operand, DG6ADD, corresponds to Hexadecimal value C16F, which 
is the address of the left-most digit on your ET-3400 Trainer. This value must be 

in the index register before the USR program inserts this value f 4951910 = C16F h) 

into the index register for the second program. 

'The machine language subroutines performs one additional operation before 
returning to BASIC. The hexadecimal value entered into accumulators A and Bis 
returned to the USR variable fi.e. A=USRfO)). When the return from subroutine 
instruction is executed, these values are converted to a decimal equivalent and 
stored in variable A. The value stored in this variable determines the on/off delay 

time of the LED display. Changing the value in the accumulators lets you alter 
this delay time. 



Al ways use a warm start to reenter BASIC after you adjust the memory limits and 
enter the machine code. If you do not use a warm start, BASIC will reinitialize the 
available memory and write over any program that you may have in memory. 
That is: 

MON> B '§> 

Enter the following BASIC program statements after you adjust the low memory 
boundry and enter your machine language subroutines. 

10 K=5 
20 PR " OBSERVE ET-3400 DISPLAY" 
30 A=USR(256) 
40 GOSUB 100 
50 A=USR(D,49519) 
60 GOSUB 100 
70 K=K-1 
80 IF K>D GOTO 30 
90 END 
100 A=A-1 
110 IF A>O GOTO 100 
120 RETURN 

The LED display on the ET-3400 will display a message when you run the 
program. Program statement 30 calls the machine language routine that prints 
the "USr Fnc." message. After lighting the display, the program returns to 
BASIC and enters the time delay subroutine. 

Program statement 50 calls the routine that turns off the LED display. Note that 
the decimal value, 49519, is equivalent to the hexadecimal value C16F. Setting 
the index register in the calling program reduces the memory requirements in 
the subroutine. 

The starting address of each routine is supplied in decimal as the first argument 
in the USR function. If the address is not included, the program will never be 
executed. If the address is wrong, the jump will be to the wrong place in memory 
and unpredictable results will occur. 

39 



40 

APPENDIXES 

LOCATION 
0000-000F 

0010-00lF 

0020-0021 

0022-0023 

0024-0025 
0026-0027 

0028-002F 
0030-007F 
0080-0081 

0082-00B5 
OOB6-00C7 

0100-0FFF 

lCOO 
1C03 
1C06 
1C09 

lCOC 
lCOF 

1C10 

1C11 

1C12 
1C13 
1C14 

1C18 

APPENDIX A 

Tiny Basic Memory Map 

SIGNIFICANCE 
Not used by Tiny BASIC. 
Temporaries. 
Lowest address of user program space. 
Highest address of user program space. 
Program end + stack reserve. 
Top of GOSUB stack. 
Interpreter parameters. 
Input line buffer and Computation stack. 
Random Number generator workspace. 
Variables: A,B, ... ,Z 
Interpreter temporaries. 
Tiny BASIC user program space. 

Cold start entry point. 
Warm start entry point. 
Character input routine. 
Character output routine. 
Break test. 
Backspace code. 
Line cancel code. 
Pad character. 
Tape mode enable flag. (HEX 80 = enabled) 
Spare stack size. 
Subroutine (PEEK) to read one byte from RAM to B and A. 

(address in X) 
Subroutine (POKE) to store A and B into RAM at address in X. 



NUMBER 

0 

8 

9 
13 
18 

20 
23 
25 
34 

37 
39 
40 
41 

46 

59 

62 
73 
75 
95 
104 

123 
124 

132 
133 
134 

APPENDIX B 

Tiny Basic Error Message Summary 

MEANING 

Break during execution. 
Memory overflow; line not inserted. 
Line number 0 is not allowed. 
RUN with no program in memory. 
LET is missing a variable name. 
LET is missing an =. 
Improper syntax in LET. 
LET is not followed by END. 
Improper syntax in GOTO. 
No line to GOTO. 
Misspelled GOTO. 
Misspelled GOSUB. 
Misspelled GOSUB. 
GOSUB invalid. Subroutine does not exist. 
PRINT not followed by END. 
Missing close quote in PRINT string. 
Colon in PRINT is not at end of statement. 
PRINT not followed by END. 
IF not followed by END. 
INPUT syntax bad - expects variable name. 
INPUT syntax bad - expects comma. 
INPUT not followed by END. 
RETURN syntax is bad. 
RETURN has no matching GOSUB. 
GOSUB not followed by END. 

41 



139 

154 

158 

164 

183 

188 

211 

224 

226 

232 

233 

234 

253 
259 

266 

267 
275 

284 
287 

288 

290 
293 

296 
298 
303 

304 

306 
330 
363 

365 

END syntax bad. 
Cannot list line number 0. 

LIST not followed by END statement. 
LIST syntax error - expects comma. 
REM not followed by END. 
Memory overflow, too many GOSUB'S. 

Expression too complex. 
Divide by zero. 
Memory overflow. 
Expression too complex. 
Expression too complex using RND. 
Expression too complex in direct evaluation. 
Expression too complex - simplify. 
RND(O) not allowed. 
Expression too complex. 
Expression too complex for RND. 
USR expects ( before argument. 
USR expects ) after argument. 
Expression too complex. 
Expression too complex for USR. 
Expression too complex. 
Syntax error in expression - expects value. 
Syntax error - missing ) . 
Memory overflow - CHECK USR function. 
Expression too complex in USR. 
Memory overflow. 
Syntax error. 
Syntax error - check IF/THEN. 
Missing statement. Type keyword. 
Misspelled statement. Type keyword. 



APPENDIX C 

Heath/Wintek Monitor Listing 

43 



44 

HEATH KEYBOARfl MONITOr~ 

RAM AND CHARACTERS DEFINED 

0000 

000[1 
OOOA 
0020 

1000 
1000 
1001 
1002 
1003 

FE6B 
FEFC 
FF76 
FCBC 
FD7B 
FE20 
FD43 
FD25 
FC86 
FE52 

oocc 
oocc 
OOCD 
OOCE 
OOCF 
OODl 
OOE4 
0004 
OOE4 
OOEC 
OOEE 
OOFO 
OOF2 
OOF4 
OOF4 
OOF7 

*** HEATH/WINTEK TERMINAL MONITOR SYSTEM 

* * BY JIM WILSON FOR WINTEK CORPORATION * COPYRIGHT 1978 BY WINTFK CORP. * ALL RIGHTS RESERVED 

** CONDITIONAL ASSEMBLIES 

DEF.:UG [QlJ 0 

** CHARACTER DEFINITIONS 

CF< 
L.F 
SPACE 

ECW 
EQU 
EQU 

OflH 
OAH 

** PIA DEFINITION 

ORG $l000 
TERM RMB l. 
TERM.C RMB 1 
TAF'E RMB 1 
TAF'E.C RMB 1 

** EXTEW,h'1LS 

SS TEP FQU OFE6BH 
SWIVE1 ECW OFEFCH 
OF'TAB EQU OFF76H 
REDI~> EQU OFCBCH 
DISPLAY EQU OFD7BH 
OUTBYT EQU OFE20H 
BKSF' ECW OFD4:~H 

PROMPT EQU OFD25H 
OUTS TA EC~U OFC86H 
OUT SH~ EC~U OFF~'.i2H 

** f\AM T EMF'Of\f':)R I ES 

DRG OCCH 
USE RC RMB 1 
LJSERB RMB 1 
USER A RMB 1 
USERX RMB 2 
USERF' RMB 2 

ORG OE4H 
NBR EQU 4 
BKTIH .. RMB 2*NBR 
TO RMB 2 
Tl RMB 'i 

.:.. 

fl I GADD RMB 2 
USERS RMB 2 
T? ECW * SYSSWI RMB 3 
UIRQ RMB 3 

[IEBUG CODE OFF 

CON DX COT.IFS 

ACCUMULf:1TORS 
INDEX 
f' + c + 

FOUR BREAKPOINTS AL.LOWED 



45 

HEATH KEYBOARII MONITOR 
RAM AND CHARACTERS DErINED 

OOFA USWI RMB 3 
OOF[I UNMI RMB 3 

FFFF IF flEBUG-1 
ELSE 

1400 ORG $1400 
END IF 

** MAIN MONITOR LOOP 

* * 1> FEELS OUT MEMORY 

* 2) SEARCHES FOR PAST INCARNATIONS 

* A> CL.EARS BREAKPOINTS JF REINCARNATED 

* B> CLEARS BREAKPOINT TABLE OTHERWISE 

* 3) SENDS F'f\OMf'T 'MON>" 

* 4) ACCEPTS COMMAND CHARACTERS ANfl ,JUMPS 

* TO Af'PROPF~ I ATE HANflL.ER 

1400 OF MAIN ~>EI 
1401. CE 10 00 LDX =&:TERM TERMINAL Pl A 
1404 6F 01 CLR 1, x IN CASE IRREGULAR ENTRY 
1406 6F 03 Cl.R 3,x 
1408 B6 01 L.flA A u 
140t-i A? 00 STA A o,x 
140C 86 7F L..[IA A t01111111B 
140£ A7 02 STA A 2,x 
1410 C6 04 L[IA H t4 
141.2 E7 01 STA B 1 'x 
1414 E7 03 STA B 3,x 
1416 A7 00 STA A o,x I DL..E MARKING!! 

* NOW FINfl MEMORY EXTENT 

1418 09 MAIN! DEX 
1.419 A6 00 LDA A o,x 
141B 63 00 COM o,x 
141[1 43 COM A 
141.E Al 00 CMf' A o,x 
1420 26 F6 BNE MAIN1 
1422 63 00 COM o,x RESTORE GOOD BYTE 
1424 86 1.5 LDA A t4*NBR+5 
142t!\ 09 MAIN2 DEX GO TO MONITOR GRAVEYARD 
1427 4A DEC A 
1.428 26 FC BNE MAIN2 
142A 35 TXS 
142B 86 oc LDA A :1:2*NBR+4 
l.42[1 EE 08 LDX 2*NBR,X RETURN ADDRESS IF ANY 
142F SC 14 4C CPX :f:MAIN5 
1432 27 09 BEQ MAIN4 IS RE-I NCAF<NATI ON 
1434 Cl> FF LflA B :UFF 
1436 30 TSX 
1437 E7 OA MAIN3 STA B 2*NBR+2,X 
1439 08 INX 
143A 4A DEC A 
143B 26 FA BNE MAIN3 



46 

HEATH KEYBOARD MONITOR 
MAIN - MAIN MONITOR LOOP 

143[1 86 04 MAIN4 LDA A tNBR CLEAR BREAKPOINTS 
1.43F 33 MAIN44 f'UL B 
1440 33 PUL B 
1441 30 TSX 
1442 EE oc LDX 2*NBR+4,X 
1444 E7 00 STA B o,x 
1446 4A DEC A 
1447 26 F6 BNE MAIN44 
1449 oc CLC NO ERROR MF.SSAGE 
144A 31 INS 
144B 31 INS 
144C 24 on MAIN5 BCC MAIN6 NO ERROR 
144E I<D lb 18 JSR OUTIS 
1451 0[1 OA 45 FCB CR, LF, ,. ERF\OR ! ,. , 7' 0 
l4~H< BD 16 18 MAIN6 JSR OUTIS 
145E OD OA 4[1 FCB CR,LF,,.MON> ,. , 0 

1.466 7[1 1.0 00 MAIN66 TST TERM 
1469 2A FB BPL MAIN66 
146B BD 18 E1 JSR INCH INPUT COMMAND 
146E CE 19 EF LDX tCMDTAB-3 
1471 OB MAIN? INX 
1472 08 INX 
1473 08 INX 
1474 Al 00 CMf' A o,x 
1476 25 F9 BCS MAIN? 
1478 26 [12 BNE MAINS ILLEGAi .. COMMAND 

147A 36 F'SH A 
147B BD 18 63 JSR OUTSF' 
147£ 32 Pl.IL A 
147F C6 4C L..DA B t-MAIN5/256*256+MAIN5 
1481 37 f'SH B 
1482 C6 14 L.DA B tMAIN5/Z56 
1484 37 F'SH f{ 

1485 E6 02 l..DA B 2,x 
1487 37 F'SH B 
1488 E6 01 LDA B 1,x 
148A 37 F'SH B 
148B 5F CLR B 
148C DE F2 LDX USERS 
148E 39 RTS 

** GO - GO TO USER CODE 

* 
* ENTRY: <X> - USERS 

* EXIT: UPON I{f\EAKF'O I NT 

* USES: ALL,TO,T1rT2 

148F Bf1 16 25 GO JSR AHV 
1492 24 04 BCC G01 NO OPTIONAL ADDRESS 

1494 A7 07 STA A 7,x 
1496 E7 06 STA B 6,X 
1498 BD FE 6B G01 ,JSR SSTEF' STEP PAST BKf'T 
149B C6 04 LDA B :f:NBR 
149D 30 G02 TSX COPY IN BREAKPOINTS 
149E EE oc LitX 2*NBR+4,X 



47 

HEATH KEYBOARD MONITOR 
GO - GO TO USER CODE 

14AO A6 00 LDA A o,x 
14A2 36 PSH A 
14A3 36 PSH A 
14A4 86 3F LDA A t$3F 
14A6 A7 00 STA A o,x 
14A8 5A DEC Ee 
14A9 26 F2 BNE G02 
14AB 20 3E BRA GCl7 

J.4AD 30 G03 TSX 
14AE A6 06 LDA A 6,X 
14BO 26 02 BNE G033 
14B2 6A 05 DEC s,x 
14B4 E6 05 G033 LitA B 5,x 
14B6 4A DEC A 
14B7 A7 06 STA A 6,X DECREMENT USER PC 
14B9 9F F2 STS USERS 
14BB 9E EC LDS TO 
14BD 36 PSH A 
14BE 86 04 LDA A =l=NBR 
14CO 97 EC STA A TO 
14C2 32 PUL A 
14C3 30 TSX 
14C4 08 G04 INX SEARCH TABLE FOR HIT 
14C5 OB INX 
14C6 Al 0[1 CMP A 2*NBR+s,x 
1.4C8 26 19 BNE G05 NO HIT HERE 
14CA E1 oc CMf' B 2*NBR+4,X 
14CC 26 15 BNE G05 
14CE Bfl 16 18 .JSR OUTIS 
1401 OD OA 00 FCB CR,LF,O 
l.4[14 86 04 LDA A t-NBR 
14[16 33 G044 PUL B 
14[17 33 PUL B OP CODE INTO B 
14(18 30 TSX 
14[19 EE oc LDX 2*NBR+4,X 
l.4DB E7 00 STA B o,x 
14[1[1 4A DEC A 
14DE 26 F6 BNE G04-4 
14EO 7E 15 53 JMP REGS DISPLAY REGISTERS 

14E3 7A 00 EC G05 DEC TO 
14E6 26 DC BNE G04 

* SWI NOT MONITORS so INTERPRET 

14£8 BD FE 6B JSR SSTEF' STEF' PAST SWI 
14EB 9F [C G07 STS TO 
14ED CE 14 AD L.DX tG03 
14FO 7E FE FC JMP SWIVE1 



48 

HEATH KEYBOARD MONITOR 
BKF'T - INSERT BREAl\POINT 

** BKf'T - INSERT BREAKPOINT INTO TABLE 

* * ENTRY: NONE 

* EXIT! "C" SET IF TABLf FlJL.L 

* USES: ALL,TO 

14F3 30 BKF'T TSX 
14F4 86 FF L[IA A :UFF 
l4F6 Cl> 04 LOA B tNBR 
14F8 08 Bl'(P1 INX 
.14F9 08 INX LOOK FOR EMPTY SF'flT 

14FA Al 04 CMP A 4,x 
14FC 2b 04 BNE BKF'2 NOT EMPTY 
14FE Al 05 CMf' A ~;, x 
1500 27 05 BEQ BKF'3 IS EMF'TY 
1~)02 5A Bl\P2 DEC B 
1503 26 F3 BNE BKF'l STJ:LI.. HOPE 
1. 50~) OD SEC 
1~rn6 39 RTS FULL! ! 

1507 BD 16 25 Bl<f' 3 JSR AHV GET BF~EAl<F'D I NT 'v'f"~L..UE 

l~'.iOA 24 04 BCC Bl\P4 NO ENTF~Y 

1 ~'.iOC A7 05 ST f6~ A ~:;, x 
l.!:50E E? 04 STA B 4,x 
1510 oc BKF'4 CL.C 
1~:j11 39 RTS 

** CLEc:'.if~ - Cl.. F f':-rf~ BREAt\F'O I NT ENTPY 

* 
* ENTRY: ( x) -·· tJSERS 

* EXIT: ,.C·' f:)ET IF NOT FOUNT.I 

* USES! AL.L,TO 

1512 86 04 CLCAR l ... DA A tNBR 
1.~514 97 EC STA A TO 
1516 B[t 16 2~:.; .JSR AHV GFT LOCATION 

l~H9 2~.=; 04 BCS CL El NO VALID HEX 
.1. ~7il B A6 07 LflA A 7,x 
1~.)111 E6 06 LflA B 6,X USER PC FOR DEFAULT 
1~'i1F 30 CLE1 TSX 
1520 08 CLE2 INX 
l '.:':i;.~ 1 OB INX 
1522 (l1 o~; CMP (:, ~i' x SE1-iF\CH TABLE 

1 ~j24 26 04 BNE CLE3 NOT FOUNT.I 

l~.)26 El 04 CMF' B 4,x 
1528 27 07 BEQ CL.E4 FOUND 
l~i2A 7A 00 EC CL..E3 DEC TO 
152[1 26 Fl BNE CL.E2 
152F OD SEC 
1~)30 39 RTS 

1531. C6 FF CL.E4 LDA B UFF 
1533 E7 04 STA B 4,x CLE AF~ ENTRY 
l53~'j E7 05 STA B 5,x 
1. ~.'.137 oc CLC 



49 

HEATH KEYBOARD MONITOR 
BKPT -- INSEFn BREAKPOINT 

1.~j38 39 ras 

** EXEC - PROCESS MULTIPLE SJNGLE STEP 

* * ENTRY: NONE 

* EXIT: REG I STE"F<S PRINTED 

* USES: ALLrTo,n,T2 

1539 BD 16 r;.1::-
.;...J EXEC JSR AHV GET COUNT 

153C '") t:' 
.;.. ... J 09 BCS EXEC! 

153E Bi> 01 L[1A A u DEFAULT COUNT 
1 ~~j40 20 05 BRA EXE Cl 

1.542 36 EX ECO F'SH (.1 SAVE COUNT 
1.543 BD FE l>B JSR SSTEF' STFP CODE 
1.546 32 f'LJL.. t-i 
1.547 4A EXEC1 DEC A 
1.548 26 Ffl BNE EXE CO MORE STEPS 
1 ~i4A BD 16 l8 JSR OU TIS 
1.54D 0[1 OA 00 FCB CR,LF,O 

** STEP - STEP USER CODE 

* * ENH:Y: NONE 

* EXIT! REGISTERS PRINTED 

* USES: ALL,TO,TlrT2 

l550 BD FE 6B STEP SSTEP STEP USER CODF 

** REGS - DISPLAY ALL USER REGISTERS 

* * ENH~Y: NONE 

* EXIT! REGISTFRS PRINTED 

* USES: AL.L,TO 

1~)53 5F F<EGS CLF\ B 
l.5~i4 DE f':'> L[IX USERS 
1 ~)56 86 43 LDA A :f: ... c / 
155B 8[1 26 BSF~ REGS1 
1.~;5~, 8i> 42 L[IA A t" B ~ 
1 ~:i~)C BD 24 BSR REGS3 
l~=i5F 86 41 L..DA A :f: I A I 
1560 8[1 20 BSR REGS3 
1562 86 58 LflA A f.-'X-' 
1564 8[1 1B BSR REGS2 
l ~j66 86 50 l..DA A f: IF' I 

1568 8[1 18 r~sR REGS3 
156A 86 53 LDA A i 'S,. 
1::16c 09 DEX 
156[1 DF EC STX TO 
156F CE 00 EB LflX :H0-1 
1572 8[1 oc BSR REGS! 
1~:;74 DE F2 LDX USERS 



50 

HEATH KEYBOARD MONITOR 
HEGISTEF< DISPLAY COMMANDS 

1 ~:i76 EE 06 LDX 6,X <X> - USERPC 
1578 DF EC STX TO 
1 ~;?A A6 00 LDA A o,x 
157C 8[1 63 BSf< TYf'INO TYPE INSTRUCTION 
1~'.i?E oc CLC 
157F 39 RTS 

1580 08 REGS! INX 
1581 5C REGS2 INC B 
1.582 BD 18 65 fi:EGS3 JSR OUT CH OUTPUT REGISTER NAME 
1585 86 3[1 LDA A f. .r :::: ,, 

15B7 BD 18 65 JSR DUTCH 
158A 20 67 BRA TYPIN2 

** F:EGISTEF\'. DISPLAY COMMi:'=)NflS 

* * ENTRY: (X) - USER SF' 

* (B) -· 0 

* EXIT: OPTIONAL REPLACEMENT VALUE STORED 

* USES: ALL.,TO 

l58C OB F~EGf' INX 
l~WD 08 INX 
158E Ofl F\EGX INX 
158F 5C INC B 
l ~i90 08 REGA INX 
1591. OB F~EGf1 INX 
1592 BB 40 m::Gc ADD A :1=$40 DISPLACE t\EG NtiMF 
1.594 8[1 E~1 BSR F:EGS1 OUTPUT WJTH Nf~ME 

1596 37 PSH B 
1.597 BD 16 25 ,JSR AHV 
159A 24 2F F.cCC MFM4 
159C 8[1 05 BSR F~EGl 

1~59E l7 TBA 
1·wr 33 PUL B 
15AO 5A DEC B 
15A1 27 08 BEQ f\EG2 
1.5A3 09 REG! DEX 
15A4 (..17 00 STA A o,x 
l~iA6 Al 00 CMF' A o,x 
15A8 27 01 BEQ REG2 
1 ~)f.H~ OD SEC 
15AB 39 F:EG2 RTS 

** MFM -·· DISPLAY MEMORY BYTES 

* 
* ENH~Y: (B) -· 0 

* (X) - USER s. F'. 

* USES! ALL,TO 

15AC 5A MEM DEC B 



51 

HEATH KEYBOAf<[I MONITOR 
MEM - DISPLAY MEMORY OR INSTRUCTION 

** INST - DISPLAY INSTRUCTIONS 

* * ENTRY: (B) = 0 

* <X> -·· USER s. F'. 

* USES: ALL,TO 

15AD 37 INST PSH B 
1~:.iAE EE 06 LDX 6rX GET USER f'. c. 
1.5BO 8[1 73 BSR AHV 
15B2 24 07 BCC MEM1 
l.5B4 36 f'SH A 
15B5 37 f'SH u 
15B6 30 TSX 
15IG' EE 00 LDX o,x 
15B9 31. INS 
1~.iBA 31 INS 
15BB oc MEM1 CL.C 
15BC 33 MEM2 f'UL B 
15Bfl 24 05 BCC MEM3 
15BF 8[1 r-:> BSR REG1 
15C1 25 OA BCS MEM5 
1::.;c3 08 INX 
:1.~=;c4 8[1 08 MEM3 BSR TYF'INS TYPE THE flATA 
15C6 37 f'SH B SAVE MODE FLAG 
15C7 8[1 5C BSF~ AHV Gf T F:EF'LACEMENT VALUE 
15C9 23 F1 BLS MEM2 
1~;cB oc MEM4 CLC 
15CC 33 f'UL B 
15CD 39 MEM~i PTS 

** TYPINS -· TYf'E INSTRUCTION IN HEX 

* 
* ENTRY: ( x) AD[IRF.:SS OF INSTRUCTION 

* EXIT: <X> -·· ADDRESS OF NEXT INST. 

* USES: ALL 

15CE A6 00 TYF'INS l.[I() A o,x OF' CODE 
15[10 36 PSH A ONTO STACK 
1. 5[11 DF EC STX TO 
1 ~rn:~ 8[1 43 BSR OUT IS 
:l ~j[l5 OD OA 00 FCB CR,LF,O 
15[18 CE 00 EC l..DX =HO 
1.5DB 8[1 2[1 BSR OUT4HS 
1~mn 32 f'UL A 
1 ~5DE 5D TST B 
15DF 2B OE BMI TYPIN1 ONE BYTE ONLY 
15E1. 8[1 66 TYPINO BSR BYTCNT 
15E3 5f~l DEC El 
15E4 2A 09 BPL TYf'IN1 IS VALID INST. 
15E6 5C INC B RESTORE <B> 
15E7 8[1 2F BSR OUTIS 
15E9 44 41 54 FCB 'DATA=',O 
15EF DE EC TYf'IN1 LitX TO 
15F1 BD 19 BSR OUT2HS 
15F:~ Ci 01 TYf'IN2 CMf' B t1 



52 

HEATH KEYBOARfl MONITOR 
MEM ··- DISPLAY MEMORY Or< INSTRUCTION 

15F~i 2B 20 BMI HHH 
1~)f7 

,.,-.. 
.:../ 13 BEO OUT2HS 

15F9 20 OF BRA OUT4HS 

** DISB -· DJ SPLAY BREAKPOINTS 

* * ENTRY: NONE 

* EXIT: BREAKPOINT TABLE PRINTED 

* USES: ALL 

15FB C6 06 ft I SB LflA B :f:6 OFFSET INTO HlBLE 

1.5FD 30 TSX 
1~iFE 08 DISB1 INX 
1~=.iFF ~5A DEC B 
1600 26 FC BNf: flISB1 
1.602 C6 04 LDA B :l=NBR 
1.604 8II 04 DISB2 BSR OUT4HS 

1606 5A DEC B 
1607 26 FB BNE DISB2 
1609 39 RTS 

** OUT4HS, OUT2HS -- OUTPUT HEX AND SPACES 

* * ENTRY: (X) -- ADDF<ESS 

* EXIT: x LJF'DATED PAST BYTE CS) 

* USES: x,A,c 

160A 8D 05 OUT4HS BSR THB TYPE HEX BYTE 
l60C 8[1 03 Cll.IT2HS BSR THB 
lt'>OE 7[ 1.8 63 JMF' OU TSP 

** THB - TYPE HEX BYTE 

* * ENTRY! ( x) ··- ADflRESS OF BYTE 

* EXIT: x INCF<fMENTED PAST BYTE 

* USES: x ,;~,c 

161.1 37 THB F'SH H 

1612 5F CLF~ B 
16l3 BD 17 E4 ,JSR OCH 
Ud.6 33 f'UL B 
1617 39 THB1 RTS 

** OUT IS -· OUTPUT IMBEDDED STRING 

* * CALLING CONVENTION: 

* JSR Ol.ITIS 

* FCB ;STRINw,o 

* <NEXT INST> 

* EXIT: TO NEXT INSTRUCTION 

* USES! fi, x 



53 

HEATH KEYBOARD MONITOR 
MEM - DISPLAY MEMORY OR INSTRUCTION 

1618 30 OUT IS TSX 
1619 EE 00 LflX o,x 
161B 31 INS 
161C 31 INS 
1.61D 37 PSH B 
1.61E SF CLR B 
161F B[I 17 C3 JSR OAS 
1622 33 PUL B 
1623 6E 00 JMF' o,x 

** AHV - ACCUMULATE HEX VALUE 

* * ENTRY: NONE 

* EXIT: (BA> -· ACCUMULATED HEX VALUE OR 

* <A> = ASCII IF NO HEX 

* 'C' SET FOR VAL.ID HEX 

* 
,. z, SET FOf~ TERMINATOR CR 

* USES: B,A,C 

162~j 5F AHV CLR H 
1626 BD 18 A3 AHVD JS~; IHD GET FIRST DJ GIT 
1629 24 1 [I BCC AHV3 NOT HEX 
1i>2B 3b AHVl. PSH A 
162C 37 F'SH B 
162[1 48 ASL A 
1 l.>2E 59 ROL B 
1.62F 48 ASL A 
1630 59 ROL B 
1631. 48 ASL. A 
1632 59 FWL B 
1633 48 ASL.. A 
1634 59 f\OL. B MAKE WAY FOR NF.::XT DIGIT 
1635 37 f'SH B 
163t> 36 f'SH A 
1.637 HD 18 A3 JSR IHD 
l.63A 24 07 BCC AHV2 THIS NOT HEX 
1i>3C 33 f'UL B 
163D lB ABA 
l.63E 33 f'UL F< 
li>3F 31. INS 
:1.640 31 INS DISCART.I 01..D VALUE 
1641 20 ES BFM AHVl 

1643 31 AHV2 INS 
1644 31. INS SKIP LATEST VAL.LIE 
1645 33 PUL B 
1646 32 F'UL A 
1647 OD SEC 
1648 39 AHV3 RTS 



54 

~~EATH KEYBOARD MONITOR 
BYTCNT - COUNT INSTRUCTION BYTES 

** BYTCNT - COUNT INSTRUCTION BYTES 

* * ENTRY: (A) -· Of'COflE 

* EXIT: <B) - Odr2 OR 3 

* 'C' CLEAR IF REL. ATIVE ADDRF.:SSING 

* "Z" SET IF IL.LEGAL. 

1649 36 BYTCNT f'SH A 
164A 16 TAB 
164B CE FF 75 LDX tOPTAB-1 
164E 08 BYT1 INX 
l.64F co 08 SUB B ta 
1651 24 FB BCC BYT1 
1653 A6 00 LDA A OrX 
1655 46 BYT2 f.:OR A 
1656 5C INC B 
1657 26 FC BNE BYT2 
1659 32 F'UI .. A 
165A 25 if BCS BYT7 
165C 81 30 CMP A t$30 CHECK FOR BRANCH 
165E 24 04 BCC BYT3 
1660 81 20 CMP A :1:$20 

1662 24 14 BCC BYT~:; IS BRANCH 
166-4 81 60 BYT3 CMP A f.$60 
1666 25 11 BCS BYT6 IS ONF BYTE 
1668 81 Bii CMP A 1$8[1 
166A 27 oc BEG BYT5 IS BSR 

166C 84 BD AND A :f:$B[I 

166E 81 BC CMf' A =HBC 
l.670 27 04 BEQ BYT4 IS x OR SP IMM. 
1672 84 30 AND A 1$30 CHF.CI-\ FOR THREE BYTES 
1674 81 30 CMP A f.$30 

1676 ("'.> FF flYT4 SBC fl =UFF 
167B 5C BYT5 INC B 

1679 5C BYT6 INC B 
167A 39 BYT7 RTS 

** COF'Y - COF'Y MEMORY ELSEklHERE 

* 
* ENTRY: NONE 

* EXIT: BLOCK MOVED 

* USES: ALL 

* * COM~if":tND SYNTAX: <CNTL-)D <FROM>r<TO>r<COUNT> 

167B BD 16 18 COPY JSR OUT IS 

H>7E 53 4C 49 FCB _,SLIDE I , 0 

U'>85 BD 1.6 25 ~JSR AHV GET *FROM* 
1688 24 19 BCC COP3 NO HEX 
168A 36 F'SH A 
168B 37 F'SH B 

1t'>8C BD 16 '")C-
.::.....J JSR AHV GET *TO* 

168F 24 10 BCC COf'2 NO HFX 
1691 36 F'SH A 
1692 37 PSH B 



55 

HEATH KEYBOARD MONITOR 
COPY - COPY MEMORY ELSEWHERE 

1693 BU 16 25 JSR AHV GET *COUNT* 
1696 24 07 BCC COPl NO HEX 
1698 36 PSH A 
1699 37 f'SH B 
169A BD 19 6D JSR MOVE MOVE DATA 
169[1 oc CL..C NO ERRORS 
169E 39 RTS 

169F 31 COP1 INS 
16AO 31 INS 
16A1 31 COP2 INS 
16A2 31 INS 
16A3 OD COP3 SEC 
16A4 39 RTS 

** LOAD - LOAD DfHA INTO MEMORY 

* * ENTRY: NONE 

* EXIT: 'c I SET IF ERROR 

* USES: ALL,TO 

16A5 BD 16 25 LOAD JSR f-tHV GET OPTIONAL PARAMETERS 
16AB 25 02 BCS LOAOO 
l6AA 86 08 L.DA A 18 DEFAULT TO CASSETTE 
16AC 16 L.OAOO TAB 
16AD 34 LOAO DES 
16AE 34 DES SCRATCHPAD ON STACK 
16AF BD 18 DE LOAl JSR ICT INPUT CASSETTE/TERM 
16B2 84 7F AND A 17FH 
16B4 81 53 CMP (1 :J .ts I 

16B6 26 F7 BNE LOA! 
16B8 BD 18 [IE JSR !CT 
16BB 84 ?F AND A :f:7FH 
16BD 81 39 CMP A t J 9.1 
16BF 27 36 BEQ l.OA4 JS EOF 
16C1 34 IIES 
16C2 81 31 CMP A J'l' 
16C4 2{) E9 BNE LOA1 NOT START-OF-··RECORD 
16C6 B7 Cl 6F STA A OC16FH TURN ON [I. p. 
16C9 4F CLR A 
16CA 30 TSX 
16CB BD 18 C2 JSR JHB COUNT 
16CE BD 18 c-:1 JSR IHB ADDRESS (~ BYTES> 
16fl1 BD 18 C2 JSR IHB 
16D4 30 TSX 
16D5 EE 01 LDX 1,x GET FWA OF BUFFER 
16[17 [17 EC STA B TO 
16[19 33 PUL B 
16DA co 03 SUB B t3 ACCOUNT 3 BYTES 
16DC 37 LOA2 f'SH f{ 

16DD [16 EC LDA fC TO 
16DF BD 18 C2 JSR IHB 
16E2 [17 EC STA B TO 
16E4 33 PLIL B 
16E5 5A DEC B 



56 

HEATH KEYBOARD MONITOR 
LOAD - FROM TAPE OR 

16E6 26 F4 
16E8 7F Ct 6F 
16EB [16 EC 
l.6ED CE 00 EC 
16FO BD 18 C2 
ll>F3 4C 
16F4 27 B9 
:l.6F6 OD 
16F7 31 
l.6F8 31 
l.6F9 39 

l6FA BB 40 
16FC BD rn 6~) 

l6FF BD 16 '")C" 
.:. .J 

1.702 1b 
1703 C4 7F 
1705 20 03 

1707 CB 09 

TERMINAL. 

BNE LOA2 
CL.R OC16FH TURN OF'F [I ( p. 

L.DA B TO 
LDX :f:TO 
.JSR IHB 
INC A 
BEQ LOA1 

LOA3 SEC 
LDA4 INS 

INS 
RTS 

** TIME CRITICAL ROUTIN~S ! ! ! ! ! 
* SINCE CASSETTE I/O IS DONE USING ONLY SOFTWARE 

* TI MING LOOPS, THE ROUTINE / B Jl,. MlJf.;1 BE Cf\LLED 
* EVERY 208 US. CRITICAL TIMES IN THESE ROUTINES 
* ARE LISTED IN THE COMMENT FIELDS OF CERTAIN 
* INSTRUCTIONS IN THE FORM ·NNN us·. THESE TIMES 
* REPRESENT THE TIME REMAINING BEFORE THE NEXT 
* FU'.TllRN FROM 'BIT.... THE TIME INCLUIH-::S HIE 

* LABELED INSTRUCTION AND INCLUDES THE EXECUTION 
* OF THE 'RTS' AT THE END OF 'BIT .... SOME 
* ROUTINES HAVE •NNN US USEDR AS A COMMENT 
* ON THEIR LAST STATEMENT. THIS REPRFSENTS 
* THE TIME EXPIRED SINCE THE LAST RETURN 
* FROM 'BIT' INCLUDING THE LABLED INSTRUCTION. 

** * * 
* * * * 
CTL..T 

** * * * 
RCRD 

HIGH SF'EED LOAD 

ACCEPTS ADD IT I ONAL BIT /TEL. L.. F'AF\AMETEF\ 

ENH~Y: ( fd "~ COMMAND 
on ;;;: o 

USES: ALL,ro,11,r2 

ADD A 
JSR 
.. Jsr.;: 
TAB 
AND B 
BRA 

RCRD -

ENTRY: 
USES! 

ADD B 

U40 
DUTCH 
AHV 

=U7F 
f'TAF' 

F~ECOR[I 

< B > --

MEMORY 

0 
ALL.,To,r1,r2 

t9 

D ISPl.ACF TO f'R INTI NG 
ECHO TO USEF~ 

D?HA IN I KCS-' FORMAT 



57 

HEATH KEYBOAF<D MONITOR 
PUNCH - PUNCH MEMORY 

** [IUMf' - RAW MEMORY f.IUMF' 16 BYTES f'ER LINE 

* * ENTRY: on - 0 

* USES: TOrT1rT2 

1709 5A DUMP DEC B 

** f'TAF' - PUNCH TO TAPE 

* * ENTRY: DEFAULT VALUES ON STACK 

* BELOW RETUF<N Af.IDRESS 

* EXIT: , c, SET FOR ERROR 

* USES: ALL, TO, T1 , T2 

170A 30 F'TAf' TSX 
170B 37 PSH B CASSETTE/TERMINAL FLAG 
170C Bit J.6 '")r: 

.:....J JSR AHV ACCUMULATE HEX 
170F 24 OB BCC f'TAf'l USE DEFAULT 
1711 A7 03 STA A 3,x STORE FWA 
1713 E7 02 STA B 2,x 
1715 Bit 16 '"> r_-

A-"-' JSR AHV 
:t.7:1.8 A7 05 STA A 5,x 
171A E? 04 STA B 4,x 
171C A6 05 PTAF'l L[IA A 5,x 
171E E6 04 LDA B 4,x GET LWA, FWA 
1720 EE 02 LDX 2,x 
1722 DF EE STX Tl 
l.724 97 F5 STA A T2+1 
1726 {17 F4 STA B T2 
1728 33 PUL B 

** PUNCH - WRITE LOADER FILE TO TF.RMINAL OR CASSETTE 

* * E:NTRY: ( T1) - FWA BYTES TO PUNCH 

* CT2> -·· LWA BYTES TO f'UNCH 

* <B> -·· CASSETTE TERMINAL FLAG: 

* (B) >· 0 THEN TO CASSETTE 

* USING CB) CELLS PER BH 

* (B) - 0 THEN TO TERMINAL 

* (B) < 0 THEN TO TERMINAL WITH 

* IMBEDDEII SPACES AND NO S1rETC. 

* USES: AL..L,TOrTl 

1729 5D PUNCH TST B 
172A 2F 07 BL.F F'NCHO 
172C BD 1.8 27 JSR OLT OUTPUT LEADER 
172F 86 07 LDA A t7 
1731 20 02 I•RA f'NCH1 

1733 86 04 f'NCHO LDA A t4 186 us 
1735 4A PNCH1 DEC A 
1736 26 FD I~NE PNCH1 
1738 37 f'SH B SAVE FLAG; 160 us 
1739 [16 F4 LDA B T2 <BA> = END; 156 us 



58 

HEATH KEYBOARD MONITOR 
PUNCH - PUNCH MEMORY 

173.B 96 F5 LDA A T2+1 
173[1 90 f.F SUB A T1+1 
173F [12 EE SBC B Tl <BA> - END - CUR RF.NT 
1741 '")C" 

.:....J 58 BCS f'NCH9 DONE; 144 us 
1743 81 OF CMF' A t15 140 us 
1745 C2 00 SBC B to 
1747 33 f'UL B RESTORE FLAG 
1748 24 02 BCC f'NCH2 AT LEAST FlJI_ L f<ECORD 
174A 20 03 BRA f'NCH3 
l74C 86 OF f'NCH2 LDA A t15 
174E 01 NOF' 
174F 97 EC F'NCH3 STA A TO COUNTER 
l.751 8B 04 ADii A t4 
1753 97 ED STA A TO+l BYTE COUNT 
1755 CE 17 B6 LDX f:S1STR 114 us 
1758 5[1 TST B 
1759 2A 03 Bf'L f'NCH35 
175B CE 17 co L[IX tCRSTR 
17~.iE 8[1 63 PNCH35 BSR OAS OllTF'lJT ASCII STRING 
1760 CE 00 EE LDX tT0+2 
1763 4F CLR A (A) -· CHECKSUM 
l.764 01 NOf' 
1765 5[1 TST B 
17t>6 2B 03 BMI f'NCH5 
1768 09 DEX 
1769 A5 00 BIT A o,x C" 

,.1 CYCLE NUTH IN' 
176B 01 f'NCH5 NOP 
l76C 01 NOP 
176[1 8[1 75 BSR OCH 182 us 
176F 01 NOP 
1770 26 F9 BNE f'NCH5 
1772 DE EE LIIX Tl 
1774 SD 62 F'NCH6 BSR OSH 182 us 
1776 7A 00 EC DEC TO 
1779 2A F9 Bf'L f'NCH6 
177B 43 COM A 
177C 36 F'SH A 
177D O:J. NOF' 
177E 86 07 l.DA A 17 
1780 4A f'NCH7 DEC A 
1.781 26 FD BNE f'NCH7 
1783 32 PUL A 
1784 5[1 TST B 
1785 2B 02 BMI PNCH75 NO CHECKSUM 
1787 8[1 6E BSR OHB 
1789 B6 10 00 F'NCH75 LDA A TERM 
178C 43 COM A 
178[1 49 f"<OL A 
178E DF EE STX T1 
1790 DF EE STX T1 
1792 '")'") 

,,,; .. .I(.,. 9F BHI PNC HO NOT DONE; NO BREAK 
1794 OB INX 
1795 37 F'SH B 
1796 86 06 LDA A t6 
1798 4A PNCH8 DEC A 
1799 26 FD BNE f'NCH8 



59 

HEATH KEYBOAf<D MONI TOF\ 
PUNCH - PUNCH MEMORY 

179B 33 f'NCH9 PUL B :140 us 
179C 01 NOP 
179[1 86 03 LDA A t3 
179F 4A F'NCHA DEC A 
17AO 26 FD BNE f'NCHA 
17A2 CE 17 BB LDX tS9STR 
17A5 5[1 TST B 
17A6 2B 0[1 BMI f'NCHC RETURN 
17A8 8[1 19 BSR OAS 
l.7AA 5[1 TST B 
17AB 27 08 BEQ PNCHC NOT CASSFTff: 
17AD 86 13 LDA A U9 
17AF 4A f'NCH.B DEC A 
17BO 26 FD BNE f'NCHfi 
17B2 8[1 73 BSR OLT 
17B4 oc CLC NO ERRORS 
17B5 39 f'NCHC RTS 

l7B6 OD OA 53 S:l.STR FCB CR, L.F, / S 1. " , 0 
17BB OD OA 53 S9STR FCB CR, LF, '89,. , 0 
17CO 0[1 OA 00 CRSTR FCB cr~,LF,o 

** OAS - OUTPUT ASCII STRING 

* 
* ENTRY: ( x) - ADDRESS OF snnNG IN FORM: 

* ,.STRING,.,O 

* (B) - CASSETTE/TERM FL.AG 

* EXIT: x POINTS PAST FND OF STRING ZEF:O 

* USES: XdhC 

17C3 A6 00 OAS L.f1A A o,x 97 us 
17C5 08 INX 
17C6 8[1 49 OAS1 BSR OAB 88 us 
17C8 01 NOP 
17C9 86 10 LDA A :1:16 208 us 
17CB 4A OAS2 DEC A 
17CC 26 FD .BNE OAS2 
17CE A6 00 LDA A o,x 
17DO 08 INX 
17[11 6[1 00 TST o,x 
17D3 26 Fl BNE ClASl NOT LAST f<YTF.: 
17[15 08 INX 
17[16 20 39 BRA DAB OUTPUT LAST AND RETUF:N 

** OSH - OUTPUT Of'T IONAL SPACE WITH HEX BYTE 
* 
* FNTRY: (X) -- ADDRESS OF BYTE 

* (A) - CHECKSUM 

* (B) ... CASSETTE/TERMINAL FLAG 

* EXIT! CX) INCREMENTEfl, <A> UPDATED 

* USES: x,A,c 

17[18 AB 00 OSH ADD A o,x 174 us 
17DA 36 F'SH A 



60 

HEATH l'\E YBOAR[I MONITOR 
OUTPUT ROUTINES 

1. 7DB 86 05 LDA A 15 
171:1[1 5[1 TST B 
17[1[ 2A 09 Bf'L OCHO NO Sf'ACE 

17EO BD 18 63 JSR OUTSF' OUTF'lJT SF'ACE 
17E3 32 f'UL A 

** OCH - OUTPUT AND CHECKSUM HEX BYTE 

* 
* ENH~Y: <X> -·· ADf1RESS OF BYTE 

* (A) -- CHECKSUM 

* (B) - CASSETTE/TERMINAL FLAG 

* EXIT: ( x) I NCREMENlED, <A> UF'DATED 

* 'Z' S[T IF END OF HE A DH: INFO 

* USES: x,A,c 

17E4 AB 00 OCH ADit A o,x :174 us 
17E6 36 F'SH A 
17E7 86 06 LDA A :1:6 
17E9 01 OCHO NOF' 
17EA 4A OCH1 DEC A 
17EB 26 FD BNE OCH1 
17ED A6 00 LDA A o,x 
17EF 8[1 06 BSR OHB 
17F1 32 F'UL A 
17F2 08 INX 
17F3 BC 00 FO CF'X tT1t2 
17F6 39 RTS 16 us USF:fl 

** OHB - OUTPUT HEX BYTE 

* 
* ENTRY! (A) BYTE 

* (B) -·· CASSETTE TEF~MINAL FLAG 

* USES: ArC 

17F7 36 OHB F'SH A 112 us 
17F8 44 L.SR A 
17F9 44 L.SR A 
17FA 44 LSR A 
17FB 44 LSR A 
17FC 8[1 08 BSR OHB2 
17FE 86 12 LflA A us 208 us 
1800 4A OHB1 DEC A 
180:1. 26 FD BNE OHB1 
1803 32 f'Ul. fi 

1804 84 OF AND A =UF 
1806 81. OA OHB2 CMF' A 110 
1B08 24 02 BCC OHB3 IS A -- F 

180A 20 03 BRA OHB4 
180C 01 OHB3 NOf' 
180[1 SB 07 ADD A =17 
180F BB 30 OHB4 ADD A :1:$30 



61 

HEATH KEYBOARD MONITOR 
OUTPUT ROUTINES 

** OAB - OUTPUT ASCII BYTE 

* * ENTRY: <A> -· ASCII 

* <B> - CASSETTE"/TF.:RMINAL FLAG 

* EXIT: <A> f'RESERVH1 

* USES: c 

1811 5(1 OAB TST B 80 us 
1812 2F 51 BLE OUT CH 

** DCB -· OUTPUT CASSETTE BYTE 

* * ENTRY: (.[{) CELLS/BIT COUNT 

* (A) CHARACTER 

* USES! c 

1814 oc OCB CLC START BIH 74 us 
1815 SD '">7 

~- / BSR BIT1 72 us 
1817 3c> f'SH A 208 us 
1.818 OD SEC STOF' BIT 
1.819 46 f\OR A 
181A BD 1B OCBl BSR BIT 200 us 
181C 01 NOP 208 us 
18111 44 LSR A 
1.81E 26 F?"-t BNE OCB1 
1820 8(1 15 BSR BIT 
1822 32 F'UL A 
1823 08 INX 
1824 09 DEX 8 CYCLE PSEUDO-NOP 
1825 20 10 BRA BIT 

** OLT - OUTPUT LEADFR TRAIL.Er~ 

* 
* ENTRY: NONE 

* EXIT: 5 SECONflS MARIO NG WF~ITTEN 

* USES: c 

1827 OD OL.T SEC 78 us 
1828 36 f'SH A 
1829 BD 13 BSR BIT1 
l.82B 37 f'SH B 
182C C6 6E L.[IA B :1:110 
182E 17 TBA 
182F 8[1 06 OLH BSR BIT 
1831 01 NOP 
1832 4A DEC A 
1833 26 FA BNE OL..T:I 
1835 33 f'UL B 
l.836 32 f'UL A 



62 

HEATH KEYBOARD MONITOR 
OUTPUT ROUTINES 

** BIT - OUTPUT 'C' TO CASSETTE 

* * ENTRY: (B) = CELL/BIT COUNT 

* 'C' = BIT 

* USES: c EXCF.PT I c I 

1837 36 BIT PSH A 192 us 
1838 86 15 LDA A t21 
183A 01 NOP 
183B Ol. NOP 
183C 20 03 BRA BIT3 182 us 

183E 36 BIT1 f'SH A 64 us 
183F 86 01 LDA A u 
1841 37 BIT3 f'SH B 

1842 SC FCB $BC 3 CYCLE. SKIP 
1843 86 1 [I BIT4 LDA A t29 
1845 4A BIT~:; DEC A 
1846 26 FD BNE BIT5 
l.848 4C INC A 
1849 8[1 1.0 BSR FLIP 43 us 
l84B 86 l.E LDA A t30 
184[1 4A BIT6 DEC A 
184E 26 FD BNE BIT6 
1850 07 Tf'A 
1851 84 01 ANfl A t1 MASK TO CARRY 
1.853 8[1 07 BSR FLIP1 
1.85~:) 5A DEC B 
tB:-=i6 26 EB BNE BIT4 
1858 33 f'UL B 

1859 32 F'UL A 
185A 39 RTS --·-·- ALL. TIMES REFERENCED HERE ! ! ! 

** FLIP -· FLIP CASSETTE BIT 

* * F.NTRY: (A) - 0 THEN NO FLIF' 

* (A) -· 1 THEN FLIP 

* USES: A,C FXCEF'T .' c I 

l.85B 01 FLIF' NOf' 35 us 
l85C BB 10 o·' ,:.. FLI F' 1 EOR A TAPE 
185F B""' / 10 02 STA A TAPE 
1862 39 Fas 24 us 

** OUTSF' -· OUTPUT SPACE TO TERMINAL 

* * ENTRY: NONE 

* EXIT: <A> -
* USES: A,C 

1863 86 20 OUT SP LDA A f:' /' 



63 

HEATH KEYBOARD MONITOR 
OUTPUT ROUTINES 

** OUT CH - OUTf'UT CHARACTF.R TO TERMINAL 

* * ENTRY: <A> -- CHARACTEF< 

* EXIT: <A> PRESERVED UNLESS -·LF··· 

* USES: c 

1865 36 OUT CH F'SH A 
1866 37 f'SH B 
1867 8[1 21. BSR BRD BAUD RATE DE TF.F\11 J NF:. 
1869 on SEC STOf' BIT 
186A Bii 32 BSR WOB 
186C oc CLC START BIT 
186[1 8[1 2F BSR WOB 
186F OD SEC 
1870 46 ROR A 
1871 SD 2B OUTC1 BSR WOB WAIT -· OUTPUT BIT 
1873 44 LSR A 
1874 26 FB IcNE OUTC1 
1876 SD 26 BSR WOB WAIH OUTPUT STOF' 
187B 33 f'UL B 
1B79 32 PUL A 
187A 81 OA CMF' A tLF 
187C 26 OB BNE OUTC2 
187E 36 PSH A 
187F 4F CLR A 
1880 8[1 E3 BSR DUTCH OUTPUT FILL CHfiRACTF:R 
1882 8[1 El BSR DUTCH 
18B4 Bii [IF It SR OUT CH 
1886 Bii [III BSR DUTCH 
!BBB 32 f'UL. A 
18B9 39 OUTC2 RTS 

** BR[I - BAUD RATE DETERMINATION 

* * ENTRY: NONE 
* EXIT: <B) BAU[I RATE DIVISOR 

* (COMF'ENSATET.I FOR 5*13 EXT Rf~ 

* EXECUTION TIME! ! ) 

* USES: f.«,C 

188A 36 BRD f'SH A 
188.B C6 01 LDA B :11 AS~~UME llO BAUD 
188[1 It6 10 00 LflA f~ TERM BAUD SWITCH DATA 
1890 43 COM A 
1891 84 OE AND A t1110B MASK TO SWITHCES 
1893 44 LSR A 
1894 27 06 I•EQ BRD2 IS 1.10 
1896 5l> BRD1 ROR B 
1897 4A DF.C A 
1898 26 FC BNE BRii1 
189A co 05 SUB B t5 EXECUTION COMPENSATION 
18S'C 32 BRD2 F'llL A 
189Il 39 RiS 



64 

HEATH KEYBOARD MONITOR 
OUTPUT ROUTINES 

** WOB - WAIT AND OUTf'UT Hil 

* * ENTRY: <B> - DELAY COUNT 

* 'C" - BIT 

* EXIT! ( B > ' "C' PRE' SERVED 

* USES! c 

189E 37 WOF.: f'SH B 
189F 8[1 72 BSR DLB DELAY ONE BIT 

1BA1 20 68 BRA WIB1 

** IHI! - INPUT HEX DIGIT FROM TERMINAL 

* * ENTRY: NONE 

* EXIT! <A) HEX VALUE IF VAL.ID 

* ASCII OTHERWISE 

* 
; c ,. SET IF HEX 

* 
; z J' SET IF CR 

* USES: ArC 

18A3 8[1 3C nm BSR INCH 
l8A5 81 20 CMf' A tSf'ACE 
18A7 27 FA BEQ IHD J GNOF..:E SPACES 

** ASH - ASCII TO HEX TRANSLATOR 

* 
* ENTF~Y: <A> ·- ASCII 

* EXIT, USES: SEE •I H[I • 

1BA9 80 30 ASH SUB A :f: ·' 0 I 

18AB 25 oc BCS ASH1 NOT HEX 
l.BAD Bl OA CMF' A uo 
18AF 25 10 BCS ASH3 
l8B1 BO 11 SUB A f.'A'-'O_, 
18B3 81 06 CMF' A 16 
l.8B5 25 08 BCS ASH2 IS HEX 
18B7 BB 11 ADD f.~ t'A"-"O_, [IISPLACE BACK 

18B9 BB 30 ASH1 ADD A t'O" 
18BB 81 OD CMF' A tCR 
l.8BD oc CLC 
18BE 39 RTS 

1BBF 80 F6 ASH2 SUB A t-10 
18C1 39 ASH3 RTS 

** IHB - INF'UT HEX BYTE 

* * ENTRY! <B> = CASSETTE/TERMINAL FLAG 

* <X> = ADDRESS 

* <A> - CHECKSUM 

* EXIT: Ar x Uf'DATED 

* (IC) PRESERVED 



65 

HEATH KEYBOARD MONITOR 
INPUT ROUTINES 

18C2 36 IHB F'SH A SAVE CHE"CKSUM 
18C3 8[1 19 BSR ICT INPUT CASSETTE/TERMINAL 
18C5 84 7F AND A t7FH 
18C7 SD EO BSR ASH ASCII - HEX 
18C9 48 ASL '" 18CA 48 ASL A 
18CB 48 ASL A 
18CC 48 ASL. A 
18Cit 97 EC STA A TO 
18CF 8[1 OD BSR ICT INPUT CASSETTE/TERMINAL 
18[11 84 7F AND A t7FH 
18[13 8[1 [14 BSR ASH ASCII - HEX 
18[15· 9B EC ADD A TO 
18Il7 A7 00 STA A o,x PL.ACE JN MEMORY 
18[19 32 F'UL A 
18DA AB 00 ADD A o,x 
1BDC 08 INX 
l.8Ilfl 39 IHB2 RTS 

** ICT - INPUT FROM CASSETTE OR TERMINAL 

* * ENTRY: CB> CASSETTE/TERMINAL FL.AG 

* EXIT: <A> -- CHARACTER 

* USES: A,C 

18DE 5[1 ICT TST B 
18IIF 2E 54 BGT ICC IS CASSETTE 

** INCH - INPUT TERMINAL CHARACTER 
* 
* ENTRYt NONE 

* EXIT: <A> CHARACTER 

* l.ISE·s: A1C 

18E1 37 INCH f'SH B 
18E2 BD A6 BSR BRD BAUD RATE DETERMINE 
18E4 17 TBA 
1.8E5 16 INC1 TAB 
18E6 54 LSR B 
18E7 5C INC B 
18EB 7D 10 00 INC2 TST TERM 
1.SEB 2B FB BM! INC2 WAIT FOR SPACING 
18Eit arr 15 BSR WIB WAIT, INPUT START 
18EF 25 F7 BCS INC2 WAS NOISE 
18F1 16 TAB 
18F2 86 80 L.ftA A :l:BOH 
18F4 8[1 OE INC3 BSR WIB WAIH INPUT BIT 
18F6 46 ROR A 
18F7 24 FB BCC INC3 
18F9 8[1 09 BSR WIB GET STOP 
18FB 25 03 BCS INC4 NO FRAME ERROR 
18Fit 7C 10 00 INC TERM SEND STOP BIT 
1900 84 7F INC4 AND A f$7F MASK TO SEVEN BITS 
1902 33 f'UL B 



66 

HEATH KEYBOARD MONITOR 
INPUT ROUTINES 

1903 39 RTS 

** WIB -·· WAIT AND INPUT BIT 

* * ENTRY: <In flE"L..AY COUNT 

* EXIT: 'C' -- BIT 

* USES: c 

1904 37 WIB f'SH fC 
1905 SD oc I(SR DLB WAIT ONE BIT TIME 
1907 CB 80 ADii El f:BOH 
1909 co 80 SUB B tBOH 
190B C9 00 WIB1 ADC B to COPY BIT INTO L.SB 
190[1 F7 10 00 STA B TERM 
1910 56 ROR B RESTORE SMASHED / c / 
1911 33 f'UL B 
1912 39 RTS 

** DL B - IIELAY ONE BIT AND R[Tl.IRN <TERM) IN B 

* 
* ENTF~Y: <B) - DELAY CONSTANT 

* EXIT: ( B > - <TERM> • AND. 1:1.111110 B 

* USES: c EXCEPT 'C' 

1913 C5 FE DLB BIT B tOFEH 
19l~) 26 11 BNE Itl. B4 NOT 110 BAUD 
1917 5fi DEC B 
l9l.8 27 o-:> BEO flLBl 110 FULL :F.IIT TIME 
l9l.A C6 38 LDA B f:56 
l91C CB 31 DLBl. EOR B t49 
191[ 36 f'SH A 
191F 86 12 Dl. B2 LDA A U8 
1921 4A fll. B3 DEC A 
1922 26 FD BNE DLB3 
1924 5A DEC B 
192~) 26 F8 BNE DLB2 
1927 32 Pl.IL A 
1928 BC 19 13 DL..B4 CF'X DLB r::· 

.J CYCLE NUTH IN I 

192B 01 NOf' 
192C 5A DEC B 
1.92[1 26 F9 BNE" DLB4 
192F F6 10 00 L.DA B TERM 
1932 C4 FE AND B l$FE 
1934 39 RTS 

** ICC - INPUT CASSETTE CHARACTER 

* * GETS BITS FROM CASSETTE IN SERIAL FASHION 

* EACH BIT CONSISTS OF SEVERAL 'CELLS' 

* EACH CELL IS EITHER 1/2 CYCLE OF 1200HZ 

* OR 1 CYCLE OF 2400HZ 

* AT 8 CELLS/BIT THE" ROUTINE IS I KCS" 

* COMf'A TI BLE 



67 

HEATH KEYBOARD MONITOR 
INPUT ROUTINES 

* * ENTRY: (If) = CELLS PER BIT 

* EXIT: (A) CHARACTER 

* 'C' - STOP BIT 

* USES: A,C 

1935 37 ICC f'SH I{ 
1936 54 LSR B 
1937 SD lE ICCl BSR TNC T f~}l\E NEXT CELL. 
1939 25 FC BCS ICCl NOT START BIT 
193B 5A ItEC B 
193C 2A F9 Bf'L. ICCl NOT ENOUGH CE:"L.L S 
193E 33 f'Ul. B 
193F 86 7F LDA A 401111111.B PRESET ASSEMBLY 
1941 37 ICC2 f'SH B 
1.942 36 f'SH A 
1943 SD 12 ICC3 BSR TNC Tf'-11\F NEXT CELL 
1945 5A DEC B 
1946 26 FB BNE ICC3 
1.948 ..... ) 

,.'),.:. f'UL. A 
1949 33 f'UL E< 
194A 46 ROR A 
194B '")I:' 

.:....J F4 BCS ICC2 
194[1 37 f'SH B 
194E 36 f'SH A 
194F SD 06 ICC4 BSR TNC GFT STOP BIT 
1951 5A DEC B 
1952 26 FB BNE ICC·4 
1954 32 f'UL A 
1955 33 F'UL B 
1956 39 Fns 

** TNC - T Al'\E NEXT CELL 

* * WAITS FOR 1.12 CYCL[ OF :1.200 HZ DR 

* 1 CYCLE: OF 2400 HZ 

* STRUCTURE ASSUF~ES EXIT AT END OF 

* ZERO CELL .. 

* * ENTRY: NONE 

* EXIT! ·' c, CELL VALUE 

* <A> -- NEW CASSETTE Dfi T f) 

* USES! A,C 

19~)7 B6 10 02 TNC L Df'~ A TAPE 
195A 8[1 02 BSR TNC1 
l 9~.)C 24 OE BCC lNC3 WAS 7.ERO 
195£ 37 TNC1 F'SH B 
l.95F 5F CLR B 
1960 5C TNC2 INC B 
1961 Bl. 10 O'=> CMP A TAPE 
1964 ....,-., 

.:... ~ FA BEQ TNC2 NO TRt~NS IT ION 
1966 B6 10 02 LDA A TAPE 
1969 C1 1 [I CMF' B 129 
196B 33 F'UL B 



68 

HEATH KEYBOARD MONITOR 

INPUT ROUTINES 

196C 39 TNC3 RTS 

** MOVF. - REENTRANT MOVE MEMORY 

* * ENTRY: STACK> f\ETURN ((), fj) 

* COUNT <2,S> 

* TO (4,S) 

* FROM (6,S) 

* EXIT: STACK CLEANED 

* USES: ALL 

196II 30 MO'v'E TSX 
196E EE 02 LDX 2,x CHECK COUNT <> 0 
1970 27 74 BEQ MOV4 NO MOVE 
1972 30 MOVE A TSX ** ALTERNATE ENTF.:Y ** 1973 A6 05 LDA A 5,x ( F.IA) -·· TO 
197~j E6 04 LDA B 4,x 
1977 AO 07 SUB A 7,x <BA) - TO - FRUM 
l.979 E2 06 SBC B 6,X 
197B 25 24 BCS MOV2 IS MOVE DOWN 

197[1 26 03 BNE MOV1 
197F 4It TST A 
1980 27 64 BEQ MOV4 DISPLACEMENT () 

* HAVE MOVE UF' -- MUST STAFn t~T TOP 

* TO AVOID CONFLICT 

1982 86 FF MOVl l..flA A t-1. <BA> -·· ·-1 

1984 16 TAB 
1985 36 f'SH A DELTA - -1 
1986 37 f'SH B 
1987 AB 03 ADD A 3,x <BA> -- COUNT -· 1 
1989 E9 02 ADC B 2,x 
198B 36 f'SH A 
198C 37 f'SH B 

198[1 AB 05 AitD A ~i' x TO TO + COUNT ·- :I 

198F E9 04 ADC B 4,x 
1991 A7 05 STA A s,x 
1993 E7 04 STA f~ 4rX 
1995 33 F'UL B 
1996 32 F'UL A 
1997 AB 07 Afl[I A 7,x FROM -·· FROM 
1999 E9 06 ADC B 6rX ·f COUNT .•. 1 

199B A7 07 STA A 7,x 
199[1 E7 06 STA B (., ,x 
199F 20 OE BRA MOV3 

* HAVE MOVE DOWN - MAY START AT TOP 

19A1 86 01 MOV2 L.DA A 11 DEL. Tl~ -· 1 

19A3 5F CLR B 
19A4 3l> PSH A 
19A5 37 F'SH B 
19A6 4F CLR A 
19A7 AO 03 SUB A 3,x <BA> -· COUNT 



69 

HEATH KEYBOARD MONITOR 
MOVE - MOVE SUBROUTINE 

19A9 E2 02 SBC B 2,x 
19AB A7 03 STA A 3,x 
19AD E7 02 STA B 2,x COUNT - COUNT 

* ACTUAL MOVE LOOF' FOLL.Olt.18 

19AF 30 MOV3 TSX 
19BO EE 08 L[IX s,x 
19B2 A6 00 LDA A o,x 
19B4 30 TSX 
19B5 EE 06 LDX 6,x 
19B7 A7 00 STA A o,x 
19B9 30 TSX 
19BA A6 01 LDA A :I., x BUMP *FF~DM* 
19BC E6 00 LflA B o,x 
19BE AB 09 AflD A 9,x 
19CO E9 08 ADC B a,x 
l.9C2 A7 09 STA A 9,x 
19C4 E7 08 STA B a,x 
19C6 A6 01 l.DA A 1, x BUMP *TO* 19C8 E6 00 LflA B o,x 
19CA AB 07 ADD A 7,x 
19CC £9 06 ADC B 6,x 
1.9CE A7 07 STA A 7,x 
l. 9[10 E7 06 STA B 6,X 
19(12 A6 01 L.DA A 1, x BUMP *COUNT* 
19[14 E6 00 L.DA B o,x 
l. 9[16 AB 05 ADD A 5,x 
19[18 E9 04 ADC B 4,x 
19DA A7 05 STA fi !:i, x 
19DC E7 04 STA B 4,x 
19DE 26 CF BNE MOV3 COUNT <> 0 
19EO 4[1 TST A 
l.9E1 26 cc BNE MOV3 
:1.9E3 3l. INS 
19E4 31 INS DISCARD DELTA 
19E5 30 TSX 

19E6 EE 00 MOV4 LDX o,x 
19E8 31 INS 
19E9 31 INS 
19EA 31 INS 
19EB 31 INS 
19EC 31 INS 
19ED 31 INS 
19EE 31 INS 
19EF 3l. INS 
:l.9FO 6E 00 JMP o,x 



70 

HEATH l\EYBOt'~F\11 MONIHJF~ 

TABLES 

** COMMANfl Tt1BLF 

19F2 54 CMDTAB FCB ,. T,. l f~F'E RFCORl.1 L1..:~T1-; 

19F3 17 07 FDB F~Cf~).) 

19F5 53 FCE: J's/ 
19F6 15 :=;o Ff1B STEP 

19F8 5;?. FCf.1 ·' F~ I DISPLAY USER RfGIS1ER8 

19F9 15 53 FDH REGS 

19FB 50 FCB ·' F' ; f·'UNCI~ ·r 0 F'1'.-tF'FR Tt1PF: 

19FC 17 OA F [If! F'TAF' 

19FE 4J.1 FC~ ·'M-' 

19FF 15 f'-iC FDB MFM 

1A01 4C FCB ··L--· 

1A02 if., A!:-i FflH LOliJJ 

1A04 49 FLH ,. I -· n1:::;F'l..{1"·,· Ml::i·i()l"•.'Y ( (f'..!~:; r) 

1A05 15 AD FDB INST 

1A07 4F; FCB I H .. · 

1A08 14 F:~ Ff.If: f:l<P'I 

1AOA 47 FCD -' G,.. 

1AOB 14 8F" FflB GD 

1AOD 45 FCB i[' dl.11. TI Pl...E ~;:,TEP 

:l.t"-lOE :I ~.::_; 39 Ff.ID EX[C 

1A10 44 FCB ' (I , 01. IMF' Ml'::hOl~Y 

:LA11 1/' 09 FDB DUMP 

1A:L3 43 FCf: .-·c' 
Hd.4 l:-:_i :i. :~ FDB CL.EAF~ 

1A16 4') FCB ,. B ,. GO TO :r::,::1E JC 

1A17 1C 03 FDf.: lC(HH Wt"if.:H r:; ·r.:·:11< T r. i··l Ti:.: '1" 

1A19 18 F--CH IX·' --40H DI nF'I .. .-:·~ Y :f Nfll.'. X 

l.AH-l 15 SE FDB F'.EGX 

1A1C 14 FCB .-· T,, -40H 

1.AHI 16 FA FDB CTU 

1A1F 1.3 FCI: .-·~)I --40H 

1A20 16 7B f JJB COPY 

1A22 10 F"CB 'P,.····40H 

1A23 15 8C FDB RE:Gf' 

l.t125 OB FCft .-- H .. ··· 40H 

1A26 l~i FB Fflf.I DJBB 



71 

HEATH KEYBOARfl MONITOR 
TABLES 

1A28 03 FCB "C "··-40H f.IJSPLAY CfJNJIX 
1A29 15 92 F-DB REGC 

1A2B 02 FCB "B"-40H )) I ~:>r·LAY B ACC. 
1A2C 15 91 FflB REGF.: 

1A2E () l. FCB ·' t-1 ,. ···40H DI SPL..i:~ Y (i {1CC (· 
1A2F 15 90 FT.IB REGA 

1A31 00 FCB ,.@"-40H EXJT "f(J 01 .. [I MONITOR 
1A32 FC 00 FDB $F COO 

** MT~>T - MEMORY DIAGNOSTIC: 
* 
* lJJfiPU:•Y~) UJr.1 IN ,. f:iDDR ' F IFL..fl ON I_ [[If:; 

* CURRENT TE~·n F'{t TTEf-\'.N IN ,. Df:1TA ... 

* ENTF<Y ! NONE 

* EX I Ti Ft1TLEI1 f"':iDDRESS/F'ATTFRN fJ l ~jf'l_f·i '([[I 

* PROCESSOR Hf'-.1.. ., [D 

* um:~; t ,:ii_ L., TO, T 1, fl I Gf:ifl[I 

1A34 OF MTST SFI 
H135 Bfl 45' flSF\ r·rop FHH1 TOP OF MFl-IOr~Y 
11~3'? 35 T >'.f) ~)T{:iCI< f

0

tl ·i·op 
1A3B 31 INS 
1ft39 6F 00 f1TS2 CLR o,x 
1A3B 09 I.1EX 
1A3C 26 FB BNE MTS2 CLE tif~ 1:il_L MEl'i()PY 
1A3E 6F ()() CLR o,x 
1A40 9F EE STS ·1 :1. HOPE THJH J f) {)(.If.I} I ! ! 
1A42 SE 00 EB LDf;; :f:T0-1 
1A45 f3[1 FT HC ...JSR Fi: F J.1 :l ~; F\E~>E: T [I I SPI .. f::1 YB 
lA48 CE 00 EE 1 .. nx :l:l J 
1A4B C6 0''.) LDA B t·-:> 
1A4[1 BI.I FT.I ?B JSF°\ DTGF'LAY OUTPUT LWf~ f'CHJNLI 
1A~:iO 4F CLR A 
1A51 5A DEC B 
1A~'.i2 Bfl FE ~l(j M'f !33 JSR OUTBYT OUlf'UT f'1HTEf<N 
1A55 36 f'SH f-~ 
1A5t> .BD FD 43 .JS~< HKBF' Bf'1CI< '.: :;p,:·l(::t: l)J!~Pl_AYb 
1A59 32 f'UL A 
1A5A flE EF LDX Tl 
1A5C Al 00 MTS4 CMf· A (), x 
1A5E 26 13 BNE MTS6 r: ,~d u Jf:.; i:: ' 
1A60 6C 00 INC o,x 
1A62 09 flEX 
1A63 SC 00 Fl Cf"'X =l=fl l fjAflD+ 1 SKIP CONT{~M l i'H·i lF.J) AREA 
1A66 26 03 BNE MTS5 
1{~68 CE 00 DF LI.1X :~: l () . - l ~?; 

1A6B BC FF FF MTS5 Cf'X :f:-1 
1A6E ;-.?6 EC BNF MTS4 
1A70 4C INC A 
1A7l 20 flF BRA MTS3 

1A73 flF EE MTS6 STX T1 



72 

HEATH KEYf<OARD MONITOR 
MEMORY II I AGNOSTIC 

1A75 f.ill FC BC JSR r.:Enrn RESET ft I SF'LA YS 

1A78 CE 00 EE LDX IT! 
1A7B 5C INC B 

1A7C BD F)) 7B JSR DISPLAY 
1A7F 3E lJ/tX 

** Fl OP -· FIND MEMOF<Y TUF' 

* * SE:f~f<CHEB ))OlJN f'FWM 1000H UNTIL FI NJ.I~) 

* (3(}())) MUWF<Y 

* * UHF~Y: NONE 

* EXIT: ( x) UJ1~ MEMORY 

* USES: x 

1A80 3b FTOF' f'SH A 
1A81 CF 10 ()() LflX :f. TEF"<M TOP OF hFMCIF~Y + :l 
FFFF IF DEBUG-1 

ENflIF 
1A84 81.. 55 LDA A =11:~)!:.jH TEST p~:, T TFl:~N 

1A86 09 FT01 DEX 
1A87 A7 00 f>TA t-i o,x 
1A89 Al ()(> CMP f"=I o,x 
1A8B 26 F9 l<NE r·rcH 
1A8D 32 PUL A 
1A8E 39 RTS 

** CCD - CONSOLF. Cf°-\~; ~31:: .. r ·r [ DUMF' 

* 
* ENTRY: fWNE 

* EXIT: ·ro u:.n MON.1 TOF~ 

* USES: ALL, T 0, l 1 ,, ·r 2 

1A8F C6 08 CCII LDfi H :i;B 

1A91 8[1 4:.-? f:SR IN.PIA :rnn,~uzi:. F' :( ,:-i 

1A93 8E 00 F.H LDS =H0--1 
1A96 37 F'SH E: 
1A97 BD FC 86 .JSr~ OUTSTA 
1A9A 47 85 FCB 47H, o~:)IHBOH , FF;: I 

1A9C CE 0() EE LDX f T:I 

1A9F C6 02 LD.C~ ):: ;I:') 

1AA1 BD FC BC ,JBr~ RED IS F\E~)FT )) 1 !3F'Lf"'1 "{S 

1AA4 Ic[I FD ;~5 JSf~ PROMPT PF<OMF'T FWf'.1 

l.f:1A7 If [I FC 86 JSE: ounnA 
1i:-~AA OE FD FCB OEH,7DHtBOH ·' L(~ ·' 

1AAC HD FC BC .mr~ RED IS F<Er>f:T ))I~>F'LftYS 

1AAF CE 00 F4 LDX IT2 
1AB2 Bir Ffl 25 JSR PF<OMPT PROMPT L.W?\ 

1A[t5 33 PUL B 
1AB6 HD 17 29 J~:;R PUNCH 
1AB9 7E FC 00 CCD1 JMF' $FCOO EXIT TO MDNJTOR 



73 

HEATH KEYBOARD MONITOR 
LED MONITOR TAF'f. f"'ROC E: f>S OF\ B 

** CCL. ... CONSOLE CASSETTE LOAD 

* * ENTRY: NONE 

* EX:cf i HJ CfJNSOLE MONITOR IF ntJCE~>B 

* lJ!>EB ~ ALL, TO, HIGHEST MEMOHY 

1AI<C C6 08 CCL L.l'IA B =H1 

1ABE 8[1 15 i::sr.: IN.PIA IN :( TI i• L '.( 7-E PIA 

1ACO 8[1 }::E BSR FTOP FIND MEMORY TOP 
1AC2 35 TXb 
1AC3 31 :CNB 
1AC4 BD 16 AD .Jfjf~ LOAO LOAl'I MEMOln 

1AC7 24 FO BCC CC[l1 NOl'.\Mt~L F~ETURN 

1AC9 Bfl FC BC .JSR RFJ.HS PRINT ERROR ME~>SAGE 

lACC BD FE 52 .Jm~ OUTSTR 
1ACF 4F ()~:i 05 FCB 4F"H,, O~iH,, (>~,H 1· :l DH, 05H+80H 

1AD4 3E WAI 

** IN. F' If~ ·- :fNJTif.)LJ7E F' 1.-.; FOR LED MON:C ., Of\ 

* * I N J l J fl L :( J.. F: Ui~3SETTE SIDE FOF;: I. Ut:1n (Jr< DUMP 

* AND SET ( TEF::M) so TH~·~T .~ l:IF<Et-'-lK IS NOT 

* SENSEfl. 

* 
* ENH~Y ~ NONE 

* LXI"ri NONE 

* USES: f~H X 

1AD~5 CE :i.O 00 IN.PIA LDX tTE f~M 

1AD8 6F 01 CLR 1,x 
H~DA 6F 0:3 CLR 3,x 
:LADC 86 80 LI.IA A =~ :l (;(>OOOOOB 

1A[IE A7 00 STA A o,x :i:N·ro DDR 
1AEO 43 COM A 
1AE1 A/ 02 STA f"i ~~, x INITIALIZE u·~sBE'f TE 

1AE3 86 04 Uh'1 A 14 
1AE5 A7 03 Slf1 t1 3,x 
1AE7 39 RT~"> 

LON l. 

** lTST - TERM I NM .. T[~3TER 

* * f NTF<Y ~ NONF: 

* EXIT: NEVEF\ 

1AF6 86 () 1 llf:>T L[IA A :1;1 

1AF8 B7 10 00 STf~ {~ ·rERM 
1AFB C6 04 LlJA B t4 
1AFD F7 1 () 01 STA f< Tf:F\M. C 

1BOO BD 16 18 TTSO ,Hrn OU TIS 
1B03 OD OA 54 FCB CR , I .. F , ~ ., H :rn ff) A TERMINAL·TEST,.,O 

1B1D 20 El BRl1 ·r T!>O 



74 

HEATH KEYBOARD MONITOR 
TERMINAL TEST 

1B1F 

STATEMENTS =1632 

FREE BYTES =16823 

NO ERRORS DETECTED 

END 



APPENDIX D 

Excerpts from "Kilobaud" 

The following magazine articles have been reproduced with permission from 
Kilobaud. They provide entertaining and educational material that enables you 
to more fully appreciate and enjoy your ETA-3400 microcomputer accessory. 

The programs will not necessarily run as is on your computer accessory, but with 
some modifications you can run the programs. 

75 



76 
Ron Anderson 
3540 Sturbridge Ct. 
Ann Arbor Ml 48105 

ME THINK A MOMENT ... " 
and that is what seems to be 
happening. 

Tiny Basic 
I've made my Hunt the 

Hurkle game a little more 
interesting for a first-time 
player by including a random 
1 out of 15 chance of seem
ing confusion on the part of 
the computer. The result is 
that instead of the normal 
THE HURKLE IS HIDING 
message, the printout is as 
shown in Example 3. 

I ssue #1 of Kilobaud con
tained an article by Tom 

Pittman describing his Tiny 
BASIC. As a very optimistic 
owner of a new K IM-1, and 
with a SWTP CT-1024 TV 
terminal on order, I sent my 
order off to Tom's ltty Bitty 
Computer Company, and 
soon my Tiny BASIC listing 
arrived. Lacking the terminal, 
I spent a Saturday loading 
Tiny by_ hand with the hex 
keyboard and verifying it. 
When the last kit of the TV 
terminal arrived, I loaded 
Tiny. A close reading of the 
instructions indicated that I 

ways to save memory: 

1. PR I NT may be abbre
viated PR in all cases. For 
example: 

50 PR"HI THERE!" 

2. Tiny needs no spaces in 
the program statements. A 
I isting is hard to read without 
them, but it is better than 

running out of memory. 

3. Tiny has no absolute value 
function. This can be imple
mented easily as follows: 

100 IF A <o A=-A 

4. Tiny has no ON N GOTO 
statement (see Example 1). 

150 ON N GOTO (100,110,120,130) 

Example 1. 

had to insert some 1/0 jump The following allows the 
addresses. This done, Tiny same results: 
ran with nothing more than 
operator problems. 

It was not hard to begin 
programming some of the 
simpler games from Basic 
Computer Games published 
by Digital Equipment Corp. 

60 GOTO lOO+lO*N 

This is particularly useful 
in implementing a game like 
Bombers (see Basic Computer 
Games). Here the player is 
given a multiple choice, and 
the number he enters (N) 
determines a branch in the 
program. 

My TV typewriter is the 
kind that "pages"; when the 

THE HURDLE IS HIKING 
NO, THAT'S NOT RIGHT 
THE HIDEL IS HURKING. 
NOW WAIT A MINUTE! 
THE BURKLE IS HIDING. 

(pause random time) 
(pause random time) 
(pause random time) 
(pause random time) 

Example 3. 

tions extends to more than 
one full page, it is lost before 
it can be read. This would 
also be a problem with a 
scrolling display, particularly 
if the TVT is running at 1200 
baud. The program can con
tain a "pause for read" which 
can be implemented easily at 

Here the program resumes 
its regular course. 

Last but not least, Tiny 
BASIC lacks any kind of 
string manipulation. It is 
possible to get around this by 
using Y and N for Yes and No 
responses as shown in Exam
ple 4. 

50 PR"WANT TO PLAY AGAIN"; 
60 Y=l 
70 N=O 
80 INPUT R 
85 REMARK R FOR RESPONSE 
90 IF R=l GOTO 10 
100 PR"THANKS FOR PLAYING. HOPE YOU ENJOYED IT" 
999 END 

Example 4. 

the desired point. 

100 T=O 
105 T=T+l 
110IFT<150 GOTO 105 

The T less-than number may 
be adjusted for a suitable 
time delay. These steps may 
be a subroutine, and T may 
be randomized by Example 2. 

A little ingenuity allows 
many tricks in Tiny BASIC. 
Use a little imagination, and 
it can be great fun. 

As limited as it is, using 
only 21/2K of memory (I had 
added an Econoram 4K 
expansion to my KIM), a 
great deal can be done with it 
that is not obvious on first 
glance. 

At the bargain price of $5 
I didn't expect a ful I course 
in BASIC programming. But 
there are some features that 
are not obvious and could be 
expanded upon for those of 
us who are rank beginners. 

110 IF T <(RND(150)+10) GOTO 105 
115 RETURN 

I started out in this hobby 
with full intentions never to 
waste time playing games 
with my computer. Obviously 
I've changed my mind. The 
reason is that programming 
games seems to be a very 
good way to learn all the 
tricks and non-tricks of pro
gramming in BASIC. I still 
intend to do a lot of machine 
language programming, but I 
can't imagine a way to learn 
BASIC faster than by using it 
to program a game. Thanks, 
Tom Pittman, for Tiny 
BASIC. It really works. • First, here are a couple of 

Example 2. 

screen fills, it "flips" a page 
and starts to fill it from the 
top. If output such as instruc-

The delay loop is used to 
add interest to a game, where 
the computer outputs "LET 

Kilobaud, December 1977 



Along with pointing out the 
differences between Tiny 
BASIC and standard BASIC, 
Tom offers here some com
ments and opinions on 
BASIC and structured pro
gramming. Interestingly, his 
manuscript is one of the few 
we've received which was pre
pared using a text editor (a 

77 

Model 37 TTY driven by a 

8 
e 

COSMAC 1802 microproces- T ·, ny 8SIC sor). It would seem that more 
of us (including myself) 
should be at this stage by 
now. - John. 

Tom Pittman 
PO Box 23189 
San Jose CA 95153 

I f you have an Altair or 
lMSAI computer or any 

8080-based system, you have 
your choice of several ver
sions of BASIC. There are 
rumors of BASIC for 6800 
and 6502 within the next few 
months. But these require 
memory - probably more 
than you have with your low 
budget machine. 

The alternative is Tiny 
BASIC. The language is a 
stripped down version of 
regular BASIC, with integer 
variables only - no strings, no 
arrays, and a I im ited set of 
statement types. It was first 
proposed by Bob Albrecht, 
the "dragon" of Peoples 
Computer Company (PCC) in 
Menlo Park, as a language for 
tea ch ing programming to 
children. The PCC newspaper 
ran a series of articles {largely 
written by Dennis Allison) 
entitled "Build Your Own 
BASIC," suggesting how Tiny 
BASIC might be implemented 
in a microprocessor. The 
important portions of these 
articles have been reprinted in 
Dr. Dobb's Journal of Com
puter Calisthenics and Ortho
dontia, published by PCC and 
available in most computer 
stores. 

· ·· a mini-language 

for your • micro 

BASIC 

Before we get into Tiny 
BASIC, let us look at high 
level languages in general and 
BAS IC in particular. 

When you program in ma
chine language, each com
mand, or statement, repre
sents one operation from the 
machine's point of view. 
When we think of a single 
concept like, "A is the sum of 
B and C," a machine language 
program to perform this oper
ation may take several opera
tions, such as: 

LDA B 
LDA C 
STO A 

A high level language, on 
the other hand, lets you put a 
single human idea into a 
single program statement, for 
instance: 

LETA J-l•C 

BASIC is one of a class of 
"algebraic" languages in that 
it permits the representation 
of algebraic formulae as part 

of the I a ngu age. Other I an
g ua ges in th is class are 
FORTRAN and ALGOL. 
COBOL does not generally 
fall in this class (except for 
the "super" versions). 

Of critical importance to 
all algebraic languages is the 
concept of an expression. An 
expression is the program
ming language notation for 
what we might think of as 
"the right-hand side of a for
mula." Alternatively, we can 
think of an expression as "a 
way of expressing the value 
of some number which the 
computer is to compute." 

An expression may consist 
of a single number, a single 
variable name (all variables 
are referred to by name in 
high level languages), a single 
function call (discussed in 
detail later), or some combin
ation of these, separated by 
operators and possibly 
grouped by parentheses. For 
this discussion, when we refer 

Kilobaud, January 1977 

to an operator, we mean one 
of the four functions found 
on a cheap pocket calculator: 
addition symbolized by"+"; 
subtraction by" - "; multipli
cation by " * " (we do not 
use "X" because that would 
be confused with the name of 
the variable "X"); and 
division by "I". (The usual 
symbol for division does not 
appear on most typewriter 
and computer keyboards.) 
Thus, A-B 

C-0 

becomes, in computerese, 
(,\ - ill (C - UJ 

Here the parentheses are used 
to indicate priority of opera
tions. Normally multiplica
tion and division are per
formed first, then addition 
and subtraction. Without the 
parentheses the expression, 

A-B 
C-0 

would be understood by the 
high level language as, 

a - ~ d 



78 

which is not the same at all. 
In BASIC, when an expres

sion is encountered, it is 
evaluated. That is, the values 
of the variables are fetched, 
the numbers are converted (if 
necessary). the tu nc t ions are 
called, and the operations are 
performed. The evaluation of 
an expression always results 
in a number which is defined 
to be the value of that expres
sion. 

The first example which 
we discussed showed a simple 
BASIC statement, 

IYT ,\ K 1 ( 

This is called an assignment 
statement, because it assigns 
the value of the expression 
"B + C" to the variable A. Al I 
algebraic high level languages 
have some form of assign
ment statement. They are 
characterized by the fact that 
when the computer processes 
an assignment statement, a 
single named variable is given 
a new value. The new value 
may not necessarily be 

Photo courtesy of Electronic Product Associates, Inc., 1157 Vega Street, San Diego CA 92110. 

different from the old; for 
example: 

u:r 1\-fi 

This is also a val id assignment 
statement, even though 
nothing changes. Assignment 
statements are also used to 
put initial values into var
iables, for instance: 

Control Structures 

One of the important char
acteristics dist i n g u i sh i ng 
different high level languages 
is the control structure 
afforded to the programmer. 
The control structure is deter
mined by the various per
mitted control statements, 
which alter the flow of pro
gram execution. Normally 
program execution advances 
from statement to statement 
in sequence, although there 
are however, circumstances in 
which this sequence is 
altered. The most common 
control structure allows one 
set of operations to be per-

formed if a certain condition 
is true, and another, if it is 
false. In "structured program
ming" th is is referred to as 
the "IF ... THEN ... ELSE" 
construct; its general form is 
"IF condition is true, THEN 
do something, ELSE do some 
other thing." The tu 11 gener
ality of this control structure 
is not directly available in 
BASIC, but, as we shal I see, 
this is only a minor incon
venience. 

Standard BASIC uses the 
IF ... THEN construct, and 
makes it work something 1 ike 
a conditional GOTO: 

!F A> 3 THEN l!O 

If the value of the variable A 
is greater than three, then 
(GOTO) line 120, otherwise 
continue with the next state
ment in sequence. Actually, 
the condition to be tested 
consists of a comparison 
between two expressions, 
using any of the comparison 
operators which are given in 
Fig. 1. 

In each case, if the compar
ison of the two expressions 
evaluates as true, the implied 
GOTO is taken; otherwise the 
next statement in sequence is 
executed. In Tiny BASIC the 
syntax is slightly different. 
Instead of a statement num
ber, a whole statement 
follows the THEN part of the 
IF ". .. THEN. The compar
ison above, in Tiny BASIC, 
would be: 

IF A>J THEN GOTO 120 

But we could also validly 
write: 

IF A<=J THEN LET A=A+lO 

or some such. Note that th is 
is not valid in standard 
BASIC. 

The GOTO construct has 
been the subject of contro
versy in the last few years. A 
strong case has been made for 
''GOTO-less programming" 
which uses only certain other 
control structures to achieve 
structured programs which 
are more readable and less 



Equality (the comparison is true 
if the two expressions are equal) 

> Greater than 

< Less than 

< Less or Equal (not ·Greater) 

> Greater or Equal 

< > Not Equal 

Fig. 1. Comparison Operators. 

prone to errors. I believe that 
both good and incomprehen
sible programs are possible 
regardless of the control 
structures used or not used, 
but I seem to be in a minority 
at this time. Suffice to say 
that BASIC is not conducive 
to structured programming in 
the technical sense of the 
term. 

Standard BASIC has one 
control structure which has 
been omitted from Tiny 
BASIC. This is the FOR ... 
NEXT loop. Normally, if a 
program requires some se
quence to be performed 
thirteen times, the following 
program steps might be used: 

10 FOR l=l TO l 3 
20 ... 
30 NEXT I 

Statement 20 would be exe
cuted 13 times, with the 
variable I containing succes
sively the values, 1, 2, 3 ... 
12, 13. In Tiny BASIC the 
same operation is a little 
more verbose: 

10 l.ET T-L 
)0 
30 LET I=l= l 
t,Q IF 1<=13 THEN GOTO 20 

but, as you can see, nothing is 
lost in program capability. 

Data Structures 

Standard BASIC also has 
some data structures which 
have not been carried over 
into Tiny BASIC. The only 
data structure in Tiny BASIC 
is the integer number, which 
is further limited to 16 binary 
bits for a value in the range of 
-32768 to +32767. Compare 
this precision with the six 

digit precision in standard 
BASIC, which also gives you 
fractional numbers (some
times called "floating 
p o i n t " ) . . R e gu I a r BAS IC 
allows arrays, or variables 
with multiple values distin
guished by "subscripts," and 
strings, which are variables 
with text information for 
values instead of numbers. We 
wit I see presently how these 
deficiencies in Tiny BASIC 
can be overcome. 

Input/Output 

Thus far we have said 
nothing about input and out
put, how to see the answers 
the computer has calculated, 
or how to put in starting 
v a I u es. These needs are 
accommodated in BASIC by 
the PRINT and INPUT state
ments. Numbers are printed 
(in decimal, for us humans to 
read) at the user terminal by 
the PRINT statement: 

PRINT A, B + C 

This prints two numbers; the 
first is the value of the var
iable A, and the second is the 
value of the expression B+C. 
In general, the PRINT state
ment evaluates and prints 
expressions. It is perfectly 
valid to write 

PRINT 1, 123, 0-0 

although we know in advance 
what will be displayed on the 
terminal. To make our output 
more readable, BASIC per
mits the program to print out 
text labels on the data. 
PRINT "THE SUM OF 1 + 2 IS", 3 + 2 

will display the line: 
THE SUM OF 1 + 2 IS 5 

To feed new numbers 
from the terminal to the pro-

gram the INPUT statement is 
used. 

INPUT A, B, C 

will request three numbers 
from the input keyboard. The 
more popular versions of 
Tiny BASIC have an extra 
capability here beyond stan
dard BASIC, in that the oper
ator can type in numbers and 
whole expressions. Thus, if in 
response to the INPUT re
quest above, the operator 
types 

1+2. 1''(4+5), R-A 

the variable A will receive the 
value 3, B will receive the 
value 27, and C will receive 
the value 24 = 27-3. There
fore, a program in Tiny 
BASIC, which permits no 
text strings, can display and 
accept as input I imited text 
information: 

10 LET Y= 1 
20 LET N=O 
30 PRINT "PLEASE ANSWER Y OR N"; 
40 INPUT A 
50 IF A=Y THEN GOTO 100 
60 IF A=N THEN GOTO 120 
70 GOTO JO 

This little program asks for an 
answer, which should be 
either the letter "Y" or the 
letter "N" (or their equiva· 
lents, the numbers 1 or 0, 
respectively). If the operator 
types anything else, the re
quest is repeated. Obviously, 
this technique will not work 
for something like a person's 
name where any letters of the 
alphabet in any sequence 
must be expected, but it is 
certainly an improvement 
over no alphabetic input at 
all. 

A generalized text output 
capability in Tiny BASIC 
depends on another charac
teristic peculiar to Tiny 
BASIC and not shared by 
standard. That is the fact that 
the line number in a GOTO 
or GOSUB statement is not 
limited to numbers only, but 
may itself be any valid ex
pression which evaluates to a 
line number. The program 
which is shown in Fig. 2 
prints A, B, or C, depending 
on whether the variable N has 
the value 1, 2, or 3. Note 
that, if N is out of range, 
nothing is printed. 

The USR Function 

What about the fact that 

there are no arrays? Let us 
turn to the USR function for 
a way to store and retrieve 
blocks of data. The remarks 
which follow apply only to 
my version of Tiny BASIC 
and are unique in that 
respect. 

The USR function is in
voked with one, two, or three 
arguments (expressions 
separated by commas with in 
the parentheses). The first (or 
only) argument is evaluated 
to the binary address of a 
machine language subroutine 
somewhere in the computer 
memory. The USR function 
does a machine language sub
routine cal I (JSR instruction) 
to that address. The user is 
obliged to be sure that there 
is in fact a subroutine at that 
address. If there is not, Tiny 
BASIC (and thus your com
puter) will execute whatever 
is there. The second and third 
arguments, if present, will be 
loaded into the CPU registers 
before jumping to this sub
routine. On exit, any answer 
the subroutine produces may 
be left in the CPU accumula
tor, and it becomes the value 
of the function. Two machine 
language routines are already 
provided with the BASIC 
Interpreter; if S is the address 
of the beginning of the inter
preter, 

USR(S + 20, M) 

has as its value the byte 
stored in memory at the 
address in the variable M 
(that is, the contents of the 
second argument is evaluated 
to a memory address). Also, 

USR(S + 24, M, B) 

stores the low order 8 bits of 
the value of B into the 
memory location addressed 
by M. The return value of this 
function is meaningless. 

Consider the standard 
BASIC program in Fig. 3(a) 
to input ten numbers and 
print the largest as compared 
to the Tiny BASIC program 
in Fig. 3(b). 

I have used this example 
for two reasons: First, it 
shows how the USA function 
may be used to simulate the 
operation of arrays. Second, 
it is typical of many of the 
applications commonly ad-

79 



80 
10 IF N>O THEN IF N<4 THl::N GOSUB 20+(N '" 10) 
20 RETURN 
30 PRINT "A" 
35 RETURN 
40 PRINT "B" 
45 RETURN 
50 PRINT "C" 
55 RETURN 

to argue for arrays; however, 
neither real nor simulated 
arrays are required for th is 
program! Here is the same 
program, with no arrays: 

10 Ll::T 1~1 

20 LET L~O 
30 INPUT V 
40 IF L<V THEN LET L~V 
)0 LET l~I+l 

60 IF 1<~10 THEN GOTO 30 
90 l'RlNT I. 

Summary 

Tiny BASIC is not a super 
language. But, it also does not 
require a super computer to 
run. I've given here only a 
cursory examination of the 
power of Tiny BASIC. A full 
description of Tiny BASIC 
may be found in the ltty 

Bitty Computers Tiny BASIC 
User's Manual. This comes 
with a hex paper tape of the 
program and is available for 
$5 from: ltty Bitty Com
puters, PO Box 23189, San 
Jose CA 95153. 

There are different ver
sions for each of the follow
ing systems, so be sure to 
specify which system you are 
running: 

M6800 with MIKBUG, 
EX BUG, or home brew (Exe
cutes in 0100-08FF); AMI 
Proto board (Executes in 
EOOO-E7FF); SPHERE 
(Executes in 0200-09FF); 
6502 with KIM, TIM or 
homebrew (Executes in 

Fig. 3. Programs to input ten numbers and print the largest. 
(a) Standard BASIC; (b) Tiny BASIC. 

Fig. 2. Program to Print A, 
B, or C, depending on the 
value of N. 

0200-0AFF); JOLT (Exe
cutes in 1000-1 BF F); APPLE 
(Executes in 0300-0B FF); 
Kl M-2 4K RAM (executes in 
2000-28FF). 

Although few people have 
paper tape systems, we are 
unable to provide the pro
gram on audio cassette. But if 
you request it, we will supply 
a hexadecimal listing of the 
program instead of tape 
which you can key in and 
then can save on cassette for 
future use. 

If you have a small 8080 
system, there are several 
widely differing versions of 
Tiny BASIC in the public 

domain. Most of them have 
been published in Dr. Dobb's 
Journal, which is $10 per 
year from: People's Com
puter Company, PO Box 310, 
Menlo Park CA 94025. This 
journal has also published a 
number of games which run 
in Tiny BASIC. 

One final comment. Tiny 
BASIC was originally con
ceived as "free software" by 
the people at PCC. The 6800 
and 6502 versions described 
in this article are not free; 
they are proprietary and 
copyrighted. Software is my 
only source of income, and, if 
I cannot make it from pro
grams like Tiny BASIC, I 
won't write them. Please 
respect the labor of those of 
us who are trying to make 
quality software available to 
you: pay for the programs 
you use.• 

LO FOR l~l TO 10 
20 INPUT V(l) 

10 LET I~l 
:JO INPUT V 

lO NEXT I 
40 LET L~V(l) 
)0 FDR I<' TO 10 
60 IF L>~V(l) THEN 80 
10 LF.T L~V (T) 
80 :\EXT l 
90 PRINT L 

25 LET V=USR(S=24, I,V) 
30 LET l=I+l 
35 IF 1<=10 THEN GOTO 20 
40 LET L=USR ( S+20, l) 
50 LET 1=2 
60 IF L<USR(S+20,I) THEN LET L=USR(S+20,l) 
80 LET I=I+l 
90 PRINT L 



Bitty Computers, PO Box 
23189, San Jose CA 95153.) 

Tiny BASIC Shortcuts 

These are not significant 
handicaps if you're estimating 
the effect of several alter
natives. Round numbers are 
usually acceptable if you only 
want to get on base in some 
specific ball park (cliches are 
fun once in a while). 

Byte-saving Tips 

Tom Pittman's Tiny BAS/Cs (6502, 1802, etc) are somewhat limited 
in capabilities. This is the first of several articles discussing 
methods to expand those capabilities. 

Saving bytes of memory is a 
practical approach if your com
puter has limited memory (I 
have 1250 bytes of free space 
now). Let's talk about the 
memory-saving part first. 

Charles R. Carpenter 
2228 Montclair Place 
Carrollton TX 75006 

Writing small but useful 
programs in Tiny BASIC 

(to paraphrase Tom Pittman) is 
a practical reality. Getting the 
most out of your programs is 
easier if you work with the inter-

:LIST 

prater's limitations. The utility 
program in Fig. 1 shows how to 
work with some of these lim
itations. This program is titled 
"Loans," but it could be any 
comparison of WHAT-IF alter
natives. Here's what we'll be 
working with (and without): 
• Decimal numbers not al

lowed. 
• Number range limited from 

-32768 to + 32767. 

10 REM TINY BASIC FOR KIM-I 
II REM 6502 V.lK BY T. PITTMAN. 
12 REM 
13 REM PROGRAMMED BY: 
14 REM C.R. (CHUCK) CARPENTER W5USJ 
15 REM 2228 MONTCLAIR PL 
16 REM CARROLL TON TX 75006 
17 REM 
18 REM THESE PROGRAMS ILLUSTRATE BYTE SAVING 
19 REM TECHNIQUES IN LIMITED MEMORY SYSTEMS. 
20 REM THE FIRST PROGRAM USED 492 BYTES. THE 
21 REM OTHER USED 410 BYTES. AN INCREASE 
22 REM (OR SAVING) OF 82 BYTES. IMPLIED 
23 REM STATEMENTS AND ABBREVIATIONS ARE 
24 REM THE REASON. 
25 PR 
26 PR 
100 PRINT"LOANS : HOW MANY -" 
110 INPUT N 
115 PRINT 
120 LET A=O 
130 PRINT" INPUT: PRINCIPAL IN HUNDREDS (P)" 
140 PRINT" RATE IN PERCENT (R)" 
150 PRINT" TIME IN YEARS (T)" 
160 PRINT" PAYMENTS IN MONTHS (X)" 
170 INPUT P,R,T,X 
190 LET I= P*T*R 
200 LET 0 = lOO*P + I 
210 LET M =0/X 

• 72 characters maximum on 
Input lines. 

• Implied statements and ab
breviations to save bytes of 
memory. 

(Note: Tom Pittman now has an 
experimenter's manual avail
able that explains many of 
these features and how to work 
with them. They are not as sim
ple as my approach. The 
manual is available from ltty 

220 LET A= A+ I 
230 PRINT 

Fig. 1 is an example of a pro
gram with no statement short
cuts; Fig. 2 uses all the implied 
and abbreviated statements 
possible in this Tiny BASIC in
terpreter. Memory in Fig. 1 is 
492 bytes, an average of 17 
bytes per line, while Fig. 2 uses 
410 bytes for an average of 14 
bytes per line. REM comments 
were added later and used 470 
bytes. 

Using implied statements 
causes the program to run 

240 PRINT"LOAN NUMBER -";A;"" 
250 PRINT"INTEREST IS $";1 
260 PRINT 
270 PRINT"MONEY OWED IS $";0 
280 PRINT 
290 PRINT"PAYMENTS ARE $";M 
300 PRINT 
310 LET N = N - 1 
320 IF N>O THEN GOTO 170 
360 PRINT 
370 PRINT"DONE" 
380 PRINT 
390 END 

:I =0 
:I I= r +2 
:2 GOSUB l 
:RUN 

1226 AT 1 
:END 

:PRINT"THERE ARE ";!;" BYTES LEFT" 
THERE ARE 288 BYTES LEFT 

Fig. 1. First program version using no shortcuts to write the program or save bytes. This program uses 492 bytes, exclusive of the REM 
statements. REM statements use 470 bytes. The short routine above illustrates how Tiny BASIC finds the number of bytes of free 
space remaining. The user's manual tells how to do it. 

Kilobaud, June 1978 

81 



82 
slower, but the increase in pro
gram lines is worth the loss of 
speed (if speed is your concern 
then Tiny BASIC may not be for 

you, anyway). Memory saving 
wasn't really necessary for this 

short program; but in a 100-line 
program over 200 bytes could 
be saved (12 to 15 lines' worth). 
Such significant savings allow 

you to write longer programs. 

The programs are still small, 
but even a few more lines make 
them more useful. And that's 
what we're trying to do. Bytes 
could be saved in a few more 
places, such as the spaces in 
the print input, lines 130 
through 160, but in the interest 
of clarity, 1 left them alone. 

Decimal Values 

Calculations involving 

decimal numbers can be han
dled several ways. Anytime a 
percentage or a calculation 
resulting in a fraction occurs, a 
decimal number results. 
Dollars and cents are decimal 
numbers, too. Tiny BASIC trun
cates decimal numbers down 
to the next lower whole num
ber. If the number is less than 
one, the result is zero. (For this 

:LIST 

reason, accountants would 
probably not want to use Tiny 
BASIC.) 

Lines 130 through 180 are the 

input lines tor this program. I 
used principal in hundreds and 
rate in percent to avoid decimal 
percentage entry and to pre· 
vent dividing percent by 100 (to 
get back to a decimal percent· 
age). The math comes out right 
when it's printed out in line 250. 

I then multiplied the total loan 
value by 100 in line 200 to make 
the right amount print in lines 

270 and 290. 
Principal input in hundreds 

also helps avoid the number· 

limitation problem. Keeping the 

numbers to be operated on 
small limits precision but 

keeps the multiplication re
sults in range. Adding a state
ment in a print line to multiply 
(or divide, etc.) by some factor 
will put the answer back in the 
right magnitude. This is sort of 
like using engineering notation 
with a slide rule. The difference 
is the tack of decimal numbers. 

An input-line limitation of 72 
characters restricts the 

amount of data you can input. 
Two character spaces are used 

100 PR "LOANS : HOW MANY -" 
110 INPUT N 
115 PR 
120 A =0 
130 PR"INPUT: PRINCIPAL IN HUNDREDS (P)" 
140 PR" RATE IN PERCENT (R)" 
150 PR" TIME IN YEARS (T)" 
160 PR" PAYMENTS IN MONTHS (X)" 

165 PR 
170 INPUT P,R,T,X 
190 I= P"'P'R 
200 0= lOO"'P +I 
210 M=O/X 
220 A=A+ I 
230 PR 
240 PR"LOAN NUMBER - ";A;"" 
250 PR"INTEREST IS $";1 
260 PR 
270 PR"MONEY OWED IS $";0 
280 PR 
290 PR"PA YMENTS ARE $";M 
300 PR 
310 N=N-1 
320 IF N>O GOTO 170 
360 PR 
370 PR"DONE" 
380 PR 
390 END 

Fig. 2. Second program version using implied statements and 

abbreviations to save bytes. This version uses 410 bytes. 

by the prompting question 

mark and following space. This 
reduces actual data input to 70 
characters, including the re
quired commas between the 
data entries .. With the loan 
amount in hundreds, I was able 
to input values for six loans in
stead of five. To overcome the 
limited data-Input situation, 
write programs that will per
form calculations, hold the 

results and return for more 

LOANS : HOW MANY -
?6 

data. I've done this on some 

data-processing routines with 

good results. 
There's another way to ac

commodate more data than the 
line will hold. Simply input as 

many loan numbers (or WHAT· 
IFs) as needed in line 100. When 
the program has used the data 
entered, it will ask for more un
til the number of N entries is 
reached in line 320. Question 
marks will show up each time 

INPUT: PRINCIPAL IN HUNDREDS (P) 
RA TE IN PERCENT (R) 
TIME IN YEARS (T) 
PAYMENTS IN MONTHS (X) 

? 40, 10,3,36,40, 12,4,48,40, 18,5,60,50, 10,3,36,50, l 
2,4,48,50, 18,5,60 

LOAN NUMBER - I 
INTEREST IS $1200 

MONEY OWED IS $5200 

PAYMENTS ARE $144 

LOAN NUMBER - 2 
INTEREST IS $1920 

MONEY OWED IS $5920 

PAYMENTS ARE $123 

LOAN NUMBER - 3 
INTEREST IS $3600 

MONEY OWED IS $7600 

PAYMENTS ARE $126 

LOAN NUMBER - 4 
INTEREST IS $1500 

MONEY OWED IS $6500 

PAYMENTS ARE $180 

LOAN NUMBER - 5 
INTEREST IS $2400 

MONEY OWED IS $7400 

PAYMENTS ARE $154 

LOAN NUMBER - 6 
INTEREST IS $4500 

MONEY OWED IS $9500 

PAYMENTS ARE $158 

DONE 

Fig. 3. Sample run. Simple interest calculations of two different 

loan values at three rates. 



From Fig. 3 From Fig. 5 

Simple Int Compound Int 

Interest% Years Amount Equiv-Int% Years Amount 

1. 10 3 $5200.00 11 3 $5320.00 
2. 12 4 5920.00 15 4 6400.00 
3. 18 5 7600.00 26 5 9200.00 

Mult 

1. 1.331 
2. 1.574 
3. 2.288 

Actual Loan Value 

$5324.00 
$6296.00 
$9152.00 

Difference 

+ $ 4.00 
- 104.00 
+ 48.00 

Fig. 4. For a loan of $4000. 

line 170 runs out of data and 
Ii ne 320 is stil I greater than 
zero. 

This program only calculates 
simple interest loans. Com
pound-interest calculations re
quire decimal numbers and 
raising numbers to some 
power. The multiplier for com
pounding over n periods is 
(1 + l)n, where I is the interest 
expressed as a decimal and n is 
the number of years (or 
periods). 

You can use this multiplier to 
calculate the approximate 
equivalent while percentage 
over the term of the loan. Your 
calculated answer will result in 
a much more realistic loan 
evaluation. I made some of 
these calculations, and Fig. 4 
has some examples. 

In the program itself, there 
are no unusual or unique pro
gramming techniques. There 
are two counting loops-one 
starting at line 110 and the 
other at line 120. Whatever 

value is input for N is 
decremented in line 310 until 
the data sets, input in line 170, 
are used up. The counter that 
starts in line 120 numbers the 
printed output each time a pass 
through the program is com
pleted. 

I tried to use N to do both, but 
could not without using more 
program lines. Otherwise, this 
is simply a fundamental pro
gram with input between lines 
100 and 170, cal cu lat ions be
tween lines 190 and 220 and out
put between lines 240 and 290. 

Summary 

It is easy to save bytes of 
memory if you remember to use 
implied statements and state
ment abbreviations. The user's 
manual for Tiny BASIC shows 
what is, and is not, allowed. 
Both the decimal number and 
number range limitation can be 
handled by using software 
math techniques (multipliers, 
dividers, engineering notation, 

LOANS : HOW MANY -
?3 

INPUT: PRINCIPAL IN HUNDREDS (P) 
RATE IN PERCENT (R) 
TIME IN YEARS (T) 
PAYMENTS IN MONTHS (X) 

?40, 11,3,36,40, 15,4,48,40,26,5,60 

LOAN NUMBER - 1 
INTEREST IS $1320 

MONEY OWED IS $5320 

PAYMENTS ARE $147 

LOAN NUMBER - 2 
INTEREST IS $2400 

MONEY OWED IS $6400 

PAYMENTS ARE $133 

LOAN NUMBER - 3 
INTEREST IS $5200 

MONEY OWED IS $9200 

PAYMENTS ARE $153 

DONE 

Fig. 5. Loan value two, rerun to show the effect of compound in
terest on the total loan value. Compare the results with the sim
ple interest qalculation. 

83 

etc.). Line input characters 
limited to 70 (72 with prompting 
question mark and space) can 
also be handled by pro
gramming techniques. 

Remember, if you input more 
than a total of 72 characters in 
a single line, the program will 
stop. Nothing more will happen 

until you reset your system. If 
you have to reset and want ta 
save the program already ir\ 
memory, then reenter the inter
preter at the soft entry point. 
The Tiny BASIC user's manual 
explains how to do this, too. A 
program does not have to be 
big to be useful.• 



84 
Charles R. Carpenter 
2228 Montclair Place 
Carrollton TX 75006 

Not So Tiny 

Perhaps after running this series we won't be calling it Tiny anymore! 

of FOR-NEXT statements to 

LET, IF ... THEN GOTO 

statements, I have used the 

program in Listing 1. Th is is a 

coin-flipping routine with one 

counting loop inside another. 
The outside loop resides be

tween lines 100 and 230; the in
side loop is between lines 120 

and 230. Lines 10 and 11 are my 
comment and are not part of 

the original program. It is not 
possible to run this program on 

my system because the Tiny 

BASIC interpreter would not 

recognize line 100 and would 

stop. 
Listing 2 is my version rewrit

ten in Tiny BASIC. I have added 

a couple of features, such as 

the INPUT N line, which lets 
you select N sets of 50 flips. 

Also, I like to see DONE (or 
something) at the end of a pro
gram. This way I know the pro

gram didn't quit in the middle (if 

the algorithm was right, any

way). Otherwise, Tiny BASIC 
used two more program lines 

than the larger BASIC version. 
In my program, the two main 

loops comparable to the sam
ple program are started with r 

LET statement. The outside 
loop is between lines 110 and 

250 and controls the number of 
passes of 50 flips set in line 

100. The inside loop is between 

lines 130 and 210 and controls 
the number of flips set in line 

210. As I stated there are two 
additional lines-the counters 

KIM-1 and KIM-2 in redwood enclosure, ACT-1 TVT, Te/par Printer, Computerist power supply, Radio for the two loops. The loop 

Shack recorders. .counter in line 200 increments 

by one on each pass through 

:IIST 

10 RFM ORllilNAL VERSION 
11 REM 
100 FOR Y= I TO 10 
llOLETC=O 
120FORX=I T050 
130 LET F=c INT(2*RND(l)) 
140 IF F =I THEN 180 
150 PRINT "T"; 
160 CiOTO 200 
170 REM C COUNTS NO OF HEADS 
180 LET C=C+ I 
190 PRINT "H"; 
200 NEXT X 
210 PRINT 
220 PRINT "HEADS ";C;" OUT OF 50 FLIPS" 
230 NEXT Y 
240 END 

Listing 1. 

Programs written in Tiny 

BASIC and other small in

terpreters can be useful and 

fun. First, some changes in pro

gramming techniques and 
philosophy are needed, though, 

because there are fewer 

statements and commands in 
small interpreters. 

One basic and very useful 

programming tool is the loop. 
Several articles have been writ

ten about the power and use of 
loops properly written and ex
ecuted in a program. Usually in 

larger BASICs, these loops are 
written with FOR-NEXT 

statements. In Tiny BASIC, the 
equivalent statements are LET, 

IF ... THEN GOTO. 
To illustrate the conversion 

the program until it reaches the 

values in line 210. Incrementing 

the I loop (in line 240) by one oc

curs until the value in line 250 is 

reached. In this case, I is com
pared to N, the value input in 

line 100. The value of N lets the 

user select how many sets of 50 
flips are to be run by the pro

gram before it ends. 

Coin flipping, counting and 
printing are handled ln lines 

140 to 190. Line 140 randomizes 
the number 2 (1 is added so 

there are no zeros). If the ran
dom number is 1, it becomes; 

"head" and passes to the head 
counter in line 180. The head 
counter increments by one and 

prints an H, then increments 
the X loop by one. If X is less 

Reprinted with permission of Kilobaud Magazine. 



than the limiting value (50), the 
program returns to the flip 
routine at line 140 and starts 
through again. 

If F does not equal 1 in line 
150, the value becomes a "tail," 
a Tis printed, Xis incremented 
(by jumping to line 200) and 
compared to the limiting value. 
This time~ if 50 flips have oc
curred, the program falls 
through to the print statement 
in line 230. Heads (C) counted in 
line 180 are printed out and the 
program tests the relationships 
in lines 240 and 250. When I > 
N, the program prints DONE 
and ends. 

Tiny BASIC, even though 
small in size, has power enough 
to produce significant pro
grams. Applications are limited 
only by your imagination and 
user space in your computer's 
memory. In addition to some 
tricks using imp I ied statements 
and commands to save 
memory, I have written pro
grams to plot a graph, do sim
ple graphics, do some limited 
data processing and simulate 
assembly processes in a small 
manufacturing company. 

I plan to try several potential 
capabilities that include use of 
the USR function to save and 
load from a cassette tape. I 
would like to share my ideas 
with anyone interested, and I 
believe Kilobaud wou Id be hap
py to publish programs for the 
development of a Tiny BASIC 
software library.• 

:LIST 
10 REM TINY BASIC FOR KIM-I 
I I REM 6502 V.IK BY T. PITTMAN. 
12 REM 
13 REM PROGRAMED BY: 
I4 REM C. R. (CHUCK) CARPENTER W5USJ 
15 REM 2228 MONTCLAIR PL. 
16 REM CARROLLTON, TX. 75006 
17 REM 
18 REM FLIPS A COIN 'N' TIMES 50 AS SELECTED 
19 REM IN LINE 100, THEN PRINTS THE NUMBER OF 
20 REM HEADS IN EACH 50 FLIPS. 
21 PR 
22 PR 
100 INPUT N 
110 LET I= I 
120 LET C =0 
130 LET X =I 
140 LET F = (RND(2) +I) 
150 IF F =I GOTO 180 
160 PRINT "T"; 
170 GOTO 200 
I 80 LET C = C + 1 
190 PRINT "H"; 
200 LET X = X + 1 
210 IF X< = 50 GOTO 140 
220 PRINT 
230 PRINT "HEADS ";C;" OUT OF 50 FLIPS" 
240 LET I = I + I 
250 IF I<= N GOTO 120 
260 PRINT 
270 PRINT "DONE" 
280 END 

:RUN 
? 5 
HTTHTTTHHTHHTTTTHHHHHHTHHHTHTHHTTTHHTTHHTTTHHTHTTH 
HEADS 26 OUT OF 50 FLIPS 
HHTHHHTHHHHHTTHTTHHTTHHTHHTTTTHHTHHHTHTHTHTTTTTHHH 
HEADS 28 OUT OF 50 FLIPS 
TTHHTTTHHHHTTTHHTHHHHHTHTTHTHHTHHTHHHTHHTHTTTTTHHH 
HEADS 28 OUT OF 50 FLIPS 
THTHHHHTTTTHTTTTTHTTTTHHHTHTHTHHHHHHTTTTHTHHHTHTHH 
HEADS 25 OUT OF 50 FLIPS 
TTHTTHHTTTTTTTTHTTHTHTTTTHTTTHTTHHHTTHTHHTHTHTHTHT 
HEADS 18 OUT OF 50 FLIPS 

DONE 

Listing 2. 

85 



86 

Tiny BASIC: 

As an aid to those needing 

software to implement on a 

"Tiny" system, I present 

three game programs. Exten

sive personal research (I cor

nered my wife) demonstrated 

the appeal of these games to 

non-computer-oriented (i.e., 

normal) people. Each will run 

in a Tiny BASIC-equipped 

computer with 4K of mem

ory. Although I used the 

SWTP M-68, programs should 

be interchangeable with any 

Tiny BASIC. 

Still Going Strong! 

Marc I. Lea vey, M. D. 

4006 Win/ee Road 
Randallstown MD 21133 

A fter assembling a home 

computer system, one 

of the first things hobbyists 

want to do is demonstrate to 

their friends and neighbors 

what their new machines can 

do. Unfortunately, those 

things we love to do, Ii ke 

machine-language subroutines 

or vectored interrupts, don't 

come across wel I to "out

wo r Id er s." Furthermore, 

most of the games or educa

tional programs avai I able re

quire BASIC with string capa· 

bility. This implies eight to 

ten kilo bytes of read-write 

memory, usually more than 

beginning systems have. 

Fortunately, a language, 

10 REM BATNUM [TINY BASIC] 

20 REM VER 1. 2 - 13 AUG 77 

30 REM MARC I. LEA VEY, M.D. 

40 REM *HOME UP, ERASE, PRINT HEAD* 

50 PR "",''BATTLE OF NUMBERS" 

60 PR 
70 PR "HOW MANY OBJECTS IN" 

80 PR "THE PILE"; 
90 INPUT P 
100 IF P <=O GOTO 70 
110 PR "WHAT IS THE MINIMUM YOU" 

120 PR "CAN TAKE"; 
130 INPUT A 
140 IF A> 0 GOTO 180 

150 PR "YOU HAVE TO TAKE AT" 

160 PR "LEAST 1 EACH TIME!" 
170 GOTO 110 
180 PR "WHAT IS THE MAXIMUM" 

190 PR "YOU CAN TAKE"; 

200 INPUT B 
210 IF B >=A GOTO 250 
220 PR "THE MINIMUM CAN'T BE" 

230 PR "LARGER THAN THE MAXIMUM!" 

240 GOTO 110 
250 W=l 
260 L=O 
270 PR "DO YOU WIN OR LOSE BY TAKING" 

280 PR "THE LAST OBJECT (W OR L)"; 

290 INPUT Z 
300 IF Z=l GOTO 320 

310 L=A 
320 T=A+B 
330 Y=l 
340 N=O 
350 PR "DO YOU WANT TO GO FIRST"; 

360 INPUT Z 
370 IF Z=l GOTO 600 
380 IF P > B GOTO 410 
390 IF P <=A GOTO 540 
400 lF L=O GOTO 540 
410 R=P-T*(P/T) 

Tiny BASIC, exists that fits 

comfortably in the 4K gener· 

ally available in a minimal 

system. Versions are available 

for most popular CPU's from 

ltty Bitty Computers of San 

Jose CA. Although Tiny 

BASIC does not have strings, 

FOR-NEXT loops or several 

other features of "standard" 

BASIC, it is still a useful 

language. 

420 IF R >=A GOTO 450 
430 IF R=O GOTO 450 
440 R=A 
450 IF R=L GOTO 500 
460 C=R-L 
470 IF C > 0 GOTO 510 
480 C=C+B 
490 GOTO 510 
500 C=A+RND(B-A+l) 
510 PR "I TAKE ";C 
520 P=P-C 
530 GOTO 600 

540 PR "" 
550 IF L=O GOTO 580 

Remember, these pro

grams are written in Tiny 
BASIC. Although with minor 

modifications, as in the RND 

function, they will run in 

standard BASIC, they will 

not be efficient. String han

dling and FOR-NEXT loops 

could simplify and speed up 

these programs, but then they 

wouldn't be Tiny BASIC. 

Enough introduction. On 

to the programs. 

Battle of Numbers 

Battle of Numbers, fre-

560 PR "I TAKE" ;P;"AND LOSE! [LUCKY!]" 

570 GO TO 770 
580 PR "I TAKE";P;"AND WIN!!" 

590 GO TO 770 
600 PR"" 
610 PR "THERE ARE";P;"OBJECTS." 

620 PR "HOW MANY DO YOU TAKE"; 

630 INPUT H 
640 IF H <A GOTO 660 
650 IF H <=B GOTO 700 

660 IF H <> P GOTO 680 
670 IF P <A GOTO 720 
680 PR "YOU MAY TAKE FROM";A;"TO":B 

690 GO TO 620 
700 P=P-H 
710 IF P > 0 GOTO 380 
720 IF L=O GOTO 750 

73-0 PR ">>You LOSE!<<" 
740 GOTO 770 
750 PR"** YOU WIN!**" 
760 GOTO 770 
770 PR "" 
780 PR "ANOTHER MATCH"; 
790 INPUT Z 
800 IF Z=l GOTO 10 
999 END 

BA TNUM program listing. 

Reprinted with permission of Kilobaud M~azine. 



q uently abbreviated BAT
N UM, is one of the oldest 
number games. In it, a pile of 
objects is established and 
items are removed until the 
game ends. 

In the computer version, 
the size of the starting pile, 
minimum and maximum 
number per turn and win or 
lose on the last token are all 
determined by the player. 
The computer will go first or 
give you the option. It is a 
challenging game, and, with 
the proper strategy, you can 
win it. 

As with all listings in this 
article, BATN UM is fairly 
self-explanatory, but a few 
points bear mentioning. Tiny 
BASIC allows PR for PR INT; 
a 11 other commands are 
spelled out. The statement 
PR "" contains control char
acters used for homing the 
cursor and clearing the screen 
or I ine. Although Tiny has no 
string inputs, single-letter 
variables may be input at 
INPUT statements. Thus the 

sequency 

100 Y=l 
200 N=O 
300 PR "ANOTHER GAME"; 
400 INPUT Z 

could be answered by Y or N, 
and the variable Z would 
equal 1 for yes or 0 for no. 
Kind of a pseudo-string. 

Bagels 

The second I isting shows 
the Bagels program, which 
also has been around in vari
ous forms for some. time. The 
theory of th is game is that 
the computer selects a ran
dom number with three dif
ferent digits. It then requests 
a guess from you. After first 
checking for other than three 
digits or double digits, the 
computer responds three 
ways (shown in Example 1 ). 

Thus, if the comp.uter's 
number was 439 and you 
guessed 497, it would re
spond: PICO FERMI, show
ing two correct digits - one 
in the right place and one in 
the wrong. PICOs come out 

HOW MANY OBJECTS IN 
THE PILE? 21 
WHAT IS THE MINIMUM YOU 
CAN TAKE? 3 
WHAT IS THE MAXIMUM 
YOU CAN TAKE? 1 
THE MINIMUM CAN'T BE 
LARGER THAN THE MAXIMUM! 
WHAT IS THE MINIMUM YOU 
CAN TAKE? 1 
WHAT IS THE MAXIMUM 
YOU CAN TAKE? 3 
DO YOU WIN OR LOSE BY TAK ING 
THE LAST OB.JECT (W OR L)? L 
DO YOU WANT TO GO FIRST? N 
I TAKE 2 

THERE ARE 19 OBJECTS. 
HOW MANY DO YOU TAKE? 3 
I TAKE 2 

THERE ARE 14 OBJECTS. 
HOW MANY DO YOU TAKE? 2 
I TAKE 2 

THERE ARE 10 OB,JECTS. 
HOW MANY DO YOU TAKE? 2 
I TAKE 2 

THERE ARE 6 OBJECTS. 
HOW MANY DO YOU TAKE? 2 
I TAKE 2 

THERE ARE 2 OBJECTS. 
HOW MANY DO YOU TAKE? 1 

I TAKE 1 AND LOSE! [LUCKY!l 

ANOTHER MATCH? N 

BATNUMrun. 

I HAVE A NUMBER 
GUESS? 111 
NO DOUBLE NUMBERS! 
GUESS? 234 
BAGELS! 
GUESS? 123 
BAGELS! 
GUESS? 5678 
THREE DIGITS, PLEASE! 
GUESS? 567 
PICO 
GUESS? 890 
PICO FERMI 
GUESS? 590 
FERMI 
GUESS? 690 
FERMI FERMI 
YOU MUST BE NEW AT THIS GAME! 
THE FIRST NUMBER IS 6 
GUESS? 691 
FERMI FERMI 
GUESS? 698 

CORRECT! IN 10 GUESSES! 
TRY ANOTHER? Y 
I HAVE A NUMBER 
GUESS? 123 
BAGELS! 
GUESS? 456 
PICO PICO 
GUESS? 789 
PICO 
GUESS? 457 
PICO PICO 
GUESS? 458 
PICO PICO PICO 
GUESS? 845 

CORRECT! IN 6 GUESSES! 
TRY ANOTHER? N 

Bagels run. 

BAGELS= No digit correct 
PICO = Correct digit in wrong place 
FERMI = Correct digit in correct place 

Example 1. 

Bagels program listing. 

10 REM BAGELS< TINY BASIC> 
20 REM VER 2.0 - 31 AUG 77 
30 REM MARC I. LEAVEY, M.D. 
50 Y=l 
60 N=O 
70 PR""; 
100 X=lOO+RND(900) 
120 W=X 
130 X=W/100 
140 Y=(W-X*l00)/10 
150Z=(W-X*100-Y* 10) 
200 IF X=Y GOTO 100 
210 IFY=ZGOTO 100 
220 IFX=ZGOTO 100 
290 PR"I HAVE A NUMBER" 
300 G=O 
310 G=G+l 
312 IF G=9 PR "YOU MUST BE NEW AT THIS GAME!" 
313 IF G=9 PR "THE FIRST NUMBER IS ";X 
314 IF G=14 PR "I CAN'T BELIEVE IT!" 
315 IF G=14 PR "THE FIRST TWO NUMBERS ARE";X;Y 
320 PR "GUESS"; 
330 INPUT D 
340 IF D=W GOTO 900 
344 IF G=18 PR "I GIVE UP!" 
346 IF G=18 PR "THE NUMBER WAS ";W 
348 IF G=18 GOTO 920 
350 IF D < 100 GOTO 950 
360 IF D >999 GOTO 950 
370 A=D/100 
380 B=(D-lOO*A)/10 

87 



88 390 C=(D-100* A-lO*B) 
400 IF A=B GOTO 850 
410 IF A=C GOTO 850 
420 IF B=C GOTO 850 
430 F=O 
440 P=O 
450 IF A=X THEN F=F+l 
460 IF A=Y THEN P=P+l 
470 IF A=Z THEN P=P+l 
480 IF B=X THEN P=P+l 
490 IF B=Y THEN F=F+l 
500 IF B=Z THEN P=P+l 
510 IF C=X THEN P=P+l 
520 IF C=Y THEN P=P+l 
530 IF C=Z THEN F=F+l 
540 IF P+F=O PR "BAG ELS!"; 
550 IF P=O GOTO 600 
560 P=P-1 
570 PR "PICO "; 
580 GOTO 550 
600 IF F=O GOTO 640 
610 F=F-1 
620 PR "FERMI"; 
630 GOTO 600 
640 PR 
650 GOTO 310 
850 PR "NO DOUBLE NUMBERS!" 
860 GOTO 310 
900 PR 
910 PR "CORRECT! IN";G;"GUESSES!" 
920 PR "TRY ANOTHER"; 
930 INPUT Z 
940 IF Z=Y GOTO 10 
945 GOTO 999 
950 PR "THREE DIGITS, PLEASE!" 
960 GOTO 310 
999 END 

10 REM LUNAR LANDER LTINY BASICl 
20 REM VER 3.0 - 3(J AUG 77 
30 REM MARC I. LEAVEY, M.D. 
40 PR "","LUNAR LANDER" 
50 PR 
55 PR 
60 PR "TRY TO LAND THE LEM ON THE" 
65 PR 
70 PR "SURFACE OF THE MOON BY ENTERING" 
75 PR 
80 PR "FUEL BURN RATES WHEN REQUESTED." 
85 PR 
90PR"GOOD LUCK!" 
~)2 1=50 
94 r=I-1 
96 IF I >o GOTO 94 
100 F=l00+RND(75) 
110 V=RND(50)-100 
120 D=400+RND(200) 
130 <i=l+RND(8) 
200 GOSUB 600 
210 GOSUB 700 
220 ff F > 0 GOTO 240 
230 R=O 
235 GOTO 250 
240 GO SUB 7 fJO 

250 IF B > F THEN B=F 
255F=F-B 
260 C=B-G 
270 D=D+V+C/2 
280 V=V+C 
400 IF D > 0 GOTO 200 

410 IF D <-1 GOTO 500 
4 20 GOTO 530 
500 GOSlJB 660 
510 GOTO 800 
530 GOSUB 900 
540 GOTO 800 
600 PR""; 
610 S=l2-D/40 
G15 lF S <=o GOTO 650 
620 PR "" 
630 S=S-1 
640 IF S > 0 GOTO 6:W 

before FERMls, so their or
der is of no help in determin
ing the correct sequence. 

This program demon
strates a few useful tech
niques. The sequence from 
lines 100 to 220 breaks the 
three-digit number W down 
to three integers: X, Y and Z. 
They are then checked for 
duplicate digits; if one is 

found, another number is se
lected. Similar statements at 
lines 370 to 390 break the 
guess D down to integers A, B 
and C. Comparisons between 
A, B and C, and X, Y and Z 
increment the PICO and 
FERMI flags (P and F, respec
tively). These flags are used in 
a pseudo FOR-NEXT loop to 
print the PICO and FERM I. 
If neither is set (P+F=O), 
BAGELS gets printed. A 
guess counter (G) is also tal
lied in to offer the player 
some form of feedback. 

650 RETURN 
660 PR"" 

Lunar Lander 
Another popular game is 

the simulated landing of a 
spacecraft on the moon. Ver
sions have been published in 
all major books and tnaga
z ines, including Kilobaud. 
The object is quite simple: 
Land your lunar excursion 
module (LEM) without crash
ing. In this program, con
stants for fuel, velocity, 
height and gravity are ran· 
domized at each play. This 
adds a degree of difficulty 
because the same strategy 
does not always work. 

The loop at lines 92 to 96 
counts to 50, giving the 
player a chance to read the 
introduction. Subroutine 600 
produces a line feed and line 
erase for each 40 feet or so 
below 500 feet. This makes 
the LEM, which is drawn by 
lines 700 to 720, descend the 
screen as the game progresses. 

665 PR "CRASH","CRASH","CRASH" 
670 PR"*****","*****","*****" 
675 PR 
680 PR "IMPACT VELOCITY:";V 
685 PR "LEM BURIED";-D;"FEET" 
690 PR 
695 GOTO 1010 
700 PR "0","FUEL:";F 
710 PR"[ #J ","SPEED: ";V 
720 PR" - ","HEIGHT: ";D; 
730 RETURN 
750 PR" BURN:"; 
760 INPUT B 
770 RETURN 
800 PR 
810 PR "ANOTHER GAME"; 
820 Y=l 
830 INPUT A 
840 IF A=Y GOTO 100 
850 END 
9 00 PR"" 
910 PR 
920 PR "LEM ON SURFACE OF THE MOON" 
930 IF V <-5 GOTO 1000 
935 PR 
940 PR "C 0 N G R A T U L A T I 0 N S ! " 
945 PR 
950 PR "","PERFECT LANDING!" 
955 PR 
960 PR"TOUCHDOWN VELOCITY: ";V 
970 PR"FUEL REMAINING: ";1'' 

980 RETURN 
1000 PR "EXCESSIVE SPEED ON IMPACT!" 
1005 PR 
1010 IF F=O GOTO 1050 
1020 PR F;" UNITS OF FUEL REMAINING" 
1030 PR "PRODUCED EXPLOSION COVERING" 
1040 PR 100*RND(F+3);"SQ MILES OF LUNAR SURFACE" 
1050 PR 
1060 PR "LEM DEST R 0 YE D !" 
1070 PR"****** YOU BLEW IT!******" 
1080 RETURN 

Lunar Lander program listing. 



In the sample run, this rou
tine has been bypassed since 
it makes little sense on hard 
copy. It does add some flavor 
to the CRT version, though. 

I hope the reader will be 
able to introduce his or her 
acquaintances to the world of 
personal computers by imple
menting these simple pro
grams. Comments or ques
tions are welcome; readers 
interested rn Tiny BASIC 
should write (I have no con
nect ion with I BC): I tty Bi tty 
Computers, P.O. BOX 23189, 
San Jose CA 95153. (A self
addressed stamped envelope 
should accompany requests 
for replies.) • 

TRY TO LAND THE LEM ON THE 0 FUEL: 103 
SURFACE OF THE MOON BY ENTERING [#) SPEED: -80 
FUEL BURN RATES WHEN REQUESTED. /-\ .HEIGHT: 113 BURN: 
GOOD LUCK! 

0 FUEL: 97 
[#) SPEED: -75 
/-\ HEIGHT: 35 BURN: 

0 FUEL: 111 
[#J SPEED: -84 CRASH CRASH CRASH 
/-\ HEIGHT: 431 BURN: 5 ***** 

0 FUEL: 106 IMPACT VELOCITY: -64 
c#1 SPEED: -80 LEM BURIED 35 FEET 
/-\ HEIGHT: 349 BURN: 3 

85 UNITS OF FUEL REMAINING 
0 FUEL: 103 PRODUCED EXPLOSION COVERING 

c#1 SPEED: -78 300 SQ MILES OF LUNAR SURFACE 
/-\ HEIGHT: 270 BURN: 0 

LEM DESTROYED! 
0 FUEL: 103 ******YOU BLEW IT!****** 

c#1 SPEED: -79 
/-\ HEIGHT: 192 BURN: ? 0 ANOTHER GAME? N 

Lunar Lander run. 

89 

6 

12 



90 James L. Barnard 
4 781 Melbourne Rd. 
Baltimore MD 21229 

cell number is computed from 
the address register. This tells 
the computer that the human 
played H, T, H, T, for example, 
and then played heads again. 

Match Pennies: 
The next part of the program 

shifts the latest play into the 
address register. It then com
pares the latest play to the vari
able V (computer's guess from 
the end of the last play) to de
termine if the guess is a match 
or not. Depending on the re
sults of the comparison, the hu
man's score is incremented or 
decremented, and the human is 
shown the results. Then the 
computer (using the latest shift 
address register value) looks 
up the cell number and gets the 
human's play the last time this 
situation occurred. This is then 
used for computer's next guess 
(variable V). 

A Game That Learns 

Here is a program that 
demonstrates a com

puter's ability to show adaptive 
(artificial) intelligence and pat
tern recognition. The program 
is in the form of a simple penny
matching game and is planned 
as follows. 

The computer guesses 
whether you are going to pick 
heads or tails. If it guesses cor
rectly, it will subtract a point 
from your score. If it is wrong, 
your score is increased by a 
point. 

To perform this task, the 
computer must decide whether 
to pick heads or tails. In the pro
gram, I have established 
criteria for making this deci
sion. The computer has to keep 
a record of the human's 
previous plays. It will then look 
up in this record previous plays 
that match the situation with 
which it is now presented. Us
ing earlier results, it now has a 
basis to make a decision on 
whether to play heads or tails. 

Here's an outline of this 
basic concept: 
1. Situation memory (16 cells) 

10 LETH = 0 
15 LETT= 1 

2. Situation comparer 
3. Input data (heads or tails) 
4. Decision maker 
5. Decision output (heads or 
tails) 
6. Win/lose detector 
7. Scorekeeper (from human's 
view) 

The implementation of the 
outline has a different ap
pearance. The program is writ
ten in Pittman Tiny BASIC. To 
set up the situation memory, I 
selected 16 variables. These 
act as 16 memory cells, each to 
contain a 0 = heads or a 1 = 
tails. The 16 cells are ad
dressed by a memory address 
register that represents the last 
four human plays (head, tail, 
head, tail, etc.). This address 
(situation) register is contained 
in four variables. As a new play 
is generated, the play that oc
curred four plays ago is shifted 
out and each play is shifted one 
position, with the present play 
being shifted in as the least 
significant part of the address 
(situation) register. Thus, the 
address (situation) register is 
at all times a representation of 

20 PRINT "TYPE HEADS OR TAILS (HORT)" 
25 INPUT X 

Example 1. 

the last four human plays. 
The computer uses this ad

dress register to compute a cell 
number (address). This is done 
by giving each of the four plays 
contained in the address 
register a value (power of 2). 
The oldest play, if it was a tail 
( = 1), is represented by 8; next, 
if it was a tail, by 4, and so on 
until the latest play equals 1. 
These are then added to com
pile a number (0-15). This cor
responds to a cell number. The 
program stores the human's 
latest play (input data - heads 
= O; tails = 1) in the cell whose 

STORE CfLL NO 
~ROM srou~NCf 
COUNTER 

STOH£ lf\lf-'UT 
AT Cf LL NO 

PRINT 
C.OMPUT£F(S 
GuESS 

SEQUE_NC.E. ) SH If T 

COUNTER 

Fig. 1 is a flowchart of the en
tire program and shows the 
four main parts of the pro
gram's main loop: 

1. Store (present data with last 
situation). 
2. Shift (to get latest situation). 
3. Check Win/Lose. 
4. Fetch guess (based on latest 
situation). 

At first, the program will tend 
to make the computer appear 
dumb. This is because the 
memory cells and address 
register are initialized with data 
that is not derived from data 

lOMPuTf 
GU[ 55 l[L L NO 

FROM SE QUE ~Cf 
COUNTER 

L00KJP 
GUE.SS 

Fig. 1. Flowchart. 

Reprinted with permission of Kilobaud Magazine. 



the human is presently playing. adapts to different patterns of equal to the preset value, as in computer cheats, so I have in-
91 

As soon as the memory con- play. The program uses a little- Example 1. If a player types H, eluded a PEEK command in the 

tains data acquired from play- known aspect of Pittman Tiny the value of X will be O; if he program. If you type 2 instead 

ing, the computer adapts and BASIC: that a variable may be types T, the value of X will be 1. of H or T, the computer will 

seems to get progressively set to a given value and an in- So, try your luck playing the show you its next guess. It is 

more intelligent. put requested. The letter of the computer at matching pennies. not fair to "peek" every time as 

The chart in Table 1 shows preset variable may then be Remember, it may sucker you you may cause the program to 

how the program gradually typed, and the input will be at first. You may think that the have a nervous breakdown.• 

Game Computer's Human's Win/Lose Wrote Read Game Read from Comment 

No. Play Play Cell No. Cell No. Total Game No. 

0 T w 0 Reset 
1 T H w H·O H-1 1 8 
2 H H L H-1 H-3 0 
3 H H L "H-3 H-7 -1 H, H Pattern 
4 H H L H-7 H-15 -2 
5 H H L H-15 H-15 -3 5 
6 H T w T-15 H-14 ·2 
7 H T w T-14 H-12 -1 
8 H H L H-12 H-9 -2 
9 H H L H-9 H-3 ·3 3 

10 H T w T-3 H-6 -2 H, H, T, T Pattern 
11 H T w T-6 H-12 -1 8 
12 H H L H-12 H-9 -2 9 
13 H H L H-9 T-3 -3 10 
14 T T L T-3 T-6 -4 11 
15 T T L T-6 H-12 -5 12 
16 H H L H-12 H-9 -6 13 
17 H T w T-9 H-2 -5 
18 H H L H-2 H-5 -6 H, T Pattern 
19 H T w T-5 H-10 -5 
20 H H L H-10 T-5 -6 
21 T T L T-5 H-10 -7 
22 H T w T-10 H-4 -6 
23 H T w T-4 H-8 -5 T, T Pattern 
24 H T w T-8 H-0 -4 
25 H T w T-0 T-0 -3 
26 T T L T-0 T-0 -4 
27 T H w H-0 H-1 -3 
28 H H L H-1 T-3 -4 14 
29 T H w H-3 H-7 -3 4 

H, H Pattern 
30 H H L H-7 T-15 -4 6 
31 T H w H-15 H-15 -3 31 
32 H H L H-15 H-15 -4 32 
33 H H L H-15 H-15 -5 33 
34 H T w T-15 T-14 -4 7 
35 T H w H-14 H-13 -3 
36 H H L H-13 H-11 -4 
37 H H L H-11 H-7 -5 30 H, H, H, T Pattern 

38 H T w T-7 H-14 -4 35 
39 H H L H-14 H-13 -5 36 
40 H H L H-13 H-11 -6 37 
41 H H L H-11 T-7 -7 38 
42 T T L T-7 H-14 -8 39 
43 H T w T-14 H-12 -7 16 
44 H T w T-12 T-8 -6 24 
45 T H w H-8 H-1 -5 28 
46 H T w T-1 H-2 -4 18 
47 H T w T-2 T-4 -3 23 H, T, T, T Pattern 
48 T T L T-4 H-8 -4 45 
49 H H L H-8 T-1 -5 49 
50 T T L T-1 T-2 -6 47 
51 T T L T-2 T-4 -7 48 
52 T T L T-4 H-8 -8 49 
53 H H L H-8 T-1 -9 50 

•Reset State 
(initialization) 

Table 1. Penny-match game. 



92 
50 PR"MATCH PENNIES WlTH THE COMPUTER!" 
60 PR"IF THE COMPUTER GUESSES THE SAME AS YOU PICK" 
70 PR"THEN THE COMPUTER WINS AND THE HUMAN LOSES!" 
86 PR"TYPE YOUR FAVORITE NUMBER(0-100)" 
87 INPUT X 
100 GOSUB 600 
105 PR"HEADS OR TAILS(H ORT)" 
110 INPUT X 
120 IF X = 2 GOSUB 210 
130 IF X>l GOTO 105 
140 GOSUB 300 
150 GOSUB 400 
160 GOSUB 215 
170 IF X=V PR"HUMAN LOSES!" 
175 IF X=V W=W-1 
180 IF X<>V W=W+ l 
185 IF X<>V PR"HUMAN WINS!" 
190 PR"YOUR SCORE IS ";W 
195 GOSUB 500 
200 GOTO 105 
210 PR"YOU PEEKED!! -- NOT FAIR!" 
215 PR"THE COMPUTER GUESSED"; 
220 IF V = 0 PR "HEADS" 
225 IF V = 1 PR "TAILS" 
230 RETURN 
300 Y = (8•A) + (4•B) + (2•C) + D 
305 IF Y=O F=X 
310JFY=lG=X 
315 IF Y=2 E=X 
320 IF Y = 3 I = X 
325 IF Y = 4 J = X 
330 IF Y = 5 K = X 
335 IF Y = 6 L = X 
340 IF Y = 7 M = X 
345 IF Y = 8 N = X 
350 IF Y = 9 0 = X 
355 IF Y = 10 P = X 
360 IF Y = 11 Q = X 
365 IF Y = 12 R = X 
370 IF Y = 13 S = X 
375 IF Y = 14 Z = X 
380 IF Y= 15 U=X 
390 RETURN 
400 D =C 
405C=B 
410 B =A 

Program listing. 

415 A=X 
420 RETURN 
500 Y = (B•A) + (4•B) + (2•C) + D 
505 IF Y = 0 V = F 
5lOIFY=lV=G 
515IFY=2V=E 
520 IF Y = 3 V = I 
525 IF Y = 4 V = J 
530 IF Y = 5 V = K 
535 IF Y=6 V=L 
540 IF Y = 7 V = M 
545 IF Y = 8 V = N 
550 IF Y = 9 V = 0 
555IFY=10 V=P 
560 IF Y = 11 V = Q 
565IFY=l2V=R 
570 IF Y = 13 V = S 
575 IF Y= 14 V=Z 
580 IF Y = 15 V = U 
590 RETURN 
600 A=O 
605 B=O 
610 C=O 
615 D=O 
617 E=O 
620 F=O 
625 G=O 
630 H =0 
635 I =0 
640 J =0 
645 K=O 
650 L=O 
655 M =0 
660 N =0 
665 0=0 
670 P=O 
675 Q =0 
680 R=O 
685 s =0 
687 T= l 
690 u =0 
692 v =0 
695 w =0 
696 Z=O 
697 RETURN 



Gregory L. Oliver 
P.O. Box 184 
Euless Tx 76039 

Why Not Trig Functions 
For Your 4K BASIC? 

A while back, a neighbor's 
kid was looking through 

y copy of 101 Basic Computer 
uames and asked if he could 
play Gunner. "No," I replied, 
"my computer can't do this line 

with SIN(X) in it." So he settled 
for Lunar Lander. While he was 
occupied, I wondered if it was 
possible to simulate this and 
other math functions, included 
in 8K BASIC but missing in my 

100 REM artillery game by G.L. Oliver 
I IO REM demonstrates 4K SIN(X) subroutine 
200 Let T = 50000 - INT (RND (0) *45000) 
205 REM T is distance to target 
210 Let A= 0 
215 REM A is shot count 
220 Input X 
230 If X<90 then go to 260 
240 Print "Bad Angle" 
250 Go to 220 
260 If X< I then go to 240 
270 Let X = X * 2 
280 Gosub 1000 
290 Let A = A + I 
300 Let H = T - INT (50000*X) 
3 IO If H<IOO then go to 350 
320 Print "Over By"; H; "Yards" 
330 Go to 370 
350 If H<-100 then go to 400 
360 Print "Under By"; H; "Yards" 
370 If A<5 then go to 220 
380 Print "You Got Hit!" 
390 Go to 500 
400 Print "Got Him In"; A; "Shots" 
410 Print H; "Yards" 
500 Print "Try Again? (I = Yes; 0 =No)"; 
510 Input A 
520 If A = I then go to 200 
530 Stop 

Program B. 

4K version. They weren't called 
often, but used up lots of pro· 
gramming space whether need
ed or not. So, why not just have 
subroutines to add only when 
necessary? 

I recalled from calculus 
classes that any function can 
be approximated by a series 
equation, a method using suc
cessive iterations-ideal for a 
computer. After a lot of 
research and some trial and er
ror, I had subroutines to 
calculate SIN(X), COS(X), 
TAN(X), EXP(X) and LOG(X). 
Since they're all based on the 
same principle, let's use SIN(X) 
to demonstrate. 

In 4K BASIC, you can approx
imate the sine of X by following 

the function in Example 
1-provided that X is in ra
dians, and xn/n! is less than 
some predetermined value, 
such as 1 E-7. 

I chose this value to compare 
with the 8K version. Actually, 
you could speed things up by 

stopping at 1 E-4. This is more 
than enough accuracy for most 
games. For those of you un
familiar with the term n! (called 
factorial), it is defined as the 
multiplication of all integers 
(whole numbers) from one ton. 
3! equals 6, 5! equals 120 and 7! 
equals 5040. 

You can see that xn1n ! very 
quickly becomes smaller and 
smaller. This is called converg
ing, because the more terms 
you add, the closer you get to 
the actual answer. 

Here's the procedure for find
ing SIN(X): 

1. Convert X in degrees to R in 
radians. 

2. Set X equal to R. 
3. Set S equal to R. 
4. Set counter N equal to 1. 

5. Add 2 to N. 
6. Convert term R to ( - R).(S * 

S)/[ - N • (N - 1)). 

7. Add R to X. 
8. If the absolute value of R is 

SIN(X) = X -X3+ X5- '£! + ... + K_n 
3! 5! 7! n! 

Example 1. 

Reprinted with permission of Kilobaud Magazine. 

93 



94 
less than 1 x 10 - 7, you are 

done and should return with 

X equal to SIN (X). 

9. Otherwise, go back to step 5. 

Fig. 1 is the flowchart for this 

procedure, and Program A 

shows the completed 

subroutine. As to application, I 

freely changed and simplified 

the Gunner program to 

demonstrate my subroutine 

(see Program 2). 

Now that we have SI N(X), 

how about COS(X)? All you 

need to do is add 90 degrees to 

the angle, and then use the 

same subroutine you use for 

SIN(X). Believe me. So, that 

gives us SIN(X) and COS(X). 

INITIALIZ[ VARIABLE.S 

Ro X 1N RADIANS 

PERFORM 1TtRAT1QN 

"J=!'.+2 

R = (-R) • lX '* X) I [ N • (N- fJ] 

Fig. 1. Flowchart. 

TAN(X) is just SIN(X) divided by 

COS(X). It may take a bit longer 

to calculate since you have to 

1000 Let R = X "'.01754293 
IO 10 Let X = R . 

1020 Let S = R 

1030 Let N = 1 
1040 Let N = N + 2 
1050 Let R = - R "' S "' S/{N • (N - 1 )) 

1060 Let S = X + R 
1070 If ABS (R) <lE-7 then return 

1080 Go to 1040 

Program A. 

call the same subroutine twice 

and juggle a few numbers; but 

look at the space you save! 

That was the reason for using 

4K to begin with. 

You save a lot of space-as I 

stated earlier-but what are 

you giving up? Time, of course. 

It takes about a second for 

angles less than 90 degrees, 

and maybe two seconds when 

you are up to 360 degrees. So 

what! You now have 4K extra of 

programmable memory.• 



INDEX 

Appendix D, Excerpts from Kilobaud, 75 
Appendix A, Memory Map, 40 
Appendix B, Error MSG Summary, 41 
Appendix C, Monitor Listing, 43 

Block Memory Transfer, 12 

Display Memory, 9 
Display Program Instructions, 11 
Display Registers, 7 

Display/Alter Memory, 9 
Display/Alter Memory Contents, 9 
Display/Alter Register Contents. 7 

Display/Alter Registers, 7 

Edi ting Commands, 2 7 

ET-3400 Cassette Usage, 19 
Executing a Program, 13 
Executing a Program Segment, 15 

FANTOM II Monitor, 4 
Functions, 34 

HEATH/PITTMAN Tiny BASIC, 26 

Introduction - F ANTOM II, 3 

Mathematical Expressions, 32 
Modes of Operation, 29 

Numerical Constants, 32 

Operators, 3 2 

Power Up and Master Reset, 6 
Program Execution Control, 13 
Program Storage and Retrieval, 18 

Sample Program, 22 
Symbols, 5 

The RND Function, 34 
The USR Function, 34 
Tiny BASIC Instructions, 30 
Tiny BASIC Re-Initialization (Warm Start), 33 

Using an ASR 33, 21 
Using the MONITOR, 6 
Using Tiny BASIC, 28 

Variables, 32 

95 



CUSTOMER SERVICE 

REPLACEMENT PARTS 

Please provide complete information when you request re
placements from either the factory or Heath Electronic Cen
ters. Be certain to include the HEATH part number exactly as it 
appears in the parts list. 

ORDERING FROM THE FACTORY 

Print all of the information requested on the parts order form 
furnished with this product and mail it to Heath. For telephone 
orders (parts only) dial 616 982-3571. If you are unable to 
locate an order form, write us a letter or card including: 

• Heath part number. 
•Model number. 
• Date of purchase. 
• Location purchased or invoice number. 
• Nature of the defect. 
• Your payment or authorization for COD shipment of parts 

not covered by warranty. 

Mail letters to: Heath Company 
Benton Harbor 
Ml 49022 
Attn: Parts Replacement 

Retain original parts until you receive replacements. 
Parts that should be returned to the factory will be listed 
on your packing slip. 

OBTAINING REPLACEMENTS FROM 
HEATH ELECTRONIC CENTERS 

For your convenience, "over the counter" replacement parts 
are available from the Heath Electronic Centers listed in your 
catalog. Be sure to bring in the original part and purchase 
invoice when you request a warranty replacement from a 
Heath Electronic Center. 

TECHNICAL CONSULTATION 

Need help with your kit? -Self-Service?- Construction? -
Operation?- Call or write for assistance. you'll find our Tech
nical Consultants eager to help with just about any technical 
problem except "customizing" for unique applications. 

The effectiveness of our consultation service depends on the 
information you furnish. Be sure to tell us: 

•The Model number and Series number from the blue and 
white label. 

•The date of purchase. 
• An exact description of the difficulty. 
• Everything you have done in attempting to correct the prob

lem. 

Also include switch positions, connections to other units, 
operating procedures, voltage readings, and any other infor
mation you think might be helpful. 

Please do not send parts for testing, unless this is specifi
cally requesJed by our Consultants. 

Hints: Telephone traffic is lightest at midweek - please be 
sure your Manual and notes are on hand when you call. 

Heathkit Electronic Center facilities are also available for tele
phone or "walk-in" personal assistance. 

REPAIR SERVICE 

Service facilities are available, if they are needed, to repair 
your completed kit. (Kits that have been modified, soldered 
with paste flux or acid core solder, cannot be accepted for 
repair.) 

If it is convenient, personally deliver your kit to a Heathkit 
Electronic Center. For warranty parts replacement, sup
ply a copy of the invoice or sales slip. 

If you prefer to ship your kit to the factory, attach a letter 
containing the following information directly to the unit: 

• Your name and address. 
• Date of purchase and invoice number. 
• Copies of all correspondence relevant to the service of the 

kit. 
• A brief description of the difficulty. 
• Authorization to return your kit COD for the service and 

shipping charges. (This will reduce the possibility of delay.) 

Check the equipment to see that all screws and parts are 
secured. (Do not include any wooden cabinets or color televi
sion picture tubes, as these are easily damaged in shipment. 
Do not include the kit Manual.) Place the equipment in a strong 
carton with at least THREE INCHES of resilient packing mate
rial (shredded paper, excelsior, etc.) on all sides. Use addi
tional packing material where there are protrusions (contra! 
sticks, large knobs, etc.). If the unit weighs over 15 lbs., place 
this carton in another one with 3/4" of packing material bet
ween the two. 

Seal the carton with reinforced gummed tape, tie it with a 
strong cord, and mark it "Fragile" on at least two sides. Re
member, the carrier will not accept liability for shipping dam
age if the unit is insufficiently packed. Ship by prepaid express, 
United Parcel Service, or insured Parcel Post to: 

Heath Company 
Service Department 
Benton Harbor, Michigan 49022 



HE·ATH COMPANY • BENTON HARBOR, MICHIGAN 

THE WORLD'S l'INEST ELECTRONIC EQUIPMENT IN KIT FOlllll 

LITHO IN U.S.A. 


