COLOR COMPUTER 3

 NTSC/PAL VERSION with 512K Expansion RAM CardCatalog Number: 26-3334

SECTION I. GENERAL
1.1 Introduction 5
1.2 System Description 5
1.3 Memory Map 8
1.4 I/O Control Registers 9
1.5 Chip Control Registers 11
1.6 68B09E Vector Registers 22
SECTION II. SPECIFICATIONS
2.1 Technical 23
2.2 Physical 25
SECTION III. DISASSEMBLY/ASSEMBLY
3.1 Disassembly 26
3.2 Assembly 26
3.3 512K RAM Upgrade Instructions 27
SECTION IV. BLOCK DIAGRAM
4.1 NTSC Version 28
4.2 PAL Version 29
SECTION V. THEORY OF OPERATION
5.1 MC68B09E/MBL68B09E/HD68B09E (IC1) 30
5.2 Memory (RAM) 34
5.3 TCC1014 (VC2645QC) 36
5.4 PAL Encoder (PAL Version Only) 38
5.5 PIAs (IC4 and IC5) 39
5.6 Keyboard Interface (IC5) 40
5.7 ROM (IC2) 41
5.8 DAC Circuitry (IC7) 42
5.9 SALT Circuitry 44
5.10 Cassette Tape Format Information 47
5.11 RS-232C Connector (JK3) 47
5.12 Cartridge Connector (CN1) 49
5.13 Power Transformer 52
5.14 Joysticks 52
5.15 TV Switch Box (NTSC Version Only) 53
SECTION VI. TROUBLESHOOTING
6.1 Introduction 54
6.2 Video Problems 55
No Display/No Sync/Noisy Video 55
Wrong Color 55
No Color 55
Random Character/Clear Screen/No Sign-on 55
RGB Problem 55
Composite Video Signal Adjustment (PAL Version Only) 56
6.3 Keyboard Problems
56
56
No Keyboard Entry/Wrong Character
56
56
6.4 Processing Problem
56
56 56
6.5 Cassette Problems
6.5 Cassette Problems
Motor Control Problem
56
56
Write Problem
Write Problem 56
Read Problem
56
56
6.6 RS-232C Problem
57
57
6.7 Sound Problem
57
57
6.8 Joystick Problem
6.8 Joystick Problem
57
57
6.9 Cartridge Problem
6.9 Cartridge Problem 57
6.10 Power Supply Check
6.10 Power Supply Check
58
58
NTSC Version
58
58
PAL Version
PAL Version
61
61
6.11 Major Waveforms
64
64
NTSC Version
64
64 70
PAL Version
PAL Version
SECTION VII. 512K EXPANSION RAM CARD
PCB VIEWS
78
78 79
ELECTRICAL PARTS LIST
ELECTRICAL PARTS LIST
SECTION VIII. NTSC VERSION
PCB VIEWS
ELECTRICAL PARTS LIST 82
EXPLODED VIEW PARTS LIST 84
EXPLODED VIEW 90
SEMICONDUCTOR INFORMATION 91
SCHEMATIC DIAGRAM 93103
SECTION IX. PAL VERSION
PCB VIEWS
ELECTRICAL PARTS LIST 108
EXPLODED VIEW PARTS LIST. 111
EXPLODED VIEW 119
SEMICONDUCTOR INFORMATION 121
SCHEMATIC DIAGRAM 122126

LIST OF FIGURES

1-1. Color Computer 3 Installation 7
1-2. Color Computer 3 Memory Map 8
1-3. Memory Map for SAM Control Register 21 21
3-1. Removal of Top Cover 26
3-2. Removal of Main PCB 26
3-3. Main PCB 27 27
3-4. 512K RAM Card 27 27
4-1. Block Diagram 28
NTSC Version 28
PAL Version 29
5-1. MC68B09E Programming Model 30
5-2. MC68B09E Pin Assignments 31
5-3. MC68B09E Read/Write Timing at 0.89 MHz 33
5-4. DRAM B1ock Diagram 34 34
5-5. DRAM Timing 35 36
5-6. Color Computer 3 Address Decoding
5-6. Color Computer 3 Address Decoding
5-7. MMU Block Diagram
5-7. MMU Block Diagram 37 37 39
5-8. PIA Block Diagram
5-8. PIA Block Diagram
5-9. Color Computer 3 Keyboard Array 40
5-10. DAC Block Diagram (IC7) 42
5-11. SALT Block Diagram (IC8) 44
5-12. Color Computer 3 Power Supply 45 46
5-13. I/O Circuitry
5-13. I/O Circuitry
5-14. RS-232C Connector Pinout 48
5-15. Joystick Schematic 52
5-16. Antenna Switch Box Schematic 53
LIST OF TABLES
1 Line Printer Variables 50
2 Alternate Line Printer Variable Values 50
Cartridge Connector Signals 51

1.1 Introduction

The Color Computer 3 is a refined version of Tandy's popular Color Computer 2. It is designed to provide the same reliable operation as its predecessor, but it incorporates the latest in electronic technology. Figure 1-1 shows a typical
installation of the Color Computer 3.
The Color Computer 3 contains an internal BASIC program in ROM which is accessed when the unit is powered up. Other program modules/cartridges may be inserted into the receptacle on the right side of the unit. An optional Multi-pak Interface module allows up to four program paks to be installed at the same time, with selection of the specific module active at any one time selected either by software or by a switch on the Multi-pak Interface. Additional peripheral devices, such as an external disk drive, may be added to the Color Computer 3 for additional memory storage and retrieval.

All input and output ports for the Color Computer 3, with the exception of the program module/cartridge slot and the RGB monitor output (for $C M-8$), are located on the rear panel of the unit. These include the joystick input ports (right and left), Serial I/O, Cassette I/O, TV output jack (for standard color television set and composite monitor), POWER ON/OFF switch and RESET switch. A recessed channel switch (for selecting either channel on the TV - $3 / 4$ for NTSC and $1 / 2$ for PAL version) is also located on the rear panel of the unit.

Note: Before installing any peripheral device, always remember to unplug the Color Computer's power cord. This will prevent damage to the device or to the Color Computer 3.

1.2 System Description

The primary functions of the Color Computer 3 are performed by four Large Scale Integration (LSI) chips, plus Random Access Memory (RAM) and Read Only Memory (ROM). These four chips are labeled on the block diagram as CPU, ACVC and two PIAs. With only these four chips, plus Random Access Memory (RAM), Read Only Memory (ROM) and a power supply, the Color Computer 3 will operate and provide video output (RF, Composite, Analog RGB). However, to allow communication with the outside world, I/O interfaces must be added.

The main component of any computer system is the Central Processing Unit (CPU, IC1). It is the function of the CPU to provide or request data and select the proper address for this data. In addition, the CPU is capable of performing a limited set of mathematical and logical operations on the data.

ROM (IC2) has the function of providing the CPU with a predefined set of instructions. Without ROM, the CPU would run wild and randomly execute instructions. In normal operation, the CPU jumps to the start address in ROM, after the reset switch has been pressed, and then performs the reset program to set up all of the programmable devices. Following this, the BASIC interpreter residing in ROM is in control of the CPU.

RAM (ICl6 - IC19) provides storage for the programs and/or data currently being executed. In the standard unit, these four ICs are 64 K $x 4$ but may be upgraded to sixteen $256 \mathrm{~K} \times 1$ ICs as an option. (See Paragraph 3.3 on page 28 for instructions.) In addition, the same RAM is used to generate the video display. Normally, no conflict will be observed because the program will use one portion of RAM and the display will use another. During normal usage, the BASIC interpreter, located in ROM, will control the execution of programs located in RAM.

A central component in the Color Computer 3 is the Advanced Color Video Chip (IC6). This chip provides refresh and address multiplexing for the RAM. It also provides all of the system timing and device selection.

ACVC comprises the VDG (Video Display Generator) function which supports High-Resolution mode, in addition to
all other modes included in the Color Computer 2. During High-Resolution mode, it generates 40×24 or 80×24 text screen, and 320×192 or 640 x 192 graphics screen. It is also designed to output two different video signals - composite video and analog RGB.

ACVC can expand memory space up to 512 K bytes. Having a built-in MMU (Memory Management Unit), it can support 2 banks of 256 K -byte RAM, each with a 9-line address bus, even though the CPU possesses only 16 address 1 ines.

The remaining circuitry in the Color Computer 3 is devoted to Input/Output ($I / 0$) communication. The most important part of this circuitry is the keyboard, which allows the operator to enter. information. Other I/O circuits are provided to allow joystick input, cassette input and output, and RS-232C input and output.

1.3 Memory Map

Figure 1-2 shows the breakdown of the large blocks of memory in the color Computer 3.

The rest of the section itemizes the following registers:

- I/O Control Register
- Chip Control Register
- 68B09E Vector Register

[^0]
1.4 I/O Control Registers

FF00 - FF03	PIA	IC5

FF00:
BIT $0=$ KEYBOARD ROW 1 and right joystick switch 1
BIT $1=$ KEYBOARD ROW 2 and left joystick switch 1
BIT $2=$ KEYBOARD ROW 3 and right joystick switch 2
BIT $3=$ KEYBOARD ROW 4 and left joystick switch 2
BIT $4=$ KEYBOARD ROW 5
BIT $5=$ KEYBOARD ROW 6
BIT $6=$ KEYBOARD ROW 7
BIT $7=J O Y S T I C K ~ C O M P A R I S O N ~ I N P U T ~$

FF01:

BIT 0	Control of HSYNC ($63.5 \mu \mathrm{~s})$ Interrupt BIT 1
Control of Interrupt Polarity	$\left\{\begin{array}{l}0=\text { IRQ* to CPU Disabled } \\ 1=\text { IRQ* to CPU Enabled }\end{array}\right.$
$0=$ Flag set on the falling edge of HS	
$1=$Flag set on the rising edge of HS	

BIT $2=$ Normally 1: $\quad 0=$ Changes FFO to the data direction register
BIT 3 = SEL 1:
BIT $4=1$ Always
BIT $5=1$ Always
BIT $6=$ Not used
BIT 7 = Horizontal sync interrupt flag
FF02:
BIT $0=$ KEYBOARD COLUMN 1
BIT $1=$ KEYBOARD COLUMN 2
BIT $2=$ KEYBOARD COLUMN 3
BIT $3=$ KEYBOARD COLUMN 4
BIT $4=$ KEYBOARD COLUMN 5
BIT $5=$ KEYBOARD COLUMN 6
BIT $6=$ KEYBOARD COLUMN $7 /$ RAM SIZE OUTPUT
BIT $7=$ KEYBOARD COLUMN 8

FF03:

FF20 - FF23	PIA	IC4

FF20:
BIT $0=$ CASSETTE DATA INPUT
BIT $1=$ RS-232C DATA OUTPUT
BIT $2=6 \mathrm{BIT} \mathrm{D} / \mathrm{A}$ LSB
$\mathrm{BIT} 3=6 \mathrm{BIT} \mathrm{D} / \mathrm{A}$
BIT $4=6 \mathrm{BIT} \mathrm{D} / \mathrm{A}$
$\mathrm{BIT} 5=6 \mathrm{BIT} \mathrm{D} / \mathrm{A}$
BIT $6=6 \mathrm{BIT} \mathrm{D} / \mathrm{A}$
BIT $7=6 \mathrm{BIT} \mathrm{D} / \mathrm{A} \mathrm{MSB}$

FF21:
BIT $0 \quad \begin{aligned} & \text { Control of the } C D \\ & \text { (RS-232C status) }\end{aligned} \quad\left\{\begin{array}{l}0=F I R Q * ~ t o ~ C P U ~ D i s a b l e d ~ \\ 1=F I R Q * ~ t o ~ C P U ~ E n a b l e d ~\end{array}\right.$ Interrupt
BIT $1 \quad \begin{aligned} & \text { Control of Interrupt } \\ & \text { Polarity }\end{aligned}\left\{\begin{array}{l}0=\text { sets flag on falling edge } C D \\ 1=\text { sets flag on rising edge } C D\end{array}\right.$
BIT $2=$ Normally $1: 0=$ changes FF20 to the data direction register
BIT $3=$ Cassette Motor Control: $0=0 F F \quad 1=0 N$
BIT $4=1$ Always
BIT $5=1$ Always
BIT $6=$ Not Used
BIT $7=$ CD Interrupt Flag

FF22:
BIT $0=\mathrm{RS}-232 \mathrm{C}$ DATA INPUT
BIT $1=$ SINGLE BIT SOUND OUTPUT
BIT $2=$ RAM SIZE INPUT
BIT 3 = RGB Monitor Sensing INPUT CSS
BIT $4=$ VDG CONTROL OUTPUT GMO \& UPPER/LOWER CASE*
BIT $5=$ VDG CONTROL OUTPUT GM1 \& INVERT
BIT $6=$ VDG CONTROL OUTPUT GM2
BIT $7=$ VDG CONTROL OUTPUT A*/G
FF23:
$\begin{array}{ll}\text { BIT } 0 & \text { Control of the Cartridge } \\ \text { BIT } 1 & \begin{array}{l}\text { Interrupt } \\ \text { Control of Interrupt } \\ \text { Polarity }\end{array}\end{array}\left\{\begin{array}{l}0=\text { FIRQ* to CPU Disabled } \\ 1=\text { FIRQ* to CPU Enabled }\end{array}\right\}\left\{\begin{array}{l}0=\text { sets flag on falling edge CART* } \\ 1=\text { sets flag on rising edge CART* }\end{array}\right.$
BIT $2=$ Normally $1: \quad 0=$ changes FF22 to the data direction register
BIT 3 = Sound Enable
BIT $4=1$ Always
BIT $5=1$ Always
BIT $6=$ Not used
BIT 7 = Cartridge Interrupt Flag
FF40-FFBF: Not used

Note: FF22, FF23 are duplicated in tcc 1014 (VC2645QC), and V.D.G Control Bit (Bit 3 through Bit 7) affects this IC (TCC1014) only.

1.5 Chip Control Registers

FF90:
Initialization Register 0 (INITO)

FF91: Initialization Register 1 (INIT1)

BIT 7 -

BIT 6 -
BIT $5=$ TINS \quad Timer Input Select: $I=70 \mathrm{nsec} / 0=63 \mu \mathrm{sec}$
BIT 4 -
BIT 3 -
BIT 2 -
BIT 1 -
BIT $0=$ TR \quad MMU Task Register Select
FF92:
Interrupt Request Enable Register (IRQENR)
BIT 7 -
BIT 6 -
BIT 5 = TMR \quad Interrupt from Timer enabled
BIT $4=$ HBORD Horizontal Border IRQ enabled
BIT $3=$ VBORD \quad Vertical Border IRQ enabled
BIT $2=$ EI2
BIT $1=\mathrm{EIL}$
Serial Data IRQ enabled
BIT $0=E I 0$
Keyboard IRQ enabled
Cartridge IRQ enabled
FF93:
Fast Interrupt Request Enable Register (FIRQENR)
BIT 7 -
BIT 6 -
BIT $5=$ TMR Interrupt from Timer enabled
BIT $4=$ HBORD \quad Horizontal Border FIRQ enabled
BIT $3=$ VBORD Vertical Border FIRQ enabled
BIT $2=$ EI2
BIT $1=$ EII
Serial Data FIRQ enabled
BIT $0=$ EIO
Keyboard FIRQ enabled
Cartridge FIRQ enabled

FF94: Timer Most Significant Nibble
FF95: Timer Least Significant Byte
TIMER: This is a l2-bit interval timer. When a value is loaded into the MSB, the count is automatically begun. The input clock is either 14 MHz or horizontal sync, as selected by TINS (bit 5 of FF91). As the count falls through zero, an interrupt is generated (if enabled), and the count is automatically reloaded.
FF96:
Reserved
FF97: Reserved
FF98: Video Mode Register

BIT $7=$ BP	$0=$ alphanumeric, $1=$ bit plane
BIT 6	-
BIT $5=$ BPI	$1=$ Burst phase inverted
BIT $4=$ MOCH	$1=$ monochrome (on composite)
BIT $3=$ H50	$1=50$ Hz vertical sync
BIT $2=$ LPR2	Lines per row (See table below)
BIT $1=$ LPR1	Lines per row (See table below)
BIT $0=$ LPR0	Lines per row (See table below)

LPR2	LPR1	LPR0	Lines per character row		
0	0	0	one	(Graphics modes)	
0	0	1	two	(CoCo 1 and CoCo 2 only) 0	1

FF99: Video Resolution Register
BIT 7 -
BIT $6=$ LPF1 \quad Lines per field (See table below)
BIT $5=$ LPFO Lines per field
BIT 4 = HRES2 Horizontal resolution (See Video resolution on page 17)

BIT 3 = HRES $1 \quad$ Horizontal resolution
BIT $2=$ HRESO Horizontal resolution
BIT $1=$ CRES \quad Color resolution (See Video resolution)
BIT $0=$ CRESO Color resolution

LPF1	LPF0	Lines per field
0	0	192
0	1	200
1	0	Reserved
1	1	225

FF9A: Border Register (All bits are 0 for CoCo 1 and CoCo 2 compatibility). BIT 6 -
BIT 5 = RED1 Most significant red bit
BIT 4 = GRN1 \quad Most significant green bit
BIT 3 = BLU1 Most significant blue bit
BIT 2 = REDO Least significant red bit
BIT $1=$ GRNO \quad Least significant green bit
BIT $0=$ BLUO \quad Least significant blue bit
FF9B: Reserved
FF9C: Vertical Scroll Register
BIT 7 -
BIT 6 -
BIT 5 -
BIT 4 -
BIT $3=$ VSC3 \quad (Vert. Scroll)
BIT 2 = VSC2
BIT $1=$ VSCl
BIT $0=\mathrm{VSC} 0$
NOTE: In the CoCo mode, the VSC's must be initialized to OF hex.
FF9D:
Vertical Offset 1 Register
BIT $7=\mathrm{Y} 18$
(Vert. Offset)
BIT $6=$ Yl7
BIT $5=\mathrm{Y} 16$
BIT $4=$ Y15
BIT $3=\mathrm{Y} 14$
BIT $2=\mathrm{Y} 13$
BIT $1=\mathrm{Y} 12$
BIT $0=\mathrm{Yll}$
FF9E:
Vertical Offset 0 Register
BIT $7=\mathrm{Y} 10$
BIT $6=Y 9$
BIT $5=\mathrm{Y} 8$
BIT $4=\mathrm{Y} 7$
BIT $3=\mathrm{Y} 6$
BIT $2=\mathrm{Y} 5$
BIT $1=\mathrm{Y} 4$
BIT $0=\mathrm{Y} 3$
NOTE: In CoCo mode, Y15 - Y9 are not effective, and are controlled by
SAM bits F6 - F0. Also in CoCo mode, Y18 - Y16 should be 1 , all others 0.

FF9F:
Horizontal Offset 0 Register
BIT 7 = HVEN \quad Horizontal Virtual Enable
BIT $6=\mathrm{X} 6 \quad$ Horizontal Offset address
BIT 5 = X5 Horizontal Offset address
BIT $4=$ X4 \quad Horizontal Offset address
BIT $3=$ X3 \quad Horizontal Offset address
BIT 2 = X2 Horizontal Offset address
BIT $1=$ Xl \quad Horizontal Offset address
BIT $0=$ X0 Horizontal Offset address
NOTE: HVEN enables a horizontal screen width of 128 bytes regardless of the HRES bits and CRES bits selected. This will allow a "virtual" screen somewhat larger than the displayed screen. The user can move the "window" (the displayed screen) by means of the horizontal offset bits. In character mode, the screen width is 128 characters regardless of attribute (or 64, if double-wide is selected).

Memory Management Unit (MMU)

XFFAO - XFFAF, 6 bits (Write only)
The 8 -bit CPU in the Color Computer 3 can directly address only 64 K bytes of memory with its 16 address 1 ines (A0 - Al5). The memory management unit (MMU) extends the address lines to 19 (A0 - Al8). This allows the computer to address up to 512 K bytes of memory ($\$ 00000-\$ 7 F F F F$).

The MMU consists of a multiplexer and a 16×6-bit of RAM array. Each of the 6-bit elements in this RAM array is an MMU task register, and the task registers are used by the computer to determine the proper 8 K segment of memory to address. These registers are divided into 2 sets, 8 registers per set. The TR bit of FF91 (task register select bit) determines which set is selected.

The relationship between the data in the task register and the generated address is as follows:

When the CPU needs to access memory outside the standard I / O and control range (XFF00 - XFFFF), CPU address lines Al3 - Al5 and the TR bit determine the address of the task register which the MMU will access while SELECT is low. When the CPU writes data to the MMU, AO - A3 determine the address of the task register to be written to when SELECT goes high.

The data from the MMU is then used as the upper 6 address lines (Al3 - Al8) for memory access, according to the following:

TR	A15	A14	Al3	(Address range)	MMU location address
0	0	0	0	X0000 - X1FFF	FFA0
0	0	0	1	X2000 - X3FFF	FFA1
0	0	1	0	X4000 - X5FFF	FFA2
0	0	1	1	X6000 - X7FFF	FFA3
0	1	0	0	X8000 - X9FFF	FFA4
0	1	0	1	XA000 - XBFFF	FFA5
0	1	1	0	XC000 - XDFFF	FFA6
0	1	1	1	XE000 - XFFFF	FFA7
1	0	0	0	X0000 - X1FFF	
1	0	0	1	X2000 - X3FFF	FFA8
1	0	1	0	X4000 - X5FFF	FFA9
1	0	1	1	X6000 - X7FFF	FFAA
1	1	0	0	X8000 - X9FFF	FFAB
1	1	0	1	XA000 - XBFFF	FFAC
1	1	1	0	XC000 - XDFFF	FFAD
1	1	1	1	XE000 - XFFFF	FFAE

It is important to note that, in order for the MMU to function, the CoCo bit of FF90 must be cleared, and the M/P bit of FF90 must be set. Prior to doing this, the desired addressing information for each segment must be loaded into the designated set of task registers. For example, if a standard 64 K map is desired in the top of 512 K RAM, with the $T R$ bit set to 0 , the following values should be pre-loaded into the MMU:

MMU Location address	Data (Hex)	Data (Bin)	Address range
FFA0	38	111000	$70000-71 \mathrm{FFF}$
FFA1	39	111001	$72000-73 \mathrm{FFF}$
FFA2	3 A	111010	$74000-75 \mathrm{FFF}$
FFA3	$3 B$	111011	$76000-77 \mathrm{FFF}$
FFA4	3C	111100	$78000-79 \mathrm{FFF}$
FFA5	3D	111101	$7 A 000-7 \mathrm{BFFF}$
FFA6	3E	111110	$7 \mathrm{C} 000-7 \mathrm{DFFF}$
FFA7	3F	111111	7E000-7FFFF

NOTE: Data loaded can be selected freely within the range of $\$ 00-\$ 3 F$.

COLOR PALETTE

FFBO - FFBF: 16 addresses, 6 bits each
For the RGB output, the bits are defined as follows:

Data Bit	D5	D4	D3	D2	D1	D0
Corresponding RGB output	R1	G1	B1	R0	G0	B0

For the Composite output, the bits are defined as follows, where I is intensity level and P is phase:

Data Bit	D5	D4	D3	D2	D1	D0
Corresponding composite output	I1	I0	P3	P2	P1	P0

Some Color Examples:

Color	RGB		Composite	
	Binary	Hex	Binary	Hex
White	111111	$(3 F)$	110000	(30)
Black	000000	(00)	000000	(00)
Bright Green	010010	(12)	100010	(22)
Medium Green	010000	(10)	010010	(12)
Dark Green	000010	(02)	000010	(02)
Medium Magenta	101000	(28)	010101	(15)

For CoCo compatibility, the following values should be loaded upon initialization. (NOTE: These are the RGB values.)

FFB0	--	Green	(12)
FFB1	--	Yellow	(36)
FFB2	--	Blue	(09)
FFB3	--	Red	(24)
FFB4	--	Buff	$(3 F)$
FFB5	--	Cyan	(10)
FFB6	--	Magenta	$(2 D)$
FFB7	--	Orange	(26)
FFB8	--	Black	(00)
FFB9	--	Green	(12)
FFBA	--	Black	(00)
FFBB	--	Buff	$(3 F)$
FFBC	--	Black	(00)
FFBD	--	Green	(12)
FFBE	--	Black	(00)
FFBF	--	Orange	(26)

NOTE: For the PAL version, ignore the table attributed to composite.

The combination of HRES and CRES bits determine the resolution of the screen. The following resolutions are supported:

Alphanumerics: $\mathrm{BP}=0, \mathrm{CoCo}=0$

Mode	RES Bit	HRES2	HRES1	HRES0	CRES1
CRES0					
32 character	0	-	0	-	1
40 character	0	-	1	-	1
80 character	1	-	1	-	1

Graphics: $B P=1$, CoCo $=0$

Pixels	Colors	HRES2	HRES1	HRES0	CRES1	CRES0
640	4	1	1	1	0	1
640	2	1	0	1	0	0
512	4	1	1	0	0	1
512	2	1	0	0	0	0
320	16	1	1	1	1	0
320	4	1	0	1	0	1
256	16	1	1	0	1	0
256	4	1	0	0	0	1
256	2	0	1	0	0	0
160	16	1	0	1	1	0

In addition to the above modes, the previous CoCo modes are available.

COLOR COMPUTER MODE SELECTION

	MC6883 (SAM) DISPLAY MODE			$\begin{array}{lc} \text { REG. } & \text { FF22 } \\ 7 & 6 \end{array}$		5	4	3
Alphanumerics	0	0	0	0	X	X	0	CSS
Alphanumerics Inverted	0	0	0	0	X	X	0	CSS
Semigraphics - 4	0	0	0	0	X	X	0	X
64 X 64 Color Graphics	0	0	1	1	0	0	0	CSS
128 X 64 Graphics	0	0	1	1	0	0	1	CSS
128 X 64 Color Graphics	0	1	0	1	0	1	0	CSS
128 X 96 Graphics	0	1	1	1	0	1	1	CSS
128 X 96 Color Graphics	1	0	0	1	1	0	0	CSS
128 X 192 Graphics	1	0	1	1	1	0	1	CSS
128 X 192 Color Graphics	1	1	0	1	1	1	0	CSS
256 X 192 Graphics	1	1	0	1	1	1	1	CSS

ALPHANUMERIC MODES

Text screen memory:
Even Byte (Character byte)
BIT 7
BIT 6 = Character bit 6
BIT $5=$ Character bit 5
BIT 4 = Character bit 4
BIT 3 = Character bit 3
BIT 2 = Character bit 2
BIT 1 = Character bit 1
BIT $0=$ Character bit 0
Odd Byte (Attribute byte)

BIT $7=$ BLINK	Characters blink at l/2 sec. rate
BIT $6=$ UNDLN	Characters are underlined
BIT 5 = FGND2	Foreground color bit (pallette addr.)
BIT $4=$ FGND1	Foreground color bit (pallette addr.)
BIT $3=$ FGND0	Foreground color bit (pallette addr.)
BIT 2 $=$ BGND2	Background color bit (pallette addr.)
BIT 1 $=$ BGND1	Background color bit (pallette addr.)
BIT 0 0 BGND0	Background color bit (pallette addr.)

NOTE: Attributes are not available when CoCo $=1$.

GRAPHICS MODES
16 Color Modes: $($ CRES $1=1, \operatorname{CRESO}=0)$
Byte from DRAM
Bit 7 PA3, First Pixel
Bit 6 PA2, First Pixel
Bit 5 PAl, First Pixel
Bit 4 PAO, First Pixel
Bit 3 PA3, Second Pixel
Bit 2 PA2, Second Pixel
Bit 1 PAl, Second Pixel
Bit $0 \quad$ PA0, Second Pixel
4 Color Modes: (CRES $=0, \operatorname{CRESO}=1$)
Byte from DRAM
Bit 7 PAl, First Pixel
Bit 6 PA0, First Pixel
Bit 5 PAl, Second Pixel
Bit 4 PAO, Second Pixel
Bit 3 PAl, Third Pixel
Bit 2 PAO, Third Pixel
Bit $1 \quad$ PAl, Fourth Pixel
Bit 0 PA0, Fourth Pixel
2 Color Modes: (CRES $1=0$, CRESO $=0$)
Byte from DRAM
Bit 7 PA0, First Pixel
Bit 6 PAO, Second Pixel
Bit 5 PAO, Third Pixel
Bit 4 PAO, Fourth Pixel
Bit $3 \quad$ PAO, Fifth Pixel
Bit 2 PAO, Sixth Pixel
Bit $1 \quad$ PAO, Seventh Pixel
Bit $0 \quad$ PA0, Eighth Pixel
Pallette Addresses

PA3	PA2	PA1	PA0	Address of Contents Displayed
0	0	0	0	FFB0
0	0	0	1	FFB1
0	0	1	0	FFB2
0	0	1	1	FFB3
0	1	0	0	FFB4
0	1	0	1	FFB5
0	1	1	0	FFB6
0	1	1	1	FFB7
1	0	0	0	FFB8
1	0	0	1	FFB9
1	0	1	0	FFBA
1	0	1	1	FFBB
1	1	0	0	FFBC
1	1	0	1	FFBD
1	1	1	0	FFBE
1	1	1	1	FFBF

SAM CONTROL REGISTERS: (FFCO - FFDF)

NOTE: These bits work like the ones in the Motorola SAM chip (MC6883/SN74LS785) in that by writing to the upper address of each two-address group (data is don't care), the bit is set; by writing to the lower address, the bit is cleared. The graphics modes and vertical offset bits are valid only in the Coco mode, but the other two bits are valid anytime. Note the only semigraphics mode supported is Semi Four.

1.6 68B09E Vector Registers

FFE0 - FFFF	CPU	IC1

FFFF: Reset vector LS

FFFE: Reset vector MS

FFFD: NMI vector LS

FFFC: NMI vector MS

FFFB: SWIl vector LS

FFFA: SWIl vector MS

FFF9: IRQ vector LS
FFF8: IRQ vector MS

FFF7: FIRQ vector LS
FFF6: FIRQ vector MS

FFF5: SWI2 vector LS

FFF4: SWI2 vector MS

FFF3: SWI3 vector LS

FFF2: SWI3 vector MS

FFF1: Reserved

FFFO: Reserved
FFEF - FFEO: Not used

LS: Least significant address byte
MS: Most significant address byte

SECTION II. SPECIFICATIONS

\subsection*{2.1 Technical
 | CPU : | 68B09E 8-bit processor
 Clock Speed - $0.89 \mathrm{MHz} / 1.78 \mathrm{MHz}$ |
| :---: | :---: |
| MEMORY SIZE: | ROM: 32 K Byte (for BASIC)
 RAM: 128K Byte (Expandable up to 512 K) |
| KEYBOARD : | 57 keys, microprocessor-scanned matrix |
| Number of keys: | 57 keys |
| Alphabetical characters: | 26 keys (A to Z) |
| Numeric characters: | 10 keys (0 to 9) |
| Space key: | 1 key |
| Shift key: | 2 keys |
| Clear key: | 1 key |
| Enter key: | 1 key |
| Break (ESC) key: | 1 key |
| Punctuation key: | 7 keys |
| Directional Control key: | 4 keys |
| Function key: | 2 keys (F1 and F2) |
| Control key: | 1 key |
| Alternate key: | 1 key |

57 keys

Character display:	$512(32 \times 16)$ upper case characters
	$960(40 \times 24)$ upper/lower case characters
	$1920(80 \times 24)$ upper/lower case characters
Graphic display:	256×192 dots
	320×192 dots

INTERFACE:

Serial interface: RS-232C 4P-DIN

Cassette interface: 5P DIN 1500 baud

Analog input inter-
face (for JOYSTICK): 6P DIN x 2

Bus line: $\quad 40$ PIN connector for cartridge

CONTROLS:

Power switch:	Push
Reset switch:	Key

Channel selector switch:
 Slide

RF OUTPUT:
NTSC $\left\{\begin{array}{lll}\text { CH } & \text { Frequency (Video) } & \text { Frequency (Sound) } \\ 3 & 61.25 \pm 0.25 \mathrm{MHz} & 4.5 \pm 0.02 \mathrm{MHz} \\ 4 & 67.25 \pm 0.25 \mathrm{MHz} & 4.5 \pm 0.02 \mathrm{MHz}\end{array}\left\{\begin{array}{lll}\mathrm{CH} & \text { Frequency (Video) } & \text { Frequency (Sound) } \\ 1 & 57.25 \pm 0.25 \mathrm{MHz} & 5.5 \pm 0.02 \mathrm{MHz} \\ 2 & 64.25 \pm 0.25 \mathrm{MHz} & 5.5 \pm 0.02 \mathrm{MHz}\end{array}\right.\right.$

Output impedance: 75 ohm

RF Output terminal: RCA JACK
RF Output level: NTSC $67_{-4}^{+2} \mathrm{~dB} \mu$
PAL $\quad 70 \pm 5 \mathrm{~dB} \mu$

VIDEO/SOUND OUTPUT:

Output terminal:	RCA JACK
Output level:	$1 V p-p$

Video: $0.71 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{RL}=75 \mathrm{ohm})$
Sync: $\quad 0.29 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{RL}=75 \mathrm{ohm})$
Sound: Less than $1.0 \mathrm{Vp}-\mathrm{p}$ (RL $=600 \mathrm{ohm}$)
RGB (Analog)/Sound oUTPUT

Output terminal: $\quad 10 \mathrm{pin}$ pin header (Bottom side)
Output level:
NTSC $\begin{cases}\text { Red: } & 0.8(\pm 0.1)-2.0(\pm 0.2) \mathrm{Vdc}(\mathrm{RL}=75 \mathrm{ohm}) \text { positive } \\ \text { Green: } & 0.8(\pm 0.1)-2.0(\pm 0.2) \mathrm{Vdc}(\mathrm{RL}=75 \mathrm{ohm}) \text { positive } \\ \text { Blue: } & 0.8(\pm 0.1)-2.0(\pm 0.2) \mathrm{Vdc}(\mathrm{RL}=75 \mathrm{ohm}) \text { positive }\end{cases}$
PAL $\begin{cases}\text { Red: } & 0.6(\pm 0.1)-1.8(\pm 0.2) \mathrm{Vdc}(\mathrm{RL}=75 \mathrm{ohm}) \text { positive } \\ \text { Green: } & 0.6(\pm 0.1)-1.8(\pm 0.2) \mathrm{Vdc}(\mathrm{RL}=75 \mathrm{ohm}) \text { positive } \\ \text { Blue: } & 0.6(\pm 0.1)-1.8(\pm 0.2) \mathrm{Vdc}(\mathrm{RL}=75 \mathrm{ohm}) \text { positive }\end{cases}$
Hsync: TTL level positive
Vsync: TTL level positive
Sound: Less than $1.0 \mathrm{Vp}-\mathrm{p}(\mathrm{RL}=600 \mathrm{ohm})$
POWER SUPPLY: NTSC AC $120 \mathrm{~V} / 60 \mathrm{~Hz}, 0.2$ Amp RMS typical
PAL AC $240 \mathrm{~V} / 50 \mathrm{~Hz}, 0.125$ Amp RMS typical
2.2 Physical

DIMENSIONS (Cabinet size):

Width: $14-3 / 4^{\prime \prime}(375 \mathrm{~mm})$
Height: 3-1/8" (79 mm)

Depth: $10-3 / 8^{\prime \prime}$ (264 mm)
NET WEIGHT:
$4.85 \mathrm{lbs}(2.3 \mathrm{~kg})$

3.1 Disassembly

1. Disconnect power and remove signal cables from the unit.
2. Remove cartridge from slot (if applicable).
3. Turn the unit over and place it on a soft surface to prevent damage to the keyboard or top cover.
4. Loosen and remove the six (four screws Sl and two longer screws S2) mounting screws which attach the base to the top cover. (Figure 3-1)
5. Disconnect the cable from the wire connector which is attached to the keyboard (Figure 3-2).
6. Then disconnect the power transformer at the $3-\mathrm{pin}$ connector on the main PCB (Figure 3-2).
7. Remove four (two screws S 3 and two screws $\mathrm{S4}$) screws which attach the PCB to the bottom case cover (Figure 3-2). If it is necessary to remove the shield from the PCB, do so by removing the 16 rivets which attach it to the PCB.

Figure 3-1. Removal of Top Cover

3.2 Assembly

Assemble the Color Computer 3 in the reverse order of disassembly. The PCB shield is attached to the PCB with metal rivets. These shields must be in place to provide proper REI shielding.

Set the wire assembly from the transformer and flat cable from the keyboard to the connector on the PCB. Two different types of screws are used to mount the PCB and the top and bottom cabinet. Ensure that the correct type is used when reassembling.

The strain relief on the power cord consists of wrapping the cord around the plastic bosses on the rear side of the unit. Ensure that the power cord is properly routed to afford strain relief to the transformer connections.

Figure 3-2. Removal of Main PCB
3.3 5l2K RAM Upgrade Instructions

To upgrade a 128 K memory unit to a 512 K memory unit, follow the procedure below.

1. Remove the top cabinet as described in 3.1. Remove four ICs (IC16 - IC19) from the IC sockets of the PCB (Figure 3-3), unsolder C65 82 pF ceramic capacitor and remove it.
2. Three nylon stand-offs are packaged with the RAM card. Insert them into corresponding holes of the RAM card (Figure 3-4).
3. Align the pin socket of the RAM card over CN4 through CN6, then slowly lower the Board.
4. Snap each stand-off into the corresponding hole on the computer PCB.
5. Connect the computer's AC cord and signal cables to a TV monitor and run the following program to verify proper operation of the new memory chips.
6. Secure the top and bottom cabinets.

〈Test Program>
10 WIDTH 40:PALETTE 0,0:PALETTE 7,63: CLS8
20 POKE\&HFFD9,0
30 FOR A=\&H00000 TO \&H5FFFF STEP 512
$40 \mathrm{D}=\operatorname{RND}(255)$
50 LPOKE A,D
$60 \mathrm{~B}=\operatorname{LPEEK}(\mathrm{A})$
70 LOCATE 10,2: PRINT"ADDRESS="; A
80 LOCATE 10,4: PRINT"DATA="; D
90 IF B<>D THEN 130
100 NEXT A
110 LOCATE 10,10: PRINT"RAM TEST IS GOOD!"
120 POKE\&HFFD8,0: END
130 LOCATE 10,6: PRINT"ERROR!"
140 POKE\&HFFD8,0: END

Figure 3-3. Main PCB

Figure 3-4. 512K RAM Card

Figure 4-1. Block Diagram

PAL VERSION

5.1 MC68B09E/MBL68B09E/HD68B09E (IC1)

The heart of any computer system is the Central Processing Unit, CPU. In the Color Computer 3, as well as in most modern microprocessors, the CPU is a single Large Scale Integration Circuit (LSI). The CPU gathers instructions and data from memory, interprets and executes the instructions, and stores the results of the data operations into memory. Additionally, the CPU stores data to and retrieves data from various input/output (I/O) devices.

The 68B09E microprocessor is perhaps the most powerful 8-bit
microprocessor available today. There are several ways to determine the "size" of a microprocessor (whether it is 8-bit, 16-bit, 32-bit, or whatever). One way involves the number of data interconnecting lines
the processor possesses. Another is
the size of the internal registers and the size of the mathematical and logical operations supported by the processor. Although the 68B09E has an 8-bit data bus, internally it contains four 16 -bit registers and two additional 8 -bit registers which may be linked together to form another 16 -bit register. The 68B09E also supports some 16 -bit mathematical and logical operations. Therefore, although it is technically an 8-bit processor, it has some of the power of the 16 -bit machines.

Figure 5-1 is a "programming model" of the 68B09E CPU. Additional information may be obtained from the 68B09E data sheet.

Figure 5-1. 68B09E Programming Model

Figure $5-2$ shows the pinouts of ICl, the 68 B 09 CPU . Note that there are sixteen address lines (A0 through Al5). These address lines are output from the CPU and are used to select one of 65,536 different memory locations. The memory and I/O devices must be wired to accept the correct combination of highs and lows on the address lines. The order of the devices and how they respond to the different lines are called the memory map.

The CPU has eight data lines (D0 -D7). These data lines are bidirectional and are used by the processor to both route data to and retrieve data from memory or I/O devices through Bus Transceiver 74LS 245 (IC3).

The remaining lines on the $C P U$ are used for control functions, both input control and output control. Of course, the Vcc pin is the power input line to the CPU and the GND line is the return reference for both power and signal. The E and Q lines are the clock inputs to the CPU. These clock signals must be present for the CPU to function. In the Color Computer 3 , these signals are provided by the advanced color video chip (IC6) and are 50% duty cycle clocks at a frequency of 0.89 MHz or 1.78 MHz . As shown in Figure $5-3, Q$ is a quadrature clock signal which leads E by 90 degrees.

Figure 5-2. MC68B09E Pin Assignments

The CPU contains a number of inputs which serve to initiate specific sequences of events. The ones used by the Color Computer 3 are:

```
RESET* - Used on power up and to
    reinitialize the CPU.
HALT* - Stops the program flow
    after the completion of
    current instruction.
    Execution will continue
    after HALT is removed.
NMI* - Non-Maskable Interrupt
        always causes the CPU to
        "interrupt" its normal
        program flow and execute a
        special "interrupt handler"
        routine.
IRQ* - Interrupt Request. Similar
        to NMI but may be masked
        (defeated) by setting the I
        bit in the CC register.
FIRQ* - Fast Interrupt Request.
        Similar to IRQ, but masked
        by the F bit. It is faster
        because it doesn't preserve
        all registers (as do the
        other interrupts).
Upon receipt of the RESET signal, or
any of the interrupts (if enabled),
the CPU will get the appropriate
```

subroutine address from the Vector Table (see the memory map in Section I, System Description). For the interrupt routines, registers are preserved on the Stack to be restored upon receipt of the RTI
(Return-from-Interrupt) instruction.
Other control lines used in the Color Computer 3 are TSC (Three-State Control) and the R/W* (Read/Write*) line. The TSC line is an input intended for use in multiprocessor or DMA environment and will cause the address and data lines to go into a three-state condition if high. Since the Color Computer 3 does not require multiprocessing, this line is permanently grounded. The $R / W *$ line is an output used by the CPU to inform the external memory and devices whether the data transfer is from the CPU (a write) or to the CPU (a read). Standard 68B09E Read/Write timing is shown in Figure 5-3. However, in the Color Computer 3, this timing is modified by the ACVC chip so that the addresses are available to the memory only during the active E time. This presents no problem as long as the memory is sufficiently fast.

NOT VALID

Figure 5-3. MC68B09E Read/Write Timing at 0.89 MHz

* Values within parentheses are for 1.78 MHz

5.2 Memory (RAM)

The Color Computer 3 uses Dynamic Random Access Memories (DRAMs - IC16 through ICl9). Each memory chip is capable of storing 262,144 bits (64 K x 4), any one of which may be accessed at any given time. Since the CPU needs to access eight data bits at a time, two DRAMs are used. Therefore, the memory array is said to be $64 \mathrm{~K} \times 8$. The dual Write Enable signals (WEO*, WE1*) to the DRAM control 2 banks of $64 \mathrm{~K} \times 8$ memory (total of $128 \mathrm{~K} \times 8$). The DRAMs in the Color Computer 3 operate off of a single +5 volt supply.

In order to address a 64 K location in each chip, 16 address lines are required. However, since the DRAM package has only 18 pins, the addresses are multiplexed into two groups of 8 and 8 , called row address and column address. (See Figure 5-4.) The row address is presented first, and the DRAM is informed that this is the row address by the presence of RAS* (row address strobe) and the absence of CAS* (column address
strobe). After the DRAM has latched the least significant eight addresses (the row addresses), the column addresses are presented, along with CAS*. If the present cycle is a read cycle, WE* (Write Enable) is held high, and the data is retrieved from the appropriate cell and presented at the output pin some time later. The actual time depends on the access time of the DRAM. During a write cycle, the data and WE* signal are active prior to CAS* and are latched in at CAS* time. Figure $5-5$ shows the read and write timing cycles for DRAM.

Dynamic memory is called dynamic because it requires refreshing at periodic intervals in order to remember. Refresh is accomplished by providing the DRAMs with RAS* signal and an address count. The address count must toggle through all 256 row address possibilities in 4 milliseconds or less. (If you don't remind the DRAM of what it knew at least once every 4 milliseconds, it will forget.)

Figure 5-4. DRAM Block Diagram

Fig 5-5. DRAM Timing
5.3 TCC1014 (VC2645QC)

1) System Timing, Address Multiplex, Device Select, MMU

By now, it should be apparent that controlling DRAMs is a fairly complex task. In the Color Computer 3, it is done by the TCC1014 (VC2645QC: ACVC). In addition to address multiplexing, RAS* and CAS* generation, WEO*, WE1* timing control, and refresh generation, the ACVC performs other tasks. It contains the Master Oscillator, the frequency of which is controlled by a 28.63636 MHz (PAL: 28.4750 MHz) crystal (X1). The Master Oscillator is divided by eight to give a 3.579545 MHz color reference signal to the Video Display Generator LOGIC and Composite Video Signal (NTSC version only). This reference signal is then divided by 4 (or 2) again to provide the 0.89 MHz (1.78 MHz) E and Q clock signals for the processor.
In the PAL version, the Master Oscillator frequency is slightly shifted down than in the NTSC version for fitting with the PAL encoder circuit.

The ACVC (IC6) also controls access to the memory, granting access to the processor during the high time of E (CPU portion) and
access to the VDG LOGIC during the low time of E (Video portion). During each access, whether by the CPU or the Video, the ACVC must provide appropriately synchronized RAS* and CAS* signals, as well as the corresponding address signals, to the DRAMs. Note that the DRAM access time must be twice as fast as that required by the $C P U$ alone in order to be able to respond to VDG accesses.

In order for the ACVC chip to provide the appropriate addresses to the DRAMs, all 16 CPU address lines are input to the ACVC. It then multiplexes these into low order and high order addresses (Z 0 through Z 8 , refer to MMU) which are sent to the DRAMs along with RAS* and CAS*.

Another function of this section is to provide address decoding and device selection for the computer. Figure 5-6 shows how the S0, S1, and S2 lines are connected to IC9, a 74LS138, in order to provide appropriate signals to enable ROM selection, PIA selection, and various cartridge selection signals. Due to the nature of the ROMs and in order to prevent data bus contention, the ROMs are enabled only during the E portion of a read cycle.

Fig 5-6. Color Computer 3 Address Decoding

As it is clear from the Memory Map, the memory area of the CoCo3 is from $\& 00000$ through $\& 7$ FFFF (512 K bytes). The Memory Management Unit (MMU)
inside of the TCCl014, pins FFAO through FFAF, selects Al3-Al8 (actually Al6 - Al8). Figure 5-7 shows the Block Diagram of the MMU.

Figure 5-7. MMU Block Diagram

2) Video Generation Circuit

For NTSC Version

In Color Computer 2, the composite video signal is created in Modulator IC (MCl372), while the intensity control signal (Y) and the color information signals $\varnothing A$ and $\varnothing B$ are generated in VDG (MC6847). In Color Computer 3, all of these signals are generated in ACVC (IC6), and output from pin 65 as the composite video signal. This signal is provided to the video output terminal through buffer (Q2, Q3) and to the modulator.

For PAL Version

The ACVC is designed to output both composite video signal and analog RGB signal. Since composite video signal is specially designed for NTSC system, the PAL Encoder circuit is used to encode the RGB signal to the PAL signal. For this purpose, the VSYNC and HSYNC output from pins 55 and 56 of IC6 are provided to the PAL Encoder as a composite sync signal through the inverter $I C l 5$ and mixing circuit (Q11, D15-D17). The output of PAL Encoder, that is the PAL
system composite video signal, is then provided to the RF Modulator via buffer Q3, and to the video output terminal via Q3 and Q2.

ACVC also contains analog RGB output and a total of 64 color selections. For the video generation circuit where the control register is designated via software, please refer to the Memory Map in section 1.3.

3) Interrupt IN/OUT

In CoCo2, the three interrupt sources CART*, HSYNC* and VSYNC requested an interrupt to the CPU from PIA as IRQ* and FIRQ*. In roCo3, in addition to the above mentioned interrupt sources, an interrupt to the CPU can be requested as IRQ* or FIRQ* from serial I/O, keyboard, and l2-Bit interval timer. It has higher selectivity. Refer to FF90 and FF92 through FF95 in the Memory Map.

5.4 PAL ENCODER (PAL Version Only)

PAL version uses IClOl, IClO2 and ICl03 to encode the RGB signals to the PAL signal. The majority of the work is performed by IC103, the RGB to PAL ENCODER chip. This chip is designed to generate a composite video signal from baseband red, blue, green and composite sync input from sync mixer Q1l and D15 - D17. The chip contains color subcarrier oscillator, voltage controlled 90 degrees phase shifter, two double-sideband suppressed carrier chroma modulators, RGB input matrix, and blanking level clamps.

In the PAL version, an extra voltage-controlled crystal oscillator is needed for the PAL color burst frequency of 4.433618 MHz . For this purpose, the internal oscillator circuit of the IC103 is used. If the oscillator does not synchronize with the master oscillator, an apparent motion will exist whenever a color transition occurs.

This synchronization problem is solved by slightly shifting of the master oscillator frequency and the addition of a phase-locked-loop circuit. The master crystal oscillator frequency of the PAL version is 28.475 MHz . This allows the two oscillator to be divided down to the horizontal frequency of 15.611 kHz and phase-locked at this frequency.

IC101 is a programmable divider and operates in a divisor of 71 . The output from the divider is connected to the programmable divider part of IC102 where a divisor of 4 is used to complete the count-down to 15.611 kHz . IC102 also contains a phase comparator part, and it compares this divided 15.611 kHz with the HSYNC signal which is counted down to 15.611 kHz from the master oscillator in IC6. The phase comparator then generates a control voltage in proportion to the phase and frequency difference between these 2 signals of 15.611 kHz and output it at pin 13.

This control voltage is passed through a simple $R-C$ low pass filter and used to control a varactor diode Dl01. The capacitance of the varactor is changed to tune the 4.433618 MHz oscillator by varying the control voltage. This tuning allows the two oscillators to be synchronized at any time except during reset or power-on.

5.5 PIAs (IC4 and IC5)

The Color Computer 3 uses two Peripheral Interface Adapters (PIAs). These devices provide a universal interface to the 68B09E CPU. They support all of the $1 / 0$ functions in the Color Computer 3.

The functional configuration of the PIA is programmed by the CPU during the reset routine. Each of the peripheral data lines may be programmed to act as an input or output, and each of four control/interrupt lines may be programmed for one of several control modes. Figure 5-8 shows a block diagram of a PIA.

A PIA consists of two 8-bit data registers and 4 control/interrupt lines. The two 8 -bit data registers are controlled by two data direction
registers. These direction control registers are set up by the reset routine and normally will not be changed.

The four control/interrupt lines are controlled by the two control registers. The control registers also handle device selection within the PIA. Two of the four lines function only as interrupt inputs, and the other two lines may be used as interrupt inputs or data outputs.

PIA IC5 is used mainly for the keyboard. Data register B (pins 10-17) is programmed as an output and is used to strobe the keyboard columns. The first seven lines of data register A (pins 2-8) are programmed as inputs and are used to read the keyboard rows. Pins 2 through 5 are also used as fire button inputs for the joysticks.

Figure 5-8. PIA Block Diagram

5.6 Keyboard Interface (IC5)

PIA IC5 is the only active component in the keyboard interface circuit. The B side of this PIA is configured as outputs and connects to the column lines of the keyboard matrix. The A side of IC5 is configured as inputs and connects to the row lines of the keyboard matrix. PIA IC5 is a select device. The use of PIA compensates for a possible increase in key contact resistance due to prolonged use and therefore should result in a highly reliable keyboard interface.

To read the keyboard, only one column is enabled by writing a zero in the bit that corresponds to that column and by writing ones in all the other bits. If a key is being pressed in that column, one of the input lines will be a zero, and the key location will correspond to the bit that is low. By scanning each column in the keyboard, all of the keys may be checked. Figure 5-9 shows the keyboard matrix.

Figure 5-9. Color Computer 3 Reyboard Array

The other pins of PIA IC5 serve various functions. The most significant bit of data register A (pin 9) is programmed as an input for the joystick interface. CA2 and CB2 (pins 19 and 39) are used as outputs. These two lines select one of four joystick or sound inputs. The last two pins of PIA IC5, CAl (pin 40) and CBl (pin 18), are used as interrupt inputs. They are both tied to SYNC clock outputs from the ACVC (IC6). If enabled, CAl provides an interrupt after each SYNC line. CBl, if enabled, provides an interrupt after each screen of data (NTSC: $60 \mathrm{~Hz} / \mathrm{PAL}$: 50 Hz) .

PIA IC4 is used for several different functions. Pins 4-9 of data register A are used for the 6-bit digital to analog converter. Pin 3 of register A is the RS232-C output signal, which is used to drive the printer and other RS-232C-type devices. Pin 2 of register A is the input for data from the cassette. Pin 13 of IC4 is the sense input for the RGB monitor (CM-8). Pin 12 of register B is an input for the memory size. Pin 11 of register B is the single-bit sound output. Pin 10 is the $\mathrm{RS}-232 \mathrm{C}$ signal input pin.

The control and interrupt pins of PIA IC4 also serve various functions. CAl (pin 40) is the input for the signal $C D$ (a status interrupt input for the RS-232C interface). CA2 is an output used to control the cassette motor. CBl is the cartridge interrupt input. Whenever a cartridge is inserted into the computer, this input will interrupt BASIC and jump to the program in the cartridge. Finally, CB2 is used as an output to enable sound from the DAC chip (IC7).

5.7 ROM (IC2)

ROM stands for Read Only Memory, which is a type of memory that retains its data when power is removed from it. When power is applied to the CPU, it immediately attempts to fetch a vector and begin executing instructions. If there were no ROM, the CPU would read random floating states on the data bus, attempt to execute this, and promptly go haywire.

The Color Computer 3 contains 256 K (32 K BYTE) ROM which contains Extended Color BASIC (Vers.2.0). This ROM is programmed to provide the user with certain BASIC commands and functions.

5.8 DAC Circuitry (IC7)

Two special analog integrated circuits are used in the Color Computer 3 to implement a multitude of analog functions, including power supply regulation, cassette operation, the RS-232C serial interface, the joystick interface, and sound production/selection. The DAC chip (IC7) is one of the custom linear integrated circuits used in the Color Computer 3. As its name implies, it contains a Digital to Analog Converter. This chip also contains a sound multiplexer and the circuitry necessary to interface the joystick controllers to the microprocessor. Figure $5-10$ shows a block diagram of the DAC chip.

The DAC performs most of the functions of this chip. Six bits of control are used by the DAC to specify a discrete internal analog level. This level is one of the sound inputs to the sound multiplexer. It is also used as a reference for a comparator, the other input of which is one of the four joystick inputs. Finally, the DAC signal is attenuated and used as the cassette recording signal for data storage.

There are two select inputs to the DAC chip: Sel A and Sel B. These determine which of the joystick inputs is to be compared against the DAC, as well as which sound source is coupled to the sound output pin according to the table on the next page.

Figure 5-10. DAC Block Diagram (IC7)

Sel B	Sel A	Joystick Input	Sound Source
0	0	Joy 0	DAC
0	1	Joy 1	Cassette
1	0	Joy 2	Cartridge
1	1	Joy 3	(no sound)

The Digital to Analog Converter employs a 64-collector transistor as a current source which gives good linearity over the entire voltage range. In order to determine the position of the joystick, the microprocessor uses a technique called "Successive Approximation". The microprocessor first selects the desired joystick input by means of the select pins (which are connected to PIA IC5).

The sound multiplexing section is very simple. According to the above table, different sound sources are selected by the Sel A and $S e l B$ inputs, and the selected input is routed to the sound output. If the DAC is used as a sound source, the microprocessor simply feeds a succession of values to the six bits of the DAC in order to produce the desired waveshape. The output of the DAC is then buffered and attenuated to provide approximately 3.9 volts $p-p$, which is the level required by the modulator to produce maximum volume. If the cassette is the selected input, then sound from the cassette recorder is routed to the sound output. This level follows the input level up to 3.9 volts $\mathrm{p}-\mathrm{p}$, at
which point it clips the input waveform. Therefore, the volume control on the cassette should not be set higher than the level which provides 3.9 volts $p-p$ to the DAC chip. Similarly, the cartridge may supply the sound source (from AC coupled) since the SND IN (2) input to the DAC chip biases the input at the midpoint of the allowable voltage swing, which is 3.9 volts $\mathrm{p}-\mathrm{p}$. Any greater signal amplitude will result in clipping (distortion) of the sound wave form.

In addition to the Select inputs, the sound must be enabled by bringing SNDEN to a high level. This input is controlled by PIA IC4. If this pin is at a low level, all sound (except single-bit sound) is disabled.

The final function of the DAC chip is to provide the output signal for recording of cassette data. This is, quite simply, a buffered output of the DAC which is attenuated to produce approximately 1 volt $p-p$ into a 2 -kohm load. Therefore, it is up to the microprocessor to produce the necessary FSK signals through the DAC and the proper software.

5.9 SALT Circuitry

The SALT chip IC8 (Supply and Level Translator) is responsible for supply regulation, RS-232C interface level translation, cassette read operations, and driving the cassette relay, as is shown in the block diagram in Figure 5-11.

Figure 5-12 shows the complete power supply circuit. AC voltage is brought into the primary of transformer Tl. The secondary of the power transformer provides 16.2 VAC (18.52 VAC for PAL version), center-tapped, at AC 2.2 amps (AC 1.0 amps for PAL version) to the Color Computer 3 circuit board. If switch SWl is closed, this AC voltage is applied to the cathodes of D3 and D4, and to the anodes of D1 and D2. D3 and D4 form a full-wave, center- tapped rectifier with a negative output. This is filtered by electrolytic capacitor C31. This
negative voltage is then applied to pin 15 of the SALT chip, where it is internally regulated to -5 VDC and used for the RS-232C output drivers. The negative voltage is not used anywhere else in the computer.

D1 and D2 form a full-wave, center-tapped rectifier with a positive output which is filtered by electrolytic capacitor C29. This positive voltage is applied to the collector of pass transistor Q1 and is used to power the SALT chip at pin 16. The SALT chip internally regulates the positive voltage to +5 VDC and provides the base drive current for Q1. The current for the computer is drawn from the emitter of Q1 through resistor R19. The voltage at this point is monitored by pin 3 of the SALT chip and the base drive adjusted to keep the voltage at a steady +5 VDC $\pm 5 \%$.

Figure 5-11. SALT Block Diagram (IC8)

The SALT chip senses, at pin 2 , the amount of current drawn from the supply through R19. If excessive current is drawn, as in the case of a short or component failure, the SALT will "fold back" the voltage output of the supply by reducing the base drive current, thus protecting the supply.

Inductors FB1 and FB2, as well as capacitors C32 through C36, serve to decouple and prevent any digital "noise" which might be present on the DC supply from entering the $A C$ line.

There are two types of level translators contained in the SALT chip for use with the RS-232C interface. The output level converter takes as its input a standard TTL signal from PIA IC4, inverts it, and uses it to drive the output to approximately +5 VDC for a space and -5 VDC for a mark. This output is coupled through a 270 -ohm resistor, R15 to the output connector. R15
serves to limit the amount of current drawn from this output and prevents damage to the SALT chip if the output (at the connector) is inadvertently shorted to an external voltage (such as ± 12 VDC, which may be present on some RS-232C connectors) :-

The input level converters have the task of converting incoming RS-232C voltage levels to standard TTL signals. These voltages are defined as follows: a "mark" is a negative voltage between -3 and - 25 VDC; a "space" is a positive voltage between +3 and +25 VDC. To simplify the task for the SALT chip, the circuit shown in Figure 5-13 is employed. The incoming signals are compared to a reference of 2.0 VDC . If less than that, they are considered to be a mark. If greater than that, they are considered to be a space. The space or mark is then output from the SALT chip at an LS TTL-compatible level and is coupled into PIA IC4.

Figure 5-12. Color Computer 3 Power Supply

The cassette-loading circuitry, internal to the SALT chip, is composed of a zero-crossing detector. Figure 5-13 shows the input from the cassette being loaded by a $220-$ ohm resistor, R14, then coupled into the SALT chip through a 510 -ohm resistor, Rl8. R14 serves to load the capacitively-coupled output characteristic of most portable cassette recorders, and R18 limits the current of the incoming signal to prevent damage to the SALT chip if an excessively large peak-to-peak voltage is fed into the cassette input. Although Tandy's computer cassette recorders do not produce more than 6 volts $p-p$, the circuitry is protected from voltages as high as 18 volts $\mathrm{p}-\mathrm{p}$. The zero-crossing detector internal to the SALT changes state each time the incoming signal passes through zero volt. There is a small amount of hysteresis built in which provides noise immunity and prevents false triggering of the zero-crossing detector.

The output of the zero-crossing detector is an LS TTL-compatible level and is coupled into PIA IC4.

The final function of the SALT chip is to drive the cassette relay. A TTL signal from PIA IC4 enters pin 10 of the SALT chip where it is connected to the base of an internal Darlington transistor, the emitter of which is grounded. The collector exits the SALT chip at pin 9 and is connected to one end of the cassette relay. The other end of the relay connects to +5 VDC. When the incoming signal goes high, the transistor becomes saturated and connects its end of the cassette relay to ground, causing the relay to energize. When the incoming signal is low, the transistor is cut off. There is no ground return for the +5 volts at the other end of the relay, so it is de-energized. Diode D5 protects the transistor in the SALT from the surge current caused by the coil of the relay (when the relay is de-energized).

Figure 5-13. I/O Circuitry

5.10 Cassette Tape Format Information

The standard Color Computer 3 tape is composed of the following items:

1. A leader consisting of 128 bytes of 55 H
2. A Namefile block
3. A blank section of tape equal to approximately 0.5 seconds in length to allow BASIC time to evaluate the Namefile
4. A second leader of 128 bytes of 55 H
5. One or more Data blocks
6. An End of File block

The block format for Data blocks, Namefile blocks or an End of File block is as follows:

1. One leader byte - 55H
2. One sync byte - 3CH
3. One block type byte:

01H = Data block
FFH $=$ End of File block
0OH - Namefile block
4. One block length byte $-00 H$ to FFH.
5. Data - 0 to 255 bytes
6. One checksum byte - the sum of all the data bytes plus block type and block length bytes
7. One trailer byte - 55 H

The End of File block is a standard block with a length of 0 .
The Namefile block is standard block with a length of 15 bytes (OFH). The 15
bytes of data provide information to BASIC and are employed as described below:

1. Eight bytes for the program name
2. One file type byte:
$00 \mathrm{H}=$ BASIC Program
01H = Data File
$02 \mathrm{H}=$ Machine Code Program
3. One ASCII flag byte $-00 \mathrm{H}=$ Binary, $\mathrm{FFH}=\mathrm{ASCII}$
4. One Gap flag byte - 01H - continuous, $\mathrm{FFH}=$ gaps
5. Two bytes for the start address of a machine language program
6. Two bytes for the load address of a machine language program

5.11 RS-232C Connector (JK3)

The RS-232C interface utilizes a 4-pin DIN connector. This interface allows the computer to have serial communications with printers, modems, other computers or any device capable of interfacing with RS-232C signals. The four signals used by the interface are:
CD - a status line
RS-232C IN - serial data input
GROUND - zero voltage reference
RS-232C OUT - serial data out

The pinout for the DIN connector is shown in Figure 5-14.

Figure 5-14. RS-232C Connector Pinout

The RS-232C interface hardware in the Color Computer 3 is capable of communication with any device which will operate with the minimum three signal interface. It is also possible that devices which use a larger set of RS-232C signals may be used with the Color Computer 3. This would be accomplished by connecting unused device inputs to the correct high or low level.

In software, the only RS-232C device supported by the BASIC ROM is a serial printer. For use with the printer, the pin assignment of the connector differs slightly from the above description:

1. No Connection
2. Connected to the BUSY output (or status line) of the printer
3. Ground
4. Connected to the Serial Data Input of the printer

If your printer does not provide a status line, then pin 2 must be connected to a positive voltage of +3 to +12 volts. This tells the computer that the printer is ready all of the time.

In order to operate, the software must make several assumptions about the printer. These assumptions are:

1. The printer operates at 600 baud.
2. The printer width is 132 columns.
3. The printer generates a BUSY when it is not ready.
4. The printer will automatically return the carriage at the end of the line. It will also do a line feed at this time.
5. The data format is one start bit, eight data bits, two stop bits, and no parity.

Some printers will require that these assumptions be modified. This may be accomplished by changing RAM variables or by a special driver routine.

A list of all the printer variables is given in Table 1. Also, Table 2 lists some alternate values for these variables.

5.12 Cartridge Connector (CN1)

A 40-pin cartridge connector provides the possibility of expanding the TANDY Color Computer 3 in almost any manner. All of the important CPU bus signals are tied to this connector. A complete list and brief description of these signals is provided in Table 3.

The most common usage of the cartridge connector is with the ROM cartridge. For cartridge detection, the Q clock is connected to the cartridge interrupt pin, which generates an interrupt anytime the cartridge is plugged in and forces the computer to jump to the program in ROM.

CAUTION

DO NOT PLUG A CARTRIDGE

 IN WITH PONERAPPLIED TO THE COLOR COMPUTER 3 AS SERIOUS
DAMAGE TO THE UNIT AND/OR THE CARTRIDGE MAY RESULT.

In addition to the expected data, address and $R / W *$ lines, several control and special purpose signals are available on the cartridge connector. They are as follows:

HALT* - This active-low signal places the processor in a HALT state immediately following the execution of the current instruction. While in the HaLTed state, the processor address and data lines are in the high impedance mode, making it possible for external devices to access RAM and ROM. The processor may be HALTed indefinitely without any loss of internal data.

VARIABLE	HEXADECIMAL ADDRESS	DECIMAL ADDRESS	INITIAL VALUE	
(BAUD RATE MSB	0095	149	00	0
baUd Rate LSB	0096	150	57	87
(LINE DELAY MSB	0097	151	00	0
(LINE DELAY LSB	0098	152	01	1
COMMA FIELD WIDTH	0099	153	10	16
LAST COMMA FIELD	009A	154	70	112
LINE PRINTER WIDTH	009B	155	84	132

Table 1. Line Printer Variables

Table 2. Alternate Line Printer Variable Values
NOTE: LSB = Least Significant Byte
MSB $=$ Most Significant Byte

PIN	SIGNAL NAME	DESCRIPTION
1	NC	
2	NC	
3	HALT*	Halt Input to the CPU
4	NMI*	Non-Maskable Interrupt to theaCPU*
5	RESET*	Main Reset and Power-up Clear Signal to the System
6	E	Main CPU Clock ($0.89 \mathrm{MHz} / 1.78 \mathrm{MHz}$)
8	Q	Quadrative Clock Signal which Leads E
8 9	CART*	Interrupt Input for Cartridge Detection
10	D0	+5 Volts (300 MA) CPU Data Bit 0
11	D1	CPU Data Bit 1
12	D2	CPU Data Bit 2
13	D3	CPU Data Bit 3
14	D4	CPU Data Bit 4
15	D5	CPU Data Bit 5
16	D6	CPU Data Bit 6
17	D7	CPU Data Bit 7
18	R/W*	CPU Read-Write Signal
19	AO	CPU Address Bit 0
20	Al	CPU Address Bit 1
21	A2	CPU Address Bit^{2}
22	A3	CPU Address Bit 3
23	A4	CPU Address Bit 4
24	A5	CPU Address Bit 5
25	A6	CPU Address Bit 6
26	A7	CPU Address Bit 7
27	A8	CPU Address Bit 8
28	A9	CPU Address Bit 9
29	A10	CPU Address Bit 10
30	All	CPU Address Bit 11
31	A12	CPU Address Bit 12
32	CTS*	Cartridge Select Signal
33	GND	Signal Ground
34	GND	Signal Ground
35	SND	Sound Input
36	SCS*	Spare Select Signal
37	Al3	CPU Address Bit 13
38 39	A14	CPU Address Bit 14
38 40	Al5 SLENB*	CPU Address Bit 15 Input to Disable Device Selection

Table 3. Cartridge Connector Signals

5.13 Power Transformer

The Color Computer 3 power transformer accepts $120 \mathrm{VAC}, 60 \mathrm{~Hz}$ (240 VAC, $50 \mathrm{~Hz}: \mathrm{PAL}$) input and transforms it to 16.2 VAC ($18.52 \mathrm{VAC}:$ PAL) center-tapped for use by the power supply. The current rating of the secondary of the transformer is AC 2.2 amps (ACl.0 amps: PAL). The transformer should only be replaced with genuine Tandy replacement parts.

5.14 Joysticks

The optional joystick controllers are two identical assemblies which can be plugged into JKl and JK2. Figure 5-15 shows a schematic of the Joystick

Assembly. It simply consists of a push-button switch for the fire button and the dual potentiometers connected by a mechanical assembly.

The mechanical assembly allows both potentiometers to be changed at the same time. This gives the effect of a two-dimensional control.
The potentiometers are connected so that 5 volts are applied to one side of the variable resistor, and ground is connected to the other. This allows the center wiper to vary from 0 to 5 volts as the handle is moved. The push-button switch merely provides a momentary ground contact for an input signal.

Figure 5-15. Joystick Schematic

5.15 TV Switch Box (NTSC Version Only)

The antenna switch box consists of a switch and a balun, with connectors provided for attachment to the computer, the TV antenna, and the home TV. The switch box is connected to the customer's TV through the 300ohm twin-lead output. The TV antenna is attached directly to the switch box. The computer output is connected through a 75 -ohm coaxial cable to the phono plug input on the switch box.

Figure 5-16 shows a schematic of the antenna switch box.

From the computer, the signal is connected to a balun in the switch box which matches the modulator's 75ohm output impedance to a-TV's 300ohm antenna input impedance. This signal is then connected to the switch. The switch is specially designed to provide the 60 dB of isolation required between the computer and the TV antenna.

Figure 5-16. Antenna Switch Box Schematic

This section of the manual contains troubleshooting hints, diagnostic routines, and scope waveforms for both NTSC and PAL version for the Color Computer 3 . Scope settings are noted on the individual waveform diagrams.

6.1 Introduction

The Color Computer 3 should be serviced only by qualified technicians. Throughout this guide a basic knowledge of computers will be assumed, as well as the ability to use a dual-trace oscilloscope. When servicing any computer, it is important to distinguish a hardware problem from a software problem. Stated another way, just because a particular program does not yield the results desired by the user, the hardware is not necessarily at fault. It is, therefore, recommended that the technician be thoroughly familiar with the operation of the Color Computer 3, as well as the Theory of Operation. Diagnostic aids are available from Radio Shack National Parts to assist the technician in the servicing of the Color Computer 3.

Standard troubleshooting techniques include these steps: identification, localization, and isolation. The first step, identification, consists largely of making sure that a problem exists. In this step it is wise to check the obvious. Doing so can save hours of troubleshooting time only to find out that a cable was bad, or that it was some other relatively minor problem. After identifying that a problem really does exist, localization can usually be accomplished by merely observing the symptoms. Isolating a problem down to the defective component will often involve the use of test equipment, and sometimes, by part substitution.

Following is a list of virtually all of the problems that might be identified on the Color Computer 3:

6.2	Video
6.3	Keyboard
6.4	Processing problems
6.5	Cassette
6.6	RS-232C
6.7	Sound
6.8	Joystick
6.9	Cartridge problems

If a problem exists in more than one area, the first course of action should be to look for a common cause. Although it is possible to have two or more independent problems, it is more likely that a single failure can cause a multitude of symptoms. It is apparent, for example, that all of the above areas will have problems when the power supply is dead.

Once a problem has been identified in one of the above areas, it can be localized by observing the specific symptom. For example, if a Cassette problem exists, is it a Read problem, a Write problem, or a Motor Control problem? After the problem is localized, isolating it to a specific component is usually not very difficult.

6.2 Video Problems

1) No Display/No Sync/Noisy Video

- Check Cable and Cable Connection
- Check Power Supply and Transistor Bias Voltage (Q2, Q3)
- NTSC: Check Video Signal at TP6 PAL: Check Video Signal at CVIDEO OUT of CN8
*Before proceeding next check, load Diagnostic Program Pak (Color Bar) or run the program below
- Check Video Signal at Emitter of Q3 and check C67
- Check Video Signal at Emitter of Q2 and check C54
- Check Video level at TP7 (Waveform 1)
- PAL: Check Sync Signal at Collector of Q11 (Waveform 16)
- PAL: Check the items in 5) RGB Problem
$10^{1} \star *$ COLOR BAR TEST $* *$
30 .ON BRK GOTO 1000
40 HSCREEN 2
50 GOSUB 500
100 FOR R=0 TO 7
110 HCOLOR R, 8
$120 \operatorname{HLINE}(\mathrm{R} * 40,0)-((\mathrm{R}+1) * 40,192)$, PSET, BF
130 NEXT R
140 GOTO 140
*500 DATA 63,36,31,18
*510 DATA 9,7,11,0.
520 FOR X=0 TO 7
530 READ A(X): NEXT X
540 FOR R=0 TO 7
550 PALETTE R,A(R): NEXT R
560 RETURN
1000 PALETTE CMP:END
\therefore For PAL
500 DATA $63,54,27,18$
510 DATA $45,36,9,0$

2) Wrong Color

- Check Video Signal (TP7) and Chroma level (Waveforms 1 and 2)
- Adjust TV control

3) No Color

- Check Video Signal at TP6 (PAL: CVIDEO OUT of CN8) and Color Burst Signal (Waveform 2)

4) Random Character/Clear Screen/No Sign-on

- Check RAS* (TP4), CAS* (TP5)
- Check pin 1 and pin 2 of IC15
- Check pin 20 of IC2
- Check IC16-19 (Dynamic RAM)
- Check the items in 6.4 Processing Problem

5) RGB Problem

- Check Red; Green, Blue Signal (Waveforms 3 through 5) using Program Pak or Test program below
- Check HSYNC, VSYNC (Waveform 6)

```
10 'RGB LEVEL CHECK
11 '*COLOR-D* 4/3/1986
20 PALETTE RGB
30 ON BRK GOTO 1000
40 HSCREEN 2
50 GOSUB 500
100 FOR R=0 TO 15
110 HCOLOR R,0
120 HLINE (R*20,0)-((R+1)*20,192),
PSET, BF
    130 NEXT R
    140 GOTO }14
*500 DATA 63,54,27,36
*510 DATA 18,9,32,16
*520 DATA 8,4,2,1
*530 DATA 45,40,5,0
    535 DIM A(16)
    540 FOR X=0 TO 15
    550 READ A(X):NEXT X
    560 FOR R=0 TO 15
    570 PALETTE R,A(R):NEXT R
    50 RETURN
    1000 PALETTE CMP:END
* For PAL
    500 DATA 63,54,27,18
    510 DATA 45,36,9,0
    520 DATA 56,48,24,16
    530 DATA 40,32,8,7
```

6) Composite Video Signal Adjustment (PAL Version Only)
A. Horizontal Sync Pulse Width adjustment

Connection: connect oscilloscope to JK5 (Composite VIDEO OUT)
Procedure: adjust VR2 to get $4.7 \mu \mathrm{sec} . \operatorname{sync}$ pulse width.

B. Burst Start Position adjustment

Connection: connect oscilloscope to JK5
(Composite VIDEO OUT).
Procedure: 1. Turn VRl01 to fully counterclockwise.
2. Turn VR101 clockwise to obtain $5.6 \mu \mathrm{sec}$. burst start position.
3. If the start position does not become $5.6 \mu \mathrm{sec}$, adjust it for maximum.
4. Gheck to see the burst appears every 1H ($64 \mu \mathrm{sec}$.

C. Composite Video Output Level adjustment

Connection: connect Oscilloscope to JK5 (Composite VIDEO OUT) terminated by 75 ohms.
Procedure: adjust VR1 to get output level of $1.0 \mathrm{Vp}-\mathrm{P}$.

6.3 Keyboard Problems

No Keyboard Entry/Wrong Character

- Check Flex Cable and CN2
- Check pin 23 (CS2*) of IC5
- Check D8 - Dll, C18, 19, 22, 23 and ICl4

6.4 Processing Problem

- Check OSC Circuit (IC6)
- Check TP2 and TP3 (ECLK and QCLK) (Waveform 7)
- Check TP4 and TP5 (RAS*, CAS*) (Waveforms 8 and 9) and pins 10 and 11 of IC6 (WEO*, WE1*)
- Check Address decode circuit (IC9)
- Check S0 - S2
- Check pin 40 of IC5 (HSYNC*), pin 18 of IC5 (VSYNC*) and pins 37, 38 of IC5 (IRQ*)
- Check pin 40 of ICl (HALT*), pin 2 of ICl (NMI*) and pin 4 of ICI (FIRQ*) - these pins are normally High

6.5 Cassette Problems

1) Motor Control Problem

- Run the following program and check pin 39 of IC4 (Waveform 14)
- Check pin 9 of IC8 (SALT)

10 POKE 65313,60
20 GOSUB 100
30 POKE 65313,52
40 GOSUB 100
50 GOTO 10
100 FOR $A=1$ TO 10:NEXT A
110 RETURN
2) Write Problem

- Run the following Program and Check pin 17 of IC7 and Pin 1 of IC7. (Wave form 13)

10 SOUND 200,255
20 GOTO 10
3) Read Problem

- Connect pin 4 and pin 5 of JK4
- Run the above program and check pin 11 of IC8
- Check pin 7 of IC8
- Check R14, C25
6.6 RS-232C Problem
- Run the following program and check pin 3 of IC4 and pin 12 of IC8 (Refer to Waveform 15)

10 POKE 65312,2
20 POKE 65312,0
30 GOTO 10

- Connect pin 4 and pin 2 of JK3 and run the above program. Check pin 14 of IC8 and check pin 4 of IC8
- Check Resistors R15, R16, R17 and R66 and Diodes D6 and D7

6.7 Sound Problem

- Check TV volume
- Run the following program and check pin 1 of IC7 (Waveform 13)
- Check Bias Voltage of Q4, C55 and C56.
- Check TP11
- Check JK5 and pin 7 of CN3

10 SOUND 200,255
20 GOTO 10

6.8 Joystick Problem

- Run the following program and check if the numbers vary with joystick position or depressing fire button.
- Check D8 - D11 and Components around them (example: C18, C19, C22, C23)

5 CLS
$10 \mathrm{~A}=\mathrm{JOYSTK}(0)$
$20 \mathrm{~B}=\mathrm{JOYSTK}(1)$
30 C=JOYSTK (2)
$40 \mathrm{D}=\mathrm{JOYSTK}$ (3)
$50 \mathrm{E}=(\operatorname{PEEK}(65280)$ AND 1)
$60 \mathrm{~F}=(\operatorname{PEEK}(65280)$ AND 2) $/ 2$
70 PRINT @o, A, B, C, D, F, E
80 GOTO 10
6.9 Cartridge Problem

- Check CTS* signal
- Check Address/Data Bus (short or open)
- Check pin 8 of CNl (CART* input) and pin 7 of CNl (QCLK-Output)

NTSC

6.10 Power Supply Check

NTSC Version
Note: Check to Confirm the voltage

Note: Check to Confirm the voltage of $A C$ outlet is $240 \mathrm{~V}, 50 \mathrm{~Hz}$.
*l Refer to Waveform 10
*2 Refer to Waveform 12B
*3 Refer to Waveform 12A
*4 Refer to Waveform 11

13

PAL

6.11 Major Waveforms

NTSC Version

CH A: Composite Video (TP.7) $0.5 \mathrm{~V} / \mathrm{DIV}$
$\mathrm{CH} \mathrm{B}: ~ \mathrm{HSYNC}$ (Pin 8 of CNH) 2V/DIV

Horizontal: 10psec/DIV
Trigger: INTERNAL CH A

Waveform 2
Color Burst Signal \& HSYNC

Wave form 3
Red \& HSYNC

CH A: Red Signal of RGB (TP.8) $0.5 \mathrm{~V} / \mathrm{DIV}$
CH B: HSYNC (Pin 8 of CN3) 2V/DIV

Horizontal: $10 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH B

Wave form 4
Green \& HSYNC

CH A: Green Signal of RGB (TP.9) $0.5 \mathrm{~V} / \mathrm{DIV}$
CH B: HSYNC 2V/DIV

Horizontal: $10 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH B

CH A: Blue Signal of RGB (TP.10)
$0.5 \mathrm{~V} / \mathrm{DIV}$
CH B: HSYNC
2V/DIV
Horizontal: 10psec/DIV
Trigger: INTERNAL CH B

Wave form 6
VSYNC \& HSYNC

CH A: VSYNC (Pin 9 of CN3) 2V/DIV
CH B: HSYNC
2V/DIV
Horizontal: 0.lmsec/DIV
Trigger: CH B INTERNAL

Wave form 7
ECLK \& QCLK

CH A: ECLK (TP.2)
2V/DIV
CH B: QCLK (TP.3)
2V/DIV
Horizontal: $0.2 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH A

Wave form 8
ECLK \& RAS*

CH A: ECLK (TP.2)
2V/DIV
CH B: RAS* (TP.4)
2V/DIV
Horizontal: $0.2 \mu \mathrm{sec} /$ DIV
Trigger: INTERNAL CH A

Waveform 9
ECLK \& CAS*

CH A: ECLK (TP.2)
2V/DIV
CH B: CAS* (TP.5)
2V/DIV
Horizontal: $0.2 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH A

Waveform 11
AC Ripple Positive (Cathode of D1) \& Negative (Anode of D3)

Waveform 12A
AC Voltage at Cathode of D13

Vertical: 5V/DIV

Horizontal: 5msec/DIV
Trigger: INTERNAL

AC Ripple at Cathode of D14

Vertical: IV/DIV
Horizontal: 5msec/DIV
Trigger: INTERNAL

Wave form 13
SOUND OUT

CH A: Pin 17 of IC7 1V/DIV
CH B: Pin lof IC7
2V/DIV
Horizontal: $0.5 \mathrm{msec} / D I V$
Trigger: INTERNAL CH A

CH A: Pin 9 of IC8
2V/DIV
$\mathrm{CH} \mathrm{B}: ~ P i n ~ 39$ of IC 4
2V/DIV
Horizontal: 10msec/DIV
Trigger: INTERNAL CH A

Waveform 15

$\mathrm{CH} A:$ Pin 12 of IC 8
5V/DIV
CH B: Pin 3 of IC4
2V/DIV
Horizontal: 5msec/DIV
Trigger: INTERNAL CH A

CH A: Composite Video (TP.7) 0.5V/DIV

CH B: HSYNC (Pin 8 of CN3) 2V/DIV

Horizontal: $10 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH A

CH A: Color Burst Signal (TP.7) 0.5V/DIV

CH B: HSYNC (Pin 8 of CN3) 2V/DIV

Horizontal: $0.5 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH A

```
CH A: Red Signal of RGB (TP.8)
    0.5V/DIV
CH B: HSYNC (Pin 8 of CN3)
    2V/DIV
CH A: Red Signal of RGB (TP.8) 0.5V/DIV
CH B: HSYNC (Pin 8 of CN3) 2V/DIV
```

Horizontal: $10 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH B

Waveform 4 Green \& HSYNC

CH A: Green Signal of RGB (TP.9)
$0.5 \mathrm{~V} / \mathrm{DIV}$
$\mathrm{CH} \mathrm{B}: ~ H S Y N C$
2V/DIV
Horizontal: $10 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH B

CH A: Blue Signal of RGB (TP.10) 0.5V/DIV

CH B: HSYNC
2V/DIV
Horizontal: $10 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH B

Waveform 6
VSYNC \& HSYNC

CH A: VSYNC (Pin 9 of CN3)
2V/DIV
CH B: HSYNC
2V/DIV
Horizontal: 0.lmsec/DIV
Trigger: CH B INTERNAL

ECLK \& QCLK

CH A: ECLK (TP.2)
2V/DIV
CH B: QCLK (TP.3) 2V/DIV

Horizontal: $0.2 \mu \mathrm{sec} / \mathrm{DIV}^{*}$
Trigger: INTERNAL CH A

Waveform 8

CH A: ECLK (TP.2) 2V/DIV
CH B: RAS* (TP.4)
2V/DIV
Horizontal: $0.2 \mu \mathrm{sec} / \mathrm{DIV}$
Trigger: INTERNAL CH A

CH A: ECLK (TP.2)
2V/DIV
CH B: CAS* (TP.5)
2V/DIV
Horizontal: $0.2 \mu \mathrm{sec} / D I V$
Trigger: INTERNAL CH A

Wave form 11
AC Ripple Positive (Cathode of Dl)
\& Negative (Anode of D3)

CH A: AC Ripple (Cathode of D1)
$0.5 \mathrm{~V} / \mathrm{DIV}$
CH B: AC Ripple (Anode of D3) 0.2V/DIV

Horizontal: 5msec/DIV
Trigger: INTERNAL CH A

Vertical: 5V/DIV

Horizontal: 5msec/DIV
Trigger: INTERNAL
AC Ripple at Cathode of D14

Vertical: lV/DIV
Horizontal: 5msec/DIV
Trigger: INTERNAL

Waveform 13
SOUND OUT

CH A: Pin 17 of $1 C 7$
1V/DIV
CH B: Pin 1 of IC7
2V/DIV
Horizontal: 0.5msec/DIV

Trigger: INTERNAL CH A

CH A: Pin 9 of IC8
2V/DIV
CH B: Pin 39 of IC4
2V/DIV
Horizontal: 10msec/DIV

Trigger: INTERNAL CH A

Waveform 15

CH A: Pin 12 of IC8 5V/DIV
CH B: Pin 3 of IC4 2V/DIV
Horizontal . 5msea/DIV aw

Trigger: INTERNAL CH A

Waveform 16

Collector of Q1l
Horizontal: $0.1 \mathrm{msec} / D I V$
Vertical: 2V/DIV
Trigger: INTERNAL

SECTION VII
512R Expansion RAM Card

PCB VIEWS.................................... 78
ELECTRICAL PARTS LIST.................... 79

BOTTOM VIEW

MISCELLANEOUS

SECTION VIII

NTSC Version

PCB VIEWS 82
ELECTRICAL PARTS LIST. 84
EXPLODED VIEW PARTS LIST. 90
EXRLODED VIEW 91
SEMICONDUCTOR INFORMATION 93
SCHEMATIC DIAGRAM. 103

BOTTOM VIEW

CAPACITORS					
Ref. No	Description			1 RS Part No	Mfr's Part No.
Cl	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or	\| CC-104JLBY	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	\|	CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	\|	CJRPK104ZM
C2	Electrolytic	$10 \mu \mathrm{~F}$	25V +-20\%	CC-106MFBA	CEACI 106 M *
C3	Electrolytic	$1 \mu \mathrm{~F}$	50V +-20\%	CC-105MJBA	CEACK105M*
c4	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or		CFQMK 104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	\|	CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	\|	CJRPK104ZM
C5	Ceramic	0.033 $\mu \mathrm{F}$	$12 \mathrm{~V}+-30 \%$	\|	CGBUF333NT
C6-8	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or	I	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	I	CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	I	CJRPK104ZM
C9	Electrolytic	$100 \mu \mathrm{~F}$	16V +-20\%	1.	CEACG107M*
C10/11	Ceramic SL	39pF	50V +-5\%	CF-2433	CCJVK390J*
C12-14	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or	CC-104JLBY	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or		CFSSLA01KQ or
	Ceramic	0.11 F	$50 \mathrm{~V}+80-20 \%$		CJRPK104ZM
C15	Electrolytic	$100 \mu \mathrm{~F}$	16V +-20\%	CC-107MDCA	CEACG107M*
C16/17	Ceramic	$0.022 \mu \mathrm{~F}$	50V+80-20\%	CC-223JJBC	CKKPK223Z*
C18/19	Mylar*	1800 pF	$50 \mathrm{~V}+-10 \%$	CC-182JJBM	CQQMK182K* or
				CC-182JJBM	CQQMK182KL
C20/21	Ceramic	0.022 $\mu \mathrm{F}$	50V+80-20\%	CC-223JJBC	CKKPK 2232*
C22/23	Mylar	1800pF	50V +-10\%	CC-182JJBM	CQQMK 182K* or
C24	Elec NP/LN	$10 \mu \mathrm{~F}$	25V +-20\%	CF-2408	CQQMK182KL
C25	Ceramic	$0.022 \mu \mathrm{~F}$	50V+80-20\%	ICC-223JJBC	CKJPK2232*
C26	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or	\|CC-104JLBY	CFQMR104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or		CFSSLA0 1 KQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$		CJRPK104ZM
C27	Electrolytic	$100 \mu \mathrm{~F}$	16V +-20\%	CC-107MDCA	CEACG107M*
C28	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or	CC-104JLBY	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or		CFSSLA01KQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$		CJRPK1042M
C30	Electrolytic	4700¢F	16V +-20\%	CC-478MDCA	CEACG478M*
	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or	CC-104JLBY	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or		CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$		CJRPK104ZM
C31	Electrolytic	$220 \mu \mathrm{~F}$	16V +-20\%	CC-227MDCA	CEACG227M*
C32/33	Ceramic	$0.022 \mu \mathrm{~F}$	50V+80-20\%	CC-223JJBC	CKJPK2232*
C34	Ceramic	100 pF	$50 \mathrm{~V}+-5 \%$		CCJVK101J*
C35/36	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CC-223JJBC	CKKPK223Z*
c38-41	Ceramic SL	39 pF	50V +-5\%		CCJVK390J*
	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CC-104JLBY	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or		CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$		CJRPK104ZM
C42-48	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CC-104JLBY	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or		CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$		CJRPK104ZM
C49	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CC-223JJBC	CKKPK223Z*

NOTE: *Mylar is a registered trademark of E. I. Du Pont de Nemours and Company.

NTSC

Ref. No.l		Description			1, RS Part No	Mfr's Part N
R33	Carbon	220kohm	1/4W	+-5\%	N-0396EEC	RCSQP224J*
R34	Carbon	100 ohm	1/4W	+-5\%	\|	RCSQP101J*
R35	Carbon	220kohm	1/4W	+-5\%	N-0396EEC	RCSQP224J*
R36	Carbon	1.0kohm	1/4W	+-5\%	\|	1 RCSQP102J*
R37	Not used					
R38	Carbon	3.0kohm	1/4W	+-5\%	1	RCSQP302J*
R39	Carbon	10 ohm	1/4W	+-5\%	N-0063EEC	\| RCSQP100J*
R40	Carbon	1.0 kohm	1/4W	+-5\%	N-0196EEC	\| RCSQP102J*
R41	Not used					
R42	Carbon	2.0 kohm	1/4W	+-5\%	1	RCSQP 202J*
R43	Carbon	120 ohm	1/4W	+-5\%	N-0136EEC	RCSQP121J*
R44	Not used					
R45	Carbon	3.0 kohm	1/4W	+-5\%	\|	RCSQP302J*
R46	Carbon	10 ohm	1/4W	+-5\%	\| N-0063EEC	RCSQP100J*
R47	Carbon	1.0kohm	1/4W	+-5\%	\| N-0196EEC	RCSQP102J*
R48	Not used					
R49	Carbon	2.0kohm	1/4W	+-5\%	!	RCSQP202J*
R50	Carbon	120 ohm	1/4W	+-5\%	N-0136EEC	RCSQP121J*
R51	Not used				\|	
R52	Carbon	3.0kohm	1/4W	+-5\%	\|	RCSQP302J*
R53	Carbon	10 ohm	1/4W	+-5\%	N-0063EEC	RCSQP100J*
R54	Carbon	1.0kohm	1/4W	+-5\%	$\mathrm{N}-0196 \mathrm{EEC}$	RCSQP102J*
R55	Not used				!	
R56	Carbon	2.0kohm	1/4W	+-5\%	1	RCSQP202J*
R57	Carbon	120 ohm	1/4W	+-5\%	N-0136EEC	RCSQP121J*
R58	Not Used					
R59	Carbon	4.7 kohm	1/4W	+-5\%	N-0247EEC	RCSQP472J*
R60	Carbon	100 ohm	1/4W	+-5\%	N-0132EEC	RCSQP101J*
R61/62	Carbon	4.7 kohm	1/4W	+-5\%	N-0247EEC	RCSQP472J*
R63	Carbon	150 ohm	1/4W	+-5\%	N-0142EEC	RCSQP151J*
R64	Carbon	47 ohm	1/4W	+-5\%	N-0099EEC	RCSQP470J*
R65	Carbon	1 Mohm	1/4W	+-5\%	$\mathrm{N}-0445 \mathrm{EEC}$	RCSQP105J*
R66	Carbon.	7.5 kohm	1/4W	+-5\%	N-0196EEC	RCSQP752J*
R67	Not Used				!	
R68	Carbon	10 ohm	1/4W	+-5\%	1	RCSQP100J*
R69	Carbon	100 ohm	1/4W	+-5\%	\|	RCSQP101J*
R70	Carbon	470 ohm	1/4W	+-5\%	1	\| RCSQP471J*
R71	Carbon	10 ohm	1/4W	+-5\%	I	\| RCSQP100J*
R72	Carbon	120 ohm	1/4W	+-5\%	1	\| RCSQP121J*
					I	RCSQ 21 J
RESISTOR-BLOCKS						
MP1	RGLDD9X472J					522110530 A
MP2	\| RGLD8X472J				1	\| 522110520A
	\|				1	522110520a
SWITCHES						
SW1	\| Push			wer	\| AS-2900	182110240A
SW2	\| Key			set	\| AS-2849	\| 187010040A
SW3	\| Slide	Chann	el Sel	ect	AS-3016	\| 183111400A
	1				\|	1

MISCELLANEOUS

IC4: MC68B21P
IC5: LSC81001P

IC6: TCC1014

IC8: 8050527

IC10-12: SN74LS244N

IC13: SN74LS374N

NTSC

IC15: SN74LS04N

IC16-19: HM50464P-1

NTSC
IC36: MC78L08ACP

8

SECTION IX

PAL Version

PCB VLEWS 108
ELECTRICAL PARTS LIST. 111
EXPLODED VIEW PARTS LIST 119
EXPLODED. VIEW 121
SEMICONDUCTOR INFORMATION 122
SCHEMATIC DIAGRAM. 126

TOP VIEW

BOTTOM VIEW

CAPACITORS				
Ref. N	Description			RS Part No.\| Mfr's Part No.
Cl	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CFQMR104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CJRPK104ZM
C2	Electrolytic	10ヶF	$25 \mathrm{~V}+-20 \%$	CEACI 106M*
C3	Electrolytic	$1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-20 \%$	CEACK105M*
C4-8	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFSSLA01KO or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CJRPK104ZM
C9	Electrolytic	$10 \mu \mathrm{~F}$	$25 \mathrm{~V}+-20 \%$	CEACI 106M*
C10/11	Ceramic SL	39pF	$50 \mathrm{~V}+-5 \%$	CCJVK390J*
C12-14	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	$1 \quad \left\lvert\, \begin{aligned} & \text { CCJVMK30J* } \\ & \text { CFQMR104JL }\end{aligned}\right.$
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CJRPK104ZM
Cl5	Electrolytic	$100 \mu \mathrm{~F}$	$16 \mathrm{~V}+-20 \%$	CEACG107M*
C16/17	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CKKPK223Z*
C18/19	Mylar*	1800 pF	$50 \mathrm{~V}+-10 \%$	CCRQMK182K* or
C20/21	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CQQMK182KL
C22/23	My 1 ar	. 1800 pF	$50 \mathrm{~V}+8-10 \%$	CKKPK2232* CQQMK182K* or
C24	Electro NP/LN			CQQMR ${ }^{\text {c }}$ 2KL
C25	Ceramic Cer	$10 \mu \mathrm{~F}$ $0.022 \mu \mathrm{~F}$	25V +-20\%	CEPCI106M*
C26	M-Plastic		$50 \mathrm{~V}+80-20 \%$	CKKPK2232*
	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CFQMK104JL or
	Ceramic	$0.1 \mu \mathrm{~F}$ $0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or $50 \mathrm{~V}+80-20 \%$	CFSSLAOIKQ or
C27	Electrolytic	$100 \mu \mathrm{~F}$	$16 \mathrm{~V}+\mathrm{t} 20 \%$	CJRPK1042M
C28	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CEACG107M* CFOMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFQMK104JL or
	Ceramic.	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CJRPK1042
C29	Electrolytic	4700~F	16V +-20\%	\| CEACG478M*
C30	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFFSSLAO1KQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CJRPK104ZM
C31	Electrolytic	220~F	$16 \mathrm{~V}+-20 \%$	- CEACG227M*
C32/33	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	- CKKPK223Z*
C34	Not Used			
C35/36	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	
C37	Not Used			CKKPK223Z*
C38-41	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFSSLA01K0 or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CFSSLA01KQ or
C42	Electrolytic	$100 \mu \mathrm{~F}$	$16 \mathrm{~V}+-20 \%$	CJRPK104ZM CEACG107M*
C43-48	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	- CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	CJJPRK104ZM
C49	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	1 CKKPK $2232 *$
C50	Electrolytic	$10 \mu \mathrm{~F}$	$25 \mathrm{~V}+-20 \%$	CEACI 106M*
				celiobm

NOTE: *Mylar is a registered trademark of E. I. Du Pont de Nemours and Company.

Ref. No.l	Description			1	1
C51	M-Plastic	$0.1 \mu \mathrm{~F}$	50V +-5\% or		CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	\|	CFSSLAO1KQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	\|	CJRPK104ZM
C54	Electrolytic	470 $\mathrm{F}^{\text {F }}$	16V +-20\%	\|	CEACG477M*
C55/56	Electrolytic	$10 \mu \mathrm{~F}$	25V +-20\%	\|	1 CEACI 106 M *
C57	Ceramic	$0.022 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$	I	\| СККРК223Z*
C58/59	Not Used			I	
C60	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	\|	\| CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$ or	I	\| CFSSLAOIKQ or
	Ceramic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+80-20 \%$,	\| CJRPK104ZM
C61	Ceramic SL	39 pF	$50 \mathrm{~V}+-5 \%$		\| CCJVK390J*
C62	Electrolytic	$1000 \mu \mathrm{~F}$	16V +-20\%	I	\| CECCG108M*
C63	Electrolytic	1000 $\mu \mathrm{F}$	25V +-20\%	I	\| CECCI 108 M *
C64	Not Used			\|	
C65	Ceramic SL	82 pF	$50 \mathrm{~V}+-5 \%$	I	CCJBK820J*
C66	Ceramic	27 pF	$50 \mathrm{~V}+-5 \%$	1	\| CCJBK270J*
C67	Electrolytic	$47 \mu \mathrm{~F}$	16V +-20\%	\|	CEDCG476M*
C68-79	Not Used			\|	
C80	Mylar	1500 pF	50V +-5\%	1	\| CQQMK152J* or
				I	CQQMK152JL
C81/82	Not Used				
C83	Mylar	$0.01 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$		CQQMK103J* or
				!	CQQMK103JL
C84-89	Not Used				
C90	Ceramic NPO	$10 \mu \mathrm{~F}$	50V +-5\%	1	CCJBK101J*
C91-100	Not Used			,	
C101	Electrolytic	$100 \mu \mathrm{~F}$	$16 \mathrm{~V}+-20 \%$	\|	CECCG107M*
C102	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	1	\| CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$,	\| CFSSLAOIKQ
C103	Mylar	$0.01 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	I	\| CQQMK103JL or
	M-Plastic	$0.01 \mu \mathrm{~F}$	50 V +-5\%	I	\| CFQMK103JL
C104	Ceramic	1000 pF	50v+80-20\%	\|	\| CKJPK1022*
C105	Mylar	2200 pF	$50 \mathrm{~V}+-5 \%$	I	CQQMK222JL or
					CFQMK222JL
C106	Ceramic NPO	15 pF	50 V +-5\%	I	CCJBK150J*
C107	Ceramic	1000 pF	$50 \mathrm{~V}+80-20 \%$	\|	\| CKJPK102Z*
C108	Mylar	$0.01 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	1	\| CQQMK.103JL or
	M-Plastic	$0.01 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$	1	\| CFQMK103JL
C109-1111	Electrolytic	10ヶF	16V +-20\%	,	\| CEDCG106M*
Cl12	Mylar	1000 pF	50V +-5\%	,	\| CQQMK102J*
C113-1161	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	,	\| CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$	1	\| CFSSLA01KQ
Cl17/118	Ceramic NPO	100 pF	$50 \mathrm{~V}+-5 \%$		\| CCJBK101J*
C119	Mylar	$0.01 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or		\| CQQMK103JL or
	M-Plastic	$0.01 \mu \mathrm{~F}$	50V +-5\%	1	CFQMK103JL
C120	Ceramic	1000 pF	$50 \mathrm{~V}+80-20 \%$,	\| CKJPK1022*
C121	Ceramic NPO	30pF	$50 \mathrm{~V}+-5 \%$	1	CCJBK300J*
C122	Not Used			,	
Cl23-125	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	\|	CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	$63 \mathrm{~V}+-10 \%$		CFSSLA01KQ
C126	Not Used			,	
C127	Mylar	1800 pF	50V +-5\%	1	\| CQQMK182J*
C128	M-Plastic	$0.1 \mu \mathrm{~F}$	$50 \mathrm{~V}+-5 \%$ or	I	\| CFQMK104JL or
	M-Plastic	$0.1 \mu \mathrm{~F}$	63V +-10\%	\|	\| CFSSLAOIKQ

MISCELLANEOUS

This section contains ICs and Transistors which differ from the NTSC version.

IC40: MC7812CT

IC101: MC14569BCP

IC103: MC1377P

Q2,Q3,Q5-Q7: 2SC1730

Q102: 2SC1674

NOTES: (1) ALL RESISTANCE VALUES ARE INDICATED IN ${ }^{*} \mathrm{OHM}\left(\mathrm{K}=10^{3} \mathrm{OHM}\right)$.
(2) ALL CAPACITANCE VALUES ARE INDICATED IN * $\mu \mathrm{F}^{\prime \prime}\left(\mathrm{P}=10^{-6} \mu \mathrm{~F}\right)$.

[^0]: Figure 1-2. Color Computer 3 Memory Map

