
Z8E USER'S MANUAL

Copyright 1984
by

RICK SURWILO
23 PLMOUTH ROAD

STAMFORD,CONNECTICUT 06906
(203) 324-3809

.r- ,._,

I.

II.

III.

IV.

v.

VI.

VII.

TABLE OF CONTENTS

Section

INTRODUCTION

INSTALLATION

INVOKING Z8E AT THE CP/M COMMAND LEVEL

INITIALIZATION

COMMAND INPUT

BREAKPOINTS

COMMANDS:

A
B
c
D
E
F
G
H

.I
J
K
M
N
0
p
Q
R
s
u
v
w
X
y

z

Assemble
Set Breakpoint
Clear Breakpoint
Dump
Examine
Find
Go
Disp~ay Symbol Table
Input File . ·
Animated Full Screen Debugging
Set Memory Window Address for J command
Move Memory
Output to I/O Port without Pre-read
Output Current Breakpoints to Console
Examine Flag Register
Query I/O Ports
Register
Single Step
Save Symbol Table to Disk
Verify Memory
Write Memory Segment to Disk
Displa~ Machine State
Fill Memory
Disassemble

APPENDIX A - Symbol File Formats
APPENDIX B - ZILOG Mnemonics
APPENDIX C - System Memory Map

Page
.··::·.(

3

13

19

23

29

32
26
27
28
29
31
33
34
35
37
49
50
51
53
54
55
57
58
60
61
62
63
64
65

69
73
91

----------------------------·-----M·-.. -"<-!tS-kl&_,_, ___ .., ___ !t\!1!!~...-.-J~""'t~··~"""""'''"

Z8E - Z80 DEBUG MONITOR Rick Surwilo

Z8E - Z80 DEBUGGING MONITOR

I. INTRODUCTION

Z8E is a professional quality interactive debugging tool designed
to speed the testing of Z80 assembly language programs. Origin­
ally written as a standalone monitor, Z8E was used in the deve­
lopement of the world/s largest Touch-Tone Input/Voice Response
system. Now redone to run in a CP/M or TurboDOS environment Z8E
contains more features in less memory than any comparable soft­
ware product. Occupying less than 9K of memory, Z8E includes the
following among its many features:

- Full screen animated display of the program under
test while it is being executed by the Z80

- Complete Z80 inline assembler, with labels, sym­
bols, expressions, and directives, using Zilog
mnemonics

- Interac~ive disassembly with labels and"
to console or ~isk allows the user to
ou~put fo-rmats and add comments

symbols
specify

- Fully traced program execution including a full
screen single step command that instructs Z8E to
disassemble code and to move the cursor to the
next instruction to execute

Up to 16 user settable breakpoints with optional
pass counts

- True symbolic debugging using the input from
multiple Microsoft MACR0-80 .PRN and LINK-80
.SYM Hles and Z80ASM .LST and SLRNK and Z80ASM
.SYM files from SLR Systems.

- Dynamic relocation of Z8E at load time to the top
of user memory regardless of size. No user
configuration of any kind is r,equired.

You may want to spend some time familarizing yourself with the
manual and Z8E/s command structure, especially the EXAMINE memory
command, before turning to the INSTALLATION section.

Z8E - Z80 DEBUG MONITOR Rick Surwilo

This Page Intentionally Left Blank.

2

-------------------------·--.. -~li!IIII\!J,._IlJII' ______ tJ!""~H-----~~----

Z8E- Z80 DEBUG-MONITOR Rick Surwilo

II. INSTALLATION

First make a working copy of Z8E, then place your original disk­
ette in a safe place. Make all modifications to the working
copy, not the original.

Z8E/s (E)xamine memory command will be used to change memory
contents. This command is described briefly below. For a more
detailed explanation please refer to SECTION V of this manual,
COMMAND INPUT.

Z8E requires an addressable cursor which can be patched symboli­
cally as follows:

First instruct Z8E to load itself as well as the symbol
file:

A>Z8E Z8E.COM Z8E.SYM

The symbol file Z8E.SYM contains the name and address
of each parameter which may need to be modified.

Use the (E)xamine memory command to change the required
bytes. You may enter commands in response to Z8E/s
asterisk prompt. Once you enter "E" followed by the
symbolic name of the address you which to change, Z8E
will respond by displaying the actual address followed
by the hex and ASCII representation of the byte being
examined (non-printable characters are shown as a "~").
For example:

'~E MXYCP <cr>

285E 2 XX <cr> ;XX represents your input
285F 1B XX <cr>
2860 3D XX <cr>
2861 00 ;PERIOD ENDS COMMAND
-Jc

IMPORTANT:
Always patch using the symbolic name of the variable;
the addresses shown in the example above are for demon­
stration only and do not necessarily reflect the actual
locations of the variables in memory.

3

Z8E - Z80 DEBUG MONITOR

Listed below are the symbolic names of the
which may have to be patched for your CRT.

Rick Surwilo

addresses

MXYCP - Cursor addressing lead-in string. The first
byte (the number 2 in the above example) re­
presents the number of bytes in the string.
The string may be up to 10 bytes long. This
actual lead-in string should immediately fol­
low the count byte.

Default is the two character string:

1B (Hex), 3D (Hex)

·ASCII ESCAPE, followed by EQUAL SIGN.

ROWB4? - Set this byte as follows:

NOT ZERO - Row is sent before Column
ZERO - Column is sent before Row

Default is NOT ZERO, row sent before column.

ROW - Set this byte to contain the value which is to be
added row number before it is sent to the screen.

Default is 20 Hex, ASCII space.

COLUMN - Set this byte to contain the value which is to ··be
added column nUmber be'fore it is sent to the
screen. Default is 20 Hex, ASCII space.

CASE - This byte controls whether you prefer entering
symbol names in upper or lower case. It also
controls whether disassembly will be done in upper
or lower case. Patch as follows:

FF - lower case (DEFAULT)
00 - UPPER CASE

MAXLEN - This is the maximum length of permitted for
symbol names. The permissable values are 6
and 14. If patched to any other value then
Z8E will use 6. The maximum length of the
symbol is required by Z8E in order to allocate
space for loading the symbol table. If MAXLEN
equals 6 then Z8E reserves 8 byte per symbol,
6 for the name and two for the address. If
the number 14 is used then Z8E reserves 16
bytes per symbol. Hence MAXLEN impacts the
amount of TPA available to the program since a
symbol table of 16 bytes per entry obviously

4

,_---------------------.......... ' -~~ J.Mltd6··~,-·-----,,.,.kffi>_ii\& ... 48' ____ j~

Z8E - Z80 DEBUG MONITOR Rick Surwilo

takes up twice as much space as one with 8
byte entries.

If, while reading in the symbols from disk,
Z8E encounters a symbol longer than the value
specified in MAXLEN the symbol name is
truncated to MAXLEN.

6 - Maximum Symbol Length (DEFAULT)
14 - Optional Symbol Length

TO SAVE THE PATCHED PROGRAM:

'''W ANYNAME. COM (Writes the File to Disk)

This completes the installation of Z8E. Typing in ~C (Control C)
in response to Z8E"s asterisk prompt will return you to.' the
operating system.

5

Z8E - Z80 DEBUG MONITOR Rick Surwilo

USER CODED CONSOLE I/O

The following section provides details on a method of
replacing the BDOS calls for Console I/O which Z8E
physical console I/O routines or direct BIOS calls.

optionally
uses with

To modify them use the symbol names listed below and assemble
your routine at the appropriate address (via Z8E/s (A)ssemble
command - See Manual).

TTYQ:

TTYI:

TTYO:

This routine checks the status of the console.
If a character is waiting it is read; otherwise,
TTYQ returns a zero in A to indicate that no
character is waiting.

Read a character, waiting until one arrives.
Return Character in A.

Output a character, waiting until it is sent.
Character passed in A.

Listed below is the code that Z8E uses to do console I/O; use it
as a model. Your routines should replace the instructions with
the double semicolons. Be sure to save the registers as show
below. The size of each routine must not exceed 32 bytes.

6

---~---· ---,---~~~!-·---·-~----·-·*-·~---------

Z8E - Z80 DEBUG MONITOR Rick Surwilo

TTYQ: push be
push de
push hl
ld c' 11 ;;Check Console Status
call BDOS ; ; BDOS returns: A 00 No Character

~

t' '· ; ; A = NZ Input Waiting
; ;

and a ;;Character Here?
ld c,6 .. , ,
ld e,Offh ' ' call nz,BDOS ; ; If Character Here Read It •••

''
Else Fall Thru

pop hl
pop de
pop be
and 7fh
ret

org TTYQ+32

TTY!: push be
push de
push hl

TTYIOO: ld c,06 ;;Unadorned Console Input
ld e,Offh ; ; Tell CP/M this is Input Request
call BDOS .. , '
and 7fh ; ; Strip Parity
jr z, TTYIOO ; ;Loop til Input Arrives
pop hl
pop de
pop be
ret

org TTYI+32

TTYO: push af
push be
push de
push hl
ld c,02

' ' ld e,a ..
'' call BDOS ; ;Console Output

pop hl
pop de
pop be
pop af
ret

org TTY0+32

7

Z8E - Z80 DEBUG MONITOR Rick Surwilo

The symbols TTYQ, TTY!, and TTYO are included in Z8E.SYM.
fo-re these routines can be patched symbolically using
assemble command, for example:

'~A TTYQ
1F76 C5 TTYQ: PUSH BC

There­
Z8E"s

Z8E also contains a provision for user installed initialization
code. As soon as Z8E is loaded, but before it relocates itself
into high memory, it makes a call to !NIT. As presently confi­
gured !NIT merely contains a RET instruction. However the user
may add up to 127 bytes of initialization code. This code may be
used for any purpose, for example, to change your SIO or Uart
from interrupt driven to non-interrupt driven in the event that
the Z8E console routines were replaced. Any code installed at
INIT is executed once and is not moved to high memory with the
rest of Z8E. You need not save any registers.

8

\

Z8E - Z80 DEBUG MONITOR Rick Surwilo

SUPPLYING YOUR OWN CURSOR ADDRESSING ROUTINE

If your computer requires a custom cursor addressing routine it
can be easily added by following the steps listed below:

1. Examine the Z8E.SYM file that to determine the address
of Z8E's standard cursor addressing routine which is
called XYCP. Associated with name XYCP in the file is
its absolute address.

2. Using your own text editor code your routine and preface it
with the following puedo-ops:

ASEG
.PHASE XXXXH

Where XXXX represents the absolute hexadecimal
address obtained in step 1.

9

Z8E - Z80 DEBUG MONITOR Rick Surwilo

Z8E will pass the row address in the B REGISTER and the
column address in the C REGISTER. Row numbers range
from 0 to 23 while column numbers range from 0 to 79.
Your job is to translate these two number into a cursor
postion on the screen of your CRT.

Save all registers including BC. Use the following
skeleton as a guide:

ASEG
.PHASE XXXX ;From Z8E.SYM

YOURS:
PUSH BC
PUSH DE
PUSH HL

CURSOR ADDRESSING CODE HERE

POP HL
POP DE
POP BC
RET

END

Use ZBE/s output routine TTYO as described above (or
your own routine) to output the characters in your
cursor addressing sequence. Obtain the absolute address
of TTYO from the file Z8E.SYM. Code the call to the
subroutine using the absolute address in hexadecimal.
For instance, if Z8E.SYM contains the entry:

2FE2 TTYO

then code your call statements as:

CALL 2FE2H

ZBE imposes only one restriction on the code you write.
In order to guarantee that your routine can be relo­
cated into high memory by Z8E do not load any 16 bit
constants into register pairs; instead do two 8 bit
loads. For example, do not use the following state­
ment:

LD HL,1234H

Rather, code it like this:

LD H, 12H
LD L,34H

10

Z8E - Z80 DEBUG MONITOR Rick Surwilo

This is the only restriction other than the maximum
code length which is placed on your code which is 128
bytes.

3. Assemble your routine with either Macro-80 or Z80ASM.
Link it with either Link-80 or SLRNK.

11

__ _.._._~~--~••a·-.u•••-u•~-----~-*•*t•n•wa_n __ @ ___ _.A•o~hu-tre-:.-.__~

Z8E - Z80 DEBUG MONITOR Rick Surwilo

4. Load Z8E.COM using Z8E:

A>Z8E Z8E.COM Z8E.SYM

5. Now overlay Z8E/s cursor address code with your own:

,., I YOURCODE. COM, XYCP

Z8E will load your cursor addressing routine on top its
own beginning at the address associated with the
symbol XYCP.

6. Save the new file using a name of your choosing:

>'cw NEWDEBUG. COM

7. Exit back to the operating system be entering a
Control-C at the asterisk prompt.

12

______ ol _______________ 111111111.~-·-... ,·--·-·-·-Gi-W,.._A ____ I"'!

Z8E - Z80 DEBUG MONITOR Rick Surwilo

This Page Inte~ntionally Left Blank.

13

------~--------------..-.--.. -~---~' &MJIML Jut JA!&It&JM t .d ,; l!ll]"'!"

Z8E - Z80 DEBUG MONITOR Rick Surwilo

III. INVOKING Z8E AT THE CP/M COMMAND LEVEL

Upon invokation at the CP/M command level Z8E loads at the low
end of the Transient Program Area (TPA) which begins at absolute
address 100H. The TPA is the area in memory where user programs
are executed.

Once loaded Z8E determines the size of the TPA by examining the
address field of the jump instruction at location 5. This ad­
dress represents both the entry point into CP/M and the end of
the TPA. Z8E lowers this address by approximately 9K bytes and
relocates into this area by adjusting all addresses within itself
to reflect its new location. The jump instruction at location 5
is similiarly modified to reflect the new size of the TPA. Thus
all programs which use this address to determine the amount of
available memory can run unchanged. Z8E completes its initiali­
zation by storing a jump instruction to its breakpoint handling
software at absolute address 38 (hexadecimal).

Symbols which are loaded from files are stored by Z8E in a symbol
table at the top of the TPA just below Z8E. Z8E will dynamically
allocate the storage necessary to hold all symbols loaded from
files; however, Z8E also allows the user to enter his own symbols
from the keyboard via the (A)ssemble command. Z8E does NOT
reserve ANY space in memory for user generated symbols. The user
must explicitly request memory space on the CP/M command line.
This is accomplished by entering the number of symbols for which
space should be reserved as a decimal number. This number must
be enclosed· in parentheses ·and must appear as the first argument
on the command line as shown- below:

A>Z8E (32)

In this example the user has requested space for 32 user defined
symbols. If MAXLEN has be set to 6 (See INSTALLATION Section)
then each symbol requires 8 bytes of storage, hence, in this
example Z8E will set aside 256 bytes of memory for user defined
symbols.

Subsequent action is based on the format of the remainder of the
command line as entered by the user. In the examples that follow
bear in mind that any of these command lines may contain the
argument requesting memory space for user symbol table entries.
The argument would appear immmediate after "Z8E" in every case.

1. A>Z8E

Z8E resides as a standalone program in memory.

2. A>Z8E USERFILE.COM

USERFILE.COM is loaded at the beginning of the

14

Z8E - Z80 DEBUG MONITOR Rick Surwilo

TPA and is ready to be acted on by Z8E com­
mands.

3. A>Z8E USERFILE.COM USERFILE.SYM [,bias]

USERFILE.SYM is read in by Z8E and all symbol
names contained in the file are entered into a
table which begins at the starting address of
Z8E (the ending address of the "new" TPA) and
extends downward in memory. The optional
bias, if specified, is a 16 bit value which
will be added to the 16 bit address associated
with each symbol in the file. (In this exam­
ple a .SYM file is shown; however, since all
addresses appearing in a .SYM file are abso­
lute the optional bias would probably not be
used.)

USERFILE.COM is loaded at the start of the TPA
only after the .SYM file has been read and the
symbol table built.

4. A>Z8E USERFILE.COM USERFILE.PRN [,bias]

As "in. the previous example USERFILE.COM is
loaded ·at the beginning of the TPA, but in
this instance a .PRN file is used to construct
the · symbof table. The optional bias becomes
very useful if the .LST or .PRN file repre­
sents the listing of a relocatable program.
Relocatable programs linked using Microsoft's
LINK-80 default to a load address of 103H with
the three bytes of memory located at 100H
containing a jump to the entry point of the
program. Therefore, if the user supplies a
bias of 103 in the command line all relocat­
able symbols in the file will be associated
with their actual addresses in memory. Any
bias specified will only be added to those
symbols which are flagged as code relative in
the .PRN file. A bias will not be added to any
symbol flagged as ABSOLUTE, EXTERANL, OR
COMMON.

USERFILE.COM is loaded at the start of the TPA
only after the .LST or .PRN file has been read
and the symbol table built.

15

Z8E - Z80 DEBUG MONITOR Rick Surwilo

5. A>Z8E USERFILE.COM USERFILE.SYM [,bias] NFILE.LST [,bias]

The true power of Z8E's symbol loading is best
evidenced when loading multiple symbol tables
from several files. The first file is gen­
erally a .SYM file specifying all the global
symbol names in the program to be tested. The
subsequent files specified on the command line
are usually .PRN or .LST files of the indivi­
dual source modules that were originally as­
sembled and then linked (which produced the
.SYM file). Although only two files (USERFILE
and NFILE) are shown in this example, in actu­
ality the number of .SYM and .PRN files speci­
fied in the command line is limited only by
the size of Z8E's input buffer which is 80
characters long. ·

USERFILE.COM is loaded at the start of the
TPA only after all .SYM and .PRN/.LST files
have been read and the symbol table built.

Note:
If no bias is specified, Z8E will use a bias
of zero.

If more than one .LST or .PRN file is being loaded, then each
file n.ame can be specified with. its own bias. The bias may· be
entered in the form of a symbol name, hexadecimal numper, decimal
number, or any combinatiion of the three in an expression using
the + and - operators. If the individual module has a global
entry point, the name of which was previously loaded, the user
can bias all symbols with the value associated with this name.
In this way all symbols, both absolute and relocatable, are
associated with their actual location in memory.

Z8E as presently configured can build a symbol table from the
list files produced by the following programs:

1. Microsoft MACR0-80 V3.37 .PRN Files May 8, 1980
2. Microsoft MACR0-80 V3.44 .PRN Files Dec 9, 1981
3. Microsoft LINK-80 V3.44 .SYM Files Dec 9, 1981
4. SLR Systems Z80ASM V1.07 .LST Files
5. SLR Systems SLRNK V1.07 .SYM Files

Z80ASM and SLRNK may be configured for 80 or 132 column output.

Z8E uses the file name extension (the three characters appearing
to the right of the period) to determine the format of the file.
Each of the above file types has a distinguishing format. The
characteritics of each type are described in APPENDIX A.

16

...---------------------......._...-,_.~-.1~·-?4-"-' " __ dl_"" -t .. -4!1~-~i#---~r-~~""t"''·~

Z8E - Z80 DEBUG MONITpR Rick Stirwilo

During the loading process Z8E displays status and error messages
on the console relating to the activity in progress as shown
below: ·

STATUS MESSAGE

1. Loading: USERFILE.COM

2. Number of symbols loaded:

3.

1.

2.

3.

Loaded: 100 YYYY
Pages: ZZZ

ERROR MESStGE

File not foJnd
!

' Symbol tabl~ not found

!

Invalid offJet - using 0000

1 7

DESCRIPTION

Z8E is attempting to open
the named file (in this
case, USERFILE.COM)

Following the loading of
all symbols from a listing
file or a .SYM file, the
number of symbols loaded
from the specified file is
displayed as a decimal
number.

Z8E displays the starting
and ending memory addres­
ses of the target file
(the first file specified
on the CP/M command line
and the one which is going
to be debugged).

"Pages:" refers to the
decimal number of pages
and is the count of 256
byte pages in the file.
This number may be subse­
quently used with the CP/M
SAVE command once the de­
bug session ends.

DESCRIPTION

The file specified in the
command could not be found
on the specified drive.

The specified file was
found but did not contain
a properly formatted sym­
bol table.

The user has specified an
invalid offset to be added
to each loaded symbol. Z8E
will continue to load this
symbol file but will not
add any bias to the sym-

------'-""""'-----------~-.,_,.,~.,...._.~,,..,_?!t'"'' ""'""iltl""m.,.u-~-~ """' _.,_, .,. .. _ _.._,~

Z8E - Z80 DEBUG MONITOR

4. Syntax Error

Rick Surwilo

bols. This error may have
occured because the user
specified an offset in the
form of a symbol which had
not been previously
loaded, or the user may
have specified a numeric
value which contained an
illegal character.

The file name was incor­
rectly specified.

After all user files, both symbol files and the .COM file to be
debugged, have been loaded Z8E displays current memory usage as
follows:

Total Symbols:
Symbol Table:
Z8E relocated:
Top of memory:

xxxx
xxxx - xxxx
xxxx - xxxx
xxxx

It is important to note that Z8E expects the files appearing in
the command line to be appear in a specific order. The first
file name appearing in the command line is assumed to be the

·target file which is to be debugged. It is always the last file
to be loaded. All file names following the target file name are
assumed to be symbol input files and they are loaded in the order
in which they appear.

The first file named in the command line is always loaded
starting at address 100 hex. The "I" command contains an option
to allow the file to be loaded at a different address. This
feature is not available at the CP/M command line level.

For a discussion of the format of symbol files see APPENDIX A.

18

------------------------........-~ teiMJ:&....t~'""'J<-IA------~~~

Z8E - Z80 DEBUG MONITOR Rick. Surwilo

This Page Intentionally Left Blank.

19

______ 1-oo ______________ ...,._...._.., dsaltbw*'<*itllil~· J_J

Z8E - Z80 DEBUG MONITOR Rick Surwilo

IV. INITIALIZATION

Once Z8E has been loaded, and has in turn loaded all files speci­
fied on the command line, it initializes all user registers to 0
with the following exceptions:

The user's program counter contains address 100 hex
which is the start of the TPA.

The user's stack pointer is set to the starting ad­
dress of Z8E (the top of the TPA) minus two. These
two bytes are set to zero in accordance with CP/M
convention. When CP/M loads a program it initializes
a stack for the loaded program by pushing the address
of the 'jump to the system warm boot routine onto it.
Thus user programs (STAT.COM is an example) can choose
to terminate themselves and return to CP/M by execu­
ting an RET through this address on the stack. Z8E
accomplishes the same objective: the 0000 on the

,stack permits the user program to return to CP/M via
address 0000 which always contains a jump to the
system's warm boot routine.

The user c I (interrupt) register is set to the value
contained in the I register when Z8E was loaded.
Modify at your own risk.

All input and output by Z8E is accomplished using
tained within itself. Z8E does not use the default
absolute location 80 nor does it use the default
Block (FCB) at absolute location 5C.

buffers con­
DMA buffer at
File Control

Note:
When CP/M finishes loading any program,
including Z8E, it moves the command line
tail to the default DMA buffer at absolute
address 80 (hex) and initializes the de­
fault FCB at absolute address 5C to the
name of the first file (or first two files
if two or more are specified) appearing in
the command line. Z8E makes use of this
information in order to load the user
program and any symbol files. If the
program to be tested also expects an ini­
tialized FCB and/or DMA buffer (as is very
often the case), then the user must effect
this before attempting to execute the
program.

For example, many text editing programs
are invoked by typing the name of the
editor program followed by the name of the

20

Z8E - Z80 DEBUG MONITOR Rick Surwilo

program to edit on the CP/M command line,
as· in hypothetical case:

A>EDIT B:FYL2EDIT.BAS

Once the program EDIT.COM is loaded it may
expect to find the default FCB to be al­
ready set up to read the file
FYL2EDIT.BAS. EDIT.COM may also expect
the DMA buffer to contain the number of
characters in the command line at address
80, as well the the text of the command
line starting at address 81. In this exam­
ple location 80 would contain a hexadec­
imal F (decimal 15) representing the num­
ber of characters, and locations 81
through 8F would contain the 15 characters
(space through S). Similiarly, the first
byte of the default FCB at address 5C
would contain the number 1 (numeric equi­
valent of drive B) and the next 11 bytes
would contain the file name FYL2EDIT in
ASCII. If the name FYL2EDIT was shorter
than 8 characters, then the remainder of
the file name field in the FCB would be
filled with ASCII spaces. The next 3 bytes
would contain the file type in ASCII; in
this example the file type is BAS. If no
file type was specified, this field would
contain 3 ASCII spaces.

Now, if the user was to debug the EDIT
program using Z8E, this initialization of
the default DMA buffer and default FCB
must be accomplished "by hand" prior to
attempting to debug EDIT.COM, owing to the
fact that CP/M has already set up these to
areas with the data from the command line
which was typed in to load Z8E. In short,
EDIT must be tricked into believing it was
loaded by CP/M and not by Z8E and the user
must perform the initialization of these
two areas. The user may use the E command
(to store both ASCII and numeric data in
memory) to simulate an initialized command
line buffer and FCB. Further information
regarding the format of the FCB and DMA
buffer may me found in Digital Research's
CP/M 2.0 INTERFACE GUIDE.

21

__________ _.. ________________________ _._._._.___. ___ , ____ ._ _____ ~r.--••u-H•*.__._. ____ ,_. __ ~_.

Z8E - Z80 DEBUG MONITOR Rick Surwilo

DEBUGGING HINT:

It is not necessary to initialize the default FCB and/or the
default (command line) DMA buffer every time a program to be
tested is loaded (if indeed this program utilizes them). Instead
follow the procedure listed below (If you haven/t read the indi­
vidual command summaries the following may make more sense later):

Once you have loaded the program to test
perform the required initialization of the
FCB/s at 5CH and 6CH and the command line
buffer at 80H using the E command. Use the
ASCII string option with the E command to set
the text portions. Use the numeric input
function to intialize the drive specification
at address 5C and the character count at 80H.

Use the W command to write out memory start­
ing at address ZERO. As in:

~'W NEWFILE. COM 0 xxxx

Where XXXX is the highest address you wish to
save. Now the next time you load this file
it will of course load at address 100H. Use
the M (move memory command) to move it to
location 0000. Your FCB and DMA buffer are
initialized.

~'M 1 00 XX.XX+ 1 00 0

22

--------------------------............. -----·-~· =l""&bl ... !I_PM_U ... M ... JJ""·--·"'··""-'"L'k __ ... , .,.,,_&«t:&J~-

Z8E - Z80 DEBUG MONITOR Rick Surwilo

This Page Intentionally Left Blank.

23

Z8E - Z80 DEBUG MONITOR Rick Surwilo

V. COMMAND INPUT

Once file and symbol table loading has been completed, Z8E
prompts the operator for command input by displaying the ll)'cll

character. The operator can then type any of Z8E's single letter
commands. Some commands require no arguments while others re­
quire between one and four. Arguments may be in any of the forms
listed below (except as noted in the description of the indivi­
dual commands):

SYMBOL:

HEX:

Any symbol previously loaded or previously
entered via the keyboard (see A command) may
appear as a command argument. All symbols are
treated as 16 bit values.

A 16 bit hex number may be entered as an
argument. Only the last four characters en­
tered are treated as significant input if Z8E
is expecting a 16 bit argument. In those
instances where Z8E expects a 8 bit argument,
only the last two characters are significant.
As such, the user may elect to correct mis­
takes by either backspacing and retyping, or
by continuing to enter the number and ensu­
ring tfiat the erroneous digit does not ap-·
pear in the rightmost four (or two) charac-

··ters as shown in the following example:

">'~E 1E21F4

If a 16 bit argument is expected
Z8E would ignore the first two
digits (1 and E) and would examine
the contents of memory location
21F4.

If no symbol table is .present in memory then
hexadecimal numbers (8 or 16 bits in length)
may begin with any digit 0 - F. However, if
a symbol table is in memory then all hexade­
cimal numbers which begin with a digit in the
range A - F are evaluated first as symbol
names. If no corresponding name is found in
the symbol table then Z8E attempts to reeval­
uate the name as a hexadecimal number. For
example, the token DEAD is a valid symbol
names as well as a valid hexadecimal number.
If a symbol table is present then Z8E first
searches the symbol table looking for the
string DEAD. If no match occurs then Z8E

24

Z8E - Z80 DEBUG MONITOR Rick Surwilo

REGISTER:

treats DEAD as the hexadecimal number ODEAD.
To force Z8E to evaluate an argument as a
hexadecimal number prefix the argument with a
leading zero as in ODEAD.

Valid Z80 16 bit register names are permit­
ted as arguments. If a 16 bit register name
is entered, Z8E uses the 16 bit value
currently contained in the specified register
pair in the user's register set as an argu­
ment.

'"D HL 8

instructs
eight of
located at
the user's

Z8E to dump the first
memory bytes which are
the address contained in
HL register pair

Valid '16 bit register names:

AF - Accumulator and Flag
BC - BC register pair
DE - DE register pair
HL - HL register pair
SP - Stack Pointer
P ·- Program Counter
PC - Program Counter
IX - IX index register
IY - IY index register

Note that the program counter may be speci­
fied in either of two ways. The single cha­
racter "P" can be used to specify the program
counter provided it does not appear in an
expression. To include the current value of
the user's program counter in an expression
the mnemonic "PC" must be used.

If an expression used as an argument contains
a register pair as one of its terms, the.
register pair must be the first term. Also,
only one register pair may be included in an
expression:

HL+4

5+DE

HL+BC

25

valid expression

invalid expression - register
pair is not the first term

invalid
than one

expression - more
register pair was

-----------------------~-~ i !lill•--~ 1Mli'Mt!l!t~£i , i@!hiit#A!\1 _,.L f_ i!

Z8E - Z80 DEBUG MONITOR Rick Surwilo

REGISTER
INDIRECT:

DECIMAL:

specified

P-3 invalid expression - "PC"
must be used to include the
current value of the program
counter in an expression

To differentiate
numbers AF, BC,
pairs of the same
numerical version

between the hexadecimal
and DE and the Z80 register
name be sure to prefix the
with a leading 0.

Note also that the Z80 prime register names
are not allowed as arguments except in the R
command.

Z8E allows the user to specify the data con­
tained in the memory location pointed to by a
register pair as an argument. For instance,
if the user/s HL register pair contained 18EE
and the addresses 18EE and 18EF contained the
bytes 42 and 61 respectively, then the com­
mand '~E (HL) would examine the contents
of memory location 6142. Note that register
indirect memory references are indicated by
enclosing the register pair name in PAREN­
THESES which follow.s the ZILOG mnemonic meth­
od of signifying "the cont_ents of".

The most useful application of register in­
direct arguments is to set breakpoints at
subroutine return addresses. Consider the
situation of a program which is currently
suspended via a breakpoint somewhere in the
middle of a subroutine. The user is no
longer interested debugging the body of the
subroutine; he only cares about getting back
to the instruction that follows the CALL that
got him into the subroutine. Register in­
direct format allows him to enter:

.
~'B (SP)

This informs Z8E to set a breakpoint at the
address pointed to by the stack pointer
register.

Decimal numbers in the range 0 - 65535 may be
entered as arguments. All digits of the num­
ber must be in the range 0-9. A decimal
number must be followed by a "II" character,

26

Z8E - Z80 DEBUG MONITOR Rick Surwilo

LITERAL:

ARGUMENT­
STRINGS:

otherwise Z8E will treat it as a hex number.
The following example shows a decimal number
being input as part of the E command:

*E 512//

instructs
location

Z8E to examine memory
512 decimal (200 hex)

ASCII literals up to 78 bytes in length are
permitted as arguments (Z8E/s input buffer is
80 characters long less the opening and
trailing quote characters). ASCII literals
must be enclosed in quotes. The quote char­
acter itself is the only character not per­
mitted as a literal. Commands which do not
permit the use of ARGUMENT-STRINGs (see be­
low) will still accept input in the form of
quoted strings. In such a case Z8E will
ignore all but the last two characters of the
quoted literal, treating the input as a 16
bit number. For example if the user entered:

•'<z / ABCD/

Z8E would begin treat /Be/ as a 16 bit number
and begin disa~se~bling at address at 4243.

The F (find)", E (exam~ne memory), N (query
I/O ports without pre-read), Q (query I/O
ports), and Y (fill memory) commands permit
the use of ARGUMENT-STRINGS, which are simply
combinations of all valid argument types
separated by commas. ARGUMENT-STRINGs may be
any length up to the limit of Z8E/s input
buffer which is 80 bytes long. ARGUMENT­
STRINGs may be terminated by either a car­
riage return or the first space character not
appearing in between quote characters. The
following is an example of a 15 byte
ARGUMENT-STRINGS string which combines SYM­
BOLS, LITERALS, HEX, and DECIMAL numbers:

SYMBOL, /xyZ/, 4F, 12E4, 9, 21//,511//,/ ABc/

Assuming that SYMBOL is equal to 177H then
the above ARGUMENT-STRING would evaluate to:

01 77 78 79 5A 4F 12 E4 09 15 01 FF 41 42 63

Again,
either
space

ARGUMENT-STRINGS are terminated by
a carriage return or by the first

character that does not appear in a

27

Z8E - Z80 DEBUG MONITOR Rick Surwilo

quoted literal string.

Z8E permits expressions using the + and - operators. Any argu­
ment type may be combined with any other type. The length of an
expression is limited only by the size of the input buffer.
Expressions are evaluated from left to right and the use of
parentheses is not permitted.

Z8E indicates argument errors by printing a question mark.

Arguments may be line-edited using the standard CP/M control
characters:

backspace:
control X:
control C:

erase the last character typed
erase the entire line
return to CP/M via warm boot

All input is truncated to the size of Z8E's input buffer which is
80 characters long.

All alphabetic input to Z8E may be in uppercase or lowercase. All
output by Z8E follows the dictates of the CASE byte as patched by
the user (see INSTALLATION).

In this manual the appearance of square brackets [] around an
argument always indicates that the argument is optional.

28

Z8E - Z80 MONITOR Rick Surwilo

This Page Intentionally Left Blank.

29

Z8E - Z80 DEBUG MONITOR Rick Surwilo

VI. BREAKPOINTS

Breakpoints are those addresses in the program under test at
which the user wishes to suspend execution and return control to
Z8E. The user may set, clear, and display breakpoints at any
time, via the appropriate command in response to Z8E's asterisk
prompt. Z8E's implementation of breakpoints does not force the
user to tediously enter breakpoint addresses every time execution
is resumed. Rather, the user may enter up to 16 breakpoint ad­
dresses and each breakpoint, once set, is stored in one of Z8E's
internal tables and remains in effect until explicitly cleared by
the user via the Clear breakpoint command (see C command).

Z8E also allows you to specify a pass count to be associated with
any breakpoint that is set. Pass counts indicate the number of
times a particular instruction must be executed before Z8E will
regain control.

Furthermore, Z8E does not modify any code in the user program
until a GO command is issued (see G command). This permits the
user to examine code, and make patches if desired, at any point
in the debug session.

When a breakpoint is reached in the user program and Z8E regains
control, the message: 1<BP''r.XXX.X is displayed where XXX.X
represents the hexadecimal address of the breakpoint. In addi­
tion, Z8E will display the symbolic name of this address if one
exists in the symbol table. Z8E foltows this with a display of
the asterisk prompt indicating it is ready ready for command
processing.

The message: ''<ERROR~'<BP''<xxx.x is displayed on the console
whenever Z8E determines that control has been regained without a
valid breakpoint having been reached. This is generally caused
by a user program which has gone off the deep end. If the user
examines the current contents of the registers (via the X com­
mand) the current program counter will most assuredly contain an
address which had not previously been set as a breakpoint.
Things to look for when this situation arises include: a program
that blew its stack, a program that performed a 2 1/2 gainer with
a full twist indirect through a register; ie. JP (HL) into the
great unknown, and attempting to trace where wise men fear to
tread (BIOS and BDOS I/O routines).

Z8E will allow you to single step (trace) and set breakpoints
anywhere in memory. However, bear in mind that as you enter the
BIOS and BDOS netherworld your stack pointer will at some point
be saved directly in memory as CP/M switches to its own stack
(your stack pointer is not saved on a stack by CP/M). If a
breakpoint has been set at an instruction somewhere in BDOS or in
the BIOS (after this save of your stack pointer has occured) and
this breakpoint is reached, Z8E will itself call a BDOS routine
in an attempt to display the >'<BP 1<XXXX message on the console. At
this point CP/M will save Z8E's stack pointer and overlay yours

30

Z8E - Z80 DEBUG MONITOR Rick Surwilo

in memory. When BDOS eventually restores the stack pointer and
executes a RET instruction you will not return to your program
and your stack pointer will be gone. These routines can be
traced, albeit with difficulty, but you must keep an eye on what
CP/M is doing with the stack pointer.

31

Z8E - Z80 DEBUG MONITOR Rick Surwilo

This Page Intentionally Left Blank.

32

-----------------------~-M:::IIdiiMMI:llld'Mii!l!t~-·-·-M-U-lt""'""·i!!l_t_. _!t ... JM ,ht""~'----l""'-1~

Z8E - Z80 DEBUG MONITOR Rick Surwilo

A Assemble

The A command permits the user to effect inline assembly of Z80
assembler source code, including labels and symbols, using the
full Z80 instruction set. In addition, the assembler accepts
standard Zilog mnemonics (APPENDIX B), expressions using the +
and - operators, as well as the following five assembler direc­
tives: ORG, DEFB, DDB, EQU, and DEFW. The format of the command

c

is:

~'A ARG1 <cr>

where ARG1 · represents the starting address at which
assembly will take place

ARG1 may be of any type

Z8E initially prompts the user by first disassembling and
displaying the instruction currently located at the address spe­
cified by ARG1. This is done as a convenience to permit the user
to ensure that any patches will be assembled into memory at the
intended location. Z8E then outputs a carriage return/line feed,
displays the address specified as ARG1, and awaits input. Z8E
will not disassemble before every line of source code entered by
the user, only before the first one.

Z8E expects assembler input in the following format:

LABEL: opcode [operand1] [,operand2]

The label field is always optional, the opcode field is mandatory
only if no label was entered, and the operand field must
naturally be included for those Z80 instructions which require
one. The three fields may be separated from one another by spaces
or tab characters.

Z8E does not automatically reserve space within itself for user
supplied symbol names. User supplied symbols, as opposed to those
loaded from files, are entered from the keyboard in the label
field using the (A)ssemble command. Symbol table space to hold
user supplied symbol names must be explicitly requested on the
CP/M command line as explained in the section "INVOKING Z8E at on
the CP/M COMMAND LEVEL". These user supplied symbols, once en­
tered, may be referenced in the operand field of any subsequent
assembly statement or in the argument field of any Z8E command.
These symbols come in handy when disassembling .COM files for
which no source listing exists and also when patching. code.

The assembler is a one pass assembler and forward references to

33

Z8E - Z80 DEBUG MONITOR Rick Surwilo

symbols which do not already appear in the symbol table are
flagged as errors. -However, ZBE allows the use of the ORG
directive (see discussion below) which allows the user to mani­
pulate the assembler/s location counter, which helps to minimize
the no forward reference limitation.

Labels may begin in any column, but all labels must be followed
by a colon even those appearing in an EQU statement. Labels may
be of any length but only the first 6 characters are significant.
Z8E always assigns the 16 bit value of the assembler/s current
location counter to the label being entered, unless the statement
is an EQU directive. Labels need not be followed by an opcode
and this (as well as the EQU directive) provides a convenient way
to assign a value to a symbol name. Merely set the assemblers
location counter (via the ORG directive or as ARG1 in the command
line) to the value you wish to assign, then type the symbol name
followed by a carriage return. No object code is produced and no
user memory areas are modified but the symbol and its associated
value are entered into the user symbol table. Z8E does not
treat duplicate symbol names as errors. Rather, if the user
enters a symbol name which already appears in the symbol table,
the value associated with the new symbol replaces the one asso­
ciated with the old. For example, if the symbol ENTRYP exists in
the symbol table and is associated with the value 23DA and the
user assembles the following instruction:

41FF OE 04 ENTRYP: LD C,4

Z8E would replace 23DA with 41FF.

Assembler statements which do nbt contain labels may begin in any
column, including column one. There is NO need to insert a
leading space or tab before an opcode if the opcode is not pre­
ceded by a label.

Operands appearing in the operand field of the instruction to be
assembled may be any of the following types subject only to the
proviso that 16 bit values cannot appear as operand for those Z80
instructions which require 8 bit values. Expressions combining
any of the following four types (with the + and - operators) are
also permissable.

SYMBOL (from symbol table)
HEX
LITERAL (two bytes maximum)
DECIMAL

In addition the dollar sign ($) may also appear in both the
operand fielp of any instruction in which a 16 bit operand is
allowed, and also in the operand field of any relative jump
instruction. The dollar sign represents the current value of
the assembler/s location counter, that is, the address appearing
on the line at which the assembly is taking place.

34

Z8E - Z80 DEBUG MONITOR Rick Surwilo

The operand field of a relative jump instruction can be entered
in either of two ways. The user may code the operand using the
dollar sign mentioned above as in the following examples:

JR NZ, $+ 11

DJNZ $-24//

;jump to address PC+11 (hex)

;jump to address PC-24 (decimal)

The user may alternatively specify a 16 bit value in the operand
field of a relative jump instruction and let Z8E calculate the
relative displacement from the assembler/s program counter as
shown below:

JR C,LABEL

JR NZ,1080

Assuming LABEL exists, in the symbol
table Z8E will calculate the offset.
LABEL must be within +129 or -126
bytes from the assembler's location
counter or an assembly error will
result.

Z8E calculates the displacement be­
tween the assembler/s current loca­
tion counter and the address 1080 ,
(hex).

Z8E indicates error-free input by first displaying the resultant
object code and then displaying (on the next line) the next
address at which assembly will take place.

Assembly errors are always indicated by a double pair of question
marks which appear following the location counter. An error flag
is also printed and will be one of the following:

ERROR FLAG

L

0

s

T

u

v

MEANING

Label starts with numeric character

Invalid opcode

Syntax error

Symbol table full

Instruction references an undefined
symbol name

Value error - a 16 bit value
was specified as an operand for
an instruction which permits
only 8 bit numbers.

If an error occurs, Z8E will reprompt the user with the same

35

_____, ____,. ____________, ... d&Zii -~ £t .. lliJ!J.;_t_!, ~P1"_1f'!i$f> -""-~--_4-~I_Cil.,~~"'~~

Z8E - Z80 DEBUG MONITOR Rick Surwilo

location counter address.

As was mentioned previously the Z8E assmebler uses standard Zilog
mnemonics. The one exception to this is the EX AF,AF, instruc­
tion. To assemble this instruction the trailing quote character
must be omitted.

Z8E supports the ORG directive which allows the user to change
the value of the assembly location counter. The operand field of
the ORG directive may be a 16 bit argument of any type. After
setting the new assembly location counter Z8E displays the disas­
sembled instruction at the new address.

Z8E supports the DEFB, DEFW, and DDB directives which give the
user the ability to assemble data constants into memory. DEFB
accepts an 8 bit operand; the value of which in placed into
memory at the address of the assembler's current location coun­
ter. DEFW allows the user to specify a 16 bit operand value, the
low order byte of which is placed into memory at the address of
the assembler,s current location counter, while the high order
byte of the operand is placed into memory at the address of the
assembler,s current location counter plus one. This is in accor­
dance with the 8080/ZBO convention of storing the high order byte
of 16 bit data toward the high end of memory. The DDB (define
double byte) directive allows the user to specify a 16 bit value
which, in contrast to the DEFW directive, is stored in memory
with the high order byte toward the low end of memory. That is,
a DDB directive instructs Z8E to store the most significant byte
of the 16 bit operand value in memory at the address of the
assembler,s current location counter, and the least significant
(low order) byte is placed into memory at the address of the
assembler's current location counter plus one.

The EQU directive allows the user to assign a value to a symbol.
An EQU directive does not generate object code. It merely allows
the user to reference a numeric value by a symbolic name in
subsequent assembly statements or monitor commands. It is espe­
cially useful when used prior to disassembling (see Z command)
code for which no symbol table exists. The EQU directive re­
quires the user to supply a symbolic name in the label field of
the instruction. If Z8E indicates errors in an EQU statement by
printing question marks. If an EQU statement is correctly assem­
bled by Z8E, the address of the assembler,s current location
counter is erased since an EQU statement generates no object
code. Operands appearing in EQU statements are evaluated to a 16
bit value. Z8E will display the value of this 16 bit number as
four hex digits in the object code field on the console.

36

Z8E - Z80 DEBUG MONITOR Rick Surwilo

B Set Breakpoint

Breakpoints are those addresses at which the user wishes to
suspend execution of the program under test. Breakpoints may be
set at any time in response to Z8E/s asterisk prompt. Z8E allows
the user to set up to 16 individual breakpoints in his program.
Z8E also allows the user to specify a pass count to be associated
with any breakpoint.

The command is invoked as follows:

*B ARG1[,pass count] [ARG2 ... ARGn] <cr>

where each argument represents the address in the user
program at which a breakpoint is to be set

Normally, that is when no pass count is specifed, execution of
the user program stops and control returns to the Z8E command
level as soon as a breakpoint is reached. Pass counts are used to
inform Z8E that execution of the user program should halt only
when the specified breakpoint is reached the number of times
times indicated by the pass count.

Pass counts are specified by following the breakpoint address
with a comma and then entering a pass count immediately following
the comma.

An existing pass count may be changed to a different value by re­
entering the same· breakpoint address, following it with a comma,
and then specifying the new pass count.

To break on a multi-byte Z80 instruction the address specified as
the breakpoint address must be that of the first byte of the
instruction. Users who fail to observe this rule will generally
find their programs hopping the next bus to never-never land. If
a patch is made at an address of a breakpoint currently in effect
be sure the breakpoint address is still pointing at the first
byte of the new instruction.

Multiple breakpoints may be set with the same B command by sepa­
rating each one with a single space. If multiple breakpoints are
specified and Z8E detects an erroneous argument (a non~existent
symbol for example) a question mark will be printed, and the
command terminates. All valid breakpoints specified up to the
invalid one will be set.

Z8E displays a question mark when a attempt is made to set a
seventeenth breakpoint.

37

Z8E - Z80 DEBUG MONITOR Rick Surwilo

C Clear Breakpoint

The C command clears individual breakpoints previously set by a B
command. The format of the command is:

1rc ARG1 [ARG2 ... ARGn] <cr>

where each arg may be any valid argument type
which evaluates to an address previously set
as a breakpoint

Multiple breakpoints may be cleared by the same C command by
separating each argument with a single space.

Z8E displays a question mark when an attempt is made to clear a
non-existent breakpoint.

To clear ALL breakpoints enter:
indicates ALL.

38

where the asterisk

Z8E - Z80 DEBUG MONITOR Rick Surwilo

D Dump

The D command allows the user to dump memory in both hexadecimal
and ASCII to the console in user specified block sizes.

The format of the command is:

~·:D [ARG1] [ARG2] <cr>

where ARG1

ARG2

the starting address to dump

dictates the dump format
depending on its value. If ARG2
is in the range 0 - 255 then it
is treated as a block size and
represents the number of bytes to
be displayed (0 is treated as
256). If ARG2 is greater than 255
then ARG2 is treated as an ending
address and memory will be dumped
non-interactively to the console.

ARG1 and ARG2 may be of any argument type.

If ARG1 is omitted then the dump resumes from the last memory
address +1 as displayed via the previous invocation of the D
command. If no previous D command had. been given_ then memory is
dumped starting at address 100H.

If ARG2 is omitted then the most recent value of ARG2 (from the
last D command) is used.

The dump command displays the contents of memory in hexadecimal
on the left side of the console while the ASCII equivalent of
each byte is shown on the right side.

During a block by block dump (ARG2 < 256 signifies a block by
block dump) Z8E waits for user input after each block is dis­
played; A carriage return entered by the user causes the next
sequential block to be dumped while any other character causes
the. command to terminate.

For non-interactive dumps, starting address to ending address,
pressing any key terminates the dump.

The dump command provides an especially easy way of exam1n1ng
tabular data, for example in scanning the disk parameter headers
in your BIOS. That is, by specifying the base address as ARG1
and the table size as ARG2 the user can walk through memory,
table by table.

39

Z8E - Z80 DEBUG MONITOR Rick Surwilo

E Examine Memory

The E command allows the user to examine and optionally modify
the contents of memory. The format of the command is:

~'E ARG 1 <cr>

where ARG1 is the address of the first byte to
examine

ARG1 may be any symbol type

Upon receipt of ARG1 Z8E will read the contents of the specified
memory address and display the byte in both hex and ASCII. At
this point the user has two options. The user may specify re­
placement data to be written to memory starting at the current
address, or he may choose to continue to passively examine
memory. The choice is determined by the character(s) which are
input after the contents of an address are displayed.

If the user wishes to modify memory starting at the current
memory address, then an ARGUMENT-STRING may be entered following
the displayed byte. Z8E will evaluate the entire string and
write the evaluated equivalent of the string into consecutive
memory locations starting with the current memory add~ess. For
example the user could enter the _following AR(;UMJ;:NT-STRING:

'''E 45F9
45F9 42 B "This fs a string",OD,OA,13,4F,9,"MQre Text",05

4618 23 II

The user input apprears between the arrows and
would be evaluated to the following 31 bytes:

54 68 69 73 20 49 73 20 61 20 73 74 72 69 6E 67
OD OA 13 4F. 09 4D 6F 62 65 20 74 65 78 74 05

These 31 bytes would be stored into memory
locations 45F9 to 4617 and the next address
displayed on the screen would be 4618.

Remember that ARGUMENT-STRINGS may be terminated by either a
carriage return or by the first space character which does not
appear in a quoted literal string. The choice of terminator
determines the which address will be displayed next. If a car­
riage return is used to terminate the ARGUMENT-STRING, then Z8E
will display the next sequential memory address. For example:

~<E 1002
1002 45 E 12,8F,OO <cr>
1005 28 (

40

-----------------------~~~~·Jl!I!!!11JtlA4ik#£tffi __ itlm3t~- lllitoJ;O_+~!I'L!l l..,r

Z8E - Z80 DEBUG MONITOR Rick Surwilo

The user entered an ARGUMENT-STRING 12,8F,OO which was evaluated
to 3 bytes. Since the ARGUMENT-STRING was terminated by a car­
riage return the next address displayed was 1002+3 or 1005.

By terminating the ARGUMENT-STRING with a space the user can
verify the contents of memory just modified. ARGUMENT-STRINGS
terminated by a space cause Z8E to redisplay the starting ad­
dress; this makes the data just entered availalbe for re­
inspection:

1<E 1002
1002 45 E 12,8F,OO <space>
1002 12

If the user does not want to write any data to the current memory
address, then the character entered should be a space character,
up arrow (carret) character, or a carriage return.

CHARACTER

space

up arrow

<cr>

period

ACTION

read next sequential mem­
ory address

read previous memory ad­
dress

read next sequential mem­
ory address command

terminate command

The user may also change the current memory address
an equal sign "=" followed by a valid argument.
obtained by evaluating this argument becomes the
memory address as shown below:

by entering
The address
new current

~'<E 1344
1344 89
1345 6F
1346 52
9F34 63

<cr>
o <cr>
R =9F34 <cr>
c

41

Z8E - Z80 DEBUG MONITOR Rick Surwilo

F Find

The find command allows the user to search memory for multi-byte
strings in memory. The format of the command is:

*F ARG1 ARG2 <cr>

where ARG1 the starting address at which to begin
the search, it may be of any type

ARG2 is an ARGUMENT-STRING representing the
pattern to search for; the user may
specify any combination of arguments
separated by commas or spaces up to the
limit of Z8E"s command line buffer
which is 80 bytes long. The actual
number of bytes searched for depends on
how the string is ultimately evaluated.

Z8E will display every address which contains data matching ARG2.
The search continues until the end of memory is reached.

The user may elect to cancel the search at any time by depressing
any key on the keyboard.

If ARG2 is a single argument (as opposed to an argument string)
and if this argument is a symbol name then Z8E will reverse the
order of the two bytes comprising the 16 bit operand. Most 16 bit
values in Z80 programs are stored with the least significant byte
at a given addr~ss and the most significant byte at the. given
address+1 (toward the high end of memory). This is in accordance
with the Z80 convention of storing the most significant byte of a
16 bit argument toward the high end of memory.

The following are examples of the FIND command:

'"F 0 SYMBOL

Assuming that the symbol "SYMBOL" is associated with
the hex value 3BF then Z8E would attempt to find all
address containing the byte pair BF and 03 in that
order, with the search beginning at address 0000. Note
that the order of the two bytes is reversed because the
symbol "SYMBOL" exists in the symbol table. To search
for the byte pair 03 and BF in that order the user
should enter the argument as either a 16 bit hex number
(3BF) or as two 8 bit hex numbers (03,BF).

'''F 100 87,32//, "ABCD", 0C3, symbol, "p", 271 F

Assuming that the symbol "symbol" is associated with

42

Z8E - Z80 DEBUG MONITOR Rick Surwilo

the hex value 3BF then Z8E would attempt to find all
starting addresses of the following 12 byte string:

87 20 41 42 43 44 C3 03 BF 70 27 1F

Notice that Z8E would search for the two byte pattern
03 BF as the value for "symbol". If the user happened
to be trying to find the instruction JP symbol
the search would fail because as mentioned above 16 bit
values are stored low order byte first. The user
should have entered C3 BF 03.

The two bytes which represent the address of symbol are
not reversed as in the example above because· ARG2 is
specified as an ARGUMENT-STRING as opposed to.a single
argument.

Z8E would begin its search at address 100 (ARG1).

43

Z8E - Z80 DEBUG MONITOR Rick Surwilo

G Go

The G command instructs Z8E to begin or resume execution of the
user program. The format of the command is:

1<G ARG 1 <cr>

where ARG1 the address of the first
instruction the user wishes
to execute.

ARG1 may be any argument type

Upon receipt of this command Z8E initializes all breakpoints in
the user program, restores all user registers, and transfers
control to the user program under test at the address specified
in ARG1. Execution within the user program will continue until
the user program reaches a breakpoint, at which point control
will return to Z8E. This is the only way the user is able to
return control to Z8E once the GO command is issued.

Z8E breakpoint technique has been designed such that Z8E will not
directly initialize a breakpoint at the address specified in
ARG1. In actualiity it would be impossible to do so since an
attempt would be made to resume execution at this address, a
breakpoint would have been set at this address, and control wo_uld
immediately return to the monitor without this instruction ever
having been executed. This limitation has been overcome in Z8E
by actually copying the single instruction located at ARG1 to
Z8E~s memory, THEN setting the breakpoint at the ARG1 address,
and finally executing the "moved'i vers-ion of the instruction in
Z8E~s memory rather than in the user program. Z8E compensates for
the that CALL and RELATIVE JUMP instructions are affected by the
address at which they are executed. This entire process is total­
ly transparent and it allows the user to debug loops by setting
only a single breakpoint within the range of a loop, obviates the
need to clear any breakpoints which are located at the address
where execution is to resume, and even allows breakpoints at a
DJNZ $ instructions!

HINT:
When proceeding from a breakpoint it is simplest to use the form
of the GO command: *G P <cr> which informs Z8E to resume
execution at the address specified by the user~s current program
counter.

44

------·~~-----------Jd"""....._~.._,J ... _ -~ !I!J'l!l! _ ... 41--L&-.1-A'f.-4_ 1 -·-··""'·'----·-j"',

Z8E - Z80 DEBUG MONITOR Rick Surwilo

H Display Symbol Table

The H command allows the user to view the symbol table on the
console. The format of the command is:

>'<H [ARG 1] <cr>

where ARG1 must be a symbol name

If ARG1 is omitted Z8E will display the entire symbol table
starting with the first symbol in the table. If ARG1 is present
Z8E will begin the display with that symbol. Z8E displays a
block of 32 symbols then waits for user input. If the user
enters a
displayed.
terminates.

carriage return the .the next block of 32 symbols is
If the user enteres any other character the command

If a symbol name entered as ARG1 cannot be found in the symbol
table Z8E prints a question mark.

I '
I

45

________________________ , ____ , _________],

Z8E - Z80 DEBUG MONITOR Rick Surwilo

I Input file

The I command allows the user to load files into the TPA after
the debug session has started. The format of the command is:

>'<I ARG1[,ARG2] <cr>

ARG1 is a single unambiguous file name con­
forming to standard CP/M syntax rules:

- optional drive name followed by a colon

- mandatory primary file name

- optional secondary file name preceded by a
period

ARG2 is an optional load address. If ARG2 is not
specified the named file is loaded at the start of
the TPA (address 100 hex). If ARG2 is given the
file will be loaded at this address. Z8E will NOT
relocate individual addresses within the file to
reflect the new load address. ARG2 may be of any
type.

NOTE: If no arguments are entered then Z8E will
redisplay the starting address, ending ad­
dress, and the number of 256 byte pages of
the last file loaded.

If Z8E detects a error in the file name specification the message
"Syntax error" is printed on the console and the command
terminates.

If Z8E is unable to locate the file on the specified drive the
message "File not found" is printed on the console and the
command terminates.

Z8E contains no facilties for converting .HEX (Intel Hex format)
object files to loadable memory image. All files, regardless of
type, are loaded into memory in exactly the same form as they
appear on disk. To debug a .HEX file the user should first load
the file with the CP/M LOAD command and save the file with the
CP/M SAVE command which produces an absolute memory image load­
able by Z8E. All .COM files are of course already in loadable
form and no LOADing and SAVEing is required.

If the file will not fit into the TPA, Z8E will print the
message:

Out of memory - Continue?

46

---------··-U-l0-00 _____________ .__~'1i!:1!littiJ~.JW!i::dl!IUJL!eiU!d!M_ f_ifu !l'l'l'!!!tl...........l~l·'"'t.

Z8E - Z80 DEBUG MONITOR Rick Surwilo

If the user answers "Y", Z8E will resume loading the file at
address 100 hex if ARG2 was not entered, or at the address speci­
fied as ARG2. If the user types any other response, the loading
process terminates and Z8E returns to the command level. However,
the user may resume loading the file at a later time by issuing
the I command and specifying the file name "." (a single period).
The user may choose to specify a new starting load address
following the period; if ARG2 is omitted then the load address
defaults back to 100 hex, the start of the TPA. If the user has
done any subsequent disk I/O (such as loading a new file of
disassembling to disk) in between the time loading was suspended
and then restarted, Z8E will treat the file name "." as a syntax
error.

The user may occasionally need to overlay a section of code in a
program which already resides in memory with input from a file on
disk, for example in modifying a BIOS in preparation for MOVCPM.
While this is possible with loaders which process .HEX object
files, it is not feasible with Z8E. The user can circumvent this
limitation by loading the file from disk into an unused section
of memory and then using Z8E's move command to move only the data
needed to accomplish the overlay.

47

Z8E - Z80 DEBUG MONITOR Rick Surwilo

J Animated Full Screen Debugger

The J command provides the user with the ability to "see" inside
the Z80 as it executes a program. The Z8E animated debugger
allows the user to view registers, memory, and instructions while
the Z80 is simultaneously executing code. In addtion the J
command provides the user with the ability to interactively
single-step through a program using the full screen facilities of
the command. The format of the J command is:

'" J [/] ['"] [ARG 1] [ARG2]

USE OF THE J COMMAND FOR SINGLE STEPPING IS
DESCRIBED AT THE END OF THIS SECTION. THIS
SECTION DESCRIBES THE NON-INTERACTIVE VERSION OF
THE J COMMAND DURING WHICH THE USER TURNS OVER
COMPLETE CONTROL OF THE EXECUTION OF THE PROGRAM
UNDER TEST TO Z8E.

ARG1 is the starting address of the display and
may be of any valid argument type. For example,
the user may specify '''J P to resume execution
at the point where it had previouly been stopped.

The slash and star control subroutine tracing as
follows:

"/" Slash informs Z8E not to trace any subrou­
tines at all.

"'"" Asterisk informs Z8E not to trace any subrou­
tine calls to addresses located in the range
0 to FF. This feature is intended to screen
out calls to location 5 (BDOS) in order to
prevent Z8E's and the user's stack from
becoming hopelessly entangled.

ARG2 represents an optional timeout paramter which
affects the speed at which instructions are exe­
cuted. This number may be in the range 0 - 255,
with 10 (decimal) as the default if no value is
entered. A timeout value of 10 yields approximate­
ly a one half second delay between the execution
of sequential instructions. A value of 0 repre­
sents NO time delay and is in actuality the fast­
est rate a which the J command can run.

Once the J command commences, Z8E takes over the Z80 and fur­
nishes the user with a "peephole" into the CPU. Z8E executes one
instruction at a time in the user program pausing after each one
to dynamically update the screen display. The J command divides
the screen into three areas: register map, disassembled code, and
memory window. The register map displays all registers on the

48

---------------------------,--1--1~

ZBE - ZBO DEBUG MONITOR Rick Surwilo

top two lines of the screen along with the contents of the F
register which is shown in mnemonic form. ZBE also disassembles
18 instructions based on the current PC value and displays them
on the screen; finally, using the parameters entered in the W command, ZBE snapshots a block of memory and displays it as a window on the screen.

Execution of the user program continues until any non-numeric key
on the keyboard is pressed which ends the command. If a numeric
key is pressed, then Z8E responds by changing the timeout parame­
ter on the fly. The user may use the keys 0 - 9 as a throttle to
govern the execution speed. Zero being the fastest; nine being the slowest.

The command also terminates whenever a user defined breakpoint is
reached. That is, if the user had set a breakpoint via the B command ·and this address is reached the J command ends and ZBE
prompts the user for the next command. ·If the breakpoint had a
pass count associated with it, the pass count must reach zero before the J command will terminate.

USING THE J COMMAND FOR SINGLE STEPPING

ZBE permits the user to single-step through a program while
allowing a continuous full-screen view of the registers, code
being executed, and the contents of a block of memory as speci­
fied by the K command. In order to invoke the full screen single­
step the user enters the following command:

/ instructs Z8E not to trace any subroutines
at all

* instructs Z8E not to trace any subroutines
location below address 100H and is
specifically designed to allow the user the
option of not becoming tangled in BDOS and
BIOS.

Note that this version of the J command is
differentiated from the non-interactive
version by the absence of any argument
indicating a execution address.

This version allows the user to execute one instruction in his
program and then regain control at the ZBE command level. ZBE will execute the instruction pointed to by the user's current PC.
After the instruction is executed an ARROW (=>) points to the
next instruction to be executed.

The I and * options are only valid if the next instruction to be
executed is a CALL. If the program counter is pointing at any other instruction then the I and * have no effect.

49

Z8E - Z80 DEBUG MONITOR Rick Surwilo

K Set Memory Window Parameters for Use With the J Command

The K command sets the starting address and block size of the
memory window display during the J command. The format of the
command is:

'~(K ARG1 [,ARG2]

ARG1 represents the starting address of the memory
block.

ARG2 is an optional size paramter, if omitted the block
size defaults to the maximum.

The maximum block size is 144 decimal which is 90 hex. The
starting address of the memory block can be anywhere in memory;
it does not have to be within the confines of the user program.

50

Z8E - Z80 DEBUG MONITOR Rick Surwilo

M Move Memory

The M command allows the user to move blocks of date from any address in memory to any other address in memory. The format of the command is:

*M ARG1 ARG2 ARG3

where ARG1

ARG2

ARG3

the starting address of
source data block

the

the ending address of the source
data block

the starting address of
destination data block

arguments may be of any type

the

ZBE automatically decides whether a head-to-head or tail-to-tail move is required based on the three arguments entered. If a head-to-head move is needed then the first byte of the source data block will be written to the.first byte position of the destination data block; the second byte of the source data block will be written to the second byte position of the destination data block, and so on until the ending address of the destination data block is reached.

On the other hand, if a tail-to-tail move is necessary Z8E will move the last byte of the source data block to the last byte position of the destination data block, followed by the second to last byte of the source data block to the second to last byte position of the destination data block, and so on until the starting address of the destination block is reached.

A tail to tail move would be necessary in the following example to prevent the overwriting of the destination data block:

*M 1000 100F 1008

51

Z8E - Z80 DEBUG MONITOR Rick Surwilo

N Output to I/O Ports Without Pre-Read

This command allows the user to output data to an I/O port with­out first reading the port (as occurs in the Q command). The format of the command is:

>':N [ARG1]

where ARG1 is the port number to which the
data will be written.

If ARG1 is omitted then Z8E uses the
last port address which had been
input by a previous N or. Q command.

Z8E will prompt the user by displaying the current port number on
the left hand side of the console and postioning the cursor two spaces the the right. At this point the user can enter the data
to be sent to the port in the form of an ARGUMENT-STRING. The ARGUMENT-STRING allows the user to mix various argument types
such as hex data and ASCII literal strings. Of course the user
can elect to merely output single bytes if desired. The N com­
mand is particularly useful when programming various Z80 peri­pheral chips such as the DMA and SIO chips which expect initia­
lization bytes to arrive in a stream without intervening reads.

•':N 80
80 /T/,00,12#,998

This ARGUMENT-STRING would be evaluated into the
5 bytes: 54 00 OC 09 98. These five bytes would
be sent to port 80 via an OTIR instruction. No
delay occurs between successive bytes.

After the data has been entered and after it has been sent to the I/O port Z8E reprompts the user by displaying the same port
number. This gives the user to oppportunity to send addtional
data to the same port. However, by not entering data the user
can change the current port address by entering any of the following:

52

Z8E - Z80 DEBUG MONITOR Rick Surwilo

CARRIAGE
RETURN

The next sequential port number in ascending
order becomes the current port address.

UP ARROW The next sequential port number in descending
order becomes the current port address.

=ARG

PERIOD

The user can
enclosing the
Monitor mode
command (see Q

Any argument appearing immediately after
equal sign (no intervening spaces) is
luated as an 8 bit number, and if found
valid then it becomes the new current
address.

Terminate command

the
eva­

to be
port

also monitor an I/O port with the N command by
port number on the command line in parentheses.

via the N command is identical to that of the Q
command).

53

Z8E - Z80 DEBUG MONITOR Rick Surwilo

0 Output Current Breakpoints to Console

The 0 command allows the user to view all breakpoints currently
in effect. The format of the command is:

*o

no arguments are required

If Z8E finds a symbol name corresponding to the absolute hex
address of a breakpoint address in the symbol table (if a symbol table exists) then the symbol name as well as the memory address is displayed. If no symbol corresponding to the address is found
only the hex address is displayed.

If any pass counts are currently in effect they are displayed
next to the breakpoint address with which they are associated.

54

Z8E - Z80 DEBUG MONITOR Rick Surwilo

P Examine/Modify PSW (Flag Register)

The P command provides a convenient method of
optionally modifying the F(lag) register in the
set. The format of the command is:

examining and
user register

no arguments are required on the command line

Upon receipt of the P command Z8E displays the mnemonics corres­
ponding to the current state of the four user-modifiable bits
(sign, carry, zero, parity) in Flag register:

MNEMONIC MEANING BIT STATUS

p positive reset
M minus set

NC no carry reset
c carry set

PO parity odd reset
PE parity even set

NZ not zero reset
z zero set

Z8E prints the mnemonic corresponding to the current state of
each of the four flag bits. Z8E then issues a carriage
return/line feed and pauses for user input. The user may modify
any of the four flag bits by typing the appropriate mnemonic
followed by a carriage return. The user may enter multiple
mnemonics by separating each one with a space.

If no mnemonics are entered, no flags bits are altered and the
command terminates.

If an invalid flag bit mnemonic is entered Z8E p~ints a question
mark.

55

Z8E - Z80 DEBUG MONITOR Rick Surwilo

Q Query I/O Ports

The Q command allows the user flexible access to I/O
providing the ability to perform single byte input,
input (monitor mode), and single or multi-byte output
pre-read of the port. The format of the command is:

ports by
continuous

following a

;:Q [(] [ARG 1] [)]

where ARG1 is an 8 bit port address in the range
0 - 255

ARG1 may be any symbol type, however if a 16 bit
value is specified only the low order byte is
significant

If no argument is given Z8E will use the most
recent port number as entered by the user via an N
or Q command.

If ARG1 is enclosed in parentheses Z8E will enter
MONITOR MODE.

Upon receipt of ARG1 Z8E will read the specified I/O
display the byte read as both 8 bit hexadecimal value
ASCII equivalent. Command options once a byte has been
the I/O port are as follows:

SINGLE BYTE INPUT

port and
and it's
read from

By entering a SPACE immediately following the
displayed contents of the I/O port the user can
instruct Z8E to continue reading from the same
I/O port:

~~Q EE
EE 24 $ <space>
EE 24 $

By entering a CARRIAGE RETURN following the dis­
played contents of the I/O port the user can
instruct Z8E to read the next port number
(ascending order):

~·'Q EE
EE 24 $ <cr>
EF C1 A

By entering a caret 11 ~ 11 following the
contents of the I/O port the user can

56

displayed
instruct

Z8E - Z80 DEBUG MONITOR Rick Surwilo

Z8E to read the previous port number (descending
order):

i<Q EE
EE ·24 $
ED 06

(up arrow entered by user)

By entering an equal sign "=" followed by a valid
argument, the user can switch to reading a new
port address:

1'Q EE
EE 24 '$' =90
90 BF '?'

CONTINUOUS INPUT (MONITOR MODE)

Z8E provides the user with the ability to monitor
an input port. Z8E will continously read the
selected input port and display the contents on
the screen. Z8E displays the byte in both hex
and binary. This feature is useful in the
testing of I/O ports. Depressing any key on the
keyboard exits monitor mode.

MULTI-BYTE OUTPUT

Following the, read of an I/O port the user may
elect to output data. The user may enter an
ARGUMENT-STRING which will be sent to the port on
a byte by byte basis with no inter~enini reads
between outputs as shown below:

i<Q 50
50 44 'D' 23,9,'B2E',OO,F723,81

string as entered by
user appears between
arrows

The data as entered by the user in this example
would first be converted to the 9 bytes shown
below:

23 09 42 32 45 00 F7 23 81

These 9 bytes would then be sent to port 50 one
byte after another without any intervening reads
or status checks.

57

~--------------~~-· __ ,.. ___ , ... , __ .,.,_, _____ ,_..,J __ ,. __ ..__j_

Z8E - Z80 DEBUG MONITOR Rick Surwilo

R Examine/Modify Register Contents

The R command allows the user to examine and optionally modify
registers and register pairs in the user register set. The
format of the command is:

''<R ARG1 <cr> or space

where ARG1 is any of the 22 register mnemonics
listed below:

A B c D E H L
AF BC DE HL IX IY SP
AF/ BC/ DE/ HV I R p PC

(the program counter may be specified as
either P or PC)

To examine a register the user enters a mnemonic from the above
list followed by a carriage return or a space. Z8E will display
the current contents of the register on the same line. At this
point the user has the option of entering an argument of any type
if the contents of the register or register pair are to be
changed. The replacement value may be terminated by either a
carriage return or a space. If no value is entered Z8E issues a
carriage return/line feed and waits for the next register mnemo­
hic to be entered.

If the user specifies a 16 bit value as the new contents o~ an 8
bit register only the low order byte of the value is used.

The command terminates when a carriage return or space is entered
when Z8E is waiting for a register mnemonic.

58

----------,,,,.,wt ____ OOO>t ______ L~~·-... ·,--,--~----·-·-·-0 ""'-"~""'·~tM! _______ f_N~i"ff•

Z8E - Z80 DEBUG MONITOR Rick Surwilo

S Single Step

The S command allows the user to execute a program instruction by
instruction. The S command provides for full tracing 'of the
user program. The format of the command is:

>'rs [/] [ARG1] <cr>

where ARG1 is the number of instructions to exe­
cute in the user program, if no argument is given
Z8E defaults to 1

ARG1 may be of any type

The slash "/" allows the user control over the tracing of subrou­
tines. If a slash is included before the count (if a count is
entered), or if the slash is the only character on the command
line then subroutines will not be traced. A slash affects only
CALL instructions which lie within the range of ARG1. In the
most typical case no ARG1 is present and the single step count
defaults to 1. If the current PC, 1000 in this example, is
pointing to a call instruction then the command:

1000
1003
1 00.?

'1•s I

CD 56 30
FE 04
CA 17 10

RASRTN: CALL
CP
JP

ANY SUB
4
Z,AHEAD

will cause the entire subroutine ANYSUB to be executed and
control will return to the user at address 1003.

If ARG1 is omitted Z8E will transfer control to the user program
and one instruction, the one pointed to by the current contents
of the user's program counter, will be executed. Following the
execution of the instruction (or group of instructions if ARG2
was greater than 1) Z8E regains control and automatically dis­
plays the current contents of all the user registers.

The user may optionally indicate that more than one instruction
is to be executed by entering a value greater than 1 for ARG1.
Z8E will transfer control to the user program and regain control
only when the specified number of instructions have been exe­
cuted. This feature is useful in debugging small loops; in that
the user can set ARG1 equal to the number of instructions in the
range of the loop. Z8E will display the register contents after
each instruction of the loop is executed and return control to
the user after every iteration of the loop.

The single step command always causes the execution of the in­
struction pointed to by the current contents of the user's pro­
gram counter. This is the instruction that appears in disassem-

59

Z8E - Z80 DEBUG MONITOR Rick Surwilo

bled form as part of the output of the "X" command (display
mach'

1

ine state). Bear in mind that ARG1 is not the address at
whic~ single stepping is to begin; it is a count to the number of
inst~uctions to execute. If the user desires to single step at
an 1

1

address other than the one contained in the program counter,
then

1
the PC register must be modified via the R command before

the single step command is issued to Z8E.

Allowing the convenience of entering "S" <cr> to execute one
instruction has the side effect of not allowing the user to abort
the command in between the time the "S" is typed and the <cr> is
entered by simply omitting an argument and typing <cr>. If you
change your mind and want to cancel the command, type in an inva­
lid ' argument as ARG1. This will cause a question mark to be
displayed; however, no instruction will be executed.

During block tracing (ARG1 greater than 1) the command may be
terminated by hitting any key on the keyboard.

The S command does not relocate instructions before execution as
does the G command (see G command). Hence, it is not possible to
single step through each iteration of a DJNZ $ instruction.

60

Z8E - Z80 DEBUG MONITOR Rick Surwilo

U Write Symbol Table to Disk

The U command allows the user to write the current symbol table
·to a disk file. The format of the command is:

~~u ARG1

ARG1 is the name of the file to which the symbol
table is to be written.

This command is useful to
user via the A command.
disk using the fOrmat of a
can be subsequently loaded

save any symbol names entered by the
The entire symbol table is written to
.SYM file (see appendix A). The table
at the next invokation of Z8E.

Note that since the file is stored as a .SYM formatted file the
user should use a file name extension that begin with the letter
"S". This is due to the fact that the next time Z8E loads this
symbol file it will examine the the first character of the file
name extension. If the first character is an "S" the format is
ass~~ed to be .SYM and the symbol table is built accordingly; the
appearance of any other letter is taken to indicate a .PRN file.

If a file with the name ARG1 already exists on disk it will be
de_leted.

61

Z8E ~ Z80 DEBUG MONITOR Rick Surwilo

V Verify two memory blocks

The V command allows the user to compare two blocks of memory.
Z8E will display all differences between the two. The format of
the command is:

1~v ARG 1 ARG2 ARG3

where ARG1 the starting address of memory block

ARG2 the ending address of memory block 1

ARG3 the starting address of memory block 2

Z8E compares memory.block 1 to memory block 2 byte by byte. If a
mismatch occurs Z8E will display the address in each block at
which the mismatch was found, as well as the byte contained at
each address. The comparison continues until the ending address
is reached.

The user may halt the command at any time by depressing any key
on the keyboard.

62

Z8E - Z80 DEBUG MONITOR Rick Surwilo

W write memory to disk

The W command allows the user to write the contents of memory to
a disk file. The format of the command is:

i•w arg 1 [arg2 arg3]

ARG1 is the name of a file to which writing will
take place.

ARG2 and ARG3 are the optional starting and ending
addresses of the portion of memory to be written
to the disk. If the addresses omitted then the
memory block to be written is defined by the
starting and ending addresses of the last file
loaded. These addresses ean be redisplayed by
entering the I command with no arguments.

Z8E always deletes any file on disk whose name is the same as
ARG1. If no file by this name exists then Z8E will automatically
create it.

Z8E will echo the starting memory address and continually update
the ending memory address as the writing to disk takes place.

63

Z8E - Z80 DEBUG MONITOR Rick Surwilo

X display machine state

The X command displays the current contents of all user
registers. The format of the command is:

no arguments are required

Z8E displays displays all registers, except the I register and
the R register, on two lines of the console. In addition, the
instruction pointed to by the user's program counter is disassem­
bled and displayed on the second line. Think of this as the "on
deck" instruction: the instruction that will be executed upon
the receipt of the next G (GO) or S (SINGLE STEP).· command.

To inspect the I or R registers use the R command.

64

·------r·----------------.....-~--~ ~.-•-·--''"''""'tn-.1-ow-,.H~~-,.?!'J~~
Z8E - Z80 DEBUG MONITOR . Rick Surwilo

Y fill memory

The Y command fills a user specified block of memory with a user
specified pattern of bytes, the length of which is limited only
by the length of Z8E/s input buffer which is 80 bytes long:

*Y ARG1 ARG2 ARG3 <cr>

where ARG1 the starting address of the block
to fill

ARG2 the ending address of the block to
fill

ARG3 is the data pattern to be written
to memory. ARG3 is evaluated by
Z8E as type ARGUMENT-STRING which
may be of any length in the range
of 1 through the number of bytes
remaining in the input buffer once
ARG1 and ARG2 have been input.

The Y command gives the user the capability to initialize memory
to any data pattern. The capability of entering multi-byte
strings as the data pattern with which to fill memory allows the
user to store repeating patterns of data in memory with a single
command. For example if the user entered the command:

*Y 1000 127C 'abcd/,16,77

Z8E , would begin writing the 6 byte pattern
entered as ARG3 starting at address 1000.
repeat at address 1006, 100C, 1012, etc.

(61 62 63 64 16 77)
This pattern would

The command ends after a byte is written to the ARG2 address even
if this byte does not represent the last byte in the ARG3 block.
In the above example the command would end when a byte is written
to address 127C even if that byte is not 77.

65

Z8E - Z80 DEBUG MONITOR Rick Surwilo

Z disassemble command

The Z command allows the user to disassemble a block of data.
Z8E' performs disassembly, which is the translation of binary
memory data into source code format, using the full Z80 instruc­
tion set and Zilog mnemonics. The resultant source code may be
directed to the console or to the console and a disk file simul­
taneously. Z8E also allows the user to disassemble interactively
when ARG2 is equal to 1. The format of the command is:

>'rz ARG1 [ARG2 ARG3] <cr>

where ARG1

ARG2

ARG3

the start address at which disa­
ssembly is to begin

is optional and represents the
upper limit of the disassembly
process (see details below)

is an optional file name speci­
fication for disassembly to disk

ARG1 may be of any argument type.

ARG2 is treated in one of two ways depending on
its value:

1) If ARG2 evaluates to a number between 1 and
255 (decimal) Z8E will disassemble in "block
mode" and ARG2 becomes a count of the number
of instructions per block to disassemble. As
will be explained below, Z8E pauses after
each block is disassembled and allows the
user to continue or to terminate the command.

If ARG2 is omitted altogether a default block
size of 1 is used.

Whenever ARG2 equals 1, either explicitly or
by default, Z8E allows interactive disassem­
bly which allows the user to choose the out­
put format of the data. Interactive disas-
sembly is discussed below. ·

,·

2) If ARG2 evaluates to a number greater than
255 it is assumed to be an ending address.
In this case disassembly will proceed from
starting address (ARG1) to ending address
(ARG2) and no user intervention is required.

ARG3, if present, is assumed to be the name of a
disk ·file into which the disassembled output will
be written. Z8E searches the specified disk for

66

Z8E - Z80 DEBUG MONITOR Rick Surwilo

the named file. If the file is found, then all
disassembled output will be written to it, over­
writing any data that existed there. If the file
does not exist the file will be created using the
name specified in ARG3.

NOTE: If ARG3 is present ARG2 must be explicitly
specified, otherwise Z8E will mistakenly treat the
file name as ARG2.

Z8E outputs to the console using the following format:

ADDRESS OBJECT CODE LABEL: OPCODE OPERAND

Z8E writes to disk using the following formart:

LABEL: OPCODE OPERAND

Z8E disassembles memory block by block in the user specified
block size. After each block is output Z8E pauses for user
input. A carriage return input by the user terminates the com­
mand, while any other character causes the next block to be
disassembled (unless iriteractive mode is in effect). Perhaps the
most convenient way to disassemble is to specify a count of one,
either explicity or by omitting ARG2, and to use the space bar as
an on/off switch. Holding down the space bar produces output,
releasing ~he space bar ends output.

Z8E/s disassembler is especially powerful when used in -conjunc­
tion with the symbol facility. By building a symbol table with
both .PRN and .SYM files, and/or creating user defined symbol
names via the A command, the user can virtually recreate an
assembler output listing (minus the comments) with Z8E inserting
labels and symbolic operands wherever possible.

If Z8E cannot match an operand in the disassembled instruction
to a corresponding symbol in the symbol table, or if no symbol
table exists, Z8E uses the hexadecimal value.

If multiple symbols in the symbol table are equal to the same 16
bit value or address, Z8E disassembles using the first symbol
name encountered in the search of the symbol table which is
equated to the 16 bit operand specified in the instruction being
disassembled. This will unavoidably produce an occasional mis­
named operand when more than one symbol name is equated to the
same 16 bit value.

Z8E does not substitute symbol names in those Z80 instructions
which reference 8 bit immediate data (ie. LD A,24H). Eight bit
immediate data is disassembled as a quoted ASCII character if
it/s absolute value is in the range 20 hex to 7E hex; otherwise,
it is disassembled as a hex byte.

Output by Z8E to a disk file is instantly assemblable by most any

67

--=-----· ... ·--•--in I--=-' --<nl --Oi' ... •!l __________ rt~~~ l$ _,.. __ ~, ,>VI!i<i:<R L.$bkii!HU+J4!£. _ 1 _ _ Ed:! t, ~~~~~,

Z8E - Z80 DEBUG MONITOR Rick Surwilo

assembler which accepts Zilog mnemonics without any modifications
other than adding an END statement at the end of the file.

When disassembling a block of memory (starting address to ending
address) the disassembly process may be halted at any time by
depressing any key on the keyboard.

Interactive disassembly allows the user to specify the format of
the source code produced by disassembly on a line by line basis.
Interactive mode, which is always in effect whenever ARG2 is
equal to 1, causes Z8E to pause after each instruction is disas­
sembled. This pause for input permits the user to enter one of
the following commands to choose the desired output format:

CHARACTER OUTPUT FORMAT EXAMPLE

A ASCII DEFB DEFB 'Q'

B HEX DEFB DEFB 23H

c CODE EX DE,HL

D HEX DEFW DEFW 02FCH or
DEFW LABEL

add COMMENT ; This is a Comment

carriage
return

any other
character

ASCII DEFB:

(terminate command)

PROCEED TO THE
NEXT INSTRUCTION

The contents of memory at the current disassembly ad­
dress is converted to a quoted ASCII character. Values
less than hexadecimal 20 (ASCII space) or greater than
hexadecimal 7E (ASCII tilde) cannot be disassembled
into this format.

HEX DEFB:
The 8 bit contents of memory at the current disassembly
address are converted to a hex byte.

CODE:
This is the normal default for disassembly. As Z8E
moves on to a new address it will always display the
contents of memory as a Z80 instruction. The "C" is
only needed to redisplay the contents of memory as an
instruction had one of the other characters (A, B,~ or
D) already have been entered.

68

Z8E - Z80 DEBUG MONITOR Rick Surwilo

HEX DEFW:
The contents of the two bytes of memory starting at the
loaction of the current disassembly address are output
as a define word directive. The byte pointed to
directly by the current disassembly address becomes the
low order byte of the operand. The byte at disassembly
address plus one becomes the high order byte.

NOTE:
If Z8E had just disassembled a multi­
byte Z80 instruction and the user en­
tered any of the characters listed above
(A, B, C, or D) only the first byte, or
first two for "D", of the instruction
would be converted to the requested
format. The remaining bytes of the
instruction would be treated as a new
Z80 instruction once the user proceeded
to the next disassembly address.

ADDING COMMENTS
Z8E allows the user to add one comment per line of
disassembled code. If MAXLEN is set to 6 then comments
may be up to 29 characters in length. If MAXLEN is set
to 14 then comments may be up to 16 characters in
length.

If during disassembly, Z8E encounters data which cannot· be
disassembled into a valid Z80 instruction it will display the
data as DEFB"s.

69

APPENDIX A

FILE FORMAT FOR SYMBOL TABLES

Z8E is currently set up to be able to read any of the listing
files which appear below:

1. Microsoft MACR0-80 V3.37 .PRN Files May 8, 1980
2. Microsoft MACR0-80 V3.44 .PRN Files Dec 9, 1981
3. Microsoft LINK-80 V3.44 • SYM Files Dec 9, 1981
4. SLR Systems Z80ASM V1 .07 .LST Files
5. SLR Systems SLRNK V1 .07 . SYM Files

The unique characteristics of each are:

MACR0-80 V3.37

Z8E searches for the 8 byte string "Symbols:" in the
file. Once this string is found, Z8E expects an ASCII
carriage return character and an ASCII line feed charac­
ter to be the next two bytes in the file. The symbol
table listing should begin in the next character position
in the file.

Each line of the symbol table listing contains four
symbol names and an associated address.

If the character following the symbol/s hex value 1s an
apostophe, the symbol is considered to be program rela­
tive. If the user specified a bias in the command line
the bias will be added to the symbol/s value.

If the character following the symbol/ s hex value is an
"I" (meaning that the symbol is globally defined) then
the character following the "I" is examined. If this
character is an apostrophe it is considered to be program
relative and the bias, if specified is added to the
value.

If the character following the hex symbol value or the
"I" is any character besides an apostrophe, the symbol is
considered absolute and the bias will not be added.

The file should be terminated with the CP/M end-of-file
character (control Z which is equivalent to a hex 1A).

If the string "Symbols" is never found, Z8E prints the
message: Symbol Table not Found

70

APPENDIX A

MACR0-80 V3.44

Z8E searches for the 8 byte string "Symbols:" in the
file. Once this string is found, Z8E expects an ASCII
carriage return character and an ASCII line feed charac­
ter to be the next two bytes in the file. The symbol
table listing should begin in the next character position
in the file.

In this release of MACR0-80 the format of the symbol
table is completely opposite of V3.37. That is, the hex
value appears before the symbol name. In addition, these
hex value/symbol name combination appear three per line.

The character appearing after the hex value is inter­
preted as described for version 3.37.

If the string "Symbols" is never found, Z8E prints the
message: Symbol Table not Found

LINK-80 V3.44

LINK-80 can optionally produce a link map (.SYM file)
which lists all globally defined symbols if the user
specifies the "Y" option the 180 command line. Z8E
treats all symbols names loaded from a LINK-80 .SYM file
as absolute (non-relocatable) addresses. Nevertheless,
if the user specifies a bias, it will be added to every
symbol value read in from the .SYM file.

Z8E expects the first symbol value in a .SYM file to
begin in the first byte position in the file. Each
symbol value consists of four hexadecimal bytes in ASCII
followed by a tab character. Immediately after the tab
character is the symbol name which may be between one and
six alphanumeric characters in length. The symbol name
is followed by a tab and the sequence repeats. Every
fourth symbol value/symbol name pair should be followed
by a carriage return and line feed.

The file should be terminated with the CP/M end-of-file
character (control Z which is equivalent to a helx 1A).

Z80ASM

Z80ASM may be configured to produce either 80 or 132
column output.

Z8E searches for the 8 byte string "Symbol Table:" in the
file. This string need not be at the beginning of the
file; Z8E will scan the entire file looking for it. Once
this string is found, Z8E expects an ASCII carriage
return character and an ASCII line feed character to be

71

APPENDIX A

the next two bytes in the file. The symbol table list­
ing should begin in the next character position in the
file.

In a Z80ASM .LST file the hex value appears before the
symbol name. Hex value/symbol name combinations appear
three per line. Z80ASM symbol names may contain up to 16
characters. Z8E will accept the first 14 characters of a
symbol name if MAXLEN is set to 14 or the first 6 charac­
ters if MAXLEN is set to 6.

If the string "Symbol Table:" is never found, Z8E prints
the message:

Symbol Table Not Found

SLRNK.

SLRNK can optionally produce a link map (.SYM File)
similar to the one produced by Link-80. Z8E treats all
symbols loaded from a SLRNK .SYM file as absolute sym­
bols. However, as in the case of Link-80 .SYM files, Z8E
will add a relocation bias to each symbol if one is
specified.

Each symbol value in a SLRNK .SYM file consists of four
hexadecimal bytes followed by a space followed by the
symbol name. The symbol name is followed by two ASCII
tab character~.

Use SLRNK's /M optic~ to produce a link map.

NOTE:

While reading in a MACR0-80 .PRN file, or a Z80ASM .LST
file, Z8E is capable of reading an entire assembly list­
ing file looking for the "Symbols:" string or "Symbol
Table:" string. These strings need not be located at the
beginning of the file. However, the loading of the
symbol table will be speeded up considerably if the
symbol table is the only data in the file. This is
accomplished quite easily in both MACR0-80 by turning off
the listing during an assembly through the use of the
.XLIST directive. The listing can then be turned back on
just prior to the END directive via a .LIST directive to
ensure that the symbol table is written to disk.

If you are using Z80ASM use the /S option to instruct
Z80ASM to produce a symbol file.

Z8E is able to process symbol tables which occupy multiple pages
in any of the file types mentioned above. Headings which precede

72

------·----·-------------~--~!)_IIU!4Lf __ J t A"4H!!II!.,,!IM!!:~-~~~""E"''"'J

APPENDIX A

each page are automatically ignored by Z8E.

____, ___ __________ .__. ... U:I _.-:u;lllllll!IIM ~llt.d d LIM dJI!JtL

APPENDIX B - ZILOG MNEMONICS

0049 NN EQU 49H ;B BIT OPERAND
123F NNNN EQU 123FH ; 16 BIT OPERAND
0036 INDEX EQU 36H ;INDEX REGISTER INDEX

010B BE ADC A, (HL)
01 oc - DD BE 36 ADC A, (IX+ INDEX)
010F FD BE 36 ADC A, (IY+INDEX)
0112 BF ADC A,A
0113 BB ADC A,B
0114 B9 ADC A,C
0115 BA ADC A,D
0116 BB ADC A,E
0117 BC ADC A,H
011B BD ADC A,L
0119 CE 49 ADC A,NN
011B ED 4A ADC HL,BC
011D ED 5A ADC HL,DE
011F ED 6A ADC HL,HL
0121 ED 7A ADC HL, SP

0123 B6 ADD A, (HL)
0124 DD B6 36 ADD A,(IX+INDEX)
0127 FD B6 36 ADD A,(IY+INDEX)
012A B7 ADD A,A
012B BO ADD A,B
012C B1" ADD A,C
012D 82 ADD A,D
012E B3 ADD A,E
012F B4 ADD A,H
0130 B5 ADD A,L
0131 C6 49 ADD A,NN
0133 09 ADD HL,BC
0134 19 ADD HL,DE
0135 29 ADD HL,HL
0136 39 ADD HL, SP
0137 DD 09 ADD IX,BC
0139 DD 19 ADD IX, DE
013B DD 29 ADD IX, IX
013D DD 39 ADD IX,SP
013F FD 09 ADD IY,BC
0141 FD 19 ADD IY,DE
0143 FD 29 ADD IY,IY
0145 FD 39 ADD IY,SP

0147 A6 AND (HL)
0148 DD A6 36 AND (IX+INDEX)
014B FD A6 36 AND (IY+INDEX)
014E A7 AND A
014F AO AND B
0150 A1 AND c
0151 A2 AND D

74

---------·------------·---1MII~·---at---·-.... d!-·--"""'"'*1-<~:...,J

APPENDIX B - ZILOG MNEMONICS

0152 A3 AND E
0153 A4 AND H
0154 A5 AND L
0155 E6 49 AND NN

0157 CB 46 BIT 0, (HL)
0159 DD CB 36 46 BIT O,(IX+INDEX)
015D FD CB 36 46 BIT O,(IY+INDEX)
0161 CB 47 BIT O,A
0163 CB 40 BIT O,B
0165 CB 41 BIT o,c
0167 CB 42 BIT O,D
0169 CB 43 BIT O,E
016B CB 44 BIT O,H
016D CB 45 BIT O,L

016F CB 4E BIT 1 , (HL)
0171 DD CB 36 4E BIT 1,(IX+INDEX)
0175 FD CB 36 4E BIT 1,(IY+INDEX)
0179 CB 4F BIT 1 ,A
017B CB 48 BIT 1, B
017D CB 49 BIT 1 'c
017F CB 4A BIT 1 , D
0181 CB 4B BIT 1 , E
0183 CB 4C BIT 1 ,H
0185 CB 4D BIT 1 , L

0187 CB 56 BIT 2,(HL)
0189 DD CB 36 56 BIT 2,(IX+INDEX)
018D FD CB 36 56 BIT 2,(IY+INDEX)
0191 CB 57 BIT 2,A
0193 CB 50 BIT 2,B
0195 CB 51 BIT 2,C
0197 CB 52 BIT 2,D
0199 CB 53 BIT 2,E
019B CB 54 BIT 2,H
019D CB 55 BIT 2,1

019F CB 5E BIT 3, (HL)
o1.A1 DD CB 36 5E BIT 3,(IX+INDEX)
01A5 FD CB 36 5E BIT 3,(IY+INDEX)
01A9 CB SF BIT 3,A
01AB CB 58 BIT 3,B
01AD CB 59 BIT 3,C
OlAF CB 5A BIT 3,D
01B1 CB 5B BIT 3,E
01B3 CB 5C BIT 3,H
01B5 CB 5D BIT 3,1

01B7 CB 66 BIT 4, (HL)

75

.------·""''--WW<U _______________ , ... __ < --L'--~ _JB1_tW LL._B.A --·--'h ... ~~""""""'-~~~~

APPENDIX B - ZILOG MNEMONICS

01B9 DD CB 36 66 BIT 4,(IX+INDEX)
01BD FD CB 36 66 BIT 4,(IY+INDEX)
01C1 CB 67 BIT 4,A
01C3 CB 60 BIT 4,B
01C5 CB 61 BIT 4,C
01C7 CB 62 BIT 4,D
01C9 CB 63 BIT 4,E
01CB CB 64 BIT 4,H
01CD CB 65 BIT 4,L

01CF CB 6E BIT 5,(HL)
01D1 DD CB 36 6E BIT 5,(IX+INDEX)
01D5 FD CB 36 6E BIT 5,(IY+INDEX)
01D9 CB 6F BIT 5 ,A
01DB CB 68 BIT 5,B
01DD CB 69 BIT 5,C
01DF CB 6A BIT 5,D
01E1 CB 6B BIT 5,E
01E3 CB 6C BIT 5,H
01E5 CB 6D BIT 5,L

01E7 CB 76 BIT 6, (HL)
01E9 DD CB 36 76 BIT 6,(IX+INDEX)
01ED FD CB 36 76 BIT 6,(IY+INDEX)
01F1 CB 77 BIT 6,A
01F3 CB 70 BIT 6,B
01F5 CB 71 BIT 6,C
01F7 CB 72 BIT 6,D
,01F9 CB 73 BIT , 6,E
01FB CB 74 BIT 6,H
01FD CB 75 BIT 6,L

01FF CB 7E BIT 7,(HL)
0201 DD CB 36 7E BIT 7,(IX+INDEX)
0205 FD CB 36 7E BIT 7,(IY+INDEX)
0209 CB 7F BIT 7 ,A
020B CB 78 BIT 7,B
020D CB 79 BIT 7,C
020F CB 7A BIT 7,D
0211 CB 7B BIT 7,E
0213 CB 7C BIT 7,H
0215 CB 7D BIT 7,L

0217 DC 123F CALL C,NNNN
021A FC 123F CALL M,NNNN
021D D4 123F CALL NC,NNNN
0220 CD 123F CALL NNNN
0223 C4 123F CALL NZ,NNNN
0226 F4 123F CALL P,NNNN
0229 EC 123F CALL PE,NNNN
022C E4 123F CALL PO,NNNN

76

APPENDIX B - ZILOG MNEMONICS

022F cc 123F CALL Z,NNNN

0232 3F CCF

0233 BE CP (HL)
0234 DD BE 36 CP (IX+INDEX)
0237 FD BE 36 CP (IY+INDEX)
023A BF CP A
023B B8 CP B
023C B9 CP c
023D BA CP D
023E BB CP E
023F BC CP H
0240 BD CP L
0241 FE 49 · CP NN

0243 ED A9 (;PD
0245 ED B9 CPDR
0247 ED A1 CPI
0249 ED B1 CPIR

024B 2F CPL

024C 27 DAA

024D 35 DEC (HL)
024E DD 35 36 DEC (IX+INDEX)
0251 FD 35 36 DEC (IY+INDEX)
0254 3D DEC A
0255 05 DEC B
0256 OB DEC BC
0257 OD DEC c
0258 15 DEC D
0259 1B DEC DE
025A 1D DEC E
025B 25 DEC H
025C 2B DEC HL
025D DD 2B D,EC IX
025F FD 2B DEC IY
0261 2D DEC L
0262 3B DEC SP

0263 F3 DI

0264 10 04 DJNZ $+6

77

____, ___ .,....., ___________ , __ t!:l __ .._~:---------·..._1

APPENDIX B - ZILOG MNEMONICS

0266 FB EI

0267 E3 EX (SP),HL
0268 DD E3 EX (SP),IX
026A FD E3 EX (SP),IY
026C 08 EX AF,AF"
026D EB EX DE,HL
026E D9 EXX

026F 76 HALT

0270 ED 46 IM 0
0272 ED 56 IM 1
0274 ED 5E IM 2

0276 ED 78 IN A, (C)
0278 DB 49 IN A, (NN)
027A ED 40 IN B,(C)
027C ED 48 IN C,(C)
027E ED 50 IN D, (C)
0280 ED 58 IN E, (C)
0284 ED 60 IN H, (C)
0286 ED 68 IN L, (C)

0288 34 INC (HL)
0289 DD 34 ~6 INC (IX+INDEX)
028C FD 34 36 INC (IY+INDEX)
028F 3C INC A
0290 04 INC B
0291 03 INC BC
0292 oc INC c
0293 14 INC D
0294 13 INC DE
0295 1C INC E
0296 24 INt H
0297 23 INC HL
0298 DD 23 INC IX
029A FD 23 INC IY
029C 2C INC L
029D 33 INC SP

029E ED AA IND
02AO ED BA INDR
02A2 ED A2 INI
02A4 ED B2 INIR

02A6 E9 JP (HL)
02A7 DD E9 JP (IX)

78

APPENDIX B - ZILOG MNEMONICS

02A9 FD E9 JP (IY)
02AB DA 123F JP C,NNNN
02AE FA 123F JP M,NNNN
02B1 D2 123F JP NC,NNNN
02B4 C3 123F JP NNNN
02B7 C2 123F JP NZ,NNNN
02BA F2 123F JP P,NNNN
02BD EA 123F JP PE,NNNN
02CO E2 123F JP PO,NNNN
02C3 CA 123F JP Z,NNNN

02C6 38 04 JR C,$+6
02C8 18 04 JR $+6
02CA 30 04 JR NC,$+6
02CC 20 04 JR NZ,$+6
02CE 28 04 JR Z,$+6

02DO 02 LD (BC),A
02D1 12 LD (DE),A
02D2 77 LD (HL),A
02D3 70 LD (HL),B
02D4 71 LD (HL),C
02D5 72 LD (HL),D
02D6 73 LD (HL),E
02D7 74 LD (HL),H
02D8 75 LD (HL),L
02D9 36 49 LD (HL),NN

02DB DD 77 36 LD (IX+INDEX),A
02DE DD 70 36 LD (IX+INDEX),B
02E1 DD 71 36 LD (IX+INDEX),C
02E4 DD 72 36 LD (IX+INDEX),D
02E7 DD 73 36 LD (IX+INDEX),E
02EA DD 74 36 LD (IX+INDEX) ,H
02ED DD 75 36 LD (IX+INDEX),L
02FO DD 36 36 49 LD (IX+INDEX),NN

02F4 FD 77 36 LD (IY+INDEX),A
02F7 FD 70 36 LD (IY+INDEX), B
02FA FD 71 36 LD (IY+INDEX),C
02FD FD 72 36 LD (IY+INDEX) ,D
0300 FD 73 36 LD (IY+INDEX) ,E
0303 FD 74 36 LD (IY+INDEX),H
0306 FD 75 36 LD (IY+INDEX),L
0309 FD 36 36 49 LD (IY+INDEX),NN

030D 32 123F LD (NNNN) ,A
0310 ED 43 123F LD (NNNN),BC
0314 ED 53 123F LD (NNNN) ,DE
0318 22 123F LD (NNNN) ,HL

79

APPENDIX B - ZILOG MNEMONICS

031B DD 22 123F LD (NNNN), IX
031F FD 22 123F LD (NNNN), IY
0323 ED 73 123F LD (NNNN),SP

0327 OA LD A, (BC)
0328 1A LD A, (DE)
0329 7E LD A, (HL)
032A DD 7E 36 LD A,(IX+INDEX)
032D FD 7E 36 LD A,(IY+INDEX)
0330 3A 123F LD A, (NNNN)
0333 7F LD A,A
0334 78 LD A,B
0335 79 LD A,C
0336 7A LD A,D
0337 7B LD A,E
0338 7C LD A,H
0339 ED 57 LD A, I
033B 7D LD A,L
033C 3E 49 LD A,NN
033E ED SF LD A,R

0340 46 LD B, (HL)
0341 DD 46 36 LD B,(IX+INDEX)
0344 FD 46 36 LD B,(IY+INDEX)
0347 47 LD B,A
0348 40 LD B,B
0349 41 LD B,C
034A 42 LD B,D
034B "43 LD B,E
034C 44 LD B,H
034D 45 LD B,L
034E 06 49 LD B,NN

0350 ED 4B 123F LD BC, (NNNN)
0354 01 123F LD BC,NNNN

0357 4E LD C, (HL)
0358 DD 4E 36 LD C,(IX+INDEX)
035B FD 4E 36 LD C,(IY+INDEX)
035E 4F LD C,A
035F 48 LD C,B
0360 49 LD c,c
0361 4A LD C,D
0362 4B LD C,E
0363 4C LD C,H
0364 4D LD C,L
0365 OE 49 LD C,NN

0367 56 LD D, (HL)

80

--~---..---~-~....,------------~- •1 :llil-..~l'!fitMil!¥4\\li¥! ~-MlM .L£51i __ ! !ltJI iJtj -~~~~J,~r

APPENDIX B - ZILOG MNEMONICS

0368 DD 56 36 LD D, (IX+INDEX)
036B FD 56 36 LD D,(IY+INDEX)
036E 57 LD D,A
036F 50 LD D,B
0370 51 LD D,C
0371 52 LD D,D
0372 53 LD D,E
0373 54 LD D,H
0374 55 LD D,L
0375 16 49 LD D,NN

0377 ED 5B 123F LD DE, (NNNN)
037B 11 123F LD DE,NNNN

037E 5E LD E, (HL)
037F DD 5E 36 LD E,(IX+INDEX)
0382 FD 5E 36 LD E,(IY+INDEX)
0385 SF LD E,A
0386 58 LD E,B
0387 59 LD E,C
0388 5A LD E,D
0389 5B LD E,E
038A 5C LD E,H
038B 5D LD E,L
038C 1E 49 LD E,NN

038E 66 LD H, (HL)
038F DD 66 36 LD H,(IX+INDEX)
0392 FD 66 36 LD H,(IY+INDEX)
0395 67 LD H,A
0396 60 LD H,B
0397 61 LD H,C
0398 62 LD H,D
0399 63 LD H,E
039A 64 LD H,H
039B 65 LD H,L
039C 26 49 LD H,NN

039E 2A 123F LD HL,(NNNN)
03A1 21 123F LD HL,NNNN

03A4 ED 47 LD I,A

03A6 DD 2A 123F LD IX, (NNNN)
03AA DD 21 123F LD IX,NNNN

03AE FD 2A 123F LD IY,(NNNN)
03B2 FD 21 123F LD IY,NNNN

81

APPENDIX B - ZILOG MNEMONICS

03B6 6E LD L, (HL)
03B7 DD 6E 36 LD L,(IX+INDEX)
03BA FD 6E 36 LD L,(IY+INDEX)
03BD 6F LD L,A
03BE 68 LD L,B
03BF 69 LD L,C
03CO 6A LD L,D
03C1 6B LD L,E
03C2 6C LD L,H
03C3 6D LD L,L
03C4 2E 49 LD L,NN

03C6 ED 4F LD R,A

03C8 ED 7B 123F LD SP, (NNNN)
03CC F9 LD SP,HL
03CD DD F9 LD SP,IX
03CF FD F9 LD SP,IY
03D1 31 123F LD SP,NNNN

03D4 ED A8 LDD
03D6 ED B8 LDDR
.03D8 ED AO LDI
03DA ED BO LDIR

03DC ED 44 NEG

03DE 00 NOP

03DF B6 OR (HL)
03EO DD B6 36 OR (IX+INDEX)
03E3 FD B6 36 OR (IY+INDEX)
03E6 B7 OR A
03E7 BO OR B
03E8 B1 OR c
03E9 B2 OR D
03EA B3 OR E
03EB B4 OR H
03EC BS OR L
03ED F6 49 OR NN

03EF ED BB OTDR
03F1 ED B3 OTIR

82

,-.---------------··-u•r~.·------------------------.----.~~ t

03F3
03F5

03F7
03F9
03FB
03FD
03FF
0401

0403
0405

0407
0408
0409
040A
040B
040D

040F
0410
0411
0412
0413
0415

0417
0419
041D
0421
0423
0425
0427
0429
042B
042D

042F
0431
0435
0439
043B
043D
043F
0441
0443
0445

APPENDIX B - ZILOG MNEMONICS

ED 79
ED 41

ED 49
ED 51
ED 59
ED 61
ED 69
D3 49

ED AB
ED A3

F1
C1
D1
E1
DD E1
FD E1

F5
C5
D5
E5
DD E5

·. FD E5

CB 86
DD CB
FD CB
CB 87
CB 80
CB 81
CB 82
CB 83
CB 84
CB 85

CB 8E
DD CB
FD CB
CB 8F
CB 88
CB 89
CB 8A
CB 8B
CB 8C
CB 8D

36 86
36 86

36 BE
36 8E

OUT (C) ,A
OUT (C),B

OUT Cc),c
OUT (C) ,D
OUT (C),E
OUT (C) ,H
OUT (C),L
OUT (NN) ,A

OUTD
OUT!

POP AF
POP BC
POP DE
POP HL
POP IX
POP IY

PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY

RES 0, (HL)
RES O,(IX+INDEX)
RES O,(IY+INDEX)
RES O,A
RES O,B
RES o,c
RES O,D
RES O,E
RES O,H
RES O,L

RES 1,(HL)
RES 1,(IX+INDEX)
RES 1,(IY+INDEX)
RES 1, A
RES 1, B
RES 1, c
RES 1 ,D
RES 1 , E
RES 1 ,H
RES 1, L

83

APPENDIX B - ZILOG MNEMONICS

0447 CB 96 RES 2,(HL)
0449 DD CB 36 96 RES 2,(IX+INDEX)
044D FD CB 36 96 RES 2,(IY+INDEX)
0451 CB 97 RES 2,A
0453 CB 90 RES 2,B
0455 CB 91 RES 2,C
0457 CB 92 RES 2,D
0459 CB 93 RES 2,E
045B CB 94 RES 2,H
045D CB 95 RES 2,1

045F CB 9E RES 3, (H1)
0461 DD CB 36 9E RES 3,(IX+INDEX)
0465.· FD CB 36 9E RES 3,(IY+INDEX)
0469 CB 9F RES 3 ,A
046B CB 98 RES 3,B
046D CB 99 RES 3,C
046F CB 9A RES 3,D
0471 CB 9B RES 3,E
0473 CB 9C RES 3,H
0475 CB 9D RES 3,1

0477 CB A6 RES 4, (H1)
0479 DD CB 36 A6 RES 4,(IX+INDEX)
047D FD CB 36 A6. RES 4,(IY+INDEX)
0481 CB A7 RES 4,A
0483 CB.AO RES 4,B
0485 CB A1 RES 4,C
0487 CB A2 RES 4,D
0489 CB A3 RES 4,E
048B CB A4 RES 4,H
048D CB A5 RES 4,1

048F CB AE RES 5,(H1)
0491 DD CB 36 AE RES 5,(IX+INDEX)
0495 FD CB 36 AE RES 5,(IY+INDEX)
0499 CB AF RES 5,A
049B CB A8 RES 5,B
049D CB A9 RES 5,C
049F CB AA RES 5,D
04A1 CB AB RES 5,E
04A3 CB AC RES 5 ,H
04A5 CB AD RES 5,1

04A7 CB B6 RES 6, (H1)
04A9 DD CB 36 B6 RES 6,(IX+INDEX)
04AD FD CB 36 B6 RES 6,(IY+INDEX)
04B1 CB B7 RES 6,A
04B3 CB BO RES 6,B

84

APPENDIX B - ZILOG MNEMONICS

04B5 CB B1 RES 6,C
04B7 CB B2 RES 6,D
04B9 CB B3 RES 6,E
04BB CB B4 RES 6,H
04BD CB B5 RES 6,L

04BF CB BE RES 7, (HL)
04C1 DD CB 36 BE RES 7,(IX+INDEX)
04C5 FD CB 36 BE RES 7,(IY+INDEX)
04C9 CB BF RES 7,A
04CB CB B8 RES 7,B
04CD CB B9 RES 7,C
04CF CB BA RES 7,D
04D1 CB BB RES 7,E
04D3 CB BC RES 7 ,H
04D5 CB BD RES 7,L

04D7 C9 RET
04D8 D8 RET c
04D9 F8 RET M
04DA DO RET NC
04DB co RET NZ
04DC FO RET p
04DD E8 RET PE
04DE EO RET PO
04DF C8 RET z

04EO ED 4D RETI
04Ei ED 45 RETN

04E4 CB 16 RL (HL)
04E6 DD CB 36 16 RL (IX+INDEX)
04EA FD CB 36 16 RL (IY+INDEX)
04EE CB 17 RL A
04FO CB 1 0 RL B
04F2 CB 11 RL c
04F4 CB 12 RL D
04F6 CB 13 .RL E
04F8 CB 14 RL H
04FA CB 15 RL L

04FC 17 RLA

04FD CB 06 RLC (HL)
04FF DD CB 36 06 RLC (IX+INDEX)
0503 FD CB 36 06 RLC (IY+INDEX)
0507 CB 07 RLC A
0509 CB 00 RLC B

85

--------------------------JA-.1 --.-t!l!i!-.. L-,l'!ti-$k #> 1-L t~!MfMI:IMIIllfll!lk._j_,.,..,.,j~,
APPENDIX B - ZILOG MNEMONICS

050B CB 01 RLC c
050D CB 02 RLC D
050F CB 03 RLC E
0511 CB 04 RLC H
0513 CB 05 RLC L

0515 07 RLCA

0516 ED 6F RLD

0518 CB 1E RR (HL)
051A DD CB 36 1E RR (IX+ INDEX)
051E FD CB 36 1E RR (IY+INDEX)
0522 CB 1 F RR A
0524 CB 18 RR B
0526 CB 19 RR c
0528 CB 1A RR D
052A CB 1B RR E
052C CB 1C RR H
052E CB 1D RR L

0530 1F RRA

0531 CB OE RRC. (HL)
. 0533 DD CB 36 OE RRC (IX+INDEX)

()'537 FD CB 36 OE. ~RC (IY+INDEX)
053B CB OF RRC A
053D CB 08 RRC B
053F CB 09 RRC c
0541 CB OA RRC D
0543 CB OB RRC E
0545 CB oc RRC H
0547 CB OD RRC L

0549 OF RRCA

054A ED 67 RRD
i

I "
I
I

054C C7 RST 0
054D CF RST 08H
054E D7 RST 1 OH
054F DF RST 18H
0550 E7 RST 20H
0551 EF RST 28H
0552 F7 RST 30H
0553 FF RST 38H

86

.-,J---------·-----------~'l!!lllllll&tiliJ• ·~~ ;1!1 blllt_1JkllJ !!f

APPENDIX B - ZILOG MNEMONICS

0554 9E SBC A, (HL)
0555 DD 9E 36 SBC A,(IX+INDEX)
0558 FD 9E 36 SBC A,(IY+INDEX)
055B 9F SBC A,A
055C 98 SBC A,B
055D 99 SBC A,C
055E 9A SBC A,D
055F 9B SBC A,E
0560 9C SBC A,H
0561 9D SBC A,L
0562 DE 49 SBC A,NN
0564 ED 42 SBC HL,BC
0566 ED 52 SBC HL,DE
0568 ED 62 SBC HL,HL
056A ED 72 SBC Hl..,SP

056C 37 SCF

056D CB C6 SET 0, (HL)
056F DD CB 36 C6 SET O,(IX+INDEX)
0573 FD CB 36 C6 SET O,(IY+INDEX)
0577 CB C7 SET O,A
0579 CB co SET O,B
057B CB C1 SET o,c
057D CB C2 SET O,D
057F CB C3 SET O,E
0581 CB C4 SET O,H
0583 CB C5 ·SET O,L

0585 CB CE SET 1,(HL)
0587 DD CB 36 CE SET 1,(IX+INDEX)
058B FD CB 36 CE SET 1, (IY+INDEX)
058F CB CF SET 1 ,A
0591 CB C8 SET 1 ,B
0593 CB C9 SET 1 'c
0595 CB CA SET 1 ,D
0597 CB CB SET 1 , E
0599 CB cc SET 1 ,H
059B CB CD SET 1 , L

059D CB D6 SET 2, (HL)
059F DD CB 36 D6 SET 2,(IX+INDEX)
05A3 FD CB 36 D6 SET 2,(IY+INDEX)
05A7 CB D7 SET 2,A
05A9 CB DO SET 2,B
05AB CB D1 SET 2,C
05AD CB D2 SET 2,D
05AF CB D3 SET 2,E
05B1 CB D4 SET 2,H
05B3 CB D5 SET 2,L

87

APPENDIX B -·ZILOG MNEMONICS

05B5. CB DE SET 3,(HL)
05B7 DD CB 36 DE SET 3,(IX+INDEX)
05BB FD CB 36 DE SET 3,(IY+INDEX)
05BF CB DF SET 3,A
05C1 CB D8 SET 3,B
05C3 CB D9 SET 3,C
05C5 CB DA SET 3,D
05C7 CB DB SET 3,E
05C9 CB DC SET 3,H
05CB CB DD SET 3,L

05CD CB E6 SET 4, (HL)
05CF DD CB 36 E6 SET 4,(IX+INDEX)
05D3 FD CB 36 E6 SET 4,(IY+INDEX)
05D7 CB E7 SET 4,A
05D9 CB EO SET 4,B
05DB CB E1 SET 4,C
05DD CB E2 SET 4,D
05DF CB E3 SET 4,E
05E1 CB E4 SET 4,H
05E3 CB E5 SET 4,L

05E5 CB EE SET 5, (HL)
05E7 DD CB 36 EE SET 5,(IX+INDEX)
05EB FD CB 36 EE SET 5,(IY+INDEX)
05EF CB EF SET 5,A
05F1 CB E8 SET 5,B
05F3 CB E9 SET 5,C
05F5 CB EA SET S,D
05F7 CB EB SET 5,E
05F9 CB EC SET 5,H
05FB CB ED SET 5,L

05FD CB F6 SET 6, (HL)
05FF DD CB 36 F6 SET 6,(IX+INDEX)
0603 FD CB 36 F6 SET 6, (IY+INDEX)
0607 CB F7 SET 6,A
0609 CB FO SET 6,B
060B CB F1 SET 6,C
060D CB F2 SET 6,D
060F CB F3 SET 6,E
0611 CB F4 SET 6,H
0613 CB F5 SET 6,L

0615 CB FE SET 7, (HL)
0617 DD CB 36 FE SET 7,(IX+INDEX)
061B FD CB 36 FE SET 7,(IY+INDEX)
061F CB FF SET 7,A
0621 CB F8 SET 7,B

88

--------------------~~lt!Mbii:!YU!,..~:--~\d-.. ___ __."""lw. ,., --

APPENDIX B - ZILOG MNEMONICS

0623 CB F9 SET 7,C
0625 CB FA SET 7,D
0627 CB FB SET 7,E
0629 CB FC SET 7 ,H
062B CB FD SET 7,L

062D CB 26 SLA (HL)
062F DD CB 36 26 SLA (IX+INDEX)
0633 FD CB 36 26 SLA (IY+INDEX)
0637 CB 27 SLA A
0639 CB 20 SLA B
063B CB 21 SLA c
063D CB 22 SLA D
063F CB 23 SLA E
0641 CB 24 SLA H
0643 CB 25 SLA L

0645 CB 2E SRA (HL)
0647 DD CB 36 2E SRA (IX+INDEX)
064B FD CB 36 2E SRA (IY+INDEX)
064F CB 2F SRA A
0651 CB 28 SRA B
0653 CB 29 SRA c
0655 CB 2A SRA D
0657 CB 2B SRA E
0659 CB 2C SRA H
065B CB 2D SRA -L

065D CB 3E SRL (HL)"
065F DD CB 36 3E SRL (IX+INDEX)
0663 FD CB 36 3E SRL (IY+INDEX)
0667 CB 3F SRL A
0669 CB 38 SRL B
066B CB 39 SRL c
066D CB 3A SRL D
066F CB 3B SRL E
0671 CB 3C SRL H
0673 CB 3D SRL L

0675 96 SUB (HL)
0676 DD 96 36 SUB (IX+INDEX)
0679 FD 96 36 SUB (IY+INDEX)
067C 97 SUB A
067D 90 SUB B
067E 91 SUB c
067F 92 SUB D
0680 93 SUB E
0681 94 SUB H
0682 95 SUB L
0683 D6 49 SUB NN

89

APPENDIX B - ZILOG MNEMONICS

0685 AE XOR (HL)
0686 DD AE 36 XOR (IX+INDEX)
0689 FD AE 36 XOR (IY+INDEX)
068C AF XOR A
068D AS XOR B
068E A9 XOR c
068F AA XOR D
0690 AB XOR E
0691 AC XOR H
0692 AD XOR L
0693 EE 49 XOR NN

90

-------------~----------------------:WI!I~~"""·--.... ,,_!!Il,.._\l!'.,.,_iL .. ,P..,,..,_I.,.,.t,.,_,.....,~,, .. _....,.~,.,--'"1-Mii!I'""""~.,.,_I""'F

APPENDIX B - ZILOG MNEMONICS

APPENDIX B - ZILOG MNEMONICS

APPENDIX C - SYSTEM MEMORY MAP

11111111111111111111111111111111 FFFF

CP/M (BDOS and BIOS)

11111111111111111111111111111111

Z8E (Approx 8.75 BYTES)

11111111111111111111111111111111

OPTIONAL SYMBOL TABLE

11111111111111111111111111111111

TPA

I II II II II I II I I II I II I I I II I II I I I II --- o 1 oo
PAGE ZERO RESERVED

llllllllllllllllllllllllllllllll 0000

92

CMD

A
B
c
D
E
F
G
H
I
J
K
M
N
0
p
Q
R
s
u
v
w
X
y
z

[]
[/]
[,.,]
[(] [)]

APPENDIX B - ZILOG MNEMONICS

COMMAND SUMMARY REFERENCE

Description

Inline Assembly
Set Breakpoint
Clear Breakpoint
Dump Memory
Examine Memory
Find
Go
Display Symbol Table
Input File
Full Screen/Animated Debug
Set Memory Window
Move Memory
Output to Port NO Pre-Read
Output Current Breakpoints
Exam/MOdify PSW (Flag Reg)
Query I/O Port
Examine/Modify Registers
Single-Step
Write Symbol Table To Disk
Verify Memory
Write to Disk
Examine Machine State
Fill Memory
Disassemble

Denotes Optional Argument
Do Not Trace Subroutine
Do Not Trace BDOS Call
I/O Port Monitor Mode

Arguments

StartAddr
Addr1[,Pass Count]
Addr1

[Addr2 •. AddrN]
[Addr2 .• AddrN]
[End/Count] [StartAddr]

StartAddr
StartAddr
ExecutionAddr
[FirstSymbol]

MatchData

FileName [,Load Address]
[/] [*] [Addr] [Timeout]
StartAddr [Size]
SourceStart SourceEnd DestStart
[(] PortAddr [)]

[(] PortAddr
RegSpecifier
[/] [Count]
FileName
SourceStart
FileName

FromAddr
StartAddr

[)]

SourceEnd DestStart
[StartAddr] [EndAddr]

ToAddr
End/Count

Data
FileName

Z8E Copyright (c) 1984 AERO-SOFT

93

	Title Page

	Table of Contents

	I. Introduction

	II. Installation

	III. Invoking Z8E at the CP/M Command Level

	IV. Initialization

	V. Command Input

	VI. Breakpoints

	VII. Commands

	Appendix A

	Appendix B - Zilog Memories

