
0 tt\sun ~ microsystems

0

Programmer's Reference Manual
for Curses on the Sun Workstation

' '.

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0 tt\sun
'"" microsystems

0

Programmer's Reference Manual
for Curses on the Sun Workstation

Q Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

;'-! c: XOO- 1 i (•8-0 !

Acknowledgements

This manual was derived from the paper entitled Curaea - A Screen Updating and Curaor
Movement Library Package by Ken Arnold, University of California at Berkeley.

This package would not exist without the work of Bill Joy, who, in writing his editor, created the
capability to generally describe terminals, wrote the routines which read this database, and, most
importantly, those which implement optimal cursor movement, which routines were simply lifted
nearly intact. Doug Merritt and Kurt Sheens also were extremely important, as were both wil
ling to waste time listening to Ken Arnold rant and rave. The help and/or support of Ken
Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly appreciated.

Copyright <!l 1985 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

I
ol

0

0

0
Revision History

Rev Date Comments

A 15 May 1985 First release of this Programmer's Reference Manual in the Sun
documentation package.

0

0
- Ill -

0

0

Q!

0
Contents

Chapter 1 Introduction .. 1-1

Chapter 2 Variables 2-1

Chapter 3 Programming Curses .. 3-1

Chapter 4 Cursor Motion Optimization: Standing Alone ... 4-1

Chapter 5 Curses Functions .. . 5-1

Appendix A Capabilities from termcap A-1

Appendix B The WINDOW structure B-1

0
Appendix C Examples .. C-1

0
-v-

0

0

0

0

0

0

Contents

Chapter 1 Introduction... 1-1
I.I. Overview. ... 1-1
1.2. Terminology.. 1-1

1.2.1. Cursor Addressing Conventions... 1-2
1.3. Compiling Things 1-2
1.4. Screen Updating.. 1-3
1.5. Naming Conventions 1-3

Chapter 2 Variables .. . 2-1

Chapter 3 Programming Curses .. 3-1
3.1. Starting up.. 3-1
3.2. The Nitty-Gritty 3-1

3.2.l. Output.. 3-1
3.2.2. Input 3-2
3.2.3. Miscellaneous.. 3-2

3.3. Finishing up ... 3-2

Chapter -i Cursor Motion Optimization: Standing Alone ... "-1
4.1. Terminal Information 4-1
4.2. Movement Optimizations, or, Getting Over Yonder...................................... 4-2

Chapter 5 Curses Functions .. 5-1
5.1. Output Functions... 5-1

5.1.1. addch and waddch -Add Character to Window 5-1
5.1.2. addstr and waddstr - Add String to Window 5-1
5.1.3. box - Draw Box Around Window 5-2
5.1.4. clear and wclear - Reset Window 5-2
5.1.5. clearok - Set Clear Flag... 5-2
5.1.6. clrtobot and wclrtobot - Clear to Bottom 5-2
5.1.7. clrtoeol and wclrtoeol - Clear to End of Line 5-3
5.1.8. delch and vdelch - Delete Character... 5-3
5.1.9. deleteln and wdeleteln - Delete Current Line 5-3
5.1.10. erase and werase - Erase Window ... 5-3
5.l.ll. insch and vinsch - Insert Character 5-3
5.l.12. insertln and vinsertln - Insert Line.. 5-4
5.1.13. move and wmove - Move .. 5-4

- vii-

5.1.14. overlay - Overlay Windows... 5-4
5.1.15. overwrite - Overwrite Windows.. 5-4
5.1.16. printw and vprintw - Print to Window.. 5-5
5.1.17. refresh and wrefresh - Synchronize.. 5-5
5.1.18. standout and wstandout - Put Characters in

Standout Mode 5-5
5.2. Input Functions 5-6

5.2.1. crmode and nocrmode - Set or Unset from cbreak mode 5-6
5.2.2. echo and noecho - Turn Echo On or Off... 5-6
5.2.3. getch and wgetch - Get Character from Terminal 5-6
5.2.4. getstr and wgetstr - Get String from Terminal 5-6
5.2.5. raw and noraw - Turn Raw Mode On or Off 5-7
5.2.6. scanw and wscanw - Read String from Terminal

5.3. Miscellaneous Functions
5.3.1. delwin - Delete a Window
5.3.2. endwin - Finish up Window Routines
5.3.3. getyx - Get Current Coordinates .. .
5.3.4. inch and winch - Get Character at Current Coordinates
5.3.5. ini tscr - Initialize Screen Routines
5.3.6. leaveok - Set Leave Cursor Flag .. .
5.3.7. longname - Get Full Name of Terminal
5.3.8. mvwin - Move Home Position of Window .. .
5.3.9. newwin - Create a New Window
5.3.10. nl and nonl - Turn Newline Mode On or Off
5.3.11. scrollok - Set Scroll Flag for Window
5.3.12. touchwin - Indicate Window Has Been Changed
5.3.13. subwin - Create a Subwindow
5.3.14. unctrl - Return Representation of Character

5.4. Details .. .
5.4.1. gettmode - Get tty Statistics
5.4.2. mvcur - Move Cursor .. .
5.4.3. sere 11 - Scroll Window
5.4.4. savetty and resetty - Save and Reset tty Flags
5.4.5. setterm - Set Terminal Characteristics
5.4.6. tstp

5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-9

5-10
5-10
5-10
5-10
5-10
5-11
5-11
5-11
5-11
5-11
5-12

Appendix A Capabilities from termcap .. A-1
A.I. Disclaimer .. A-1
A.2. Overview ... A-1
A.3. Variables Set By setterm() .. A-2
A.4. Variables Set By gettmode() ... A-3

Appendix B The WINDOW structure .. B-1

Appendix C Examples .. C-1
C.l. Screen Updating... C-1

- Vlll -

0

0

0

C.l.l. Twinkle .. C-1

0
C.1.2. Life... C-4

C.2. Motion optimization .. C-7
C.2.1. Twinkle ... C-7

0

0
- IX-

0

0

0

0

0

0

Chapter 1

Introduction

CURSES is a Library Package for:

• Updating a acreen with reasonable optimization,

• Getting input from the terminal in a screen-oriented fashion, and

• Moving the curaor optimally from one point to another, independent of the two previous func
tions.

These routines all use the termcap database to describe the capabilities of the terminal.

1.1. Overview

In making available the generalized terminal descriptions in termcap, much information was
made available to the programmer, but little work was taken out of one's hands. CURSES helps
the programmer perform the required functions, those of movement optimization and optimal
screen updating, without doing any of the dirty work, and (hopefully) with nearly as much ease
as is necessary to simply print or read things.

The CURSES package is split into three parts:

1. Screen updating without user input;

2. Screen updating with user input; and

3. Cursor motion optimization.

It is possible to use the motion optimization without using either c;,f the other two, and screen
updating and input can be done without any programmer knowledge of the motion optimization,
or indeed the termcap database itself.

1.2. Terminology

In this document, the following terminology is used with reasonable consistency:

Revision A of 15 May 1985 1-1

Introduction Curses Reference Manual

Table 1-1: Description of Terms

Term Deacription

window An internal representation containing an image of what a section of the terminal
screen may look like at some point in time. This subsection can either encompass
the entire terminal screen, or any smaller portion down to a single character
within that screen. Note that the term window is used elsewhere in the Sun sys
tem manuals when describing the window management packages for driving the
bitmapped screens. CURSES windows bear little, if any, resemblance to the win
dow system concepts.

terminal Sometimes called terminal ,creen. The package's idea of what the terminal's
screen currently looks like, that is, what the user sees now. This is a special
acreen:

screen This is a subset of windows which are as large as the terminal screen, that is, they
start at the upper left hand corner and encompass the lower right hand corner.
One of these, atdacr, is automatically provided for the programmer.

1.2.1. Cursor Addressing Conventions

0

The CURSES library routines address positions on a screen with the y coordinate first and the z
coordinate second. This follows the convention of most terminals that address the screen in row, O·

column order. The reader should note this convention.

1.3. Compiling Things

To use the CURSES library, it is necessary to have certain types and variables defined. There
fore, the programmer must have a line:

#include <curses.h>

at the top of the program source. The header file <curaea.h> needs to include <agtty.h>, so
one should not do so oneself1.

Also, compilations should have the following form:

tutorial% cc [C-compiler options] filename . • • -lcuraea -ltermlib

1 The screen package also uses the Standard 1/0 library, so <cum,.A> includes <•tdio.A>. It is redun
dant (but harmless) Cor the programmer to include <•tdio.h> too.

1-2 Revision A of 15 May 1985

0

0

0

0

Curses Reference Manual Introduction

1.4. Screen Updating

To update the screen optimally, it is necessary for the routines to know what the screen
currently looks like and what the programmer wants it to look like next. For this purpose, a
data type (structure) named WINDOW is defined which describes a window image to the rou
tines, including its starting position on the screen (the (y, x) coordinates of the upper left hand
corner) and its size. One of these (called curacr for current acreen) is a screen image of what
the terminal currently looks like. Another screen (called atdacr, for atandard acreen) is provided
by default to make changes on.

A window is a purely internal representation. It is used to build and store a potential image of a
portion of the terminal. It doesn't bear any necessary relation to what is really on the terminal
screen. It is more like an array of characters on which to make changes.

When one has a window which describes what some part the terminal should look like, the rou
tine re fresh() (or wre fresh() if the window is not ddacr) is called. re fresh() makes the
terminal, in the area covered by the window, look like that window. Note, therefore, that
changing something on a window doea not 'change the terminal'. Actual updates to the terminal
screen are made only by calling re fresh() or wre fresh() . This allows the programmer to
maintain several different ideas of what a portion of the terminal screen should look like. Also,
changes can be made to windows in any order, without regard to motion efficiency. Then, at
will, the programmer can effectively say 'make it look like this,' and let the package worry about
the best way to do this.

1.5. Naming Conventions

As hinted above, the routines can use several windows, but two are automatically given: curacr,
which knows what the terminal looks like, and atdacr, which is what the programmer wants the
terminal to look like next. The user should never really access curur directly. Changes should
be made to the appropriate screen, and then the routine re fresh() (or wre fresh()) should
be called.

Many functions are set up to deal with atdacr as a default screen. For example, to add a charac
ter to stdacr, one calls addch () with the desired character. If a different window is to be used,
the routine waddch () (for window-specific addch ()) is provided 2. This convention of
prepending function names with a 'w' when they are to be applied to specific windows is con
sistent. The only routines which do not do this are those to which a window must always be
specified.

To move the current (y, x) coordinates from one point to another, the routines move() and
wmove () are provided. However, it is often desirable to first move and then perform some 1/0
operation. To avoid clumsiness, most 1/0 routines can be preceded by the prefix 'mv' and the
desired (y, x) coordinates then can be added to the arguments to the function. For example, the
calls

move(y, x);
addch(ch);

2 Actua.lly, addch () is really a #define macro with arguments, as are most of the "functions" which
deal with ,td,cr as a default.

Revision A of 15 May 1985 1-3

Introduction

can be replaced by

mvaddch(y, x, ch);

and

wmove(win, y, x);
waddch(win, ch);

can be replaced by

mvwaddch(win, y, x, ch);

Curses Reference Manual

Note that the window description pointer (win) comes before the added (y, x) coordinates. If
such pointers are needed, they are always the first parameters passed.

1-4 Revision A of 15 May I 985

0

0

0

0

0

0

Chapter 2

Variables

Many variables that describe the terminal environment are available to the programmer. They
are:

Table 2-1: Variables to Describe the Terminal Environment

Type Name Deacription

WINDOW• curscr current version of the screen (terminal screen).
WINDOW• stdscr standard screen. Most updates are done here.
char * Def term default terminal type if type cannot be determined
bool My_term use the terminal specification in Def term as terminal,

relevant of real terminal type
char* ttytype full name of the current terminal.
int LINES number of lines on the terminal
int COLS number of columns on the terminal
int ERR error flag returned by routines on a fail.
int OK error flag returned by routines when things go right.

There are also several #define constants and types which are of general usefulness:

reg

boo!

TRUE

FALSE

storage class 'register' (for example, reg int i;)

boolean type, actually a 'char' (for example, bool doneit;)

boolean 'true' flag (1).

boolean 'false' flag (0).

Revision A of 15 May 1985

Ir-

2-1

0

0

0

0

0

0

Chapter 3

Programming Curses-

This is a description of how to actually use the screen package. In it, we assume all updating,
reading, and so on, is applied to atdur. All instructions will work on any window, by changing
the function name and parameters as mentioned in chapter 1.

3.1. Starting up

To use the screen package, the routines must know about terminal characteristics, and the space
for cur.er and ,td,cr must be allocated. These functions are performed by ini tscr () . Since
it must allocate space for the windows, it can overflow core when attempting to do so. On this
rather rare occasion, ini tscr () returns ERR. ini tscr () must alway• be called before any of
the routines which affect windows are used. If it is not, the program will core dump as soon as
either curscr or .tdur are referenced. However, it is usually best to wait to call it until after
you are sure you will need it, like after checking for startup errors. Terminal status changing
routines like nl () and crmode () should be called after initscr ().

Now that the screen windows have been allocated, you can set them up for the run. If you want
to, say, allow the window to scroll, use scrol lok (). If you want the cursor to be left after the
last change, use leaveok (). If this isn't done, refresh() moves the cursor to the window's
current (y, x) coordinates after updating it. New windows of your own can be created, too, by
using the functions newwin () and subwin (). delwin () gets rid of old windows. If you wish
to change the official size of the terminal by hand, just set the variables LINES and COLS to be
what you want, and then call ini tscr () . This is best done before, but can be done either
before or after, the first call to ini tscr (), as it always deletes any existing .tdacr and/or
curacr before creating new ones.

3.2. The Nitty-Gritty

3.2.1. Output

Now that we have set things up, we will want to actually update the terminal. The basic func
tions used to change what appears on a window are addch () and move(). addch () adds a
character at the current (y, x) coordinates, returning ERR if it would cause the window to ille
gally scroll, that is, printing a character in the lower right-hand corner of a terminal which

Revision A of 15 May 1985 3-1

Programming Curses Curses Reference Manual

automatically scrolls if scrolling is not allowed. move() changes the current (y, x) coordinates to
whatever you want them to be. It returns ERR if you try to move off the window when scrolling
is not allowed. As mentioned above, you can combine the two into mvaddch() to do both O·

things in one fell swoop.

The other output functions, such as addstr () and printw (), all call addch () to add charac
ters to the window.

After you have put on the window what you want there, when you_ want the portion of the ter
minal covered by the window to be made to look like it, you must call re fresh(}. To optimize
finding changes, re fresh(} assumes that any part of the window not changed since the last
re fresh (} of that window has not been changed on the terminal, that is, that you have not
refreshed a portion of the terminal with an overlapping window. If this is not the case, the rou
tine touchwin (} is provided to make it look like the entire window has been changed, thus
making re fresh(} check the whole subsection of the terminal for changes.

If you call wre fresh(} with curacr, it will make the screen look like curacr thinks it looks like.
This is useful for implementing a command to redraw the screen in case it get messed up.

3.2.2. Input

Input is essentially a mirror image of output. The complementary function to addch (} is
getch (} which, if echo is set, calls addch (} to echo the character. Since the screen package
needs to know what is on the terminal at all times, if characters are to be echoed, the tty must
be in raw or cbreak mode. If it is not, getch (} sets it to be cbreak, reads in the character,
and then resets the mode of the terminal to what it was before the call.

3.2.3. Miscellaneous

All sorts of functions exist for maintaining and changing information about the windows. For the
most part, the descriptions in section 5.4. should suffice.

3.3. Finishing up

To do certain optimizations, and, on some terminals, to work at all, some things must be done
before the screen routines start up. These functions are performed in getttmode (} and
setterm (} , which are called by ini tscr (} . To clean up after the routines, the routine
endwin (} is provided. It restores tty modes to what they were when ini tscr (} was first
called. Thus, anytime after the call to initscr, endwin (} should be called before exiting.

3-2 Revision A of 15 May 1985

0

0

0

0

0

Chapter 4

Cursor Motion Optimization: Standing Alone

It is possible to use the cursor optimization functions of this screen package without the over
head and additional size of the screen updating functions. The screen updating functions are
designed for uses where parts of the screen are changed, but the overall image remains the same.
Certain other programs will find it difficult to use these functions in this manner without consid
erable unnecessary program overhead. For such applications, such as some 'crl hacka '3 and
optimizing cat(l)-type programs, all that is needed is the motion optimizations. This, therefore,
is a description of what goes on at the lower levels of this screen package. The descriptions
assume a certain amount of familiarity with programming problems and some finer points of C.
None of it is terribly difficult, but you should be forewarned.

4.1. Terminal Information

To use a terminal's features to the best of a program's abilities, you must first know what they
are. The termcap database describes these, but a certain amount of decoding is necessary, and
there are, of course, both efficient and inefficient ways of reading them in. The algorithm that
CURSES uses is taken from vi and is efficient. It reads them into a set of variables whose names
are two uppercase letters with some mnemonic value. For example, HO is a string which moves
the cursor to the "home" position4. As there are two types of variables involving ttys, there are
two routines. The first, gettmode () , sets some variables based upon the tty modes accessed by
gtty(2) and atty(2). The second, setterm (), does a larger task by reading in the descriptions
from the termcap database. This is the way these routines are used by initscr ():

if (isatty (0)) {
gettmode();

}
else

if (sp=getenv("TERM"))
setterm(sp);

setterm(Def_term);
_puts(TI);
_puts(VS);

a Graphics programs designed to run on character-oriented terminals.
4 These names a.re identical to those variables used in the /etc/tume4p data.base to describe each capa

bility. See Appendix A for a complete list of those read, and termcap(5) for a full description.

Revision A of 15 May 1985 4-1

Cursor Motion Optimization: Standing Alone Curses Reference Manual

isatty () checks to see if file descriptor O is a terminal5. If it is, gettmode () sets the termi
nal description modes from a gtty(2). getenv () is then called to g_et the name of the terminal,
and that value (if there is one) is passed to setterm (), which reads in the variables from o,

termcap associated with that terminal. getenv () returns a pointer to a string containing the
name of the terminal, which we save in the character pointer •P. If is atty() returns false,
the default terminal Def term is used. The Tl and VS sequences initialize the terminal.
_puts() is a macro wh~h uses tputs () (see termcap(3X)) to put out a string. It is these
things which endwin () undoes.

4.2. Movement Optimizations, or, Getting Over Yonder

Now that we have all this useful information, it would be nice to do something with it. The
most difficult thing to do properly is motion optimization. When you consider how many
different features various terminals have (tabs, backtabs, non-destructive space, home sequences,
absolute tabs, ...) you can see that deciding how to get from here to there can be a decidedly
non-trivial task.

After using gettmode () and setterm () to get the terminal descriptions, the function
mvcur () deals with this task. Its usage is simple: you simply tell it where you are now and
where you want to go. For example

mvcur(O, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the screen. If you wish to
force absolute addressing, you can use the function tgoto () from the termcap(3X) routines, or
you can tell mvcur () that you are impossibly far away. For example, to absolutely address the
lower left hand corner of the screen from anywhere just claim that you are in the upper right 0
hand corner:

mvcur (0, COLS-1, LINES-1, 0)

• isatty () is defined in the deCault C library Cunction routines. It does • gttg(2) on the file descriptor
and checks the return value.

4-2 Revision A of 15 May 1985

0

0

0

0

Chapter 5

Curses Functions

In the following definitions, 't' means that the 'function' is really a lldefine macro with argu
ments. This means that it will not show up in stack traces in the debugger, or, in the case of
such functions as addch () , it will show up as its 'w' counterpart. The arguments are given to
show the order and type of each. Their names are not mandatory, just suggestive.

5.1. Output Functions

5.1.1. addch and waddch - Add Character to Window

addch(ch) t
char ch;

waddch (win, ch)
WINDOW *Win;
char ch;

Add the character ch on the window at the current (y, x) co-ordinates. If the character is a
newline ('\n ') the line is cleared to the end, and the current (y, x) co-ordinates are changed to
the beginning of the next line if newline mapping is on, or to the next line at the same x co
ordinate if it is off. A return ('\r ') moves to the beginning of the line on the window. Tabs
('\ t ') are expanded into spaces in the normal tabstop positions of every eight characters. This
returns ERR if it would cause the screen to scroll illegally.

5.1.2. addstr and waddstr -Add String to Window

addstr(st) t
char •str;

waddstr(win, str)
WINDOW *Win;
char •str;

Add the string pointed to by atr on the window at the current (y, x) co-ordinates. This returns
ERR if it would cause the screen to scroll illegally. In this case, it puts on as much as it can.

Revision A of 15 May 1985 5-1

Curses Functions

5.1.3. box - Draw Box Around Window

box(win, vert, hor)
WINDOW win;
char vert, hor;

Curses Reference Manual

Draws a box around the window using vert as the character for drawing the vertical sides, and
hor for drawing the horizontal lines. If scrolling is not allowed, and the window encompasses the
lower right-hand corner of the terminal, the corners are left blank to avoid a scroll.

5.1.,t. clear and wclear - Reset Window

clear() t

wclear(win)
WINDOW *Win;

Resets the entire window to blanks. If win is a screen, this sets the clear flag, which sends a
clear-screen sequence on the next re fresh() call. This also moves the current (y, x) co
ordinates to (0, 0).

5.1.5. clearok - Set Clear Flag

clearok(scr, boolf) t
WINDOW •scr;
bool boolf;

Sets the clear flag for the screen acr. If boo// is TRUE, this forces a clear-screen to be printed on
the next refresh(), or stop it from doing so if boo// is FALSE. This only works on screens,
and, unlike clear(), does not alter the contents of the screen. If acr is curacr, the next
re fresh() call causes a clear-screen, even if the window passed to re fresh() is not a screen.

5.1.6. clrtobot and wclrtobot - Clear to Bottom

clrtobot() t

wclrtobot (win)
WINDOW win;

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does not force
a clear-screen sequence on the next refresh under any circumstances. This has no associated
'mv' command.

5-2 Revision A of 15 May 1985

0

0

0

0

0

0

Curses Reference Manual

5.1. 7. clrtoeol and wclrtoeol - Clear to End of Line

clrtoeol () f

wclrtoeol (win)
WINDOW *Win ; ..

Curses Functions

Wipes the window clear from the current (y, x) co-ordinates to the end of the line. This has no
associated 'mv' command.

5.1.8. delch and wdelch - Delete Character

delch()

wdelch (win)
WINDOW *Win;

Delete the character at the current (y, x) co-ordinates. Each character after it on the line shifts
to the left, and the last character becomes blank.

5.1.9. deleteln and wdeleteln - Delete Current Line

deleteln()

wdeleteln(win)
WINDOW *Win ;

Delete the current line. Every line below the current one moves up, and the bottom line
becomes blank. The current (y, x) co-ordinates remains unchanged.

5.1.10. erase and werase - Erase Window

erase() f

werase(win)
WINDOW *Win;

Erases the window to blanks without setting the clear flag. This is analagous to clear(),
except that it never causes a clear-screen sequence to be generated on a re fresh() . This has
no associated 'mv' command.

5.1.11. insch and winsch - Insert Character

Revision A of 15 May 1985 5-3

Curses Functions

insch (c)
char c;

winsch (win, c)
WINDOW *Win;
char c;

Curses Reference Manual

Insert c at the current (y, x) co-ordinates Each character after it shifts to the right, and the last
character disappears. This returns ERR if it would cause the screen to scroll illegally.

5.1.12. insertln and winsertln - Insert Line

insertln()

winsertln(win)
WINDOW *Win;

Insert a line above the current one. Every line below the current line is shifted down, and the
bottom line disappears. The current line becomes blank, and the current (y, x) co-ordinates
remains unchanged. This returns ERR if it would cause the screen to scroll illegally.

5.1.13. move and wmove - Move

move(y, x) t
int y, x;

wmove(win, y, x)
WINDOW owin;
int y, x;

Change the current (y, x) co-ordinates of the window to (y, z). This returns ERR if it would
cause the screen to scroll illegally.

5.1.14- overlay - Overlay Windows

overlay(winl, win2)
WINDOW *Winl, *Win2;

Overlay win1 on wine. The contents of win1, insofar as they fit, are placed on wine at their
starting (y, x) co-ordinates. This is done non-destructively, that is, blanks on win1 leave the
contents of the space on wine untouched.

5.1.15. overwrite - Overwrite Windows

5-4 Revision A of 15 May 1985

0

0

0

0

0

0

Curses Reference Manual

overwrite(winl, win2)
WINDOW owinl, owin2;

Curses Functions

Overwrite win1 on win2. The contents of win1, insofar as they fit, are placed on win2 at their
starting (y, x) co-ordinates. This is done destructively, that is, blanks on win1 become blank on
win2.

5.1.16. printw and wprintw - Print to Window

printw(fmt, argl, arg2, ...)
char •fmt;

WPrintw(win, fmt, argl, arg2, ...)
WINDOW owin;
char •fmt;

Performs a pr int f () on the window starting at the current (y, x) co-ordinates. It uses
addstr () to add the string on the window. It is often advisable to use the field width options
of pr int f () to avoid leaving things on the window from earlier calls. This returns ERR if it
would cause the screen to scroll illegally.

5.1.17. refresh and wrefresh - Synchronize

refresh() t
wrefresh (win)
WINDOW ow in;

Synchronize the terminal screen with the desired window. If the window is not a screen, only
that part covered by it is updated. This returns ERR if it would cause the screen to scroll ille
gally. In this case, it updates whatever it can without causing the scroll.

5.1.18. standout and wstandout - Put Characters in Standout Mode

standout() t

wstandout (win)
WINDOW owin;

standend() t

wstandend (win)
WINDOW ow in;

Start and stop putting characters onto win in standout mode. standout() causes any charac
ters added to the window to be put in standout mode on the terminal (if it has that capability).
standend () stops this. The sequences SO and SE (or US and UE if they are not defined) are
used (see Appendix A).

Revision A of 15 May 1985 5-5

Curses Functions Curses Reference Manual

5.2. Input Functions

5.2.1. crmode and nocrmode - Set or Unset from cbreak mode

crmode() t

nocrmode() t

Set or unset the terminal to/from cbreak mode.

5.2.2. echo and noecho - Turn Echo On or Off

echo() t

noecho() t

Sets the terminal to echo or not echo characters.

5.2.3. getch and wgetch - Get Character from Terminal

getch() t

wgetch(win)
WINDOW *Win ;

Gets a character from the terminal and (if necessary) echos it on the window. This returns ERR
if it would cause the screen to scroll illegally. Otherwise, the character gotten is returned. If
noecho has been set, then the window is left unaltered. In order to retain control of the termi
nal, it is necessary to have one of noecho, cbreak, or rawmode set. If you do not set one, what
ever routine you call to read characters sets cbreak for you, and then resets to the original mode
when finished.

5.2.,1. getstr and wgetstr - Get String from Terminal

getstr(st) t
char •str;

wgetstr(win, str)
WINDOW *Win;
char •str;

Get a string through the window and put it in the location pointed to by atr, which is assumed
to be large enough to handle it. It sets tty modes if necessary, and then calls getch () (or
wgetch (win)) to get the characters needed to fill in the string until a newline or EOF is

ol

0

encountered. The newline stripped off the string. This returns ERR if it would cause the screen o,
to scroll illegally.

5-6 Revision A of 15 May 1985

0

0

0

Curses Reference Manual

5.2.5. raw and noraw - Turn Raw Mode On or OJ!

raw() t

noraw() t

Curses Functions

Set or unset the terminal to/from raw mode. On version 7 UNIXt systems, this also turns off
newline mapping (see nl ()).

5.2.6. scanw and wscanw - Read String from Terminal

scanw(fmt, argl, arg2, ...)
char ofmt;

wscanw(win, fmt, argl, arg2, ...)
WINDOW owin;
char •fmt;

Perform a scan f () through the window using /mt. It does this using consecutive getch () 's
(or wgetch (win) 's). This returns ERR if it would cause the screen to scroll illegally.

5.3. Miscellaneous Functions

5.3.1. delwin - Delete a Window

delwin(win)
WINDOW owin;

Deletes the window from existence. All resources are freed for future use by calloc{3). If a
window has a subwin () allocated window inside of it, deleting the outer window does not affect
the subwindow, even though this does invalidate it. Therefore, subwindows should be deleted
before their outer windows are.

5.3.2. endwin - Finish up Window Routines

endwin()

Finish up window routines before exit. This restores the terminal _to the state it was in before
initscr () (or gettmode () and setterm ()) was called. endwin should always be called
before exiting. endwin does not itself exit - this is especially useful for resetting tty stats when
trapping rubouts via signa1(2).

6 t UNIX is a. trademark of Bell Laboratories.

Revision A of 15 May 1985 5-7

Curses Functions

5.9.9. getyx - Get Current Coordinates

getyx(win, y, x) t
WINDOW *Win;
int y, x;

Curses Reference Manual

Puts the current (y, x) co-ordinates of win in the variables 1/ and ,: . Since it is a macro, not a
function, you do not pass the address of 1/ and ,: .

5.9.4. inch and winch - Get Character at Current Coordinates

inch() t

winch(win) t
WINDOW *Win;

Returns the character at the current (y, x) co-ordinates on the given window. This does not
make any changes to the window. This has no associated 'mv' command.

5.3.5. ini tscr - Initialize Screen Routines

initscr()

Initialize the screen routines. This must be called before any of the screen routines are used. It
initializes the terminal-type data and such, and without it, none of the routines can operate. If
standard input is not a tty, it sets the specifications to the terminal whose name is pointed to by
Def_term (initialy "dumb"). If the boolean My_term is true, Def_term is always used.

5.3.6. leaveok - Set Leave Cursor Flag

leaveok(win, boolf) t
WINDOW *Win;
bool bool f;

Sets the boolean flag for leaving the cursor after the last change. If boo// is TRUE, the cursor is
left after the last update on the terminal, and the current (y, x) co-ordinates for win are changed
accordingly. If it is FALSE, it is moved to the current (y, x) co-ordinates. This flag (initially
FALSE) retains its value until changed by the user.

For example, say the current position is (0, 0) and we change the character at position (5, 10) in
the window. After calling refresh(), the cursor is either moved to position (5, 10) (if the flag
is TRUE) or the cursor is left at position (0, 0) (if the flag is FALSE).

5-8 Revision A of 15 May 1985

0

0

0

0

0

0

Curses Reference Manual

5.9. 7. longname - Get Full Name of Terminal

longname (termbuf, name)
char •termbuf, •name;

Curses Functions

Fills in name with the long (full) name of the terminal described by the termcap entry in term
buf. It is generally of little use, but is nice for telling the user in a readable format what termi
nal we think he has. The long name is also available in the global variable ttytype. Termbuf is
usually set via the termlib routine tgetent ().

5.3.8. mvwin - Move Home Position of Window

mvwin(win, y, x)
WINDOW *Win;
int y, x;

Move the home position of the window win from its current starting coordinates to (y, :,). If
that would put part or all of the window off the edge of the terminal screen, mvwin () returns
ERR and does not change anything.

5.9.9. newwin - Create a New Window

WINDOW•
newwin(lines, cols, begin_y, begin_x)
int lines, cols, begin_y, begin_x;

Create a new window with line, lines and cola columns starting at position (begin_y, begin_:,).
If either line, or col, is O (zero), that dimension is set to (LINES - begin_y) or (COLS -
begin_:,) respectively. Thus, to get a new window of dimensions LINES X COLS, use
newwin(O, 0, 0, 0).

5.9.10. nl and nonl - Turn Newline Mode On or Off

nl () t

nonl () t

Set or unset the terminal to/from nl mode, that is, start/stop the system from mapping
<carriage-return> to <line-feed>. If the mapping is not done, refresh() can do more optimi
zation, so it is recommended, but not required, that it be turned off.

Revision A of 15 May 1985 5-9

Curses Functions

5.3.11. sere l lok - Set Scroll Flag for Window

scrollok(win, boolf) t
WINDOW *Win;
bool boolf;

Curses Reference Manual

Set the scroll flag for the given window. If boolf is FALSE, scrolling is not allowed. This is its
default setting.

5.3.12. touchwin - Indicate Window Has Been Changed

touchwin(win)
WINDOW *Win;

Make it appear that the every location on the window has been changed. This is usually only
needed for refreshes with overlapping windows.

5.3.13. subwin - Create a Subwindow

WINDOW•
subwin(win, lines, cols, begin_y, begin_x)
WINDOW *Win;
int lines, cols, begin_y, begin_x;

Create a new window with linea lines and cola columns starting at position (begin_y, begin_z) in
the middle of the window win. This means that any change made to either window in the area
covered by the subwindow is made on both windows. begin_y, begin_z are specified relative to
the overall screen, not the relative (0, 0) of win. If either linea or cola is O (zero), that dimen
sion is set to (LINES - begin_y) or (COLS - begin_z) respectively.

5.3.14- unctrl - Return Representation of Character

unctrl (ch) t
char ch;

This is actually a debug function for the library, but it is of general usefulness. It returns a
string which is a representation of ch. Control characters become their upper-case equivalents
preceded by a "'". Other letters stay just as they are.

5.4. Details

5-10 Revision A of 15 May 1985

0

0

0

0

0

0

Curses Reference Manual Curses Functions

5 .. ,t.1. gettmode - Get tty Statistics

gettmode()

Get the tty stats. This is normally called by ini tscr () .

5.,S.2. mvcur - Move Cursor

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, newx;

Moves the terminal's cursor from (laaty, la.tz) to (newy, newz) in an approximation of optimal
fashion. It is possible to use this optimization without the benefit of the screen routines. With
the screen routines, this should not be called by the user. move() and re fresh() should be
used to move the cursor position, so that the routines know what's going on.

5.,S.3. scroll - Scroll Window

scroll (win)
WINDOW *Win;

Scroll the window upward one line. This is normally not used by the user.

5.4-4. savetty and resetty - Save and Reset tty Flags

savetty() t

resetty() t

savetty () saves the current tty characteristic flags. resetty () restores them to what
savetty () stored. These functions are performed automatically by ini tscr () and
endwin ().

5.,t.5. setterm - Set Terminal Characteristics

setterm (name)
char •name;

Set the terminal characteristics to be those of the terminal named name. This is normally called
by ini tscr () .

Revision A of 15 May 1985 5-11

Curses Functions Curses Reference Manual

5.4.6. tstp

tstp ()

If the new tty(4) driver is in use, this function saves the current tty state and then puts the pro
cess to sleep. When the process gets restarted, it restores the tty state and then calls
vrefresh (curscr) to redraw the screen. initscr () sets the signal SIGTSTP to trap to this
routine.

5-12 Revision A of 15 May 1985

0

0

0

0

0

0

Appendix A

Capabilities from termcap

A.1. Disclaimer

The description of terminals is a difficult business, and we only attempt to summarize the capa
bilities here. For a full description see the termcap(5) manual pages.

A.2. Overview

Capabilities from termcap are of three kinds: string valued options, numeric valued options, and
boolean options. The string valued options are the most complicated, since they may include
padding information.

Intelligent terminals often require padding on intelligent operations at high (and sometimes even
low) speed. This is specified by a number before the string in the capability, and has meaning
for the capabilities which have a P at the front of their comment. This normally is a number of
milliseconds to pad the operation. In the current system which has no true programmable
delays, we do this by sending a sequence of pad characters (normally nulls, but can be changed
- specified by PC). In some cases, the pad is better computed as some number of milliseconds
times the number of affected lines (to the bottom of the screen usually, except when terminals
have insert modes which will shift several lines.) This is specified as, for example, 12• before the
capability, to say 12 milliseconds per affected whatever (currently always line). Capabilities
where this makes sense say P•.

Revision A of 15 May 1985 A-1

Capabilities from termcap Curses Reference Manual

A.3. Variables Set By setterm()

0
Table A-1: Variables Set by setterm()

variablea aet by aetterm{)

Type Name Pad Deacription

char• AL P• Add new blank Line
bool AM Automatic Margins
char• BC Back Cursor movement
bool BS BackSpace works
char• BT p Back Tab

bool CA Cursor Addressable
char• CD P• Clear to end of Display
char* CE p Clear to End of line
char• CL P• CLear screen
char• CM p Cursor Motion

char• DC P• Delete Character
char* DL P• Delete Line sequence
char• DM Delete Mode (enter)
char• DO DOwn line sequence
char• ED End Delete mode

bool EO can Erase Overstrikes with '
char• EI End Insert mode

0
char• HO HOme cursor
bool HZ HaZeltine - braindamage
char• IC p Insert Character

bool IN Insert-Null blessing
char• IM enter Insert Mode (IC usually set, too)
char • IP P• Pad after char Inserted using IM+IE
char • LL quick to Last Line, column 0
char* MA ctr! character MAp for cmd mode

bool MI can Move in Insert mode
bool NC No Cr: \r sends \r\n then eats \n
char• ND Non-Destructive space
bool OS OverStrike works
char PC Pad Character

char• SE Standout End (may leave space)
char• SF p Scroll Forwards
char• so Stand Out begin (may leave space)
char• SR p Scroll in Reverse
char• TA p TAb (not ·1 or with padding)

char• TE Terminal address enable Ending sequence
char• TI Terminal address enable Initialization
char• UC Underline a sini,;le Character 0

A-2 Revision A of 15 May 1985

0

0

0

Curses Reference Manual Capabilities from termcap

variablea aet by aetterm{)

Type Name Pad Deacription

char* UE Underline Ending sequence
bool UL UnderLining works even though !OS

char• UP UPline
char• us Underline Starting sequence7
char• VB Visible Bell
char• VE Visual End sequence
char • vs Visual Start sequence
bool XN a Newline "ets eaten after wran

Names starting with X are reserved for severely nauseous glitches

A.4. Variables Set By gettmode()

type

Table A-2: Variables Set By gettmode()

name

variablea aet by gettmode{)

deacription

boo l NONL Term can't hack linefeeds doing a CR
boo l GT Gtty indicates Tabs
bool UPPERCASE Terminal "enerates onlv unnercase letters

7 US and UE, if they do not exist in the termcap entry, a.re copied from SO and SE in ,ellerm()

Revision A of 15 May 1985 A-3

o:

Qi

0

0

0

0

Appendix B

The WINDOW structure

The WINDOW structure is defined as follows:

define WINDOW struct _win_st

struct _win_st {
short _cury, _curx;
short _maxy, JQaXX;

short _begy, _begx;
short _flags;
bool _clear;
bool _leave;
bool _scroll;
char •• _y;
short •_firstch;
short •_lastch;

};

define _SUBWIN 01

define _ENDLINE 02

define _FULLWIN 04
define _SCROLLWIN 010

define _STANDOUT 0200

_cury and curz are the current (y, x) coordinates for the window. New characters added to
the screen are added at this point. mazy and mazz are the maximum values allowed for
(_ cury, _ curz). _ begy and _ begz a~e the starti;;:-g (y, x) coordinates on the terminal for the
window, that is, the window's home. _cury, _curz, _mazy, and _mazz are measured relative
to (_ begy, _ begz), not the terminal's home.

clear tells if a clear-screen sequence is to be generated on the next re fresh() call. This is
only meaningful for screens. The initial clear-screen for the first re fresh() call is generated
by initially setting clear to be TRUE for curacr, which always generates a clear-screen if set,
irrelevant of the dimensions of the window involved. _ leave is TRUE if the current (y, x) coordi
nates and the cursor are to be left after the last character changed on the terminal, or not
moved if there is no change. _ acroU is TRUE if scrolling is allowed.

7 All variables not normally accessed directly by the user are named with an initial '_' to avoid conflicts
with the user's variables.

Revision A of 15 May 1985 8-1

The WINDOW structure Curses Reference Manual

_!I is a pointer to an array of lines which describe the terminal. Thus:

_y[l]

is a pointer to the ith line, and

_y[l] [j]

is the jth character on the ith line.

_ftaga can have one or more values or'd into it. _SUBWIN means that the window is a subwin
dow, which indicates to delwin () that the space for the lines is not to be freed. ENDLINE
says that the end of the line for this window is also the end of a screen. _FULLWIN says that
this window is a screen. _SCROLLWIN indicates that the last character of this screen is at the
lower right-hand corner of the terminal; that is, if a character was put there, the terminal would
scroll. _STANDOUT says that all characters added to the screen are in standout mode.

B-2 Revision A of 15 May 1985

0

0,

0

0

0

0

Appendix C

Examples

Here we present a few examples of how to use the package. They attempt to be representative,
though not comprehensive.

C.1. Screen Updating

The following examples are intended to demonstrate the basic structure of a program using the
screen updating sections of the package. Several of the programs require calculational sections
which are irrelevant to the example, and are therefore usually not included. It is hoped that the
data structure definitions give enough of an idea to allow understanding of what the relevant
portions do. The rest is left as an exercise to the reader.

C.1.1. Twinkle

This is a moderately simple program which prints pretty patterns on the screen that might even
hold your interest for 30 seconds or more. It switches between patterns of asterisks, putting
them on one by one in random order, and then taking them off in the same fashion. It is more
efficient to write this using only the motion optimization, as is demonstrated below.

Revision A of 15 May 1985 C-1

Examples Curses Reference Manual

C-2

include
include

I•

<curses.h>
<signal.h>

• the idea for this program was a product of the imagination of
• Kurt Schoens. Not responsible for minds lost or stolen.
•I

define NCOLS 80
define NLINl!S 24

define MI\XPATTl!RNS 4

struct locs {
char y, x;

};

typedef struct locs LOCS;

LOCS Layout[NCOLS • NLINl!S]; /• current board layout•/

int Pattern,
Numstars;

/• current pattern number•/
/• number of stars in pattern•/

main() {

}

I•

char
int

•getenv();
die();

srand(getpid());

initscr ();
signal(SIGINT, die);
noecho ();
nonl ();
leaveok(stdscr, TRUE);
scrollok(stdscr, FALSE);

for(;;) {

}

makeboard () ;
puton('•');
puton (' ') ;

/• initialize random sequence•/

/• make the board setup•/
/• put on '•'s •/
/• cover up with ' 's •/

• On program exit, move the cursor to the lower left corner by
• direct addressing, since current location is not guaranteed.
• We lie and say we used to be at the upper right corner to guarantee
• absolute addressing.

•I
die() {

signal(SIGINT, SIG_IGN);
mvcur(O, COLS-1, LINES-1, O);

Revision A of 15 May 1985

0

o.
!

0

0

0

0

Curses Reference Manual

}

endwln();
exlt(O);

!•
• Make the current board setup. It picks a random pattern and
• calls lson() to determine if the character is on that pattern
• or not.
•I

makeboard () {

}

I•

reg int
reg LOCS

Y~ x;
•lp;

Pattern= rand()% MAXPATTERNS;
lp = Layout;
for (y = O; y < NLINES; y++)

for (x = O; X < NCOLS; x++)
if (lson (y, x)) {

lp->y = y;
lp++->x = x;

}
Numstars = lp - Layout;

• Return TRUE if (y, x) ls on the current pattern.
•!

ison (y, x)
reg int y, x; {

switch (Pattern) {

}

case O: /• alternating lines •/
return I (y & 01) ;

case 1: /•box•/
if (x >= LINES && y >= NCOLS)

return FALSE;
l f (y < 3 I I y >= NLINES - 3)

return TRUE;
return (x < 3 I I x >= NCOLS - 3);

case 2: /• holy pattern I •/
return ((x + y) & 01);

case 3: /• bar across center •/
return (y >= 9 && y <= 15);

/• NOTREACHED •/
}

puton (ch)
reg char

reg LOCS
reg int

Revision A of 15 May 1985

ch; {

*1p;
r;

Examples

C-3

Examples

}

C.1.2. Life

reg LOCS
LOCS

•end;
temp;

end= &Layout[Numstars];
for (lp = Layout; lp < end; lp++) {

r =rand()% Numstars;

}

temp = *1p;
•lp = Layout[r];
Layout[r] = temp;

for (lp = Layout; lp < end; lp++) {
mvaddch(lp->y, lp->x, ch);
refresh();

}

Curses Reference Manual

This program plays the famous computer pattern game of life (Scientific American, May, 197 4).
The calculational routines create a linked list of structures defining where each piece is. Nothing
here claims to be optimal, merely demonstrative. This program, however, is a very good place to
use the screen updating routines, as it allows them to worry about what the last position looked
like, so you don't have to. It also demonstrates some of the input routines.

C-4 Revision A of 15 May 1985

0

0

0

0

0

0

Curses Reference Manual Examples

include
include

I•

<curses.h>
<signal.h>

• Run a life game. This is a demonstration program for
* the Screen Updating section of the -lcurses cursor package.

•I
/• linked list element•/ struct lst_st {

int y, x; /• (y, x) position of piece •/
struct lst_st

};

typedef struct lst_st

LIST •Head;

main(ac, av)
int ac;
char •av[]; {

int die();

•next, •last; /• doubly linked •/

LIST;

/• head of linked list•/

evalargs(ac, av); I• evaluate arguments•/

initscr ();
signal(SIGINT, die);
crmode ();

I• initialize screen package•/

I• set to restore tty stats •I

}

I•

noecho();
nonl ();

getstart ();
for(;;) {

}

prboard();
update();

I•
I•
I•

I•

I•
!•

set for char-by-char•/
input •/

for optimization•/

get starting position •I
print out current board•/
update board position•/

• This is the routine which is called when rubout is hit.
• It resets the tty stats to their original values. This
• is the normal way of leaving the program.
•!

die() {

/• ignore rubouts •/
/•goto bottom of screen•/

signal(SIGINT, SIG_IGN);
mvcur(O, COLS-1, LINES-1, O);
endwin (); /• set terminal to initial state•/

}

I•

exit(O);

• Get the starting position from the user. They keys u, 1, o, j, 1,
• m, ,, and. are used for moving their relative directions from the

Revision A of 15 May 1985 C-5

Examples Curses Reference Manual

C-6

• k key. Thus, u move diagonally up to the left, , moves directly down,
• etc. x places a piece at the current position, "" takes it away.
• The input can also be from a file. The list is built after the
• board setup is ready.

•I
getstart() {

reg char
reg int
char •buf;

box(stdscr, 'I',
move(l, 1);

do {

c·
' x, y;

. .) . - ' /• box in the screen•/
/• move to upper left corner•/

refresh(); /• print current position •/

}

if ((c=getch()) -- 'q')
break;

switch (c) {
case 'u':
case '1':
case 'o':
case 'j':
case 1 1 1

:

}

case
case
case

'm':
• • • ' .
I • t :

adjustyx(c);
break;

case 'f':
mvaddstr(O, 0, "File name: ");
gets tr (bu f) ;
readfile(buf);
break;

case 'x':
addch('X');
break;

case • • •
addch(• ');
break;

if (Head I= NULL)
dellist(Head);

/• start new list•/

Head= malloc(sizeof (LIST));

I•
• loop through the
• element for each

screen looking for 'x's, and add a list
one

•I
for (y = l; y < LINES -

for (x = l; x <
move(y,

l; y++)
COLS - l; x++) {
x);

Revision A of 15 May 1985

I

ol

0

0

0

Curses Reference Manual

}

!•

if (inch() == 'x')
addlist(y, x);

}

•Printout the current board position from the linked list

•I
prboard() {

reg LIST •hp;

Examples

erase();
box (stdscr, ' 1 ' , '_') ;

/• clear out last position•/
/• box in the screen•/

}

!•
• go through the list adding each piece to the newly
• blank board
•I

for (hp= Head; hp; hp= hp->next)
mvaddch(hp->y, hp->x, 'X');

refresh();

Q C.2. Motion optimization

0

The following example shows how motion optimization is written on its own. Programs which flit
from one place to another without regard for what is already there usually do not need the over
head of both space and time associated with screen updating. They should instead use motion
optimization.

C.2.1. Twinkle

The twinkle program is a good candidate for simple motion optimization. Here is how it could
be written (only the routines that have been changed are shown):

Revision A of 15 May 1985 C-7

Examples Curses Reference Manual

C-8

main() {

}

I•

•sp; reg char
char
int

•getenv();
_putchar(), die();

srand(getpid());

if (isatty(O)) {
gettmode();

}
else {

if (sp=getenv("TERM"))
setterm(sp);

signal(SIGINT, die);

/• initialize random sequence•/

printf("Need a terminal on %d0, _tty_ch);
exit (1);

}
_puts(TI);
_puts(VS);

noecho();
nonl ();
tputs(CL, NLINES, _putchar);
for (; ;) {

}

makeboard () ;
puton('•');
puton(' ');

/• make the board setup•/
/• put on '•'s •I
/• cover up with' 's •/

• _putchar defined for tputs() (and _puts())
•I

_putchar (c)
reg char c; {

putchar(c);
}

puton(ch)
char ch; {

static int
reg LOCS
reg int
reg LOCS
LOCS

lasty, lastx;
•lp;
r;
•end;
temp;

end= &Layout[Numstars];
for (lp = Layout; lp < end; lp++) {

r = rand() % Numstars;
temp = •lp;
•lp = Layout [r] ;

Revision A of 15 May 1985

0

0

0

0

0

0

Curses Reference Manual Examples

Layout[r] = temp;
}

for (lp = Layout; lp < end; lp++)

}

Revision A of 15 May 1985

/• prevent scrolling•/
if (!AM 11 (lp->y < NLINES - 1 11 lp->x < NCOLS - 1)) {

mvcur(lasty, lastx, lp->y, lp->x);

}

putchar(ch);
lasty = lp->y;
if ((lastx = lp->x + 1) >= NCOLS)

if (AM) {

}
else

lastx = O;
lasty++;

lastx = NCOLS - 1;

C-9

O'

0:

0

0

0

A
addch, 5-1
addstr, 5-1

B
box, 5-2

C
clear, 5-2
clearok, 5-2
clrtobot, 5-2
clrtoeol, 5-3
compiling, 1-2
crmode, 5-6
current screen, 1-3
curses library, 1-2

D
delch, 5-3
deleteln, 5-3
delwin, 5-7
detail functions, 5-10 thru 5-12

gettmode, 5-11
mvcur, 5-11
resetty, 5-11
savetty, 5-11
scroll, 5-11
setterm, 5-11
tstp, 5-12

E
echo, 5-6
endwin, 5-7
erase, 5-3

F
functions

details, 5-10 thru 5-12
input, 5-6 thru 5-7
miscellaneous, 5-7 thru 5-10
output, 5-1 thru 5-S

G
getch, 5-6
getstr, 5-6
gettmode, 5-11

Index

getyx, 5-8

I
inch, 5-8
ini tscr, 5-8
input functions, 5-6 thru 5-7

crmode, 5-6
echo, 5-6
getch, 5-6
getstr, 5-6
nocrmode, 5-6
noecho, 5-6
noraw, 5-7
raw, 5-7
scanw, 5-7
wgetch, 5-6
wgetstr, 5-6
wscanw, 5-7

insch, 5-3
insert ln, 5-4

L
leaveok, &-8
longname, 5-9

M
miscellaneous functions, 5-7 thru 5-10

delwin, 5-7
endwin, 5-7
getyx, 5-8
inch, 5-8
ini tscr, 5-8
leaveok, 5-8
longname, 5-9
newwin, 5-9
nl, 5-9
nonl, 5-9
nvwln, 5-9
scrollok, 5-10
subwln, 5-lQ
touchwln, 5-10
unctrl, 5-10
winch, 5-8

move, 5-4
mvcur, 5-11

-xix-

N s
newwin, 5-9 savetty, 5-11
nl, 5-g scanw, 5-7 0 nocrmode, 5-6 screen, 1-1
noecho, 5-6 current, 1·3
nonl, 5-9 standard, 1-3

noraw,5-7 updating, 1-3

nvwln, 5-9 scroll, 5-11
scro llok, 5-10

0 setterm, 5-11

output functions, 5-1 tAru 5-5 standard screen, 1-3

addch, 5-1 standend, 5-5

addstr, 5-1 standout, 5-5
box, 5-2 subwin, 5-10
clear, 5-2
clearok, 5-2 T
clrtobot, 5-2 termcap, A-1 tAru A-3
clrtoeol, 5-3 terminal, 1-1
delch,5-3 terminal screen, 1-1
deleteln, 5-3 touchwin, 5-10
erase, 5-3
insch, 5-3

tstp, 5-12

insertln, 5-4 u move, 5-4
overlay, 5-4 unctrl, 5-10
overwrite, 5-4 updating screen, 1-3
printw,5-5 using curses, 1-2
refresh, 5-5
standend, 5-5 w

0 standout, 5-5 waddch, 5-1
waddch, 5-1 waddstr, 5-1
waddstr, 5-1 wclear, 5-2
wclear, 5-2 wclrtobot, 5-2
wclrtobot, 5-2
wclrtoeol, 5-3

wclrtoeol, 5-3

wdelch, 5-3 wdelch, 5-3

wdeleteln, 5-3 wdeleteln, 5-3

werase, 5-3 werase, 5-3

winsch, 5-3 wgetch, 5-6
winsertln, 5-4 wgetstr, 5-6
wmove, 5-4 winch, 5-8
wpr intw, 5-5 window, 1-1, 1-3
wrefresh, 5-5 window structure, B-1 thru B-2
wstandend, 5-5 _begx, B-1
wstandout, 5-5 _begy, B-1

overlay, 5-4 _clear, B-1
overwrite, 5-4 _curx, B-1

_cury, B-1
p _ENDLINE flag, B-2

printw, 5-5 _flags, B-2
_FULLWIN flag, B-2

R _leave, B-1

raw, 5-7
JDaxx, B-1

re fresh, 5-5
_JDaXy, B-1

reset ty, 5-11
_scroll, B-1
_SCROLLWIN flag,B-2
_STANDOUT flag,B-2 0 _SUBWIN flag, B-2

-xx-

0

0

0

window structure, continued
_y, B-2

winsch, 5-3
winsertln, 5-4
wmove, 5-4
wpr intw, &-5
wre fresh, &-5
wscanw, 5-7
wstandend, &-5
wstandout, &-5

- xxi -

0

o.

0.

