

SPARCompiler C 2.0
Transition Guide

+SunPro
A Sun Microsystems, Inc Business

2550 Garda Avenue
Mountain View, CA 94043
U.S.A.
415960-1300
FAX 415 969-9131

Part Number 800-6579-10
Revision A, July 1992

© 1992 by Sun Microsystems, Inc.-Printed in USA.
2550 Garcia Avenue, Mountain View, California 94043-1100

All rights reserved. No part of this work covered by copyright may be reproduced in any
form or by any means-graphic, electronic or mechanical, including photocopying,
recording, taping, or storage in an information retrieval system- without prior written
permission of the copyright owner.

The OPEN LOOK and the Sun Graphical User Interfaces were developed by Sun
Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of
Xerox in researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox
Graphical User Interface, which license also covers Sun's licensees.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 (October 1988) and FAR 52.227-19
(June 1987).

The product described in this manual may be protected by one or more U.S. patents,
foreign patents, and/ or pending applications.

TRADEMARKS

The Sun logo, Sun Microsystems, Sun Workstation, NeWS, and SPARCompilers are
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SunCD, SunInstall, SunOS, Sun View, NFS, and
Open Windows are trademarks of Sun Microsystems, Inc.

UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc.

X Window System is a product of the Massachusetts Institute of Technology.

SPARC is a registered trademark of SPARC International, Inc. Products bearing the
SPARC trademark are based on an architecture developed by Sun Microsystems, Inc.
SPARCstation is a trademark of SPARC International, Inc., licensed excluSively to Sun
Microsystems, Inc.

All other products or services mentioned in this document are identified by the
trademarks, service marks, or product names as designated by the companies who market
those products. Inquiries concerning such trademarks should be made directly to those
companies.

Portions © AT&T 1983-1990 and reproduced with permission from AT&T.

Contents

1. Transitioning to ANSI C . 1

Introduction. 1

Basic Modes. 2

Mixing Old and Ne';V Style Functions. 3

Writing New Code. 3

Updating Existing Code. 3

Mixing Considerations . 4

Examples. 5

Functions with Varying Arguments. 7

Example... 7

Promotions: Unsigned vs. Value Preserving. 10

Background. 10

Compilation Behavior. 11

First Example: Using a Cast. 11

Bit-fields. 12

iii

Second Example: Result Is the Same. 12

Integral Constants . 13

Third Example: Integral Constants 14

Tokenization and Preprocessing. 14

ANSI C Translation Phases. 14

Old C Translation Phases. 16

Logical Source Lines. 16

Macro Replacement . 17

Using Strings. 17

Token Pasting. 18

Using const and volatile. 19

Types, Only for lvalues . 19

Type Qualifiers in Derived Types. 19

const Means "readonly" . 21

Examples of const Usage. 21

volatile Means Exact Semantics. 21

Examples of volatile Usage. 22

Multibyte Characters and Wide Characters. 23

Asian Languages Require Multibyte Characters 23

Encoding Variations. 23

Wide Characters. 24

Conversion Functions . 24

C Language Features. 25

Standard Headers and Reserved Names. 26

iv C Transition Guide-July 1992

Balancing Process. 26

Standard Headers. 27

Names Reserved for Implementation Use. 28

Names Reserved for Expansion. 29

N ames Safe To Use. 29

Internationalization. 30

Locales. 30

The setlocaleO Function. 30

Changed Functions. 31

New Functions . 32

Grouping and Evaluation in Expressions 33

Definitions. 34

The K&R C Rearrangement License. 34

The ANSI C Rules. 35

The Parentheses are Special Mistake. 35

The As If Rule. 36

Incomplete Types . 36

Types ; 37

Completing Incomplete Types . 37

Declarations 37

Expressions . 38

Justification. 38

Examples. 39

Compatible and Composite Types. 39

Contents v

Multiple Declarations. 39

Separate Compilation Compatibility. 40

Single Compilation Compatibility. 40

Compatible Pointer Types. 41

Compatible Array Types. 41

Compatible Function Types. 41

Special Cases , 42

Composite Type . 42

A. Sun C / Sun ANSI C Differences. 43

Introduction. 43

Sun C Incompatibilities with Sun ANSI C 44

Keywords. 51

B. Comparison of cc Options. 55

C. -Xs Differences for Sun C and ANSI C. 61

Introduction. 61

Index. .. . 63

vi C Transition Guide-July 1992

Tables
Table 1-1

Table 1-2

Table 1-3

Table 1-4

Table 1-5

Trigraph Sequences

Multibyte Character Conversion Functions

Standard headers

Reserved Names

setlocaleO Standard Categories

15

24

27

29

31

Table A-I Sun C Incompatibilities with Sun ANSI C 44

Table A-2 ANSI C Standard Keywords. 52

Table A-3 Sun C (K&R) Keywords. 52

Table A-4 Preprocessor-Defined Keywords. 53

Table B-1 Comparison of cc Options. 56

Table B-2 File Suffixes. 60

TableC-l -XsBehavior.. 61

vii

viii C Transition Guide-July 1992

Preface

C Transition Guide covers the following areas:
• features of ANSI C, such as internationalization and prototyping
• differences between ANSI standard-conformant C and other versions of C

Refer to these other manuals for more information on programming in ANSI C:

• C 2.0 Programmer's Guide
A reference manual to the C language and the ANSI C compiler.

• C 2.0 Libraries Reference Manual
An overview of the C libraries, including many of the common routines
and macros.

• Profiling Tools
Information on many helpful programming tools, such as prof(1),
gprof(1), and various profiling tools.

We recommend two texts for programmers new to the C language: Kernighan
and Ritchie, The C Language, Second Edition, 1988, Prentice-Hall; Harbison and
Steele, C: A Reference Manual, Second Edition, 1987, Prentice-Hall. For
implementation-specific details not covered in this book, refer to the Application
Binary Interface for your machine.

This manual uses the following conventions:

Bold face typewriter font
Indicates commands that you should type in exactly as printed in the
manual.

ix

x

Regular typewriter font
Represents what the system prints on your workstation screen, as well as
keywords, identifiers, program names, filenames and names of libraries.

Italic font

$

Indicates variables or parameters that you should replace with an
appropriate word or string. It is also used for emphasis.

Represents your system prompt for a non-privileged user account.

C Transition Guide-July 1992

Introduction

Transitioning to ANSI C

This guide describes techniques for writing new and upgrading existing C
code to comply with the ANSI C language specification. The information is
presented as a series of articles, each covering a specific transition topic. These
articles were originally written for an in-house AT&T newsletter by David
Prosser, Distinguished Member of Technical Staff, AT&T Bell Laboratories.
Comments by Vijay Tatkar and Walter Nielsen of Sun Microsystems have also
been incorporated.

This guide contains the following transition topics:

• Basic Modes

• Mixing Old and New Style Functions

• Functions With Varying Arguments

• Promotions: Unsigned vs. Value

• Tokenization and Preprocessing

• Using const and volatile

• Multibyte Characters and Wide Characters

• Standard Headers and Reserved Names

• Internationalization

• Grouping and Evaluation in Expressions

• Incomplete Types

1

Basic Modes

2

• Compatible and Composite Types

Appendix A, "Sun C / Sun ANSI C Differerences," contains much of this
information in tabular form.

Appendix B, "Comparison of cc Options," includes a comparison between cc
options supported in K&R C (SunOS 4.1), ANSI C (Sun OS 4.1) and ANSI C
(SunOS 5.0).

Appendix C, "-Xs Differences for Sun C and ANSI C," describes the differences
in compiler behavior when using the -Xs option.

The ANSI C compiler allows both old-style and new-style C code. The
following - X (note case) options provide varying degrees of compliance to the
ANSI C standard:

-Xa

(a = ANSI) ANSI C plus K&R C compatibility extensions, with semantic
changes required by ANSI C. Where K&R C and ANSI C specify different
semantics for the same construct, the compiler will issue warnings about the
conflict and use the ANSI C intrepretation.

-Xc

(c = conformance) Maximally conformant ANSI C, without K&R C
compatibility extensions. The compiler will reject programs that use non
ANSI C constructs.

-Xs

(s = senescent) The compiled language includes all features compatible with
(pre-ANSI) K&R C. The computer warns about all language constructs that
have differing behavior between ANSI C and the old K&R C.

-Xt

(t = transition) ANSI C plus K&R C compatibility extensions, without
semantic changes required by ANSI C. Where K&R C and ANSI C specify
different semantics for the same construct, the compiler will issue warnings
about the conflict and use the K&R C interpretation.

C Transition Guide-July 1992

Mixing Old and New Style Functions
ANSI C's most sweeping change to the language is the function prototype
borrowed from the C++ language. By specifying for each function the number
and types of its parameters, not only does every regular compile get the
benefits of argument/parameter checks (similar to those of lint) for each
function call, but arguments are automatically converted (just as with an
assignment) to the type expected by the function. ANSI C includes rules that
govern the mixing of old- and new-style function declarations since there are
many, many lines of existing C code that could and should be converted to use
prototypes.

Writing New Code

When you write an entirely new program, use new-style function declarations
(function prototypes) in headers and new-style function declarations and
definitions in other C source files. However, if there is a possibility that
someone will port the code to a machine with a pre-ANSI C compiler, we
suggest you use the macro _STDC_ (which is defined only for ANSI C
compilation systems) in both header and source files, as we show later.

Because an ANSI C conforming compiler must issue a diagnostic whenever
two incompatible declarations for the same object or function are in the same
scope, if all functions are declared and defined with prototypes (and the
appropriate headers are included by the correct source files), all calls should
agree with the definition of the functions - thus eliminating one of the most
common C programming mistakes.

Updating Existing Code

If you have an existing application and want the benefits of function
prototypes, there are a number of possibilities for updating, depending on how
much of the code you care to change:

1. Recompile without making any changes.

Even with no coding changes, the compiler will warn you about
mismatches in parameter type and number when invoked with the
-v option.

2. Add function prototypes just to the headers.

All calls to global functions are covered.

Transitioning to ANSI C 3

4

3. Add function prototypes to the headers and start each source file with
function prototypes for its local (static) functions.

All calls to functions are covered, but this requires typing the
interface for each local function twice in the source file.

4. Change all function declarations and definitions to use function prototypes.

For most programmers, choices 2 and 3 are probably the best
cost/benefit compromise. Unfortunately, these options are
precisely the ones that require detailed knowledge of the rules for
mixing of old and new styles.

Mixing Considerations

In order for function prototype declarations to work with old-style function
definitions, both must specify functionally identical interfaces (or have
compatible types using ANSI C's terminology).

For functions with varying arguments, there can be no mixing of ANSI C's
ellipsis notation and the old-style varargs () function definition. For
functions with a fixed number of parameters, the situation is fairly
straightforward: just specify the types of the parameters as they were passed in
previous implementations.

In K&R C, each argument was converted just before it was passed to the called
function according to the default argument promotions. These specified that
all integral types narrower than int were promoted to int size, and any
float argument was promoted to double. This simplified both the compiler
and libraries. Function prototypes are more expressive - the specified
parameter type is what is passed to the function. Thus, if a function prototype
is written for an existing (old-style) function definition, there should be no
parameters in the function prototype with any of the following types:

char signed char unsigned char float

short signed short unsigned short

There still remain two complications with writing prototypes: typedef names
and the promotion rules for narrow unsigned types.

If parameters in old-style functions were declared using typedef names such
as off_t and ino_t, it is important to know whether or not the typedef
name designates a type that is affected by the default argument promotions.

C Transition Guide-July 1992

Examples

For these two, off_t is a long, so it is appropriate to use in a function
prototype, but ino_t used to be an unsigned short, so if it were used in a
prototype, the compiler would issue a diagnostic (possibly fatal) because the
old-style definition and the prototype specify different and incompatible
interfaces.

Just what should be used instead of an unsigned short leads us into the final
complication. The one biggest incompatibility between K&R C and the ANSI C
compiler is the promotion rule for the widening of unsigned char and
unsigned short to an int value. (See "Promotions: Unsigned vs. Value
Preserving" on page 10.) Unfortunately, the parameter type that matches such
an old-style parameter depends on the compilation mode used when you
compile: for -Xs and -Xt, unsigned int should be used; -Xa and -Xc
should use into The best approach (even though it violates the spirit of
choices 2 and 3 above) is to change the old-style definition to specify either
int or unsigned int and use the matching type in the function prototype
(you can always assign its value to a local variable with the narrower type, if
necessary, after you enter the function).

Watch out for the use of id's in prototypes that may be affected by
preprocessing. Consider the following example:

#define status 23
void my_exit (int status); /* Normally, scope begins */

/* and ends with prototype */

Do not mix function prototypes with old-style function declarations that
contain narrow types.

void foo(unsigned char, unsigned short);
void foo(i, j) unsigned char i; unsigned short j; { ... }

Transitioning to ANSI C 5

6

Appropriate use of _STDC_ produces a header file that can be used for both
old and new compilers:

header.h:

struct s { /* * / };

#ifdef
void errmsg(int, ...);
struct s *f(const char *);
int g (void) ;

#else
void errmsg();
struct s *f();
int g();

#endif

The following function uses prototypes and can still be compiled on an older
system:

struct s *
#ifdef STDC
f(const char *p)
#else
f(p) char *p;
#endif

/* */

C Transition Guide-July 1992

Here is an updated source file (as with choice 3 above). The local function still
uses an old style definition, but a prototype is included for newer compilers:

source.c:

inc 1 ude <header.h>
typedef /* .
#ifdef STDC

* / MyType;

static void del (MyType *);
/ * . * /

#endif
static void
del (p)

MyType *p;

/*

/*

*/

*/

Functions with Varying Arguments

Example

In previous implementations, you could not specify the parameter types that a
function expected, but ANSI C encourages you to use prototypes to do just
that. In order to support functions such as printf (), the syntax for
prototypes includes a special ellipsis (...) terminator. Because an
implementation might be required to do unusual things to handle a varying
number of arguments, ANSI C requires that all declarations and the definition
of such a function include the ellipsis terminator.

Since there are no names for the" ... " part of the parameters, a special set of
macros contained in stdarg. h gives the function access to these arguments.
Earlier versions of such functions had to use similar macros contained in
varargs .h.

Let us assume that the function we wish to write is an error handler called
errmsg () that returns void and whose only fixed parameter is an int that
specifies details about the error message. This parameter may be followed by
a file name, or a line number, or both, and these are followed by format and
arguments, similar to those of printf (), that specify the text of the error
message.

Transitioning to ANSI C 7

8

In order to allow our example to compile with earlier compilers, we will make
extensive use of the macro _STDC __ which is defined only for ANSI C
compilation systems. Thus the function's declaration (in the appropriate
header file) would be:

#ifdef
void errmsg(int code, ...);

#else
void errmsg();

#endif

The file that contains the definition of errmsg () is where the old and new
styles can get complex. First, the header to include depends on the
compilation system:

#ifdef
#include <stdarg.h>
#else
#include <varargs.h>
#endif
#include <stdio.h>

(stdio. h is included because we call fprintf () and vfprintf () later.)

Next comes the function's definition. The identifiers va alist and va del
are part of the old-style varargs . h interface.

void
#ifdef STDC

errmsg(int code, ...)
#else
errmsg(va_alist) va_del /* note:nosemicolon! */
#endif

/ * more detail be/ow * /

Since the old-style variable argument mechanism did not allow us to specify
any fixed parameters (at least not officially), we need to arrange for them to be
accessed before the varying portion. Also due to the lack of a name for the
1/ • •• " part of the parameters, the new va_start () macro has a second
argument - the name of the parameter that comes just before the 1/ •• • 1/

terminator.

C Transition Guide-July 1992

Sun ANSI C, as an extension, allows functions to be declared and defined with
no fixed parameters, as in:

int f (...) ;

For such functions, va_start () should be invoked with an empty second
argument, as in:

va_start (ap,)

The following is the body of the function:

va_list ap;
char *fmt;

#ifdef STDC
va_start (ap, code);

#else
int code;

va_start (ap) ;
/ * extract the fixed argument * /
code = va_arg(ap, int);

#endif
if (code & FILENAME)

(void)fprintf(stderr, "\"%s\": Of, va_arg(ap, char *));
if (code & LINENUMBER)

(void)fprintf(stderr, "%d: Of, va_arg(ap, int));
if (code & WARNING)

(void)fputs("warning: " stderr);
fmt = va_arg(ap, char *);
(void)vfprintf(stderr, fmt, ap);
va_end (ap) ;

Both the va_arg () and va_end () macros work the same for the old-style
and ANSI C versions. Because va_arg () changes the value of ap, the call to
vfprintf () cannot be:

(void)vfprintf(stderr, va_arg(ap, char *), ap);

The definitions for the macros FILENAME, LINENUMBER, and WARNING are
presumably contained in the same header as the declaration of errmsg () .

Transitioning to ANSI C 9

A sample call to errmsg () could be:

errmsg (FILENAME, "<command line>", "cannot open: %s\n",
argv[optind]) ;

Promotions: Unsigned vs. Value Preserving

Background

10

The following information appears in the Rationale that accompanies the draft
C Standard:

QUIET CHANGE

A program that depends on unsigned preserving arithmetic
conversions will behave differently, probably without complaint.
This is considered to be the most serious change made by the
Committee to a widespread current practice.

This section explores how this change affects our code.

According to Kernighan and Ritchie, The C Programming Language (First
Edition, hereafter referred to as K&R) unsigned specified exactly one type;
there were no unsigned chars, unsigned shorts, or unsigned longs, but
most C compilers added these very soon thereafter. (Some compilers did not
implement unsigned long but included the other two.) Naturally,
implementations chose different rules for type promotions when these new
types mixed with others in expressions.

In most C compilers, the simpler rule - unsigned preserving - was used: when
an unsigned type needs to be widened, it is widened to an unsigned type;
when an unsigned type mixes with a signed type, the result is an unsigned
type.

The other rule, specified by ANSI C, came to be called value preserving, in
which the result type depends on the relative sizes of the operand types.
When an unsigned char or unsigned short is widened, the result type is
int if an int is large enough to represent all the values of the smaller type.
Otherwise the result type would be unsigned int. The value preserving rule
produces the least surprise arithmetic result for most expressions.

C Transition Guide-July 1992

Compilation Behavior

Only in the transition or pre-ANSI modes (-Xt or -xs), will the ANSI C
compiler use the unsigned preserving promotions; in the other two modes,
conforming (-xc) and ANSI (-Xa), the value preserving promotion rules will
be used. No matter what the current mode may be, the compiler will warn you
about each expression whose behavior might depend on the promotion rules
used.

This warning is not optional since this is a serious change in behavior.
Fortunately, these situations do not often occur, and it is always possible to
suppress the warning by making the intended behavior explicit, as is shown
below.

First Example: Using a Cast

In the following code, assume that an unsigned char is smaller than an into

int f (void)

int i = -2;
unsigned char uc = 1;

return (i + uc) < 17;

The code above causes the compiler to issue the following:

line 6: warning: semantics of "<" change in ANSI C;
use explicit cast

The result of the addition has type int (value preserving) or unsigned int
(unsigned preserving), but the bit pattern does not change between these two.
On a two's-complement machine we have:

i: 111. .. 110 (-2)
+ uc: 000 ... 001 (1)

111 ... 111 (-lor UINT_MAX)

Transitioning to ANSI C 11

12

Bit-fields

This bit representation corresponds to -1 for int and UINT_MAX for unsigned
int . Thus, if the result has type int, a signed comparison is used and the
less-than test is true, if the result has type unsigned int, an unsigned
comparison is used and the less-than test is false.

The addition of a cast serves to specify which of the two behaviors is desired:

value preserving:
(i + (int)uc) < 17

unsigned preserving:
(i + (unsigned int)uc) < 17

Because this expression can be viewed as ambiguous (since differing compilers
chose different meanings for the same code), the addition of a cast is as much
to help the reader as it is to eliminate the warning message.

The same situation applies to the promotion of bit-field values. In ANSI C, if
the number of bits in an int or unsigned int bit-field is less than the
number of bits in an int, the promoted type is int; otherwise the promoted
type is unsigned into In most older C compilers, the promoted type is
unsigned int for explicitly unsigned bit-fields, and int otherwise.

Similar use of casts can eliminate situations that are ambiguous.

Second Example: Result Is the Same

In the following code, assume that both unsigned short and unsigned
char are narrower than into

int f(void)
{

unsigned short us;
unsigned char uc;

return uc < us;

C Transition Guide-July 1992

In this example, both automatics are either promoted to int or to unsigned
int, so the comparison is sometimes unsigned and sometimes signed.
However, the C compiler will not warn you because the result is the same for
the two choices.

Integral Constants

As with expressions, the rules for the types of certain integral constants have
changed. In K&R C, an unsuffixed decimal constant had type int only if its
value fit in an int and an unsuffixed octal or hexadecimal constant had type
int only if its value fit in an unsigned into Otherwise, an integral constant
had type long. (At times the value did not fit in the resulting type!) In ANSI
C, the constant type is the first type encountered in the list below that
corresponds to the value:

unsuffixed decimal:
int, long, unsigned long

unsuffixed octal or hexadecimal:
int, unsigned int, long, unsigned long

U suffixed:
unsigned int, unsigned long

L suffixed:
long, unsigned long

UL suffixed:
unsigned long

The ANSI C compiler will warn you about any expression whose behavior
might change according to the typing rules of the constants involved. The old
integral constant typing rules are used only in the transition mode; the ANSI
and conforming modes use the new rules.

Transitioning to ANSI C 13

Third Example: Integral Constants

In the following code, assume ints are 16 bits.

int f (void)

int i = 0;

return i > Oxffff;

Because the hexadecimal constant's type is either int (with a value of -Ion a
two's-complement machine) or an unsigned int (with a value of 65535), the
comparison will be true in -Xs and -Xt modes, and false in -Xa and -Xc
modes.

Again, an appropriate cast clarifies the code and silences the ANSI C compiler:

-Xt, -Xs modes:
i > (int)Oxffff

-Xa, -Xc modes:
i > (unsigned int)Oxffff

or
i > OxffffU

(The u suffix character is a new feature of ANSI C and will probably produce
an error message with older compilers.)

Tokenization and Preprocessing

14

Probably the least specified part of previous versions of C concerned the
operations that transformed each source file from a bunch of characters into a
sequence of tokens, ready to parse. These operations included recognition of
white space (including comments), bundling consecutive characters into
tokens, handling preprocessing directive lines, and macro replacement.
However, their respective ordering was never guaranteed.

ANSI C Translation Phases

The order of these translation phases is specified by ANSI C:

C Transition Guide-July 1992

1. Every trigraph sequence in the source file is replaced. ANSI C has exactly
nine trigraph sequences that were invented solely as a concession to
deficient character sets (as far as C is concerned) and are three-character
sequences that name a character not in the ISO 646-1983 character set:

Table 1-1 Trigraph Sequences

Trigraph
Converts to Trigraph

Converts to
Sequence Sequence

??= # ??< {

??- - ??> }

?? ([??/ \

??) 1 ?? ' A

??! I

These sequences must be understood by ANSI C compilers, but we would
not recommend their use except (possibly) to obscure code. The ANSI C
compiler warns you whenever it replaces a trigraph while in transition (-
Xt) mode, even in comments. For example, consider the following:

/* cormnent *??/
/* still cormnent? */

The?? / becomes a backslash. This character and the following newline are
removed. The resulting characters are

/* cormnent */* still cormnent? */

The first / from the second line is the end of the comment. The next token
is the *.

2. Every backslash/new-line character pair is deleted.

3. The source file is converted into preprocessing tokens and sequences of
white space. Each comment is effectively replaced by a space character.

4. Every preprocessing directive is handled and all macro invocations are
replaced. Each #included source file is run through the earlier phases
before its contents replace the directive line.

Transitioning to ANSI C 15

16

5. Every escape sequence (in character constants and string literals) is
interpreted.

6. Adjacent string literals are concatenated.

7. Every preprocessing token is converted into a (regular) token; the compiler
properly parses these and generates code.

S. All external object and function references are resolved, resulting in the final
program.

Old C Translation Phases

Previous C compilers did not follow such a simple sequence of phases, nor
were there any guarantees for when these steps were applied. A separate
preprocessor recognized tokens and white space at essentially the same time as
it replaced macros and handled directive lines. The output was then
completely retokenized by the compiler proper, which then parsed the
language and generated code.

Because the tokenization process within the preprocessor was a moment-by
moment thing and macro replacement was done as a character-based operation
(and not token-based), the tokens and white space could have a great deal of
variation during preprocessing.

There are a number of differences that arise from these two approaches. The.
rest of this section will discuss how code behavior may change due to line
splicing, macro replacement, stringizing, and token pasting, which occur during
macro replacement.

Logical Source Lines

In K&R C, backslash/new-line pairs were allowed only as a means to continue
a directive, a string literal, or a character constant to the next line. ANSI C
extended the notion so that a backslash/new-line pair can continue anything to
the next line. (The result is a logical source line.) Therefore, any code that relied
on the separate recognition of tokens on either side of a backslash/new-line
pair will not behave as expected.

C Transition Guide-July 1992

Macro Replacement

Using Strings

In ANSI C, the examples below
marked with a :/: produce a
warning about use of old
features. Only in the transition
mode (-Xt and -xs) will the
result be the same as in
previous versions of C.

The macro replacement process has never been described in any significant
detail prior to ANSI C. This vagueness spawned a great many divergent
implementations and any code that relied on anything fancier than manifest
constant replacement and simple?: - like macros was probably not truly
portable. This tutorial cannot begin to uncover all the subtle and not so subtle
differences between the old C macro replacement implementation and the
ANSI C version. Fortunately, nearly all uses of macro replacement with the
exception of token pasting and stringizing will produce exactly the same series
of tokens as before. Furthermore, the ANSI C macro replacement algorithm
can do things not possible in the old C version. For example,

I #define name (*name)

causes any use of name to be replaced with an indirect reference through name.
(The old C preprocessor would produce a huge number of parentheses and
stars and eventually complain about macro recursion.)

The major change in the macro replacement approach taken by ANSI C is to
require macro arguments (other than those that are operands of the macro
substitution operators # and # #) to be expanded recursively prior to their
substitution in the replacement token list. However, this change seldom
produces an actual difference in the resulting tokens.

In K&R C, the following produced the string literal "x y!":

I #define str(a) "a!"
str(x y)

Thus, the preprocessor searched inside string literals (and character constants)
for characters that looked like macro parameters. ANSI C recognized the
importance of this feature, but could not condone operations on parts of
tokens. (In ANSI C, all invocations of the above macro produce the string
literal "a! ".) To achieve the old effect in ANSI C, we make use of the # macro
substitution operator and the concatenation of string literals.
~------.------

#define str(a) #a "!"
str(x y)

Transitioning to ANSI C 17

Token Pasting

and ## should be used as
macro substitution operators
only when _STDC_ is
defined.

18

The above produces the two string literals "x y" and " ! " which, after
concatenation, produces the identical "x y!".

Unfortunately, there is no direct replacement for the analogous operation for
character constants. The major use of this feature was similar to the following:

#define CNTL(ch) (037 & 'ch') *
CNTL(L)

which produced

I (037 & 'L')

which evaluates to the ASCII control-L character. The best solution we know
of is to change all uses of this macro (at least this can be done automatically) to:

#define CNTL(ch) (037 & (ch))

CNTL ('L')

which is arguably more readable and more useful, as it can also be applied to
expressions.

In K&R C, there were at least two ways to combine two tokens. Both
invocations in the following produced a single identifier xl out of the two
tokens x and 1.

#define self(a) a

#define glue(a,b) a/**/b *
self (x) 1

glue(x,l)

•

Again, ANSI C could not sanction either approach to what they believed to be
an important capability. In ANSI C, both the above invocations would produce
the two separate tokens x and 1. The second of the above two methods can be
rewritten for ANSI C by using the # # macro substitution operator:

I
#define glue(a,b) a ## b

. glue(x, 1)

Since # # is an actual operator, the invocation can be much freer with respect to
white space in both the definition and invocation.

C Transition Guide-July 1992

There is no direct approach to effect the first of the two old-style pasting
schemes, but since it put the burden of the pasting at the invocation, it was
used less frequently than the other form.

Using const and volatile

The keyword canst was one of the C++ features that found its way into
ANSI C. When an analogous keyword, volatile, was invented by the ANSI
C committee, in effect, the type qualifier category was created. This still remains
one of the more nebulous parts of ANSI C.

Types, Only for lvalues

canst and volatile are part of an identifier's type, not its storage class.
However, they are peculiar in that they are often removed from the top-most
part of the type. This occurs when an object's value is fetched in the
evaluation of an expression - exactly at the point when an lvalue becomes an
rvalue. (These terms arise from the prototypical assignment" L=R"; in which
the left side must still refer directly to an object (an lvalue) and the right side
need only be a value (an rvalue).) Thus, only expressions that are IvaI ues
can be qualified by canst or volatile or both.

Type Qualifiers in Derived Types

The type qualifiers are unique in that they may modify type names and
derived types. Derived types are those parts of C's declarations that can be
applied over and over to build more and more complex types: pointers, arrays,
functions, structures, and unions. Except for functions, one or both type
qualifiers can be used to change the behavior of a derived type.

For example,

I const int five = 5;

declares and initializes an object with type canst int whose value will not be
changed by a correct program. (The order of the keywords is not significant to
C. For example, the declarations:

lint const five = 5;

Transitioning to ANSI C 19

20

and

I const five = 5;

are identical to the above declaration in its effect.)

The declaration

I const int *pci = &five;

declares an object with type pointer to cans tint, which initially points to the
previously declared object. Note that the pointer itself does not have a
qualified type - it points to a qualified type, and as such, the pointer can be
changed to point to essentially any int during the program's execution, but
pc i cannot be used to modify the object to which it points unless a cast is
used, as in the following:

I *(int *)pci = 17;

(If pci actually points to a canst object, the behavior of this code is
undefined.)

The declaration

I extern int *const cpi;

says that somewhere in the program there exists a definition of a global object
with type canst pointer to into In this case, cpi's value will not be changed
by a correct program, but it can be used to modify the object to which it points.
Notice that canst comes after the * in the above declaration. The following
pair of declarations produces the same effect:

typedef int *INT_PTR;
extern const INT_PTR cpi;

These can be combined as in the following declaration in which an object is
declared to have type canst pointer to canst int:

I const int *const cpci;

C Transition Guide-July 1992

cons t Means "readonly"

In hindsight, readanly would have been a better choice for a keyword than
canst. If one reads canst in this manner, declarations such as

I char *strcpy(char *, const char *);

are easily understood to mean that the second parameter will only be used to
read character values, while the first parameter will undoubtedly overwrite the
characters to which it points. Furthermore, despite the fact that in the above
example the type of cpi is a pointer to a canst int, you can still change the
value of the object to which it points through some other means (unless it
actually points to an object declared with canst int type).

Examples of const Usage

The two main uses for canst are to declare (large) compile-time initialized
tables of information as unchanging, and to specify that pointer parameters
will not modify the objects to which they point.

The first use potentially allows portions of the data for a program to be shared
by other concurrent invocations of the same program (just as the code for the
program can be), and may cause attempts to modify this presumably invariant
data to be detected immediately by means of some sort of memory protection
fault, as the data resides in a read-only portion of memory.

The second use will most likely help locate potential errors (before generating
a memory fault during that critical demo). For example, functions that
temporarily place a null character into the middle of a string will be detected at
compile time, if passed a pointer to a string that cannot be so modified.

vo 1 at i 1 e Means Exact Semantics

So far, the examples have all used canst because it's conceptually simpler.
But what does valatile really mean? To the programmer, it has multiple
meanings. To a compiler writer (remember that the ANSI C committee was
principally composed of implementors) it has one meaning: take no code
generation shortcuts when accessing such an object. Moreover in ANSI C, it is
a programmer's responsibility to declare every object that has the appropriate
special properties with a va 1 a til e qualified type.

Transitioning to ANSI C 21

22

Examples of vo 1 at i 1 e Usage

The usual four examples of volatile objects are:

1. An object that is a memory-mapped I/O port

2. An object that is shared between multiple concurrent processes

3. An object that is modified by an asynchronous signal handler

4. An automatic storage duration object declared in a function that calls
setjmp and whose value is changed between the call to setjmp and a
corresponding call to longjmp

The first three examples are all instances of an object with a particular
behavior: its value can be modified at any point during the execution of the
program. Thus, the seemingly infinite loop

I

flag = 1;

Whil~ (flag)

is completely reasonable as long as flag has a volatile qualified type.
(Presumably, some asynchronous event will set flag to zero in the future.)
Otherwise, the compilation system is free to change the above loop (because
the value of flag is unchanged within the body of the loop) into a truly
infinite loop that completely ignores the value of flag.

The fourth example, involving variables local to functions that call setj mp, is
more involved. If you read the fine print about the behavior of setjmp and
longjmp, you will find there are no guarantees about the values for objects
matching the fourth case. It turns out to be necessary for longjmp to examine
every stack frame between the function calling set j mp and the function
calling longjmp for saved register values in order to get the most desirable
behavior. The possibility of asynchronously created stack frames makes this
expensive job even harder. Therefore most implementations just documented
the undesirable side effect and used an inexpensive implementation.

When an automatic object is declared with a volatile qualified type, the
compilation system knows that it has to produce code that exactly matches
what the programmer wrote Therefore! the most recent value for such an
automatic object will always be in memory (not just in a register) and as such
will be guaranteed to be up-to-date when longjmp is called.

C Transition Guide-July 1992

Multibyte Characters and Wide Characters
At first, the internationalization of ANSI C affected only library functions.
However the final stage of internationalization - multibyte characters and
wide characters - also affected the language proper.

Asian Languages Require Multibyte Characters

The basic difficulty in an Asian-language computer environment is the huge
number of ideograms needed for I/O. To work within the constraints of usual
computer architectures, these ideograms are encoded as sequences of bytes.
The associated operating systems, application programs, and terminals
understand these byte sequences as individual ideograms. Moreover, all of
these encodings allow intermixing of regular single-byte characters with the
ideogram byte sequences. Just how difficult it is to recognize distinct
ideograms depends on the encoding scheme used.

The term multibyte character is defined by ANSI C to denote a byte sequence
that encodes an ideogram, no matter what encoding scheme is employed. All
multibyte characters are members of the so called extended character set. (A
regular single-byte character is just a special case of a multibyte character.)
Essentially the only requirement placed on the encoding is that no multibyte
character can use a null character as part of its encoding.

ANSI C specifies that program comments, string literals, character constants,
and header names are all sequences of multibyte characters.

Encoding Variations

The encoding schemes fall into two camps. The first is one in which each
multibyte character is self-identifying, or, in other words, any multibyte
character can simply be inserted between any pair of multibyte characters.

The second scheme is one in which the presence of special shift bytes changes
the interpretation of subsequent bytes. An example is the method used by
most fancy character terminals to get in and out of line drawing mode. For
programs written in multibyte characters with a shift-state-dependent
encoding, ANSI C has the additional requirement that each comment, string
literal, character constant, and header name must both begin and end in the
unshifted state.

Transitioning to ANSI C 23

24

Wide Characters

Some of the inconvenience of handling multibyte characters would be
eliminated if all characters were of a uniform number of bytes or bits. Since
there can be thousands or tens of thousands of ideograms in such a character
set, a 16-bit or 32-bit sized integral value should be used to hold all members.
(The full Chinese alphabet includes more than 65000 ideograms!) ANSI C
includes the typedef name wchar_t as the implementation-defined integral
type large enough to hold all members of the extended character set.

For each wide character there is a corresponding multibyte character and vice
versa; the wide character that corresponds to a regular single-byte character is
required to have the same value as its single-byte value, including the null
character. However, there is no guarantee that the value of the macro EOF can
be stored in a wchar t. (Just as EOF might not be representable as a char.)

Conversion Functions

ANSI C provides five library functions that manage multibyte characters and
wide characters:

Table 1-2 Multibyte Character Conversion Functions

mblen() length of next multibyte character

mbtowc () convert multibyte character to wide character

wctomb() convert wide character to multibyte character

mbstowcs () convert multibyte character string to wide character string

wcstombs () convert wide character string to multibyte character string

The behavior of all of these functions depends on the current locale. (See "The
setlocaleO Function" on page 30.)

It is expected that vendors providing compilation systems targeted to this
market will supply many more string-like functions to simplify the handling of
wide character strings. However, for most application programs, there is no
need to convert any multibyte characters to or from wide characters. Programs
such as diff, for example, will read in and write out multibyte characters,
needing only to check for an exact byte-for-byte match. More complicated
programs (such as grep) that use regular expression pattern matching, may

C Transition Guide-July 1992

need to understand multibyte characters, but only the common set of functions
that manages the regular expression needs this knowledge. The program grep
itself requires no other special multibyte character handling.

C Language Features

To give even more flexibility to the programmer in an Asian-language
environment, ANSI C provides wide character constants and wide string
literals. These have the same form as their non-wide versions except that they
are immediately prefixed by the letter L:

'x'

'¥'

L'x'

L'¥'

"abc¥xyz"

L"abcxyz"

regular character constant

regular character constant

wide character constant

wide character constant

regular string literal

wide string literal

Notice that multibyte characters are valid in both the regular and wide
versions. The sequence of bytes necessary to produce the ideogram ¥ is
encoding-specific, but if it consists of more than one byte, the value of the
character constant' ¥' is implementation-defined, just as the value of 'ab' is
implementation-defined. A regular string literal contains exactly the bytes
(except for escape sequences) specified between the quotes, including the bytes
of each specified multibyte character.

When the compilation system encounters a wide character constant or wide
string literal, each multibyte character is converted (as if by calling the
mbtowc () function) into a wide character. Thus the type of L' ¥' is wchar_t
and the type of abc¥xyz is array of wchar_t with length eight. (Just as with
regular string literals, each wide string literal has an extra zero-valued element
appended, but in these cases it is a wchar_t with value zero.)

Transitioning to ANSI C 25

Just as regular string literals can be used as a short-hand method for character
array initialization, wide string literals can be used to initialize wchar_t
arrays:

wchar_t *wp
wchar_t x[]
wchar_t y[1
wchar_t z [l

Llla¥zll;

L"a¥zll ;

{L'a', L'¥', L'z', OJ;
{'a'r L'¥', I Z ', '\O'};

In the above example, the three arrays x, y, and z, and the array pointed to by
wp, have the same length and all are initialized with identical values.

Finally, adjacent wide string literals will be concatenated, just as with regular
string literals. However, adjacent regular and wide string literals produce
undefined behavior. A compiler is not even required to complain if it does not
accept such concatenations.

Standard Headers and Reserved Names

26

Very early in the standardization process, the ANSI Standards Committee
chose to include library functions, macros, and header files as part of ANSI C.
While this decision clearly was necessary for the writing of truly portable C
programs, a side-effect is the basis of some of the most negative comments
about ANSI C from the public - a large set of reserved names.

This section presents the various categories of reserved names and some
rationale for their reservations. At the end is a set of rules to follow that can
steer your programs clear of any reserved names.

Balancing Process
In order to match existing implementations, the ANSI C committee had to
choose names like printf and NULL; to have done otherwise would have
disqualified virtually all existing C programs from conformance, and would
obviously run counter to their charter to standardize existing practice.
However, each such name reduced the set of names available for free use in C
programs.

On the other hand, before standardization, implementors felt free to add both
new keywords to their compilers and names to headers. This meant that no
program could be guaranteed to compile from one release to another, let alone
port from one vendor's implementation to another.

C Transition Guide-July 1992

Thus the Committee made a hard decision: to restrict all conforming
implementations from including any extra names, except those with certain
forms. It is this decision, more than any other, that will cause most C
compilation systems to be almost conforming. Nevertheless, the Standard
contains 32 keywords and almost 250 names in its headers, none of which
necessarily follow any particular naming pattern.

Standard Headers

The standard headers are as follows:

Table 1-3 Standard headers

assert.h

ctype.h

errno.h

float. h

limits.h

locale.h

math.h

setjmp.h

signal.h

stdarg.h

stddeLh

stdio.h

stdlib. h

string.h

time.h

Most implementations will provide more headers, but a strictly conforming
ANSI C program can only use these.

Other standards disagree slightly regarding the contents of some of these
headers. For example, POSIX (IEEE 1003.1) specifies that fdopen is declared
in stdio. h. To allow these two standards to coexist, POSIX requires the
macro _POSIX_SOURCE to be #defined prior to the inclusion of any header
to guarantee that these additional names exist. (In actuality, the POSIX
committee believes that almost the opposite will occur: that _POSIX_SOURCE

will be used to limit headers to only those names POSIX describes, and that, by
default, headers will contain even more names than POSIX specifies.) X/Open,
in its Portability Guide, has also used this macro scheme for its extensions.
X/Open's macro is _XOPEN_SOURCE. The following section describes why
this scheme is sufficient.

ANSI C requires the standard headers to be both self-sufficient and
idempotent. In other words, no standard header needs any other header to be
#included before or after it, and each standard header can be #included
more than once without causing problems. The Standard also requires that its
headers be #included only in safe contexts so that the names used in the
headers are guaranteed to remain unchanged.

Transitioning to ANSI C 27

28

Names Reserved for Implementation Use

The Standard places further restrictions on implementations regarding their
libraries. While in the past, most programmers learned not to use names like
read and wri te for their own functions on UNIX Systems (usually after
encountering interesting program behavior), ANSI C requires that only names
reserved by the Standard be introduced by references within the
implementation.

Thus the Standard reserves a subset of all possible names for implementations
to use as they so choose. This class of names consists of identifiers that begin
with an underscore and continue with either another underscore or a capital
letter. In other words, the class of names contains all names matching the
following regular expression:

Strictly speaking, if your program uses such an identifier, its behavior is
undefined. Thus, programs using _POSIX_SOURCE (or _XOPEN_SOURCE)

have undefined behavior.

However, undefined behavior comes in different degrees. If, in a POSIX
conforming implementation you use _POSIX_SOURCE, you know that your
program's undefined behavior consists of certain additional names in certain
headers, and your program still conforms to an accepted standard. This
deliberate loophole in the ANSI C standard allows implementations to conform
to seemingly incompatible specifications. On the other hand, an
implementation that does not conform to the POSIX standard is free to behave
in any manner when encountering a name such as _POSIX_SOURCE.

The Standard also reserves all other names that begin with an underscore for
use in header files as regular file scope identifiers and as tags for structures and
unions, but not in local scopes. This means that the common existing practice
of having functions named _filbuf and _doprnt to implement hidden parts
of the library is sanctioned.

C Transition Guide-July 1992

Names Reserved for Expansion

In addition to all the names explicitly reserved, the Standard also reserves (for
implementations and future standards) names matching certain patterns:

Table 1-4 Reserved Names

File Reserved Name Pattern

errno.h E[O-9A-Z]. *

etype.h (tolis) [a-z].*

locale.h LC_[A-Z] . *

math.h current function names[fl]

signal.h (8IG I 8IG_) [A-Z] . *

stdlib.h str [a-z] . *

string.h (s t r I mem I we s) [a - z] . *

In the above lists, names that begin with a capital letter are macros and are
thus reserved only when the associated header is included. The rest of the
names designate functions and therefore cannot be used to name any global
objects or functions.

Names Safe To Use

As you can tell by now, the rules regarding when certain names are reserved
are complicated. There are, however, four fairly simple rules you can follow to
keep from colliding with any ANSI C reserved names:

1. #inelude all system headers at the top of your source files (except possibly
after a #define of _POSIX_SOURCE or _XOPEN_SOURCE, or both).

2. Do not define or declare any names that begin with an underscore.

3. Use an underscore or a capital letter somewhere within the first few
characters of all file scope tags and regular names. (But beware of the" va_"
prefix found in stdarg. h or varargs. h.)

4. Use a digit or a non-capital letter somewhere within the first few characters
of all macro names. (But note that almost all names beginning with an E are
reserved if errno. his #include-d.)

Transitioning to ANSI C 29

Internationalization

Locales

As noted earlier, most implementations will continue to add names to the
standard headers by default. Therefore these rules are just a guideline to
follow.

A previous transition topic from this series introduced the internationalization
of the standard libraries. (See "Multibyte Characters and Wide Characters" on
page 23.) This section discusses the affected library functions and gives some
hints on how programs should be written to take advantage of these features.

At any time, a C program has a current locale - a collection of information that
describes the conventions appropriate to some nationality, culture, and
language. Locales have names that are strings and the only two standardized
locale names are n C nand n n. Each program begins in the n C n locale which
unsurprisingly causes all library functions to behave just like they have
historically. The n n locale is the implementation's best guess at the correct set
of conventions appropriate to the program's invocation. (Of course n C nand
n n can cause identical behavior.) Other locales may be provided by
implementations.

For the purposes of practicality and expediency, locales are partitioned into a
set of categories. A program can change the complete locale (all categories) or
one or more categories leaving the other categories unchanged. Generally each
category affects a set of functions disjoint from the functions affected by other
categories, so temporarily changing one category for a little while can make
sense.

The set locale () Function

30

The set locale () function is the interface to the program's locale. In general,
any program that wishes to use the invocation country's conventions should
place a call such as

#include <locale.h>

/ * ... * /
set locale (LC_ALL, nn);

C Transition Guide-July 1992

early in the program's execution path. This causes the program's current locale
to change to the appropriate local version (if possible), since LC_ALL is the
macro that specifies the entire locale instead of one category. The following are
the standard categories:

Table 1-5 setlocale () Standard Categories

sorting information

LC CTYPE character classification information

currency printing information

numeric printing information

LC TIME date and time printing information

Any of these macros can be passed as the first argument to set locale () to
specify just that category.

The set locale () function returns the name of the current locale for a given
category (or LC_ALL) and serves in an inquiry-only capacity when its second
argument is a null pointer. Thus, code along the lines of the following can be
used to change the locale or a portion thereof for a limited duration:

#include <locale.h>
/ * ... * /
char *oloc;
/ * ... * /
oloc = setlocale (LC_cat, NULL);
if (setlocale(LC_cat, "new") != 0)

/* use temporarily changed locale */
(void) setlocale (LC_cat, oloc);

Most programs will never need this capability.

Changed Functions

Wherever possible and appropriate, existing library functions were extended to
include locale-dependent behavior. These functions came in two groups: those
declared by the ctype. h header (character classification and conversion), and
those functions that convert to and from printable and internal forms of
numeric values (for example, printf () and strtod ()).

Transitioning to ANSI C 31

32

All ctype. h predicate functions except isdigi t () and isxdigi t () are
allowed to return nonzero (true) for additional characters when the LC_CTYPE

category of the current locale is other than "C". In a Spanish locale,
isalpha ('fi') should be true. Similarly the character conversion functions
(tolower () and toupper ()) should appropriately handle any extra
alphabetic characters identified by the isalpha () function. (As an
implementation note, the ctype. h functions are almost always macros that
are implemented using table lookups indexed by the character argument.
Their behavior is changed by resetting the table(s) to the new locale's values,
and therefore there is no performance impact.)

Those functions that write or interpret printable floating values may change to
use a decimal-point character other than period (.) when the LC_NUMERIC

category of the current locale is other than "C". There is no provision for
converting any numeric values to printable form with thousands separator
type characters, but when converting from a printable form to an internal form,
implementations are allowed to accept such additional forms, again in other
than the "C" locale. Those functions that make use of the decimal-point
character are the printf () and scanf () families, atof (), and strtod ().
Those functions that are allowed implementation-defined extensions are
atof (), atoi (), atol (), strtod (), strtol (), strtoul (), and the
scanf () family.

New Functions

Certain locale-dependent capabilities were added as new standard functions.
Besides set locale () which allows control over the locale itself, the
Standard includes the following new functions:

localeconv () numeric/ monetary conventions

strcoll () collation order of two strings

strxfrm() translate string for collation

strftime () formatted date/time conversion

and the multibyte functions previously discussed (mblen (), mbtowc (),
mbstowcs (), wctomb (), and wcstombs ().

The localeconv () function returns a pointer to a structure containing
information useful for formatting numeric and monetary information
appropriate to the current locale's LC_NUMERIC and LC_MONETARY categories.

C Transition Guide-July 1992

(This is the only function whose behavior depends on more than one category.)
For numeric values the structure describes the decimal-point character, the
thousands separator, and where the separator(s) should be located. There are
fifteen other structure members that describe how to format a monetary value!

The strcoll () function is analogous to the strcmp () function except that
the two strings are compared according to the LC_COLLATE category of the
current locale. As this comparison is not necessarily as inexpensive as
strcmp (), the strxfrm () function can be used to transform a string into
another, such that any two such after-translation strings can be passed to
strcmp () and get an ordering analogous to what strcoll () would have
returned if passed the two pre-translation strings.

The strftime () function provides formatting, similar to that used with
sprintf (), of the values in a struct tm, along with some date and time
representations that depend on the LC_TIME category of the current locale.
This function is based on the ascftime () function released as part of UNIX
System V Release 3.2.

Grouping and Evaluation in Expressions
One of the choices made by Dennis Ritchie in the design of C was to give
compilers license to rearrange expressions involving adjacent operators that
are mathematically commutative and associative, even in the presence of
parentheses. This was explicitly noted as being so in the "Reference Manual"
appendix to the The C Programming Language by Kernighan and Ritchie.
However, ANSI C does not grant compilers this same freedom.

This section discusses the differences between these two definitions of C and
clarifies the distinctions between an expression's side effects, grouping, and
evaluation by considering the expression statement from the following code
fragment.

int i, *p, f(void), g(void);
1* . .. * I
i = *++p + f() + g();

Transitioning to ANSI C 33

34

Definitions

The side effects of an expression are its modifications to memory and its
accesses to vo 1 at i 1 e qualified objects. The side effects in the above
expression are the updating of i and p and any side effects contained within
the functions f () and g () .

An expression's grouping is the way values are combined with other values and
operators. The above expression's grouping is, primarily, the order in which
the additions are performed.

An expression's evaluation includes everything necessary to produce its
resulting value. To evaluate an expression, all specified side effects must occur
(anywhere between the previous and next sequence point) and the specified
operations are performed with a particular grouping. For the above
expression, the updating of i and p must occur after the previous statement
and by the ; of this expression statement; the calls to the functions can occur in
either order, any time after the previous statement, but before their return
values are used. In particular, note that the operators that cause memory to be
updated have no requirement to assign the new value before the value of the
operation is used.

The K& R C Rearrangement License

The K&R C rearrangement license applies to the above expression because
addition is mathematically commutative and associative. To distinguish
between regular parentheses and the actual grouping of an expression, the left
and right curly braces will designate grouping. The three possible groupings
for the expression are

i {*++p + f()} + g() };

i *++p + {f() + g()} };

i {*++p + g()} + f() };

all of which are valid given K&R C rules. Moreover, all of these groupings are
valid even if the expression were written instead, for example, in either of
these ways:

I ~ * ++p + (f () + g ()) ;

(g() + *++p) + f();

C Transition Guide-July 1992

If this expression is evaluated on an architecture for which either overflows
cause an exception or addition and subtraction are not inverses across an
overflow, these three groupings will behave differently if one of the additions
overflows.

For such expressions on these architectures, the only recourse available in K&R
C was to split the expression to force a particular grouping. The following are
possible rewrites that respectively enforce the above three groupings.

i *++p;i+=f();i+=g();

i f(); i += g(); i += *++p;

i * ++p; i += g (); i += f () ;

The ANSI C Rules

ANSI C does not allow operations to be rearranged that are mathematically
commutative and associative, but that are not actually so on the target
architecture. Thus the precedence and associativity of the ANSI C grammar
completely describes the grouping for all expressions; all expressions must be
grouped as they are parsed. The expression under consideration is grouped in
this manner:

[i = { {*++p + f()} + g() };

(This still does not mean that f () must be called before g () , or that p must be
incremented before g () is called.)

In ANSI C, expressions need not be split to guard against unintended
overflows.

The Parentheses are Special Mistake

ANSI C is often erroneously described as honoring parentheses or evaluating
according to parentheses due to an incomplete understanding or an inaccurate
presentation.

Since ANSI C expressions simply have the grouping specified by their parsing,
parentheses still only serve as a way of controlling how an expression is
parsed; the natural precedence and associativity of expressions carry exactly
the same weight as parentheses.

Transitioning to ANSI C 35

The As If Rule

Incomplete Types

The above expression could have been written as

Ii = (((*(++p)) + f()) + g());

with no different effect on its grouping, and thus on its evaluation.

There were good reasons for the K&R C rearrangement rules:

• The rearrangements provide many more opportunities for optimizations
such as compile-time constant folding.

• The rearrangements do not change the result of integral-typed expressions
on most machines.

• Some of the operations are both mathematically and computationally
commutative and associative on all machines.

The ANSI C committee eventually became convinced that the rearrangement
rules were intended to be an instance of the as if rule when applied to the
described target architectures. ANSI C's as if rule is a general license that
permits an implementation to deviate arbitrarily from the abstract machine
description as long as the deviations do not change the behavior of a valid C
program.

Thus all the binary bitwise operators (other than shifting) are allowed to be
rearranged on any machine because there is simply no way to notice such
regroupings. On typical two's complement machines in which overflow
silently wraps-around integer expressions involving multiplication or addition
can be rearranged for the same reason.

Therefore, this change in C does not have a significant impact on most C
programmers.

The ANSI C standard introduced the term incomplete type to formalize a
fundamental, yet misunderstood, portion of C, implicit from its beginnings.
This article describes incomplete types, where they arc permitted, and why
they are useful.

36 C Transition Guide-July 1992

Types

ANSI separates C's types into three distinct sets: function, object, and
incomplete. Function types are obvious; object types cover everything else,
except when the size of the object is not known. The Standard uses the term
object type to specify that the designated object must have a known size, but it
is important to know that incomplete types other than void also refer to an
object.

There are only three variations of incomplete types: void, arrays of
unspecified length, and structures and unions with unspecified content. The
type void differs from the other two in that it is an incomplete type that
cannot be completed, and it serves as a special function return and parameter
type.

Completing Incomplete Types

Declarations

An array type is completed by specifying the array size in a following
declaration in the Same scope that denotes the same object. (Also, when an
array without a size is declared and initialized in the same declaration, the
array has an incomplete type only between the end of its declarator and the
end of its initializer.)

An incomplete structure or union type is completed by specifying the content
in a following declaration in the same scope for the same tag.

Certain declarations can use incomplete types, but others require (complete)
object types. Those declarations that require object types are array elements,
members of structures or unions, and objects local to a function. All other
declarations permit incomplete types. In particular, the following are
permitted:

• pointers to incomplete types

• functions returning incomplete types

• incomplete function parameter types

• typedef names for incomplete types

Transitioning to ANSI C 37

Expressions

Justification

38

The function return and parameter types are special. Except for void, an
incomplete type used in such a manner must be completed by the time the
function is defined or called. (A return type of void specifies a function that
returns no value and a single parameter type of void specifies a function that
accepts no arguments.)

Note that since array and function parameter types are rewritten to be pointer
types, a seemingly incomplete array parameter type is not actually incomplete.
The typical declaration of main's argv (namely, char * argv [J) as an
unspecified length array of character pointers, is rewritten to be a pointer to
character pointers.

Most expression operators require (complete) object types. The only three
exceptions are the unary & operator, the first operand of the comma operator,
and the second and third operands of the?: operator. Most operators that
accept pointer operands also permit pointers to incomplete types, unless
pointer arithmetic is required. The list includes the unary * operator, even
though some may find this surprising. For example, given:

I void *p

& *p is a valid sub expression that makes use of this.

C would have been simpler without incomplete types. Why are they
necessary? Ignoring void, there is only one feature provided by incomplete
types that C has no other way to handle, and that has to do with forward
references to structures and unions. If one has two structures that need
pointers to each other, the only way to do so (without resorting to potentially
invalid casts) is with incomplete types:

struct a
struct b

struct b *bp; };

struct a *ap; };

All strongly typed programming languages that have some form of pointer
and heterogeneous data types provide some method of handling this case.

C Transition Guide-July 1992

Examples

Defining typedef names for incomplete structure and union types is
frequently quite useful. If one has a complicated bunch of data structures that
contain many pointers to each other, having a list of typedefs to the
structures up front (possibly in a central header) can simplify the declarations.

typedef struct item_tag Item;
typedef union note_tag Note;
typedef struct list_tag List;

struct item_tag

struct list_tag
List *next; ..

} ;

. . . };

Moreover, for those structures and unions whose contents should not be
available to the rest of the program, a header can declare the tag without the
content. Other parts of the program can use pointers to the incomplete
structure or union without any problems (unless they attempt to use any of its
members).

A frequently used incomplete type is an external array of unspecified length.
It generally is not necessary to know the extent of an array to make use of its
contents.

Compatible and Composite Types
With K&R C, and even more so with ANSI C, it is possible for two declarations
that refer to the same entity to be other than identical. The term compatible type
is used in ANSI C to denote those types that are close enough. This section
describes compatible types as well as composite types - the result of combining
two compatible types.

0ultiple Declarations

If a C program were only allowed to declare each object or function once, there
would be no need for compatible types. But linkage (which allows two or
more declarations to refer to the same entity), function prototypes, and

Transitioning to ANSI C 39

40

separate compilation all need such a capability. Not too surprisingly, separate
translation units (source files) have different rules for type compatibility than
within a single translation unit.

Separate Compilation Compatibility

Since each compilation probably looks at different source files, most of the
rules for compatible types across separate compiles are structural in nature:

• Matching scalar (integral, floating, and pointer) types must be compatible,
as if they were in the same source file.

• Matching structures, unions, and enums must have the same number of
members and each matching member must have a compatible type (in the
separate compilation sense), including bit-field widths.

• Matching structures must have the members in the same order. (The order
of union and enum members does not matter.)

• Matching enum members must have the same value.

An additional requirement is that the names of members (including the lack
of names for unnamed members) match for structures, unions, and enums,
but not necessarily their respective tags.

Single Compilation Compatibility

When two declarations in the same scope describe the same object or function,
the two declarations must specify compatible types. These two types are then
combined into a single composite type that is compatible with the first two.
More about composite types later.

The compatible types are defined recursively. At the bottom are type specifier
keywords. (These are the rules that say that unsigned short is the same as
unsigned short int, and that a type without type specifiers is the same as
one with int.) All other types are compatible only if the types from which
they are derived are compatible. For example, two qualified types are
compatible if the qualifiers (const and volatile) are identical and the
unqualified base types are compatible.

C Transition Guide-July 1992

Compatible Pointer Types

For two pointer types to be compatible, the types they point to must be
compatible and the two pointers must be identically qualified. Recall that the
qualifiers for a pointer are specified after the *, so that these two declarations

lint *const cpi;
int *volatile vpi;

declare two differently qualified pointers to the same type, into

Compatible Array Types

For two array types to be compatible, their element types must be compatible,
and, if both array types have a specified size, they must match. This last part
means that an incomplete array type (see "Incomplete Types" on page 36) is
compatible both with another incomplete array type and an array type with a
specified size.

Compatible Function Types

For two function types to be compatible, their return types must be compatible.
If either or both function types have prototypes, the rules get more
complicated.

For two function types with prototypes to be compatible, they also must have
the same number of parameters (including use of the ellipsis (...) notation)
and the corresponding parameters must be parameter-compatible.

For an old style function definition to be compatible with a function type with
a prototype, the prototype parameters must not end with an ellipsis (...) and
each of the prototype parameters must be parameter-compatible with the
corresponding old style parameter, after application of the default argument
promotions.

For an old style function declaration (not a definition) to be compatible with a
function type with a prototype, the prototype parameters must not end with an
ellipsis (...) and all of the prototype parameters must have types that would
be unaffected by the default argument promotions.

For two types to be parameter-compatible, the types must be compatible after
the (top level) qualifiers, if any, have been removed, and after a function or
array type has been converted to the appropriate pointer type.

Transitioning to ANSI C 41

42

Special Cases
There are a few surprises in this area. For example, signed int behaves the
same as int except possibly for bit-fields, in which a plain int may denote an
unsigned-behaving quantity.

Another interesting note is that each enumeration type must be compatible
with some integral type. For portable programs this means that enumeration
types effectively are separate types, and, for the most part, the ANSI C
standard views them in that manner.

Composite Type

The construction of a composite type from two compatible types is also
recursively defined. The ways compatible types can differ from each other are
due either to incomplete arrays or to old style function types. As such, the
simplest description of the composite type is that it is the type compatible with
both of the original types, including every available array size and every
available parameter list from the original types.

C Transition Guide-July 1992

A.1 Introduction

Sun C / Sun ANSI C Differences

In this chapter we describe the differences between the previous (K&R) Sun C
and Sun ANSI C, as implemented on SunOS 5.0.

"Sun C Incompatibilities with Sun ANSI C" on page 44 describes previous Sun
C features that are incompatible with Sun ANSI C. These differences should be
addressed when porting source code written for the Sun C compiler to Sun
ANSI C.

"Keywords" on page 51 lists reserved words used by the ANSI C standard,
Sun ANSI C, Sun C, and those defined by the Sun ANSI and Sun C
preprocessors.

43

A.2 Sun C Incompatibilities with Sun ANSI C

Table A-1 Sun C Incompatibilities with Sun ANSI C (Sheet 1 of 8)

Topic SunC Sun ANSI C

envp argument Allows envp as third argument to main () . Allows this third argument; however, this usage is
to main () not strictly conforming to the ANSI C standard.

keywords Treats the identifiers const, volatile, and eonst, volatile, and signed are keywords.
signed as ordinary identifiers.

extern and Sun C promotes these function declarations to file The ANSI standard does not guarantee that block
static scope. scope function declarations are promoted to file
functions scope.
declarations
inside a block

identifiers Allows dollar signs ($) in identifiers. $ not allowed.

long float Accepts long f 1 oa t declarations and treats Does not accept these declarations.
types these as double(s).

multi-byte int me = 'abed' ; int me = 'abed' ;
character
constants yields yields

abed dcba

integer Accepts 8 or 9 in octal escape sequences. Does not accept 8 or 9 in octal escape sequences.
constants

assignment Treats the following operator pairs as two tokens, Treats them as single tokens, and therefore
operators and as a consequence, permits whites pace disallows whitespace in-between.

between them:

*=, /= , %= +=, - «=, »=, &=, A , - , -,

1=

unsigned Supports unsigned preserving. That is, uns igned Supports value-preserving. That is, unsigned
preserving ehar / shorts are converted into unsigned char/short(s) are converted into int(s).
semantics for int(s).
expressions

44 C Transition Guide-July 1992

Table A-l Sun C Incompatibilities with Sun ANSI C (Sheet 2 of 8)

Topic SunC SunANSIC

single / double Promotes the operands of floating point Allows operations on floats to be performed in
precision expressions to double. single precision calculations.
calculations

In Sun C, functions which are declared to return Allows float return types for these functions.
floats always promote their return values to
doubles.

name spaces of Allows struct, union, and arithmetic types using Requires that every unique structlunion have its own
struct/union member selection operators (, . " ' - > ') to work on unique names pace.
members members of other struct(s) or unions.

a cast as an Supports casts as lvalue(s). For example: Does not support this feature.
lvalue

(char *)ip = &char;

implied int Supports declarations without an explicit type The num; declaration (without the explicit type
declarations specifier. A declaration such as num; is treated specifier int) is not supported, and generates a

as implied into For example: syntax error.

num; /* num implied as an int */

int num2; /* num2 explicitly
declared an int */

empty Allows empty declarations: Except for tags, disallows empty declarations.
declarations

int;

type specifiers Allows type specifiers such as unsigned, Does not allow type specifiers to modify typedef
on type short, long on typedefs declarations. For declarations.
definitions example:

typedef short small;
unsigned small x;

types allowed Allows bitfields of all integral types, including Supports bitfields only ofthe type in t, uns i gned
on bitfields unnamed bit fields. int and signed into Other types are

undefined.
NOTE: The ABI requires support of unnamed bit
fields and the other integral types, as provided in
Sune.

Sun C / Sun ANSI C Differences 45

Table A-1 Sun C Incompatibilities with Sun ANSI C (Sheet 3 of 8)

Topic SunC SunANSIC

treatment of Since Sun C ignores the incomplete type In an ANSI conforming implementation, an
tags in declaration, in the below example f 1 refers to the incomplete struct or union type specifier hides
incomplete outer struct: an enclosing declaration with the same tag.
declarations

struct x { } sl;
{

struct x;
struct y {struct x f1; } s2;
struct x { } ;

}

mis-match on Allows a mismatch on the struct I enum/union Will treat the inner declaration as a new
struct/union type of a tag in nested struct/union declaration, hiding the outer tag.
lenum declarations. In the example below the second
declarations declaration is treated as a struct:

struct x { } sl;
{

union x s2;

}

labels in Treats labels as (void *) lvalues. Does not allow labels in expressions.
expressions

switch Allows float(s) and double(s) by converting Evaluates only integral types (int, char, and
condition type them to int(s). enumerated) for the switch condition type.

syntax of The Sun C preprocessor ignores trailing tokens Disallows such constructs.
conditional after an #e1se or #endif directive.
inclusion
directives

46 C Transition Guide-July 1992

Topic

token pasting
and the ##

preprocessor
operator

preprocessor
rescanning

typedef names
in formal
parameter lists

implementation
specific
initializations of
aggregates

comments
spanning
include files

Table A-i. Sun C Incompatibilities with Sun ANSI C (Sheet 4 of 8)

SunC

Doesn't recognize the ## operator. In Sun C,
token pasting is accomplished by placing a
comment between the two tokens being pasted:

#define PASTE(A,B1A/*any comment*/B

The Sun C preprocessor will recursively
substitute:

#define F(Xl X(arg)
F(F)

yields

arg(arg)

Allows one to use typedef names as formal
parameter names in a function declaration, and
would, in effec, "hide" the typedef declaration.

Uses a bottom-up algorithm when parsing and
processing partially elided initializers within
braces:

struct { int a[3]; int b; } \
w[] = { {lL 2};

yields

sizeof (w) = 16
w[O].a = 1, 0, 0
w[O] .b = 2

Allows comments which start in an #include
file to be terminated by the file that includes the
first file.

Sun C I Sun ANSI C Differences

Sun ANSI C

Defines # # as the preprocessor operator that
performs token pasting, as shown in the example
below.

#define PASTE(A,B1A##B

Furthermore, the Sun ANSI C preprocessor
doesn't recognize the Sun C method. Instead, it
treats the comment between the two tokens as
whites pace.

A macro will not be replaced if it is found in the
replacement list during the rescan:

#define F(X) X(arg)
F(F)

yields:

F (arg)

Disallows the use of an identifier declared as a
typedef name as a formal parameter.

Uses a top-down parsing algorithm. For example:

struct { int a[3]; int b; } \
w[] = { {l}, 2};

yields

sizeof(w) = 32
w[O] .a = 1, 0, 0
w[O] .b = 0
w[ll .a = 2, 0, 0
w[l] .b = 0

Comments are replaced by a white-space character
in the translation phase of the compilation, which
occurs before the # inc 1 ude directive is
processed.

47

Topic

formal
parameter
substitution
within a
character
constant

formal
parameter
substitution
within a string
constant

48

Table A-1 Sun C Incompatibilities with Sun ANSI C (Sheet 5 of 8)

SunC

Substitutes characters within a character constant
when it matches the replacement list macro:

#define charize(c) 'c'
charize(Z)

yields

'Z'

The Sun C preprocessor will substitute a formal
parameter when enclosed within a string constant:

#define stringize (str) 'str'
stringize(foo)

yields

"fool!

C Transition Guide-July 1992

SunANSIC

The character is not replaced:

#define charize(c) 'c'
charize(Z)

yields

'c'

For string substitution in Sun ANSI C, the #
preprocessor operator should be used.

#define stringize (str) 'str'
stringize(foo)

yields

IIstrll

Topic

preprocessor
built into the
compiler "front
end"

line
concatenation
with backslash

trigraphs in
string literals

asmkeyword

linkage of
identifiers

Table A-l Sun C Incompatibilities with Sun ANSI C (Sheet 6 of 8)

SunC

Compiler calls cpp(l).

Does not recognize the backs lash character in this
context.

Does not support this ANSI C feature.

asm is a keyword.

Does not treat uninitialized s tat i c declarations
as tentative declarations. As a consequence, the
second declaration (in the example below) will
generate a 'redeclaration' error:

static int l = 1;

static int i;

Sun C / Sun ANSI C Differences

Sun ANSI C

Preprocessor (cpp) is built directly into acomp, so
cpp is not directly involved (except in -xs) mode.

Following are the components used in compiling:

SunC SunANSIC

cpp cpp (-xs mode only)
ccom acomp

basicblk (only with -ql)
iropt iropt
cg cg
inline inline
as fbe
Id Id

Note: iropt and cg will be invoked only with the
following options:

-0 -x02 -x03 -x04 -xa -fast

inline will be invoked only if an inline template
file (file. i 1) is provided

Requires that a new-line character immediately
preceded by a backslash character be spliced
together.

asm is treated as an ordinary identifier.

Treats uninitialized s tat i c declarations as
tentative declarations.

49

Table A-I Sun C Incompatibilities with Sun ANSI C (Sheet 7 of 8)

Topic SunC SunANSIC

name spaces Distinguishes only three: struct /union/ enum Recognizes four distinct name spaces: label names,
tags, members of struct /union/ enum, and tags (the names that follow the keywords
everything else. struct, union or enum), members (of

struct /union/ enum), and ordinary identifiers.

long double Not supported. Allows long double type declaration.
type

floating point The floating point suffixes, f, I, F, and L, are not
constants supported.

unsuffixed The integer constant suffixes u and U are not
integer supported.
constants can
have different
types

wide character Does not accept the ANSI C syntax for wide Supports this syntax.
constants character constants, as shown below:

wchar - t wc = L'x' ;

, \a' and' \x' Treats them as the characters 'a' and 'x'. Treats' \ a' and' \x' as special escape
sequences.

Concatenation The ANSI C concatenation of adjacent string
of string literals literals is not supported in Sun C.

Wide-character The ANSI C wide-character-string literal syntax Supports this syntax.
string literal shown in the example below is not supported:
syntax

wchar - t *ws = L"hello" ;

pointers: The ANSI C void * feature is supported.
void * vs.
char *

unary plus This ANSI C feature is not supported.
opf'rator

function Not supported. ANSI C defines the use of ellipses " ... " to denote a
prototypes - variable argument parameter list.
ellipses

50 C Transition Guide-July 1992

Table A-l Sun C Incompatibilities with Sun ANSI C (Sheet 8 of 8)

Topic SunC Sun ANSI C

type definitions Disallows typedefs to be redeclared in an inner Allows typedefs to be redeclared in an inner block
block by another declaration with the same type by another declaration with the same type name.
name.

initialization of Does not support the initialization of variables ANSI C treats the initialization of variables
extern variables explicitly declared as extern. explicitly declared as extern, as definitions.

initialization of Does not support the ANSI C initialization of
aggregates unions or automatic structures.

prototypes This ANSI C feature (of prototyping) is not
supported.

syntax of Recognizes only those directives with a '#' in the ANSI C allows leading whites pace characters
preprocessing first column. before a '#' directive.
directive

the # The ANSI C # preprocessor operator is not
preprocessor supported.
operator

#error This ANSI C feature is not supported by the
directive preprocessor.

preprocessor Supports two pragmas, ANSI C does not specify its behavior for
directives unknown - control - flow and unrecognized pragmas.

makes_regs_inconsistent along with the
#ident directive. Moreover, the preprocessor will (See the C 2.0 Programmer's Guide for recognized
issue warnings when it finds unrecognized pragmasJ
pragmas.

predefined The ANSI C-defined macro names shown below Defined.
macro names are not defined in Sun C.

STDC - -
TIME - -

DATE - -

LINE - -

A.3 Keywords

The four tables below list the keywords for the ANSI C Standard, the Sun
ANSI C compiler, the Sun C compiler, and the preprocessor keywords that are

Sun C / Sun ANSI C Differences 51

52

therefore reserved words when using either compiler.

The first table lists the keywords defined by the ANSI C standard.

Table A-2 ANSI C Standard Keywords

auto break case char

const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

Sun ANSI defines one additional keyword, asm. However, asm is not
supported in - Xc mode.

Keywords in Sun C are listed below.

Table A-3 Sun C (K&R) Keywords

asm auto break case

char continue default do

double else enum extern

float for fortran goto

if int long register

return short sizeof static

struct switch typedef union

unsigned void while

C Transition Guide-July 1992

The following are predefined macros defined by the preprocessor for both Sun
C and Sun ANSI C. (The - Xc mode of the Sun ANSI C compiler does not
define these names.)

Table A-4 Preprocessor-Defined Keywords

spare sun

sun4 unix

The -sys5 option predefines _SYS5_.

Sun C / Sun ANSI C Differences 53

54 C Transition Guide-July 1992

Comparison of c c Options

The following table shows a comparison between cc options supported in Sun
Can SunOS 4.1, in Sun ANSI Can SunOS 4.1 and in ANSI Can SunOS/SVR4.

Please note the following:

• A yes in any column indicates that the option is supported by that driver.

• A no is shown in the column if the option is not supported by that driver.

• If the option has changed, the new functionality is listed.

• A + in the ANSI C SunOS/SVR4 column indicates an option required by
SVID specifications.

55

Table B-1 Comparison of ee Options (Sheet 1 of 5)

Option SunC ANSIC ANSIC
Description

or Flag (SunOS 4.x) (SunOS 4.x) (SunOS 5.0)

-# -v -v yes Verbose mode

-### -dry run -dryrun yes Show compiler steps but don't execute

-A no yes yes Preprocessor predicate assertion

-a yes yes -xa Count # basic block executions

-align yes yes no Page align (ld(1»

- Bbinding_option yes yes yes Specify binding type (dynamic, static)

-c yes yes +yes Preprocessor comments left in

-e yes yes +yes Produce.o file

-egS7 yes yes no Sets fp option to -egS7

-egS9 yes yes no Sets fp option to -egS 9

- Dsymbol [=defl yes yes yes Define symbol to def

-d[ylnl -Bx -Bx yes Dynamic linking[yes I no]

-dalign yes yes yes Assume doubles are doubleword aligned

-dry run yes yes -### Show commands constructed by driver

-E yes yes +yes Run source through preprocessor

-Foption no no yes Reserved for floating point

- foption yes no no Floating-point generation code

-fast yes yes yes Options for best performance

-flags -help -help yes Print available options

-fsingle yes yes yes Float are single precision

-fsingle2 yes no no Pass float as float not double

-fnonstd yes yes yes Non-standard float option

-fstore yes no no Force writes on store

-G no no yes -dy, but no ertl .0 is linked

-g yes yes +yes Generate info for dbx

-go yes no no Generate info for adb

-H yes yes yes Print paths of included files

56 C Transition Guide-July 1992

Table B-1 Comparison of cc Options (Sheet 2 of 5)

Option SunC ANSIC ANSIC
Description

or Flag (SunOS 4.x) (SunOS 4.x) (SunOS 5.0)

-h no no yes Name a shared dynamic library

-help yes yes -flags Lists options

-Ix yes yes +yes Add x to include path

-i no no yes Ignore LD_LIBRARY_PATH setting

-J yes no no Generate long offset for swi tch I case

-KPIC -PIC -PIC yes Position independent code

-Kpic -pic -pic yes PIC with short offsets

-keeptmp no yes yes Retain temporary files

-libmil yes yes -xlibmil Pass libm. il as part of -fast

-Ix yes yes yes Read object library (for Id)

-Lx yes yes yes Add x to Id library path

-M yes yes -xM Collect dependencies (calls preprocessor)

-misalign yes yes yes Handle misaligned Sun-4 data

-native yes yes no Use appropriate -cg option

-nolibmil yes yes -xnolibmil Don't pass libm. il with -fast

-noqueue no no yes Don't queue license requests

-0 file yes yes +yes Set name of output file

-0 [1 , 2 , 3 , 4] yes yes -xO [1, 2,3,4] Generate optimized code

-0 yes yes +yes Generate optimized code

-P yes yes +yes Run source thru preprocessor, output to . i

-PIC yes yes -KPIC Generate pic code with long offset

-p yes yes +yes Collect data for prof

-pic yes yes -Kpic pic code with short offset

-pipe yes no no Use pipes instead of temp files

-pg yes yes -xpg Collect data for gprof
--~----,,-~~-

-Qdir x yes yes -YC, dir Look for compiler passes in x

-Qoption cpp x yes yes use -W option Pass option x on to program cpp

Comparison of cc Options 57

Table B-1 Comparison of cc Options (Sheet 3 of 5)

Option SunC ANSIC ANSIC
Description

or Flag (SunOS 4.x) (SunOS 4.x) (SunOS 5.0)

-Qoption acomp x yes yes use -W option Pass option x on to program acomp

-Qoption iropt x yes yes use -W option Pass option x on to program iropt

-Qoption cg x yes yes use -W option Pass option x on to program cg

-Qoption inline x yes yes use -W option Pass option x on to program inl ine

-Qoption as x yes yes use -W option Pass option x on to program as

-Qoption Id x yes yes use -W option Pass option x on to program Id

-Qpath x yes yes -YC, dir Same as Qdir

-Qproduce .0 yes yes no Produce type. 0 file (Object file)

-Qproduce .s yes yes no Produce type . s file (Assembler source)

-Qproduce .c yes yes no Produce type. c file (C source)

-Qproduce .l yes yes no Produce. i file (source after preprocessor)

-Q[yln] no no yes Add, don't add version stamp info

-qdir x yes yes -YC, dir Look for compiler passes in x

-ql no no +yes Collect data for Iprof

-qoption cpp x yes yes use -W option Pass option x on to program preprocessor

-qoption acomp x yes yes use -W option Pass option x on to program acomp

-qoption iropt x yes yes use -W option Pass option x on to program iropt

-qoption cg x yes yes use -W option Pass option x on to program cg

-qoption inline x yes yes use -W option Pass option x on to program inl ine

-qoption as x yes yes use -W option Pass option x on to program as

-qoption Id x yes yes use -W option Pass option x on to program Id

-qp -p -p +yes Collect data for pro f

-qpath x yes yes -Yc ,dir Same as Qdir

-qproduce .0 yes yes no Produce type. 0 file (Object file)

-qproduce . s yes yes no Produce type . s file (Assembler source)

-qproduce .c yes yes no Produce type. c file (C source)

-qproduce .l yes yes no Produce. i file (source after preprocessor)

58 C Transition Guide-July 1992

Table B-1 Comparison of cc Options (Sheet 4 of 5)

Option SunC ANSIC ANSIC
Description

or Flag (SunOS 4.x) (SunOS 4.x) (SunOS 5.0)

-R yes yes no Merge data into text segment

-Rliir[:dir] no no yes Specify library search directories for 1 d

-3 yes yes +yes Product. s file only

-s yes yes yes strip (4.1); pass to 1d (5.0)

-sb yes yes -xsb Collect info for code browser

-sbfast no yes -xsbfast Collect info for code browser, no compile

-strconst no yes -xstrconst Insert string literals in text segment

-temp=dir yes yes noa Set directory for temps to <dir>

-time yes yes no Report the execution times

-Ux yes yes +yes Undefine preprocessor symbol x

-v yes yes -# Verbose mode

-vc no yes -v Stricter semantic checking

-v yes yes +yes Report versions of programs

-w no no +yes arguments to other components

-w yes yes yes Do not print warnings

-X[s] no yes yes Sun C compatibility option

-X[t,a,c] no yes yes Compatibility options

-xa -a -a yes Collect data for tcov

-xF no no yes Produce reorder-able code

-x1ibmi1 -libmi1 -libmi1 yes Use inline templates (used with -fast)

-x1icinfo no yes yes Return license status information

-xM -M -M yes Collect makefile dependencies

-xno1ibmi1 -no1ibmi1 -no1ibmi1 yes Don't use inline templates

-xO [1, 2,3,4] -0[1-4] -0[1-4] yes Generate optimized code
--

-xpg -pg -pg yes Collect data fro gprof

-xs no no yes Put all stabs in . s tabs section

-xsb -sb -sb yes Collect SourceBrowser info

Comparison of cc Options 59

Table B-1 Comparison of cc Options (Sheet 5 of 5)

Option SunC ANSIC ANSIC
Description

or Flag (SunOS 4.x) (SunOS 4.x) (SunOS 5.0)

-xsbfast no -sbfast yes Same as -xsb but no compilation

-YC, dir no no +yes Change pathname to components

-YI, dir no no yes Change search directory for include files

-YP, dir no no yes Change default directory for library files

-YS, dir no no yes Change default directory for start up files

a. Replaced by the environment variable TMPDIR.

Table B-2 File Suffixes

Suffix. a Object library

Suffix. il Inline expansion file
~~~ 

Suffix.o Object file 

Suffix. so Shared object 

Suffix. s Assembler source 

Suffix. S Assembler source for preprocessor 

Suffix. c C source 

Suffix. i C source after preprocessor 

60 C Transition Guide-July 1992 



C.1 Introduction 

data type 

aggregate initialization 

struct { 

int a [3] ; 

int b; 
} w[] = { {l} , 2} ; 

incomplete struct, union, enum 
declaration 

switch expression integral type 

order of precedence 

-XS Differences for Sun C and ANSI C 

In this appendix we describe the differences in compiler behavior when using 
the -Xs option. The -Xs option tries to emulate /bin/cc, Sun C 1.0, Sun C 1.1 
(K&R style), but in some cases the emulation fails. 

Table C-l -Xs Behavior (Sheet 1 of 2) 

Sun C (K&R) SunANSIC 

sizeof (w) = 16 sizeof (w) = 32 

w[O] .a = 1, 0, 0 w[O] .a = 1, 0, 0 
w[O] .b =2 w[O] .b =2 

struct fq { Does not allow incomplete struct, union, 
int i; enum declaration. 
struct unknown; 

} ; 

Allows non-integral type. Does not allow non-integral type. 

Allows Does not allow 
if (rcount > count += index) if (rcount > count += index) 

61 



data type 

unsigned, short, and long type
def declarations 

struct or union tag mismatch in 
nested struct or union declara
tions 

incomplete struct or union type 

casts as lvalues 

62 

Table C-1 -Xs Behavior (Sheet 2 of 2) 

Sun C (K&R) 

Allows 

typedef short small 
unsigned small; 

Allows tag mismatch 

struct x { 
int i; 

} sl; 

/* K&R treats as a struct */ 
{ 

union x s2; 

Ignores an incomplete type declara
tion. 

Allows 

(char *) ip = &foo; 

C Programmer's Guide-July 1992 

SunANSIC 

Does not allow (all modes). 

Does not allow tag mismatch in nested 
struct or union declaration. 

struct x { 

int i; 
} sl; 

main( ) 
{ 

struct x; 
struct y { 

struct x fl; 
/* in K&R, fl refers */ 
/* to outer struct */ 
} s2; 
struct x { 

int i; 
} ; 

Does not allow casts as lvalues (all modes). 



Index 

B 
bit-fields, 42 
bit-fields, promotion of, 12 

c 
cc options, differences, 55 
const, 19 to 21, 40 
constants, promotion of integral, 13 

E 
ellipsis notation, 4,7,41 
expressions, grouping and evaluation 

in, 33 to 36 

F 
function prototypes, 3 to 7 
functions with varying argument lists, 7 

to 10 

I 
incomplete types, 36 to 39 
integral constants, promotion of, 13 
internationalization, 23 to 26, 30 to 33 

L 
locale, 30,32 
locale, changed functions, 31 
locale, new functions, 32 

M 
macro expansion, 17 
multibyte characters, 23 to 26 
multibyte characters and wide 

characters, 23 

p 
preprocessing, 14 to 19 
preprocessing, stringizing, 17 
preprocessing, token pasting, 18 
promotion, 10 to 14 
promotion, bit-fields, 12 
promotion, default arguments, 4 
promotion, integral constants, 13 
promotion, unsigned preserving, 10 
promotion, value preserving, 10 

R 
reserved names, 26 to 30 

63 



64 

reserved names, for expansion, 29 
reserved names, for implementation 

use, 28 
reserved names, guidelines for 

choOSing, 29 

s 
setlocale(3C), 30,32 

T 
temporary files directory, 59, 60 
TMPDIR environment variable, 60 
tokens, 14 to 19 

trigraph sequences, 15 
type qualifiers, 19 to 22 
types, compatible and composite, 39 to 42 
types, incomplete, 36 to 39 

v 
varargs(5), 4 

volatile, 19 to 20, 21 to 22, 40 

w 
wide character constants, 25 to 26 
wide characters, 24 to 26 
wide string literals, 25 to 26 

x 
-Xs option 

compiler behavior, 61 
Sun ANSI C, 61 
Sun C (K&R), 61 

C Transition Guide-July 1992 








	Cover
	Contents
	Tables
	Preface
	Introduction

