
~t.sun
• microsystems .

Sun386i Developer's Guide

Sun Microsystems, Inc. • Two Federal Street • Billerica, MA 01821

May 1988

• (617) 667-0010

Part No: 814-1009-10
Revision A, May 1988

Credits and Copyright
CatalystSM is a servicemark of Sun Microsystems, Inc. SunCore®, Sun Microsystems®,
Sun Workstation®, and the Sun logo are registered trademarks and Diagnostic
Executive™, DOS Windows™, NFS™, PC-NFS™, SPARC™, Sun™, SunGKS™,
SunSimplify™, SunOS™, SunCGJTM, SuniPC™ SunLink™, Sun View™, Sun Organizer™,
Sun-2™, Sun-3™, Sun-4™, Sun386i™ are trademarks of Sun Microsystems, Inc.

SuniNGRES™ is a trademark of Sun Microsystems, Inc. and is derived from INGRES, a
product marketed by Relational Technology, Inc.

SunUNIFY™ is a trademark of Sun Microsystems, Inc. and is derived from UNIFY®, a
product of Unify Corporation.

AT™, PC™, and PC!Xfl"M are trademarks, and IBM® is a registered trademark of
International Business Machines.

Ada™ is a trademark of the Joint Program Office, U.S. Department of Defense.

DEC®, PDP-11 ®, VAX®, and VT® are registered trademarks of Digital Equipment
Corporation.

Ethernet® is a registered trademark of Xerox Corporation.

Frame Maker™ is a trademark of Frame Technology Corporation.

Intel® is a registered trademark of Intel Corporation.

Interlea.fFM is a trademark of Interleaf, Inc.

Lotus® is a registered trademark of Lotus Development Corporation.

Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.

Motorola® is a registered trademark of Motorola, Incorporated.

PostScript™ is a trademark of Adobe Systems, Inc.

UNIX® is a registered trademark and UNIX System V™ is a trademark of AT&T in the
USA and other countries.

VAX® is a registered trademark of Digital Equipment Corporation.

VMEbus™ is a trademark of Motorola, Incorporated.

All other products or services mentioned in this document are identified by the trademarks
or service marks of their respective companies or organizations.

Copyright © 1988 by Sun Microsystems, Inc.

-ii- Revision A, May 1988

1[[I

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means manual,

electric, electronic, electro-magnetic, mechanical, chemical, optical, or otherwise, without prior written permission

from Sun Microsystems.

NOTICE

This equipment complies with the requirements in Part 15 of the FCC rules for a class A computing device. Operation

of this equipment in a residential area may cause unacceptable interference to radio and TV reception requiring the oper­

ator to take whatever steps are necessary to correct the interference.

Operation of this equipment with Class A modules and devices in a residential area is likely to cause radio frequency

interference (RFl) in which case the user at his own expense will be required to take whatever measures are required

to correct the interference.

Operation of this equipment with non-Sun Microsystems equipment may also cause RFl in which case the user at his

own expense will be required to take whatever measures are required to correct the interference. The 80-volt DC out­

let and the IEC type power outlet located on the back of the main computing unit (the system unit) supply power to

the 15" Sun monochrome monitor and the expansion unit, respectively. Any other use of these outlets may cause RFl

and increase the risk of fire, in which case the user at his own expense will be required to take whatever measures are

required to correct the interference or repair the damage.

-iii- Revision A, May 1988

Revision History
Rev Date Comments

A May 1988 First release of this manual.

- iv- Revision A, May 1988

ill I

Contents

Preface.. xvii

Chapter 1 Introduction... 1

1.1. The Sun386i System at a Glance .. 3

Sun386i Features .. 3

1.2. Key Development Goals... 4

Related Documentation .. 5

Chapter 2 Installing SunOS Developer's Toolkit.............................. 9

2.1. Contents of SunOS Developer's Toolkit... 11

2.2. Installation Steps 12

2.3. Loading and Unloading Individual Ousters.. 12

Chapter 3 Porting and Development Environment: Hardware 15

3.1. Hardware Overview... 17

3.2. CPU.. 18

80386 Main Processor.. 18

Math Coprocessor ... #;M~~······· 19
·.·.·.·.·.·.·.·.·.··:·:·.

System Interfaces and Mass Storage ~,;M;;;;~M::;;:;;:;:~;;~ 19
··:·::;.:.:::.:········-:·:· ·.·.·.·.··:-:;.··:<·:·······

Buses ... ~~:~~ct~:~;:JJji~]~b~~j~~~~~~~;~{i}:.===-20
Frame Buffer and Graphics 4);J;;;;;U,_;;;:;;~;;;;:~:;'l:;::·;i;;)'.=:~;;:!i:m):::::::~!t:::,_

.·.·.·.·.· .. -:-:·:·:-:···· .. ·.·.·.·.·.·.·.·.·.·.·.· ·.·.·.·.· .. ·.·.·.·.·.·.·.·.·.·.·.·.·.·.::::::::::

Frame Buffers .. :;~';;; ~;_;;;~X.;~;;;Jt~;m;~.~'!,Hi,;;;:::I_: ·:;:;.,z~f''

:-oo:-:-~::'::~~~}i~!IJi~1:P:

3.3.

3.4. Main Memory ... ~-.'~'.'!i'::i~:E....... 22

-v- Revision A, May 1988

Contents- continued

Chapter 4 Porting and Development Environment: Software 23

4.1. Software Overview 25

4.2. Operating System ...•... , 27

SunOS4.0 .. . 27

System V 27

Utilities, Libraries, and Includes , , 28

Integrated MS-OOS , ... , 28

4.3. Porting Overview ... ~ 29

SunOS and UNIX-Based Applications , .. , , 29

Applications Based on Other Operating Systems , 30

Porting Large Programs .. _ 30

4.4 Software I>evel.opment Tools ... , 31

Object Code Fonnat .. , 31

Assembly 14utguage ... , 33

. c--...... : : _ .. , ~ .. -...................... ; :-:,.,,: :.: : ... ;._ : .. . 33

FORTR.AN' _ ,, ,., .. ,, "······· .. 40

p~······~·······••••t•••••·············-··•,•••··········~··•!••••••••!.•••.•···································· 41 .,

\

Qther Language Tools._, ... , 42

I>ebugging Tools,._ , ~······················ ... , ... _. 43

4,5. Window System and Graphics Support.,, , 45

pr_flip Overview 46

Some Pixrect Pointers for the Sun386i System , 46
I

4.6. Data Fonnat Issues .. . 47

Existing Applications 47

New Applications 47

4.7. Optimizing Code_ , _ 48

Generm Principles , ... _ 48

Using Registers .. . 48

Writing Linear Code 51

Replacing Complex Operations 53

Evaluating Conditions 53

Generating String Instructions .. . 54

Improving Loop Efficiency .. : 54

Using Assembler Code 55

-vi- Revision A, May 1988

Contents -continued

4.8. Communications Software... 55

4.9. Database Software.. 55

Chapter 5 Porting Summary.. 57

5.1. Summary of Porting Issues.. 59

5.2. Summary of Porting Tools... 61

5.3. Checklist of Porting Procedures... 62

Chapter 6 User Interface ... ; 63

6.1. Window System... 65

Window Substrate 65

Window Toolkit.. 66

Window-Based Applications.. 66

The organizer Program... 68

6.2. On-Screen Help Facilities 73

Kernel Error Messages 73

Spot Help and Help Viewer Overview... 76

Supplying Help for Your Applications... 79

Spot Help Interface 80

Help Viewer Interface 86

Installing Your Help Files 95

6.3. Administration Facilities.. 98

The snap Program... 98

Automatic System Installation 98

New User Accounts.. 99

6.4. Using Color.. 99

Sun View Color Basics.. 99

Foreground and Background Colors.. 100

Panel Colors.. 101

The coloredi t Program... 104

Application Guidelines.. 1 05

Chapter 7 MS-DOS Environment... 107

7 .1. MS-DOS Overview 109

-vii- Revision A, May 1988

. Contents - continued

7 .2. Application Issues 110

Memory.. Ill

Naming Your PC Applications... Ill

Issuing SunOS Commands from DOS Windows....................................... Ill

Text-Only Applications.. 112

File Permission Differences ... 113

7.3. Peripheral Issues... 113

setup.pc File.. 114

boards . pc File... 115

7.4. Capabilities and Umitations .. 116

Converting Between MS-DOS and SunOS Text Files............................... 116

Converting Between MS-DOS and ISO Text Files.................................... 117

Unexpanded Command Une Interpretation... 117

Determining the Window Number... 117

80386 Instructions Supported... 117

ED I TDOS: Taking Advantage of SunOS and MS-DOS Systems............. 118

MS-DOS Limitations.. 123

7.5. Communication Between Commands and Applications............................. 124

Invoking MS-DOS Commands at the SunOS Prompt............................... 125

Invoking SunOS Commands at the MS-DOS Prompt............................... 125

Piping Between Commands and Between Applications............................ 125

Background Mode Considerations... 126

Chapter 8 Peripheral Devices :........................ 127

8.1. Adding Devices.. 129

MS-DOS Drivers.. 129

SunOS Drivers~... 130

8.2. AT Bus Description and Issues.. 131

AT Bus Operation... 131

Memory-Mapped 1/0 ;... 131

Interrupt Channels.. 132

DMA Channels... 132

AT Bus Signals .. ~.................. 132

Limitation... 135

-viii- Revision A, May 1988

Contents - continued

Chapter 9 Applications Delivery... 137

9.1. System Software Overview.. 139

9.2. Application SunOS .. 140

Hardware Diagnostics.. 140

Core System.. 140

Optional Clusters 141

Recovery Software... 142

9.3. SunOS Developer's Toolkit... 143

9.4. Loading and Unloading Clusters.. 143

9.5. Releasing Your Software ;.. 144

Copyright and Description File.. 144

Installation Script.. 144

Making the Distribution 144

How Users Will Load Your Software .. 145

Chapter 10 Internationalizing Applications...................................... 147

1 0.1. Internationalization Support... 149

8-Bit Characters.. 149

Alternative Code Sets... 149

Keyboard Support... 150

Native-Language Messages.. 154

1 0.2. Application Guidelines 155

8-Bit Characters.. 155

Date and Time Formats 155

Numeric Formats.. 155

Currency Symbols.. 155

Text Messages':... 155

Appendix A Sun386i System Description.. 157

A.1. Product Features... 159

System Unit.. 159

Expansion Unit... 160

AT Bus.. 160

Monitors ... 161

- ix- Revision A, May 1988

Contents -continued

Keyboard and Mouse.. 161

Mass Storage Devices... 161

Dimensions and Weights.. 162

Electrical Power Requirements 162

Environmental Requirements... 163

A.2. Hardware.. 163

CPU Board.. 163

Frame Buffers... 164

SIMM Memory Board.. 164

A.3. Diagnostics... 164

Power-Up Diagnostics.. 164

Hardware Diagnostics.. 164

System Exerciser.. 164

A.4. Operating System... 165

Application SunOS ... 165

SunOS Developer's Toolkit... 165

A.5. Languages.. 165

A.6. Windows and Graphics.. 165

Pixrects ;... 165

Sun View... 165

SunView Applications.. 166

A.7. Unbundled Software.. 166

A.8. MS-OOS Compatibility... 166

A.9. Administration Tools... 167

A.10. User Interface... 167

A.11. Documentation.. 167

On-Line Documentation... 167

Printed Documentation... 168

A.12. Internationalization 168

Appendix B 80386 Assembly Language Definition.......................... 169

B. I. Invoking the Assembler... 171

Input Format... 171

Output Format .. 172

-x- Revision A, May 1988

Contents - continued

B.2. Symbols and Expressions ... , 172

Values... 172

Symbols.. 173

Expressions... 173

B.3. Pseudo Operations... 175

General Pseudo Operations 175

sdb Pseudo Operations.. 177

dbx Pseudo Operations.. 178

B.4. Machine Instructions.. 178

Differences between the SunOS and Intel 80386 Assemblers................... 178

Operands... 178

Introduction to Instruction Descriptions... 180

Processor Extension Instructions.. 182

Segment Register Instructions.. 184

1/0 Ins~r~Jctions ... ,, , ,., , , .. , ... ,., .. ,., ... , , ,........... l84

Flag Instructions 184

Arithmetic/Logical Instructions.. 185

Multiply and Divide Instructions.. 186

Conversion Instructions.. 186

Decimal Arithmetic Instructions 186

Coprocessor Instructions 186

String Instructions 186

Procedure Call and Return Instructions.. 187

Jump Instructions.. 187

Interrupt Instructions 187

Protection Model Instructions 187

Miscellaneous Instructions 188

B.S. Translation Tables for SunOS to Intel Float Mnemonics............................ 188

Real Transfers... 188

Integer Transfers... 189

Packed Decimal Transfers.. 189

Addition.. 189

Subtraction .. ;... 189

Multiplication... 189

Division.. 189

-xi- Revision A, May 1988

Contents - continued

\
I

Other Arithmetic Operations 190 /

Comparison Instructions .. . 190

Transcendental Instructions 190

Constant Instructions 190

Processor Control Instructions .. . 191

Appendix C File System Layout 193

C.1. Terms .. . 195

C.2. Layout Overview ... : 196

System Disk 196

Additional Disks .. . 197

C.3. I File System .. . 197

C.4. lusr File System 200

C.5. lfiles<n> File System 202

C.6. I export Directory .. . 203

C.7. lvol Directory 205

C.8. Application Directory Structure .. . 206

Appendix D Common Object File Format (COFF) 209

.D.1. COFF Features .. . 211

COFF Structure 212

D.2. Terms and Conventions 212

D.3. File Header .. . 213

Magic Numbers 213

Flags .. . 214

File Header Declaration 214

D.4. Optional Header Information 214

Standard SunOS System a. out Header .. . 214

Optional Header Declaration 215

D.S. Section Headers 216

Flags 216

Section Header Declaration 217

. b s s Section Header .. . 218

D.6. Sections 218
/

/

- xii- Revision A, May 1988

Contents - continued

D.7. Relocation Information.. 218

Relocation Entry Declaration... 219

D.8. Line Numbers... 219

Line Number Declaration... 220

D.9. Symbol Table... 220

Special Symbols 221

Symbols and Functions... 222

Symbol Table Entries 222

Auxiliary Table Entries 231

D.1 0. String Table.. 235

D. II. Access Routines... 236

Appendix E Differences Between Sun C and Kernighan and
Ritchie C.. 237

E.1. Lexical Conventions 239

Keywords.. 239

E.2. What's in a Name?... 239

E.3. Conversions.. 239

Characters and Integers 239

float and double.. 239

Arithmetic Conversions.. 240

E.4. Expressions 240

Primary Expressions... 240

Multiplicative Operators... 240

E.S. Declarations... 240

Storage Class Specifiers 240

Type Specifiers... 240

Meaning of Declarators 241

Structure and Union Declarations.. 241

E.6. Statements 242

Switch Statement.. 242

E.7. External Definitions... 242

External Function Definitions 242

- xiii- Revision A, May 1988

Contents - continued

/ .
F.l. NaJnes .. . 247

\

F.2. Data Types and Sizes .. . 247

F.3. Data Layout, .. . 248

F.4. Initialization .. . 248

F.5. Bit Shifting .. . 248

F.6. Structure Return .. . 249

F.7. Register Usage .. . 249

F.8. Stack Format 249

~ppendix G man Page Differences for the Sun386i System 251

G.l. New man Pages for the Sun386i System 253

man(l) Commands .. . 253

man(3) Commands 254

man(3R) Commands 254

man(3X) Commands .. . 254

man(4) Descriptions 254

man(4S) Descriptions .. . 254

man(5) Descriptions .. . 254

man(8) Commands 255

man(8C) Commands 255

G.l. man Pages Altered for the Sun386i System 255

man(l) Commands .. . 255

man(2) Commands .. . 256

man(3) Commands .. . 256

man(3N) Commands 256

man(4F) Descriptions .. . 256

man(4S). Descriptions 256

man(5) Descriptions .. . 256

man(8) Commands 256

man(8C) Commands 257

man(8S) Commands 257

0.3 4.0 man Pages not Relevant to the Sun386i System 257

man(l) Commands 257

man(4S) Descriptions .. . 257

- xiv- Revision A, May 1988

ill I

Contents -continued

man(4S) Descriptions... 257

man(5) Descriptions... 257

man(6) Commands... 257

man(8) Commands... 257

Appendix H MS-DOS and ISO Character Conversion Tables 259

-XV- Revision A, May 1988

ill I

Figures

Figure 3-1 Byte and Bit Ordering in the 80386, VAX, 680x0, and
SPARC.. 18

Figure 3-2 Sun386i System Keyboard: U.S. and Great Britain............................ 22

Figure 4-1 Conceptual Representation ofmalloc ()Memory........................... 34

Figure 4-2 Conceptual Representation of a C Structure in 680x0 versus
80386 Memory.. 38

Figure 6-1 Window System and Graphics Software 67

Figure 6-2 Sample Spot Help Pop-Up for the New Mail Button........................... 77

Figure 6-3 Sample Help Viewer Handbook Page... 78

Figure 9-1 System Software Divisions... 139

Figure 10-1 U.S. Keystation Map... 153

Figure 10-2 International Keystation Map... 153

Figure D-1 Object File Format.. 212

Figure D-2 Line Number Grouping... 219

Figure D-3 COFF Symbol Table... 221

Figure D-4 Symbols for Functions.. 222

Figure D-5 16-Bit Type Entry Format... 228

Figure F-1 Stack Frame for Function Invocation ... 250

- xvii- Revision A, May 1988

\:{:···:~:~:::::::::::::::::: ::::::::::: ::::.::::::: .:::.=.=.:-·-:-:-:-=::::.::::·:·::::::::::::::::::;:;:::::·:::: :-:-:-·-:-:-:.:.::: ... ·.·.·.·.·.·.·.·.·.·.:-:-:-:-:-:-:-:-:-·-·-:-:-:-·-:-:-:-:-:-·=:=:-:-: .·.··.·.·.·.·.·.·.·.·.·.-:.:.:.:._.::::::::::::::·_:::::::.:::· .. •.·.•.·.·.·

Table 1-1

Table 2-1

Table 3-1

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 6-1

Table 7-1

Table 7-2

Table 7-3

Table 7-4

Table 7-5

Table 7-6

Table 8-1

Table 8-2

Table 8-3

Table 10-1

Tables

Developer's Toolkit Documentation Set.. 6

load(l), loadc(1), unload(1), unloadc(l), and cluster(!)
Command Syntax.. 12

Hardware Environment Summary 17

Software Environment Summary.. 26

man Pages and Include Files Containing COFF
Definitions 31

System V Functions for Manipulating COFF Files 32

Registers Used inC Programs.. 49

Help Viewer Handbooks and Spot Help . info Files in
/vel/help/ language/USA-English.................................... 88

Preinstalled Sun OS Commands.. 111

Preinstalled Text-Only Commands... 112

1/0 Address Space Emulation... 115

Interrupt Level A vail ability 116

80386 Instructions Supported 118

Protected-Mode Instructions... 123

Interrupt Channel Assignments... 132

DMA Channel Assignments 132

AT Bus Signals

Table 10-2 ISO Character Set

Table A-1

Table A-2

Table A-3

Table A-4

Electrical Power Re1quiren1en1ts

Operating Environment Requirements

Nonoperating Environment Requirements

- xix-

163

163

Revision A, May 1988

Table D-1

TableD-2

Table D-3

Table D-4

Table D-5

TableD-6

TableD-7

TableD-8

TableD-9

Table D-10

Table D-11

Table D-12

Table D-13

Table D-14

Table D-15

Table D-16

Table D-17

Table D-18

Table D-19

Table D-20

Table D-21

Table D-22

TableD-23

TableD-24

TableD-25

TableD-26

Table D-27

TableD-28

TableD-29

Table D-30

Table H-1

TableH-2

Table H-3

TableH-4

Tables - continued

File lieader Contents .. .

File lieader Flags (80286 and 80386 Computers)

Optional Header Contents (80286 and 80386 Computers)

System Magic Numbers (80286 and 80386 Computers)

Section Header Contents .. .

Section Header Flags

Relocation Section Contents .. .

Relocation Types (80286 and 80386 Computers)

Special Symbols in the Symbol Table

Symbol Table Entry Format .. .

Name Field

Storage Classes .. .

Storage Class by Special Symbol

Restricted Storage Classes

Storage Class and Value .. .

Section Number

Section Number and Storage Oass .. .

Fundamental Types .. .

Derived Types .. .

Type Entries by Storage Class

Auxiliary Symbol Table Entries .. .

Format for Auxiliary Table Entries for Sections

Tag Name Table Entries .. .

Table Entries for End of Structures

Table Entries for Functions ...•.................

Table Entries for Arrays

Format for Beginning of Block and Function Entries

End of Block and Function Entries .. .

Entries for Structures, Unions, and Enumerations

String Table .. .

MS-DOS Character Set .. .

MS-DOS to ISO Conversion

ISO Character ~t .. .

ISO to MS-DOS Conversion

213

214

215

215

216

217

218

219

222

223

223

224

225

225

226

226

227

228

228

229

231

232

232

232

233

233

233

234

234

236

262

264

267

269

·XX· Revision A, May 1988

Audience for this Manual

Using this Manual

ill I

Preface

This manual is for developers who want to write or port applications to run on the

Sun386i™ system. It assumes application programming experience and an understan­

ding of the C programming language, but does not assume familiarity with Sun sys­

tems. This manual, in conjunction with related Sun programming manuals described

in Chapter 1, provides most of the information necessary to port any application to

the Sun386i system. Comparisons of Sun386i and Sun-3™ features are provided to

assist programmers in porting Sun-3 applications to the Sun386i system, and to help

Sun ™ newcomers broaden their understanding of the capabilities and distinct fea­

tures of Sun systems.

This book covers three major areas:

1. Chapters 1 through 5 provide a Sun386i overview, and discuss installation
of the software that you will need, and the hardware and software porting
issues that you should know about.

• Chapter 1 gives a synopsis of the Sun386i system, and points to addi­
tional documentation that you will need to write or port applications
to this system.

• Chapter 2 describes how to install the Developer's Toolkit, which
includes the C compiler, assembler, link editor, and dbx and
dbxtool, in addition to other development software.

• Chapter 3 provides an overview of the porting environment from a
hardware perspective, including details of portability and compatibili­
ty issues.

• Chapter 4 describes the porting environment from a software point. of
view, including de~ls of portability and compatibility issues. // ::=:,

• Chapter 5 summarizes porting information presented in the ro/:9:~~:::.::}:::,,
ceding chapters. .:::::, ::,;: '':':,,: :!"\: ::::::>;.

2. Chapters 6 through 10 describe the hardware and softwm''tJ~~~,~~M;i·<,., '::_::·,:·.
able on the Sun386i system. .:<:\~::·::::::::;:;.~:······ .·.·.·.·.·_·:.·:. ··.·.·.· :·:·:::·::. ::-:=·=::-:··:·-····

• · Chapter 6 considers the Sun386i user interface, inahd;i~g $ei;in®i'> ·: ' .·
.,:;:-.:·-;.·

system, graphics, file system utilities, on-screen help; ~~ot~~-~\ . : :: ,.- ·
administration, and color features. · ':,:::: _: }:::_.;:;\: :'\:{·

• Chapter 7 describes the MS-DOS™ environment, giving a ~f; < {'· ' > .
overview of the MS-DOS window program called dos, and itiCl\]~~s
information on MS-DOS issues that pertain to porting.

- xxi- Revision A, May 1988

Conventions

Preface - continued

• Chapter 8 provides an overview of A 'fTM bus and peripheral device
issues for the Sun386i system, including a description of dynamically
loadable drivers, which are new with the Sun386i system.

• Chapter 9 describes the organization of system software on the
Sun386i system, and provides the steps you should follow when dis­
tributing your application software for this workstation.

• Chapter 10 presents application guidelines that you can use to help
sell your product in the international marketplace. It also includes
information for country distributors to localize certain aspects of the
Sun386i system.

3. The book ends with a series of appendices providing additional, detailed
information in areas of interest to developers.

• Appendix A provides a more thorough overview of the entire Sun386i
system.

• Appendix B contains the Intel® 80386 assembly language definition.
• Appendix C presents information on the Sun386i file system layout.

• Appendix D gives details of the Common Object File Format
(COFF), used by the Sun386i system.

• Appendix E details the differences between the C language on the
Sun386i system and the C language documented in The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

• Appendix F describes the Sun386i implementation of C. This informa­
tion should be especially useful to C programmers incorporating
assembly language routines.

• Appendix G lists man pages that are new for the Sun386i system, as
well as those that were modified for and those that are not applicable
to this system.

• Appendix H contains character conversion tables showing how charac­
ters are mapped when you convert MS-OOS files to ISO format and
ISO files to MS-DOS format.

This manual uses the following typographic conventions:

• Prompts, system messages, file names and path names, and code examples
appear in this font. Where differentiation is needed, SunOS™ files
are shown in lowercase, and MS-OOS files are shown in uppercase.

• Commands or responses that you should enter are shown .in this
font.

• Menu items appear in this font. Where you are to choose a menu item to
perform a task (as opposed to just a description of a menu item), this
font is used.

• Command text shown in italics like this indicates a variable for which you
must substitute an appropriate value. Italics are also used for notes, desig­
nated by NOTE in the left margin.

• Key names are rectangles around letters, symbols, or words that indicate
actual keys to press, such as C&iiil .

Revision A, May 1988

',,

1

Introduction

Introduction.. 1

1.1. The Sun386i System at a Glance 3

Sun386i Features 3

1.2. Key Development Goals 4

Related Documentation 5

Sun386i Developer's Guide

1.1. The Sun386i System
at a Glance

Sun386i Features

I II

Chapter 1 - Introduction 3

1

Introduction

This chapter presents an overview of the Sun386i workstation. It describes the key

features of the system, lists application development tips, and summarizes the manu­

als that you'll need to port or develop software to run on this machine.

The Sun386i system is a new, low-end workstation based on the Intel 80386 micro­

processor. Although the system uses Intel architecture, the Sun386i supports the

same operating system, program development tools, and software found on Sun sys­

tems that use either the Motorola MC680x0 chip or Sun SP ARC architecture.
Specifically, the Sun386i supports:

• SunOS operating system - a convergence of the 4.2 BSD UNIX® and

UNIX System V™ operating systems - on a 386 machine

• Sun Visual/Integrated Environment for Windows (SunViewTM) applica­
tions, both color and monochrome

• The Sun Network File System (NFSTM)

• The same types of Sun and third-party applications that run on the Sun-3
product line

• Applications written specifically for this machine

In addition to providing most of the features of other Sun systems, the Sun386i sys­

tem also offers:

Integrated MS-DOS- MS-DOS is merged right into the SunOS system, and sup­

ports all MS-DOS development tools. The Sun386i system provides an excellent

cross-development environment for MS-DOS. For instance, you can use the SunOS

make(l) capability with MS-DOS compilers and linkers. You can invoke PCTM

applications and commands from both SunOS and MS-DOS command processors, and

they run in special MS-DOS windows. Multiple MS-DOS windows can be open and
running applications concurrently, enabling you to compile, edit, and test programs

at the same time. In addition, the Sun386i system supports piping between concur­

rent PC applications, and between SunOS and MS-DOS processes.

AT bus- The system has three AT/Xf and one XT-compatible slots, user-config­

urable for system expansion.

Revision A, May 1988

Sun386i Developer's Guide

1.2. Key Development
Goals

Chapter 1 - Introduction 4

Integrated mass storage- Standard configurations are available with 91 or 327
Mbyte (megabyte) hard disks and a 3 1/2-inch diskette drive; Optionally, an expan­
sion unit can include additional disk drives as well as a tape drive for 1/4-inch
streamer tapes.

Easy-w-use administration tools- A series of integrated system administration
tools help users with <:ommon administrative tasks. Such tasks include adding a sys­
tem to a network (these tools enable a new system to be booted and on the network
within 30 minutes of unpacking), automatic creation of new user accounts, and back­
up.

On-screen help facility - Cursor-sensitive on-screen help is available for most
Sun View applications. The on-screen help facility has a programmatic interface so
you can provide your users with customized, solutions-oriented help. In addition,
system (kernel) messages have been rewritten into problem descriptions that less
experienced users can understand.

New keyboard -The Sun386i keyboard is compatible with the Sun-3 keyboard. but
provides a superset of Sun-3 and AT-style keys. In addition to the special (]kJW key,
the new keyboard also provides I Compose l and I Alt Graph l keys for the composition
of various international characters.

Internationalized product - The system offers keytop legend sets appropriate for
various West European countries, and supports 8-bit data in the kernel, Bourne
Shell, Text Editor, and MS-OOS windows.

Sun Microsystems® has long recognized the importance of attracting premier soft­
ware developers to its workstation product lines. With the proper set of software
solutions, both the workstation and the solution packages do well. Sun wants you
to participate in the· success of the Sun386i workstation by helping you:

• Create portable code

• Exploit color

• Use the new on-screen help facility

• Make your applications easily installable

• Make your drivers "loadable"

• Internationalize your applications

If you need any infol1llation about third-party products that run on a Sun386i sys­
tem, contact your Sun sales office and ask about the Sun CatalystSM program.

Creating Portable Code
Sun Microsystems is a multi-architecture systems supplier. To make your work easi­
er in this environment, Sun provides common interfaces between the hardware and
the operating system and between the operating system and the software tools pro­
vided for development, communications, windows, and graphics. Use the document­
ed interfaces; in.particular, use the Sun View window system user interface and
toolkit. This will do the most to ensure the portability of your applications within
the Sun families. Chapter 6 provides a brief introduction to the window environ­
ment; refer to the Sun View Programmer's Guide for more information.

Revision A, May 1988

)

Sun386i Developer's Guide

Related D()(:umentation

Chapter 1 - Introduction 5

Exploiting Color
The Sun386i system was designed to run color applications. Accordingly, the work­
station:

• Provides color frame buffers and monitors as options

• Runs Sun View 1.75, which includes color facilities

• Comes with documentation that describes the color programming facilities
in Sun View and provides detailed guidance on their use. The Pixrect Refer­
ence Manual, the Sun View Programmer's Guide, and Chapter 6 of this
manual provide the information you need.

Using the New On-Screen Help Facility
This facility lets you add an important ease-of-use feature to your applications. The
programmatic interface described in Chapter 6 contains all of the information you
need to provide help for your applications. You can use the on-screen help that
comes with the system as a model.

Making Your Applications Easily Installable
You can make your applications easily installable by creating a few required files
and then using the bar(l) command to put those files and your application on tape
or diskette. When you follow the steps in Chapter 9, users can easily load your soft­
ware using a new installation program that is part of the Sun386i system's simpli­
fied administration tools.

Making Your Drivers Loadable
If you are providing drivers for your applications, make them dynamically loadable
so users can load your drivers without having to reconfigure and reboot the kernel.
Chapter 8 includes a brief overview of loadable drivers; Writing Device Drivers for
the Sun Workstation contains a complete description.

Internationalizing Your Applications
Chapter 10 provides information and guidelines for creating new or altering existing
applications that can sell outside of the United States. The chapter contains tables to
help you establish country-specific characters for display with the I Alt Graph I key,
and describes the steps necessary to translate error messages. Chapter 10 also
includes information about MS-DOS issues. In addition, Appendix H contains tables
showing the character mapping that occurs when converting MS-DOS files to ISO
format and ISO files to MS-DOS format.

Four primary sets of printed documentation support the Sun386i system:

• The Sun386i Owner's Set, containing manuals for first-time Sun386i users
whose primary interest is in running applications

• The Sun386i Owner's Supplement Documentation Set, containing primarily
more advanced manuals that pertain to all Sun systems, including the
Sun386i system

• The Sun386i Developer's Toolkit Documentation Set, containing manuals
necessary for application development on the Sun386i and other Sun sys­
tems

• The Sun386i Upgrade Documentation Set, containing technical manuals spe­
cific to the Sun386i. The upgrade set is a complement to the documenta-
tion set for SunOS 4.0.

Revision A, May 1988

Sun386i Developer's Guide

Table 1-1

Chapter 1 - Introduction 6

This manual is part of the Developer's Toolkit Documentation Set. Table 1-1 gives a

synopsis of the other manuals in this set. Whether you are porting existing Sun

applications to the Sun386i system or are porting applications from another environ­

ment, you '11 need access to these manuals to do your work.

Developer's Toolkit Documentation Set

Title

Sun System Services Overview

PROM User's Manual

C Programmer's Guidefor
the Sun Workstation

Programming Utilities and Libraries
for the Sun Workstation

Program Debugging Tools
for the Sun Workstation

Network Programming on
the Sun Workstation

Synopsis

Summarizes SunOS operating system facil­
ities. Includes information on System V
compatibility, memory management, re­
source controls, the file system, devices,
processes and interprocess communication,
and network services.

Contains information on the boot PROM,
ID PROM, and EEPROM. Explains how
to get the EEPROM to reconfigure the
system to recognize primary terminal or
console; display a particular logo; boot
from a specified device; change console
display size; shorten the RAM self-test at
power on.

Includes an introduction to C and sections
on program environments, processes, sig­
nals and interrupts, I/0, memory manage­
ment, and data representation.

Discusses C shell, Bourne shell, System V,
and streams applications programming;
performance analysis; Source Code Control
System (sees); make, for building and
maintaining programs; lint, a C porta­
bility and type rules checker; de and be
calculators; m4 macro processor; lex for
generating lexical analysis programs;
yaee, a compiler compiler; and Curses
screen updating facility.

Describes the dbx symbolic debugger and
dbxtool, and the adb assembly debug­
ger; includes tutorials and examples.

Provides an introduction to networks; pro­
tocol specifications; 4.3 BSD network
compatibility; Remote Procedure Calls
(RPCs); Network File System (NFS);
System V STREAMS interface; status
monitor; Remote Execution Protocol
features; Yellow Pages (YP) database.

Revision A, May 1988

Sun386i Developer's Guide

Table 1-1

Chapter 1 - Introduction 7

Developer's Toolkit Documentation Set (continued)

Title

Writing Device Drivers for
the Sun Workstation

Sun View Programmer's Guide

Sun View System Programmer's
Guide

Pixrect Reference Manual

SunCGI Reference Manual

Synopsis

Discusses development of device drivers
in general and the specific routines need­
ed. Includes loadable driver information.

Describes Sun View concepts, window
types, and the attributes and functions
to perform tasks within this environ­
ment. Critical to the development of any
window-based application.

Provides information on specialized
Sun View features and the low-level
window system routines that support
Sun View.

Describes the Pixrect graphics library,
a low-level RasterOp library for writing
device-independent graphics applications.

Describes SunCGI, an implementation of
the ANSI Computer Graphics Interface
(CGI) for development of interactive
graphics applications.

Revision A, May 1988

• • A .. ~ •

Installing SunOS Developer's
Toolkit

2

Installing Sun OS Developer• s Toolkit... 9

2.1. Contents of SunOS Developer's Toolkit.. 11

2.2. Installation Steps.. 12

2.3. Loading and Unloading Clusters After Installation..................................... 12

Sun386i Developer's Guide

2.1. Contents of SunOS
Developer's Toolkit

Chapter 2- Installing SunOS Developer's Toolkit 11

2
Installing SunOS Developer's
Toolkit

Sun OS Developer's Toolkit is one of the two primary divisions of system software
on the Sun386i workstation. To have complete SunOS 4.0 functionality, you must
have both Application SunOS, the other primary division of system software, and
the Developer's Toolkit loaded on your system. Chapter 9 of this manual briefly
describes Application SunOS; for more detailed information about it, including load­
ing instructions, refer to Sun386i System Setup and Maintenance.

This chapter contains:

• A brief description of SunOS Developer's Toolkit

• Descriptions of commands to add and remove individual pieces of the
Developer's Toolkit

SunOS Developer's Toolkit is divided into groups of related programs and files
called clusters that enable modular loading and unloading of software to save disk
space. The names and contents of these clusters are shown below.

base_ dave~ - software development commands and utilities such as the C com­
piler, assembler, link editor, dbx(l); you must load this cluster to be able to use
any of the Developer's Toolkit with the exception of the help _guide cluster,
which does not require base_ de vel

config- System V files necessary to reconfigure the kernel such as config{8)
and the Ius r I s y s directory

sunview _ devel - Sun View development libraries required for writing window­
based applications

p~ot_devel-libraries such as libplot. a and libplotbg. a for develop­
ment plotting functions

he~p _quid.a- Help Writer's Handbook for writing on-screen help for applica­
tions

proflibs -profiled libraries (denoted by the suffix __p. a) such as libc __p. a,
librn_p. a, and libcurses_p. a

Revision A, May 1988

Sun386i Developer's Guide

2.2. Installation Steps

2.3. Loading and
Unloading Clusters
After Installation

Table 2-1

Chapter 2- Installing SunOS Developer's Toolkit 12

sees - commands required by SCCS, the Source Code Control System

sysV _ clevel -libraries required to port System V applications, including utili­

ties in /usr I Sbin and /usr I Slib directories

For a complete list of files contained in each of these clusters, display or print

/usr I lib/ load/ filesizes. This very large file includes descriptions of all

Sun386i system files.

Developer's Toolkit is available on tape or diskettes. To install it from either medi­

um, use the loadc(l) command with the syntax loadc clustername(s). For

instance, if you want to load all Developer's Toolkit clusters, put the tape or

diskette in the drive and type:

loadc base_clevel plot_devel sees sunv~ew devel
sysV_devel profl~s eonf~q balp_guide

All clusters, with the exception of help _guide, require the presence of the

base de vel cluster to work.

You also can use the load(1) and loadc(l) commands to add individual clusters to

the Sun386i system after installation. Similarly, you can remove individual clusters

with unload(l) and unloadc(l). A fifth command, cluster(l), providesinfor­

mation to help you decide which clusters you might want to load. Table 2-1 below

provides the syntax and descriptions for all five commands.

load(l), loadc(l), unload(l), unloadc(l), and cluster(!) Command Syntax

Command Use

load [filename ...] Adds the cluster(s) containing the
file(s) specified to the system

loadc [clustername . ..] Adds the cluster(s) specified to the
system

unload filename ... Removes the cluster(s) containing the
file(s) specified

unloadc clustername ... Removes the cluster(s) specified

cluster [filename] Displays the name of the cluster con-
taining the file specified

If you enter any of the commands in Table 2-1 without an argument, the system dis­

plays a summary of all Application SunOS and Developer's Toolkit clusters, includ­

ing whether or not a cluster is loaded and its size.

When you invoke either the load(l) or loadc(l) command with an argument, the

system:

1. Locates the cluster specified (loadc), or the cluster that contains the file
specified (load)

Revision A, May 1988

i
J

Sun386i Developer's Guide Chapter 2- Installing SimOS Developer's Toolkit 13

2. Prompts you to enter the medium from which you '11 be loading the clus­
ter, and then prompts you to insert a particular diskette or tape and to con­
firm that you have done so

3. Checks to see if there is enough free disk space for the cluster
4. Adds the cluster to the system if there is enough space remaining
5. Displays the amount of space taken by all currently loaded clusters, and

the amount of free space remaining on your system

When you use either the unload(l) or unloadc(l) commands, the system:

1. Prompts you to confirm your decision to remove a cluster
2. Displays a message stating that the cluster has been removed (if you

answer y to the prompt), as well as the amount of space taken by all cur­
rently loaded clusters and the amount of free space remaining on your sys­
tem

For more information about these commands, refer to the load(l), loadc(l),
unload(l), unloadc(l), and cluster(l) descriptions in the SunOS Reference
Manual.

Revision A, May 1988

Porting and Development
Environment: Hardware

3

Porting and Development Environment: Hardware............................ 15

3.1. Hardware Overview... 17

3.2. CPU 18

80386 Main Processor... 18

Math Coprocessor... 19

System Interfaces and Mass Storage.. 19

Buses... 20

3.3. Fnune Buffer and Graphics.. 20

Frame Buffers... 20

Video Monitors... 22

Keyboard and Mouse.. 22

3.4. Main Memory... 22

Sun386i Developer's Guide

3.1. Hardware
Overview

Chapter 3 -Porting and Development Environment: Hardware 17

3
Porting and Development
Environment: Hardware

This chapter considers hardware features of the Sun386i system that have implica­
tions for the porting and portability of applications. Appendix A contains a more
complete Sun386i system description.

Table 3-1 below summarizes key features of the Sun386i system that collectively
determine the hardware porting and development environment. For reference, the cor­
responding data for a Sun-3 system is also shown.

Table 3-1 Hardware Environment Summary

Sun-3 System Sun386i System

Main Processor 68020 80386

Math Coprocessor 68881 80387

I/O Ports 2 serial (RS-423) Serial (RS-423, PC compatible),
Parallel (PC-compatible), SCSI

Ethernet Yes Yes

Mass Storage Hard disk, 1/4-inch tape Hard disk, 3 1/2-inch diskette,
optional 1/4-inch tape

Bus 32-bitVME 16-bit AT (expandable) and Sys-
tern bus (32-bit proprietary)

Bus ControUer Proprietary 82380

Frame Buffer 1152x900x1, 1152x900x8, 1152x900x1, 1152x900x8,
or 1600x 1280x 1 or 1024x768x8

Monitor 19-inch monochrome, 1152x900 15-inch monochrome, l152x900
standard; optional color/gray- standard; 19-inch monochrome;
scale, 15-inch, 19-inch 14-inch (1024x768), 16-inch,

19-inch color

KeybotuYJ Sun-3 Sun-3/AT superset, glus C&i.R),
I Compose I, and I Ah mph I

Mouse Optical (100 dpi) Optical (200 dpi)

Graphics Support Optional GP, GB (VME) N/A

Main Memory 4-16Mbytes 4-16 Mbytes

Revision A, May 1988

Sun386i Developer's Guide

3.2. CPU

80386 Main Processor

Byte Ordering

Figure 3-1

Chapter 3 -Porting and Development Environment: Hardware 18

The 80386 main processor is central to the Sun386i system's hardware architecture.

The implementation of the SunOS operating system on this processor handles most

architectural dependencies in low-level operating system internals. That is, Sun386i

users and application programmers working in high-level languages should not

notice differences from a Sun-3 system, for example, that are attributable solely to

processor differences.

The differences that do exist lie in the area of assembly language programming, and

in the somewhat less obvious area of memory organization. Assembly language pro­

gramming is considered elsewhere (see Software Development Tools, starting on

page 29). Memory organization-byte ordering in particular-is discussed in the fol­

lowing section.

The system architecture is divided into three functional areas: the CPU, frame

buffer/graphics, and main memory. The rest of this chapter considers each section in

detail.

The CPU includes the 80386 main processor, coprocessors, system interfaces and

mass storage devices, and buses: As noted above, any effects that these components

have on porting will likely relate directly to the architecture of the 80386 itself.

However, the subsections below discuss the other components as well to provide

contextual information for the Sun386i system.

Common, processor-dependent issues affecting the porting of applications are byte

ordering, word size, and data alignment. These are discussed in tum below.

The 80386 is a 32-bit processor. This means that all data read or written by the pro­

cessor passes through 32-bit wide registers. The order in which the data-the bytes

and bits-is arranged in the 80386's registers is similar to some 32-bit processors

(e.g., DEC VAX®), but differs from that found in others (e.g., 680x0, SP ARC,

ffiM® 360). The bytes in a 32-bit integer in the CPU's register, when read from

address n, end up in the register as shown in Figure 3-1 below;

80386 and VAX

680x0 and SPARC

31 30 29 2827 26 25 24 23 22 2120 191817 1615 1413 12 111009 08 07 06 05 04 03 02 0100

Byte and Bit Ordering in the 80386, VAX, 680x0, and SP ARC

Revision A, May 1988

Sun386i Developer's Guide

Word Size and Data Alignment

Math Coprocessor

System Interfaces and
Mass Storage

Chapter 3 -Porting and Development Environment: Hardware 19

In situations where two processors with opposite byte ordering are trying to inter­
pret the same data, the potential exists for "byte swap" problems. There are four
general areas where byte swap problems might exist:

• Reading a binary data file created by a 680x0 machine on an 80386 machine
and vice versa - This produces useless data due to the differing byte
order. To swap the bytes and get the correct interpretation on the 80386,
you must first filter the file and then read it.

• Graphics - To maintain architectural consistency with 80386 byte order­
ing, the monochrome frame buffer for the Sun386i system scans the bits in
the direction opposite to that of 680x0-based systems; This creates a "bit
flip" problem affecting the interpretation of graphics files and graphics
included in source code interpreted during compilation. This issue is dis­
cussed further in Section 3.3 on the next page.

• C- Certain constructs in C that behave properly in 680x0-based architec­
tures can cause difficulties on 80386 systems and vice versa because of byte
ordering. Applications ported from such architectures will compile proper­
ly but produce incorrect results when run. The C description starting on
page 33 contains more information.

• Latent bugs- Occasionally, bugs in code running on a 680x0 system will
not become apparent until the code is ported to an 80386 system.

Chapter 4 also discusses the potential for certain C constructs to create difficulties
relating to data alignment in memory. Bytes (8 bits), words (16 bits), and double­
words (32 bits) are the fundamental data types that the 80386 uses. The processor
places no constraints on the alignment of data in memory. For example, words do
not have to have even-numbered addresses, and doublewords do not have to have
addresses evenly divisible by four. For better performance, the C compiler does
impose such constraints, however. The resulting alignment scheme can produce prob­
lems when interpreting structures created on a 680x0-based system-see the section
on C, starting on page 33, for details.

The Sun386i system contains an 80387 floating-point coprocessor. Because this chip
is standard, no compiler switch is needed to use it. The compiler always instructs
the main processor to shunt floating point operations to the coprocessor.

The Sun386i system includes:

• An Ethernet® port
• An RS-423 port, PC compatible
• A parallel port (output only), PC compatible
• A Small Computer System Interface (SCSI) port

The SCSI interface supports up to seven devices in a daisy-chain configuration. In the
standard (91 Mbyte) diskful system, one device is on the chain already, leaving six
spots free for the addition of Sun devices.

In systems including an expansion unit, the SCSI interface is routed externally from
the SCSI connector on the back of the CPU board to a connector on the expansion
unit. A tape drive in the expansion unit makes use of the SCSI interface. This still
leaves some spots open on the daisy chain for additional devices. The expansion unit
also provides a second SCSI connector for your use.

Revision A, May 1988

Sun386i Developer's Guide

Buses

3.3. Frame Buffer and
Graphics

Frame Buft'ers

Dual Resolution Modes

Byte Swapping and Bit Flipping

Chapter 3 -Porting and Development Environment: Hardware 20

Standard diskful Sun386i systems contain a 91 Mbyte hard disk and a drive support­

ing 3 1/2-inch diskettes (1.44 Mbyte). An optional external327 Mbyte hard disk

and a cartridge tape drive are also available.

The Sun386i system supports two primary buses under the control of an Intel 82380

32-bit integrated DMA, interrupt, and timer controller. They are:

• 16-bit AT bus

• Proprietary 32-bit System bus

The AT bus connects to four slots (1- 4) on the backplane, the last three of which

are user-configurable AT slots supporting 16-bit devices. Slot 1 is a user-confi.g­

urable XT slot for an 8-bit device. Internally, the AT bus also supports the diskette

and parallel port controllers. Chapter 8 provides additional information on AT bus

issues.

The System bus connects to four additional slots (5 - 8) on the backplane, the last

three of which can be used only for memory expansion boards. Slot 5 can support a

frame buffer board.

The frame buffer and graphics hardware form the second of the three major function­

al sections of the Sun386i system architecture. The frame buffer and graphics section

is linked to the CPU by the System bus.

The standard frame buffer for the Sun386i system is a monochrome unit with a reso­

lution of 1152x900 (the same as a Sun-3 frame buffer). Optionally, the Sun386i sys­

tem can have a 1 024x768x8 (WM standard resolution) color frame buffer or an

1152x900x8 color unit.

If you are writing graphics applications to run on the Sun386i system, do not write

directly to the frame buffers. Instead, use the Sun View and the Sun graphics

libraries (appropriate for many applications) or use the routines that belong to the

Pixrect graphics library. The Pixrect library is a low-level package that sits on top

of the device drivers. The library contains RasterOp routines that are common among

all workstations and are used to access and manipulate rectangular regions of a dis­

play device in a device-independent fashion. If you develop applications using Pixrect

graphics routines, you will be able to port your applications easily, even as Sun

enhances the graphics capabilities for its workstations. For information about these

routines and their use, refer to the Pixrect Reference Manual.

Programs written for 1152x900 resolution may appear slightly different when run

on 1024x768 systems. Screen dislocations or distortions should be minor except, per­

haps, near the right and bottom screen edges where truncation could occur. For pro­

grams written for Sun-3 systems that use the standard Sun View and pixrect func­

tions without references to actual pixel counts or locations, the differences should

be negligible. You should take both frame buffer sizes into consideration when writ­

ing your applications.

The byte ordering issue discussed earlier on pages 18 and 19 affects the interpretation

of graphics files-font files, icon files, cursor files, and screendumps-generated

under 680x0-based architectures.

Revision A, May 1988

,.)

Sun386i Developer's Guide Chapter 3 -Porting and Development Environment: Hardware 21

On the typical 680x0 frame buffer, the bits are shifted out of the word starting at
the most-significant bit, bit 15. That is, the upper-leftmost pixel on the screen is
typically bit 15 of word 0 in frame buffer memory. The next pixel, scanning from
left to right as on the screen, is bit 14. The pixel to the right of the first 16 pixels
displayed comes from word 1, bit 15. When interpreted as integers, note where the
most-significant byte (MSB) and least-significant byte (LSB) are:

680x0

word 0

word 1

•
•

MSB

115 14 13 12 11 10
115 14 13 12 11 10

9 817
9 817

LSB

6 5 4

6 5 4

3 2

3 2
1

1

For example, the integer (word) value Ox3 70D in word 0 would show up on the
screen with the 680x0 frame buffer as 0011011100001101.

On the typical 80386 frame buffer, the bits are shifted out of the word from the
least-significant bit, bit 0, to the most, bit 15:

80386 LSB MSB

01
01

word 0 10 1 2 3 4 5 6 718 9 10 11 12 13 14 151

word 1 10 1 2 3 4 5 6 718 9 10 11 12 13 14 151

For example, the integer (word) value Ox370D in word 0 would show up on the
screen with the 80386 frame buffer as 1011000011101100.

Note that the bytes are backward and the bits are in the opposite order. Because
graphics files are usually generated as an array of words, the bytes are backward for
a typical 80386 frame buffer when handling 680x0-generated files. In the case of col­
or frame buffers, in which each pixel is represented by a byte, this creates a poten­
tial byte swap issue only, since the whole byte is used as an index into a color table.
Because of these differences, transferring a graphics file from one architecture to
another could result in an incorrect picture.

In the case of monochrome frapte buffers, in which each pixel is represented by a sin­
gle bit, scanning from right to left presents a potential bit flip problem as well.
That is, the rightmost (low-order) bit of a bit field now represents the leftmost
pixel on the screen.

Because of the large number of existing files using the 680x0 format, this format is
the standard for describing graphics images on the 80386-based Sun386i systems as
well. This eliminates the need for two sets of files in a mixed-architecture network.
Consequently, if you are porting programs from other Sun systems-programs that
access the frame buffer through the documented Sun View and pixrect func­
tions-byte and bit ordering is handled automatically at run time by swapping the
680x0-format images to 80386 format. Section 4.5 (starting on page 45) describes
the routine that alleviates many byte-ordering problems.

Revision A, May 1988

Sun386i Developer's Guide

Video Monitors

Keyboard and Mouse

Chapter 3 -Porting and Development Environment: Hardware 22

Available monitors for the Sun386i system include:

• 15-inch 1152x900 monochrome monitor

• 19-inch 1152x900 monochrome monitor

• 14-inch 1024x768 color monitor

• 16-inch 1 f52x900 color monitor

• 19-inch 1152x900 color monitor

The Sun386i keyboard (Figure 3-2 below) is a superset of AT-style (84-key) and

Sun-3 keyboards. It is compatible with the existing Sun-3 keyboard, although corre­

sponding keys are not necessarily in the same position. (Keep this in mind if you're

porting Sun-3 applications and your on-line or hardcopy documentation describes or

shows pictures of the keyboard layout.)

Figure 3-2 Sun386i System Keyboard: U.S. and Great Britain

3.4. Main Memory

Three keys that are new with the Sun386i system are C!:m[), I Compose I, and

I A!t Gnwh I. The ~ key implements the hardware part of a cursor-sensitive help

facility. This facility is one of the ease-of-use features incorporated into the sys­

tem's user interface. Chapter 6 discusses these features further.

The I Conwose I key enables composition and use of various West European characters.

Along with the keyboard shown in Figure 3-2 for the U.S. and Great Britain, addi­

tional sets of legends for other languages are available.

The I Compose I key enables display of many but not all additional international char­

acters. Users can display the third character that appears on some international key­

caps by using the I A!t Graph I key. Unlike I Compose I, use of I Alt Graph] is country spe­

cific, and is functional only if country distributors set up a keymap file, as described

in Chapter 10. Chapter 10 also describes the floating accent key, available on interna­

tional keyboards.

The Sun386i system uses Single In-line Memory Module (SIMM) boards, which use

the Intel 82385 cache controller chip. SIMM boards contain sixteen slots, each of

which can hold a 1 Mbyte SIMM module. The SIMM board comes equipped with 4

or 8 Mbytes of memory but you can expand it to 16 Mbytes by adding additional

SIMM modules. Each system can have only one SiMM board.

Revision A, May 1988

Porting and Development
Environment: Software

4

Porting and Development Environment: Software............................. 23

4.1. Software Overview... 25
4.2. Operating System 27

Sun OS 4.0 27

System V... 27
Utilities, Libraries, and Includes... 28
Integrated MS-DOS 28

4.3. Porting Overview... 29
SunOS and UNIX-Based Applications... 29

Applications Based on Other Operating Systems....................................... 30

Porting Large Programs.. 30
4.4 Software Development Tools... 31

Object Code Format.. 31

Assembly Language.. 33

c.. 33
FORTRAN.. 40

Pascal.. 41
Other Language Tools 42

Debugging Tools 43
4.5. Window System and Graphics Support ... 45

pr __ flip Overview... 46
Some Pixrect Pointers for the Sun386i System 46

Sun386i Developer's Guide Chapter 4 -Porting and Development Environment: Software 24

4.6. Data Format Issues.. 47

Existing Applications 47

New Applications... 47

4.7. Optimizing Code.. 48

General Principles 48

Using Registers... 48

Writing Linear Code... 51

Replacing Complex Operations.. 53

Evaluating Conditions 53

Generating String Instructions.. 54

Improving Loop Efficiency.. 54

Using Assembler Code... 55

4.8. Communications Software... 55

4.9. Database Software.. 55

Revision A, May 1988

Sun386i Developer's Guide

4.1. Software Overview

Chapter 4 - Porting and Development Environment: Software 25

4
;·

Porting and Development
Environment: Software

This chapter provides a summary of Sun386i software, emphasizing Sun386i soft­
ware features that have implications for the porting and portability of applications.
Appendix A contains the complete Sun386i system description.

Table 4-1 on the following page summarizes key features of the Sun386i system that
collectively determine the software porting and development environment. For refer­
ence, the table also contains corresponding data for a Sun-3 system.

The SunOS operating system and other system software on the Sun386i workstation
are divided into two major sections, Application SunOS and Developer's Toolkit.
(Chapter 9 describes the division of system software in more detail.) As a developer
you will need both sections, which together include:

• Assembler

• Ccompiler

• MS-OOS 3.3

• Language, debugging, and system administration tools

• Window system and window-based applications

• Enhanced Sun View tools

• Graphics packages

• Communications software

The following sections describe porting and development issues for all tools, includ­
ing information on the System V Common Object File Format (COFF) used by the
Sun386i system.

Revision A, May 1988

Sun386i Developer's Guide Chapter 4 - Porting and Development Environment: Software 26

Table 4-1 Software Environment Summary

Sun-3 System Sun386i System

Core Operating System Sun0S4.0 SunOS 4.0

Utilities, Libraries, SunOS4.0 SunOS 4.0
Includes

MS-DOS SuniPC™, PC-NFS Full MS-DOS 3.3 com-
patibility, PC emulation,
EGA support,
MDA/CGA/Hercules
emulation; all standard
development tools;
PC-NFS™

Object Code Format a.out COFF

Languages:

Assembly 68020 80386

c Sun4.0 C Sun 3.4 C

FORTRAN Sun 2.0 FORTRAN Sun 1.0 FORTRAN

Pascal Sun 1.1 Pascal Sun 1.1 Pascal

Other Language Tools SunOS 4.0 tools System V tools with SunOS
4.0 compatibility features

Debugging Tools kadb, adb, kadb, adb,
dbx,dbxtool dbx,dbxtool

System Administration Standard SunOS tools Standard SunOS tools,
Tools administration tools

Window System:

Substrate Pixrects Pixrects

Toolkit SunView 1.75 SunView 1.75

Applications sunview sunview plus on-screen
help (help_viewer),
snap,dos,coloredit,
organizer

Graphics SunCore®, SunCGI™, SunCGI, SunGKS™
SunGKS, PHIGS

Communications NFS, RPC, XDR, NFS, RPC, XDR, YP,
YP, Ethernet (TCP/IP™); Ethernet (TCP/IP);
all SunLink ™ products TElOO, DNI, and IR

Database Management SuniNGRES™, Sun UNIFY™,
SunUNIFY, SunSimplify™ SunSimplify

Revision A, May 1988

Sun386i Developer's Guide

4.2. Operating System

Sun0S4.0

System V

Chapter 4 -Porting and Development Environment: Software 27

This section provides an introduction to the Sun OS 4.0 system, an inventory of utili­
ties, libraries, and include files, and a brief consideration of MS-DOS. If you are
unfamiliar with the SunOS system, refer to Sun System Services Overview.

The SunOS system on the Sun386i workstation incorporates code from three
sources:

• Sun OS 4.0, the most recent major release of the Sun operating system

• AT&T's System V.3

• MS-DOS 3.3

The System V contributions are primarily at the level of software development
tools. The core operating system is the SunOS system, which is based on a conver­
gence of 4.2 BSD UNIX (with some 4.3 features) and System V UNIX function­
ality.

If you are porting existing Sun 3.x applications, the 4.0 changes in the Sun386i core
system should have little or no impact on your efforts. For example, one of the
major enhancements is in the area of virtual memory management. Although this
should ultimately improve performance and configurability, the change is not visible
at the applications programming level. Similarly, the new file system layout
(described in Appendix C) should have negligible effects, though you need to know
where things are in the new scheme.

Another major Sun OS 4.0 enhancement is shared library support. This capability
makes for more efficient use of disk space but, again, is transparent at the applica­
tions programming level. You don't have to do anything special to use shared
libraries; if a shared version of a library is avirilable, the system uses it by default.
However, you might want to make your own libraries shared by using mechanisms
available with the C compiler (cc), assembler (as), and link editor (ld). For more
information about shared library mechanisms, refer to the man(l) pages for the
above commands and to Sun System Services Overview. The Utilities, Libraries, and
Includes section on the next page contains a brief description of shared libraries on
the Sun386i system.

Other new features, while not affecting porting, may be beneficial for new develop­
ment work. A notable example in this category is the "lightweight process" capabil­
ity. Lightweight processes provide a mechanism for allowing several threads of con­
trol to share the same address space. This is useful in managing asynchronous events,
such as waiting for UO operations to complete. The Sun OS lightweight process
library provides primitives for manipulating threads, as well as for controlling all
events (interrupts and traps) on a processor. Sun System Services Overview, section
3L of the SunOS ReferenceManuo.l, and the Change Notes and Upgrade Manuo.lfor
the Sun Workstation provide more information about lightweight processes. (The lat­
ter also provides details of changes between 3.x and 4.0 versions of the SunOS sys­
tem.)

If you are porting software from System V, the System V enhancements to the
SunOS 4.0 system (including the STREAMS interface, partial 8-bit character sup­
port, and Base Level System V Interface Definition compatibility) also should have

Revision A, May 1988

Sun386i Developer's Guide

Utilities, Libraries, and
Includes

Integrated MS·DOS

Chapter 4 -Porting and Development Environment: Software 28

minimal porting impact. Section 4.3 on page 29 contains a System V compatibility

overview; for a detailed look at the new System V compatibility features, refer to

Sun Systems Services Overview.

Porting development tools from System V will be easier because the SunOS 4.0 sys­

tem on the Sun386i workstation uses the Common Object File Format (COFF).

COFF is discussed briefly in the Object Code Format section on page 31, and more
extensively in Appendix D.

Between Application SunOS and Developer's Toolkit, the SunOS system on the

Sun386i workstation contains about 450 utilities for development work (too numer­

ous to list here). The system libraries that it contains are shown below.

libc.a *
libcurses. a*
libdbm.a
libg.a
librpcsvc.a
libtermlib.a(libtermcap.a) *

libmp.a
libresolve.a
liby.a
libld.a

libkvm.a
libsunwindow. a *
libsuntool. a *
libln.a (libl.a)
lib.b
libcgi.a
libm.a
liblwp.a
libpixrect. a*
lint versions of these libraries

* Profiled version of the unshared form of this library also included (profiled
versions of shared libraries not included)

Shared versions of the libpixrect. a, libsuntool. a, libsunwindow. a,

libc. a, and libkvm. a libraries are part of the core system, which is shipped on

the Sun386i disk. All of the above unshared libraries, including profiled versions,

are part of the Developer's Toolkit. If a shared version of a library is available, the
ld(l) linker dynamically links the shared library to programs specifying that

library when those programs run. Shared library names have the format
library.so.major _rev.minor _rev; for example, libc. so. 1. 0 is a shared library.lf

instead you want to specify use of only unshared libraries, you must include either

the:

• -Bstatic option with the cc(l) command

• -Bstatic option with the ld(l) command

• Environment variable setenv LD OPTIONS -Bstatic in your
.login file

Note that you cannot use cc -Bstatic and -pic options together, since
-Bstatic indicates that the program is not shared, while -pic generates shared
code. The ld(l) and cc(l) man pages and Sun System Services Overview contain

more information about shared libraries.

Chapter 7 discusses MS-DOS on the Sun386i system. It is included here merely to

emphasize its integration into the core system. MS-DOS permits running of text and

graphics applications in DOS Windows and access from MS-DOS to the diskette

drive and the SunOS file system.

Revision A, May 1988

Sun386i Developer's Guide

4.3. Porting Overview

SunOS and UNIX-Based
Applications

System V and Berkeley
Compatibility

Chapter 4 -Porting and Development Environment: Software 29

This section describes porting SunOS and other UNIX-based applications, as well as
porting applications designed to run on other operating systems. The section also
describes compatibility between SunOS 4.0 and System V systems, and discusses
"negative" addresses, which you could see if you port very large programs.

You can easily port applications developed for Sun-2, Sun-3, and Sun-4 systems to
the Sun386i system because the architectures are source-code compatible. Since the
SunOS system is a convergence of Berkeley 4.2 BSD (with some 4.3 features) and
System V systems, applications written inC, FORTRAN, or Pascal on other UNIX
systems are also source-code compatible. Note, however, that the Sun386i system
does not offer binary compatibility. With the exception of PC applications running
in DOS Windows, you must recompile programs on the Sun386i system.

Porting most SunOS or other UNIX-based applications to the Sun386i system is a
two-step procedure:

1. Copy the development tree to a Network File System (NFS) structure.

2. Recompile program modules on the Sun386i system with the make(1)
utility.

Network Programming on the Sun Workstation describes NFS, and Programming Utili­
ties and Libraries for the Sun Workstation contains information about the make(1)
utility.

If an application does not currently use windows, consider rewriting it as a window­
based program. While this requires extra work, once you have built a window-based
application on the Sun386i system you can easily port it to other Sun workstations,
and you can use the same model for other windowing systems. Section 6.1 on page
65 briefly describes the window system and window applications that are standard
on the Sun386i system. The Sun View Programmer's Guide and the Sun View System
Programmer's Guide contain details.

System V programs and commands included in the SunOS 4.0 system fall into two
categories - those that are upward compatible with programs and commands in the
Berkeley UNIX system, and those that are incompatible with the Berkeley UNIX
system. Compatible commands are inconspicuous; they are included in regular sys­
tem directories such as /usr /bin. System V programs that are incompatible with
those in the Berkeley UNIX system reside in /usr I Sbin. For example, the utility
/usr/ Sbin/ stty has an entirely different set of options from the Berkeley ver­
sion, which is /bin/ st ty. You can select either version by setting your search
path. Similarly, libraries and include files for compiling System V software reside
in /usr/Slib and /usr/Sinclude, respectively. To compile a program written
for System V, do not use /bin/ cc; instead, use /usr I Sbin/ cc, which will read
all of the correct include files and load the correct libraries.

The SunOS 4.0 system conforms to nearly all of the requirements specified by the
Base Level of the System V Interface Definition (SVID). The system includes such
important System V features as record locking, named pipes, shared memory,
semaphores, messages, and an emulation of the revised terminal driver. The only
known SunOS 4.0 system calls that do not conform to the Base Level of the SVID
are:

Revision A, May 1988

Sun386i Developer's Guide

Applications Based on Other
Operating Systems

Porting Large Programs

Chapter 4 -Porting and Development Environment: Software 30

creat(2) and open(2V)- The creat(2) and open(2V) system calls use Berke­
ley semantics to assign files the group of their parent directory. System V assigns
flies the group of the creating process.

chown(8)- The Berkeley version of the chown(8) system call requires root privi­
leges. On System V the owner of a file can change its ownership. This would make
the Berkeley quota(l) mechanism completely unenforceable.

utime(3C)- The ut ime(3C) system call can't set file time stamps to the current
time on NFS-mounted files, and only works on files owned by the caller. System V
allows any process with write permission to a file to set that file's time stamps.

kill(l) and kill(2V)- The kill(l) and kill(2V) system calls only allow
processes to send signals to other processes with the same effective user ID. The
SVID specifies that a process can send a signal to processes with an effective or real
user ID that matches the effective or real user ID of the sender. Root (superuser)
processes can send signals to any other process.

mknod(8)- You cannot use the rnknod(8) system call to create directories, as spec­
ified by the SVID; use the rnkdir(l) system call instead.

fcntl(2) -The fcntl(2) system call with the F_SETFL command setting the
0 _NDELAY flag affects all references to the underlying file. On System V, this
fcntl call affects only file descriptors associated with the same file table entry.

In addition, the current phase of System V compatibility does not fully support
some System V terminal interface specifications:

character support - 5-bit and 6-bit characters are not supported.

VMIN and VTIME- VMIN (the minimum number of characters returned to the
user) is always set to 1 and VTIME (the timer for short-term data transmissions) is
always set to 0. In SVID, there are four possible values for VMIN and VTIME.

erase and kill characters - The initial default erase and kill characters are not #

and@ respectively, but rather DEL and CTRL-U.

To port applications that do not run under UNIX-based systems, you must rewrite
code and then compile it on the Sun386i system. If an application already runs in a
window system, porting to the Sun386i system will be somewhat simpler; the basic
structure of the application, as well as the methods for processing events and dis­
playing output, will remain generally the same. For information on writing a win­
dow-based application, refer to the Sun View Programmer's Guide and the Sun View
System Programmer's Guide.

For very large programs with address spaces exceeding 2 gigabytes, addresses can
appear negative because signed integers are represented in two's complement nota­
tion. Mixing pointers and integers carelessly can be dangerous.

The 32nd bit, which is 1 in addresses greater than 2 gigabytes, indicates the sign of a
number for a signed integer. This means that addresses between 2 and 4 gigabytes
appear to be negative, if interpreted as signed integers.

Revision A, May 1988

Sun386i Developer's Guide

4.4. Software
Development Tools

Object Code Format

Table4-2

Chapter 4 :...._Porting and Development Environment: Software 31

In ascending order, program addresses (viewed as signed integers) start at 0 and go
to 2 gigabytes (7FFFFFFF in hexadecimal). The next address in sequence is -2 giga­
bytes (80000000 in hexadecimal) and addresses then decrease in absolute value,
approaching zero, with -1 (FFFFFFFF in hexadecimal) the largest possible address.

The software development tools described in this section are part of SunOS Develop­
er's Toolkit. They include:

• The assembler and compilers

• Other language tools

• Debugging tools

Although other software facilities are used for program development (e.g., editors,
window system tools), what unites the tools discussed here is their object file orien­
tation. They are used either to generate object files, to generate information about
object files, or to manipulate object files.

The format for the object files themselves is taken from the UNIX System V Com­
mon Object File Format, and is the focus of the following section. Appendix D con­
tains COFF details.

Use of the COFF format for object code files is key to the additional System V com­
patibility offered by the Sun386i system. The man pages and the corresponding
include files listed below contain definitions of COFF data structures.

man Pages and Include Files Containing COFF Definitions

man Page

coff(S)

ldfcn(3)

Include File

<aouthdr.h>,<filehdr.h>,<linenum.h>,
<reloc.h>,<scnhdr.h>,<storclass.h>,
<syms.h>

<stdio.h>,<filehdr.h>,<ldfcn.h>

The library libld. a contains functions to access and manipulate COFF object
files. Table 4-3 lists the functions and briefly describes their u~. The SunOS Refer­
ence Manual contains additional information. In most cases, the man page has the
same name as the function; when different, Table 4-3 shows the name of the appro­
priate man page in parentheses after the description.

To use these functions, include the appropriate header files in your source code. At
compile time invoke cc(l) or ld(1), with the argument -lld in the command line
that creates the final executable module.

Revision A, May 1988

Sun386i Developer's Guide Chapter 4- Porting and Development Environment: Software 32

Table 4-3 SystemV Functions for Manipulating COFF Files

Function Description

ldaclose Close object file being processed (ldclose)

ldahread Read archive header

ldaopen Open object file for reading (ldopen)

ldclose Close object file being processed

ldfhread Read file header of object file being processed

ldgetname Retrieve the name of an object file symbol table entry

ldlinit Prepare object file for reading line number entries via ldli tern
(ldlread)

ldlitem Read line number entry from object file after ldlinit
(ldlread)

ldlread Read line number entry from object file

ldlseek Seek to the line number entries of the object file being processed

ldnlseek Seek to the line number entries of the object file being processed
given the name'of a section (ldlseek)

ldnrseek Seek to the relocation entries of the object file being processed
given the name of a section (ldrseek)

ldnshread Read section header of the named section of the object file being
processed (ldshread)

ldnsseek Seek to the section of the object file being processed given the
name of the section (ldsseek)

ldohseek Seek to the optional file header of the object file being processed

ldopen Open object file for reading

ldrseek Seek to the relocation entries of the object file being processed

ldshread Read section header of the object file being processed

ldsseek Seek to the section of the object file being processed

ldtbindex Return the long index of the symbol table entry at the current
position of the object file being processed

ldtbread Read a specific symbol table entry of the object file being
processed

ldtbseek Seek to the symbol table of the object file being processed

sgetl Access long integer data in machine-independent fashion (sputl)

sputl Translate a long integer into machine-independent format

Revision A, May 1988

Sun386i Developer's Guide Chapter 4- Porting and Development Environment: Software 33

External Symbol Representation The Sun386i system follows the COFF convention of not prepending underscores to
external symbols. On other Sun systems, external symbols require a leading under­
score character. Be aware of this difference, particularly when using the libc
nlist function to look up symbols in an object module symbol table. For instance,
on a Sun386i system you would search for proctab instead of _proctab.

Assembly Language The assembler, as(l), is a System V import as is the assembler definitio11; for the
80386. Appendix B contains information on the 80386 assembler; as also has its
own man(l) page. If you plan to do assembly language programming, you should
probably also have a copy of Intel's 80386 Programmer's Reference Manuo.l. For
information on assembly language calling conventions from C, refer to Appendix
F.

NOTE The 80386 assembler differs from 8086 assemblers with which you might be familiar.
For instance, the Sun386i 80386 syntax for the mov instruction is mov source
destination. Many 8086 assemblers place the destination variable before the
source. Be careful of such differences when using the 80386 assembler.

C The Sun386i system's C compiler, cc(l), has most of the functionality and interface
of C in the SunOS 3.4 system on other Sun machines. The C run-time start-up code
is in the file /usr I lib/ crtO.o.

Bit Shifting

Features that should not affect porting but which the Sun386i system C compiler
does not have are:

• The global optimizer

• The -a, -align,float_option, -ffpa, -fsky, -vpa, and -J options

C documentation consists of:

• The cc(1) man page in the SunOS Reference Manual

• The C Programmer's Guide for the Sun Workstation

• A description of the operational characteristics of C on the 80386 under
System V in Appendix F of this manual

• A list of the differences betweenC on the Sun386i system and the Clan­
guage documented in The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie in Appendix E

If you want to use the dbx(l) debugger, you must use the C compiler's -g option.
Appendix D in this manual provides more information about the COFF entries pro­
duced by the -g option. Program Debugging Tools for the Sun Workstation describes
dbx(l), as well as the adb(l) and dbxtool(l) debuggers. Additionally, the fol­
lowing sections provide guidance on some porting issues.

When porting code to the Sun386i system, you could run into problems because of a
difference in how bit shifting is handled. The maximum shift count for the Sun386i
system is 31, unlike most machines which allow a higher shift count (even though a
count above 32 is meaningless). The limit of 31 reduces maximum execution time.

Revision A, May 1988

Sun386i Developer's Guide

Byte Ordering

Figure 4-1

Chapter 4-Porting and Development Environment: Software 34

If the instruction i = y << j is executed on a Sun386i system and the value of j
is greater than 31, only the lower five bits of j are used for the count. This means
that a shift of 32 is equivalent to a shift of zero bits. To avoid this problem, you
must search through your code and check all shift operations. For each operation
such as value << = count; where count could be greater than 31, insert the fol­
lowing code:

if (count > 31)
value = 0;

else
value <<= count;

Section 3.2 on page 18 discusses byte order differences between the 80386 architec­
ture and some other architectures, including 680x0-based Sun systems. Certain con­
structs in C can get you into trouble when porting from 680x0-based architectures
to the Sun386i system. However, these problems should be minimal. Three known
areas that can cause difficulty are:

• Using strlen() andmalloc() improperly

• Message passing over the network

• Using casts improperly

strlen() andmalloc()

C programmers commonly allocate memory for a character string and copy the
string into the allocated space:

char *strptr;
char string[LEN];

strptr = (char *)malloc(strlen(string) + 1);
strcpy(strptr,string);

It is also easy, however, for a programmer to forget to put the + 1 in the
malloc () call to account for the null termination:

strptr = (char *)malloc(strlen(string));
strcpy(strptr,string);

Now, malloc () memory looks something like:

Free Pool Pointers

Free Block

Free Block

Free Block

•
•
• ' 1

Conceptual Representation ofmalloc () Memory

malloc < > Memory

Size

Data

Size

•
•

Revision A, May 1988

Sun386i Developer's GUide Chapter 4 -Porting and Development Environment: Software 35

If the following two conditions hold:

1. The + 1 is left out of the call, and

2. The length of the string returned by s t r 1 en () is an exact multiple of
four (doubleword)

then, when the string is copied into the allocated space, the termination character
(\ O) will be written into the first byte of the next word. But the next word con­
tains the size of the next piece of heap memory.

On the 680x0, this does not usually pose a problem because the byte written is the
high-order byte of the size, typically zero already. For this byte to be nonzero, the
size of the next piece of allocated memory would have to be greater than 16
Mbytes. On the 80386, however, the byte that gets zeroed is the low-order byte of
the size-a serious problem that might surface only after porting to a Sun386i sys­
tem. Therefore, be sure to include+ 1 in malloc ()calls.

Message Passing Over the Network

Passing messages over the network can create problems because network byte order
is reversed from byte order on the Sun386i system. This is only a problem if, in addi­
tion to ASCII, your messages include some binary data. You can preclude problems
of this nature by using either:

• The four host-to-network and network-to-host conversion functions docu­
mented in the byteorder(3N) man page, for porting existing applica­
tions that do not use floating-point data (integer only), or

• XDR (eXternal Data Representation) functions, primarily for new applica­
tions, and for those using floating-point and integer data

The first method, using the byteorder functions, is more straightforward. How­
ever, to ensure that new applications will run on any architecture, you should use
the XDR file format. Refer to Section 4.6, Data Format Issues, on page 47.

Casts

Using casts can be tricky since character-to-integer and integer-to-integer conver­
sions between 680x0 and Sun386i systems produce different results. For instance,

f()
{

iqt a;

unsigned char b(4];

b[O]= ... ; b[3]=

a=*(int*) b;

return a;

gives different answers on 680x0 and Sun386i systems. If you have a 680x0-format
binary data file with integer fields, read the integer fields into a character buffer on
the Sun386i system, and then cast them into integers, the result will be reversed

Revision A, May 1988

Sun386i Developer's Guide

Data Representations

Chapter 4 -Porting and Development Environment: Software 36

from the result on a 680x0 system. The same is true when going from Sun386i to
680x0 systems. There are a few workarounds for this problem:

• Use eXternal Data Representation (XDR) format (see Data Format Issues
on page 47 for more information).

• Read one byte at a time, shift it, and add the new byte.

Using the example of a 680x0-format binary data file with integer fields, after read­
ing a field into the character array b, instead of saying:

a=*(int*) b;

as shown above, one altern~tive is to use code similar to what's shown below:

a=(b[0]<<24)+(b[1]<<16)+(b[2]<<8)+b[3];

On the Sun386i system, the least-significant bit of a data element is always in the
lowest-numbered (rightmost) byte. This section describes integer, float, and
double representations on the Sun386i system.

Integer Representations

Representation of short on the Sun386i System

Bits

8-15
0-7

Address

n+l
n

Representation of int and long on the Sun386i System

Bits Address Bits

24-31 n+3 16-31
16-23 n+2 0-15
8-15 n+1
0-7 n

Representation of double on the Sun386i System

Bits Address

32-63 n+4
0-31 n

f1oat and doub1e Representations

Address

n+2
n

float and double data elements are represented according to the ANSI-IEEE 754-
1985 standard. The following tables describe this representation.

Revision A, May 1988

Sun386i Developer's Guide Chapter 4 -Porting and Development Environment: Software 37

float Representation on the Sun386i System

31 30 23 22 0

f

float Format on the Sun386i System

s =sign (1)
e = biased exponent (8)
f =fraction (23)

Normalized number (0<e<255): (-l)s X 2e-127 X l.f

Subnormal number (e=O, f!=O): (-1)8 X 2e-lZ6 X O.f

Zero (e=O, f=O): (-1)8 X 0

Signaling NaN: s=u; e=255 (max); f=.Ouuu-uu (at least
one bit must be nonzero)

Quiet NaN: s=u; e=255 (max); f=.1uuu-uu
Infinity: s=u; e=255 (max); f=.0000-00 (all zeroes)

double (high) Representation on the Sun386i System

63 62 55 54 32

f-msb

double (low) Representation on the Sun386i System

31 0

f-lsb

double Format on the Sun386i System

s =sign (1)
e =biased exponent (11)
f= (f-msb, f-lsb) =fraction (52)

Normalized number (O<e<2047): (-l)s X 2e-1023 x l.f

Subnormal number (e=O, f!=O): (-l)s X 2e-1022 X O.f

Zero (e=O, f=O): (-1)8 X 0

Signaling NaN: s=u; e=2047 (max); f=.Ouuu-uu (at least
one bit must be nonzero)

Quiet NaN: s=u; e=2047 (max); f=.luuu-uu
Infinity: s=u; e=2047 (max); f=.0000-00 (all

zeroes)

Revision A, May 1988

Sun386i Developer's Guide

Data Alignment

Figure 4-2

Other Porting Issues

Chapter 4 -Porting and Development Environment: Software 38

The Sun386i system imposes no constraints on the alignment of data in memory, but
the C compiler does: bytes on byte boundaries, words (16 bits) on word boundaries,
and doublewords (32 bits) on doubleword boundaries. Such a scheme is referred to as
aligning data on natural boundaries. This enhances performance on Sun386i systems.
On the 680x0 systems, however, characters are aligned on byte boundaries and every­
thing else, regardless of size, is aligned on word (16-bit) boundaries. Thus, if you
create a structure such as

struct

char a;

int b;
} y;

its arrangement in memory on a 680x0-based versus a 80386-based system will look
something like Figure 4-2.

680x0 80386

a a

b
b
b b

b b

b
b

• •
• •
• •

Conceptual Representation of a C Structure in 680x0 versus 80386 Memory

The C compiler on 680x0-based machines aligns the four-byte integer on the next
word boundary after the character. On the Sun386i (80386-based) system, however,
the integer is aligned on the next double word boundary. Consequently, reading data
created by one type of system from the other type, whether from a disk or over the
network, produces errors owing to the different alignment schemes.

The following are other potential sources of C-related porting problems, particular­
ly if you are porting from Sun 680x0-based systems:

• Symbols predefined by the C preprocessor (cpp)

• Casting a structure to a scalar value

• asm function declarations

Revision A, May 1988

Sun386i Developer's Guide Chapter 4 ---'Porting and Development Environment: Software 39

Symbols Predefined by cpp(l)
The Cpreprocessor, cpp(l), is derived from the SunOS 4.0 system, not System V.
It predefines several symbols: i38 6, sun, and unix. It's a good idea to use these
symbols in #if de f statements as follows:

• i386- 80386 processor-specific

• sun - Sun workstation-specific

• unix- UNIX operating system-specific

The cpp preprocessor does not predefine the following symbols: me 6 8 0 0 0, m6 8 k,
mc68010,mc68020,sun386.

Casting a Structure to a Scalar Value
The C compiler does not allow you to cast a structure to a scalar value; therefore,
the following code does not work with the Sun386i C compiler:

I*
*This example causes an error with the casting of
*a structure to a pointer, even though the struc­
*ture is the same size as the pointer.

*I
typedef char * Textsw_opaque;

typedef Textsw_opaque Textsw_mark;

typedef struct ev_mark_object {

unsigned

unsigned

unsigned

move at insert

spare : 15;

id : 16;

Ev_mark_object;

main()

Ev_mark_object x;

Textsw mark y;

1;

y (Textsw_mark)x; /*This is the */

/*problem stmnt.*/

·A workaround for this is:

I*
*Here is a workaround for the above. The standard
*C definition only allows structs and unions to be
*cast to objects of the same type.

*I
typedef char * Textsw_opaque;

typedef Textsw_opaque Textsw_mark;

typedef struct ev_mark_object {

Revision A, May 1988

Sun386i Developer's Guide

FORTRAN

Chapter 4 -Porting and Development Environment: Software 40

unsigned

unsigned

unsigned

move at insert

spare : 15;

id : 16;

} Ev_mark_object;

typedef Textsw mark * tsmPtr;

main()

Ev_mark_object x;

Textsw mark y;

tsmPtr z;

1;

/*The next, 2-instruction sequence works*/

z = (tsmPtr)&x;

Y = *z;
I* OR */

/*This sequence also works*/

y = * ((tsmPtr) &x);

/* OR */

/*So does this*/

y = *((Textsw_mark *)&x);

asm Function Declarations
The C compiler does not allow asm function declarations. However, you can embed
assembler statements inC code (called inlining) by using the asm mechanism:

asm (11 ... assembler statement ... 11) ;

You also can reference C variables and labels with inlining. In the following
example, the integer i is declared in a C program. The asm statement references
that integer by name.

int i;

asm (11 movl i,%eax 11);

The Sun386i system can run version 1.0 of FORTRAN 77. FORTRAN is an unbun­
dled product, which you must order separately. In addition, you must have SunOS
Developer's Toolkit to run FORTRAN. If you have FORTRAN, the compiler is
located in /usr /bin and you can access it with the f7 7(1) command. The FOR­
TRAN library, libmf (the machine-independent math library), the parser, and the
optimizer are in /usr/ lib. Features of the FORTRAN compiler on the Sun386i
system that may differ from other versions you have used are shown on the next
page.

Revision A, May 1988

Sun386i Developer's Guide

Pascal

Chapter 4 - Porting and Development Environment: Software 41

Options
f 7 7 compiler options include run-time checking of array subscripts, flagging of
undeclared variables, and flagging of nonANSI statements.

Extensions
f7 7 supports the following extensions (which, if used, could make subsequent port­
ing more difficult):

• Recursive function and subroutine calls

• VAX/VMS® extensions, which enable you to convert FORTRAN source
code written for VAX systems to run on the Sun386i system

• Automatically allocated local variables, bit fields, and Boolean operators

• Relaxed input format

• POINTER data type for supercomputer compatibility

• 16-bit integer and double-precision complex data types

The £77(1) man page and the FORTRAN Programmer's Guide contain additional
information about the language.

The Sun version of Pascal 1.1 runs on the Sun386i system. The compiler, pc(l) is an
enhanced version of the ISO Pascal compiler, which produces significantly improved
assembly code. Features of Sun Pascal that might differ from other versions of Pas­
cal that you have used are:

Options
You can disable run-time checking of subrange and array bounds; you also can flag
nonstandard uses.

Violations
The Sun compiler requires that operands have identical types, not just compatible
ones.

Extensions
pc supports the following extensions (which, if used, could make subsequent port­
ing more difficult):

• Separate compilation support

• Identifiers declared as statement labels

• Lexical extensions, including _ and $

• Public and private restrictions to the current compilation unit

• Boolean operators for defining conditional expression evaluation

• get file function

• Access to SunOS system calls

As with FORTRAN, Pascal is unbundled so you must order it separately, and you
must have SunOS Developer's Toolkit to run it. The Pascal Programmer's Guide and
the pc(l) man page provide additional information.

Revision A, May 1988

Sun386i Developer's Guide

Other Language Tools

ranlib and larder Notes

Chapter 4- Porting and Development Environment: Software 42

Language tools discussed so far include:

as(l) - Sun386i assembler

cc(l) - C language compiler

cpp(l) - C language preprocessor

f77(1)- FORTRAN language compiler

pc(l)- Pascal language compiler

Additional Sun386i to.ols are listed and briefly described below; the SunOS Refer­
ence Manual contains complete documentation for each one. Note that both the
dis(l) and objdump(l) commands are new with the Sun386i system and have no
previous SunOS equivalents.

ar(l)- archiver and library maintainer

di.s(l) - object code disassembler

objdump(l) -object code dumper

ld.(l) -link editor

lordar(l) -find ordering relation for an object library (not needed on the
Sun386i system; see the following section)

nm(l) -print name Jist of an object file

ranli.b(l) -convert archives to random libraries (not needed on the Sun386i sys­
tem; see the following section)

siza(l) -print text, data, and bss (uninitialized data) section sizes of object files

strip(I) -remove symbol and line number information from an object file

lint(lV)- C program checker

prof(I) -display profile data

gprof(l)- display call-graph profile data

tcov(l), a SunOS tool that constructs test coverage analysis, is not included with
the Sun386i system.

On Sun386i systems, the ar .archiver and library maintainer creates and maintains a
table of contents (similar to ranlib) for the ld linker. ar also makes sure that an
archive's table of contents is always in sync with the archive. Therefore, you don't
have to use ranlib on the Sun386i system to perform these functions. However,
for compatibility with ran lib on other systems, you can use ran lib on the
Sun386i system to reconstruct an archive's table of contents; if you do, ranlib
calls ar with the necessary options. (For example, if you use strip to remove line
numbers from the table of contents, ld will not accept the archive until you rebuild
the table of contents with either ran lib or ar -ts.)

Revision A, May 1988

Sun386i Developer's Guide

Debugging Tools

a db

Chapter 4- Porting and Development Environment: Software 43

larder is commonly used to put archive entries in correct order for one-pass link­
ing. Since on the Sun386i system ar maintains a table of contents, the order of files
is never important larder is still useful for understanding the linkage between
modules in a library, however.

larder and ran lib are part of the Sun386i system for make file compatibility
and for compatibility between these functions on Sun386i and on other systems.
Although existing uses of larder and ranlib work on the Sun386i, you can
remove them without causing problems.

Completing the software developer's toolbox are:

• adb(l)- assembly language debugger

• dbx(l)- source-level debugger

• dbxtaal(l)- window- and mouse-based source-level debugger

• trace(l)- command for tracing system calls that a process makes (new
with the SunOS 4.0 system)

C, FORTRAN, and Pascal compilers produce uniform object code and uniform sym­
bol tables for use by common debugging tools such as adb(l) and dbx(l). This
approach has three major advantages:

• Cross-callability - You can write code in one source language that calls
modules or libraries written in another language. For example, C pro­
grams can call FORTRAN numerical libraries, and FORTRAN programs
can make use of C routines for system interaction.

• Ease of migration -As new hardware technology emerges, Sun can port
its compilers and make them available for the new processor by writing
one code generator and peephole optimizer. You quickly benefit from the
availability of new hardware with compatible software tools.

• Ease of implementing new compilers and tools - Implementing a new
compiler implies only a new front-end to the code generator. It's easier to
integrate software tools into the new language.

a db and dbx are briefly described below. For more details, as well as a description
of dbxtaal, refer to Debugging Tools for the Sun Workstation. For more informa­
tion about trace, refer to the trace(l) man page.

Debugging Tools for the Sun Workstation contains a complete description of the adb
debugger, including all Sun386i information. This section lists adb commands that
are included in the Sun386i version of the debugger, but not in versions that run on
other Sun systems.

:A Attaches process addr.

:R Releases (detaches) the current process.

:a Sets a data breakpoint for when addr is accessed (read or written).
:w Sets a data breakpoint for when addr is written.
$1 Sets the length in bytes (1, 2, or 4) of the object referenced by : a

and : w. The default is 1.

: z Deletes all breakpoints.

:e Like : s, but also steps over routine calls (instead of into them).
:u Continues uplevel, stopping after the current routine has returned.

Do not give this command as the first or second instruction in a
routine.

Revision A, May 1988

Sun386i Developer's Guide

dbx

. Chapter 4 -Porting and Development Environment: Software 44

You can precede the next five commands with either the I or ? modifier, as
described in Debugging Tools for the Sun Workstation.

B Similar to the b command, but prints in the current radix (default is
hex).

h Similar to the x command, but prints byte swapped.

H Similar to the X command, but prints byte swapped.

M Similar to the i command, but also prints machine code.

v Similar to the w and w commands, except it works on a single byte.

Debugging Tools for the Sun Workstation contains a complete description of the dbx
debugger, including all Sun386i information. This section lists the dbx registers for
the Sun386i system.

$ss Stack segment register

$eflags Flags

$cs Code segment register

$eip Instruction pointer

$eax General register

$ecx General register

$edx General register

$ebx General register

$esp Stack pointer

$ebp Frame pointer

$esi Source index register

$edi Destination index register

$ds Data segment register

$es Alternate data segment register

$fs Alternate data segment register

$gs Alternate data segment register

On the Sun386i system, for example, to print the contents of the data and address
registers in hex, type &$eax/16X or &$eax, &$edi/X. To print the contents of

register eax, type print $eax.

You can also access parts of the 80386 registers. Specifically, the lower halves (16
bits) of these registers have separate names, as follows:

$ax

$ex

$dx
$bx

$sp

$bp
$si

$di

$ip

$flags

General register

General register

General register

General register

Stack pointer

Frame pointer

Source index register

Destination index register

Instruction pointer, lower 16 bits

Flags, lower 16 bits

Revision A, May 1988

Sun386i Developer's Guide

4.5. Window System and
Graphics Support

Chapter 4- Porting and Development Environment: Software 45

Furthermore, the first four of these 16-bit registers each can· be. split into two 8-bit
parts, as follows:

$a1 Lower (right) half of register $ax

$ah Higher (left) half of register $ax

$ e 1 Lower (right) half of register $ex

$eh Higher (left) half of register $ex

$ d1 Lower (right) half of register $ dx

$dh Higher (left) half of register $dx

$b1 Lower (right) half of register $bx

$bh Higher (left) half of register $bx

The registers for the 80387 include the following:

$fetr1

$fstat

$ftag

$fip

$fes

$fopoff

80387 control register

80387 status register

80387 tag register

80387 instruction pointer offset

80387 code segment selector

80387 operand pointer offset
$fopse1 80387 operand pointer selector

$st0-$st 7 80387 data registers

The SunView system supports interactive, graphics-based applications running in
windows. When writing new window applications for the Sun386i system, be sure
to use the programming facilities provided by Sun View (described briefly in Chapter
6, and more fully in the Sun View Programmer's Guide) rather than communicating
directly with the hardware.

Similarly, if your applications must access low-level graphics facilities, use Pixrect
library routines instead of writing directly to the frame buffers. If you develop
applications using Pixrect routines, you will be able to port your applications easi­
ly, since the routines are common among all Sun workstations. The Pixrect Refer­
ence Manual contains the information you need.

If you are porting existing Sun graphics applications to the Sun386i system, the byte­
ordering problem discussed in Chapter 3 affects you. If you use the Sun View macro
DEFINE_ ICON _FROM_ IMAGE or the mpr _static routine on any image generated
by ieonedit(l), then the Sun386i system automatically handles the byte-order
issue for you. (The Sun View Programmer's Guide describes both the macro and the
routine.) However, if you are working with image data from a device that you have
added to a system (such as a laser scanner), you will have to correct the byte-order
problem yourself. Depending on how the particular driver reads data into memory,
you will have to either call p r _flip, a pixrect routine that alleviates this problem
(outlined on the following page), or write your own routine to process this data.
For a complete discussion of the p r _ f 1 i p routine, refer to the Pixrect Reference
Manual.

Revision A, May 1988

Sun386i Developer's Guide

pr_flip Overview

Some Pixrect Pointers for the
Sun386i System

Chapter 4- Porting and Development Environment: Software 46

The pr _ f 1 ip pixrect routine solves the byte-ordering problem that occurs when
680x0-format graphics execute on the Sun386i system. pr _flip provides:

• Low impact on existing applications - you can port existing graphics
tools and applications to the new architecture transparently

• A single format for data files across the network -font files, raster-
files, and files created by iconedi t(l) are the same across architectures

• Low impact on programmers - straightforward implementation that
enables easy modification of existing code, if necessary

pr _flip handles the byte-ordering problem by flipping bits in memory pixrects.
The p r _data field of a display pixrect points to memory pixrect data, as shown
below.

typedef struct pixrect {

struct pixrectops *pr_ops;

struct pr size pr_size;

int pr_depth;

caddr t pr_data; /*pointer to mpr*/

Pixrect;

The structure referenced by p r _data is:

struct mpr_data

int md_linebytes;

short *md_image;

struct pr_pos md_offset;

} i

short

short

md_primary;

md_flags; /*flag bits*/

To control the operation ofpr_flip on memory pixrects, the md_flags word
has two new flags, MP _ I386 and MP _STATIC. If the MP _ I386 flag is set (TRUE)
in the md _flags word, the pixrectin question is already in 80386 display format,
that is, pr _flip has already operated on it. If the MP _STATIC flag is set (TRUE)
in the md _flags word, the pixrect in question is a static pixrect, meaning that the
image data was defined at compile time by DEFINE_ICON_FROM_ IMAGE or
mpr_static.

Refer to the Pixrect Reference Manual for more detailed information about
pixrects and the p r f 1 i p routine.

The following list provides some suggestions and considerations to keep in mind
when dealing with pixrects:

• Check code that draws manually into a pixrect; you might have to modify
such code before it will port properly. The type of modification required
depends on the particulars of the drawing operation.

• Perform manual operations (those not involving libpixrect routines)
on a pixrect before converting the pixrect to 80386 format.

Revision A, May 1988

Sun386i Developer's Guide Chapter 4- Porting and Development Environment: Software 47

4.6. Data Format Issues

Existing Applications

New Applications

• Two pixrect structures cannot share the same image data file; instead of
using two pointers to the same file, make a copy of the file. Then make
sure each pixrect structure points to a unique data file name.

• mem _create creates an 80386-format pixrect on Sun386i systems.
• mem _point does not set the MP _I 3 8 6 flag. The pixrect is considered

not flipped.

• To create an icon, use mem _point to make a pixrect connected to an exist­
ing static image or an image that you have created on the fly. You can use
DEFINE ICON FROM IMAGE ormpr static to create static icons.
All static icons are initially created in 680x0 format. The system converts
static icons to 80386 format as soon as they are involved in a raster opera­
tion.

You should try to ensure that your applications can run on multiple Sun systems
over a network. This section briefly describes how to use a standard data format to
enable existing and new applications to run on different architectures. ·

Most existing software saves data on disk either by:

• Converting data to an ASCII text format, making the software portable
but slower in terms of l/0. Files may be larger, and partial updates of
flles are more difficult.

• Issuing write system calls (wr ite(2) or fwr i te(3) in the SunOS sys­
tem) to save the data in binary format. This method is faster and allows
partial file updates, but it is not portable unless you do one of the follow­
ing two things:

• Convert the software to a standard external file representation
(preferably XDR), as described in the next section. This will proba­
bly require some program redesign, but it is the better solution.

• Use the existing file format (using the current native byte order and
floating-point representation) as the standard format. No program
redesign is needed, but you could run into byte-order problems and
will probably have to write floating-point and other conversion rou­
tines.

The Sun XDR (eXternal Data Representation) standard lets you define data formats
that enable your applications to run on machines that have different architectures.
XDR format, which includes standard data representations, is the same format that
all RPC (Remote Procedure Call) communications protocols use. The main differ~
ence between using XDR for communications versus as a file format is that flle for­
mats are typically geared toward random access (using fixed-size data), while com­
munications formats are always stream based (allowing variable-length representa­
tions for efficiency).

If you follow the steps below, application data files will be portable between archi­
tectures without application source code changes.

1. Read the chapter on XDR and rpcgen(l) in Network Programming on the
Sun Workstation. The discussion includes definitions for most standard
atomic data types, with the exception of bitfields and bitmaps. If your
application uses either of these data types, you will have to define your
own XDR routines.

Revision A, May 1988

Sun386i Developer's Guide

4.7. Optimizing Code

General Principles

Using Registers

Chapter 4 ~Porting and Development Environment: Software 48

2. Create ·rpcgen(l) definitions of the application data file formats. If your

application requires random access to data files, you cannot use variable­

length data structures.

3. Submitthe definitions to rpcgen(l), which will supply two files that

you must use: one· containing .the XDR routines and another containing the

header file generated for the data structures. Do not modify either of these
files.

4. Use the data structures from the header ftle for your in-memory opera­

tions; use the XDR routines to read and write data ftles in the standard

format that you've used. (You'll still have to set up XDR handles and per­

form open, close, and file-seeking operations yourself).

You can use a number of methods to increase code efficiency and decrease runtime.

This description provides guidelines and examples for doing so, incJuding the sec­

tions:

• General Principles

• Using Registers

• Writing Linear Code

• Replacing Complex Operations

• Evaluating Conditions

• Generating String Instructions

• Improving Loop Efficiency

• Using Assembler Code

Only a small part of most programs warrant optimization. In most cases, from 4 to

20% of a program is responsible for 90% of its execution time. Try to determine

which part of the code you should work on by scanning the program, checking the

input (depending on program size), and using various profiling techniques such as

prof(l), gprof(l), and inserting counters.

Optimize for a specific architecture, but realize that this decreases portability.

Code that is highly optimized for one compiler and machine will usually be less

efficient when used with other compilers and machines.

Improved performance often requires the use of more space. You must decide if

increased storage requirements are worth the improvement in speed. Removing

unused variables can reduce code size slightly.

Generally, the maintainability of code is inversely proportional to the amount of

optimization performed. Include comments when you optimize, to enable others

to understand and follow through on your work.

Changing the algorithm used can increase efficiency. Analyze the code to determine

the best method to do the job. This description assumes that you are satisfied with

the algorithm chosen, and that you want to improve the code used.

The 80386 does not have many general-pu1p0se registers, and some of them are

unavailable because they have special meaning. In addition, some registers can hold 8,

Revision A, May 1988

Sun386i Developer's Guide

Table 4-4

Chapter 4 -Porting and Development Environment: Software 49

16, or 32 bits, while others can hold only 16 or 32 bits. The general-purpose regis­
ters used inC programs follow. These are 32-bit register names, but the description
applies to smaller registers as well (for example, %eax also applies to %ax, %al,
and %ah). For a complete list of 80386 registers, refer to the dbx section on pages
44-45 of this chapter.

Registers Used inC Programs

Register Purpose
%eax General register (special meaning for certain conversion

instructions)
%ecx General register (special meaning for certain string

instructions)

%edx General register (special meaning for certain conversion
instructions)

%ebx General register, used only for register variables (unless
cc -pic is used-see below); supports characters

%esi Can hold a register variable or the source pointer for
string instructions; does not support characters

%edi Can hold a register variable or the destination pointer
for string instructions; does not support characters

%esp Stack pointer
%ebp Local frame pointer

The -pic option produces position-independent code (PIC) for dynamically linked
objects. While PIC code can be shared more easily, thereby using system resources
more efficiently, it executes more slowly than code compiled without the -pic
option. Using -pic also means that you can use only two register variables, %esi
and %edi. If you use -pic, you cannot also use -Bstatic on the same program;
-Bstatic indicates that the program is not shared, while -pic generates shared,
code. For more information about PIC, refer to Sun System Services Overview and
the cc(l) man page.

Note that C programs do not use segment registers. This is because the 80386 pro­
vides ample memory space. Also note that unlike VAX and 68000 machines, on the
Sun386i system only three registers are available for use as register variables: %ebx,
%esi, and %edi. Therefore, use register variables carefully. Determining what
belongs in a register can provide a greater performance boost than any other tech­
nique mentioned. Another difference between registers on 80386 and 68000 machines
is that the 68000 can use the MOVEM instruction to move multiple registers to and
from memory. Since the 80386 has no such instruction, two move instructions are
required (to save and restore a register) every time the function containing the regis­
ter variable is called.

The C compiler assigns variables to registers as it encounters them in the code. In
the following example, a, b, and care placed in registers %edi, %esi, and %ebx,
respectively.

boo()

register int a,b,c,d,e;
boo statements

Revision A, May 1988

Sun386i Developer's Guide Chapter 4 - Porting and Development Environment: Software 50

Of the three registers available for register variables, only %ebx can support charac­

ters. Therefore, only one character register variable can be declared. Any others are

placed in memory. In the following example, variables a, c, and dare placed in reg­

isters.

boo()

register char a,b;

register int c,d;

boo statements

In many cases, a function could have two or more heavily used variables. If the use

of these variables is disjoint, you can use one register variable and change the code so

that multiple uses can share a common register variable. However, there can never be

more than three variables in registers in any single scope.

Consider the following code:

boo()

register int a,b,c;

int d;

first use of a

statements that do not use d

last use of a

first use of d

statements

last use ofd

The code below shows how to use a register variable for d:

boo()

register int a,b,c;

first use of a

statements that do not use d

last use of a

remaining statements, replacing all occurrences of d by a

}

If instead the statements between the first and last use of a used the value of d (for

instance, if the value of d were set there), you could still use this technique by

inserting the statement:

a = d;

after the last use of a and before the first use of d.

Revision A, May 1988

Sun386i Developer's Guide

Writing Linear Code

Chapter 4- Porting and Development Environment: Software 51

Another, more readable way of doing this is to write the code as follows:

boo()

register int b,c;

register a;

statements using a

register d;

statements using d

In the above example, the compiler uses the %ebx register for both a and d.

Beware of using got o statements that jump into and out of scopes. If you use them,
make sure you do not do something that can possibly lead to a computation on the
wrong·value.

Even if the scope of variables is not disjoint, it is sometimes beneficial to explicitly
save and restore values in order to reuse a register variable. This makes the code
somewhat more difficult to read, but can provide a much needed performance
improvement.

The Sun386i system executes linear code more efficiently than code that branches.
This is because the 80386 has a 16-byte instruction pipeline, allowing it to fetch
instructions in a look-ahead manner; the next instruction is ready to execute as soon
as the previous one completes. This occurs only when the code is linear. When a
branch is taken, the pipeline is flushed and the next instruction to execute is fetched
from memory.

You can make very tight loops execute significantly faster by "unrolling" them
into linear statements. Some compilers with global optimizers use this technique.
The well known sieve of Eratosthenes benchmark program contains the following
initialization loop:

for (K = &FLAG[O]; K <=LAST; K++) *K TRUE;

Unrolled, the loop looks like this:

for (K = &FLAG [0] ; K <= LAST;) {

*(K++) TRUE;

* (K++) TRUE;
*(K++) TRUE;
*(K++) TRUE;
* (K++) = TRUE;

Revision A, May 1988

Sun386i Developer's Guide Chapter 4 -Porting and Development Environment: Software 52

This change provides a 9% improvement. The optimization is possible because the

array being initialized contains a multiple of five entries (that is, 1,000,000). With

some other number, the number of assignments placed in the loop might be differ­

ent. Even if the number of entries is prime, you usually can unroll a loop using oth­

er methods.

Another thing to look for is the number of branches that are taken in a code frag­

ment. In some cases you can change conditions or move expressions so that, in most

cases, the final code branches less; this means fewer flushes of the pipeline. Some­

times you can change from this:

if (c)

linear statements

to this:

if (!c)

complementary linear statements

if you know that the condition, c, is usually false. This avoids the extra branch to

get around the first set of statements. This is not an easy case to implement, but it

can sometimes be useful.

Finally, you occasionally can move code so that linear sequences of statements are

longer, thereby using the pipeline more efficiently. For example, you can change

from this:

to this:

linear sequence 1

if (cl} statement;

linear sequence 2

if (c2} statement;

linear sequence 3

linear sequence 1

linear sequence 2

linear sequence 3

if (cl) statement;

if (c2) statement;

when the statements in linear sequence 2 and linear sequence 3 are not dependent

upon what happens within the conditionals. This technique is especially effective

when the size of the statements in the linear sequences is less than the full 16 bytes

of the pipeline.

Revision A, May 1988

Sun386i Developer's Guide

. Replacing Complex Operations

Evaluating Conditions

Chapter 4 -Porting and Development Environment: Software 53

Substituting" complex operations with simpler ones increases code efficiency. For
'instance, replacing the expression X* 2 with X+ X decreases program runtime, since
· addition is faster than multiplication. Such substitution is called strength reduction.

The Sun386i compiler does a good job of strength reduction for multiplication. It
tries to use either shifts or special addressing modes to implement a multiplication
by a constant rather than by using the relatively more expensive imul instruction.
However, the Sun386i system does not yet perform strength reduction for division.
For division operations having a divisor that is a power of two, you can substitute a
shift right instruction. For example, you can replace:

a = b I 16;

by:

a = b: >> 4;
!

This generates ohly three machine instructions instead of five and avoids the use of
the i di v instruction.

The C'language specifies that the logical operations & &. and I I are evaluated in a
left-to-right order. This means that the left side of an expression is always com­
pletely evaluated before the right side is evaluated. In the case of & &, if the left side
is false, the right side is never evaluated. In the case of 1 I , if the left side is true,
the right side is not evaluated.

In some cases, you might be able to determine. that one condition in an expression
will be true or false the majority of the time; you then can arrange the order of the
tests to take advantage of this. For example, if you have a test to see whether a char­
acter is a space or a new line within a source program, you could use either of the
following statements:

if ((ch == ' ') I I (ch '\n')) ...

or:

if ((ch == ' \n') I I (ch == ' ')) ...

The first case is more efficient because usually there are more blanks than new lines
in a source program.

Caution: If the expression is more complicated, you must make sure that all vari­
ables are evaluat¢ in the desired manner. For instance, if in the previous example
the original code. were:

if (({bh = getchar()) '\n') I I (ch ' ')) ...
you would have to change it to:

if (({ch = getchar()) 1 ') I I (ch '\n')) ...

instead of:

if ((ch -=;;;:; ' ') I I ((ch "" getchar ()) ::;:=- 1 \n')) •..

Revision A, May 1988

Sun386i Developer's Guide

Generating String Instructions

Improving Loop Efficiency

Chapter 4 - Porting and Development Environment: Software 54

This commonly occurs when pre- or post-increment or decrement operations are used

on the left side and the expression is rearranged.

The 80386 has a set of instructions that are designed for string operations. These are

generated in the compiler for structure moves. You can take advantage of these

string operations for other operations, such as initializing an array.

For instance, if you have an array of 10,000 integers and want to set each to the val­

ue 17, you could use a loop that would cycle 10,000 times and index through the

array. This could be extremely inefficient since it probably would not take advan­

tage of the 16-byte pipeline. The less obvious and faster way is to make the compiler

think it is moving a structure:

struct dummy { int x[9999] };

int a[10000];

boo()

a[O] = 17;

*(struct dummy *)&a[1] =

*(struct dummy *)&a[O];

This completes the job in only six machine instructions.

Many programs spend a lot of time executing loops. To improve th~ efficiency of

loop execution, make the loop termination condition a test for zero. Usually this

means counting down to zero, rather than up to some other value. In other cases,

more manipulation is required, but it is usually worth it.

For example, the loop:

for (i = 10; i; --i) {statements}

is more efficient (by one machine instruction) than:

for (i = 0; i != 10; ++i) {statements}

Some other generalities that can increase loop efficiency are:

• while loops are often more efficient than for loops.

• Using int variables for loop control sometimes is more efficient than
using short or char variables.

• If you are using a register variable as an array index, making it an in t

rather than a short or char is more efficient.

The following example illustrates the greater efficiency of while loops compared

to for loops:

for(i = 10; i; i--)

generates five machine instructions while:

Revision A, May 1988

Sun386i Developer's Guide

Using Assembler Code

4.8. Communications
Software

4.9. Database Software

Chapter 4 - Porting and Development Environment: Software 55

do{} while (--i);

generates only three instructions.

If you've exhausted all other optimization methods and still must increase program
speed, try using assembler code. You can submit assembler code to the C compiler
by using the asm keyword. This is called inlining, and it works like this:

asm ("assembler statement") ;

Code asm keywords as you do function calls. You can put more than one assembler
statement in the quotes, but you have to include \n (new-line character) in the
string yourself. It is better to use one assembler statement per asm keyword.

When you use the a sm feature, you can reference any global or external variable by
name. The only way to reference local variables is to know their offset from %ebp.
To get the offset, compile the program with the -s option and search the code gener­
ated for reference to the variable. The offset from % ebp depends on the position of
the variable in the function and the number of register variables.

The standard SunOS system communications and networking facilities on the
Sun386i system are listed below. For more information on these products, refer to
Network Programming on the Sun Workstation.

• NFS (Network File System)- enables file sharing in a heterogeneous
environment of machines, operating systems, and networks

• RPC (Remote Procedure Call) -provides a mechanism whereby a client
(caller) process can have a server process execute a procedure call, as if the
caller process had executed the call itself; the processes can be on the same
or different machines.

• XDR (eXternal Data Representation)- a specification for portable data
transmission that is part of the RPC mechanism, and is helpful when port­
ing between different machines and processes

• rpcgen(l), which can generate both RPC and XDR code
• YP (Yellow Pages)- a distributed network look-up service that main­

. tains a set of databases, fully replicated at several sites, that users can
query

In addition, the Sun386i system comes with Ethernet TCP/IP network support.

The Sun386i system also offers the following unbundled database software:

• Sun UNIFY -relational database software that provides fourth-genera­
tion applications development facilities for interactive and networked
applications

• SunSimplify -uses the Sun View window environment to provide a vari­
ety of end-user tools that enable easier, interactive access to Sun UNIFY

Revision A, May 1988

5
Porting Summary

Porting Summary 57

5.1. Surrtmary of Porting Issues.. 59
5.2. Summary of Porting Tools... 61

5.3. Checklist of Porting Procedures 62

Sun386i Developer's Guide

5.1. Summary of Porting
Issues

Chapter 5 - Porting Summary 59

5
Porting Summary

Chapters 3 and 4 contain a mix of information relevant to porting applications to
the Sun386i system, and information of a general nature about the Sun386i system.
This chapter is a synopsis of porting issues and tools. In addition, page 62 contains a
porting checklist.

Keep these things in mind when porting software to the Sun386i system:

UNIX-Based Versus Other Applications
You can easily port applications developed for Sun-2™, Sun-3, and Sun-4™ worksta­
tions to the Sun386i system because the architectures are source-code compatible.
Applications written inC, FORTRAN, or Pascal on other UNIX systems are also
source-code compatible (see System V Issues on the next page for a list of Sun OS
system calls that don't conform to the SVID). To port applications that do not run
on UNIX-based systems, you must rewrite code.

Binary Incompatibility
The Sun386i system does not offer binary compatibility with System V or other
80386-based applications; with the exception of PC applications running in DOS
Windows, you must recompile your programs on the Sun386i system.

Potential Byte Swap Problems
The order in which data is arranged in the Sun386i system's 32-bit registers is simi­
lar to some 32-bit processors (such as VAX systems) but is different from others
(such as Sun-3 and IBM 360 systems). Byte swap problems can occur when:

• Reading binary data files created on one architecture on a different architec-
ture

• Porting graphics between architectures
• Forgetting to include + 1 when calling st r len () and malloc ()
• Passing messages over the network
• Performing character-to-integer or integer-to-integer conversions between

architectures

COFFUse
The Sun386i system uses the UNIX System V Common Object File Format
(COFF). The library libld. a contains functions to access and manipulate COFF
object files.

Revision A, May 1988

Sun386i Developer's Guide Chapter 5 -Porting Summary 60

as Assembler Differences

The Sun386i system uses the 80386 assembler as(l). This assembler is different

from 8086 assemblers with which you may be familiar; for instance, the assembler

syntax for instructions such as mov places the source before the destination.

Archive Member Limitation

Archive members are limited to 14 characters on the Sun386i, but the maximum is

15 characters on Sun-3 systems. If you build a library that has a member with a IS­

character name, the Sun386i system truncates the name. Truncation could produce

duplicate member names.

Porting Large Programs

For very large programs with address spaces exceeding 2 gigabytes, addresses can

appear to be negative because signed integers are represented in two's complement

notation. Mixing pointers and integers carelessly could be dangerous.

System V Issues

The following SunOS system calls do not conform to the SVID:

• creat(2) and open(2V)

• chown(8)

• utime(3C)

• kill(l) and kill(2V)

• mknod(8)

• fcntl(2)

In addition, the following terminal interface specifications are not fully supported:

• 5-bit and 6-bit characters

• VMIN and VTIME

• Erase and kill characters

The System V and Berkeley Compatibility section on page 29 contains details about

the above incompatibilities.

Clssues
Be aware of the following issues when porting C programs to the Sun386i system:

• The Sun386i C compiler, cc(l), aligns data on natural boundaries: char

on byte boundaries, short on word boundaries, and long on doubleword

boundaries. Problems with structure interpretation can result when port­
ing between architectures.

• cc does not allow you to cast a structure to a scalar value.

• cc does not have a global optimizer and does not support the -a,
-align,float_option, -ffpa, -fsky, -vpa, and -J options.

• The C preprocessor, cpp(l), predefines the symbols i38 6, sun, and

unix for use in #if de f statements; cpp does not predefine the state­

ments mc68000, m68k, mc68010, mc68020, or sun38 6.

Revision A, May 1988

J

Sun386i Developer's Guide Chapter 5- Porting Summary 61

5.2. Summary of Porting
Tools

• The Sun386i system has a maximum shift count of 31. To avoid incorrect
results, search through your code and check all shift operations. For each
operation such as value < < = count; where count could be greater than.
31, insert the following code:

if (count > 3 1)

value = 0;

else

value <<= count;

XDR File Format
Use the XDR file format to enable your applications to run on other architectures
within a Sun network.

Sun View Facilities
When developing window applications for the Sun386i system, use Sun View pro­
gramming facilities.

Graphics Applications
Similarly, when developing or porting graphics applications that must access low­
level graphics facilities, do not write directly to the frame buffer; instead, use
Pixrect library routines. Consider the following when dealing with pixrects:

• Check code that draws manually into a pixrect; you might have to modify
such code before it will port properly. The type of modification required
depends on the particulars of the drawing operation.

• Perform manual operations (those not involving libpixrect. a rou­
tines) on a pixrect before converting the pixrect to 80386 format.

• mem _ere ate creates an 80386-format pixrect on Sun386i systems.

• mem point does not set the MP I 3 8 6 flag. The pixrect is considered not
flipped. -

• To create an icon, use mem point to make a pixrect connected to an exist­
ing static image or an image that you have created on the fly. You can use
DEFINE ICON FROM IMAGE to create static icons. All static icons are
initially created iii 680x0 format. The system converts static icons to
80386 format as soon as they are involved in a raster operation.

There are two main porting tools:

• The p r _flip utility that corrects the byte-ordering problem that occurs
when you execute 680x0 format graphics on a Sun386i system (see page 46
for details)

• The lint (1 V) command, and in particular the -c option, which checks
for casts that might not port correctly

In addition to these tools, you can also use:

• adb(1)- assembly language debugger

• dbx(l)- source-level debugger

Revision A, May 1988

Sun386i Developer's Guide Chapter 5- Porting Summary 62

5.3. Checklist of Porting
Procedures

DONE NIA

0 0

0 0

0 0

0 D

0 0

0 D

0 D

• dbxtool(l)- window- and mouse-based source-level debugger

• trace(l)- for tracing system calls that a process makes

If you perform the following procedures that apply to your situation, your applica­

tions should run successfully on the Sun386i system. If your application currently

runs on a Sun system, this checklist assumes that you are porting it from a Sun-3

system, and that your program's access to the monitor screen is through the docu­

mented Sun View and Pixrect interfaces. If the latter assumption in not true, see

Frame Buffer and Graphics on page 20 and Window System and Graphics Support on

page 45 for information helpful when dealing with graphics porting issues.

Sun386i Porting Checklist

On the Sun-3 system, lint(lV) your source code and treat anything
found as a potential problem.

If you are writing in assembly language and invoking C routines, note that
the C compiler does not prepend an underscore character to external vari-
able and function names.

Use the grep(l) command for str len functions used in memory alloca-
tion routines and ensure that the null terminator is accounted for (see Byte
Ordering on page 34).

Rewrite code that manipulates structure fields in memory and assumes
680x0 data alignment (see Data Alignment on page 38).

Rewrite assembly language routines and use the 80386 assembler defini-
tion. Also, use the grep(l) command on your C sources for the asm key-
word and rewrite embedded assembly code. (Appendix B contains more
information on the 80386 assembler definition and Appendix F contains
information on register usage and stack frame format during function
calls.)

Use the byteorder(3N) functions (for existing applications that do not
use floating-point data) or the XDR mechanism (for new applications, or
applications that do use. floating point) to byte swap integer data in 680x0
files accessed by your program (see Message Passing Over the Network on
page 35).

Make sure that application data flags and network protocols are architec-
ture independent by using the XDR file format (or your own standard).

Revision A, May 1988

j

6
... ;%*-

User Interface

User Interface... 63
6.1. !Window System 65

Window Substrate... 65

Window Toolkit.. 66

Window-Based Applications.. 66

The organizer Program ... ,................. 68

6.2. On-Screen Help Facilities 73

Kernel Error Messages 73

Spot Help and Help Viewer Overview... 76

Supplying Help for Your Applications... 79

Spot Help Interface •. 80

Help Viewer Interface... 86

Installing Your Help Files ,........... 95

6.3. Administration Facilities.. 98

The snap Program... 98

Automatic System Installation.. 98

New User Accounts.. 99

6.4. Using Color.. 99

Sun View Color Basics.. 99

Foreground and Background Colors... 100

Panel Colors.. 101

The coloredit Program... 104

Application Guidelines.. 1 05

Sun386i Developer's Guide

6.1. Window System

Window Substrate

Chapter 6 -User Interface 65

6
User Interface

Windows, graphics, and the user interfaces to which they contribute are important
features of all Sun systems. This chapter discusses windows and graphics on the
Sun386i system and introduces some of its user interface features. It includes infor­
mation about:

• The window system and window-based applications
• The on-screen help facility (both what comes with the Sun386i system and

how you can add on-screen help to your own applications)

• Ease-of-use administration tools

• Using color in your applications and the coloredi t tool

The following discussion divides the Sun window system into three areas:

• The window substrate, comprised of low-level facilities for user interface
programming, such as the Pixrect library

• The window toolkit, containing most of the programming facilities (tools)
you will need; Sun View occupies this level

• Window-based applications, consisting of standard system applications
included in Sun View (such as Mail, Text Editor, and Commands)

The following sections describe each of these areas as it pertains to the Sun386i
system.

The window substrate in Sun systems is provided by the Pixrect library of raster
operation (RasterOp) routines, libpixrect. a. These routines work the same way
on the Sun386i system as on other Sun systems. If you are porting programs that cur­
rently run on other Sun machines to the Sun386i system, you do not have to do any­
thing special to make them behave properly (byte swapping is handled for you by
system software--refer to the Pixrect Reference Manual for details). If you are
porting programs that do not currently run on Sun systems, the Pixrect Reference
Manual and the Sun View Programmer's Manual should provide you with the infor­
mation you need.

Revision A, May 1988

Sun386i Developer's Guide

Window Toolkit

Window-Based Applications

Chapter 6- User Interface 66

The window toolkit for all Sun systems is Sun View. If you are already familiar

with Sun View, you will notice that Sun View 1.75, the version shipped with the

Sun386i system, has some changes and new features. First, it has benefited from a

number of minor changes, for example, some aesthetic improvements in the appear­

ance of window icons. The Put, Get, and Delete commands on the standard text

subwindow menu have been renamed to Copy, Paste, and Cut, respectively. (Note

in Figure 3-2 on page 22 that the legends on the tops of the o;ID, (Y), and (jJ1iJ keys

of the Sun386i system keyboard are also ~. ~. and (Ciii).)

Among new features in Sun View 1.75 are enhancements to the color facilities. In

particular, end users can set colors for such things as background and foreground

with the coloredi t(l) utility, described on page 104. Moreover, you can now set

background and foreground colors for your application's panel items through dynam­

ic manipulation of the panel's colormap.

A new facility provided in Sun View 1.75 is the alert package. Your applications can

use this package to display "alert boxes," panels with buttons and fill-ins letting

users select an option to proceed or take some other action appropriate to the situa­

tion.

The Sun386i system also uses alert boxes for its on-screen help facility. The descrip­

tion of this facility, which has a programmatic interface, starts on page 76.

In addition to the standard Sun View programs-defaultsedit(1),

mailtool(1), textedit(1), cmdtool(l), console(4S}-the Sun386i system

also contains:

• organizer(l), an interactive, gmphical interface to the SunOS file sys­
tem, described on page 68

• On-screen help in the form of:

• Revised kernel error messages - about 40 messages reworded for
clarity

• Spot Help- cursor-sensitive help that describes the object currently
under the mouse pointer

• Help Viewer - a more detailed description of tasks associated with

specific window objects (the program name is help_ viewer)

Section 6.2, starting on page 73, describes these facilities and their inter­
faces in greater detail.

• snap(1), a user interface to a new set of system administration facilities

intended to be easier to use than traditional SunOS facilities; page 98 pro­
vides more information about snap.

• coloredi t(1), a utility that lets users set and change foreground and
background colors for applications and icons (described on page 104)

• do s (1), a ·program that provides windows for the running of PC applica­
tions; Chapter 7 briefly describes the dos user interface.

Figure 6-1 on the following page shows the relationship between the various pieces

of window system and graphics software on the Sun386i system.

Revision A, May 1988

Sun386i Developer's Guide

Figure 6-1

Chapter 6- User Interface 67

Window-Based Applications

Mail, Organizer, DOS Windows™, Text Editor, and
other Sun View applications; user applications

Graphics Libraries

~I CGI,GKS

Window Toolkit(SunView) l
Menus, scroll bars, buttons, cursors,

icons, panel items, alerts

SunWindows™ (underlying
software for Sun View)

Window clipping,

~
locking, notifier,
selection service

Window Substrate (Pixrects)

~ Drawing

Hardware

Color video board,
color monitor

Window System and Graphics Software

Kernel
Database

Monochrome video board,
monochrome monitor

I

As shown above, the Sun386i system supports a version of the ANSI Computer
Graphics Interface (CGI) standard graphics package for generation of two-dimension­
al images, called SunCGI. In addition, the Sun386i system supports SunGKS, the
well-established Graphical Kernel System (OKS) standard for interactive two­
dimensional graphics. Both SunCGI and SunGKS are unbundled products.

The next section discusses the Sun Organizer™, one of the window-based applica­
tions shown above, which you can use to create icons for your application's files.

Revision A, May 1988

Sun386i Developer's Guide

The orqani.zer Program

Displaying File Types for Your
Applications

Chapter 6 -User Interface 68

Organizer (organizer(!)) displays the contents of directories by using icons to

denote file types. Pop-up menus, panel buttons, and property sheets provide Sun OS

file system commands such as mv(l), cp(l), rm(l), lpr(l), edit(l), open(2V),

rename(2), chmod(l V), f ind(l), and mkdir(l).

Users can display directories with or without icons, and they can sort the contents

of these directories by name, file type, size, or date. In addition, with the Show

Map feature users can graphically view or browse the file system hierarchy in one

window. You can create icons for your application's files and include them in the

. orgrc file, described in the following section. When you do, organizer auto­

matically displays your file-type icons in its Show List and Show Map windows.

For background information on the organizer interface, refer to the Sun386i

User's Guide, Sun386i Advanced Skills, and the on-screen Organizer Handbook.

organizer(!) can display three-color icons representing your application's files if

you:

• Create icons for your file types.

• As part of the installation procedure, put your . orgrc file in a subdirec­
tory beneath your application directory in application_name/ share/
data and your icon files in application_name/ share/ icons. If there's
room, application_ name should be created in Ius r I local. (On Sun3 86i
systems, /usr I local is a symbolic link to I files/ local. Pages 144-
145 provide more information about distributing software for the Sun386i
system, and Appendix C describes the Sun386i file system layout.)

• As part of your installation notes, instruct system administrators to cre-
ate a volume for your application (page 197 describes volumes and page 99
lists steps to create them) and tell users to issue the cat(l) command to
append your . or g r c file to their individual version of the file in
If i l e s I home I groupname I username after your application is installed.
Then tell users to quit from and re-enter Organizer to see your applica­

tion's icons. (source(1) does not work on . orgrc.)

Users automatically get a copy of . orgrc when a new user account is created.

After they append your . orgrc to their own copy of the file, users can open a file

or run an application by double-clicking on the icons you supply. The default version

of. orgrc is in I files/home/users/users/defaults. Then, for each user

account created, the system puts a copy of .orgrc in the directory

I files/home/ groupname/username.

The steps to create and incorporate a file-type icon into organizer are:

1. Determine the name-matching expression to identify your file type. For
example, the defaults that come with the system are * . c for C program
files, * . h for header files, * . o for object files, and * . icon for icon
files. It is the responsibility of the system administrator to rename dupli­
cate file-type extensions that might occur.

2. Create one set of icons per file type that you are defining with the
iconedi t(l) utility. To enable three-color icons, you must create:

• A background icon for the icon's background and

• A foreground icon, which goes on top of the background icon

To create two-color icons, you need only specify a background or fore­
ground icon.

Revision A, May 1988

Sun386i Developer's Guide Chapter 6- User Interface 69

. orgrc Parameters

File-Type Parameters

3. Quit from the organizer if it is running.
4. Add entries describing your icons to the version of . orgrc in your home

directory (I files/home/ groupname/ username). The format of
. orgrc is shown in the following sections.

5. Re-enter organizer to view the icons created or changed.

After restarting organizer, you can use coloredit(1) to change the colors of
icons. When you quit from organizer, the changes made are saved to the version
of. orgrc in your home directory.

Once you determine the colors you like best, make a copy of your home . orgrc
file for distribution. During installation, move this copy to
/usr/ local/application_ name/ share/data/. orgrc if there's room (see
pages 144-145 for details) .

. orgrc files contain two kinds of parameters:

• File~ type parameters - You must create one set of file-type parameters
for each icon accompanying your software. These parameters are described
in the next section, with required parameters shown in bold.

• Color-palette parameters- These parameters define the default colors
that the Sun386i system uses for directory, text, executable, and device
files. You can use the colors supplied by these parameters for your icons,
add to this file if your application uses files other than the four default
types, or ignore this section of . orgrc and use your own RGB values in
your file-type parameters. These parameters are described on the next page.

All . orgrc parameters, as well as all values for parameters, are case insensitive.

Begin Fi~e Type Definition
These four words are required to denote the start of each file type within
.orgrc.

Name
The expression used for name matching; you can use any valid Sun OS wildcard.
For instance, for a file type ending with . pb j, you could enter * . pb j as a val­
ue for this parameter. Another example is * , s for SCCS (Source Code Control
System) files. Alternatively, you could enter the exact file name, as with the
core file type provided with the Sun386i system.

Background Icon
The path name of the background icon that organizer will display.

Foreground Icon
The path name of the foreground icon (placed on top of the background icon) that
organizer will display.

Name Color
The RGB values for the color of the text of the file name as it appears on the
icon. Also used to color the rectangle that surrounds a file when it is selected.

Revision A, May 1988

Sun386i Developer's Guide

Color Palette Parameters

Chapter 6- User Interface 70

Icon Background Color
The RGB values for the background color of the icon.

Icon Foreground Color
The RGB values for the foreground color of the icon.

Highlight Name Color
The RGB values for the color of the text of the file name when the file or direc­

tory is selected (highlighted).

Execute Application
The name of the application to call to open or execute this file type. Some file

types that users should not open are object files, intermediate database format

files, libraries, and binary data files.

If the application that you're opening accepts file name arguments, you can use

the$ (FILE) keyword to tell organizer to open that application's files when

users double-click on a file name. Just use $ (FILE) instead of the file name in

the command line, as shown in the following example:

Execute Application= textedit $(FILE)

Edit Application
The name of the application to call to edit this file type. If you do not supply a

value for this parameter, users will be unable to edit any files of this file type

from within organizer. As with Execute Appl.t'catio_n, you can specify

the $ (FILE) keyword so that users can edit the selected file.

Print Application
The name of the application to call to print this file type. If you do not supply a

value for this parameter, users will be unable to print any files of this file type

from within organizer. If the application can print files automatically, you

can include the $ (FILE) keyword to enable users to automatically print the

application's files through organizer.

The Name Color, Icon Foreground Color, Icon Background Color, and

Highlight Name Color parameters are optional because you can use coloredit

to determine icon colors; when you quit from organizer, it automatically writes

the colors chosen to . orgrc in your home directory. You can then include the RGB

values from your home . orgrc in the version that you supply with your applica-

tion.

End File Type Definition
These four words are required to denote the end of the definition.

Instead of providing numerical values for your icon colors in the preceding color­

related parameters, you could use the names of the color palette parameters shown

Revision A, May 1988

Sun386i Developer's Guide Chapter 6 - User Interface 71

below for directory, text, executable, and device file icons. You might want to use
these parameter names instead of ROB values in your file-type definitions because:

• It's easier to use them than to use trial and error to determine colors for
your applications.

• The colors of your directory, text, executable, and device icons will
match the default values for Sun View versions of these file types; the
graphic of your icons rather than their colors will differentiate them.

• If users change the color palette ROB values, your icons will match the
colors they choose.

• You might not want to use any more of the colormap on your icons, par­
ticularly if your application uses a lot of color (the Sun386i system per­
mits a maximum of 256 colors at one time).

The default color palette portion of . orgrc supplied with the Sun386i system fol­
lows.

Begin Color Palette
Background Color = 255, 255, 255
Directory Name Color = 0, 146, 236
Directory Icon Foreground Color = 255, 227, 185
Directory Icon Background Color = 114, 45, 0
Directory Highlight Name Color = 255, 247, 9
Text Name Color = 0, 166, 143
Text Icon Foreground Color = 255, 255, 255
Text Icon Background Color = 0, 0, 0
Text Highlight Name Color = 255, 255, 0
Executable Name Color = 255, 0, 104
Executable Icon Foreground Color = 243, 255, 254
Executable Icon Background Color = 157, 162, 187
Executable Highlight Name Color= 255, 247, 9
Device Name Color = 111, 111, 111
Device Icon Foreground Color = 243, 255, 254
Device Icon Background Color = 157, 162, 187
Device Highlight Name Color = 255, 255, 0
Scrollbar Color= 0, 87, 185

End Color Palette

Most of the color palette parameters correspond to file-type parameters. For
instance, to use the default colors for a text file icon, include the lines below in
your file-type definition:

Name Color = Text Name Color
Icon Foreground Color

Color
Icon Background Color

Color

Text Icon Foreground

Text Icon Background

Highlight Name Color = Text Highlight Name
Color

Revision A, May 1988

Sun386i Developer's Guide Chapter 6 - User Interface 72

The first and last color palette parameters, Background Color and Scrollbar

Color, do not have file-type counterparts.

If your application uses files that don't fit one of the four default categories, you

can add to the color palette section. However, do not change the. defaults that are

there, since these are the colors that Sun wants users to see; users can modify these

colors if they so choose.

Alternatively, you might want to provide your own icon colors to make them stand

out (but be aware that users can change these also). If so, provide RGB values

instead of color palette parameter names in your file-type definitions.

Sample . orgrc Entries

This section provides sample entries for the • orgrc file.

Begin File Type Definition

Name= *.c

Background Icon= /vol/application_name/
share/icons/bkgd.icon

Foreground Icon = /val/application name/
share/icons/frgd.icon -

Name Color = 236, 121, 85

Icon Background Color = 205, 205, 254

Icon Foreground Color = 51, 19, 92

Highlight Name Color = 255, 247, 9

Execute Application= cmdtool vi $(FILE)

Edit Application= cmdtool vi $(FILE)

Print Application= lpr $(FILE)

End File Type Definition

Begin File Type Definition

Name= *.icon

Background Icon = /vol/application_name/
share/icons/bkgd.icon

Foreground Icon= /vol/application_name/
share/icons/frgd.icon

Name Color = 124, 61, 140

Icon Background Color = 243, 255, 254

Icon Foreground Color = 157, 162, 187

Highlight Name Color = 255, 254, 8

Execute Application= iconedit $(FILE)

Edit Application= iconedit $(FILE)

End File Type Definition

Begin File Type Definition

Name = *.bits

Background Icon = /vol/application_name/
share/icons/bkgd.icon

Revision A, May 1988

)

Sun386i Developer's Guide

6.2. On-Screen Help
Facilities

Kernel Error Messages

Substituting Error Messages

Chapter 6 -User Interface 73

Foreground Icon = lvollapplication_namel
shareliconslfrgd.icon

Name Color = 124, 61, 140
Icon Background Color = 243, 255, 254
Icon Foreground Color = 157, 162, 187
Highlight Name Color = 255, 254, 8
Execute Application= fontedit $(FILE)
Edit Application= fontedit $(FILE)

End File Type Definition

In addition to man pages, the Sun386i system offers three areas of on-screen mes­
sages:

• Detailed instructions on how to create a new user account and how to log
in

• Improved kernel error messages

• Cursor-sensitive help for Sun View applications

The log-in screens are part of the new administration features, and are described
more fully on page 99. This section describes kernel error messages and cursor-sensi­
tive help for applications, including how to add to or change both types of these
messages.

About 40 of the most frequently displayed kernel error messages have been reword­
ed for the Sun386i system. The original messages are intercepted by a message dae­
mon and used as keys into a message text file. The keyed messages, rewritten for
clarity, then are delivered to a log file, to a Sun View window, or to both.

There are several possible reasons for changing error message output:

• To translate the messages that Sun has reworded into another language
(refer to the Native-Language Messages section on page 154 for more
information)

• To intercept and reword the output of additional error messages generated
by the kernel (those sent to I dev lklog by the syslogd(8) daemon)

• To intercept and reword the output of error messages generated by local
programs, provided the program sends its messages to I dev I log via
syslog(3)

• To intercept and reword the output of messages placed in the internet sock­
et by programs on other systems

The steps below apply to the addition of substitute messages (the latter three cases).

1. Look through kemel source code (if you have the appropriate license), or
the source code for the program containing messages that you want to
replace. You can only substitute messages for programs that send their
messages to I dev I log via sys log.

Revision A, May 1988

Sun386i Developer's Guide Chapter 6 - User Interface 74

2. Add the text of the existing, unexpanded messages that you want to
replace to I etc/ In, preceding each message with a unique number. (You
also can include suppression instructions for these messages, as described
later in this section.)

3. Add the substitute text for these messages to I etc I Out, preceding each
message with the number corresponding to the original message in
/etc/In.

4. Use the kill -1 command on the syslogd process to activate the
changes made.

You don't have to use the default files I etc/ In and I etc/Out for original and

substitute text, respectively, but it's easier if you do. If you use other files, you

must include the file names in I etc/ syslog. con f. This file tells the system log

daemon, syslogd(8), the information needed to perform the translation or suppres­

sion. syslogd intercepts error messages, checks I etc/ In and the file you specify

in I etc/ syslog. conf (if any) for the text of those messages, and either suppress­

es, substitutes, or displays the original messages.

If you use files other than I etc/ In and I etc/Out, you must add an entry to

I etc/ syslog. conf that contains the following five fields, separated by tabs:

translate source facility inputJile outputJile

translate- Denotes a translation entry.

source -Specifies the source(s) of an error message, separated by commas; recog-

nized sources are: /

• klog, indicating a kernel message sentto /dev/klog

• log, indicating a message generated by a local program and sent to

/dev/log

• syslog, indicating a message placed in the internet socket by programs on
other systems

• *, indicating all three of the above sources

facility - Specifies messages generated by other system facilities, separated by com­

mas:

• user, indicating messages from user processes. This is the default formes-
sages from programs or facilities not listed in syslog. conf.

• kern, indicating messages from the kernel

• mail, indicating messages from the mail system

• daemon, indicating messages from system daemons such as ftpd(8) and
routed(8)

• auth, indicating messages from the authorization system (login(l),
getty(8), and su(l))

• lpr, indicating messages from the line printer spooling system

• cron, indicating messages from the cron/ at facility

• mark, indicating messages produced internally by syslogd

• *,indicating all facilities except mark

Revision A, May 1988

Sun386i ·Developer's Guide

Sample Input and Output Files

Chapter 6- User Interface 75

inputJile- Specifies the name of the file that maps numbers to printf-format
error messages, and indicates whether or not a message will be suppressed. Unless
you are completely suppressing a message, the numbers you use in this file must
have an identically numbered counterpart in output Jile for translation or suppres­
sion to occur. Also, you must include the exact, unexpanded text of the original
message. inputJile must be in xopen(S) format.

You can indicate one of several levels of suppression for an error by using the fol­
lowing specifications in input Jile:

• (NONE), indicating complete message suppression
• (n), indicating this message will be displayed no more than once every n

seconds

• (), indicating no suppression

A sample inputJile is shown in the Sample Input and Output Files section, which
follows.

outputJile- Specifies the name of the file that provides numbered, printf-for­
mat messages that will replace the messages listed in inputJile. As with inputJile,
outputJile must be in xopen(S) format. You can change the order of the variables
displayed by replacing the initial% of a format phrase with a %num$, where num is a
digit specifying which inputJile variable (for example, 1, 2, 3 for first, second, and
third variable) to insert at a given place in outputJile. A sample outputJile is
shown in the next section.

This section shows a sample input file, corresponding output file, and entry in
I etc/ syslog. conf to define these files to syslogd.

Sample Input File
The following entries are part of I etc/ In.

$quote "
9 "(NONE)\n%s: write failed, file system is
full\n"
10 "(lO)NFS server %s not responding still try­
ing\n"
11 "(100)NFS %s failed for server %s:L %s\n"

The (NONE) in message 9 ensures that this message will never be displayed or sent
to a log file. (fherefore, I etc I Out does not require a corresponding message.) The
(10) in message 10 and the (100) in message 11 tell syslogd to display or send

these messages no more than once every 10 and 100 seconds, respectively.

Sample Output File
The following entries are part of I etc I Out.

$quote "
10 "Network file server %s not ok. Check your
cable\n"
ll"Network file server %2$s down (%1$s, %3$s)\n"

Revision A, May 1988

Sun386i Developer's Guide

Spot Help and Help Viewer
Overview

Chapter 6- User Interface 76

Message I 0 will be displayed as shown on the previous page, with a server name

replacing the variable. Message 11 will be translated and the file server and error

type information reordered. For instance, if the original message is:

NFS getattr failed for server local host: RPC:
Timed out

The translated message will be:

Network file server local host down (getattr,

RPC: timed out)

because getattr is the first variable (specified by %1$s in the output file),

local_host is the second variable (specified by %2$s), and RPC is the third vari­

able (specified by %3 $ s) in the original message.

Sample Translation Entry

If you just add to I etc I In and I etc I Out instead of creating your own input and

output files, then you don't have to add any entries to I etc/ syslog. conf.lf,

however, you do create your own input and output files, you'll have to include an

entry similar to the one below to I etc/ syslog. conf.

translate * * inputJile outputJile

Remember, these fields are separated by tabs. The two asterisks denote all valid

sources and all valid facilities; you might want to routinely use two asterisks as a

short cut, instead of specifying sources and facilities individually.

The Sun386i Help facility consists of two parts: Spot Help and Help Viewer.

Spot Help displays quick explanations of Sun View application objects. These objects

can include windows, icons, menu items, scroll bars, and panel items. Spot Help is

cursor-sensitive. To invoke Spot Help on a panel button, for example, a user points

to the button with the mouse and then presses the c:!0lD key (Figure 3-2 on page 22

shows the Sun386i keyboard). A brief message explaining the button's function then

appears in a pop-up window (also called an alert box).

Help Viewer (the program name is help_ viewer) is a Sun View application that

displays more detailed information in the form of handbooks. While Spot Help

might explain a particular button, a Help Viewer handbook might contain an intro­

duction to the relevant application, as well as step-by-step instructions for accom­

plishing specific tasks using that application.

Spot Help and Help Viewer work together. If a Spot Help window does not provide

enough information to answer a question, additional information is often available

by selecting the More Help button in the bottom right corner of many Spot Help

windows. Help Viewer then displays a page of the applicable handbook.

You can provide both Spot Help and Help Viewer handbooks for your application.

The sections Spot Help Interface and Help Viewer Interface later in this chapter pro­

vide more information.

Revision A, May 1988

Sun386i Developer's Guide

I

Chapter 6 - User Interface 77

Figure 6-2 below shows a sample Spot Help window for the mail tool facility.

New Mail button

Retrieves your new mail messages and
makes permanent any tentative message
deletions and message text changes.

Click right: Provides the option to Com­
mit Changes without retrieving new mail.

(More Help)

Figure 6-2 Sample Spot Help Pop-Up for the New Mail Button

The above pop-up appears when the mouse pointer is on the New Mail button and the
(ffilliJ key is pressed. The top line identifies the object for which help was requested,
and the message text below describes the object's function and how to use it. The
buttons at the bottom provide users with one or two exit options:

• Click left on the Done button. This dismisses the Spot Help window.
• Click left on the More Help button. This opens a Help Viewer window

and displays a page in a Help Viewer handbook, one containing additional,
more basic information about how the Help object is used. Figure 6-3 on
the next page shows a sample Help Viewer page, the one displayed when
the More Help button shown in Figure 6-2 is pressed.

Most Spot Help windows contain the More Help button. The standard set of hand­
books that users can access by selecting More Help are listed below.

Organizer Handbook (organizer)

Mail Handbook (mail tool)
Help Handbook (Spot Help and Help Viewer documentation)
DOS Windows Handbook (dos)

SNAP Handbook (snap)

Text Editor Handbook (text edit)
Color Editor Handbook (coloredit)
Desktop Handbook (Sun View basics)

Each of the handbooks on the Sun386i system follows a common organizational
scheme:

1. A handbook contents page, listing each of the handbook's topics and its
index

Revision A, May 1988

Sun386i Developer's Guide Chapter 6- User Interface 78

2. An introduction to the application, including a labeled diagram of its user
interface and basic conceptual information; typically 5 to 10 pages long

3. A series of"how-to" topics designed to help users quickly accomplish
new tasks using the application; handbooks typically contain four to eight

topics of two to four pages, each illustrating several closely related proce­
dures

4. An index of 100 to 200 entries for concepts, objects, and procedures dis­

cussed in the handbook

Help Viewer handbooks support high-quality text and graphics, as well as hyper­

text cross-referencing capabilities (described in the next section). Figure 6-3 shows

the first page of a two-page document on Receiving Mail, in which the New Mail but­

ton is discussed and illustrated in the context of a procedure, getting your mail.

This graphical and procedural approach to presenting basic information about Sun­

View applications characterizes all of the Help Viewer handbooks.

Help Viewer <-
Iml...l..fiil: Mail Handboot 1 ofz

III

Receiving Mail

When Mall
Arrtves

When new messages arrive end your Mall window Is
closed, the postage stamp Icon changes.

I! your Mall window Is open, the fiag on the New Mall
button's mailbox Icon goes up.

To Get Your Mall • If your Mall window is closed, click left on the
Mall icon.

• If open, click left on the New Mall button.

+~

Figure 6-3 Sample Help Viewer Handbook Page

Following Hypertext Links Notice that the Top Level and Mail Handbook items in the page header are under­

lined. Underlined items indicate the presence of hypertext links. A hypertext link is

a connector that leads from a particular place in one document to a particular place

in another. By going through a menu or double clicking (left) directly on such links,

the referenced item appears in the viewer.

Revision A, May 1988

Sun386i Developer's Guide

Supplying Help for Your
Applications

Directory Structure for Help
Files

Chapter 6 - User Interlace 79

Following the Mail Handbook link, for example, displays the handbook's contents
page, listing all the topics. Each listed topic is linked to the corresponding docu­
ment so that a user can display any topic in the handbook directly from the contents
page.

Following the Top Level link calls up the Top Level table of contents. This lists
all of the handbooks available in Help Viewer. Each handbook listed is linked to the
corresponding contents page so that, again, users can follow the links and go direct­
ly to the handbook they want A Master Index of all procedures and objects de­
scribed in the standard Sun386i handbooks is also accessible from the Top Level.

Finally, note the right arrow button below the page number in the upper-right cor­
ner. Page buttons appear on every page and are graphical links for turning pages.
These buttons function with just one click.

The sections Spot Help Interlace (starting on the next page) and Help Viewer Inter­
face (starting on page 86) describe how to create help files for your application.
Much of this information, particularly the Help Viewer Interlace, is also available
on line in the Help Writer's Handbook. Unlike the other handbooks supplied with
the Sun386i system, you do not automatically receive the Help Writer's Handbook;
it is part of the optional Developer's Toolkit software (described on pages 11-12).
If you have the Developer's Toolkit, you can access the handbook by perlorming the
following steps:

1. Enter cl.uster to see if the help guide cluster is on your system. If
it is, go to step 3. -

2. If help guide is not on your system, enter J.oad.c hal.p guide,
respond to the prompts displayed, and insert the tape or diskette specified.
If there is enough disk space, loadc adds the cluster to your system in
/files/loaded/ devel directory. (If there is not enough disk space,
you can remove clusters with the unload(l) or unloadc(l) commands,
described on pages 12-13).

3. Edit the Top Level file in the default help directory, initially
/vol/help-:master/language/USA-English, to include the line:

'Help_Writer\'s Handbook' [help_guide/
Help_Writer's_Handbook 1]

and save the file. You must precede the apostrophe in Writer' s by a
backslash so that it won't be mistaken for the single quote delimiting the
end of the title. The Adding Handbooks to the Top Level section on page
95 describes Top:_ Level in greater detail.

4. Follow the Top Level link on any Help Viewer page, and then follow the
Help Writer's HandbqQk link.

With the exception of the Help Writer's Handbook described in the preceding sec­
tion, all help files provided with the Sun386i system are in subdirectories of
/usr/lib/help:

• Spot Help files are in /usr I lib/help/ language/USA-English
• Standard handbook files are in

/usr/lib/help/language/USA-English/handbook

Revision A, May 1988

Sun386i Developer's Guide

Spot Help Interface

Chapter 6 -User Interface 80

• Template subdirectories and initialization files for creating handbooks and

an extra copy of the Top Level file for linking handbooks into the Help

system are in /usr/lib/help/forrnat/format_name/ternplates

.Subsequent sections give more information about individual files in each of these

directories.

To enable easier, more efficient network-wide use of help files, the system automati­

cally makes help files accessible to all users through the /vol/help directory.

/vol/help contains links to the physical location of help files, and is the default

directory where the Help system looks for Spot Help and handbook files. The rest

of this description uses the I vol path name when referring to the location of help

files. Pages 197 and 205 provide more information about volumes.

The Help system is designed to work regardless of the location of help files, provid­

ed that:

1. A default help directory contains the Spot Help, handbook, and Top Level

and initialization files (or links to these files).

2. The Help system knows the location of the default help directory.

You can use Defaults on the Sun View Menu to notify the Help system of a change

in the default help directory. You must then copy the links in the directories below

/vol/help to the directory chosen. From /vol/help, you can use the command

cp -r new_default_help_directory to recursively copy all of the links you'll need

to the default directory specified.

It might be easier to use a different default directory while you are developing your

help system. However, after customers install the help provided with your applica­

tion, it is preferable that users access it through /vol/help. Pages 96-98 provide

specifics.

This section explains how to create Spot Help messages for text subwindow, panel,

canvas, alert, tty, and menu window objects, as well as for individual menu, scroll

bar, and panel items. It assumes you are familiar with Sun View programming con­

cepts; for more information, consult the Sun View Programmer's Guide.

The two basic steps to include Spot Help for a window object follow. (The first

step is for an applications developer and the second is for a writer):

1. Add the HELP DATA attribute to the object or to an item within the

object You can add this attribute like other Sun View attributes, such as

through a null-terminated attribute list.

2. Write the help file in the format specified in the . info File Format sec­
tion on page 84.

When a user presses the ~ key, the HELP_ DATA attribute is retrieved from the

current window or item. The text specified by the HELP _DATA value is then dis­

played in the Spot Help window. The following sections describe each step in

greater detail.

Revision A, May 1988

/

Sun386i Developer's Guide

HELP DATA Attribute

Providing More Specific
Spot Help

Chapter 6 -User Interface 81

The value for the HELP _DATA attribute must be a two-part string, enclosed in quo­
tation marks, in the format

"file:keyword"

file is the name of the text file containing the help description. file must be located
in the default help directory (see page 79) and must end with the suffix .info (such
as mailtool. info). Although all Spot Help files must end with the . info
extension, include only the base of the file name, not the extension, as the value of
the HELP _DATA attribute. The Help mechanism automatically appends the . info
extension to the file name that you supply, and then looks in the default help direc­
tory (/val/help initially) for that file.

keyword is a word within the .info file that is associated with the specific help
text that will appear when help is requested. Each .info file can contain multiple
keywords, but no two keywords can be alike within the same .info file.

For example, a HELP_ DATA attribute could be:

HELP_DATA, "accounting:w4"

When help is requested on this object, the Help facility:

1. Finds the accounting. info file.
2. Locates the w4 keyword.
3. Displays the text associated with that keyword in a Spot Help window.

The . info File Format section on page 84 contains more details about the structure
and placement of. info file text. The next section describes how you can use the
HELP _DATA attribute to make your Spot Help messages more helpful for users.

You can change the HELP _DATA attribute of various window objects to suit particu­
lar circumstances, for instance if a menu item is active or disabled, or a frame is
open or iconic. If you do, you can provide users with more context-sensitive Spot
Help, as shown in this section.

BELP _DATA for Active and Disabled Objects

For example, you might give all disabled objects (such as greyed-out menu items) a
new HELP _DATA attribute where you disable them in the code, and again where you
activate them, as shown below:

/* this menu item invokes a save function */
Menu item mi_save;

/* here the save function becomes disabled */
menu set (mi save, MENU INACTIVE, TRUE,

HELP_DATA, "progname:mi_save_inactive",
0) ;

Revision A, May 1988

Sun386i Developer's Guide Chapter 6- User Interface 82

/* and here it becomes active */
menu set (mi_save, MENU_INACTIVE, FALSE,

-; HELP _DATA, "progname :mi_save",
0) ;

A correlating Spot Help message for the "save" function above could resemble the

following:

Save menu item

Stores the current version of the file you have

loaded.

Spot Help for when the save function is disabled could be:

Save menu item (disabled)

Stores the current version of the file you have

loaded. This item is currently disabled because

you have not loaded a file.

Multiple entries can share a common Spot Help message, due to the flexibility of

the . info file format (delineated on pages 84-85). For instance, a . info file for

the previous example looks like:

:mi save

Save menu item

Stores the current version of the file you have

loaded.

:mi save disabled

Save menu item {disabled)

Stores the current version of the file you have

loaded. This item is currently disabled because

you have not loaded a file.

Alternatively, a single-message version, for which the two keywords share the same

Spot Help message, might work just as well:

:mi save mi save disabled

Save menu item

Stores the current version of the file you have

loaded. This item is disabled if you have not

loaded a file.

BELP _DATA for Open Frames and Icons

You also could include HELP_ DATA attributes for frames that are open and those

that are icons (closed). The following sample program creates a base frame and then

interposes an event function in front of the frame's normal event handler. This

makes the program aware of when the frame opens or closes, as well as when the

program should change the frame's HELP _DATA attribute.

Revision A, May 1988

)

Sun386i Developer's Guide Chapter 6- User Interface 83

#include <suntool/sunview.h>
#include <suntool/help.h>
#include <stdio.h>

main(argc, argv)
int
char

Frame
Notify_value

argc;
**argv;

frame;
sample_interpose();

/* create frame using command-line arguments */
frame= window_create(O, FRAME, FRAME_ARGS,

argc, argv, 0);

/* set HELP_DATA depending on whether frame is
open or iconic */

if ((int)window_get(frame, FRAME_CLOSED))
window_set(frame, HELP_DATA,

"progname:frame_iconic", 0);
else 1

window_set(frame, HELP_DATA,
"progname:frame", 0);

/* interpose in order to spot future open/close
events */

(void)notify_interpose_event_func(frame,
sample_interpose, NOTIFY_SAFE);

window_main_loop(frame);

static Notify_value
sample_interpose(frame, event, arg, type)

Frame frame;
Event *event;
Notify_arg arg;
Notify_event_type type;

int
Notify_value

initial_state, current_state;
value;

/* get frame's state */
initial state= (int)window_get(frame,

FRAME_ CLOSED) ;

I* handle the event */
value = notify_next_event func(frame, event,

arg, type);

Revision A, May 1988

Sun386i Developer's Guide

.info File Format

Chapter 6 - User Interface 84

/* if the frame's state has changed, change the

HELP_DATA */

current state= (int)window_get(frame,
FRAME_ CLOSED) ;

if (initial_state != current state)

if (current_state) {

window_set(frame, HELP_DATA,
"progname:frame_iconic", 0);

else {

window_set(frame, HELP_DATA,
"progname:frame", 0);

return(value);

The .info file has the following format:

#comments

: keyword] [keyword2 [keyword3]]

message text

You can include comment lines in your .info files by preceding them with the num­

ber sign. Use an initial colon to denote a line containing a keyword or keywords. If

several keywords pertain to the same help message, place them on the same line,

with spaces separating them. The message text supplied appears in the Spot Help

window whenever this . info file and keywordl, keyword2, or keyword3 are values

for the HELP DATA attribute.

: keyword4[:file [page#]]

message text

You also can specify another file, and optionally, a page within that file. Spot Help

then locates the file specified and displays information on that page whenever this

. info file and keyword4 are values for the HELP _DATA attribute. This format pro­

duces the same result as a hypertext link, described on pages 88-89.

:keywordS[: (key }file:keyword6]

message text

The message text supplied appears in the Spot Help window whenever this . info

file and keywordS are values for the HELP _DATA attribute. (key} indicates a hyper­

text link to keyword6 within the file specified (see pages 88-89).

Generally there is a one-to-one relationship between keywords and help messages. If

anything follows the keyword on the same line, it usually is the name of a file, pre­

ceded by a colon. When a file name is present, as on the :keyword4 line in the second

example, the More Help button appears on the Spot Help window (see Figure 6-2 on

page 77). If a user selects the More Help button, the help mechanism displays the

specified page of the referenced file; the default page number is 1.

Revision A, May 1988

Sun386i Developer's Guide

sun external.info
Keyword File

Chapter 6-User Interface 85

The following example illustrates the first of these options; using Spot Help for
the New Mail button in the mail tool application. The HELP _DATA attribute that
defines the display is part of the null terminated attribute list, used to create panel
items (the Sun View Programmer's Guide describes this in detail). The entry in this
attribute list is:

HELP_DATA, "mailtool:newmail"

When help is requested on this object, the Help mechanism finds the : newmail key­
word in the mailtool. info.file. It then displays the text lines appearing below
the : newmai 1 keyword as a Spot Help window, in this case as shown in Figure
6-2 on page 77. The entry associated with the newmail keyword in the
mail tool. info file is as follows:

:newmail:mail/Receiving_Mail
New Mail button

.Retrieves your new mail messages and
makes permanent any tentative message
deletions and message text changes.

Click right: Provides the option to Com­
mit changes without retrieving new mail.

Because the : newmail keyword is followed by a colon and a file name (the
Receiving_ Mail file in the default help directory) the Spot Help window
includes a More Help button. If the user clicks left on this button, Help Viewer dis­
plays the page shown in Figure 6-3 on page 78.

If you refer to a topic in one of the handbooks provided on the Sun386i system, use
the sun_external. info keyword file. Using sun_external. info protects
you from any future reorganizations of these topics. For example, if Sun renames a
file that tells users how to scroll windows, the change will appear in the keyword
file sun_external. info, and the file renaming will not affect you.

For example, suppose that your application has a scroll bar, with a keyword of
: scrollbar. If you want the More Help button to display the Scrolling Windows
topic in the Desktop Handbook, your . info file entry would be similar to:

:scro1lbar:{key}sun_external:desk_scroll

followed by your message text

Then when a user presses the More Help button on your scroll bar Spot Help win­
dow, the Help Viewer:

1. Goes to the sun external. info file.
2. Finds the : desk_scroll keyword.
3. Finds the sunview I Scrolling Windows 1 path name and page num­

ber associated with that keyword. -
4. Displays the Scrolling Windows topic in the viewer.

Revision A, May 1988

Sun386i Developer's Guide

Viewing Your Help Text

Spot Help Guidelines

Help Viewer Interface

Chapter 6 - User Interface 86

The {key} indicates a keyword link. Links are described in the Hypertext Overview

section, starting on page 88.

To view one of your Spot Help messages:

1. Save the . info file.

2. Restart your application.

3. Place the mouse pointer over the object that you want to check.

4. Press~.

If Sun View cannot find a .info file, or a keyword within a. info file, a pop-up

window appears explaining the situation.

If you follow these guidelines, you will present users with Spot Help messages that

are consistent with those supplied on the Sun386i system:

• Provide each Spot Help message with a title that identifies the help object
as a button, menu item, window, and so on. Look at the Spot Help provid­
ed with Sun386i applications for terminology.

• Put the title on the line immediately below the keyword, indent it three
spaces, and follow it with a blank line.

• Indicate what the object does (and how to make it function, if it is not
obvious) briefly and precisely. Follow the message text with a blank line.

• Make Spot Help windows wider than they are tall (by a factor of two or
so). You should make the typical 6- to 10-line message, including blank
lines, 30 to 40 characters wide.

• When providing More Help references to topics in the standard Sun386i
handbooks, look at the sun external. info file first to see if the top­
ic you want is listed. If it is,refer to it indirectly (as described on the pre­
ceding page).

• When providing More Help references to topics in your own handbooks,
specify page 1. Opening a topic to its first page helps to orient users.

Help Viewer handbooks shipped with the Sun386i system were created using off-the­

shelf "desktop publishing" software. You can choose from:

• Frame Maker™ (1.1 or later), available from Frame Technology Corpora­
tion (San Jose, CA 95131)

• Interleafl'M TPS (3.0.18 or later), available from Interleaf, Inc.
(Cambridge, MA 02141)

You can mix and match documents from either source-Help Viewer can display

either-so choose the one that best meets your needs. Templates for both packages

are provided, to make entering help text easier. (The user handbooks Sun supplies on

the Sun386i system were done with Frame Maker; the Help Writer's Handbook was

done with lnterleaf.)

The interface to Help Viewer is solely a writer's interface, not a programmer's. The

Help Viewer facility merely displays any document it receives. Writers create docu­

ments for Help Viewer as they would any other document. That is, writers can use

Revision A, May 1988

Sun386i Developer's Guide

Help Viewer Files

Chapter 6 - User Interface 87

all of the text and graphics capabilities provided by Frame Maker and lnterleaf TPS
to create documents for on-screen display. The on-screen appearance of the docu­
ments during their creation is-when divorced from their Frame- or Interleaf-specif­
ic menus, borders, guides, and so on-exactly what the documents will look like in
Help Viewer. The only difference faced by the writers is in the creation of hyper­
text links.

The rest of the discussion covers three main areas:

1. Help Viewer files and directories on the Sun386i system
2. Description and use of hypertext links, including how to create them in

Frame Maker and lnterleaf TPS
3. Writing Help Viewer handbooks, including how to use templates, where

to put files, guidelines for writing handbooks, checking topics that you've
written, adding your handbook to the Top Level table of contents so users
can view it, and procedures to follow for installing your help files

All standard help system files supplied with the Sun386i system are located in the
default help directory, initially /vol/help~ Administrators can change the loca­
tion, and then use Defaults on the Sun View Menu to tell the Help system where to
look. Pages 79-80 provide an overview of the help directory structure.

System-supplied help files include:

• One text file, /val/help/language/USA-English/Top Level,
that's the Top Level table of contents -

• . info files in /vol/help/ language/USA-English, containing
Spot Help messages for the Sun View Desktop and Sun View applications

• Subdirectories containing Frame Maker and raster image (. r f) files for
the standard Sun386i handbooks and Master Index
/val/help/language/USA-English/handbook

• A Frame subdirectory containing font files, initialization files, and tem­
plate files used to create the standard handbooks in /val/help/format

• Ahelp guide subdirectory (if you've loaded the help guide cluster;
see page79) containing Frame Maker and lnterleaffiles for the Help Writ­
er's Handbook in If iles I loaded/ de vel

• An Inter leaf subdirectory containing Interleaffiles, fonts, and tem­
plate files used to create the Help Writer's Handbook in
/val/help/format

The . info files and the corresponding handbook directories are listed, by handbook,
in Table 6-1 on t;he next page.

Revision A, May 1988

Sun386i Developer's Guide

Table 6-1

Hypertext Overview

Chapter 6 -User Interface 88

Help Viewer Handbooks and Spot Help .info Files in
/val/help/language/USA-English

Handbook . info File Directory

Color Editor coloredit.info colore'dit/

DOS Windows dos.info dos/

Help help.info help/

Help Writer's help_guide/

Mail mailto:;l .info mail tool/

Master Index master index/ -
Organizer organizer.info organizer/

SNAP snap.info snap/

Desktop sunview.info sunview/

sysex.info

Text Editor textsw.info textsw/

ttysw.info

All help files, with the exception of the Help Writer's Handbook, come preloaded

on the Sun386i system. To load the Help Writer's Handbook, follow the four steps

shown on page 79.

If you look into one of the handbook directories, you will see that the document

titles are the same as their displayed titles in Help Viewer except for the inclusion

of underscores between words. For example, the file containing the Help Basics top­

ic is named Help _Basics. This is done intentionally so that when topics are dis­

played in a topic history they will appear properly. Help Viewer strips out the

underscores and replaces them with spaces. (You can display a topic history by

pulling right on the Go Back option, available on the Help Viewer menu.) For this

reason, it's a good idea to follow the same file-naming convention.

At the simplest level, a hypertext link is a connector that leads from a particular

place in one document to a particular place in another. Hypertext links in an on­

screen document set let readers navigate around the documentation hierarchy. This

means that users can successively display documents by following the links provid­

ed; they can double click on link text or select the text and then choose the Follow

Link option from the Help Viewer menu to follow a link. It is part of a writer's

job to insert the appropriate links into the on-screen documents.

Hypertext links are implemented in the form of markers embedded in the text of a

document Since markers themselves are not visible to readers, a change in font or

font characteristic indicates the presence of link markers. Although any font or font

characteristic can denote hypertext link markers, you should use underlining if you

want to be consistent with the on-screen help provided with the Sun386i system.

(You cannot use underlining alone to delimit hypertext links in lnterleaf docu~

ments; see Creating. Hypertext Markers in Interleaf Documents on page 93 for

Revision A, May 1988

Sun386i Developer's Guide

Specifying Markers

Chapter 6 - User Interface 89

details). When a user follows a link, Help Viewer searches for the marker within
the area delimited by the font change and then performs the action indicated by the
text associated with that marker.

Currently, you can direct Help Viewer to do five basic things:

• Display a new document

• Display a pop-up window containing a document
• Change the page within a topic

• Execute a program or SunOS command

• Find a keyword in a file and execute the instructions associated with that
keyword.

The types of links required to do each of these are described below.

Document links tell Help Viewer which flle name to open for display; many of the
markers in the standard set of Help Viewer handbooks supplied with Sun386i sys­
tems are for document links.

Pop-up links are similar to document links, but the associated help text appears in a
temporary pop-up window that disappears as soon as a user presses a key or mouse
button. Pop-up links are useful for displaying materials that might ordinarily be rel­
egated to footnotes or for displaying more detailed information.

Program links instruct Help Viewer to do things such as change pages within the cur­
rently displayed Help Viewer topic. Page changes are not recorded in the topic histo­
ry; if you want the topic and page number to appear in the topic history when a user
follows the link, use a document link instead.

System links provide a vehicle for passing commands through to the SunOS system.
You can use them to start interactive demonstrations, applications, or SunOS com­
mands.

Keyword links specify a keyword in a keyword file, where the Help Viewer looks
for instructions. Keyword links can resolve to any of the above four link types.
Therefore, you can indicate a file to be displayed (by specifying a document, pop-up,
or another keyword link) or a command to be performed (by specifying a program or
system link). Use of keyword links makes it easier for you to maintain correct links
when many markers point to an object that is likely to change.

This section describes how to specify markers for implementing each link type. The
precise steps to follow for creating markers depend on whether you are using Frame
Maker or InterleafTPS. The two subsequent sections describe these steps.

Specifying Document Markers
In the simplest case, for a document marker, the marker text indicates the file name
and optionally the page number of the new document, such as :

mailtool/Mail_Basics 2

This sample tells Help Viewer to display page 2 of the flle
mail tool/Mail_ Basics in the default help directory (see page 80). If

Revision A, May 1988

Sun386i Developer's Guide Chapter 6 - User Interface 90

included, the page number must be separated from the file name by a space; if omit­

ted, Help Viewer displays the first page of the named document.

Specifying Pop-up Markers
To construct a pop-up marker, perform the same steps as to construct a document

marker, except precede the marker text with the special instruction {pop}. This

instruction tells Help Viewer to place the specified text in a pop-up window. There­

fore, the text:

{pop}mailtool/Mail_Basics 2

directs Help Viewer to display page 2 of the flle mail tool/Mail_ Basics in a

pop-up window.

Specifying Program Markers

Program markers contain the instruction { prog}, followed by the Help Viewer

command to be executed. There are five commands at present, all of which involve

changing pages within the currently displayed topic:

{prog}PageNext

{prog}PagePrev

{prog}PageFirst

{prog}PageLast

{prog}PageGoto page_number

The page buttons at the top of every handbook page use the {prog} PageNext and

{ prog} P ageP rev commands. While you could use document markers for the same

purpose, using program markers lets users change pages much faster since the Help

Viewer doesn't have to reload the topic.

Specifying System Markers
To create a system marker, use the instruction { sys}, followed by the command to

be executed. Enter the command exactly as you would type it into a C-shell. For

example

{sys}textedit&

starts the Text Editor application. The string is passed to the C-shell via the SunOS

system(3) call.

System markers extend the capabilities of the Sun386i Help facility, but you should

be aware of problems that can occur when running programs requiring tty input and

output. For example:

{ sys }more filename &

can hang the Help Viewer indefinitely because the more(l) command prints out the

first part of the flle filename and then waits for input before continuing. Also, you

can't be sure where the output from more will appear, nor where a user should sup­

ply input.

Although you can easily start a window-based application from Help (for example,

{ sys} cmdtool &), invoking a command such as more requires a little extra care.

Revision A, May 1988

Sun386i Developer's Guide Chapter 6- User Interface 91

The best way to run a shell command from Help is to start a cmdtool and execute
the command there. The following example uses a Help link to start a
cmdtool, where the more(I) command is then executed on filename:

{sys}cmdtool syswait "Press any key to continue."
'more filename'

The syswait(l) command (new with the Sun386i system) prevents cmdtool from
disappearing as soon as more exits. When more finishes, syswai t displays the
Press any key to continue message. cmdtool disappears as soon as a user
presses any key in the cmdtool window. As long as cmdtool is displayed, Help
Viewer will not accept input or redisplay its window. If a user tries to perform
either function, Help Viewer displays the hourglass cursor.

The on-screen Using System Links topic of the Help Writer's Handbook contains
additional examples. The Help Writer's Handbook is included in the help _guide
cluster of the Developer's Toolkit software. If this cluster is not already on your
system, refer to page 79 for instructions.

Specifying Keyword Markers
Creating a keyword marker requires several steps, but can save time later on. To cre­
ate a keyword marker:

1. Create a marker with the instruction {key}, followed by a file name and
keyword; for example,

{key}textedit:intro_to scrollbars

where text edit is the file name and intro to scrollbars is the
keyword. A colon must separate the file name and keyword, and each key­
word must be unique within a given file.

2. Create a text file (not a Frame Maker or lnterleaffile) named
filename. info (if it doesn't already exist). Using the above example,
you would create the file text edit. info.

3. Open filename. info and include the location of text to be displayed or
actions to take when Help Viewer encounters the keyword specified in
step 1. In this example, the keyword is intro_to_scrollbars. There­
fore, in textedit. info, you could include an entry such as:

:intro to scrollbars:Tool Basics 5

When Help Viewer sees {key} (indicating a keyword marker), it checks the speci­
fied file for the keyword, and then performs the action indicated. In the above exam­
ple, Help Viewer would display page 5 of the Tool_Basics file. In other words,
the keyword link set up in your file ultimately resolves into a document link. But,
in the general case, it could also resolve into any of the other link types, even anoth­
er keyword link. For instance, the : intro_to_scrollbars keyword could be
associated with a system marker, in which case the specified command would be per­
formed. If this were a system marker that started the Text Editor application, the
syntax would be:

:intro_to_scrollbars:{sys}textedit&

Revision A, May 1988

Sun386i Developer's Guide

Creating Hypertext Markers in
Frame Maker Documents

Chapter 6 -User Interface 92

If you use keyword markers to provide a number of links to the same description,

and the location of that description changes in a future revision of your handbook,

you only have to alter the . info file, not each of the markers.

Use of the sun_external. info file is another example. This file, located in

/vol/help/ language/USA-English, provides a keyword interface to many of

the basic subjects covered in the standard Sun386i handbooks. Suppose, for example,

that you wanted to create a link to the Scrolling Windows topic in the Desktop

Handbook. To use the keyword interface, the marker in your document would be:

{key}sun_external:desk_scroll

This identifies the keyword link type, the sun_ external. info keyword file (the

. info extension is assumed), and the :desk _scroll keyword. If you look for

this entry in the sun_ external. info file, you will see:

:desk_scroll:sunview/Scrolling_Windows 1

The instruction associated with this keyword, sunview/Scrolling_Windows

1, is a document link. All of the keywords in this file are associated with document

links to topics in the standard set of Sun386i handbooks.

Before using Frame Maker to create hypertext markers, you should do a small cus­

tomization to make marker identification within Frame Maker easier:

1. Open the text file $FMHOME/. makerinit/markers. (If you do not

have read/write access to the file, become superuser by issuing the su com­

mand.)

2. Change the string Type 9 to Hypertext-out.

3. Save the changes and exit the file.

These steps modify Frame Maker so that the Edit Markers dialog now includes the

Hypertext-out marker type instead of Type 9 in the unmodified program.

To insert a hypertext marker in a Frame Maker document:

1. Set the insertion point for the marker; this should be in text that is or

will be a visible link for users (denoted by either a different font or a dif­

ferent font characteristic; the convention used on the Sun386i system is
underlining).

2. Select the Markers ... option from the Frame Maker Edit menu.

3. Select the Hypertext-out marker type.

4. Enter the text of the marker.

5. Click left on the New Marker button.

To edit a hypertext marker, select it, make the edits in the Markers dialog, and

click left on the Edit Marker button.

Revision A, May 1988

Sun386i Developer's Guide

Creating Hypertext Markers in
Interleaf Documents

Writing Help Viewer Handbooks

Chapter 6 - User Interface 93

To create hypertext markers in lnterleaf documents, you must have lnterleaf TPS
3.0.18 or a later version. (Contact Interleaf for an upgrade to revision 3.0.18 if
you're running an earlier version.)

To insert a hypertext marker in an Interleaf document:

1. Set the insertion point for the marker; this should be in text that is or
will be a visible link for users (denoted by either a different font or a dif­
ferent font characteristic; the convention used on the Sun386i system is
underlining).

2. Pop up the document menu, pull right on the Create option, and select
Index.

3. On the Index properties sheet, while in Format mode, enter
Hypertext-out in the Level 1 field.

4. Enter the text of the marker in the Level 2 field.
5. Switch to Custom mode and enter Comment in the Index Document

field.

6. Click right for the menu and select Apply.

To edit a hypertext marker, select it, pop up its property sheet, make the edits, and
select Apply.

Because underlining in Interleaf does not change the font, you must manually change
the space or punctuation characters on both ends of the underlined text for link high­
lighting to work properly in Help Viewer:

• If there are space characters, use "hard" spaces (for instance, press (]K)
and then the space bar).

• Change the point size, weight, or typeface, or indicate italics.

The templates you need to get started are in the following subdirectories:

• /vol/help/format/Frame/templates
• /vol/help/format/Interleaf/templates

The Frame Maker templates are based primarily on the user handbooks (such as the
Organizer Handbook), and the Interleaf templates primarily on the Help Writer's
Handbook.

To use a template, first copy it to your working directory. While this step is not
required, it will help ensure that you don't inadvertently write over a template that
should remain as is. Then open the template and rename it to the name of your topic.
If the name of your topic is Counting to Twenty, for example, then name its file
Counting_to_Twenty. That is, substitute underscores for spaces and don't use
any extensions. This is necessary for the Help Viewer's topic history to display
properly.

Every paragraph in a Frame Maker or Interleaf document is formatted according to a
particular set of specifications. Which set depends on the paragraph's tag in the case
of Frame Maker or component in lnterleaf.

Revision A, May 1988

Sun386i Developer's Guide

Handbook Guidelines

Adding Help Files to the
Default Help Directory

Chapter 6 -User Interface 94

The chief value of the template documents, aside from providing you with proper

page sizes and margins, is in the predefined sets of tags and components they include,

as described below:

• first or fst suffixes- Several tags and components have the suffix

first or fst, for example, bullet_first and para_first in

Frame, and bul. f st and para. f st in lnterleaf. Any such component

is meant to be the lead paragraph in a new section. A new section is denot­

ed by a left marginal head and has extra space above, which is the purpose

of these components. (In lnterleaf, change any par a. f st that appears as

the first component on a new page to para. top.)

• px or pix suffixes- Components ending in px or pix are intended for

use in front of graphics frames, for example, bul . px.

• bullet last, list last, bul.lst, and list .1st- Use

bullet -last and l.Gt last (Frame) or bul.lst and list .1st

(lnterleat) to end lists, whether or not these components are followed by

graphics.

The guidelines that follow assume that you are writing handbooks that will appear

alongside the standard handbooks included with the Sun386i system. If you follow

these guidelines, you will provide users with a consistent approach and appearance.

• Use the templates provided with the Sun386i system. This is the single

most important way of ensuring consistency with Sun handbooks.

• Relegate conceptual (narrative) material to the "basics" topics, and

restrict the "how-to" topics to procedural material.

• Limit "basics" topics to less than ten pages and procedure topics to less

than five. If it can be so divided, two three-page topics are preferable to a

single six-page topic.

• Write in a modular fashion, making each topic and each conceptual or pro­

cedural section within a topic as self-sufficient as possible.

• Use in-text hypertext links sparingly. If you write modularly, lots of

cross references shouldn't be necessary.

• Use graphics generously.

As shipped, /vol/help is the default directory for all Spot Help and Help View­

er files. When you are developing help for your application, however, you should

create your own default help directory (possibly under your user directory), copy

the contents of /vol/help to that directory, and then use Defaults on the Sun­

View Menu to specify this directory as the default for the Help system to use.

The Spot Help file for your application must be in the default help directory that

you specify with Defaults, and it must have the same name as the program it docu­

ments. Similarly, the subdirectory containing the files for your application's hand­

book should be in this directory and have the same name as the program it describes.

To recursively copy the links in the directories below /vol/help to the directory

chosen, you can use the command format cp - r new_ default_ help _directory from

within the /vol/help directory.

Revision A, May 1988

Sun386i Developer's Guide

Checking Topic Appearance
and Function

Adding Handbooks to the Top
Level

Installing Your Help Files

Chapter 6 - User Interface 95

If you are using Frame, you can work on handbook files in the default help directo­
ry. If they have the appropriate links and the handbook contents page is in the Top
Level (also in the default help directory), you can look at them at any time in the
Help Viewer.

If you are using Interleaf, your working files will be in your desktop directory;
you will have to transfer them to the default help directory before displaying .them
in the Help Viewer. However, first you must convert them to Printerleaf format by
performing the steps below.

1. Pop up the Printer menu.

2. Pull right on Printerleaf and select Document. This saves the file in
Printerleaf format and appends the . p 1 extension to its name.

3. When you move, copy, or rename the file in the default help directory,
strip off the . p 1.

As you create topics you will likely want to check their appearance and the function­
ing of hypertext links in the Help Viewer. To do this:

1. Copy your handbook files into the default help directory that you've speci­
fied with Defaults (if they are not already there).

2. Add your handbook to the copy of the Top Level file in the default
help directory so that you can link to it from the viewer's Top Level table
of contents.

The following section discusses the second step.

No one can access your handbook from the Help Viewer until you insert the hand­
book title in the Help Viewer's Top Level table of contents. Top_ Level is a spe­
cial text file (not a Frame or Interleaf file) in a subdirectory of the default help
directory that you can edit for this purpose. Top_ Level is initially in
/vel/help/language/USA-English.

The file lists the standard set of Sun386i handbooks as a series of entries. Each entry
consists of a text string in single quotes on the left and a path name and page num~
ber in square brackets on the right. The strings are displayed as underlined contents ·
items; the path names are links to the files displayed after following the link.

You edit Top_ Leve 1 as you would any other text file. The only things to note are
the use of:

1. Backslash characters in front of apostrophes, or backslashes that are part
of your handbook's title

2. Number signs in front of comments

The next section describes installing your help files, and includes suggestions for
appending your handbook entry to Top_ Level via a shell script.

This section suggests the steps that an installation script should perform to load
help for your applications, as well as the steps that installation instructions should
include to ensure that your help is easily available to all users on a network.

Revision A, May 1988

Sun386i Developer's Guide

Adding to the Top Level During
Installation

Making Your Help Easily
Accessible on a Network

Chapter 6 -User Interface 96

The Top Level might already be customized to a certain extent. Therefore, it's sug­

gested that you write a shell script that appends your handbook entry to the

Top_ Level file in /vol/help. master (a duplicate of /vol/help) when a cus­

tomer installs your application. Such a script would resemble the following:

·echo "' application_name Handbook'
[application/ application name Handbook] " >>
/vol/help.master/language/USA-English/Top_Level

Or, to check for the presence of your handbook before adding it:

if grep 'application_name Handbook' Top_Level
then

echo "' application_name Handbook' is already
installed in 'Top_Level'

else
echo "' application_name Handbook' [application/

application name Handbook]" >>
/vol/help.master/language/USA-English/Top Level

echo "' application_name Handbook' installed in­

'Top_Level'"
fi

As described on page 80, the default help directory is /val/help. It is recommend­

ed that administrators retain this as the default directory for easier maintenance, and

for disk space conservation and network-wide availability of Sun386i and third-party

help files. For the Help system to access your files through /val/help, you must

add a few steps to your installation script, and must instruct system administrators

to perform certain steps after installing your software.

Installation Script Steps

As part of the installation procedure, your script should:

1. Create the subdirectories application_name/ language/ language/help
for Spot Help files and application_ name I language /language /help I
handbook for handbooks in /usr/ local if there's room (see pages 144-

145). language can be either:

• USA-English

• English

• French

• French Swiss

• German

• German Swiss

• Italian

• Swedish

• Spanish

Then add your help files to these directories. (See pages 206-207 for a

description of the suggested directory structure for applications.)

2. In the directory /val/help. master, create two link files. The first

one shown on. the next page is for . info files:

Revision A, May 1988

Sun386i Developer's Guide Chapter 6 - User Interface 97

ln -s filename linkname
where filename i <;

I vol I application_name/ language/ language/help/
application_name. info

and linkname is
/vol/help .master I language/ language/ application_name. info

The second link file, for handbooks, has the same format but filename is
I vol/ application_ name/ language/ language/help/
application_ name/ handbook

and linkname is

/vol/help .master I language/ language/application_name. info

Installation Instructions for System Administrators
If your installation script performs the steps just described, or if you're adding
Organizer icons for your application's files, whoever loads your application must
perform the steps below to access your help or icons. Although these instructions
also appear in Sun386i Advanced Administration, it's a good idea to include them in
the written installation instructions that you provide with your application.

1. Export the application so that anyone on the network can access it.
a. Create a symbolic link in the command format:

ln -s location_o!_application I export I local I application_ name

The suggested location for applications is in subdirectories under
/usr I local/ application_name (on Sun386i systems, this is a link
to I files<n>/ local), if there is room; see page 202.

b. Become superuser by entering su and the superuser password.
c, Export the link just created by adding to the I etc I exports file,

which lists all exported directories. Use the format:
/export/ local/application_name -ro

The export s(5) man page and Sun386i Advanced Administration pro­
vide details about this file and exporting.

d. Run export f s -a to make the mount daemon aware of the change
to I etc/ exports. (See the exportfs(8) man page for details.)

2. Make the application accessible from a volume (see page 205) by updating
the auto. vol file on the Yellow Pages master.

a. Enterrlogin 'ypwhich -m auto.vol'tologintotheYel­
low Pages master.

b. Become superuser by entering su.
c. Create a volume for the application by adding an entry to the

I etc/ auto. vol file in the format:
application_name system: I export/ local/application_name

d. Rebuild auto. vol by issuing the commands:
cd /var/yp
make

Revision A, May 1988

Sun386i Developer's Guide

6.3 Administration
Facilities

The snap Program

Automatic System Installation

Chapter 6- User Interface 98

After a system administrator performs these steps, your help ftles will be available

to lillY user on the network. You might want to follow these steps yourself after

your help files are completed, to ensure that everything is working correctly. If you

do, be sure to move your flies to /val/help/ language/ language (page 96lists

values for language), and use Defaults on the Sun View Menu to change the Help

directory to /val/help.

The ease-of-use administration facilities described in this section are:

• snap(l)

• Automatic System Installation

• New User Accounts

All of these facilities are built on top of two new SunOS 4.0 features: secure RPCs

(Remote Procedure Calls) and the Yellow Pages (YP) updater program. Secure

RPCs use a public key encryption technology that provides user authentication in the

network. The YP updater provides a way to update YP maps from programs. To use

these features, your network must be running the Yellow Pages and a Sun386i sys­

tem must be the YP master. Sun386i SNAP Administration describes RPCs and the

Yellow Pages in detail.

The next three sections present an overview of the administration facilities on the

Sun386i system. For details, see Sun386i SNAP Administration.

snap(l) provides a window interface for users with the required privileges to

browse, add, delete, and modify user accounts, user groups, systems, modems, termi­

nals, and printers. When a user confirms changes made, snap makes the appropriate

changes to the Yellow Pages facility and directories. snap privileges are implement­

ed through membership in special groups. As shipped, snap gives all users all

snap privileges; most sites probably will want to restrict privileges to some

degree.

snap also enables:

• A window-based method for selecting and installing clusters that pro­

vides an alternative to using the load(l) and loadc(l) commands

• A window-based method for installing third-party software put on the

release tape or diskette with the bar(l) command (see page 145 for

details)

• File backup and restore-The Sun386i system has a backup facility that

provides easy-to-use personal and system-wide backup functions. Both full

and incremental backups are possible. Users can also restore ftles with
snap.

Using Automatic System Installation, a user can add a system to an existing

Sun386i network in about 30 minutes after unpacking. The first time a user powers

on the Sun386i system, one of the following four scenarios occurs, depending on the

machine's configuration.

For a standalone, the system asks for confirmation that it is not going to be added

to a network, and then continues with the boot procedure.

Revision A, May 1988

Sun386i Developer's Guide

New User Accounts

6.4. Using Color

Sun View Color Basics

Chapter 6 -User Interface 99

For a Sun386i system establishing a network (YP master), the system asks for con­
firmation that it should set up this system as a YP master and then continues to do
so.

For a system attaching to an existing Sun386i system network, the system is auto­
matically configured onto the network, enabling users with appropriate privileges to
access files on the network. This applies to both diskful and diskless systems, pro­
vided the availability of a diskful system to act as a boot server if a diskless system
is to install itself. (fhe diskful system would need about 25 Mbytes of free space,
as well as /usr binaries for the diskless machine.)

For a diskful system attaching to an existing network that is not a Sun386i system
network, the process is more complicated. The system requests confirmation that the
network is not an Automatic System Installation (Sun386i system) network. Then
an administrator must add the system using procedures documented in Sun386i SNAP
Administration. (fhese are the same procedures that administrators must follow if
they disable Automatic System Installation via snap.)

New User Accounts consists of two parts:

• New user access, which displays directions for creating a user account (for
users who don't have a log-in name on a system). A log-in name and
resources such as a home directory are established. Administrators can tum
off this ability with snap. ·

• Full screen login, whereby users entering their user names and passwords
can view help screens by pressing the ~ key. When users press cm!E],
detailed instructions on how to log in are displayed. (This help is indepen­
dent of the Spot Help facility; the Spot Help description begins on page
76.)

Because of the log-in screens and help facility, the above processes run only on stan­
dard Sun386i bitmapped displays. By default, each system ships with the
getty -n command in the /etc/ttytab file to enable display of New User
Accounts screens. To disable these screens, remove the-n option from the
/etc/ttytab file.

Color is an important part of the Sun386i system. This section describes the user and
programmer tools that facilitate the use of color in applications. The first part of
this section provides basic information on the use of color. For additional informa­
tion, refer to the Sun View Programmer's Guide. Also, the SunCGI Reference
Manual describes color functions and color attributes affecting the display of out­
put primitives.

Each point (pixel) on a color monitor represents an 8-bit value. This value is used as
an index into a colormap. Each colormap entry contains a 24-bit value, 8 bits for
each of the three primary colors: red, green, and blue. The number of possible col­
ors, therefore, is 224 or approximately 16 million. The number of colors that can be
in use at any one time, however, is limited to 256.

Setting the colormap---establishing the correspondence between 8-bit and 24-bit pix­
el values-for use by an application is the responsibility of the application program­
mer. Actually, you do not set the colormap directly, but rather a colormap segment

Revision A, May 1988

Sun386i Developer's Guide

Foreground and Background
Colors

Chapter 6 - User Interface 100

for the particular application. The colormap is a lower-level hardware resource,
encompassing all of the colors available for display across all window applications
running concurrently. The colormap segment is the vehicle by which an application
specifies the particular set of colors it needs at any given time.

The colormap segments for all the currently running applications together form the
current colormap. If the sum of the current colormap segment entries for current
processes exceeds 256, the colormap limit, then swapping occurs. The window sys­
tem gives priority to the colormap segment of the window under the mouse pointer,

and swaps out segments belonging to other windows. You can share colormap seg­
ments among windows and processes, or you can prevent them from being shared if
you are using them dynamically (e.g., for animation). If a colormap segment's use is
static, then you should use a shared colormap segment definition to decrease the
potential for swapping. The Sun View Programmer's Guide provides a more complete

description about color and colormap segments.

The most basic use of color in a Sun View application is to set the foreground and
background colors of its frame. If you look at a typical Sun View application like
the Text Editor window, the foreground color is the one used for the borders and
any displayed characters. The background color is just that, the background in the
character display area of the window. The colors used in the namestripe at the top of
the window are reversed, with the background color being used for display of charac­

ters on the foreground-colored border.

The foreground and background colors for an application are determined by the last
and first values, respectively, in the application's colormap segment. It is not neces­
sary to directly manipulate the colormap, however, in order to use foreground and
background colors. Two other interfaces exist, one at the programmer level, the oth­
er at the user level.

The first is provided by the attributes FRAME _FOREGROUND_ COLOR and
FRAME_ BACKGROUND_ COLOR, which are set when you create a program frame. A
related frame attribute is FRAME_ INHERIT_ COLORS, a flag specifying whether the
frame's subwindows get the same foreground and background colors as the frame.

The user-level interface is provided by the coloredi t(l) facility, described on
page 104. In addition, there are several command-line frame arguments correspon­
ding to the three frame attributes described above. They are, -Wf [r] [g] [b J,-
Wb [r J [g] [b J, and -Wg, respectively specifying the foreground color, back-
ground color, and which subwindows inherit these colors. r, g, and bare the intensi­

ty values (0-255) for the RGB components.

You can use these arguments:

1. When invoking a Sun View application directly from a shell tool or
cmdtool window

2. In the . sunview (called . suntools prior to the SunOS 4.0 system) or
equivalent file executed when sunview is invoked

3. In the /usr I lib/ rootmenu or equivalent file that specifies the items
on the Sun View rootmenu, and the corresponding commands executed
when a user selects rootmenu items

Revision A, May 1988

Sun386i Developer's Guide

Panel Colors

Chapter 6- User Interface 101

Note that application-specified frame attributes override user-specified command­
line arguments, regardless of where the latter originate. If the foreground and back­
ground colors are specified neither at the program nor user levels, they are derived
from Sun View defaults. There are two levels of defaults for window-based applica­
tions:

• User-specified red, green, and blue values supplied with the -f and -b
options to the sun view command (see the sunview(l) man page)

• The default colormap segment defined in <sunwindow I ems mono. h>,
if sunview isinvoked without the -f and -b options -

The -f and -b options specify the foreground and background colors (RGB values)
for the Sun View root screen, and for all pop-up menus as well. They also are used
to specify foreground and background colors in applications for which these colors
are not otherwise specified.

If sunview is invoked without the -f and -b options, then the defaults are taken
from the defaultcolormap segment defmed in <sunwindow/cms_mono. h>. This
is the monochrome colormap segment, and specifies a black (0 0 0) foreground on a
white (255 255 255) background. (The sunview inverse video switch, -i, swaps
the foreground and background colors.)

You also can set colors for panels and panel items by dynamically manipulating col­
ormaps. This section describes the various types of panel items and explains how to
set colors for them. The method for adding color to panels is very similar to that
for adding color to canvases. The Sun View Programmer's Guide describes adding col­
or to canvases, and provides additional background information.

Panels are comprised of items that users can choose to perform various functions.
The six basic types of panel items are listed and briefly described below.

• Message items-descriptions, pictures, and dynamic status messages that
users can view by selecting message labels; a label can be an image or a
string in a specified font.

• Button items-labels that initiate commands when selected; buttons have
visible feedback for previewing and accepting selections made.

• Choice items-a list of selections for users, one of which is the current
choice; choices are either fully displayed or require user interaction to
view all available choices.

• Toggle items-a list of elements that behave as toggles; each choice is
either on or off, independent of other choices, and selecting a choice
changes its state.

• Text items-labeled fields that users fill in; optionally, clicking 'right on
text items can produce a menu from which users can select. Your applica­
tion can process user input on a per character, per field, or per screen basis.

• Slider items--graphical representations of a value within a range; the
coloredi t(l) program provides sliders for adjusting the hue, saturation,
and luminosity offoreground and background colors. (coloredit is
described on page 104.)

You also can create panels that are larger than the subwindows in which they appear
by attaching scroll bars to them. The steps to add color to a panel differ depending

Revision A, May 1988

Sun386i Developer's Guide

Adding Color to Nonscrollable
Panels

Manipulating the Panel
Colonnap

Adding Color to Panels with
Scroll Bars

, Chapter 6 - User Interface 102

on whether or not the panel has scroll bars. The following sections explain how to
add color to both types of panels.

To add color to a panel that does not have scroll bars:

1. Add the PANEL ITEM COLOR attribute to the code for each panel item
that you want to color. -

2. Use the WIN P IXWIN attribute on the panel handler to get the pixwin of
the panel. -

3. Change the panel's colonnap, using the pw'---set ems name () and
pw__putco1ormap () functions.

PANEL_ ITEM_ COLOR is a panel item attribute that is followed by an index into
the colonnap associated with this panel item. The index has a value type of int.
pane 1_ get and pane 1_ set functions are valid with this attribute.

In addition to adding the above attribute to panel items, you also must name and set
the size of the panel's colonnap segment by performing the following two steps:

1. Name the colonnap segment with pw_setcmsname () .

2. Set the size of the segment by loading the colors with
pw_putco1ormap().

It is important to do both of the above steps in the order shown. The
pw_setcmsname () function resets the colonnap segment to a NULL entry. After
setting the name, you must immediately call pw __put colormap () to set the size
of the colonnap segment and load it with the colors desired. The calling conventions
forpw_setcmsname andpw_getcmsname are shown below.

pw_setcmsname (pw, name)
Pixwin *pw;
char name[CMS_NAMESIZE];

pw_getcmsname (pw, name)
Pixwin *pw;

char name[CMS_NAMESIZE];

The view pix win is a region of the pixwin that pertains to a scrollable panel. There­
fore, to add color to a scrollable panel, set two colonnaps: one for the view pixwin
and one for the panel pixwin. When adding color to scrollable panels, attach the
scroll bars to the panel after you change the panel's colonnap segment, using the
steps below.

1. Create the panel without scroll bars, as described in the preceding section.

2. Use the PANEL PAINT P IXWIN attribute to get the view pixwin of the
panel. - -

3. Change the colonnap of the view pixwin of the panel.

4. Change the colonnap of the panel pix win of the panel.

5. Attach scroll bars to the panel.

When specified in a window_get call, PANEL_PAINT_PIXWIN is a panel
attribute that returns a pix win pointer to the view pixwin of the panel. You cannot
use window_set to change the view pixwin.

Revision A, May 1988

Sun386i Developer's Guide

Color Panel Examples

Chapter 6 -User Interface 103

If a panel already has scroll bars, change the panel and view pixwin colorrnaps and
then reattach the scroll bars to ensure that the scroll bar pixwin regions use the new
colorrnap segment.

This section contains two examples of adding color to panels. The first illustrates
making a panel called CMS Name: blue against a white background:

cmd_panel_init(frame, panel)
Frame frame;
Panel *panel;
{

/* setup for color panel item test */

#define WHITE 0
#define BLUE 1
#define RED 2
#define BLACK 3

unsigned char r[4),g[4),b[4);
char *CmsName = "CPTest";
Pixwin *pw;

/* creating panel */

*panel= window_create(frame, PANEL,
WIN_RIGHT_OF, scroll_panel,
WIN_Y, 0,
WIN_HEIGHT, (int)window_get
(scroll_panel,WIN_HEIGHT),O);

cmd_panel = *panel;

I* creating and loading colormap */

r[OJ g[O] b[OJ = 255; I* white */
r[3) = g[3) = b[3] = 0; I* black */
r[l) = g[l) = 0; b[l) = 255;/* blue *I
r[2)=255;g[2) = b[2) = 0; I* red *I

I* setting color for canvas colormap *I
pw = (Pixwin *)window_get(cmd_panel,
WIN_PIXWIN, 0);
pw_setcmsname(pw,CmsName);
pw_putcolormap(pw,0,4,r,g,b);

I* creating color panel item (CMS NAME) */

ems name label item =
panel_create_item(cmd_panel,
PANEL_MESSAGE,

PANEL ITEM_COLOR, BLUE,
PANEL_ITEM_X,PANEL_CU(50),
PANEL_ITEM_Y,PANEL_CU(0)+4,
PANEL_LABEL_STRING, "CMS Name:",
0) ;

Revision A, May 1988

Sun386i Developer's Guide

The col.oradi t Program

Chapter 6 -User Interface 104

The second example shows how to attach color to a scrollable panel. The scroll bars
will appear in the foreground color of the colormap.

#include <suntoollsunview.h>
#include <suntoollpanel.h>
#include <sunwindowlcms_rainbow.h>

init_color_panel{base_frame)
Frame base_frame;

Panel panel;

Pixwin *pw;

unsigned char red[CMS_RAINBOWSIZE];

unsigned char green[CMS_RAINBOWSIZE];

unsigned char blue[CMS_RAINBOWSIZE];

panel= window_create{base frame, PANEL, 0);

cms_rainbowsetup{red, green, blue);
I* set the WIN_PIXWIN colormap *I

pw = (Pixwin *) window_get{panel, WIN_PIXWIN);

pw_setcmsname{pw, CMS_RAINBOW);

pw_putcolormap {pw, 0, CMS_RAINBOWSIZE, red,
green, blue);

I* set the PANEL PAINT_PIXWIN colormap *I
pw = {Pixwin *) window_get{panel,
PANEL_PAINT_PIXWIN);

pw_setcmsname(pw, CMS_RAINBOW);

pw_putcolormap{pw, 0, CMS_RAINBOWSIZE, red,
green, blue);

I* now attach scroll bars *I
window_set{panel,

WIN_VERTICAL_SCROLLBAR,
scrollbar_create{O),

WIN_HORIZONTAL_SCROLLBAR,
scrollbar_create(O),
0) ;

Anyone with a color system can add or change window and icon colors with
coloredit(l), and then save choices made with the toolplaces(l) command.
You also can use coloredit as a prototype tool, to see what colors look best
with your application. This section briefly describes coloredi t. For more infor­
mation about the user interface, refer to Sun386i Advanced Skills.

Users can select items for which they want to add or change color with the
coloredi t panel. Users can edit colors either by:

• Selecting a color from a scrollable subwindow of alphabetized color
names

Revision A, May 1988

Sun386i Developer's Guide Chapter 6- User Interface 105

Using coloredit as a
Development Tool

Application Guidelines

General Color Guidelines

• Changing hue, saturation, and value settings

• Changing red, green, and blue (ROB) settings

• Using a combination of the previous three methods

The color names that appear in the coloredi t panel are stored in the file
Ius r I 1 ib I . r g b. Users can copy this file to their own directories and add to it.
The colors added then appear in the scrollable subwindow of the coloredit menu.

The hue slider represents the 360 degrees of a color wheel. Changing the hue setting
is analogous to changing the color of a filter on a stage light, for instance from red
to green. Saturation represents the levels of the color chosen with the hue slider. It
is analagous to using a different shade of the same filter, such as replacing a lighter
shade of blue with a darker blue. The value slider represents luminosity; using the
stage light analogy, increasing the luminosity represents increasing or decreasing the
intensity of the light.

The hue, saturation, and value settings and the ROB settings can be used interchange­
ably. These two different methods permit the same fine tuning of color selections.
As the setting of one slider is changed, the counterpart slider in the alternate set
also changes to reflect the modification. However, only the ROB settings have physi­
cal representations. The numbers displayed beside the ROB sliders are the physical
ROB values for the choices made.

The Color Index, located beneath the ROB sliders, specifies the colormap location
of the color currently being edited. For a two-color SunView object, when the Col­
or Index is 1, the foreground color (displayed by the Sun logo in the proof canvas)

is being edited; when it is 0, this indicates background color editing, and the Sun
logo disappears. To edit a different color, choose that color from the palette. The
proof canvas then reflects the new color selecred. For applications that have more
than two colors, the Color Index for the background is still 0 but the foreground
Color Index will be the size of the colormap (number of colors) minus one. That is,
for a five-color application, the foreground Color Index is 4.

You can use coloredi t to see which colors look best for your application. After
you are satisfied with your choices, record the ROB values of each color used and
then include those values for the applicable window item in your code.

This section provides some guidelines on the effective use of color and a list of stan­
dard colors with their corresponding red, green, and blue (ROB) values. General
guidelines are presented first, followed by guidelines that are more specific to the
Sun386i system; the latter are most relevant to applications intended to run along­
side the standard Sun View applications (such as Mail and Text Editor) that are part
of the Sun386i system.

Design your interface in black arul white first. Use color as an added cue to distin­
guish different kinds of objects or information, not the only or primary cue. This
avoids disfranchising color-blind users of your application and is in any case good
practice.

Revision A, May 1988

Sun386i Developer's Guide

Sun386i System Color
Guidelines

Chapter 6 -User Interface 106

Use colors sparingly. Color is appropriately used for directing attention to novel
objects, for example, but overuse decreases its effectiveness.

• Applications that are primarily text-oriented should limit color use to
foreground and background colors for their frames, and to occasional color­
ing of special areas or text.

• Applications that are primarily graphics-oriented should use black for the
frame foreground (borders) and a neutral gray in areas where color objects
are displayed. (Research has shown that color looks best against neutral
gray.)

• Graphics applications intended for casual users should use a maximum of
four colors.

• Graphics applications intended for experienced, long-term users should use
a maximum of seven colors.

• As the number of colors increases, increase the size of the color-coded
objects.

• Don't overdo color highlighting in the temporal dimension (for instance,
yellow alerts every 30 seconds or so quickly lose their punch and become
annoying.)

Use bright colors even more sparingly. Red, yellow, orange, and green readily
attract the eye; overdoing it is distracting.

Use colors in a culturally consistent manner. When color-coded information has pos­
itive or negative connotations, reflect those connotations in your color choices. For
example, in a financial chart showing losses and profits, use red for the losses, not
the profits.

Select compatible color combinations. Avoid red-green, blue-yellow, green-blue,
and red-blue pairs.

For character-background pairs, go for high contrast. Applications that are primari­
ly text-oriented should use black on white or off-white (for example, wheat-look
at /usr I lib/. rgb for ROB values). If you're dealing with a little text in a basi­
cally graphical application, use complementary character-background colors. The pri­
mary complementary pairs are blue-yellow, red-cyan, and green-magenta.

End users can easily alter window foreground and background colors with the
coloredit(l) utility, described in the previous section on page 104. Therefore,
unless your application makes use of color graphics for which you need to control
the background or it is the only application available, don't supply foreground and
background color frame attributes. Take the Sun386i system defaults and let end
users set their own.

Also, the Sun386i systems are configured to come up in Sun View when first booted
(although you can change this, as can users). Because studies have shown that· a back­
ground of medium gray is the best against which to view colored objects, the root
screen will come up in a gray color (implemented by the -pat tern gray option
for sunview). Also, the root screen (and therefore pop-up menus) foreground col­
ors are set to black and white (or off-white). Keep this in mind when adding color
to your applications.

Revision A, May 1988

7
. • .. ::..""'*' '· ..•. :::«::::.· •• :0 •• :-'!• • . -.:::::.

MS-DOS Environment

MS-DOS Environment.. 107
7.1. MS-OOS Overview.. 109

7.2. Application Issues... 110

Memory... 111

Naming Your PC Applications... 111

Issuing Sun OS Commands from DOS Windows....................................... 111

Text-Only Applications.. 112

File Permission Differences.. 113

7.3. Peripheral Issues... 113

setup .pc File.. 114

boards. pc File... 115

7 .4. Capabilities and Limitations... 116

Converting Between MS-DOS and SunOS Text Files............................... 116

Converting Between MS-DOS and ISO Text Files.................................... 117

Unexpanded Command Line Interpretation ... 117

:Determining the Window Number 117

80386 Instructions Supported... 117

EDITDOS :Taking Advantage of SunOS and MS-OOS Systems.............. 118

MS-DOS Limitations.. 123

7.5. Communication Between Commands and Applications.............................. 124

Invoking MS-OOS Commands at the SunOS Prompt................................ 125

Invoking SunOS Commands at the MS-DOS Prompt................................ 125

Piping Between Commands and Between Applications 125

Background Mode Considerations 126

Sun386i Developer's Guide

7.1. MS-DOS Overview

Chapter 7 - MS-DOS Environment 109

7
MS-DOS Environment

This chapter describes the MS-DOS environment-its features as a user interface and
as a cross-development environment for MS-DOS. The chapter also discusses issues
that you should be aware of if you port PC applications to the Sun386i system. For
more information about customization and the MS-DOS user interface called DOS
Windows (dos(l) is the name ofthe program), refer to the Sun386i User's Guide
and Sun386i Advanced Skills. The latter manual contains more details about much of
the information in this chapter. In addition, the Sun386i DOS Reference Manual
provides information about most MS-DOS commands.

The Sun386i system runs MS-DOS 3.3. Briefly, MS-DOS and dos(l) let you:

• Run most PC programs without modification

• Run multiple PC windows

• Run most PC applications much faster than on any PC

• Run PC text-only applications that do not attempt to address the cursor,
clear the screen, or display graphics (such as BACKUP, CHKDSK, D IR, and
RESTORE) in a cmdtool or shell tool window, rather than only in
80-column by 25-Iine DOS Windows

• Run compilers, linkers, and the SunOS make(l) command on MS-DOS tar­
get files in cmdtool or shelltool windows by specifying those tar­
gets as text-only

• Decide which of the following three PC display adapters will be emulat­
ed: Monochrome Display Adapter (MDA), Color Graphics Adapter
(CGA), or Hercules Graphics Adapter (the default)

• Emulate the Microsoft® Mouse or use the mouse as it functions under
Sun View

• Access an 8087 numeric coprocessor, emulated via the 80387 numeric
coprocessor

• Configure DOS window options via the set up. pc file (described on page
114)

• Assign any SunOS directory its own drive letter to organize data and sim­
plify references to paths

• Set up alternate names, called links, between MS-DOS and SunOS files

• Transfer data (Copy and Paste) between windows

Revision A, May 1988

Sun386i Developer's Guide Chapter 7- MS-DOS Environment 110

7.2. Application Issues

• Share piped output between MS-DOS and SunOS commands

• Share MS-DOS files across a Sun386i network

• Perform piping into any PC application

• Use the EDITDOS program to edit an MS-DOS file in a text edit win­
dow, without first converting the file to SunOS text file format (the
source code for this program starts on page 118)

• Use either of two standard SunOS screen fonts available to PC processes,
pcfont. r .14 (regular) and pcfont .b .14 (bold), both in
/usr/lib/fonts/fixedwidthfonts

• Install, allocate, and access boards plugged into the AT bus

• Convert between the PC and ISO fonts provided with the Sun386i system
by using the unix2dos(l) and dos2unix(l) programs

• Convert text files for use by both operating systems with unix2dos(l)
and dos2unix(l) programs

You can open DOS Windows either by typing dos or by selecting Command
Windows from the root menu, pulling right, and selecting DOS Windows.

Additionally, if you add setenv DOSLOOKUP on to your .login file, you can

implicitly open DOS Windows by entering the name of any MS-OOS program load­

ed on your system.

When you start DOS Windows, it automatically comes up with MS-OOS active and

executes the AUTOEXEC. BAT file in the host machine's MS-DOS file area (Drive

C:). BIOS code is loaded into memory from disk at this time. After completing the

bootup procedure, DOS Windows is ready to accept user input for execution by the

MS-DOS command processor. When you close DOS Windows, the SunOS system

automatically closes all open MS-DOS files, flushes all buffers, and releases all

assigned external devices and memory.

To enable enhanced graphics for PC applications, Sun386i users can select software

emulation of the Monochrome Display Adapter (MDA), Color Graphics Adapter

(CGA), and Hercules graphics cards. Alternatively, if the Sun386i system is hooked

up to a PC, you can add one of these cards or an Extended Graphics Adapter (EGA)

card to the Sun386i. You will see the enhanced graphics and increased graphics per­

formance on your PC monitor.

An application running in DOS Windows behaves as if it were running on a PC,

with access to the actual PC hardware. One difference is that compute-intensive PC

applications run faster on the Sun386i system, due to the machine's speed and multi­

tasking advantages.

This section contains information on memory, application naming, adding SunOS

commands to your applications, text-only applications, running make(l) on

MS-DOS targets, and file permission differences between MS-DOS and SunOS sys­

tems.

Revision A, May 1988

Sun386i Developer's Guide

Memory

Naming Your PC Applications

Issuing SunOS Commands
from DOS Windows

Table 7-1

Chapter 7- MS-DOS Environment Ill

The Sun386i system allocates 640 KB of its virtual memory for each application run­
ning in DOS Windows. In addition, up to 2 Mbytes of expanded memory is available
for each application that uses the Lotus®-Intel-Microsoft (LIM) expanded memory
specification. Since the Sun386i system allocates virtual memory, no added hardware
is required for this support. If you want to take advantage of expanded memory, you
must design applications to access LIM memory by switching parts of the program
in and out of LIM address space, which starts at the standard location D 0 0 0 0. LIM
memory is available to each DOS Windows application that can use it, even if sever­
al windows are running simultaneously.

Because MS-DOS and SunOS systems have different file-naming conventions, the
SunOS system provides a file name mapping scheme that enables you to specify pro­
grams from within either operating system. However, mapped file names are only
temporary references; name mapping does not produce the same result each time.
Therefore, do not build mapped names into your applications. The best course of
action is to follow MS-DOS file naming conventions whenever possible. If you fol­
low the suggestions below, file mapping will not be an issue for you or the users of
your applications.

• Names can be up to eight characters (without an extension), or up to
eleven characters (with a period and three-character extension). Only pro­
grams with .EXE, .COM, or .BAT extensions are executable from within
MS-DOS.

• MS-DOS names are not case-sensitive, but almost all SunOS commands are
lowercase; therefore use lowercase letters for all of your file names.

• Do not use these characters in file names: " . I [] : I < > + = ; ,
You can use a period only as a separator between the file name and an
extension.

The system comes with a number of SunOS commands that you can issue from with­
in DOS Windows, provided that I etc/ dos/unix is part of the your MS-OOS
path. These commands are MS-DOS .COM programs that point to the actual SunOS
commands. They accept the ampersand(&), so you can run them in the background.
The preinstalled commands are listed below.

Preinstalled SunOS Commands

at date lprm pr tar
awk diff ls ps tee
calendar echo mail pwd time
cat egrep mail tool rlogin tr
chgrp fgrep make rm umount
chmod file man rmdir unix
chown find mesg rsh vi
cmdtool grep mkdir sed we
cmp head more size what is
comm kill mount sort where is
cp ln mv split who
csh lpq nice stty write
cut lpr passwd tail yppasswd

Revision A, May 1988

Sun386i Developer's Guide

Text-Only Applications

Table 7-2

Running make(l) on MS-DOS
Targets

Chapter 7- MS-DOS Environment 112

To install additional SunOS commands for your applications, become superuser by

entering the s u command and then enter:

cd /etc/dos/unix
ln -s unix. com newcommand. com

at the Sun OS prompt.

dos(1) opens a window whenever you invoke most PC programs. However, this is

not the case for text-only applications delivered with the Sun386i system. Text­

only applications are those that do not attempt to address the cursor, clear the

screen, or display graphics. D I R is a good example of such a program. vi is not a

text-only application, since it controls the cursor position and makes assumptions

about the screen geography.

Text-only applications do not require an 80x25 display. Therefore, if implicit execu­

tion is set with the DOS LOOKUP environment variable, dos executes text-only

applications in a cmdtool or shell tool window, rather than automatically pop­

ping open a new DOS window. You can add to the list of text-only applications

that dos recognizes by including the application's name to your setup. pc files, as

a value for TEXT. (Refer to page 114 for more information about the set up. pc

file.) The list of text-only applications that are shipped with the Sun386i system is

shown in Table 7-2.

Preinstalled Text-Only Commands

ATTRIB DEBUG LABEL SUBST

ASSIGN DIR LINK SYS

BACKUP DISKCOMP MODE TIME

BREAK DISKCOPY RECOVER TREE

CHKDSK EXE2BIN REPLACE TYPE

COMMAND FDISK RESTORE VER

COMP FIND SELECT VERIFY

COPY FORMAT SHARE X COPY

DATE JOIN SORT XDIR

In addition, if you specify MS-DOS files as text-only files, you can run compilers,

assemblers, and SunOS make(l) files on them in cmdtool or shell tool win­

dows. For example,

file. exe: file. c
dos -w -c cc file.c

where file. exe is the MS-DOS target file, and file. cis the file that the target file

depends upon. The-w option to the dos command declares file. cas a text-only

file, and the -c option indicates that the command, in this case cc, follows.

Revision A, May 1988

Sun386i Developer's Guide

File Permission Differences

7 .3. Peripheral Issues

Chapter 7- MS-DOS Environment 113

Generally, access to files is the same under SunOS and MS-DOS systems. The excep­
tions are:

• MS-DOS does not recognize execute restrictions. That is, any user with
read permission to a file can execute that file. Without read permission,
users cannot execute files.

• Drive C: does not support SunOS file permissions, since the SunOS system
cannot directly access files on drive C:. However, because the SunOS sys­
tem views drive C: as one large file, you can restrict access to all drive C:
files to a specific owner or group.

The MS-DOS drive designations are:

Drives A: and B: -Reserved for diskettes.

Drive C: - A "virtual" hard disk of up to 20 Mbytes, that the SunOS system can­
not access; use this drive only to install copy-protected or install-protected PC soft­
ware.

Drives D: through S: - Virtual hard disks tied to system SunOS directories that
can expand as required; use these drives for data files and unprotected PC applica­
tions.

All MS-DOS drivers listed in CONFIG. SYS, the MS-DOS configuration file, must
actually be on drive C:, where CONFIG. SYS resides. This is because MS-DOS loads
drivers before it begins to communicate with the SunOS system (toward the end of
the AUTOEXEC. BAT file), and drive C: is the only drive that MS-DOS can access
until Sun OS communications are activated. The message Bad or missing xxx. s y s
appears if you try to access a device that has a driver that is not on drive C:.

You can add MS-DOS peripherals either by:

• Adding an AT card that uses an MS-DOS driver provided by the card manu­
facturer

• Adding an AT card that uses a device-specific driver that you write

Regardless of the method used, you must add information about new drivers to three
files-CONFIG. SYS (an MS-DOS file), and setup. pc and boards. pc (two
SunOS files described in the following sections). Then you must invoke DOS Win­
dows from the Desktop menu before using the new driver, or enter dos -s to save
the new driver in . quickpc, a quick-start file containing a snap-shot image of MS­
DOS. (Refer to Sun386i Advanced Skills for more information.)

The setup . p c file contains configuration information on all devices attached to a
system that users might want to access via MS-DOS, including the SunOS files asso­
ciated with those devices. The boards . pc file contains a list of the boards that
only MS-OOS, not the SunOS system, can access on the system. MS-DOS cannot
access a peripheral listed in the set up. pc file unless it is also in the boards. pc
file. The boards .pc file is in the /etc/des/defaults directory, and
setup .pc is in the user's home directory, -/pc/setup.pc.

Revision A, May 1988

Sun386i Developer's Guide

setup . pc File

Chapter 7 - MS-DOS Environment 114

The first time you open DOS Windows, dos creates a pc directory under the home

directory, and places a copy of setup. pc there. You can edit this file, but general­

ly should not delete anything in it. A description of the default set up. pc file

follows, with number signs(#) indicating comment lines. (Descriptions shown here

are not part of the default file.) For more general information about the set up. pc

file, refer to Sun386i Advanced Skills.

MS-DOS Device SunOS Device Path Name

A /dev/rfdOc
Diskette device name.

c -/pc/C:
Drive C: file name.

COMl /dev/ttya
Specifies the serial device attached to the serial port.

LPTl lpr

#Specifies how to process MS-OOS LPT1 text; the default is the default printer.

LPT2 cat >>-/lpt-2
#Specifies how to process MS-OOS LPT2 text; the default is to append to the

-/lpt-2 file in the user's home directory.

LPT3 psfx80 I lpr

#Specifies how to process MS-DOS LPT3 text; the default is Epson™ FX-80

emulation on the default printer.

SAVE ~/pc/.quickpc

#Specifies . quickpc, a quick-start file created with the dos -s command

#that contains a snapshot image ofMS-DOS after it has read CONFIG. SYS and

#most of AUTOEXEC. BAT (up to the RUNDOS line). This file is used when any

dos command other than dos -b (the default command issued when started

#from the Desktop menu) or dos -sis issued. Starting MS-DOS is much

#quicker with the . quickpc file.

#TEXT
#List of user-specified text-only applications, in addition to the standard ones

#shipped with the Sun386i system. Running these applications from the SunOS

system will send output to the current window instead of opening a new DOS

#window.

#BOARDS
#List of boards from /etc/des/defaults/boards. pc that you want

to attempt to access upon opening DOS Windows. If a board is already in use,

it will appear as detached in the Devices submenu on the Sun386i system. In

this case, you can release the device from the window that owns it, and then

#attach the device from the current window.

Revision A, May 1988

Sun386i Developer's Guide

boards . pc File

Table 7-3

Chapter 7- MS-DOS Environment 115

As with set up. pc, you also can edit the boards. pc file; however, unlike
setup .pc, each system should have only one copy of boards .pc, which affects
all users on the system. If you add a device to run under MS-DOS, you must include
its board name and block 1/0 information in the file. You must also include inter­
rupt-level information for boards that use interrupt levels, as well as indicate
whether or not the device can be shared. The boards. pc file included with the
Sun386i system contains a list of commonly used boards included as comment lines;
you can remove the comment symbols for those boards that you have and want PC
applications to use.

The following table shows the AT bus 1/0 address spaces that do s emulates. If you
add a card in one of these address spaces, MS-DOS ignores it. If you specify an emu­
lated address in the boards . pc file, the next time you open a window the system
displays a message stating that the address range is already in use. You can turn off
emulation for all but the hard disk by placing a comment character(#) at the start
of the pertinent line in set up. pc.

110 Address Space Emulation

Address MS-DOS Use

1F8-1FF Hard disk emulation

230-237 Bus mouse emulation

278 -27F Parallel port 2

378 -37F Parallel port 1

3B0-3BF Monochrome display adapter

3D0-3DF Color display adapter

3F0-3F7 Diskette controller

No two boards in the same system can have the same interrupt level. Because many
boards have a factory-set interrupt level of 3, occasionally you might have to
rejumper the board to set a new interrupt level, as on regular PCs. You must then
also change the interrupt-level information in the boards . pc file before accessing
the attached device. Table 7-4 shows the availability of interrupt levels for the
Sun386i system. For more details about adding a board to the boards. pc file,
refer to Sun386i Advanced Skills.

Revision A, May 1988

Sun386i Developer's Guide

Table 7-4

7 .4. Capabilities and
Limitations

Converting Between MS-DOS
and SunOS Text Files

Chapter 7- MS-DOS Environment 116

Interrupt Level Availability

Inte"upt Level A vailiJbility

0 Unavailable; used for timer emulation
1 Unavailable; used for keyboard emulation
2 Unavailable; used for interrupt controller 2 cascade

3 Available for board (specified in set up. pc)

4 Available for board. unless COMl emulation in use

(specified in set up. pc)

5 Available for board, unless LPT2 emulation in use

(specified in setup .pc)

6 Unavailable; used for diskette emulation

7 Available for board, unless LPTI emulation in use
(specified in set up. pc)

8 Unavailable; used for real-time clock emulation

9 Available for board
10 Available for board
11 Available for board
12 Available for board
13 Unavailable; used for 8087 numeric coprocessor

emulation
14 Unavailable; used for hard disk emulation
15 Available for board

This section describes some MS-OOS features and limitations that you should know

about. It contains sections on:

• Conversion programs for converting text files from MS-DOS to the
SunOS system and vice versa

• Differences between the MS-DOS and SunOS command interpreter

• Determining the DOS Windows number to create unique file names and
help avoid network collisions

• 80386 instructions supported

• Limitations such as those relating to screen height, remote port use, cer­
tain types of applications, running simultaneous versions ofMS-OOS
applications, interrupt rates, and space issues

MS-DOS and the SunOS system have slightly different conventions regarding text

file delimiters. Consequently, the Sun386i system includes special utilities to con­

vert files from one set of conventions to the other. The program to convert

MS-DOS files to SunOS files is called dos2unix(l); the program to convert
SunOS conventions to MS-DOS conventions is called unix2dos(l). The Sun386i

system contains two versions of each program, a SunOS version and an MS-DOS ver­

sion, to make it easier to run both utilities from either system.

Conversion does not happen automatically. You must invoke these programs as neces­

sary, and can do so from either the MS-DOS prompt or the SunOS prompt. Include a

source file name and a destination file name on the command line.

Revision A, May 1988

Sun386i Developer's Guide

Converting Between MS-DOS
and ISO Text Files

Unexpanded Command Line
Interpretatiion

Determining the
Window Number

80386 Instructions Supported

Chapter 7 - MS-DOS Environment 117

You also can use dos2unix and unix2dos in piped expressions. When used in this
way, you must explicitly include them in the command line---<:onverting automati­
cally between the two text format conventions would allow binary data to be
destroyed automatically. For example, all of the four following commands are
legal:

dir I dos2unix > filename
dos2unix dosJile > sunosJile
dos2unix dosJile sunosJile
dir I dos2unix I grep ASM

dos supports the display of 8-bit files containing MS-DOS international characters.
However, the MS-DOS character set is different from the ISO (8-bit international
ASCII) character set used throughout Europe and supported by the Sun386i system.
To display text files containing ISO characters in DOS Windows, you must ftrst con­
vert ISO files with the unix2dos program. Similarly, to display text files contain­
ing MS-DOS international characters correctly in a SunOS Text Editor window (the
only window that supports 8-bit characters), you must convert ftles with the
dos2unix utility. Cutting and pasting between windows works correctly without
any conversion. The Alternative Code Sets section on page 149 provides more infor­
mation about MS-DOS and ISO text file conversion, and Appendix H contains
tables that show how characters are mapped from MS-DOS to ISO and vice versa.

When you implicitly invoke an MS-DOS command that includes shell variables
from the SunOS prompt (implicit invocation is made possible by the environment
variable setenv DOS LOOKUP on in .login), MS-DOS receives the command line
in unexpanded form. If, however, you enter an explicit command from the SunOS
prompt, such as dos -c dir *. c, the shell expands the * before calling dos,
which is not the desired effect. Therefore, when explicitly invoking dos, place the
shell meta characters in quotes to stipulate that the shell pass the unexpanded com­
mand line to MS-DOS. For example, dos -c "dir *. c" is the format you
should use.

dos allocates a unique window number to each dos process on a Sun386i system. To
help ensure that a process running in DOS Windows has a unique name throughout a
network, you can incorporate its window number into a file name and store that ftle
in a machine-speciftc directory such as /tmp. The window number for each dos pro­
cess is in the byte at f 0 0 0 : 4 2 4 0 5. This is the same binary number that appears on
the namestripe of the window. Numbers are allocated starting at 1, with the lowest
available number assigned to each window.

This section lists the 80386-speciftc instructions supported. Be aware, however, that
certain MS-DOS compilers and assemblers might not support them. Appendix B con­
tains the 80386 assembly language definition.

The ftrst two columns of Table 7-5 (on the next page) list instructions by name.
The third column lists groups of instructions supported; some of these groups repre­
sent many individual instructions.

Revision A, May 1988

Sun386i Developer's Guide

Table 7-5

EDITDOS: Taking Advantage

of Sun OS and MS-DOS Systems

EDITDOS Source Code

80386 Instructions Supported

lfs
lgs
lss
outs

Chapter 7- MS-DOS Environment 118

byte set on condition
double-shift instructions
generalized multiply

bit scan
bound
enter
ins
leave push immediate

push a

long displacement conditional jumps
move with sign/zero extension
single-bit instructions

The EDITDOS program uses textedit and MS-DOS versions ofDOS2UNIX and

UNIX2DOS to convert and edit MS-DOS text files. EDITDOS:

1. Uses the window number in fO 0 0: 4 2 0 5 to ensure a unique file name.

2. Uses DOS2UNIX to copy the file to SunOS format, and onto a SunOS­
accessible directory with a unique file name based on the window number.

3. Invokes textedit on the file. Strips the optional ampersand from the
command so that the conversion back to MS-DOS format does not occur
until the edit is complete. Passes command-line arguments to textedit

for changing parameters such as window position and size.

4. Checks the return status from text edit to make sure that the modifica­
tion occurred without errors.

5. Converts the edited file back to MS-DOS format, and gives the file its
original name (placing it in an MS-DOS directory).

6. Cleans temporary files, including illegal MS-DOS file names.

EDITDOS is a good example of how you can use the combined SunOS and MS-DOS

environment on the Sun386i system. The next section shows source code for EDIT­

DOS.

#include <stdio.h>

#include <string.h>

#include <stat.h>

#include <ctype.h>

#include <process.h>

#include <dir.h>

#define TRUE 1

#define FALSE 0

char editname [25]; I*
I*

char *dosname; I*
I*

char *templine; I*
I*

char **args; I*
char workname[lOO];I*

I*

name of work file to be *I
edited in ltmp *I
name of DOS file from *I
command line *I
temporary holding space *I
for spwanlp () commands *I
array for text edit args *I
unique name for scratch *I
directory *I

Revision A, May 1988

Sun386i Developer's Guide Chapter 7- MS-DOS Environment 119

struct stat sbuf;
extern char *malloc();
extern char peekb();

main(argc,argv)
int argc;

char **argv;

int actr; /* temporary counter variable
/* for argument append loop *I

*I

int passctr; /* temporary counter for trimming
I* out & symbol *I

int spstatus; I* status returned from */
I* spawnlp()/spawnvp() call *I

int badtext_flag = FALSE; I* if TRUE, skips *I
/* UNIX2DOS conversion *I

int exit code
int old_disk;

0;
/* former disk drive letter */

if (argc < 2)

{puts("Usage: EDITDOS filename.\n");
exit (1);

else

dosname = malloc(l + strlen(argv[l]));
templine = malloc(lOOO + strlen(argv[l]));
strcpy (dosname, argv[l]);/* copy parameter*/

/* into dos file */
!* name */

if (stat (dosname, &sbuf) != 0) /* file *I
I* doesn't exist or other error */

printf("editdos: File %s not found.\n",
dosname);

exit(2);

get dos file name();/* process dosname */
- - /* (global)and put */

/* result in editname */
sprintf(workname,"dos%d", peekb(OxfOOO,

Ox4205)); /*get DOS window number to*/
I* create unique file name */

/* Make temporary directory */
mkdir ("D: \ \TMP");

Revision A, May 1988

Sun386i Developer's Guide Chapter 7 - MS-DOS Environment 120

sprintf (templine,"D:\\TMP\\%s",workname);

if (stat(templine, &sbuf)) I* directory *I
I* doesn't exist *I

if (mkdir(templine))

{ printf("Could not create D:\\TMP\\%s
directory.\n",workname);

printf ("File %s not edited. \n",
dosname);

exit(3);

I* Convert to SunOS format *I
sprintf (templine,"D:\\TMP\\%s\\%s",

workname, editname);

spstatus = spawnlp(P_WAIT, "DOS2UNIX.EXE",

"DOS2UNIX", dosname, templine, NULL);

if (spstatus < 0)

{ perror ("Could not run DOS2UNIX. File
not edited. \n");

exit_code = 4;

goto cleanup2;

if (spstatus > 0)

printf("File %s not edited.\n", dosname);

exit_code = 4;

goto cleanup2;

I* Invoke textedit *I

args = (char**) malloc ((argc + 5) *
sizeof(char*)); I* allocate array *I

passctr = 0; I* to track number of args *I
args [passctr++] = strdup ("textedit");

args[passctr++] = strdup ("-font
lusrllib/fonts/fixedwidthfonts/pcfont.r.14");

args[passctr] = malloc (256);

sprintf (args[passctr++],"ltmp/%s/%s",
workname, editname);

for (actr = 2;actr < argc; actr++)
I* reappend textedit arguments */

if (strcmp (argv[actr], "&") != 0)
I* don't allow SunOS background mode */

Revision A, May 1988

/

Sun386i Developer's Guide Chapter 7- MS-DOS Environment 121

args[passctr++) strdup(argv[actr));

args[passctr) NULL; /* assign null to */
/* signal last argument */

old_disk = getdisk(); /*assign original*/
/* path to old_disk */

setdisk('D'-'A'); /*set to drive D to*/
/* invoke textedit */

spstatus = spawnvp(P_WAIT, "TEXTEDIT.COM",
args);

setdisk(old_disk); /*restore to original*/
/* path */

if (spstatus < 0)
{ perror ("Could not run textedit. File

not edited.\n");
exit_code = 5;
goto cleanup;

if (spstatus > 0)
printf("Error editing /tmp/%s/%s in
textedit.\n",workname, editname);
printf ("File not edited. \n");
exit_code = 5;
goto cleanup;

/* Convert back to DOS format if edit was OK */

sprintf(templine,"D:\\TMP\\%s\\%s",workname,
editname);

spstatus = spawnlp(P_WAIT, "UNIX2DOS.EXE",
"UNIX2DOS", templine, dosname, NULL);

if (spstatus < 0)
{ perror ("Could not run UNIX2DOS.\n");

exit_code = 6;
goto cleanup;

if (spstatus > 0)
printf("Problem converting from SunOS to

DOS.\n");
printf("Backup work file is stored in

/tmp/%s/%s.\n",workname, editname);

Revision A, May 1988

Sun386i Developer's Guide Chapter 7- MS-DOS Environment 122

exit_code = 6;

goto cleanup;

cleanup:

/* delete temporary directory, temporary files */

setdisk('D'-'A');

sprintf(templine,"rm -f /tmp/%s/%s{,%,%%}",
workname, editname);

spawnlp(P_WAIT, "UNIX.COM", "unix", templine,
(char *)NULL);

sprintf(templine,"/tmp/%s", workname);

rmdir(templine);

setdisk(old_disk);

cleanup2:

exit (exit code);

get_dos file name()

int ln,

ctr,

foundflag = 0,

startpoint = 0,

eln;

ln = strlen(dosname);

for (ctr = O;ctr <= ln; ctr++) /* flip slash */
/* if needed */

if (dosname[ctr] == '/')
dosname[ctr] = '\\';

for (ctr = ln - l;ctr >= 0; ctr --)

if ((dosname[ctr] == '\\') I I
/* hit first delimiter in DOS file */

(dosname[ctr] == ':'))
/* name (reading backwards) */

startpoint = ctr + 1;

foundflag = TRUE;

Revision A, May 1988

Sun386i Developer's Guide

MS-DOS Limitations

Table 7-6

Chapter 7- MS-DOS Enyironment 123

break;

if (foundflag)

strcpy(editname, &dosname[startpoint]);
/* copy last portion of DOS name */

else

strcpy(editname, dosname); /*copy entire*/
/* name */

eln = strlen(editname);
for (ctr = 0; ctr <= eln; ctr ++) /* convert to */

/* lower case */

editname [ctr] tolower(editname[ctr]);

While MS-DOS offers many benefits, most importantly the ability to run PC appli­
cations on the Sun386i system, it does have some limitations, listed below.

Screen Height
Depending on the screen height, it may not be possible to maintain two full DOS
Windows (for multiple, simultaneous PC applications) on the screen at one time
without overlapping.

Port Allocation and Access
You cannot allocate or access serial ports, parallel ports, diskette drives, or AT bus
ports on either remote systems or on PCs attached through PC-NFS. This limitation
applies to both PC and SunOS applications.

Protected-mode Instructions
The Sun386i system does not support 80286 protected-mode opcodes, which are used
by several system software products developed for the IBM PC/AT®. Protected­
mode instructions follow.

Protected-Mode Instructions

arpl lldt sgdt
clts lmsw sidt
hlt lsl sldt
lar ltr smsw
lgdt mov (to/from debug str
lidt registers, test registers, verr

control registers) verw

Revision A, May 1988

Sun386i Developer's Guide

7 .5. Communication
Between Commands
and Applications

Chapter 7 - MS-OOS Environment 124

Interrupt Rates
The Sun386i system can't service interrupts at the same rate as on a PC. This results

in some boards not operating due to lack of interrupt service.

Data Acquisition Applications
Data acquisition applications are generally not well-suited to DOS Windows,

because they rely on uninterrupted access to devices, as well as dedicated processor

time to receive data. For this type of application, a smart card, capable of storing

data in buffers, works better.

Simultaneous Running of Some Applications

Unless a PC application specifically states that it is for use in a multiuser environ­

ment, don't run the same application simultaneously in different DOS Windows.

This is because some applications, such as certain word processors and database pack­

ages, use scratch files for temporary storage. You could inadvertently save changes

from multiple invocations of an application in the same scratch file.

Drive C: Space

Drive C: initially contains only the File Allocation Table (FAT), root directory,

and a few standard MS-DOS files. As files are added, the Sun OS file containing

drive C: will expand. There will not be any way to reclaim the space held by delet­

ed files on drive C:, other than copying the drive C: files to another drive, deleting

the drive C: file, and recreating it. The maximum size of the drive C: file is 20

Mbytes.

Development Environment

As a development environment, the SunOS system on the Sun386i is far superior to

MS-DOS on a PC. You might want to consider not only porting PC applications to

the Sun386i system, but converting them to run under the SunOS system, which runs

faster. In addition, the SunOS system provides:

• Largerprocessaddressspace

• Flexible utility programs, compilers, and debuggers

• Powerful system calls and libraries

• 32-bit CPU performance and enhanced instruction set

• More sophisticated graphics capabilities

It is possible to pipe output from MS-OOS commands to SunOS commands and vice

versa. This means that you can mix SunOS commands with MS-DOS commands and

can pipe the output from one program to the input of another program, in accordance

with the normal rules and syntax for piping. Similarly, you can pipe into and

between PC applications. This section also describes how you can use named pipes to

communicate between SunOS and MS-OOS processes. In addition, you can include

SunOS commands in MS-OOS batch files, and can run the files from the MS-DOS

prompt. SunOS commands in files must follow the rules for entering them at the

shell prompt. You can also copy and paste between systems, and can share text or

binary files.

Revision A, May 1988

I

I

Sun386i Developer's Guide

Invoking MS-DOS Commands
at the SunOS Prompt

Invoking SunOS Commands at
the MS-DOS Prompt

Piping Between Commands
and Between Applications

Chapter 7- MS-DOS Environment 125

When a command is entered at a SunOS shell prompt, the system searches for the
command according to the SunOS shell's traditional search path. SunOS commands,
when found, are executed normally. If the requested command is not found along
the Sun OS path, the shell attempts to execute an implicit do s process, using the ver­
sion ofMS-DOS specified by the . quickpc file; the setenv DOSLOOKUP on
variable must also be included in the .login file for implicit invocation.

MS-DOS then attempts to locate the requested program, using the MS-DOS path to
determine directory search order. IfMS-DOS finds the program (on either the cur­
rent drive, the C: drive, or the requested path), it returns a success indication to the
Sun OS shell upon termination. When the command completes, the Press any
key to continue message is displayed. If it cannot locate the requested program
(for instance, if the program name is misspelled), the shell displays the usual
Command not found message. This allows MS-DOS and the SunOS system to
avoid path name differences and makes the search order for programs completely
unambiguous.

For applications that dominate the screen (all but text-only applications), the sys­
tem automatically invokes a new DOS window. When this window appears, the
SunOS directory from the previously active SunOS shell becomes the current
MS-DOS directory. This automatically generated window remains displayed as long
as the PC program that opened the window is running. When the PC application ter­
minates, the window disappears and the exit code from MS-DOS is returned to the
SunOS system. To view the screen contents after the PC process has terminated (for
a full-screen application), explicitly invoke DOS Windows either from the menu or
by entering dos from the SunOS command line.

SunOS commands are links installed in the I etc/dos/unix directory. This direc­
tory must be part of the MS-DOS path to allow invocation of Sun OS commands
from within DOS Windows. When you enter a SunOS command from DOS Win­
dows, a new window is displayed for command execution. When the command com­
pletes, the Press any key to return to DOS message is displayed. The exit
code from the SunOS program is returned to MS-DOS to enable deletion of status
information. If the environment variable set en v DOS_ CMDTOOL on is in your
.login file, the results of SunOS commands entered in DOS Windows are dis­
played in a crndtool window, instead of in DOS Windows.

You can pipe information between MS-DOS and SunOS commands, provided you ini­
tiate the MS-DOS command from a crndtool window (not from DOS Windows).
For example, di r 1 grep 8 7 shows all files on drive C: that were created or
last updated in 1987. If DOS LOOKUP is not set in your .login file, use the
command dos -c dir 1 grep 87 instead.

Similarly, you can pipe information into any PC application that you started in a
crndtool window. However, some SunOS applications designed to run exclusively
under Sun View (generally those making extensive use of the mouse) usually don't
accept entry from standard input; therefore, you can't pipe information into some
SunOS applications. In addition, many PC applications don't send their output to
standard out; consequently, these programs might not work correctly with pipes.

Revision A, May 1988

Sun386i Developer's Guide

Using Named Pipes

Background Mode
Considerations

Chapter 7 - MS-DOS Environment 126

You can also use named pipes to establish communication between PC and SunOS

applications by using the mknod(2, 8) command with the p option, as shown by the

following example:

(atSunOSprompt): /etc/mknod pipe p

(at DOS prompt): tree >> pipe

(at SunOS prompt): more pipe

Here's an example showing the other direction:

(at SunOS prompt): I etc/mknod pipe p

(at DOS prompt): If iles I loaded/ appl I games I games I
fortune > pipe

(at DOS prompt): unix2dos < pipe

Be careful when using named pipes. For instance, make sure that the pipe is a legal

MS-DOS file name (refer to Naming Your PC Applications on page 111). Also,

from MS-DOS, always append to the pipe. If you don't, MS-DOS tries to close the

pipe before writing to it, and the reader receives an end-of-file notification. Pipe

readers and writers block when the pipe is empty (readers) or full (writers).

The ampersand(&) character at the end of a command line tells the SunOS system to

perform the operation in background mode, freeing you to continue with other work.

While you might want to take advantage of this feature, there are also times when

you should avoid using it. For instance, don't use & if you want to synchronize com­

pletion of the SunOS command with your MS-DOS program or batch file. Another

example follows:

make >& errors & unix2dos errors

The make(l) command will return quickly, since it's running in the background, but

the error log file will not be ready for viewing until the make command finishes.

Revision A, May 1988

8
.>;';.

Perip eral Devices

ev1ces .. 127

8.1. Addi g Devices.. 129

MS DOS Drivers.. 129

Sun S Drivers.. 130

8.2. AT us Description and Issues 131

us Operation... 131

ory-Mapped 1/0.. 131

pt Channels .. 132

D Channels... 132

us Signals... 132

Lim tation ... 135

Sun386i Developer's Guide

8.1. Adding Devices

MS-DOS Drivers

Chapter 8- Peripheral Devices 129

8
X ;o"!v:~. •, • .:'..:..- • " . :'«'.

Peripheral Devices

This chapter provides a brief overview of peripheral devices on the Sun386i system.
It discusses how users can add devices and includes information about MS-DOS and
SunOS device drivers, as well as about the SCSI interface. For detailed information
required to write device drivers for your own applications, refer to Writing Device
Drivers for the Sun Workstation.

You can add a device to the Sun386i system by:

• Installing a card in one of the three AT slots or one XT slot provided in
the system enclosure. Cards in these slots communicate with the main pro­
cessor via the AT bus.

• Connecting the device to the SCSI interface. SCSI connectors are provided
on the back of both the system unit and expansion unit. Peripherals in the
expansion unit are themselves connected to the SCSI interface (see System
Interfaces and Mass Storage on page 19 and the Expansion Unit section on
page 160 of Appendix A).

You can use AT cards to add devices to run under either the SunOS or MS-DOS oper­
ating system. If you use an AT card to add a device, you must write a device-specific
driver and integrate it into the operating system. Using the SCSI interface you can
add 327 Mbyte formatted SCSI Winchester disks or SCSI compatible/Sun-compati­
ble streamer tape devices supplied by Sun. In addition, if you have a SunOS system
source license, you can write your own SCSI driver and integrate it into the Sun OS
system.

Integration is considerably easier with the SunOS 4.0 system on the Sun386i work­
station because you can write drivers that can be dynamically loaded into the kernel
at any time. Drivers that are not linked into the kernel are called loadable drivers.
If you write a loadable driver, you don't have to rebuild and reboot the kernel to
add the driver to the system. After writing the driver, simply use the modload(8)
command to load the driver into a running system. You also can convert existing
drivers to loadable drivers. Writing Device Drivers/or the Sun Workstation provides
additional information and examples.

Users can add AT cards that use MS-DOS drivers provided by the card manufacturer
without modifying the drivers. That is, anyone can load and run MS-DOS cards and

Revision A, May 1988

Sun386i Developer's Guide

SunOS Drivers

Chapter 8- Peripheral Devices 130

drivers from DOS Windows (see Chapter 7) in the same manner as on a PC. Users

can only access devices attached to MS-DOS drivers from within MS-DOS. Because

MS-DOS drivers come already compiled and linked, a user merely:

1. Shuts off the system

2. Adds the plug-in board to the system

3. Powers the system back on and reboots the SunOS system

4. Starts the dos program

5. Inserts the installation diskette that accompanied the board into Drive A:

6. Adds the device via DOS Windows and modifies the CONFIG. SYS file

7. Exits from DOS Windows

8. Modifies the boards .pc and setup .pc files to include information
about the new driver

9. Enters the dos -s command and then opens DOS Windows

If users add a card that has the same interrupt request line as a card already on their

system, then they also must rejumper the card (according to the supplier's instruc­

tions) and include the new information in the boards . pc file. ·

MS-DOS drivers run under the control of the SunOS system and DOS Windows, but

the drivers are unaware of this. Because the Sun OS system could switch control to

another task during device operation, strict timing dependencies might fail. If a

peripheral and controller have strict timing requirements, you should write its driv­

er as a SunOS driver. Sun does not provide any documentation about how to write

MS-DOS drivers. If you must write a driver to run specifically under MS-DOS,

refer to the IBM DOS Technical Reference or Advanced MS-DOS by Ray Duncan

(Microsoft Press).

Unlike MS-DOS drivers, which can provide services only to MS-DOS programs,

SunOS drivers can provide services to both SunOS and MS-DOS programs.

The drivers for devices intended to run directly under the SunOS system are similar

to other SunOS drivers with which you may be familiar. Four new interface routines

exist to let you obtain services for Sun386i system devices; they are briefly

described below. The first two routines are for devices that do DMA transfers and

the third and fourth ones are for devices that use the 1/0 space ports.

• dma_setup- sets up all of the information required to prepare the
DMA channel on the Sun386i system

• dma done - frees the DMA channel (82380) after a DMA transfer is
compj.eted, enabling another transfer to occur

• outb -sends a byte value to the 1/0 address specified (many Sun386i sys­
tem devices, such as diskette drives, can only be accessed by using 1/0
addresses)

• inb -reads and returns the byte value from the specified port address in
the 1/0 space

These new routines, as well as those that you might have already used, are document­

ed in Writing Device Drivers for the Sun Workstation. This same manual also con­

tains a sample parallel port driver for the Sun386i system. If you're writing your

Revision A, May 1988

)

Sun386i Developer's Guide

8.2. AT Bus Description
andl Issues

AT Bus Operation

Memory-Mapped I/0

Chapter 8 -Peripheral Devices 131

own drivers, you should also refer to the kadb{8S) man page in the SunOS Refer­
ence Ma'nual for a description of debugger options.

The AT bus interface couples the 32-bit 80386-based Sun386i system to an AT bus
structure. This enables PC applications to run on the Sun386i system. This section
includes information about

• AT bus operation

• Memory-mapped 1/0

• Interrupt channels

• DMA channels

• Bus signals

• Limitations

The functional input of the interface logic is a 32-bit address/data bus. The output is
an 8- or 16-bit data and 20- or 24-bit address AT bus. The hardware automatically
converts the 32-bit data bus to the 8/16-bit data bus with multiple (if necessary)
AT bus cycles. The 80386 processor is momentarily wait-stated until the transaction
is completed.

The 32-bit address bus is buffered and the low-order 24 bits are driven across the
AT bus. The byte/word address {AO, Al, and BHE) required by the AT bus is based
on the byte-select lines of the 80386 processor. This means that the AT bus address
space must be on an even 16 Mbyte boundary.

The AT bus interface logic connects the 7 AT bus DMA channels to 7 system DMA
channels. The AT DMA controller's 1/0 addresses are under software emulation for
MS-DOS applications. Similarly, the interface logic connects the 11 AT bus inter­
rupt levels to 11 system interrupt controller levels. Again, the interrupt con-
troller's 1/0 addresses are under software emulation for MS-DOS applications.

Finally, the hardware has selectable timings to compensate for (16-25 MHz) base
system clocks. This ensures that the AT bus timings are marginally better than
those of the original IBM AT. Also, synchronizing the timing logic (state machine)
with the main processor eliminates any asynchronous problems (such as metastable
conditions) between them.

Some important points about AT bus memory on the Sun386i system are listed
below.

Mapping - The Intel 80386 processor handles both memory mapping and 1/0 map­
ping; memory-mapped 1/0 provides additional programming flexibility.

I/0 port access - Any memory instruction can access any 1/0 port located in the
memory space (MOV transfers data between any register and any port; AND, OR, and
TEST manipulate bits in the internal registers of a device).

Reading registers - On some devices, reading a register will not read back what
was written. Therefore, instructions such as AND, OR, and TEST can sometimes pro­
duce unexpected results.

Revision A, May 1988

Sun386i Developer's Guide

Interrupt Channels

Table 8-1

DMA Channels

Table 8-2

AT Bus Signals

Chapter 8- Peripheral Devices 132

Memory-mapped 1/0-Memory-mapped l/0 performed with the full instruction

set maintains the full complement of addressing modes for selecting the desired l/0

device. The 16 Mbytes of AT memory is mapped into the 4 gigabyte address space of

the Sun386i system at OxEOOO 0000. Within this 16 Mbytes, physical addresses

are mapped one-to-one with virtual addresses.

IN, OO'l, INS, OUTS instructions- All 1/0 transfers using the IN, OUT, INS,

and OUTS instructions are performed via the AL (8-bit), AX (16-bit), or EAX (32-

bit) registers. The entire 64 Kbyte 1/0 space is indirectly addressable through the DX

register.

The Sun386i system has 21 interrupt channels, 11 of which are available to the AT

bus. Of these, two are used for the diskette drive and parallel port. The remaining

nine channels you can use for AT cards are shown below. Each AT card must have its

own interrupt channel; you cannot use the same channel for two cards.

Interrupt Channel Assignments

Interrupt Channel Assigned To

3 ATpinB25
4 AT pin B24
5 AT pin B23
7 AT pin B21
9 ATpinB04

10 AT pin 003
11 ATpinD04
12 ATpinD05
15 ATpinD06

Some AT cards also use DMA. Table 8-1 shows the Sun386i system DMA channel

assignments and sizes. No two AT cards can use the same DMA channel.

DMA Channel Assignments

DMAChannel Assigned To Size (bits)

0 AT bus 16
1 AT bus 8
2 AT bus 8
3 AT bus 8
4 Software Not available
5 AT bus 16
6 Ethernet Not available
7 SCSI Not available

The following table describes the AT bus signals. All signals are TTL-compatible.

Direction comments are relative to the main system; for example, outputs are sig­

nals driven by the CPU and accepted by the AT bus interface. Each signal is

described in detail in the notes following Table 8-2.

Revision A, May 1988

Sun386i Developer's Guide

Table 8-3

Chapter 8 -Peripheral Devices 133

AT Bus Signals

Signal Name Description Type
SA<19:0> System Address Output
LA<23:17> LwpAddress Output
SD<15:0> System Data 1/0
IRQ<15:14> Interrupt Request Input
IRQ<12:9>
IRQ<7:3>
DRQ<7 :5> DMARequest Input
DRQ<3:0>
-DACK<7:5> DMA Acknowledge Output
-DACK<3:0>
-IOCHCK I/0 Channel Check Input
-RESET System Reset Output
AEN Address Enable Output
-REFRESH System Refresh Output
-MASTER System Master Input
TC Terminal Count Output
SBHE Byte High Enable Output
-IOR I/O Read Output
-row 1/0 Write Output
-SMEMR Memory Read (lower 1 Mbyte) Output
-SMEMW Memory Write (lower 1 Mbyte) Output
-MEMR Memory Read (full16 Mbyte) 1/0
-MEMW Memory Write (full 16 Mbyte) I/0
CLK Synchronous Bus Clock (6- 8 MHz) Output
BALE Address Latch Enable Output
IOCHRDY AT Channel Ready Input
-MEMCS16 Memory 16 chip select Input
-IOCS16 1/0 16 chip select Input
osc Oscillator (14.31818 MHz) Output
ows Zero Wait State (2 AT clock cycle) Output

SAO to SA19 (OUTPUT, Master 3-state)
System Address bits 0 through 19 are used to address memory and 1/0
devices within the AT bus system. SAO to SA19 are gated on the AT bus
when BALE is high; they are latched on the falling edge of BALE. These
address lines could be driven by an AT bus master.

LA17 to LA23 (OUTPUT, Master 3-state)
These signals are used to address memory and I/0 devices within the sys­
tem. These additional address lines give up to 16 Mbytes of addressibility.
They have the same timing relationships as SAO to SA19. These address
lines could be driven by an AT bus master .

SDO to SDlS (I/0)
These signals provide data bus bits 0 through 15 for the memory and I/0
devices. D 0 is the least-significant bit. All 8-bit devices on the bus should
use DO through D7 for communications to the system microprocessor. To
support 8-bit devices, the data from each of the four bytes (32 bits) of the
microprocessor are, in turn, gated to DO through D7 during 8-bit transfers
to these devices. Similarly, 16-bit devices are supported by gating the

Revision A, May 1988

Sun386i Developer's Guide Chapter 8 -Peripheral Devices 134

appropriate byte/word during transfers to these devices. 16-bit transfers to

8-bit devices are converted to two 8-bit transfers, and 32-bit transfers to

16-bit devices are converted to two 16-bit transfers, with support for

everything in between.

IRQ3 to IRQ7, IRQ9 to IRQ12 and IRQ14 to IRQ15 (INPUT)
Interrupt Requests 3 through 7, 9 through 12, and 14 through 15 are used

to signal the microprocessor that an 1/0 device needs attention. These inter­

rupt requests are redirected to a programmed interrupt request level of the

system interrupt controller. An interrupt request is generated when an

IRQ line is raised from low to high. The line must be held high until the

microprocessor acknowledges the interrupt request (Interrupt Service rou­

tine).

DRQO to DRQ3 and DRQS to DRQ7 (INPUT)
Direct Memory Access 0 through 3 and 5 through 7 are asynchronous chan­

nel requests used by peripheral devices and the 1/0 channel microprocessors

to gain DMA service (or control the AT bus). Since the DMA controller

can transfer data in any size format, the DMA channels are not limited by

the width of the transfer. The DMA controller's control registers are
under software emulation and can create the same characteristics as the AT

DMA channels.

-DACKO to -DACK3 and -DACKS to -DACIC7 (OUTPUT)
Direct Memory Access Acknowledge 0 to 3 and 5 to 7 are used to

acknowledge the corresponding DMA requests (DRQO through DRQ7).

They are active low.

-IOCBCK (INPUT)
1/0 Channel Check, if enabled, causes an NMI to the system processor.

This signal is active low.

-RESET (OUTPUT)
This signal resets or initializes channel devices at power-up or when com­

manded by the microprocessor.

AD (OUTPUT)
Address Enable indicates when the DMA controller has control of the

address bus, data bus, and controls. This is the same as the HOLD

ACKNOWLEDGE line between the microprocessor and the DMA controller.

It is driven low if an AT bus master controls the current cycle.

-REFRESH (OUTPUT, Master 3-state)
This signal indicates a refresh cycle is taking place. It can be driven by the

bus master only for AT bus RAM.

-MASTER (INPUT)
The master can issue a DRQ; when it receives a -DACK, it issues a

-MASTER which gives it sole access to the AT bus.

TC(OUTPUT)
Terminal Count provides a pulse when the terminal count for any selected

DMA channel is reached.

SBBE (OUTPUT, Master 3·state)
Byte High Enable indicates when SD8 through SD15 are valid. 16-bit

devices use BHE to condition data bus buffers tied to SD8- SD15.

-IOR (OUTPUT)
This signal instructs an 1/0 device that an 1/0 instruction data read cycle is

taking place.

Revision A, May 1988

Sun386i Developer's Guide

Limitation

Chapter 8 - Peripheral Devices 135

-IOW (OUTPUT)
This signal informs an 1/0 device that an 1/0 instruction data write cycle
is taking place.

-SMICMR (OUTPUT)
The hardware decodes the immediate address on the LA2 0 to LA2 3 lines
for 0 0 0 0 (lower 1 Mbyte addresses), then ANDs the active result with
active -MEMR to fonn the active-s MEMR signal. (AT bus masters can
take advantage of this logic.)

-SM&:MW (OUTPUT)
The hardware decodes the immediate address on the LA2 0 to LA2 3 lines
for 0000 (lower 1 Mbyte addresses), then ANDs the active result with
active -MEMW to generate the active -SMEMW signal. (AT bus masters can
take advantage of this logic.)

-Mii:MR (110)
As an output, this signal defines a memory read cycle. As an input, this
signal is functionally ANDed with LA20 to LA23 = 0000 (lower 1
Mbyte) with -s MEMR as the result

-HBMII' (110)
As an output, this signal defines a memory write cycle. As an input, this
signal is functionally ANDed with LA2 0 to LA2 3 = 0 0 0 0 (lower 1
Mbyte) with -s MEMW as the result.

CLit (OUTPUT)
This is a 6 to 8 MHz clock that is synchronous with the main 80386
clock. The CLK has a 50% duty cycle. This signal is normally used only
for synchronization of signals to the AT bus control signals.

BJWi: (OUTPUT)
Address Latch Enable defines when there is a valid address on the AT bus.
This signal is driven high during all DMA cycles and REFRESH cycles.

IOCBRDY (INPUT)
1/0 Channel Ready is pulled low by a memory or 1/0 device to lengthen
the current cycle. This signal is open collector and should have a maxi­
mum wait state of no longer than 2.5 microseconds.

-MBM CS 16 (INPtrr)
This notifies the control logic that the current memory data cycle is a 16-
bit transfer.

-IO CS 16 (INPUT)
This notifies the control logic that the current 1/0 data cycle is a 16-bit
transfer.

OSC (OUTPUT)
This oscillator runs at 14.31818 MHz. It is free running and not tied to
the main board in any way.

OKS (OUTPUT)
This notifies the control logic that a two AT bus clock cycle is in a zero
wait state for the current cycle.

One limitation exists. The AT bus does not support cards operating in "master
mode." This means that AT cards do not have direct access to system memory on the
System bus. This is not particularly serious because:

• Few cards attempt to operate in master mode

• Direct access is available to memory cards located on the AT bus itself

Revision A, May 1988

9
Applications Delivery

Applications Delivery.. 137

9.1. System Software Overview.. 139

9.2. Application SunOS... 140

:Hardware Diagnostics... 140

Core System.. 140

Optional Clusters.. 141

Recovery Software.. 142

9.3. SunOS Developer's Toolkit... 143

9.4. Loading and Unloading Clusters.. 143

9.5. Releasing Your Software... 144

Copyright and Description File 144

Installation Script.. 144

Making the Distribution.. 144

How Users Will Load Your Software.. 145

Sun386i Developer's Guide

9.1. System Software
Overview

Figure 9-1

Chapter 9- Applications Delivery 139

9
Applications Delivery

This chapter describes software delivery- both how Sun delivers its software for
the Sun386i system and the preferred method for you to deliver your applications
for this system. The tirst part of the chapter discusses the division and distribution
of system software in two major parts, and the groups of tiles, called clusters, con­
stituting those parts. The last section describes the steps you should follow to
enable users to easily install your applications.

Sun386i system software is divided into two major sections: Application SunOS and
SunOS Developer's Toolkit. Figure 9-1 below shows the two major divisions of sys­
tem software and their subsets.

Application SunOS (unbundled)

Hardware Diagnostics (separate diskette)

Core System (shipped on disk)

Optional Clusters (on diskettes or tape)

Recovery Software (on diskettes or tape)

SunOS Developer's Toolkit (unbundled;
loadable clusters on diskettes or tape)

System Software Divisions

Each site receives the core system on the Sun386i system disk, as well as the Sun386i
Owner's Set documentation. All other system software and documentation is unbun­
dled; that is, users must purchase both Application SunOS and Developer's Toolkit
to have full SunOS 4.0 functionality and accompanying documentation. Sun strongly
recommends that each user site purchase at least one copy of Application SunOS. By
doing so, a site receives all four pieces of Application SunOS shown in Figure 9-1,

Revision A, May 1988

Sun386i Developer's Guide

9.2. Application
Sun OS

Hardware Diagnostics

Core System

Chapter 9-Applications Delivery 140

plus the Owner's Supplement Documentation Set. The next section describes Applica­

tion SunOS more fully. In addition, users can order the Developer's Toolkit, dis­

cussed in Section 9.3 on page 143.

Application SunOS includes:

• Hardware Diagnostics - a set of standalone diagnostics available on
diskette

• Core system - the base system, providing the ability to run most com­
mercially available Sun and third-party applications; shipped on the
Sun386i disk

• Optional clusters - additional software for capabilities such as extended
mail and extended networking; available on diskettes or tape

• Recovery software -a backup version of the core system, available on
diskettes or tape

Users can purchase Application SunOS on diskettes (approximately 26) or quarter­

inch tape (two). In addition to the software listed above, users who purchase Appli­

cation SunOS also receive the Sun386i Owner's Supplement Documentation Set. The

following subsections provide details of each Application SunOS subset.

The first part of Application SunOS is a set of standalone Hardware Diagnostics.

These programs do not require the SunOS operating system. You should run hard­

ware diagnostics when:

• You cannot start your system

• The system displays numerous messages indicating a hardware problem

• You have upgraded your system with a new frame buffer, memory board,
or hard disk (to make sure that the new part works properly)

• Your system crashes repeatedly

For information about how to run Hardware Diagnostics and the individual tests

they perform, refer to Sun386i System Setup and Maintenance.

The core system provides the minimum subset of the SunOS operating system

required by every user. It is sufficient to allow users to operate most commercially

available Sun and third-party applications.

The core system includes software that users always need. It uses about 19 Mbytes

of disk space and is preloaded by Sun manufacturing on the formatted hard disk that

comes with each system (either 91 or 327 Mbytes). There is no automated method to

remove any part of the core system, since users should leave all of it on the disk.

The core system includes the groups of files listed below. The file
/usr/ lib/ l,oad/ file sizes contains the names and sizes of files in each group.

base_root- the root directory(/), which includes the kernel; system databases

and start-up files; single-user mode requirements; commands such as

automount(8), chown(8), fastboot(8), fasthalt(8), and reboot(8); the

adb(1) and kadb(8S) debuggers; and the file /usr/ lib/load/filesizes

Revision A, May 1988

Sun386i Developer's Guide

Optional Clusters

Chapter 9-Applications Delivery 141

sun view- Sun View tools, icons, commands, and demos, as well as all Sun screen
fonts

boot_server- the boot server for booting diskless Sun386i systems from Sun386i
system servers, as well as the boot server enabling the Sun386i system to be a server
for Sun-2, Sun-3, and Sun-4 systems

encryption- file encryption commands such as des(l)

calendar- calendar(!) program and required files

basic_commands- most commonly used user commands such as date(l V),
grep(lV), arch(l), csh(l), passwd(l), crontab(l), and kill(l), as well as
ed(l), ex(l), and vi(l) editors

mail- basic mail directories, files, and comman~ such as mail(l), biff(l),
sendmail{8), and newaliases(8)

at_commands- commands such as at{l), atq(l), and atrm(l), for executing
commands or scripts at a later time

print_spooler- printing commands such as lpc(8), lpd(8), lpq(l), lpr(l), and
lprm{l)

non_readonly- configuration files, spool directories, and other nonread-only
files required by optional software such as the Network File System (NFS), the
print spooler, exte,nded mail, the audit trail maintenance package, and uucp(lC) and
tip(lC)

sun_specitic_commands- commands such as click{l) and screenblank{l)

online_help- Spot Help and Help Viewer files, plus new kernel error messages

key- encryption keys for secure networking; includes chkey(l), keylogin(l),
keyserv(8C), and keyenvoy(8C)

basic_networking, rpc_base, andnfs- contain networking software, with the
exception of the boot server; includes network configuration files, daemons, and
administrative and user commands such as ping{8C), rmt(8C), rcp(lC), and
rlogin(IC)

ease_of_use- snap(l) and organizer(!) programs

yellow _pages - the Yellow Pages database

dos- MS-DOS 3.3, required to run DOS Windows

load- the commands required to load and unload clusters, including load{l),
unload(l), loadc(l), unloadc(l), and cluster(!)

The optional clusters included with Application SunOS are comprised of sets of
related programs and files that users might need on the hard disk, in addition to the
core system. Users can add individual clusters after installation by using the

Revision A, May 1988

Sun386i Developer's Guide

Recovery Software

Chapter 9 - Applications Delivery 142

load(l) or loadc(1) commands (or the snap(l) administration tool), and can sub­

sequently remove them by using the unload(1) and unloadc(1) commands. (Pages

12-13 describe all four commands.) When all optional clusters are loaded, they take

about 14 Mbytes of disk space. A file that's part of the core system,

/usr I lib/ load/ file sizes, lists the sizes of these and all other system soft­

ware files. Sun386i System Setup and Maintenance provides more details about the

contents of these clusters, listed below.

mai.l_plus- extended mail commands such as from(l), vacation(!),

uuencode(lC), uudecode(1C), andmailstats(8)

spellcheck- spell(1) program and related commands

accountinq- basic accounting programs and commands such as ac(8),

accton(8), pac(8), last(l), and lastcomm(l)

sysV_COIIIID&nc:ls- basic System V commands such as uname(lV), echo(lV),

expr(lV), cat(lV), grep(lV), sdiff(l), and chmod(lV)

ac:lvancec:l_ admin- advanced system administration commands such as

chroot(8), dump(8), and restore(8)

axtendec:l_command.s- additional commands such as pagesize(l), trace(l),

logger(1), and script(l)

natwo:rkinq_plus -extended networking utilities and commands such as

in. fingerd, in. ftpd, and in. rwhod daemons and finger(1), ftp(lC),

rwho(lC), gettable(8C), and rpcinfo(8C) commands

audJ.t- audit trail maintenance package, including the audi td and

rpc.pwdauthd daemons and audit(8), audit_warn(8), praudit(8), and

C2conv(8)

caam- uucp(1C), tip(lC), and related commands

c:loc_p:rap- text processing tools such as nroff(l), troff(l), neqn(1), and

tbl(1), and directories required to run them

c:lisk_quotas- quota commands such as quot(8), edquota(8), and

quot ache ck(8)

nama_sa:rva:r- in. named, in. tnamed, and sendmail. mx daemons

man_paqas- on-line man pages and man commands

plot- plotting commands such as plot(lG) and spline(I G)

olc:l_cOIIIID&nc:ls- backward-compatible commands such as make(l),

perfmon(l), clocktool(l), setkeys(l), and syslog(l)

qamas- on-line games, including backgammon, Boggle, and cribbage

Application SunOS includes recovery software for reloading the core system, if nec­

essary. Recovery software is available on tape and diskettes. Sun386i System Setup

and Maintenance describes how to load this software, should you need it.

Revision A, May 1988

Sun386i Developer's Guide

9.3. SunOS Developer's
Toolkit

9.4. Loading and
Unloading Clusters

Chapter 9-Applications Delivery 143

SunOS Developer's Toolkit is a complement to Application SunOS, not a superset.
It provides everything missing in Application SunOS needed to achieve full SunOS
4.0 functionality. In addition, the Sun386i Developer's Toolkit Documentation Set
accompanies each copy of the Developer's Toolkit purchased. The Developer's Tool­
kit is available on diskettes or quarter-inch tape. As with Application SunOS, you
can add and remove Developer's Toolkit clusters individually with the load(1) and
unload(1) commands described briefly in the next section. The file
/usr I lib/ load/ filesizes, part of the core system, lists the sizes of these
and all other system software flies.

SunOS Developer's Toolkit includes the software listed below.

:base_ deval - software development commands and utilities such as the C com­
piler, assembler, link editor, dbx(1); you must load this cluster to be able to use
any of the Developer's Toolkit with the exception of the help guide cluster,
which does not require base_ de vel

config- System V files necessary to reconfigure the kernel such as config(8)
and the /usr I sys directory

aunviaw _ deval - Sun View development libraries required for writing window­
based applications

help _guide- Help Writer's Handbook for writing on-screen help for applica­
tions (the sections Spot Help Interface and Help Viewer Interface on pages 80-94
contain much of the same information)

plot_deval-libraries such as libplot. a and libplotbg. a for develop­
ment plotting functions

profli.ba -profiled libraries (denoted by the suffix _p. a) such as libc_p. a,
libm_p. a, and libcurses_p. a

aces - commands required by SCCS, the Source Code Control System

ayaV _ deval -libraries required to port System V applications, including utili­
ties in /usr I Sbin and /usr I Slib directories

You can issue the .load(I), loadc(l), unload(1), unloadc(1), and cluster(l)
commands to:

• Add one or more Application SunOS or Developer's Toolkit clusters to
the disk after installation

• Remove one or more clusters to make space for additional ones
• Display the name of a cluster containing a specified file
• Display a summary of all Application SunOS and Developer's Tool­

kit clusters, including a cluster's size and whether or not it is loaded

Pages 12-13 provide more information about these commands.

Revision A, May 1988

Sun386i Developer's Guide

9.5. Releasing Your
Software

Copyright and Description File

Installation Script

NOTE

Making the Distribution

Chapter 9- Applications Delivery 144

Users can install your software on the Sun386i system by selecting a few panel

items if you follow the steps in this section. These steps also could save you time

since they should simplify and shorten your installation instructions.

The preferred method of releasing software on tape or diskette consists of three

parts:

1. Creating a file containing copyright information and a brief description of
your application.

2. Creating an installation script.

3. Using the bar(l) command (available on the Sun386i system only) to
place the two files mentioned above and your application onto a formatted
(fdformat(8)) diskette or tape, or using the tar(l) command to place
them onto tape for workstations other than Sun386i systems.

The copyright and description file is an ASCII text file that users will read before

installing your application with snap(I). You must name this file copyright

because this is the file name that snap looks for. There is no restriction on the size

of either file, but users will only see IS lines of the copyright file.

Installation scripts will vary between applications in content and complexity. The

script must be named Installscript, and the basic things it should do are shown

below.

1. Make sure that there's enough disk space for the application in
lusr I local. (On Sun386i systems, lusr I local is a link that resolves
to I files<n> I local.) If there isn't, display a message in a Commands
window stating this, and instructing an administrator to enter a different
location.

2. Make lusr I local or the directory entered by an administrator the work­
ing directory (using cd directory_name).

3. Check to see if application_ name exists. If it doesn't, create an applica­

tion name directory (with mkdir(l)) and beneath that create
<arch>.<OS release>, share, and language subdirectories, as described
on pages 206-207. <arch> can be either sunl, sun2, sun3, sun4, or
sun38 6 and <OS release> has the format Sun0S4.0, SunOS4.1BETAl,
SunOS4.1BETA2, and so on.

4. Extract the application files from the tape or diskette and place them into
the directories just created.

If you are including icons for your application's files or on-screen help for your

application, see pages 68 and 96 in Chapter 6 for specifics about what your installa­

tion script should contain.

Do not program any absolute path names into your application. Regardless of where

your script or an administrator initially puts your application, administrators are

likely to move it elsewhere to suit their needs. Write code so that it will still run

after being moved.

For distributions on diskette, be sure to format each diskette with f df o rma t for

high-density diskettes or fdformat - L for low-density diskettes before copying

your files to them. The f df o rma t (8) man page contains more information.

Revision A, May 1988

Sun386i Developer's Guide

How Users Will Load
Your Software

Chapter 9 ___, Applications Delivery 145

The command syntax to place the copyright, Installscript, and your applica­
tion files on high-density diskettes is:

bar cfb /dev/rfdOc 18 copyright Installscript
application Jiles

For low-density diskettes use:

bar cfb /dev/rfdlOc copyright Installscript
application Jiles

For tapes use:

bar cfb /dev/rst08 copyright Installscript
applicationJiles ·

The bar{l) command is available for loading tapes and diskettes only on Sun386i
systems. For tapes intended for other Sun systems, you must use tar(l) format:

tar cf /dev/rst08 copyright Installscript
application Jiles

Any user belonging to the operator group can use snap to load software that
you package as described earlier in this section. (See Sun386i SNAP Administration
for a description of groups.) Users will:

1. Insert the tape or diskette containing your software.
2. From the Desktop menu, pull right on Services and select the SNAP

Administration option.
3. Place the mouse button on the cycle symbol and click right to display the

Category menu.
4. Select the Software menu item.
5. Select the Unbundled Software item in the lower panel and click left on

the Install button.
6. A pop-up window then appears, displaying your copyright and description

file (which snap reads from the tape or diskette). At the end of this dis­
play, users are requested to select Confirm to load the software (the pop­
up window also contains a Cancel selection).

7. The system starts a shell tool, in which it runs your installation script.
Users cannot perform any other functions in snap or in the shell tool
until the script completes. When it does, the system requests users to
press any key to return to SNAP. The shell tool quits after a key is
pressed.

Revision A, May 1988

J

\

10
Internationalizing Applications

Internationalizing Applications.. 147

10.1. Internationalization Support... 149

8-Bit Characters.. 149

Alternative Code Sets... 149

Keyboard Support... 150

Native-Language Messages.. 154

10.2. Application Guidelines... 155

8-Bit Characters.. 155

Date and Time Formats 155

Numeric Formats.. 155

Currency Symbols.. 155

Text Messages.. 155

Sun386i Developer's Guide

10.1. Internationalization
Support

8-Bit Characters

Alternative Code Sets

'' I

Chapter 10- Internationalizing Applications 149

10
Internationalizing Applications

An internationalized product is one built to allow easy and rapid modification to

meet local country requirements. Such requirements involve the keyboard, code sets,

date and time formats, currency symbols, collating sequences, message databases, and

so on. A localized product is one that has been modified appropriately for a Particu­

lar country. This chapter presents some guidelines for you to follow in your efforts

to produce internationalized applications.

The Sun386i system provides full or partial support in the following international­

ization areas:

• Clean handling of 8-bit characters in the kernel, Bourne shell, Text Edi­
tor, and DOS Windows

• Native-language messages in the SunOS kernel

The following sections discuss these topics in detail, emphasizing relevant features

of the Sun386i system in particular.

Most SunOS (3.x) software assumes 7-bit U.S. ASCII data. Many programs reject

characters greater than 177 octal, or use the high-order bit for other purposes. Cur­

rently, the SunOS 4.0 kernel provides an 8-bit data path throughout. In addition, the

Text Editor, DOS Windows, and Bourne shell utilities support 8-bit characters.

For applications, the Sun386i system provides a direct 8-bit data path from the key­

board. Applications can then use display fonts with 256 characters. Sun has provided

one ISO font (screen. iso. r. 12) and two international dos fonts

(pcfont. r .14 and pcfont .b .14, for regular and boldface, respectively). Both

of these fonts are in the /usr/ lib/fonts/fixedwidthfonts directory.

Note that at this time you cannot use 8-bit characters in file names or electronic

mail messages. In addition, you cannot print these characters with the lpr(l) com­

mand.

The Sun386i system supports the three code sets described below.

• 7-bit U.S. ASCII- This is the same set currently used by Sun-3 prod­
ucts; it is the default code set.

Revision A, May 1988

Sun386i Developer's Guide Chapter 10- Internationalizing Applications 150

dos Issues

Keyboard Support

• 8-bit International ASCII - This is the set specified by the ISO standard
(8859/1); it's a superset of7-bit U.S. ASCII.

• 8-bit IBM PC/DOS code set- This is the same set used on PCs, and is a
superset of 7 -bit U.S. ASCII.

Country distributors have access to code that allows the system to come up using 8-
bit International ASCII instead of the default. It is up to these distributors to pro-
vide the appropriate keyboard mappings (see Keyboard Support below) as well as
additional fonts. This is necessary because different countries have different keyboard
layouts.

dos(l) uses the 8-bit MS-DOS code set. When ados window is active, the system
keyboard handler is superseded by a special keyboard handler that maps raw key
codes into the MS-DOS code set. In this mode, []!QEJ-C!J (abort sequence), for
example, has no effect.

Because the MS-DOS character set is different from the ISO character set, you must
convert ISO text files with the unix2dos(l) program to display them in DOS
Windows. Similarly, to display text files containing MS-OOS international charac­
ters correctly ina SunOS Text Editor window, you must convert files with the
dos2unix(l) utility. Copying and pasting between windows works correctly with­
out any conversion. The options available with the dos2unix(l) and unix2dos(l)
commands are described below.

dos2unix -iso and unix2dos -iso are required to ensure that MS-DOS inter­
national characters (such as umlauts and accents) are correctly converted to their ISO
equivalents and vice versa. You should routinely include the -iso option with both
commands. The MS-OOS characters with no direct counterparts under ISO are
mapped to unused placeholders in the ISO character space. An ISO font will be
unable to display these placeholders, but unix2dos -iso will correctly convert
these characters back to the MS-DOS font without loss of information.

dos2unix -7 is required only if you have MS-DOS graphics characters in a file
and want to export that file to an application that doesn't support either 8-bit char­
acters or one of the MS-DOS fonts. When dos2unix -7 is used on a file, charac­
ters that have the eighth bit set are dropped.

For more information about these commands, refer to the dos2unix(l) and
unix2 dos(l) man pages. Translation tables in Appendix H show the character map­
ping that occurs when converting MS-DOS files to ISO format and vice versa.

A number of language-specific keyboards are available. This section discusses the
I Compose I, I Alt Graph I, and floating accent keys, which enable display of additional
international characters. The major differences between these keys from a distribu­
tor's perspective are:

• Country distributors must tailor their systems to provide the additional
keys made possible via I Alt Graph I; [Compose] and floating accent key func­
tionality is automatic.

• I Compose I key functionality is available with English keyboards, while
I Alt Graph I and floating accent capability requires a country-specific key­
board.

Revision A, May 1988

'' I

Sun386i Developer's Guide Chapter 10- Internationalizing Applications 151

Compose Key You can press the I Compose I key, followed by two other keystrokes, to display vari­
ous West European characters. Table 10-1 shows the keystrokes required to produce
these characters. The leftmost character shows the end result - the character that
you want to display. The two keys to the right are the ones to press after pressing
the I Compose I key. For example, to display li (a umlaut), press I Compose 1-(!J-c:J.

Table 10-1 Compose Key Sequences

NBSP
0 A* A A' D D- a a ' <t d-

j I ! + +- A A' N N- a a ' fi n-

¢ c/ 2 A2 A AA 0 0' a a A ... o' 0

£ L- 3 A3 A A- 6 0' a ~

0' a- 0

c ox ~ ' ' A. A" 6 OA a a" 8 oA

¥ Y- J.L /u A A* () o- A a* 0 o-

I II ~ PI lE AE 0 0" re ae 0 o"

§ so A <; c, X XX ¥ c ' + - . . .
.. II II :E E' 0 0/ e e , fl} o/

~ ' '

© 1 A1 ~ u ... co E E' U' e e' u u'

i!: A a Q Ao E EA (J U' e eA " u' u

« << » >> E E" 0 UA e e" " uA u

..., - I l/4 14 t I , (J U"
...
I i ' ii u"

12 f I ' " Y'
,

" SHY -- 1{2 y I i ' y y'

® ro 3/4 34 t JA p PI t iA p pi

- A_
l ?? I I II B ss I i II y y"

Revision A, May 1988

Sun386i Developer's Guide

Alt Graph Key

Chapter 10- Internationalizing Applications 152

The only change that country distributors need make to ensure that the I Compose I
key works properly is to use the defaults utility to reset the default font to
/usr/lib/fonts/fixedwidthfonts/ screen. iso. r .12 or to any valid
ISO font available.

Note that NBSP (no-break space) and SHY (soft hyphen) in Table 10-1 are nonprint­
ing characters for controlling line and word breaks in applications.

The I Compose I key enables display of many but not all international characters. You
can display the third character that appears in the lower right comer on some interna­
tional keycaps by using the I Alt Granh I key. I All Grnph I works similarly to the (Siilli)
key - simultaneously press I A!t Grijph I and the key containing the character to dis­
play that character.

Country distributors can enable I Alt Graph I capability by performing the following
steps:

1. Remount lusr as writable by becoming root and entering the command:
mount -o remount, rw /usr

2. Create the file /usr I lib/keymapsl country_name. keys, specifying:

• How this key must be used in the first column - specify BASE for
keys pressed alone, SHIFT for keys pressed while the [ShlliJ key is
pressed, CAPS for keys pressed after the ~ key is pressed, and
ALTG for keys pressed while the I All Graph I key is pressed

• The character's decimal keystation location (shown in Figures 10-1
and 10-2 on the next page) in the second column

• The hexadecimal ISO code corresponding to that character in the third
column

Use# to indicate comments, and separate columns with a space.
2. Use the setkeys(1) command with the format:

satkays -f /usr/11b/kaymaps/counay_name.kays.
3. Redefine the default font to

lusrlliblfontslfixedwidthfontsl screen. iso. r .12 or to
any valid ISO font available.

4. Remount /usr as read only by becoming root and entering the command:
mount -o remount, r /usr

Figure 10-1 shows the U.S. keystation map and Figure 10-2 shows the international
keystation map (both are on the next page). Table 10-2 on page 154 contains the ISO
codes needed. The file lusr I liblkeymapsl canada. keys shows a sample file
for the Canadian keyboard.

Revision A, May 1988

Sun386i Developer's Guide Chapter 10- Internationalizing Applications 153

-
21 22 23J sal
~ J---<

45 46 ~ 1-j
~ J---<

66 69 101
J-----J ~ J.----.l

48
91 92 931

1-----" J---< 1------l r--

~ 113 11'!j
90

94 50 ,____

Figure 10-1 U.S. Keystation Map

1 J_:j 1---1
~ 6 l 8 ~ ~ 14 J 16 J 117 1 18 ~ l 9 111 88 15 ~~

25 1 26 2s L 3o 1 a1 a2 33 1 34 r ~ 1 as l 37 as 1 39 1 4o 41 TI 43
1--1 J.....::.l ,...---, ~..-- II

49 ·~
1---1

72 73

53 r 54 M 56 nl:jl' 58~ 59~ so~ 62Jl 63 ry~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

76 w77~78~79~~81ij82~L
95 rL:J ~

i~ n 12411~ 104_jfi105Jll. 106~ 10~ 109m 110 111

~1r ~ w ~ ~ w ~ ~ w v ~
II 118 119 19 J 1251 120 r ~ 13

:1---1 ~ VI VI VI ~

Figure 10-2 International Keystation Map

Revision A, May 1988

Sun386i Developer's Guide Chapter 10- Internationalizing Applications 154

Table 10-2 ISO Character Set

Upper Nibble

0 1 2 3 4 5 6 7 8 9 A B c D E F
Lower Nibble

' 00 ' 0 @ p ' 0 A f) a SP p NBSP a
"' -Q 01 ! 1 A _g_ i + A N "' fi a a

A ' 02 II 2 B R b ¢ A 0 A ' r 2 a 0

A "' 03 # 3 c s £ 0 - "' c s 3 a 0

$ A
A

04 4 D T d t a "' 0 a A

0

05 % 5 E u e u
0

¥ Jl A 6 a 6
06 & 6 F v f v I

~ 1E b re 0 I

07 ' 7 G w g w § ~ X ~ + .
08 (8 H X h .. E 0 ' ~ X

!a
e

09) 9 I y .
© E u "' ' 1 y 1 e u

OA * . J z j ~ Q E u A "' . z e u
OB + K [k { E u e A . « » u ' oc

' < L \ 1 I -, 1/4 I D I u
OD - - M] m J SHY 1/2 I y f y
OE > N A ® f p i p . n - 3/4

OF I ? 0 0 - l I B r y . -

Floating Accent Key You can create accent characters with the floating accent key available on internation­
al keyboards. The floating accent key works similarly to the I Compose l key, in that
you press the floating accent key and then the character that you want to accent. You
can accent both lower- and uppercase characters; to accent the latter, press the float­
ing accent key, the (Shift) key, and then the character that you are accenting.

Native-Language Messages To aid in the translation process, the Sun386i system manages external message
libraries and routines for selecting and accessing system messages and on-screen help
text, as described below.

System Messages
System messages are those originating in the SunOS kernel and system daemons. The
syslogd(8) daemon intercepts error messages and uses them as keys into a message

Revision A, May 1988

Sun386i Developer's Guide

10.2. Application
Guidelines

8-Bit Characters

Date and Time Formats

Numeric Formats

Currency Symbols

Text Messages

'I I

Chapter 10- Internationalizing Applications 155

database. The replacement messages, not the original ones, are displayed on the con­

soles. Country distributors can provide translations by:

• Translating the file I etc I Out to the desired language

• Using the kill -1 command on the syslogd process to activate the
changes made

To translate additional messages that Sun has not reworded requires the ability to

determine the original message text, usually by looking through source code. If you

have a license permitting this, you might want to translate additional messages as

described in the Kernel Error Messages section (starting on page 73).

On-Screen Help Text

On-screen help files, both Spot Help and Help Viewer handbooks, are also arranged

for easy translation. Table 6-1 on page 88 provides a list of the help files that come
with the Sun386i system and their locations.

This section contains guidelines to help you internationalize your applications and

increase the potential for international sales. Note that Sun software does not yet

conform to some of these guidelines.

To enable use of ISO fonts, don't use the eighth bit for a flag.

Don't use nonASCII text characters unless you want them to be displayed.

A void input syntax using special characters such as [l { } # @ -

and".

Be aware that European countries have a different format for representing dates. For

example, July 24, 1987 would be represented in the U.S. as 7124187, but in

Europe as 2 4 I 7 I 8 7 (comma, hyphen, period, or space separators are also used) or

19 8 7 0 72 4 (metric format).

Allow times to be specified in 24-hour format For example, 4 : 0 0 PM is 16 : 0 0 or

1600.

Allow input and display of positive and negative numbers with the+ and- signs

after the quantity, for example 1 0-.

Allow input and display using an apostrophe, period, or space as the thousands' sepa­

rator in addition to the comma conventionally used in the U.S. Also, allow the use
of a comma as the separator between the integer and decimal amounts. For example,

2 , 311 • 50 would typically be represented in Europe as 2 . 3 11 , 50.

Allow for multicharacter currency symbols and their placement either before or

after the amount. For example, twenty Danish kroner are represented as 20 DKr.

Use a separate text file for messages if possible, or put all printf(3S) statements

in a separate module.

Revision A, May 1988

Sun386i Developer's Guide Chapter 10- Internationalizing Applications 156

Include prompts and responses in a text file/module. Prompts must be readily modi­
fiable to work with the target language.

Document where the message text is located and how to access it.

Allow multiple message catalogs to coexist, to let individual users choose their pre­
ferred language.

Structure your message files/modules and screen message presentations so that they
can be easily expanded (by up to 50%) to accommodate the greater space require­
ments that foreign languages typically have.

Revision A, May 1988

A
Sun386i System Description

Sun386i System Description.. 157

A.1. Product Features... 159

System Unit.. 159

Expansion Unit... 160

ATBus.. 160

Monitors.. 161

Keyboard and Mouse.. 161

Mass Storage Devices... 161

Dimensions and Weights.. 162

Electrical Power Requirements... 162

Environmental Requirements 163

A.2. Hardware.. 163

CPU Board.. 163

Frame Buffers 164

SIMM Memory Board.. 164

A.3. Diagnostics... 164

Power-Up Diagnostics.. 164

Hardware Diagnostics... 164

System Exerciser.. 164

A.4. Operating System 165

Application Sun OS 165

SunOS Developer's Toolkit.. 165

A.S. Languages... 165

A.6. Windows and Graphics.. 165

Sun386i Developer's Guide Appendix A- Sun386i System Description 158

Pixrects 165

SunView ... 165

SunView Applications.. 166

A.7. Unbundled Software... 166

A.8. MS-DOS Compatibility.. 166

A.9. Administration Tools.. 167

A.10. User Interface... 167

A.11. Documentation 167

On-Line Documentation... 167

Printed Documentation... 168

A.12. Internationalization.. 168

/

Sun386i Developer's Guide

A.l. Product Features

System Unit

Appendix A- Sun386i System Description 159

A
..... ... " _

Sun386i System Description

This appendix provides a complete description of Sun386i system features, at both
the technical and user interfa~ levels, as well as a summary of available hardware
and software.

The basic system consists of a system unit holding the power supply and internal
electronics, one full-height 91 Mbyte hard disk drive, and one half-height diskette
drive. This unit can operate as a diskless node without mass storage devices and as a
server.

You can add an expansion unit to the system that can house a power supply, one full.
height hard (327 Mbyte) disk drive, and one streaming tape drive. Optionally, the
expansion unit can include a SCSI tape/disk controller card.

The system unit is made up of the following submodules:

• Power supply

• CPU board/backplane

• 3 1/2-inch diskette drive

• 5 1/4-inch hard disk drive (full or half-height)

The system unit can lie flat in desktop locations or stand vertically (on a separate
base) in deskside locations.

The CPU board has eight slots:

1. System bus slot - 4, 8, or 16 Mbyte memory board

2. System bus slot- 4, 8, or 16 Mbyte memory board

3. System bus slot- 4, 8, or 16 Mbyte memory board

4. System bus slot- monochrome or color frame buffer, or 4, 8, or 16
Mbyte memory board

5. AT slot- unallocated, user-configurable (16-bit device)

6. AT slot- unallocated, user-configurable (16-bit device)

7. AT slot- unallocated, user-configurable (16-bit device)

8. XT slot- unallocated, user-configurable (8-bit device)

Revision A, May 1988

Sun386i Developer's Guide

Expansion Unit

AT Bus

Appendix A- Sun386i System Description 160

The System bus is a proprietary, high-speed, 32-bit bus. Maximum system memory
is 16 Mbytes.

The following input/output ports are available at the rear of the system unit:

• Ethernet- 15-pin Dsub (female)

• PC-compatible parallel output port- 25-pin Dsub (female)

• PC-compatible RS-423 serial I/O port- 25-pin Dsub (male)

• External SCSI port- 50-pin connector (female)

Cooling is by forced convection in the front-to-rear direction. The fans cool the PC
boards and power supply as well as the optional diskette and hard disk drives.

The power supply is a semi-custom design and plugs directly into the CPU board.
The power supply itself is a fully enclosed submodule that contains the power
switch, AC inlet, courtesy outlet, and voltage select switch. The power supply
includes power for the 15-inch monochrome monitor only; other monitors must be
plugged directly into the facility's power source. The courtesy outlet on the main
power supply is only for use with the expansion unit.

The optional expansion unit attaches to the system unit, thus giving one unit assem­
bly. When fastened together, they form a deskside configuration (with a floor
stand). The signal cable running between the expansion and system units is external.

The expansion unit includes the following submodules:

• Power supply submodule

• Two full-height 5 1/4-inch peripherals

• Optional SCSI controller

The power supply submodule contains a 120 W power supply. Like the CPU supply,
it is a self-contained, fully encased unit. The rear of the supply has an AC inlet
plug, an AC power switch, and a voltage select switch. This submodule also con­
tains a fan. The combined acoustic limit for both the system unit and the expansion
unit is 50 dB(A), to conform to German standards.

The peripheral locations have the ability to mount either full- or half-height
devices. Only one full-height or two half-height devices can have removable media
accessible through the front of the enclosure.

Cooling is by forced convection in the front-to-rear direction.

The AT bus interface couples the 32-bit Sun386i system to an AT bus structure. The
AT bus, along with the MS-DOS operating system, enables the Sun386i system to
run PC applications. The major components of the interface are:

• Data buffer and alignment logic- 32-bit to 8- or 16-bit data conversion

• Address buffers -passes least significant 18 address lines; generates AO,
Al, and BHE. Master mode will3-state these lines.

Revision A, May 1988

Sun386i Developer's Guide

Monitors

Keyboard and Mouse

Mass Storage Devices

Appendix A- Sun386i System Description 161

• DMA and interrupt logic -connects the 7 AT bus DMA channels to 7
system DMA channels; connects the 11 AT bus interrupts to 11 system
interrupt channels

• Signal generation and control logic - selectable timings based on a har­
monic of the system clock

Chapter 8 provides additional information about the AT bus.

The system is compatible with existing monochrome 19-inch and color 19-inch Sun
monitors. In addition, IS-inch monochrome and 16-inch color monitors are available.

The low-profile, microprocessor-controlled keyboard accepts an optical mouse. The
keyboard connects to the CPU via a coiled cord. This is a portion of the monitor-key­
board interface cable.

For each key on the Sun-3 keyboard there is a corresponding key on the new key­
board, though not necessarily in the same position. The corresponding key is labeled
similarly and causes generation of the same code.

The keyboard is a superset of the AT-style (84-key) and the Sun-3 keyboards. In
addition, the keyboard contains (!ill[), I A!t Graoh I, and I Compose I keys. The ~
key is used for displaying cursor-sensitive help messages provided with the Sun View
window facilities. The I Compose I key allows composition and use of a series of
West European characters which would not otherwise be available.

The I Compose I key enables display of many but not all additional international char­
acters. Users can display the third character that appears on some international key­
caps by using the I Alt Graph I key. Additionally, users can display accented characters
by using the floating accent key, available on international keyboards.

The keys are layed out in three keypad areas:

• 10 Sun "L" keys on the left

• The main keyboard area in the center

• A keypad area functioning as the 15 Sun "R" keys, plus the keys normally
found on the right block of an AT keyboard, on the right

In addition, 15 "F' keys are located across the top ofthe center keypad. These keys
represent the 9 Sun function keys in Sun mode or 12 function keys in AT mode.

The keyboard includes lights to indicate shift, scroll lock, numeric lock, and com-
. pose, and an internal speaker to generate key clicks each time a key is pressed. You
can enable or disable this click from either a unique sequence of keystrokes or a com­
mand sent to the keyboard from the host CPU.

The keyboard also can generate a beep on command from the host CPU. The volume,
pitch, and duration of this beep is adjustable by using either a unique sequence of
keystrokes on the keyboard or a command generated by the host CPU.

The main enclosure can be configured with one half-height 3 1/2-inch 1.44 Mbyte
diskette drive plus one full-height 5 1/4-inch 91 or 327 Mbyte formatted hard disk

Revision A, May 1988

Sun386i Developer's Guide Appendix A- Sun386i System Description 162

drive. The following mass storage devices are available for installation in the main
housing:

• 91 Mbyte formatted SCSI Winchester

• 327 Mbyte formatted SCSI Winchester

• One half-height, AT-compatible 1.44 Mbyte 3.5-inch diskette

The following devices are supported in the expansion unit:

• 327 Mbyte formatted SCSI Winchester

• SCSI compatible/Sun-compatible streaming tape

Dimensions and Weights Dimensions and weights are provided in the following table.

Table A-1 Dimensions and Weights

Component Height Width Depth Weight

System Unit 7" (17.8 em) 15" (38.1 em) 20" (50.8 em) 45 lbs (20.4 kg)

Expansion Unit 7" (17.8 em) 8" (20.3 em) 20" (50.8 em) 25lbs (11.4 kg)

Keyboard 2" (5.1 em) 19" (48.3 em) 8" (20.3 em) 2 lbs (0.9 kg)

15-inch Monitor 13" (33.0 em) 15" (38.1 em) 13" (33.0 em) 25lbs (11.4 kg)

Mouse 2" (5.1 em) 4" (10.2 em) 3" (7.6 ~m) 0.3lbs (0.14 kg)

Electrical Power Requirements Each system requires one AC receptacle for the system unit When the expansion
unit is attached, it plugs into the system unit's courtesy outlet. Monitors other than
15-inch monochrome plug into the facility's power source.

Table A-2 Electrical Power Requirements

Voltage Input Power

System Unit 90-132Vac 400W
180-264Vac

Expansion Unit 90-132Vac 200W

180-264V ac

IS-inch Monitor from system unit sow

Input voltage is switch-selectable at the rear of the modules.

Available power supply outputs are as follows:

• System Unit

• +SV de ok signl;ll.

• +SV de @ 31/38 amps

• +12V de@ 4.3 amps /5.6 amps peak
• -12V de@ 0.5 amps

• -5.2V de@ 1.9 amps

• +80V de@ .625 amp if +Svdc load< 31 amps

Frequency

47-63Hz

47-63Hz

Revision A, May 1988

Sun386i Developer's Guide Appendix A- Sun386i System Description 163

Environmental Requirements

Table A-3

Table A-4

A.2. Hardware

CPU Board

• Ex~sion Unit
• +5V de @ 6 amps

• + 12V de@ 6.5/12 amps pk

Environmental requirements are listed in the following tables.

Operating Environment Requirements

O"C to 40"C (32"F to 104"F) Temperature

Humidity
Wet Bulb

Altitude

Vibration

5 to 80% relative noncondensing (@ 40"C)

25"C (77"F) maximum

0 m to 2134 m (0 to 7000 ft)

5 - 22 Hz, O.Ql inches p-p

22- 500 Hz, 0.25 g pk

Shock 5 g peak, 10 msec 1/2 sinewave

Nonoperating Environment Requirements

-20"C to 60"C (-4"F to 140"F) Temperature

Humidity

Wet Bulb

Altitude

Vibration

5 to 90% relative noncondensing (@ 40"C)

46"C (115"F) maximum

0 m to 12,192 m (0 to 40,000 ft)

5 - 22 Hz, 0.02 inches p-p

22 - 500 Hz, 0.5 g peak

Shock 20 g pk, 30 msec

Primary hardware components include a CPU board, a monochrome or color frame
buffer, and up to four memory boards (systems with frame buffers can have a maxi­
mum of three memory boards).

The CPU board has the following features:

• Intel 80386 CPU, 20 to 25 MHz

• Intel 80387 numeric coprocessor

• Intel 82380 32-bit integrated DMA, interrupt, and timer controller

• Intel 82586 Ethernet controller

• Western Digital WD33C93-based SCSI host adapter

• One RS-423 serial I/O port, PC-compatible

• One PC-compatible parallel output (printer) port

• 128 Kbyte PROM

• 2 Kbyte "Zero Power'' RAM/TOO chip

• IDPROM

Revision A, May 1988

Sun386i Developer's Guide Appendix A- Sun386i System Description 164

Frame Buffers

Monochrome Frame Buffer

Color Frame Buffers

SIMM Memory Board

A.3. Diagnostics

Power-Up Diagnostics

Hardware Diagnostics

System Exerciser

• Speaker output (signal generated by 82380)

• One XT slot, three AT/XT slots, and four System bus (proprietary) slots

Both monochrome and color frame buffers are available, as described in this section.
Chapter 3 provides additional frame buffer information.

The monochrome frame buffer has a resolution of 1152x900x1 and supports existing
Sun monitors. It includes the interface for the keyboard and mouse.

Two color frame buffers are available. The first is a 1024x768x8 frame buffer com­
patible with the 1024x768 color monitor used with this system. The second is a
1152x900x8 frame buffer compatible with the existing Sun 19-inch color and 19-
inch grayscale monitors. Both frame buffers include connections for the keyboard
and mouse.

The color frame buffers interface to the CPU board via the 32-bit System bus. It is
based on the Brooktree DAC and provides 1 Mbyte of 250 ns color/grayscale video
memory. Any 256 of a total of 16 million possible colors are available at one time.
These frame buffers do not provide a monochrome or enable plane.

The Sun386i system uses Single In-line Memory Module (SIMM) boards, which use
the Intel 82385 cache controller chip. SIMM boards contain 16 slots, each of which
can hold a 1 Mbyte SIMM module. The SIMM board comes equipped with 8
Mbytes of memory but you can expand it to 16 Mbytes by adding additional SIMM
modules. Each system can have only one SIMM board.

Three classes of diagnostics are available, as described in the following sections.

The first class is the power-up diagnostics. These consist of two components: one
component is run out of the boot ROM and the other is loaded into the system after
the boot ROM diagnostics have verified the boot path. Both components are run
whenever power is applied to the system. They run in less than 30 seconds and verify
system operation to a confidence level of 80%.

The second class of diagnostics is the standalone hardware diagnostics. This class con­
sists of Hardware Diagnostics, user-oriented diagnostics that are part of Application

SunOS (described on the next page) and the Diagnostic Executive™. The operator can
run Hardware Diagnostics any time after completion of power-up diagnostics.
(However, the operator must first shut down the system before running the diagnos­
tics if the operating system is already running.) A single pass through Hardware
Diagnostics takeS less than 10 minutes and verifies system operation to a confidence
level of 95%. The Diagnostic Executive is for more experienced users, and is an
unbundled product.

The third class of diagnostics is the System Exerciser. (These are also part of Appli­
cation SunOS, described on the next page.) The System Exerciser runs under the
SunOS system and verifies operation of the total system, including operating system
software. It includes tests of physical memory, virtual memory, mass storage
devices, frame buffer, floating point support, and Ethernet support.

Revision A, May 1988

Sun386i Developer's Guide

A.4. Operating System

Application SunOS

SunOS Developer's Toolkit

A.5. Languages

A.6. Windows and
Graphics

Pixrects

Sun View

Appendix A- Sun386i System Description 165

The Sun386i system uses version 4.0 of the Sun Operating System (SunOS). This
operating system comprises Berkeley Release 4.2 with some 4.3 features plus
enhancements to provide support of the System V.3 Interface Definition (SVID).
System software is divided into two unbundled subsets-Application SunOS and
SunOS Developer's Toolkit. Chapter 9 describes these divisions in greater detail.

Application SunOS is itself divided into four subsets:

• Hardware Diagnostics - standalone hardware diagnostics, described in the
preceding section

• Core system -the base system, providing the ability to run most com­
mercially available Sun and third-party applications; the core system is
shipped on the Sun386i disk

• Optional clusters - additional software for capabilities such as extended
mail and extended networking; available on diskettes or tape

• Recovery software -a backup version of the core system, available on
diskettes or tape

Buying Application SunOS is not mandatory, but users are strongly urged to do so.
By purchasing the package, they receive all of the software shown above. When all
optional clusters are loaded, Application SunOS takes up about 14 Mbytes. Applica­
tion SunOS is available on 3 1/2-inch diskettes and 1/4-inch tapes.

SunOS Developer's Toolkit is a complement to Application SunOS. It is intended
for developers and others who require the full capabilities of the Sun operating sys­
tem. It contains everything in the SunOS 4.0 system that is not included in Applica­
tion SunOS.

The Developer's Toolkit occupies about 18 Mbytes of disk space and is available on
diskettes or 1/4-inch cartridge tapes. Chapter 2 describes installation of the Develop­
er's Toolkit.

The assembler, C compiler, shared libraries, other language tools (such as the link
editor, profilers, and so on), and debuggers (a db, dbx, kadb) are part of the Devel­
oper's Toolkit. FORTRAN and Pascal are packaged and sold separately, and require
the presence of Developer's Toolkit on the system. All languages are available on
1/4-inch streaming tape and support the 80387 numeric coprocessor.

The Sun386i system includes software to support windows and graphics as described
below.

Programmers can create graphic images on the frame buffers through a Pixrects inter­
face which is identical (at the level of the calling functions) to that provided for
Sun-3 products.

The Sun386i system includes the Sun View windowing system. From the perspective
of the calling routines and the system user, Sun View on the Sun386i system is simi­
lar to Sun View provided for the Sun-3 product line.

Revision A, May 1988

Sun386i Developer's Guide

Sun View Applications

A.7. Unbundled Software

A.8. MS-DOS
Compatibility

Appendix A- Sun386i System Description 166

The Sun386i system also includes the set of desktop management tools known as
Sun View applications. These are identical to those offered on Sun-3 products, with
the exception of some additions (dos(l}-part of the MS-OOS facility;
snap(l}-part of the new system administration tools; organizer(l}-a graphi­
cal file system window interface; help_ viewer(1)-a program providing on­
screen information about the system). Chapter 6 describes snap, organizer, and
help_ viewer in more detail. Chapter 7 describes dos.

Users with color systems can use the coloredi t(l) facility to add or change the
foreground and background colors of Sun View applications. Programmers can add
color to panels and panel items within their applications. Chapter 6 describes both
of these color capabilities in more detail.

In addition to FORTRAN and Pascal, both mentioned in Section A.S on the previous
page, the following unbundled software is available:

• SunCGI

• SunGKS

• SunUNIFY

• SunSimplify

The system provides the capability to run any program that runs on an IBM AT
under the MS-OOS 3.3 operating system. This capability is based on PC emulation
and the inclusion of MS-OOS on the system. MS-OOS is available in special
MS-DOS windows (DOS Windows; the program name is dos), and MS-DOS com­
mands can run in SunOS windows.

The MS-OOS PC emulation capability includes the following features:

• Virtual hard disk emulation using either the hard disk on the host machine
or one available through the network

• The ability to read and write to the diskette drive on the host system

• Special MS-DOS windows (dos) for running of MS-DOS programs

• The ability to run multiple MS-OOS programs by running each in a sepa­
rate window. However, only one of the windows will allow a program
access to any individual device on the AT bus; the other MS-OOS processes
are prevented from accessing these devices.

• MS-DOS program access to files created by SunOS programs and vice
versa

• The ability to cut and paste text between MS-DOS and other Sun View
windows

• MS-DOS program access to an 8087 numeric coprocessor, emulated via the
80387 numeric coprocessor

• Microsoft Mouse emulation (with the standard system mouse)

• PC-compatible serial and parallel port emulation

• Emulation of the Monochrome Display Adapter (MDA), Color Graphics
Adapter (CGA), and Hercules graphics card

Chapter 7 in this manual contains additional information about MS-DOS on the
Sun386i system.

Revision A, May 1988

Sun386i Developer's Guide

A.9. Administration
Tools

A.lO. User Interface

A.ll. Documentation

On-Line Documentation

Appendix A- Sun386i System Description 167

The Sun386i system incorporates new system administration tools, including a win­
dow-based application for binnapped systems called snap(I). These tools provide
the following capabilities:

Automatic System Installation
This feature enables a user to have the system up and running on an existing Sun386i
system network within 30 minutes after unpacking.

Support for Creating New User Accounts
This capability involves two areas:

• New user access, which allows a user without a log-in name on a system
to follow displayed directions to create an account

• Full screen login, whereby users entering their user names and passwords
can view help screens by pressing the ~ key.

Backup Facilities
This capability provides backup support that provides system-wide and personal back­
up functions.

Chapter 6 provides additional information about the administration facilities just
described.

Some of the new user interface features on the Sun386i system are:

• An on-screen help facility (described in the next section)

• The coloredi t(l) color editing facility (described on the previous page)

• Ease-of-use administration features, including the snap(l) utility
(described in the preceding section)

• The organizer(!) file system utility (described on the preceding page)

Chapter 6 contains, additional information about all of these features.

Both on-line and hardcopy information is available for the Sun386i system.

The Sun386i system offers on-line documentation in four areas:

• Log-in screens, to facilitate the novice user's entry into the system

• Help windows, popped up by pressing the (!ffii[) key, to provide cursor­
sensitive help in an alert box and access to Help Viewer, a hypertext­
based on-screen documentation system

• System (kernel) messages in terms users can understand

• Traditional SunOS man pages (also available in hardcopy), changed to
reflect features specific to the Sun386i system; man pages are part of the
optional man_pages cluster of Application SunOS. (Chapter 9 describes
the division of system software and clusters.) Appendix G lists the man
pages that are new or changed for the Sun386i system, as well as the
SunOS 4.0 pages that do not pertain to the Sun386i system.

Revision A, May 1988

Sun386i Developer's Guide

Printed Documentation

A.12. Internationalization

Appendix A- Sun386i System Description 168

Printed documentation for the Sun386i system includes four sets of manuals.

The Sun386i Owner's Set includes four manuals and one pamphlet specific to the
Sun386i system and directed to an end-user audience. They are intended for users
whose primary interest is in running applications. One set is shipped with every sys­
tem.

The Sun386i Owner's Supplement Documentation Set contains 10 titles, including

man pages, that collectively form the end-user documentation for all Sun systems.
Users receive this set if they purchase Application SunOS.

The Sun386i Developer's Toolkit Documentation Set includes 12 titles, all of which

are programming guides directed at application developers and system programmers

on all Sun systems. This set includes this manual, and is shipped to every customer
who purchases the Developer's Toolkit optional software.

The Sun386i Upgrade Documentation Set includes three technical manuals and two
sets of release notes specific to the Sun386i system. The upgrade set is a complement
to the documentation set for Sun OS 4.0.

Additional documentation includes the Sun386i Technical Overview and the Sun386i

Field Service Manual. Both must be ordered separately. Documentation for FOR­
TRAN and other unbundled software is shipped with those products.

An internationalized product is one built to allow easy and rapid modification to
meet local country requirements. Such requirements involve the keyboard, character
sets, time/date formats, currency symbols, collating sequences, and so on. This is dif­
ferent from a localized product. A localized product is an internationalized product
that has been appropriately modified for a particular country.

The specific internationalization features of the Sun386i system are stated below.
Except for the provision of local language keyboards, the Sun386i system is not a
localized product.

• Local language keyboards are available for some countries outside of the
United States.

• Software support is provided for new keyboards to ensure that pressing
local language keys does not have an unexpected affect. Specifically, most
Sun View windows ignore 8-bit codes; the exceptions are Text Editor,
DOS Windows, and the Bourne shell, which do accept 8-bit codes.

• Applications can receive 8-bit codes from the keyboard; subsequent process­
ing, display, and printing are the responsibility of the application.

• 8-bit data will not be corrupted by the SunOS kernel, window system, or
shell. Note that this requirement applies to the data only; no provision
exists to support file names or program names using 8-bit characters.

The above is not a fully internationalized product; rather, it reflects an effort to
meet the minimum needs of application vendors in the international market.

Revision A, May 1988

... ;.:: :::..

80386 Assembly Language
Definition

B
:.· ...

80386 Assembly Language Definition .. 169

B.l. Invoking the Assembler... 171
Input Format... 171
Output Format... 172

B .2. Symbols and Expressions... 172
Values... 172
Sytnbols .. ,........................... 173
Expressions 173

B.3. Pseudo Operations.. 175
General Pseudo Operations... 175
sdb Pseudo Operations.. 177
dbx Pseudo Operations.. 178

B.4. Machine Instructions.. 178
Differences between the SunOS and Intel 80386 Assemblers 178
Operands... 178
Introduction to Instruction Descriptions... 180
Processor Extension Instructions.. 182
Segment Register Instructions.. 184
1/0 Instructions 184
Flag Instructions... 184
Arithmetic/Logical Instructions.. 185
Multiply and Divide Instructions.. 186
Conversion Instructions.. 186
Decimal Arithmetic Instructions... 186

Sun386i Developer's Guide Appendix B - 80386 Assembly Language Description 170

Coprocessor Instructions 186

String Instructions 186

Procedure Call and Return Instructions.. 187

Jump Instructions.. 187

Interrupt Instructions 187

Protection Model Instructions 187

Miscellaneous Instructions 188

B.S. Translation Tables for SunOS to Intel float Mnemonics............................ 188

Real Transfers... 188

Integer Transfers... 189

Packed Decimal Transfers.. 189

Addition.. 189

Subtraction.. 189

Multiplication 189

Division.. 189

Other Arithmetic Operations 190

Comparison Instructions... 190

Transcendental Instructions.. 190

Constant Instructions.. 190

Processor Control Instructions... 191

Sun386i Developer's Guide

B.l. Invoking the
Assembler

Input Format

Appendix B - 80386 Assembly Language Definition 171

B
:.:':.::.

80386 Assembly Language
Defmition

This appendix is only slightly modified from a draft provided by AT&T. It is their
third draft of the assembler language definition for the 5.3/386 CCS. Being prelimi­
nary in nature, it is subject to change. If you are doing assembly language program­
ming, you should also obtain a copy of Intel's 80386 Programmer's Reference
Manual (Intel Corporation, Santa Clara, CA).

The Sun386i C compiler only uses a limited number of the symbols, expressions,
pseudo operations, and machine instructions described in this appendix. However, the
entire set is included to give a complete description of the as(l) assembler, which
accepts all of them.

For information about invoking the Sun386i assembler and the available options,
refer to the as(l) man page in the SunOS Reference Manual.

The input to the assembler is a text file. This file must consist of a sequence of
lines ending with a newline character (ASCII LF). Each line can contain one or more
statements. If several statements appear on a line, they must be separated by semi­
colons (;). Each statement must be one of the following:

• An empty statement is one that contains nothing other than spaces, tabs,
and form-feed characters. Empty statements have no meaning to the assem­
bler. They can be inserted freely to improve the appearance of a listing.

• An assignment statement is one that gives a value to a symbol. It consists
of a symbol, followed by an equal sign(=), followed by an expression.
The expression is evaluated and the result is assigned to the symbol.
Assignment statements do not generate any code. They are used only to
assign assembly time values to symbOls.

• A pseudo operation statement is a directive to the assembler that does not
necessarily generate any code. It consists of a pseudo operation code,
optionally followed by operands. Every pseudo operation code begins with
a period (.).

• A machine operation statement is a mnemonic representation of an exe­
cutable machine instruction that is translated by the assembler. It consists
of an operation code, optionally followed by operands.

Revision A, May 1988

Sun386i Developer's Guide

Output Format

8.2. Symbols and
Expressions

Values

Types

Appendix B - 80386 Assembly Language Definition 172

In addition, you can modify each statement by doing one or both of the following:

• Place a label at the begining of any statement. This consists of a symbol

followed by a colon (:). When the assembler encounters a label, it assigns

the value of the location counter to the label.

• Insert a comment at the end of any statement by preceding the comment

with a slash (/). The assembler ignores characters following a slash on a

line. This facility is provided to allow insertion of internal program docu­

mentation into the source file for a program.

The output of the assembler is an object file. The object file produced by the assem­

bler contains at least the following three sections:

. text This is an initialized section; normally it is read only and contains the code

from a program. It may also contain read-only tables .

. data This is an initialized section; normally it is readable and writable. It con­

tains initialized data. These can be scalars or tables .

• bs s This is an uninitialized section. Space is not allocated for this segment in

the object me.

An optional section, . corrunent, may also be produced (see Pseudo Operations on

page 175).

Every statement in the input assembly language program that generates code or data

places it into one of these three sections. The section into which the generated bytes

are written starts out as • text, but you can change this by using section control

pseudo operations.

This section describes the symbols and expressions that the assembler uses.

Values are represented in the assembler by 32-bit, two's complement values. All

arithmetic is performed using 32 bits of precision. Note that the values used in an

80386 instruction may use 8, 16, or 32 bits.

Every value is an instance of one of the following symbol types:

undefined

absolute

An undefined symbol type is one whose value has not yet been defined.

Examples of undefined symbol types are forward references and externals.

An absolute symbol type is one whose value does not change with reloca­

tion. Examples of absolute symbol types are numeric constants and expres­

sions whose operands are only numeric constants.

text A text symbol type is one whose value is relative to the . text segment.

data A data symbol type is one whose value is relative to the . data segment.

bss A bss symbol type is one whose value is relative to the • bss segment.

Revision A, May 1988

Sun386i Developer's Guide

Symbols

Expressions

Syntactic Rules for the
Assembler

Appendix B - 80386 Assembly Language Definition 173

You can give any of these symbol types the attribute EXTERNAL.

A symbol has a value and a type, each of which is either specified explicitly by an
assignment statement or implicitly from context. Refer to the Expressions section,
which follows, for the regular expression definition of a symbol.

The following symbols are reserved by the assembler:

Commonly refered to as dot. This is the location counter while assembling
a program. It takes on the current location in the text, data, or bss sec­
tion .

. text This symbol is oftype text. It is used to label the beginning of a .text sec­
tion in the program being assembled .

. data This symbol is of type data. It is used to label the beginning of a .data sec­
tion in the program being assembled .

. b s s This symbol is of type bss. It is used to label the beginning of'a . b s s sec­
tion in the program being assembled.

The expressions accepted by the Sun OS assembler can be described by their semantic
and syntactic rules.

The following are the operators supported by the assembler:

Operator Action

+ Addition

Subtraction

* Multiplication

\I Division

& Bit-wise logical and

Bit-wise logical or

> Right shift

< Left shift

\% Remainder operator

Bit-wise logical and not

In the following syntactic rules, the nonterminals are represented by lowercase let­
ters, the terminal symbols are represented by uppercase letters, and the symbols
enclosed in double quotes are terminal symbols.

There is no precedence to the operators. You must use square brackets to establish
precedence.

expr term
expr "+" term

expr " term

expr "/" term

Revision A, May 1988

Sun386i Developer's Guide

term

id

number

Appendix B - 80386 Assembly Language Definition 174

expr "&"
expr "I"
expr ">"
expr "<"
expr ""
expr II! IJ

expr "-"

id

number

"-" term

term

term

term

term

term

term

term

"[" expr "]"

"<o>" term

"<s>" term

LABEL

DEC VAL
HEX VAL
OCT VAL
BIN VAL

You can describe the terminal nodes by using the following regular expressions:

LABEL
DEC VAL
HEX VAL
OCT VAL
BIN VAL

[a-zA-Z_] [a-zA-Z0-9_]*:

[1-9] [0-9] *

O[Xx] [0-9a-fA-F] [0-9a-fA-F]*

0[0-7]*

0 [Bb] [0-1] [0-1] *

In the above regular expressions, choices are enclosed in square brackets; a range of

choices is indicated by letters or numbers separated by a dash (-); and the asterisk

(*)indicates zero or more instances of the previous character.

Semantically, the expressions fall into two groups, absolute and relocatable. The

equations later in this section show the legal combinations of absolute and relocat­

able operands for the addition and subtraction operators. All other operations are

only legal on absolute-valued expressions.

All numbers have the absolute attribute. Symbols used to reference storage, text, or

data are relocatable. In an assignment statement, symbols on the left side inherit

their relocation attributes from the right side.

Revision A, May 1988

Sun386i Developer's Guide

8.3. Pseudo Operations

General Pseudo Operations

Appendix B - 80386 Assembly Language Definition 175

In the equations below, a is an absolute-valued expression and r is a relocatable-val•
ued expression. The resulting type of the operation is shown to the right of the
equal sign.

a + a = a

r + a = r
a - a = a

r - a = r
r - r = a

In the last example, you must declare the relocatable expressions before taking their
difference.

Following are some examples of valid expressions:

label
$label
[label + OxlOO]
[labell - label2]
$[labell - label2]

Following are some examples of invalid expressions:

[$label - $label]
[labell * 5]
(label + Ox20)

Below is a list of the pseudo operations supported by the assembler. This is fol­
lowed by a separate listing of pseudo operations included for the benefit of the
debuggers sdb (not supported on the Sun386i system) and dbx(l).

.align val
The . align pseudo op causes the next data generated to be aligned modulo
val. val must be a positive integer value .

. bed val

. bss

The . bed pseudo op generates a packed decimal (80-bit) value into the cur­
rent section. This is not valid for the . bss section. val is a nonfloat­
ing-point constant .

The . b s s pseudo op changes the current section to . bs s .

. bss tag, bytes
Define symbol tag in the . bss section and add bytes to the value of dot
for • bss. This does not change the current section to . bss. bytes must
be a positive integer value .

• byte val [,val]
The .byte pseudo op generates initialized bytes into the current section.
This is not valid for . b s s. Each v a 1 must be an 8-bit value.

Revision A, May 1988

Sun386i Developer's Guide Appendix B - 80386 Assembly Language Definition 176

.comm name, expr

. data

The . comm pseudo op allocates storage in the . data section. The storage is

referenced by the symbol name, and has a size in bytes of expr. expr

must be a positive integer. name cannot be predefined .

The data pseudo op changes the current section to . data .

. double val

.even

The . double pseudo op generates an 8028713871ong real (64 bits) into the

current section. Not valid in the . bss section. val is a floating point con­

stant.

The . even pseudo op aligns the current program counter (.) to an even

boundary .

. float val
The . float pseudo op generates an 80287/387 short real (32 bits) into the

current section. This is not valid in the . b s s section. v a 1 is a

floating-point constant.

.globl name
This pseudo op makes the variable name accessible to other programs .

. ident string
The . ident pseudo op creates an entry in the comment section containing

string. string is any sequence of characters, not including the double

quote (") .

• lcomm name, expr
The . lcomm pseudo op allocates storage in the . b s s section. The storage is

referenced by the symbol name, and has a size of expr. name cannot be

predefined, and exp:r must be a positive integer type .

. long val

.noopt

The .long pseudo op generates a long integer (32-bit, two's complement

value) into the current section. This pseudo op is not valid for the . bss sec­

tion. val is a nonfloating-point constant.

The . no opt pseudo op .

. optim
The . opt im pseudo op .

. set name, expr
The . set pseudo op sets the value of symbol name to expr. This is equiv­

alent to an assignment.

.string str

. text

This pseudo op places the characters in s t r into the object module at the

current location and terminates the string with a null. The string must be

enclosed in double quotes (" "). This pseudo op is not valid for the . b s s

section .

The . text pseudo op defines the current section as . text.

Revision A, May 1988

Sun386i Developer's Guide

sdb Pseudo Operations

Appendix B - 80386 Assembly Language Definition 177

.value expr [,expr]
The • value pseudo op is used to generate an initialized word (16-bit,
two's complement value) into the current section. This pseudo op is not
valid in the . bss section. Each expr must be a 16-bit value .

. version string
The . version pseudo op puts the C compiler version number into the
.conunent section.

The Sun386i system does not support the sd.b debugger; however, the assembler
does recognize these pseudo operations, so they are included for completeness .

. type expr
The . type pseudo op is used within a . def-. endef pair. It gives name
the c compiler type representation expr .

. val expr
The . val pseudo op is used with a . def-. endef pair. It gives name (in
the . de f) the value of expr. The type of expr determines the section for
name .

. tag str
The . tag pseudo op is used in conjunction with a previously defined . def
pseudo op. If the name of a . def is a structure or a union, str should be
the name of that structure or union tag defined in a previous . de f-
. endef pair .

. size expr
The . size pseudo op is used with the • de f pseudo op. If the name of a
. de f is an object such as a structure or an array, this gives it a total size of
expr. expr must be a positive integer .

. scl expr
The . scl pseudo op is used with the . def pseudo op. Within the . def it
gives name the storage class of expr. The type of expr should be positive .

. line expr
The .line pseudo op is used with the . def pseudo op. It defines the
source line number of the definition of symbol name in the . def. expr
should yield a positive value .

. ln line [, addr]
This pseudo op provides the relative source line number to the beginning of
a function. It is used to pass information through to sd.b .

. file name

. endef

The . file pseudo op is the source file name. Only one is allowed per
source file. This must be the first line in an assembly file .

The . endef pseudo op is the ending bracket for a . de f .

. def name
The . de f pseudo op starts a symbolic description for symbol name. See
endef (above). name is a symbol name.

Revision A, May 1988

Sun386i Developer's Guide Appendix B - 80386 Assembly Language Definition 178

dbx Pseudo Operations

8.4. Machine
Instructions

Differences between the SunOS
and Intel80386 Assemblers

Operands

• dim expr [, expr]
The . dim pseudo op is used with the . de f pseudo op. If the name of a

. def is an array, the expressions give the dimensions; up to four dimen­

sions are accepted. The type of each expression should be positive .

• stabs name type 0 desc value

• stabn type 0 desc value
The • stabs and . stabn pseudo ops are debugger directives generated by

the C compiler when the -g or -go options are used. name provides the

symbol table name and type structure. type identifies the type of symbolic

information (i.e., source file, global symbol, or source line). desc specifies

the number of bytes occupied by a variable or type, or the nesting level for

a scope symbol. value specifies an address or an offset.

This section describes the instructions that the assembler accepts. The detailed speci­

fication of how the particular instructions operate is not included; for this, see the

Intel documentation (80386 Programmer's Reference Manual).

The following list delineates the three main differences between the SunOS and

Intel 80386 assembly languages. This explanation covers all aspects of translation

from the Intel to SunOS assembler. On the SunOS assembler:

• All register names use the percent sign (%) as a prefix to distinguish them

from symbol names.

• Instructions with two operands use the left one as the source and the right

one as the destination. This follows the SunOS system's assembler conven­

tion, and is reversed from Intel's notation.

• Most instructions that can operate on a byte, word, or long may have b,

w, or 1 appended to them. When an opcode is specified with no type suf­

fix, it usually defaults to long. In general, the SunOS assembler derives

its type information from the opcode, whereas the Intel assembler can

derive its type information from the operand types. Where the type infor­

mation is derived motivates the b, w, and 1 suffixes used in the SunOS

assembler. For example, in the instruction movw $1, %eax thew suffix

indicates the operand is a word.

Three kinds of operands are generally available to the instructions: register, memo­

ry, and immediate. Full descriptions of each type appear in Notational Conventions

on page 180. Indirect operands are available only to jump and call instructions.

The' assembler always assumes it is generating code for a 32-bit segment. When 16-

bit data is called for (e.g., movw %ax, %bx), the assembler automatically gener­

ates the 16-bit data prefix byte.

Byte, word, and long registers are available on the 80386 processor. The code seg­

ment (%cs), instruction pointer (%eip), and flag register are not available as

explicit operands to the instructions.

The names of the byte, word, and long regi~ters available as operands and a brief

description of each appear on the next page; the segment registers are listed also.

Revision A, May 1988

Sun386i Developer's Guide· Appendix B - 80386 Assembly Language Definition 179

8-Bit (byte) General Registers
%al Low byte of %ax register

%ah High byte of %ax register

%el Low byte of %ex register

%eh High byte of %ex register

%dl Low byte of %dx register

%dh High byte of % dx register

%bl Low byte of %bx register

%bh High byte of %bx register

16-Bit (word) General Registers
%ax Low 16-bits of %eax register

%ex Low 16-bits of %ecx register

%dx Low 16-bits of %edx register

%bx Low 16-bits of %ebx register

%sp Low 16-bits of the stack pointer

%bp Low 16-bits of the frame pointer

% s i Low 16-bits of the source index register

%di Low 16-bits of the destination index register

32-Bit (long) General Registers
%eax 32-bit general register

%ecx

%edx

%ebx

%esp

%ebp

%esi

%edi

32-bit general register

32-bit general register

32-bit general register

32-bit stack pointer

32-bit frame pointer

32-bit source index register

32-bit destination index register

Segment Registers
%cs Code segment register; all references to the instruction space use this

register

%ds Data segment register, the default segment register for most references
to memory operands

% s s Stack segment register, the default segment register for memory
operands in the stack (i.e., default segment register for %bp, % sp,
%esp, and %ebp)

%es General-purpose segment register; some string instructions use this
extra segment as their default segment

% f s General-purpose segment register

%gs General-purpose segment register

Revision A, May 1988

Sun386i Developer's Guide

Introduction to Instruction
Descriptions

Notational Conventions

Appendix B- 80386 Assembly Language Definition 180

This section describes the SunOS 386 instruction syntax. Refer to page 178 for the

differences between the SunOS 386 and the Intel 386 assemblers.

Because the assembler assumes it is generating code for a 32-bit segment, it also

assumes a 32-bit address and automatically precedes word operations with a 16-bit

data prefix byte.

This section uses the following notational conventions:

• The mnemonics are-expressed in a regular expression-type syntax. Alterna­

tives separated by a vertical bar (1) and enclosed within square brackets

([J) denote that you must choose one of them. Alternatives enclosed

within curly braces ({ }) denote that you can use one or none of them. The

vertical bar separates different suffixes for operators or operands. For
example, imm [8 1161 32] indicates that an 8-, 16-, or 32-bit immediate
value is permitted in an instruction.

• imm [8 I 16 I 3 2 I 4 8 l - an immediate value. You defme immediate values
using the regular expression syntax previously described (see also Expres­

sions and Immediate Values on page 182). If there is a choice between
operand sizes, the assembler will choose the smallest representation.

• reg [8 116 I 32) -a general-purpose register, where each number indi-
cates one of the following:

• 32:%eax,%ecx,%edx,%ebx,%esi,%edi,%ebp,%esp

• 16:%ax,%cx,%dx,%bx,%si,%di,%bp,%sp

• 8:%al,%ah,%cl,%ch,%dl,%dh,%bl,%bh

• mem [8 I 1 6 I 3 2 I 4 8] - a memory operand; the 8, 16, 32, and 48 suffixes
represent byte, word, doubleword, and inter-segment memory address
quantities, respectively.

• rIm [8 I 16 I 3 2] - a general purpose register or memory operand; the
operand type is determined from the suffix. They are: 8 =byte, 16 =
word, and 32 = doubleword. The registers for each operand size are the
same as reg [8116132] above.

• creg- a control register; the control registers are: %cr0, %cr2, or
%cr3.

• dreg- a debug register; the debug registers are: %db0, %dbl, %db2,
%db3, %db6, %db7.

• sreg- a segment register; the segment registers are: %cs, %ds, % ss,
%es, %fs, and %gs.

• treg- a test register; the test registers are: %tr6 and %tr7.

• cc -condition codes; the 30 condition codes are:

a above

ae above or equal

b below

be below or equal

c carry

e equal

g greater

Revision A, May 1988

Sun386i Developer's Guide Appendix B- 80386 Assembly Language Definition 181

Addressing Modes

ge greater than or equal to

1 less than
le less than or equal to
na not above

nae not above or equal to
nb not below

nbe not below or equal to
nc no carry

ne not equal
ng not greater than
nge not greater than or equal to
nl not less than

nle not less than or equal to
no not overflow

np not parity

ns not sign

nz not zero

0 overflow

p parity
pe parity even

po parity odd

s sign

z zero

• di sp [8 I 3 2] -the number of bits used to define the distance of a rela­
tive jump; because the assembler only supports a 32-bit address space, only
8-bit sign extended and 32-bit addresses are supported.

• irnmPtr- an immediate pointer; when the immediate form of a long call
or a long jump is used, the selector and offset are encoded as an immediate
pointer.

Addressing modes are represented by
[sreg:] [offset] [([base] [,index] [,scale])], where all the items in
the square brackets are optional, but at least one is necessary. If you use any of the
items inside the parentheses, the parentheses are mandatory.

s reg is a segment register override prefix. It may be any segment register. If a seg­
ment override prefix is present, you must follow it by a colon before the offset
component of the address. s reg does not represent an address by itself. An address
must contain an offset component.

offset is a displacement from a segment base. It may be absolute or relocatable. A
label is an example of a relocatable offset. A number is an example of an absolute
offset.

base and index can be any 32-bit register. scale is a multiplication factor for
the index register field. Refer to Intel's 80386 Programmer's Reference Manual
for more details on 80386 addressing modes.

Revision A, May 1988

Sun386i Developer's Guide

Expressions and Immediate
Values

Processor Extension
Instructions

Control and Test Register
Instructions

New Condition Code
Instructions

NOTE

Appendix B- 80386 Assembly Language Definition 182

Following are some examples of addresses:

movl var, %eax
Move the contents of memory location var into %eax.

movl %cs:var, %eax
Move the contents of the memory location var in the code segment into

%eax.

movl $var, %eax
Move the address of var into %eax.

movl array_base(%esi), %eax

Add the address of memory location array_ base to the contents of % e s i

to get an address in memory. Move the contents of this address into %eax.

movl (%ebx, %esi, 4), %eax
Multiply the contents of %e s i by 4 and add this to the contents of %ebx

to produce a memory reference. Move the contents of this memory location

into %eax.

movl struct_base(%ebx, %esi, 4), %eax

Multiply the contents of %esi by 4, add this to the contents of %ebx, and

add this to the address of st ruct _base to produce an address. Move the

contents of this address into %eax.

An immediate value is an expression preceded by a dollar sign:

immediate: "$" expr

Immediate values carry the absolute or relocatable attributes of their expression

component. Immediate values cannot be used in an expression, and should be consid­

ered as another form of address, i.e., the immediate form of address.

The following five sections list instructions that are new or extended (to 32-bit

operands) in the 80386 compared with the 80286 microprocessor.

mov{l} creg, reg32

mov{l} dreg, reg32

mov{l} reg32, creg

mov{l} reg32, dreg

mov{l} treg, reg32

mov{l} reg32, treg

The UNIX assembler accepts mov or movl as exactly the same instruction for the

control and test register group.

jcc

setcc

disp32

r/m8

Revision A, May 1988

Sun386i Developer's Guide

New Bit Instructions

NOTE

New Arithmetic Instruction

NOTE

New Move with Zero or Sign
Extension Instructions

New Data Movement
Instructions

NOTE I

Appendix B- 80386 Assembly Language Definition 183

All the new bit instructions are only defined for word and long register or memory
operands.

bt{wl}
bt{wl}

bts{wl}

bts{wl}

btr{wl}

btr{wl }

btc{wl}

btc{wl}

bsf{wl}
bsr{wl}

shld{wl}

shld{wl}

shrd{wl}

shrd{wl}

reg[16132), r/m[16132)
imm8, r/m[16132)
imm8, r/m[16132)
reg[16132], r/m[16132)
imm8, r/m[16132)
reg[16132), r/m[16132]
imm8, r/m[16132]
reg[16132], r/m[16132]
reg[16132], r/m[16132]
reg[16132), r/m[16132]
imm8, reg[16132], r/m[16132]
reg [16 I 32] , r /m [16 I 32]
imm8, reg [16132] , r /m [16 I 32]
reg [16 I 32] , r /m [16 I 32]

All the bit operation mnemonics without a type suffix default to long.

imul r /m [16 I 32] , reg [161 32]

This is the uncharacterized multiply.lt has a 16- or 32-bit product, as opposed to a
32- or 64-bit product.

movzbw r/m8, reg16
movzbl r/m8, reg32
movzwl r/m16, reg32
movsbw r/m8, reg16
movsbl r/m8, reg32
movswl r/m16, reg32

clr{bwl} r/m[8116132]
lea{wl} mem32, reg[16132]
mov{bwl} r/m[8116132), reg[8116132]
mov{bwl} reg[8116132], r/m[8116132]
mov{bwl} imm [8 I 1 6 I 3 2 J , r/m[8116132]
pop{wl} r/m[16132)
popa{wl}

push{bwl} imm[8116132]
push{wl} r/m[16132]
pusha{wl}
xchg{bwl} reg[8116132], r/m[8116132]

pushb sign extends the immediate byte to a long, and pushes a long (4 bytes)
onto the stack.

Revision A, May 1988

Sun386i Developer's Guide Appendix B- 80386 Assembly Language Definition 184

NOTE2 When a type suffix is not used with a data movement mnemonic, the type defaults to

1 ong. The SunOS assembler does not derive the type of the operands from the

operands. (See the last bullet item in Differences between the SunOS and Intel

80386 Assemblers on page 178.)

Segment Register Instructions lds{wl}

les{wl}

lfs{wl}

lgs{wl}

lss{wl}

mem[32148], reg[16132]

mem[32148], reg[16132]

mem[32148], reg[16i32]

mem[32148], reg[16132]

mem[32i48], regl:Coi32]

sreg[esldslssles] , r/m16

r/m16, sreg[esldslssles]

sreg[dslssleslfslgs]

sreg[esldslssleslfslgs]

110 Instructions

Flag Instructions

movw

movw

popw

pushw

NOTE 1 , The pushw and popw push and pop 16-bit quantities. This is done by using a data

size override byte (OSP byte).

NOTE 2 When the type suffix is not used with the lds, les, lfs, lgs, and lss instruc­

tions, a 48-bit pointer is assumed.

NOTE 3 Because the assembler assumes no type suffiX means a type of long, the type suffix

ofw, when working with the segment registers, is mandatory.

NOTE

NOTE

in{bwl} irmn8

in{bwl} %dx

ins{bwl} %dx

out{bwl} irmn8

out{bwl} %dx

outs{bwl} %dx

When the type suffix is left off the 110 instructions, they default to long. Therefore,

in= inl, out= outl, ins= insl, and outs= outsl.

lahf

sahf

popf{wl}

pushf{wl}

erne

ele

ste

eli

sti

eld

std

When the type suffix is not used, the pushf and popf instructions default to

long,pushf = pushfl andpopf = popfl. A pushw orpopw will push or pop

a 16-bit quantity. This is done by using the OSP prefix byte.

Revision A, May 1988

Sun386i Developer's Guide Appendix B- 80386 Assembly Language Definition 185

Arithmetic/Logical
Instructions

add{bwl} reg[8116132)1 r/m[8116132]
add{bwl} r/m[8116132] 1 reg[8116132]
add{bwl} imm [8 I 1 6 I 3 2] 1 r/m[8116132]
adc{bwl} reg[8116132]1 r/m[8116132]
adc{bwl} r/m[8116132] 1 reg[8116132]
adc{bwl} imm [8 1161 32 J 1 r/m[8116132]
sub{bwl} reg[8116132]1 r/m[8116132]
sub{bwl} r/m[8 16132], reg[8116132]
sub{bwl} imm[8 16132]1 r/m[8116132]
sbb{bwl} reg[8 16132], r/m[8116132]
sbb{bwl} r/m[B 16132]1 reg[8116132]
sbb{bwl} imm[8 16132]1 r/m[8116132]
cmp{bwl} reg[8 16132], r/m[8116132]
cmp{bwl} r/m[B 16 I 32] I reg[8116132]
cmp{bwl} imm[8 16132], r/m[8116132]
inc{bwl} r/m[8 16132]
dec{bwl} r/m[8 16132]

test{bwl} reg[8 16132], r/m[8116132]
test{bwl} r/m[8 16132], reg[8116132]
test{bwl} imm[B 16132], r/m[8116132]
sal{bwl} imm8 1 r/m[8116132]
sal{bwl} %cl 1 r/m[8116132]
shl{bwl} imm8 1 r/m[8116132]
shl{bwl} %cl 1 r/m[8116132]
sar{bwl} imm8 1 r/m[8116132]
sar{bwl} %cl 1 r/m[8116132]
shr{bwl} imm8 1 r/m[8116132]
shr{bwl} %cl 1 r/m[8116132]
not{bwl} r/m[8116132]

neg{bwl} r/m[8116132]

bound{wl} reg[16132]1 r/m[16132]
and{bwl} reg [8 I 16 I 3 2] 1 r/m[8116132]
and{bwl} r/m[8116132] 1 reg[8116132]
and{bwl} imm [8 I 1 6 I 3 2] 1 r/m[8116132]
or{bwl} reg[8116132]1 r/m[8116132]
or{bwl} r/m[8116132] 1 reg[8116132]
or{bwl} imm[8116132] 1 r/m[8116132]
xor{bwl} reg[8116132] 1 r/m[8116132]
xor{bwl} r/m[8116132]1 reg[8116132]
xor{bwl} imm [8 116 I 32] 1 r/m[8116132]

NOTE When the type suffix is not included in an arithmetic or logical instruction, it
defaults to a long.

Revision A, May 1988

Sun386i Developer's Guide

Multiply and Divide
Instructions

Conversion Instructions

Decimal Arithmetic
Instructions

Coprocessor Instructions

String Instructions

NOTE

NOTE

Appendix B- 80386 Assembly Language Definition 186

imul{wl}

mu1{bw1}

imm[16\32], r/m[16\32], reg[16\32]

r/m(B\16\32]

div{bw1} r/m[B\16\32]

idiv{bw1} r/m[B\16\32]

When the type suffix is not included in a multiply or divide instruction, it defaults to

a long.

cbtw

cwtd

cwt1

c1td

Convert lryte to word: %a1 -> %ax
Convert word to double: %ax-> %dx: %ax

Convert word to long: %ax -> %eax

Convert long to double: %eax -> %edx: %eax

daa

das

aaa

a a

a am

aad

wait

esc

movs [bw1]

movs

smov [bw1]

smov

cmps [bw1]

cmps

scmp[bw1]

scmp

stos [bw1]

stos

ssto[bw1]

ssto

lods[bwl]

1ods

s1od[bw1]

s1od

scas[bw1]

seas

same as movs1

same as movs [bw1]

same as smov 1

same as cmp s 1

same as cmps [bw1]

same as s cmp 1

same as stos1

same as stos [bw1]

same as ssto1

same as lodsl

same as 1ods [bw1]

same as s1od1

same as scas1

Revision A, May 1988

Sun386i Developer's Guide Appendix B-80386 Assembly Language Definition 187

Procedure Call and Return
Instructions

Jump Instructions

Interrupt Instructions

Protection Model
Instructions

ssca [bwl] same as seas [bwl]
ssca same as sscal
xlat

rep

repnz

repz

NOTE All Intel string op mnemonics default to long.

NOTE

lcall inunPtr
lcall r /m4 8 (indirect)
lret

lret imm16

call disp32
call r/m32 (indirect)
ret

ret imm16
enter imml6, imm8
leave

jcc disp[8132]
jcxz disp[8132]
loop disp[8132]
loopnz disp[8132]
loopz disp[8132]
jmp disp[8132]
ljmp inunPtr
jmp r/m32 (indirect)
ljmp r /m4 8 (indirect)

The Sun386i assembler optimizes for SDls (Span Dependent Instructions). Conse­
quently, intra-segment jumps are optimized to their short forms when possible.

int3

int imm8

into

iret

sldt

str

lldt

ltr

verr

verw

sgdt
sidt

r/m16

r/ml6

r/ml6

r/ml6

r/m16

r/m16

r/m32
r/m32

Revision A, May 1988

Sun386i Developer's Guide

Miscellaneous Instructions

B.S. Translation Tables
for Sun OS to Intel
Float Mnemonics

Real Transfers

Appendix B- 80386 Assembly Language Definition 188

lgdt r/m32

lidt r/m32

smsw r/m32

lmsw r/m32

lar r/m32, reg32·

lsl r/m32, reg32

clts

lock
nop

hlt
addr16

data16

The following tables show the relationship between the SunOS and Intel mnemon­

ics. The mnemonics are organized into the same functional categories as the Intel

mnemonics. (The Intel mnemonics appear in the second section of the 80287 numeric

supplement.)

The notational conventions used in the table are as follows:

• When letters appear within square brackets ([]) exactly one of the letters

is required.

• If letters appear within curly braces ({ }) then either one or none of the

letters is required.

• When a group of letters is separated from other letters by a bar (I) with­

in square brackets or curly braces, then the group of letters between the

bars or between a bar and a closing bracket or brace is considered an atomic

unit.

For example, fld [1st] means fldl, flds, or fldt.;, fst { ls} means fst,

fstl, or fsts; and fild{ 1111} means fild, fildl, or fildll.

The Sun OS operators are built from the Intel operators by adding suffixes to them.

The 80287/387 deals with three data types: integer, packed decimal, and real. The

SunOS assembler is not typed; the operator has to carry with it the type of data item

it is operating on. If the operation is on an integer, the following suffixes apply: 1

for Intel's short (32 bits), and 11 for Intel's long (64 bits). If the operator

applies to reals, then: s is short (32 bits), 1 is long (64 bits), and t is tempo­

rary real (80 bits).

SunOS INTEL Operation

fld[lst] fld Load real

fst{ls} fst Store real

fstp{lst} fstp Store real and pop

fxch fxch Exchange registers

Revision A, May 1988

Sun386i Developer's Guide Appendix B - 80386 Assembly Language Definition 189

Integer Transfers SunOS INTEL Operation

fild{llll} fild Integer load
fist{l} fist Integer store
fistp{llll} fistp Integer store and pop

Packed Decimal Transfers SunOS INTEL Operation

fbld fbld Packed decimal (BCD) load
fbstp fbstp Packed decimal (BCD) store and pop

Addition SunOS INTEL Operation

fadd{ls} fadd Real add
faddp faddp Real add and pop
fiadd{l} fiadd Integer add

Subtractiollll SunOS INTEL Operation

fsub{ls} fsub Subtract real
fsubp fsubp Subtract real and pop
fsubr{ls} fsubr Subtract real reversed
fsubrp fsubrp Subtract real reversed and pop
fisub{l} fisub Integer subtract
fisubr{l} fisubr Integer subtract reverse

Multiplication SunOS INTEL Operation

fmul{ls} fmul Multiply real
fmulp fmulp Multiply real and pop
fimul{l} fimul Integer multiply

Division SunOS INTEL Operation

fdiv{ls} fdiv Divide real
fdivp fdivp Divide real and pop
fdivr{ls} fdivr Divide real reversed
fdivrp fdivrp Divide real reversed and pop
fidiv{l} fidiv Integer divide
fidivr { 1} fidivr Integer divide reversed

Revision A, May 1988

Sun386i Developer's Guide Appendix B - 80386 Assembly Language Definition 190

Other Arithmetic Operations SunOS INTEL Operation

fsqrt fsqrt Square root

fscale fscale Scale

fprem fprem Partial remainder

frndint frndint Round to integer

fxtract fxtract Extract exponent and significand

fabs fabs Absolute value

fchs fchs Change sign

Comparison Instructions SunOS INTEL Operation

fcom{ls} fcom Compare real

fcomp{ls} fcomp Compare real and pop

fcompp fcompp Compare real and pop twice

ficom{l} ficom Integer compare

ficomp{l} ficomp Integer compare and pop

ftst ftst Test

fxam fxam Examine

Transcendental Instructions SunOS INTEL Operation

fptan fptan Partial tangent

fpatan fpatan Partial arctangent

f2xml f2xml 2x-l

fyl2x fyl2x Y * log2 X

fyl2xpl fyl2xpl Y * log2 (X+l)

Constant Instructions SunOS INTEL Operation

fldl2e fldl2e Loadlo&,E

fldl2t fldl2t Loadlog2 10

fldlg2 fldlg2 Loadlog2 2

fldln2 fldln2 Load lo&, 2

fldpi fldpi Load pi

fldz fldz Load+O

Revision A, May 1988

Sun386i Developer's Guide Appendix B- 80386 Assembly Language Definition 191

Processor Control SunOS INTE'L Operation
Instructions finit/fnint finit/fnint Initialize processor

fnop fnop No operation
fsave/fnsave fsave/fnsave Save state
fstcw/fnstcw fstcw/fnstcw Store control word
fstenv/fnstenv fstenv/fnstenv Store environment
fstsw/fnstsw fstsw/fnstsw Store status word
frstor frstor Restore state
fsetpm fsetpm Set protected mode
fwait fwait CPU wait
fclex/fnclex fclex/fnclex Clear exceptions
fdecstp fdecstp Decrement stack pointer
ffree ffree Free registers
fincstp fincstp Increment stack pointer

Revision A, May 1988

c
File System Layout

File System Layout 193

C.l. Terms.. 195

C.2. Layout Overview.. 196

System Disk.. 1%

Additional Disks 197

C.3. I File System... 197

C.4. lusr File System.. 200

C.5. lfiles<n> File System.. 202

C.6. I export Directory... 203

C.7. lvol Directory.. 205

C.8. Application Directory Structure... 206

Sun386i Developer's Guide

C.l. Terms

Appendix C- File System Layout 195

c
File System Layout

This appendix describes the file system layout for the Sun386i system. Much of this
structure is similar to that of the SunOS 4.0 system on other architectures. The 4.0
layout is intended to make it easier for a single server to support clients of different
architectures. The Sun386i layout also provides a standard place to mount additional
disks and makes it easier for users to access network files and applications without
knowing the location of files and without changing .login or . cshrc files.

Some file system differences also exist between Sun386i systems and other Sun sys­
tems to accommodate the division of Sun386i system software. The Sun386i system
groups much of system software into related files and programs called clusters,
which users can add to their systems (Chapter 9 contains details). For compatibility
between systems, and because previously existing programs expect to find files in
their traditional directories, some directories now contain symbolic links to directo­
ries that contain the actual files.

If you'll be distributing software for the Sun386i system, the /usr I local directo­
ry is important to you. Page 201 describes this directory, and pages 206-207 describe
the preferred directory structure for releasing software for this workstation.

The Sun Network File System (NFS) allows any computer with a local disk to act
as a file server by exporting its file systems to clients on a network. The client com­
puters may themselves be file servers of other file systems.

The Yellow Pages (YP) is a distributed network database. Key information about
the systems and users on the network is stored in the YP database on the master
server and slave servers. The master server keeps the master copy of the database,
using it to update slave servers. The YP is stored on the master server and all the
slave servers to ensure the availability of the database in case a server goes down.
However, the master server must be running for the updates to YP to occur.
Sun386i Advanced Administration discusses NFS and YP in more detail.

The automounter (automount(8)) is a daemon that automatically and transparently
mounts an NFS file system at a temporary mount point whenever a file or directory
within that system is opened. The mounted file system is made available using a
symbolic link to the mount point. Sun386i Advanced Administration and the
automount(8) man page contain more information.

Revision A, May 1988

Sun386i Developer's Guide

C.2. Layout Overview

System Disk

Appendix C -File System Layout 196

The Sun386i file system layout:

• Provides easier maintenance of servers and clients

• Enables easier mixing of remote and local file systems

• Provides cleaner support of multiple architectures

• Provides a hierarchy that accounts for growth, enabling users to mount
additional disks without affecting file names

• Minimizes disruption to existing programs when files are moved

• Minimizes symbolic link confusion

• Minimizes user confusion when they log in to different systems

Sun386i software is divided among three primary file systems: I (root), /usr, and
I files. Each is described briefly in the next section.

The disk that the system boots from is called the system disk. The standard system
disk layout consists of the following special device files and partitions:

• I dev I root a - contains the root(/) file system; 8 Mbytes

• /dev/rootb

• /dev/rootg

• /dev/rooth
size

contains the system's swap area; 16 Mbytes

contains /usr file system; 19 Mbytes

contains the I files file system; size depends on disk

The default I etc/ fstab file contains entries to mount the corresponding file sys­
tems using the partitions listed above. This enables users to boot systems from any
disk without modifying I e t c I f stab.

The standard Sun386i file systems and directories are briefly described below. Subse­

quent sections detail the contents of each one.

I (root) File System

I (root) is the major Sun OS file system, located at the top of the hierarchical file
system tree. It contains machine-specific files and directories crucial for system oper­
ation, such as the kernel, a device directory listing the equipment for the configura­
tion, and programs used for booting the multiuser version of the operating system.
The contents of I is described on the following page.

/usr File System

/usr contains executable commands, system programs, and library routines, as well

as some executables that were formerly under I (such as system administration pro­
grams). This is a read-only file system to enable network-wide mounting and shar­
ing. Because /usr is read-only, users see the same files regardless of where they log
in. /usr is intentionally very full, so do not add to this file system. The contents
of /usr is shown on page 200.

/f.Ues File System

I files contains free space remaining after allocation of the root, swap, and usr

partitions./files contains home directories, unbundled and third-party applica­
tions, optionally loaded Application Supplement and Developer's Toolkit clusters,

Revision A, May 1988

Sun386i Developer's Guide

Additional Disks

C.3. I File System

/bin

boot.S386

/dev

/etc

Appendix C -File System Layout 197

and root, swap, and dump directories for diskless clients. The contents of
If il e s is delineated on page 202. Disks added to the system are mounted on
I filesn, as described in the next section, Additional Disks.

/home Directory
/home is used in conjunction with the automounter (automount(8)) to provide
transparent access to a user's home directory, regardless of where the directory
resides on the network. /home is described further as part of the I file system on
the next page.

/export Directory
I export contains symbolic links to the local files and directories that diskful sys­
tems export to other machines on the network. Only the links, not the directories
themselves, are stored in I export. Other systems on the network cannot see the
actual location of exported directories. Pages 203-205 provide more information on
/export.

/vo~ Directory
/val is an automount(8) directory for volumes. A volume is a collection of relat­
ed files dedicated to the same function, such as all files required to run an unbundled
or third-party application. Administrators can move volumes between partitions and
systems with relative ease. /val is described more fully on page 205.

Additional disks added to the Sun386i system have one partition, sdOc, which pro­
vides access to the entire disk. Each additional disk is mounted on I filesn, where
n indicates the order of the disk added (I U le s 1, If i 1 e s 2, and so on). n does not
correspond to the disk's special device file name in I dev.

I contains the following files and directories:

/bin /files<n> /mnt /tftpboot VERSION
boot.S386 /home /net /tmp /vmunix
/dev kadb /sbin /tmp_mnt /val
/etc /lib /stand /usr
/export /lost+found /sys /var

Starting with Release 4.0, /bin is a symbolic link to I us r /bin, described on page
200.

boot . S 3 8 6 is the program used to load the SunOS operating system.

I dev is the device directory, which contains all device files (also called device
nodes) such as rstO (quarter-inch tape drive), I dev/ttya (serial port), or
I dev I pp 0 (parallel port), for a particular configuration.

I etc contains system-specific data files and subdirectories primarily used by system
administrators; includes the files created during installation.

Revision A, May 1988

Sun386i Developer's Guide

/export

/files<n>

/home

kadb

/lib

/lost+found

/mnt

/net

/sbin

Appendix C- File System Layout 198

I export is described in Section C.6, starting on page 203.

I files<n> is the mount point for the If iles<n> file system, described in Section
C.S starting on page 202.

/home is an automount(8) directory that provides automatic access to home direc­
tories for all users on the network. By default, users' home directories are stored in
I files<n>/home/ groupname/username on various systems, but passwd Yellow
Pages (YP) entries for each user specify the home directory path as
/home/ username. The automounter (automount(8)) takes references to
/home/username and uses the auto. home YP map to return symbolic links to the
home or -username directory. /home is shipped empty; /home/username does not
exist as part of the file system on disk, but rather is created only after an
automount reference is made to it.

If the auto . horne entry indicates that the home directory is on a remote system,
the automounter creates a temporary mount point under I tmp _ mnt and uses this
point to mount the remote directory onto the local system via NFS. The auto­
mounter returns a symbolic link to the mount point.

If the home directory is on the local system, the automounter returns a symbolic
link to the directory. For more information on the automounter, see Sun386i
Advanced Administration, and the auto. home(S) and automount(8) man pages.

kadb(8) is the kernel debugger program.

I lib is a symbolic link to /usr I lib, described on page 200.

I lost+found is usually empty. However, if I becomes damaged, the file system
check program (fsck(8)) places links to any files that it cannot link elsewhere in
this file system in I lost+found.

/mnt is a mount point for temporarily mounting systems with the mount(8)
command.

/net is an automount(8) point used by the SNAP backup facility. Experienced
users can also use /net to access directories on remote systems, although /home
and /vol are preferred. Before using /net, make sure the system is an NFS file
server (diskful system) and the path name is exported
(/net/ hostname/ export/pathname).

I sbin contains executable files necessary to check and mount the /usr file system
and to bring up a multiuser system at boot time:

• I sbin/ f sck -checks and repairs the file system

• I sbin/ ini t -performs process control initialization

• I sbin/mount -mounts file systems

• /sbin/netconfig -configures the network

Revision A, May 1988

Sun386i Developer's Guide Appendix C -File System Layout 199

/stand

/sys

/tftpboot

/tmp

/tmp_mnt

/usr

/var

VERSION

/vmunix

/vol

• I sbin/ reboot -reboots the system

• I sbin/ sh -standard command interpreter

I stand is the diagnostics directory for standalone programs. Contains a stand­
alone copy program, tape boot program, and an extra copy of the boot program
(boot. S386).

I sys is a symbolic link to /usr I sys, described on page 201.

/tftpboot contains the files necessary to boot diskless clients on the network.

/tmp holds files temporarily; utilities such as cc(l) and ar(l) create temporary
data files in I tmp. All files in I tmp, with the exception of subdirectories, are
deleted each time the system is rebooted.

/tmp _mnt is the directory that the automounter (automount(8)) uses to make
mount points for temporary file systems. Do not add files to or remove files from
this directory.

Ius r is the mount point for the Ius r file system, described on the following page.

/var contains the following directories and symbolic links. Diskless systems con­
tain directories, not the links to directories located elsewhere.

• /var/adm -a symbolic link to /files<n>/var/adm

• /var I crash -a symbolic link to I files<n>/var I crash

• /var I log -directory for log files; shipped empty

• /var /preserve -a symbolic link to I files<n> /var /preserve

• /var I recover -directory for crash recovery scripts (on the Sun386i
system only); shipped empty

• /var/spool -a symbolic link to /files<n>/var/spool

• /var /tmp -a symbolic link to I files<n>/var /tmp

• I v ar I yp - directory containing Yellow Pages databases

VERS I ON is a text file specifying the version of the root file system.

/vmunix is the SunOS system kernel.

/vol is an automount(8) directory described in Section C.7 starting on page 205;
shipped emtpy.

Revision A, May 1988

Sun386i Developer's Guide

C.4. /usr File System

/usr/Sbin

/usr/Sinclude

/usr/5lib

/usr/adrn

/usr/bin

/usr/boot

/usr/dict

/usr/etc

/usr/games

/usr/hosts

/usr/include

/usr/lib

Appendix C -File System Layout 200

I us r is read-only and shared. It contains only architecture-specific executables and
libraries, including the files and directories:

Sbin etc man
Sinclude games mdec
Slib hosts old
adrn include pub
bin lib sees
boot local share
diet lost+found spool

I us r I Sb in contains UNIX System V binary files.

/usr I Sin elude contains UNIX System V include files.

I us r I 51 ib contains UNIX System V libraries.

/usr/adrn is a symbolic link to I files<n>/var/adrn.

src
stand
sys
sysex
tmp
ucb
VERSION

/usr/bin contains basic SunOS operating system commands, including those for­
merly located in /bin, such as ls(lV), cat(lV), and mkdir(l).

/usr/boot is a directory that contains symbolic links to files in I sbin and I.

/usr/ diet is a database that contains English language spelling lists used by the
spell(1) spelling checker, if the optional cluster spell_ check is loaded;
shipped empty.

Ius r I etc contains the commands and files used for system administration and
maintenance.

/usr/games is a symbolic link to I files<n>/ loaded/ appl/garnes/games,
which exists only if the optional games cluster is loaded.

/usr/hosts is a symbolic link to I files<n>/hosts.

/usr I include is set up to contain all of the standard include (header) files used
in C programs; these files, traditionally named with a . h extension, contain defini­
tions of useful constants and macros.

Ius r I 1 ib contains more than 100 files used by Sun OS utilities and files formerly
located in I lib (which is now a symbolic link to /usr I lib}.

/usr I lib includes the subdirectory /usr I lib/ load, which contains the cluster
size and file database used by the load(1), loadc(l), unload(l), unloadc(l),
and cluster(l) commands; also contains the filesizes flle which lists the
names and sizes of files within each cluster (on the Sun386i system only).

Revision A, May 1988

Sun386i Developer's Guide

/usr/local

/usr/lost+found

/usr/man

/usr/mdec

/usr/old

/usr/pub

/usr/sccs

/usr/share

/usr/spool

/usr/src

/usr/stand

/usr/sys

/usr/sysex

/usr/tmp

/usr/ucb

/usr/VERSION

Appendix C -File System Layout 201

/usr I local is reserved for third-party and unbundled products. On Sun386i sys­
tems, it is a symbolic link to /files<n>/local, described on the next page.

/usr/ lost+found is usually empty. However, if /usr becomes damaged, the
file system check program (fsck(8)) places links to any files that it cannot link
elsewhere in this file system in /usr/ lost+found.

/usr/man is a symbolic link to /usr/ share/man, described later in this section.

/usr/mdec is a symbolic link to
/files<n>/ loaded/ appl/ advanced _admin/mdec, which exists only if the
optional advanced_ admin cluster (containing boot blocks and the install boot
program for the Sun386i system) is loaded.

/usr I old is a symbolic link to I files<n> I loaded/ appl/ old, which exists
only if the optional old cluster is loaded. The old cluster contains commands that
have been phased out but retained for compatibility.

Ius r I pub contains data files used in formatting and printing.

/usr/sccs is a symbolic link to /files<n>/ loaded/devel/sccs/sccs,
which exists only if the optional s c c s cluster is loaded.

/usr I share contains architecture-independent sharable files, shown below:

• /usr I share/ lib - contains tab set, termcap, time zone, and termi­
nal information

• /usr I share/man - symbolic link to
/files<n>/loaded/appl/man_pages

/usr/ spool is a symbolic link to /files<n>/var/spool.

/usr/ src is a symbolic link to I files/ src, described on page 203.

/usr/stand is a symbolic link to I stand, described on page 199.

/usr/ sys is a symbolie'link to /files<n>/loaded/devel/ config/sys,
which exists only if the optional con fig cluster is loaded.

/usr I sysex contains System Exerciser files.

/usr /tmp is a symbolic link to If iles<n> /var /tmp.

/usr/ucb contains commands that originated with the Berkeley UNIX system
(ucb is an acronym for University of California at Berkeley).

/usr /VERSION is a text file specifying the version of this /usr file system.

Revision A, May 1988

Sun386i Developer's Guide

C.S. /filas<n> File
System

I files<n>/dump

lfiles<n>/exec

lfiles<n>/horne

lfiles<n>/hosts

lfiles<n>/loaded

lfiles<n>/local

lfiles<n>/local.unix

Appendix C -File System Layout 202

I files<n> could contain the directories shown in this section (notall of these
will exist on disks added to the expansion unit). I files is the name of this file
system on the system disk. The name of this file system on the first additional disk
added to the system is If i 1 es 1, for the second disk added If i le s 2, and so on.

dump
exec
horne

hosts
loaded
local

local.unix
lost+found
root

src
swap
var

I flles<n>/ dump is reserved for kernel core dumps of diskless clients if they
crash; shipped empty.

/files<n>/exec contains the native executables (typically symbolic links to
/usr file systems) of each Sun workstation architecture and each SunOS release on
the server's disk.

I files<n>/horne is reserved for the home directories of each user on a server
{/file s<n> I home I groupnamelusername) .

/files<n>/hosts contains the MAKEHOSTS script, which creates a symbolic link
to the rsh(lC) command for each host in the /etc/hosts file. Use of
MAKEHOSTS is not recommended because it does not work in heterogeneous net­
works; included for compatibility.

I files<n>/ loaded is reserved for optional software clusters added to the
Sun386i system. When loaded, clusters reside in or beneath the two directories
shown below. Users can execute commands within clusters by just entering the com­
mand name, which is a link to the command location in one of these directories.

• appl - mount or load points for Application SunOS optional clusters;
shipped empty.

• de vel - mount or load points for Developer's Toolkit clusters;
shipped empty.

I files<n>l local is reserved for third-party and unbundled software added to a
Sun386i system; shipped empty. The suggested location for both third-party and Sun
unbundled applications is /usr I local/ application_name, which on Sun386i sys­
tems, is a link to /files/ local/application_name. For more information on the
subdirectories you should include with your applications, refer to Section C.8 on
pages 206-207.

To enable network-wide access of files and applications, administrators can include
links to applications in /files<n>/local. unix, as described below.

I files<n>/ local. unix is on the server that contains /vol/ local (the Yel­
low Pages master by default). It contains:

• bin - contains shell scripts; also designed to contain links that point
to /usr /bin/ start applic for each application that has its own vol­
ume. System administrators can create links in

Revision A, May 1988

Sun386i ~veloper's Guide Appendix C- File System Layout 203

/files<n>/lost+found

/files<n>/root

/files<n>/src

/files<n>/swap

/files<n>/var

C.6. I export Directory

I files/ local. unix/bin that have the same name as the application.
Then, if an administrator exports the application and makes it accessible
from a volume, any user on the network can execute the application sim­
ply by entering application_name. The start_applic script sets envi­
ronment variables for the application, and begins application execution on
the user's machine.

• bin. arch - contains architecture-dependent files, where arch can be
either sunl, sun2, sun3, sun4, or sun386.

Sections C.6 and C.7 briefly describe exwrting and volumes, and pages 96-981ist
the steps to export and create a volume for an application; Sun386i Advanced Admin­
istration contains details.

I files<n>/ lost+found is usually empty. However, if /files<n> becomes
damaged, the file system check program (f s ck(8)) places links to any files that it
cannot link elsewhere in this file system in I files<n>/ lost+found.

If iles<n> I root is reserved for root directories for all diskless clients of a server
(I files<n> I root/ hostname).

I fi 1 e s <n> I s r c is not present on all configurations. If your machine is licensed to
contain source code, it will reside in this directory.

I files<n>/ swap is reserved for individual swap areas for all diskless clients of a
server (I files<n>/ swap/ hostname).

I files<n>/var contains subdirectories that have files that tend to grow, such as:

• /files<n>/var/ adm - contains system accounting and log files

• /files<n>/var/ crash- is reserved for kernel core dumps of servers
and standalone systems if they crash; shipped empty.

• /files<n>/var/preserve -holds files saved by the vi and ex edi­
tors if the system crashes

• If iles<n> /var I spool -contains files used for printing and other
spooling functions

• /files<n>/var/ sysex- directory where the System Exerciser writes
its temporary and log files. The System Exerciser runs under the SunOS
system and verifies operation of the total system, including operating sys­
tem software (on Sun386i systems only).

• /files<n>/var/tmp -contains temporary files placed here by pro­
grams; unlike I tmp, the files in this directory are not deleted when you
reboot the system

I export contains symbolic links to local directories that diskful systems export
to other machines on the network. Many of these links already exist on the system,
and others are created when performing certain administrative functions via SNAP
or New User Accounts. In both cases, the system edits the I etc/ exports file to
include information on exported directories.

Revision A, May 1988

Sun386i Developer's Guide

/export/dump

/export/exec

/export/home

/export/loaded

Appendix C -File System Layout 204

To export additional directories:

1. Create a symbolic link to the directory; for example,
I export/ local/ application_name is the recommended symbolic link
to /usr<n>/local/application_name.

2. Includethatlinkin /etc/exports.
3. Run export f s -a to notifiy the mount daemon of the change.

Sun386i Advanced Administration and the exports(5) and exportfs(8) man
pages contain more information about exporting directories.

The leaf nodes (final components of path names) that the system typically exports
are shown below.

If this system is a boot server for diskless clients, I export/ dump contains sym­
bolic links to a client system's dump directory if the server is saving crash dumps
for clients:

I export I dump I client _systemname is a symbolic link to
If ile s<n> I dump I client _systemname

I export/ exec contains a symbolic link for each software architecture of the
SunOS system loaded on this workstation. Each link points to the particular
release's location:

/export/exec/arch is a symbolic link to /export/exec/arch.
<OS release>, which is a symbolic link to /usr if the server is running the
same <arch>.<OS release> as the I exec being exported; if this is not the case,
then I export I exec/ <arch>.<OS release> is a symbolic link to
/files<n>/exec/<arch>.<OS release>

where <arch> can be either sunl, sun2, sun3, sun4, or sun38 6 and
<OS release> has the format SunOS4.0, SunOS4.1BETA1, SunOS4.1BETA2, and
soon.

Diskless clients mount I us r from their boot server, using the entry that Automatic
System Installation places in I etc/bootpararns:

usr =server: I export I exec/ <arch>.<OS release>

If this system has a disk with users' home directories, I export/home contains
symbolic links to each user's home directory:

I export /horne/ groupname/username is a symbolic link to
I files<n> /horne/ groupname/username

I export/ loaded contains a symbolic link that points to each optional Applica­
tion Supplement or Developer's Toolkit cluster added to this system.

If the architectures of both machines are the same, then:

I export/ loaded/ <arch>.<OS release> is a symbolic link to
/files<n>/loaded

Revision A, May 1988

/

Sun386i Developer's Guide

/export/local

/export/local.unix

/export/root

/export/swap

C.7. /vol Directory

Appendix C -File System Layout 205

For different architectures:

I export I loaded/ <arch>.<OS release> is a symbolic link to
If ile s<n> I loaded/ <arch>.<OS release>

where <arch> can be either sunl, sun2, sun3, sun4, or sun386 and
<OS release> has the format SunOS4.0, SunOS4.1BETAl, SunOS4.1BETA2, and
soon.

Diskless clients mount I files<n>/ loaded from their boot server, using the
entry that Automatic System Installation places in I etc/bootpararns:

/files<n>/loaded - se~er:/export/loaded

I export/ local is reserved for symbolic links to exported applications, in the
format I export I local/ application_name. Links resolve to
/usr I local/ application_name.

/export/local. unix is a symbolic link to /files<n>/ local. unix,
described on pages 202-203.

If this system is a boot server for diskless clients, I export/ root contains sym­
bolic links to each client system's root directory:

/export/root/client_systemname is a symbolic link to
I files<n>/ root/ client_systemname

Diskless clients mount I from their boot server, using the entry that Automatic Sys­
tem Installation places in I etc/bootparams:

root = se~er: I export I root I client_ systemname

If this system is a boot server for diskless clients, I export/ swap contains sym­
bolic links to each client system's swap file:

/export/ swap/client_systemname is a symbolic link to
I files<n>/ swap/ client_systemname

A volume is a collection of related files dedicated to the same function, such as all
ftles required to run a third-party or unbundled application, or all data associated
with a particular project Volumes are attached to the Sun386i file system by the
automounter (autornount(8)).

To create a volume for an application, an administrator must include an entry in the
I etc/ auto. vol Yellow Pages map on the YP master with the format:

application_name system:/export/application_name

and must then rebuild auto. vol by becoming root and using the commands:

cd /var/yp
make

Revision A, May 1988

Sun386i Developer's Guide

/vol/local

C.8. Application
Directory Structure

Appendix C -File System Layout 206

The automounter (automount(8)) takes references to /vol/ application_name and
uses the entry corresponding to application_name in the I etc/ auto. vol Yellow
Pages map to mount the volume on a temporary mount point under /tmp _ mnt.
/vol subdirectories do not exist as part of the file system on disk, but rather are
created only after automount(8) references to them are made. (Sun386i Advanced
Administration and the automount(8) man page describe the automounter in more
detail.)

If the auto. vol entry indicates that the volume is on a remote system, the auto­
mounter creates a temporary mount point under /tmp _ mnt and uses this point to
mount the remote volume onto the local system via NFS. The automounter returns a
symbolic link to the mount point. '

If the volume is on the local system, the automounter returns a symbolic link to the
volume.

If the application has been exported, is accessible from a volume, and has a link in
/files<n>/local. unix/bin, any user on the network can execute the applica­
tion simply by entering application_name; users' .login and . cshrc files need no
modification, and the application's full path name is not needed. Sun386i Advanced
Administration provides details.

Whenever a reference to /vol/ local is made, for instance, whenever a user logs in
(/vol/ local/bin and /vol/ local/bin.arch are included in every user's
default $PATH), the automounter mounts /files<n>/ local. unix and the C­
shell builds a table of entries in the user's path. An application_name entry in
/files<n>/ local. unix/bin ensures easy network-wide access of your applica­
tion. Sun386i Advanced Administration contains specifics.

This section describes the preferred subdirectories that your installation script
should create under the /usr/ local/ application_name directory. Using this
scheme enables your application to work even when users and administrators move it
to a different location, and negates the need for users to alter their .login and
. cshrc files to use your application. For an explanation of how to release your
software so that users can easily load it with snap(l), see pages 144-145.

You should include three major subdirectories for each application:

<JUCh>.<.OS release>

Place architecture and operating system dependent files in <arch>.<OS release>,
using the subdirectories:

• bin - for binary files

• etc - for configuration information

• lib- for libraries needed at run time, such as shared libraries

where <arch> can be either sunl, sun2, sun3, sun4, or sun386 and
<OS release> has the format SunOS4.0, SunOS4.1BETAl, SunOS4.1BETA2, and
soon.

Revision A, May 1988

Sun386i Developer's Guide Appendix C - File System Layout 207

ahara
Place architecture and operating system independent files in share, using the subdi­
rectories:

• data -for miscellaneous data files

• fonts -for font files

• icons- for Sun View . icon files

• images -for Sun View . image files

• scripts- for shell scripts

languaqa
Place a subdirectory in language for each language supported:

• USA-English

• English

• French

• French Swiss

• German

• German Swiss

• Italian

• Swedish

• Spanish

Four standard subdirectories are available for each language directory:

• doc- containing on-line documentation for the application in the particu­
lar language

• help -containing Spot Help and handbook files for the application in
the particular language

• man - containing man pages for the application in the particular language

• mess ages - containing message files for the application in the particu­
lar language

Revision A, May 1988

Com:mon Object File Format
(COFF)

D

Common Object File Format (COFF) ... 209

D.1. COFF Features 211

COFF Structure... 212

D.2. Terms and Conventions.. 212

D.3. File Header... 213

Magic Numbers .. 213

Flags.. 214

File Header Declaration.. 214

D.4. Optional Header Information... 214

Standard SunOS System a. out Header... 214

Optional Header Declaration.. 215

D.5. Section Headers.. 216

Flags.. 216

Section Header Declaration.. 217

.bss Section Header... 218

D.6. Sections.. 218

D.7. Relocation Information.. 218

Relocation Entry Declaration... 219

D.8. Line Numbers... 219

Line Number Declaration... 220

D.9. Symbol Table... 220

Special Symbols.. 221

Sun386i Developer's Guide Appendix D- Common Object File Format (COFF) 210

Symbols and Functions... 222

Symbol Table Entries ... 222

Auxiliary Table Entries 231

0.10. String Table.. 235

0.11. Access Routines... 236

Sun386i Developer's Guide

D.l. COFF Features

Appendix D- Common Object File Format (COFF) 211

D
Common Object File Format

(COFF)

This appendix describes the Common Object File Format (COFF) used on the
Sun386i system with the SunOS operating system. COFF is the format of the output
file produced by the as(l) assembler and the ld(l) link editor. This appendix pro­
vides a complete description of the COFF format; the Sun386i system does not use
all of the features described here.

Some key features of COFF are:

• Applications can add system-dependent information to the object file with­
out causing access utilities to become obsolete.

• Space is provided for symbolic information used by debuggers and other
applications.

• Programmers can modify the way the object file is constructed by provid­
ing directives at compile time.

The object file supports user-defined sections and contains extensive information for
symbolic software testing. An object file contains:

• A file header

• Optional header information

• A table of section headers

• Data corresponding to section headers

• Relocation information

• Line numbers

• A symbol table

• A string table

Figure D-1 on the next page shows the overall structure.

Revision A, May 1988

Sun386i Developer's Guide

COFF Structure

D.2. Terms and
Conventions

Figure D-1

Appendix D- Common Object File Format (COFF) 212

FILE HEADER

Optional information

Section 1 header

...
Section n header

Raw data for section 1

...

Raw data for section n

Relocation info for section 1

...
Relocation info for section n

Line numbers for section 1

...
Line numbers for section n

SYMBOL TABLE

STRING TABLE

Object File Format

The last four sections (relocation, line numbers, symbol table, and string table) may
be missing if the program is linked with the - s option of the 1 d(1) command, or if
the line number information, symbol table, and string table are removed by the
strip(1) command. The line number information does not appear unless the pro­
gram is compiled with the -g option of the cc command. Also, if there are no unre­
solved external references after linking, the relocation information is no longer need­
ed and is absent.

An object file that contains no errors or unresolved references is considered exe­
cutable.

This section explains the COFF-related terms and conventions used throughout this
appendix.

Sections
A section is the smallest portion of an object file that is relocated and treated as one
separate and distinct entity. In the most common case, there are three sections named
.text, . data, and .bss. Additional sections accommodate comments, multiple
text or data segments, shared data segments, or user-specified sections. However,
the SunOS operating system loads only . text, . data, and . bss into memory
when the file is executed.

Revision A, May 1988

Sun386i Developer's Guide Appendix D- Common Object File Format (COFF) 213

D.3. File Header

Magic Numbers

NOTE Do not assume that every COFF file will have a certain number of sections. Similar­
ly, .do not assume characteristics of sections such as their order, location in the
object file, or address at which they are loaded. This information is available only
after the objectfile.has been created. Programs manipulating COFF files should
obtain this information from file and section headers within the file.

Table D-1

Physical and Virtual Addresses
The physical address of a section or symbol is the offset of that section or symbol
from address zero of the address space. The term "physical address" as used in
COFF differs from general use of the term. The physical address of an object is not
necessarily the address at which the object is placed when the process is executed.
For example, on a system with paging, the address is located with respect to address
zero of virtual memory and the system performs another address translation. The
section header contains two address fields, a physical address, and a virtu8I address;
but in all versions of COFF on Sun0S systems, the physical address is equivalent to
the virtual address.

Target Machine
Compilers and link editors produce executable object files that are intended to be
run on a particular computer. In the case of cross'-compilers, the compilation and
link.editing are done on one computer with the intent of creating an object file that
can be executed on another computer. The term target machine refers to the comput­
er on which the object file is destined to run. In the majority of cases, the target
machine and the machine on which the object file is being created are identical.

The file header contains the 20 bytes of information shown in Table D-1 below. The
last two bytes are flags that are used by 1 d object file utilities.

File Header Contents

Bytes Declaration Name Description
0-1 unsigned short f_magic Magic number
2-3 uns.igned short f nscns Number of sections
4-7 long int f timdat Time and date stamp indicating

when the file was created,
·expressed as the number of
elapsed seconds since 00:00:00
GMT, January 1, 1970

8-11 long int f_symptr File pointer containing the
starting address of the symbol
table

12-15 long int f_nsyms Number of entries in the
symbol table

16-17 unsigned short f_opthdr Number of bytes in the
optional header

18-19 unsigned short f_flags Flags (see Table D-2)

The magic number specifies the target machine on which the object file is executable.

Revision A, May 1988

Sun386i Developer's Guide

Flags

TableD-2

File Header Declaration

D.4. Optional Header
Information

Standard SunOS System
a. out Header

Appendix D- Common Object File Format (COFF) 214

The last two bytes of the file header are flags that describe the type of the object

file. Currently defined flags are found in the header file f il ehdr . h and are shown

in Table D-2.

File Header Flags (80286 and 80386 Computers)

Mnemonic Flag Meaning

F RELFLG 00001 Relocation information stripped from the file

F EXEC 00002 File is executable (that is, no unresolved
external references)

F LNNO 00004 Une numbers stripped from the file

F LSYMS 00010 Local symbols stripped from the file

F AR16WR 0000200 16-bit byte-reversed word

F AR32WR 0000400 32-bit byte-reversed word

The C structure declaration for the file header, filehdr. h, is shown below.

struct filehdr

unsigned short f _magic; I* magic number */
unsigned short f_nscns; /* number of sec-*/

I* tion *I
long f_timdat; I* time and date *I

/* stamp *I
long f_symptr; I* file ptr to *I

/* symbol table *I
long f_nsyms; /* # of symbol *I

I* table entries *I
unsigned short f_opthdr; /* optional *I

/* header size *I
unsigned short f_flags; I* flags *I

} ;

#define FILHDR struct filehdr
#define FILHSZ sizeof(FILHDR)

The template for optional information varies among different systems that use

COFF. Applications place all system-dependent information into this record. This

allows different operating systems access to information used only by that particu­

lar operating system, without forcing all COFF files to save space for that informa­

tion. General utility programs (for example, the symbol table access library func­

tions, the disassembler, and so on) are made to work properly on ,any common object

file. This is done by seeking past this record using the size of optional header infor­

mation in the file header field f _opt h dr.

By default, files produced by the link editor for a SunOS system always have a stan­

dard SunOS system a. out header in the optional header field . .The SunOS system

a . out header is 28 bytes long. The fields of the optional header are described in
Table D-3 (on the next page).

Revision A, May 1988

Sun386i Developer's Guide

/.

TableD-3

TableD-4

Optional Header Declaration

Appendix D- Common Object File Format (COFF) 215

Optional Header Contents (80286 and 80386 Computers)

Bytes Declaration Name Description
0-1 short magic Magic number

2-3 short vstamp Version stamp

4-7 long int tsize Size of text in bytes

8-11 long int dsize Size of initialized data in bytes

12-15 long int bsize Size of uninitialized data in
bytes

16-19 long int entry Entry point

20-23 long int text start Base address of text -
24-27 long int data start Base address of data

Whereas the magic number in the file header specifies the machine on which the
object file runs, the magic number in the optional header tells the operating system
on that machine how that file should be executed. The magic numbers recognized by
the System V /286 and System V /386 operating systems are given in Table D-4.

System Magic Numbers (80286 and 80386 Computers)

Value Meaning

0407 Text segment is not write-protected or sharable; data segment is
contiguous with the text segment.

0410 Data segment starts at the next segment following the text segment
and the text segment is write-protected.

0413 Text and data segments are aligned within a. out so it can be
directly paged.

The C language structure declaration currently used for the SunOS system a. out
file header is shown below. This declaration is in the header file aouthdr. h.

typedef struct aouthdr
{

short magic;

short vstamp;

long tsize;

long

long

long

long

dsize;

bsize;

entry;

text_start;

I* magic number *I
I* version stamp *I
I* text size in *I
I* bytes, padded *I
I* to full word *I
I* boundary *I
I* initialized data *I
I* size *I
I* uninitialized *I
I* data size *I
I* entry point *I
I* base of text for *I
I* this file *I

Revision A, May 1988

Sun386i Developer's Guide Appendix D- Common Object File Format (COFF) 216

D.S. Section Headers

TableD-5

Flags

long data_start; /* base of data for */
I* this file */

AOUTHDR;

Every object file has a table of section headers to specify the layout of data within
the file. The section header table consists of one entry for every section in the file.
The information in the section header is described in Table D-5.

Section Header Contents

Bytes Declaration Name Description
0-7 char s name 8-character null-padded section

name

8-11 long int s_yaddr Physical address of section

12-15 long int s vaddr Virtual address of section

16-19 long int s size Section size in bytes

20-23 long int s_scnptr File pointer to raw data

24-27 long int s_relptr File pointer to relocation
entries

28-31 long int s_lnnoptr File pointer to line number
entries

32-33 unsigned short s nreloc Number of relocation entries

34-35 unsigned short s nlnno Number of line number entries

36-39 long int s_flags Flags (see Table D-6)

The size of a section is padded to a multiple of four bytes. File pointers are byte off­
sets that can be used to locate the start of data, relocation, or line number entries
for the section. You can use file pointers with the SunOS system function
fseek(3S).

The lower two bytes of the flag field indicate a section type. The flags are described
in Table D-6 on the next page.

Revision A, May 1988

Sun386i Developer's Guide

TableD-6

Section Header Declaration

Appendix D -Common Object File Format (COFF) 217

Section Header Flags

Mnemonic Flag Meaning

STYP REG OxOO Regular section (allocated, relocated, loaded)

STYP DSECT Ox.Ol Dummy section (not allocated, relocated, not
loaded)

STYP NOLOAD Ox02 No load section (allocated, relocated, not loaded)

STYP GROUP Ox04 Grouped section (formed from input sections)

STYP PAD Ox08 Padding section (not allocated, not relocated,
loaded)

STYP COPY OxlO Copy section (for a decision function used in updating
fields; not allocated, not relocated, loaded; relocation
and line number entries processed normally)

STYP TEXT Ox20 Section contains executable text

STYP DATA Ox40 Section contains initialized data

STYP BSS Ox80 Section contains only uninitialized data

STYP INFO Ox200 Comment section (not allocated, not relocated, not
loaded)

STYP OVER Ox400 Overlay section (relocated, not allocated, not loaded)

STYP LIB Ox800 For .lib section (treated like STYP _INFO)

The C structure declaration for the section headers is described below. This declara­
tion is in the header file scnhdr. h.

struct scnhdr
{

} ;

char

long

long

long

long

long

long

s_name[8];

s_paddr;

s_vaddr;

s_size;

s_scnptr;

s_relptr

s_lnnoptr;

unsigned short s_nreloc;

unsigned short s_nlnno;

long s_flags;

#define SCNHDR struct scnhdr

#define SCNHSZ sizeof(SCNHDR)

I*
/*

/*

/*

I*
I*
I*
I*
/*

I*
I*
I*
I*
I*
/*
I*
/*

I*

section name *I
phys address *I
virt address *I
section size *I
file ptr to *I
section raw *I
data *I
file ptr to *I
relocation */

file ptr to *I
line number

number of *I
relocation *I
entries *I
number of*/
line number *I
entries *I
flags *I

Revision A, May 1988

Sun386i Developer's Guide

.bas Section Header

0.6. Sections

D.7. Relocation
Information

TableD-7

Appendix D-Common Object File Format (COFF) 218

The one deviation from the normal rule in the section header table is the entry for
uninitialized data in a . bss section. A . bss section has a size and symbols that
refer to it, and symbols that are defined in it. At the same time, a . b s s section has
no relocation entries, no line number entries, and no data. Therefore, a . b s s section
has an entry in the section header table but occupies no space elsewhere in the file.
In this case, the number of relocation and line number entries, as well as all file
pointers in a .bss section header, are zero. The same is true of the STYP_NOLOAD
and STYP DSECT sections.

Figure D-1 on page 212 shows that section headers are followed by the appropriate
number of bytes of text or data. The raw data for each section begins on a four-byte
boundary in the file.

Link editor SECTIONS directives allow users to, among other things:

• Describe how input sections are to be combined

• Direct the placement of output sections

• Rename output sections

If no SECTIONS directives are given, each input section appears in an output section
of the same name. For example, if a number of object files, each with a . text sec­
tion, are linked together, the output object file contains a single . text section
made up of the combined input . text sections.

Object files have one relocation entry for each relocatable reference in the text or
data. The relocation information consists of entries with the format described in
Table D-7.

Relocation Section Contents

Bytes Declaration Name Description
0-3 long int r vaddr (Virtual) address of reference

4-7 long int r_symndx Symbol table index

8-9 unsigned short r_type Relocation type

The first four bytes of the entry are the virtual address of the text or data to which
this entry applies. The next field is the index, counted from 0, of the symbol table
entry that is being referenced. The type field indicates the type of relocation to be
applied.

As the link editor reads each input section and performs relocation, the relocation
entries are read. They direct how references found within the input section are treat­
ed. The currently recognized types are given in Table D-8 on the next page.

Revision A, May 1988

Sun386i Developer's Guide

TableD-8

Relocation Entry Declatation

0.8. Line Numbers

Appendix D- Common Object File Format (COFF) 219

Relocation Types (80286 and 80386 Computers)

Mnemonic Flag
R ABS 0

R DIR16 * 01

R REL16 * 02

R DIR32 06

R SEG12 * 011

R PCRLONG + 024

* 80286 computers only
+ 80386 computers only

Meaning
Reference is absolute; no relocation is necessary. The
entry will be ignored.
Direct, 16-bit reference to a symbol's virtual address.

"PC-relative," 16-bit reference to a symbol's virtual
address. Relative references occur in instructions such
as jumps and calls.

Direct, 16-bit reference to the symbol's virtual
address.

Direct, 16-bit reference to the segment-selector bits
of a 32-bit virtual address.
"PC-relative," 32-bit reference to a symbol's virtual
address.

The structure declaration for relocation entries is given below. This declaration is in
the header file reloc. h.

struct reloc
{

long r vaddr; /* virtual address of */
- /* reference */

long r_symndx;/* index into symbol */
I* table */

unsigned short r_type; /* relocation type */

} ;

#define RELOC

#define RELSZ

struct reloc

10

When invoked with either the -g or -go option, the compiler places an entry in the
object file for every source line where a breakpoint can be inserted. You can then ref­
erence line numbers when using a software debugger such as dbx. All line numbers
in a section are grouped by function as shown in Figure D-2.

Symbol index

Physical address

Physical address

Sy~bol index

Physical address
Physical address

0
Line number

Line number

0

Line number
Line number

Figure D-2 Line Number Grouping

Revision A, May 1988

Sun386i Developer's Guide

Line Number Declaration

D.9. Symbol Table

Appendix D - Common Object File Format (COFF) 220

The first entry in a function grouping (line number 0) has, in place of the physical

address, an index into the symbol table for the entry containing the function name.
Subsequent entries have actual line numbers and addresses of the text corresponding

to the line numbers. The line number entries are relative to the beginning of the
function and appear in increasing order of address.

The structure declaration currently used for line number entries is shown below.

struct lineno
{

union

long l_symndx; /* symtbl index */
/* of func name */

long l_paddr; /* paddr of line */

} l_addr;

unassigned short

} ;

#define LINENO

#define LINESZ

/* number */

l_lnno; /* line number */

struct lineno

6

Because of symbolic debugging requirements, the order of symbols in the symbol
table is very important. Symbols appear in the sequence shown in Figure D-3 on the
next page.

Revision A, May 1988

Sun386i Developer's Guide.

Figure D-3

Special Symbols

Appendix D- Common Object File Format (COFF) 221

File name 1

Function 1

Local symbols

for function 1

Function 2

Local symbols
for function 2

...
Statics

...

File name 2

Function 1

Local symbols
for function 1

...
Statics

...
Defined global symbols

Undefined global symbols

COFF Symbol Table

The word "Statics" in Figure D-3 means symbols defined with the C language stor­
age class static outside any function. The symbol table consists of at least one
fixed-length entry per symbol with some symbols followed by auxiliary entries of
the same size. The entry for each symbol is a structure that holds the value, the
type, and other information.

The symbol table contains some special symbols that are generated by as(1) and oth­
er tools. (Only the first four symbols, . file, . text, . data, and . bss are gener­
ated on the Sun386i system.) These symbols are given in Table D-9 on the next page.

Revision A, May 1988

Sun386i Developer's Guide

Table D-9

Symbols and Functions

Appendix D - Common Object File Format (COFF) 222

Special Symbols in the Symbol Table

Symbol Meaning

.file Filename

.text Address of. text section

.data Address of. data section

.bss Address of . bb s section

.bb Address of start of inner block

.eb Address of end of inner block

.bf Address of start of function

.ef Address of end of function

.target Pointer to structure or union returned by a function

.xfake Dummy tag name for structure, union, or enumeration

.eos End of members of structure, union, or enumeration

etext Next available address after the end of the output section • text

edata Next available address after the end of the output section . data

end Next available address after the end of the output section • b s s

Six of these special symbols occur in pairs. The . bb and . eb symbols indicate the
boundaries of inner blocks; a . b f and . e f symbol pair brackets each function. A
.xfake and • eos symbol pair names and defines the limit of structures, unions, and
enumerations that were named. The . eos symbol also appears after named struc­
tures, unions, and enumerations.

For each function, the special symbol • b f is put between the function name and the
first local symbol of the function in the symbol table. Also, the special symbol
• e f is put immediately after the last local symbol of the function in the symbol
table.

The sequence is shown in Figure D-4.

Function name

.bf

Local symbol

.ef

Figure D-4 Symbols for Functions

Symbol Table Entries All symbols, regardless of storage class and type, have the same format for their
entries in the symbol table. The symbol table entries each contain 18 bytes of infor­
mation. The meaning of each of the fields in the symbol table entry is described in
Table D-1 0. Note that indices for symbol table entries begin at 0 and count upward.
Each auxiliary entry also counts as one symbol.

Revision A, May 1988

Sun386i Developer's Guide

Table D-10

Symbol Names

TableD-11

Storage Classes

Appendix D - Common Object File Format (COFF) 223

Symbol Table Entry Format

Bytes Declaration Name Description
0-7 (see text below) n These 8 bytes contain either

a symbol name or an index to
a symbol

8-11 long int n value Symbol value; storage-class
dependent

12-13 short n scnum Section number of symbol

14-15 unsigned short n_type Basic and derived type
specification

16 char n sclass Storage class of symbol

17 char n numaux Number of auxiliary entries

The first eight bytes in the symbol table entry are a union of a character array and
two long integers. If the symbol name is eight characters or less, the (null-padded)
symbol name is stored there. If the symbol name is longer than eight characters,
then the entire symbol name is stored in the string table. In this case, the eight
bytes contain two long integers; the first is zero, and the second is the offset
(relative to the beginning of the string table) of the name in the string table. Since
there can be no symbols with a null name, the zeroes on the first four bytes distin­
guish a symbol table entry with an offset from one with a name in the first eight
bytes as shown in Table D-11.

If the program is compiled with the -g option, the symbol is stored like a lbng
(greater than eight characters) symbol, but only the first byte is 0. The remaining
three bytes of the first long word are used to store dbx information.

Name Field

Bytes Declaration
0-7 char

0-3 long

0 char

1 char

2-3 short

4-7 long

Name
n name

n zeroes

n_leading_zero

n_dbx_type

n dbx desc - -
n offset

Description
8-character null-padded symbol
name

Zero in this field indicates the
name is in the string table

Null character

Symbol table type

Value of description field

Offset of the name in the string
table

Special symbols generated by the C compiler are discussed in the Special Symbols
section starting on page 221.

The storage class field has one of the values described in Table D-12 on the follow­
ing page. These #defines are in the header file storclass. h.

Revision A, May 1988

Sun386i Developer's Guide

Table D-12

Storage Classes for Special
Symbols

Appendix D - Common Object File Format (COFF) 224

Storage Classes

Mnemonic Value Storage Class

C EFCN -1 Physical end of a function

C NULL 0

C AUTO 1 Automatic variable

C EXT 2 External symbol

C STAT 3 Static

C REG 4 Register variable

C EXTDEF 5 External definition

C LABEL 6 Label

C_ULABEL 7 Undefined label

C MOS 8 Member of structure

C ARG 9 Function argument

C STRTAG 10 Structure tag

C MOU 11 Member of union

C UNTAG 12 Union tag

C TPDEF 13 Type definition

C USTATIC 14 Uninitialized static

C ENTAG 15 Enumeration tag

C MOE 16 Member of enumeration

C REGPARM 17 Register parameter

C FIELD 18 Bit field

C BLOCK 100 Beginning and end of block

C FCN 101 Beginning and end of function

C EOS 102 End of structure

C FILE 103 Filename

C LINE 104 Used only by utility programs

C ALIAS 105 Duplicated tag

C HIDDEN 106 Uke static, used to avoid name
conflicts

All of these storage classes except for C_ALIAS and C_HIDDEN are generated by

the cc(l) or as(l) commands. The storage class C_HIDDEN is not used by any

SunOS system tools.

Some of these storage classes are used only internally by the C compiler. These stor­

age classes are C_EFCN, C_EXTDEF, C_ULABEL, C_USTATIC, and C_LINE.

Some special symbols are restricted to certain storage classes. They are given in
Table D-13 on the next page.

Revision A, May 1988

Sun386i Developer's Guide Appendix D- Common Object File Format (COFF) 225

Table D-13 Storage Class by Special Symbol

Special Symbol

.file

.bb

.eb

.bf

.ef

.target

.xfake

.eos

.text

.data

.bss

Storage Class

C FILE

C BLOCK

C BLOCK

C FCN

C FCN

C AUTO

C_STRTAG,C_UNTAG,C_ENTAG

C EOS

C STAT

C STAT

C STAT

Also, some storage classes are used only for certain special symbol~. They are sum­
marized in Table D-14.

Table D-14 Restricted Storage Classes

Storage Class Special Symbol

C BLOCK .bb, .eb

C FCN .bf, .ef

C EOS .eos -
C FILE .file -

Symbol Value Field The meaning of the value of a symbol depends on its storage class. This relationship
is summarized in Table D-15 on the following page.

Revision A, May 1988

Sun386i Developer's Guide

Table D-15

Section Number Field

Table D-16

Appendix D -Common Object File Format (COFF) 226

Storage Class and Value

Storage Class Meaning of Value
C AUTO Stack offset in bytes -
C EXT Relocatable address

C STAT Relocatable address -
C REG Register number

C LABEL Relocatable address

C MOS Offset in bytes

C ARG Stack offset in bytes -
C STRTAG 0 -
C MOU 0
C UNTAG 0 -
C TPDEF 0 -
C ENTAG 0
C MOE Enumeration value

C REGPARM Register number -
C FIELD Bit displacement -
C BLOCK Relocatable address -
C FCN Relocatable address -
C EOS Size

C FILE - (See text below)

C ALIAS Tag index

C HIDDEN Relocatable address -

If a symbol has storage class C _FILE, the value of that symbol equals the symbol
table entry index of the next . f i 1 e symbol. That is, the . f i 1 e entries form a one­
way linked list in the symbol table. If there are no more . file entries in the sym­
bol table, the value of the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that symbol. When
the section is relocated by the link editor, the value of these symbols changes.

Section numbers are listed in Table D-16 below.

Section Number

Mnemonic Section Number· Meaning
N DEBUG -2 Special symbolic debugging symbol

NABS -1 Absolute symbol

N UNDEF 0 Undefined external symbol

N SCNUM 1-077777 Section number where symbol is
defined

A special section number (-2) marks symbolic debugging symbols, including struc­
ture/union/enumeration tag names, typedefs, and the name of the file. A section num­
ber of -1 indicates that the symbol has a value but is not relocatable. Examples of

Revision A, May 1988

Sun386i Developer's Guide

Section Numbers and Storage
Classes

Table D-17

Type Entry

Appendix D -Common Object File Format (COFF) 227

absolute-valued symbols include automatic and register variables, function argu­
ments, and . eos symbols.

With one exception, a section number of 0 indicates a relocatable external symbol
that is not defined in the current file. The one exception is a multiply defined exter­
nal symbol (such as FORTRAN common or an uninitialized variable defined exter­
nal to a function in C). In the symbol table of each file where the symbol is
defined. the section number of the symbol is 0, and the value of the symbol is a posi­
tive number giving the size of the symbol. When the files are combined to form an
executable object file, the link editor combines all the input symbols of the same
name into one symbol with the section number of the . bss section. The maximum
size of all the input symbols with the same name is used to allocate space for the
symbol and the value becomes the address of the symbol. This is the only case where
a symbol has a section number of 0 and a nonzero value.

Symbols having certain storage classes are also restricted to certain section numbers.
They are summarized in Table D-17.

Section Number and Storage Class

Storage Class Section Number

C AUTO N ABS

C EXT N_ABS, N_UNDEF, N_SCNUM

C STAT N SCNUM

C REG NABS

C LABEL N_UNDEF IN_ SCNUM

C MOS NABS

C ARG N ABS

C STRTAG N DEBUG

C MOU N ABS

C UNTAG N DEBUG

C TPDEF N DEBUG

C ENTAG N DEBUG

C MOE N ABS

C REGPARM N ABS

C FIELD N ABS

C BLOCK N SCNUM

C FCN N SCNUM

C EOS N ABS
C FILE N DEBUG

C ALIAS N DEBUG

The type field in the symbol table entry contains information about the basic and
derived type for the symbol. This information is generated by the C compiler only
if the -g or -go option is used. Each symbol has exactly one basic or fundamental

Revision A, May 1988

Sun386i Developer's Guide

Figure D-5

Table D-18

Table D-19

Appendix D- Common Object File Format (COFF) 228

type but can have more than one derived type. The format of the 16-bit type entry is
shown below.

16-Bit Type Entry Format

Bits 0 through 3, called t yp, indicate one of the fundamental types given in Table
D-18.

Fundamental Types

Mnemonic Value Type

T NULL 0 Type not assigned

T ARG 1 Function argument (used only
by compiler)

T CHAR 2 Character

T SHORT 3 Short integer

T INT 4 Integer

T LONG 5 Long integer

T FLOAT 6 Floating point

T DOUBLE 7 Double word

T STRUCT 8 Structure

T UNION 9 Union

T ENUM 10 Enumeration

T MOE 11 Member of enumeration

T UCHAR 12 Unsigned character

T USHORT 13 Unsigned short

T UINT 14 Unsigned integer

T ULONG 15 Unsigned long

Bits 4 through 15 are arranged as six 2-bit fields marked dl through d6. These d

fields represent levels of the derived types given in Table D-19.

Derived Types

Mnemonic Value Type

DT NON 0 No derived type

DT PTR 1 Pointer

DT FCN 2 Function

DT ARY 3 Array

The following examples demonstrate the interpretation of the symbol table entry
representing type.

Revision A, May 1988

Sun386i Developer's Guide

Type Entries and Storage Classes

Table D-20

Appendix D - Common Object File Format (COFF) 229

char *func () ;

Here func is the name of a function thatreturns a pointer to a character. The funda.,
mental type of func is 2 (character), the dl field is 2 (function), and the d2 field
is 1 (pointer). Therefore, the type word in the symbol table for func contains the
hexadecimal number Ox62, which is interpreted to mean a function that returns a
pointer to a character.

short *tabptr[lO] [25] [3];

Here tabptr is a three-dimensional array of pointers to short integers. The funda­
mental type oftabptr is 3 (short integer); the dl, d2, and d3 fields each contains
a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry in the symbol
table contains the hexadecimal number 0 x 7 f 3 indicating a three-dimensional array
of pointers to short integers.

Table D-20 shows the type entries that are legal for each storage class.

Type Entries by Storage Class

Storage

Class

C AUTO
C EXT
C STAT
C REG

C LABEL
C MOS
C ARG
C STRTAG
C MOU
C UNTAG
C TPDEF
C ENTAG
C MOE
C_REGPARM
C FIELD

C BLOCK
C FCN
C EOS
C FILE
C ALIAS

dEntry

Function? Array? Pointer?

no

yes

yes

no

no
no
yes

no

no

no

no

no

no

no

no

no

no

no

no

no

yes

yes

yes

no

no

yes
no

no

yes

no

yes

no

no

no

no

no

no

no

no

no

yes

yes

yes

yes

no

yes
yes
no

yes

no

yes

no

no

yes

no

no

no

no

no

no

typ Entry

Basic Type

Any except T _MOE
Any except T _MOE
Any except T _MOE
Any except T _MOE
T NULL
Any except T _MOE
Any except T _MOE
T STRUCT
Any except T _MOE
T UNION
Any except T _MOE
T ENUM
T MOE
Any except T _MOE
T _ ENUM, T _ UCHAR,
T_USHORT, T_UNIT,
T ULONG
T NULL
T NULL
T NULL
T NULL
T_STRUCT,T_UNION,
T ENUM

Conditions for the d entries apply to d 1 through d6, except that it is impossible to
have two consecutive derived types of function.

Revision A, May 1988

Sun386i Developer's Guide

Structure for Symbol Table
Entries

Appendix D - Common Object File Format (COFF) 230

Although function arguments can be declared as arrays, they are changed to pointers
by default. Therefore, no function argument can have an array as its first derived
type.

The C language structure declaration for the symbol table entry is given below. This
declaration is in the header file s yms . h.

struct syment

} ;

union

char _n_name[SYMNMLEN]; /*symbol*/
I* name */

struct

long _n_zeroes;

long _n_offset;

_n_n;

char

struct

*_n_nptr[2];

I* symbol name */

I* location in */
I* string table */

/* allows */
/* overlaying */

char n leading zero; /* null */
-- - /*char */

_n;

char _n_dbx_type;

short _n_dbx_desc;

long _n_stab_ptr;

_n_dbx;

long n_value;

short n_scnum;

unsigned short n_type;

char n_sclass;

char n_numaux;

/* symbol */
/* tbl type */

/* value of */
/* desc field */
/* in string */

/* table ptr */

/* symbol *I
/* value *I
/* section */
I* number */

/* type and */
/* derived */

I* storage *I
I* class *I
I* number *I
/* of aux *I
/* entries *I

#define n name

#define n_nptr

n. n name

_n._n_nptr[l]

Revision A, May 1988

Sun386i Developer's Guide

Auxiliary Table Entries

TableD-21

NOTES

Appendix D - Common Object File Format (COFF) 231

#define n zeroes

#define n offset

n. n n. n zeroes

n. n n. n offset

#define n_leading_zero _n._n_dbx._n_leading_zero

#define n_dbx_type _n._n_dbx._n_dbx_type

#define n dbx desc n. n dbx. n dbx desc - -- -
#define SYMNMLEN 8

#define SYMESZ 18 /* size of a symbol table */
/* entry */

An auxiliary table entry of a symbol contains the same number of bytes as the sym­
bol table entry. However, unlike symbol table entries, the format of an auxiliary
table entry of a symbol depends on its type and storage class. They are summarized
in Table D-21.

Auxiliary Symbol Table Entries

Storage Type Entry Auxiliary

Name Class d typ Entry Format

.file C FILE DT NON T NULL Filename - -

. text, . data, C STAT DT NON T NULL Section - - -

.bss

tagname C STRTAG DT NON T NULL Tag name -
C UNTAG
C ENTAG -

.eos C EOS DT NON T NULL End of structure -
fcname C EXT DT FCN (Note 1) Function - -

C STAT
arrname (Note 2) DT ARY - (Note 1) Array

.bb, .eb C BLOCK DT NON T NULL Beginning and - - -
endofblock

.bf, .ef C FCN DT NON T NULL Beginning and - - -
end of function

name related (Note 2) DT PTR - T_STRUCT, Name related to
to structure, DT ARR T_UNION, structure, union,
union, DT NON T ENUM enumeration - -
enumeration

1. Any except T_MOE.

2.C_AUTO,C_STAT,C_MOS,C MOU,C TPDEF.

In Table D-21, tagname means any symbol name including the special symbol
.xfake, andfcname and arrname represent any symbol name for a function or an
array respectively. Any symbol that satisfies more than one condition in Table D-21

·should have a union format in its auxiliary entry.

Do not assume the number of auxiliary entries associated with any given symbol
table entry. Instead, check the n_numauxfield in the symbol table for this
information.

Revision A, May 1988

Sun386i Developer's Guide

FileNames

Sections

Table D-22

Tag Names

Table D-23

End of Structures

Table D-24

Functions

Appendix D - Common Object File Format (COFF) 232

Each of the auxiliary table entries for a file name contains a 14-character file name

in bytes 0 through 13. The remaining bytes are 0.

The auxiliary table entries for sections have the format shown in Table D-22.

Format for Auxiliary Table Entries for Sections

Bytes Declaration Name Description

0-3 long int X scnlen Section length

4-5 unsigned short x nreloc Number of relocation entries

6-7 unsigned short x nlinno Number ofline numbers

8-17 Unused (f:tlled with zeroes)

The auxiliary table entries for tag names have the format shown in Table D-23.

Tag Name Table Entries

Bytes Declaration Name Description

0-5 Unused (filled with zeroes)

6-7 unsigned short x size Size of structure, union, and
enumeration

8-11 Unused (filled with zeroes)

12-15 long int x endndx Index of next entry beyond
this structure, union, or
enumeration

16-17 Unused (filled with zeroes)

The auxiliary table entries for the end of structures have the format shown in Table
D-24.

Table Entries for End of Structures

Bytes Declaration Name Description
0-3 long int x_tagndx Tag index

4-5 Unused (filled with zeroes)

6-7 unsigned short x size Size of structure, union, or
enumeration

8-17 Unused (filled with zeroes)

The auxiliary table entries for functions have the format shown in Table D-25 on
the next page.

Revision A, May 1988

Sun386i Developer's Guide

Table D-25

Arrays

Table D-26

Beginning of Blocks and
Functions

Table D-27

End of Blocks and Functions

Appendix D -Common Object File Format (COFF) 233

Table Entries for Functions

Bytes Declllration Name Description
0-3 long int x_tagndx Tag index

4-7 long int x £size Size of function (in bytes)

8-11 long int x_lnnoptr File pointer to line number

12-15 long int x endndx Index of next entry beyond
this point

16-17 unsigned short x tvndx Index of function's address
in the transfer vector table
(not used in the SunOS
system)

The auxiliary table entries for arrays have the format shown in Table D-26. Defining
arrays having more than four dimensions produces a warning message.

Table Entries for Arrays

Bytes Declaration Name Description
0-3 long int x_tagndx Tag index

4-5 unsigned short x lnno Line number of declaration

6-7 unsigned short x size Size of array

8-9 unsigned short x_dimen [0] First dimension

10-11 unsigned short x_dimen [1] Second dimension

12-13 unsigned short x_dimen [2] Third dimension

14-15 unsigned short x _ dirnen [3] Fourth dimension

16-17 Unused (filled with zeroes)

The auxiliary table entries for the beginning of blocks and functions have the format
shown in Table D-27.

Format for Beginning of Block and Function Entries

Bytes Declaration Name Description
0-3 Unused (filled with zeroes)

4-5 unsigned short x lnno C-source line number

6-11 Unused (filled with zeroes)

12-15 long int x endndx Index of next entry past this
block

16-17 Unused (filled with zeroes)

The auxiliary table entries for the end of blocks and functions have the format
shown in Table D-28 on the following page.

Revision A, May 1988

Sun386i Developer's Guide

Table D-28

Names Related to Structures,
Unions, and Enumerations

Table D-29

Auxiliary Entry Declaration

Appendix D -Common Object File Format (COFF) 234

End of Block and Function Entries

Bytes Declaration Name Description

0-3

4-5
6-17

unsigned short x lnno

Unused (filled with zeroes)

C-source line number

Unused (filled with zeroes)

The auxiliary table entries for structure, union, and enumeration symbols have the
format shown in Table D-29.

Entries for Structures, Unions, and Enumerations

Bytes Declaration Name Description
0-3 long int x_tagndx Tag index

4-5 Unused (filled with zeroes)

6-7 unsigned short x size Size of the structure, union,
or enumeration

8-17 Unused (filled with zeroes)

Aggregates defined by typedef may or may not have auxiliary table entries, as
shown in the example below.

typedef struct people STUDENT;

struct people

} ;

char name[20];

long id;

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table but symbol
STUDENT does not because it is a forward reference to a structure.

The C language structure declaration for an auxiliary symbol table entry is shown
below. This declaration is in the header file syms. h.

union auxent

struct

long x_tagndx;

union

struct

unsigned short x_lnno;

unsigned short x_size;

Revision A, May 1988

Sun386i Developer's Guide

D.lO. String Table

Appendix D - Common Object File Format (COFF) 235

} x_lnsz;

long x_fsize;

x_misc;

union

struct

long x_lnnoptr;

long x_endndx;

} x_fcn;

struct

unsigned short
x_dimen[DIMNUM];

} x_ary;

}x_fcnary;

unsigned short x_tvndx;

} x_sym;

struct

char x_fname[FILNMLEN];

x_file;

struct

long x_scnlen;

unsigned short x_nreloc;

unsigned short x_nlinno;

}x_scn;

struct

long x_tvfill;

unsigned short x_tvlen;

unsigned short x_tvrah[2];

x_tv;

#define FILNMLEN 14

#define DIMNUM 4

#define AUXENT union auxent

#define AUXESZ 18

Symbol table names longer than eight characters are stored contiguously in the
string table with each symbol name delimited by a null byte. The first four bytes of
the string table are the size of the string table in bytes; offsets into the string table,
therefore, are greater than or equal to 4. For example, given a file containing two

Revision A, May 1988

Sun386i Developer's Guide

Table D-30

D.ll. Access Routines

Appendix D -Common Object File Format (COFF) 236

symbols (with names longer than eight characters, long_name _1 and
another_one) the string table has the format as shown in Table D-30.

String Table

I 1 I I ol I nl I gl

I ,
I nl 'a I 'ml -

, e' I ,
I l I I \0 I

-
I a' I nl I ol , t,

I hi I el I rl I I

I ol I nl I el I \0 I

The index of long_name_l in the string table is 4 and the index of
another one is 16.

SunOS system releases contain a set of access routines that are used for reading the
various parts of a common object file. Although the calling program must know the
detailed structure of the parts of the object file it processes, the routines effectively
insulate the calling program from the knowledge of the overall structure of the
object file.

The access routines can be divided into functions that

• Open or close an object file

• Read header or symbol table information

• Position an object file at the start of a particular section of the object file

• Return the sumbol table index for a particular symbol

These routines are located in the libld. a library. These routines are listed and
briefly described in Table 4-3 on page 32.

Revision A, May 1988

Differences Between Sun C and
·Kernighan and Ritchie C

E

Differences Between Sun C and Kernighan and Ritchie C 237

E.l. Lexical Conventions... 239

Keywords.. 239
E.2. What's in a Name?... 239
E.3. Conversions.. 239

Characters and Integers... 239
float and double.. 239
Arithmetic Conversions.. 240

E.4. Expressions... 240
Primary Expressions... 240

1\tiultiplicative Operators... 240

E.S. Declarations.. 240
Storage Class Specifiers 240
Type Specifiers 240

lVIeaning of Declarators 241
Structure and Union Declarations... 241

E.6. Statements.. 242

Switch Statement 242

E.7. External Definitions... 242
External Function Definitions... 242

Sun386i Developer's Guide Appendix E- Sun C versus Kernighan and Ritchie C 238

E.8. Scope Rules.. 242

Lexical Scope... 242

Scope of Externals.. 242

E.9. Types Revisited.. 243

Structures and Unions.. 243

Explicit Pointer Conversions.. 243

E.l 0. Constant Expressions... 243

E. II. Anachronisms.. 243

Sun386i Developer's Guide

E.l. Lexical Conventions
(2)

Keywords (2.3)

E.2. What's in a Name?
(4)

E.3. Conversions (6)

Characters and Integers (6.1)

float and double (6.2)

Appendix E - Sun C versus Kernighan and Ritchie C 239

E
Differences Between Sun C and

Kernighan and Ritchie C

This appendix notes the differences between Sun C and the language described in The
C Programming Language1 by Brian W. Kernighan and Dennis M. Ritchie (hereafter
referred to as K&R). The discussion is organized according to the arrangement of
topics (sections and subsections) appearing in Appendix A: C Reference Manual of
the referenced work. The numbers in parentheses are the section numbers in that
appendix.

Sun C has additional keywords: void and enum.

K&R C provides two name spaces: one for struct/union tags and
struct/union members; the other for all variables, functions, typedef names,
and so on. Sun C provides separate name spaces for:

• struct/union and enum tags

• Elements of each different type of struct/union
• Everything else: regular variables and functions

Sun characters are signed, and all 7-bit ASCII characters are positive. Unsigned char­
acters are, of course, unsigned, and promote to unsigned (see Type Specifiers on
page 240).

K&R states " ... whenever a float appears in an expression it is lengthened to
double by zero-padding its fraction." This is not how floating-point representa­
tion is done on the Sun. floats are lengthened to doubles in expressions, but
considerable work must be expended to do it, since the exponent part is of a differ-

1 Prentice-Hall Inc., Englewood Cliffs, New Jersey

Revision A, May 1988

Sun386i Developer's Guide

Arithmetic Conversions (6.6)

E.4. Expressions (7)

Primary Expressions (7.1)

Multiplicative Operators (7.3)

E.5. Declarations (8)

Storage Class Specifiers (8.1)

Type Specifiers (8.2)

Appendix E - Sun C versus Kernighan and Ritchie C 240

ent width and bias.

Sun also provides a compiler option, -fsingle, to prevent this widening from hap­

pening for any expression involving only floats. This flag will not prevent

float formal parameters from being rewritten as doubles, nor float-valued

actual parameters from being promoted to doubles.

unsigned char and unsigned short promote to unsigned. Since

long==int on a Sun, nothing ever promotes to long.

K&R does not discuss the possibility of passing structs or unions as value

parameters. This is because it is not allowed in K&R C (see External Function Defi­

nitions on page 242). Many people believe that st ruct names are treated as array

names, and implicitly converted to "point to st ruct," that is, reference parame­

ters. This may be an extension provided by some implementations, but does not

appear to be officially sanctioned. In any case, Sun C supports passing structs and

unions by value.

As on the PDP-11, the sign of the remainder is the same as the sign of the dividend.

K&R indicates that% may not be applied to operands of type float or double.

On the PDP-11, you can assign only int, char, and pointer types to registers with

the register storage class specifier. On a Sun system, you can assign any integral

type (combinations of char, short, int, long, unsigned, enurn) and any point­

er type to registers.

K&R list the scalar types as char, short int, int, long int, float, and

double. Sun also supports unsigned char, unsigned short int, and enum

types. The additional unsigned types have the attributes one would expect, and pro­

mote to unsigned int rather than int during "the usual arithmetic conver­

sions."

The en urn type is a sort of enumeration. To declare such a type, write something

like typedef enum { red, green, blue } color. You can also give

explicit values to the enumeration members:

typedef enum { walnut =3, almond, brazil, tangerine=O } nut;

The rules are:

1. If no value is specified, the first member has value 0.

2. If no value is specified, each member takes a value one greater than the one
preceding it.

3. There is no check for duplicate values.

Revision A, May 1988

Sun386i Developer's Guide

Meaning of Declarators (8.4)

Structure and Union
Declarations (8.5)

Appendix E- Sun C versus Kernighan and Ritchie C 241

Enums can take a tag, as structs do:

enum nut { } ;

The tag is in the same name space as st ruct and union tags. The member names
are in the same name space as plain variable and function names. Thus blue can only
be a member of one enumeration, or be a variable or function name.

The current semantics of en urns are agreed to be ill-conceived. They may be
assigned, compared only for equality, passed as parameters, and used as the type of a
switch expression or case label. You cannot use them in arithmetic or as sub­
scripts.

In Sun C, you can declare functions to return the type void. This means the func­
tion does not return any value, so it is functionally a subroutine. There are no
objects of type void.

As of the Sun 4.0 software release, pointers may be declared as pointers-to-nothing
(void *).You cannot dereference these pointers, but you can assign them to other
pointers without complaints from the compiler. This is the opaque type provided
by ANSI C.

K&R prohibits declaring a function returning a struct or union. Sun C permits
it

In Sun C, fields are packed left-to-right within a storage unit appropriate to the
type they are declared to be. You can declare them as any of the integer types, and
enum. No matter what their declaration, all fields are unsigned, and thus zero­
extended for the purposes of "the normal conversions."

As mentioned in Section E.2 on page 239, all structure members are in the same
name space in K&R C. However, elements in different structs can have the same
name, so long as they also have the same offset and type. This means that you can
interpret the element selection operators . and - > without considering the type of
the expression on the left, which need not even be a pointer type. (See Structures and
Unions on page 243.)

In Sun C, interpretation of , iUld - > take into account the type of the
struct/union or pointer expression on the left to determine the name on the
right. There can now be apparent clashes between offsets and types between members
of different aggregates but having the same name. The only difficulty comes if the
type of the left-hand expression does not properly disambiguate the name, in which
case:

1. If there is no ambiguity, then the only choice is taken, and a warning is
issued.

2. If there is ambiguity, the program is considered to be in error.

Revision A, May 1988

Sun386i Developer's Guide

E.6. Statements (9)

Switch Statement (9. 7)

E. 7. External Definitions
(10)

External Function Definitions
(10.1)

E.8. Scope Rules (11)

Lexical Scope (11.1)

Scope of Externals (11.2)

Appendix E - Sun C versus Kernighan and Ritchie C 242

K&R C implies that the type of a switch expression must be an integer type. Sun

C accepts floats and doubles (which are fixed to ints) and enum types as

well.

K&R C prohibits passing an argument of type st ruct or union to a function, so

it is useless to declare a function with a formal-parameter of one of those types. Sun

C permits struct/union value parameters.

K&R indicates that when a variable is redeclared inside a compound statement, the

outer declaration is "pushed down" for the duration of the block. That is, it is over­

ridden while in the block, but then resumes force following the block. This is not

true for Sun C if the inner declaration is of class extern. In this case, the declara­

tion persists until the end of the file; if it redeclares a name with a definition in an

outer block, the compiler will complain about redeclaring a variable.

The linking rules Sun C uses are a bit more liberal than the rules implied by K&R,

but are the same as some PDP-11 implementations. Here is description of the Sun

linkage rules:

1. C uninitialized global data is treated like FORTRAN uninitialized

COMMON. To borrow terminology from ANSI C, this constitutes a

"tentative definition." C initialized global data is treated like FORTRAN

COMMON initialized by BLOCK DATA. This constitutes a "true definition."

2. A tentative definition in a library module will not cause the module to be

loaded. A true definition will cause loading, if the name occurs as a refer­

ence or tentative definition in a module that is already being linked. The

"already" here is important since order matters.

3. If the linker sees any true definitions of a name among the modules to be

linked, such definitions override all tentative definitions. This includes the

case where the true definition allocates less space for the named object

than the tentative definition(s) would. This is a rather severe shortcoming

of the current scheme, and has been around since 1978.

4. If no true definitions of a name are seen, the name is defined by the linker,

and space is allocated. The amount of space allocated should be the maxi­

mum of the size specified in any of the tentative definitions in the mod­
ules being linked.

It is a bug that tentative definitions in library modules are not linked in this size

calculation. Again, this has existed since 1978. Note that for this bug to manifest

itself, the name in question must be tentatively defined or at least referenced in mod­

ules that are being linked.

Revision A, May 1988

Sun386i Developer's Guide

E.9. Types Revisited

Structure!~ and Unions (14.1)

Explicit Pointer Conversions
(14.4)

E.10. Constant
Expressions (15)

E.ll. Anachronisms (17)

Appendix E- Sun C versus Kernighan and Ritchie C 243

K&R says you cannot assign structs/unions or pass them as parameters, though
these operations may be allowed in the future. Sun C allows them now.

On Sun machines, a pointer corresponds to a 32-bit integer. Addresses are measured
in 8-bit bytes. Alignment varies depending on the model: on Sun-2 systems, all
data bigger than a char must be Omod2 aligned. On Sun-3 systems, data need not be
aligned, but performance is improved if shorts are aligned Omod2, and ints,
floats, and doubles are aligned Omod4. On Sun386i systems, data must be
aligned on natural boundaries: bytes on byte boundaries, words (16 bits) on word
boundaries, and doublewords (32 bits) on doubleword boundaries. Structures are
aligned on doublewords on Sun386i systems.

K&R prohibits cast operators as part of constant expressions. Sun C allows them,
except in preprocessor con~tant expressions (see Section 12.3, Conditional Compila­
tion, in K&R Appendix A), where the sizeof operator is also prohibited. K&R
seemingly permits si z eof in preprocessor constant expressions, but the common
implementation does not.

Sun C will not recognize the anachronisms listed in this section. Use op= instead of
=op for assignment operators and include an equals sign when introducing an
initializer.

Revision A, May 1988

F
C on the Sun386i System

C on the Sun386i System... 245

F.l. Names... 247
F.2. Data Types and Sizes .. ~.. 247
F.3. Data Layout.. 248
F.4. Initialization... 248
F.S. Bit Shifting... 248
F.6. Structure Return ... 249
F.7. Register Usage.. 249
F.8. Stack Fonnat .. 249

Sun386i Developer's Guide

F.l. Names

F .2. Data Types and
Sizt~s

Appendix F- C on the Sun386i 247

F
C on the Sun386i System

This appendix describes the operational characteristics of Sun386i Con the Intel
80386 microprocessor. These characteristics are not part of the C language itself, but
rather are the results of machine-dependent implementation choices. Code that
depends on these features may not be portable; however, knowledge of these features
could help when porting C programs from other systems or interfacing C with
assembly language programs. This appendix assumes familiarity with the C program­
ming language.

Variables that are of storage class extern appear in the generated assembler output
as they were in the C source. Case distinction in such names is preserved. The names
of variables defined to be of storage class static, auto, or register do not
appear in the generated code. There is effectively no limit to the length of a vari­
able's name.

The various basic data types have the following lengths:

char 8 bits
short 16 bits
int 32 bits
long 32 bits
float 32 bits
pointers 32 bits
double 64 bits

There are two kinds of alignment used depending upon the data type and storage
class of a variable. Four-byte alignment means that the variable's address will be a
multiple of four, two-byte alignment indicates an address that is even.

Unless otherwise specified, all variables have four-byte alignment. Excepting those
with extern or static storage class, short and unsigned short types have
two-byte alignment and char types are unaligned. Within a structure, individual
members of type char are unaligned and those of short and unsigned short
are two-byte aligned. A structure always has the alignment properties of its most
strongly aligned member. This can result in one, two, or three bytes of padding at
the end of a struct. Arguments, which are always cast to int or double if they
are arithmetic, are therefore always four-byte aligned.

Revision A, May 1988

Sun386i Developer's Guide

F.3. Data Layout

F .4. Initialization

F.S. Bit Shifting

Appendix F- C on the Sun386i 248

You can declare bit fields with any integral type, but they are always treated as

though they had been declared with an equivalent unsigned type. The bits are allocat­

ed from right to left, that is, the low-order bits are allocated first. Data is aligned

beginning at the least-significant bit of the word.

Within a short, the low-order byte is at.the lower address. Within an int (on

long), the low-order word is at the lower address.

The floating-point format follows the ffiEE standard. Values of type float are

stored as two-word quantities, interpreted as:

31 30 23 22 0

1-bit 8-bit biased 23-bit

sign (127) exponent fraction

value = (sign) (fraction x 2 (e - 127))

Values of type double are stored as four-word quantities, interpreted as:

63 62 52 51 0

1-bit 11-bit biased 52-bit

sign (1023) exponent fraction

value = (sign) (fraction x 2 (e - l023))

Extended values never occur outside of the numeric processor.

The words are addressed such that the least-significant part of the fraction has the

lowest address. and the word containing the sign and exponent has the highest

address. The value of the float can range from about 8.43-37 to 3.3738, that of a

double from about4.19-307 to 1.67308.

You can initialize scalar variables. You can initialize structures and arrays only if

they are storage class static or extern. You cannot initialize unions.

Three registers (ED I, E S I, and EBX) are available for user variables. The compiler

allocates only the types long, int, short, and char, their unsigned counterparts,

and pointers to registers (and then only on programmer request). Only one char

register variable is possible.

Right shifts are arithmetic if the value being shifted is signed; they are logical if the

value is unsigned. That is, the vacated bits are filled with copies of the sign bit if

the value is signed and zeroes if it is unsigned.

When porting code to the Sun386i system; you could run into problems because of a

difference in how the 80386 handles bit shifting. The maximum shift count for the

Sun386i system is 31, unlike most machines which allow a higher shift count (even

Revision. A, May 1988

Sun386i Developer's Guide

F.6. Structure Return

F.7. Register Usage

F .8. Stack Format

Appendix F- C on the Sun386i 249

though a count above 32 is meaningless). The limit of 31 reduces maximum execu­
tion time.

If the instruction i = y < < j is executed on a Sun386i system and the value of j
is greater than 31, only the lower five bits of j are used for the count. This means
that a shift of 32 is equivalent to a shift of zero bits. To avoid this problem, you
must search through your code and check all shift operations. For each operation
such as value << = count; where count could be greater than 31, insert the fol­
lowing code:

if (count > 31)

value = 0;
else

value <<= count;

Functions can return structures, but you should use caution. If you allow a function
returning a struct to default to int by mistake, the argument will be misinter­
preted and data could be overwritten. The compiler cannot detect this error, but
lint(l V) can; this is a good reason to use lint .

EAX, ECX, and EDX are temporary registers. These registers are not saved across sub­
routine calls.

The compiler never generates code that changes the contents of a segment register.
These are assumed to be set correctly when a program begins execution.

ESP is used as a stack pointer in the conventional way. EBP is used as a frame point­
er.

Functions returning integrald-typed values do so in EAX. Floating-point return val­
ues are in ST (0). Structures are returned in a caller-allocated buffer.

A stack frame for a function invocation is set up and taken down as follows:

1. The caller pushes the arguments in right-to-left order (last argument
first). If the called function returns a struct, the caller pushes the
address of an appropriate buffer.

2. The return address is pushed onto the stack by executing the call instruc­
tion.

3. EBP is pushed, and EBP is made to point to the stack top, which now con­
tains its old value.

4. The called function then allocates all of its local and temporary space.
5. The called function may push the current values of ED I, ESI, and EBX,

depending on whether any of these registers are used by the called func­
tion, thereby saving their values for the calling function.

6. When the called function is finished, it restores EBX, ESI, and EDI if
they were saved.

7. It then removes its local and temporary space from the stack, reloads the
previous value of EBP, and returns.

Revision A, May 1988

Sun386i Developer's Guide

Figure F-1

8. The caller pops the arguments off the stack.

Higher
memory
addresses

arg n

•
•
•

arg 1

Appendix F- C on the Sun386i 250

Frameofan
Executing Function

struct return address (optional)

Lower
memory
addresses

Return address

Caller's EBP

Local and temporary space

Caller's EDI

Caller's ES I

Caller's EBX

Stack Frame for Function Invocation

Present only if the
called routine makes

/ use of these registers

~

Revision A, May 1988

:.: • 0. ':;:., ..

man Page Differences for the
Sun386i System

G

man Page Differences for the Sun386i System................................... 251

G.l. New man Pages for the Sun386i System... 253

man(l) Commands... 253

man(3) Commands 254

man(3R) Commands... 254

man(3X) Commands 254

man(4)·Descriptions ... 254

man(4S) Descriptions... 254

man(5) Descriptions 254

man(8) Commands 255

man(8C) Commands... 255

G.l. man Pages Altered for the Sun386i System... 255

man(l) Commands... 255

man(2) Commands 256

man(3) Commands 256

man(3N) Commands 256

man(4F) Descriptions... 256

man(4S) Descriptions... 256

man(5) Descriptions 256

man(8) Commands 256

man(SC) Commands... 257

man(8S) Commands... 257

Sun386i Developer's Guide Appendix G - man Page Differences for the Sun386i 252

G.3 4.0 man Pages not Relevant to the Sun386i System.................................... 257

man(l) Commands... 257

man(4S) Descriptions... 257

man(S) Descriptions... 257

man(6) Commands... 257

man(8) Commands... 257

Revision A, May 1988

Sun386i Developer's Guide

G.l. New man Pages for
the Sun386i System

man(l) Commands

Appendix G - man Page Differences for the Sun386i 253

G
. ». . •• !o .. -: ...

man Page Differences for the
Sun386i System

This appendix is divided into three areas;

• man pages that pertain only to the Sun386i system

• man pages that were altered to include Sun386i information

• SunOS 4.0 man pages that do not pertain to the Sun386i system

This section lists the new man commands that pertain only to the Sun386i system,
divided according to their numbered section.

man(l) commands are publicly accessible user commands,

bar{l) - create tape archives, and add or extract files

cluster(!)- find the Application SunOS or Developer's Toolkit cluster
containing a file

coloredi t(l)- alter colormap segment

dis(l)- object code disassembler for COFF

dos(l)- Sun View window for IBM PC/AT applications

dos2unix(l)- convert text fde from DOS format to SunOS format

help viewer(!)- Sun View application providing help with applications
and desktop

load, loadc(l) -load Application SunOS or Developer's Toolkit clusters

objdump(l) -dump selected parts of a COFF object file

organizer(!)- file and directory manager

snap(l)- Sun View application for system and network administration

sysex(l)- invoke the system exerciser

syswai t(l)- execute a command string, suspending termination until user
input

unix2dos(l)- convert text file from SunOS format to DOS format

unload, unloadc(l) -unload Application SunOS or Developer's Toolkit
clusters

Revision A, May 1988

Sun386i Developer's Guide

man(3) Commands

man(3R) Commands

man(3X) Commands

man(4) Descriptions

man(4S) Descriptions

man(S) Descriptions

Appendix G - man Page Differences for the Sun386i 254

man(3) commands are user-level C library functions.

ldf cn(3)- common object file access routines

man(3R) commands are part of the RPC (Remote Procedure Call) services library.

ipalloc(3R)- determine onemporarily allocate IP address

pnp(3R)- automatic system installation

man(3X) commands are miscellaneous functions.

ldahread(3X)- read the archive header of a member of a COFF archive file

ldclose(3X)- close a COFF file

ldfhread(3X)- read the file header of a COFF file

ldgetname(3X)- retrieve symbol name for COFF file symbol table entry

ldlread(3X)- manipulate line number entries of a COFF file function

ldlseek(3X)- seek to line number entries of a section of a COFF file

ldohseek(3X)- seek to the optional file header of a COFF file

ldopen(3X)- open a COFF file for reading .

ldrseek(3X)- seek to relocation entries of section of a COFF file

ldshread(3X)- read an indexed/named section header of a COFF file

ldsseek(3X)- seek to an indexed/named section of a COFF file

ldtbindex(3X)- compute the index of a symbol table entry of a COFF file

ldtbread(3X)- read an indexed symbol table entry of a COFF file

ldtbseek(3X)- seek to the symbol table of a COFF file

man(4) pages describe device drivers, protocols, and network interfaces.

pp(4)- Centronics-compatible parallel printer port

man(4S) pages describe devices and network interfaces.

cgthree(4S)- Sun386i color memory frame buffer

f d(4S) -disk driver for diskette controllers

root(4S)- pseudo-driver for Sun root disk

man(S) descriptions explain file formats.

auto. home(S)- automount map for home directories

auto. vol(5)- automount map for volumes

bar(5)- tape archive file format
coff(5)- common assembler and link editor output

group(5) -group file
help(5)- help file format

help_ viewer(5)- help viewer file format

internat(5)- key mapping table for internationalization

ipalloc. netrange(S) -range of addresses to allocate

Revision A, May 1988

Sun386i Developer's Guide

man(8) Commands

man(SC) Commands

G.2. man Pages Altered
for the Sun386i
System

man(l) Commands

Appendix G - man Page Differences for the Sun386i 255

policies(5)- network administration policies
. rgb(5)- available colors (by name) for coloredit
toc(5)- table of contents of optional clusters in Application SunOS and

Developer's Toolkit
translate(5)- input and output files for system message translation

man(8) commands are general system maintenance and operation commands.

client(8)- add or remove diskless system
fdformat(8)- format a diskette
logintool(8)- graphic log-in interface

modload(8) -load a loadable module

modstat(8) -display status ofloadable modules
modunload(8)- unload a loadable module
unconfigure(8)- reset the network configuration for a system

man(8C) commands are maintenance commands.

ipallocd(8C)- Ethemet-to-IP address allocator
netconf ig(8C)- automatic system installation boot service
pnpboot(8C)- automatic system installation diskless boot service
pnpd(SC) -automatic system installation daemon

The man commands listed in this section were modified to include Sun386i informa­
tion. Commands are divided according to their numbered section.

man(l) commands are publicly accessible user commands.

adb(l)- general purpose debugger
ar(1)- create library archives, and add or extract files
as(l)- Sun-1, Sun-2, Sun-3, Sun-4, and Sun386i assemblers
calendar(l)- a simple reminder service
cc(l)- C compiler

click(l) -enable or disable the keyboard's keystroke click
cpp(l) -the C language preprocessor
csh(1)- a shell (command interpreter) with a C-like syntax and advanced

interactive features
dbx(l) - source-level debugger
ld(1) -link editor, dynamic link editor
machid(l) -return a true exit status if the processor is of the indicated type

nm(l) -print name list
passwd(l)- change password file information
roffbib(l)- format and print a bibliographic database
setkeys(l)- modify interpretation of the keyboard

size(l)- display the size of an object file
symor de r(l) -rearrange a list of symbols

Revision A, May 1988

Sun386i Developer's Guide

man(2) Commands

man(3) Commands

man(3N) Commands

man(4F) Descriptions

man(4S) Descriptions

man(S) Descriptions

man(S) Commands

Appendix G - man Page Differences for the Sun386i 256

man(2) commands are system calls and error numbers.

ptrace(2) -process trace

syscall(2)- indirect system call

man(3) commands are user-level C library functions.

monitor(3) -prepare an execution profile

nlist(3)- get entries from name list

man(3N) commands are network functions.

byteorder(3N)- convert values between host and network byte order

inet(3N)- Internet address manipulation

man(4F) pages describe protocol families.

inet(4F)- Internet protocol family

man(4S) pages describe devices and network interfaces.

bwtwo(4S)- Sun-3/Sun-2 black and white frame buffer

dkio(4S)- generic disk control operations

fbio(4S)- general properties of frame buffers

ie(4S)- IntellO Mb/s Ethernet interface

mem(4S) -main memory and bus l/0 space

sd(4S) -disk driver for SCSI disk controllers

st(4S)- driver for Sysgen SC 4000 (Archive) and the Emulex MT-02 tape
controller

z s(4S)- Zilog 8530 SCC serial communications driver

man(S) descriptions explain file formats.

ar(S)- archive (library) file format

core(S)- format of a memory-image file

printcap(S)- printer capability database

syslog. conf(S)- configuration file for syslogd system log daemon

man(8) commands are general system maintenance and operation commands.

config(8)- build system copfiguration files

dump(8) - incremental file system dump

get t y(8) - set terminal mode

rc(8)- command scripts for auto-reboot and daemons

suninstall(8)- install and upgrade the Sun Operating System

syslogd(8) -log system messages

Revision A, May 1988

Sun386i Developer's Guide

man(8C) Commands

man(8S) Commands

G.3. 4.0 man Pages Not
Relevant to the
Sun386i System

man(l) Commands

man(4S) Descriptions

man(S) Descriptions

man(6) Commands

man(8) Commands

Appendix G - man Page Differences for the Sun386i 257

man(SC) commands are maintenance commands.

rarpd(SC)- DARPA Reverse Address Resolution Protocol service

tftpd(SC)- DARPA Trivial File Transfer Protocol server
ypupdated (8C)- server for changing Yellow Pages information

man(SS) commands are maintenance commands.

boot(SS)- start the system kernel, or a standalone program

kadb(SS)- a db-like kernel and standalone-program debugger
moni tor(SS)- system ROM monitor

The 4.0 man pages that do not pertain to the Sun386i system are listed below,
according to their numbered section.

man(l) commands are publicly accessible user commands.

adjacentscreens(l)- connect multiple screens to Sun View window
driver

switcher(!)- switch attention between multiple Sun View desktops on the
same physical screen

tcov(l)- construct test coverage analysis and statement-by-statement pro­
file

vgrind(l)- grind nice program listings

man(4S) pages describe devices and network interfaces.

ar(4S)- archive 1/4-inch streaming tape drive

man(5) descriptions explain file formats.

a. out(5)- assembler and link editor output format

man(6) commands are for on-line games.

ches s(6)- the game of chess
chesstool(6)- window-based front-end to chess program

man(S) commands are general system maintenance and operation commands.

mc68881 version(S) -print the MC68881 mask number and approximate
clock rate

Revision A, May 1988

H
rm:amtt&Ut&£&utaaw.mmmum:m:wmw.mtm::mu£:mawm:w

MS-DOS and ISO Character
Conversion Tables

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 261

H
MS-DOS and ISO Character

Conversion Tables

This appendix shows the character mapping used when converting between ISO and
MS-OOS file formats withunix2dos -iso and dos2unix -iso commands.
The appendix also lists the ISO character chart and the MS-DOS character chart for
reference.

Table H-1 shows the MS-OOS character set, listed by decimal value. Table H-2
shows the mapping that occurs when you issue the dos2unix -iso command, to
correctly view text files containing MS-DOS international characters in a SunOS
Text Editor window. In many cases, a character in one format is the same character
in the other format; when this isn't possible, the closest approximation is made.
Blank spaces indicate that the character, when translated, is converted to a space.

You can use Table H-2 in conjunction with Table H-4, which shows mapping that
occurs in the opposite direction, from ISO to MS-DOS files. When you issue the
unix2dos -iso command, the conversions shown in Table H-4 are used. Note
that in some cases converting a character from MS-DOS to ISO results in a space,
but converting that same character back to MS-DOS format returns the original
MS-DOS character to its visible form. This occurs primarily with MS-DOS graphics
characters.

'fable H-3 shows the ISO character set (Table 10-2 on page 154 shows a slightly
different representation of the same information).

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 262

Table H-1 MS-DOS Character Set

Dec Hex DOS Dec Hex DOS Dec Hex DOS
0 0H "@ 42 2aH * 84 54H T
1 1H "A 43 2bH + 85 55H u
2 2H "B 44 2cH

'
86 56H v

3 3H '"'C 45 2dH - 87 57H w
4 4H "D 46 2eH . 88 58H X
5 5H "E 47 2fH I 89 59H y

6 6H "F 48 30H 0 90 5aH z
7 7H '"'G 49 31H 1 91 5bH [
8 8H "H 50 32H 2 92 5cH \
9 9H 51 33H 3 93 5dH]

10 aH 52 34H 4 94 5eH "
11 bH "K 53 35H 5 95 5fH -
12 cH '"'L 54 36H 6 96 60H \

13 dH '"'M 55 37H 7 97 61H a
14 eH '"'N 56 38H 8 98 62H b
15 fH "0 57 39H 9 99 63H c
16 10H "P 58 3aH . 100 64H d .
17 11H "Q 59 3bH . 101 65H e

' 18 12H "R 60 3cH < 102 66H f
19 13H "S 61 3dH - 103 67H g -
20 14H "T 62 3eH > 104 68H h
21 15H '"'U 63 3fH '? 105 69H i
22 16H "V 64 40H @ 106 BaH j
23 17H "W 65 41H A 107 6bH k
24 18H "X 66 42H B 108 6cH 1
25 19H "Y 67 43H c 109 6dH m
26 1aH "Z 68 44H D 110 6eH n
27 1bH "[69 45H E 111 6fH 0

28 1cH "\ 70 46H F 112 70H p
29 1dH "] 71 47H G 113 71H q
30 1eH "" 72 48H H 114 72H r
31 lfH "' 73 49H I 115 73H s -
32 20H 74 4aH J 116 74H t
33 21H I 75 4bH K 117 75H u
34 22H II 76 4cH L 118 76H v
35 23H # 77 4dH M 119 77H w
36 24H $ 78 4eH N 120 78H X

37 25H % 79 4fH 0 121 79H y
38 26H & 80 50H p 122 7aH z
39 27H I 81 51H Q 123 7bH {
40 28H (82 52H R 124 7cH I

I

41 29H) 83 53H s 125 7dH }

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 263

Table H-1 MS-DOS Character Set (continued)

Dec Hex DOS Dec Hex DOS Dec Hex DOS
126 7eH "" 169 a9H r 212 d4H ~
127 7fH "? 170 aaH .., 213 d5H F
128 813H c 171 abH !1 214 d6H

j 129 81H " 172 acH !4 215 d7H u
130 82H .. 173 adH I 216 dBH e
131 83H A 174 aeH · « 217 d9H a
132 84H a 175 afH » 218 daH

' 133 85H 176 b0H '" 219 dbH a
'"

134 86H 0 177 b1H 2213 dcH

~
a

135 87H ~ 178 b2H n 221 ddH
136 BBH A 179 b3H 222 deH e
137 89H e 1813 b4H 223 dfH
138 BaH 181 b5H 224 e0H a: e
139 BbH 'i 182 b6H 225 e1H 13

1413 8cH " 183 b7H 226 e2H r 1 11
141 8dH 184 b8H 227 e3H 17

1

~ 228 e4H ~ 142 8eH A 185 b9H
143 8fH 0

186 baH 229 e5H 0" A
144 913H E 187 bbH 2313 e6H JJ

145 91H 188 bcH ~ 231 e7H T
33

232 eBH 9 146 92H /.f. 189 bdH JJ
147 93H " 1913 beH ~ 233 e9H 8

0 234 eaH 0 148 94H 0 191 bfH 1 235 ebH 6 149 95H 192 c0H 0

150 96H ... J. 236 ecH co
u 193 c1H 237 edH 151 97H .. 194 c2H !P u

l 238 eeH E 152 98H Y. 195 c3H 239 efH n 153 99H 0 196 c4H - 240 f0H 154 9aH 0 197 c5H

1
-

241 f1H ± 155 9bH ¢ 198 c6H 242 f2H t. 156 9cH £ 199 c7H 243 f3H s 157 9dH y 200 cBH 244 f4H 158 9eH Ft 2131 c9H R 245 f5H J
159 9fH f 2132 caH - 246 f6H + 160 a0H

,
203 cbH a

~ 247 f7H :::;
161 a1H

,
204 ccH 1 248 f8H 0

162 a2H
,

205 cdH 0 = 249 f9H •
163 a3H

,
206 ceH JL u

Y. 250 faH •
164 a4H fi 207 cfH - 251 fbH
165 aSH N 208 d0H JJ. 252 fcH n
166 a6H g. 209 d1H - 253 fdH 2

T
167 a7H Q 210 d2H

IT
254 feH I

168 aSH (., 211 d3H 255 ffH "-?

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 264

Table H-2 MS-DOS to ISO Conversion

MS-DOS ISO MS-DOS ISO
Dec Hex Dec Hex ISO Dec Hex Dec Hex ISO
0 0H 0 0H A@ 42 2aH 42 2aH >I<

1 1H 1 1H "'A 43 2bH 43 2bH +
2 2H 2 2H "'B 44 2cH 44 2cH ,
3 3H 3 3H "'C 45 2dH 45 2dH -
4 4H 4 4H "'D 46 2eH 46 2eH .
5 5H 5 5H "'E 47 2fH 47 2fH I
6 6H 6 6H "'f 48 30H 48 30H 0
7 7H 7 7H "'G 49 31H 49 31H 1
8 8H 8 8H "'H 50 32H 50 32H 2
9 9H 9 9H 51 33H 51 33H 3

10 aH 10 aH 52 34H 52 34H 4
11 bH 11 bH "'K 53 35H 53 35H 5
12 cH 12 cH "'L 54 36H 54 36H 6
13 dH 10 aH 55 37H 55 37H 7
14 eH 14 eH "'N 56 38H 56 38H 8
15 fH 15 fH "'0 57 39H 57 39H 9
16 10H 16 10H "'P 58 3aH 58 3aH
17 11H 17 11H "'Q 59 3bH 59 3bH ,
18 12H 18 12H AR 60 3cH 60 3cH <
19 13H 19 13H AS 61 3dH 61 3dH =
20 14H 20 14H AT 62 3eH 62 3eH >
21 15H 21 15H AU 63 3fH 63 3fH ?
22 16H 22 16H "'V 54 40H 54 40H @
23 17H 23 17H "'\II 65 41H 65 41H A
24 18H 24 18H "'X 56 42H 56 42H B
25 19H 25 19H "'V 67 43H 67 43H c
26 1aH 26 1aH Az 58 44H 68 44H D
27 1bH 27 1bH A[69 45H 69 45H E
28 1cH 28 1cH A\ 70 46H 70 46H F
29 1dH 29 1dH "'] 71 47H 71 47H G
30 1eH 30 1eH AA 72 48H 72 48H H
31 1fH 31 1fH A 73 49H 73 49H I -32 20H 32 20H 74 4aH 74 4aH J
33 21H 33 21H ! 75 4bH 75 4bH K
34 22H 34 22H II

76 4cH 76 4cH L
35 23H 35 23H I 77 4dH 77 4dH M
36 24H 36 24H $ 78 4eH 78 4eH N
37 25H 37 25H % 79 4fH 79 4fH 0
38 26H 38 26H & 80 50H 80 50H p
39 27H 39 27H I

81 51H 81 51H Q
40 28H 40 28H (82 52H 82 52H R
41 29H 41 29H) 83 53H 83 53H s

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 265

Table H-2 MS-DOS to ISO Conversion (continued)

MS-DOS ISO MS-DOS ISO
Dec Hex Dec Hex ISO Dec Hex Dec Hex ISO
84 54H 84 54H T 126 7eH 126 7eH N

85 55H 85 55H u 127 7fH 127 7fH ... ?

86 56H 86 56H v 128 88H 199 c7H Q
87 57H 87 57H 'yJ 129 81H 252 fcH u
88 58H 88 58H X 138 82H 233 e9H " e
89 59H 89 59H v 131 83H 226 e2H A a
98 5aH 98 5aH z 132 84H 228 e4H a
91 5bH 91 5bH [133 85H 224 e8H ' a
92 5cH 92 5cH \ 134 86H 229 e5H §

93 5dH 93 5dH] 135 87H 231 e7H ~
94 5eH 94 5eH ... 136 88H 234 eaH A e
95 5fH 95 5fH - 137 89H 235 ebH e
96 68H 96 68H 138 BaH 232 e8H ' e
97 61H 97 61H a 139 8bH 239 efH 1
98 62H 98 62H b 148 BcH 238 eeH A

1

99 63H 99 63H 141 8dH 236 ecH ...
c 1

188 64H 188 64H d 142 BeH 196 c4H A
181 65H 181 65H e 143 8fH 197 c5H A
182 66H 182 66H f 144 98H 281 c9H " E

183 67H 183 67H g 145 91H 238 e6H a!

184 68H 184 68H h 146 92H 198 c6H iE
185 69H 185 69H i 147 93H 244 f4H

0

186 6aH 186 6aH j 148 94H 246 fSH ..
0

187 6bH 187 6bH k 149 95H 242 f2H ' 0

188 6cH 188 6cH 1 158 96H 251 fbH A
u

189 6dH 189 6dH m 151 97H 249 f9H ' u

118 6eH 118 6eH n 152 98H 255 ffH y
111 6fH 111 6fH 0 153 99H 214 d6H i:i
112 78H 112 78H p 154 9aH 228 dcH u
113 71H 113 71H q 155 9bH 162 a2H ¢

114 72H 114 72H r 156 9cH 163 a3H f
115 73H 115 73H s 157 9dH 165 a5H ¥
116 74H 116 74H t 158 9eH 32 28H
117 75H 117 75H u 159 9fH 32 28H
118 76H 118 76H 168 a8H 225 e1H "' v a
119 77H 119 77H 161 a1H 237 edH "' w 1

128 78H 128 78H 162 a2H 243 f3H "' X 0

121 79H 121 79H 163 a3H 258 faH "' y u

122 7aH 122 7aH z 164 a4H 241 f1H n
123 7bH { 165 a5H 2139 d1H "" 123 7bH N

124 7cH 124 7cH I 166 aSH 178 aaH !

125 7dH 125 7dH } 167 a7H 186 baH 2

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 266

Table H-2 MS-DOS to/SO Conversion (continued)

MS-DOS ISO MS-DOS ISO
Dec Hex Dec Hex ISO Dec Hex Dec Hex ISO

168 aSH 191 bfH ~ 212 d4H 32 28H
169 aSH 172 acH ... 213 d5H 32 28H
178 aaH 32 28H 214 d6H 32 28H
171 abH 189 bdH ~ 215 d7H 32 28H
172 acH 188 bcH !i 216 d8H 32 28H
173 adH 161 a1H I 217 d9H 32 28H
174 aeH 171 abH « 218 daH 32 28H
175 afH 187 bbH)) 219 dbH 32 28H
176 b8H 32 20H 220 dcH 32 20H
177 b1H 32 20H 221 ddH 32 20H
178 b2H 32 20H 222 deH 32 20H
179 b3H 32 20H 223 dfH 32 20H
180 b4H 32 20H 224 e0H 32 20H
181 b5H 32 20H 225 e1H 223 dfH .B
182 b6H 32 20H 226 e2H 32 20H
183 b7H 32 20H 227 e3H 32 20H
184 b8H 32 20H 228 e4H 32 20H
185 b9H 32 20H 229 e5H 32 20H
186 baH 32 20H 238 e6H 181 b5H u
187 bbH 32 20H 231 e7H 32 20H
188 bcH 32 20H 232 e8H 222 deH p
189 bdH 32 2BH 233 e9H 32 20H
190 beH 32 20H 234 eaH 32 20H
191 bfH 32 20H 235 ebH 248 f0H ~

192 c0H 32 20H 236 ecH 32 2BH
193 c1H 32 20H 237 edH 248 f8H fJ

194 c2H 32 20H 238 eeH 32 20H
195 c3H 32 20H 239 efH 32 20H
196 c4H 32 20H 240 f0H 32 20H
197 c5H 32 20H 241 f1H 177 b1H ±
198 c6H 32 20H 242 f2H 32 20H
199 c7H 32 20H 243 f3H 32 2BH
280 c8H 32 28H 244 f4H 32 28H
201 c9H 32 20H 245 f5H 32 20H
202 caH 32 20H 246 f6H 247 f7H .
283 cbH 32 28H 247 f7H 32 28H
204 ccH 32 20H 248 f8H 32 28H
285 cdH 32 28H 249 f9H 32 28H
286 ceH 32 28H 250 faH 32 20H
287 cfH 32 20H 251 fbH 32 28H
288 d0H 32 20H 252 fcH 32 28H
209 d1H 32 28H 253 fdH 178 b2H 2

210 d2H 32 20H 254 feH 32 28H
211 d3H 32 20H 255 ffH 32 28H

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 267

Table H-3 ISO Character Set

Dec Hex ISO Dec Hex ISO Dec Hex ISO
0 0H A@ 42 2aH "' 84 54H T
1 1H "'A 43 2bH + 85 55H u
2 2H "'B 44 2cH

'
86 56H v

3 3H "'C 45 2dH - 87 57H w
4 4H "'D 46 2eH . 88 58H X
5 5H "'E 47 2fH I 89 59H v
6 6H Af 48 30H 0 90 5aH z
7 7H "'G 49 31H 1 91 5bH [
8 8H "'H 50 32H 2 92 5cH \
9 9H 51 33H 3 93 5dH]

10 aH 52 34H 4 94 5eH A
11 bH "'K 53 35H 5 95 5fH
12 cH "'L 54 36H 6 96 60H ' 13 dH "'M 55 37H 7 97 61H a
14 eH "'N 56 38H 8 98 62H b
15 fH "'0 57 39H 9 99 63H c
16 10H p 58 3aH . 100 64H d .
17 11H "'0 59 3bH ' 101 65H e
18 12H "'R 60 3cH < 102 66H f
19 13H "'S 61 3dH = 103 67H g
20 14H "'1 62 3eH > 104 68H h
21 15H "'u 63 3fH ? 105 69H i
22 16H "'V 64 40H @ 106 BaH j
23 17H "'W 65 41H A 107 6bH k
24 18H "'X 66 42H B 108 6cH 1
25 19H "'V 67 43H c 109 6dH m
26 1aH z 68 44H D 110 6eH n
27 1bH "'[69 45H E 111 6fH 0

28 1cH "'\ 70 46H F 112 70H p
29 1dH "'] 71 47H G 113 71H q
30 1eH AA 72 48H H 114 72H r
31 '1fH A 73 49H I 115 73H s -32 20H 74 4aH J 116 74H t
33 21H ! 75 4bH K 117 75H u
34 22H II 76 4cH L 118 76H v
35 23H # 77 4dH M 119 77H w
36 24H $ 78 4eH N 120 7BH X

37 25H % 79 4fH 0 121 79H y
38 26H & 80 50H p 122 7aH z
39 27H I 81 51H Q 123 7bH {
40 28H (82 52H R 124 7cH I
41 29H) 83 53H s 125 7dH }

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 268

TableH-3 ISO Character Set (continued)

Dec Hex ISO Dec Hex ISO Dec Hex ISO
126 7eH N 169 aSH © 212 d4H 0
127 7fH n? 170 aaH ! 213 d5H 0
128 80H 171 abH « 214 d6H i:i
129 81H 172 acH ., 215 d7H X

130 82H 173 adH n? 216 d8H H

131 83H 174 aeH ® 217 d9H tJ
132 84H 175 afH - 218 daH 0

0 219 dbH
A

133 85H 176 b0H u
134 86H "'? 177 b1H ± 220 dcH u
135 87H "'? 178 b2H 2 221 ddH ~

136 88H "'? 179 b3H :; 222 deH p

137 89H n? 180 b4H
,. 223 dfH J3

224 e0H
...

138 BaH n? 181 b5H u a
"

139 8bH n? 182 b6H ' 225 e1H a
A

140 8cH n? 183 b7H • 226 e2H a

141 8dH n? 184 b8H 227 e3H a
~ 228 e4H a 142 8eH n? 185 b9H 1

143 8fH n? 186 baH Q 229 e5H §

144 90H n? 187 bbH)) 230 e6H a!

145 91H n? 188 bcH ~ 231 e7H ~ ...

146 92H "'? 189 bdH ~ 232 e8H e
233 e9H '

147 93H loo? 190 beH % e
234 eaH

A

148 94H n? 191 bfH (.
e

149 95H ~oo? 192 c0H A 235 ebH e
...

150 96H ~oo? 193 c1H A 236 ecH 1
"

151 97H n? 194 c2H A
237 edH 1

"
152 98H n? 195 c3H A 238 eeH 1

153 99H ~oo? 196 c4H A
239 efH i'
240 f0H ~

154 9aH n? 197 c5H A
155 9bH n? 198 c6H IE

241 f1H n
242 f2H ...

156 9cH n?
0

199 c7H g 243 f3H "
157 9dH n? ... 0

288 c8H E 244 f4H A

n? "
0

158 9eH 281 c9H E 245 f5H ~

n? "
0

159 9fH 202 caH E 246 f6H
..
0

160 a0H n? 203 cbH E 247 f7H .
... .

161 a1H I 204 ccH I 248 f8H flJ
162 a2H ¢ 205 cdH " I 249 f9H ...

u
163 a3H £ 286 ceH A

" I 250 faH u
164 a4H :0: 207 cfH 1 251 fbH A

u
165 a5H ¥ 208 d0H a 252 fcH u
166 aSH I 209 d1H N 253 fdH " I 'Y
167 a7H § 210 d2H a 254 feH p
168 aSH .. 211 d3H 6 255 ffH y

Revision A, May 1988

Sun386i Developer's Guide MS-OOS and ISO CharacterConversion Tables 269

Table H-4 ISO to MS-DOS Conversion

ISO MS-DOS ISO MS-DOS
Dec Hex Dec Hex DOS Dec Hex Dec Hex DOS
B 0H B 0H A@ 42 2aH 42 2aH *
1 1H 1 1H "A 43 2bH 43 2bH +
2 2H 2 2H ""B 44 2cH 44 2cH ' 3 3H 3 3H "'C 45 2dH 45 2dH -
4 4H 4 4H "'D 46 2eH 46 2eH .
5 5H 5 5H "'E 47 2fH 47 2fH I
6 6H 6 6H "'F 48 30H 48 30H 0
7 7H 7 7H ""G 49 31H 49 31H 1
8 8H 8 8H "'H 50 32H 50 32H 2
g 9H g 9H 51 33H 51 33H 3

10 aH 10 aH 52 34H 52 34H 4
11 bH 11 bH "'K 53 35H 53 35H 5
12 cH 12 cH "'L 54 36H 54 36H 6
13 dH 13 dH "'M 55 37H 55 37H 7
14 eH 14 eH "'N 56 38H 56 38H 8
15 fH 15 fH "'0 57 39H 57 39H g
16 10H 16 10H p 58 3aH 58 3aH . .
17 11H 17 11H "'0 59 3bH 59 3bH .

' 18 12H 18 12H "'R 60 3cH 60 3cH <
19 13H 19 13H AS 61 3dH 61 3dH -
28 14H 20 14H "'T 62 3eH 62 3eH >
21 15H 21 15H "'U 63 3fH 63 3fH ?
22 16H 22 16H y 64 40H 64 40H @
23 17H 23 17H "'\II 65 41H 65 41H A
24 18H 24 18H "X 66 42H 66 42H B
25 19H 25 19H y 67 43H 67 43H c
26 1aH 26 1aH z 68 44H 68 44H D
27 1bH 27 1bH "'[69 45H 69 45H E
28 1cH 28 1cH , 70 46H 70 46H F
29 ldH 29 1dH "'] 71 47H 71 47H G
30 leH 30 1eH A.A 72 48H 72 48H H
31 lfH 31 1fH 73 49H 73 49H I -32 20H 32 20H 74 4aH 74 4aH J
33 21H 33 21H I 75 4bH 75 4bH K
34 22H 34 22H II 76 4cH 76 4cH L
35 23H 35 23H # 77 4dH 77 4dH M
36 24H 36 24H $ 78 4eH 78 4eH N
37 25H 37 25H "/., 79 4fH 79 4fH 0
38 26H 38 26H & 80 50H 80 50H p
39 27H 39 27H I 81 51H 81 51H Q
48 28H ·48 28H (82 52H 82 52H R
41 29H 41 29H) 83 53H 83 53H s

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 270

Table H-4 ISO to MS-DOS Conversion (continued)

ISO MS-DOS ISO MS-DOS
Dec Hex Dec Hex DOS Dec Hex Dec Hex DOS
84 54H 84 54H T 126 7eH 126 7eH ...
85 55H 85 55H u 127 7fH 127 7fH "?

86 56H 86 56H v 128 80H 32 20H
87 57H 87 57H 'YI 129 81H 32 20H
88 58H 88 58H X 130 82H 32 20H
89 59H 89 59H y 131 83H 32 20H
90 5aH 90 5aH 2 132 84H 32 20H
91 5bH 91 5bH [133 85H 32 20H
92 5cH 92 5cH \ 134 86H 32 20H
93 5dH 93 5dH] 135 87H 32 2BH
94 5eH 94 5eH ,., 136 88H 32 20H
95 5fH 95 5fH 137 89H 32 2BH -
96 60H 96 60H ' 138 BaH 32 20H
97 61H 97 61H a 139 BbH 32 2BH
98 62H 98 62H b 140 8cH 32 20H
99 63H 99 63H c 141 BdH 32 20H

100 64H l00 64H d 142 8eH 32 20H

101 65H l01 65H e 143 8fH 32 20H

102 66H l02 66H f 144 90H 32 20H

103 67H L03 67H g 145 91H 32 20H

104 68H l84 68H h 146 92H 32 28H

185 69H l05 69H i 147 93H 32 20H

106 6aH l06 6aH j 148 94H 32 28H

187 6bH l07 6bH k 149 95H 32 28H

108 6cH l08 6cH 1 158 96H 32 2BH
151 97H 32 28H

109 6dH l09 6dH m 152 98H 32 28H
110 6eH L10 6eH n 153 99H 32 20H
111 6fH l11 6fH 0 154 9aH 32 28H
112 70H l12 78H p 155 9bH 32 20H
113 71H l13 71H q 156 9cH 32 28H
114 72H l14 72H r 157 9dH 32 28H
115 73H l15 73H s 158 9eH 32 2BH
116 74H l16 74H t 159 9fH 32 28H
117 75H l17 75H u 168 a8H 32 ' 28H
118 76H L18 76H v 161 a1H 173 adH i
119 77H L19 77H w 162 a2H 155 9bH ¢
120 78H L2B 78H X 163 a3H 156 9cH £
121 79H l21 79H y 164 a4H 32 2BH
122 7aH l22 7aH z 165 a5H 157 9dH v
123 7bH l23 7bH { 166 a6H 32 20H
124 7cH l24 7cH I 167 a7H 32 20H I

125 7dH 125 7dH } 168 aSH 32 20H

Revision A, May 1988

Sun386i Developer's Guide MS-DOS and ISO Character Conversion Tables 271

Table H-4 ISO to MS-DOS Conversion (continued)

ISO MS-DOS ISO MS-DOS
Dec Hex Dec Hex DOS Dec Hex Dec Hex DOS
169 a9H 32 20H 212 d4H 147 93H A

0

178 aaH 172 acH ~ 213 d5H 111 6fH 0

171 abH 174 aeH « 214 d6H 153 99H 0
172 acH 191 bfH , 215 d7H 32 20H
173 adH 32 20H 216 d8H 237 edH 41

217 d9H 151 97H ...
174 aeH 32 20H u

218 daH 163 a3H
,

175 afH 32 28H u
0 219 dbH 150 96H A

176 b0H 248 fBH u

177 b1H 241 f1H ± 220 dcH 154 9aH 0
178 b2H 253 fdH 2 221 ddH 89 59H y

179 b3H 51 33H 3 222 deH 232 eBH ~

180 b4H 39 27H ~ 223 dfH 225 e1H a ...
181 b5H 236 ecH a) 224 e0H 133 85H a

225 e1H 160 a0H
,

182 b6H 20 14H "T a
226 e2H 131 83H A

183 b7H 32 20H a
184 bBH 32 20H 227 e3H 97 61H a
185 b9H 49 31H 1 228 e4H 132 84H a

229 e5H 134 86H 0

186 baH 167 a7H Q
a

187 bbH 175 afH » 230 e6H 145 91H a!

188 bcH 172 acH ~
231 e7H 135 87H ~
232 e8H 138 BaH ...

189 bdH 171 abH }2 e
233 e9H 130 82H

,
190 beH 32 20H e

234 eaH 136 88H A

191 bfH 168 aSH (.. e

192 c0H 133 85H 235 ebH 137 89H e
a 236 ecH 141 8dH ...

193 clH 160 a0H a 1

194 c2H 131 83H A 237 edH 161 a1H f
a 238 eeH 140 BcH A

195 c3H 97 61H
1

a 239 efH 139 BbH '1'
196 c4H 142 BeH A 240 f0H 235 ebH 6
197 c5H 143

0

BfH A 241 f1H 164 a4H n
198 c6H 146 92H If. 242 f2H 149 95H ...

0
199 c7H 128 88H Q 243 f3H 162 a2H

,
0

208 cBH 138 BaH ... e 244 f4H 147 93H A

0
281 c9H 144 98H E 245 f5H 111 6fH 0
202 caH 136 88H A e 246 f6H 148 94H 0
283 cbH 137 89H e 247 f7H 246 f6H +
204 ccH 141 8dH ...

1 248 f8H 237 edH 41
205 cdH 161 alH

, ... 1 249 f9H 151 97H u
206 ceH 140 BcH A

250 faH 163 a3H
,

1 u
207 cfH 139 8bH 1' 251 fbH 150 96H A

u
208 d0H 68 44H D 252 fcH 129 81H " u
209 d1H 165 aSH N 253 fdH 121 79H y
210 d2H 149 95H ..

254 feH 232 e8H ~ 0

211 d3H 162 a2H
,

255 ffH 152 98H " 0 y

Revision A, May 1988

Index

Symbols

& background character 126
• BAT files 111, 113
• COM files 111
• EXE files Ill
.h files 200
. info files 81-86
.orgrc file

description 68-73
icons for 68
parameters 69-72
sample entries 72-73
See also organizer program

.quick.pc file 114,125

. rf files 87

. rgb file 105
• rgb(5) file format 255
I. See file system

Numerics

68000
byte ordering used by 18
byte swap problems 19

8-bit
character handling 149
displaying files in DOS Windows 117
support 4, 149

80386 3, 17-19, 26-27, 33
80387 19
8086 33

A

a. out(5) file format 257
accents. See floating accent key
accounting cluster 142

-273-

adb(l) debugger 26,255
location 140
manual describing 6
Sun386i commands for 43

addresses, appearance of negative 30
adjacentscreens(l) command 257
advanced admin cluster 142, 201
Alt Graph key 4, 22, 150, 152-153
Application SunOS 25, 28, 165

contents 139-142
manual describing 11

applications
building and maintaining with the make(l)

utility 6
help, writing for 80-98
international 149-156, 161
PC 3, Ill, 160. See also MS-DOS
porting

c 247-250
from UNIX System V 27
from Sun-3 26-27

releasing 144-145
start applic file 202
subdireCtories for 206-207
Sun View, using 45
third-party software

directory for 202
that run on Sun386i 4

window concepts, manual describing 7
window-based, creating 29
See also color; graphics; MS-DOS;

organizer(l) program
ar(l) command. See archiver (ar)
ar(4S) command 257
ar(5) file format 256
archiver (ar) 42, 255

/tmp directory, use of 199

Index Continued

as(1) command. See assembler (as)
asm keyword 40, 55
assember (as) 25, 55, 33, 255

80386 versus 8086 33
expressions 173, 182
immediate values 182
input format 171-172
instruction descriptions 180-181
instructions

arithmetic/logical 185
control 182
conversion 186
coprocessor 186
decimal arithmetic 186
divide 186
flag 184
1/0 184
interrupt 187
jump 187
miscellaneous 188
multiply 186
new arithmetic 183
new bit 183
new condition code 182
new move 183
procedure call 187
processor extension 182-184
protection model 187-188
return 187
segment register 184
string 186-187

location 11, 143
mnemonics

addition 189
arithmetic 190
comparison instructions 190
constant instructions 190
division 189
integer transfers 189
multiplication 189
packed decimal 189
processor control instructions 191
real transfers 188
subtraction 189
transcendental instructions 190

object file, sections of 172
operands 178-179
operations

dbx pseudo 178
general pseudo 17 5-177
sdb pseudo 177

-274-

operators 173
output format 172
shared libraries, creating with 27
statements

assignment 171
empty 171
machine operation 171
modifying 172
pseudo operation 171

SunOS vs. Intel 80386 178, 188-191
symbols 173
syntax rules 173-17 5
test register 182
types 172-173
values 172-173
See also Common Object File Format (COFF)

AT bus 20, 159, 160
audit trail package cluster 142
auto. home(5) file 198, 254
auto. vol(5) file 205, 254
AUTOEXEC. BAT file 113
Automatic System Installation utility 98-99
automounter (automount(8)) 195, 197-199, 205

8

bar(1) command 253
bar(5) file format 254
base devel cluster 11, 143
bit flipping 19-20
bit shifting 33, 248
boards. pc file 113-115
boot

blocks, location 201
directory containing files for 198-199
servers, location 141

boot(8S) command 255, 257
boot.S386file 197
Bourne shell

bus

8-bit handling 149
manual describing 6

AT 3, 20, 129, 159, 160
AT interface 131-135
comparison between Sun-3 and Sun386i 17
System 20, 159, 160
XT 3, 20, 129, 159

bwtwo(4S) command 256
byte ordering

affect on porting 18-19
byte swap problems 19-20, 59

comparison of 80386, VAX, and 680x0 18
graphics applications, correcting problem

45-46
network message passing 35
problems to avoid when porting C code 34-35

byte swapping 19-20, 59
byteorder(3N) function 256

c
c 26,43

arithmetic conversions 240
assembler inlining (asm keyword) 40, 55
bit shifting, limit 33, 248
byte-ordering problems 19
cast operators 243
characters 239
compiler (cc) 25, 33, 255

-g and -go options 33, 223, 227-228
/tmp directory, use of 199
asm function declarations 40
assembly language use 171
casting a structure to a scalar value 39-40
line number information 219-220
location 11, 143
shared libraries, creating with 27

complex operations, replacing 53
data

alignment 38, 243, 247-248
layout 248
representations 36-37
sizes 247-248
types 247-248

declarations, inner and outer 242
documentation for 33, 6
double 239-240, 242, 248
evaluating conditions 53-54
float 239-240,242,248
functions 241-242,249
generating string instructions 54
header files 200
improving loop efficiency 54-55
initialization 248
initializer 243
Kernighan and Ritchie C vs. Sun C 239-243
keywords

enum 239
void 239
asm 40,55

linear code benefits 51-52
linkage rules 242

-275-

multiplicative operators 240
name spaces 239
optimizing code 48-55
pointers 241

Index Continued

portability and rules type checker for (lint)
6,42,249

porting problems, avoiding 33-36, 38-40
preprocessor (cpp), predefined symbols 39
primary expressions 240
registers 49-50, 248-249
right shifts 248
stack format 249-250
storage class specifiers 240
structure declarations 241, 243
switch expressions 242
type specifiers 240--241
unions 241, 243
variable names 247

C Programmer's Guide for the Sun Workstation,
synopsis 6

calendar(l) program 141, 255
Catalyst program 4
cc. See C, compiler (cc)
CGA (Color Graphics Adapter) 109-110
CGI 26,67
cgthree(4S) command 254
character codes 149-150
characters, creating West European 150--152, 4, 22
character sets

ISO 267-268, 154
ISO to MS-DOS conversion 269-271
MS-OOS 262-263
MS-OOS to ISO conversion 264-266

chess(6) command 257
chesstool(6) command 257
chown(8) system call 30
click(l) command 255
client(8) command 255
cluster(l) command 12, 143,253
clusters

accounting 142
advanced_admin 142,201
Application SunOS 141-142
audit 142
base_devel 11, 143
comm 142
config 11, 143
database for 200
definition 11
determining if loaded 143
disk_quotas 142

Index Continued

doc_prep 142
extended commands 142
games 142,200
help _guide 11, 79, 91, 143
loading 12-13
location if loaded 202
mail_plus 142
man_pages 142
name server 142
networking_plus 142
old commands 142
plot 142
plot_ devel 11, 143
proflibs 11, 143
sees 201
size of, displaying 143
spellcheck 142, 200
SunOS Developer's Toolkit 11
sunview_devel 11,143
sysV_commands 142
sysV _de vel 12, 143
unloading 12-13
viewing information about 12

code
control. See Source Code Control System

(sees)
optimization 48-55
position-independent (PIC) 49

coff(5) file format 254
COFF. See Common Object File Format (COFF)
color

applications 5, 66, 99-105, 166
colormap definition 99
emulation 109-110
foreground and background 100--101
guidelines for using 105-106
panels, adding 101-104
See also coloredit(l) program

Color Graphics Adapter (CGA) emulation 109-110
coloredit(1) program 26, 66, 104--105, 166, 253

on-screen documentation for 77
colormap, defmition 99
comm cluster 142
command interpreter (I sbin/ sh) 199
commands

dos2unix(1) 261
Sun386i

altered for 255-257
new 253-255
not pertaining to 257

unix2dos(l) 261

-276-

See also individual command name; man pages
Common Object File Format (COFF) 25-26, 28,

31
a. out header 214-216
addresses, physical and virtual 213
auxiliary symbol table entries 231-235

C structure declaration for 234-235
for arrays 233
for beginning of blocks and functions 233
for end of blocks and functions 233-234
for end of structures 232
for enumeration symbols 234
for filenames 232
for functions 232-233
for sections 232
for structure symbols 234
for tag names 232
for union symbols 234

external symbol representation in 33
features 211
file header

contents 213-214
optional information 214-216

functions, symbols for 222
line number information 219-220
link editor SECTIONS directive, use of 218
magic number 213, 215
man pages for 253-254
object file sections 211-212
reading parts of files with access routines 236
reloc. h file 219
relocation information 218-219
section header

.bss section 218
C structure declaration 217
flags 216-217
table 216

section numbers 226-227
sections, description 212-213
storage classes 224-227, 229-230
storclass. h file 223-224
string table 235-236
symbol table entries 222-231
System V functions for manipulating 32
type entries

by storage class 229-230
derived types 228
fundamental types 228-229

communications. See networks
compilers. See C compiler (cc); yacc compiler

compiler

Compose key 4, 22, 150-152
Computer Graphics Interface. See SunCGI
config cluster 11, 143
config(8) file fonnat 256
CONFIG. SYS file 113
coilfiguration files, location 141
core system 140-141, 165
core(5) file fonnat 256
cpp(1) command 255,39
CPU board, contents 163
creat(2) system call 30
csh(l) command 255
Curses facility, manual describing 6

D

daemons, location 142
database software 55
dbx(l) debugger 26, 255

C code, use with 33
location 11, 143
manual describing 6
object file infonnation 223
Sun386i registers for 44-45

debuggers. See adb(1) debugger; dbx(1) debugger;
kadb(8S) debugger

DEFINE_ICON_FROM_IMAGE macro 45-46
Developer's Toolkit. See SunOS Developer's

Toolkit
device drivers 129-131

manual describing 7
loadable 129
relationship to Pixrect graphics library 20
timing dependencies 130
See also MS-DOS, drive designations

devices
adding 19, 129-131 ·
directory for 196, 197
mass storage 162
See also device drivers

diagnostics 139-140, 164
directory for 199
files for 203

directories
exporting 204
graphically displaying with organizer 68
See also file system

disassembler (dis) 42,253
diskless systems, files for 199
disk_ quotas cluster 142
disks

-277-

Index Continued

capacity of for Sun386i 20
quot(8) command, location 142

dkio(4S) command 256
doc _prep cluster 142
documentation

Developer's Toolkit Documentation Set 6-7,
168

forC 6, 33
for debuggers 6
for FORTRAN 41
for network programming 6
for Pascal 41
for Pixrect graphics library 7
for programming utilities 6
for PROM, ID PROM, and EEPROM 6
for Sun386i, synopsis 167-168
forSunCGI 7
for SunOS operating system 6
for Sun View 7
for writing device drivers 7
on-screen topics 77, 88
Owner's Set 168
Owner's Supplement Documentation Set 168
Upgrade Documentation Set 168

dos(1) program
& background character 126
. BAT files 111
.COMfiles 111
. EXE files 111
. quick. pc file 114, 125
8-bit handling 117, 149
boards. pc file 113-115
code set 150
description 109-110, 153
DOS CMDTOOL environment variable 125
DOS LOOKUP environment variable 112, 117,

125
drive C:, space issue 124
EDITDOS program, source code for 118-123
expanded memory for applications 111
1/0 address space emulation 115
LIM memory use 111
name of process running in, ensuring unique

117
on-screen documentation for 77
opening implicitly 110
piping 125-126
port limitations 123
scratch files, conflicts with 124
screen height limitations 123
set up. pc file 112, 113-115

Index Continued

SunOS commands, invoking from 111, 125
text-only applications, running 112
See also MS-DOS

DOS Windows. See dos(l) program
dos2unix(l) command 116-117, 150,253,261
DOS CMDTOOL environment variable 125
DOS LOOKUP environment variable 112, 117, 125
drivers. See device drivers
dump(8) command 256
dumps, location 203

E

ed(1) editor 141
editors

crash files for ex and vi 203
location 141
See also link editor (ld)

EDITDOS program, source code for 118-123
EEPROM, manual describing 6
EGA (Extended Graphics Adapter) 110
encryption, files and keys for 141
environment variables

DOS CMDTOOL 125
DOSLOOKUP 125
$PATH 206

environmental requirements 163
error messages, rewording from kernel 73-76
Ethernet 26, 55
ex(l) editor 141, 203
expansion unit 19, 160
exporting directories, steps for 204
Extended Graphics Adapter (EGA) 110
eXternal Data Representation (XDR) 26, 55

ensuring correct network byte order with 35
using as data format 47

F

£77(1). See FORTRAN
fbio(4S) command 256
fcntl(2) system call 30
fd(4S) command 254
file conversion

between MS-DOS and 8-bit text 117
between SunOS and MS-OOS text files

116-117
me system

/bin 197, 200
/dev 197
/etc 197

-278-

/etc/auto.vol 205
/etc/dos/defaults 113-114
/etc/dos/unix 111-112,125
/etc/exports 203
/etc/fstab 196

I export directory 197-198, 203-205
/export/dump 204
/export/exec 204
/export/home 204
/export/loaded 204
/export/loaded/advanced_admin/

mdec 201
/export/local.unix 205
/export/root 205
/export/share 201
I export I swap 205

1 f i 1 e s file system, description 196, 198,
202-203

/files/dump 202
/files/exec 202
/files/home 202
/files/hosts 200,202
/files/loaded 202
/files/loaded/appl 202
/files/loaded/devel 202
/files/local 202
/files/local.net 202
/files/local.unix 206
/files/lost+found 203
/files/root 203
/files/src 203
/files/swap 203
/files/var 203
/files/var/adm 200,203
/files/var/crash 203
/files/var/preserve 203
/files/var/spool 201,203
/files/var/sysex 203
/files/var/tmp 203

/home 197, 198
I lib 198, 200
/lost+found 198
/mnt mount point 198
/net 198
/sbin 198

/sbin/fsck 198
/sbin/init 198
I sbin/mount 198
/sbin/netconfig 198
/sbin/reboot 199
I sbin/ sh 199

I stand 199, 201
j s ys directory 199
/tftpboot directory 199
/tmp directory 199
/tmp _ mnt mount point 199
/usr file system 196

/usr/Sbin 29,200
/usr/Sinclude 200
/usr I Slib 200
/usr/adm 200
/usr/bin 29,200
/usr/bin/start_applic 202
/usr /boot 200
/usr I diet 200
/usr/etc 200
/usr/games 200
/usr/hosts 200
/usr/include 200
/usr/lib 200
/usr/lib/load 200
/usr I local 201, 206-207
/usr/lost+found 201
/usr/man 201
/usr/mdec 201
/usr/pub 201
/usr/sccs 201
/usr/share 201
/usr/share/lib 201
/usr/share/man 201
/us r I spool 201
/usr/src 201
/usr I stand 201
/usr I sys 201
/usr I sysex 201
/usr /tmp 201
/usr/ucb 201
/usr/VERSION 201
files needed to start 198

Ius r mount point 199
I var directory 199

/var/adm 199
/var/crash 199
/var/log 199
/var/preserve 199
/var /recover 199
/var/spool 199
/var /tmp 199
/var/yp 199

/vmunix 199
/vol 197, 199, 205-206

/vel/local 202,206

-279-

Index Continued

applications, subdirectories for 206-207
Berkeley UNIX commands (/usr/ucb) 201
boot directory, (lusr/boot) 200
boot program (boot. 8386) 197
C header files (/usr I include) 200
checking and repairing (with I sbin/ fsck)

198
clusters

database for (/usr I lib/ load) 200
location if loaded (/files/loaded) 202

command interpreter (I sbin/ sh) 199
configuring network (with

/sbin/netconfig) 198 ,
diagnostics directory{/ stand) 199
diagnostics, files for (I files/var I sysex)

203
dumps, location 203
ex crash files (/export/var/preserve)

203
home directory 198, 202
kernel core dumps, location

(/files/dumps) 202
mounting(/sbin/mount) 198
network

configuration file (I sbin/netconfig)
198

considerations 195
printing files 203
process control initialization (I sbin/ ini t)

198
rebooting, file for (I sbin/ reboot) 199
root file system(/), description 196
spell program database (lusr I diet) 200
Sun386i, overview 195-197
system administration directories (I etc and

/usr/etc) 197,200
temporary files, mount points for
(/tmp and /tmp_mnt) 199
UNIX System V

binaries (/usr/Sbin) 200
include files (/usr/ Sinclude) 200
libraries (/usr/Slib) 200

utilities directory (/usr I lib) 200
VERSION file 199
vi(l) and ex(l) crash files 203
See also Application SunOS; clusters; SunOS

Developer's Toolkit
filesizes file 140, 142, 143,200
floating accent key 150, 154
fonts

converting between 150

Index Continued

pcfont.b.l4 149
pcfont. r .14 149
screen.iso.r.l2 149

FORTRAN 26, 40-41, 43, 165 ··
frame buffers

byte swap and bit flip problems 21
size, affect on porting 20
Sun-3 vs. Sun386i systems 17
Sun386i 20, 164

functions, for manipulating COFF files 32

G

games cluster 142,200
games files, location 142
getty(8) command 256
OKS (Graphics Kernel System) 26, 67
gprof(1) command, description 42
graphics

bit-flipping problems 19
byte-order problem, avoiding 45-46
Color Graphics Adapter (CGA) emulation 110
device-independent, using RasterOP library

routines to create 7
Extended Graphics Adapter (EGA) card,

adding 110
Hercules emulation 110
icons, creating for application files 68-73
interface to SunOS file system 68-73
libraries for 11, 26, 67
Monochrome Display Adapter (MDA)

emulation 110
packages for 25
pixrect suggestions 46
porting 65
software for 165-166
standard word format for 21
Sun-3 vs. Sun386i systems 17
SunCGI, use for 7
Sun View and Pixrect libraries, use for 7, 20
See also Pixrect graphics library; Sun View

Graphics Kernel System (OKS) 26, 67
group(5) command 254

H

handbooks. See Help Viewer
hardware

diagnostics 139-140
porting issues 17-22
Sun-3 vs. Sun386i system 17

-280-

help. See on-screen help
Help key 4, 22
Help Viewer

command for 253
description 66,76-79
file format for 254
guidelines for 94
handbooks

appearance, checking 95
making user visible 95-96
templates for 93-94
topics, referring to 85-86
writing for applications 86-95

Help Writer's Handbook, loading 88
Master Index 79
on-screen documentation for 77
sample window 78
table of contents 79
See also on-screen help

help(5) file format 254
HELP DATA attribute 81-85
help _guide cluster 11, 79, 91, 143
help _guide directory 87
help_ viewer(l) command 253
help_ viewer(5) flle format 254
Hercules Graphics Adaptor emulation 109-110
home directory 198, 202
hypertext links

definition 78
description 88-89
implementing 89-93

I

I/O ports
Ethernet 19
parallel 19
RS-423 19
SCSI 19
Sun-3 vs. Sun386i systems 17

IBM 360, byte ordering used by 18
iconedit(1) 45-46
icons, creating for applications 68-73
ID PROM, manual describing 6
ie(4S) command 256
include files, containing COFF definitions 31
inet(3N) function 256
inet(4F) protocol family 256
Intel 3
interfaces 19
internat(S) file format 254

international applications 149-156,4
International Standards Organization. See ISO
interrupt channels 132
interrupt levels 116
ipalloc(3R) command 254
ipalloc. net range(5) file format 254
ipallocd(8C) command 255
ISO character set 150, 267-271

K

kadb(8) debugger 26, 131, 198, 257
kernel

8-bit handling 149
core dumps, location 202
debugger for, location 198
location 140, 196
messages, translating 73-76, 154
reconfiguring, files for 199

keyboard 161
compatability 4
description and illustration of Sun386i (U.S.

and Great Britain) 22
layout 161
Sun-3 vs. Sun386i system 17

keys
Alt Graph 4, 22, 150, 152-153
AT-style 4
Compose 4, 22, 150-152
floating accent 150, 154
Help 4, 22
Sun-3 4, 161
West European characters, creating 150-152,

4,22
keystation map

international 153
u.s. 152

kill(l) system call 30
kill(2V) system call 30

L

ld(l) command 255
ld * files 32, 254 .
lex(l) lexical analysis program, manual

describing 6
libld. a library 236
libraries

for graphics applications 26, 67
libld. a 32,236
listing of Sun386i 28

-281-

lorder(l) utility for 42
plotting, location 11, 143
profiled, location 11, 143
ranlib(1) utility for 42
SunView, location 11, 143

Index Continued

See also archiver {ar); profiled libraries;
shared libraries

lightweight processes 27
UM (Lotus-Intel-Microsoft) memory 111
link editor (ld) 42

a. out header 214-216
C linkage rules 242
location 11, 143
relocation information, use of 21&-219
SECTIONS directives 218
shared libraries, creating with 27-28
See also Common Object File Format

(COFF)
links

between MS-DOS and SunOS files 109
hypertext 78,88-93

lint(1 V) program checker 42, 6
load(l) command 12, 141, 143, 253
loadable drivers 129
loadc(1) command 12, 143, 253
logintool(8) command 255
lorder(1), on Sun386i 42-43

M

m4(1V) macro processor, manual describing 6
machid(l) command 255
macros

DEFINE_ICON~FROM_IMAGE 45-46
processor (m4) 6

mail(1) program
location 141-142
on-screen documentation for 77

mail_plus cluster 142
make(l) command

building and maintaining programs with 6
running on MS-DOS targets 112

man pages
COFF-related 31

dis(l) 253
ldahread(3X) 254
ldclose(3X) 254
ldfhread(3X) 254
ldgetname(3X) 254
ldlread(3X) 254
ldlseek(3X) 254

Index Continued

ldohseek(3X) 254
ldopen(3X) 254
ldrseek(3X) 254
ldshread(3X) 254
ldsseek(3X) 254
ldtbindex(3X) 254
ldtbread(3X) 254
ldtbseek(3X) 254
objdump(l) 253

location on line 142
Sun386i

altered for 255--257
new for 253-255
not pertaining to 257

See also individual command name
man _pages cluster 142
markers, for hypertext links 88-93
mass storage devices 162
math coprocessor 19
mc68881 version(8) command 257
MDA (Monochrome Display Adapter) 109-110
mem(4S) command 256
memory

main 22, 17
Sun-3 vs. Sun386i systems 17

messages, translating 154
mknod(2, 8) command 30, 126
modload(8) command 255
modstat(8) command 255
modunload(8) command 255
monitor(3) function 256
monitor(8S) command 257
monitors

compatibility with existing 161
sizes for Sun386i 22
Sun-3 vs. Sun386i systems 17

Monochrome Display Adapter (MDA) emulation
109-110

mouse 17, 161
mpr_static routine 45-46
MS-OOS 109-110, 3, 25-28, 160, 166

& background character use 126
adding devices to run under 129-130
applications, naming 111
AUTOEXEC . BAT file 113
CGA emulation 26
character set for 262-263
character conversion, to ISO characters

264-266
code set 150
command line interpretation 117

-282-

commands
invoking from SunOS prompt 125
invoking SunOS commands at MS-DOS

prompt 125
CONFIG. SYS file 113
drive designations 113
EGA support 26
Hercules emulation 26
international fonts for 149
limitations 123-124
location 141
make files, running on DOS targets 112
MDA emulation 26
piping 117, 124-126
text file conversion 116-117, 150, 264-266
See also dos(l) program; DOS Windows

N

name server cluster 142
netconfig(8C) command 255
Network File System (NFS) 55, 3, 26, 195

files for, location . 141
manual describing 6

Network Programming on the Sun Workstation,
synopsis 6

networking_plus cluster 142
networks

/files/local.net use 202
/vol directory 205-206
byte-ordering problems 35
commands,location 142
configuration file for{/ sbin/netconfig)

198
directories relating to 199
DOS Windows number, using 117
exporting directories and files 203
file system considerations 195
files for, location 141
manual describing 6
native executables for servers 202
root directories for clients 203
software for 55
swap directories for diskless clients 203
Yellow Pages 195
See also automounter (automount (8)); file

system
New User Accounts utility 98-99
NFS. See Network File System
nlist(3) function 256
nm(1) command 42,255

nroff(1) program, location 142

0

objdump(l) command 253
object code

disassembler (dis) 42
dumper (ob j dump) 42
produced by C, FORTRAN, and Pascal 43

object files
access routines for reading parts of 236
displaying call-graph profile data 42
format 172
functions for manipulating COFF 32
printing name list of 42
printing section sizes of 42
removing symbol and line number information

from 42
tools for 31
See also Common Object File Format (COFF);

assembler (as)
on-line help. See on-screen help
on-line error messages, rewording 73-76
on-screen help

. info files 81-86
description 66, 76-79
Done button 77
handbooks for 77
Help Viewer description 66, 76-79
Help Writer's Handbook, loading 88
HELP DATA attribute 81-85
hypertext links 78, 88-93
location of files 88, 141
Master Index 79
More Help button 77
Spot Help description 76-77, 66
Sun386i topics, referring to 85-86
sun external. info file 85-86
table of contents 79
Top Level link 78
writing

guidelines 86, 94, 11, 143
Help Viewer text for applications 86-95
Spot Help text for applications 80-86
templates for 93-94

open(2V) system call 30
operating system, program that loads 197. See

also SunOS operating system; MS-DOS
operating system

optimization
assembler inlining 55

-283-

Index Continued

complex operations, replacing 53
conditions, evaluating 53-54
linear code benefits 51-52
loop efficiency, improving 54-55
methods 48-55
register use to enhance 48-51
string instructions, generating 54

optional clusters 139, 165
contents of 141-142
listing loaded 12
loading and unloading 12-13
See also SunOS Developer's Toolkit

organizer(l) program 26, 253
. orgrc file 68-73
on-screen documentation for 77

p

panels, adding color to 101-104
Pascal 41, 43
passwd(1) command 255
PC applications

naming 111
scratch files, conflicts with 124
SunOS commands for Ill
See also MS-DOS; dos(l) program

pcfont.b.14 110,149
pcfont. r .14 110, 149
performance

analysis, manual describing 6
impact of virtual memory management on 27

peripheral expansion 19
PIC 48
piping, between SunOS and MS-DOS 117, 124-126
Pixrect graphics library 7, 20, 26, 45, 65
plot cluster 11, 142
plot devel cluster 11, 143
plotting, location of files and libraries for 11, 142-

143
pnp(3R) command 254
pnpboot(8C) command 255
pnpd(8C) command 255
policies(5) file format 255
porting

byte-ordering issues affecting 18
C code 33-36, 38-40
checklist 62
frame buffer size issues 20
graphics applications 21, 65
hardware overview 17
large programs 30

Index Continued

non-UNIX applications 30
processor issues affecting 18
screen resolution issues 20
software overview 25-26
standard data format for 47-48
summary 59-62
Sun-3 applications 26-27
tracing system calls 43
UNIX-based applications 27, 29

position-independent code (PIC) 48
power supply 160
pp(4) command 254
p r _ f 1 ip routine, description 45-46
printcap(5) command 256
printing, location of files for 141, 203
processors, Sun-3 vs. Sun386i systems 17
prof(l) command, description 42
profiled libraries, listing of Sun386i 28
proflibs cluster 11, 143
Program Debugging Tools for the Sun Workstation,

synopsis 6
programming utilities, manual describing 6
PROM, manual describing 6
protocols, manual describing 6
ptrace(2) command 256

Q

quot(8) command, location 142

R

ranlib(l) command 42-43
rarpd(8C) command 257
RasterOP graphics library

manual describing 7
RasterOp routines 20, 65

rc(8) command 256
rebooting, file for (I shin/ reboot) 199
reloc. h file 219
Remote Procedure Call (RPC)

administration facilities use of 98
description 55, 26
file format used by 47
files for, location 141
manual describing 6

roffbib(1) command 255
root file system (I)(/)

contents 197-199
description 196
location 140

-284-

root(4S) command 254
RPC. See Remote Procedure Calls

s
sees cluster 201
scratch files, avoiding conflicts with 124
screen. iso. r .12 font 149
screens

international fonts for 149
resolution, affect of on porting 20
updating facility for (Curses) 6

SCSI controller 129, 160
sd(4S) command 256
setkeys(1) command 152, 255
setup .pc file 112-115
sgetl, description 32
shared libraries 27-28
Show Map, organizer feature 68
SIMM board 22, 164
Single In-line Memory Module (SIMM) 22, 164
size(1) command 42,255
snap(1) program 26, 98, 141, 253
software

database 55
development tools 31
network 55
Source Code Control System (sees) 6, 12,

143
Sun-3 vs. Sun386i systems 25
Sun386i, summary of 25
See also applications; file system; porting;

system software
SPARC, byte ordering used by 18
spell(1) program and databases 142,200
spell check cluster 142,200
Spot Help

description 66, 76-77
on-screen documentation for 77
writing

for applications 80-86
guidelines for 86

See also on-screen help
sputl, description 32
st(4S) command 256
start_applic file 202
storclass .h file 223-224
streams applications programming, manual

describing 6
strip(l) command, description 42
Sun System Services Overview, synopsis 6

Sun-3 system
hardware comprising 17
porting applications from 26-27
software comprising . 26

Sun386i system
application development goals 4
character codes supported. 149
configurations 4
CPU board, contents 163
diagnostics 164
dimensions 162
disk capacity 20
DMA channel assignments 132
documentation 5-6, 167-168
environmental requirements 163
expansion unit 160
file system layout, overview 195-197
frame buffers 164
graphics software 165-166
hardware summary 17
1/0 ports for 19
interrupt channels 132
interrupt level availability 116
keyboard 161
languages supported 165
lightweight process capability 27
monitors 161
mouse 161
MS-DOS 166
object file tools 31
on-line message categories 73
overview 3
power supply 160
software summary 25
system administration features 4, 98-99, 167
unbundled software 166
user interface features 167
weights 162
window-based applications 66, 165-166
See also snap(1) program; coloredit(l)

program; dos(l) program; on-screen
help; organizer(l) program

SunCGI 7, 26, 67, 166
SunGKS 26, 67, 166
suninstall(8) command 256
SunOS Developer's Toolkit 25, 28, 139, 165

clusters 12, 143
contents of 11, 143
installing 12
manuals for 6

SunOS operating system

-285-

changes between 3.x and 4.0 27
commands, location 200
description 26, 3

Index Continued

devices, adding to run under 130
kernel, file containing (!vmunix) 199
loading, program for 197
manual describing 6
overview 27-28
version of, determining 199

SunSimplify 55, 26, 166
suntools 26
suntools devel cluster 11, 143
SunUnify 55, 26, 166
Sun View 3-4, 26, 165 ·

1.75 enhancements 66
color basics 99-1 01
development libraries, location 11, 143
graphics applications, use for 20
location 141
manual describing 7
on-screen documentation for 77
tools 25

swap directories, for diskless clients 203
switcher(!) command 257
symbol tables, produced by C, FORTRAN, and

Pascal 43. See also Common Object File
Format (COFF)

symorder(l) command 255
syscall(2) command 256
sysex(1) command 253
syslog(3) command 73
syslog. conf file 74, 76
syslog. conf(5) file format 256
syslogd(8) command 256
syslogd(8) daemon 73
system administration

directories for 197, 201
features 98-99, 167
files for, location 142, 196, 200, 203

System bus 17, 159, 160
.·. system calls

chown(8) 30
creat(2) 30
fcntl(2) 30
kill(l) 30
kill(2V) 30
mknod(8) 30
open(2V) 30
utime(3C) 30

System Exerciser 164, 203
system interfaces 19

Index Continued

system software
accounting files 142
adb(l) debugger 140
snap(l) files 141
Application SunOS 25, 139-141
assembler (as) 11, 143
auditpackage 142
boot servers 141
C compiler (cc) 11, 143
calendar(!) program 141
configuration files 141
core system 140-141
daemons 142
dbx(1) debugger 11, 143
encryption files 141
games files 142
libraries 11, 143
link editor (ld) 11, 143
mail files 141-142
man pages 142
MS-OOS 141
network commands 142
network files 141
on-screen help files 141
optional

description 141-143
loading 12-13

plotting files and libraries 11, 142-143
printing commands 141
quot(8) command 142
root file system (I) 140
Source Code Control System (sees) files 12,

143
spell(l) program 142
SunView 141
Hardware Diagnostics 139-140
tip(1C) command 142
uucp(1C) command 142
UNIX System V commands 142
See also Application SunOS; clusters; file

system; SunOS Developer's Toolkit
system unit, contents 159-160
sysV_commands cluster 142
sysV_devel cluster 12, 143
syswait(1) command 253

T

tcov(l) command 257
temporary files, location 203
textedit(1) program

-286-

8-bit handling 149
on-screen documentation for 77

tftpd(8C) command 257
tip(1C) command, location 142
toc(5) file format 255
Top _Level file 79, 87, 95-96
trace(1) command, description 43
translate(5) file format 255
troff(l) program, location 142

u
unconfigure(8) command 255
UNIX System V 3, 27, 31

binaries for 200
COFF files, functions for manipulating 32
COFFformat 211-236
commands, location 142
compatibility with SunOS operating system 6,

29-30
include files for 200
kernel, files needed to reconfigure 11, 143
libraries 200
porting from 12, 27, 143
STREAMS interface 6
tools 26

unix2dos(1) command 116-117, 150, 253, 261
unload(l) command 12, 13, 143, 253
unloadc(1) command 12, 13, 143, 253
unshared libraries, specifying 28
ut ime(3C) system call 30
uucp(lC) command, location 142

v
VAX, byte ordering used by 18
vgrind(1) command 257
vi(l) editor 141, 203
volumes 205-206

w
windows

applications that run in 66
on-screen help for, creating 80
developing applications that run in 7
divisions of system for 65-67
foreground and background colors for 100-101
software for 165-166
tools for 25
See also DOS Windows

Writing Device Drivers for the Sun Workstation,
synopsis 7

X

XT bus 20, 159

y

yacc(1) compiler compiler, manual describing 6
Yellow Pages (YP) database 55, 26, 195

files, location 141
manual describing 6
use of 98

YP. See Yellow Pages database
ypupdated(8C) command 257

z
zs(4S) command 256

Index Continued

-287-

Notes

	Title
Page
	Contents

	Figures

	Tables

	Preface

	1. Introduction

	2. Installing SunOS Developer's Toolkit

	3. Porting and Development Environment: Hardware

	4.
Porting and Development Environment: Software
	5. Porting Summary

	6. User Interface

	7. MS-DOS Environment

	8. Peripheral Devices

	9. Applications Delivery

	10. Internationalizing Applications

	A. Sun386i System Description

	B. 80386 Assembly Language Definition

	C. File System Layout

	D. Common Object File Format (COFF)

	E. Differences Between Sun C and Kernighan and Ritchie C

	F. C and the Sun386i System

	G. man Page Differences for the Sun386i System

	H. MS-DOS and ISO Character Conversion Tables

	Index

	Blank Page
	Blank Page

