
,lk ?ft& JR
i

TMS32010 SIMULATOR

USER'S _GUIDE

r ,
l !

LJ

f 1

l i

r_ '_. l !

L.J,

I ,
io.,,,

. ,
r I

:,_J

w
l
F l

i

'

'

i
i
i..,..;

r(
L.: .•
f r 1

!
L,.

J
I : u
),
I

1 !

T
f• l i ,

: i

r
f 1
' '
!

T r 1

T
r :

J
I

r i.

IMPORTANT NOTICES

Texas Instruments reserves the right to make changes at any time to
improve design and to supply the best possible prod.uct for the
spectrum1 of users.

The TMS320 System1 is copyrighted by Texas Instruments Ineorporated,
and is the sole property thereof. Use of this product is defined by
the license agreement SC-1 between the customer and Texas Instruments.
The software may not be reprocluced in any form1 without written
permission of Texas Instruments.

This pt:Iblication is printed in the United States of America and is
copyrighted by Texas Instruments Incorporated. All rights. reserved. No
part of these publications may be reprodti1ced in any manner including
storage in a retrieval system, or transmittal via electronic means, or
other reproduction in any form. or any methocl {electronic, mechanical,
photocopying, recording, or otherwise) ; without prior written
permission of Texas Instruments Incorporated.

Information contained in these publications is believed to be accurate
and reliable. However, responsibility is neither assumed for its use
nor for any infringement of patents or rights of others that may
result from, its use. No license is granted by implication or otherwise
under any patent or patent right of Texas Instruments or others.

Copyright, Texas Instruments Incorporated, 1982

I
tw· 1/J~

i w

f ' ! I

......
•

TABLE of CONTENTS

paragraph page

SECTION 1 Introduction

1.1 General Description
1.2 Key Features
1.3 How to Begin a Debugging Session
1.4 Sample Session

3
4
5
6

SECTION 2 Functional Demonstration of TMS32010 Simulator User Commands

2.1
2.2
2.3
2.4
2.5
2.6
2.6.1

DM - Display Main menu
L - Load new o~ject file
SI - Select Input port file
SO - Select Output port file , •
LF - List of the Files assigaed to ports
BH - Breakpoint Help ..

2.6.2

2.6.3
2 .6 .4'
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.6.10
2.6.11
2.7 MM
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6

BIDP - Breakpoint on Data Pattern when r/w from/to
data ram • •
BP? - Breakpoint on data Pattern when read from
Procgrarn, rom,
BDR - Breakpoint on Data ram Read
BDRW;.. Breakpoint on Data ram1 Read and Write
BDW - Breakpoint on Data ram Write
BER - Breakpoint on an ERror condition
BIAQ - Breakpoint on Instruction AcQuisition
BPR - Breakpoint on Program rom Read
BPW - Breakpoint on Program: rom. Write
DB - Display all Breakpoints
RB - Remove a Breakpoint
- modify and inspect Memory Help
RAM - modify/inspect individual data RAM
ROM - m0dify/inspect individtlal program, ROM
RAMH - display data RAM in Hex ..
RAMI - display data RAM in Integer ..
ROMM display program ROM in Hex
ROMI - display program ROM in Integer

PAGE 1

9
10
11
12
13
14

15

15
16
16
17
18
19
19
20
20
21
21
23
24
25
26
27
28

......

f I

r !
1

1..-i

: 1

r ,

!

i-,

f l

lo..o,

r ,

L
f .,
[I

I
L.,

f I
j

: i w

r]

! I

w
! I

L;

i
l....;

f I
I

r ' ;
;

L

.....,;

f ;
\

l...,,i

paragraph

2.8 RH - moclify/inspect Registers/flags Help
2.8.1 ACC - modify/inspect ACCwnulater
2.8J2 AR - modify/inspect Auxiliary Registers
2.8.3 ARP - modify/inspect Auxiliary Register Pointer
2.8.4 BlJO - modify/inspect I/0 Branch control
2.8.5 CC - modify/inspect Clock Counter
2.8.6 DP - modify/inspect Data memory Page pointer .
2. 8. 7 INTF - modify/ inspect INTerrupt Flag, register
2.8.8 INTM - modify/inspect INTerrupt Mode register
2.8.9 ov - moclify/inspect overflow flag
2.8.10 OVM - modify/inspect overflow Mode ..
2.8.11 P - modify/inspect P register
2.8.12 PC - modify/inspect Program, Counter
2.8.13 SK - modify/inspect StacK
2.8.14 T - modify/inspect T register
2.9 ST - STatus of registers
2.10 NB - Number of instr til Break
2.11 NU - Number of instr tii screen Udate
2.12 N'I - NumlDer of instr til Interrupt
2.13 TR - toggle TRace (olil or off)
2.14 DT - Display the Trace buffer
2.15 EX - EXecute commancls from, a given file

'-•• ...,_. 2 .16 JF - select Journal File
l L!\I, 2.17 RS - Reset Simulator
~ 2.18 SS - Single Step execution

2.19 R, C - Start or Continue the simulation
2.20 Z - Zero clock counter
2.21 Q - Quit simulation
2.22 TIC - number of clock TICs till next interrupt
2.23 znc - disables the TIC command
2.24 RSI - reset selected input port file
2.25 STR - Save the TRace buffer

LIST OF FIGURES

2.1
2.2
2.3
2.4

APPENDIX

Main Melilu for TMS320 Simulator User Commands .
Breakpoint Help Menu
Memory Help Menu ..
Registers/£1ags Help Menu

A. Stop Codes
B. Operating System Dependencies

PAGE 2

page

29
30
30
31
31
32
32
33 ·
33
34
34
35
35
36
37
37
38
38
39
39
40
40
41
42
42
43
43
44
44
45
45
46

10
14
22
29

47
48

•

i . w

L...

J
1 -z. f 1
I .
i

l
t '

-T
f l

~
f i

1
f· 1

!

1
f '
i
i

l

r ,

SECTION 1

1.1 General Description

This product is designed to provide simll!lation of the TMS32010
high-performance microcompmter for effective TMS32010 software
development. Installation of this p•roduct is described fully in
the TMS32010 Installation guiicle (dependent on the· host).

The source cocle is written in FORTRAN 77 and is essentially
split into two sections :

1. the user inter face

2. actual simulation of the chip

The actual simulation of the chip is controlled by one main
subroutine with various activities such as memory reads or writes
being executed by calls to the appropriate subroutines. The clock
counting feature of this simulator is also i~plemented in this
main subroutine.

PAGE 3

r 1

L
;

I
I,,..,

f '
I '

I
i..,.;

! '

f ' i '
I
r i

~

f l

!
~

r 'l I .
I w

f ,
i i
I '
I i,

[· ' I ,

i
l....i

r ,

.L

1.2 Key Features

The key features of the simulator are as follows

* Ability to simulate either of the chips two modes,
the microprocessor mode or the microcomputer mode

* Ability to generate INTERRRUPTs every X number of
instructions

* I/O with the 8 ports
- allows the user to designate a file for each INPUT

port as well as for each OUTPUT port

* Brea.kpoints
- on Instruction Acquisition·
- Memory Reads or Writes (Data or Program)
- Data Patterns on the D-Bus or the P-Bus
- on Error Conditions

* Timing Analysis Relative to Clock Rate

* Trace
- Accumulator
- Program1 Counter
- Auxiliary Registers

* Immediate execution of an Interrupt or Instruction

* Modify and Display Memory. (Data or Program)
- user can .change an entire block at any time
- user can Initialize memory before any program1

is loaded

* Modify and Inspect any or all Registers

* Error Messages
- Illegal Opcodes
- Invalid Data entry by user

* Execute user commands from: a Journal File

* Save states of Simulation so one can Restart simulation

PAGE 4

L

r'1-1

t•
r l

I
r 1

I

T r a

!
i

I
,. 1

i

r
fl

l

r
y
,- !

;

i

r• r 1

i !
I
1

f -1

I

L

1.3 How to Begin a Debugging Session

Before beginning a debugging session, the user must first write
and assemble some 320 cocle. If the code consists of multiple
modules then the user must also link the code.The linked absolute
tagged object is what should be loaded into the simulator via the
load command (11 '11'', paragraph 2. 2) . This is the code which will be
executed during simulation.

To begin a. debugging session, the user must first activate the
Fortran TMS320 simulator. As the simulator begins execution it
will prompt the user for commands. However, before the user is
allowed to implement any of the user commands, he is asked to
choose which m0de (microprocessor or microcwmputer) of the 320
chip he is going to simLilate. The series of prompts is as follows:

SIMULATION OF THE TMS32010
VERSION# 0.9.2C- 7.11.21

0 - MICROPROCESSOR MODE (ADDR 0-1535 ,' OFF CHIP)
l :-- MICROCOMPUTER MOIDE (ADDR 0-1535, ON CHIP)

ENTER VALUE TO SELECT MODE OF OPERATION
1

YOU ARE IN THE MICROCOMPUTER MODE (ADDR 0-1535, ON CHIP)

ENTER COMMAND (D=<CR>):

Note that the user may select the microprocessor m0de (addr
0-1535, off chip) by either entering a zero or by making no entry
and merely pressing the carriage return to accept the default
which is the microprocessor mode. Also note that the prompt,

ENTER COMMAND (D=<CR>}:

will appear when it is time for the user to enter one of the user
commands discussed in SECTION 2.

PAGE

l

L
r '
I ,
w

r ~

. I
L...;

r 1
i I u

: r .
I

, I

i
I-

r 1
!
lJ

r l
I '

. I
i-

' l i I

l l
L....;

! 1

r l

L
f 1

' L.,;

I·· l

I
.L

r- I

j

L
11._

1.4 Sample Session

In the following session, the user will enter _a program1 into the
program, ROM by modifying mem0ry. This program, will consist of only
two instructions :

1) an 11IN'11 instruction, from. port 2 and stored in
RAM loc::ation >0010
C opcode= 4210)

2) an "ONTu: instruc:tion, to port 5 and from: RAM
location, >0010
(opcode= 4010)

Henc:e the program,_ when executed will read in a single number and
output that same number. Note that this same program: could be
er:itered through a load command ("L 11

•) if the user created an
appro}Priate file by writir:ig and assembling the two commands listed
above.

The series of prompts for entering and executing this program1 are
as listed below. Note that the "BIAQ11 commancl is used to stop
execution since the 320 cocle has no "'end11 instructior:i.

SIMULATLON· OF THE TMS32.010
VERSION·# 0.9.2C- 7.11.21

0 - MICROPROCESSOR MODE (ADDR 0-1535, OFF CHIP)
1 - MICROCOMPUTER MODE (ADDR 0-1535, ON CHIP)

ENTER VALUE TO SELECT MOIDE OF OPERATION'
0

YOU ARE IN THE MICROPROCESSOR MODE (ADIDR 0-1535, ON· CHIP)

ENTER COMMAND (D=<CR>):
ROM

PAGE 6

t)

Y•
r•l"
i
!

w

, •..
i

r 1
:

~
I r ,

!

Li

ENTER STARTING ADDRESS (IN HEX)
0

0 = 0
4'210

0 = 4210
t

1 = 0
4D10

1 = 4Dl0
Q

ENTER COMMAND (D=<CR>):
BIAQ

BREAK ON INSTRUCTION ACQUISITION
ENTER THE ADDRESS {l:N HEX)
3

ENTER COMMAND (D=<CR>):
R

>>PC=. 0 OPCODE=4210 IN

ARP ARO ARl
INTEGER 0 16 0
HEX 0 10 0

>>STK= 0 0 0 0

TREG
0
0

DP= 0
BIO= 1

PREG
0
0

PREVIOUS PC=

ACC

INTF=O
INTM=O

0
0

ov = 0
OVM= 0

ENTER INPUT VALUE (IN HEX) OR 11
'-'

1 TO RETURN TO MAIN
56

* * * OUTPUT VALUE (IN HEX)

>>PC= 3 OPCODE= 0

ARP ARO
INTEGER 0 0
HEX ·O 0

>>STK= 0 0 0 0

IS

ADD

ARl
0
0

56

TREG
0
0

DP= 0
BIO= 1

PREVIOUS PC=

PREG ACC
0 0
0 0

INTF=O ov = 0
lNTM=O OVM= 0

>>> INSTRUCTION ACQUISITION BREAK POINT I 1 <<<

PAGE 7

0

CLK
0
0

2

CLK 6

~b

J l

f' I

fL
!
I r ,
I I

I I
i.....,

r ' !
'
I -
r ,
\ i

i.....,

r-,

!
w

r ,
i i
I •

L1

r l

L-

1 ;

L....

r i ! .

L
f ~

: I

i
i -
f '
i l
I \

i...J

r l
i :

r· l

' '

r l
! '

r 1
I •

I '

> i.-1

ENTER COMMAND (D=<CR>):
RAM

ENTER STARTING ADDRESS (IN' HEX)
10

10 = 56
Q

ENTER COMMAND (D=<CR>):

{ here check to see that location
I >10 does indeed contain the
value >0056}

{ here the user is returned to the operating system}

Note that this this example may also he used to verify correct
installation of the simulator.

PAGE 8

f '.
i
I :

I '

~

i

T r l ' .

; t

!,J

.l

.....,

r i
! .

i
L...,

SECTION 2

This section is provided to demonstrate and discuss each of the
user commands. It should be noted that the user would be wise to
comply with the testing procedure for verifying correct
installation before attempting to execute the simulator. This
testh1g procedure is found in paragraph 1. 3.

2.1 DM - Display me.in Menu

The "DM11 command will display the main menu shown in figure 2.1.
Enterin9 a carriage return by itself will also cause the main menu
to be diplayed. It should be noted that all of the user commands
are e~ecuted from the me.in menu level, eventhough they may not be
found in the me.in menu but merely referenced. (This is true of the
breakpoint and modify/inspect memory commands.) The user is
prompted for a command at the main menu level by the ap!Dearance of
the following:

ENTER COMMAND (D=<CR>):

He may then enter.any of the sim1J1lator commands. The command will
be executed when the user presses the carriage return after
entering the desired command. Note that the user will be prompted
for another command as soon as his first command has finished
executing.

The "DM 11 command is executed through this series of prompts:

ENTER COMMANID (D=<CR>):
DM
{ here figure 2 .1 will be displayed }
ENTER COMMAND (D=<CR>). :

PAGE 9

f 1
!
L.,;

r l ! .
~

r ,

L
r 1

LJ

I

L....

r ,
I ,

L.J

i i i
'

f 1
!
J

l.,;

r ,
!
L....

r l
. ! :

\ \

r 1
I l
I i u

r '
I I
i....i

r 1
i
;

r 1

i i u

~

r '.

t 1
I

i

L

f l

\ '

L

FIGURE 2.1 Main Menu of User Commands

AVAILABLE COMMANDS ARE:
BN = BREAKPOINT HELP
DM,<CR> = DISPLAY MAIN MENU
D'r = DISPLAY THE TRACE BUFFER
STR = SAVE THE TRACE BUFFER
EX = EXECtlTE COMMANDS FROM A GIVEN' FILE
JF = SELECT JOURNAL FILE
L = LOAD NEW OBJECT FILE
LF = LIST OF THE FILES ASSIGNED TO PORTS
MH = MODIFY AND INSPECT MEMORY HELP
NB = NUMBER OF INSTR TILL BREAK
TIC = NUMBER OF CLOeK TICS TILL INTERRUPT
ZTIC = DISABLES THE TIC eOMMAND
NU = NUMBER OF INSTR TILL SCREEN UPDATE
Q' = QUIT SIMULATION
RH = MODIFY AND INSPECT REGISTERS/FLAGS
RS = RESET SIMULATOR
R,C = RUN OR CONTINUE SIMULATION
SI = SELECT INPUT PORT FILE
RSI = RESET SELECTED INUT PORT FILE
so = SELECT OUTPUT PORT FILE
ST = STATUS OF REGISTERS
ss = SlNGLE STEP
TR = TOGGLE TRACE MODE (ON OR OFF)
z = ZERO CLOCK C0'0NTER

2.2 L - Load new object file

HELP

This option allows the:user to load a different object file for
simulation. To load a. new obj.ect file first enter the 11 L 111 command,
and the following series of promp>ts will occur:

ENTER COMMAND (D=<CR>):
L { LOAD will also work}
ENTER A NEW OBJECT FILE
NAME.OBJ
* * * * LOADING PROGRAM 11 NAME Iii * * * *
ENTER COMMAND (D=<CR>):

This examp>le loads into program. rom1 the new object file NAME .OBJ.
From, this time on the simulation will be dcme using the prog-ram1
that was put into the file NAME.OBJ.

PAGE 10

r i
i ! U•· !
(1
I :
L;
!

l
r 1

I

I r l
I I

w
i
j
~

f l I .
L.

l.
LJ

J'

r r ri. I l . w

J,

.~

r 1
1 '.

LJ
j
r 1

I i

w

rt
l ;

2.3 SI - Select Input port file

This OIDtion allows the user to assodate an input port to a file.
If there is already a file associated with the specified port then
the new one file will overide the old file. The associated files
can be listed using the 11LF 11

' command. Whenever an "IN" instruction
is executed the file associated with the port will be used to read
the data from. If no file has been assigned then the simulation
will stoID and prompt the user for the input. Once the user has
supplied input the simulation resumes. The folowing is an example
of the 11SI 11

' command:

ENTER COMMAND (D=<CR>):
SI

ENTER THE INPUT PORT (0, ••• , 7)
3
ENTER FILE NAME FOR INPUT
NAME.INP

ENTER CWMMAND (D=<CR>):

This series of communications will cause the file NAME.INP to be
associated with INPUT port number 3. Hence any data to be input
througlrl port number 3 will be read from. the file N~E.INP.

PAGE 11

r 1
i

:L

f' I I ,
i :
l.,,,,J

" l

L
J r I

lL l .
f l u

f l
L

if '
iL
!

1!
-~ F·

;

i '
i....i

f· l

l l
LJ

r '

lJ
t· 1
I

i '
i :
~

f l
I !
LJ
F· 1

i

L

l...i

f:
l

2.3 SO - Select Output port file

This option is very similar to the "SI"' command. It allows the
user to associate an OUTPUT port to a file. The only notable
difference is that if the user wants to execute an "01:JT"
instruction in his loaded program., he does not have to create an
output file before beginning the simulator session. The "SI 11

'

command will create the file for the user once he indictes what it
is to be called. If there was another file associated with the
port then the new one will overide the old one. Hence, execution
of an 11 0UT 11 instruction will result in a write to the file
associated with the appropriate port. The output will default to
the screen if no file is associated with the appropriate port.The
following is an example of the 11S0 11

' command:

ENTER COMMAND (D=<CR>):
so

ENTER THE OUTPUT PORT (0, •.. ~7)
5
ENTER FILE NAME FOR OUTPUT
NAME.OUT

ENTER COMMAND (D=<CR>):

This example will: result in the file NAME.00T being associated
with output port number 3. Hence when an 11 '0UT 11

' instruction that is
directed to port number 3 is executed then there will be a write
to the file NAME.OUT.

PAGE 12

~~-~.µJ,c:.w;.,&;""1· -leilil •· _____ .., _____i~--1 ·• n@--e--e .-··~

r ·7

;

lo...,

L....
l
('.

r
1 l ,

r:. r
~

~
i r ,
~

I r·,

I '.
1,

j
!

\.
r ' ~.
r l

I
I
i....i

r !

I

L

2.5 LF - List of the Files assigned to ports

This option allows the user to list the input and output ports and
the files assodated with them:. The following is an example of the
"'LF'' command:

ENTER COMMAND (D==<CR>):
LF

INPUT PORT #:

0
l
2
3
4
5 •.
6
7

OUTPUT PORT#

0
1:
2
3
4
5
6
7

ENTER COMMAND (D=<CR>):

FILE NAME

NONE
N0NE
NONE
NAME.INF
NONE
NONE
NONE
NONE

FILE NAME

N0NE
NONE
NONE
NONE
NONE
NAME.OUT
N0NE
N©NE

This example lists all the ports and the files associated with
them. The only two ports that have files associated with them are
inJDut port #3 and output port #:4.

PAGE 13

; I :
I

L

r i

L

F l
I

u

r ' i '
I
I

r .

I
I...,

f l u
1 1

' I

I !

r 7

j
i....l

r :
I ·.
~

r '.
u

~

2.6 BH = Breakp0int Help

The 11 'BH 11
' command is used to display the available breakp0int

commands. The lim:it to the numh>er of breakpoints·that the user may
have assigned at any one time is 20. Using the "'BH" command
results in the following series of prompts:

ENTER COMMAND (D=<CR>):
BH

{ figure 2.2 is displayed here}

ENTER COMMAND (D=<CR>):

The user may now select the desired breakpoint command. It should
be noted that the user need not display the breakpoint help menu
in order to use a breakpoint command if he rememlDers the command
syntax.

FIGURE 2.2 Breakpoint Help Menu

BREAKPOINT
BDP
BPP
BDR
BDRW
BDW
BER
BIAQ

· BPR
DB
RB

COMMANDS ARE:
= BREAKPOINT ON DATA PATTERN WHEN R/W FROM/TO DATA RAM
= BREAKPOINT ON DATA PATTERN WHEN· READ FROM PROGRAM ROM
= BREAKPOINT ON DATA RAM READ
= BREAKPOINT ON DATA RAM READ AND WRlTE
= BREAKPOINT ON DATA RAM WRITE
= BREAKPOINT ON AN· ERROR CONDITION·
= BREAKPOINT ON INSTRUCTION· ACQUISITION
= BREAKPOiijT ON PROGRAM ROM READ
= DISPLAY ALL BREAKPOINTS
= REMOVE A BREAKPOINT

PAGE 14 •

:'"~ -11: Mi-IL :•n F ~-- ·'"" tlii - .

. L

f I

I i
LJ •

('
j i
I : u

r· 1

L
'

! '
I •
I i

~

' r 1

r ,

u

r !
I :
LJ

! l
I i
I j
1

L....

f- -,

I
L

r:•

f l

I ,
LJ

.

2.6.1 BDP - Breakpoint on Data Pattern when r/w from/to data ram,

This option allows the simulator to halt executior:i when a certain
bit pattern is read(written) from{to) the data RAM. The user will
be expected to enter a pattern of ones, zeroes, and Xs. The Xs
correspond to a don't care state. Using the 11BDP 11 command results
in this series of prompts:

ENTER COMMAND (D=<CR>):
BOP

BREAK ON DATA RAM R/W
ENTER BIT PATTERN OF 16 BITS (0,1,X)

This example w:ill cause simulation to halt when the value >FOF?
(hex) is read(written) from(to} Data RAM Note that execution
will halt after execution of the present instruction has finished.

2.6.2 BPP - Breakpoint on data Pattern when:read from. Program rom,

This option allows the simulator to halt execution when a certain
bit pattern is read from the Program ROM. Once again the user is
expected to enter a pattern of 00es, zeroes, and Xs. The Xs
correspond to a don't care state. By entering the command 11BPP 11

the user will receive the following sreies of prompts:

ENTER COMMAND (D=<CR>):
BPP

BREAK ON PROGRAM ROM READ
ENTER BIT PATTERN OF 16 BITS (0,1,X)
FIRST BIT IS MSB
011110111XXXXXXX

THE 16 BITS ENTERED ARE:
15 14 13 12 11 10 9 8 7 6 5 4

- - - - - - - -
0 1 1 1 1 0 1 l 1 X X X

ENTER COMMAND (D=<CR>):

3 2 1 0

X X X X

This example wiH c.ause simulation to halt when a 11LST 11 indirect
instruction is read from. Program ROM .. Execution will halt after
execution of the present instruction has finished.

PAGE 15

r ~
I

r ;

I : w

lJ

f '

l
L.

f 1

I

l
w

r 1
I
I '
~

u
f 1
l ;
; (

! I w

F I
I

!
L.;

f l

l
j i.

w

r ~

I

L

r '. I .

I
i....

r I

I
L

r ,
! !

L

r l

l
LJ

2.6.3 BDR - Breakpoint on Data ram, Read

This option allows the simulator to halt execution when a certain
address within a range(user specified) of addresses is accessed
for a read operation from1 data memory. Entering the 11 'BDR 111 command
will produce the following prompts:

ENTER COMMAND (D=<CR>):
BDR

BREAK ON DATA RAM READ
ENTER THE BEGINNJNG ADDRESS (IN' HEX)
5
ENTER THE ENDING ADDRESS (IN' HEX)
F

ENTER COMMAND (D=<CR>):

This example will cause the simulation to halt when a read
operation is performed on Data Memory within the range of >5 to
>f. Execution will halt after execution of the present instruction
completes.

2. 6. 4 BDRW - Breakpoin_t om Data ram, Read and Write

This option allows the simulator to halt execution when a certain
address within a range of adciiresses is accessed for a read or
write operation. Entering a 11BDRW'rn command will result in the
following series of prompts:

ENTER COMMAND (D=<CR>):
BDRW

BREAK ON' DATA RAM READ AND WR]TE
ENTER THE BEGINNING ADDRESS (IN HEX)
5
ENTER THE ENDING ADDRESS (IN HEX)
F

ENTER COMMAND (D=<CR>):

This example will cause the simulation to halt when a. read or
write operation is performed on Data RAM within the range >S to
>F. Execution will halt after execution of the present instruction
has finished.

PAGE 16

f l

I
L..i

r !

u
i r ,.

w ;

r' l
I '
I

~

i : -
r ' I .
I u

r 1 L.
[:
{ '

w

2.6.5 BDW - Breakp0int on Data ram: Write

This option allows the simulator to halt execution when a certain
address within a range(user specified} of addresses is accessed
for a write operation from. data memory. Entering the 11 BDW 11 command
will produce the following prompts: '

ENTER COMMAND (D=<CR>):
BDW

BREAK ON DATA RAM WRITE
ENTER THE BEGINNING ADDRESS (IN' HEX)
5
ENTER THE ENDING AD0RESS (IN HEX)
F

ENTER COMMAND (D=<CR>):

This example will cause the simulation to halt when a. write
operation is performed on Data Memory within the range of >5 to
>f. Execution will halt after execution of'the present instruction
completes.

PAGE 17

r 1 u

u

r 1

L
F 1
! i

LJ

f 1

l l
I '.
""""'

r !

L
r l u
r 1

i
L.

r \

L
i 1

u
[l
L
r l

i i

u
r ,
! '
L

2.6.6 BER - Breakp0int on an ERror condition

This option allows the simulator to halt execution when a certain
error c0ndition is met. It first lists the error conditions and
whether or not they will cause a break in the simulation. Then the
use~ is asked to enter the number of the error condition that he
wants changed. If the error condition is on it will be turned off
and vice-versa. Then the user will be asked to enter another
number. entering nothing (just pressing the carriage return} will
terminate the 11 BER 11 command. It should be n0ted that all
conditions are initially off with exception of condition numbers 5
and 8. Entering the 11 ER 11

' command will result in the following
prompts:

ENTER COMMAND (D=<CR>}:
BER

BREAK ON ERROR CONDITIONS

-- - --- -----
1) STACK OVERFLOW = OFF 2) STACK UNDERFLOW = OFF
2) AR OVERFLOW = OFF 4) AR UNDERFLOW = OFF
5) MPY 8000 X 8000 = ON' 6) ACC OVERFLOW = OFF
7) PROGRAM MEM0RY ADDRESS >1535 = OFF
8) ATTEMPTED TBL WRITE INTO CHIP ROM= ON

ENTER CONDITION #" TO BE TOGGLED
8
ENTER CONDITION # TO BE TOGGLED
4
ENTER CONDIT:rON ffi TO BE TOGGLED

{ user presses carriage return}

ENTER COMMAND (D=<CR>):

In this example, auxiliary register underflow or a mti1ltiply of
>8000 by >8000 will cause the simulator to halt execution.
However, if an auxiliary register overflow occurs the simulator
will continue executing since the break on AR OVERFLOW is still
shut off.

PAGE 18

LJ

r 1
~

()

! I w

r :
I !
I I

~

r l
r i
LJ

f
r ~

T Ji. i .

I ' L._,

l
f' 1

I !
i

j

t·
! r··,

I .
L;

f l

! :
i '
~

r i
! !

LJ

.....i

r \
I ' u

r 1
i i
....I

•

2.6.7 BIAQ - Breakpoint on Instruction Acquisition

This option allows the simulator to halt execution when an
instruction is fetched from a given location in Program. memory.

ENTER COMMAND (D=<CR>):
BIAQ

BREAK ON INSTRUCTION ACQUISITION
ENTER THE ADDRESS (IN HEX)
10

ENTER COMMAND (D=<CR>):

This example will cause the simulator to halt when an instruction
is fetched from the program. memory location >10. Execution will
halt before.execution of the present instruction (the one from, the
BIAQ address).

2.6.8 BPR - Breakpoint on Program, rom Read

This option allows the simulator to halt execution when a
address within a range of addresses is accessed as
operation from program memory. The series of prompts
follows:

ENTER COMMAND (D=<CR>):
BPR

BREAK ON' PROGRAM ROM READ
ENTER THE BEGINNING ADDRESS (IN HEX)
1
ENTER THE ENDING ADDRESS (IN HEX)
F

ENTER COMMANID (D;::<CR>):

certain
a read
is as

This example will cause the simulator to halt when a read is
performed on Program Memory within the range >l to >F. Execution
will halt after execution of the present instruction is completed.

PAGE 19

I ii
i :'
i !' u

u

u
r I
\ !

L

r :
L
F l
I ;
I i w

I

i...,;

r 1

I
L.

f' ·1

I
I
w

f 7

LJ

2. 6. 9 BPW - Breakpoint on Programi rom Write

This option allows the simulator to halt execution when a certain
address within a range of addresses is accessed as a write
operation from1 program memory. The series of prompts is as
follows:

ENTER COMMAND (D=<CR>):
BPW

BREAK ON PROGRAM ROM WRITE
ENTER THE BEGINNING ADDRESS (IN HEX)
1
ENTER THE ENDING ADDRESS (IN HEX)
F

ENTER COMMAND (D=<CR>}:

This example will cause the simulator to halt when a write is
performed on Program Memory within the range >1 to >F. Execution
will halt after execution of the present instruction is completed.

2.6.10 DB - Display all Breakpoints

This option allows
presently assigned.
command will work:

the user a list of all the Breakpoints
The following is an example of how the 11 '0B 11

ENTER COMMAND (D=<CR>):
DB

REF# SET BY ADDRESS VALUE

l BDP >111100001111XXXX
2 BIAQ > 10
3 BDR > 5 - > F

ENTER COMMAND (D=<CR>}:

Note that tfuis listig of breakpoints would indicate that there
were only three breakpoints currently set.

PAGE 20

llliflll. ■· ·1111·· ·li,4•••n•· ·•;~~ 1 -, . .,_,_,., i. ,. r .. 1i tr

r ~

· :Y . ·tt;j . lo/ . WtrfllC:irir:tfi,W 4 h.. i:il'ttfttit:t:·

i
I

f 1 LJ.
; l
! I

u

r 1
I '

~

f 1
f

i

' ' ;

i...J

r 1
i i w

r 1

f' l
i .

i...i

i i
i
i....i

r 1
I '
i :
L.i

2.6.11 RB - Remove a Breakpoint

This option allows the user to remove a breakpoint by using the
breakpoints reference number (see 2.6.10). The reference number is
displayed under the REF# heading when the 110B 11 command is issued.
The following is an example of how to remove a breakpoint.

ENTER COMMAND (D=<CR>):
RB

ENTER A BREAKPOINT REFERENCE NUMBER
2

BREAKPOINT DELETED
BIAQ > 10

ENTER COMMAND (D=<CR>):

This example will delete the breakpoint that was created with a
11 BIAQ 11 command and which had the address >10 assigned to it. Note
that the breakpoints which had a referen·ce number big(1Jer than
three before three was deleted.will now have a reference number
one number. lower than what they were.

2.7 MH - modify and inspect Memory Help

The 11 MH 11
' command is used to display the available m0dify/inspect

memory commands. Using, the 11MH 11 command pr0duces the following
series of prompts:

ENTER COMMAND (D=<CR>):
MM

{ figure 2.3 is displayed here}

ENTER COMMAND (D=<CR>):

Note that any of the modify/inspect commands may be used without
displaying the Memory Help menu.

PAGE 21·

r -,,
I
I

f' 1

; lJ

lJ
, r,.:- l

I .

,L

! !
LJ
fl
i

r l

. LJ
r 1
! '

f, \

I
I
i....,

[' l

I
i ;
~

r ,
L

r : u

FIGURE 2.3 Memory Help Menu

M0DIFY AND INSPECT MEM0RY COMMANDS ARE:
RAM = M0DIFY/INSPECT INDIVIDUAL DATA RAM LOC'.:;ATIONS
ROM = MODIFY/INSPECT INDIVIDUAL PROGRAM ROM LOCATIONS
RAMH = DISPLAY DATA RAM IN HEX
RAMI = DISPLAY DATA RAM IN' INTEGER
ROMH = DISPLAY PROGRAM ROM IN HEX
ROMI = DISPLAY PROGRAM ROM IN INTEGER

PAGE 22

•·:.,
. -.

-

•· __ '_-' ,·

,, 'Pm•, ,sr, it6'--- "'' ht ,,, ·r . ;e~,--. I.·- '·s:,., .. 1-.,,,_,..-.d~-'<i,'it#t»rn> -:~~'"'-•~--, , •.. ,,~,-- __ ., __ . ···-••-"'«o<i 't' $"'••713(···

r ':
' I-;

f' l

I I
l....J ~.

\,
t

r '1

! i

i
;....;

r: u

' ' I
I

L..i

f,· ,

I I
L..J

r 1

i

f 1
I :

i : w

f 1 I .
I '
i.-1

f 1
I ;
I ;
: !
l...i

r i

i
I,

fi

I:
r '.
I .
L..,; f'. '
i
i..,

f 1

L

2.7.1· RAM - modify/inspect individual data RAM

This option allows the user to scan Data RAM memory and modify the
contents of any location in Data RAM. Initially the user is asked
for a starting address (where does he want to start the scan).
Once he chooses a starting address, the address alor:ig with the
contents of that location will be displayed.

The user then has several options. He may enter any one of the
follow.ing commands any repeated number of times (until he decides
to quit scanning the memory by entering the " 1Q11 command}:

11 '+'' , displays the memory address (+1) and its contents
11

-
11 displays the memory address (-1) and its contents

rn#. 11
, modifies the contents of the memory address currently

being displayed so that it then contains the number 11 # 11

where 11 #.'' is just a hex number
11 @# 11

, displays the memory address 11 # 11 (where numlDer is just any
hex number) and its contents regardless of what address
was previously displayed

The follow.ing series of prompts will occur when using the 11 RAM 11
'

command:

ENTER COMMAND (D=<CR>):
RAM

ENTER STARTING ADDRESS (IN HEX}
1

l = 0
+

2 = 0

1 = 0
10

1 = 10
@130
STARTING ADDRESS CHANGED

130 = 0
Q

ENTER COMMAND (D=:=<CR>}:

This example is self explanatory.

PAGE 23

r i
' I
! I u

TJ
f I

I '.
I
r l

L.

. : r 1
i ;
i i
--.i

r 1

':LJ

I '
·!

r ' . I '
l i

~

r :
i
"'-'

r .
I
i

.'

. r :
L

2.7.2 ROM - modify/inspect individual program1 ROM

This option allows the user to scan Program ROM memory and modi~y
the contents of any location in Program1 ROM. Initially the user is
asked for a starting address (where does he want to start the
scan). Once he chooses a starting address, the address along with
the contents of that location will be displayed.

The user then has several options. He may enter any one of the
following commands any repeated number of times (until he decides
to quit scanning the memory bT entering the 11 Q11 command) :

"+"
11_11

"#.II

displays the memory address (+1) and its contents
displays the memory address (-1) and its contents
modifies the contents of the memory addresi currently
being displayed so that it then contains the number"#:"'
~here 11 # 111 is just a hex number
displays the memory address 11# 11 (where number is just any
hex number) and its contents regardless of what address
was previously displayed

The following series of prompts will oecur when using the 11 ROM 11

command:

ENTER COMMAND (D=<CR>):
ROM

ENTER STARTING ADDRESS (IN HEX)
44

44 = 0
+

45 = o,

44 = 0
10

44 = 10
@111
***STARTING ADDRESS CHANGED*

111 = 0
Q

ENTER COMMAND (D=<CR>):

This example is se~f explanatory.

PAGE 24 .

•'.·)

tJ

LJ.
f 1 u
r 1

i ;
w

r ; u

J., l
I •

I '
I '

LJ

2.7.3 RAMH - display data RAM in Hex

This option allows the user to display the Data RAM memory in
block style with the contents of each address being displayed as
hex numbers. There is no need for a starting or an ending address
since the whole RAM will be displayed. The "'RAMH" resuts in the
following series of prompts:

ENTER COMMAND (D=<CR>):
RAMH

0 1 2 3 4 5 6 7

.Q 10 0 0 0 0 0 0 0
10 20 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0

ENTER COMMAND (D=<CR>):

Note that the >10 in address location 0 is a hex number as is the
>20 in location 10. Note also that the addresses are given as
decimal integers, they are not in hex.

PAGE 25

8

0
0
0
0
0
0
0
0
0
0
0
o,
0
0
0

I '
I ,

I ' 1.....

f •
i
w

r l

l

f.l 1
I '

i
I

w

f' l

i
~

r· 1 I :
w

['

i....,

L..

L
I

\

L

r '

!
loo.o,i

r ' ! '
i
~

r ' !
I

2.7.4 RAMI - display data RAM in Integer

This option allows the user to display the Data RAM memory in
block style with the contents of each address being displayed as
integer numbers. There is no need for a starting or an ending
address since the whole RAM will be displayed. The 11 RAMI 11 resuts
in the following series of prompts:

ENTER COMMAND (D==<CR>) :
RAMI { RAMO will also work }

0 1 2 3 4 5 6 7

0 16 0 0 0 0 0 0 0
10 32 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
30 0. 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0

ENTER COMMAND (D==<CR>):

Note that the 16 in address location O is an integer number as is
the 32 in location 10. Note also that the addresses are given as
decimal integers, they are not in hex.

PAGE 26

f)

8

0
0
0
0
0
0
0
0
0
0
0
0 • 0
0

'

0

r ':
L

r 1
i

! !
lo..,./

r \
I

LJ

f' 1

L.

f ' ! I

L.;

f 1 i .
I

L
f l

I...;

F' I
! .
i :
L..,;

2.7.5 ROMH - display program. ROM in Hex

This option allows the user to display an entire block of Program
ROM memory (160 addresses and their contents}. Here, the user is
asked to enter a. starting address. A block of 160 consecutive
words of Program ROM memory is then displayed. The series of
prompts is as follows:

ENTER COMMAND (D=<CR>):
RONH

ENTER STARTING ADDRESS (IN HEX)
0

>>PC
0 10 0 0 0 0 0 0 0
8 20 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
20 0 0 0 0 :o 0 0 0
28 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
38. 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0
88 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0

ENTER COMMAND (D=<CR>):

Note that the :::,10 in locr:ation 0 is a hex numlDer as is the >20 in
location 8. Note also that the addresses are displayed in hex.

PAGE 27

' ' u

F 1
I

: L

r ~
I i

·L

F 1

I ,

L

F' l

l
L

2.7.6 ROMI - display prograrn1 ROM in Integer

This option allows the user to display an entire block of Program
ROM memory (160 addresses and their contents}. Here, the user is
asked to enter a starting address. A block of 160 consecutive
words of Program1 ROM memqry is then displayed. The series of
prompts is as follows:

ENTER COMMAND (D=<CR>}:
ROMI { ROMO will also work }

ENTER STARTING ADDRESS (IN HEX)
0

>>PC
0 16 0 0 0 0 0 0 0
8 32 0 Q, 0 0 0 0 0
10 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0
50 0 Q 0 0 0 0 0 0
58 o· 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0
68 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0- 0 0
80 0 0 0 0 0 0 0 0
88. 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0

ENTER COMMAND (D=<CR>):

Note that the 16 in location 0 is an iriteger number as is the 32
in loeati011 8. Note also that the addresses are displayed in hex.

PAGE 28

.}

Li

f '

w
i
t r l ! i

u
l r 1

f '

I
~

' 1

!
l ,_
r ,
i L.
F '

r- 1

l
i '
L

2.8 RH - modify/inspect Registers/flags Help

This option allows the user to display the available mmdify and
inspect register commands. Using the 11 RH11

' command results in the
following series of prompts:

ENTER COMMAND (D=<CR>): :
RH

{ figure 2.4 is displayed here}

ENTER COMMAND (D=<CR>):

Note that the user need not display the help menu in order to use
one of the commands.

* NOTE: In all m0dify/inspect registers/flag:s commands, pressing the
carriage return after the presnt value has been displayed will
result in the present value remaining unchanged,ie. the result is
that the user only inspects the register/flag and dbes n0t change
its value.

FIGURE 2.4 Registers/flags Help Menu

REGISTERS/FLAGS COMMANDS ARE: M©DIFY
ACC
AR
ARP
BIO
cc
DP
INTF
INTM
ov
OVM
p
PC
SK
T

= MODIFY/INSPECT ACCUMULATOR
= MODIFY/INSPECT AUXILIARY REGISTERS
= M0DIFY/INSPECT AUXILIARY REGISTER POINTER
= M00IFY/INSPECT I/0 BRANCH CONTROL
= MODIFY/INSPECT CLOCK COUNTER
= MODIFY/INSPECT DATA MEMORY PAGE POINTER
= MODIFY/INSPECT INTERRUPT FLAG REGISTER
= MODIFY/INSPECT INTERRUPT FLAG MODE REGISTER
= MODIFY/INSPECT OVERFLOW FLAG REGISTER
= MODIFY/INSPECT OVERFLOW MODE REGISTER
= MODIFY/INSPECT P REGISTER
= MODIFY/INSPECT PROGRAM COUNTER
= MODIFY/INSPECT STACK
= MODIFY/INSPECT T REGISTER

PAGE 29

f 1

I
!..I

f l
It !
LJ

[J

r l . l I

I....J

:_·_r·_ ::_•

L

· r 1
I

L

2.8.l Act - modify/inspect the ACCumuiator

This option will permit the user to inspect and change the
accumt:1lator. The present accumulator value is displayed and then
the user can enter a new value or leave it the same (see * in
2.8}. Entering the 11 ACC 11 command will produce the following
prompts:

ENTER COMMAND (D=<CR>):
ACC
PRESENT ACCUMULATOR VALUE
> 0
ENTER NEW VALUE (IN HEX)
10

ENTER COMMAND (D=<CR>):
..

This example is self explanatory.

2.8.2 AR - modify/inspect ARxiliary registers

This option allows the user to inspect or change any of the
auxiliary registers.· He is first prompted for the auxiliary
register m..1mlDer and he is tnen allowed to inspect(see * in 2.8)
and/or chanCJe that register. The following is an examF>le of how
this will look:

ENTER COMMAND (D=<CR>):
AR

ENTER THE AUXILIARY REGISTER NUMBER(O OR 1) OR ENTER 11
'-

11 TO TERMINATE
1
AR1 = >0010 -
ENTER NEW VALUE.(IN HEX)
7
ENTER THE AUXILIARY REGISTER NUMBER(O OR 1) OR ENTER 11

-
11

' TO TERMINATE

ENTER COMMAND (D=<CR>):

This example is self explanatory.

PAGE 30

I ..o11-ilitfl· ·Hl'tlffl~'i"li,.,.' -•··< ~-•n---liliiil-Tlfu:. ':'!ilii'51W\1ae:1:ioiiiii. •=""'-•·;wr •·,swav!liil< .. , ... ,Lk-. ~"'···--·,..

r "\
i

u

j i

r I
; '

~

l 1
l,,,.,J

'
t
i' l
I

I ,
io..i
i

f' .,
I .

i w

r· ;
I

2.8.3 ARP - modify/inspect Auxiliary Register Pointer

This option allows the user to modify and/or
2.8) the auxiliary register pointer. The
follows:

ENTER COMMAND (D=<CR>):
ARP

PRESENT VALUE OF THE AUXILIARY POINTER
1
ENTER NEW VALUE (0,1)
0

ENTER COMMAND (D=<CR>):

This example is self explanatory.

inspect
prompts

2.8.4 BIO - modify/inspect the I/0 Branch control

(see *
appear

in
as

This option allows the user to ·mmdify and/or inspect (see * in
2.8) the I/0 Branch control pin. The prompts appear as follows:

ENTER COMMAND (D=<CR>):
BIO

PRESENT VALUE OF THE I/0 BRAN€H CONTROL
1
ENTER NEW VALUE (0,1)
0

ENTER COMMAND (D=<CR>):

This example is self explanatory.

PAGE 31

w

l i

r '
i !
i
I

....,/

f)

!

f '
i

r l
I :

l

w

, r 'I

w

[1
i

L...,

f l
i

: I

' ! loo..

f l i .

f !

w

f 1

. [\

I !

w

: f l
I :

'! w

r 1
I I

r ,
! \ J

i -
. f I

......i

2.8.5 CC - m0dify/inspect the Clock Counter

This option allows the user to modify and/or inspect (see* in
2.8) the clock counter. The prompts appear as follows:

ENTER COMMAND (D=<CR>):
cc

PRESENT VALUE FOR CLOCK COUNTER
> 50
ENTER A NEW' VALUE FOR THE CLOCK COUNTER (IN HEX)
10

ENTER COMMAN0 (D=<CR>),:

This example is self explanatory.

2.8.6 DP - modify/inspect Data memmry Page pointer

This option allows the user to mmdify and/or inspect (see * in
2.8) the data memory page pointer. The prompts appear as follows:

ENTER COMMAND (D=<CR>):
DP

PRESENT VALUE OF THE DATA MEMORY PAGE POINTER
1
ENTER NEW VALUE (0,1)
0

ENTER COMMAND (D=<CR>):

This example is self explanatory.

PAGE 32

•

:•- ·-77 ·:··1·1···' I .:;.c;,...J4i¥'f@ ff' i. i@I•.~, ~~-·""''-''''""~"~«-. ..:.~-" _

r1

r ,, LJ.
·.

f ·1
I !
I I
l I
I....J

r ·1 I .
I .

I '
L.,...J

F " i

I -
LJ

r ,
I •
I !

LJ
i

(1
i I

w

r 1
i :

LJ
{

'
l

r· '
!

Li

I I •

LJ
F' 1
I '

LJ

2.8.7 INTF - modify/inspect INTerrupt Flag register

This option allows the user to modify and/or inspect (see* in
2.8) the interrupt flag register. The promJDts appear as follows:

ENTER COMMAND (D=<CR>):
INTF

PRESENT VALUE OF THE INTERRUPT FLAG REGISTER
1
ENTER NEW VALUE (0,1)
0

ENTER COMMAND (D=<CR>):

In this example the interrupt flag value is changed to 1. Note
that the next time the simulator is started running an interrupt
will occur if the interrupt mode register is equal to zero.

2.8.8 INTM - modify/inspect INTerrupt Mode register

This option allows the user to modify and/or inspect (see * in
2.8) the interrupt mode register. The prompts appear as follows:

ENTER COMMAND (D=<CR>):
INTM

PRESENT VALUE OF THE INTERRUPT MODE REGISTER
0
ENTER NEW V·ALUE (0 , l)
1

ENTER COMMAND (D=<CR>}.:

In this example the interrupt mode value is changed to one. Note
that whether the interrupt flag register is one or zero no
interrupt will occur when simulation is resumed.

PAGE 33

· · ¾'®YW"tn ·21

r :
!
I....

f 1

I •
LJ

r 1
i i

. I..,/

r i
l.J

r l
I :

LJ
f' l
I

L
r l I .
L.

F I
i '

i
w

f l

i
! I I .

w
f I

I :
l._j

r i

L
r 7
I i

L
r ,,
I .
!
I
I '

Cf 1

;j

L

2.8.9 OV - modify/inspect overflow flag

This option allows the user to modify and/or inspect (see* in
2.8) the overflow flag register. The prompts appear as follows:

ENTER COMMAND (D=<CR>):
ov

PRESENT VALNE OF THE OVERFLOW' FLAG REGISTER
1
ENTER NEW VALUE (0,1)
0

ENTER COMMAND (D=<CR>):

In this example the overflow flag is changed to a zero which means
that no overflow ha occurred. (al means that an overflow has
occurr.:-ed).

2.8.10 OVM - modify/inspect overflow Mode register

This option allows the user to modify and/or inspect (see* in
2.8) the overflow mode register. The prompts appear as follows:

ENTER COMMAND (D=<CR>):
OVM

PRESENT VALUE OF THE OVERFLOW MODE REGISTER
1
ENTER NEW VALUE (0,1)
0

ENTER COMMAND (D=<CR>):

In this exampl~ the overflow mode is changed from a one to a zero.
This will cause the accl:lmulator to not saturate on an overflow.

PAGE 34

r 1
I :
LJ

r l
LJ

f 1
i :
I : w
~

r l

u
r ',
I : y
F 1
I
! w

f :
i !

l ·,
....,_j

f 1
t .

l.J

r 1
i '
i

L...!

2.8.11 P - modify/inspect P register

This option allows the user to modify and/or inspect (see * in
2.8) the P register. The prompts appear as follows:

ENTER COMMAND {D=<CR>):
p
PRESENT VALUE OF THE P REGISTER
> 0
ENTER NEW VALtJE (IN HEX)
890F

ENTER COMMAND {D=<CR>):

This example is self explanatory.

2.6.12 PC - modify/inspect Program: Counter

This option allows the user to modify and/or inspect (see* in
2.8) the program counter. Since the program counter is only twelve
bits the user should enter at m0st three hex digits. The prompts
appear as follows:

ENTER COMMAND (D=<CR>). :
PC
PRESENT VALUE FOR PROGRAM COUNTER
> 23
ENTER NEW VALtJE (IN· HEX)
0

ENTER COMMAND (ID=<CR>):

This example will change the pro<.gram counter from >023 to >000
which will cause the simulator to start executing at >000 when
simulation is started.

PAGE 35

f l

: I

LJ

f i
!
:
1-

I '
i
j
i i
1...1

I :
L..,;

f 1

l
L

L
r 1
I
L.,j

Li

F l

!
I

l....i

r 1
i
LJ

f '

l
L

2.8.13 SK -·modify/inspect StacK

This option allows the user to inspect and change all four levels
of the stack. The stack will be displayed in order from, the tow of
the stack to the bottom: of the stack. As each level is shown the
user will be able to change that level. If he decides not to
change the value he may just enter a carriage return and then
proc:ede on to the next level. If the user wants to terminate hcJ
before he reaches the bottom1 of the stack all he needs to do is ,,.,-----;? /V' '

enter a 11
-

11
' and the 11 SK11 command . will return to the _Modify fielu,,,-,n ,S

~Registers menu. The following is an example of how the 11 SK 11 fo

•

· command will work: "£NY~ c,JMM,q..,1)/J '
1

ENTER COMMAND (D=<CR>):
SK

TOP OF.STACK - 0
">548
ENTER NEW VALUE (IN HEX) OR 11

'-
11

' TO TERMINATE

TOP OF STACK - 1
>52F
ENTER NEW VALUE (IN' HEX) OR 111

-
11 TO TERMINATE

000

TOP OF STACK - 2
>548
ENTER NEW VALUE (IN HEX} OR 11

--
11 TO TERMINATE

ENTER COMMAND (D=,<CR>):

This example did not change the top of the stack but zeroed the
second level of the stack. At the third level a 11

'-
11 was entered

which terminated the process of modifying the stack.

PAGE 36 •

:1;,._ ..

- t7J· · ·h""',,w,,,,,n., d .. ;.tie :r:· r r

·:r1
, ''"""" - - - ~·~ tr tn 7""'· i,,.,,k,,;;f;.i,("l trl!Nsru r ·t

-l \

'lo.,.,i

u

F 1

r 1

L

r (u.
f '. l .

LJ
r 1

LJ

2.8.14 T - modify/inspect T register

This option allows the user to modify and/or inspect (see* in
2.8) the T register. The prompts appear as follows:

ENTER COMMAND' (D=<CR>):
T
PRESENT VALUE OF THE P REGISTER
> F89
ENTER NEW VALUE (IN HEX)
0

ENTER COMMAND (D=<CR>):

This example is self explanatory.

2.9 ST - STatus of registers

This option allows the user to simultaneously ,display the contents
of the program. counter, the previous value of the program counter,
the OJZ>Code (plus its mnemonic name). of the current instruction,
and all four stack locations in hex.It will also display the value
of the following:

auxiliary registers
T register
accumulator
data memory page pointer
interrupt flag register
overflow flag register

auxiliary register pointer
P register
clock counter
I/0 branch contr61
interrupt mocfle register
overflow mode register

Using the 11ST 1
'

1 command results in the following series of prompts:

EN'FER COMMAND (D=<CR>):
ST

>>PC= 0 OPC00E= 0 ADD PREVIOUS PC=

ARP ARO ARl TREG PREG ACC
INTEGER 1 16 0 0 0 0
HEX 1 10 0 0 0 0

>>STK= 2 1 4 0 DP = 1 INTF=O O'V =
BIO= 1 INTJ1=1 OVM=

Note that the stack is displayed with the left-most element being
the top of the stack and the right-m0st element being the b0tt0m:
of the stack.

PAG~- 37

0
0

0

CLK
0
0

r : I ,
~

t '.'
I ,

I i .w

; r "
;,:i_

,:
i:
r'

nJ

i :
I ;

l- i
.._,;

r 1

r ! l r u

l.J
li ,,

ti
tr: 1

11u
.Ji

lJ;
).l......,

ii .

iLJ

[j
l 7
I

i :
L./

2.10 NB - Number of instructions till Break

This option allows the user to have the simulation halt execution
after a specified number of instructions have been executed. If
the number is set to zero then this command is void. A carriage
return for the new value will leave the present value unchanged.
The default for this command is zero. Using the 11NB"' command
results in ,the following series of prompts:

ENTER COMMAND (D=<CR>):
NB
ENTER NUMBER OF INSTRUCTIONS TILL BREAK
5

ENTER COMMAND (D=<CR>):

Note that tbe new number is entered as a decimal integer.

2.11 NU - Numloer of instructions till screen Update

This option allows the user, when running the simulation, to have
a certian numlt>er of instructions execute before the next line of
output to the screen. If the value is one then the user will see
output every instruction. This is mainly used to keep the number
of lines of output to the s.creen to a minimun when the program: is
just about error free. If the value is set to, zero then there is
no output to the screen when the program: is running and the only
way to see what is going on is to break the simulation by
breakpoint or some other means. The default value for this command
is zero. The following is an example of the "NU"' command.

ENTER COMMAND (D=<CR>):
NU

ENTER NUMBER OF INSTRUCTIONS TILL SCREEN UPDATE
12

ENTER COMMAND (D=<CR>):

This example changed the number of instructions till screen update
to 12. Note that the new. numloer should be entered as a decimal
integer.

PAGE 38

L..:

.....

L.....

r ,

w

i-...

i
j I

.....

! I

2.12 NI - NumlDer of instructions till Interru)?t

The 11 NI 11
' command allows the user to have periodic interru)?ts wh le

running the simulation. To use this command the user must fist
type an 11 NI II after command prompt. This will allow the user to
enter the m1mber of instructions that will execute before the n xt
interrupt will occur. Once the interrupt occurrs, the simula or
will put PC+ 1 on top of the stack, put a two into the C,
Disable interrupts (INTM = 1), and clear the interrupt flag (IN =
O). This interrupt will occur every X instructions where Xis he
numh>er entered after the 11 NI" command. The default value for tis
is O where a 0 will mean that no interru)?ts will occur. he
following is an example of how the 11 NI 11 command will work:

ENTER COMMAND (D=<CR>):
NI

ENTER NUMBER OF INSTRUCTIONS TILL INTERRUPT
10

ENTER COMMAND (D=<CR>):

This example will cause a simulated interrupt to oecur every 10
instructions. Note that the new. numh>er should be entered a a
decimal integer.

2.13 TR - toggle TRace (on or -0££)

This option toggles the trace mode_ on or off. The trace is a
circular buffer that. traces the auxiliary registers, accmmulat r,
and the program counter. It is 256 samples long. So the user, w th
the trace on,. can look at the last 256 states of the simulati n.
The user can display the trace buffer using the 11 'DT 11 command. he
default for the trace is off. The following is an example of he
11TR 11 command:

ENTER COMMAND (D=<CR>}:
TR

TRACE MODE IS ON

ENTER COMMAND (D=:=<CR>):

In this exam!i)le, the the trace mode is' toggled from off to on.

PAGE 39,

; i.....,;

LJ

LJ
J-f-""l
I

I i

w

w

(I
l .

. \
i
lo.-

. r 1
L

i :
~

f'' l
I l
I :
w

. r i
; l :
i i....l
!

; ! l
~

r 1

i w

f 1 I .
!
~

2.14 DT - Display the Trace buffer

This option allows the user to display the trace buffer (described
in 2 .13). Using the 11DT 11 command results in the fo,llowing series
of prompts:

ENTER COMMAND (D=<CR>):
DT

PC= 1 ACC= 2 ARO= FF ARl= 0
PC= 2 ACC= 4 ARO= CD ARl= 0
PC= 3 ACC= 6 ARO= AS ARl= 0
PC= 6 ACC= 8 ARO= 10 ARl= 0
PC= 7 ACC= 10 ARO= 10 ARl= C6

ENTER COMMAND (D=<CR>):
..

Note that the register values are displayed in hex. Also a warning
will appear at the beginning of the display if the trace was
longer than 256 states.

2.15 EX - EXecute commands fromi a given file

This option allows for execution of commands from 1 a file that was
created using the "'JF"' command. To execute commands from1 a given
file first enter the 11 'EX'1

' command. Then the following series of
prompts will occur:

ENTER COMMAND (D=<CR>):
EX

ENTER FILE NAME
JOtJRNAL.TX'F

{ here, the commands found in the file JOURN:AL.TXT are displayed as
they are executed}

ENTER COMMAND (D;:::<CR>):

PAGE 40

f 1
I l
L,j

r 1

LJ
f I

i...,

2.16 JF - select Journal File

Th.is option allows the user to have the information that is being
entered saved in a file, so when the simulation is started again
the user can just give the name of the file and the program: will
execute the commands that were saved in that file. If there is
already a file then the user may leave it th~ same by pressing the
carriage return when prompted for a new file.· If he wishes to
change the file he must enter a new file name~ One of the two
following series of prompts will oecur when using the '"JF"
command:

1) ENTER COMMAND (D=<CR>):
JF

A JOURNAL FILE HAS NOT BEEN CREATED
ENTER FlLE NAME
JOURNAL.TXT

ENTER COMMAND (:0=<CR>):

2) ENTER. COMMAND (D=<CR>):
JF

JOURNAL FILE= JOURNAL

ENTER NEW FILE NAME
NEWJOURNAL.TXT

ENTER COMMANID (D=<CR>) :

Note that when the 11 JF 111 command is invoked, the rest of the
simulator session. is recorded in the 11 'jotlrnal 11

' file. (ie., until
simulation is halted with a 11 Q11 command)

PAGE 41

L:

fl '1

I. '
/

L.j

F:" l I

i
I ' i.-'

r i
i '
I

~

f l

!
......

f 1

i

! 1

'
I

L...

l.....

r l l .

' :

f i1

!
I

i...,;

r 1
I
i .
l i
i,,.,,/

2.17 RS - Reset Simulator

This option causes a reset to occur. The reset consists of loading
the program: counter with zero, clearing the overflow flag register
(OV = O}, setting the interrupt m0cde register to one to disable
interrupts (INTM = 1), and clearing any pencding interrupts (INTM =
O}. This does not start the simulator rurming. This command
followed by the run command (11R11

) will perform the same set of
actions as a hardware reset. Using the "Rsn command produces the
following series of prompts:

ENTER COMMAND (D=<CR>):
RS

ENTER COMMAND (D=<CR>}:

2.18 SS - Single Step execution

This option allows the user to halt simulation after the execution
of each instruction of the loaded program1• Once the 11SS 11

' command
has been invoked, a carriage return causes the execution of
another instruction. Single step simulation is halted by entering
a 111

-
11
'. It should be noted that the 11ST 11 command (show status of

registers) is automatically implemented after an instruction of
the loaded progami is executed so that the new status of the
various registers is displayed after the execution of every single
instruction. The prompts appear as follows:

ENTER COMMAND (D.=<CR>):
ss

{ the "ST"' command is implemented here }

ENTER <CR> TO CONTINUE
11

-
11 TO TERMINATE

ENTER COMMAND (D=<CR>):

This example causes the simulator to halt after executing one
instruction. The 111

-
11 terminates the single step session..

PAGE 42

•

r' "

li·· _ i....i

t r,
I :

w

r 1

i

L
f 1

1

f' 1

I

L
f l

!

I , -

2.19 R,C - Start or Continue the simulation

This option allows the user to begin simulation. This command may
be invoked by entering either "R"' or 11 c 11

• The simulation may be
stowped by encountering a breakpoint, reaching the given limit on
the number of instructions that may be executed ("NB 11

' command), or
by striking a designated key while the simulator is in a run mode.

NOTE

The designated key for VAX host is a <CTRL>C
However, if an MSDOS based host is used then any
key except for a <CTRL>C will cause simulation to
be halted when it is entered from the board.

It should be noted that when the user enters the designated key
the 11ST 111 command is executed and that then he is returned to the
command entry level of the simulator. The following is an example
of the 11R 11 or 11C 11

' command:

ENTER COMMAND (D=<CR>):
R { ~UN & C will also work }

{ here the 11ST 11 command is automatically implemented}

ENTER COMMAND (D=<CR>):

Note that the "Rlli or "CII! commands are like the 11ss 11
' command in

that when simulation is halted, the 11ST 111 command is automatically
implemented. Hem::e, the value of the variuos registers is
displayed.

2.20 Z - Zero clock counter

This option zeroes the clock counter. The clock counter counts the
numlDer of clock cycles that have occurred since the simulation was
started or the clock counter was zeroed. The following is an
example of the 111Z11 command:

ENTER COMMAND (D=<CR>):
z

CLOCK CONNTER HAS BEEN ZEROED

ENTER COMMAND (D=<CR>):

Tfuis example is self explanatory.

PAGE 43

[j
f l
{. i
!: !

L.

f' l
f ;

L

f'' u
r 1
; I
I I u

(i, 1
I 1
I i w

f'' 1

\ l w

f''
i '

r · 1

!
L....

f", 1

!
L

f' 1 I .
~

(' \
I ,

LJ
r '.

L

2.21 Q - Quit simulation

This op>tion terminates the simulation session and returns the user
to the op>erating systemi. The command 11 'Q 11 is entered as follows:

ENTER COMMAND (D=<CR>):
Q { QUIT will also work}

{ here the user is returned to the operating system1 }

This example is self explanatory.

2.22 T.IC - number of clock TICs till next interrup>t

This option allows the user generate interrupts every X number of
clock tics. The user is first asked how often he wants an
interrupt to occur,. then he asked how many times he would like the
interrup>t to be generated. Hence, the user may specify that that
there is to be an interrupt generated every 1000 clock tics until
five interrupts have been genereated. The series of promp>ts for
this command are as follows :

ENTER COMMAND (D=<CR>):
TIC

ENTER THE NUMBER OF CLOCK TICS TILL INTERRUPT
1000
ENTER THE NUMBER OF TIMES TO REPEAT THE INTERRUPT CYCLE
5

ENTER COMMAND (D=<CR>):

This examp>le is self explanatory.

PAGE 44

•

•

f' 1
I !
I '

,lJ
l

f ! u
LJ

L

2. 23 ZTIC - disable the 5IC command.

This option allows the user to stop generating the interrupts
specified by the TIC command. The prompts are as follows :

ENTER COMMAND {D=<CR>):
ZTIC

THE TIC COMMAND HAS BEEN DISABLED

ENTER COMMAND· {D=<CR>}:

This example is self explanatory.

2. 24 RSI - .Reset Selected Inp1J1t port file

This option allows the user to reset an input port file so that
data is taken from, the top of the file.. (ie. pointer is
repositioned to the top of the file) The prompts are as follows :

ENTER COMMAND· {D=<CR>):
RSI

ENTER THE INPUT PORT (0, ... ,7)
2
INPUT PORT FILE ffi 2 HAS BEEN· RESET

ENTER COMMAND (D=<CR>):

The file assocdated with port #2 (by the "SI 11
' command) has been

reset. It should be noted that it is not neccessary to use this
command when the end of a file is reached since the simulator dmes
exhibit an auto wrap feature. Oncr:e the end of a file has been
reached. Any attempt to read from. the file again will result in an
automatic reset (as described above}.

PAGE 45

r ·1
I .

L

F 1

\. I
u

. r 7

i
....i

f''

L

r I
l i

,.,
i

i

t....

f' 1

!

r i

t

L

lJ
[1

I

L

f ;

L

~

r ,
I

i
L

r,,

I
i
~

2.25 STR - Save the TRace buffer

This option allows the user to save the contents of the trace
buffer in a file for retrieval after the simtJ1lator session is
halted. Entering the "STR 0 command will result in one of the two
following series of prom}DtS:

1.) ENTER COMMAND (D=<CR>):
STR

ENTER TRACE BUFFER FILE NAME - NONE EXISTS
TRACE.DAT

2.} ENTER COMMAND ((D=<CR>):
STR

TRACE BUFFER FILE ALREADY EXISTS
ENTER NEW NAME
TRACEl.DAT

ENTER COMMAND (D=<CR>):

It should be noted that the second promp>t occurs only if the "STR"
command has been previously used d1J1ring the same session. Also,
failure to indicate a file name in 1.) will cause the default file
FOR088.DAT to be used. Failure to indicate a new file in 2.) will
result in the old file being used. to save the current trace
buffer. The old file in this case will be appended to, not over
written. ·

PAGE 46

•

•

r l

i ;
L..J

f l
1
i

~

/ l

I ! I ,

w

r .
1 ;

L

\ :
\ J

-"':-

•

~;.

APPENDIX A

The following is a list of the various run time stop c~des that
may occur during execution of a loaded program.. Exactly or:ie of
these 11 stopcodes 11 is displayed each time execution of a program is
suspended.

Note that illegal trap codes should never be seen by the user.
These traps indicate the existence of states which will not occur
in a properly functioning simulator.

STOPCODES:

26QQ,
2695
2780
2795
3505
3665
4055
4065
4190
7601
840 15
8662

8670

8G80

8683
9011
9020
9105
9950
10000
10100
10144
10400
10496
llOOO+N
l2000+N
13000+N

Illegal Trap
Break on Data Read
Illegal Trap
Break on Output Writ.e
Illegal Trap
Break on Table Read
Break on Table Write
Break on Table Write
Illegal Trap
Illegal Opcode
Break on InstructioR Acquisition
Illegal Indirect Addressing Structure
(bits 1,2 and 6 are not· zero)
Illegal Indirect Adckessing Structure
(bits 4 and 5 are both on)
Break on Data Memory Read
(during development of indirect addressing)
Illegal Trap
Branch to Self
Break on Instruction Acquisition
Illegal Trap
Accumulator Was Used First Clock Cycle After an 11'SUBC 11

"Steps" Expired
Addressed Beyond End of 1536 Word Program, ROM
Addressed Beyond End of 144 Word Data RAM
Error Breakpoint (over/underflow, etc.)
Addressed Beyond End of 4096·Word Program ROM
Instrnetion Acquisition Breakpoint #N
Program ROM Breakpoint #N
Data. Ram Breakpoint #N

PAGE 47

~

r .
I ! u
" 1 ' : i i
I

.W

r . ,
! : u

L

:,j i .:_:_· ____ ll.,,_
l /

i

APPENDIX B

It should be noted that the <control>C trap,. which may be used to
exit the run mode of the simulator without halting the session
entirely, is dependent on the VMS 3.2 operating system. Hence,
transportation of the simulator to another operating systemi will
require editing of the following modules: CHIPSM, GRSAST, and
GRSCTLC.

PAGE 48

•

••

'

