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0 
IZF!LES.'m' (C) 

File 
CAW.00.TXT 
CRiat.'m' 
LICENSE. 'l'XT 
FILES.'m 
oom.~.-m 
I,ESSCNS.'m' 

File 
MOSIMP79 .0>1 
MOSGE.MIJS 
ARI'm.MOS 
'DW:E.MOS 
AI.GmRA.ARI 
EJ;lN.AtG 
SOLVE.D;lN 
m.M .ARI 
MMRIX.ARR 
LOO.AU; 
~.AI.G 
'.mGNEG .AtG 
DIF.N.ll, 
INT.DIP 
IN'DDRE. INT 

Pile 
CUSl.ARI 
a.ES2.ARI 
a.ES3.ALJ:i 
Q.E.S4.AI.G 
cuss .JJJ:?, 

versiai 
10/29/79 
01/01/80 
01/01/80 
03/31/80 
10/30/79 
10/30/79 

Versia,, 
03/23/80 
ll/01/79 
07/16/79 
07/26/79 
07/16/79 
03/31/80 
03/31/80 
03/31/80 
01/14/80 
07/16/79 
07/16/79 
07/16/79 
07/16/79 
07/16/79 
07/16/79 

Version 
10/30/79 
10/30/79 
10/30/79 
10/30/79 
10/30/79 

03/31/80 '?he Soft Warehouse 

LI'l'ERA1'tJRl:: PILES* 

lt-ByteS 
10 

6 
ll 
s 
s 
4 

Contents 
Software catalog and availabilit-f 
Software price list and order focn 
Sofi:Ware license agreement 
A list of all tDachine readablie files 
Interactive use of muSIMP and DllMATB 
Use of the en-line lesson files 

~ F1LF3 

lt-Bytes 
7 

ll 
17 
4 

12 
2 
4 
s 
6 
2 
4 
4 
3 
7 
7 

.. 

Contents 
Machine-language muSIMP-79 nucleus 
Complet.iai of muSlMP-79 
Ba.sic aritlmetic package 
Trace package for debugging programs 
Buie algebra package· 
Equatiai simplificaticn package 
Equation solving package 
Array package 
Matrix package 
lAgarithmic package 
Trigonauetric package (Part I) 

·Trigonometric package (Part II) 
Symbolic diffe.rentiaticn package 
Synix)lic integraticn package (Part I) 
Symbolic integration package (Part II) 

0\UlJLA1'0R-M:lDE T,ESSCNS 

. K-sytes 

. 7 

6 
15 
10 
12 

Contents 
~tiaw. arithmetic, assignment 
Factorials & fractional powers 
l?olynan.ial expansiai & factoring 
Continued fractions, bases .i exponents 
C0mplex variacles & substitution 

~E tJ::SSC:NS 

File 
P.tJ',.Sl..'l:P.A 
Pt.ES2.'l:P.A 
PL:e:S:3.'IP.A 
PLE:84.1:P.A 
PUSS.'JSA 

Versicn 
ll/01/79 
ll/01/79 
ll/01/79 
ll/01/79 
ll/01/79 

lt-Bytes 
18 

9 
13 
l2 
19 

Contents 
Data structure and func:tion definition 
Data eanp:,sitiai and recursion 
List and set operations 
Control constructs, loops, and block 
Propert-f lists and fWlCtion evaluation 

*These files are included only if there is sufficient space on the ciisk. 
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l. Files of type COM are unprintable directly-executable machine­
language program CCHmand files. 

2. Files of type SYS are unprintable machine-language memocy-images 
whicb can be u:N)ed from within musIMP. 

3. Files of type DOC are printable files OOC-i1menting the usage of a 
program file having tbe same first name. 

4. Files of type TXT are printable text files containing information 
implied by t.be first name. 

5. Files having a first name of the form CLESn are interactive 
calculator-mode t,ESsons to be exeC2Jted from within muSIMP, in the 
order indicated by· the ?UDeric suffix n. 

6. Files having a first name of the form Pl,ESn are interactive 
Programming-mode ·L&Ssons to be executed from within mUSIMl>, in the 
order indicated by the numeric suffix n. 

7. All files listed above of a type other than COM, SYS, DOC, and 'l'XT 
are muSIMP program source files. The type name denotes the first 
three letters of the first name of the most immediate prerequisite 

Q 

program file. For example: O 
a) 'l'be .JDUSIMP file named AU;f.aM.ARI implements algebra, requiring · 

the mUSIMP file named AR1'1B.MOS as a prerequisite. 
b) File AIGEBPA.DCX: is the reference documentatiai for usage of the 

facilities implemented by file AIGESRA.ARL 
c) Files CLES3.ALG and CLES4.ALG are interactive calculator-mode 

lessons teaching use of the facilities implemented by file 
AtGEBRA.ARI. 

I ROS ()$ 
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FileREADlSI'.?XT (c) 10/30/79 The SOft Warehouse 

General tnfognation 

COngratulations on your purchase of the muSIMP/muM.Mll-79 Symbolic 
Mat.~tics System. This package is a revolutionary and sophisticated 
software system for 8080 and zao based microcomputers. Therefore some 
degree of study and patience is requited to properly build a systtm from 
muMA'.tB source files, and then save the result as a memory image file. 
&)wever·ance bLlilt and saved, it is a simple matter to load andinteract 
with the system at any later time as described in file nm:aac.r.m. 

Unfortunately your first task is the rather uninteresting one of 
building the system as explained in the remainder of this file. The 
immediately following background information is provided to make the 
process seem less mysterious. 

%ht aaSJMP:-79tin Prograrmung Lang;uage 

'?be JDUSIMP-79 (micro-computer Structured IMPlementation languaqe) 
system provides a high level programming language suitable for a wide 
variety of applications. It is implemented using a.n efficient and 
versatile interpreter requiring 7K t,ytes of machine code. 'l'he current 
version of muSIMP also requires a bootstrap file which is loaded 
immediately after the machine coded portion. The interpreter is 
distri,buted as two disk files: 

MOSIMP79 .CG1 
MO&aE.MOS 

., 
an executable CG1ma.nd file 
tbe DJSIMP bootstrap file 

'?he file named FILES.m' indexes and briefly describes the IIWSD-!P 
dcc:wnentation package. The dDcwaenation · is only distril::luted in ·printed 
form. Fll,ES.TXT also lists the lesson files requir~ to become 
proficient in the programming language. Since using muMA'l'B in the 
calculator mode requires·no programming knowledge, learning mUSIMP can 
be safely postponed. . 

%b& PJMA:m::79t:Il Sl'Jri;>olic; !itb. systcn 

'?be auMM.'S-79 System provides the facilities to perform a wide 
va.r:iety of symbolic mathematical operations efficiently and accurately 
on a c:ompiter. It is implemented as a set of mUSIMP. program packages. 
'rhese soutc:e file packages are organized in a very mod1.2lar fashion in 
order to accommodate both differing mathematical needs and differing 
ccm;uter memory sizes. More sopnisticated mathematical packages require 
prerequisite files as indicated by the following dependency diagram. 
Each file requires t.ue above it in the diagram as a prereq..usite. (The 
significance of the numbers will be explained below.} 

l 



MUSIMP79.CCM 
+MOS-DRE.MOS 

I \ 
I \ 

TRACE.MOS AIUTB.MUS 
WA,551 lS36,3llS 

I \ 
✓ I \ 
ARRAY .ARI ALGEBRA.ARI 

375,756 lJ.60,1946 
/ I 

I I 
I 

~.ARR 
497,892 

J I 
EQN.ALG 
86,208 

I 
U'G.ALG 
186,34.5 

I 
I 
I 

ii 
SOLW.~N 
452,734 

I 
I 
I 
I 

'm:iPCS.AI.G 
I 

TBGNEX:; .AI.G 
327,602 372,680 

\ J 

DIF .AU; } if'O 3, 
306,580 

I " Im' .OIF 1 r \i 
794,1420 

I ' nm-DRE. mr 
914,1760 

~ten Generation P;pc;agyre 

0 

If you are proficient in the use of the microcomputer's disk 
operating system (DOS), the follQ.Wing procedure should be sufficient O 
explanation t:0 build and save a.complete mUMATH system. However if you 
are a novice or questions arise, additional information can also be 
found in files BACXUP.TXT and IN'l'ERACT.TXT, and in the documentation 
provided with the disk operating system. 

I. Generate a muSIMP/lDLlMAm-79 backup disk. 

Using the computer's oos, transfer a copy of the source 
files depicted in the above diagram from the Soft Warehouse 
master diskette to· a backup diskette. Since the total disk 
space required to store the files is approximately 96 K byteS, 
more than one diskette may be required. Often it is 
convenient to generate a DOS Cl'l the backup di.ak (s). 

II. Build a JlllSIMP-79 SyStem. 

Execute the MOSIMP79 COMmand file by the entering the 
following DOS command: 

MOSlMP79 

It should then display a version/copyright message. Jot 
down · the number following the word •SAVE• in the message for 
later use. The bootstrap file will begin to load 
automatically. After about S minutes load time, the system 
shculd respond with the "? " prompt character indicating that 
DWSIMP bas been successfully constructed. 

2 
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0 In. Build a llllMAm-79 System. 

Two muSIMP commands are required to build a nn1MATB 
system. All commands must be terminated by a semicolai a.'ld a 
carriage retw:n in order to initiate the action. 

'l1v! source file "name".•type• on disk •drive• is loaded 
by issl.1ing a command of the ·form 

ROS (name, type, drive); 

Note that the file name and type are separated by a comma 
rather than a period, and the drive requires only a single 
letter without the customary colon. '1'he drive is an opticnal 
argument which defaults to the drive currently logged in. 

Each muMA'l'B source file requires a given amount of 
comPJter memoey to store its function definitions. 'l'be unit 
of storage in mUSIMP is the -node" which is described in file 
MUS)ATA.MOS. The pairs of numbers in the dependency diagram 
above are the approximate number of nodes required to store 
the corresponding muMA1'B package in both condensed and 
unC0l'ldensed form. See the. next· section for the significance 
of the smaller condensed numbers. 

'l'he number of free (i.e. unemployed) nodes is given by 
the mUSIMP command ... 

.REX:tAIM () ; 

When building a system you must ensure that there is 
adequa.te storage for the pr:ogru,. ~ at least 500 additional 
nodes to store mathematical expressions. This can be 
accomplished through the use of RECLAIM and reference to the 
uncondensed number in the dependency diagram correspondin; to 
the program package •. Qlc:e this has been verified, execute the 
appropriate ROS load ;command. This procedure is illustrated 
by the following dialogue building a muMATH AtGEBRA system: 

? P.EClAIM (); 
@ 6360 l Li lq 

? ROS (ARrl'B, MOS); 
@ ARl'm 

?RECIAIM (); 
@ 3245 (r ?,(> ! , 

? R>S (~, ARI); 
@ AIGmP.A 

? R£a.AIM (): 
@ l.300 ~ 

3 



N. Save the !Il.lMMS-79 System. 

In order to avoid repeating the tedious build routine in 
the future, a memory image file of the muMA:IH system should be 
saved immediately after the build using either method A or s 
described below. Whichever method is used, it is advisable to 
use a file name representative of the most sophisticate::! 
mathematical capabilities loaded. For example, names su~, as 
AIGEBBA, 'l:RIG, CAI.aJLOS, E00ATICN, etc. 

***WARNING*** Before attempting a save, ensure that a 
diskette with sufficient free space to store almost an entire 
memory image is properly mounted an a disk drive. 

A. Return control to the 00S by typing C':BL-C. 
Then generate a COM type file by issuing the DOS 
SAVE command. Ose the decima.l number, N, of 256 
bfte records recorded in step II above. The file 
s1ze will be (~V 4) K bytes. 

Although most desirable from a convenience standpoint 
(see file INTERACT.TXT), this method may NOT work due to 
limitaticm of the DOS. The easily recognizable symptoms are 
either the inability of the OOS to save that large a file, or 
erratic behavior when the COM file is SUbsequently executed. 
If this happens, you will have to build the system again from 
step II and use method B in tlle future. 

., 
B. Type the muSIMP carmand of the for::m 

SAVE (name, drive); 

This will save a file called name.SYS on the given 
drive. Again the drive is optional, defaulting to 
the current drive. The SYS file will be 
approximately· (N-28)/4 K bytes, where N is the 
number recordea in step II. 

... 

Generation of COM or S"iS files is also useful for ched<pointing a 
lengthy dialogue for p.,.tpoSes including: 

l. continuatia, at a later time, 

2. preservation of an environment so that uncertain exploratory 
catrpJtations which·raight endanger the envuamient can be 
safely pursued, 

3. preservatia1 of a•program• (meaning an environment) produced 
interactively rather than using a text editor. 
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CPodenstd Sl$em Gtoera.tion 

Although muMATB is much more compact than any previous general­
purpose symbolic math system, it is still a large set of programs for 
microcomputers. Fortunately, the use of a •condensing" technique to 
load programs can economize O."l memory consumption by a factor of almost 
two. If the control variable named CCN:)ENSE is assigned the value TROE, 
then common subexpressions of function definitions a.re automatically 
shared as the source files a.re read i,Q. The infix mUSIMP colon operator 
is used to make the assignment to CONDENSE as de.scribed in the muSIMP 
lesson and documentation files. Thus, to build a condensed AUiESRA 
system, the following commands should be issued in place of those in the 
example of step U above: 

ON)EN,SE: 'l'JD'E; 
RDS (ARlTB, MOS); 
ROS (AI.GESP.A, ARI) ; 
CCN)EN.$: FALSE; 

The exhaustive searching makes condensation too slow for inter­
active use, sc that is why it is advisable to set CQlDE:NSE to FALSE just 
before the save. The above condensed load requires an hour or so, 
depending on the processor speed. Since it is possible to type the 
abOve commands on one line, you are free to take a long break while the 
condensation takes place. 

Condensation can be regarded a.e an opticnal sort of "compilation" 
stage, and one of the principal reasons for generating COM or SYS files 
is to preserve this investment of time. However, for simplicity, we 
suggest not worrying about producing condensed COM or SYS files until it 
becomes imp:,ssible to otherwise fit all of the desired files into memory 
sll'llUltaneously. 

Many of the muMA1'H files contain opticnal sections ide.ntif ied · by 
conspicuous comments. To save space, appropriately pruned versions of 
these files can be created using a text editor. For example, a user 
with only 32 kilobytes may have to delete portions of the arithmetic and 
algebra packages in order to do algebra comfortably, even with 
condensation. As with the set of muMAm files, each file is internally 
organized "bottom up", with the most expendable and highest-level 
features late in the file. Consequently, the files can be truncated 
between almost any two commands, without risk of invoking undefined 
functions or uninitialized control variables. 

s 
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IFile: IN!'ERACT.'?XT (C) 10/30/79 The Soft Warehouse 

~ A ~ CCM FILE 

Initiating mu.MATH is easiest if someone has already saved a COMma.nd 
file having a rnemory image including all of the muMAZI or otb.er programs 
which you wish to use at that time. The name of such a file is of 
course up to whower creates it, bit in general the name assigned is of 
the highest-level math package loaded. Thus AIGEBRA.CXJM would be the 
name of a command file containing AlU'l'B.MUS and ~ESRA.A.~ 

For. example when using a CP/M (tm) type operating system with file 
AIGS.RA.COM on the current drive, one merely enters the following 
system-level command terminated by a carriage return: 

AI.GESRA 

After a minute or so of loading from the diskette, the response should 
bE a message of the foan: 

111.lSIMP-79 (Version month/day/year) SAVE: sue 
Copyright (C) 1979 by The SOET WARE:HCOSE phone 
? 

where a;propriate numbers awear as the entries "month11 , •aaya, 'year", 
•sue", and "phone11• You are now free to enter matheir.atical expressions 
as described below. • 

INlnA!I'Dti A n1.1MA1S s.!S FILE 

Unfortunately for reasons described in file R!ADlS?.1'XT, it R/ be 
impossible to caist::uct a muMATB ca-1mand file. However, the following 
means of initiating muMA!ll is always possible and quite easy pr:ovided 
someone has saved a SYS-type file containing a memory image of the 
muMAZi packages which are needed at that time. Here tco the name of such 
a file is up to whoever creates it, but in all probability the same 
naming convention describe above for COM files was used. Therefore 
AtGEBPA.SiS would have had the same source files loaded in as the file 
AtGEBP.A.COM would have. 

For example, if MOSU!P79.COM is on the current drive and AIGE:BRA.SYS 
is on disk drive B, the ai;:propriate operating system load command would 
be as follows: 

MOSIMP7 9 B:At.GEBPA 

About half a minute after the muSIMP logon message a~s, the muMA'l'B 
system should respond with the •? " prompt characters. Now you can 
begin your interactive dialogue with mu.MA1'H. 

l 



TSE INl'ERAC'l'ICN CiCLE 

mUSIMP prompts the user with a question mark indicating readiness to 0 
accept a command entered from the terminal. The user then types an 
expression followed by a semicolon and a carriage return. First mUSIMP 
parses the spressia1 &-xl CCl'lverts it into an internal representation. 
After printing an •r to herald the •@nswer11 , the expression is 
evaluated, w·then a.space is printed to indicated the evaluation phase 
is complete. Finally the result is deparsed and printed in mathematic:al 
notation. Thul interaction cycle is repeated indefinitely until a C'l'RL-C 
is typed (i.e. a •c• typed while depressing the CTRL key). 

For example, here is a segment of a trivial muSIMP dialogue: 

? S; 
@ 5 

? 2 + 2; 
@ 4 

? JcaN. MAR!; 
@ FALSE 

? MEMBER (APPLE, I (GRAPE, APPLE, PUJM)); 
@ 'mJE 

CCRREC'l'IN:i 'r.O?CGRAPHICAL DroPS 

Si.nee mUSIMP uses the operating system's console I/0 routines, all 
the line-editing features of that system are inherited by muSIMP. 
Backspacing is usually accomplished by typing either a CTRL-B, or a 
ROBout, or a DELete key. Some systems echo the deleted character; 
whereas, others erase the character from the screen and backspa.ce the 
0.2rsor. ~tire lines can be deleted or flushed by typing a C".rRL-0 or a 
CTRL-X. As a. note of caution: there is no way to modify a line once a 
curiage retw:n has been- typed. If this baI;PenS, the entire expression 
can be flushed by typing a semicolon. 

~ EV'AWATI~ 

An fial.uation in progress can \JSt1Al.ly be aborted by typing a CXP.L-Z, 
ESCape, or ALTmode. An options available message will then be 
displayed. The usual choice is typing another CTRL-Z, £Scape, or 
AL'l.'mode which allows you to enter expressions as before. The other 
altematives are fully explained in file ERRORS.'l'XT. AS a last resort, 
the computer can of course be RESET and a •cold startn performed to 
reload the operating system. 

\ROSO$ 
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File: SACKCP.m' {c) ll/Ol/79 

aa, to Backup the Master Diskettes 
Slpplied by t:.he Soft Warehouse 

The Soft Warehouse 

1. The following information is provided for those who are not 
throughly familu with their computer's disk operating system. Since 
there are many different operating systems and compiter configurations, 
it is necessarily a general guide which should be supplemented by study 
of the doc:t.Unentation su;plied with the diak cperati.ng system. 

2. Obtain an appropriate number of blank new, high-quality diskettes 
suitable for your drive. 

3. Become thoroughly familiar with the terminal, comp.iter, disk drives, 
and operating system. Most cases of accidental erasure of the master 
diskettes or other irrecoverable errors are committed in the first few 
moments by eager users, inexperienced with the system on which they are 
installing the new software. In particular, practice initializing a 
diskette, then generating a disk operating system on it. use the 
largest version of the system in terms of the space available to user 
programs. Finally transfer to the new diskette files from a spare, 
wri ta-protected diskette. 

4. oue to wear and inadequate industry-wide manufacturing standards, 
there are slight or not-so-slight. inechaniQal. and electrical differences 
between various nominally compatible drives and diskettes. 
Consequently, we suggest that if you have two or more drives, you first 
try placing the new diskette in the drive on which it will be used most 
of ten. The Soft warehouse diskette can then be tried on each of the 
othe.t drives, tradi."lg with the new diskette if none of the other drives 
are successful. 

5. For two or more drives, some operating systems provide a <:OnVenient 
COP'i DISK command which· automates most of the copying protocol otherwise 
necessary. Alternatively, the PIP (Peripheral Interchange Program) or 
XFER (File Transfer} commands of most operating systems usually pemit 
copying all files from drive A to drive a by a command such as 

or 
PIP A:-S:*.* 
XFER A:-B:*. * 

6. COF.fing diskettes is much more laborious on systems having only one 
drive. Generally,. it involves repetitively reading a portion into main 
memory from the old disk, switching disks, then writing the portion onto 
the new disk, then switching back to the old disk. The process 
generally involves using a resident bootstrap monitor in read-only 
memory, or using a •t>DT"-like •oynamic Debugging Tool• program. 
Moreover, the process may pad out the otherwise only partially filled 
last page or record of a file with arbitrary garbage which is harmless 
in a command file but annoying in a text file. Thus, text files 
transferred this way may require some text editing to clean-up. 
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7. For some operating systems it may be necessary to remove the write 
protect tape from the old diskette temporarily, even though it is only 0 
to be read from. (Perhaps this is true only if the old diskette is in · 
the "principal• drive.) Moreover, it may be awkward to copy a diskette 
without first removing the write protect tape in order to copy the 
operating system onto that diskette, especially if there is only one 
drive. 

a. We use · costly highest-quality diskettes, and we endeavor to record 
them on the most precisely adjusted drives available. Consequently, if 
you cannct read our diskettes after several attempts and after carefully 
restudying our directions and those provided for the hardware and 
operat~"'l9 system, then 

a) Carefully cbeck whether or not you correctly specified 
all of the details on the order fom and ~rcha.sed the 
proper tj'pe of blank diskettes. 

b) Use an alignment test diskette or have your drive 
checked professionally. 

c) Get help f ran an experienced professional or friend. 

.. 
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IFile: teESSCNS.'lXT (c) l0/JO,n9 The soft Warehouse 

OSing 'lb!· Interactive Lessons Files 

This file explains how to use the interactive muSIMi> and muMATB 
lesson files. muMA'l'B and the lessons are designed to serve a broad 
range of m:,.th levels from arithmetic through calculus, and to ser-:e a 
broad range of programming backgrounds from none to professional 
programmer. sow is this &COpe possible? Read on: 

The sequence of lesson files a.F.Sl, Cl.:ES2, etc. explaL,s bow to use 
muMA..."'S as an arithmetic or symbolic calculator, for succesaively more 
sophisticated mathematical operations. The seque."lCe of le5$a1S PLFSl, 
PLES2, etc. explains how to write programs in muSIMP, in order to 
enhance the suite of built-in q,er~tions or for any other pirpc:,se. 

The calculator sequence is ordered according to the most common 
sequence in which the corresponding math subjects are taught. It is 
intended that a user proceed in this sequence only as far as their math 
background, befote optionally beginning the progtamming sequence. cue 
to slight variations in math curricula sequences, some users may prefer 
to skip certain calculator lessons in the mi&ile of the sequence as well 
as at the er.a. 

muMA1'H bas such a rich set of built-in capabilities that many use.rs 
will be content to postpone study of the programming sequence 
indefinitely. However, many users evenntually will want to proceed to 
the programming sequence, perhaps for one or more of the following 
reasons: 

l. to enhance the built-in u-wm capabilities, 

2. to understand hQo1 the underlying lDLlMATB algoritms work, 

3. to learn eaq;:uter programning, 

4. tc use mus:n-tP for sane other application. 

In order to make the programming sequence most useful to users of 
all mathematical. backgrounds, the sequence beginS with mUSIMP examples 
which are non-mathematical, or arithmetic at most.. Most. general 
programming techniques and their reali%ation in mUSIMP are independent 
of higher-level math. Thus, only the last lessons in this sequence deal 
with muMATH specifically, explaining how to extend it, alter' it, and 
even replace it with alternative symbolic math system.$. 

There are three ways to experience the lessons. For most people, 
the best way is to execute them interactively, trying out examples at 
the OQ;:Ortunities provided; the second best way is to read the printed 
record of a dialogue produced by someone else executing the lessons~ and 
the third best Wf:/ is to read the files containing the original lessons, 
which contain 01'l.ly one side of an intended dialogue. 
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As indicated in file FILES.TXT, the first lesson is file CLESJ..ARI. 
ca-.sequently, to commence the lesson you must first initiate a muHA1'B ·O 
system containing at least file ARI'm.MUS. Sow to do this is explained 
in file ~.TXT. 'l'hen, you simply issue the mUSIMP command 

1l)S (CLESl, ARI, drive); 

where •drive• is the name of the drive on which the CLESl.ARI is 
mounted. The lesson will tell you what to do from then on. If the 
interactive lesson for arrJ reason becomes hopelessly confusing, you can 
always cease the lesson and simply read it. Al.so, it may help if you 
take the lesson along with a companion, because you.r possible conf'..isions 
may be disjoint. 

Have fun! 

I ROS O $ 
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IFile:" CLESl.ARI (c) 10/30/79 '1'he Soft Warebcuse, 

LINEI:DCl'H ·c1e, s tEX:SO: ECHO$ EX:BO: 'lllDES 

, If this lesson is being displayed tco fast, it can be temporarily 
s~ by typing a CT.RL-S (i.e. typing tr.e letter •S" while depressing 
the C'!RI.. key). Then type it again when you are ready to resume. 

If you have not yet read files TtFSSOOS.TXT and INTERH:'l'.TX'.r, it is 
advisable to abort this lesson and read those files first. To abort the 
lesson, enter an ES:ape or a crm..-z character followad by a CT.RL-C. 

In 1Dtl.MNm a •comment• is a percent sign followed by any I'ILl:::ber of 
other characters terminated by a matching percent sign. Thus, this 
explanation is a comment which has not yet been terminated. Comments do 
not cause computation; they are merely used to explain programs and 
examples to hLmwl readers. Here is an example of an actual comp,itation\ 

l/2 + l/6; 
I Note how mu.MATB uses exact rational arithmetic, reducing fractions 
to lowest tems. 

In muMA1'B, ari tbmetic expressions can be formed in the usual 
manner, using parentheses together with the operators •+•, •-•, •••, 
•;•, and •"'• respectively for addition, subtraction or negation, 
multiplication, division, and raising to a power. For example: , 

(3*4 - 5) "'2; 
I On some terminals, •"' 11 l,ooks like an upward-pointing arrow; on 
others it looks like a shallow upside-down letter V1 and some temina.ls 
may employ an utterly different looking character which you may have to 
determine by experimentation. 

The reason for 1.1sing ... and* is that standard terminals do not 
provide StJperscripts or centered dots or special multiplication crosses 
distinct from the letter X. 

;, 

To prevent certain ambiguities, multiplication cannot be implied by 
me.re juxtaposition. cne of the most frequent mistakes of beginners is 
to omit asterisks. 

Later, in order to give you an opportunity to try some examples, 
we will •assign• the value FALSE to the variable named IDS. When you 
are ready to reswne tbe lesson, type the •assignment" 

RD.5: 'SE ; 

including the semicolon w carriage retutn. This revises the value of 
the variable named RDS to the value TROE. We will explain assignment in 
more detail later. 

Don't forget that you can use local editing to correct mistypings 
on the current line. For example, on many operating systems, the key 
marked RO'Bout or 0£Lete cancels the last characi:er typed on the line, 
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and typing a C'l'lU,-U cancels the current line. There is no way to modify 
af1linheedafbter s~rikinf~ thal,e 1RE:1E:Turn ktey_, ~ut an. express~onalc,,an a;way~ .. ~; t"I_ 

us y 1:.yp1ng a 1n ne con aining a grammatic or syn.aA '-!I 
error such as •c;•. 

Now we are going to turn control over to you by setting RDS to 
FALSE. Try some examples of your own similar to the above. Also we 
suggest that you make a few intentional errors in order to become 
familiar with how thetJ are treated. For example, t.cy 

5 7; 5+ /7; 5/0; and 0/0; 
Have fun!: I RDS: FALSE ; 

I The value resulting from the last input expression is automatically 
saved as the value of a variable named •ANS, whicb can be used in the 
next expression. For example: , 

3 ; tANS ... tANS ; tANS .. tANS; 
, As this example illustrates, muMATB can treat vecy large nwai:>ers 
exactly and quickly. In fact, muMAm can accomodate numbers up to a1:)0ut 
611 digits. To partially appreciate bow large this is, compute the 
distance in feet or in meters to the star Alpha Centauri, which is 4 
light years away, then use #ANS to com?,ite the distance in inches or in 
centimeters without starting all over. (In case you forgot, the speed 
of light is 186,000 miles/second or 300,000,000 meters/second.) % 
RDS: FALSE 1 
I our answers are about 123,883,499,520,000,000 feet or 
l,486,601,994,240,000,000 inches or 37,843,200,000,000,000 meters or 
3,784,320,000,000,000,000 centimeters. Another dramatic comparison with 
10·611 is that there are thougHt to be about 10,2 electrons in the 
entire universe. (Whoever counted them must be exhausted!) 

Often one performs an intermediate computation or a trivial 
U$ignment for which there is no need to display the result. When this 
is the case, the display of the result can be suppressed by using a 
dollar sign rather than a semicolon as a terminator. For example, type 

RDS: TmE $ 

and note the difference fran when you previously typed R:)S:TRtJE; \ 

RCS: FAIS S 
I It is often cawenient to save values longer than IANS saves them, 
for use beya,d the next inp,lt expression. The colon. AS.iIGNMENI' operator 
provides a means of doing ao. The name on the left side of t.be 
assignment operator is BOUND or SET to the value of the expression on 
its ri9ht. This value iS saved as the value of the name until the r.ame 
is bound subsequently to some other value. The name can be used as a 
variable in subsequent expressialS, as we have used JANS, in which case 
the name contributes its value to the expression. For example: \ 

RATE: 55 S TIME: 2 $ OisrAN:E: RA1'E *TIME; 
% Alphabetic characters include the letters A through z, beth upper 
and lower case, and the character •t•. Note that the upper and lower 
case version of a letter are entirely distinct. Names can be any O··. 

sequence of alphabetic characters or digits, provided the first 
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.0 
character is alphabetic. Thus x, t9, and ABCl are valid names. Make an 
assignment of 3600 to a variable named SECPERBOOR, then use this 
variable to help comp,1te the ru.unb~r of seconds in l day a:-4'3 l week: % 
R)S; FALSE$ . 
% Congratulations on completing C!.ESl.AR!. To execute the next 
lesson, merely enter the muMA!m command 

ms (Cl..ES2, ARI, drive); 

where drive is the name of the drive on which that lesson is mounted. 
Alternatively, it may be advisable to repeat this lesson, perhaps 
another day, if this lesson was not p.rfectly clear. The use of any 
computer program tends to become much clearer the second time. 

In order to experience the decisive leamirig reinforcement afforded 
by meaningful personal examples that are not arbitrarily contrived, we 
urge you to bring to subsequent lessons appropriate examples from 
textbooks, tables, articles, or elsewhere. Also, you are encouraged to 
experiment further with the techniques learned in this lesson: % 

ECHO: tECEO $ 
ROS () S 
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\File: a..ES2.ARI (c) l0/30/i9 '?be Soft Warehouse\ 

LJ:NELEN:i'1'B (78j$ tECBO: E(3j$ B:BO: '.rlm:S 

, This file is the second of a sequence of interactive lessons about 
tbe 11L1MA1:B-79 system for comp.1ter symbolic math. 'l'bis lesson prea-umes 
that the JDUMATB files through ARI'm.M1'JS have been loaded. 

Fer positive integer N, the "postfix• factorial operator named •111 

returns the product of the first N successive .integers, and 01 returns 
l. For example, 31 yields 6, which is 1*2*3. use this operator to 
determine the prcduct of the first 100 integers: , 
RDS: FALSE $ 
I The number baSe used for input and out;ut ii .initially ten, but the 
RADIX function can be used to change it to any base from two through 
thirty-six. For example, to see what thirty looks like in base two: I 

'lliIR1:X: 30 $ MDIX ( 2) ; 'l'BIRl'Y ; 
, AS you can see, the radix function retw:ns the previous base, which 
is, of course, displayed in the new number base. 'l"his i.nforation helps 
to get back to a previous base. In base two, eight is written as 1000, 
so to see what thirty looks like in base eight: , 

RADIX (1000) ; ~ ; 
I In base eight, sixteen is written as 20, so to see what thirty 
looks like in base sixteen: , 

RADIX (20) ; m:tRIY ; 
, AS you can see, the letters A, B, ••• are used to represent the 
digits ten, eleven, ••• for bases exceeding ten. Now can you guess why 
we limit the base to thirty six? 

In input expressions, integers beginning with a letter u the most 
significant digit must begin with a leading zero so as not to be 
interpreted as a name. . For example, in base sixteen, ten is the letter­
digit A, so to return to base ten: , 

RADIX (OA) ; 
I Why don't you now see what ninety-nine raised to the ninety-nine 
p:,wer looks like in base two and in base thirty-six, then retum to base 
ten: I ROS: FALSE $ 
, AS you may have discovered, it is easy to become confused and have 
a hard time retum.ing to base ten. Two is represented as 2 in aey base 
exceeding l, so a foolproof Wfl¥ to get from acy baSe to ant other is to 
first get to base two, then express the desired new base in base two. 
Per example: , 

MOIX (2) ; MOIX (1010) ; 
I Now we are guaranteeably in base ten, no matter how badly you got 
lost. 

Now consider irrational. arithmetic: Did you know that 

cs+ 2•6·c112))·c112> - 2·c112> - c3;2,·c112> 
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can be simplified to o, provided we make certain reasonable choices of 
branche~ for the square roots? In general, simplification of arithmetic " 
expressions containing fractional powers is quite difficult, blt mul-umi ._, 
makes a valiant attempt. For example: , 

4 "' (l/2) ; l2 .. (1/2) 1 1000 "' (1/2) 1 
I Try simplifying the square roots of increasir.qly large integers to 
ga.in a feel for how the COtn?Jtation time increases with the complexity 
of the inplt and answer: I ROS: FALSE $ 
I An input of the form (m/n) "'(p/q) is treated in the usual manner 
as (ui."'(l/q)) "'p / (n"'(l/g)) ""p • For example: \ 

(4/9) "' (3/2) ; 
t For geometrically similar people, surface area increases as the 2/3 
power of the mass. Veronica wears a 1 aqua.re-meter bikini, and she is 
50,653 grams, whereas ber look-alike mother is 132,651 grams. OSe muMATB 
to detetllj.ne the area of her mother's similar bikini: , RES: FALSE $ 
\ 4"(1/2) could simplify to either -2 or +2, but muMATB picks the 
positive real branch if 9ne exists. Otherwise, mu.MATH picks the 
negative real branch if one exists, as illustrated by the example: I 

(•8) .. (l/3) ; 
I What if no real branch exits? Then muMATB uses the unbound 
variable na.med tI to represent the IMAGINARY number (-l) "'(1/2), and 
expresses the answer in terms of tI, using the branch having smallest 
positive argwnent. For example: , 

(-4) A (l/2) # - Q 
, Decent simplification of . expressiais containing ima;inary numbers, · 
as described in lesson CLES4~, requires that file AU;EBRA.AlU be 
loaded. Meanwhile if you believe in imaginary numbers and you can't 
contain your curi0$ity, why don't you experiment with them to see what 
ml.lMllI.'B knows about them: , ms: FALSE $ 
, As with manual computation, picking a branch of a multiply-branched 
function is hazardous, so answers thereby obtained should be verified by 
substitution into the original problem or by physical reasoning. For 
this reason, there is a CONTROL VARIA:eLE named PBRCB, initially TRUE, 
which 5UR?resses Picking a BRanCB if FALSE. For example: \ 

Pma: FAt.SE $ 4 "' (l/2) 1 
I Osers having a caneervative temperament might prefer to do most cf 
t.heu compitation with PB!CB FALSE:. 

Thi$ bd.ngs us to the end of a.132.AEU. Though arithmetic, some of 
the features illustrated in thiS lesson may be foreign to you, because 
sometimes they are taught during algebta rather than before. Thus, if 
you have any algebra background wnatsoever, we urge you to proceed to 
lesson CLESJ.AIG even if some 0£ CU:S2..ARI w• intimidating. Naturally, 
as implied by its type, file CLES3.ALG requires a muHATH system 
cmtaining files through AtGE:BRA.ARI. 

If you decide net to proceed to algebra, but want to learn how to 
program using m~IMP, then proceed to lesson PLESLARI. % 

EX:SO: iECSO$ PB10!: TROE$ RDS O $ 
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10/30/79 'l'be Soft Warehcuse % 

LINEL.EN1.L'B (78)$. tEQIO: EX:BO$ EXliO: FALSE$ 
N.JMNJM: t)ENN'.JM: 6$ om,n~: 2$ WMDEN: PWREXPD: 0$ PBRCB: TROE$ 
X: 'XS EX:80: 'JRJES 

% This file is the third of a sequence of interactive lessons about 
muMAl'B-79. This lesson presumes that the muMATH files through 
ALGEBRA.ARI have been loaded and that the user has studied the 
a.ritbmetic··· lessons CLFSl.ARI and ~ 

An ONBCXJN) ~.BLE is one to which no value has been assigned. 
Mathematicians call such variables INOETERMm>.xFS. You may have already 
inadvertently discovered that if you use an unbound variable in an 
expression, muMATH treats the variable as a legitimate algebraic 
unknown. Moreover, 1miMAXB attempts to simplify expressions c:cntaining 
such unbound variables by collecting similar terms and similar factors, 
etc. For example: , 

2*X - X""2/X 1 
I See if lD1.lMM'B automatically simplifies the expressions 

O+Y, Y+o, O*Y, Y*O, l*Y, Y*l, Y""l, l '°"y, and 2*(X+Y) - 2*X. I 
R:>S: FALSE$ 
I Sometimes it is desirable to change a bound variable back to 
unbound status. This can be done by using the single-quote prefix 
operator, ', which looks like an apoitrophe on many terminals. For 
example: I 

EC: X + SJ EX;: 'EG; a:; + 2; 
I Try assigning the 'lalue M*C""2 to E, then change E back to 
uncound status: ' RDS: FALSE $ 
I You may have noticed that some of the more drastic transformations, 
such as expanding products or integer powers of sums, are not automatic. 
The reason is that such transformations are not always advantageous. 
They may make an expression much larger and less comprehensible. 
However, they may be necessary in order to pemit cancellations which 
make an expression smaller and more comprehensible. Accordingly, there 
are a few control variables whose values specify whether or not such 
transfoc:nati0TIS are penormed. For example, 1:he variable controlling 
expansion of integer powers of sums is called PWPJ:XPD. This variable is 
conservatively initialized to zero, so that integer powers of sums are 
not expaz,ded. For example: , 

IG: (X+l) "'2 - (X .. 2-2*X-l) 1 
, Clearly this is an instance where expansion is desirable. When 
PWREXPO is a positive integer multiple of 2, then positive integer 
;ewers of snns are expanded, ao let's try it: , 

~= 2 $ EX;; 

' Nothing ~ed! 

The reason is that muMATB does not automatically reevaluate 
previously evaluated expressions just because we cnange a control value. 
Not only would this be rather time consuming, but the a.bility to form 
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expressions from other expressions constructed under different control 
settings provides a valuable flexibility for constructing partially 0~. 
expanded expressions. .., 

0'l the other harxl, it is often desirable to reevaluate expressions 
under the influence of new control settings, and the built-in EVAL 
function enables this: , 1 

£VAL (EX;) ; 
I Now that ~ is 2, see how (X+Y) ... 2 - (X-Y) "'2 simplifies: I 
~:FALSE$ 
I In nwMA1'B-79, denominators are represented internally as negative 
powers, and negative integer powers of sums are expanded if PWREXPO iS a 
positive integer multiple of 3. F-or example: , 

~: 3 $ 1 / (X+l) •2 ; 
I What ha~ if l / ((X+l) "'2 - X) ... 2 is evaluated under the influ-
ence of ~ being 3? For a little surprise, tty it.I RDS: FALSE $ • 
I Even though (X+l) .. 2 is WITHIN a negative power, it is itself a 
positive power, so how about t:ying again with PWFEXPD being 2*3: I 
RDS: FALSE$ 
I Now, we would like to suggest a little experiment for you: The 
size limitation on algeoraic expressions depends primarily upon the 
amount of unemployed memory available for storing names, numbers, and 
program or algebraic structure. Memory for the structural use is 
measured in units called N:DF.s, which happen to correspond to 4 bytes in 
mUSIMP-79 on microcomputers. Node-space tends to be the limiting 
resource for algebraic express.ions, and we can always determine the 0 
number of unemployed nodes ~ typing the command: , 

REX:r..AI?-1 (} ; 
I Numbers and nodes which are no longer a part of any value that we 
can retrieve are automatically recycled inte.rmittently, b.lt the RfXl.AIM 
function forces this •gaz:t>age collection• proeess. Tbe collecticn takes 
on the order of a second, depending on memoey sue and proeessor speedi 
and these slight pauses are sometimes noticable in the middle of a 
printout or a trivial computation. On a computer with front panel 
lights, the collectia,s are also usually recognizable by the c:bcm:Je in 
light patterns. 

Naturally, if we load an extravagant number of muMATB files into a 
single muMATS dialogue or if we save a number of relatively large 
expressions as the values of variables, then there will be relatively 
little unemployed space for our next computation. Not only does this 
limit the size of the next expression, but computation time also 
increases dramatically as space becomes scarce, because relatively more 
time becomes devoted to i.nereasiRgly frequent collections. The moral of 
the stoey is: don't unnecessarily load too many muMA1'H files or retain 
numerous expressions as the values of variables. 

Now, for the experiment: In order to gain an appreciation for how 
computation time depends on the size of the input expression, answer, 
and unemployed storage, try timing each computation in the following 
sequence, until it appears that your space or patience is nearly o· 
exhausted: 
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EG: (l+X) "'2; Ra:::t.AIMO; EG:llXt'2; RECLAIM(); EG:EX;"'2; ••• I 
~:FALSE$ 
, These polynomials are called •aense", because there are no missing 
terms less than the maximum degree in each unbound variable. In 
contrast •sp'!.rse• polynomials are missing a large percentage of the 
possible terms less than the maximum degrees. If you are still in an 
experimental mood, :;ou may wish to try the following analogous sequence 
which produces extremely sparse results: 

RECLAIM(); (A+B) "'2.; R.ECI.AIM(): (A+B+c} "'2; RECLAIM{); •- I 
ROS: FALSE $ . 
, Distribution of sums over sums is another transformation which can 
dramatically increase expression size but is sometimes necessary to 
permit cancellations. For example, this transformation is clearly 
desirable in t1'le expression: I 

EG: X"'2 - 1 - (X+l)*(X-1} ; 
, When the control variable nameci NUMNOM is a positive integer 
multiple of 2, then integers in WMerators are d.istriblted over sums in 
WMerators. Similarly when the variable is a positive integer multiple 
of 3, then monomials in numerators are distributed over sums in 
r1J1'11eratcrs, whereas when the variable is a positive integer multiple of 
S, then sums in numerators are distriblted over sums in numerators. 

The reason for using the successive primes 2, 3, and 5, is that it 
provides a convenient way to independently control the three types of 
distribution using one easily remembered control variable Mme. 

The initial value of NOMNUM is 6, because numeric and monomial 
distribution are recov.erable .(as we shall see), because neither 
distribution dramatically increases expression size, and because a lack 
of these distributions often prevents annoyingly a:wious eanc:ellations. 
For instance the expression 2*{X+l) - 2*X will not $implify unless 
NUMNUM is a positive multiple of 2. Similarly X+l - (X+l) will not 
simplify to o, since the expression is represented int:emally as 
X+l + -l*(X+l), which requires the -1 to be distributed over the sum. 

'?bus, to retum to. cur example, I 

!G; Ntl1WM: 5 * NCMNOM: WAL (El'.i) ; 
, To witness tbe great variety of possible expansions, we set, 

?OHJM: 0 $ EG: 4 * X--:l * {l+X} * (l-X) ; 
I Now, suc:c:essively ~ a:; with WMWM being 2, 3, 5, 6, 10, 15, 2lrld 
30: I ROS: FALSE $ 
\ In interpreting these results, it is important to recall that 
negations are represented internally as a product with the integer 
c:cefficient -1, so WMNt1M must be a positive multiple of 2 to distribute 
negations 0'1er sums. 

If positive values of WMWM cause expansion in numerators, oow do 
we request factoring in numerators? 

Negative values of WMNOM cause factoring of numerators. Moreover, 
the specific negative values cause factoring of the type which rENerses 
the corresponding expansion. For example: \ 
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X: 'X $ Y: 'Y $ WMWM: -2 $ £;: lO*X""2"'Y + l5*X'"'3: -
WMNtlM: 3 *Ntff:JM; E.VAL (EXi) ; 
, What about negative multiples of S? Sorry folks, that's hard for 
comp.iters as well as bumans. However, we are working on it for future 
releases. Meanwhile, t;y out. our semifactoring· on the example 

3"'X"'Y""3/7 - lS*X*Y""2/l4 + 9*X'"'4"'Y""2/7 I ROS: FALSE $ 
I AS you may have guessed, there is a flag named DENOEN which 
controls expansion and factoring among negative powers in a mw-mer 
entirely a.iialogous to WMNJM. OSe it toget.ner with WMWM to expand the 
denominator then semifactor thf! denominator of the expression 

X""2/((X-Y)*{X+Y) + Y""2 + X""2"'Y) I R)S: FALSE $ 
, You may have wondered wby we chose the names NUMNOM and DENO.EN. 
The reason is that there is another elosely related control variable 
named DENNUM, which controls the distribution of various kinds of 
denominator factors over the terms of corresponding numerator factors: 

A positive multiple of 2 causes integer denominator fac:t.ors to 
be distributed; a positive multiple of 3 causes mono~ial 
factors to be distributed; and a positive multiple of 5 causes 
sum factors to be distributed. For example: I 

Y: 'Y $ DEN:,EN: WMNJM: 0 $ EXi: (5 + 3*X"'2) *(Y+l)/(l5*X*(4+X)) 1 
OflH.1?,1: 2 $ E.VAL(EG); 
0~1: 3*0ENNJ?1: E.VAL(EXi); 
DE:NNUM: S*DENWM; E.VAL(Ex:;); 
, Positive setting of DENNUM and WMWM are particularly useful for 
work with truncated series or partial fraction expansions. For example, 
see if you can put the expression (6 + 6*X + 3*X"'2 + X"'3)/6 into a more 
attractive £om: , ROS: FALSE ·s 
I What about negative values of DQNJM? 

A 11 ttle reflection confirms that forming a common denominator 
reverses the effect of distributing a denominator. Thus, expressions 
are put over a common integer denominator when OENNUM is a negative 
integer multiple of 2, expressions are put over a common monomial 
denominator when DENNCM is a negative integer multiple of 3, and 
expressions are put over a common sum denominator wben DD.""NOM is a 
negative integer multiple of 5. For example: % 

X: 'X $ DflNJM: DOOEN: 0 $ EG: l + X/3 + (l+X)/X + (l-X)/(l+X); 
OENNJM: -2 $ EG: £VAL(!Xi); 
DENNOM: 3*0.EtNlM: EG: EVAL(EG); 
DENH:lM: S"DENRJM1 EG: E.V'AL(EG); 
I Tey fully Simplifying the expression X"'4/(X""J+X'"'2) + l/(X+l) - l 
by expanding 01Ter a c::ommon denominator, then factoring: , BOS: FALSE $ 
I AS with NOMNOM and DENO EN, the initial setting of OENHOM is 6, 
which causes distr~ution of numeric and monomial denominator factors 
over numerator sums. This tends to give attractive results for 
polynomials or series with rational-number coefficients, but the 
relatively costly common-denominator operation may be necessary for 
problems involving ratios of polynomials. 

You have now been exposed to the four most important algebraic 
control variables in muMATH. Together with EVAL, the various 

4 

0 



com.binations of settings of these variables give rather fine control 
over the form of algebraic expressicns. muMATB· c:annot read the user's 
mind, so it is important for the user tc thoroughly master the use of 
these variables in order to achieve the desired effects. 

sere are the most frequently useful combinations of settings for 
these three variables: · 

PWREXPD: 0; NOMNOM: DENDEN: DENNUM: 6; These initial values are 
usual Jy good for general-pJrpOSe work, when the user wants to view some 

. results before doing anything dra.stic or potent.tally q..iite time 
consuming. 

· PWRXPO: 6; NOMWM:. OOOEN: 30; DENNOM: •30; These settin,JS yie.l.ci 
a fully expanded numerator over a fully expanded common denominator. 
This form gives the maximum chance for combination of similar terms. 
Moreover, a rational function equivalent to O is guaranteed to simplify 
to o. However, valuacle factoring information may be irrecoverably 
lost. 

PWP.DCPD: O; NUMWM: DENOEN: -6: DmNOM: -30; These settings yield 
a semifactored numerator over a semi-factored common denominator. 1'his 
form gives the maximum chance for cancellation of factors between a 
numerator and denominator. However, the factoring is done 
incrementally, term by term, so it may be necessary to first expand over 
a common denominator so tbat all cancellable terms have an oa.x>rtunit:J 
to cancel before attempting factorization. 

PWREXPO: 2: DOOM: 30; D~EN: -6; OENWM: -30; 'these settings 
a.re a good compromise between the advantages of expansion and fact:cring. 
Semi-factoring is done in the denominator where it is usually most 
important, but there is a maximum opportunity for c:ombinaticn of similar 
te.cns in the numerator. 

PWlttXPO: 6; NOMNUM: DENDE:N: DENNUM: 30; These settings are good 
for series expansions or partial fractions, because each term is fully 
expanded over its own denominator. 

Again, we can't overemphasize the im;ortance of mastering the use of 
these four control variables. They are your primacy tool for imposing 
your will on t1le simplification process, and mJ lack of understanding 
of their proper use will ultimately lead to frustration. Aceordingly, 
why dcn't you try the above and various other COlnbinations on examples 
of your own choosing, until the usage becomes second nature: , 
R:lS: FALSE$ 
\ Congratulations on completing cu:sJ.AUl. If the mathematical level 
was uncomfortably high, proceed to lesson PL!Sl.ARL Otherwise proceed 
to CLF.s4.A.W. In either event, it is advisable to initiate a fresh 
mUMA!IE enviraunent, because our experiments have altered control values 
and made assignments which could interfere with those lessons in 
nefarious ways. \ 

DO: tECBO$ 
ROS O $ 
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IFile: a.ES4.AtG (C) 10/30/79 The SOft Warehouse% 

LINELEN3'm (78) $ tECSO: F.0!0$ EX:HO: TRJE:$ 

, 'rhis is the fourth of a sequence of JDJMA1'B·calculator-mcde leS$0IlS. 

'nlere are some other algebraic control vari=>les besides PWREXPD, 
NOMNOM, DENDEN, and DENNUM; .and they are occasionally cruc:ial for 
achieving a desired effect. One of these, named NUMDEN, provides the 
logic:a.1 completion of the latter three, by controlling the distribution 
of factors in numerators ewer the terms of denominator sums. WMDEN is 
initially o, but integer numerators are distributed over denominator 
s~ms when NOMDEN is a positive integer multiple of 2, monomial 
numerators are distributed over denominator sums when NOMDE:N is a 
positive integer multiple of 3, and numerator sums are distril:)uted over 
denominator sums when WMDEN is a positive integer multiple of S. For 
example: , 

NtJ,HJM: DEX>EN: DONJM: 0 $ NCMDEN: 30 $ 
X / (X"'3 + X + l) / (Y + l) ; EC: (X+Y) / (l+X+Y) / (Y+l) r 
, Isn't that intriguing? It yields a sort of •continued-fraction• 
representation. Now for the reverse direction, which performs a 
denesting of denominators which is less drastic than a single common 
denominator: , 

NCMDEN: ~ $ Z + l / (l/X + l/Y} / (l+Y} 1 
, See if you can devise examp~es exhibiting dramatic simplifications 
arising from either direetiO{l for thi$ novel transfocnation. 'the fact 
that it so naturally complements NOMNOM, DENOEN, and OENNOM suggests 
that it must be useful for something! , K)S: FALSE $ 
, Another control variable named BASEXP controls distribution of a 
BASe over tems · in an EXPone.nt which ia a sum, or controls the reverse 
process which is collection of similar factors. As might be expected, 
integer bases are distributed over exponent sums when IASEXP is a 
positive integer multiple of 2, monomial bases are distributtd over 
exr;x:ment sum.$ when BAsm is a positive integer multiple of 3, and base 
swns are distributed·over exponent sums when BASEXP is a, positive 
integer multiple of 5. Morever, the corresponding negative values cause 
collection of similar factors having the corresponding t:ypeS of b&SeS. 
BASEXP is initially •30. Bow.,,er, distribution (followed perhaps by 
collection) is 1ometimes necessary to let some of the tems in an 
exponent sum combine with the base. For example:. , 

EC: 2 .. (2+X) / 4 1 BASm: 2 r £VAL (Bi) 1 
, See if ycu can devise an example which requires evaluating an 
expression first with sufficiently positive BASEXP, then reevaluating 
with sufficiently negative BASEXP, or vice-versa: I m:,s: FALSE $ 
I Anet.her control variable named EXP.eAS controls the distribution of 
EXPonents over BASes whicn are PROOOCTS. Integer exponents are 
distributed over base products when EXPBAS is a positive integer 
multiple of 2, monomial exponents are distributed over base products 
when .EXPBAS is a positive integer multiple of 3, and exponent sums are 
distributed over base products when· !XPBAS is a positive integer 
multiple of S. Naturally, the corresponding negative multiples request 
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collection of bases which have similar exponents of the indicated type. 
The initial value is 30, and here are some examples where distribution 0 
permits net simplification: I 

{X ... (l/2) * Y) ... 2 1 (X"'Y) ... 2 - X"'2~2; (4"'X ... 2*Y} ... (l/2) ; 
I However, the user should beware that as with manual computation, 
distribution of non.integer exp:,nents is not always valid. Consequently, 
conservative uswrs may p,r:efer to generally operate with EXPBAS being 2. 
Moreover, distribution of exponents tends to make expressiais more bulky 
when no cancellations occur. For example , 

ex * Y * z, ... cv21 ; 
I In fact, there are instances where negative settings of EX1'BAS a.re 
necesaa.s:y to acneive a desired result. ror example: , 

IG: 2""X * 3""x + (l+X) ... (l/2) * (l•X) ... {l/2) - c1-x·2,·c112) ; 
EXPBAS: -6; RJMMJM: 30 1 E.VAt, (EG) ; 
I See if you can devise an example which requires evali.;aating an 
expression first with sufficiently positive EXPBAS, then reevaluating 
with sufficiently negative m.BAS, or vice-versa, in order to simplify 
acceptably: I R>S: i'ALSE $ 
\ The variable named PBRCB, already discussed in conjunction with 
fractional powers of numbets, also controls transformations of the fom 
u""v'"'w -> u"'(V*w). PB.RCS is initially TRUE, but when PBRCB is FALSE, 
the transformation occurs only for integet w. Otherwise the 
transformation occurs for art';{ w. 'l'he user should be aware that in some 
circumstances the selected branch is an inappropriate one, so that it 
may sometimes be necessary to set PBR:B to FALSE. See if you can devise O· · 
sudl an instatJCe: , JDS: F~· $ 
, Now, tty the examples O"X· and x""o, to see what happens: , 
ROS: F~ $ 
, The reason that 0~ is not automatically $implifieci to o is tbat O""X 
is undefined for nonpcsitive values of x, so the transformation could 
lead to invalid results. Of course, sometimes users know that the 
exponent is positive, or they are willing to assume it is positive and 
verify the result afterwards. Consequently, there is a ccntrol variable 
named ZER.l:AS, initially FAJ:m:, which pemits 
the transfomatia'l when nan.FALSE. 

Why then do we automatically simplify X"'O to l even~ X could 
perbapa ta.ke on the value o, giving the undefined form 0'"'0? Well, we 
also have a caitrol variable for that, named Zm:ECP of course, but we 
initialized it to 'lR1E beeause: 

l. If we are thinking of polynom.uls in X rather tban. arrJ aie 
~ific va:we of X, then we are free to regard the polynomial 
X O as being formally eg_uivalent to l. 

2. one ca.Mot do effective simplification of rational 
functions witbout this widely accepted transformation. 

3. Since l is the limit of X'"'O as x approaches O from either 
aide of the real axis, l is a reasonable interpretation even 
for o'"'o. 
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Nevertheless, there is room for disagreement, and anyaie wh::> wishes 
is free to run with ZEROEX? FALSE. Why don't you t::y it, using some 
rational expression examples, in ordeL to see how you feel about this 
issue? \ BOS: FALSE $ 
, It is easy to for;et the current . control-variable settings, and it 
is even east to forget the existence of ce~..ain control-variables, so we 
have provided a hancrj-dandy function named FLAGS which retu.tnS the empty 
name ... after printing a display of all the flags and their values: I 

FI.H:iS () 7 
, If you ever get. fJ:UStrated because you can't get an answer close to 
the desired for.m, try this command. It may reveal some inappropriate 
settings or remind you of some alternatives you forgot, or reveal the 
existeni::e of potentially relevant flags of wrJ.ch you were :maware. 

Often a dialogue proceeds best lm<ler some control settings which are 
suitable for the majoriq of the comp.Jtations, with an occasional. need 
for an evaluation under different control settings. Each such exception 
could involve new assignments to several control variables, followed by 
an evaluation then assignments to restore the variables to their usual 
values. This process can become tedious, and baffling effects can 
result from inadvertently forgetting to restore a control variable to 
its . usual value. Consequently, as a convenience, we have provided some 
functions which, for the most commonly desired sets of •drastic" control 
values, establishes these values, reevaluates its argument, then allows 
the control variables to revert to their former values · before returning 
the reevaluated argument. 

One of these functions is called EXPAND, because it requests full 
expansion with fully distributed denominators, bases, and exponents. 
More specifically, it uses the following settings: 

PWREXPD: 6; WMOEN: O; WMNJM: DENDEN: DENNUM: BASEXP: EXPBAS: 30; 

To see its effect, try EXPAND (( (l+X)/(l-X)) "'2); I RDS: FALSE $ 
I Another one of these convenience functions is called IX.PD, and it 
fully expands over a common denominator. Thus the internal control 
settings are the same as for EXPAN:), except that DElWM: -30. Try 

EXPO (l/ (X+l) + (X+l) "'2); \ RDS: FALSE $ 
\ Finally, there is a convenience function named FCTR, and it semi­
factors over a common denominator. It evaluates its argument under the 
following control-variable settings: 

NUMNOM: DfM>EN: ◄; DENN'JM: BASEXP: EXFBAS: •30; ~: NWCEN: O; 

Since semi-factoring is done termwise, it may be necessary to use 
EXPO before aS)lying FCT.R to an expression, in order to get the desired 
result. See if you can devise an instance where this is tr\.le: \ 
K>S: FAIS $ 
I This brings us to the end of lesson CLF.54.ALG. The next lesson is 
ct,ESS.ALG, but as before, it is advisable to start a fresh muMA'l'B to 
avoid c::ai:flicts with bindings established in the current lesson. , 
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IFile: a.ESS.AIG (c) 10/30/79 The SOft Warebou.se \ 

LINEI:.EN:n'B (7 8) $ tECBO: ECSO$ !O!O: 'l'l1JE$ 

, It is often desired to extract parts of an expression. Particularly 
frequent is a need to extract the numerator or denominatcr of an 
expression. Accordingly, there are built-in SEt..EX:"lOR functions r.amed 
WM and OEN for this pirpose: , 

DEN-IJM: 0 $ a:;: (l+X) / X ; Ntll (!Xii ; D~ (Bi) ; 
tU1 (l + B:;) 1 OEN (1 + !Xi) ; 
, As the la.st two examples illustrate, NOM and OEN do not force a 
common denominator or a:trJ other tra."lSformation before selection, so the 
denominator is always l when the expression is a sum or when the 
expression is a product having no negative powers. Try out WM and OEN 
on a few examples of your own to gain some experience: , K>S: FALSE $ 
\ Tpe Programming-mode lessons will explain how to completely 
dismantle an expression to get at a:trt desired part, such as a specific 
term, coefficient, base, or exponent. 

muMAl'H represents the imaginary nwnber (-l) '"'(l/2) as tI, and ~ 
does appropriate simplification of integez: powers of tI. For example: I 

iI ... 7 ; EXPAro ((3 + II) * (l + 2*tI)} ; EXPAN:> ((X + tI*Y) .. 3) ; 
, Try it, you'll like it! , ROS: FALSE $ 
% The definition of the operator •·• in file ALGEBRA.ARI also 
implements two higher-level transformations which we mention here only 
in passing: • 

., 
muMA1'S represents the base of the natural logarithms as iE arid the 

ratio of the circumference to the diameter of a circle as tPI. Osing 
these, muMM'B performs the siJnplification 

tE ... {n * tI * tPI / 2) -> IIAn, 

where n is a:trt integer constant, after which the power of tI iS reduced 
appropriately. Also, .if a control variable called~ is a negative 
multiple of 7, tben complex exponentials are converted to trigonometric 
equivalenta. (The opposite transformation for sines and cosines to 
complex exponentials for TRGEXPD • 7, is implemented oy file 
'.m:i:PQS.A.Ui.) If your mathematical background includes these. facts, you 
might wish to experience them here. Otherwise you can safely ignore 
this digression: , ~= FALSE $ 
, You may have wondered whether or not an assignment to a variable, 
say x, automatically updates the value of a bound variable, say EG, 
which was previously assigned an expression ccntaining X. Let's see: % 

X: 5 $ Y: 'Y $ !G: X + Y ; X: 3 ; Eti; 'EYM.. {!Xi) ; 
I Apparently the answer is •no", at least if X is bound when the 
assignment to m is made. This should not be surprising, because after 
contriouting its valu.e to the expression x + Y, all traces of tne ri.ame 
X are absent from this expression. &owever, suppose that we do a 
similar calculation wherein X is initially unbound: \ 
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X: 'X S EG: X + Y; X: 3; EG; 
, As when we change control variables, previously evaluatea O 
expressions are not automatically reevaluated when we bind an unboUnd 
varible therein. However, we can always use EVAL to force such a 
reevaluation: % 

EVAL (EG) ; 
I Since we did not assign the result tom, reevaluatiai of m after a 
diff ere."lt · assignment to X still has an effect: I 

X: 7 $ EG: E.VAI.. (EG) ; 
, Since this time we did assign the result to m, further chan;es to X 
can have no effect on m regardless of evaluation: I 

X: 9 $ :Xi: £VAL (iX,) ; 
, If these examples are not entirely clear, you had better take the 
time to experimentally lea.rn the principles by trying some examples of 
your own: \ BOS: FALSE $ 
I It is often desired to reevaluate an expression under the influence 
of a te.'Tlp:>ra.ry local assignment to one of the variables therein without 
disturbing either the existing value of the variable or else its unt.ound 
status. The built-in EVSOB function provides a convenient method of 
accomplishing this effect. EVSOB returns a reevaluated copy of its 
first argument, wherein every instance of its second argument is 
replaced by its third argument. · For example: , 

W?•lNJM: 6 $ M: 'M $ C: 'C $ V: 'V $ EG: ~I"'C"'2 + ~2/2 $ 
EVSOB cm, M, 5); E\TSOB (EG, M, MJ.+M2); M; 
% Play around with E-VSOB for awhile until you are absolutely sure that 
you LJnderstand the difference between substitution and usi<;nment: I 
ROS: FALSE $ 
% You may have discovered that EVSOB also permits substitution for 
arbitrary subexpressions as its second argument. For example: % 

M: 'M $ C: 'C $ E: 'E $ E-VSUB (M*C"'2 + 7, M*C"'2, E); 
I '1'o keep the algebra package small, we have not endowed EVSUB with 
aey sophistication abou~ finding algebraically IMPLICIT instances of its 
second argument :in its .first. See if you can find examples where !VStJB 
does not do a SUbstitution that you would like it to do: I BOS: FALSE S 
\ Sere is an example where a desired SUbstitution dcesn•t fully occur:\ 

?OHJM: 6 $ C: •c $ S: •s $ !.VStT8 (l - 2*S""2 + S--4, S--2, 1 - C"'2); 
\ 'l'he reason we did not get the desired simplification to C .. 4 is that 
if the second argument is a power, it matches only the same power in the 
first argument. We ean usually circumvent such problems by instead 
using an equivalent substitution wherein the second argument is a name 
rather than a power. For example: I 

PWR&<PD: 2 $ !Vstra (l - 2*S"'2 + S"4, S, (l-C"2) .. (l/2)); 
I sere is a somewhat different example wherein a desired substitution 
does not occu.r: , 

E.VSti8 (2-C*S, C*S, C2)1 
, The reason is that if the second argument is a product, it matches 
only the same COMPLETE product in the first argument. Again, the rem.edy 
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is to use an equivalent substitution wherein the second argument is a 
name. For example: I 

E'lf'S'OB (2~•s, C, C2/S); 
, Rere is a final example for which a desired substitution does not 
cxcur:' 

E\TSJB (C-2 + S-2 - l + C + S, ~2 + s"2, l}; 
\ Similarly to products, if the second argument is a swn, it matcheS 
only the same OOMPU.TE sum in the first ar~ent.. As before, we could 
circumvent the difficulty by making an equivalent F.iubstitution of 
(l--C"2) .. (l/2) for s, or (1-S .. 2) "' (1/2) for c, but that would leave 
an ugly square root in the answer. I! our goal is to delete the 
sucexpression C'"'2 + s"2 - 1, then we ca,.-, use to our adva..-itage the fact 
that powers must match exactly for a substitution to take place: , 

E\TSOB (C"2 + s"2 • l + C + S, C"'2, l - s"2) 1 
, See now if you can use such techniques to get your examples to work: 
\ ROS: FALSE $ 
, This brings us to the end of the calculator-mode lessons. There 
are, of course, higher-level math packages in muMATH, but the fact is 
that from a usage standpoint, we have already covered the hardest part, 
whic:h is understanding evaluation, substitution, and the ramifications 
of the various algebraic cart:rol variables. You will find that if you 
know the relevant math, use of the higher-level packages is quite 
1traightforward, easily learned from studying the 
corresponding CXX: files. 

we suggest that before commscing the Programming-mode lessons, yai 
explore calculator-mode usage of the higher-level packages as far as 
your math background permits. Math curriculum sequences differ, but 
probably most users will be tno$t comfortable t:ying the higher-level 
packaes in the approximate order EQN, SOLVE, ARRAY, MATRIX, LOG, 
'lIGN.'EX,;, im:;ros, DIF, INI' and INrMORE. Si.nee space becomes increasingly 
scarce as higher-level packages are loaded, you may bave to· reread file 
RFA'OJ.SI'.TXT to leam bow to OX,ENSE and SAVE if you haven1t already. 

NOw for some parting advice about getting the most out of comp.iter 
symbolic math: 

First, storage and time consumption tends to grow dramatic.ally with 
the number of variables in the inp.lt expressions, even if the ultimate 
result is fortuitously compac:t. For example, the number of terms in the 
expanded form of 

{Xl + X2 + • • • + XM) ... N 

grows outrageously with M ard N. Consequently, it is im}:X)rtant to make 
every effort to avoid needlessly introducing extra variables for 
generality's sake. Mathematical Ind physical problems are often stated 
using more variables than are strictly necessary, so it is also 
important to exploit every OJiP:)rtunity to reduce the number of variables 
from the original. problem. Bere are some general techniques for doing 
this: 
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l. If members of a set of variables can be made to occur only 
together as instances of a certain subexpression, consider 
replacing the subexpression with a single variable. For 
example: 

a) If K, X, and XO can be made to occur only as instances 
of the subexpression K*(X-XO), the.~ consider replacing 
this subexpression with a variable named perhaps me. 

b) Similarly, perhaps a combination such as M*C"'2 could be 
replaced with E, or Ri~2/L could be replaced with RE. 

The~e are respectively instances of absorbing an offset 
together with a proportionality coefficient, rer.amir.g a 
physically-meaningful subexpression, and grouping 
quantities into dimensionless quantities. Most engineering 
and science libraries have books describing a more 
systematic technique called DIMENSIONAL ANALYSIS, and an 
article in the Joumal of Com:putational Physics (June 1977) 
explains how computer algebra can automate the process. 

2. Even when a variable cannot be eliminated, the complexity 
of expressions may be reduced if the variable can be made 
to occur only as instances of a subexpression. For 
~le: 

a) If only even powers of a variable X occur, consider 
replacing x--2 with a variable named perhaps xs::2. 

-
b) If X only occu~s as instances of 2--x, 2 .. (2*X), 
2""(3*X) , ••• , consider replacing 2""X with a variable named 
perhaps TWO'l'OX, yielding mere integer powers of that 
variable. 

Some other advice is to avoid fractional powers and denominators as 
much as possible. They don't simplify well, they consume a lot of 
space, and they tend to be hard to decipher when printed one­
dimensionally. Of ten a change in variable can eliminate a fractional 
power or a denominator; 

Sometimes, even when a problem cannot be solved in its full 
generality, solving a few special cases enables one to infer a general 
solution which can perhaps then be verified by substitution or by 
induction. Alternatively, perhaps the original problem can be 
simplified by neglecting some lower-order contributions, in order to get 
an analytic solution which will at least convey some qualitative 
informatia, about the solutiai to t:..~e original problem. 

SOmetimes only part of a problem or perhaps even none can be solved 
symbolically, and the rest must be solved numerically. If so, the 
attempt at an analytic solution at least allows one to proceed with an 
approximate numerical solution having more confidence that a concise 
analytical solution has not been overlooked. , 

EXlIO: iECiO $ BOS () $ 
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IFile: PLESl.'mA (c) ll/Ol/79 The Soft Warehouse% 

L~ (78} $ tECSO: ECHO$ EX:BO: FALSE$ 
iCCH>EN.SE: CCN)ENSE $ COOENSE: FALSE $ RFFIRST: 1 :RFFIPSl' $ 

MOJD (PRINI', tPRIN'l'} $ 
rmaION fRINl' (EXl), 

MHE:N N1tM ( 00) , tPRINl' (00) .EXIT, 
tPlUNl' (I.PAR), PlUNl' (Fl'RST (~"' .. ) , tPlUN'l' (• •. "), 
PRlN1' (RFS.t' (00)) , iPRINI' (F EX.l, 

ElDFUN $ 

ZCIVD (PlUNIUNE, tPRINJ!t.INE) $ 
FON:TION PlUNl'LINE (EXl) , 

PRINr (00) , NaiLINE () , 00, 
ENDFUN$ 

roro: TRDE s 
I This is the first of a sequence of interactive lessens about muSD-1P 
programining. l:t presumes that you have read files REAPlST.TXT and 
T,ESSONS.m, and exea.ited at least one of the cal0.1lator mode lessons. 
It also presumes that you have loaded packages through ~E.MOS. 

mUSIMP supplies a tll.lmber of built•in functions. and operators. The 
calculator-m0de lessons introduced a few of these, such as RDS, RSCLAIM, 
+,*,etc. These progamming-mode lessons introduce more built-in 
functions and operators, cut ~ore imp::>rtant, the lessons reveal bow to 
supplement the built-in functions and operators with definitions of your 
own, thus extending muSIMP itself. 

It is important to realize that, until the last programming-mode 
lessons, we will not deal with muMA!'B. Instead we deal first with 
muSIMP, the language in which muMA'I'B is written. The illustrative 
examples for these first few lessons are utterly different from muMA1'H, 
because we want to suggest a few of the many other applications for 
which muSIMP is especially well suited, and because we want these 
lessons to be comprehensible regardless of math training level. 

Data is what programs operate upon.· The most primitive ~ 
lDUSIMP data are integers and names, collectively called A'.roMS to suggest 
their indivisibility by orditw:y means. Some programs must distinguish 
these two types of atoms, so there are two corresponding RECCGNIZER 
functions:, 

INl'!XiER (X76t) ; 
NM'1E (X76#) ; 
EG: -3271 $ 
INT!GE:R. (fl:;) ; 
NAME (EX;) 1 
\ Do you suppose that •137•, • ", ... ,and "X + 3•, with the quotation 
marks included, are integers, names, or invalid? Find out for yourself% 
ROS: FALSE $ 
% Data can be stored in the compJter•s memory. The location at which 
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a data item is stored is cal.led its AlDRESS. An address is analogous to 
a street address on the outside of a mailbox. The data stored there is Q 
analogous to mail inside the mailbox. AS with a row of JllaiJboxu, the 
contents of comp.:ter memory can c:han;e over time. 

There are useful programs which deal only with unstructured data, 
but the most interesting applications involve aggregates of primitive 
data elements. One way to make an aggregate of 2 data elements is to 
use a structural data element called a NCOE, which stores the addresses 
of the 2 data elements. 'I'hus, a node is •ca.ta" consisting of addresses 
of 2 other data items. 

For example, suppose that we wish to represent the aggregate 
consisting of the name BILBO and his age 31. we could store the name 
BILBO begiMing at location 7, the number 31 begiMing at location 2, 
and the node begiMing at location 4. Then, begining at location 4, 
there would be stored the addresses 7 and 2, as illustrated in the 
following diagram: 

1-..ddress: l 2 3 4 5 6 7 

Contents: 31 7 2 BILBO 

Is that clear? 

The specific placement of data within memory is managed auto- O····. 

matically, so all we are concerned about is the specific name and number 
values and the connectivity o.f the aggregates. Thus, for our p.irposes 
it is best to s~ress the irrelevant distracting detail associated with 
the specific addresses. The following diagram is one helpful way to 
portray only what we are concemed about: 

I /I\ I 
+-/--+-\-+ 
I \ 

BILBO 31 

Thia imagery suggests the word "pointers" for the ldciJ:esses stored 
in nodes. 

If you have seen one bisected box you have seen them all, so to 
reduce the clutter and thus emphasize the essential features, we 
henceforth represent such nodes by a mere vertex in our diagrams, giving 
scbematics such as 

I\ 
I \ 

Bru30 31 

Although most mUS!MP programs use such aggregates internally, many 
muSIMP programs are designed to read and print data in whatever O· 
specialized notation is most suitable for the a~lieation. For example, 
muf.IAXH uses operator and functional notation. suppose how.r,er that we 
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want to specify such aggregates directly in inp.lt and 0Utplt. Bow can 
we do it? If we have a nice graphics terminal, then then we 
conveniently could wse diagrams such as the above. Most of us do not . 
have nice graphics terminals, so we must use another external 
representation. For this purpose muSIMP uses a representation 
consisting of the first data item, followed by the second data item, 
separated by a dot and spaces, all enclosed in a pair of matching 
parentheses. For example: 

(BIL130 • 31) 

We call this representation of a node a 001'1'£!0 PAIR. However, this 
is a difere."lt use of parentheses and periods from bow they are otherwise 
used in mUSD·1P input, so we must preceed the dotted pa.it by the single­
quote prefix operator to indicate to the parser that we are using 
dotted-pair notation rather than the usual operator or functional 
notation: 

I (BitiSC) • 31) 

Moreover, we must use an ampersand rather than a semicolon as the 
expression-terminator in order to inform the driver to print the 
expression as a dotted pair rather than attempt to print it using 
operator and functional notation. we say •attempt" because not all 
dotted pairs are a;propriate for operator or functional printing, as we 
will explain in the last lessons. Bere then is an example of dotted­
pair inplt and printing: I 

I (78 • TlQJBCNES) & •. .-
\ Try a few of your own, aria note what happens when you forget the 
single-quote O!'= use a semicolon· rather than an ampersand: , 
ROS: FALSE $ ' 
I What about when we want to represent an aggregate of more than two 
atomic data elements? For example, what if we want to include BILSO's 
last name, BAGGINS? Well, we can let one of the pointers of a node 
point to another node, whose first pointer points to BILBO and whose 
other pointer points to• SGGINs. For example: 

I\ 
I \ 

/\ 31 
I \, 

BJ:Ia:) a,a:;ms 

we can inplt this as a dotted pair nested within a dotted pair: , 

'((Jan.BO. ~) • 31) & 
I Note that we cnly quote the outemost dotted pair. 

NOW SUJ;P)Se that we want to also include BILBO'S species, structured 
as follows: 
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I\ 
I \ 

/\ BCBBlT 
/ \ 

/\ 31 
I \ 

BILBO IW;GINS 

Bow would you inplt that? 
RemE!lrber, your input IDJSt be terminated by an ampersand. 

I ROS: FALSE$ 
\ We would input it as: I 

EX;: ' ( ( (BIIBO • sta:iINS) • 31) • BCBBlT) & 

I An alternative structure for this information is the one 
corresponding to the inplt 

'((BILBO • BAGG INS) • ( 31 • BOBBIT)). 
0'l a piece of scratch paper, sketch the corresponding diagram, then hold 
it close to my face so I can check it. 

-I o--o \ 
\\-/I 
\-I I HJS: FALSE $ 

I My eyes must be getting bad, I couldn't see it. Ch well ••• 

0 

Since either element of a dot~ pair can be a dotted pair, they can O 
be used to represent arbitraey Rbinary tree structuresn. Moreover, · 
although perhaps unprintable using pure dotted-pair notation, linked 
networks of binary nodes can be used to represent any data-structure 
whatsoever. 

In order to do anything interesting with data aggregates, a program 
must be able to extract their parts. Accordingly, there are a pair of 
SELECTOR functions namd FIRST and REST wbicb respectively return the 
left and right pointers·. in a node. For example: I 

RE:ST (EXi) & 
FUST (EXi) & 
FIPSr (FIP-CT (EXi) ) & 
aFSI' (FIPS'l' (EXi) ) & 
, See if you can extract SILSO and BAGGINS from EG, using nested 
compositions of FIBS'? and/or JEST: I ROS: FALSE $ 
, cur answers are: I 
FIP..Sl' (FIPS'l' (FIPSl' (EXi))) & 
REST (FIPST (FIRST (Er;) ) ) & 
I Deeply nested function invocations become difficult to type and 
read, so let's define our first mUSIMP function named FFFIPSI', so that 
FFFIRST (EG) could be used as shorthand for the first of the above two 
examples and for aey analogous example thereafter: , 

FON:TICN FFFIPSI' (U) , 
FIP..Sl' (FIPSI' {F:ms'I' (U))) 

OO~"N & 
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I If you are not using a hard-copy terminal, jot down this function 
&efinition and all subsequenta,.es for referencelater 1n the lesson. 

Oespi te t:be word EN:)FON, the fun has just begun: Now that ffl'IRST 
is defined, we can apply it at arrJ subsequent time duri.D; the dialog'1e. 
tor example: I 
FFFIPS.r ( EX.i) & 
FFFIPSr (' ( ( (BIG • MC) • CA1'SOP) • (FR!X:5 • FRIES) ) ) & 
I Using the definition of ff'FIBST as a mcdel, defir.e a function named 
Rf'Fms'r which extracts the REST of the PllS'l'. of. tbe FI.RS'l' of its· 
argument, then test RFFIRST. on m: ' RDS: FALSE $ 
I Qlr SOlt.1tion is: • 

FtltCl'I~ mIPSl' (FCO), 
RrSl' (FIRST (FIPSI' (FOO))), 

OOFUN& 
RFF IRST (EX;) & 
I The name FOO in tbe definition is called a PARAMETER, whereas EG 
where the function is applied is an example of an AIGJMENr. We can use 
arrJ name for a parameter - even a name which bas been bound to a value 
or even the same name as an argument. The name is merely used as a 
•dummy variable• to help indicate what to do to an argument when the 
func:tion is subsequently applied. A function definition is like a 
recipe. It is filed away, without actually bein3 .mo:rrE:D until applied 
to actual arguments. 

As another simple example, since an atom is defined as being either 
a name or aft integer, it is convenient to have a recogni%er function for 
atoms, so that we do not bAve to test separately for names and atoms 
when we do not care whieb type of atom is involved. we could define 
this reccgnizer as follows: 

!"ON:'r.IQ; ~ ( tJ) , 
NAME (0) at WMBER (0) 

ENDFON& 

Actually, A1'0M is already built-into muSIMP, but the example 
provides a good q:p:>rtunity to introduce the built-in infiX at operator, 
which returns FALSE if both of its operands are FALSE, returning TRUE 
otherwise. Try out ATOM on the examples -5, X and EX.i \ R)S: PAI.SE S 
, Analogous to OR, there is a built-in infix AND operator which 
returns FALSE if either operand is FALSE, returning TROE otherwise. 
'!'here is also a built-in prefix R:rl' operator which retums 'mJE: if its 
q>erana is FALSE, retu:ning !'AtSE otherwise. lnCWing this, see if you 
can define a recognizer named }Q)E, which retutna TlllE if its argument 
is a node, retw:ning FAI.SE otherwise: , JDS: FALSE $ 
I In programming there is rarely, if ever, one unique solution, but 
ours is: , 

FtN:TICN MDE (U), 
?O!'A1tM (0) 

EmFUN& 
N:DE (EX;) & 
N:DE (S} & 
I So much for trivial exercises. Now let's write a function which 
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counts the number of atoms in its argument. We will count each instance 
of e.ch atom, even if some atoms occur more than CX1ce. 

At fit st this may seem like · a fomi.dable task, because a tree -can be 
ami trarily branched. Bow can we anticipate ahead of time all of these 
possibilities. Well, let's procrastinate by disposing of the most 
trivial cases even though we can't yet see the whole solution: If the 
argument is an atom, theft there is exactly 1 atom in it. 

SO much for trivial cases. We haven't yet solved the whole problem, 
but it builds our self-confidence to make progress, so that is a good 
p:5ychological reason fo: first disi=osing of the easy cases. Also, with 
the e.asy cases cut of the way, we can turn our f\Jll intellecb.lal powers 
on the harder cases, unfettered by a..~y distractions to trivial loose ~. . 

we are left with the c:.a.se where we know we have a node. Perhaps we 
c:oul.d somehow subdivide the prcblell into Slllaller cases? 

Let's see ••• Nodes have a FIRST part and a REST part, so perhaps 
that provides the natural subaiviaion. ammm -

U we knew the number of atoms for the left part acd the number for 
the right part, clearly the number for the whole aggregate is merely 
their sum. But bow can we find out the l'l.mll:>er of atoms in these parts? 
Why not IEOJPSIVELY use the vert function we are defining to detemine 
these two antributions! 

It may .sound like cheating to refer to the function we a.re defining 0 
from with the definition itself, but remembering that the definition is 
not actually APPLttD until sometime after its definition is complete, 
perhaps it will work. We are working in a highly interactive 
environment, so the quickest W"!f to resolve questions about mUSXMl> is to 
try it and see! Here then is a formal mUSIMP function definition 
corre5E=Onding the the above informal English •algorithm•: , 

FCN:TI~ .+MtMS (0), 
WEN A1'0M (0) , l EXIT, 
tA10-1S (FIRSI'(O)) + tA104S (RFSI'(O)) 

ENDFUN & 
I Bert we intrccb:e 2 new ccncepts: The SCDY of a function defW.tion 
ean consist of a sequence of one or more expressions separated by 
commas. A CQDITICNAL-EXI'.r is an expressi<Xl consistiB) of a aequenc:e . of 
one or more expressions nested between tbe matching pair of words. ~l 
and EXl'l'. When a function detinit:ion is APPLIED, the expressiaw in its 
boctJ are evaluated sequentially, until perhaps a conditional exit causes 
an exit from the procedure or until the delimiter named E:NOFUN is 
reached. For a conditional exit, the first expression after the word 
WHEN is evaluated. If the value is FALSE, then evaluation proceeas to 
the point immediately following the matching delimiter named EXIT. 
Otherwise, evaluation proceeds sequentially through the remaining 
expressions in the conditional exit, if any, exactly as if the body of 
the conditional exit replaced that of the function. The value of a. 
conditional exit is that of the last expression evaluated therein, and •<·• 
the value returned by a function is that of the last expression 
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evaluated therein when the function is applied. 

'l'hls, tA1'0MS immediately retums the value l whenever tbe argument 
is an atom, and otherwise the function breaks the problems into two 
parts which are necessarily smaller, hence closer to be.i.n9 atoms. Let's 
test it, star-J.ng with trivial cases first: I 

tMOMS (!'W} & 
tA1tMS (5) & 
m, 
tA1'0MS (EG) & 
, It looks promising, but it is still perhap; mysterious how muSIMP 
and tA'l'OMS keep track of all of these recursive function invocations. 
Since the trace package is supposedly loaded, to ttace the exe<=11tion of 
tA:It>MS, we merely issue .the command: I 

'!Ria (#ATOMS) & 
I Now every time tATOMS is entered, it prints its name and argument 
values, whereas wery time it is exited, it prints its name. followed by 
an equal sign, followed by the returned value. Moreover, the trace is 
indented in a manner which allows corresponding entries and exits to be 
visually associated. Watch: \ 

tA1tMS (FOO) & m, 
tA1'0MS ( EG) & 
\ Try a few examples of your own, until these new ideas begin to gel: 
I RDS: FALSE $ 

tJNTRACE (tA1"0MS) & 
tM'CMS (FCO) & 

• 

I Bere is a function which COl.lnts only the number of integers in its 
argument: , 

FON:TI:CN t~ (0), 
WBEN IN'l'EGER (U) , l EXrr, 
WHEN NN-1E {O), 0 EXIT, 
tINI'EGEFS (FIPSI'(O)) +- t!NI'mERS (RFSl'(U)} 

EN:>FUN $ 
EG & 
tn~ (EG); 
, New, using it u a model, tcy writing a function named #NAMES, which 
returns the number of names in its argument. If your first 
syntactically accepted attempt fails artI test, try using TPACE t:o reveal 
the reason why: I ROS: FALSE $ 
I Olr solution is ••• 

01 second thou9ht, we won't give you our solution. Consequently, if 
you were lazy and didn't try, you bad better try now, because the 
examples will get steadily harder now. I K)S: FALSE $ 
I The B!IGBT of an atom is 1, and the BEIGB'l' of a node is l more than 
the maximum o:c the two heights of its FIRST and REST parts. 
AC:ordingly, let's first write a function named MAX, which returns the 
maximum of its two integer arguments. There is a bUilt-in infix integer 
comparator named ">", so here is a hint: 
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Fml:TICN ~ (INn, INn), 
WBm INrl > INl.'2, ••• EXI'l', 
••• 

OOFtJN $ 

Enter such a defi."lition, with appropriate substitutions for the missing 
portions, then teiat your function to make sure it works correctly: , 
R:IS: FALSE$ · 
, Now, with the help ~four friend ~!AX, see if you can write a 
function named HEIGHT, which returns the height of its argument: , 
R')S: FALSE $ 
, Our solution is:, 

FON:'l'ICN HEIGHT {U) , 
WHEN Am1 (U), l EXI'l', 
l + MAX (BEIGBT(FIRST(U) ) , HEIGB'l'(RFS!'(O)) ) 

m:>FtJN $ 
, This brings us to the end of the first pr03ramming-mode lessons. It 
may be a good idea to review this lesson before proceeding to lesson 
PLES2.TRA. % 

B:BO: tECSO $ 
f,OJD (IPRIN!', PRINl') $ 
MCVD (iPRINTLINE, PRINl'LINE) $ 
OH>.ENSE: tcOOENSE $ 
ROS () $ 
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I File: PLES2.'mA (C) ll/Ol..n9 

LINELENlTB (78) $ tECBO: i.'O!O $ B:SO: FALSE $ 
ICCNDmsE: CCN)!lE $ CQDENSE: FALSE $ 

MOl10 (PRINr, tPRINl') $ 
FON:'l'IQ, PRINl' (00) , 

waIN A10M (EXJ.) , tPRINl' (00) EX!T, 

'!'he SOftWarehouse % 

tPRINl' (UAR}, PRINI' (FIPSI'(OO)), tPRINI' (,. • •.), 
PR.Im (REST(EXJ.)), tPRIN'l' (RPAR), 00, 

OOE'UN $ 

!OJD (PlUNIUNE, tPPJNJUNE) $ 
FtJN:TICN PR.INrLINE (00), 

PRlNl' (00), Na~ (), 00, 
EN:>FUN. $ 

EX:SO: TEJE $ 
, This is the second of a sequence of ltl.lSn1P programing lessons. 

BJ is a primitive mUSIMP COmparator function which returns ·T.RlE if 
its two arguments are the same address or equal integers, returning 
FALSE otherwise: I 

FM: 5 $ E0 CS, FIVE) 1 
I Names are stored uniquely, so two oecurences of a name must invclve 
the same address: , 

ACroR: •~ ; E0 (ACIOR, 'sc:Gt\Rr) ; 
I Here is an example of two different references to the same pt~sical 
node: , 

DATE: '(JULY • 4) & FCC: OATE $ E0 (FCC, DATE) ; 
, !cwever, watch this: , 

E0 (DM'E, ' (JOU • 4) ) 1: , 
\ What happened? The two aggregates are OOPLICAT!S, but sinc:e they 
were independently formed they do not start with the same node. In 
fact, only the name JOI:l is shared among them, as shown below: 

second 
~ argument 

I\ I\ 
/ \/ \ 
I \ \ 
I / \ \ 

JOLY 4 4 

Clearly it is desirable to have a more c;omprehensiv~ equality 
c::omparator which also returns TP11E for aggregates whic.."l are duplicates 
in the sense of printing similarly. Let's write such a function, called 
OOP. Following t:be general advice given in PLF.Sl, let's first dispose 
of the ttivia.l cases: 
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If either argument is an atom, then they are duplicates if and only 
if they are EQ. 

Otherwise, they a.re both nodes, which is the m1trivial case. NOw, 
let's emplO'f our •divide-and-conquer' strategem, using FIPSr and RFsr as 
tbe partitioning. TWo nodes refer to duplicate aggregates if am only 
if the FIRST parts are duplicates and the REST parts are duplicates. 
Moreover, that can be tested with our beloved recursion, using OOP 
itself! 

see if }'0U can write a correspondi.n(J fun~...ion named otJP: I 
RDS: FALSE $ . 
\ There are many possible variants, but here is one of the most 
compact: ' 

FUOCTICN · IXJP ( 0, V) , 
wHEN A1tJ'1 (U), iX2 (U, V) EXIT, 
wam A'JX)M (V) ' FALSE EXIT, 
WHEN 00P (FIRST(U), FIPST(V)), 00P (REST(O), REST(V)) EKIT, 

E:a'ON $ 
I An interesting challenge for your spare time is to see how many 
different but reasonable ways this function can be written. 

Actually, there already is a built-in infix operator named•••, 
which is equivalent to IXJP: I 

DATE: '(JULY • 4) $ 

0 

DATE • t (JOLY • 4) ; O· ·, 
I oo you feel IXJPed to learn that an exercise duplicated an existing 
facili'cj? 

It is crucial to understand exactly what the existing facilities do, 
and the best way to learn that is to understand how they work by 
creating them independently. 

Bere is a good exercise: See if you can write a comparator function 
named SAMF.SBAPE, which returns 'IHJ'E if its two arguments are similar in 
the sense of having nodes and atoms at similar places. For example, 

SAMESHAPE ( ' ( (KINGS • ROOK) • S) , '((QUEENS • 3) • PAWN) ) 
is TRIJE: \ il0S: FALSE $ 
I This is one of those instances where we will not give the answer. 

Now, using the inf ix operator named •••, see if you can write a 
ftmction named CONTAINS which returns TROE if its first argument is a 
duplicate of its second argument or contains a duplicate of its second 
argument. For example, 

((JULY • 4) • (1931 • FRIDAY)) 
contains {1931 • FRIDAY). It is at least as hard as DUP, so take your 
time and don't give up easily. I R:>S: FALSE $ 
I Here is a harder exercise: The two agc;regates 

I\ I\ 
I \ I \ 
~ I\ OJB:N /\ 

~ ~ ~ \&JI.FOR 0 
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are ISOMERS because they are either the same atom or at every level 
either the left branches are isomers and the right branches are isomers, 
or the left branch of one is an isomer of the right branch of the ot.~er 
and vice-versa. Write a corresponding comparator function named 
ISOMERS. (It's similar to OUP, with a twist.) I IDS: FALSE $ 
, eur answer is: , 

FCJN:TICN ts:MEPS (0, V) , 
WHEN AmM ( U) , BJ ( 0, V) !Xl'T, 
~ M.04 (V) , FALSE EXIT, 
~ (!'IPSr(O), FIPST(V)) AN:> Is:t'.ERS (PESI'{O), R!'Sr(V)} 
~ ISl-tE:PS {FIPST(U), IF.S'r(V)) AN:> Isa1DtS (RFSl'(O) , FDS'r(V)) 

ENOFtiN $ 

\ Because of all the combinations which might have to be checked, the 
execution time for this functia'l can grow quite quickly with depth. Tey 
tracing a few examples of moderate depth: I H)S: ·rALSE $ 
, So far our functions have merely dismantled or analyzed aggregates 
given to them as arguments. None of our examples have constructed new 
aggregates. '1'he dot of course results in aggregates, bl.lt this occurs as 
the dot is read. Moreover, since the single quote necessarily 
preceeding an outecnost dotted pair prevents evaluation, bound·variables 
in a dotted pair contribute merely their names rather than their values. 
For example: , 

!Xi: 1 $ '(!Xi • 3) & 
, What we want is a function which evaluates its two arguments in tile 
usual way, then returns a nod~. wli:>se two ?=)inters ?=)int to those values. 
There is such a function, named. AOJ'OIN: I 

AOJ'OIN (m, 3) & 
I A dotted pair within a function definition is a static entity, 
frozen at the time the function is defined. In contrast, a reference to 
ADJOIN within a function definition is dynamic. The node creation i.s 
done afresh, with the current values of its arguments every time that 
part of the function is applied. As an example of the use of ADJOIN, 
let's write a function named SKELE'ItlN, which ecnstruc:ts a new tree which 
is structurally similar to its argument but bas the name of length zero, 
... , wherever its argument bas an atom. Thus, when printed, the new 
aggregate will display the skeletal structure of the aggregate without 

visually-discerna.ble atoms. For example, 
SlCELETON (' ( ( HALLOWEEN • GHOSTS) • WITCHES)) & will yield ({ ·• ) . ) 

CE, let's recite the litany: What canes first? 

'?lU\1!AL CASE'S. 

So, if the argunent is an atan -we retw:n what? 

•• • 
Otherwise we have a node, which is the most general case. However, 

nodes have a Fnsl' and a R!ST, so can we somehow recurse, using ~,tJN 
on these parts, then combine them? 
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Yes, as follows~ , 

FUN:'l'IQl SCEIZ.tCN ( 0) , 
WHEN ,aa,i (0), ... EXI'l', 
AnJOIN {SKEL.E:lt:N (FIRST(O)) , ~ (REST(U))) 

ENDrtJNS 
~ ( I ( (?>C) • GCO) • (GO! • PAN) ) ) & 
I .Easy. Yes? 

Now it is your tw:n. Write a function named TREEREV, which produces 
a copy of its argument in which every left and right branch are 
interc:.banged at every level. For example, 

TREEREV ('((MOO. GOO) • (GUY • (PAN. CAKE)))) & 
should yield 

( ( (CAKE • PAN) • GOY) • ( GOO • MOO)) 
I RDS: FALSE $ 
, U you didn't get the following solution, you may groan when you see 
how US'f it is: I 

FUN:TICN "mEEREV (U) , 
WHEN A1tM (U), 0 EXIT, 
AnJOIN (~ (R!Sl'(O)}, TREEREV (FmsT(O))) 

ENDFON& 
'l'REERtV ('«•Isn't" • that} • easy}) & 
I Bere is a somewhat harder exercise: Write a function named !OBST, 
which returns a copy of its first argument wherein every instance of its 
second argument is replaced by its third argument. For example, if 

• 
PHRASE: 

' (( (THIS • (G:SH • DARN)) • CAR) • (IS • ((OOSB • DARN) • BAD))) $ 

then SJBSl' (PSP.ASE, '(GOSB • DUN), '(expletive • deleted)) yields 

( (('l'BIS • (expletive • deleted)) • CAR) 
• (IS • ((expletive • deleted) • BAD))) I 

, That's all folks. 
ROS: FALSE $ 

The next lesson deals with a special form of tree called a list. 
Many people find lists more to their liking, and perhaps you will too.% 
S::SO: FAI.SE:$ 

?CW ( t PRINl', PRINr) $ MCVD ( tPRINl'LINE, PRINn.INE) $ 
CCN:lENSE: iCOOENSE $ EO!Oi tECJ!O $ ROS O $ 
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\File: PLESJ.~ (C) ll/01/79 The soft warehouse, 

LINE:tElCl'B (78) $ 
tECBO: ECaO $ t<;XH)ENSE: CCH>ENSE $ CCNJiliSE: FALSE $ EQ!O: 'ffllE $ 

% This is the third of a sequence of interactive lessons about mUSlMP 
programning. 

Often, it is most natural to represent a data aggregate as a 
sequence or LIST of items rather than as a general bi."lary tree. Fer 
example, such a sequence is qw.ttt natural for the elements of a vector 
or of a set. We can represent such a sequence in terms of nodes by 
having all of the FIP.S'l' cells point to the data elements, usir.g tbe RFS'l' 
cells to link the sequence together. The last linkage node can have a 
RFST which is FALSE to indicate that there are no further linkage nodes: 

/\ 
I \ 

iteml /\ 
I \ 

itesn2 • 
• 

Viewed at a 45 degree rotation, this diagram is analogous to a 
Clothes line with the successi~e data elements suspended from it, thus 
more clearly suggesting a sequence. The simple regularity of the 
structure permits correspondingly simple function definitions for 
procesaing such structures. Moreover, the linear structure suggests an 
utemal. printed representation which is far more readable than dotted 
pairs. In response to an ampersand termi.natot, mUSIMP printS tbe above 
aggregate in the more natural LISI' notation: 

(it:eml, item2, •• :., itemN} 

rather than the equivalent dot notation 

(it:eml • (itan2 • • •• (itenN • FALSE) ••• ) ) 

Convei:sely, the reader •ccepts list notation as an alternative 
inpat totm to dot notation. Naturally, any of ·the itellls in a list can 
themselves be either lists or more general dotted pairs. The printer 
uses list l'l)tatia1 u much as poasible. Tbws, a structure of the form 
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I \ 

iteml /\ 
I \ 

item2 • 
• 
• 
I\. 

I \ 
itlillfi atan 

where "atcm• is rx>t. the atom FALSE, is printed in a l'ilixed notation as 

(iteml, item.2, ••• (itemN. at.an)) 

Similarly, the reader can appropriately read such mixed notation. 

'ttlus the last item in a list is implicitly dotted with FALSE, and a 
blank between two items is equivalent to•. c•, together with a 
matching ")" adjacent to the next right parenthesis. You may wonder · why 
you never noticed such printing conventions during lessons PU:Sl and 
PU:S2. The reason is that we puq:osely redefined the printer for those 
lessons so that it did not use the list-abbreviation convention. 

It is important to fully understand the connection between dotted 
pairs and lists, so take 5 minutes or so to type in some lists, nested 
lists, nested dotted pairs, and mixtures, noting carefully how they 

0 

print. I ROS: FALSE $ . ~ 
I Did your examples include: I \ti 

'()' 
I Is that.surprising? 

Since FALSE is used to signal the end of the list, FALSE and the 
empty list must be equivalent. 

Clearly the trivial terminal case in processing lists will involve 
an equality test against FALSE. Since this test is so common, there is 
a corresponding bw.lt-in recognizer defined as follows: 

FUN:TICN Et1I:Tl (LIS), 
!0 (LIS, ' 0) 

OOFON; 

Osing EMPTY, see if you can define a function named tITE:MS, which 
returns the numl:>er of (top-level) items in its list argument. For 
exaiiiple, tlTEMS ('{Fto:;, (FllJl'l' •. M1'), NEWT)} should yield 3. Sere is 
an incomplete solution. All you have to do is enter it with the 
portions marked • ••• • ai;:propriately fW.ed. 

FON:TICN tITEMS (LIS), 
WHEN Et1t'T.! ( LIS) , • • • EXIT, 
l + tITEMS ( • • • ) 

OOFUN S I R)S: FALSE $ 
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, Actually, there is already a built-in function called~, which 
returns the length cf a list. It is somewhat more general in that it 
retums tbe number of characters necessary for printing when given an 
atcm. 

Note wt with lists it is qpical to re02r ally en the REST· of the 
list, whereas with general bina.."Y trees it is typical to recur en both 
tbe FIJST and the REST. 

So far, the examples and exercises have been relatively isolated 
ones. Now we will focus on writing a coll~ction of functions wbl.ch 
together provide a significant a;plicaticns package: 

A list provides a natural representation for a set. For example, 
(MANGO, (CHOCOLATE. FUDGE), (ALFALFA, SPROUTS)) can represent a set of 
three foods. Using this representation, let's write functions which 
test set membership and form unions, intersections, etc. 

First, write a function named ISIN, which returns 'l'RJ! if its first 
argument is in the list which is its second argument, returning FALSE 
ot.huwise: , ROS: FALSE $ 
I Olr sclutiai is: I 

FON:TICN ISIN ( 0, LIS} , 
WHEN D1Pn' (LIS) , FALSE EXIT, 
wmli O • FIBST (LIS) , EXIT, 
ISIN (O, REST(LIS)) 

ENDFt1N $ • 
ISIN ( 'FiCG, ' ( SAI»Wt>ER N!W! · · TOAD)} 1 
\ Actually, there is already a built-in version of ISIN called MEMBER. 

A set contains no duplicates, so we really should have a reeo;nizer 
function named ISSE'l', which returns 'lKJE if its list arg\lment contains 
no duplicates, retu.ming FALSE otherwise. 'l'cy to write such a function: 
I ROS: FALSE $ 
I Sere is a hint, in case you gave up: 

FON:'l'ICN SEr (LIS), 
WHEN ••• EXI.T, 
wmli MEMBER (FIPSl'(LIS), ••• } , FALSE arr, 
m c ... > 

m:>FtJN1 I K>S: FALSE $ 
I In ease it isn't clear by now, a rule of this game is that you are 
free (and encouraged) to U$e any f1.1nctions we have already discussed, 
whether they are built-in, previous examples, or previous exercises. 
'l'hat is one reason it is adviseable for you to actually do the 
exercises. 

Now write a function named SUBSET, which returns TR.OE if t.he set 
which is its first argument is a sut>set of that which is its second 
argument. (P.amember that every set iS a su.bset of itself and tbe empty 
set is a aut,aet of every set.) I RCS: FALSE $ 
I Here is a hint, in case you gave up or bad a less ~ct soluticn: 
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rot-CTICN StlBSEl' (SE:rl, SEl'2), 
WHEN••• EKIT, 
N:lEN KDE.ER (FIPSr(sm'l), •• .) , SOBSE!r( ••• ) EXIT A 

EmFON1 I RDS: FALSE $ , \,I 
I TWo sets are equal if and only if they contain the same elements. 
However, the elements need not occur in the same order. Write a 
corresponding comparator function named EQSET: , RDS: FALSE $ 
, Ab yes, a hir,t perhaps?: 

roN:'I'I~ EQSE!r (ml, SE1'2), 
••• 

EN)FW; \ R>S: FALSE $ 
\ t)O yoll think that IS not mcb of & hint? 

Well, the body of the functic:11 really can be written with ale modest 
line, so tty harder: I IDS: FALSE $ 
I Remember the rules of the game: You are encouraged to use eny 
function discussed previously: I 

f'ON:'l'ICN B'JSEr (Sffl, 5m), 
SJBSEr (SE'!l, SE1'2) AND &JBSEl' ( SE1'2, SE'!l) 

ENDFtlN; , 
I Olr examples so far have merely analyzed sets. we can use AJlJOIN to 
construct lists, just as we used ADJOIN to construct binai:y trees. As 
an example of this, write a function named MAKFSEr, which retums a copy 
of its list argument, except without duplicates if there are any: 
I R>S; FAX.SE $ 
\ If you need a hint, here is one, but it is all you will get: 

FON:TICN MNCF.SEr (LIS) 
WHEN ••• , I(} !XI'?, 
WHEN Mn'1BER ( • • • ) , • • • EXIT, 
AmOIN. ( ••• ) 

m::>FUN; \ RDS: FAX.SE $ 
I Let's see if your solution works correctly: I 

MAKESEr (' (ra:::G, FBCG, FRCX;)) & 
, If there is a dupl•icate in the answer, then back to the computer 
tetminal: I RDS: FALSE $ 
I (It helps to think of nasty test cases BEFORE you start 
programning}. 

Now for the crowning glory of our set package: The UNION of two 
sets is defined as the set of all elements which are in either (perhaps 
both) sets. Give it a try: , BDS: FALSE$ 
I A b.1nt. perhaps? Well, the func:ticn body can be written in 3 lines, 
each of wbic:h begins just like the corresponding line in our hint for 
MAKFSa'. I RDS: FALSE $ 
I Here is our solution: I 

FON:TICN ONICN ( SE.Tl, SE1'2) , 
WHm EMPrY (Si'l'l), S!!I'2 EXIT, 
WEN MEM3ER (FmsT(S!Tl), Sffl), ONICN (iFS'!'(ml), SE.'!'2) EXIT, 
A0.10IN (FIBSI'(EI'l), UNIQ1 (Rf.ST{SE'l'l), ffl2)) 

OOE'ON $ 
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, '!'he intersection of two sets is the set of all elements which are in 
both sets. Using our definition of UNION as inspi~ation, write a 
corresponding function for the intersection: I RDS: FALSE $ 
, so far, our set alge.bra package bas been developed in a so-called 
!OI'!OM-OP maner, with the most primitive functions defir.ad first, and 
with the more sophizticated functions defined in terms of them. The 
opposite approach is 'roP-OOWN, where we define the most comprehensive 
functions in terms of more primitive ones, then we define those more 
primitive ones in terms of still more primit1ve ones, until no undefined 
functions remain. 

As an example of the top-down attitude, let1s write a SYMMETRIC 
OIFF~E function for our set-algebra package. The symmetric 
difference of two sets is the set of all elements which are in exactly 
one of the two sets. 'l'his is in contrast to the ordinary dif erence of 
two sets, which is all of the elements that a.re in the first set but not 
the second. However, if an ordinary difference function was available, 
we could write the symmetric difference as the union of the ordinary 
difference between setl and set2, with the ordinary difference between 
set2 and setl. We have already written UNION, but an ordinary set 
difference is not yet available. Nevertheless, let's bravely proceec1 to 
write the symmetric difference in term$ of the ordina:y difference, then 
we will worry about 1x>w to write the latter: 

' 
FUN:TICN sn-10IF {SrJ.'l, Sffi), 

tJNICN ( ORtt>IF ( sm, SE'l'2) , ORODIF {sm, SE'I'l) ) 
ENDFON$ 
, Now you try to write OR)OIF. It may help you to know that it can be 
written very similarly to tJNICN: , :ROS: FALSE S 
, Some programmers are initially uncomfortable with the top-down 
approach because it makes them netVOus to refer to undefined functior.s: 
there are obvious loose ends during the writing process. However, it is 
not necessary to understand how an auxiliary function can be written 
before daring to refer to it. All that is necessary is that the duty 
relegated to the awciliart function be somehow more elementa.ty than the 
overall duty performed by the function which refers to it. 

'!'here are necessarily loose ends during the writing of a program in 
arrt sequential order. Wit.'1 the bottom-up approach, the loose ends are 
nei tiler written nor ref erred to until lower-level functions have been 
written. Unfortunately, as such hidden loose ends a.re revealed they 
often make apparent the need to completely reorganize and rewrite all 
subordinate functions into a more SUitable organization. In contra.st, 
the obvious loose ends during a top-down development provide invaluable 
clues about how to organize the remaining functions. Moreover, any 
subsec;!'Uent changes tend to be easier, because communication betwettn the 
functions is more localized, more independent, and more hierarchial. 
For example, we know that in the definition of S'lMDIF we are taking the 
union of two DISJOIN!' sets, becau$e from the definition of Oi<'ODIF it is 
clear that OP.DOIF (SETl, SET2) and OP.DOU' (SET2, SZTl) cannot have 
element;:.s in common. Bence it would be more efficient merely to append 
the second ordinary set difference to the first ordinary set difference, 
or vice-versa. Unfortunately, ADJOIN does not accomplish the desired 
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effect. 

For example, ADJOIN ('(S, 9), '(3, 7)) yields ((5, 9), 3, 7) 
rather than the desired (5, 9, 3, 7). What we must do is ADJOIN 9 to 
(3, 7), then adjoin 5 to that result. See if you can generalize this 
process into a function named APPOO, which returns a list consisting of 
the list which is its first argument a;pended onto the begiming of t.be 
list which is its second argument:\ RDS: FALSE $ 
' Bow about:' 

FtN:TICN JU>PEND (LISl, LIS2), 
~ El-1Pn (LISl), LIS2 ~.IT, 
ADJOIN (FUST(LISl), APPOO (RFSl'(LISl), LIS2)) 

EIU'UN$ 
I You may not be getting tired, but my circuits are weary, so let's 
bring this lesson to a close. I 

EQiO: IE:CBO $ 

PDS () $ 

CCR)ENSE: IQN)~ $ 
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IFile: PLES4.TRA (c) ll/Ol/79 'rbe Soft Wareheu5e I 

UNELEN3TH (78) $. 
to:NDENSE: CCN)ENSE $ CCtDENSE: FALSE $ t~O: EOiO $ DO: fflJE $ 

\ This is the fourth is a series of DJSIMP programni.ng lessons. 

Often within a function definitiai it is desired to form a list of 
values DYNAMICALLY. For example, · Su;,:p:)Se that we wish to focn a list of 
the VALUES of thE' variables FIRS'I'NAME, LASTNAME, and MAILADDR.ESS. It 
will not do to use 1 (FIRSTNAME, t.ASTNAME, MAit.Al)ORESS) , because the 
quote prevents evaluation of the variables. 

We can accomplish the desired effect by writing 

ADJOIN (FIRSTNAME, ADJOIN (LASTNAME; ADJOIN (MAILADDRESS, 1 ()))). 

However, this rather unreadable construct is tedious to write. 
Fortunately, mus IMP provides a convenient function named I.ISI.' for this 

p.u:pose: we can accomplish the desired effect by merely writing 

LIST (FIRSTNAME, LASTNAME, MAILADDRESS). 

Unlike most functions, LIST uses aey number of arguments. As specific 
examples: I 

FIJS'mAME: 'JCEN & 
~: 'DOE & 
MAIIAOORESS.: 'TIMBUKTU & 
I Now, carpire using a quote with using LIST: I R).S: FALSE$ 
I Reversing a list is an occasional need, and it is somewhat tricky to 
wtite a function for this. The following partial definition reveals 
that our friends APPEN:> and LIST can belp: 

FON:TICN REVLIST (LIS}, 
wHEN • • • EXIT, 
APPEND ( • • • , LIS1' (FIRST (LIS) ) ) 

OOFUN $ 

See if you can successfully complete this definition. Haturally, you 
also have to reenter APPEN:> if a correct version is net around from the 
previous lesson. (Remember also t:o jot down all fs.lnction definitions if 
you are not using a hard-copy tetminal.) , RDS:FALSE $ 
, A well-written APPEND necessarily requires exeeution time which is 
approximately proportional to. the length of its first argument. The 
l£VtIS function outlined above invokes APPEm n times if n is the length 
of its original argument, and the average length of the argument to 
APPElD is n/2. 'l'hus, the time is approximately proportional to n* (n/2) , 
which is proportional to n .. 2. 

Fortunately, an important technique called a COLLECTION VARIABLE 
permits list reversal in time proportional to n, yielding tremendous 
time savings for long lists: % 
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FtN:TICN RM.IS (LIS, ANS), 
WHEN &1PI'Y (LIS), ANS iXIT, 
RE'vLIS (.RFSr(LIS) , AD.lOIN (FIFST(LIS) , ANS)) 

EN:)E'UN$ 
~ (REVLIS) ; 
RE.VLIS ('Cl, 2, 3)) & 
I A collection variable accumulates t.l'le answer during successive 
rec:ur::aive invocations. Then, the resulting value is passed back through 
successive levels as the retumed answer. 

As i$ illustrated here, we can invoke a function with fewer 
arguments than there are parameters. When this is done, the extra 
parameters are i.."l.itialized to FALSE, and thE!'f are available for use as 
LOCAL VARIABLES within the function body. Quite often, as in this 
example, the initial value of FALSE is exactly what we want, because it 
also represents the empty list. (When we want some other initial value, 
either the user can supply it, or the function can supply it to an 
auxiliary function which does the recursioo.) 

Of course, if a user of REV'LIS supplies a second argument, then the 
function returns the reversed first argument appended onto the second 
argument, which is also occasionally useful. 

What if the user supplies more arguments than t."lere are parameters? 
The extra arguments are evaluated, but ignored. This is also 
occasionally convenient. 

The style of programming exemplified so far is the so-called O·. , 
•awlicative" style popularized by the influential Turing lecture of J 
Backus, published in the August 1978 issue of the Communications of the 
ACM: The emphasis is on expressions, functional composition, and 
recursion. 

mUSIMP also ~rts the alternative "Von Neumann• style emphasizing 
loops, assignments, and other side-effects. To illustrate W.S style, 
here is an alternative definition of REVLIS which introduces the LOOP 
construct: I 

FUN:TICN REVLIS (LIS, ANS) , 
LOOP 

WHEN fM?TY (LIS) , ANS EXIT, 
ANS: AD.JOIN (FIRS'r(LIS), ANS), 
LIS: R!S'r (LIS) 

m:>LCOP 
EN:>roN $ 
I mU.SIMP has a primitively defined function named RE.VERSE, which has 
an equivalent machine lan9l,1&<,;e definition. 

An iterative loop is an expression consisting of the keyword LCOP, 
followed by a sequence of one or more expressions separated by commas, 
followed 'aj the matching delimiter named ENDLOJP. 'l'he bod'J of a loop is 
evaluated similarly to a function body, except: 

1. When evaluation reaches the delimiter named ENCLOOP, 
evaluation proceeds back to the first expression in the loop. 
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2. When evaluation reaches an EXIT within the loop, evaluation 
proceeds to the .=oint immediately following ENX.COJ?, and tbe 
value of the loop is that of the last expression evaluated 
therein. 

There can be any number of conditional exits anywhere in a loop. 
Ordinarily there is at least one exit unless the mer ·pans to have the 
loop repeat indefinitely until perhaps interrupted by typing ESCape, 
AL'nncde or C'l'M,-Z. (1:his·interrupt can succeed only if the loop invokes 
at least me functiai which is not built-into muSIMP.) 

NOw consider the follcwing sequence: , 

Ll: '('IBE ORIGINAL ) $ 
I.2: I (TAIL) $ 
BE.VI.IS {U, L2) & 
% The above definition of m.vus makes assignments to its parameters 
LIS and ANS. For this example, the final assignments are LIS: 'O anci 
ANS: '(ORIGINAL, 'l'HE, 'l'AIL). So, what do you guess are the 
corresponding current values for IJ. and L2? See for yourself: t 
ROS: FALSE$ 
I The assignments to parameters LIS and ANS have ftO effect on 
arguments IJ. and L2! This "call-by-value" mechanism permits function 
definitions to freely utilize their parameters without fear of damaging 
the values of user's argument variables outside. Thus, ordinai:y 
function parameters are never employed for passing information back to 
the user. If we wish to return m9.re than one piece of information, the 
most well-disciplined way to. do so is to return an aggregate of the 
pieces as the returned value. However, another way is to make 
assignments within the functicn body to variables which are not amcng 
its parameters - so-ailed "fluid" or •global" variables. 

As is often the case for iteration. versus recursi0n in muSIMP, the 
iterative LOOP version of ··RE.VI.IS is slightly faste; than the recursive 
collection-variable version, but the latter is more compact. When there 
is such a trade-off between speed and compactness, a good strategy.is to 
progra111 for speed in the crucial few 110st-frequently invoked functions, 
and program for compactness elsewhere. 

Boweve.r, looping does have another adva.ntac,;e when it is applicable: 
Recursion entails a "stack" of information which grows with the depth of 
recursiai. Consequently, even though the space allocated to the stack 
is quite generous, excessively deep recursion can abort a computation by 
exhausting t.b.i.s space. 

For practice with loops, use cne to write a rairecursive recognizer 
named ISSE'l', which returns TROE if its list argument contains no 
diplicate elements, retuming FALSE otherwise. (<:oinpare your definition 
with t.be recursive version· in lesson PLES:3.) I ROS: FALSE $ 
\ Sere is our solution: % 
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m.....1""'l.'I~ ISSE'l' (LIS), 
LOOP 

WHEN EMPl'Y (LIS), EXIT, 
Wfll'N MEMBER (FIPST(LIS), P.EST(LIS)), FALSE EXIT, 
LIS: REST (LIS) . 

ENDLCOP 
OOFUN $ 
I Another good exercise adapted from PLES3 is to use a loop to write a 
nonrecursive function named SUBSET, which returns TlUJE if its first 
argument is a subset of its second argument, retu:ning FALSE otherwise: 
I RDS: FALSE$ 
I A BtO:K is another control construct which is sometimes convenient, 
particularly in conjuction with the Von Neumann style. As an 
illustration of its use, the following iterative ve:sion of the MAKESE'r 
function from PLE.S3 returns a set composed of the unique elements in the 
list which is its fust ai:gument: I 

FUN:'I'ICN MAK.F.SEI' (LIS,~), 
LOOP 

WHEN DlPl"I (LIS), ANS EXIT, 
Bt.O:K 

WHEN MDSER (FIRSI'(LIS), ANS), EXIT, 
ANS: AOJOIN (F~(LIS) , ANS) 

ENOBLCCK, 
LIS: REST (LIS) 

OOLOOP 
EN:)FtJN $ 
MAKESET ('(FOCG, FRCG, FRCG, ~)) & 
I When evaluation reaches an EXIT, it proceeds to the point following 0 
the next ooau:x:x, OOLCOP, or OOFUN delimiter - whichever is nearest. 
Thus, BLOCK provides a means for alternative evaluation paths which 
rejoin within the same function body or loop body, without causing an 
exit from that body. The first expression in a block must be a 
conditional-exit (anything else c:an be moved outside anyway), but since 
there can be aey number of other conditional exits or other expressions 
within the block, the block provides a very general structured control 
mechanism. For example, the CASE-statement and IF-THEN-ELSE C01'1Struct 
of some other languages are essentially special cases of a block.. 

You may not have noticed, but the loop version of MAKESET has the 
effect of reversing the order of the set elements.. Using ADJOIN in a 
loop generally has this effect, which is why it is so suitable for 
REVERSE. With sets, inc:idental list. reversal is perhaps acceptable, but 
for most applications of lists it ia not. We could of course use a 
preliminary or final invocation of R!.V!:RSE so that the final list would 
emerge in the original order, but that would relinquish the speed 
advantage of the loop approach, while further increasing its greater 
bulk. Thus, recursion is usually preferable to loops when ADJOIN is 
involved. For example, recursion is used almost exclusively to 
implement mut-lATH, because its symbolic expressions are represented as 
ordered lists. 

Loops are also less applicable to general tree structures than to 
lists, but it is often possible to loop on the REST pointer while 
recursing en the first p::>inter, or vice---versa, particularly if AnJOIN is 
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not involved. For example, compare the following semi-recursive 
definition of tATOMS with the fully-recursive one in ELESl: , 

FON:TICN tA!ItMS (U, N), 
N: 1, 
Il:t:)p 

WBm ·Mt)M (U), N EXIT, 
N: N + tMtMS (FIRST(U)) , 
0: REST (O)· 

ENCLOOr 
OOFtJN $ 
tMOMS (' ( (3 • FOO) , W)) 7 
, If tbe answer surprises you, don't forget the FALSE which BAZ is 
implicitly dotted witb. · 

See if ycu can similarly write a semi-recursive function named OtJP 
which does what the infix operator named ._.. does: \ RDS: FALSE $ 
I Those of you with previous expoaure to only Von Neumann style 
programming undoubtedly feel more at home now. The reason we postponed 
revealing these features until now is that we wanted to force the use of 
applicative programming long enough for you to appreciate it too. 
Naturally, one should employ whichever style is .best suited for each 
aa,lic:ation, so it is worthwhile to become EQUally conversant with .both 
styles. 

~ endeth the setma1., 

!X:BO: tEC'.HO $ 
R,S O $ 

CCNDENSE: tcOOENSE $ 
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IFile: l'LISS.'?RA (c) ll/Ol/79 '1'he SOft ware.~ , 

~ (78) $ 
t<:CWENS!: COO.ENS!$ CCH)ENSE: FALSE$ tECBO: EQIO $ iX:80: TPJJE $ 

, This is the fifth 1n a sequence cf DILlSIMP progrmrming lessons. 

In the previous lesson our original version of REVDSE, called 
REVLIS, required time proportional to n"'2, where n is the lengt., of the 
first argument. We then showed how a collection variable or a loop 
could yield a much faster technique using time prop:>r+"..ional only to n. 
Now, let•s ccnsider the speed of some of the other set func:ticrLS that we 
defined: 

Whether iterative or recursive, MEMBER can require a number of 
equality comparisons equal to the length of its second argument. 
Whether defined iteratively or recursively, SUBSET, a:2S!'1', UNION, and 
INTERSECTION all require a membership test for each element of one 
argument in the list which is the other argument. Thus, these 
definitions can all cons)Jme comp.itation time which grows as the proQ.lct 
of the lengths of the two arguments. By similar reasoning, the one­
argument functions ISSET and MAKESET are seen to require time 
prop:>rtional to the square of the length of their argument. Data-base 
a;plications and others can involve thousands of set operations on sets 
having thousands of elements, so it is worthwhile to seek methods for 
which the computation time grows more slowly with set size. 

In mUSIMP, every name has. an·-~ssociated PROPERTY LIST which is 
immediately accessi:cle in an amount of time that is independent of the 
total number of names in use. Provided the elements of the sets are all 
names, this per.mits techniques for the above set operatioas requiring 
time proPQrtional merely to the length of the one set or to the sum of 
the lengths of the two sets. 

A property list is a list of dotted pairs. '!'he first of_ each dotted 
pair is a atom called ~ ·ICEY or OOICATOR, and the rest of each dotted 
pair is an expressi0n called the associated INFORMATION. For example, 
in a meteorological data-base application, the name RCN)LtltO might have 
the property list 

((RAIN • 2), (BOMIDITY. 40), ('l'EMPEAA'l"Om:, 58, 96)) 

'l'be function used in the form GE'l' (name, key) returns the 
information which is dotted with the value of "key" on the property list 
of the value of •name", returning FALSE if no such key occurred on the 
property list. 

A command of the form REMP:iOP (name, key) has the side effect of 
deleting from the property list of "name" the first dotted pair 
beginning with the value· of "key', if mt• REMPICP retl.:r:ns FALSE if no 
such indicator occurs on that property list, retu.rning 'm!E otherwise. 

A command of the form POT (name, key, information) causes a 
command of the fo.an REMP!CP (neme, key) to be executed, after which the 
value of "key" dotted with the value of •information" is put on t...-ie 
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property list of the value of •name•. PUT returns the value of 
•womatia'18 • 

Using prope.rty lists, the basic technique for accomplishing our 
various operatic:lS a1 two sets of names is: 

l. For each name J.n one of the two sets of names, store 
T.ROE under the key SEEN. 

2. For each name in the other set, check to determine 
whether or not the name has already been seen, and act 
accordingly. 

3. For each name in the first set, remove the property 
SEEN so that we won't invalidate subsequent set operations 
which utilize arrt of the same elements .. 

A simpler variant of this idea is applicable to the one-argument 
funeticns named ISSEl' m:1 MAnSE'l'. 

AS an example, here is ONION defined using this technique together 
with the applicative style: I 

FON:TICN ONICN (SE?n, SE'l'l), 
~JNU( ( SEI'l) , 
ONMABK (SEl'l, ONictWJX (S!'l'2) ) Dl)FUN $ 

QJ 

FON:'l'ICN MARK (SE'l'l) , 0 , 
WREN ll-lPT.i (SE.'l'l) , EXIT, 
POT (FIRST{Bm) , I SEEN, ~) , 
MAlUC (RF.ST (SErl) ) EmFtlN $ 

FON:TIQi UNIQWJX ( SEI'2) , 
WHEN E:'1Pl'Y (SET2), sm EXIT, 
WHEN G::I' (FIRST(Sffi), tsa:N), UNIQWJX (RE'SI'(SE!2)) EXIT, 
AnJOlN (FIRST(SET2), ONiaWlX(RE.ST(Sffl))) ENDFON $ 

FUN:T!CN ON?-lABK ( SE.'Tl, ANS) , 
WHEN &1PTY ( Set'l) , ANS ElCIT, 
BEMPRiP (FIPST(Sffi), 'SEEN), 
tN-lABK (R&ST(Sal.), ANS) OOE'tJN $ 

\ Each time any function is invoked, the outside values of its 
parameter names, if art/, are •stac:ked" away to be restored later, just 
prior to return from that invocation. If a function refers to a 
variable which is not amcag its parameters, then the most recent value 
of the variable on the stack is used. 'l'bus, when ONIONAUX is invoked 
from within ONION, sm in the definition of UNIONAOX refers to the 
argument value associated with that parameter of ON!C& This treatment 
is called "dynamic bi.nclinc;", and a reference such as to sm in ONXONAOX 
is called a •fluid reference•. we could have avoided this by making 
sm be an argument and a parameter to UNIONAUX, but that would have 
made the program slightly slower and more bulky. However, fluid 
variables make programs much harder to debug and maintain, especially if 
assignments a.re made to them in functions other than the ones which 
establish them. Consequently, we recommend generally avoiding fluid 
variables. '1be only reason we used one here is to introduce the concept A 
to issue this advice. 'w/1 
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Values assigned at the top-level of mUSIMP, outside all function 
definitions, ~e called GLCBAL values. Examples ue the initial values 
of mUSIMP control variables suc:h as ROS, !Xl!O and COOENSE, or of mu.MA'tB 
control variables such as PBRCB or PWREXI?D. Bef erence to a global value 
fI"om within a function definition is not quite as cor~using as reference 
to a fluid value, and it is indeed onerous to creat numerous long lists 
of parameters in order to pass such environmental control values through 
a long sequence of function definitions for use deep within. 

However, here too it is at the very least considered bad 
prcgraxnmi.'lg style to unnecessarily modify such global values from within 
a function without restoring the values before exiting from the 
function. In fact it is generally bad manners for Mr:f program file to 
modify global values if the modification is merely inc id en tu to the 
central purpose. That is why these lessons carefully save the 
prevailing values of the control variables named ECHO and CCNOENSE, then 
restore these values just prior to the end of the file. (It is truely 
annoying to have someone else's program litter your environment 
unnecessarily.) 

'l'he property-list technique for set operations is one whic:h we think 
is more naturally implemented using the Von Neumann programming style. 
Try to write such a version of ONION: , BOS: FALSE $ 
, Now, using either style, write an INTERSECTION function using the 
property-list technique: I RDS: FALSE $ 
, One does not usually take the FIRST or REST of an atom 
intentionally, but they do in fact bave well-defined values: The rIPsr 
of an atom is its value, and tb~ llST of an atom is its property list. 
For example: I 

WFA1'BER: I FOOL $ 
FIRST (WEM'BER) , 
POT ( •w~, ''191PERA1'tlm:, -3) & 
l?O'l' ( 'WE'A1'm:R, 'WIN:>, ' ( (t:0Rl'B • WFSI') , 30)) & 
REST('~) & 
I This is true of integer atoms too, though it is usually pointless to 
put anything on the property list of an integer, because integers are 
not stored uniquely: , 

FIFSI' (7); 
RFSr (7); 
NINE: 9 $ 
M' (NIN£, '1J.'FS1':IN:;, I (1, 2, J)) & 
GE.'l' (NINE, • '11:.'S1'It-.G) & 
GE:r ( 9, ·~, & 
I Since all nodes and atoms have a FIRST and a REST which are either 
nodes or atoms, misuse of these selectors can't acc:idently give access 
to the machine language, stack, print names, or anywhere else which 
could inadvertently compromise the integrity of muSIMP. Thus, 
inadvertent omission of a termination test in functions which follow 
chains of pointers is likely to be revealed by stack exhaustion in the 
case of recursiai, and by an infinite loop in the ease of iteration. 
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It is common practice to use EMPl'Y to test for the end condition as 
a fW1ction proceeds down a list. If such a function is inadvertently 
given a nan-list (i.e. a Non-FAI.SE atom or a structure whose final REST 
cell points to a Ncn-FAI.SE atom), the function will use tbe !'DSI' cell 
of that atom (i.e. its Value cell) as an element of the list and the 
REST cell of the atom (i.e. its Property List cell) as the REST of the 
list. Generally the Property List is a well defined list so the EMPrY 
test will ultimately cause t:eminaticn with no ill affects. 

We prefer to have non-list arguments give more predictable 
results c:onZined to tbe argument. Thus, our internal. implementations of 
MEMB~ RtVE:P.SE, and arrt other functions ordinarily applied to lists use 
xroM rather than D1Pl'Y as tbe tetminaticn test. This is slightly faster 
too, so you may wish to generally avoid EMPTY in favor of ·ATOM. 
Alternatively, you can· redefine EMPTY to print and retum an error 
message when given a naif'ALS! at:QII: I 

FUN:T!CN EMPTY {LIS), 
WREN Am1 (LIS) , 

WHEN EQ ( LIS, FALSE) , EXIT, 
PRINI' ( •*-tt Warning: &tPr.! given nonlist •) EXIT 

ENOFON $ 
&1Pl'Y (S) $ 
I This is our first example illustrating the fact that conditional 
exits can be nested arbitrarily deep. The same is true of loops or 
blocks. 'nlis example also illustrates the PRINr function, which prints 
its one argument the same way that expressions terminated with an 
amhi~rsanind ar~ printed. There 4,,~ an analog~'t.~ function_ named PR;t'MATBed Q ... 
w en pr · ts .its one ar::gument we same way w.iat expressions terminat 
with a semicolon are printeci. · · 

When fW1ctions are called with fewer actual arguments than the 
function has formal arguments, the remaining formal arguments are 
assigned the value FALSE. This provides a convenient mechanism for 
automatically inserting default values for these extra arguments. When 
an argument evaluates to FALSE, the function c:an assign the aa,ropriate 
default value. For example, if the user omits the drive as the third 
argument of R:>S, that function uses the currently logged in drive (i.e. 
the drive indicated by the last operating system prompt given before 
entering mUSIMP). 

'!'here are inatarlc:es where it is desirable to pemit a function to 
have an arbitrary number of argwnent:.S. This is accomplished by making 
the formal parameter list of a function detinition be an atom or non­
list rather tban a list. 'l'be arguments are passed to the function as a 
single list of argument values, from which the function can extract 
the values. For example, it is convenient to have a function named MAX 
which returns the largest of one or more argument values. We can 
implement this as follows: I 

maICNMAXAiG.IS, 
MiAXAOX (FIPST{ARGLIS), REST{ABGLIS)) 

ENDE'tJN $ 
Fti1.x:'J.'IOi ~ {SIGGESr, tJNnu:tt>), 

WHEN El1Pl'Y {UNTRIED), BIGGEST EXIT, 
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WHEN BIG;EST > FIRST(tlN'?RIEO), MAXADX .. (BIGGFSI', RFSr(tlNlltIED)) EXIT, 
MAXAUX· (FIRS"l'(tllmIEO) , REST(UN'mIEO)) · 

ENOFON $ • 
MAX (7) ; 
~ (3, 8, -2) 7 
I This collection of arguments into a list is called NOSPREAD, to 
distinguish from the SPRFM) brand of peanut cutter. 

More generally, muMA'1'B per.mits a combination of the 2 techniqi.1es: If 
a parameter-list is a dotted-pair of two names ot a list whose last 
element is a dotted pair of two names, then the last parameter name 
accumulates a list of any excess arguments beyond those spread to the 
other parameter names. 'lhls, we can simplify our definition of MAX to: ' . ' . 

rutaICN MAX (FRSl'. orm::PS), 
MAXADX (FRS'l', ~} 

ENOFONS 
I Would you like to try this technique? Appropriate candidates 
include MIN, ONICN, and IN'l'EPSE:CTICN. I RDS: FALSE $ 
% Now, suppose that for some reason we already have a list of integers 
such as , 

NOMBLIS: '(18, 3, 7, 91, 12, 2) $ 
I and we want to find their maximum. The expression MAX (NOMBLIS) 
will not work, because MAX is designed for numeric arguments, not for a 
list of lUDbers. We could of course extract the elements arld feed them 
individually to MAX, but this is awkward, especially if we are referring 
to MAX inside a function and we-- do not know 4head of time how many 
integers are in NUMBLIS. Fortunately there is a convenient function 
named APPr.:i, which applies the function who=:ie name is the val.I.le of its 
first argument to the argument list which is the value of its second 
argument. Consequently, we need merely write\ 

AI1Pr:i ('MAX, NJMBLIS) & 
% AFPr.:i works on either SPRF>.D or t1CSPPJ'AO functions. Why dcn't ycu 
t::y out a few examples: . t Rn$: FALSE $ 
I A function written .in muSIMP-79 is stored internally as a nested 
list, and the function named GE'l'D returns a pointer to this list. 
Consequently, to see what the internal representation of ONION looKs 
like: , 

GElD (UNICN) & 
% Q:ID retw:ns ffllE if the definition is in machine language, and GEl'O 
returns FALSE if there is no function definition for its argument. 
Those who are carious may wish to use this function to experimentally 
deter.mine the correspondence between the external and internal foz:ms of 
a function definition. This can be useful for revealing bugs arising 
from misconceptions about how the parser regards certain constructs. 
All we want to point out here is that since function definitions are 
represented as lists, muSIMP functions can easily operate upon other 
muSIMP functions. This makes it easy to write muSIMP programs wnich 
service other muSIMP programs. Examples include mUSIMP-oriented 
editors, cross-reference programs, debuggers, verifiers, statistics­
gatherers, pretty-printers, file comparators, and compilers. The 
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intemal representation also makes it possJ.ble for functialS tc modify 
each other dynamically, as they execute. 'rhe implications for artifical O· 
intelligence are intriguing to contemplate. 

REMD is a related comma..'ld wb.ich clears any function definition 
existing under the name which is the value of its argument. For 
example, I 

REM) (tJNlCN) & 
GEm {tJNICS) & 
I One good use of REMO is to free space occupied by functions which 
are no longer needed immediately, in order to provide enough space for a 
more urgent need. For example, suppose that in muMATB a problem 
requires the SOLVE package followed by the MATRIX pac:xase, but there is 
not room enough for both packages to coexist in the amount of memory 
present on the machine. Then, after using the SOLVE package but before 
reading in the ~ package we could remove function definitiOns for 
SOLVE by commands such as ·· 

REt·1D (SOLVE) $ REMO (sot.EXP) $ ••• 

Less typing would be involved if we defined a command named 
MULTIREMD, which for an argument which is a list of names, successively 
applies mm to each name. In this example it u the side efects tather 
than the returned value which is of interest, so MULTIREMD can return 
whatever is the least trouble. MOLTIREMD is trivial to write, using 
eitber recursion or iteration, because the Ame "program schema" occurs 
so often: Walk down a list, successively applying a function of one 
argument to each element of th••list, then return anything. This 
Clbservation leads to the following idea: Let's write a function which, 
given the name of any function of l argument, together with a list, 
successively applies the function to the elements, then retw:ns anything 
convenient: I 

FON:'l'ION MAP (FtHW·iE, LIS) , 
LOOP 

WHW El1PTY (LIS), EXIT, 
APPLY (Ft.JNNAME, FIRST(LIS)), 
LIS: RFSl' (LIS) 

m:lLOOP 
ENDFUN $ 
I Then, for example, we could write 

MAP ('REM), '(SOt.VE, ~, ••• )) $ 

What we have done is t.o separate the general-purpose control­
sequence from the specific tasks which can use it. This division of 
labor accomplishes two useful things: 

l. Program space savings can accrue for each use of MAP with a 
different function, beyond the first, because essentially 
duplicate control sequences are avoided. 

2. Once the meaning of MAP becomes familiar, the program is 
more readable, because MAP ('REMD, '(SOLVE, SOLEXP, ••• )) is 
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then instantly understood to mean REMO all of SOLVE, SOL!XP, 
etc ••. In contrast, the altermative form MULTI~MD ( '(SOLVE, 
SOLEXP, ••• ) ) requires the user to check the definition of 
MOLTIREMD to be sure the ~se is correctly Ul"lderstood. 

Another frequent need is to walk down a list, ~lying a functi011 of 
one argument to each element, but retum the list of results. Write a 
~ing function of this kind, called MAPLisr since it returns a list. 
Then, try 
MAPLIST ('-, '(3, 8, 14)), and MAPLIST ('NOT, '(TROE. FALSE, MAYBE)) 
Uu:>S: FALSE: $ 
, MAP and MAPLisr are the most widely aa:,licable mawing ftJnctions, 
but if you grow to like mapping m-..ctions you may develop a large suite 
of them. For example: 

1. For functions of two arguments you could have a map 
function of the form MAP2 (function name, listl, list2) or 
MAP2 ( function name, list of pairs). Since much of muMA'rB is 
stored on property lists, this could be used to apply REMPROP 
appropriately to help delete high-level muMATB packages in , 
order to make space. (Here is an idea: for each mUMATH file, 
write a corresponding file of type DEL, which has an 
appropriate command of the form MAP ('REMD, ... ) , together 
with one of the form KAP2 {'REMPROP, ••• ) • Then, to delete 
the SOLVE package from memory, one merely ·issues· the command 
RDS (SOLVE, DEL, drive).) 

2. For functions of two arguments you could have a mapping 
function used in the form MAP2LIS'l' (function name, listl, 
list2) or MAP2LIST (functi•on name, list of pairs), which is 
like MAP2 but returns a Ust of results. 

3. For general trees you could have a ma;ping function called 
TREEMAP which applies a function to the atoms in a tree, and 
there could be a similar one called TREEMAP'l'REE which is 
similar but returns a tree. , 

Ex:BO: iECEO $ CCN>ENSE: iCCN:>ENSE $ 

RDS () $ 
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JJl.lSIMP::79 Primitive Di:l.tl. structures 
The soft Warehouse ll/26/79 

I. DATA sr.ROC'l'URFS. 

DWSIMP · data is comprised of names, numbers, and nodes. Each type 
is recognizable and consists of a fixed number of •pointer• cells 
containing memory addresses. The cells can either point to other 
objects or to sp~cial-purpose entities outside the pointer space of 
objects. However, all three types have a FIPS? cell and a REST cell. 
Moreover, these FIRST/REST cell pairs can only point to other objects 
within the pointer space. This eliminates the need for t.ime-ccnsuming 
run-time type-checks in the crucial selector £unctions which fetc..~ these 
pointers. 

I Value I Property I Function I PnameS I 

A name is a recognizable, structured object consisting of fou.r 
pointer cells. Names are uniquely stored so that duplicate names cannot 
c:oexist in storage. sere are the uses of the four cells: 

l. The fIRST or value cell contains a pointer to the 
name's current value which is used by the evaluation 
functions. The value of a naine is initialized to a self­
reference of the name; however, it is modified by the 
assignment functions and when the name is used as a formal 
parameter in a function definition. 

2. The ~ or property list cell contains a pointer to 
the name's property list which is used by the property 
functiaw. Elements of this list are indicators dotted with 
the corresponding values. Property lists are initiAlly set to 
the q,ty list. - · 

3. The Fyn;tion cell contains a pointer to the name's 
function definition if any. The contents of this cell can't 
be accessed except as function applications, and the contents 
can't be modified except by means of the function definition 
primitives. When a new name is first created, -its function 
cell is initialized to the undefined-function trap routine. 

4. The Pname cell contains a pointer to the name's ASCII 
print-name st.ring, which can be of amitrary length. Ac:Cess 
to this cell is restricted to the I/0 and sub-atomic 
primitives. Print names are defined when a name is first 
used, and they camot be modified or expunged. 
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Self I FALSE Vector 

A number is a recognizable, structured object consisting of three 
pointer cells. Numbers are not uniquely stored, so duplicate nwncers 
might coexist in storage. Tbe cells are used u follows: · 

1. 1'1le flW cell contains a pointer to itself. 

2. The m:sz cell is wtia1 ized to Fm. 

3. The Number Vector cell contains a pointer to the 
actual number, which consists of a sign-!d vector of up to 254 
bytes. Thus, the magnitude of numbers is limited to 256 .. 254, 
which is approximately lOA6U. 

c. Nodes I FIRST RFST 
+--·----+-----. 

Binary trees are the primary data st::uc:ture in mUSIMP. Internally 
they are implemented as a network of cell pairs called nodes. Each node 
consist of a FIRST cell and a REST cell. As mentioned earlier, the 
node's cells can only point to other bonified muSIMP data objects; 
either a name, a number, or a node. Nodes are often called •dotte<i-
pai.ts", because of their linearized external notation produced by PRINr o·.. 
or accepted by READ.LIST: The no~n 

·, 

(X • Y) 

represents a node whose FIRST cell points to the object x, and whose 
UST cell points to the object Y. Although the dot notation is more 
general, it is often more convenient to think of data as a linear list 
than as a deeply nested binary tree. For this purpose, lists are 
recursively defined as follows: 

1. '?he empty list.is denoted by the name FALSE:. 

2. U Y is a list and X an ci:>ject, then (X • Y) is a list. 

A liSt of ci:>jects is printed by the function PROO as a sequence of 
its elements separated by commas and delimited by parenthesis. The 
function R!AOLISr recogni%es W.S notation for i.n?,lt. For example, if Y 
is the list (Yl, Y2, ••• , Yn) then the dotted pair (X • Y) is printed as 

(X, Yl, Y2, ••• , Yn) 

Conversely, the input of the form (X, Yl, Y2, ... , Yn) is recognized as 
(X • Y) by the REAOLIST function. 
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II. MEMCE{l~. 

Dynamic, transparent metnory management gives muStMP much of its 
inherent power. Ideally, at any given time during the execution of a 
program, all of the memory not actually required to decri.be the state of 
the machine sbOuld be available for any subseque."lt program wae. This is 
a.pproximated in muSIMP-79 by first partitioning the available resour---es 
into the various data-spaces and. then recycling storage within eacb of 
these spaces as ·.required. Normal stack operaticns continuously reclaim 
the stack space, whereas, an automatically invoked garbage collector 
r:!<:laims the remaining spaces. 

A. Initial. Data-space Partition 

Du::ing the initia.lizatiCll'l phase of muSIMP, the amount of read/write 
memory available to . the interpreter is first computed. Memory is then 
pa.rti tioned into four distinct data-spaces using tbe following 
proportions: · 

4/32 
3/32 

23/32 
2/32 

Atan Space 
Vector.Space 
Node Space 
Stack Space 

Name and number pointer cells. 
Print-name strings and number vectors. 
Node cell pairs. 
Control/value stack. 

Based on our experience, these proportions provide a reasonable 
balance between the spaces for most applications. 

., 

.. 
B. Garbage COllection 

New data structures are generally constructed during the execution 
of a muSIMP program, while others are implicitly discarded as they 
become un-ref erenced. When the construction process uses up all 
available resources, a gart>age collector r01Jtine is called to reclaim 
the storage space vacateq by discarded data. structures, so that the ~r 
program can continue. ;In muSIMP-79 the exhaustion of resources :i.n 
either the atom, vector, or node spaces will cause collection to occur. 
Those data structures accessible by means of chaining through pointer 
cells beginning either from a name cell or from a value stack entry are 
marked. 'l.'hen during the se<:a1d pass all the unmarked nodes and numbers 
are collected for re-use, while simultaneously removing the mark on the 
accessible nodes. 

Although garbage collection i.s automatic, it is not entirely 
invisible to the user since it periodically causes a pause in the 
execution of a program. About l.S seconds is required for the 
collection process in a 48K byte muSIMP-79 system using a 2MHz CPU 
clock. Normally this is of no concern to the programmer; however, it 
should be considered in the design of real time systems. A phenomenon 
know as thrashing occurs when t..~e system is forced to spend an 
i.nor:dinate amount of time gamage collecting for a very small amount of 
nodes. This can be resolved by increasing the com;:uter's memory size or 
decreasing the amount of program and data storage requireme.."lts. 
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III. EP..ROR And · INl'ERRDPr ·'rRAPS 

If there is a reasonable interpretation for a construct, muSIMP 
generally uses it. Consequently, error traps are induced only by 
situations for which the:e is no satisfactory recovory. Examples are 
the exhaustion cf available data space or disk I/0 errors. Cll the other 
hand, a software interrupt is caused by an interrupt character (i.e. an 
ESC, ALT, or Ctrl-Z) receiveg from the terminal, which can be sent at 
any time. When a particular trap occurs, the a;propriate diagnostic and 
the following •options• message · are sent to the term.inAl.: 

EXEOJTIVE: F.S:, 'ALT, ctrl•Z; RESTARr: RUB, DEL; SYSTEM: ctrl-c? 

The i.:ser may then type one of the appropriate alternative option 
characters. The •EXB:t.1rlVE" optia1 is the least drastic since it merely 
causes control to return to the muSIMP executive driver loop, without 
changing function definitions, property values, or name values, from 
what they were just prior to the interrupt. The second option destroys 
all non-primitive mUSIMP functions, property values, and name val1.1es, 
then restarts muSIMP afresh. Finally, the "SYSTEI,1" option terminates 
muSIMP, and returns caltrol to the operating sytem. 

A. Data Space overflow 

As discussed in Section II, there are four distinct data spaces in 
mUSIMP to accommodate the various data types. Normally, automatically 
invoked gart)age collections will provide sufficient space in each area 0 
to continuously satisfy the demantlS of user programs. Sowever, in the •·. 
event all of the available resources in an area become exhausted, an 
error trap will occur and one of the following diagnos-J.c messages will 
be displayed on tbe terminal: 

NDE.Space Exhausted 
A1tM Space Ex.hausted 
V!rl'OR Space E:xllausted 
STACK O"letflow 

B. Disk File I/0 Errors 

Oisk errors may be caused by insufficient disk space, attempts to 
read past the end-<)f-file, or hardware malfunctions. The read and write 
disk error diagnostics are respectively: 

End of Pile or READ Error 
No Oisk Space or WRITE Error 
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c. Undefined Numerical Cperations 

If the second argument to any of the functions QOO'l'!EN'l', MOO, or 
DIVIDE is o,. a zero-divide trap occ:w:s with the followi."lg diagnos'"'J.c: 

ZEP.0 Divide Error 

o. Inplt Syntax Error 

The only syntax error trap caused by the function READ is when a 
closing right parenthesis is not found when using the 'dot' notation. 
The diagnostic is: 

Input Syntax Error 

Function PARSE can produce syntax error traps together with 
diagnostics of the following forms: 

*H S"fNrAX ERROR: expression OSEO AS NAME, 

*** SYNrAX ERROR: expression OSEI> AS Pm:FIX OPERATOR, 

..... S"m'XAX ERROR: expression USED AS INFIX OP~, 

*** S'iN.CAX ERIOR: delimiter N:Tr FCOND, 

where "expression" is the ai;:parent off ending portion of the input, and 
where "delimiter• is an apparently missing right delimiter such as a 
right parenthesis, ENDFUN, ENDSUB, EXIT, ENDLOOP, or ENOBLOCK. In any 
event, tbe remainder of the input from the point of confusion through 
the next terminator, such as ";", •$•, or "&", is outp.lt to the terminal 
to help indicate the probable neighborhood of the cause. Examples which 
provoke the above four types are respectively: 

5 (X); 

X Y; 

X*/Y; 

{pe.thaps S* (X) was intended?} 

{perhaps X"'Y was intended?} 

{perhaps X/'l was intended?} 

WHEN M'0-1(X, EXIT {perhaps WHEN ATCJ-t(X), EXIT was 
intended}. 

s 



N. PlUMIT!VEU' DEFINED FUN:TICNS. 

·rhe muSIMP (atructured ~lamentation) Language is a high level 
computer language ideally suited for symbolic and semi-numerical 
processing. Currently, it is implemented by means of a bootstrap file 
M0SM0RE.MUS whiC!h is automatically loaded prior to using the language. 
For an interactive introduction to the features available L'l mUSIMP, the 
tutorial lesson files, beginning with PLESl.1:RA, ma.y be executed. see 
the description on how to take the programming lessons in L.FSSCNS.TXT. 

Every language must be described in terms of some language, which 
must be described in terms of some language, etc. Thus it is clear that 
at some poi."l~ we must appeal to assumed inborn or culturally acq.2ired 
understanding. This unnecessary sequence of •buck passing• can be 
avoided by using a somewhat circular description of mUSIMP. In other 
words mUSIMP-79 can be described. in terms of mUSIMP supplemented with 
English where necessary. ose of such a description requires some 
prerequisite knowledge of mUSIMP gained by ot.-ier means, just as use of 
an English dictionary requires some prerequisite knowledge of English. 

After one has initially learned the basics of muSIMP from the 
lessons, this type of reference manual has the advantage of being 
compact while requiring mastery of no auxiliary notations. In addition 
it provides excellent, nontrivial examples of structured programs 
written in mUSIMP. 

The following is a description of all of the primitively defined 
user-level functions, operat~rs, control constructs, and control 
variables in muSIMP-79. For descriptive purposes only, we introduce 
some fictitious functions which are unavailable to the user. They a.re 
indicated by being unnumbered and are also unindexed. IDwer~ type 
is employed where English is used rather than legitimate mUSU1P program 
constructs. 
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A. Selector Functions 

l. ~ Fm"!' (X), 
ttie contents of the FIPSr cell of X, 

EK)FUN; 

Inte:pretaticna: 
•·• The first item of a list x, 
b. The left element of a dotted-pair X, 
c. The value of an atcm x. 

2. mcr:tCN RES1' (X) , 

3. 

4. 

s. 

6. 

the contents of the REST cell of x, 
OOFUN; 

Inte:pretaticna: 
a. The tail of a list X, 
b. The right element of a dotted-pair X, 
c. The property list of an atom X. 

FtH:TICN saxKl (X) , 
FIRST (RF.ST (X)), 

ENDFUN; 

. 
FtN:'l'IOO RP.ES!' (X) , .. 

RES1' (REST (X) ) , 
OOFtJN; 

FtN:'l'IOO 'IBIBO (X) , 
FIPSr (RFST (RE'S!' (X) ) ) , 

OOFUN; 

FUN:'l'ICN RRBEST (X), 
REST (RES!' (RF.Sr (X) ) ) , 

EN:>Fl;JN; 
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a. Constructor FUnctions 

l. FON:TICN ~JUOIN (X, Y), 
a new cell-pair whose Fw""T cell is x and woose RE.ST 
cell is Y, 

EN)FtJN; 

Interpretatia,,s: 
a. A list whose first elanent is X and whose tail 

is Y, 
b. A dotted-pair whose left element is X and whose 

ri;ht element is Y. 

2. sumomNE LIST (Xl, X2, ••• , XIl), 
WHEN n • O, FALSE EXIT, 
AOJOIN (EVAL (Xl), LIST (X2, X3, ••• , XIl}), 

ENDStiar 

Interpretation: The list (Xl, X2, ••• , xn). 

3. FUN:TICN REVERSE (X, Y) , 
WHEN A'l'CM (X) , Y EXIT, 
REVERSE (RES!' (X) , AOO'OIN (FIRSr (X) , Y)) , 

!NJFUN; 

Interpretation: The reverse of the list X. If a 
second argument Y is given, the reversed list is 
appended to the beginning of the object Y. 

4. FCN:TICN CBLISI' (), 
a list of the current built-in and user-introduced 

names, 
ENOFON; 

Interpretati0n: The object (name) list. 
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c. Modifier Functions 

l. FUNCTIQl REPI.ACEP' (X, Y) , 
FIPSl' cell of X: Y, 
x, 

EN>FUN; 

Interpretations: 
a. Replace the first element of a list X by Y, 
b. Replace the left element of a dotted-pai.t X by Y., 
c. Replace the value of an a.tan X by Y. 

2. FtJN:."'l'IQl REPLACER (X, Y), 
RFSI' cell of X: Y, 
X, 

ENOFUN; 

Interpretations: 
a. Replace the tail of a list X by Y, 
b. Replace the right element of a dotted-pair X 

by Y, 
c. Replace the property list of an atan X by Y. 

3. FUNCTICN CCN:A1'EN (X, Y) , 
WHE:NAro-1 (X), Y a!T, 
WB:m A1tM (RFSl' (XH, REPLACER (X, Y} EXIT, 
CCN:A1'EN (REST (X) , Y.) , 
x, 

ENOFON; 

Interpretation: Concatenate, without adjoining, the list 
Y. onto the right end of the list x. 
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o. Recognizer Functions 

1. FUNCTION NAME (X), 
WHEN X is a name, 

ENDFtJN; 
E:<IT, 

Interpretation: Recognize objects which are names. 

2. FCN::.'TICN INrmER (X), 
WH.E:N X is a."l integer' EXIT, 

E:~; 

Interpretation: Recognize objects which are integers. 

3. Fw::TICN Aro-1 (X) , 
?W·lE (X) OR INm:;ER (X) , 

ENDFtJN; 

Interpretation: Recognize OOjects which are atans. 

4. maICN El"1Pl'Y (X), 
X • FALSE, 

ENOFT.lN; 

Interpretation: Rec:o;nize the empty list. 

5. rutC!'ICN PCSITIVE (X) , 
X > O, 

ENDFON; 

Interpretation: Recognize positive integers. 

6. FtN:TICN NmATIVE (X) , 
X < 0, 

EN)FON; 

Interpretation: Recogn.ize negative integers. 

7. FtK:TIQl ZtiO (X) , 
X a O, 

ENDFtJN; 

Interpretation: Recogni%e zero. 

Note: All recognizers return 'mJE or F.Ar.,""E. 
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E. <:anparator Functiais and Operators 

1. mcrICN Sj (X, Y), 
WE.EN IN.rEm:R (X) · AN:> IN.rmER (Y) , X • Y !L'T'l', 
WHEN x arAi Y point to the same cbject, EXI'l', 

ENDFtJN; 

Interpretation: The identity canparison of X and Y. 

2. PRJPER?Y RBP, •, 80; 
PIOPE:RI'! LBP, •, 80; 

mcrICN • (X, Y), 
WHm A'.IQ-1 {X), ~ (X, Y) EXI'l', 
WHEN. A101 (Y) , FALSE EXI'l', 
WHm FmsT(X) • FIPSr(Y), REST(X) • RFSI'(Y) EXIT, 

ENDFON; 

Interpretation: The infix equality operator, •, treats 
X and Y as being equal if and only if they have 
iscm:,rphic tree structures witb identical atomic 
teminal nodes. 

3. mrl'ICN ORD.ERP (X, Y) , 
WEEN the address of the object xis less than the 

address of the· cbject Y, EXIT, 
ENOFON; 

·, 

Interpretation: A generic ordering function for system 
. names based on their order of introduction. 

4. Plt)PERI'Y RBP, >, 80; 
PFOPER?Y LSP; >, 80; 

FON:TICN > {X, Yl, 
WHEN INimER (X) AND INl'mER (Y), X > Y EXIT, 

ENDFON; 

S. PR:)PERJ:'Y RBP, <, 80; 
PFOPERrl LBP, <, 80; 

FON:TICN < (X, Y), 
Wlmi m.t!X;ER (X) AND INr!XiER (Y) , X < Y EXIT, 

OOFtJN; 

Note: All canparators retw:n TmJE or FALSE. 
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F. Logical Operators 

l. l'K>PERL"I RBP, RJ?, 70; 

F'JN:'l'ICN ?CY!' {X) , 
X • FALSE, 

!N)FON; 

Interpretatia:: !01' is a prefix operator with right 
binding power 70. 

2. ~ RBP, AND, 60; 
PR:liERr:! tm>, AND, 60; 

SOBFa1rINE AND (Xl, X2, ••• , Xn) , . 
WSEN n • O, C<IT, 
WHEN ?CY!' E.VAL (Xl) , FALSE EllT, 
~ CX2, X3, ••• , xn>, 

EN:>SOB; 

Interpretation: AND is a logical infix opera.tor with a 
left and right binding power of 60. 

3. PR:>POO'Y RBP, OR, SO; 
P:OPERI"i LBP, OR, SO; 

stlJ:mOO'I'INE OR (Xl, X2, ••• , Xn) , 
WHEN n • 0, FALSE EXI':r, 
WHEN E.VAL (Xl) , EXIT, 
OR (X2, X3, ••• , Xn) , 

ENDStJB; 

Interpretation: OR is a logical infix operator with a 
left and right binding power of so. 

Note: All logical operators retum 'l'lUJ'E or FALSE, and any 
non.FALSE logical operand has the same effect u TmJE. 
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G. Assignment Functions 

l. FtN:TICN ASSIGN (X, Y), 
FIPSl' cell of X: Y, 
Y, 

EH)FIJN1 

Interpretation: Set the value of the atan X to Y, 
and return Y. 

2. P!OPE:RI'Y RBP, :, 20; 
PR>PERIY IBP, :, 180; 

SUBR:X1l'INE : (X, Y), 
ASSIGN (X, £'JAL (Y) ) , 

OOSJB; 

Interpretation: Set the value of 'X to Y, and return Y. 
•:• is an infix operator with left binding power 
180 and right binding power 20. Evaluation of tbis 
form returns the value of the expression, after 
achieving the side effect of assigning the value 
of the expression to the name. 

Note: Assignments to non-names are allowable, having an 
effect similar to REPI..ACEFJ but returning a different 
pointer. 
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B. Property Functions 

l. FUNCTICN Kr&X. (X, Y), 
WHEN .M.0-1 (Y) , Y EXIT, 
\mN Aro-1 (FIPSl' (Y) ) , ATSCC (X, RE.ST (Y) ) EXIT, 
WHEN EQ (FIRST (FIRST (Y) ) , X) , FIRST (Y) EXIT, 
KrSX. (X, RFSl' {Y) } , 

ENDFtJN; 

Interpretation: 'l'he first non-atomic object on the 
"as&A:iation" list Y whose ATanic FIRST cell is X. 

2. FUN:l'ION GEr ex, Y), 
X: ATSCC {Y, REST (X)), 
WHEN M0-1 (X) , FALSE EXIT, 
REST (X}, 

ENOFON; 

Interpretation: The property value associated with the 
indicator Yon the property list of x. 

3. FUNCTlON Pt1r (X, Y, Z}, 
WHEN EMPT.{ (GP:!' (X, Y}) , 

REPLACER (X, AI:UOIN (AnJOIN (Y, Z) , RE.ST (X) ) ) , 
Z EXIT, 
~ (ATSOC (Y, ~ (X)) , Z) , 
z, 

EN:>FON; 

Interpretation: Place on the property list of the atan 
X under the indicator Y the property value Z, 
destroying arrt previous value under the same 
indicator. 

4. FtN:TION mu>R:lP (X, Y), 
WHEN Am-1 (REST (X)), REST (X) EXIT, 
WHEN EQ (FIPS!' (sa:c:ND (X)), Y), 

Y: RES? (Sl:nm (X)) , 
mt.ACtR (X, RBEST (X) ) , 
y EXn', 

RD!PK>P (RE.ST (X), Y), 
ENOFON; 

Interpretation: Re:nove fran the property list of X 
the property value associated with the indicator Y. 
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S. PH:lPERl'Y name, atan, value 
read two names X and Y, then parse an expressiai z. 
then without evaluating any of tht;m, place z on the 

property list of x, unde.r key Y. 
then return Z; 

~ is a data-b:se canstrw:t which retu.ms a list of name 
and atom after accomplishing the side effect of storing the 
value on the property list of the first operand, under the key 
which is the second operand. Any previous value on that 
property list under the same key is deleted, with a 
corresponding warning message. The three operands of PR:>PERrY 
are automatically quoted, so that, for example, they can be 
IJl'XsUOted operators. 

., 
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I. Definition Functions 

l. FUN:'l'ICN GErD (X) , 
WHEN rol' (NNm (X) ) , FALSE EXIT, 
WHEN X is not a defined function, FALSE EXIT, 
WHEN the function cell of X points to a machine 

language function, fXlT, 
the object pointed to by tbe function cell of X, 

EN>FON; 

Interpretation: The definition of the function named x. 

2. FON:TICN PUm {X, Y), 
WHEN li0'l' (NAME (X) ) , FALSE EXIT, 
function cell of X: Y, 
Y, 

OOFON; 

Interpretation: Place a pointer to the definition Y in 
the function cell of X. 

3. roterICN t-lJVD {X, Y), 
WHEN N:71' (~lE (X) ) OR N:71' (?W·tE (Y) ) , FALSE EXIT, 
function cell of Y: function cell of X, 
GE.'ID (Y), 

EN:)FUN; 

Interpretation: eopy the definition of the function 
named X to Y. 

4 • FmO'ICN BEt10 (X) , 
WHEN N:Tr (NH-!E (X)), FALSE EXIT, 
function cell of X: l.llldefined, 
Gm> (old definition of X) , 

EN:>FUN; 

:tnterpr~t:.ation: Rsnove the f,Jnetion definition fra-n x. 

5. Pla'E:RIY PREFIX, Fma'ICN, 
parse a function definition, then use PO'lD to pu.t it 

in the function cell of the function name, 
then return the function name. 

Interpretation: FUN:TICN is the leading keyword of a 
caitrol construct which has the general fom: 
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FUNC'I'ICN name parameters, 

taskl, 
task2, 
••• 
taskn 

OOFUN 
The name can be omit~ed when there is no need to refer to it, 
such as when a nonrecursive function is stored on a property 
list for use by APPLY. "parameters" can be an ar.bitrary 
S}ulbolic expression. When "pa:ameters• is a.~y name, except 
"FALSE", the function m.e·· ·. ~ ,..ibsequently called with an 
art>itrary number of argi:- .. d passed to the function as a 
list assigned to the ar;~~~.;;.-.~- If •parameters" is not a name, 
the first ugument in a call to the function is assigned to the 
FIPSI' of "parameters" and the RF.ST of the arguments is assigned 
to the P.EST of the "parameters" in an identical manner. 

Task evaluation within the function is performed successively 
until either the end of the tasks is reached or a non-FALSE 
predicate is evaluated. In the latter case evaluation proceeds 
as before except down the predicates task list. In either case, 
the value of the function is the value of the last task 
evaluated. 
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J. SUb-atanic F'Unctions 

l. FtltC'l'IOO C01PRESS (X) , 
WHEN A101 (X), •• EXIT, 
WHEN NAME (FIRST (X) ) , 

concatenate the print name of FIRS!' (X) onto the 
begiMing of CQ1PRESS (RF.ST (X) ) then return the 
corresponding muSlMP name, 

CCMPRESS (P.F.S'I' (X)), 
~-l)FON; 

Interpretation: The atao whose print name is the 
pa.c.lted version of the names in the list x. 

2. FON:TION EXPLCDE (X), 
WHEN NAME (X), 

a list of names whose print names correspond 
to the characters in the print name of x, EXIT, 

ENDFON; 

Interpretation: A list of the characters, in order, 
in the print name of x. 

3 • Ft:JN:TION LENmi (X) , 
WHEN ~1E (X), 

WHEN EM?I'Y (Xl , 0 E:<IT, 
the n~r of characters in the print name of X EXIT, 

WHEN INTEGER (X) , 
the number of bytes in the vector of X EXIT, 

l + LEN3TH (RES!' (X)), 
ENO.FON; 

Interpretations: 
a. The rum)Oer of characters in the name X, 
b. The nurrcer of bytes in the number x, 
c. The number of top-level items in tbe list X. 
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co ·1. FUN:TICN MINOS (X), 
WHEN lNI'fGER (X) , 

-X EXIT, 
OOFUN; 

2. FON:'l'ICN PLUS (X, Y) ~ 
WHEN Jl!.r$ER (X) AN:> INrmER (Y) , 

X + y EX.IT, 
ENDFON; 

3. Fm-x:TICN DIFFER.Eta (X, Y}, 
WHEN INI'EGER (X) AND nmI;ER (Y) , 

X - Y EXIT, 
OOFON; 

4. FUN:TICN 'nMES {X, Y), 
WHEN INI'mER {X) AND INl'mER (Y) , 

X * y EX.IT, 
EWFON; 

s. FUN:TICN QOOrIENr ex, Y>, 
WBEN INl'mER (X) ANO IN.I'mER {Y}, 

END!'CN; 

WHEN Y • o, . zero-divide error-trap ·EX.IT, 
WBtN POSITIVE {Y) , floor (X/Y) EXIT, 
ceiling (X/Y) EXIT, 

Note: 'l'be integer quotient which is consistent 
with MCD being a periodic nonnegative remainder. 

6. E"CN:TICN MCD (X, Y) , 
X - (Y * QOOrIEN'.!'{X, Y)) , 

ENFON; 

7. !'OtaICN DIVIDE (X, Y), 
WBEN mrmm (X} AND INrEXiER (Yl , 

.An.!OIN {QOOrll:NT (X, Y), lC {X, Y)) E:XIT, 
fK>FON; 

Note: All DJSIMP-79 numerical functions retum FALSE if either 
of their arguments is ncn-numeric. 
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8. Ft.H:'I'ION + (X, Y) , 
PLUS (X, Y), 

ENDFON; 

PR,FERl'Y +, PREFIX, PARSE (SCAN, 130); 

P!OPERI'Y +, RSP, 100; 
PR:)POO'Y +, I.BP, 100; 

9. ro?C"l'ION - ex, Y), 
WHEN EMPTY CY) , llINUS (EXl) EXIT, 
OIFFm!N:E (X, Y) , 

00Ft.1N; 

PR:)I>ERI'Y PREFIX, -, LIST ( '•, PAP.SE (SCAN, 130)); 

PR)PERl'Y RSP, -, 100; 
PR)PERl'Y LBP, -, 100; 

10. FtJN:TION * (X, Y), 
TIMES (X, Y), 

ENDFON; 

P!OPERl'Y RBI>,*, 120; 
PR:)I>ERI'Y LBP, *, 120; 

ll. Ftlt-aICN / (X, Y), ·, 
QtJOl'IENl' (X, Y), 

ENOFUN; 

P!OPER.l'Y RSP, /, 120; 
P!OP.ERI'Y IBP,/, 120; 
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L. Reader Func:tiais 

l. rw:::TICN RE'.AJXl!AR (), 
read one cbuacter fran the current input file and 
return the corresponding lDJSIMl? atan. Integer atans 
are returned only if the character is a decimal 
digit less than the current base. 

OOFON; 

2. FON:'l'ICN ~l () , 

END: 

read one a.tan from the current input file and 
return the eorresp,nding nuSIMP atan. Atans are 
delimited by either separator or break characters, 
however, the latter also are returned as atans 
themselves. 

separator characters: space, carriage return, line feed, 
and tab {Control-I). 

Break characters: ! $ & ' ( ) * + , - • / 
@ : : < • > ? [ \ ] A - ' { I } -

3. FON:'l'ICN RE'AO O , 
read frcm the current input file one canplete 
expression written in dotted-pair and/or list 
notation, then return the corresponding generated 
ooject. {Atans are delimited by either separator 
or break characters, but the latter also are returned 
as atans themselves) • 

ENDFUN; 

Separator characters: space, cc::mca, carriage return, 
line feed, and tab (control-I). 

Break characters: • ) ( 

Note: Extra right parentheses and dots are ignored. 

4. FtJN:TICN PARSE (00, RBP, 00}, 
£ran the current input file, read the canplete 
expression including the already-read token 00, where 
RBP is the right bincling ;ewer of the operator to the 
left of 00, if any, then return the resulting 
unevaluated object. (00 is a local variable which 
acolfflulates the parsed representation.) 

ENOFtJN; 
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Note: When two operators canpete for an operand between 
them, the operator with higher l:iinding power towards 
the operand acquires the operand •. In the case of a 
tie, the operator on the left acquires tbe operand. 

S. Ft.'N:T.ICN S'iNrAX X, 
print • ..... SYNTAX ERBOR: •, then print each element 
in the list of arguments, x, then read up through the 
next terminator, echoing the input beginning on a new 
line, then return FALSE, 

OOFUN; 

6. FW:Tl'.Qt MA1'CB (:CELIM), 
, uses the fluid variable SCAN set by SCAN() I 
WHEN SCAN• DELIM, SCAN(), FALSE EXI'I', 
WUN ON• cama, SCAN {), ~ (OELlM) EXIT, 
WHEN DE.:LDUTER () , sm.rAX (DELIM, 9 NJ1' FCON)") EXlT, 
AOOOIN (P~E(SCAN,O), MA1':B(DE:LlM}), 

ENDFON; 

7. DELIMITER: 1 (EXIT, natJN, ENOLCOP, oom.cx::x, 
right parenthesis, camia) & 

FtJN:'l'ICN DELIMITER () , 
~ () OR MJ:l-sER (SCAN, OELJ:MI1'ER) , 

ENDFON; 

8. NCTICN TERMINATOR () , 
Dbl•': OR SCAN•'$ OR SCAN•'&, 

ENOFtlN; 

10. ECBO: FALSE;, 

FCN:TICN tcBO (} , 
R:7r RDS OR ECBO, 

EN)FON; 

Interpretation: !CBO () is a functiai which returns ffllE 
if input is being echoed to the teminal. 

ll. ROS: FALSE; \ Device ReaO Select\ 

Ft.JN:'l'ICN ROS (X, Y, Z), 
WHEN EMPI'I (X), BOS: FM...$ E:UT, 
WSEN NN£ (X) AN:) NAME (Y) , 

WHEN &!PT! ( Z) , 
if there exists a file named X.Y on the 
currently logged disk drive, then open 
that file and ROS: X, EXIT, 

WHEN NAME (Z), 
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ENDFUN; 

NOtes: 

if there exists a file named x.Y on drive z, 
then open that file and IDS: X, EXlT EXIT, 

l. NOrmally control of the rurrent input file is.done through 
the use of the function RDS as described above. Bow ever, after a file 
has been opened and made current, control can be returned to the 
console without closing the inp.lt file, simply by setting the value of 
ms to FALSE. A subsequent r.on-FALSE assignment to ms will then return 
control to the point in the opened disk file at which reading was 
suspended. 

2. If the console is the current input file and all the 
characters have been read from the current line, the operating system's 
line-edit routine is c:alled for further input. Thus the system's nor:nal 
line-edit features will be used until a carriage return is typed, at 
which ~int muSIMP will regain control. · 

3. If a disk file is the current input file alid the Ea' (end­
of-file} character is read, an error message is sent to the console, 
the console is made the current input file, and an error-options trap 
occurs. 

4. If a disk file is being read and the value of the name 
ECHO is non-FALSE, the charactei;s being read are also echoed to the 
current outp.1t file. 

5. Comments in an input source file must be delimited by 
matching percent signs. The text of the comment will then be ignored ay 
the functions SCAN and READ, except to possiblly echo the comment as 
described in note 4 above. 

6. Special characters such as the comment, separator, and 
break characters can be. read in as names or parts of names by means of 
quoted strings. SUch strings are delimiteci by double quote marks. The 
double quote can be included within the string by using two adjacent 
double quotes for eacn desired internal double quote. 

7. As an added programming convenience the muSIMP name SCAN 
is always set to the most recently read at.om. 

8. Lower-case letters ate legitimate and distinct from their 
u;per-ca.se counter-par-~. The only exception to this is file names and 
types given to the functions RDS and WRS. They ate always converted to 
upper case in order to eliminate cordlicts with the operating system Is 
file naming convention. 
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M. Printer FUnc:t:iais 

1. FON:TICN PR.IN? (X) , 
WHEN ?W-1E {X), 

outp.tt the pr~t name of X to the current 
a.itplt file, E:Xr.r, 

• WHElt INrmER (X) , 
outp.tt to the current output file the digits of X 
expressed in the curre.'lt base, preceeded by a 
minus sign if Xis negative, EXIT, 

PRINl' (I.PAR), 
PRINLIS!' (X), 
x, 

OOFON; 

FON:'I'ICN PRINLIS'r (X} , 
PRINl' (FUST (X) ) , 
WHEN El-1Pl'? (Pl'Sl' (X)), PRINT (RP.AR) EXIT, 
PRINI' ( II ., , 

WHEN A1"Ql (REST (X)) , 
PRIN1' (II• ") t 
PRINl' (RFSI' (X) ) , 
PRINl' (RPAR) EXIT, 

PRINLISl' (RFSI' (X)), 
OOFON; 

Interpretation: Print the standard list notation 
of the object X to,the current OUtfUt file. 

2. FUN:TICN NElvLINE () , 
outplt a carriage return and line feed to the 
current outp.tt file, then return FALSE, 

Interpretation:. Teminate the current outplt line. 

3. rt.JNCTICN PR.INl'LINE (X) , 
P.RIN'l' (X) , 
NmLINE 0, 
x, 

OOFON; 

Interpretation: Print the expression x, tellninate t.11e 
last line and return x. 

4. FtR:'I'ICN SPACF.s (X) , 
WBEN X > 0 ANO X < 256, 

PRIN1' (" "), 
SPACES (X-1) EXIT, 

return t.~e current cursor position, 
OOFtJN; 
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C 

Interpretation: C:Ut;;;ut X spaces to tne current out?,It 
file and ·return the resulting cu~r i?QSition. 

S. FUN:'I'ION Fim·lATH (00, RBP, I.BP, PRrSPACE), 
Taking account of declared binaing powers and any 
special print; rules on the property list 0£ P~iATE, 
print a d~parsed repre$entation oi EXl, assuming 
a) the operator tc its left, if acy, bas right 

binding power RBP, the operator to its right, it 
any, has left binding power LSP, 

b) appropriate spaces are to be printed if PR!.'SPACE 
is nonFAI..St. 

OOFUN; 

Interpretation: PRI!-TA.."'H ( expr, RBP, I.BP) is a function 
which prints expr in standard matherratical fom 
and surrounds it within parenthesis if the leading 
operator in expr has a left binding pc:1t1er less 
than or equal to RBP, or a right binc.ing power less 
than IBP. 

6. WP.S: FALSE; 

FUN:'l'ION WP.S (X, y, Z) , (Write select} 
WHEN ml' D·lPrl (WPS) , 

write out tne final record of WRS and 
close the file; 
WRS: FALSE, 
WRS ex, Y, Z) EXIT, 

WHEN E°;·!Pl'Y (X} , WP.S: FALSE ::{IT, 
WHEN NAHE (X) AND NAHE (Y), 

EN)FtJN; 

WHE:N El'1?I'Y ( Z) , 
on the currently logged disk.drive, 
delete aey previous file named X.Y and 
make a new directory entry tor X.Y, 
WRS: X EXIT, 

WHEN NAME (Z), 
on drive z, delete any previous file 
named X.Y and make a new ciireetocy entry 
for X.Y, 
WP.S: X EXIT EXIT, 

7. Fmx:TION L!NEI.ax;'m (X), 
WHEN X > ll ~ID X < 256, 

set maximum line-lengtn to X, 
return the previous line-length EXIT, 

return the current line-length, 
OOFON; 
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Interpretation: Set the length at which outp.lt lines 
wW. autanatically be teminated. The line-length 
is initially set to 72. 

8. Fmel'ICN RADIX (X) , 
WHEN X > 1 »El X < 37, 

set base to x, 
return the old base EXIT, 

return the current radix base, 
moroN1 
Interpretation: Set the base in which rumcers 

are expressed for botb inp.lt and output. The 
base is initially set to ter.i.. 

Notes: 

l. Normally control of the current output file is done 
through the use of the function WPS as described above. However, after 
a file has been opened for outplt, outp.it can be directed to the console 
without closing the disk file by simply setting the value of WRS to 
FALSE. A subsequent non-FALSE assignment to WRS will then recirect 
outp.1t to the disk file and append data onto the end of the file. 

2. If there is insufficient disk space or a hardware write 
error prevents correctly writing output onto the disk, an error message 
is sent to the console, the console is made the current out;ut file, arxi 
an uror-options trap occurs. 
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N. Evaluation Functions 

l. PBOPERr.! PREF!X, ', LIST (READLISr (SCAN)) & 

~' (X), 
x, 

OOSOB; 

Intupretat.ion: SUppress evaluation and return tile 
object X itself. 

2. FmO'ICN £VAL (X), 
WHEN M'CI-1 (X), FIPSl' (X) EXIT, 
WBEN ~•lE (FIRSI' (X} ) , 

WHEN UNOEFilm:I (Gm' (FIPS1' (X) ) ) , 
WHEN ~ (FIRST (X} , £VAL (FIPSI' {X.} ) ) , 

tVLIS (X) EXIT, 
!VAI. (AOOOil-l{EV'AL{FIPSr(X)), REST(X))} E:<IT, 

WBEN FUOCTICNP (GE!'F (FIPSl' (X))), 
AiPLY (FIPSI' (X) , EV'LIS (RESI' (X) ) ) ~, 

WHEN &JBEO.JTI?U (GEl'F (FIRST (X)) l , 
APPLY (FIPSI' (X) , REST {X) ) EXIT, 

EVLIS (X) EXIT, 
WHEN FUN:TIONP (FIPST (X}), 

AiPLY (FIBST (X) , MIS (REST {X) ) ) C{IT, 
WHEN S'OBPWl'INEP (FIPSI' (X) ) , 

APPLY {FIRSI' (X) , .REST (X) ) EXIT, 
EVLIS (X) , . ' 

ENDFON; 

Interpretation: Evaluate tne object X. 

FONC'I'ICN EVLIS (X), 
WHEN A!I'Ct-1 (X) , FALSE EXIT, 
AmOIN (EV'AL (FIRST (X) ) , EVLIS (P.ESI' (X) ) ) , 

EN)FfJN; 

FtN:TICN Gm- (X), 
contents of the function cell of the name x, 

OOFON; 

FUN:TIO-. UNDEFINED (X), 
return FALSE if X is a pointer to tne undefined 
function trap, mra othetwise, 

ENDFUN.; 

InteQretation: Tbe recognizer for undefined functicns. 

FUNCTICN FUtCl'ICNJ? (X), 
SO'BR {X) .OR EXPR (X), 

ENOFtJN; 

Interpretation: The recognizer _for call r::t va.lt.:e 
functions. 
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Ft!tC'I'ICN~ (X), 
FSUBR (X) OR FEXPR (X) , 

EM>FtlN1 

Interpretation: The recognizer for call rrt name 
functions. · 

rotC'l'IQi SUBR (X) , 
retum mJE if X is a pointer to a ~.JN:TICN subroutine, 
FALSE otherwise, 

QDFUN; 

FtJN:TJ:a; E'St.JBR (X), 
retum mJE if X points to a SOSiaJTINE SUbroutine, 

. FALSE otherwise, 
EN)FtJN; 

roN:'l'IQi EXPR (X), 
FIRST (X) • I EXP.R, 

ENCFON; 

FON:'l'ICN FEXPR (X), 
.FIRST (X) • I FEXPR, 

OOFON; 

3. FtJ"NCTICN ~ (X, Y) , 
WHEN NAME (X) , 

WHEN tJNOEFINm ( GE1'F (X) ) , 
WHEN X • fNAL(X), FALSE EXIT, 
'fN1.L (AnJ'OIN (E.VAL (X), Y)), 

WHEN DR {Gm' (X) ) , 
WHEN A1tM (Y) , X (Y, FALSE, FALSE) EXIT, 
WBE2il A10l (REST (Y)) , 

X (F~ (Y) , BF.ST (Y) , FALSE) EXIT, 
WHEN A1'01 (RRES'I' (Y) ) , 

X (FIRSI'(X), SECCND(X), RRE.Sl'(Y)) EXIT, 
X (FIPSr (Y) , sa:cN:l (Y) , 'l'BIBD (Y) ) EXIT, 

WHEN F&JBR (GE.TF (X)) , X (Y) EXIT, 
~ EXPR {GEI'F (X) ) CR FDCPR (Gm' (X) ) , 

BIND ( SECCND ( GErF {X) ) , Y) , 
Y: E.VAI.aCDY (FALSE, RRES'I' (Gm' (X))), 
UNBOO (Sa:c:ND (Gm' (X))), 
Y EXl'f EXIT, 

WHEN C<l?R (X) CR FEXPR (X} , 
BOO (SEOX> (X), Y), 

OOFON; 

Y: ~ (FALSE, RRFSl' (X)) , 
memo <~ ex>> , 
y EXIT, 

Interpretaticn: Apply the function X to t.-ie list 
of arguments Y. 
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FUN:TICN 'fJJ'AU!aJ'i ex, Yl, 
WEEN A1a'1 (Y) , X EXIT, 
WHEN A1a'1 (FIPSl' {Y)) OR Amil. {FIRST (FIPSl' (Y))), 
. 'ENN.1!aJ':l. ( EVAL (FIRST (Y) ) , REST (Y) ) EXIT, 
\~ A1a·1 {FIRST (FIPSI' (FIRST (Y) ) ) ) , 

X: ML (FIPSl' (FIRST (Y))), 
WHEN 001' X, E.VALBCDY (X, RF.ST (Y)) ELTT, 
FYAf.l!ClJY (X, R&t;T (FIRST (Y))) &<IT, 

fNNJ:t:J;J''i (EVALB<DY (X, FIP.ST {Y)), REST (Y)), 
OOFUN; . 

FtN:TICN BIND (X, Y), 
~"BE.N A.10'1 (Y)' 

WHEN ATa-1 (X) , 
wsn; EMPTY (X) , FALSE CUT, 
AR;STACK: AnJOIN (EVAL (X), AR3STAO<), 
ASSIGN (X, FALSE) EXIT, 

AR;srAO:: AnJOIN (EVAL (FIRST (X)) , AFGSTACK) , 
ASSIGN (FIPSI' (X) , FALSE) , 
BIND (RES!' (X) , Y) EXIT, 

WHEN A1a"1 (X}, 
WHEN EJ.lPlY (X) , FALSE EXIT, 
.AKiSTACK: AO.JOIN (£VAL (X), AFCSTACK), 
ASSIGN (X, Y) EXIT, 

AiGS"'..AO<: AllJOIN (EVAL (FL-osr (X)), AtGSTAC<), 
ASSIGN (FIPSI' (X) , FIPSl' (Y) ) , 
800 (REST {X), RES!' (Y)), 

OOFUN; 
• 

FUN:'I'ICN UNBIND (X) , ., 
WHEN Aro1 (X), 

WHEN EMPTY (X), FALSE EXIT, 
ASSIGN (X, FIRST (~)) , 
ABGS'rPD:: REST (~STACK) .CUT I 

UNBIND (RFST (X) ) , 
ASSIGN (FIPSl.' (X), FIPSr (ABGSTAO<)), 
ARaSTACK: ·REST (~CK) , 

OOFtJN; 

4 • SUBRl1I'D.-m CCND (Xl , X2, ••• , xn) , 
!.V:iW:Qi:> (L.ISr (Xl, X2, ••• , Xn)) , 

EN)b"tJB; 

FUN:TICN f.VAtCQID (X, Y) , 
WHEN .A1tM (X) , FALSE EXIT, 
Y: E\1AL (FIRST (FIRST (X) ) } , 
WHEN tm Y, ~00 (REST (X)) EXIT, 
E.VALS<DY (Y, REST (FIRST (X) ) } , 

OOFtJN: 

Interpretation: SUecessively evaluate tne FIR..<:T of 
Xl, X2, ••• , xn until eitiler a non-FALSE value is 
encountered or ail have evaluated to·FAI.St. In tile 
foaner case the REST of that argument. is eval:.iat:eci 
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as a function body (see the inte:pretation of 
APPLY for details) • In the latter case FALSE is 
returned by CCR). 

S. ~PERl".l PREFIX, IDJP, AllJOIN ( 'LCOP, MA!Oi(ENDLCOP)); 

SOBPaJ'I'M UX>P (Xl, X2, ••• , xn), 
~ (LIST (Xl, X2, ••• , xn) , 

LISI' (Xl, X2, ••• , Xn)), 

FtH:TICN ~l'MJ.IJJP (X, Y, Z) , 
WBEl? AltM (Y) , 'iNN.JJXJP (X, X) EXIT, 
WHm Mat (FIRST (Y) ) OR l4'Qt (FIPSl' (FIRST (Y) ) ) , 

EVAL (!'IP.Sr (Y)), 
~ (X, RFSr (Y)) EXIT, 

WHm A1tM (FIPSl' (FIPSl' (FmsT (Y) ) ) ) , 
Z : E.VAL (FIRST (FIRST (Y) ) ) , 
WHEN t-m Z, 'ENN.U:IJP (X, REST (Y)) EXIT, 
~ (Z, REST (FIP.ST (Y))) EXIT, 
~ (FALSE, FIPSl' (Y) ) , 
~p (X, REST (Y)) , 

ENDFUN; 

Interpretation: The LCOP construct evaluates its 
argument in a manner identical to the waluation 
of the clauses in a function body. However, 
if all the arguments are evaluated without a 
conditional having been satisfied, evaluation 
begins again with the first argument. 

LCOP is the leading keyword of a control construct 
having the foan: 

LCOP 
taskl, 

. t:ask.2, 
••• 
taskn 

OOLCX)P 

This construct parses to tbe interna.l representation (I.COP ta.skl 
task2 ... ). osually at least one of the tasks is a conditional 
exit. Evaluation repetitively cycles through the sequence of 
tasks until a conditional exit causes control to proceed 
directly to tile point following the · matching delimiter ENDLCCP. 
The value of a I.COP construct is tbat of the last task waluated 
therein. Since the LOOP construct parses to a function 
invocation, this construct can be used outside function 
definitions. 
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6. PIOP~ PREFIX, WHEN, HA10i (EllT); 

WHEN is the leading keyword of the conditional-exit 
control construct, which has the general form 

wam expressionl, expressial2, ••• EXIT 

This construct parses t(? the int~ representation 

( { expressionl expressia'12 • • • ) 

If expresaionl evaluates to FALSE, then evaluation proceeo.s 
diree-J.y to the i:oint immediately followir.g the matching arr. 
Otherwise, the expressions between expressionl· and.the matching 
EXIT, if any, are successively evaluatea, and the last 
evaluated, after which evaluation proceeds to the point 
immediately following the next delimiter ENDLOOP, ENDBLOCK, 
OOFUN, or OOSJB. 

7. P~PERI"I PREFIX, BLCXX, ,~ (ENDBIDJC); 

aux:K is the leading keyword for the control construct 
of the foan: 

Bl,CXl{ 

WHE%q ••• EXIT, ... , . 
ENOBtO:K, . ' 

As indicated, the first task within a block must be a 
ccnditional exit. Since other tasks within the block can al.so 

. be conditional exits, blocks provide a generalization of the 
•case• construct of some other languages, which includes the 
•if-then-else• construct as a special instance. '1'.be evaluation 
of tasks within .a block proceeds sequentially unless a 
conditional exit tp.erein causes evaluation to proceed directly 
to the point following the matching delimiter ElIDBLOCK. The 
value of a block is that of the la:st expression evaluated 
therein. 

8. FtH:'!'!00 ORlVER (00, 00), 
ROS: 00, 
WRS: FALSE, 
Nm~INE {), 
N6·1LINE () , 
I.COP 

DR: FALSE, 
aux:x 
~ a::ao < > , 

PRINI' ( "7 ") , 
WHEN t-m ROS, PRI?~ ("II) E:<IT EXIT, 

E:NDBI.CCK, 
EXl: FALSE, 
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EXJ.: PARSE (SCAN(), 0), 
EX2: SCAN, 
au:a 

WHEN EX:BO () , NEMu...i.--m () EXIT, 
ENOBU:X:R, 
au:a 

WHEN ERR CB tc'I' ~.TOR (), 
S'lNTAX ()' 
NB-11.INE () EXIT, 

w&nl 00 • '$, 
tANS: !.V"nL (EXl) , 
WHEN EX:BO {) , NSiLINE () EXl'l' EXr.r, 

PlUNl' (@), 
tANS: i.VAL (EXl), 
PJUNr t• ., ' 
WSDIEX2• ';, 

PRtMAm ( •ANS, 0, 0, 'mOE) , 
NaiLINE () , NEWLmE () , N&JLmE () EXIT, 

PRINIUNE ( #ANS) , 
N&JLINE (), Nrl~INE (), 

ENOsu:x::a:, 
ENOLCX)P, 

EM)FUN; 

DRIVER is a function which controls the interaction cycle. 
After establishing the console as the current inp.lt and output 
file by setting RDS and WRS to FALSE respectively, the main A 
read, evaluate, and print driver loop is entered. An expression """ · 
is first read by PARSE~· . If the terminator was the character 
•;", the result is printed in mathematical notation by PRrHAZL 
If an "&", it is printed in List notation. And if a "$", it is 
not printed at all. However, in all cases it is assigned to the 
variable tANS unless an er.:or occurred during the parse phase in 
which case an error message is displayed. For some 
applications, it m4y be desirable to (perhaps dynamically) 
replace this driver with another one or to recursively call 
ORN.ER. 
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P. -Storage Functions 

l ~ FtN:TICN RECLAII-1 () , 
re-"'-laim all un-referenced noaes by 9e.11erating a 
free node list fran them, and canpact tne atan space 
and vector space. The total resulting number of free 
nodes is returned. 

EWFON; 

2. CCH:)£:N.SE: FALSE; 

FUNC'I'ICN CCN)ENSE (X, Y, Z) , 
WEEN Am•l (FIBS!' (X)), 

WHEN A1'Qt (RF.ST (X) ) , FALSE EXlT, 
Z: SlBEXPN ( REST (X) , Y) , 
WBEN EME'!'Y (Z), CQIDENSE (RFSI' (X), Y) EXIT, 
REPLACER {X, Z), 
FALSE .EXIT, 

Z: SUBEXPN (FIRST (X), Y), 
WHEN EMPTY ( Z) , 

CCNDENSE (FIRST (X), Y), 
WHEN AltM (REST (X)), FALSE EXI'l', 
Y: ADJOIN (F~ (X), "i;, 
Z : SUBEXPN (RFSI' (X) , Y) , 
WHEN EMPrY (Z), CCNOENSE (P.!S'l' (X), Y) EXIT, 
REPLACER (X, Z), 
FALSE EXIT, ~-· 

REPIACEF (X, Z),·· 
WEEN ATCM (RFSr (X) ) , FA.I.S .EXIT, 
Z: SOBEXPN (RFSr (X) , Y) , 
WHm EJ.lPl'Y (Z), CCNOENSE (RES: (X) Y) EXIT, 
REPLACER (X, Z) , 
FALSE, 

OOFON; 

ma!CN SOBEXPN (X, Y, Z), 
wl!EN CC•lPARE (X, Y), 

WHEN X • Y, Y Ex.IT EXIT, 
Z: StJBE:<PN ex, FIRST (Y)), 
WHEN D1Pl'Y (Z) , SUBEXPN (X, R£ST {Y)) EXIT, 
z, 

ENDFO'N; 

!"maION CCi·1P.ARE (X, Y}, 
WHEN A!CH (Y}, EXIT, 
)iB'.EN ATCt-1 (X) , FALSE .EXIT, 
wm:N C01PARE (FIPSl' (X) , FlRSl' (Y) ) , 

CQlPJUE (P.E.ST (X) , REST (Y) ) EXIT .EXIT, 
EN:lFON; 
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Q. System Functions 

l. FtJJ.~Qi SAVE (X, Y), 
WHEN 001' ~ (WRS) , 

write out t.lle final rec:cra of WPS and 
close tbe file, 
WPS: FAISE, 
SAVE (X, Y) EXIT, 

WHEN NN'1E (X) AM) NAME (Y) , 

ENDFON; 

Mm1 EMPn (Y) , 
save a binary menory image of the current 
muSIMI? system as a file named X of 
type •SYS" en the current drive, 
'lK1E EXIT, 

save a bina.ry menor,i image of tne current muSIMP 
system as a file named x of type •SYS" on 
drive Y, 
TRJE EXIT 

NOte: SYS files occupy about 15 kilobytes less than the 
memory size for which the operating system is 
generated. 

2. FUN:TICN LOAD (X, Y) , 
WHm NN-!E: (X) AW !Wl! (Y) , 

WHm EMPIY (Y) , . 
load a memory image file named x of type "SYS" 
fran the current disk, 
ret1.1m control to the executive DRIVER loop EXI'I', 

load a memory image file named X of type "SYS" 
fran drive Y, · 
return control to the executive DRJ:VER loop EXIT, 

!N:>FON; 

Interpretation: Restore the muSIMP environment present 
at the t.i:iie of the SAvt. 
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v. 'l'he muS!MP79 Pm'!' Parser 

A. cperators 

1. INFIX is a name on whose property list is stored 
expressions specifying how to parse infix operators for which mere left 
and right binding powers do not suffice. It is used for the assignment 
operator •: 11 since a check is made on its left operand to make sure it 
is a name. Al.so the INFIX property is used for •c• to correctly parse 
function calls writte.Tt using mathematical notation. The respective 
operator's left-band opera.'ld is passed to the expression as the fluid 
name •EX1 ". 

2. PREFIX is a name on whose property list is stored 
expressions specifying how to parse prefix operators for which mere left 
and right binding powers do not suffice. The matchfix operators, which 
include WEEN, ta:)P, BI.00<, Ft.N:TION, S'tJBR:UrINE, P~PERrY, and 11 (" when 
used to delimit a functions argument list, are examples of the use of 
the PP.EFIX property. 

a. Binding Powers 

l. LSP is a name on whose property list is the integer left 
binding powers of infix and postfix operators. When · two operators are 
competing for an operand, the ope,ator with higher binding p:>wer toward 
the operand obtains the operand. . In case of a tie, the left operator 
obtains the operand, so that infix operators with the same left and 
right binding p:,wers associate left, as is usually desired. 

2. UP is a name on whose property list is the integer 
right-binding powers of infix and prefix operators, for ·use as described 
for LBP. 

C. Constants 

l. COMMA is a global constant having the value ", ". Because 
of conflicting parse properties associated with its use as a separator 
character, the name COMMA should be used for the literal ", ". 

2. LPAR is a global constant having the value ·" (11 • Because 
of conflicting parse properties associated with its use as a separator 
character, the name LPAR should be used for the literal "(". 

3. RPAR is a global constant having the value ") ". Because 
of conflicting parse properties associated with its use as a separa~or 
character, the name RPAR snould be used for the literal")". 
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D. Dellmiters 

l. DELIMITER is a name which is initialized to the list Cl) 
(EXIT, ENOLOJP, ENDBLC.'CK, ENOFUN, E?DSOB, RP.AR, COMMA). When a matchfix 
operator is established, adjoining the matching delimiter to this list 
en.ables the parser to give more informative diagnostics by recognizing 
when a delimiter is used Olit of place. Bowever, it is not r..ecessary to 
adjoin delimiters to this list, and adjoining a delimiter has the effect 
of precluding its use out of context for other p.u:p,ses. 

2. DELIMITER O is a predicate which returns FALSE if the 
current value of the name SCAN is neither a terminator rx>r on the list 
named DELIMITER. 

3. MATCH (delim) is a function which parses zero or more 
expressions separated by commas and delimited by the value of its 
argument. MA:r.a returns a list of the parsed representations of these 
expressions. 

4. ~l? (expr, delim) is a function used to -verify that 
a matching "delim" was found following the PARSE of an expression within 
delwters. 

E. Parsing 

l. PARSE {expr, rbp) is a function used to read a muMA'l'H 
expression and convert it to List notation according to various rules 
estaQlished by operators LBP· and RBP binding powers and/or PREFIX or 
INFIX property rules as described earlier. 

Errors specific to PARSE include a member of DELIMITER "USED AS AN 
INOETERMINA'.rE", an infix operator "USED AS AN PREFIX OPERATOR", and a 
prefix or postfix operator "tJSEO AS AN INFIX OP~. 

2. snnA.~ exprs is a function which takes an arbitrary 
number of arguments. If the value of the Global va.riacle ERR is !"At.SE, 
then the message•••* SYNTAX ERROR: "is printed followed by the 
arguments to snr.t'AX separated by spaces. Unless input echoing from a 
file, the remainder of the expression is printed Wltil a TERMINATOR 
character is reached. Finally, in order to return cotitrol to the 
console, the control variable ROS {i.e. ReaD Select described in Section 
N. L.) is set to FALSE. 
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llllSIMP-79 OPERMt!R Blll)IN:i l?GlER TABLE 

category Operator w· RBP 

Ordering { 200 0 

Assigtment . 180 20 • 

1 160 0 
.. 140 139 

* 120 120 
NUmerical 

I 120 120 

+ 100 100 

- 100 100 

• 80 80 

Canparison < 80 80 

> 80 80 
. 

001' .. 70 70 

~ical AND 60 60 
.·. 

OR so so 

Note: When•+• and•..;• are used as pre.fix operators a right 
binding power of 130 is used instead of 100. 
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NATRIX.OCC { c) U/27/79 The Soft Warenouse 

r.yaRIX Package P9Qm)entation 

File I~ @rovides the following matrix operations on arrays: 
transpose, multiplication, division, i."'lverse, and otner integer 
powers. Elementwise ope.cations such as addition are provided by 
the prerequisite file 1'.RP.AY.ARI. 

PREREQUISITE .FILE: A:RP.AY .ARI 

USIGE: 
mJAT (positiveinteger} , 
array ' , 
arrayl. array2, 
arrayl \ arraY2, 
array .. integer 

Itt,1A!I'(2) -> {[l], 

If A• {[l, 21, 
[O, 31} 

[O, l]}, 

and B = {P, 
6.}-

B" -> [P, 6}, 

A'-> [{l, 
2}, {O, 

3}] , 

A' • lDL·IAT(2) -> f(l, OJ., 
l2, 31}, 

A • B -> {P+12, 
18}, 

A\B -> {P-4, 
2}, 

A .. 2 -> {[l, 8], 
[O, 91}, 

A ... •l -> {[1, -2/3], 
[O, 1/3]} 

then: 

l. The fimction named m:-lAT returns a (left-t.ria.'lgular) 
identity matri.."< with the number of rows indicatea by its positive 
integer argument. 
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l•Pd'RIX.DCC (c) U/27/79 'l'lle Soft Warehouse 

2. The J:?Ostfix operator na.nied ', having a left bi."ldi.ng power 
of 160, the same as •1•, requests the transpose of its operand. 
(This 11backward accent• character, ASCII code 60 hex, different 
from an apostropne or single quote, is usually found on the same 
key as the character •r.) Tne transpose of a scalar is a scalar, 
the transpose of a row is the column of the transposes of its 
elements, and the tranapose of a column is the row of the 
transposes of its elements. These rules are ;ee:ursively employed 
so that the transpose of a ragged and/or nested matrix is 
appropriately perfonned. These rules al.so c:onveit a eolumn of rows 
into a row of columns, which does not print attractively. However, 
multiplication by an appropriate sized identity matrix always 
yi~lds the attractive column-of-rows form of a matrix. 

3. '1'he matrix-product infix operator designated by a period 
has left and right binding powers 120, the same as for •••. The 
interpretations are: 

scalarl. scalar2 -> scalarl * scalar2, 

scalar. array -> scalar* array, 

array. scalar -> array* scalar, 

row • col row .col +row.col + ... , 
l . l 2 2 

·, 
col. row {[col .row, col .row, ... ], 

l l l 2 
[col .row, col .row, ... ] , 

2 l 2 2 
••• ]} , 

rc:MA • rows -> I [rowA .rowB , 
l l 

[ rowA • rowa , 
2 l 

••• 

eolA • colJ3 -> { {colA .coll , 
l l 

colA .colB , 
l 2 ... }, 

{ colA .colB , 
2 l 

colA .colB , 
2 2 ... }} 

rowA .rows , 
l 2 

rowA .rows , 
2 2 

• •• 1 , 

... ] , 
11, 

Consistent with the interpretation described in ~;xx:., when a 
row and column are of unequal length, the shorter is treated as 

2 
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having implied trailing zero elements when forming •row • col" • 
These interpretations of matrix proauct are recursively employed so 
that matrix products of nested and/or ragged arrays are appro­
priatedly performed. 

4. For a matri."t A: 
A"' 0 -> :ta'1AT (LE:?Um(A)-l), 
A"' l -> A, 
A"' -1 -> A inverse, 

For integer n > l: 
A"' n -> A. (A"' (n-1)), 
A"' -n -> (A"' -l) • (A"' (n+l)}. 

When a matrix is singular, raising it to a negative power yields 
warning messaqes about divisions by zero, and the offending 
subexpressions are encapsulated in a question-mark form according 
to the usual m\J..MAm-79 computational error treatment. 

S. When a matrix A is square and nonsingular, then A\B is 
equivalent to (A"' -1) • B. However, WE STRONGLY RECOMMEND using 
A\$ unless the inverse is of i.!'.dependent interest or must oe used 
many separate times, because A \B is more efficient and because, 
provided Bis consistent, A'\.]3 will yield a parameterized solution 
even when A is singular. In this case, the parameters are 
designated by the forms ARB(ll., ARB(2), ••• , starting with l when 
file MATRIX.ARR or SOLVE.~~ is most recently loaded. 

6. comments in file Z-1ATRIX.ARR indicate now to save space by 
omitting the matrix transpose, division, or power packages. 

3 
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Trace Package pocpmentation 

PUaPCSE: 
File TRACE.MUS provides a trace package to help debug programs. 

PREQUISI'l'E FILE: MUSIMP79.CCM 

l. 'l!RACE (namel, name2, ••• ) , 
2. ~ {namel, name2, ••• ) • 

EXAMPLE: 
FUN:TICN MEMB (EXl, 00) , 

WBEN DF1Y (00), FALSE EXIT 
WHEN EXl • FIRSI' (00), 'l'HlE EXIT 
MEMB ( EXl, RESl' ( 00)) 

ENDFON; 

TRACE (M'1'1B) ; 
MEMB ( 'DCG, '(CAT, 0:li, DCG, PIG)); 

MElG [DCG, {CA1', 0:li, DCG, PIG)] 
ME:1B [I:X:G, (0:li, OCG, PIG)] 

MEMS [DCG, (DCG, PIG)] 
MEl-m • TROE 

ME?G • mre 
MEMB • T.ROE 
@ T.ROE 

ONlP.ACE (MEMB) ; 

Rat!ARKS: 

\This is catJP.lter generated% 

l. The trace of a function during the execution of a program 
provides an inval~le debugging tool. 

2. Whenever a function is called it arguments are first 
evaluated and then printed following the function name. 

3. After the function has been applied it's value is printed 
following the function name. 

4. Indention is used to more easily pair corresponding calls 
and returns. 

5. The function is restored to nocnal by ONrRACE. 

l 
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Basic atG&:BBA Package Documentation 

!'ile AI.GEBPA.ARI provides for the basic algebraic simplification of 
expressions using the elementary operators "+", •-•, ..... , •;•, anci 11 "'". 

Simplifications may be categorized as either automatic or user 
controlled by means of coma. VARIABLES. 

AtJ'Ia-lA'.l'IC SIMPLIFICATICNS: 

l. Rational arithmetic is used to coml:>ine numerical operands. 
(see ARl."m.DCC for a complete description) 

2. Identities and zeros are appropriately applied to expressions. 
O+X -> X; l"'Y -> Y; O*Z -> O; 

3. Sums and products are flattened and uniquely ordered to 
facilitate expression comparisons. 

X+(Y+Z) -> X+Y+Z; Z*{Y*X) -> X*Y*Z; 

4. Similar teens and products are canbined. 
3*X + 2*X -> S*X; X .. 5 / X""2 -> X .. 3; 

s. Powers of n (i.e. the square root of -1) are reduced. 
II,-> -U; 

CCNOOL ~: 
The control variables described in this section enable the mu.MA~ 

user to have complete control over the rules used to simplify an 
expression. However, they -.re rather difficult for the novice to master. 
Therefore the utility functions EXPAND, EXPO, and FCTR (described 
below) have been included in muMAT'.d to make it HS'j to Obtain the most 
common forms of an expression without the need to individually set 
control variables. we recommend these functions be used until more 
precise control of the control variables is required. 

l. ?IJMN0?-1 controls the distribution (factoring) of factors in the 
NOMerator of an expression over (from) a sum in the WMerator. 

Identity: A* (B+C) <-> A*B + A*C 

2. Dfl1'EN controls the distribution (factoring) of factors in the 
DENominator of an expression over (from) a sum in the OENominator. 

Identity: 
l l l 
- .. - <-> 
A B+C 

l 
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3. DENNt.'M controls the distribution (factoring) of factors in the 
DENominator of an expression over {from) a sum in the WMerator. 

l B C o· 
Identity: - * (&+<:) <-> - + -

A A A 

4. WHDEN controls the distribution {factoring) of factors L-i the 
WMerator of an expression over (from) a sum in the DENominator. 

1 1 
Identity: A * - <-> 

B + C B/A + C/A 

s. BASEXP controls the distribution (factoring) of the we of an 
ex-iression over {from) the EXPonent. 

Identity: 

6. ~ controls the distribution (factoring) of the EXPonent of 
an expression over (from) the BA.Se. 

Identity: (A*B)C <-> AC* sC 

7. PWREXPD controls whether or not integer PoWeRs of sums are 
EXPanDed in numerators and/or denominators. 

8. ZEROEXPT controls the use of the following identity which is 
valid for all A not equal to o. . 

Identity: 

9. ZEROBASE controls the use of the following identity which is 
orJ.y valid for positive A. 

Identity: 0A -> 0 

l. For the first six of the aoove control variables, the kinds of 
factors, bases, or exponents which are distributed or factored from the 
expression can be precisely controlled by assigning a;:propriate values 
to the respective control va.r:iable. Poaitive integer value.& will cause 
distribution, whereas, nesative values cause factoring. The exact type 
of expression which will be clistril:lited or factored can be determined 
from the following table: · 

Prime 
2 
3 
5 

'1"Jpe 
~rical expressions 
Other non-sums 
SUms 

Examples 
4, -l/3, 5/7 
X., SIN (Y) , z"'3 

R+S, x"'2-x, LN(X)+Z 

Therefore, if a control variable is a multiple of one or more of 
the above primes, then that type of expression will be distributed or 
factored in acccrcance with that control variable's identiey transform. 
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2. For example, since differences are internally represented as 
sums involving negative coefficients, evaluation of 

3 * X * (l+X) * (1-X) -> 
3 * X * (l+X) * (l-X) 
X * (3+3-X) * (1-X) 
3 * (X+X .. 2) * (1-X) 
3 * X * (l-X""2} 
(3"'X+3"'X .. 2) * (1-X) 
X * (3-3*X~) 
3 * cx-x-3> 
3*X - 3*X"3 

if WMN'JM is o, 
if I01WM is 2, 
if RHllM is 3, 
if~ is s, 
if 10-HJM is 6, 
if ?L'MNJM is 10, 
if ~UNJM is 15, 
if WMWM is 30. 

3. As another example, if DENDEN is 15, then 
Y / 3 / X / (l+X) / (1-X) -> Y / (3*(X-X,.3)). 

4. As another example, if DENNOM is 6, then 
(X+3) / 3 / X -> l/3 + l/X. 

5. When PWREXPO is a positive integer multiple of 2, th.en 
multinomial expansion occurs in numerators. When PWRm'D is a positive 
integer multiple of 3, then multinomial expansion occurs in 
denominators. Thus, when PWREXl?D is 6, 

(l+X) j / (l+X+Y) .. 2 -> 
(1+3*X+3*X"2+X .. 3) / (l+2"'X+2-Y+2*X*Y+X .. 2+Y"'2) • 

6. The imp)rtance of becoming thoroughly familar with the use of 
~, WMNUM, DENOEN, and DD1Nt.1M cannot be over-emphasized! muMA1E-
79 cannot read a user's mind, so these control variables are the major 
means of specifying which of the many alternative transformations are 
desired at each stage in a dialog. 

7. The remaining control variables are of less f rec;uent concern, 
out changing their settings is occasionally crucial to acheiving a 
desired effect. Since they follow the same general scheme, they are 
easy to use after the·more important control variables have been 
mastered. For example,· 

(3+X) / (l +X) -> 
l / (3/(l+X) + X/(l+X)) 
l / (l/(l/3+X/3) + l/(l/X+l)) 

if NOMOEN is 5, 
if NCMOEN is 30. 

Thus, this transformation yields a kind of "continued-fraction11 

expansion. 

8. SA.SEXP is set in a."l analogous fasion as follows: 
2 .. (l+N) -> 2 * 2 .. N 

if BASE:XP is a p:>sitive integer multiple of 2, 
X ... (l+N) -> X * X"N 

if BASECP is a positive i."lteger multiple of 3, 
(A+B) "' (l+N) -> (A+B) * (A+B) '"'N 

if BASEXP is a positive integer multiple of 5. 

The opposite of these transformations is more often appropriate, 
and is acc~lisheci by setting BASE:XP to be negative.. 

3 



t.n'!.L.ion Fu"NCTICNS: 

l. EVAL (expr) returns the f:valuated and simplified expres~ion O· 
resulting from~ operated on under the current control variable 
envircnnent. 

2. SOB (exprl, expr2, expr3) returns the expression which results 
from SUS.stituting all occurrences of expr2 by e.wrJ in exprl, 

3. EVSUB (exprl, expr2, expr3) is defined as 
EVAL (SOB (exprl, expr2, expr3)). 

4. DI (expr) returns the W'1erator of expr. 

S. DEN (expr) returns the Dman.inator of expr. 

6. FI..MaS () prints the current value of the system control 
variable. 

7. EXPAND (expr) evaluates expr to yield a fully expanded 
denominator distributed over the terms of a fully expanded numerator. 
The following temporacy assignments are made: 

PWREXPO: 6; NUMDE:N: O; WMWM: DENDEN: DENNUt-1: BASEXP: EXPBAS: 30; 

a. EXPO (expr) evaluates expr to yield a fully expanded numerator 
· over a fully expanded denominator. The following temporacy assignments 

are made: 

PWREXPD: 6; NUMDEN: 0; DEl1N0?1: -30; NUMNOM: OENDEN: BASEXP: EXPBAS: 30; 

9. FCTR (expr) evaluates expr to yield a semi-factored numerator 
over a semi-factored denominator. The following tempora.;:y assignments 
are made: 

PWmXro : NUMDEN : O; NUMNUM : DOOEN: -6; DENNt..1M : BASEXr? : EXPBAS: -30; 
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CCNrFDL VARIABLE S'CJr,JMARY: ... 

·C control Initial Positive Negative 
var. Value Tran.sfoi:=ation Transfoc:nation 

WMNJM 6 A*(&+C) -> A*B + A*C A*B + A*C -> A*(B+C) 

l l l l l l 
t>OOE:N 2 -•--> ->-* -

A B+C A*B + A*C A*B + A*C A B+C 

&+C B C B C B+C 
t>E?NJM 6 - -=> -+- -+- -> -

A A A A A A 

A 1 1 A 
Wl-1D£N 0 - -> -> 

B+C S/A + C/A B/A + C/A B+C 

-30 AA(B+C) -> A-S*A"'C A-S*A"'C -> A"'(B+C) 
,-

--c 
30 ci•s>·c -> A"'C*B"'C A"'C*B"'C -> (A"'S) "'C 

l 
0 (A+B) "'N -> A"N+. • .+e"'N (A+B)"'-N -> 

A ""N+ ••• +B "N 

5 
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&;iation Package r>oc;ument.ation 

PORP(EE: 
File · EQN.AtG provides a facility whereby equations are treated as 
expressions ':!hich can be assigned, aclded, multiplied, squared, etc. 

PRERWJISrl'E. FILE: AI.GmBA.ARI 

~: expressionl - expression2 

EXAMPLES: 
EQNl: 5~ - 3-tx - 7 - 2 + 41 -> 2"'X - 7 - 6 

then EQNl + (7 - 7) 1 -> 2-X - l3 
then tAN.S/21 -> X - 13/l.. 

l. 'l'be two sides of the equation are independently simplified 
according to the current control settings. However, there is no 
attempt to automatically shift terms from one side to the other, 
etc. Moreover, there iS no attempt to verify· or disprove that the 
equation is an identity or bas a solution. 

2. This use of tbe - sign to indicate equations should not 
be confused with the use of• within the conditional !XI'l' calStruct 
in mUSIMP function definitions. When used in this more active role 
the result is always either TRBE. or FALSE depending upon whether or 
not the left and right sides have identical (as distinct from 
equal) values. 

3. The left and right binding powers of - are 80, which is 
the same as for •· 

4. As illustrated by the above example, when a non-equation 
is combined w.itb an ·equation, the non•equation is independently 
combined with both sides. 

s. Although the .above exuiple illustrates how equations can 
be solved stepwise, file S:S:,VE.EJ.:lN automates this precess. 

6. Provided file .ARMY.ARI is loaded, sets of simultaneous 
equations can be represented as an array of equations. For 
example: 

[2*X - 6, 4*Y - 8] / 2; -> [X - 3, 2-.Y - 4]. 

7. As with manual computation, operations such as &q\.laring 
both sides or clearing non-numeric denominators can enlarge the 
solution set, so the user should exercise caution and verify 
candidate solutiais generated by such means. 

8. If FOO is an equation, then sa:cm (!'CO) retutns the left­
hand side of the equation, and Tl:IIRD (FOO) returns the right-hand 
Side. 

l 
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SQlve. AB;ation Package ncx;umem;ation 

PURPCm:: 
File SOLVE.!JjN provide$ a function for the exact solution of an 
algebraic equation. 

~lil:i FILE: Ql.IX:C 

OSMZ: SCl.,VE ( equatiai, unk..1'10Wn) 

EXAMPLES: 
SJLVE (r"2 - 4*A, X) ; -> {X - 2*A .. (l/2) 

X - -2*A"" (l/2) } 

SOLVE (LN(M:M(X-1)) - S, X); -> {X - l + TAN(tE"'B)} 

ROORKS: 

1. SX,VE tetums a c:olumn of aolutiClnS, where c:olumns are as 
described in file ARRAY.DOC. · The functions FIRST, UST, SECOND, 
and '?BIRD can be used to extract individual solutions from a c:olumn 
of solutions. Alternatively, subscripts can be used for this 
puq:ose provided file AP.RAY.ARI is loaded. 

2. Forgetting the se~ond argument of SOLVE is a frequent 
mistake. · 

3. As a convenience, when either side of an equation is zero, 
the - o can be omitted. 

{}. 
4. When no solution exists, SOLVE returns tbe empty c:olumn, 

s. When degenerate equations have an entire locus of 
solutions which require parameterization to represent completely, 
SOLVE introduces the parameters, 

ARS(l), ARB(2), A.RS{J), ••• 

Their indexes start at 1 every time SOLVE.EON or MATRIX.ARR is 
loaded. The following is an example of the mUSIMP-79 solution to a 
degenerate equation: 

SCC,VE (X - X, X); -> {X - ARB(l)}. 

6. SOLVE expands the difference in two sides of an equation 
°'7er a. c:ommon denominator, then multiplies by the de.nominator to 
clear it. 'l'bis multiplication. can introduce spurious solutions if 
a zero of the denominator coincides with one of the numerator. 
Similarly, thiS multiplication can sua;,ress a solution associated 
with an infinity of the denominator. Thus, the returned set should 
be regarded as candidates for some of the solutions rather than the 

l 
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complete verified solution set if an equation has a denominator 
which could be zero or infinite for finite values of the unknown. 
When these possibilities Are present, it is the user's • 
responsibility to verify bis solutians by substit:.."tion or perhaps 
by taking limits. It may be helpful in such instances to also use 
SCLVE . to find any zeros of the common denominator in order to see 
if they coincide with any of those in the numerator. 

7. After clearing the denominator, SOLVE attem?ts moderate 
factorization, then indE=pendently attempts to detetDU.ne the zeros 
of each resulting factor. SOLVE recursively employs a;propriate 
foaiulas for the inverses of the elementary functions and for the 
zeros of linear, quadratic, &1"ld binomial factors. When SOLVE 
encounters a factor which it cannot treat, it retw:ns a •solution• 
of the form •factor - o•. Since the factor may be simpler than 
the original equation, it might serve as a useful point of 
departure for: an approximate numerical solution. 

a. A careful study of the source listing for the f Ue 
s::>L~N reveals bow adclitiaw. inverse functicns can be employed. 

9. File ~ contains a matrix division operation which 
can be used to solve simultaneous linear algebraic equatiaus. 
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Arm JZackaae poc;µment:.ation 

E'URPCSE: 
File ARRAY.ARI provides a facility for estat.Jli$hing generalized 
arrays, for extracting their components, and for performing 
elementwise operations between arrays or b•tween arrays and 
scalars. 

PREREQUISITE Fn.E: ARITB.MOS 

OSIGE: 
l. For.maticn of a column vector: 

{expressionl, expression2, ••• , expressionN}. 
2. Focnatiai of a row vector: 

[expressionl, expression2, ••• , expressionH]. 
3. Extracti0n of canponents: 

array rowveetor 
4. Operations having foans such as: 

arrayl operator array2, 
scalar operator array, 
functiomame (array). 

EXAL-1PLES: 
[O, X] + [5, X, Y]; 
2 * {X, LN(Y)}; 

SIN ([X, Y]); 
ex, [Y,Z], (WJ][2]; 
[X, [Y,ZJ, [W]][2,l]; 
[X, [Y,Z], [W]] [2] [l]; 

BEMARKS: 

-> 
-> ·, 

-> 
-> 
-> 
-> 

[S, 2*X, Yl 
f2*X, 
2*LN(Y)} 

[SIN(X) , sn~(Y)] 
[Y ,Z] 
y 
y 

l. Arrays can be nested to any desired deptn. The elements of 
a row or column can be any amitrary exf)ressions, including·perhaps 
another row or column. 

2. Columns are printed star.ting each element on a new line. 
Thus, 2-dimensional arrays generally look better as a column ot 
rows than as a row of columns. Sigher dimensiona..l arrays generally 
appear best as a column of rows of rows ••• of rows. 

3. When rows or columns of unequal length are comtli:ied 
elementwise by an arithmetic: operation, the shorter of the two 
arrays is treated as having implied zeros corresponding to the 
extra elements of the longer array. (Consistent with this 
inter?retation, a subscript value larger tnan the numoer of 
explicit elements in a row or column yields a zero as t.1ie value of 
the element.) Tnus, upper-triangular, left-triangular, and otner 
•rag9ed11 arrays are eii iciently representeci. 

l 
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4. When an array is combined with a scalar, the latter 
distributes over the elements of tile array. 

5. Functions of one argument such as SIN, ATAN, etc., which 
employ the general rule-application function named sIMPU, 
distribute over the elements of an array. 

6. Subscripts can be recursively employed to any level, and 
tr.ay can be symbolic. Por example, [Y, Z] (2] [NJ -> Z [N]. 

7. FIRST(row) -> [, FIRST(column) -> {, SECOND(row or 
column) -> first element, etc. 

8. Comments in file ARRAY.ARI indicate how to save space by 
omitting t.'le column and/or subscript packages. (Rows together witn 
FIPSr, REST, SECCND, etc. are sufficient for many P',lt;OSes.) 

9. File MATRIX.ARR implements matrix operations on arrays, 
including matrix transpose, multiplication, division, and power, 
including inverse. 
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RATmiN, ABITHMETJC Package PQcUinenta,tiQP 

PURPOSE: 
File ARITB.MOS can perform exact rational arithmetic operations 

including SWllS, differences, products, quotients, ar.d powers up to 611 
digits of accuracy in ·arrt desired radix base. 

PREREx:lUIS!TE FILE: MOSIMP79.CD1 

EXAMPLES: 
5/9 + 7/12; 
FCO: (236 - 3*127) * -13; 
FCO "' 16; 
P.AOIX (2); 
FCO; 
1011000101 + lllOlOOOl; 
RADIX (1010); 
GCD (436, 582); 

CCNr.ROL VARIABLES: 

I Exact rational aritmetic, 
, Make assignments to variables I 
I RaiSe numbers to integer powers\ 
, '!'he radix base can be set £rem 2-36, 
, Convert numcers between radix bases% 
, Do binary arithmetic , 
% To return to base lO \ 
, Catp.tte the GCD of two ru.mcers \ 

l. PBRCH is a control variable which, when TRUE, permits 
selection of a branch of a multipli~ranched function. For ARI'.m.I-ltJS, 
PBK:H nonFALSE permits the simpli;ication 

(exprl • expr2) "'expr3 -> exprl"' (expr2 * expr3) 

even when expr3 is not an integer. 

2. ZDOBAS is a control variable which, when TRUE, permits t.-ie 
simplification o "' expr -> l even when expr is nonnumeric. 

3. ZEROEXP is a control variable which, when TROE, ~rmits the 
simplification expr "' 0 -> l even when expr is nonni.uneric. 

PR!l1ITIVLY Da'INED ~: 

l. ASS (expr) is a function which returns the absol1,;1te value of 
its argument when the argument is a rational number. Otherwise, the 
rule-a;:plication function SIMPO is invoked, so t.11e unevaluatea absolute­
value form is returned if no applicable rules are present. 

2. ~ (expr) is a helper function used ~ SIMPU and elsewhere 
to appropriately partition an expression for application of a rule. 

3. ARGLIST (expr) is a helper.function used to appropriately 
group the operands of an expression for application of rules to varyary 
operators such as "+" and "*". 

l 



4. BASE (expr) is a selector function which returns the base of 
an expression of the form base .. exp; otherwise it retu:ns ~ itself. 

s. COOIV (expr) is a selector function which returns the 
codivisor (i.e. the non-numeric factors) of an expression which is a 
product; l. if WMBER (expr); otherwise it retums ~ itself. 

6. COEFF (expr) is a selector function which returns the 
coefficient (i.e. the numeric factors) of an expression which is a 
product; the ,um: if wr-mm (expr); otherwise it retums 1. Note that 
in all cases 

expr • COEFF (expr} * CCDIV (expr) 

7. OEN (expr) is a selector function which returns the 
denominator of its argument, returning l when there is none. 

8. D£NOM (expr) is a recognizer function which returns fltOE iff 
its argument has the internal form ( .. bas exp), with exp being negative 
or having a negative coefficient. 

9. EV&JB (expr, subexpr, replacement) is a function which retums 
the result of evaluating a copy of its first argument, wherein each 
syntactic occurrence of its second argument is replaced by the third 
argument. 

10. EXPON (expr) is a selector function which returns the 
exponent of an expression of the fom base ... exp; otherwise it returns 
l. Note that in all cases 

·, 

e."q)r • BASE (expr) .. ~ (expr) 

u. GC.D (intgrl, intgr2) is a function which returns the positive 
greatest cor:imon divisor of its integer arguments. 

12. lDENITl'Y (expr) returns its argument. This trivial function 
is used for ~lying inverses and acc:omodating conditional exits having 
atomic conditions. · 

13. I.CM {intgrl, intgr2) is a function which returns the positive 
least common multiple of its integer arguments. 

14. MIN (intgrl, intc;r2) is a funC""..ion which returns tile minimum 
of its two integer arguments. 

lS. MULTIPLE (intgrl, intgr2) is a function which returns FALSE 
if its second integer argument is net an integer multiple of its first 
integer argument. 

16. NmCOEFF (e.."q'r) is a recognizer function which returns TRIJE 
iff its argument is negative or has a negative coefficient, returning 
F.ALSE: ot.11erw ise. 
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17. NEGMULT (intgrl,. intgr2) is a predicate which returns TROE 
iff its second integer argument is a negative integer multiple of its 
first integer argument. 

18. WM (expr) is a selector function which retu.ms tne numerator 
of its argument, returning the entire argument when there is no 
denan.inator. 

1.9. WMBER (expr) is a recognizer f1.mction wbich retu.ms TROE iff 
its argument is an integer or a rational number. 

20. POSMOLT (intgrl, intgr2) is a predicate whj_c:h returns TROE 
iff its first integer argument is a positive multiple of its second 
integer argument. 

21. POWER (expr) is a recognizer function which retu.ms mm iff 
its argument is of toe foan exprl .. expr2, retuming FALSE otherwise. 

22. PRODUCT (expr) is a recognizer function which returns TRUE 
iff its argument is of the form exprl * expr2, returning FALSE 
otherwise. It is imp:>rtant to realize that quotients are represented as 
products involving negative powers. 

23. REX:IP (expr) is a recognizer function which returns fflJE iff 
its argument is a rational number of the form l/d, returning FALSE 
otherwise. 

24. SIMPO (name, expr) 1s·· a function which applies any 
appropriate established rules for' the w-iar.t function or operator whose 
name is the first argument of SIMPU and whose operand is the second 
argument of SIMPO. 

25. s:m {expr, SUbeXpr, replacement) returns a copy of its first 
argument, wherein every syntactic instance of its second argument is 
replaced by its third argument. In general this will produce an 
unsimplified result, so the similar E.VSt;-S function uses SUB, then tvAL. 

26. SOM (expr) is a recognizer function which returns TRUE iff 
its argument is of the fo.cm exprl + expr2, returning FALSE otherwise. 
It is important to realize that differences are represented as sums 
involving tems having negative coefficients. 

3 



Cpt;iona.1 mc:mfflL PCWER, Package 

PORPC'"..cL: 
Provides the facilities for the simplification of fracticnal powers 

of numbers and c:omplex exponentials. 

OSAGE: 
number .. (fraction), 
tE"' (intgr * tI * IPI / 2). 

EXAMPLES: 
(-24) .. (l/3) -> -2 * 3"' (l/3), 
(-4} .. {l/2; -> tI * 2, 
tE .. (3 * tl * tPI / 2) -> - tI. 

c:affR)Lv.AlUASLE: 
PBROi, which if FALSE, prevents Picking a BRanCH for fractional 

powers. {e.g. 4 "' (l/2) will not simplify to 2.) 

RE?,WU(S: 

J.. tE represents the base of the natural logarithms, tI represents 
the positive square root of minus one (+ (-1) "'{l/2)), and tPI represents 
the ratio of the circumference of a circle to its diameter. 

2. Simplification of fractional powers takes place only if the 
control variable named PBlCB is not FALSE. The positive real branch is 
selected if one exists. Otherwise, tne negative real branch is selected 
if one exists. Otherwise, the branch with smallest positive argument is 
selected. 

3. As in manual computations, Picking a SRanCB of a fractional 
power involves an arbitrary choice which can yield invalid results. 
Thus, the user is cautioned to verify results obtained by such 
operations. 

4. The global variab-le named PRIMES contains a list of successive 
primes, beginning with the integer 2. For fractional powers, the 
raciican:i is factored into a.product of powers of the numoers in P!UMES, 
perhaps times a residual having no factors in PRIMES. The fractional 
power is then distributed ewer ttu.s prodl.let, with a discrete variant of 
Newton's method being used to determine if the fractional power of any 
residual is an integer. Tilus, simplification of fractional powers of 
large integers might be incomplete if l'RL.'11.1:i is not long enough. 

S. As in manual comp.itations, i:eduction of complex ex-;onentials 
modulo (2 * tPI * U) is inconsistent with the identity LN(Z*W) • LN(Z} 
+ LN(W). Thus, the user is cautioned to verify results obtained using 
both transfor:nations together. 
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~ional fPC1PRIAL Package 

l?O'RPCSE: 
Provides the factorial postfix operator • 1•. The factorial of a 

non-negative integer is recursively defined as follows: 
01 • 1, 
Nl • N"'(N-l) !, for N > O. 

USN:;E: 
N 1 where N is a non-negative integer. 

EX.AMPLE: 
S! -> l20. 

l. The left binding power of • 111 is 160. Thus -s 1 parses to 
- (S!) and 3--s1 parses to· 3"(5!). 

2 •. When not given a nonnegative integer operand, •1• calls upon 
the SIMPO rule-application function, thus returning the unevaluateci 
factorial form if no appropriate rules are establishea. 
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u:x; .IXX: ( C:) 02/09/80 The Soft Warehouse 

Logarithm Package Documentation 

P'.JRPOSE: 
File LCG.>.u; provides for logarit:mlic: si:r.plificaticns. 

PP.E:RE)JJISITE FILE: ALGEBRA.ARI 

CCNrP.oL "~= 
l. LelGBAS, which is the default LOGarit.hm BASe when LOG is given 

only one argument. 

2. PmCB, whic:.~ if FALSE prevents Picking a BRana! of logarithms. 

3. U'.GEXE'D, which controls expansion or collection of logarithms, 
and base conversion. 

USAGE: 
LN (expr), 
u:x; (expr), 
r.a.; (expr, base). 

R!l•IARKS: 

l. Since the emphasis of muMATH is on exact results, there is no 
attempt to awroximate irrational logarithms. 

2. The unbound variable tE represents the base of the natural 
logaritms. 

3. Although all logarithms are stored internally as two argument 
functions, t.~ (expr) is used as an a.ci:>reviation for LOG (expr, tE) on 
input and out?,lt. 

4. u:x; (expr) is used as an atbreviation for LOO (expr, u::G!AS) on 
input and output, where LOOBAS is a control variable initially set to 
u:. 

s. base .. I.CG (expr~ case) -> expr. 

6. Provided PBRCB is m:JE: 

LOG Cl, base) --> o, 
LOG (base, base) -> l, 

LCG (base"'e."G?r, base) -> expr. 
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7. Provided LCGFXPD is a 1:=05itive integer multiple.of 2: 

u:x; (expr,case) -> LOO (expr, IE) / LOG (base, iE) 

when base is not tE. When LCGEXPD is a negative integer multiple of 2, 
the opposite transformation of combining appropriate ratios of 
logarithms occurs. 

8. Proviced u:xma?O is a J?OSitive integer multiple of 3: 

LOO (expr ... exp, base) -> exp * LOG (expr, base). 

A negative integer multiple of 3 causes the opposite transformation. 

9. Provided I£GEXPO is a positive integer multiple of 5: 

LCG (exprl*expr2, base} 
ux; (e.xprl/expr2, base) 

-> LCG (exprl, base) + LCG (expr2, base), 
-> LCG (exprl, base) - LCG (e.xpr2, base). 

A negative integer multiple of S causes the opposite collection 
transfoanation. 
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T!GPCS.OCC (c} 02/09/80 The Soft.warenouse 

Positive :mtGCNl:IS'BIC sill:plification Package t:)cA.weptation 

PORPOSE: File '?RGPOS.ALG provides the following trigo.'lOmetric trans­
focnations: 
l. exploitation of synmetry to simplify trig argumentS 
2. replacement of other trig functions by sines and cosines 
3. replacement of integer powers of sines and cosines by linear 

combinations of sines and cosines of multiple angles 
4. replacement of products of sines and cosines by lineat 

combinations of sines and cosines of angle sums 
s. replacement of integer powers of sines by those of cosines or 

vice-versa 

~UISlTE FILES: AIGDPA.ARI 
(Note: Loading TRGNEG.ALG after TRGPOS..AIA; preserves the full 
capabili t.ies of both files. LQading TRGPOS.ALG after 'l'BGNEG.At,G 
destroys the angle-reduction capabilities of the latter, thus 
saving some space.) 

cam-o:.~: 
l. TRGEXPD controls repla!=enient of trig functions by sines and 

cosines and replacement of powers and prod.ucts of sines · and cosines by 
linear combinations. Only positive values of -m::;EXPD are significant 
when ~ is loaded without ~ 

2. TRGSQ controls the conversion of integer powers of sines to 
cosines and vice-versa. 

OSAGE: 
SIN ( expressiai) , 
COS ( expression) , 
TAN (expression), 
cs: (expression), 
SEX: (expression), 
car (expression). 

R!l.wntS: 

l. SIN(O) -> 0, and COSCO) -> l. 

2. Symmetry is exploited to simplify the arguments of sines and 
cosines. For example, SIN(-X) -> -SIN(X) ar.d COS{-X) -> COS(X). 

1 



3. When TRGEXPD is a positive multiple of 2, then tangents, 
cotangents, secants, and cosecants are replaced by corresponding A 1 
expressions involving sines and/or cosines. For example, when~ = ""1' 
30, CSC(X) -> l/SIN(X). 

4. When TRGEXPD is a positive multiple of 3, then integer powers 
of sines and cosines a.re expanded i."l terms of sines and cosines of 
multiple angles. For example, when TRGEXPD • 30, COS(X) "'2 -> 
(l+ccs(2"'X))/2. These transfoi:mations usually give tbe most attractive 
results if RJMNUM and perhaps also D!lHlM are positive multiples of 6. 

S. When 'I'RGEXPD is a poaitive multiple of S, then products of 
sines and cosines are expand,a in terms of angle sums. For example, 
when 'I'RGEXPD is 30, SIN(X)*S'IN(Y) --> (COS(X-Y) - COS(X+Y))/2. These 
transformations usually give the most attractive results if WMNUI-1 is a 
positive multiple of 30 and OEN.WM is a positive multiple of 2. 

6. E.(panding over a common denominator with ~ = 30 yields a 
normal form for a large class of trigonometric-rational expressions. 
Thus, the most straightforward way to prove most trig identities is to 
evaluate the difference in the two sides with ~= NJMNJM: DENlEN: 
30, PWRE:XPO: 6, and DENNOM: -30. 

7. TRGE:XPD = 30 has the effect of "linearizing" trigonometric 
polynomials, thus facilitating hai:monic or Fourier analysis. 

8. For integer n with ln·I > 1 and for all u, when TRGSQ is a 0 
positive integer, then 

COS{u) "'n -> COS(u) "'REMAINDER(n,2) * (1 - SIN(u)""QUOI'IEN'I'(n,2))"'2. 

Conversely, when TRGSQ is a negative integer, then 

SIN(u}"'n -> SIN(u)"'REMAINDER(n,2) * (l - CO.S(u)"'QOorlll'll'(n,2))"'2. 

These transformations· are sometimes useful for transforming a 
trigonometric polynomial to a more compact equivalent trig polynomial. 

9. Even when a trig polynomial is preferred for the final form, 
net simplification is often achieved by evaluating witb 'tRGE:XPD • 30, 
then •30, then perhaps again with TBGSQ • l or -1 according to the 
appearance of the result produc:ed by •30. 

10. File ~ provides for tbe negative settings of 'l'9Za'D 
to yield the converse of the above transfoanations. 
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'1'1Q£G.DCC (c:) 02/09/80 The soft warenouse 

Negative WGWJ,wrRIC simplification Package DoQJmentAtion 

PURPOSE: File TRGNEG.ALG provides the following trigonometric trans­
foauations: 
l. exploitation of synmetries to simplify trig arguments 
2. angle reduct.ion 
3. m.:ltiple-angle ~ion 
4. anqle-sum expansion 
S. elimination of reciprocals of trigonometric focns 
6. elimination of certain products of trigonanetric foans 
7. simplification of trig functions of their own inverses 
a. replacement of sines and cosines by canplex exponentials 

PRERE:QUISl'l'E FILE: ~ARI 
(Note: Loading TRGPOS.ALG after TRGNEG.ALG destroys the angle­
reduction capabilities of the latter, thus saving some space. 
Loading~ after~ preserves the full capabilities 
of both files.) 

CQll'ROL WJUABLES: 

l. TRGEXI'O controls the use ·of multiple angle and angle sum 
expansions and replacement of trig functions by complex exponentials. 
Only negative values of TRGEXPD are significant when TRGNEG.ALG is 
loaded without ~.ALG. 

OSM:;E: 
SIN (expression), 
cos ( expression) , 
TAN { expression) , 
CSC ( expression) , 
SEC (expressiai), 
car ( expression) , 
'rnGEX1?0 (expressiai, integer). 

l. Since the emphasis of muHATB-79 is on exact results, there is 
no attempt to approximate irrational trig expressions. 

2. The ratio of the circumference to the diameter of a circle is 
repruented by the uncour.d variable tPI. The user ia of course free to 
usign a ratic:r.aJ. approximaticn to iPI and use series aa,roximat.ion.s to 
the trig functions. 
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3. Angles are assumed to ce measured in radians. 'l'hose woo would 
prefer some other unit such as degrees may wish to define additional Oui 
functions named SIN:), CCSD, etc. 

4. Sines w cosines of angles which are numeric multiples of tPI 
are reduced to equivalent sines or cosines in the range [O, tPI/41, then 
sines and cosines of the special angles o, tPI/6, and tPI/4 are 
evaluated exactly. For example, 

SIN (20*tPI/7) -> SIN (tPI/7), 
and SIN (7*1PI/3) -> 3"'(1/2)/2. 

S. Symmetry is exploited to simplify the arguments of sines and 
cosines. For example, 

SIN (-X) -> -SIN (X), 
and COS (-X) -> COS (X) • 

6. Trigonometric functions of the corresponding inverse trig 
functions simplify. For example, SIN(ASIN(X+S)) -> X+S. The inverse 
trig functions are named~, ASIN, ACDS, N:J:Jr, At:,S:;, and ASa:. 

7. Products of a tangent, cotangent, secant, or cosecant with 
another trig function of the same argument are simplified to l or to a 
single form where possible. For example, 

SEC(X)*COS(X) -> 1, 
and 'l'AN(X)*COS(X) -> SIN(X). 

For an expression such as SEC(X)"'2*COS(X)""2 it is necessary to O 
reevaluate with EXPSAS being a negative multiple of 2 in order to 
ac:heive the desired trig tran$formation. 

8. When~ is a negative multiple of 2, then negative powers 
of tangents, cotangents, secants, and cosecants are replaced by 
corresponding positive powers of the corresponding reciprocal trig 
functions. For example, when m::mcro • -o, l/'l'AN(X+7) ""3 -> carcx+7) ""3. 
For technical reasons, negative powers of sines and cosines are treated 
in file TRGPCS.AI.G. 

9. When TRGEXPD is a negative multiple of 3, then sines and 
cosines of mulitple angles are expanded in terms of sines and cosines of 
non-multiple angles. For example, when 'l'BGEXPD • -6, 

SIN (2"'X) -> 2*SIN(X) *COS(X} 
and COS {3-x) -> 4*COS(X)""3 - 3*COS(X). 

These transformations usually give the most attractive results if llJMWM 
is a positive multiple of 6. 

10. When T.RGEXPO is a negative multiple of S, then sines and 
cosines of angle sums and differences are expanded in te::ms of sines and 
cosines of nonsums and nondifferences. For example, when ~15, 
COS{X+Y) -> COS(X) *COS(Y) - SIN(X) *SIN(Y). These transformations 
usually give the most attractive results if NOMNUM is a positive 
multiple of 6. 
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ll. When TRGEXPO is a POSITr.7E multiple of 7, then sines and 
cosines are converted.to complex exponentials. ror exuple, wh1tn 
T:RGEXPD • 14, then COS(X) -> (tE""(tI*X) + l/tE""(tI*X)) / 2. · The 
opposite transformation, provided in file AlU'm.MUS, is requested when 
TRGEXPD is a negative multiple of 7. A worthwhile net trig 
simplification can sometimes be achieved by converting to complex 
exponentials, expanding or factoring judiciously, then c:onv~ back 
to trig functions. 

12. In muMATH-79 ct.,anging the value of an option variable does not 
affect the values of expressions which have already been evaluated. 
Thus, after changing the value of ~ and other relevant variables 
it may be necessa.cy to use ENN,, to get tixa desired effect. 

13. Function TRGEXPD reevaluates its first argument with ~ 
tempora.rily set to the value of the second argument. Thus, it provides 
a convenient way to ac:c:omplish a trigonometric transformation without 
the necessity of altering the global setting of the TRG~.control 
variable. 

14. File '?BGPOS.AI.G has other important trig transformations, many 
of which are the opposite of those provided in file T.RGNEGJ\W. 
Generally, the positive settings yield a more canonical (but not 
necessarily more c:ompa.et) representation. A net simplific:a.tion is often 
achieved by evaluating an expression with the relevant cption variables 
set positive, then reevaluating with them set the other way. Thus, 
files TR:iPOS.AI.G and TIG-m:;.ALG comprise an imp:)rtant complementary pa.i.r 
pair of files. Since together the files are relatively large, for some 
applications it may be desirable to extract and combine a few of the 
required features from both files, together perhaps with a few 
additional transformations modeled after them. 
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DIF .JXX: ( c) 02/09/80 The Soft warehouse 

Pli'FERENnA...."lCJ1 Package I)oc;umentat;ion 

PURPOSE: 
File DIF .MI:; provides a function wbieb retums the symbolic first 
particll derivative of its first argument with respect to its second 
argument. 

~.Sl'l'E FILE: AIGEBPA.ARI 

OSGE: 
OIF (expression, variable), 

EXAMPLES: 
DIF (A"'X""2, X) -> 2*A"'X, 
CIF (LN(X+A), X) -> 1/(X+A). 

l. When the differentiation rule for a function or operator is not 
known to the system: 

a. 'l'he derivative is a if none of the arguments or operands 
contain the differentiation variable. . For example, 

OIF (F(Y), X) -> O. 

0. 'l'he derivative is not evaluated otherwise. For 
exaq;,le, 

OIF (F(X), X} -> DIF (F(X), X). 

2. A careful study of file DIF.ALG reveals how additional 
differentiation rules can be inserted. 

3. 'l'he differentiation "variable" can actually be an art)itrary 
expression, which is then treated the same as a simple variable for 
differentiation p.i:p:,ses. (This ia occasiaw.ly quite useful, such as 
when perfoz:ming a square-free factori2ation or when deriving the Euler­
Lagrange equations for a specific variatia'lal calculus problem.) 

4. Sigher-order pe.rtial derivatives c:an be requested directly by 
nested use of OIF, such as DIF (DIF(SIN(X*Y) ,X), Y). However, beware 
that repeated differentiation can require dramatically increasing time 
and space, especially for products, quotients, and composite 
expressions. 

5. The useful utility function FR.EECF (exprl, expr2) is a 
predicate which returns TRUE iff exprl is free of (i.e. contains no 
OCOlrrences of) expr2. 
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oo.occ (c:) 02/09/80 · '1'he Soft Warehouse 

INmii&TION Pac;lsase nocumentai;ion 

PORPCSE: 
FileINr.DI!' provides f~ilities for indefinite syrrcolic 
integration. 

P~Sl'l'E Fn.E: DIF.AI.G 

OSAGE: 
INr (expressial, variable) • 

EXAMPLE: 
lNI' (A-X + SIN(X), X) -> A-X'"'2/2 - CCS(X). 

~: 

l. When INT is unable to determine a c:losed-form integral of 
portions of an expression, the re::·~rned expression will contain 
unevaluated integrals of those portior.;.;;.. For example, 

INl' (X + A*i:E""X/X, X) -> :"'2/2 + A*INl'(tE"'x/X,X). 

2. INr merely uses clistril>ution over sums, · extraction of factors 
which do not depend upon the integration vtri~le, known integr~s of 
the built.•in functions, a few-• reduction. rules, and a "derivatives­
divides" substitution rule. Consequently, integration succeeds only for 
a relatively ·modest class of integrands. aowever: 

a. 'l'he class is large enough to be quite useful, 
b. File IN'lMORt.INl' contains acditional. rules, 
c:. Integration of a·truncated Taylor-series approximation 

of an integrand can often yield a truncated series 
representation of otherwise intractable integrals. 

3. A careful study of files INT..OIF and INTMOR.E.INT reveals how 
additional integration rules can be inserted. 

4. The integration •varia..ble" can be an arbitrary expression, 
wbich is then treated the same as a simple varia..ble for integration 
pirposes. 

5. successful integration may depend upon the form of tne 
integrand, after it is simplified according to the current; flag 
settings. Generally speaking, it is best to employ conservative flag 
settings which do relatively little to alter the form of an expression. 
INT will automatically expand, fac-:or, employ trigonometric trans­
formations, etc. as necessary. 
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nmt:!RE.DCC (C) 02/09/80 The soft Warehouse 

E¢enged INJ$RATIC?x Pwekage poc;µmentation 

PURPCSE: 
File INrMORE.m? provi.3es symbolic.definite integratioo and extends 
the powe.r of the indefinite integration provided by file INI'J)IF. 

~ISI'l'E FILE: INI' .DIF 

OSAGE: 
INI' (expressioo, variable), 
DEF!Nl' (expressia1, variable, lCMerlimit, ua,erlimit). 

EXAMPLE: 
DEFINl' (A-X"'2, X, 0, l) -> A/3. 

lm•lARKS: 

l. DEFIN? merely uses substitution into the indefinite integral, 
which is appropriate only for proper integrals. 

2. When DEFIN? is unable to detemine a closed-form · integral, the 
unevaluated integral is returned. For example, 

OEFINr (X+A*tE"'X/X, X, 0, l) -:-> DEFINl' (X+A*tE'"'X/X, X, 0 ~ l) • 

3. Nested integration can be used to request directly an iterated 
integ;ation, such as occ:urs for appropriate multiple-integrations. For 
example, to integrate the expression yttx'"'2 over the uppe.r unit semi­
disk, we could evaluate 

DEFINT (DEFINT(Y*X"'2,Y,0,(l-X"'2) '"'(l/2)), X, -1, l). 

Bowever, beware that the class of expressions which is repeatedly 
integrable is dramatically smaller than the class which is once 
integrable. 

4. File I?-."!JXX: contains other appropriate remarks. 
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muSIMl?/muMATB-79 runction Name and Variable Name INDEX 

The following is an index of all the important function, 
variable, and constant names in both muSIMP .and muMATB. Each. name is 
followed by the module in wbich it occurs, a descriptor indicating the 
name's use, the page in the mod~le's docu~entation on which it is 
explained, and finally the page in the module's muMATB source file on 
which it is defined. Function names_ are indicated by a set of 
parentheses following the name which contains the usual number of 
arguments given to the function. An asterisk (*) in the •page 
Defined• col1.1mn indicate.i that the item is incrementally defined in a 
number of places within the source. 

Page Page 
nu Mgdule pescriptor oocumented Defined 

ABS ( l) ARITB Numerical l 3 
ADJOIN ( 2) muSIMP Constructor 8 
ANt> ( N) muSIMP Logical 12 
APPEND ( 2) MATRIX Constructor 2 
APPLY (2) muSIMP Evaluator 28 
ARGE!X (l) ARITB Selector l 4 
A.RGLIST (l) ARITE Selector l 4 
ARRAY {l) ARRAY .Recognizer 2 
ASSIGN ( 2) muSIMP .. Assignment 13 
ATOM ( 1) muSIMP Recognizer 10 
ATSOC (2) muSIMP Property 14 

BASE Cl) ARITB Selector 2 
BASEXP ALGEBRA Control variable 2 4 
BASEXP (l) ALGEBRA Recognizer 4 
BLOCK muSIMP Keyword 31 

COOIV (l) ARITB Selector 2 3 
COEFF Cl) ARITB Selector 2 4 
COL (1) ARRAY Recognizer 2 
COMMA muSIMi Constant 35 
COMPRESS (1) muSIMP Sub-atomic 18 
CONCATEN ( 2) muSIMP Modifier 9 
COND (N} muSIMP Evaluator 29 
CONDENSE (2} muSIMP Storage 33 
cos ( l} TRGPOS Numerical l l 
cos ( 1) TRGNEG Numerical 2 l 
COT ( l} TRGPOS Numerical l l 
csc ( l) TRGPOS Numerical l l 

DEFINT (4) INTMORE Numerical l l 
DELIMITER muSIMP Constant 36 22 
DELIMITER (1) muSIMP Recognizer 36 22 
DEN Cl) ARITB Selector 2 2 
OENDEN ALGEBRA Control variable l ., .. 
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DENOEN (l) 
DENNUM 
DENNOM ( 1) 
DENOM (l) 
DIF ( 2) 
DIFFERENCE (2) 
DIVIDE ( 2) 
DRIVER (0) 

ECHO 
EMP'I'i: (l) 
ENDBLOCX 
ENDFUN 
ENDLOOP 
ENOSUB 
EQ ( 2) 
EVAL (l) 
EVSOB (3) 
EXIT 
EXPAND (l) 
EXPBAS 
EXPBAS (1) 
EXPO ( l) 
EXPLODE (l) 
EXPON (l) 

FCTR (l) 
FIRST (l) 
FLAGS 
FLAGS (0) 
FOORONPI 
FRIE (2) 
FREE (2) 
FUNCTION 

GCD (2) 
GET (2) 
GETD (l) 

HAL!' 

IDENTITY (l) 
IOMA1' (l) 
INFIX 
INT (2) 
INTEGER (l) 

LBP 
LCM (2) 
LENGTH (l) 
LINEL!NGTH ( l) 
LIST (N) 
LN (l) 
LOAD (3) 

Module 
ALGEBJA 
ALGEBRA 
ALGEBRA 
ARITl:l 
DIF 
muS!MP 
m1.1SIMP 
JlluSIMP 

muSIMP 
muSIMP 
muSIMP 
muSIMP 
muSIMP 
muSIMP 
muSIMP 
muSIMP 
A.RITH 
muSIMP 
ALGEBRA 
ALGEBRA 
ALGEBRA 
ALGEBRA 
muSIMP 
A.RITl:l 

ALGEBRA 
muSIMP 
ALGEBRA 
ALGEBRA 
TRGNEG 
SOLVE 
OIF 
muSIMP 

ARITH 
muSIMP 
muSIMP 

TRGPOS 

A.RITH 
MATRIX 
muSIMP 
INT 
muSIMP 

muSIMP 
A.RITB 
muSIMP 
muSIMP 
muSIMP 
LOG 
muSIMP 

pesc;riptor pocumented pef1ne, 
Recognizer 
Control variable 
Recognizer 
Selector 
Numerical 
Numerical 
Numerical 
Evaluator 

2 

2 
l 

19 
19 
31 

Control variable 22 
Recognizer l0 
Delimiter 31 
Delimiter 17 
Delimiter 30 
Delimiter 17 
Comparator ll 
Evaluator 27 
Constructor/Evaluator 2 
Delimiter 31 
Evaluator 4 
Control variable 2 
Recognizer 
Evaluator 4 
Sub-atomic 18 
Selector 2 

Evaluator 4 
Selector 7 
Global variable 
Printer 4 
Constant 
Recognizer 
Recognizer l 
Keyword 16 

Numerical 2 
Property 14 
Definition 16 

Constant 

Identity function 
Constructor 
Parse property 
Numerical 
Recognizer 

Parse property 
Numerical 
Sub-atomic 
Printer 
Constructor 
Numerical 
System function 

2 

2 
l 

35 
l 

10 

35 
2 

18 
25 

8 
l 

34 

3 

~o 
4 
1 

1 

5 
4 
4 
7 

4 

8 . .~ 
8 
l 
1 
l 

3 

l 

1 
2 

2 

3 



Hams: Module Descriptor DO~ijm1nt1g ~~fiDig . 
LOG ( 2) LOG Numerical l l 
LOGARITBM (l) LOG Recognizer "" .. , . 2 <o· LOGBAS LOG Control variable l l 
LOGEXPD LOG Control variable 2 l 
LOGEXPD (2) LOG Evaluator l 
LOOP (N) muSIMP Evaluator 30 30 
LOOP muSIMP Keyword JO, 
LPAR muSIMP Constant 35 

MAPFON (2) EQN Mapping . l 
MATCH (2) muSIMP Reader 36 ... 22 
MATCHNOP (2) muSIMP Reader 36 
MIN (2) ARITH Numerical 2 3 
MINUS (l) muSIMP Numerical 18 
MKPROD (l) ARITB Constructor 2 
MKRAT (l) ARITH Constructor s 
MKSOM (l) ARITB Constructor 2 
MOO ( 2) muSIMP Numerical 19 
MOVD (2) muSIMP t,efinition 16 
MULTIPLE ( 2) ARITH Comparator 2 l 

NAME ( l) muSIMP Recognizer 10 
NEGATIVE Cl) muSIMP Recognizer 10 
NEGCOEFF ( l} ARITH Recognizer 2 2 
NEGMOLT (2) ARITB Comparator 3 l 
NEWLINE (0) muSIMP Printer 24 
NOT ( 1) mu.SIMP Logical 12 'oE NUM (l) ARITB ··selector 3 2 i 

NUMDEN ALGEBRA Control variable 2· 3 
NUMDEN (l) ALGEBRA Recognizer 3 
NUMNOM ALGEBRA Control variable l l 
NUMNOM ( l) ALGEBRA Recognizer l 
NUMBER (1) ARITH Recognizer 3 l 

OBLIST (0) muSIMP Constructor 8 
OR (N) muSIMP Logical 12 
ORDERP (2) muSIMP Comparator ll 

PARSE ( 2) muSIMP Reader 36 21 
PBRCB ARITB Control variable 1,4 10 
PION2 ARITB Constant 12 
PION4 TRGNEG Constant l 
PLOS ( 2) muSIMP Numerical 18 
POSITIVE (l) muSIMP Recognizer 10 
POSMOLT ( 2) ARI'l'B Comparator 3 l 
POWER (l) ARITB Recognizer 3 l 
PREFIX muSIMP Parse property 3.5 
PRIMES ARITB Glooal variable 4 ll 
PRINT (1) muSIMP Printer 24 
PRINTLINE (l) muSIMP Printer 24 
PRODUCT (1) ARITB Recognizer 3 l 

'c 
PROPERTY muSIMP Keyword 15 
PRTMATH (4) muSIMP Printer 25 
PtJT (3) muSIMP Property 14 

3 



PO~. (2) 
PWREXPD 

QOERY (2) 
QUOTIENT (2r~ 

RADfX (l) 
UP 
Rl)S''" (3) 
UAl) (0) . . 
REAJXBAR· ( O)'··::­
RECIP (1) 
RECLAIM ( 0) . . 
REMPROP {2)·· ... ,. 
REPLACEF c2r· 
REPLACER ( 2) .. 
REST (l) .. 
UVJRSE (2) 
ROW' (l) 
RPA.a 
RREST {l) 
RRRIST (l) -~ 
SAVE (3) 
SCAN (0) 
SEC (1) 
SECOND (l) 
SIGN (l) 
SIMPO (2) 
SIN (l) 
SIN (l) 
SOLVE (2) 
SPACES (l) 
SOB (3) 
SUBROUTINE 
SOM (l) 
SYNTAX (N) 

TAN Cl) 
TERMINATOR ( 0) 
TBIRD Cl) 
TIMES (2) 
TU.Cl (N) 
ftGSXPD 
TRGIXPD 
'l'RGUPO ( 2) 
TRGSQ 

ONION (2) 
ONTRACE {N) 

WHEN 
WRS (3) 

Module 
muSIMP 
ALGIB+IA 
IN'l' 
muSIMP 

muSIMP 
muSIMP 
muSIMP 
muSIMP 
muSIMP 
All'l'B . 
muSIMP 
muSIMP 
muSUlP 
muSIMP 
muSIMP 
muSIMP 
ARRAY 
muSIMP 
muSIMP 
muSIMP 

muSIMP 
muSIMP 
'l'RGPOS 
muSIMP 
INT 
ARITB 
TRGPOS 
'l'RGNEG 
SOLVE 
muSIMP 
AR!TB 
muSIMP 
ARITB· 
muSIMP 

TRGPOS 
muSIMP 
muSIMP 
muSIMP 
TRACE 
TRGPOS 
TRGNEG 
TRGNEG 
TRGPOS 

SOLVE 
TRACE 

muSIMP 
muSIMP 

Descriptor 
Definition 
Control variable 

Reader/Printer 
Numerical 

Printer 
Parse property 
Reader 
Reader 
Reader 
R•cognizer 
Storage 
Property 
Modifier 
Modifier 
Selector 
Constructor 

·Recognizer 
Constant 
Selector 
Selctor 

System 
Reader 
Numerical 
Selector 
Recognizer 
Evaluator 
Numerical 
Numerical 
Numerical 
Printer 
Constructor 
Keyword 
Recognizer 
Reader 

Numerical 
Recognizer 
Selector 
Numerical 
Debu99er 
Control variable 
Control variable 
Evaluator 
Control variable 

Constructor 
Oeb1,199er 

Keyword 
Printer 

4 

pocumentea Define¢ 
16 

2 

19 

25 
35 
22 
21 
21 

3 
33 
14 

9 
9 
7 
8 

35 
7 
7 

34 
21 

1 
7 

3 
l 
2 
l 

24 
3 

35 
3 

36 

l 

7 
19 

l 
2 
2 
3 
2 

l 

31 
25 

:~-,·.·. -·• 
:4 

l 

1 

l 

l l. 
4 
l 
l 
3 

l 

l 
22 

l 
22 

l 
l 

3 
l 

l 
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liAm.e. Module 

ZllO (l) muSIMP 
7.EROBASE A.RITB 

C iDeEXPT A.~ITB 

• muSIMP 
> muSIMP 
> A.RITB 
< muSIMP 
< ARITB 
• muSIMP • 
+ muSIMP 
+ ARITB - muSIMP - ARITH 
* muSIMP 
* A.RITB 
/ muSIMP 
I ARITH ... A.RITH 
1 ARITH 
? ARITB . 
~ MATRIX 

MATRIX 

tAD SOLVE 
IE A.RITB 
iI: ARITB 

·o tPI! A.RITB 

t ·' ·• 

~ ,., . 

Descriptor pocumentea oe:~nea 
Recognizer ., , _ 
Control variabli''•·, 
Control variabler~· 

Comparator 
·Comparator 
Compa:-ator 

·comparator 
Comparato: 
Assignment_ 
Numerical 
Numerical 

···Numerical 
· >ttumerical· 

Numerical 
Numerical­
Numerical 
Numerical 
Numerical 
Numerical .. 
Error f:.:ncticn 
Numerical. 
Numerical 

Constant 
Constant 
Constant 
.constant 

,,, ... -• ..... 

, : ,. ; .. ~. 
..... ~ ,,. -~ . 

'•! ..•. 

10 
l 
l 

11 . 
11 

11 

13 
20 (' 

20 r 

s 

3 
2 

l 
4 
4 
4 
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• ~ < ~ .. 

..... . ... -· 

r ·; \' .·: ~· r 
. ~ ' .,,,. . . ~ .. 

·~· ...... : ·~':,,·.---... , ...... ".,, ....... 

s 




