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Software catalog and availability
Software price list and order form
Sofcware license agreement
A list of all machine teadable files
Interactive use of muSIMP and muMATH
Use of the on-line lesson files

PROGRAM FILES

K-Bytes

4

qdwhhummpmnaﬁﬁq

6
15
10
12

Contents
Machine-lanquage muSIMP-79 nucleus
Completion of muSIMP-79
Basic aritlmetic package
Trace package for debugging programs
Basic algebra package’

Bquation simplification package
Bquation solving package

Array package

Matrix package

Logaritimic package

,Trigonametric package (Part I)
"Trigonometric package (Part II)
Symbolic differentiation package
Symbolic integration package (Part I)
Symbolic integration package (Part II)

CALCULATOR-MODE  LESSONS
. R=Bytes
7

Contents
Rational aritlmetic & assigrment
Factorials & fractional powers
Polynomial expansion & factoring
Continued fractions, bases & exponents
Complex variables & substitution

PROGRAMMING-MODE LESSCNS

Version
11/01/79
11/01/79
11/01/79
11/01/79
1/01/79

K-Bytes
18
9
13
12
19

Contents
Data structure and function definition
Data composition and recursion
List and set operations
Control constructs, loops, and block
Property lists and function evaluation

*These files are included only if there is sufficient space cn the disk.
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FILE NAMING CONVENTION

Files of type COM are unprintable directly-executable machine-
language program COMmand files.,

Files of type SYS are unprintable mach:.ne—language memory-images
which can be LOADed from within muSIMP,

Files of type DOC are printable files DOCumenting the usage of a
program file having the same first name,

Files of type TXT are printable text files containing infotmation
implied by the first name,

Files having a first name of the form CLESn are interactive
Calculator-mcde LESsons to be executed from within muSIMP, in the
order indicated by the numeric suffix n.

Files'having a first name of the form PLESn are interactive
Programming-mode LESsons to be executed from within muSIMP, in the
order indicated by the numeric suffix n.

- All files listed above of a type other than COM, SYS, DOC, and TXT

are muSIMP program source files. The type name denotes the first

three letters of the first name of the most immediate prerequisite

program file, For example:

a) The muSIMP file named ALGEBRAARI implements algebra, requiring
the muSIMP file named ARTTH.MUS as a prerequisite.

b) File AIGEBRADCC is the reference documentation for usage of the
facilities implemented by file ALGEBRA.ARL.

¢) Files CLES3.ALG and CLES4.ALG are interactive calculator-mode
lessons teaching use of the facilities implemented by file
ALGEBRA.ARI,

$ RS ()$



File READ1ST.TXT (¢) 10/30/79 The Soft Warehouse

General Infommation

- Congratulations on your purchase of the muSIMP/muMATH-79 Symbolic
Mathematics System. This package is a revoluticnary and sophisticated
software system for 8080 and 280 based microcomputers. Therefore some
degree of study and patience is required to properly build a system from
muMATH source files, and then save the result as a memory image file.
Bowever once built and saved, it is a simple matter to load and interact
with the system at any later time as described in file INTERACT.TXT.

Unfortunately your first task is the rather uninteresting one of
building the system as explained in the remainder of this file. The
immediately following background information is provided to make the
process seem less mysterious.

The muSIMP-79™® programming Language

The muSIMP-79 (micro-computer Structured IMPlementation language)
system provides a high level programming language suitable for a wide
variety of applications. It is implemented using an efficient and
versatile interpreter requiring 7K bytes of machine code, The current
version of muSIMP also requires a bootstrap file which is loaded
immediately after the machine coded portion. The interpreter is
distributed as two disk files:

MUSIMP79.COM "an executable ’Ccmand file
MISMORE MUS the muSIMP bootstrap file

The file named FILES.TXT indexes and briefly describes the muSIMP
documentation package. The documenation is only distributed in printed
form., FILES.TXT also lists the lesson files required to become
proficient in the programming language. Since using muMATH in the
calculator mede requires no programming knowledge, learning muSIMP can
be safely postponed, ’

The mMATS-79™® gvmbolic Math System

The muMATH-79 System provides the facilities to perform a wide
variety of symbolic mathematical operations efficiently and accurately
on a computer. It is implemented as a set of muSIMP program packages.
These source file packages are organized in a very modular fashion in
order to accommodate both differing mathematical needs and differing
computer memory Sizes. More sophisticated mathematical packages require
prerequisite files as indicated by the following dependency diagram.
Each file requires those above it in the diagram as a prerequisite. (The
significance of the numbers will be explained below.)



MUSTHPT79.COM

+MUSMORE . MUS
/ \
/ \
N/A,551 1536,3115
B / \
V/ / \
ARRAY .ARI ALGEERA.ARI
375,756 1160,1946
// . |
1/ J o/ | | | \
MATRIX.ARR EQN.ALG | LOG.ALG | DIF.ALG 1793%
497,892 /86.208 : 186,345 : 306;580
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SOLVE.EQN TRGPOS.ALG TRGNEG.ALG INT.DIF 13s59¢
452,734 327,602 372,680 79411420
Fl
INDMORE . INT
914,1760

System Generation Precedure

If you are proficient in the use of the microcomputer's disk
operating system (DOS), the follawing procedure should be sufficient
explanation to build and save a.complete muMATH system., However if you
are a novice or questions arise, additional information can also be
found in files BACKUP.TXT and INTERACT.TXT, and in the documentation
provided with the disk operating system.

I. Generate a muSTMP/muMATH-79 backup disk.

Using the computer's DOS, transfer a copy of the source
files depicted in the above diagram from the Soft Warehouse
master diskette to a backup diskette. Since the total disk
space required to store the files is approximately 96 K bytes,
more than one diskette may be required. Often it is
convenient to generate a DOS on the backup disk(s).

II. Build a muSIMP-79 System. S s

Execute the MUSIMP79 COMmand file by the entering the
following DOS command:

MUSIMP79

It should then display a version/copyrignt message. Jot
down the number following the word *SAVE" in the message for
later use. The bootstrap file will begin to lcad
automatically. After about 5 minutes load time, the system
should respond with the "? " prompt character indicating that
muSIMP has been successfully constructed.



III. Build a muMATH-79 System.
Two muSIMP commands are required to build a muMATH

- gystem, All commands must be terminated by a semicolon and a

carriage return in order to initiate the action.

The source filye, *name”."type” on disk *drive® is loaded
by issuing a command of the form

RDS (name, type, drive);

Note that the file name and type are separated by a comma
rather than a period, and the drive requires only a single
letter without the customary colon, The drive is an opticnal
arqument which defaults to the drive currently logged in.

Each muMATH source file requires a given amount of
computer memory to store its function definitions. The unit
of storage in muSIMP is the "node" which is described in file
MUSDATA.MUS. The pairs of numbers in the dependency diagram
above are the approximate number of nodes required to store
the corresponding muMATH package in both condensed and
uncondensed form, See the next section for the significance
of the smaller condensed numbers. '

The number of free (i.e. unemployed) nodes is given by
the muSIMP command

.

RECIATM (); "

When building a system you must ensure that there is
adequate storage for the program plus at least 500 additicnal
nodes to store mathematical expressions. This can be
accomplished through the use of RECLAIM and reference to the
uncondensed number in the dependency diagram corresponding to
the program package. .Once this has been verified, execute the
appropriate RDS load .command. This procedure is illustrated
by the following dialogue building a muMATH ALGERRA system:

RECLAIM () ;
6360 e

RDS (ARITH, MUS);
ARTTH

? RECLATM ();
€ 3245 Yol -

m~ [~ XN

? RDS (ALGEBRA, ARI);
@ ALGEBRA

? RECAIM ();
@ 1300 pa

-

w T



IV. Save the muMATH-79 System.

In order to avoid repeating the tedious build routine in
the future, a memory image file of the muMATH system should be
saved immediately after the build using either method A or B
described below., Whichever method is used, it is advisable to

use a file name representative of the most sopnisticated

mathematical capabilities loaded, For example, names such as
ALGEBRA, TRIG, CALCULUS, EQUATION, etc,

*** WARNING *** Before attémpting a save, ensure that a
diskette with sufficient free space to store almost an entire
memory image is properly mounted on a disk drive.,

A, | Return control to the DOS by typing CIRL-C.
" Then generate a COM type file by issuing the DOS
SAVE command. Use the decimal number, N, of 256

byte records recorded in step II above. The file
size will be (W4) K bytes,

Although most desirable from a convenience standpoint
(see file INTERACT.TXT), this method may NOT work due to
limitations of the DOS. The easily reccgnizable symptoms are
either the inability of the DOS to save that large a file, or
erratic behavior when the COM file is subsequently executed.
If this happens, you will have to build the system again from
step II and use method B in the future.

B. Type the USTMP c;:mnand of the form
SAVE (name, drive);

This will save a file called name.SYS on the given
drive. Again the drive is optional, defaulting to
the current drive. The SYS file will be
approximately (N-28)/4 K bytes, where N is the
number recorded in step II.

Generation of COM or SYS files is also useful for checkpointing a
lengthy dialogue for purposes including:

1. continuation at a later time,

2. preservation of an enviromment so that uncertain exploratory

computations which might endanger the environment can be
safely pursued,

3. preservation of a "program® (meaning an envircnment) produced

interactively rather than using a text editor.

3
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Condensed System Generation

Although muMATH is much more compact than any previous general-
purpose symbolic math system, it is still a large set of programs foz
microcomputers. Fortunately, the use of a "condensing” technigue to
load programs can economize cn memory consumption by a factor of almost
two, If the control variable named CONDENSE is assigned the value TRUE,
then common subexpressions of function definitions are automatically
shared as the source files are read in. The infix muSIMP colon operator
is used to make the assignment to CONDENSE as described in the muSIMP
lesson and documentation files. Thus, to build a condensed ALGEBRA
system, the following commands should be issued in place of these in the
example of step II above:

CQDENSE: TRUE;
RDS (ARITE, MUS):
ROS (ALGEBRA, ARI);
CONDENSE: FALSE;

The exhaustive searching makes condensation too slow for inter-
active use, so that is why it is advisable to set CONDENSE to FALSE just
before the save. The above condensed load requires an hour or so,
depending on the processor speed. Since it is possible to type the
above commands on one line, you are free to take a long break while the
condensation takes place,

Condensation can be regarded as an optional sort of "compilation”

‘stage, and one of the principal reasons for generating COM or SYS files

is to preserve this investment of time. However, for simplicity, we
suggest not worrying about produting condensed COM or SYS files until it
becomes impossible to otherwise fit all of the desired files into memory
simultaneously.

Many of the muMATH files contain opticnal sections identified by
conspicuocus comments, To save space, appropriately pruned versions of
these files can be created using a text editor. For example, a user
with only 32 kilobytes may have to delete portions of the arithmetic and
algebra packages in order to do algebra comfortably, even with
condensation. As with the set of muMATE files, each file is internally
organized "bottom up”, with the most expendable and highest-level
features late in the file., Consegquently, the files can be truncated
between almost any two commands, without risk of invoking undefined
functions or uninitialized control varizbles.
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INITIATING A muMATH COM FILE

- Initiating muMATE is easiest if someone has already saved a COMmand
file having a memory image including a2ll of the muMATH or other programs
which vou wish to use at that time. The name of such a file is of
course up to whoever creates it, but in general the name assigned is of
the highest-level math package loaded. Thus ALGEBRA.COM would be the
name of a command file containing ARITH.MUS and ALGEBRALARI.

For example when using a CP/M (tm) type operating system with file
ALGERRA.COM on the current drive, one merely enters the following
system~level command terminated by a carriage return:

ALGEERA

After a minute or so of loading from the da.skette, the response should
be a message of the form:

mSIMP-79 (Version menth/day/year) SAVE: size
Copyright (¢) 1979 by The SOFT WAREHOUSE phone
?

where appropriate numbers appear as the entries *month®, "day”, “year®,
"size", and "phone". You are now free to enter mathematical expressions
as described below.

"

mmmnnAmmsysrm

Unfortunately for reasons described in file READIST.IXT, it may be
impossible to construct a muMATE COMmand file. However, the following
means of initiating muMATH is always possible and quite easy provided
someone has saved a SYS-type file containing a memory image of the
mulMATH packages which are needed at that time. Here too the name of such
a file is up to whoever creates it, but in all probability the same
naming convention describe above for COM files was used. Therefore
ALGEBRA.SYS would have had the same source files loaded in as the file
AILGEERA.COM would have.

For example, if MUSIMP79.COM is cn the current drive and ALGEBRA.SYS

is en disk drive B, the appropriate operating system load command would
be as follows:

MUSIMP79 B:ALGEBRA
Abocut half a minute after the muSIMP logen message appears, the muMATH

system should respond with the *? " prompt characters, Now you can
begin your interactive dialogue with muMATH,



THE INTERACTION CYCLE

muSIMP prompts the user with a question mark indicating readiness to
accept a command entered from the terminal. The user then types an
expression followed by a semicolon and a carriage return. First muSIMP
parses the expression and converts it into an internal representation.
After printing an "@" to herald the "@nswer®, the expression is
evaluatad, and then a space is printed to indicated the evaluation phase
is complete, Finally the result is deparsed and printed in mathematical
notation. This interaction cycle is repeated indefinitely until a CTRL-C
is typed (i.e. a "C" typed while depressing the CTRL key).

For example, here is a segment of a trivial muSIMP dialogue:

? MEMBER (APPFLE, '(GRAPE, APFLE, PLUM));
€ TRUE :

CORRECTING TYPOGRAPHICAL ERRORS

Since muSIMP uses the operating system's console I/0 routines, all
the line-editing features of that system are inherited by muSIMP.
Backspacing is usually accomplished by typing either a CTRL-E, or a
RUBout, or a DELete key. Some systems echo the deleted character;
whereas, others erase the character from the screen and backspace the
cursor. Entire lines can be deleted or flushed by typing a CIRL-U or a
CTRL-X. As a note of caution: there is no way to modify a line once a
carriage return has been. typed. If this happens, the entire expressicn
can be flushed by typing a semicolon.

INTERRUPTING EVALUATION

an evaluation in progress can usually be aborted by typing a CIRL-Z,
ESCape, or ALTmode. An options available message will then be
displayed. The usual choice is typing another CTRL-Z, ESCape, or
ALTmode which allows you to enter expressions as before. The other
alternatives are fully explained in file ERRORS.TXT. As a last resort,
the computer can of course be RESET and a "cold start” performed to
reload the cperating system.

$ RS () §
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File: BACKUP.TXT (c) 11/01/79 The Soft Warehouse

How to Backup the Master Diskettes
Supplied by the Soft Warehouse

1. The following information is provided for those who are not
throughly familar with their computer's disk operatmg system. Since
there are many different operating systems and computer conf figurations,
it is necessarily a general guide which should be supplemented by study
of the documentation supplied with the disk cperating system.

2. Cbtain an appropriate number of blank new, high-quality diskettes
suitable for your drive,

3. Become thorocughly familiar with the terminal, computer, disk drives,
and operating system. Most cases of accidental erasure of the master
diskettes or other irrecoverable errors are committed in the first few
moments by eager users, inexperienced with the system on which they are
installing the new software, In particular, practice initializing a
diskette, then generating a disk operating system on it. Use the
largest version of the system in terms of the space available to user
programs. Finally transfer to the new diskette files from a spare,
write-protected diskette,

4. Due to wear and inadequate industry-wide manufacturing standards,
there are slight or not-so-slight’ mechanical and electrical differences
between various nominally compatible drives and diskettes.
Consequently, we suggest that if you have two or more drives, you first
try placing the new diskette in the drive on which it will be used most
often. The Soft Warehouse diskette can then be tried on each of the

other drives, trading with the new diskette if none of the cther drives
are successful.

5. For two or more drives, some operating systems provide a convenient
COPY DISK command which-automates most of the copying protocol otherwise
necessary. Alternatively, the PIP (Peripheral Interchange Program) or
XFER (File Transfer) commands of most operating systems usually permit
copying all files from drive A to drive B by a command such as

PIP A: 1
or LFER As=B:*.*

6. Cooying diskettes is much more laborious on systems having only one
drive, Generally, it involves repetitively reading a porticn into main
memory from the old disk, switching disks, then writing the porticn onto
the new disk, then switching back to the old disk. The process
generally involves using a resident bootstrap monitor in read-only
memory, or using a "DDT"-like "Dynamic Debugging Tool" program.
Moreover, the process may pad out the ctherwise only partially filled
last page or record of a file with arbitrary garbage which is harmless
in a command file but annoying in a text file. Thus, text files
transferred this way may require some text editing to clean-up.



7. For some operating systems it may be necessary to remove the write

protect tape from the old diskette temporarily, even though it is only

to be read from. (Perhaps this is true only if the old diskette is in

the "principal®” drive.) Moreover, it may be awkward to copy a diskette

without first removing the write protect tape in order to copy the

gggrating system onto that diskette, especially if there is only one
ive.

8. We use costly highest-quality diskettes, and we endeawvor to record
them on the most precisely adjusted drives available. Consequently, if
you cannot read our diskettes after several attempts and after carefully
restudying our directions and those provided for the hardware and
operating system, then

a) Carefully check whether or not you correctly specified
all of the details on the order fomm and purchased the
proper type of blank diskettes.

" b) Use an aligmerit test diskette or have your drive
checked professicnally.

¢) Get help fram an experienced professional or friend,
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Using The Interactive Lesscns Files

‘This file explains how to use the interactive muSIMP and muMATH
lesson files. muMATE and the lessons are designed to serve a broad
range of math levels from arithmetic through calculus, and to serve a
broad range of programming backgrounds from none to professional
programmer, How is this scope possible? Read on:

The sequence of lesson files CLES]l, CLES2, etc, explains how to use
MUMATH as an arithmetic or symbolic calculator, for successively more
scphisticated mathematical operations. The sequence ¢f lessons PLES],
PLES2, etc, explains how to write programs in muSIMP, in order to
enhance the suite of built-in operations or for any other purpose.

The calculator sequence is ordered according to the most common
sequence in which the corresponding math subjects are taught. It is
intended that a user proceed in this sequence only as far as their math
background, before opt:.onally beginning the programming sequence. Due
to slight variations in math curricula sequence.s, some users may prefer
to skip cenads:n calculator lessons in the middle of the sequence as well
as at the en

muMATH has such a rich set of built-in capabilities that many users
will be content to postpone study of the programming sequence
indefinitely. However, many users evenntually will want to proceed to
the programming sequence, perhaps for one or more of the following
reasons:

1. to enhance the built-in muMATH capabilities,

2. to understand how the underlying muMATH algoritims work,
3. to learn computer programming,

4. to use STMP for same other application.

In order to make the programming sequence most useful to users of
all mathematical backgrounds, the sequence begins with muSIMP examples
which are non-mathematical, or arithmetic at most. Most general
programming techniques and their realization in muSIMP are independent
of higher-level math, Thus, only the last lessons in this sequence deal
with muMATHE specifically, explaining how to extend it, alter 'it, and
even replace it with alternative symbolic math systems,

There are three ways to experience the lessons. For most people,
the best way is to execute them interactively, trying out examples at
the opportunities provided; the second best way is to read the printed
record of a dialogue produced by somecne else executing the lessons; and
the third best way is to read the files containing the original lessons,

which contain only cne side of an intended dlalogue.



As indicated in file FILES.IXT, the first lesson is file CLES1.ARL
Consequently, to commence the lesson you must first initiate a muMATH
system containing at least file ARITH.MUS., How to do this is explained
in file INTERACT.TXT. Then, you simply issue the muSIMP command

RDS (CLES1l, ARI, drive);

where "drive" is the name of the drive on which the CLES1.ARI is
mounted. The lesson will tell you what to do from then on. If the
interactive lesson for any reason becomes hopelessly confusing, you can
always cease the lesson and simply read it. Also, it may help if you
take the lesson along with a companion, because your possible confusions
may be disjoint.

Bave fun!
$ RDS () §



©

$File: CLES1.ARI (c) . 10/30/79 The Soft Warehouse %

LINFLENGTH (78)$ #ECHO: BCHOS ECHO: TRUES

$ If this lesson is being displayed too fast, it can be temporarily
stopped by typing a CTRL~S (i.e. typing the letter "S" while depressing
the CIRL key). Then type it again when you are ready to resume,

If you have not yet read files LESSONS.TYT and INTERACT.TXT, it is
advisable to abort this lesson and read those files first, To abort the
lesson, enter an ESCape or a CTRL-Z character followed by a CIRL-C.

- In muMATH a "comment"” is a percent sign followed by any number of
other characters terminated by a matching percent sign. Thus, this
explanation is a comment which has not yet been terminated. Comments do
not cause computation; they are merely used to explain programs and
examples to human readers. Here is an example of an actual computations

/2 + 1/6 ;
% Note how muMATH uses exact raticnal arithmetic, reducmg frac tions
to lowest terms,

In muMATH, arithmetic expressions can be formed in the usual
manner, usmg parentheses together with the operators "+", """, "*%,

*/", and """ respectively for addition, subtraction or negation,
multiplication, division, and raising to a power, For example: %
(3*¢ - 5) °

$ On some temmals, " w looks like an upward-pointing arrow; on
others it looks like a shallow upside-down letter V; and some terminals
may employ an utterly different looking character which you may have to
determine by experimentation.

The reason for using " and * is that standard terminals do not
provide superscripts or centered dots or special multiplication crosses
distinct from the letter X.

To prevent certain amb:.gu:.tles, multiplication cannot be implied by
mere juxtaposition. One of the most frequent mistakes of beginners is
to omit asterisks.

Later, in order to give you an opportunity to try some examples,
we will "assign” the value FALSE to the variable named RDS. When you
are ready to resume the lesson, type the "assignment”

RDS: TRUE ;

including the semicolon and carriage return. This revises the value of'
the variable named RDS to the value TRUE. We will explain assignment in
more detail later.

- Don't forget that you can use local editing to correct mistypings
on the current line., For example, on many operating systems, the key
marked RUBout or DELete cancels the last character typed on the line,



and typing a CTRL-U cancels the current line, There is no way to modify
a line after striking the RETurn key, but an expression can always be
flushed by typing a final line containing a "grammatical® or "syntax"”
error such as "(;".

- Now we are going to turn control over to you by setting RDS to
FALSE. Try some examples of your own similar to the above. Also we
suggest that you make a few intentional errors in order to become
familiar with how they are treated, For example, try

57; 5+ /7; 5/0; and 0/0;
Have fun!: & RDS: FALSE ; ,

$ The value resulting from the last input expression is automatically
saved as the value of a variable named #ANS, which can be used in the
next expression. For example: §

3 ;#ANS “ $ANS ;4ANS " #ANS;

$ As this example illustrates, muMATH can treat very large numbers
exactly and quickly. In fact, muMATH can accomodate numbers up to about
611 digits., To partially appreciate how large this is, compute tne
distance in feet or in meters to the star Alpha Centauri, which is 4
light years away, then use #ANS to compute the distance in inches or in
centimeters without starting all over, (In case you forgot, the speed
of light is 186,000 miles/second or 300,000,000 meters/second.) %

RDS: FALSE ;

$ Our answers are about 123,883,499,520,000,000 feet or
1,486,601,994,240,000,000 inches or 37,843,200,000,000,000 meters or
3,784,320 000, 000 000,000 centimeters, Another dramatic comparison with
107611 is that there are thougﬁt to be about 10°72 electrons in the
entire universe. (Whoever counted them must be exhausted!)

Often one performs an intermediate computation or a trivial
assignment for which there is no need to display the result. When this
is the case, the display of the result can be suppressed by using a
dollar sign rather than a semicolon as a terminator. For example, type

RDS: TRUE $

and note the difference frum when you previously typed RDS:TRUE ; &

RDS: FALSE §

$ It is often convenient to save values lcnger than #ANS saves them,
for use beyond the next input expression. The colon ASSIGNMENT operator
provides a means of doing so. The name on the left side of the
assignment operator is BOUND or SET to the value of the expression on
its right., This value is saved as the value of the name until the name
is bound subsequently to some other value. The name can be used as a
variable in subsequent expressions, as we have used #ANS, in which case
the name contributes its value to the expression., For example: §

RATE: 55 § TIME: 2 § DISTANCE: RATE * TIME ;

L] Alphabetic characters include the letters A through 2, both upper
and lower case, and the character "$#". Note that the upper and lower
case version of a letter are entirely distinct. Names can be any
sequence of alphabetic characters or digits, provided the first



character is alphabetic. Thus X, #9, and ABC3 are valid names. Make an
assignment of 3600 to a variable named SECPERHOUR, then use this
variable to help compute the number of seconds in 1 day and 1 weak: §
RDS: FALSE § '

% Congratulations on completing CLES1.ARI. To execute the next
lesson, merely enter the muMATH command

FDS {(CLES2, ARI, drive);

where drive is the name of the drive on which that lesson is mounted.
Alternatively, it may be advisable to repeat this lesson, perhaps
another day, if this lesson was not perfectly clear., The use of any
computer program tends to become much clearer the secaond time.

In order to experience the decisive learning reinforcement afforded
by meaningful personal examples that are not arbitrarily coentrived, we
urge you to bring to subsequent lessons appropriate examples from
textbooks, tables, articles, or elsewhere. Also, you are encouraged to
experiment further with the techniques learned in this lesson: &

ECHO: #ECHO $
ROS () §



C

$File: CLES2.ARI (c) 10/30/79 The Soft Warehouse %

LINELENGTH (78)§ $ECHO: ECHO$ ECHO: TRUES

$ This file is the second of a sequence of interactive lessons about
the muMATHE-79 system for computer symbolic math, This lesson presumes
that the muMATH files through ARTTH.MUS have been loaded.

For positive integer N, the "postfix® factorial operator named "!"
returns the product of the first N successive integers, and 0! returns
1. For example, 3i yields 6, which is 1*2*3, Use this operator to
determine the prcduct of the first 100 integers: &

RDS: FALSE §

$ The number base used for input and output is initially ten, but the
RADIX function can be used to change it to any base from two through
thirty-six, For example, to see what thirty looks like in base two: $

THIRTY: 30 § RADIX (2) ; THIRIY ;

L] As you can see, the radix function returns the ptevious base, which
is, of course, displayed in the new number base. This inforation helps
to get back to a previous base. Inbase two, eight is written as 1000,
so to see what thirty looks like in base eight: §

RADIX (1000) ; THIRTY ;
3 In base eight, s:.xteen is written as 20, so to see what thirty
looks like in base sixteen: $

RADIX (20) ; THIRIY ; "

% As you can see, the letters A, B, ... are used to represent the
digits ten, eleven, ... for bases exceeding ten. Now can you guess why
we limit the base to thirty six?

In input expressions, integers beginning with a letter as the most
significant digit must begin with a leading zero so as not to be
interpreted as a name, For example, in base sixteen, ten is the letter-
digit A, so to return to base ten: %

RADIX (0A) ;

$ Why don't you now see what ninety-nine raised to the ninety-nine
power looks like in base two and in base thirty-six, then return to base
ten: % RDS: FALSE §

- % As you may have discovered, it is easy to become confused and have

2 hard time returning to base ten. Two is represented as 2 in any base
exceeding 1, so a foolproof way to get from any base to any other is to
first get to base two, then express the desired new base in base two.

For example: § ‘

RADIX (2) ; RADIX (1010)

§ Now we are guaranteeably in base ten, no matter how badly you got
ost.

Now consider irrational arithmetic: Did you know that
(5 + 2*67(1/2))"(1/2) - 27(/2) - (3/2)7(1/2)



can be simplified to 0, provided we make certain reasonable choices of
branches for the square roots? In genera., simplification of arithmetic
expressions containing fractional powers is quite difficult, but muMATH
makes a valiant attempt., For example: §

~ (/2) ; ®(1/2) ¢ 1000 © (1/2) :
% Try simpl:.fymg the square roots of i.ncteasmgly large integers to
gain a feel for how the computation time increases with the complexity
of the input and answer: % RDS: FALSE $
$ An input ¢f the form (m/n) (p/9) is treated in the usual manner
as (0°(/9)p/ (n"(/9)p . For example: %

(4/9) © (3/2) ;

t  For geometrically similar people, surface area increases as the 2/3
power of the mass, Veronica wears a 1 square-meter bikini, and she is
50,653 grams, whereas her lock-alike mother is 132,651 grams, Use muMATH
to determme the area of her mother's similar bikini: & RDS: FALSE $
$ 4"(1/2) could simplify to either -2 or +2, but muMATH picks the
positive real branch if one exists. Otherwise, muMATH picks the
negative real branch if one exists, as illustrated by the example: %

(=8) ° (1/3) ;

$ What if no real branch exits? Then muMATH uses the unbound
variable named #I to represent the IMAGINARY number (-1)“(1/2), and
expresses the answer in terms of #I, using the branch having smallest
positive argument, For example: §

(-4) " (1/2) ;

% Decent simplification of expr:essmns containing imaginary numbers,
as described in lesson CLES4.ALG, requires that file ALGEBRA.ARI be
loaded. Meanwhile if you believe in imaginary numbers and you can't
contain your curicsity, why don't you experiment with them to see what
MUMATE knows about them: & RDS: FALSE §

$ As with manual computation, picking a branch of a multiply-branched
function is hazardous, so answers thereby cbtained should be verified by
substitution into the original problem or by physical reasoning. For
this reason, there is a CONTROL VARIABLE named PBRCH, initially TRUE,
which suppresses Picking a BRanCH if FALSE. For example: $

PBRCH: FALSE § 4 " (1/2);

% Users having a conservative temperament might prefer to do mest of
their computation with PBRCH FALSE.

This brings us to the end of CLES2.ARI, Though arithmetic, some of
the features illustrated in this lesson may be foreign to you, because
sometimes they are taught during algebra rather than before, Thus, if
you have any algebra background whatsoever, we urge you to proceed to
lesson CLES3.ALG even if some of CLES2.ARI was intimidating. Naturally,
as implied by its type, file CLES3.ALG requires a muMATH system
containing files through ALGEBRA.ARI.

If you decide not to proceed to algebra, but want to learn how to
program using muSIMP, then proceed to lesson PLES1.ARI. %

PC30: $ECS0S PBRCH: TRUES FDS () §
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$File: CLES3.AIG (c) 10/39/79 The Soft Warehouse %

LINELENGTH (78)$. #ECHO: ECHO$ ECHO: FALSES

. NOMNUM: DENNUM: 6 DENDEN: 25 NUIMDEN: PWREXPD: 0$ PBRCH: TRUES
X: 'XS BECHO: TRUES ‘ :

B This file 'is the third of a sequence of interactive lessons about

muMATH-79. This lesson presumes that the muMATH files through

ALGEBRA.ARI have been loaded and that the user has studied the

arithmetic lessons C(LES1.ARI and CLES2.ARI.

-~ An UNBOUND VARIABLE is one to which no value has been assignec.
Mathematicians call such variables INDETERMINATES, You may have already
madvertently discovered that if you use an unbound variable in an
expression, muMATH treats the variable as a legitimate algebraic

~ unknown, Moreover, muMATH attempts to simplify expressions containing

such unbound vanables by collecting similar te:ms and similar factors,
etc. For example: %

2*X - X"2/X ;
% See if mMA:rH automatically s:.mpllfxes the expressions

0+Y, Y+0, 0*Y, ¥*0, 1*Y, ¥*l, Y"1, 1°Y, and 2*(X+Y) - 2*X. §
RDS: FALSE §
$ Sometimes it is desirable to change a bound variable back to
unbound status. This can be done by using the single-quote prefix
operator, ', which looks like an apostrophe on many terminals, For
example: §
BG: X +5; BG: 'BG; BEG + 2:
L) Try assigning the value M*C"2 to E, then change E back to
unbound status: % RDS: FALSE $
$ You may have noticed that some of the more drastic transformations,
such as expanding products or integer powers of sums, are not automatic.
The reason is that such transformations are not always advantageous.
They may make an expression much larger and less comprehensible.
However, they may be necessary in order to permit cancellations which
make an expression smaller and more comprehensible, Accordingly, there
are a few control variables whose values specify whether or not such
transformations are performed., For example, the variable controlling
expansion of integer powers of sums is called PWREXFD. This variable is
conservatively initialized to zero, so that integer powers of sums are
not expanded, For example: %

BG: (X+1) "2 - (X"2-2*X-1) ;

8 Clearly this is an instance where expansion is desirable., When

PWREXPD is a positive integer multiple of 2, then positive integer
powers of sums are expanded, so let's try it: &

PWREXFD: 2 § EG;
3 Nothing happened!

The reason is that muMATH does not automatically reevaluate
previously evaluated expressions just because we change a control value.
Not only would this be rather time consuming, but the ability to form



expressions from other expressions constructed under different centrol
settings provides a valuable flexibility for constructing partially

expanded expressions.

Cn the other hand, it is often desirable to reevaluate expressions
under the influence of new control settings, and the built-in EVAL
function enablies this: $ |
EVAL (EG) ;

% Now that PWREXPD is 2, see how (X+Y)"2 - (X-Y¥) "2 simplifies: %
RDS: FALSE §
) In muMATH-79, denominators are represented internally as negative

powers, and negative integer powers of sums are expanded if PWREXFD is a
positive integer multiple of 3. For example: %

BWRECD: 3 § 1/ (X+1)°2 ;

LY What happens if 1 / ((X+1)°2 = X)°2 is evaluated under the influ-

ence of PWREXPD being 3? For a little surprise, try it.t RDS: FALSE §

% Even though (X+1)"2 is WITHIN a negative power, it is itself a
positive power, so how about trying again with PWREXPD being 2*3: %

RDS: FALSE $

L) Now, we would like to suggest a little experiment for you: The
size limitation on algebraic expressions depends primarily upon the
amount of unemployed memory available for storing names, numbers, and
program or algebraic structure. Memory for the structural use is
measured in units called NCDES, which happen to correspond to 4 bytes in
muSIMP-79 on microcomputers. Node-space tends to be the limiting
resource for algebraic expressions, and we can always determine the
number of unemployed nodes by typing the command: %

RECLATM ()
% Numbers and nodes which are no longer a part of any value that we
can retrieve are automatically recycled intermittently, but the RECLAIM
function forces this "garbage collection" process., The collection takes
on the order of a second, depending on memory size and processor speed;
and these slight pauses are sometimes noticable in the middle of a
printout or a trivial computation. On a computer with front panel
lights, the collections are also usually recognizable by the change in
light patterns. ,
Naturally, if we load an extravagant number of muMATH f£iles into a
single muMATH dialogue or if we save a number of relatively large
expressions as the values of variables, then there will be relatively
little unemployed space for our next computation. Not only does this
limit the size of the next expression, but computatiocn time also
increases dramatically as space becomes scarce, because relatively more
time becomes devoted to increasingly frequent collections. The moral of
the story is: don't unnecessarily load too many muMATH files or retain
numerous expressions as the values of variables.

Now, for the experiment: In order to gain an appreciation for how
computation time depends on the size of the input expression, answer,
and unemployed storage, try timing each computation in the following

sequence, until it appears that your space or patience is nearly
exhausted:

O
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BG: (14X) “2; RECLATM() ; BG:DG"2; {(); BEG:BEG™2; eee §

RDS: FALSE § : ,
$ These polynomials are called “dense”, because there are no missing

terms less than the maximum degree in each unbound variable. In
contrast "sparse” polynomials are missing a large percentage of the
possible terms less than the maximum degrees. If you are still in an
experimental mood, you may wish to try the following analogous sequence
which produces extremely sparse results:

RECLAIM(); (A+B)” 2. RECLAIM(): (A+B+C)"2; RECLAIM(}; oee $
RDS: FALSE $
L] Distribution of sums over sums is another transformation which can
dramatically increase expression size but is sometimes necessary to
permit cancellations., For example, this transformation is clearly
desirable in the expression: %

BG: X™2 = 1 = (X+1)*(X-1) ;

3 When the control variable named NUMNUM is a positive integer
multiple of 2, then integers in NUMerators are distributed over sums in
NUMerators, Similarly when the variable is a positive integer multiple
of 3, then monomials in numerators are distributed over sums in
rnumerators, whereas when the variable is a positive integer multiple of
5, then sums in numerators are distributed over sums in numerators.

The reason for using the successive primes 2, 3, and 5, is that it
provides a convenient way to independently control the three types of
distribution using one easily remembered control variable name,

The initial value of NUMNUM is 6, because numeric and monomial
distribution are recoverable .(as we shall see), because neither
distribution dramatically inczeases expression size, and because a lack
of these distributions often prevents annoyingly obvious cancellations.
For instance the expression 2*(X+l) - 2*X will not simplify unless
NUMNUM is a positive multiple of 2. Similarly X+l - (X+1) will not
simplify to 0, since the expression is represented internally as
X+l + =1*(X+l), which requires the -1 to be distributed over the sum,

Thus, to return to our example, %

BG; NUMMKM: 5 * NOMMM; EVAL(EG) ;
3 To witness the great variety of possible expansions, we set %

NOMNUM: 0 § BG: 4 * X™3 * (1+X) * (1-X);

) Now, successively EVAL BG with NUMNUM being 2, 3, S, 6, 10, 15, and
30: % RDS: FALSE $

% In interpreting these tesults, it is important to recall that
negations are represented internally as a product with the integer
coefficient -1, so NUMNUM must be a positive multiple of 2 to distribute
negations over sums.,

If positive values of NUMNUM cause expansion in numerators, how do
we request factoring in numerators?

Negative values of NUMNUM cause factoring of numerators. Moreover,
the specific negative values cause facton.ng of the type which reverses
the corresponding expansion. For example: %



X: 'X'$ Y: 'Y$ NIMNUM: =2 § BG: 10%X"2*Y + 15%X"3; .
NUMNUM: 3*NUMNUM; EVAL(EG);
3% What about negative multiples of 5? Sorry folks, that's hard for
computers as well as humans. Bowever, we are working on it for future
 releases., Meanwhile, try out our semifactoring on the example
3XAY"I/T - 15*K*Y2/14 + 9%¥X"4*Y"2/7 & RDS: FALSE §

% As you may have guessed, there is a flag named DENDEN which
controls expansion and factoring among negative powers in a manner
entirely analogous to NUMNUM. Use it together with NUMNUM to expand the
denominator then semifactor the denominator of the expression

X°2/((X-Y)*(X+Y) + ¥"2 + X"2*Y) & ROS: FALSE §
$ You may have wondered why we chose the names NUMNUM and DENDEN.
The reason is that there is another closely related control variable
named DENNUM, which controls the distribution of various kinds of
denominator factors over the terms of corresponding numerator factors:

A positive multiple of 2 causes integer denominator factors to
be distributed; a positive multiple of 3 causes monomial
factors to be distributed; and a positive multiple of 5 causes
sum factors to be distributed. For example: §

Y: 'Y $ DENDEN: NUMNUM: 0 $ BG: (5 + 3*X"2) *(Y+1)/(15*X*(44X));
DENNUM: 2 § EVAL(EG):;

DENMNUM: 3*DENNUM; EVAL(EG);

DENNUM: S5*DENNIM; EVAL(EG):

$ Positive setting of DENNUM and NUMNUM are particularly useful for
work with truncated series or partial fraction expansions, For example,
see if you can put the expression (6 + 6*X + 3*X"2 + X"3)/6 into a more
attractive form: % RDS: FALSE §

$ What about negative values of DENNUM?

A little reflection confirms that forming a common denominator
reverses the effect of distributing a denominator. Thus, expressions
are put over a common integer denominator when DENNUM is a negative
integer multiple of 2, expressions are put over a common mcnomial
denominator when DENNUM is a negative integer multiple of 3, and
expressions are put over a common sum denominator when DENNUM is a
negative integer multiple of 5. For example: %

X: 'X $§ DENNUM: DENDEN: 0 § BEG: 1 + X/3 + (1+X)/X + (1-X)/(1+X);
DENNUM: -2 § EG: EVAL(EG); i

DENNUM: 3*DENNUM; BG: EVAL(EG);

DENMM: S*DEMNUM; BEG: EVAL(EG);

3 Try fully simplifying the expression X"4/(X"3+X72) + 1/(X+l) -1
by expanding over a commcn dencminator, then factoring: § RDS: FALSE §

$ As with NUMNUM and DENDEN, the initial setting of DENNUM is 6,
which causes distribution of mumeric and monomial denominator factors
over numerator sums. This tends to give attractive results for
polynomials or series with rational-number coefficients, but the
relatively costly common-denominator operaticn may be necessary for
problems involving ratios of polynomials.

You have now been exposed to the four most important algedbraic
control variables in muMATH. Together with EVAL, the various



combinations of settings of these variables give rather fine control
over the form of algebraic expressions. muMATH cannot read the user's
mind, so it is important for the user tc thoroughly master the use of
these variables in order to achieve the des:.red effects,

: Bere are the most frequently useful combinations of settings for
~ these three variables:

PWREXPD: 0; NUMNUM: DENDEN: DENNUM: 6; These initial values are
usually good for general-purpose work, when the user wants to view some
. results before doing anything drastic or potentially quite time
consuming. .

- PWREXPD: 6; NUMNUM: DENDEN: 30; DENNUM: -30; These settings yield
a fully expanded numerator over a fully expanded common denominator.
This form gives the maximum chance for combination of similar terms.
Moreover, a rational function equivalent to 0 is guaranteed to simplify
11:0 0. However, valuable factoring information may be irrecoverably
ost.

PWREXPD: 0; NUMNUM: DENDEN: =-6; DENNUM: -30; These settmgs yield
a semifactored numerator over a semi-factored common denominator, This
form gives the maximum chance for cancellation of factors between a
numerator and denominator. However, the factoring is done
incrementally, term by term, so it may be necessary to first expand over
a common denominator so that all cancellable terms have an opportunity
to cancel before attempting factorization.

PWREXPD: 2; NUMNUM: 30; DEMDEN: =-6; DENNUM: =-30; These settings
are a good compromise between the advantages of expansion and factoring.
Semi~-factoring is done in the denominator where it is usually most
important, but there is a maximum opportunity for combinatien of similar
termms in the numerator.

PWREXPD: §; NUMNUM: DENDEN: DENNUM: 30; These settings are good
for series expansions or partial fractions, because each term is fully
expanded over its own denominator,

Again, we can't overemphasize the importance of mastering the use of
~these four control variables, They are your primary tocl for imposing
your will on the simplification process, and any lack of understanding
of their proper use will ultimately lead to frustration. Accordingly,
why dan't you try the above and variocus other combinations on examples
of your own choosing, until the usage becomes second nature: §

RDS: FALSE $

$ Congratulations on completing CLES3.ALG. If the mathematical level
was uncomfortably high, proceed to lesson PLES1.ARI. Otherwise proceed
to CLES4.ALG. In either event, it is advisable to initiate a fresh
muMATE envircnment, because our experiments have altered control values
and made assignments which could interfere with those lessons in
nefarious ways. %

BCHO: #ECHOS
ROS () §



$File: CLES4.ALG (¢)  10/30/79 , ‘The Soft Warehouse %

LINELENGTH (78)$ #$ECHO: BCHBOS ECHO: TRUES

% This is the fourth of a sequence of MuUMATH calculator-mode lessons.

There are some other algebraic control varizbles besides PWREXFD,
NUMNUM, DENDEN, and DENNUM; and they are occasionally crucial for
achieving a desired effect. One of these, named NUMDEN, provides the
logical completmn of the latter three, by controlling the distributicn
of factors in numerators over the terms of denominator sums. NUMDEN is
initially 0, but integer numerators are distributed over denominator
sums when NUMDEN is a positive integer multiple of 2, monomial
numerators are distributed over denominator sums when NUMDEN is a
positive integer multiple of 3, and numerator sums are distributed over
deno:;lmator sums when mmm is a positive integer mult;ple of S. For
example: $%

NOIMNM: DENDEN: DENNUM: 0 § NUMDEN: 30§ ;

X/ (XB+X+1)/(Y+1); BG: (X+Y) / (1+X+Y) / (¥Y+1) ;

$ Isn't that intriguing? It yields a sort of "continued-fraction”
representation. Now for the reverse direction, which performs a
denesting of denominators which is less drastic than a single common
denominator: %

NMDEN: <6 $ 2 +1/ (/X +1/¥) / (14Y) ;

$ See if you can devise examples exl'ubzt.mg dramatic simplifications
arising from either direction for this novel transformation., The fact
that it so naturally complements NUMNUM, DENDEN, and DENNUM suggests
that it must be useful for something! % RDS: FALSE §

% Another control variable named BASEXP controls distribution of a
BASe over terms in an EXPonent which is a sum, or controls the reverse
process which is collection of similar factors. As might be expected,
integer bases are distributed over exponent sums when BASEXP is a
positive integer multiple of 2, monomial bases are distributed over
exponent sums when BASEXP is a positive integer multiple of 3, and base
sums are distributed over exponent sums when BASEXP is a positive
integer multiple of 5. Morever, the corresponding negative values cause
collection of similar factors having the corresponding types of bases.
BASEXP is initially -30. Bowever, distribution (followed perhaps by
collection) is sometimes necessary to let some of the terms in an
exponent sum combine with the base., For example: %

BG: 2°(24X) / 4 ; BASEXP: 2 ; EVAL (EG) ;

$ See if you can devise an example which requires evaluating an
expression first with sufficiently positive BASEXP, then reevaluating
with sufficiently negative BASEXP, or vice-versa: § RDS: FALSE §

$ Another control variable named EXPBAS controls the distribution of
EXPonents over BASes whicn are PRODUCTS. Integer exponents are
distributed over base products when EXPBAS is a positive integer
multiple of 2, monomial exponents are distributed over base products
when EXPBAS is a positive integer multiple of 3, and exponent sums are
distributed over base products when EXPBAS is a positive integer
nultiple of S. Naturally, the corresponding negative multiples request



collection of bases which have similar exponents of the indicated type.
The initial value is 30, and here are some examples where distribution
permits net simplification: %

(X7(1/2) *¥) “2; (¥*Y)"2 -X 2*&"‘2 (4*X72*Y) * (1/2) ;

§ However, the user should beware that as with manual computation,
distribution of noninteger exponents is not always valid. Consequently,
conservative users may prefer to gene:ally operate with EXPBAS being 2.

Moreover, distribution of exponents tends to make expressions more bulky
when no cancellations occur. l.-‘or example %

(X*yY*32) " (12 ;
$ In fact, there are instances where negative settings of EXPBAS are
necessazy to acheive a desired result, For example: %

27X * 37X+ (1) T(/2) * (1-X)"(/2) - (1=X"2)"(1/2) ;
EXPBAS: -6 ; NUMNIM: 30 ; EVAL (BG) ;
$ See if you can devise an example which requires evaluating an
expression first with sufficiently positive EXPBAS, then reevaluating
with sufficiently negative EXPRAS, or vice~versa, in order to simplify
acceptably: § RDS: FALSE §
% The variable named PBRCH, already discussed in conjunction with
framoml powers of numbers, also controls transformations of the form
u*v®w ==> u*(v*w)., PBRCH is initially TRUE, but when PBRCH is FALSE,
the transformation occurs only for integer w, Otherwise the
transformation occurs for any w. The user should be aware that in some
circumstances the selected branch is an inappropriate one, so that it
may sometimes be necessary to set PBRCH to FALSE, See if you can devise
such an instance: § RDS: FALSE' §
$ Now, try the examples 0°X and X"0, to see what happens: %
RDS: FALSE §
$ The reason that 0°X is not automatically simplified to 0 is that 07X
is undefined for nonpositive values of X, so the transformation could
lead to invalid results. Of course, sometimes users know that the
exponent is positive, or they are willing to assume it is positive and
verify the result afterwards, Consequently, there is a control variable
named ZERCBAS, initially FALSE, which permits
the transfommation when nonFALSE.

Why then do we automatically simplify X"0 tolevmthoughl(could
perhaps take on the value 0, giving the undefined form 070? Well, we
also have a control variable for that, named ZERCEXP of course, but we
initialized it to TRUE because:

1., If we are thinking of polynomials in X rather than any cne
sgec:.fic value of X, then we are free to regard the polynomial
0 as being formally equivalent to 1.

2. One cannot do effective simplification of rational
functions without this widely accepted transformation.

3. Sincel is the limit of X"0 as X approaches 0 from either
side of the real axis, 1 is a reasonable interpretation even
for 0°0.
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Nevertheless, there is room for disagreement, and anyone who wishes
is free to run with ZEROEXP? FALSE. Why don't you try it, using some
rational expression examples, in order to see how you feel about this
issue? & RDS: FALSE $
$ It is easy to forget the current control-variable settings, and it
is even easy to forget the existence of certain control-variables, so we
have provided a handy-dandy function named FLAGS which returns the empty
name "* after printing a display of all the flags and their values: §

FLAGS (): ‘

$ If you ever get frustrated because you can't get an answer close to
the desired form, try this command, It may reveal some inappropriate
settings or remind you of some alternatives you forgot, or reveal the
existence of potentially relevant flags of which you were unaware,

Often a dialogue proceeds best under some control settings which are
suitable for the majority of the computations, with an occasional need
for an evaluation under different control settings. Each such exception
could involve new assignments to several control variables, followed by
an evaluation then assignments to restore the variables to their usual
values, This process can become tedious, and baffling effects can
result from inadvertently forgetting to restore a control variable to
its usual value., Consequently, as a convenience, we have provided some
functions which, for the most commonly desired sets of "drastic" control
values, establishes these values, reevaluates its argument, then allows
the control variables to revert to their former values before returning
the reevaluated argument.

One of these functions is called EXPAND, because it requests full
expansion with fully distributed denominators, bases, and exponents.
More specifica}.ly, it uses the following settings:

PWREXPD: 6; NUMDEN: 0; NUMNUM: DENDEN: DENNUM: BASEXP: EXPBAS: 30;

To see its effect, try EXPAND (((1+X)/(1-X))"2); % RDS: FALSE $
$ Another one of these convenience functions is called EXPD, and it
fully expands over a common denominator. Thus the internal control
settings are the same as for EXPAND, except that DEMNUM: -30. Try
EXPD (1/(X+1) + (X+1)72); & RDS: FALSE §

§ Finally, there is a convenience function named FCTR, and it semi-
factors over a common denominator. It evaluates its argument under the
following control-variable settings:

NOMNUM: DENDEN: -6; DENNUM: BASEXP: EXPBAS: ~30; PWREXPD: NUMDEN: 0;

Since semi-factoring is done termwise, it may be necessary to use
EXFD before applying FCIR to an expressicn, in order to get the desired
result, See if you can devise an instance where this is true: §

RDS: FALSE $

$ This brings us to the end of lesson CLES4.ALG. The next lesson is
CLESS.ALG, but as before, it is advisable to start a fresh muMATH to
avoid conflicts with bindings established in the current lesson. %

ECHO: #ECHO §

RDs () §



$File: CLESS.ALG (¢) ' 10/30/79 The Soft Warehouse %

LINELENGTH (78)$ #ECHO: BCHOS ECHO: TRUES

$ It is often desired to extract parts of an expressicn. Particularly
frequent is a need to extract the numerator or denominatcr of an
expression. Accordingly, there are built-in SELECTOR functions named
NUM and DEN for this purpose: %

DENNMM: 0 § BG: (1+X) / X ; NM (BEG) ; DEN (EG) ;

M (1 + BG); DN (1 + EG);

$ As the last twc examples illustrate, NUM and DEN do not force a
common denominator or any other transformation before selection, so the
denominator is always 1 when the expression is a sum or when the
expression is a product having no negative powers., Try cut NUM and DEN
on a few examples of your own to gain some experience: % RDS: FALSE §

$ The Programming-mode lessons will explain how to completely

dismantle an expression to get at any desired part, such as a specific
term, coefficient, base, or exponent.

muMATH represents the imaginary number (-1)"(]/2) as #I, and muMATH
does appropriate simplification of integer powers of #I. For example: %

$I ° 7 ; EXPAND ((3 + #I) * (1 + 2*#I)) ; EXPAND ((X + #I*Y) © 3) ;

$ Try it, you'll like it! & RDS: FALSE §

% The definition of the operator """ in file ALGEBRA.ARI also
implements two higher-level transformations which we mention here only
in passing: .

-4
mMuMATH represents the base of the natural logarithms as $E and the
ratio of the circumference to the diameter of a circle as #PI. Using
these, muMATH performs the simplification

E“(n*3 *3p1 /2 —> #I'n,

where n is amy integer constant, after which the power of #I is recduced
appropriately. Also, if a control variable called TRGEXFD is a negative
multiple of 7, then complex exponentials are converted to trigonometric
equivalents., (The opposite transformation for sines and cosines to
complex exponentials for TRGEXPD = 7, is implemented by file
TRGPOS.ALG.) If your mathematical background includes these facts, you
might wish to experience them here. Otherwise you can safely ignore
this digression: % RDS: FALSE §

$ You may have wondered whether or not an assignment to a variable,
say X, automatically updates the value of a bound variable, say EG,
which was previously assigned an expression ccntaining X. Let's see: §

X: 5§ Y:'YS$S BG: X+Y; X:3; BG; EVAL (EG) ;
$ Apparently the answer is "no", at least if X is bound when the
assignment to EG is made. This should not be surprising, because after
contributing its value to the expression X + Y, all traces of the name
X are absent from this expression. Eowever, suppose that we do a
similar calculation wherein X is initially unbound: §



X: 'X$ BG: X+Y; X:3; EG; ,
% As when we change control variables, previously evaluated
expressicns are not automatically reevaluated when we bind an unbound

varible therein. However, we can always use EVAL to force such a
reevaluation: §

EVAL (EG) ;

$ Since we did not assign the result to EG, reevaluation of EG after a
different assignment to X still has an effect: §%

X: 7 $ BG: EVAL (EG);:

$ Since this time we did assign the result to BEG, further changes to X
can have no effect on BG regardless of evaluaticn: %

X: 9§ EBEG: EVAL (EG) ;

$ If these examples are not entirely clear, you had better take the
time to experimentally learn the principles by trying scme examples of
your own: § RDS: FALSE $§

$ It is often desired to reevaluate an expression under the influence
of a temporary local assignment to one of the variables therein without
disturbing either the existing value of the variable or else its untound
status., The built-in EVSUB function provides a convenient method of
accomplishing this effect. EVSUB returns a reevaluated copy of its
first argument, wherein every instance of its second argument is
replaced by its third argument., For example: %

NRIDNUM: 6 § M: 'M$ C: 'C$S V: 'V$§ BG: MC™2 + M*V"2/2 §

$ Play around with EVSUB for awhile until you are absolutely sure that
you understand the difference between substitution and ass:.gnment. %
RDS: FALSE $

% You may have discovered that EVSUB also permits substitution for
arbitrary supexpressions as its second argument. For example: §

M: ™M$ C: 'C$ E: 'ES EVSUB (M*C"2 + 7, M*C"2, E);

$ To keep the algebra package small, we have not endowed EVSUB with
any sopnistication about finding algebraically IMPLICIT instances of its
second argument in its first., See if you can find examples where EVSUB
does not do a substitution that you would like it to do: § RDS: FALSE $
$ BHere is an example where a desired substitution dcesn't fully occur:s

NRMNM: 6 § C: 'C$ S: 'SS EVSUB (1 - 2*5s"2 +574, s°2, 1-C"2);
$ The reason we did not get the desired simplification to C°4 is that
if the second argument is a power, it matches only the same power in the
first argument. We can usually circumvent such problems by instead
using an eguivalent substitution wherein the second argument is a name
rather than a power, For example: §

PWREXFD: 2 § EVSUB (1 - 2*S"2 + 874, S, (1-C"2) ~ (1/2): _
$ BHere is a somewhat different example wherein a desired substitution
does not occur: %

EVSUB (2*C*S, C*S, C2);
$ The reason is that if the second argument is a product, it matches
only the same CCMPLETE product in the first argument. Again, the remedy



is to use an equivalent substitution wherein the second argument is a
name, For example: §

EVSUB (2*C*S, C, C2/5);
$ BEBere is a final example for which a desired substitution does not
occur: %

EVSUB (C*2 +§2=1+C+58, C2+5%2, 1);

$ Similarly to products, if the second argument is a sum, it matches
only the same COMPLETE sum in the first arqument. As before, we could
circumvent the difficulty by making an equivalent substitution of
(1-C"2) " (1/2) for s, or (1-5"2) ® (1/2) for C, but that would leave

- an ugly square root in the answer., If our goal is to delete the

subexpression €2 + S*2 = 1, then we can use to our advantage the fact
that powers must match exactly for a substitution to take place: §

EVSUB (C"2 + 8§82 -1+C+5S, C*2, 1-5"2); ‘
% See now if you can use such techniques to get your examples to work:
% RDS: FALSE §

% This brings us to the end of the calculator-mode lessons. There
are, of course, higher-level math packages in muMATH, but the fact is
that from a usage standpoint, we have already covered the hardest part,
which is understanding evaluation, substitution, and the ramifications
of the variocus algebraic control variables. You will find that if you
know the relevant math, use of the higher-level packages is quite
straightforward, easily learned from studying the

corresponding DOC files.

We suggest that before commercing the Programming-mode lessons, you

. explore calculator-mode usage of the higher-level packages as far as

your math background permits. Math curriculum sequences differ, but
probably most users will be most comfortable trying the higher~level
packaes in the approximate order EQN, SOLVE, ARRAY, MATRIX, LCG,
TRGNEG, TRGPOS, DIF, INT and INTMORE. Since space becomes increasingly
scarce as higher-level packages are locaded, you may have to reread file
READ1IST.IXT to learn how to CONDENSE and SAVE if you haven't already.

Now for some parting advice about getting the most out of computer
symbolic math:

First, storage and time consumpticn tends to grow dramatically with
the number of variables in the input expressions, even if the ultimate

result is fortuitously compact. For example, the mumber of terms in the
expanded form of

(X1 +X2+ 00 +XM) °N

grows outrageously with M and N, Consequently, it is important to make
every effort to avoid needlessly introducing extra variables for

| ‘generality's sake, Mathematical and physical procblems are often stated

using more variables than are strictly necessary, so it is also
important to exploit every opportunity to reduce the number of variables

glom the original problem. Here are some general techniques for doing
- _



l. If members of a set of variables can be made to occur only
together as instances of a certain subexpression, consider
replacing the subexpression with a single variable. For
example:

a) If K, X, and X0 can be made to occur only as instances
of the subexpression K*(X-X0), then consider replacing
this subexpression with a variable named perhaps KDX.

b) Similarly, perhaps a combination such as M*C"2 could be
replaced witn E, or REO*V"2/L could be replaced with RE.

These are respectively instances of absorbing an offset
together with a proportionality coefficient, renaming a
physically-meaningful subexpression, and grouping
quantities into dimensionless quantities., Most engineering
and science libraries have books describing a more
systematic technique called DIMENSICNAL ANALYSIS, and an
article in the Journal of Computational Physics (June 1977)
explains how computer algebra can automate the process.

2. Even when a variable cannot be eliminated, the complexity

. of expressions may be reduced if the variable can be made
to occur only as instances of a subexpression. For
example:

a) If only even powers of a variable X occur, consider
replacing X"2 with a variable named perhaps XSQ.

b) If X only occurs .as instances of 27X, 2°(2*X),
27(3*X) ,..., consider replacing 2°X with a variable named
perhaps TWOTOX, yielding mere integer powers of that
variable.

Some other advice is to avoid fractional powers and denominators as
much as possible. They don't simplify well, they consume a lot of
space, and they tend to be hard to decipher when printed one-
dimensionally. Often a change in variable can eliminate a fractional
power or a denominator, :

Sometimes, even when a problem cannot be solved in its full
generality, solving a few special cases enables one to infer a general
solution which can perhaps then be verified by substitution or by
induction. Alternatively, perhaps the original problem can be
simplified by neglecting scme lower—order contributions, in order to get
an analytic solution which will at least convey some qualitative
information about the solution to the original prcblem.,

Scmetimes only part of a problem or perhaps even none can be solved
symbolically, and the rest must be solved numerically. If so, the
attempt at an analytic solutiocn at least allows one to proceed with an
approximate numerical solution having more confidence that a concise
analytical solution has not been overlooked. % :

ECHO: $ECHO § RDS () §



©

tFile: PLESL.TRA (c) - u/079 ~ The Soft Warehouse %

LINELENGTH (78) § #ECHO: ECHO § BCHO: FALSE $
#CONDENSE: CONDENSE §  CONDENSE: FALSE $ RFFIRST’ 'RE‘FIISI‘ $

MOVD (PRINT, #PRINT) §
FUNCTION PRINT (EX1),
WHEN ATCM (EX1), #PRINT (EX1) EXIT,

#PRINT (LPAR), PRINT (FIRST (EV "%, #PRINT (" ")
- PRINT (REST (EX1)), #PRINT (¥ > & )
EXDFUN $

MOVD (PRINTLINE, $#PRINILINE) §
FUNCTION PRINTLINE (EX1),

PRINT (EX1), NEWLINE (), EX1,
ENDFUN $

BCHO: TRUE §
% This is the first of a sequence of interactive lesscns about muSIMP

- programming, It presumes that you have read files READ1ST.TXT and
LESSONS

IXT, and executed at least one of the calculator mode lessons.
It also presumes that you have loaded packages through TRACE.MUS.

muSIMP supplies a mumber of built-in functions and operators. The
calculator-mede lessons introduced a few of these, such as RDS, RECLAINM,
+, *, etc. These progamming-mode lessons introduce more built-in
functions and operators, but more important, the lessons reveal how to
supplement the built-in functions and operators with definitions of your
own, thus extending muSIMP itself.

It is important to realize that, until the last programming-mcde
lessons, we will not deal with muMATH. Instead we deal first with
muSIMP, the language in which muMATE is written. The illustrative
examples for these first few lessons are utterly different from muMATH,
because we want to suggest a few of the many other applications for
which muSIMP is especially well suited, and because we want these
lessons to be comprehensible regardless of math training level.

Data is what programs cperate upon. The most primitive UNSTRUCTURED
muSIMP data are integers and names, collectively called ATOMS to suggest
their mdiv:.s:.bll:.ty by ordinary means. Some programs must distinguish
these two types of atoms, so there are two corresponding RECOG‘\IIZER
functions:

INTEGER (X76%#) ; .

NAME (X76%) ;

BG: ~3271 §

INTEGER (EG) ;

NAME (EG) ; .

% Do you suppose that "137", " *, ", and "X + 3", with the quotation
marks included, are integers, names, or invalid? Find out for yoursell$
RDS: FALSE §

$ Data can be stored in the computer's memory. The locaticn at which



a data item is stored is called its ADDRESS. An address is analogous to
a street address on the outside of a mailbox. The data stored there is
analogous to mail inside the mailbox. As with a row of mailboxes, the
contents of computer memery can change over time,

There are useful programs which deal only with unstructured data,
but the most interesting applications involve aggregates of primitive
data elements. One way to make an aggregate of 2 data elements is to
use a structural data element called a NCDE, which stores the addresses
of the 2 data elements. Thus, a node is "data" consisting of addresses
of 2 other data items.,

For example, suppose that we wish to represent the aggregate
consisting of the name BILBO and his age 31. We could store the name
BILBO beginning at location 7, the number 31 beginning at location 2,
and the node beginning at location 4. Then, begining at location ¢,
there would be stored the addresses 7 and 2, as illustrated in the
following diagram:

2ddress: 1l 2 3 4 S 6 7

Contents: | | 31 | b7 1 2 |

i
I

g

Is that clear?

The specific placement of data within memory is managed auto-
matically, so all we are concerned about is the specific name and number
values and the connectivity of the aggregates. Thus, for our purposes
it is best to suppress the irrelevant distracting detail associated with
the specific addresses, The following diagram is one helpful way to
portray only what we are concerned about:

D —— e ——
I /7 1\ |
o/ e\, e

/ \
BILBO 31

This imagery suggests the word "“pointers® for the addresses stored
in nodes.

If you have seen one bisected box you have seen them all, so to
reduce the clutter and thus emphasize the essential features, we
henceforth represent such nodes by a mere vertex in our diagrams, giving
schematics such as

AN
/ \
BILBO 31
Although most muSIMP programs use such aggregates internally, many
muSIMP programs are designed to read and print data in whatever

specialized notaticn is most suitable for the application, For example,
mMuMATH uses cperator and functicnal notation. Suppose however that we



© want to specify such aggregates directly in input and output. How can

we do it? 1If we have a nice graphics terminal, then then we
conveniently could use diagrams such as the above., Most of us do not .
have nice graphics terminals, so we must use ancther external
representatz.on. For this purpose muSIMP uses a representation
consisting of the first data item, followed by the second data item,
separated by a dot and spaces, all enclosed in a pair of matching
parentneses, For example:

(BILBO , 31l)

We call this representation of & node a DOITED PAIR, However, this
is a diferent use of parentheses and periods from how they are otherwise
used in muSIMP imut, so we must preceed the dotted pair by the single-
quote prefix operator to indicate to the parser that we are using
dotted-pair notation rather than the usual operator or functional
notation:

'(BILBO . 31)

Moreover, we must use an ampersand rather than a semicolon as the
expression-terminator in order to inform the driver to print the
expression as a dotted pair rather than attempt to print it using
operator and functional notation. We say "attempt” because not all
dotted pairs are appropriate for operator or functional printing, as we
will explain in the last lessons. Here then is an example of dotted-
pair input and printing: %

(78 . TROMBONES) &
% Try a few of your own, and note what happens when you forget the
single-quote or use a semicolon rather than an ampersand: %
RDS: FALSE §
§ What about when we want to represent an aggregate of more than two
atomic data elements? For example, what if we want to include BILBO's
last name, BAGGINS? Well, we can let one of the pointers of a node
point to another node, whose first pointer points to BILBO and whose
other pointer points to BAGGINS, For example:
VAN
/ \
A 31
/ \.

BILBO BAGGINS
We can imput this as a dotted pair nested within a dotted pair: %

'((BILBO . BAGGINS) . 31) &
$ Note thatwemlyquotetheoutemostdotted pair.

Now suppose that we want to also include BILBC's species, structured
as follows:



N
/ \
/\ HCBBIT
/ \
VANEE:) !
/ \
BILBO BAGGINS

How would you input that?

Remember, your input must be temminated by an ampersand.
$ RDS: FALSE $
$ We would irput it as: §

. '(((BIIBO . BPGGDB) . 31) . HCBBI.T) &

£ An alternative structure for this information is the one
correspending to the input
'((BILBO . BAGGINS) . (31 . HOBBIT)).

On a piece of scratch paper, sketch the corresponding diagram, then nold
it close to my face so I can check it.

/ 070\
\\~//
\—/ § RDS: FALSE §
$ My eyes must be getting bad, I couldn't see it. Ch well...

Since eitner element of a dotted pair can be a dotted pair, they can

be used to represent arbitrary "binary tree structures”. Moreover, .

although perhaps unprintable using pure dotted-pair notation, linked

xgworks of binary nodes can be used to represent any data-structure
tsoever,

In order to do amything interesting with data aggregates, a program
must be able to extract their parts. Accordingly, there are a pair of
SELECTOR functions namd FIRST and REST which respectively return the
left and right pointers in a node. For example: §

REST (EG) &

FIRST (EG) &

FIRST (FIRST (BG)) &

REST (FIRST (EG)) &

% See if you can extract BILBO and BAGGINS from EG, using nested
compositions of FIRST and/or REST: % RDS: FALSE §

$ Cur answers are: §

FIRST (FIRST (FIRST (BG))) &

REST (FIRST (FIRST (EG))) & ‘

$ Deeply nested function invocations become difficult to type and
read, so let's define our first muSIMP function named FFFIRST, so that
FFFIRST (EG) could be used as shorthand for the first of the above two
examples and for any analogous example thereafter: $

FUNCTION FFFIRST (U),
FIRST (FIRST (FIRST (U)))
ENDFUN &



$ If you are not using a hard-copy ternunal, jot down this function
definition and all subsequent ones for reference later in the lesson,

Despite the word ENDFUN, the fun has just begun: Now that FFFIRST
~ is defined, we can apply it at any subsequent t.i.me durirx; the dialogue,
‘For example: §
FFFIRST (EG) & _
FFFIRST ('(((BIG . MAC) . CATSUP) . (FRENCH . FRIES))) & )
$ Using the definition of FFFIRST as a model, define a function named
RFFIRST which extracts the REST of the FIRST of the FIRST of its
argument, then test RFFIRST on BEG: % RDS: FALSE §
$ Our solution is: § '

FUNCTION REFIRST (FCO),

REST (FIRST (FIRST (FOO))),
ENDFUN &
RFFIRST (EG) &
$ The name FOO in the definition is called a PARAMETER, whereas EG
where the function is applied is an example of an ARGUMENT., We can use
any name for a parameter - even a name which has been bound to a value
or even the same name as an argument. The name is merely used as a
"dummy variable" to help indicate what to do to an argument when the
function is subsequently applied. A function definition is like a
recipe. It is filed away, wzthout actually being EXECQUTED until applied
to actual arguments, ,

As another simple example, since an atom is defined as being either
a name or an integer, it is convenient to have a recognizer function for
‘atoms, so that we do not have td test separately for names and atoms
when we do not care which type of atom is involved. We could define
this recognizer as follows:

FUNCTION ATCM (U),
NAME (U) CGR NOMBER (U)
ENDFUN &

Actually, ATOM is already built-into muSIMP, but the example
provides a good opportunity to introduce the built-in infix CR operator,
which returns FALSE if both of its operands are FALSE, returning TRUE
otherwise, Try out ATOM cn the examples =5, X and EG & RDS: FALSE §
$ Analogous to OR, there is a built-in infix AND operator which
rteturns FALSE if either operand is FALSE, returning TRUE otherwise.
There is alsoc a built-in prefix NOT operator which returns TRUE if its
ocperand is FALSE, returning FALSE otherwise., Knowing this, see if you
can define a recognizer named NCDE, which returns TRUE if its argument
is a node, returning FALSE otherwise: % RDS: FALSE §

% Ix; programming there is rarely, J.f ever, one unique solution, but
ours is: %

FUNCTION NCDE (),
NOT ATCM (U)
ENDFUN &
NCDE (BEG) &
NCDE (S) &
§ So much for trivial exercises. Now let's write a functioen which



counts the number of atoms in its argument. We will count each instance
of each atom, even if some atoms occur more than once.

At first this may seem like a2 formidable task, because a tree .can be
arbitrarily branched. How can we anticipate ahead of time all of these
possibilities. Well, let's procrastinate by disposing of the most
trivial cases even though we can't yet see the whole solution: If the
argument is an atom, then there is exactly 1 atom in it.

So much for trivial cases. We haven't yet solved the whole problem,
but it builds our seif-confidence to make progress, so that is a good
psychological reason for first disposing of the easy cases. Also, with
the easy cases out of the way, we can turn ocur full intellectual powers

on the harder cases, unfettered by any distractions to trivial loose

We are left with the case where we know we have a node. Perha;s wve
could somehow subdivide the problem into smaller cases?

Let's see ... Nodes have a FIRST part and a REST part, so perhaps
that provides the natural subdivision. BEmmm ...

If we knew the number of atoms for the left part and the number for
the right part, clearly the number for the whole aggregate is merely
their sum., But how can we find out the number of atoms in these parts?
Why not RECURSIVELY use the very function we are defining to determine
these two contributicns!

It may sound like cheating to refer to the function we are defining

from with the definition itself, but remembering that the definition is

not actually APPLIED until sometime after its definition is complete,
perhaps it will work. We are working in a highly interactive
environment, so the quickest way to resolve questions about muSIMP is to
try it and see! Here then is a formal muSIMP function definition
corresponding the the above informal English "algorithm®™: %

FUNCTION $ATOMS (U),

WHEN ATOM (U), 1 EXIT,

$ATCMS (FIRST(U)) + $#ATOMS (REST(U))
ENDEFUN &
$ Here we introcduce 2 new concepts: The BODY of a function definition
can consist of a sequence of one or more expressions separated by
commas. A CODITIONAL-EXIT is an expressicn consisting of a sequence of
cne or more expressions nested between the matching pair of words WHEN
and EXIT, When a function definition is APPLIED, the expressions in its
body are evaluated sequentially, until perhaps a conditional exit causes
an exit from the procedure or until the delimiter named ENDFUN is
reached. For a conditional exit, the first expression after the word
WHEN is evaluated. If the value is FALSE, then evaluation proceeds to
the point immediately following the matching delimiter named EXIT.
Otherwise, evaluation proceeds sequentially through the remaining
expressions in the conditional exit, if any, exactly as if the body of
the conditional exit replaced that of the function. The value of a
conditicnal exit is that of the last expression evaluated therein, and
the value returned by a function is that of the last expression



evaluated therein when the function is applied. ;
- Thus, #ATOMS immediately returns the value 1 whenever the argument

is an atom, and otherwise the function breaks the problems into two
‘parts which are necessarily smaller, hence closer to being atoms, Let's

test it, starting with trivial cases first: &

#ATOMS (PQC) &

$ATOMS (S) &

B &

$ATOMS (EG) &

$ It looks promising, but it is still perhaps mysterious how muSIMP
and $ATOMS keep track of all of these recursive function invocations.
Since the trace package is supposedly loaded, to trace the execution of
#$ATOMS, we merely issue the command: §

TRACE (#ATOMS) &

$ Now every time #ATOMS is entered, it prints its name and argument
values, whereas every time it is exited, it prints its name followed by
an equal sign, followed by the returned value, Moreover, the trace is
indented in a manner which allows corresponding entries and exits to be
visually associated. Watch: % ,

$ATOMS (FOO) &

B &

$ATOMS (BEG) &

$ Try a few examples of your own, until these new ideas begin to gel:
$ RDS: FALSE $

L 4

UNTRACE (#ATOMS) & '
$ATCMS (FCO) &

$ Bere is a function which counts only the number of integers in its
argument: %

FUNCTION #INTEGERS (U),

WHEN INTEGER (U), 1 EXIT,

WHEN NAME (U), 0 EXIT,

#$INTEGERS (FIRST(U)) <+ #INTEGERS (REST(U))
ENDFUN §
B &
$INTEGERS (EG) ; :
$ Now, using it as a model, try writing a function named #NAMES, which
returns the number of names in its argument. If your first
syntactically accepted attempt fails any test, try using TRACE to reveal
the reason why: & RDS: FALSE § ,
$ Qur solution is ...

On second thought, we won't give you our solution., Consegquently, if
you were lazy and didn't try, you had better try now, because the
examples will get steadily harder now. & FRDS: FALSE $
% The BEIGET of an atom is 1, and the HEIGHT of a node is 1 more than
the maximum of the two heights of its FIRST and REST parts.
Accordingly, let's first write a function named MAX, which returns the
maximum of its two integer arguments. There is a built-in infix integer
comparator named ">", so here is a hint:



FUNCTICN MAX (INT1, INT2),
WHEN INT1 > INT2, ... EXIT,

oo $

Enter such a definition, with appropriate substitutions for the missing
portions, then test your function to make sure it works correctly: %
RDS: FALSE §$

% Now, with the help of our friend MAX, see if you can wnte a
function named HEIGHT, which returns the height of its axgument. ]

RDS: FALSE §

$ Our solution is: §

FUNCTION HEIGHT (U),

WHEN ATOM (U), 1 EXIT,

1 + MAX (BEIGHT(FIRST(U)), HEIGET(REST(U)))
ENDFUN $ ‘
$ This brings us to the end of the first programming-mode lessons, It
may be a good idea to review this lesson before proceeding to lesson
PLES2.TRA. %

BCHO: $ECHO $

MCVD (#PRINT, PRINT) §

MOVD (#PRINTLINE, PRINTLINE) $
CONDENSE: #CQNDENSE §

RDS () §



% File: PLES2.TRA (c) 11/01/79 The Soft Warghouse $

LINELENGTH (78) § #ECHO: PCHO § ECHO: FAISE$
- #CONDENSE: CQDENSE §  CONDENSE: FALSE $

MOVD (PRINT, #PRINT) §

FUNCTIGN PRINT (EX1),
WHEN ATOM (EX1), #PRINT (EX].) EXIT,
$PRINT (LPAK), PRINT (FIRST(EX1)), #PRINT (* . "),
PRINT (REST(EX1)), #PRINT (RPAR), EXI,

ENDEUN $

MOVD (PRINTLINE, $PRINTLINE) $
FUNCTICN PRINTLINE (EX1),

PRINT (EX1), NBZLINE (), EX1,
ENDFUN $

BCHO: TRUE §
$ This is the second of a sequence of muSDP programming lessons.

D is a primitive muSIMP Comparatoz' function which returns TRUE if
its two arguments are the same address or equal integers, returning
FALSE ctherwise: %

FIVE: 5 § EQ (5, FIVE) ;
$ Names are stored uniquely, so two occurences of a name must involve
the same address: % -

ACICR: 'BOGART ; EQ (ACTCR, 'BOGART) ;
%odeHere is an example of two dJ.ffere.nt references to the same physical
n %

DATE: '(JULY . 4) & FOO: DATE § EQ (FCO, DATE) ;
§ However, watch this: &

IQ (DATE, '(JULY . 4)) ;

$ What happened? The two aggregates are DUPLICATES, but since they
were independently formed they do not start with the same node. 1In
fact, only the name JULY is shared among them, as shown below:

second
DATE argument
AVA
/ \/ \
N\
I /N N\
JUILY 4 4
- Clearly it is desirable to have a more comprehensive equality
comparator which also returns TRUE for aggregates which are duplicates
in the sense of printing similarly. Let's write such a functiocn, called

DUP. Following the general advice given in PLES], let's first dispose
of the trivial cases:



If either argument is an atom, then they are duplicates if and only
if they are EQ.

Ctherwise, they are both nodes, which is the nontrivial case, Now,
let's employ our "divide-and-conquer” strategem, using FIRST and REST as
the partitioning. Two nodes refer to duplicate aggregates if and only
if the FIRST parts are duplicates and the REST parts are duplicates.

Moreover, that can be tested with our beloved recursion, using DUP
itself!

See if you can write a corresponding function named DUP: %
RDS: FALSE §
$ There are many possible variants, but here is one of the most
compact: $ _

FUNCTION DUP (U, V),
WHEN ATOM (U), BEQ (U, V) EXIT,
WHEN ATOM (V), FALSE EXIT, :
mwggggUP (FIRST(U) , FIRST(V)), DUP (REST(U), REST(V)) EXIT,
$ An interesting challenge for your spare time is to see how many
different but reascnable ways this function can be written.

Actually, there already is a built-in infix operator named "a"
which is eguivalent to DUP: &

DATE: '(JULY . 4) $
DA.TE = "(JULY . 4) ;
$ Do you feel DUPed to leam that an exercise duplicated an existing
facility?

It is crucial to understand exactly what the existing facilities do,
and the best way to learn that is to understand how they work by
creating them independently.

Here is a good exercise: See if you can write a comparator functicn
named SAMESHAPE, which returns TRUE if its two arguments are similar in
the sense of having nodes and atoms at similar places. For example,

SAMESHEAPE ('((KINGS . ROOK) . 5), '((QUEENS . 3) . PAWN))
is TRUE: & RDS: FALSE §
$ This is one of those instances where we will not give the answer.

Now, using the infix operator named "=", see if you can write a
function named CONTAINS which returns TRUE if its first argument is a
duplicate of its second argument or contains a duplicate of its second
argument, For example,

((JULY . 4) . (1931 . FRIDAY))
contains (1931 , FRIDAY). It is at least as hard as DUP, so take your
time and don't give up easily. % RDS: FALSE $
$ Here is a harder exercise: The two ?gigxegates

/\

/ \ / \
CARBCN A\ CARECN N\

/ \ / \
SULFUR IRON IRCN SULFUR
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are ISOMERS because they are either the same atom or at every level
either the left branches are isomers and the right branches are isomers,
or the left branch of one is an isocmer of the right branch of the other
and vice-versa. Write a corresponding comparator function named

 ISOMERS. (It's similar to DUP, with a twist) § §DS: FALSE $

% OQur answer is: %

FUNCTION ISOMERS (U, V), |
 WHEN ATOM (U), EQ (U, V) EXIT,

WHEN ATOM (V), FALSE EXIT,

ISOMERS (FIRST(U), FIRST(V)) AND ISOMERS (REST(U), REST(V))
oo szsams (FIRST(U), REST(V)) AND ISOMERS (REST(U), FIRST(V))

% Because of all the combinations which might have to be checked, the
‘execution time for this function can grow quite quickly with depth. Try
tracing a few examples of moderate depth: § RDS: FALSE §

% So far our functions have merely dismantled or analyzed aggregates
given to them as arguments, None of our examples have constructed new
aggregates, The dot of course results in aggregates, but this occurs as
the dot is read. Moreover, since the single quote necessarily
preceeding an outermost dotted pair prevents evaluation, bound variables
in a dotted pair contribute merely their names rather than their values.
For example: %

BG: 78 “BG.3) &

% What we want is a function which evaluates its two arguments in the
usual way, then returns a node whose two pointers point to those values,
There is such a function, named ADJOIN: %

ADJOIN (BG, 3) &

$ A dotted pair within a function definition is a static entity,
frozen at the time the function is defined. 1In contrast, a reference to
ADJOIN within a function definition is dynamic., The node creation is
done afresh, with the current values of its arguments every time that
part of the function is applied. As an example of the use of ADJOIN,
let's write a function named SKELETON, which constructs a new tree which
is structurally similar to its argument but has the name of length zero,
“", wherever its argument has an atom. Thus, when printed, the new

- aggregate will display the skeletal structure of the aggregate without

visually-discernable atoms., For example,
'SKELETON ('((HALLOWEEN . GHOSTS) . WITCBES)_) & will yield ((.) . )

CK, let's recite the litany: What cames first?
TRIVIAL CASES.

S0, if the argument is an atom we return what?

Otherwise we have a node, which is the most general case. Ecwever,
nodes have a FIRST and a REST, so can we somehow recurse, using SKELEZTON
on these parts, then combine them?



Yes, as follows: %

FUNCTION SKELETON (U),
WHEN ATOM (U), “" EXIT, :
ADJOIN (SKELETON (FIRST(U)), SKELETCN (REST(U)))

ENDFUN $
SKELETON ('((MCO . GOO) . (GUY . PAN))) &
$ Easy. Yes?

Now it is your turn. Write a function named TREEREV, which produces
a copy of its argument in which every left and right branch are
interchanged at every level. For example,

TREEREV ('({MOO . GOO) . (GUY . (PAN ., CAKE)))) &
should yield
(((CAKE . PAN) . GUY) . (GCO . MOOQ))

$ RDS: FALSE § .
$ If you didn't get the following scluticn, you may groan when you see
how easy it is: % '

FUNCTION TREEREV (U),

WHEN ATOM (U), U EXIT,

ADJOIN (TREEREV (REST(U)), TREEREV (FIRST(U)))
ENDEUN &
TREEREV ('(("Isn't" . that) . easy)) &
$ Here is a somewhat harder exercise: Write a function named SUBST,
which returns a copy of its first argument wherein every instance of its
second argument is replaced by its third argument., For example, if
PHRASE: -

*(((THIS . (GOSH . DARN)) . CAR) . (IS . ((GOs8 . DARN) . BAD))) §

then SUBST (PHRASE, '(GOSH . DARN), '(expletive , deleted)) yields

(((THIS . (expletive . deleted)) . CAR)
e« (IS . ((expletive . deleted) . BAD))) $ RDS: FALSE $
% That's all folks.

The next lesson deals with a special form of tree called a list,
Many people £ind lists more to their liking, and perhaps you will too.%
BCBO: FALSES

MOVD (#PRINT, PRINT) $ MOVD (3PRINTLINE, PRINTLINE) $
CQDENSE: #CONDENSE § ECHO: #ECHO $§ RDS () §



$File: PLES3.TRA (c¢) 11/01/79 The Soft Warehouse %

LINELENGTH (78) $ , :
$ECHEO: ECHO § #CONDENSE: CONDENSE § CONDENSE: FALSE § ECHO: TRUE §

§ This is the third of a sequence of interactive lessons about MUSIMP
programming.

Often, it is most natural to represent a data aggregate as a
sequence or LIST of items rather than as a general binary tree. Fcr
example, such a sequence is quite natural for the elements of a vector
or of a set, We can represent such a sequence in terms of nodes by
having all of the FIRST cells point to the data elements, using the REST
cells to link the sequence together. The last linkage node can have a
REST which is FALSE to indicate that there are no further linkage nodes:

A\
/N
iteml A\

/ \
item2 .

/ \
itemN FALSE
~ Viewed at a 45 degree rotation, this diagram is analogous to a
clothes line with the successive data elements suspended from it, thus
more clearly suggesting a sequence. The simple regularity of the
structure permits correspondingly simple function definitions for
processing such structures, Moreover, the linear structure suggests an
external printed representation which is far more readable than dotted

pairs, In response to an ampersand terminator, muSIMP prints the above
aggregate in the more natural LIST notation:

(iteml, item2, ..., itemN)
rather than the eguivalent dot notation
(iteml . (item2 . ... (itemN , FALSE) ... ))
Conversely, the reader accepts list notation as an alternative
input form to dot notation. Naturally, any of the items in a list can

themselves be either lists or more general dotted pairs. The printer
uses list notation as much as possible. Thus, a structure of the form



item2 .

VA
itemN atom

where "atom®™ is not the atom FALSE, is printed in a iaixed notation as
(iteml, item2, ..., (itemN ., atom))
Similarly, the reader can appropriately read such mixed notaticn.

Thus the last item in a list is implicitly dctted with FALSE, and a
blank between two items is equivalent to " . (*, together with a
matching "™ adjacent to the next right parenthesis. You may wonder why
you never noticed such printing conventions during lessons PLES1 and
PLES2. The reason is that we purposely redefined the printer for those
lessons so that it did not use the list-abbreviation convention.

It is important to fully understand the connection between dotted
pairs and lists, so take S minutes or so to type in some lists, nested
lists, nested dotted pairs, and mixtures, noting carefully how they
print. % RDS: FALSE §

§ Did your examples include: %

') &
% Is that surprising?

Since FALSE is used to signal the end of the list, FALSE and the
empty list must be equivalent,

CQlearly the trivial terminal case in processing lists will involve
an equality test against FALSE. Since this test is so common, there is
a corresponding built-in recognizer defined as follows:

FUNCTION BPTY (LIS),
B (LIS, '())
ENDFUN;

Using EMPTY, see if you can define a function named #ITEMS, which
returns the number of (top-level) items in its list argument. For
example, #ITEMS ("(FROG, (FRUIT . BAT), NEWT)) should yield 3. BHere is
an incomplete solution. All you have to do is enter it with the
portions marked "..." appropriately filled,

FUNCTION #ITEMS (LIS),
WHEN EMPTY (LIS), ... EXIT,
1+ #ITEMS ( ... )
ENDFUN § $ FRDS: FALSE §
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$ Actually, there is already a built-in function called LENGTH, which
returns the length cf a list, It is somewhat more general in that it
returns the number of characters necessary for printing when given an

Note that with lists it is typical to recur only on the REST of the
list, whereas with general binary trees it is typical to recur on both
the FIRST and the REST.

So far, the examples and exercises have been relativély isolated
ones. Now we will focus on writing a collection of functions which
together provide a significant applicaticne package:

A list preovides a natural representation for a set. For example,
(MANGO, (CHOCOLATE . FUDGE), (ALFALFA, SPROUTS)) can represent a set of
three foods. Using this rep:esentat:.on, let's write functions wh:.ch
test set membership and form unions, intersections, etc.

First, write a function named ISIN, which returns TROE if its first
argument is in the list which is its second argument, :eturnirg FALSE
otherwise: % RDS: FALSE §$
§ OQur solution is: §

FUNCTION ISIN (U, LIS),
WHEN EMPTY (LIS), FALSE EXIT,
WEBEN U = FIRST (LIS), EXIT,
ISIN (U, REST(LIS))
ENDFUN $
ISIN ('FFDG, ' (SALAMANDER NBEWT - 'mAD)) ;

% Actually, there is already a built-in version of ISIN called MEMBER.

A set contains no duplicates, so we really should have a reccgnizer
function named ISSET, which returns TRUE if its list arqument contains

no duplicates, returning FALSE otherwise. Try to write such a functicn:
§ RDS: FALSE §

% Here is a hint, in case you gave up:

FUNCTION SET (LIS),

WHEN ... EXIT,

xg(mz? (FIRST(LIS), «.. ), FALSE EKXIT,
ENDFUN; % RDS: FALSE §
$ Incase it isn't clear by now, a rule of this game is that you are
free (and encouraged) to use any functions we have already discussed,
whether they are built-in, previous examples, or previous exercises.

‘That is one reason it is adviseable for you to actually do the

exercises,

Now write a function named SUBSET, which returns TRUE if the set
which is its first argument is a subset of that which is its second
arqument., (Remember that every set is a subset of itself and the empty
set is a subset of every set,) § RDS: FALSE §

% Here is a hint, in case you gave up or had a less compact soluticn:



FUNCTION SUBSET (SET1, SEI2),

WHm [ X ] ECIT'

WHEN MEMBER (Fms'r(sm.), eee) s SUBSET( ...) EXIT
ENDFUN; $ RDS: FALSE §
$ Two sets are equal if and only if they contain the same elements.
However, the elements need not occur in the same order. Write a
corresponding comparator function named EQSET: % RDS: FALSE $
$ Ah yes, a hint perhaps?:

FUNCTION EQSET (SET1, SEM):
BOFUN; 3 FOS: FALSE §
] Doyouthmkthat'smtmchofahm"

Well, the body of the function really can be written with one modest
line, so try harder: §& RDS: FALSE §
$ Remember the rules of the game: You are encouraged to use any
function discussed previously: &

FUNCTION EQSET (SET1, SET2),

SUBSET (SET1, SET2) AND SUBSET (SET2, SET1)
ENDFUN; .
$ OQur examples so far have merely analyzed sets, We can use ADJOIN to
construct lists, just as we used ADJOIN to construct binary trees. As
an example of this, write a function named MAKESET, which returns a copy
of its list argument, except without duplicates if there are any:
$ FRDS: FALSE §
$ If you need a hint, here is one, but it is all you will get:

FUNCTION MAKESET (LIS)
WHEN ..., ‘() EXIT,
WEN mﬂm ( LN ) )' (XX} EKIT,
mom( e e )
ENDFUN; L] RDS: FALSE §
$ Let's see if your solution works correctly: %

MARESET ('(FROG, FROG, FROG)) &

$ If there is a duplicate in the answer, then back to the computer
terminal: & RDS: FALSE §$

% (It helps to think of nasty test cases BEFORE you start
programming) .

Now for the crowning glory of our set package: The UNION of two
sets is defined as the set of all elements which are in either (perhaps
both) sets. Give it a try: & RDS: FALSE §
$ A hint perhaps? Well, the function body can be written in 3 lines,
each of which begins just like the corresponding line in our hint for
MARESET. % RDS: FALSE §
$ Bere is our solution: %

FUNCTION UNION (SET1, SET2),
WHEN EMPTY (SET1l), SET2 EXIT, ,
WHEN MEMBER (FIRST(SET1), SET2), UNION (REST(SET1), SET2) EXIT,
ANOII; (FIRST(SEI1) , UNION (REST(SET1), SET2))



$ The intersection of two sets is the set of all elements which are in
both sets. Using our definition of UNION as inspiration, write a
corresponding function for the intersection: & RDS: FALSE §

$ So far, our set algebra package has been developed in a so-called
BOTTOM-UP maner, with the most primitive functions defined first, and
with the more sophisticated functions defined in terms of them. The
opposite approach is TOP-DOWN, where we define the most comprehensive
functions in terms of more primitive ones, then we define those more
primitive ones in terms of still more primitive cnes, until no undefined
functions remain,

As an example of the top-down attitude, let's write a SYMMETRIC
DIFFERENCE function for our set-algebra package. The symmetric
difference ¢f two sets is the set of all elements which are in exactly
one of the two sets. This is in contrast to the ordinary diference of
two sets, which is all of the elements that are in the first set but not
the second. However, if an ordinary difference function was available,
we could write the symmetric difference as the union of the ordinary
difference between setl and set2, with the ordinary difference between
set2 and setl. We have already written UNION, but an ordinary set
difference is not yet available, Nevertheless, let's bravely proceed to
write the symmetric difference in terms of the ordinary difference, then
we will worry about how to write the latter:

%

FUNCTION SYMDIF (SET1, SEI2),
UNION (ORDDIF (SET1, SEI2), ORDDIF (SET2, SET1))

ENDFUN §
$ Now you try to write CRODIF. It may help you to know that it can be
written very similarly to UNION: % RDS: FALSE $

$ Some programmers are initially uncomfortable with the top~down
approach because it makes them nervous to refer to undefined functions:
there are cbvious loose ends during the writing process. Bowever, it is
not necessary to understand how an auxiliary function can be written
before daring to refer to it. All that is necessary is that the duty
relegated to the auxiliary function be somehow more elementary than the
cverall duty performed by the functicn which refers to it.

There are necessarily loose ends during the writing of a program in
any sequential order. With the bottom-up approach, the loose ends are
neitner written nor referred to until lower~-level functions have been
written, Unfortunately, as such hidden loose ends are revealed they
often make apparent the need to completely reorganize and rewrite all
subordinate functions into a more suitable organization., In contrast,
the obvious loose ends during a top-down development provide invaluable
Cclues about how to organize the remaining functions., Moreover, any
subsequent changes tend to be easier, because communication between the
functions is more localized, more independent, and more hierarchial,
For example, we know that in the definition of SYMDIF we are taking the
union of two DISJOINT sets, because from the definition of CRIDIF it is
clear that ORDDIF (SET1, SET2) and ORDDIF (SET2, S=Tl1l) cannot have
elements in common. Eence it would be more efficient merely to append
the second ordinary set difference to the first ordinary set difference,
or vice-versa. Unfortunately, ADJOIN does not accomplish the desired



effect.

For example, ADJOIN ('(5, 9), '(3, 7)) yields ((5, 9), 3, 7)
rather than the desired (5, 9, 3, 7). What we must do is ADJOIN 9 to
(3, 7), then adjoin 5 to that result. See if you can generalize this
process into a function named APPEND, which returns a list consisting of

the list which is its first argument appended onto the beginning of the
list which is its second argument:§ RDS: FALSE §$
§ BHow about: %

FUNCTION APPEND (LISl, LIS2),
WHEN EMPTY (LISl), LIS2 EXIT,
ADJOIN (FIRST{(LISl), APPEND (REST(LIS1), LIS2))
ENCFUN §
$ You may not be getting tired, but my circuits are weary, so let's

bring this lesscn to a close., §
BCHO: #ECHO § CONDENSE: #CONDENSE §

RDS () §



c

§File: PLES4.TRA (<) 11/01/79 The Soft Wa:ehouse_ %

LINELENGTH (78) § :
#CONDENSE: CONDENSE $§ CQDENSE: FALSE § #ECHO: ECHO $ ECHO: TRUE §

§ This is the fourth is a series of muSIMP programming lessons.

Cften within a function definition it is desired to form a list of
values DYNAMICALLY, For example, suppose that we wish to form a list of
the VALUES of the variables FIRSTNAME, LASTNAME, and MAILADDRESS. It
will not do to use '(FIRSTNAME, LASTNAME, MAILADDRESS), because the
guote prevents evaluation of the variables,

We can accomplish the desired effect by writing
ADJOIN (FIRSTNAME, ADJOIN (LASTNAME, ADJOIN (MAILADDRESS, '()))).

However, this rather unreadable construct is tedious to write.
Fortunately, muSIMP provides a convenient functicn named LIST for tnis
purpose: We can accomplish the desired effect by merely writing

LIST (FIRSTNAME, LASTNAME, MAILADDRESS).

Unlike most functions, LIST uses any number of arguments. As specific
examples: §

$ Now, cmpare using a quote with using LIST: % RDS: FALSE $

$ Reversing a list is an occasional need, and it is somewhat tricky to
write a function for this., The following partial definition reveals
that our friends APPEND and LIST can help:

FUNCTICN REVLIST (LIS),

WHEN ... EXIT, .

APPEND ( ... , LIST (FIRST (LIS)))
ENDFUN §

See if you can successfully complete this definition. Naturally, you
also have to reenter APPEND if a correct versicn is not around from the
previcus lesson., (Remember also to jot down all function definitions if
you are not using a hard-copy terminal.) § RDS:FALSE $

$ A well-written APPEND necessarily requires execution time which is
approximately proportional to the length of its first argument. The
REVLIS functicn outlined above invokes APPEND n times if n is the length
of its original argument, and the average length of the argument to
APPEXD is n/2. Thus, the time is approximately proportiocnal to n*(n/2),
wnich is proportional to n”2.

Fortunately, an important technigue called a CCLLECTION VARIABLE
permits list reversal in time proportional to n, yz.eldmg tremendous
time savings for long lists: &



FUNCTION REVLIS (LIS, ANS),
WHEN EMPTY (LIS), ANS EXIT,
REVLIS (REST(LIS), ADJOIN (FIRST(LIS), ANS))
ENDFUN $
TRACE (REVLIS) ;
REVLIS ('(1, 2, 3)) & .
$ A coilection variable accumulates the answer during successive
recursive invocations. Then, the resulting value is passed back through
successive levels as the returned answer,

As is illustrated here, we can invoke a function with fewer
arguments than there are parameters. When this is done, the extra
parameters are initialized to FALSE, and they are available for use as
LOCAL VARIABLES within the function body. Quite often, as in this
example, the initial value of FALSE is exactly what we want, because it
also represents the empty list, (When we want some other initial value,
either the user can supply it, or the function can supply it to an
auxiliary function which does the recursion.)

Of course, if a user of REVLIS supplies a second argument, then the
function returns the reversed first argument appended onto the second
argument, which is also occasionally useful,

What if the user supplies more arguments than there are parameters?
The extra arguments are evaluated, but ignored. This is also
occasionally convenient.

The style of programming exemplified so far is the so-called
"applicative" style popularized by the influential Turing lecture of J
Backus, published in the August 1978 issue of the Communications of the
ACM: The emphasis is on expressions, functional composition, and
recursion,

muSIMP also supports the alternative "Won Neumann" style emphasizing
loops, assignments, and other side-effects., To illustrate this style,
here is an alternative definition of REVLIS which introduces the LOOP
construct: %

FUNCTION REVLIS (LIS, ANS),
LCOP
WHEN EMPTY (LIS), ANS EXIT,
ANS: ADJOIN (FIRST(LIS), ANS),
LIS: REST (LIS)
ENDLCOCP
ENDFUN § :
$ muSIMP has a primitively defined function named REVERSE, which has
an equivalent machine language definition.

An iterative loop is an expression consisting of the keyword LCCP,
followed by a sequence of cne or more expressiocns separated by commas,
followed by the matching delimiter named ENDLOCP. The body of a loop is
evaluated similarly to a function body, except:

1. When evaluation reaches the delimiter named ENDLOOP,
evaluation proceeds back to the first expression in the loop.



2. When evaluation reaches an EXIT within the locp, evaluation
proceeds to the point immediately following ENDLOCP, and the
value of the loop is that of the last expression evaluated
therein.

There can be any number of conditional exits anywhere in-a loop.
Ordinarily there is at least one exit unless the user plans to have the
loop repeat indefinitely until perhaps interrupted by typing ESCape,

~ALDnode or CTRL~Z. (This interrupt can succeed only if the loop invokes

at least cne function which is not built-into muSIMF.)
Now consider the following sequence: §

Ll: '(THE ORIGIMAL ) §

L2: '(TAIL) §

REVLIS (L1, L2) &

$ The above definition of REVLIS makes assignments to its parameters
LIS and ANS. For this example, the final assignments are LIS: '() and
ANS: '(ORIGINAL, THE, TAIL). So, what do you guess are the
correspending current values for Ll and L2? See for yourself: &

RDS: FALSE § .

$ The assignments to parameters LIS and ANS have no effect on
arguments L1 and L2! This "call-by-value” mechanism permits function
definitions to freely utilize their parameters without fear of damaging
the values of user's argument variables outside. Thus, ordinary
function parameters are never employed for passing information back to
the user. If we wish to return more than cne piece of information, the
most well-disciplined way to do so is to return an aggregate of the
pieces as the returned value, However, another way is to make
assignments within the function body to variables which are not ameng
its parameters — so-called "fluid" or "global" variables.,

e o

As is often the case for iteration versus recursion in muSIMP, the
iterative LOOP version of REVLIS is slightly faster than the recursive
collection-variable versicn, but the latter is more compact. When there
is such a trade-off between speed and compactness, a good strategy is to
program for speed in thé crucial few most-frequently invoked functicns,
and program for compactness elsewhere.

Bowever, looping does have another advantage when it is applicable:
Recursion entails a "stack” of information which grows with the depth of
recursion., Consequently, even though the space allccated to the stack
is quite generous, excessively deep recursion can abort a computation by
exhausting this space,

For practice with loops, use cne to write a nonrecursive recognizer
named ISSET, which returns TRUE if its list argument contains no
duplicate elements, returning FALSE otherwise. (Compare your definition
with the recursive version in lesson PLES3.) % RDS: FALSE §$
$ BHere is our solution: §



FUNCTION ISSET (LIS),
LooP
WHEN SMPTY (LIS), EXIT,
WHEN MEMBER (FIRST(LIS), REST(LIS)), FALSE EXIT,
. LIS: REST (LIS)
ENDLQOP
ENDFUN § , ,
$ Another good exercise adapted from PLES3 is to use a loop to write a
nonrecursive function named SUBSET, which returns TRUE if its first
argument is a subset of its second argument, returning FALSE otherwise:
$ RDS: FALSE §
$ A BLOCX is another control construct which is sometimes convenient,
particularly in conjuction with the Von Neumann style. As an
illustration of its use, the following iterative version of the MAKESET
function from PLES3 returns a set composed of the unique elements in the
list which is its first argument: %

FUNCTION MARESET (LIS, ANS),
LooP
WHEN EMPTY (LIS), ANS EXIT,
BLOCK
WHEN MEMBER (FIRST(LIS), ANS), EXIT,
ANS: ADJOIN (FIRST(LIS), ANS)

MAKESET ('(FROG, FROG, FROG, TERMITE)) &

$ When evaluation reaches an EXIT, it proceeds to the point following
the next ENDBLOCK, ENDLOCOP, or ENDFUN delimiter — whichever is nearest.
Thus, BLOCK provides a means for alternative evaluation paths which
rejoin within the same function body or loop body, without causing an
exit from that body. The first expression in a block must be a
conditional-exit (armything else can be moved outside anyway), but since
there can be any number of other conditional exits or other expressions
within the block, the block provides a very general structured control
mechanism, For example, the CASE-statement and IF-THEN-ELSE construct
of some other languages are essentially special cases of a block.

You may not have noticed, but the loop version of MAKESET has tne
effect of reversing the order of the set elements, Using ADJOIN in a
loop generally has this effect, which is why it is so suitable for
REVERSE. With sets, incidental list reversal is perhaps acceptable, but
for most applications of lists it is not. We could of course use a
preliminary or final invocation of REVERSE so that the final list would
emerge in the original order, but that would relinquish the speed
advantage of the loop approach, while further increasing its greater
bulk. Thus, recursion is usually preferable to loops when ADJOIN is
involved. For example, recursion is used almost exclusively to

implement muMATH, because its symbolic expressions are represented as
ordered lists,

Loops are also less applicable to general tree structures than to

lists, but it is often possible to loop on the REST pointer while
recursing cn the first pointer, or vice-versa, particularly if ADJCIN is

4



not involved, For example, compare the following semi-recursive
definition of #ATOMS with the fully-recursive one in FLESl: %

FUNCTION #ATOMS (U, N},
N: 1'
LOOP
WHEN ATOM (U), N EXIT,
N: N + $ATCMS (FIRST(U}),
U: REST (U)
~ ENODLOOP
ENDFUN § .
$ATOMS ('((3 . FOO), BAZ)) ; -
§ If the answer surprises you, don't forget the FALSE which BAZ is
implicitly dotted with.

6 o8

See if you can similarly write a semi~-recursive function named DUP
which does what the infix operator named "=" does: % RDS: FALSE §
$ Those of you with previous exposure to only Von Neumann style
programming undoubtedly feel more at home now. The reason we postponed
revealing these features until now is that we wanted to force the use of
applicative programming long enough for you to appreciate it too.
Naturally, one should employ whichever style is best suited for each
app:ll'ication, so it is worthwhile to become equally conversant with both
styles.

Thus endeth the sermcn, %

ECHO: $#ECHO § CQDENSE: #CONDENSE $
ROS () § .
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LINELENGTE (78) $
$CONDENSE: CONDENSE § CCNDENSE: FALSE § #ECHO: ECHO § ECHO: TRUE §

§ This is the fifth in a saquence cf muSIMP programming lesscns.

- In the previous lesson our original version of REVERSE, called
REVLIS, required time proportional to n"2, where n is the length of the
first arqument. We then showed how a collection variable or a loop
could yield a much faster technique using timec proportional only to n.
gceg, let's consider the speed of some of the other set functicns that we

Whether iterative or recursive, MEMBER can require a number of
equality comparisons equal to the length of its second argument.
Whether defined iteratively or recursively, SUBSET, EQSET, UNION, and
INTERSECTION all require a membership test for each element of one
argument in the list which is the other argument., Thus, these
definitions can all consume computation time which grows as the product
of the lengths of the two arguments. By similar reasoning, the one-
arqument functions ISSET and MAKESET are seen to require time
proportional to the square of the length of their argument, Data~-base
applications and others can involve thousands of set operations on sets
having thousands of elements, so it is worthwhile to seek methods for
which the computation time grcws more slowly with set size,

In muSIMP, every name has, an associated PROPERTY LIST which is
immediately accessible in an amount of time that is independent of the
total number of names in use, Provided the elements of the sets are all
names, this permits techniques for the ancove set operations requiring
time proportional merely to the length of the one set or to the sum of
the lengths of the two sets,

A property list is a list of dotted pairs. The first of each dotted
pair is a atom called the KEY or DNDICATCR, and the rest of each dotted
pair is an expression called the associated INFORMATION, For example,
in a meteorclogical data-base application, the name HONOLULU might have
the property list

((RAIN . 2), (HUMIDITY . 40), (TEMPERATURE, 58, 96))

The function used in the form GET (name, key) returns the

information which is dotted with the value of "key" on the property list

of the value of "name", returning FALSE if no such key occurred on the
property list, ~

A command of the form REMPROP (name, key) has the side effect of
deleting from the property list of "name" the first dotted pair
beginning with the value of "key", if any, REMPROP returns FALSE if no
such indicator occurs on that property list, returning TRUE otherwise.

A command of the form PUT (name, key, information) causes a

command of the form REMPROP (nzme, key) to be executed, after which the

value of "key" dotted with the value of "information®" is put on the



property list of the value of ®name”. PUT returns the value of
*information”.

Using property lists, the basic technique for accomplishing our
various cperaticns on two sets of names is:

l. For each name in one of the two sets of names, store
TRUE under the key SEEN.

2. For each name in the other set, check to determine
whether or not the name has already been seen, and act

accordingly.

3. For each name in the first set, remove the property
SEEN so that we won't invalidate subsequent set operations
which utilize any of the same elements,

A simpler variant of this idea is applicable to the one-argument
functions named ISSET and MAKESET,

As an example, here is UNION defined using this technique together
with the applicative style: §

FUNCTION UNION (SET1, SEI2),

MARK (SET1),

UNMARK (SET1, UNICNAUX (SET2)) ENDFUN $
FUNCTION MARK (SET1),

WHEN EMPTY (SET1), EXIT, .

PUT (FIRST(SET1), 'SEEN, TRUE),

MARK (REST (SET1)) ENDFUN §
FUNCTION UNIONAUX (SET2),

WEEN EPTY (SET2), SET1l EXIT, '

WHEN GET (FIRST(SET2), 'SEEN), UNIQNAUX (REST(SET2)) EXIT,

ADJOIN (FIRST(SET2), UNIONAUX(REST(SETZ))) ENDFUN §
FUNCTICN UNMARK (SET1, ANS), ’

WHEN EMPTY (SET1), ANS EXIT,

REMPROP (FIRST(SET1), 'SEEN),

UNMARK (REST(SET1), ANS) ENDFUN §
$ Each time any function is invoked, the outside values of its
parameter names, if any, are "stacked" away to be restored later, just
prior to return from that invocation. If a function refers to a
variable which is not among its parameters, then the most recent value
of the variable on the stack is used. Thus, when UNIONAUX is invoked
from within UNION, SET1 in the definition of UNIONAUX refers to the
argument value associated with that parameter of UNION. This treatment
is called "dynamic binding®, and a reference such as to SET1 in UNIONALX
is called a "fluid reference®. We could have avoided this by making
SET1 be an argument and a parameter to UNIONAUX, but that would have
made the program slightly slower and more bulky. However, fluid
variables make programs much harder to debug and maintain, especially if
assignments are made to them in functions other than the ones which
establish them., Consequently, we recommend generally avoiding fluicd
variables. The only reason we used one here is to introduce the concept
to issue this agvice.



Values assigned at the top-level of muSIMP, outside all function
definitions, are called GLCBAL values, Examples are the initial values
of muSIMP control variables such as RDS, ECHO and CONDENSE, or of muMATH
control variables such as PBRCH or PWREXPD. Reference to a glcbal value
from within a functiaon definition is not quite as confusing as reference
to a fluid value, and it is indeed onerous to creat numerous long lists
of parameters in order to pass such envircnmental control values through
a long sequence of function definitions for use deep within,

However, here too it is at the very least considered bad
programming style to unnecessarily modify such giobal values from within
a function without restoring the values before exiting from the
function, In fact it is generally bad manners for any program file to
modify global values if the modification is merely incidental to the
central purpcse. That is why these lessons carefully save the
prevailing values of the control variables named ECHO and CONDENSE, then
restore these values just prior to the end of the file. (It is truely
annoying to have someone else's program litter your environment
unnecessarily.)

The property-list technique for set operations is one which we think
is more naturally implemented using the Von Neumann programming style.

Try to write such a version of UNION: & RCS: FALSE §
% Now, using either style, write an INTERSECTION function using the
property-list technique: & RDS: FALSE $

$ One does not usually take the FIRST or REST of an atom
intenticnally, but they do in fact have well-defined values: The FIPST
of an atom is its value, and the REST of an atom is its property list.
For example: %

WEATHER: 'FOUL §

FIRST (WEATEER) ;

PUT ('WEATEER, 'TEMPERATURE, =3) & ‘

PUT ('WEATHER, 'WIND, '((NCRTH . WEST), 30)) &

REST ('WEATHER) &

$ This is true of integer atoms too, though it is usually pointless to
put anything on the property list of an integer, because integers are
not stored uniquely: %

FIRST (7);

REST (7):

NINE: 9 §

PUT (NINE, ‘TESTING, '(1, 2, 3)) &

GET (NINE, ‘TESTING) &

GET (9, 'TESTING) &

$ Since all nodes and atoms have a FIRST and a REST which are either
nodes or atoms, misuse of these selectors can't accidently give access
to the machine language, stack, print names, or anywhere else which
could inadvertently compromise the integrity of muSIMP. Thus,
inadvertent omission of a termination test in functions which follow
chains of pointers is likely to be revealed by stack exhaustion in the
case of recursion, and by an infinite loop in the case of iteration.



It is common practice to use EMPIY to test for the end condition as
a function proceeds down a list. If such a function is inadvertently
given a non-list (i.e. a Non-FALSE atom or a structure whose final REST
- cell points to a Nen-FALSE atom), the function will use the FIRST cell
of that atom (i.e. its Value cell) as an element of the list and the
REST cell of the atom (i.e. its Property List cell) as the REST of the
list. Generally the Property List is a well defined list so the EMPTY
test will ultimately cause termination with no ill affects,

We prefer to have non-list arguments give more predictable
results coniined to the argument. Thus, our internal implementations of
MEMBER, REVERSE, and any o¢ther functions ordinarily applied to lists use
ATOM rather than EMPTY as the termination test. This is slightly faster
too, so you may wish to generally avoid EMPTY in favor of ATOM.
Alternatively, you can redefine EMPTY to print and return an error
message when given a nonFALSE atom: §

FUNCTION BMPTY (LIS), ,
WHEN ATCHM (LIS), ‘

WHEN EQ (LIS, FALSE), EXIT,

PRINT ("*** Warning: EMPTY given nonlist ") EXIT
ENDFUN $
EMPTY (5) §
$ This is our first example illustrating the fact that conditional
exits can be nested arbitrarily deep. The same is true of loops or
blocks., This example also illustrates the PRINT functicn, which prints
its one argument the same way that expressions terminated with an
ampersand are printed., There is an analogous function named PRTMATH
which prints its one argument the same way that expressions terminated
with a semicolon are printed,

When functions are called with fewer actual arguments than the
function has formal arguments, the remaining formal arguments are
assigned the value FALSE. This provides a convenient mechanism for
automatically inserting default values for these extra arguments., When
an argument evaluates to FALSE, the functicn can assign the appropriate
default value. For example, if the user omits the drive as the third
argument of RDS, that function uses the currently logged in drive (i.e.
the drive indicated by the last operating system prompt given before
entering muSIMP).

There are instances where it is desirable to permit a function to
have an arbitrary number of arguments, This is accomplished by making
the formal parameter list of a function definition be an atom or non-
list rather than a list., The arguments are passed to the function as a
single list of argument values, from whicn the function can extract
the values. For example, it is convenient to have a function named MAX
which returns the largest of one or more argument values. We can
implement this as follows: %

FUNCTICN MAX ARGLIS,
MAXADX (FIRST(ARGLIS) , REST(ARGLIS))
ENDFUN §
FUNCTICN MAXAUX (BIGGEST, UNTRIED),
WHEN EMPTY (UNIRIED), BIGGEST EXIT,



WHEN BIGGEST > FIRST(UNTRIED), MAXAUX (BIGGEST, REST(UNTRIED)) EXIT,
 MAXALX (FIRST(UNIRIED), REST(UNTRIED))
ENDFUN § -
MAX (7) :
MAX (.37 8, =2) ;
$ This collection of arguments into a list is called NOSFREAD, to
distinguish from the SPREAD brand of peanut butter, '

More generally, muMATH permits a combination of the 2 techniques: If
a parameter-list is a dotted-pair of two names or a list whose last
element is a dotted pair of two names, then the last parameter name
accumulates a list of any excess arguments beyond those spread to the
other parameter names, Thus, we can simplify our definition of MAX to:
% ‘ ‘ )

FUNCTION MAX (FRST . OTHERS),
MAXAUX (FRST, CTHERS)

~ENDFUN $

$ Would you like to try this technique? Appropriate candidates
include MIN, UNION, and INTERSECTICN. $ 'RDS: FALSE §

% Now, suppose that for some reason we already have a list of integers
such as § .

NUMBLIS: '(18' 3' 71 91' lZp 2) $ '
$ and we want to find their maximum, The expression MAX (NUMBLIS)
will not work, because MAX is designed for numeric arguments, not for a

“list of numbers, We could of course extract the elements and feed them

individually to MAX, but this is awkward, especially if we are referring
to MAX inside a function and we-do not know ahead of time how many
integers are in NUMBLIS. Fortunately there is a convenient function
named APPLY, which applies the function whose name is the value of its
first argument to the argument list which is the value of its second
argunent, Consequently, we need merely write %

APPLY ('MAX, NUMBLIS) &

$ APPLY works on either SPREAD or NCSPREAD functions., Why don't you
try out a few examples: . % RDS: FALSE $

$ A function written in muSIMP-79 is stored internally as a nested

‘1list, and the function named GETD returns a pointer to this list.

Conseguently, to see what the internal representation of UNION looks
like: %

GETD (UNION) &

$ GEID returns TRUE if the definition is in machine language, and GEID
returns FALSE if there is no function definition for its argument.
Those who are curious may wish to use this function to experimentally
determine the correspondence between the external and internal forms of
a function definition. This can be useful for revealing bugs arising
from misconceptions about how the parser regards certain constructs.
All we want to point out here is that since function definitions are
represented as lists, muSIMP functions can easily operate upon other
muSIMP functions, This makes it easy to write muSIMP programs wnich
service other muSIMP programs, Examples include muSIMP-oriented
editors, cross-reference programs, debuggers, verifiers, statistics-
gatherers, pretty-printers, file comparators, and compilers. The

S



internal representation also makes it possible for functions tc modify
each other dynamically, as they execute. The implications for artifical
intelligence are intricuing to contemplate,

REMD is a related command which clears any function definition
existing under the name which is the value of its argument., For
example, %

REMD (UNION) &

GEID (UNION) & ,

$ One good use of REMD is to free space occupied by functions which
are no longer needed immediately, in order to provide enough space for a
more urgent need., For example, suppose that in muMATE a problem
requires the SOLVE package followed by the MATRIX package, but there is
not room enough for both packages to coexist in the amount of memory
present on the machine, Then, after using the SOLVE package but before
reading in the MATRIX package we could remove function definitions for
SOLVE by commands such as

REMD (SOLVE) § REMD (SOLEXP) § ...

Less typing would be involved if we defined a command named
MULTIREMD, which for an argument which is a list of names, successively
applies REMD to each name, In this example it is the side efects rather
than the returned value which is of interest, so MULTIREMD can return
whatever is the least trouble, MULTIREMD is trivial to write, using
either recursicn or iteration, because the same "program schema" occurs
so often: Walk down a list, successively applying a function of one
argument to each element of the list, then return anything. This
cbservation leads to the following idea: Let's write a function which,
given the name of any function of 1 argument, together with a list,

successively applies the function to the elements, then returns anything
convenient: &

FUNCTION MAP (FUNNAME, LIS),
LOCP

WHEN BEMPTY (LIS), EXIT,
APPLY (FUNNAME, FIRST(LIS)),
LIS: REST (LIS)
ENDLOCP
ENDFUN $
% Then, for example, we could write

MAP ('REMD, '(SOLVE, SCLEXP, ... )) §

What we have done is to separate the general-purpose control-
sequence from the specific tasks which can use it. This division of
labor accomplishes two useful things:

1. Program space savings can accrue for each use of MAP with a
different function, beyond the first, because essentially
duplicate control sequences are avoided.

2. Once the meaning of MAP becomes familiar, the program is
more readable, because MAP ('REMD, '(SOLVE, SOLEXP, ... )) is



then instantly understood to mean REMD all of SOLVE, SOLEXP,
etc.. In contrast, the altermative form MULTIREMD ('(SOLVE,
SOLEXP, ... )) requires the user to check the definition of
MULTIREMD to be sure the purpose is correctly understood,

Another frequent need is to walk down a list, applying a function of
one argument to each element, but return the list of results., Write a
rapping function of this kind, called MAPLIST since it returns a list.
Then, try
MAPLIST ('-, '(3, 8, 14)), and MAPLIST ('NOT, '(TRUE; FALSE, MAYRE))
$RDS: FALSE §
$ MAP and MAPLIST are the most widely applicable mapping functions,
but if you grow to like mapping functions you may develop & large suite
of them. FPFor example:

1. PFor functions of two arquments you could have a map
function of the form MAP2 (function name, listl, list2) or
MAP2 (function name, list of pairs). Since much of muMATE is
stored on property lists, this could be used to apply REMPROP
- appropriately to help delete high-level muMATH packages in
order to make space. (Here is an idea: for each muMATH file,
write a corresponding file of type DEL, which has an
appropriate command of the form MAP ('REMD, ... ), together
with one of the form MAP2 ('REMPROP, ... ). Then, to delete
the SOLVE package from memory, one merely issues the command
RDS (SOLVE, DEL, drive).)

2. Por functions of two arguments you could have a mapping
function used in the form MAP2LIST (function name, listl,
list2) or MAP2LIST (function name, list of pairs), which is
like MAP2 but returns a list of results.

3. For general trees you could have a mapping function called
TREEMAP which applies a function to the atoms in a tree, and
there could be a similar one called TREEMAPTREE which is
similar but returns a tree. §

BCHO: #ECHO $§ COMNDENSE: #CONDENSE §
RDS () §
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I. DATA STRUCTURES.

muSIMP data is comprised of names, numbers, and nodes. Each

is recognizable and consists of a fixed number of “"pointer®” cells
containing memory addresses. The cells can either point to other
objects or to special-purpose entities outside the pointer space of
objects. However, all three types have a FIRST cell and a REST cell.
Moreover, these FIRST/REST cell pairs can only point to other objects
within the peinter space., This eliminates the need for time-consuming
run-time type-checks in the crucial selector functions which fetch these
pointers.

A. Names | Value | Property | Function | Pnames |

T

A name is a recognizable, structured object consisting of four
pointer cells. Names are uniquely stored so that duplicate names cannot
coexist in storage. Here are the uses of the four cells:

1. The EIRST or value cell contains a pointer to the
name's current value which is used by the evaluation
functions. The value of a name is initialized to a self-
reference of the name; ;;ow’evez, it is modified by the
assignment functions and when the name is used as a formal
parameter in a function definition.

2. The REST or property list cell contains a pointer to
the name's property list which is used by the property
functions, Elements of this list are indicators dotted with
the corr i es, Property lists are initially set to
the empty list, -

3. The Function cell contains a pointer to tne name's
function definition if any, The contents of this cell can't
be accessed except as function applications, and the contents
can't be medified except by means of the function definition
primitives. When a new name is first created, its function
cell is initialized to the undefined-function trap routine.

4. The Ppame cell contains a pointer to the name's ASCII
print-name string, which can be of arbitrary length. Access
to this cell is restricted to the I/0 and sub-atomic
primitives, Print names are defined when a name is first
used, and they cannot be modified or expunged.



B. Numbers ISelflPALSEiVectorI
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A number is a recognizable, structured object consisting of three
pointer cells. Numbers are not uniquely stored, so duplicate numbers
might coexist in storage. The cells are used as follows:

1. The EIRST cell contains a pointer to itself.
2. The REST cell is initialized to FALSE.
3. The Number Vector cell contains a pointer to the

actual number, which consists of a signed vector of up to 254

bytes. Thus, the magnitude of numbers is limited to 256254,
whnich is approximately 107°611.

I
T

C. Nodes | FIRST | REST |
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Binary trees are the primary data structure in muSIMP., Internally
they are implemented as a network of cell pairs called nodes. Each node
consist of a FIRST cell and a REST cell. As mentioned earlier, the
node's cells can only point to other bonified muSIMP data cbjects;
either a name, a number, or a node. Nodes are often called “dotted-
pairs”, because of their linearized external notation produced by PRINT
or accepted by READLIST: The notation

X . ¥)

represents a node whose FIRST cell points to the object X, and whose
REST cell points to the object Y. Although the dot notation is more
general, it is often more convenient to think of data as a linear list
than as a deeply nested binary tree. For this purpose, lists are

recursively defined as follows:
1. The empty list is denoted by the name FALSE.
2. If Y is a list and X an object, then (X . ¥) is a list.

A list of objects is printed by the function PRINT as a sequence of
its elements separated by commas and delimited by parenthesis. The
function READLIST recognizes this notation for input, For example, if Y
is the list (Y1, Y2, .., ¥n) then the dotted pair (X . Y) is printed as

(X, Yl' Y2, seey Yn)

Conversely, the input of the form (X, Y1, ¥2, .., ¥n) is recognized as
(X . ¥) by the READLIST function.



II. MEMCRY MANAGEMENT.

Dynamic, transparent memory management gives muSIMP much of its
inherent power. Ideally, at any given time during the executicn of a
program, all of the memory not actually required to decribe the state of
the machine shculd be available for any subsequent program use. This is
approximated in muSIMP-79 by first partitioning the available resources
into the various data-spaces and then recycling storage within each of
these spaces as required. Normal stack operations continuously reclain
the stack space; whereas, an automatically invoked garbage collector
reclaims the remaining spaces,

A. Initial Data-space Partition

During the initjalization phase of muSIMP, the amount of read/write
memory available to the interpreter is first computed. Memory is then
partitioned into four distinct data-spaces using the following
proportions: ' '

4/32 Atom Space Name and number pointer cells.
3/32 Vector Space Print-name strings and number vectors.
23/32 Node Space Node cell pairs.

2/32 Stack Space Control/value stack.

Based on our experience, these proportions provide a reasonable
balance between the spaces for most applications.

b

B. Garbage Collection

New data structures are generally constructed during the execution
of a muSIMP program, while others are implicitly discarded as they
become un-referenced. When the construction process uses up all
available resources, a garbage collector routine is called to reclaim
the storage space vacated by discarded data structures, so that the user

‘program can continue. .In muSIMP-79 the exhaustion of resources in

either the atom, vector, or node spaces will cause collection to occur.
Those data structures accessible by means of chaining through pointer
cells beginning either from a name cell or from a value stack entry are
marked, Then during the second pass all the unmarked nodes and numbers

are collected for re-use, while simultaneously removing the mark on the
accessible nodes.

Although garbage collection is automatic, it is not entirely
invisible to the user since it periodically causes a pause in the
execution of a program. About 1.5 seconds is required for the
collection process in a 48K byte muSIMP-79 system using a 2MHz CPU
clock. Normally this is of no concern to the programmer; however, it
should be considered in the design of real time systems. A phenomencn
know as thrasning occurs when the system is forced to spend an
inordinate amount of time garbage collecting for a very small amount of
nodes. This can be resolved by increasing the computer's memory size or
decreasing the amount of program and data storage requirements.



III. ERROR And INTERRUPT TRAPS

If there is a reasonable interpretation for a construct, muSIMP
generally uses it. Consequently, error traps are induced only by
situations for which there is no satisfactory recovery. Examples are
the exhaustion of available data space or disk I/O errors. On the other
hand, a software interrupt is caused by an interrupt character (i.e. an
ESC, ALT, or Ctrl~Z) received from the terminal, which can be sent at
any time., When a particular trap occurs, the appropriate diagnostic and
the following "options" message are sent to the terminal:

EXECUTIVE: ESC, ALT, Ctrl-Z; RESTART: RUB, DEL; SYSTEM: Ctrl-C?

The user may then type one of the appropriate alternative option
characters, The "EXECUTIVE® opticn is the least drastic since it merely
causes control to return to the muSIMP executive driver loop, without
changing function definitions, property values, or name values, from
what they were just prior to the interrupt. The second option destroys
all non-primitive muSIMP functions, property values, and name values,
then restarts muSIMP afresh. Finally, the "SYSTEM" option terminates
muSIMP, and returns control to the operating sytem,

A. Data Space Overflow

As discussed in Section II, there are four distinct data spaces in
muSIMP to accommodate the various data types. Normally, automatically
invoked garbage collections will provide sufficient space in each area
to continuously satisfy the demands of user programs, However, in the
event all of the available résources in an area become exhausted, an
error trap will occur and one of the following diagnostic messages will
be displayed on the terminal:

NCDE Space Exhausted
ATOM Space Exhausted
VECTCOR Space Exhausted
STACK Overflow

- B. Disk File I/0 Errors
Disk errors may be caused by insufficient disk space, attempts to
read past the end-of-file, or hardware malfunctions. The read and write
disk error diagnostics are respectively:

End of File or READ Error
No Disk Space or WRITE Error
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C. Undefined Numerical Operations

If the second argument to any of the functions QUOTIENT, MOD, or

DIVIDE is 0, a zero-divide trap occurs with the following diagnostic:

2ERO Divide Error

D. Input Syntax Error

The only syntax error trap caused by the function READ is when a
closing right parenthesis is not found when using the 'dot' notation.
The diagnostic is:

Input Syntax Error
Function PARSE can produce syntax error traps together w:.th
diagnostics of the following forms:
*** SYNTAX ERROR: expression USED AS NAME,
*#¥* SYNTAX ERROR: expression USED AS PREFIX OPERATOR,
*** SYNTAX ERROR: expression USED AS INFIX OPERATCR,
**% SYNIAX ERROR: delimiter NOT FOND,
where "expression" is the apparent offending portion of the inmput, and
where "delimiter” is an apparently missing right delimiter such as a
right parenthesis, ENDFUN, ENDSUB, EXIT, ENDLOOP, or ENDBLOCK. In any
event, the remainder of the input from the pomt of confusion through
the next terminator, such as ";", "$%, or "&", is output to the terminal

to help indicate the probable neighborhood of the cause. Examples which
provoke the above four types are respectively:

5 (X): {perhaps 5*(X) was intended?}

X Y; {perhaps X*Y was intended?}

X*/Y; {perhaps X/Y was intended?}

WHEN ATOM(X, EXIT {perhaps WHEN ATOM(X), EXIT was
intended}.



v. PRIMITIVELY DEFINED FUNCTICNS.

The muSIMP (Structured IMPlementation) Language is a high level
computer language ideally suited for symbolic and semi-numerical
processing. Currently, it is implemented by means of a bootstrap file
MUSMORE.MUS which is automatically loaded prior to using the language.
For an interactive introduction to the features available in muSIMP, the
tutorial lesson files, beginning with PLES1.TRA, may be executed. See
the description on how to take the programming lessons in LESSONG.TXT.

Every language must be described in terms of some language, which
must be described in terms of some language, etc. Thus it is clear that
at some point we must appeal to assumed inkorn or culturally acquired
understanding. This unnecessary sequence of "buck passing" can be
avoided by using a somewhat circular description of muSIMP. In other
words muSIMP-79 can be described in terms of muSIMP supplemented with
English where necessary. Use of such a description requires some
prerequisite knowledge of muSIMP gained by other means, just as use of
an English dictionary requires some prerequisite knowledge of English.

After one has initially learned the basics of muSIMP from the
lessons, this type of reference manual has the advantage of being
compact while requiring mastery of no auxiliary notations, In addition
it provides excellent, nontrivial examples of structured programs
written in muSIMP,

The following is a description of all of the primitively defined
user-level functions, operators, control constructs, and control
variables in muSIMP-79. For descriptive purposes only, we introduce
some fictitious functions which are unavailable to the user. They are
indicated by being upnnumbered and are also unindexed, Lower-case type
is employed where English is used rather than legitimate muSIMP program
constructs,
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A. Selector Functions

1.

2.

3.

4.

S.

FUNCTION FIRST (X),
the contents o:theE‘IRSJ?ce.llofx,
BDFUN; .

Interpretations:
a, The first item of a list X,
b. The left element of a dotted-pair X,
C. The value of an atom X.

FUNCTION REST (X),
the contents of the REST cell of X,
ENDFUN;

Interpretations:

- a, The tail of a list X,
b. The right element of a dotted-pair X,
Cc. The property list of an atom X.

FUNCTION SECOND (X),
FIRST (REST (X)),
ENDFUN;

FUNCTION RREST (X), .,
REST (REST (X)),

- ENDFUN;

FUNCTION THIRD (X),
FIRST (REST (REST (X))),
ENDFUN;

- FUNCTION RRREST (X),

REST (REST (REST (X))),

.
’



B.

Constructor Functions

l.

2.

3.

4.

FUNCTION ADJOIN (X, Y),
a new cell-pair whose FIRST cell is X and whose REST
cell is Y, '

ENDFUN;

Interpretations:
a. A list whose first element is X and whose tail
is ¥,
b. A dotted-pair whose left element is X and whose
right element is Y.

SUBRCUTINE LIST (X1, X2, ..., Xn),

WHEN n = 0, FALSE EXIT,

ADJOIN (EVAL (X1), LIST (X2, X3, ..., Xn)),
ENDSUB

Interpretation: The list (X1, X2, ..., Xn).

FUNCTION REVERSE (X, Y),

WHEN ATCM (X), Y EXIT,

REVERSE (REST (X), ADJOIN (FIRST (X), Y)),
ENDEUN;

Interpretation: The reverse of the list X. If a
second argument Y is given, the reversed list is
appended to the beginning of the object Y.

FONCTION OBLIST (),
a list of the current built-in and user-introduced
names,
ENDFUN; ;

Interpretation: The object (name) list.

Q
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C.

Modifier Functions

1.

2.

3.

FUNCTION REPLACEF (X, Y),
FIRST cell of X: Y,
X,

ENDFUN;

Interpretations:
a. Replace the first element of a list X by ¥,
b. Replace the left element of a dotted-pair X by Y,
C. Replace the value of an atom X by Y.

FUNCTION REPLACER (X, Y),
REST cell of X: ¥,
X,

ENDFUN;

Interpretations:
a. Replace the tail of a list X by Y,
b. Replace the right element of a dotted-pair X
by ¥
c. Repléce the property list of an atom X by Y.

FUNCTION CONCATEN (X, Y),
WHEN ATOM (X), Y EXIT,
WHEN ATQM (REST (X)J, REPLACER (X, ¥) EXIT,
XCQCATEN (REST (X), Y),

EMDFUI:I:

Interpretation: Concatenate, without adjoining, the list
Y onto the right end of the list X.



D.

Recognizer Functions

l.

2.

3.

4.

6.

7.

FUNCTION NAME (X),
WHEN X is 2 name, EXIT,
ENDFUN;

Interpretation: Recognize cbjects which are names.
FUNCTION INTEGER (X),

WHEN X is an integer, EXIT,
EXDFUN;

Interpretation: Recognize cojects which are integers.
FUNCTION ATCM (X),

NAME (X) OR INTEGER (X),
ENDFUN;
Interpretation: Recognize oojects which are atoms.
FUNCTION EPTY (X),

X = FALSE,
ENDFUN; '
Interpretaticn: Recognize the empty list.
FUNCTION POSITIVE (X),

£>0,
ENDFUN;
Interpretaticn: Recognize positive integers,
FUNCTION NEGATIVE (X),

X<0,
ENDFUN;
Interpretation: Recognize negative integers,
FUNCTION ZERO (X),

X =0,
ENDFUN;

Interpretaticn: Recognize zero.

Note: All recognizers return TRUE or FALSE.

10
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E. Camparator Functions and Operators

1.

2.

3.

4.

S.

FUNCTION BQ (X, ¥),

WEEN INTEGER (X) AND INTBEGER (YY), X =Y EXTIT,
WHEN X and Y point to the same ocbject, EXIT,
ENDFUN; .

Interpretation: The identity comparison of X and Y.

PROPERTY RBP, =, 80;
PROPERTY LBP, =, 80;

FUNCTION = (X, Y),

WHEN ATOM (X), BEQ (X, ¥Y) EXIT,

WHEN ATM (YY), FALSE EXIT,

WHEN FIRST(X) = FIRST(Y), REST(X) = REST(Y) EXIT,
ENDFUN; : '

Interpretation: The infix equality operator, =, treats
X and Y as being equal if and only if they have
isomorphic tree structures with identical atomic
terminal nodes,

FUNCTION ORDERP (X, Y),
WHEN the address of the object X is less than the
address of the cbject ¥, EXIT,
ENDFUN; 5

Interpretation: A generic ordering functicn for system
. names based on their order of introduction.

PROPERTY RBP, >, 80;
PROPERTY LEP; >, 80;

FUNCTION > (X, Y),
WHEN INTEGER (X) AND INTEGER (Y), X > Y EXIT,
ENDEUN;

PROPERTY RBP, <, 80;
PROPERTY LBP, <, 80:

FINCTION < (X, ),
WHEN INTEGER (X) AND INTEGER (Y), X <Y EXIT,
ENDFUN;

Note: All camparators return TRUE or FALSE.

1l



F. Logical Operators

l.

2.

3.

PROPERTY RBP, NOT, 70;

FUNCTION NOT (X),
X = FALSE,
ENDFUN;

Interpretation: NOT is a prefix operator with right
binding power 70.

PROPERTY RBP, AND, 60;
PROFERIY LBP, AND, 60;

SUBROUTINE AND (X1, X2, ..., Xn),
WHEN n = 0, EXIT,
WEEN NOT EVAL (X1), FALSE EXIT,
AND (XZ, X3, evey Xn),

ENDSUB;

Interpretation: AND is a logical infix operator with a
left and right binding power of 60.

PROPERTY RBP, OR, 50;
PROPERTY IBP' m' 50;

SUBROUTINE OR (X1, X2, ..., Xn),
WHEEN n = 0, FALSE EXIT,
WHEN EVAL (X1), EXIT,

CR (X2. 1‘3: seey xn)l

ENDSUB;

Interpretation: CR is a logical infix operator with a
left and right binding power of 50.

Note: All logical coperators return TRUE or FALSE, and any

nonFALSE logical cperand has the same effect as TRUE.

12



4 G. Assigmment Functions
< ; ‘
(C
1., FUNCTION ASSIGN (X, ¥),
- FIRST cell of X: Y,

¥,
ENDFUN;

Interpretation: Set the value of the atom X to ¥,
and return Y.

2. PROPERTY RBP, :, 20;
PROPERTY LBP, 3, 180;

SUBROUTINE : (X, Y),
ASSIGN (X, EVAL (Y)),
ENDSUB;

Interpretation: Set the value of 'X to Y, and return Y.
":" is an infix operator with left binding power
180 and right binding power 20. Evaluation of this
fom returns the value of the expression, after
achieving the side effect of assigning the value
of the expression to the name.

Note: Assigrments to non-names are allowable, having an

C . effect similar to REPLACEE‘, but returning a different
C poincer

13



H. Property Functions

1.

2.

3.

4.

FUNCTICN ATSCC (X, Y),
WHEN ATCM (Y), Y EXIT, .
WHEN ATCY (FIRST (Y)), ATSOC (X, REST (Y)) EXIT,
WHEN EQ (FIRST (FIRST (Y)), X), FIRST (Y) EXIT,
ATSOC (X, REST (Y)),

ENDFUN;

Interpretation: The first non—-atomic cbject on the
"asSCCiation™ list Y whose ATomic FIRST cell is X,

FUNCTION GET (X, Y),
X: ATSOC (Y, REST (X)),
WHEN ATOM (X), FALSE EXIT,
REST (X),

ENDFUN;

Interpretation: The property value associated with the
indicator Y on the property list of X.

FUNCTION PUT (X, ¥, 2),
WHEN EMPTY (GET (X, ¥)),
REPTACER (X, ADJOIN (ADJOIN (Y, 2), REST (X)),
2 EXIT
REPLACER (ATSOC (¥, REST (X)), 2),
ENDEUN; ‘

Interpretation: Place on the property list of the atom
X under the indicator Y the property value Z,
destroying any previous value under the same
indicator.

FUNCTION REMPROP (X, Y),
WHEN AT (REST (X)), REST (X) EXIT,
WHEN BEQ (FIRST (SECOND (X)), ¥).,
¥Y: REST (SECOND (X)),
REPLACER (X, RREST (X)),
Y EXIT,
REMPROP (REST (X), Y),
ENDFUN;

Interpretation: Remove from the property list of X
the property value associated with the indicator Y.

14



5. PROPERTY name, atom, value
read two names X and Y, then parse an expression Z.
then without evaluating any of them, place Z on the
property list of X, undez key Y.
then return Z; .

PROPERTY is a data-tase construct which returns a list of name
and atom after accomplishing the side effect of storing the
value on the property list of the first operand, under the key
which is the second operand. Any previous value on that
property list under the same key is deleted, with a
corresponding warning message, The three operands of PROPERTY
are automatically quoted, so that, for example, they can be
unquoted operators.

15



I.

Definition Functions

1.

2.

3.

4.

S.

FUNCTION GEID (X),
WHEN NOT (NAME (X)), PALSE EXIT,
WHEN X is not a defined function, FALSE EXIT,
WHEN the function cell of X points to a machine
langquage function, EXIT,
the cbject pointed to by the function cell of X,

’

Interpretation: The definition of the function named X.

FINCTION PUTD (X, 1),
WHEN NOT (MAME (X)), FALSE EXIT,
function cell of X: Y,
Y

ENDFUI:I;

Interpretatiocn: Place a poim:ér to the definition ¥ in
the function cell of X.

FUNCTION MOVD (X, ¥),
WHEN NOT (NAME (X)) OR NOT (NAME (Y)), FALSE EXIT,
function cell of ¥: function cell of X,
GEID (Y),

ENDFUN;

Interpretation: Copy the definition of the functicn
named X to Y.

FUNCTION REMD (X),
WHEN NOT (NAME (X)), FALSE EXIT,
function cell of X: undefined,
GETD (old definition of X),
ENDFUN;

Interpretation: Remove the function definition from X.
PROPERTY PREFIX, FUNCTION,
parse a function definiticn, then use PUID to put it
in the function cell of the function name,
then return the function name.

Interpretation: FUNCTION is the leading keyword of a
control construct which has the general form:

16
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FUNCTION name parameters,
taskl,
task2,
taskn

ENDFUN

" The name can be omitted when there is no need to refer to it,

such as when a noarecursive function is stored on a property
list for use by APPLY., “parameters" can be an arbitrary
symbolic expression. When "parameters" is any name, except
"FALSE", the function ma * :ubsequently called with an
arbitrary number of arqu- ..d passed to the function as a
list assigned to the argu.:.... If "parameters" is not a name,
the first argument in a call to the function is assigned to the
FIRST of "parameters" and the REST of the arguments is assigned
to the REST of the "parameters" in an identical manner.

Task evaluation within the function is performed successively
until either the end of the tasks is reached or a non-FALSE
predicate is evaluated, In the latter case evaluation proceeds
as before except down the predicates task list., In either case,
the value of the function is the value of the last task
evaluated,

17



J. Sub—-atomic Functions

1. FUNCTION COMPRESS (X), _ @

WEEN ATOM (X), *" EXIT,

WHEN NAME (FIRST (X)),
concatenate the print name of FIRST (X) onto the
beginning of COMPRESS (REST (X)) then return the
corresponding muSIMP name,

COMPRESS (REST (X)),

ENDFUN;

Interpretation: The atom whose print name is the
packed version of the names in the list X.

2. FUNCTION EXPLCDE (X),
WHEN NAME (X),
a list of names whose print names correspond
to the characters in the print name of X, EXIT,
ENDFUN;

Interpretation: A list of the characters, in order,
in the print name of X.

3. FUNCTION LENGTH (X),

WHEN NAME (X), ) °
WHEN EMPTY (X), 0 EXIT,
the number of characters in the print name of X EXIT,

WHEN INTEGER (X),
the number of bytes in the vector of X EXIT,

1 + LENGTH (REST (X)),

ENDFUN;

Interpretations:
a. The numper of characters in the name X,
b. The number of bytes in the number X,
¢. The number of top~level items in the list X.

18



K. Numerical Functions

©c
2.

3.

4.

(C | 5.

6.

7.

FUNCTION MINUS (X),
WHEN INTEGER (X),
-X m" :
ENDFUN;

FUNCTION PLUS (X, Y),
WEEN INIEGER (X) AND INTEGER (Y),
, X+ Y EXIT,

ENDFUN; :

FUNCTION DIFFERENCE (X, Y),
WHEN INTEGER (X) AND INTEGER ¥,
X -Y EIT,
ENDFUN;

FUNCTION TIMES (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
X *Y EXIT,
ENDFUN;

FUNCTION QUOTIENT (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
WHEN Y = 0, zero-divide error-trap EXIT,
WHEN POSITIVE (Y), f£floor (X/Y) EXIT,
ceiling (X/Y) EXIT,

»
4

Note: The integer quotient which is consistent
with MOD being a periodic nonnegative remainder,

FUNCTION MOD (X; Y),
X - (Y * QUOTIENT(X,Y)),

.
’

FUNCTION DIVIDE (X, Y),
WHEN INTEGER (X) AND INTEGER (Y),
ADJOIN (QUCTIENT (X, Y), MOD (X, ¥)) EXIT,
ENDEUN;

Note: All muSIMP-79 numerical functions return FALSE if either

of their arguments is non-numeric.,

19



8. FUNCTION + (X, ¥),
PLUS (X, ¥),
ENDFUN;

PROPERTY +, PREFTX, PARSE (SCAN, 130);

PROPERTY +, RBP, 100;
PROPERTY +, L3P, 100;

9. FUNCTION - (X, Y),
WHEN EMPTY (Y), MINUS (EX1) EXIT,
DIFFERENCE (X, Y),
ENDFUN;

PROPERTY PREFIX, -, LIST ('=, PARSE (SCAN, 130)):
PROPERTY R8P, -, 100;
PK)PM I-BP' “*r 1002

10. FUNCTION * (X, ¥),
TIMES (X, ¥),
ENDFUN;

PROPERTY RBP, *, 120;
PROPERTY LBP, *, 120;

11. FUNCTION / (X, Y),
QUOTIENT (X, Y),
ENDEUN;

PROPERTY RBP, /, 120;
'PROPERTY LBP, /, 120;

20



L. Reader Functions

1.

2.

3.

4.

FUNCTION READCHAR (),
read cne character from the current input file and
return the corresponding muSIMP atom. Integer atoms
are returned only if the character is a decimal
digit less than the current base.

ENDFUN;

FUNCTION SCAN (),
read one atom from the current input file and
return the corresponding muSIMP atom, Atoms are
delimited by either separator or break characters,
however, the latter also are returned as atams
themselves.,

END;

Separator characters: space, carriage return, line feed,
and tab (control-I).

Break characters: ! $ & ' ( ) * + , - . /
@:; < = > 2 [ \N] “_ {11} -

FUNCTICN READ (),
read from the current input file one complete
expression written in dotted-pair and/or list
notation, then return the corresponding generated
object. (Atoms are delimited by either separator
or break characters, but the latter also are returned
as atoms themselves).

ENDFUN;

Separator characters: space, comma, carriage return,
line feed, and tabp (control-I).

Break characters: . ) (

Note: Extra right parentheses and dots are ignored.

FUNCTION PARSE (EX1, RBP, EX2),
fram the current input file, read the camplete
expression including the already-read token EX1, where
RBP is the right binding power of the operator to the
left of EX1, if any, then return the resulting
unevaluated object. (EX2 is a local variable wnich
accumulates the parsed representation.)

ENDFUN;

21



5.

6.

7.

10.

11.

Note: When two operators compete for an operand between
them, the operator with higher tinding power towards
the operand acguires the operand. In the case of a
tie, the operator on the left acquires the operand.

FUNCTION SYNIAX X,
print " *** SYNTAX ERROR: *, then print each element
in the list of arquments, X, then read up through the
next terminator, echoing the input beginning on a new
line, then return FALSE,

ENDFUN;

FUNCTION MATCH (DELIM),
s Uses the fluid variable SCAN set by SCAN () %
WHEN SCAN = DELIM, SCAN (), FALSE EXIT,
WHEN SCAN = comma, SCAN (), MATCH (DELIM) EXIT, ‘
WHEN DELIMITER (), SYNIAX (DELIM, "NOT FOOMND") EXIT,
ADJOIN (PARSE(SCAN,0), MATCH(DELIM)),
ENDFUN;

DELIMITER: '(EXIT, ENDFUN, ENDLOOP, ENDBLCCK,
right parenthesis, comma) &

FUNCTION DELIMITER (),
TERMINATOR () COR MEMBER (SCAN, DELIMITER),
ENDFUN; . :

FUNCTICN TERMINATOR (),
SCAN = '; OR SCAN='$ OR SCAN = ‘g,
ENDFUN;

ECHO: FALSE;

FUNCTION ECHO (),
NOT RDS OR ECHO,
ENDFUN;

Interpretation: ECHO () is a function which returns TRUE
if input is being echoed to the termminal.

RDS: FALSE; ' % Device ReaD Select &

FUNCTICN RDS (X, ¥, 2),
WHEN EMPTY (X), RDS: FALSE EXIT,
WHEN NAME (X) AND NAME (Y),

WEEN EMPTY (2), _
if there exists a file named X.Y on the
currently logged disk drive, then cpen
that file and RDS: X, EXIT,

WHEN NAME (2),

22



if there exists a file named X.Y on drive Z,
then open that file and RDS: X, EXIT EXIT,
ENDFUN;

Notes:

1. Normally control of the current input file is, done through
the use of the function RDS as described above., Bowever, after a file
has been opened and made current, control can be returned to the
console without closing the input file, simply by setting the value of
RDS to FALSE. A subsequent non-FALSE assignment to RDS will then return
control to the point in the opened disk file at which reading was

suspended.

2. If the console is the current input file and all the
characters have been read from the current line, the operating system's
line~edit routine is called for further input. Thus the system's normal
line~edit features will be used until a carriage tetu:n is typed, at
which point muSIMP will regain control.

. 3. If a disk file is the current input file and the ECF (end-

of-file) character is read, an error message is sent to the console,
the console is made the current input file, and an error-options trap
occurs.

4. If a disk file is being read and the value of the name
ECHO is non-FALSE, the characters being read are also echoed to the
current output file, "

5. Comments in an input source file must be delimited by
matching percent signs. The text of the comment will then be ignored oy
the functions SCAN and READ, except to possiblly echo the comment as
described in note 4 above.

6. Special characters such as the comment, separator, and
break characters can be.read in as names or parts of names by means of
quoted strings. Such strings are delimited by double quote marks. The
double quote can be included within the string by using two adjacent
double quotes for each desired internal double quote.

7. As an added programming convenience the muSIMP name SCAN
is always set to the most recently read atom.

.8, Lower-case letters are legitimate and distinct from their
upper-case counterparts. The only exception to this is file names and
types given to the functions RDS and WRS. They are always converted to
upper case in order to eliminate conflicts with the operating system's
file naming convention.
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M. Printer Functions

1. FUNCTION PRINT (X),
WHEXN NAME (X),
cutput the print name of X to the current
output file, EXIT,
+ WHEN INTEGER (X),
output to the current output file the digits of X
expressed in the current base, preceeded by a
minus sign if X is negat;we, EXIT,
PRINT (LPAR),
PRINLIST (X),
X,
ENDFUN;

FUNCTION PRINLIST (X),
PRINT (FIRST (X)),
WHEN EMPTY (REST (X)), PRINT (RPAR) EXIT,
PRINT (" "),
WHEN ATOM (REST (X)),
PRINT (". "),
PRINT (REST (X)),
PRINT (RPAR) EXIT,
PRINLIST (REST (X)),
ENDFUN;

Interpretation: Print the standard list notation
of the cbject X to the current output file.

2. FUNCTION NEWLINE (),
output a carriage return and line feed to the
current output file, then return FALSE,

Interpretatmn- Terminate the current ocutput line.

3, FUNCTION PRINTLINE (X),
PRINT (X),
NEWLINE (),
X,
ENDFUN;

Interpretation: Print the expression X, terminate the
last line and return X.

4. FUNCTION SPACES (X),
WHEN X >0 AND X < 256,
PRINT (" "),
SPACES (X-1) EXIT,
return the current cursor position,
ENDFUN;
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Interpretation: Outgziit X spaces to the current output
file and return the resulting cursor position.

5., FUNCTION FRIVATH (EX1, RBP, LBP, PRTSPACE),

Taking account of declarec binding powers and any

special print rules on the property list of PRIMATE,

print a deparsed representation of EX1, assuming

a) the operator to its left, if any, has rignt
binding power RBP, the operator to its rignt, if
any, has left binding power LEP,

b) appropriate spaces are to be printed if PRISPACE
is nonFALSE.

ENDFUN;

Interpretation: PRIMATH (expr, RBP, LBP) is a function
which prints expr in standard mathematical form
and surrounds it within parenthesis if the leading
operator in expr has a left binding power less
than or equal to RBP, or a right binaing power less
than LBP.

€. WRS: FALSE;

FUNCTION WRS (X, ¥, 2), (Write Select)
WHEN NOT BMPTY (WRS), .
write out the final record of WRS and
close the file,
WRS: FAI‘SE' )
WRS (X, ¥, 2) EXIT,
WHEN EPTY (X), WRS: FALSE EXIT,
WHEN NAME (X) AND NAME (Y),
WHEN EPTY (2),
ocn the currently logged disk drive,
delete any previous file named X.Y and
make a new directory entry ror X.Y,
WRS: X EXIT,
WHEN NAME (Z),
on drive Z, delete any previous file
named X.Y and make a new directory entry
for X.Y,
WRS: X EXIT EXIT,
ENDFUN;

7. FUNCTION LINELEMGTH (X),
WHEN X > 11 AD X < 256,
set maximum line-lengtn to X,
return the previous line-lengtn EXIT,
return the current line-length,
ENDFUN;



Interpretation: Set the length at which output lines
will automatically be termminated. The line-length
is initially set to 72.

8. FPFUNCTION RADIX (X),
WHEN X >1 AD X < 37,
set base to X,
return the old base EXIT,
return the current radix base,
ENDEUN;
Interpretation: Set the base in which numbers
are expressed for both input and output. The
base is initially set to ten.

Notes:

1. Normally control of the current output file is done
through the use of the function WRS as described above. However, after
a file has been opened for output, output can be directed to the console
without closing the disk file by simply setting the value of WRS to
FALSE. A subsequent non-FALSE assignment to WRS will then redirect
output to the disk file and append data onto tne end of the file,

2. If there is insufficient disk space or a hardware write
error prevents correctly writing output onto the disk, an error message
is sent to the console, the console is made the current output file, and
an error-options trap occurs.,

26



C

N.

Evaluation Functions

'lo

2.

PROPERTY PREFIX, ', LIST (READLIST (SCAN)) &

SUBROUTINE ' (X),
X .
DDSJé:

Interpretation: Suppress evaluation and return tne
object X itself.

FUSCTION EVAL (X),
WHEN ATCH (X), FIRST (X) EXIT,
WHEN NAME (FIRST (X)),
WHEN UNDEFINED (GETF (FIRST (X))),
WHEN EQ (FIRST (X), EVAL (FIRSI‘ (X)),
- EVLIS (X) EXIT,
EVAL (ADJOIN(EVAL(FIRST(X)), RFST( ) EXIT,
WHEN FUNCTIONP (GETIF (FIRST (X))),
APPLY (FIRST (X), EVLIS (REST (X))) EXIT,
WHEN SUBRCUTINEP (GETF (FIRST (X)),
APPLY (FIRST (X), REST (X)) EXIT,
EVLIS (X) EXIT, ,
WHEN FUNCTIONP (FIRST (X)),
APPLY (FIRST (X), EVLIS (REST (X))) EXIT,
WHEN SUBROUTINEP (FIRST (X)), ‘
APPLY (FIRST (X), 'REST (X)) EXIT,
EVLIS (X),

. BOFUN;

Interpretation: Evaluate the cbject X.

FUNCTIQN EVLIS (X),

WHEN ATOM (X), FALSE EXIT,

ARJOIN (EVAL (FIRST (X)), EVLIS (REST (X))),
ENDFUN;

FUNCTICON GEIF (X) ’
contents of the function cell of the name X
EDFUN;

FUNCTION UNDEFINED (X),
return FALSE if X is a pointer to tne undefined
function trap, TRUE otherwise,

ENDFUN;

Interpretaticon: The recognizer for undefined functicns,
FONCTIQN FURNCTIONP (X),

SUBER (X) CR EXPR (X),
ENDEUN;

Interpretaticn: The recocnizer for call cy valte
functions.
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FUNCTION SUBROUTINEP (X),
- FSUBR (X) CR FEXPR (X),
ENDFUN; '

Interpretation: The recognizer for call by name
functions.,

FUNCTION SUBR (X),
return TRUE if X is a pointer to a FUNCTION subroutine,
FALSE otherwise, :

ENDFUN;

FUNCTION FSUBR (X),

return TRUE if X points to a SUBROUTINE subroutine,
. FALSE otherwise,
ENDFUN;

FUNCTION EXPR (X),
FIRST(X) = 'EXPR,
ENDFUN;

FUNCTION FEXPR (X),
FIRST(X) = 'FEXPR,
ENDFUN;

3. FUNCTION APPLY (X, Y),
WHEN NAME (X), T

WHEN UNDEFINED (GEIF (X)),
WHEN X = EVAL(X), FALSE EXIT,
EVAL (ADJOIN (EVAL (X), ¥)),

WHEN SUBR (GEIF (X)),
WHEN ATOM (Y), X (Y, FALSE, FALSE) EXIT,
WHEN ATCM (REST (Y)),

X (FIRST (Y), REST (Y), FALSE) EXIT,

WHEN ATCM (RREST (Y)),
. X (FIRST(X), SECGND(X), RREST(Y)) EXIT,
X (FIRST (Y), SECOND (Y), TEIRD (Y)) EXIT,

WHEN FSUBR (GETF (X)), X (¥Y) EXIT,

WHEN EXPR (GETF (X)) OR FEXPR (GEIF (X)),
BIND (SECOND (GETF (X)), ¥),
Y: EVALBODY (FALSE, RREST (GEIF (X))).,
UNBIND (SECOND (GEIF (X))),
Y EXIT EXIT,

WHEN EXPR (X) OR FEXPR (X),

BIND (SECQD (X), Y),

¥: EVALBQDY (FALSE, RREST (X)),

UNBIND (SECOND (X)), :

Y EXIT,

ENDFUN;

Interpretaticn: Apply the function X to the list
of arguments Y.
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FUNCTIQN EVALBCDY (X, Y),
WHEN ATOM (Y), X EXIT,
WHEN ATOM (FIRST (Y)) OR ATOM (FIRST (FIRST (Y))).,
EVALBCDY (EVAL (FIRST (Y)). REST (Y)) EXIT,
WHEN ATOM (FIRST (FIRST (FIRST (Y)))),
X: EVAL (FIRST (FIRST (Y))),
WHEN NCT X, EVALBCDY (X, REST (Y))  EXIT,
EVALBODY (X, REST (FIRST (Y))) EXIT,
mFUNEVALBCDY (EVALBCDY (X, FIRST (Y)), REST (Y)),

FUNCTION BDD (X, ¥),
WHEN ATO4 (Y),
WHEN ATOM (X), ~
WHEN EMPTY (X), FALSE EXIT,
ARGSTACR: ADJOIN (EVAL (X), ARGSTACK),
ASSIGN (X, FALSE) EXIT,
ARGSTACK: ADJOIN (EVAL (FIRSI‘ (X)), ARGSTACK),
ASSIGN (FIRST (X), FALSE), ,
BIND (REST (X), ¥) EXIT,
WHEN ATCH (X),
WHEN BPTY (X), FALSE EXIT,
ARGSTACK: ADJOIN (EVAL (X), ARGSTACK),
ASSIGN (X, ¥) EXIT,
ARGSTACK: ADJOIN (EVAL (FIRST (X)), AI-'GSIACK):
ASSIGN (FIRST (X), FIRST (Y)),
BIND (REST (X), REST (Y)).,
ENDFUN; .
FUNCTION INBDND (X)),
WHEN ATOM (X), ‘
WHEN BMPTY (X), FALSE EXIT,
ASSIGN (X, FIRST (ARGSTACK)),
ARGSTACK: REST (ARGSTACK) EXIT,
UNBIND (REST (X)),
ASSIGN (FIRST (X), FIRST (ARGSTACK)),
ARGSTACK : RES‘I‘ (ARGSTACK) ,
ENDFUN;

4. SUBRCUTINE COND (X1, X2, ..., Xn),
m (LISI' (ml le ooo" xn))l
ENDSUB ;

FUNCTION EVALCOND (X, Y),
WHEN ATQM (X), FALSE EXIT,
¥: EVAL (FIRST (FIRST (X))), .
WHEN NOT Y, EVALCOND (REST (X)) EXIT,
EVALBADY (Y, REST (FIRST (X))),

ENDFUN;

Interpretation: Successively evaluate the FIRST of
X1, X2, ..., Xn until eitner a non-FALSE value is
encountered or all nave evaluated to FALSE. In tne
former case the REST of that argument is evaluatea
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as a function body (see the interpretation of
APPLY for details). In the latter case FALSE is
returned by COND.

5. PROPERIY PREFIX, LOOP, ADJOIN (‘'LOCP, MATCH(ENDLOOP));

SUBRCUTINE LOOP (X1, X2, ..., Xn),
EVALLOCP (LIST (X1, X2, ..., Xn),
LIST (X1, X2, «..s X)),
ENDSUB;

FUNCTION EVALLCOP (X, ¥, 2),
WHEM ATOM (Y), EVALLOCQP (X, X) EXIT,
WHEN ATOM (FIRST (Y)) OR ATOM (FIRST (FIRST (Y))).
EVAL (FIRST (Y)),
EVALLOCP (X, REST (Y)) EXIT,
WHEN ATOM (FIRST (FIRST (FIRST (Y)))),
Z2: EVAL (FIRST (FIRST (Y))).,
WHEN NOT Z, EVALLOOP (X, REST (Y)) EXIT,
EVALBCDY (Z, REST (FIRST (Y))) EXIT,
EVALBCODY (FALSE, FIRST (Y)),
EVALLOOP (X, REST (Y)),
ENDFUN;

Interpretation: The LOOP construct evaluates its
arqument in a manner identical to the evaluation
of the clauses in a function body. However,
if all the arguments are evaluated without a
conditional having been satisfied, evaluation
begins again with the first argument.

LOOP is the leading keyword of a control construct
having the fomm:

Loop

. taskl,

- task2,
LR X ]

ENDLOOP

This construct parses to the internal representaticn (LOCP taskl
task2 ... ). Usually at least one of the tasks is a conditional
exit. Evaluation repetitively cycles through the sequence of
tasks until a conditional exit causes control to proceed
directly to the point following the matching delimiter ENDLOCE.
The value of a LOOP construct is that of the last task evaluated
therein. Since the LOOP construct parses to a function
invocation, this construct can be used outside functicn
definitions.
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6. PROPERTY PREFIX, WHEN, MATCH (EXIT);

WHEN is the leading keyword of the conditional-exit
control construct, whnich has the general form

WHEN expressionl, expression2, ... EXIT
This construct parses to the internal representation
((expressionl expression2 ... )

If expressionl evaluates to FALSE, then evaluation proceeds
directly to the point immeciately following the matching EXIT.
Otherwise, the expressions between expressionl and the matching
EXIT, if any, are successively evaluatea, and the last
evaluated, after which evaluation proceeds to the point
immediately following the next delimiter ENDLOCP, ENDBLOCK,
EDFUN, or ENDSUB.

7. PROPERTY PREFIX, BLOCK, ATCH (ENDBLOCK);

BILOCK is the leading keyword for the control construct
of the form:

BLOCK
m LE N ] m,

es ey Ld

As indicated, the first task within a block must be a
conditional exit, Since other tasks within the block ¢can also

. be conditional exits, blocks provide a generalization of the

"case" construct of some other languages, which includes the

"if-then-else” construct as a special instance, The evaluation

of tasks within a block proceeds sequentially unless a

conditicnal exit therein causes evaluation to proceed directly

to the point following the matching delimiter ENDBLOCX. The

:halue_ of a block is that of the last expression evaluated
erein,

8. FUNCTION DRIVER (EX1, EX2),
RDS: EXl,'
WRS: FALSE,
NEWLINE (),
NEWLINE (),
LOoP
ERR: FALSE,
BLOCK
WHEN BECHO (),
PRINT ("2 %),
WHEN NOT RDS, PRINT ("") EXIT EXIT,
ENDRLOCX,
EX1: FAISE'



PARSE (SCAN(), 0),

’

BLOCK
WHEN BCHO (), NBEWALINE () EXIT,
ENDBLOCK,
BILOX -
WHEN ERR CR NOT TERMINATCR (),
SYNTAX (),
NENLINE () EXIT,
WHEN EQ2 = '§,
#$ANS: EVAL (EX1),
mm().mmma()mn EXIT,
PRINT (@),
#ANS: E(’.YA%)(M).
mm"‘
m('ANS, 0, 0, TRUE),
NELINE (), NEWLINE (), NEWLINE () EXIT,

ENDLOOP,
ENDFUN;

DRIVER is a function which controls the interaction cycle.
After establishing the console as the current input and output
file by setting RDS and WRS to FALSE respectively, the main
read, evaluate, and print driver loop is entered. An expressicn
is first read by PARSE. If the terminator was the character
";", the result is printed in mathematical notation by PRIMATH,
If an "&", it is printed in List notation. And if a "$", it is
not printed at all., However, in all cases it is assigned to the
variable #ANS unless an error occurred during the parse phase in
which case an error message is displayed. For some
applications, it may be desirable to (perhaps dynamically)

replace this drxver with another one or to recursively call
DRIVER.
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P. - Storage Functions

1. FUNCTICN RECLAIM (),
reclaim all un-referenced noces by generating a
free node list fram them, and compact tne atam space
and vector space. The total resulting number of free
nodes is returned,
ENDFUN;

2. CONDENSE: FALSE;

FUNCTION CONDENSE (X, ¥, 2),

WHEN ATQH (FIRST (X)),
WHEN ATOM (REST (X)), FALSE EXIT,
Z: SUBEXPN (REST (X), Y), '
WHEN EMPTY (Z), CONDENSE (REST (X), ¥) EXIT,
REPLACER (X, 2), :
FALSE EXIT,

Z2: SUBEXPN (FIRST (X), Y),

WHEN EMPTY (2),
CONDENSE (FIRST (X), Y),
WHEN ATOM (REST (X)), FALSE EXIT,
¥: ADJOIN (FIRST (X), ¥,
2: SUBEXPN (REST (X), Y),
WHEN EMPTY (Z), CCNDENSE (REST (X), ¥) EXIT,
REPLACER (X, Z)r

WHEN ATOM (REST (X)), FALSE EXIT,
Z2: SUBEXPN (RE’ST (X): Y}r
WHEN EMPTY (Z), CONDENSE (REST (X) ¥Y) EXIT,
REPLACER (X, 2),
FALSE,
ENDFUN;

FUNCTION SUBEXPN (X, ¥, 2),
WHEN CQ’EARE (X, Y) I3
WHEN X =Y, Y EXIT EXIT,
Z2: SUBEXPN (X, FIRST (Y)),
WHEN EMPTY (Z), SUBEXPN (X, REST (Y)) EXIT,
. z’
ENDFUN;

- FUNCTION CGPARE (X, V),
Wﬁm Am’i (Y) ’ EXIT,
WEEN ATOM (X), FALSE EXIT,
WHEN COMPARE (FIRST (X), FIRST (Y)),
. CQMPARE (REST (X), REST (Y)) EXIT EXIT,
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Q. System Functions

1. FUNCTION SAVE (X, Y),
WHEN NOT EMPTY (WRS),
write out tl?e final record of WRS and

WRS: FALSE, _
SAVE (X, ¥Y) EXIT,
WHEN NAME (X) AND NAME (Y),
WHEN EMPTY (Y),
save a binary memory image of the current
muSIMP system as a file named X of
type "SYS" on the current drive,
TRUE EXIT,
save a binary memory image of tne current muSDMP
system as a file named X of type "SYS" on
drive Y,
TRUE EXIT
ENDFUN;

Note: SYS files occupy about 15 kilooytes less than the
memory size for which the operating system is
generated.

2. FUNCTION LQAD (X, Y),
WHEN NAME (X) AND NAME (Y),
WHEN EBPTY (Y),.

load a memory image file named X of type "SYsS"

from the current disk,

return control to the executive DRIVER loop EXIT,

load a memory image file named X of type "S¥s®

frem drive Y,

return control to the executive DRIVER loop EXIT,
ENDFUN;

Interpretaticn: Restore the muSIMP environment present
at the time of the SAVE.
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V. The muSIMP79 PRATI’ Parser

A. q:e:ato:s '

1. INPIX is a name on whose property list is stored
expressions specifying how to parse infix operators for which mere left
and right binding powers do nct suffice. It is used for the assignment
operator ":" since a check is made on its left operand to make sure it
is a name. Also the INFIX property is used for "(" to correctly parse
function calls written using mathematical notation. The respective
operator's left-hand operand is passed to the expression as the fluid
name “EX1°",

2. PREFIX is a name on whose property list is stored
expressions specifying how to parse prefix operators for which mere left
and right binding powers do not suffice. The matchfix operators, which
include WHEN, LOOP, BLOCK, FUNCTICN, SUBROUTINE, PROPERTY, and "(" when
used to delimit a functions argument list, are examples of the use of
the PREFIX property.

B. Binding Powers

1. LBP is a name on whose property list is the integer left
binding powers of infix and postfix operators. When two operators are
competing for an operand, the operator with higher binding power toward
the operand obtains the operand. 1In case of a tie, the left operator
obtains the operand, so that infix operators with the same leit and
right binding powers associate left, as is usually desired,

2. RBP is a name on whose property list is the integer
;ight—bmdm‘ ing powers of infix and prefix operators, for use as described
or LBP.

C. Constants

l. COMMA is a global constant having the value ",". Because
of conflicting parse properties associated with its use as a separator
character, the name COMMA should be used for the literal ",".

2. LPAR is a global constant having the value "(". Because
of conflicting parse properties associated with its use as a separator
character, the name LPAR should be used for the literal "(".

3. RPAR 1is a global constant having the value ")". Because

of conflicting parse properties associated with its use as a separator
character, the name RPAR snould be used for the literal ")".
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D. Delimiters

1. DELIMITER is a name which is initialized to the list
(EXIT, ENDLOOP, ENDBLOCK, ENDFUN, EXDSUB, RPAR, COMMA). When a matchfix
operator is establisi ' adjoining the matching delimiter to this list
enables the parser to give more informative diagnostics by recognizing
when a delimiter is used out of place. Bowever, it is not necessary to
adjoin delimiters to this list, and ad;;o:.mng a delimiter has the effect
of precluding its use out of context for other purposes.

2. DELIMITER () is a predicate which returns FALSE if the
current value of the name SCAN is neither a termmator nor on the list
named DELIMITER.

3. MATCH (delim) is a function which parses zero or more
expressions separated by commas and delimited by the value of its

argument. MATCH returns a l:.st of the parsed representations of these
expressions.

4., MATCHNCP (expr, delim) is a functicn used to -wverify that
a matching "delim” was found following the PARSE of an expression within
delimiters.

E. Parsing

1. PARSE (expr, rbp) is a function used to read a muMATH
expression and convert it to List notation according to various rules
established by operators LBP and RBP binding powers and/or PREFIX or
INFIX property rules as described earlier.

Errors specific to PARSE include a member of DELIMITER "USED AS AN
INDETERMINATE", an infix operator "USED AS AN PREFIX OPERATCR", and a
prefix or postfix operator “USED AS AN INFIX OPERATOR".

2. SYNTAX exprs is a function which takes an arbitrary
number of arguments. If the value of the Global variable ERR is FALSE,
then the message "*** SYNTAX ERROR: " is printed followed by the
arguments to SYNTAX separated by spaces. Unless input echoing from a
file, the remainder of the expression is printed until a TERMINATOR
character is reached. Finally, in order to return control to the
console, the control variable RDS (i.e, ReaD Select described in Section
IV. L.) is set to FALSE.
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muSMP-79 CPERATOR BINDING PCOWER TABLE

Category | Operator Lep’ RBP
Ordering ( 200 0
Assigament : 180 20
! 160 0
- 140 139
* 120 120
Numerical .
/ 120 120
+ 100 100
- | 100 | 100
= 80 | 80
Camparison| < 80 80
_ > 80 80
-C | nr | 70 | 70
| Logical | a0 | 60 60
OR 50 50

Note: When "+" and "-" are used as prefix operators a right
binding power of 130 is used instead of 100.
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MATRIX.DOC  (c) 12/27/79 ' ' The Soft Warenouse

PURPCSE: ,
File MATRIX.ARR provides the following matrix operations on arrays:
transpose, multiplication, division, inverse, and other integer
powers, Elementwise operations such as addition are provided by
the prerequisite file ARRAY.ARI.

PREREQUISITE FILE: ARRAY.ARI

USAGE:
IDMAT (\positiveinteger) '
array
arrayl . array?2,
arrayl \ arrayz,
array " integer

EXAMPLES:

ImAT(2) —> {[1],
(0, 111,

If A= {[ll 2}] and B = {P' then:

. ) [or 3]} 6'}
C _‘

B‘ — [P' 6})

At —> ({1,
2}, {0,
3}1,

at . IDHAT(2) =—> {[lr 0l,
- [2, 3]},

A.B —> {pP+l2,
18},

14

AAZ - {[lr 8]:
(o, 9]}r

A%-l = {[1, =2/3],
(o, 1/31}

REMARKS::
1. The function named ID!AT returns a (left~-triangular)

( identity matrix with the number of rows indicatea by its positive
C integer argument.
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2. The postfix cperator named °, having a left binding power
of 160, the same as "I|", requests the transpose of its operand.
(This "backward accent" character, ASCII code 60 hex, different
frem an apostropne or single quote, is usually found on the same
key as the character "@",) The transpose of a scalar is a scalar,
the transpose of a row is the column of the transposes of its
elements, and the transpose of a column is the row of the
transposes of its elements., These rules are recursively employed
so that the transpose of a ragged and/or nested matrix is
appropriately performed. These rules also convert a column of rows
into a row of columns, which does not print attractively. However,
multiplication by an appropriate sized identity matrix always
yields the attractive column—of-rows form of a matrix.

3. The matrix-product infix operator designated by a period
has left and right binding powers 120, the same as for "*". The
interpretations are:

scalarl . scalar2 —> scalarl * scalar?,

scalar , array
array . scalar

IoW . €Ol —>

col . row —>

—> scalar * array,
-—> array * scalar,

LOW .,CO1l + IOW ,COL + .eey
1. 1 2 2
{[col .row , COLl IOW , «..l,
1l 1 2
[col .row , col .rowW , ...],
2 1l

2
11,

LOWA ., rowB =—> [[rowhA .rowB , LOWA .IowB , ...],
: 1 1

colA . colB

1l 2
[rowd .ZOWB , TOWA .ZOWB , ...];
1 2 2

2
11,

—> {{colA .colB ,
1 1

colA .colB ,
1 2

o-o},

{colA .colB ,
2 1
colA .colB ,
2 2

.-c}}

o

Consistent with the interpretation described in ARRAY.DCC, wnen a
row and column are of unequal length, the shorter is treated as
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having implied trailing zero elements when forming "row . col" .
These interpretations of matrix procuct are recursively employed so
that matrix products of nested and/or ragged arrays are appro-

. priatedly performed.

4. For a matrix A:
A" 0 =—=> IDMAT (LM(A)-J.),

A" -1 => A inverse,

For integer n > 1:
An => A. (A" (n-1),
A%=-n —=> (A"=-1) . (A" (n+l)).

When a matrix is singular, raising it to a negative power yields
warning messages about divisions by zero, and the offending
Subexpressions are encapsulated in a question-mark form according
to the usval muMATH-79 computational error treatment.,

S. When a matrix A is square and nonsingular, tnen A\B is
equivalent to (A " -1) . B. However, WE STRONGLY RECOMMEND using
A\B unless the inverse is of independent interest or must pe used
many separate times, because A\B is more efficient and because,
provided B is consistent, A\B will yield a parameterized solution
even when A is singular. In this case, the parameters are
designated by the forms ARB(1), ARB(2) s eeer starting witnh 1 when
file MATRIX.ARR or SOLVE.EQN iS most recently loaded.

6. Comments in file MATRDLARR indicate now to save space by
omitting the matrix transpose, division, or power packages.
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Irace Package Documentation

PURPCSE:
File TRACE.MUS provides a trace package to help debug programs.

PREQUISITE FILE: MUSIMP79.COM

USAGE:
l. TRACE (namel, name2, ...),
2. UNIRACE (namel, name2, ...).

EXAMPLE:
FUNCTION MEMB (EX1, EX2),
WBEN EMPTY (EX2), FALSE EXIT
WHEN EX1 = FIRST (EX2), TRUE EXIT
ENDFUN;

TRACE (MaMB);
MEMB ('DCG, '(CAT, COW, DOG, PIG));

MEB [DOG, (CAT, COW, DOG, PIG)] $This is camputer generateds
MEB [DOG, (COW, DOG, PIG)]
MEMB [DOG, (DOG, PIG)]
MEMB = TRUE
MEMB = TRUE
MEMB = TRUE
€ TRUE

UNTRACE (MEMB);
REMARKS:
1. The trace of a function during the execution of a program
provides an invaluable debugging tool.

2. Whenever a function is called it arguments are first
- evaluated and then printed following the function name,

3. After the functicn has been applied it's value is printed
following the function name.

4. Indention is used to more easily pair corresponding calls
and returns.

5. The function is restored to normal by UNIRACE.



ALGEBRA.DCC  (c) 02/09/80 ‘ The Soft Warehouse

PURPCSE:

File ALGEBRA.ARI provides for the basic algebraic simplification of
expressions using the elementary operators "+", "=%, "*%,6 ®/" and """,
Simplifications may be categorized as either autcmatic or user
controlled by means of CONTROL VARIABLES.

AUTQMATIC SIMPLIFICATICNS:

1. Rational arithmetic is used to combine numerical operands.
(see ARTTH.DOC for a complete description)

2, Identities and zeros are appropriately applied to expressions.
0+X —> X; 1Y —-> ¥Y; 0*Z2 —> 0;

3. Sums and products are flattened and uniquely ordered to
facilitate expression comparisons.
X+(Y+2Z) —> X+Y+3Z; Z* (Y*X) —> X*Y*Z;

4, Similar temms and products are cambined.
3*X + 2% —> 5%*X; X5 / X"2 —=> X°3;

5. Powers of #I (i.e. the sguare root of -1) are reduced.
$177 —> -#I;

CONTRCL VARIABLES:

The control variables described in this section enable the mulMATH
user to have complete control over the rules used to simplify an
expression, However, they are rather difficult for the novice to master.
Therefore the utility functions EXPAND, EXPD, and FCTR (described
below) have been included in muMATH to make it easy to cbtain the most
common forms of an expression without the need to individually set
control variables. We recommend these functions be used until more
precise control of the control variables is required.

1. NUMNUM controls the distribution (factoring) of factors in the
NUMerator of an expression over (from) a sum in the NUMerator.

Identity: A* (BHC) <—> A*B + A*C

2. DENDEN controls the distribution (factoring) of factors in the
DENominator of an expression over (from) a sum in tne DENominator.
1 1 1 '
Identity: -* <=>
A B+C A*B + A*C




3. DENNUM controls the distribution (factcring) of factors in the
DENominator of an expression over {from) a sum in the NUMerator.

1 B <
Identity: ; * (BHC) (=D = b o
: A A

4. NUMDEN controls the distribution (factoring) of factors in the
NUMerator of an expression over (from) a sum in the DENominator.
1l 1
C=>
B+C B/A + C/A

5. BASEXP controls the distribution (factoring) of the BASe of an
expression over (from) the EXPonent.

Identity: A*

Identity: A(B¥C) <¢—> B+ aC

6. EXPBAS controls the distribution (factoring) of the EXPonent of
an expression over (from) the BASe,

Identity: (a*B)C <¢~> AC = gBC

7. PWREXPD controls whether or not integer PoWeRs of sums are
EXPanDed in numerators and/or denominators.

8. ZEROEXPT controls the use of the following identity which is
valid for all A not equal to 0.

Identity: . A0 —> 1

9. ZEROBASE controls the use of the following identity which is
only valid for positive A,

- Identity: CA —> 0

USAGE:

1. For the first six of the above control variables, the kinds of
factors, bases, or exponents which are distributed or factored from the
expressicn can be precisely controlled by assigning appropriate values
to the respective control variable, Positive integer values will cause
distribution; whereas, negative values cause factoring., The exact type
of expression which will be distributed or factored can be determined
from the following table: ‘

Prime Type Exanples
2 Mumerical expressiocns 4, -1/3, 5/7
3 Other non-sums X, SIN(Y) 7 263
] |ums R+Sy XAZ‘X, LN(X) +2Z

Therefore, if a control variable is a multiple of one or more of
the above primes, then that type of expression will be distributed or
factored in accordance with that control variable's identity transform.
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2. For example, since differences are internally represented as
sunms involving negative coefficients, evaluation of

3*X* (14X) * (1-X) =—>

3 X Y (14X) * (1-X) if MMM is O,
X * (343%) * (1-X) if NMNUM is 2,
3% (X4X"2) * (1-X) if NOMNOM is 3,
3 * X * (1-X"2) if NOMNUM is 5,
(3*X+3*X"2) * (1-X) if NOZDYM is 6,
X * (3-3*X"2) if NOMNOM is 10,
3 * (X-X"3) if MMNOM is 15,
3*X - 3%X"3 if NMNUM is 30.

3. As another example, if DENDEN is 15, then
Y /3/7%X/ (1K) / (1-X) => Y/ (3*(X-X"3)).

4. As another example, if DENNUM is 6, then
(X#3) /3 /X =—> 1/3 + l/X.

5. When PWREXPD is a positive integer multiple of 2, then
multinomial expansion occurs in numerators. When PWREXFD is a positive
integer multiple of 3, then multinomial expansion occurs in
denominators. Thus, wnen PWREXFD is 6,

(14X) "3 / (14X+Y) "2 —>
(L43*X43%X724X73) / (1H2¥K+A2*Y+2*K*Y+X"2+Y72)

6. The importance of becoming thoroughly familar with the use of
PWREXPD, NUMNUM, DENDEN, and DEMNUM cannot be over-emphasized! muMATH-
79 cannot read a user's mind, so these control variables are the major
means of specifying which of the many alternative transformations are
desired at each stage in a dialeg.

7. The remaining control variables are of less freguent concern,
but changing their settings is occasionally crucial to acheiving a
desired effect. Since they follow the same general scneme, they are
easy to use after the ‘more important control variables have been
mastered. For example,-

(34X) / (14X) ==
1/ (3/(1+X) + X/(1+X)) if NUMDEN is S,
1/ (W/(/3+X/3) + 1/(1/%+1)) if NUMDEN is 30.

Thus, this transformation yields a kind of "continued-fraction”
expansion.

8. BASEXP is set in an analogous fasion as follows:
27 (14 —=> 2 * 2°N
if BASEXP is a positive integer multiple of 2,
X7 (1H) —=> X *XN
if BASEXP is a positive integer multigle of 3,
(A+B) “ (1+N) =—> (A+B) * (A+B)"N
if BASEXP is a positive integer multiple of 5.

_The opposite of these transformations is more often appropriate,
and is acccmplisned by setting BASEXP to be negative,



UTILITY FUNCTICNS:
1. EVAL (expr) returns the evaluated and simplified expression

resulting from expr operated on under the current control variable
environment, -

2. SUB (exprl, expr2, expr3) returns the expression which results
from SUBstituting all occurrences of exprZ by exprl in exprl,

3. EVSUB (exprl, expr2, expr3) is defined as
EVAL (SUB (exprl, expr2, exgrl)).

4. NUM (expr) returns the NMerator of expr.
5. DEN (expr) returns the DENominator of expr.

6. FLAGS () prints the current value of the system control
variable,

7. EXPAND (expr) evaluates expr to yield a fully expanded
denominator distributed over the terms of a fully expanded numerator.
The following temporary assignments are made:

PWREXPD: 6; NUMDEN: O; NUMNUM: DENDEN: DENNUM: BASEXP: EXPBAS: 30;

8. EXPD (expr) evaluates expr to yield a fully expanded numerator
"~ over a fully expanded denominator. The following femporary assignments

are made: ‘ .
PWREXPD: 6; NUMDEN: 0; DENNUM: -30; NUMNUM: DENDEN: BASEXP: EXPBAS: 30;

9. FCIR (expr) evaluates expr to yield a semi-factored numerator
cover a semi-factored denominator. The following temporary assignments
are made:

PWREXPD : NUMDEN: 0; NUMNUM: DENDEN: -6; DEMNUM: BASEXP: EXPBAS: -30;



CONTROL VARIABLE SUMMARY:

Control Initial

Positive Negative
var. Value Transformation Transformation
NROM 6 A*(B+C) ==> A*R + A*C A'B + A*C s=> A*(B+C)
» : 101 1 1 1 1
DENDEN 2 - % =) =) - ¥ —
A BC A*B + A*C A*B + A*C A B+
B+C B C B C B4C
DENNUM 6 —_— m= -4 - -t WE) e—
A A A A A A
a 1 1 A
NOMDEN 0 ——— =) - =) —
B+C B/A + C/A B/A + C/A B
BASEXP  ~30 A%(BHC) => AB*A°C AB*AC ==> A" (BHC)
EXPBAS 30 (A*B)°C ==> A“C*B"C AC*B"C ==> (A*B)"C
1
PWREXED 0 (A4B) "N ==> A'N+,. +B°N  (A+B) =N ==
AN+, . +B"N
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PURPCSE: ;
Pile EQNALG provides a facility whereby equations are treated as
expressions which can be assigned, added, multiplied, squared, etc.
PREREQUISITE FILE: ALGESRA.ARI

USAGE: expressionl == expression2

EXAMPLES:: ,
EQNl: 5#X =3 =T s 2 +4; —=> 20X =7 == §
then EONL + (7 = 7); ~ —> 2% == 13
then $ANS/2; -_—> X == 13/2_
REMARKS:

1. The two sides of the equation are independently simplified
according to the current control settings. However, there is no
attempt to automatically shift terms from one side to the other,
etc, Moreover, there is no attempt to verify or disprove that the
equation is an identity or has a solution.

2. This use of the == sign to indicate equations should not
be confused with the use of = within the conditicnal EXIT construct
in musSIMP function definitions. When used in this more active role
the result is always either TRUE or FALSE depending n whether or
not the left and right sides have identical (as distinct from
equal) values,

3. The left and right binding powers of == are 80, which is
the same as for =,

4. As illustrated by the above example, when a non-equation
is combined with an equation, the non-equation is independently
combined with both sides, ‘

S. Although the above example illustrates how equaticns can
be solved stepwise, file SCLVE.EQN automates this process.

6. Provided file ARRAY.ARI is loaded, sets of simultaneous
equatlions can be represented as an array of equations, For
e:

(2*X = 6, 4*Y = 8] / 2 ~—> [X==3, 2*Y == 4].

7. As with manual computation, operations such as squaring
both sides or clearing non-numeric denominators can enlarge the
solution set, so the user should exercise caution and verify
candidate solutions generated by such means,

8. If FOO is an equation, then SECOND (FOO) returns the left-

bggd gide of the equation, and THIRD (FOO) returns the right-hand
side,
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PURPOSE:: _
File SOLVE.EQON provides a function for the exact solution of an
algebraic equation,

FPRERBQUISITE FILE: EON.DOC
USAGE: SCLVE (equation, unkncwn)

EXAMPLES:
SOLVE (X"2 == 4*p, X); —> {X == 2%aA"(1/2)
X == =2%A%(1/2) }

SOLVE (LN(ATAN(X-1)) == B, X); —> {X == 1 + TAN(4E"B)}

REMARKS:

1. SOLVE returns a column of solutions, where columns are as
described in file ARRAY.DOC. The functions FIRST, REST, SECOND,
and THIFD can be used to extract individual solutions from a column
of solutions, Alternatively, subscripts can be used for this
purpose provided file ARRAY.ARI is loaded,

2. Porgetting the secorid argument of SOLVE is a frequent
mistake,

3. As a convenience, when either side of an equation is zero,
the == (0 can be omitted.

0 4. When no solution exists, SOLVE returns the empty column,

5. When degenerate equations have an entire locus of
solutions which require parameterization to represent completely,
SOLVE introduces the parameters,

ARB(1), ARB(2), ARB(3), eee

Their indexes start at 1 every time SOLVE.EQN or MATRIX.ARR is
loaded. The following is an example of the muSIMP-79 solution to a
degenerate equation:

SAVE (X == X, X); —> {X == ARB(1)}.

6. SOLVE expands the difference in two sides of an equation
over a common denominator, then multiplies by the denominator to
clear it. This multiplication can introduce spurious sclutions if
a zero of the denominator coincides with one of the numerator.
Similarly, this multiplication can suppress a sclution associated
with an infinity of the denominator. Thus, the returned set should
be regarded as candidates for some of the solutions rather than the

»
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complete verified solution set if an equation has a denominator
which could be zero or infinite for finite values of the unknown.
When these possibilities are present, it is the user's
responsibility te verify his solutions by substitution or fzhaps
by taking limits, It may be helpful in such instances to also
SCGLVE to find any zeros of the common denominator in order to see
if they coincide with any of those in the numerator.

7. After clearing the denominator, SOLVE attempts moderate
factorization, then independently attempts to determine the zeros
of each resulting factor. SOLVE recursively employs appropriate -
formulas for the inverses of the elementary functions and for the
zeros of linear, quadratic, and binomial factors, When SOLVE
encounters a factor which it cannot treat, it returns a "solution"
of the form "factor == (0", Since the factor may be simpler than
the original equation, it might serve as a useful point of
departure for an approximate numerical solution.

8. A careful study of the source listing for the file
SCLVE.EQN reveals how additicnal inverse functions can be employed.

9, File MATRIX.ARR contains a matrix division operation which
can be used to solve simultaneous linear algebraic equations.
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Array Package Documentation

PURPCSE:
File ARRAY.ARI provides a facility for establishing generalized
arrays, for extracting their components, and for performing
elementwise operations between arrays or between arrays and
scalars.

PREREQUISITE FILE: ARITH.HUS

1. Fomation of a column vector:

{expressionl, expression2, ..., expressionN}.
2. Fomation of a row vector:

[expressionl, expression2, ..., expressionl].
3. Extraction of camponents:

array rowvector
4, Operations having forms such as:

arrayl operator arraye,

scalar operator array,

functionname (array).

EXAMPLES:
[0, X] + [5, X, ¥]; —> [5, 2%, Y]
2 * {X, IN(V) }; ->  {2*%X,
~ 2*LN(Y) } _
SIN ([X, ¥1); —> [SIN(X), SIN(Y)]
(x, [¥,2], (W]l(21; —-> [¥,2]
[xr [Yfz]l [W”[zil] -> X

X, (¥,2], W2](1]; —> ¥

REIMARKS:

1. Arrays can be nested to any desired deptn. The elements of
a row or column can be any arbitrary expressions, including perhaps
another row or column,

2. Columns are printed starting each element on a new line.
Thus, 2-dimensional arrays generally look better as a column of
rows tnan as a row of columns, Bigher dimensional arrays generally
appear best as a column of rows of rows . . . 0f rows.,

3. When rows or columns of uneqgual length are combined
elementwise by an arithmetic operation, the shorter of the two
arrays is treated as having implied zeros corresponding to the
extra elements of the longer array. (Consistent with tiais
interpretation, a subscript value larger tnan the numoer of
explicit elements in a row or column yielas a zero as the value of
the element.) Thus, upper-triangular, left-triangular, and otner

- "ragged" arrays are erfriciently represented.
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4. When an array is combined with a scalar, the latter
distributes over the elements of tne array.

S. Functions of one argument such as SIN, ATAN, etc., which
-employ the general rule-applicacion function named SIMPU,
distribute over the elements of an array.

6. Subscripts can be recursively employed to any level, and
they can be symbolic, For example, (¥, 2](2]([N] ==> Z[N].

7. FIRST(row) ==> [, FIRST(column) =-=> {, SECOND(row or
column) ==> first element, etc.

8. Comments in file ARRAYARI indicate how to save space by
omitting the column and/or subscript packages. (Rows together witn
FIRST, REST, SECQND, etc, are sufficient for many purposes.)

9. File MATRIX.ARR implements matrix operations on arrays,
including matrix transpose, multiplication, division, and power,
including inverse.
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RATIONAL ARITEMETIC Package Documentation

. PURPCSE: :

File ARITH.MUS can perform exact rational arithmetic operations
including sums, differences, products, quotients, and powers up to 611
digits of accuracy in any desired radix base.

PREREQUISITE FILE: MUSIMP79.COM

EXAMPLES:
5/9 + 7/12; Exact raticnal aritimetic %
FOO: (236 - 3*127) * -13; Make assigrments to variables %
FOO “ 16; Raise numcters to integer powers %

FOO; o Convert numbers between radix bases $
1011000101 + 111010001; Do binary aritimetic %
RADIX (1010); To return to base 10 %

%

E

%

RADIX (2): $ The radix base can be set frcm 2-36 &
1

3

3

GCD (436, S82); $ Campute the GCD of two numbers %

CONTROL VARIABLES:

1. PBRCH is a control variable which, when TRUE, permits
selection of a branch of a multiply-branched function. For ARITH.HUS,
PERCH nonFALSE permits the simplification

(exprl “ expr2) " expr3 —> exprl ° (expr2 * expr3)

even when expr3 is not an integer.

2. ZEROBAS is a control variable which, when TRUE, permits the
simplification 0 " expr —> 1 even when expr is nonnumeric.

3. ZEROEXP is a control variable which, when TRUE, permits the
simplification expr * 0 ==> 1 even when expr is nonnumeric,

PRIMITIVLY DEFINED FUNCTIONS:

1. ABS (expr) is a function which returns the absolute value of
its argument when the argument is a rational number. Otnerwise, the
rule-application functicn SIMPU is invoked, so the unevaluated absolute-
value form is returned if no applicable rules are present,

2. ARGEX (expr) is a helper function used by SIMPU and elsewhere
to appropriately partition an expression for application of a rule,

3. ARGLIST (expr) is a nelper function used to appropriately

group the operands of an expression for application of rules to varvary
operators such as "+" and "*",



4. BASE (expr) is a selector function which returns the base of
an expression of the form base " exp; otherwise it returns expr itself.

5. CODIV (expr) is a selecter function which returns the
codivisor (i.e. the non-numeric factors) of an expression which is a
product; 1 if NUMBER (expr); otherwise it returns expr itself.

6. COEFF (expr) is a selector function whicn returns the
coefficient (i.e. the numeric factors) of an expression which is a
prog.xﬁ:t; the expr if NUMBER (expr); otherwise it returns 1. Note that
in cases

expr = COEFF (expr) * CODIV (expr)

7. DEN (expr) is a selector function which returns the
denominator of its argument, returning 1 wnen there is none.

8. DENOM (expr) is a recognizer function which returns TRUE iff
its argument has the internal form (" bas exp), with exp being negative
or having a negative coefficient.

9. EVSUB (expr, subexpr, replacement) is a function which returns
the result of evaluating a copy of its first argument, wherein each
syntactic occurrence of its second argument is replaced by the third
argument,

10. EXPON (expr) 1is a selector function which returns the

exponent of an expression of the form base  exp; otherwise it returns
1. Note that in all cases .

expr = BASE (expr) ~ EXPON (expr)

11. GO (intgrl, intgr2) is a function which retumns the positive
greatest cormen divisor of its integer arguments,

12. IDENTITY (expr) returns its argument. This trivial function
is used for applying inverses and accomeodating conditional exits having
atomic conditions,

13. LM (intgrl, intgr2) is a function which returns the positive
least common multiple of its integer arguments.

14. MIN (intgrl, intgr2) is a function which returns tne minimum
of its two integer arguments.

15. MULTIFLE (intgrl, intgr2) is a function which returns FALSE
if its second integer argument is nct an integer multiple of its first
integer argument,

16. NEGCOEFF (expr) is a recognizer functicn which returns TRUE
iff its argument is negative or has a negative coefficient, returning
FALSE otherwise.
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17. NEGMULT (intgrl, intgr2) is a predicate which returns TRUE
iff its second integer argument is a negative integer multiple of its
first integer argument,

18. NUM (expr) is a selector function which returns tne numerator
of its argument, returning the entire argument when there is no
denominator. :

19. NUMBER (expr) is a recognizer function which returns TRUE iff
its argument is an integer or a rational number.

20. POSMULT (intgrl, intgr2) is a predicate whnich returns TRUE
iff its first integer argument is a positive multiple of its second
integer argument.

2l. POWER (expr) is a recognizer functicn which returns TRUE iff
its argument is of the form exprl " expr2, returning FALSE otherwise.

22. PRODUCT (expr) is a recognizer function which returns TRUE
iff its argument is of the form exprl * expr2, returning FALSE
otherwise. It is important to realize that guotients are represented as
products involving negative powers.

23. RECIP (expr) is a recognizer function which returns TRUE iff
its argument is a rational number of the form 1/d, returning FALSE
otherwise,

24. SIMPU (name, expr) 4is a function which applies any
appropriate established rules for' the unary function or operator whose
name is the first argument of SIMPU and whose operand is the second
argument of SIMPU.,

25. SUB (expr, subexpr, replacement) returns a copy of its first
argument, wherein every syntactic instance of its second argument is
replaced by its third argument. In general this will produce an
unsimplified result, so the similar EVSUS function uses SUB, then EVAL.

26. SUM (expr) is a recognizer function which returns TRUE iff
its argument is of the form exprl + expr2, returning FALSE otherwise.
It is important to realize that differences are represented as sums
involving terms having negative coefficients.



PURPCSE:
Provides the facilities for the simplification of fracticnal powers
of numbers and complex exponentials,

USAGE:
number © {fracticn),
E * (intgr * #I * #PI1 / 2).

EXAMPLES: )
{=24) " (1/3) => =2*3°7 (13),
(=4) " (1/2) => #I*2,
$E° (3FH4I*H#PI/2) = - #L.

CONTROL VARIABLE:
PBRCH, whz.ch if FALSE, preve.nts Picking a BRanCH for fractional
powers. (e.g. * (1/2) will not simplify to 2.)

REMARKS:

1. #E represents the base of the natural logantnms, #1 represents
the positive square root of minus one (+ (-1)7(1/2)), and #PI represents
the ratio of the circumference of a circle to its diameter.

2. Simplification of fractional powers takes place only if the
control variable named PBRCE is not FALSE., The positive real branch is
selected if one exists, Otherwise, the negative real branch is selected

if one exists, Otherwise, the branch with smallest positive argument is
selected.

3. As in manual computations, Picking a BRanCE of a fractional
power involves an arbitrary choice which can yield invalid results.
Thus, the user is cautioned to verify results obtained by such
operations.

4. The global variable named PRIMES contains a list of successive
primes, beginning with the integer 2. For fractional powers, the
radicand is factored into a product of powers of the numbers in PRIMES,
perhaps times a residual having no factors in PRIMES. The fractional
power is then distributed over this product, with a discrete variant of
Newton's method being used to determine if the fractional power of any
resicdual is an integer. Thus, simplification of fractional powers of
large integers might be incomplete if PRIMES is not long enough.

S. As in manual computations, reduction of complex exponentials
modulo (2 * #PI * $#I) is inconsistent with the identity LN(Z*W) = LN(2)
+ LN(W). Thus, the user is cautioned to verify results obtained using
botn transformations together.



PURPCSE: . ‘
Provides the factorial postfix operator "!", The factcrial of a
non-negative integer is recursively defined as follows:
) 0! = ly : ) )
N! = N*(N-1)!, for N > 0.

USAGE:
N! where N is a non-negative integer.

EXAMPLE:
51 => 120.

REMARKS

1. The leit binding power of ®!" is 160. Thus -5! parses to
- (5!1) and 375! parses to 37(5!).

2. When not given a nonnegative integer operand, "I calls upon

the SIMPU rule-application function, thus returning the unevaluated
factorial form if no appropriate rules are established.
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PURPOSE:
File LOG.ALG provides for logaritimic simplifications.

PREREQUISITE FILE: ALGEBRA.ARI
CONTROL VARIABLES: _
1. LOGBAS, which is the default LOGarithm BASe when LOG is given
only one argument,
2. PBRCH, which if FALSE prevents Picking a BRanCH of logaritmms.
3. LOGEXFD, which controls expansion or collection of logarithms,

and base conversion.

USAGE:
IN (expr),
LOG (expr),
m (exprl Dase)' L2

REIARKS:

1. Since the emphasis of muMATH is on exact results, there is no
attempt to approximate irrational logarithms.

2. The unbound variable #E represents the base of the natural
logaritims. ;

3. Although all logarithms are stored internally as two argument
functions, LN (expr) is used as an acbreviation for LOG (expr, #E) on
input and output,

4. IOG (expr) is used as an abbreviation for LOG (expr, LOGBAS) on
igput and output, wnhere LOGBAS is a control variable initially set to

#L.
5. base " LOG (expr, base) —> expr.
6. Provided PBRCH is TRUE:
LOG (1, base) --> 0,

LOG (base, base) —> 1,
IOG (base“expr, base) —> expr.



7. Provided LOGEXPD is a positive integer multiple.of 2:
LOG (expr,pase) =--> LOG (expr, #E) / LOG (base, #E)

when base is not #E. When LOGEXPD is a negative integer multiple of 2,
the opposite transformation of combining appropriate ratios of
logarithms occurs.

8. Providad LOGEXPD 1s a positive integer multiple of 3:

LOG (expr®exp, base) —> exp * LOG (expr, base).

A negative integer multiple of 3 causes the opposite transformation.

9. Provided LOGEXFD is a positive integer multiple of 5:

LOG (exprl*expr2, base) —> LOG (exprl, base) + LOG (expr2, base),
LOG (exprl/expr2, base) —> LOG (exprl, base) - LOG (expr2, base).

A negative integer multiple of 5 causes the opposite collectiocn
transformation.
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PURPOSE: File TRGPCS.ALG provides the fol.mwing trigonometric trans-

formations: : ,

1. exploitation of symetry to simplify trig argquments

2. replacement of cther trig functions by sines and cosines

3. replacement ¢of integer powers of sines and cosines by linear
combinations ¢f sines and cosines of multiple angles

4, replacement of products of sines and cosines by linear
combinations of sines and cosines of angle sums

5. replacement of integer powers of sines by those of cosines or
vice-versa

PRERBQUISITE FILES: ALGEBRA.ARI
(Note: Loading TRGNEG.ALG after TRGPOS.ALG preserves the full
capabilities of both files., Loading TRGPOS.ALG after TRGNEG.ALG
destroys the angle-reduction capabilities of the latter, thus
saving some space.)

CONTROL VARIABLES:

1. TRGEXPD controls :epla;erdént of trig functions by sines and

- cosines and replacement of powers and products of sines and cosines by

linear combinations., Only positive values of TRGEXFD are significant
when TRGPOS.ALG is loaded without TRGNEG.ALG.

2. TRGSQ controls the conversion of integer powers of sines to
cosines and vice-versa,

USAGE:
SIN (expression),
CCS (expression),
TAN (expression),
CSC (expressicn),
SEC (expressiocn),
COT (expression).

REMARKS::
1. SIN(0) => 0, and COS(0) ==> 1.

2, Symmetry is exploited to simplify the arguments of sines and
cosines, For example, SIN(=X) ==> =SIN(X) and COS(=X) =—> COS(X).



3. W%When TRGEXPD is a positive multiple of 2, then tangents,
cotancents, secants, and cosecants are replaced by corresponding
expressions involving sines and/or cosines, For example, when TRGEXFD =

4. When TRGEXPD is a positive multiple of 3, then integer powers
of sines and cosines are expanded in terms of sines and cosines of
multiple angles. For example, when TRGEXPD = 30, COS(X)“2 =-->
(1+C0S(2*X))/2. These transformations usually give the most attractive
results if NUMNUM and perhaps also DENNUM are positive multiples of 6.

5. When TRGEXPD is a positive multiple of 5, then products of
sines and cosines are expanded in terms of angle sums. For example,
when TRGEXPD is 30, SIN(X)*SIN(Y) ==> (COS(X-Y) - COS(X+Y))/2. These
transformations usually give the most attractive results if NUMNUM is a
positive multiple of 30 and DENNUM is a positive multiple of 2.

6. Expanding over a common denominator with TRGEXFD = 30 yields a
normal form for a large class of trigonometric~-rational expressions.
Thus, the most straightforward way to prove most trig identities is to
evaluate the difference in the two sides with TRGEXPD: NUMNUM: DENDEN:
30, PWREXFD: 6, and DENNUM: -30. ’

7. TRGEXPD = 30 has the effect of "linearizing” trigonometric
polynomials, thus facilitating harmonic or Fourier analysis.
8. For integer n with |[n] > 1 and for all u, when TRGSQ is a
positive integer, then K
COS(u)“n =—=> COS(u) “REMAINDER(n,2) * (1 - SIN(u) “QUOTIENT(n,2)) 2.
Conversely, when TRGSQ is a negative integer, then
SIN(u)“n ==> SIN(u) “REMAINDER(n,2) * (1 - COS(u)“QUCTIENT(R,2)) 2.
These transformations are sometimes useful for transforming a

trigonometric polynomial to a more compact equivalent trig polynomial,

9. Even when a trig polynomial is preferred for the final form,
net simplification is often achieved by evaluating with TRGEXPD = 30,
then -30, then perhaps again with TRGSQ = 1 or -1 according to the
appearance of the result produced by -30.

10. File TRGNEG.ALG provides for the negative settings of TRGEXFD
to yield the converse of the above transformations.
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PURPOSE: File TRGNEG.ALG provides the following trigonometric trans-
formations:
1. exploitation of symmetries to simplify trig arguments
2. angle reduction
3. multiple-angle expansiocn
4. angle-sum expansion
5. eliminaticn of reciprocals of trigonometric fomms
6. elimination of certain products of trigonametric formms
7. simplification of trig functions of their own inverses
8. replacenent of sines and cosines by complex exponentials

PREREQUISITE FILE: ALGEBRA.ARI
(Note: Loading TRGPOS.ALG after TRGNEG.ALG destroys the angle-
reduction capabilities of the latter, thus saving some space,
Loading TRGNEG.ALG after TRGPOS.ALG preserves the full capabilities
of both files.)

CONTROL VARIABLES:

l. TRGEXPD controls the use of multiple angle and angle sum
expansicns and replacement of trig functions by complex exponentials.
Only negative values of TRGEXPD are significant when TRGNEG.ALG is
loaded without TRGPCS.ALG.

USAGE:
SIN (expressicn),
COS (expression),
TAN (expressicn),
CSC (expression),
SEC (expressicn),
COT (expression),
TRGEXFD (expressicn, integer).

REMARKS:

1. Since the emphasis of muMATE-79 is on exact results, there is
no attempt to approximate irrational trig expressions.

2. The ratio of the circumference to the diameter of a circle is
represented by the uncound variable $#PI. The user is of course free to

assign a raticnal approximation to #PI and use series approximations to
the trig functicns,



3. Angles are assumed to be measured in radians. Those who would
prefer some other unit such as degrees may wish to define additional
functions named SIND, COSD, etc.

- 4. Sines and cosines of angles which are numeric multiples of #PI
are reduced to equivalent sines or cosines in the range [0, #PI/4], then
sines and cosines of the special angles 0, #PI/6, and #Pl/4 are
evaluated exactly. For example,

SIN (20*#PI/7) =——> SIN (#PL/7),
and SIN (7*#P1/3) —> 3°(1/2)/2.

5. Symmetry is exploited to simplify the arguments of sines and
cosines. For example,
SIN (=X) =—> =SIN (X),
and Cos (=X) =—> COSs (X).

6. Trigonometric functions of the corresponding inverse trig
functions simplify. For example, SIN(ASIN(X+5)) —> X+5. The inverse
trig functions are named ATAN, ASIN, ACOS, ACOT, ACSC, and ASEC.

7. Products of a tangent, cotangent, secant, or cosecant with
another trig function of the same argument are simplified to 1 or to a
single form where possible. For example,

SEC(X)*COS(X) —> 1,

and TAN(X)*COS(X) =--> SIN(X).

For an expression such as SEC(X)"2*COS(X)"2 it is necessary to
reevaluate with EXPBAS being & negative multiple of 2 in order to
acheive the desired trig transformation.

8. When TRGEXPFD is a negative multiple of 2, then negative powers
of tangents, cotangents, secants, and cosecants are replaced by
corresponding positive powers of the corresponding reciprocal trig
functions., For example, when TRGEXFD = =6, 1/TAN(X+7)"3 =—=> COT(X+7)"3.
For technical reasons, negat:.ve powers of sines and cosines are treated
in file TRGPCS.ALG.

9. When TRGEXPD is a negative multiple of 3, then sines and
cosines of mulitple angles are expanded in terms of sines and cosines of
non-multiple angles. For example, when TRGEXFD = -6,

SIN (2*X) =—> 2*SIN(X)*COS(X)

and Cos (3*%X) ~=> 4*COS(X) "3 - 3*COS(X).

These transformations usually give the most attractive results if NUMNUM
is a positive multiple of 6.

10. When TRGEXPD is a negative multiple of 5, then sines and
cosines of angle sums and differences are expanded in terms of sines and
cosines of nonsums and nondifferences, For example, when TRGEXFD=-15,
COS(X+Y) ==> COS(X)*COS(Y) - SIN(X)*SIN(Y). These transformations
usually give the most attractive results if NUMNUM is a positive
multiple of 6.



1l. When TRGEXPD is a POSITIVE multiple of 7, then sines and
cosines are converted to complex exponentials., For example, when
TRGEXPD = 14, then COS(X) ==> (#E"(#I*X) + 1/#E"(3I*X)) / 2. The
opposite transformation, provided in file ARITH.MUS, is requested when
TRGEXPD is a negative multiple of 7. A worthwhile net trig
simplification can sometimes be achieved by converting to complex
exponentials, expanding or factoring judiciously, then converting back
to trig functions.

- 12, In muMATE~79 changing the value of an opticn variable does not
affect the values of expressions which have already been evaluated.
Thus, after changing the value of TRGEXFD and other relevant variables
it may be necessarv to use EVAL to get the desired effect.

- 13. Function TRGEXPD reevaluates its first arqument with TRGEXFD
temporarily set to the value of the second argument. Thus, it provides
a convenient way to accomplish a trigonometric transformation without
the necessity of altering the global setting of the TRGEXPD control
variable. , A

14, File TRGPOS.ALG has other important trig transformations, many
of which are the opposite of those provided in file TRGNEG.ALG.
Generally, the positive settings yield a more canonical (but not
necessarily more compact) representation. A net simplification is often
achieved by evaluating an expression with the relevant option variables
set positive, then reevaluating with them set the other way. Thus,
files TRGPCS.ALG and TRGNEG.ALG comprise an important complementary pair
pair of files. Since together the files are relatively large, for some
applications it may be desirable to extract and combine a few of the
required features from both files, together perhaps with a few
additional transformations modeled after them,
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DIF.DOC  (c) | ~ 02/09/80 ~ fThe Soft Warehouse

RIFFERENTIATION Package Recumentation

‘PURPOSE:

File DIF.AIC provides a function which returns the symbolic first
- partial derivative of its first argument with respect to its secand
arqument,

PREREQUISTTE FILE: ALGEBRA.ARI

USAGE:
DIF (expression, variable),

EXAMPLES:
DIF (A*X"2, X) => 2*A¥X,
DIF (LN(X+d), X) —> 1/(X+3).

REMARKS:

1. When the differentiation rule for a functicn or operator is not
known to the system: ‘

a. The derivative is 0 if none of the arguments or operands
contain the differentiation variable., For example,
' DIF (F(Y), X) =—> 0.

b. The derivative is not evaluated otherwise. For
example,
DIF (F(X), X) =—> DIF (F(X), X).

2. A careful study of file DIF.ALG reveals how additional
differentiation rules can be inserted.

3. The differentiation "variable" can actually be an arbitrary
expression, which is then treated the same as a simple variable for
differentiation purposes. (This is occasionally quite useful, such as
when performing a square-free factorization or when deriving the Euler-
Lagrange equaticns for a specific variational calculus problem.)

4. Higher-order partial derivatives can be requested directly by
nested use of DIF, such as DIF (DIF(SIN(X*Y),X), ¥Y). However, beware
that repeated differentiation can require dramatically increasing time
and space, especially for products, quotients, and composite
expressions.

5. The useful utility function FREECF (exprl, expr2) is a
predicate which returns TRUE iff exprl is free of (i.e. contains no
occurrences of) expr2.



INT.DOC  (c) 02/09/80 -The Soft Warehouse
INTEGRATION Package Documentation
PURPCSE::

File INT.DIF provides facilities for indefinite symbolic
integration.

PREREQUISITE FILE: DIF.ALG

USAGE: ‘
INT (expression, variable).

EXAMPLE: | ~
INT (A*X + SIN(X), X) —> A%¥X"2/2 - COS(X).
REMARKS:: |
1. When INT is unable to determine a closed-form integral of
portions of an expression, the re-urned expression will contain

unevaluated integrals of those porticrn:. For example,
INT (X + AME™X/X, X) =—> 72/2 + A*INT(#E"X/X,X).

2. INT merely uses distribution over sums, extraction of factors

which do not depend upon the integration variable, known integrals of
“the built-in functions, a few reduction rules, and a "derivatives-

divides" substitution rule, Consequently, integration succeeds only for
a relatively modest class of integrands. However:

a. The class is large enough to be quite useful,

b. File INIMORE.INT contains additional rules,

¢. Integration of a truncated Taylor-series approximation
of an integrand can often yield a truncated series
representatjon of otherwise intractable integrals.

3. A careful study of files INT.DIF and INTMORE.INT reveals now
additional integration rules can be inserted.

4. The integration "variable" can be an arbitrary expression,
which is then treated the same as a simple variable for integration
purposes.

5. Successful integration may depend upon the form of the
integrand, after it is simplified according to the current flag
settings. Generally speaking, it is best to employ conservative flag
settings which do relatively little to alter the form of an expression.
INT will automatically expand, facsor, employ trigonometric trans-
formations, etc. as necessary.



INDWRE.DOC  (c) 02//05//80 . The Soft Warehouse

PURPCSE: :
File INTMORE,INT provides symbolic definite integration and extends
the power of the indefinite integration provided by file INT.DIF.

PREREQUISITE FILE: INT.DIF

USAGE: v
© INT (expression, variable),

DEFINT (expression, variable, lowerlimit, upperlimit).

EXAMPLE:
DEFINT (A*X‘Z, X, 0' l) — A/3c

REMARKS:

1. DEFINT merely uses substitution into the Mefxmte integral,
which is appropriate only for proper integrals.

2, When DEFINT is unable to determine a closed-form integral, the
unevaluated integral is returned. For example,

DEFINT (X+A™E"X/X, X, 0, 1) —> DEFINT (X+A*#E"X/X, X, 0, 1).

3. Nested integration can be used to request directly an iterated
integration, such as occurs for appropr:.ate multiple-integrations. For
example, to integrate the expression y*x"2 over the upper unit semi-
disk, we could evaluate

DEFINT (DEFINT(Y*X"2,Y,0,(1-X"2)°(1/2), X, -1, 1).

However, beware that the class of expressions which is zepeatedly

integrable is dramatlcally smaller than the class which is once
integrable.

4. File INT.DCC contains other appropriate remarks.



mUSIMP/MUMATH-79 Punction Name and Variable Name INDEX

The following is an index of all the important function,
variable, and constant names in both muSIMP and muMATH., Each name is
followed by the module in which it occurs, a descriptor indicating the
name's use, the page in the module's documentation on which it is
explained, and finally the page in the module's muMATH source file on
which it is defined. Function names are indicated by a set of
parentheses following the name which contains the usual number of
arguments given to the function. An asterisk (*) in the "Page
Defined" column indicates that the item is incrementally defined in a

number of places within the source,

Page Page
Name Module Descriptor '
ABS (1) ARITH Numerical 1 3
ADJOIN (2) muSIMP Constructor 8
AND (N) : muSIMP Logical 12
APPEND (2) MATRIX Constructor 2
 APPLY (2) muSIMP Evaluator 28 '

ARGEX (1) ARITH Selector 1 4
ARGLIST (1) ARITH Selector 1 4
ARRAY (1) ARRAY .Recognizer 2
ASSIGN (2) muSIMP Assignment 13
ATOM (1) ‘mMuSIMP Recognizer 10
ATSOC (2) muSIMP Property 14
BASE (1) ARITEH Selector , 2
BASEXP ALGEBRA Control variable 2 4
BASEXP (1) ALGEBRA Recognizer 4
BLOCK muSIMP Keyword 31
CODIV (1) ARITH Selector 2 3
COEFF (1) ARITH Selector 2 4
COL (1) ARRAY Recognizer 2
comMMa muSIMP Constant 35
COMPRESS (1) muSIMP Sub~-atomic 18
CONCATEN (2) muSIMP Modifier 9
COND (N) muSIMP Evaluator 29
CONDENSE (2) muSIMP Storage 33
Cos (1) TRGPOS Numerical 1l 1
Cos (1) TRGNEG Numerical 2 1
CoT (1) TRGPOS Numerical 1l 1
csC (1) TRGPOS Numerical 1 1
DEFINT (4) INTMORE Numerical 1 1
DELIMITER muSIMP Constant 36 22
DELIMITER (1) muSIMP Recognizer 36 22
DEN (1) ARITH Selector 2 2
DENDEN ALGEBRA Control variable 1 2



* . .

DENDEN (1)
DENNUM

DENNUM (1)
DENOM (1)

DIF (2)
DIFFERENCE (2)
DIVIDE (2)
DRIVER (0)

ECHO -
EMPTY (1)
ENDBLOCK
ENDFUN
ENDLOOP
ENDSUB

EQ (2)
EVAL (1)
EVSUB (3)
EXIT
EXPAND (1)
EXPBAS
EXPBAS (1)
EXPD (1)
EXPLODE (1)
EXPON (1)

FCTR (1)
FIRST (1)
FLAGS
FLAGS (0)
FOURONPI
FREE (2)
FREE (2)
FUNCTION

GCD (2)
- GET (2)
GETD (1)

HALF

IDENTITY (1)
IDMAT (1)
INFIX

INT (2)
INTEGER (1)

LBP

LCM (2)
LENGTE (1)
LINELENGTE (1)
LIST (N)

LN (1)

LOAD (3)

Module

ALGEBRA
ALGEBRA
ALGEBRA
ARITH
DIF
muSIMP
muSIMP
muSIMP

muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
ARITH
muSIMP
ALGEBRA
ALGEBRA
ALGEBRA
ALGEBRA
muSIMP
ARITH

ALGEBRA
muSIMP
ALGEBRA
ALGEBRA
TRGNEG
SOLVE
DIF
muSIMP

ARITH
muSIMP
muSIMP

TRGPOS

ARITH
MATRIX
muSIMP
INT
muSIMP

muSIMP
ARITH
muSIMP
muSIMP
muSIMP
LOG
musSIMP

Rescriptor

Recognizer

Control variable 2
Recognizer

Selector 2
NMumerical 1
Numerical 15
Numerical 19
Evaluator 31
Control variable 22
Recognizer 10
Delimiter 31
Delimiter 17
Delimiter 30
Delimiter 17
Comparator 11
Evaluator 27
Constructor/Evaluator 2
Delimiter 31
Evaluator 4
Control variable 2
Recognizer

Evaluator 4
Sub-atonic 18
Selector 2
Evaluator 4
Selector 7
Global variable

Printer 4
Constant

Recognizer

Recognizer 1
Reyword 16
Numerical 2
Property 14
Definition 16
Constant

Identity function 2
Constructor 1
Parse property 35
Numerical 1
Recognizer 10
Parse property 35
Numerical 2
Sub-atomic 18
Printer 25
Constructor 8
Numerical 1l
System function 34
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Name

LOG (2)
LOGARITEM (1)
LOGBAS
LOGEXPD
LOGEXPD (2)
LCOP (N)

LOOP

LPAR

MAPFUN (2)
MATCE (2)
MATCENOP (2)
MIN (2)
MINUS (1)
MRKPROD (1)
MRRAT (1)
MRSUM (1)
MOD (2)
MOVD (2)
MULTIPLE (2)

NAME (1)
NEGATIVE (1)
NEGCOEFF (1)
NEGMULT (2)
NEWLINE (0)
NOT (1)

NUM (1)
NUMDEN
NUMDEN (1)
NUMNUM

- NUMNUM (1)

NUMBER (1)

OBLIST (0)
OR (N)
ORDERP (2)

PARSE (2)
PBRCH

PION2

PION4

PLUS (2)
POSITIVE (1)
POSHULT (2)
POWER (1)
PREFIX
PRIMES
PRINT (1)
PRINTLINE (1)
PRODUCT (1)
PROPERTY
PRTMATE (4)
PUT (3)

Mcdule

LOG
LOG
LOG
LOG
LOG
muSIMP
muSIMP
muSIMP

EQN
musSIMP
muSIMP
ARITH
muSIMP
ARITEH
ARITH
ARITH
muSIMP
muSIMP
ARITH

muSIMP
muSIMP
ARITH
ARITEH
muSIMP
muSIMP
ARITH
ALGEBRA
ALGEBRA
ALGEBRA
ALGEBRA
ARITH

muSIMP

muSIMP -
muSIMP -

muSIMP
ARITH
ARITH
TRGNEG
muSIMP
muSIMP
ARITH
ARITH
muSIMP
ARITH
muSIMP
muSIMP
ARITEH
muSIMP
muSIMP
muSIMP

Rescriptor

Numerical
Recognizer

Control variable

Control variable
Evaluator
Evaluator
Keyword

Constant

Mapping
Reader
Reader
Numerical
Numerical
Constructor
Constructor
Constructor
Numerical
Lefinition
Comparator

Recognizer
Recognizer
Recognizer
Comparator
Printer

Logical
*Selector

Control variable
Recognizer
Control variable
Recognizer
Recognizer

constructor
Logical
Comparator

Reader ‘
Control variable
Constant
Constant
Numerical
Recognizer
Comparator
Recognizer
Parse property
Glopal variable
Printer

Printer
Recognizer
Keyword

Printer
Property

12
11

36

1,4

18
10

35
24

15
14

25
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PUTE (2)
PWREXPD

QUERY ({2) ;o
QUOTIENT (2)°
'RADIX (1)
RBP{

RDS (3)

READ (0) -

READCHAR (0)°
RECIP (1)

RECLAIM (O)CL

REMPROP (2) -
 REPLACEF (2)
 REPLACER (2).

REST (1) ’

REVERSE  (2)

ROW- (1) :

RPAR

RREST (1)

RRREST (1)

SAVE (3)
SCAN (0)
SEC (1)
SECOND (1)
SIGN (1)

SIMPU (2)
SIN (1)
SIN (1)
SOLVE (2)
SPACES (1)
SUB (3)
SUBROQUTINE
suM (1)
SYNTAX (N)

TAN (1)

TERMINATOR (0)

THIRD (1)
TIMES (2)
TRACE (N)
TRGEXPD
TRGEXPD
TRGEXPD (2)
TRGSQ

UNION (2)
UNTRACE (N)
WHEN

WRS (3)

Modyle
muSIMP

ALGEBRA .

INT
muSIMP'

muSIMP
MISIMP
nuSIMP
muSIMP
muSIMP
ARITH .
muSIMP
muSIMP
muSIMP
muSIMP

- muSIMP
- muSIMP

ARRAY

muSIMP
muSIMP
muSIMP

muSIMP
muSIMP
TRGPOS
muSIMP
INT
ARITH
TRGPOS
TRGNEG
SOLVE
muSIMP
ARITH
muSIMP
ARITH
musSIMP

TRGPOS
nuSIMP
nuSIMP
muSIMP
TRACE

TRGPOS
TRGNEG
TRGNEG
TRGPOS

SOLVE
TRACE

muSIMP
nuSIMP

Rescriptor
Definition
Control variable

Reader/Printer
Numerical

Printer
Parse property
Reader

Reader

Reader
Recognizer
Storage
Property

- Modifier

Modifier
Selector
Constructor

‘Recognizer

Constant
Selector
Selctor

System
Reader
Numerical
Selector
Recognizer
Evaluator
Numerical
Numerical
Numerical
Printer
constructor
Keyword
Recognizer
Reader

Numerical
Recognizer
Selector
Numerical
Debugger

Control variable
Control variable
Evaluator
Control variable

Constructor
Debugger

Keyword
Printer
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