
muSIMP/muMATH-79,
ReferellcE:-' Mani.1al::

. ,• . . ', . -~·. '

i/,i

(c) 1979, 1he Soft W•ehouse
All Rights Reserved WorkJwide

Reprinted with permission . -~ '-'~; ~

'l. __ ,:,

Copyright Notice

CoPVriiht (Cl, 1979 by The Soft'Warehouse. All Rights Reserved Worldwide. No pan of this manual may be
reprpduced, ·uahsmirted, transcribed, stor~ in a retrieval system, or translated into any human or computer
lang\qge, in atty form or by any means, electronic, mechanial, magnetic, optiaJ, chemicaJ. manual, .or
otherwise. without. the express written permiuion of The Soft Warehouse, P.O. Box 11174, Honolulu,
Hawaii 96828, U.S.A.

r

..

Disclaimer ..
The Sofi-Wareho'UM mak- no representations or wa"anties with respect to the contents hereof and spedficaHy
d~ims · any il'nplied warranties of merchancabtlity or fitness for any panicuJar purpose. Further, The
Soft Warehouse reserves the right to revise this publication and to make changes from time to time in the
COlltent heteof without ooiiptk:)n of The Soft Warehouse to notify any person or organization of such
revision or changes.

8702-100-01

muSIMP /muMATH-79 is distributed exdusively by

MiaOIOft

10800 N.E. Eighth, Suite 8'19,
Bellevue, WA 98004

Copyright Notice • • • •
Table of Contents • • •

FII.m.TXT

Table of Contents

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

• • • ii
••• iii

Disk Files ••••••••••••••
File Naming Convention • • • • • • • •

• • • • •
..

• • • • • • •

RFAOlsr.-m
General Infoc:natiai • • • • • • • • • • • • • • • • • • . • • • l
The muSIMP-79 Programning Language • • • • • • •. • • • • • • • l
The IJIJMATB-79 Synt>olic:: Math System • • • • • • • • • • • • • • l
System Generation Procedure • • • • • • • • • • • • • • • • • 2
Condensed System Generaticn • • • • • • • • • • • • • • • • • S

IN1'ERACT. TX'l'

Initiating a JllJMATB CCM File • • • • • • • • • • • • • • • • • l
Initiating a 1'l'llMATB SYS File • • • • • • • • • • • • • • • • • l
The Interac::tionCyc:le • 2
Correcting Typ:)graphical Error:1 • • • • • • • • • • • • • • • 2
Interrupting Evaluation • .. • • • • • • • • • • • • • ., . • ,c•:. • . 2 i) _ ., ... :

Calculator Mode Lessons

l. a.ESl.ARJ:
2. a.ES2.ARI
3. CLES3 .AI.G
4. CL2S4 .AI.G
s. cr.zss .At.G

Programning l-b3e Lessons

1. PLE:Sl.~
2. PUS2.T:RA
3. PLFS3.TAA
4. PLFS4.T.RA
s. PLESS.T.RA

·.t.:•-~JCH:~ . -_ ,, ... ;C.;2

;t- ~ .. , ~· -~·r\:o:r

Rational a.ritr.metic & assignment
Factorials & fractional powers
Polynomial expanaioo & factori:19
Continued fraction, bases & exponents
C~lex va::ia.bles i substitution

Ila.ta structure & function definition
Data canposition & recw:sive definition
List and set operations
Control constructs, loops, and block
Property lists and function e:valuatiai

iii

re

CQ

co

m.iSIMP-79 REFEREOCE M1M."l!AL

I. Data Structures • • • • • • . • • • • • •
II. Menory Management • • • • • • • • • • • •

III. Error and Interrupt Traps • • • • . • • • w. Pr±m.itively Defined Functions • • • • • •
A. Selector FUnctiais • • • • • • • • • •
B. Constructor Functions • • • • • • • • c. Modifier FUnctiais • • • • • • • • • • o. Beeogni:zer Functions • • • • • • • • •
E. Comparator Functions and Operators • •
F. Logical q;>erators • • • • • • • • • •
G. Assignment Functions • • • • • • • • •
H. Property Functions • • • • • • • • • •
I. Definition Functiais • • • • • • • • •
J. SUb-atanic Functions • • • • • • • • •
K. N.Jmerical E\lnetions • . • • • • • • •
L. Reader Functions • • • • • • • • • • •
M. Printer Functions • • • • • • • • • •
N. Ev'aluation Functions • • • • • • • • •
P. Storage Funetions • • • • • • • • • •
Q. System Functions • • • • • • • • • • • v. m.iSIMJ?-7 9 Parser • • • • • • • • • • • • •

muMATH-79 Module Doamlentation and ?()UrCe Listings

l • ARl'l'B.MUS
2. 'l'P.ACE.MUS
3. AI.GEBPA.ARI
4. ~.Al(;
S. SOLVE.EQN
6. ~.ARI
,. MAT:R.IX • .MR
8. u:x; .Al(;

·,

~tional ARI'l'Bmetic
Debugging TBACE:
Elementary AIGEBRA
EQuatioN simplification
E'.quation sa.VE
ARP.AY q;>eration
~ Operation
~arithm S.implification

• • • • • • • • l
• • • • • • • • 3
• • • • • • • • 4
• • • • • • ~ • 6
• • • • • • • • 7
• • • • • • • • 8

• • • • • • • • 9
• • • • . • • • 10
• • • • • • • • ll
• • • • • • • • 12
• • • • • • • • l3
• • • • • • • • 14
• • • • • • • • 16
• • • • • • • • 18
• • • • • • • • 19
• • • • • • • • 2l
• • • • • • • • 24
• • • • • • • . 27
• • • • • • • • 33
• • • • • • • • 34
• • • • • • • • 35

9. TIG?OS.MJ;
10. ~-AI.G
ll. DIF.ALG
12. INl'.OIF

TRiGonometric Silnplificatia, (POSitive 'lllll'XP.D)
'?RiGonanetric Simplification (Na;ative ~}
SyTrbolic DIFferentiation

l3 • INlM:lRE. INr
Symbolic l'NI'egration (Basic met.hods)
Syni:)olic IN'l'egration (KJP.e extended methods)

muSIMP/ltlUMA1.'B-79 Function and Variable Name OOEX

iv

0
IZF!LES.'m' (C)

File
CAW.00.TXT
CRiat.'m'
LICENSE. 'l'XT
FILES.'m
oom.~.-m
I,ESSCNS.'m'

File
MOSIMP79 .0>1
MOSGE.MIJS
ARI'm.MOS
'DW:E.MOS
AI.GmRA.ARI
EJ;lN.AtG
SOLVE.D;lN
m.M .ARI
MMRIX.ARR
LOO.AU;
~.AI.G
'.mGNEG .AtG
DIF.N.ll,
INT.DIP
IN'DDRE. INT

Pile
CUSl.ARI
a.ES2.ARI
a.ES3.ALJ:i
Q.E.S4.AI.G
cuss .JJJ:?,

versiai
10/29/79
01/01/80
01/01/80
03/31/80
10/30/79
10/30/79

Versia,,
03/23/80
ll/01/79
07/16/79
07/26/79
07/16/79
03/31/80
03/31/80
03/31/80
01/14/80
07/16/79
07/16/79
07/16/79
07/16/79
07/16/79
07/16/79

Version
10/30/79
10/30/79
10/30/79
10/30/79
10/30/79

03/31/80 '?he Soft Warehouse

LI'l'ERA1'tJRl:: PILES*

lt-ByteS
10

6
ll
s
s
4

Contents
Software catalog and availabilit-f
Software price list and order focn
Sofi:Ware license agreement
A list of all tDachine readablie files
Interactive use of muSIMP and DllMATB
Use of the en-line lesson files

~ F1LF3

lt-Bytes
7

ll
17
4

12
2
4
s
6
2
4
4
3
7
7

..

Contents
Machine-language muSIMP-79 nucleus
Complet.iai of muSlMP-79
Ba.sic aritlmetic package
Trace package for debugging programs
Buie algebra package·
Equatiai simplificaticn package
Equation solving package
Array package
Matrix package
lAgarithmic package
Trigonauetric package (Part I)

·Trigonometric package (Part II)
Symbolic diffe.rentiaticn package
Synix)lic integraticn package (Part I)
Symbolic integration package (Part II)

0\UlJLA1'0R-M:lDE T,ESSCNS

. K-sytes

. 7

6
15
10
12

Contents
~tiaw. arithmetic, assignment
Factorials & fractional powers
l?olynan.ial expansiai & factoring
Continued fractions, bases .i exponents
C0mplex variacles & substitution

~E tJ::SSC:NS

File
P.tJ',.Sl..'l:P.A
Pt.ES2.'l:P.A
PL:e:S:3.'IP.A
PLE:84.1:P.A
PUSS.'JSA

Versicn
ll/01/79
ll/01/79
ll/01/79
ll/01/79
ll/01/79

lt-Bytes
18

9
13
l2
19

Contents
Data structure and func:tion definition
Data eanp:,sitiai and recursion
List and set operations
Control constructs, loops, and block
Propert-f lists and fWlCtion evaluation

*These files are included only if there is sufficient space on the ciisk.

l

l. Files of type COM are unprintable directly-executable machine­
language program CCHmand files.

2. Files of type SYS are unprintable machine-language memocy-images
whicb can be u:N)ed from within musIMP.

3. Files of type DOC are printable files OOC-i1menting the usage of a
program file having tbe same first name.

4. Files of type TXT are printable text files containing information
implied by t.be first name.

5. Files having a first name of the form CLESn are interactive
calculator-mode t,ESsons to be exeC2Jted from within muSIMP, in the
order indicated by· the ?UDeric suffix n.

6. Files having a first name of the form Pl,ESn are interactive
Programming-mode ·L&Ssons to be executed from within mUSIMl>, in the
order indicated by the numeric suffix n.

7. All files listed above of a type other than COM, SYS, DOC, and 'l'XT
are muSIMP program source files. The type name denotes the first
three letters of the first name of the most immediate prerequisite

Q

program file. For example: O
a) 'l'be .JDUSIMP file named AU;f.aM.ARI implements algebra, requiring ·

the mUSIMP file named AR1'1B.MOS as a prerequisite.
b) File AIGEBPA.DCX: is the reference documentatiai for usage of the

facilities implemented by file AIGESRA.ARL
c) Files CLES3.ALG and CLES4.ALG are interactive calculator-mode

lessons teaching use of the facilities implemented by file
AtGEBRA.ARI.

I ROS ()$

2

0

FileREADlSI'.?XT (c) 10/30/79 The SOft Warehouse

General tnfognation

COngratulations on your purchase of the muSIMP/muM.Mll-79 Symbolic
Mat.~tics System. This package is a revolutionary and sophisticated
software system for 8080 and zao based microcomputers. Therefore some
degree of study and patience is requited to properly build a systtm from
muMA'.tB source files, and then save the result as a memory image file.
&)wever·ance bLlilt and saved, it is a simple matter to load andinteract
with the system at any later time as described in file nm:aac.r.m.

Unfortunately your first task is the rather uninteresting one of
building the system as explained in the remainder of this file. The
immediately following background information is provided to make the
process seem less mysterious.

%ht aaSJMP:-79tin Prograrmung Lang;uage

'?be JDUSIMP-79 (micro-computer Structured IMPlementation languaqe)
system provides a high level programming language suitable for a wide
variety of applications. It is implemented using a.n efficient and
versatile interpreter requiring 7K t,ytes of machine code. 'l'he current
version of muSIMP also requires a bootstrap file which is loaded
immediately after the machine coded portion. The interpreter is
distri,buted as two disk files:

MOSIMP79 .CG1
MO&aE.MOS

.,
an executable CG1ma.nd file
tbe DJSIMP bootstrap file

'?he file named FILES.m' indexes and briefly describes the IIWSD-!P
dcc:wnentation package. The dDcwaenation · is only distril::luted in ·printed
form. Fll,ES.TXT also lists the lesson files requir~ to become
proficient in the programming language. Since using muMA'l'B in the
calculator mode requires·no programming knowledge, learning mUSIMP can
be safely postponed. .

%b& PJMA:m::79t:Il Sl'Jri;>olic; !itb. systcn

'?be auMM.'S-79 System provides the facilities to perform a wide
va.r:iety of symbolic mathematical operations efficiently and accurately
on a c:ompiter. It is implemented as a set of mUSIMP. program packages.
'rhese soutc:e file packages are organized in a very mod1.2lar fashion in
order to accommodate both differing mathematical needs and differing
ccm;uter memory sizes. More sopnisticated mathematical packages require
prerequisite files as indicated by the following dependency diagram.
Each file requires t.ue above it in the diagram as a prereq..usite. (The
significance of the numbers will be explained below.}

l

MUSIMP79.CCM
+MOS-DRE.MOS

I \
I \

TRACE.MOS AIUTB.MUS
WA,551 lS36,3llS

I \
✓ I \
ARRAY .ARI ALGEBRA.ARI

375,756 lJ.60,1946
/ I

I I
I

~.ARR
497,892

J I
EQN.ALG
86,208

I
U'G.ALG
186,34.5

I
I
I

ii
SOLW.~N
452,734

I
I
I
I

'm:iPCS.AI.G
I

TBGNEX:; .AI.G
327,602 372,680

\ J

DIF .AU; } if'O 3,
306,580

I " Im' .OIF 1 r \i
794,1420

I ' nm-DRE. mr
914,1760

~ten Generation P;pc;agyre

0

If you are proficient in the use of the microcomputer's disk
operating system (DOS), the follQ.Wing procedure should be sufficient O
explanation t:0 build and save a.complete mUMATH system. However if you
are a novice or questions arise, additional information can also be
found in files BACXUP.TXT and IN'l'ERACT.TXT, and in the documentation
provided with the disk operating system.

I. Generate a muSIMP/lDLlMAm-79 backup disk.

Using the computer's oos, transfer a copy of the source
files depicted in the above diagram from the Soft Warehouse
master diskette to· a backup diskette. Since the total disk
space required to store the files is approximately 96 K byteS,
more than one diskette may be required. Often it is
convenient to generate a DOS Cl'l the backup di.ak (s).

II. Build a JlllSIMP-79 SyStem.

Execute the MOSIMP79 COMmand file by the entering the
following DOS command:

MOSlMP79

It should then display a version/copyright message. Jot
down · the number following the word •SAVE• in the message for
later use. The bootstrap file will begin to load
automatically. After about S minutes load time, the system
shculd respond with the "? " prompt character indicating that
DWSIMP bas been successfully constructed.

2

Q

0 In. Build a llllMAm-79 System.

Two muSIMP commands are required to build a nn1MATB
system. All commands must be terminated by a semicolai a.'ld a
carriage retw:n in order to initiate the action.

'l1v! source file "name".•type• on disk •drive• is loaded
by issl.1ing a command of the ·form

ROS (name, type, drive);

Note that the file name and type are separated by a comma
rather than a period, and the drive requires only a single
letter without the customary colon. '1'he drive is an opticnal
argument which defaults to the drive currently logged in.

Each muMA'l'B source file requires a given amount of
comPJter memoey to store its function definitions. 'l'be unit
of storage in mUSIMP is the -node" which is described in file
MUS)ATA.MOS. The pairs of numbers in the dependency diagram
above are the approximate number of nodes required to store
the corresponding muMA1'B package in both condensed and
unC0l'ldensed form. See the. next· section for the significance
of the smaller condensed numbers.

'l'he number of free (i.e. unemployed) nodes is given by
the mUSIMP command ...

.REX:tAIM () ;

When building a system you must ensure that there is
adequa.te storage for the pr:ogru,. ~ at least 500 additional
nodes to store mathematical expressions. This can be
accomplished through the use of RECLAIM and reference to the
uncondensed number in the dependency diagram correspondin; to
the program package •. Qlc:e this has been verified, execute the
appropriate ROS load ;command. This procedure is illustrated
by the following dialogue building a muMATH AtGEBRA system:

? P.EClAIM ();
@ 6360 l Li lq

? ROS (ARrl'B, MOS);
@ ARl'm

?RECIAIM ();
@ 3245 (r ?,(> ! ,

? R>S (~, ARI);
@ AIGmP.A

? R£a.AIM ():
@ l.300 ~

3

N. Save the !Il.lMMS-79 System.

In order to avoid repeating the tedious build routine in
the future, a memory image file of the muMA:IH system should be
saved immediately after the build using either method A or s
described below. Whichever method is used, it is advisable to
use a file name representative of the most sophisticate::!
mathematical capabilities loaded. For example, names su~, as
AIGEBBA, 'l:RIG, CAI.aJLOS, E00ATICN, etc.

WARNING Before attempting a save, ensure that a
diskette with sufficient free space to store almost an entire
memory image is properly mounted an a disk drive.

A. Return control to the 00S by typing C':BL-C.
Then generate a COM type file by issuing the DOS
SAVE command. Ose the decima.l number, N, of 256
bfte records recorded in step II above. The file
s1ze will be (~V 4) K bytes.

Although most desirable from a convenience standpoint
(see file INTERACT.TXT), this method may NOT work due to
limitaticm of the DOS. The easily recognizable symptoms are
either the inability of the OOS to save that large a file, or
erratic behavior when the COM file is SUbsequently executed.
If this happens, you will have to build the system again from
step II and use method B in tlle future.

.,
B. Type the muSIMP carmand of the for::m

SAVE (name, drive);

This will save a file called name.SYS on the given
drive. Again the drive is optional, defaulting to
the current drive. The SYS file will be
approximately· (N-28)/4 K bytes, where N is the
number recordea in step II.

...

Generation of COM or S"iS files is also useful for ched<pointing a
lengthy dialogue for p.,.tpoSes including:

l. continuatia, at a later time,

2. preservation of an environment so that uncertain exploratory
catrpJtations which·raight endanger the envuamient can be
safely pursued,

3. preservatia1 of a•program• (meaning an environment) produced
interactively rather than using a text editor.

4

g

0

co

co

CPodenstd Sl$em Gtoera.tion

Although muMATB is much more compact than any previous general­
purpose symbolic math system, it is still a large set of programs for
microcomputers. Fortunately, the use of a •condensing" technique to
load programs can economize O."l memory consumption by a factor of almost
two. If the control variable named CCN:)ENSE is assigned the value TROE,
then common subexpressions of function definitions a.re automatically
shared as the source files a.re read i,Q. The infix mUSIMP colon operator
is used to make the assignment to CONDENSE as de.scribed in the muSIMP
lesson and documentation files. Thus, to build a condensed AUiESRA
system, the following commands should be issued in place of those in the
example of step U above:

ON)EN,SE: 'l'JD'E;
RDS (ARlTB, MOS);
ROS (AI.GESP.A, ARI) ;
CCN)EN.$: FALSE;

The exhaustive searching makes condensation too slow for inter­
active use, sc that is why it is advisable to set CQlDE:NSE to FALSE just
before the save. The above condensed load requires an hour or so,
depending on the processor speed. Since it is possible to type the
abOve commands on one line, you are free to take a long break while the
condensation takes place.

Condensation can be regarded a.e an opticnal sort of "compilation"
stage, and one of the principal reasons for generating COM or SYS files
is to preserve this investment of time. However, for simplicity, we
suggest not worrying about producing condensed COM or SYS files until it
becomes imp:,ssible to otherwise fit all of the desired files into memory
sll'llUltaneously.

Many of the muMA1'H files contain opticnal sections ide.ntif ied · by
conspicuous comments. To save space, appropriately pruned versions of
these files can be created using a text editor. For example, a user
with only 32 kilobytes may have to delete portions of the arithmetic and
algebra packages in order to do algebra comfortably, even with
condensation. As with the set of muMAm files, each file is internally
organized "bottom up", with the most expendable and highest-level
features late in the file. Consequently, the files can be truncated
between almost any two commands, without risk of invoking undefined
functions or uninitialized control variables.

s

cC
IFile: IN!'ERACT.'?XT (C) 10/30/79 The Soft Warehouse

~ A ~ CCM FILE

Initiating mu.MATH is easiest if someone has already saved a COMma.nd
file having a rnemory image including all of the muMAZI or otb.er programs
which you wish to use at that time. The name of such a file is of
course up to whower creates it, bit in general the name assigned is of
the highest-level math package loaded. Thus AIGEBRA.CXJM would be the
name of a command file containing AlU'l'B.MUS and ~ESRA.A.~

For. example when using a CP/M (tm) type operating system with file
AIGS.RA.COM on the current drive, one merely enters the following
system-level command terminated by a carriage return:

AI.GESRA

After a minute or so of loading from the diskette, the response should
bE a message of the foan:

111.lSIMP-79 (Version month/day/year) SAVE: sue
Copyright (C) 1979 by The SOET WARE:HCOSE phone
?

where a;propriate numbers awear as the entries "month11 , •aaya, 'year",
•sue", and "phone11• You are now free to enter matheir.atical expressions
as described below. •

INlnA!I'Dti A n1.1MA1S s.!S FILE

Unfortunately for reasons described in file R!ADlS?.1'XT, it R/ be
impossible to caist::uct a muMATB ca-1mand file. However, the following
means of initiating muMA!ll is always possible and quite easy pr:ovided
someone has saved a SYS-type file containing a memory image of the
muMAZi packages which are needed at that time. Here tco the name of such
a file is up to whoever creates it, but in all probability the same
naming convention describe above for COM files was used. Therefore
AtGEBPA.SiS would have had the same source files loaded in as the file
AtGEBP.A.COM would have.

For example, if MOSU!P79.COM is on the current drive and AIGE:BRA.SYS
is on disk drive B, the ai;:propriate operating system load command would
be as follows:

MOSIMP7 9 B:At.GEBPA

About half a minute after the muSIMP logon message a~s, the muMA'l'B
system should respond with the •? " prompt characters. Now you can
begin your interactive dialogue with mu.MA1'H.

l

TSE INl'ERAC'l'ICN CiCLE

mUSIMP prompts the user with a question mark indicating readiness to 0
accept a command entered from the terminal. The user then types an
expression followed by a semicolon and a carriage return. First mUSIMP
parses the spressia1 &-xl CCl'lverts it into an internal representation.
After printing an •r to herald the •@nswer11 , the expression is
evaluated, w·then a.space is printed to indicated the evaluation phase
is complete. Finally the result is deparsed and printed in mathematic:al
notation. Thul interaction cycle is repeated indefinitely until a C'l'RL-C
is typed (i.e. a •c• typed while depressing the CTRL key).

For example, here is a segment of a trivial muSIMP dialogue:

? S;
@ 5

? 2 + 2;
@ 4

? JcaN. MAR!;
@ FALSE

? MEMBER (APPLE, I (GRAPE, APPLE, PUJM));
@ 'mJE

CCRREC'l'IN:i 'r.O?CGRAPHICAL DroPS

Si.nee mUSIMP uses the operating system's console I/0 routines, all
the line-editing features of that system are inherited by muSIMP.
Backspacing is usually accomplished by typing either a CTRL-B, or a
ROBout, or a DELete key. Some systems echo the deleted character;
whereas, others erase the character from the screen and backspa.ce the
0.2rsor. ~tire lines can be deleted or flushed by typing a C".rRL-0 or a
CTRL-X. As a. note of caution: there is no way to modify a line once a
curiage retw:n has been- typed. If this baI;PenS, the entire expression
can be flushed by typing a semicolon.

~ EV'AWATI~

An fial.uation in progress can \JSt1Al.ly be aborted by typing a CXP.L-Z,
ESCape, or ALTmode. An options available message will then be
displayed. The usual choice is typing another CTRL-Z, £Scape, or
AL'l.'mode which allows you to enter expressions as before. The other
altematives are fully explained in file ERRORS.'l'XT. AS a last resort,
the computer can of course be RESET and a •cold startn performed to
reload the operating system.

\ROSO$

2

0

0

<0

b

File: SACKCP.m' {c) ll/Ol/79

aa, to Backup the Master Diskettes
Slpplied by t:.he Soft Warehouse

The Soft Warehouse

1. The following information is provided for those who are not
throughly familu with their computer's disk operating system. Since
there are many different operating systems and compiter configurations,
it is necessarily a general guide which should be supplemented by study
of the doc:t.Unentation su;plied with the diak cperati.ng system.

2. Obtain an appropriate number of blank new, high-quality diskettes
suitable for your drive.

3. Become thoroughly familiar with the terminal, comp.iter, disk drives,
and operating system. Most cases of accidental erasure of the master
diskettes or other irrecoverable errors are committed in the first few
moments by eager users, inexperienced with the system on which they are
installing the new software. In particular, practice initializing a
diskette, then generating a disk operating system on it. use the
largest version of the system in terms of the space available to user
programs. Finally transfer to the new diskette files from a spare,
wri ta-protected diskette.

4. oue to wear and inadequate industry-wide manufacturing standards,
there are slight or not-so-slight. inechaniQal. and electrical differences
between various nominally compatible drives and diskettes.
Consequently, we suggest that if you have two or more drives, you first
try placing the new diskette in the drive on which it will be used most
of ten. The Soft warehouse diskette can then be tried on each of the
othe.t drives, tradi."lg with the new diskette if none of the other drives
are successful.

5. For two or more drives, some operating systems provide a <:OnVenient
COP'i DISK command which· automates most of the copying protocol otherwise
necessary. Alternatively, the PIP (Peripheral Interchange Program) or
XFER (File Transfer} commands of most operating systems usually pemit
copying all files from drive A to drive a by a command such as

or
PIP A:-S:*.*
XFER A:-B:*. *

6. COF.fing diskettes is much more laborious on systems having only one
drive. Generally,. it involves repetitively reading a portion into main
memory from the old disk, switching disks, then writing the portion onto
the new disk, then switching back to the old disk. The process
generally involves using a resident bootstrap monitor in read-only
memory, or using a •t>DT"-like •oynamic Debugging Tool• program.
Moreover, the process may pad out the otherwise only partially filled
last page or record of a file with arbitrary garbage which is harmless
in a command file but annoying in a text file. Thus, text files
transferred this way may require some text editing to clean-up.

l

7. For some operating systems it may be necessary to remove the write
protect tape from the old diskette temporarily, even though it is only 0
to be read from. (Perhaps this is true only if the old diskette is in ·
the "principal• drive.) Moreover, it may be awkward to copy a diskette
without first removing the write protect tape in order to copy the
operating system onto that diskette, especially if there is only one
drive.

a. We use · costly highest-quality diskettes, and we endeavor to record
them on the most precisely adjusted drives available. Consequently, if
you cannct read our diskettes after several attempts and after carefully
restudying our directions and those provided for the hardware and
operat~"'l9 system, then

a) Carefully cbeck whether or not you correctly specified
all of the details on the order fom and ~rcha.sed the
proper tj'pe of blank diskettes.

b) Use an alignment test diskette or have your drive
checked professionally.

c) Get help f ran an experienced professional or friend.

..

2

0

0

0
IFile: teESSCNS.'lXT (c) l0/JO,n9 The soft Warehouse

OSing 'lb!· Interactive Lessons Files

This file explains how to use the interactive muSIMi> and muMATB
lesson files. muMA'l'B and the lessons are designed to serve a broad
range of m:,.th levels from arithmetic through calculus, and to ser-:e a
broad range of programming backgrounds from none to professional
programmer. sow is this &COpe possible? Read on:

The sequence of lesson files a.F.Sl, Cl.:ES2, etc. explaL,s bow to use
muMA..."'S as an arithmetic or symbolic calculator, for succesaively more
sophisticated mathematical operations. The seque."lCe of le5$a1S PLFSl,
PLES2, etc. explains how to write programs in muSIMP, in order to
enhance the suite of built-in q,er~tions or for any other pirpc:,se.

The calculator sequence is ordered according to the most common
sequence in which the corresponding math subjects are taught. It is
intended that a user proceed in this sequence only as far as their math
background, befote optionally beginning the progtamming sequence. cue
to slight variations in math curricula sequences, some users may prefer
to skip certain calculator lessons in the mi&ile of the sequence as well
as at the er.a.

muMA1'H bas such a rich set of built-in capabilities that many use.rs
will be content to postpone study of the programming sequence
indefinitely. However, many users evenntually will want to proceed to
the programming sequence, perhaps for one or more of the following
reasons:

l. to enhance the built-in u-wm capabilities,

2. to understand hQo1 the underlying lDLlMATB algoritms work,

3. to learn eaq;:uter programning,

4. tc use mus:n-tP for sane other application.

In order to make the programming sequence most useful to users of
all mathematical. backgrounds, the sequence beginS with mUSIMP examples
which are non-mathematical, or arithmetic at most.. Most. general
programming techniques and their reali%ation in mUSIMP are independent
of higher-level math. Thus, only the last lessons in this sequence deal
with muMATH specifically, explaining how to extend it, alter' it, and
even replace it with alternative symbolic math system.$.

There are three ways to experience the lessons. For most people,
the best way is to execute them interactively, trying out examples at
the OQ;:Ortunities provided; the second best way is to read the printed
record of a dialogue produced by someone else executing the lessons~ and
the third best Wf:/ is to read the files containing the original lessons,
which contain 01'l.ly one side of an intended dialogue.

l

As indicated in file FILES.TXT, the first lesson is file CLESJ..ARI.
ca-.sequently, to commence the lesson you must first initiate a muHA1'B ·O
system containing at least file ARI'm.MUS. Sow to do this is explained
in file ~.TXT. 'l'hen, you simply issue the mUSIMP command

1l)S (CLESl, ARI, drive);

where •drive• is the name of the drive on which the CLESl.ARI is
mounted. The lesson will tell you what to do from then on. If the
interactive lesson for arrJ reason becomes hopelessly confusing, you can
always cease the lesson and simply read it. Al.so, it may help if you
take the lesson along with a companion, because you.r possible conf'..isions
may be disjoint.

Have fun!

I ROS O $

• . ,

2

0

c0

co

IFile:" CLESl.ARI (c) 10/30/79 '1'he Soft Warebcuse,

LINEI:DCl'H ·c1e, s tEX:SO: ECHO$ EX:BO: 'lllDES

, If this lesson is being displayed tco fast, it can be temporarily
s~ by typing a CT.RL-S (i.e. typing tr.e letter •S" while depressing
the C'!RI.. key). Then type it again when you are ready to resume.

If you have not yet read files TtFSSOOS.TXT and INTERH:'l'.TX'.r, it is
advisable to abort this lesson and read those files first. To abort the
lesson, enter an ES:ape or a crm..-z character followad by a CT.RL-C.

In 1Dtl.MNm a •comment• is a percent sign followed by any I'ILl:::ber of
other characters terminated by a matching percent sign. Thus, this
explanation is a comment which has not yet been terminated. Comments do
not cause computation; they are merely used to explain programs and
examples to hLmwl readers. Here is an example of an actual comp,itation\

l/2 + l/6;
I Note how mu.MATB uses exact rational arithmetic, reducing fractions
to lowest tems.

In muMA1'B, ari tbmetic expressions can be formed in the usual
manner, using parentheses together with the operators •+•, •-•, •••,
•;•, and •"'• respectively for addition, subtraction or negation,
multiplication, division, and raising to a power. For example: ,

(3*4 - 5) "'2;
I On some terminals, •"' 11 l,ooks like an upward-pointing arrow; on
others it looks like a shallow upside-down letter V1 and some temina.ls
may employ an utterly different looking character which you may have to
determine by experimentation.

The reason for 1.1sing ... and* is that standard terminals do not
provide StJperscripts or centered dots or special multiplication crosses
distinct from the letter X.

;,

To prevent certain ambiguities, multiplication cannot be implied by
me.re juxtaposition. cne of the most frequent mistakes of beginners is
to omit asterisks.

Later, in order to give you an opportunity to try some examples,
we will •assign• the value FALSE to the variable named IDS. When you
are ready to reswne tbe lesson, type the •assignment"

RD.5: 'SE ;

including the semicolon w carriage retutn. This revises the value of
the variable named RDS to the value TROE. We will explain assignment in
more detail later.

Don't forget that you can use local editing to correct mistypings
on the current line. For example, on many operating systems, the key
marked RO'Bout or 0£Lete cancels the last characi:er typed on the line,

l

and typing a C'l'lU,-U cancels the current line. There is no way to modify
af1linheedafbter s~rikinf~ thal,e 1RE:1E:Turn ktey_, ~ut an. express~onalc,,an a;way~ .. ~; t"I_

us y 1:.yp1ng a 1n ne con aining a grammatic or syn.aA '-!I
error such as •c;•.

Now we are going to turn control over to you by setting RDS to
FALSE. Try some examples of your own similar to the above. Also we
suggest that you make a few intentional errors in order to become
familiar with how thetJ are treated. For example, t.cy

5 7; 5+ /7; 5/0; and 0/0;
Have fun!: I RDS: FALSE ;

I The value resulting from the last input expression is automatically
saved as the value of a variable named •ANS, whicb can be used in the
next expression. For example: ,

3 ; tANS ... tANS ; tANS .. tANS;
, As this example illustrates, muMATB can treat vecy large nwai:>ers
exactly and quickly. In fact, muMAm can accomodate numbers up to a1:)0ut
611 digits. To partially appreciate bow large this is, compute the
distance in feet or in meters to the star Alpha Centauri, which is 4
light years away, then use #ANS to com?,ite the distance in inches or in
centimeters without starting all over. (In case you forgot, the speed
of light is 186,000 miles/second or 300,000,000 meters/second.) %
RDS: FALSE 1
I our answers are about 123,883,499,520,000,000 feet or
l,486,601,994,240,000,000 inches or 37,843,200,000,000,000 meters or
3,784,320,000,000,000,000 centimeters. Another dramatic comparison with
10·611 is that there are thougHt to be about 10,2 electrons in the
entire universe. (Whoever counted them must be exhausted!)

Often one performs an intermediate computation or a trivial
U$ignment for which there is no need to display the result. When this
is the case, the display of the result can be suppressed by using a
dollar sign rather than a semicolon as a terminator. For example, type

RDS: TmE $

and note the difference fran when you previously typed R:)S:TRtJE; \

RCS: FAIS S
I It is often cawenient to save values longer than IANS saves them,
for use beya,d the next inp,lt expression. The colon. AS.iIGNMENI' operator
provides a means of doing ao. The name on the left side of t.be
assignment operator is BOUND or SET to the value of the expression on
its ri9ht. This value iS saved as the value of the name until the r.ame
is bound subsequently to some other value. The name can be used as a
variable in subsequent expressialS, as we have used JANS, in which case
the name contributes its value to the expression. For example: \

RATE: 55 S TIME: 2 $ OisrAN:E: RA1'E *TIME;
% Alphabetic characters include the letters A through z, beth upper
and lower case, and the character •t•. Note that the upper and lower
case version of a letter are entirely distinct. Names can be any O··.

sequence of alphabetic characters or digits, provided the first

2

.0
character is alphabetic. Thus x, t9, and ABCl are valid names. Make an
assignment of 3600 to a variable named SECPERBOOR, then use this
variable to help comp,1te the ru.unb~r of seconds in l day a:-4'3 l week: %
R)S; FALSE$.
% Congratulations on completing C!.ESl.AR!. To execute the next
lesson, merely enter the muMA!m command

ms (Cl..ES2, ARI, drive);

where drive is the name of the drive on which that lesson is mounted.
Alternatively, it may be advisable to repeat this lesson, perhaps
another day, if this lesson was not p.rfectly clear. The use of any
computer program tends to become much clearer the second time.

In order to experience the decisive leamirig reinforcement afforded
by meaningful personal examples that are not arbitrarily contrived, we
urge you to bring to subsequent lessons appropriate examples from
textbooks, tables, articles, or elsewhere. Also, you are encouraged to
experiment further with the techniques learned in this lesson: %

ECHO: tECEO $
ROS () S

3

cP

C

\File: a..ES2.ARI (c) l0/30/i9 '?be Soft Warehouse\

LJ:NELEN:i'1'B (78j$ tECBO: E(3j$ B:BO: '.rlm:S

, This file is the second of a sequence of interactive lessons about
tbe 11L1MA1:B-79 system for comp.1ter symbolic math. 'l'bis lesson prea-umes
that the JDUMATB files through ARI'm.M1'JS have been loaded.

Fer positive integer N, the "postfix• factorial operator named •111

returns the product of the first N successive .integers, and 01 returns
l. For example, 31 yields 6, which is 1*2*3. use this operator to
determine the prcduct of the first 100 integers: ,
RDS: FALSE $
I The number baSe used for input and out;ut ii .initially ten, but the
RADIX function can be used to change it to any base from two through
thirty-six. For example, to see what thirty looks like in base two: I

'lliIR1:X: 30 $ MDIX (2) ; 'l'BIRl'Y ;
, AS you can see, the radix function retw:ns the previous base, which
is, of course, displayed in the new number base. 'l"his i.nforation helps
to get back to a previous base. In base two, eight is written as 1000,
so to see what thirty looks like in base eight: ,

RADIX (1000) ; ~ ;
I In base eight, sixteen is written as 20, so to see what thirty
looks like in base sixteen: ,

RADIX (20) ; m:tRIY ;
, AS you can see, the letters A, B, ••• are used to represent the
digits ten, eleven, ••• for bases exceeding ten. Now can you guess why
we limit the base to thirty six?

In input expressions, integers beginning with a letter u the most
significant digit must begin with a leading zero so as not to be
interpreted as a name. . For example, in base sixteen, ten is the letter­
digit A, so to return to base ten: ,

RADIX (OA) ;
I Why don't you now see what ninety-nine raised to the ninety-nine
p:,wer looks like in base two and in base thirty-six, then retum to base
ten: I ROS: FALSE $
, AS you may have discovered, it is easy to become confused and have
a hard time retum.ing to base ten. Two is represented as 2 in aey base
exceeding l, so a foolproof Wfl¥ to get from acy baSe to ant other is to
first get to base two, then express the desired new base in base two.
Per example: ,

MOIX (2) ; MOIX (1010) ;
I Now we are guaranteeably in base ten, no matter how badly you got
lost.

Now consider irrational. arithmetic: Did you know that

cs+ 2•6·c112))·c112> - 2·c112> - c3;2,·c112>

l

can be simplified to o, provided we make certain reasonable choices of
branche~ for the square roots? In general, simplification of arithmetic "
expressions containing fractional powers is quite difficult, blt mul-umi ._,
makes a valiant attempt. For example: ,

4 "' (l/2) ; l2 .. (1/2) 1 1000 "' (1/2) 1
I Try simplifying the square roots of increasir.qly large integers to
ga.in a feel for how the COtn?Jtation time increases with the complexity
of the inplt and answer: I ROS: FALSE $
I An input of the form (m/n) "'(p/q) is treated in the usual manner
as (ui."'(l/q)) "'p / (n"'(l/g)) ""p • For example: \

(4/9) "' (3/2) ;
t For geometrically similar people, surface area increases as the 2/3
power of the mass. Veronica wears a 1 aqua.re-meter bikini, and she is
50,653 grams, whereas ber look-alike mother is 132,651 grams. OSe muMATB
to detetllj.ne the area of her mother's similar bikini: , RES: FALSE $
\ 4"(1/2) could simplify to either -2 or +2, but muMATB picks the
positive real branch if 9ne exists. Otherwise, mu.MATH picks the
negative real branch if one exists, as illustrated by the example: I

(•8) .. (l/3) ;
I What if no real branch exits? Then muMATB uses the unbound
variable na.med tI to represent the IMAGINARY number (-l) "'(1/2), and
expresses the answer in terms of tI, using the branch having smallest
positive argwnent. For example: ,

(-4) A (l/2) # - Q
, Decent simplification of . expressiais containing ima;inary numbers, ·
as described in lesson CLES4~, requires that file AU;EBRA.AlU be
loaded. Meanwhile if you believe in imaginary numbers and you can't
contain your curi0$ity, why don't you experiment with them to see what
ml.lMllI.'B knows about them: , ms: FALSE $
, As with manual computation, picking a branch of a multiply-branched
function is hazardous, so answers thereby obtained should be verified by
substitution into the original problem or by physical reasoning. For
this reason, there is a CONTROL VARIA:eLE named PBRCB, initially TRUE,
which 5UR?resses Picking a BRanCB if FALSE. For example: \

Pma: FAt.SE $ 4 "' (l/2) 1
I Osers having a caneervative temperament might prefer to do most cf
t.heu compitation with PB!CB FALSE:.

Thi$ bd.ngs us to the end of a.132.AEU. Though arithmetic, some of
the features illustrated in thiS lesson may be foreign to you, because
sometimes they are taught during algebta rather than before. Thus, if
you have any algebra background wnatsoever, we urge you to proceed to
lesson CLESJ.AIG even if some 0£ CU:S2..ARI w• intimidating. Naturally,
as implied by its type, file CLES3.ALG requires a muHATH system
cmtaining files through AtGE:BRA.ARI.

If you decide net to proceed to algebra, but want to learn how to
program using m~IMP, then proceed to lesson PLESLARI. %

EX:SO: iECSO$ PB10!: TROE$ RDS O $

2

0

(0

t

10/30/79 'l'be Soft Warehcuse %

LINEL.EN1.L'B (78)$. tEQIO: EX:BO$ EXliO: FALSE$
N.JMNJM: t)ENN'.JM: 6$ om,n~: 2$ WMDEN: PWREXPD: 0$ PBRCB: TROE$
X: 'XS EX:80: 'JRJES

% This file is the third of a sequence of interactive lessons about
muMAl'B-79. This lesson presumes that the muMATH files through
ALGEBRA.ARI have been loaded and that the user has studied the
a.ritbmetic··· lessons CLFSl.ARI and ~

An ONBCXJN) ~.BLE is one to which no value has been assigned.
Mathematicians call such variables INOETERMm>.xFS. You may have already
inadvertently discovered that if you use an unbound variable in an
expression, muMATH treats the variable as a legitimate algebraic
unknown. Moreover, 1miMAXB attempts to simplify expressions c:cntaining
such unbound variables by collecting similar terms and similar factors,
etc. For example: ,

2*X - X""2/X 1
I See if lD1.lMM'B automatically simplifies the expressions

O+Y, Y+o, O*Y, Y*O, l*Y, Y*l, Y""l, l '°"y, and 2*(X+Y) - 2*X. I
R:>S: FALSE$
I Sometimes it is desirable to change a bound variable back to
unbound status. This can be done by using the single-quote prefix
operator, ', which looks like an apoitrophe on many terminals. For
example: I

EC: X + SJ EX;: 'EG; a:; + 2;
I Try assigning the 'lalue M*C""2 to E, then change E back to
uncound status: ' RDS: FALSE $
I You may have noticed that some of the more drastic transformations,
such as expanding products or integer powers of sums, are not automatic.
The reason is that such transformations are not always advantageous.
They may make an expression much larger and less comprehensible.
However, they may be necessary in order to pemit cancellations which
make an expression smaller and more comprehensible. Accordingly, there
are a few control variables whose values specify whether or not such
transfoc:nati0TIS are penormed. For example, 1:he variable controlling
expansion of integer powers of sums is called PWPJ:XPD. This variable is
conservatively initialized to zero, so that integer powers of sums are
not expaz,ded. For example: ,

IG: (X+l) "'2 - (X .. 2-2*X-l) 1
, Clearly this is an instance where expansion is desirable. When
PWREXPO is a positive integer multiple of 2, then positive integer
;ewers of snns are expanded, ao let's try it: ,

~= 2 $ EX;;

' Nothing ~ed!

The reason is that muMATB does not automatically reevaluate
previously evaluated expressions just because we cnange a control value.
Not only would this be rather time consuming, but the a.bility to form

l

expressions from other expressions constructed under different control
settings provides a valuable flexibility for constructing partially 0~.
expanded expressions. ..,

0'l the other harxl, it is often desirable to reevaluate expressions
under the influence of new control settings, and the built-in EVAL
function enables this: , 1

£VAL (EX;) ;
I Now that ~ is 2, see how (X+Y) ... 2 - (X-Y) "'2 simplifies: I
~:FALSE$
I In nwMA1'B-79, denominators are represented internally as negative
powers, and negative integer powers of sums are expanded if PWREXPO iS a
positive integer multiple of 3. F-or example: ,

~: 3 $ 1 / (X+l) •2 ;
I What ha~ if l / ((X+l) "'2 - X) ... 2 is evaluated under the influ-
ence of ~ being 3? For a little surprise, tty it.I RDS: FALSE $ •
I Even though (X+l) .. 2 is WITHIN a negative power, it is itself a
positive power, so how about t:ying again with PWFEXPD being 2*3: I
RDS: FALSE$
I Now, we would like to suggest a little experiment for you: The
size limitation on algeoraic expressions depends primarily upon the
amount of unemployed memory available for storing names, numbers, and
program or algebraic structure. Memory for the structural use is
measured in units called N:DF.s, which happen to correspond to 4 bytes in
mUSIMP-79 on microcomputers. Node-space tends to be the limiting
resource for algebraic express.ions, and we can always determine the 0
number of unemployed nodes ~ typing the command: ,

REX:r..AI?-1 (} ;
I Numbers and nodes which are no longer a part of any value that we
can retrieve are automatically recycled inte.rmittently, b.lt the RfXl.AIM
function forces this •gaz:t>age collection• proeess. Tbe collecticn takes
on the order of a second, depending on memoey sue and proeessor speedi
and these slight pauses are sometimes noticable in the middle of a
printout or a trivial computation. On a computer with front panel
lights, the collectia,s are also usually recognizable by the c:bcm:Je in
light patterns.

Naturally, if we load an extravagant number of muMATB files into a
single muMATS dialogue or if we save a number of relatively large
expressions as the values of variables, then there will be relatively
little unemployed space for our next computation. Not only does this
limit the size of the next expression, but computation time also
increases dramatically as space becomes scarce, because relatively more
time becomes devoted to i.nereasiRgly frequent collections. The moral of
the stoey is: don't unnecessarily load too many muMA1'H files or retain
numerous expressions as the values of variables.

Now, for the experiment: In order to gain an appreciation for how
computation time depends on the size of the input expression, answer,
and unemployed storage, try timing each computation in the following
sequence, until it appears that your space or patience is nearly o·
exhausted:

2

G 0

EG: (l+X) "'2; Ra:::t.AIMO; EG:llXt'2; RECLAIM(); EG:EX;"'2; ••• I
~:FALSE$
, These polynomials are called •aense", because there are no missing
terms less than the maximum degree in each unbound variable. In
contrast •sp'!.rse• polynomials are missing a large percentage of the
possible terms less than the maximum degrees. If you are still in an
experimental mood, :;ou may wish to try the following analogous sequence
which produces extremely sparse results:

RECLAIM(); (A+B) "'2.; R.ECI.AIM(): (A+B+c} "'2; RECLAIM{); •- I
ROS: FALSE $.
, Distribution of sums over sums is another transformation which can
dramatically increase expression size but is sometimes necessary to
permit cancellations. For example, this transformation is clearly
desirable in t1'le expression: I

EG: X"'2 - 1 - (X+l)*(X-1} ;
, When the control variable nameci NUMNOM is a positive integer
multiple of 2, then integers in WMerators are d.istriblted over sums in
WMerators. Similarly when the variable is a positive integer multiple
of 3, then monomials in numerators are distributed over sums in
r1J1'11eratcrs, whereas when the variable is a positive integer multiple of
S, then sums in numerators are distriblted over sums in numerators.

The reason for using the successive primes 2, 3, and 5, is that it
provides a convenient way to independently control the three types of
distribution using one easily remembered control variable Mme.

The initial value of NOMNUM is 6, because numeric and monomial
distribution are recov.erable .(as we shall see), because neither
distribution dramatically increases expression size, and because a lack
of these distributions often prevents annoyingly a:wious eanc:ellations.
For instance the expression 2*{X+l) - 2*X will not $implify unless
NUMNUM is a positive multiple of 2. Similarly X+l - (X+l) will not
simplify to o, since the expression is represented int:emally as
X+l + -l*(X+l), which requires the -1 to be distributed over the sum.

'?bus, to retum to. cur example, I

!G; Ntl1WM: 5 * NCMNOM: WAL (El'.i) ;
, To witness tbe great variety of possible expansions, we set,

?OHJM: 0 $ EG: 4 * X--:l * {l+X} * (l-X) ;
I Now, suc:c:essively ~ a:; with WMWM being 2, 3, 5, 6, 10, 15, 2lrld
30: I ROS: FALSE $
\ In interpreting these results, it is important to recall that
negations are represented internally as a product with the integer
c:cefficient -1, so WMNt1M must be a positive multiple of 2 to distribute
negations 0'1er sums.

If positive values of WMWM cause expansion in numerators, oow do
we request factoring in numerators?

Negative values of WMNOM cause factoring of numerators. Moreover,
the specific negative values cause factoring of the type which rENerses
the corresponding expansion. For example: \

3

X: 'X $ Y: 'Y $ WMWM: -2 $ £;: lO*X""2"'Y + l5*X'"'3: -
WMNtlM: 3 *Ntff:JM; E.VAL (EXi) ;
, What about negative multiples of S? Sorry folks, that's hard for
comp.iters as well as bumans. However, we are working on it for future
releases. Meanwhile, t;y out. our semifactoring· on the example

3"'X"'Y""3/7 - lS*X*Y""2/l4 + 9*X'"'4"'Y""2/7 I ROS: FALSE $
I AS you may have guessed, there is a flag named DENOEN which
controls expansion and factoring among negative powers in a mw-mer
entirely a.iialogous to WMNJM. OSe it toget.ner with WMWM to expand the
denominator then semifactor thf! denominator of the expression

X""2/((X-Y)*{X+Y) + Y""2 + X""2"'Y) I R)S: FALSE $
, You may have wondered wby we chose the names NUMNOM and DENO.EN.
The reason is that there is another elosely related control variable
named DENNUM, which controls the distribution of various kinds of
denominator factors over the terms of corresponding numerator factors:

A positive multiple of 2 causes integer denominator fac:t.ors to
be distributed; a positive multiple of 3 causes mono~ial
factors to be distributed; and a positive multiple of 5 causes
sum factors to be distributed. For example: I

Y: 'Y $ DEN:,EN: WMNJM: 0 $ EXi: (5 + 3*X"'2) *(Y+l)/(l5*X*(4+X)) 1
OflH.1?,1: 2 $ E.VAL(EG);
0~1: 3*0ENNJ?1: E.VAL(EXi);
DE:NNUM: S*DENWM; E.VAL(Ex:;);
, Positive setting of DENNUM and WMWM are particularly useful for
work with truncated series or partial fraction expansions. For example,
see if you can put the expression (6 + 6*X + 3*X"'2 + X"'3)/6 into a more
attractive £om: , ROS: FALSE ·s
I What about negative values of DQNJM?

A 11 ttle reflection confirms that forming a common denominator
reverses the effect of distributing a denominator. Thus, expressions
are put over a common integer denominator when OENNUM is a negative
integer multiple of 2, expressions are put over a common monomial
denominator when DENNCM is a negative integer multiple of 3, and
expressions are put over a common sum denominator wben DD.""NOM is a
negative integer multiple of 5. For example: %

X: 'X $ DflNJM: DOOEN: 0 $ EG: l + X/3 + (l+X)/X + (l-X)/(l+X);
OENNJM: -2 $ EG: £VAL(!Xi);
DENNOM: 3*0.EtNlM: EG: EVAL(EG);
DENH:lM: S"DENRJM1 EG: E.V'AL(EG);
I Tey fully Simplifying the expression X"'4/(X""J+X'"'2) + l/(X+l) - l
by expanding 01Ter a c::ommon denominator, then factoring: , BOS: FALSE $
I AS with NOMNOM and DENO EN, the initial setting of OENHOM is 6,
which causes distr~ution of numeric and monomial denominator factors
over numerator sums. This tends to give attractive results for
polynomials or series with rational-number coefficients, but the
relatively costly common-denominator operation may be necessary for
problems involving ratios of polynomials.

You have now been exposed to the four most important algebraic
control variables in muMATH. Together with EVAL, the various

4

0

com.binations of settings of these variables give rather fine control
over the form of algebraic expressicns. muMATB· c:annot read the user's
mind, so it is important for the user tc thoroughly master the use of
these variables in order to achieve the desired effects.

sere are the most frequently useful combinations of settings for
these three variables: ·

PWREXPD: 0; NOMNOM: DENDEN: DENNUM: 6; These initial values are
usual Jy good for general-pJrpOSe work, when the user wants to view some

. results before doing anything dra.stic or potent.tally q..iite time
consuming.

· PWRXPO: 6; NOMWM:. OOOEN: 30; DENNOM: •30; These settin,JS yie.l.ci
a fully expanded numerator over a fully expanded common denominator.
This form gives the maximum chance for combination of similar terms.
Moreover, a rational function equivalent to O is guaranteed to simplify
to o. However, valuacle factoring information may be irrecoverably
lost.

PWP.DCPD: O; NUMWM: DENOEN: -6: DmNOM: -30; These settings yield
a semifactored numerator over a semi-factored common denominator. 1'his
form gives the maximum chance for cancellation of factors between a
numerator and denominator. However, the factoring is done
incrementally, term by term, so it may be necessary to first expand over
a common denominator so tbat all cancellable terms have an oa.x>rtunit:J
to cancel before attempting factorization.

PWREXPO: 2: DOOM: 30; D~EN: -6; OENWM: -30; 'these settings
a.re a good compromise between the advantages of expansion and fact:cring.
Semi-factoring is done in the denominator where it is usually most
important, but there is a maximum opportunity for c:ombinaticn of similar
te.cns in the numerator.

PWlttXPO: 6; NOMNUM: DENDE:N: DENNUM: 30; These settings are good
for series expansions or partial fractions, because each term is fully
expanded over its own denominator.

Again, we can't overemphasize the im;ortance of mastering the use of
these four control variables. They are your primacy tool for imposing
your will on t1le simplification process, and mJ lack of understanding
of their proper use will ultimately lead to frustration. Aceordingly,
why dcn't you try the above and various other COlnbinations on examples
of your own choosing, until the usage becomes second nature: ,
R:lS: FALSE$
\ Congratulations on completing cu:sJ.AUl. If the mathematical level
was uncomfortably high, proceed to lesson PL!Sl.ARL Otherwise proceed
to CLF.s4.A.W. In either event, it is advisable to initiate a fresh
mUMA!IE enviraunent, because our experiments have altered control values
and made assignments which could interfere with those lessons in
nefarious ways. \

DO: tECBO$
ROS O $

5

IFile: a.ES4.AtG (C) 10/30/79 The SOft Warehouse%

LINELEN3'm (78) $ tECSO: F.0!0$ EX:HO: TRJE:$

, 'rhis is the fourth of a sequence of JDJMA1'B·calculator-mcde leS$0IlS.

'nlere are some other algebraic control vari=>les besides PWREXPD,
NOMNOM, DENDEN, and DENNUM; .and they are occasionally cruc:ial for
achieving a desired effect. One of these, named NUMDEN, provides the
logic:a.1 completion of the latter three, by controlling the distribution
of factors in numerators ewer the terms of denominator sums. WMDEN is
initially o, but integer numerators are distributed over denominator
s~ms when NOMDEN is a positive integer multiple of 2, monomial
numerators are distributed over denominator sums when NOMDE:N is a
positive integer multiple of 3, and numerator sums are distril:)uted over
denominator sums when WMDEN is a positive integer multiple of S. For
example: ,

NtJ,HJM: DEX>EN: DONJM: 0 $ NCMDEN: 30 $
X / (X"'3 + X + l) / (Y + l) ; EC: (X+Y) / (l+X+Y) / (Y+l) r
, Isn't that intriguing? It yields a sort of •continued-fraction•
representation. Now for the reverse direction, which performs a
denesting of denominators which is less drastic than a single common
denominator: ,

NCMDEN: ~ $ Z + l / (l/X + l/Y} / (l+Y} 1
, See if you can devise examp~es exhibiting dramatic simplifications
arising from either direetiO{l for thi$ novel transfocnation. 'the fact
that it so naturally complements NOMNOM, DENOEN, and OENNOM suggests
that it must be useful for something! , K)S: FALSE $
, Another control variable named BASEXP controls distribution of a
BASe over tems · in an EXPone.nt which ia a sum, or controls the reverse
process which is collection of similar factors. As might be expected,
integer bases are distributed over exponent sums when IASEXP is a
positive integer multiple of 2, monomial bases are distributtd over
exr;x:ment sum.$ when BAsm is a positive integer multiple of 3, and base
swns are distributed·over exponent sums when BASEXP is a, positive
integer multiple of 5. Morever, the corresponding negative values cause
collection of similar factors having the corresponding t:ypeS of b&SeS.
BASEXP is initially •30. Bow.,,er, distribution (followed perhaps by
collection) is 1ometimes necessary to let some of the tems in an
exponent sum combine with the base. For example:. ,

EC: 2 .. (2+X) / 4 1 BASm: 2 r £VAL (Bi) 1
, See if ycu can devise an example which requires evaluating an
expression first with sufficiently positive BASEXP, then reevaluating
with sufficiently negative BASEXP, or vice-versa: I m:,s: FALSE $
I Anet.her control variable named EXP.eAS controls the distribution of
EXPonents over BASes whicn are PROOOCTS. Integer exponents are
distributed over base products when EXPBAS is a positive integer
multiple of 2, monomial exponents are distributed over base products
when .EXPBAS is a positive integer multiple of 3, and exponent sums are
distributed over base products when· !XPBAS is a positive integer
multiple of S. Naturally, the corresponding negative multiples request

l

collection of bases which have similar exponents of the indicated type.
The initial value is 30, and here are some examples where distribution 0
permits net simplification: I

{X ... (l/2) * Y) ... 2 1 (X"'Y) ... 2 - X"'2~2; (4"'X ... 2*Y} ... (l/2) ;
I However, the user should beware that as with manual computation,
distribution of non.integer exp:,nents is not always valid. Consequently,
conservative uswrs may p,r:efer to generally operate with EXPBAS being 2.
Moreover, distribution of exponents tends to make expressiais more bulky
when no cancellations occur. For example ,

ex * Y * z, ... cv21 ;
I In fact, there are instances where negative settings of EX1'BAS a.re
necesaa.s:y to acneive a desired result. ror example: ,

IG: 2""X * 3""x + (l+X) ... (l/2) * (l•X) ... {l/2) - c1-x·2,·c112) ;
EXPBAS: -6; RJMMJM: 30 1 E.VAt, (EG) ;
I See if you can devise an example which requires evali.;aating an
expression first with sufficiently positive EXPBAS, then reevaluating
with sufficiently negative m.BAS, or vice-versa, in order to simplify
acceptably: I R>S: i'ALSE $
\ The variable named PBRCB, already discussed in conjunction with
fractional powers of numbets, also controls transformations of the fom
u""v'"'w -> u"'(V*w). PB.RCS is initially TRUE, but when PBRCB is FALSE,
the transformation occurs only for integet w. Otherwise the
transformation occurs for art';{ w. 'l'he user should be aware that in some
circumstances the selected branch is an inappropriate one, so that it
may sometimes be necessary to set PBR:B to FALSE. See if you can devise O· ·
sudl an instatJCe: , JDS: F~· $
, Now, tty the examples O"X· and x""o, to see what happens: ,
ROS: F~ $
, The reason that 0~ is not automatically $implifieci to o is tbat O""X
is undefined for nonpcsitive values of x, so the transformation could
lead to invalid results. Of course, sometimes users know that the
exponent is positive, or they are willing to assume it is positive and
verify the result afterwards. Consequently, there is a ccntrol variable
named ZER.l:AS, initially FAJ:m:, which pemits
the transfomatia'l when nan.FALSE.

Why then do we automatically simplify X"'O to l even~ X could
perbapa ta.ke on the value o, giving the undefined form 0'"'0? Well, we
also have a caitrol variable for that, named Zm:ECP of course, but we
initialized it to 'lR1E beeause:

l. If we are thinking of polynom.uls in X rather tban. arrJ aie
~ific va:we of X, then we are free to regard the polynomial
X O as being formally eg_uivalent to l.

2. one ca.Mot do effective simplification of rational
functions witbout this widely accepted transformation.

3. Since l is the limit of X'"'O as x approaches O from either
aide of the real axis, l is a reasonable interpretation even
for o'"'o.

2

0

(0

<c

Nevertheless, there is room for disagreement, and anyaie wh::> wishes
is free to run with ZEROEX? FALSE. Why don't you t::y it, using some
rational expression examples, in ordeL to see how you feel about this
issue? \ BOS: FALSE $
, It is easy to for;et the current . control-variable settings, and it
is even east to forget the existence of ce~..ain control-variables, so we
have provided a hancrj-dandy function named FLAGS which retu.tnS the empty
name ... after printing a display of all the flags and their values: I

FI.H:iS () 7
, If you ever get. fJ:UStrated because you can't get an answer close to
the desired for.m, try this command. It may reveal some inappropriate
settings or remind you of some alternatives you forgot, or reveal the
existeni::e of potentially relevant flags of wrJ.ch you were :maware.

Often a dialogue proceeds best lm<ler some control settings which are
suitable for the majoriq of the comp.Jtations, with an occasional. need
for an evaluation under different control settings. Each such exception
could involve new assignments to several control variables, followed by
an evaluation then assignments to restore the variables to their usual
values. This process can become tedious, and baffling effects can
result from inadvertently forgetting to restore a control variable to
its . usual value. Consequently, as a convenience, we have provided some
functions which, for the most commonly desired sets of •drastic" control
values, establishes these values, reevaluates its argument, then allows
the control variables to revert to their former values · before returning
the reevaluated argument.

One of these functions is called EXPAND, because it requests full
expansion with fully distributed denominators, bases, and exponents.
More specifically, it uses the following settings:

PWREXPD: 6; WMOEN: O; WMNJM: DENDEN: DENNUM: BASEXP: EXPBAS: 30;

To see its effect, try EXPAND (((l+X)/(l-X)) "'2); I RDS: FALSE $
I Another one of these convenience functions is called IX.PD, and it
fully expands over a common denominator. Thus the internal control
settings are the same as for EXPAN:), except that DElWM: -30. Try

EXPO (l/ (X+l) + (X+l) "'2); \ RDS: FALSE $
\ Finally, there is a convenience function named FCTR, and it semi­
factors over a common denominator. It evaluates its argument under the
following control-variable settings:

NUMNOM: DfM>EN: ◄; DENN'JM: BASEXP: EXFBAS: •30; ~: NWCEN: O;

Since semi-factoring is done termwise, it may be necessary to use
EXPO before aS)lying FCT.R to an expression, in order to get the desired
result. See if you can devise an instance where this is tr\.le: \
K>S: FAIS $
I This brings us to the end of lesson CLF.54.ALG. The next lesson is
ct,ESS.ALG, but as before, it is advisable to start a fresh muMA'l'B to
avoid c::ai:flicts with bindings established in the current lesson. ,

3

(
0

IFile: a.ESS.AIG (c) 10/30/79 The SOft Warebou.se \

LINEI:.EN:n'B (7 8) $ tECBO: ECSO$!O!O: 'l'l1JE$

, It is often desired to extract parts of an expression. Particularly
frequent is a need to extract the numerator or denominatcr of an
expression. Accordingly, there are built-in SEt..EX:"lOR functions r.amed
WM and OEN for this pirpose: ,

DEN-IJM: 0 $ a:;: (l+X) / X ; Ntll (!Xii ; D~ (Bi) ;
tU1 (l + B:;) 1 OEN (1 + !Xi) ;
, As the la.st two examples illustrate, NOM and OEN do not force a
common denominator or a:trJ other tra."lSformation before selection, so the
denominator is always l when the expression is a sum or when the
expression is a product having no negative powers. Try out WM and OEN
on a few examples of your own to gain some experience: , K>S: FALSE $
\ Tpe Programming-mode lessons will explain how to completely
dismantle an expression to get at a:trt desired part, such as a specific
term, coefficient, base, or exponent.

muMAl'H represents the imaginary nwnber (-l) '"'(l/2) as tI, and ~
does appropriate simplification of integez: powers of tI. For example: I

iI ... 7 ; EXPAro ((3 + II) * (l + 2*tI)} ; EXPAN:> ((X + tI*Y) .. 3) ;
, Try it, you'll like it! , ROS: FALSE $
% The definition of the operator •·• in file ALGEBRA.ARI also
implements two higher-level transformations which we mention here only
in passing: •

.,
muMA1'S represents the base of the natural logarithms as iE arid the

ratio of the circumference to the diameter of a circle as tPI. Osing
these, muMM'B performs the siJnplification

tE ... {n * tI * tPI / 2) -> IIAn,

where n is a:trt integer constant, after which the power of tI iS reduced
appropriately. Also, .if a control variable called~ is a negative
multiple of 7, tben complex exponentials are converted to trigonometric
equivalenta. (The opposite transformation for sines and cosines to
complex exponentials for TRGEXPD • 7, is implemented oy file
'.m:i:PQS.A.Ui.) If your mathematical background includes these. facts, you
might wish to experience them here. Otherwise you can safely ignore
this digression: , ~= FALSE $
, You may have wondered whether or not an assignment to a variable,
say x, automatically updates the value of a bound variable, say EG,
which was previously assigned an expression ccntaining X. Let's see: %

X: 5 $ Y: 'Y $!G: X + Y ; X: 3 ; Eti; 'EYM.. {!Xi) ;
I Apparently the answer is •no", at least if X is bound when the
assignment to m is made. This should not be surprising, because after
contriouting its valu.e to the expression x + Y, all traces of tne ri.ame
X are absent from this expression. &owever, suppose that we do a
similar calculation wherein X is initially unbound: \

l

X: 'X S EG: X + Y; X: 3; EG;
, As when we change control variables, previously evaluatea O
expressions are not automatically reevaluated when we bind an unboUnd
varible therein. However, we can always use EVAL to force such a
reevaluation: %

EVAL (EG) ;
I Since we did not assign the result tom, reevaluatiai of m after a
diff ere."lt · assignment to X still has an effect: I

X: 7 $ EG: E.VAI.. (EG) ;
, Since this time we did assign the result to m, further chan;es to X
can have no effect on m regardless of evaluation: I

X: 9 $:Xi: £VAL (iX,) ;
, If these examples are not entirely clear, you had better take the
time to experimentally lea.rn the principles by trying some examples of
your own: \ BOS: FALSE $
I It is often desired to reevaluate an expression under the influence
of a te.'Tlp:>ra.ry local assignment to one of the variables therein without
disturbing either the existing value of the variable or else its unt.ound
status. The built-in EVSOB function provides a convenient method of
accomplishing this effect. EVSOB returns a reevaluated copy of its
first argument, wherein every instance of its second argument is
replaced by its third argument. · For example: ,

W?•lNJM: 6 $ M: 'M $ C: 'C $ V: 'V $ EG: ~I"'C"'2 + ~2/2 $
EVSOB cm, M, 5); E\TSOB (EG, M, MJ.+M2); M;
% Play around with E-VSOB for awhile until you are absolutely sure that
you LJnderstand the difference between substitution and usi<;nment: I
ROS: FALSE $
% You may have discovered that EVSOB also permits substitution for
arbitrary subexpressions as its second argument. For example: %

M: 'M $ C: 'C $ E: 'E $ E-VSUB (M*C"'2 + 7, M*C"'2, E);
I '1'o keep the algebra package small, we have not endowed EVSUB with
aey sophistication abou~ finding algebraically IMPLICIT instances of its
second argument :in its .first. See if you can find examples where !VStJB
does not do a SUbstitution that you would like it to do: I BOS: FALSE S
\ Sere is an example where a desired SUbstitution dcesn•t fully occur:\

?OHJM: 6 $ C: •c $ S: •s $!.VStT8 (l - 2*S""2 + S--4, S--2, 1 - C"'2);
\ 'l'he reason we did not get the desired simplification to C .. 4 is that
if the second argument is a power, it matches only the same power in the
first argument. We ean usually circumvent such problems by instead
using an equivalent substitution wherein the second argument is a name
rather than a power. For example: I

PWR&<PD: 2 $!Vstra (l - 2*S"'2 + S"4, S, (l-C"2) .. (l/2));
I sere is a somewhat different example wherein a desired substitution
does not occu.r: ,

E.VSti8 (2-C*S, C*S, C2)1
, The reason is that if the second argument is a product, it matches
only the same COMPLETE product in the first argument. Again, the rem.edy

2

'

0

CO

C
0

(
C

is to use an equivalent substitution wherein the second argument is a
name. For example: I

E'lf'S'OB (2~•s, C, C2/S);
, Rere is a final example for which a desired substitution does not
cxcur:'

E\TSJB (C-2 + S-2 - l + C + S, ~2 + s"2, l};
\ Similarly to products, if the second argument is a swn, it matcheS
only the same OOMPU.TE sum in the first ar~ent.. As before, we could
circumvent the difficulty by making an equivalent F.iubstitution of
(l--C"2) .. (l/2) for s, or (1-S .. 2) "' (1/2) for c, but that would leave
an ugly square root in the answer. I! our goal is to delete the
sucexpression C'"'2 + s"2 - 1, then we ca,.-, use to our adva..-itage the fact
that powers must match exactly for a substitution to take place: ,

E\TSOB (C"2 + s"2 • l + C + S, C"'2, l - s"2) 1
, See now if you can use such techniques to get your examples to work:
\ ROS: FALSE $
, This brings us to the end of the calculator-mode lessons. There
are, of course, higher-level math packages in muMATH, but the fact is
that from a usage standpoint, we have already covered the hardest part,
whic:h is understanding evaluation, substitution, and the ramifications
of the various algebraic cart:rol variables. You will find that if you
know the relevant math, use of the higher-level packages is quite
1traightforward, easily learned from studying the
corresponding CXX: files.

we suggest that before commscing the Programming-mode lessons, yai
explore calculator-mode usage of the higher-level packages as far as
your math background permits. Math curriculum sequences differ, but
probably most users will be tno$t comfortable t:ying the higher-level
packaes in the approximate order EQN, SOLVE, ARRAY, MATRIX, LOG,
'lIGN.'EX,;, im:;ros, DIF, INI' and INrMORE. Si.nee space becomes increasingly
scarce as higher-level packages are loaded, you may bave to· reread file
RFA'OJ.SI'.TXT to leam bow to OX,ENSE and SAVE if you haven1t already.

NOw for some parting advice about getting the most out of comp.iter
symbolic math:

First, storage and time consumption tends to grow dramatic.ally with
the number of variables in the inp.lt expressions, even if the ultimate
result is fortuitously compac:t. For example, the number of terms in the
expanded form of

{Xl + X2 + • • • + XM) ... N

grows outrageously with M ard N. Consequently, it is im}:X)rtant to make
every effort to avoid needlessly introducing extra variables for
generality's sake. Mathematical Ind physical problems are often stated
using more variables than are strictly necessary, so it is also
important to exploit every OJiP:)rtunity to reduce the number of variables
from the original. problem. Bere are some general techniques for doing
this:

3

l. If members of a set of variables can be made to occur only
together as instances of a certain subexpression, consider
replacing the subexpression with a single variable. For
example:

a) If K, X, and XO can be made to occur only as instances
of the subexpression K*(X-XO), the.~ consider replacing
this subexpression with a variable named perhaps me.

b) Similarly, perhaps a combination such as M*C"'2 could be
replaced with E, or Ri~2/L could be replaced with RE.

The~e are respectively instances of absorbing an offset
together with a proportionality coefficient, rer.amir.g a
physically-meaningful subexpression, and grouping
quantities into dimensionless quantities. Most engineering
and science libraries have books describing a more
systematic technique called DIMENSIONAL ANALYSIS, and an
article in the Joumal of Com:putational Physics (June 1977)
explains how computer algebra can automate the process.

2. Even when a variable cannot be eliminated, the complexity
of expressions may be reduced if the variable can be made
to occur only as instances of a subexpression. For
~le:

a) If only even powers of a variable X occur, consider
replacing x--2 with a variable named perhaps xs::2.

-
b) If X only occu~s as instances of 2--x, 2 .. (2*X),
2""(3*X) , ••• , consider replacing 2""X with a variable named
perhaps TWO'l'OX, yielding mere integer powers of that
variable.

Some other advice is to avoid fractional powers and denominators as
much as possible. They don't simplify well, they consume a lot of
space, and they tend to be hard to decipher when printed one­
dimensionally. Of ten a change in variable can eliminate a fractional
power or a denominator;

Sometimes, even when a problem cannot be solved in its full
generality, solving a few special cases enables one to infer a general
solution which can perhaps then be verified by substitution or by
induction. Alternatively, perhaps the original problem can be
simplified by neglecting some lower-order contributions, in order to get
an analytic solution which will at least convey some qualitative
informatia, about the solutiai to t:..~e original problem.

SOmetimes only part of a problem or perhaps even none can be solved
symbolically, and the rest must be solved numerically. If so, the
attempt at an analytic solution at least allows one to proceed with an
approximate numerical solution having more confidence that a concise
analytical solution has not been overlooked. ,

EXlIO: iECiO $ BOS () $

4

0

(0

<o

C

IFile: PLESl.'mA (c) ll/Ol/79 The Soft Warehouse%

L~ (78} $ tECSO: ECHO$ EX:BO: FALSE$
iCCH>EN.SE: CCN)ENSE $ COOENSE: FALSE $ RFFIRST: 1 :RFFIPSl' $

MOJD (PRINI', tPRIN'l'} $
rmaION fRINl' (EXl),

MHE:N N1tM (00) , tPRINl' (00) .EXIT,
tPlUNl' (I.PAR), PlUNl' (Fl'RST (~"' ..) , tPlUN'l' (• •. "),
PRlN1' (RFS.t' (00)) , iPRINI' (F EX.l,

ElDFUN $

ZCIVD (PlUNIUNE, tPRINJ!t.INE) $
FON:TION PlUNl'LINE (EXl) ,

PRINr (00) , NaiLINE () , 00,
ENDFUN$

roro: TRDE s
I This is the first of a sequence of interactive lessens about muSD-1P
programining. l:t presumes that you have read files REAPlST.TXT and
T,ESSONS.m, and exea.ited at least one of the cal0.1lator mode lessons.
It also presumes that you have loaded packages through ~E.MOS.

mUSIMP supplies a tll.lmber of built•in functions. and operators. The
calculator-m0de lessons introduced a few of these, such as RDS, RSCLAIM,
+,*,etc. These progamming-mode lessons introduce more built-in
functions and operators, cut ~ore imp::>rtant, the lessons reveal bow to
supplement the built-in functions and operators with definitions of your
own, thus extending muSIMP itself.

It is important to realize that, until the last programming-mode
lessons, we will not deal with muMA!'B. Instead we deal first with
muSIMP, the language in which muMA'I'B is written. The illustrative
examples for these first few lessons are utterly different from muMA1'H,
because we want to suggest a few of the many other applications for
which muSIMP is especially well suited, and because we want these
lessons to be comprehensible regardless of math training level.

Data is what programs operate upon.· The most primitive ~
lDUSIMP data are integers and names, collectively called A'.roMS to suggest
their indivisibility by orditw:y means. Some programs must distinguish
these two types of atoms, so there are two corresponding RECCGNIZER
functions:,

INl'!XiER (X76t) ;
NM'1E (X76#) ;
EG: -3271 $
INT!GE:R. (fl:;) ;
NAME (EX;) 1
\ Do you suppose that •137•, • ", ... ,and "X + 3•, with the quotation
marks included, are integers, names, or invalid? Find out for yourself%
ROS: FALSE $
% Data can be stored in the compJter•s memory. The location at which

l

a data item is stored is cal.led its AlDRESS. An address is analogous to
a street address on the outside of a mailbox. The data stored there is Q
analogous to mail inside the mailbox. AS with a row of JllaiJboxu, the
contents of comp.:ter memory can c:han;e over time.

There are useful programs which deal only with unstructured data,
but the most interesting applications involve aggregates of primitive
data elements. One way to make an aggregate of 2 data elements is to
use a structural data element called a NCOE, which stores the addresses
of the 2 data elements. 'I'hus, a node is •ca.ta" consisting of addresses
of 2 other data items.

For example, suppose that we wish to represent the aggregate
consisting of the name BILBO and his age 31. we could store the name
BILBO begiMing at location 7, the number 31 begiMing at location 2,
and the node begiMing at location 4. Then, begining at location 4,
there would be stored the addresses 7 and 2, as illustrated in the
following diagram:

1-..ddress: l 2 3 4 5 6 7

Contents: 31 7 2 BILBO

Is that clear?

The specific placement of data within memory is managed auto- O····.

matically, so all we are concerned about is the specific name and number
values and the connectivity o.f the aggregates. Thus, for our p.irposes
it is best to s~ress the irrelevant distracting detail associated with
the specific addresses. The following diagram is one helpful way to
portray only what we are concemed about:

I /I\ I
+-/--+-\-+
I \

BILBO 31

Thia imagery suggests the word "pointers" for the ldciJ:esses stored
in nodes.

If you have seen one bisected box you have seen them all, so to
reduce the clutter and thus emphasize the essential features, we
henceforth represent such nodes by a mere vertex in our diagrams, giving
scbematics such as

I\
I \

Bru30 31

Although most mUS!MP programs use such aggregates internally, many
muSIMP programs are designed to read and print data in whatever O·
specialized notation is most suitable for the a~lieation. For example,
muf.IAXH uses operator and functional notation. suppose how.r,er that we

2

C

want to specify such aggregates directly in inp.lt and 0Utplt. Bow can
we do it? If we have a nice graphics terminal, then then we
conveniently could wse diagrams such as the above. Most of us do not .
have nice graphics terminals, so we must use another external
representation. For this purpose muSIMP uses a representation
consisting of the first data item, followed by the second data item,
separated by a dot and spaces, all enclosed in a pair of matching
parentheses. For example:

(BIL130 • 31)

We call this representation of a node a 001'1'£!0 PAIR. However, this
is a difere."lt use of parentheses and periods from bow they are otherwise
used in mUSD·1P input, so we must preceed the dotted pa.it by the single­
quote prefix operator to indicate to the parser that we are using
dotted-pair notation rather than the usual operator or functional
notation:

I (BitiSC) • 31)

Moreover, we must use an ampersand rather than a semicolon as the
expression-terminator in order to inform the driver to print the
expression as a dotted pair rather than attempt to print it using
operator and functional notation. we say •attempt" because not all
dotted pairs are a;propriate for operator or functional printing, as we
will explain in the last lessons. Bere then is an example of dotted­
pair inplt and printing: I

I (78 • TlQJBCNES) & •. .-
\ Try a few of your own, aria note what happens when you forget the
single-quote O!'= use a semicolon· rather than an ampersand: ,
ROS: FALSE $ '
I What about when we want to represent an aggregate of more than two
atomic data elements? For example, what if we want to include BILSO's
last name, BAGGINS? Well, we can let one of the pointers of a node
point to another node, whose first pointer points to BILBO and whose
other pointer points to• SGGINs. For example:

I\
I \

/\ 31
I \,

BJ:Ia:) a,a:;ms

we can inplt this as a dotted pair nested within a dotted pair: ,

'((Jan.BO. ~) • 31) &
I Note that we cnly quote the outemost dotted pair.

NOW SUJ;P)Se that we want to also include BILBO'S species, structured
as follows:

3

I\
I \

/\ BCBBlT
/ \

/\ 31
I \

BILBO IW;GINS

Bow would you inplt that?
RemE!lrber, your input IDJSt be terminated by an ampersand.

I ROS: FALSE$
\ We would input it as: I

EX;: ' (((BIIBO • sta:iINS) • 31) • BCBBlT) &

I An alternative structure for this information is the one
corresponding to the inplt

'((BILBO • BAGG INS) • (31 • BOBBIT)).
0'l a piece of scratch paper, sketch the corresponding diagram, then hold
it close to my face so I can check it.

-I o--o \
\\-/I
\-I I HJS: FALSE $

I My eyes must be getting bad, I couldn't see it. Ch well •••

0

Since either element of a dot~ pair can be a dotted pair, they can O
be used to represent arbitraey Rbinary tree structuresn. Moreover, ·
although perhaps unprintable using pure dotted-pair notation, linked
networks of binary nodes can be used to represent any data-structure
whatsoever.

In order to do anything interesting with data aggregates, a program
must be able to extract their parts. Accordingly, there are a pair of
SELECTOR functions namd FIRST and REST wbicb respectively return the
left and right pointers·. in a node. For example: I

RE:ST (EXi) &
FUST (EXi) &
FIPSr (FIP-CT (EXi)) &
aFSI' (FIPS'l' (EXi)) &
, See if you can extract SILSO and BAGGINS from EG, using nested
compositions of FIBS'? and/or JEST: I ROS: FALSE $
, cur answers are: I
FIP..Sl' (FIPS'l' (FIPSl' (EXi))) &
REST (FIPST (FIRST (Er;))) &
I Deeply nested function invocations become difficult to type and
read, so let's define our first mUSIMP function named FFFIPSI', so that
FFFIRST (EG) could be used as shorthand for the first of the above two
examples and for aey analogous example thereafter: ,

FON:TICN FFFIPSI' (U) ,
FIP..Sl' (FIPSI' {F:ms'I' (U)))

OO~"N &

4

t

I If you are not using a hard-copy terminal, jot down this function
&efinition and all subsequenta,.es for referencelater 1n the lesson.

Oespi te t:be word EN:)FON, the fun has just begun: Now that ffl'IRST
is defined, we can apply it at arrJ subsequent time duri.D; the dialog'1e.
tor example: I
FFFIPS.r (EX.i) &
FFFIPSr (' (((BIG • MC) • CA1'SOP) • (FR!X:5 • FRIES))) &
I Using the definition of ff'FIBST as a mcdel, defir.e a function named
Rf'Fms'r which extracts the REST of the PllS'l'. of. tbe FI.RS'l' of its·
argument, then test RFFIRST. on m: ' RDS: FALSE $
I Qlr SOlt.1tion is: •

FtltCl'I~ mIPSl' (FCO),
RrSl' (FIRST (FIPSI' (FOO))),

OOFUN&
RFF IRST (EX;) &
I The name FOO in tbe definition is called a PARAMETER, whereas EG
where the function is applied is an example of an AIGJMENr. We can use
arrJ name for a parameter - even a name which bas been bound to a value
or even the same name as an argument. The name is merely used as a
•dummy variable• to help indicate what to do to an argument when the
func:tion is subsequently applied. A function definition is like a
recipe. It is filed away, without actually bein3 .mo:rrE:D until applied
to actual arguments.

As another simple example, since an atom is defined as being either
a name or aft integer, it is convenient to have a recogni%er function for
atoms, so that we do not bAve to test separately for names and atoms
when we do not care whieb type of atom is involved. we could define
this reccgnizer as follows:

!"ON:'r.IQ; ~ (tJ) ,
NAME (0) at WMBER (0)

ENDFON&

Actually, A1'0M is already built-into muSIMP, but the example
provides a good q:p:>rtunity to introduce the built-in infiX at operator,
which returns FALSE if both of its operands are FALSE, returning TRUE
otherwise. Try out ATOM on the examples -5, X and EX.i \ R)S: PAI.SE S
, Analogous to OR, there is a built-in infix AND operator which
returns FALSE if either operand is FALSE, returning TROE otherwise.
'!'here is also a built-in prefix R:rl' operator which retums 'mJE: if its
q>erana is FALSE, retu:ning !'AtSE otherwise. lnCWing this, see if you
can define a recognizer named }Q)E, which retutna TlllE if its argument
is a node, retw:ning FAI.SE otherwise: , JDS: FALSE $
I In programming there is rarely, if ever, one unique solution, but
ours is: ,

FtN:TICN MDE (U),
?O!'A1tM (0)

EmFUN&
N:DE (EX;) &
N:DE (S} &
I So much for trivial exercises. Now let's write a function which

5

counts the number of atoms in its argument. We will count each instance
of e.ch atom, even if some atoms occur more than CX1ce.

At fit st this may seem like · a fomi.dable task, because a tree -can be
ami trarily branched. Bow can we anticipate ahead of time all of these
possibilities. Well, let's procrastinate by disposing of the most
trivial cases even though we can't yet see the whole solution: If the
argument is an atom, theft there is exactly 1 atom in it.

SO much for trivial cases. We haven't yet solved the whole problem,
but it builds our self-confidence to make progress, so that is a good
p:5ychological reason fo: first disi=osing of the easy cases. Also, with
the e.asy cases cut of the way, we can turn our f\Jll intellecb.lal powers
on the harder cases, unfettered by a..~y distractions to trivial loose ~. .

we are left with the c:.a.se where we know we have a node. Perhaps we
c:oul.d somehow subdivide the prcblell into Slllaller cases?

Let's see ••• Nodes have a FIRST part and a REST part, so perhaps
that provides the natural subaiviaion. ammm -

U we knew the number of atoms for the left part acd the number for
the right part, clearly the number for the whole aggregate is merely
their sum. But bow can we find out the l'l.mll:>er of atoms in these parts?
Why not IEOJPSIVELY use the vert function we are defining to detemine
these two antributions!

It may .sound like cheating to refer to the function we a.re defining 0
from with the definition itself, but remembering that the definition is
not actually APPLttD until sometime after its definition is complete,
perhaps it will work. We are working in a highly interactive
environment, so the quickest W"!f to resolve questions about mUSXMl> is to
try it and see! Here then is a formal mUSIMP function definition
corre5E=Onding the the above informal English •algorithm•: ,

FCN:TI~ .+MtMS (0),
WEN A1'0M (0) , l EXIT,
tA10-1S (FIRSI'(O)) + tA104S (RFSI'(O))

ENDFUN &
I Bert we intrccb:e 2 new ccncepts: The SCDY of a function defW.tion
ean consist of a sequence of one or more expressions separated by
commas. A CQDITICNAL-EXI'.r is an expressi<Xl consistiB) of a aequenc:e . of
one or more expressions nested between tbe matching pair of words. ~l
and EXl'l'. When a function detinit:ion is APPLIED, the expressiaw in its
boctJ are evaluated sequentially, until perhaps a conditional exit causes
an exit from the procedure or until the delimiter named E:NOFUN is
reached. For a conditional exit, the first expression after the word
WHEN is evaluated. If the value is FALSE, then evaluation proceeas to
the point immediately following the matching delimiter named EXIT.
Otherwise, evaluation proceeds sequentially through the remaining
expressions in the conditional exit, if any, exactly as if the body of
the conditional exit replaced that of the function. The value of a.
conditional exit is that of the last expression evaluated therein, and •<·•
the value returned by a function is that of the last expression

6

Co

evaluated therein when the function is applied.

'l'hls, tA1'0MS immediately retums the value l whenever tbe argument
is an atom, and otherwise the function breaks the problems into two
parts which are necessarily smaller, hence closer to be.i.n9 atoms. Let's
test it, star-J.ng with trivial cases first: I

tMOMS (!'W} &
tA1tMS (5) &
m,
tA1'0MS (EG) &
, It looks promising, but it is still perhap; mysterious how muSIMP
and tA'l'OMS keep track of all of these recursive function invocations.
Since the trace package is supposedly loaded, to ttace the exe<=11tion of
tA:It>MS, we merely issue .the command: I

'!Ria (#ATOMS) &
I Now every time tATOMS is entered, it prints its name and argument
values, whereas wery time it is exited, it prints its name. followed by
an equal sign, followed by the returned value. Moreover, the trace is
indented in a manner which allows corresponding entries and exits to be
visually associated. Watch: \

tA1tMS (FOO) & m,
tA1'0MS (EG) &
\ Try a few examples of your own, until these new ideas begin to gel:
I RDS: FALSE $

tJNTRACE (tA1"0MS) &
tM'CMS (FCO) &

•

I Bere is a function which COl.lnts only the number of integers in its
argument: ,

FON:TI:CN t~ (0),
WBEN IN'l'EGER (U) , l EXrr,
WHEN NN-1E {O), 0 EXIT,
tINI'EGEFS (FIPSI'(O)) +- t!NI'mERS (RFSl'(U)}

EN:>FUN $
EG &
tn~ (EG);
, New, using it u a model, tcy writing a function named #NAMES, which
returns the number of names in its argument. If your first
syntactically accepted attempt fails artI test, try using TPACE t:o reveal
the reason why: I ROS: FALSE $
I Olr solution is •••

01 second thou9ht, we won't give you our solution. Consequently, if
you were lazy and didn't try, you bad better try now, because the
examples will get steadily harder now. I K)S: FALSE $
I The B!IGBT of an atom is 1, and the BEIGB'l' of a node is l more than
the maximum o:c the two heights of its FIRST and REST parts.
AC:ordingly, let's first write a function named MAX, which returns the
maximum of its two integer arguments. There is a bUilt-in infix integer
comparator named ">", so here is a hint:

7

Fml:TICN ~ (INn, INn),
WBm INrl > INl.'2, ••• EXI'l',
•••

OOFtJN $

Enter such a defi."lition, with appropriate substitutions for the missing
portions, then teiat your function to make sure it works correctly: ,
R:IS: FALSE$ ·
, Now, with the help ~four friend ~!AX, see if you can write a
function named HEIGHT, which returns the height of its argument: ,
R')S: FALSE $
, Our solution is:,

FON:'l'ICN HEIGHT {U) ,
WHEN Am1 (U), l EXI'l',
l + MAX (BEIGBT(FIRST(U)) , HEIGB'l'(RFS!'(O)))

m:>FtJN $
, This brings us to the end of the first pr03ramming-mode lessons. It
may be a good idea to review this lesson before proceeding to lesson
PLES2.TRA. %

B:BO: tECSO $
f,OJD (IPRIN!', PRINl') $
MCVD (iPRINTLINE, PRINl'LINE) $
OH>.ENSE: tcOOENSE $
ROS () $

8

. -

0

0

0

t

I File: PLES2.'mA (C) ll/Ol..n9

LINELENlTB (78) $ tECBO: i.'O!O $ B:SO: FALSE $
ICCNDmsE: CCN)!lE $ CQDENSE: FALSE $

MOl10 (PRINr, tPRINl') $
FON:'l'IQ, PRINl' (00) ,

waIN A10M (EXJ.) , tPRINl' (00) EX!T,

'!'he SOftWarehouse %

tPRINl' (UAR}, PRINI' (FIPSI'(OO)), tPRINI' (,. • •.),
PR.Im (REST(EXJ.)), tPRIN'l' (RPAR), 00,

OOE'UN $

!OJD (PlUNIUNE, tPPJNJUNE) $
FtJN:TICN PR.INrLINE (00),

PRlNl' (00), Na~ (), 00,
EN:>FUN. $

EX:SO: TEJE $
, This is the second of a sequence of ltl.lSn1P programing lessons.

BJ is a primitive mUSIMP COmparator function which returns ·T.RlE if
its two arguments are the same address or equal integers, returning
FALSE otherwise: I

FM: 5 $ E0 CS, FIVE) 1
I Names are stored uniquely, so two oecurences of a name must invclve
the same address: ,

ACroR: •~ ; E0 (ACIOR, 'sc:Gt\Rr) ;
I Here is an example of two different references to the same pt~sical
node: ,

DATE: '(JULY • 4) & FCC: OATE $ E0 (FCC, DATE) ;
, !cwever, watch this: ,

E0 (DM'E, ' (JOU • 4)) 1: ,
\ What happened? The two aggregates are OOPLICAT!S, but sinc:e they
were independently formed they do not start with the same node. In
fact, only the name JOI:l is shared among them, as shown below:

second
~ argument

I\ I\
/ \/ \
I \ \
I / \ \

JOLY 4 4

Clearly it is desirable to have a more c;omprehensiv~ equality
c::omparator which also returns TP11E for aggregates whic.."l are duplicates
in the sense of printing similarly. Let's write such a function, called
OOP. Following t:be general advice given in PLF.Sl, let's first dispose
of the ttivia.l cases:

l

If either argument is an atom, then they are duplicates if and only
if they are EQ.

Otherwise, they a.re both nodes, which is the m1trivial case. NOw,
let's emplO'f our •divide-and-conquer' strategem, using FIPSr and RFsr as
tbe partitioning. TWo nodes refer to duplicate aggregates if am only
if the FIRST parts are duplicates and the REST parts are duplicates.
Moreover, that can be tested with our beloved recursion, using OOP
itself!

see if }'0U can write a correspondi.n(J fun~...ion named otJP: I
RDS: FALSE $.
\ There are many possible variants, but here is one of the most
compact: '

FUOCTICN · IXJP (0, V) ,
wHEN A1tJ'1 (U), iX2 (U, V) EXIT,
wam A'JX)M (V) ' FALSE EXIT,
WHEN 00P (FIRST(U), FIPST(V)), 00P (REST(O), REST(V)) EKIT,

E:a'ON $
I An interesting challenge for your spare time is to see how many
different but reasonable ways this function can be written.

Actually, there already is a built-in infix operator named•••,
which is equivalent to IXJP: I

DATE: '(JULY • 4) $

0

DATE • t (JOLY • 4) ; O· ·,
I oo you feel IXJPed to learn that an exercise duplicated an existing
facili'cj?

It is crucial to understand exactly what the existing facilities do,
and the best way to learn that is to understand how they work by
creating them independently.

Bere is a good exercise: See if you can write a comparator function
named SAMF.SBAPE, which returns 'IHJ'E if its two arguments are similar in
the sense of having nodes and atoms at similar places. For example,

SAMESHAPE (' ((KINGS • ROOK) • S) , '((QUEENS • 3) • PAWN))
is TRIJE: \ il0S: FALSE $
I This is one of those instances where we will not give the answer.

Now, using the inf ix operator named •••, see if you can write a
ftmction named CONTAINS which returns TROE if its first argument is a
duplicate of its second argument or contains a duplicate of its second
argument. For example,

((JULY • 4) • (1931 • FRIDAY))
contains {1931 • FRIDAY). It is at least as hard as DUP, so take your
time and don't give up easily. I R:>S: FALSE $
I Here is a harder exercise: The two agc;regates

I\ I\
I \ I \
~ I\ OJB:N /\

~ ~ ~ \&JI.FOR 0
2

t

are ISOMERS because they are either the same atom or at every level
either the left branches are isomers and the right branches are isomers,
or the left branch of one is an isomer of the right branch of the ot.~er
and vice-versa. Write a corresponding comparator function named
ISOMERS. (It's similar to OUP, with a twist.) I IDS: FALSE $
, eur answer is: ,

FCJN:TICN ts:MEPS (0, V) ,
WHEN AmM (U) , BJ (0, V) !Xl'T,
~ M.04 (V) , FALSE EXIT,
~ (!'IPSr(O), FIPST(V)) AN:> Is:t'.ERS (PESI'{O), R!'Sr(V)}
~ ISl-tE:PS {FIPST(U), IF.S'r(V)) AN:> Isa1DtS (RFSl'(O) , FDS'r(V))

ENOFtiN $

\ Because of all the combinations which might have to be checked, the
execution time for this functia'l can grow quite quickly with depth. Tey
tracing a few examples of moderate depth: I H)S: ·rALSE $
, So far our functions have merely dismantled or analyzed aggregates
given to them as arguments. None of our examples have constructed new
aggregates. '1'he dot of course results in aggregates, bl.lt this occurs as
the dot is read. Moreover, since the single quote necessarily
preceeding an outecnost dotted pair prevents evaluation, bound·variables
in a dotted pair contribute merely their names rather than their values.
For example: ,

!Xi: 1 $ '(!Xi • 3) &
, What we want is a function which evaluates its two arguments in tile
usual way, then returns a nod~. wli:>se two ?=)inters ?=)int to those values.
There is such a function, named. AOJ'OIN: I

AOJ'OIN (m, 3) &
I A dotted pair within a function definition is a static entity,
frozen at the time the function is defined. In contrast, a reference to
ADJOIN within a function definition is dynamic. The node creation i.s
done afresh, with the current values of its arguments every time that
part of the function is applied. As an example of the use of ADJOIN,
let's write a function named SKELE'ItlN, which ecnstruc:ts a new tree which
is structurally similar to its argument but bas the name of length zero,
... , wherever its argument bas an atom. Thus, when printed, the new
aggregate will display the skeletal structure of the aggregate without

visually-discerna.ble atoms. For example,
SlCELETON (' ((HALLOWEEN • GHOSTS) • WITCHES)) & will yield ({ ·•) .)

CE, let's recite the litany: What canes first?

'?lU\1!AL CASE'S.

So, if the argunent is an atan -we retw:n what?

•• •
Otherwise we have a node, which is the most general case. However,

nodes have a Fnsl' and a R!ST, so can we somehow recurse, using ~,tJN
on these parts, then combine them?

3

Yes, as follows~ ,

FUN:'l'IQl SCEIZ.tCN (0) ,
WHEN ,aa,i (0), ... EXI'l',
AnJOIN {SKEL.E:lt:N (FIRST(O)) , ~ (REST(U)))

ENDrtJNS
~ (I ((?>C) • GCO) • (GO! • PAN))) &
I .Easy. Yes?

Now it is your tw:n. Write a function named TREEREV, which produces
a copy of its argument in which every left and right branch are
interc:.banged at every level. For example,

TREEREV ('((MOO. GOO) • (GUY • (PAN. CAKE)))) &
should yield

(((CAKE • PAN) • GOY) • (GOO • MOO))
I RDS: FALSE $
, U you didn't get the following solution, you may groan when you see
how US'f it is: I

FUN:TICN "mEEREV (U) ,
WHEN A1tM (U), 0 EXIT,
AnJOIN (~ (R!Sl'(O)}, TREEREV (FmsT(O)))

ENDFON&
'l'REERtV ('«•Isn't" • that} • easy}) &
I Bere is a somewhat harder exercise: Write a function named !OBST,
which returns a copy of its first argument wherein every instance of its
second argument is replaced by its third argument. For example, if

•
PHRASE:

' (((THIS • (G:SH • DARN)) • CAR) • (IS • ((OOSB • DARN) • BAD))) $

then SJBSl' (PSP.ASE, '(GOSB • DUN), '(expletive • deleted)) yields

((('l'BIS • (expletive • deleted)) • CAR)
• (IS • ((expletive • deleted) • BAD))) I

, That's all folks.
ROS: FALSE $

The next lesson deals with a special form of tree called a list.
Many people find lists more to their liking, and perhaps you will too.%
S::SO: FAI.SE:$

?CW (t PRINl', PRINr) $ MCVD (tPRINl'LINE, PRINn.INE) $
CCN:lENSE: iCOOENSE $ EO!Oi tECJ!O $ ROS O $

4

0

•

0

t

\File: PLESJ.~ (C) ll/01/79 The soft warehouse,

LINE:tElCl'B (78) $
tECBO: ECaO $ t<;XH)ENSE: CCH>ENSE $ CCNJiliSE: FALSE $ EQ!O: 'ffllE $

% This is the third of a sequence of interactive lessons about mUSlMP
programning.

Often, it is most natural to represent a data aggregate as a
sequence or LIST of items rather than as a general bi."lary tree. Fer
example, such a sequence is qw.ttt natural for the elements of a vector
or of a set. We can represent such a sequence in terms of nodes by
having all of the FIP.S'l' cells point to the data elements, usir.g tbe RFS'l'
cells to link the sequence together. The last linkage node can have a
RFST which is FALSE to indicate that there are no further linkage nodes:

/\
I \

iteml /\
I \

itesn2 •
•

Viewed at a 45 degree rotation, this diagram is analogous to a
Clothes line with the successi~e data elements suspended from it, thus
more clearly suggesting a sequence. The simple regularity of the
structure permits correspondingly simple function definitions for
procesaing such structures. Moreover, the linear structure suggests an
utemal. printed representation which is far more readable than dotted
pairs. In response to an ampersand termi.natot, mUSIMP printS tbe above
aggregate in the more natural LISI' notation:

(it:eml, item2, •• :., itemN}

rather than the equivalent dot notation

(it:eml • (itan2 • • •• (itenN • FALSE) •••))

Convei:sely, the reader •ccepts list notation as an alternative
inpat totm to dot notation. Naturally, any of ·the itellls in a list can
themselves be either lists or more general dotted pairs. The printer
uses list l'l)tatia1 u much as poasible. Tbws, a structure of the form

l

I\
I \

iteml /\
I \

item2 •
•
•
I\.

I \
itlillfi atan

where "atcm• is rx>t. the atom FALSE, is printed in a l'ilixed notation as

(iteml, item.2, ••• (itemN. at.an))

Similarly, the reader can appropriately read such mixed notation.

'ttlus the last item in a list is implicitly dotted with FALSE, and a
blank between two items is equivalent to•. c•, together with a
matching ")" adjacent to the next right parenthesis. You may wonder · why
you never noticed such printing conventions during lessons PU:Sl and
PU:S2. The reason is that we puq:osely redefined the printer for those
lessons so that it did not use the list-abbreviation convention.

It is important to fully understand the connection between dotted
pairs and lists, so take 5 minutes or so to type in some lists, nested
lists, nested dotted pairs, and mixtures, noting carefully how they

0

print. I ROS: FALSE $. ~
I Did your examples include: I \ti

'()'
I Is that.surprising?

Since FALSE is used to signal the end of the list, FALSE and the
empty list must be equivalent.

Clearly the trivial terminal case in processing lists will involve
an equality test against FALSE. Since this test is so common, there is
a corresponding bw.lt-in recognizer defined as follows:

FUN:TICN Et1I:Tl (LIS),
!0 (LIS, ' 0)

OOFON;

Osing EMPTY, see if you can define a function named tITE:MS, which
returns the numl:>er of (top-level) items in its list argument. For
exaiiiple, tlTEMS ('{Fto:;, (FllJl'l' •. M1'), NEWT)} should yield 3. Sere is
an incomplete solution. All you have to do is enter it with the
portions marked • ••• • ai;:propriately fW.ed.

FON:TICN tITEMS (LIS),
WHEN Et1t'T.! (LIS) , • • • EXIT,
l + tITEMS (• • •)

OOFUN S I R)S: FALSE $

2

0

cc

co

'C

, Actually, there is already a built-in function called~, which
returns the length cf a list. It is somewhat more general in that it
retums tbe number of characters necessary for printing when given an
atcm.

Note wt with lists it is qpical to re02r ally en the REST· of the
list, whereas with general bina.."Y trees it is typical to recur en both
tbe FIJST and the REST.

So far, the examples and exercises have been relatively isolated
ones. Now we will focus on writing a coll~ction of functions wbl.ch
together provide a significant a;plicaticns package:

A list provides a natural representation for a set. For example,
(MANGO, (CHOCOLATE. FUDGE), (ALFALFA, SPROUTS)) can represent a set of
three foods. Using this representation, let's write functions which
test set membership and form unions, intersections, etc.

First, write a function named ISIN, which returns 'l'RJ! if its first
argument is in the list which is its second argument, returning FALSE
ot.huwise: , ROS: FALSE $
I Olr sclutiai is: I

FON:TICN ISIN (0, LIS} ,
WHEN D1Pn' (LIS) , FALSE EXIT,
wmli O • FIBST (LIS) , EXIT,
ISIN (O, REST(LIS))

ENDFt1N $ •
ISIN ('FiCG, ' (SAI»Wt>ER N!W! · · TOAD)} 1
\ Actually, there is already a built-in version of ISIN called MEMBER.

A set contains no duplicates, so we really should have a reeo;nizer
function named ISSE'l', which returns 'lKJE if its list arg\lment contains
no duplicates, retu.ming FALSE otherwise. 'l'cy to write such a function:
I ROS: FALSE $
I Sere is a hint, in case you gave up:

FON:'l'ICN SEr (LIS),
WHEN ••• EXI.T,
wmli MEMBER (FIPSl'(LIS), ••• } , FALSE arr,
m c ... >

m:>FtJN1 I K>S: FALSE $
I In ease it isn't clear by now, a rule of this game is that you are
free (and encouraged) to U$e any f1.1nctions we have already discussed,
whether they are built-in, previous examples, or previous exercises.
'l'hat is one reason it is adviseable for you to actually do the
exercises.

Now write a function named SUBSET, which returns TR.OE if t.he set
which is its first argument is a sut>set of that which is its second
argument. (P.amember that every set iS a su.bset of itself and tbe empty
set is a aut,aet of every set.) I RCS: FALSE $
I Here is a hint, in case you gave up or bad a less ~ct soluticn:

3

rot-CTICN StlBSEl' (SE:rl, SEl'2),
WHEN••• EKIT,
N:lEN KDE.ER (FIPSr(sm'l), •• .) , SOBSE!r(•••) EXIT A

EmFON1 I RDS: FALSE $, \,I
I TWo sets are equal if and only if they contain the same elements.
However, the elements need not occur in the same order. Write a
corresponding comparator function named EQSET: , RDS: FALSE $
, Ab yes, a hir,t perhaps?:

roN:'I'I~ EQSE!r (ml, SE1'2),
•••

EN)FW; \ R>S: FALSE $
\ t)O yoll think that IS not mcb of & hint?

Well, the body of the functic:11 really can be written with ale modest
line, so tty harder: I IDS: FALSE $
I Remember the rules of the game: You are encouraged to use eny
function discussed previously: I

f'ON:'l'ICN B'JSEr (Sffl, 5m),
SJBSEr (SE'!l, SE1'2) AND &JBSEl' (SE1'2, SE'!l)

ENDFtlN; ,
I Olr examples so far have merely analyzed sets. we can use AJlJOIN to
construct lists, just as we used ADJOIN to construct binai:y trees. As
an example of this, write a function named MAKFSEr, which retums a copy
of its list argument, except without duplicates if there are any:
I R>S; FAX.SE $
\ If you need a hint, here is one, but it is all you will get:

FON:TICN MNCF.SEr (LIS)
WHEN ••• , I(} !XI'?,
WHEN Mn'1BER (• • •) , • • • EXIT,
AmOIN. (•••)

m::>FUN; \ RDS: FAX.SE $
I Let's see if your solution works correctly: I

MAKESEr (' (ra:::G, FBCG, FRCX;)) &
, If there is a dupl•icate in the answer, then back to the computer
tetminal: I RDS: FALSE $
I (It helps to think of nasty test cases BEFORE you start
programning}.

Now for the crowning glory of our set package: The UNION of two
sets is defined as the set of all elements which are in either (perhaps
both) sets. Give it a try: , BDS: FALSE$
I A b.1nt. perhaps? Well, the func:ticn body can be written in 3 lines,
each of wbic:h begins just like the corresponding line in our hint for
MAKFSa'. I RDS: FALSE $
I Here is our solution: I

FON:TICN ONICN (SE.Tl, SE1'2) ,
WHm EMPrY (Si'l'l), S!!I'2 EXIT,
WEN MEM3ER (FmsT(S!Tl), Sffl), ONICN (iFS'!'(ml), SE.'!'2) EXIT,
A0.10IN (FIBSI'(EI'l), UNIQ1 (Rf.ST{SE'l'l), ffl2))

OOE'ON $

4

tJ

b

, '!'he intersection of two sets is the set of all elements which are in
both sets. Using our definition of UNION as inspi~ation, write a
corresponding function for the intersection: I RDS: FALSE $
, so far, our set alge.bra package bas been developed in a so-called
!OI'!OM-OP maner, with the most primitive functions defir.ad first, and
with the more sophizticated functions defined in terms of them. The
opposite approach is 'roP-OOWN, where we define the most comprehensive
functions in terms of more primitive ones, then we define those more
primitive ones in terms of still more primit1ve ones, until no undefined
functions remain.

As an example of the top-down attitude, let1s write a SYMMETRIC
OIFF~E function for our set-algebra package. The symmetric
difference of two sets is the set of all elements which are in exactly
one of the two sets. 'l'his is in contrast to the ordinary dif erence of
two sets, which is all of the elements that a.re in the first set but not
the second. However, if an ordinary difference function was available,
we could write the symmetric difference as the union of the ordinary
difference between setl and set2, with the ordinary difference between
set2 and setl. We have already written UNION, but an ordinary set
difference is not yet available. Nevertheless, let's bravely proceec1 to
write the symmetric difference in term$ of the ordina:y difference, then
we will worry about 1x>w to write the latter:

'
FUN:TICN sn-10IF {SrJ.'l, Sffi),

tJNICN (ORtt>IF (sm, SE'l'2) , ORODIF {sm, SE'I'l))
ENDFON$
, Now you try to write OR)OIF. It may help you to know that it can be
written very similarly to tJNICN: , :ROS: FALSE S
, Some programmers are initially uncomfortable with the top-down
approach because it makes them netVOus to refer to undefined functior.s:
there are obvious loose ends during the writing process. However, it is
not necessary to understand how an auxiliary function can be written
before daring to refer to it. All that is necessary is that the duty
relegated to the awciliart function be somehow more elementa.ty than the
overall duty performed by the function which refers to it.

'!'here are necessarily loose ends during the writing of a program in
arrt sequential order. Wit.'1 the bottom-up approach, the loose ends are
nei tiler written nor ref erred to until lower-level functions have been
written. Unfortunately, as such hidden loose ends a.re revealed they
often make apparent the need to completely reorganize and rewrite all
subordinate functions into a more SUitable organization. In contra.st,
the obvious loose ends during a top-down development provide invaluable
clues about how to organize the remaining functions. Moreover, any
subsec;!'Uent changes tend to be easier, because communication betwettn the
functions is more localized, more independent, and more hierarchial.
For example, we know that in the definition of S'lMDIF we are taking the
union of two DISJOIN!' sets, becau$e from the definition of Oi<'ODIF it is
clear that OP.DOIF (SETl, SET2) and OP.DOU' (SET2, SZTl) cannot have
element;:.s in common. Bence it would be more efficient merely to append
the second ordinary set difference to the first ordinary set difference,
or vice-versa. Unfortunately, ADJOIN does not accomplish the desired

5

effect.

For example, ADJOIN ('(S, 9), '(3, 7)) yields ((5, 9), 3, 7)
rather than the desired (5, 9, 3, 7). What we must do is ADJOIN 9 to
(3, 7), then adjoin 5 to that result. See if you can generalize this
process into a function named APPOO, which returns a list consisting of
the list which is its first argument a;pended onto the begiming of t.be
list which is its second argument:\ RDS: FALSE $
' Bow about:'

FtN:TICN JU>PEND (LISl, LIS2),
~ El-1Pn (LISl), LIS2 ~.IT,
ADJOIN (FUST(LISl), APPOO (RFSl'(LISl), LIS2))

EIU'UN$
I You may not be getting tired, but my circuits are weary, so let's
bring this lesson to a close. I

EQiO: IE:CBO $

PDS () $

CCR)ENSE: IQN)~ $

6

0

0

co

t

IFile: PLES4.TRA (c) ll/Ol/79 'rbe Soft Wareheu5e I

UNELEN3TH (78) $.
to:NDENSE: CCN)ENSE $ CCtDENSE: FALSE $ t~O: EOiO $ DO: fflJE $

\ This is the fourth is a series of DJSIMP programni.ng lessons.

Often within a function definitiai it is desired to form a list of
values DYNAMICALLY. For example, · Su;,:p:)Se that we wish to focn a list of
the VALUES of thE' variables FIRS'I'NAME, LASTNAME, and MAILADDR.ESS. It
will not do to use 1 (FIRSTNAME, t.ASTNAME, MAit.Al)ORESS) , because the
quote prevents evaluation of the variables.

We can accomplish the desired effect by writing

ADJOIN (FIRSTNAME, ADJOIN (LASTNAME; ADJOIN (MAILADDRESS, 1 ()))).

However, this rather unreadable construct is tedious to write.
Fortunately, mus IMP provides a convenient function named I.ISI.' for this

p.u:pose: we can accomplish the desired effect by merely writing

LIST (FIRSTNAME, LASTNAME, MAILADDRESS).

Unlike most functions, LIST uses aey number of arguments. As specific
examples: I

FIJS'mAME: 'JCEN &
~: 'DOE &
MAIIAOORESS.: 'TIMBUKTU &
I Now, carpire using a quote with using LIST: I R).S: FALSE$
I Reversing a list is an occasional need, and it is somewhat tricky to
wtite a function for this. The following partial definition reveals
that our friends APPEN:> and LIST can belp:

FON:TICN REVLIST (LIS},
wHEN • • • EXIT,
APPEND (• • • , LIS1' (FIRST (LIS)))

OOFUN $

See if you can successfully complete this definition. Haturally, you
also have to reenter APPEN:> if a correct version is net around from the
previous lesson. (Remember also t:o jot down all fs.lnction definitions if
you are not using a hard-copy tetminal.) , RDS:FALSE $
, A well-written APPEND necessarily requires exeeution time which is
approximately proportional to. the length of its first argument. The
l£VtIS function outlined above invokes APPEm n times if n is the length
of its original argument, and the average length of the argument to
APPElD is n/2. 'l'hus, the time is approximately proportional to n* (n/2) ,
which is proportional to n .. 2.

Fortunately, an important technique called a COLLECTION VARIABLE
permits list reversal in time proportional to n, yielding tremendous
time savings for long lists: %

l

FtN:TICN RM.IS (LIS, ANS),
WHEN &1PI'Y (LIS), ANS iXIT,
RE'vLIS (.RFSr(LIS) , AD.lOIN (FIFST(LIS) , ANS))

EN:)E'UN$
~ (REVLIS) ;
RE.VLIS ('Cl, 2, 3)) &
I A collection variable accumulates t.l'le answer during successive
rec:ur::aive invocations. Then, the resulting value is passed back through
successive levels as the retumed answer.

As i$ illustrated here, we can invoke a function with fewer
arguments than there are parameters. When this is done, the extra
parameters are i.."l.itialized to FALSE, and thE!'f are available for use as
LOCAL VARIABLES within the function body. Quite often, as in this
example, the initial value of FALSE is exactly what we want, because it
also represents the empty list. (When we want some other initial value,
either the user can supply it, or the function can supply it to an
auxiliary function which does the recursioo.)

Of course, if a user of REV'LIS supplies a second argument, then the
function returns the reversed first argument appended onto the second
argument, which is also occasionally useful.

What if the user supplies more arguments than t."lere are parameters?
The extra arguments are evaluated, but ignored. This is also
occasionally convenient.

The style of programming exemplified so far is the so-called O·. ,
•awlicative" style popularized by the influential Turing lecture of J
Backus, published in the August 1978 issue of the Communications of the
ACM: The emphasis is on expressions, functional composition, and
recursion.

mUSIMP also ~rts the alternative "Von Neumann• style emphasizing
loops, assignments, and other side-effects. To illustrate W.S style,
here is an alternative definition of REVLIS which introduces the LOOP
construct: I

FUN:TICN REVLIS (LIS, ANS) ,
LOOP

WHEN fM?TY (LIS) , ANS EXIT,
ANS: AD.JOIN (FIRS'r(LIS), ANS),
LIS: R!S'r (LIS)

m:>LCOP
EN:>roN $
I mU.SIMP has a primitively defined function named RE.VERSE, which has
an equivalent machine lan9l,1&<,;e definition.

An iterative loop is an expression consisting of the keyword LCOP,
followed by a sequence of one or more expressions separated by commas,
followed 'aj the matching delimiter named ENDLOJP. 'l'he bod'J of a loop is
evaluated similarly to a function body, except:

1. When evaluation reaches the delimiter named ENCLOOP,
evaluation proceeds back to the first expression in the loop.

2

0

2. When evaluation reaches an EXIT within the loop, evaluation
proceeds to the .=oint immediately following ENX.COJ?, and tbe
value of the loop is that of the last expression evaluated
therein.

There can be any number of conditional exits anywhere in a loop.
Ordinarily there is at least one exit unless the mer ·pans to have the
loop repeat indefinitely until perhaps interrupted by typing ESCape,
AL'nncde or C'l'M,-Z. (1:his·interrupt can succeed only if the loop invokes
at least me functiai which is not built-into muSIMP.)

NOw consider the follcwing sequence: ,

Ll: '('IBE ORIGINAL) $
I.2: I (TAIL) $
BE.VI.IS {U, L2) &
% The above definition of m.vus makes assignments to its parameters
LIS and ANS. For this example, the final assignments are LIS: 'O anci
ANS: '(ORIGINAL, 'l'HE, 'l'AIL). So, what do you guess are the
corresponding current values for IJ. and L2? See for yourself: t
ROS: FALSE$
I The assignments to parameters LIS and ANS have ftO effect on
arguments IJ. and L2! This "call-by-value" mechanism permits function
definitions to freely utilize their parameters without fear of damaging
the values of user's argument variables outside. Thus, ordinai:y
function parameters are never employed for passing information back to
the user. If we wish to return m9.re than one piece of information, the
most well-disciplined way to. do so is to return an aggregate of the
pieces as the returned value. However, another way is to make
assignments within the functicn body to variables which are not amcng
its parameters - so-ailed "fluid" or •global" variables.

As is often the case for iteration. versus recursi0n in muSIMP, the
iterative LOOP version of ··RE.VI.IS is slightly faste; than the recursive
collection-variable version, but the latter is more compact. When there
is such a trade-off between speed and compactness, a good strategy.is to
progra111 for speed in the crucial few 110st-frequently invoked functions,
and program for compactness elsewhere.

Boweve.r, looping does have another adva.ntac,;e when it is applicable:
Recursion entails a "stack" of information which grows with the depth of
recursiai. Consequently, even though the space allocated to the stack
is quite generous, excessively deep recursion can abort a computation by
exhausting t.b.i.s space.

For practice with loops, use cne to write a rairecursive recognizer
named ISSE'l', which returns TROE if its list argument contains no
diplicate elements, retuming FALSE otherwise. (<:oinpare your definition
with t.be recursive version· in lesson PLES:3.) I ROS: FALSE $
\ Sere is our solution: %

3

m.....1""'l.'I~ ISSE'l' (LIS),
LOOP

WHEN EMPl'Y (LIS), EXIT,
Wfll'N MEMBER (FIPST(LIS), P.EST(LIS)), FALSE EXIT,
LIS: REST (LIS) .

ENDLCOP
OOFUN $
I Another good exercise adapted from PLES3 is to use a loop to write a
nonrecursive function named SUBSET, which returns TlUJE if its first
argument is a subset of its second argument, retu:ning FALSE otherwise:
I RDS: FALSE$
I A BtO:K is another control construct which is sometimes convenient,
particularly in conjuction with the Von Neumann style. As an
illustration of its use, the following iterative ve:sion of the MAKESE'r
function from PLE.S3 returns a set composed of the unique elements in the
list which is its fust ai:gument: I

FUN:'I'ICN MAK.F.SEI' (LIS,~),
LOOP

WHEN DlPl"I (LIS), ANS EXIT,
Bt.O:K

WHEN MDSER (FIRSI'(LIS), ANS), EXIT,
ANS: AOJOIN (F~(LIS) , ANS)

ENOBLCCK,
LIS: REST (LIS)

OOLOOP
EN:)FtJN $
MAKESET ('(FOCG, FRCG, FRCG, ~)) &
I When evaluation reaches an EXIT, it proceeds to the point following 0
the next ooau:x:x, OOLCOP, or OOFUN delimiter - whichever is nearest.
Thus, BLOCK provides a means for alternative evaluation paths which
rejoin within the same function body or loop body, without causing an
exit from that body. The first expression in a block must be a
conditional-exit (anything else c:an be moved outside anyway), but since
there can be aey number of other conditional exits or other expressions
within the block, the block provides a very general structured control
mechanism. For example, the CASE-statement and IF-THEN-ELSE C01'1Struct
of some other languages are essentially special cases of a block..

You may not have noticed, but the loop version of MAKESET has the
effect of reversing the order of the set elements.. Using ADJOIN in a
loop generally has this effect, which is why it is so suitable for
REVERSE. With sets, inc:idental list. reversal is perhaps acceptable, but
for most applications of lists it ia not. We could of course use a
preliminary or final invocation of R!.V!:RSE so that the final list would
emerge in the original order, but that would relinquish the speed
advantage of the loop approach, while further increasing its greater
bulk. Thus, recursion is usually preferable to loops when ADJOIN is
involved. For example, recursion is used almost exclusively to
implement mut-lATH, because its symbolic expressions are represented as
ordered lists.

Loops are also less applicable to general tree structures than to
lists, but it is often possible to loop on the REST pointer while
recursing en the first p::>inter, or vice---versa, particularly if AnJOIN is

4

0

~

C

not involved. For example, compare the following semi-recursive
definition of tATOMS with the fully-recursive one in ELESl: ,

FON:TICN tA!ItMS (U, N),
N: 1,
Il:t:)p

WBm ·Mt)M (U), N EXIT,
N: N + tMtMS (FIRST(U)) ,
0: REST (O)·

ENCLOOr
OOFtJN $
tMOMS (' ((3 • FOO) , W)) 7
, If tbe answer surprises you, don't forget the FALSE which BAZ is
implicitly dotted witb. ·

See if ycu can similarly write a semi-recursive function named OtJP
which does what the infix operator named ._.. does: \ RDS: FALSE $
I Those of you with previous expoaure to only Von Neumann style
programming undoubtedly feel more at home now. The reason we postponed
revealing these features until now is that we wanted to force the use of
applicative programming long enough for you to appreciate it too.
Naturally, one should employ whichever style is .best suited for each
aa,lic:ation, so it is worthwhile to become EQUally conversant with .both
styles.

~ endeth the setma1.,

!X:BO: tEC'.HO $
R,S O $

CCNDENSE: tcOOENSE $

s

t

IFile: l'LISS.'?RA (c) ll/Ol/79 '1'he SOft ware.~ ,

~ (78) $
t<:CWENS!: COO.ENS!$ CCH)ENSE: FALSE$ tECBO: EQIO $ iX:80: TPJJE $

, This is the fifth 1n a sequence cf DILlSIMP progrmrming lessons.

In the previous lesson our original version of REVDSE, called
REVLIS, required time proportional to n"'2, where n is the lengt., of the
first argument. We then showed how a collection variable or a loop
could yield a much faster technique using time prop:>r+"..ional only to n.
Now, let•s ccnsider the speed of some of the other set func:ticrLS that we
defined:

Whether iterative or recursive, MEMBER can require a number of
equality comparisons equal to the length of its second argument.
Whether defined iteratively or recursively, SUBSET, a:2S!'1', UNION, and
INTERSECTION all require a membership test for each element of one
argument in the list which is the other argument. Thus, these
definitions can all cons)Jme comp.itation time which grows as the proQ.lct
of the lengths of the two arguments. By similar reasoning, the one­
argument functions ISSET and MAKESET are seen to require time
prop:>rtional to the square of the length of their argument. Data-base
a;plications and others can involve thousands of set operations on sets
having thousands of elements, so it is worthwhile to seek methods for
which the computation time grows more slowly with set size.

In mUSIMP, every name has. an·-~ssociated PROPERTY LIST which is
immediately accessi:cle in an amount of time that is independent of the
total number of names in use. Provided the elements of the sets are all
names, this per.mits techniques for the above set operatioas requiring
time proPQrtional merely to the length of the one set or to the sum of
the lengths of the two sets.

A property list is a list of dotted pairs. '!'he first of_ each dotted
pair is a atom called ~ ·ICEY or OOICATOR, and the rest of each dotted
pair is an expressi0n called the associated INFORMATION. For example,
in a meteorological data-base application, the name RCN)LtltO might have
the property list

((RAIN • 2), (BOMIDITY. 40), ('l'EMPEAA'l"Om:, 58, 96))

'l'be function used in the form GE'l' (name, key) returns the
information which is dotted with the value of "key" on the property list
of the value of •name", returning FALSE if no such key occurred on the
property list.

A command of the form REMP:iOP (name, key) has the side effect of
deleting from the property list of "name" the first dotted pair
beginning with the value· of "key', if mt• REMPICP retl.:r:ns FALSE if no
such indicator occurs on that property list, retu.rning 'm!E otherwise.

A command of the form POT (name, key, information) causes a
command of the fo.an REMP!CP (neme, key) to be executed, after which the
value of "key" dotted with the value of •information" is put on t...-ie

l

property list of the value of •name•. PUT returns the value of
•womatia'18 •

Using prope.rty lists, the basic technique for accomplishing our
various operatic:lS a1 two sets of names is:

l. For each name J.n one of the two sets of names, store
T.ROE under the key SEEN.

2. For each name in the other set, check to determine
whether or not the name has already been seen, and act
accordingly.

3. For each name in the first set, remove the property
SEEN so that we won't invalidate subsequent set operations
which utilize arrt of the same elements ..

A simpler variant of this idea is applicable to the one-argument
funeticns named ISSEl' m:1 MAnSE'l'.

AS an example, here is ONION defined using this technique together
with the applicative style: I

FON:TICN ONICN (SE?n, SE'l'l),
~JNU((SEI'l) ,
ONMABK (SEl'l, ONictWJX (S!'l'2)) Dl)FUN $

QJ

FON:'l'ICN MARK (SE'l'l) , 0 ,
WREN ll-lPT.i (SE.'l'l) , EXIT,
POT (FIRST{Bm) , I SEEN, ~) ,
MAlUC (RF.ST (SErl)) EmFtlN $

FON:TIQi UNIQWJX (SEI'2) ,
WHEN E:'1Pl'Y (SET2), sm EXIT,
WHEN G::I' (FIRST(Sffi), tsa:N), UNIQWJX (RE'SI'(SE!2)) EXIT,
AnJOlN (FIRST(SET2), ONiaWlX(RE.ST(Sffl))) ENDFON $

FUN:T!CN ON?-lABK (SE.'Tl, ANS) ,
WHEN &1PTY (Set'l) , ANS ElCIT,
BEMPRiP (FIPST(Sffi), 'SEEN),
tN-lABK (R&ST(Sal.), ANS) OOE'tJN $

\ Each time any function is invoked, the outside values of its
parameter names, if art/, are •stac:ked" away to be restored later, just
prior to return from that invocation. If a function refers to a
variable which is not amcag its parameters, then the most recent value
of the variable on the stack is used. 'l'bus, when ONIONAUX is invoked
from within ONION, sm in the definition of UNIONAOX refers to the
argument value associated with that parameter of ON!C& This treatment
is called "dynamic bi.nclinc;", and a reference such as to sm in ONXONAOX
is called a •fluid reference•. we could have avoided this by making
sm be an argument and a parameter to UNIONAUX, but that would have
made the program slightly slower and more bulky. However, fluid
variables make programs much harder to debug and maintain, especially if
assignments a.re made to them in functions other than the ones which
establish them. Consequently, we recommend generally avoiding fluid
variables. '1be only reason we used one here is to introduce the concept A
to issue this advice. 'w/1

2

(0

t

Values assigned at the top-level of mUSIMP, outside all function
definitions, ~e called GLCBAL values. Examples ue the initial values
of mUSIMP control variables suc:h as ROS, !Xl!O and COOENSE, or of mu.MA'tB
control variables such as PBRCB or PWREXI?D. Bef erence to a global value
fI"om within a function definition is not quite as cor~using as reference
to a fluid value, and it is indeed onerous to creat numerous long lists
of parameters in order to pass such environmental control values through
a long sequence of function definitions for use deep within.

However, here too it is at the very least considered bad
prcgraxnmi.'lg style to unnecessarily modify such global values from within
a function without restoring the values before exiting from the
function. In fact it is generally bad manners for Mr:f program file to
modify global values if the modification is merely inc id en tu to the
central purpose. That is why these lessons carefully save the
prevailing values of the control variables named ECHO and CCNOENSE, then
restore these values just prior to the end of the file. (It is truely
annoying to have someone else's program litter your environment
unnecessarily.)

'l'he property-list technique for set operations is one whic:h we think
is more naturally implemented using the Von Neumann programming style.
Try to write such a version of ONION: , BOS: FALSE $
, Now, using either style, write an INTERSECTION function using the
property-list technique: I RDS: FALSE $
, One does not usually take the FIRST or REST of an atom
intentionally, but they do in fact bave well-defined values: The rIPsr
of an atom is its value, and tb~ llST of an atom is its property list.
For example: I

WFA1'BER: I FOOL $
FIRST (WEM'BER) ,
POT (•w~, ''191PERA1'tlm:, -3) &
l?O'l' ('WE'A1'm:R, 'WIN:>, ' ((t:0Rl'B • WFSI') , 30)) &
REST('~) &
I This is true of integer atoms too, though it is usually pointless to
put anything on the property list of an integer, because integers are
not stored uniquely: ,

FIFSI' (7);
RFSr (7);
NINE: 9 $
M' (NIN£, '1J.'FS1':IN:;, I (1, 2, J)) &
GE.'l' (NINE, • '11:.'S1'It-.G) &
GE:r (9, ·~, &
I Since all nodes and atoms have a FIRST and a REST which are either
nodes or atoms, misuse of these selectors can't acc:idently give access
to the machine language, stack, print names, or anywhere else which
could inadvertently compromise the integrity of muSIMP. Thus,
inadvertent omission of a termination test in functions which follow
chains of pointers is likely to be revealed by stack exhaustion in the
case of recursiai, and by an infinite loop in the ease of iteration.

3

It is common practice to use EMPl'Y to test for the end condition as
a fW1ction proceeds down a list. If such a function is inadvertently
given a nan-list (i.e. a Non-FAI.SE atom or a structure whose final REST
cell points to a Ncn-FAI.SE atom), the function will use tbe !'DSI' cell
of that atom (i.e. its Value cell) as an element of the list and the
REST cell of the atom (i.e. its Property List cell) as the REST of the
list. Generally the Property List is a well defined list so the EMPrY
test will ultimately cause t:eminaticn with no ill affects.

We prefer to have non-list arguments give more predictable
results c:onZined to tbe argument. Thus, our internal. implementations of
MEMB~ RtVE:P.SE, and arrt other functions ordinarily applied to lists use
xroM rather than D1Pl'Y as tbe tetminaticn test. This is slightly faster
too, so you may wish to generally avoid EMPTY in favor of ·ATOM.
Alternatively, you can· redefine EMPTY to print and retum an error
message when given a naif'ALS! at:QII: I

FUN:T!CN EMPTY {LIS),
WREN Am1 (LIS) ,

WHEN EQ (LIS, FALSE) , EXIT,
PRINI' (•*-tt Warning: &tPr.! given nonlist •) EXIT

ENOFON $
&1Pl'Y (S) $
I This is our first example illustrating the fact that conditional
exits can be nested arbitrarily deep. The same is true of loops or
blocks. 'nlis example also illustrates the PRINr function, which prints
its one argument the same way that expressions terminated with an
amhi~rsanind ar~ printed. There 4,,~ an analog~'t.~ function_ named PR;t'MATBed Q ...
w en pr · ts .its one ar::gument we same way w.iat expressions terminat
with a semicolon are printeci. · ·

When fW1ctions are called with fewer actual arguments than the
function has formal arguments, the remaining formal arguments are
assigned the value FALSE. This provides a convenient mechanism for
automatically inserting default values for these extra arguments. When
an argument evaluates to FALSE, the function c:an assign the aa,ropriate
default value. For example, if the user omits the drive as the third
argument of R:>S, that function uses the currently logged in drive (i.e.
the drive indicated by the last operating system prompt given before
entering mUSIMP).

'!'here are inatarlc:es where it is desirable to pemit a function to
have an arbitrary number of argwnent:.S. This is accomplished by making
the formal parameter list of a function detinition be an atom or non­
list rather tban a list. 'l'be arguments are passed to the function as a
single list of argument values, from which the function can extract
the values. For example, it is convenient to have a function named MAX
which returns the largest of one or more argument values. We can
implement this as follows: I

maICNMAXAiG.IS,
MiAXAOX (FIPST{ARGLIS), REST{ABGLIS))

ENDE'tJN $
Fti1.x:'J.'IOi ~ {SIGGESr, tJNnu:tt>),

WHEN El1Pl'Y {UNTRIED), BIGGEST EXIT,

4

0

WHEN BIG;EST > FIRST(tlN'?RIEO), MAXADX .. (BIGGFSI', RFSr(tlNlltIED)) EXIT,
MAXAUX· (FIRS"l'(tllmIEO) , REST(UN'mIEO)) ·

ENOFON $ •
MAX (7) ;
~ (3, 8, -2) 7
I This collection of arguments into a list is called NOSPREAD, to
distinguish from the SPRFM) brand of peanut cutter.

More generally, muMA'1'B per.mits a combination of the 2 techniqi.1es: If
a parameter-list is a dotted-pair of two names ot a list whose last
element is a dotted pair of two names, then the last parameter name
accumulates a list of any excess arguments beyond those spread to the
other parameter names. 'lhls, we can simplify our definition of MAX to: ' . ' .

rutaICN MAX (FRSl'. orm::PS),
MAXADX (FRS'l', ~}

ENOFONS
I Would you like to try this technique? Appropriate candidates
include MIN, ONICN, and IN'l'EPSE:CTICN. I RDS: FALSE $
% Now, suppose that for some reason we already have a list of integers
such as ,

NOMBLIS: '(18, 3, 7, 91, 12, 2) $
I and we want to find their maximum. The expression MAX (NOMBLIS)
will not work, because MAX is designed for numeric arguments, not for a
list of lUDbers. We could of course extract the elements arld feed them
individually to MAX, but this is awkward, especially if we are referring
to MAX inside a function and we-- do not know 4head of time how many
integers are in NUMBLIS. Fortunately there is a convenient function
named APPr.:i, which applies the function who=:ie name is the val.I.le of its
first argument to the argument list which is the value of its second
argument. Consequently, we need merely write\

AI1Pr:i ('MAX, NJMBLIS) &
% AFPr.:i works on either SPRF>.D or t1CSPPJ'AO functions. Why dcn't ycu
t::y out a few examples: . t Rn$: FALSE $
I A function written .in muSIMP-79 is stored internally as a nested
list, and the function named GE'l'D returns a pointer to this list.
Consequently, to see what the internal representation of ONION looKs
like: ,

GElD (UNICN) &
% Q:ID retw:ns ffllE if the definition is in machine language, and GEl'O
returns FALSE if there is no function definition for its argument.
Those who are carious may wish to use this function to experimentally
deter.mine the correspondence between the external and internal foz:ms of
a function definition. This can be useful for revealing bugs arising
from misconceptions about how the parser regards certain constructs.
All we want to point out here is that since function definitions are
represented as lists, muSIMP functions can easily operate upon other
muSIMP functions. This makes it easy to write muSIMP programs wnich
service other muSIMP programs. Examples include mUSIMP-oriented
editors, cross-reference programs, debuggers, verifiers, statistics­
gatherers, pretty-printers, file comparators, and compilers. The

s

intemal representation also makes it possJ.ble for functialS tc modify
each other dynamically, as they execute. 'rhe implications for artifical O·
intelligence are intriguing to contemplate.

REMD is a related comma..'ld wb.ich clears any function definition
existing under the name which is the value of its argument. For
example, I

REM) (tJNlCN) &
GEm {tJNICS) &
I One good use of REMO is to free space occupied by functions which
are no longer needed immediately, in order to provide enough space for a
more urgent need. For example, suppose that in muMATB a problem
requires the SOLVE package followed by the MATRIX pac:xase, but there is
not room enough for both packages to coexist in the amount of memory
present on the machine. Then, after using the SOLVE package but before
reading in the ~ package we could remove function definitiOns for
SOLVE by commands such as ··

REt·1D (SOLVE) $ REMO (sot.EXP) $ •••

Less typing would be involved if we defined a command named
MULTIREMD, which for an argument which is a list of names, successively
applies mm to each name. In this example it u the side efects tather
than the returned value which is of interest, so MULTIREMD can return
whatever is the least trouble. MOLTIREMD is trivial to write, using
eitber recursion or iteration, because the Ame "program schema" occurs
so often: Walk down a list, successively applying a function of one
argument to each element of th••list, then return anything. This
Clbservation leads to the following idea: Let's write a function which,
given the name of any function of l argument, together with a list,
successively applies the function to the elements, then retw:ns anything
convenient: I

FON:'l'ION MAP (FtHW·iE, LIS) ,
LOOP

WHW El1PTY (LIS), EXIT,
APPLY (Ft.JNNAME, FIRST(LIS)),
LIS: RFSl' (LIS)

m:lLOOP
ENDFUN $
I Then, for example, we could write

MAP ('REM), '(SOt.VE, ~, •••)) $

What we have done is t.o separate the general-purpose control­
sequence from the specific tasks which can use it. This division of
labor accomplishes two useful things:

l. Program space savings can accrue for each use of MAP with a
different function, beyond the first, because essentially
duplicate control sequences are avoided.

2. Once the meaning of MAP becomes familiar, the program is
more readable, because MAP ('REMD, '(SOLVE, SOLEXP, •••)) is

6

0

(-c

C

then instantly understood to mean REMO all of SOLVE, SOL!XP,
etc ••. In contrast, the altermative form MULTI~MD ('(SOLVE,
SOLEXP, •••)) requires the user to check the definition of
MOLTIREMD to be sure the ~se is correctly Ul"lderstood.

Another frequent need is to walk down a list, ~lying a functi011 of
one argument to each element, but retum the list of results. Write a
~ing function of this kind, called MAPLisr since it returns a list.
Then, try
MAPLIST ('-, '(3, 8, 14)), and MAPLIST ('NOT, '(TROE. FALSE, MAYBE))
Uu:>S: FALSE: $
, MAP and MAPLisr are the most widely aa:,licable mawing ftJnctions,
but if you grow to like mapping m-..ctions you may develop a large suite
of them. For example:

1. For functions of two arguments you could have a map
function of the form MAP2 (function name, listl, list2) or
MAP2 (function name, list of pairs). Since much of muMA'rB is
stored on property lists, this could be used to apply REMPROP
appropriately to help delete high-level muMATB packages in ,
order to make space. (Here is an idea: for each mUMATH file,
write a corresponding file of type DEL, which has an
appropriate command of the form MAP ('REMD, ...) , together
with one of the form KAP2 {'REMPROP, •••) • Then, to delete
the SOLVE package from memory, one merely ·issues· the command
RDS (SOLVE, DEL, drive).)

2. For functions of two arguments you could have a mapping
function used in the form MAP2LIS'l' (function name, listl,
list2) or MAP2LIST (functi•on name, list of pairs), which is
like MAP2 but returns a Ust of results.

3. For general trees you could have a ma;ping function called
TREEMAP which applies a function to the atoms in a tree, and
there could be a similar one called TREEMAP'l'REE which is
similar but returns a tree. ,

Ex:BO: iECEO $ CCN>ENSE: iCCN:>ENSE $

RDS () $

7

-·C, .•

C

JJl.lSIMP::79 Primitive Di:l.tl. structures
The soft Warehouse ll/26/79

I. DATA sr.ROC'l'URFS.

DWSIMP · data is comprised of names, numbers, and nodes. Each type
is recognizable and consists of a fixed number of •pointer• cells
containing memory addresses. The cells can either point to other
objects or to sp~cial-purpose entities outside the pointer space of
objects. However, all three types have a FIPS? cell and a REST cell.
Moreover, these FIRST/REST cell pairs can only point to other objects
within the pointer space. This eliminates the need for t.ime-ccnsuming
run-time type-checks in the crucial selector £unctions which fetc..~ these
pointers.

I Value I Property I Function I PnameS I

A name is a recognizable, structured object consisting of fou.r
pointer cells. Names are uniquely stored so that duplicate names cannot
c:oexist in storage. sere are the uses of the four cells:

l. The fIRST or value cell contains a pointer to the
name's current value which is used by the evaluation
functions. The value of a naine is initialized to a self­
reference of the name; however, it is modified by the
assignment functions and when the name is used as a formal
parameter in a function definition.

2. The ~ or property list cell contains a pointer to
the name's property list which is used by the property
functiaw. Elements of this list are indicators dotted with
the corresponding values. Property lists are initiAlly set to
the q,ty list. - ·

3. The Fyn;tion cell contains a pointer to the name's
function definition if any. The contents of this cell can't
be accessed except as function applications, and the contents
can't be modified except by means of the function definition
primitives. When a new name is first created, -its function
cell is initialized to the undefined-function trap routine.

4. The Pname cell contains a pointer to the name's ASCII
print-name st.ring, which can be of amitrary length. Ac:Cess
to this cell is restricted to the I/0 and sub-atomic
primitives. Print names are defined when a name is first
used, and they camot be modified or expunged.

l

Self I FALSE Vector

A number is a recognizable, structured object consisting of three
pointer cells. Numbers are not uniquely stored, so duplicate nwncers
might coexist in storage. Tbe cells are used u follows: ·

1. 1'1le flW cell contains a pointer to itself.

2. The m:sz cell is wtia1 ized to Fm.

3. The Number Vector cell contains a pointer to the
actual number, which consists of a sign-!d vector of up to 254
bytes. Thus, the magnitude of numbers is limited to 256 .. 254,
which is approximately lOA6U.

c. Nodes I FIRST RFST
+--·----+-----.

Binary trees are the primary data st::uc:ture in mUSIMP. Internally
they are implemented as a network of cell pairs called nodes. Each node
consist of a FIRST cell and a REST cell. As mentioned earlier, the
node's cells can only point to other bonified muSIMP data objects;
either a name, a number, or a node. Nodes are often called •dotte<i-
pai.ts", because of their linearized external notation produced by PRINr o·..
or accepted by READ.LIST: The no~n

·,

(X • Y)

represents a node whose FIRST cell points to the object x, and whose
UST cell points to the object Y. Although the dot notation is more
general, it is often more convenient to think of data as a linear list
than as a deeply nested binary tree. For this purpose, lists are
recursively defined as follows:

1. '?he empty list.is denoted by the name FALSE:.

2. U Y is a list and X an ci:>ject, then (X • Y) is a list.

A liSt of ci:>jects is printed by the function PROO as a sequence of
its elements separated by commas and delimited by parenthesis. The
function R!AOLISr recogni%es W.S notation for i.n?,lt. For example, if Y
is the list (Yl, Y2, ••• , Yn) then the dotted pair (X • Y) is printed as

(X, Yl, Y2, ••• , Yn)

Conversely, the input of the form (X, Yl, Y2, ... , Yn) is recognized as
(X • Y) by the REAOLIST function.

2

0

cC

(Q

C

II. MEMCE{l~.

Dynamic, transparent metnory management gives muStMP much of its
inherent power. Ideally, at any given time during the execution of a
program, all of the memory not actually required to decri.be the state of
the machine sbOuld be available for any subseque."lt program wae. This is
a.pproximated in muSIMP-79 by first partitioning the available resour---es
into the various data-spaces and. then recycling storage within eacb of
these spaces as ·.required. Normal stack operaticns continuously reclaim
the stack space, whereas, an automatically invoked garbage collector
r:!<:laims the remaining spaces.

A. Initial. Data-space Partition

Du::ing the initia.lizatiCll'l phase of muSIMP, the amount of read/write
memory available to . the interpreter is first computed. Memory is then
pa.rti tioned into four distinct data-spaces using tbe following
proportions: ·

4/32
3/32

23/32
2/32

Atan Space
Vector.Space
Node Space
Stack Space

Name and number pointer cells.
Print-name strings and number vectors.
Node cell pairs.
Control/value stack.

Based on our experience, these proportions provide a reasonable
balance between the spaces for most applications.

.,

..
B. Garbage COllection

New data structures are generally constructed during the execution
of a muSIMP program, while others are implicitly discarded as they
become un-ref erenced. When the construction process uses up all
available resources, a gart>age collector r01Jtine is called to reclaim
the storage space vacateq by discarded data. structures, so that the ~r
program can continue. ;In muSIMP-79 the exhaustion of resources :i.n
either the atom, vector, or node spaces will cause collection to occur.
Those data structures accessible by means of chaining through pointer
cells beginning either from a name cell or from a value stack entry are
marked. 'l.'hen during the se<:a1d pass all the unmarked nodes and numbers
are collected for re-use, while simultaneously removing the mark on the
accessible nodes.

Although garbage collection i.s automatic, it is not entirely
invisible to the user since it periodically causes a pause in the
execution of a program. About l.S seconds is required for the
collection process in a 48K byte muSIMP-79 system using a 2MHz CPU
clock. Normally this is of no concern to the programmer; however, it
should be considered in the design of real time systems. A phenomenon
know as thrashing occurs when t..~e system is forced to spend an
i.nor:dinate amount of time gamage collecting for a very small amount of
nodes. This can be resolved by increasing the com;:uter's memory size or
decreasing the amount of program and data storage requireme.."lts.

3

III. EP..ROR And · INl'ERRDPr ·'rRAPS

If there is a reasonable interpretation for a construct, muSIMP
generally uses it. Consequently, error traps are induced only by
situations for which the:e is no satisfactory recovory. Examples are
the exhaustion cf available data space or disk I/0 errors. Cll the other
hand, a software interrupt is caused by an interrupt character (i.e. an
ESC, ALT, or Ctrl-Z) receiveg from the terminal, which can be sent at
any time. When a particular trap occurs, the a;propriate diagnostic and
the following •options• message · are sent to the term.inAl.:

EXEOJTIVE: F.S:, 'ALT, ctrl•Z; RESTARr: RUB, DEL; SYSTEM: ctrl-c?

The i.:ser may then type one of the appropriate alternative option
characters. The •EXB:t.1rlVE" optia1 is the least drastic since it merely
causes control to return to the muSIMP executive driver loop, without
changing function definitions, property values, or name values, from
what they were just prior to the interrupt. The second option destroys
all non-primitive mUSIMP functions, property values, and name val1.1es,
then restarts muSIMP afresh. Finally, the "SYSTEI,1" option terminates
muSIMP, and returns caltrol to the operating sytem.

A. Data Space overflow

As discussed in Section II, there are four distinct data spaces in
mUSIMP to accommodate the various data types. Normally, automatically
invoked gart)age collections will provide sufficient space in each area 0
to continuously satisfy the demantlS of user programs. Sowever, in the •·.
event all of the available resources in an area become exhausted, an
error trap will occur and one of the following diagnos-J.c messages will
be displayed on tbe terminal:

NDE.Space Exhausted
A1tM Space Ex.hausted
V!rl'OR Space E:xllausted
STACK O"letflow

B. Disk File I/0 Errors

Oisk errors may be caused by insufficient disk space, attempts to
read past the end-<)f-file, or hardware malfunctions. The read and write
disk error diagnostics are respectively:

End of Pile or READ Error
No Oisk Space or WRITE Error

4

0

<c

t

c. Undefined Numerical Cperations

If the second argument to any of the functions QOO'l'!EN'l', MOO, or
DIVIDE is o,. a zero-divide trap occ:w:s with the followi."lg diagnos'"'J.c:

ZEP.0 Divide Error

o. Inplt Syntax Error

The only syntax error trap caused by the function READ is when a
closing right parenthesis is not found when using the 'dot' notation.
The diagnostic is:

Input Syntax Error

Function PARSE can produce syntax error traps together with
diagnostics of the following forms:

*H S"fNrAX ERROR: expression OSEO AS NAME,

*** SYNrAX ERROR: expression OSEI> AS Pm:FIX OPERATOR,

..... S"m'XAX ERROR: expression USED AS INFIX OP~,

*** S'iN.CAX ERIOR: delimiter N:Tr FCOND,

where "expression" is the ai;:parent off ending portion of the input, and
where "delimiter• is an apparently missing right delimiter such as a
right parenthesis, ENDFUN, ENDSUB, EXIT, ENDLOOP, or ENOBLOCK. In any
event, tbe remainder of the input from the point of confusion through
the next terminator, such as ";", •$•, or "&", is outp.lt to the terminal
to help indicate the probable neighborhood of the cause. Examples which
provoke the above four types are respectively:

5 (X);

X Y;

X*/Y;

{pe.thaps S* (X) was intended?}

{perhaps X"'Y was intended?}

{perhaps X/'l was intended?}

WHEN M'0-1(X, EXIT {perhaps WHEN ATCJ-t(X), EXIT was
intended}.

s

N. PlUMIT!VEU' DEFINED FUN:TICNS.

·rhe muSIMP (atructured ~lamentation) Language is a high level
computer language ideally suited for symbolic and semi-numerical
processing. Currently, it is implemented by means of a bootstrap file
M0SM0RE.MUS whiC!h is automatically loaded prior to using the language.
For an interactive introduction to the features available L'l mUSIMP, the
tutorial lesson files, beginning with PLESl.1:RA, ma.y be executed. see
the description on how to take the programming lessons in L.FSSCNS.TXT.

Every language must be described in terms of some language, which
must be described in terms of some language, etc. Thus it is clear that
at some poi."l~ we must appeal to assumed inborn or culturally acq.2ired
understanding. This unnecessary sequence of •buck passing• can be
avoided by using a somewhat circular description of mUSIMP. In other
words mUSIMP-79 can be described. in terms of mUSIMP supplemented with
English where necessary. ose of such a description requires some
prerequisite knowledge of mUSIMP gained by ot.-ier means, just as use of
an English dictionary requires some prerequisite knowledge of English.

After one has initially learned the basics of muSIMP from the
lessons, this type of reference manual has the advantage of being
compact while requiring mastery of no auxiliary notations. In addition
it provides excellent, nontrivial examples of structured programs
written in mUSIMP.

The following is a description of all of the primitively defined
user-level functions, operat~rs, control constructs, and control
variables in muSIMP-79. For descriptive purposes only, we introduce
some fictitious functions which are unavailable to the user. They a.re
indicated by being unnumbered and are also unindexed. IDwer~ type
is employed where English is used rather than legitimate mUSU1P program
constructs.

6

0

0

<c

t

A. Selector Functions

l. ~ Fm"!' (X),
ttie contents of the FIPSr cell of X,

EK)FUN;

Inte:pretaticna:
•·• The first item of a list x,
b. The left element of a dotted-pair X,
c. The value of an atcm x.

2. mcr:tCN RES1' (X) ,

3.

4.

s.

6.

the contents of the REST cell of x,
OOFUN;

Inte:pretaticna:
a. The tail of a list X,
b. The right element of a dotted-pair X,
c. The property list of an atom X.

FtH:TICN saxKl (X) ,
FIRST (RF.ST (X)),

ENDFUN;

.
FtN:'l'IOO RP.ES!' (X) , ..

RES1' (REST (X)) ,
OOFtJN;

FtN:'l'IOO 'IBIBO (X) ,
FIPSr (RFST (RE'S!' (X))) ,

OOFUN;

FUN:'l'ICN RRBEST (X),
REST (RES!' (RF.Sr (X))) ,

EN:>Fl;JN;

7

a. Constructor FUnctions

l. FON:TICN ~JUOIN (X, Y),
a new cell-pair whose Fw""T cell is x and woose RE.ST
cell is Y,

EN)FtJN;

Interpretatia,,s:
a. A list whose first elanent is X and whose tail

is Y,
b. A dotted-pair whose left element is X and whose

ri;ht element is Y.

2. sumomNE LIST (Xl, X2, ••• , XIl),
WHEN n • O, FALSE EXIT,
AOJOIN (EVAL (Xl), LIST (X2, X3, ••• , XIl}),

ENDStiar

Interpretation: The list (Xl, X2, ••• , xn).

3. FUN:TICN REVERSE (X, Y) ,
WHEN A'l'CM (X) , Y EXIT,
REVERSE (RES!' (X) , AOO'OIN (FIRSr (X) , Y)) ,

!NJFUN;

Interpretation: The reverse of the list X. If a
second argument Y is given, the reversed list is
appended to the beginning of the object Y.

4. FCN:TICN CBLISI' (),
a list of the current built-in and user-introduced

names,
ENOFON;

Interpretati0n: The object (name) list.

8

0

0

c. Modifier Functions

l. FUNCTIQl REPI.ACEP' (X, Y) ,
FIPSl' cell of X: Y,
x,

EN>FUN;

Interpretations:
a. Replace the first element of a list X by Y,
b. Replace the left element of a dotted-pai.t X by Y.,
c. Replace the value of an a.tan X by Y.

2. FtJN:."'l'IQl REPLACER (X, Y),
RFSI' cell of X: Y,
X,

ENOFUN;

Interpretations:
a. Replace the tail of a list X by Y,
b. Replace the right element of a dotted-pair X

by Y,
c. Replace the property list of an atan X by Y.

3. FUNCTICN CCN:A1'EN (X, Y) ,
WHE:NAro-1 (X), Y a!T,
WB:m A1tM (RFSl' (XH, REPLACER (X, Y} EXIT,
CCN:A1'EN (REST (X) , Y.) ,
x,

ENOFON;

Interpretation: Concatenate, without adjoining, the list
Y. onto the right end of the list x.

9

o. Recognizer Functions

1. FUNCTION NAME (X),
WHEN X is a name,

ENDFtJN;
E:<IT,

Interpretation: Recognize objects which are names.

2. FCN::.'TICN INrmER (X),
WH.E:N X is a."l integer' EXIT,

E:~;

Interpretation: Recognize objects which are integers.

3. Fw::TICN Aro-1 (X) ,
?W·lE (X) OR INm:;ER (X) ,

ENDFtJN;

Interpretation: Recognize OOjects which are atans.

4. maICN El"1Pl'Y (X),
X • FALSE,

ENOFT.lN;

Interpretation: Rec:o;nize the empty list.

5. rutC!'ICN PCSITIVE (X) ,
X > O,

ENDFON;

Interpretation: Recognize positive integers.

6. FtN:TICN NmATIVE (X) ,
X < 0,

EN)FON;

Interpretation: Recogn.ize negative integers.

7. FtK:TIQl ZtiO (X) ,
X a O,

ENDFtJN;

Interpretation: Recogni%e zero.

Note: All recognizers return 'mJE or F.Ar.,""E.

10

0

•

~

E. <:anparator Functiais and Operators

1. mcrICN Sj (X, Y),
WE.EN IN.rEm:R (X) · AN:> IN.rmER (Y) , X • Y !L'T'l',
WHEN x arAi Y point to the same cbject, EXI'l',

ENDFtJN;

Interpretation: The identity canparison of X and Y.

2. PRJPER?Y RBP, •, 80;
PIOPE:RI'! LBP, •, 80;

mcrICN • (X, Y),
WHm A'.IQ-1 {X), ~ (X, Y) EXI'l',
WHEN. A101 (Y) , FALSE EXI'l',
WHm FmsT(X) • FIPSr(Y), REST(X) • RFSI'(Y) EXIT,

ENDFON;

Interpretation: The infix equality operator, •, treats
X and Y as being equal if and only if they have
iscm:,rphic tree structures witb identical atomic
teminal nodes.

3. mrl'ICN ORD.ERP (X, Y) ,
WEEN the address of the object xis less than the

address of the· cbject Y, EXIT,
ENOFON;

·,

Interpretation: A generic ordering function for system
. names based on their order of introduction.

4. Plt)PERI'Y RBP, >, 80;
PFOPER?Y LSP; >, 80;

FON:TICN > {X, Yl,
WHEN INimER (X) AND INl'mER (Y), X > Y EXIT,

ENDFON;

S. PR:)PERJ:'Y RBP, <, 80;
PFOPERrl LBP, <, 80;

FON:TICN < (X, Y),
Wlmi m.t!X;ER (X) AND INr!XiER (Y) , X < Y EXIT,

OOFtJN;

Note: All canparators retw:n TmJE or FALSE.

ll

F. Logical Operators

l. l'K>PERL"I RBP, RJ?, 70;

F'JN:'l'ICN ?CY!' {X) ,
X • FALSE,

!N)FON;

Interpretatia:: !01' is a prefix operator with right
binding power 70.

2. ~ RBP, AND, 60;
PR:liERr:! tm>, AND, 60;

SOBFa1rINE AND (Xl, X2, ••• , Xn) , .
WSEN n • O, C<IT,
WHEN ?CY!' E.VAL (Xl) , FALSE EllT,
~ CX2, X3, ••• , xn>,

EN:>SOB;

Interpretation: AND is a logical infix opera.tor with a
left and right binding power of 60.

3. PR:>POO'Y RBP, OR, SO;
P:OPERI"i LBP, OR, SO;

stlJ:mOO'I'INE OR (Xl, X2, ••• , Xn) ,
WHEN n • 0, FALSE EXI':r,
WHEN E.VAL (Xl) , EXIT,
OR (X2, X3, ••• , Xn) ,

ENDStJB;

Interpretation: OR is a logical infix operator with a
left and right binding power of so.

Note: All logical operators retum 'l'lUJ'E or FALSE, and any
non.FALSE logical operand has the same effect u TmJE.

12

0

0

re
\ .

re L .

G. Assignment Functions

l. FtN:TICN ASSIGN (X, Y),
FIPSl' cell of X: Y,
Y,

EH)FIJN1

Interpretation: Set the value of the atan X to Y,
and return Y.

2. P!OPE:RI'Y RBP, :, 20;
PR>PERIY IBP, :, 180;

SUBR:X1l'INE : (X, Y),
ASSIGN (X, £'JAL (Y)) ,

OOSJB;

Interpretation: Set the value of 'X to Y, and return Y.
•:• is an infix operator with left binding power
180 and right binding power 20. Evaluation of tbis
form returns the value of the expression, after
achieving the side effect of assigning the value
of the expression to the name.

Note: Assignments to non-names are allowable, having an
effect similar to REPI..ACEFJ but returning a different
pointer.

13

B. Property Functions

l. FUNCTICN Kr&X. (X, Y),
WHEN .M.0-1 (Y) , Y EXIT,
\mN Aro-1 (FIPSl' (Y)) , ATSCC (X, RE.ST (Y)) EXIT,
WHEN EQ (FIRST (FIRST (Y)) , X) , FIRST (Y) EXIT,
KrSX. (X, RFSl' {Y) } ,

ENDFtJN;

Interpretation: 'l'he first non-atomic object on the
"as&A:iation" list Y whose ATanic FIRST cell is X.

2. FUN:l'ION GEr ex, Y),
X: ATSCC {Y, REST (X)),
WHEN M0-1 (X) , FALSE EXIT,
REST (X},

ENOFON;

Interpretation: The property value associated with the
indicator Yon the property list of x.

3. FUNCTlON Pt1r (X, Y, Z},
WHEN EMPT.{ (GP:!' (X, Y}) ,

REPLACER (X, AI:UOIN (AnJOIN (Y, Z) , RE.ST (X))) ,
Z EXIT,
~ (ATSOC (Y, ~ (X)) , Z) ,
z,

EN:>FON;

Interpretation: Place on the property list of the atan
X under the indicator Y the property value Z,
destroying arrt previous value under the same
indicator.

4. FtN:TION mu>R:lP (X, Y),
WHEN Am-1 (REST (X)), REST (X) EXIT,
WHEN EQ (FIPS!' (sa:c:ND (X)), Y),

Y: RES? (Sl:nm (X)) ,
mt.ACtR (X, RBEST (X)) ,
y EXn',

RD!PK>P (RE.ST (X), Y),
ENOFON;

Interpretation: Re:nove fran the property list of X
the property value associated with the indicator Y.

14

0

•

t

S. PH:lPERl'Y name, atan, value
read two names X and Y, then parse an expressiai z.
then without evaluating any of tht;m, place z on the

property list of x, unde.r key Y.
then return Z;

~ is a data-b:se canstrw:t which retu.ms a list of name
and atom after accomplishing the side effect of storing the
value on the property list of the first operand, under the key
which is the second operand. Any previous value on that
property list under the same key is deleted, with a
corresponding warning message. The three operands of PR:>PERrY
are automatically quoted, so that, for example, they can be
IJl'XsUOted operators.

.,

15

I. Definition Functions

l. FUN:'l'ICN GErD (X) ,
WHEN rol' (NNm (X)) , FALSE EXIT,
WHEN X is not a defined function, FALSE EXIT,
WHEN the function cell of X points to a machine

language function, fXlT,
the object pointed to by tbe function cell of X,

EN>FON;

Interpretation: The definition of the function named x.

2. FON:TICN PUm {X, Y),
WHEN li0'l' (NAME (X)) , FALSE EXIT,
function cell of X: Y,
Y,

OOFON;

Interpretation: Place a pointer to the definition Y in
the function cell of X.

3. roterICN t-lJVD {X, Y),
WHEN N:71' (~lE (X)) OR N:71' (?W·tE (Y)) , FALSE EXIT,
function cell of Y: function cell of X,
GE.'ID (Y),

EN:)FUN;

Interpretation: eopy the definition of the function
named X to Y.

4 • FmO'ICN BEt10 (X) ,
WHEN N:Tr (NH-!E (X)), FALSE EXIT,
function cell of X: l.llldefined,
Gm> (old definition of X) ,

EN:>FUN;

:tnterpr~t:.ation: Rsnove the f,Jnetion definition fra-n x.

5. Pla'E:RIY PREFIX, Fma'ICN,
parse a function definition, then use PO'lD to pu.t it

in the function cell of the function name,
then return the function name.

Interpretation: FUN:TICN is the leading keyword of a
caitrol construct which has the general fom:

16
•

co
FUNC'I'ICN name parameters,

taskl,
task2,
•••
taskn

OOFUN
The name can be omit~ed when there is no need to refer to it,
such as when a nonrecursive function is stored on a property
list for use by APPLY. "parameters" can be an ar.bitrary
S}ulbolic expression. When "pa:ameters• is a.~y name, except
"FALSE", the function m.e·· ·. ~ ,..ibsequently called with an
art>itrary number of argi:- .. d passed to the function as a
list assigned to the ar;~~~.;;.-.~- If •parameters" is not a name,
the first ugument in a call to the function is assigned to the
FIPSI' of "parameters" and the RF.ST of the arguments is assigned
to the P.EST of the "parameters" in an identical manner.

Task evaluation within the function is performed successively
until either the end of the tasks is reached or a non-FALSE
predicate is evaluated. In the latter case evaluation proceeds
as before except down the predicates task list. In either case,
the value of the function is the value of the last task
evaluated.

17

J. SUb-atanic F'Unctions

l. FtltC'l'IOO C01PRESS (X) ,
WHEN A101 (X), •• EXIT,
WHEN NAME (FIRST (X)) ,

concatenate the print name of FIRS!' (X) onto the
begiMing of CQ1PRESS (RF.ST (X)) then return the
corresponding muSlMP name,

CCMPRESS (P.F.S'I' (X)),
~-l)FON;

Interpretation: The atao whose print name is the
pa.c.lted version of the names in the list x.

2. FON:TION EXPLCDE (X),
WHEN NAME (X),

a list of names whose print names correspond
to the characters in the print name of x, EXIT,

ENDFON;

Interpretation: A list of the characters, in order,
in the print name of x.

3 • Ft:JN:TION LENmi (X) ,
WHEN ~1E (X),

WHEN EM?I'Y (Xl , 0 E:<IT,
the n~r of characters in the print name of X EXIT,

WHEN INTEGER (X) ,
the number of bytes in the vector of X EXIT,

l + LEN3TH (RES!' (X)),
ENO.FON;

Interpretations:
a. The rum)Oer of characters in the name X,
b. The nurrcer of bytes in the number x,
c. The number of top-level items in tbe list X.

18

0

•

co ·1. FUN:TICN MINOS (X),
WHEN lNI'fGER (X) ,

-X EXIT,
OOFUN;

2. FON:'l'ICN PLUS (X, Y) ~
WHEN Jl!.r$ER (X) AN:> INrmER (Y) ,

X + y EX.IT,
ENDFON;

3. Fm-x:TICN DIFFER.Eta (X, Y},
WHEN INI'EGER (X) AND nmI;ER (Y) ,

X - Y EXIT,
OOFON;

4. FUN:TICN 'nMES {X, Y),
WHEN INI'mER {X) AND INl'mER (Y) ,

X * y EX.IT,
EWFON;

s. FUN:TICN QOOrIENr ex, Y>,
WBEN INl'mER (X) ANO IN.I'mER {Y},

END!'CN;

WHEN Y • o, . zero-divide error-trap ·EX.IT,
WBtN POSITIVE {Y) , floor (X/Y) EXIT,
ceiling (X/Y) EXIT,

Note: 'l'be integer quotient which is consistent
with MCD being a periodic nonnegative remainder.

6. E"CN:TICN MCD (X, Y) ,
X - (Y * QOOrIEN'.!'{X, Y)) ,

ENFON;

7. !'OtaICN DIVIDE (X, Y),
WBEN mrmm (X} AND INrEXiER (Yl ,

.An.!OIN {QOOrll:NT (X, Y), lC {X, Y)) E:XIT,
fK>FON;

Note: All DJSIMP-79 numerical functions retum FALSE if either
of their arguments is ncn-numeric.

19

8. Ft.H:'I'ION + (X, Y) ,
PLUS (X, Y),

ENDFON;

PR,FERl'Y +, PREFIX, PARSE (SCAN, 130);

P!OPERI'Y +, RSP, 100;
PR:)POO'Y +, I.BP, 100;

9. ro?C"l'ION - ex, Y),
WHEN EMPTY CY) , llINUS (EXl) EXIT,
OIFFm!N:E (X, Y) ,

00Ft.1N;

PR:)I>ERI'Y PREFIX, -, LIST ('•, PAP.SE (SCAN, 130));

PR)PERl'Y RSP, -, 100;
PR)PERl'Y LBP, -, 100;

10. FtJN:TION * (X, Y),
TIMES (X, Y),

ENDFON;

P!OPERl'Y RBI>,*, 120;
PR:)I>ERI'Y LBP, *, 120;

ll. Ftlt-aICN / (X, Y), ·,
QtJOl'IENl' (X, Y),

ENOFUN;

P!OPER.l'Y RSP, /, 120;
P!OP.ERI'Y IBP,/, 120;

20

C,

•

(
0

L. Reader Func:tiais

l. rw:::TICN RE'.AJXl!AR (),
read one cbuacter fran the current input file and
return the corresponding lDJSIMl? atan. Integer atans
are returned only if the character is a decimal
digit less than the current base.

OOFON;

2. FON:'l'ICN ~l () ,

END:

read one a.tan from the current input file and
return the eorresp,nding nuSIMP atan. Atans are
delimited by either separator or break characters,
however, the latter also are returned as atans
themselves.

separator characters: space, carriage return, line feed,
and tab {Control-I).

Break characters: ! $ & ' () * + , - • /
@ : : < • > ? [\] A - ' { I } -

3. FON:'l'ICN RE'AO O ,
read frcm the current input file one canplete
expression written in dotted-pair and/or list
notation, then return the corresponding generated
ooject. {Atans are delimited by either separator
or break characters, but the latter also are returned
as atans themselves) •

ENDFUN;

Separator characters: space, cc::mca, carriage return,
line feed, and tab (control-I).

Break characters: •) (

Note: Extra right parentheses and dots are ignored.

4. FtJN:TICN PARSE (00, RBP, 00},
£ran the current input file, read the canplete
expression including the already-read token 00, where
RBP is the right bincling ;ewer of the operator to the
left of 00, if any, then return the resulting
unevaluated object. (00 is a local variable which
acolfflulates the parsed representation.)

ENOFtJN;

21

Note: When two operators canpete for an operand between
them, the operator with higher l:iinding power towards
the operand acquires the operand •. In the case of a
tie, the operator on the left acquires tbe operand.

S. Ft.'N:T.ICN S'iNrAX X,
print • SYNTAX ERBOR: •, then print each element
in the list of arguments, x, then read up through the
next terminator, echoing the input beginning on a new
line, then return FALSE,

OOFUN;

6. FW:Tl'.Qt MA1'CB (:CELIM),
, uses the fluid variable SCAN set by SCAN() I
WHEN SCAN• DELIM, SCAN(), FALSE EXI'I',
WUN ON• cama, SCAN {), ~ (OELlM) EXIT,
WHEN DE.:LDUTER () , sm.rAX (DELIM, 9 NJ1' FCON)") EXlT,
AOOOIN (P~E(SCAN,O), MA1':B(DE:LlM}),

ENDFON;

7. DELIMITER: 1 (EXIT, natJN, ENOLCOP, oom.cx::x,
right parenthesis, camia) &

FtJN:'l'ICN DELIMITER () ,
~ () OR MJ:l-sER (SCAN, OELJ:MI1'ER) ,

ENDFON;

8. NCTICN TERMINATOR () ,
Dbl•': OR SCAN•'$ OR SCAN•'&,

ENOFtlN;

10. ECBO: FALSE;,

FCN:TICN tcBO (} ,
R:7r RDS OR ECBO,

EN)FON;

Interpretation: !CBO () is a functiai which returns ffllE
if input is being echoed to the teminal.

ll. ROS: FALSE; \ Device ReaO Select\

Ft.JN:'l'ICN ROS (X, Y, Z),
WHEN EMPI'I (X), BOS: FM...$ E:UT,
WSEN NN£ (X) AN:) NAME (Y) ,

WHEN &!PT! (Z) ,
if there exists a file named X.Y on the
currently logged disk drive, then open
that file and ROS: X, EXIT,

WHEN NAME (Z),

22

C,

0

(0

C

ENDFUN;

NOtes:

if there exists a file named x.Y on drive z,
then open that file and IDS: X, EXlT EXIT,

l. NOrmally control of the rurrent input file is.done through
the use of the function RDS as described above. Bow ever, after a file
has been opened and made current, control can be returned to the
console without closing the inp.lt file, simply by setting the value of
ms to FALSE. A subsequent r.on-FALSE assignment to ms will then return
control to the point in the opened disk file at which reading was
suspended.

2. If the console is the current input file and all the
characters have been read from the current line, the operating system's
line-edit routine is c:alled for further input. Thus the system's nor:nal
line-edit features will be used until a carriage return is typed, at
which ~int muSIMP will regain control. ·

3. If a disk file is the current input file alid the Ea' (end­
of-file} character is read, an error message is sent to the console,
the console is made the current input file, and an error-options trap
occurs.

4. If a disk file is being read and the value of the name
ECHO is non-FALSE, the charactei;s being read are also echoed to the
current outp.1t file.

5. Comments in an input source file must be delimited by
matching percent signs. The text of the comment will then be ignored ay
the functions SCAN and READ, except to possiblly echo the comment as
described in note 4 above.

6. Special characters such as the comment, separator, and
break characters can be. read in as names or parts of names by means of
quoted strings. SUch strings are delimiteci by double quote marks. The
double quote can be included within the string by using two adjacent
double quotes for eacn desired internal double quote.

7. As an added programming convenience the muSIMP name SCAN
is always set to the most recently read at.om.

8. Lower-case letters ate legitimate and distinct from their
u;per-ca.se counter-par-~. The only exception to this is file names and
types given to the functions RDS and WRS. They ate always converted to
upper case in order to eliminate cordlicts with the operating system Is
file naming convention.

23

M. Printer FUnc:t:iais

1. FON:TICN PR.IN? (X) ,
WHEN ?W-1E {X),

outp.tt the pr~t name of X to the current
a.itplt file, E:Xr.r,

• WHElt INrmER (X) ,
outp.tt to the current output file the digits of X
expressed in the curre.'lt base, preceeded by a
minus sign if Xis negative, EXIT,

PRINl' (I.PAR),
PRINLIS!' (X),
x,

OOFON;

FON:'I'ICN PRINLIS'r (X} ,
PRINl' (FUST (X)) ,
WHEN El-1Pl'? (Pl'Sl' (X)), PRINT (RP.AR) EXIT,
PRINI' (II ., ,

WHEN A1"Ql (REST (X)) ,
PRIN1' (II• ") t
PRINl' (RFSI' (X)) ,
PRINl' (RPAR) EXIT,

PRINLISl' (RFSI' (X)),
OOFON;

Interpretation: Print the standard list notation
of the object X to,the current OUtfUt file.

2. FUN:TICN NElvLINE () ,
outplt a carriage return and line feed to the
current outp.tt file, then return FALSE,

Interpretation:. Teminate the current outplt line.

3. rt.JNCTICN PR.INl'LINE (X) ,
P.RIN'l' (X) ,
NmLINE 0,
x,

OOFON;

Interpretation: Print the expression x, tellninate t.11e
last line and return x.

4. FtR:'I'ICN SPACF.s (X) ,
WBEN X > 0 ANO X < 256,

PRIN1' (" "),
SPACES (X-1) EXIT,

return t.~e current cursor position,
OOFtJN;

24

0

0

0

C

Interpretation: C:Ut;;;ut X spaces to tne current out?,It
file and ·return the resulting cu~r i?QSition.

S. FUN:'I'ION Fim·lATH (00, RBP, I.BP, PRrSPACE),
Taking account of declared binaing powers and any
special print; rules on the property list 0£ P~iATE,
print a d~parsed repre$entation oi EXl, assuming
a) the operator tc its left, if acy, bas right

binding power RBP, the operator to its right, it
any, has left binding power LSP,

b) appropriate spaces are to be printed if PR!.'SPACE
is nonFAI..St.

OOFUN;

Interpretation: PRI!-TA.."'H (expr, RBP, I.BP) is a function
which prints expr in standard matherratical fom
and surrounds it within parenthesis if the leading
operator in expr has a left binding pc:1t1er less
than or equal to RBP, or a right binc.ing power less
than IBP.

6. WP.S: FALSE;

FUN:'l'ION WP.S (X, y, Z) , (Write select}
WHEN ml' D·lPrl (WPS) ,

write out tne final record of WRS and
close the file;
WRS: FALSE,
WRS ex, Y, Z) EXIT,

WHEN E°;·!Pl'Y (X} , WP.S: FALSE ::{IT,
WHEN NAHE (X) AND NAHE (Y),

EN)FtJN;

WHE:N El'1?I'Y (Z) ,
on the currently logged disk.drive,
delete aey previous file named X.Y and
make a new directory entry tor X.Y,
WRS: X EXIT,

WHEN NAME (Z),
on drive z, delete any previous file
named X.Y and make a new ciireetocy entry
for X.Y,
WP.S: X EXIT EXIT,

7. Fmx:TION L!NEI.ax;'m (X),
WHEN X > ll ~ID X < 256,

set maximum line-lengtn to X,
return the previous line-length EXIT,

return the current line-length,
OOFON;

25

Interpretation: Set the length at which outp.lt lines
wW. autanatically be teminated. The line-length
is initially set to 72.

8. Fmel'ICN RADIX (X) ,
WHEN X > 1 »El X < 37,

set base to x,
return the old base EXIT,

return the current radix base,
moroN1
Interpretation: Set the base in which rumcers

are expressed for botb inp.lt and output. The
base is initially set to ter.i..

Notes:

l. Normally control of the current output file is done
through the use of the function WPS as described above. However, after
a file has been opened for outplt, outp.it can be directed to the console
without closing the disk file by simply setting the value of WRS to
FALSE. A subsequent non-FALSE assignment to WRS will then recirect
outp.1t to the disk file and append data onto the end of the file.

2. If there is insufficient disk space or a hardware write
error prevents correctly writing output onto the disk, an error message
is sent to the console, the console is made the current out;ut file, arxi
an uror-options trap occurs.

26

0

0

co

Co

le

N. Evaluation Functions

l. PBOPERr.! PREF!X, ', LIST (READLISr (SCAN)) &

~' (X),
x,

OOSOB;

Intupretat.ion: SUppress evaluation and return tile
object X itself.

2. FmO'ICN £VAL (X),
WHEN M'CI-1 (X), FIPSl' (X) EXIT,
WBEN ~•lE (FIRSI' (X}) ,

WHEN UNOEFilm:I (Gm' (FIPS1' (X))) ,
WHEN ~ (FIRST (X} , £VAL (FIPSI' {X.})) ,

tVLIS (X) EXIT,
!VAI. (AOOOil-l{EV'AL{FIPSr(X)), REST(X))} E:<IT,

WBEN FUOCTICNP (GE!'F (FIPSl' (X))),
AiPLY (FIPSI' (X) , EV'LIS (RESI' (X))) ~,

WHEN &JBEO.JTI?U (GEl'F (FIRST (X)) l ,
APPLY (FIPSI' (X) , REST {X)) EXIT,

EVLIS (X) EXIT,
WHEN FUN:TIONP (FIPST (X}),

AiPLY (FIBST (X) , MIS (REST {X))) C{IT,
WHEN S'OBPWl'INEP (FIPSI' (X)) ,

APPLY {FIRSI' (X) , .REST (X)) EXIT,
EVLIS (X) , . '

ENDFON;

Interpretation: Evaluate tne object X.

FONC'I'ICN EVLIS (X),
WHEN A!I'Ct-1 (X) , FALSE EXIT,
AmOIN (EV'AL (FIRST (X)) , EVLIS (P.ESI' (X))) ,

EN)FfJN;

FtN:TICN Gm- (X),
contents of the function cell of the name x,

OOFON;

FUN:TIO-. UNDEFINED (X),
return FALSE if X is a pointer to tne undefined
function trap, mra othetwise,

ENDFUN.;

InteQretation: Tbe recognizer for undefined functicns.

FUNCTICN FUtCl'ICNJ? (X),
SO'BR {X) .OR EXPR (X),

ENOFtJN;

Interpretation: The recognizer _for call r::t va.lt.:e
functions.

27

Ft!tC'I'ICN~ (X),
FSUBR (X) OR FEXPR (X) ,

EM>FtlN1

Interpretation: The recognizer for call rrt name
functions. ·

rotC'l'IQi SUBR (X) ,
retum mJE if X is a pointer to a ~.JN:TICN subroutine,
FALSE otherwise,

QDFUN;

FtJN:TJ:a; E'St.JBR (X),
retum mJE if X points to a SOSiaJTINE SUbroutine,

. FALSE otherwise,
EN)FtJN;

roN:'l'IQi EXPR (X),
FIRST (X) • I EXP.R,

ENCFON;

FON:'l'ICN FEXPR (X),
.FIRST (X) • I FEXPR,

OOFON;

3. FtJ"NCTICN ~ (X, Y) ,
WHEN NAME (X) ,

WHEN tJNOEFINm (GE1'F (X)) ,
WHEN X • fNAL(X), FALSE EXIT,
'fN1.L (AnJ'OIN (E.VAL (X), Y)),

WHEN DR {Gm' (X)) ,
WHEN A1tM (Y) , X (Y, FALSE, FALSE) EXIT,
WBE2il A10l (REST (Y)) ,

X (F~ (Y) , BF.ST (Y) , FALSE) EXIT,
WHEN A1'01 (RRES'I' (Y)) ,

X (FIRSI'(X), SECCND(X), RRE.Sl'(Y)) EXIT,
X (FIPSr (Y) , sa:cN:l (Y) , 'l'BIBD (Y)) EXIT,

WHEN F&JBR (GE.TF (X)) , X (Y) EXIT,
~ EXPR {GEI'F (X)) CR FDCPR (Gm' (X)) ,

BIND (SECCND (GErF {X)) , Y) ,
Y: E.VAI.aCDY (FALSE, RRES'I' (Gm' (X))),
UNBOO (Sa:c:ND (Gm' (X))),
Y EXl'f EXIT,

WHEN C<l?R (X) CR FEXPR (X} ,
BOO (SEOX> (X), Y),

OOFON;

Y: ~ (FALSE, RRFSl' (X)) ,
memo <~ ex>> ,
y EXIT,

Interpretaticn: Apply the function X to t.-ie list
of arguments Y.

28

•

•

b

b

FUN:TICN 'fJJ'AU!aJ'i ex, Yl,
WEEN A1a'1 (Y) , X EXIT,
WHEN A1a'1 (FIPSl' {Y)) OR Amil. {FIRST (FIPSl' (Y))),
. 'ENN.1!aJ':l. (EVAL (FIRST (Y)) , REST (Y)) EXIT,
\~ A1a·1 {FIRST (FIPSI' (FIRST (Y)))) ,

X: ML (FIPSl' (FIRST (Y))),
WHEN 001' X, E.VALBCDY (X, RF.ST (Y)) ELTT,
FYAf.l!ClJY (X, R&t;T (FIRST (Y))) &<IT,

fNNJ:t:J;J''i (EVALB<DY (X, FIP.ST {Y)), REST (Y)),
OOFUN; .

FtN:TICN BIND (X, Y),
~"BE.N A.10'1 (Y)'

WHEN ATa-1 (X) ,
wsn; EMPTY (X) , FALSE CUT,
AR;STACK: AnJOIN (EVAL (X), AR3STAO<),
ASSIGN (X, FALSE) EXIT,

AR;srAO:: AnJOIN (EVAL (FIRST (X)) , AFGSTACK) ,
ASSIGN (FIPSI' (X) , FALSE) ,
BIND (RES!' (X) , Y) EXIT,

WHEN A1a"1 (X},
WHEN EJ.lPlY (X) , FALSE EXIT,
.AKiSTACK: AO.JOIN (£VAL (X), AFCSTACK),
ASSIGN (X, Y) EXIT,

AiGS"'..AO<: AllJOIN (EVAL (FL-osr (X)), AtGSTAC<),
ASSIGN (FIPSI' (X) , FIPSl' (Y)) ,
800 (REST {X), RES!' (Y)),

OOFUN;
•

FUN:'I'ICN UNBIND (X) , .,
WHEN Aro1 (X),

WHEN EMPTY (X), FALSE EXIT,
ASSIGN (X, FIRST (~)) ,
ABGS'rPD:: REST (~STACK) .CUT I

UNBIND (RFST (X)) ,
ASSIGN (FIPSl.' (X), FIPSr (ABGSTAO<)),
ARaSTACK: ·REST (~CK) ,

OOFtJN;

4 • SUBRl1I'D.-m CCND (Xl , X2, ••• , xn) ,
!.V:iW:Qi:> (L.ISr (Xl, X2, ••• , Xn)) ,

EN)b"tJB;

FUN:TICN f.VAtCQID (X, Y) ,
WHEN .A1tM (X) , FALSE EXIT,
Y: E\1AL (FIRST (FIRST (X)) } ,
WHEN tm Y, ~00 (REST (X)) EXIT,
E.VALS<DY (Y, REST (FIRST (X)) } ,

OOFtJN:

Interpretation: SUecessively evaluate tne FIR..<:T of
Xl, X2, ••• , xn until eitiler a non-FALSE value is
encountered or ail have evaluated to·FAI.St. In tile
foaner case the REST of that argument. is eval:.iat:eci

29

as a function body (see the inte:pretation of
APPLY for details) • In the latter case FALSE is
returned by CCR).

S. ~PERl".l PREFIX, IDJP, AllJOIN ('LCOP, MA!Oi(ENDLCOP));

SOBPaJ'I'M UX>P (Xl, X2, ••• , xn),
~ (LIST (Xl, X2, ••• , xn) ,

LISI' (Xl, X2, ••• , Xn)),

FtH:TICN ~l'MJ.IJJP (X, Y, Z) ,
WBEl? AltM (Y) , 'iNN.JJXJP (X, X) EXIT,
WHm Mat (FIRST (Y)) OR l4'Qt (FIPSl' (FIRST (Y))) ,

EVAL (!'IP.Sr (Y)),
~ (X, RFSr (Y)) EXIT,

WHm A1tM (FIPSl' (FIPSl' (FmsT (Y)))) ,
Z : E.VAL (FIRST (FIRST (Y))) ,
WHEN t-m Z, 'ENN.U:IJP (X, REST (Y)) EXIT,
~ (Z, REST (FIP.ST (Y))) EXIT,
~ (FALSE, FIPSl' (Y)) ,
~p (X, REST (Y)) ,

ENDFUN;

Interpretation: The LCOP construct evaluates its
argument in a manner identical to the waluation
of the clauses in a function body. However,
if all the arguments are evaluated without a
conditional having been satisfied, evaluation
begins again with the first argument.

LCOP is the leading keyword of a control construct
having the foan:

LCOP
taskl,

. t:ask.2,
•••
taskn

OOLCX)P

This construct parses to tbe interna.l representation (I.COP ta.skl
task2 ...). osually at least one of the tasks is a conditional
exit. Evaluation repetitively cycles through the sequence of
tasks until a conditional exit causes control to proceed
directly to tile point following the · matching delimiter ENDLCCP.
The value of a I.COP construct is tbat of the last task waluated
therein. Since the LOOP construct parses to a function
invocation, this construct can be used outside function
definitions.

30

0

C,

0

cc

cc

6. PIOP~ PREFIX, WHEN, HA10i (EllT);

WHEN is the leading keyword of the conditional-exit
control construct, which has the general form

wam expressionl, expressial2, ••• EXIT

This construct parses t(? the int~ representation

({ expressionl expressia'12 • • •)

If expresaionl evaluates to FALSE, then evaluation proceeo.s
diree-J.y to the i:oint immediately followir.g the matching arr.
Otherwise, the expressions between expressionl· and.the matching
EXIT, if any, are successively evaluatea, and the last
evaluated, after which evaluation proceeds to the point
immediately following the next delimiter ENDLOOP, ENDBLOCK,
OOFUN, or OOSJB.

7. P~PERI"I PREFIX, BLCXX, ,~ (ENDBIDJC);

aux:K is the leading keyword for the control construct
of the foan:

Bl,CXl{

WHE%q ••• EXIT, ... , .
ENOBtO:K, . '

As indicated, the first task within a block must be a
ccnditional exit. Since other tasks within the block can al.so

. be conditional exits, blocks provide a generalization of the
•case• construct of some other languages, which includes the
•if-then-else• construct as a special instance. '1'.be evaluation
of tasks within .a block proceeds sequentially unless a
conditional exit tp.erein causes evaluation to proceed directly
to the point following the matching delimiter ElIDBLOCK. The
value of a block is that of the la:st expression evaluated
therein.

8. FtH:'!'!00 ORlVER (00, 00),
ROS: 00,
WRS: FALSE,
Nm~INE {),
N6·1LINE () ,
I.COP

DR: FALSE,
aux:x
~ a::ao < > ,

PRINI' ("7 ") ,
WHEN t-m ROS, PRI?~ ("II) E:<IT EXIT,

E:NDBI.CCK,
EXl: FALSE,

31

EXJ.: PARSE (SCAN(), 0),
EX2: SCAN,
au:a

WHEN EX:BO () , NEMu...i.--m () EXIT,
ENOBU:X:R,
au:a

WHEN ERR CB tc'I' ~.TOR (),
S'lNTAX ()'
NB-11.INE () EXIT,

w&nl 00 • '$,
tANS: !.V"nL (EXl) ,
WHEN EX:BO {) , NSiLINE () EXl'l' EXr.r,

PlUNl' (@),
tANS: i.VAL (EXl),
PJUNr t• ., '
WSDIEX2• ';,

PRtMAm (•ANS, 0, 0, 'mOE) ,
NaiLINE () , NEWLmE () , N&JLmE () EXIT,

PRINIUNE (#ANS) ,
N&JLINE (), Nrl~INE (),

ENOsu:x::a:,
ENOLCX)P,

EM)FUN;

DRIVER is a function which controls the interaction cycle.
After establishing the console as the current inp.lt and output
file by setting RDS and WRS to FALSE respectively, the main A
read, evaluate, and print driver loop is entered. An expression """ ·
is first read by PARSE~· . If the terminator was the character
•;", the result is printed in mathematical notation by PRrHAZL
If an "&", it is printed in List notation. And if a "$", it is
not printed at all. However, in all cases it is assigned to the
variable tANS unless an er.:or occurred during the parse phase in
which case an error message is displayed. For some
applications, it m4y be desirable to (perhaps dynamically)
replace this driver with another one or to recursively call
ORN.ER.

32

(
0

(
C

(

C

P. -Storage Functions

l ~ FtN:TICN RECLAII-1 () ,
re-"'-laim all un-referenced noaes by 9e.11erating a
free node list fran them, and canpact tne atan space
and vector space. The total resulting number of free
nodes is returned.

EWFON;

2. CCH:)£:N.SE: FALSE;

FUNC'I'ICN CCN)ENSE (X, Y, Z) ,
WEEN Am•l (FIBS!' (X)),

WHEN A1'Qt (RF.ST (X)) , FALSE EXlT,
Z: SlBEXPN (REST (X) , Y) ,
WBEN EME'!'Y (Z), CQIDENSE (RFSI' (X), Y) EXIT,
REPLACER {X, Z),
FALSE .EXIT,

Z: SUBEXPN (FIRST (X), Y),
WHEN EMPTY (Z) ,

CCNDENSE (FIRST (X), Y),
WHEN AltM (REST (X)), FALSE EXI'l',
Y: ADJOIN (F~ (X), "i;,
Z : SUBEXPN (RFSI' (X) , Y) ,
WHEN EMPrY (Z), CCNOENSE (P.!S'l' (X), Y) EXIT,
REPLACER (X, Z),
FALSE EXIT, ~-·

REPIACEF (X, Z),··
WEEN ATCM (RFSr (X)) , FA.I.S .EXIT,
Z: SOBEXPN (RFSr (X) , Y) ,
WHm EJ.lPl'Y (Z), CCNOENSE (RES: (X) Y) EXIT,
REPLACER (X, Z) ,
FALSE,

OOFON;

ma!CN SOBEXPN (X, Y, Z),
wl!EN CC•lPARE (X, Y),

WHEN X • Y, Y Ex.IT EXIT,
Z: StJBE:<PN ex, FIRST (Y)),
WHEN D1Pl'Y (Z) , SUBEXPN (X, R£ST {Y)) EXIT,
z,

ENDFO'N;

!"maION CCi·1P.ARE (X, Y},
WHEN A!CH (Y}, EXIT,
)iB'.EN ATCt-1 (X) , FALSE .EXIT,
wm:N C01PARE (FIPSl' (X) , FlRSl' (Y)) ,

CQlPJUE (P.E.ST (X) , REST (Y)) EXIT .EXIT,
EN:lFON;

33

Q. System Functions

l. FtJJ.~Qi SAVE (X, Y),
WHEN 001' ~ (WRS) ,

write out t.lle final rec:cra of WPS and
close tbe file,
WPS: FAISE,
SAVE (X, Y) EXIT,

WHEN NN'1E (X) AM) NAME (Y) ,

ENDFON;

Mm1 EMPn (Y) ,
save a binary menory image of the current
muSIMI? system as a file named X of
type •SYS" en the current drive,
'lK1E EXIT,

save a bina.ry menor,i image of tne current muSIMP
system as a file named x of type •SYS" on
drive Y,
TRJE EXIT

NOte: SYS files occupy about 15 kilobytes less than the
memory size for which the operating system is
generated.

2. FUN:TICN LOAD (X, Y) ,
WHm NN-!E: (X) AW !Wl! (Y) ,

WHm EMPIY (Y) , .
load a memory image file named x of type "SYS"
fran the current disk,
ret1.1m control to the executive DRIVER loop EXI'I',

load a memory image file named X of type "SYS"
fran drive Y, ·
return control to the executive DRJ:VER loop EXIT,

!N:>FON;

Interpretation: Restore the muSIMP environment present
at the t.i:iie of the SAvt.

34

0

0

0

v. 'l'he muS!MP79 Pm'!' Parser

A. cperators

1. INFIX is a name on whose property list is stored
expressions specifying how to parse infix operators for which mere left
and right binding powers do not suffice. It is used for the assignment
operator •: 11 since a check is made on its left operand to make sure it
is a name. Al.so the INFIX property is used for •c• to correctly parse
function calls writte.Tt using mathematical notation. The respective
operator's left-band opera.'ld is passed to the expression as the fluid
name •EX1 ".

2. PREFIX is a name on whose property list is stored
expressions specifying how to parse prefix operators for which mere left
and right binding powers do not suffice. The matchfix operators, which
include WEEN, ta:)P, BI.00<, Ft.N:TION, S'tJBR:UrINE, P~PERrY, and 11 (" when
used to delimit a functions argument list, are examples of the use of
the PP.EFIX property.

a. Binding Powers

l. LSP is a name on whose property list is the integer left
binding powers of infix and postfix operators. When · two operators are
competing for an operand, the ope,ator with higher binding p:>wer toward
the operand obtains the operand. . In case of a tie, the left operator
obtains the operand, so that infix operators with the same left and
right binding p:,wers associate left, as is usually desired.

2. UP is a name on whose property list is the integer
right-binding powers of infix and prefix operators, for ·use as described
for LBP.

C. Constants

l. COMMA is a global constant having the value ", ". Because
of conflicting parse properties associated with its use as a separator
character, the name COMMA should be used for the literal ", ".

2. LPAR is a global constant having the value ·" (11 • Because
of conflicting parse properties associated with its use as a separator
character, the name LPAR should be used for the literal "(".

3. RPAR is a global constant having the value ") ". Because
of conflicting parse properties associated with its use as a separa~or
character, the name RPAR snould be used for the literal")".

35

D. Dellmiters

l. DELIMITER is a name which is initialized to the list Cl)
(EXIT, ENOLOJP, ENDBLC.'CK, ENOFUN, E?DSOB, RP.AR, COMMA). When a matchfix
operator is established, adjoining the matching delimiter to this list
en.ables the parser to give more informative diagnostics by recognizing
when a delimiter is used Olit of place. Bowever, it is not r..ecessary to
adjoin delimiters to this list, and adjoining a delimiter has the effect
of precluding its use out of context for other p.u:p,ses.

2. DELIMITER O is a predicate which returns FALSE if the
current value of the name SCAN is neither a terminator rx>r on the list
named DELIMITER.

3. MATCH (delim) is a function which parses zero or more
expressions separated by commas and delimited by the value of its
argument. MA:r.a returns a list of the parsed representations of these
expressions.

4. ~l? (expr, delim) is a function used to -verify that
a matching "delim" was found following the PARSE of an expression within
delwters.

E. Parsing

l. PARSE {expr, rbp) is a function used to read a muMA'l'H
expression and convert it to List notation according to various rules
estaQlished by operators LBP· and RBP binding powers and/or PREFIX or
INFIX property rules as described earlier.

Errors specific to PARSE include a member of DELIMITER "USED AS AN
INOETERMINA'.rE", an infix operator "USED AS AN PREFIX OPERATOR", and a
prefix or postfix operator "tJSEO AS AN INFIX OP~.

2. snnA.~ exprs is a function which takes an arbitrary
number of arguments. If the value of the Global va.riacle ERR is !"At.SE,
then the message•••* SYNTAX ERROR: "is printed followed by the
arguments to snr.t'AX separated by spaces. Unless input echoing from a
file, the remainder of the expression is printed Wltil a TERMINATOR
character is reached. Finally, in order to return cotitrol to the
console, the control variable ROS {i.e. ReaD Select described in Section
N. L.) is set to FALSE.

36

0

C

llllSIMP-79 OPERMt!R Blll)IN:i l?GlER TABLE

category Operator w· RBP

Ordering { 200 0

Assigtment . 180 20 •

1 160 0
.. 140 139

* 120 120
NUmerical

I 120 120

+ 100 100

- 100 100

• 80 80

Canparison < 80 80

> 80 80
.

001' .. 70 70

~ical AND 60 60
.·.

OR so so

Note: When•+• and•..;• are used as pre.fix operators a right
binding power of 130 is used instead of 100.

37

NATRIX.OCC { c) U/27/79 The Soft Warenouse

r.yaRIX Package P9Qm)entation

File I~ @rovides the following matrix operations on arrays:
transpose, multiplication, division, i."'lverse, and otner integer
powers. Elementwise ope.cations such as addition are provided by
the prerequisite file 1'.RP.AY.ARI.

PREREQUISITE .FILE: A:RP.AY .ARI

USIGE:
mJAT (positiveinteger} ,
array ' ,
arrayl. array2,
arrayl \ arraY2,
array .. integer

Itt,1A!I'(2) -> {[l],

If A• {[l, 21,
[O, 31}

[O, l]},

and B = {P,
6.}-

B" -> [P, 6},

A'-> [{l,
2}, {O,

3}] ,

A' • lDL·IAT(2) -> f(l, OJ.,
l2, 31},

A • B -> {P+12,
18},

A\B -> {P-4,
2},

A .. 2 -> {[l, 8],
[O, 91},

A ... •l -> {[1, -2/3],
[O, 1/3]}

then:

l. The fimction named m:-lAT returns a (left-t.ria.'lgular)
identity matri.."< with the number of rows indicatea by its positive
integer argument.

l

l•Pd'RIX.DCC (c) U/27/79 'l'lle Soft Warehouse

2. The J:?Ostfix operator na.nied ', having a left bi."ldi.ng power
of 160, the same as •1•, requests the transpose of its operand.
(This 11backward accent• character, ASCII code 60 hex, different
from an apostropne or single quote, is usually found on the same
key as the character •r.) Tne transpose of a scalar is a scalar,
the transpose of a row is the column of the transposes of its
elements, and the tranapose of a column is the row of the
transposes of its elements. These rules are ;ee:ursively employed
so that the transpose of a ragged and/or nested matrix is
appropriately perfonned. These rules al.so c:onveit a eolumn of rows
into a row of columns, which does not print attractively. However,
multiplication by an appropriate sized identity matrix always
yi~lds the attractive column-of-rows form of a matrix.

3. '1'he matrix-product infix operator designated by a period
has left and right binding powers 120, the same as for •••. The
interpretations are:

scalarl. scalar2 -> scalarl * scalar2,

scalar. array -> scalar* array,

array. scalar -> array* scalar,

row • col row .col +row.col + ... ,
l . l 2 2

·,
col. row {[col .row, col .row, ...],

l l l 2
[col .row, col .row, ...] ,

2 l 2 2
•••]} ,

rc:MA • rows -> I [rowA .rowB ,
l l

[rowA • rowa ,
2 l

•••

eolA • colJ3 -> { {colA .coll ,
l l

colA .colB ,
l 2 ... },

{ colA .colB ,
2 l

colA .colB ,
2 2 ... }}

rowA .rows ,
l 2

rowA .rows ,
2 2

• •• 1 ,

...] ,
11,

Consistent with the interpretation described in ~;xx:., when a
row and column are of unequal length, the shorter is treated as

2

0

0

MATRIX • .00:: (c} U/27/79 The Soft warehouse

having implied trailing zero elements when forming •row • col" •
These interpretations of matrix proauct are recursively employed so
that matrix products of nested and/or ragged arrays are appro­
priatedly performed.

4. For a matri."t A:
A"' 0 -> :ta'1AT (LE:?Um(A)-l),
A"' l -> A,
A"' -1 -> A inverse,

For integer n > l:
A"' n -> A. (A"' (n-1)),
A"' -n -> (A"' -l) • (A"' (n+l)}.

When a matrix is singular, raising it to a negative power yields
warning messaqes about divisions by zero, and the offending
subexpressions are encapsulated in a question-mark form according
to the usual m\J..MAm-79 computational error treatment.

S. When a matrix A is square and nonsingular, then A\B is
equivalent to (A"' -1) • B. However, WE STRONGLY RECOMMEND using
A\$ unless the inverse is of i.!'.dependent interest or must oe used
many separate times, because A \B is more efficient and because,
provided Bis consistent, A'\.]3 will yield a parameterized solution
even when A is singular. In this case, the parameters are
designated by the forms ARB(ll., ARB(2), ••• , starting with l when
file MATRIX.ARR or SOLVE.~~ is most recently loaded.

6. comments in file Z-1ATRIX.ARR indicate now to save space by
omitting the matrix transpose, division, or power packages.

3

TRACE.DCC (c) 01/14/80 The Soft Warenouse

Trace Package pocpmentation

PUaPCSE:
File TRACE.MUS provides a trace package to help debug programs.

PREQUISI'l'E FILE: MUSIMP79.CCM

l. 'l!RACE (namel, name2, •••) ,
2. ~ {namel, name2, •••) •

EXAMPLE:
FUN:TICN MEMB (EXl, 00) ,

WBEN DF1Y (00), FALSE EXIT
WHEN EXl • FIRSI' (00), 'l'HlE EXIT
MEMB (EXl, RESl' (00))

ENDFON;

TRACE (M'1'1B) ;
MEMB ('DCG, '(CAT, 0:li, DCG, PIG));

MElG [DCG, {CA1', 0:li, DCG, PIG)]
ME:1B [I:X:G, (0:li, OCG, PIG)]

MEMS [DCG, (DCG, PIG)]
MEl-m • TROE

ME?G • mre
MEMB • T.ROE
@ T.ROE

ONlP.ACE (MEMB) ;

Rat!ARKS:

\This is catJP.lter generated%

l. The trace of a function during the execution of a program
provides an inval~le debugging tool.

2. Whenever a function is called it arguments are first
evaluated and then printed following the function name.

3. After the function has been applied it's value is printed
following the function name.

4. Indention is used to more easily pair corresponding calls
and returns.

5. The function is restored to nocnal by ONrRACE.

l

C

-c

AtGmP.A.DCC (C) 02/09/80 The soft warehouse

Basic atG&:BBA Package Documentation

!'ile AI.GEBPA.ARI provides for the basic algebraic simplification of
expressions using the elementary operators "+", •-•, , •;•, anci 11 "'".

Simplifications may be categorized as either automatic or user
controlled by means of coma. VARIABLES.

AtJ'Ia-lA'.l'IC SIMPLIFICATICNS:

l. Rational arithmetic is used to coml:>ine numerical operands.
(see ARl."m.DCC for a complete description)

2. Identities and zeros are appropriately applied to expressions.
O+X -> X; l"'Y -> Y; O*Z -> O;

3. Sums and products are flattened and uniquely ordered to
facilitate expression comparisons.

X+(Y+Z) -> X+Y+Z; Z*{Y*X) -> X*Y*Z;

4. Similar teens and products are canbined.
3*X + 2*X -> S*X; X .. 5 / X""2 -> X .. 3;

s. Powers of n (i.e. the square root of -1) are reduced.
II,-> -U;

CCNOOL ~:
The control variables described in this section enable the mu.MA~

user to have complete control over the rules used to simplify an
expression. However, they -.re rather difficult for the novice to master.
Therefore the utility functions EXPAND, EXPO, and FCTR (described
below) have been included in muMAT'.d to make it HS'j to Obtain the most
common forms of an expression without the need to individually set
control variables. we recommend these functions be used until more
precise control of the control variables is required.

l. ?IJMN0?-1 controls the distribution (factoring) of factors in the
NOMerator of an expression over (from) a sum in the WMerator.

Identity: A* (B+C) <-> A*B + A*C

2. Dfl1'EN controls the distribution (factoring) of factors in the
DENominator of an expression over (from) a sum in the OENominator.

Identity:
l l l
- .. - <->
A B+C

l

A*B + A-AC

3. DENNt.'M controls the distribution (factoring) of factors in the
DENominator of an expression over {from) a sum in the WMerator.

l B C o·
Identity: - * (&+<:) <-> - + -

A A A

4. WHDEN controls the distribution {factoring) of factors L-i the
WMerator of an expression over (from) a sum in the DENominator.

1 1
Identity: A * - <->

B + C B/A + C/A

s. BASEXP controls the distribution (factoring) of the we of an
ex-iression over {from) the EXPonent.

Identity:

6. ~ controls the distribution (factoring) of the EXPonent of
an expression over (from) the BA.Se.

Identity: (A*B)C <-> AC* sC

7. PWREXPD controls whether or not integer PoWeRs of sums are
EXPanDed in numerators and/or denominators.

8. ZEROEXPT controls the use of the following identity which is
valid for all A not equal to o. .

Identity:

9. ZEROBASE controls the use of the following identity which is
orJ.y valid for positive A.

Identity: 0A -> 0

l. For the first six of the aoove control variables, the kinds of
factors, bases, or exponents which are distributed or factored from the
expression can be precisely controlled by assigning a;:propriate values
to the respective control va.r:iable. Poaitive integer value.& will cause
distribution, whereas, nesative values cause factoring. The exact type
of expression which will be clistril:lited or factored can be determined
from the following table: ·

Prime
2
3
5

'1"Jpe
~rical expressions
Other non-sums
SUms

Examples
4, -l/3, 5/7
X., SIN (Y) , z"'3

R+S, x"'2-x, LN(X)+Z

Therefore, if a control variable is a multiple of one or more of
the above primes, then that type of expression will be distributed or
factored in acccrcance with that control variable's identiey transform.

2

0

0

<C

<o

2. For example, since differences are internally represented as
sums involving negative coefficients, evaluation of

3 * X * (l+X) * (1-X) ->
3 * X * (l+X) * (l-X)
X * (3+3-X) * (1-X)
3 * (X+X .. 2) * (1-X)
3 * X * (l-X""2}
(3"'X+3"'X .. 2) * (1-X)
X * (3-3*X~)
3 * cx-x-3>
3*X - 3*X"3

if WMN'JM is o,
if I01WM is 2,
if RHllM is 3,
if~ is s,
if 10-HJM is 6,
if ?L'MNJM is 10,
if ~UNJM is 15,
if WMWM is 30.

3. As another example, if DENDEN is 15, then
Y / 3 / X / (l+X) / (1-X) -> Y / (3*(X-X,.3)).

4. As another example, if DENNOM is 6, then
(X+3) / 3 / X -> l/3 + l/X.

5. When PWREXPO is a positive integer multiple of 2, th.en
multinomial expansion occurs in numerators. When PWRm'D is a positive
integer multiple of 3, then multinomial expansion occurs in
denominators. Thus, when PWREXl?D is 6,

(l+X) j / (l+X+Y) .. 2 ->
(1+3*X+3*X"2+X .. 3) / (l+2"'X+2-Y+2*X*Y+X .. 2+Y"'2) •

6. The imp)rtance of becoming thoroughly familar with the use of
~, WMNUM, DENOEN, and DD1Nt.1M cannot be over-emphasized! muMA1E-
79 cannot read a user's mind, so these control variables are the major
means of specifying which of the many alternative transformations are
desired at each stage in a dialog.

7. The remaining control variables are of less f rec;uent concern,
out changing their settings is occasionally crucial to acheiving a
desired effect. Since they follow the same general scheme, they are
easy to use after the·more important control variables have been
mastered. For example,·

(3+X) / (l +X) ->
l / (3/(l+X) + X/(l+X))
l / (l/(l/3+X/3) + l/(l/X+l))

if NOMOEN is 5,
if NCMOEN is 30.

Thus, this transformation yields a kind of "continued-fraction11

expansion.

8. SA.SEXP is set in a."l analogous fasion as follows:
2 .. (l+N) -> 2 * 2 .. N

if BASE:XP is a p:>sitive integer multiple of 2,
X ... (l+N) -> X * X"N

if BASECP is a positive i."lteger multiple of 3,
(A+B) "' (l+N) -> (A+B) * (A+B) '"'N

if BASEXP is a positive integer multiple of 5.

The opposite of these transformations is more often appropriate,
and is acc~lisheci by setting BASE:XP to be negative..

3

t.n'!.L.ion Fu"NCTICNS:

l. EVAL (expr) returns the f:valuated and simplified expres~ion O·
resulting from~ operated on under the current control variable
envircnnent.

2. SOB (exprl, expr2, expr3) returns the expression which results
from SUS.stituting all occurrences of expr2 by e.wrJ in exprl,

3. EVSUB (exprl, expr2, expr3) is defined as
EVAL (SOB (exprl, expr2, expr3)).

4. DI (expr) returns the W'1erator of expr.

S. DEN (expr) returns the Dman.inator of expr.

6. FI..MaS () prints the current value of the system control
variable.

7. EXPAND (expr) evaluates expr to yield a fully expanded
denominator distributed over the terms of a fully expanded numerator.
The following temporacy assignments are made:

PWREXPO: 6; NUMDE:N: O; WMWM: DENDEN: DENNUt-1: BASEXP: EXPBAS: 30;

a. EXPO (expr) evaluates expr to yield a fully expanded numerator
· over a fully expanded denominator. The following temporacy assignments

are made:

PWREXPD: 6; NUMDEN: 0; DEl1N0?1: -30; NUMNOM: OENDEN: BASEXP: EXPBAS: 30;

9. FCTR (expr) evaluates expr to yield a semi-factored numerator
over a semi-factored denominator. The following tempora.;:y assignments
are made:

PWmXro : NUMDEN : O; NUMNUM : DOOEN: -6; DENNt..1M : BASEXr? : EXPBAS: -30;

4

0

0

CCNrFDL VARIABLE S'CJr,JMARY: ...

·C control Initial Positive Negative
var. Value Tran.sfoi:=ation Transfoc:nation

WMNJM 6 A*(&+C) -> A*B + A*C A*B + A*C -> A*(B+C)

l l l l l l
t>OOE:N 2 -•--> ->-* -

A B+C A*B + A*C A*B + A*C A B+C

&+C B C B C B+C
t>E?NJM 6 - -=> -+- -+- -> -

A A A A A A

A 1 1 A
Wl-1D£N 0 - -> ->

B+C S/A + C/A B/A + C/A B+C

-30 AA(B+C) -> A-S*A"'C A-S*A"'C -> A"'(B+C)
,-

--c
30 ci•s>·c -> A"'C*B"'C A"'C*B"'C -> (A"'S) "'C

l
0 (A+B) "'N -> A"N+. • .+e"'N (A+B)"'-N ->

A ""N+ ••• +B "N

5

EJ.2N.JXX: (C) 03/31/80 'l'he Soft Warehouse

&;iation Package r>oc;ument.ation

PORP(EE:
File · EQN.AtG provides a facility whereby equations are treated as
expressions ':!hich can be assigned, aclded, multiplied, squared, etc.

PRERWJISrl'E. FILE: AI.GmBA.ARI

~: expressionl - expression2

EXAMPLES:
EQNl: 5~ - 3-tx - 7 - 2 + 41 -> 2"'X - 7 - 6

then EQNl + (7 - 7) 1 -> 2-X - l3
then tAN.S/21 -> X - 13/l..

l. 'l'be two sides of the equation are independently simplified
according to the current control settings. However, there is no
attempt to automatically shift terms from one side to the other,
etc. Moreover, there iS no attempt to verify· or disprove that the
equation is an identity or bas a solution.

2. This use of tbe - sign to indicate equations should not
be confused with the use of• within the conditional !XI'l' calStruct
in mUSIMP function definitions. When used in this more active role
the result is always either TRBE. or FALSE depending upon whether or
not the left and right sides have identical (as distinct from
equal) values.

3. The left and right binding powers of - are 80, which is
the same as for •·

4. As illustrated by the above example, when a non-equation
is combined w.itb an ·equation, the non•equation is independently
combined with both sides.

s. Although the .above exuiple illustrates how equations can
be solved stepwise, file S:S:,VE.EJ.:lN automates this precess.

6. Provided file .ARMY.ARI is loaded, sets of simultaneous
equations can be represented as an array of equations. For
example:

[2*X - 6, 4*Y - 8] / 2; -> [X - 3, 2-.Y - 4].

7. As with manual computation, operations such as &q\.laring
both sides or clearing non-numeric denominators can enlarge the
solution set, so the user should exercise caution and verify
candidate solutiais generated by such means.

8. If FOO is an equation, then sa:cm (!'CO) retutns the left­
hand side of the equation, and Tl:IIRD (FOO) returns the right-hand
Side.

l

C (.

cC

SJLVE.lXC (c:) 03/31/80 'fhe Soft Warehouse

SQlve. AB;ation Package ncx;umem;ation

PURPCm::
File SOLVE.!JjN provide$ a function for the exact solution of an
algebraic equation.

~lil:i FILE: Ql.IX:C

OSMZ: SCl.,VE (equatiai, unk..1'10Wn)

EXAMPLES:
SJLVE (r"2 - 4*A, X) ; -> {X - 2*A .. (l/2)

X - -2*A"" (l/2) }

SOLVE (LN(M:M(X-1)) - S, X); -> {X - l + TAN(tE"'B)}

ROORKS:

1. SX,VE tetums a c:olumn of aolutiClnS, where c:olumns are as
described in file ARRAY.DOC. · The functions FIRST, UST, SECOND,
and '?BIRD can be used to extract individual solutions from a c:olumn
of solutions. Alternatively, subscripts can be used for this
puq:ose provided file AP.RAY.ARI is loaded.

2. Forgetting the se~ond argument of SOLVE is a frequent
mistake. ·

3. As a convenience, when either side of an equation is zero,
the - o can be omitted.

{}.
4. When no solution exists, SOLVE returns tbe empty c:olumn,

s. When degenerate equations have an entire locus of
solutions which require parameterization to represent completely,
SOLVE introduces the parameters,

ARS(l), ARB(2), A.RS{J), •••

Their indexes start at 1 every time SOLVE.EON or MATRIX.ARR is
loaded. The following is an example of the mUSIMP-79 solution to a
degenerate equation:

SCC,VE (X - X, X); -> {X - ARB(l)}.

6. SOLVE expands the difference in two sides of an equation
°'7er a. c:ommon denominator, then multiplies by the de.nominator to
clear it. 'l'bis multiplication. can introduce spurious solutions if
a zero of the denominator coincides with one of the numerator.
Similarly, thiS multiplication can sua;,ress a solution associated
with an infinity of the denominator. Thus, the returned set should
be regarded as candidates for some of the solutions rather than the

l

SCI,VE .. 00: (c) 03/31/80 'l'he Soft Warehouse

complete verified solution set if an equation has a denominator
which could be zero or infinite for finite values of the unknown.
When these possibilities Are present, it is the user's •
responsibility to verify bis solutians by substit:.."tion or perhaps
by taking limits. It may be helpful in such instances to also use
SCLVE . to find any zeros of the common denominator in order to see
if they coincide with any of those in the numerator.

7. After clearing the denominator, SOLVE attem?ts moderate
factorization, then indE=pendently attempts to detetDU.ne the zeros
of each resulting factor. SOLVE recursively employs a;propriate
foaiulas for the inverses of the elementary functions and for the
zeros of linear, quadratic, &1"ld binomial factors. When SOLVE
encounters a factor which it cannot treat, it retw:ns a •solution•
of the form •factor - o•. Since the factor may be simpler than
the original equation, it might serve as a useful point of
departure for: an approximate numerical solution.

a. A careful study of the source listing for the f Ue
s::>L~N reveals bow adclitiaw. inverse functicns can be employed.

9. File ~ contains a matrix division operation which
can be used to solve simultaneous linear algebraic equatiaus.

2

•

0

ARP.AY .DOC (c) Ol/14/80 The Soft Warehouse

Arm JZackaae poc;µment:.ation

E'URPCSE:
File ARRAY.ARI provides a facility for estat.Jli$hing generalized
arrays, for extracting their components, and for performing
elementwise operations between arrays or b•tween arrays and
scalars.

PREREQUISITE Fn.E: ARITB.MOS

OSIGE:
l. For.maticn of a column vector:

{expressionl, expression2, ••• , expressionN}.
2. Focnatiai of a row vector:

[expressionl, expression2, ••• , expressionH].
3. Extracti0n of canponents:

array rowveetor
4. Operations having foans such as:

arrayl operator array2,
scalar operator array,
functiomame (array).

EXAL-1PLES:
[O, X] + [5, X, Y];
2 * {X, LN(Y)};

SIN ([X, Y]);
ex, [Y,Z], (WJ][2];
[X, [Y,ZJ, [W]][2,l];
[X, [Y,Z], [W]] [2] [l];

BEMARKS:

->
-> ·,

->
->
->
->

[S, 2*X, Yl
f2*X,
2*LN(Y)}

[SIN(X) , sn~(Y)]
[Y ,Z]
y
y

l. Arrays can be nested to any desired deptn. The elements of
a row or column can be any amitrary exf)ressions, including·perhaps
another row or column.

2. Columns are printed star.ting each element on a new line.
Thus, 2-dimensional arrays generally look better as a column ot
rows than as a row of columns. Sigher dimensiona..l arrays generally
appear best as a column of rows of rows ••• of rows.

3. When rows or columns of unequal length are comtli:ied
elementwise by an arithmetic: operation, the shorter of the two
arrays is treated as having implied zeros corresponding to the
extra elements of the longer array. (Consistent with this
inter?retation, a subscript value larger tnan the numoer of
explicit elements in a row or column yields a zero as t.1ie value of
the element.) Tnus, upper-triangular, left-triangular, and otner
•rag9ed11 arrays are eii iciently representeci.

l

01/14/80 Tne Soft Warehouse

4. When an array is combined with a scalar, the latter
distributes over the elements of tile array.

5. Functions of one argument such as SIN, ATAN, etc., which
employ the general rule-application function named sIMPU,
distribute over the elements of an array.

6. Subscripts can be recursively employed to any level, and
tr.ay can be symbolic. Por example, [Y, Z] (2] [NJ -> Z [N].

7. FIRST(row) -> [, FIRST(column) -> {, SECOND(row or
column) -> first element, etc.

8. Comments in file ARRAY.ARI indicate how to save space by
omitting t.'le column and/or subscript packages. (Rows together witn
FIPSr, REST, SECCND, etc. are sufficient for many P',lt;OSes.)

9. File MATRIX.ARR implements matrix operations on arrays,
including matrix transpose, multiplication, division, and power,
including inverse.

2

0

0

0

r.

ARITB.DCC (c) 02/09/80 The soft warenouse

RATmiN, ABITHMETJC Package PQcUinenta,tiQP

PURPOSE:
File ARITB.MOS can perform exact rational arithmetic operations

including SWllS, differences, products, quotients, ar.d powers up to 611
digits of accuracy in ·arrt desired radix base.

PREREx:lUIS!TE FILE: MOSIMP79.CD1

EXAMPLES:
5/9 + 7/12;
FCO: (236 - 3*127) * -13;
FCO "' 16;
P.AOIX (2);
FCO;
1011000101 + lllOlOOOl;
RADIX (1010);
GCD (436, 582);

CCNr.ROL VARIABLES:

I Exact rational aritmetic,
, Make assignments to variables I
I RaiSe numbers to integer powers\
, '!'he radix base can be set £rem 2-36,
, Convert numcers between radix bases%
, Do binary arithmetic ,
% To return to base lO \
, Catp.tte the GCD of two ru.mcers \

l. PBRCH is a control variable which, when TRUE, permits
selection of a branch of a multipli~ranched function. For ARI'.m.I-ltJS,
PBK:H nonFALSE permits the simpli;ication

(exprl • expr2) "'expr3 -> exprl"' (expr2 * expr3)

even when expr3 is not an integer.

2. ZDOBAS is a control variable which, when TRUE, permits t.-ie
simplification o "' expr -> l even when expr is nonnumeric.

3. ZEROEXP is a control variable which, when TROE, ~rmits the
simplification expr "' 0 -> l even when expr is nonni.uneric.

PR!l1ITIVLY Da'INED ~:

l. ASS (expr) is a function which returns the absol1,;1te value of
its argument when the argument is a rational number. Otherwise, the
rule-a;:plication function SIMPO is invoked, so t.11e unevaluatea absolute­
value form is returned if no applicable rules are present.

2. ~ (expr) is a helper function used ~ SIMPU and elsewhere
to appropriately partition an expression for application of a rule.

3. ARGLIST (expr) is a helper.function used to appropriately
group the operands of an expression for application of rules to varyary
operators such as "+" and "*".

l

4. BASE (expr) is a selector function which returns the base of
an expression of the form base .. exp; otherwise it retu:ns ~ itself.

s. COOIV (expr) is a selector function which returns the
codivisor (i.e. the non-numeric factors) of an expression which is a
product; l. if WMBER (expr); otherwise it retums ~ itself.

6. COEFF (expr) is a selector function which returns the
coefficient (i.e. the numeric factors) of an expression which is a
product; the ,um: if wr-mm (expr); otherwise it retums 1. Note that
in all cases

expr • COEFF (expr} * CCDIV (expr)

7. OEN (expr) is a selector function which returns the
denominator of its argument, returning l when there is none.

8. D£NOM (expr) is a recognizer function which returns fltOE iff
its argument has the internal form (.. bas exp), with exp being negative
or having a negative coefficient.

9. EV&JB (expr, subexpr, replacement) is a function which retums
the result of evaluating a copy of its first argument, wherein each
syntactic occurrence of its second argument is replaced by the third
argument.

10. EXPON (expr) is a selector function which returns the
exponent of an expression of the fom base ... exp; otherwise it returns
l. Note that in all cases

·,

e."q)r • BASE (expr) .. ~ (expr)

u. GC.D (intgrl, intgr2) is a function which returns the positive
greatest cor:imon divisor of its integer arguments.

12. lDENITl'Y (expr) returns its argument. This trivial function
is used for ~lying inverses and acc:omodating conditional exits having
atomic conditions. ·

13. I.CM {intgrl, intgr2) is a function which returns the positive
least common multiple of its integer arguments.

14. MIN (intgrl, intc;r2) is a funC""..ion which returns tile minimum
of its two integer arguments.

lS. MULTIPLE (intgrl, intgr2) is a function which returns FALSE
if its second integer argument is net an integer multiple of its first
integer argument.

16. NmCOEFF (e.."q'r) is a recognizer function which returns TRIJE
iff its argument is negative or has a negative coefficient, returning
F.ALSE: ot.11erw ise.

2

0

0

C,

<C

17. NEGMULT (intgrl,. intgr2) is a predicate which returns TROE
iff its second integer argument is a negative integer multiple of its
first integer argument.

18. WM (expr) is a selector function which retu.ms tne numerator
of its argument, returning the entire argument when there is no
denan.inator.

1.9. WMBER (expr) is a recognizer f1.mction wbich retu.ms TROE iff
its argument is an integer or a rational number.

20. POSMOLT (intgrl, intgr2) is a predicate whj_c:h returns TROE
iff its first integer argument is a positive multiple of its second
integer argument.

21. POWER (expr) is a recognizer function which retu.ms mm iff
its argument is of toe foan exprl .. expr2, retuming FALSE otherwise.

22. PRODUCT (expr) is a recognizer function which returns TRUE
iff its argument is of the form exprl * expr2, returning FALSE
otherwise. It is imp:>rtant to realize that quotients are represented as
products involving negative powers.

23. REX:IP (expr) is a recognizer function which returns fflJE iff
its argument is a rational number of the form l/d, returning FALSE
otherwise.

24. SIMPO (name, expr) 1s·· a function which applies any
appropriate established rules for' the w-iar.t function or operator whose
name is the first argument of SIMPU and whose operand is the second
argument of SIMPO.

25. s:m {expr, SUbeXpr, replacement) returns a copy of its first
argument, wherein every syntactic instance of its second argument is
replaced by its third argument. In general this will produce an
unsimplified result, so the similar E.VSt;-S function uses SUB, then tvAL.

26. SOM (expr) is a recognizer function which returns TRUE iff
its argument is of the fo.cm exprl + expr2, returning FALSE otherwise.
It is important to realize that differences are represented as sums
involving tems having negative coefficients.

3

Cpt;iona.1 mc:mfflL PCWER, Package

PORPC'"..cL:
Provides the facilities for the simplification of fracticnal powers

of numbers and c:omplex exponentials.

OSAGE:
number .. (fraction),
tE"' (intgr * tI * IPI / 2).

EXAMPLES:
(-24) .. (l/3) -> -2 * 3"' (l/3),
(-4} .. {l/2; -> tI * 2,
tE .. (3 * tl * tPI / 2) -> - tI.

c:affR)Lv.AlUASLE:
PBROi, which if FALSE, prevents Picking a BRanCH for fractional

powers. {e.g. 4 "' (l/2) will not simplify to 2.)

RE?,WU(S:

J.. tE represents the base of the natural logarithms, tI represents
the positive square root of minus one (+ (-1) "'{l/2)), and tPI represents
the ratio of the circumference of a circle to its diameter.

2. Simplification of fractional powers takes place only if the
control variable named PBlCB is not FALSE. The positive real branch is
selected if one exists. Otherwise, tne negative real branch is selected
if one exists. Otherwise, the branch with smallest positive argument is
selected.

3. As in manual computations, Picking a SRanCB of a fractional
power involves an arbitrary choice which can yield invalid results.
Thus, the user is cautioned to verify results obtained by such
operations.

4. The global variab-le named PRIMES contains a list of successive
primes, beginning with the integer 2. For fractional powers, the
raciican:i is factored into a.product of powers of the numoers in P!UMES,
perhaps times a residual having no factors in PRIMES. The fractional
power is then distributed ewer ttu.s prodl.let, with a discrete variant of
Newton's method being used to determine if the fractional power of any
residual is an integer. Tilus, simplification of fractional powers of
large integers might be incomplete if l'RL.'11.1:i is not long enough.

S. As in manual comp.itations, i:eduction of complex ex-;onentials
modulo (2 * tPI * U) is inconsistent with the identity LN(Z*W) • LN(Z}
+ LN(W). Thus, the user is cautioned to verify results obtained using
both transfor:nations together.

4

0

•

,.,.

·C

C C

~ional fPC1PRIAL Package

l?O'RPCSE:
Provides the factorial postfix operator • 1•. The factorial of a

non-negative integer is recursively defined as follows:
01 • 1,
Nl • N"'(N-l) !, for N > O.

USN:;E:
N 1 where N is a non-negative integer.

EX.AMPLE:
S! -> l20.

l. The left binding power of • 111 is 160. Thus -s 1 parses to
- (S!) and 3--s1 parses to· 3"(5!).

2 •. When not given a nonnegative integer operand, •1• calls upon
the SIMPO rule-application function, thus returning the unevaluateci
factorial form if no appropriate rules are establishea.

5

.C

C

u:x; .IXX: (C:) 02/09/80 The Soft Warehouse

Logarithm Package Documentation

P'.JRPOSE:
File LCG.>.u; provides for logarit:mlic: si:r.plificaticns.

PP.E:RE)JJISITE FILE: ALGEBRA.ARI

CCNrP.oL "~=
l. LelGBAS, which is the default LOGarit.hm BASe when LOG is given

only one argument.

2. PmCB, whic:.~ if FALSE prevents Picking a BRana! of logarithms.

3. U'.GEXE'D, which controls expansion or collection of logarithms,
and base conversion.

USAGE:
LN (expr),
u:x; (expr),
r.a.; (expr, base).

R!l•IARKS:

l. Since the emphasis of muMATH is on exact results, there is no
attempt to awroximate irrational logarithms.

2. The unbound variable tE represents the base of the natural
logaritms.

3. Although all logarithms are stored internally as two argument
functions, t.~ (expr) is used as an a.ci:>reviation for LOG (expr, tE) on
input and out?,lt.

4. u:x; (expr) is used as an atbreviation for LOO (expr, u::G!AS) on
input and output, where LOOBAS is a control variable initially set to
u:.

s. base .. I.CG (expr~ case) -> expr.

6. Provided PBRCB is m:JE:

LOG Cl, base) --> o,
LOG (base, base) -> l,

LCG (base"'e."G?r, base) -> expr.

l

7. Provided LCGFXPD is a 1:=05itive integer multiple.of 2:

u:x; (expr,case) -> LOO (expr, IE) / LOG (base, iE)

when base is not tE. When LCGEXPD is a negative integer multiple of 2,
the opposite transformation of combining appropriate ratios of
logarithms occurs.

8. Proviced u:xma?O is a J?OSitive integer multiple of 3:

LOO (expr ... exp, base) -> exp * LOG (expr, base).

A negative integer multiple of 3 causes the opposite transformation.

9. Provided I£GEXPO is a positive integer multiple of 5:

LCG (exprl*expr2, base}
ux; (e.xprl/expr2, base)

-> LCG (exprl, base) + LCG (expr2, base),
-> LCG (exprl, base) - LCG (e.xpr2, base).

A negative integer multiple of S causes the opposite collection
transfoanation.

2

0

0

,,..c
.. ___ ..

T!GPCS.OCC (c} 02/09/80 The Soft.warenouse

Positive :mtGCNl:IS'BIC sill:plification Package t:)cA.weptation

PORPOSE: File '?RGPOS.ALG provides the following trigo.'lOmetric trans­
focnations:
l. exploitation of synmetry to simplify trig argumentS
2. replacement of other trig functions by sines and cosines
3. replacement of integer powers of sines and cosines by linear

combinations of sines and cosines of multiple angles
4. replacement of products of sines and cosines by lineat

combinations of sines and cosines of angle sums
s. replacement of integer powers of sines by those of cosines or

vice-versa

~UISlTE FILES: AIGDPA.ARI
(Note: Loading TRGNEG.ALG after TRGPOS..AIA; preserves the full
capabili t.ies of both files. LQading TRGPOS.ALG after 'l'BGNEG.At,G
destroys the angle-reduction capabilities of the latter, thus
saving some space.)

cam-o:.~:
l. TRGEXPD controls repla!=enient of trig functions by sines and

cosines and replacement of powers and prod.ucts of sines · and cosines by
linear combinations. Only positive values of -m::;EXPD are significant
when ~ is loaded without ~

2. TRGSQ controls the conversion of integer powers of sines to
cosines and vice-versa.

OSAGE:
SIN (expressiai) ,
COS (expression) ,
TAN (expression),
cs: (expression),
SEX: (expression),
car (expression).

R!l.wntS:

l. SIN(O) -> 0, and COSCO) -> l.

2. Symmetry is exploited to simplify the arguments of sines and
cosines. For example, SIN(-X) -> -SIN(X) ar.d COS{-X) -> COS(X).

1

3. When TRGEXPD is a positive multiple of 2, then tangents,
cotangents, secants, and cosecants are replaced by corresponding A 1
expressions involving sines and/or cosines. For example, when~ = ""1'
30, CSC(X) -> l/SIN(X).

4. When TRGEXPD is a positive multiple of 3, then integer powers
of sines and cosines a.re expanded i."l terms of sines and cosines of
multiple angles. For example, when TRGEXPD • 30, COS(X) "'2 ->
(l+ccs(2"'X))/2. These transfoi:mations usually give tbe most attractive
results if RJMNUM and perhaps also D!lHlM are positive multiples of 6.

S. When 'I'RGEXPD is a poaitive multiple of S, then products of
sines and cosines are expand,a in terms of angle sums. For example,
when 'I'RGEXPD is 30, SIN(X)*S'IN(Y) --> (COS(X-Y) - COS(X+Y))/2. These
transformations usually give the most attractive results if WMNUI-1 is a
positive multiple of 30 and OEN.WM is a positive multiple of 2.

6. E.(panding over a common denominator with ~ = 30 yields a
normal form for a large class of trigonometric-rational expressions.
Thus, the most straightforward way to prove most trig identities is to
evaluate the difference in the two sides with ~= NJMNJM: DENlEN:
30, PWRE:XPO: 6, and DENNOM: -30.

7. TRGE:XPD = 30 has the effect of "linearizing" trigonometric
polynomials, thus facilitating hai:monic or Fourier analysis.

8. For integer n with ln·I > 1 and for all u, when TRGSQ is a 0
positive integer, then

COS{u) "'n -> COS(u) "'REMAINDER(n,2) * (1 - SIN(u)""QUOI'IEN'I'(n,2))"'2.

Conversely, when TRGSQ is a negative integer, then

SIN(u}"'n -> SIN(u)"'REMAINDER(n,2) * (l - CO.S(u)"'QOorlll'll'(n,2))"'2.

These transformations· are sometimes useful for transforming a
trigonometric polynomial to a more compact equivalent trig polynomial.

9. Even when a trig polynomial is preferred for the final form,
net simplification is often achieved by evaluating witb 'tRGE:XPD • 30,
then •30, then perhaps again with TBGSQ • l or -1 according to the
appearance of the result produc:ed by •30.

10. File ~ provides for tbe negative settings of 'l'9Za'D
to yield the converse of the above transfoanations.

2

0

'1'1Q£G.DCC (c:) 02/09/80 The soft warenouse

Negative WGWJ,wrRIC simplification Package DoQJmentAtion

PURPOSE: File TRGNEG.ALG provides the following trigonometric trans­
foauations:
l. exploitation of synmetries to simplify trig arguments
2. angle reduct.ion
3. m.:ltiple-angle ~ion
4. anqle-sum expansion
S. elimination of reciprocals of trigonometric focns
6. elimination of certain products of trigonanetric foans
7. simplification of trig functions of their own inverses
a. replacement of sines and cosines by canplex exponentials

PRERE:QUISl'l'E FILE: ~ARI
(Note: Loading TRGPOS.ALG after TRGNEG.ALG destroys the angle­
reduction capabilities of the latter, thus saving some space.
Loading~ after~ preserves the full capabilities
of both files.)

CQll'ROL WJUABLES:

l. TRGEXI'O controls the use ·of multiple angle and angle sum
expansions and replacement of trig functions by complex exponentials.
Only negative values of TRGEXPD are significant when TRGNEG.ALG is
loaded without ~.ALG.

OSM:;E:
SIN (expression),
cos (expression) ,
TAN { expression) ,
CSC (expression) ,
SEC (expressiai),
car (expression) ,
'rnGEX1?0 (expressiai, integer).

l. Since the emphasis of muHATB-79 is on exact results, there is
no attempt to approximate irrational trig expressions.

2. The ratio of the circumference to the diameter of a circle is
repruented by the uncour.d variable tPI. The user ia of course free to
usign a ratic:r.aJ. approximaticn to iPI and use series aa,roximat.ion.s to
the trig functions.

l

3. Angles are assumed to ce measured in radians. 'l'hose woo would
prefer some other unit such as degrees may wish to define additional Oui
functions named SIN:), CCSD, etc.

4. Sines w cosines of angles which are numeric multiples of tPI
are reduced to equivalent sines or cosines in the range [O, tPI/41, then
sines and cosines of the special angles o, tPI/6, and tPI/4 are
evaluated exactly. For example,

SIN (20*tPI/7) -> SIN (tPI/7),
and SIN (7*1PI/3) -> 3"'(1/2)/2.

S. Symmetry is exploited to simplify the arguments of sines and
cosines. For example,

SIN (-X) -> -SIN (X),
and COS (-X) -> COS (X) •

6. Trigonometric functions of the corresponding inverse trig
functions simplify. For example, SIN(ASIN(X+S)) -> X+S. The inverse
trig functions are named~, ASIN, ACDS, N:J:Jr, At:,S:;, and ASa:.

7. Products of a tangent, cotangent, secant, or cosecant with
another trig function of the same argument are simplified to l or to a
single form where possible. For example,

SEC(X)*COS(X) -> 1,
and 'l'AN(X)*COS(X) -> SIN(X).

For an expression such as SEC(X)"'2*COS(X)""2 it is necessary to O
reevaluate with EXPSAS being a negative multiple of 2 in order to
ac:heive the desired trig tran$formation.

8. When~ is a negative multiple of 2, then negative powers
of tangents, cotangents, secants, and cosecants are replaced by
corresponding positive powers of the corresponding reciprocal trig
functions. For example, when m::mcro • -o, l/'l'AN(X+7) ""3 -> carcx+7) ""3.
For technical reasons, negative powers of sines and cosines are treated
in file TRGPCS.AI.G.

9. When TRGEXPD is a negative multiple of 3, then sines and
cosines of mulitple angles are expanded in terms of sines and cosines of
non-multiple angles. For example, when 'l'BGEXPD • -6,

SIN (2"'X) -> 2*SIN(X) *COS(X}
and COS {3-x) -> 4*COS(X)""3 - 3*COS(X).

These transformations usually give the most attractive results if llJMWM
is a positive multiple of 6.

10. When T.RGEXPO is a negative multiple of S, then sines and
cosines of angle sums and differences are expanded in te::ms of sines and
cosines of nonsums and nondifferences. For example, when ~15,
COS{X+Y) -> COS(X) *COS(Y) - SIN(X) *SIN(Y). These transformations
usually give the most attractive results if NOMNUM is a positive
multiple of 6.

2

0

ll. When TRGEXPO is a POSITr.7E multiple of 7, then sines and
cosines are converted.to complex exponentials. ror exuple, wh1tn
T:RGEXPD • 14, then COS(X) -> (tE""(tI*X) + l/tE""(tI*X)) / 2. · The
opposite transformation, provided in file AlU'm.MUS, is requested when
TRGEXPD is a negative multiple of 7. A worthwhile net trig
simplification can sometimes be achieved by converting to complex
exponentials, expanding or factoring judiciously, then c:onv~ back
to trig functions.

12. In muMATH-79 ct.,anging the value of an option variable does not
affect the values of expressions which have already been evaluated.
Thus, after changing the value of ~ and other relevant variables
it may be necessa.cy to use ENN,, to get tixa desired effect.

13. Function TRGEXPD reevaluates its first argument with ~
tempora.rily set to the value of the second argument. Thus, it provides
a convenient way to ac:c:omplish a trigonometric transformation without
the necessity of altering the global setting of the TRG~.control
variable.

14. File '?BGPOS.AI.G has other important trig transformations, many
of which are the opposite of those provided in file T.RGNEGJ\W.
Generally, the positive settings yield a more canonical (but not
necessarily more c:ompa.et) representation. A net simplific:a.tion is often
achieved by evaluating an expression with the relevant cption variables
set positive, then reevaluating with them set the other way. Thus,
files TR:iPOS.AI.G and TIG-m:;.ALG comprise an imp:)rtant complementary pa.i.r
pair of files. Since together the files are relatively large, for some
applications it may be desirable to extract and combine a few of the
required features from both files, together perhaps with a few
additional transformations modeled after them.

3

DIF .JXX: (c) 02/09/80 The Soft warehouse

Pli'FERENnA...."lCJ1 Package I)oc;umentat;ion

PURPOSE:
File DIF .MI:; provides a function wbieb retums the symbolic first
particll derivative of its first argument with respect to its second
argument.

~.Sl'l'E FILE: AIGEBPA.ARI

OSGE:
OIF (expression, variable),

EXAMPLES:
DIF (A"'X""2, X) -> 2*A"'X,
CIF (LN(X+A), X) -> 1/(X+A).

l. When the differentiation rule for a function or operator is not
known to the system:

a. 'l'he derivative is a if none of the arguments or operands
contain the differentiation variable. . For example,

OIF (F(Y), X) -> O.

0. 'l'he derivative is not evaluated otherwise. For
exaq;,le,

OIF (F(X), X} -> DIF (F(X), X).

2. A careful study of file DIF.ALG reveals how additional
differentiation rules can be inserted.

3. 'l'he differentiation "variable" can actually be an art)itrary
expression, which is then treated the same as a simple variable for
differentiation p.i:p:,ses. (This ia occasiaw.ly quite useful, such as
when perfoz:ming a square-free factori2ation or when deriving the Euler­
Lagrange equations for a specific variatia'lal calculus problem.)

4. Sigher-order pe.rtial derivatives c:an be requested directly by
nested use of OIF, such as DIF (DIF(SIN(X*Y) ,X), Y). However, beware
that repeated differentiation can require dramatically increasing time
and space, especially for products, quotients, and composite
expressions.

5. The useful utility function FR.EECF (exprl, expr2) is a
predicate which returns TRUE iff exprl is free of (i.e. contains no
OCOlrrences of) expr2.

l

C

oo.occ (c:) 02/09/80 · '1'he Soft Warehouse

INmii&TION Pac;lsase nocumentai;ion

PORPCSE:
FileINr.DI!' provides f~ilities for indefinite syrrcolic
integration.

P~Sl'l'E Fn.E: DIF.AI.G

OSAGE:
INr (expressial, variable) •

EXAMPLE:
lNI' (A-X + SIN(X), X) -> A-X'"'2/2 - CCS(X).

~:

l. When INT is unable to determine a c:losed-form integral of
portions of an expression, the re::·~rned expression will contain
unevaluated integrals of those portior.;.;;.. For example,

INl' (X + A*i:E""X/X, X) -> :"'2/2 + A*INl'(tE"'x/X,X).

2. INr merely uses clistril>ution over sums, · extraction of factors
which do not depend upon the integration vtri~le, known integr~s of
the built.•in functions, a few-• reduction. rules, and a "derivatives­
divides" substitution rule. Consequently, integration succeeds only for
a relatively ·modest class of integrands. aowever:

a. 'l'he class is large enough to be quite useful,
b. File IN'lMORt.INl' contains acditional. rules,
c:. Integration of a·truncated Taylor-series approximation

of an integrand can often yield a truncated series
representation of otherwise intractable integrals.

3. A careful study of files INT..OIF and INTMOR.E.INT reveals how
additional integration rules can be inserted.

4. The integration •varia..ble" can be an arbitrary expression,
wbich is then treated the same as a simple varia..ble for integration
pirposes.

5. successful integration may depend upon the form of tne
integrand, after it is simplified according to the current; flag
settings. Generally speaking, it is best to employ conservative flag
settings which do relatively little to alter the form of an expression.
INT will automatically expand, fac-:or, employ trigonometric trans­
formations, etc. as necessary.

l

·C
nmt:!RE.DCC (C) 02/09/80 The soft Warehouse

E¢enged INJ$RATIC?x Pwekage poc;µmentation

PURPCSE:
File INrMORE.m? provi.3es symbolic.definite integratioo and extends
the powe.r of the indefinite integration provided by file INI'J)IF.

~ISI'l'E FILE: INI' .DIF

OSAGE:
INI' (expressioo, variable),
DEF!Nl' (expressia1, variable, lCMerlimit, ua,erlimit).

EXAMPLE:
DEFINl' (A-X"'2, X, 0, l) -> A/3.

lm•lARKS:

l. DEFIN? merely uses substitution into the indefinite integral,
which is appropriate only for proper integrals.

2. When DEFIN? is unable to detemine a closed-form · integral, the
unevaluated integral is returned. For example,

OEFINr (X+A*tE"'X/X, X, 0, l) -:-> DEFINl' (X+A*tE'"'X/X, X, 0 ~ l) •

3. Nested integration can be used to request directly an iterated
integ;ation, such as occ:urs for appropriate multiple-integrations. For
example, to integrate the expression yttx'"'2 over the uppe.r unit semi­
disk, we could evaluate

DEFINT (DEFINT(Y*X"'2,Y,0,(l-X"'2) '"'(l/2)), X, -1, l).

Bowever, beware that the class of expressions which is repeatedly
integrable is dramatically smaller than the class which is once
integrable.

4. File I?-."!JXX: contains other appropriate remarks.

l

cc

muSIMl?/muMATB-79 runction Name and Variable Name INDEX

The following is an index of all the important function,
variable, and constant names in both muSIMP .and muMATB. Each. name is
followed by the module in wbich it occurs, a descriptor indicating the
name's use, the page in the mod~le's docu~entation on which it is
explained, and finally the page in the module's muMATB source file on
which it is defined. Function names_ are indicated by a set of
parentheses following the name which contains the usual number of
arguments given to the function. An asterisk (*) in the •page
Defined• col1.1mn indicate.i that the item is incrementally defined in a
number of places within the source.

Page Page
nu Mgdule pescriptor oocumented Defined

ABS (l) ARITB Numerical l 3
ADJOIN (2) muSIMP Constructor 8
ANt> (N) muSIMP Logical 12
APPEND (2) MATRIX Constructor 2
APPLY (2) muSIMP Evaluator 28
ARGE!X (l) ARITB Selector l 4
A.RGLIST (l) ARITE Selector l 4
ARRAY {l) ARRAY .Recognizer 2
ASSIGN (2) muSIMP .. Assignment 13
ATOM (1) muSIMP Recognizer 10
ATSOC (2) muSIMP Property 14

BASE Cl) ARITB Selector 2
BASEXP ALGEBRA Control variable 2 4
BASEXP (l) ALGEBRA Recognizer 4
BLOCK muSIMP Keyword 31

COOIV (l) ARITB Selector 2 3
COEFF Cl) ARITB Selector 2 4
COL (1) ARRAY Recognizer 2
COMMA muSIMi Constant 35
COMPRESS (1) muSIMP Sub-atomic 18
CONCATEN (2) muSIMP Modifier 9
COND (N} muSIMP Evaluator 29
CONDENSE (2} muSIMP Storage 33
cos (l} TRGPOS Numerical l l
cos (1) TRGNEG Numerical 2 l
COT (l} TRGPOS Numerical l l
csc (l) TRGPOS Numerical l l

DEFINT (4) INTMORE Numerical l l
DELIMITER muSIMP Constant 36 22
DELIMITER (1) muSIMP Recognizer 36 22
DEN Cl) ARITB Selector 2 2
OENDEN ALGEBRA Control variable l ., ..

l

Hau

DENOEN (l)
DENNUM
DENNOM (1)
DENOM (l)
DIF (2)
DIFFERENCE (2)
DIVIDE (2)
DRIVER (0)

ECHO
EMP'I'i: (l)
ENDBLOCX
ENDFUN
ENDLOOP
ENOSUB
EQ (2)
EVAL (l)
EVSOB (3)
EXIT
EXPAND (l)
EXPBAS
EXPBAS (1)
EXPO (l)
EXPLODE (l)
EXPON (l)

FCTR (l)
FIRST (l)
FLAGS
FLAGS (0)
FOORONPI
FRIE (2)
FREE (2)
FUNCTION

GCD (2)
GET (2)
GETD (l)

HAL!'

IDENTITY (l)
IOMA1' (l)
INFIX
INT (2)
INTEGER (l)

LBP
LCM (2)
LENGTH (l)
LINEL!NGTH (l)
LIST (N)
LN (l)
LOAD (3)

Module
ALGEBJA
ALGEBRA
ALGEBRA
ARITl:l
DIF
muS!MP
m1.1SIMP
JlluSIMP

muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
A.RITH
muSIMP
ALGEBRA
ALGEBRA
ALGEBRA
ALGEBRA
muSIMP
A.RITl:l

ALGEBRA
muSIMP
ALGEBRA
ALGEBRA
TRGNEG
SOLVE
OIF
muSIMP

ARITH
muSIMP
muSIMP

TRGPOS

A.RITH
MATRIX
muSIMP
INT
muSIMP

muSIMP
A.RITB
muSIMP
muSIMP
muSIMP
LOG
muSIMP

pesc;riptor pocumented pef1ne,
Recognizer
Control variable
Recognizer
Selector
Numerical
Numerical
Numerical
Evaluator

2

2
l

19
19
31

Control variable 22
Recognizer l0
Delimiter 31
Delimiter 17
Delimiter 30
Delimiter 17
Comparator ll
Evaluator 27
Constructor/Evaluator 2
Delimiter 31
Evaluator 4
Control variable 2
Recognizer
Evaluator 4
Sub-atomic 18
Selector 2

Evaluator 4
Selector 7
Global variable
Printer 4
Constant
Recognizer
Recognizer l
Keyword 16

Numerical 2
Property 14
Definition 16

Constant

Identity function
Constructor
Parse property
Numerical
Recognizer

Parse property
Numerical
Sub-atomic
Printer
Constructor
Numerical
System function

2

2
l

35
l

10

35
2

18
25

8
l

34

3

~o
4
1

1

5
4
4
7

4

8 . .~
8
l
1
l

3

l

1
2

2

3

Hams: Module Descriptor DO~ijm1nt1g ~~fiDig .
LOG (2) LOG Numerical l l
LOGARITBM (l) LOG Recognizer "" .. , . 2 <o· LOGBAS LOG Control variable l l
LOGEXPD LOG Control variable 2 l
LOGEXPD (2) LOG Evaluator l
LOOP (N) muSIMP Evaluator 30 30
LOOP muSIMP Keyword JO,
LPAR muSIMP Constant 35

MAPFON (2) EQN Mapping . l
MATCH (2) muSIMP Reader 36 ... 22
MATCHNOP (2) muSIMP Reader 36
MIN (2) ARITH Numerical 2 3
MINUS (l) muSIMP Numerical 18
MKPROD (l) ARITB Constructor 2
MKRAT (l) ARITH Constructor s
MKSOM (l) ARITB Constructor 2
MOO (2) muSIMP Numerical 19
MOVD (2) muSIMP t,efinition 16
MULTIPLE (2) ARITH Comparator 2 l

NAME (l) muSIMP Recognizer 10
NEGATIVE Cl) muSIMP Recognizer 10
NEGCOEFF (l} ARITH Recognizer 2 2
NEGMOLT (2) ARITB Comparator 3 l
NEWLINE (0) muSIMP Printer 24
NOT (1) mu.SIMP Logical 12 'oE NUM (l) ARITB ··selector 3 2 i

NUMDEN ALGEBRA Control variable 2· 3
NUMDEN (l) ALGEBRA Recognizer 3
NUMNOM ALGEBRA Control variable l l
NUMNOM (l) ALGEBRA Recognizer l
NUMBER (1) ARITH Recognizer 3 l

OBLIST (0) muSIMP Constructor 8
OR (N) muSIMP Logical 12
ORDERP (2) muSIMP Comparator ll

PARSE (2) muSIMP Reader 36 21
PBRCB ARITB Control variable 1,4 10
PION2 ARITB Constant 12
PION4 TRGNEG Constant l
PLOS (2) muSIMP Numerical 18
POSITIVE (l) muSIMP Recognizer 10
POSMOLT (2) ARI'l'B Comparator 3 l
POWER (l) ARITB Recognizer 3 l
PREFIX muSIMP Parse property 3.5
PRIMES ARITB Glooal variable 4 ll
PRINT (1) muSIMP Printer 24
PRINTLINE (l) muSIMP Printer 24
PRODUCT (1) ARITB Recognizer 3 l

'c
PROPERTY muSIMP Keyword 15
PRTMATH (4) muSIMP Printer 25
PtJT (3) muSIMP Property 14

3

PO~. (2)
PWREXPD

QOERY (2)
QUOTIENT (2r~

RADfX (l)
UP
Rl)S''" (3)
UAl) (0) . .
REAJXBAR· (O)'··::­
RECIP (1)
RECLAIM (0) . .
REMPROP {2)·· ... ,.
REPLACEF c2r·
REPLACER (2) ..
REST (l) ..
UVJRSE (2)
ROW' (l)
RPA.a
RREST {l)
RRRIST (l) -~
SAVE (3)
SCAN (0)
SEC (1)
SECOND (l)
SIGN (l)
SIMPO (2)
SIN (l)
SIN (l)
SOLVE (2)
SPACES (l)
SOB (3)
SUBROUTINE
SOM (l)
SYNTAX (N)

TAN Cl)
TERMINATOR (0)
TBIRD Cl)
TIMES (2)
TU.Cl (N)
ftGSXPD
TRGIXPD
'l'RGUPO (2)
TRGSQ

ONION (2)
ONTRACE {N)

WHEN
WRS (3)

Module
muSIMP
ALGIB+IA
IN'l'
muSIMP

muSIMP
muSIMP
muSIMP
muSIMP
muSIMP
All'l'B .
muSIMP
muSIMP
muSUlP
muSIMP
muSIMP
muSIMP
ARRAY
muSIMP
muSIMP
muSIMP

muSIMP
muSIMP
'l'RGPOS
muSIMP
INT
ARITB
TRGPOS
'l'RGNEG
SOLVE
muSIMP
AR!TB
muSIMP
ARITB·
muSIMP

TRGPOS
muSIMP
muSIMP
muSIMP
TRACE
TRGPOS
TRGNEG
TRGNEG
TRGPOS

SOLVE
TRACE

muSIMP
muSIMP

Descriptor
Definition
Control variable

Reader/Printer
Numerical

Printer
Parse property
Reader
Reader
Reader
R•cognizer
Storage
Property
Modifier
Modifier
Selector
Constructor

·Recognizer
Constant
Selector
Selctor

System
Reader
Numerical
Selector
Recognizer
Evaluator
Numerical
Numerical
Numerical
Printer
Constructor
Keyword
Recognizer
Reader

Numerical
Recognizer
Selector
Numerical
Debu99er
Control variable
Control variable
Evaluator
Control variable

Constructor
Oeb1,199er

Keyword
Printer

4

pocumentea Define¢
16

2

19

25
35
22
21
21

3
33
14

9
9
7
8

35
7
7

34
21

1
7

3
l
2
l

24
3

35
3

36

l

7
19

l
2
2
3
2

l

31
25

:~-,·.·. -·•
:4

l

1

l

l l.
4
l
l
3

l

l
22

l
22

l
l

3
l

l
3

liAm.e. Module

ZllO (l) muSIMP
7.EROBASE A.RITB

C iDeEXPT A.~ITB

• muSIMP
> muSIMP
> A.RITB
< muSIMP
< ARITB
• muSIMP •
+ muSIMP
+ ARITB - muSIMP - ARITH
* muSIMP
* A.RITB
/ muSIMP
I ARITH ... A.RITH
1 ARITH
? ARITB .
~ MATRIX

MATRIX

tAD SOLVE
IE A.RITB
iI: ARITB

·o tPI! A.RITB

t ·' ·•

~ ,., .

Descriptor pocumentea oe:~nea
Recognizer ., , _
Control variabli''•·,
Control variabler~·

Comparator
·Comparator
Compa:-ator

·comparator
Comparato:
Assignment_
Numerical
Numerical

···Numerical
· >ttumerical·

Numerical
Numerical­
Numerical
Numerical
Numerical
Numerical ..
Error f:.:ncticn
Numerical.
Numerical

Constant
Constant
Constant
.constant

,,, ... -•

, : ,. ; .. ~.
..... ~ ,,. -~ .

'•! ..•.

10
l
l

11 .
11

11

13
20 ('

20 r

s

3
2

l
4
4
4

,. . ,,.. . ,,..
. ' : . ~e-:...·

l. ~ • l .. , : ~:
• ~ < ~ ..

..... -·

r ·; \' .·: ~· r
. ~ ' .,,,. . . ~ ..

·~· : ·~':,,·.---... , ".,,

s

