
CJJie Software CJOolwork,s·

15233 VENTURA BOULEVARD. SUITE 1118,SHERMAN OAKS.CALIFORNIA 91403 1818) 986·4885

TOOLWORKS C/80

Version 3 .1
February 1984
Walt Bilofsky

Table of Contents

l. INTRODUCTION •••••••••••••••••••••••••••••••••• 3

2. LEARNING C; OTHER REFERENCES •••••••••••••••••• 5

3. FOR THE EXPERIENCED C USER •••••••••••••••••••• 6

4. THE C/80 DISTRIBUTION DISKS ••••••••••••••••••• 7

5 • AN EXAMPLE •••••••••••••••••••••••••••••••••••• 9

6. RUNNING THE COMPILER ••••••••••••••••••••••••• 10
6.1. Compiler Switches ••••••••••••••••••••••• 10
6.2. Changing Compiler Defaults •••••••••••••• 12

7. C/80 LANGUAGE SUMMARY •••••••••••••••••••••••• 13
7.1. Variables .•••.•..••..••.••..•..•••.••.•• 15
7.2. Data Types •••••••••••••••••••••••••••••• 15
7.3. Pointers •••••..••.•••••••••••••••••.••.• 16
7. 4. Structures ••••••••••.••••••••••••••••••• 16
7. 5. Storage Classes •••.•••••••••••••.•••.••. 17
7.6. Constants ••••••••••••.•••.•••••••••.••.. 17
7. 7. Operators and Expressions •••••••••••..•• 18
7 .a. Statements •••••.••..••.•••.•••••••••.••• 19
7.9. Conclusion •.•••••••••.••••.••••••••••••• 19

8. IMPLEMENTATION AND MACHINE DEPENDENCIES •••••• 20

9. RUNTIME AND I/O LIBRARY •••••••••••••••••••••• 23
9 .1. Files and Devices ••••••••••••••••••••••• 23
9. 2. Commands •••••••••••••••••••••••••••••••• 24
9. 3. I/O Redirection 24
9.4. Interrupting a Program •••••••••••••••••• 25
9.5. Basic I/O Library Routines •••••••••••••• 26
9.6. Formatted Input and Output •••••••••••••• 28
9.7. More Storage and I/O Routines ••••••••••• 30
9.8. Arithmetic and Number String Functions •• 30
9. 9. String Manipulation ••••••••••••••••••••• 31
9.10. CP/M System Calls •••••••••••••••••••••• 32
9.11. Random Access File I/O ••••••••••••••••• 32
9.12. Program Chaining; Wildcards •••••••••••• 33

CONTENTS C/80 3.1

10. USING C/80 WITH MACRO-SO OR RMAC •••••••••••• 34
10 .1. Assembling and Loading ••••••••••••••••• 34
10. 2. ROMable Code ••••••••••••••••••••••••••• 3 5
10.3. Making Libraries ••••••••••••••••••••••• 35

11. MULTIPLE COMPILES USING AS •••••••••••••••••• 36

12. RUNTIME TRACE AND EKECUTION PROFILE ••••••••• 37

13. THE AS ASSEMBLER •••••••••••••••••••••••••••• 38

14. UPPER CASE SOURCE FILES ••••••••••••••••••••• 39

15. TRICKS AND INTERNALS •••••••••••••••••••••••• 40
15.1. Global Arrays •••••••••••••••••••••••••• 40
15. 2. Assembly Language Linkage •••••••••••••• 40
15.3. Declarations for Efficient Code •••••••• 40
15.4. Defining Globals in Header Files ••••••• 40
15.s. I/O Buffers •••••••••••••••••••••••••••• 41
15.6. Crash on Exit •..••••••••••.•••.•..••.•• 41

16. COMPILER ERROR MESSAGES ••••••••••••••••••••• 42

INDEX ••• 46

Acknowledsements.

- 2 -

Ron Cain's contribution in providing a simple, public domain
compiler for a minimal C subset is well known and widely
appreciated. Jim Gillogly wrote and maintained printf. The initial
version of seek and HDOS exec were contributed by Al Bolduc. CP/M
exec was written by Robert Wesson. Floats and longs were
implemented by Herve Tireford of SGS-ATES, Geneva. Grant Gustafson
contributed scanf. Tyler Sperry donated the bibliography. Version
3 reflects contributions and suggestions from, and fixes of bugs
reported by, Jim and Gary Gilbreath, Bruce Wampler, Mike Rubenstein,
and many other users.

Copyt:ight (c) 1981, 1982, 1983, 1984 Walter Bilofsky. Sale of this
software conveys a license for its use on a single computer at a
time, owned or operated by the purchaser. Copying this software or
documentation by any means whatsoever for any other purpose is
expressly prohibited. C/80 and Toolworks are trademarks of The
Software Toolworks. CP/M is a registered trademark of Digital
Research.

No License Fees: COM or ABS files incorporating executable versions
of the C/80 runtime library may be copied or distributed without
restriction or fee, although credit to C/80 is appreciated. With
that exception, none of the files on the distribution disk,
including c, ASM, REL and COM files, may be copied or distributed in
any other form, except as provided above, under penalty of law.

TOOLWORKS C/80
Version 3.1

February 1984
Walt Bilofsky

l, INTRODUCTION

C/80 is a compiler for the C programming language, running
under the CP/M and HOOS operating systems. It requires a minimum of
56K of memory. The compiler produces an assembly language text file
which is turned into an executable object program by the AS absolute
assembler, which is included. Optionally, C/80 can produce output
for Microsoft's Macro-80 or Digital Research's RMAC relocatable
assembler.

The reference manual for C/80 is The .£ Programming Language
by Brian Kernighan and Dennis Ritchie. Section 2 tells where you
can obtain this book, and lists other useful books on c.

Purchasers of inexpensive C compilers have come to expect
that they will lack many important language features, or will have
non-standard variations which make C programs less portable. C/80
Version 3.1 is one of the better compilers in this respect. It
supports all of the language features described in The f Programming
Language, with the following exceptions:

o float and long data (available option; see below)
o double data type
o typedef
o Arguments to ldefine macros
o Bit fields
o tline
o Declarations within nested blocks

C/80 Version 3.1 does support structures, statics,
initialization, casts, compile time evaluation of constant
expressions -- in short, all other C language features. A few
language features have restrictions on their use; see Section 8 for
a complete list of the exceptions and implementation dependencies.

Float and long data types are not supported in the basic
C/80 compiler, but can be added with the optional C/80 MATHPAK.
This allows us to offer the basic compiler at an extremely
affordable price, while still making floats and longs available for
those who wish them.

1. INTRODUCTION C/80 3.1 - 4 -

This C implementation also provides the following features:

o UNIX-style I/O redirection and command line expansion.
o Conventional C I/O and string library
o Formatted and random access file I/O
o Dynamic storage allocation
o Runtime execution profile facility
o Selectable Macro-80 or RMAC compatibility
o In-line assembly language
o Includes absolute assembler

The objective of Ron Cain's small-C implementation was to
make a subset of the C language available to the computer hobbyist
at minimal cost. We have continued in that spirit by keeping the
price of C/80 as low as possible. However, we have dedicated a
considerable amount of work and compiler expertise to developing
C/80, which now presents both the beginner and the serious
programmer with a genuinely useful tool for program development.
Many products from The Software Toolworks are written in C/80,
including TEXT, LISP/80, SPELL, UVMAC, ED-A-SKETCH, and C/80 itself.

Note: This document describes C/80 implementations for
both CP/M and HOOS. Where program names, devices, etc.,
differ for the two systems, the CP/M names will be used,
with the HOOS equivalent in brackets, [like this].

TOOLWORKS C/80
Version 3 .1

February 1984
Walt Bilofsky

l. INTRODUCTION

C/80 is a compiler for the C programming language, running
under the CP/M and HOOS operating systems. It requires a minimum of
56K of memory. The compiler produces an assembly language text file
which is turned into an executable object program by the AS absolute
assembler, which is included. Optionally, C/80 can produce output
for Microsoft's Macro-80 or Digital Research's RMAC relocatable
assembler.

The reference manual for C/80 is The £ Programming Language
by Brian Kernighan and Dennis Ritchie. Section 2 tells where you
can obtain this book, and lists other useful books on c.

Purchasers of inexpensive C compilei::s have come to expect
that they will lack many important language features, or will have
non-standard variations which make C programs less portable. C/80
Version 3.1 is one of the better compilers in this respect. It
supports all of the language features described in The f Programming
Language, with the following exceptions:

o float and long data (available option; see below)
o double data type
o typedef
o Arguments to tdefine macros
o Bit fields
o tline
o Declarations within nested blocks

C/80 Version 3.1 does support structures, statics,
initialization, casts, compile time evaluation of constant
expressions -- in short, all other C language features. A few
language features have restrictions on their use: see Section 8 for
a complete list of the exceptions and implementation dependencies.

Float and long data types are not supported in the basic
C/80 compiler, but can be added with the optional C/80 MATHPAK.
This allows us to offer the basic compiler at an extremely
affordable price, while still making floats and longs available for
those who wish them.

2 • LEARN ING C C/80 3.1 - 5 -

2. LEARNING C' OTHER REFERENCES

A summary and brief description of the C/80 language appears
below {Section 7). However, for a detailed introduction to C, the
beginner will need more than this manual provides. There are
several books on c, suitable for readers at various stages of
expertise. Many are available at local bookstores, or can be
readily ordered there. Prices are subject to change.

The £ Programming Language, Brian Kernighan & Dennis
Ritchie, 1978 Prentice-Hall, Englewood Cliffs, NJ., 228
pages. The definitive work {i.e., it defines the
language), but not for beginners. You will probably want
it eventually if not immediately.

Programming in C,. Steven G. Kochan, 1983 Hayden Books,
$18.95, 373 -pages. Both beginners and experienced
programmers have recommended this book as very clear and
assuming no prior programming experience.

£ Programming Guide, Jack Purdum, 1983 Que Corporation,
Indianapolis, IN., $17.95, 250 pages. Aimed at CP/M and
beginners. Assumes some minimal experience with BASIC or
another programming language.

~:~~~!£? ~/~09$2§.~,£, 3~~om~:ge~:um, Go~~~~o/~~~in~:;!;
great for those who have a PDP-11 or an interest in what
the computer does with the code.

The C Primer, Les Hancock & Morris Krieger, 1982 McGraw
iITil (~ Books), New York, NY., $14.95, 235 pages. Good
for those starting out, but examples often assume UNIX
environment. Not as complete as Plum or as useful to C/80
users as Purdum, but good.

The C Puzzle Book, Alan Feuer, 1982 Prentice-Hall,
EngelWood Cllffs;-NJ., $14.95, 173 pages. A book of
exercises, grouped by topic (operators, pointers, etc.).
Intended to be used with another book.

C Notes, C. T. Zahn, 1979 Yourdon Press, New York, NY.,
$10:-so-;--100 pages. More a manual than a tutorial; more
organized than Kernighan & Ritchie. Not a primer.

An Introduction to C, Bruce Hunter, available late 1983,
S'Ybex. For beg inn Trig-or intermediate C programmers; deals
with existing C compilers in the context of CP/M and UNIX.

All these books are paperbacks. If not available through
your local bookstore, they may be ordered from:

Opamp Technical Books, Inc.
1033 N. Sycamore Ave.
Los Angeles, CA 90038
(213) 464-4322

2 , LEARN ING C C/80 3.1

Note: In reading these books, it is important to keep in
mind at least the major features of C which are not
supported by C/80. Section 8 below lists the differences

- 6 -

between C/80 and the language described in The C
Programming Language. - -

3, FOR THE EXPERIENCED C USER

Users who know C will find C/80 quite familiar and easy to
use. It supports data types char and int, and with the optional
MATHPAK, long and float. C/80 has full C pointers, arrays and
structures, all C control statements, all operators, and most
preprocessor functions. The preprocessor allows in-line assembly
language code.

C/80 programs the conventional command line
(main(argc,argv)). The runtime library provides many of the
capabilities of the standard C I/O library file handling routines,
and implements UNIX-style I/O redirection in the command line. The
command library function is provided to perform UNIX-style command
line wildcard expansion.

There are a few differences between C/80 and full c. The
one difference which may cause hard to detect problems in converting
C programs written for other compilers is that functions may not be
called with a different number of arguments than specified in the
function definition. The I/O is closer to Version 7 stdio than it
appears; see the end of Section 8 for the correspondence.

C/80 program source files are normally prepared using the
full upper and lower case ASCII character set. users with upper
case only terminals should refer to Section 14.

users of earlier versions of C/80 will notice the following
changes, improvements and new features in C/80 version 3:

o Expanded runtime library (Section 9)
o ROMable code (Section 10. 2)

RMAC compatibility {Section 10)
Menu configurable compiler (Section 6.2)

o \ at end of line for continuation
-Q switch for idefine {Section 6.1)
tifneed for selective compile (Section 8)

o True alloc/free (Section 9. 7)
o Command line wildcard expansion (Section 9.12)
o CP/M files are written in 128 byte records
o File 0 is always the terminal (Section 9.5)

The only changes from version 3.0 to 3.1 are the -o and -x switches
{Section 6. l) , a prohibition on reading and writing to the same open
file, and some code generation improvements and bug fixes.

4. DISTRIBUTION DISKS C/80 3.1 - .7 -

4. THE C/80 DISTRIBUTION DISKS

C/80 comes on one or two disks, containing the following
files:

Files You Will Need to Get Started:

C.COM or C.ABS The C/80 compiler.

AS.COM [or .ABS]An absolute 8080 assembler which assembles C/80
output files. See Section 13.

CLIBRARY .ASM The basic C/80 library. When the AS assembler is
used, this file is automatically included in C/80
programs. Usually it should reside on A: [SYO: on
BDOS] at assembly time.

PRINTF .c The C/80 formatted output routines (see Section
9.6). May be incorporated into a program using
linclude printf.c•, which should appear before any
use of pr intf.

Example Programs:

HELLO.C

TAB.C

CMP.C

TREE.C

A sample C/80 program; the first program in The C
Programming Language. See Section 5. - -

A sample C/80 program which copies a file, replacing
blanks by tabs wherever this might result in a
savings of space.

A sample C/80 program which compares two files.

A sample C/80 program showing the use of structures.

Files Containing Library Functions:

TPRINTF.C

PRINTF.H

SCANF.C

SCANF.H

STDLIB.C

A smaller version of printf without left
justification or precision.

A header file for defining printf in source files
where the entire printf.c or tprintf.c source file
is not included.

The C/80 formatted input routines (see Section 9.6).

A header file for defining scanf in source files
where the entire scan£ .c source file is not
included.

Library of C and assembly language routines for
string and character manipulation, system calls, and
storage allocation. See Sections 9. 7 - 9.10.

4. DISTRIBUTION DISKS C/80 3.1 -. 8 -

SEEK.C

EXEC.C

COMMAND.C

Routines for random access file I/O (not for CP/M
l.4 and earlier). See Section 9.11.

Routine to chain to another .COM {.ABS} program.
See Section 9.12.

Routine to expand wildcard file names in argument
list. See Section 9 .12.

Files Used with Macro-80 or RMAC:

CLIBRARY .REL A relocatable version of CLIBRARY, for use with
Microsoft's Link-80 or LINK from Digital Research.

STDLIB.REL A relocatable library version of STDLIB.

Files for Advanced Users:

CCONFIG.COM [or .ABS]

CLIBIO.C

CPROF.C

CTRACE.C

Program for changing defaults in C.COM. See Section
6.2.

Commented source code for the I/O and system
dependent portions of CLIBRARY.

The runtime execution profile library. Compile to
create CPROF .REL or CPROF .ASM. The latter file is
automatically included in assemblies of C/80
programs compiled with the -P' switch (see Section
12}. It must reside on A: [SYO: on HOOS] when such
programs are assembled.

An alternate runtime execution profile library which
traces each routine call and return. See Section
12.

5. AN EXAMPLE C/80 3.1 - 9 -

5. AN EXAMPLE

This section describes how to assemble and run a C/80
program. The example shown is for the CP/M operating system.
[Under HOOS, the procedure is identical, except that HOOS uses the
">" prompt instead of 11 A>", and the Heath assembler ASM is used,
with the command "asm hello=hello".]

First a source file, called HELLO.C, must be prepared. This
can be done using any text editor. (Or you can use the file HELLO.C
on the C/80 distribution disk.) The program on the source file
should look like this (more or less):

I include •pr intf .c•
main() {

irintf(•aello, worldl\n•);

Files PRINTF .C and CLIBRARY .ASM should be copied to A:
[SYO: on HDOSl. Then HELLO can be compiled and run by the following
steps. Characters which the computer types are underlined in this
example1 the other characters are typed by the user.

~ c hello

~ Compiler _h! ~

~ as hello

A> hello
Hello, worldl
~ --

6. RUNNING THE COMPILER C/80 3.1 - 10 -

6. RUNNING THE COMPILER

The simplest way to compile a C/80 program is to give the
command

c filename

This takes the source file FILENAME.C and produces an assembly file
FILENAME.ASM. Of course, any file name can be used instead of
FILENAME.

In order to create an assembly file with a different name or
on a different device, the command looks like

c d:outfile.mac•b: infile

[c dkl:outfile.mac•syl:infile on HOOS]

If no extension is specified, the defaults are .ASM for the output
file (except .MAC for Macro-80 files), and .c for the input.

After compiling the source program, use AS to assemble the
assembly language file into an executable program. Note that all C
programs will include the C runtime library file, CLIBRARY .ASM,
which must reside on A: [SYO: on HOOS]. The syntax of the AS
command is the same as for c, unless a listing file is desired
(Section 13).

6. l. Compiler Switches.

The C command may include "switches" to select compiler
options. The switches consist of a -, a letter (upper and lower
case are synonymous), and sometimes a numeric value (represented
below by N). Switches can be separate (-t -s400) or strung together
(-s400t).

Example: To compile file FOO.C, producing file B:FOO.ASM, including
the source text as comments in the assembly file, and allocating
space for 400 symbols, use the command

c -t -s400 b: foo=foo

Once you have determined the switch values you usually use,
you can change the compiler to default to those values; see Section
6. 2.

The switches are:

Assembler Output Format

Include the source program text as comments in the
assembly language file.

6. RUNNING THE COMPILER C/80 3.1 - u -

-m (or -ml). Generate Macro-BO assembler output.
-m2 Generate RMAC assembler output. See Section 10.
-mo Generate AS assembler output (the default).

Assembler Output Format

Generate faster, slightly larger object code.

Do not extend the sign bit when converting from char to
larger data types. Caution: The effects of this option
may be confusing. A full treatment is beyond the scope
of this manual, but see The £ Programming Language on
type conversions.

Do not generate the relocation assembly directives CSEG
and DSEG in the assembly language file. This option is
only valid when the -m switch is selected. This will
help if the linker runs out of space. See Section 10 .1.

-p Generate a runtime profile for the program being
compiled.

-vB: Find CLIBRARY .ASM (and other ASM library files) on the
specified disk instead of A:. Only used with AS
assembler. See Section 12.

Compilation

-qV=S Specify a ldefine in command line. This switch has the
same effect as the preprocessor statement •tdefine V S",
where V is an identifier and S is a string. Note that
the command line is always translated to upper case, so
V and S will be taken as upper case. -qV def in es v as
the null string. If the -d switch is also used, it must
appear before the -q switch in the command line.

Set page length for error message pauses. Normally,
compiler will pause after 24 lines of error messages.
-eO eliminates pauses entirely.

Table Storage Allocation

Allocate N entries in the symbol table. 3/ 4 of the
symbol table entries are used for globals and the
remainder for local variables. The symbol table uses
about 16 bytes per entry.

-cN Allocates N bytes for the string constant table. This
table stores all string constants in the program (but
see the -k switch below).

-dN Allocates N bytes for the ldefine table. This table
stores all #define macros and strings.

Allocates N slots for the switch/case table. The size
of this table determines the maximum number of cases in
a switch statement or in nested switch statements.

6 • RUNNING THE COMPILER C/80 3.1 - 12 -

-rN Allocates N bytes for the structure table. This table
stores the information from structure declarations.

Multiple Assembly Options (with AS)

-lN Begin generating internal labels at number N {default
1). This provides a method of compiling several C
source files into separate assembly files which may then
be assembled together. See Section 11.

-g Do not reserve storage for globals. This is equivalent
to preceding each global declaration with the extern
keyword. This may be useful in multiple file
compilations; see Section 11.

Data Initialization Options

-k Normally, the compiler outputs string constants at the
end of the compilation. The -k switch dumps string
constants after each function. This can greatly reduce
the amount of memory used, allowing larger programs to
be compiled, but duplicate strings may not be detected
(see next paragraph).

-f Normally, the compiler tries not to duplicate strings
which can be overlapped. In particular, two identical
string constants will point to the same location. This
may cause problems in a program which alters the
contents of a string constant or an initialized
character pointer. {Initialized character arrays are
not affected.) The -f switch turns off the string
overlap feature, and insures that each string is stored
separately.

C generally initializes all static and global storage to
zeros. Since this can create a very large intermediate
assembly language file, C/80 only zeros uninitialized
arrays shorter than 256 bytes. The -z switch causes all
statics and globals to be initialized to
regardless of size.

6.2. Changing Compiler Defaults.

You may change most of the default values of the compiler
switches in the previous section by running the CCONFIG program
supplied on your C/80 distribution disk. This program will patch
new values for the defaults into the file C.COM. In particular, you
can specify defaults for the size of most tables, the drive for
CLIBRARY .ASM, screen size for error pause, choice of assembler, and
generation of CSEG and DSEG.

The program is menu driven and mostly self explanatory. You
should remember to include a drive identifier when specifying a
C.COM file on other than the current drive.

If you configure a switch to be on, using it in the command

6. RUNNING THE COMPILER C/80 3.1 - 13 -

line will turn it off. For example, if you configure C.COM to
default to Macro-80, then the -m switch in the command line will
specify the AS assembler.

7. C/80 LANGUAGE SUMMARY

This section contains a language summary in tabular form,
followed by a concise explanation of the major C language features.
Its aim is to convey the basics of C/80 to a programmer with some
feel for computer languages. It is not intended to replace The C
Programming Language as an exhaustive reference, and where thereiS
a conflict, the latter is the authority (except for implementation
differences listed in Section 8).

Long and float data types are available only with the
optional C/80 MATBPAK; see Section L2.

(1) Data Types:
Types: char, int, unsigned

long, float (optional)
Declarations:

char c, *pc, ac{], ac2[n], **x[m] [n]
int i, *pi, ai[l, aci[n];
long j, *pj, bi[], bci[n];
float k, *pk, ci [], cci [n];
extern char/int •••
static char/int •••
auto char/int •••
register char/int •••
initialization:

char/int v =i: constant;
char/int a[J • {c,c,. •• };

Structure Decl.arations: See "Structures• below.

(2) Primaries:
constant:

decimal number
octal number beginning with 0
hex number beginning with Ox or OX
character constant 1 c 1

string "abc"
variable
address [expression]
function(argl, ••• ,argn) (n >= 0)
structure.element
ptr_to_structure->element

7. LANGUAGE SUMMARY C/80 3.1

(3) Expressions:
Unary operators:

- minus
contents of

& address of
++ increment (pre- or postfix)

decrement (pre- or postfix)
truth valued not
bitwise not

(type) type is any type (e.g., char*);
forces type of following expression

sizeof nr. bytes in type or expression

Binary operators:
* I arithmetic operators
\ modulo
+ - arithmetic operators

right, left shift
less than, less than or equal
greater than, greater than or equal

=== l• equal, not equal (0 or 1 valued)
& I A bitwise and, or, xor
&& 11 truth valued and, or
? : if-then-else expression

assignment operator
+= -i= arithmetic assignment operators
*• /s
,_ &=

!;= --=<=

(4) Statements
expression;

(expression sequencing)

if (expression) statement;
if (expression) statement; else statement;
for (expression; expression; expression) statement
while (expression) statement;
do statement while (expression);
switch (expression) {

case: statement; •••
default: statement ;

break;
continue;
return;
return expression;
goto label;
label: statement;
{ statement; ••• ; statement;
; (null statement}

(5) Function Definitions (functions are fully recursive)
fname (argl, •.• ,argn)

int/char argi, *argj, ••• ;
{ statements; }

- 14 -

7. LANGUAGE SUMMARY

{ 6) Preprocessor Functions
/* comments */
ldefine name string

C/80 3.1

Replace name by string
throughout text

lundef name Erase definition
linclude •filename• Inserts filename at that
or linclude <filename> point.

lifdef name Generate following code

lifndef name
if name is tdefined or
not #defined, or if
expression nonzero, or if

- 15 -

lif expression
iifneed name, ••• , name
telse

an undefined global, respectively.
Reverse conditional generation

tend if End conditional generation
lasm Begin assembly language
lendasm End assembly language
I UPPER Convert upper to lower case

7 .1. Variables.

Variable names consist of letters, numbers, and the
character " ". The first character must be a letter. Upper and
lower case- letters are allowed and are different (except globals
when Macro-80 or RMAC are used); usually lower case letters are
used. Variable names may be any length, but any letters after the
first seven are ignored (six for globals with Macro-80 or RMAC).

Each variable has a type, a scope, and a storage class.

The scope of a variable determines the portion of the source
program within which the variable is known. The three possible
scopes are local, global, and external. Local variables are those
declared at the beginning of a function body; they are known only
inside that function and the same names can be used in other
functions. Global variables are those declared outside a function
body; they are known in all functions from the declaration to the
end of the file. In addition, the extern declaration may be used to
reference variables in the C/80 library or on other files in a
multiple file compilation.

7.2. Data Types

C/80 contains two basic data types: int, which is a 16 bit
signed integer (range -32768 to 32767); and char, which is an 8 bit
signed integer (range -128 to 127). Chars are often used to store
characters of text. Unsigned ints are are also supported (range 0
to 65535).

The optional MATHPAK adds the data types long, which is a 32
bit signed integer (range -2,147,483,648 to 2,147,483,647); and
single-precision float, which is a 32-bit quantity, with about 7
decimal digits of precision, in the range e-38 to e+38.

Integers, characters, longs, and floats are the basic

~~~~~~~~!:.of ~~= m~~~l~~T~~ex a~~i:r;n~~~: de~g~;:' a/~~~;e~sdou~~~ 
dimensioned int array, an array of pointers to ints, and a function 



7. LANGUAGE SUMMARY C/80 3.1 - 16 -

returning pointers to in ts. 

int i, array[30] [10], *ptr [5], *f (); 

An array is similar to a BASIC or FORTRAN array; it simply 
consists of consecutive pieces of memory, each large enough to 
contain a char, int or pointer. 

An n long array may be subscripted from 0 to n-1 only. 
Failure to keep array subscripts within this range is by 
far the most common cause of bugs for beginning C 
programmers .. 

C does not contain a separate string data type; strings are 
stored as arrays of chars. By convention, a byte containing 0 is 
used to terminate a string. 

7.3. Pointers 

The concept of pointers is essential to the C language. A 
pointer is simply an address. Thus, in C/80, pointers are unsigned 
16 bit numbers, similar to unsigned ints. They are used to step 
efficiently through arrays, where other languages might use 
subscripts and an index variable, and to pass (addresses of) large 
data structures as function arguments. An indication of how to use 
pointers is given in Section 7. 7. 
7. 4. Structures 

Structures are a useful way to organize data. An example of 
a structure declaration is: 

struct tree { 
char value [5]; 
struct tree *left, *rightr } 

forest[SO] ,•ptreer 

This declares three kinds of things: a structure type called tree, 
structure elements called value, left and right, and variables: an 
array of structures, called forest, and a pointer to objects of type 
struct tree, called ptree. Each object of type structure is like an 
array. But whereas an array contains a number of pieces of data all 
of the same type, a structure contains pieces of data called 
elements, which may be declared to be of different types. In the 
declaration above, objects of type struct tree are declared to 
contain a 5-long character array, and two pointers to things of type 
struct tree. 

In a structure declaration you can omit the variables, the 
structure name, or (once the structure type has been declared) the 
{ ... ). 

A structure element can be referred to by the operators -> 

forest[i] .value 
ptree->left 



7. LANGUAGE SUMMARY C/80 3.1 - 17 -

These elements can be treated just the same as variables. Use • to 
refer to fields of variables which are structures, and -> to refer 
to fields of things which~~ structures. 

Structures and their use are a complicated topic and can 
only be touched on here. The £ Programming Language and the other 
books mentioned in Section 2 contain discussions and examples which 
will be helpful. 

7. 5. Storage Classes 

Storage classes determine how a variable is stored in 
memory. The storage classes in C/80 are: 

static 
auto 
register 
extern 

Statics and externs may be either local to a function or 
global1 auto and registers can only be local. 

Statics are simply memory locations. Auto variables are 
stored on the pushdown stack. Local statics (declared within a 
function} are preserved between calls of that function, whereas 
autos are not. When a function is called recursively, a new auto is 
created local to that call of the function; statics are not. Local 
variables default to auto but may be declared static. (C/80 
actually uses static storage for local 16 bit variables and saves 
the values so that this is transparent to the user but more 
efficient than using the stack. The explicit auto declaration may 
be used to override this and force the variables to be located on 
the stacka) Register variables are stored efficiently, but are 
otherwise the same as autos. 

Variables declared outside a function can be either global 
or external (see Section 7. l}. An explicit static declaration 
declares variables known to the end of the source file, but not in 
other source files. Externs are globals which are declared in 
another source module. Omitting the declarator extern or static 
defines a global which can be referred to as an extern from other 
modules. 

7. 6. Constants. 

A decimal constant consists of a string of decimal digits. 
A constant beginning with 1 0 1 {e.g., 0177} is interpreted as an 
octal number. A constant beginning with 'Ox' or 'OX' is a hex 
constant. 

C/80 computes 16 bit constant expressions at compile time. 
Wherever an integer constant is required (such as the dimension in 
an array declaration), you can use an expression containing only 
integer constants. 

C/80 also contains string and character constants. 



7. LANGUAGE SUMMARY C/80 3.1 - 18 -

Characters are any pr in ting character, or 

\t for tab 
\n for newline {end of line) 
\r for carriage return 
\b for backspace 
\f for form feed 
\\ for \ 
\' for ' 
,. for n 

\123 for the octal value 123 
(or any other value) 

A single character constant is written 'c'. A string 
constant is written "ccc ••• ". A string constant is stored as a 
0-terminated array of chars. Useful things to do with string 
constants include assigning them to char pointers, and passing them 
as arguments to functions. 

7.7. Operators and Expressions. 

The operators in C are shown in the table at the beginning 
of Section 7. They appear in the approximate order in which they 
are performed during expression evaluation: e.g., / is performed 
before + is performed before &. 

Certain operators are peculiar to C. The unary operator * 
takes a pointer and yields the contents of the location it points 
to. The operator & takes an object, which must have an address, and 
yields a pointer to that address. Thus, for any expression A which 
has an address, the value of *&A is the same as A. 

The operators ++ and -- can appear either before or after a 
variable. They cause the variable to be incremented (++) or 
decremented (--) by l. The value of the expression is the variable 
either before (V++) or after (++V) the operation. For example, if p 
is a pointer to char, then *p++ increments p, but applies the * 
operation to the value of p++, which is the value of p before being 
incremented. This leads to the following sort of code, which is 
common in C: 

p • •Any old string\n• J 
while (*p) putchar (*p++)' 

This outputs the string by calling putcbar () with each character in 
it, until the O byte terminating the string is encountered. 

When a pointer is incremented or decremented, its value 
changes not by l but by l object. Thus incrementing a pointer to an 
int moves it to point to the next following int; its actual value 
increases by 2. A pointer to a structure is incremented by the size 
of the structure, in bytes. 

Truth values in c are either zero (false) or nonzero (true). 
Truth-valued operators (=•, >, &&, etc.) return l for true. A 
useful expression in C is 



7. LANGUAGE SUMMARY C/80 3.1 - 19 -

expr ? tvalue : fvalue 

whose value is tvalue if expr is nonzero, and fvalue if expr is 
zero. 

7. 8. Statements. 

The table at the beginning of Section 7 lists the statements 
in c. Anywhere that C allows a single statement, it will also 
accept a compound statement of the form 

{ statement; statement; ••• ; } 

The iterative statements in C all have simple equivalent 
definitions: 

for (el; e2; e3) statement; 

el; L: if (e2) { statenient; e31 goto L; 

while (e) statement; 

L: if (e) { statement; goto L; 

do statement; while (e); 

L: statement; if (e) goto L; 

switch (e) { case cl: sl; .•• case en: sn; default: s; 

if (e == cl) sl; 

it (e •• en) sn; 

The switch statement is not exactly equivalent to what is 
shown, however. The expression e is actually evaluated only once. 
The case values cl, ••• ,en must be constants. And the default case 
may be eliminated, in which case no case is executed if the value e 
is different from the values cl, ••• ,en. 

The statement break jumps out of the smallest for, while, or 
switch containing it. The statement continue begins the next 
iteration of the smallest for or while containing it. 

7.9. Conclusion. 

This short a summary can not begin to present all the 
details of the C language. In order to learn more, you can look at 
the sample C programs provided on the C/80 distribution disk: and 
read the books referenced in Section 2. 



8. IMPLEMENTATION C/80 3.1 - 20 -

8. IMPLEMENTATION AND MACHINE DEPENDENCIES 

The reference manual for C/80 is The £ Programming Language 
{see Section 2). In using that book, it must be kept in mind that 
some features of C and its runtime library are not present in C/80, 
or differ from the description in the book. Those omissions and 
differences are listed here. First the unimplemented features and 
major restrictions are listed, followed by a detailed listing of all 
differences. Section numbers refer to the C Reference Manual in 
Appendix A of The £ Programming Language. 

Unimplemented Features 

Float, double, entry and typedef keywords (2.3) 
Long and float constants (2.4) and arithmetic. 

{Float and long may be added with the 
optional C/80 MATHPAK.) 

Typedef (8.1, 8.8) 
Bit fields (8.5) 
tline (12.4) 

Maier Restricted Features 

Function calls (7 .1) must have the same number of 
arguments as the called function definition. 

Blocks (9.2): declarations are allowed only at start 
of a function. 

ldefine (12.1): arguments are not allowed. 

Implementation Dependencies and Difference List 

2 Lexical conventions 

Blanks in the middle of multiple character operators (e.g., 
=*) are not allowed. Characters in the source file with the sign 
bit set are accepted in string constants and treated as blanks 
elsewhere. 

2. 2 Names 

The first seven characters of a name are significant. If 
Macro-BO or RMAC are used, global symbols are restricted to 6 
characters, and upper and lower case are the same in globals. 

2. 3 Keywords 

Ploat, double, entry and typedef keywords are 
recognized. 

2.4 Constants 

Long and floating constants are not implemented. 



8. IMPLEMENTATION C/80 3.1 - 21 -

2.6 Hardware characteristics 

Char is 8 bits. Int, short and long are 16 bits. 

7 .1 Primary expressions. 

Function calls must have the same number of arguments as the 
called function definition. 

8 .1 Storage class specifiers 

Register variables must be at most 16 bits long. They are 
stored in static memory for fast access, and are saved on function 
entry and exit. C/80 allows any number of register variables, and 
the & operator may be applied to them, but such code may not be 
portable. 

Auto variables are stored on the stack. Local variables 
default to register if they are 16 bits long, but the auto 
declaration can override this. Other local variables, and all 
arguments, default to auto, but the register declaration can be used 
to override this (except for variables longer than 16 bits). All 
this is transparent to the user. 

The scope of an extern declaration is the remainder of the 
source file, even if the declaration is within a function 
definition. 

Typedef is not recognized. 

8.5 Structure and union declarations 

Bit fields are not implemented. 

8. 6 Initialization 

Only static and global variables may be initialized. Only 
objects smaller than 256 bytes are defaulted to O; the -z compiler 
switch removes this restriction. (See also Sect. 15 below.) 

Type declarations can not be nested. About the only 
restriction this imposes is that sizeof a type name may not be used 
in a dimension in a declaration. 

8.8 Typedef 

Typedef is not implemented. 

9. 2 Compound statement, or block 

Declarations are allowed only at the beginning of a function 
body. 

12 Compiler control lines 

In-line assembly language is supported by the iasm and 
tendasm directives. 



8. IMPLEMENTATION C/80 3.1 - 22 -

A new conditional compilation directive is supplied: 

fifneed namel, ..• ,namen 

The code following, up to the matching tend if, will be compiled if 
one or more of the names namel, ••. ,namen are externs not yet defined 
in the compilation. This directive can be used to create C #include 
files containing a number of library routines, each of which is 
compiled only if it has been called. 

12 .1 Token replacement 

iDefine is not applied recursively, and arguments to macros 
are not allowed. 

12.4 Line control 

I line is not implemented. 

15 Constant expressions 

?: and & are not allowed in constant expressions, except 
that & may be the first character in an initializer. 

17 Anachronisms 

All forms listed are recognized, except that initializers 
which lack an • and start with (name ••• will not compile. 

Print£ and scanf: 

These functions (and the variants, fprintf, etc.) cope with 
a variable number of arguments through use of a ldefine kludge which 
redefines printf. This requires that either linclude •printf.c• or 
linclude •printf.h• be placed before the first use of print£, and 
similarly for scanf.h and scanf. Also, a use of scanf must be 
enclosed in parentheses in order to return the correct value. See 
Section 9.6. 

I/O and Runtime Library: 

Many of the basic library functions and treatments of files 
described in the manual are supported, although the format is not 
always identical. Getchar, putchar, getc, putc, fopen, £close, 
seek, ftell and exec are provided. EOF has the value -1; NULL is 
o. 

The older Version 6 convention of fin and fout is followed 
instead of std in, stdout and stderr. However, compatibility may be 
maintained with most implementations by taking the following 
definitions: 

tdefine FILE int 
extern int fin,fout; 
tdefine stdin fin 
ldefine stdout fout 
tdefine stderr O 



8. IMPLEMENTATION C/80 3.1 - 23 -

I/O redirection is provided. The I/O and runtime library is 
described more fully in the next section. 

9. RUNTIME AND I/0 LIBRARY 

C/80 is supplied with a runtime library, which provides 
convenient access to files and other devices in a manner generally 
consistent with accepted C conventions. 

The library is divided into several sections, contained on 
different files. Some are provided as C/80 source files, some as 
ASM and/or REL files. 

CLIBRARY 
STDLIB 

PRINTF, SCANF 
SEEK 
EXEC 
CPROF ,CTRACE 
CLIBIO 

9.1. Files and Devices: 

Basic I/0 routines; always loaded 
Additional I/O, string manipulation, 
memory allocation and CP/M system calls 
Formatted I/O 
Random access file I/O 
"Chaining" to another program 
Runtime execution trace and profile 
Source for I/0 par ti on of CLIBRARY 

C/80 implements I/O in the normal C way. Files are opened 
using the fopen function, read and written using various functions 
explained in the following sections, and closed with fclose. 

Files are opened in one of three modes: read, write or 
update. Write mode creates a file; update allows rewriting of all 
or part of an existing file. Files should not be written if opened 
in read mode, or read if opened in write or update mode; doing so 
may work sometimes but not always. A file can not be read and 
written without closing it in between. 

A file can also be opened as a normal or a binary file. 
This affects how characters are read by getc {and functions that 
call getc, such as fscanf}. Files opened in normal mode are treated 
as ASCII files. Under CP/M, ctrl-Z is interpreted as end of file, 
and newlines, which are a CR-LF pair in the file, are read in as the 
single character '\n'. [Under HOOS, the only special treatment is 
that 0 bytes are ignored.] If the file was opened in binary mode, 
getc will read every byte in the file, including ctrl-Z and CRs. 

Upper and lower case letters are legal and synonymous in 
file names. On CP/M, the user is responsible for insuring that 
characters which confuse the CCP, such as '. 1 and 1

:', are not used. 

NOTE: The following information applies only to use of 
C78Q on the CP/M operating system, and should be ignored 
by users of HOOS. 

Under CP/M, the C/80 library recognizes the 
logical device driver names CON:, ~PUN: and~ 



9. RUNTIME AND I/0 LIBRARY C/80 3 .1 - 24 -

legal file names. 

Generally, you do not have to worry about how 
device I/O is performed, but if you want to change some of 
the defaults you will need to know about the following 
variables in the runtime library: 

extern char Cmode; 
extern char IOpread[4J ,IOpwrit[4) ,IOpeof[4]; 

In doing I/O to CON: , C/80 normally uses line at a 
time mode. This is true whether CON: has been accessed 
explicitly by opening file 11 CON:•, or as the default 
device for getchar and putchar. If you need to use 
character at a time console I/O, set Cmode to zero. (It 
is initially set to l; other values produce undefined 
results.) 

The char array IOpread [ 4] holds the CP /M function 
call code for reading a character from CON:, LST:, RDR:, 
and PUN: respectively. IOpwrit[4] holds the corresponding 
write codes. Normally, for example, the function for CON: 
is 1. If you want to read without echo, set Cmode to zero 
(otherwise line input would be used), and set IOpread [0] 
to 6. Note, though, that in this case you should also 
probably use function 6 for output, due to interactions in 
CP/M. Also, remember that code 6 returns a 0 if no 
character has been typed. 

The char array IOpeof [4] holds the end of file 
character for the four devices. When one of the devices 
is closed, the end of file character is written to it. 
Thus, to avoid a form feed on closing LST:, set IOPeof [l] 
= o. 

When reading from CON: , in addition to the control 
characters which are interpreted by CP/M (see the 
description of functions l and 10 in the CP/M 2.2 
Interface Guide}, C/80 interprets ctrl-B as an interrupt. 
Moreover, when doing I/O to any of the four logical 
devices, C/80 maps CR into 1 \n' on input and '\n' into 
CR-LF on output. Calling fopen to open the device in 
binary mode has no effect on this {although it does for 
file I/O) 1 the only way to avoid these mappings is not to 
go through the C/80 library. 

[Under HDOS, any legal file or device name may be used 
whenever a file name is called for. Examples of legal names are 
FOO, SYl:FILE.DAT, or LP:.] 

C/80 programs begin execution by calling the routine main, 
which the user must provide. Main should start off with the 
declaration 

main (argc, argv) 



9. RUNTIME AND I/O LIBRARY C/80 3. l - 25 -

char *argv []; 

When main is called, argc will be the number of elements in 
argv, and argv will be an array of pointers to the strings which 
appear on the command line (except for argv [0], which may not 
contain anything useful.) Argv[argc] is always -1. For example, if 
a C/80 program named progl is run with the command 

progl a b foodle 

then argc is 4, and argv contains pointers to the strings 11 PROGl" 
(or nonsense), "A", 11 B 11 and 11 FOODLE" (e.g., argv{3] is "FOODLE"). 

An argument containing spaces and/or tabs may be enclosed in either 
single or double quotes. 

Due to limitations in both the HOOS and CP /M. systems, lower 
case letters in the argument line are passed to main as the upper 
case equivalent. 

9.3. I/O Redirection: 

Many C programs do input and output a character at a time, 
taking input from the standard input using the routine getchar, and 
writing to the standard output using the routines putchar, or 
printf. The standard input and standard output are both initially 
the terminal. However, files or other devices can also be used as 
the standard input and/or output. 

This is implemented by two global extern ints, fin and fout. 
These variables define the standard input and output, respectively. 
They are usually set to 0 before main is called, and I/O is done to 
and from the terminal. However, a program may open a file for 
reading or writing, and set fin or fout to the file's channel 
number. This will cause subsequent I/O to be done to the file 
rather than to the terminal. A device may be used instead of a 
file. 

Normally, an output file must be closed explicitly by a 
program before exiting. However, the I/O library always closes fout 
when a program is terminated (including abnormal termination by 
ctrl-C under HDOS and ctrl-B under CP/M}. 

Fin and fout may also be redefined in the command line when 
the program is run. For example, the command 

progl a b <b: infile >lst: 

will run progl with arguments "A 11 and "B". Getchar {) will read 
characters from file "B:INFILE", and putchar() will write characters 
to the printer. The > and < arguments are not included in argc or 
argv, and may appear anywhere in the argument list. [The equivalent 
HDOS command would be 

progl a b <syl: infile >lp: 1 

Since the C/80 compiler is itself a C/80 program, I/O 
redirection may be used to redirect to a file the error messages 



9, RUNTIME AND I/O LIBRARY C/80 3 .1 - 26 -

usually output to the terminal. 

9.4. Interrupting a Program: 

C/80 programs may be interrupted by ctrl-B or ctrl-C [ctrl-C 
only on HOOS], which causes the program to terminate immediately and 
exit. The standard output is closed (except by ctrl-C on CP/M), but 
all other open output files are lost. 

NOTE (applies to CP/M users only): Under CP/M, a ctrl-C 
may not always be noticed when it is typed. The C/80 
library will check for a ctrl-C whenever a disk read or 
write is performed, but if a program does not access disk 
it must take special steps in order to be interruptable. 

The HOOS operating system provides a way for the 
user to trap and handle interrupts caused by ctrl-A, 
ctrl-B and ctrl-C. C/80 provides a similar, but weaker, 
capability under CP/M. When the C/80 console input 
routine detects a ctrl-B, a call is executed to the 
location contained in CtlB. That location initially 
contains exit(), and thus ctrl-B usually aborts a running 
program, just as ctrl-C does. 

Instead of exiting, your program may choose to 
handle ctrl-B interrupts itself. To do so, declare CtlB 
to be an extern int, and set it to a subroutine to be 
executed when ctrl-B is typed. If that subroutine returns 
when done, program execution will continue. 

Since CP/M does not usually detect a typed 
character, even ctrl-C, until the program attempts to read 
from the keyboard, C/80 programs will often not respond 
immediately to a ctrl-B or ctrl-C. The C/80 library does 
check for these characters whenever a disk read or write 
is performed. You can make your program check more often 
by calling CtlCk () whenever a check is desired. 

One side effect of CtlCk () is to read any typed 
character that may be waiting at the console. If the 
character is not a ctrl-B or ctrl-C, it will be echoed and 
will be placed in the input line buffer for the next call 
to getchar () • So calling CtlCk () provides a limited 
typeahead capability. However, editing characters like 
ctrl-U and DEL do not operate on characters read in this 
manner. Also note that once the buffer has been filled 
(about 130 characters), any further typed characters will 
be echoed but discarded without warning, until the buffer 
has been completely emptied. 

Sometimes this typeahead can be annoying. It is 
suppressed if Cmode is set to 0. It can also be 
suppressed by patching out CtlCk (). This can be done in a 
crude but effective fashion by declaring it a char and 
storing 0311 (RET instruction) into it. 



9, RUNTIME AND I/O LIBRARY C/80 3. l - 27 -

9.5. Basic I/O Library Routines: 

The basic I/O routines are included in the CLIBRARY .ASM and 
CLIBRARY .REL files, one of which must be included in any C/80 
program. Your program can call these routines without doing 
anything special to load them. 

getchar () - returns a character from the standard input 
(usually the terminal). -1 is returned for end of file 
(ctrl-D under HOOS; ctrl-Z under CP/M). 

putchar(c) - writes the character con the standard output 
(usually the terminal), and returns c. 

fopen(fname,mode) - opens the named file and returns the 
channel number of the file. Fname is a string constant, 
or pointer to or array of characters containing the file 
name. The name may be any legal file or device, like 
"B:FOO.TXT", or "CON:" [HOOS equivalents are "SYO:FOO.TXT" 
and "TT:"]. Mode may be "r", "w" or "u" for read, write 
or update mode. It may also be "rb11

, 
11 wb11 or "ub11 if the 

file is to be treated as a binary file (see getc). If the 
file can not be opened, £open returns 0. A file or device 
which is written on must be closed explicitly, or some or 
all of the file may be lost (except for file fout). 

At most 6 files may be open at any one time. I/O 
buffers are allocated for three files. If more than three 
files are opened, fopen will call sbrk to allocate a 
buffer of 256 bytes for each additional file. If there is 
not enough memory available, the open may fail. 

[HOOS: The fopen channel number is not necessarily 
the same as the system's channel.] 

getc (chan) - returns the next character from the file or device 
open for reading on channel chan. Returns -1 to signify 
end of file. Channel 0 is always the terminal, even if 
I/O redirection has been used. 

putc (c,chan) - writes the character c on the file or device 
opened for writing or update on channel chan. Channel O 
is always the terminal, even if I/O redirection has been 
used. In ASCII files, the conversions listed under getc 
are performed in reverse. 

fclose (cban) - closes the file or device opened on channel 
chan. If a file opened for writing is not closed before 
the program terminates, the last block of the file may be 
lost. Once a channel has been closed, another file may be 
opened without exceeding the open file limit (see fopen). 
On CP/M, an end of file (ctrl-Z) is written onto the file 
at the current position unless the file was opened in 
binary mode. 

read(chan,addr,n) - reads up ton bytes from channel chan into 
memory starting at address (pointer) addr. N must be a 
multiple of 128 (HDOS: 256}. Getc reads one character at 



9. RUNTIME AND I/O LIBRARY C/80 3 .1 - 28 -

a time; read provides an alternative method for reading 
many characters at once. Read returns the number of bytes 
read, which may be less than n if the end of file was 
encountered. Read returns 0 if an error occurred. Read 
does not perform any character conversion regardless of 
whether the file was opened in binary mode. Read and getc 
should not both be used on the same channel. 

write(chan,addr,n) - writes n bytes from address addr to the 
file open on channel chan. N must be a multiple of 128 
[HOOS: 256]. Write provides an alternative to putc for 
outputting many characters at a time. Write returns 0 if 
an error occurred, and the number of bytes written 
otherwise. Write and putc should not both be used on the 
same channel. 

exit() - terminates the program and returns to command level. 
Does not close any open files except the standard output. 
Returning from main has the same effect as exit(). 

sbrk (n) - allocates a block of n bytes of memory, returning the 
address of the first byte, or -1 if that much memory is 
not available. The allocated area grows up"fard from the 
end of the user program, and the stack grows downward from 
high memory. Subsequent calls to sbrk will always provide 
adjacent blocks of memory. Although sbrk will always 
leave about 500 bytes for stack expansion, it is still 
possible for the stack to grow into allocated memory (or 
static storage or program memory, for that matter), with 
undefined results. Note that £open may call sbrk to 
allocate I/O buffers. See also alloc and free (Section 
9. 7). 

9.6. Formatted Input and Output. 

Formatted output is provided by print£, fprintf and sprint£, 
which are on file PRINTF.C and may be included in a compilation by 
placing the command tinclude •printf.c• before the first reference 
to print£. If print£ is included in any other way (e.g., by XTEXT 
PRINTF.ASM or by linking printf.rel using LINK or Link-80), the 
header file PRINTF.H must be included instead. 

Formatted input is provided by scanf, fscanf and sscanf, 
which are on file SCANF.C. The corresponding header file is 
SCANF .H. These routines are incorporated analogously to print£. 

These routines provide functions similar to the routines 
described in The f Programming Language. 

print£ (stg ,vl, ••• ,vn) - prints the values vl through vn (n >= 
0) on the standard output (usually the terminal), using 
stg as the format specification. The characters in stg 
are printed on the standard output, except for 
conversions. Each conversion takes the next value from 
the argument list and prints it as the conversion 
specifies. A conversion consists of: 



9. RUNTIME AND I/0 LIBRARY C/80 3. l - 29 -

The character % (required). 

An optional minus sign, specifying left justification 
of the value in the field. 

An optional decimal number specifying a minimum field 
width. If the value is too wide for the field, the 
field will be expanded. If it is too narrow, the 
field is padded with blanks. If the first character 
of the field width is O, however, the field is padded 
with zeros. 

An optional precision, consisting of a period and a 
decimal number. This has meaning only for a string, 
and specifies the maximum number of characters to be 
printed. 

A conversion letter (required), specifying how the 
value is to be printed. The conversion letters 
allowed are: 

%d {decimal number output, signed} 
•o (octal, unsigned) 
\c (single character) 
ts (string) 
ix (hexadecimal) 
\u (decimal, unsigned) 

fprintf{chan,stg) - like printf, but output goes to the file 
opened on channel chan rather than to the standard output. 

sprintf(addr,stg) - like printf, but output goes into the 
character array beginning at memory location addr. 

For example, the program fragment 

would pr int out the line 

i • 27, s • Bi there 1 

The file TPRINTF .c contains a more compact version of print£ 
which lacks left justification and precision. 

scanf (stg,pl, ••• ,pn) - inputs values from the standard input 
into the locations pointed !2 by pl through pn (n >= a) , 
using stg as the format specification. Stg contains 
conversions, consisting of: 

Blanks, tabs and newlines, which are ignored. 

Characters other than % , which are supposed to match 
identical characters in the input. 

Conversions, beginning with the character \, an 
optional * (to suppress storing the value), an 
optional maximum field width, and a conversion 



9. RUNTIME AND I/0 LIBRARY C/80 3.1 - 30 -

character. The conversion characters are as shown, 
and should correspond to an argument which points to 
an object of the corresponding data type: 

\d (decimal - int) 
%:0 (octal, unsigned - int) 
tc (single character - char) 
ts (string - char array) 
tx (hexadecimal - int) 
t:u {decimal, unsigned - int) 
lh {decimal - short int; same as int) 

With the optional MATHPAK, the conversion characters d, x 
and o may be preceded by an 1 (letter L} to indicate that 
the corresponding argument is a long. Also, the 
conversions e and f are allowed to indicate floating point 
conversion. 

The effect of scanf is to read the standard input, 
skipping blanks, tabs and newlines. When a nonblank 
character is encountered, it is taken as the start of an 
input field. The field is converted according to the next 
conversion in the format string, unless the * appears to 
specify assignment suppression. The field ends on the 
first blank, or when the field width is exhausted, 
whichever comes first. If conversion is successful, the 
value is stored in the object pointed .E2. by the next 
argument to scan£. 

Scan£ returns when the input argument list or conversion 
string is exhausted, or when it encounters an input that 
can not be converted according to the specification. 

Scan£ returns the number of items converted and stored, or 
-1 to indicate end of file. IMPORTANT: In order to use 
the value returned by sca~scanf call must be 
enclosed in an extra set of parentheses, because of the 
kludge used by C/80 to permit multiple arguments. 

The most common mistake in using scanf is to put variables 
in the argument list instead of pointers. This is very 
easy to do, and will cause random locations in memory to 
be overwritten. When scanf makes strange things happen, 
remember to check that each variable in the argument list 
(except array names and pointers) is preceded by a & • 

fseanf(cban,stg,pl. •• pn) - like scan£, but input comes from the 
file opened on channel chan rather from the standard 
input. 

sscanf(addr,stg,pl. •• pn} - like scanf, but input comes from the 
character array beginning at memory location addr. 



9. RUNTIME AND I/O LIBRARY C/80 3 .1 - 31 -

9.7. More Storage and I/O Routines. 

The following routines provide memory allocation, file 
manipulation and I/O capabilities beyond that afforded by the basic 
library. They are contained in the file STDLIB.C. This file 
contains tifneed directives around each routine, so if you include 
it at the end of a program source file, C/80 will compile only those 
routines actually called. For Macro-80 and RMAC users, a library 
file STDLIB.REL is also provided. 

alloc (n) - returns a pointer to n consecutive bytes of memory, 
available for use by the calling program. 

free (p) - Returns to the free memory pool the block of memory 
pointed to by p. P must have been a value returned by 
alloc. 

getline(stg,len) - Reads a line from the console into the char 
array pointed to by s. Stops after len-1 bytes or when a 
newline is typed. Terminates stg with a 0 byte; does not 
store the newline. Returns the number of bytes in stg, 
excluding the terminating byte. 

rename(s,t} [CP/M only] - Renames the file whose name is in the 
string s to have the name in the string t. Returns -1 for 
failure, a non-negative number for success. Failure 
occurs if file s does not exist or if s and t are on 
different devices. CP/M does not check to see whether the 
new name is already in use, so it should probably be 
unlinked first. 

unlink(s) [CP/M only] - Deletes the file s, if it exists. 

Programmers doing their own disk I/O should note that rename and 
unlink reset the DMA address. 

9.8. Arithmetic and Number String Functions. 

The following routines from STDLIB.C provide arithmetic 
capabilities and conversion between ints and strings. Most are 
coded in C and are provided for programming convenience, not speed. 

abs (i) - Returns the absolute value of the integer i. 

atoi (s) - Returns the integer value of the number contained in 
the string s1 stops at the first non-digit. 

itoa(i,s) - Converts the integer i into an ASCII string in the 
char array s[7]; returns s. 



9. RUNTIME AND I/O LIBRARY C/80 3.1 

max(i,j) - Returns the greater of the integers i and j. 

min(i,j) - Returns the lesser of the integers i and j. 

9.9. String Manipulation. 

- 32 -

The following routines from STDLIB.C provide string 
manipulation capabilities. Some are fast assembly language 
routines, but most are simply coded in C and provided for 
programming convenience. 

Strings are assumed to be terminated by a 0 byte. No 
checking is done to determine whether copied or appended strings 
overflow the arrays they are placed in. 

index(s,t) - Checks to see if the string t is a substring of 
the string s. If so, returns the starting position in s 
of t: if not, returns -1. 

isalpha (c) - Returns 1 if c is an alphabetic character (A-Z or 
a-z), otherwise o. 

isdigit (c} - Returns 1 if c is an ASCII digit (0-9), otherwise 
o. 

islower (c) - Returns 1 if c is a lower case alphabetic 
character (a-z), otherwise O. 

isupper (c) - Returns 1 if c is an upper case alphabetic 
character (A-Z), otherwise o. 

isspace (C) - Returns 1 if c is a blank, tab or newline, 
otherwise 0. 

strcat(s,t) - Copies string t onto the end of string s. 

strcmp(s,t) - Compares string s to string t, returning -1, 0 or 
1 if s is less than, equal to, or greater than t. 
Inequality is computed by numerical ASCII value. In 
particular, strings containing only upper or only lower 
case letters are compared in alphabetical order, but all 
upper case letters are less than any lower case letter. 

strcpy(s,t) - Copies string t into memory starting at the 
pointer s. 

strlen(s) - Returns the number of bytes in the string s, 
exclusive of the terminating 0 byte. Note that it takes 
strlen(s)+l bytes to hold string s. 

tolower (c) - Returns the character c, but if c is an upper case 
letter (A-Z) it is converted into the corresponding lower 
case letter. 



9. RUNTIME AND I/0 LIBRARY C/80 3 .1 - 33 -

toupper (c) - Returns the character c, but if c is a lower case 
letter (a-z} it is converted into the corresponding upper 
case letter. 

9.10. CP/M System Calls. 

The following routines from STDLIB.C provide the ability to 
call the CP/M system (BOOS} to manipulate files and perform other 
basic operations. Consult the QL!:! ,!:.l Interface Guide (one of the 
manuals provided with CP/M) or equivalent for details on individual 
system calls. 

[These routines will not work on the HOOS operating system.] 

bdos(c,de) - Performs a CP/M BOOS system call with registers C 
and DE set to the values shown. Returns the contents of 
the A register as a 16 bit sign extended number. 

makfcb(s,fcb) - Converts the file name s into a CP/M file 
control block (FCB) in the char array fcb[36]. S may 
contain an optional disk drive identifier and extension, 
and upper and/or lower case letters .. 

9.11. Random Access File I/O: 

The file SEEK.C contains routines affording random access 
file I/O capability. This file can be included in your C/80 program 
by the statement 

tinclude •seek.c• 

(Note: CP/M 1.4 and earlier CP/M releases do not support random file 
I/O, and these routines will not work on those versions of CP/M.) 

SEEK.C contains the following library routines: 

seek (chan,offset,type) - moves to a specified position in the 
file which is open on channel chan. The next getc or putc 
call will read or write starting at the new location. The 
value offset, which may be positive or negative, specifies 
the number of bytes that the read/write pointer is to be 
placed from: 

type = 0: the beginning of the file. 
type = 1: the current read/write location. 
type = 2: the end of the file. 

For example, seek(chan,0,2) will position the read/write 
pointer at the end of the file. If type = 3, 4 or 5, the 
pointer is moved offset records (256 bytes) instead. Seek 
returns a value of -1 if an error occurs, 0 for success. 



9. RUNTIME AND I/O LIBRARY C/80 3. l - 34 -

ftell (chan) - returns the current read/write pointer for the 
file open on channel chan. This pointer is the number of 
bytes before the current position in the file. If the 
current position is greater than 65535, the value returned 
will be correct mod 2561 i.e., the byte position in the 
current 256 byte record will be correct, but not the 
record number. 

ftellr (chan) - returns the current read/write pointer for the 
file open on channel chan, divided by 256. 

Remember that closing a file opened for write or update will 
result in an end of file character being written at the current 
position, unless it was opened in binary mode. So if you have 
written into the middle of an ASCII file, you should seek to the end 
before closing it. You may prefer to use binary mode and supply 
your own end of file characters. But if you do so, remember that in 
binary, CP/M end of line is indicated by the pair •\r\n•. 

9.12. Program Chaining• Wildcards 

The file EXEC .C contains a routine which allows execution of 
another program from within a C/80 program. 

exec (proq ,args) - chain to another program. Prag is a string 
containing the name of a program. Args is a string 
containing any arguments, separated by blanks, just as on 
the command line. Exec will execute the named program 
with the arguments given, just as if it had been invoked 
from the command line. Unless an error occurs, control 
never returns from exec. All open files must be 
explicitly closed before calling exec, or strange things 
may happen. 

File COMMAND.C contains a routine which allows UNIX-style 
command line expansion of file names using wildcards. 

command(&argc,&:argv) - expand file name wildcards in the 
command line. Argc and argv are the arguments to main. 
Command will treat any element of argv which contains the 
characters '?' or '*' as an ambiguous file name, and will 
replace it by the zero or more strings containing the 
names of files which match the specification. It calls 
the routines bdos and makfcb, which are on STDLIB.C. 



10. MSO & RMAC C/80 3.1 - 35 -

10. USING C/80 WITH MACRO-SO OR RMAC 

C/80 can optionally generate assembly code for input to the 
Microsoft Macro-80 or Digital Research RMAC relocatable assemblers. 
This allows you to develop a C/80 program in several modules, 
generating .REL files which can be linked using the LINK or Link-80 
linking loader • 

You can create .REL modules for C/80 library routines such 
as PRINTF and SEEK, to speed up their inclusion in your programs. A 
library manager such as LIB-80 can be used to create a library 
containing both your commonly used subroutines, and the individual 
functions in the C/80 library. Such a library can be selectively 
loaded using the S switch of the linker. 

Developing a large program in this way is more efficient 
both in time and disk space. Although AS is sufficient for learning 
C and for much serious work, use of a relocatable assembler is 
recommended for large projects. 

10 .1. Assembling and Loading. 

To generate a .MAC file, invoke C/80 using the -m switch: 

c -m [other args ••• ] 

To generate an .ASM file compatible with RMAC, use -m2 instead. You 
can also configure C/80 so that one of these modes is the default. 
See Section 6. 2. 

Macro files generated by C/80 must be assembled by M80 or 
RMAC to create a .REL file. REL files are then linked by L80 or 
LINK to create a .COM file [HOOS: .ABS file]. IMPORTANT: When 
linking C/80 .REL files, the file CLIBRARY .REL must be linked in and 
it must be the last file linked. 

Using a relocatable assembler imposes a few additional 
restrictions on global identifiers. In global variable and function 
names, only the first six characters are significant (as opposed to 
7 when AS is used), and upper and lower case are considered 
identical. Global arrays and variables must be defined in only one 
source module, and must be declared extern by any other module that 
references them, being careful to distinguish between arrays and 
pointers. Functions are implicitly extern and need not be declared. 

Macro-SO will not allow the use of a register name as an 
identifier. Thus, you may get assembly errors when you use the 
following as function names or globals, in either upper or lower 
case: 

A, B, C, D, E, H, L, PSW, HL, DE, BC 

RMAC also uses opcodes as identifiers, so it imposes many more 
restricted names. Generally, it is all right not to worry about 
this restriction when writing your programs, as long as you 



10. M80 & RMAC C/80 3.1 - 36 -

recognize what is happening when the assembly errors occur. 

Since RMAC does not accept the ' ' character in identifiers, 
C/80 substitutes '?' for it when RMAC coiiipatible output is selected. 

C/80 produces CSEG and DSEG directives to load code and data 
into separate areas of memory. This has the side effect of 
requiring more memory for the linking loader. If the linker should 
run out of memory, try compiling with the -a switch, which 
suppresses generation of CSEG and DSEG. 

NOTE: Version 3. 43 of Macro-BO uses 7 character global 
names I and is therefore inCOffipatible With Other VetSi005 
of Macro-80. CLIBRARY .REL contains three globals (putcha, 
getcha and .switc) which are truncated 7 character names. 
In order to permit loading with Macro-BO 3. 43, a module 
FIXMSOFT is included in CLIBRARY .REL which also defines 
the 7 character equivalents. However, if you use Macro-BO 
3.43, you may encounter undefined 7 character globals when 
loading from STDLIB.REL. You should either regenerate 
STDLIB.REL using Macro-BO 3.43, or try to convince 
Microsoft to send you a different version of Macro-BO. 

10. 2. ROMable Code. 

C/80 may be used with a relocatable assembler in order to 
generate read-only code for insertion into read-only memory (ROM) • 
The compiler generates CSEG and DSEG directives to load program code 
and data into separate areas of memory. 

Portions of the C/BO runtime library are not read-only, 
however, and in addition depend on the operating system environment 
which is often not available in ROM-based applications. So you will 
probably want to modify or replace that portion of the library. To 
allow this, the source code is furnished in the file CLIBIO.C on the 
C/80 distribution disks. 

The complete library file CLIBRARY .REL consists of the 
relocatable module from CLIBIO.C, the arithmetic library CLIBMATH, 
and a small module FIXMSOFT (see note above). To generate your own 
ROMable library, you should recompile CLIBIO, use LIB-BO to extract 
CLIBMATH from CLIBRARY .REL, and then create your new library using 
LIB-80. 

10.3. Making Libraries. 

You will probably want to create a single large library file 
which you can search on every load. If you put all the C/80 library 
functions into it, as well as your own private library functions, 
you will not need to worry about including the functions called by 
your program, as this will happen automatically. 

In creating such a library, you must be careful about the 
order of the modules you include. If a function in one module calls 



10. MSO & RMAC C/80 3.1 - 37 -

a function in another module, the caller must come before the called 
function, so that the linker can load them both without backing up, 
something it will not do. 

As an example, here are the commands you would type to use 
LIB-80 to create a library CLIB.REL which includes the functions in 
STDLIB, PRINTF and CLIBRARY. 

A> lib 
*clib=stdlib,printf ,clibrary 
*le 
A> 

If you want to change the existing I/O library, 
CLIBRARY .REL, see the preceding section. 

11. MULTIPLE COMPILES USING AS. 

To reduce space and time taken by compilations, it is often 
useful to compile a large program in several pieces. This may be 
done by splitting the program into several C source files, using the 
extern declaration to reference globals which are declared in 
another source file. For example, if the declaration int i [5]; 
appears at the top (global) level in one source file, the 
declaration extern int i [51; in a second source file will allow 
programs in the second file to refer to the array i defined in the 
first file. Simply saying int i[S) in both files will cause i to be 
doubly defined at assembly or load time. Exception: functions 
defined in one source file may be called from another source file in 
the same assembly or load without any special declaration. 

There are two ways to generate a single object module from 
multiple compilations. One way is to use Macro-BO and Link-80 from 
Microsoft, or RMAC and LINK from Digital Research, as described in 
the previous section. The other is to use the AS assembler provided 
with C/80 to assemble one module from several .ASM files. 

An example will illustrate how to do this. Suppose there 
are three C source files: MAIN.C, SUBl.C, and SUB2.C. First you 
must insert into MAIN.C statements which will cause the assembly 
language files for SUBl and SUB2 to be included in the assembly. 
The following statements should be put into MAIN .C somewhere at top 
level {i.e., not inside a subroutine): 

tasm 

tendasm 

XTEXT SUBl.ASM 
XTEXT SUB2 .ASM 

The XTEXT command will cause these lines to be included in the 
assembly language file MAIN .ASM. 

Next, compile MAIN.C to create an output file called 
MAIN.ASM. This file contains compiler-generated labels, which 



11. MULTIPLE COMPILES C/80 3.1 - 38 -

usually look like .a, .b, and so on. 

Then compile SUBl.C to produce an output file named 
SUBLASM. If nothing is done to prevent it, the compiler will use 
the same labels .a, .b, etc., in SUBl.ASM, and there will be a 
conflict when the two files are assembled together. To prevent 
this, SUBLC should be compiled with a command like "C -LlOOO", 
which will start the labels 1000 down in the sequence. {The largest 
permissible value for the -L switch is 32767). The -L switch also 
suppresses the generation of instructions in SUBLASM to include the 
C I/O library, since MAIN.ASM already has those instructions. 

Similarly, compile SUB2.C, say by "C -L2000", to produce 
SUB2.ASM. If disk space is a problem, these compilations may all be 
performed on different disks, and the .ASM files copied to another 
disk for assembly. The library file CLIBRARY .ASM must reside on A: 
[SYD: on HOOS] during assembly. 

To assemble the program, give the command AS MAIN. All the 
files will be assembled to produce MAIN.COM [MAIN.ABS on HOOS] which 
can then be run. 

12. RUNTIME TRACE AND EXECUTION PROFILE 

Most programs which take very long to run spend most of 
their execution time executing a relatively small amount of code. 
C/80 contains a runtime execution profile feature to help identify 
where a program is spending its time, so the critical routines can 
be made more efficient. 

To use this feature, compile the program with the -p switch, 
as in 

c -p progname 

If you are using AS, you will need to create the file 
CPROF.ASM and make sure it is on A: [SYO: on HOOS] when the program 
is assembled. To generate CPROF.ASM from CPROF.C, use the command 

c -L32600 cprof 

If you are using Macro-80 or RMAC, compile and assemble 
CPROF.C to produce CPROF.REL, and link it in when you load. 

Now run the program. When the program finishes running and 
exits normally, a listing will be produced on the standard output 
device showing, for each subroutine, the number of times it was 
called and the total time (in uni ts of two ticks of the computer 
clock) spent inside the subroutine. You can save the output listing 
by using I/O redirection to send the standard output to a file 
instead of the terminal. 

Similarly, a runtime trace of the program execution can be 
produced by compiling file CTRACE.C fr~m the distribution disk onto 



12. TRACE & PROFILE C/80 3.1 - 39 -

A: [SYO: on HOOS] as file CPROF.ASM. 

Note Capplies to CP/M users only): C/80 can only provide 
execution times if your system has some kind of real time 
clock. The Heath/Zenith systems have a clock at memory 
location OB hex. To use the profile feature on systems 
with no clock, or with a clock at another location, you 
must regenerate file CPROF .ASM as follows: 

Edit file CPROF.C. Locate the line which begins with 
fdefine TICCNT. If your system has a 16-bit clock at some 
location in memory, replace the expression following 
TICCNT with the memory address of the clock. If there is 
no clock, remove the entire line. If there is a clock, 
but not in memory, you will need to modify CPROF.C to read 
the clock wherever it now references TICCNT. 

Then recompile CPROF by the command 

c -L32600 cprof 

13. THE AS ASSEMBLER. 

The C/80 distribution includes AS.COM, an absolute 8080 
assembler. AS is essentially the same as the ASM assembler under 
Heath HOOS. This section gives a brief description of AS, to help 
you write assembly language code to be included in C/80 programs. 

To assemble a program, type a command of the form 

as comfile,listfile-=infile 

where comfile is the name of the absolute file to be produced, 
listfile is the file on which to write an assembly listing, and 
infile is the assembler source file. If no extensions are 
specified, they default to .COM, .LST and .ASM respectively. 
Listfile can be a C/80 device, such as LST:; if that device does not 
respond to tabs, it is more useful to list to CON: and use ctrl-P to 
obtain a hard copy. The command 

as filename 

is short for 

as filename•filename 

AS takes Intel 8080 mnemonics, upper case only. Identifiers 
are up to 7 characters from the set A-Z, a-z, 0-9, ., _, ?, @and$. 
Upper and lower case letters are distinguished in identifiers. For 
compatibility with other assemblers, such as Macro-80, colons 
following a label are ignored, as are 1 #' characters following a 
label in an expression. 

Constants can be one or two characters enclosed in single 



13. AS ASSEMBLER C/80 3.1 - 40 -

quotes, or a string of digits, possibly with a suffix O or Q for 
octal, H for hex, or B for binary. Default is decimal. 

The symbols * and $ represent the address of the current 
instruction. 

Arithmetic expressions in an address field are evaluated 
strictly left to right. The operators are+, -, *, /, & (bitwise 
and), and < (left shift). Parentheses are not allowed. 

The following pseudo-ops are identical to the ones in the 
CP/M ASM assembler: ORG, EQU, DB, DW, OS. 

The pseudo-op "XTEXT filename" is the AS equivalent of the 
C/80 tinclude preprocessor directive. It includes the named file at 
that point in the assembly. If no disk is specified, it assumes the 
disk on which the current source file resides. 

The pseudo-ops •LON ccc• and "LOF ccc" control listing. 
"ccc" is a string of characters: L turns listing on (LON) or off 
(LOF), C controls listing of lines from XTEXT files (default off), 
and G lists all bytes generated by an instruction (default: list 
just the first five). 

14. UPPER CASE SOURCE FILES 

Since the C/80 language depends heavily on the full ASCII 
character set and on lower case keywords, a facility is provided to 
allow C/80 source files to be prepared on upper case only terminals. 
Upper case source files should contain the preprocessor command 

I UPPER 

as the first line in the file. This causes the compiler to 
interpret the remainder of the file in upper case mode. In this 
mode, the compiler translates each upper case letter to the 
corresponding lower case letter. Upper case letters, and the 
special characters not available in the upper case ASCII subset, are 
typed as follows: 

\( 
\) 
\I 
\
\_ 

A ••• Z 
'A ••• •z 

a ••• z 
A ••• Z 

In upper case mode, when the character "' appears before a 
non-alphabetic character, it is ignored. Note that "' may be 
displayed on some terminals and printers as an up arrow, and on 
others as a caret or "hat". 



14. UPPER CASE SOURCE C/80 3.1 - 41 -

The iUPPER command affects only the file in which it appear, 
and does not have any effect on an linclude file. If an #include 
file is prepared in upper case mode, it must contain its own #OPPER 
command. (Thus, PRINTF.C, which is not in upper case mode, may be 
included in a file which is in upper case mode.) 

15. TRICKS AND INTERNALS 

15 .1. Global Arrays. 

Global arrays occupy space in the .COM [or .ABS] file. To 
reduce the size of these files, it is best to allocate large arrays 
at run time. This can be done by making them local to a function, 
or by using alloc () or sbrk (). 

15. 2. Assembly Language Linkage. 

The cleanest way to mix assembly language and C/80 is to 
write assembly language subroutines to be called from C. The best 
way to see how C/80 calls subroutines is to inspect the assembly 
language code which the compiler generates; the -t switch (Section 
6 .1) can be helpful. 

In calling a function, C/80 pushes the arguments onto the 
stack, and then calls the subroutine. It is the responsibility of 
the calling program to pop the arguments off the stack on return. 
Note that the arguments are pushed leftmost argument first; this 
means a C/80 routine may not usefully be called with a different 
number of arguments than it expects. 

To return a value from an assembly function, leave the value 
in the HL register upon return. The function should return with the 
stack pointer unchanged. 

Global variables may be accessed from assembly language 
using the same name as in the C code. The names of local and static 
variables can change when the source code is changed, so trying to 
refer to them from assembly language is not recommended. 

If 32-bit quantities are used with the optional MATHPAK, 
those values are pushed on the stack high word first. 32 bit 
function values are returned in the BCDE registers. 

Assembly language routines invoked by C function calls have 
access to all registers and need not restore their values. 

The compiler generates code using a primary register (BL}, a 
secondary register (DE), and the stack. Most operations are 
performed by calling library subroutines, with the first operand 
being HL and the second operand either DE or the top of the stack 
(which is usually popped as a side effect of the function). 



15. TRICKS & INTERNALS C/80 3.1 - 42 -

If you want to fetch the value of a variable using in-line 
assembly language code, put a statement consisting only of the 
variable just before the lasm directive. C/80 will leave the 
variable value in HL. 

15.3. Declarations for Efficient Code. 

In order to produce code which is both space and time 
efficient, variables should be declared static whenever possible, 
and int in preference to char. Declaring a function argument to be 
register will save space if the argument is used five or more times 
in the body of the function, and will save time if the argument is 
accessed often during function execution. 

15.4. Defining Globals in Header Files. 

When compiling using several source modules, it is handy to 
define global variables using an included header file. But these 
variables must be defined only in one module, and declared extern in 
all the others. This can be accomplished through the following 
programming trick: 

In the header file, declare all the V8.'riables' as follows: 

lifndef EXTERN 
tdefine EXTERN extern 
tendif 
EXTERN int i, j, ••• 

Then, in the one file in which the variables are to be defined, 
place 

tdef ine EXTERN 
tinclude "header-file" 

15. 5. I/O Buffers. 

At runtime, the library allocates three I/O buffers directly 
below the operating system area, and then builds the stack downward 
starting below the buffers. 

Note (applies to HOOS users only): Under HDOS, device 
drivers may load below the overlay area when the device is 
opened and closed. If a device driver spills over the 768 
byte buffer area and into the stack, problems may occur. 
Since HDOS provides no satisfactory method for determining 
potential driver memory requirements, the runtime library 
can not anticipate this problem automatically. 

The problem will rarely arise, since most systems 
have at most a single LP: or AT: device (in addition to 
TT: and SY:, which are always loaded), and no single 



15, TRICKS & INTERNALS C/80 3.1 - 43 -

driver is large enough at present to cause trouble. If 
multiple device drivers are to be loaded it may be 
necessary to leave additional room for the drivers. To do 
this, increase the number 10 in the LXI B,10 instruction 
in CLIBRARY .ASM (around line 40), adding the number of 
bytes necessary (1000 per extra device driver should be 
generous}. 

15.6. Common Problems. 

The most common cause of C/80 programs not working is 
exceeding array subscript limits. BASIC and FORTRAN programmers are 
used to subscripting an n long array from l to n. C/80 subscripts 
from 0 to n-1, and does not check for out of bounds references. 
Effects of assignrr;:g- i'Varuet'o an out of range array element can 
include changing the value of other variables, crashing the machine, 
or unexpectedly returning to the operating system command prompt. 

Another common condition on CP/M is for a program to run to 
completion, and then crash during exit. The system can go 
completely dead, or a BOOS error message can complain about a 
nonexistent condition or drive. 

This is often caused by storing into location 0, through a 
pointer whose value is initially 0 and is never set. C/80 programs 
exit via a jump to location 0. (Exiting via system call 0 would 
have been safer, but this is known to conflict with DESPOOL, 
although both it and CP/M are from the same manufacturer l) 

16. COMPILER ERROR MESSAGES 

When a C/80 program contains a detectable error, the 
compiler will produce an error message, giving the source file name 
and line number, and a description of what the compiler thinks the 
error is. The source line is listed, with an arrow pointing to the 
location of the error in the line. (The line is shown the way it 
looks after all ldefines have been expanded.) 

These messages aren't always as helpful as one would like, 
however. For instance, the compiler may be looking for a different 
statement type than the one you thought you wrote. So the message 
may not describe the error. Sometimes, the compiler detects the 
error far away from the place where it actually occurred. For 
example, leaving off a '}' deep inside a function will cause the 
next to last '}' in the function definition to terminate it, at 
which point the compiler will probably spew out dozens of error 
messages as it tries to parse executable statements as declarations. 
To find such an error, you may have to inspect many lines of code. 

In addition, once an error has been detected, the compiler 
is not always able to recover and continue parsing the remainder of 
the program. So a single error will sometimes result in a large 
number of error messages. Often, this is the result of C/80 trying 



16. ERROR MESSAGES C/80 3.1 - 44 -

to parse statements as declarations or declarations as statements. 
When you can't understand what some of these messages are 
complaining about, you should fix the first error detected, and any 
others you can easily locate, and then recompile to find any 
remaining ones. 

Limitations on error detection and analysis are almost 
unavoidable in compilers, especially when trying to cram a powerful 
language into the limited space of a microcomputer. This section 
can help by describing C/80' s error messages and what might cause 
them to occur. 

bad label: Labels must follow the rules for identifier names. 

bad type: C/80 expected to see a type: short, long, char, int, 
unsigned, struct or union. 

can't initialize auto: You can only initialize globals or local 
statics. 

can't initialize union: Like it says. 

can't subscript: You can only subscript a pointer or an array. 
(Did you declare it?) 

can't find file:" Did you specify the file 'an'd extension correctly? 
Did you leave off the device? Also, when available memory 
is almost exhausted, the compiler may be unable to 
allocate the buffer space to open an tinclude file. 

can't compute size: Maybe the arrays in the expression have been 
declared incorrectly. 

construct not permitted: C/80 does not allow nested type 
declarations. For example, sizeof an abstract type can 
not be used as a dimension in a declaration. 

dimension missing: The only time an array dimension can be omitted 
(or 0) is when declaring a function argument, or when the 
dimension is determined by the size of an initializer. 
Furthermore, only the last dimension of an array can ever 
be omitted. 

extra : (ignored): This looks like a function declaration, except 
function declarations are f ( ••• ) { ••• } and you put a ; 
after the ) • So the compiler took it out. 

ifdefs nested too deep: Maximum nesting of I if def, lifndef, lif and 
tifneed is 5. 

illegal constant value: Cases must be int or char constant values. 

illegal expression - need lvalue: Some operations (& and 
assignment, for example) require an lvalue, which is an 
object with a memory address. This isn't one. (Things 
that aren't lvalues include constants and expressions.) 



16. ERROR MESSAGES C/80 3.1 - 45 -

illegal function call: The identifier or expression is not of type 
function. 

illegal initializer: The initializer expression can not be computed 
at compile time. It must be an int or char constant 
expression. 

illegal struct reference: Either a • preceded by something that 
isn't a structure, or a • or -> followed by something that 
isn't a structure element. Remember that • is used 
following things that are structures, and -> following 
things that~~ structures. 

illegal symbol name: The compiler wanted an identifier here. 

improper argument: This argument is too large; probably a structure 
or union. Try using a pointer to it instead. 

internal compiler error: The compiler encountered an error in code 
generation. If there are previous errors, fix them first. 
If not, this may indicate a compiler bug1 please report it 
to The Software Tool works. You may be able to proceed by 
simplifying or rearranging the expression. 

invalid expression: The compiler is looking for an expression, but 
this does not look like one. 

line too long: Input line longer than about 100 characters. 

macro table full: Recompile using the -d switch to increase the 
size of the tdefine table1 see Section 6.L 

misplaced case: case not inside a switch statement. 

? missing: (where ? is some punctuation character): C/80 expected 
to find that character and didn't. It inserted it and 
continued, so if you really did leave that character out 
at that spot, the compilation proceeded correctly. 

must be a constant: The compiler looked for a constant or constant 
expression, but didn't find it. Remember that ?: is not 
legal in a C/80 constant expression. 

nested too deep: tinclude files can be nested no more than three 
deep (a main file and two included ones}. 

nesting: Structs and unions can not contain an instance of 
themselves. 

no active whiles: A break or continue statement was not inside any 
for, while or switch statement. 

not a label: This construct needs an identifier which is a label. 
You have used something which is either not an identifier 
or something besides a label {like a char or int}. 

not a declared variable: The compiler wants an lvalue here. (See 
"illegal expression - need lvalue 11 above.) usually this 



16. ERROR MESSAGES C/80 3.1 - 46 -

error means you have forgotten to declare an identifier; 
all identifiers in C must be declared before use. 

not a function: This identifier or expression is followed by a ' (', 
so it looks like a function call. But it's not of type 
function. 

not an address: In an initializer, you applied & to something that 
does not have an address. 

not a pointer: You applied * to something that is not a pointer. 
(Maybe you applied it implicitly, like in a subscript 
operation.) 

not enough memory for long line (fatal error): Through use of 
ldefines, you have created an input line which can not fit 
into memory. 

operands and/or operator incompatible: This usually means you have 
performed an illegal arithmetic operation on a pointer. 
The only legal ones are pointer plus integer, and pointer 
minus either an integer, or another pointer that points to 
something of the same size. If the expression looks 
legal, try rearranging the order of the operands. If you 
know what you are doing but C won't let you (like 
computing pointer & mask), use the (int) cast to fake the 
compiler out. 

output file error: Usually means the disk is full. You won't see 
this for long, because the compiler will start dumping the 
assembly language output to the terminal. 

previously defined: This identifier has been defined before. 

string space exhausted: Recompile using the -c flag to increase the 
size of the string table, or use the -k flag to avoid 
storing strings from the entire compilation. (see Section 
6.1). 

struct table overflow: Recompile using the -r flag to increase the 
size of the structure table (see Section 6.1). 

struct too large: Only 50 elements are allowed in a struct. 

symbol table overflow: Recompile using the -s flag to increase the 
number of symbol table slots allocated (see Section 6.1). 

syntax error: The compiler was trying to find a declaration (at the 
top level) but couldn't. 

too complex: In an initializer, this expression 
complicated, or was not a constant. 

too complicated: A type declaration had more than 7 levels of 
indirection (*, [l or ()). 

too large for register: Register declarations may only be applied 
to chars, ints and pointers. 



16. ERROR MESSAGES C/80 3 .1 - 47 -

too long: The initializer string, even minus the terminating 0 
byte, exceeds the size of the char array. 

too many active whiles: Well, congratulations. There's only one 
table in this compiler that isn't expandable, and you have 
overflowed it by nesting 20 whiles, fors and/or switches. 
Simplify your program. 

too many cases: Recompile using the -w switch to expand the switch 
case table (Section 6 .1). 

too many structs: At most 239 different struct types may be 
decla·red. 

type mismatch: You tried to initialize an identifier with a value 
of the wrong type. 

type (re)declared after use: This identifier was previously 
declared to be a different type. Most commonly, you have 
tried to declare a type for a function after using the 
function somewhere above. If the first appearance of a 
function name is a call to it, it is implicitly declared 
extern int, and you can't redeclare it later. Avoid the 
error by declaring the function's correct type before it 
is first called. 

undefined struct name: This struct type has not been declared. 

usage error: Indicates a violation of some C usage rule, like 
passing a struct as a function argument. 

warning: •? op assumed: You are using the old style assignment 
operator (like =&), and failed to leave a space between 
the operator and the following operand. The compiler 
assumes you mean =&, but wants you to make sure. 



INDEX C/80 3.1 - 48 -

abs •••.•••.•••••••••••••••••• 31 
acknowledgements •••••••••••••• 2 
additional reading •••••••••••• 5 
alloc ••••••••••••••.••••••..• 31 
anachronisms ••••••••••••••••• 22 
argc ••••.••.••••••••••.•••••• 24 
argv •••.•••.••••••.••.••••.•• 24 
arithmetic functions ••.•••.•• 31 
arrays •••••..••••••..••••••.• 16 
AS assembler •••••••••••••• 7, 39 
tasm ••••••••••••••••••••••••• 21 
assembler •••••••••••••••••••• 39 
assembly linkages •••••••••••• 41 
assembly language •••••••••••• 21 
assembly errors •••••••••••••• 35 
atoi ••.•...•••••..••••....••• 31 
auto ••••••••••••••••.•••••••• 17 
auto ••••••.•••.•••••••••.•••• 21 

bdos ••••.•••••••••••••••••••• 33 
binary file •••••••••••..• 23, 27 
blanks ••••••••••••••••••••••• 20 
blocks ••••••••••••••••••••••• 21 
books on C •••••••••••••••••••• 5 
break •••••••••••••••••••••••• 19 
buffers, 1/0 ••••••••••••• 27, 42 

c library files •••••••..••••• 22 
c manual •••••••••.•••••••.•••• 5 
case conversion ••••••..•••••• 32 
case ••••••••••••••••.•••••••• 19 
CCONFIG program •••.••.•••• 8, 12 
chaining ••.•••••••••••••••••• 34 
changing compiler defaults •.. 12 
channels •.••••••••••.••••••.• 27 
character I/O •••••••••••••••• 27 
character constants •.••••••.• 17 
CLIBIO •••••••••••••••••••• 8, 36 
CLIBMATH ••••••••••••••••••••• 36 
CLIBRARY, regenerating ..••..• 36 
clibrary.rel .••.••••••.••••••. 8 
command line expansion ••••.•• 34 
CODDnand •.•• • ••••• • .•••••. • ••. 34 
command.c ••••••••••••••••.•••• 8 

comparing strings ••••••..••.• 32 
compiler switches ••••.•••••.. 10 
compiler, how to run ••.•.•••• 10 
compiler defaults, changing •• 12 
compound statement ••••••.•••• 21 
concatenating strings •••••••• 32 
configuration program •••.••••• 8 
console echo, suppressing •••• 24 
console I/O •••••••••••••••••• 24 
constant expressions ••.•. 17, 22 
constants •••••••••••••••• 17, 20 
continue •••••••••••••••••••.• 19 
conversion of cases •••••.•••• 32 
copying strings •••••••••.•••• 32 
cprof.c ••••••••••••••••••.•••• 8 
crash during exit ••••••••.••• 43 
CtlCk •••••••••••••••••••••••• 26 
ctrl-B ••••••••••••••••••••••• 26 
ctrl-C ••••••••••••••••••••••• 26 

data types ••••••••••••••. 13, 15 
declarations ••••••••.••••••.• 21 
decre~e~:t;. op~,qltors •••••••••• 18 
tdefine •••••••••••••••••••••• 22 
deleting file •••••••••••••••• 31 
developing large programs •••• 35 
device names •••••••••••••.••• 23 
distribution disk ••••••••••••• 7 
do ••••••.•••••••••••••••••••• 19 

echo from console ••••.••.••.• 24 
efficiency •••••.••••••••..••• 42 
end of line mappings ••••• 23, 24 
end of file ••.••.••••••.••••• 24 
tendasm ••••••••••••••••.••..• 21 
EOF •••••••••••••••••••••••••• 23 
error messages •••.••.••..•.•• 43 
errors, assembly •••••••••••.. 3 5 
exec ••••••.••••••••.••.•••.•• 34 
exec.c ••••••••••.••••••••••••• 8 
exit •.••••••.•••••••••.•• 26, 28 
exit, crash during ••••••••••• 43 
expression, constant ••••.••.• 22 
expressions ••••••.••••••. 14, 18 
extern •.••••••••• 15, 17, 21, 47 



INDEX C/80 3.1 - 49 -

false •••••••••••••••••••••••• 18 
fclose ••..•••••••••••••••••.• 27 
FILE ••••••••••••••••••••••••• 23 
file, binary ••••••••••••• 23, 27 
file control block ••••••••••• 33 
file, deleting ••••.••••.••••• 31 
file mode •••••••••••••••• 23, 27 
file natues ••••••••••••••••••• 23 
file, renaming •••••••••••••.• 31 
files, limit on open ••••••••• 27 
fin •••••••••••••••••••••••••• 25 
fopen •••••••••••••••••••••••• 27 
for ••••••••••••••••••• , •••••• 19 
formatted I/O •••••••••••••••• 28 
fout ••••••••••••••••••••••••• 25 
fprintf •••••••••••••••••• 22, 29 
free ...•••.•••.•••..•••.••••• 31 
free storage ••••••••••••••••• 31 
fscanf ••••••••••••••••••••••• 30 
ftell •••••••••••••••••••••••• 33 
ftellr ••••••••••••••••••••••• 34 
function call linkage ••••.••• 41 

getc ••••••••••••••••••••••••• 27 
getchar ••••••.••••••.•••• 25, 27 
getline ••••••••••••••.•.••••• 31 
global ••••••••••••••••••••••• 15 

HOOS •••••• •••••••• •••••••••••• 4 
hexadecimal constants •••••••• 17 
hints ••.••••.••.••••••••••••• 41 

identifiers •••••••••••••••••• 20 
identifiers, restrictions on.35 
tifneed •••••••••••••••••••••• 22 
implementation dependencies •• 20 
increment operators •••••••••• 18 
index ••.••••••••••••••••••••• 32 
initialization •.••••••••••••• 21 
initialization to zeros •••••• 12 
in-line assembly language •••• 21 
input, formatted •••••••••.••• 28 
internals ••.•.••••••••••••••• 41 
interrupting program ••••••••• 26 
I/O •••••••••••••••••••••••••• 23 
I/O buffers •.•••••.•••••• 27, 42 
I/O, console •.•••••••.••••••• 24 
I/O, random file •.•..•••••••• 33 
I/O redirection ••••••.••••••• 25 
isalpba •••••••••••••••••••••• 32 
isdigit ••••••.•••••.••••••••• 32 
islower •.••••••••••.••.••••.• 32 
isspace .•••.•••..•.•••••.••.• 32 
isupper •••••••••••••••••••••• 32 
itoa ••••••••••••••••••••••••• 31 

Kernighan and Ritchie ••••••••• 5 

language restrictions •.•••.•• 20 
large program development •••• 35 
length of strings •••.•••••••• 32 
lexical conventions ••••.•.••• 20 
library ••••••••••••.•••••••.•• 7 
library files in C ••.•.••.••• 22 
library, regenerating ••.••••• 36 
library, runtime •.••••••••••• 23 
limit on open files •••••••••• 27 
tline •••••••••••••••••••••••• 22 
LINK ••••••••••••••••••••••••• 35 
Link-80 •••••••••••••••••••••• 35 
local •••••••••••••••••••••••• 15 
logical device names ••••••••• 23 

machine requirements ••.••••••• 3 
Macro-80 ••••.•••••••••••• 11, 35 
Macro-80 3.43 •••••••••••••••• 36 
main ••••••••••••••••••••••••• 24 
makfcb ••••••••••••••••••••••• 33 
making libraries •.••••••••.•• 36 
manual, c ..••..••............. 5 
max •••••••••••••••••••••••••• 32 
memory allocation ••.••••• 28, 31 
min •••••••••••••••••••••••••• 32 
multiple source files35, 37, 42 

names .•••••••••••••••.••• ls, 20 
names, restrictions on •.••••• 35 
new features in 3.1 •.••••••••. 6 
NOLL ••••••••••••••••••••••••• 23 
number to string conversion •. 31 

octal constants ••••••••••.•.• 17 
operators ••••••••••••••.• 14, 18 
output, formatted •••••••.•••• 28 

pointers •••••••••••••••••.••• 16 
preprocessor commands ••.••••• 15 
printf •••••••••.••••••••• 22, 28 
pcintf.c ••••.•.•.••.•••..••••• 7 
printf.h •••••••••••••••••••••• 7 
profile, runtime •••.••••• 11, 38 
program chaining ••••••••••••. 34 
putc ••••••••••••••••••••••••• 27 
putchar •••.••••.•.••.•••. 25, 27 



INDEX C/80 3.1 - 50 -

random file I/O •••••••••••••• 33 
read ••••••••••••••••••••••••• 27 
read mode •••••••••••••••• 23, 27 
reading console .•.••.•••.•••. 31 
reading terminal. .••••••.•••• 3l 
regenerating library .••••.••. 36 
register .•.••.•••.....••• 17, 21 
relocatable code •••••••.••••• 35 
rename •••••••••.••••••••••••• 31 
renaming file ••.••••••.•••••• 31 
restrictions on language ••••• 20 
restrictions on names •••.•••• 35 
returned function value •••••• 41 
RMAC .••••.••••.••.••••••• 11, 35 
ROMable code ••••••••••••••••• 36 
runtime library .••••••.••••.• 23 
runtime profile •••••••••• 11, 38 

sbrk ••••••.•••••••••••••••••• 28 
scanf •••••••••••••••••••• 22, 29 
scanf.c ..........••••........• 7 
scanf.h ••••••••••••••••••••••• 7 
scope of variables .•••••••••• 15 
seek •••••••.••••••.•••••••••• 33 
seek.c •••••••••••••••••••••••• 8 
sprintf •••••••••••••••••• 22, 29 
sscanf ••••••••.•••••••••••••. 30 
standard input ••••••••••••••• 25 
standard output •••••••••••••• 25 
statement, compound ••••••.••• 21 
statement types ••••••.••••••• 14 
statements •••••••.••.•••••••• 19 
static ••••••••••••••••••• 17, 47 
stderr ••••••••••••.•••••••••• 23 
stdin ••••••••••••••••.••••.•• 23 
STDLIB .C ••••••••••••••••••••• 31 
stdlib.rel •..•••••.••••••.•••• 8 
stdout ••••••.••..•••••••••••• 23 
storage classes •••••. 15, 17, 21 
strcat •..•.•••.•••••••••••••• 32 
strcmp ••.••.••••••..•.•••.••• 32 
strcpy •••.••..••.••••••.•••.• 32 

string comparison •••..•..•••. 32 
string concatenation •••.••..• 32 
string constants •.•••••..•..• 17 
string copying •••••••••••.••. 32 
string length ••••.•.•••••••.• 32 
string lookup ••.•.••..••••••• 32 
string manipulation •••••••••• 32 
string to number conversion •• 31 
strings •.•••••••••••••••••••• 16 
strlen •••.••••..••••••.••.••• 32 
structures •••••.••••••••••••• 16 
switch ••••••••••••••..••••••• 19 
switches, compiler •••.••••••• 10 
system call •••••••••.•••••••• 33 

terminal, reading •••••••••••• 31 
tolower •••••••••••••••••••••• 32 
toupper •.•••••••••••••••••••• 33 
tprintf.c •.•••••••••••••.••••• 7 
trace •••••••••.•••.••.••••••• 38 
tricks •.•••••••••..••.••••••• 41 
true •.•.••..••.•••.••.••.•••. 18 
truth values •.••••••••••.•••• 18 
typeahead •••••••••••••••••••• 26 
typedef •••••••••••••••••••••• 21 

undefined globals ••••••.••.•• 36 
unimplemented features ••.•••• 20 
unlink ••••••••••••••••••••••• 31 
update mode •••••••••••••• 23, 27 
upper case source ••••••.••••• 40 
IUPPER ••••••••••••••••••••••• 40 

variables •••••••••••.••.••••• 15 
variables, scope of •••••••.•• 15 

while •••••••••••••••••••••••• 19 
wild cards •••.•••••••••..••.• 34 
write mode ••••••••••••••• 23, 27 
write •••••••••••••••••••••••• 28 

zeros, initialization to •••.• 12 



The I Users' Group 
P,O.Sox97 

"1cPnerson,KS67461 
(316)241-1165 

Sign and return tnis form for CUG memDershlp, Include $UI ($21!1 overseas) 
forasubscr1pt1ontot.heCUG!rlewsletter.Attacnproofofpurcnase 
forelllic•nsedCcompllers. 

DATE --------- ---------

CITY ----------
---- STATE/COUNTRY ____ ZIP ___ _ 

Pref•tredformet 
{G1veL1teboatdestgnat1onitknown) 

Iunderstandthat.TheCUsers'Group, (hereafter referred toast.he 

~~o~~~n a~~~~i!sl~~!'!~! ~~d n~~:e~.,:~c:~!~!~ ~~r t~!s~~~i~~1 ~~.!~n ·~~ ~~~! 
tHtenspecit1callyreleasedtotneGroupbytneholoerofany 
copyri9htorpatent.privile9esgovernin9tnedist.rit>utionofsucn 
1ntoriaat1on.Iagreetocomplyw1ththlspol1cywnenmekingsub•1ss1ons 
to the Group. 

Signature 

ThecontinuedfunctionoftlleGroupaependstoagreatdaalonyour 
parttctpat1ontncheGroup•s,.eciv1t1es.Ind1c,.tetlelowc .. sksyou 
wouldt1ew1ll1n9todofortheGroup. 

_w~!~:l;~~:~tals for 

-~~~11~~!c~~~u~~~~ dtus 
_Copydhks 
_Helpnewusersaet1u9v1 .. 

telephone 

_H:~~;~1~;r~~·:a:~=~~!1cy. 
Name speehlicy: 

-~~~!~P s~~~=~~:s 
==Ac::caslltlnrianforadisk 
_Reviawtlooks 
_Translatedisktorm .. cs 
-"'~!~;~:::pc applications 

_Handleforeigneorraspondenee 
Wh1ehllln9us9ejs)1 



The I Users' Group 

The C Users' Group (CUG) tsanlnternatlonallnfor•atlon 

;:~:!~::Sm~~~~~; 
1

~~ "E~~=:~;:!!!~~~=~~::::r~;m~~ ~~i=::! 
the official users 9roup for their l111ple•ernatton of c. 

Group me•Ders have access to CUG library software, can 
partlctpatet11on9oln9projeccs ;\Ind for a s11111ll fee can 

:;:E~!~~on !~out c::111be~~~~~·~M ~~a~~~~~y on ne~~!et~=~bM=~~: 

CUGpubllshesanewsletterwhtchservea as a com111unlc11tlQn 

~;~=~~= a~:r de;cr~~=~s in ~~= n:~~~~~~~~. ~~o~~he an~lb~:~~w:~~ 
:~~ewa~~:l e:~~scr ~~~ ton~ro~~!ed $l:ean~~~~s 0:;~ se~;~~uss~~~ 
subscrlptionfeeene.ttlesthesubscrlt>ertoslxtssues. 

~~~11~11!~~=:~s so:~~=~=l to 0~~~~~ie~~~je~~~. !~~n:!~~p ~~ff!~:~ 
:;~~=~~~e!~~!~ s!~~~:~; o!~e :~~o~~::;~~~e:~~~:~g ~~ t~=~m~!~~
CUG ma1ntalnsanoff1ceandsmallstafftofacll1tate111ember

~~~ir~: ~ 1 ~~ ~:: r ~~~::~~n °~~ r~f ~~ ~!~r ~~: ;~~:~~0~~ ::, 1 ~:~i ~ i :ii~ 
Address all correspondence toTheCUsers'Group,P.O.BoJC 
97,l'lcPnerson,KS67469USA. 

Wn9ue9e•i S.allC,anei:tenslverewriteofRonCain'aSmall 

;.:~=!~~~:rne:s:::~~!!~nt 1!~1c=~o1~"!nd ~~;~. 

Progra• Develop•ent Toole: a 6800 and an 1882 
cross-assembler, a C cross compiler whtchqenerates6889 
code; anassemtllerlnC which directly generat<"'!I a .CRL 
ftlefrom 811811 assembly language functions; aco-routtne 
faclltty; anenhancedverslonof CASM; a profiler; a 
post-processor for dlssassembl1ng .CRL flles; the L2 
linker; theMeta-4comptler-comptler; andmore. 

Ut111t.1esrAdlsksur9erypro9ra111; a curly brace checter; 
kWIC related programs, pretty printer for Cpro9rams,C 
pre-processor for TRS-881 sq and usq data 

~~mp:~~!;~{~?ll~~!~~er ~)fot~~::• a a l)~:=~y c~~~~lat~~m~~~~~:~; 
~!~=~tory 11Stl"rs; sh and glob ala Softw11re Tools; and 

Punctions:AnenhancedverslonoftheBDS C floating point 
packaqewlth logarithms added; averylon9inte9erpacka9e 
Which Includes a proqrammat>le calculator simulator and 
severalprt111e nu111ber programs; llbraryfunctlonsforthe 
Ex1dySorcerer; floatlnq point el!tenslons a:nd trtq 
ftJnctlons; OIOandCIOpackaqes; plus111ore. 

Graphtes: A graphics system which supports object-oriented 
graphlcsontheRadtoShackColorC0111puter. 

Co-un1eat1ons Pac1ta9esi YAM (Yet Another Modem), a 

=~~~:;t~~=~eg8:v:;:~9111~f modem pro9rus1 and Citadel, a 

Mlacsllaneous1Anappro11chtoter1111nal standardi:i:u:lon1 a 
package that allows an 8"88or:i:88toread/wr1tecassette 

~:~e~ 1!~~111~~:t~n~~~MA~n:L:0~;~9le board 111lcro1 some 111ode111 


